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Abstract

This dissertation is broken into two essentially unrelated chapters. The first chapter considers
exact computations of large deviation rate functions in various solvable 141 dimensional di-
rected polymer models. The models considered include point-to-point and stationary versions
of an inhomogeneous directed last passage percolation model, the O’Connell-Yor polymer, and
the Brownian directed percolation model. The work on the inhomogeneous corner growth
model is joint with Elnur Emrah. The second chapter deals with particle representations for a
class of nonlinear stochastic partial differential equations and is based on joint work with Dan

Crisan and Tom Kurtz.
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Chapter 1

Introduction and overview

This thesis consists of two main chapters, which study essentially disjoint topics. Both chapters
include more detailed introductions to the questions considered here, but we will begin by giving
a brief overview of the results obtained in this dissertation.

Chapter [2| considers results on large deviations of the free energy in certain directed
polymer models. Formally, the model of a directed polymer in a random environment is
a measure on paths. To construct such a model on the lattice Z% x Z,, we assign weights
{W(X,t)}()(,t)ezd « 7., to each site of the lattice. The directed polymer measure is defined as
a perturbation on a reference measure: for concreteness, let P denote the law of a simple
symmetric random walk. Fixing a parameter § > 0 (the inverse temperature) and a polymer

length T' € Z,, the measure on paths is given by
T
,UT(TF) = ZT(,B)_leBZt=1 W(W(t)7t)P;ef(ﬂ).

See Chapter |2, Subsection for a more detailed and precise introduction to the model.
Our interest is in large deviation properties of the free energy T~ 'log Z7(f3) in the case d = 1
for certain choices of the weight distributions. Large deviation theory aims to understand
precise exponential asymptotics for the probability of rare events. The regime studied here
corresponds to the case when the free energy is unusually large. In the case of the directed
polymer models we study, these unusually large values of the free energy are connected to
the physical phenomenon of intermittency. Some connections to the relevant literature and a

discussion of this connection are included in Chapter [2, Subsection [2.1.3]



The precise models studied here are discussed in detail in Chapter [2, Subsection They
consist of a small collection of ‘exactly solvable’—that is, models for which explicit computation
is possible—and include an inhomogeneous generalization of the classical exponential directed
last passage percolation model, the O’Connell-Yor polymer model, and Brownian directed last
passage percolation. The primary results for each of these models are computations of large
deviation rate functions and moment Lyapunov exponents corresponding to right tail large
deviations in the point-to-point versions of the polymer model (i.e. where P is the law of a
random bridge). Additionally, in each case some results are obtained for stationary versions
of the model. The results for the inhomogeneous generalization of exponential last passage
percolation appear in [32]. Most of the results on the O’Connell-Yor polymer appear in [49],
though some additional results are presented here. Similarly, most of the results for Brownian
directed percolation appear in [50].

Chapter [3| concerns particle representations for a class of non-linear stochastic partial dif-
ferential equations with multiplicative noise and Dirichlet boundary conditions. This work
is complementary to the results of the paper [28], which is joint work with Dan Crisan and
Tom Kurtz. In that paper, a similar particle representation was obtained for a different class
of stochastic partial differential equations with additive noise and Dirichlet boundary condi-
tions. Particle representations and approximations of this type originate in the study of the
McKean-Vlasov problem and appear for example in the theory and practice of non-linear fil-
tering. A simple example covered by the results of [28] is the stochastic Allen-Cahn equation

with time-white space-colored noise forcing,
Ou=Au+u—ud+¢

on a domain D, subject to the boundary condition that (in a certain sense) u(t,z) = g(z) on
oD.

Both the results presented here and the results in [28] are extensions of the work of Kurtz



and Xiong in [63] to stochastic partial differential equations on domains. Here, as in [63],
the non-linearity in the stochastic partial differential equation is a bounded and Lipschitz
continuous functional of the de Finetti measure which serves as a representation of the solution
to the stochastic partial differential equation. This differs from [28], where the non-linearity
is a Lipschitz function of the density of the solution. The latter is suited for equation of the

type shown above, while the former sometimes appears in the context of filtering.



Chapter 2

Large deviations of the free energy
in certain solvable directed polymer

models

2.1 Introduction

2.1.1 Directed polymers in random environments

The model of a directed polymer in a random environment was introduced in the physics
literature in [46] in order to model the domain wall in a ferromagnetic Ising model with random
impurities. Shortly thereafter, it was observed [47, [54] that in the two dimensional model the
numerically observed scaling exponents for the transverse fluctuations of the domain wall
interface and the pinning energies also appeared numerically and theoretically in other related
contexts [35, 88]. These works suggested the presence of some universal features in certain 1+1
dimensional models of interfaces roughened by impurities. Early mathematical work on the
model in dimensions 3+1 and higher followed in [14, 48]. The directed polymer model itself,
these characteristic scaling exponents in 1+1 dimensions, and other universal aspects of models
of this type have since appeared in a wide range of physical and mathematical situations. See
for example [43] 142}, 59] for physical surveys and [23], 25, [30} [75] [76] for mathematical surveys.

We begin with an introduction to the model and some comments about the specific questions



studied in this dissertation.

The directed polymer model is formally a probability measure on paths in a disordered
(random) environment. The name comes from the interpretation of a random path drawn
from this measure as describing the shape of a polymer chain. Consider the lattice Z¢ x Z..
and let W (x,t) be a family of real valued (random) weights indexed by (x,t) € Z¢ x Z . Let
P™f(.) denote the law of a random walk on Z? and P*(-) denote the restriction of P™f to
times t € {0,...,T}. Fix a parameter 5 > 0, which we can interpret as an inverse temperature.

The polymer measure is
T
pr(m) = Zp(B)~Lef Lim W1 pref () (2.1.1)

where Z is a normalizing constant referred to as the partition function. We take the convention
common in the mathematical literature of making the exponent positive. Paths for which
Zle W (m(t),t) is large are then assigned greater weight by the measure pp. It should be
mentioned that unless 8 = 0, this family of measures is in general not consistent as 1" varies.
That is, if Ty < T then integrating out the distribution of (7(71+1),...,7(7%)) from ur, does
not result in the measure p7 .

Informally, sites with W (x,¢) > 0 can be viewed as favorable to the polymer chain, while
sites with W (x,t) < 0 are unfavorable. A simple physical picture to keep in mind (taken from
[23]) would be to imagine a hydrophilic polymer chain floating in water and to consider the
case that W (x,t) € {—1,1}. The lattice here can be viewed as representing the sites where
monomers can be located while nearest-neighbor edges between these vertices can be viewed
as possible locations for chemical bonds. We can interpret the sites with W (x,t) = —1 as sites
with hydrophobic impurities and sites with W (x,t) = 1 as those without. For g sufficiently
large, one can see that the typical shape of the chain m under pr will tend to be one where
m(t) = x for a large number of sites (x,t) with W(x,t) = 1.

This measure should be thought of as a model of the shape of a polymer at thermal



equilibrium with a fixed realization of this environment. See for example the discussions in
[23, 30, 43]. The model considered here is not the most general random polymer measure
considered in the literature and indeed lacks some physically interesting features if one would
like to model actual polymers. In particular, having chosen to make the polymer ‘directed’ by
requiring that the second coordinate (time) increase in each step, we lose self-interactions of the
chain. This cost is somewhat compensated by the fact that the model becomes considerably
more tractable with this choice.

As a concrete example, consider the case that P is the law of a simple symmetric random
walk 7 on Z and let P:}ef be the restriction of this law to times ¢ € {0,1,...,7"}. There are
two natural graphical views of the polymer paths that appear in the literature: one with the
coordinates given by (z,t) € Z x Z and a rotated picture with coordinates (i,j) € Z4 X Z.
As the name suggests, the rotated picture is obtained from the space-time picture with a 45
degree rotation. The coordinates (i,7) are related to the coordinates (z,t) by i +1—1 =t
and ¢ — j = x. See Figure [l] and note that in general we will only draw the sites in the lattice
which can be reached by the paths of the walk with positive probability.

The previous model, where the reference measure P}ef is the law of a simple symmetric
random walk, is often referred to as the point-to-line polymer. It is natural to consider the
model where this reference measure is replaced by that of a random bridge. Indeed, this is
the model that is the object of interest in what follows. Formally, fix y € Z¢ and let P;e:fp(ﬁ)
denote the law of a random bridge 7(t) on Z% with 7(0) = 0 and 7(T) = y. In this case, the

polymer measure is given by
pyr(m) = Zy ()P Zims WO D gpret (), (2.1.2)

Once again, in the case d = 1 it is natural to work in the rotated picture with coordinates (i, j)
rather than (x,t). See Figure

In both cases, it is also be natural to consider the “zero temperature” polymer model,



T

Figure 1: Three paths of a simple random walk 7 on Z with 7(0) = 0 in the space-time picture
and the rotated picture up to time ¢ = 5. Time runs along the main diagonal in the rotated
picture.

X

Figure 2: Two paths of a simple random bridge 7 on Z in the space-time picture and the
rotated picture with 7(0) = 0 and =(5) = 1.



which is given by taking the limit 5 — o0 in the previous expressions. The terminology comes
from the interpretation of 5 as being a (multiplicative) inverse temperature, as is common in

the statistical physics literature. Define

T
Jim 57 log Zr(B) = L(T) = max ), W (1), 1)

t=1
T
5lim B Yog Z,r(B) := L(x,T) = maXZ W(r(t),t)
o0 T =

where the maxima run over paths m which are supported by the reference measure P%ef or
P;e; respectively. This zero temperature model is typically referred to as directed last passage
percolation and the maximum over paths in the previous expressions are referred to as last

passage times.

2.1.2 Free energy fluctuations and the KPZ class in d = 1

Under fairly mild conditions on the weights W (x,t) (see for example [89]), one can show that

the limits

ppl = lim n~!log Zn(1), Ppp(S) = 111101O n~!log Z[nsj,n(l)

n—ao0

gpt = lim n~'L(n), gpp(s) = lim n'L(| ns |, n)

n—o0 n—0o0

exist almost surely. The terms in the first line are typically referred to as free energies, while
the terms in the second are often referred to as time constants. Note that we have suppressed
the dependence on § in the first line. In dimensions 3+1 and higher, one sees a phase transition
in the behavior of the polymer model as 3 varies [23]. We consider the 1+1 dimensional model
here and will omit the dependence on 3 by fixing 5 = 1.

One of the numerical observation in [46] was that the fluctuations of log Z,,(1) about npp
in the 1+1 dimensional case should scale as n'/3. There has been enormous recent progress on

understanding the limiting distributions under this scaling. These limits are expected to be



universal for a wide class of interacting particle systems, growth models, and directed polymer
models, but the exact distribution is expected to depend on the initial (or terminal) conditions
of the model. For example, in the point-to-point case, it is widely expected that the following

conjecture holds (see for example [12, 25| [85]).

Conjecture 2.1.1. When d = 1, for a wide class of distributions on the i.i.d. weights

{W(x,t)}zs, there exists a constant ¢ depending on the distribution of W(1,1) so that

log Z 1) —
lim P ( og lnsJ,n(JS nppp(s) < T’> = Fy(r)
cn

where Fy(r) is the cumulative distribution function of the Tracy-Widom GUE distribution.

n—o0

The same conjecture is expected to hold with log Z| ,s| (1) replaced with L(| ns |,n) and
ppp(s) replaced with gpy(s). Although there has not been much progress toward true univer-
sality, this conjecture has been checked for certain solvable models.

The previous conjecture needs to be modified if one changes the paths in the polymer
model. For example, in the point-to-line polymer model the Tracy-Widom GUE distribution
should be replaced by the Tracy-Widom GOE distribution. A more general description of the
conjectured limiting distributions can be seen in [25] Figure 4]. There is a process level version
of this conjecture though even less is known rigorously; see [26].

The class of models for which appropriate versions and generalizations of this conjecture
are expected to hold is known as the Kardar-Parisi-Zhang (KPZ) universality class. This class
has attracted substantial research interest in the last two decades. See for example the surveys
[25] [42] [75] [76]. The namesake of the class is the Kardar-Parisi-Zhang (KPZ) equation, which
describes the evolution of the free energy of the continuum directed polymer [I} 2]. To define
this process, it is helpful to start by considering the stochastic heat equation with multiplicative

noise, which describes the partition function of the continuum directed polymer:

1 .
7 = 5&32 + ZW. (2.1.3)
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Here W is space-time white noise on R x R, and for sufficiently nice initial data solutions to
this equation are typically understood to be mild solutions in the sense of Walsh [90]. The
initial conditions Z(z,0) = §(z) and Z(z,0) = 1 correspond to the point-to-point and point-
to-line models respectively. A formal computation assuming that W was a smooth function

shows that A = log Z should solve the Kardar-Parisi-Zhang equation
1 1 2 T
Oth = iéxh + 5(63311) + W. (2.1.4)

We take h = log Z for Z solving to be the definition of a solution to (2.1.4]). This was
shown to be the physically correct notion of a solution by Bertini and Giacomin in 1997 [10].
A direct definition of an appropriately renormalized solution to (2.1.4) (on T x R,, rather
than R x R;) came in 2011 with the Fields Medal winning work of Hairer on the theory
of regularity structures [40], [41]. Recently, an alternative approach in the same setting was
proposed by Gubinelli and Perkowski [39], using the language of paracontrolled distributions.

The KPZ equation itself was recently shown to lie in the universality class [3, Corollary
1.7], in that with Z(z,0) = §(z), for each x € R, 2%/3¢t=13(log Z(xt*3,t) — t/24 converges to

the Tracy-Widom GUE distribution as ¢t — co.

2.1.3 Free energy large deviations and annealed moment Lyapunov expo-

nents
Large deviation theory

Large deviation theory is a branch of probability theory studying sequences of events with
exponentially small probabilities. All of the random variables considered here will take values

in R, so we state the definition of a large deviation principle at this level of generality.

Definition 2.1.2. Given a sequence of real-valued random variables {X,}, we say that the

distributions of {X,} satisfy a large deviation principle with rate r, and good rate function I(-)
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if 1(+) is lower semi-continuous, has compact sub-level sets, and for all Borel sets B

inf I(z) < lim —r,'log P (X, € B) < lim —r,'log P (X, € B°) < inf I(z),
n—o0

zeB n—00 zeBe
where B° denotes the interior of B and B denotes the closure.
Two classical results in large deviation theory connect these large deviation rate functions
to exponential moments of (functions of) the sequence of random variables. There is a result
due to Varadhan which shows that if a large deviation principle holds then under a moment

assumption one can recover asymptotics of exponential moments of the random variables.

Lemma 2.1.3 (Varadhan’s Lemma, [29] Theorem 4.3.1). Let ¢ : R — R be continuous and
suppose that the distributions of {X,} satisfy a large deviation principle with rate ry, and good

rate function I(-). Suppose further that for some v > 1,
lim 7, 'log E [e”"'y‘i’(x")] < 0.
n—o0

Then

@r;l log E [eT"¢(X")] = sup{o(z) — I(x)}.

zeR

There is also a partial converse due to Gartner and Ellis, which says that under smoothness

conditions the reverse also holds.
Theorem (Gértner-Ellis Theorem, [29] Theorem 2.3.6). Suppose that for A € R, the limit

A(N) := lim r; log E [e/\T”X”]

n—0om
exists as an extended real number in (—oo, 0] and that the function X\ — A(N) is lower semi-
continuous. Let Dy = {\ : A(X) < o} and suppose that its interior, DY, is non-empty,
0 € DY, and that A(-) is a differentiable function on DY . If in addition A is steep in the sense
that A'(\,) — o0 whenever A, is a sequence in D} converging to a boundary point of DY,

then the distribution of X,, satisfies a large deviation principle with rate r, and rate function

A*(r) = supyer{Ar — A(M)}.
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Corollary 2.1.4. Suppose that for A € R, the limit
A(N) := lim r, log E [e’\T"X"]
n—0o0

exists as a real number and that A(-) is a differentiable function on R. Then the distribution

of X, satisfies a large deviation principle with rate vy, and rate function A*(r) = supyep{A\r —

AN}

Large deviations of the free energy and Lyapunov exponents

There are two interesting regimes for large deviations of the free energy in point-to-point
directed polymers with up-right paths (as in the second frame of Figure|2) when d = 1 and the
weights {W(i,7)} are i.i.d.. The first is the regime we study, which corresponds to right-tail
large deviations—meaning the regime in which the free energy is unusually large. Heuristically,
one can guess that the correct rate for such large deviations should be 7, = n by viewing the
partition function as an integral over paths. The partition function can become unusually large
if a single path is unusually large. Since there are O(n) sites on a path from (1,1) to (| ns |, n)
and the environment is i.i.d., under mild assumptions direct computation shows that the large
deviations for a single path will occur with rate r, = n. In contrast, because the weights are
always positive, a large deviation in which the free energy is unusually small constrains all
paths. One might guess that this imposes a constraint on the O(n?) weights that influence
admissible paths from (1,1) to (|ns|,n) and so the rate should be 7, = n?. These large
deviations are more complicated than the right tail large deviations and one can show that the
rate is not quite universal; see [, 27].

When X,, = n~!log Z)ps|n(1) or X, = nilLLnsLn and r, = n, we will refer to the val-
ues of the exponential moments appearing in the Gartner-Ellis theorem as (annealed moment)
Lyapunov exponents. Computation and estimation of Lyapunov exponents for various general-

izations of (2.1.3) have attracted attention in recent years in connection with the phenomenon
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of intermittency. See for example [16] 24, [56]. Although this is not the focus of this thesis, we
briefly review this connection.

Physical intermittency is the tendency of a field to exhibit extreme clumping, meaning that
the mass of the field is concentrated in a collection of small regions which are separated by large
voids. As will be discussed in Section [2.2.1] below, the partition function in one of the models
studied in what follows (the O’Connell-Yor model) can be viewed as a spatial discretization of
(2.1.3)). The precise definition of this partition function is given in . Figure |3| shows a
single simulation of the partition function as a field and along a single spatial line in this model

to illustrate the phenomenon. As is suggested by Figure |3 typical values of the (normalized)

tn

L time
(a) e 2" Zox(0,1) for k < 75,t < 150 (b) e 3! Zy.75(0,¢), t < 150

Figure 3: A simulation of the normalized partition function in the O’Connell-Yor polymer.

partition function are small. Indeed from the free energy limit for this model, one can see that
the typical values of the partition function for large enough n should be less than one, because
the normalized limiting free energy is strictly negative. See for example Lemma below.
The largest peaks in this simulation are on the order 10%, while the largest peaks along the
top line are on the order 10!. Repeating simulations of this type suggests that the model is
typically intermittent in the sense that the largest peaks contain most of the mass (measured by

taking space-time averages) of the field. It is shown below that this partition function satisfies
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the mathematical definition of intermittency, which we now introduce with an example. This
was also previously shown in [16].
A concrete theorem proving mathematical intermittency in the case of (2.1.3) was recently

proven in the case that Z(z,0) = do(x) in [16].

Theorem ([16], Appendix A.2). Suppose Z(x,t) is the mild solution to with initial

data Z(x,0) = do(z). Then for all A € N,

AP — A
24

t—00

1
lim - log [Z(O,t)A] -

A similar result for other initial data can be found in [11} 21]. Mathematical intermittency,
as described for example in the book of Carmona and Molchanov [20], is defined by the con-
dition that the function A — A71A()) is strictly increasing on the interval [2, 00). Under some
ergodicity hypotheses, one can show that if this condition holds, then it will imply a separation
of scales similar to what is seen in Figure

Our goal is to explicitly compute large deviation rate functions at rate n and to obtain
the associated moment Lyapunov exponents. For the reasons discussed above, in the positive
temperature temperature models, which are in some sense discretizations of , results of
this type can be viewed as giving some information about intermittency. In both the positive
and zero temperature models, computations of these rate functions and Lyapunov exponents
provide a more complete picture of the behavior of models in the KPZ class and give some
insight into what these models look like when they are not behaving as one might expect based

on ideas like Conjecture [2.1.1
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2.2 Models considered and statements of results

This dissertation focuses on a class of models which are “solvable” in the sense that explicit
computation of many quantities of interest is possible. This condition is extremely restrictive:
only a handful of such models are known and they are only known when d = 1. Before turning
to the proofs, we begin by introducing the specific models that are studied in this dissertation,
recalling some key results about these models, and stating the main results that are proven in

what follows.

2.2.1 The O’Connell-Yor polymer

The O’Connell-Yor polymer model was originally introduced in [71] in connection with a gen-
eralization of the Brownian queueing model. Based on the work of Matsumoto and Yor [67],
O’Connell and Yor were able to show the existence of a stationary version of this model sat-
isfying an analogue of Burke’s theorem for M/M/1 queues. This property forms the basis
for the computation of the large deviation rate function in Section Subsequent work on
the representation theoretic underpinnings of the exact solvability of this model can be found
in the work of Borodin and Corwin on Macdonald processes [I5] and the work of O’Connell
connecting this polymer to the quantum Toda lattice [70].

Concretely, it is a semi-discrete model of a directed polymer in a random environment where
the random walk paths are given by the sample paths of a Poisson bridge and the random
environment is space-time white noise on Ry xZ,. Let {B;}2, be a family of independent
two-sided standard Brownian motions. For ¢ € Ry and n € Z4 let Ptrﬁf() denote the law of a
Poisson bridge on [0,¢] with n(0) = 0 and n(¢t) = n. In this model the ‘energy’ of a path is

given by



16

where {t;} denotes the collection of jumps of 7(:) on [s,t], with the convention that t; =
0,tn11 = t. See Figure 4| for an example of a path drawn from Ptr’%f(-).

7T

0
0 tq 12 t3 ty 15 te tr t

Figure 4: A sample path of a Poisson bridge with 7(0) = 0 and 7(¢) = 7 and jumps at t;

The point to point polymer measure is given by
Hin(dn) = Zen(8) ' P ().

Note that a Poisson bridge n on [0,¢] with 7(0) = 0 and 7(¢) = n is uniquely identified by
the locations of its n jumps, {t;}";, and that these jump are uniformly distributed on the Weyl
chamber A,; = {0 < 51 < --- < s, < t}. This model appears with several slightly different
definitions of the reference measure in the literature. For example, following [71], we take the
convention that B;(s,t) = B;(t) — B;(s) and define

Zn(ﬁ) = f exp [5 (B(](O, 81) + -+ Bn(snfl, n))] dsy...ds,—1. (2.2.1)

0<s1<-<Sp—1<n

Computation shows that Z,,(8) = |Annl 'Zn(8). We can think of Z,(3) as being the
partition function for a polymer measure where we re-weight every path by multiplying by a

deterministic constant.
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Our primary interest is in the behavior of Z,,(3) for large n. In order to highlight various
features of this model, we will introduce various other normalizations of the polymer measure
and partition function in what follows. We begin by considering the partition functions for
more general paths, without defining the associated polymer measures. Let j,n € Z, and
u,t € Ry, where j <n and u < t. Set

Zjn(u,t) = f ij(“’“j)"’Z?:_le B"(ui—l’“iHB"(u”“’t)duj e dUp—1. (2.2.2)
U<Uj <+ <Up—1 <t

For the case j = n, we define
Z; j(u,t) = Bitwd), (2.2.3)

We will refer to the j, n variables as space and the u, t variables as time. Translation invariance
of Brownian motion and our assumption that the environment is i.i.d. immediately imply that
the distribution of these partition function is shift invariant. It follows from Brownian scaling

that for 8 > 0 and n > 1 we have

4

Zn(B) = 872D Zy,(0, 82n).

Distributional results for partition functions of the form Z; ,(u,t) can then be translated into
results for Z,(8) using this identity.

The free energy for (2.2.1) was computed in [69]. We have

Lemma 2.2.1 ([69]). Fiz s,t € (0,00). Then the almost sure limit

1
p(37t) = lim —log Zl,[nsj (O,Ht)

n—o N

exists and is given by

p(s.1) = min {01 — sUo(0)} = 107 <Z> A (xp;l (i)) .
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Here, for 6 > 0, ¥y(0) = d% logI'(#) is the logarithmic derivative of the Gamma function,
which is typically referred to as the Digamma function. The polygamma functions are recur-
sively defined for n € N by ¥, () = d%\llnfl(ﬁ). There is a result analogous to Lemma m
for the almost sure limit of n~1Z, (), which is also presented in [69]. The fluctuation result

for this model is due to Borodin, Corwin, and Ferrari [I7].

Theorem ([I7], Theorem 1.3). Let t > 0 and r € R, then

log Z1.(0,nt) — np(1, 1
lim p [ 2820 =np(LY) ) g

e\ (= A (@) 0

where F5(r) is the CDF of the Tracy-Widom GUE distribution.

Before discussing the previous work on large deviations, it is helpful to introduce another
normalization of the partition function. Direct computation shows that if we define X, (t) =

Zpn(0,t), then the system {X,,}°_, solves
1
dX, = (Xn—l + 2Xn> dt + X,dB,
Xn<0) = 1{nzO}'
in the Ito sense. In particular, if we define Y,,(¢) = e_%tXn(t) then Y;,(t) solves

dY, = (Yp—1 — Yy) dt + YndB, = —VY,dt + Y,dB,
Yn(o) = 1{n:O}-
where V is the forward difference operator on Z,. The last expression shows that Y, can be

viewed as the solution of the following ‘totally asymmetric’ analogue of the stochastic heat

equation:

oY = VY + YW (2.2.4)

Y(Ov n) = 5{71:0}
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where W is space-time white noise on R, x Z,. Up to a deterministic multiplicative factor,
we may therefore view the partition function as giving the Feynman-Kac solution to
the totally asymmetric stochastic heat equation , where the discrete Laplacian has been
replaced by the forward difference operator. In [16], the authors studied the partition function
in this model by taking this perspective. Using an analogue of the coordinate Bethe ansatz,
they computed a contour integral representation for the integer moments of Z,,(3). Asymptotic

analysis then allowed them to compute the integer moment Lyapunov exponents.
Theorem ([16], Theorem 1.8). For any s >0 and k € N,

1 k? D(z+k
lim —log K [Z()’LnsJ(O, n)k] = min {2 + kz — slog W} .

n—w n 2>0 I'(z)

Note that the result in [16] corresponds to a limit of Y|, |(n), which accounts for the extra
factor of —%k in the statement of the theorem in that paper. In [16, Appendix A], the authors
conjectured that this result should extend to & > 0 as part of a verification that the replica
computation of the free energy recovers the rigorous result of [69] for this model. Recalling
the notation p(s,¢) from Lemma ([2.2.1), the main result of the author’s paper [49] is that this

conjecture is correct. The following results are [49, Theorems 2.2 and 2.3].

Theorem 2.2.2. For any s,t > 0 and A € R,

. Ao(s,t) A<0
nlglgo ; logE I:ZO,[nsJ(Oa TLt))\] = AS,t()‘) = )\2 P(Z + A) '
rgg{t(z—i-)\z)—slogr(z)} A>0

An application of the Gartner-Ellis theorem then leads to the following result.

Theorem 2.2.3. For any s,t > 0, the distributions of n~!log ZO’[nSJ(O,nt) satisfy a large

deviation principle with rate n and conver good rate function

Is,t(r) = 9

A
B A log —~ "7
/{flg}g{r)\ t<2+)\z>+sog T
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One can check that the max and min in the previous expressions have unique extremizers
by checking that the functions in question are strictly convex and concave respectively and

have compact sub- and super-level sets.

Remark 2.2.4. Take r > p(s,t) = min{td — s¥y(0)}, so that

22 r A
Is4(r) = max {r)\ —t <2 + Az) + slog (;(—;))}

The minimizing pair (Z., Ax) := (z«(r), Ae(r)) solves
r=t(A+24) — W0 (2 + Ab), 0= —t A +5U0(24 + As) — 50 (24).
Combining these conditions, we see that z, and z. + A\« both solve
7 =t(ze + M) — s¥0(24 + As), r =1z, —5sUq(z4).

This system has an interpretation: ¢ — sWy(#) is the free energy in the stationary point
to point O’Connell-Yor polymer with parameter 6, which will be introduced shortly. The
function 6 > t — sWo(6) is strictly convex with a unique minimum at § = ¥ '(¢/s) and, as
noted above, at this point it is equal to the shape function p(s,t). To find the minimizers of
the rate function, one then finds the two solutions to r = tz — s¥(z). The smaller of the two
solutions is z, and the difference between the solutions is A.. Because tz —s¥((z) is minimized

at z,(0) := U7 (t/s) with value p(s,t), we have
1
t(z«(0) +9) — sUq(2+(0) +0) = p(s,t) — 58\1’2(Z*(0))(52 + 0(0?).
From this we see that for ¢ > 0 small, the solutions to p(s,t) + € =tz — sUy(z) are given by
7 ~1
7+(0) £ —531112(2*(0)) Ve + o(ye).

It follows that

1

M(p(s,t) +¢) = 2 —%S\IJQ(Z*(O)) Ve + o(v/e).
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By convex duality, we also have a representation I (p(s,t) + €) = §j A(p(s,t) + x)dx, from

which it follows that

Lealps.8) +0) = [ Aulpls.) + )

-1

This is formally consistent with the observed n'/3 fluctuations and the leading order right tail
asymptotics of the Tracy-Widom GUE distribution. As noted above, this limit was proven in

[I7, Theorem 1.3].

The proofs of Theorems [2.2.2] and [2.2.3| follow an approach introduced by Seppéalédinen in

[81] and subsequently applied in [0, 387, B2]. Georgiou and Seppéldinen used this method
to compute the large deviation rate function with normalization n for the free energy in the
related log-gamma polymer in [37]. The key technical condition making this scheme tractable
is the independence provided by the Burke property, which the log-gamma polymer shares

with the O’Connell-Yor polymer.

The Burke property and the stationary O’Connell-Yor model
For # > 0, t € R and n € Z, define point-to-point partition functions by

Zg(t) — J 69UO—BO(UO)+B1(UO,U1)+~~~+Bn(un—17t)du0 coodun_1,

—0O<Ug<U < <Up—1<t

with the convention that
Z4(t) = B0,

We can think of Z%(t) as a modification of the polymer in the previous subsection where we
add a spatial dimension, start in the infinite past, and modify the Brownian potential on line
zero. Sample paths 7 in this modified model are non-decreasing, take values in Z,, have jumps

of size one, and satisfy n(s) = 0 for all s sufficiently small, n(t) = n. See Figure
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-0 Lo 131 2 i tn—1 t

Figure 5: A sample path in the stationary O’Connell-Yor polymer model

For s,t > 0 and n sufficiently large that ns > 1, we obtain a decomposition of ansj (nt)
into terms that involve the partition functions we are studying by considering where paths

leave the potential of the Brownian motion B:

nt [ns]
7y (nt) = L Z§ () Zy sy (w,nt)due + Y Z8(0) Zj sy (0, ). (2.2.5)
j=1

This expression also leads to the interpretation of Z%(t) as a modification of the point-to-
point partition function discussed in the previous subsection where we have added boundary
conditions.

We will refer to this model as the stationary polymer, where the term stationary comes
from the fact that it satisfies an analogue of Burke’s theorem for M/M/1 queues. This fact
is one of the main contributions of [71] and we refer the reader to that paper for a more in
depth discussion of the connections to queueing theory. We follow the notation of [83], which

contains the version of the Burke property that is used in this paper. Define Y (t) = B(t) and
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for k = 1 recursively set

t
Tz (t) =log f eylf—l(“ut)—e(t—u)'i‘Bk (u,t) du,

—00

V(1) = Yy (1) +12(0) — (1), (2.2.6)

X{(t) = Bi(t) + r{(0) — r}(8);
then we have

Lemma 2.2.5 ([83], Theorem 3.3). Let ne N and 0 < s, < sp—1 < -+ < 51 < 0. Then over

7, the following random variables and processes are all mutually independent.
ri(sj) and {X;(s):s<s;j} for 1<j<n, {Yn(s):s<sy},
and {Yj(sj41,8) 1 sj41 < s<sj} forl<j<n-—1.

Furthermore, the X; and Y} processes are standard Brownian motions, and e i) g re,1)

distributed.

An induction argument shows that

i r(t) = B(t) — 0t + log Z2(t). (2.2.7)
k=1

As we will see shortly, expression (2.2.5)) would lead to a variational formula for the right tail
rate function we are looking for in terms of the right tail rate function of Zlensj(nt). This right
tail rate function would be tractable using 1) if B(nt) were independent of Zgﬂ ¥ (nt);

as this is not the case, it is convenient to rewrite (2.2.5) in a form that separates these two

terms:
t 70 L] Z9(0)
Sl ne) f Zo(nu) t)d 7.
e n ns|(nu, nt)du + Zi1ns(0,0t). 2.2.8
o Z8(nt) Lins) ) ;Zg(nt) s ) ( )

Having proven Theorem using ([2.2.8), we can take advantage of (2.2.5)) to prove the

corresponding result for the stationary model. This result can be compared with Theorem



24

2.2.11| and [37, Theorem 2.11], where the corresponding result for the stationary log gamma
polymer was proven. The structure of the terms appearing in the maximum below is the same

as in those results.

