
Some results concerning certain solvable directed

polymer models and non-linear stochastic partial

differential equations

By

Christopher Janjigian

A dissertation submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

(Mathematics)

at the

UNIVERSITY OF WISCONSIN – MADISON

2016

Date of final oral examination: July 25, 2016

The dissertation is approved by the following members of the Final Oral Committee:
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Abstract

This dissertation is broken into two essentially unrelated chapters. The first chapter considers

exact computations of large deviation rate functions in various solvable 1+1 dimensional di-

rected polymer models. The models considered include point-to-point and stationary versions

of an inhomogeneous directed last passage percolation model, the O’Connell-Yor polymer, and

the Brownian directed percolation model. The work on the inhomogeneous corner growth

model is joint with Elnur Emrah. The second chapter deals with particle representations for a

class of nonlinear stochastic partial differential equations and is based on joint work with Dan

Crisan and Tom Kurtz.
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Chapter 1

Introduction and overview

This thesis consists of two main chapters, which study essentially disjoint topics. Both chapters

include more detailed introductions to the questions considered here, but we will begin by giving

a brief overview of the results obtained in this dissertation.

Chapter 2 considers results on large deviations of the free energy in certain directed

polymer models. Formally, the model of a directed polymer in a random environment is

a measure on paths. To construct such a model on the lattice ZdˆZ`, we assign weights

tW px, tqu
px,tqPZdˆZ` to each site of the lattice. The directed polymer measure is defined as

a perturbation on a reference measure: for concreteness, let P denote the law of a simple

symmetric random walk. Fixing a parameter β ą 0 (the inverse temperature) and a polymer

length T P Z`, the measure on paths is given by

µT pπq “ ZT pβq
´1eβ

řT
t“1W pπptq,tqP ref

T pπq.

See Chapter 2, Subsection 2.1.1 for a more detailed and precise introduction to the model.

Our interest is in large deviation properties of the free energy T´1 logZT pβq in the case d “ 1

for certain choices of the weight distributions. Large deviation theory aims to understand

precise exponential asymptotics for the probability of rare events. The regime studied here

corresponds to the case when the free energy is unusually large. In the case of the directed

polymer models we study, these unusually large values of the free energy are connected to

the physical phenomenon of intermittency. Some connections to the relevant literature and a

discussion of this connection are included in Chapter 2, Subsection 2.1.3.
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The precise models studied here are discussed in detail in Chapter 2, Subsection 2.2. They

consist of a small collection of ‘exactly solvable’—that is, models for which explicit computation

is possible—and include an inhomogeneous generalization of the classical exponential directed

last passage percolation model, the O’Connell-Yor polymer model, and Brownian directed last

passage percolation. The primary results for each of these models are computations of large

deviation rate functions and moment Lyapunov exponents corresponding to right tail large

deviations in the point-to-point versions of the polymer model (i.e. where P is the law of a

random bridge). Additionally, in each case some results are obtained for stationary versions

of the model. The results for the inhomogeneous generalization of exponential last passage

percolation appear in [32]. Most of the results on the O’Connell-Yor polymer appear in [49],

though some additional results are presented here. Similarly, most of the results for Brownian

directed percolation appear in [50].

Chapter 3 concerns particle representations for a class of non-linear stochastic partial dif-

ferential equations with multiplicative noise and Dirichlet boundary conditions. This work

is complementary to the results of the paper [28], which is joint work with Dan Crisan and

Tom Kurtz. In that paper, a similar particle representation was obtained for a different class

of stochastic partial differential equations with additive noise and Dirichlet boundary condi-

tions. Particle representations and approximations of this type originate in the study of the

McKean-Vlasov problem and appear for example in the theory and practice of non-linear fil-

tering. A simple example covered by the results of [28] is the stochastic Allen-Cahn equation

with time-white space-colored noise forcing,

Btu “ ∆u` u´ u3 ` ξ

on a domain D, subject to the boundary condition that (in a certain sense) upt, xq “ gpxq on

BD.

Both the results presented here and the results in [28] are extensions of the work of Kurtz
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and Xiong in [63] to stochastic partial differential equations on domains. Here, as in [63],

the non-linearity in the stochastic partial differential equation is a bounded and Lipschitz

continuous functional of the de Finetti measure which serves as a representation of the solution

to the stochastic partial differential equation. This differs from [28], where the non-linearity

is a Lipschitz function of the density of the solution. The latter is suited for equation of the

type shown above, while the former sometimes appears in the context of filtering.
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Chapter 2

Large deviations of the free energy

in certain solvable directed polymer

models

2.1 Introduction

2.1.1 Directed polymers in random environments

The model of a directed polymer in a random environment was introduced in the physics

literature in [46] in order to model the domain wall in a ferromagnetic Ising model with random

impurities. Shortly thereafter, it was observed [47, 54] that in the two dimensional model the

numerically observed scaling exponents for the transverse fluctuations of the domain wall

interface and the pinning energies also appeared numerically and theoretically in other related

contexts [35, 88]. These works suggested the presence of some universal features in certain 1+1

dimensional models of interfaces roughened by impurities. Early mathematical work on the

model in dimensions 3+1 and higher followed in [14, 48]. The directed polymer model itself,

these characteristic scaling exponents in 1+1 dimensions, and other universal aspects of models

of this type have since appeared in a wide range of physical and mathematical situations. See

for example [43, 42, 59] for physical surveys and [23, 25, 30, 75, 76] for mathematical surveys.

We begin with an introduction to the model and some comments about the specific questions
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studied in this dissertation.

The directed polymer model is formally a probability measure on paths in a disordered

(random) environment. The name comes from the interpretation of a random path drawn

from this measure as describing the shape of a polymer chain. Consider the lattice ZdˆZ`

and let W px, tq be a family of real valued (random) weights indexed by px, tq P ZdˆZ`. Let

P refp¨q denote the law of a random walk on Zd and P ref
T p¨q denote the restriction of P ref to

times t P t0, . . . , T u. Fix a parameter β ě 0, which we can interpret as an inverse temperature.

The polymer measure is

µT pπq “ ZT pβq
´1eβ

řT
t“1W pπptq,tqP ref

T pπq, (2.1.1)

where Z is a normalizing constant referred to as the partition function. We take the convention

common in the mathematical literature of making the exponent positive. Paths for which

řT
t“1W pπptq, tq is large are then assigned greater weight by the measure µT . It should be

mentioned that unless β “ 0, this family of measures is in general not consistent as T varies.

That is, if T1 ă T2 then integrating out the distribution of pπpT1`1q, . . . , πpT2qq from µT2 does

not result in the measure µT1 .

Informally, sites with W px, tq ą 0 can be viewed as favorable to the polymer chain, while

sites with W px, tq ă 0 are unfavorable. A simple physical picture to keep in mind (taken from

[23]) would be to imagine a hydrophilic polymer chain floating in water and to consider the

case that W px, tq P t´1, 1u. The lattice here can be viewed as representing the sites where

monomers can be located while nearest-neighbor edges between these vertices can be viewed

as possible locations for chemical bonds. We can interpret the sites with W px, tq “ ´1 as sites

with hydrophobic impurities and sites with W px, tq “ 1 as those without. For β sufficiently

large, one can see that the typical shape of the chain π under µT will tend to be one where

πptq “ x for a large number of sites px, tq with W px, tq “ 1.

This measure should be thought of as a model of the shape of a polymer at thermal
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equilibrium with a fixed realization of this environment. See for example the discussions in

[23, 30, 43]. The model considered here is not the most general random polymer measure

considered in the literature and indeed lacks some physically interesting features if one would

like to model actual polymers. In particular, having chosen to make the polymer ‘directed’ by

requiring that the second coordinate (time) increase in each step, we lose self-interactions of the

chain. This cost is somewhat compensated by the fact that the model becomes considerably

more tractable with this choice.

As a concrete example, consider the case that P ref is the law of a simple symmetric random

walk π on Z and let P ref
T be the restriction of this law to times t P t0, 1, . . . , T u. There are

two natural graphical views of the polymer paths that appear in the literature: one with the

coordinates given by px, tq P ZˆZ` and a rotated picture with coordinates pi, jq P Z`ˆZ`.

As the name suggests, the rotated picture is obtained from the space-time picture with a 45

degree rotation. The coordinates pi, jq are related to the coordinates px, tq by i ` 1 ´ 1 “ t

and i´ j “ x. See Figure 1 and note that in general we will only draw the sites in the lattice

which can be reached by the paths of the walk with positive probability.

The previous model, where the reference measure P ref
T is the law of a simple symmetric

random walk, is often referred to as the point-to-line polymer. It is natural to consider the

model where this reference measure is replaced by that of a random bridge. Indeed, this is

the model that is the object of interest in what follows. Formally, fix y P Zd and let P ref
y,T pπq

denote the law of a random bridge πptq on Zd with πp0q “ 0 and πpT q “ y. In this case, the

polymer measure is given by

µy,T pπq “ Zy,T pβq
´1eβ

řT
t“1W pπptq,tqdP ref

y,T pπq. (2.1.2)

Once again, in the case d “ 1 it is natural to work in the rotated picture with coordinates pi, jq

rather than px, tq. See Figure 2.

In both cases, it is also be natural to consider the “zero temperature” polymer model,
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t “ 5

t “ 4

t “ 3

t “ 2

t “ 1

t

x

j

i

Figure 1: Three paths of a simple random walk π on Z with πp0q “ 0 in the space-time picture
and the rotated picture up to time t “ 5. Time runs along the main diagonal in the rotated
picture.

t

x

t “ 5

j

i

Figure 2: Two paths of a simple random bridge π on Z in the space-time picture and the
rotated picture with πp0q “ 0 and πp5q “ 1.
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which is given by taking the limit β Ñ8 in the previous expressions. The terminology comes

from the interpretation of β as being a (multiplicative) inverse temperature, as is common in

the statistical physics literature. Define

lim
βÑ8

β´1 logZT pβq :“ LpT q “ max
π

T
ÿ

t“1

W pπptq, tq

lim
βÑ8

β´1 logZx,T pβq :“ Lpx, T q “ max
π

T
ÿ

t“1

W pπptq, tq

where the maxima run over paths π which are supported by the reference measure P ref
T or

P ref
y,T respectively. This zero temperature model is typically referred to as directed last passage

percolation and the maximum over paths in the previous expressions are referred to as last

passage times.

2.1.2 Free energy fluctuations and the KPZ class in d “ 1

Under fairly mild conditions on the weights W px, tq (see for example [89]), one can show that

the limits

ρpl “ lim
nÑ8

n´1 logZnp1q, ρpppsq “ lim
nÑ8

n´1 logZtns u,np1q

gpl “ lim
nÑ8

n´1Lpnq, gpppsq “ lim
nÑ8

n´1Lptns u, nq

exist almost surely. The terms in the first line are typically referred to as free energies, while

the terms in the second are often referred to as time constants. Note that we have suppressed

the dependence on β in the first line. In dimensions 3+1 and higher, one sees a phase transition

in the behavior of the polymer model as β varies [23]. We consider the 1+1 dimensional model

here and will omit the dependence on β by fixing β “ 1.

One of the numerical observation in r46s was that the fluctuations of logZnp1q about nρpl

in the 1+1 dimensional case should scale as n1{3. There has been enormous recent progress on

understanding the limiting distributions under this scaling. These limits are expected to be
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universal for a wide class of interacting particle systems, growth models, and directed polymer

models, but the exact distribution is expected to depend on the initial (or terminal) conditions

of the model. For example, in the point-to-point case, it is widely expected that the following

conjecture holds (see for example [12, 25, 85]).

Conjecture 2.1.1. When d “ 1, for a wide class of distributions on the i.i.d. weights

tW px, tqux,t, there exists a constant c depending on the distribution of W p1, 1q so that

lim
nÑ8

P

ˆ

logZtns u,np1q ´ nρpppsq

cn1{3
ď r

˙

“ F2prq

where F2prq is the cumulative distribution function of the Tracy-Widom GUE distribution.

The same conjecture is expected to hold with logZtns u,np1q replaced with Lptns u, nq and

ρpppsq replaced with gpppsq. Although there has not been much progress toward true univer-

sality, this conjecture has been checked for certain solvable models.

The previous conjecture needs to be modified if one changes the paths in the polymer

model. For example, in the point-to-line polymer model the Tracy-Widom GUE distribution

should be replaced by the Tracy-Widom GOE distribution. A more general description of the

conjectured limiting distributions can be seen in [25, Figure 4]. There is a process level version

of this conjecture though even less is known rigorously; see [26].

The class of models for which appropriate versions and generalizations of this conjecture

are expected to hold is known as the Kardar-Parisi-Zhang (KPZ) universality class. This class

has attracted substantial research interest in the last two decades. See for example the surveys

[25, 42, 75, 76]. The namesake of the class is the Kardar-Parisi-Zhang (KPZ) equation, which

describes the evolution of the free energy of the continuum directed polymer [1, 2]. To define

this process, it is helpful to start by considering the stochastic heat equation with multiplicative

noise, which describes the partition function of the continuum directed polymer:

BtZ “
1

2
B2
xZ ` Z

9W. (2.1.3)
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Here 9W is space-time white noise on RˆR` and for sufficiently nice initial data solutions to

this equation are typically understood to be mild solutions in the sense of Walsh [90]. The

initial conditions Zpx, 0q “ δpxq and Zpx, 0q “ 1 correspond to the point-to-point and point-

to-line models respectively. A formal computation assuming that 9W was a smooth function

shows that h “ logZ should solve the Kardar-Parisi-Zhang equation

Bth “
1

2
B2
xh`

1

2
pBxhq

2 ` 9W. (2.1.4)

We take h “ logZ for Z solving (2.1.3) to be the definition of a solution to (2.1.4). This was

shown to be the physically correct notion of a solution by Bertini and Giacomin in 1997 [10].

A direct definition of an appropriately renormalized solution to (2.1.4) (on TˆR`, rather

than RˆR`) came in 2011 with the Fields Medal winning work of Hairer on the theory

of regularity structures [40, 41]. Recently, an alternative approach in the same setting was

proposed by Gubinelli and Perkowski [39], using the language of paracontrolled distributions.

The KPZ equation itself was recently shown to lie in the universality class [3, Corollary

1.7], in that with Zpx, 0q “ δpxq, for each x P R, 21{3t´1{3plogZpxt2{3, tq ´ t{24 converges to

the Tracy-Widom GUE distribution as tÑ8.

2.1.3 Free energy large deviations and annealed moment Lyapunov expo-

nents

Large deviation theory

Large deviation theory is a branch of probability theory studying sequences of events with

exponentially small probabilities. All of the random variables considered here will take values

in R, so we state the definition of a large deviation principle at this level of generality.

Definition 2.1.2. Given a sequence of real-valued random variables tXnu, we say that the

distributions of tXnu satisfy a large deviation principle with rate rn and good rate function Ip¨q
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if Ip¨q is lower semi-continuous, has compact sub-level sets, and for all Borel sets B

inf
xPB

Ipxq ď lim
nÑ8

´r´1
n logP

`

Xn P B
˘

ď lim
nÑ8

´r´1
n logP pXn P B

oq ď inf
xPBo

Ipxq,

where Bo denotes the interior of B and B denotes the closure.

Two classical results in large deviation theory connect these large deviation rate functions

to exponential moments of (functions of) the sequence of random variables. There is a result

due to Varadhan which shows that if a large deviation principle holds then under a moment

assumption one can recover asymptotics of exponential moments of the random variables.

Lemma 2.1.3 (Varadhan’s Lemma, [29] Theorem 4.3.1). Let φ : R Ñ R be continuous and

suppose that the distributions of tXnu satisfy a large deviation principle with rate rn and good

rate function Ip¨q. Suppose further that for some γ ą 1,

lim
nÑ8

r´1
n logE

”

ernγφpXnq
ı

ă 8.

Then

lim
nÑ8

r´1
n logE

”

ernφpXnq
ı

“ sup
xPR
tφpxq ´ Ipxqu.

There is also a partial converse due to Gärtner and Ellis, which says that under smoothness

conditions the reverse also holds.

Theorem (Gärtner-Ellis Theorem, [29] Theorem 2.3.6). Suppose that for λ P R, the limit

Λpλq :“ lim
nÑ8

r´1
n logE

”

eλrnXn
ı

exists as an extended real number in p´8,8s and that the function λ ÞÑ Λpλq is lower semi-

continuous. Let DΛ “ tλ : Λpλq ă 8u and suppose that its interior, Do
Λ, is non-empty,

0 P Do
Λ, and that Λp¨q is a differentiable function on Do

Λ. If in addition Λ is steep in the sense

that Λ1pλnq Ñ 8 whenever λn is a sequence in Do
Λ converging to a boundary point of Do

Λ,

then the distribution of Xn satisfies a large deviation principle with rate rn and rate function

Λ˚prq “ supλPRtλr ´ Λpλqu.
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Corollary 2.1.4. Suppose that for λ P R, the limit

Λpλq :“ lim
nÑ8

r´1
n logE

”

eλrnXn
ı

exists as a real number and that Λp¨q is a differentiable function on R. Then the distribution

of Xn satisfies a large deviation principle with rate rn and rate function Λ˚prq “ supλPRtλr´

Λpλqu.

Large deviations of the free energy and Lyapunov exponents

There are two interesting regimes for large deviations of the free energy in point-to-point

directed polymers with up-right paths (as in the second frame of Figure 2) when d “ 1 and the

weights tW pi, jqu are i.i.d.. The first is the regime we study, which corresponds to right-tail

large deviations–meaning the regime in which the free energy is unusually large. Heuristically,

one can guess that the correct rate for such large deviations should be rn “ n by viewing the

partition function as an integral over paths. The partition function can become unusually large

if a single path is unusually large. Since there are Opnq sites on a path from p1, 1q to ptns u, nq

and the environment is i.i.d., under mild assumptions direct computation shows that the large

deviations for a single path will occur with rate rn “ n. In contrast, because the weights are

always positive, a large deviation in which the free energy is unusually small constrains all

paths. One might guess that this imposes a constraint on the Opn2q weights that influence

admissible paths from p1, 1q to ptns u, nq and so the rate should be rn “ n2. These large

deviations are more complicated than the right tail large deviations and one can show that the

rate is not quite universal; see [8, 27].

When Xn “ n´1 logZtns u,np1q or Xn “ n´1Ltns u,n and rn “ n, we will refer to the val-

ues of the exponential moments appearing in the Gärtner-Ellis theorem as (annealed moment)

Lyapunov exponents. Computation and estimation of Lyapunov exponents for various general-

izations of (2.1.3) have attracted attention in recent years in connection with the phenomenon
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of intermittency. See for example [16, 24, 56]. Although this is not the focus of this thesis, we

briefly review this connection.

Physical intermittency is the tendency of a field to exhibit extreme clumping, meaning that

the mass of the field is concentrated in a collection of small regions which are separated by large

voids. As will be discussed in Section 2.2.1 below, the partition function in one of the models

studied in what follows (the O’Connell-Yor model) can be viewed as a spatial discretization of

(2.1.3). The precise definition of this partition function is given in (2.2.2). Figure 3 shows a

single simulation of the partition function as a field and along a single spatial line in this model

to illustrate the phenomenon. As is suggested by Figure 3, typical values of the (normalized)

(a) e´
3
2
tZ0,kp0, tq for k ď 75, t ď 150 (b) e´

3
2
tZ0,75p0, tq, t ď 150

Figure 3: A simulation of the normalized partition function in the O’Connell-Yor polymer.

partition function are small. Indeed from the free energy limit for this model, one can see that

the typical values of the partition function for large enough n should be less than one, because

the normalized limiting free energy is strictly negative. See for example Lemma 2.2.1 below.

The largest peaks in this simulation are on the order 104, while the largest peaks along the

top line are on the order 101. Repeating simulations of this type suggests that the model is

typically intermittent in the sense that the largest peaks contain most of the mass (measured by

taking space-time averages) of the field. It is shown below that this partition function satisfies
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the mathematical definition of intermittency, which we now introduce with an example. This

was also previously shown in [16].

A concrete theorem proving mathematical intermittency in the case of (2.1.3) was recently

proven in the case that Zpx, 0q “ δ0pxq in [16].

Theorem ([16], Appendix A.2). Suppose Zpx, tq is the mild solution to (2.1.3) with initial

data Zpx, 0q “ δ0pxq. Then for all λ P N,

lim
tÑ8

1

t
logE

”

Zp0, tqλ
ı

“
λ3 ´ λ

24
.

A similar result for other initial data can be found in [11, 21]. Mathematical intermittency,

as described for example in the book of Carmona and Molchanov [20], is defined by the con-

dition that the function λ ÞÑ λ´1Λpλq is strictly increasing on the interval r2,8q. Under some

ergodicity hypotheses, one can show that if this condition holds, then it will imply a separation

of scales similar to what is seen in Figure 3.

Our goal is to explicitly compute large deviation rate functions at rate n and to obtain

the associated moment Lyapunov exponents. For the reasons discussed above, in the positive

temperature temperature models, which are in some sense discretizations of (2.1.3), results of

this type can be viewed as giving some information about intermittency. In both the positive

and zero temperature models, computations of these rate functions and Lyapunov exponents

provide a more complete picture of the behavior of models in the KPZ class and give some

insight into what these models look like when they are not behaving as one might expect based

on ideas like Conjecture 2.1.1.
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2.2 Models considered and statements of results

This dissertation focuses on a class of models which are “solvable” in the sense that explicit

computation of many quantities of interest is possible. This condition is extremely restrictive:

only a handful of such models are known and they are only known when d “ 1. Before turning

to the proofs, we begin by introducing the specific models that are studied in this dissertation,

recalling some key results about these models, and stating the main results that are proven in

what follows.

2.2.1 The O’Connell-Yor polymer

The O’Connell-Yor polymer model was originally introduced in [71] in connection with a gen-

eralization of the Brownian queueing model. Based on the work of Matsumoto and Yor [67],

O’Connell and Yor were able to show the existence of a stationary version of this model sat-

isfying an analogue of Burke’s theorem for M/M/1 queues. This property forms the basis

for the computation of the large deviation rate function in Section 2.4. Subsequent work on

the representation theoretic underpinnings of the exact solvability of this model can be found

in the work of Borodin and Corwin on Macdonald processes [15] and the work of O’Connell

connecting this polymer to the quantum Toda lattice [70].

Concretely, it is a semi-discrete model of a directed polymer in a random environment where

the random walk paths are given by the sample paths of a Poisson bridge and the random

environment is space-time white noise on R`ˆZ`. Let tBiu
8
i“0 be a family of independent

two-sided standard Brownian motions. For t P R` and n P Z` let P ref
t,np¨q denote the law of a

Poisson bridge on r0, ts with ηp0q “ 0 and ηptq “ n. In this model the ‘energy’ of a path is

given by

Hpηq “

ż t

0
Bηpsqpdsq “

n
ÿ

i“0

Bipti`1q ´Biptiq
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where ttiu denotes the collection of jumps of ηp¨q on rs, ts, with the convention that t0 “

0, tn`1 “ t. See Figure 4 for an example of a path drawn from P ref
t,7 p¨q.

0 t1 t2 t3 t4 t5 t6 t7 t
0

1

2

3

4

5

6

7

Figure 4: A sample path of a Poisson bridge with ηp0q “ 0 and ηptq “ 7 and jumps at ti

The point to point polymer measure is given by

µβt,npdηq “ Zt,npβq
´1eβHpηqP ref

t,npdηq.

Note that a Poisson bridge η on r0, ts with ηp0q “ 0 and ηptq “ n is uniquely identified by

the locations of its n jumps, ttiu
n
i“1, and that these jump are uniformly distributed on the Weyl

chamber An,t “ t0 ă s1 ă ¨ ¨ ¨ ă sn ă tu. This model appears with several slightly different

definitions of the reference measure in the literature. For example, following [71], we take the

convention that Bips, tq “ Biptq ´Bipsq and define

Znpβq “

ż

0ăs1ă¨¨¨ăsn´1ăn

exp rβ pB0p0, s1q ` ¨ ¨ ¨ `Bnpsn´1, nqqs ds1 . . . dsn´1. (2.2.1)

Computation shows that Zn,npβq “ |An,n|
´1Znpβq. We can think of Znpβq as being the

partition function for a polymer measure where we re-weight every path by multiplying by a

deterministic constant.
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Our primary interest is in the behavior of Znpβq for large n. In order to highlight various

features of this model, we will introduce various other normalizations of the polymer measure

and partition function in what follows. We begin by considering the partition functions for

more general paths, without defining the associated polymer measures. Let j, n P Z` and

u, t P R`, where j ă n and u ď t. Set

Zj,npu, tq “

ż

uăujă¨¨¨ăun´1ăt

eBjpu,ujq`
řn´1
i“j`1Bipui´1,uiq`Bnpun´1,tqduj . . . dun´1. (2.2.2)

For the case j “ n, we define

Zj,jpu, tq “ eBjpu,tq. (2.2.3)

We will refer to the j, n variables as space and the u, t variables as time. Translation invariance

of Brownian motion and our assumption that the environment is i.i.d. immediately imply that

the distribution of these partition function is shift invariant. It follows from Brownian scaling

that for β ą 0 and n ą 1 we have

Znpβq
d
“ β´2pn´1qZ0,np0, β

2nq.

Distributional results for partition functions of the form Zj,npu, tq can then be translated into

results for Znpβq using this identity.

The free energy for (2.2.1) was computed in [69]. We have

Lemma 2.2.1 ([69]). Fix s, t P p0,8q. Then the almost sure limit

ρps, tq “ lim
nÑ8

1

n
logZ1,tnsup0, ntq

exists and is given by

ρps, tq “ min
θą0

tθt´ sΨ0pθqu “ tΨ´1
1

ˆ

t

s

˙

´ sΨ0

ˆ

Ψ´1
1

ˆ

t

s

˙˙

.
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Here, for θ ą 0, Ψ0pθq “
d
dθ log Γpθq is the logarithmic derivative of the Gamma function,

which is typically referred to as the Digamma function. The polygamma functions are recur-

sively defined for n P N by Ψnpθq “
d
dθΨn´1pθq. There is a result analogous to Lemma 2.2.1

for the almost sure limit of n´1Znpβq, which is also presented in [69]. The fluctuation result

for this model is due to Borodin, Corwin, and Ferrari [17].

Theorem ([17], Theorem 1.3). Let t ą 0 and r P R, then

lim
nÑ8

P

¨

˝

logZ1,np0, ntq ´ nρp1, tq
`

´1
2Ψ2

`

Ψ´1
1 ptq

˘˘

1
3 n

1
3

ď r

˛

‚“ F2prq

where F2prq is the CDF of the Tracy-Widom GUE distribution.

Before discussing the previous work on large deviations, it is helpful to introduce another

normalization of the partition function. Direct computation shows that if we define Xnptq “

Z0,np0, tq, then the system tXnu
8
n“0 solves

dXn “

ˆ

Xn´1 `
1

2
Xn

˙

dt`XndBn

Xnp0q “ 1tn“0u.

in the Ito sense. In particular, if we define Ynptq “ e´
3
2
tXnptq then Ynptq solves

dYn “ pYn´1 ´ Ynq dt` YndBn “ ´∇Yndt` YndBn

Ynp0q “ 1tn“0u.

where ∇ is the forward difference operator on Z`. The last expression shows that Yn can be

viewed as the solution of the following ‘totally asymmetric’ analogue of the stochastic heat

equation:

BtY “ ´∇Y ` YW (2.2.4)

Y p0, nq “ δtn“0u
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where W is space-time white noise on R`ˆZ`. Up to a deterministic multiplicative factor,

we may therefore view the partition function (2.2.2) as giving the Feynman-Kac solution to

the totally asymmetric stochastic heat equation (2.2.4), where the discrete Laplacian has been

replaced by the forward difference operator. In [16], the authors studied the partition function

in this model by taking this perspective. Using an analogue of the coordinate Bethe ansatz,

they computed a contour integral representation for the integer moments of Znpβq. Asymptotic

analysis then allowed them to compute the integer moment Lyapunov exponents.

Theorem ([16], Theorem 1.8). For any s ą 0 and k P N,

lim
nÑ8

1

n
logE

”

Z0,tns up0, nq
k
ı

“ min
zą0

"

k2

2
` kz ´ s log

Γpz ` kq

Γpzq

*

.

Note that the result in [16] corresponds to a limit of Ytnν upnq, which accounts for the extra

factor of ´3
2k in the statement of the theorem in that paper. In [16, Appendix A], the authors

conjectured that this result should extend to k ą 0 as part of a verification that the replica

computation of the free energy recovers the rigorous result of [69] for this model. Recalling

the notation ρps, tq from Lemma (2.2.1), the main result of the author’s paper [49] is that this

conjecture is correct. The following results are [49, Theorems 2.2 and 2.3].

Theorem 2.2.2. For any s, t ą 0 and λ P R,

lim
nÑ8

1

n
logE

”

Z0,tns up0, ntq
λ
ı

:“ Λs,tpλq “

$

’

’

’

&

’

’

’

%

λρps, tq λ ď 0

min
zą0

"

t

ˆ

λ2

2
` λz

˙

´ s log
Γpz ` λq

Γpzq

*

λ ą 0

.

An application of the Gärtner-Ellis theorem then leads to the following result.

Theorem 2.2.3. For any s, t ą 0, the distributions of n´1 logZ0,tns up0, ntq satisfy a large

deviation principle with rate n and convex good rate function

Is,tprq “

$

’

’

’

&

’

’

’

%

8 r ă ρps, tq

max
λ,zą0

"

rλ´ t

ˆ

λ2

2
` λz

˙

` s log
Γpz ` λq

Γpzq

*

r ě ρps, tq

.
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One can check that the max and min in the previous expressions have unique extremizers

by checking that the functions in question are strictly convex and concave respectively and

have compact sub- and super-level sets.

Remark 2.2.4. Take r ą ρps, tq “ minttθ ´ sΨ0pθqu, so that

Is,tprq “ max
λ,zą0

"

rλ´ t

ˆ

λ2

2
` λz

˙

` s log
Γpz ` λq

Γpzq

*

The minimizing pair pz‹, λ‹q :“ pz‹prq, λ‹prqq solves

r “ tpλ‹` z‹q ´ sΨ0pz‹`λ‹q, 0 “ ´t λ‹`sΨ0pz‹`λ‹q ´ sΨ0pz‹q.

Combining these conditions, we see that z‹ and z‹`λ‹ both solve

r “ tpz‹`λ‹q ´ sΨ0pz‹`λ‹q, r “ t z‹´sΨ0pz‹q.

This system has an interpretation: tθ ´ sΨ0pθq is the free energy in the stationary point

to point O’Connell-Yor polymer with parameter θ, which will be introduced shortly. The

function θ ÞÑ tθ ´ sΨ0pθq is strictly convex with a unique minimum at θ “ Ψ´1
1 pt{sq and, as

noted above, at this point it is equal to the shape function ρps, tq. To find the minimizers of

the rate function, one then finds the two solutions to r “ tz ´ sΨ0pzq. The smaller of the two

solutions is z‹ and the difference between the solutions is λ‹. Because tz´sΨ0pzq is minimized

at z‹p0q :“ Ψ´1
1 pt{sq with value ρps, tq, we have

tpz‹p0q ` δq ´ sΨ0pz‹p0q ` δq “ ρps, tq ´
1

2
sΨ2pz‹p0qqδ

2 ` opδ2q.

From this we see that for ε ą 0 small, the solutions to ρps, tq ` ε “ tz ´ sΨ0pzq are given by

z‹p0q ˘

c

´
1

2
sΨ2pz‹p0qq

´1
?
ε` op

?
εq.

It follows that

λ‹pρps, tq ` εq “ 2

c

´
1

2
sΨ2pz‹p0qq

´1
?
ε` op

?
εq.
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By convex duality, we also have a representation Is,tpρps, tq ` εq “
şε
0 λ‹pρps, tq ` xqdx, from

which it follows that

Is,tpρps, tq ` εq “

ż ε

0
λ‹pρps, tq ` xqdx

“
4

3

c

´
1

2
sΨ2pΨ

´1
1 pt{sqq

´1

ε
3
2 ` o

´

ε
3
2

¯

.

This is formally consistent with the observed n1{3 fluctuations and the leading order right tail

asymptotics of the Tracy-Widom GUE distribution. As noted above, this limit was proven in

[17, Theorem 1.3].

The proofs of Theorems 2.2.2 and 2.2.3 follow an approach introduced by Seppäläinen in

[81] and subsequently applied in [80, 37, 32]. Georgiou and Seppäläinen used this method

to compute the large deviation rate function with normalization n for the free energy in the

related log-gamma polymer in [37]. The key technical condition making this scheme tractable

is the independence provided by the Burke property, which the log-gamma polymer shares

with the O’Connell-Yor polymer.

The Burke property and the stationary O’Connell-Yor model

For θ ą 0, t P R and n P Z` define point-to-point partition functions by

Zθnptq “

ż

´8ău0ău1ă¨¨¨ăun´1ăt

eθu0´B0pu0q`B1pu0,u1q`¨¨¨`Bnpun´1,tqdu0 . . . dun´1,

with the convention that

Zθ0ptq “ eθt´B0ptq.

We can think of Zθnptq as a modification of the polymer in the previous subsection where we

add a spatial dimension, start in the infinite past, and modify the Brownian potential on line

zero. Sample paths η in this modified model are non-decreasing, take values in Z`, have jumps

of size one, and satisfy ηpsq “ 0 for all s sufficiently small, ηptq “ n. See Figure 5.
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-8 t

0

n

t0 t1 t2 . . . tn´1

Figure 5: A sample path in the stationary O’Connell-Yor polymer model

For s, t ą 0 and n sufficiently large that ns ě 1, we obtain a decomposition of Zθ
tnsu
pntq

into terms that involve the partition functions we are studying by considering where paths

leave the potential of the Brownian motion B:

Zθtnsupntq “

ż nt

0
Zθ0puqZ1,tnsupu, ntqdu`

tnsu
ÿ

j“1

Zθj p0qZj,tnsup0, ntq. (2.2.5)

This expression also leads to the interpretation of Zθnptq as a modification of the point-to-

point partition function discussed in the previous subsection where we have added boundary

conditions.

We will refer to this model as the stationary polymer, where the term stationary comes

from the fact that it satisfies an analogue of Burke’s theorem for M/M/1 queues. This fact

is one of the main contributions of [71] and we refer the reader to that paper for a more in

depth discussion of the connections to queueing theory. We follow the notation of r83s, which

contains the version of the Burke property that is used in this paper. Define Y θ
0 ptq “ Bptq and
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for k ě 1 recursively set

rθkptq “ log

ż t

´8

eY
θ
k´1pu,tq´θpt´uq`Bkpu,tqdu,

Y θ
k ptq “ Y θ

k´1ptq ` r
θ
kp0q ´ r

θ
kptq, (2.2.6)

Xθ
kptq “ Bkptq ` r

θ
kp0q ´ r

θ
kptq;

then we have

Lemma 2.2.5 ([83], Theorem 3.3). Let n P N and 0 ď sn ď sn´1 ď ¨ ¨ ¨ ď s1 ă 8. Then over

j, the following random variables and processes are all mutually independent.

rjpsjq and tXjpsq : s ď sju for 1 ď j ď n, tYnpsq : s ď snu,

and tYjpsj`1, sq : sj`1 ď s ď sju for 1 ď j ď n´ 1.

Furthermore, the Xj and Yj processes are standard Brownian motions, and e´rjpsjq is Γpθ, 1q

distributed.

An induction argument shows that

n
ÿ

k“1

rθkptq “ Bptq ´ θt` logZθnptq. (2.2.7)

As we will see shortly, expression (2.2.5) would lead to a variational formula for the right tail

rate function we are looking for in terms of the right tail rate function of Zθ
tnsu
pntq. This right

tail rate function would be tractable using (2.2.7) if Bpntq were independent of
řtnsu

k“1 r
θ
kpntq;

as this is not the case, it is convenient to rewrite (2.2.5) in a form that separates these two

terms:

e
řtnsu

k“1 r
θ
kpntq “ n

ż t

0

Zθ0pnuq

Zθ0pntq
Z1,tnsupnu, ntqdu`

tnsu
ÿ

j“1

Zθj p0q

Zθ0pntq
Zj,tnsup0, ntq. (2.2.8)

Having proven Theorem 2.2.2 using (2.2.8), we can take advantage of (2.2.5) to prove the

corresponding result for the stationary model. This result can be compared with Theorem
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2.2.11 and [37, Theorem 2.11], where the corresponding result for the stationary log gamma

polymer was proven. The structure of the terms appearing in the maximum below is the same

as in those results.

Theorem 2.2.6. Fix θ P p0,8q, then for any λ P p0,8q

Λθs,tpλq :“ lim
nÑ8

n´1 logE

„

´

Zθtns upntq
¯λ



“

$

’

’

&

’

’

%

!

t
´

λ2

2 ` θλ
¯

´ s log Γpλ`θq
Γpθq

)

_

!

t
´

´λ2

2 ` θλ
¯

´ s log Γpθ´λq
Γpθq

)

λ ă θ

8 λ ě θ

Remark 2.2.7. For fixed s, t, the function

z ÞÑ t

ˆ

λ2

2
` zλ

˙

´ s log
Γpz ` λq

Γpzq

is strictly convex on z P p0,8q and has compact sublevel sets, so unique minimizers exist. The

terms appearing in the maximum in Theorem 2.2.6 are the values of this function at z “ θ

and z “ θ ´ λ. It then follows that for Λs,t as in Theorem 2.2.2 and Λθs,t as in Theorem 2.2.6

and fixed λ ą 0

min
θą0

Λθs,tpλq ą Λs,tpλq.

This is in constrast to the behavior of the free energies, where we have

ρps, tq “ min
θą0

tθt´ sΨ0pθqu

and where, by (2.2.7), θt´ sΨ0pθq “ limn´1 logZθ
tns u

pntq. The same phenomenon is observed

in the log gamma polymer [37, Remark 2.15] and for Brownian directed percolation in Remark

2.2.12.

2.2.2 Brownian directed percolation

Let Znpβq be given by (2.2.1). One can see using Laplace’s method that

lim
βÑ8

β´1 logZnpβq “ max
0ăs1ă¨¨¨ăsn´1ăn

tB0p0, s1q ` ¨ ¨ ¨ `Bnpsn´1, nqu .
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The expression on the right hand side is the last passage time for a directed last-passage per-

colation model in a white noise random environment on R`ˆZ`, which we will call Brownian

directed percolation. Here the paths are the same as paths in the O’Connell-Yor polymer;

recall Figure 4. Introduce the notation Lnptq for this random variable:

Lnptq “ max
0ăs1ă¨¨¨ăsn´1ăt

tB0p0, s1q ` ¨ ¨ ¨ `Bnpsn, tqu . (2.2.9)

As with the O’Connell-Yor polymer, it is convenient to have a family of last passage times

for all point-to-point paths. To that effect, we define the last passage time from pu, kq to pt, nq

by

Lk,npu, tq “ sup
u“sk´1ăskă¨¨¨ăsn´1ăsn“t

$

&

%

n
ÿ

j“k

Bjpsj´1, sjq

,

.

-

.

A distributional equivalence between the last passage time Lnp1q and the largest eigenvalue

of a GUE matrix was discovered independently by Baryshnikov [7, Theorem 0.7] and Gravner,

Tracy, and Widom [38], both in 2001. Although we will not use this fact, it is interesting to

note that this extends to the process level. It is shown in [72] that Lnp¨q has the same law

as the largest eigenvalue process of an Hermitian Brownian motion. With this connection,

the analogue of the free energy limit (in distribution and hence in probability) for this model

follows from classical results in random matrix theory. The almost sure version of this limit

for Lnp¨q is due to Hambly, Martin, and O’Connell [44].

Theorem ([44], Theorem 8). Almost surely, for all t ą 0,

lim
nÑ8

Lnpntq

n
“ 2

?
t.

Note that by Brownian scaling, Lnptq
d
“
?
tLnp1q. Using the distributional equivalence from

[7, 38] and this scaling relation, the fluctuations around this limit correspond to the original

Tracy-Widom GUE limit studied by Tracy and Widom in their seminal paper [87].
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Theorem. [87] For t ą 0 and r P R,

lim
nÑ8

P

˜

Lnpntq ´ 2n
?
t

?
tn

1
3

ď r

¸

“ F2prq

where F2prq is the CDF of the Tracy-Widom GUE distribution.

Once again through the GUE connection, large deviation results are known at both rate

n and n2. These results depend on the large deviation principle for the empirical distribu-

tion of a Gaussian Unitary Ensemble matrix, which is due to Ben Arous and Guionnet [10,

Theorem 1.3]. The right tail large deviation rate function can then be derived as in the compu-

tation of the corresponding rate function for the largest eigenvalue of a Gaussian Orthogonal

Ensemble matrix in [9, Theorem 6.2]. The precise expression here is taken from the lecture

notes of Ledoux on concentration inequalities for largest eigenvalues [64, (1.25)] and again uses

Brownian scaling.

