
   

 

1 

Embracing randomness: within- and between-host evolution of two RNA viruses 

  

by 

Katarina M. Braun 

  

A dissertation submitted in partial fulfillment of 

the requirements for the degree of 

  

Doctor of Philosophy 

(Cellular and Molecular Biology) 

  

at the 

UNIVERSITY OF WISCONSIN-MADISON 

2021 

Date of final oral exam: 25 May 2021 

The dissertation is approved by the following members of the Final Oral Committee: 

     Thomas C. Friedrich, Professor, Pathobiological Sciences 

Caitlin Pepperell, Associate Professor, Medicine and Medical Microbiology and 

Immunology 

Shelby O’Connor, Associate Professor, Pathology and Laboratory Medicine 

Bret Payseur, Professor, Genetics 

Andrew Mehle,  Associate Professor, Medical Microbiology and Immunology 



   

 

2 

Table of Contents 
 

Acknowledgements ...................................................................................................... iv 

Abstract ....................................................................................................................... viii 

Chapter 1: Introduction ................................................................................................. 1 

Chapter 2: Stochastic processes constrain adaptation of wildtype H7N9 avian influenza 

to mammalian hosts....................................................................................................... 19 

Abstract ................................................................................................................................. 19 

Introduction ........................................................................................................................... 20 

Materials and Methods .......................................................................................................... 22 

Results .................................................................................................................................. 29 

Discussion ............................................................................................................................. 37 

Figures, tables, and supplemental material ........................................................................... 43 

Chapter 3: Transmission of SARS-CoV-2 in domestic cats imposes a narrow 

transmission bottleneck ................................................................................................. 54 

Abstract ................................................................................................................................. 55 

Introduction ........................................................................................................................... 57 

Materials and Methods .......................................................................................................... 59 

Results .................................................................................................................................. 67 

Discussion ............................................................................................................................. 73 

Acknowledgements ............................................................................................................... 81 

i 
 



   

 

3 

Figures, tables, and supplemental material ........................................................................... 81 

Chapter 4: Limited within-host diversity and tight transmission bottlenecks limit SARS-

CoV-2 evolution in acutely infected individuals ............................................................ 108 

Abstract ............................................................................................................................... 109 

Introduction ......................................................................................................................... 109 

Materials and Methods ........................................................................................................ 113 

Results ................................................................................................................................ 125 

Discussion ........................................................................................................................... 136 

Acknowledgements ............................................................................................................. 141 

Figures, tables, and supplemental material ......................................................................... 142 

Chapter 5: Revealing fine-scale spatiotemporal differences in SARS-CoV-2 introduction 

and spread ................................................................................................................... 175 

Abstract ............................................................................................................................... 176 

Introduction ......................................................................................................................... 177 

Materials and Methods ........................................................................................................ 179 

Results ................................................................................................................................ 193 

Discussion ........................................................................................................................... 202 

Acknowledgements ............................................................................................................. 208 

Figures, tables, and supplemental material ......................................................................... 210 

Chapter 6: Viral sequencing reveals US healthcare personnel rarely become infected 

with SARS-CoV-2 through patient contact ................................................................... 240 

ii 
 



   

 

4 

Abstract ............................................................................................................................... 241 

Introduction ......................................................................................................................... 242 

Materials and Methods ........................................................................................................ 244 

Results ................................................................................................................................ 248 

Discussion ........................................................................................................................... 253 

Acknowledgements ............................................................................................................. 255 

Figures, tables, and supplemental material ......................................................................... 256 

Chapter 7: Conclusions and future directions ............................................................. 334 

Figures ................................................................................................................................ 350 

Appendix: Contributions to coauthored manuscripts .................................................. 351 

Bibliography ............................................................................................................... 374 

 

 

 

 

 

iii 
 



   

 

1 

Acknowledgments 

The path to a PhD is a windy one. It requires persistence, curiosity, resilience, 

determination, and, probably most importantly, the mentorship and support of quite a few 

people. It feels appropriate to begin this dissertation document with a statement of 

recognition and gratitude to all of those people.  

 

To my thesis committee – Tom, Andy, Shelby, Caitlin, and Bret: thank you all for your 

unwavering support and guidance along the journey that is graduate school. Andy, thank 

you for your positivity, your infectious curiosity, and your patient guidance on all of the 

barcoded flu projects. Shelby, thank you for your sequencing advice, your mentorship, 

and for giving me the push I needed to wrap this thing up. Caitlin, thank you for helping 

me work through my crazy F30 ideas and for modeling the type of physician-scientist I 

hope to become. Bret, thank you for your mentorship and for helping me discover my 

passion for evolutionary biology. Tom, you have been a phenomenal mentor, a kind and 

thoughtful advisor, a model scientist, a consistent cheerleader, and a friend. I am so 

grateful you agreed to take me on as a graduate student, even though I was a little 

reserved and unsure at the beginning. You have given me some pretty incredible 

opportunities to explore interesting science, to pursue projects longer than I probably 

should have, to travel to present my science, and to pivot when it made sense. Thank you 

for pushing me when I needed to be pushed and encouraging me to pull back when things 

felt overwhelming and, most importantly, for always having my back.  

 

iv 
 



   

 

2 

To the Friedrich lab – you have all been incredible mentors, colleagues, and friends and 

I feel lucky to have been a part of a lab that is so supportive and filled with talented and 

caring individuals. Gabrielle and Andrea, I knew absolutely nothing when I started in lab 

and you both taught me so much and provided endless support along the way. Macy and 

Emma, thank you for helping me fumble through learning to be a mentor. It was wonderful 

to watch you both grow as scientists. Louise, thank you for your mentorship, support, and 

your words of encouragement even after you moved on to your post-doctoral training. 

You are an inspirational scientist and I hope to continue to learn from you moving forward. 

Luis, Katie, and Kasen, thank you for your camaraderie, commiseration, and friendship! 

Gage, you are an incredible scientist and a dear friend and I am so grateful to have had 

the opportunity to work with you and learn from you over the past year. I can’t wait to see 

what you do next. Also, thanks for keeping me young, throwing fishies at me, and teaching 

me that I truly love Taylor Swift. Chelsea, I could not have done it without you. Thank you 

for always being there for me. You patiently and skillfully supported me through 

anxiousness, insecurity, and fear when I needed it and excitement and joy when I needed 

that. You are an exceptional scientist, leader, and advocate and I look forward to seeing 

what you do next.  

 

To AVRL and collaborators – I am grateful to have been a part of the AVRL community, 

which has always been a welcoming and energizing environment to work in. Thank you 

to everyone at AVRL who has provided support and guidance along the way (including 

the AVRL dog family). Thank you to all of the collaborators who made so many of my 

projects possible. Katia, thank you for helping me focus my research questions, for the 

v 
 



   

 

3 

beta-binomial model (which I used in almost all of my papers), and for helping me to 

elevate my science.  

 

To my MSTP family – thank you Anna, Michael, Alex, Jon, and Zach for your 

camaraderie and support along this crazy MD-PhD journey. I could not have asked for a 

class of people more inspiring, brilliant, or kind than you all are. Anna, thank you for 

encouraging me to pursue the gender project with you. I don’t think I would have seen 

that through to completion without your friendship and encouragement.  

 

To MSTP leadership – Anna H, JP, Mark, Caitlin, Scott, Jeniel, and Elizabeth - you have 

all been incredible and inspirational mentors and leaders and constant sources of 

encouragement and advice. Chelsea and Nichole (and Paul), your wealth of knowledge 

and your organizational skills are unparalleled and the MSTP is lucky to have you.  

 

Thank you to the animals and people who have contributed samples and data to the 

advancement of science generally and to the projects I was involved in throughout my 

graduate training. Science does not progress without these contributions so I express my 

humble gratitude to each of you.  

 

To my friends – thank you, April, Josh, Dave, Liza, Alissa, Nicki, and Lauryn. Thank you 

for being incredible friends, I couldn’t have done it without you guys!  

 

vi 
 



   

 

4 

To my family – thank you, Mom, Dad, Tor, Xander, Mimi, and the pack of dogs. Thank 

you for your unwavering support and encouragement. Thank you for reminding me to take 

breaks, to keep the “big picture” in mind, and to maintain balance because the journey is 

as important as the destination. Thank you to Sally, Steve, Katie, Eli, Owen, Scarlet, TJ, 

Ali, and Neva for your support!   

 

To my partner – Dan. More than anyone, you know how hard, and exciting, and 

exhausting, and daunting, and amazing this experience has been. You have supported 

me through every failure and setback and have celebrated every success, including the 

tiny ones. Thank you for being an incredible listener, for having too much confidence in 

me, for giving me the time and space that a PhD requires, for always being there when I 

needed to unwind, for helping me stay grounded, for providing comic relief, and for 

pursuing your own dreams at the same time. I am so lucky to have a partner like you and 

I could not have done it without you. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

vii 
 



   

 

5 

Abstract 

 
Pathogenic RNA viruses emerging from zoonotic reservoirs are among the highest 

threats for global infectious disease control. Every single major epidemic or pandemic in 

the 21st century has resulted from an emerging or re-emerging zoonotic RNA virus. 

Severe Acute Respiratory Syndrome virus 1 (SARS-CoV) emerged in 2003, a novel 

pandemic H1N1 influenza virus in 2009, Middle East Respiratory Syndrome virus (MERS-

CoV) in 2012 and 2015, Ebola in 2014, Zika virus in 2015, Yellow fever virus in 2016, and 

SARS-CoV-2 in 2019.  

 

It is clear the primary drivers of the emergence of these zoonotic RNA viruses are 

increasing globalization, habitat fragmentation, and encroachment of a continuously 

growing human population into wildlife habitats 1. It is notable that this increased 

interaction between humans and animals likely increases the risk of interspecies 

transmission among a large number of potential pathogens, yet RNA viruses are the 

dominant source of emerging human pathogens 2. The capacity for RNA viruses to rapidly 

adapt to new host environments and to respond to shifting selective pressures is not 

completely understood. Current dogma suggests this trait is tied to short generation times 

and high mutation rates resulting from error-prone viral replication. RNA virus mutability 

creates diverse viral populations which are more capable than homogenous populations 

of adapting to new hosts and host environments 3. However, the generation of viral 

variation is only the first step. Individual mutations that confer fitness benefits in particular 

environments must then increase in frequency and/or make their way out of individual 

hosts and into populations. This stage presents several obstacles that the virus must 

viii 
 



   

 

6 

overcome and is therefore likely to be rate-limiting for the overall pace of viral evolution 

and host-switching.  

 

The first three chapters (chapters 2-4) of this dissertation focus on investigating the 

evolutionary processes by which zoonotic RNA viruses adapt to mammalian hosts. The 

results of this work call attention to several significant obstacles that zoonotic RNA viruses 

must overcome in order to successfully and efficiently emerge in and adapt to human 

hosts. I suggest these obstacles all derive from the effects of randomness on viral 

systems. The cumulative impact of these obstacles has critical implications in assessing 

the pandemic potential of viruses that have already caused human epidemics, like avian 

influenza viruses, and the adaptive potential of the current pandemic virus, SARS-CoV-

2.  

 

The final two chapters (chapters 5-6) of this dissertation discuss our work combining 

principles of viral evolution with epidemiology and population health to investigate the 

early patterns of SARS-CoV-2 spread in the state of Wisconsin.   

 

Taken together, this work suggests the effects of randomness on viral populations within 

and between individual hosts are a previously underappreciated brake to the pace of viral 

adaptation and host-switching for influenza A virus (IAV) and SARS-CoV-2. Additionally, 

this work underscores the value of genomic epidemiology early in a pandemic to 

understand patterns of viral transmission in different populations and to assess the impact 

of public health guidelines and interventions on a rolling basis

ix 
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Chapter 1: 

Introduction 
 

The emergence of zoonotic viruses is one of the greatest threats to global health security. 

More than half of all known human pathogens can be traced to a zoonotic source 2,4,5. 

The list of known zoonotic viral pathogens is likely a very small fraction of the total 

possible viral pathogens currently lurking in animal reservoirs. Even as the global 

population continues to contend with the staggering loss of human life that has resulted 

from explosive emergence and spread of SARS-CoV-2, we must also anticipate the yet-

to-emerge pathogens.  

 

It is clear that a successful and sustainable global pathogen surveillance network will 

require a One Health approach focused on maintaining healthy human populations, 

healthy animal populations, and balanced ecosystems 6,7. Although surveillance systems 

to detect novel pathogens in high-risk populations and other One Health initiatives 

continue to improve and expand 8,9, we still do not understand the processes underpinning 

the emergence and reemergence of zoonotic RNA viruses 10. The work in this dissertation 

focuses on the evolutionary processes contributing to and impeding zoonotic RNA virus 

emergence and adaptation to human populations. Specifically, I focus on Influenza A 

virus, which has emerged multiple times from its avian reservoir to cause both sporadic 

epidemics and multiple pandemics, as well as SARS-CoV-2, which emerged from its 

zoonotic reservoir in 2019 and is responsible for the current global pandemic.  
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Overview of Avian Influenza Viruses, focusing on H7N9  

The influenza virus is composed of eight negative-sense, RNA gene segments coated 

with nucleoprotein and associated with a heterotrimeric polymerase complex packaged 

with a protein capsid and a host-derived envelope. Influenza A virus’s (IAV) named 

subtypes are defined by its two surface glycoproteins, hemagglutinin (HA) and 

neuraminidase (NA), which are responsible for host cell entry and exit, respectively. HA 

binds host receptors, sialic acids, to trigger receptor-mediated endocytosis, virion 

uncoating, and release into the cytoplasm following acidification of the endosome. NA is 

a sialidase and cleaves the HA-sialic-acid bond during viral exit, allowing progeny virions 

to be released from the host cell following replication. In total, there are 18 known IAV HA 

subtypes (H1-H18) and 10 known NA subtypes (N1-N10).   

 

Aquatic birds (the Anseriformes and Charadriiformes orders) are the natural reservoir for 

avian influenza viruses, harboring a vast viral population and substantial viral diversity 11. 

Interestingly, H17, H18, and N10 have been exclusively identified in bats 12. The avian 

IAV reservoir is particularly diverse because different virus subtypes co-infecting a single 

host can swap gene segments and be co-packaged together into a new progeny virus 

through a process called reassortment 13. Reassortment has been shown to occur at a 

high rate between viruses belonging to the same subtype 14–16, viruses belonging to 

different subtypes 17, and even among viruses from different host species 18. Indeed, most 

HA-NA constellations have been detected while sampling the avian reservoir and in 

environmental samples (watersheds) 19, suggesting reassortment is commonplace in the 
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avian reservoir and is acting to continuously shuffle existing diversity to generate new 

virus combinations. 

 

The capacity of influenza to undergo reassortment has important implications for host 

switching because this process can create novel viruses to which the human population 

has no prior immunity, called antigen shift. Notably, three of the influenza virus pandemics 

(1957: H2N2, 1968: H3N2, 2009: H1N1) over the past century are hypothesized to have 

arisen, at least in part, from reassortment events between avian viruses and swine or 

human viruses 20,21.  

 

Only three IAV subtypes have achieved sustained human-to-human spread (H3N2, 

H1N1, H2N2) and two of these now circulate seasonally as “seasonal influenza” (H1N1 

and H3N2). Seasonal influenza epidemics cause 3 million to 5 million severe cases and 

300,000 to 500,000 deaths globally most years 22. In a typical year, the United States 

alone sees 140,000 to 710,000 influenza-related hospitalizations and 12,000 to 56,000 

deaths 23, with the highest burden of disease affecting the very young, the very old, and 

people with coexisting medical conditions. Interestingly, influenza infections and deaths 

recorded during the 2020-2021 season were historically low and this was attributed to the 

public health interventions in place to reduce the spread of SARS-CoV-2 (masking, 

distancing) 24.    

 

A subset of fully avian influenza viruses has occasionally “spilled over” into human 

populations in the absence of reassortment and without achieving sustained human-to-



   

 

4 

human spread, including H5N1, H5Nx, H9N2, H7N7, and H7N9 viruses. Highly 

pathogenic avian H5N1 virus was detected among domestic geese in China in 1996 and 

in the first human in Hong Kong one year later 25. Sporadic H5N1 infections throughout 

Southeast Asia have since followed, totaling 862 infections (from January 2003 to 15 April 

2021) and 455 deaths (53% case fatality rate) 26. H7N9 AIVs have been endemic in 

chickens since the virus’s emergence in China in February 2013 27. Since then, H7N9 

viruses have caused 1,568 confirmed human infections with a case fatality rate 

approaching 40% across six epidemic waves 28. Although the avian reservoir harbors 

extensive viral diversity, relatively few subtypes have ever been identified in human hosts, 

and an even smaller subset has caused epidemics or pandemics. The key factors 

underlying these phenotypic differences remain unknown. Relatedly, there are no reliable 

methods to assess the “pandemic potential” of avian IAVs sampled from birds, 

environmental sources, and human spillover infections. 

 

Overview of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)  

 
SARS-CoV-2 is one of seven coronaviruses known to infect humans 29. It is a member of 

the family Coronaviridae and from the genera betacornavirus. Betacoronaviruses 

exclusively infect mammals, including humans, and cause a range of respiratory and 

gastrointestinal diseases 29,30.  

 

Four betacoronaviruses cause mild upper respiratory illnesses and are common etiologic 

agents of the “common cold”. These are HCoV-229E, HCoV-OC43, HCoV-NL63, and 

HCoV-HKU1 31,32. Three more concerning betacoronaviruses have emerged from their 
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animal reservoirs since the start of the 21st century. Severe Acute Respiratory Syndrome 

coronavirus (SARS-CoV) emerged in China in 2002-2003 from a yet unknown animal 

reservoir. Middle East respiratory syndrome (MERS) emerged from dromedary camels in 

Saudi Arabia in 2012. SARS-CoV-2 emerged in 2019, likely from bats 33, and as of 6 May 

2021, there have been more than 155 million confirmed cases of coronavirus disease 19 

(COVID-19), the disease caused by SARS-CoV-2, including 3,250,648 deaths 34.  

 

SARS-CoV-2 is primarily transmitted via droplet and airborne transmission 35,36. The 

clinical presentation associated with SARS-CoV-2 varies widely from asymptomatic to 

multi-system inflammatory syndrome and death. The most common clinical signs are 

fever, fatigue, and cough 37–40 and the most specific signs are ageusia–loss of taste, and 

anosmia–loss of smell, which only occur in around 5% of COVID-19 infections 41,42. The 

highest proportion of cases in the United States has generally been in the 18-to-24 year 

age group, although death rates are dramatically higher in individuals >60 and especially 

in individuals >80 years 43. The incubation period ranges from 1-14 days and the average 

time from infection to symptom onset is 5 days 44,45.  

 

SARS-CoV-2 is a positive-sense, single-stranded, enveloped virus. Spike (S) is the 

surface protein that binds the host receptor, angiotensin-converting enzyme 2, which is 

expressed on respiratory epithelium 46–49. Transmembrane serine protease 2 (TMPRSS2) 

and/or furin 50–53 are required to proteolytically activate Spike to facilitate host-cell entry. 

Once intracellular, viral RNA is replicated and translated into proteins and enzymes which 

will be packaged into newly produced viral particles. The first two-thirds of the SARS-



   

 

6 

CoV-2 genome is occupied by two open reading frames (ORF1a, ORF1b), which encode 

15-16 non-structural proteins (nsp), including nsp14, which provides crucial 3’-5’ 

exonuclease activity to proofread the copied RNA, maintain the integrity of the 30kb 

genome, while driving down the mutation rate 54–59. Coronaviruses have the largest 

genome of any RNA virus and Nsp14 is highly conserved within the Coronaviridae family 

60. This suggests that the RNA proofreading function is important to the maintenance of 

the large-for-an-RNA-virus genome size and to ensure ongoing replication competence 

61,62.  

 

Viruses evolve in individuals and populations  

In order to evolve, RNA viruses must first generate genetic variation, or mutations. Like 

all RNA viruses, IAV and SARS-CoV-2 have high mutation rates: 1.8 × 10−3 - 2.28 × 10−3 

63–65 and 2.28 × 10−3 66,67 substitutions/site/year, respectively. Other sources of viral 

variation include cytidine deaminases 68 and recombination, although the impact of 

homologous recombination in IAV is negligible 69. Coronaviruses, on the other hand, do 

appear to shuffle genetic diversity through homologous recombination as their replication 

strategy includes the generation of subgenomic RNAs, which predispose to 

recombination events 70. Virus generation times, the time between virus entry to virus 

production, are typically very short, so the generation of viral diversity via RNA 

polymerases and homologous recombination is compounded with each generation 71,72. 

The fate of individual mutations, broadly speaking, then depends on a combination of 

deterministic factors, like selection, as well as stochastic (random) processes, like genetic 

drift 73. Selection acts to increase the frequency of beneficial mutations (positive selection) 
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or decrease the frequency of deleterious mutations (negative or purifying selection). 

Genetic drift is stochastic changes in allele frequencies due to the effects of random 

sampling. The relative contributions of selection and genetic drift depend largely on the 

effective population size, which is a useful construct that corresponds to the number of 

individuals in a population that contribute mutations or genetic variation to the next 

generation 73,74. Specifically, selection is strongest in large populations and genetic drift 

is strongest in small populations. The cumulative effect of these processes can be 

partially reflected by the substitution rate, or the rate at which viral mutations achieve 

fixation in a population. IAV’s substitution rate is approximately twice that of SARS-CoV-

2 (1 mutation per 7 days vs 15 days), which is likely tied to SARS-CoV-2’s proofreading 

exonuclease activity.  

 

At first glance, RNA viruses have everything you need for rapid and deterministic 

evolution: a high mutation rate, short generation times, and large population sizes. 

Despite this, adaptive evolution of viruses within individual hosts has rarely been 

observed and very few zoonotic RNA viruses have successfully emerged in human 

populations, suggesting there are barriers to efficient within-host evolution that are not 

yet understood.  

 

While deterministic evolution does not appear to play a significant role at the level of 

individual hosts, positive selection has been shown to be a major driver of influenza 

evolution on a global scale 75–77. The evolutionary dynamics that transform viral variation 

within individual hosts into global genetic diversity are poorly understood.  
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Virological barriers to viral adaptation: avian IAV and SARS-CoV-2  

One of the primary determinants of a virus’s ability to infect a new host or host species is 

the accessibility and distribution of the receptor required for host cell entry. Influenza 

virus’s surface protein, hemagglutinin, binds sialic acid receptors to mediate virus entry. 

Avian IAV binds α-2,3-linked sialic acid receptors, which are distributed along the avian 

gastrointestinal tract 78. To improve infection and transmission in mammalian hosts, avian 

IAV can switch or broaden its receptor repertoire to include α-2,6 linked sialic acids, which 

predominate in the mammalian upper respiratory tract. A mixture of α-2,3 and α-2,6-linked 

sialic acids can be found in the mammalian lower respiratory tract, although this 

compartment is less accessible to airborne viruses. Although we typically dichotomize 

sialic acid receptors into avian-type (α-2,3) and mammalian-type (α-2,6), sialic acid chains 

vary widely in length and orientation along most internal epithelial surfaces 79,80. It is 

generally believed that α-2,6 binding is required for efficient respiratory droplet 

transmission and pandemic spread, 81,82 although the 1918-H1N1 virus, H5N1, and H7N9 

exhibit the capability to dually bind α-2,3 and α-2,6-linked sialic acid receptors 83,84. 

 

SARS-CoV-2 uses the human angiotensin I converting enzyme (ACE2) as a primary 

receptor for host cell entry. Spike is cleaved into two subunits (S1 and S2) at a polybasic 

furin cleavage site (RRAR), which triggers a conformational change and facilitates ACE2 

recognition and binding as well as S2 fusion with the host membrane. Unfortunately, 

ACE2 is relatively ubiquitous and conserved across a large number of mammals, making 

it a useful receptor for SARS-CoV-2 to expand its host range 85,86. Interestingly, though, 
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the furin cleavage site in spike is not present in SARS-CoVs infecting bats or pangolins, 

which likely harbored the most recent ancestor to SARS-COV-2 87. This suggests that 

changes to the spike glycoprotein may be one of the major determinants of host range 

and cell- and tissue tropism for SARS-CoV-2. Similarly, the addition of a furin cleavage 

site to influenza hemagglutinin has been shown to convert a low-pathogenic avian 

influenza virus to a more highly pathogenic phenotype 88.  

 

In addition to receptor preference, host restriction factors, co-factors, and conditions in 

the host environment (i.e. humidity and temperature) can all pose significant barriers to 

host adaptation. One well-known example of this for influenza is in the stability of the 

polymerase heterotrimer (PB1, PB2, and PA) and its functional association with viral RNA 

and the viral nucleoprotein to form the ribonucleoprotein (RNP) complexes that mediate 

RNA-dependent RNA polymerase activity. IAV viral replication in humans requires a 

lysine at position 627 in PB2 while glutamic acid predominates in most avian viruses. The 

lysine at this position appears to play a role in mediating virus temperature sensitivity 89 

as well as interactions with human-specific restriction factors 90–92. Accordingly, PB2 

E627K enhances viral replication and pathogenicity in mammalian systems 93–95 and has 

been identified in the majority of viruses successfully isolated and sequenced from H7N9 

human spillover infections 96.  

 

Host-specific restriction factors limiting the replication and transmission of SARS-CoV-2 

remain unknown but may include viral inhibition of a robust interferon (IFN)-1 and IFN-III 

response 49.  
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Immunological barriers to viral adaptation: avian IAV and SARS-CoV-2  

To achieve robust infection, a virus must also contend with preexisting and a host’s cross-

protective humoral and cell-mediated immunity.  

 

Antibodies against influenza HA have long been known to be protective, although often 

variably protective, against influenza virus infection and severe disease outcomes 97–99. 

Antibodies against influenza HA do not typically offer lasting protection because HA, 

specifically the globular head, is highly plastic and tolerates new point mutations, which 

can interfere with antibody recognition 100 and/or enhance receptor binding 101 through a 

process called antigenic drift. Though less well-studied, T-cell responses significantly 

contribute to protection against influenza virus infection as well as the induction of robust 

antibody responses 102. 

 

Seasonal influenza viruses are ubiquitous; most individuals are exposed to their first flu 

virus in childhood 103. This first exposure is typically followed by subsequent infections 

and, often, yearly vaccination so the depth and breadth of pre-existing influenza immune 

profiles are varied and unique to each individual. Interestingly, the subtype and lineage 

of an individual’s first infection may play an outsized role in shaping their lifelong immune 

profile by inhibiting de-novo antibody responses against subsequent divergent viruses, a 

phenomenon called “original antigenic sin” 104 and, more recently, “imprinting” 105. This 

phenomenon has been shown to play a role in avian influenza virus spillover infections 

as well. A study by Gostic et al 106 showed age-dependent differences in disease severity 



   

 

11 

of H5N1 and H7N9 spillover infections and hypothesized these differences could be 

explained by group match/mismatch between the first virus infecting an individual and the 

subsequent spillover infection. Specifically, individuals infected with an H5 virus (group 1) 

were afforded some immune protection if their first influenza infection was likely an H1N1 

seasonal virus (group 1), using birth year as a proxy. A similar protective effect was seen 

between the H3N2 birth-year group and H7N9 spillover infections (group 2), suggesting 

an individual’s pre-existing immune repertoire likely impacts the clinical outcomes and 

selective pressures involved in subsequent infections 106.  

 

Less is known about the immune response to SARS-CoV-2, but infection does appear to 

elicit innate and adaptive responses. Pathogen recognition receptors (PRRs) present on 

immune cells non-specifically recognize the virus and lead to an IFN cascade 107. Humoral 

responses initially involve responses to the N protein, followed by the S protein 108. 

Seasonal coronavirus IgM and IgG antibodies do not appear to recognize SARS-CoV-2 

epitopes, but SARS-CoV epitopes are cross-reactive with SARS-CoV-2.  Antibodies 

generated following SARS-CoV-2 infection 109 and following vaccination 110 afford 

significant protection from reinfection, although the duration of this protection remains 

unclear. In addition, multiple “variants of concern” (VOC) have begun to emerge (in fall 

2020) and a subset of these reduce the ability of antibodies to neutralize virus (though 

not to the level that would render them inefficacious) 111 and another subset increases 

transmissibility 112,113. The impact that these VOCs will have on the natural history and 

selective pressures on SARS-CoV-2 remains unknown.  
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Evolutionary barriers to viral adaptation: IAV and SARS-CoV-2 
 
RNA viruses, including IAV, are often described as “rapidly evolving”, due to their fast 

generation times, frequently large and genetically diverse populations, and high mutation 

rates. Virologists and infectious disease scientists therefore expect beneficial mutants, 

such as antigenic escape variants, to enjoy a marked fitness advantage and rapidly 

become dominant. While little is known about SARS-CoV-2, IAV mutants can rapidly 

adapt to selective pressures in cell culture 114–116. Likewise, on the global scale, seasonal 

IAV evolution is characterized by antigenic drift, in which escape variants rise to high 

frequency in the human population and initiate subsequent epidemics 76,117,118. 

Perplexingly, however, there is little evidence of adaptive evolution of IAV within individual 

humans 119–123.  

 

Rare instances of within-host IAV adaptive evolution have been described in prolonged 

infections in immunocompromised individuals and in atypical cases of drug resistance 124–

126. Together these observations suggest that positive selection (natural selection favoring 

new mutations) is weak in individual IAV-infected hosts. Adaptive variants and escape 

variants must arise within individuals and make their way out of individuals before 

spreading through a population. This raises the question: why is IAV antigenic evolution 

detectable in cell culture and in human populations, but not at the level of individual hosts? 

Perhaps a clue lies with a recent influenza household cohort study that determined that 

genetic drift, i.e. stochastic processes, could explain the observed patterns of within-host 

diversity 122. In support of this idea, another study found the emergence of drug-resistant 

IAV in cell culture was inhibited by pervasive genetic drift when virus titers were low 116. 
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These studies suggest the role of genetic drift in slowing IAV evolution on the scale of 

individual hosts underappreciated. Identifying the principal barriers impeding the 

preservation and transmission of adaptive avian IAV and SARS-CoV-2 will improve 

predictive models for vaccine design as well as for ongoing epidemic and pandemic 

surveillance efforts. 

 

A number of factors likely contribute to inefficient adaptive evolution within individual viral 

infections. The vast majority of the IAV and SARS-CoV-2 genomes are coding, so the 

vast majority of new mutations will range in phenotypic impact from mildly deleterious to 

lethal, which limits viral evolutionary flexibility. Further, mutations do not occur in isolation 

so the phenotypic impact of any mutation also depends on any co-occurring (linked) 

mutations and their combined impact 127.  

 

Even when a beneficial mutation or haplotype, a group of mutations in linkage, arises, its 

growth within the viral population is far from certain. The fate of a new mutation depends 

on two factors: (1) the strength of its advantage (selection coefficient, s) and (2) the 

effective population size (Ne). Ne is the number of genetically distinct variants 

reproducing in a population. Note that Ne is distinct from census size, the overall number 

of individuals: an infection initiated by 10 genetically identical viruses has a census size 

of 10 and a Ne of 1. Ne correlates inversely with the strength of natural selection and is 

directly proportional to genetic drift – small populations are more susceptible to the effects 

of genetic drift than large populations. In a haploid population, the deterministic effect of 

selection will remain negligible until 2 x Ne x s exceeds 1 128. In the case of spillover 
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viruses not fully adapted to mammalian hosts, viral replication may be inefficient, and 

even beneficial mutations could be lost by chance if the viral population size is not 

sufficiently large; this is genetic drift.  

 

Finally, even if a beneficial variant arises and achieves consensus frequency (majority) in 

a viral population, onward transmission can be very challenging. In most RNA virus 

systems, between host transmission corresponds with a dramatic reduction in population 

size, called a transmission bottleneck 129–132. Narrow transmission bottlenecks cause a 

founder effect and purge low-frequency intrahost single nucleotide variants (iSNVs), 

regardless of their fitness. Conversely, wide transmission bottlenecks allow more viruses 

to initiate infection, reducing the chance that beneficial or rare variants are lost at the time 

of transmission. For example, in humans, airborne transmission of seasonal influenza 

viruses has been shown to involve a narrow transmission bottleneck, with new infections 

founded by as few as 1-2 genetically distinct viruses 122,133–136. In the absence of selection 

acting during a transmission event, the likelihood of a variant being transmitted is equal 

to its frequency in the index host at the time of transmission (e.g. a variant at 5% 

frequency, has a 5% chance of being transmitted) 137. When transmission involves the 

transfer of very few variants, even beneficial variants present at low frequencies in the 

transmitting host are likely to be lost. Accordingly, although antigenic escape variants can 

sometimes be detected at very low levels in individual human hosts, the transmission of 

these variants has rarely been observed in nature 120,138. In this way, narrow transmission 

bottlenecks are generally expected to slow the pace of seasonal IAV adaptation 139,140 

and may have similar effects on avian IAV and SARS-CoV-2. Overall, understanding the 
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size of the transmission bottleneck is important for evaluating the probability that novel 

variants arising within an individual host infection will be transmitted onward.  

 

An overview of genomic epidemiology 

Viral deep sequencing is the workhorse method involved in assessing viral diversity, 

which is needed to analyze viral evolution within hosts. Sequencing viruses collected from 

groups of infected individuals can additionally be used to reconstruct virus family trees 

(phylogenies), which can be used to infer paths of transmission. The practice of 

combining viral genomic data with epidemiological data is referred to as “genomic 

epidemiology”. According to the CDC, genomic epidemiology is “the use of pathogen 

genomic data to determine the distribution and spread of an infectious disease in a 

specific population and the application of this information to control health problems'' 141. 

Genomic epidemiology first emerged as a critical tool while reconstructing patterns of viral 

spread and evaluating the efficacy of public health strategies during the Ebola and Zika 

outbreaks 142–152, and has more recently played a critical role in the fight against SARS-

CoV-2. Viral sequencing can augment traditional methods of contact tracing. Specifically, 

because the SARS-CoV-2 genome acquires new mutations at a relatively constant rate, 

mutational patterns can be used to make inferences about likely paths of transmission 

within populations 54–59,153. Additionally, the mutational differences contributing to a set of 

viral sequences (reflected in a phylogeny) can be used to infer key parameters like the 

basic reproductive number R0, an important measure of the transmission potential of a 

virus 154. Such an analysis would allow you to evaluate the rate of viral spread and, with 
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longitudinal data, the effectiveness of a public health intervention in a given population 

155,156.  

 

A brief outline of the chapters to follow  

Chapter 2 discusses our characterization of within- and between-host diversity of H7N9 

avian influenza viruses replicating in a mammalian model – the ferret. We find that H7N9 

within-host diversity is under purifying selection in ferrets, variants are rarely transmitted 

onward, and the transmission bottleneck is even narrower for H7N9 viruses than H1N1 

viruses. We find no evidence of natural selection favoring new or mammalian-adaptive 

mutations within ferrets or arising during transmission. These findings suggest that 

purifying selection, randomness, and very narrow bottlenecks combine to severely 

constrain the ability of H7N9 viruses to effectively adapt to mammalian hosts in typical 

spillover infections, even with onward airborne transmission. 

 

In chapter 3, we evaluate the forces shaping SARS-CoV-2 viral evolution within and 

between hosts a different mammalian model – the domestic cat. Similar to our findings in 

chapter 2, we show that SARS-CoV-2 genetic variation is predominantly influenced by 

genetic drift and purifying selection within individual hosts and by narrow transmission 

bottlenecks between hosts. In addition, we identify a notable variant at amino acid position 

655 in Spike (H655Y) that arises rapidly in transmitting cats, persists at intermediate 

frequencies in these cats, and becomes fixed following transmission in two of three 

transmission pairs. This same variant has been shown to confer escape from human 
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monoclonal antibodies and circulates in humans on multiple SARS-CoV-2 genetic 

lineages.  

 

In chapter 4, we investigate whether novel SARS-CoV-2 variants arise and transmit 

efficiently among acutely infected humans.  Employing a comprehensive approach to 

exclude spurious, pipeline-induced variants, we find that very limited variation is 

generated and transmitted during acute SARS-CoV-2 infection. Most infections in our 

dataset are characterized by fewer than 5 total iSNVs, the majority of which are low-

frequency. Most iSNVs are not detected in global consensus genomes and are rarely 

detected in downstream branches on local or global phylogenetic trees. Even among 

putative household transmission pairs, iSNVs are shared infrequently, and we estimate 

that a small number of viruses found infection after most transmission events (a narrow 

transmission bottleneck). The combination of low within-host diversity, tight transmission 

bottlenecks, and infrequent propagation along transmission chains may slow the rate of 

novel variant emergence among acutely infected individuals.  

 

While the emergence of novel variants of concern should be monitored closely, our data 

suggest that rapid accumulation of novel mutations within-host is not the norm during 

acute infection. Like influenza viruses, a significant portion of variation generated within 

a host is likely lost during transmission. This implies that even if novel, beneficial variants 

are generated de novo, these variants are unlikely to spread beyond that individual. When 

this process is expanded across the global population, the combination of limited diversity 
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within-host and tight transmission bottlenecks should slow the pace at which novel, 

beneficial variants could emerge. 

 

Chapter 5 discusses our use of genomic epidemiology to characterize the initial SARS-

CoV-2 outbreaks in the two most populous counties in Wisconsin, Dane and Milwaukee 

Counties. These two counties provided a “natural experiment” to understand the impact 

of the “Safer at Home” Executive Order on within- and between-county SARS-CoV-2 

transmission in two nearby US counties with distinguishing demographic features. We 

show that despite their proximity, distinct viral lineages drove each county’s outbreak. The 

number of viral introductions into each county differed as well. In addition, we show that 

the “Safer at Home” order decreased viral spread in both counties by at least 40%. These 

findings have implications for the application of targeted public health guidance.  

 

Finally, chapter 6 discusses our investigation into the most common source of infection 

in healthcare personnel at a major academic medical institution in the Upper Midwest of 

the United States during spring, 2020. We use viral sequencing to show that healthcare 

personnel were most likely to become infected with SARS-CoV-2 through community 

exposure rather than patient contact. These findings support the success of the CDC’s 

infection control guidelines to protect healthcare personnel. These findings also 

underscore the importance of ongoing measures to reduce community spread through 

mask-wearing, physical distancing, robust testing programs, and rapid vaccine 

distribution. 
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Chapter 2: 
 

Stochastic processes constrain adaptation of wildtype H7N9 

avian influenza viruses to mammalian hosts 

 
Katarina M. Braun1, Chelsea Crooks1, Luis Antonio Haddock III1, Gabrielle L. Barry1, 

Joe Lalli1, Gabriele Neumann1,2, Tokiko Watanabe2, Yoshihiro Kawaoka1,2,  Thomas C. 