Theorem 2.2.6. Fiz 0 € (0,0), then for any A € (0,0)

A
A2, (N) = lim 0t log B [(ansj(nt)> ]

{t ()‘72 + 0)\> — slog 1‘9(;)0)} v {t <—)‘; + 9)\> — slog 1‘%9(;))\)} A<0
o0 A=0

Remark 2.2.7. For fixed s,t, the function

A2 L(z+ )
— 1| = 1
z2— 1 ( 5 + z/\) slog )

is strictly convex on z € (0,0) and has compact sublevel sets, so unique minimizers exist. The
terms appearing in the maximum in Theorem [2.2.6] are the values of this function at z = 6
and z = 0 — \. It then follows that for A,; as in Theorem and Ag,t as in Theorem m

and fixed A > 0
min A% ,(\) > Ay (V).
6>0 ’
This is in constrast to the behavior of the free energies, where we have
p(s,t) = min {0t — s¥y(0)}
6>0

and where, by 1) 0t — sWo () = limn~'log Z[ens | (nt). The same phenomenon is observed

in the log gamma polymer [37, Remark 2.15] and for Brownian directed percolation in Remark

2.2.12

2.2.2 Brownian directed percolation
Let Z,(8) be given by (2.2.1]). One can see using Laplace’s method that

ﬂlim B~ log Zn(B) = max {By(0,s1) + -+ Bn(sp-1,n)} .
—00

0<s1<-<Sp—1<n
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The expression on the right hand side is the last passage time for a directed last-passage per-
colation model in a white noise random environment on R x Z ., which we will call Brownian
directed percolation. Here the paths are the same as paths in the O’Connell-Yor polymer;

recall Figure {4l Introduce the notation L, (t) for this random variable:

Ly(t) = max {Bo(0,51) 4 -+ + By(sn, 1)} . (2.2.9)

0<s1<<Sp_1<t
As with the O’Connell-Yor polymer, it is convenient to have a family of last passage times
for all point-to-point paths. To that effect, we define the last passage time from (u, k) to (¢,n)
by

n
Ly p(u,t) = sup > Bj(sj-1,5)
i—k

U=Sp_1<Sp<-<Sp—_1<Sp=t

A distributional equivalence between the last passage time L, (1) and the largest eigenvalue
of a GUE matrix was discovered independently by Baryshnikov [7, Theorem 0.7] and Gravner,
Tracy, and Widom [38], both in 2001. Although we will not use this fact, it is interesting to
note that this extends to the process level. It is shown in [72] that L,(-) has the same law
as the largest eigenvalue process of an Hermitian Brownian motion. With this connection,
the analogue of the free energy limit (in distribution and hence in probability) for this model
follows from classical results in random matrix theory. The almost sure version of this limit

for L, (-) is due to Hambly, Martin, and O’Connell [44].

Theorem ([44], Theorem 8). Almost surely, for all t > 0,

Note that by Brownian scaling, L, (t) 4 VtL,(1). Using the distributional equivalence from
[7, B8] and this scaling relation, the fluctuations around this limit correspond to the original

Tracy-Widom GUE limit studied by Tracy and Widom in their seminal paper [87].
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Theorem. [87] Fort >0 and r € R,
Ly, -2
i p (L0 =20VE
n—00 \/ing

where Fy(r) is the CDF of the Tracy-Widom GUE distribution.

Once again through the GUE connection, large deviation results are known at both rate
n and n?. These results depend on the large deviation principle for the empirical distribu-
tion of a Gaussian Unitary Ensemble matrix, which is due to Ben Arous and Guionnet [10),
Theorem 1.3]. The right tail large deviation rate function can then be derived as in the compu-
tation of the corresponding rate function for the largest eigenvalue of a Gaussian Orthogonal
Ensemble matrix in [9, Theorem 6.2]. The precise expression here is taken from the lecture
notes of Ledoux on concentration inequalities for largest eigenvalues [64], (1.25)] and again uses

Brownian scaling.

Theorem 2.2.8. For any r = 0,
nlirrgo —n"log P (n"'Lp(n) =2+ 71) = 4[2 Nx(z + 2)dzx
- 0

In Section we present a fairly short proof of Theorem [2.2.8| using ideas which have
previously been used to derive large deviation principles for the free energy of certain solvable
positive and zero temperature directed polymer models in [32] [37, 49, 80, 8I]. This approach
avoids the GUE connection entirely and so provides a directed polymer proof of a result about
a directed polymer model. This result plays a role in the computation of the rate n large
deviation rate function for the O’Connell-Yor polymer free energy in [49] (and thus in Section
2.4). The argument in this paper then has the benefit of making the directed polymer large
deviation literature a bit more self contained. The proof presented below shows that the limit
in the statement of the theorem exists by subadditivity argument, from which we immediately

derive the following corollary.
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Corollary 2.2.9. For anyn and r = 0,
P (07 La(n) > 2(1 + 1)) < e~ov=0),

The result in Corollary is also known [64] (2.6)] and can be derived via a weak limit
procedure from the corresponding right tail estimates in [51), 80] (which can be derived as
in this paper) for the ii.d. exponential or geometric last passage percolation models. See
the discussion after the statement of [64, Proposition 2.1]. Our approach is more direct. As
in [51} [80], the result arises for free from the proof of Theorem [2.2.8/ This implies a small
deviation estimate [64, (2.7)] for the largest eigenvalue of a Gaussian Unitary Ensemble matrix
of the type studied in [5] 65].

The key point making this polymer point of view tractable is the existence of an analogue
of Burke’s theorem from queueing theory for this model. This connection also implies the
existence of a stationary polymer model, for which a result similar to Theorem can be

derived.

The Burke property for a stationary Brownian queue

As was the case for the O’Connell-Yor polymer, the key point which will make computation
of the large deviation rate function tractable is an analogue of Burke’s theorem from queueing
theory. In fact, the result for Brownian directed percolation is a consequence of the classi-
cal Burke theorem after an application on Donsker’s principle. See [45] or [71, Theorem 2.

Following the notation in [71], for each p > 0, we define

q1(t) = sup {Bo(s,t) + Bi(s,t) — u(t —s)}

—00<s<t

di(s,t) = Bo(s,t) + q1(s) — q1(t)

and recursively for k > 2

¢, (t) = sup_{dp_1(s,t) + B(s,t) — pu(t — )}

—00<s<t
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di(s,t) = di—1(s,t) + ¢}, (s) — i (t).

These have the interpretation as the ‘departures’ and ‘queue length’ processes for the server at
station k in a stationary queueing Brownian queueing model. The version of Burke’s theorem

which we will need follows from a result in [71].

Theorem ([71], Theorem 2). For eacht > 0, the family {q}. (¢)}}"_, consists of i.i.d. exponential

random variables with mean p~!.

We can extend the last pasage percolation model to paths like those considered in the
stationary O’Connell-Yor model; see Figure |5l In this new environment, we define a family of

last passage times by

Li(t) = sup {ué’o — Bo(s0) + ) Bj(sj-1, 33’)}

—0<S0<81 < <8Sp_1<Sp=t j=1

= sup {uso— Bo(so) + Lin(so,t)}.

—on<sg<t

With these definitions, an induction argument shows that

i q; (t) = Bo(t) — pt + Liy(t). (2.2.10)
k=1

In particular, >, ¢}, (0) = L#(0). We think of paths in this extended directed percolation
model as being indexed by the points where they exit the lines {0,...,n}. By grouping paths

into those that exit line 0 before time 0 and those that exit after, we obtain

LE() = max {uso — Bo(so) + Lin(so,t)} v max {Lgf(O) + ij(O,t)}. (2.2.11)

0<sp<t 1<j<n

The decomposition in (2.2.11f) can be viewed as describing a ‘stationary’ point-to-point poly-
mer on Ry x Z, with ii.d. exponential boundary conditions {L . ,(0) — L};(0)},en on the

vertical axis and drifted Brownian boundary conditions {ut — By(t)}+>0 on the horizontal axis.

m

P 1(t) = L (t) }nen is an 1.i.d. exponential

Stationarity here is in the sense that, for example, {L
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family for each ¢ > 0. We will combine the queueing picture with this finite n variational
problem in order to obtain a variational problem for the Lyapunov exponents in this model

which will allow us to prove Theorem [2.2.8

Remark 2.2.10. Take r > 2. We will show below that

1
lim —n~tlog P (n_lLlnSJ(nt) = 7’) = max {)\r —t (2)\2 + zA) — slog 2 )\} .
z

n—00 A,z>0
One can check that a unique minimizing pair (z., Ax) := (2+(7), A(r)) exists and that this pair
solves

S S S

— Ot 20) + —— — A —
r ( +Z)+z*+)\* 0

+ .
Ze + A Za

We may combine these expressions to see that z, and z, + A, solve

S s
r=1z,+—.

=t +24) + ——,
" ( %) Zy + Ak Zy

This structure is the same as was observed in Remark for the O’Connell Yor polymer. For

fixed pu > 0, tpu+sp~

is the time constant in direction (s, t) for the stationary Brownian directed
percolation model with parameter p. To find the minimizers for the variational problem, one
then finds the two solutions to 7 = tz + sz~!. The smaller of the two is z, and the difference
is \,. We can compute these exactly and they are given by z, = (2t)~'(r — v/r2 — 4st) and
A\ = t14/r2 — 4st. Convex duality then implies that

lim —n"'log P (n_lLLnSJ(nt) >r) = fr t1/22 — 4stdx.

n—00 o/st

Changing variables gives the expression in the statement of Theorem [2.2.8

It is convenient to write (2.2.11)) in a way that separates the terms Y ;' ¢}, (t) and By(t)—put,

which are not independent:

D7 di(t) = max {u(s —t) + Bo(t) — Bo(s) + Lin(s, 1)} (2.2.12)

0<s<t
k=1



30

vlrgjaécn{ ut+2qk +L]n0t)}

The key point in this decomposition is that for each sy > 0, the random variables By (t) — Bo(so)
and L ,(so,t) are independent and for each j € {1,...,n}, the random variables By(t),

f;:l ¢, (0), and L;,(0,¢) are mutually independent. This independence can be seen by recall-
ing that the Brownian motions {B;}°, are independent and observing that o(B;(s) : s < 0,7 €
Zy) and 0(B;(s) : s = 0,i € Zy) are independent. This decomposition will lead to a variational
problem which can be used to prove Theorem Once we have (re-)proven Theorem
we can bootstrap that result and the decomposition in to compute the corresponding

positive moment Lyapunov exponents for the stationary model. We will prove the following

Theorem 2.2.11. For each u,s,t >0 and X\ = 0,

hm—logE[ Li' s (m )]: {t<§+w\>+smguﬂ}v{t(—§+u)\)+slogu—ﬁA} )\<M‘

n—o n
o0 A= p

This result should be compared to Theorem and [37, Theorem 2.11], where the corre-
sponding result for the stationary log gamma polymer was proven. The structure of the terms

appearing in the maximum above is the same as in those results.

Remark 2.2.12. Theorem implies (and we show below) that for s,¢, A > 0

| |
lim - logE [eMtnsJW] — min {t <2A2 + zA) + slog 25 A} :
z

n—aoo 1, 2>0

where the function being minimized is strictly convex with a unique minimizer. The term
appearing in Theorem [2.2.11] for A < p is the maximum of the values of this function at z = p

and z = pu — A. It follows that

1 1
lim —logE [e’\LlnsJ(”t)] < lim —logFl [e)‘LfnsJ(”t)]

n—o n n—aw n
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for all 4 > A. This is in contrast to the behavior of the time constants, which satisfy (as is

expected to be the case in general)
. s
24/st = min {,ut + } .
p>0 ©

The left hand side is the limit of n_lLLns |(nt) and the right hand side is the minimum of the
limits of n_lL’L‘ns J(nt), where the minimizer is p = 4/s/t. The same phenomenon is observed

in [37, Remark 2.15]. See also Remark

Remark 2.2.13. By homogeneity, we may set s = 1. The condition for the right hand side
of the expression in Theorem to be the maximum of the two terms for a given A < p
is tA2 < —log(l — (A\/u)?). Noting that z < —log(l — z) for 0 < 2 < 1, this is true for
any such A if pu < \/1775 If p > \/T/t, then there is a transition at the value of A for which
tA2 = —log(1— (A/u)?). This value can be expressed explicitly in terms of the principal branch

of the Lambert W function.

An argument parallel to the proof of Theorem [2.2.11] also allows a computation of the
corresponding right tail rate function. Denote the infimal convolution f o g(x) = inf,{f(z —

y) + g(y)}. We have

Theorem 2.2.14. For all s,t,u > 0 and z € R, then

J;ft(x) = lirrgo —n"1tlog P (Lfmj(nt) > mc) = inf {g! o Js1—r(z)} A Olnf {ht o Js_ui(x)}.

Oo<r<t <u<s

In particular, for p < +/s/t,
1 X
Jgt(x) = (2t)" f y? — 4st + (2tp — y)dyl{x>w+su_1}.
tu+sp—1

Remark 2.2.15. For simplicity restrict to s = ¢ = 1 and consider only 0 < p < 1. Then for

such p we have

1 T
lim —n"tlog P (L¥(n) = nr) = = vV (= 2p)dxl 2 pq 1y
n—00 2 Jygpr
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Substituting r = p + p~! 4 € for € > 0 small, the leading order small ¢ asymptotics of this
function are p?(2(1 — p2))~'e? if u < 1 and 2/3€*? if u = 1. This is consistent with Gaussian
fluctuations away from the characteristic direction and KPZ type fluctuations in the charac-
teristic direction for the stationary model. The restrictions to s = ¢t = 1 are without loss of

generality because of homogeneity and the observation that for u,t,a > 0, aL},(t) 4 Lﬁ/ “(a®t).

2.2.3 Inhomogeneous exponential last passage percolation

The first directed polymer models for which Conjecture were verified are the zero tem-
perature point-to-point (last passage percolation) models in which the environment {W (3, j)}
are 1.i.d. with exponential or geometric marginals. This result is due to Johansson [51] and the
same paper addresses left and right tail large deviations for these models. Models equivalent
to these were studied prior to [5I]. For example, through a combinatorial map these models
can be shown to be equivalent to the totally asymmetric simple exclusion process (TASEP)
run in continuous or discrete time respectively [82]. We will discuss the mapping connecting
these models shortly. Since the models with i.i.d. exponential or geometric weights are so well
understood, it is natural to ask whether one can relax some of the assumptions on the weights
while still preserving exact solvability. This turns out to be the case.

Take two sequences (a,b) with a = (a;)i=1, b = (b;)j=1, and a;,b; > 0. If the family
{W(i,7)} are independent with the marginal distributions of W (i, j) being either exponentially
distributed with mean (a;+b;)~! or geometrically distributed with mean e%*%  then the model
remains exactly solvable. In fact, as observed by Johansson in 2001 [52], the distribution
function of the last passage time in the geometric model can still be expressed in terms of the
Schur measure introduced by Okounkov in [74]. Borodin and Peché [18] noted that one can
take limits from geometric variables to exponential variables to obtain a continuous version

of the Schur measure which gives the cumulative distribution function of the inhomogeneous
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exponential model. The same object appeared previously in [34].

One could use the explicit formulas coming from the connection to the Schur measure to
prove large deviation results for these models. We take a different perspective. As mentioned
above, the i.i.d. exponential and geometric models are connected to a variety of classical models
in probability. Among these models is the M/M/1 queue. It was observed in [6 Theorem
3.1] that a version of Burke’s theorem for the M/M/1 queue implies the existence of a last
passage percolation model in which the vertical and horizontal increments of the last passage
times have strong independence properties. This independence structure carries over to the
inhomogeneous setting we consider.

In order to have interesting limit theorems, we need to place some restrictions on the
parameters a; and b;. To see this, note if the parameters tend to zero too quickly (for example,
if a; = b; = i~2), then the normalized last passage times will not even be tight, much less
have almost sure limits. It is natural in this situation to draw parameter sequences randomly
from appropriate ergodic distributions. We consider two cases. We refer to the model where
we condition on the parameter sequences as quenched. In this case, the results that follow are
true under fairly mild ergodicity assumptions on the joint distribution of (a,b). We call the
model obtained by averaging over the distribution of (a,b) annealed. In this case, our results
are only valid under the assumptions that a and b are independent i.i.d. sequences.

In the quenched model described above, the weights at different sites are independent
but (typically) not identically distributed exponential random variables. In contrast, in the
annealed model weights along rows and columns share parameters and so are not independent.
See Figure [6] For example, one can check directly that the covariance of W (i, j) and W (i, j')
for j # j’ in the annealed model is Var(E[(a; + b1)"!|a1]). This long-range dependence has a

large impact on the behavior of the model.
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b Wi,j) 24 Exp(a; + b)) b .

b1 bl

(Ll (L,L' (],1 (],Z'

Figure 6: The inhomogeneous exponential environment, drawn as a growth model with weights
assigned to lattice of squares, rather than the points of a lattice. In the annealed model, the
weights share parameters along rows and columns and because of this are not independent.

In the language of particle systems, this corresponds to a totally asymmetric simple exclu-
sion process with particle-wise and hole-wise inhomogeneity. The map which connects the two
models is as follows. The exclusion process lives on Z and begins with particles at the sites
1 < 0 and holes at the sites ¢ > 0. We label the particles from right to left and the holes from
left to right with the natural numbers. The last passage time G(m,n) is the time at which
particle m and hole n interchange. In terms of dynamics, when particle m is immediately
to the left of hole n, they interchange positions with rate a, + b,,. One can check that the
process defined in this way is Markov because the jump rates are exponential. The case when
a; = b; = % for all 7 is exactly the usual totally asymmetric simple exclusion process where

particles move to the right at rate one, subject to the exclusion rule.

Point to point model

In the analysis of this model, we work in a cannonical setting. Denote by W (i, j) the projection

RTQ — R, onto the coordinate (i,j) for i, € N. For any sequences a = (aj,as,...),b =
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(b1,b2,...) taking values in (0, 0), we define P, }, to be the product measure on ]RT2 satisfying
P.n(W(i,j)=>x) = e~ (@*b)T for i jeN and x > 0.

We will draw the sequences (a,b) randomly from a distribution p on RT X RT. For ke Z,
let 7, denote the shift (¢;)nen — (Cnik)nen. In all of the results that follow, we make the
following assumptions on (a,b). We assume that a and b are stationary sequences under .
We assume further that p is separately ergodic with respect to 7, x 7; for k,1 € N. This means
that if k,/ € N and B = RY x RY is a Borel set with (7, x 7,)™'(B) = B then u(B) € {0, 1}.

The annealed distribution P is given by P(B) = E [P, (B)] for any Borel set B < R{\EQ,
where E is the expectation under p1. Let E, 1, and E denote the expectations under Py, and P,
respectively. We denote by « and (3 the distributions of a; and b; and take the convention that
a and b are random variables with distributions o and S respectively. In all of the following
results, we will assume that E[a 4 b] < 00 and o + > 0. Finally, all large deviation results
under P are limited to the case where a and b are independent i.i.d. sequences. We denote
the last passage time by

G(m,n) = max W (i, 7). 2.2.13
) = e 3% W06 (2213)

i,5)em
where Tl 1) (mn) 18 the set all sequences 7™ = (u;, v;)ie[p in Z? such that (uy,vy) = (k,1),
(up,vp) = (m,n) and (ujt1 — ws,vig1 — v;) € {(1,0),(0,1)} for 1 < i < p. The change of
notation in this section is because we use L and I to denote Lyapunov exponents.

We briefly summarize the results from [3I]. The ergodicity assumptions on p and the
superadditivity of the last-passage times imply that lim, ., n 'G(|ns|,|nt]) = g(s,t) for

s,t > 0 P-a.s. and P, p-a.s. for p-a.e. (a,b) for some deterministic function g known as the

shape function. g admits the variational representation

ot = _int Lo

z€[—a,p

} +1E [1]} for s,t > 0. (2.2.14)

a4+ z b—=z
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It is shown in [31] that the infimum above is actually a minimum with a unique minimizer and
the function g. given by g.(s,t) = sE[(a+ z)~!| + tE[(b— 2) '] is the shape function of a
stationary version of the model. At times we will also view g(s,t) as a function of (a, ) €
M (R4 )% In these cases, we will use the notation (a, 8) — g(s,t) = ga,g(s,t) to highlight the
dependence on these measures. This map will be considered for any (a, 3) € M1 (R )2

Set

El(a—a)7?]

E[(b+a)7?]

(2.2.15)

B _E[@®
Cc1 = 02—E

-5’
[(a+5)~]

Then 0 < ¢ < ¢2 < ®, and ¢; = 0 and ¢ = o if and only if E[(a — a)™%] = o and

E[(b — B)7?] = o, respectively. It can be seen from (2.2.14) that g is strictly concave for

c1 < s/t < ¢y and is linear for s/t < ¢ or s/t > ca, see Figure [7]

t
s/t =c

s/t = ¢y

0

Figure 7: An illustration of the sublevel set ¢ < 1 and the rays s/t = ¢; and s/t = ¢ when 0 < ¢1 <
Co < Q0.

We show in Proposition [2.5.15|that for s, ¢, A > 0, we may define the quenched and annealed

Lyapunov exponents by

Loe(V) = lm ~logByp [0 D] pas Loy(h) = lim ~log [0 bned ]

n—ow n n—w n
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Our first result is an exact computation of these exponents.

Theorem 2.2.16. For s,t,A > 0,

A b—
inf {sElog <a+z+>—|—tElog <Z>} FO<A<a+p
] a+z -

Ls7t()\) — ZE[*QL,?*)\ b — 2z — A
0 fA>a+p
(2.2.16)
a+z+ A z
inf slogE +tlogE 5 S if0o<A<a+p
Lsyt(/\) _ ZG[—Q( p— — —
o0 ifA>a+p
(2.2.17)

Once we have Theorem [2.2.16] a proof similar to the proof of Theorem [2.2.16| allows us to
compute the Lyapunov exponents in a stationary version of the model, which will be intro-
duced in the next section. For the moment, we record the result and comment briefly on its

implications.
Theorem 2.2.17. For z € (—q, 8), almost surely for all s,t >0 and X € (0, (a+2) A (8 —2))

L, () i= lim 0~ log B, [0 1ntD ]

’ n— 00
a+z b—z+ A a+z+ A b—z

Similarly, we show in Proposition that for s,t > 0 and r € R, we may define right

tail rate functions by

1
lim —ElogPab(G([nsJ, |nt]) =nr)=Jds:(r) pas.,

n—00

lim —~ log P(G(| ns |, | nt |) = nr) = I, ,(r)

n—o0 n ’

Using the previous result, we show that
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Theorem 2.2.18. For s,t > 0,

-

A b—
sup {r)\ — sElog <a—|—z+> —tElog <Z>} r = g(s,t)
Ae(0,a+4] a+z b—2z—A
Js,t(r) = A z€[—a,f—]
0 r<g(s,t)
(2.2.18)
( A b—
sup {r)\ —slogE [W—] —tlogE {z]} r = g(s,t)
Ae(0,a+6] a+z b—z—A\
Js4(1) = 4 2e[-a,5-] (2:2.19)
0 r<g(s,t)

As with the shape function, we will at times consider the maps (o, 8) — Js(r) = Jgi’tﬁ(r)
and (a, B) — I, ,(r) = I/ (1)

Note that the Lyapunov exponents and the right tail rate functions depend on w only
through the marginal distributions o and 3. The variational problem in (2.2.18]) can be solved
exactly for certain choices of a, 3, s and t. We note that if » > g(s,t) and there exists A\, €

(0,a + ) and z, € (—a, B — A) such that

1 1 1 1
0=sE — tE —
§ [a—l—z*—l—)\* a+Z*:|+ {b—z,,—)\* b—z*]

then

Joi(r) = Aer — sElog (T) +tElog <b_z) . (2.2.20)

Zw b—12z,— A

Ezample 2.2.19. If a = 8 = 6. for ¢ > 0, then for r > g(s,t) = ¢ (v/s + V1)?,

—t+cr t—s+cr
Js = +t—cr)2 —4st — 2scosh ™! <S> — 2t cosh™! <> , (2.2.21
»t(r) \/<S CT) $ $ 2\/@ 2\/% ( )

which recovers [80, Theorem 4.4].
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Example 2.2.20. If a« = B = pd. + qbq for p,q,c,d > 0 with p+ ¢ = 1 and s = £, then for

r=g(s,s)=2s (p(1 + qdil) ,

J57S(r) = TA* —Splog (HZ*_FA*> — tq log (C_Z*>

C+ Zx
_ ] d+Z*+)\* —tal d*Z*
5¢108 d+Z* 7708 d—Z*_)\*

where

2ep + 2dq + A + dPr — VA ) 2ep + 2dg + Ar + dPr + VA
= Zx * =
2r ’ 2r ’

*

A = (2ep + 2dq + Pr + d*r)* + 4r(2cd®p + 2¢%dg — Adr).

More complicated exact formulas in this model are available in all directions (s, t).

Ezample 2.2.21. If a and  are uniform on [c¢/2,¢/2 + ] for ¢,l > 0 and s = t, then

2s (/2 W 2 9
bt =02 [ (S st 2 (142).
c/2

where

2 _ 20rl/s 2 _ 20rl/s
Z*:_\/<c/2+z) erlls /4 Z*+>\*:\/(c/2+l) c2erl/s/4.

1— erl/s 1— erl/s
Left tail large deviations in the quenched model have rate strictly larger than n. We expect

that under mild hypotheses the correct rate should be n?, as is the case in the homogeneous

model where v = 3 = 4 [51], B0].
1
Lemma 2.2.22. lin%o——log Pab (G(|ns|, |nt]) < nr) = for s,t >0 and r < g(s,t) p-a.s.
n— n

Combining our results for the right and left tail deviations, we can prove a full quenched

LDP at rate n. The rate function is given by

Jsi(r) r=g(s,t)
L (r) = : (2.2.22)

0 r < g(s,t)

As before, we will at times use the notation («, 8) — I (r) = Igf’t’g(r).
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Theorem 2.2.23. p-a.s, for any s,t > 0, the distribution of n " *G(| ns|,|nt|) under Pay,

satisfies a large deviation principle with rate n and convez, good rate function I ;.

Although our proof of the large deviation principle goes through the Lyapunov exponents,
we do not apply the Gértner-Ellis theorem. The steepness condition in this model is E[(a —
@)™ = E[(b— )] = o0, which would rule out having linear segments of the shape function
and so is too restrictive.

In contrast to the quenched case, there are non-trivial annealed large deviations at rate n.
The following bound gives a mechanism for these deviations. In the statement H(-|-) denotes

the relative entropy.

Lemma 2.2.24. For any x < v,

1
limsup — S logP(n Gl ns |, [nt ) € (x,3)) < inf {sH(mla) + tH(m|5)}
n—00 n V1IEM® uoeMPB

vy ,wg (5,1)E(T,Y)

The other bound needed to show that n is the correct rate for certain left tail large de-
viations follows from essentially the same argument used to show that the quenched rate is
strictly larger than n. This is discussed briefly after the proof of Lemma To show that
there are rate n annealed left tail large deviations it suffices to show that there exist 1 € M
and vy € MP with gy, .,(5,) < ga,5(s,t). We give a simple proof that under mild conditions

this is the case in Lemma [2.5.11] We expect that this mechanism is not sharp.

Ezample 2.2.25. Suppose that a = %514—%52 and 8 = 01, and recall that M® = {pd;+(1—p)ds :
0<p<1} For0<p<1,cal a=pd + (1 —p)d2 Then {go,5(1,9) : 0 < p <1} =
{5.3} U (5.5,8]. The reason for the discontinuity in this example is that if p > 0, then the
functional in is minimized on the set (—1,1), but if p = 0, the minimization occurs
on (—2,1). We have chosen s = 1,t = 9 so that the minimizer for the p = 0 case occurs in

(—2,—1). The bound one obtains from Lemma [2.2.24]in this example is infinite when applied
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to the interval (5.4,5.5). The finite relative entropy perturbation of the a; parameters switching

the distribution to d2 turns this into a right tail large deviation.

The next theorem connects quenched rate function and annealed right tail rate function
through a variational problem. We expect that this result means that large deviations above
the shape function in the annealed model with marginals o and S can be viewed as a large
deviation in the parameters {a,;}ZLZiJ and {b; }E-Ztlj which affect the distribution of G(| ns |, | nt |),
followed by a deviation in the quenched model with these perturbed parameters. Our proof
is purely analytic and does not show this interpretation directly. A similar, but stronger,
connection was shown for random walk in a random environment by Comets, Gantert and

Zeitouni in [22].
Theorem 2.2.26. For any s,t > 0 and r > g(s,t),

35() = inf {I" () + sHala) + tH(x|9)}
VQGMﬁ

A minimizing pair (v1,v2) exists and the equality
15 (r) = T4 (r) + s H(la) + t H(w|8)

holds if and only if

dvy a+z*+)\*E[a+z*+)\*]_1 dvs b—z, { b—z, ]—1
’ b A

ey = —(b) = E
da(a) a+ 7, a+ 7z, dﬁ() b—2z,— A — 7y —

where z, and A are the unique z., A« with A\« € [0,a + ], 2. € [—a, B — \] satisfying

a+ Zy + As b— 1z,
J?f(r) =71\ —slog E® [(HZ*} —tlog EP {b—z*—/\*} . (2.2.23)
It is natural to conjecture that this variational connection describes all rate n annealed large

deviations, rather than just annealed right tail large deviations. We have been unable to prove

this result.
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The next result concerns the regularity of our rate functions. Our rate functions are convex

and differentiable to the right of g(s,t), but we note that for certain choices of o and § they

can have linear segments; see Lemma [2.5.9| and the comments preceding it.

Theorem 2.2.27. For any s,t > 0, both Js; and Js; are continuously differentiable on

[g(s,t), +00).

Finally, we describe the leading order asymptotics of Js(r) and Js,(r) as r | g(s,t) and

comment on the implications for the fluctuations of the last-passage times. Let { denote the

unique minimizer of (2.2.14]).

Theorem 2.2.28. For any s,t >0, as e | 0,

(o ltop] ol 5ap]) e

T R

-

Tealol 019 7 g (SE [(a EC)J e {(b —11C)3 112263/2 + o(e3/?)
3 (SE [(a+§)3} . {(6—5)3]) €2 + o(??)

(S R e Vs

if s/t < c1
if s/t = c1

and E[(a — @)~ <
if e < s/t < c

if s/t = ¢

and E[(b— 8)~%] < w0

if s/t > co

We do not have an intuitive explanation for the presence of an extra factor of % in the boundary

s
cases = C1,Co.

The results of Theorem [2.2.28)in the concave region S and the boundary lines § = ¢ or co

are heuristically consistent with KPZ type fluctuations. For example, to see this set

1 1 1
C=sE |:(CL—|—C)3:| +tE |::| = §a§gz(57t)|zzc

(b—¢)?
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and assume that our asymptotic result in the concave region hold for finite n. Then for (s,t) € S

and large r, we expect to see
4
Pan(G(|ns|,|nt]) —ng(s,t) = n%Cér) ~ exp{—C’é(Céngr)gn} — 3" ,

which agrees the leading order large r asymptotics of the Tracy-Widom GUE distribution
[4, Exercise 3.8.3]. Note that the choice of normalizing constant C' in this argument is not
arbitrary. Taking C = £02¢(s,t)|,—¢ is consistent with the normalizing constants needed to
see Tracy-Widom GUE limits in, for example, [51, Theorem 1.6] (this is the case a, f ~ 0 %)
and in [I7, Theorem 1.3]. In the latter case, this was shown to be the constant arising from
the KPZ scaling theory in [85]. We also remark that the centering in this argument is likely
not correct. As in [38, Theorem 3], we expect that the correct centering should be n times
the shape function with « and S given by the empirical distribution of the parameters {ai}ZLZiJ
and {b; }g-ztlj rather than ng(s,t). This new shape function is not random with respect to Py p,
and converges to g(s,t) for almost every realization of the environment. Continuity of the

rate function then explains why this difference does not appear at the level of right tail large

deviations.

Theorem 2.2.29. Suppose that o and B are not both degenerate. For any s,t >0, ase | 0,

r —sEk ! 2+tVar ! +tE 1 _162/2+O(62) if s/t <c
la—a b+ o (b + a)? 1

- ~1
Js1(g(s,t)+e) = 3 (sVar B i C] + ¢ Var [b—lg‘}) €2/2 + o(€?) if e < s/t < ey

L(s\/’ar :ai@] +SE[(a+1§)2] _tE[b—1§r>_ €2/2+o0(?)  ifs/t>co

We do not have any explicitly computable examples for which the regions S; and Sy are

non-trivial, but we illustrate the results of the last two theorems with a numerical example.

Ezample 2.2.30. Choose a = 4((1—1)31[1’2] (a)da and 8 = §;. We note that « = § = 1. Explicit

computation shows that E [(a - 1)_2] =2 E [(b - 1)_2] = o, and E [(b + 1)_2] = The

1
1



linear region is then 3 < %. This is illustrated in Figure |8 below.