Theorem 2.2.8. For any r ě 0,

lim
nÑ8

´n´1 logP
`

n´1Lnpnq ě 2` r
˘

“ 4

ż r
2

0

a

xpx` 2qdx

In Section 2.3, we present a fairly short proof of Theorem 2.2.8 using ideas which have

previously been used to derive large deviation principles for the free energy of certain solvable

positive and zero temperature directed polymer models in [32, 37, 49, 80, 81]. This approach

avoids the GUE connection entirely and so provides a directed polymer proof of a result about

a directed polymer model. This result plays a role in the computation of the rate n large

deviation rate function for the O’Connell-Yor polymer free energy in [49] (and thus in Section

2.4). The argument in this paper then has the benefit of making the directed polymer large

deviation literature a bit more self contained. The proof presented below shows that the limit

in the statement of the theorem exists by subadditivity argument, from which we immediately

derive the following corollary.



27

Corollary 2.2.9. For any n and r ě 0,

P
`

n´1Lnpnq ě 2p1` rq
˘

ď e´nJGUEprq.

The result in Corollary 2.2.9 is also known [64, (2.6)] and can be derived via a weak limit

procedure from the corresponding right tail estimates in [51, 80] (which can be derived as

in this paper) for the i.i.d. exponential or geometric last passage percolation models. See

the discussion after the statement of [64, Proposition 2.1]. Our approach is more direct. As

in [51, 80], the result arises for free from the proof of Theorem 2.2.8. This implies a small

deviation estimate [64, (2.7)] for the largest eigenvalue of a Gaussian Unitary Ensemble matrix

of the type studied in [5, 65].

The key point making this polymer point of view tractable is the existence of an analogue

of Burke’s theorem from queueing theory for this model. This connection also implies the

existence of a stationary polymer model, for which a result similar to Theorem 2.2.8 can be

derived.

The Burke property for a stationary Brownian queue

As was the case for the O’Connell-Yor polymer, the key point which will make computation

of the large deviation rate function tractable is an analogue of Burke’s theorem from queueing

theory. In fact, the result for Brownian directed percolation is a consequence of the classi-

cal Burke theorem after an application on Donsker’s principle. See [45] or [71, Theorem 2].

Following the notation in [71], for each µ ą 0, we define

q1ptq “ sup
´8ăsďt

tB0ps, tq `B1ps, tq ´ µpt´ squ

d1ps, tq “ B0ps, tq ` q1psq ´ q1ptq

and recursively for k ě 2

qµk ptq “ sup
´8ăsďt

tdk´1ps, tq `Bkps, tq ´ µpt´ squ
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dkps, tq “ dk´1ps, tq ` q
µ
k psq ´ q

µ
k ptq.

These have the interpretation as the ‘departures’ and ‘queue length’ processes for the server at

station k in a stationary queueing Brownian queueing model. The version of Burke’s theorem

which we will need follows from a result in [71].

Theorem ([71], Theorem 2). For each t ě 0, the family tqµk ptqu
8
k“1 consists of i.i.d. exponential

random variables with mean µ´1.

We can extend the last pasage percolation model to paths like those considered in the

stationary O’Connell-Yor model; see Figure 5. In this new environment, we define a family of

last passage times by

Lµnptq “ sup
´8ăs0ăs1ă¨¨¨ăsn´1ăsn“t

#

µs0 ´B0ps0q `

n
ÿ

j“1

Bjpsj´1, sjq

+

“ sup
´8ăs0ăt

tµs0 ´B0ps0q ` L1,nps0, tqu .

With these definitions, an induction argument shows that

n
ÿ

k“1

qµk ptq “ B0ptq ´ µt` L
µ
nptq. (2.2.10)

In particular,
řn
k“1 q

µ
k p0q “ Lµnp0q. We think of paths in this extended directed percolation

model as being indexed by the points where they exit the lines t0, . . . , nu. By grouping paths

into those that exit line 0 before time 0 and those that exit after, we obtain

Lµnptq “ max
0ďs0ďt

tµs0 ´B0ps0q ` L1,nps0, tqu _ max
1ďjďn

!

Lµj p0q ` Lj,np0, tq
)

. (2.2.11)

The decomposition in (2.2.11) can be viewed as describing a ‘stationary’ point-to-point poly-

mer on R`ˆZ` with i.i.d. exponential boundary conditions tLµn`1p0q ´ Lµnp0qunPN on the

vertical axis and drifted Brownian boundary conditions tµt´B0ptqutě0 on the horizontal axis.

Stationarity here is in the sense that, for example, tLµn`1ptq´L
µ
nptqunPN is an i.i.d. exponential
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family for each t ą 0. We will combine the queueing picture with this finite n variational

problem in order to obtain a variational problem for the Lyapunov exponents in this model

which will allow us to prove Theorem 2.2.8.

Remark 2.2.10. Take r ą 2. We will show below that

lim
nÑ8

´n´1 logP
`

n´1Ltns upntq ě r
˘

“ max
λ,zą0

"

λr ´ t

ˆ

1

2
λ2 ` zλ

˙

´ s log
z ` λ

z

*

.

One can check that a unique minimizing pair pz‹, λ‹q :“ pz‹prq, λ‹prqq exists and that this pair

solves

r “ tpλ‹` z‹q `
s

z‹`λ‹
, 0 “ ´t λ‹´

s

z‹`λ‹
`

s

z‹
.

We may combine these expressions to see that z‹ and z‹`λ‹ solve

r “ tpλ‹` z‹q `
s

z‹`λ‹
, r “ t z‹`

s

z‹
.

This structure is the same as was observed in Remark 2.2.4 for the O’Connell Yor polymer. For

fixed µ ą 0, tµ`sµ´1 is the time constant in direction ps, tq for the stationary Brownian directed

percolation model with parameter µ. To find the minimizers for the variational problem, one

then finds the two solutions to r “ tz ` sz´1. The smaller of the two is z‹ and the difference

is λ‹. We can compute these exactly and they are given by z‹ “ p2tq
´1pr ´

?
r2 ´ 4stq and

λ‹ “ t´1
?
r2 ´ 4st. Convex duality then implies that

lim
nÑ8

´n´1 logP
`

n´1Ltns upntq ě r
˘

“

ż r

2
?
st
t´1

a

x2 ´ 4stdx.

Changing variables gives the expression in the statement of Theorem 2.2.8.

It is convenient to write (2.2.11) in a way that separates the terms
řn
k“1 q

µ
k ptq and B0ptq´µt,

which are not independent:

n
ÿ

k“1

qµk ptq “ max
0ďsďt

tµps´ tq `B0ptq ´B0psq ` L1,nps, tqu (2.2.12)
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_ max
1ďjďn

#

B0ptq ´ µt`

j
ÿ

k“1

qµk p0q ` Lj,np0, tq

+

.

The key point in this decomposition is that for each s0 ą 0, the random variables B0ptq´B0ps0q

and L1,nps0, tq are independent and for each j P t1, . . . , nu, the random variables B0ptq,

řj
k“1 q

µ
k p0q, and Lj,np0, tq are mutually independent. This independence can be seen by recall-

ing that the Brownian motions tBiu
8
i“0 are independent and observing that σpBipsq : s ď 0, i P

Z`q and σpBipsq : s ě 0, i P Z`q are independent. This decomposition will lead to a variational

problem which can be used to prove Theorem 2.2.8. Once we have (re-)proven Theorem 2.2.8,

we can bootstrap that result and the decomposition in (2.2.11) to compute the corresponding

positive moment Lyapunov exponents for the stationary model. We will prove the following

Theorem 2.2.11. For each µ, s, t ą 0 and λ ě 0,

lim
nÑ8

1

n
log E

”

e
λLµ

tns u
pntq

ı

“

$

’

’

&

’

’

%

!

t
´

λ2

2 ` µλ
¯

` s log µ`λ
µ

)

_

!

t
´

´λ2

2 ` µλ
¯

` s log µ
µ´λ

)

λ ă µ

8 λ ě µ

.

This result should be compared to Theorem 2.2.6 and [37, Theorem 2.11], where the corre-

sponding result for the stationary log gamma polymer was proven. The structure of the terms

appearing in the maximum above is the same as in those results.

Remark 2.2.12. Theorem 2.2.8 implies (and we show below) that for s, t, λ ą 0

lim
nÑ8

1

n
log E

”

eλLtns upntq
ı

“ min
zą0

"

t

ˆ

1

2
λ2 ` zλ

˙

` s log
z ` λ

z

*

,

where the function being minimized is strictly convex with a unique minimizer. The term

appearing in Theorem 2.2.11 for λ ă µ is the maximum of the values of this function at z “ µ

and z “ µ´ λ. It follows that

lim
nÑ8

1

n
log E

”

eλLtns upntq
ı

ă lim
nÑ8

1

n
logE

”

e
λLµ

tns u
pntq

ı
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for all µ ą λ. This is in contrast to the behavior of the time constants, which satisfy (as is

expected to be the case in general)

2
?
st “ min

µą0

"

µt`
s

µ

*

.

The left hand side is the limit of n´1Ltns upntq and the right hand side is the minimum of the

limits of n´1Lµ
tns u

pntq, where the minimizer is µ “
a

s{t. The same phenomenon is observed

in [37, Remark 2.15]. See also Remark 2.2.7.

Remark 2.2.13. By homogeneity, we may set s “ 1. The condition for the right hand side

of the expression in Theorem 2.2.11 to be the maximum of the two terms for a given λ ă µ

is tλ2 ă ´ logp1 ´ pλ{µq2q. Noting that x ă ´ logp1 ´ xq for 0 ă x ă 1, this is true for

any such λ if µ ď
a

1{t. If µ ą
a

1{t, then there is a transition at the value of λ for which

tλ2 “ ´ logp1´pλ{µq2q. This value can be expressed explicitly in terms of the principal branch

of the Lambert W function.

An argument parallel to the proof of Theorem 2.2.11 also allows a computation of the

corresponding right tail rate function. Denote the infimal convolution f ˝ gpxq “ infytfpx ´

yq ` gpyqu. We have

Theorem 2.2.14. For all s, t, µ ą 0 and x P R, then

Jµs,tpxq :“ lim
nÑ8

´n´1 logP
´

Lµ
tns u

pntq ě nx
¯

“ inf
0ărăt

tgµr ˝ Js,t´rpxqu ^ inf
0ăuăs

thµu ˝ Js´u,tpxqu .

In particular, for µ ď
a

s{t,

Jµs,tpxq :“ p2tq´1

ż x

tµ`sµ´1

a

y2 ´ 4st` p2tµ´ yqdy1txětµ`sµ´1u.

Remark 2.2.15. For simplicity restrict to s “ t “ 1 and consider only 0 ă µ ď 1. Then for

such µ we have

lim
nÑ8

´n´1 logP pLµnpnq ě nrq “
1

2

ż r

µ`µ´1

a

x2 ´ 4´ px´ 2µqdx1trěµ`µ´1u.
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Substituting r “ µ ` µ´1 ` ε for ε ą 0 small, the leading order small ε asymptotics of this

function are µ2p2p1´ µ2qq´1ε2 if µ ă 1 and 2{3ε3{2 if µ “ 1. This is consistent with Gaussian

fluctuations away from the characteristic direction and KPZ type fluctuations in the charac-

teristic direction for the stationary model. The restrictions to s “ t “ 1 are without loss of

generality because of homogeneity and the observation that for µ, t, a ą 0, aLµnptq
d
“ L

µ{a
n pa2tq.

2.2.3 Inhomogeneous exponential last passage percolation

The first directed polymer models for which Conjecture 2.1.1 were verified are the zero tem-

perature point-to-point (last passage percolation) models in which the environment tW pi, jqu

are i.i.d. with exponential or geometric marginals. This result is due to Johansson [51] and the

same paper addresses left and right tail large deviations for these models. Models equivalent

to these were studied prior to [51]. For example, through a combinatorial map these models

can be shown to be equivalent to the totally asymmetric simple exclusion process (TASEP)

run in continuous or discrete time respectively [82]. We will discuss the mapping connecting

these models shortly. Since the models with i.i.d. exponential or geometric weights are so well

understood, it is natural to ask whether one can relax some of the assumptions on the weights

while still preserving exact solvability. This turns out to be the case.

Take two sequences pa,bq with a “ paiqiě1, b “ pbjqjě1, and ai, bj ą 0. If the family

tW pi, jqu are independent with the marginal distributions of W pi, jq being either exponentially

distributed with mean pai`bjq
´1 or geometrically distributed with mean eai`bj , then the model

remains exactly solvable. In fact, as observed by Johansson in 2001 [52], the distribution

function of the last passage time in the geometric model can still be expressed in terms of the

Schur measure introduced by Okounkov in [74]. Borodin and Peché [18] noted that one can

take limits from geometric variables to exponential variables to obtain a continuous version

of the Schur measure which gives the cumulative distribution function of the inhomogeneous
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exponential model. The same object appeared previously in [34].

One could use the explicit formulas coming from the connection to the Schur measure to

prove large deviation results for these models. We take a different perspective. As mentioned

above, the i.i.d. exponential and geometric models are connected to a variety of classical models

in probability. Among these models is the M/M/1 queue. It was observed in [6, Theorem

3.1] that a version of Burke’s theorem for the M/M/1 queue implies the existence of a last

passage percolation model in which the vertical and horizontal increments of the last passage

times have strong independence properties. This independence structure carries over to the

inhomogeneous setting we consider.

In order to have interesting limit theorems, we need to place some restrictions on the

parameters ai and bj . To see this, note if the parameters tend to zero too quickly (for example,

if ai “ bi “ i´2), then the normalized last passage times will not even be tight, much less

have almost sure limits. It is natural in this situation to draw parameter sequences randomly

from appropriate ergodic distributions. We consider two cases. We refer to the model where

we condition on the parameter sequences as quenched. In this case, the results that follow are

true under fairly mild ergodicity assumptions on the joint distribution of pa,bq. We call the

model obtained by averaging over the distribution of pa,bq annealed. In this case, our results

are only valid under the assumptions that a and b are independent i.i.d. sequences.

In the quenched model described above, the weights at different sites are independent

but (typically) not identically distributed exponential random variables. In contrast, in the

annealed model weights along rows and columns share parameters and so are not independent.

See Figure 6. For example, one can check directly that the covariance of W pi, jq and W pi, j1q

for j ‰ j1 in the annealed model is VarpErpa1 ` b1q
´1|a1sq. This long-range dependence has a

large impact on the behavior of the model.
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W pi, jq ind.
„ Exppai ` bjq

a1 . . . ai . . .

b1

...

bj

...

a1 . . . ai . . .

b1

...

bj

...

Figure 6: The inhomogeneous exponential environment, drawn as a growth model with weights
assigned to lattice of squares, rather than the points of a lattice. In the annealed model, the
weights share parameters along rows and columns and because of this are not independent.

In the language of particle systems, this corresponds to a totally asymmetric simple exclu-

sion process with particle-wise and hole-wise inhomogeneity. The map which connects the two

models is as follows. The exclusion process lives on Z and begins with particles at the sites

i ď 0 and holes at the sites i ą 0. We label the particles from right to left and the holes from

left to right with the natural numbers. The last passage time Gpm,nq is the time at which

particle m and hole n interchange. In terms of dynamics, when particle m is immediately

to the left of hole n, they interchange positions with rate an ` bm. One can check that the

process defined in this way is Markov because the jump rates are exponential. The case when

ai “ bi “
1
2 for all i is exactly the usual totally asymmetric simple exclusion process where

particles move to the right at rate one, subject to the exclusion rule.

Point to point model

In the analysis of this model, we work in a cannonical setting. Denote by W pi, jq the projection

RN2

` Ñ R` onto the coordinate pi, jq for i, j P N. For any sequences a “ pa1, a2, . . . q,b “
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pb1, b2, . . . q taking values in p0,8q, we define Pa,b to be the product measure on RN2

` satisfying

Pa,bpW pi, jq ě xq “ e´pai`bjqx for i, j P N and x ě 0.

We will draw the sequences pa,bq randomly from a distribution µ on RN
`ˆRN

`. For k P Z`,

let τk denote the shift pcnqnPN ÞÑ pcn`kqnPN. In all of the results that follow, we make the

following assumptions on pa,bq. We assume that a and b are stationary sequences under µ.

We assume further that µ is separately ergodic with respect to τk ˆ τl for k, l P N. This means

that if k, l P N and B Ă RN
`ˆRN

` is a Borel set with pτk ˆ τlq
´1pBq “ B then µpBq P t0, 1u.

The annealed distribution P is given by PpBq “ E rPa,bpBqs for any Borel set B Ă RN2

` ,

where E is the expectation under µ. Let Ea,b and E denote the expectations under Pa,b and P,

respectively. We denote by α and β the distributions of a1 and b1 and take the convention that

a and b are random variables with distributions α and β respectively. In all of the following

results, we will assume that Era ` bs ă 8 and
¯
α `

¯
β ą 0. Finally, all large deviation results

under P are limited to the case where a and b are independent i.i.d. sequences. We denote

the last passage time by

Gpm,nq “ max
πPΠp1,1q,pm,nq

ÿ

pi,jqPπ

W pi, jq. (2.2.13)

where Πpk,lq,pm,nq is the set all sequences π “ pui, viqiPrps in Z2 such that pu1, v1q “ pk, lq,

pup, vpq “ pm,nq and pui`1 ´ ui, vi`1 ´ viq P tp1, 0q, p0, 1qu for 1 ď i ă p. The change of

notation in this section is because we use L and L to denote Lyapunov exponents.

We briefly summarize the results from [31]. The ergodicity assumptions on µ and the

superadditivity of the last-passage times imply that limnÑ8 n
´1Gptns u, tnt uq “ gps, tq for

s, t ą 0 P-a.s. and Pa,b-a.s. for µ-a.e. pa,bq for some deterministic function g known as the

shape function. g admits the variational representation

gps, tq “ inf
zPr´

¯
α,

¯
βs

"

sE

„

1

a` z



` tE

„

1

b´ z

*

for s, t ą 0. (2.2.14)
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It is shown in [31] that the infimum above is actually a minimum with a unique minimizer and

the function gz given by gzps, tq “ sE
“

pa` zq´1
‰

` tE
“

pb´ zq´1
‰

is the shape function of a

stationary version of the model. At times we will also view gps, tq as a function of pα, βq P

M1pR`q2. In these cases, we will use the notation pα, βq ÞÑ gps, tq ” gα,βps, tq to highlight the

dependence on these measures. This map will be considered for any pα, βq PM1pR`q2.

Set

c1 “
E
“

pb`
¯
αq´2

‰

E rpa´
¯
αq´2s

c2 “
E
“

pb´
¯
βq´2

‰

E
“

pa`
¯
βq´2

‰ . (2.2.15)

Then 0 ď c1 ă c2 ď 8, and c1 “ 0 and c2 “ 8 if and only if Erpa ´
¯
αq´2s “ 8 and

Erpb ´
¯
βq´2s “ 8, respectively. It can be seen from (2.2.14) that g is strictly concave for

c1 ă s{t ă c2 and is linear for s{t ď c1 or s{t ě c2, see Figure 7.

t

s
0

g ď 1

s{t “ c1

s{t “ c2

Figure 7: An illustration of the sublevel set g ď 1 and the rays s{t “ c1 and s{t “ c2 when 0 ă c1 ă
c2 ă 8.

We show in Proposition 2.5.15 that for s, t, λ ą 0, we may define the quenched and annealed

Lyapunov exponents by

Ls,tpλq “ lim
nÑ8

1

n
log Ea,b

”

eλGptns u,tnt uq
ı

µ-a.s., Ls,tpλq “ lim
nÑ8

1

n
logE

”

eλGptns u,tnt uq
ı

.
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Our first result is an exact computation of these exponents.

Theorem 2.2.16. For s, t, λ ą 0,

Ls,tpλq “

$

’

’

’

&

’

’

’

%

inf
zPr´

¯
α,

¯
β´λs

"

sE log

ˆ

a` z ` λ

a` z

˙

` tE log

ˆ

b´ z

b´ z ´ λ

˙*

if 0 ă λ ď
¯
α`

¯
β

8 if λ ą
¯
α`

¯
β.

(2.2.16)

Ls,tpλq “

$

’

’

’

&

’

’

’

%

inf
zPr´

¯
α,

¯
β´λs

"

s log E

ˆ

a` z ` λ

a` z

˙

` t log E

ˆ

b´ z

b´ z ´ λ

˙*

if 0 ă λ ď
¯
α`

¯
β

8 if λ ą
¯
α`

¯
β

(2.2.17)

Once we have Theorem 2.2.16, a proof similar to the proof of Theorem 2.2.16 allows us to

compute the Lyapunov exponents in a stationary version of the model, which will be intro-

duced in the next section. For the moment, we record the result and comment briefly on its

implications.

Theorem 2.2.17. For z P p´
¯
α,

¯
βq, almost surely for all s, t ą 0 and λ P p0, p

¯
α` zq ^ p

¯
β´ zqq

Lzs,tpλq :“ lim
nÑ8

n´1 log Ez
a,b

”

eλĜptns u,tnt uq
ı

“

"

sE

„

log
a` z

a` z ´ λ



` tE

„

log
b´ z ` λ

b´ z

*

_

"

sE

„

log
a` z ` λ

a` z



` tE

„

log
b´ z

b´ z ´ λ

*

.

Similarly, we show in Proposition 2.5.14 that for s, t ą 0 and r P R, we may define right

tail rate functions by

lim
nÑ8

´
1

n
log Pa,bpGptns u, tnt uq ě nrq “ Js,tprq µ-a.s.,

lim
nÑ8

´
1

n
logPpGptns u, tnt uq ě nrq “ Js,tprq

Using the previous result, we show that
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Theorem 2.2.18. For s, t ą 0,

Js,tprq “

$

’

’

’

’

’

&

’

’

’

’

’

%

sup
λPp0,

¯
α`

¯
βs

zPr´
¯
α,

¯
β´λs

"

rλ´ sE log

ˆ

a` z ` λ

a` z

˙

´ tE log

ˆ

b´ z

b´ z ´ λ

˙*

r ě gps, tq

0 r ă gps, tq

(2.2.18)

Js,tprq “

$

’

’

’

’

’

&

’

’

’

’

’

%

sup
λPp0,

¯
α`

¯
βs

zPr´
¯
α,

¯
β´λs

"

rλ´ s log E

„

a` z ` λ

a` z



´ t log E

„

b´ z

b´ z ´ λ

*

r ě gps, tq

0 r ă gps, tq

(2.2.19)

As with the shape function, we will at times consider the maps pα, βq ÞÑ Js,tprq ” Jα,βs,t prq

and pα, βq ÞÑ Js,tprq ” Jα,βs,t prq.

Note that the Lyapunov exponents and the right tail rate functions depend on µ only

through the marginal distributions α and β. The variational problem in (2.2.18) can be solved

exactly for certain choices of α, β, s and t. We note that if r ě gps, tq and there exists λ‹ P

p0,
¯
α`

¯
βq and z‹ P p´

¯
α,

¯
β ´ λ‹q such that

0 “ sE

„

1

a` z‹`λ‹
´

1

a` z‹



` tE

„

1

b´ z‹´λ‹
´

1

b´ z‹



r “ sE

„

1

a` z‹`λ‹



` tE

„

1

b´ z‹´λ‹



,

then

Js,tprq “ λ‹ r ´ sE log

ˆ

a` z‹`λ‹
a` z‹

˙

` tE log

ˆ

b´ z‹
b´ z‹´λ‹

˙

. (2.2.20)

Example 2.2.19. If α “ β “ δc{2 for c ą 0, then for r ě gps, tq “ c´1p
?
s`

?
tq2,

Js,tprq “
a

ps` t´ crq2 ´ 4st´ 2s cosh´1

ˆ

s´ t` cr

2
?
csr

˙

´ 2t cosh´1

ˆ

t´ s` cr

2
?
ctr

˙

, (2.2.21)

which recovers [80, Theorem 4.4].
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Example 2.2.20. If α “ β “ pδc ` qδd for p, q, c, d ą 0 with p ` q “ 1 and s “ t, then for

r ě gps, sq “ 2s
`

pc´1 ` qd´1
˘

,

Js,sprq “ r λ‹´sp log

ˆ

c` z‹`λ‹
c` z‹

˙

´ tq log

ˆ

c´ z‹
c´ z‹´λ‹

˙

´ sq log

ˆ

d` z‹`λ‹
d` z‹

˙

´ tq log

ˆ

d´ z‹
d´ z‹´λ‹

˙

where

z‹ “
2cp` 2dq ` c2r ` d2r ´

?
∆

2r
, z‹`λ‹ “

2cp` 2dq ` c2r ` d2r `
?

∆

2r
,

∆ “ p2cp` 2dq ` c2r ` d2rq2 ` 4rp2cd2p` 2c2dq ´ c2d2rq.

More complicated exact formulas in this model are available in all directions ps, tq.

Example 2.2.21. If α and β are uniform on rc{2, c{2` ls for c, l ą 0 and s “ t, then

Js,sprq “ r λ‹´
2s

l

ż c{2`l

c{2
log

ˆ

x` z‹`λ‹
x` z‹

˙

dx for r ě gps, sq “
2s

l
log

ˆ

1`
2l

c

˙

,

where

z‹ “ ´

d

pc{2` lq2 ´ c2erl{s{4

1´ erl{s
z‹`λ‹ “

d

pc{2` lq2 ´ c2erl{s{4

1´ erl{s
.

Left tail large deviations in the quenched model have rate strictly larger than n. We expect

that under mild hypotheses the correct rate should be n2, as is the case in the homogeneous

model where α “ β “ δ c
2

[51, 80].

Lemma 2.2.22. lim
nÑ8

´
1

n
log Pa,b pGptnsu, tntuq ď nrq “ 8 for s, t ą 0 and r ă gps, tq µ-a.s.

Combining our results for the right and left tail deviations, we can prove a full quenched

LDP at rate n. The rate function is given by

Is,tprq “

$

’

’

&

’

’

%

Js,tprq r ě gps, tq

8 r ă gps, tq

. (2.2.22)

As before, we will at times use the notation pα, βq ÞÑ Is,tprq ” Iα,βs,t prq.



40

Theorem 2.2.23. µ-a.s, for any s, t ą 0, the distribution of n´1Gptns u, tnt uq under Pa,b

satisfies a large deviation principle with rate n and convex, good rate function Is,t.

Although our proof of the large deviation principle goes through the Lyapunov exponents,

we do not apply the Gärtner-Ellis theorem. The steepness condition in this model is Erpa ´

¯
αq´1s “ Erpb´

¯
βq´1s “ 8, which would rule out having linear segments of the shape function

and so is too restrictive.

In contrast to the quenched case, there are non-trivial annealed large deviations at rate n.

The following bound gives a mechanism for these deviations. In the statement Hp¨|¨q denotes

the relative entropy.

Lemma 2.2.24. For any x ă y,

lim sup
nÑ8

´
1

n
logPpn´1Gptns u, tnt uq P px, yqq ď inf

ν1PMα,ν2PMβ

gν1,ν2 ps,tqPpx,yq

tsHpν1|αq ` tHpν2|βqu

The other bound needed to show that n is the correct rate for certain left tail large de-

viations follows from essentially the same argument used to show that the quenched rate is

strictly larger than n. This is discussed briefly after the proof of Lemma 2.2.22. To show that

there are rate n annealed left tail large deviations it suffices to show that there exist ν1 PMα

and ν2 PMβ with gν1,ν2ps, tq ă gα,βps, tq. We give a simple proof that under mild conditions

this is the case in Lemma 2.5.11. We expect that this mechanism is not sharp.

Example 2.2.25. Suppose that α “ 1
2δ1`

1
2δ2 and β “ δ1, and recall that Mα “ tpδ1`p1´pqδ2 :

0 ď p ď 1u. For 0 ď p ď 1, call αp “ pδ1 ` p1 ´ pqδ2. Then tgαp,βp1, 9q : 0 ď p ď 1u “

t5.3̄u Y p5.5, 8s. The reason for the discontinuity in this example is that if p ą 0, then the

functional in (2.2.14) is minimized on the set p´1, 1q, but if p “ 0, the minimization occurs

on p´2, 1q. We have chosen s “ 1, t “ 9 so that the minimizer for the p “ 0 case occurs in

p´2,´1q. The bound one obtains from Lemma 2.2.24 in this example is infinite when applied
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to the interval p5.4, 5.5q. The finite relative entropy perturbation of the ai parameters switching

the distribution to δ2 turns this into a right tail large deviation.

The next theorem connects quenched rate function and annealed right tail rate function

through a variational problem. We expect that this result means that large deviations above

the shape function in the annealed model with marginals α and β can be viewed as a large

deviation in the parameters taiu
tns u

i“1 and tbju
tnt u

j“1 which affect the distribution of Gptns u, tnt uq,

followed by a deviation in the quenched model with these perturbed parameters. Our proof

is purely analytic and does not show this interpretation directly. A similar, but stronger,

connection was shown for random walk in a random environment by Comets, Gantert and

Zeitouni in [22].

Theorem 2.2.26. For any s, t ą 0 and r ą gps, tq,

Jα,βs,t prq “ inf
ν1PMα

ν2PMβ

 

Iν1,ν2s,t prq ` sHpν1|αq ` tHpν2|βq
(

.

A minimizing pair pν1, ν2q exists and the equality

Jα,βs,t prq “ Iν1,ν2s,t prq ` sHpν1|αq ` tHpν2|βq

holds if and only if

dν1

dα
paq “

a` z‹`λ‹
a` z‹

E

„

a` z‹`λ‹
a` z‹

´1

,
dν2

dβ
pbq “

b´ z‹
b´ z‹´λ‹

E

„

b´ z‹
b´ z‹´λ‹

´1

where z‹ and λ‹ are the unique z‹, λ‹ with λ‹ P r0,
¯
α`

¯
βs, z‹ P r´

¯
α,

¯
β ´ λ‹s satisfying

Jα,βs,t prq “ r λ‹´s log Eα
„

a` z‹`λ‹
a` z‹



´ t log Eβ
„

b´ z‹
b´ z‹´λ‹



. (2.2.23)

It is natural to conjecture that this variational connection describes all rate n annealed large

deviations, rather than just annealed right tail large deviations. We have been unable to prove

this result.
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The next result concerns the regularity of our rate functions. Our rate functions are convex

and differentiable to the right of gps, tq, but we note that for certain choices of α and β they

can have linear segments; see Lemma 2.5.9 and the comments preceding it.

Theorem 2.2.27. For any s, t ą 0, both Js,t and Js,t are continuously differentiable on

rgps, tq,`8q.

Finally, we describe the leading order asymptotics of Js,tprq and Js,tprq as r Ó gps, tq and

comment on the implications for the fluctuations of the last-passage times. Let ζ denote the

unique minimizer of (2.2.14).

Theorem 2.2.28. For any s, t ą 0, as ε Ó 0,

Js,tpgps, tq`εq “

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

ˆ

´sE

„

2

pa´
¯
αq2



` tE

„

2

pb`
¯
αq2

˙´1

ε2 ` opε2q if s{t ă c1

2

3

ˆ

sE

„

1

pa´
¯
αq3



` tE

„

1

pb`
¯
αq3

˙´1{2

ε3{2 ` opε3{2q if s{t “ c1

and Erpa´
¯
αq´3s ă 8

4

3

ˆ

sE

„

1

pa` ζq3



` tE

„

1

pb´ ζq3

˙´1{2

ε3{2 ` opε3{2q if c1 ă s{t ă c2

2

3

ˆ

sE

„

1

pa`
¯
βq3



` tE

„

1

pb´ βq3

˙´1{2

ε3{2 ` opε3{2q if s{t “ c2

and Erpb´
¯
βq´3s ă 8

ˆ

sE

„

2

pa`
¯
βq2



´ tE

„

2

pb´
¯
βq2

˙´1

ε2 ` opε2q if s{t ą c2

We do not have an intuitive explanation for the presence of an extra factor of 1
2 in the boundary

cases s
t “ c1, c2.

The results of Theorem 2.2.28 in the concave region S and the boundary lines s
t “ c1 or c2

are heuristically consistent with KPZ type fluctuations. For example, to see this set

C “ sE

„

1

pa` ζq3



` tE

„

1

pb´ ζq3



“
1

2
B2
zgzps, tq

ˇ

ˇ

z“ζ
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and assume that our asymptotic result in the concave region hold for finite n. Then for ps, tq P S

and large r, we expect to see

Pa,bpGptns u, tnt uq ´ ngps, tq ě n
1
3C

1
3 rq « exp

"

´
4

3
C´

1
2 pC

1
3n´

2
3 rq

3
2n

*

“ e´
4
3
r
3
2 ,

which agrees the leading order large r asymptotics of the Tracy-Widom GUE distribution

[4, Exercise 3.8.3]. Note that the choice of normalizing constant C in this argument is not

arbitrary. Taking C “ 1
2B

2
zgps, tq|z“ζ is consistent with the normalizing constants needed to

see Tracy-Widom GUE limits in, for example, [51, Theorem 1.6] (this is the case α, β „ δ 1
2
)

and in [17, Theorem 1.3]. In the latter case, this was shown to be the constant arising from

the KPZ scaling theory in [85]. We also remark that the centering in this argument is likely

not correct. As in [38, Theorem 3], we expect that the correct centering should be n times

the shape function with α and β given by the empirical distribution of the parameters taiu
tns u

i“1

and tbju
tnt u

j“1 rather than ngps, tq. This new shape function is not random with respect to Pa,b

and converges to gps, tq for almost every realization of the environment. Continuity of the

rate function then explains why this difference does not appear at the level of right tail large

deviations.

Theorem 2.2.29. Suppose that α and β are not both degenerate. For any s, t ą 0, as ε Ó 0,

Js,tpgps, tq`εq “

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

˜

´sE

„

1

a´
¯
α

2

` tVar

„

1

b`
¯
α



` tE

„

1

pb`
¯
αq2



¸´1

ε2{2` opε2q if s{t ă c1

ˆ

sVar

„

1

a` ζ



` tVar

„

1

b´ ζ

˙´1

ε2{2` opε2q if c1 ď s{t ď c2

˜

sVar

„

1

a`
¯
β



` sE

„

1

pa`
¯
βq2



´ tE

„

1

b´
¯
β

2
¸´1

ε2{2` opε2q if s{t ą c2

We do not have any explicitly computable examples for which the regions S1 and S2 are

non-trivial, but we illustrate the results of the last two theorems with a numerical example.

Example 2.2.30. Choose α “ 4pa´1q31r1,2spaqda and β “ δ1. We note that
¯
α “

¯
β “ 1. Explicit

computation shows that E
“

pa´ 1q´2
‰

“ 2, E
“

pb´ 1q´2
‰

“ 8, and E
“

pb` 1q´2
‰

“ 1
4 . The
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linear region is then s
t ă

1
8 . This is illustrated in Figure 8 below.

Figure 8: The level set tps, tq : gps, tq “ 1u (solid) and the boundary line s
t “

1
8 (dashed).

In Figure 9, we plot numerical approximations of the rate functions against the small ε

asymptotics in Theorems 2.2.28 and 2.2.29. For example, frame (e) plots J1,1pgp1, 1q ` εq

against 4
3pEpa` ζq

´3 ` Epb´ ζq´3q´
1
2 ε

3
2 , where ζ is the minimizer in (2.2.14).

(a) Quenched linear, t “ 10 (b) Annealed linear, t “ 10
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(a) Quenched boundary, t “ 8 (b) Annealed boundary, t “ 8

(a) Quenched concave t “ 1 (b) Annealed concave t “ 1

Figure 9: Plot of Js,tpgps, tq ` εq and Js,tpgps, tq ` εq (solid) and their ε Ó 0 asymptotics (dashed) with
s “ 1.
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Stationary model

Extend the space to RZ2
`

` . Each weight W pi, jq is now redefined as the projection onto coordi-

nate pi, jq for i, j P Z2
`. Introduce the last-passage times

pGpm,nq “ max
πPΠp0,0q,pm,nq

ÿ

i,jPπ

W pi, jq for m,n P Z` . (2.2.24)

For sequences a and b in p0,8q and z P p´
¯
α,

¯
βq, define the product measure Pz

a,b on RZ2
`

` by

Pz
a,bpW pi, jq ě xq “ expp´pai ` bjqxq Pz

a,bpW p0, 0q “ 0q “ 1

Pz
a,bpW pi, 0q ě xq “ expp´pai ` zqxq Pz

a,bpW p0, jq ě xq “ expp´pbj ´ zqxq

(2.2.25)

for i, j P Z` and x ě 0. We will use definition (2.2.25) for z “ ´
¯
α when ai ą

¯
α for i P N and for

z “
¯
β when bj ą

¯
β for j P N. The utility of these measures is that the last-passage increments

given by Ipm,nq “ pGpm,nq´ pGpm´1, nq for m ě 1, n ě 0 and Jpm,nq “ pGpm,nq´ pGpm,n´1q

for m ě 0, n ě 1 are stationary in the following sense.

Proposition 2.2.31 (Proposition 4.1 in [31]). Let k, l P Z`. Under Pz
a,b,

(a) Ipi, lq has the same distribution as W pi, 0q for i P N.

(b) Jpk, jq has the same distribution as W p0, jq for j P N.

(c) The random variables tIpi, lq : i ą ku Y tJpk, jq : j ą lu are jointly independent.

For admissible z, define the measure Pz on RZ2
`

` by PzpBq “ ErPz
a,bpBqs for any Borel

set B. Let Ez
a,b and Ez denote the expectations under Pz

a,b and Pz, respectively. Note from

(2.2.25) that the probabilities under Pz
a,b and Pz of events generated by tW pi, 0q : i P Nu make

sense for any z ą ´
¯
α. Therefore, we permit ourselves to use notation Pz

a,b and Pz (and the

corresponding expectations) for z ě
¯
β and, similarly, for z ď ´

¯
α when we work only with

tW pi, 0q : i P Nu and tW p0, jq : j P Nu, respectively.

Having proven Theorem 2.2.16, we can also prove the corresponding result for the stationary

model with parameter z.
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Theorem 2.2.32. For z P r´
¯
α,

¯
βs, almost surely for all s, t ą 0 and λ P p0, p

¯
α` zq ^ p

¯
β ´ zqq

Lzs,tpλq :“ lim
nÑ8

n´1 log Ez
a,b

”

eλĜptns u,tnt uq
ı

“

"

sE

„

log
a` z

a` z ´ λ



` tE

„

log
b´ z ` λ

b´ z

*

_

"

sE

„

log
a` z ` λ

a` z



` tE

„

log
b´ z

b´ z ´ λ

*

.
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2.3 Large deviations for Brownian directed percolation

The proofs of the results described above for the Brownian directed percolation model are

similar to the proofs of the corresponding results in [32, 37, 49]. The first and last of these

papers correspond to the next two sections. Of the models studied in what follows, the proofs

are simplest here and so this is the first model we consider.

2.3.1 Proofs for the point-to-point model

As is often the case for directed polymer models, subadditivity plays a key role in the proofs

of our large deviation results. In particular, superadditivity of the last passage times in this

model gives existence of the right tail rate functions and moment Lyapunov exponents, as

shown in the following proposition.

Proposition 2.3.1. For any s, t, λ ą 0 and r P R, the limits

Λs,tpλq :“ lim
nÑ8

1

n
logE

”

eλLtns upntq
ı

, Js,tprq :“ lim
nÑ8

´
1

n
logP

`

Ltns upntq ě nr
˘

exist and are real valued. For each λ ą 0, the map ps, tq ÞÑ Λs,tpλq for ps, tq P p0,8q2 is

positively homogeneous of degree one, superadditive, concave, and continuous. For ps, t, rq P

p0,8q2 ˆ R, the map ps, t, rq ÞÑ Js,tprq is positively homogeneous of degree one, subadditive,

convex, and continuous. For each ps, tq, Js,tprq “ 0 for r ď 2
?
st and r ÞÑ Js,tprq is non-

decreasing.

Proof. For all of the conclusions except finiteness of Λs,tpλq and the last two properties of

Js,tprq, it suffices to show that the maps

ps, tq ÞÑ log E
”

eλLt s uptq
ı

, ps, t, rq ÞÑ ´ logP
`

Lt s uptq ě r
˘

are superadditive on p1,8q ˆ p0,8q and subadditive on p1,8q ˆ p0,8q ˆ R respectively. See

for example the proof of [60, Theorem 16.2.9] and note that a subadditive function which is
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positively homogeneous of degree one is convex. Take s1, s2 ą 1, t1, t2 ą 0 and r1, r2 P R. We

have the inequality

Ltps1`s2q upt1 ` t2q ě L0,t s1 upt1q ` Lt s1 u,tps1`s2q upt1, pt1 ` t2qq

where the last two terms are independent. Using translation invariance, independence, and

monotonicity of Lnptq in n, we have

E
”

eλLt s1`s2 upt1`t2q
ı

ě E
”

eλLt s1 upt1q
ı

E
”

eλLt s2 upt2q
ı

,

P
`

Lt s1`s2 upt1 ` t2q ě r1 ` r2

˘

ě P
`

Lt s1 upt1q ě r1

˘

P
`

Lt s2 upt2q ě r2

˘

.

Finiteness of Λs,tpλq for all λ ą 0 follows from the observation that Lnptq ď
řn
i“0 2 max0ďrďt |Biprq|.

The properties of Js,tprq follow from continuity and the fact that the pre-limit expression is

non-decreasing in r.

Remark 2.3.2. Suadditivity shows that Js,tprq “ infn´n
´1 logP

`

Ltns upntq ě nr
˘

. As a con-

sequence, for any n, we have P
`

Ltns upntq ě nr
˘

ď exp t´nJs,tprqu.