Friedrich1 

 

1 Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, 

WI, United States of America 

2 Division of Virology, Department of Microbiology and Immunology, Institute of Medical 

Science, University of Tokyo, Minato-ku, Tokyo, Japan 

 

Abstract 

 
H7N9 influenza viruses have caused over 1,500 human spillover infections and can be 

transmitted by respiratory droplet in ferrets. Although these viruses seem poised to adapt 

to humans and cause widespread outbreaks, no such event has occurred. Critical insights 

have been offered regarding the molecular determinants restricting successful host-

switching of avian H7N9 viruses to human hosts, but little is known about the evolutionary 

constraints. To address this, we deep sequence time series swabs collected from 23 

ferrets infected with H7N9, including seven transmission events. We compare these 

findings against nine ferrets infected with seasonal H1N1, including four transmission 



   

 

20 

events. We find that H7N9 within-host diversity is under purifying selection in ferrets, 

variants are rarely transmitted onward, and the transmission bottleneck is even narrower 

for H7N9 viruses than H1N1 viruses. We find no evidence of natural selection favoring 

new or mammalian-adaptive mutations within ferrets or arising during transmission. 

Together, these findings suggest that purifying selection, randomness, and very narrow 

bottlenecks combine to severely constrain the ability of H7N9 viruses to effectively adapt 

to mammalian hosts in typical spillover infections, even with onward airborne 

transmission. 

Introduction 

The potential emergence of a novel avian influenza virus in humans poses a significant 

public health and economic threat 20,157–159. Despite significant advances in influenza 

surveillance and forecasting 160–162, we still do not understand the evolutionary processes 

underlying the emergence of pandemic influenza viruses 157,159. H7N9 avian influenza 

viruses (AIVs) naturally circulate in aquatic birds and have been endemic in chickens 

since the virus’s emergence in China in February, 2013 27. Since then, H7N9 viruses have 

caused 1,568 confirmed human infections with a case fatality rate approaching 40% 

across six epidemic waves 28. During the fifth and largest epidemic wave, some low-

pathogenicity avian influenza (LPAI) H7N9 viruses acquired a novel motif in 

hemagglutinin (HA) which both facilitates systemic virus replication in chickens and 

enhances pathogenicity in mammals 163–167; these viruses are designated highly 

pathogenic avian influenza (HPAI) viruses. Many posit and are concerned ongoing human 

spillover infections may facilitate mammalian adaptation of H7N9 AIVs, eventually 

resulting in a mammalian-transmissible, and therefore pandemic, virus.  
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High pandemic potential is currently assigned to both H7N9 and H5Nx AIVs 138,158,168–173. 

H7N9 viruses appear particularly threatening because, unlike H5N1 viruses, H7N9 

viruses can be transmitted between ferrets via respiratory droplet without first needing to 

acquire mammalian-adapting mutations 170,174,175. In addition, H7N9 viruses bind human-

type receptors, in which sialic acids are linked to galactose in an 𝝰(2,6) pattern 135,170. It 

is therefore unclear why, despite causing over 1,500 human spillover infections, there are 

no documented cases of human-to-human transmission of H7N9 viruses 176. Some have 

speculated that the lack of human-to-human transmission can be explained by a number 

of factors including H7N9 residual binding to avian-type (𝝰(2,3)) sialic acid receptors, viral 

fusion occurring at a higher-than-optimal pH for human-transmissible viruses, reduced 

polymerase activity at the human upper respiratory tract temperature (33 °C), and 

variability in HA glycosylation patterns 135,177–180. Another study cites limited within-host 

diversity of LPAI H7N9 viruses in ferrets, compared to chickens, as a potential barrier to 

rapid mammalian adaptation 135. Although these studies offer critical insights for the 

molecular determinants restricting host-switching of H7N9 viruses to mammalian hosts, 

it remains unclear whether additional evolutionary barriers further restrict mammalian 

adaptation and transmissibility of LPAI and HPAI H7N9 viruses.  

 

In 2017, Dr. Kawaoka’s group characterized the replication and pathogenicity of H7N9 

viruses in ferrets 170. Using time series samples originally collected in this study, we 

sought to investigate the evolutionary dynamics of LPAI and HPAI H7N9 avian influenza 

viruses replicating and transmitting in a mammalian system. We performed whole-
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genome deep sequencing in duplicate and evaluated H7N9 population dynamics in seven 

ferret transmission events and in an additional nine infections not resulting in 

transmission. Importantly, we compare the viral genetic diversity of these AIVs in a 

mammalian system to seasonal H1N1 in four ferret transmission events and an additional 

non-transmitting infection 170,181. In contrast to our initial predictions, we find no evidence 

for mammalian adaptation in ferrets and postulate that stochastic forces play a significant 

role in limiting avian influenza virus host-switching. We conclude the evolutionary barrier 

to emergence of an H7N9 AIV capable of sustained spread in humans is quite high. We 

speculate pandemic preparedness resources might be best directed toward ongoing 

poultry vaccination 182,183, safety regulations for wet markets 184, and ecological 

restoration 185 as opposed to broad surveillance for particular AIV lineages or variants.  

 

Materials and methods 

Ferrets transmission experiments & sample collection and availability  

No new transmission experiments were performed as part of this study. We took 

advantage of nasal wash samples collected from ferrets participating in 2017 and 2020 

studies conducted by Imai and colleagues to assess the transmissibility of H7N9 viruses 

in mice, ferrets, and non-human primates 170,181. In these previously-described studies, 

four groups of four ferrets were directly inoculated with various H7N9 viruses (1 x 106 pfu) 

and one group of two ferrets was infected with an H1N1pdm seasonal virus for 

comparison (inoculated or index ferrets). The H7N9 viruses included a high-pathogenic 

human isolate – A/Guangdong/17SF003/2016 (“GD/3”), two recombinant viruses which 

possess arginine or lysine at position 289 (H7 numbering) to confer neuraminidase-
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inhibitor sensitivity or resistance, respectively, on the background of the GD/3 consensus 

sequence – rGD/3-NA289R and rGD/3-NA289K (“rGD/3”), and a low-pathogenic H7N9 

virus – A/Anhui/1/2013 (“Anhui/1”). The H1N1 comparator group was infected with a 

representative 2009 pandemic virus – A/California/04/2009 (“CA04”).  

 

Four (GD/3, rGD/3-NA289R, rGD/3-NA289K, Anhui/1) or six (CA04) serologically-

confirmed naive ferrets (exposed/contact ferrets) were placed in a cage adjacent to an 

infected ferret (separated by ~5cm) on day 2 post infection. Pairs of ferrets were 

individually co-housed in adjacent wireframe cages which allow for spread of virus by 

respiratory droplet, but not by direct or indirect (via fomite) contact. Nasal washes were 

collected from infected ferrets on day 1 after inoculation and from contact ferrets on day 

1 after co-housing, and then every other day (for up to 15 days) for virus titration. Virus 

titers in nasal washes were determined by plaque assay on MDCK cells. Viral RNA was 

available for isolation from nasal wash samples collected from index ferrets on days 1, 3, 

5 and 7 post-infection and from contact ferrets on days 3, 5, 7, 9, 11, 13, and 15 post-

infection. 

 

Viruses  

A/Guangdong/17SF003/2016 was propagated in embryonated chicken eggs to prepare 

a virus stock after being isolated from a fatal human case treated with oseltamivir 186. We 

sequenced the GD/3 stock virus to verify consensus and sub-consensus variants (see 

details in section below). The GD/3 stock consensus sequence differs from the human 

isolate consensus sequence (GISAID isolate ID: EPI_ISL_249309) at nine sites (eight out 
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of nine were non-synonymous changes). A/Anhui/1/2013 was also propagated in 

embryonated chicken eggs after being isolated from an early human infection 174. 

A/California/04/2009 was propagated in MDCK cells and was originally obtained from the 

Centers for Disease Control (CDC) 187. Recombinant viruses, rGD3-NA289K and rGD3-

NA289R, were generated by plasmid-based reverse genetics as previously described 188.  

 

Template preparation   

Total nucleic acids including viral RNA (vRNA) were extracted from nasal washes and 

were reverse transcribed using SSIV VILO (Invitrogen, USA) and the Uni12 primer 

(AGCAAAAGCAGG) in a total reaction volume of 20 µl . The complete reverse 

transcription protocol can be found here: 

https://github.com/tcflab/protocols/blob/master/VILO_Reverse_Transcription_h7n9_GLB

_2019-02-15.md.  

 

Single-stranded cDNA was used as a template for PCR amplification to amplify all eight 

genes using segment specific primers using high-fidelity Phusion 2X DNA polymerase 

(New England BioLabs, Inc., USA). PCR was performed by incubating the reaction 

mixtures at 98°C for 30 s, followed by 35 cycles of 98°C for 10 s, 51 - 72°C depending on 

gene segment for 30 s, 72°C for 120 s, followed by a final extension step at 72°C for 5 

min. The complete PCR protocol, including segment-specific annealing temperatures and 

primer sequences, can be found here: 

https://github.com/tcflab/protocols/blob/master/Phusion_PCR_h7n9_GLB_2019-02-

21.md.  
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PCR products were separated by electrophoresis on a 1% agarose gel (Qiagen, USA). 

The bands corresponding to full-length gene segments were excised and the DNA was 

recovered using QIAquick gel extraction kit (Qiagen, USA). To control for RT-PCR and 

sequencing errors, especially in low-titer samples, all samples were prepared in complete 

technical replicate starting from vRNA 189,190. After completing replicate whole-genome 

sequencing for all 90 samples, we sequenced samples with low or no coverage, typically 

from low-titer samples, a third time and merged sequencing reads with the first two 

replicates with the goal of minimizing holes in our dataset. Samples for which we prepared 

a third complete deep-sequencing library included GD3 ferret 1 day 5 (all genes other 

than NA), GD3 ferret 1 day 7 (NA), GD3 ferret 5 day 7 (PA and NA), GD3 ferret 7 day 1 

(PB1 and NA), rGD3 ferret 9 day 3 (NA), rGD3 ferret 15 day 7 (PA), rGD3 ferret 18 day 

11 (PB1), rGD3 ferret 22 day 3 (MP), rGD3 ferret 23 day 7 (PA), Anhui ferret 25 day 7 

(HA), Anhui ferret 31 day 3 (PB1), CA04 ferret 33 day 5 (NS) and day 7 (PB1).  

 

Deep sequencing 

Gel-purified PCR products were quantified using Qubit dsDNA high-sensitivity kit 

(Invitrogen, USA) and were diluted in elution buffer to a concentration of 1 ng/µl.  All 

segments originating from the same samples with a non-zero concentration as 

determined by hsDNA Qubit (Invitrogen, USA) were pooled equimolarly and these 

genome pools were again quantified by Qubit. Each equimolar genome pool was diluted 

to a final concentration of 0.2 ng/µl (1 ng in 5 µl volume). Each sample (90 complete 

genomes in technical or duplicate or triplicate in addition to the stock virus) were made 

compatible for deep sequencing using the Nextera XT DNA sample preparation kit 
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(Illumina, USA). Specifically, each sample or genome was enzymatically fragmented and 

tagged with short oligonucleotide adapters, followed by 15 cycles of PCR for template 

indexing. Individual segments with undetectable concentrations by Qubit were tagmented 

and indexed separately to maximize recovery of complete genomes. Samples were 

purified using two consecutive AMPure bead cleanups (0.5x and 0.7x) and were 

quantified once more using Qubit dsDNA high-sensitivity kit (Invitrogen, USA). If 

quantifiable at this stage, independent gene segments were pooled into their 

corresponding genome pools. The average sample fragment length and purity was 

determined using Agilent High Sensitivity DNA kit and the Agilent 2100 Bioanalyzer 

(Agilent, Santa Clara, CA). After passing quality control measures, genomes were pooled 

into six groups of ~30, which were sequenced on independent sequencing runs. Libraries 

of 30 genomes were pooled equimolarly to a final concentration of 4 nM, and 5 µl of each 

4 nM pool was denatured in 5 µl of 0.2 N NaOH for 5 min. Denatured pooled libraries 

were diluted to a final concentration of 16 pM, apart from the first library which was diluted 

to 12pM, with a PhiX-derived control library accounting for 1% of total DNA loaded onto 

the flowcell. Then 600 µl of diluted-denatured library was loaded onto a 600-cycle v3 

reagent cartridge. Average quality metrics were recorded, reads were demultiplexed, and 

FASTQ files were generated on Illumina’s BaseSpace platform 191.  

 

Sequence data analysis – quality filtering and variant calling  

FASTQ files were processed using custom bioinformatic pipelines, available at this 

GitHub address https://github.com/tcflab/Sniffles2. Briefly, read ends were trimmed to 

achieve an average read quality score of Q30 and a minimum read length of 100 bases 
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using Trimmomatic 192. Paired-end reads were merged and mapped to a reference 

sequence using Bowtie2 193. GD/3 and rGD/3 samples were mapped to the consensus 

sequence of the A/Guangdong/17SF006/2016 human isolate (GISAID isolate ID: 

EPI_ISL_249309) 174. Anhui/1 samples were mapped to the consensus sequence of the 

A/Anhui/1/2013 human isolate (GISAID isolate ID: EPI_ISL_138739) 174. CA04 samples 

were mapped to A/California/04/2009 reference sequence (GISAID isolate ID: 

EPI_ISL_29618). Alignment files were randomly subsampled to 200,000 reads per 

genome using seqtk to ensure even coverage and reduce resequencing bias 194. The 

sequence depth per gene in each sample is shown in Supplementary Figure 1. Single 

nucleotide variants (iSNVs) were called with Varscan 195 using a frequency threshold of 

1%, a minimum coverage of 100 reads, and a base quality threshold of Q30 or higher. 

Variants were called independently for technical replicate pairs and only iSNVs (intrahost 

single nucleotide variants) called in both replicates, “intersection iSNVs”, were retained 

196. If an iSNV was only found in one replicate, it was discarded. iSNV frequency is 

reported as the average frequency found across both replicates. iSNVs are annotated to 

determine the impact of each variant on the amino acid sequence. iSNVs were annotated 

in ten open reading frames: PB2 (polymerase basic protein 2), PB1 (polymerase basic 

protein 1), PA (polymerase acidic), HA (hemagglutinin), NP (nucleoprotein), NA 

(neuraminidase), M1 (matrix protein 1), M2 (matrix protein 2), NS1 (non-structural protein 

1), and NEP (nuclear export protein), though for some analyses M1 and M2 are jointly 

represented as MP (matrix proteins) an NS1 and NEP are jointly represented as NS (non-

structural proteins).  
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Sequence data analysis – diversity statistics 

Nucleotide diversity was calculated using π summary statistics. π quantifies the average 

number of pairwise differences per nucleotide site among a set of sequences and was 

calculated using SNPGenie 197,198. SNPGenie adapts the Nei and Gojobori method of 

estimating nucleotide diversity (π), and its synonymous (πS) and nonsynonymous (πN) 

partitions from next-generation sequencing data 199. As most random nonsynonymous 

mutations are likely to be disadvantageous, we expect πN = πS points toward neutrality 

suggesting that allele frequencies are determined primarily by genetic drift. πN < πS  

indicates purifying selection is acting to remove new deleterious mutations, and πN > πS  

indicates diversifying selection is favoring new mutations and may indicate positive 

selection is acting to preserve multiple amino acid changes 200. We used paired t-tests to 

evaluate the hypothesis that πN = πS within gene segments.  

 

Sequence data analysis – estimating transmission bottleneck size  

The beta-binomial model, explained in detail in Sobel-Leonard’s 2017 paper 137, was used 

to infer effective transmission bottleneck size (Nb), the number of virions comprising the 

founding viral population at the onset of infection in the recipient host that successfully 

establish lineages persisting to the first sampling time point. In this model, the probability 

of iSNV transmission is determined by iSNV frequency in the index at the time of 

sampling. The probability of transmission is the probability that each iSNV is included at 

least once in a sample size equal to the bottleneck. The model incorporates sampling 

noise arising from a finite number of reads and therefore accounts for the possibility of 

false-negative variants that are not called in contact animals due to conservative variant 
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calling thresholds (≥1% in both technical replicates). The frequencies of transmitted 

variants are permitted to change from immediately following transmission to the first 

sampling time point according to a beta distribution. The beta-binomial model makes 

several limiting assumptions. The model assumes viral genetic diversity is neutral and 

variant frequencies are not impacted by selection and that variant sites are independent, 

which is unlikely to be true within a given gene segment because homologous 

recombination is not known to occur in influenza viruses 69. In addition, the beta-binomial 

model ignores variants that arise de novo within contact animals to avoid artificially 

inflating bottleneck sizes. Overall, bottleneck size estimates from the beta-binomial model 

are conservative estimates. Computer code for estimating transmission bottleneck sizes 

using the beta-binomial approach has been adapted from the original scripts, available 

here: https://github.com/koellelab/betabinomial_bottleneck.   

 

Figures 

All figures were generated using Python Matplotlib and packages including plotly, 

seaborn, numpy, and scipy and were edited using Adobe Illustrator for clarity and 

readability. All derived data and computer code used to generate figures is available in 

the GitHub repository accompanying this manuscript 201. 

Results 
 
H1N1 viruses transmit more frequently than H7N9 viruses among the ferrets 

evaluated here 
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We isolated and sequenced viral RNA (vRNA) from nasal washes collected from two 

previously published studies 170,181. Among 5 donor ferrets infected with H1N1, 4 

successfully transmitted to a naive recipient ferret (80%). By comparison, 7 out of 12 

ferrets infected with H7N9 AIV transmitted to a recipient ferret (58.3%) (Figure 1, 

Supplemental Figure 2). These group sizes are small and the H1N1 transmission rate 

is not significantly different from the H7N9 transmission rate (p=0.12; Mann-Whitney U). 

This is notable, however, given that the H7N9 viruses evaluated are wildtype AIV 

sequences capable of infecting and transmitting in ferrets, a mammalian model with 

similar sialic-acid receptor distribution and respiratory system anatomy to humans 202. 

 

Rates of transmission varied substantially between H7N9 virus subgroups. One of four 

ferrets resulted in transmission when infected with either the LPAI human isolate 

(A/Anhui/1/2013; “Anhui/1”) or the HPAI human isolate (A/Guangdong/17SF003/2016; 

“GD/3”).  We also evaluated two recombinant viruses reverse engineered to contain a 

neuraminidase-inhibitor escape mutation (NA-289K) or wildtype (NA-289R) at position 

289 in neuraminidase (NA) on the background consensus sequence of GD/3. Two of four 

ferrets infected with the neuraminidase-escape variant, rGD/3-NA289K, transmitted to the 

donor ferret and three of four ferrets infected with the wildtype variant, rGD3/NA289R, 

transmitted to the donor ferret (Supplemental Figure 2).  

 

H7N9 within-host diversity is dominated by low-frequency iSNVs   

Patterns of viral genetic variation provide rich information about how variants emerge 

within, and transmit beyond, individual hosts. We mapped sequencing reads against the 
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inoculating virus sequence and called within-host variants present in ≥1% of sequencing 

reads in both technical replicates, called intersection iSNVs (see methods for additional 

details). All coding region changes are reported using H7 numbering for the H7N9 viruses 

and H1 numbering for the H1N1 viruses, consistent with the numbering schemes used in 

the Nextstrain. We identified 867 unique iSNVs across all donor and recipient ferrets and 

all timepoints (482 synonymous, 382 nonsynonymous, and 3 stop mutations).  

 

The average number of unique iSNVs per ferret across all available time points varied 

significantly across virus groups (Anhui/1, CA04, GD/3, and rGD/3) (p=6.83x10-10; one-

way ANOVA) (Figure 2a). The number of unique iSNVs was lowest in the CA04 group, 

ranging from 3-83 iSNVs per ferret (n=9 ferrets). Unsurprisingly, the number of unique 

iSNVs in the clonal recombinant H7N9 virus group was also low, ranging from 1-43 per 

ferret (n=13 ferrets). Viral diversity was highest in the H7N9 isolate groups with 85-195 

and 27-142 unique iSNVs per ferret in the Anhui/1 group (n=5 ferrets) and GD/3 group 

(n=5 ferrets), respectively. The total count of unique iSNVs within a single ferret is 

relatively stable over time (Supplementary Figure 3).  

 

Most iSNVs were detected at <10% frequency (Figure 2b). Compared to expectations 

under a neutral model, iSNVs detected within each virus group (Anhui/1, CA04, GD/3, 

and rGD/3) were present in excess at low frequencies. This pattern is consistent with 

purifying selection and population expansion acting on intrahost viral intrahost 

populations. 
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The frequency, genome location, and annotation (synonymous vs nonsynonymous) for 

each iSNV detected in hemagglutinin (HA), the receptor binding protein, is shown in 

Figure 2c. iSNVS in all other gene segments are plotted in Supplementary Figure 4.  

 

H7N9 viral populations are subject to purifying selection in donor and recipient 

ferret hosts 

We used a common measure of nucleotide diversity, π, within individual ferrets to assess 

signals of H7N9 viruses adapting or diversifying within mammalian hosts. This summary 

statistic quantifies the average number of pairwise differences per nucleotide site among 

a set of viral sequences. In particular, we compared the nucleotide diversity at 

synonymous sites (πS) to nucleotide diversity at nonsynonymous sites (πN) to assess 

the evolutionary forces acting on viral populations within individual hosts. In general, 

πN/πS < 1 indicates that, on average, purifying selection is acting to remove deleterious 

mutations from the viral population, and πN/πS > 1 indicates that diversifying selection is 

favoring new mutations, which might be expected in the case of an avian influenza virus 

adapting to a mammalian host. When πN approximates πS, this suggests that allele 

frequencies are determined primarily by genetic drift, stochastic shifts in allele frequencies 

primarily determined by population size 203.  

 

As is expected for a fit viral population, πS exceeded or was equal to πN in the ferrets 

infected with H1N1 viruses (Figure 3a, orange). πS was significantly greater than πN in 

PB2, PA, and NA and πN and πN never significantly exceeded πS, suggesting these 

viruses are under a combination of purifying selection and genetic drift in ferrets. 
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Somewhat surprisingly, the H7N9 viruses were also under a combination of purifying 

selection and genetic drift in ferrets. πS significantly exceeded πN in all genes apart from 

NA in the GD/3 group and all genes apart from NA and HA in Anhui/1 (Figure 3a, blue 

and turquoise). It is notable that HPAI and LPAI H7N9 are not subject to diversifying 

selection as it suggests these avian influenza viruses are relatively fit in mammalian 

hosts.  

 

We compared nucleotide diversity in donor-recipient pairs to evaluate population forces 

before and after transmission. Genetic diversity is lost during transmission. We found 

genome-wide genetic diversity (π) is lower in recipient ferrets compared to donor ferrets 

in the H1N1 group (p=0.125, paired t-test) and significantly lower in recipient ferrets 

compared to donor ferrets in the H7N9 group (p=0.005; paired t-test). As we have done 

previously 204,205, we looked for selective sweeps by comparing the change in πN and πS 

for each gene in paired donor and recipient ferrets. Within each gene segment, πN did 

not differ significantly between donor and recipient and πS similarly did not different 

between donor and recipient. This was true across all H1N1 transmission pairs (Figure 

3b) and all H7N9 transmission pairs (Figure 3c). Taken together, this suggests that while 

genetic diversity is purged during the transmission event, this diversity is purged equally 

across the genome with no evidence for a selective reduction in any particular gene 

segment.  

 

Airborne transmission results in a dramatic shift of iSNV frequencies  
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We took advantage of time series data to track iSNV frequency trends within each donor 

ferret and following airborne transmission into the associated recipient ferret. Strikingly, 

frequencies of specific H7N9 mutations in donor ferrets do not predict their likelihood of 

transmission nor do they predict iSNV frequency post-transmission. For example, one 

polymorphic site at position 137 in HA involving a glycine to glutamic acid mutation 

(G137E) in the GD/3 transmission pair was present at 81% one day after inoculation in 

the donor ferret and decreased to a sub-consensus frequency (39.3%) by 7 DPI. Despite 

this marked downward trend in the donor animal, G137E was transmitted to the recipient 

ferret and was found at ≥99% from first time point post-infection onward (Figure 4). 

Another polymorphic site in the matrix protein (M1) with an arginine-to-lysine mutation at 

position 210 (R210K) was conversely never detected in the donor ferret above 1%, yet 

was nearly fixed (97.5%) at the first time point post infection in the recipient ferret. 

Interestingly, M1 R210K then decreased in frequency in the recipient ferret and was found 

at 54.5% at 9 DPI, suggesting this mutation might have conferred a mild fitness cost.  We 

observed similar patterns in synonymous variants. For example, a synonymous A-to-G 

change at nucleotide 2,037 in the polymerase basic protein 1 (PB1) was found at 5.57% 

at 1 DPI, 5.1% at 3 DPI, 4.76% at 5 DPI, 1.87% at 7 DPI and was nearly fixed immediately 

following transmission, but again decreased in frequency to 57.57% at 9 DPI in the 

recipient ferret.  

 

Transmission dynamics of individual H7N9 GD/3 variants remained stochastic even in the 

case of amino acids under positive selective pressure in humans. A valine to isoleucine 

change at amino acid position 219 in M1 is thought to play a role in avian influenza virus 
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adaptation to mammals 206 and accordingly increased in frequency from 34.7% to 84.3% 

in the donor ferret, but nonetheless failed to transmit to the recipient and then amazingly 

arose de novo once again in the recipient ferret. Similar iSNV dynamics were observed 

in the Anhui/1 transmission pair as well in the recombinant GD/3 pairs (Figure 4, Figure 

5a).   

 

Unlike iSNV dynamics in the H7N9 transmission events, multiple iSNVs in the H1N1 

CA04 donor ferrets remained polymorphic immediately following transmission (e.g. HA 

D127E and S183P (H1 numbering)) (Figure 4, Figure 5a). It is clear that airborne 

transmission of H7N9 viruses in ferrets dramatically alters the viral population, 

stochastically allowing minor variants to become dominant in subsequent generations 

despite lacking a putative fitness benefit, and conversely preventing known mammalian-

adaptive consensus-level variants from transmitting.  

 

Airborne transmission of H7N9 viruses in ferrets is characterized by a very narrow 

transmission bottleneck  

The number of viruses that found infection is a crucial determinant of the pace at which 

novel, beneficial variants can emerge at the level of the population. Narrow transmission 

bottlenecks cause a founder effect and purge low-frequency iSNVs, regardless of their 

fitness. Conversely, wide transmission bottlenecks allow more viruses to initiate infection, 

reducing the chance that beneficial or rare variants are lost. Understanding the size of the 

transmission bottleneck is therefore important for evaluating the probability that novel 

variants arising within an individual host infection will be transmitted onward. To infer 
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transmission bottleneck sizes, we applied the beta-binomial inference method 137. To do 

this, we used the first time point available in the recipient host and the time point 

immediately preceding this in the associated donor host (see methods for details).  

 

The vast majority of iSNVs detected in all donor ferrets were lost during transmission and 

were not found in the recipient ferret. A very small number of iSNVs in the Anhui/1 and 

GD/3 donor ferrets transmit and are found fixed (at 100% frequency) in the recipient ferret 

(Figure 5a). Most notably, two synonymous iSNVs at 3.5% (A-to-G at nt 270 in PB1) and 

3.6% (C-to-T at nt 1735 in PB1) in the GD/3 donor ferret transmit and were fixed 

immediately following transmission. This pattern where iSNVs are dichotomously either 

lost or fixed following transmission is consistent with a very narrow transmission 

bottleneck 137. The majority of H1N1 iSNVs were similarly lost during transmission, 

although we found five iSNVs that were shared at sub-consensus frequencies (<50%) 

among donor-recipient pairs (Figure 5a).  

 

While bottleneck size estimates varied modestly between ferret pairs, we found consistent 

support for fewer than 11 viruses initiating infection in all recipient ferrets. We found the 

combined maximum likelihood estimate for the mean transmission bottleneck size for the 

CA04 (H1N1) pairs (n=4 pairs) was 6 (95% CI: 3-11) (Figure 5b). We evaluated seven 

transmission events in the H7N9 group; one Anhui/1 pair, one GD/3 pair, and five rGD/3 

pairs. However, two of the rGD/3 transmission events (pairs 9 and 11) were uninformative 

because the donor ferret had no polymorphic sites. The combined maximum likelihood 
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estimate for the mean transmission bottleneck size for the H7N9 group (n=5 pairs) was 1 

(95% CI: 1-3) (Figure 5b).  

 

Although group sizes are quite small, we compared the mean transmission bottleneck 

sizes for the H1N1 group to the H7N9 group and found modest evidence that the H7N9 

transmission bottlenecks in a mammalian model system are even narrower than the 

H1N1 group (p=0.054; unpaired t-test). Overall, our data suggest the vast majority of 

H7N9 iSNVs arising in ferret hosts are lost during transmission and because so few 

viruses found infection following transmission, any iSNV that happens to be present in a 

transmitting virus’ genome will likely become fixed in the post-transmission viral 

population.  

 

Discussion  

The evolutionary processes by which avian influenza viruses adapt to mammalian hosts 

are poorly understood despite the critical importance of these mechanisms in assessing 

the pandemic potential of avian influenza viruses. Our study examined the viral dynamics 

of wildtype LPAI and HPAI H7N9 viruses in a ferret model, a well-studied mammalian 

system which closely resembles human respiratory physiology 207. Relatively few studies 

have evaluated evolutionary dynamics of avian viruses in in vivo mammalian models, 

particularly because such studies could not be conducted during the gain-of-function 

research pause. In this study we hypothesized that an avian virus replicating and 

transmitting in a mammalian system would be under strong selective pressure to become 

more mammalian, but to our surprise we do not detect any evidence to support this 
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hypothesis. We instead find evidence that HPAI and LPAI viruses are subject to mild 

purifying selection in ferret hosts, which is a signature classically associated with a virus 

that is already well-adapted to its host.  

 

In some ways, H7N9 avian influenza isolates do appear well-adapted to mammalian 

hosts; they replicate to high-titre in the upper and lower respiratory compartment of ferrets 

170, achieve infection via airborne transmission between ferrets 135,175,177, and are 

responsible for > 1,500 human spillover infections 174. Yet there is no evidence that H7N9 

viruses are capable of sustained human-to-human transmission 176 and there are very 

few documented human spillover infections since the fifth epidemic wave in 2017 28. It 

follows that there are significant barriers to more efficient H7N9 mammalian infection and 

transmission. Molecular barriers have been previously identified and include mixed avian- 

and human-receptor preferences, fusion instability at high endosomal pHs in humans, 

and reduced polymerase activity at lower temperatures in the upper respiratory 

compartment 135,177–180. In this study, we identified and characterized evolutionary barriers 

which we posit combine with molecular barriers to severely constrain the ability of wildtype 

H7N9 viruses to effectively adapt to mammalian hosts in typical spillover infections. These 

constraints are most apparent during airborne transmission of influenza where variants 

under possible positive selection in index ferrets and even putative mammalian-adapting 

variants, like PB2 D701N and M1 V219I, are not preferentially transmitted to contact 

ferrets. 
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We are not the first to document that transmission of H7N9 viruses in ferrets involves a 

stringent and attenuating transmission bottleneck. Zaraket et al also showed evidence of 

this in ferrets using a LPAI H7N9 isolate 135. Additionally, other studies, including two from 

our lab, have used similar methods to characterize the evolution of avian-like viruses in 

ferret models. One of these studies evaluated a H5N1 laboratory reassortant virus with 

an H5 HA segment and the other seven segments originating from a human H1N1 virus 

205. The other study evaluated a genetically-modified avian virus resembling the 1918-

pandemic virus 204,208. Upon initial comparison, the results of these prior studies appear 

to be in part at odds with the results of this study. These studies involving reassortant 

H5N1 and 1918-like viruses both detect evidence of selective sweeps on HA during 

airborne transmission, as evidenced in part by a greater reduction in HA genetic diversity 

than any other gene segment following transmission, suggesting that selection acted to 

favor transmission and/or replication of only a subset of HA sequences from index 

animals in contacts infected by respiratory droplets. We detect no such signal in this study 

and more broadly detect no strong evidence for the role of positive or directional selection 

acting on H7N9 viruses within or between ferret hosts. However, Wilker and Dinis et al 

note in their discussion that the replication and transmission of wiltype avian viruses, in 

contrast to engineered reassortant avian viruses, in mammals may result in patterns of 

selection that differ from those observed in their study 205. We believe this rationale 

precisely explains the differences in population dynamics observed across these studies.  

 

It is helpful to imagine multiple “fitness peaks” and “fitness valleys” across a landscape 

which captures the interaction of the virus and host genotypes 123. When placing wildtype 
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H7N9 viruses on this landscape it is likely that the tallest fitness peak can be found when 

wildtype avian H7N9 viruses infect avian hosts, though our results suggest wildtype H7N9 

viruses are at least moderately fit in the context of a mammalian host as well. In contrast, 

the reassortant and genetically modified H5N1 and 1918-like viruses are not viruses 

found in nature and may be located in relative “fitness valleys'' on this same fitness 

landscape. Each of these viruses is likely subject to the same biological constraints, 

including short-lived infections, the vast majority of new mutations conferring mildly 

deleterious to lethal phenotypes 209–211, and narrow transmission bottlenecks which permit 

very few viruses from making their way into subsequent hosts 122,133–136. However, the 

overall impact of this molecular biology may differ significantly depending on where the 

virus is located in the virus-host genotype landscape. If wildtype H7N9 viruses replicating 

in mammalian hosts are already located on a relative fitness peak, any new mutations 

are exceptionally unlikely to confer a sufficient benefit to be positively selected in the 

setting of an acute infection. Additionally, wildtype H7N9 viruses in ferrets randomly 

establishing successful infection following airborne transmission are very likely to carry 

neutral and/or deleterious variants which then achieve de facto fixation because so few 

viruses successfully passed through the transmission bottleneck. These predictions are 

consistent with the results of this study. In contrast, diversifying selection and selective 

sweeps are much more likely to be detected in the context of viruses located in a relative 

“fitness valley”, which is consistent with results observed in the studies evaluating 

reassortant H5N1 and 1918-like avian viruses in mammalian models. It has been 

previously hypothesized that epistasis is crucial to the evolution of influenza viruses and 

mutations that promote human adaptation in one viral and host genetic background may 
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not be well-tolerated in others 74,212. Additionally, given that we and similar studies identify 

(even de novo) mammalian-adaptive mutations in the context of relatively few ferrets 

suggest that generation of mammalian-adaptive mutations is not the rate-limiting step in 

adaptation of avian viruses to mammalian hosts and instead is consistent with predictions 

made by Russell et al who hypothesized H5N1 viruses would generate human-adapting 

mutations during infection, but these mutations would remain at low frequencies and fail 

to be transmitted 158.  

 

The results of this study may have implications for assessing the adaptive potential of 

avian influenza viruses in the setting of human spillover infections. Though it is not 

unimaginable for a wildtype avian virus to quickly adapt to humans and achieve sustained 

human-to-human transmission, the results of this study suggest there are significant 

evolutionary barriers for wildtype avian viruses to do so. Each of the known influenza 

pandemics have resulted from a major reassortant event typically by way of a “mixing 

vessel”, rather than adaptation of avian influenza viruses in the setting of a human 

spillover infection 20,21. It is true that avian virus spillover infections are responsible for 

significant individual morbidity and mortality in southeast Asia, however these spillover 

infections may be less concerning for ongoing and further human adaptation of avian 

influenza viruses than previously recognized. Our results additionally emphasize the 

importance of population and One Health interventions to reduce the opportunity for avian 

and mammalian viruses to co-infect a single host – these interventions include, but are 

not limited to, continued poultry vaccination, culling, poultry movement restrictions, best 

practices at live animal markets and others 213. Like most ferret studies, the results of 
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these experiments are limited by relatively small sample sizes and biological uncertainties 

regarding the possible differences between viral infection and transmission between 

ferrets and humans. Results described here cannot be mapped directly onto avian 

influenza virus infections in human hosts and should continue to be explored and 

corroborated by additional investigations, including targeted virological and 

epidemiological research 214.  
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Figure 1. Overview of the experimental system and sampling timeline  

Schematic depicting sampling timeline for donor and recipient ferrets. Ferrets were 

inoculated intranasally with 106 PFU of a HPAI H7N9 isolate 

(A/Guangdong/17SF003/2016; blue), a LPAI H7N9 isolate (A/Anhui/1/2013; turquoise), 

or a H1N1pdm virus (A/California/04/2009; orange) on day 1 post infection (DPI). 

Recombinant HPAI H7N9 viruses (rGD3-NA289R, rGD3-NA289K) are not depicted here 

and can be seen in Supplemental Figure 1. One day after infection, one naive recipient 
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ferret was paired with each donor ferret. Nasal washes were collected from donor (solid 

line) and recipient (dotted line) ferrets up to 15 DPI. Small virions denote days on which 

live virus was detected by plaque assay. Viral RNA was extracted from these same days 

and was prepared in duplicate for whole-genome sequencing. 

 

 

 

 

Figure 2. Frequency and location of intrahost single nucleotide variants  

a. A histogram displaying the average number of unique iSNVs detected across all 

available timepoints. The y-axis displays the proportion of ferrets with various numbers of 

unique iSNV (x-axis bins) compared to the total group size across four virus groups. Virus 

groups are the LPAI Anhui/1 group (turquoise; n=5), the H1N1 CA04 group (orange; n=9), 
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the HPAI GD/3 group (blue; n=5) and the recombinant HPAI rGD/3 group (red; n=13). b. 

The proportion of iSNVs that were detected at various within-host frequency bins is shown 

for each virus group. Error bars represent the variance in the proportion of total within-

host iSNVs across individual ferrets within each group. The solid grey line indicates the 

expected proportion of variants in each frequency bin under a neutral model. c. All iSNVs 

detected in hemagglutinin (HA) across all virus groups. GD/3 and rGD/3 iSNVs are plotted 

using circles, Anhui/1 iSNVs are plotted using triangles, and CA04 iSNVs are plotted with 

squares. Synonymous iSNVs are denoted with open symbols and nonsynonymous iSNVs 

are denoted with closed symbols. Three iSNVs found in multiple HPAI samples at high 

frequencies are labeled; G137E and two synonymous mutations at nucleotides 1,344 and 

1,497. iSNVs in all other gene segments can be found in Supplementary Figure 3. 
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Figure 3. Patterns of viral genetic diversity within ferret hosts  

a. πN / πS nucleotide diversity is plotted for each gene segment. Each datapoint 

represents a single ferret. Circles denote donor ferrets and triangles denote recipient 

ferrets. The dotted grey line represents where πN is equal to πS (y=1). A grey star is 

plotted below each gene on the x-axis when πS is significantly greater than πN, 

suggesting that gene segment is under purifying selection. b. πN and πS in the H1N1 

donors and recipients are plotted for each gene segment. c. πN and πS in the H7N9 

donors and recipients are plotted for each gene segment. πN and πS in the donor ferrets 

are denoted by the salmon and green diamonds, respectively. πN and πS in the recipient 

ferrets are denoted by the dark blue and yellow diamonds, respectively. 
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Figure 4. iSNV frequency dynamics across the transmission event.  