Figure 8: The level set {(s,t) : g(s,t) = 1} (solid) and the boundary line ¢ = § (dashed).

In Figure [9] we plot numerical approximations of the rate functions against the small e

asymptotics in Theorems [2.2.28[ and [2.2.29] For example, frame (e) plots J;1(g(1,1) + €)

against 3(E(a+¢) >+ E(b— {)_3)_%6%, where (¢ is the minimizer in (2.2.14)).
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(b) Annealed boundary, t = 8
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(b) Annealed concave t = 1

Figure 9: Plot of J; ;(g(s,t) +¢€) and J, ¢(g(s,t) + ¢€) (solid) and their € | 0 asymptotics (dashed) with

s =1.
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Stationary model

72 . Lo c . .
Extend the space to R, *. Each weight W (i, j) is now redefined as the projection onto coordi-

nate (i,j) for i,j € Zi. Introduce the last-passage times

G(m,n) = max Z Wi, j) form,neZ;. (2.2.24)

™€l0,0),(m.m) ;52

. Z2
For sequences a and b in (0,00) and z € (—a, ), define the product measure P7, on R." by

ab(W(i,j) = z) = exp(—(a; + bj)x) ab(W(0,0) =0) =1
(2.2.25)
Sp(W(0,0) > ) = exp(—(a; + 2)a)  PL,(W(0,) = 2) = exp(—(b; — 2))
for ¢,j € Z4 and x = 0. We will use definition (2.2.25)) for z = —a when a; > « for ¢ € N and for
z = 3 when b; > 8 for j € N. The utility of these measures is that the last-passage increments

given by I(m,n) = G(m,n)—G(m—1,n) form > 1,n > 0 and J(m,n) = G(m,n)—G(m,n—1)

for m = 0,n > 1 are stationary in the following sense.
Proposition 2.2.31 (Proposition 4.1 in [31]). Let k,l € Z.. Under Py,

(a) 1(i,1) has the same distribution as W (i,0) for i e N.
(b) J(k,j) has the same distribution as W (0, j) for j € N.
(¢) The random variables {I(i,1):i >k} U {J(k,j): 75 > 1} are jointly independent.

For admissible z, define the measure P* on R%i by P*(B) = E[P},(B)] for any Borel
set B. Let Eg;, and E* denote the expectations under P7}, and P, respectively. Note from
that the probabilities under Py , and P* of events generated by {W (i, 0) : i € N} make
sense for any z > —a. Therefore, we permit ourselves to use notation P} and P* (and the
corresponding expectations) for z > f and, similarly, for z < —a when we work only with
{W(i,0) : i e N} and {W(0,5) : j € N}, respectively.

Having proven Theorem[2.2.16] we can also prove the corresponding result for the stationary

model with parameter z.
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Theorem 2.2.32. For z € [—q, 5], almost surely for all s,t >0 and X € (0, (o + 2) A (8 — 2))

L:,(\) = 7}2130 n~1log E% [e)‘é(l"SJalntJ)]

a+z b—z+ A a+z+ A bh— 2
B ] R L O R e R |
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2.3 Large deviations for Brownian directed percolation

The proofs of the results described above for the Brownian directed percolation model are
similar to the proofs of the corresponding results in [32] 37, [49]. The first and last of these
papers correspond to the next two sections. Of the models studied in what follows, the proofs

are simplest here and so this is the first model we consider.

2.3.1 Proofs for the point-to-point model

As is often the case for directed polymer models, subadditivity plays a key role in the proofs
of our large deviation results. In particular, superadditivity of the last passage times in this
model gives existence of the right tail rate functions and moment Lyapunov exponents, as

shown in the following proposition.

Proposition 2.3.1. For any s,t,\ > 0 and r € R, the limits

1 1
Ags(N) = lim —log E [eAL[nsJ(nt)] ’ Jst(r) := lim ——log P (L[nsj(nt) > nr)

n—ow n n—w N

exist and are real valued. For each N > 0, the map (s,t) — As:(\) for (s,t) € (0,00)? is
positively homogeneous of degree one, superadditive, concave, and continuous. For (s,t,r) €
(0,0)2 x R, the map (s,t,r) — st(r) is positively homogeneous of degree one, subadditive,
convez, and continuous. For each (s,t), Jsi(r) = 0 for v < 2+/st and r — Js4(r) is non-

decreasing.

Proof. For all of the conclusions except finiteness of Ag+(A) and the last two properties of

Js4(r), it suffices to show that the maps
(s,t) = logE [eALlSJ“)] . (s,t,r) > —log P (L4 (t) = 1)

are superadditive on (1,00) x (0,00) and subadditive on (1,0) x (0,0) x R respectively. See

for example the proof of [60, Theorem 16.2.9] and note that a subadditive function which is
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positively homogeneous of degree one is convex. Take s1,89 > 1, t1,fo > 0 and r1,75 € R. We

have the inequality

Li(s14s0) |(t1 +12) = Lo, |(t1) + L gy |,[(s1450) | (t1, (1 + T2))

where the last two terms are independent. Using translation invariance, independence, and

monotonicity of L,(t) in n, we have

E [e/\L[lersQJ(tlthz)] > F |:€)‘L[51J(tl):| E [ekL[SQJ(tz)] 7

P (L[lerszJ(tl +1t9) =1 + 7”2) > P (L[S1J(t1) = Tl) P (L[szj(tQ) = 7“2) .

Finiteness of A ¢()) for all A > 0 follows from the observation that L, () < >\ ;2 maxo<r<t | Bi(r)|.
The properties of J,(r) follow from continuity and the fact that the pre-limit expression is

non-decreasing in 7. O

Remark 2.3.2. Suadditivity shows that Js.(r) = inf,, —n~1log P (LlnSJ(nt) >nr). As a con-

sequence, for any n, we have P (L|,5|(nt) = nr) < exp{—nJs(r)}.

The next result shows that the decomposition in ([2.2.12) implies that A () is the solution
to an invertible variational problem. This type of decomposition and versions of the argument

that follows are the key steps in the papers [32] 37, [49].

Lemma 2.3.3. For each s,t,A > 0 and any p > A,

2

stog 1 = sup {(t—r) <A2 - ,m) ; As,t_rm}

o= o<r<t

1
vV sup {t (2)\2 — /M) + ulog # ﬁ y + As_uyt(A)} .

o<u<s

Proof. We begin with the coupling (2.2.12)). It follows that for any r € [0,t), u € [0,s) and n

large enough,

E I:e)\ leczle qg(nt):l > F I:e)\(u(m"fnt)JrBo(nt)fBo(nT)JrLLn(m",nt))]
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v E [6A<B0(t)_”t+zllcmij 44 (0)+ Ly 1y 1,0 (0, t))]

The random variables By(nt) — By(nr) and L; n(nr, nt) are independent because By(+) is inde-
pendent of {B;(-)};2;. The random variables Zk 1 4 (0), Ly 1, (0, 1), and By(t) are indepen-
dent because Zkiﬁ qz(O) is measurable with respect to o(B;(t) : t < 0,5 € Z1), L|py)n(0,1)
is measurable with respect to o(Bj(t) : t > 0,7 € N), and By(t) is measurable with respect to
o(By(t) : t > 0). Taking logs, dividing by n and sending n — o0, and optimizing over u and r,
we immediately obtain > in the statement of the theorem.

Let {r;}M, and {u;}2, be uniform partitions of [0,¢] and [0, s] respectively. Notice that

max {nu(r —t) + Bo(nt) — Bo(nr) + Ly | s |(nr,nt)}

o<sr<t

= max max {nu(r —t) + Bo(nt) — Bo(ns) + Ly | ns|(nr,nt)}

2<i<M re[ri—1,mi]

< max {n,u(ri —t) + Bo(nt) — Bo(nr;) + max {Bo(nr;) — Bo(nr)} + Ll,[nsJ(Ti—l,t)} .

2<i<M 7‘6[7‘1'_1,7‘1']

Similarly, we have

J
max {Bo(nt) —nut + Z qg(O) + Lj’lnsJ(O,nt)}

1<j<| ns | et

< ,max By(nt) — nut + ;1 @, (0) + Linu,_, |,[ns(0,n1)

It follows from these inequalities and independence that

E[ AxLre) gtn )]

M
n, A(Bo(nt)—Bo(nri)) Amaxperr,  r.]{Bo(nri)—Bo(nr)} e (et
Z_Zzeﬂ [ Bo(nt)—By ]E[ aXpefr;_1r11Bo 0 ]E[e/\Lll | 1t]

4 B[t [ S g “<o>] [t 070

By the reflection principle and the assumption that r; —r;_1 = ﬁ, we have

E [eAmaxre[ri,l,Ti] Bo(nm)fBo(nr)] _E [exﬁwo(ﬁn] <E [ez\\/ﬁBo(ﬁ)] VL E [e—)\\/ﬁBo(ﬁ)]'
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Take logs, divide by n and send n — o0 to obtain

A2 A2
slog — éQIé%i}ch{u)\(rit)+(t* i) = 5 +2]\4+A5t”1(>\)}
VvV max 1)\215 — puAt + u; log B + Ag—u; 1t (A)
2<i<M | 2 w— A b
A2 A2
< AMr—t t—r)— 4+ Ay (A — + —
(e (= 0+ =0+ dumn}+ 37+ 57)
1o M 1 K
—= — 1 As_y —1
V(oilﬁs{ At ,u)\t—l—uogu_/\+ ’t()\)}—i_MOg,u—)\)
Sending M — oo completes the proof. O

Variational problems of the type in Lemma [2.3.3| appear for the Lyapunov exponents and
time constants (free energies) of directed percolation models (directed polymers) which have
associated stationary models that satisfy appropriate analogues of the Burke property. Up to
a change of variables, a deformation of the region on which the maximization takes place, and
homogeneity of Ag:(\) in (s,t), this variational expression gives a Legendre-Fenchel duality
between directions (s,t) and values of u > A. See for example [31), Section 5] for this point of
view. Alternatively, this variational problem can be solved directly with a bit of calculus. See

[49, Proposition 3.10].
Corollary 2.3.4. For any s,t,\ > 0,

1 1
Ags¢(A\) = min {t ()\,u — )\2> + slog K } = min {t <)\2 + z)\> + slog : )\}
’ n>A M — A 2>0

2s + tA? A«/4t (t\)
f)\\/4st+ (tA)? —i—slog( i * i > j \/4st + (tx)?dx.

Proof. The first equality follows from Lemma and [49, Proposition 3.10] (which is Propo-

sition [2.4.10| below) with I = {p > A}, h(p) = —)‘72 + Au, and g(p) = log ;5. The second

equality is the change of variables z = u — A. The third and fourth equalities follow from

calculus. n
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The next result is the analogue of Varadhan’s lemma for right tail rate functions. The

proof is essentially the same.

Lemma 2.3.5. For each s,t > 0,

c's) A<0

sup{Ar — Js4(r)} =
reR Ast(A) A=0

Proof. The result for A < 0 follows from the observations J,¢(r) > 0 for all , Js(r) = 0 for
r < 2¢/st and r +— Jg4(r) is non-decreasing. Take A\, K > 0, and let {m;}£, be a uniform

partition of [0, K]. The exponential Markov inequality yields for each r > 0

A — Jog(r) < Asg(N). (2.3.1)

)

Optimizing over r gives < in the statement of the lemma. For the reverse, notice that

M
B [GAL[nSJ(nt)] - Z B [eALLnSJ(nt)1{L[nsJ(nt)e[mi—1,mi)}] +E [BALLnSJ(nt)1{L[nsj(nt)>K}]

@
Il
—

N
.Mi

S
Il
—

AP (Ling(n) 2 mia) + B [MM01 )|

=

<

=

S
Il
—_

NP (L |(nt) =mi_1) + E [emlnsnnt)] P (Lypsy(nt) = K)?.

Take logs, divide by n and send n — o0 to obtain

1 1
Agt(N) < Egajm\;[({Ami — Jsi(mi—1)} v {2/\3715(2)\) — 2Js,t(K)}
< (sup D — Tt + ) v a0 = Lo
< ilel]g r s,t\T M \% 9 st 9 st .

Equation (2.3.1) shows that Js+(K) — o as K — . Sending M, K — o completes the

proof. O

Corollary 2.3.6. For s,t > 0 and r > 2+/st,

1 24\ r/r2 — 4st r—/r2 —4st
Jsi(r) = su Ar —t )\2+z)\)—slo }: +slog | ———— | .
’t( ) )\,ZEO{ (2 & z 2t & r—+ «\/712 — 4st
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Proof. The first equality follows from Lemma Corollary and the Fenchel-Moreau

theorem [79, Theorem 12.2]. The second equality can be obtained with calculus. O

Remark 2.3.7. Differentiating the expression in the previous result gives

r—2\/§
Joalr) = f (@ Vsl g
0

Setting s = t = 1 and changing variables gives the expression in Theorem Combining

this result with Remark gives Corollary

2.3.2 Proofs for the stationary model

Lyapunov exponents

Having computed Ag;(A), now leads to a variational problem for the Lyapunov ex-
ponents in stationary Brownian directed percolation for each p > A. As before, this would
essentially give the right tail rate function except for the technical point that we no longer
have a priori existence and convexity of that function. The rate function can be computed
directly through an argument parallel to the proof of Lemma but phrased in terms of
right tail rate functions. Note that using Corollary we may extend Ag;(\) continuously

to Ags(A) = A and Agp(X) = 0.

Lemma 2.3.8. For each p,s,t >0 and X € (0, u),

1 n A2
lim —log E [e’\LﬁLSJ( t)] = sup {7‘ ()\u—i- > + As,t—r()\)} vV sup {ulog

n—o0 M, 0<r<t 2 0<u<s
A2 A A2
tl — + pA +slogu+ vit|——+puX) + slog a )
2 I 2 w—A

Proof. The proof of the first equality is essentially the same as in the proof of Lemma [2.3.3

H S As_u,t(A)}

except that one must work with liminf and lim sup. For example, for any r € [0,t),u € [0, s),
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and n sufficiently large, we have

E [e”’fnsj(”“] >E [eA(W—BD(T”] E [eALunsz"f)] vE [eAZle”qui <0>] E [eALtnuJ,tnsJ(O’”ﬂ] .

Take logs, divide by n, take liminf, and optimize to obtain

1 n A2
liminf — log F [e)‘Lf“SJ( t)] > sup {'r ()\u + 2) + As,t_r()\)} v sup {ulog

n—ow n o<r<t 0<u<s

L
Ag_wit(N) ¢
. i )}

We omit the reverse inequality which is similar. For the second equality, it is convenient to

substitute 7 — ¢t —r and u — s — u. Using the second variational expression for Ag,(\) from

Corollary and a minimax theorem (for example, see [77, Appendix B.3|), we obtain

)\2 )\2 A
sup {r <2 + Au) + As,t_r(A)} =t (2 + uA> + min max {er — 1) + slog }

o<sr<t z>0 0<r<t z
A2 +
= {t <2 +u>\> +slogu

A A2 A
}/\min{t<+z/\>+slogz+ }
e 2 z

The second equality comes from dividing the minimum into the regions z < p and z > p.

A similar argument using the same variational expression and dividing into z < p — A and

z > pu — A shows that

7 A2 [
1 As_uit(N) =<3t —— A 1
e ot s s = (S o) s 5
2
A min {t(A+2)\>+slogz+)\}.
Z<pu—A 2 z

To complete the proof, note that the function being minimized in the second variational ex-

pression Ag () in Corollary is strictly convex and minimizers exist. O

We complete this section by dealing with exponents A > p. This is an immediate corollary

of the previous lemma.
Corollary 2.3.9. For each p,s,t >0 and A\ = p,

1 n
lim —log K [e)‘Lf”SJ( t)] = 0.

n—o N
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Proof. The function A — log F [e)‘Ll{"SJ(m)] is non-decreasing. It follows that for any \ < p,

1 n A2
liminf —log F [e”Lf”SJ( t)] =1 (2 + Au) + slog K
o —

n—o 1

Sending A\ 1 p gives the result. O

Right tail rate functions

We will now work with the rate functions directly. It is convenient to introduce some no-
tation. We will denote the infimal convolution of two functions f and g by f o g(z) :=
infyer {f(y) + g(z — y)}. We will also introduce

(x — pt)? zp
gt (x) = Tl{xZut}’ hy(z) = (33# —s—slog <?)> 1{x>ﬁ}~

which are right tail rate functions for normal and exponential random variables respectively.

We will treat the expressions in (2.2.10]) separately.

Lemma 2.3.10. For all s,t,un >0 and z € R,

—n_llogP< max {L?(O)"'LJ}[ J(O nt)} nx) = olnt {h 2 e ut( )

1<_j<lnsJ o<u<s

Proof. Using independence and (2.2.11)), for each u € (0, s), and any z,y € R we have

P ( max {L?(O) + Lj | ns (0, nt)} na:) > P (LfnuJ(O) > ny) P (L[nuj,[nsj(oant) >n(z —y)).

1<j<| ns |
Recall that L“ ( ) = Zk 1 qk( ) is a sum of i.i.d. exponential random variables with mean

—1. Take logs, divide by —n, and send n — o0 to obtain

lim sup —— logP <L[ J(nt) nx) < {hs(y) + Js—u(z —y)}

n—o0

We may then optimize over r,u,y obtain < in the statement of the lemma. For the reverse,
we proceed as in Lemma [2.3.3] Take a uniform partition {u;}}, and [0, s] respectively. By a

union bound, we have

P ( max {L?(O) + Lj’[nSJ(O,nt)} > n:z:) < Z P (Lfnuzj(()) + Linu;_y || ns](0,n) = n:c) :

1<j<| ns |
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Take logs, divide by —n and send n — co.
The right tail rate function of an independent sum of random variables becomes the infimal
convolution of their right tail rate functions. See for example [37, Lemma 3.6] for a proof of

this result which applies in our setting. We obtain

hmlnf—logP< max {L;‘(O) + LLMSJ(O,nt)} > nx) > min {hl o Je_u,_ ()},

n—o0 1<j<lnSJ 2<i<M

For pi,t > 0, Js +(y) + bt (x —y) is continuous as a function of (s,u,y) € (0,0)? x R and extends
continuously to a function defined on [0,00)% x R. Note that Js¢(z) = 0 for < 2+/st and
hi(z) = 0 for x < up~'. As a consequence of [37, Lemma 3.6], we may then find a common

compact set K so that for all M we have

ln<11n {hlh 0 Jo—u_, (%)} = gﬁ;gf {hl (Y) + Js—uy_rt(x —y)}

Sending M — o, this converges to info<y,<s hy0Js—y ¢ (2) by continuity of the extended function

and compactness of [0, s]? x K. O

Lemma 2.3.11. For s,t,;u >0 and x € R,

1.5 z24+ A
Oi%f;s{h o Js_yt(z)} = {oi§2u0<gl<a§>\{>\$_t(2)\ +z)\> — slog . }
4 12 _ H
Voiggu{m t( A +“)‘> slog )\} }1{z>maxo<u<5{2mwul}}'

In particular, when p < +/s/t,

O<u<s

inf {h# B Js— ut( )} = (2t)1f y2 —4st + (Zt/'L - y)dyl{xzt/ﬁ-su—l}‘
tpu+spu—

Proof. Note that for x < 24/t(s — u) +up™t, Mo Js_,+(z) = 0. It therefore suffices to consider

T > maXocu<s{24/t(s —u) + up~t}. There are two cases for the value of this expression:

p < A/s/t and p = +/s/t. If u < +/s/t, then the maximum occurs at u = s — tu? and the

maximum is ¢y + su~!, which is the time constant in the stationary model. If > 1/s/t then
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the expression being maximized is strictly decreasing and the minimum is 2+/st, which is the
time constant in the point-to-point model.

For each u € (0,s), the functions A% (-), Js—ut(-), and hi o Js_y () are non-negative, not
infinite, and convex, which implies that they are also proper and continuous. Note further that
using Corollary we may extend A, () continuously to Ag () = )\th and Ago(A) = 0 for

s,t,A > 0. By the Fenchel-Moreau theorem [79, Theorem 12.2],

inf {hfjoJs_y(x)} = inf sup {)\xulog

O<u<s O<u<s 0<A<p

- Asu,t()‘)}

= min sup {)\x —ulog — ASW()\)}

0<“<50<A<p

1
W= A

= sup min {/\x — ulog B As_wt(A)}
b= A

O<A<y0<u<5

1 A
= sup min max{)\x—ulog a —t<)\2+z)\>—(s—u)logz+ }
©w—A 2 z

O<A<p 0<u<s z>0

1
= sup max min {)\:c—ulog a —t<)\2+2)\> —(s—u)logz—i_)\}
WA 2 z

0<i<p #>0 O<uss
In the second equality we have used continuity of As:(\) at s = 0 and in the third and fifth
equalities, we have applied a minimax theorem (for example [77, Appendix B.3]). Separating

the terms which depend on u from those that do not, the last expression is equal to

3¢ zZ+ A . z+ A 7
o g =t (0020 ) —otos =2+ i o (100 52 —1og 25 ) )

Next, split the maximum in z into a maximum over z < p— A and z > pu— A. For z < pu— A,

the infimum occurs at v = 0 and if z > u — A, the minimum occurs at © = s. The previous

expression is then given by

1 zZ+ A 1 n
A —t{ =N+ 20 ) — sl Mo —t | ==X+ pu) ) — sl )
on‘i‘qu?é‘f_A{x <2 “) 808 }%@f‘i‘u{x (2 “‘) “gu_x}

Note that the left hand side is > the right hand side of this expression, because for each A,
the term on the right is the value of the function of z evaluated at z = 4 — A. For each

A, the two expressions being maximized in A\ are equal unless the global extremizer to the
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maximization problem in z lies in (0, x — ). Otherwise, the function in z is strictly increasing
on (0,1 — A] and so the maximum occurs at © — A. The global minimizer for this function
occurs at +/s/t + AZ— /2, so the condition that the minimizer lies in (0, — \) is the same as
\/m + A/2 < p. This is possible for some value of A if and only if pu > \/5715

If p < \/7 t then the right and left hand sides are equal and = > ¢t~ + su. In this case,

the maximum on the right can now be evaluated with calculus:

1
max {Ax—t<—)\2+,u)\> — slog o
2 w—

0<A<p

)\} = (2t)7! J y? — 4st + (2tp — y)dy.
t

ptsp!

O]

Remark 2.3.12. For p < 4/s/t and € > 0, the leading order small € asymptotics of the previous

expression are

1 y? —4dst + (2tp —y)dy =
ptsp™
728_”%”26 + o(e p</s/

Lemma 2.3.13. For all s,t,u >0 and x € R,

3
(Qt)_lftu+su‘1+e 3(3)3/46 +o(ez) p=4/s/
t

n— 00 o<r<

lim ——logP (()max {pnr — Bo(nr) + Ly | s |(nr,nt)} = nx) = inf {gr oJsi—r(z)}.
Proof. As above, the bound

1
limsup —— log P (
n

n—00

Om?x {,unr—Bo(m“)—i—LllnSJ(nr nt)} na:) goinf {gF o Jsi—r(x)}.

follows immediately. The right hand side is zero for x < maxo<,<i{pr + 24/s(t —r)}. By

non-negativity of the pre-limit expressions, this implies the result for such x. It then suffices

to consider z > maxo<r<t{pr + 24/s(t —1)}.
Take a partition {r;}, of [0,¢]. Arguing as in Lemma we have

Z P (n,un + Bo(nri) + max (Bo(nr) — Bo(nr:)) + Ly | ps | (n7i-1,n1) = nw)

i re[ri—1,7i]
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Note that by the reflection principle, the assumption that r; — 7,_; = M !, and Brownian
scaling, max,e(,, , r,] (Bo(nr) — Bo(nr;)) 4 \/ﬁ\/Mil\Bo(l)\. Applying [37, Lemma 3.6], we

obtain

o 1 :
liminf —— log P (ongl?i{t {unr — Bo(nr) + Ly | s (nr,nt)} = nx) > min {g! 0g¢510Jsi—r_,(2)}

n—w N 2<i<M

It is convenient to work with a simpler variational expression than the infimal convolution
on the right. All of the functions gf;(z), ¢%,-1(2), Jst—r,_, (z) and gh 0 g%, -1 0 Js4—r,_, (x) are
non-negative real valued convex functions and thus continuous and proper. It follows from the
Fenchel-Moreau theorem that for > maxo<,<t{ur + 2\/@ }, M sufficiently large, and

all 4

A2 A2
gq{‘i o 9?\4—1 0 Jgt—r,, (T) = il;}g {)\x -7 (2 + u)\> ~onr As7t_ri1()\)}

2?2 1,
= i{;% {)\$ —Ti—1 (2 + /L)\) — M ()\ + /L)\) — As,tfn,l ()\)}

Then we see that for all M sufficiently large,

. ) A2 1
,min {97, c 93-1 0 Jster, 4 (2)} = ,0in. sup {Mc — T (2 - u/\> i (A + pA) = Agmr, (A)}

, A2 1,
> Ogitiilg{)\x —r <2 + ,uA) Wy ()\ + ,u)\) — AS¢T()\)}

Explicit computation shows that As+(\) = tA%/2. Extend Ag¢(A) to Ago(A) = 0. It follows

that for any r € [0, ¢],

A\r — Aj+ A —i(A2+ A) = Agir(X) < Az — A—2+ A —(t— )Aj
xr—r 9 H M 2 s,t—r SAL—T 9 2 T2

)\2
<\ —t—.
2

For any r, if A > 22t~!, the expression inside the supremum is negative. We may therefore
restrict the supremum for all 7 to the set 0 < A\ < 2zt~1. But now (r,\) — Az —r ()‘72 + ,u)\) -

& (A2 + pX) = Agy—r(N) is uniformly continuous on [0,¢] x [0,2z¢~!]. Sending M — oo gives

)\2
liminf min {g" og¢%,-1 0 Js4—p,_,(z)} > inf sup {)\x - (2 + u)\) - Asi_r()\)}

M—ow0 2<i<M osr<t A>0
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= inf {gfoJss—r(z)}.

o<sr<t

The result now follows. O

Lemma 2.3.14. For any s,t >0 and x € R,

A2 A
inf {gloJss—r(z)} = maxmax{)\x —t ( + z)\> — slog Z—; }

o<r<t A=0 z=p 2
22 + A
vmax{)\ac—t(wLu)\)—slogM }
A=0 2 o

In particular, when p < +/s/t,

inf {g!oJss—r(z)} = (275)_1 f\ﬁ (z — 2ty + 22 — 4st) d21{x>2\/§}
24/st

o<sr<t

Proof. Note that gf'oJs¢—,(z) = 0 for z < maxogr@{ur—i—Q\/s(tj}. Take x > maxo<, <t {pr+
QW }. There are two cases for the value of this maximum. If y < \/% then maxo<,<¢{pur+
2\/m} = 24/st because the term being maximized is strictly decreasing. If u > \/s>/t
then the maximum occurs at 4 = t + sp~2 and maxo<, < {pr + 2@} =tp+sp~t. Once

again, extend Ag:(\) to Aso(A) = 0. We have

2
inf {gloJss—r(z)} = inf sup {)\ZL’ —r </\2 + ,u)\> - Asyt,«()\)}

osr<t osr<t A0

2
= min max {)\x -7 (A + u)\> — AS¢T(>\)}

0<r<t A\>0 2

2
= max min {)\:L' -7 (/\ + ;M) — Asﬂgr()\)}

A=0 0<r<t 2

2 2
= max min max{Az—r<A+uA> —(t—r) ()\+z)\> —slogz—i—)\}

A=0 0<r<t z>0 2 2 z

2 2
= maxmax min {)\:pr()\+u)\> —(t—r) ();+z)\> slogz—i—)\}.

A=0 2>0 0<r<t 2 z

2?2 z+ A .
= Toax max {)\x —t (2 + z)\> — slog . + Org}gt{r)\(z - ,u)}} .

We have used minimax theorems in the third and fifth equalities. In order to treat the inner

minimum, we separate the maximum in z into the cases z < p or z = pu. If 2z < p, then the
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innter minimum occurs at r = ¢. Then we have

A2 A
max max {/\x—t (2 —|—z)\) —slogz+ + min {r)\(z—,u)}}

A=0 O<z<p z o<r<t

A2 A
=max max {x\&?—i(-i—u)\) —slogz+ }

A=0 0<z<p 2 z
A2 B+ A
—rilgg{)\x—t<2+u)\)—slog . }

If z > u, then the inner minimum occurs at » = 0. Combining these cases, we have

A2 A
inf {g¥ o Js+—r(z)} = maxmax {/\x —t (2 + zA) —slog 2 }

osr<t A=0 z=p z
A2 0w+ A

Ar—t| —+pr) —sl )

s et (5o ot

As in the previous case, the second term in the maximum is feasible for the first term by
taking z = pu. These two expressions can then only differ if there is a value of A for which the
maximizer of Az — ¢ ()‘72 + z)\> — slog % on z € [p,00) occurs in (p,00). If such a z exists,
then it occurs at z = % <\/m — )\). This function is strictly decreasing in A, so this can
only occur if and only if the value at A = 0 is at least p. This is equivalent to p < \/si/t If

i < 4/s/t, then the first maximum becomes

A2 A
maxmax{)\x—t (2 +z/\> —slogz+ }

A=0 z=p z

1 A
=max < A — =At\/4s/t + \2 — 25 arctanh | ———
=0 { 2 / («/4s/t+>\2)}

Recalling that > 2+v/st (in general pt + su~! > 24/st), the maximum occurs at \ =

t~14/22 — 4st. Substituting in, we have

A2 A *
maxmax{)\w—t(—i—z)\) —slogz+ } —tlj V22 — 4stdz
2 z PN

A=0 z=2p

= Js’t(l‘).

For the right hand side, it is convenient to appeal to homogeneity to set s = 1. The maximum

of \x —t (’\72 + ;M) — log“TH on A = 0 occurs in (0,00) if and only if z — 2tu + /22 — 4t > 0,
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in which case the maximum occurs at this A. Otherwise, the maximum occurs at A = 0.
This function is strictly increasing in . Thus, this value always lies in the region (0,00) if
24/t — 2t; > 0. In particular, this is the case when y < 4/1/t. For general s, this condition is

p < /s/t. For u < 1/s/t, we are considering an x satisfying > 2+/st. We obtain

2 2
max{)\x—t<)\+,u>\> —slogu—i_)\} =smax{)\x—t<)\+u)\> —log”+)\}
A=0 2 " 2 W

= g2 fx/s (2t)7! <y —2tu/s +/y? — 4t/s> d

= (2t)7! J\F (z —2tp+ /22 — 48t> dz
st

Lemma 2.3.15. For all s,t,u > 0 and ¢ € R, then

J“

s,t

(z) := lim —n"'log P (Lfnsj(nt) > nac) = inf {gfoJsi—r(z)} A inf {hh o Je_y (2)}.

n— 00 o<r<t O<u<s

In particular, for p < +/s/t,
1 X
Jﬁt(:l:) = (2t)" f y? —4dst + (2tp — YAYL fa= s su1)
tu+sp—t
Proof. Note that
P ( sup {nur — Bo(nr) + Ly | ns(nr, nt)} > nx) v P ( max {L?(O) + LMnSJ(O,nt)})

O<r<t 1< ns |

<P (L“

[

] (nt) = nw)

<P ( sup {nur — Bo(nr) + Ly | s |(nr,nt)} > na:) + P ( max {L’.‘(O) + L lnSJ(O,nt)}> .
O<r<t ’ 1<j<|ns | U ’
Take logs, divide by —n, and send n — o0 to obtain the first equality. If u < +/st, this implies

that

J:t(x) = {(2t)_1 \% y2 —4dst + (2t:u - y>dy1{m>t,u+s,u1}}

tu+sp—1

A {(2t)1 L . (y — 2t + M) dyl{xzzm}
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Note that ut + su~' > 24/st for any p > 0. The first term is then less than or equal to the

second for any value of z, from which the result follows. O
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2.4 Large deviations for the O’Connell-Yor polymer model

2.4.1 A variational problem for the right tail rate function
Definitions and notation

The goal of this subsection is to introduce the right tail rate function for the free energy, which
we will denote J, ¢(x), and the rate functions coming from the stationary model which appear

in the variational expression for Jg;(z). We will defer some of the proofs of technical results

about the existence and regularity of these rate functions to [Appendix 2.4.4L We begin by

defining these functions and addressing existence.
Theorem 2.4.1. For all s = 0,t >0 and r € R, the limit

1
Jsi(r) = lim —ElogP (log Z1 s/ (0, nt) = nr)

n—0oo
exists and is Ry valued. Moreover, Jsi(r) is continuous, convex, subadditive, and positively
homogeneous of degree one as a function of (s,t,r) € [0,00) x (0,00) x R. For fized s and t,

Jo (1) is increasing in v and Js.(r) = 0 if r < p(s,t).