The next result shows that the decomposition in (2.2.12) implies that Λs,tpλq is the solution

to an invertible variational problem. This type of decomposition and versions of the argument

that follows are the key steps in the papers [32, 37, 49].

Lemma 2.3.3. For each s, t, λ ą 0 and any µ ą λ,

s log
µ

µ´ λ
“ sup

0ďrăt

"

pt´ rq

ˆ

λ2

2
´ µλ

˙

` Λs,t´rpλq

*

_ sup
0ďuăs

"

t

ˆ

1

2
λ2 ´ µλ

˙

` u log
µ

µ´ λ
` Λs´u,tpλq

*

.

Proof. We begin with the coupling (2.2.12). It follows that for any r P r0, tq, u P r0, sq and n

large enough,

E
”

eλ
řtns u

k“1 qµk pntq
ı

ě E
”

eλpµpnr´ntq`B0pntq´B0pnrq`L1,npnr,ntqq
ı
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_ E

„

e
λ
´

B0ptq´µt`
řtnu u

k“1 qµk p0q`Ltnu u,np0,tq
¯

.

The random variables B0pntq´B0pnrq and L1,npnr, ntq are independent because B0p¨q is inde-

pendent of tBjp¨qu
8
j“1. The random variables

řtnu u

k“1 qµk p0q, Ltnu u,np0, tq, and B0ptq are indepen-

dent because
řtnu u

k“1 qµk p0q is measurable with respect to σpBjptq : t ď 0, j P Z`q, Ltnu u,np0, tq

is measurable with respect to σpBjptq : t ě 0, j P Nq, and B0ptq is measurable with respect to

σpB0ptq : t ą 0q. Taking logs, dividing by n and sending nÑ8, and optimizing over u and r,

we immediately obtain ě in the statement of the theorem.

Let triu
M
i“1 and tuiu

M
i“1 be uniform partitions of r0, ts and r0, ss respectively. Notice that

max
0ďrďt

 

nµpr ´ tq `B0pntq ´B0pnrq ` L1,tns upnr, ntq
(

“ max
2ďiďM

max
rPrri´1,ris

 

nµpr ´ tq `B0pntq ´B0pnsq ` L1,tns upnr, ntq
(

ď max
2ďiďM

"

nµpri ´ tq `B0pntq ´B0pnriq ` max
rPrri´1,ris

tB0pnriq ´B0pnrqu ` L1,tns upri´1, tq

*

.

Similarly, we have

max
1ďjďtns u

#

B0pntq ´ nµt`

j
ÿ

k“1

qµk p0q ` Lj,tns up0, ntq

+

ď max
2ďiďM

$

&

%

B0pntq ´ nµt`

tnui u
ÿ

k“1

qµk p0q ` Ltnui´1 u,tns up0, ntq

,

.

-

.

It follows from these inequalities and independence that

E

„

eλ
řtns u

j“1 qµk pntq



ď

M
ÿ

i“2

enµpri´tqE
”

eλpB0pntq´B0pnriqq
ı

E
”

e
λmaxrPrri´1,ris

tB0pnriq´B0pnrqu
ı

E
”

eλL1,tns upri´1,tq
ı

` E
”

eλpB0pntq´nµtq
ı

E

„

eλ
řtnui u

k“1 qµk p0q



E
”

e
λLtnui´1 u,tns up0,ntq

ı

By the reflection principle and the assumption that ri ´ ri´1 “
1
M , we have

E
”

e
λmaxrPrri´1,ris

B0pnriq´B0pnrq
ı

“ E
”

eλ
?
n|B0p

1
M
q|
ı

ď E
”

eλ
?
nB0p

1
M
q
ı

` E
”

e´λ
?
nB0p

1
M
q
ı

.
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Take logs, divide by n and send nÑ8 to obtain

s log
µ

µ´ λ
ď max

2ďiďM

"

µλpri ´ tq ` pt´ riq
λ2

2
`

λ2

2M
` Λs,t´ri´1pλq

*

_ max
2ďiďM

"

1

2
λ2t´ µλt` ui log

µ

µ´ λ
` Λs´ui´1,tpλq

*

ď

ˆ

sup
0ďrăt

"

µλpr ´ tq ` pt´ rq
λ2

2
` Λs,t´rpλq

*

`
λ2

M
`
µλ

M

˙

_

ˆ

sup
0ďuăs

"

1

2
λ2t´ µλt` u log

µ

µ´ λ
` Λs´u,tpλq

*

`
1

M
log

µ

µ´ λ

˙

Sending M Ñ8 completes the proof.

Variational problems of the type in Lemma 2.3.3 appear for the Lyapunov exponents and

time constants (free energies) of directed percolation models (directed polymers) which have

associated stationary models that satisfy appropriate analogues of the Burke property. Up to

a change of variables, a deformation of the region on which the maximization takes place, and

homogeneity of Λs,tpλq in ps, tq, this variational expression gives a Legendre-Fenchel duality

between directions ps, tq and values of µ ą λ. See for example [31, Section 5] for this point of

view. Alternatively, this variational problem can be solved directly with a bit of calculus. See

[49, Proposition 3.10].

Corollary 2.3.4. For any s, t, λ ą 0,

Λs,tpλq “ min
µąλ

"

t

ˆ

λµ´
1

2
λ2

˙

` s log
µ

µ´ λ

*

“ min
zą0

"

t

ˆ

1

2
λ2 ` zλ

˙

` s log
z ` λ

z

*

“
1

2
λ
a

4st` ptλq2 ` s log

˜

2s` tλ2 ` λ
a

4st` ptλq2

2s

¸

“

ż λ

0

a

4st` ptxq2dx.

Proof. The first equality follows from Lemma 2.3.3 and [49, Proposition 3.10] (which is Propo-

sition 2.4.10 below) with I “ tµ ą λu, hpµq “ ´λ2

2 ` λµ, and gpµq “ log µ
µ´λ . The second

equality is the change of variables z “ µ ´ λ. The third and fourth equalities follow from

calculus.
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The next result is the analogue of Varadhan’s lemma for right tail rate functions. The

proof is essentially the same.

Lemma 2.3.5. For each s, t ą 0,

sup
rPR
tλr ´ Js,tprqu “

$

’

’

&

’

’

%

8 λ ă 0

Λs,tpλq λ ě 0

.

Proof. The result for λ ď 0 follows from the observations Js,tprq ě 0 for all r, Js,tprq “ 0 for

r ď 2
?
st and r ÞÑ Js,tprq is non-decreasing. Take λ,K ą 0, and let tmiu

M
i“1 be a uniform

partition of r0,Ks. The exponential Markov inequality yields for each r ą 0

λr ´ Js,tprq ď Λs,tpλq. (2.3.1)

Optimizing over r gives ď in the statement of the lemma. For the reverse, notice that

E
”

eλLtns upntq
ı

“

M
ÿ

i“1

E
”

eλLtns upntq1tLtns upntqPrmi´1,miqu

ı

` E
”

eλLtns upntq1tLtns upntqěKu

ı

ď

M
ÿ

i“1

eλmiP
`

Ltns upntq ě mi´1

˘

` E
”

eλLtns upntq1tLtns upntqěKu

ı

ď

M
ÿ

i“1

eλmiP
`

Ltns upntq ě mi´1

˘

` E
”

e2λLtns upntq
ı

1
2
P
`

Ltns upntq ě K
˘

1
2 .

Take logs, divide by n and send nÑ8 to obtain

Λs,tpλq ď max
iďM

tλmi ´ Js,tpmi´1qu _

"

1

2
Λs,tp2λq ´

1

2
Js,tpKq

*

ď

ˆ

sup
rPR

tλr ´ Js,tprqu `
λ

M

˙

_

"

1

2
Λs,tp2λq ´

1

2
Js,tpKq

*

.

Equation (2.3.1) shows that Js,tpKq Ñ 8 as K Ñ 8. Sending M,K Ñ 8 completes the

proof.

Corollary 2.3.6. For s, t ą 0 and r ě 2
?
st,

Js,tprq “ sup
λ,zą0

"

λr ´ t

ˆ

1

2
λ2 ` zλ

˙

´ s log
z ` λ

z

*

“
r
?
r2 ´ 4st

2t
` s log

˜

r ´
?
r2 ´ 4st

r `
?
r2 ´ 4st

¸

.
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Proof. The first equality follows from Lemma 2.3.5, Corollary 2.3.4, and the Fenchel-Moreau

theorem [79, Theorem 12.2]. The second equality can be obtained with calculus.

Remark 2.3.7. Differentiating the expression in the previous result gives

Js,tprq “

ż r´2
?
st

0
t´1

b

xpx` 4
?
stqdx1trě2

?
stu.

Setting s “ t “ 1 and changing variables gives the expression in Theorem 2.2.8. Combining

this result with Remark 2.3.2 gives Corollary 2.2.9.

2.3.2 Proofs for the stationary model

Lyapunov exponents

Having computed Λs,tpλq, (2.2.11) now leads to a variational problem for the Lyapunov ex-

ponents in stationary Brownian directed percolation for each µ ą λ. As before, this would

essentially give the right tail rate function except for the technical point that we no longer

have a priori existence and convexity of that function. The rate function can be computed

directly through an argument parallel to the proof of Lemma 2.3.8 but phrased in terms of

right tail rate functions. Note that using Corollary 2.3.4 we may extend Λs,tpλq continuously

to Λ0,tpλq “
λ2t
2 and Λs,0pλq “ 0.

Lemma 2.3.8. For each µ, s, t ą 0 and λ P p0, µq,

lim
nÑ8

1

n
logE

”

e
λLµ

tns u
pntq

ı

“ sup
0ďrďt

"

r

ˆ

λµ`
λ2

2

˙

` Λs,t´rpλq

*

_ sup
0ďuďs

"

u log
µ

µ´ λ
` Λs´u,tpλq

*

“

"

t

ˆ

λ2

2
` µλ

˙

` s log
µ` λ

µ

*

_

"

t

ˆ

´
λ2

2
` µλ

˙

` s log
µ

µ´ λ

*

.

Proof. The proof of the first equality is essentially the same as in the proof of Lemma 2.3.3,

except that one must work with lim inf and lim sup. For example, for any r P r0, tq, u P r0, sq,
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and n sufficiently large, we have

E
”

e
λLµ

tns u
pntq

ı

ě E
”

eλpµnr´B0prqq
ı

E
”

eλL1,tns upr,ntq
ı

_ E
”

eλ
řtnu u

i“1 qµk p0q
ı

E
”

eλLtnu u,tns up0,ntq
ı

.

Take logs, divide by n, take lim inf, and optimize to obtain

lim inf
nÑ8

1

n
logE

”

e
λLµ

tns u
pntq

ı

ě sup
0ďrďt

"

r

ˆ

λµ`
λ2

2

˙

` Λs,t´rpλq

*

_ sup
0ďuďs

"

u log
µ

µ´ λ
` Λs´u,tpλq

*

.

We omit the reverse inequality which is similar. For the second equality, it is convenient to

substitute r ÞÑ t´ r and u ÞÑ s´ u. Using the second variational expression for Λs,rpλq from

Corollary 2.3.4 and a minimax theorem (for example, see [77, Appendix B.3]), we obtain

sup
0ďrďt

"

r

ˆ

λ2

2
` λµ

˙

` Λs,t´rpλq

*

“ t

ˆ

λ2

2
` µλ

˙

`min
zą0

max
0ďrďt

"

rλpz ´ µq ` s log
z ` λ

z

*

“

"

t

ˆ

λ2

2
` µλ

˙

` s log
µ` λ

µ

*

^min
zěµ

"

t

ˆ

λ2

2
` zλ

˙

` s log
z ` λ

z

*

.

The second equality comes from dividing the minimum into the regions z ď µ and z ą µ.

A similar argument using the same variational expression and dividing into z ď µ ´ λ and

z ą µ´ λ shows that

sup
0ďuďs

"

u log
µ

µ´ λ
` Λs´u,tpλq

*

“

"

t

ˆ

´
λ2

2
` µλ

˙

` s log
µ

µ´ λ

*

^ min
zďµ´λ

"

t

ˆ

λ2

2
` zλ

˙

` s log
z ` λ

z

*

.

To complete the proof, note that the function being minimized in the second variational ex-

pression Λs,rpλq in Corollary 2.3.4 is strictly convex and minimizers exist.

We complete this section by dealing with exponents λ ě µ. This is an immediate corollary

of the previous lemma.

Corollary 2.3.9. For each µ, s, t ą 0 and λ ě µ,

lim
nÑ8

1

n
logE

”

e
λLµ

tns u
pntq

ı

“ 8.
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Proof. The function λ ÞÑ logE
”

e
λLµ

tns u
pntq

ı

is non-decreasing. It follows that for any λ ă µ,

lim inf
nÑ8

1

n
logE

”

e
µLµ

tns u
pntq

ı

ě t

ˆ

λ2

2
` λµ

˙

` s log
µ

µ´ λ
.

Sending λ Ò µ gives the result.

Right tail rate functions

We will now work with the rate functions directly. It is convenient to introduce some no-

tation. We will denote the infimal convolution of two functions f and g by f ˝ gpxq :“

infyPR tfpyq ` gpx´ yqu. We will also introduce

gµt pxq “
px´ µtq2

2t
1txěµtu, hµs pxq “

´

xµ´ s´ s log
´xµ

s

¯¯

1txě s
µ
u.

which are right tail rate functions for normal and exponential random variables respectively.

We will treat the expressions in (2.2.10) separately.

Lemma 2.3.10. For all s, t, µ ą 0 and x P R,

´n´1 logP

ˆ

max
1ďjďtns u

!

Lµj p0q ` Lj,tns up0, ntq
)

ě nx

˙

“ inf
0ăuăs

thµu ˝ Js´u,tpxqu

Proof. Using independence and (2.2.11), for each u P p0, sq, and any x, y P R we have

P

ˆ

max
1ďjďtns u

!

Lµj p0q ` Lj,tns up0, ntq
)

ě nx

˙

ě P
´

Lµ
tnu u

p0q ě ny
¯

P
`

Ltnu u,tns up0, ntq ě npx´ yq
˘

.

Recall that Lµ
tnu u

p0q “
řtnu u

k“1 qµk p0q is a sum of i.i.d. exponential random variables with mean

µ´1. Take logs, divide by ´n, and send nÑ8 to obtain

lim sup
nÑ8

´
1

n
logP

´

Lµ
tns u

pntq ě nx
¯

ď thspyq ` Js´upx´ yqu

We may then optimize over r, u, y obtain ď in the statement of the lemma. For the reverse,

we proceed as in Lemma 2.3.3. Take a uniform partition tuiu
M
i“1 and r0, ss respectively. By a

union bound, we have

P

ˆ

max
1ďjďtns u

!

Lµj p0q ` Lj,tns up0, ntq
)

ě nx

˙

ď

M
ÿ

i“2

P
´

Lµ
tnui u

p0q ` Ltnui´1 u,tns up0, ntq ě nx
¯

.
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Take logs, divide by ´n and send nÑ8.

The right tail rate function of an independent sum of random variables becomes the infimal

convolution of their right tail rate functions. See for example [37, Lemma 3.6] for a proof of

this result which applies in our setting. We obtain

lim inf
nÑ8

´
1

n
logP

ˆ

max
1ďjďtns u

!

Lµj p0q ` Lj,tns up0, ntq
)

ě nx

˙

ě min
2ďiďM

 

hµui ˝ Js´ui´1,tpxq
(

.

For µ, t ą 0, Js,tpyq`h
µ
upx´yq is continuous as a function of ps, u, yq P p0,8q2ˆR and extends

continuously to a function defined on r0,8q2 ˆ R. Note that Js,tpxq “ 0 for x ď 2
?
st and

hµupxq “ 0 for x ď uµ´1. As a consequence of [37, Lemma 3.6], we may then find a common

compact set K so that for all M we have

min
iďM

 

hµui ˝ Js´ui´1pxq
(

“ min
iďM

inf
yPK

 

hµuipyq ` Js´ui´1,tpx´ yq
(

Sending M Ñ8, this converges to inf0ďuďs hu˝Js´u,tpxq by continuity of the extended function

and compactness of r0, ss2 ˆK.

Lemma 2.3.11. For s, t, µ ą 0 and x P R,

inf
0ăuăs

thµu ˝ Js´u,tpxqu “

"

sup
0ăλăµ

max
0ăzďµ´λ

"

λx´ t

ˆ

1

2
λ2 ` zλ

˙

´ s log
z ` λ

z

*

_ sup
0ăλăµ

"

λx´ t

ˆ

´
1

2
λ2 ` µλ

˙

´ s log
µ

µ´ λ

**

1
txěmax0ďuďst2

?
tps´uq`uµ´1uu

.

In particular, when µ ď
a

s{t,

inf
0ăuăs

thµu ˝ Js´u,tpxqu “ p2tq
´1

ż x

tµ`sµ´1

a

y2 ´ 4st` p2tµ´ yqdy1txětµ`sµ´1u.

Proof. Note that for x ď 2
a

tps´ uq`uµ´1, hµu˝Js´u,tpxq “ 0. It therefore suffices to consider

x ą max0ďuďst2
a

tps´ uq ` uµ´1u. There are two cases for the value of this expression:

µ ď
a

s{t and µ ě
a

s{t. If µ ď
a

s{t, then the maximum occurs at u “ s ´ tµ2 and the

maximum is tµ` sµ´1, which is the time constant in the stationary model. If µ ě
a

s{t then
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the expression being maximized is strictly decreasing and the minimum is 2
?
st, which is the

time constant in the point-to-point model.

For each u P p0, sq, the functions hµup¨q, Js´u,tp¨q, and hµu ˝ Js´u,tp¨q are non-negative, not

infinite, and convex, which implies that they are also proper and continuous. Note further that

using Corollary 2.3.4 we may extend Λs,tpλq continuously to Λ0,tpλq “
λ2t
2 and Λs,0pλq “ 0 for

s, t, λ ą 0. By the Fenchel-Moreau theorem [79, Theorem 12.2],

inf
0ăuăs

thµu ˝ Js´u,tpxqu “ inf
0ăuăs

sup
0ăλăµ

"

λx´ u log
µ

µ´ λ
´ Λs´u,tpλq

*

“ min
0ďuďs

sup
0ăλăµ

"

λx´ u log
µ

µ´ λ
´ Λs´u,tpλq

*

“ sup
0ăλăµ

min
0ďuďs

"

λx´ u log
µ

µ´ λ
´ Λs´u,tpλq

*

“ sup
0ăλăµ

min
0ďuďs

max
zą0

"

λx´ u log
µ

µ´ λ
´ t

ˆ

1

2
λ2 ` zλ

˙

´ ps´ uq log
z ` λ

z

*

“ sup
0ăλăµ

max
zą0

min
0ďuďs

"

λx´ u log
µ

µ´ λ
´ t

ˆ

1

2
λ2 ` zλ

˙

´ ps´ uq log
z ` λ

z

*

In the second equality we have used continuity of Λs,tpλq at s “ 0 and in the third and fifth

equalities, we have applied a minimax theorem (for example [77, Appendix B.3]). Separating

the terms which depend on u from those that do not, the last expression is equal to

sup
0ăλăµ

max
zą0

"

λx´ t

ˆ

1

2
λ2 ` zλ

˙

´ s log
z ` λ

z
` min

0ďuďs

"

u

ˆ

log
z ` λ

z
´ log

µ

µ´ λ

˙**

Next, split the maximum in z into a maximum over z ď µ´ λ and z ą µ´ λ. For z ď µ´ λ,

the infimum occurs at u “ 0 and if z ě µ ´ λ, the minimum occurs at u “ s. The previous

expression is then given by

max
0ăλăµ

max
0ăzďµ´λ

"

λx´ t

ˆ

1

2
λ2 ` zλ

˙

´ s log
z ` λ

z

*

_ max
0ăλăµ

"

λx´ t

ˆ

´
1

2
λ2 ` µλ

˙

´ s log
µ

µ´ λ

*

.

Note that the left hand side is ě the right hand side of this expression, because for each λ,

the term on the right is the value of the function of z evaluated at z “ µ ´ λ. For each

λ, the two expressions being maximized in λ are equal unless the global extremizer to the
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maximization problem in z lies in p0, µ´λq. Otherwise, the function in z is strictly increasing

on p0, µ ´ λs and so the maximum occurs at µ ´ λ. The global minimizer for this function

occurs at
a

s{t` λ2´λ{2, so the condition that the minimizer lies in p0, µ´λq is the same as

a

s{t` λ2 ` λ{2 ă µ. This is possible for some value of λ if and only if µ ą
a

s{t.

If µ ď
a

s{t then the right and left hand sides are equal and x ą tµ´1 ` sµ. In this case,

the maximum on the right can now be evaluated with calculus:

max
0ăλăµ

"

λx´ t

ˆ

´
1

2
λ2 ` µλ

˙

´ s log
µ

µ´ λ

*

“ p2tq´1

ż x

tµ`sµ´1

a

y2 ´ 4st` p2tµ´ yqdy.

Remark 2.3.12. For µ ď
a

s{t and ε ą 0, the leading order small ε asymptotics of the previous

expression are

p2tq´1

ż tµ`sµ´1`ε

tµ`sµ´1

a

y2 ´ 4st` p2tµ´ yqdy “

$

’

’

&

’

’

%

2s
3pstq3{4

ε
3
2 ` opε

3
2 q µ “

a

s{t

µ2

2s´2tµ2
ε2 ` opε2q µ ă

a

s{t

.

Lemma 2.3.13. For all s, t, µ ą 0 and x P R,

lim
nÑ8

´
1

n
logP

ˆ

max
0ďrďt

 

µnr ´B0pnrq ` L1,tns upnr, ntq
(

ě nx

˙

“ inf
0ărăt

tgµr ˝ Js,t´rpxqu .

Proof. As above, the bound

lim sup
nÑ8

´
1

n
logP

ˆ

max
0ďrďt

 

µnr ´B0pnrq ` L1,tns upnr, ntq
(

ě nx

˙

ď inf
0ărăt

tgµr ˝ Js,t´rpxqu .

follows immediately. The right hand side is zero for x ď max0ďrďttµr ` 2
a

spt´ rqu. By

non-negativity of the pre-limit expressions, this implies the result for such x. It then suffices

to consider x ą max0ďrďttµr ` 2
a

spt´ rqu.

Take a partition triu
M
i“1 of r0, ts. Arguing as in Lemma 2.3.3, we have

M
ÿ

i“2

P

ˆ

nµri `B0pnriq ` max
rPrri´1,ris

pB0pnrq ´B0pnriqq ` L1,tns upnri´1, ntq ě nx

˙
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Note that by the reflection principle, the assumption that ri ´ ri´1 “ M´1, and Brownian

scaling, maxrPrri´1,ris pB0pnrq ´B0pnriqq
d
“
?
n
?
M
´1
|B0p1q|. Applying [37, Lemma 3.6], we

obtain

lim inf
nÑ8

´
1

n
logP

ˆ

max
0ďrďt

 

µnr ´B0pnrq ` L1,tns upnr, ntq
(

ě nx

˙

ě min
2ďiďM

 

gµri ˝ g
0
M´1 ˝ Js,t´ri´1pxq

(

It is convenient to work with a simpler variational expression than the infimal convolution

on the right. All of the functions gµripxq, g
0
M´1pxq, Js,t´ri´1pxq and gµri ˝ g

0
M´1 ˝ Js,t´ri´1pxq are

non-negative real valued convex functions and thus continuous and proper. It follows from the

Fenchel-Moreau theorem that for x ą max0ďrďttµr ` 2
a

spt´ rqu, M sufficiently large, and

all i

gµri ˝ g
0
M´1 ˝ Js,t´ri´1pxq “ sup

λě0

"

λx´ ri

ˆ

λ2

2
` µλ

˙

´
λ2

2M
´ Λs,t´ri´1pλq

*

“ sup
λě0

"

λx´ ri´1

ˆ

λ2

2
` µλ

˙

´
1

M

`

λ2 ` µλ
˘

´ Λs,t´ri´1pλq

*

Then we see that for all M sufficiently large,

min
2ďiďM

tgµri ˝ g
0
M´1 ˝ Js,t´ri´1pxqu “ min

2ďiďm
sup
λą0

"

λx´ ri´1

ˆ

λ2

2
` µλ

˙

´
1

M

`

λ2 ` µλ
˘

´ Λs,t´ri´1pλq

*

ě inf
0ďrăt

sup
λě0

"

λx´ r

ˆ

λ2

2
` µλ

˙

´
1

M

`

λ2 ` µλ
˘

´ Λs,t´rpλq

*

Explicit computation shows that Λs,tpλq ě tλ2{2. Extend Λs,tpλq to Λs,0pλq “ 0. It follows

that for any r P r0, ts,

λx´ r

ˆ

λ2

2
` µλ

˙

´
1

M

`

λ2 ` µλ
˘

´ Λs,t´rpλq ď λx´ r

ˆ

λ2

2
` µλ

˙

´ pt´ rq
λ2

2

ď λx´ t
λ2

2
.

For any r, if λ ą 2xt´1, the expression inside the supremum is negative. We may therefore

restrict the supremum for all r to the set 0 ď λ ď 2xt´1. But now pr, λq ÞÑ λx´r
´

λ2

2 ` µλ
¯

´

1
M

`

λ2 ` µλ
˘

´ Λs,t´rpλq is uniformly continuous on r0, ts ˆ r0, 2xt´1s. Sending M Ñ8 gives

lim inf
MÑ8

min
2ďiďM

tgµri ˝ g
0
M´1 ˝ Js,t´ri´1pxqu ě inf

0ďrăt
sup
λě0

"

λx´ r

ˆ

λ2

2
` µλ

˙

´ Λs,t´rpλq

*
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“ inf
0ďrăt

tgµr ˝ Js,t´rpxqu .

The result now follows.

Lemma 2.3.14. For any s, t ą 0 and x P R,

inf
0ďrăt

tgµr ˝ Js,t´rpxqu “ max
λě0

max
zěµ

"

λx´ t

ˆ

λ2

2
` zλ

˙

´ s log
z ` λ

z

*

_max
λě0

"

λx´ t

ˆ

λ2

2
` µλ

˙

´ s log
µ` λ

µ

*

In particular, when µ ď
a

s{t,

inf
0ďrăt

tgµr ˝ Js,t´rpxqu “ p2tq
´1

ż x

2
?
st

´

z ´ 2tµ`
a

z2 ´ 4st
¯

dz1txě2
?
stu

Proof. Note that gµr ˝Js,t´rpxq “ 0 for x ď max0ďrďttµr`2
a

spt´ rqu. Take x ą max0ďrďttµr`

2
a

spt´ rqu. There are two cases for the value of this maximum. If µ ď
a

s{t then max0ďrďttµr`

2
a

spt´ rqu “ 2
?
st because the term being maximized is strictly decreasing. If µ ą

a

s{t

then the maximum occurs at µ “ t` sµ´2 and max0ďrďttµr` 2
a

spt´ rqu “ tµ` sµ´1. Once

again, extend Λs,tpλq to Λs,0pλq “ 0. We have

inf
0ďrăt

tgµr ˝ Js,t´rpxqu “ inf
0ďrăt

sup
λě0

"

λx´ r

ˆ

λ2

2
` µλ

˙

´ Λs,t´rpλq

*

“ min
0ďrďt

max
λě0

"

λx´ r

ˆ

λ2

2
` µλ

˙

´ Λs,t´rpλq

*

“ max
λě0

min
0ďrďt

"

λx´ r

ˆ

λ2

2
` µλ

˙

´ Λs,t´rpλq

*

“ max
λě0

min
0ďrďt

max
zą0

"

λx´ r

ˆ

λ2

2
` µλ

˙

´ pt´ rq

ˆ

λ2

2
` zλ

˙

´ s log
z ` λ

z

*

“ max
λě0

max
zą0

min
0ďrďt

"

λx´ r

ˆ

λ2

2
` µλ

˙

´ pt´ rq

ˆ

λ2

2
` zλ

˙

´ s log
z ` λ

z

*

.

“ max
λě0

max
zą0

"

λx´ t

ˆ

λ2

2
` zλ

˙

´ s log
z ` λ

z
` min

0ďrďt
trλpz ´ µqu

*

.

We have used minimax theorems in the third and fifth equalities. In order to treat the inner

minimum, we separate the maximum in z into the cases z ď µ or z ě µ. If z ď µ, then the
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innter minimum occurs at r “ t. Then we have

max
λě0

max
0ăzďµ

"

λx´ t

ˆ

λ2

2
` zλ

˙

´ s log
z ` λ

z
` min

0ďrďt
trλpz ´ µqu

*

“max
λě0

max
0ăzďµ

"

λx´ t

ˆ

λ2

2
` µλ

˙

´ s log
z ` λ

z

*

“max
λě0

"

λx´ t

ˆ

λ2

2
` µλ

˙

´ s log
µ` λ

µ

*

If z ě µ, then the inner minimum occurs at r “ 0. Combining these cases, we have

inf
0ďrăt

tgµr ˝ Js,t´rpxqu “ max
λě0

max
zěµ

"

λx´ t

ˆ

λ2

2
` zλ

˙

´ s log
z ` λ

z

*

_max
λě0

"

λx´ t

ˆ

λ2

2
` µλ

˙

´ s log
µ` λ

µ

*

.

As in the previous case, the second term in the maximum is feasible for the first term by

taking z “ µ. These two expressions can then only differ if there is a value of λ for which the

maximizer of λx ´ t
´

λ2

2 ` zλ
¯

´ s log z`λ
z on z P rµ,8q occurs in pµ,8q. If such a z exists,

then it occurs at z “ 1
2

´

a

4s{t` λ2 ´ λ
¯

. This function is strictly decreasing in λ, so this can

only occur if and only if the value at λ “ 0 is at least µ. This is equivalent to µ ď
a

s{t. If

µ ď
a

s{t, then the first maximum becomes

max
λě0

max
zěµ

"

λx´ t

ˆ

λ2

2
` zλ

˙

´ s log
z ` λ

z

*

“max
λě0

#

xλ´
1

2
λt
a

4s{t` λ2 ´ 2s arctanh

˜

λ
a

4s{t` λ2

¸+

Recalling that x ě 2
?
st (in general µt ` sµ´1 ě 2

?
st), the maximum occurs at λ “

t´1
?
x2 ´ 4st. Substituting in, we have

max
λě0

max
zěµ

"

λx´ t

ˆ

λ2

2
` zλ

˙

´ s log
z ` λ

z

*

“ t´1

ż x

2
?
st

a

z2 ´ 4stdz

“ Js,tpxq.

For the right hand side, it is convenient to appeal to homogeneity to set s “ 1. The maximum

of λx´ t
´

λ2

2 ` µλ
¯

´ log µ`λ
µ on λ ě 0 occurs in p0,8q if and only if x´ 2tµ`

?
x2 ´ 4t ą 0,
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in which case the maximum occurs at this λ. Otherwise, the maximum occurs at λ “ 0.

This function is strictly increasing in x. Thus, this value always lies in the region p0,8q if

2
?
t´ 2tµ ą 0. In particular, this is the case when µ ă

a

1{t. For general s, this condition is

µ ă
a

s{t. For µ ă
a

s{t, we are considering an x satisfying x ą 2
?
st. We obtain

max
λě0

"

λx´ t

ˆ

λ2

2
` µλ

˙

´ s log
µ` λ

µ

*

“ smax
λě0

"

λ
x

s
´
t

s

ˆ

λ2

2
` µλ

˙

´ log
µ` λ

µ

*

“ s2

ż x{s

2
?
t{s
p2tq´1

´

y ´ 2tµ{s`
a

y2 ´ 4t{s
¯

dy

“ p2tq´1

ż x

2
?
st

´

z ´ 2tµ`
a

z2 ´ 4st
¯

dz

Lemma 2.3.15. For all s, t, µ ą 0 and x P R, then

Jµs,tpxq :“ lim
nÑ8

´n´1 logP
´

Lµ
tns u

pntq ě nx
¯

“ inf
0ărăt

tgµr ˝ Js,t´rpxqu ^ inf
0ăuăs

thµu ˝ Js´u,tpxqu .

In particular, for µ ď
a

s{t,

Jµs,tpxq :“ p2tq´1

ż x

tµ`sµ´1

a

y2 ´ 4st` p2tµ´ yqdy1txětµ`sµ´1u

Proof. Note that

P

ˆ

sup
0ărăt

 

nµr ´B0pnrq ` L1,tns upnr, ntq
(

ě nx

˙

_ P

ˆ

max
1ďjďtns u

!

Lµj p0q ` Lj,tns up0, ntq
)

˙

ďP
´

Lµ
tns u

pntq ě nx
¯

ďP

ˆ

sup
0ărăt

 

nµr ´B0pnrq ` L1,tns upnr, ntq
(

ě nx

˙

` P

ˆ

max
1ďjďtns u

!

Lµj p0q ` Lj,tns up0, ntq
)

˙

.

Take logs, divide by ´n, and send nÑ8 to obtain the first equality. If µ ď
?
st, this implies

that

Jµs,tpxq “

"

p2tq´1

ż x

tµ`sµ´1

a

y2 ´ 4st` p2tµ´ yqdy1txětµ`sµ´1u

*

^

"

p2tq´1

ż x

2
?
st

´

y ´ 2tµ`
a

y2 ´ 4st
¯

dy1txě2
?
stu

*
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Note that µt ` sµ´1 ě 2
?
st for any µ ą 0. The first term is then less than or equal to the

second for any value of x, from which the result follows.
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2.4 Large deviations for the O’Connell-Yor polymer model

2.4.1 A variational problem for the right tail rate function

Definitions and notation

The goal of this subsection is to introduce the right tail rate function for the free energy, which

we will denote Js,tpxq, and the rate functions coming from the stationary model which appear

in the variational expression for Js,tpxq. We will defer some of the proofs of technical results

about the existence and regularity of these rate functions to Appendix 2.4.4. We begin by

defining these functions and addressing existence.

Theorem 2.4.1. For all s ě 0, t ą 0 and r P R, the limit

Js,tprq “ lim
nÑ8

´
1

n
logP

`

logZ1,tnsup0, ntq ě nr
˘

exists and is R` valued. Moreover, Js,tprq is continuous, convex, subadditive, and positively

homogeneous of degree one as a function of ps, t, rq P r0,8q ˆ p0,8q ˆ R. For fixed s and t,

Js,tprq is increasing in r and Js,tprq “ 0 if r ď ρps, tq.

The proof of Theorem 2.4.1 can be found in subsection 2.4.4 of Appendix 2.4.4.

Next, we define the computable rate functions from the stationary model. By the Burke

property for the stationary model, the first limit below can be computed as the right branch

of a Cramér rate function. For s, t ą 0, we set

U θs pxq “ ´ lim
1

n
logP

¨

˝

tnsu
ÿ

k“1

rθkp0q ě nx

˛

‚

“

$

’

’

&

’

’

%

0 x ď ´sΨ0pθq

xpθ ´Ψ´1
0 p´x

s qq ` s log Γpθq

ΓpΨ´1
0 p´x

s
qq

x ą ´sΨ0pθq

,

Rθt pxq “ ´ lim
1

n
logP pBpntq ´ θnt ě nxq “

$

’

’

&

’

’

%

0 x ď ´θt

1
2

´

x`θt?
t

¯2
x ą ´θt

.
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We may continuously extend U θs pxq to s “ 0 by setting

U θ0 pxq “

$

’

’

&

’

’

%

0 x ď 0

xθ x ą 0

.

We record the Legendre-Fenchel transforms of these functions below:

pU θs q
˚pξq “

$

’

’

&

’

’

%

8 ξ ă 0 or ξ ě θ

s log Γpθ´ξq
Γpθq 0 ď ξ ă θ

, pRθt q
˚pξq “

$

’

’

&

’

’

%

8 ξ ă 0

tp ξ
2

2 ´ θξq ξ ě 0

.

The next lemma implies existence of the rate functions which will appear when we use

equation (2.2.8) to prove that Js,tpxq satisfies a variational problem in the next subsection.

Versions of this result appear in several other papers, so we elect not to re-prove it. The exact

statement we need appears in [37].

Lemma 2.4.2. [37, Lemma 3.6]) Suppose that for each n, Xn and Yn are independent, that

the limits

λpsq “ lim
nÑ8

´
1

n
logP pXn ě nsq , φpsq “ lim

nÑ8
´

1

n
logP pYn ě nsq

exist, and that λ is continuous. If there exists aλ and aφ so that λpaλq “ φpaφq “ 0, then

lim
nÑ8

´
1

n
logP pXn ` Yn ě nrq “

$

’

’

&

’

’

%

infaλďsďr´aφtφpr ´ sq ` λpsqu r ě aφ ` aλ

0 r ď aφ ` aλ

“ λ ˝ φprq.

We define rate functions corresponding to the two parts of the decomposition in (2.2.8) as

follows: for a P r0, tq, u P p0, ss, v P r0, sq, and x P R set

Gθa,s,tpxq “ ´ lim
1

n
logP

`

Bpna, ntq ´ θnpt´ aq ` logZ1,tnsupna, ntq ě nx
˘

,

Hθ
u,v,s,tpxq “ ´ lim

1

n
logP

´

´ logZθ0pntq ` logZθtnuup0q ` logZtnvu,tnsup0, ntq ě nx
¯

. (2.4.1)
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Recall that logZθj p0q “
řj
k“1 r

θ
kp0q is measurable with respect to the sigma algebra σpBpsq, Bkpsq :

1 ď k ď j; s ď 0q and that for 0 ď u ă nt, logZj,tnsupu, tq is measurable with respect to the

sigma algebra σpBkpskq : j ď k ď tnsu, u ď sj ď ntq. Combining the independence of the en-

vironment with the computations above, Theorem 2.4.1 and Lemma 2.4.2 imply that Gθa,s,tpxq

and Hθ
u,v,s,tpxq are well-defined. In particular, we immediately obtain

Corollary 2.4.3. For a P r0, tq and u P p0, ss, and v P r0, sq

Gθa,s,tpxq “ Rθt´a ˝ Js,t´apxq, Hθ
u,v,s,tpxq “ Rθt ˝ U

θ
u ˝ Js´v,tpxq.

In order to show that (2.2.8) leads to a variational problem, we need some regularity on

Gθa,s,tpxq and Hθ
u,v,s,tpxq. The three results that follow are purely technical, so we defer their

proofs to subsection 2.4.4 of Appendix 2.4.4. Lemma 2.4.4 gives a strong kind of local uniform

continuity of Hθ
u,v,s,tpxq and Lemma 2.4.5 gives the same for Gθa,s,tpxq. The difference between

the two statements comes from Lemma 2.4.6, which shows that Gθa,s,tpxq degenerates to infinity

locally uniformly near a “ t.

Lemma 2.4.4. Fix θ, s, t ą 0 and a compact set K Ď R. Then

lim
δ,γ,εÓ0

sup
a,b,b1Pr0,ss:|b´b1|ăδ

r1,r2PK:|r1´r2|ăε

!

|Hθ
a,b,s,t`γpr1q ´H

θ
a,b1,s,tpr2q|

)

“ 0.

Lemma 2.4.5. Fix θ, s, t ą 0 and 0 ă δ ď t and a compact set K Ď R. Then

lim
ε,γÓ0

sup
a1,a2Pr0,t´δs:|a1´a2|ăγ

r1,r2PK:|r1´r2|ăε

!

|Gθa1,s,tpr1q ´G
θ
a2,s,tpr2q|

)

“ 0.

Lemma 2.4.6. Fix θ, s, t ą 0 and K Ă R compact. Then

lim inf
aÒt

inf
xPK

!

Gθa,s,tpxq
)

“ 8.
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Coarse graining and the variational problem

Fix a P r0, tq and 0 ă δ ď t´ a. Then (2.2.8) implies the following lower bounds

log

ˆ

n

ż a`δ

a

Zθ0pnuq

Zθ0pntq
Z1,tnsupnu, ntqdu

˙

ď

tnsu
ÿ

k“1

rθkpntq, (2.4.2)

´ logZθ0pntq ` logZθj p0q ` logZj,tnsup0, ntq ď

tnsu
ÿ

k“1

rθkpntq. (2.4.3)

For any partition taiu
N
i“0 of r0, ts, we also have

tnsu
ÿ

k“1

rθkpntq ď max
0ďiďN´1

"

log

ˆ

n

ż ai`1

ai

Zθ0pnuq

Zθ0pntq
Z1,tnsupnu, ntqdu

˙*

_ max
1ďjďtnsu

!

´ logZθ0pntq ` logZθj p0q ` logZj,tnsup0, ntq
)

` logpN ` 1` nsq.

(2.4.4)

Our goal is now to show that estimates (2.4.2), (2.4.3), and (2.4.4) above lead to a variational

characterization of the right tail rate function Js,tpxq:

U θs pxq “ mint inf
0ďaăt

!

Gθa,s,tpxq
)

, inf
0ďaăs

!

Hθ
a,a,s,tpxq

)

u

“ mint inf
0ďaăt

!

Rθt´a ˝ Js,t´apxq
)

, inf
0ďaăs

!

Rθt ˝ U
θ
a ˝ Js´a,tpxq

)

u. (2.4.5)

To improve the presentation of the paper, we have moved some of the estimates in the proofs

that follow to Appendix 2.4.5.

Lemma 2.4.7. Fix θ ą 0, ps, tq P p0,8q2 and x P R. Then

U θs pxq ď mint inf
0ďaăt

!