The frequencies of individual iSNVs are plotted over time in donor ferrets (top plot) and 

following transmission into the associated recipient ferret (bottom plot). Colors denote 

virus groups and markers denote particular iSNVs. iSNV are plotted as y=0 at time points 

when an iSNV was not detected ≥1% frequency and are absent at time points when no 

viral RNA was recovered for deep sequencing.  
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Figure 5. H1N1 and H7N9 transmission bottlenecks in ferret donor-recipient pairs  

a. “TV plots” showing intersection iSNV frequencies in all 11 donor-recipient pairs. The 

grey box highlights low-frequency iSNVs (1-10%).  b. Maximum likelihood estimates for 

mean transmission bottleneck size in individual donor-recipient pairs. Colors denote virus 

groups. Bottleneck sizes could not be estimated for a few pairs (rGD/3 pair 9 and pair 11) 

because there were no polymorphic sites detected in the donor. The combined H1N1 
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estimate was calculated using pairs 3, 4, 5 and 6. The combined H7N9 estimate was 

calculated using pairs 1, 2, 7, 8 and 10. 

 

Supplemental Figure 1. Read number coverage heat maps.  

Coverage is represented by color heatmap. Gene segments are shown along the x-axis. 

Individual samples are shown along the y-axis. Read coverage for a. Anhui/1, b. CA04, 

c. GD/3, d. rGD/3 replicate 1, and e. rGD/3 replicate 2.  
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Supplemental Figure 2. Overview of the experimental system and sampling timeline 

for recombinant viruses 

Schematic depicting sampling timeline for donor and recipient ferrets for recombinant 

H7N9 viruses. Ferrets were inoculated intranasally with 106 PFU of rGD3-NA289R (red) 

or rGD3-NA289K (pink). One day after infection, one naive recipient ferret was paired 

with each donor ferret. Nasal washes were collected from donor (solid line) and recipient 

(dotted line) ferrets up to 15 DPI. Small virions denote days on which live virus was 

detected by plaque assay. Viral RNA was extracted from these same days and was 

prepared in duplicate for whole-genome sequencing.  
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Supplemental Figure 3. Count of unique iSNVs within individual ferrets and over 

time  

Count of unique iSNVs within individual ferrets and over time in a. the LPAI H7N9 Anhui/1 

group, b. the H1N1 CA04 group, c. the HPAI H7N9 GD/3 group, and d. the recombinant 

HPAI rGD/3 group. Donor ferrets are denoted with solid lines and recipient ferrets are 

denoted with dashed lines.   
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Supplemental Figure 4. Patterns of viral diversity within ferret hosts  

All iSNVs detected in a. PB2 (polymerase basic protein 2) b. PB1(polymerase basic 

protein 2) c. PA (polymerase acidic protein) d. NP (nucleoprotein) e. NA (neuraminidase) 

f. M1 (matrix protein 1) g. M2 (matrix protein 2) h. NS1 (non-structural protein 1)  i. NEP 

(nuclear export protein or non-structural protein 2). GD/3 and rGD/3 iSNVs are plotted 

using circles, Anhui/1 iSNVs are plotted using triangles, and CA04 iSNVs are plotted with 

squares. Synonymous iSNVs are denoted with open symbols and nonsynonymous iSNVs 

are denoted with closed symbols. 
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Transmission of SARS-CoV-2 in domestic cats imposes a narrow bottleneck. PLoS 

Pathog. 2021 Feb 26;17(2):e1009373. doi: 10.1371/journal.ppat.1009373. PMID: 

33635912; PMCID: PMC7946358. 

 

Abstract  

The evolutionary mechanisms by which SARS-CoV-2 viruses adapt to mammalian hosts 

and, potentially, undergo antigenic evolution depend on the ways genetic variation is 

generated and selected within and between individual hosts. Using domestic cats as a 

model, we show that SARS-CoV-2 consensus sequences remain largely unchanged over 

time within hosts, while dynamic sub-consensus diversity reveals processes of genetic 

drift and weak purifying selection. We further identify a notable variant at amino acid 

position 655 in Spike (H655Y), which was previously shown to confer escape from human 

monoclonal antibodies. This variant arises rapidly and persists at intermediate 

frequencies in index cats. It also becomes fixed following transmission in two of three 

pairs. These dynamics suggest this site may be under positive selection in this system 

and illustrate how a variant can quickly arise and become fixed in parallel across multiple 

transmission pairs. Transmission of SARS-CoV-2 in cats involved a narrow bottleneck, 

with new infections founded by fewer than ten viruses. In RNA virus evolution, stochastic 

processes like narrow transmission bottlenecks and genetic drift typically act to constrain 

the overall pace of adaptive evolution. Our data suggest that here, positive selection in 

index cats followed by a narrow transmission bottleneck may have instead accelerated 

the fixation of S H655Y, a potentially beneficial SARS-CoV-2 variant. Overall, our study 
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suggests species- and context-specific adaptations are likely to continue to emerge. This 

underscores the importance of continued genomic surveillance for new SARS-CoV-2 

variants as well as heightened scrutiny for signatures of SARS-CoV-2 positive selection 

in humans and mammalian model systems.  

 

Author summary 

Through ongoing human adaptation, spill-back events from other animal intermediates, 

or with the distribution of vaccines and therapeutics, the landscape of SARS-CoV-2 

genetic variation is certain to change. The evolutionary mechanisms by which SARS-

CoV-2 will continue to adapt to mammalian hosts depend on genetic variation generated 

within and between hosts. Here, using domestic cats as a model, we show that within-

host SARS-CoV-2 genetic variation is predominantly influenced by genetic drift and 

purifying selection. Transmission of SARS-CoV-2 between hosts is defined by a narrow 

transmission bottleneck, involving 2-5 viruses. We further identify a notable variant at 

amino acid position 655 in Spike (H655Y), which arises rapidly and is transmitted in cats. 

Spike H655Y has been previously shown to confer escape from human monoclonal 

antibodies and is currently found in over 1000 human sequences. Overall, our study 

suggests species- and context-specific adaptations are likely to continue to emerge, 

underscoring the importance of continued genomic surveillance in humans and non-

human mammalian hosts.  
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Introduction 

Understanding the forces that shape genetic diversity of RNA viruses as they replicate 

within, and are transmitted between, hosts may aid in forecasting the future evolutionary 

trajectories of viruses on larger scales. The level and duration of protection provided by 

vaccines, therapeutics, and natural immunity against severe acute respiratory syndrome 

coronavirus 2 (SARS-CoV-2) will depend in part on the amount of circulating viral 

variation and the rate at which adaptive mutations arise within hosts, are transmitted 

between hosts, and become widespread. Here, to model the evolutionary capacity of 

SARS-CoV-2 within and between hosts, we characterize viral genetic diversity arising, 

persisting, and being transmitted in domestic cats. 

 

A translational animal model can serve as a critical tool to study within- and between-host 

genetic variation of SARS-CoV-2 viruses. SARS-CoV-2 productively infects Syrian 

hamsters, rhesus macaques, cynomolgus macaques, ferrets, cats, and dogs in laboratory 

experiments. Natural infection with SARS-CoV-2 has also been documented in ferrets, 

mink, dogs, and small and large cats. This makes each of these potentially viable animal 

models, apart from large cats which are not typically used in biomedical research 215–219. 

Among these species, natural transmission has only been observed in mink, cats, and 

ferrets 215,220,221. Transmission from humans to mink and back to humans has also 

recently been documented 222. Infectious virus has been recovered from various upper- 

and mid-respiratory tissues in cats and ferrets, including nasal turbinates, soft palate, 

tonsils, and trachea 215,220. However, only in cats has infectious virus been recovered from 
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lung parenchyma, where infection is most commonly linked to severe disease in humans 

215,220,223,224.  

 

Transmission bottlenecks, dramatic reductions in viral population size at the time of 

transmission, play an essential role in the overall pace of respiratory virus evolution 122,133–

136,139,204,205,225,226. For example, in humans airborne transmission of seasonal influenza 

viruses appears to involve a narrow transmission bottleneck, with new infections founded 

by as few as 1-2 genetically distinct viruses 122,133–136. In the absence of selection acting 

during a transmission event, the likelihood of a variant being transmitted is equal to its 

frequency in the index host at the time of transmission (e.g. a variant at 5% frequency, 

has a 5% chance of being transmitted) 137. When transmission involves the transfer of 

very few variants and selection is negligible, even beneficial variants present at low 

frequencies in the transmitting host are likely to be lost. Accordingly, although antigenic 

escape variants can sometimes be detected at very low levels in individual human hosts, 

transmission of these variants has not been observed in nature 120,138. In this way, narrow 

transmission bottlenecks are generally expected to slow the pace of seasonal influenza 

virus adaptation 139,140 and may have similar effects on SARS-CoV-2.  

 

Accurate estimates of the SARS-CoV-2 transmission bottleneck size will therefore aid in 

forecasting future viral evolution. Previous studies have reported discordant estimates of 

SARS-CoV-2 transmission bottleneck sizes in humans, ranging from “narrow” bottlenecks 

involving 1-8 virions to “wide” bottlenecks involving 100-1,000 virions 54,227–229. However, 

studies of natural viral transmission in humans can be confounded by uncertainties 
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regarding the timing of infection and directionality of transmission, and longitudinal 

samples that can help resolve such ambiguities are rarely available. Animal models 

overcome many of these uncertainties by providing access to longitudinal samples in well-

defined index and contact infections with known timing.  

 

Here we use a cat transmission model to show that SARS-CoV-2 genetic diversity is 

largely shaped by genetic drift and purifying selection, with the notable exception of a 

single variant in Spike at residue 655 (H655Y). These findings are in broad agreement 

with recent analyses of evolutionary forces acting on SARS-CoV-2 in humans, suggesting 

human SARS-CoV-2 isolates are relatively well-adapted to feline hosts 54,227–233. While 

estimates of the size of the SARS-CoV-2 transmission bottleneck remain highly 

discordant in humans, we find very narrow transmission bottlenecks in cats, involving 

transmission of only 2-5 viruses. Our findings show cat models recapitulate key aspects 

of SARS-CoV-2 evolution in humans and we posit that the cat transmission model will be 

useful for investigating within- and between-host evolution of SARS-CoV-2 viruses.  

 

Methods  

Ethics statement 

No animal experiments were specifically performed for this study. We used residual nasal 

swabs collected from domestic cats as part of a previously published study 234.  
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Animal studies were approved prior to the start of the study by the Institutional Animal 

Care and Use Committee and performed in accordance with the Animal Care and Use 

Committee guidelines at the University of Wisconsin-Madison.  

 

Domestic cat experiments  

No animal experiments were specifically performed for this study. We used residual nasal 

swabs collected from domestic cats as part of a previously published study 234. Animals 

used in this study were specific-pathogen-free animals from a research colony maintained 

at the University of Wisconsin-Madison and were negative for feline coronavirus. As 

previously described by Halfmann et al, domestic cats were housed in 0.56 m x 0.81 m x 

1.07 m cages in a laboratory with 65% humidity at 23oC, and with at least 15.2 air 

exchanges per hour. Weight and body temperature (through implanted transponders) 

were measured daily (days 1–14). Under ketamine and dexdomitor anesthesia, three cats 

were inoculated with 5.2 x 105 plaque-forming units (PFU of SARS-CoV-2 given by a 

combination of inoculation routes for every animal (nasal [100 μl per nare], tracheal [500 

μl], oral [500 μl], and ocular [50 μl per eye]). To reverse the effects of the anesthesia, 

antisedan was administered to the animals after completion of the inoculation. Nasal 

swabs were collected daily during the study (days 1–10). 

 

Nucleic acid extraction  

For each sample, approximately 140 µL of viral transport medium was passed through a 

0.22 µm filter (Dot Scientific, Burton, MI, USA). Total nucleic acid was extracted using the 

Qiagen QIAamp Viral RNA Mini Kit (Qiagen, Hilden, Germany), substituting carrier RNA 
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with linear polyacrylamide (Invitrogen, Carlsbad, CA, USA) and eluting in 30 µL of 

nuclease-free H2O. 

 

Complementary DNA (cDNA) generation 

Complementary DNA (cDNA) was synthesized using a modified ARTIC Network 

approach 235,236.  Briefly, RNA was reverse transcribed with SuperScript IV Reverse 

Transcriptase (Invitrogen, Carlsbad, CA, USA) using random hexamers and dNTPs. 

Reaction conditions were as follows: 1 μL of random hexamers and 1 µL of dNTPs were 

added to 11 μL of sample RNA, heated to 65°C for 5 minutes, then cooled to 4°C for 1 

minute. Then 7 μL of a master mix (4 μL 5x RT buffer,1 μL 0.1M DTT, 1µL RNaseOUT 

RNase Inhibitor, and 1 μL SSIV RT) was added and incubated at 42°C for 10 minutes, 

70°C for 10 minutes, and then 4°C for 1 minute.  

 

Multiplex PCR for SARS-CoV-2 genomes 

A SARS-CoV-2-specific multiplex PCR for Nanopore sequencing was performed, similar 

to amplicon-based approaches as previously described 235,236. In short, primers for 96 

overlapping amplicons spanning the entire genome with amplicon lengths of 500bp and 

overlapping by 75 to 100bp between the different amplicons were used to generate cDNA. 

Primers used in this manuscript were designed by ARTIC Network and are shown in S3 

Table. cDNA (2.5 μL) was amplified in two multiplexed PCR reactions using Q5 Hot-Start 

DNA High-fidelity Polymerase (New England Biolabs, Ipswich, MA, USA) using the 

following cycling conditions; 98ºC for 30 seconds, followed by 25 cycles of 98ºC for 15 
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seconds and 65ºC for 5 minutes, followed by an indefinite hold at 4ºC 235,236. Following 

amplification, samples were pooled together before TruSeq Illumina library prep. 

 

TrueSeq Illumina library prep and sequencing 

Amplified cDNA was purified using a 1:1 concentration of AMPure XP beads (Beckman 

Coulter, Brea, CA, USA) and eluted in 30 µL of water. PCR products were quantified using 

Qubit dsDNA high-sensitivity kit (Invitrogen, USA) and were diluted to a final 

concentration of 2.5 ng/µl (150 ng in 50 µl volume). Each sample was then made 

compatible with deep sequencing using the Nextera TruSeq sample preparation kit 

(Illumina, USA). Specifically, each sample was enzymatically end repaired. Samples were 

purified using two consecutive AMPure bead cleanups (0.6x and 0.8x) and were 

quantified once more using Qubit dsDNA high-sensitivity kit (Invitrogen, USA). A non-

templated nucleotide was attached to the 3′ ends of each sample, followed by adaptor 

ligation. Samples were again purified using an AMPure bead cleanup (1x) and eluted in 

25 µL of resuspension buffer. Lastly, samples were amplified using 8 PCR cycles, cleaned 

with a 1:1 bead clean-up, and eluted in 30 µL of RSB. The average sample fragment 

length and purity was determined using the Agilent High Sensitivity DNA kit and the 

Agilent 2100 Bioanalyzer (Agilent, Santa Clara, CA). After passing quality control 

measures, samples were pooled equimolarly to a final concentration of 4 nM, and 5 µl of 

each 4 nM pool was denatured in 5 µl of 0.2 N NaOH for 5 min. Sequencing pools were 

denatured to a final concentration of 10 pM with a PhiX-derived control library accounting 

for 1% of total DNA and was loaded onto a 500-cycle v2 flow cell. Average quality metrics 
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were recorded, reads were demultiplexed, and FASTQ files were generated on Illumina’s 

BaseSpace platform.  

 

Processing of the raw sequence data, mapping, and variant calling  

Raw FASTQ files were analyzed using a workflow called “SARSquencer”. Briefly, reads 

are paired and merged using BBMerge (https://jgi.doe.gov/data-and-tools/bbtools/bb-

tools-user-guide/bbmerge-guide/) and mapped to the reference (MW219695.1) using 

BBMap (https://jgi.doe.gov/data-and-tools/bbtools/bb-tools-user-guide/bbmap-guide/). 

Mapped reads were imported into Geneious (https://www.geneious.com/) for visual 

inspection. Read coverage for index cat samples is plotted in S6 Fig and for contact 

samples in S7 Fig. Variants were called using callvariants.sh (contained within BBMap) 

and annotated using SnpEff (https://pcingola.github.io/SnpEff/). The complete 

“SARSquencer” pipeline is available in the GitHub accompanying this manuscript in 

`code/SARSquencer` as well as in a separate GitHub repository – 

https://github.com/gagekmoreno/SARS_CoV-2_Zequencer. BBMap’s output VCF files 

were cleaned using custom Python scripts, which can be found in the GitHub 

accompanying this manuscript 

(https://github.com/katarinabraun/SARSCoV2_transmission_in_domestic_cats) 237. 

Variants were called at ≥0.01% in reads that were ≥100 bp in length and supported by a 

minimum of 10 reads. Only variants at ≥3% frequency in both technical replicates were 

used for downstream analysis. Variant concordance across technical replicates is plotted 

in S8 Fig for index cats and S9 Fig for contact cats. In addition, all variants occurring in 
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ARTIC v3 primer-binding sites were discarded before proceeding with downstream 

analysis.    

 

Quantification of SARS-CoV-2 vRNA  

Plaque forming unit analysis was performed on all nasal swabs as published in Halfmann 

et al. 2019 234. Viral load analysis was performed on all of the nasal swab samples 

described above after they arrived in our laboratory. RNA was isolated using the Viral 

Total Nucleic Acid kit for the Maxwell RSC instrument (Promega, Madison, WI) following 

the manufacturer's instructions. Viral load quantification was performed using a sensitive 

qRT-PCR assay developed   by   the   CDC   to   detect   SARS-CoV-2 (specifically   the   

N1   assay) and commercially available from IDT (Coralville, IA). The assay was run on a 

LightCycler 96 or LC480 instrument (Roche, Indianapolis, IN) using the Taqman Fast 

Virus 1-stepMaster Mix enzyme (Thermo Fisher, Waltham, MA). The limit of detection of 

this assay is estimated to be 200 genome equivalents/ml saliva or swab fluid. To 

determine the viral load, samples were interpolated onto a standard curve consisting of 

serial 10-fold dilutions of in vitro transcribed SARS-CoV-2 N gene RNA. 

 

Pairwise nucleotide diversity calculations  

Nucleotide diversity was calculated using π summary statistics (S2 Table). π quantifies 

the average number of pairwise differences per nucleotide site among a set of sequences 

and was calculated per gene using SNPGenie  

(https://github.com/chasewnelson/SNPgenie) 238. SNPGenie adapts the Nei and Gojobori 

method of estimating nucleotide diversity (π), and its synonymous (πS) and 
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nonsynonymous (πN) partitions from next-generation sequencing data 197. When πN = 

πS, this indicates neutral evolution or genetic drift, with neither strong purifying nor 

positive selection playing a large role in the evolution of the viral population. πN < πS  

indicates purifying selection is acting to remove deleterious mutations, and πN > πS  

shows positive or diversifying selection acting on nonsynonymous variation 199. We tested 

the null hypothesis that πN = πS within each gene using an unpaired t-test (S1 Table). 

The code to replicate these results can be found in the ̀ diversity_estimates.ipynb` Jupyter 

Notebook in the `code` directory of the GitHub repository 200.  

  

SNP Frequency Spectrum calculations  

To generate SNP Frequency Spectrums (SFS), we binned all variants detected across 

timepoints within each index cat into six bins – 3-10%, 10-20%, 20-30%, 30-40%, 40-

50%, 50-60%. We plotted the counts of variants falling into each frequency bin using 

Matplotlib 3.3.2 (https://matplotlib.org). We used code written by Dr. Louise Moncla to 

generate the distribution of SNPs for a given population assuming no selection or change 

in population size, which is expected to follow a 1/x distribution 239. The code to replicate 

this can be found in the GitHub accompanying this manuscript, specifically in the 

`code/SFS.ipynb` Jupyter Notebook. This model predicts 42.8% of variants will fall within 

the 3-10% frequency range, 24.6% will fall within the 10-20% frequency range, 14.4% of 

variants will fall within the 20-30% frequency range, 10.2% of variants will fall within the 

30-40% frequency range, and 7.9% of variants will fall within the 40-50% frequency range. 

We used a Mann-Whitney U test to test the null hypothesis that the distribution of variant 

frequencies for each index cat was equal to the neutral distribution. The code to replicate 
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these results can be found in the `SFS.ipynb` Jupyter Notebook in the `code` directory of 

the GitHub repository.    

 

Focal Nextstrain build of S H655Y sequences 

The focal H655Y build (S5 Fig) was prepared as described in Hodcroft et al. (2020), with 

different mutations targeted for the S:655 mutation 240. Briefly: sequences with a mutation 

at nucleotide position 23525 (corresponding to a change at the 655 position in the spike 

glycoprotein) were selected from all available sequences on GISAID as of 29th December 

2020. These sequences were included as the 'focal' set for a Nextstrain phylogenetic 

analysis, to which 'context' sequences were added, with the most genetically similar 

sequences given priority. 

 

Code and data availability  

Code to replicate analyses and re-create most figures is available at 

https://github.com/katarinabraun/SARSCoV2_transmission_in_domestic_cats. Fig 1 was 

created by hand in Adobe Illustrator and S6 and S7 Figs were created using samtools 

command line tools, were visualized in JMP Pro 15 

(https://www.jmp.com/en_in/software/new-release/new-in-jmp-and-jmp-pro.html), and 

were then edited for readability in Adobe Illustrator. Code to process sequencing data is 

available at https://github.com/gagekmoreno/SARS_CoV-2_Zequencer and 

dependencies are available through Docker. Results were visualized using Matplotlib 

3.3.2(https://matplotlib.org), Seaborn v0.10.0 (https://github.com/mwaskom/seaborn), 

and Baltic v0.1.0 (https://github.com/evogytis/baltic). 
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Results  

Within-host diversity of SARS-CoV-2 in cats is limited  

Recently, members of our team inoculated three domestic specific-pathogen free cats 

with a second-passage SARS-CoV-2 human isolate from Tokyo (hCoV-19/Japan/UT-

NCGM02/2020) 234. Each index cat was co-housed with a contact cat beginning on day 1 

post-inoculation (DPI). No new cat infections were performed for this study. Nasal swabs 

were collected daily up to 10 days post-inoculation, Fig 1. Viral RNA burden is plotted in 

S1A Fig and infectious viral titers are shown in S1B Fig.  

 

Using conservative frequency thresholds previously established for tiled-amplicon 

sequencing, we called within-host variants (both intrahost single-nucleotide variants 

“iSNVs” and short insertions and deletions “indels”) throughout the genome against the 

inoculum SARS-CoV-2 reference (Genbank: MW219695.1) 235,236. Variants were required 

to be present in technical replicates at ≥3% and ≤97% of sequencing reads 190 (all within-
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host variants detected at >97% frequency were assumed to be fixed; see Methods for 

details). iSNVs were detected at least once at 38 different genome sites. Of the 38 unique 

variants, 14 are synonymous changes, 23 are nonsynonymous changes, and one occurs 

in an intergenic region; this distribution is broadly similar to recent reports of SARS-CoV-

2 variation in infected humans 231. Similarly, we detected indels occurring at 11 different 

genome sites across all animals and timepoints. We identified 6-19 distinct variants per 

cat, of which 4-7 were observed on two or more days over the course of the infection 

within each cat (S2 Fig). All variants (iSNVs and indels) are plotted by genome location 

and frequency in Fig 2A. 

 

Genetic drift and purifying selection shape within-host diversity 

To probe the evolutionary pressures shaping SARS-CoV-2 viruses within hosts, we first 

evaluated the proportion of variants shared between cats. Eighty-six percent of variants 

(34 of 38 iSNVs and 8 of 11 indels) were found in a single cat (42/49), 8% of variants 

were found in 2-5 cats (4/49), and the remaining 6% of variants were found in all 6 cats 

(3/49). 

 

Purifying selection, which acts to purge deleterious mutations from a population, is known 

to result in an excess of low-frequency variants. In contrast, positive selection results in 

the accumulation of intermediate- and high-frequency variation 239. Especially in the 

setting of an acute viral infection, exponential population growth is also expected to result 

in an excess of low-frequency variants 241. To determine the type of evolutionary pressure 

acting on SARS-CoV-2 in cats, we plotted these distributions against a simple “neutral 
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model” (light grey bars in Fig 2B), which assumes a constant population size and the 

absence of selection 239. This model predicted that ~43% of polymorphisms would fall in 

the 3-10% frequency bin, ~25% into the 10-20% bin, ~14% into the 20-30% bin, ~10% 

into the 30-40% bin, and ~8% into the 40-50% bin. The frequency distribution of variants 

detected in each index cat across all available timepoints did not differ significantly from 

this “neutral” expectation (p=0.265, p=0.052, p=0.160, respectively; Mann Whitney U 

test).  

 

Next we compared nonsynonymous (πN) and synonymous (πS) pairwise nucleotide 

diversity to further evaluate the evolutionary forces shaping viral populations in index and 

contact animals 203. Broadly speaking, excess nonsynonymous polymorphism (πN/πS > 

1) points toward diversifying or positive selection while excess synonymous 

polymorphism (πN/πS < 1) indicates purifying selection. When πN / πS is approximately 

1, genetic drift, i.e., stochastic changes in the frequency of viral genotypes over time, can 

be an important force shaping genetic diversity. We observe that πS exceeds or is 

approximately equal to πN in most genes, although there is substantial variation among 

genes and cats (S1 Table, S10 Fig, S11 Fig). πS is significantly higher than πN in all 3 

index cats in Spike (p=0.005, p=0.004, p=0.019, unpaired t-test) and ORF1ab (p=2.11e-

05, p=1.84e-06, p=1.99e-06, unpaired t-test) and in index cats 2 and 3 in ORF8 (p=0.03, 

p=0.04, unpaired t-test). πS and πN are not significantly different in at least one index cat 

in ORF3a, envelope, and nucleocapsid. There was not enough genetic variation to 

measure nucleotide diversity in the remaining four genes (S1 Table). Taken together, 

these results suggest longitudinal genetic variation within feline hosts is principally 
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shaped by genetic drift with purifying selection acting on individual genes, particularly 

ORF1ab and Spike.  

 

Longitudinal sampling reveals few consensus-level changes within hosts  

The consensus sequence recovered from all three index cats on the first day post-

inoculation was identical to the inoculum or “stock” virus. This consensus sequence 

remained largely unchanged throughout infection in all index cats with the notable 

exception of two variants: H655Y in Spike (nucleotide site 23,525) and a synonymous 

change at amino acid position 67 in envelope (nucleotide site 26,445; S67S), which arose 

rapidly in all 3 index cats and rose to consensus levels (≥50% frequency) at various 

timepoints throughout infection in all index cats. Neither of these iSNVs was detected 

above 3% frequency in the inoculum, but when we mined all sequencing reads, S H655Y 

and E S67S could be detected at 0.85% and 0.34%, respectively. S H655Y was the 

consensus sequence on days 2-5 and days 7-8 in index cat 1, as well as on days 4 and 

8 in index cat 2, and remained detectable above our 3% variant threshold throughout 

infection (Fig 3). Similarly, envelope S67S (E S67S) was the consensus sequence on 

day 8 in index cat 1 and day 1 in index cat 2. S H655Y and E S67S were detectable on 

days 1-7 in cat 3 but stayed below consensus level. 

 

Interestingly, S H655Y and E S67S became fixed together following transmission in two 

transmission pairs (contact cats 4 and 6) and were lost together during transmission to 

contact animal 5. In cat 5, however, two different variants in ORF1ab, G1756G and 

L3606F, became fixed after transmission. ORF1ab G1756G was not detected above 3% 
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and L3606F was found at 17.2% in the day 5 sample from the index cat 2 (the cat 

transmitting to cat 5); it was not found in the inoculum at any detectable frequency. The 

categorical loss or fixation of these variants immediately following transmission, and in 

particular the fixation following transmission of a variant that was undetectable before, 

are highly suggestive of a narrow bottleneck 242. 

 

In addition, a synonymous variant in an alanine codon at amino acid position 1,222 in 

Spike (nucleotide site 25,174) was found at >50% frequencies on days 4 and 8 in index 

cat 3, but was not detected above 3% on any other days. All iSNVs over time are shown 

in S2 Fig and all indels over time are shown in S3 Fig. These within-host analyses show 

that genetic drift appears to play a prominent role in shaping low-frequency genetic 

variation within hosts. 

 

SARS-CoV-2 transmission in domestic cats is defined by a narrow transmission 

bottleneck 

To estimate the size of SARS-CoV-2 transmission bottlenecks, we investigated the 

amount of genetic diversity lost following transmission in cats. We observed a reduction 

in the cumulative number of variants detected in each contact cat compared to its index: 

7 fewer variants in cat 4 (n=9) compared to cat 1 (n=16), 9 fewer in cat 5 (n=10) than cat 

2 (n=19), and 10 fewer in cat 6 (n=16) than cat 3 (n=6). Likewise, the frequency 

distribution of variants in all three contact cats following transmission differed from the 

distribution of variants in all three index cats prior to transmission (p-value=0.052, Mann 

Whitney U test). Following transmission, variant frequencies became more bimodally 
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distributed than those observed in index cats, i.e., in contacts, most variants were either 

very low-frequency or fixed (S2 Fig).  

 

To quantitatively investigate the stringency of each transmission event, we compared the 

genetic composition of viral populations immediately before and after viral transmission. 

We chose to use the first timepoint when infectious virus was recovered in the contact cat 

coupled with the timepoint immediately preceding this day in the index cat, as has been 

done previously 135. We used days 2 (index) and 3 (contact) in pair 1, days 5 and 6 in pair 

2, and days 4 and 5 in pair 3 (these sampling days are outlined in red in Fig 1). We applied 

the beta-binomial sampling method developed by Sobel-Leonard et al. to compare the 

shared set of variants (≥3%, ≤97%) in the pre/post-transmission timepoints for each pair 

137. Maximum-likelihood estimates determined that a mean effective bottleneck size of 5 

(99% CI: 1-10), 3 (99% CI: 1-7), and 2 (99% CI: 1-3) best described each of the three cat 

transmission events evaluated here (Fig 4). This is in line with previous estimates for 

other respiratory viruses, including airborne transmission of seasonal influenza viruses in 

humans 242. It is important to note, however, that the cat transmission pairs evaluated 

here shared physical enclosure spaces so the route of transmission could be airborne, 

direct contact, fomite, or a combination of these. Additionally, it has been shown that the 

route of influenza transmission can directly impact the size of the transmission bottleneck; 

for example, in one study airborne transmission of influenza viruses resulted in a narrow 

bottleneck, whereas contact transmission resulted in a wider bottleneck 134.  
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Discussion  

At the time of writing, the vast majority of humans remain immunologically naive to SARS-

CoV-2. Whether through ongoing human adaptation, spill-back events from other animal 

intermediates, or with the distribution of vaccines and therapeutics, the landscape of 

SARS-CoV-2 variation is certain to change. Understanding the forces that shape genetic 

diversity of SARS-CoV-2 viruses within hosts will aid in forecasting the pace of genetic 

change as the virus faces shifting population-level immunity. Additionally, this baseline 

allows researchers to more easily identify a shift in the forces shaping within- and 

between-host diversity; for example, identification of signatures of positive selection might 

highlight rapidly-adapting, and therefore higher-risk, viruses.  

 

Using domestic cats as a model system, we show stochastic processes like narrow 

transmission bottlenecks and genetic drift are major forces shaping SARS-CoV-2 genetic 

diversity within and between mammalian hosts. These stochastic forces typically act to 

constrain the overall pace of RNA virus evolution 122. Despite this, we observe the rapid 

outgrowth of S H655Y in all three index cats, suggesting that this site may be under 

positive selection in this system. This variant achieved rapid fixation following 

transmission in two of three transmission pairs.  

 

Our finding of narrow transmission bottlenecks is at odds with some recent studies in 

humans, which have estimated wide and variable SARS-CoV-2 transmission bottlenecks 

54,227–229, but it is in line with other estimates suggesting that few SARS-CoV-2 viruses are 

transmitted between humans 227,228. These discordant estimates are likely due to a 
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combination of factors, including variable routes of transmission, uncertain sources of 

infection, difficulty collecting samples which closely bookend the transmission event, and 

inaccurate variant calls. Human studies have commonly identified transmission pairs 

using intrahousehold infections diagnosed within a defined timeframe. A major weakness 

with this approach is the possibility that some of these cohabiting individuals will share an 

alternative source of exposure. Furthermore, without fine-scale epidemiological and 

clinical metadata, pinpointing the time of likely transmission is challenging, so even 

samples collected before and after a real transmission event may be several days 

removed from the time of transmission. Here we were able to circumvent many of these 

challenges by taking advantage of domestic cats experimentally infected with SARS-CoV-

2 arranged in defined transmission pairs with clinical monitoring and daily sample 

collection, making for a useful model system. 

 

The size of the transmission bottleneck may have additional implications for individual 

infections. The total number of founding virions, or the inoculum dose, has been posited 

to play a role in coronavirus disease 2019 (COVID-19) clinical severity and outcomes 

243,244. The transmission bottleneck can be parsed into two interdependent components: 

the population bottleneck, or the number of virus particles that found infection (similar to 

inoculation dose); and the genetic bottleneck, or the amount of viral diversity lost during 

transmission. For example, an infection founded by 1,000 genetically identical viruses 

would be categorized as resulting from a narrow genetic bottleneck (a single genotype 

initiates the infection) and a relatively large population bottleneck. The beta-binomial 

method used here measures the population bottleneck 137. Our data are consistent with 



   

 

75 

a narrow population bottleneck and therefore a low inoculum dose in these cats. The 

extent to which feline hosts experience symptoms when infected with SARS-CoV-2 is 

unclear, but the cats involved in this study remained afebrile throughout the study, did not 

lose body weight, and experienced no respiratory signs. Viral genetic diversity has been 

linked to pathogenesis and clinical outcomes in the context of other viruses (e.g., 

influenza A virus, polio, and respiratory syncytial virus) and because narrow transmission 

bottlenecks often reduce viral genetic diversity, bottlenecks may play an essential role in 

the outcome of individual infections in this way as well 245–249. The relationship between 

SARS-CoV-2 viral genetic diversity and COVID-19 clinical severity remains unclear. 

Some have proposed a direct relationship between particular viral lineages and COVID-

19 severity 250, while others postulate that host factors, like age and comorbidities such 

as hypertension, diabetes, and preexisting respiratory system disease, are more likely to 

explain variable clinical outcomes 251.  

 

Although within-host diversity was limited in the cats evaluated here, we identify two 

notable variants. S H655Y and E S67S were found at 0.85% and 0.34% in the stock, but 

were preferentially amplified in all three index cats and were detectable at intermediate 

frequencies at the first-day post-inoculation. Interestingly, S H655Y is not found in any of 

the 18 full-genome domestic cat, tiger, and lion SARS-CoV-2 sequences available on 

GISAID (S4 Fig). S H655Y has, however, been reported in a variety of other settings, 

including transmission studies in a hamster model, SARS-CoV-2 tissue culture 

experiments 252–255, and in a stock virus passaged on Vero E6 cells [BioProject 

PRJNA645906, experiment numbers SRX9287152 (p1), SRX9287151 (p2), 
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SRX9287154 (p3a); BioProject PRJNA627977]. S H655Y additionally persisted in vivo in 

rhesus macaques challenged with one of these stock viruses [BioProject PRJNA645906, 

experiment number SRX9287155]. As of 28 December, 2020, S H655Y has been 

detected in 1,070 human SARS-CoV-2 viruses across 18 different countries in sequences 

deposited in GISAID. The majority of these sequences come from the United Kingdom 

(n=886) (S5B Fig, S5C Fig). It is important to note, however, that sampling of SARS-

CoV-2 sequences is heavily biased and sequences from the COVID-19 Genomics UK 

consortium (COG-UK) are currently overrepresented in GISAID. Additionally, S H655Y is 

the 16th most common variant detected in Spike among publicly-available SARS-CoV-2 

sequences (Tze Chuen Lee R. Spike glycoprotein mutation surveillance. GISAID. 

https://www.epicov.org/epi3/cfrontend#2ea2a6). Sequences containing S H655Y variant 

are found in two distinct European clusters, EU1 and EU2, suggesting it has arisen more 

than once (S5A Fig). 

 

Relatively little is known about the phenotypic impact of S H655Y in cats, humans, and 

other host species. Amino acid residue 655 is located near the polybasic cleavage site, 

residing between the receptor binding domain (RBD) and the fusion peptide, and 

therefore has been hypothesized to play a role in regulating Spike glycoprotein fusion 

efficiency (S12 Fig) 252,253,256. In spite of its location outside of the RBD, S H655Y has 

been shown to arise on the background of a vesicular stomatitis virus (VSV) pseudotyped 

virus expressing various SARS-CoV-2 spike variants and confer escape from multiple 

monoclonal human antibodies in cell culture 252. It is unlikely S H655Y represents a site 

of antibody escape in these cats because they were specific pathogen-free and had 
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undetectable IgG antibody titers against SARS-CoV-2 Spike and Nucleocapsid proteins 

on the day of infection 234. We did not do any experiments to elucidate the functional 

impact of this variant, but we speculate S H655Y could have improved Spike fusion 

efficiency and therefore host-cell entry in cats. It is possible S H655Y offers a similar 

advantage in human hosts and/or confers escape from some antibodies. 

E S67S has not been documented elsewhere. Based on iSNV frequencies, S H655Y and 

E S67S appear to be in linkage with each other (see mirrored iSNV frequencies in cat 2 

and cat 5 in Fig 3 in particular), however with short sequence reads and sequencing 

approaches relying on amplicon PCR, we cannot rigorously assess the extent of linkage 

disequilibrium between these variants. It may be that S H655Y arose on the genetic 

background of an existing S67S variant in envelope. If S H655Y facilitates viral entry or 

replication in cats, viruses with this variant in linkage with E S67S might have been 

positively selected in all index cats. 

 

Our data alone cannot resolve the precise mechanisms by which SARS-CoV-2 diversity 

is reduced during transmission, but the trajectories of S H655Y and E S67S raise some 

interesting possibilities. Although our sample size is small, the outgrowth of S H655Y with 

E S67S in all index cats, and the fixation of these variants in 2 of 3 contact cats, suggest 

that selection for one or both of these variants could have played a role in shaping genetic 

diversity recovered from contact cats. Viruses bearing these mutations could be 

preferentially amplified prior to, during, and/or after transmission.  
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If the transmission bottleneck is narrow and random, a variant’s likelihood of being 

transmitted is equal to its frequency in the viral population at the time of transmission. If 

selection acts primarily within index hosts prior to transmission, S H655Y could have 

achieved a high enough frequency to be randomly drawn at the time of transmission. In 

this case, even a random, narrow transmission bottleneck could have facilitated the rapid 

fixation of a putatively beneficial variant. Next, suppose that viruses bearing S H655Y are 

shed more efficiently from index animals. In this case, evidence of selection in index 

animals would be limited and we would observe a small founding population in contact 

hosts where the beneficial variant is dominant. Alternatively, suppose viruses bearing S 

H655Y preferentially found infection in the recipient. In this case where selection is acting 

primarily in the contact host, transmission may involve transfer of a larger virus population 

after which beneficial variants may rapidly be swept to fixation. These scenarios are not 

mutually exclusive and it is possible for selection to act in concert before, during, and after 

transmission. In any of these scenarios, we would observe a low-diversity virus population 

in contact animals in which the putatively beneficial variants had been enriched. Notably, 

S H655Y and E S67S are absent from contact cat 5 (pair 2), despite being detectable and 

even reaching consensus levels in the associated index animal. While these variants are 

lost during transmission in this pair, a variant in ORF1ab (Gly1756Gly), which was 

undetectable in index cat 2, became fixed in contact cat 5 following transmission. The 

dramatic shifts in iSNV frequency we observe in all 3 pairs are characteristic of a narrow 

transmission bottleneck 122. Because narrow transmission bottlenecks can result in the 

loss of even beneficial variants, the fact that S H655Y and E S67S failed to be transmitted 

in pair 2 does not exclude the possibility that these variants enhance viral fitness. 
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Altogether our data therefore support the conclusion that SARS-CoV-2 transmission 

bottlenecks are narrow in this system, and may sometimes involve selection. 