The proof of [Theorem 2.4.1| can be found in [subsection 2.4.4] of |Appendix 2.4.4]

Next, we define the computable rate functions from the stationary model. By the Burke

property for the stationary model, the first limit below can be computed as the right branch

of a Cramér rate function. For s, > 0, we set
1 [ns]

—lim — log P Z (0) = nx
n k=1

Ul ()

R(z) = —lim % log P (B(nt) — Ont = nz) =
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We may continuously extend U?(z) to s = 0 by setting

. 0 r<0
Uo(m):

z0 x>0

We record the Legendre-Fenchel transforms of these functions below:

(9)() o0 E<0oré=4 (9)() o0 £E<0
Us*é-: ) Rt*gz
slog 7 0<¢<0 t& —0¢) €20

The next lemma implies existence of the rate functions which will appear when we use
equation to prove that Js.(x) satisfies a variational problem in the next subsection.
Versions of this result appear in several other papers, so we elect not to re-prove it. The exact

statement we need appears in [37].

Lemma 2.4.2. [37, Lemma 3.6]) Suppose that for each n, X, and Y, are independent, that

the limits

1 1
A(s) = lim ——log P (X,, = ns), ¢(s) = lim ——log P (Y, > ns)
n n

n—0o0 n—0o0

exist, and that X is continuous. If there exists ay and ay so that A(ay) = ¢(agy) = 0, then

1 info, <s<r—a {0(r —8) + A(s)} 7= ag+ay
lim ——log P (X, + Y, =>nr) =

n—w n
0 r<agtay

— Ao o(r).

We define rate functions corresponding to the two parts of the decomposition in|(2.2.8)| as

follows: for a € [0,t), u € (0,s], v e [0,s), and x € R set

1
GY . (x) = —lim = log P (B(na,nt) — On(t — a) + log Zy |, (na,nt) = nx)
1< n I

1
HY . .(x)=—lim=logP <— log Z§(nt) + log meJ (0) +10g Z),|ns) (0, nt) = na:) . (2.40)
b i) n )
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Recall that log ZJQ (0) = i:l 79(0) is measurable with respect to the sigma algebra o (B(s), By(s) :
1 <k < j;s <0) and that for 0 < u < nt, log Zj |,5/(u,t) is measurable with respect to the

sigma algebra o(By(sg) : j < k < [ns],u < s; < nt). Combining the independence of the en-

vironment with the computations above, [Theorem 2.4.1{and [Lemma 2.4.2|imply that Gg7s7t(x)

and HY

wv.st(®) are well-defined. In particular, we immediately obtain

Corollary 2.4.3. For a€ [0,t) and ue (0,s], and v e [0,s)

0
Ga7s,t

(JJ) = R?—a o s,t—a(x), Ha

u,v,s,t

(z) = Rf o Ug o s—v,t(x)-

In order to show that [(2.2.8)| leads to a variational problem, we need some regularity on

Gg,s,t(aj) and HY

wwst(®). The three results that follow are purely technical, so we defer their

proofs to[subsection 2.4.4] of [Appendix 2.4.4] [Lemma 2.4.4] gives a strong kind of local uniform

continuity of Hiv’s’t(rv) and [Lemma 2.4.5| gives the same for GY ., (). The difference between

a,s,t

the two statements comes from [Lemma 2.4.6, which shows that ng s.¢(7) degenerates to infinity

locally uniformly near a = t.

Lemma 2.4.4. Fiz 0,s,t > 0 and a compact set K € R. Then

. 0 0 _
6hm sup {’Ha,b,s,tJr’y(rl) - Ha7b/75’t(7’2)’} =0.
77ael0 a’b7b’e[0,s]:‘b7b/‘<5

r1,rEK:|r1—ra|<e

Lemma 2.4.5. Fiz 0,s,t >0 and 0 < § <t and a compact set K € R. Then

im  sup {IGh (1) = G, )|} = 0.

740 a1,a9€[0,t—6]:lag —ag|<y
r1,r2€K:|r1—ra|<e

Lemma 2.4.6. Fiz 0,s,t >0 and K < R compact. Then

lim inf inf {GZ,S,t(fL")} = 0.

alt zeK



67

Coarse graining and the variational problem

Fix a € [0,t) and 0 < § <t — a. Then |(2.2.8)| implies the following lower bounds

a+0 Ze(nu) [ms]
0 0
log <nL Z8(n) Z1 |ns| (N nt)du> < ];1 r(nt), (2.4.2)
ns)
—log Z (nt) + log Z¢(0) + 1og Z; |5 (0,nt) < Y rf(nt). (2.4.3)
k=1

For any partition {a;}}¥, of [0,t], we also have

[ns] aiv1 70
Z r(nt) < max {log nJ Z%(nu) Z1 |ns) (nu, it du }
= 0<i<N-1 Z8(nt) "

424

vV max {—log ZY(nt) + log Zf(()) +10g Z; 1) (0, nt)} +log(N + 1 + ns).

1<j<|ns]

(2.4.4)

Our goal is now to show that estimates|(2.4.2)] |(2.4.3)] and [(2.4.4)| above lead to a variational

characterization of the right tail rate function Jg(z):

Ul (@) = win{ inf {G, @)}, inf {HI, . ()]}
~ min{ inf {Rﬁ_a o S,H(x)} L inf {Rf 0% o Js,a,t(x)}}. (2.4.5)

To improve the presentation of the paper, we have moved some of the estimates in the proofs

that follow to [Appendix 2.4.5]

Lemma 2.4.7. Fiz 0 > 0, (s,t) € (0,0)? and x € R. Then

0 . . 0 : 0
Ul(a) < min{ inf {G0 . ()}, inf {H,.. @)}
Proof. For a € [0, s), taking j = |an| in inequality [(2.4.3)| above immediately implies

Ul(z) < HY . ,4(2). (2.4.6)

Fix § € (0,t); then for all a € [0,¢ — J) and all u € [0,a + ¢], we have

Zia(nu,n(a + 0)) Zy |ns|(na + 6),nt) < Zy jpq)(nu, nt). (2.4.7)
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It then follows that

a+d6 70
P <log <nf Zo (nu) Z1 |ns| (N, nt)du> > nx)

a Zg(nt)
Z§(n(a +9))
Z3(nt)

+ log (n La+6 Zg(ZTi(CLTlZ)(S))ZLl(nu,n(a + 5)du> = nm)

> P(log Z1 |ns|(n(a + 6),nt) + log

Fix € > 0. By independence of the Brownian environment, we find that

-1 a+9 79
— log P <log (nL Z%((ZQZ)) 71 |ns) (n, nt)du) = nw)

Z(n(a +9))

-1
< . log P <log Z) |ns|(n(a + 6),nt) + log Z8(nl)

> n(x + e)) (2.4.8)

+ %1 log P (log (n LH(S Z()e(ZTlgél%Zl,l(nu,n(a + 5)du> > —ne) ) (2.4.9)

Applying the lower bound obtained by considering the minimum of the Brownian increments
on the interval [a, a + J] allows us to show that as n — oo the probability in line |(2.4.9)[ tends

to one. Then taking lim sup and recalling inequality ((2.4.2), we obtain
Ul(z) < G 5.0(x+e). (2.4.10)

By [Lemma 2.4.5, we may take d,¢ | 0 in[(2.4.10)} Optimizing over a in the resulting equation
and in |(2.4.6)| gives the result. O

Lemma 2.4.8. Fiz 0 >0, (s,t) € (0,0)? and x € R. Then

Uf(x) > min{ inf {szs,t(x)}, inf {Hg,w’t(:p)}}.

0<a<t 0<a<s
Proof. Fix a large p > 1 and small ¢,y > 0. Consider uniform partitions {a;}}%, of [0,¢] and
(b}, of [0, s] of mesh v = 3757 and 0 = 55 respectively. We will add restrictions on these
parameters later in the proof. Take n sufficiently large that |bin| < |bix1n| for all 7.
Fix j < |ns| not equal to any of the partition points |b;n| and consider i so that |bn| <

§ < |bi+1n). Notice that Z§(nt) is o(B(nt)) measurable and Z]e (0) is measurable with respect
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to o(B(s), B1(s),... Bj(s) : s < 0), so these random variables and Zj |,,s|(u,v) are mutually

independent if 0 < u < v. It follows from translation invariance and this independence that

P (—log Z8(nt) + log ZJQ(O) +10g Zj |ns) (0, mt) = nx)

=P (— log Z§(nt) + log Z?(O) +10g Zj |ns) (ny, n(t + 7)) = n:n) .
We have
1o, ns) (0s12(t +77)) = Z1yn),5(0,17) Zj ns) (07, 0t + 7).
It then follows that

P (— log Z{(nt) + log Z2(0) + 1og Z; s (0, nt) > m:)

<P (— log Z§ (nt) + log Z§, (0) +10g Zjp,n),|ns) (0, n(t + 7)) = n(z — 26))

[bit17]
bi+17]
+ P (log Zp,n) j(0,n7) < —ne) + P Z r(0) < —ne
k=j+1

Using the moment bound in with £ = —p for p > 1 and the exponential Markov

inequality gives the bound
P (108 Zipyn) 0, 7) < —ne) < ¢ (770010 oniprotn)

For the last inequality, we first require v < fp and then take ¢ small enough that ¢ log% <3
The exponential Markov inequality and the known moment generating function of the i.i.d. sum
give the bound
[bi+1n]
P Z ’I”]Z(O) < —ne | < e—np(e—épfl log(F(G-‘rp)F(G)*l)) < e*”pé
k=j+1
where in the last step we additionally require 6 < < log (I'(6 + p)F(G)_l)_l. For the case that

j is a partition point, we have

P (— log Z§(nt) + log Zfbmj (0) +1og Z|p,n),|ns| (0, nt) = ”fU)
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<P < log ZO (nt) + log Z[b +1n] (0) + Z[binj,[nsj(0¢ n(t + ’7)) = n(x - 26))

[bi+17]
+ P D) rh(0) < —2ne
k=|b;n|

and the same error bound as above applies. We now turn to the problem of estimating the

integral
Qi1 ZG
P <10g (n 21 |ns| (nu,nt)du) > nx)
Zg (naZ
P | log Z 1,|ns| (nau nt) = TL(.%' — 6)
it Zg(nu) Zujns| (nu, nt
(o[ e Bt )
a; ZO (nal) Zl,[nsj (naiv nt)
We have

Gt Z8(nu) Zy |ns)(nu,nt) ) > <e — 6y>2
Pl > : du ) = ne) < —~ +
< * (n L 28 (na) Zy gy (naiynt) ) =) S EP T o o)

where we require v < §.
Take n sufficiently large that log(ns + N) < ne. It follows from [(2.4.4)[ and union bounds

that

1 ) 1
—log P p(nt) =na | < —1 +N
- log kz::lrk(n) nx - og(ns )

+ max {—logP <log <nf N Zg(nu)Zg(nt)_llenSJ (nu, nt)du) =>n(x — e)> }

o<i<M-—-1 a;

Vv max {— log P (— log Z§(nt) + log ZJQ(O) +1og Z; 1ns)(0,nt) = n(x — 6)) }
n

1<j<|ns|

Combining this with the previous estimates, multiplying by —1 and sending n — oo gives

2
0 . 9 € — 9V pe .
Us (.’L‘) = Oglnglhf}_l {Gais,t(m - 26)} A ( 2\/; ) A 5 A OS?SHJ{TI—I {Hbi+1,b¢,s,t+'y<$ - 36)}

2
. 0 €e—0v pe
> ael%f,t){Ga”( 2€>} " ( 2,V ) "

A inf {Ha,a,s,xx)— e {|H3,b,s,t+7<x—3e>—HS,b/,s,t<x>|}}.
a‘77’

agl0,s) €[0,s]:|b—b'|<8
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We first send § | 0, then v | 0, then v | 0, then p T 0. By there is n > 0 so that

for all € € [0, 1], we have

inf {Gz,s,t($ - 26)} = inf | {Gg,s,t(l“ - 26)} .

ag(0,t) a€l0,t—n

Now, take € | 0 and use Lemmas [2.4.4] and This gives the desired bound

UY(z) > min{ inf){GZ’s’t(x)}, inf {Hgﬂ’s’t(x)}}. O

acl0,t a€[0,t)
We now turn the variational problem for the right tail rate functions into a variational

problem involving Legendre-Fenchel transforms.

Lemma 2.4.9. For any 0 > 0 let £ € (0,0). Then J$(§) satisfies the variational problem

o { oo {(t ~) @52 - 95) — slog le)(af) + J;jta@)} ,
s { (56 -06) ~ - or ez + @ f |

Proof. [Lemma 2.4.7| and [Lemma 2.4.8 imply |(2.4.5)} Infimal convolution is Legendre-Fenchel

dual to addition for proper convex functions [79, Theorem 16.4] so we find

(UP)*() = sup {gw _ min{ inf {Rf_a o S’t_a(x)} , inf {Rﬁ s U% o s—a,t(x)}}}

zeR 0<a<t 0<a<s

= sup {max{ sup {gx — Rf_a o s,t—a(ﬂf)} , sup {53} — Rf o Ug o Jsa,t(:n)}}

zeR 0<a<t 0<a<s

— e { sup {(RL )+ T2 o(©)} . sup (B + WD*(©) + a O}

O<a<t O<a<s
If £ € (0,6), then (U?)*(¢) < o0, so we may subtract (U?)*(¢) from both sides. Substituting in

the known Legendre-Fenchel transforms gives the result. O

Solving the variational problem

Next, we show that the variational problem in|Lemma 2.4.9|identifies J7,(§) for £ > 0. To show

the analogous result in [37], the authors followed the approach of rephrasing the variational
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problem as a Legendre-Fenchel transform in the space-time variables and appealing to convex
analysis. We present an alternate method for computing Js"jt(f) in the next proposition, which
has the advantage of allowing us to avoid some of the technicalities in that argument. This
direct approach is the main reason we are able to appeal to the Gartner-Ellis theorem to prove

the large deviation principle.

Proposition 2.4.10. Let I < R be open and connected and let h,g : I — R be twice contin-
uously differentiable functions with h'(8) > 0 and ¢’(0) < 0 for all @ € I. For (x,y) € (0,0)2,

define

foy(0) = zh(0) +yg(0)

and suppose that %fﬂﬂ:yw) > 0 for all (z,y) € (0,0)? and that fy,(0) — © as @ — dI (which
may be a limit as @ — +o0). If A(z,y) is a continuous function on (0,00)% with the property

that for all (z,y) € (0,00)% and 0 € I the identity

0= sup {Ax—a,y) = fo—ay(@)} v sup {A(z,y —b) — fry—s(0)} (2.4.11)

O<a<z 0<b<y

holds, then

A(,y) = min {2y (0)}

Proof. Fix (z,y) € (0,0)% and call v = 4. Under these hypotheses, there exists a unique

03, = argminges fr,(0) = 07 ,. Identity [(2.4.11) implies that for all a € [0,2) and b € [0, y)

we have

A(x - a, y) < fm—a,y(ez—a,y)’ A(‘T’ Y- b) < fiﬁ,y—b(a;ﬁ,y—b%

and therefore for any 6 € I, a € [0,z) and b € [0,y),

A(CC - a, y) - fx—a,y(e) < fx—a,y(a;kfa,y) - fx—a,y(e)v (2412)
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A({L‘, Yy— b) - fx,y—b(‘g) < fx,y—b(e;k,y—b) - fx,y—b(e)' (2'4'13)

Jr—ay(0) < 0 unless 0 = 0% and

Uniqueness of minimizers implies that fy—q (6 —ay
b b

r— a,y)

similarly fzy—4(05 ) — fz,y—5(0) < 0 unless 6 = 67 Notice that 6F , solves

z,y—b"
0= h'(@iy) + Vg’(é’f,j). (2.4.14)

By the implicit function theorem, we may differentiate the previous expression with respect to

v to obtain

aoz,, J001,)
v~ W6;,) + vg"(6F,)

Now, set 6 = 0, in|(2.4.11), Equality |(2.4.15)| implies that for a € (0,x) and b € (0,y),

> 0. (2.4.15)

Ha,y—b) < 92’;4}) < 92’; ay) Then |(2.4.12)| and |(2.4.13)| give us the inequalities
A(x - a’vy) - fxfa,y(‘g;k,y) < fl"*a,y(ei—a,y) - fx—a,y(ei,y) < 07 (2416)
A(.%',y ) fz,y b( x y) fa?,y b( ,yfb) - fm,yfb(giy) <0. (2417)

Notice that |(2.4.11)| implies either there exists a,, — a € [0,z] or b, — b € [0, y] so that one of

the following hold:

Az —an,y) — fo- an,y(‘g* ) — 0, Az, y —by) — Jy—bn (9;,7;) —0

Our goal is to show that the only possible limits are a, — 0 or b, — 0, from which the

result follows from continuity. Continuity and inequalities |(2.4.16)| and |(2.4.17)| rule out the

possibilities a € (0,z) and b € (0,y) respectively. It therefore suffices to show that

lim sup fo—ay(Or—ay) = fr—ay(0y,) <0, (2.4.18)
limsup fo (05 y—p) — foy—b(05,) <O. (2.4.19)

b—y—
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We will only write out the proof of|(2.4.18)] since the proof of [(2.4.19)|is similar. For any fixed

a € (0,2), we have

f$—a,y<9;—a,y) - f:c—a,y(e;:k,y) <0.
It suffices to show that the previous expression is decreasing in a. Differentiating the previous

expression and using |(2.4.14)[ and the fact that 92‘1 Y < Gaia y) We find

d
da (@ = RO 0) + 990 a) = [ = DR ) + 99000, ])
= h(ﬁa’y)) - h(e?xfa,yﬂ < O D

Corollary 2.4.11. For all £ > 0,

g (§ o) om0

Proof. 1t follows from the variational representation in [Lemma 2.4.9| that J¥,(£) is not infinite

for any choice of the parameters £, s,t > 0. It then follows from |[Lemma 2.4.19| and [79,

Theorem 10.1] that J#,(£) is continuous in (s, t) € (0,00)2.

Fix £ and set I ={6:0 > &}. For 6 € I and s,t € (0,00), define

2 —
no) =~ + o o(6) = tog -0 )
f.u0) = h(6) + 19(0). Ao 1) = J24(6)

Lemma 2.4.9|shows that with these definitions JJ,({) solves the variational problem in

sition 2.4.10] Because W1 (z) > 0 and ¥o(z) < 0, we see that for 0§ € [

g'(0) = Wo(0 — &) — Wo(0) <0, g"(0) = W1(0 — &) — ¥1(0) > 0.

It then follows that %022 fs+(0) > 0. Moreover, since log F%(’?(;)O grows like —¢log(f) at infinity

and —log(6 — &) at &, fs+(0) also tends to infinity at the boundary of I and the result follows.

The second equality is the substitution p =6 — €. O
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2.4.2 Moment Lyapunov exponents and the LDP

The next result would be Varadhan’s theorem if J;(z) were a full rate function, rather than
a right tail rate function. The proof is somewhat long and essentially the same as the proof of
Varadhan’s theorem, so we omit it. Details of a similar argument for the stationary log-gamma

polymer can be found in [37, Lemma 5.1]. The exponential moment bound needed for the proof

follows from [Cemma 2.4.21]

Lemma 2.4.12. For & > 0,

1
JE(6) = lim ~log E [ef log Zlytnsﬂov”t)]

n—0o M

and in particular the limit exists.

Remark 2.4.13. [Lemma 2.4.12 shows that JJ;({) is the { moment Lyapunov exponent for the

parabolic Anderson model associated to this polymer. With this in mind, the second formula

in the statement of [Corollary 2.4.11| above agrees with the conjecture in [16, Appendix A.1].

To see this, we first observe that the partition function we study differs slightly from the
partition function Zg(t, n) studied in [16] (defined in equation (3) of that paper). Up to normal-
ization constants both Zj |,,4(0,nt) and Zg(t,n) are conditional expectations of functionals of a
Poisson path. The normalization constant for Z; |,,,/(0, nt) is given by the Lebesgue measure of
the Weyl chamber A|,,4| 41,5+, While the normalization constant for Zg(t, n) is Prgy—o (7(t) = n)
where 7(+) is again a rate one Poisson process. There is a further difference in that [16] adds
a pinning potential of strength g at the origin to the definition of Z3(t,n), which introduces
a multiplicative factor of e‘gt. Combining these changes and restricting to the parameters
studied in [16, Appendix A.1], we have the relation

_n Pr)=o (7(n) = |nv])
e 2
’AanJ+1,n

ZO,[m/J (07 TL) = Zl(na [nVJ)
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Since Prg)—o (7(n) = |nv]) [Apyj+1,0]7" = €7, [Corollary 2.4.11|and [Lemma 2.4.12|then imply

that for any k£ > 0,

1 k‘2 T Lk
lim —log F¥ [Zl(”a [”Vj)k] = —;k + min{2 + kz — Vlog(z—i_)}

n—o n z>0 F(Z)
. [ k(k=3) I'(z+k)
= 21;8{2 —i—kz—ylogw ,

which is the extension of the moment Lyapunov exponent H, k(zg) conjectured in the middle of
page 24 of [16].

Our next goal is to show that the left tail large deviations are not relevant at the scale we
consider. This proof is based on the proof of [37, Lemma 4.2] which contains a small mistake;
as currently phrased, the argument in that paper only works for s,¢ € Q. This problem can be
fixed by altering the geometry of the proof, but doing this adds some technicalities which can
be avoided in the model we study. We will follow an argument similar to the original proof for

s € Q, then show that this implies what we need for all s.

Proposition 2.4.14. Fix s,t > 0. For alle >0

1
lim inf —=log P (log Z |,5)(0,nt) < n(p(s,t) —€)) = 0.

n—00 n
Proof. First we consider the case s € Q. There exists M € N large enough that M (s A t) > 1

and for all m > M we have
1
EElOg Zl,[msj (07 mt) = p(s, t) — €.

Fix m > M so that ms € N. We will denote coordinates in RI™I=1 by (uy, ... s Ulns|—1)- For

a,b,s,t € (0,00) and n, k,l € N, define a family of sets A;’ba c RInsl=1 by
A;’f’a ={0<u <<y <a<up <o <Upp1 <@+ b <upyy <o < Uppgjog < Nt
For j, k,e Z™, set

k _ alms|,mt
Aj = Aj[msj-‘rl,(j-‘rk)mt'
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For each n sufficiently large that the expression below is greater than one, define

N = |- lval -2,

m

so that we have

(n—2m)t < (N + [v/n] + 1)mt < (n — m)t, (2.4.20)

(|vn] +1)ms — 1 < |ns] — N|ms| < (|v/n] + 2) ms. (2.4.21)

With this choice of N, for 0 < k < |[/n] and 0 < j < N —1, Aé? is nonempty. Then for

0

A

k < |+/n], define

— m
Dy = ﬁ;y:OIA;? N {u <y < < U(N+1)ms—1 <t <’I?, — 5) < U(N+1)ms < < Ulps|—1 < nt} .

To simplify the formulas that follow, we introduce the notation s; = jms and t;? = (j + k)mt.
In words, we can think of Dy, as the collection of paths from 0 to nt which traverse the bottom
line until t’g, then for 0 < j < N — 1 move from t;? to t;‘?H along the next ms lines. The path
then moves from tﬁf\, tot (n — %) along the next ms lines and finally proceeds to nt along the

remaining lines. Observe that {Dk},[sgj is a pairwise disjoint, non-empty family of sets. With

the convention up = 0 and wu,s; = nt, we have the bound

lvnl e
ZL[”SJ (0, nt) = Z f 621':1 Bi(ui_l’ui)dul o Ulps|—1-
k=0 YD

In the integral over Dy, for each 0 < j < N we add and subtract B, (t?) in the exponent.
Similarly, add and subtract B, ., (¢t (n — Z)). The reason for this step is that this will make
the product of integrals coming from the definition of Dy, into a product of partition functions,

as when we showed supermultiplicativity of the partition function in (??). Introduce

ms—1
H]? = inf tm){ Z BSNH(ui_l,ui)}

t’f\,:u0<u1<---<ums,1<um3:n( 5 i=0
and observe that H} < Bs, (t%,t%) + H. Let C > 0 be a uniform lower bound in n (recall

that m is fixed) on the Lebesgue measure of the Weyl chamber in the definition of H l” ok
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Such a bound exists by |(2.4.20)l Set I,, = max {BSN (t%_;,u)}. We have the lower

89, <usthy™
bound
m & N—-1
Zlal_nSJ (0, nt) = CZ8N+1,|_7LSJ (t (n — 5) ,’I’Lt) €H0 —In Z 0(0 tO H Zs]',Sj+1 (t‘];, t‘l;_;'_l)
k=0 j=0

We therefore have the upper bound

P (10g Z1 |ns| (0,nt) < —n(p(s,t) — 66))

<P <log Z(N+1)ms,|ns] (t (n — m) ,nt) < —ne — log C)

2
N-1
+ P <O<1gl<a[x Z log Zs; +1,5,,1 (tj,tj+1> — 26))
+P(H0<—ne)+P<mk1nBo thy < >+P nE) .

It follows from translation invariance, [Lemma 2.4.25| and |(2.4.21)| that

P (log Z(N+1)yms,|ns] (t (n — %) ,nt) —ne — log T;) @) (e_”%) .

We have

N-1
P (0<§€n<a[}\</ﬁj { Z 1Og Zs]Jrl Sj+1 (t] ) tj+1)} < —n(p(s,t) - 26))

7=0

N1 vl ,
=P (Z log Zs;+1 Sj+1 (t]7tj+1) = —n(p(s,t) - 26)) =0 <€_01n2>

7=0

for some ¢; > 0. The first equality comes from the fact that the terms in the maximum are
i.i.d. and the second comes from large deviation estimates for an i.i.d. sum once we recall that
N =2 4 o(n).

Recall that by [(2.4.20)| n (¢t — %) — % = O(y/n). It follows from [Lemma 2.4.23|that there

exist co, Cy > 0 so that

3
2

P(HO < —ne ) Coe™""

3
The remaining two terms can be controlled with the reflection principle and are O <e_§"§ )
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Now let s be irrational. For each k, fix 5, < s rational with e™* < |3, — s| < 2e™* and set

tpy =t — % Call o, = s — 5§ and B, =t — 1y, = % Superadditivity gives

P (108 Z1 151 (0,1) < n(p(s,) = ) < P (108 Zy s, (0, mf) < (p(Gs i) = 5 ) )

+P (log Zns) |ns| (ntg,nt) <n (p(s,t) — p(8, ) — g)) .

Since §j is rational, we have already shown that the first term is negligible. Take k suffi-

ciently large that p(s,t) — p(Sk, k) — § < —<. By [Lemma 2.4.22] we find

<Z — ay, log B — ay ~|—aklogak)

1
liminf —=P (log Z} |,5/(0, nt) < n(p(s,t) —€)) = axJave

noon 2v/ o B
Using formula ((2.4.26), Jeug(r) = 4 §;v/2(z + 2)dz, it is not hard to see that as k — o, this
lower bound tends to infinity. O

Lemma 2.4.15. Fiz s,t >0 and € < 0. Then

1
lim —log £ [egloglensJ(O’m)] = &p(s,t).

n—o n

Proof. Fix ¢ > 0 and small and recall that [Lemma 2.4.21| and Jensen’s inequality imply that

for any ¢ < 0, sup,, {% log B [65 log Zl«lnsl(o’”t)]} < 0. The lower bound is immediate from

1 1
~log B [ef 108 Z1,ns) “”m] > —log E [65 18 21 nat 0101y ZWJ<o,m)<n<p<s,t)+e)}]

> E(p(s,1) + €) + - 1og P08 Zy g (0,118) < n(p(s,1) + )

once we recall that P(log Z; |,,5(0,nt) < n(p(s,t) +¢€)) — 1.

For the upper bound, we decompose the expectation as follows

b [eé 198 21, (Omt)] =k [65 108 Z1,in (O’nt)l{log Z1 |ns| (0,nt)>n(p(s,t)fe)}]

+ F |:€§ log Z1 | ns| (0,nt) 1{10g Z1 s (O,nt)én(p(s,t)—ﬁ)}] .

Recalling that P (log Z; (0, nt) > n(p(s,t) — €)) — 1, this leads to

lim sup l log E [65 log Z1 |ns) (O,nt)]

n—oo N
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. 1 n
< max {é(p(sa t) - 6)7 limsup —log & [65 198 21, ) 0 t)l{log Zl,[nsj(07nt)<n(p(5,t)_€)}:| }

n—oo N

By Cauchy-Schwarz and |Proposition 2.4.14]

1
. Elog Z; s (0,0t
hnm_)scgp “logE [e 0g Z1 |ns| (0,n )1{10g Z1 |ns) (o,nt)gn(p(s,t)—e)}]

< 1 sup {1 log E [625 log Z1 | ns| (O,nt)] }
2 n n

1
+ lim sup o log P (log Z1 |ns)(0,nt) < n(p(s,t) —€)) = —o0. O
n

n—0oo
Combining the previous results, we are led to the proof of Theorem from which we

immediately deduce Theorem [2.2.3]

Proof of Theorem [2.2.3. Lemmas [2.4.12] and [2.4.15] give the limit for £ # 0 and the limit for

& =0 is zero.
Note that Ag(€) is differentiable for £ < 0 the left derivative at zero is p(s,t). For £ > 0,

there is a unique p(&) solving

Ast(€) =t (522 + g,;(g)) — slog W (2.4.22)
This p(€) is given by the unique solution to
0= 1€+ 5 (Wo(u(€) ~ Tolu(€) +)), (24.23)
which can be rewritten as
£ (Bo(§) + €) = To(u(©))) = +.

By the mean value theorem, there exists z € [0,£) so that

vt (i) —z = p(§).

Using this, we see that Ag () is continuous at £ = 0. The implicit function theorem implies

that () is smooth for £ > 0. Differentiating |(2.4.22)| with respect to & and applying|(2.4.23)]
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we have

d

chAs’t(O =t (£ 4 (&) — sPo(u() + £).

Substituting in for ©(§), appealing to continuity, and taking £ | 0 gives

hfg gAst(g) =0t (Z) — s (qfl—l <i>>

= ,0(3, t)
which implies differentiability at zero and hence at all &. O

Proof of Theorem 2.2.3. The large deviation principle holds by Theorem and the Gértner-

Ellis theorem [29, Theorem 2.3.6]. O

2.4.3 Stationary Lyapunov exponents

Proof of Theorem [2.2.6. First suppose that A € (0,60). We begin with the coupling

t [ns]
20, (nt) = n L Z8(n0) 2y e, )t + Y Z0(0) 2 (0, ).
j=1

For each § > 0, each r € [0,¢ — d] and each v € [0, s) and n sufficiently large, we have

r+0
Z[Qnsj<nt) = (nf Zg(nu)Zl,lnsJ(nuant)du) v <Z[€nUJ<O)Z[an,LnsJ(Oant))

r

= <n5Zg(nT)Zl,[nsJ(n(r + 5)ant)) v (Z[aan(O)Z[an,[nsJ<Oant)) :

Similarly, fixing the uniform partition {t;}*£, of [0,¢] and the uniform partition {s;}}, of [0, 5],

we have

M
ZO (nt M Z ZO ntz+1)Z1 [nsj(ntzv nt Z | nsist | nsiL[nsJ(Ov nt)

It then follows from independence that for any 6 € (0,¢), r € [0,¢ — ] and v € [0, s), we have

liminfn " log I [(ans J(nt)ﬂ > {r ()\0 + A;) + As,”g(x)} v {vlog F(ff(;)A) + As_m()\)}
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Take & | 0 and then optimize over r and v to obtain a lower bound. For the upper bound,
independence and the observation that for a; > 0 and A > 0, (XM, a;)* < M max; a} <
M*3Y". a? this implies that

M

E[(ansj(nt)y\} < (n* v |ns| Z{ [(ZO ntz+1))/\]E[(Zunsj(nti,nt)))‘]

tr [((ansHlJ(O))A} 2 [(ZLnSiJMSJ(Ov”t)))/\] }

Taking logs, dividing by n and sending n — o0, we obtain

A 22
limsupn~'log E [(ZlensJ(nt)) ] < max {ti+1 </\9 + 2> + As,tti()\)}

n—>00 1<is<M
v {sHl log ———~ )\) +As—sit ()\)}
)\2 1 A2

v {Oiligs {ulog (16(0) + AS_W(A)} + %bg W} :

Send M — o0 and combine with the lower bound to obtain

: -1 0 A \? A
nh_r)rc}on log E [(Z[nsj(nt)> } = Oilvlgt {r <)\0 + 2> + s,t_r()\)}

(6 — )
log ——+2> + Ag_yt(N) 7.
Voi‘ii’s{“ %8 gyt Al )}

Substituting in the variational characterization of Ag¢(\), we have

AL (N) = sup, {r <A22 - /\9> + min {(t —) (A; + z/\) — slog F(?(JZF)Z)}}
voigzs{ulogm+g§8{t <)\22+z)\> —(s—u)logF(lf(:)Z)}}.