Gθa,s,tpxq
)

, inf
0ďaăs

!

Hθ
a,a,s,tpxq

)

u.

Proof. For a P r0, sq, taking j “ tanu in inequality (2.4.3) above immediately implies

U θs pxq ď Hθ
a,a,s,tpxq. (2.4.6)

Fix δ P p0, tq; then for all a P r0, t´ δq and all u P r0, a` δs, we have

Z1,1pnu, npa` δqqZ1,tnsupnpa` δq, ntq ď Z1,tnsupnu, ntq. (2.4.7)
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It then follows that

P

ˆ

log

ˆ

n

ż a`δ

a

Zθ0pnuq

Zθ0pntq
Z1,tnsupnu, ntqdu

˙

ě nx

˙

ě P
´

logZ1,tnsupnpa` δq, ntq ` log
Zθ0pnpa` δqq

Zθ0pntq

` log

ˆ

n

ż a`δ

a

Zθ0pnuq

Zθ0pnpa` δqq
Z1,1pnu, npa` δqdu

˙

ě nx
¯

.

Fix ε ą 0. By independence of the Brownian environment, we find that

´1

n
logP

ˆ

log

ˆ

n

ż a`δ

a

Zθ0pnuq

Zθ0pntq
Z1,tnsupnu, ntqdu

˙

ě nx

˙

ď
´1

n
logP

ˆ

logZ1,tnsupnpa` δq, ntq ` log
Zθ0pnpa` δqq

Zθ0pntq
ě npx` εq

˙

(2.4.8)

`
´1

n
logP

ˆ

log

ˆ

n

ż a`δ

a

Zθ0pnuq

Zθ0pnpa` δqq
Z1,1pnu, npa` δqdu

˙

ě ´nε

˙

. (2.4.9)

Applying the lower bound obtained by considering the minimum of the Brownian increments

on the interval ra, a` δs allows us to show that as nÑ8 the probability in line (2.4.9) tends

to one. Then taking lim sup and recalling inequality (2.4.2), we obtain

U θs pxq ď Gθa`δ,s,tpx` εq. (2.4.10)

By Lemma 2.4.5, we may take δ, ε Ó 0 in (2.4.10). Optimizing over a in the resulting equation

and in (2.4.6) gives the result.

Lemma 2.4.8. Fix θ ą 0, ps, tq P p0,8q2 and x P R. Then

U θs pxq ě mint inf
0ďaăt

!

Gθa,s,tpxq
)

, inf
0ďaăs

!

Hθ
a,a,s,tpxq

)

u.

Proof. Fix a large p ą 1 and small ε, γ ą 0. Consider uniform partitions taiu
M
i“0 of r0, ts and

tbiu
N
i“0 of r0, ss of mesh ν “ t

M`1 and δ “ s
N`1 respectively. We will add restrictions on these

parameters later in the proof. Take n sufficiently large that tbinu ă tbi`1nu for all i.

Fix j ă tnsu not equal to any of the partition points tbinu and consider i so that tbinu ă

j ă tbi`1nu. Notice that Zθ0pntq is σpBpntqq measurable and Zθj p0q is measurable with respect



69

to σpBpsq, B1psq, . . . Bjpsq : s ď 0q, so these random variables and Zj,tnsupu, vq are mutually

independent if 0 ď u ă v. It follows from translation invariance and this independence that

P
´

´ logZθ0pntq ` logZθj p0q ` logZj,tnsup0, ntq ě nx
¯

“ P
´

´ logZθ0pntq ` logZθj p0q ` logZj,tnsupnγ, npt` γqq ě nx
¯

.

We have

Ztbinu,tnsup0, npt` γqq ě Ztbinu,jp0, nγqZj,tnsupnγ, npt` γqq.

It then follows that

P
´

´ logZθ0pntq ` logZθj p0q ` logZj,tnsup0, ntq ě nx
¯

ď P
´

´ logZθ0pntq ` logZθtbi`1nup0q ` logZtbinu,tnsup0, npt` γqq ě npx´ 2εq
¯

` P
`

logZtbinu,jp0, nγq ď ´nε
˘

` P

¨

˝

tbi`1nu
ÿ

k“j`1

rθkp0q ď ´nε

˛

‚.

Using the moment bound in Lemma 2.4.21 with ξ “ ´p for p ą 1 and the exponential Markov

inequality gives the bound

P
`

logZtbinu,jp0, nγq ď ´nε
˘

ď e
´np

´

ε´pγ´δ log δ
γ

¯

`opnq
ď e´n

ε
2
p`opnq.

For the last inequality, we first require γ ă ε
4p and then take δ small enough that δ log δ

γ ă
ε
4 .

The exponential Markov inequality and the known moment generating function of the i.i.d. sum

give the bound

P

¨

˝

tbi`1nu
ÿ

k“j`1

rθkp0q ď ´nε

˛

‚ď e´nppε´δp
´1 logpΓpθ`pqΓpθq´1qq ď e´np

ε
2

where in the last step we additionally require δ ă εp
4 log

`

Γpθ ` pqΓpθq´1
˘´1

. For the case that

j is a partition point, we have

P
´

´ logZθ0pntq ` logZθtbinup0q ` logZtbinu,tnsup0, ntq ě nx
¯
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ď P
´

´ logZθ0pntq ` logZθtbi`1nup0q ` Ztbinu,tnsup0, npt` γqq ě npx´ 2εq
¯

` P

¨

˝

tbi`1nu
ÿ

k“tbinu

rθkp0q ď ´2nε

˛

‚.

and the same error bound as above applies. We now turn to the problem of estimating the

integral

P

ˆ

log

ˆ

n

ż ai`1

ai

Zθ0pnuq

Zθ0pntq
Z1,tnsupnu, ntqdu

˙

ě nx

˙

ď P

ˆ

log

ˆ

Zθ0pnaiq

Zθ0pntq
Z1,tnsupnai, ntq

˙

ě npx´ εq

˙

` P

ˆ

log

ˆ

n

ż ai`1

ai

Zθ0pnuq

Zθ0pnaiq

Z1,tnsupnu, ntq

Z1,tnsupnai, ntq
du

˙

ě nε

˙

.

We have

P

ˆ

log

ˆ

n

ż ai`1

ai

Zθ0pnuq

Zθ0pnaiq

Z1,tnsupnu, ntq

Z1,tnsupnai, ntq
du

˙

ě nε

˙

ď exp

#

´n

ˆ

ε´ θν

2
?
ν

˙2

` opnq

+

where we require ν ă ε
θ .

Take n sufficiently large that logpns`Nq ď nε. It follows from (2.4.4) and union bounds

that

1

n
logP

¨

˝

tnsu
ÿ

k“1

rθkpntq ě nx

˛

‚ď
1

n
logpns`Nq

` max
0ďiďM´1

! 1

n
logP

ˆ

log

ˆ

n

ż ai`1

ai

Zθ0pnuqZ
θ
0pntq

´1Z1,tnsupnu, ntqdu

˙

ě npx´ εq

˙

)

_ max
1ďjďtnsu

! 1

n
logP

´

´ logZθ0pntq ` logZθj p0q ` logZj,tnsup0, ntq ě npx´ εq
¯)

.

Combining this with the previous estimates, multiplying by ´1 and sending nÑ8 gives

U θs pxq ě min
0ďiďM´1

!

Gθais,tpx´ 2εq
)

^

ˆ

ε´ θν

2
?
ν

˙2

^
pε

2
^ min

0ďiďN´1

 

Hbi`1,bi,s,t`γpx´ 3εq
(

ě inf
aPr0,tq

!

Gθa,s,tpx´ 2εq
)

^

ˆ

ε´ θν

2
?
ν

˙2

^
pε

2

^ inf
aPr0,sq

#

Ha,a,s,tpxq ´ sup
a,b,b1Pr0,ss:|b´b1|ăδ

!

|Hθ
a,b,s,t`γpx´ 3εq ´Hθ

a,b1,s,tpxq|
)

+

.
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We first send δ Ó 0, then γ Ó 0, then ν Ó 0, then p Ò 8. By Lemma 2.4.6, there is η ą 0 so that

for all ε P r0, 1s, we have

inf
aPr0,tq

!

Gθa,s,tpx´ 2εq
)

“ inf
aPr0,t´ηs

!

Gθa,s,tpx´ 2εq
)

.

Now, take ε Ó 0 and use Lemmas 2.4.4 and 2.4.5. This gives the desired bound

U θs pxq ě mint inf
aPr0,tq

!

Gθa,s,tpxq
)

, inf
aPr0,tq

!

Hθ
a,a,s,tpxq

)

u.

We now turn the variational problem for the right tail rate functions into a variational

problem involving Legendre-Fenchel transforms.

Lemma 2.4.9. For any θ ą 0 let ξ P p0, θq. Then J˚s,tpξq satisfies the variational problem

0 “ max

"

sup
0ďaăt

"

pt´ aq

ˆ

1

2
ξ2 ´ θξ

˙

´ s log
Γpθ ´ ξq

Γpθq
` J˚s,t´apξq

*

,

sup
0ďaăs

"

t

ˆ

1

2
ξ2 ´ θξ

˙

´ ps´ aq log
Γpθ ´ ξq

Γpθq
` pJs´a,tq

˚pξq

**

.

Proof. Lemma 2.4.7 and Lemma 2.4.8 imply (2.4.5). Infimal convolution is Legendre-Fenchel

dual to addition for proper convex functions [79, Theorem 16.4] so we find

pU θs q
˚pξq “ sup

xPR

"

ξx´min

"

inf
0ďaăt

!

Rθt´a ˝ Js,t´apxq
)

, inf
0ďaăs

!

Rθt ˝ U
θ
a ˝ Js´a,tpxq

)

**

“ sup
xPR

"

maxt sup
0ďaăt

!

ξx´Rθt´a ˝ Js,t´apxq
)

, sup
0ďaăs

!

ξx´Rθt ˝ U
θ
a ˝ Js´a,tpxq

)

*

“ max

"

sup
0ďaăt

!

pRθt´aq
˚pξq ` J˚s,t´apξq

)

, sup
0ďaăs

!

pRθt q
˚pξq ` pU θa q

˚pξq ` pJs´a,tq
˚pξq

)

*

.

If ξ P p0, θq, then pU θs q
˚pξq ă 8, so we may subtract pU θs q

˚pξq from both sides. Substituting in

the known Legendre-Fenchel transforms gives the result.

Solving the variational problem

Next, we show that the variational problem in Lemma 2.4.9 identifies J˚s,tpξq for ξ ą 0. To show

the analogous result in [37], the authors followed the approach of rephrasing the variational
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problem as a Legendre-Fenchel transform in the space-time variables and appealing to convex

analysis. We present an alternate method for computing J˚s,tpξq in the next proposition, which

has the advantage of allowing us to avoid some of the technicalities in that argument. This

direct approach is the main reason we are able to appeal to the Gärtner-Ellis theorem to prove

the large deviation principle.

Proposition 2.4.10. Let I Ď R be open and connected and let h, g : I Ñ R be twice contin-

uously differentiable functions with h1pθq ą 0 and g1pθq ă 0 for all θ P I. For px, yq P p0,8q2,

define

fx,ypθq “ xhpθq ` ygpθq

and suppose that d2

dθ2
fx,ypθq ą 0 for all px, yq P p0,8q2 and that fx,ypθq Ñ 8 as θ Ñ BI (which

may be a limit as θ Ñ ˘8). If Λpx, yq is a continuous function on p0,8q2 with the property

that for all px, yq P p0,8q2 and θ P I the identity

0 “ sup
0ďaăx

tΛpx´ a, yq ´ fx´a,ypθqu _ sup
0ďbăy

tΛpx, y ´ bq ´ fx,y´bpθqu (2.4.11)

holds, then

Λpx, yq “ min
θPI

tfx,ypθqu .

Proof. Fix px, yq P p0,8q2 and call ν “ y
x . Under these hypotheses, there exists a unique

θ˚x,y “ arg minθPI fx,ypθq “ θ˚1,ν . Identity (2.4.11) implies that for all a P r0, xq and b P r0, yq

we have

Λpx´ a, yq ď fx´a,ypθ
˚
x´a,yq, Λpx, y ´ bq ď fx,y´bpθ

˚
x,y´bq,

and therefore for any θ P I, a P r0, xq and b P r0, yq,

Λpx´ a, yq ´ fx´a,ypθq ď fx´a,ypθ
˚
x´a,yq ´ fx´a,ypθq, (2.4.12)
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Λpx, y ´ bq ´ fx,y´bpθq ď fx,y´bpθ
˚
x,y´bq ´ fx,y´bpθq. (2.4.13)

Uniqueness of minimizers implies that fx´a,ypθ
˚
x´a,yq ´ fx´a,ypθq ă 0 unless θ “ θ˚x´a,y and

similarly fx,y´bpθ
˚
x,y´bq ´ fx,y´bpθq ă 0 unless θ “ θ˚x,y´b. Notice that θ˚1,ν solves

0 “ h1pθ˚1,νq ` νg
1pθ˚1,νq. (2.4.14)

By the implicit function theorem, we may differentiate the previous expression with respect to

ν to obtain

dθ˚1,ν
dν

“ ´
g1pθ˚1,νq

h2pθ˚1,νq ` νg
2pθ˚1,νq

ą 0. (2.4.15)

Now, set θ “ θ˚x,y in (2.4.11). Equality (2.4.15) implies that for a P p0, xq and b P p0, yq,

θ˚
px,y´bq ă θ˚

px,yq ă θ˚
px´a,yq. Then (2.4.12) and (2.4.13) give us the inequalities

Λpx´ a, yq ´ fx´a,ypθ
˚
x,yq ď fx´a,ypθ

˚
x´a,yq ´ fx´a,ypθ

˚
x,yq ă 0, (2.4.16)

Λpx, y ´ bq ´ fx,y´bpθ
˚
x,yq ď fx,y´bpθ

˚
x,y´bq ´ fx,y´bpθ

˚
x,yq ă 0. (2.4.17)

Notice that (2.4.11) implies either there exists an Ñ a P r0, xs or bn Ñ b P r0, ys so that one of

the following hold:

Λpx´ an, yq ´ fx´an,ypθ
˚
x,yq Ñ 0, Λpx, y ´ bnq ´ fx,y´bnpθ

˚
x,yq Ñ 0.

Our goal is to show that the only possible limits are an Ñ 0 or bn Ñ 0, from which the

result follows from continuity. Continuity and inequalities (2.4.16) and (2.4.17) rule out the

possibilities a P p0, xq and b P p0, yq respectively. It therefore suffices to show that

lim sup
aÑx´

fx´a,ypθ
˚
x´a,yq ´ fx´a,ypθ

˚
x,yq ă 0, (2.4.18)

lim sup
bÑy´

fx,y´bpθ
˚
x,y´bq ´ fx,y´bpθ

˚
x,yq ă 0. (2.4.19)
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We will only write out the proof of (2.4.18), since the proof of (2.4.19) is similar. For any fixed

a P p0, xq, we have

fx´a,ypθ
˚
x´a,yq ´ fx´a,ypθ

˚
x,yq ă 0.

It suffices to show that the previous expression is decreasing in a. Differentiating the previous

expression and using (2.4.14) and the fact that θ˚
px,yq ă θ˚

px´a,yq, we find

d

da

´

px´ aqhpθ˚px´a,yqq ` ygpθ
˚
px´a,yqq ´

”

px´ aqhpθ˚px,yqq ` ygpθ
˚
px,yqq

ı¯

“ hpθ˚px,yqq ´ hpθ
˚
px´a,yqq ă 0.

Corollary 2.4.11. For all ξ ą 0,

J˚s,tpξq “ min
θąξ

"

t

ˆ

´
ξ2

2
` θξ

˙

` s log
Γpθ ´ ξq

Γpθq

*

“ min
µą0

"

t

ˆ

ξ2

2
` ξµ

˙

´ s log
Γpµ` ξq

Γpµq

*

.

Proof. It follows from the variational representation in Lemma 2.4.9 that J˚s,tpξq is not infinite

for any choice of the parameters ξ, s, t ą 0. It then follows from Lemma 2.4.19 and [79,

Theorem 10.1] that J˚s,tpξq is continuous in ps, tq P p0,8q2.

Fix ξ and set I “ tθ : θ ą ξu. For θ P I and s, t P p0,8q, define

hpθq “ ´
ξ2

2
` θξ, gpθq “ log

Γpθ ´ ξq

Γpθq
,

fs,tpθq “ shpθq ` tgpθq, Λps, tq “ J˚s,tpξq.

Lemma 2.4.9 shows that with these definitions J˚s,tpξq solves the variational problem in Propo-

sition 2.4.10. Because Ψ1pxq ą 0 and Ψ2pxq ă 0, we see that for θ P I

g1pθq “ Ψ0pθ ´ ξq ´Ψ0pθq ă 0, g2pθq “ Ψ1pθ ´ ξq ´Ψ1pθq ą 0.

It then follows that d2

dθ2
fs,tpθq ą 0. Moreover, since log Γpθ´ξq

Γpθq grows like ´ξ logpθq at infinity

and ´ logpθ´ ξq at ξ, fs,tpθq also tends to infinity at the boundary of I and the result follows.

The second equality is the substitution µ “ θ ´ ξ.
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2.4.2 Moment Lyapunov exponents and the LDP

The next result would be Varadhan’s theorem if Js,tpxq were a full rate function, rather than

a right tail rate function. The proof is somewhat long and essentially the same as the proof of

Varadhan’s theorem, so we omit it. Details of a similar argument for the stationary log-gamma

polymer can be found in [37, Lemma 5.1]. The exponential moment bound needed for the proof

follows from Lemma 2.4.21.

Lemma 2.4.12. For ξ ą 0,

J˚s,tpξq “ lim
nÑ8

1

n
logE

”

eξ logZ1,tnsup0,ntq
ı

and in particular the limit exists.

Remark 2.4.13. Lemma 2.4.12 shows that J˚s,tpξq is the ξ moment Lyapunov exponent for the

parabolic Anderson model associated to this polymer. With this in mind, the second formula

in the statement of Corollary 2.4.11 above agrees with the conjecture in [16, Appendix A.1].

To see this, we first observe that the partition function we study differs slightly from the

partition function Zβpt, nq studied in [16] (defined in equation (3) of that paper). Up to normal-

ization constants both Z0,tnsup0, ntq and Zβpt, nq are conditional expectations of functionals of a

Poisson path. The normalization constant for Z0,tnsup0, ntq is given by the Lebesgue measure of

the Weyl chamber Atnsu`1,nt, while the normalization constant for Zβpt, nq is Pπp0q“0 pπptq “ nq

where πp¨q is again a rate one Poisson process. There is a further difference in that [16] adds

a pinning potential of strength β
2 at the origin to the definition of Zβpt, nq, which introduces

a multiplicative factor of e´
β
2
t. Combining these changes and restricting to the parameters

studied in [16, Appendix A.1], we have the relation

e´
n
2
Pπp0q“0 pπpnq “ tnνuq

|Atnνu`1,n|
Z0,tnνup0, nq “ Z1pn, tnνuq.
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Since Pπp0q“0 pπpnq “ tnνuq |Atnνu`1,n|
´1 “ e´n, Corollary 2.4.11 and Lemma 2.4.12 then imply

that for any k ą 0,

lim
nÑ8

1

n
logE

”

Z1pn, tnνuq
k
ı

“ ´
3

2
k `min

zą0

"

k2

2
` kz ´ ν log

Γpz ` kq

Γpzq

*

“ min
zą0

"

kpk ´ 3q

2
` kz ´ ν log

Γpz ` kq

Γpzq

*

,

which is the extension of the moment Lyapunov exponent Hkpz
0
kq conjectured in the middle of

page 24 of [16].

Our next goal is to show that the left tail large deviations are not relevant at the scale we

consider. This proof is based on the proof of [37, Lemma 4.2] which contains a small mistake;

as currently phrased, the argument in that paper only works for s, t P Q. This problem can be

fixed by altering the geometry of the proof, but doing this adds some technicalities which can

be avoided in the model we study. We will follow an argument similar to the original proof for

s P Q, then show that this implies what we need for all s.

Proposition 2.4.14. Fix s, t ą 0. For all ε ą 0

lim inf
nÑ8

´
1

n
logP

`

logZ1,tnsup0, ntq ď npρps, tq ´ εq
˘

“ 8.

Proof. First we consider the case s P Q. There exists M P N large enough that Mps^ tq ě 1

and for all m ěM we have

1

m
E logZ1,tmsup0,mtq ě ρps, tq ´ ε.

Fix m ě M so that ms P N. We will denote coordinates in Rtnsu´1 by pu1, . . . , utnsu´1q. For

a, b, s, t P p0,8q and n, k, l P N, define a family of sets Al,bk,a Ă Rtnsu´1 by

Al,bk,a “t0 ă u1 ă ¨ ¨ ¨ ă uk´1 ă a ă uk ă ¨ ¨ ¨ ă uk`l´1 ă a` b ă uk`l ă ¨ ¨ ¨ ă utnsu´1 ă ntu.

For j, k, P Z`, set

Akj ” A
tmsu,mt
jtmsu`1,pj`kqmt.
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For each n sufficiently large that the expression below is greater than one, define

N “

Y n

m
´ t
?
nu´ 2

]

,

so that we have

pn´ 2mqt ď pN ` t
?
nu` 1qmt ď pn´mqt, (2.4.20)

`

t
?
nu` 1

˘

ms´ 1 ď tnsu´N tmsu ď
`

t
?
nu` 2

˘

ms. (2.4.21)

With this choice of N , for 0 ď k ď t
?
nu and 0 ď j ď N ´ 1, Akj is nonempty. Then for

0 ď k ď t
?
nu, define

Dk “ X
N´1
j“0 A

k
j X

!

u : 0 ă u1 ă ¨ ¨ ¨ ă upN`1qms´1 ă t
´

n´
m

2

¯

ă upN`1qms ă ¨ ¨ ¨ ă utnsu´1 ă nt
)

.

To simplify the formulas that follow, we introduce the notation sj “ jms and tkj “ pj ` kqmt.

In words, we can think of Dk as the collection of paths from 0 to nt which traverse the bottom

line until tk0, then for 0 ď j ď N ´ 1 move from tkj to tkj`1 along the next ms lines. The path

then moves from tkN to t
`

n´ m
2

˘

along the next ms lines and finally proceeds to nt along the

remaining lines. Observe that tDku
t
?
nu

k“0 is a pairwise disjoint, non-empty family of sets. With

the convention u0 “ 0 and utnsu “ nt, we have the bound

Z1,tnsup0, ntq ě

t
?
nu

ÿ

k“0

ż

Dk

e
řtnsu

i“1 Bipui´1,uiqdu1 . . . utnsu´1.

In the integral over Dk, for each 0 ď j ď N we add and subtract Bsj pt
k
j q in the exponent.

Similarly, add and subtract BsN`1

`

t
`

n´ m
2

˘˘

. The reason for this step is that this will make

the product of integrals coming from the definition of Dk into a product of partition functions,

as when we showed supermultiplicativity of the partition function in (??). Introduce

Hn
k “ inf

tkN“u0ău1ă¨¨¨ăums´1ăums“npt´m
2 q

#

ms´1
ÿ

i“0

BsN`ipui´1, uiq

+

and observe that Hn
0 ď BsN pt

0
N , t

k
N q `Hn

k . Let C ą 0 be a uniform lower bound in n (recall

that m is fixed) on the Lebesgue measure of the Weyl chamber in the definition of Hn
t
?
nu

.
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Such a bound exists by (2.4.20). Set In “ max
t0N´1ďuďt

t
?
nu

N´1

tBsN pt
0
N´1, uqu. We have the lower

bound

Z1,tnsup0, ntq ě CZsN`1,tnsu

´

t
´

n´
m

2

¯

, nt
¯

eH
n
0 ´In

¨

˝

t
?
nu

ÿ

k“0

eB0p0,tk0q
N´1
ź

j“0

Zsj ,sj`1

´

tkj , t
k
j`1

¯

˛

‚.

We therefore have the upper bound

P
`

logZ1,tnsup0, ntq ď ´npρps, tq ´ 6εq
˘

ď P
´

logZpN`1qms,tnsu

´

t
´

n´
m

2

¯

, nt
¯

ď ´nε´ logC
¯

` P

˜

max
0ďkďt

?
nu

N´1
ÿ

j“0

logZsj`1,sj`1

´

tkj , t
k
j`1

¯

ď ´npρps, tq ´ 2εq

¸

` P pH0 ď ´nεq ` P

ˆ

min
k
B0pt

k
0q ď ´nε

˙

` P pIn ě nεq .

It follows from translation invariance, Lemma 2.4.25, and (2.4.21) that

P

ˆ

logZpN`1qms,tnsu

´

t
´

n´
m

2

¯

, nt
¯

ď ´nε´ log
mt

12

˙

“ O

ˆ

e´n
3
2

˙

.

We have

P

˜

max
0ďkďt

?
nu

#

N´1
ÿ

j“0

logZsj`1,sj`1

´

tkj , t
k
j`1

¯

+

ď ´npρps, tq ´ 2εq

¸

“ P

˜

N´1
ÿ

j“0

logZsj`1,sj`1

`

t1j , t
1
j`1

˘

ď ´npρps, tq ´ 2εq

¸t
?
nu

“ O

ˆ

e´c1n
3
2

˙

for some c1 ą 0. The first equality comes from the fact that the terms in the maximum are

i.i.d. and the second comes from large deviation estimates for an i.i.d. sum once we recall that

N “ n
m ` opnq.

Recall that by (2.4.20), n
`

t´ m
2

˘

´ t0N “ Op
?
nq. It follows from Lemma 2.4.23 that there

exist c2, C2 ą 0 so that

P pH0 ď ´nεq ď C2e
´c2n

3
2 .

The remaining two terms can be controlled with the reflection principle and are O

ˆ

e´
1
2
n

3
2

˙

.
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Now let s be irrational. For each k, fix s̃k ă s rational with e´k ă |s̃k ´ s| ă 2e´k and set

t̃k “ t´ 1
k . Call αk “ s´ s̃k and βk “ t´ t̃k “

1
k . Superadditivity gives

P
`

logZ1,tnsup0, ntq ď npρps, tq ´ εq
˘

ď P
´

logZ1,tns̃kup0, nt̃kq ď n
´

ρps̃k, t̃kq ´
ε

2

¯¯

` P
´

logZtns̃ku,tnsupnt̃k, ntq ď n
´

ρps, tq ´ ρps̃k, t̃kq ´
ε

2

¯¯

.

Since s̃k is rational, we have already shown that the first term is negligible. Take k suffi-

ciently large that ρps, tq ´ ρps̃k, t̃kq ´
ε
2 ă ´

ε
4 . By Lemma 2.4.22, we find

lim inf
nÑ8

´
1

n
P
`

logZ1,tnsup0, ntq ď npρps, tq ´ εq
˘

ě αkJGUE

ˆ ε
4 ´ αk log βk ´ αk ` αk logαk

2
?
αkβk

˙

.

Using formula (2.4.26), JGUEprq “ 4
şr
0

a

xpx` 2qdx, it is not hard to see that as k Ñ8, this

lower bound tends to infinity.

Lemma 2.4.15. Fix s, t ą 0 and ξ ă 0. Then

lim
nÑ8

1

n
logE

”

eξ logZ1,tnsup0,ntq
ı

“ ξρps, tq.

Proof. Fix ε ą 0 and small and recall that Lemma 2.4.21 and Jensen’s inequality imply that

for any ξ ă 0, supn

!

1
n logE

”

eξ logZ1,tnsup0,ntq
ı)

ă 8. The lower bound is immediate from

1

n
logE

”

eξ logZ1,tnsup0,ntq
ı

ě
1

n
logE

”

eξ logZ1,tnsup0,ntq1tlogZ1,tnsup0,ntqďnpρps,tq`εqu

ı

ě ξpρps, tq ` εq `
1

n
logP plogZ1,tnsup0, ntq ď npρps, tq ` εqq

once we recall that P plogZ1,tnsup0, ntq ď npρps, tq ` εqq Ñ 1.

For the upper bound, we decompose the expectation as follows

E
”

eξ logZ1,tnsup0,ntq
ı

“E
”

eξ logZ1,tnsup0,ntq1tlogZ1,tnsup0,ntqąnpρps,tq´εqu

ı

` E
”

eξ logZ1,tnsup0,ntq1tlogZ1,tnsup0,ntqďnpρps,tq´εqu

ı

.

Recalling that P
`

logZ1,tnsup0, ntq ą npρps, tq ´ εq
˘

Ñ 1, this leads to

lim sup
nÑ8

1

n
logE

”

eξ logZ1,tnsup0,ntq
ı
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ď max
!

ξpρps, tq ´ εq, lim sup
nÑ8

1

n
logE

”

eξ logZ1,tnsup0,ntq1tlogZ1,tnsup0,ntqďnpρps,tq´εqu

ı )

.

By Cauchy-Schwarz and Proposition 2.4.14

lim sup
nÑ8

1

n
logE

”

eξ logZ1,tnsup0,ntq1tlogZ1,tnsup0,ntqďnpρps,tq´εqu

ı

ď
1

2
sup
n

"

1

n
logE

”

e2ξ logZ1,tnsup0,ntq
ı

*

` lim sup
nÑ8

1

2n
logP

`

logZ1,tnsup0, ntq ď npρps, tq ´ εq
˘

“ ´8.

Combining the previous results, we are led to the proof of Theorem 2.2.2, from which we

immediately deduce Theorem 2.2.3.

Proof of Theorem 2.2.2. Lemmas 2.4.12 and 2.4.15 give the limit for ξ ‰ 0 and the limit for

ξ “ 0 is zero.

Note that Λs,tpξq is differentiable for ξ ă 0 the left derivative at zero is ρps, tq. For ξ ą 0,

there is a unique µpξq solving

Λs,tpξq “ t

ˆ

ξ2

2
` ξµpξq

˙

´ s log
Γpµpξq ` ξq

Γpµpξqq
. (2.4.22)

This µpξq is given by the unique solution to

0 “ tξ ` s pΨ0pµpξqq ´Ψ0pµpξq ` ξqq , (2.4.23)

which can be rewritten as

1

ξ
pΨ0pµpξq ` ξq ´Ψ0pµpξqqq “

t

s
.

By the mean value theorem, there exists x P r0, ξq so that

Ψ´1
1

ˆ

t

s

˙

´ x “ µpξq.

Using this, we see that Λs,tpξq is continuous at ξ “ 0. The implicit function theorem implies

that µpξq is smooth for ξ ą 0. Differentiating (2.4.22) with respect to ξ and applying (2.4.23),
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we have

d

dξ
Λs,tpξq “ t pξ ` µpξqq ´ sΨ0pµpξq ` ξq.

Substituting in for µpξq, appealing to continuity, and taking ξ Ó 0 gives

lim
ξÓ0

d

dξ
Λs,tpξq “ tΨ´1

1

ˆ

t

s

˙

´ sΨ0

ˆ

Ψ´1
1

ˆ

t

s

˙˙

“ ρps, tq

which implies differentiability at zero and hence at all ξ.

Proof of Theorem 2.2.3. The large deviation principle holds by Theorem 2.2.2 and the Gärtner-

Ellis theorem [29, Theorem 2.3.6].

2.4.3 Stationary Lyapunov exponents

Proof of Theorem 2.2.6. First suppose that λ P p0, θq. We begin with the coupling

Zθtns upntq “ n

ż t

0
Zθ0pnuqZ1,tns upnu, ntqdu`

tns u
ÿ

j“1

Zθj p0qZj,tns up0, ntq.

For each δ ą 0, each r P r0, t´ δs and each v P r0, sq and n sufficiently large, we have

Zθtns upntq ě

ˆ

n

ż r`δ

r
Zθ0pnuqZ1,tns upnu, ntqdu

˙

_

´

Zθtnv up0qZtnv u,tns up0, ntq
¯

ě

´

nδZθ0pnrqZ1,tns upnpr ` δq, ntq
¯

_

´

Zθtnv up0qZtnv u,tns up0, ntq
¯

.

Similarly, fixing the uniform partition ttiu
M
i“1 of r0, ts and the uniform partition tsiu

M
i“1 of r0, ss,

we have

Zθ0pntq ď
n

M

M
ÿ

i“1

Zθ0pnti`1qZ1,tns upnti, ntq `
tns u

M

M
ÿ

i“1

Zθtnsi`1 up0qZtnsi u,tns up0, ntq

It then follows from independence that for any δ P p0, tq, r P r0, t´ δs and v P r0, sq, we have

lim inf
nÑ8

n´1 logE

„

´

Zθtns upntq
¯λ



ě

"

r

ˆ

λθ `
λ2

2

˙

` Λs,t´r´δpλq

*

_

"

v log
Γpθ ´ λq

Γpθq
` Λs´v,tpλq

*
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Take δ Ó 0 and then optimize over r and v to obtain a lower bound. For the upper bound,

independence and the observation that for ai ě 0 and λ ą 0, p
řM
i“1 aiq

λ ď Mλ maxi a
λ
i ď

Mλ
ř

i a
λ
i this implies that

E

„

´

Zθtns upntq
¯λ



ď pnλ _ tns uλq
M
ÿ

i“1

"

E

„

´

Zθ0pnti`1q

¯λ


E
”

`

Z1,tns upnti, ntq
˘λ
ı

` E

„ˆ

´

Zθtnsi`1 up0q
¯λ



E
“`

Ztnsi u,tns up0, ntq
˘˘λ

*

Taking logs, dividing by n and sending nÑ8, we obtain

lim sup
nÑ8

n´1 logE

„

´

Zθtns upntq
¯λ



ď max
1ďiďM

"

ti`1

ˆ

λθ `
λ2

2

˙

` Λs,t´tipλq

*

_

"

si`1 log
Γpθ ´ λq

Γpθq
` Λs´si,tpλq

*

ď

"

sup
0ďrďt

"

r

ˆ

λθ `
λ2

2

˙

` Λs,t´rpλq

*

`
1

M

ˆ

λθ `
λ2

2

˙*

_

"

sup
0ďuďs

"

u log
Γpθ ´ λq

Γpθq
` Λs´u,tpλq

*

`
1

M
log

Γpθ ´ λq

Γpθq

*

.

Send M Ñ8 and combine with the lower bound to obtain

lim
nÑ8

n´1 logE

„

´

Zθtns upntq
¯λ



“ sup
0ďrďt

"

r

ˆ

λθ `
λ2

2

˙

` Λs,t´rpλq

*

_ sup
0ďuďs

"

u log
Γpθ ´ λq

Γpθq
` Λs´u,tpλq

*

.

Substituting in the variational characterization of Λs,tpλq, we have

Λθs,tpλq “ sup
0ďrďt

"

r

ˆ

λ2

2
` λθ

˙

`min
zą0

"

pt´ rq

ˆ

λ2

2
` zλ

˙

´ s log
Γpλ` zq

Γpzq

**

_ sup
0ďuďs

"

u log
Γpθ ´ λq

Γpθq
`min

zą0

"

t

ˆ

λ2

2
` zλ

˙

´ ps´ uq log
Γpλ` zq

Γpzq

**

.

We may apply a minimax theorem to interchange the supremum and the minimum in both of

these terms to obtain

Λθs,tpλq “ min
zą0

"

t

ˆ

λ2

2
` zλ

˙

´ s log
Γpλ` zq

Γpzq
` sup

0ďrďt
trpθ ´ zqu

*
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_min
zą0

"

t

ˆ

λ2

2
` zλ

˙

´ s log
Γpλ` zq

Γpzq
` sup

0ďuďs

"

u log
Γpθ ´ λq

Γpθq

Γpλ` zq

Γpzq

**

.

For the first term, separate the minimum into minima over z P p0, θs and z P rθ,8q and for the

second, separate it into minima over z P p0, θ ´ λs and z P rθ ´ λ,8q. In the first term, when

z P p0, θs, the maximum occurs at r “ t. When z P rθ,8q, the maximum occurs at r “ 0. It

follows that

min
zą0

"

t

ˆ

λ2

2
` zλ

˙

´ s log
Γpλ` zq

Γpzq
` sup

0ďrďt
trpθ ´ zqu

*

“

"

t

ˆ

λ2

2
` θλ

˙

´ s log
Γpλ` θq

Γpθq

*

^min
zěθ

"

t

ˆ

λ2

2
` zλ

˙

´ s log
Γpλ` zq

Γpzq

*

.

Similarly, for z P p0, θ ´ λs and z P rθ ´ λ,8q the observation that the function z ÞÑ log Γpz `

λq´ log Γpzq is strictly increasing shows that the inner maximum occurs at u “ 0 for z ď θ´λ

and at u “ s for z ě θ ´ λ. It then follows that

min
zą0

"

t

ˆ

λ2

2
` zλ

˙

´ s log
Γpλ` zq

Γpzq
` sup

0ďuďs

"

u log
Γpθ ´ λq

Γpθq

Γpλ` zq

Γpzq

**

"

t

ˆ

´
λ2

2
` θλ

˙

´ s log
Γpθ ´ λq

Γpθq

*

^ min
zPp0,θ´λs

"

t

ˆ

λ2

2
` zλ

˙

´ s log
Γpλ` zq

Γpzq

*

The result then follows from strict convexity of z ÞÑ t
´

λ2

2 ` zλ
¯

´ s log Γpλ`zq
Γpzq . The result for

λ ě θ follows from monotonicity as in the proof of Corollary 2.3.9.

2.4.4 Right tail rate functions

Existence and structure of the right tail rate function

We now turn to the problem of showing the existence and regularity of the right tail rate

function for the polymer free energy. Our main goal in this subsection is to prove Theorem

2.4.1. As is typical for right tail large deviations, existence and regularity follow from (almost)

subadditivity arguments. Because the partition function degenerates for steps with no time

component and we do not restrict attention to integer s, it is necessary to tilt time slightly in
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this argument. We break the proof of Theorem 2.4.1 into two parts: first we show the result

with time tilted, then we show that this change does not matter.

Theorem 2.4.16. For all s ě 0, t ą 0 and r P R, the limit

Js,tprq “ lim
xÑ8

´
1

x
logP

`

logZ0,txsup0, xt´ 1q ě xr
˘

exists and is R` valued. Moreover, Js,tprq is continuous, convex, subadditive, and positively

homogeneous of degree one as a function of ps, t, rq P r0,8q ˆ p0,8q ˆ R. For fixed s and t,

Js,tprq is increasing in r and Js,tprq “ 0 if r ď ρps, tq.

Proof. Define the function T : r0,8q ˆ p1,8q ˆ RÑ R` by

T px, y, zq “ ´ logP
`

logZ0,txup0, y ´ 1q ě z
˘

.

Lemma 2.4.20 in the appendix implies that P
`

logZ0,txup0, y ´ 1q ě z
˘

‰ 0 and therefore that

this function is well-defined.

Take px1, y1, z1q, px2, y2, z2q P r0,8qˆp1,8qˆR and call x1,2 “ tx1`x2u´tx1u´tx2u P t0, 1u.

By (??), we have

Z0,tx1`x2up0, y1 ` y2 ´ 1q ě Z0,tx1up0, y1 ´ 1qZtx1u,tx1`x2upy1 ´ 1, y1 ` y2 ´ 1q.

Independence and translation invariance then imply

P
`

logZ0,tx1`x2up0, y1 ` y2 ´ 1q ě z1 ` z2

˘

ě P
`

logZ0,tx1up0, y1 ´ 1q ě z1

˘

P
`

logZ0,tx2u`x1,2p0, y2q ě z2

˘

.

If x1,2 “ 0 then, recalling that logZtx2u,tx2upu, tq “ Btx2upu, tq, we find

P
`

logZ0,tx2up0, y2q ě z2

˘

ě P
`

logZ0,tx2up0, y2 ´ 1q ě z2

˘

P
`

logZtx2u,tx2upy2 ´ 1, y2q ě 0
˘

“
1

2
P
`

logZ0,tx2up0, y2 ´ 1q ě z2

˘

.
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Similarly, when x1,2 “ 1 we have

P
`

logZ0,tx2u`1p0, y2q ě z2

˘

ě P
`

logZ0,tx2up0, y2 ´ 1q ě z2

˘

P plogZ0,1p0, 1q ě 0q .

Setting C “ maxtlogp2q,´ logP plogZ0,1p0, 1q ě 0qu ă 8, we find that

T px1 ` x2, y1 ` y2, z1 ` z2q ď T px1, y1, z1q ` T px2, y2, z2q ` C.

T px, y, zq is therefore subadditive with a bounded correction. Non-negativity and Lemma

2.4.20 imply that T px, y, zq is bounded for x, y, z in a compact subset of its domain. The proof

of [60, Theorem 16.2.9] shows that we may define a function on r0,8q ˆ p0,8q ˆ R by

Js,tprq “ lim
xÑ8

´
1

x
logP

`

logZ0,txsup0, xt´ 1q ě xr
˘

and that this function satisfies all of the regularity properties in the statement of the theorem

except continuity and monotonicity. Monotonicity in r for fixed s and t follows from monotonic-

ity in the prelimit expression. Convexity and finiteness imply continuity on p0,8q2ˆR [79, The-

orem 10.1]. Moreover, [79, Theorem 10.2] gives upper semicontinuity on all of r0,8qˆp0,8qˆR.