 

SARS-CoV-2 viruses can replicate and be shed via the respiratory tract. Differences in 

cell types, receptor distribution, temperature and humidity along the length of the 

respiratory tract may favor the emergence of different viral variants. If viral populations 

vary genetically across anatomic location, virus collected from different parts of the 

respiratory tract could result in different bottleneck size estimates. In this study, we had 

access to nasal swabs and were therefore were only able to evaluate genetic diversity 

arising in the upper respiratory tract. Others have previously documented foci of influenza 

virus in the lower respiratory tract appear to be independent from upper respiratory tract 

infections 257,258. Current insights into potential differences in the genetic composition, 

structure, and evolution in the upper vs. lower respiratory tract remain incomplete for both 

influenza viruses and SARS-CoV-2.  

 

Large SARS-CoV-2 outbreaks in mink have been reported recently, some with 

“concerning” mutations that may evade human humoral immunity 259. These mink 

outbreaks have resulted in the Danish authorities’ decision to cull 17 million mink as a 

safeguard against spill-back transmission into humans. Similarly, the emergence of the 

B.1.1.7 SARS-CoV-2 lineage has brought to light the importance of detecting and 

characterizing novel variants which might confer increased transmissibility, 

infectiousness, clinical severity, or other phenotypic change. The precise origins of the 

defining B.1.1.7 variants are unknown. It has been speculated that it may have arisen 
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from a chronically infected patient or through sub-curative doses of convalescent plasma 

260. While S H655Y has not been found in mink and is not one of the defining B.1.1.7 

mutations, another one of the defining B.1.1.7 mutations, Spike N501Y, has emerged 

independently in mouse models 237. This suggests that mammalian models can facilitate 

the detection of novel mutations and signatures of positive selection, which might highlight 

adaptive mutations. We observe one variant that arises early and is transmitted onward 

in cats, a potential reservoir and model species. Little has been specifically documented 

about this variant, but it was very interesting to note it confers escape from various human 

monoclonal antibodies and has been detected in more than 1,000 human viruses 252,261. 

Our study and the mink example show that species- and context-specific adaptations are 

likely as SARS-CoV-2 explores new hosts. Further investigation and ongoing surveillance 

for such variants is warranted. It is also important to prevent the reintroduction of such 

newly formed variants, of which we do not know the potential phenotypic impacts, by 

limiting the spread and evolution of SARS-CoV-2 in non-human reservoir species 

 

As SARS-CoV-2 continues to spread globally, we must have models in place to 

recapitulate key evolutionary factors influencing SARS-CoV-2 transmission. With the 

imminent release of SARS-CoV-2 vaccines and therapeutics and increasing prevalence 

of natural exposure-related immunity, these models can help us forecast the future of 

SARS-CoV-2 variation and population-level genetic changes. Continued efforts to 

sequence SARS-CoV-2 across a wide variety of hosts, transmission routes, and 

spatiotemporal scales will be necessary to determine the evolutionary and 
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epidemiological forces responsible for shaping within-host genetic diversity into global 

viral variation.   
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Figure 1. Experimental timeline.  
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Schematic representing the sampling timeline for the three transmission pairs. Index cats 

were inoculated on day 0 with 5.2e5 PFU of a human isolate (hCoV-19/Japan/UT-

NCGM02/2020) and were co-housed with a naive cat starting on day 1. Within each 

transmission pair, the top row of circles represents the index cat and the bottom row 

represents the contact cat. Open circles represent days on which there was no detectable 

infectious virus as indicated by plaque assay, and closed circles highlight days when live 

virus was recovered. Circles with a red outline indicate timepoints which were used in the 

beta-binomial estimate to calculate transmission bottleneck sizes.  

 

 

Figure 2. Within-host diversity of SARS-CoV-2 viruses in domestic cats. 

A) Plot representing all variants (iSNVs and indels) detected in any cat at any timepoint. 

Variant frequencies are plotted by genome location and are colored by gene. Circles 
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represent synonymous iSNVs, squares represent nonsynonymous iSNVs, and stars 

represent indels. B) iSNV frequency spectrums with error bars showing standard 

deviation for index cats plotted against a “neutral model” (light gray bars) which assumes 

a constant population size and the absence of selection. 

 

 

Figure 3. Frequency of iSNVs over time in each index and contact cat.  

The frequency of iSNVs discussed in the results over time in all six cats are shown. All 

iSNVs over time are shown in Supplementary Figure and all indels over time are shown 

in Supplementary Figure 3. Each variant is colored by gene location. Nonsynonymous 
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variants are plotted with solid lines and synonymous variants are plotted with dashed 

lines. Variants detected in index cats are denoted with squares and variants detected in 

contact cats are denoted with circles. Timepoints with viral loads too low to yield high 

quality sequences are shown by the gaps in data, but iSNVs are connected across these 

gaps using light lines for readability (i.e. cat 1 day 9). The dotted line at 50% frequency 

represents the consensus threshold.  

 

 

Figure 4. SARS-CoV-2 transmission is defined by a narrow bottleneck.  

Variant frequencies in the index cats (x-axis) compared with frequencies of the same 

variants in the corresponding contact cats (y-axis) that were used in the beta-binomial 

estimate are shown on the left. Estimates of SARS-CoV-2 transmission bottleneck with 

99% confidence intervals shown on the right. 



   

 

85 

 

S1 Fig. Viral loads and viral titers over time. A) Viral RNA burden over time for each 

cat. Index cats are represented by a solid line and contact cats are represented by a 

dashed line. Transmission pairs are denoted by color. The grey, horizontal dotted line 

represents when less than ~100 copies/µL are input into the reverse transcription 

reaction. B) Infectious viral titer over time. Index cats are represented by a solid line and 

contact cats are represented by a dashed line. Transmission pairs are denoted by color. 
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S2 Fig. Longitudinal frequency of iSNVs detected in all cats and at all timepoints. 

Each variant is colored based on gene location. Nonsynonymous variants are plotted with 

solid lines and synonymous variants are plotted with dashed lines. Days with viral loads 

too low to yield high quality sequences are shown by the gaps in data (i.e. cat 3 day 6 

and cat 4 day 9).  
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S3 Fig. Longitudinal frequency of indels detected in all cats and at all timepoints. 

Each indel is colored based on gene location. Days with viral loads too low to yield high 

quality sequences are shown by the gaps in data (i.e. cat 3 day 6 and cat 4 day 9). Note 

the y-axis range is 0-12%, not 0-100%, to facilitate readability. 

 

 

S4 Fig. Sequence alignment of all tiger, lion, and domestic cat sequences available in 

GISAID as of December 2020. Sequences were aligned against MW219695.1, the 

inoculum virus used in these experiments. Consensus-level differences are highlighted 

with a blue vertical marker. Indels are noted with a horizontal vertical marker. The spike 

open reading frame is annotated with a green marker and site amino acid 655 in Spike is 

highlighted with the orange box. None of these sequences contain a consensus mutation 

at residue 655 in Spike.   
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S5 Fig. Geographic dispersion of Spike H655Y variant. A) A time-resolved phylogeny 

focused on viruses that contain Spike H655Y. Viruses that contain histidine (H) at Spike 

655 are colored in teal. Viruses with tyrosine (Y) at Spike 655 are colored in yellow. B) 

Counts of SARS-CoV-2 viruses that contain Spike H655Y, broken down by country. C) 

Map highlighting the number viruses from each country. The size of the circle represents 

the number of sequences from the appropriate country contained in the phylogeny.  
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S6 Fig. Read depth across the SARS-CoV-2 genome in index cats. Each day is 

represented by a different color. Replicate A is shown in the left column and replicate B 

is shown in the right column.  
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S7 Fig. Read depth across the SARS-CoV-2 genome in contact cats. Each day is 

represented by a different color. Replicate A is shown in the left column and replicate B 

is shown in the right column.  
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S8 Fig. Intersection variants found across technical replicates in index cats. The 

frequency of each variant per replicate is shown here. The diagonal line represents the 

1:1 intersection of replicate variants. The subplot to the right of each primary plot is a 

zoomed-in view of the low-frequency variants (3-15%). Each timepoint is denoted by a 

different color.  
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S9 Fig. Intersection variants found across technical replicates in contact cats. The 

frequency of each variant per replicate is shown here. The diagonal line represents the 

1:1 intersection of replicate variants. The subplot to the right of each primary plot is a 

zoomed-in view of the low-frequency variants (3-15%). Each timepoint is denoted by a 

different color.  
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S10 Fig. Longitudinal pairwise nonsynonymous nucleotide diversity divided by 

pairwise synonymous nucleotide diversity in index cats. Line color denotes gene. 

The horizontal dotted gray line is plotted at y = 1 or when πN ~ πS.  
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S11 Fig. Longitudinal pairwise nonsynonymous nucleotide diversity divided by 

pairwise synonymous nucleotide diversity in contact cats. Line color denotes gene. 

The horizontal dotted gray line is plotted at y = 1 or when πN ~ πS.  

 



   

 

99 

S12 Fig. SARS-CoV-2 spike glycoprotein crystal structure. Spike H655Y is 

highlighted in blue. The table to the right of the crystal structure includes summary 

information regarding the impact of a histidine to tyrosine change on amino acid charge, 

volume, and aromaticity. * Qualitative definitions of radical amino acid replacements, 

based on three alternative residue groupings, see Hanada et al., 2006 262. The crystal 

structure and summary information were generated using GISAID’s CoVserver mutation 

analysis tool.  
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S1 Table. Nonsynonymous and synonymous nucleotide diversity estimates in index cats.  

mean πS std πS mean πN std πN πN/πS statistic, p-value
index cat 1

ORF1ab 0.015670 0.005609 0.003019 0.001124 0.195265 (statistic=6.23, pvalue=2.11e-05)

S 0.001564 0.000600 0.000644 0.000467 0.413995 (statistic=3.34, pvalue=0.005)

ORF3a 0.005367 0.000001 0.005878 0.002267 0.641899 (statistic=-0.303, pvalue=0.772)

E 0.011707 0.010139 0.011930 0.005719 0.719601 (statistic=-0.0456, pvalue=0.965)

M 0.002138 0.000059 (statistic=nan, pvalue=nan)

ORF6 0.007395 (statistic=nan, pvalue=nan)

ORF7a 0.011992 0.000487 (statistic=nan, pvalue=nan)

ORF8 0.031186 0.012756 (statistic=nan, pvalue=nan)

N 0.005292 0.002941 0.003036 0.001403 0.744626 (statistic=1.410, pvalue=0.196)

ORF10 (statistic=nan, pvalue=nan)

index cat 2
ORF1ab 0.025570 0.007229 0.005423 0.001061 0.219071 (statistic=7.799, pvalue=1.837e-06)

S 0.004651 0.002567 0.001476 0.000556 0.457442 (statistic=3.419, pvalue=0.0042)

ORF3a 0.008660 0.003052 0.003867 0.001630 0.535879 (statistic=3.549, pvalue=0.0053)

E 0.008410 0.009696 0.015842 0.010396 436.372255 (statistic=-1.191, pvalue=0.261)

M 0.002479 0.000841 (statistic=nan, pvalue=nan)

ORF6 0.007468 (statistic=nan, pvalue=nan)

ORF7a 0.011872 (statistic=nan, pvalue=nan)

ORF8 0.030343 0.012115 0.005673 0.002620 0.224566 (statistic=2.733, pvalue=0.0292)

N 0.006988 0.004962 0.001398 0.000535 0.346156 (statistic=2.240, pvalue=0.066)

ORF10 (statistic=nan, pvalue=nan)

index cat 3
ORF1ab 0.022195 0.005336 0.004752 0.000970 0.225357 (statistic=8.509, pvalue=1.988e-06)

S 0.003619 0.001697 0.001584 0.001032 0.505292 (statistic=2.711, pvalue=0.0189)

ORF3a 0.005516 0.000037 0.004351 0.003509 0.764893 (statistic=0.649, pvalue=0.533)

E 0.016174 0.000532 0.023985 0.007123 1.553581 (statistic=-2.145, pvalue=0.0642)

M 0.006492 0.002078 0.000007 (statistic=nan, pvalue=nan)

ORF6 (statistic=nan, pvalue=nan)

ORF7a 0.012294 0.000305 (statistic=nan, pvalue=nan)

ORF8 0.020154 0.006891 0.008740 0.002221 0.509847 (statistic=2.708, pvalue=0.0352)

N 0.005320 0.001974 0.003336 0.925883 (statistic=nan, pvalue=nan)

ORF10 (statistic=nan, pvalue=nan)
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S2 Table.  Genome-wide pairwise nucleotide diversity estimates in index and contact cats 

 

 

name pool sequence length %gc tm (use 65) 
nCoV-2019_1_LEFT nCoV-2019_1 ACCAACCAACTTTCGATCTCTTGT 24 41.67 60.69 
nCoV-2019_1_RIGHT nCoV-2019_1 CATCTTTAAGATGTTGACGTGCCTC 25 44 60.45 
nCoV-2019_2_LEFT nCoV-2019_2 CTGTTTTACAGGTTCGCGACGT 22 50 61.67 
nCoV-2019_2_RIGHT nCoV-2019_2 TAAGGATCAGTGCCAAGCTCGT 22 50 61.74 
nCoV-2019_3_LEFT nCoV-2019_1 CGGTAATAAAGGAGCTGGTGGC 22 54.55 61.32 
nCoV-2019_3_RIGHT nCoV-2019_1 AAGGTGTCTGCAATTCATAGCTCT 24 41.67 60.32 
nCoV-2019_4_LEFT nCoV-2019_2 GGTGTATACTGCTGCCGTGAAC 22 54.55 61.56 
nCoV-2019_4_RIGHT nCoV-2019_2 CACAAGTAGTGGCACCTTCTTTAGT 25 44 60.97 
nCoV-2019_5_LEFT nCoV-2019_1 TGGTGAAACTTCATGGCAGACG 22 50 61.39 
nCoV-2019_5_RIGHT nCoV-2019_1 ATTGATGTTGACTTTCTCTTTTTGGAGT 28 32.14 60.17 
nCoV-2019_6_LEFT nCoV-2019_2 GGTGTTGTTGGAGAAGGTTCCG 22 54.55 61.64 

Cat 1 Cat 2 Cat 3 Cat 4 Cat 5 Cat 6

π DPI 1 0.000246 0.000290 0.000433

π DPI 2 0.000314 0.000705 0.000546

π DPI 3 0.000458 0.000557 0.000781 0.000712 0.000153

π DPI 4 0.000577 0.000650 0.000568 0.000796 0.000206 0.000037

π DPI 5 0.000489 0.000513 0.000540 0.001007 0.000149 0.000576

π DPI 6 0.000430 0.000720 0.000917 0.000854 0.000156

π DPI 7 0.000365 0.000541 0.000683 0.000721 0.000876 0.000025

π DPI 8 0.000214 0.000591 0.000458 0.000879 0.000872 0.000720

π DPI 9 0.000125 0.000965 0.000070

π DPI 10 0.000371 0.000932 0.000000

mean π 0.000387 0.000571 0.000573 0.000691 0.000626 0.000226

std π 0.000117 0.000128 0.000114 0.000279 0.000355 0.000273
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nCoV-2019_6_RIGHT nCoV-2019_2 TAGCGGCCTTCTGTAAAACACG 22 50 61.18 
nCoV-2019_7_LEFT nCoV-2019_1 ATCAGAGGCTGCTCGTGTTGTA 22 50 61.73 
nCoV-2019_7_LEFT_alt0 nCoV-2019_1 CATTTGCATCAGAGGCTGCTCG 22 54.55 62.44 
nCoV-2019_7_RIGHT nCoV-2019_1 TGCACAGGTGACAATTTGTCCA 22 45.45 60.95 
nCoV-2019_7_RIGHT_alt5 nCoV-2019_1 AGGTGACAATTTGTCCACCGAC 22 50 61.07 
nCoV-2019_8_LEFT nCoV-2019_2 AGAGTTTCTTAGAGACGGTTGGGA 24 45.83 61 
nCoV-2019_8_RIGHT nCoV-2019_2 GCTTCAACAGCTTCACTAGTAGGT 24 45.83 60.56 
nCoV-2019_9_LEFT nCoV-2019_1 TCCCACAGAAGTGTTAACAGAGGA 24 45.83 61.18 
nCoV-2019_9_LEFT_alt4 nCoV-2019_1 TTCCCACAGAAGTGTTAACAGAGG 24 45.83 60.44 
nCoV-2019_9_RIGHT nCoV-2019_1 ATGACAGCATCTGCCACAACAC 22 50 61.71 
nCoV-2019_9_RIGHT_alt2 nCoV-2019_1 GACAGCATCTGCCACAACACAG 22 54.55 62.26 
nCoV-2019_10_LEFT nCoV-2019_2 TGAGAAGTGCTCTGCCTATACAGT 24 45.83 61.12 
nCoV-2019_10_RIGHT nCoV-2019_2 TCATCTAACCAATCTTCTTCTTGCTCT 27 37.04 60.31 
nCoV-2019_11_LEFT nCoV-2019_1 GGAATTTGGTGCCACTTCTGCT 22 50 61.66 
nCoV-2019_11_RIGHT nCoV-2019_1 TCATCAGATTCAACTTGCATGGCA 24 41.67 61.35 
nCoV-2019_12_LEFT nCoV-2019_2 AAACATGGAGGAGGTGTTGCAG 22 50 61.08 
nCoV-2019_12_RIGHT nCoV-2019_2 TTCACTCTTCATTTCCAAAAAGCTTGA 27 33.33 60.36 
nCoV-2019_13_LEFT nCoV-2019_1 TCGCACAAATGTCTACTTAGCTGT 24 41.67 60.56 
nCoV-2019_13_RIGHT nCoV-2019_1 ACCACAGCAGTTAAAACACCCT 22 45.45 60.36 
nCoV-2019_14_LEFT nCoV-2019_2 CATCCAGATTCTGCCACTCTTGT 23 47.83 60.62 
nCoV-2019_14_LEFT_alt4 nCoV-2019_2 TGGCAATCTTCATCCAGATTCTGC 24 45.83 61.47 
nCoV-2019_14_RIGHT nCoV-2019_2 AGTTTCCACACAGACAGGCATT 22 45.45 60.42 
nCoV-2019_14_RIGHT_alt2 nCoV-2019_2 TGCGTGTTTCTTCTGCATGTGC 22 50 62.76 
nCoV-2019_15_LEFT nCoV-2019_1 ACAGTGCTTAAAAAGTGTAAAAGTGCC 27 37.04 61.32 
nCoV-2019_15_LEFT_alt1 nCoV-2019_1 AGTGCTTAAAAAGTGTAAAAGTGCCT 26 34.62 60.13 
nCoV-2019_15_RIGHT nCoV-2019_1 AACAGAAACTGTAGCTGGCACT 22 45.45 60.16 
nCoV-2019_15_RIGHT_alt3 nCoV-2019_1 ACTGTAGCTGGCACTTTGAGAGA 23 47.83 61.57 
nCoV-2019_16_LEFT nCoV-2019_2 AATTTGGAAGAAGCTGCTCGGT 22 45.45 60.82 
nCoV-2019_16_RIGHT nCoV-2019_2 CACAACTTGCGTGTGGAGGTTA 22 50 61.32 
nCoV-2019_17_LEFT nCoV-2019_1 CTTCTTTCTTTGAGAGAAGTGAGGACT 27 40.74 60.69 
nCoV-2019_17_RIGHT nCoV-2019_1 TTTGTTGGAGTGTTAACAATGCAGT 25 36 60.11 
nCoV-2019_18_LEFT nCoV-2019_2 TGGAAATACCCACAAGTTAATGGTTTAAC 29 34.48 60.69 
nCoV-2019_18_LEFT_alt2 nCoV-2019_2 ACTTCTATTAAATGGGCAGATAACAACTGT 30 33.33 61.38 
nCoV-2019_18_RIGHT nCoV-2019_2 AGCTTGTTTACCACACGTACAAGG 24 45.83 61.51 
nCoV-2019_18_RIGHT_alt1 nCoV-2019_2 GCTTGTTTACCACACGTACAAGG 23 47.83 60.3 
nCoV-2019_19_LEFT nCoV-2019_1 GCTGTTATGTACATGGGCACACT 23 47.83 61.18 
nCoV-2019_19_RIGHT nCoV-2019_1 TGTCCAACTTAGGGTCAATTTCTGT 25 40 60.4 
nCoV-2019_20_LEFT nCoV-2019_2 ACAAAGAAAACAGTTACACAACAACCA 27 33.33 60.68 
nCoV-2019_20_RIGHT nCoV-2019_2 ACGTGGCTTTATTAGTTGCATTGTT 25 36 60.28 
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nCoV-2019_21_LEFT nCoV-2019_1 TGGCTATTGATTATAAACACTACACACCC 29 37.93 61.49 
nCoV-2019_21_LEFT_alt2 nCoV-2019_1 GGCTATTGATTATAAACACTACACACCCT 29 37.93 61.29 
nCoV-2019_21_RIGHT nCoV-2019_1 TAGATCTGTGTGGCCAACCTCT 22 50 60.83 
nCoV-2019_21_RIGHT_alt0 nCoV-2019_1 GATCTGTGTGGCCAACCTCTTC 22 54.55 61.2 
nCoV-2019_22_LEFT nCoV-2019_2 ACTACCGAAGTTGTAGGAGACATTATACT 29 37.93 61.25 
nCoV-2019_22_RIGHT nCoV-2019_2 ACAGTATTCTTTGCTATAGTAGTCGGC 27 40.74 60.73 
nCoV-2019_23_LEFT nCoV-2019_1 ACAACTACTAACATAGTTACACGGTGT 27 37.04 60.26 
nCoV-2019_23_RIGHT nCoV-2019_1 ACCAGTACAGTAGGTTGCAATAGTG 25 44 60.57 
nCoV-2019_24_LEFT nCoV-2019_2 AGGCATGCCTTCTTACTGTACTG 23 47.83 60.37 
nCoV-2019_24_RIGHT nCoV-2019_2 ACATTCTAACCATAGCTGAAATCGGG 26 42.31 61.19 
nCoV-2019_25_LEFT nCoV-2019_1 GCAATTGTTTTTCAGCTATTTTGCAGT 27 33.33 60.73 
nCoV-2019_25_RIGHT nCoV-2019_1 ACTGTAGTGACAAGTCTCTCGCA 23 47.83 61.3 
nCoV-2019_26_LEFT nCoV-2019_2 TTGTGATACATTCTGTGCTGGTAGT 25 40 60.28 
nCoV-2019_26_RIGHT nCoV-2019_2 TCCGCACTATCACCAACATCAG 22 50 60.42 
nCoV-2019_27_LEFT nCoV-2019_1 ACTACAGTCAGCTTATGTGTCAACC 25 44 60.8 
nCoV-2019_27_RIGHT nCoV-2019_1 AATACAAGCACCAAGGTCACGG 22 50 61.13 
nCoV-2019_28_LEFT nCoV-2019_2 ACATAGAAGTTACTGGCGATAGTTGT 26 38.46 60.13 
nCoV-2019_28_RIGHT nCoV-2019_2 TGTTTAGACATGACATGAACAGGTGT 26 38.46 60.91 
nCoV-2019_29_LEFT nCoV-2019_1 ACTTGTGTTCCTTTTTGTTGCTGC 24 41.67 61.39 
nCoV-2019_29_RIGHT nCoV-2019_1 AGTGTACTCTATAAGTTTTGATGGTGTGT 29 34.48 60.69 
nCoV-2019_30_LEFT nCoV-2019_2 GCACAACTAATGGTGACTTTTTGCA 25 40 61.19 
nCoV-2019_30_RIGHT nCoV-2019_2 ACCACTAGTAGATACACAAACACCAG 26 42.31 60.3 
nCoV-2019_31_LEFT nCoV-2019_1 TTCTGAGTACTGTAGGCACGGC 22 54.55 62.03 
nCoV-2019_31_RIGHT nCoV-2019_1 ACAGAATAAACACCAGGTAAGAATGAGT 28 35.71 60.69 
nCoV-2019_32_LEFT nCoV-2019_2 TGGTGAATACAGTCATGTAGTTGCC 25 44 61.09 
nCoV-2019_32_RIGHT nCoV-2019_2 AGCACATCACTACGCAACTTTAGA 24 41.67 60.56 
nCoV-2019_33_LEFT nCoV-2019_1 ACTTTTGAAGAAGCTGCGCTGT 22 45.45 61.58 
nCoV-2019_33_RIGHT nCoV-2019_1 TGGACAGTAAACTACGTCATCAAGC 25 44 61.08 
nCoV-2019_34_LEFT nCoV-2019_2 TCCCATCTGGTAAAGTTGAGGGT 23 47.83 61.02 
nCoV-2019_34_RIGHT nCoV-2019_2 AGTGAAATTGGGCCTCATAGCA 22 45.45 60.03 
nCoV-2019_35_LEFT nCoV-2019_1 TGTTCGCATTCAACCAGGACAG 22 50 61.39 
nCoV-2019_35_RIGHT nCoV-2019_1 ACTTCATAGCCACAAGGTTAAAGTCA 26 38.46 60.69 
nCoV-2019_36_LEFT nCoV-2019_2 TTAGCTTGGTTGTACGCTGCTG 22 50 61.44 
nCoV-2019_36_RIGHT nCoV-2019_2 GAACAAAGACCATTGAGTACTCTGGA 26 42.31 60.74 
nCoV-2019_37_LEFT nCoV-2019_1 ACACACCACTGGTTGTTACTCAC 23 47.83 60.93 
nCoV-2019_37_RIGHT nCoV-2019_1 GTCCACACTCTCCTAGCACCAT 22 54.55 61.48 
nCoV-2019_38_LEFT nCoV-2019_2 ACTGTGTTATGTATGCATCAGCTGT 25 40 60.86 
nCoV-2019_38_RIGHT nCoV-2019_2 CACCAAGAGTCAGTCTAAAGTAGCG 25 48 61.13 
nCoV-2019_39_LEFT nCoV-2019_1 AGTATTGCCCTATTTTCTTCATAACTGGT 29 34.48 61 
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nCoV-2019_39_RIGHT nCoV-2019_1 TGTAACTGGACACATTGAGCCC 22 50 60.55 
nCoV-2019_40_LEFT nCoV-2019_2 TGCACATCAGTAGTCTTACTCTCAGT 26 42.31 61.25 
nCoV-2019_40_RIGHT nCoV-2019_2 CATGGCTGCATCACGGTCAAAT 22 50 62.09 
nCoV-2019_41_LEFT nCoV-2019_1 GTTCCCTTCCATCATATGCAGCT 23 47.83 60.75 
nCoV-2019_41_RIGHT nCoV-2019_1 TGGTATGACAACCATTAGTTTGGCT 25 40 60.75 
nCoV-2019_42_LEFT nCoV-2019_2 TGCAAGAGATGGTTGTGTTCCC 22 50 61.08 
nCoV-2019_42_RIGHT nCoV-2019_2 CCTACCTCCCTTTGTTGTGTTGT 23 47.83 60.69 
nCoV-2019_43_LEFT nCoV-2019_1 TACGACAGATGTCTTGTGCTGC 22 50 60.93 
nCoV-2019_43_RIGHT nCoV-2019_1 AGCAGCATCTACAGCAAAAGCA 22 45.45 61.14 
nCoV-2019_44_LEFT nCoV-2019_2 TGCCACAGTACGTCTACAAGCT 22 50 61.66 
nCoV-2019_44_LEFT_alt3 nCoV-2019_2 CCACAGTACGTCTACAAGCTGG 22 54.55 60.67 
nCoV-2019_44_RIGHT nCoV-2019_2 AACCTTTCCACATACCGCAGAC 22 50 60.87 
nCoV-2019_44_RIGHT_alt0 nCoV-2019_2 CGCAGACGGTACAGACTGTGTT 22 54.55 62.77 
nCoV-2019_45_LEFT nCoV-2019_1 TACCTACAACTTGTGCTAATGACCC 25 44 60.57 
nCoV-2019_45_LEFT_alt2 nCoV-2019_1 AGTATGTACAAATACCTACAACTTGTGCT 29 34.48 60.94 
nCoV-2019_45_RIGHT nCoV-2019_1 AAATTGTTTCTTCATGTTGGTAGTTAGAGA 30 30 60.01 
nCoV-2019_45_RIGHT_alt7 nCoV-2019_1 TTCATGTTGGTAGTTAGAGAAAGTGTGTC 29 37.93 61.53 
nCoV-2019_46_LEFT nCoV-2019_2 TGTCGCTTCCAAGAAAAGGACG 22 50 61.38 
nCoV-2019_46_LEFT_alt1 nCoV-2019_2 CGCTTCCAAGAAAAGGACGAAGA 23 47.83 61.35 
nCoV-2019_46_RIGHT nCoV-2019_2 CACGTTCACCTAAGTTGGCGTA 22 50 60.86 
nCoV-2019_46_RIGHT_alt2 nCoV-2019_2 CACGTTCACCTAAGTTGGCGTAT 23 47.83 61.17 
nCoV-2019_47_LEFT nCoV-2019_1 AGGACTGGTATGATTTTGTAGAAAACCC 28 39.29 61.42 
nCoV-2019_47_RIGHT nCoV-2019_1 AATAACGGTCAAAGAGTTTTAACCTCTC 28 35.71 60.06 
nCoV-2019_48_LEFT nCoV-2019_2 TGTTGACACTGACTTAACAAAGCCT 25 40 61.09 
nCoV-2019_48_RIGHT nCoV-2019_2 TAGATTACCAGAAGCAGCGTGC 22 50 60.74 
nCoV-2019_49_LEFT nCoV-2019_1 AGGAATTACTTGTGTATGCTGCTGA 25 40 60.57 
nCoV-2019_49_RIGHT nCoV-2019_1 TGACGATGACTTGGTTAGCATTAATACA 28 35.71 61.05 
nCoV-2019_50_LEFT nCoV-2019_2 GTTGATAAGTACTTTGATTGTTACGATGGT 30 33.33 60.59 
nCoV-2019_50_RIGHT nCoV-2019_2 TAACATGTTGTGCCAACCACCA 22 45.45 60.95 
nCoV-2019_51_LEFT nCoV-2019_1 TCAATAGCCGCCACTAGAGGAG 22 54.55 61.34 
nCoV-2019_51_RIGHT nCoV-2019_1 AGTGCATTAACATTGGCCGTGA 22 45.45 61.14 
nCoV-2019_52_LEFT nCoV-2019_2 CATCAGGAGATGCCACAACTGC 22 54.55 61.83 
nCoV-2019_52_RIGHT nCoV-2019_2 GTTGAGAGCAAAATTCATGAGGTCC 25 44 60.62 
nCoV-2019_53_LEFT nCoV-2019_1 AGCAAAATGTTGGACTGAGACTGA 24 41.67 60.69 
nCoV-2019_53_RIGHT nCoV-2019_1 AGCCTCATAAAACTCAGGTTCCC 23 47.83 60.31 
nCoV-2019_54_LEFT nCoV-2019_2 TGAGTTAACAGGACACATGTTAGACA 26 38.46 60.18 
nCoV-2019_54_RIGHT nCoV-2019_2 AACCAAAAACTTGTCCATTAGCACA 25 36 60.11 
nCoV-2019_55_LEFT nCoV-2019_1 ACTCAACTTTACTTAGGAGGTATGAGCT 28 39.29 61.43 
nCoV-2019_55_RIGHT nCoV-2019_1 GGTGTACTCTCCTATTTGTACTTTACTGT 29 37.93 60.54 
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nCoV-2019_56_LEFT nCoV-2019_2 ACCTAGACCACCACTTAACCGA 22 50 60.49 
nCoV-2019_56_RIGHT nCoV-2019_2 ACACTATGCGAGCAGAAGGGTA 22 50 61.21 
nCoV-2019_57_LEFT nCoV-2019_1 ATTCTACACTCCAGGGACCACC 22 54.55 61.16 
nCoV-2019_57_RIGHT nCoV-2019_1 GTAATTGAGCAGGGTCGCCAAT 22 50 61.26 
nCoV-2019_58_LEFT nCoV-2019_2 TGATTTGAGTGTTGTCAATGCCAGA 25 40 61.44 
nCoV-2019_58_RIGHT nCoV-2019_2 CTTTTCTCCAAGCAGGGTTACGT 23 47.83 61.06 
nCoV-2019_59_LEFT nCoV-2019_1 TCACGCATGATGTTTCATCTGCA 23 43.48 61.42 
nCoV-2019_59_RIGHT nCoV-2019_1 AAGAGTCCTGTTACATTTTCAGCTTG 26 38.46 60.02 
nCoV-2019_60_LEFT nCoV-2019_2 TGATAGAGACCTTTATGACAAGTTGCA 27 37.04 60.53 
nCoV-2019_60_RIGHT nCoV-2019_2 GGTACCAACAGCTTCTCTAGTAGC 24 50 60.44 
nCoV-2019_61_LEFT nCoV-2019_1 TGTTTATCACCCGCGAAGAAGC 22 50 61.5 
nCoV-2019_61_RIGHT nCoV-2019_1 ATCACATAGACAACAGGTGCGC 22 50 61.25 
nCoV-2019_62_LEFT nCoV-2019_2 GGCACATGGCTTTGAGTTGACA 22 50 61.91 
nCoV-2019_62_RIGHT nCoV-2019_2 GTTGAACCTTTCTACAAGCCGC 22 50 60.35 
nCoV-2019_63_LEFT nCoV-2019_1 TGTTAAGCGTGTTGACTGGACT 22 45.45 60.16 
nCoV-2019_63_RIGHT nCoV-2019_1 ACAAACTGCCACCATCACAACC 22 50 61.85 
nCoV-2019_64_LEFT nCoV-2019_2 TCGATAGATATCCTGCTAATTCCATTGT 28 35.71 60.11 
nCoV-2019_64_RIGHT nCoV-2019_2 AGTCTTGTAAAAGTGTTCCAGAGGT 25 40 60.1 
nCoV-2019_65_LEFT nCoV-2019_1 GCTGGCTTTAGCTTGTGGGTTT 22 50 61.92 
nCoV-2019_65_RIGHT nCoV-2019_1 TGTCAGTCATAGAACAAACACCAATAGT 28 35.71 60.9 
nCoV-2019_66_LEFT nCoV-2019_2 GGGTGTGGACATTGCTGCTAAT 22 50 61.21 
nCoV-2019_66_RIGHT nCoV-2019_2 TCAATTTCCATTTGACTCCTGGGT 24 41.67 60.45 
nCoV-2019_67_LEFT nCoV-2019_1 GTTGTCCAACAATTACCTGAAACTTACT 28 35.71 60.43 
nCoV-2019_67_RIGHT nCoV-2019_1 CAACCTTAGAAACTACAGATAAATCTTGGG 30 36.67 60.4 
nCoV-2019_68_LEFT nCoV-2019_2 ACAGGTTCATCTAAGTGTGTGTGT 24 41.67 60.14 
nCoV-2019_68_RIGHT nCoV-2019_2 CTCCTTTATCAGAACCAGCACCA 23 47.83 60.31 
nCoV-2019_69_LEFT nCoV-2019_1 TGTCGCAAAATATACTCAACTGTGTCA 27 37.04 61.43 
nCoV-2019_69_RIGHT nCoV-2019_1 TCTTTATAGCCACGGAACCTCCA 23 47.83 61.14 
nCoV-2019_70_LEFT nCoV-2019_2 ACAAAAGAAAATGACTCTAAAGAGGGTTT 29 31.03 60.13 
nCoV-2019_70_RIGHT nCoV-2019_2 TGACCTTCTTTTAAAGACATAACAGCAG 28 35.71 60.27 
nCoV-2019_71_LEFT nCoV-2019_1 ACAAATCCAATTCAGTTGTCTTCCTATTC 29 34.48 60.54 
nCoV-2019_71_RIGHT nCoV-2019_1 TGGAAAAGAAAGGTAAGAACAAGTCCT 27 37.04 60.8 
nCoV-2019_72_LEFT nCoV-2019_2 ACACGTGGTGTTTATTACCCTGAC 24 45.83 61.04 
nCoV-2019_72_RIGHT nCoV-2019_2 ACTCTGAACTCACTTTCCATCCAAC 25 44 60.97 
nCoV-2019_73_LEFT nCoV-2019_1 CAATTTTGTAATGATCCATTTTTGGGTGT 29 31.03 60.29 
nCoV-2019_73_RIGHT nCoV-2019_1 CACCAGCTGTCCAACCTGAAGA 22 54.55 62.45 
nCoV-2019_74_LEFT nCoV-2019_2 ACATCACTAGGTTTCAAACTTTACTTGC 28 35.71 60.68 
nCoV-2019_74_RIGHT nCoV-2019_2 GCAACACAGTTGCTGATTCTCTTC 24 45.83 60.85 
nCoV-2019_75_LEFT nCoV-2019_1 AGAGTCCAACCAACAGAATCTATTGT 26 38.46 60.24 
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nCoV-2019_75_RIGHT nCoV-2019_1 ACCACCAACCTTAGAATCAAGATTGT 26 38.46 60.69 
nCoV-2019_76_LEFT nCoV-2019_2 AGGGCAAACTGGAAAGATTGCT 22 45.45 60.76 
nCoV-2019_76_LEFT_alt3 nCoV-2019_2 GGGCAAACTGGAAAGATTGCTGA 23 47.83 61.87 
nCoV-2019_76_RIGHT nCoV-2019_2 ACACCTGTGCCTGTTAAACCAT 22 45.45 60.42 
nCoV-2019_76_RIGHT_alt0 nCoV-2019_2 ACCTGTGCCTGTTAAACCATTGA 23 43.48 60.69 
nCoV-2019_77_LEFT nCoV-2019_1 CCAGCAACTGTTTGTGGACCTA 22 50 60.75 
nCoV-2019_77_RIGHT nCoV-2019_1 CAGCCCCTATTAAACAGCCTGC 22 54.55 61.59 
nCoV-2019_78_LEFT nCoV-2019_2 CAACTTACTCCTACTTGGCGTGT 23 47.83 60.55 
nCoV-2019_78_RIGHT nCoV-2019_2 TGTGTACAAAAACTGCCATATTGCA 25 36 60.22 
nCoV-2019_79_LEFT nCoV-2019_1 GTGGTGATTCAACTGAATGCAGC 23 47.83 60.92 
nCoV-2019_79_RIGHT nCoV-2019_1 CATTTCATCTGTGAGCAAAGGTGG 24 45.83 60.62 
nCoV-2019_80_LEFT nCoV-2019_2 TTGCCTTGGTGATATTGCTGCT 22 45.45 60.89 
nCoV-2019_80_RIGHT nCoV-2019_2 TGGAGCTAAGTTGTTTAACAAGCG 24 41.67 60.02 
nCoV-2019_81_LEFT nCoV-2019_1 GCACTTGGAAAACTTCAAGATGTGG 25 44 61.24 
nCoV-2019_81_RIGHT nCoV-2019_1 GTGAAGTTCTTTTCTTGTGCAGGG 24 45.83 60.73 
nCoV-2019_82_LEFT nCoV-2019_2 GGGCTATCATCTTATGTCCTTCCCT 25 48 61.52 
nCoV-2019_82_RIGHT nCoV-2019_2 TGCCAGAGATGTCACCTAAATCAA 24 41.67 60.02 
nCoV-2019_83_LEFT nCoV-2019_1 TCCTTTGCAACCTGAATTAGACTCA 25 40 60.46 
nCoV-2019_83_RIGHT nCoV-2019_1 TTTGACTCCTTTGAGCACTGGC 22 50 61.33 
nCoV-2019_84_LEFT nCoV-2019_2 TGCTGTAGTTGTCTCAAGGGCT 22 50 61.61 
nCoV-2019_84_RIGHT nCoV-2019_2 AGGTGTGAGTAAACTGTTACAAACAAC 27 37.04 60.36 
nCoV-2019_85_LEFT nCoV-2019_1 ACTAGCACTCTCCAAGGGTGTT 22 50 61.03 
nCoV-2019_85_RIGHT nCoV-2019_1 ACACAGTCTTTTACTCCAGATTCCC 25 44 60.51 
nCoV-2019_86_LEFT nCoV-2019_2 TCAGGTGATGGCACAACAAGTC 22 50 61.07 
nCoV-2019_86_RIGHT nCoV-2019_2 ACGAAAGCAAGAAAAAGAAGTACGC 25 40 61.01 
nCoV-2019_87_LEFT nCoV-2019_1 CGACTACTAGCGTGCCTTTGTA 22 50 60.16 
nCoV-2019_87_RIGHT nCoV-2019_1 ACTAGGTTCCATTGTTCAAGGAGC 24 45.83 60.81 
nCoV-2019_88_LEFT nCoV-2019_2 CCATGGCAGATTCCAACGGTAC 22 54.55 61.58 
nCoV-2019_88_RIGHT nCoV-2019_2 TGGTCAGAATAGTGCCATGGAGT 23 47.83 61.4 
nCoV-2019_89_LEFT nCoV-2019_1 GTACGCGTTCCATGTGGTCATT 22 50 61.5 
nCoV-2019_89_LEFT_alt2 nCoV-2019_1 CGCGTTCCATGTGGTCATTCAA 22 50 62.01 
nCoV-2019_89_RIGHT nCoV-2019_1 ACCTGAAAGTCAACGAGATGAAACA 25 40 60.91 
nCoV-2019_89_RIGHT_alt4 nCoV-2019_1 ACGAGATGAAACATCTGTTGTCACT 25 40 60.74 
nCoV-2019_90_LEFT nCoV-2019_2 ACACAGACCATTCCAGTAGCAGT 23 47.83 61.58 
nCoV-2019_90_RIGHT nCoV-2019_2 TGAAATGGTGAATTGCCCTCGT 22 45.45 60.82 
nCoV-2019_91_LEFT nCoV-2019_1 TCACTACCAAGAGTGTGTTAGAGGT 25 44 60.93 
nCoV-2019_91_RIGHT nCoV-2019_1 TTCAAGTGAGAACCAAAAGATAATAAGCA 29 31.03 60.03 
nCoV-2019_92_LEFT nCoV-2019_2 TTTGTGCTTTTTAGCCTTTCTGCT 24 37.5 60.14 
nCoV-2019_92_RIGHT nCoV-2019_2 AGGTTCCTGGCAATTAATTGTAAAAGG 27 37.04 60.53 
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nCoV-2019_93_LEFT nCoV-2019_1 TGAGGCTGGTTCTAAATCACCCA 23 47.83 61.59 
nCoV-2019_93_RIGHT nCoV-2019_1 AGGTCTTCCTTGCCATGTTGAG 22 50 60.55 
nCoV-2019_94_LEFT nCoV-2019_2 GGCCCCAAGGTTTACCCAATAA 22 50 60.56 
nCoV-2019_94_RIGHT nCoV-2019_2 TTTGGCAATGTTGTTCCTTGAGG 23 43.48 60.18 
nCoV-2019_95_LEFT nCoV-2019_1 TGAGGGAGCCTTGAATACACCA 22 50 61.1 
nCoV-2019_95_RIGHT nCoV-2019_1 CAGTACGTTTTTGCCGAGGCTT 22 50 61.95 
nCoV-2019_96_LEFT nCoV-2019_2 GCCAACAACAACAAGGCCAAAC 22 50 61.82 
nCoV-2019_96_RIGHT nCoV-2019_2 TAGGCTCTGTTGGTGGGAATGT 22 50 61.36 
nCoV-2019_97_LEFT nCoV-2019_1 TGGATGACAAAGATCCAAATTTCAAAGA 28 32.14 60.22 
nCoV-2019_97_RIGHT nCoV-2019_1 ACACACTGATTAAAGATTGCTATGTGAG 28 35.71 60.17 
nCoV-2019_98_LEFT nCoV-2019_2 AACAATTGCAACAATCCATGAGCA 24 37.5 60.5 
nCoV-2019_98_RIGHT nCoV-2019_2 TTCTCCTAAGAAGCTATTAAAATCACATGG 30 33.33 60.01 
 