We may apply a minimax theorem to interchange the supremum and the minimum in both of

these terms to obtain

AN = min {t (A; + ZA> — slog F(S(JZF)Z) + sup {r(6 - z)}}

o<sr<t
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v {t (2 N ”) ~slog R sy {“1°g e }} |

For the first term, separate the minimum into minima over z € (0, 0] and z € [f, c0) and for the
second, separate it into minima over z € (0,0 — A\] and z € [# — A\, 00). In the first term, when

z € (0, 0], the maximum occurs at r = t. When z € [0, 00), the maximum occurs at r = 0. It

follows that

min {t <>; + z/\) - slogr(;\(;Z) +08<1i§t{r(9 - 2)}} = {t ()\22 + 9)\> — slog F(I:\(;F)Q)}

. A2 '\ + 2)
/\Igrel{t (2 —i—z)\) —slogr(z)}.

Similarly, for z € (0,6 — A] and z € [ — A, ) the observation that the function z — logI'(z +
A) —logI'(z) is strictly increasing shows that the inner maximum occurs at v = 0 for z < 0 — A

and at v = s for z = 0 — \. It then follows that

mip {1 (5 +24) —sto HE T+ aup uiog LSRRI

{¢ (_f #00) = stog HE b a i o (f #2A) = stog M 2

The result then follows from strict convexity of z — ¢ (’\2—2 + Z)x) — slog % The result for
A = 0 follows from monotonicity as in the proof of Corollary O

2.4.4 Right tail rate functions
Existence and structure of the right tail rate function

We now turn to the problem of showing the existence and regularity of the right tail rate
function for the polymer free energy. Our main goal in this subsection is to prove
As is typical for right tail large deviations, existence and regularity follow from (almost)
subadditivity arguments. Because the partition function degenerates for steps with no time

component and we do not restrict attention to integer s, it is necessary to tilt time slightly in
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this argument. We break the proof of [Theorem 2.4.1] into two parts: first we show the result

with time tilted, then we show that this change does not matter.

Theorem 2.4.16. For all s =0, t > 0 and r € R, the limit

1
Jst(r) = lim —=log P (log 20,)25) (0,2t — 1) = r)

r—00 X

exists and is Ry valued. Moreover, Jsi(r) is continuous, convex, subadditive, and positively
homogeneous of degree one as a function of (s,t,r) € [0,00) x (0,00) x R. For fized s and t,

J (1) is increasing in v and Js(r) = 0 if r < p(s,t).
Proof. Define the function 7" : [0,0) x (1,00) x R - R, by

T(z,y,2) = —log P (log Zy 1,0,y — 1) > z) .

Lemma 2.4.20|in the appendix implies that P (log 2020,y = 1) = z) # 0 and therefore that

this function is well-defined.
Take (z1,y1,21), (2, Y2, 22) € [0,00) x (1,00) xR and call 1 2 = |x1+z2|—|2z1]—|22] € {0,1}.

By (??), we have

Zo|wr+a2) (0,01 + Y2 — 1) = Zg 12,1(0, 1 — 1) Z |0 | |21 +20) (W1 — Liy1 +y2 — 1).

Independence and translation invariance then imply

P (108 Z 10y 125 (0, y1 + 32 — 1) = 21 + 22)

> P (1og Zo,|2,1(0,y1 — 1) = 21) P (108 Zo |y |12, 5 (0, 42) = 22) -
If 712 = 0 then, recalling that 1og Z|,,| |2,/ (4,t) = Bjg,|(u,t), we find

P (log Z,|4,1(0,y2) = 22) = P (log Zg 4,1(0,y2 — 1) = 22) P (108 Zj3, | |5 (2 — 1, 2) = 0)

1
= EP (log ZO,[xZJ(07y2 - 1) = 22) .
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Similarly, when x1 2 = 1 we have
P (log Zy,|3,]+1(0,32) = 22) = P (log Zp 4,10, y2 — 1) = 2) P (log Zo,1(0,1) = 0).
Setting C' = max{log(2), —log P (log Zy1(0,1) > 0)} < o0, we find that
T(x1 + x2,y1 + y2,21 + 22) < T(x1,91,21) + T(x2,92, 22) + C.

T(z,y,z) is therefore subadditive with a bounded correction. Non-negativity and
2.4.20|imply that T'(x,y, z) is bounded for z,y, z in a compact subset of its domain. The proof

of [60, Theorem 16.2.9] shows that we may define a function on [0, 00) x (0,00) x R by
J, = 1i L log P (log Z 0,zt—1) =
S,t(r) - J:1—1>T<)10 _E 0g ( 0g 0,[xsj( y LT — ) = 33‘7“)

and that this function satisfies all of the regularity properties in the statement of the theorem
except continuity and monotonicity. Monotonicity in r for fixed s and ¢ follows from monotonic-
ity in the prelimit expression. Convexity and finiteness imply continuity on (0, 00)% xR [79, The-
orem 10.1]. Moreover, [79, Theorem 10.2] gives upper semicontinuity on all of [0, c0) x (0, 00) xR.

It therefore suffices to show lower semicontinuity at the boundary; namely, we need to show

liminf  Jyp(7') = J, .
wominf e (r') = Jou(r)

Fix (t,7) € (0,00) x R and a sequence (s, tk, ) € [0,00) x (0,00) x R with (sg, tg, %) —
(0,t,7). Recall that log Z¢(0,t) = By(t), so we may compute with the normal distribution to
find Jo(r) = %1{@0}- From this we can see that if s; = 0 for all sufficiently large k, we have
Jspte (T6) = Jo (). We may therefore assume without loss of generality that s; > 0 for all k.
First observe that if » < 0, then Jy¢(r) = 0 and the lower bound follows from non-negativity.

If » > 0, we may assume without loss of generality that there exists ¢ > 0 with r > ¢ for

all k. By in the appendix, for all sufficiently large & we have

r — Sk logty — sp + silog sk 1)

24/t Sk

st (1) = spJauE (
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where Joyp(r) =4 SS v/ x(z + 2)dz. Using this formula and calculus, we find that

. J T — Sk logty — si + s log sk 1 r?
im s — =
k—o0 kIGUE 24/t Sk 2t

and therefore continuity follows. [Lemma 2.2.1| implies that Js:(r) = 0 for r < p(s, t). O

Remark 2.4.17. Note that we only address the spatial boundary in the previous result. The

reason for this is that the right tail rate function is not continuous at t = 0 for any s > 0 and

x € R. To see this, we can use the lower bound for J(r) coming from [Lemma 2.4.22| As

t | 0, this lower bound tends to infinity.

Lemma 2.4.18. Fiz (s,t,7) € (0,00)?> x R. For any sequences s,,t, € N x (0,0) with
%(Sn,tn) — (s,t) we have
. 1
Jsi(r) = lim ——log P (log Zy s, (0,t,) = nr) .

n—ow n

Proof. Fix e < min(s,t) and positive. We will assume that n is large enough that the following

conditions hold:

L P L Y (R A (8 P
e
20,5, (0, 10) = Zo | (5—e)n) (0, (t = €)1 = 1) Z)(5—e)n) 5, ((t — €)= 1, 2p).

P (log Zp s, (0,t,) = nr)

=P (log ZO,[(s—e)nJ (0,(t—€en—1)= nr) P (log ZO,sn—[(s—e)nJ(Oa th—(t—€en+1) = 0) .

Call s(n) = s, — [(s — €)n| and t(n) = t, — (t — €)n + 1 and divide the interval (0,¢(n)) into

s(n) uniform subintervals. We may bound Z 4,)(0,#(n)) below by a product of i.i.d. random
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variables:

s(n)
v (-1,
i=1

~—

Therefore,

P (log Zy 5(ny(0,t(n)) = 0) = P <log Zo1 (o, ziz)» > 0>S(n) :

Notice that lim L:) = ¢ and lim @ = ¢, so we may further assume without loss of generality

that % < % < 2 for all n. We have

t(n) 1 1 t(n) 1 Bl<l t(n))
Z O > Z O, - Z —, = = Z O7 — 27s(n)
0,1 ( 78(71)) 0,1 ( 2> 1,1 (2 S(TL) 0,1 9 &

t 1 1
P\ log Zp 07@ >0)=2=PllogZy1(0,=)=0].
S\ s(n) 2 S\72

Therefore for C' = log(2) — log P (log Zo,1 (0, %) > 0) and all € < min(s, t) we have

so that

1
limsup ——log P (log Zp s, (0,t,) = nr) < Js_ct—(r) + €C;
n

sending € | 0 and applying continuity of the rate function gives one inequality. A similar

argument gives the lim inf inequality. O

The next corollary follows from convexity of Js () in (s,t,x) € (0,00)? x R. Details can

be found in the first few lines of the proof of [37, Lemma 4.6].

Lemma 2.4.19. For all £ > 0, J¥,(€) is concave as a function of (s,t) € (0,00)%.

Regularity for the stationary right tail rate functions

Next, we turn to regularity for H37U7s7t(x) and Gg&t

(x), which are defined in|(2.4.1)l We begin
with the proof of This result is the only point in the paper where we directly

use the continuity up to the boundary in
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Proof of Lemma 2.4.4. Notice that 6t,a¥((0), and p(s — b,t + «) are bounded for a,b € [0, s]

and 7 € [0, t]. Using this fact and the formula for Hg@ s14~(1) coming from |Corollary 2.4.3 and
Lemma 2.4.2 there exists a compact set K’ containing K so that for all r € K, a,b € [0, s],

and vy € [0, ]
Hipoi(r) = inf (R 5 Ug(2) + Jooppin(r — o)}

Note that (a,z) — RY 0 U(x) is continuous on [0, s] x R. By [Theorem 2.4.1} for any compact

set K’ we have joint uniform continuity of (a,b,v,r,x) — RY 0 U(z) + Jy 14 (r — x) on the

compact set [0, 5] x [0,¢] x K’ x K’ and so the result follows. O

The proof of is similar to the proof of so we omit it. Next, we

turn to the proof of |[Lemma 2.4.6 which shows that GfL’ s.¢(z) tends to infinity locally uniformly

near near a = t.
Proof of Lemma 2.4.6. We have

0 r < —0(t—a)+ p(s,t —a)
Gg,s,t(x) =

inf {(Jst—alz —y) + R_.(y)} x> —0(t—a)+p(s,t —a)
—0(t—a)<y<z—p(s,t—a)

Fix € > 0. The formula in [Lemma 2.2.1| shows that p(s,t —a) — —o0 as a 1 t, so that for

all z € R and a sufficiently close to ¢,z > —0(t — a) + p(s,t — a). For a sufficiently large that

this holds for all z € K, we have
(

Jsi—a(z +6(t —a) —¢)) ye[—0(t—a),—0(t—a)+ €

Jst—a(® —y) + Ri—a(y) = 1 RY (—0(t —a)+¢) ye[-0(t—a)+e,x—p(s,t—a)—e-

R?fa(x - p(87t - CL) - 6) ye [1’ - p(s,t - a) — 6T — p<37t)]
\
By for all z € K and a sufficiently large, we have
z — slog(t —a) — s(1 —log(s)) 1)

Jsi—alx) = sJ
i—a() GUE< 27— )s
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Combining this with the exact formula for R? ,(x) and optimizing the lower bounds over
x € K shows that the infimum over x € K of the minimum of these three lower bounds tends

to infinity, giving the result. O

2.4.5 Technical estimates

To reduce the clutter elsewhere in the paper, we collect a number of useful estimates in this

appendix.

A lower bound on the probability of being large

Lemma 2.4.20. Let K < [0,0) x (0,00) x R be compact. Then there exists Cx > 0 so that

for all (z,y,z) e K
P(log Zy |2)(0,y) = 2) = Ck.

Proof. Since |x| takes only finitely many values on any compact set, we may fix |z|. If |z] =

0, then Zj|,(0,y) = Bo(y) and the result follows. For [z] > 1, we bound below by an
Lid. product: Zoa)(0,9) = [11% ! Zisnt (ZW‘UJ (i + 1)%). It follows that
]

P (log Zy 15)(0,y) = z) = P <10g Zoa <0, y) > ﬁ) . (2.4.24)

|z x

Jensen’s inequality applied to log Zy 1(0,t) gives

1t I
eBo+B1(w) gy > Jog(t) + tf Bo(u)du + tf Bi(u,t)du, (2.4.25)
0

t
log Z()J(O, t) = log f
0

0

where 1 Sé Bo(u)du and 1 §¢ Bi(u,t)du are i.i.d. mean zero normal random variables with vari-

ance % Applying this lower bound to the expression in [(2.4.24)| gives the result. O
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Moment estimate for the partition function

Lemma 2.4.21. Fiz t > 0, n € N and £ € R with |§| > 1. Then there is a constant C > 0

depending only on & so that

E [ZLn(O,t)E] <C (*éﬁ (i‘:)nfe%f%.

Proof. By Jensen’s inequality with respect to the uniform measure on A,,; and Tonelli’s the-

orem we find

£
E [Zl,n(o, t)f] =F J eXi Blsisivt)de,  ds, 1
0<s1<<Sp_1<t

S ‘An,t|_1 ’An,tF J E[eg ¥ B(si’si“)]dsl co.dsp—1

O<sy<-<sp—1<t
— \An,t\geéf%,
where we have used independence of the Brownian increments and the moment generating
function of the normal distribution to compute the last line. The remainder of the statement

of the lemma comes from the identity |4, | = - and Stirling’s approximation to n!. O

(n _1)
Bounds from the GUE connection

Let AguE,n be the top eigenvalue of an n x n GUE random matrix with entries that have

variance 02 = . Then [7, Theorem 0.7] and [38] give

[M]=

A a 1 max
GUE,n 2\/70 UY <UL <+++<Upy—1 <Up=1

Bi(uifl, uz)} .

1

= -
Il

The right tail rate function of Agyg,, can be computed ([64), (1.25)], [9]) for » > 0 to be

1 T
Jovp(r) = lingo ——log P (A\guEn=1+71) = 4J Va(x + 2)dx. (2.4.26)
n— n 0

Lemma 2.4.22. Suppose thatr,s,t > 0 and (s, t,, ) € Nx(0,00) xR satisfy n=! (sp, tn, ) —

(s,t,7). Ifr — slogt — s + slog s > 2+/ts, then

r—slogt — s+ slogs) )
hmlnf——lo P (log Zy s, (0,t = sJ -1
im in g P (log Zo,5,(0,tn) = 1) GUE( ois
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and if r + slogt + s — slogs > 2+/ts, then

1
lim inf ——log P (log Zy 5,,(0,tn) < —1) = sJauE <
n

n—00

r+ slogt+ s — slogs _1>

2/ts

Proof. Observe that

Ay iid] = 1 [(te\"
n+1,t - Tl,' ~ \/% n .
Using this fact and bounding Z ,,(0,t) as defined in above with the maximum value of

the Brownian increments, we obtain

1 the\ " ol
log Z <1 _— — B:(w:. w;
08 £0,en (0’ t”) o8 <\/m < Sn > > * 0:u0<uln<lé~l~?(<u$n =tp { Z 'L(Uz, U1+1)

=0
4 1 71 Lne " + 24/tpSp A
0 S U .
g /72 5, P nSN\GUE, sy,

The result then follows from the inequality

Ty — Splogt, — s, + splog s, _ 1 o 1
2/t Sn 24/tnSn & 2Ty, '

The proof of the second bound follows a similar argument: we bound the partition function

P (log Zos, (0, 1) = ) < P (AGUE,sn >

below with the minimum of the Brownian increments, apply the upper bound from Stirling’s

approximation to n!, and appeal to Brownian reflection symmetry. ]

Lemma 2.4.23. Fiz e > 0 and let s € N and t,, = O(n®) for some a < 1. Then there exist

c¢,C >0 so that

s—1

_ 2—a

P max ZBz’(UianH) >ne| <Ce™ ™ .
O=ug<ul<-<us—1<us=tp =0
i

Proof. Large deviation estimates for largest eigenvalues give the result. For example, by [64,

(2.7)], there exist C,c > 0 such that

s—1
n €
P max Z Bi(ui,uiﬂ) = ne =P ()\GUES = ) < Ce
O=ug<ul <--<us—1<us=tp b ’ \/tn \/g

2—a
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Upper tail coarse graining estimate

Lemma 2.4.24. Fiz a€ [0,t) and € > 0. Then for v < min(e,t — a)

Y Z(nu)  Zijns)(nu, nt) 1 /e—0v\?
Pllo nf v P du)ne)éex —n< ) +o(n) ;.
< & a Zg (na) Zl,[nsj (na7 nt) P 4 \/; ( )

Proof. We have for all u € (a,a + v)

Zl,l(nav nu)ilzl,[nsj (nu7 nt)il = Zl,[ns] (TLCL, nt)il

so it follows that

a+v 70 7 t
p (lognf Z%(nu) 1|ns| (nu, )du > ne)
o  Z§(na) Zi |ns|(na,nt)
(n

a+v ZO ) 1
< Plogn 7 Z11(na,nu)” du = ne
Z;(na)

a

a+v
- P (log nj e@n(u—a)—B(na,nu)—B1 (na,nu)du > 7’L€>

P (s (B + Bi(w) > van (S2) - ),

N

where the last inequality comes from Brownian translation invariance, symmetry, and scaling.
Recall that B + By has the same process level distribution as v/2B. The result follows from

the reflection principle. ]

Left tail error bound

Lemma 2.4.25. Take sequences ty, Sy, such that there exist a,b > 0 with a < t, < b,

rn — 1 >0 and s, € N satisfies s,log(s,) = o(n). Then there exist constants ¢,C > 0 such

that

2

P (log Zy.s, (0,t,) < —nry,) < Ce” .

Proof. We have Zy, (0,t,) = [[3%" Ziin1 < , (i + 1)—”) where the Z; ;41 ( ,(i+1) t“)

are i.i.d.. As above in|(2.4.25)| there exist i.i.d. random variables X; ~ N (log (S—") , %) with
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Ziit1 (Zz—’;, (1 + 1)2—2) > X;. It follows that

Sn—

1
T S t
P (log Zos,(0,t,) < —nry) < P ( X; < —m"n) =P <N 0,1) > n\/?:lTn + \/;Tn log <s’;>> .

1=0

Recall that \;3"7 + nsgt log (i—z) is a bounded sequence and without loss of generality is

bounded away from zero. The result follows from normal tail estimates. O
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2.5 Large deviations for inhomogeneous exponential last pas-

sage percolation

2.5.1 Variational formulas for the Lyapunov exponents

Our purpose in this section is to prove Theorem [2.2.16

Lemma 2.5.1. Let A € R. Suppose that z > —q in , , and z < B in and

below.

(a) p-a.s., for any t >0,

1
lim —log E }, [ exp

n—ow n

1
lim —log E }, [ exp

n—ow n

(b) For anyt >0,

1
lim — logE® | exp

n—o N

1
lim — logE® | exp

n—o N

)} FA<a+tz
otherwise.
(2.5.1)
)] FA<B—2
otherwise.
(2.5.2)
ifA<a+z
(2.5.3)
otherwise.
ifA<B—z
(2.5.4)

otherwise.
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Proof. Using ([2.2.25)), we compute

[nt]
Lnt ] @itz T\ ' .
A W(E,0) H — 1 < min a;+=2
g’b ¢ i _Jijaitz A 1<i<| nt | (2.5.5)
o0 otherwise.

If A\ < a + z then the first equality in (2.5.5)) holds for all n € N p-a.s and we have

a+z
1 —_— . 2.5.
og(a+z_)\)‘<oo (2.5.6)

E

A

[ nt ]
1 a; + z
—— | =tEl
<ai )\) °8 <a~|—z—

[nt]

1 I P vl () .
i tos B 5 = i 3o (L5
(2.5.7)
Moreover, it follows from ([2.5.5)) that
[nt]
A3 W(i0) | nt | a+z a+z
= lim =——logE|—— | > tlogE| ———|. (2.5.8
o o8 [a+z— ] ©8 [a+z—)\] ( )

i=1
n—w n

1
lim —logE? | e

n—w n
Next, consider the case A = o+ z. If (2.5.6)) is in force, then both (2.5.7) and ([2.5.8) still hold.

T Lnt
. . ]_ . A Z W(i,O) a-+ z

_ > - = _
IITILILIOI.}f - logE; | e > tElog PR [-a.s.

Suppose now that (2.5.6)) fails. By monotonicity,

= -
A Y W(E0) a+z

' > tlogE | ————

°8 [a—i—z—)\’]

1
liminf — logE® | e
n—w n

for any \' < A. Letting A’ 1 A and monotone convergence yield
Lnt |

A W(i,0)
= (2.5.9)

Lnt]
1 . A 2 W(i,0) 1

3 _ i=1 = i - z =

lim nlog Eip|e nh_r)rgonlogE e 0.

n—0o0
Finally, consider the case A\ > « + z. Then, by the ergodicity of a, there exists ¢ € N such that
A = a; + z and the second equality in (2.5.5)) holds for large enough n € N u-a.s. Hence, (2.5.9).
L]

We have verified (2.5.1) and (2.5.3]). The proofs of (2.5.2)) and (2.5.4) are similar.
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Recall the basic properties of the Lyapunov exponents stated in Proposition For
s,t > 0and A € R, define L () = limyg Ls ¢(A) and Lot () = limg)o L ¢(X), where the limits
exist by monotonicity. Define L o()\) and Lg;(X) similarly. Also, for k,1 € Z, let 6;; denote
the shift given by w(i, j) — w(i+k,j+1) fori,j e Nand w € RY’. We next obtain a variational

formula involving the Lyapunov exponents.

Lemma 2.5.2. Let z € (—a,3) and A€ (0,8 — z]. Then

a+z+ A b—z
Blon (AT ZFAY gy (b2 2.5.10
og( a+z >+ Og(b—z—k) ( )
a+z+ A b—z
= L (A 1-1¢)El — | ,Li(A 1-1¢)El PN :
(e L0+ 1= () w0+ (- e (255) 1)
Also,
a+z+ A b—=z
S R e BUE 2.5.11
o8 [ a+z }—i-og [b—z—)\} ( )

a+z+ A b—z
= Li1(A 1—t)logE| — | ,L1+(\ 1—t)logE | ———— .
Oiligl{max{ t1(A) + ( ) log [ P ], 14 (A) + ( ) log [b—z—)\]}}

Proof of . We may assume that the left-hand side of (2.5.10)) is finite. (This assumption

fails only when A = 8 — z and Elog(b — ) = —c0 in which case (2.5.10) clearly holds).
It follows from ([2.2.13]) and (2.2.24)) that

G(n,n) = max {max{G(n—k+1,n) o Or—1,0 + G(k,0),G(n,n—k+1)o 0o k-1 + G(0,k)}},

kN

which leads to

D1 J(ng) = max {max{G(n —k +1,n) 0 19 - > W (i,0),

1<j<n k<i<n
G(n7n —k+ 1) © 90,]671 - Z W(Z7O> + 2 W(Oaj)}}
1<i<n 1<j<k
(2.5.12)
Also, note the identity
! _GterA EZtA [e)‘W(i’O)] for A >0and z > —a (2.5.13)
E;b [e—)\W(i:O)] a; + 2 a,b a. 0.
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Using the independence of weights under Pab, Proposition [2.2.31} (2.5.12)) and (2.5.13]), we
obtain \ Wi
Ez-i—)\ { 70):| |:6 1<32<n J ]

>max{ e (ayb €00 ’”1” [ ] (2.5.14)

|
Ear (v [e)‘G"” k“] EZ . [ /\1<§<’€W0])] }
0

Set k = [n(1 —t)]+1 for some t € (0,1), apply logarithms to both sides and divide through

by n in (2.5.14). It follows from Proposition [2.5.15| that
1
1Og E; (@b [eAG("_kH’")] — L 1(N), - logEqa 7, (b) [BAG(R’"_HI)] — Li(N\)

as n — oo along suitable subsequences because (a,b) is stationary and L is deterministic.

Hence, also using Lemma [2.5.1} we obtain

a+z+ A b—z
El _— El _—
0g< a+z >+ Og(b—z—k)
at+z+ A b—z
= max { Lt,l(A) + (]. — t)ElOg <a—|—2j> ,Ll,t()\) + (1 — t)ElOg <b—z—)\> }
(2.5.15)

In particular, L is finite. By continuity, (2.5.15)) holds with ¢ = 0 and t = 1 as well.
For the opposite inequality, introduce L € N and let n > L such that [({+1)n/L]| > [In/L]
for 0 <1 < L. Then, by (2.5.12) and nonnegativity of the weights,
>, Jng) < max {max{G(|(L —)n/L],n) o Opin/r10 — D W (i, 0),
1<j<n [(I+1)n/L<i<n

G(n, [(L=Dn/L]) o O fmmy— Y, W(i,0)+ > W(0,5)},

1<i<n 1<j<[(I+1)n/L ]
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which implies that

A Y W(3,0) A Y W(0,9)
E:i))\ [e 1<i<n ] 'Ez,b [e 1<j<n }

)\[(H—lﬁn/L]W('O)
Z7
< Z ET[zn/L1(a),b [eAG(l(L_l)n/LJ’")]-EZEA e =1

0<i<L (2.5.16)
\ [(l+lﬁn/L] o
+ Bayry1(b) [eAG(”’[(L—l)n/L J)] Ei,le O
Taking logarithms leads to
log E:{)’\ |:€)\1ézz<n W(i’o)] tlogEL, [€A1<§<nW(OJ)]
[+1n/L]
< oty X { logEr 0 @b [GAG(L(L_Z)”/LJ’”)] +log EZ3) e)\ Z WEo) ’
N [(l+12)n/L1 W)
10g Bar) 1 ((b) [eAG(nvl(L—l)n/LJ)] FlogEL, |¢ }+10g(2L),

Dividing through by n and letting n — o0 along a suitable subsequential limit yield

a+z+ A b—=z
El —_ El —_
og< a+z >+ Og<b—z—)\>
[+1 a+z+ A I+1 b—z
< Orgli}imax{Ll—l/L,l()‘) + TElog <a+z> Ly (A) + I Elog () }

b—z—A
< sup max< Ly 1(A) + (1 —t)Elog atztA Li:(AN)+(1—-t)Elog | ——
= o<i<1 bl a+z i b—=z

- A
1 a+z+ A b—=z
—I—L<Elog (a—i—z )—I—Elog (b—z—/\>>

Letting L — oo completes the proof. O

Proof of (2.5.11]). Some details are skipped. We may assume that the left-hand side of (2.5.11))
is finite.

Using independence, we can rewrite ([2.5.14]) as
ALY W30 A W(0,)
B | e k<isn ] EZ, [6 157%n } > Bry_ o |00 1]

A Y W)
e 1<i<n

EZJr)\

A X W(0.g)
a,b

(2.5.17)
. :Za,b {6 k<j<n } > Ea,rk,l(b) [eAG(n,n—k—l—l)]
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The factors on the right-hand side are independent. Applying E yields

3 W(i,o)} Ez[ DY W(OJ)}

DR |:e/\1<i< e 1<i<n
i A WwW(0,j
> max { E |:€)\G(n7k+1,n)i| ,Ez+>\ |:e)\1<§gk w( ’O)] ,E |:€)\G(n,n7k+1)i| . [E*? [e 1s§sk (0])] }7

where we rearranged terms using that {W(i,0) : ¢« € N} and {W(0,j) : j € N} are both
ii.d. under P*** and P?. Then, (2.5.18) leads to = half of (2.5.11) via Proposition [2.5.15{ and
Lemma 2571

For the < half of (2.5.11)), suppose that A < 8 — z for the moment. Note the inequalities

E;—E)\[BAW(Z"O)] _ ai+2+)\ < Qé+Z+A’ Ezb[eAW(O’j)] _

bj —z B—z
~ a <
a; +z o+ z ’

bj—z—XA B—z-X\

It follows from these and (2.5.16) that

A Y W(,0) A W(0)
E;:‘g)\ [6 1<i<n :| . E;,b |:6 1<j<n :|

[in/L]

o+ 2+ A\ G Ay W(i0)
2rerTA ((L=Dn/L|n) |  prtA =
<2, (00) Eel R o e
[In/L]
B—= Laas AG (n,|(L—1)n/L z Y E WD
N <5—Z—A> By [2CHEDVE] Bz 5

The point of (2.5.19)) is that the terms on the right-hand side are products of independent

factors, which is not the case in (2.5.16f). Applying log E, we obtain

NI IRACY ALY W(0,)
log E** [e Isisn } + log E? [e 1<j<n }
A )\an/]L]W('O)
< max max {(n/L +1)log <g+2+> +logE [e/\G([(L_l)"/LJ’")] —logE* ™ e = ’
0<i<L a—+z
B ,\”%L]W(o )
- ’J
(n/L + 1) log (5_2)\) + logE [e)‘G(”vl(L—l)'ﬂ/LJ)] +logE? |e 4=t }
— Z [R—

+ log(2L).



Divide through by n and let n — oo. If we then send L — o0, the result is

logE {M} +logE[
a+z

b—=z
zZ—A

< sup
0<t<1

{ max { Lia

L

(N +(1—1) logE{

()\)—l—(l—t)logE[ b=

a+z

b—z—\

100

a+z+)\]

I}

for all A < 8 — 2. The case A = 3 — z also follows because the right-hand side is nondecreasing

in A and the left-hand side, due to monotone convergence, is continuous in A on (0, 8 — z].

Lemma 2.5.3. For A\ > 0,

Lyo() = Elog (522
Ll,O()\) = L071(>\) = o0
L1,0(A) = logE [%

]Ll,O()\) = ]]_4071()\) = 00

A) Lo (\) = Elog (

b+«

] Loi(A) = logE [-

b+a—

b+ a
b+a— A

otherwise.

)\} ifA<a+p

otherwise.

O]

(2.5.20)

(2.5.21)

(2.5.22)

(2.5.23)

Proof. Let € > 0. On the event by < 8 + €, which has positive p-probability, we have for

n=1/e

% log Ea7b[€>\G(n’ln€J)]

1 A X W)
—log Eap [e 1<i<n
n

n

1 a; + by
nizlai‘i'bl—)\

|

if A< min a; + by

1<isn

otherwise

if A< min a; + B +e€

1<ign

otherwise
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Then, by Lemma [2.5.1

E[l < atfte ﬂ ifA<a+f+
e} B — 1 Sy’ €
ng()\)> & CL+§+€—A - ]

0 otherwise.

By monotone convergence, letting € | 0 yields

a+@ ‘
Lio(\) = E[log <a+@—>\>] lf)‘gQé—i—@'

0 otherwise.

To complete the proof of (2.5.21)), we need

Lio(\) <E [log (%)] (2.5.24)

for A€ (0,a + B]. When X\ = a + 3, we may assume that the right-hand side is finite. Then,
a; > o for i € N a.s. and the argument in the paragraph of inequality (2.5.14]) goes through

with z = —a as well. Hence,

E {log (“Zi?)} +E {log (b_b;fQ] > Ly (\)+(1—t)E {log (b_b;jQ] (2.5.25)

for t € [0,1], z € [—a, f) and X € (0, 8 — 2], which simplifies to

E {log <‘w>] +LE [log <bb;ZA>] > Lio(\). (2.5.26)

Setting ¢ = 0 and z = § — A in (2.5.26) gives (2.5.24). The remaining cases are treated

similarly. O

Corollary 2.5.4. For s,t > 0,
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Proof. By concavity and homogeneity,

a + +
Lei(a+ ) =sLigla+f) +tLoi(a+ ) = sE [log (cz—ﬁ)] +tE {log (oz)] )
(2.5.27)
When the right-hand side is finite, the opposite inequality comes from (2.5.25). L, ¢(a + B) is

computed similarly. O

Proof of Theorem [2.2.16. It follows from Lemma m that Lg¢(\) = oo for A > o + . Fix

A€ (0,a + ) and define

A(z) = B [10g <GZ$A>] for 2> —a,  B(z)=FE [log <b_b;fA>] for z < 8 — A

Lemma 2.5.2] states that

A(z) + B(z) = sup {max{L;1(\) + (1 —t)A(2),Li:(\) + (1 —t)B(2)}} for ze (—a,Bf—A).

0<i<1

Note that A and B are continuous, A is decreasing and B is increasing. Moreover, by Lemma
A(B—A) = Lig(\) and B(—a) = Lg1(A). Also, Lg () is finite and, by Proposition
is nondecreasing, homogeneous, concave and continuous. Thus, the setting is as in [31],
Section 5] and the arguments there show that Ls () = inf_n<.<p-2{sA(2) + tB(2)}. The
endpoints can be included in the infimum, by monotone convergence. The proof of is

similar. O

2.5.2 Extremizers of the variational problems

In this section, we derive some regularity properties of L, I, J and J by studying the extremizers

of their variational representations. The next two lemmas describe the minimizers of ([2.2.16|)
and (2.2.17)). See Figure (10| for an illustration.