It therefore suffices to show lower semicontinuity at the boundary; namely, we need to show

lim inf
ps1,t1,r1qÑp0,t,rq

Js1,t1pr
1q ě J0,tprq.

Fix pt, rq P p0,8q ˆ R and a sequence psk, tk, rkq P r0,8q ˆ p0,8q ˆ R with psk, tk, rkq Ñ

p0, t, rq. Recall that logZ0,0p0, tq “ B0ptq, so we may compute with the normal distribution to

find J0,tprq “
r2

2t 1trě0u. From this we can see that if sk “ 0 for all sufficiently large k, we have

Jsk,tkprkq Ñ J0,tprq. We may therefore assume without loss of generality that sk ą 0 for all k.

First observe that if r ď 0, then J0,tprq “ 0 and the lower bound follows from non-negativity.

If r ą 0, we may assume without loss of generality that there exists c ą 0 with rk ą c for

all k. By Lemma 2.4.22 in the appendix, for all sufficiently large k we have

Jsk,tkprkq ě skJGUE

ˆ

rk ´ sk log tk ´ sk ` sk log sk
2
?
tksk

´ 1

˙

,
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where JGUEprq “ 4
şr
0

a

xpx` 2qdx. Using this formula and calculus, we find that

lim
kÑ8

skJGUE

ˆ

rk ´ sk log tk ´ sk ` sk log sk
2
?
tksk

´ 1

˙

“
r2

2t

and therefore continuity follows. Lemma 2.2.1 implies that Js,tprq “ 0 for r ď ρps, tq.

Remark 2.4.17. Note that we only address the spatial boundary in the previous result. The

reason for this is that the right tail rate function is not continuous at t “ 0 for any s ą 0 and

x P R. To see this, we can use the lower bound for Js,tprq coming from Lemma 2.4.22. As

t Ó 0, this lower bound tends to infinity.

Lemma 2.4.18. Fix ps, t, rq P p0,8q2 ˆ R. For any sequences sn, tn P N ˆ p0,8q with

1
npsn, tnq Ñ ps, tq we have

Js,tprq “ lim
nÑ8

´
1

n
logP plogZ0,snp0, tnq ě nrq .

Proof. Fix ε ă minps, tq and positive. We will assume that n is large enough that the following

conditions hold:

Y ´

s´
ε

2

¯

n
]

ă sn ă
Y ´

s`
ε

2

¯

n
]

,
´

t´
ε

2

¯

n ă tn ă
´

t`
ε

2

¯

n´ 2.

We have

Z0,snp0, tnq ě Z0,tps´εqnup0, pt´ εqn´ 1qZtps´εqnu,snppt´ εqn´ 1, tnq.

It follows that

P plogZ0,snp0, tnq ě nrq

ě P
`

logZ0,tps´εqnup0, pt´ εqn´ 1q ě nr
˘

P
`

logZ0,sn´tps´εqnup0, tn ´ pt´ εqn` 1q ě 0
˘

.

Call spnq “ sn ´ tps ´ εqnu and tpnq “ tn ´ pt ´ εqn ` 1 and divide the interval p0, tpnqq into

spnq uniform subintervals. We may bound Z0,spnqp0, tpnqq below by a product of i.i.d. random
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variables:

Z0,spnqp0, tpnqq ě

spnq
ź

i“1

Zi´1,i

ˆ

pi´ 1q
tpnq

spnq
, i
tpnq

spnq

˙

.

Therefore,

P
`

logZ0,spnqp0, tpnqq ě 0
˘

ě P

ˆ

logZ0,1

ˆ

0,
tpnq

spnq

˙

ě 0

˙spnq

.

Notice that lim spnq
n “ ε and lim tpnq

n “ ε, so we may further assume without loss of generality

that 1
2 ă

tpnq
spnq ă 2 for all n. We have

Z0,1

ˆ

0,
tpnq

spnq

˙

ě Z0,1

ˆ

0,
1

2

˙

Z1,1

ˆ

1

2
,
tpnq

spnq

˙

“ Z0,1

ˆ

0,
1

2

˙

e
B1

´

1
2
, tpnq
spnq

¯

so that

P

ˆ

logZ0,1

ˆ

0,
tpnq

spnq

˙

ě 0

˙

ě
1

2
P

ˆ

logZ0,1

ˆ

0,
1

2

˙

ě 0

˙

.

Therefore for C “ logp2q ´ logP
`

logZ0,1

`

0, 1
2

˘

ě 0
˘

and all ε ă minps, tq we have

lim sup´
1

n
logP plogZ0,snp0, tnq ě nrq ď Js´ε,t´εprq ` εC;

sending ε Ó 0 and applying continuity of the rate function gives one inequality. A similar

argument gives the lim inf inequality.

The next corollary follows from convexity of Js,tpxq in ps, t, xq P p0,8q2 ˆ R. Details can

be found in the first few lines of the proof of [37, Lemma 4.6].

Lemma 2.4.19. For all ξ ą 0, J˚s,tpξq is concave as a function of ps, tq P p0,8q2.

Regularity for the stationary right tail rate functions

Next, we turn to regularity for Hθ
u,v,s,tpxq and Gθa,s,tpxq, which are defined in (2.4.1). We begin

with the proof of Lemma 2.4.4. This result is the only point in the paper where we directly

use the continuity up to the boundary in Theorem 2.4.1.
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Proof of Lemma 2.4.4. Notice that θt, aΨ0pθq, and ρps´ b, t` γq are bounded for a, b P r0, ss

and γ P r0, ts. Using this fact and the formula for Hθ
a,b,s,t`γprq coming from Corollary 2.4.3 and

Lemma 2.4.2, there exists a compact set K 1 containing K so that for all r P K, a, b P r0, ss,

and γ P r0, ts

Hθ
a,b,s,t`γprq “ inf

xPK1
tRθt ˝ U

θ
a pxq ` Js´b,t`γpr ´ xqu.

Note that pa, xq ÞÑ Rθt ˝U
θ
a pxq is continuous on r0, ss ˆR. By Theorem 2.4.1, for any compact

set K 1 we have joint uniform continuity of pa, b, γ, r, xq ÞÑ Rθt ˝ U
θ
a pxq ` Jb,t`γpr ´ xq on the

compact set r0, ss2 ˆ r0, ts ˆK 1 ˆK 1 and so the result follows.

The proof of Lemma 2.4.5 is similar to the proof of Lemma 2.4.4, so we omit it. Next, we

turn to the proof of Lemma 2.4.6, which shows that Gθa,s,tpxq tends to infinity locally uniformly

near near a “ t.

Proof of Lemma 2.4.6. We have

Gθa,s,tpxq “

$

’

’

’

&

’

’

’

%

0 x ď ´θpt´ aq ` ρps, t´ aq

inf
´θpt´aqďyďx´ρps,t´aq

tJs,t´apx´ yq `R
θ
t´apyqu x ą ´θpt´ aq ` ρps, t´ aq

.

Fix ε ą 0. The formula in Lemma 2.2.1 shows that ρps, t ´ aq Ñ ´8 as a Ò t, so that for

all x P R and a sufficiently close to t, x ą ´θpt´ aq ` ρps, t´ aq. For a sufficiently large that

this holds for all x P K, we have

Js,t´apx´ yq `Rt´apyq ě

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

Js,t´apx` θpt´ aq ´ εqq y P r´θpt´ aq,´θpt´ aq ` εs

Rθt´ap´θpt´ aq ` εq y P r´θpt´ aq ` ε, x´ ρps, t´ aq ´ εs

Rθt´apx´ ρps, t´ aq ´ εq y P rx´ ρps, t´ aq ´ ε, x´ ρps, tqs

.

By Lemma 2.4.22, for all x P K and a sufficiently large, we have

Js,t´apxq ě sJGUE

˜

x´ s logpt´ aq ´ sp1´ logpsqq

2
a

pt´ aqs
´ 1

¸

.
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Combining this with the exact formula for Rθt´apxq and optimizing the lower bounds over

x P K shows that the infimum over x P K of the minimum of these three lower bounds tends

to infinity, giving the result.

2.4.5 Technical estimates

To reduce the clutter elsewhere in the paper, we collect a number of useful estimates in this

appendix.

A lower bound on the probability of being large

Lemma 2.4.20. Let K Ă r0,8q ˆ p0,8q ˆ R be compact. Then there exists CK ą 0 so that

for all px, y, zq P K

P plogZ0,txup0, yq ě zq ě CK .

Proof. Since txu takes only finitely many values on any compact set, we may fix txu. If txu “

0, then Z0,txup0, yq “ B0pyq and the result follows. For txu ě 1, we bound below by an

i.i.d. product: Z0,txup0, yq ě
śtxu´1
i“0 Zi,i`1

´

i y
txu
, pi` 1q y

txu

¯

. It follows that

P
`

logZ0,txup0, yq ě z
˘

ě P

ˆ

logZ0,1

ˆ

0,
y

txu

˙

ě
z

txu

˙txu

. (2.4.24)

Jensen’s inequality applied to logZ0,1p0, tq gives

logZ0,1p0, tq “ log

ż t

0
eB0puq`B1pu,tqdu ě logptq `

1

t

ż t

0
B0puqdu`

1

t

ż t

0
B1pu, tqdu, (2.4.25)

where 1
t

şt
0B0puqdu and 1

t

şt
0B1pu, tqdu are i.i.d. mean zero normal random variables with vari-

ance t
3 . Applying this lower bound to the expression in (2.4.24) gives the result.
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Moment estimate for the partition function

Lemma 2.4.21. Fix t ą 0, n P N and ξ P R with |ξ| ą 1. Then there is a constant C ą 0

depending only on ξ so that

E
”

Z1,np0, tq
ξ
ı

ď C

ˆ?
n

t

ˆ

te

n

˙n˙ξ

e
1
2
ξ2t.

Proof. By Jensen’s inequality with respect to the uniform measure on An,t and Tonelli’s the-

orem we find

E
”

Z1,np0, tq
ξ
ı

“ E

»

–

˜

ż

0ăs1ă¨¨¨ăsn´1ăt
e
ř

iBpsi,si`1qds1 . . . dsn´1

¸ξ
fi

fl

ď |An,t|
´1|An,t|

ξ

ż

0ăs1ă¨¨¨ăsn´1ăt
Ereξ

ř

iBpsi,si`1qsds1 . . . dsn´1

“ |An,t|
ξe

1
2
ξ2t,

where we have used independence of the Brownian increments and the moment generating

function of the normal distribution to compute the last line. The remainder of the statement

of the lemma comes from the identity |An,t| “
tn´1

pn´1q! and Stirling’s approximation to n!.

Bounds from the GUE connection

Let λGUE,n be the top eigenvalue of an n ˆ n GUE random matrix with entries that have

variance σ2 “ 1
4n . Then [7, Theorem 0.7] and [38] give

λGUE,n
d
“

1

2
?
n

max
0“u0ău1ă¨¨¨ăun´1ăun“1

#

n
ÿ

i“1

Bipui´1, uiq

+

.

The right tail rate function of λGUE,n can be computed ([64, (1.25)], [9]) for r ą 0 to be

JGUEprq “ lim
nÑ8

´
1

n
logP pλGUE,n ě 1` rq “ 4

ż r

0

a

xpx` 2qdx. (2.4.26)

Lemma 2.4.22. Suppose that r, s, t ą 0 and psn, tn, rnq P Nˆp0,8qˆR satisfy n´1psn, tn, rnq Ñ

ps, t, rq. If r ´ s log t´ s` s log s ą 2
?
ts, then

lim inf
nÑ8

´
1

n
logP plogZ0,snp0, tnq ě rnq ě sJGUE

ˆ

r ´ s log t´ s` s log sq

2
?
ts

´ 1

˙
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and if r ` s log t` s´ s log s ą 2
?
ts, then

lim inf
nÑ8

´
1

n
logP plogZ0,snp0, tnq ď ´rnq ě sJGUE

ˆ

r ` s log t` s´ s log s

2
?
ts

´ 1

˙

.

Proof. Observe that

|An`1,t| “
tn

n!
ď

1
?

2πn

ˆ

te

n

˙n

.

Using this fact and bounding Z0,np0, tq as defined in (2.2.2) above with the maximum value of

the Brownian increments, we obtain

logZ0,snp0, tnq ď log

ˆ

1
?

2πsn

ˆ

tne

sn

˙sn˙

` max
0“u0ău1ă¨¨¨ăusn“tn

#

sn´1
ÿ

i“0

Bipui, ui`1q

+

d
“ log

ˆ

1
?

2πsn

ˆ

tne

sn

˙sn˙

` 2
?
tnsnλGUE,sn .

The result then follows from the inequality

P plogZ0,snp0, tnq ě rnq ď P

ˆ

λGUE,sn ě
rn ´ sn log tn ´ sn ` sn log sn

2
?
tnsn

´
1

2
?
tnsn

log

ˆ

1
?

2πsn

˙˙

.

The proof of the second bound follows a similar argument: we bound the partition function

below with the minimum of the Brownian increments, apply the upper bound from Stirling’s

approximation to n!, and appeal to Brownian reflection symmetry.

Lemma 2.4.23. Fix ε ą 0 and let s P N and tn “ Opnαq for some α ă 1. Then there exist

c, C ą 0 so that

P

˜

max
0“u0ău1ă¨¨¨ăus´1ăus“tn

#

s´1
ÿ

i“0

Bipui, ui`1q

+

ě nε

¸

ď Ce´cn
2´α

.

Proof. Large deviation estimates for largest eigenvalues give the result. For example, by [64,

(2.7)], there exist C, c ą 0 such that

P

˜

max
0“u0ău1ă¨¨¨ăus´1ăus“tn

#

s´1
ÿ

i“0

Bipui, ui`1q ě nε

+¸

“ P

ˆ

λGUE,s ě
n
?
tn

ε
?
s

˙

ď Ce´cn
2´α

.
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Upper tail coarse graining estimate

Lemma 2.4.24. Fix a P r0, tq and ε ą 0. Then for ν ă minpε, t´ aq

P

ˆ

log n

ż a`ν

a

Zθ0pnuq

Zθ0pnaq
¨
Z1,tnsupnu, ntq

Z1,tnsupna, ntq
du ě nε

˙

ď exp

#

´n
1

4

ˆ

ε´ θν
?
ν

˙2

` opnq

+

.

Proof. We have for all u P pa, a` νq

Z1,1pna, nuq
´1Z1,tnsupnu, ntq

´1 ě Z1,tnsupna, ntq
´1

so it follows that

P

ˆ

log n

ż a`ν

a

Zθ0pnuq

Zθ0pnaq

Z1,tnsupnu, ntq

Z1,tnsupna, ntq
du ě nε

˙

ď P

ˆ

log n

ż a`ν

a

Zθ0pnuq

Zθ0pnaq
Z1,1pna, nuq

´1du ě nε

˙

“ P

ˆ

log n

ż a`ν

a
eθnpu´aq´Bpna,nuq´B1pna,nuqdu ě nε

˙

ď P

ˆ

max
0ďuď1

tBpuq `B1puqu ě
?
n

ˆ

ε´ θν
?
ν

˙

´
logpnνq
?
nν

˙

,

where the last inequality comes from Brownian translation invariance, symmetry, and scaling.

Recall that B ` B1 has the same process level distribution as
?

2B. The result follows from

the reflection principle.

Left tail error bound

Lemma 2.4.25. Take sequences tn, sn, rn such that there exist a, b ą 0 with a ă tn ă b,

rn Ñ r ą 0 and sn P N satisfies sn logpsnq “ opnq. Then there exist constants c, C ą 0 such

that

P plogZ0,snp0, tnq ď ´nrnq ď Ce´cn
2
.

Proof. We have Z0,snp0, tnq ě
śsn´1
i“0 Zi,i`1

´

i tnsn , pi` 1q tnsn

¯

where the Zi,i`1

´

i tnsn , pi` 1q tnsn

¯

are i.i.d.. As above in (2.4.25), there exist i.i.d. random variables Xi „ N
´

log
´

tn
sn

¯

, 2tn
3sn

¯

with
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Zi,i`1

´

i tnsn , pi` 1q tnsn

¯

ě Xi. It follows that

P plogZ0,snp0, tnq ď ´nrnq ď P

˜

sn´1
ÿ

i“0

Xi ď ´nrn

¸

“ P

ˆ

N p0, 1q ě n
rn
?

3tn
`

sn
?

3tn
log

ˆ

tn
sn

˙˙

.

Recall that rn?
3tn

` sn
n
?

3tn
log

´

tn
sn

¯

is a bounded sequence and without loss of generality is

bounded away from zero. The result follows from normal tail estimates.
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2.5 Large deviations for inhomogeneous exponential last pas-

sage percolation

2.5.1 Variational formulas for the Lyapunov exponents

Our purpose in this section is to prove Theorem 2.2.16.

Lemma 2.5.1. Let λ P R. Suppose that z ą ´
¯
α in (2.5.1), (2.5.3), and z ă

¯
β in (2.5.2) and

(2.5.4) below.

(a) µ-a.s., for any t ą 0,

lim
nÑ8

1

n
log Ez

a,b

»

–exp

¨

˝λ

tnt u
ÿ

i“1

W pi, 0q

˛

‚

fi

fl “

$

’

’

’

&

’

’

’

%

tE

„

log

ˆ

a` z

a` z ´ λ

˙

if λ ď
¯
α` z

8 otherwise.

(2.5.1)

lim
nÑ8

1

n
log Ez

a,b

»

–exp

¨

˝λ

tnt u
ÿ

i“1

W p0, iq

˛

‚

fi

fl “

$

’

’

’

&

’

’

’

%

tE

„

log

ˆ

b´ z

b´ z ´ λ

˙

if λ ď
¯
β ´ z

8 otherwise.

(2.5.2)

(b) For any t ą 0,

lim
nÑ8

1

n
logEz

»

–exp

¨

˝λ

tnt u
ÿ

i“1

W pi, 0q

˛

‚

fi

fl “

$

’

’

’

&

’

’

’

%

t log E

„

a` z

a` z ´ λ



if λ ď
¯
α` z

8 otherwise.

(2.5.3)

lim
nÑ8

1

n
logEz

»

–exp

¨

˝λ

tnt u
ÿ

i“1

W p0, iq

˛

‚

fi

fl “

$

’

’

’

&

’

’

’

%

t log E

„

b´ z

b´ z ´ λ



if λ ď
¯
β ´ z

8 otherwise.

(2.5.4)
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Proof. Using (2.2.25), we compute

Ez
a,b

»

–e
λ

tnt u
ř

i“1
W pi,0q

fi

fl “

$

’

’

’

&

’

’

’

%

tnt u
ź

i“1

ai ` z

ai ` z ´ λ
if λ ă min

1ďiďtnt u
ai ` z

8 otherwise.

(2.5.5)

If λ ă
¯
α` z then the first equality in (2.5.5) holds for all n P N µ-a.s and we have

E

ˇ

ˇ

ˇ

ˇ

log

ˆ

a` z

a` z ´ λ

˙ˇ

ˇ

ˇ

ˇ

ă 8. (2.5.6)

Hence, by the ergodicity of a,

lim
nÑ8

1

n
log Ez

a,b

»

–e
λ

tnt u
ř

i“1
W pi,0q

fi

fl “ lim
nÑ8

1

n

tnt u
ÿ

i“1

log

ˆ

ai ` z

ai ` z ´ λ

˙

“ tE log

ˆ

a` z

a` z ´ λ

˙

µ-a.s.

(2.5.7)

Moreover, it follows from (2.5.5) that

lim
nÑ8

1

n
logEz

»

–e
λ

tnt u
ř

i“1
W pi,0q

fi

fl “ lim
nÑ8

tnt u

n
log E

„

a` z

a` z ´ λ



Ñ t log E

„

a` z

a` z ´ λ



. (2.5.8)

Next, consider the case λ “
¯
α` z. If (2.5.6) is in force, then both (2.5.7) and (2.5.8) still hold.

Suppose now that (2.5.6) fails. By monotonicity,

lim inf
nÑ8

1

n
log Ez

a,b

»

–e
λ

tnt u
ř

i“1
W pi,0q

fi

fl ě tE log

ˆ

a` z

a` z ´ λ1

˙

µ-a.s.

lim inf
nÑ8

1

n
logEz

»

–e
λ

tnt u
ř

i“1
W pi,0q

fi

fl ě t log E

„

a` z

a` z ´ λ1



for any λ1 ă λ. Letting λ1 Ò λ and monotone convergence yield

lim
nÑ8

1

n
log Ez

a,b

»

–e
λ

tnt u
ř

i“1
W pi,0q

fi

fl “ lim
nÑ8

1

n
logEz

»

–e
λ

tnt u
ř

i“1
W pi,0q

fi

fl “ 8. (2.5.9)

Finally, consider the case λ ą
¯
α` z. Then, by the ergodicity of a, there exists i P N such that

λ ě ai`z and the second equality in (2.5.5) holds for large enough n P N µ-a.s. Hence, (2.5.9).

We have verified (2.5.1) and (2.5.3). The proofs of (2.5.2) and (2.5.4) are similar.
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Recall the basic properties of the Lyapunov exponents stated in Proposition 2.5.15. For

s, t ą 0 and λ P R, define Ls,0pλq “ limtÓ0 Ls,tpλq and L0,tpλq “ limsÓ0 Ls,tpλq, where the limits

exist by monotonicity. Define Ls,0pλq and L0,tpλq similarly. Also, for k, l P Z`, let θk,l denote

the shift given by ωpi, jq ÞÑ ωpi`k, j` lq for i, j P N and ω P RN2
. We next obtain a variational

formula involving the Lyapunov exponents.

Lemma 2.5.2. Let z P p´
¯
α,

¯
βq and λ P p0,

¯
β ´ zs. Then

E log

ˆ

a` z ` λ

a` z

˙

` E log

ˆ

b´ z

b´ z ´ λ

˙

(2.5.10)

“ sup
0ďtď1

"

max

"

Lt,1pλq ` p1´ tqE log

ˆ

a` z ` λ

a` z

˙

,L1,tpλq ` p1´ tqE log

ˆ

b´ z

b´ z ´ λ

˙**

.

Also,

log E

„

a` z ` λ

a` z



` log E

„

b´ z

b´ z ´ λ



(2.5.11)

“ sup
0ďtď1

"

max

"

Lt,1pλq ` p1´ tq log E

„

a` z ` λ

a` z



,L1,tpλq ` p1´ tq log E

„

b´ z

b´ z ´ λ

**

.

Proof of (2.5.10). We may assume that the left-hand side of (2.5.10) is finite. (This assumption

fails only when λ “
¯
β ´ z and E logpb´

¯
βq “ ´8 in which case (2.5.10) clearly holds).

It follows from (2.2.13) and (2.2.24) that

pGpn, nq “ max
1ďkďn

tmaxtGpn´ k ` 1, nq ˝ θk´1,0 ` pGpk, 0q, Gpn, n´ k ` 1q ˝ θ0,k´1 ` pGp0, kquu,

which leads to

ÿ

1ďjďn

Jpn, jq “ max
1ďkďn

tmaxtGpn´ k ` 1, nq ˝ θk´1,0 ´
ÿ

kăiďn

W pi, 0q,

Gpn, n´ k ` 1q ˝ θ0,k´1 ´
ÿ

1ďiďn

W pi, 0q `
ÿ

1ďjďk

W p0, jquu.

(2.5.12)

Also, note the identity

1

Ez
a,b

“

e´λW pi,0q
‰ “

ai ` z ` λ

ai ` z
“ Ez`λ

a,b

”

eλW pi,0q
ı

for λ ą 0 and z ą ´
¯
α. (2.5.13)
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Using the independence of weights under Pz
a,b, Proposition 2.2.31, (2.5.12) and (2.5.13), we

obtain

Ez`λ
a,b

„

e
λ

ř

1ďiďn
W pi,0q



¨Ez
a,b

„

e
λ

ř

1ďjďn
W p0,jq



ě max

"

Eτk´1paq,b

”

eλGpn´k`1,nq
ı

¨Ez`λ
a,b

„

e
λ

ř

1ďiďk
W pi,0q



,

Ea,τk´1pbq

”

eλGpn,n´k`1q
ı

¨Ez
a,b

„

e
λ

ř

1ďjďk
W p0,jq

*

.

(2.5.14)

Set k “ rnp1 ´ tq s`1 for some t P p0, 1q, apply logarithms to both sides and divide through

by n in (2.5.14). It follows from Proposition 2.5.15 that

1

n
log Eτk´1paq,b

”

eλGpn´k`1,nq
ı

Ñ Lt,1pλq,
1

n
log Ea,τk´1pbq

”

eλGpn,n´k`1q
ı

Ñ L1,tpλq

as n Ñ 8 along suitable subsequences because pa,bq is stationary and L is deterministic.

Hence, also using Lemma 2.5.1, we obtain

E log

ˆ

a` z ` λ

a` z

˙

` E log

ˆ

b´ z

b´ z ´ λ

˙

ě max

"

Lt,1pλq ` p1´ tqE log

ˆ

a` z ` λ

a` z

˙

,L1,tpλq ` p1´ tqE log

ˆ

b´ z

b´ z ´ λ

˙*

.

(2.5.15)

In particular, L is finite. By continuity, (2.5.15) holds with t “ 0 and t “ 1 as well.

For the opposite inequality, introduce L P N and let n ą L such that rpl`1qn{L s ą r ln{L s

for 0 ď l ă L. Then, by (2.5.12) and nonnegativity of the weights,

ÿ

1ďjďn

Jpn, jq ď max
1ďlăL

tmaxtGptpL´ lqn{L u, nq ˝ θr ln{L s,0 ´
ÿ

rpl`1qn{L săiďn

W pi, 0q,

Gpn, tpL´ lqn{L uq ˝ θ0,r ln{L s ´
ÿ

1ďiďn

W pi, 0q `
ÿ

1ďjďrpl`1qn{L s

W p0, jqu,
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which implies that

Ez`λ
a,b

„

e
λ

ř

1ďiďn
W pi,0q



¨Ez
a,b

„

e
λ

ř

1ďjďn
W p0,jq



ď
ÿ

0ďlăL

Eτr ln{L spaq,b

”

eλGptpL´lqn{L u,nq
ı

¨Ez`λ
a,b

»

–e
λ

rpl`1qn{L s
ř

i“1
W pi,0q

fi

fl

`Ea,τr ln{L spbq

”

eλGpn,tpL´lqn{L uq
ı

¨Ez
a,b

»

–e
λ

rpl`1qn{L s
ř

j“1
W p0,jq

fi

fl .

(2.5.16)

Taking logarithms leads to

log Ez`λ
a,b

„

e
λ

ř

1ďiďn
W pi,0q



` log Ez
a,b

„

e
λ

ř

1ďjďn
W p0,jq



ď max
0ďlăL

max

"

log Eτr ln{L spaq,b

”

eλGptpL´lqn{L u,nq
ı

` log Ez`λ
a,b

»

–e
λ

rpl`1qn{L s
ř

i“1
W pi,0q

fi

fl ,

log Ea,τr ln{L spbq

”

eλGpn,tpL´lqn{L uq
ı

` log Ez
a,b

»

–e
λ

rpl`1qn{L s
ř

j“1
W p0,jq

fi

fl

*

` logp2Lq.

Dividing through by n and letting nÑ8 along a suitable subsequential limit yield

E log

ˆ

a` z ` λ

a` z

˙

` E log

ˆ

b´ z

b´ z ´ λ

˙

ď max
0ďlăL

max

"

L1´l{L,1pλq `
l ` 1

L
E log

ˆ

a` z ` λ

a` z

˙

,L1,1´l{Lpλq `
l ` 1

L
E log

ˆ

b´ z

b´ z ´ λ

˙*

ď sup
0ďtď1

max

"

Lt,1pλq ` p1´ tqE log

ˆ

a` z ` λ

a` z

˙

,L1,tpλq ` p1´ tqE log

ˆ

b´ z

b´ z ´ λ

˙*

`
1

L

ˆ

E log

ˆ

a` z ` λ

a` z

˙

` E log

ˆ

b´ z

b´ z ´ λ

˙˙

Letting LÑ8 completes the proof.

Proof of (2.5.11). Some details are skipped. We may assume that the left-hand side of (2.5.11)

is finite.

Using independence, we can rewrite (2.5.14) as

Ez`λ
a,b

«

e
λ

ř

kăiďn
W pi,0q

ff

¨Ez
a,b

„

e
λ

ř

1ďjďn
W p0,jq



ě Eτk´1paq,b

”

eλGpn´k`1,nq
ı

Ez`λ
a,b

«

e
λ

ř

1ďiďn
W pi,0q

ff

¨Ez
a,b

„

e
λ

ř

kăjďn
W p0,jq



ě Ea,τk´1pbq

”

eλGpn,n´k`1q
ı

(2.5.17)



99

The factors on the right-hand side are independent. Applying E yields

Ez`λ
„

e
λ

ř

1ďiďn
W pi,0q



¨ Ez
„

e
λ

ř

1ďjďn
W p0,jq



(2.5.18)

ě max

"

E
”

eλGpn´k`1,nq
ı

¨ Ez`λ
„

e
λ

ř

1ďiďk
W pi,0q



,E
”

eλGpn,n´k`1q
ı

¨ Ez
„

e
λ

ř

1ďjďk
W p0,jq

*

,

where we rearranged terms using that tW pi, 0q : i P Nu and tW p0, jq : j P Nu are both

i.i.d. under Pz`λ and Pz. Then, (2.5.18) leads to ě half of (2.5.11) via Proposition 2.5.15 and

Lemma 2.5.1.

For the ď half of (2.5.11), suppose that λ ă
¯
β ´ z for the moment. Note the inequalities

Ez`λ
a,b re

λW pi,0qs “
ai ` z ` λ

ai ` z
ď ¯
α` z ` λ

¯
α` z

, Ez
a,bre

λW p0,jqs “
bj ´ z

bj ´ z ´ λ
ď ¯

β ´ z

¯
β ´ z ´ λ

.

It follows from these and (2.5.16) that

Ez`λ
a,b

„

e
λ

ř

1ďiďn
W pi,0q



¨Ez
a,b

„

e
λ

ř

1ďjďn
W p0,jq



ď
ÿ

0ďlăL

ˆ

¯
α` z ` λ

¯
α` z

˙n{L`1

Eτr ln{L spaq,b

”

eλGptpL´lqn{L u,nq
ı

¨Ez`λ
a,b

»

–e
λ

r ln{L s
ř

i“1
W pi,0q

fi

fl

`

ˆ

¯
β ´ z

¯
β ´ z ´ λ

˙n{L`1

Ea,τr ln{L spbq

”

eλGpn,tpL´lqn{L uq
ı

¨Ez
a,b

»

–e
λ

r ln{L s
ř

j“1
W p0,jq

fi

fl .

(2.5.19)

The point of (2.5.19) is that the terms on the right-hand side are products of independent

factors, which is not the case in (2.5.16). Applying log E, we obtain

logEz`λ
„

e
λ

ř

1ďiďn
W pi,0q



` logEz
„

e
λ

ř

1ďjďn
W p0,jq



ď max
0ďlăL

max

"

pn{L` 1q log

ˆ

¯
α` z ` λ

¯
α` z

˙

` logE
”

eλGptpL´lqn{L u,nq
ı

´ logEz`λ
»

–e
λ

r ln{L s
ř

i“1
W pi,0q

fi

fl ,

pn{L` 1q log

ˆ

¯
β ´ z

¯
β ´ z ´ λ

˙

` logE
”

eλGpn,tpL´lqn{L uq
ı

` logEz
»

–e
λ

r ln{L s
ř

j“1
W p0,jq

fi

fl

*

` logp2Lq.
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Divide through by n and let nÑ8. If we then send LÑ8, the result is

log E

„

a` z ` λ

a` z



` log E

„

b´ z

b´ z ´ λ



ď sup
0ďtď1

"

max

"

Lt,1pλq ` p1´ tq log E

„

a` z ` λ

a` z



,

Lt,1pλq ` p1´ tq log E

„

b´ z

b´ z ´ λ

**

.

for all λ ă
¯
β´ z. The case λ “

¯
β´ z also follows because the right-hand side is nondecreasing

in λ and the left-hand side, due to monotone convergence, is continuous in λ on p0,
¯
β´ zs.

Lemma 2.5.3. For λ ą 0,

L1,0pλq “ E log

ˆ

a`
¯
β

a`
¯
β ´ λ

˙

L0,1pλq “ E log

ˆ

b`
¯
α

b`
¯
α´ λ

˙

if λ ď
¯
α`

¯
β (2.5.20)

L1,0pλq “ L0,1pλq “ 8 otherwise. (2.5.21)

L1,0pλq “ log E

„

a`
¯
β

a`
¯
β ´ λ



L0,1pλq “ log E

„

b`
¯
α

b`
¯
α´ λ



if λ ď
¯
α`

¯
β (2.5.22)

L1,0pλq “ L0,1pλq “ 8 otherwise. (2.5.23)

Proof. Let ε ą 0. On the event b1 ď
¯
β ` ε, which has positive µ-probability, we have for

n ě 1{ε

1

n
log Ea,bre

λGpn,tnε uqs ě
1

n
log Ea,b

„

e
λ

ř

1ďiďn
W pi,1q



“

$

’

’

’

&

’

’

’

%

1

n

n
ř

i“1

ai ` b1
ai ` b1 ´ λ

if λ ă min
1ďiďn

ai ` b1

8 otherwise

ě

$

’

’

’

&

’

’

’

%

1

n

n
ř

i“1

ai `
¯
β ` ε

ai `
¯
β ` ε´ λ

if λ ă min
1ďiďn

ai `
¯
β ` ε

8 otherwise

“
1

n
log E¯

β`ε

a,b

„

e
λ

ř

1ďiďn
W pi,0q



.
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Then, by Lemma 2.5.1,

L1,εpλq ě

$

’

’

’

&

’

’

’

%

E

„

log

ˆ

a`
¯
β ` ε

a`
¯
β ` ε´ λ

˙

if λ ď
¯
α`

¯
β ` ε

8 otherwise.

.

By monotone convergence, letting ε Ó 0 yields

L1,0pλq ě

$

’

’

’

&

’

’

’

%

E

„

log

ˆ

a`
¯
β

a`
¯
β ´ λ

˙

if λ ď
¯
α`

¯
β

8 otherwise.

.

To complete the proof of (2.5.21), we need

L1,0pλq ď E

„

log

ˆ

a`
¯
β

a`
¯
β ´ λ

˙

(2.5.24)

for λ P p0,
¯
α `

¯
βs. When λ “

¯
α `

¯
β, we may assume that the right-hand side is finite. Then,

ai ą
¯
α for i P N a.s. and the argument in the paragraph of inequality (2.5.14) goes through

with z “ ´
¯
α as well. Hence,

E

„

log

ˆ

a` z ` λ

a` z

˙

`E

„

log

ˆ

b´ z

b´ z ´ λ

˙

ě L1,tpλq`p1´ tqE

„

log

ˆ

b´ z

b´ z ´ λ

˙

(2.5.25)

for t P r0, 1s, z P r´
¯
α,

¯
βq and λ P p0,

¯
β ´ zs, which simplifies to

E

„

log

ˆ

a` z ` λ

a` z

˙

` tE

„

log

ˆ

b´ z

b´ z ´ λ

˙

ě L1,0pλq. (2.5.26)

Setting t “ 0 and z “
¯
β ´ λ in (2.5.26) gives (2.5.24). The remaining cases are treated

similarly.

Corollary 2.5.4. For s, t ą 0,

Ls,tp
¯
α`

¯
βq “ sE log

ˆ

a`
¯
β

a´
¯
α

˙

` tE log

ˆ

b`
¯
α

b´
¯
β

˙

.

Ls,tp
¯
α`

¯
βq “ s log E

„

a`
¯
β

a´
¯
α



` t log E

„

b`
¯
α

b´
¯
β



.



102

Proof. By concavity and homogeneity,

Ls,tp
¯
α`

¯
βq ě sL1,0p

¯
α`

¯
βq ` tL0,1p

¯
α`

¯
βq “ sE

„

log

ˆ

a`
¯
β

a´
¯
α

˙

` tE

„

log

ˆ

b`
¯
α

b´
¯
β

˙

.

(2.5.27)

When the right-hand side is finite, the opposite inequality comes from (2.5.25). Ls,tp
¯
α`

¯
βq is

computed similarly.

Proof of Theorem 2.2.16. It follows from Lemma 2.5.3 that Ls,tpλq “ 8 for λ ą
¯
α `

¯
β. Fix

λ P p0,
¯
α`

¯
βq and define

Apzq “ E

„

log

ˆ

a` z ` λ

a` z

˙

for z ą ´
¯
α, Bpzq “ E

„

log

ˆ

b´ z

b´ z ´ λ

˙

for z ă
¯
β ´ λ.

Lemma 2.5.2 states that

Apzq `Bpzq “ sup
0ďtď1

tmaxtLt,1pλq ` p1´ tqApzq,L1,tpλq ` p1´ tqBpzquu for z P p´
¯
α,

¯
β ´ λq.

Note that A and B are continuous, A is decreasing and B is increasing. Moreover, by Lemma

2.5.3, Ap
¯
β ´ λq “ L1,0pλq and Bp´

¯
αq “ L0,1pλq. Also, Ls,tpλq is finite and, by Proposition

2.5.15, is nondecreasing, homogeneous, concave and continuous. Thus, the setting is as in [31,

Section 5] and the arguments there show that Ls,tpλq “ inf´
¯
αăză

¯
β´λtsApzq ` tBpzqu. The

endpoints can be included in the infimum, by monotone convergence. The proof of (2.2.17) is

similar.

2.5.2 Extremizers of the variational problems

In this section, we derive some regularity properties of L,L,J and J by studying the extremizers

of their variational representations. The next two lemmas describe the minimizers of (2.2.16)

and (2.2.17). See Figure 10 for an illustration.

Lemma 2.5.5. Fix s, t ą 0 and define F “ F pz, λq for 0 ă λ ă
¯
α`

¯
β and ´

¯
α ď z ď

¯
β´ λ by

F pz, λq “ sE log

ˆ

a` z ` λ

a` z

˙

` tE log

ˆ

b´ z

b´ z ´ λ

˙

. (2.5.28)
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For each λ P p0,
¯
α `

¯
βq, there exists a unique z‹ “ z‹pλq P r´

¯
α,

¯
β ´ λs such that Ls,tpλq “

F pz‹, λq. We have z‹ “ ´
¯
α if and only if

´sE

„

1

pa´
¯
α` λqpa´

¯
αq



` tE

„

1

pb`
¯
α´ λqpb`

¯
αq



ě 0, (2.5.29)

and z‹ “
¯
β ´ λ if and only if

´sE

„

1

pa`
¯
βqpa`

¯
β ´ λq



` tE

„

1

pb´
¯
βqpb´

¯
β ` λq



ď 0. (2.5.30)

Define λ1 “ inftλ P p0,
¯
α `

¯
βq : (2.5.29) holds.u ^ p

¯
α `

¯
βq and λ2 “ inftλ P p0,

¯
α `

¯
βq :

(2.5.30) holds.u ^ p
¯
α `

¯
βq. Then z‹ “ ´

¯
α if and only if λ ě λ1, and z‹ “

¯
β ´ λ if and only

if λ ě λ2. For 0 ă λ ă λ0 “ λ1 ^ λ2, we have BzF pz‹, λq “ 0. Moreover, z‹ is continuous

on p0,
¯
α `

¯
βq and continuously differentiable on p0,

¯
α `

¯
βq r tλ0u. We have ´1 ă z‹

1 ă 0 for

0 ă λ ă λ0, limλÓ0 z‹ “ ζps, tq and limλÒ
¯
α`

¯
β z‹ “ ´

¯
α.

Lemma 2.5.6. Lemma 2.5.5 holds verbatim if Ls,t, (2.5.28), (2.5.29) and (2.5.30) are replaced

with Ls,t,

F pz, λq “ s log E

„

a` z ` λ

a` z



` t log E

„

b´ z

b´ z ´ λ



(2.5.31)

´s

E

„

1

pa´
¯
αq2



E

„

a´
¯
α` λ

a´
¯
α

 ` t

E

„

1

pb`
¯
α´ λq2



E

„

b`
¯
α

b`
¯
α´ λ

 ě 0 (2.5.32)

´s

E

„

1

pa`
¯
β ´ λq2



E

„

a`
¯
β

a`
¯
β ´ λ

 ` t

E

„

1

pb´
¯
βq2



E

„

b´
¯
β ` λ

b´
¯
β

 ď 0, (2.5.33)

respectively. Here, the left-hand sides of (2.5.32) and (2.5.33) are interpreted as ´8 and 8

when Erpa´
¯
αq´1s “ 8 and Erpb´

¯
βq´1s “ 8, respectively.

Proof of Lemma 2.5.5. Since B2
zF ą 0, the existence and the uniqueness of z‹ follows. Also,

z‹ “ ´
¯
α if and only if BzF p´

¯
α, λq ě 0, which is (2.5.29). We note that BzF p´

¯
α, λq “ ´8
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z

λ0

¯
β

´
¯
α

¯
α`

¯
βλ1

ζ

z

λ0

¯
β

´
¯
α

¯
α`

¯
β

λ2

ζ

Figure 10: Sketches of the graph of the minimizers in (2.2.16) and (2.2.17) assuming (2.5.29) and
(2.5.32), respectively (left) and assuming (2.5.30) and (2.5.33), respectively (right).

if Erpa ´
¯
αq´1s “ 8 and, otherwise, λ´1BzF p´

¯
α, λq is a continuous, increasing function of

λ P p0,
¯
α`

¯
βq. Therefore, z‹ “ ´

¯
α if and only if λ ě λ1. We similarly observe (2.5.30) and the

equivalence of z‹ “
¯
β ´ λ and λ ě λ2. (Because BzF is increasing in z, we cannot have λ1 and

λ2 both less than
¯
α`

¯
β).