S3 Table. ARTIC v3 primer sequences. 
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Abstract 

The emergence of divergent SARS-CoV-2 lineages has raised concern that novel 

variants eliciting immune escape or enhanced transmissibility could emerge within 

individual hosts. Though growing evidence suggests that novel variants arise during 

prolonged infections, most infections are acute. Understanding how efficiently variants 

emerge and transmit among acutely-infected hosts is therefore critical for predicting the 

pace of long-term SARS-CoV-2 evolution. To characterize how within-host diversity is 

generated and propagated, we combine extensive laboratory and bioinformatic controls 

with metrics of within- and between-host diversity to 133 SARS-CoV-2 genomes from 

acutely-infected individuals. We find that within-host diversity is low and transmission 

bottlenecks are narrow, with very few viruses founding most infections. Within-host 

variants are rarely transmitted, even among individuals within the same household, and 

are rarely detected along phylogenetically linked infections in the broader community. 

These findings suggest that efficient selection and transmission of novel SARS-CoV-2 

variants is unlikely during typical, acute infection. 

 

Introduction 

The recent emergence of variants of concern has spurred uncertainty about how severe 

acute respiratory coronavirus 2 (SARS-CoV-2) will evolve in the longer term. SARS-CoV-

2 acquires a fixed consensus mutation approximately every 11 days as it replicates in a 
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population 153. Recently, however, lineages of SARS-CoV-2 have arisen harboring more 

variants than expected based on this clock rate, with some variants conferring enhanced 

transmissibility and/or antibody escape 263,264. The emergence of these lineages has 

raised concern that SARS-CoV-2 may rapidly evolve to evade vaccine-induced immunity, 

and that vaccines may need to be frequently updated. A current leading hypothesis posits 

that these lineages may have emerged during prolonged infections. Under this 

hypothesis, longer infection times, coupled with antibody selection 265, may allow more 

time for novel mutations to be generated and selected before transmission. Studies of 

SARS-CoV-2 265–269 and other viruses 270,271 support this hypothesis. Longitudinal 

sequencing of SARS-CoV-2 from immunocompromised or persistently infected 

individuals accordingly reveals an accumulation of single-nucleotide variants (iSNVs) and 

short insertions and deletions (indels) during infection 265–267,272. In influenza virus and 

norovirus infections, variants that arose in immunocompromised patients were later 

detected globally, suggesting that long-term infections may mirror global evolutionary 

dynamics 270,273. Mutations defining novel variant lineages resulting in enhanced 

transmissibility and/or immune escape in SARS-CoV-2 Spike, like ∆69/70, N501Y and 

E484K, have already been documented arising in persistently infected and 

immunocompromised individuals 265,266.  

 

While prolonged infections occur, the vast majority of SARS-CoV-2 infections are acute 

274. Viral evolutionary capacity is limited by the duration of infection 275, and it is not yet 

clear whether the evolutionary patterns observed during prolonged SARS-CoV-2 

infections also occur in acutely infected individuals. Replication-competent virus has 
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rarely been recovered from individuals with mild to moderate coronavirus disease 2019 

(COVID-19) beyond ~10 days following symptom onset 47,276. Multiple studies of influenza 

viruses show that immune escape variants are rarely detected during acute infection, 

even within vaccinated individuals 120–122. Detailed modeling of influenza dynamics 

suggests that the likelihood of within-host mutation emergence depends on the interplay 

of immune response timing, the de-novo mutation rate, and the number of virus particles 

transmitted between hosts 275. Understanding the speed with which SARS-CoV-2 viruses 

acquire novel mutations that may escape population immunity will be critical for 

formulating future vaccine updates. If novel immune-escape variants emerge primarily 

within long-term infections, then managing long-term infections in an effort to reduce any 

onward transmission may be critically important. Conversely, if novel variants are 

efficiently selected and transmitted during acute infections, then vaccine updates may 

need to occur frequently.  

 

While understanding the process of variant generation and transmission is critically 

important, a clear consensus on how frequently variants are shared and transmitted 

between individuals has been elusive. Estimates of SARS-CoV-2 diversity within hosts 

have been highly variable, and comparing results among labs has been complicated by 

sensitivity to variant-calling thresholds and inconsistent laboratory controls 56,136,189,228. 

Some data suggest that SARS-CoV-2 genetic diversity within individual hosts during 

acute infections is limited 56,242 and shaped by genetic drift and purifying selection 

57,228,229,277. Estimates of the size of SARS-CoV-2 transmission bottlenecks 54,228,278 have 

ranged considerably, and recent validation work has shown that estimates of within-host 
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diversity and transmission bottleneck sizes are highly sensitive to sequencing protocols 

and data analysis parameters, like the frequency cutoff used to define/identify within-host 

variants 56,279. Clarifying the extent to which within-host variants arise and transmit among 

acutely infected individuals, while controlling for potential error, will be critical for 

assessing the speed at which SARS-CoV-2 evolves and adapts. 

 

To characterize how within-host variants are generated and propagated, we employ 

extensive laboratory and bioinformatic controls to characterize 133 SARS-CoV-2 samples 

collected from acutely-infected individuals in Wisconsin, United States. By comparing 

patterns of intrahost single nucleotide variants (iSNVs) to densely-sampled consensus 

genomes from the same geographic area, we paint a clear picture of how variants emerge 

and transmit within communities and households. We find that overall within-host diversity 

is low during acute infection, and that iSNVs detected within hosts almost never become 

dominant in later-sampled sequences. We find that iSNVs are infrequently transmitted, 

even between members of the same household, and we estimate that transmission 

bottlenecks between putative household pairs are narrow. This suggests that most iSNVs 

are transient and very rarely transmit beyond the individual in which they have originated. 

Our results imply that during typical, acute SARS-CoV-2 infections, the combination of 

limited intrahost genetic diversity and narrow transmission bottlenecks may slow the pace 

by which novel variants arise, are selected, and transmit onward. Finally, most individual 

infections likely play a minor role in SARS-CoV-2 evolution, consistent with the hypothesis 

that novel variants are more likely to arise in rare instances of prolonged infection.  
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Materials and Methods  

Sample approvals and sample selection criteria 

Samples selected for iSNV characterization were derived from 150 nasopharyngeal (NP) 

swab samples collected from March 2020 through July 2020, originating from the 

University of Wisconsin Hospital and Clinics and the Milwaukee Health Department 

Laboratories. Submitting institutions provided a cycle threshold (Ct) or relative light unit 

(RLU) for all samples. Sample metadata, including GISAID and SRA accession 

identifiers, are available in Supplemental Table 2. 

 

We obtained a waiver of HIPAA Authorization and were approved to obtain the clinical 

samples along with a Limited Data Set by the Western Institutional Review Board (WIRB 

#1-1290953-1) and the FUE IRB 2016-0605. This limited dataset contains sample 

collection data and county of collection. Additional sample metadata, e.g. race/ethnicity, 

were not shared. 

 

Diagnostic assays for the samples included in this study were performed at the University 

of Wisconsin Hospital and Clinical diagnostic laboratory using CDC’s diagnostic RT-PCR 

280, the Hologic Panther SARS-CoV-2 assay 281, or the Aptima SARS-CoV-2 assay 282. 

 

Nucleic acid extraction  

Viral RNA (vRNA) was extracted from 100 μl of VTM using the Viral Total Nucleic Acid 

Purification kit (Promega, Madison, WI, USA) on a Maxwell RSC 48 instrument and eluted 

in 50 μL of nuclease-free H2O.  
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Complementary DNA (cDNA) generation and PCR 

Complementary DNA (cDNA) was synthesized according to a modified ARTIC Network 

approach 235,283.  RNA was reverse transcribed with SuperScript IV VILO (Invitrogen, 

Carlsbad, CA, USA) according to manufacturer guidelines 235,283. A SARS-CoV-2-specific 

multiplex PCR for Nanopore sequencing was performed using the ARTIC v3 primers 

(Supplemental Table 3). cDNA (2.5 μL) was amplified in two multiplexed PCR reactions 

using Q5 Hot-Start DNA High-fidelity Polymerase (New England Biolabs, Ipswich, MA, 

USA). 

 

TruSeq Illumina library prep and sequencing for minor variants  

All Wisconsin surveillance samples were prepped and sequenced by Oxford Nanopore 

Technologies (details below) and a subset described in this paper were additionally 

prepped for sequencing on an Illumina MiSeq. These SARS-CoV-2 samples (n=150) 

consisted of household pairs as well as a random sampling of the surveillance cohort 

selective for enhanced iSNV characterization. Amplified cDNA was purified and made 

compatible for sequencing on an Illumina MiSeq according to the TruSeq Nano DNA 

manufacturer instructions (Illumina, USA). The average DNA fragment length and purity 

was determined using the Agilent High Sensitivity DNA kit and the Agilent 2100 

Bioanalyzer (Agilent, Santa Clara, CA). Samples were pooled at equimolar 

concentrations to a final concentration of 4 nM. All libraries were run on a 500-cycle v2 

flow cell. The samples included in this study were sequenced across seven distinct MiSeq 
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runs. Each sample was library prepped and sequenced in technical replicate. Replicates 

were true replicates in that we started from two aliquots taken from the original samples.  

 

Oxford nanopore library preparation and sequencing for consensus sequences 

All consensus-level surveillance sequencing of SARS-CoV-2 was performed using 

Oxford Nanopore sequencing (n=3,351) as described previously 55. 

 

Processing raw ONT data  

Sequencing data was processed using the ARTIC bioinformatics pipeline scaled up using 

on campus computing cores (https://github.com/artic-network/artic-ncov2019). The entire 

ONT analysis pipeline is available at https://github.com/gagekmoreno/SARS-CoV-2-in-

Southern-Wisconsin.   

 

Processing raw Illumina data 

Raw FASTQ files were analyzed using the workflow available in the following GitHub 

repository – https://github.com/gagekmoreno/SARS_CoV-2_Zequencer. Reads were 

paired and merged using BBMerge (https://jgi.doe.gov/data-and-tools/bbtools/bb-tools-

user-guide/bbmerge-guide/) and mapped to the Wuhan-Hu-1/2019 reference (Genbank 

accession MN908947.3) using BBMap (https://jgi.doe.gov/data-and-tools/bbtools/bb-

tools-user-guide/bbmap-guide/). Mapped reads were imported into Geneious 

(https://www.geneious.com/) for visual inspection. Variants were called using 

callvariants.sh (contained within BBMap) and annotated using SnpEff 

(https://pcingola.github.io/SnpEff/). Variants were called at ≥0.01% in high-quality reads 
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(phred score >30) that were ≥100 base pairs in length and supported by a minimum of 10 

reads. The total minimum read support was set to 10 to generate initial VCF files with 

complete consensus genomes for the few samples where coverage fell below 100 reads 

in a few areas. Substantial downstream variant cleaning was performed as outlined 

below.   

 

iSNV quality control  

BBMap’s output VCF files were cleaned using custom Python scripts, which can be found 

in the GitHub accompanying this manuscript (https://github.com/lmoncla/ncov-WI-within-

host). First, any samples without technical replicates were excluded. Next, we discarded 

all iSNVs which occurred at primer-binding sites (Supplemental Table 3). These 

“recoded” VCFs can be found in the GitHub repository in “data/vcfs-recode”. We then 

filtered these recoded VCF files and for variants with (1) 100x coverage; (2) found at ≥3% 

frequency; (3) and found between nucleotides 54 and 29,837 (based on the first and last 

ARTIC v3 amplicon). We excluded all indels from our analysis, including those that occur 

in intergenic regions.  

 

We inspected our filtered iSNV datasets across replicate pairs. We visually inspected 

each replicate pair VCF and plotted replicate frequencies against each other (available in 

the GitHub repository). This identified a few samples which were outliers for having very 

limited overlap in their iSNV populations. This could be traced to low coverage or amplicon 

drop-out in each sample. FASTQs for these samples are available in GenBank, but we 

have excluded them from downstream analyses presented here (n=11; tube/filename 
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identifier 65, 124, 125, 303, 316, 1061, 1388, 1103, 1104, 1147, and 1282) (iSNVs in 

technical replicates are shown for sample 1104 in Supplemental Figure 4b).  

 

We generated one cleaned VCF file by averaging the frequencies found for overlapping 

iSNVs and discarding all iSNVs which were only found in one replicate. In addition to the 

SARS-CoV-2 diagnostic swabs, we sequenced a SARS-CoV-2 synthetic RNA control 

(Twist Bioscience, San Francisco, CA) representing the Wuhan-Hu-1 sequence 

(Genbank: MN908947.3) in technical replicate at 1x106 template copies per reaction in 

order to identify spurious variants introducing during library prep and sequencing. We 

then excluded variants detected in the synthetic RNA control (Supplemental Table 4) 

from all downstream analyses. Notably, this filter removed a single variant at nucleotide 

position 6,669 from our analysis 56. Finally, within-host variants called at ≥50% and <97% 

frequency comprise consensus-level mutations relative to the Wuhan-Hu-1/2019 

reference sequence. To ensure that the corresponding minor variant was reported we 

report the opposite minor allele at a frequency of 1 - the consensus variant frequency. 

For example, a C to T variant detected at 75% frequency relative to the Wuhan-1 

reference was converted to a T to C variant at 25% frequency. 

 

Processing of the raw sequence data, mapping, and variant calling with the 

Washington pipeline 

To assess the sensitivity of our iSNV calls to bioinformatic pipelines, we generated VCF 

files using an independent bioinformatic pipeline. Raw reads were assembled against the 

SARS-CoV-2 reference genome Wuhan-Hu-1/2019 (Genbank accession MN908947.3; 
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the same reference used for the alternative basecalling method) to generate pileup files 

using the bioinformatics pipeline available at https://github.com/seattleflu/assembly. 

Briefly, reads were trimmed with Trimmomatic 

(http://www.usadellab.org/cms/?page=trimmomatic) 192 in paired end mode, in sliding 

window of 5 base pairs, discarding all reads that were trimmed to <50 base pairs. 

Trimmed reads were mapped using Bowtie 2 (http://bowtie-

bio.sourceforge.net/bowtie2/index.shtml) 193, and pileups were generated using samtools 

mpileup (http://www.htslib.org/doc/samtools-mpileup.html). Variants were then called 

from pileups using varscan mpileup2cns v2.4.4 (http://varscan.sourceforge.net/using-

varscan.html#v2.3_mpileup2cns). Variants were called at ≥1% frequency, with a 

minimum coverage of 100, and were supported by a minimum of 2 reads.  

 

Phylogenetic analysis 

All available full-length sequences from Wisconsin through February 16, 2021 were used 

for phylogenetic analysis using the tools implemented in Nextstrain custom builds 

(https://github.com/nextstrain/ncov) 145,284. Phylogenetic trees were built using the 

standard Nextstrain tools and scripts 145,284. We used custom python scripts to filter and 

clean metadata. A custom “Wisconsin” profile was made to create a Wisconsin-centric 

subsampled build to include representative sequences. The scripts and output are 

available at https://github.com/gagekmoreno/Wisconsin-SARS-CoV-2. 

 

Household pairs permutation test 
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For household groups, we performed all pairwise comparisons between members of the 

household, excluding pairs for which the consensus genomes differed by >2 nucleotide 

changes. We determined this cutoff by modeling the probability that 2 consensus 

genomes separated by one serial interval differ by n mutations. We model this process 

as Poisson-distributed with lambda equal to the expected number of substitutions per 

serial interval, as described previously 34. We chose to model this expectation using the 

serial interval rather than the generation interval for the following reason.  

 

The sequence data we have represent cases that were sampled via passive surveillance, 

usually from individuals seeking testing after developing symptoms. Differences in the 

genome sequences from two individuals therefore represent the evolution that occurred 

between the sampling times of those two cases. Although neither the serial interval nor 

the generation interval perfectly matches this sampling process, we reasoned that the 

serial interval, or the time between the symptom onsets of successive cases, may more 

accurately capture how the data were sampled. We evaluated probabilities across a 

range of serial interval and clock rates. For serial interval, we use the values inferred by 

He et al, of a mean of 5.8 days with a 95% confidence interval of 4.8-6.8 days 285. For 

substitution rate, we employ estimates from Duchene et al, who estimate a mean 

substitution rate of 1.10 x 10-3 substitutions per site per year, with a 95% credible interval 

of 7.03 x 10-4 and 1.15 x 10-3 1. To model the expectation across this range of values, 

we evaluate the probabilities for serial intervals at the mean (5.8), as well as for 4, 5, 6, 

7, and 8 days, and substitution rates at the mean (1.10 x 10-3) and at the bounds of the 

95% credible interval. For each combination of serial interval and substitution rate, we 
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calculate the expected substitutions in one serial interval as: (substitution rate per site per 

year * genome length/365 days) *serial interval. The results using the mean serial interval 

(5.8 days) and substitution rate (1.10 x 10-3) are shown in the main text, while the full set 

of combinations is shown in the supplement. Under this model, the vast majority of 

consensus genomes derived from cases separated by a single serial interval are 

expected to differ by ≤2 mutations. The probability that two genomes that are separated 

by one serial interval differ by 3 mutations ranges from 0.0016-0.059. Only in the case of 

an 8-day serial interval with the highest bound of the substitution rate do we infer a 

probability of 3 mutations that is greater than 0.05. We therefore classified all pairs of 

individuals from each household that differed by ≤2 consensus mutations and who were 

tested within 14 days of each other as putative transmission pairs.  

 

To determine whether putative household transmission pairs shared more variants than 

individuals without an epidemiologic link, we performed a permutation test. At each 

iteration, we randomly selected a pair of samples (with replacement) and computed the 

proportion of variants they share as: (2 x total number of shared variants) / (the total 

number of variants detected among the two samples). For example, if sample A contained 

5 iSNVs relative to the reference (Wuhan-1, Genbank accession MN908947.3), sample 

B harbored 4 iSNVs, and 1 iSNV was shared, then the proportion of sample A and B’s 

variants that are shared would be 2/9 = 0.22. We performed 10,000 iterations in which 

pairs were sampled randomly to generate a null distribution. We then compared the 

proportion of variants shared by each putative household transmission pair to this null 
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distribution. The proportion of variants shared by a household pair was determined to be 

statistically significant if it was greater than 95% of random pairs.  

 

Transmission bottleneck calculation 

The beta-binomial method 137, was used to infer the transmission bottleneck size Nb. Nb 

quantifies the number of virions donated from the index individual to the contact (recipient) 

individual that successfully establish lineages in the recipient that are present at the 

sampling time point. The beta-binomial method assumes variant sites are independent, 

which may not be true given that SARS-CoV-2 contains a continuous genome thought to 

undergo limited recombination 286. In addition, the beta-binomial method assumes that 

identical variants found in the index and contact are shared as a result of transmission, 

though it is possible that identical variants occurring in a donor and a recipient individual 

occurred independently of one another and are not linked through transmission. We 

consider this possibility at one site in particular which commonly appears at low 

frequencies in donor-recipient pairs. Code for estimating transmission bottleneck sizes 

using the beta-binomial approach has been adapted from the original scripts 

(https://github.com/koellelab/betabinomial_bottleneck) and is included in the GitHub 

accompanying this manuscript (https://github.com/lmoncla/ncov-WI-within-host). 

 

We calculated individual transmission bottleneck size estimates for each household 

transmission pair as were identified in the household permutation test (n=28). We used 

the date of symptom onset and/or date of sample collection to assign donor and recipient 

within each pair. Within each pair, if the date of symptom onset differed by ≥3 days, we 
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assigned the individual with the earlier date as the donor. If this information was 

unavailable or uninformative (<3 days) for both individuals in a pair, we looked at the date 

of sample collection and if these dates differed by ≥3 days, we assigned the individual 

with the earlier date as the donor. If this information was also not available or was not 

informative (<3 days), we calculated the bottleneck size with each individual as a donor. 

These bidirectional comparisons are denoted with an “a” or “b” appended to the filename 

(n=16 pairs were analyzed bidirectionally). In total, we analyzed 44 pairs (including 

bidirectional comparisons). Metadata and GISAID accession numbers for each pair are 

described in Supplemental Table 4.  

 

Combined transmission bottleneck size estimates (as seen in Figure 6c) were estimated 

as described in the supplemental methods in Martin & Koelle 279. Briefly, overall 

transmission bottleneck sizes were estimated based on the assumption that transmission 

bottleneck sizes are distributed according to a zero-truncated Poisson-distribution and 

bidirectional bottleneck estimates were each assigned 50% of the weight in this 

calculation compared to the unidirectional pairs. Matlab code to replicate the combined 

bottleneck estimates can be found in the GitHub accompanying this paper 

(https://github.com/lmoncla/ncov-WI-within-host).  

 

Enumerating mutations along the phylogeny  

We used the global Nextstrain 145 phylogenetic tree (nextstrain.org/ncov/global) accessed 

on February 24, 2021 to query whether mutations detected within-host are detected on 

the global tree. We accessed the tree in JSON format and traverse the tree using baltic 
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287. To determine the fraction of within-host variants detected on the phylogenetic tree, we 

traversed the tree from root to tip, gathering each mutation that arose on the tree in the 

process. For each mutation, we counted the number of times it arose on internal and 

terminal nodes. We then compared the fraction of times each iSNV identified within-host 

was detected on an internal node vs. a terminal node. To determine whether particular 

iSNVs were enriched at internal nodes, we compared the frequency of that iSNV’s 

detection against the overall ratio of mutations arising on internal vs. terminal nodes in 

the phylogeny with a Fisher’s exact test.  

 

To query whether iSNVs ever became dominant in tips sampled downstream, we used a 

transmission metric developed previously 288. Using the tree JSON output from the 

Nextstrain pipeline 145, we traversed the tree from root to tip. We collapsed very small 

branches (those with branch lengths less than 1 x 10-16) to obtain polytomies. For each 

tip for which we had within-host data that lay on an internal node, i.e., had a branch length 

of nearly 0 (< 1 x 10-16), we then determined whether any subsequent tips occurred in 

the downstream portion of the tree, i.e., tips that fall along the same lineage but to the 

right of the parent tip. We then traversed the tree and enumerated every mutation that 

arose from the parent tip to each downstream tip. If any mutations along the path from 

the parent to downstream tip matched a mutation found within-host in the parent, this was 

classified as a potential instance of variant transmission. A diagram of how “downstream 

tips” and mutations were classified is shown in Figure 4a.  

 

Linear regression model  
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To determine the relative contributions of phylogenetic divergence, geographic distance, 

clade membership, and household membership to the probability of sharing within-host 

variants, we fit linear regression models to the data in R. As our outcome variable, we 

performed pairwise comparisons for each pair of samples in the dataset (including 

household and non-household pairs) and compute the proportion of variants shared for 

each pair. We then model the proportion of shared variants as the combined function of 

4 predictor variables as follows: Proportion of variants shared ~ β0 + β1x1 + β2x2 + β3x3 

+ β4x4, where x1 represents a 0 or 1 value for household, where a 1 indicates the same 

household and a 0 indicates no household relationship. X2 denotes the divergence, i.e., 

the branch length in mutations between tip A and tip B as a continuous variable, x3 

indicates the great circle distance in kilometers between the location of sample collection 

as a continuous variable, and x4 denotes a 0 or 1 for whether the two tips belong to the 

same clade (same clade coded as a 1, different clade coded as a 0). We fit a univariate 

model for each variable independently, a model with an intercept alone, and a combined 

model using the Rethinking package in R 

(https://www.rdocumentation.org/packages/rethinking/versions/1.59). We perform model 

comparison with the WAIC metric and select the combined model as the one with the best 

fit. We compute mean coefficient estimates and 95% highest posterior density intervals 

(HPDI) by sampling and summarizing 10,000 values from the posterior distribution.  

 

Data and code availability 

Consensus genomes have been deposited in GISAID with accession numbers available 

in Supplemental Table 1. Raw Illumina reads are available in the Short Read Archive 
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under bioproject PRJNA718341. All raw Nanopore reads are available in the Short Read 

Archive under bioproject PRJNA614504. All code used to analyze the data and generate 

the figures shown in this manuscript are available at https://github.com/lmoncla/ncov-WI-

within-host.  

 

Results 

Within-host variation is limited and sensitive to iSNV-calling parameters  

Viral sequence data provide rich information about how variants emerge within, and 

transmit beyond, individual hosts. Viral nucleotide variation generated during infection 

provides the raw material upon which selection can act. However, viral sequence data 

are sensitive to multiple sources of error 56,136,189, which has obscured easy comparison 

among existing studies of SARS-CoV-2 within-host evolution. Here, we take several steps 

to minimize sources of error and to assess the robustness of our results against variable 

within-host single nucleotide variant (iSNV)-calling parameters.   

 

First, we identified spurious iSNVs introduced by our library preparation pipeline by 

sequencing in duplicate a clonal, synthetic RNA transcript identical to our reference 

genome (MN90847.3). We considered only variants found in both technical replicates, 

which we refer to as “intersection iSNVs”. We detected 7 intersection iSNVs at ≥1% 

frequency (Supplemental Table 1); 2 of these were previously identified by a similar 

experiment in Valesano et al. 56. We excluded all 7 of these iSNVs from downstream 

analyses. To exclude laboratory contamination, we sequenced a no-template control 

(water) with each large sequencing batch and confirmed that these negative controls 
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contained <10x coverage across the SARS-CoV-2 genome (Supplemental Figure 1, 

Supplemental Figure 2). To ensure that spurious variants were not introduced by our 

bioinformatic pipelines, we validated our iSNV calls using a second pipeline which 

employs distinct trimming, mapping, and variant calling softwares. We found near-

equivalence between the two pipelines’ iSNV calls (R2=0.998; Supplemental Figure 3a), 

providing additional independent support for our bioinformatic pipeline to accurately call 

iSNVs.  

 

Viral iSNV calls are also sensitive to the variant-calling threshold (i.e., a minimum 

frequency at which iSNVs must occur to be considered non-artefactual) applied 189 and 

the number of viral input copies. Work by Grubaugh et al. 190 showed highly accurate 

iSNV calls with tiled amplicon sequencing using technical replicates and a 3% frequency 

threshold. Consistent with this observation, we observed a near-linear correlation 

between iSNVs called in each replicate at a 3% frequency threshold (R2=0.992) (Figure 

1a). Unsurprisingly, we find the proportion of intersection iSNVs compared to all iSNVs 

within a given sample increases as the frequency threshold increases (Supplemental 

Figure 3b). Additionally, the majority of iSNVs detected in our clonal RNA controls occur 

<3% frequency (Supplemental Figure 3c).  

 

Consistent with previous studies, we observed a negative correlation between Ct and the 

overlap in variants between replicates such that high-Ct (i.e., low vRNA copy number) 

samples had fewer intersection iSNVs called in each replicate (Figure 1b) 189,190. 

Although we do not have access to absolute quantification for viral input copies for our 
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sampleset, we can use results of semi-quantitative clinical assays on the sequenced 

specimens as a proxy for viral RNA (vRNA) concentration. Using input data from two 

different clinical assay platforms, we find no correlation between viral input copies and 

the number of intersection iSNVs detected (Supplemental Figure 3d and Supplemental 

Figure 3e).  

 

Based on these observations, we chose to use a 3% iSNV frequency cutoff for all 

downstream analyses, and report only iSNVs that were detected in both technical 

replicates, at a frequency ≥3%. Using these criteria, we found limited SARS-CoV-2 

genetic diversity in most infected individuals: 22 out of 133 samples did not harbor even 

a single intersection iSNV at ≥3% frequency. Among the 111 samples that did harbor 

within-host variation, the average number of iSNVs per sample was 3.5 (median=3, 

range=1-11) (Figure 1c). Most iSNVs were detected at <10% frequency (Figure 1d). 

Compared to expectations under a neutral model, every type of mutation we evaluated 

(synonymous, nonsynonymous, intergenic region, and stop) was present in excess at low 

frequencies, consistent with purifying selection or population expansion within the host 

(Figure 1d). Taken together, our results confirm that the number of iSNVs detected 

within-host are dependent on variant-calling criteria. Once rigorous laboratory and 

bioinformatic controls are applied, we find that most infections are characterized by very 

few iSNVs, and primarily low-frequency variants.  

 

Recurrent iSNVs consist of Wuhan-1 reversions and common polymorphic sites  



   

 

128 

Previous studies of SARS-CoV-2 evolution have noted the unusual observation that 

iSNVs are sometimes shared across multiple samples. Understanding the source and 

frequency of shared iSNVs is important for measuring the size of transmission bottlenecks 

and for identifying potential sites of selection. In our dataset, most iSNVs were unique to 

a single sample (Figure 2a). However, 41 iSNVs were detected in at least 2 samples. 

These “shared iSNVs” were detected across multiple sequencing runs (Supplemental 

Figure 5), and were absent in our negative controls, suggesting they are unlikely to be 

artefacts of method error. Most of the shared iSNVs we detect fall into two categories: 

iSNVs that occur within or adjacent to a homopolymer region (8/41 iSNVs, Figure 2b, 

yellow and purple bars), or iSNVs that represent “Wuhan-1 reversions” (31/41 iSNVs, 

Figure 2b, blue and purple bars). iSNVs in or near homopolymer regions were defined 

as those that fall within or one nucleotide outside of a span of at least 3 identical 

nucleotide bases. Shared iSNVs were more commonly detected in A/T homopolymer 

regions than in G/C homopolymer regions. We classified iSNVs as “Wuhan-1 reversions” 

when a sample’s consensus sequence had a near-fixed variant (50-97% frequency) 

relative to the Wuhan-1 reference, with the original Wuhan-1 nucleotide present as an 

iSNV. Overall, this suggests that shared variants in our dataset may be at least partially 

explained by viral polymerase incorporation errors, potentially in A/T-rich regions, and at 

sites that are frequently polymorphic. 

 

The most commonly detected iSNVs in our dataset represent Wuhan-1 reversion at 

nucleotide sites 241 (detected 18 times; within/adjacent to a homopolymer region) and 

3037 (detected 21 times; not in a homopolymer region). Both of these sites are 
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polymorphic deep in the SARS-CoV-2 phylogeny near the branch point for clade 20A 

(Nextstrain clade nomenclature). Within-host polymorphisms at sites 241 and 3037 were 

also detected in recent studies in the United Kingdom and Austria 54,228. T241C and 

T3037C are both synonymous variants, and have emerged frequently on the global 

SARS-CoV-2 phylogenetic tree, suggesting that these sites may be frequently 

polymorphic within and between hosts across multiple geographic areas (Figure 2c).  

 

Most within-host variation does not contribute to consensus diversity 

The emergence of divergent SARS-CoV-2 lineages has raised concerns that new variants 

may be selected during infection and efficiently transmitted onward. We next sought to 

characterize whether iSNVs arising within hosts contribute to consensus diversity 

sampled later in time. Using the Wisconsin-specific phylogenetic tree (Supplemental 

Figure 6), we queried whether iSNVs detected within hosts are ever found at consensus 

in tips sampled downstream. For each Wisconsin tip that lay on an internal node and for 

which we had within-host data, we traversed the tree from that tip to each subtending tip. 

We then enumerated each mutation that occurred along that path, and compared whether 

any mutations that arose on downstream branches matched iSNVs detected within-host 

(see Figure 3a for a schematic). Of the 110 Wisconsin tips harboring within-host variation, 

93 occurred on internal nodes. Of those, we detect only a single instance in which an 

iSNV detected within a host was later detected at consensus. C1912T (a synonymous 

variant) was present in USA/WI-UW-214/2020 at ~4% frequency, and arose on the 

branch leading to USA/WI-WSLH-200068/2020 (Figure 3b). USA/WI-UW-214/2020 is 

part of a large polytomy, so this does not necessarily suggest that USA/WI-UW-214/2020 
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and USA/WI-WSLH-200068/2020 fall along the same transmission chain. These results 

indicate that despite relatively densely sampling consensus genomes from related viruses 

from Wisconsin, we do not find evidence that iSNVs frequently rise to consensus along 

phylogenetically linked infections.  

 

If iSNVs arising during infection are adaptive and efficiently transmitted, then they should 

be found frequently in consensus genomes, and may be enriched on internal nodes of 

the phylogenetic tree. For each within-host variant detected in our dataset, we queried 

the number of times it occurred on the global SARS-CoV-2 phylogeny on tips and internal 

nodes. We then compared the ratio of detections on tips vs. internal nodes to the overall 

ratio of mutations on tips vs. internal nodes on the phylogeny. 42% (77/185) of iSNVs are 

present at least once at consensus level on the global phylogeny (Supplemental Figure 

7). When present, iSNVs from our dataset that also occur in consensus genomes on the 

global tree tend to be rare, and predominantly occur on terminal nodes (Figure 3c, 

Supplemental Figure 7). Overall, iSNVs that are also found at consensus are present 

on internal nodes and tips at a ratio similar to that of consensus mutations overall (ratio 

of mutations on phylogeny nodes:tips = 4,637:17,200; ratio of iSNVs on nodes:tips = 

128:411, p=0.16, Fisher’s exact test). Although this is the predominant pattern, we detect 

one exception. C28887T is present in one sample in our dataset at a frequency of ~6%, 

but is found on 10 internal nodes and 15 tips (p = 0.028, Fisher’s exact test) (Figure 3c). 

C28887T encodes a threonine-to-isoleucine change at position 205 in the N protein, and 

is a clade-defining mutation for the B.1.351 lineage. Although the functional impact of this 

mutation is not completely understood, N T205I may increase stability of the N protein 
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32,33. Despite the detection within-host and subsequent emergence of N205I globally, 

this iSNV was only detected in our dataset in one sample at low frequency. In general, 

across our dataset, the frequency with which iSNVs were detected within-host vs. on the 

phylogenetic tree is not correlated (Figure 2c). This suggests that although putative 

functional mutations may arise within a host, these events are rare. iSNV detection within 

a host, at least in typical acute infections, may therefore have limited utility for predicting 

future variant emergence. Together, these data suggest that with rare exception, most 

within-host variants are purged over time, and typically do not contribute to consensus-

level diversity sampled later in time. As such, these findings suggest that most iSNVs are 

not selectively beneficial and are not efficiently transmitted.  