Lemma 2.5.5. Fiz s,t >0 and define F' = F(z,\) for0 <A <a+f and —a<z< -\ by

A b—
F(z,\) = sElog (CH__T_—F) + tElog <bz/\> . (2.5.28)
a+z —z—
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For each X € (0,a + f8), there exists a unique z, = z.(\) € [—a, 8 — A] such that Lg(\) =

F(z+,\). We have z, = —« if and only if

—SE{(G_QHFA)(G_@)} +tE{(b+g_1/\)(b+g>] > 0, (2.5.29)

and z, = 3 — X if and only if

- eramrr—nl *Ela=ga—ge] < (2:5:30)

Define Ay = inf{\ € (0,a + B) : holds.} A (a + B) and Xy = inf{\ € (0,a + ) :
holds.} A (o + ). Then z, = —a if and only if X = A1, and z. =  — X if and only
if A= Xa. For 0 < XA < Xy = A1 A Ao, we have 0,F (z«,\) = 0. Moreover, z, is continuous
on (0,a + ) and continuously differentiable on (0, + B) ~ {Ao}. We have —1 < z,) <0 for

0 <A< Ao, limyyoze = ((8,t) and limya1p2e = —a.

Lemma 2.5.6. Lemma holds verbatim if Ls ¢, (2.5.28), (2.5.29) and are replaced

with ]Ls,t;

A b—
F(z,\) = slogE [CHTL] + tlogE [Z] (2.5.31)
a+z

- E[(a_lg)Q] 2 (b+@1—A)2] _— (2.5.32)

et

respectively. Here, the left-hand sides of (2.5.39) and (2.5.33) are interpreted as —o0 and oo

<0, (2.5.33)

when E[(a — a)™'] = o0 and E[(b— 8)~!] = w0, respectively.

Proof of Lemma[2.5.5, Since 0%F > 0, the existence and the uniqueness of z, follows. Also,

z, = —a if and only if 0,F(—a,A) = 0, which is (2.5.29). We note that 0,F(—a,\) = —©
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z z
g ]
¢
¢ :
0 0 )\'2
—Q —Q

Figure 10: Sketches of the graph of the minimizers in (2.2.16) and (2.2.17) assuming (2.5.29) and
(2.5.32), respectively (left) and assuming ([2.5.30]) and (2.5.33)), respectively (right).

if E[(a — a)7!] = o and, otherwise, A™10,F(—a, \) is a continuous, increasing function of
A€ (0,a+ B). Therefore, z, = —q if and only if A > ;. We similarly observe and the
equivalence of z, = f — X and A > Ay. (Because 0, F is increasing in z, we cannot have A\; and
A2 both less than o + f3).

When A < Ag, the minimizer is the unique z, € (—q, § — \) satisfying
0, F (2., ) = 0. (2.5.34)

By the implicit function theorem, z, is continuously differentiable for 0 < A < Ag with deriva-

tive

_8>\6zF(Z*, A)

7+ (\) = 7@3F(Z*,)\) .

(2.5.35)

Observing that

1 1
(a+ z.)(a + 2« +)\)] il [(b— 74) (b — 2« — )

aiF(z*,A)—aAazF(z*,A)st[(a:Z*)Q]_tE[(612}

— 7))

070-F(24,\) > —sE [ ] =A10,F(z:,\) =0
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(a+z*)(;+z*+x)} —tE {(b—z,,)(bl—z* _A)] =0,

>5E[

we conclude that —1 < z,/(\) < 0. In particular, z, is monotone and has limits as A | 0
and A 1T Ag. We also have continuous differentiability of z, for A > X\yg. Now, supposing

Mo € (0, + B), we show that z, is continuous at Ag. Letting A 1 Ao in (2.5.34)), we obtain

azF(}\ITIA% z+(A), Ao) = 0. (2.5.36)

Since the minimizer occurs at the boundary when A = )\g, we deduce from that
limyyy, z«(A) = —a and limygy, z«(A) = B — A2 when A9 = Ay and A\g = Ao, respectively.

Since z.(A) € [—a, B — A], we have limta+52«(A) = —a. Set z.(0) = limyjoz.(A). To
calculate this limit, we consider several cases. If Ay > 0 then we can let A | 0 in and
obtain

1 1
0=0,F(z:(0),0) = —sE |:(Q+Z*<O)>2] +tE [(b—z*(o))Q} = 0:07.(0)(8: 1),

which implies z,(0) = ¢. If A\; = 0 then 0,F(—¢q,0) = 0,9-q(s,t) = 0 and if Ay = 0 then
0.1 (B,0) = 0:95(s,t) < 0. Hence, we get ( = —a = z,(0) and ( = 8 = 7,(0), respectively. [J
We omit the proof of Lemma [2.5.6 which is similar to that of Lemma [2.5.5]

Lemma 2.5.7. For each s,t > 0, Ly is continuously differentiable on [0, o+ ) and L'&t(O) =
g(s,t). Furthermore, L, ; is continuously differentiable on (0,a + ) \ {Xo} and Ly, > 0. The

same statements also hold for L ;.

Proof. Let us write L for Lg; and F = F'(z,\) be given by (2.5.31). Using Lemma we

compute

, - , B 1 1
L'\ = 0,F (20, \) 7' (\) + O3F (2, ) = S E L o H] B [b — _J (2.5.37)

for 0 < A < Ag. Differentiating again, we obtain

O2F (24, N\) O F (24, ) — 0,00 F (24, A)?
O2F (24, \)

L"(\) = 0.0\F (24, \) 2/ (\) + 3 F (24, \) = > 0,



106

where the inequality comes from 02F (2., \) > 0r0,F (z«, \) and 03F = 0,0, F. For A > Ay,

() = sE [a—jwl—)\] +E [H;_A] (2.5.38)
L'(\) = —sE [(a—ozl—i-)\)Q} +E [M} 0. F(—a,\) > 0. (2.5.39)

Also, for A > Ao,

L'(\) =sE [a—i—_;—)\] +tE [17_§1+>\] (2.5.40)

oy —sEl— 2 | Rl o _
L(A)_SE[(CL+5—)\)2:| tE{(b—B+)\)2]> 0.F(B—XA)>0. (2.5.41)

We have verified that L is continuously differentiable on (0, a4+ 3) \ {\o} and L’ is increasing.

We next note that L is also continuously differentiable at \g when Ag € (0, &+ 3), for which
it suffices to check that the left and right limits of L’ at A\p match. First, we consider the case
A1 € (0,a + B). Then, as A 1 Ay, tends to sE[(a —a + M)+ tE[(b—a — A1),
which equals the A | Ay limit of . Now, suppose that Ap € (0,a + (). Then, as A 1 Ag,

(2.5.37) tends to sE[(a + 3)7'] + t E[(b— )], which is the same as

1 1 ! !
e R e o R P R M [ et

the A | Ao limit of (2.5.40)).
We next calculate L'(0) = limy o L' (). If Ag > 0 then X | 0 limit of (2.5.37) gives

L(0) = sE [ai(] B [b_lc] ——

In the cases A\; = 0 and Ay then ( = —a and ¢ = [3, respectively. Hence, letting A | 0 in

(2.5.38) and (2.5.40)), respectively, we still obtain L'(0) = g(s, t).

The asserted properties of I are proved similarly. O

Since L, increasing, L{,(\) has a limit (possibly o) as A T a + 3, which we denote by
L ;(a+ f3). Similarly, let us write L ;(a + () for limyyqq 5L ;(A). The precise values of these

limits are needed in the next section.



Corollary 2.5.8. Fiz s,t > 0.

r —
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1 . 1 1
Vaers =1 e R e IR A e el R =]
| 7 \SE K j_ B} +tE [b—lﬁ] otherwise.
a+ 3 R 1 1
o e B ) R [ O (]
st LS ~ if —s ( i = 1<
E[a—i—ﬁ} E[b—ka* E[a—kﬁ} E[m] <
ot g =] L070 =5 o -
s RS E_ 1 E{ b+«
_a—@] (b—pB)? ,
ST +1 otherwise.
E a*@] E{lﬂ—a]
\ | @ — & b—@

The next lemma establishes continuous differentiability of J:(r) and J,.(r) and shows

that these functions are linear in 7 for r > L ;(a + () and r > I 4(a + ), respectively.

Lemma 2.5.9. Fiz s,t > 0. For each v > g(s,t), there exists a unique A\.(r) € [0, + ] such
that Js1(t) = Aer — Lg¢(A). Moreover, Js; is continuously differentiable and J', ,(r) = A (r)
forr = g(s,t). If r > g(s,t), then \x > 0. If r = L ,(a + B) then A\ = o + (3, while if
r € [g(s,t), Ly (a + B)) then Ly (\) = 7. The same statements hold if we replace Js; and

Ls: with Jg, and Lg, respectively.

Proof. We have J(r) = sup0<,\<g+§{)\7“ — L(\)}, where (L, J) pair refers to either (Lg;, Js ) or
(Ls,¢,Js¢). The A-derivative of the function inside the supremum is r — L'()). By Lemma [2.5.7]
L' is continuous and increasing from g(s, t) to the limit L'(a+3) on (0, a+3). It follows that the
unique maximizer A, is at o+ 3 if r > L'(a+ ) and at (L')~!(r), otherwise. In addition, A, is
increasing and continuous on [g(s, ), +o0). Since L’ is differentiable and has nonzero derivative
for X € (0, + B) \ Ao, whenever r # L'(A\g), we have J'(r) = A\u(r) + X/ (r)r — L'(A\) A/ (r) =
A (7).

including L'(Xg) when A\g € (0, + ). O

Then continuity of A, implies that J is continuosly differentiable for all » > g¢(s,t)

Proof of Theorem |2.2.27. This theorem is included in the preceding lemma. O]
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2.5.3 Left tail estimates

We now estimate the left tail in both the quenched and annealed settings. The first result shows
that in the quenched case, the rate n large deviation rate function are trivial for deviations to
the left of the shape function g(s,t¢). This proof is based on the proof of [80, Theorem 4.1],

which was adapted from an argument in [55].

Proof of Lemma |2.2.29. First, fix s,t,e > 0 and rational. Take m € N large enough that
m~'E G(|ms], [mt]) = g(s,t) — 5. We coarse grain the lattice into pairwise disjoint translates

of the set {1,...,|ms|} x {1,...,|mt]}. Toward this end, define

kL i glma]lmy]
Apy={l+a,...,a+k} x{1+b,....0+0}, B = A/l imel lmil-

Take n large and let L = | — |\/n| — 2|. For each such k < |y/n], define a diagonal by
D = U]L:O Bi. We observe that the passage time from the bottom left corner of Bg to the
top-right corner of Bg, Gij = G(Ims], |mt]) o (i1 j)ms],j|mt|> has the same distribution as Go o
under P. Moreover, if (i1,71) # (i2,j2), then Bljl1 ﬂij = (& and consequently {G; ;}i j=0

forms an independent family under Py y,.

Bj

B, By

Bj B, 2

2 A A I e A

Figure 11: A path passing through the bottom-left and top-right vertices of Bg for each j.
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Denote by IIj, the collection of paths from (1,1) to (|ns], |nt]) passing through the bottom-

left and top-right vertices of Bi for each j. See Figure We have

G(|ns],|nt]) > max max W(i,j) > max Z Ghj-

k<lynmelle 4 k<l /21

It follows that

L
P.b (n'G(|ns), [nt]) < (g(s,t) — €)) < Pap | max n ' Y Grj <g(s,t) —e
k<lval 2

[vn] L
= H Pa,b (nl 2 Gk,j < g(s,t) — 6) .
k=0 j=0

Now, fix A > 0 sufficiently small that C'= Am§ — )‘72 E G(2),0 >0and AEGoo— )‘72 E G(2),0 < 1and
notice that E, 1, [e_’\GM] =Eap [e‘AGOvO] O T(j+k)|ms|k|mt|- Lhe ergodic theorem then implies

that the following limit holds p almost surely:

L
im Sy Ve
Ji, 33 0B [0 = o 0]

Jensen’s inequality gives E [log Ea.p [e_)‘GUﬂU]] < logE [e_)‘GU«U] < =AEGo,0 + ’\72 EG370. By
the exponential Markov inequality and independence under P, 1,, we have

1 L 1 (&

—logPap 2 Grj <n(g(s,t)—e€) | < — Z logEap [e_’\GM] + An(g(s,t) —e€) | .

L A ’ L\ ’

Jj=0 7=0
Recalling that L™'n — m as n — o0, and our assumption that EGoo > m(g(s,t) — §), it
follows that limsup;_,,, L' logPap (Z]L:o Gk, <n(g(s,t) — 6)) < —-Am§ + )‘72 EG%’O =-C
almost surely. Therefore, for each k there exists a random Ny so that for n = N
L C
P.b (;) Grj <n(g(s,t) — e)> < exp {—nm} .

For any fixed K and n > maxg<x Ng, we see that P almost surely we have

K L
1 1
_ﬁlog P.p (n7'G(|ns|, [nt]) < (g(s,t) —€)) = 2 - logPap <n_1 Z Gr,j < g(s,t) — e)
k=0 Jj=0
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Sending n — o and then K — oo gives the result for fixed s,t,e > 0. For the general result, we
work on the p almost sure set where the result holds simultaneously for all rational s,t, e > 0.
Take s,t,e > 0 and s7 < s and ¢; < t rational with the property that € — g(s,t) + g(s1,t1) >

€1 > 0 for rational €;. This is possible by continuity of g. The result follows from observing

that
Pap (n7'G(|ns], [nt]) < g(s,t) — €) < Pap (n'G(|ns1], [nt1]) < g(s1.t1) —€1) . O
Corollary 2.5.10. p a.s. fors,t,A > 0, lim,_,o n "t log Eap [exp {=AG(|ns], |nt])}] = —Ag(s, t).

Essentially the same argument as in Lemma [2.2.22] restricted to a single diagonal Dy (so

that the last passage times on Bg are i.i.d. under P) shows that for r € (0, g(s,t)), we have
limi(gf —n"tlogP (n_lG([nsJ, |nt]) <r) >0.

To show that n is the correct rate for certain left tail large deviations, we need to show that
the corresponding limsup is finite for some r € (0, g(s,t)). We begin by considering the natural

mechanism for these deviations, which we stated previously in Section 77 as Lemma

Proof of Lemma[2.2.24] We may assume without loss of generality that {143 € M 1y € M5
Gy (85,t) € (x,y)} # & since the right hand side is infinite otherwise. Fix a pair vy, from

this set and introduce the notation

An = {n7'G(ns) [ nt]) e (z,y)},  ——(a) =pla),  —=(b) = (D).

Since A,, is measurable with respect to o (W (i,7):1<i<|ns]|,1<j<|nt]), we see that

| ms | |nt]

Po,6(An) = B [Pab(4n)] = Bag | Pap(An) [ | Lg@o=0y | [ Liww,)=0)
i1 j=1
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Taking logs and applying Jensen’s inequality shows that
1 1 [ns] [ nt |
- logPo,g(An) < n logEp, v, | Pab(An) H @(ai)il H w(bj)il

i=1 j=1

1

[ s | [ nt |
1
< 7]31/ R P ,b An IOgQO a;) + 10g¢) b; **1Og]P>1/ UV An .
T s [ Pan() | 3 Tog (0 + 3 gt ||~ 10gPuh)

Note that for any measures vy, 2, we have g,, 1,(s,t) > 0, so we have not divided by zero
above. The last term tends to zero because Py, 1, (A4,) — 1 as n — co0. For the remaining term,

we note that

j=1

| ms | [ nt | [ s | | nt |
Evs | Pap(An) [ Y] logo(a:) + ). log(b;) | | = Evy s [(Z logp(a;) + Y log (b))
=1 ]
J
(G

—Eu Pa,b(Afz) log H So(ai)

= | ns|H(v1|a) + | nt | H(v2|8)
[ns] [nt] [ns] [nt]
—Bap | Pap(A5) [ [ ela) [[v@)log | [] ela) [ ] ()
i=1 j=1 i=1 j=1

But zlogz > —1 and P,p(A4S) € [0,1] so the last term is bounded above by a constant.

Dividing by n and taking limsup,,_,.,, then optimizing over vy, vs gives the result. O

To show that the annealed model has non-trivial rate n large deviations to the left of the
shape function, it suffices to show that there exists 11 € M with g,, 5(s,t) < gas(s,t). The

next lemma gives mild conditions under which this is the case.

Lemma 2.5.11. Suppose that « is not degenerate and E“[aloga] < co. Then there exists v

with H(v|o) < o0 and gy, g(s,t) < ga,p(s,1).
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Proof. Define v by Cfl%(a) = aE[a]~'. Note that H(v1|a) < oo by hypothesis. Let ¢ € [—a, ]

I~
be such that g, (s, t) —sE[(a Q) HHE[(b—¢)™
1]2

] Because o # 4. for any ¢, the Cauchy-
Schwarz inequality gives 1 = a+(va+ ¢ < Ela + ¢(JE[(a+¢)™']. Rearranging

implies that E [a(a + ¢)™!] < E[a] E[(a + ¢)~'] . It then follows that

1 1 1
9, 5(s,t) <sE[a] 'E [a—?—(} +tE {b J <sE [(14— C} +tE [b—C] = gap(s,t). O

We expect that the moment condition in the previous lemma is unnecessary.

2.5.4 Large deviation principle

We prove Theorem [2.2.18] by working with Legendre-Fenchel transforms and appealing to

convex duality.

Lemma 2.5.12. For all s,t > 0,

J;,t()‘) = ) J;t()‘) =
o0 A<0 o0 A<0
Proof. We give the proof of the result under P,p. The proof under PP is similar. Recall the
regularity properties of Js(-) proven in Proposition in the appendix. The result for
A < 0 follows from the observation that Js¢(r) = 0 for r < g(s,t). For all A > 0, by the

exponential Markov inequality we have
1 1
—log Pap (G(|ns], |nt]) = nr) < —logEap [e)‘G(l”SJ’l"tJ)] — .
n n

Sending n — o0 gives A\r — J4(r) < Ls¢()\) and taking sup,.g implies J3;(\) < Lg¢()). For
the reverse inequality, we next consider the case A € (0, + 3). Fix M > 0 and let {z:}E, be

a partition of [0, M]. We observe that

K

Bo, [ AU | = S By, [ AU, (07 G| ns), [nt)) |
=1
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+ Bap |01 (071G s, Lnt) |
Consequently, we see that

! log Eab [e)‘G(l”SJ’l”tJ)] < max{ max {\z; + ! log Pap (n7'G(|ns), [nt]) = zi—1)},
n n

0<i<K
K+1
n

1 _
= E.b [ekG([nsJ:lntJ)l(M’w)(n IG([HSJ, [ntJ))] } +

Take limsup,,_,,, then K" — co. Using continuity of r +— J,(r), we see that

Ls:(A\) < max {Ar—J4(r)} v limsup % log Ea b [e)‘G(l”sJ’l"tJ)l(M,oo) (n"1G(|ns], [ntj))] .

osr<M n—00

Let p,q > 1 be such that p~! + ¢! =1 and p\ < a + B. Then

1 - 1 ns|,|n
- 10g Ea.p [e/\G(lnantJ)l(M’OO)(n 1G([ns], [ntJ))] < Z?n log Eqp [eApG([ Int tj)]

1
+ ™ logPay (n'G(|ns], |nt] = M) .
From this, we see that there exist deterministic constants C7, Co such that

s 1 ns|,|n —
limsup — log Ba,p [ 1HD1 ) (071G (s, nt)) | < €1 = Co Toa(M).

n—o
Recall that Ar < Lg;(A\) + Js4(r), so that as M — o0, Js (M) — co. Since max,<p{\r —
Jsu(r)} < J5.(N), it follows that we have Ly ¢(\) < J7;(A).

Next, we turn to the case A = a+ 3. We observe that as A T a + 8, Ls+(A) 1 Lg (o + ).
Suppose that Ly (r) < c0. Fix € > 0 and take A < a + 8 such that sup,cg{Ar — Js:(r)} =
L, (\) > Ls(a+ ) — 2e. Then there exists » > 0 so that Ar —J;(r) = Ls(a + ) — €. Since
(a+B)r > Ar, it follows that J ,(a + 3) = Lst(a+ ) —e. The case L (o + 3) = o0 is similar.

Finally, we consider the case A > o + 3, where L (\) = co0. For each (i,7), we eventually
have G(|ns|,|nt|) = W(i,j). This implies that for all (4, j), Js+(r) < (a; + bj)rly=y and
therefore p1 almost surely, Js¢(r) < (a+ B)rlf,>0. Taking Legendre-Fenchel transforms of this

inequality shows that J%;(\) = oo. O
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Proof of Theorem [2.2.18. Proposition [2.5.14] shows that 7 — Js;(r) and 7 — J,(r) are real

valued convex functions on R. The result follows from taking Legendre-Fenchel transforms of

the expressions in the previous lemma [79, Theorem 12.2]. O
Proof of Theorem [2.2.23, Fix an open set O R

1. If O c (—o0,¢(s,t)) then there is nothing to prove by Lemma

2. If g(s,t) € O, then

limsup —n " log Py, (R 'G(|ns|, [nt]) € O) =0 = in(f) I 4(r)
e

n—ao0

3. f O n(g(s,t),0) # &, then O n (g(s,t),0) contains an interval (rg,r1). Note that

P.yb (n_lG([nSJ, |nt|) € O) > Pap (G(|ns|, [nt]) € (ro,r1))

= Pap (G(ns], [nt]) = ro) — Pap (G(|ns], |nt]) = 1)
Lemma shows that Js () is strictly increasing for r > g(s,t), which implies that

limsup —n"'logPap (n_lG([nsJ, [nt]) € O) < Jsu(ro).

n—ao0
Let 7, € O n (g(s,t),00) be a sequence with 7, | rop = inf{x : 2 € O n (g(s,t),00)}. Then

because Js¢(r) is continuous and non-decreasing, we see that

limsup —n " logPap (n_lG([nsJ, |nt]) € O) < Jsi(re) = inf Lii(r) = in(f) L +(r).
re

n—0o0 T‘EOﬁ(g(S,t),OO)

The upper bound follows from the regularity of J,;, Theorem [2.2.1§ and Lemma [2.2.22} [

2.5.5 Relative entropy and the rate functions

We now turn to the proof of Theorem [2.2.26] Our argument proving this result is purely convex
analytic and does not show the probabilistic interpretation mentioned before the statement of

the theorem. We begin with a technical lemma.
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Lemma 2.5.13. For r > 0, the map (o, ) — Igf(r) is convex on My (Ry)?.

Proof. Using (2.2.14), one can check that («, ) — ga.5(s,t) is concave on M(Ry)?. Thus,

{(o, B) : ga,p(s,t) =1} is convex. Similarly,

a+z+ A b—=z
Fla.8)= sup {)\E [log ()] R [1og ()}}
(o, 5) Ae(0.0+ ) a+z b—z—A

ze(—a,B—N)

is convex on M (R, )2 Then we see from (2.2.22)) that (o, 3) — I?f(r) is convex on M(R™)2.

O]

Proof of Theorem[2.2.26] Theorem [2.2.18| and the variational characterization of relative en-

tropy, [(7, Theorem 5.4], imply that for r > g(s,t),

sup {)\r — slog E® [W\} —tlogE? {b—z]}
Ae(0,a+5) a+z b—2z—A\

ZE(*Q,@*)\)

A b—
sup inf {)\r — sE" [log (W>] —tE” [log <Z>]
AE(O,Q[+@) Vleﬁ/[/t(; a—+z b —Z — )\

2€(—a,B—N) v2€

J48(r)

+s}ﬂyﬂa)+tfﬂvﬂﬁ)}

< inf sup {)\r — sE" [log <a—|—z+)\>] —tE” [log <b—z>]
VlEM(; xe(0,0+8) a+ z b—z— )\

v2€ ze(—a,B—N)

+ sH(1|a) + tH(uﬂﬁ)}.

Note that if 1 « «a, it must be the case that v1 > o and similarly, vo = S. It follows that we

may extend the region in the inner supremum to obtain

790 (r) < inf {IY"2(r) + sH(m|a) + tH(we|8)} .

vi,V2

The map (v1,v2) — L7 (r) + sH(vi]a) + tH(12|B) is strictly convex on the convex set

M x MP 5o at most one minimizing pair (v, ) exists. It therefore suffices to show that we
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have equality with the measures v, 5 defined in the statement of the theorem. We argue this
by cases.

A maximizing pair A, z, satisfying A, € [0,a + (],z. € [—a, B — A.] exist for the annealed

right-tail rate function by Lemmas [2.5.6] and [2.5.9] (z. denotes z.(A.) in the notation of

Section Also, by Corollary z+(a + ) = —a). Note that A\, = 0 is impossible
because Jg’tﬁ(r) > 0 by Lemma If \s € (0, + B) and z, € (—a, B — A\.), then vy € M®

and v, € MP? because their densities with respect to a and 8 are bounded. Taking derivatives

in (2.2.23), we see that z, and A, solve

1 1 1 1
= V1 _ Vo _
0 SE |:a+Z* a+Z*+>\*:|+tE |:b—Z* b—z*—)\*:| (2542)
1 1
= — I e w| L
0 " SE [Q+Z*+A*] tE |:b_z*_>\*:|' (2543)

These are precisely the first order conditions implying that

* )\* b_ .
107(0) = =B o™ B | v g |

The definition of relative entropy and a little algebra then show that

I8P (r) = T2 (r) + sH(ui]a) + t H(ve|a).

sit
The remaining cases are similar in that once we know that the extremizers are the same for
J?f (r) and IJ%"*(r), the result follows. The necessary and sufficient conditions in Lemmas
and show that vy and vy are well defined and that this equality continues to hold if
M < a+ B and z, = —a or z, = 8 — A\. The only remaining case is A\, = o + 8 and z, = —a.
A = a + f is equivalent to r > (L?”tﬂ ) (a + B). By Corollary this condition implies that

v1 and vy are well defined and (L") (a + ) = (Lz’tﬁ ) (@ + B). The result follows. O

2.5.6 Scaling estimates

In this section, we prove the scaling estimates for the quenched and the annealed rate functions.

See the discussion Section for the notation below. If ¢; < s/t < co we have 0,g¢(s,t) =0
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and, therefore,
6:(5,) = 9(s,1) + P2 (5,8) (= — /2 + ol(z — O)?). (2.5.44)
In fact, (2.5.44)) holds for s/t = ¢; and s/t = co as well provided that
E; < E; < 0; (2.5.45)
(a—a)? ’ (b—pB)? ’ -
that is, assuming that 02g,(s,t) has limits at the endpoints —a and S.
Proof of Theorem |2.2.28. For € > 0 sufficiently small, we have
) = A(), L) =1 (2.5.46)

whenever g(s,t) < r < g(s,t) + € by Lemma We begin with the case ¢; < s/t < ¢. Then
¢ € (—a,B). We recall A; and Ay defined in Lemmam Because 0,F(—a,0) = 0,9-4(s,t) <

0 and 0,F(—a,0) = 0,9—q4(s,t) > 0, we conclude that A; > 0 and A > 0. Hence,

oy = DEEEy La; z*><§1+ z*;w] o [(b—zzgxb:— 2 ;A)Q] |
EeA [(a+z(i ix)z*(; z*)2] TIE [(b— z*:/\)z;(b_— Z*)Q]

for 0 < A < A1 A A\g. Letting A | 0 yields z,/(0%) = —1/2. Tt follows that z.(\) = ( —\/2+0()\)

as A | 0. We obtain L ;(A) = g,, +a(s,t) = g(s,t) + 02g¢(s,£)A?/8 + o(A?) as A | 0. Then,

2v/2
r ) te) = 12 4 (/2 7
s,t(g(s ) 6) mﬁ 0(6 )
and integrating gives
4\/563/2 4 32
Loi(g(s,t) + €) = — e + 0(¢¥/?) = = + o(e?)
34/ 029¢(s,t) 3 E[ 1 }HE[ 1 }
sEl—
(a+¢)? (b—0)?
(2.5.47)

as € | 0. Now, suppose that s/t < ¢;. Then E[(a — a)™?] < o0, ( = —a and z, = —a. Under

condition (2.5.45), when ¢; = s/t, L ;(A) = g_asa(s,t) = g(s,t) + 02g_a(s,t)A?/2 + 0(A?)
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and we reach (2.5.47) multiplied with 1/2. If ¢; > s/t then 0.9_o(s,t) > 0 and we have
L (A) = g—arr(s,t) = g(s,t) + 0.9-a(s,t)A + o()). This leads to

€2

20,9-a(s,t)

2

1
TosB [(—1(1)] ”E[<b+1a>2]

Analysis of the case s/t > co is similar. O

0(62) =

Li+(g(s,t) +¢€) =

Proof of Theorem [2.2.29. In the case ¢; < s/t < cg, Holder’s inequality gives

, 050, F (24, \)
| JO) = —lim 227
i (N = =i

_SE[wjtP}E[a+c]+%E[
k| g+ {
_SELajoJE[a+J*tE[

1 1
%E{m+<P]+%E{@<P}
Hence, z,(A) = ¢ + cA + o(A), where ¢ < 0. We have

S

L., () = SEE[“[EE:JA] E[ (b ZZ**A]] (2.5.48)
= gu 2 (5,1) + A <5Var{ } +t Var [biCD +o(\) (2.5.49)
— g(s,t) + A (sVar [a+€] + ¢ Var [biCD +o(\). (2.5.50)

Then, arguing as in the preceding proof, we obtain

62

s Var {a—lkC] + t Var [big‘]

Now consider s/t < ¢;. Then ( = z, = —a and (2.5.48) still holds. If s/t = ¢; subsequent

Jsi(g(s,t) +€) = % + o(e). (2.5.51)

arguments go through assuming (|2.5.45]). This condition is needed in step (2.5.49)), which
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relies on (2.5.44) with ( = —a. Hence, we have ([2.5.51)). If s/t < ¢; then the coefficient of A in

(2.5.50) has an additional term 0,¢_,(s,t) > 0, which leads to

1 €2
Js,t(g(57t) + 6) = 5 2 1 1 + 0(6).
—sE tV. tE | ——
’ [a—a] i ar[b+a}+ [(b+0<)2}
The case s/t > ¢y is analyzed similarly. O

2.5.7 Right tail rate functions and Lyapunov exponents

Proposition 2.5.14. (a) p-a.s., for s,t > 0 and r € R, there exists (nonrandom) Js(r) €
[0,00) such that

lim _% log Py (G(|ns |, | nt ) = nr) = Tya(r). (2.5.52)

n—00

(b) For all s,t >0 and r € R, there exists Js,(r) € [0,00) such that

lim — L log P(G(|ns |, | nt |) = nr) = T, ,(r). (2.5.53)

n—ow n ’

(¢) J and J are convex and homogeneous in (s,t,r), nonincreasing in (s,t) and nondecreasing

m .
Proof. Fix r € R and s,t € N. For integers 0 < m < n, define
Xm,n = —log P‘rms(a),‘l’mt(b) (G((Tl - m)57 (Tl - m)t) = (n - m)T)

We verify that {X,, ,} satisfy the hypotheses of the subadditive ergodic theorem in [66]. For

subadditiviy, note that

Xon = —log Pap(G(ns,nt) = nr)
< —log Pap(G(ms, mt) = mr) —log Pap(G((n —m)s, (n —m)t) o Opsme = (n— m)r)

= X[)7m + Xm,n.
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For k € N, by the ergodicity assumptions on p, the sequence (X k41 )nen has the same distri-

bution as (Xon)nen and the sequence (X(,—1)xnk)nen is ergodic. Moreover, X, > 0 and

EXon <E[-logPap(W(1,1) = nr)] = nmax{r,0} E[a + b] < 0. (2.5.54)
Hence, by the subadditive ergodic theorem, (2.5.52)) holds u-a.s. (and in expectation under p)
with

1 1
Jsi(r) = lim —E X, = linolo—— Elog P, p(G(ns,nt) = nr). (2.5.55)
n—

n—oo N n

We record some properties of J,(r) for s,¢ € N and r € R. It is clear from (2.5.55) that
Js,t(r) is nonincreasing in (s, ¢) and nondecreasing in 7. In addition, J(r) = 0 for r < 0 as
G is nonnegative, and J¢ 1(cr) = ¢Js4(r) for ¢ € N. By (2.5.54), J5+(r) < rE[a + b] < oo for
r = 0. Also, for s1, s9,t1,t2 € N and r1,r, € R, we have

ElogPab(G(n(s1 + s2),n(t1 +t2)) = n(r1 + r2)) = Elog Pap(G(ns1,nt1) = nr)

-Elog Pa b (G(ns2,nta) = nra)
for n € N, which gives Jg, 45,4145 (11 +72) = Js, 4, (71) +Js5.45(12). Then, for 0 <7 <7/ < r+1

Jot(r') = Jsa(r) < Jsulr +1/n) — Js4(r)

1
) Jn+1)s, e (nr + 17+ 14+ 1/n) — Jg4(r)
Jnsnt(”"“) Jst(r+2)
< ——J R LALEEEA
n+1 ’t(r) + n+1
- Js,t(r + 2) — Js,t(r)
a n+1
2 2
< Tn+ Efa + b], (2.5.56)

which shows continuity of J¢(r) in r.
There exists a p-a.s. event E on which (2.5.52)) holds for all s,t € N and r € Q. It follows
from the monotonicity of log P,y (G(ns,nt) = nr) in r and continuity of Jy; that (2.5.52)

holds for all s,t € N and r € R on E. From now on, let us work with (a,b) € E.
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For ¢ > 0, 0 € (0,1) and large enough n € N, we have

—logPan(G(| nes |, | nct]) = nr) < —logPap(G(len|s,|cn]t) = | cen|r(1l +0))
(2.5.57)

—logPap(G(| nes |, | net|) = nr) = —logPan(G([en]s,[en]t) = [en]r(1 —0)).
It follows from these inequalities and continuity of J, ; that holds on E with J¢s ¢t (cr) =
cJs¢(r). In particular, J,4(r) exists for rational s, > 0. Moreover, by homogeneity, the
properties of Jg;(r) noted in preceding paragraph hold for rational s,¢ > 0 as well.