When λ ă λ0, the minimizer is the unique z‹ P p´
¯
α,

¯
β ´ λq satisfying

BzF pz‹, λq “ 0. (2.5.34)

By the implicit function theorem, z‹ is continuously differentiable for 0 ă λ ă λ0 with deriva-

tive

z‹
1pλq “ ´

BλBzF pz‹, λq

B2
zF pz‹, λq

. (2.5.35)

Observing that

BλBzF pz‹, λq ą ´sE

„

1

pa` z‹qpa` z‹`λq



` tE

„

1

pb´ z‹qpb´ z‹´λq



“ λ´1BzF pz‹, λq “ 0

B2
zF pz‹, λq ´ BλBzF pz‹, λq “ sE

„

1

pa` z‹q2



´ tE

„

1

pb´ z‹q2


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ą sE

„

1

pa` z‹qpa` z‹`λq



´ tE

„

1

pb´ z‹qpb´ z‹´λq



“ 0,

we conclude that ´1 ă z‹
1pλq ă 0. In particular, z‹ is monotone and has limits as λ Ó 0

and λ Ò λ0. We also have continuous differentiability of z‹ for λ ą λ0. Now, supposing

λ0 P p0,
¯
α`

¯
βq, we show that z‹ is continuous at λ0. Letting λ Ò λ0 in (2.5.34), we obtain

BzF p lim
λÒλ0

z‹pλq, λ0q “ 0. (2.5.36)

Since the minimizer occurs at the boundary when λ “ λ0, we deduce from (2.5.36) that

limλÒλ1 z‹pλq “ ´
¯
α and limλÒλ2 z‹pλq “

¯
β ´ λ2 when λ0 “ λ1 and λ0 “ λ2, respectively.

Since z‹pλq P r´
¯
α,

¯
β ´ λs, we have limλÒ

¯
α`

¯
β z‹pλq “ ´

¯
α. Set z‹p0q “ limλÓ0 z‹pλq. To

calculate this limit, we consider several cases. If λ0 ą 0 then we can let λ Ó 0 in (2.5.34) and

obtain

0 “ BzF pz‹p0q, 0q “ ´sE

„

1

pa` z‹p0qq2



` tE

„

1

pb´ z‹p0qq2



“ Bzgz‹p0qps, tq,

which implies z‹p0q “ ζ. If λ1 “ 0 then BzF p´
¯
α, 0q “ Bzg´

¯
αps, tq ě 0 and if λ2 “ 0 then

BzF p
¯
β, 0q “ Bzg

¯
βps, tq ď 0. Hence, we get ζ “ ´

¯
α “ z‹p0q and ζ “

¯
β “ z‹p0q, respectively.

We omit the proof of Lemma 2.5.6 which is similar to that of Lemma 2.5.5.

Lemma 2.5.7. For each s, t ą 0, Ls,t is continuously differentiable on r0,
¯
α`

¯
βq and L1s,tp0q “

gps, tq. Furthermore, L1s,t is continuously differentiable on p0,
¯
α`

¯
βqr tλ0u and L2s,t ą 0. The

same statements also hold for Ls,t.

Proof. Let us write L for Ls,t and F “ F pz, λq be given by (2.5.31). Using Lemma 2.5.5, we

compute

L1pλq “ BzF pz‹, λq z‹
1pλq ` BλF pz‹, λq “ sE

„

1

a` z‹`λ



` tE

„

1

b´ z‹´λ



(2.5.37)

for 0 ă λ ă λ0. Differentiating again, we obtain

L2pλq “ BzBλF pz‹, λq z‹
1pλq ` B2

λF pz‹, λq “
B2
zF pz‹, λqB

2
λF pz‹, λq ´ BzBλF pz‹, λq

2

B2
zF pz‹, λq

ą 0,
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where the inequality comes from B2
zF pz‹, λq ą BλBzF pz‹, λq and B2

λF “ BλBzF . For λ ą λ1,

L1pλq “ sE

„

1

a´
¯
α` λ



` tE

„

1

b`
¯
α´ λ



(2.5.38)

L2pλq “ ´sE

„

1

pa´
¯
α` λq2



` tE

„

1

pb`
¯
α´ λq2



ą BzF p´
¯
α, λq ą 0. (2.5.39)

Also, for λ ą λ2,

L1pλq “ sE

„

1

a`
¯
β ´ λ



` tE

„

1

b´
¯
β ` λ



(2.5.40)

L2pλq “ sE

„

1

pa`
¯
β ´ λq2



´ tE

„

1

pb´
¯
β ` λq2



ą ´BzF p
¯
β ´ λ, λq ą 0. (2.5.41)

We have verified that L is continuously differentiable on p0,
¯
α`

¯
βqr tλ0u and L1 is increasing.

We next note that L is also continuously differentiable at λ0 when λ0 P p0,
¯
α`

¯
βq, for which

it suffices to check that the left and right limits of L1 at λ0 match. First, we consider the case

λ1 P p0,
¯
α `

¯
βq. Then, as λ Ò λ1, (2.5.37) tends to sErpa ´

¯
α ` λ1q

´1s ` tErpb ´
¯
α ´ λ1q

´1s,

which equals the λ Ó λ1 limit of (2.5.38). Now, suppose that λ2 P p0,
¯
α`

¯
βq. Then, as λ Ò λ2,

(2.5.37) tends to sErpa`
¯
βq´1s ` tErpb´

¯
βq´1s, which is the same as

sE

„

1

a`
¯
β ´ λ2



` tE

„

1

b´
¯
β ` λ2



` BzF p
¯
β ´ λ2, λ2q “ sE

„

1

a`
¯
β ´ λ2



` tE

„

1

b´
¯
β ` λ2



,

the λ Ó λ2 limit of (2.5.40).

We next calculate L1p0q “ limλÓ0 L
1pλq. If λ0 ą 0 then λ Ó 0 limit of (2.5.37) gives

L1p0q “ sE

„

1

a` ζ



` tE

„

1

b´ ζ



“ gps, tq.

In the cases λ1 “ 0 and λ2 then ζ “ ´
¯
α and ζ “

¯
β, respectively. Hence, letting λ Ó 0 in

(2.5.38) and (2.5.40), respectively, we still obtain L1p0q “ gps, tq.

The asserted properties of L are proved similarly.

Since L1s,t increasing, L1s,tpλq has a limit (possibly 8) as λ Ò
¯
α `

¯
β, which we denote by

L1s,tp¯
α`

¯
βq. Similarly, let us write L1s,tp¯

α`
¯
βq for limλÒ

¯
α`

¯
β L1s,tpλq. The precise values of these

limits are needed in the next section.
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Corollary 2.5.8. Fix s, t ą 0.

L1s,tp¯
α`

¯
βq “

$

’

’

’

&

’

’

’

%

sE

„

1

a´
¯
α



` tE

„

1

b`
¯
α



if ´ sE

„

1

pa´
¯
αqpa`

¯
βq



` tE

„

1

pb`
¯
αqpb´

¯
βq



ď 0

sE

„

1

a`
¯
β



` tE

„

1

b´
¯
β



otherwise.

L1s,tp¯
α`

¯
βq “

$

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

%

s

E

„

a`
¯
β

pa´
¯
αq2



E

„

a`
¯
β

a´
¯
α

 ` t

E

„

1

b´
¯
β



E

„

b`
¯
α

b´
¯
β

 if ´ s

E

„

1

pa´
¯
αq2



E

„

a`
¯
β

a´
¯
α

 ` t

E

„

1

pb´
¯
βq2



E

„

b`
¯
α

b´
¯
β

 ď 0

s

E

„

1

a´
¯
α



E

„

a`
¯
β

a´
¯
α

 ` t

E

„

b`
¯
α

pb´
¯
βq2



E

„

b`
¯
α

b´
¯
β

 otherwise.

The next lemma establishes continuous differentiability of Js,tprq and Js,tprq and shows

that these functions are linear in r for r ą L1s,tp¯
α`

¯
βq and r ą L1s,tp¯

α`
¯
βq, respectively.

Lemma 2.5.9. Fix s, t ą 0. For each r ě gps, tq, there exists a unique λ‹prq P r0,
¯
α`

¯
βs such

that Js,tptq “ λ‹ r ´ Ls,tpλ‹q. Moreover, Js,t is continuously differentiable and J1s,tprq “ λ‹prq

for r ě gps, tq. If r ą gps, tq, then λ‹ ą 0. If r ě L1s,tp¯
α `

¯
βq then λ‹ “

¯
α `

¯
β, while if

r P rgps, tq,L1s,tp¯
α `

¯
βqq then L1s,tpλ‹q “ r. The same statements hold if we replace Js,t and

Ls,t with Js,t and Ls,t, respectively.

Proof. We have Jprq “ sup0ăλă
¯
α`

¯
βtλr´Lpλqu, where pL, Jq pair refers to either pLs,t,Js,tq or

pLs,t, Js,tq. The λ-derivative of the function inside the supremum is r´L1pλq. By Lemma 2.5.7,

L1 is continuous and increasing from gps, tq to the limit L1p
¯
α`

¯
βq on p0,

¯
α`

¯
βq. It follows that the

unique maximizer λ‹ is at
¯
α`

¯
β if r ě L1p

¯
α`

¯
βq and at pL1q´1prq, otherwise. In addition, λ‹ is

increasing and continuous on rgps, tq,`8q. Since L1 is differentiable and has nonzero derivative

for λ P p0,
¯
α`

¯
βqr λ0, whenever r ‰ L1pλ0q, we have J 1prq “ λ‹prq ` λ‹

1prqr´L1pλ‹qλ‹
1prq “

λ‹prq. Then continuity of λ‹ implies that J is continuosly differentiable for all r ě gps, tq

including L1pλ0q when λ0 P p0,
¯
α`

¯
βq.

Proof of Theorem 2.2.27. This theorem is included in the preceding lemma.
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2.5.3 Left tail estimates

We now estimate the left tail in both the quenched and annealed settings. The first result shows

that in the quenched case, the rate n large deviation rate function are trivial for deviations to

the left of the shape function gps, tq. This proof is based on the proof of [80, Theorem 4.1],

which was adapted from an argument in [55].

Proof of Lemma 2.2.22. First, fix s, t, ε ą 0 and rational. Take m P N large enough that

m´1E Gptmsu, tmtuq ě gps, tq ´ ε
2 . We coarse grain the lattice into pairwise disjoint translates

of the set t1, . . . , tmsuu ˆ t1, . . . , tmtuu. Toward this end, define

Ak,`a,b “ t1` a, . . . , a` ku ˆ t1` b, . . . , `` bu, Bj
i “ A

tmxu,tmyu

pj`iqtmsu,jtmtu.

Take n large and let L “ t nm ´ t
?
nu ´ 2u. For each such k ď t

?
nu, define a diagonal by

Dk “
ŤL
j“0B

j
k. We observe that the passage time from the bottom left corner of Bj

i to the

top-right corner of Bj
i , Gi,j ” Gptmsu, tmtuq ˝ τpi`jqtmsu,jtmtu, has the same distribution as G0,0

under P. Moreover, if pi1, j1q ‰ pi2, j2q, then Bj1
i1

Ş

Bj2
i2
“ H and consequently tGi,jui,jě0

forms an independent family under Pa,b.

B0
0

B1
0

B2
0

B3
0

B0
1

B1
1

B1
2

B0
2

B1
2

B0
3

Figure 11: A path passing through the bottom-left and top-right vertices of Bj
0 for each j.
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Denote by Πk the collection of paths from p1, 1q to ptnsu, tntuq passing through the bottom-

left and top-right vertices of Bj
k for each j. See Figure 11. We have

Gptnsu, tntuq ě max
kďt

?
nu

max
πPΠk

ÿ

pi,jqPπ

W pi, jq ě max
kďt

?
nu

ÿ

jďL

Gk,j .

It follows that

Pa,b

`

n´1Gptnsu, tntuq ď pgps, tq ´ εq
˘

ď Pa,b

˜

max
kďt

?
nu
n´1

L
ÿ

j“0

Gk,j ď gps, tq ´ ε

¸

“

t
?
nu

ź

k“0

Pa,b

˜

n´1
L
ÿ

j“0

Gk,j ď gps, tq ´ ε

¸

.

Now, fix λ ą 0 sufficiently small that C ” λm ε
2´

λ2

2 EG2
0,0 ą 0 and λEG0,0´

λ2

2 EG2
0,0 ă 1 and

notice that Ea,b

“

e´λGj,k
‰

“ Ea,b

“

e´λG0,0
‰

˝ τpj`kqtmsu,ktmtu. The ergodic theorem then implies

that the following limit holds µ almost surely:

lim
LÑ8

1

L

L
ÿ

j“0

log Ea,b

”

e´λGk,j
ı

“ E
”

log Ea,b

”

e´λG0,0

ıı

.

Jensen’s inequality gives E
“

log Ea,b

“

e´λG0,0
‰‰

ď logE
“

e´λG0,0
‰

ă ´λEG0,0 `
λ2

2 EG2
0,0. By

the exponential Markov inequality and independence under Pa,b, we have

1

L
log Pa,b

˜

L
ÿ

j“0

Gk,j ă npgps, tq ´ εq

¸

ď
1

L

˜

L
ÿ

j“0

log Ea,b

”

e´λGj,k
ı

` λnpgps, tq ´ εq

¸

.

Recalling that L´1n Ñ m as n Ñ 8, and our assumption that EG0,0 ą mpgps, tq ´ ε
2q, it

follows that lim supLÑ8 L
´1 log Pa,b

´

řL
j“0Gk,j ă npgps, tq ´ εq

¯

ď ´λm ε
2 `

λ2

2 EG2
0,0 “ ´C

almost surely. Therefore, for each k there exists a random Nk so that for n ě Nk

Pa,b

˜

L
ÿ

j“0

Gk,j ă npgps, tq ´ εq

¸

ď exp

"

´n
C

2m

*

.

For any fixed K and n ě maxkďK Nk, we see that P almost surely we have

´
1

n
log Pa,b

`

n´1Gptnsu, tntuq ď pgps, tq ´ εq
˘

ě

K
ÿ

k“0

´
1

n
log Pa,b

˜

n´1
L
ÿ

j“0

Gk,j ď gps, tq ´ ε

¸
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ě K
C

2m
.

Sending nÑ8 and then K Ñ8 gives the result for fixed s, t, ε ą 0. For the general result, we

work on the µ almost sure set where the result holds simultaneously for all rational s, t, ε ą 0.

Take s, t, ε ą 0 and s1 ă s and t1 ă t rational with the property that ε ´ gps, tq ` gps1, t1q ą

ε1 ą 0 for rational ε1. This is possible by continuity of g. The result follows from observing

that

Pa,b

`

n´1Gptnsu, tntuq ď gps, tq ´ ε
˘

ď Pa,b

`

n´1Gptns1u, tnt1uq ď gps1, t1q ´ ε1
˘

.

Corollary 2.5.10. µ a.s. for s, t, λ ą 0, limnÑ8 n
´1 log Ea,b rexp t´λGptnsu, tntuqus “ ´λgps, tq.

Essentially the same argument as in Lemma 2.2.22 restricted to a single diagonal D0 (so

that the last passage times on Bj
0 are i.i.d. under P) shows that for r P p0, gps, tqq, we have

lim inf
nÑ8

´n´1 logP
`

n´1Gptns u, tnt uq ď r
˘

ą 0.

To show that n is the correct rate for certain left tail large deviations, we need to show that

the corresponding limsup is finite for some r P p0, gps, tqq. We begin by considering the natural

mechanism for these deviations, which we stated previously in Section ?? as Lemma 2.2.24.

Proof of Lemma 2.2.24. We may assume without loss of generality that tν1 PMα, ν2 PMβ :

gν1,ν2ps, tq P px, yqu ‰ H since the right hand side is infinite otherwise. Fix a pair ν1, ν2 from

this set and introduce the notation

An “ tn
´1Gptns u, tnt uq P px, yqu,

dν1

dα
paq “ ϕpaq,

dν2

dβ
pbq “ ψpbq.

Since An is measurable with respect to σ pW pi, jq : 1 ď i ď tns u, 1 ď j ď tnt uq, we see that

Pα,βpAnq “ Eα,β rPa,bpAnqs ě Eα,β

»

–Pa,bpAnq

tns u
ź

i“1

1tϕpaiqą0u

tnt u
ź

j“1

1tψpbjqą0u

fi

fl
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“ Eν1,ν2

»

–Pa,bpAnq

tns u
ź

i“1

ϕpaiq
´1

tnt u
ź

j“1

ψpbjq
´1

fi

fl .

Taking logs and applying Jensen’s inequality shows that

´
1

n
logPα,βpAnq ď ´

1

n
log Eν1,ν2

»

–Pa,bpAnq

tns u
ź

i“1

ϕpaiq
´1

tnt u
ź

j“1

ψpbjq
´1

fi

fl

ď
1

nPν1,ν2pAnq
Eν1,ν2

»

–Pa,bpAnq

¨

˝

tns u
ÿ

i“1

logϕpaiq `

tnt u
ÿ

j“1

logψpbjq

˛

‚

fi

fl´
1

n
logPν1,ν2pAnq.

Note that for any measures ν1, ν2, we have gν1,ν2ps, tq ą 0, so we have not divided by zero

above. The last term tends to zero because Pν1,ν2pAnq Ñ 1 as nÑ8. For the remaining term,

we note that

Eν1,ν2

»

–Pa,bpAnq

¨

˝

tns u
ÿ

i“1

logϕpaiq `

tnt u
ÿ

j“1

logψpbjq

˛

‚

fi

fl “ Eν1,ν2

»

–

¨

˝

tns u
ÿ

i“1

logϕpaiq `

tnt u
ÿ

j“1

logψpbjq

˛

‚

fi

fl

´ Eν1,ν2

»

–Pa,bpA
c
nq log

¨

˝

tns u
ź

i“1

ϕpaiq

tnt u
ź

j“1

ψpbjq

˛

‚

fi

fl

“ tns uHpν1|αq ` tnt uHpν2|βq

´ Eα,β

»

–Pa,bpA
c
nq

tns u
ź

i“1

ϕpaiq

tnt u
ź

j“1

ψpbjq log

¨

˝

tns u
ź

i“1

ϕpaiq

tnt u
ź

j“1

ψpbjq

˛

‚

fi

fl

But x log x ě ´1
e and Pa,bpA

c
nq P r0, 1s so the last term is bounded above by a constant.

Dividing by n and taking lim supnÑ8, then optimizing over ν1, ν2 gives the result.

To show that the annealed model has non-trivial rate n large deviations to the left of the

shape function, it suffices to show that there exists ν1 PMα with gν1,βps, tq ă gα,βps, tq. The

next lemma gives mild conditions under which this is the case.

Lemma 2.5.11. Suppose that α is not degenerate and Eαra log as ă 8. Then there exists ν1

with Hpν1|αq ă 8 and gν1,βps, tq ă gα,βps, tq.
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Proof. Define ν1 by dν1
dα paq “ aEras´1. Note that Hpν1|αq ă 8 by hypothesis. Let ζ P r´

¯
α,

¯
βs

be such that gα,βps, tq “ sE
“

pa` ζq´1
‰

`tE
“

pb´ ζq´1
‰

. Because α ‰ δc for any c, the Cauchy-

Schwarz inequality gives 1 “ E
”?

a` ζ
?
a` ζ

´1
ı2
ă Era ` ζsE

“

pa` ζq´1
‰

. Rearranging

implies that E
“

apa` ζq´1
‰

ă ErasE
“

pa` ζq´1
‰

. It then follows that

gν1,βps, tq ď sEras´1 E

„

a

a` ζ



` tE

„

1

b´ ζ



ă sE

„

1

a` ζ



` tE

„

1

b´ ζ



“ gα,βps, tq.

We expect that the moment condition in the previous lemma is unnecessary.

2.5.4 Large deviation principle

We prove Theorem 2.2.18 by working with Legendre-Fenchel transforms and appealing to

convex duality.

Lemma 2.5.12. For all s, t ą 0,

J‹s,tpλq “

$

’

’

&

’

’

%

Ls,tpλq λ ě 0

8 λ ă 0

, J‹s,tpλq “

$

’

’

&

’

’

%

Ls,tpλq λ ě 0

8 λ ă 0

.

Proof. We give the proof of the result under Pa,b. The proof under P is similar. Recall the

regularity properties of Js,tp¨q proven in Proposition 2.5.14 in the appendix. The result for

λ ă 0 follows from the observation that Js,tprq “ 0 for r ď gps, tq. For all λ ą 0, by the

exponential Markov inequality we have

1

n
log Pa,b pGptnsu, tntuq ě nrq ď

1

n
log Ea,b

”

eλGptnsu,tntuq
ı

´ λr.

Sending n Ñ 8 gives λr ´ Js,tprq ď Ls,tpλq and taking suprPR implies J‹s,tpλq ď Ls,tpλq. For

the reverse inequality, we next consider the case λ P p0,
¯
α`

¯
βq. Fix M ą 0 and let txiu

K
i“0 be

a partition of r0,M s. We observe that

Ea,b

”

eλGptnsu,tntuq
ı

“

K
ÿ

i“1

Ea,b

”

eλGptnsu,tntuq1pxi´1,xispn
´1Gptnsu, tntuqq

ı
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`Ea,b

”

eλGptnsu,tntuq1pM,8qpn
´1Gptnsu, tntuqq

ı

.

Consequently, we see that

1

n
log Ea,b

”

eλGptnsu,tntuq
ı

ď max

"

max
0ďiďK

tλxi `
1

n
log Pa,b

`

n´1Gptnsu, tntuq ě xi´1

˘

u,

1

n
Ea,b

”

eλGptnsu,tntuq1pM,8qpn
´1Gptnsu, tntuqq

ı

*

`
K ` 1

n

Take lim supnÑ8 then K Ñ8. Using continuity of r ÞÑ Js,tprq, we see that

Ls,tpλq ď max
0ďrďM

tλr ´ Js,tprqu _ lim sup
nÑ8

1

n
log Ea,b

”

eλGptnsu,tntuq1pM,8qpn
´1Gptnsu, tntuqq

ı

.

Let p, q ą 1 be such that p´1 ` q´1 “ 1 and pλ ă
¯
α`

¯
β. Then

1

n
log Ea,b

”

eλGptnsu,tntuq1pM,8qpn
´1Gptnsu, tntuqq

ı

ď
1

pn
log Ea,b

”

eλpGptnsu,tntuq
ı

`
1

qn
log Pa,b

`

n´1Gptnsu, tntu ěM
˘

.

From this, we see that there exist deterministic constants C1, C2 such that

lim sup
nÑ8

1

n
log Ea,b

”

eλGptnsu,tntuq1pM,8qpn
´1Gptnsu, tntuqq

ı

ď C1 ´ C2 Js,tpMq.

Recall that λr ď Ls,tpλq ` Js,tprq, so that as M Ñ 8, Js,tpMq Ñ 8. Since maxrďMtλr ´

Js,tprqu ď J‹s,tpλq, it follows that we have Ls,tpλq ď J‹s,tpλq.

Next, we turn to the case λ “
¯
α`

¯
β. We observe that as λ Ò

¯
α`

¯
β, Ls,tpλq Ò Ls,tp

¯
α`

¯
βq.

Suppose that Ls,tprq ă 8. Fix ε ą 0 and take λ ă
¯
α `

¯
β such that suprPRtλr ´ Js,tprqu “

Ls,tpλq ě Ls,tp
¯
α`

¯
βq´ 2ε. Then there exists r ą 0 so that λr´Js,tprq ě Ls,tp

¯
α`

¯
βq´ ε. Since

p
¯
α`

¯
βqr ą λr, it follows that J‹s,tp¯

α`
¯
βq ě Ls,tp

¯
α`

¯
βq´ ε. The case Ls,tp

¯
α`

¯
βq “ 8 is similar.

Finally, we consider the case λ ą
¯
α`

¯
β, where Ls,tpλq “ 8. For each pi, jq, we eventually

have Gptns u, tnt uq ě W pi, jq. This implies that for all pi, jq, Js,tprq ď pai ` bjqr1trě0u and

therefore µ almost surely, Js,tprq ď p
¯
α`

¯
βqr1trě0u. Taking Legendre-Fenchel transforms of this

inequality shows that J‹s,tpλq “ 8.
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Proof of Theorem 2.2.18. Proposition 2.5.14 shows that r ÞÑ Js,tprq and r ÞÑ Js,tprq are real

valued convex functions on R. The result follows from taking Legendre-Fenchel transforms of

the expressions in the previous lemma [79, Theorem 12.2].

Proof of Theorem 2.2.23. Fix an open set O Ă R

1. If O Ă p´8, gps, tqq then there is nothing to prove by Lemma 2.2.22.

2. If gps, tq P O, then

lim sup
nÑ8

´n´1 log Pa,b

`

n´1Gptnsu, tntuq P O
˘

“ 0 “ inf
rPO

Is,tprq

3. If O X pgps, tq,8q ‰ H, then O X pgps, tq,8q contains an interval pr0, r1q. Note that

Pa,b

`

n´1Gptnsu, tntuq P O
˘

ě Pa,b pGptnsu, tntuq P pr0, r1qq

“ Pa,b pGptnsu, tntuq ě r0q ´Pa,b pGptnsu, tntuq ě r1q

Lemma 2.5.9 shows that Js,tprq is strictly increasing for r ą gps, tq, which implies that

lim sup
nÑ8

´n´1 log Pa,b

`

n´1Gptnsu, tntuq P O
˘

ď Js,tpr0q.

Let rn P OXpgps, tq,8q be a sequence with rn Ó r8 “ inftx : x P OXpgps, tq,8qu. Then

because Js,tprq is continuous and non-decreasing, we see that

lim sup
nÑ8

´n´1 log Pa,b

`

n´1Gptnsu, tntuq P O
˘

ď Js,tpr8q “ inf
rPOXpgps,tq,8q

Is,tprq “ inf
rPO

Is,tprq.

The upper bound follows from the regularity of Js,t, Theorem 2.2.18 and Lemma 2.2.22.

2.5.5 Relative entropy and the rate functions

We now turn to the proof of Theorem 2.2.26. Our argument proving this result is purely convex

analytic and does not show the probabilistic interpretation mentioned before the statement of

the theorem. We begin with a technical lemma.
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Lemma 2.5.13. For r ą 0, the map pα, βq ÞÑ Iα,βs,t prq is convex on M1pR`q2.

Proof. Using (2.2.14), one can check that pα, βq ÞÑ gα,βps, tq is concave on MpR`q2. Thus,

tpα, βq : gα,βps, tq ě ru is convex. Similarly,

F pα, βq “ sup
λPp0,

¯
α`

¯
βq

zPp´
¯
α,

¯
β´λq

"

λr ´ sEα
„

log

ˆ

a` z ` λ

a` z

˙

´ tEβ
„

log

ˆ

b´ z

b´ z ´ λ

˙*

is convex on M1pR`q2. Then we see from (2.2.22) that pα, βq ÞÑ Iα,βs,t prq is convex on MpR`q2.

Proof of Theorem 2.2.26. Theorem 2.2.18 and the variational characterization of relative en-

tropy, [77, Theorem 5.4], imply that for r ą gps, tq,

Jα,βs,t prq “ sup
λPp0,

¯
α`

¯
βq

zPp´
¯
α,

¯
β´λq

"

λr ´ s log Eα
„

a` z ` λ

a` z



´ t log Eβ
„

b´ z

b´ z ´ λ

*

“ sup
λPp0,

¯
α`

¯
βq

zPp´
¯
α,

¯
β´λq

inf
ν1PMα

ν2PMβ

"

λr ´ sEν1
„

log

ˆ

a` z ` λ

a` z

˙

´ tEν2
„

log

ˆ

b´ z

b´ z ´ λ

˙

` sHpν1|αq ` tHpν2|βq

*

ď inf
ν1PMα

ν2PMβ

sup
λPp0,

¯
α`

¯
βq

zPp´
¯
α,

¯
β´λq

"

λr ´ sEν1
„

log

ˆ

a` z ` λ

a` z

˙

´ tEν2
„

log

ˆ

b´ z

b´ z ´ λ

˙

` sHpν1|αq ` tHpν2|βq

*

.

Note that if ν1 ! α, it must be the case that
¯
ν1 ě

¯
α and similarly,

¯
ν2 ě

¯
β. It follows that we

may extend the region in the inner supremum to obtain

Jα,βs,t prq ď inf
ν1,ν2

 

Iν1,ν2s,t prq ` sHpν1|αq ` tHpν2|βq
(

.

The map pν1, ν2q ÞÑ Iν1,ν2s,t prq ` sHpν1|αq ` tHpν2|βq is strictly convex on the convex set

MαˆMβ so at most one minimizing pair pν1, ν2q exists. It therefore suffices to show that we
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have equality with the measures ν1, ν2 defined in the statement of the theorem. We argue this

by cases.

A maximizing pair λ‹, z‹ satisfying λ‹ P r0,
¯
α`

¯
βs, z‹ P r´

¯
α,

¯
β ´ λ‹s exist for the annealed

right-tail rate function by Lemmas 2.5.6 and 2.5.9. (z‹ denotes z‹pλ‹q in the notation of

Section 2.5.2. Also, by Corollary 2.5.4, z‹p
¯
α `

¯
βq “ ´

¯
α). Note that λ‹ “ 0 is impossible

because Jα,βs,t prq ą 0 by Lemma 2.5.9. If λ‹ P p0,
¯
α `

¯
βq and z‹ P p´

¯
α,

¯
β ´ λ‹q, then ν1 PMα

and ν2 PMβ because their densities with respect to α and β are bounded. Taking derivatives

in (2.2.23), we see that z‹ and λ‹ solve

0 “ sEν1
„

1

a` z‹
´

1

a` z‹`λ‹



` tEν2
„

1

b´ z‹
´

1

b´ z‹´λ‹



(2.5.42)

0 “ r ´ sEν1
„

1

a` z‹`λ‹



´ tEν2
„

1

b´ z‹´λ‹



. (2.5.43)

These are precisely the first order conditions implying that

Iν1,ν2s,t prq “ λ‹ r ´ sEν1
„

log
a` z‹`λ‹
a` z‹



´ tEν2
„

log
b´ z‹

b´ z‹´λ‹



.

The definition of relative entropy and a little algebra then show that

Jα,βs,t prq “ Iν1,ν2s,t prq ` sHpν1|αq ` tHpν2|αq.

The remaining cases are similar in that once we know that the extremizers are the same for

Jα,βs,t prq and Iν1,ν2s,t prq, the result follows. The necessary and sufficient conditions in Lemmas

2.5.5 and 2.5.6 show that ν1 and ν2 are well defined and that this equality continues to hold if

λ‹ ă
¯
α`

¯
β and z‹ “ ´

¯
α or z‹ “

¯
β ´ λ‹. The only remaining case is λ‹ “

¯
α`

¯
β and z‹ “ ´

¯
α.

λ‹ “
¯
α`

¯
β is equivalent to r ě pLα,βs,t q1p¯

α`
¯
βq. By Corollary 2.5.8, this condition implies that

ν1 and ν2 are well defined and pLν1,ν2s,t q1p
¯
α`

¯
βq “ pLα,βs,t q1p¯

α`
¯
βq. The result follows.

2.5.6 Scaling estimates

In this section, we prove the scaling estimates for the quenched and the annealed rate functions.

See the discussion Section 2.5.2 for the notation below. If c1 ă s{t ă c2 we have Bzgζps, tq “ 0
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and, therefore,

gzps, tq “ gps, tq ` B2
zgζps, tqpz ´ ζq

2{2` oppz ´ ζq2q. (2.5.44)

In fact, (2.5.44) holds for s{t “ c1 and s{t “ c2 as well provided that

E

„

1

pa´
¯
αq3



ă 8, E

„

1

pb´
¯
βq3



ă 8; (2.5.45)

that is, assuming that B2
zgzps, tq has limits at the endpoints ´

¯
α and

¯
β.

Proof of Theorem 2.2.28. For ε ą 0 sufficiently small, we have

I1s,tprq “ λ‹prq, L1s,tpλ‹prqq “ r (2.5.46)

whenever gps, tq ď r ď gps, tq` ε by Lemma 2.5.9. We begin with the case c1 ă s{t ă c2. Then

ζ P p´
¯
α,

¯
βq. We recall λ1 and λ2 defined in Lemma 2.5.5. Because BzF p´

¯
α, 0q “ Bzg´

¯
αps, tq ă

0 and BzF p´
¯
α, 0q “ Bzg´

¯
αps, tq ą 0, we conclude that λ1 ą 0 and λ2 ą 0. Hence,

z‹
1pλq “ ´

BλBzF pz‹, λq

B2
zF pz‹, λq

“ ´

sE

„

1

pa` z‹qpa` z‹`λq2



` tE

„

1

pb´ z‹qpb´ z‹´λq2



sE

„

2a` 2 z‹`λ

pa` z‹`λq2pa` z‹q2



` tE

„

2b´ 2 z‹´λ

pb´ z‹´λq2pb´ z‹q2

 .

for 0 ă λ ă λ1^λ2. Letting λ Ó 0 yields z‹
1p0`q “ ´1{2. It follows that z‹pλq “ ζ´λ{2`opλq

as λ Ó 0. We obtain L1s,tpλq “ gz‹`λps, tq “ gps, tq ` B2
zgζps, tqλ

2{8` opλ2q as λ Ó 0. Then,

I1s,tpgps, tq ` εq “
2
?

2
a

B2
zgζps, tq

ε1{2 ` opε1{2q,

and integrating gives

Is,tpgps, tq ` εq “
4
?

2ε3{2

3
a

B2
zgζps, tq

` opε3{2q “
4

3

ε3{2
d

sE

„

1

pa` ζq3



` tE

„

1

pb´ ζq3



` opε3{2q

(2.5.47)

as ε Ó 0. Now, suppose that s{t ď c1. Then Erpa ´
¯
αq´2s ă 8, ζ “ ´

¯
α and z‹ “ ´

¯
α. Under

condition (2.5.45), when c1 “ s{t, L1s,tpλq “ g´
¯
α`λps, tq “ gps, tq ` B2

zg´
¯
αps, tqλ

2{2 ` opλ2q
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and we reach (2.5.47) multiplied with 1{2. If c1 ą s{t then Bzg´
¯
αps, tq ą 0 and we have

L1s,tpλq “ g´
¯
α`λps, tq “ gps, tq ` Bzg´

¯
αps, tqλ` opλq. This leads to

Is,tpgps, tq ` εq “
ε2

2Bzg´
¯
αps, tq

` opε2q “
1

2

ε2

´sE

„

1

pa´
¯
αq2



` tE

„

1

pb`
¯
αq2

 ` opε2q.

Analysis of the case s{t ě c2 is similar.

Proof of Theorem 2.2.29. In the case c1 ă s{t ă c2, Hölder’s inequality gives

lim
λÓ0

z‹
1pλq “ ´ lim

λÓ0

BλBzF pz‹, λq

B2
zF pz‹, λq

“ ´

sE

„

1

pa` ζq2



E

„

1

a` ζ



` 2tE

„

1

pb´ ζq3



´ tE

„

1

pb´ ζq2



E

„

1

b´ ζ



2sE

„

1

pa` ζq3



` 2tE

„

1

pb´ ζq3



ď ´

sE

„

1

pa` ζq2



E

„

1

a` ζ



` tE

„

1

pb´ ζq3



2sE

„

1

pa` ζq3



` 2tE

„

1

pb´ ζq3

 .

Hence, z‹pλq “ ζ ` cλ` opλq, where c ă 0. We have

L1s,tpλq “ s

E

„

1

a` z‹



E

„

a` z‹`λ

a` z‹

 ` t

E

„

b´ z‹
pb´ z‹´λq2



E

„

b´ z‹
b´ z‹´λ

 (2.5.48)

“ gz‹`λps, tq ` λ

ˆ

sVar

„

1

a` ζ



` tVar

„

1

b´ ζ

˙

` opλq (2.5.49)

“ gps, tq ` λ

ˆ

sVar

„

1

a` ζ



` tVar

„

1

b´ ζ

˙

` opλq. (2.5.50)

Then, arguing as in the preceding proof, we obtain

Js,tpgps, tq ` εq “
1

2

ε2

sVar

„

1

a` ζ



` tVar

„

1

b´ ζ

 ` opεq. (2.5.51)

Now consider s{t ď c1. Then ζ “ z‹ “ ´
¯
α and (2.5.48) still holds. If s{t “ c1 subsequent

arguments go through assuming (2.5.45). This condition is needed in step (2.5.49), which



119

relies on (2.5.44) with ζ “ ´
¯
α. Hence, we have (2.5.51). If s{t ă c1 then the coefficient of λ in

(2.5.50) has an additional term Bzg´
¯
αps, tq ą 0, which leads to

Js,tpgps, tq ` εq “
1

2

ε2

´sE

„

1

a´
¯
α

2

` tVar

„

1

b`
¯
α



` tE

„

1

pb`
¯
αq2



` opεq.

The case s{t ě c2 is analyzed similarly.

2.5.7 Right tail rate functions and Lyapunov exponents

Proposition 2.5.14. (a) µ-a.s., for s, t ą 0 and r P R, there exists (nonrandom) Js,tprq P

r0,8q such that

lim
nÑ8

´
1

n
log Pa,bpGptns u, tnt uq ě nrq “ Js,tprq. (2.5.52)

(b) For all s, t ą 0 and r P R, there exists Js,tprq P r0,8q such that

lim
nÑ8

´
1

n
logPpGptns u, tnt uq ě nrq “ Js,tprq. (2.5.53)

(c) J and J are convex and homogeneous in ps, t, rq, nonincreasing in ps, tq and nondecreasing

in r.

Proof. Fix r P R and s, t P N. For integers 0 ď m ă n, define

Xm,n “ ´ log Pτmspaq,τmtpbqpGppn´mqs, pn´mqtq ě pn´mqrq.

We verify that tXm,nu satisfy the hypotheses of the subadditive ergodic theorem in [66]. For

subadditiviy, note that

X0,n “ ´ log Pa,bpGpns, ntq ě nrq

ď ´ log Pa,bpGpms,mtq ě mrq ´ log Pa,bpGppn´mqs, pn´mqtq ˝ θms,mt ě pn´mqrq

“ X0,m `Xm,n.
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For k P N, by the ergodicity assumptions on µ, the sequence pXk,k`nqnPN has the same distri-

bution as pX0,nqnPN and the sequence pXpn´1qk,nkqnPN is ergodic. Moreover, X0,n ě 0 and

EX0,n ď E r´ log Pa,bpW p1, 1q ě nrqs “ nmaxtr, 0uEra` bs ă 8. (2.5.54)

Hence, by the subadditive ergodic theorem, (2.5.52) holds µ-a.s. (and in expectation under µ)

with

Js,tprq “ lim
nÑ8

1

n
EX0,n “ lim

nÑ8
´

1

n
E log Pa,bpGpns, ntq ě nrq. (2.5.55)

We record some properties of Js,tprq for s, t P N and r P R. It is clear from (2.5.55) that

Js,tprq is nonincreasing in ps, tq and nondecreasing in r. In addition, Js,tprq “ 0 for r ď 0 as

G is nonnegative, and Jcs,ctpcrq “ cJs,tprq for c P N. By (2.5.54), Js,tprq ď rEra` bs ă 8 for

r ě 0. Also, for s1, s2, t1, t2 P N and r1, r2 P R, we have

E log Pa,bpGpnps1 ` s2q, npt1 ` t2qq ě npr1 ` r2qq ěE log Pa,bpGpns1, nt1q ě nr1q

¨E log Pa,bpGpns2, nt2q ě nr2q

for n P N, which gives Js1`s2,t1`t2pr1`r2q ě Js1,t1pr1q`Js2,t2pr2q. Then, for 0 ď r ď r1 ď r` 1
n ,

Js,tpr
1q ´ Js,tprq ď Js,tpr ` 1{nq ´ Js,tprq

“
1

n` 1
Jpn`1qs,pn`1qtpnr ` r ` 1` 1{nq ´ Js,tprq

ď
Jns,ntpnrq

n` 1
´ Js,tprq `

Js,tpr ` 2q

n` 1

“
Js,tpr ` 2q ´ Js,tprq

n` 1

ď
2r ` 2

n
Era` bs, (2.5.56)

which shows continuity of Js,tprq in r.

There exists a µ-a.s. event E on which (2.5.52) holds for all s, t P N and r P Q. It follows

from the monotonicity of log Pa,bpGpns, ntq ě nrq in r and continuity of Js,t that (2.5.52)

holds for all s, t P N and r P R on E. From now on, let us work with pa,bq P E.
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For c ą 0, δ P p0, 1q and large enough n P N, we have

´ log Pa,bpGptncs u, tnct uq ě nrq ď ´ log Pa,bpGpt cn u s, t cn u tq ě t cn u rp1` δqq

´ log Pa,bpGptncs u, tnct uq ě nrq ě ´ log Pa,bpGpr cn s s, r cn s tq ě r cn s rp1´ δqq.