 

Variation is shared among some household samples, but is likely insufficient for 

transmission resolution 

Household studies provide the opportunity to investigate transmission dynamics in a 

setting of known epidemiologic linkage. We analyzed 44 samples collected from 19 

households from which multiple individuals were infected with SARS-CoV-2. To define 

putative transmission pairs from our household dataset, we modeled the expected 

number of mutations that should differ between consensus genomes given one serial 

interval as previously described289 (see Methods for details and rationale). We estimate 

that members of a transmission pair should generally differ by 0 to 2 consensus mutations 

(Figure 4a), and classify all such pairs within a household as putative transmission pairs. 

While most samples derived from a single household had near-identical consensus 

genomes, we observed a few instances in which consensus genomes differed 
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substantially. In particular, USA/WI-UW-476/2020 differed from both other genomes from 

the same household by 11 mutations, strongly suggesting that this individual was 

independently infected. 

 

To determine whether putative household transmission pairs shared more within-host 

variation than randomly sampled pairs of individuals, we performed a permutation test. 

We randomly sampled individuals with replacement and computed the proportion of 

iSNVs shared among random pairs to generate a null distribution (Figure 4b, grey bars). 

We then computed the proportion of variants shared among each putative household 

transmission pair. Finally, we compared the distribution of shared variants among 

household pairs and random pairs (Figure 4b). 90% of random pairs do not share any 

iSNVs. Although household pairs share more iSNVs than random pairs on average, half 

(14/28) of all household pairs share no iSNVs at all. Only 7 out of 28 of household pairs 

share more iSNVs than expected by chance (p < 0.05). 

 

While we hypothesized that putative transmission linkage would be the best predictor of 

sharing iSNVs, other processes could also result in shared iSNVs. For example, if 

transmission bottlenecks are wide and iSNVs are efficiently transmitted along 

transmission chains, then iSNVs may be propagated during community transmission. If 

so, then iSNVs should be shared among samples that are phylogenetically close together. 

If transmission chains circulate within local geographic areas, then iSNVs may be 

commonly shared by samples from the same geographic location. Finally, if iSNVs are 
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strongly constrained by genetic backbone, then variants may be more likely to be shared 

across samples from the same clade.  

 

To measure the contribution of these factors, we computed the proportion of iSNVs 

shared by each pair of samples in our dataset (including household and non-household 

samples), and model the proportion of shared iSNVs as the combined effect of 

phylogenetic divergence between the tips (i.e., the branch length in mutations between 

tips), clade membership, geographic distance between sampling locations, and 

household membership. Phylogenetic divergence and geographic distance between 

sampling locations have minimal predicted impact on iSNV sharing (Figure 4c and 

Supplemental Figure 9). The strongest predictor of sharing iSNVs is being sampled from 

the same household, which increased the predicted proportion of shared iSNVs by 0.22 

(0.16 - 0.27, 95% HPDI). Belonging to the same clade increases the predicted proportion 

of shared iSNVs by 0.043 (0.033 - 0.053, 95% HPDI), likely because sharing a within-

host variant is contingent on sharing the same consensus base. Taken together, being 

sampled from the same household is the strongest predictor of sharing iSNVs, and some 

household pairs share more variation than expected by chance. However, these effects 

are modest. Given the low overall diversity within hosts and presence of shared iSNVs, 

the degree of sharing we observe is unlikely sufficient for inferring transmission linkage 

independent of epidemiologic investigation. 

 

Transmission bottlenecks are likely narrow, and sensitive to variant calling 

threshold  
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The number of viral particles that found infection is a crucial determinant of the pace at 

which novel, beneficial variants can emerge. Narrow transmission bottlenecks can induce 

a founder effect that purges low-frequency iSNVs, regardless of their fitness. Conversely, 

wide transmission bottlenecks result in many viral particles founding infection, reducing 

the chance that beneficial variants are lost. Understanding the size of the transmission 

bottleneck is therefore important for evaluating the probability that novel SARS-CoV-2 

variants arising during acute infection will be transmitted onward. To infer transmission 

bottleneck sizes, we applied the beta-binomial inference method 137. We inferred 

transmission directionality using the date of symptom onset or date of sample collection 

(see methods for details). If this information was not informative, we calculated a 

bottleneck size bi-directionally evaluating each individual as the possible donor. In total, 

we performed 40 transmission bottleneck size estimates in 28 putative household pairs.  

 

iSNV frequencies in donor and recipient pairs are plotted in Figure 5a. Most iSNVs 

detected in the donor are either lost or fixed following transmission in the recipient. 

However, there are a few low-frequency and near-fixed iSNVs which are shared in donor-

recipient pairs. The combined maximum likelihood estimate for mean transmission 

bottleneck size at our defined 3% frequency threshold is 15 (95% CI: 11-21), although 

results vary across pairs (Figure 5b). Prior transmission bottleneck estimates have 

changed based on the variant-calling threshold employed 54,279. To determine whether 

our estimates were sensitive to our choice of a 3% variant threshold, we evaluated 

bottleneck sizes using variant thresholds ranging from 1% to 20%. We estimate the 

highest mean transmission bottleneck size when we employ a 1% frequency threshold 
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(38, 95% CI: 33-43), and lowest when we use a ≥7% frequency threshold (2, 95% CI: 1-

4) (Figure 5c; Supplemental Figure 10). The finding of larger bottleneck sizes at a 1% 

threshold may be due to increased false-positive iSNVs at lower thresholds, in agreement 

with our findings that a majority of iSNVs detected in the clonal RNA control occurred at 

frequencies <3%. Importantly though, while variant threshold clearly impacts estimated 

bottleneck size, our estimates are quite consistent. Even across a wide range of 

thresholds, our transmission bottleneck size estimates range from 2-43, and never 

exceed 50. 

 

The beta-binomial inference method assumes that shared variation in donor-recipient 

pairs is due to transmission. However, it is possible that shared low-frequency iSNVs are 

recurring mutations (i.e. homoplasies) that should be excluded from the beta-binomial 

analysis. One site in particular, a synonymous change at nucleotide 15,168 in ORF1ab, 

was commonly found at low frequencies in donor-recipient pairs. To account for the 

possibility that this variant is a homoplasy rather than shared via transmission, we 

dropped this site from our dataset and re-calculated bottleneck sizes. While bottleneck 

size estimates decrease in individual pairs where this variant is found (Supplemental 

Figure 10c), the average bottleneck size across all transmission pairs remains low (mean 

= 9, 95% CI: 6-14).  

 

It is possible that some of the pairs evaluated were not direct transmission pairs. Instead 

individuals may be part of the same transmission chain or share a common source of 

infection. We reasoned if two individuals were infected from a common source, then they 
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may have developed symptoms around the same time. In contrast, if one individual 

infected the other, then their symptom onset dates should be staggered. To assess this, 

we compared bottleneck sizes to the time between symptom onset in donor-recipient 

pairs for which symptom onset dates were available (n=17) (Supplemental Figure 11). 

We observed no clear trend between bottleneck size and symptom onset intervals. 

Finally, all bottleneck estimates are inherently limited by access to a single time point from 

each donor and recipient. Because it is impossible to know the exact date of infection and 

transmission, the donor iSNV frequencies may not reflect the true diversity present at the 

time of transmission. Taken together, we find that even among household pairs, the 

number of transmitted viruses is likely small. Although bottleneck size estimates vary by 

variant calling threshold, we find consistent support for fewer than 50 viruses founding 

infection and suspect that the majority of transmission events are founded by very few 

viruses (<10). Our data suggest that iSNVs generated within-host are generally lost during 

the transmission event, and are not efficiently propagated among epidemiologically linked 

individuals.   

 

Discussion 

The emergence of divergent SARS-CoV-2 lineages has called into question the role of 

within-host selection in propagating novel variants. Our results suggest that very limited 

variation is generated and transmitted during acute SARS-CoV-2 infection. Most 

infections in our dataset are characterized by fewer than 5 total intersection iSNVs, the 

majority of which are low-frequency. Most iSNVs are not detected in global consensus 

genomes, and are rarely detected in downstream branches on the phylogenetic tree. We 
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show that even among putative household transmission pairs, iSNVs are shared 

infrequently, and we estimate that a small number of viruses found infection after most 

transmission events. The combination of low overall within-host diversity, tight 

transmission bottlenecks, and infrequent propagation along transmission chains may 

slow the rate of novel variant emergence among acutely infected individuals. Importantly, 

our results imply that the accumulation of multiple iSNVs is unlikely during typical, acute 

infection. Together, our findings are consistent with a regime in which typical acute 

infections play a limited role in the generation and spread of new SARS-CoV-2 variants, 

and argue for the need to better understand the role of prolonged infections as a source 

of consequential new variants. Targeted interventions to prevent the number of long-term 

infections and to prevent transmission from persistently infected individuals may be 

particularly fruitful for slowing the rate of emergence of novel variants of concern. 

 

 

Relatively few studies have reported on SARS-CoV-2 within-host diversity, and their 

results have varied. SARS-CoV-2 within-host sequence data appear to be particularly 

vulnerable to method error, including sensitivity to cycle threshold 56,228, putative false 

positive iSNV calls in control runs 56, an uncertain degree of recurrent mutations shared 

across unrelated samples 54,228,278,290, and variation between technical replicates. 

Complicating matters, each lab employs its own sample preparation and variant calling 

pipelines, making comparison across datasets challenging, and concern has been raised 

regarding recurrent errors that are platform- and lab-specific 291. iSNVs that recur in nature 

pose a challenge because they result in the same data pattern that would be expected 
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from recurrent pipeline errors. We have attempted to employ multiple, overlapping 

controls to mitigate errors that could arise from sample preparation, bioinformatic 

processing, and improper variant thresholds. In particular, our results emphasize the 

importance of duplicate sequencing for any studies relying on low-frequency iSNVs to 

infer biological processes. Like Valesano et al. 56 we observe that SARS-CoV-2 variant 

calls are sensitive to Ct and variant-calling criteria. We echo their expressed caution in 

interpreting SARS-CoV-2 within-host data in the absence of pipeline-specific controls. 

 

Similar to work reported by others 56,228,290, we find that most samples harbor very few 

iSNVs, and that most variants are low-frequency. Although we employ distinct methods, 

we corroborate findings by Lythgoe & Hall et al.228 that iSNVs do not cluster 

geographically or phylogenetically, suggesting that they are not transmitted efficiently 

within communities. One difference is that we detect a higher number of shared/recurrent 

iSNVs in our dataset than reported by Lythgoe & Hall et al. 228, Valesano et al. 56, and 

Shen et al. 290, but fewer than Popa & Genger et al. 54 and James et al. 278. While some 

degree of shared iSNVs is reported across most SARS-CoV-2 datasets 54,56,228,278,290 the 

exact frequency of shared sites is highly variable. The higher number of shared iSNVs in 

our results may be partially accounted for by our method of variant reporting. While most 

studies mapped reads to the Wuhan-1 reference and report variants present at <50% 

frequency 54,56,228,290, we converted consensus-level variants to their low-frequency 

counterparts, and counted the minor allele for near-fixed variants. The higher level of 

shared iSNVs we observe could also be explained by sampling many closely related, 

cohabiting individuals. Though relatively few, some household transmission pairs do 
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share iSNVs, likely accounting for some of the shared variation we observe. Future work 

will be necessary to determine the precise degree to which iSNVs recur across unrelated 

individuals and the extent to which factors like viral copy number, time of infection, host 

factors including pre-existing immunity, and sequencing pipeline influence these 

estimates.  

 

Four other groups have previously estimated the size of the SARS-CoV-2 transmission 

bottleneck, although the total number of transmission events evaluated to date across 

studies remains small (~66). Lythgoe & Hall et al. (n=14 pairs) 292, James & Ngcapu et al. 

(n=11 pairs) 278, and Wang et al. (n=2 pairs) 227 report narrow bottlenecks, in which 

infection is founded by fewer than 10 viruses. Popa & Genger et al. (n=39 pairs) 54 report 

bottleneck sizes ranging from 10 to 5000, and an average size of 1000. Reanalysis of the 

Popa & Genger data using a more conservative variant dataset resulted in an average 

bottleneck size of 1-3 279. Similarly, we find a combined average bottleneck size of 15 

using a 3% frequency threshold, and 2 using a 7% frequency threshold. Thus, current 

evidence is converging to support narrow transmission bottlenecks for SARS-CoV-2, 

similar to influenza virus 122,133,135. Still, these estimates rely on a small number of putative 

transmission events, including the pairs analyzed here. Genuine differences in the SARS-

CoV-2 transmission bottleneck size, depending on route of transmission 134 and host 

factors may exist.  

 

When transmission bottlenecks are narrow, even beneficial variants present at low 

frequencies in the transmitting host are likely to be lost. However, the recent emergence 
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of multiple divergent lineages, some of which increase infectiousness, underscore that 

transmission of such variants clearly can occur 293. This raises the question: how did these 

variants make their way out of individual hosts? Narrow transmission bottlenecks 

generally purge within-host diversity through a founder effect. Although rare, a low-

frequency variant that successfully passes through a transmission bottleneck could 

quickly become the dominant variant in the next host. Such events would become 

increasingly common as the total number of infected individuals and transmission events 

occurring in the population climbs, making it possible to observe these rare events.  

 

The model outlined above aligns with the hypothesis that prolonged SARS-CoV-2 

infection leads to accumulation of intrahost mutations 265–269. Prolonged infections may 

permit additional cycles of viral replication, allowing for more variants to be generated and 

more time for selection to increase the frequency of beneficial variants. Even a modest 

increase in frequency within a donor enhances the likelihood of a beneficial variant 

becoming fixed following transmission in the setting of a narrow transmission bottleneck. 

Alternatively, it is possible for selection to act during transmission such that some viruses 

harboring a particular mutation or group of mutations are preferentially transmitted 204. In 

a previous study evaluating SARS-CoV-2 genetic diversity within and between domestic 

cats, we documented modest evidence supporting preferential transmission of a 

particular nonsynonymous variant in Spike 57. However, we saw no evidence for selective 

bottlenecks in this study. Additional studies evaluating the SARS-CoV-2 transmission 

bottleneck are needed, in particular in the setting of long-term infections and 

immunocompromised hosts.   
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Our findings that within-host variation is limited and infrequently transmitted are important. 

Our data, combined with findings from others, suggest that rapid accumulation of novel 

mutations within-host is not the norm during acute infection. Like influenza viruses, a 

significant portion of variation generated within one infected host is likely lost during 

transmission. The combination of within-host limited diversity and tight transmission 

bottlenecks should slow the pace at which novel, beneficial variants could emerge during 

transmission among acutely infected individuals. Future studies that compare within-host 

diversity in individuals with and without SARS-CoV-2 antibodies will be necessary to 

evaluate whether immunity imposes signatures of within-host selection. Finally, given the 

increasing appreciation for the potential role of long infections to promote variant 

emergence, within-host data may provide its maximum benefit for dissecting the process 

of variant evolution during prolonged infections.  
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Figures, tables, and supplemental material 
 

 

Figure 1: Within host variation is limited after data quality control  

a. iSNV frequencies in replicate 1 are shown on the x-axis and frequencies in replicate 2 

are shown on y-axis. The yellow box highlights low-frequency iSNVs (3-15%), which is 

expanded out to the right. b. The Ct value is compared to the percent of iSNVs shared 

between technical replicates. The blue line is a line of best fit to highlight the observed 

negative trend. c. Distribution of the number of total iSNVs detected per sample. Many 

samples harbor no iSNVs at all, and the maximum number of iSNVs in a single sample 

was 11. d. The proportion of iSNVs that were detected at various within-host frequency 

bins is shown. Error bars represent the variance in the proportion of total within-host 

iSNVs within that frequency bin across samples in the dataset as calculated by 

bootstrapping. There was a single stop variant in the entire dataset, so no error bar is 
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shown for the stop category. The solid grey line indicates the expected proportion of 

variants in each frequency bin under a neutral model. 

 
 

Figure 2: Shared iSNVs represent homopolymers and common polymorphic sites  

a. The number of iSNVs (y-axis) present within n individuals (x-axis) is shown. The vast 

majority of iSNVs are found in only a single sample. 6 iSNVs are shared by at least 10 

samples. b. Each iSNV detected in at least 2 samples is shown. Variants that occur within, 

or 1 nucleotide outside of, a homopolymer region (classified as a span of the same base 
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that is at least 3 nucleotides long) are colored in yellow. Variants that represent the minor 

allele for variants that were nearly fixed at consensus (annotated here as “Wuhan1 

reversions”) are shown in blue, and variants that were both Wuhan1 reversions and 

occurred in homopolymer regions are colored in purple. c. For each unique iSNV detected 

within a host, the x-axis represents the number of samples in which that iSNV was 

detected, and the y-axis represents the number of times it is present on the global SARS-

CoV-2 phylogenetic tree. The counts on the phylogenetic tree represent the number of 

times the mutation arose along internal and external branches. The variants labeled with 

text are those that are detected at least 5 times within-host and at least 5 times on the 

phylogeny. Two of the most commonly detected iSNVs, T3037C and T241C (shown as 

the furthest to the left in panel b), are also frequently detected on the phylogenetic tree. 
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Figure 3: Variants are not common in consensus sequences or in downstream 

branches  

a. We traversed the Wisconsin-focused full-genome SARS-CoV-2 phylogeny from root to 

tip. For each Wisconsin tip for which we had within-host data, we queried whether any of 

the iSNVs detected in that sample were ever detected in downstream branches at 

consensus. In this example, the purple tip represents a Wisconsin sample for which we 

have within-host data. This sample harbors 2 iSNVs, A and B. iSNV A arises on a tip that 

falls downstream from the starting, purple tip. iSNV B is present on a downstream branch 
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leading to an internal node. Both A and B would be counted as instances in which an 

iSNV was detected at consensus in a downstream branch. b. In the Wisconsin-specific 

phylogenetic tree, we applied the metric described in a. Among 110 Wisconsin samples 

that harbored within-host variation, 93 occurred on internal nodes. Of those, we detect 

one instance in which a mutation detected as an iSNV in one sequence was detected in 

a downstream consensus sequence. (C1912T, an iSNV in USA/WI-UW-214/2020, was 

detected downstream in USA/WI-WSLH-200068/2020.) c. For each iSNV identified in the 

study (in at least 1 sample), we enumerated the number of times that variant occurred on 

the global SARS-CoV-2 phylogeny on an internal node (yellow) or on a tip (blue). The 

results for every variant are shown in Supplemental Figure 6. Here, we show only the 

variants that were detected at least 10 times on the global phylogeny. Each such iSNV is 

found at internal nodes and tips at a ratio comparable to overall mutations on the tree, 

except for C28887T, which is enriched on internal nodes (p=0.028, Fishers’ exact test).  

* indicates p-value < 0.05. 
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Figure 4: Household pairs share a modest degree of within-host variation 

a. We modeled the probability that 2 consensus genomes will share x mutations as 

Poisson-distributed with lambda equal to the number of mutations expected to 

accumulate in the SARS-CoV-2 genome over 5.8 days 285 given a substitution rate of 1.10 

x 10-3 substitutions per site per year 153. Exploration of how these probabilities change 

using a range of plausible serial intervals and substitution rates is shown in 

Supplemental Figure 8. The vast majority of genomes that are separated by one serial 



   

 

148 

interval are expected to differ by ≤2 consensus mutations. b. The proportion of random 

pairs (grey) and putative household transmission pairs (purple) is shown on the y-axis vs. 

the proportion of iSNVs shared. The dotted line indicates the 95th percentile among the 

random pairs. Household pairs that share a greater proportion of iSNVs than 95% of 

random pairs (i.e., are plotted to the right of the dotted line) are considered statistically 

significant at p=0.05. iSNVs had to be present at a frequency of ≥3% to be considered in 

this analysis. c. We assessed the impact of household membership, clade membership, 

phylogenetic divergence, and geographic distance on the proportion of iSNVs shared 

between each pair of samples in our dataset. The mean of each estimated coefficient in 

the combined linear regression model including all predictors is shown on the x-axis, with 

lines of spread indicating the range of the estimated 95% highest posterior density interval 

(HPDI). 
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Figure 5: SARS-CoV-2 transmission bottlenecks in household transmission pairs 

a. “TV plots” showing intersection iSNV frequencies in all 44 donor-recipient pairs using 

a 3% frequency threshold. The yellow box highlights low-frequency iSNVs (3-10%) and 
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the mauve box highlights high-frequency iSNVs (90-100%). b. Maximum likelihood 

estimates for mean transmission bottleneck size in individual donor-recipient pairs. 

Bottleneck sizes could not be estimated for a few pairs (e.g. pairs 5, 10a, 11a, etc) 

because there were no polymorphic sites detected in the donor. c. Bidirectional 

comparisons are denoted with an “a” and “b” following the pair number. Combined 

maximum likelihood estimates across all 44 donor-recipient pairs plotted against variant 

calling thresholds ranging from 1-20%. The purple line shows combined estimates at each 

variant calling threshold shown and the mauve band displays the 95% confidence interval 

for this estimate. The dashed grey line indicates a bottleneck size equal to 1. The vertical 

yellow band highlights the combined transmission bottleneck size using a 3% variant 

calling threshold.  
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Supplemental Figure 1: Read depth  

Read depth by genome location in 1,000-bp bins for MiSeq runs a. 627, b. 628, c. 643, 

and d. 644. Water controls and low-coverage samples are labeled. Samples included in 

each run are labeled according to the color to the right of each plot.  
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Supplemental Figure 2: Read depth  

Read depth by genome location in 1,000-bp bins for MiSeq runs a. 645, b. 667, and c. 

671. Water controls and low-coverage samples are labeled within each plot. Samples 

included in each run are labeled according to the color to the right of each plot.  
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Supplemental Figure 3: Additional iSNV quality control information  

a. Variant frequencies generated using the Wisconsin bioinformatic pipelines are shown 

on the x-axis and frequencies generated using the Washington bioinformatic pipeline are 

shown on the y-axis. The yellow box highlights low-frequency variants (3-15%), which is 

expanded out to the right. b. Proportion of intersection iSNVs relative to the total number 

of iSNVs increases as variant frequency threshold increases. c. The total number of 

iSNVs detected across both Twist RNA control replicates compared to the iSNV 

frequency threshold. The majority of iSNVs detected in these clonal samples occur <3% 

frequency. Note that the iSNVs reported in Supplemental Table 1 are intersection iSNVs 

only. The identities of all iSNVs detected ≥1% frequency in the Twist RNA control can be 

found in the GitHub accompanying this manuscript. d. The number of intersection variants 

is compared to the Ct value for all samples where a Ct value was available. Out of 133 

total samples, Ct values were available for 94. e. The number of intersection variants is 

compared to the RLU (relative light unit) value for all samples where a RLU value was 

available.  
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Supplemental Figure 4: iSNVs in technical replicates across all samples. a. Variant 

frequencies in replicate 1 are shown on the x-axis and frequencies in replicate 2 are 

shown on y-axis. This plot includes all variants found in both replicates and not just the 

intersection variants as shown Figure 1a. b. Example of one sample with very poor 

overlap between technical replicates; this sample (sample 1104) was excluded from the 

experimental dataset. 

 

 

 
 

Supplemental Figure 5: iSNVs do not cluster by sequencing run. iSNVs detected in 

at least 2 samples are shown on the x-axis and are plotted against the number of times 

they are detected in our dataset. Each iSNV bar is colored according to the number of 

times it was detected within each sequencing batch. 
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Supplemental Figure 6: Wisconsin divergence phylogeny 

A full-genome phylogenetic tree built showing X Wisconsin consensus sequences with 

the Nextstrain pipeline is shown. The x-axis represents divergence expressed as the 

number of nucleotide mutations. Nextstrain clade labels are shown on the corresponding 

branch. Yellow tips represent Wisconsin samples that were Illumina sequenced in 

duplicate and analyzed in this manuscript. Purple tips represent samples from 

households.  

 
 

Supplemental Figure 7: Most iSNVs are not detected on the phylogeny 

We queried every iSNV that was detected within-host (in at least 1 sample) in the global 

SARS-CoV-2 phylogenetic tree and quantified the number of times that iSNV was 

detected on an internal node (yellow bar heights) or on a terminal node/tip (blue bar 

heights). Only approximately 1/3 of all SNVs detected within-host were found on the tree, 

and none of the indels detected within-host were detected on the phylogeny. Most SNVs 

that were detected on the tree were rare, and occurred predominantly on terminal nodes. 
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Supplemental Figure 8: Modeling the expected number of mutations distinguishing 

genomes separated by one serial interval  

To define whether infections sampled from the same household might be true 

transmission pairs, we explored the expected number of consensus mutations that should 

differ between genomes separated by one serial interval. We modeled the probability that 

2 consensus genomes will share x mutations as Poisson distributed with lambda equal to 

the number of mutations expected to accumulate in the SARS-CoV-2 genome over a 

single serial interval, given a known substitution rate. He et al. estimate a serial interval 

for SARS-CoV-2 of 5.8 days, with a 95% confidence interval between 4.8-6.8 days 285. 

We therefore evaluated serial intervals of 4, 5, 6, 7, and 8 days. For the substitution rate, 

we use estimates from Duchene et al 153, who estimate a mean substitution rate of 1.10 

x 10-3 substitutions per site per year, with a 95% credible interval of 7.03 x 10-4 and 1.15 

x 10-3. We evaluated the probabilities that two consensus genomes differ by 0, 1, 2, 3, 

and 4 mutations given serial intervals ranging from 4-8, and clock rates at the mean, and 

upper and lower bounds of the 95% credible interval. For each calculated probability, the 
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serial interval is represented by color and the substitution rate is shown above each plot. 

The dotted line represents a probability of 0.05. Given these combinations of values, the 

vast majority of consensus genomes are expected to differ by 0-2 mutations.  

 

 

 
 

Supplemental Figure 9: Posterior density estimates for regression coefficients  

For each regression coefficient evaluated in the combined regression model, the full 

posterior distribution is shown as a density plot. The posterior distribution of the estimated 

variance and intercept are also shown. 
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Supplemental Figure 10: Sensitivity testing of transmission bottleneck estimates 

Maximum likelihood estimates for mean transmission bottleneck size in individual donor-

recipient pairs using a. 1% frequency threshold, b. 3% frequency threshold, c. excluding 

site 15,168 as a possible homoplasy with a 3% frequency threshold, and d. 7% frequency 
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threshold. Data are not shown for donor-recipient pairs where no bottleneck estimate 

could be generated due to lack of variant data.  Bidirectional comparisons are indicated 

with an “a” and “b” following the pair number.  

 
Supplemental Figure 11: Variance in transmission bottleneck size cannot be 

explained by time between symptom onset in donor:recipient pairs. We plotted 

transmission bottleneck size on the y-axis against time (days) between symptom onset in 

17 donor-recipient pairs on the x-axis for which we had symptom metadata.  
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Supplemental Table 1. iSNVs detected in replicate sequencing of the synthetic RNA 

control (Twist-Biosciences).  

 

 

 

Mutation

Gene Reference 
amino acid

Amino acid 
position

Variant 
amino acid

Reference 
nucleotide

Nucleotide 
position

Variant 
nucleotide

rep1 
percent

rep2 
percent

Average 
percent

orf1ab Ser 1029 Cys A 3350 T 0.0406 0.0441 0.04235

orf1ab Trp 2135 *Stop G 6669 A 0.0304 0.0347 0.03255

orf1ab Gly 2863 Val G 8853 T 0.0103 0.011 0.01065

orf1ab Thr 2967 Ser A 9164 T 0.0125 0.0109 0.0117

 M Leu 90 *Stop T 26791 A 0.1329 0.1368 0.13485

M Met 90 Val A 26793 G 0.1313 0.1354 0.13335

M Trp 92 Arg T 26796 A 0.131 0.1352 0.1331

Supplemental Table 1. iSNVs detected in replicate sequencing of the synthetic RNA control 
(Twist-Biosciences). 
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Supplemental Table 2. Sample identifiers and accession numbers. This table includes 

strain name, tube/filename, state of collection, county of collection, collection date, 

GISAID accession number, Genbank accession number, as well as Ct values and RLU 

values where available for each sample included in this study.  

 

 

 

 

 

 

 



   

 