For s,t,5 > 0, choose rational s’,t' such that %6 <s< s and % <t <t. Then

—1logPan(G(|ns |, | nt]) = nr) = —logPap(G(|ns' |, | nt'|) = nr)
(2.5.58)

—1logPan(G(|ns |, | nt]) = nr) < —logPap(G(|ns'/(1+6) |, | nt'/(1 +8)]) = nr).

It follows that

1
liminf ——log Pan(G(|ns |, | nt]) = nr) = Jg 4 (r)
n

n—o0

) 1
lim sup - logPapn(G(Ins ], [nt]) = nr) < Jg/a46)0/0+6)(r) = T w (L +8)r) /(1 + ).

n—00

Using ([2.5.56f), we obtain

Jslyt/((l + 5)’!”) 2r 4+ 2

153 —Jgp(r) < Jgp((1+0)r) = Jgp(r) < o) 1] Ela + b].

As 6 | 0, we have s’ | s and ¢’ | t. Hence, we conclude that Js.(r) exists and equals the
limit of J¢ (), and also enjoys the properties of mentioned above. Finally, it follows from

subadditivity and homogeneity that J is convex. O
Proposition 2.5.15.
(a) p-a.s., for any s,t >0 and X € R, there exists Lg (\) € [—00,00] such that,

lim © log Eq p[e*C(UnsblntD] — 1, () (2.5.59)

n—w n
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(b) For any s,t >0 and X € R,

lim ~ log E[eAG (s Llnt D] — 1L, ,(X) (2.5.60)

n—o n, ’
(¢) Lst(X) and Lg () are nondecreasing and convez in A.

(d) ANLgt(X) and ALg¢(X) are nondecreasing, homogeneous and concave in (s,t).

Proof. Fix A € R and s,t € N. Define

X = —AogE, (a)70(b) [eAG<<n—m>s,(n_m)t>]

for integers 0 < m < n. Then {X,,, : 0 < m < n} are nonpositive and subadditive, and the

conditions of the subadditive ergodic theorem are in place to claim the existence of Lg () €

[—00,00] such that (2.5.59) holds p-a.s.

For Ae R,s,t e N and ¢ > 0, we have

~AogEap [e/\G([nC]S»[nC]t)] < —AlogE,y, [eAG([nch,[nctJ)] < —AlogEap [eAG([nch,[ncjt)]

. / /
Also, for A€ R, s,5',t,t',6 > 0 such that s',¢' are rational, 35 < s < s’ and 1t—+5 <t<t,

—AlogEa b [GAG(L"SIJ’lm/J)] < —AlogE, b [eAG(l”SJ’l"”)] < —AlogE,p [e’\G([H(sJ,l 1+5J)] )

Using these inequalities as in the preceding proof, we obtain (2.5.59) for all s,¢ > 0 p-a.s. and
the claimed properties of the function (s,t) — AL, ().
Now fix s,t > 0. Note that L, ;()\) is nondecreasing in A. Let A\g = supyep{Ls:(A\) < 00}.

For A1, A2 € R and ¢, ¢9 € (0,1) with ¢; 4+ co = 1, by Holder’s inequality,
logEa 1 [6(c1>\1+cg>\2)G([nsJ,lntJ)] <cilogEap [ele([nsJ,[ntJ)] ¥ eolog Eay, [ehc(l”antJ)] ’

which implies that Lg;(c1 A1 + c2A2) < €1 L (A1) + 2 Lt (A2). Hence, Lg¢()) is continuous in
A on (—o0, \g). Using this and the monotonicity of last-passage times, we deduce that ([2.5.59))

holds for all s, > 0 and A € R p-a.s. O
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2.5.8 Lyapunov exponents for the stationary model

We close this section with the proof of Theorem [2.2.17]

Proof of Theorem [2.2.32. We begin with the coupling

~

G(lns|,|nt]) = max {G([nsj—m1,[ntJ)oek_m+é(k,0)}

1<k<| ns |

v max {G([ns],[nt]—k+l)o@07k_1~|—@(O,k)}.

1<k<| nt |

Arguing with limsup and liminf and coarse graining as above, this leads to the variational

problem

; a+z b—=z
L5a(Y) = jax, {Ls—m(” e [log H]} v OB, {Ls’t—uw tub [log b——)\} } '

Substituting in the variational expression for L (), this leads to

L3 (A) =

: a+6+A b—10 a+z
org?é{s{ee[g{g_,\]{(s_r)E [10ga+9 ] +tE [IOgb—G—)\]} +rE[loga+Z_)\}}

. a+0+ A b—0 b—z
v 02, {96[5252_“ {E [log +9] tlE-uE [log m]} Fub {bg IM\} } |

Applying a minimax theorem (for example [84]), we obtain

. b—46 (a+ z) (a+0)
E|log——— | +tE |log ——— E|l
%ﬁﬁﬁﬂ{s o8 a+6 }+ {%b—e—A]+£ﬁir {%%a+z—Aﬂa+9+M

e

0 b—16
v mifl N {SE {logW] +tE [lOgb—H—A] + max uE [log C

O<u<t
Write (a+z—A)(a+0+ ) = (a+2)(a+0)+A(z—6— ) to see that the inner maximum of the
first term occurs at r = s if z — A < @ and r = 0 if z — XA > 6. Similarly, 6 — (1 — X(b—0)~1)
is a decreasing function, so the inner maximum of the second term occurs at u =t for 6 < z

and at u = 0 for § > z. Breaking the first minimum over [—¢, 8 — A] into a minimum over



124

[—a,z — A] and a minimum over [z — A, §] and the second into a minimum over [—a, z] and a

minimum over [z, f — ], we obtain

. b—0 (a+2) (a+06) B
%ﬁE%N{SEl% + 6 }+tEP%b9A]+£$QTEP%%a+2AMa+6+A) B

a+z b—z4+ A a+60+ A b—10
Ellog — %% | 4+ 4E |log L= 22 i E llog 2T 4B | log =7
{5 [Oga+z—)\}+ {Og b2 }}/\Ge[—né},g—)\]{s [Og @t ]+ [Ogb—e—x]}

and similarly, for the remaining term we have

. a+0+ A\ b0 (b—2) (b-—0-N]| _
ee[ETE_A]{SE{l‘)g a+0 }HE{IOgbeA]H@S@“E[bg(bzm -0 ||~

a+z+ A b—=z a+60+ A b—10
Ellog 22 A 4 1B llog 2= % ' Ellog T A 4B l1og 27
{S [Og otz % {Ogb—z—)\}}Aee[?}ari,\]{s [Og ) % [Ogb—e—x]}

The function 6§ — sE [log %] +tE [log %] is strictly convex with a unique minimizer.

Note that the first terms in each of these minima are the values of this function evaluated
at # = z — X and 6 = z. The result follow from strict convexity by considering whether the

minimizer lies in [—a, 2], [z, 2 — A], or [z — A, B — A]. O
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Chapter 3

Particle representations for a class
of stochastic partial differential

equations

3.1 Introduction

This chapter studies particle representations for a class of stochastic partial differential equa-
tions. The idea behind the approach taken here originates in the study of the McKean-Vlasov
problem. A simple (deterministic) version of such a problem is to consider the following partial

differential equation written in weak form

(o, V(1)) = <p, V(0)) + L@(V(S))% Vi(s))ds, (3.1.1)

where ¢ € CP(R?), (-, -) denotes the pairing of a function with a measure, and £ is the second

order differential operator given by

||M&

1 d
5 Z (v,2)0;050(x
One approach to constructing a solution to this non-linear PDE which will work under certain

regularity assumptions on the coefficients a; ; and ¢; is to construct a collection of exchangeable

diffusions {X;(-)} which satisfy

c(V(s), Xi(s))ds + f o(V(s), Xi(s))dB;(s), (3.1.2)
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where {B;} is a family of i.i.d. standard Brownian motions in RY, [otc];; = a;;, and V (t) is

the de Finetti measure of the exchangeable sequence {X;(t)}:

1 n
V()= lim =) dx,). (3.1.3)
=1

Assume that such a system of diffusions {X;} has been constructed and V' (0) is the given initial

condition. Then for sufficiently regular functions ¢ we may apply 1t6’s lemma to obtain

¢

PX() = p(Xi(0) + [ L0V )o(Xi(5))ds + My 1) (31.4)
where {M,;}; are mean zero orthogonal martingales. By taking averages of both sides of
(3-1.3), one can see that if V (¢) is given by (3.1.3) where the X;(t) solve (3.1.2)), then V(¢) will
be a solution to (3.1.1]).

The mathematical study of systems of diffusions of this type began with the seminal work of
McKean [68], though there are many approaches to this problem. See for example [36] 57, [73].
Such systems appear in a wide variety of applications, ranging from physics to economics. See
for example [19] and the references above. One advantage of the particle framework is that it
provides a model of microscopically interacting processes which aggregate to the solution to
the stochastic partial differential equation; it is often of interest in applications to observe this
phenomenon.

Our specific interest is in a stochastic perturbation of the construction described above.
The general approach taken here originally appears in [62] and the treatment presented below
can be viewed as an extension of the results of [63]. We introduce a perturbation of the de
Finetti measure of the sequence {X;(¢)} by introducing family of processes of weights {A;(¢)}
with the property that the family {(X;, A;)} is exchangeable. The measure which will serve as
a solution to the class of stochastic partial differential equations under consideration will be

defined by

JE%OEZA (3.1.5)
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Assuming that the E[|A;(t)|] < o, then de Finetti’s theorem (or the ergodic theorem) implies
that this defines a random (signed) measure. Note that introducing weights allows for a second
source of non-linearity. In [63], which studied stochastic partial differential equations on all of
R?, the authors take advantage of both of these sources. For technical reasons, in the problems
we consider (on domains D c RY) we will need to restrict to the case in which £(v) := £ does
not depend on v. To avoid introducing unnecessary notation, we will restrict to this case in
the remainder of this introduction as well.

To provide some motivation for the results below, we sketch the construction of a simple
case of the type of stochastic partial differential equation studied in [63]. Suppose that we have
an exchangeable sequence of pairs of weights and particles (X;, 4;), where the diffusions {X;}
are i.i.d. and satisfy

t t

c(Xi(s))ds + Jo o(X;(s))dB;(s), (3.1.6)

Xl(t) = Xl(O) + J

0

1

where ¢, o, 07" are continuous and bounded, and the weights A; satisfy

A;(t) = A;(0) + L G(V(s), Xi(s))Ai(s)ds + JRd o p(Xi(s) —u)Ai(s)W(du x ds). (3.1.7)

Here, we assume that G is sufficiently regular, p is a C*(R%) mollifier,

1l
V(t) = lim — > Ai(t)dx,0), (3.1.8)
i=1

the B; are i.i.d. standard Brownian motions, and W is a space-time white noise in the sense
of Walsh [90] which is independent of {B;}. Set
¢

Mai(t) = p(Xi(t)) — p(X:(0)) - f £ o(Xi(s))ds,

and as before the family {M,;}; are orthogonal martingales. Applying It6’s lemma,

t

Ai(t)p(Xi(t)) = Ai(0)p(Xi(0)) + L (Le(Xi(s)) + @(Xi(s))G(V (s), Xi(s))) Ai(s)ds
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—+ J ) O(X;(8))p(Xi(s) —u)Ai(s)W (du x ds) + f Ai(s)dMy;(s).
R% x(0,¢] 0

Averaging, we see that the measure V (¢) will solve

(o, V(t) =<, V(0)) + L@ p(-) +e(G(V(s),-), V(s))ds (3.1.9)

S et = . V)W (du x ds).
R% x(0,¢]

Under mild conditions, one can show existence and uniqueness of a measure-valued process
V() given by with A; given by and X; given by [63, Theorems 2.1,2.2].
As a consequence, one may view V(-) and the collection {(Xj, A;)} interchangeably. This is the
sense in which the particle system {(X;, A;)} forms a representation of a solution V'(t) to the
weak form stochastic partial differential equation . Similarly, if one can show uniqueness
for solutions of the weak form stochastic partial differential equation , then the particle
system is a representation of the solution to this equation.

For equations of the type considered above, and again under mild conditions, one can
show that V() is absolutely continuous with respect to the Lebesgue measure [63, Theorem
3.5]. More specifically, if V(0)(dz) = V(0,z)dz for some V(0,-) € L*(R?), then V (t)(dz) =
V(t,z)dx where V(t,-) € L*(R?). If we let £* denote the L?(RY) adjoint of £, the measure
V(t) := V(t,z)dx can then be viewed as a weak solution to the stochastic partial differential

equation
oV (t,x) = L¥V(t,z) + V(t,x)G(V(t,y)dy, z) + de plx —uw)V(t,x)W(dt x du).

With [63] having constructed particle representations for a wide class of stochastic partial
differential equations on R? it is natural to wonder whether a similar construction is possible
on domains D c R? with boundary conditions on @D. This is achieved for a certain class of
models with Dirichlet boundary conditions and additive white noise forcing (as opposed to the

multiplicative forcing discussed in the previous example) in [2§].
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To see how this works, we consider the example which served as one of the main motivations

of the construction in [2§]: the stochastic Allen-Cahn equation on a smooth open domain D:

Oru = Au+u—u + €,
u(0,2) = h(x), xeD

u(t,x) = g(x), xedD,t>0

where £ is space-colored time-white noise. In order to impose Dirichlet boundary conditions
on a particle solution to a stochastic partial differential equation similar to those considered
above, one begins with a family of i.i.d. reflecting diffusions {X;} on a domain D and weights
similar to those above, with one major difference—whenever a particle hits the boundary,
the associated weight is assigned a value coming from the boundary condition. Let D be a
smooth bounded domain, let g be a continuous function on ¢D, and let {X;} be a family of
i.i.d. stationary normally reflecting Brownian motions run at speed 2¢. Introduce the notation

7i(t) = 0 v sup{s < t : X;(s) € 0D} and suppose that A;(¢) is a solution to
¢

Az(t) = Q(Xi(Ti(t)))l{ri(t)>0} + f (1 - V(S,Xi(s))2) Ai(S)dS (3.1.10)

Ti (t)

+ f p(Xi(s) —u)Ai(s)W (du x ds),
R? x (73 (t),t]
where (t,z) — V(t,z) is a process of measurable versions of the densities with respect to the
uniform distribution on D of the measure given by

.1
V(t) = Jim — > Ai(t)dx, o), (3.1.11)
=1

and p is again a C’SO(Rd) mollifier. To simplify the notation slightly, we have also imposed the
condition that (¢, V(0)) = 0 here. This corresponds to h(z) = 0.
One can show that if ¢ € CP(D) (that is, ¢ is a smooth function which is compactly

supported on the interior of D), then

t

p(Xi(t)Ai(t) = L (Ap(Xi(5)) + (1 = V (s, Xi())*)p(Xi(s))) Ai(s)ds (3.1.12)
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L DA — AW (du ¢ ds).
R x(0,¢]

Averaging, we have

t
(o, V(1)) = L@s@(') + (1= V(s,)%)e(-), V(s))ds (3.1.13)

S el = 0. V)W du x ds).
R% % (0,t]

Moreover, one can show that the boundary condition is satisfied in the sense that for any
g e C(D) with glop = g, and for all ¢

lim t ({z € D : d(z,0D) < e})—lf V(t,2) — g(a)|dz = 0

e—0 {zeD:d(z,0D)<e}
in the L! sense [28, Proposition 2.15], where x denotes the Lebesgue measure.

The restriction to p € CL (D) in is to account for the fact that A;(¢) is not a semi-
martingale. By only considering ¢ which vanish in a neighborhood of ¢ D, we avoid needing to
address what happens to the stochastic integral near times at which X;(t) € 0D. These times
are the only obstruction to applying the usual semi-martingale integral results to expressions
like the one in . This problem can be addressed directly for a wider class of test
functions. The identity can also be extended to ¢ € CZ(Ry xD) with ¢(t,-)|ap = 0
to obtain a weak form of the stochastic partial differential equation with a boundary term to

account for the Dirichlet boundary condition:
(o(t,-), V(E) = J0<ASD(S’ )+ G5, ) + (L= V(s,)%)e(), V(s))ds
+ JR o t]<g0(')p(- —u), V(s)W(du x ds) (3.1.14)
# ] [ @ Vets.o) - a@anas

where 7 is the inward unit normal on 0D and [ is a measure which is proportional to the

surface measure. It can be shown that a unique measure valued process V' (¢) given by (3.1.11])
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with A;(t) given by and moreover that (up to a moment condition) this measure
valued process is the unique solution to the weak-form stochastic partial differential equation
in [28, Theorem 3.1].

More generally, the results of [28] give weak solutions to a class of stochastic partial differ-
ential equations with additive space-colored time-white noise of the form

oV(t,x) =LV (t,x) + V(t,2)G(V(t,x),z,t) + b(z) + f plx —u)W(dt x du), (3.1.15)
Rd

V(t,0) = h(x), zeD,

V(t,x) = g(x), x€oD,t >0,

where D is a sufficiently regular open domain, £* is the adjoint of £ in an appropriate L?
space, g € Cyp(0D) |h|w, bl < 00 and the non-linearity G(v,z,t) satisfies G(v,z,t) < K
and |G(v,z,t)] < K(1 + |v|?) for some K > 0 and all v € R, x € D and t > 0. The
stochastic Allen-Cahn equation discussed above corresponds to the choices G(v, z,t) = 1 —v?,
and h(x) = b(z) = 0.

Some of the techniques of [28] appear to break down for equations with multiplicative noise.
In particular, the proof of existence and uniqueness of the particle system [28, Theorem 2.2]
relies on moment estimates which cannot be expected to hold if the noise is multiplicative. The
goal of what follows is to use an alternate approach to extend the class of models for which

particle representations can be derived to include certain equations with multiplicative noise.
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3.2 Results

The goal of this chapter is to prove existence of a particle representation for weak solutions to

a class of non-linear stochastic partial differential equations of the form

oV (t,x) =LV (t,x) + G(V(t,y)r(dy),z,t)V (L, z) + b(x) (3.2.1)
+ J ) p(V(t,y)m(dy),z —w)V (t,z)W (dt x du),
R
V(0,z) = h(x), reD,

V(t,z) = g(x), € oD,t >0,

where 7 is the stationary distribution of a reflecting diffusion on D, L£* is the adoint with
respect to 7 of the generator of that reflecting diffusion, and p and G are sufficiently regular
(but possibly non-linear) functions of the measure V (¢, y)w(dy) along with space and time.
As mentioned in the introduction, technical difficulties arise in applying the techniques of
[28] to the class of problems we consider. We take a different approach to proving strong exis-
tence here. The outline of the argument is to show weak existence of a particle representation
and then pathwise uniqueness of solutions which are jointly compatible with driving noise (the
reflecting diffusions and the white noise). We begin by outlining the precise assumptions that

will be used in what follows and by defining compatibility.

3.2.1 Assumptions, notation, and definitions

Before stating the assumptions precisely, we note that these results are not stated (or proven)
in the greatest generality possible. In particular, it should be possible to extend the spatial

coloring of the white noise to the same level of generality as in [63].
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Assumptions and notation

Let D = {x : ¢(z) > 0} for some ¢ € CF(RY) with |V¢(x)| = 1 for all z € dD. Denote by
M (D) the collection of finite non-negative Borel measures on D. For a Borel measurable

function ¢ on D and p € M, (D), we use the notation

(¢, ) = JD pdp.

Denote by Lip(D) the Banach space of Lipschitz continuous functions on D equipped with the
norm | - |loo + | - | where | - |1, denotes the Lipschitz seminorm. We denote by Lip; (D), the

collection of functions {¢ € Lip(D) : ||¢|e + |¢|z < 1}. Equip M, (D) with the distance

d(p,v) = sup (g, pu—v).
¢€Lip, (D)

d(u,v) generates the weak topology on M, (D) [13, Theorem 8.3.2]. Let u be a sigma finite
positive measure on R?. We consider bounded Borel measurable functions g : 6D — R,
h:D—R,b:D—-R,, G: M. (D)xDxRy - R, p: M (D) xR > R. We will
assume that g € Cy(0D) and that p and G are uniformly Lipschitz continuous. We will also
require that there is a common compact set K = R? with supp{p(v,-)} = K for all v € M, (D).

Notationally, we will let K > 0 be such that

1. For all v € M (D),
lglleo + Il + IBllcc + [Glloc + llpllo + fRd |p(v, w)Pp(du) < K
2. For all vy,v5 € My (D), 1,22 € D,

G(v1,1,8) — G(va, ma,5)* + |p(v1, 1) — p(va, m2)
# | o = ) = plon,za ) Putd)
R

< K(d(]/l,llg)2 + |l’1 — 1‘2’2).
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Let {X;} be a family of i.i.d. stationary reflecting diffusions in D with stationary distribution
7 solving the Skorokhod equation

t t t

G(Xxs»dBAs)+J;nﬂ¥ds»des% (3.2.2)

Xi(t) = Xi(0) + [

0

qxxgms+f

0
where sup,csp n(z) - Vo(x) < 0, and L; is a local time for X; on dD. We will assume that
ci(+),0i;(-) are Holder continuous functions on D, |c|sp, [0l < 0 and that the diffusion

matrix o is uniformly elliptic. Call a; ; := [o'c];; and

d d

2 ai,j(x)az-&j + Z Cz(l')az
=1

2,7=1

L=

N | =

Under these hypotheses, the (sub-)martingale problem for X; will be well-posed [86]. Denote
the generator of this process by A. We additionally have that the collection D(A) = {¢ €
C%(D) : V- nlop = 0} forms a core for A [33, Theorem 8.1.5]; that is, A is the closure of £
defined on D(A). As a technical assumption, we require that if X;(0) is distributed according
to 7 for each ¢ and if the family {X;} is ii.d., then P(3: # j,i,j e N and t > 0: X;(t), X;(t) €
0oD) = 0.

We view the family {X;} as a random variable taking values in the complete separable
metric space Cp»[0,00) equipped with the Borel sigma algebra. For X; given by , we
define 7;(t) = inf{s <t : X;(s) € 0D} v 0.

Let W be a white noise (in the sense of Walsh) on RY x R, with respect to u®\ where \ is
the Lebesgue measure on R;. We assume that W is independent of {X;}. Let {e,};_; be an or-
thonormal basis for the separable Hilbert space (L?*(R?, 1), (-, 1) and let H := {z € L*(R%, p) :
|23, = > n*(x, enyr} < c0. Define (-, ) by polarization and note that {n"'e,}%_; is an or-
thonormal basis for #. It follows that the inclusion (H, (-, %) < (L*(R%, ), (-, ->1) is Hilbert-
Schmidt. We denote by H ™! the continuous dual of H. One can check that there exists a ver-
sion of W with the property that pointwise the map T — (x € H — Sg Sge 2(u)W (du x dt)) e

Cy,-1[0,00). Without loss of generality, we work with this version of W and will at times abuse
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notation and think of W as the map T'— (z € H — S(:)F Sga x(w)W (du x dt)).

Definition of compatibility

Let S1 = Dy, [0,00) and Sy := Cy-1[0,0) x C5»[0,00). Then S := S x S is a complete
separable metric space, which we equip with its Borel sigma algebra. Our definition of com-
patibility between inputs and outputs will follow the definition of temporal compatibility in
[61].

Let {]:,E/I/’{Xi}}tzo denote the augmentation of the filtration o(W (C x [0, s]), Xi(s) : F €
B(D),C € B(RY), u(C) < 0,0 < s < t,i € N). For U € D, [0,0), let F*' ¥ denote the
augmentation of o(U(s)(F), W (C x [0,s]), Xi(s) : F € B(D),C € B(RY), u(C) < 0,0 < s <
t,i € N). Similarly, let {.F,[;]’V’W’{Xi}}tgo denote the augmentation of o(U(s)(F), V(s)(F), W (C'x
[0,5]), Xi(s) : F e B(D),C € B(R?), u(C) < 0,0 < s <t,ieN).

Definition 3.2.1. A positive measure valued process U(-) € Dpy, [0,00) is compatible with

(W, {X;}) if for allt > 0 and all h € By(Ss), E[R(W, {X;})| FO X3 = Blaw, {x,})| FI- 5

Definition 3.2.2. A pair of positive measure valued processes U(-) € Dy, [0,0) and V(-) €
D, [0,0) are jointly compatible with (W, {X;}) if for allt > 0 and all h € By(S2),

E[h(W, {X.})| FEVWEN = Blaw, (X)) F) ).

For convenience, in what follows we will refer to processes as “compatible” or “jointly
compatible” without reference to (W, {X;}). In particular, if U is adapted to {]—"ZV 7{Xi}}t>(),
then U is compatible. We remark that compatibility or joint compatibility is sufficient to ensure
that W remains white noise and the semi-martingale decomposition of X; remains unchanged

in the filtrations ]-"?W’{Xi} or ]-'ij’V’W’{Xi}.

Definition 3.2.3. A positive measure valued process U(-) € Dy, [0,00) is consistent if it is

compatible and the family {(W, X;,U)}2, is exchangeable.
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Definition 3.2.4. A pair of positive measure valued process U(-) € D, [0,0) and V(-) €
D, [0,00) are jointly consistent if they are jointly compatible and the family {(W, X;, U, V)}2,

1s exchangeable.

Remark 3.2.5. Note that the additional requirement of exchangeability corresponds to a family

of constraints in the language of [61].

3.2.2 Statement of results

For consistent U, we set

to 1

\I/%t2 = exp{ . G(U(s), Xi(s),s)ds — 3 J]Rd p(Xi(s) — u)Zp,(dU)

+ JRd p(U(5—), Xi(s), u)W (du x ds)}.

With this notation, if AY(#) is given by
t
A7 (1) = [9(Xi(ri®))) Lr, 01 + X (0) Lz, 1y =03] Oy + f(t) b(Xi(s)) VY ds

then AY(t) solves

AV (1) = g(Xi(Ti () Lm0y + P(Xi(0)) Ly (0=0y + f(t) G(U(s), Xi(s),5)A{ (s)ds ~ (3.2.3)

¢
+ J b(X;(s))ds + J p(U(s—), Xi(s) — u)AY (s—)W (du x ds).
7 (t) Ux (73(t),t]
For consistent U it will be convenient to define a reference process by

Y (t) = exp {2 sup

0<s<t

Jd p(U(s—), Xi(s) — u)W(du x ds)
R% x(0,s]

With this notation, we have the bound
A7 () < (lglloo v [Plloo + t[b]loo) €T ().

A key step in many of the proof of the results that follow is the observation that under the

assumptions in Subsection it is possible to prove uniform (conditional) moment bounds:
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Lemma 3.2.6. Suppose that U is consistent. Then

E { sup Ajf (t)p] < Orp = 4(1+ T) KT,

0<t<T

If in addition U is adapted to the augmentation of the filtration {F}" vo(X;)}i=0, then

E[ sup AZU(t)p]J(Xi)] < Crp.

0<t<T

For consistent U, {AY} given by (3.2.3)), and {X;} given by (3.2.2), we note that the

collection {(X;, AY)} is exchangeable. By de Finetti’s theorem (see for example [53, Theorem

9.16]), we may then define a measure =V e Dpy g, [0,00) via the almost sure limit

1 n
=V — lim =
= Jim — Z dx,, AU-
=1
Working on a full measure subset of the set on which this limit holds, we may define a new

consistent process ®U € Dy, (p)[0, ) via
QU() = tim 13 AV ()5
O e o

See also [62, Section 10, Subsection 11.3] for a similar construction. One can see directly that
®U(t) is absolutely continuous with respect to m. Let ®U (¢, z) be a Borel measurable version
of the density of ®U (t) with respect to 7; i.e., U (¢, x)w(dz) := ®U(t)(dx). We also note that
if U is {F}V }+=0 adapted, then ®U will be {F}" };=0 adapted.

It will be useful to know that if U is consistent, then ®U will be a continuous process of

positive measures. Our proof of this depends on the technical assumption above that there are

almost surely no times ¢ for which X;(t) € 0D and X(t) € 0D, where i # j.
Lemma 3.2.7. Suppose that U is consistent. Then ®U € Cyy, (p)[0, ).

®U will typically be a weak solution solution to a certain (usually linear) stochastic partial
differential equation with multiplicative noise and the same boundary conditions as in ((3.2.1)).
We begin by observing that the measure valued process ®U solves a weak form stochastic

partial differential equation on the interior of D:
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Proposition 3.2.8. Suppose that U is a consistent process in Cpq, (p) [0,00). Then for ¢ €

Cr (D),

(@ BU(1) = (. BUO) + | LU (s)ds+ | (LOGU().) WU ()ds (324

b, Ty + fRd 1 POPUS) ), UG (o x s,

We will present two ways in which ®U satisfies the boundary conditions. These are es-
sentially the same as in [28] and the proofs are more or less identical. The first depends
on regularity of the time-reversal of the driving diffusions. For each t and s < ¢, define the
time reversal of X; by X[, (s) = X;(t —s). We will often suppress the subscript and define
X}(s) == Xf(s). Since X; is stationary, the time reversal X/ is a Markov process whose

generator A* satisfies

| gnpin=| ratgar. fge D).
D D

We introduce the notation o; = inf{s : X(s) € 0D}, and note that if we reverse time starting
from t, then o; = t —7;(t). The first sense in which the boundary condition is satisfied depends

on the following condition.

Condition 3.2.9. The boundary 0D is regular for X} in the sense that for each § > 0 and

redD,
lim P (o; > 0|X5(0) =y) =0, (3.2.5)
yeD—x
and
lim E[|X(0;) — x| A 1|X(0) =y] = 0. (3.2.6)
yeD—x

Remark 3.2.10. In practice this condition can be difficult to check unless A = A*, as regularity
of the time reversed process involves some knowledge about regularity of a density for = with

respect to the Lebesgue measure.
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Remark 3.2.11. If D is bounded and X is normally reflecting Brownian motion run at speed

2t, then A = A*, £ = A, 7 is proportional to the Lebesgue measure, and Condition holds.

Proposition 3.2.12. Suppose that C’ondz’tz’on is satisfied and suppose that U is {ffv}t>0
adapted. Let g be any bounded continuous function on D with glop = g. Then for any compact

K coD andt >0,

oo 12U ) - ;?(:v)!w(dx) » 5o

e—0 TI'(ae(K)

in L'(P).

As was the case in [28], we can extend the weak formulation of the stochastic partial
differential equation to include a boundary term. To do this, we need to introduce
the boundary measure which is associated to the local time L;. It is shown in [86] that
under our assumptions, E[L;(t)] < oo. By stationarity, for ¢ € Ry, the process X;(t + -)
has the same distribution as X;(-). It follows that for ¢ € Cy(dD), E [Sz cp(XZ-(r))dLi(r)] =
E [ é_s go(Xi(r))dLi(r)] . By non-negativity and linearity in ¢ and ¢, the Riesz representation

theorem implies that there exists a finite positive Radon measure 5 on 0D with the property

that for ¢ € Cy(R4 x0D),

all t o699 = [ [ et spptanas.

0
Remark 3.2.13. If D is bounded and X is normally reflecting standard Brownian motion, 3 is

proportional to the surface measure.

Proposition 3.2.14. Suppose that U is a consistent process in C’M+(D)[O,oo). Then for

¢ € C2(Ry xD) with ¢(t,-)|op = 0 for all t >0,

(p(- 1), @U(1)) = {p(:,0), @U(0)) + JO<£ p(-;8) + (- 8), PU(s))ds (3.2.8)

¥ f (o )GU(s), ), BU(s))ds + f (ol $)b(-), myds
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+ f L Lol 9)p(U(s), - u), DU (s))W (du x ds)
R? x[0,t]

+ f g(z)n(x) - Vo(z,s)B(dx)ds.
0 JoD

Having shown that ®U satisfies (3.2.4) and (3.2.8)) and that under Condition and the
hypothesis that U is F XV adapted 1) holds, we now look to show existence of a measure

valued process satisfying U = ®U. For such a process, (3.2.4)) is a weak formulation of a
stochastic partial differential equation of the form in (3.2.1) on the interior of D. The final

results of this chapter are Theorems [3.2.16] and [3.2.15, which show pathwise uniqueness for

jointly consistent solutions and weak existence respectively. These combine to prove strong
existence of a measure valued process which represents a solution to this non-linear stochastic

partial differential equation.