(2.5.57)

It follows from these inequalities and continuity of Js,t that (2.5.52) holds on E with Jcs,ctpcrq “

cJs,tprq. In particular, Js,tprq exists for rational s, t ą 0. Moreover, by homogeneity, the

properties of Js,tprq noted in preceding paragraph hold for rational s, t ą 0 as well.

For s, t, δ ą 0, choose rational s1, t1 such that s1

1`δ ă s ď s1 and t1

1`δ ă t ď t1. Then

´ log Pa,bpGptns u, tnt uq ě nrq ě ´ log Pa,bpGptns
1 u, tnt1 uq ě nrq

´ log Pa,bpGptns u, tnt uq ě nrq ď ´ log Pa,bpGptns
1{p1` δq u, tnt1{p1` δq uq ě nrq.

(2.5.58)

It follows that

lim inf
nÑ8

´
1

n
log Pa,bpGptns u, tnt uq ě nrq ě Js1,t1prq

lim sup
nÑ8

´
1

n
log Pa,bpGptns u, tnt uq ě nrq ď Js1{p1`δq,t1{p1`δqprq “ Js1,t1pp1` δqrq{p1` δq.

Using (2.5.56), we obtain

Js1,t1pp1` δqrq

1` δ
´ Js1,t1prq ď Js1,t1pp1` δqrq ´ Js1,t1prq ď

2r ` 2

rprδq´1 s
Era` bs.

As δ Ó 0, we have s1 Ó s and t1 Ó t. Hence, we conclude that Js,tprq exists and equals the

limit of Js1,t1prq, and also enjoys the properties of mentioned above. Finally, it follows from

subadditivity and homogeneity that J is convex.

Proposition 2.5.15.

(a) µ-a.s., for any s, t ą 0 and λ P R, there exists Ls,tpλq P r´8,8s such that,

lim
nÑ8

1

n
log Ea,bre

λGptns u,tnt uqs “ Ls,tpλq (2.5.59)
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(b) For any s, t ą 0 and λ P R,

lim
nÑ8

1

n
logEreλGptns u,tnt uqs “ Ls,tpλq (2.5.60)

(c) Ls,tpλq and Ls,tpλq are nondecreasing and convex in λ.

(d) λLs,tpλq and λLs,tpλq are nondecreasing, homogeneous and concave in ps, tq.

Proof. Fix λ P R and s, t P N. Define

Xm,n “ ´λ log Eτmspaq,τmtpbq

”

eλGppn´mqs,pn´mqtq
ı

for integers 0 ď m ă n. Then tXm,n : 0 ď m ă nu are nonpositive and subadditive, and the

conditions of the subadditive ergodic theorem are in place to claim the existence of Ls,tpλq P

r´8,8s such that (2.5.59) holds µ-a.s.

For λ P R, s, t P N and c ą 0, we have

´λ log Ea,b

”

eλGprnc s s,rnc s tq
ı

ď ´λ log Ea,b

”

eλGptncs u,tnct uq
ı

ď ´λ log Ea,b

”

eλGptnc u s,tnc u tq
ı

Also, for λ P R, s, s1, t, t1, δ ą 0 such that s1, t1 are rational, s1

1`δ ă s ď s1 and t1

1`δ ă t ď t1,

´λ log Ea,b

”

eλGptns
1 u,tnt1 uq

ı

ď ´λ log Ea,b

”

eλGptns u,tnt uq
ı

ď ´λ log Ea,b

„

eλGpt
ns1

1`δ
u,t nt1

1`δ
uq



.

Using these inequalities as in the preceding proof, we obtain (2.5.59) for all s, t ą 0 µ-a.s. and

the claimed properties of the function ps, tq ÞÑ λLs,tpλq.

Now fix s, t ą 0. Note that Ls,tpλq is nondecreasing in λ. Let λ0 “ supλPRtLs,tpλq ă 8u.

For λ1, λ2 P R and c1, c2 P p0, 1q with c1 ` c2 “ 1, by Hölder’s inequality,

log Ea,b

”

epc1λ1`c2λ2qGptns u,tnt uq
ı

ď c1 log Ea,b

”

eλ1Gptns u,tnt uq
ı

` c2 log Ea,b

”

eλ2Gptns u,tnt uq
ı

,

which implies that Ls,tpc1λ1` c2λ2q ď c1 Ls,tpλ1q ` c2 Ls,tpλ2q. Hence, Ls,tpλq is continuous in

λ on p´8, λ0q. Using this and the monotonicity of last-passage times, we deduce that (2.5.59)

holds for all s, t ą 0 and λ P R µ-a.s.
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2.5.8 Lyapunov exponents for the stationary model

We close this section with the proof of Theorem 2.2.17

Proof of Theorem 2.2.32. We begin with the coupling

Ĝptns u, tnt uq “ max
1ďkďtns u

!

Gptns u´k ` 1, tnt uq ˝ θk´1,0 ` Ĝpk, 0q
)

_ max
1ďkďtnt u

!

Gptns u, tnt u´k ` 1q ˝ θ0,k´1 ` Ĝp0, kq
)

.

Arguing with lim sup and lim inf and coarse graining as above, this leads to the variational

problem

Lzs,tpλq “ max
0ďrďs

"

Ls´r,tpλq ` rE

„

log
a` z

a` z ´ λ

*

_ max
0ďuďt

"

Ls,t´upλq ` uE

„

log
b´ z

b´ z ´ λ

*

.

Substituting in the variational expression for Ls,tpλq, this leads to

Lzs,tpλq “

max
0ďrďs

#

min
θPr´

¯
α,

¯
β´λs

"

ps´ rqE

„

log
a` θ ` λ

a` θ



` tE

„

log
b´ θ

b´ θ ´ λ

*

` rE

„

log
a` z

a` z ´ λ



+

_ max
0ďuďt

#

min
θPr´

¯
α,

¯
β´λs

"

sE

„

log
a` θ ` λ

a` θ



` pt´ uqE

„

log
b´ θ

b´ θ ´ λ

*

` uE

„

log
b´ z

b´ z ´ λ



+

.

Applying a minimax theorem (for example [84]), we obtain

Lzs,tpλq “

min
θPr´

¯
α,

¯
β´λs

"

sE

„

log
a` θ ` λ

a` θ



` tE

„

log
b´ θ

b´ θ ´ λ



` max
0ďrďs

rE

„

log
pa` zq

pa` z ´ λq

pa` θq

pa` θ ` λq

*

_ min
θPr´

¯
α,

¯
β´λs

"

sE

„

log
a` θ ` λ

a` θ



` tE

„

log
b´ θ

b´ θ ´ λ



` max
0ďuďt

uE

„

log
pb´ zq

pb´ z ´ λq

pb´ θ ´ λq

pb´ θq

*

.

Write pa`z´λqpa`θ`λq “ pa`zqpa`θq`λpz´θ´λq to see that the inner maximum of the

first term occurs at r “ s if z ´ λ ď θ and r “ 0 if z ´ λ ě θ. Similarly, θ ÞÑ p1´ λpb´ θq´1q

is a decreasing function, so the inner maximum of the second term occurs at u “ t for θ ď z

and at u “ 0 for θ ě z. Breaking the first minimum over r´
¯
α,

¯
β ´ λs into a minimum over
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r´
¯
α, z ´ λs and a minimum over rz ´ λ,

¯
βs and the second into a minimum over r´

¯
α, zs and a

minimum over rz,
¯
β ´ λs, we obtain

min
θPr´

¯
α,

¯
β´λs

"

sE

„

log
a` θ ` λ

a` θ



` tE

„

log
b´ θ

b´ θ ´ λ



` max
0ďrďs

rE

„

log
pa` zq

pa` z ´ λq

pa` θq

pa` θ ` λq

*

“

"

sE

„

log
a` z

a` z ´ λ



` tE

„

log
b´ z ` λ

b´ z

*

^ min
θPr´

¯
α,z´λs

"

sE

„

log
a` θ ` λ

a` θ



` tE

„

log
b´ θ

b´ θ ´ λ

*

and similarly, for the remaining term we have

min
θPr´

¯
α,

¯
β´λs

"

sE

„

log
a` θ ` λ

a` θ



` tE

„

log
b´ θ

b´ θ ´ λ



` max
0ďuďt

uE

„

log
pb´ zq

pb´ z ´ λq

pb´ θ ´ λq

pb´ θq

*

“

"

sE

„

log
a` z ` λ

a` z



` tE

„

log
b´ z

b´ z ´ λ

*

^ min
θPrz,

¯
β´λs

"

sE

„

log
a` θ ` λ

a` θ



` tE

„

log
b´ θ

b´ θ ´ λ

*

The function θ ÞÑ sE
”

log a`θ`λ
a`θ

ı

` tE
”

log b´θ
b´θ´λ

ı

is strictly convex with a unique minimizer.

Note that the first terms in each of these minima are the values of this function evaluated

at θ “ z ´ λ and θ “ z. The result follow from strict convexity by considering whether the

minimizer lies in r´
¯
α, zs, rz, z ´ λs, or rz ´ λ,

¯
β ´ λs.
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Chapter 3

Particle representations for a class

of stochastic partial differential

equations

3.1 Introduction

This chapter studies particle representations for a class of stochastic partial differential equa-

tions. The idea behind the approach taken here originates in the study of the McKean-Vlasov

problem. A simple (deterministic) version of such a problem is to consider the following partial

differential equation written in weak form

xϕ, V ptqy “ xϕ, V p0qy `

ż t

0
xLpV psqqϕ, V psqyds, (3.1.1)

where ϕ P C8c pRdq, x¨, ¨y denotes the pairing of a function with a measure, and L is the second

order differential operator given by

Lpνqϕpxq “ 1

2

d
ÿ

i,j“1

ai,jpν, xqBiBjϕpxq `
d
ÿ

i“1

cipν, xqBipxq.

One approach to constructing a solution to this non-linear PDE which will work under certain

regularity assumptions on the coefficients ai,j and ci is to construct a collection of exchangeable

diffusions tXip¨qu which satisfy

Xiptq “ Xip0q `

ż t

0
cpV psq, Xipsqqds`

ż t

0
σpV psq, XipsqqdBipsq, (3.1.2)
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where tBiu is a family of i.i.d. standard Brownian motions in Rd, rσtσsi,j “ ai,j , and V ptq is

the de Finetti measure of the exchangeable sequence tXiptqu:

V ptq “ lim
nÑ8

1

n

n
ÿ

i“1

δXiptq. (3.1.3)

Assume that such a system of diffusions tXiu has been constructed and V p0q is the given initial

condition. Then for sufficiently regular functions ϕ we may apply Itô’s lemma to obtain

ϕpXiptqq “ ϕpXip0qq `

ż t

0
LpV psqqϕpXipsqqds`Mϕ,iptq (3.1.4)

where tMϕ,iui are mean zero orthogonal martingales. By taking averages of both sides of

(3.1.3), one can see that if V ptq is given by (3.1.3) where the Xiptq solve (3.1.2), then V ptq will

be a solution to (3.1.1).

The mathematical study of systems of diffusions of this type began with the seminal work of

McKean [68], though there are many approaches to this problem. See for example [36, 57, 73].

Such systems appear in a wide variety of applications, ranging from physics to economics. See

for example [19] and the references above. One advantage of the particle framework is that it

provides a model of microscopically interacting processes which aggregate to the solution to

the stochastic partial differential equation; it is often of interest in applications to observe this

phenomenon.

Our specific interest is in a stochastic perturbation of the construction described above.

The general approach taken here originally appears in [62] and the treatment presented below

can be viewed as an extension of the results of [63]. We introduce a perturbation of the de

Finetti measure of the sequence tXiptqu by introducing family of processes of weights tAiptqu

with the property that the family tpXi, Aiqu is exchangeable. The measure which will serve as

a solution to the class of stochastic partial differential equations under consideration will be

defined by

V ptq “ lim
nÑ8

1

n

n
ÿ

i“1

AiptqδXiptq. (3.1.5)
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Assuming that the Er|Aiptq|s ă 8, then de Finetti’s theorem (or the ergodic theorem) implies

that this defines a random (signed) measure. Note that introducing weights allows for a second

source of non-linearity. In [63], which studied stochastic partial differential equations on all of

Rd, the authors take advantage of both of these sources. For technical reasons, in the problems

we consider (on domains D Ă Rd) we will need to restrict to the case in which Lpνq :“ L does

not depend on ν. To avoid introducing unnecessary notation, we will restrict to this case in

the remainder of this introduction as well.

To provide some motivation for the results below, we sketch the construction of a simple

case of the type of stochastic partial differential equation studied in [63]. Suppose that we have

an exchangeable sequence of pairs of weights and particles pXi, Aiq, where the diffusions tXiu

are i.i.d. and satisfy

Xiptq “ Xip0q `

ż t

0
cpXipsqqds`

ż t

0
σpXipsqqdBipsq, (3.1.6)

where c, σ, σ´1 are continuous and bounded, and the weights Ai satisfy

Aiptq “ Aip0q `

ż t

0
GpV psq, XipsqqAipsqds`

ż

Rdˆp0,ts
ρpXipsq ´ uqAipsqW pduˆ dsq. (3.1.7)

Here, we assume that G is sufficiently regular, ρ is a C8c pRdq mollifier,

V ptq “ lim
nÑ8

1

n

n
ÿ

i“1

AiptqδXiptq, (3.1.8)

the Bi are i.i.d. standard Brownian motions, and W is a space-time white noise in the sense

of Walsh [90] which is independent of tBiu. Set

Mϕ,iptq “ ϕpXiptqq ´ ϕpXip0qq ´

ż t

0
LϕpXipsqqds,

and as before the family tMϕ,iui are orthogonal martingales. Applying Itô’s lemma,

AiptqϕpXiptqq “ Aip0qϕpXip0qq `

ż t

0
pLϕpXipsqq ` ϕpXipsqqGpV psq, XipsqqqAipsqds
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`

ż

Rdˆp0,ts
ϕpXipsqqρpXipsq ´ uqAipsqW pduˆ dsq `

ż t

0
AipsqdMϕ,ipsq.

Averaging, we see that the measure V ptq will solve

xϕ, V ptqy “ xϕ, V p0qy `

ż t

0
xLϕp¨q ` ϕp¨qGpV psq, ¨q, V psqyds (3.1.9)

`

ż

Rdˆp0,ts
xϕp¨qρp¨ ´ uq, V psqyW pduˆ dsq.

Under mild conditions, one can show existence and uniqueness of a measure-valued process

V p¨q given by (3.1.8) with Ai given by (3.1.7) and Xi given by (3.1.6) [63, Theorems 2.1,2.2].

As a consequence, one may view V p¨q and the collection tpXi, Aiqu interchangeably. This is the

sense in which the particle system tpXi, Aiqu forms a representation of a solution V ptq to the

weak form stochastic partial differential equation (3.1.9). Similarly, if one can show uniqueness

for solutions of the weak form stochastic partial differential equation (3.1.9), then the particle

system is a representation of the solution to this equation.

For equations of the type considered above, and again under mild conditions, one can

show that V ptq is absolutely continuous with respect to the Lebesgue measure [63, Theorem

3.5]. More specifically, if V p0qpdxq “ V p0, xqdx for some V p0, ¨q P L2pRdq, then V ptqpdxq “

V pt, xqdx where V pt, ¨q P L2pRdq. If we let L˚ denote the L2pRdq adjoint of L, the measure

V ptq :“ V pt, xqdx can then be viewed as a weak solution to the stochastic partial differential

equation

BtV pt, xq “ L˚ V pt, xq ` V pt, xqGpV pt, yqdy, xq `
ż

Rd
ρpx´ uqV pt, xqW pdtˆ duq.

With [63] having constructed particle representations for a wide class of stochastic partial

differential equations on Rd it is natural to wonder whether a similar construction is possible

on domains D Ă Rd with boundary conditions on BD. This is achieved for a certain class of

models with Dirichlet boundary conditions and additive white noise forcing (as opposed to the

multiplicative forcing discussed in the previous example) in [28].
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To see how this works, we consider the example which served as one of the main motivations

of the construction in [28]: the stochastic Allen-Cahn equation on a smooth open domain D:

Btu “ ∆u` u´ u3 ` ξ,

up0, xq “ hpxq, x P D

upt, xq “ gpxq, x P BD, t ą 0

where ξ is space-colored time-white noise. In order to impose Dirichlet boundary conditions

on a particle solution to a stochastic partial differential equation similar to those considered

above, one begins with a family of i.i.d. reflecting diffusions tXiu on a domain D and weights

similar to those above, with one major difference—whenever a particle hits the boundary,

the associated weight is assigned a value coming from the boundary condition. Let D be a

smooth bounded domain, let g be a continuous function on BD, and let tXiu be a family of

i.i.d. stationary normally reflecting Brownian motions run at speed 2t. Introduce the notation

τiptq “ 0_ supts ď t : Xipsq P BDu and suppose that Aiptq is a solution to

Aiptq “ gpXipτiptqqq1tτiptqą0u `

ż t

τiptq

`

1´ V ps,Xipsqq
2
˘

Aipsqds (3.1.10)

`

ż

Rdˆpτiptq,ts
ρpXipsq ´ uqAipsqW pduˆ dsq,

where pt, xq ÞÑ V pt, xq is a process of measurable versions of the densities with respect to the

uniform distribution on D of the measure given by

V ptq “ lim
nÑ8

1

n

n
ÿ

i“1

AiptqδXiptq, (3.1.11)

and ρ is again a C8c pRdq mollifier. To simplify the notation slightly, we have also imposed the

condition that xϕ, V p0qy “ 0 here. This corresponds to hpxq “ 0.

One can show that if ϕ P C8c pDq (that is, ϕ is a smooth function which is compactly

supported on the interior of D), then

ϕpXiptqqAiptq “

ż t

0

`

∆ϕpXipsqq ` p1´ V ps,Xipsqq
2qϕpXipsqq

˘

Aipsqds (3.1.12)
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`

ż

Rdˆp0,ts
ϕpXipsqqρpXipsq ´ uqAipsqW pduˆ dsq.

Averaging, we have

xϕ, V ptqy “

ż t

0
x∆ϕp¨q ` p1´ V ps, ¨q2qϕp¨q, V psqyds (3.1.13)

`

ż

Rdˆp0,ts
xϕp¨qρp¨ ´ uq, V psqyW pduˆ dsq.

Moreover, one can show that the boundary condition is satisfied in the sense that for any

g P CpDq with g|BD “ g, and for all t

lim
εÑ0

µ ptx P D : dpx, BDq ă εuq´1
ż

txPD:dpx,BDqăεu
|V pt, xq ´ gpxq|dx “ 0

in the L1 sense [28, Proposition 2.15], where µ denotes the Lebesgue measure.

The restriction to ϕ P C8c pDq in (3.1.13) is to account for the fact that Aiptq is not a semi-

martingale. By only considering ϕ which vanish in a neighborhood of BD, we avoid needing to

address what happens to the stochastic integral near times at which Xiptq P BD. These times

are the only obstruction to applying the usual semi-martingale integral results to expressions

like the one in (3.1.12). This problem can be addressed directly for a wider class of test

functions. The identity (3.1.13) can also be extended to ϕ P C2
b pR`ˆDq with ϕpt, ¨q|BD “ 0

to obtain a weak form of the stochastic partial differential equation with a boundary term to

account for the Dirichlet boundary condition:

xϕpt, ¨q, V ptqy “

ż t

0
x∆ϕps, ¨q ` Btϕps, ¨q ` p1´ V ps, ¨q

2qϕp¨q, V psqyds

`

ż

Rdˆp0,ts
xϕp¨qρp¨ ´ uq, V psqyW pduˆ dsq (3.1.14)

`

ż t

0

ż

BD
gpxq∇ϕps, xq ¨ ηpxqβpdxqds

where η is the inward unit normal on BD and β is a measure which is proportional to the

surface measure. It can be shown that a unique measure valued process V ptq given by (3.1.11)
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with Aiptq given by (3.1.10) and moreover that (up to a moment condition) this measure

valued process is the unique solution to the weak-form stochastic partial differential equation

in (3.1.14) [28, Theorem 3.1].

More generally, the results of [28] give weak solutions to a class of stochastic partial differ-

ential equations with additive space-colored time-white noise of the form

BtV pt, xq “ L˚ V pt, xq ` V pt, xqGpV pt, xq, x, tq ` bpxq `
ż

Rd
ρpx´ uqW pdtˆ duq, (3.1.15)

V pt, 0q “ hpxq, x P D,

V pt, xq “ gpxq, x P BD, t ą 0,

where D is a sufficiently regular open domain, L˚ is the adjoint of L in an appropriate L2

space, g P CbpBDq }h}8, }b}8 ă 8 and the non-linearity Gpv, x, tq satisfies Gpv, x, tq ď K

and |Gpv, x, tq| ď Kp1 ` |v|2q for some K ą 0 and all v P R, x P D and t ě 0. The

stochastic Allen-Cahn equation discussed above corresponds to the choices Gpv, x, tq “ 1´ v2,

and hpxq “ bpxq “ 0.

Some of the techniques of [28] appear to break down for equations with multiplicative noise.

In particular, the proof of existence and uniqueness of the particle system [28, Theorem 2.2]

relies on moment estimates which cannot be expected to hold if the noise is multiplicative. The

goal of what follows is to use an alternate approach to extend the class of models for which

particle representations can be derived to include certain equations with multiplicative noise.
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3.2 Results

The goal of this chapter is to prove existence of a particle representation for weak solutions to

a class of non-linear stochastic partial differential equations of the form

BtV pt, xq “ L˚ V pt, xq `GpV pt, yqπpdyq, x, tqV pt, xq ` bpxq (3.2.1)

`

ż

Rd
ρpV pt, yqπpdyq, x´ uqV pt, xqW pdtˆ duq,

V p0, xq “ hpxq, x P D,

V pt, xq “ gpxq, x P BD, t ą 0,

where π is the stationary distribution of a reflecting diffusion on D, L˚ is the adoint with

respect to π of the generator of that reflecting diffusion, and ρ and G are sufficiently regular

(but possibly non-linear) functions of the measure V pt, yqπpdyq along with space and time.

As mentioned in the introduction, technical difficulties arise in applying the techniques of

[28] to the class of problems we consider. We take a different approach to proving strong exis-

tence here. The outline of the argument is to show weak existence of a particle representation

and then pathwise uniqueness of solutions which are jointly compatible with driving noise (the

reflecting diffusions and the white noise). We begin by outlining the precise assumptions that

will be used in what follows and by defining compatibility.

3.2.1 Assumptions, notation, and definitions

Before stating the assumptions precisely, we note that these results are not stated (or proven)

in the greatest generality possible. In particular, it should be possible to extend the spatial

coloring of the white noise to the same level of generality as in [63].
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Assumptions and notation

Let D “ tx : φpxq ą 0u for some φ P C2
b pR

dq with |∇φpxq| ě 1 for all x P BD. Denote by

M`pDq the collection of finite non-negative Borel measures on D. For a Borel measurable

function φ on D and µ PM`pDq, we use the notation

xφ, µy “

ż

D
φdµ.

Denote by LippDq the Banach space of Lipschitz continuous functions on D equipped with the

norm } ¨ }8 ` | ¨ |L where | ¨ |L denotes the Lipschitz seminorm. We denote by Lip1pDq, the

collection of functions tφ P LippDq : }φ}8 ` |φ|L ď 1u. Equip M`pDq with the distance

dpµ, νq “ sup
φPLip1pDq

xφ, µ´ νy.

dpµ, νq generates the weak topology on M`pDq [13, Theorem 8.3.2]. Let µ be a sigma finite

positive measure on Rd. We consider bounded Borel measurable functions g : BD ÞÑ R`,

h : D ÞÑ R`, b : D ÞÑ R`, G : M`pDq ˆ D ˆ R` ÞÑ R, ρ : M`pDq ˆ Rd Ñ R. We will

assume that g P CbpBDq and that ρ and G are uniformly Lipschitz continuous. We will also

require that there is a common compact set K Ă Rd with supptρpν, ¨qu Ă K for all ν PM`pDq.

Notationally, we will let K ą 0 be such that

1. For all ν PM`pDq,

}g}8 ` }h}8 ` }b}8 ` }G}8 ` }ρ}8 `

ż

Rd
|ρpν, uq|2µpduq ď K

2. For all ν1, ν2 PM`pDq, x1, x2 P D,

|Gpν1, x1, sq ´Gpν2, x2, sq|
2 ` |ρpν1, x1q ´ ρpν2, x2q|

2

`

ż

Rd
|ρpν1, x1 ´ uq ´ ρpν2, x2 ´ uq|

2µpduq

ď Kpdpν1, ν2q
2 ` |x1 ´ x2|

2q.
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Let tXiu be a family of i.i.d. stationary reflecting diffusions inD with stationary distribution

π solving the Skorokhod equation

Xiptq “ Xip0q `

ż t

0
cpXipsqqds`

ż t

0
σpXipsqqdBipsq `

ż t

0
ηpXipsqqdLipsq, (3.2.2)

where supxPBD ηpxq ¨ ∇φpxq ă 0, and Li is a local time for Xi on BD. We will assume that

cip¨q, σi,jp¨q are Hölder continuous functions on D, }c}8, }σ}8 ă 8 and that the diffusion

matrix σ is uniformly elliptic. Call ai,j :“ rσtσsi,j and

L :“
1

2

d
ÿ

i,j“1

ai,jpxqBiBj `
d
ÿ

i“1

cipxqBi.

Under these hypotheses, the (sub-)martingale problem for Xi will be well-posed [86]. Denote

the generator of this process by A. We additionally have that the collection DpAq “ tϕ P

C2
b pDq : ∇ϕ ¨ η|BD “ 0u forms a core for A [33, Theorem 8.1.5]; that is, A is the closure of L

defined on DpAq. As a technical assumption, we require that if Xip0q is distributed according

to π for each i and if the family tXiu is i.i.d., then P pDi ‰ j, i, j P N and t ą 0 : Xiptq, Xjptq P

BDq “ 0.

We view the family tXiu as a random variable taking values in the complete separable

metric space C
D
8r0,8q equipped with the Borel sigma algebra. For Xi given by (3.2.2), we

define τiptq “ infts ď t : Xipsq P BDu _ 0.

Let W be a white noise (in the sense of Walsh) on RdˆR` with respect to µbλ where λ is

the Lebesgue measure on R`. We assume that W is independent of tXiu. Let tenu
8
n“1 be an or-

thonormal basis for the separable Hilbert space pL2pRd, µq, x¨, ¨yLq and let H :“ tx P L2pRd, µq :

}x}2H “
ř8
n“1 n

2xx, enyLu ă 8. Define x¨, ¨yH by polarization and note that tn´1enu
8
n“1 is an or-

thonormal basis for H. It follows that the inclusion pH, x¨, ¨yHq ãÑ pL2pRd, µq, x¨, ¨yLq is Hilbert-

Schmidt. We denote by H´1 the continuous dual of H. One can check that there exists a ver-

sion of W with the property that pointwise the map T ÞÑ px P H ÞÑ
şT
0

ş

Rd xpuqW pduˆ dtqq P

CH´1r0,8q. Without loss of generality, we work with this version of W and will at times abuse
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notation and think of W as the map T ÞÑ px P H ÞÑ
şT
0

ş

Rd xpuqW pduˆ dtqq.

Definition of compatibility

Let S1 “ DM`
r0,8q and S2 :“ CH´1r0,8q ˆ C

D
8r0,8q. Then S :“ S1ˆS2 is a complete

separable metric space, which we equip with its Borel sigma algebra. Our definition of com-

patibility between inputs and outputs will follow the definition of temporal compatibility in

[61].

Let tFW,tXiu
t utě0 denote the augmentation of the filtration σpW pC ˆ r0, ssq, Xipsq : F P

BpDq, C P BpRdq, µpCq ă 8, 0 ď s ď t, i P Nq. For U P DM`
r0,8q, let FU,W,tXiu

t denote the

augmentation of σpUpsqpF q,W pC ˆ r0, ssq, Xipsq : F P BpDq, C P BpRdq, µpCq ă 8, 0 ď s ď

t, i P Nq. Similarly, let tFU,V,W,tXiu
t utě0 denote the augmentation of σpUpsqpF q, V psqpF q,W pCˆ

r0, ssq, Xipsq : F P BpDq, C P BpRdq, µpCq ă 8, 0 ď s ď t, i P Nq.

Definition 3.2.1. A positive measure valued process Up¨q P DM`
r0,8q is compatible with

pW, tXiuq if for all t ą 0 and all h P BbpS2q, ErhpW, tXiuq|FU,W,tXiu
t s “ ErhpW, tXiuq|FW,tXiu

t s

Definition 3.2.2. A pair of positive measure valued processes Up¨q P DM`
r0,8q and V p¨q P

DM`
r0,8q are jointly compatible with pW, tXiuq if for all t ą 0 and all h P BbpS2q,

ErhpW, tXiuq|FU,V,W,tXiu
t s “ ErhpW, tXiuq|FW,tXiu

t s.

For convenience, in what follows we will refer to processes as “compatible” or “jointly

compatible” without reference to pW, tXiuq. In particular, if U is adapted to tFW,tXiu
t utě0,

then U is compatible. We remark that compatibility or joint compatibility is sufficient to ensure

that W remains white noise and the semi-martingale decomposition of Xi remains unchanged

in the filtrations FU,W,tXiu
t or FU,V,W,tXiu

t .

Definition 3.2.3. A positive measure valued process Up¨q P DM`
r0,8q is consistent if it is

compatible and the family tpW,Xi, Uqu
8
i“1 is exchangeable.
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Definition 3.2.4. A pair of positive measure valued process Up¨q P DM`
r0,8q and V p¨q P

DM`
r0,8q are jointly consistent if they are jointly compatible and the family tpW,Xi, U, V qu

8
i“1

is exchangeable.

Remark 3.2.5. Note that the additional requirement of exchangeability corresponds to a family

of constraints in the language of [61].

3.2.2 Statement of results

For consistent U , we set

ΨU
t1,t2 “ exp

"
ż t2

t1

GpUpsq, Xipsq, sqds´
1

2

ż

Rd
ρpXipsq ´ uq

2µpduq

`

ż

Rd
ρpUps´q, Xipsq, uqW pduˆ dsq

*

.

With this notation, if AUi ptq is given by

AUi ptq “
“

gpXipτiptqqq1tτiptqą0u ` hpXip0qq1tτiptq“0u

‰

ΨU
τiptq,t

`

ż t

τiptq
bpXipsqqΨ

U
s,tds

then AUi ptq solves

AUi ptq “ gpXipτiptqq1tτiptqą0u ` hpXip0qq1tτiptq“0u `

ż t

τiptq
GpUpsq, Xipsq, sqA

U
i psqds (3.2.3)

`

ż t

τiptq
bpXipsqqds`

ż

Uˆpτiptq,ts
ρpUps´q, Xipsq ´ uqA

U
i ps´qW pduˆ dsq.

For consistent U it will be convenient to define a reference process by

ΓUi ptq “ exp

#

2 sup
0ďsďt

ˇ

ˇ

ˇ

ˇ

ˇ

ż

Rdˆp0,ss
ρpUps´q, Xipsq ´ uqW pduˆ dsq

ˇ

ˇ

ˇ

ˇ

ˇ

+

With this notation, we have the bound

AUi ptq ď p}g}8 _ }h}8 ` t}b}8q e
KtΓUi ptq.

A key step in many of the proof of the results that follow is the observation that under the

assumptions in Subsection 3.2.1 it is possible to prove uniform (conditional) moment bounds:
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Lemma 3.2.6. Suppose that U is consistent. Then

E

„

sup
0ďtďT

AUi ptq
p



ď CT,p :“ 4p1` T qKeKT p1`8p2q.

If in addition U is adapted to the augmentation of the filtration tFW
t _σpXiqutě0, then

E

„

sup
0ďtďT

AUi ptq
p|σpXiq



ď CT,p.

For consistent U , tAUi u given by (3.2.3), and tXiu given by (3.2.2), we note that the

collection tpXi, A
U
i qu is exchangeable. By de Finetti’s theorem (see for example [53, Theorem

9.16]), we may then define a measure ΞU P DDˆR`r0,8q via the almost sure limit

ΞU “ lim
nÑ8

1

n

n
ÿ

i“1

δXi,AUi
.

Working on a full measure subset of the set on which this limit holds, we may define a new

consistent process ΦU P DM`pDqr0,8q via

ΦUptq “ lim
nÑ8

1

n

n
ÿ

i“1

AUi ptqδXiptq.

See also [62, Section 10, Subsection 11.3] for a similar construction. One can see directly that

ΦUptq is absolutely continuous with respect to π. Let ΦUpt, xq be a Borel measurable version

of the density of ΦUptq with respect to π; i.e., ΦUpt, xqπpdxq :“ ΦUptqpdxq. We also note that

if U is tFW
t utě0 adapted, then ΦU will be tFW

t utě0 adapted.

It will be useful to know that if U is consistent, then ΦU will be a continuous process of

positive measures. Our proof of this depends on the technical assumption above that there are

almost surely no times t for which Xiptq P BD and Xjptq P BD, where i ‰ j.

Lemma 3.2.7. Suppose that U is consistent. Then ΦU P CM`pDqr0,8q.

ΦU will typically be a weak solution solution to a certain (usually linear) stochastic partial

differential equation with multiplicative noise and the same boundary conditions as in (3.2.1).

We begin by observing that the measure valued process ΦU solves a weak form stochastic

partial differential equation on the interior of D:
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Proposition 3.2.8. Suppose that U is a consistent process in CM`pDqr0,8q. Then for ϕ P

C8c pDq,

xϕ,ΦUptqy “ xϕ,ΦUp0qy `

ż t

0
xLϕ,ΦUpsqyds`

ż t

0
xϕp¨qGpUpsq, ¨q,ΦUpsqyds (3.2.4)

` txϕb, πy `

ż

Rdˆr0,ts
xϕp¨qρpUpsq, ¨, uq,ΦUpsqyW pduˆ dsq.

We will present two ways in which ΦU satisfies the boundary conditions. These are es-

sentially the same as in [28] and the proofs are more or less identical. The first depends

on regularity of the time-reversal of the driving diffusions. For each t and s ď t, define the

time reversal of Xi by X˚i,tpsq “ Xipt ´ sq. We will often suppress the subscript and define

X˚i,tpsq :“ X˚i psq. Since Xi is stationary, the time reversal X˚i is a Markov process whose

generator A˚ satisfies

ż

D
gA fdπ “

ż

D
f A˚ gdπ, f, g P DpAq.

We introduce the notation σi “ infts : X˚i psq P BDu, and note that if we reverse time starting

from t, then σi “ t´τiptq. The first sense in which the boundary condition is satisfied depends

on the following condition.

Condition 3.2.9. The boundary BD is regular for X˚i in the sense that for each δ ą 0 and

x P BD,

lim
yPDÑx

P pσi ą δ|X˚i p0q “ yq “ 0, (3.2.5)

and

lim
yPDÑx

E r|X˚i pσiq ´ x| ^ 1|X˚i p0q “ ys “ 0. (3.2.6)

Remark 3.2.10. In practice this condition can be difficult to check unless A “ A˚, as regularity

of the time reversed process involves some knowledge about regularity of a density for π with

respect to the Lebesgue measure.
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Remark 3.2.11. If D is bounded and Xi is normally reflecting Brownian motion run at speed

2t, then A “ A˚, L “ ∆, π is proportional to the Lebesgue measure, and Condition 3.2.9 holds.

Proposition 3.2.12. Suppose that Condition 3.2.9 is satisfied and suppose that U is tFW
t utě0

adapted. Let ḡ be any bounded continuous function on D with ḡ|BD “ g. Then for any compact

K Ă BD and t ą 0,

lim
εÑ0

ş

BεpKq
|ΦUpt, xq ´ ḡpxq|πpdxq

πpBεpKqq
“ 0 (3.2.7)

in L1pP q.

As was the case in [28], we can extend the weak formulation of the stochastic partial

differential equation (3.2.4) to include a boundary term. To do this, we need to introduce

the boundary measure which is associated to the local time Li. It is shown in [86] that

under our assumptions, ErLiptqs ă 8. By stationarity, for t P R`, the process Xipt ` ¨q

has the same distribution as Xip¨q. It follows that for ϕ P CbpBDq, E
”

şt
s ϕpXiprqqdLiprq

ı

“

E
”

şt´s
0 ϕpXiprqqdLiprq

ı

. By non-negativity and linearity in t and ϕ, the Riesz representation

theorem implies that there exists a finite positive Radon measure β on BD with the property

that for ϕ P CbpR`ˆBDq,

E

„
ż t

0
ϕpXipsq, sqdLipsq



“

ż t

0

ż

BD
ϕpx, sqβpdxqds.

Remark 3.2.13. If D is bounded and Xi is normally reflecting standard Brownian motion, β is

proportional to the surface measure.

Proposition 3.2.14. Suppose that U is a consistent process in CM`pDqr0,8q. Then for

ϕ P C2
c pR`ˆDq with ϕpt, ¨q|BD “ 0 for all t ě 0,

xϕp¨, tq,ΦUptqy “ xϕp¨, 0q,ΦUp0qy `

ż t

0
xLϕp¨, sq ` Btϕp¨, sq,ΦUpsqyds (3.2.8)

`

ż t

0
xϕp¨, sqGpUpsq, ¨q,ΦUpsqyds `

ż t

0
xϕp¨, sqbp¨q, πyds
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`

ż

Rdˆr0,ts
xϕp¨, sqρpUpsq, ¨, uq,ΦUpsqyW pduˆ dsq

`

ż t

0

ż

BD
gpxqηpxq ¨∇ϕpx, sqβpdxqds.

Having shown that ΦU satisfies (3.2.4) and (3.2.8) and that under Condition 3.2.9 and the

hypothesis that U is FW
t adapted (3.2.7) holds, we now look to show existence of a measure

valued process satisfying U “ ΦU . For such a process, (3.2.4) is a weak formulation of a

stochastic partial differential equation of the form in (3.2.1) on the interior of D. The final

results of this chapter are Theorems 3.2.16 and 3.2.15, which show pathwise uniqueness for

jointly consistent solutions and weak existence respectively. These combine to prove strong

existence of a measure valued process which represents a solution to this non-linear stochastic

partial differential equation.

Theorem 3.2.15. Suppose that U and V are jointly consistent and that there is T ą 0 so that

for all t ď T , ΦUptq “ Uptq and ΦV ptq “ V ptq. Then almost surely for all t ď T , Uptq “ V ptq.

Theorem 3.2.16. There exists a consistent measure valued process Up¨q P CM`pDqr0,8q which

satisfies Uptq “ ΦUptq for all t.

The results of [61] imply that the previous results combine to prove the desired strong

existence of the particle representation:

Theorem 3.2.17. There exists a Borel measurable function F : CH´1r0,8q ÞÑ DM`pDqr0,8q

with the property that F pW qp¨q is tFW
t utě0 adapted and F pW qp¨q “ ΦF pW qp¨q.
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3.3 Proofs

We begin with some preliminary results, starting with an observation about the structure of

ΦU .

Lemma 3.3.1. Suppose that U is consistent. Then for fixed t and ϕ P BbpDq almost surely

xϕ,ΦUptqy “ ErAU1 ptqϕpX1ptqq|σpW q _ σpUqs.

Moreover, if Uptq is tFW
t utě0 adapted, then

ΦUpt,Xiptqq “ E
“

AUi ptq|W,Xiptq
‰

.

Proof. Let I denote the shift invariant sigma algebra for the stationary sequence tpXi,W,Uqui.

By the ergodic theorem,

xϕ,ΦUptqy “ lim
nÑ8

1

n

n
ÿ

i“1

AUi ptqϕpXiptqq “ ErAU1 ptqϕpX1ptqq| Is

“ ErAU1 ptqϕpX1ptqq|σpW q _ σpUqs.

The last equality follows from the fact that the sequence tXiui is i.i.d.. Let F : CH´1r0,8q ÞÑ R

be bounded and Borel measurable. Using the assumption that U is tFW
t utě0 adapted and the

first part of the result, we have

E
“

AUi ϕpXiptqqF pW q
‰

“ E

„
ż

D
ΦUpt, xqϕpxqπpdxqF pW q



“ E rΦUpt,XiptqqϕpXiptqqF pW qs .

In the last line, we use independence of W and Xi.

3.3.1 Moment estimates

Recall the definition of the weights AUi . Define

Hptq “

ż

Rdˆr0,ts
ρpUps´q, Xipsq ´ uqW pduˆ dsq,
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rHst “

ż t

0

ż

Rd
ρ2pUpsq, Xipsq ´ uqµpduqds,

and let tHtutě0 be the right continuous completion of tFW
t _σptXiuqutě0 with respect to

P . Note that W is Ht white noise and if U P DM`
r0,8q is adapted to tFW

t _σptXiuqutě0,

then Hptq is a continuous Ht martingale. Define γiptq “ infts ą 0 :
şs
0

ş

Rd ρ
2pUprq, Xiprq ´

uqµpduqdr ą tu. The next result is a slight modification of the Dubins-Schwarz theorem and

we follow the proof of that result. See for example [78, Theorems V.1.6,V.1.10].