168 

name pool sequence length %gc tm (use 65) 
nCoV-2019_1_LEFT nCoV-2019_1 ACCAACCAACTTTCGATCTCTTGT 24 41.67 60.69 
nCoV-2019_1_RIGHT nCoV-2019_1 CATCTTTAAGATGTTGACGTGCCTC 25 44 60.45 
nCoV-2019_2_LEFT nCoV-2019_2 CTGTTTTACAGGTTCGCGACGT 22 50 61.67 
nCoV-2019_2_RIGHT nCoV-2019_2 TAAGGATCAGTGCCAAGCTCGT 22 50 61.74 
nCoV-2019_3_LEFT nCoV-2019_1 CGGTAATAAAGGAGCTGGTGGC 22 54.55 61.32 
nCoV-2019_3_RIGHT nCoV-2019_1 AAGGTGTCTGCAATTCATAGCTCT 24 41.67 60.32 
nCoV-2019_4_LEFT nCoV-2019_2 GGTGTATACTGCTGCCGTGAAC 22 54.55 61.56 
nCoV-2019_4_RIGHT nCoV-2019_2 CACAAGTAGTGGCACCTTCTTTAGT 25 44 60.97 
nCoV-2019_5_LEFT nCoV-2019_1 TGGTGAAACTTCATGGCAGACG 22 50 61.39 
nCoV-2019_5_RIGHT nCoV-2019_1 ATTGATGTTGACTTTCTCTTTTTGGAGT 28 32.14 60.17 
nCoV-2019_6_LEFT nCoV-2019_2 GGTGTTGTTGGAGAAGGTTCCG 22 54.55 61.64 
nCoV-2019_6_RIGHT nCoV-2019_2 TAGCGGCCTTCTGTAAAACACG 22 50 61.18 
nCoV-2019_7_LEFT nCoV-2019_1 ATCAGAGGCTGCTCGTGTTGTA 22 50 61.73 
nCoV-2019_7_LEFT_alt0 nCoV-2019_1 CATTTGCATCAGAGGCTGCTCG 22 54.55 62.44 
nCoV-2019_7_RIGHT nCoV-2019_1 TGCACAGGTGACAATTTGTCCA 22 45.45 60.95 
nCoV-2019_7_RIGHT_alt5 nCoV-2019_1 AGGTGACAATTTGTCCACCGAC 22 50 61.07 
nCoV-2019_8_LEFT nCoV-2019_2 AGAGTTTCTTAGAGACGGTTGGGA 24 45.83 61 
nCoV-2019_8_RIGHT nCoV-2019_2 GCTTCAACAGCTTCACTAGTAGGT 24 45.83 60.56 
nCoV-2019_9_LEFT nCoV-2019_1 TCCCACAGAAGTGTTAACAGAGGA 24 45.83 61.18 
nCoV-2019_9_LEFT_alt4 nCoV-2019_1 TTCCCACAGAAGTGTTAACAGAGG 24 45.83 60.44 
nCoV-2019_9_RIGHT nCoV-2019_1 ATGACAGCATCTGCCACAACAC 22 50 61.71 
nCoV-2019_9_RIGHT_alt2 nCoV-2019_1 GACAGCATCTGCCACAACACAG 22 54.55 62.26 
nCoV-2019_10_LEFT nCoV-2019_2 TGAGAAGTGCTCTGCCTATACAGT 24 45.83 61.12 
nCoV-2019_10_RIGHT nCoV-2019_2 TCATCTAACCAATCTTCTTCTTGCTCT 27 37.04 60.31 
nCoV-2019_11_LEFT nCoV-2019_1 GGAATTTGGTGCCACTTCTGCT 22 50 61.66 
nCoV-2019_11_RIGHT nCoV-2019_1 TCATCAGATTCAACTTGCATGGCA 24 41.67 61.35 
nCoV-2019_12_LEFT nCoV-2019_2 AAACATGGAGGAGGTGTTGCAG 22 50 61.08 
nCoV-2019_12_RIGHT nCoV-2019_2 TTCACTCTTCATTTCCAAAAAGCTTGA 27 33.33 60.36 
nCoV-2019_13_LEFT nCoV-2019_1 TCGCACAAATGTCTACTTAGCTGT 24 41.67 60.56 
nCoV-2019_13_RIGHT nCoV-2019_1 ACCACAGCAGTTAAAACACCCT 22 45.45 60.36 
nCoV-2019_14_LEFT nCoV-2019_2 CATCCAGATTCTGCCACTCTTGT 23 47.83 60.62 
nCoV-2019_14_LEFT_alt4 nCoV-2019_2 TGGCAATCTTCATCCAGATTCTGC 24 45.83 61.47 
nCoV-2019_14_RIGHT nCoV-2019_2 AGTTTCCACACAGACAGGCATT 22 45.45 60.42 
nCoV-2019_14_RIGHT_alt2 nCoV-2019_2 TGCGTGTTTCTTCTGCATGTGC 22 50 62.76 
nCoV-2019_15_LEFT nCoV-2019_1 ACAGTGCTTAAAAAGTGTAAAAGTGCC 27 37.04 61.32 
nCoV-2019_15_LEFT_alt1 nCoV-2019_1 AGTGCTTAAAAAGTGTAAAAGTGCCT 26 34.62 60.13 
nCoV-2019_15_RIGHT nCoV-2019_1 AACAGAAACTGTAGCTGGCACT 22 45.45 60.16 
nCoV-2019_15_RIGHT_alt3 nCoV-2019_1 ACTGTAGCTGGCACTTTGAGAGA 23 47.83 61.57 
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nCoV-2019_16_LEFT nCoV-2019_2 AATTTGGAAGAAGCTGCTCGGT 22 45.45 60.82 
nCoV-2019_16_RIGHT nCoV-2019_2 CACAACTTGCGTGTGGAGGTTA 22 50 61.32 
nCoV-2019_17_LEFT nCoV-2019_1 CTTCTTTCTTTGAGAGAAGTGAGGACT 27 40.74 60.69 
nCoV-2019_17_RIGHT nCoV-2019_1 TTTGTTGGAGTGTTAACAATGCAGT 25 36 60.11 
nCoV-2019_18_LEFT nCoV-2019_2 TGGAAATACCCACAAGTTAATGGTTTAAC 29 34.48 60.69 
nCoV-2019_18_LEFT_alt2 nCoV-2019_2 ACTTCTATTAAATGGGCAGATAACAACTGT 30 33.33 61.38 
nCoV-2019_18_RIGHT nCoV-2019_2 AGCTTGTTTACCACACGTACAAGG 24 45.83 61.51 
nCoV-2019_18_RIGHT_alt1 nCoV-2019_2 GCTTGTTTACCACACGTACAAGG 23 47.83 60.3 
nCoV-2019_19_LEFT nCoV-2019_1 GCTGTTATGTACATGGGCACACT 23 47.83 61.18 
nCoV-2019_19_RIGHT nCoV-2019_1 TGTCCAACTTAGGGTCAATTTCTGT 25 40 60.4 
nCoV-2019_20_LEFT nCoV-2019_2 ACAAAGAAAACAGTTACACAACAACCA 27 33.33 60.68 
nCoV-2019_20_RIGHT nCoV-2019_2 ACGTGGCTTTATTAGTTGCATTGTT 25 36 60.28 
nCoV-2019_21_LEFT nCoV-2019_1 TGGCTATTGATTATAAACACTACACACCC 29 37.93 61.49 
nCoV-2019_21_LEFT_alt2 nCoV-2019_1 GGCTATTGATTATAAACACTACACACCCT 29 37.93 61.29 
nCoV-2019_21_RIGHT nCoV-2019_1 TAGATCTGTGTGGCCAACCTCT 22 50 60.83 
nCoV-2019_21_RIGHT_alt0 nCoV-2019_1 GATCTGTGTGGCCAACCTCTTC 22 54.55 61.2 
nCoV-2019_22_LEFT nCoV-2019_2 ACTACCGAAGTTGTAGGAGACATTATACT 29 37.93 61.25 
nCoV-2019_22_RIGHT nCoV-2019_2 ACAGTATTCTTTGCTATAGTAGTCGGC 27 40.74 60.73 
nCoV-2019_23_LEFT nCoV-2019_1 ACAACTACTAACATAGTTACACGGTGT 27 37.04 60.26 
nCoV-2019_23_RIGHT nCoV-2019_1 ACCAGTACAGTAGGTTGCAATAGTG 25 44 60.57 
nCoV-2019_24_LEFT nCoV-2019_2 AGGCATGCCTTCTTACTGTACTG 23 47.83 60.37 
nCoV-2019_24_RIGHT nCoV-2019_2 ACATTCTAACCATAGCTGAAATCGGG 26 42.31 61.19 
nCoV-2019_25_LEFT nCoV-2019_1 GCAATTGTTTTTCAGCTATTTTGCAGT 27 33.33 60.73 
nCoV-2019_25_RIGHT nCoV-2019_1 ACTGTAGTGACAAGTCTCTCGCA 23 47.83 61.3 
nCoV-2019_26_LEFT nCoV-2019_2 TTGTGATACATTCTGTGCTGGTAGT 25 40 60.28 
nCoV-2019_26_RIGHT nCoV-2019_2 TCCGCACTATCACCAACATCAG 22 50 60.42 
nCoV-2019_27_LEFT nCoV-2019_1 ACTACAGTCAGCTTATGTGTCAACC 25 44 60.8 
nCoV-2019_27_RIGHT nCoV-2019_1 AATACAAGCACCAAGGTCACGG 22 50 61.13 
nCoV-2019_28_LEFT nCoV-2019_2 ACATAGAAGTTACTGGCGATAGTTGT 26 38.46 60.13 
nCoV-2019_28_RIGHT nCoV-2019_2 TGTTTAGACATGACATGAACAGGTGT 26 38.46 60.91 
nCoV-2019_29_LEFT nCoV-2019_1 ACTTGTGTTCCTTTTTGTTGCTGC 24 41.67 61.39 
nCoV-2019_29_RIGHT nCoV-2019_1 AGTGTACTCTATAAGTTTTGATGGTGTGT 29 34.48 60.69 
nCoV-2019_30_LEFT nCoV-2019_2 GCACAACTAATGGTGACTTTTTGCA 25 40 61.19 
nCoV-2019_30_RIGHT nCoV-2019_2 ACCACTAGTAGATACACAAACACCAG 26 42.31 60.3 
nCoV-2019_31_LEFT nCoV-2019_1 TTCTGAGTACTGTAGGCACGGC 22 54.55 62.03 
nCoV-2019_31_RIGHT nCoV-2019_1 ACAGAATAAACACCAGGTAAGAATGAGT 28 35.71 60.69 
nCoV-2019_32_LEFT nCoV-2019_2 TGGTGAATACAGTCATGTAGTTGCC 25 44 61.09 
nCoV-2019_32_RIGHT nCoV-2019_2 AGCACATCACTACGCAACTTTAGA 24 41.67 60.56 
nCoV-2019_33_LEFT nCoV-2019_1 ACTTTTGAAGAAGCTGCGCTGT 22 45.45 61.58 
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nCoV-2019_33_RIGHT nCoV-2019_1 TGGACAGTAAACTACGTCATCAAGC 25 44 61.08 
nCoV-2019_34_LEFT nCoV-2019_2 TCCCATCTGGTAAAGTTGAGGGT 23 47.83 61.02 
nCoV-2019_34_RIGHT nCoV-2019_2 AGTGAAATTGGGCCTCATAGCA 22 45.45 60.03 
nCoV-2019_35_LEFT nCoV-2019_1 TGTTCGCATTCAACCAGGACAG 22 50 61.39 
nCoV-2019_35_RIGHT nCoV-2019_1 ACTTCATAGCCACAAGGTTAAAGTCA 26 38.46 60.69 
nCoV-2019_36_LEFT nCoV-2019_2 TTAGCTTGGTTGTACGCTGCTG 22 50 61.44 
nCoV-2019_36_RIGHT nCoV-2019_2 GAACAAAGACCATTGAGTACTCTGGA 26 42.31 60.74 
nCoV-2019_37_LEFT nCoV-2019_1 ACACACCACTGGTTGTTACTCAC 23 47.83 60.93 
nCoV-2019_37_RIGHT nCoV-2019_1 GTCCACACTCTCCTAGCACCAT 22 54.55 61.48 
nCoV-2019_38_LEFT nCoV-2019_2 ACTGTGTTATGTATGCATCAGCTGT 25 40 60.86 
nCoV-2019_38_RIGHT nCoV-2019_2 CACCAAGAGTCAGTCTAAAGTAGCG 25 48 61.13 
nCoV-2019_39_LEFT nCoV-2019_1 AGTATTGCCCTATTTTCTTCATAACTGGT 29 34.48 61 
nCoV-2019_39_RIGHT nCoV-2019_1 TGTAACTGGACACATTGAGCCC 22 50 60.55 
nCoV-2019_40_LEFT nCoV-2019_2 TGCACATCAGTAGTCTTACTCTCAGT 26 42.31 61.25 
nCoV-2019_40_RIGHT nCoV-2019_2 CATGGCTGCATCACGGTCAAAT 22 50 62.09 
nCoV-2019_41_LEFT nCoV-2019_1 GTTCCCTTCCATCATATGCAGCT 23 47.83 60.75 
nCoV-2019_41_RIGHT nCoV-2019_1 TGGTATGACAACCATTAGTTTGGCT 25 40 60.75 
nCoV-2019_42_LEFT nCoV-2019_2 TGCAAGAGATGGTTGTGTTCCC 22 50 61.08 
nCoV-2019_42_RIGHT nCoV-2019_2 CCTACCTCCCTTTGTTGTGTTGT 23 47.83 60.69 
nCoV-2019_43_LEFT nCoV-2019_1 TACGACAGATGTCTTGTGCTGC 22 50 60.93 
nCoV-2019_43_RIGHT nCoV-2019_1 AGCAGCATCTACAGCAAAAGCA 22 45.45 61.14 
nCoV-2019_44_LEFT nCoV-2019_2 TGCCACAGTACGTCTACAAGCT 22 50 61.66 
nCoV-2019_44_LEFT_alt3 nCoV-2019_2 CCACAGTACGTCTACAAGCTGG 22 54.55 60.67 
nCoV-2019_44_RIGHT nCoV-2019_2 AACCTTTCCACATACCGCAGAC 22 50 60.87 
nCoV-2019_44_RIGHT_alt0 nCoV-2019_2 CGCAGACGGTACAGACTGTGTT 22 54.55 62.77 
nCoV-2019_45_LEFT nCoV-2019_1 TACCTACAACTTGTGCTAATGACCC 25 44 60.57 
nCoV-2019_45_LEFT_alt2 nCoV-2019_1 AGTATGTACAAATACCTACAACTTGTGCT 29 34.48 60.94 
nCoV-2019_45_RIGHT nCoV-2019_1 AAATTGTTTCTTCATGTTGGTAGTTAGAGA 30 30 60.01 
nCoV-2019_45_RIGHT_alt7 nCoV-2019_1 TTCATGTTGGTAGTTAGAGAAAGTGTGTC 29 37.93 61.53 
nCoV-2019_46_LEFT nCoV-2019_2 TGTCGCTTCCAAGAAAAGGACG 22 50 61.38 
nCoV-2019_46_LEFT_alt1 nCoV-2019_2 CGCTTCCAAGAAAAGGACGAAGA 23 47.83 61.35 
nCoV-2019_46_RIGHT nCoV-2019_2 CACGTTCACCTAAGTTGGCGTA 22 50 60.86 
nCoV-2019_46_RIGHT_alt2 nCoV-2019_2 CACGTTCACCTAAGTTGGCGTAT 23 47.83 61.17 
nCoV-2019_47_LEFT nCoV-2019_1 AGGACTGGTATGATTTTGTAGAAAACCC 28 39.29 61.42 
nCoV-2019_47_RIGHT nCoV-2019_1 AATAACGGTCAAAGAGTTTTAACCTCTC 28 35.71 60.06 
nCoV-2019_48_LEFT nCoV-2019_2 TGTTGACACTGACTTAACAAAGCCT 25 40 61.09 
nCoV-2019_48_RIGHT nCoV-2019_2 TAGATTACCAGAAGCAGCGTGC 22 50 60.74 
nCoV-2019_49_LEFT nCoV-2019_1 AGGAATTACTTGTGTATGCTGCTGA 25 40 60.57 
nCoV-2019_49_RIGHT nCoV-2019_1 TGACGATGACTTGGTTAGCATTAATACA 28 35.71 61.05 
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nCoV-2019_50_LEFT nCoV-2019_2 GTTGATAAGTACTTTGATTGTTACGATGGT 30 33.33 60.59 
nCoV-2019_50_RIGHT nCoV-2019_2 TAACATGTTGTGCCAACCACCA 22 45.45 60.95 
nCoV-2019_51_LEFT nCoV-2019_1 TCAATAGCCGCCACTAGAGGAG 22 54.55 61.34 
nCoV-2019_51_RIGHT nCoV-2019_1 AGTGCATTAACATTGGCCGTGA 22 45.45 61.14 
nCoV-2019_52_LEFT nCoV-2019_2 CATCAGGAGATGCCACAACTGC 22 54.55 61.83 
nCoV-2019_52_RIGHT nCoV-2019_2 GTTGAGAGCAAAATTCATGAGGTCC 25 44 60.62 
nCoV-2019_53_LEFT nCoV-2019_1 AGCAAAATGTTGGACTGAGACTGA 24 41.67 60.69 
nCoV-2019_53_RIGHT nCoV-2019_1 AGCCTCATAAAACTCAGGTTCCC 23 47.83 60.31 
nCoV-2019_54_LEFT nCoV-2019_2 TGAGTTAACAGGACACATGTTAGACA 26 38.46 60.18 
nCoV-2019_54_RIGHT nCoV-2019_2 AACCAAAAACTTGTCCATTAGCACA 25 36 60.11 
nCoV-2019_55_LEFT nCoV-2019_1 ACTCAACTTTACTTAGGAGGTATGAGCT 28 39.29 61.43 
nCoV-2019_55_RIGHT nCoV-2019_1 GGTGTACTCTCCTATTTGTACTTTACTGT 29 37.93 60.54 
nCoV-2019_56_LEFT nCoV-2019_2 ACCTAGACCACCACTTAACCGA 22 50 60.49 
nCoV-2019_56_RIGHT nCoV-2019_2 ACACTATGCGAGCAGAAGGGTA 22 50 61.21 
nCoV-2019_57_LEFT nCoV-2019_1 ATTCTACACTCCAGGGACCACC 22 54.55 61.16 
nCoV-2019_57_RIGHT nCoV-2019_1 GTAATTGAGCAGGGTCGCCAAT 22 50 61.26 
nCoV-2019_58_LEFT nCoV-2019_2 TGATTTGAGTGTTGTCAATGCCAGA 25 40 61.44 
nCoV-2019_58_RIGHT nCoV-2019_2 CTTTTCTCCAAGCAGGGTTACGT 23 47.83 61.06 
nCoV-2019_59_LEFT nCoV-2019_1 TCACGCATGATGTTTCATCTGCA 23 43.48 61.42 
nCoV-2019_59_RIGHT nCoV-2019_1 AAGAGTCCTGTTACATTTTCAGCTTG 26 38.46 60.02 
nCoV-2019_60_LEFT nCoV-2019_2 TGATAGAGACCTTTATGACAAGTTGCA 27 37.04 60.53 
nCoV-2019_60_RIGHT nCoV-2019_2 GGTACCAACAGCTTCTCTAGTAGC 24 50 60.44 
nCoV-2019_61_LEFT nCoV-2019_1 TGTTTATCACCCGCGAAGAAGC 22 50 61.5 
nCoV-2019_61_RIGHT nCoV-2019_1 ATCACATAGACAACAGGTGCGC 22 50 61.25 
nCoV-2019_62_LEFT nCoV-2019_2 GGCACATGGCTTTGAGTTGACA 22 50 61.91 
nCoV-2019_62_RIGHT nCoV-2019_2 GTTGAACCTTTCTACAAGCCGC 22 50 60.35 
nCoV-2019_63_LEFT nCoV-2019_1 TGTTAAGCGTGTTGACTGGACT 22 45.45 60.16 
nCoV-2019_63_RIGHT nCoV-2019_1 ACAAACTGCCACCATCACAACC 22 50 61.85 
nCoV-2019_64_LEFT nCoV-2019_2 TCGATAGATATCCTGCTAATTCCATTGT 28 35.71 60.11 
nCoV-2019_64_RIGHT nCoV-2019_2 AGTCTTGTAAAAGTGTTCCAGAGGT 25 40 60.1 
nCoV-2019_65_LEFT nCoV-2019_1 GCTGGCTTTAGCTTGTGGGTTT 22 50 61.92 
nCoV-2019_65_RIGHT nCoV-2019_1 TGTCAGTCATAGAACAAACACCAATAGT 28 35.71 60.9 
nCoV-2019_66_LEFT nCoV-2019_2 GGGTGTGGACATTGCTGCTAAT 22 50 61.21 
nCoV-2019_66_RIGHT nCoV-2019_2 TCAATTTCCATTTGACTCCTGGGT 24 41.67 60.45 
nCoV-2019_67_LEFT nCoV-2019_1 GTTGTCCAACAATTACCTGAAACTTACT 28 35.71 60.43 
nCoV-2019_67_RIGHT nCoV-2019_1 CAACCTTAGAAACTACAGATAAATCTTGGG 30 36.67 60.4 
nCoV-2019_68_LEFT nCoV-2019_2 ACAGGTTCATCTAAGTGTGTGTGT 24 41.67 60.14 
nCoV-2019_68_RIGHT nCoV-2019_2 CTCCTTTATCAGAACCAGCACCA 23 47.83 60.31 
nCoV-2019_69_LEFT nCoV-2019_1 TGTCGCAAAATATACTCAACTGTGTCA 27 37.04 61.43 
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nCoV-2019_69_RIGHT nCoV-2019_1 TCTTTATAGCCACGGAACCTCCA 23 47.83 61.14 
nCoV-2019_70_LEFT nCoV-2019_2 ACAAAAGAAAATGACTCTAAAGAGGGTTT 29 31.03 60.13 
nCoV-2019_70_RIGHT nCoV-2019_2 TGACCTTCTTTTAAAGACATAACAGCAG 28 35.71 60.27 
nCoV-2019_71_LEFT nCoV-2019_1 ACAAATCCAATTCAGTTGTCTTCCTATTC 29 34.48 60.54 
nCoV-2019_71_RIGHT nCoV-2019_1 TGGAAAAGAAAGGTAAGAACAAGTCCT 27 37.04 60.8 
nCoV-2019_72_LEFT nCoV-2019_2 ACACGTGGTGTTTATTACCCTGAC 24 45.83 61.04 
nCoV-2019_72_RIGHT nCoV-2019_2 ACTCTGAACTCACTTTCCATCCAAC 25 44 60.97 
nCoV-2019_73_LEFT nCoV-2019_1 CAATTTTGTAATGATCCATTTTTGGGTGT 29 31.03 60.29 
nCoV-2019_73_RIGHT nCoV-2019_1 CACCAGCTGTCCAACCTGAAGA 22 54.55 62.45 
nCoV-2019_74_LEFT nCoV-2019_2 ACATCACTAGGTTTCAAACTTTACTTGC 28 35.71 60.68 
nCoV-2019_74_RIGHT nCoV-2019_2 GCAACACAGTTGCTGATTCTCTTC 24 45.83 60.85 
nCoV-2019_75_LEFT nCoV-2019_1 AGAGTCCAACCAACAGAATCTATTGT 26 38.46 60.24 
nCoV-2019_75_RIGHT nCoV-2019_1 ACCACCAACCTTAGAATCAAGATTGT 26 38.46 60.69 
nCoV-2019_76_LEFT nCoV-2019_2 AGGGCAAACTGGAAAGATTGCT 22 45.45 60.76 
nCoV-2019_76_LEFT_alt3 nCoV-2019_2 GGGCAAACTGGAAAGATTGCTGA 23 47.83 61.87 
nCoV-2019_76_RIGHT nCoV-2019_2 ACACCTGTGCCTGTTAAACCAT 22 45.45 60.42 
nCoV-2019_76_RIGHT_alt0 nCoV-2019_2 ACCTGTGCCTGTTAAACCATTGA 23 43.48 60.69 
nCoV-2019_77_LEFT nCoV-2019_1 CCAGCAACTGTTTGTGGACCTA 22 50 60.75 
nCoV-2019_77_RIGHT nCoV-2019_1 CAGCCCCTATTAAACAGCCTGC 22 54.55 61.59 
nCoV-2019_78_LEFT nCoV-2019_2 CAACTTACTCCTACTTGGCGTGT 23 47.83 60.55 
nCoV-2019_78_RIGHT nCoV-2019_2 TGTGTACAAAAACTGCCATATTGCA 25 36 60.22 
nCoV-2019_79_LEFT nCoV-2019_1 GTGGTGATTCAACTGAATGCAGC 23 47.83 60.92 
nCoV-2019_79_RIGHT nCoV-2019_1 CATTTCATCTGTGAGCAAAGGTGG 24 45.83 60.62 
nCoV-2019_80_LEFT nCoV-2019_2 TTGCCTTGGTGATATTGCTGCT 22 45.45 60.89 
nCoV-2019_80_RIGHT nCoV-2019_2 TGGAGCTAAGTTGTTTAACAAGCG 24 41.67 60.02 
nCoV-2019_81_LEFT nCoV-2019_1 GCACTTGGAAAACTTCAAGATGTGG 25 44 61.24 
nCoV-2019_81_RIGHT nCoV-2019_1 GTGAAGTTCTTTTCTTGTGCAGGG 24 45.83 60.73 
nCoV-2019_82_LEFT nCoV-2019_2 GGGCTATCATCTTATGTCCTTCCCT 25 48 61.52 
nCoV-2019_82_RIGHT nCoV-2019_2 TGCCAGAGATGTCACCTAAATCAA 24 41.67 60.02 
nCoV-2019_83_LEFT nCoV-2019_1 TCCTTTGCAACCTGAATTAGACTCA 25 40 60.46 
nCoV-2019_83_RIGHT nCoV-2019_1 TTTGACTCCTTTGAGCACTGGC 22 50 61.33 
nCoV-2019_84_LEFT nCoV-2019_2 TGCTGTAGTTGTCTCAAGGGCT 22 50 61.61 
nCoV-2019_84_RIGHT nCoV-2019_2 AGGTGTGAGTAAACTGTTACAAACAAC 27 37.04 60.36 
nCoV-2019_85_LEFT nCoV-2019_1 ACTAGCACTCTCCAAGGGTGTT 22 50 61.03 
nCoV-2019_85_RIGHT nCoV-2019_1 ACACAGTCTTTTACTCCAGATTCCC 25 44 60.51 
nCoV-2019_86_LEFT nCoV-2019_2 TCAGGTGATGGCACAACAAGTC 22 50 61.07 
nCoV-2019_86_RIGHT nCoV-2019_2 ACGAAAGCAAGAAAAAGAAGTACGC 25 40 61.01 
nCoV-2019_87_LEFT nCoV-2019_1 CGACTACTAGCGTGCCTTTGTA 22 50 60.16 
nCoV-2019_87_RIGHT nCoV-2019_1 ACTAGGTTCCATTGTTCAAGGAGC 24 45.83 60.81 
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nCoV-2019_88_LEFT nCoV-2019_2 CCATGGCAGATTCCAACGGTAC 22 54.55 61.58 
nCoV-2019_88_RIGHT nCoV-2019_2 TGGTCAGAATAGTGCCATGGAGT 23 47.83 61.4 
nCoV-2019_89_LEFT nCoV-2019_1 GTACGCGTTCCATGTGGTCATT 22 50 61.5 
nCoV-2019_89_LEFT_alt2 nCoV-2019_1 CGCGTTCCATGTGGTCATTCAA 22 50 62.01 
nCoV-2019_89_RIGHT nCoV-2019_1 ACCTGAAAGTCAACGAGATGAAACA 25 40 60.91 
nCoV-2019_89_RIGHT_alt4 nCoV-2019_1 ACGAGATGAAACATCTGTTGTCACT 25 40 60.74 
nCoV-2019_90_LEFT nCoV-2019_2 ACACAGACCATTCCAGTAGCAGT 23 47.83 61.58 
nCoV-2019_90_RIGHT nCoV-2019_2 TGAAATGGTGAATTGCCCTCGT 22 45.45 60.82 
nCoV-2019_91_LEFT nCoV-2019_1 TCACTACCAAGAGTGTGTTAGAGGT 25 44 60.93 
nCoV-2019_91_RIGHT nCoV-2019_1 TTCAAGTGAGAACCAAAAGATAATAAGCA 29 31.03 60.03 
nCoV-2019_92_LEFT nCoV-2019_2 TTTGTGCTTTTTAGCCTTTCTGCT 24 37.5 60.14 
nCoV-2019_92_RIGHT nCoV-2019_2 AGGTTCCTGGCAATTAATTGTAAAAGG 27 37.04 60.53 
nCoV-2019_93_LEFT nCoV-2019_1 TGAGGCTGGTTCTAAATCACCCA 23 47.83 61.59 
nCoV-2019_93_RIGHT nCoV-2019_1 AGGTCTTCCTTGCCATGTTGAG 22 50 60.55 
nCoV-2019_94_LEFT nCoV-2019_2 GGCCCCAAGGTTTACCCAATAA 22 50 60.56 
nCoV-2019_94_RIGHT nCoV-2019_2 TTTGGCAATGTTGTTCCTTGAGG 23 43.48 60.18 
nCoV-2019_95_LEFT nCoV-2019_1 TGAGGGAGCCTTGAATACACCA 22 50 61.1 
nCoV-2019_95_RIGHT nCoV-2019_1 CAGTACGTTTTTGCCGAGGCTT 22 50 61.95 
nCoV-2019_96_LEFT nCoV-2019_2 GCCAACAACAACAAGGCCAAAC 22 50 61.82 
nCoV-2019_96_RIGHT nCoV-2019_2 TAGGCTCTGTTGGTGGGAATGT 22 50 61.36 
nCoV-2019_97_LEFT nCoV-2019_1 TGGATGACAAAGATCCAAATTTCAAAGA 28 32.14 60.22 
nCoV-2019_97_RIGHT nCoV-2019_1 ACACACTGATTAAAGATTGCTATGTGAG 28 35.71 60.17 
nCoV-2019_98_LEFT nCoV-2019_2 AACAATTGCAACAATCCATGAGCA 24 37.5 60.5 
nCoV-2019_98_RIGHT nCoV-2019_2 TTCTCCTAAGAAGCTATTAAAATCACATGG 30 33.33 60.01 
 

Supplemental Table 3. ARTIC v3 primer sequences used to amplify cDNA for library 

preparation.  
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Supplemental Table 4. Household transmission pair metadata including accession 

numbers, difference in days between symptom onset, difference in days between 

collection dates, and pair identifier.  

 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Column 2Column 3 Column 4 Column 5 Column 6 Column 7 Column 8 Column 9 Column 10 Column 11 Column 12 Column 13 Column 14
0 tip1 tip2 muts_between_tips muts probability_1_serial_inteval tube_IDs time_between_test direction_based_on_test_date time_between_symptoms direction_based_on_symptoms #comparisons pair_number
0 USA/WI-UW-41/2020 USA/WI-UW-48/2020 0 [] 0.7496528051576963 20,28 0 28 <--> 20 1 28 <--> 20 2 pair1, pair1a (28 --> 20), pair 1b (20 --> 28)
0 USA/WI-UW-65/2020 USA/WI-UW-32/2020 0 [] 0.7496528051576963 50,8 2 8 <--> 50 2 8 <--> 50 2 pair2, pair2a (8 --> 50), pair2b (50 --> 8)
0 USA/WI-UW-69/2020 USA/WI-UW-61/2020 0 [] 0.7496528051576963 55,44 4 55 --> 44 3 55 <--> 44 2 pair3, pair3a (55 --> 44), pair3b (44 --> 55)
0 USA/WI-UW-70/2020 USA/WI-UW-67/2020 0 [] 0.7496528051576963 56,53 6 56 --> 53 5 56 --> 53 1 pair4
0 USA/WI-UW-74/2020 USA/WI-UW-29/2020 0 [] 0.7496528051576963 61,5 4 61 --> 5 4 61 --> 5 1 pair5
0 USA/WI-UW-438/2020USA/WI-UW-432/20200 [] 0.7496528051576963 744,738 2 738 --> 744 2 738 --> 744 2 pair6, pair 6a (738 --> 744), pair 6b (744 --> 738) 
0 USA/WI-UW-544/2020USA/WI-UW-551/20201 ['T4917C'] 0.21600878707411836 893,884 1 893 <--> 884 4 884 --> 893 1 pair7
0 USA/WI-UW-544/2020USA/WI-UW-575/20200 [] 0.7496528051576963 884,903 1 884 <--> 903 asx 884 <--> 903 2 pair8, pair8a (884 --> 903), pair8b (903 --> 884)
0 USA/WI-UW-551/2020USA/WI-UW-575/20201 ['T4917C'] 0.21600878707411836 893,903 0 893 <--> 903 asx 893 <--> 903 2 pair9, pair9a (893 --> 903), pair9b (903 --> 893)
0 USA/WI-UW-546/2020USA/WI-UW-586/20200 [] 0.7496528051576963 887,916 0 887 <--> 916 1 887 <--> 916 2 pair10, pair10a (887 --> 916), pair 10b (916 --> 887)
0 USA/WI-UW-546/2020USA/WI-UW-443/20200 [] 0.7496528051576963 887,749 0 887 <--> 749 0 887 <--> 749 2 pair11, pair 11a (887 --> 749), pair 11b (749 --> 887)
0 USA/WI-UW-586/2020USA/WI-UW-443/20200 [] 0.7496528051576963 916,749 0 916 <--> 749 1 916 <--> 749 2 pair12, pair12a (916 --> 749), pair12b (749 --> 916)
0 USA/WI-UW-577/2020USA/WI-UW-536/20200 [] 0.7496528051576963 906,849 0 906 <--> 849 asx 906 <--> 849 2 pair13, pair13a (906 --> 849), piar13b (849 --> 906)
0 USA/WI-UW-598/2020USA/WI-UW-602/20200 [] 0.7496528051576963 956,962 3 956 --> 962 4 962 --> 956 2 pair14
0 USA/WI-UW-601/2020USA/WI-UW-780/20200 [] 0.7496528051576963 961,1195 8 961 --> 1195 5 961 --> 1195 1 pair15
?0USA/WI-UW-756/2020USA/WI-UW-893/20200 [] 0.7496528051576963 1157,1346 7 1157 --> 1346 6 1157 --> 1346 1 pair16
0 USA/WI-UW-874/2020USA/WI-UW-986/20200 [] 0.7496528051576963 1326,1495 3 1326 --> 1495 asx 1326 <--> 1495 1 pair17
0 USA/WI-UW-874/2020USA/WI-UW-997/20200 [] 0.7496528051576963 1326,1512 3 1326 --> 1512 asx 1326 <--> 1512 1 pair18
0 USA/WI-UW-874/2020USA/WI-UW-991/20200 [] 0.7496528051576963 1326,1502 3 1326 --> 1502 asx 1326 <--> 1502 1 pair19
0 USA/WI-UW-986/2020USA/WI-UW-997/20200 [] 0.7496528051576963 1495,1512 0 1495 <--> 1512 asx 1495 <--> 1512 2 pair20, pair20a (1495 --> 1512), pair20b (1512 --> 1495)
0 USA/WI-UW-986/2020USA/WI-UW-991/20200 [] 0.7496528051576963 1495,1502 0 1495 <--> 1502 asx 1495 <--> 1502 2 pair21, pair21a (1495 --> 1502), pair21b (1502 --> 1495)
0 USA/WI-UW-997/2020USA/WI-UW-991/20200 [] 0.7496528051576963 1512,1502 0 1512 <--> 1502 asx 1512 <--> 1502 2 pair22, pair22a (1512 --> 1502), pair22b (1502 --> 1512)
0 USA/WI-UW-895/2020USA/WI-UW-876/20200 [] 0.7496528051576963 1353,1328 0 1353 <--> 1328 3 1353 --> 1328 1 pair23
0 USA/WI-UW-895/2020USA/WI-UW-863/20202 ['A15942C', 'C25006T'] 0.031120937434107567 1353,1297 0 1353 <--> 1297 3 1353 --> 1297 1 pair24
0 USA/WI-UW-876/2020USA/WI-UW-863/20202 ['A15942C', 'C25006T'] 0.031120937434107567 1328,1297 0 1297 <--> 1328 0 1297 <--> 1328 1 pair25, pair25a (1297 --> 1328), pair25b (1328 --> 1297)
0 USA/WI-UW-158/2020USA/WI-UW-160/20200 [] 0.7496528051576963 195,197 0 195 <--> 197 NA 195 <--> 197 2 pair26, pair26a (195 --> 197), pair26b (197 --> 195)
0 USA/WI-UW-333/2020USA/WI-UW-334/20200 [] 0.7496528051576963 453,454 0 453 <--> 454 NA 453 <--> 454 2 pair27, pair27a (453 --> 454), pair27b (454 --> 453)
0 USA/WI-UW-119/2020USA/WI-UW-120/20200 [] 0.7496528051576963 128,130 3 128 --> 130 10 130 --> 128 1 pair28

Supplemental Table 4. Household transmission pair metadata including accession numbers, difference in days between symptom onset, 
difference in days between collection dates, and pair identifier. 
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Abstract 

Evidence-based public health approaches that minimize the introduction and spread of 

new SARS-CoV-2 transmission clusters are urgently needed in the United States and 

other countries struggling with expanding epidemics. Here we analyze 247 full-genome 

SARS-CoV-2 sequences from two nearby communities in Wisconsin, USA, and find 

surprisingly distinct patterns of viral spread. Dane County had the 12th known introduction 

of SARS-CoV-2 in the United States, but this did not lead to descendant community 

spread. Instead, the Dane County outbreak was seeded by multiple later introductions, 

followed by limited community spread. In contrast, relatively few introductions in 

Milwaukee County led to extensive community spread. We present evidence for reduced 
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viral spread in both counties following the statewide “Safer-at-Home” order, which went 

into effect 25 March 2020. Our results suggest patterns of SARS-CoV-2 transmission may 

vary substantially even in nearby communities. Understanding these local patterns will 

enable better targeting of public health interventions. 

 

Introduction 

The earliest outbreaks of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-

2) in the United States were seeded by travelers who became infected abroad and 

initiated chains of community transmission. Several months later, SARS-CoV-2 is now 

ubiquitous. More than 96% of the 3,144 United States administrative subdivisions (i.e., 

counties, boroughs, and parishes) have reported at least one SARS-CoV-2 case by June 

23, 2020294. Movement between administrative subdivisions and states, rather than 

introduction from abroad, now poses the greatest risk for seeding new clusters of 

community transmission. However, trends in SARS-CoV-2 caseload and spread are often 

reported on large geographic scales, such as US states, which obscures the degree to 

which trends may differ on smaller geographic scales. Finescale spatiotemporal patterns 

of SARS-CoV-2 spread, particularly below the level of a state or territory, remain poorly 

defined.  

Case counts from diagnostic SARS-CoV-2 testing are used to understand community 

transmission, but community-level testing may not be widely available and passive 

surveillance is unlikely to detect asymptomatic or presymptomatic infections. Viral 

genome sequencing has emerged as a critical tool to overcome these limitations and 

provides a complementary means of understanding viral transmission dynamics. The 
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value of this approach was demonstrated during the West African Ebolavirus outbreak in 

2014-2016 and again during the emergence of Zika virus in the Americas in 2015-

2016142,143.  

 

The collective global effort to sequence SARS-CoV-2 dwarfs these earlier efforts. As of 

28 June 2020, more than 55,000 SARS-CoV-2 sequences collected from over 82 

countries have been sequenced and shared publicly on repositories like the Global 

Initiative on Sharing All Influenza Data (GISAID), enabling real-time phylogenetic 

analyses encompassing global SARS-CoV-2 diversity 145,295,296. Patterns of viral 

sequence variation can also be used to estimate epidemiological parameters, including 

the total number of infections in a given population and epidemic doubling time, 

independent of case counts 145–152,297–299. Here we apply these methods to gain a nuanced 

view of SARS-CoV-2 transmission within and between regions of the American Upper 

Midwest.  

 

Dane and Milwaukee Counties are the two most populous counties in the US state of 

Wisconsin. They are separated by approximately 100 kilometers of rural and suburban 

communities in Jefferson and Waukesha Counties. An interstate highway that typically 

carries ~40,000 vehicles a day connects all four of these counties300. Madison and 

Milwaukee are the largest cities in Wisconsin as well as in Dane and Milwaukee Counties, 

respectively, and are demographically dissimilar 301,302. On 25 March 2020, the Wisconsin 

Department of Health Services ordered most individuals to stay at home, closed non-

essential businesses, and prohibited most gatherings, an order termed “Safer at Home” 
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303–305. While there were some policies enacted to reduce the viral spread prior to this 

order 306, the “Safer at Home” order represented the most significant restriction on 

individuals and businesses. This Executive Order remained in effect until 13 May 2020, 

when it was struck down by the Wisconsin Supreme Court. From the start of the Executive 

Order through 21 April 2020, Dane and Milwaukee Counties had the highest documented 

number of SARS-CoV-2 cases in Wisconsin. Therefore, these two counties provide a 

“natural experiment” to understand the impact of the “Safer at Home” Executive Order on 

within- and between-county SARS-CoV-2 transmission in two US counties with 

distinguishing demographic features.  

 

Here we use our deeply sampled SARS-CoV-2 sequence data to characterize spread in 

southeastern Wisconsin and, more importantly, illustrate distinct patterns of 

spatiotemporal SARS-CoV-2 spread in two very nearby communities. We note that this 

study was not designed prospectively. Moreover, we find that the virus’s basic 

reproductive number decreased in both counties evaluated during the time in which the 

“Safer at Home” order was in place, consistent with adoption of physical distancing, use 

of face coverings, and other related practices 307. 

 

Materials and methods 

 
Sample approvals and sample selection criteria  

Sequences for this study were derived from 247 nasopharyngeal (NP) swab samples 

collected from Dane County between 14 March 2020 through 18 April 2020, and 

Milwaukee County from 12 March 2020 though 26 April 2020, Wisconsin. Most samples 
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originated from the University of Wisconsin Hospital and Clinics and the Milwaukee Health 

Department Laboratories. Available sample metadata, including GISAID accession 

identifiers, are available in Supplemental Information 1.  

 

We worked with residual diagnostic specimens in a biosafety level-3 containment 

laboratory at the AIDS Vaccine Research Laboratory at the University of Wisconsin – 

Madison. We obtained a waiver of HIPAA Authorization and were approved to obtain the 

clinical samples along with a Limited Data Set by the Western Institutional Review Board 

(WIRB #1-1290953-1). This limited dataset comprised sample collection data and county 

of collection. Additional sample metadata, e.g. race/ethnicity and income were not shared.  

 

Sample inclusion criteria were retrospectively applied and were threefold: (1) sample had 

a high-quality consensus sequence (passing GISAID quality control filters), (2) county of 

origin was Dane county or Milwaukee county, and (3) collection date was on or before 

our defined endpoint, 18 April 2020. 

 

County-level case data and demographics 

We obtained a county-level map of Wisconsin from the State Cartographer's Office 

(https://www.sco.wisc.edu/maps/wisconsin-outline/). We obtained Wisconsin county-

level COVID-19 cumulative case data from the Wisconsin Department of Health Services 

COVID-19 dashboard (https://data.dhsgis.wi.gov/datasets/covid-19-historical-data-

table/, 

https://cityofmadison.maps.arcgis.com/apps/opsdashboard/index.html#/e22f5ba4f1f94e



   

 

181 

0bb0b9529dc82db6a3, and https://county.milwaukee.gov/EN/COVID-19). All Dane and 

Milwaukee county demographic data came from the Wisconsin Department of Health 

Services Data & Statistics (https://www.dhs.wisconsin.gov/stats) or the U.S. Census 

Bureau QuickFacts table (https://www.census.gov/quickfacts/fact/table/). 

 

vRNA isolation for the first confirmed SARS-CoV-2 case in Dane County  

The first confirmed case of SARS-CoV-2 in Dane County occurred on 30 January, 2020. 

This early sample was processed using an early iteration of our SARS-CoV-2 sequencing 

protocol, as outlined here. All other samples included in this study were processed using 

the a modified-version of the ARTIC-sequencing protocol, as outlined below. 

Approximately 140 µL of VTM was passed through a 0.22µm filter (Dot Scientific, Burton, 

MI, USA). Total nucleic acid was extracted using the Qiagen QIAamp Viral RNA Mini Kit 

(Qiagen, Hilden, Germany), substituting carrier RNA with linear polyacrylamide 

(Invitrogen, Carlsbad, CA, USA) and eluting in 30 µL of nuclease free H2O. The sample 

was treated with TURBO DNase (Thermo Fisher Scientific, Waltham, MA, USA) at 37˚C 

for 30 min and concentrated to 8µL using the RNA Clean & Concentrator-5 kit (Zymo 

Research, Irvine, CA, USA). The full protocol for nucleic acid extraction and subsequent 

cDNA generation is available at https://www.protocols.io/view/sequence-independent-

single-primer-amplification-o-bckxiuxn.  
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Complementary DNA (cDNA) generation for first confirmed SARS-CoV-2 case in 

Dane County  

Complementary DNA (cDNA) was synthesized using a modified Sequence Independent 

Single Primer Amplification (SISPA) approach described by Kafetzopoulou et al. 308,309. 

RNA was reverse-transcribed with SuperScript IV Reverse Transcriptase (Invitrogen, 

Carlsbad, CA, USA) using Primer A (5'-GTT TCC CAC TGG AGG ATA-(N9)-3'). Reaction 

conditions were as follows: 1µL of primer A was added to 4 µL of sample RNA, heated to 

65˚C for 5 minutes, then cooled to 4˚C for 5 minutes. Then 5 µL of a master mix (2 μL 5x 

RT buffer, 1 μL 10 mM dNTP, 1 μL nuclease free H2O, 0.5 μL 0.1M DTT, and 0.5 μL SSIV 

RT) was added and incubated at 42˚C for 10 minutes. For generation of second strand 

cDNA, 5 µL of Sequenase reaction mix (1 μL 5x Sequenase reaction buffer, 3.85 μL 

nuclease free H2O, 0.15 μL Sequenase enzyme) was added to the reaction mix and 

incubated at 37˚C for 8 minutes. This was followed by the addition of a secondary 

Sequenase reaction mix (0.45 μl Sequenase Dilution Buffer, 0.15 μl Sequenase Enzyme), 

and another incubation at 37˚C for 8 minutes. Following incubation, 1µL of RNase H (New 

England BioLabs, Ipswich, MA, USA) was added to the reaction and incubated at 37˚C 

for 20 min. Conditions for amplifying Primer-A labeled cDNA were as follows: 5 µL of 

primer-A labeled cDNA was added to 45 µL of AccuTaq master mix per sample (5 µL 

AccuTaq LA 10x Buffer, 2.5 µL dNTP mix, 1µL DMSO, 0.5 µL AccuTaq LA DNA 

Polymerase, 35 µL nuclease free water, and 1 µL Primer B (5′-GTT TCC CAC TGG AGG 

ATA-3′). Reaction conditions for the PCR were: 98˚C for 30s, 30 cycles of 94˚C for 15 s, 

50˚C for 20 s, and 68˚C for 2 min, followed by 68˚C for 10 min.  
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vRNA isolation 

As SARS-CoV-2 cases began to increase in Dane and Milwaukee Counties, we 

adjusted our sequencing protocol. All samples from 10 March onward were isolated 

using a Maxwell isolation instrument and subsequently processed using a modified 

ARTIC tiled amplicon approach 235,310. Nasopharyngeal swabs received in transport 

medium (VTM) were briefly centrifuged at 21,130 xg for 30 seconds at room 

temperature to ensure all residual sample sediments at the bottom of the tube. Viral 

RNA (vRNA) was extracted from 100 μl of VTM using the Viral Total Nucleic Acid 

Purification kit (Promega, Madison, WI, USA) on a Maxwell RSC 48 instrument and was 

eluted in 50 μL of nuclease free H2O.  

 

Complementary DNA (cDNA) generation 

Complementary DNA (cDNA) was synthesized using a modified ARTIC Network 

approach 235,310. Briefly, vRNA was reverse transcribed with SuperScript IV Reverse 

Transcriptase (Invitrogen, Carlsbad, CA, USA) using random hexamers and dNTPs. 

Reaction conditions were as follows: 1μL of random hexamers and 1µL of dNTPs were 

added to 11 μL of sample RNA, heated to 65˚C for 5 minutes, then cooled to 4˚C for 1 

minute. Then 7 μL of a master mix (4 μL 5x RT buffer, 1 μL 0.1M DTT, 1µL RNaseOUT 

RNase Inhibitor, and 1 μL SSIV RT) was added and incubated at 42˚C for 10 minutes, 

70˚C for 10 minutes, and then 4˚C for 1 minute.  
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Multiplex PCR to generate SARS-CoV-2 genomes 

A SARS-CoV-2-specific multiplex PCR for Nanopore sequencing was performed, similar 

to amplicon-based approaches as previously described 235,310. In short, primers for 96 

overlapping amplicons spanning the entire genome with amplicon lengths of 500bp and 

overlapping by 75 to 100bp between the different amplicons were used to generate cDNA. 

Primers used in this manuscript were designed by ARTIC Network and are shown in 

supplementary table 3. cDNA (2.5 μL) was amplified in two multiplexed PCR reactions 

using Q5 Hot-Start DNA High-fidelity Polymerase (New England Biolabs, Ipswich, MA, 

USA) using the following cycling conditions; 98ºC for 30 seconds, followed by 25 cycles 

of 98ºC for 15 seconds and 65ºC for 5 minutes, followed by an indefinite hold at 4ºC 235,310. 