Theorem 3.2.15. Suppose that U and V' are jointly consistent and that there is T > 0 so that

forallt <T, ®U(t) = U(t) and @V (t) = V(t). Then almost surely for allt < T, U(t) = V(1).

Theorem 3.2.16. There exists a consistent measure valued process U(-) € Caq, (p)[0, c0) which

satisfies U(t) = ®U(t) for all t.

The results of [61] imply that the previous results combine to prove the desired strong

existence of the particle representation:

Theorem 3.2.17. There exists a Borel measurable function F': Cy;-1[0,00) — Dy, (p)[0, 0)

with the property that F(W)(-) is {F} Y=o adapted and F(W)(-) = ®F(W)(-).
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3.3 Proofs

We begin with some preliminary results, starting with an observation about the structure of

oU.

Lemma 3.3.1. Suppose that U is consistent. Then for fized t and ¢ € By(D) almost surely
{p. DU(t)) = E[AY ()p(X:1(1)|o(W) v o (U)].
Moreover, if U(t) is {F}¥ }i=o0 adapted, then
U (t, Xi(t)) = E [AY ()W, Xi(t)] .

Proof. Let Z denote the shift invariant sigma algebra for the stationary sequence {(X;, W, U)},.

By the ergodic theorem,

(.UM = Tim 3 AV (1)e(Xi(0)) = EIAY (0p(X: (1)) 7
i=1

= BIAY ()p(X1(t))lo(W) v o (U)].

The last equality follows from the fact that the sequence {X;}; isi.i.d.. Let F': Cj-1[0,0) — R
be bounded and Borel measurable. Using the assumption that U is {F}" };>0 adapted and the

first part of the result, we have
E[AY o(Xi())F(W)] = E UD ‘I’U(tx)w(x)ﬂ(dw)F(W)] = E[QU(t, Xi(1))p(Xi(1)) F(W)].

In the last line, we use independence of W and X;. O

3.3.1 Moment estimates

Recall the definition of the weights AY. Define
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t
(1= | [, A 6).X0) = wpn(auyas,

and let {H:}¢=0 be the right continuous completion of {F}" vo({X;})}i=0 with respect to
P. Note that W is H; white noise and if U € D, [0,00) is adapted to {F;" vo({Xi})}i=0,
then H(t) is a continuous H; martingale. Define ~;(t) = inf{s > 0 : { §pa p*(U(r), X;(r) —
u)p(du)dr > t}. The next result is a slight modification of the Dubins-Schwarz theorem and

we follow the proof of that result. See for example [78, Theorems V.1.6,V.1.10].

Lemma 3.3.2. Suppose that U is consistent. Then for each i there exists a standard Brownian

motion B with B(0) =0 and

2 ([ [ r06)x0) - witanis) = o
and moreover

sup [Hi(t)] < sup |B(s)|.

o<st<T 0<s<Kt

If in addition U is adapted to {H}i=0, then this Brownian motion may be taken to be inde-

pendent of o({X;}).

Proof. Suppose first that [H], = 00 a.s.. If U is consistent with W, then B(t) = H;(y;(t)) is
a continuous martingale with respect to {fgi’g’{xi}}t}o. If U is {H}i=0 adapted, then B;(t)
is a martingale with respect to {#.,,) }i=0. Moreover, [B]; = t. The inequality follows from
fye [o(0, 2 — 0) () < K.

By continuity of H; and the definition of ;(0), B(0) = 0. We note that o({X;}) < H(0)
and consequently if U is adapted to {#;} then the Brownian motion B; is independent of
o({X:)).

If P([H]e < 00) > 0, then take j # i and let B(t) = H;(7i(t))1{1<[r],) + (imeo H;(2) +

Bj(t — [H]w))l{t=[H],}- See [T8, Proposition IV.1.26] for a proof that the limit exists. Then
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the arguments above continue to hold with minor modifications to the filtration that do not

change the conclusions. O

Proof of Lemma([3.2.6, It follows from Lemma that there is a Brownian motion B such

that

sup A7 (1) < ([gleo v [hloo + Tboo)e™ T exp {210 sup IB(S)I} :
0<t<T 0<s<KT

The two parts of the lemma then follow from taking expectations or conditional expectations

respectively. O

3.3.2 Continuity and a weak formulation of the stochastic partial differential

equation
We now turn to Lemma which says that for consistent U, ®U € Cyy, (p)[0, 0).

Proof of Lemma([3.2.7, Recall the notation d(v, 1), which denotes is the Fortet-Mourier dis-

tance on M (D), and introduce

1 n
oMy (t) = =Y AV (t)dy, 3.1
u(t) ng%z()xﬁy (3:3.1)
so that @M U(-) — ®U(-) almost surely in D, ([0, 0). A necessary and sufficient condition
for ®U € Cpy, (p[0, 0) is that the random variable

JOO e[ sup d(®U"(r),®U™ (r—)) A 1]du

0 o<r<u
converges to zero in distribution [33, Theorem 3.10.2]. In particular, by bounded convergence
it suffices to show that for fixed ¢ > 0, supy<, <, d(®U"(r), ®U™ (r—)) A 1 — 0 in probability.
We have

AU (), 8 (-)) = sup
n

. (A7 (r) = A7 (r=)) (Xi(r)) < L DAY (r) = AV (r-)].
eeLipy (D) ™ ;51 s
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Next we use the technical assumption in Subsection that P(3i,5 € Nyi # j,t > 0 :
Xi(t), X;(t) € 0D) = 0 and the observation that A;(-) is continuous off of the set {t : X;(¢t) €

0D} to obtain:

sup d(®@™U(r), ™ (r-)) < lmax sup |AY (r) — AV (r—)| < 2 max sup AY(r).

. 1 B
o<r<t n isn og<r<t n isn o<r<t

Applying a union bound, Markov’s inequality, and Lemma [3.2.6] we see that

2
P <max sup AV (r) > 6> — 0

n isn ogr<t

as n — 0. O]

Now, we turn to the proof of Proposition |3.2.8] which gives a weak formulation of the
stochastic partial differential equation with test functions ¢ € C(D). We begin with a type
of decomposition which will be of use in some later proofs as well. Fix a consistent process

U € Dy, ([0, ). Define ZY (t) by

ZiU(t) = J;) G(U(s), Xi(s), S)Agj(s)ds + Jo b(X;(s))ds (3.3.2)
+ f ; p(U(s=), Xi(s) — u) AY (s—)W (du x ds).
R% x(0,t]

Then we have
A7 (1) = Z7(t) = 27 (ri(1) + 9(Xa(7i(£))) 1z, 1y=03 + PAXi(0)) Lz (0) =0} - (3.3.3)
With this decomposition in hand, we can now address the weak formulation of the stochastic

partial differential equation on the interior of D.

Proof of Proposition[3.2.8, Recall that the assumption that U is compatible implies that the
semi-martingale decomposition of X; in {F g ’W’{Xi}}go is given by |D and note that ZV (t)
is a semi-martingale in this filtration and that the covariation of Z;(-) and ¢(X;(+)) is zero.

Take ¢ € C2(D) and a partition {t;} of [0, 7.

Ai(T)p(Xi(T)) = Ai(0)p(X:(0)) + Z Ai(ty)(p(Xi(tj+1)) — p(Xi(t5)))
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+Z‘P (i) (Aiti1) — Ailt)))-

As the mesh of the partition tends to zero, the first sum converges to an ordinary Ito inte-
gral because AY(-—) is {.F?W{Xi}}t>(] predictable. Note that the last three terms are
piecewise constant off of the set {t : X;(t) € dD}. Indeed, for t < t', 7;(t) # 7;(t') if and only if
there is s € (t,t'] with X;(s) € dD. By local uniform continuity of ¢t — ¢(X;(t)) and the fact
that p(z) is compactly supported in the interior of D, we see that there is a (random) 6 > 0
so that for any ¢t < T with X;(¢) € 0D and any s with |s — ¢| < J, ¢(X;(s)) = 0. Using the
fact that the covariation of p(X;(:)) and Z;(-) is zero, we may use the usual semi-martingale

integral results to obtain a version of Ito’s lemma for AY ()¢ (X;()):
AV (Dp(Xi(1) = AV (0 f Lo(Xi(s)) AV (3)ds (33.4)
f G(U(5), Xis), $)p(Xi(s)) AV (5) + o (Xi()b(Xi(s) s
f p(U(s), Xi(s) — u)p(Xi(s))AY (s—)W (du x ds)
R? x(0,t]
t
+ f AY(s—)dM,,(s)
0
where {M ;}; is a family of orthogonal martingales given by

M i(t) = o(Xi(t)) — p(X:(0)) — jo Lo(Xi(s))ds

Recall the notation ®U™ from |D and let 7" () = n~! Sy dx,(t)- Averaging |)

gives
(o, BUM (1)) = (o, BUM(0)) + Jt</g o, DU (5)ds (3.3.5)
0
f<G $)6(), BU(s) + (b, 7 ()

L U]l BT ()W (du x ds)
RY % (0,]

1 & [t
+— > j AY (s—)dM, ;(s)
i=170
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Note that for each i, Y;(-) §; AY (s—)dM,i(s) is a mean zero {]—"tU’W’{Xi}}t;O martingale and that
the family {Y;}; is orthogonal. Doob’s inequality shows that n=! 3, Y;(-) — 0 locally uni-
formly in probability. Using the fact that the limit @™ U(-) — ®U(-) occurs in D, ([0, 0),
one can show that the averages of all of the terms except the second to last converges to the
corresponding term in . To show local uniform convergence of the white noise term, it

suffices to show that

t
[ &[] o0nwis).~0.000) — a0(6) Puta)] as —o.
0 R

For each fixed s > 0 and v € R? the function z — o(z)p(U(s),z — u) is continuous and
compactly supported and therefore bounded. It follows from the fact that ®U™ — U in
D, (py[0,0) that the integrand tends to zero pointwise almost everywhere with respect to
ds ® 4 ® P. By a hypothesis on p and using the fact that ¢ is compactly supported, we may
restrict to a common compact subset of D x R? and therefore it suffices to prove uniform

integrability. We have

p()p(U(s), - = u), @UM (s) = dU(s))* < () |p(U (5), - = w)|, @U ™ (s) + BT (s))*

< Kl 3(1, U™ (s) + U (s))".

The moment bound from Lemma [3.2.6| completes the proof. ]

3.3.3 Boundary condition
Averaged boundary condition

We now turn to the proofs of the boundary conditions, which were discussed previously in

Subsection [3.2.2)
Proof of Proposition[3.2.13. We have

E [W(ae(K))_lL " U (t,2) — g(a)|m(dz) | < B[|A7 (t) — g(Xi(t)]|Xi(t) € 0c(K)] -
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Recalling the definition of AY (), we have

A7 (1) = g(Xa())] < 19(Xi(7i(1))) = G(Xi (1) [ Lrny=0) + 2(K V [Gloo)Lirry=)  (3-3.6)

t
+ K(t —7(t)) ~|—KJ AZU(s)ds
7i(t)
+ \ f ] p(U(s—), Xi(s) — u) A (s—)W (du x ds)‘.
R (7 (1),1]

Next, observe that

B [l9(Xi(7(8)) = 9(X () 1,009 | i) € 20() |
= B [19(X{(01)) = (X (0)]1 0,y | XF(0) € 2:(K)

< sup B [lg(XF(00) = ()1, |XF(0) = 2]
€0 K

By compactness, there exists g € K and x, — xg so that

limsup sup B [lg(X (1)) = §(2) |15, X2 (0) = 2]
e—0 z€d K

= lim B|lg(X; (1)) = §(wn)[1jg,<| X7 (0) = 2.

Continuity of g and (3.2.6) imply that the limit is zero. A similar argument and (3.2.5)) show
that P (7;(t) = 0|X;(t) € 0.K) tends to zero, so that the conditional expectations of the first

two terms on the right of (3.3.6)) go to zero. Note ¢ — 7;(t) € [0, ¢] and further that

t
E

AY (s)ds‘XZ-(t) c ae(K)] <
75 (t)

1
1 t 2
E [t - Ti(t)’Xi(t) c 8€(K)] 5 U Ag.f(s)2ds‘xi(t) e aﬁ(K)]
0
As above, the first term tends to zero by hypothesis. The second term is uniformly bounded

by Lemma Notice that W remains white noise when conditioned on o(X;). Recall that

the L? norm dominates the L' and note that

B[, lawas)p0(s-). Xils) A=W du x ds) [Xi(0) am]
R% x(0,t]
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<FE Uot JRd L), (8)p(U (s), Xi(s) — U)QAlU(S)QM(du)ds‘Xi(t) e 8€(K)]
S KE Uot Liry(o),1 () AT (5)°ds| Xi(t) € é’e(K)} ,

Arguing as above, the last term tends to zero as ¢ — 0. O

Weak formulation with boundary

In order to prove the weak formulation in Proposition [3.2.14] we need some preliminary lemmas.
The goal here is to show that for most values of ¢t with X;(¢) € 0D, we also have A;(t) =
g(Xi(t)). Note that this is not always the case. The proof of the next result is essentially the
same as the proof of the analogous properties for the zero set of one dimensional Brownian

motion.

Lemma 3.3.3. Almost surely, the set {t = 0 : X;(t) € 0D} is a closed set with no isolated

points and the collection of left-isolated points of this set is countable.

Proof. Under the assumptions in Subsection X; satisfies the strong Markov property and
the boundary is regular for X; [86, Theorems 2.4,5.8, Corollary 2.3]. Recall that dD is a closed
set and X; is continuous, so this set is closed. Set ;¥ = inf{s >t : X(s) € dD}. By the strong

Markov property, for each ¢ € Q, ozéf is not right-isolated. Fix tg € {t = 0: X;(t) € 0D} with

X

an < tp and

to # aé( for any g € Q4. Take a sequence ¢, € Qy with ¢, 1 t9. Then ¢, < «

therefore tg is not left isolated. O
Lemma 3.3.4. Almost surely,

f dLi(s) — f dLi(s) = 0.
{t:mi () #t} {t:mi(t—)#t}

Proof. Local time is a continuous measure supported on the set {t > 0 : X;(t) € 0D} and
therefore assigns measure zero to the (countable) set of left isolated points of {t > 0 : X;(t) €

0oD}. If to e {t = 0: X;(t) € dD} is not left-isolated, then tg = 7;(to) = 7i(to—). O
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The previous results combine to prove the following lemma.

Lemma 3.3.5. Almost surely, for dL; almost every t, AY(t) = AV (t—) = g(Xi(t)) and there-

fore

lim 1 1 f AV (s—)n(Xi(5)) - Vip(Xi(s), f | st@n(@)- Vola 3(an)as

n—oo n

We now turn to the proof of Proposition [3.2.14] The structure of the argument is similar
to that of Proposition The bulk of the argument is essentially the proof of [28, Lemma

3.3).

Proof of Proposition|3.2.14] We proceed as in the proof of Proposition above. Take ¢ as

in the statement of the result and a partition {¢;} of [0,7]. Summation by parts gives
Ai(T)p(Xi(T), T) = Ai(0)e( )+ ZA t3)((Xi(tj41), tj1) — o(Xi(t5)), 1))

+Z<P (tj+1)s tj1) (Ailtj+1) — Ailt;))-

As in the proof of Proposition the first sum converges to the usual Ito integral by
standard results. Note that this convergence implies convergence of the last term, because this
expression is an identity. We will again take advantage of the decomposition to compute
the limit of the last term. Once again, noting that the covariation of ¢(X;(+)) and Z;(-) is zero,
the contribution of the term coming from Z (¢) follows from the usual semi-martingale integral

results. We have

290 i(tjr1)s tie)(Z] (ri(ti)) = 27 (7alty))

Ti(tj+1) U
—Zso (1), 1) f L O Xils), 947 ()ds

T tj

i (tj+1)

+ZSO i(tj+1) th)J b(Xi(s))ds

7i(t5)
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+ D e(Xiltis), ) pU(s-). Xi(s) — u) AV (s—)W (du x ds).

fRd x(ri(t;),mi(ty41)]
Recall that 7;(tj4+1) = 7(t;) unless there exists ¢t € (7;(¢;), 7i(tj4+1)] with X;(t) € dD. For any
such ¢, the hypothesis gives ¢(X;(t),t) = 0. Note that for each j, the absolute value of the
first integral can be bounded by KT supy<;<p AY () and similar bounds can be derived for the
other integrals. It follows that the limit of these terms as the mesh tends to zero is zero.

The term involving h is piecewise constant with a single jump discontinuity, at which time
Xi(t) € 0D, so a similar argument shows that the contribution from that term tends to zero.
It remains to show that the contribution from the term g(X;(7:(t)))1,)>0 tends to zero. To
simplify the notation, we drop the indicator function of the set {r;(¢) > 0}. Accounting for
this change is an argument similar to the argument showing convergence of the term involving
h, but note that this does change the initial condition in the expression we compute below.

With summation by parts, we have
D e(Xilty), 1) (9(Xi(miltj+1)) — 9(Xi(mi(t;))
J

= (Xi(T), T)g(Xi(m(T)) — ¢(Xi(0),0)g(X;(0))

— 2 9(Xi(mit)) (e (Xiltjn) — o(Xi(t)))-

J
As the mesh tends to zero, the last term converges to the usual semi-martingale integral of

9(X;(1i(-—))) with respect to ¢(X;(+)). Introduce the notation v;(¢) = inf{s > t : X;(s) € 0D}

Observe that Uy, (t) — g(X;(7(t))) pointwise. Moreover, we have

and define

f (Un(5—) — g(Xi(ri(s—))dp(Xi(t), 1)

0

_ f (Un(5-) — 9(Xi(i(5—))) Vo (Xi(s), )\ (X (s) dBi(s)
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t
" j (Un(5-) — 9(Xi(ri(5)) (£ +2) (X (5), 8)ds

0

t
+J (Un(s—) = 9(Xi(7i(s—))) V(Xi(s), 5) - n(Xi(s))dLi(s).

0

By Doob’s inequality and bounded convergence, these tend to zero termwise locally uniformly

in probability. Noting that ¢(X;(7i(+)),) = 0, we have

Lt‘(’(X" ('“ <i>>> Lia( )y (57)dp(Xi(s), 5)
g (X (i (E)) e(Xi(), 1) it e (k) m(kEd)] |

0 otherwise

and therefore, we have

fo Un(5-)do(Xi(s), 5) = Un(D)p(Xi(t), 1) — g(X:(0)))(X,(0), 0).

Combining these results with Lemma we obtain a version of Ito’s lemma for AY ()¢ (X;(s), s) :
AT (D (Xi(1),1) = h(X:(0)9(X:(0),0) + fo AT (8)p(Xi(5), 8)(G(U(5), Xi(s), 5) + b(Xi(s)))ds
+ L (L +0) p(Xi(s), s)AY (s)ds
L AU, Xils): )plXi(s), )W (du x d)
R% x(0,t]
t
+ JO 9(Xi(s))Ve(Xi(s), s) - n(Xi(s))dLi(s)

+ L AV (s=) V(X (s))o (Xi(5))dBi(s).

Averaging and arguing as in the proof of Proposition [3.2.8 completes the proof. O

3.3.4 Uniqueness of a particle fixed point

Let U and V be jointly consistent. Take ¢ € Lip,(D) and observe that for all ¢t € [0,T] we

have

(U0 ~ @V @] = Jim 137 (AV(0) ~ AV (0) (X0 < fim 1 33147(0) ~ AY @)
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It then follows that
d(®U(t), PV (¢ lm—g AL — AV ().
( ( )? ( )) TLl nz 1| 1 ( )|

We begin by proving pathwise uniqueness of jointly consistent functions, which was already

stated as Lemma [3.2.15]

Proof of Lemma[3.2.15. Define

n—0o0
n i=1

Nm =inf{t>0: lim li:(f‘,f](t) vFl‘-/(t))2 >m}.

Compatibility ensures that n,, is a stopping time and W is white noise in the filtration
{fg’v’m{xi}}t>o Using the inequality |e® — eY| < € v eY|z — y|, we see that there is a

deterministic constant C' (which may change line to line) such that for t < T

AV (1) — AY (1)] < CTY (1) v TV (1) (f G(U(s), Xi(s), 5) — GV (s), Xi(5). 5)| ds
f f Xi(s) — w) — p(V(s), Xs(s) — w)|(du)ds
+ sup f ) p(U(s), Xi(s) —u) — p(V(s), Xi(s) — u)W(du x ds) )

0<s<t [JR? x(s,4]

It follows from the Cauchy-Schwarz inequality that

n 2
(i 147 (1)~ AY <t>|> <
i=1
TC (ii (TY(t) v TV (1) 2) %

+] t ( fRd AU (s), Xi(s) — ) = pP(V(s), Xils) - u>m<du>)2 ds

)

=1

<J G i(5),8) — G(V(s), Xi(s),5)|” ds

2

+ sup
0<s<t

| b0 Xil9) = ) = plV (). Xils) — )W (du x )
R? X (s,t]

)

Again appealing to Cauchy-Schwarz in the third line above, it follows that

n 2
(:LZMZU(t/\nm)—Ay(t/\nm) < ( Z YVt A nm) \/FU(t/\nm))Q)

=1 i=1
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+  sup

O<r<tAnm

Sending n — o0, we see that

t
(DU (t A ), BV (t A 1)) < mCJO A(®U (5 A Nm), PV (5 A 1)) ds

2

U,V,W].

+mC’E[ sup

0<r<tAnm

| pU(5), Xi(s) —u) — p(V(5), Xi(s) — )W (du x ds)
R X (r; 6 Anm]

By additivity of the stochastic integral, we have (pathwise a.s.)

2

sup f (DU (), Xi(s) — 1) — p(®V(s), Xi(s) — )W (du x ds)
0<r<tAnm [JR? x (7t Anm]
2
<tsup ([ pOUGs A ) Xils ) = 1) = BV (5 A 1), Xils A ) — )W (du x d)
0<r<t [JRY x(0,r]

Applying this inequality and Doob’s inequality, we then have

J ) p(@U(s), Xi(s) —u) — p(®V(s), Xi(s) — u)W (du x ds)
R X (r;t Anm]

2
E sup
O<r<tAnm

<16 B[ [ (00U A1) Xils 2 ) =)= pBV (5 1 ). Xl 1) = ) )| s

16Kf d(®U (s A 1), PV (5 A n))?] ds.
Taking expectations, we obtain for ¢t < T,
E [d(@U(t A nm), PV (E A 1)) mCJ d(RU (s A ), BV (s A 1m))?] ds.
It follows that for any m and any ¢t < T,

E[d(QU(t A 1m), V(£ A nm))?] = 0.
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Consequently, for each m € Nt € [0,T], ®U(t A ) = PV (t A ny,) almost surely. Taking

m — oo, for each fixed ¢ we have ®U(t) = ®V(t) a.s. Applying Cauchy-Schwarz, we see that
(E1AY (1) — AY (1)])* < CE [TV (1)2 v TY ()]
KJ'G (5).5) — C(V(s), Xi(s), )| ds
+ffdm%Uw»&@>mp%vwx&@>MWMM%
0 JR

+ sup

0<<s<t

kd(]mvwn&@»ﬂn—mvww&@»~wwuuxw>

t
<SCE[TY () vIY(t)?] f E[d(@U(s), @V (s))?*]ds = 0.
0
Consequently, for each t < T, AY (t) = AV (t) a.s. Right continuity now implies that AV () =

AY (-) on [0,T] a.s.. Consequently, ®U(-) = ®V(-) on [0,T] a.s.. O

3.3.5 Existence of a particle fixed point

We now turn to the existence of a consistent process U which satisfies ®U = U. We begin
with Theorem [3.2.16] which shows that existence holds on some probability space. The results
of [61] then allow us to combine this with Theorem to prove Theorem

We first introduce some notation for moduli of continuity w on Cga[0, 7] and w’ on Dg[0,T7],

which we define by

w(f,0,t) = max max |f(t) = f(s)],

0<s<T s<t<s+6

W'(f,6,t) =infmax sup |f(t) — f(s)|.

{tj} J s,te[tj,th)
The infimum in the definition of w’ is taken over partitions of the form 0 <ty < t; < --- <
tn—1 < T < t, satisfying minpo<j<n |t; — tj—1| > 0. Denote by g any continuous extension of g

to D.
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Proof of Theorem[3.2.15 For t € |0, %), we define the measure V" (t) by
1
V() = lim — Zl h(Xi(0))dx, (0)-
We may then define for ¢ € [0, 1]

AP (1) = [0 (T Lr o0 + MXi(0)Lir,=0)] exp{ f o G0 Xils), )

1 J VO (). Xi(s) — u)u(du)ds + J oV (5), Xi(s) — u)W (du x ds)}
R

RE x (13 (t),t]

t i i(S))ex t (”)r .7,70_1 (n)r () )i
+Li(t) bi(Xi(s)) p{L GV (r), Xi(r),r) 2fde<V (), Xs(r), w)u(du)d

™) (r—), X;(r) — u u x dr) rds
V). Xile) = W8 )

(3.3.7)

which solves

t

AZ(”) (t) = g(Xi(TZ' (t))l{n(t)>0} + h(Xi(O))l{fri(t)=0} + o G(V(”)(s), Xi(s), S)Al(”) (s)ds
t
+ f bi(X;(s))ds +f p(V) (s=), X;i(s) — u)A™ (s—)W (du x ds).
i (t) R x (7;(t),t]
(3.3.8)
For te [%, 1%1)7 we may recursively define V(™ by

. 1 & k . 1 & [ntJ

(n) (4) = il ON - = (n) (17t]

V) ﬁll—{noo m ;AZ <n> 5Xi(%) nll—{noo m ;AZ < n ) 6Xi(m)
and Agn) (t) by l) or equivalently l’ As before, by considering

1 m
=) — 5
=" = lim E n
m—o0 m A X
1=

we may take all these almost sure limits to occur on a common set of full probability. Without
loss of generality, X;(q) ¢ 0D for any ¢ € Q, or i € N, so that for all i,n € N, Agn)(-),n(-) €

Drg, [0,0) will be continuous at % for all 4, k,n € N. By construction, V(™ (.) e Dy, (py[0,0),
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V(") is adapted to {IZV,{Xi}}tZO’ and the family {(W, X;, V()}% | is exchangeable for each n.

In particular, V(™ (-) is consistent. Define Zz-(n) (t) by

2 (1) = g(X,(0)) + j GV (5), Xi(s), ) A™ (s)ds + j b(Xi(s))ds
0 0

2

+ f L pV ™ (s-), Xi(s) —u) A" (=)W (du x ds).
R x(0,¢]

We note that {Zi(")(-)}n is tight. This can be seen by applying Kolmogorov-Censov to the

terms which depend on n. With this notation, we have

A ) = g(X,() + 27 (1) — 27 (ra(1)) + (W(X:(0)) — G(Xs(0) 1z, (0y—0y- (3.3.9)

K3 3

(n)

We will control the modulus of continuity of A, pathwise by constructing an appropriate
partition P of [0,T + ¢§] for sufficiently small 4.

Define 7; = inf{t > 0 : X;(t) € 0D} and take any §y > 0 satisfying 6y < ;. If 7, < T, then
add ~; to P. 7;(+) is right continuous with left limits, so on [0,7 + do] there are only finitely
many points ¢ with 7;(t) — 7;(t—) = dp. Add these points to P and let § > 0 be such that if
Ti(t1) — Ti(t1—) = 0p and 7;(t2) — 7 (ta—) = do then |t — to| > 2§ and 20 < dy.

Keeping all the previously added points, refine P to a partition {t;} satisfying 0 < t;—t;_1 <
46. It will suffice to focus on controlling the modulus of continuity of ZZ(n) (7:(t)) on this
partition.

Fix j and take any s,t € [t;_1,t;) with s < t. Note that 7;(s) = 7;(¢) unless there exists u €
(s,t] with X;(u) € dD. Call v = inf{u > s: X;(u) € dD}. If 47 = s then s = 73(s) < 7(t) <t
and |7;(t) — 7;(s)| < 49 < 2dp. Suppose that s <7 < t. Since X;(77) € 0D, 7(7]) = 77 and we
have s < 7;(77) < 7i(t) < t. Note that |7;(t) — 7;(77)| < t; —tj—1 < 46. By construction of P,

we also have |7;(77) — 7i(77—)| < do and by definition of 47, we have 7;(y/—) = 7;(s). It then

follows that for any j and any s < ¢ with s,t € [tj_1,;),

12 0) = 20 ()] < 120 () = 20 D) + 1207 wm00) — 27 (3 -)

K K3
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< QUJ(ZZ-(n), 200, T + do).-

It follows that w'(Z™, 8y, T) < 2w(Zi(n), 200, T + 6p). Noting that the last term in 1) is

constant on [0,7;) and [v;,0), we see that

W (A™ 5, T) < w(go Xi,6,T + 6) + 3w(Z™, 260, T + 6).

i
For each i, the tightness of {AE")}n in Dg, [0,00) now follows from the tightness of {Zi(n)}n
in Cgra[0,0); see [33, Theorem 3.7.2]. We have P(3s : X;(s) € dD and Xj(s) € dD) = 0
for i # j. For all n, Agn) is continuous off of the set {s : X;(s) € dD}. It follows that
for any k, any distributional limit point of (Agn), e ,A](Cn)) will have components with no
simultaneous discontinuities. {Agn)}igk is tight in Dg, [0,00), so it follows that {Agn)}igk is
tight in DR;jr [0,00). This implies tightness of {AE") 21 in Dgx[0,00). X; is continuous, so this

implies tightness of ({Agn)}, {Xi}) in Dg, .= [0,00). With the notation

1 m
=) — 1im — =) (+) = Tim —
= - ,,P_I,noo m Z 6AZ(-H>,X¢’ - (t) o nll—rfloo m Z 5A§n)(t)7Xi(t)

i=1 =1

58, Lemma 4.4] implies tightness of ({A (1)}, {X;(-)},E™(-)) in
D g « By xp(r x5y [0, ). Moreover, [58, Lemma 4.4] shows that any subsequential weak limit
point ({4: ()}, {Xi(-)},2()) of ({4 ()}, {Xi()},2()) has
STOPETTEE oF SR
mmeem
By [58, Lemma 4.6], any such limit point will also have Z(-) € Cp g , 5[0, ). In the arguments
that follow, we will send n — oo along a subsequence for which weak convergence holds. For

notational convenience, we will not keep track of this subsequence. Let n,(t) = n=!|nt|[; it
then follows from [33 Proposition 3.6.5] that for such a limit point ({Az(n)()}, {(X;()},EM o
() = (LA} XGOLEC) in D om0 ).

Fix a > 0 and let V("):%(t) denote the positive measure determined by the map on C.(R%)

Q> (an oz)go(x)E(”) o N (t)(da x dx)
R xD
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and let V(t) be given by the same expression with =M o, replaced by Z. It follows im-
mediately that ({A" ()}, {X;()}, V) 0 5,()) s tight in D 5y yar, (py[0: ). Lemma
gives the moment bound needed to show convergence of V{™":(.) — V() as a —
o0, which gives tightness of ({AE")},{Xi},V(")). As above, any limit point ({4;}, X;,V) in

D(R+ xD)® x My (D) [0, c0) satisfies

Recall that in the coupling we have constructed, Agn) is given by 1’ Using continuity of p

and G and [62, Proposition 7.4], any limit point ({A;}, {X;}, V, W) of ({4}, {X;}, V™ W) in

D, Xﬁ)wXM+(D)XH—1[O, o0) will have A given by (3.3.7) with Agn), V(™ replaced by (A4;, V).

Finally, note that in the coupling we have constructed, V" is consistent with ({X;}, W) for
each n. Exchangeability of {(W, X;, V(") %, is preserved under joint distributional limits of
(VM) W, {X;}) and so for any weak limit point the family {(W, X;, V)}%, will be exchangeable.
The remainder of the definition of compatibility for any limit point (V, W, {X;}) then follows

from [61, Lemma 3.5] (we are in the setting of the last sentence of [61, Remark 3.6]). O

Proof of Theorem [3.2.17. Strong existence follows from weak existence (Theorem and
pathwise uniqueness of jointly compatible solutions (Theorem ; see [61, Lemma 2.10,
Theorem 1.5]. In particular, it follows that there exists a Borel measurable function with
G(-) 1 Op® 9-1]0,00) = Oy, ([0, 00) with the property that G({X;}, W) satisfies

PG({X;}, W) = G({X;}, W) and that the process G({X;}, W)(:) is {.FEXI'LW}t)O adapted [61,
Proposition 2.13]. Such a process is measurable with respect to the tail sigma algebra of the ex-
changeable sequence {(X;, W)}, and therefore the vector (G({X;}, W), W) is independent of
the family {X;}. Tt follows that there is a Borel function F' : Cy,-1[0,0) — Crq, (py[0, 00) with
F(W) = G({X;},W) almost surely and moreover {FiXiLW}t?O adaptedness of G({X;}, W)

implies that F(W)(-) is {F]" }+=0 adapted. O
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