Lemma 3.3.2. Suppose that U is consistent. Then for each i there exists a standard Brownian

motion B with Bp0q “ 0 and

B

ˆ
ż t

0

ż

Rd
ρ2pUpsq, Xipsq ´ uqµpduqds

˙

“ Hiptq

and moreover

sup
0ďtďT

|Hiptq| ď sup
0ďsďKt

|Bpsq|.

If in addition U is adapted to tHtutě0, then this Brownian motion may be taken to be inde-

pendent of σptXiuq.

Proof. Suppose first that rHs8 “ 8 a.s.. If U is consistent with W , then Bptq “ Hipγiptqq is

a continuous martingale with respect to tFU,W,tXiu
γiptq

utě0. If U is tHtutě0 adapted, then Biptq

is a martingale with respect to tHγiptqutě0. Moreover, rBst “ t. The inequality follows from

ş

Rd |ρpν, x´ uq|
2µpduq ă K.

By continuity of Hi and the definition of γip0q, Bp0q “ 0. We note that σptXiuq Ă Hγp0q

and consequently if U is adapted to tHtu then the Brownian motion Bi is independent of

σptXiuq.

If P prHs8 ă 8q ą 0, then take j ‰ i and let Bptq “ Hipγiptqq1ttărHs8u ` plimtÑ8Hiptq `

Bjpt ´ rHs8qq1ttěrHs8u. See [78, Proposition IV.1.26] for a proof that the limit exists. Then
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the arguments above continue to hold with minor modifications to the filtration that do not

change the conclusions.

Proof of Lemma 3.2.6. It follows from Lemma 3.3.2 that there is a Brownian motion B such

that

sup
0ďtďT

AUi ptq
p ď p}g}8 _ }h}8 ` T }b}8qe

KT exp

"

2p sup
0ďsďKT

|Bpsq|

*

.

The two parts of the lemma then follow from taking expectations or conditional expectations

respectively.

3.3.2 Continuity and a weak formulation of the stochastic partial differential

equation

We now turn to Lemma 3.2.7, which says that for consistent U , ΦU P CM`pDqr0,8q.

Proof of Lemma 3.2.7. Recall the notation dpν, µq, which denotes is the Fortet-Mourier dis-

tance on M`pDq, and introduce

ΦpnqUptq “
1

n

n
ÿ

i“1

AUi ptqδXiptq, (3.3.1)

so that ΦpnqUp¨q Ñ ΦUp¨q almost surely in DM`pDqr0,8q. A necessary and sufficient condition

for ΦU P CM`pDqr0,8q is that the random variable

ż 8

0
e´ur sup

0ďrďu
dpΦUnprq,ΦU pnqpr´qq ^ 1sdu

converges to zero in distribution [33, Theorem 3.10.2]. In particular, by bounded convergence

it suffices to show that for fixed t ą 0, sup0ďrďt dpΦU
nprq,ΦU pnqpr´qq ^ 1 Ñ 0 in probability.

We have

dpΦpnqUprq,Φpnqpr´qq “ sup
ϕPLip1pDq

1

n

n
ÿ

i“1

`

AUi prq ´A
U
I pr´q

˘

ϕpXiprqq ď
1

n

n
ÿ

i“1

|AUi prq ´A
U
i pr´q|.
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Next we use the technical assumption in Subsection 3.2.1 that P pDi, j P N, i ‰ j, t ą 0 :

Xiptq, Xjptq P BDq “ 0 and the observation that Aip¨q is continuous off of the set tt : Xiptq P

BDu to obtain:

sup
0ďrďt

dpΦpnqUprq,Φpnqpr´qq ď
1

n
max
iďn

sup
0ďrďt

|AUi prq ´A
U
i pr´q| ď

2

n
max
iďn

sup
0ďrďt

AUi prq.

Applying a union bound, Markov’s inequality, and Lemma 3.2.6, we see that

P

ˆ

2

n
max
iďn

sup
0ďrďt

AUi prq ą ε

˙

Ñ 0

as nÑ8.

Now, we turn to the proof of Proposition 3.2.8, which gives a weak formulation of the

stochastic partial differential equation with test functions ϕ P C8c pDq. We begin with a type

of decomposition which will be of use in some later proofs as well. Fix a consistent process

U P DM`pDqr0,8q. Define ZUi ptq by

ZUi ptq “

ż t

0
GpUpsq, Xipsq, sqA

U
i psqds`

ż t

0
bpXipsqqds (3.3.2)

`

ż

Rdˆp0,ts
ρpUps´q, Xipsq ´ uqA

U
i ps´qW pduˆ dsq.

Then we have

AUi ptq “ ZUi ptq ´ Z
U
i pτiptqq ` gpXipτiptqqq1tτiptqą0u ` hpXip0qq1tτiptq“0u. (3.3.3)

With this decomposition in hand, we can now address the weak formulation of the stochastic

partial differential equation on the interior of D.

Proof of Proposition 3.2.8. Recall that the assumption that U is compatible implies that the

semi-martingale decomposition of Xi in tFU,W,tXiu
t utě0 is given by (3.2.2) and note that ZUi ptq

is a semi-martingale in this filtration and that the covariation of Zip¨q and ϕpXip¨qq is zero.

Take ϕ P C2
c pDq and a partition ttju of r0, T s.

AipT qϕpXipT qq “ Aip0qϕpXip0qq `
ÿ

j

AiptjqpϕpXiptj`1qq ´ ϕpXiptjqqq
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`
ÿ

j

ϕpXiptj`1qqpAiptj`1q ´Aiptjqq.

As the mesh of the partition tends to zero, the first sum converges to an ordinary Ito inte-

gral because AUi p¨´q is tFU,W,tXiu
t utě0 predictable. Note that the last three terms (3.3.3) are

piecewise constant off of the set tt : Xiptq P BDu. Indeed, for t ă t1, τiptq ‰ τipt
1q if and only if

there is s P pt, t1s with Xipsq P BD. By local uniform continuity of t ÞÑ ϕpXiptqq and the fact

that ϕpxq is compactly supported in the interior of D, we see that there is a (random) δ ą 0

so that for any t ď T with Xiptq P BD and any s with |s ´ t| ă δ, ϕpXipsqq “ 0. Using the

fact that the covariation of ϕpXip¨qq and Zip¨q is zero, we may use the usual semi-martingale

integral results to obtain a version of Ito’s lemma for AUi ptqϕpXiptqq:

AUi ptqϕpXiptqq “ AUi p0qϕpXip0qq `

ż t

0
LϕpXipsqqA

U
i psqds (3.3.4)

`

ż t

0
GpUpsq, Xipsq, sqϕpXipsqqA

U
i psq ` ϕpXipsqqbpXipsqqds

`

ż

Rdˆp0,ts
ρpUpsq, Xipsq ´ uqϕpXipsqqA

U
i ps´qW pduˆ dsq

`

ż t

0
AUi ps´qdMϕ,ipsq

where tMϕ,iui is a family of orthogonal martingales given by

Mϕ,iptq “ ϕpXiptqq ´ ϕpXip0qq ´

ż t

0
LϕpXipsqqds.

Recall the notation ΦU pnq from (3.3.1) and let πpnqptq “ n´1
řn
i“1 δXiptq. Averaging (3.3.4)

gives

xϕ,ΦU pnqptqy “ xϕ,ΦU pnqp0qy `

ż t

0
xLϕ,ΦU pnqpsqds (3.3.5)

`

ż t

0
xGpUpsq, ¨, sqϕp¨q,ΦU pnqpsq ` xϕb, πpnqpsqyds

`

ż

Rdˆp0,ts
xρpUpsq, ¨ ´ uqϕp¨q,ΦpnqUps´qyW pduˆ dsq

`
1

n

n
ÿ

i“1

ż t

0
AUi ps´qdMϕ,ipsq



146

Note that for each i, Yip¨q
ş¨

0A
U
i ps´qdMϕ,ipsq is a mean zero tFU,W,tXiu

t utě0 martingale and that

the family tYiui is orthogonal. Doob’s inequality shows that n´1
ř

iďn Yip¨q Ñ 0 locally uni-

formly in probability. Using the fact that the limit ΦpnqUp¨q Ñ ΦUp¨q occurs in DM`pDqr0,8q,

one can show that the averages of all of the terms except the second to last converges to the

corresponding term in (3.2.4). To show local uniform convergence of the white noise term, it

suffices to show that

ż t

0
E

„
ż

Rd
xϕp¨qρpUpsq, ¨ ´ uq,ΦU pnqpsq ´ ΦUpsqy2µpduq



dsÑ 0.

For each fixed s ě 0 and u P Rd, the function x ÞÑ ϕpxqρpUpsq, x ´ uq is continuous and

compactly supported and therefore bounded. It follows from the fact that ΦU pnq Ñ ΦU in

DM`pDqr0,8q that the integrand tends to zero pointwise almost everywhere with respect to

dsb µb P . By a hypothesis on ρ and using the fact that ϕ is compactly supported, we may

restrict to a common compact subset of D ˆ Rd and therefore it suffices to prove uniform

integrability. We have

xϕp¨qρpUpsq, ¨ ´ uq,ΦU pnqpsq ´ ΦUpsqy4 ď x|ϕp¨q||ρpUpsq, ¨ ´ uq|,ΦU pnqpsq ` ΦUpsqy4

ď K4}ϕ}48x1,ΦU
pnqpsq ` ΦUpsqy4.

The moment bound from Lemma 3.2.6 completes the proof.

3.3.3 Boundary condition

Averaged boundary condition

We now turn to the proofs of the boundary conditions, which were discussed previously in

Subsection 3.2.2.

Proof of Proposition 3.2.12. We have

E

«

πpBεpKqq
´1

ż

BεpKq
|ΦUpt, xq ´ ḡpxq|πpdxq

ff

ď E
“

|AUi ptq ´ ḡpXiptqq|
ˇ

ˇXiptq P BεpKq
‰

.
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Recalling the definition of AUi ptq, we have

|AUi ptq ´ ḡpXiptqq| ď |gpXipτiptqqq ´ ḡpXiptqq|1tτiptqą0u ` 2pK _ }ḡ}8q1tτiptq“0u (3.3.6)

`Kpt´ τiptqq `K

ż t

τiptq
AUi psqds

`

ˇ

ˇ

ˇ

ż

Rdˆpτiptq,ts
ρpUps´q, Xipsq ´ uqA

U
i ps´qW pduˆ dsq

ˇ

ˇ

ˇ
.

Next, observe that

E
”

|gpXipτiptqqq ´ ḡpXiptqq|1tτiptqą0u

ˇ

ˇ

ˇ
Xiptq P BεpKq

ı

“ E
”

|gpX˚i pσiqq ´ ḡpX
˚
i p0qq|1tσiătu

ˇ

ˇ

ˇ
X˚i p0q P BεpKq

ı

ď sup
xPBεK

E
”

|gpX˚i pσiqq ´ ḡpxq|1tσiătu

ˇ

ˇ

ˇ
X˚i p0q “ x

ı

.

By compactness, there exists x0 P K and xn Ñ x0 so that

lim sup
εÑ0

sup
xPBεK

E
”

|gpX˚i pσiqq ´ ḡpxq|1tσiătu

ˇ

ˇ

ˇ
X˚i p0q “ x

ı

“ lim
nÑ8

E
”

|gpX˚i pσiqq ´ ḡpxnq|1tσiătu

ˇ

ˇ

ˇ
X˚i p0q “ xn

ı

.

Continuity of ḡ and (3.2.6) imply that the limit is zero. A similar argument and (3.2.5) show

that P pτiptq “ 0|Xiptq P BεKq tends to zero, so that the conditional expectations of the first

two terms on the right of (3.3.6) go to zero. Note t´ τiptq P r0, ts and further that

E

«

ż t

τiptq
AUi psqds

ˇ

ˇ

ˇ
Xiptq P BεpKq

ff

ď

E
”

t´ τiptq
ˇ

ˇ

ˇ
Xiptq P BεpKq

ı
1
2
E

„
ż t

0
AUi psq

2ds
ˇ

ˇ

ˇ
Xiptq P BεpKq



1
2

.

As above, the first term tends to zero by hypothesis. The second term is uniformly bounded

by Lemma 3.2.6. Notice that W remains white noise when conditioned on σpXiq. Recall that

the L2 norm dominates the L1 and note that

E

«

ˇ

ˇ

ˇ

ż

Rdˆp0,ts
1pτiptq,tspsqρpUps´q, Xipsq ´ uqA

u
i ps´qW pduˆ dsq

ˇ

ˇ

ˇ

2ˇ
ˇ

ˇ
Xiptq P BεpKq

ff
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ď E

„
ż t

0

ż

Rd
1pτiptq,tspsqρpUpsq, Xipsq ´ uq

2AUi psq
2µpduqds

ˇ

ˇ

ˇ
Xiptq P BεpKq



ď KE

„
ż t

0
1pτiptq,tspsqA

U
i psq

2ds
ˇ

ˇ

ˇ
Xiptq P BεpKq



.

Arguing as above, the last term tends to zero as εÑ 0.

Weak formulation with boundary

In order to prove the weak formulation in Proposition 3.2.14, we need some preliminary lemmas.

The goal here is to show that for most values of t with Xiptq P BD, we also have Aiptq “

gpXiptqq. Note that this is not always the case. The proof of the next result is essentially the

same as the proof of the analogous properties for the zero set of one dimensional Brownian

motion.

Lemma 3.3.3. Almost surely, the set tt ě 0 : Xiptq P BDu is a closed set with no isolated

points and the collection of left-isolated points of this set is countable.

Proof. Under the assumptions in Subsection 3.2.1, Xi satisfies the strong Markov property and

the boundary is regular for Xi [86, Theorems 2.4,5.8, Corollary 2.3]. Recall that BD is a closed

set and Xi is continuous, so this set is closed. Set αXt “ infts ą t : Xpsq P BDu. By the strong

Markov property, for each q P Q`, αXq is not right-isolated. Fix t0 P tt ě 0 : Xiptq P BDu with

t0 ‰ αXq for any q P Q`. Take a sequence qn P Q` with qn Ò t0. Then qn ď αXqn ă t0 and

therefore t0 is not left isolated.

Lemma 3.3.4. Almost surely,

ż

tt:τiptq‰tu
dLipsq “

ż

tt:τipt´q‰tu
dLipsq “ 0.

Proof. Local time is a continuous measure supported on the set tt ě 0 : Xiptq P BDu and

therefore assigns measure zero to the (countable) set of left isolated points of tt ě 0 : Xiptq P

BDu. If t0 P tt ě 0 : Xiptq P BDu is not left-isolated, then t0 “ τipt0q “ τipt0´q.
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The previous results combine to prove the following lemma.

Lemma 3.3.5. Almost surely, for dLi almost every t, AUi ptq “ AUi pt´q “ gpXiptqq and there-

fore

lim
nÑ8

1

n

n
ÿ

i“1

ż t

0
AUi ps´qηpXipsqq ¨∇ϕpXipsq, sqdLipsq “

ż t

0

ż

BD
gpxqηpxq ¨∇ϕpx, sqβpdxqds.

We now turn to the proof of Proposition 3.2.14. The structure of the argument is similar

to that of Proposition 3.2.8. The bulk of the argument is essentially the proof of [28, Lemma

3.3].

Proof of Proposition 3.2.14. We proceed as in the proof of Proposition 3.2.8 above. Take ϕ as

in the statement of the result and a partition ttju of r0, T s. Summation by parts gives

AipT qϕpXipT q, T q “ Aip0qϕpXip0q, 0q `
ÿ

j

AiptjqpϕpXiptj`1q, tj`1q ´ ϕpXiptjqq, tjq

`
ÿ

j

ϕpXiptj`1q, tj`1qpAiptj`1q ´Aiptjqq.

As in the proof of Proposition 3.2.8, the first sum converges to the usual Ito integral by

standard results. Note that this convergence implies convergence of the last term, because this

expression is an identity. We will again take advantage of the decomposition (3.3.3) to compute

the limit of the last term. Once again, noting that the covariation of ϕpXip¨qq and Zip¨q is zero,

the contribution of the term coming from ZUi ptq follows from the usual semi-martingale integral

results. We have

ÿ

j

ϕpXiptj`1q, tj`1qpZ
U
i pτiptj`1qq ´ Z

U
i pτiptjqq

“
ÿ

j

ϕpXiptj`1q, tj`1q

ż τiptj`1q

τiptjq
GpUpsq, Xipsq, sqA

U
i psqqds

`
ÿ

j

ϕpXiptj`1q, tj`1q

ż τiptj`1q

τiptjq
bpXipsqqds
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`
ÿ

j

ϕpXiptj`1q, tj`1q

ż

Rdˆpτiptjq,τiptj`1qs

ρpUps´q, Xipsq ´ uqA
U
i ps´qW pduˆ dsq.

Recall that τiptj`1q “ τiptjq unless there exists t P pτiptjq, τiptj`1qs with Xiptq P BD. For any

such t, the hypothesis gives ϕpXiptq, tq “ 0. Note that for each j, the absolute value of the

first integral can be bounded by KT sup0ďtďT A
U
i ptq and similar bounds can be derived for the

other integrals. It follows that the limit of these terms as the mesh tends to zero is zero.

The term involving h is piecewise constant with a single jump discontinuity, at which time

Xiptq P BD, so a similar argument shows that the contribution from that term tends to zero.

It remains to show that the contribution from the term gpXipτiptqqq1τiptqą0 tends to zero. To

simplify the notation, we drop the indicator function of the set tτiptq ą 0u. Accounting for

this change is an argument similar to the argument showing convergence of the term involving

h, but note that this does change the initial condition in the expression we compute below.

With summation by parts, we have

ÿ

j

ϕpXiptjq, tjqpgpXipτiptj`1qqq ´ gpXipτiptjqqq

“ ϕpXipT q, T qgpXipτipT qq ´ ϕpXip0q, 0qgpXip0qq

´
ÿ

j

gpXipτiptjqqqpϕpXiptj`1q ´ ϕpXiptjqq.

As the mesh tends to zero, the last term converges to the usual semi-martingale integral of

gpXipτip¨´qqq with respect to ϕpXip¨qq. Introduce the notation γiptq “ infts ě t : Xipsq P BDu

and define

Unptq “
8
ÿ

k“0

g

ˆ

Xi

ˆ

γi

ˆ

k

n

˙˙˙

1
rγip

k
n
q,γip

k`1
n
qq
ptq.

Observe that Unptq Ñ gpXipτiptqqq pointwise. Moreover, we have

ż t

0
pUnps´q ´ gpXipτips´qqqdϕpXiptq, tq

“

ż t

0
pUnps´q ´ gpXipτips´qqq∇ϕpXipsq, sq

tσpXipsqqdBipsq
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`

ż t

0
pUnps´q ´ gpXipτipsqqqpL`BtqϕpXipsq, sqds

`

ż t

0
pUnps´q ´ gpXipτips´qqq∇ϕpXipsq, sq ¨ ηpXipsqqdLipsq.

By Doob’s inequality and bounded convergence, these tend to zero termwise locally uniformly

in probability. Noting that ϕpXipγip¨qq, ¨q ” 0, we have

ż t

0
g

ˆ

Xi

ˆ

γi

ˆ

k

n

˙˙˙

1
pγip

k
n
q,γip

k`1
n
qs
ps´qdϕpXipsq, sq

“

$

’

’

&

’

’

%

g
`

Xi

`

γi
`

k
n

˘˘˘

ϕpXiptq, tq if t P pγip
k
nq, γip

k`1
n qs

0 otherwise

.

and therefore, we have

ż t

0
Unps´qdϕpXipsq, sq “ UnptqϕpXiptq, tq ´ gpXip0qqϕqpXip0q, 0q.

Combining these results with Lemma 3.3.5, we obtain a version of Ito’s lemma forAUi ptqϕpXipsq, sq :

AUi ptqϕpXiptq, tq “ hpXip0qqϕpXip0q, 0q `

ż t

0
AUi psqϕpXipsq, sqpGpUpsq, Xipsq, sq ` bpXipsqqqds

`

ż t

0
pL`BtqϕpXipsq, sqA

U
i psqds

`

ż

Rdˆp0,ts
AUi ps´qρpUpsq, Xipsq, sqϕpXipsq, sqW pduˆ dsq

`

ż t

0
gpXipsqq∇ϕpXipsq, sq ¨ ηpXipsqqdLipsq

`

ż t

0
AUi ps´q∇ϕpXipsqqσpXipsqqdBipsq.

Averaging and arguing as in the proof of Proposition 3.2.8 completes the proof.

3.3.4 Uniqueness of a particle fixed point

Let U and V be jointly consistent. Take ϕ P Lip1pDq and observe that for all t P r0, T s we

have

|xϕ,ΦUptq ´ ΦV ptqy| “ lim
nÑ8

1

n

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

i“1

`

AUi ptq ´A
V
i ptq

˘

ϕpXiptqq

ˇ

ˇ

ˇ

ˇ

ˇ

ď lim
nÑ8

1

n

n
ÿ

i“1

ˇ

ˇAUi ptq ´A
V
i ptq

ˇ

ˇ .
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It then follows that

dpΦUptq,ΦV ptqq ď lim
nÑ8

1

n

n
ÿ

i“1

ˇ

ˇAUi ptq ´A
V
i ptq

ˇ

ˇ .

We begin by proving pathwise uniqueness of jointly consistent functions, which was already

stated as Lemma 3.2.15.

Proof of Lemma 3.2.15. Define

ηm “ inf

#

t ą 0 : lim
nÑ8

1

n

n
ÿ

i“1

pΓUi ptq _ ΓVi ptqq
2 ą m

+

.

Compatibility ensures that ηm is a stopping time and W is white noise in the filtration

tFU,V,W,tXiu
t utě0. Using the inequality |ex ´ ey| ď ex _ ey|x ´ y|, we see that there is a

deterministic constant C (which may change line to line) such that for t ď T

|AUi ptq ´A
V
i ptq| ď CΓUi ptq _ ΓVi ptq ˆ

ˆ
ż t

0
|GpUpsq, Xipsq, sq ´GpV psq, Xipsq, sq| ds

`

ż t

0

ż

Rd
|ρ2pUpsq, Xipsq ´ uq ´ ρ

2pV psq, Xipsq ´ uq|µpduqds

` sup
0ďsďt

ˇ

ˇ

ˇ

ˇ

ˇ

ż

Rdˆps,ts
ρpUpsq, Xipsq ´ uq ´ ρpV psq, Xipsq ´ uqW pduˆ dsq

ˇ

ˇ

ˇ

ˇ

ˇ

˙

.

It follows from the Cauchy-Schwarz inequality that

˜

1

n

n
ÿ

i“1

|AUi ptq ´A
V
i ptq|

¸2

ď

TC

˜

1

n

n
ÿ

i“1

`

ΓVi ptq _ ΓUi ptq
˘2

¸

ˆ
1

n

n
ÿ

i“1

ˆ
ż t

0
|GpUpsq, Xipsq, sq ´GpV psq, Xipsq, sq|

2 ds

`

ż t

0

ˆ
ż

Rd
|ρ2pUpsq, Xipsq ´ uq ´ ρ

2pV psq, Xipsq ´ uq|µpduq

˙2

ds

` sup
0ďsďt

ˇ

ˇ

ˇ

ˇ

ˇ

ż

Rdˆps,ts
ρpUpsq, Xipsq ´ uq ´ ρpV psq, Xipsq ´ uqW pduˆ dsq

ˇ

ˇ

ˇ

ˇ

ˇ

2
˙

.

Again appealing to Cauchy-Schwarz in the third line above, it follows that

˜

1

n

n
ÿ

i“1

|AUi pt^ ηmq ´A
V
i pt^ ηmq|

¸2

ď C

˜

1

n

n
ÿ

i“1

`

ΓVi pt^ ηmq _ ΓUi pt^ ηmq
˘2

¸
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ˆ
1

n

n
ÿ

i“1

ˆ
ż t^ηm

0
d pUpsq, V psqq2 ds

` sup
0ďrďt^ηm

ˇ

ˇ

ˇ

ˇ

ˇ

ż

Rdˆpr,t^ηms
ρpUpsq, Xipsq ´ uq ´ ρpV psq, Xipsq ´ uqW pduˆ dsq

ˇ

ˇ

ˇ

ˇ

ˇ

2
˙

.

Sending nÑ8, we see that

dpΦUpt^ ηmq,ΦV pt^ ηmqq
2 ď mC

ż t

0
dpΦUps^ ηmq,ΦV ps^ ηmqq

2ds

`mCE

„

sup
0ďrďt^ηm

ˇ

ˇ

ˇ

ˇ

ˇ

ż

Rdˆpr,t^ηms
ρpUpsq, Xipsq ´ uq ´ ρpV psq, Xipsq ´ uqW pduˆ dsq

ˇ

ˇ

ˇ

ˇ

ˇ

2 ˇ
ˇ

ˇ

ˇ

U, V,W



.

By additivity of the stochastic integral, we have (pathwise a.s.)

sup
0ďrďt^ηm

ˇ

ˇ

ˇ

ˇ

ˇ

ż

Rdˆpr,t^ηms
ρpΦUpsq, Xipsq ´ uq ´ ρpΦV psq, Xipsq ´ uqW pduˆ dsq

ˇ

ˇ

ˇ

ˇ

ˇ

2

ď 4 sup
0ďrďt

ˇ

ˇ

ˇ

ˇ

ˇ

ż

Rdˆp0,rs
ρpΦUps^ ηmq, Xips^ ηmq ´ uq ´ ρpΦV ps^ ηmq, Xips^ ηmq ´ uqW pduˆ dsq

ˇ

ˇ

ˇ

ˇ

ˇ

2

.

Applying this inequality and Doob’s inequality, we then have

E

»

– sup
0ďrďt^ηm

ˇ

ˇ

ˇ

ˇ

ˇ

ż

Rdˆpr,t^ηms
ρpΦUpsq, Xipsq ´ uq ´ ρpΦV psq, Xipsq ´ uqW pduˆ dsq

ˇ

ˇ

ˇ

ˇ

ˇ

2
fi

fl

ď 16

ż t

0
E

„
ż

Rd
pρpΦUps^ ηmq, Xips^ ηmq ´ uq ´ ρpΦV ps^ ηmq, Xips^ ηmq ´ uqq

2 µpduq



ds

ď 16K

ż t

0
E
“

dpΦUps^ ηmq,ΦV ps^ ηmqq
2
‰

ds.

Taking expectations, we obtain for t ď T ,

E
“

dpΦUpt^ ηmq,ΦV pt^ ηmqq
2
‰

ď mC

ż t

0
E
“

dpΦUps^ ηmq,ΦV ps^ ηmqq
2
‰

ds.

It follows that for any m and any t ď T ,

E
“

dpΦUpt^ ηmq,ΦV pt^ ηmqq
2
‰

“ 0.
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Consequently, for each m P N, t P r0, T s, ΦUpt ^ ηmq “ ΦV pt ^ ηmq almost surely. Taking

mÑ8, for each fixed t we have ΦUptq “ ΦV ptq a.s. Applying Cauchy-Schwarz, we see that

`

E|AUi ptq ´A
V
i ptq|

˘2
ď CE

“

ΓUi ptq
2 _ ΓVi ptq

2
‰

ˆ

E

„ˆ
ż t

0
|GpUpsq, Xipsq, sq ´GpV psq, Xipsq, sq| ds

`

ż t

0

ż

Rd
|ρ2pUpsq, Xipsq ´ uq ´ ρ

2pV psq, Xipsq ´ uq|µpduqds

` sup
0ďsďt

ˇ

ˇ

ˇ

ˇ

ˇ

ż

Rdˆps,ts
ρpUpsq, Xipsq ´ uq ´ ρpV psq, Xipsq ´ uqW pduˆ dsq

ˇ

ˇ

ˇ

ˇ

ˇ

˙2

ď CE
“

ΓUi ptq
2 _ ΓVi ptq

2
‰

ż t

0
E
“

dpΦUpsq,ΦV psqq2
‰

ds “ 0.

Consequently, for each t ď T , AVi ptq “ AUi ptq a.s. Right continuity now implies that AUi p¨q “

AVi p¨q on r0, T s a.s.. Consequently, ΦUp¨q “ ΦV p¨q on r0, T s a.s..

3.3.5 Existence of a particle fixed point

We now turn to the existence of a consistent process U which satisfies ΦU “ U . We begin

with Theorem 3.2.16, which shows that existence holds on some probability space. The results

of [61] then allow us to combine this with Theorem 3.2.15 to prove Theorem 3.2.17.

We first introduce some notation for moduli of continuity ω on CRdr0, T s and ω1 on DRr0, T s,

which we define by

ωpf, δ, tq “ max
0ďsďT

max
sďtďs`δ

|fptq ´ fpsq|,

ω1pf, δ, tq “ inf
ttju

max
j

sup
s,tPrtj ,tj`1q

|fptq ´ fpsq|.

The infimum in the definition of ω1 is taken over partitions of the form 0 ă t0 ă t1 ă ¨ ¨ ¨ ă

tn´1 ă T ď tn satisfying min0ďjďn |tj ´ tj´1| ą δ. Denote by ḡ any continuous extension of g

to D.
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Proof of Theorem 3.2.15. For t P r0, 1
nq, we define the measure V pnqptq by

V pnqptq “ lim
mÑ8

1

m

m
ÿ

i“1

hpXip0qqδXip0q.

We may then define for t P r0, 1
n s

A
pnq
i ptq “

“

gpXipτiptqq1tτiptqą0u ` hpXip0qq1tτiptq“0u

‰

exp

"
ż t

τiptq
GpV pnqpsq, Xipsq, sq

´
1

2

ż

Rd
ρpV pnqpsq, Xipsq ´ uq

2µpduqds`

ż

Rdˆpτiptq,ts
ρpV pnqps´q, Xipsq ´ uqW pduˆ dsq

*

`

ż t

τiptq
bipXipsqqexp

"
ż t

s
GpV pnqprq, Xiprq, rq ´

1

2

ż

Rd
ρpV pnqprq, Xiprq, uq

2µpduqdr

`

ż

Rdˆps,ts
ρpV pnqpr´q, Xiprq ´ uqW pduˆ drq

*

ds

(3.3.7)

which solves

A
pnq
i ptq “ gpXipτiptqq1tτiptqą0u ` hpXip0qq1tτiptq“0u `

ż t

τiptq
GpV pnqpsq, Xipsq, sqA

pnq
i psqds

`

ż t

τiptq
bipXipsqqds`

ż

Rdˆpτiptq,ts
ρpV pnqps´q, Xipsq ´ uqA

pnq
i ps´qW pduˆ dsq.

(3.3.8)

For t P r kn ,
k`1
n q, we may recursively define V pnq by

V pnqptq “ lim
mÑ8

1

m

m
ÿ

i“1

A
pnq
i

ˆ

k

n

˙

δXip knq
“ lim

mÑ8

1

m

m
ÿ

i“1

A
pnq
i

ˆ

tntu

n

˙

δ
Xi

´

tntu
n

¯

and A
pnq
i ptq by (3.3.7) or equivalently (3.3.8). As before, by considering

Ξpnq “ lim
mÑ8

1

m

m
ÿ

i“1

δ
A
pnq
i ,Xi

we may take all these almost sure limits to occur on a common set of full probability. Without

loss of generality, Xipqq R BD for any q P Q` or i P N, so that for all i, n P N, A
pnq
i p¨q, τip¨q P

DR`r0,8q will be continuous at k
n for all i, k, n P N. By construction, V pnqp¨q P DM`pDqr0,8q,
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V pnq is adapted to tFW,tXiu
t utě0, and the family tpW,Xi, V

pnqqu8i“1 is exchangeable for each n.

In particular, V pnqp¨q is consistent. Define Z
pnq
i ptq by

Z
pnq
i ptq “ gpXiptqq `

ż t

0
GpV pnqpsq, Xipsq, sqA

pnq
i psqds`

ż t

0
bpXipsqqds

`

ż

Rdˆp0,ts
ρpV pnqps´q, Xipsq ´ uqA

pnq
i ps´qW pduˆ dsq.

We note that tZ
pnq
i p¨qun is tight. This can be seen by applying Kolmogorov-Censov to the

terms which depend on n. With this notation, we have

A
pnq
i ptq “ ḡpXiptqq ` Z

pnq
i ptq ´ Z

pnq
i pτiptqq ` phpXip0qq ´ ḡpXip0qq1tτiptq“0u. (3.3.9)

We will control the modulus of continuity of A
pnq
i pathwise by constructing an appropriate

partition P of r0, T ` δs for sufficiently small δ.

Define γi “ inftt ą 0 : Xiptq P BDu and take any δ0 ą 0 satisfying δ0 ă γi. If γi ă T , then

add γi to P. τip¨q is right continuous with left limits, so on r0, T ` δ0s there are only finitely

many points t with τiptq ´ τipt´q ě δ0. Add these points to P and let δ ą 0 be such that if

τipt1q ´ τipt1´q ě δ0 and τipt2q ´ τipt2´q ě δ0 then |t1 ´ t2| ą 2δ and 2δ ă δ0.

Keeping all the previously added points, refine P to a partition ttju satisfying δ ă tj´tj´1 ă

4δ. It will suffice to focus on controlling the modulus of continuity of Z
pnq
i pτiptqq on this

partition.

Fix j and take any s, t P rtj´1, tjq with s ă t. Note that τipsq “ τiptq unless there exists u P

ps, ts with Xipuq P BD. Call γsi “ inftu ě s : Xipuq P BDu. If γsi “ s then s “ τipsq ď τiptq ď t

and |τiptq´ τipsq| ă 4δ ă 2δ0. Suppose that s ă γsi ď t. Since Xipγ
s
i q P BD, τipγ

s
i q “ γsi and we

have s ă τipγ
s
i q ď τiptq ď t. Note that |τiptq ´ τipγ

s
i q| ď tj ´ tj´1 ă 4δ. By construction of P,

we also have |τipγ
s
i q ´ τipγ

s
i´q| ă δ0 and by definition of γsi , we have τipγ

s
i´q “ τipsq. It then

follows that for any j and any s ă t with s, t P rtj´1, tjq,

|Z
pnq
i pτiptqq ´ Z

pnq
i pτipsqq| ď |Z

pnq
i pτiptqq ´ Z

pnq
i pτipγ

s
i qq| ` |Z

pnq
i pτipγ

s
i qq ´ Z

pnq
i pτipγ

s
i´qq|
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ă 2ωpZ
pnq
i , 2δ0, T ` δ0q.

It follows that ω1pZpnq, δ0, T q ď 2wpZ
pnq
i , 2δ0, T ` δ0q. Noting that the last term in (3.3.9) is

constant on r0, γiq and rγi,8q, we see that

ω1pA
pnq
i , δ, T q ď ωpḡ ˝Xi, δ, T ` δq ` 3ωpZ

pnq
i , 2δ0, T ` δ0q.

For each i, the tightness of tA
pnq
i un in DR`r0,8q now follows from the tightness of tZ

pnq
i un

in CRdr0,8q; see [33, Theorem 3.7.2]. We have P pDs : Xipsq P BD and Xjpsq P BDq “ 0

for i ‰ j. For all n, A
pnq
i is continuous off of the set ts : Xipsq P BDu. It follows that

for any k, any distributional limit point of pA
pnq
1 , . . . , A

pnq
k q will have components with no

simultaneous discontinuities. tA
pnq
i uiďk is tight in DR`r0,8q

k, so it follows that tA
pnq
i uiďk is

tight in DRk`
r0,8q. This implies tightness of tA

pnq
i u8i“1 in DR8` r0,8q. Xi is continuous, so this

implies tightness of ptA
pnq
i u, tXiuq in D

pR`ˆDq8r0,8q. With the notation

Ξpnq “ lim
mÑ8

1

m

m
ÿ

i“1

δ
A
pnq
i ,Xi

, Ξpnqptq “ lim
mÑ8

1

m

m
ÿ

i“1

δ
A
pnq
i ptq,Xiptq

[58, Lemma 4.4] implies tightness of ptA
pnq
i p¨qu, tXip¨qu,Ξ

pnqp¨qq in

D
pRˆDq8ˆPpRˆDqqr0,8q. Moreover, [58, Lemma 4.4] shows that any subsequential weak limit

point ptAip¨qu, tXip¨qu,Ξp¨qq of ptA
pnq
i p¨qu, tXip¨qu,Ξ

pnqp¨qq has

Ξptq “ lim
mÑ8

1

m

m
ÿ

i“1

δAiptq,Xiptq.

By [58, Lemma 4.6], any such limit point will also have Ξp¨q P CPpRˆDqr0,8q. In the arguments

that follow, we will send n Ñ 8 along a subsequence for which weak convergence holds. For

notational convenience, we will not keep track of this subsequence. Let ηnptq “ n´1 tnt u; it

then follows from [33, Proposition 3.6.5] that for such a limit point ptA
pnq
i p¨qu, tXip¨qu,Ξ

pnq ˝

ηnp¨qq ùñ ptAip¨qu, tXip¨qu,Ξp¨qq in D
pR`ˆDq8ˆPpRˆDqr0,8q.

Fix α ą 0 and let V pnq,αptq denote the positive measure determined by the map on CcpRdq

ϕ ÞÑ

ż

RˆD
pa^ αqϕpxqΞpnq ˝ ηnptqpdaˆ dxq
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and let V αptq be given by the same expression with Ξpnq ˝ ηn replaced by Ξ. It follows im-

mediately that ptA
pnq
i p¨qu, tXip¨qu, V

pnq,α ˝ ηnp¨qq is tight in D
pR`ˆDq8ˆM`pDq

r0,8q. Lemma

3.2.6 gives the moment bound needed to show convergence of V pnq,αp¨q Ñ V pnqp¨q as α Ñ

8, which gives tightness of ptA
pnq
i u, tXiu, V

pnqq. As above, any limit point ptAiu, Xi, V q in

D
pR`ˆDq8ˆM`pDq

r0,8q satisfies

V ptq “ lim
mÑ8

1

m

m
ÿ

i“1

AiptqδXiptq.

Recall that in the coupling we have constructed, A
pnq
i is given by (3.3.8). Using continuity of ρ

and G and [62, Proposition 7.4], any limit point ptAiu, tXiu, V,W q of ptA
pnq
i u, tXiu, V

pnq,W q in

D
pR`ˆDq8ˆM`pDqˆH´1r0,8q will have A given by (3.3.7) with A

pnq
i , V pnq replaced by pAi, V q.

Finally, note that in the coupling we have constructed, V pnq is consistent with ptXiu,W q for

each n. Exchangeability of tpW,Xi, V
pnqqu8i“1 is preserved under joint distributional limits of

pV pnq,W, tXiuq and so for any weak limit point the family tpW,Xi, V qu
8
i“1 will be exchangeable.

The remainder of the definition of compatibility for any limit point pV,W, tXiuq then follows

from [61, Lemma 3.5] (we are in the setting of the last sentence of [61, Remark 3.6]).

Proof of Theorem 3.2.17. Strong existence follows from weak existence (Theorem 3.2.16) and

pathwise uniqueness of jointly compatible solutions (Theorem 3.2.15); see [61, Lemma 2.10,

Theorem 1.5]. In particular, it follows that there exists a Borel measurable function with

Gp¨, ¨q : C
D
8
ˆH´1r0,8q Ñ CM`pDqr0,8q with the property that GptXiu,W q satisfies

ΦGptXiu,W q “ GptXiu,W q and that the process GptXiu,W qp¨q is tFtXiu,Wt utě0 adapted [61,

Proposition 2.13]. Such a process is measurable with respect to the tail sigma algebra of the ex-

changeable sequence tpXi,W qu
8
i“1 and therefore the vector pGptXiu,W q,W q is independent of

the family tXiu. It follows that there is a Borel function F : CH´1r0,8q Ñ CM`pDqr0,8q with

F pW q “ GptXiu,W q almost surely and moreover tFtXiu,Wt utě0 adaptedness of GptXiu,W q

implies that F pW qp¨q is tFW
t utě0 adapted.
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de probabilités de Saint-Flour, XIV—1984, vol. 1180 of Lecture Notes in Math., Springer,

Berlin, 1986, pp. 265–439.


	Abstract
	Acknowledgements
	Introduction and overview
	Large deviations of the free energy in certain solvable directed polymer models
	Introduction
	Directed polymers in random environments
	Free energy fluctuations and the KPZ class in d=1
	Free energy large deviations and annealed moment Lyapunov exponents

	Models considered and statements of results
	The O'Connell-Yor polymer
	Brownian directed percolation
	Inhomogeneous exponential last passage percolation

	Large deviations for Brownian directed percolation
	Proofs for the point-to-point model
	Proofs for the stationary model

	Large deviations for the O'Connell-Yor polymer model
	A variational problem for the right tail rate function
	Moment Lyapunov exponents and the LDP
	Stationary Lyapunov exponents
	Right tail rate functions
	Technical estimates

	Large deviations for inhomogeneous exponential last passage percolation
	Variational formulas for the Lyapunov exponents
	Extremizers of the variational problems
	Left tail estimates
	Large deviation principle
	Relative entropy and the rate functions
	Scaling estimates
	Right tail rate functions and Lyapunov exponents
	Lyapunov exponents for the stationary model


	Particle representations for a class of stochastic partial differential equations
	Introduction
	Results
	Assumptions, notation, and definitions
	Statement of results

	Proofs
	Moment estimates
	Continuity and a weak formulation of the stochastic partial differential equation
	Boundary condition
	Uniqueness of a particle fixed point
	Existence of a particle fixed point


	Bibliography