Following amplification, samples were pooled together before ONT library prep. 

 

Library preparation and sequencing 

Amplified PCR product was purified using a 1:1 concentration of AMPure XP beads 

(Beckman Coulter, Brea, CA, USA) and eluted in 30μL of water. PCR products were 

quantified using Qubit dsDNA high-sensitivity kit (Invitrogen, USA) and were diluted to a 

final concentration of 1 ng/μl. A total of 5ng for each sample was then made compatible 

for deep sequencing using the one-pot native ligation protocol with Oxford Nanopore kit 

SQK-LSK109 and its Native Barcodes (EXP-NBD104 and EXP-NBD114) 283. Specifically, 

samples were end-repaired using the NEBNext Ultra II End Repair/dA-Tailing Module 

(New England Biolabs, Ipswich, MA, USA). Samples were then barcoded using 2.5µL of 

ONT Native Barcodes and the Ultra II End Repair Module. After barcoding, samples were 

pooled directly into a 1:1 concentration of AMPure XP beads (Beckman Coulter, Brea, 



   

 

185 

CA, USA) and eluted in 30µL of water. Samples were then tagged with ONT sequencing 

adaptors according to the modified one-pot ligation protocol 283. Up to 24 samples were 

pooled prior to being run on the appropriate flow cell (FLO-MIN106) using the 72hr run 

script. 

 

Processing raw ONT data  

Sequencing data was processed using the ARTIC bioinformatics pipeline 

(https://github.com/artic-network/artic-ncov2019), with a few modifications. Briefly, we 

have modified the ARTIC pipeline so that it demultiplexes raw fastq files using qcat as 

each fastq file is generated by the GridION (https://github.com/nanoporetech/qcat). Once 

a barcode reaches 100k reads, it will trigger the rest of the ARTIC bioinformatics workflow 

which will map to the Severe acute respiratory syndrome coronavirus 2 isolate Wuhan-

Hu-1 reference (Genbank: MN908947.3) using minimap2. This alignment will then be 

used to generate consensus sequences and variant calls using medaka 

(https://github.com/nanoporetech/medaka). The entire ONT analysis pipeline is available 

at https://github.com/gagekmoreno/SARS-CoV-2-in-Southern-Wisconsin.  

 

Phylogenetic analysis 

All 247 available full-length sequences from Dane and Milwaukee County through 26 April 

2020 were used for phylogenetic analysis using the tools implemented in Nextstrain 

custom builds (https://github.com/nextstrain/ncov) 145,284. Time-resolved and divergence 

phylogenetic trees were built using the standard Nextstrain tools and scripts 145,284. We 

used custom python scripts to filter and clean metadata. 
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An additional subsampled global phylogeny using all available sequences in GISAID as 

of 21 June 2020 were input into the Nextstrain pipeline. A custom “Wisconsin” profile was 

made to create a Wisconsin-centric subsampled build to include representative 

sequences. To reduce combat bias, we defined representative sequences as 20 

sequences from each US state, and 30 sequences from each country, per month per 

year. This subsampled global build includes 5,377 sequences or roughly 11% of the total 

sequences in GISAID as of 21 June 2020. All available Wisconsin sequences available 

on GISAID by 21 June 2020 were incorporated into the subsampled global tree. All of the 

Wisconsin sequences included in this study are listed in the include.txt to ensure they 

were represented in the global phylogeny. The scripts and output are available at 

https://github.com/gagekmoreno/SARS-CoV-2-in-Southern-Wisconsin. 

 

Estimating the number of introductions 

To estimate the number of unique introductions into Dane and Milwaukee County we first 

identified the closest phylogenetic neighbor of each Dane and Milwaukee County 

sequence in the global (as of 14 June 2020) SARS-CoV-2 phylogenetic tree generated 

by Dr. Rob Lanfear at the Australian National University. These trees are generated using 

MAFFT 311 and FastTree 312 and are available at 

https://github.com/roblanf/sarscov2phylo/. To identify the closest phylogenetic neighbors 

we first pruned all tips from this tree with ambiguous collection dates (e.g. those given 

only by month and year as opposed to day, month, and year) and all tips which were 

excluded from our global alignment using the Nextstrain exclusion criteria (minimum 
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length of 27000 nucleotides, sequences listed in the “exclude” configuration file, 

sequences with admin division listed as “USA”) using BioPython. Next, we identified the 

parent node of each Dane and Milwaukee County tip and then identified the closest 

phylogenetic neighbor as the other descendant from this node. Aligned neighbor 

sequences, if not already present, were added to the down-sampled alignment described 

above, resulting in an alignment of 5,417 sequences. We inferred a maximum likelihood 

phylogeny of this alignment using IQ-TREE 313 with 1000 Ultrafast bootstrap replicates 314 

using the flags -nt 4 -ninit 10 -me 0.05 -bb 1000 -wbtl -czb. The tree was rooted at 

Wuhan/WH01/2019 and TreeTime {29340210} was used to prune tips from the maximum 

likelihood tree which did not follow a molecular clock (n_iqd = 4), create a time aligned 

tree (infer_gtr=True max_iter=2 branch_length_mode=’auto’ resolve_polytomies=False 

time_marginal=’assign’ vary_rate=0.0004 fixed_clock_rate=0.0008 {2020356}), and infer 

the geographical locations (Dane County, Milwaukee County, U.S. States, County) of 

internal nodes (sampling_bias_correction=2.5 to account for undersampling).  

 

To estimate the number of introductions into Dane County and Milwaukee County, this 

procedure was repeated on 100 of the bootstrap replicate trees. Using each of the 100 

bootstrap replicate trees, we identified the earliest node in the path between the root of 

the tree and each Wisconsin (Dane County, Milwaukee County, and other Wisconsin) tip 

which was assigned to Wisconsin using the ancestral state reconstruction. Introduction 

into Wisconsin was assumed to occur mid-way between the earliest Wisconsin node and 

its parent. The time of introduction was evaluated using the mean estimate as well as the 

lower and upper limits of the timing for each node. Thus, each bootstrap replicate 
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contributes three lines to the plots shown in Fig 3B and Fig 3C. As we do not know 

whether Wisconsin samples included in the tree from other studies are from Dane or 

Milwaukee County (or elsewhere in Wisconsin), our estimates for the timing of 

introduction into each county represent the timing of introduction of that lineage into 

Wisconsin generally. We conservatively attribute any Dane or Milwaukee County tips or 

lineages directly descending from a polytomic internal node to a single importation event.  

 

To account for biased sampling within Dane and Milwaukee County we conducted a 

rarefaction analysis. This was done using the time aligned maximum likelihood tree 

described above. N (20 to 240, in increments of 20) sequences were randomly sampled 

from the set of Dane and Milwaukee County sequences and all non-sampled Dane and 

Milwaukee County sequences were pruned from the tree prior to ancestral state 

reconstruction and estimation of the number of introductions as described above. Ten 

replicates for each N were conducted. 

 

Code to replicate this analysis is available at https://github.com/gagekmoreno/SARS-

CoV-2-in-Southern-Wisconsin. Results were visualized using Matplotlib 315, Seaborn 

(https://github.com/mwaskom/seaborn), and Baltic (https://github.com/evogytis/baltic). 

 

Phylodynamic analysis 

Bayesian phylogenetic inference and dynamic modelling were performed with BEAST2 

software (v2.6.2) 316 and the PhyDyn package (v1.3.6) 150. The phylodynamic analysis 

infers SARS-CoV-2 phylogenies of sequences within a region of interest and exogenous 
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sequences representing the global phylogeny, and uses tree topology to inform a SEIJR 

compartmental model. For the Bayesian phylogenetic analysis, an HKY substitution 

model (gamma count=4; 𝛫 lognormal prior (μ=1, S=1.25)) and a strict molecular clock 

(uniform prior 0.0005 to 0.005 substitution/site/year) were used. To select the exogenous 

sequences, a maximum-likelihood global phylogeny was generated with IQTree and 

randomly downsampled in a time-stratified manner by collection week. Closest 

cophenetic neighbors for each of the Wisconsin sequences were additionally included, if 

not present already. Only sequences with coverage of the entire coding region and less 

than 1% of N base calls were used. For the Dane County analyses, 107 local and 107 

exogenous SARS-CoV-2 sequences were used. For the Milwaukee County analyses, 117 

local and 129 exogenous SARS-CoV-2 sequences were used. 

 

 The SEIJR model dynamics are defined by the following ordinary differential equations: 

 

𝑑𝑆/𝑑𝑡 = −(𝛽𝐼(𝑡) + 𝛽𝜏𝐽(𝑡))
𝑆(𝑡)

𝑆(𝑡) + 𝐸(𝑡) + 𝐼(𝑡) + 𝐽(𝑡) + 𝑅(𝑡) 

𝑑𝐸/𝑑𝑡 = (𝛽𝐼(𝑡) + 𝛽𝜏𝐽(𝑡))
𝑆(𝑡)

𝑆(𝑡) + 𝐸(𝑡) + 𝐼(𝑡) + 𝐽(𝑡) + 𝑅(𝑡) − 𝛾3𝐸(𝑡) 

𝑑𝐼/𝑑𝑡 = 𝛾3(1 − 𝑝6)𝐸(𝑡) − 𝛾7𝐽(𝑡) 

𝑑𝐽/𝑑𝑡 = 𝛾3𝑝6𝐸(𝑡) − 𝛾7𝐽(𝑡) 

𝑑𝑅/𝑑𝑡 = 𝛾7(𝐸(𝑡) + 𝐽(𝑡)) 

  

The dynamics of the exogenous compartment is defined by: 
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𝑑𝑌/𝑑𝑡 = (𝛽9:;< − 𝛾9:;<)𝑌(𝑡) 

  

During phylodynamic model fitting, 𝛽, 𝛽9:;<, and 𝛼 are estimated. Estimated R0 was 

derived from 𝛽 as follows. 

 

𝑅3 = (𝛽(1 − 𝑝6) + 𝛽(𝜏𝑝6))/𝛾7 

  

The epidemic growth rate of the phylodynamic model is governed by the system of 

differential equations, and can thus be informed by SARS-CoV-2-specific transmission 

parameters. The SEIJR model includes a “high transmission” compartment (J) that 

accounts for heterogeneous transmission due to superspreading, an important 

component of SARS-CoV-2 epidemiology 149,317–319. Published empirical estimates 

informed parameterization of superspreading and other epidemiological parameters. The 

mean duration of latent (1/𝛾3) and infectious periods (1/𝛾7) was 3 and 5.5 days, 

respectively 285. Likewise, the mean duration of infection for the exogenous compartment 

(1/𝛾9:;<) was fixed at 8.5 days. To model low, medium, and high transmission 

heterogeneity, the proportion of infectious individuals in the J compartment (𝑝6) and their 

transmission rate multiplier (𝜏) were set to 0.2 and 16, 0.1 and 36, or 0.05 and 76, 

respectively. These 𝑝6 and 𝜏 settings result in 20, 10, or 5% of individuals contributing 

80% of total infections. The initial size of the S compartment was fixed at 5 x 105 for Dane 

County and 9.5 x 105 for Milwaukee County. To account for changes in epidemic 

dynamics after the Executive Orders, a 25% reduction in importation/exportation of 

sequences was applied at a 25 March breakpoint, per observed reductions in Google 
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mobility indices for individuals in Wisconsin 320. Additionally, the estimated R0 after 25 

March was allowed to vary from the pre-intervention R0 proportionally by a modifier 

variable, 𝛼. 

 

Each analysis was run in duplicate for at least 3 million states in BEAST2. Parameter 

traces were visually inspected for adequate mixing and convergence in Tracer (v1.7.1). 

Log files from duplicate runs were merged with LogCombiner and 10% burn-in applied. 

Similarly, trajectory files from duplicate runs were merged with an in-house R script and 

10% burn-in applied. BEAST2 XML files and scripts for exogenous sequence selection 

and phylodynamic data analysis/visualization are provided in the GitHub repository listed 

below. 

 

Data availability  

Source data have been deposited in the Sequence Read Archive (SRA) under bioproject 

PRJNA614504. The consensus genome sequences for national and international 

genomes are available from GISAID (www.gisaid.org; see Supplementary Table 3). 

Source data, derived data, analysis pipelines, and figures have been made available for 

replication of these results at a publicly accessible GitHub repository321. For the county-

level case data and demographic data presented in Fig. 1, we obtained a county-level 

map of Wisconsin from the State Cartographer’s Office 

(https://www.sco.wisc.edu/maps/wisconsin-outline/). We obtained Wisconsin county-

level COVID-19 cumulative case data from the Wisconsin Department of Health Services 

COVID-19 dashboard (https://data.dhsgis.wi.gov/datasets/covid-19-historical-data-
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table/, 

https://cityofmadison.maps.arcgis.com/apps/opsdashboard/index.html#/e22f5ba4f1f94e

0bb0b9529dc82db6a3, and https://county.milwaukee.gov/EN/COVID-19). All Dane and 

Milwaukee county demographic data came from the Wisconsin Department of Health 

Services Data & Statistics (https://www.dhs.wisconsin.gov/stats) or the U.S. Census 

Bureau QuickFacts table (https://www.census.gov/quickfacts/fact/table/). Source data are 

provided with this paper.  

 

Code availability  

Code to replicate this analysis is available at https://github.com/gagekmoreno/SARS-

CoV-2-in-Southern-Wisconsin. Code to process sequencing data was made available by 

ARTIC bioinformatics pipeline (https://github.com/artic-network/artic-ncov2019) and uses 

Minimap2 v2.17 (https://github.com/lh3/minimap2) and medaka v1.03 

(https://github.com/nanoporetech/medaka). Phylogenetic trees were built using 

Nextstrain tools and clade nomenclature (https://github.com/nextstrain/ncov). The global 

sub-sampled trees were generated using MAFFT v7.464 

(https://mafft.cbrc.jp/alignment/software/) , FastTree v2.1.10 {20224823}, and IQ-TREE 

v1.5.5 (http://www.iqtree.org), and are available at 

http://github.com/roblanf/sarscov2phylo/. Results were visualized using Matplotlib 

3.3.2(https://matplotlib.org), Seaborn v0.10.0 (https://github.com/mwaskom/seaborn), 

and Baltic v0.1.0 (https://github.com/evogytis/baltic). Bayesian phylogenetic inference 

and dynamic modelling were performed with BEAST2 software v2.6.2 {30958812} and 
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the PhyDyn package v1.3.6 {30422979}. Parameter traces were visualized in Tracer 

v1.7.1 (http://tree.bio.ed.ac.uk/software/tracer/).  

 

Results  

SARS-CoV-2 epidemics and community demographics in Dane and Milwaukee 

Counties 

Dane County is home to the 12th reported SARS-CoV-2 case in the United States, 

detected on 30 January 2020. Subsequent cases were not reported until 9 March 2020. 

By 26 April, Dane County had 405 confirmed SARS-CoV-2 cases and 19 deaths 322. 

Milwaukee County reported its first case on 11 March 2020. By 26 April, Milwaukee 

County had reported 2,629 confirmed SARS-CoV-2 infections and 126 deaths 323 (Fig 

1B).  

 

Dane County and Milwaukee County are both located in Southern Wisconsin. Milwaukee 

County is 127 km east of Dane County, measured from center to center. As of 2015, Dane 

County had a population of 516,850 at a density of 166 people per km2 compared to 

952,150 at 1,522 per km2 for Milwaukee County (Fig 1A) 301,302.  

 

The majority of individuals living in Dane County are White (81.5%). The next largest 

group identifies as Hispanic or Latinx (6.3%), followed by Asian (6.0%), Black (5.9%), and 

American Indian (0.3%) 302. Milwaukee County is less predominantly White (53.3%) with 

much larger Black (27.2%) and Hispanic or Latinx (14.5%) populations, followed by Asian 

(4.3%) and American Indian (0.7%) 301. The percent of individuals ≥65 years old is similar 
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in Dane County (13.7%) and Milwaukee County (13.6%), while the percent of individuals 

under 18 years is slightly lower in Dane County (20.4%) than Milwaukee County (24%). 

In addition, median income and access to healthcare resources is lower in Milwaukee 

County than in Dane County 324. The median individual in Milwaukee County is also more 

likely to experience poverty and to live with comorbidities such as type II diabetes, 

hypertension, and obesity (Table 1) 324. 

 

Dane and Milwaukee County viruses are genetically distinct  

If an outbreak is fueled by community spread following a single introduction, one would 

expect viral genomes to be close phylogenetic relatives, in which case genetic distances 

measured in any pairwise comparisons of sequences would be low. To examine this, we 

generated SARS-CoV-2 consensus sequences using the ARTIC Network protocol 235,310 

and defined the population of consensus single-nucleotide variants (SNVs) relative to the 

initial SARS-CoV-2 Wuhan reference (Genbank: MN908947.3). 

 

In Dane County, we identified 155 distinct SNVs across 122 samples evaluated. These 

SNVs are evenly distributed throughout the genome, and 92.9% (144/155) are located in 

open reading frames (ORFs). In Dane County, 52.9% (82/155) of consensus SNVs result 

in an amino acid change (nonsynonymous) and 40% (62/155) do not (synonymous) (Fig 

2A).  

In Milwaukee County, we identified 148 distinct SNVs across 125 samples evaluated. 

Among the observed consensus SNVs in Milwaukee County, 63.5% (94/148) are 

nonsynonymous and 31.8% (47/148) are synonymous (Fig 2B).  
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Mean inter-sequence pairwise SNV distance was 7.65 (std 1.83) and 5.02 (std 3.63) 

among Dane County and Milwaukee County sequences, respectively (Fig 2C). Likewise, 

we detected an average of 4.4 new SNVs per day (sampling period of 35 days) in Dane 

County and 3.6 new SNVs per day (sampling period of 41 days) in Milwaukee County. 

Previous reports suggested SARS-CoV-2 is expected to acquire approximately one fixed 

SNV every fifteen days following a single introduction 325. Compared to this benchmark, 

both Dane County and Milwaukee County have “excess” diversity which can be most 

parsimoniously explained by multiple introductions of divergent viruses. These patterns 

are consistent with a greater number of introductions of distinct viruses into Dane County 

compared to Milwaukee County. 

 

To further analyze genetic differences among viruses in the two locations, we assigned 

clades using the Nextstrain nomenclature. For example, clade 19B is defined by two 

mutations at nucleotides 8,782 (ORF1ab S2839S) and 28,144 (Spike L84S) relative to a 

reference SARS-CoV-2 isolate from Wuhan, China (Genbank: MN908947.3). The 

majority of Dane County sequences (n = 63 sequences; 51.6%) cluster in the 20A clade 

(Fig 3A). This clade is defined by four variants, at nucleotide positions 241 (upstream of 

the first open reading frame), 3,037 (ORF1a F924F), 14,408 (ORF1b P314L), and 23,403 

(S D614G). A minority (n = 31 sequences; 24.8%) of Milwaukee County sequences also 

cluster in this clade. In contrast, the 19A clade designation is most common (n = 75 

sequences; 60.0%) in sequences from Milwaukee County. This clade is distinguished by 

a U-to-C variant at nucleotide position 29,711 (downstream of ORF10) (Fig 3B). 
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No onward spread from Dane County index case 

The first known SARS-CoV-2 case in Wisconsin was a person who was likely infected 

during travel to Wuhan, Hubei province, China, where they were exposed to family 

members with confirmed SARS-CoV-2 infections. The patient reported a sore throat 

shortly before departing China and returning to the US on 30 January 2020. The person 

wore a mask during the return flight. Upon arrival in the US, the person immediately 

presented to an emergency department while still wearing a mask. The person was 

afebrile and had no respiratory or gastrointestinal signs or symptoms, but began to 

develop mild respiratory symptoms shortly thereafter. The person’s condition remained 

stable and never required hospitalization or advanced care, with symptoms resolving five 

days later. The person self-quarantined in an isolated room in a home with a dedicated 

bathroom for 30 days following symptom onset. During this time, nasopharynx samples 

repeatedly tested positive for SARS-CoV-2 viral RNA. 

 

Documentation of asymptomatic infections of SARS-CoV-2 has led to concerns about the 

role of cryptic community transmission in the United States 147,326,327. However, 

sequencing in other locations in the United States has revealed early introduction events 

did not always go on to seed downstream community spread 328. To determine whether 

SARS-CoV-2 cases detected in Dane County in March might have been due to 

undetected spread from the first Wisconsin introduction, we compared the sequence of 

this early case with local and global SARS-CoV-2 sequence diversity. The first Dane 

County patient’s virus contains an in-frame deletion at nucleotide positions 20,298 - 
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20,300, in a region that codes for the poly(U)-specific endoribonuclease; the impact of 

this mutation on viral fitness is unknown 329 (Supplemental Fig 1). Notably, this deletion 

was not detected in any other Dane County sequence, nor in any other sample(s) 

submitted to GISAID as of 18 April 2020. Moreover, there are no branches originating 

from the index Dane County case on either the global (Wisconsin sequences plus a 

subsampled set of global sequences) or local phylogenies (Wisconsin sequences only, 

maximum likelihood) (Fig 2C, Fig 3A). Thus, this early case appears to be an example 

of successful infection control practices. 

 

SARS-CoV-2 outbreak dynamics differ between Milwaukee and Dane Counties  

The independent local phylogenies in Dane and Milwaukee County suggested that these 

two nearby locations had largely distinct SARS-CoV-2 epidemics through April 2020. To 

better understand the number of introductions and continued transmission dynamics, we 

generated a time-resolved sub-sampled global phylogeny incorporating Dane County 

(red tips) and Milwaukee County (blue tips) sequences alongside representative global 

SARS-CoV-2 sequences, including all other available Wisconsin sequences (purple tips) 

(Fig 4A). Dane County viruses are distributed throughout the tree, consistent with multiple 

unique introductions. In contrast, Milwaukee County viruses cluster more closely together, 

consistent with fewer introductions leading to subsequent community transmission.  

 

To estimate the number of introductions into the state and subsequently each county, we 

used an ancestral state reconstruction of internal nodes. We performed 100 bootstrap 

replicates to account for uncertainty in the phylogenetic inference. This yielded an 
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estimate of 59 [59, 63] (median [95% highest density interval (HDI)]) independent 

introductions of SARS-CoV-2 into the state of Wisconsin. Of these, 29 [28, 31] led to 

introductions into Dane county whereas only 21 [19, 21] led to introductions into 

Milwaukee county (Fig 4B). Surprisingly, only 9 [6, 10] of the introductions into Wisconsin 

were associated with sequences from both counties. Furthermore, these shared 

introductions accounted for only 20-30% of the samples from Dane and Milwaukee 

County present in our dataset. Together, our analyses suggest that transmission between 

Dane and Milwaukee counties has not been a principal component of viral spread within 

either region. We find that local transmission in Milwaukee County began earlier, with an 

introduction event in late January/early February leading to a large number of the 

Milwaukee County sequences (Fig 4C). In comparison, most samples collected from 

Dane County are associated with multiple introductions in late February/early March (Fig 

4C). Despite the fact that there were more introductions into Dane County, the reported 

number of cases was considerably less than in Milwaukee County. This indicates that 

each introduction into Dane County contributed less to onward viral transmission than in 

Milwaukee County. 

 

To account for sampling bias on our estimates, we randomly sampled sequences from 

our set of Dane and Milwaukee County samples (N = 20-240, increments of 20) and 

pruned all other Dane and Milwaukee samples from the maximum likelihood tree. This 

was repeated 10 times for each N, creating a set of 120 trees. We repeated the ancestral 

state reconstruction on each of these trees and re-estimated the number of introductions 

(Supplemental Fig 2). The number of estimated introductions into Dane County 
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continued to increase with the number of sampled sequences, indicating that these data 

may be undersampling the true number of circulating viral lineages. In contrast, the 

number of estimated introductions into Milwaukee County decreases more slowly than 

Dane County, consistent with a small number of introductions. However, we cannot 

entirely rule out the possibility that the small number of introductions in Milwaukee County 

may be an artifact of biased sampling, where the available sequences may only represent 

a portion of the transmission chains and not a true estimation of the total circulating viral 

population. Because of this, the true number of introductions is likely to change as more 

sequences become available in each county. Taken together, these results suggest that 

patterns of SARS-CoV-2 introduction and spread can differ dramatically in two small 

administrative regions (here, Dane and Milwaukee Counties), despite their close 

geographic, economic, and political connections. 

 

Spread of SARS-CoV-2 was reduced following Wisconsin’s “Safer at Home” Order  

We next used viral sequence data to assess the impact of Wisconsin's “Safer at Home” 

order on SARS-CoV-2 transmission by estimating the basic reproduction number (R0). 

Transmission heterogeneity, or superspreading, is thought to play an important role in 

SARS-CoV-2 epidemics 149,330,331. We therefore modeled R0 before and after the “Safer 

at Home” order in scenarios in which the level of transmission heterogeneity was low, 

medium, or high. In both counties, under all three scenarios, R0 fell by at least 40% after 

25 March, indicating that the sequencing data support the observed decline in reported 

cases. In Dane County, estimated median R0 was reduced by 40% [4, 74], 49% [13, 79], 

and 60% [30, 83] under low, medium, and high transmission heterogeneity, respectively. 
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Similarly, in Milwaukee County, estimated median R0 was reduced by 68% [50, 83], 71% 

[56, 86], and 72% [60, 84] under low, medium, and high transmission heterogeneity, 

respectively. 

 

In Dane County, estimated cumulative incidence was best predicted with the medium 

transmission heterogeneity model, based on alignment with reported incidence (Fig 5A), 

whereas Milwaukee County’s cumulative incidence was best predicted with the model 

using high transmission heterogeneity (Fig 5B). A greater role for superspreading events 

in Milwaukee versus Dane County could be explained by higher population density, higher 

poverty rates, and/or worse healthcare access (Table 1), all of which may increase 

contact rates and impede physical distancing efforts 331–335. Assuming moderate 

transmission heterogeneity in Dane County, estimated R0 prior to 25 March was 2.24 

[1.86, 2.65] and the median estimated cumulative incidence at the end of the study period 

(26 April) was 4,546 infections [1,187, 23,709] compared to 405 positive tests. In contrast, 

assuming high transmission heterogeneity in Milwaukee County, estimated R0 prior to 25 

March was 2.82 [2.48, 3.20] and the median cumulative incidence on 26 April was only 

3,008 infections [1,483, 7,508] compared to 2,629 positive tests.  

 

With passive SARS-CoV-2 surveillance efforts in both counties likely missing subclinical 

and asymptomatic SARS-CoV-2 infections, we expect the true cumulative incidence to 

be considerably greater than the reported incidence, as has been suggested by others 

336. Indeed, estimated cases were ~10x higher than reported cases in Dane County. 

Given that there were no substantial differences in the surveillance efforts between 
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counties, we expected more than the 1.1-fold difference in estimated and reported cases 

in Milwaukee County. Nearly equivalent estimated and reported cumulative incidence in 

Milwaukee County could be explained by better detection rates, inaccurate model 

parameters, and/or biased sampling. However, we likely have representative sampling 

across Milwaukee County, just on a smaller scale in comparison to Dane County. In an 

effort generate representative sequence data from Milwaukee County, samples were 

collected from over 35 zip codes and included samples from known outbreaks, community 

centers, healthcare facilities, congregate settings (long-term care facilities, jails, 

correction facilities), meat processing/packing plants as well as households in hotspots 

where SARS-CoV-2 transmission was detected within Milwaukee County (Supplemental 

Fig 4). With better detection rates, a greater proportion of actual infections would be 

reported, but given the similar surveillance efforts between counties we expect detection 

rates to be comparable. Another possible explanation we cannot rule out is that different 

model parameters are required to more accurately model Milwaukee County’s epidemic. 

Our testing of three superspreading scenarios demonstrated that the superspreading 

parameters, at least, may be county-specific. In the case of biased sampling, where the 

available sequences only represent a portion of transmission chains in the county, our 

model would only estimate the caseload resulting from a subset of transmission chains in 

Milwaukee County and would underestimate the county-wide caseload. In support of 

representative county-wide sampling in Dane, but not Milwaukee County, sequences from 

26.4% (107/405) of test-positive cases in Dane County, but only 3.9% (117/3008) of test-

positive cases in Milwaukee County were available for phylodynamic modelling 322,323.  
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Discussion 

A clear understanding of SARS-CoV-2 transmission patterns in a given location may 

permit and promote more effective targeting of public health messaging and infection 

mitigation efforts. Several studies have described how SARS-CoV-2 entered and began 

circulating within broad geographic regions, like entire countries (England, Brazil, Austria, 

Australia) or large and populous US states (Bay Area, NYC) 147–149,298,337–340. But few 

studies to date have explored how such patterns may differ on finer geographic and 

temporal scales, even though many interventions will necessarily be highly localized in 

scope. Here, we examined differences in SARS-CoV-2 introduction and spread in two 

nearby counties – Dane County and Milwaukee County – as an example of how such 

patterns may differ even on small geographic scales. Dane County, Wisconsin had one 

of the earliest detected cases of SARS-CoV-2 infection in the United States, but this 

infection did not spark community spread. This is probably due to a combination of good 

infection control practices by healthcare providers, the patient, and sheer luck. Since 

March 2020 we find evidence for extensive introductions of SARS-CoV-2 into Dane 

County, none of which led to large-scale transmission clusters by the end of April 2020. 

As of 18 August 2020, Dane County has had a cumulative prevalence of 124.9 cases per 

100,000 residents. In contrast, Milwaukee County, a larger and more densely populated 

region ~100km away, has had 2,627 cases per 100,000 residents as of 18 August 2020 

341. Our findings suggest that Milwaukee County’s higher caseload stems from greater 

levels of community spread descendant from fewer introduction points than in Dane 

County. Strikingly, we see little evidence for mixing of virus populations between these 

two closely-linked communities in the same US state.  
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We used patterns of SARS-CoV-2 diversification in a phylodynamic model to estimate the 

initial reproductive rate of infections in each county before official physical distancing 

policies were enacted. In this initial phase of the outbreak, the median estimated R0 

trended lower in Dane County than in Milwaukee County (2.24 vs 2.82). Higher overall 

population density and a higher average number of individuals residing in one dwelling in 

Milwaukee County could have contributed to a higher reproductive rate and greater 

community spread. A potential additional explanation for greater community spread is that 

the average individual in Milwaukee County, compared to Dane County, has access to 

fewer financial and healthcare resources and is more likely to experience poverty and to 

live with comorbid conditions, many of which are also risk factors for testing positive for 

SARS-CoV-2, the latter of which are also risk factors for severe COVID-19 301,302,342,343. 

Additionally, Milwaukee County is home to a higher proportion of Black and Hispanic or 

Latinx individuals compared to Dane County. Because of race-based discrimination, 

people belonging to these groups experience worse health outcomes than White 

individuals, on average, despite being treated in the same healthcare systems 

301,302,344,345. The social vulnerability index (SVI) is a metric ranging designed to determine 

how resilient a community is when confronted with external stressors like natural disasters 

or a pandemic 346. A higher SVI indicates a community is vulnerable to experiencing 

worsened outcomes secondary to an external stressor (range of zero to one). All of the 

factors mentioned above contribute to a higher SVI in Milwaukee County (0.8268) 

compared to Dane County (0.1974) 346. While the association between SVI and SARS-

CoV-2 incidence is not significant, according to a recent study, the SVI components of 
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socioeconomic and minority status are both predictors of higher SARS-CoV-2 incidence 

and case fatality rates 347. These sub-components are likely to be among the main drivers 

in the outbreak dynamics between Dane and Milwaukee County.  

 

Like most US states, in late March 2020 Wisconsin enacted a set of physical distancing 

policies aimed at reducing the spread of SARS-CoV-2. Wisconsin’s order, termed “Safer 

at Home,” was enacted 25 March 2020. After this timepoint, the estimated R0 was reduced 

by 40% or more in both counties. The sequencing data is consistent with the observed 

reduction in positive tests, as clusters expanded more slowly and new clusters arose 

more slowly. Throughout this time, we find that the Dane County and Milwaukee County 

outbreaks were largely independent of one another. Our data reveal only limited mixing 

of SARS-CoV-2 genotypes between these geographically-linked communities, supporting 

the notion that public health policies emphasizing physical distancing effectively reduce 

transmission between communities. Notably, “Safer at Home'' ended abruptly 13 May 

2020, when it was overturned by the Wisconsin Supreme Court. Additional sequencing 

and epidemiological data will be necessary to understand whether virus intermingling 

between these counties increased after the cessation of the Executive Order. 

 

Viral determinants could also affect differential transmission patterns within and between 

Dane and Milwaukee Counties. If variants with greater transmission potential exist, then 

early introductions of such a variant into a community could contribute to greater spread 

there. Recent reports have suggested that a point mutation in the SARS-CoV-2 spike 

protein-encoding an aspartate-to-glycine substitution at amino acid residue 614 (D164G) 
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may enhance transmissibility 348–350. This mutation confers increased infectivity of 

pseudotyped murine retroviruses in ACE2-expressing HEK293T cells 350 and has been 

proposed to be increasing in global prevalence, perhaps under natural selection 351. 

Importantly, however, the rise in D614G frequency could also be due to founder effects, 

as viruses bearing the glycine allele may have been the first to establish local 

transmission in Europe. D614G is one of the mutations defining the 20A clade; these 

viruses remain dominant in Europe 328, so introductions from Europe into the United 

States, including into Dane County, predominantly carry D614G. In comparison, in 

Milwaukee County, the vast majority of viruses have an aspartic acid residue at this site 

despite much higher levels of community transmission early in the pandemic. This 

observation does not necessarily indicate that D614G does not impact viral 

transmissibility; its role may be muted by other determinants of transmission, including 

demographic and socioeconomic factors. Viruses encoding D614G may displace 614D 

variants over time in regions like Milwaukee County, where 614D viruses have sustained 

community spread. 

 

There are some important caveats to this study. Of the total reported positives in each 

county during the study period, high-quality sequences were available for 30% of test-

positive cases in Dane County, but only 5% of test-positive cases in Milwaukee County 

322,323. Despite the deep sampling of SARS-CoV-2 sequences in Wisconsin relative to 

other regions in the US, even greater targeted sequencing efforts may be required to fully 

capture the sequence heterogeneity conferred by multiple introduction events and 

variable superspreading dynamics. It is possible additional sequencing in Milwaukee 
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County would uncover additional viral lineages, or that the 5% of cases we sequenced do 

not fully represent the diversity of viruses found throughout the county, skewing our 

observations. However, in analyzing sample metadata we find no evidence that particular 

locations within Milwaukee County were dramatically over- or under-sampled relative to 

their known SARS-CoV-2 prevalence (Supplemental Fig. 4). Another potential 

explanation is that Milwaukee County was under-testing relative to Dane County. 

Throughout the period analyzed here, the percentage of SARS-CoV-2 tests returning 

positive in Milwaukee County was ~20%, compared to only ~5% in Dane County 322,323, 

indicating that a higher proportion of infections might have been missed by testing in 

Milwaukee County relative to Dane County. As we are only able to sequence test-positive 

samples, it is possible that under-testing in Milwaukee County limited our ability to capture 

a complete representation of their epidemic. However, we have no reason to suspect 

Milwaukee testing regimes were biased toward or against subsets of the overall 

population. During this time, there were three free community testing sites (supported by 

the Wisconsin National Guard) and several additional community testing and shelter sites 

located throughout the city. COVID-19 testing criteria for Milwaukee public health 

laboratories targeted all sectors of the population per Wisconsin Department of Health 

Services guidelines 352. In sum, we have taken steps to minimize systematic sampling 

bias in Milwaukee County in this study, but we cannot entirely exclude the possibility that 

the samples available to us for sequencing did not fully capture the diversity of SARS-

CoV-2 circulating in Milwaukee County during the study period. 
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It is also possible that other sequences from these counties relevant to our analyses were 

collected by other groups. As of 21 June 2020, there were 477 Wisconsin sequences 

available, but only 351 of these had geolocation information resolved to the county level. 

Some of the remaining 126 sequences likely originated from Dane County or Milwaukee 

County, but we cannot include these sequences in our analysis given their geolocation 

data resolved only to the state level. Currently there is no clearly stated national-level 

guidance for metadata to be associated with pathogen sequences. Dates and geographic 

locations with greater than state-level resolution are required to track the emergence and 

spread of novel pathogens like SARS-CoV-2. Explicit regulatory guidance from the United 

States enabling the disclosure of sequencing data with county-level geolocation data and 

sampling dates would enable other institutions to harmonize reporting of viral sequences 

and improve subsequent studies comparing viral sequences from different locations, as 

described previously 353. Such reporting may be especially important for identifying 

disparities in viral transmission due to socioeconomic vulnerabilities in specific counties 

that would otherwise be masked using state-level data reporting.  

 

Few previous studies have carefully evaluated patterns of SARS-CoV-2 introduction and 

spread below the level of US regions or states. Yet, with little US federal guidance, the 

majority burden of organizing and implementing anti-SARS-CoV-2 public health 

campaigns has fallen to US cities and counties. Tailoring public health messaging and 

intervention strategies to specific communities and locations can enhance their efficacy 

and durability. Our study exemplifies how viral sequence dynamics can enhance our 

understanding of the finescale patterns of virus introduction and spread, revealing 
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differences in transmission patterns between even nearby communities that could inform 

the design of targeted interventions. For example, our data suggest Dane County, which 

had a large number of introductions but relatively little sustained community spread during 

the study period, might have benefited most from travel restrictions and/or quarantine for 

people entering the community. In contrast, our data suggest that community spread was 

established early in the study period in Milwaukee County, so interventions targeted at 

interrupting transmission clusters might have had the most impact. These could include 

limiting indoor community gatherings, targeting messaging or social marketing campaigns 

promoting masking and other physical distancing measures, and improving access to 

economic and healthcare resources – not only direct access to care, but also paid leave 

and other support systems for workers who are ill. To this end, continued efforts to 

sequence SARS-CoV-2 viruses across multiple spatio-temporal scales remain critical for 

tracking viral transmission dynamics within and between communities and for guiding 

“precision medicine” public health interventions to suppress future SARS-CoV-2 

outbreaks.  
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Figure 1.  

Demography and epidemiology of SARS-CoV-2 in southern Wisconsin. A) A map of 

Wisconsin highlighting Dane County (red) and Milwaukee County (blue). Cumulative case 

counts through 26 April 2020 are reported within each county border. B) Cumulative 
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SARS-CoV-2 cases in Dane County (red) and Milwaukee County (blue) from 9 March 

through 26 April. The vertical dashed line indicates the start date of Wisconsin’s “Safer at 

Home” order, which went into effect 25 March 2020. 

 

 

 

Figure 2.  

Characterizing consensus-level variants and sequence divergence among Dane and 

Milwaukee County sequences. SNVs are annotated relative to the initial Wuhan SARS-

CoV-2 reference (Genbank: MN908947.3). A) Frequency of consensus SNVs among the 

Dane County sequences, represented in red. B) Frequency of consensus SNVs among 

the Milwaukee County sequences, represented in blue. Open symbols denote 



   

 

212 

synonymous or intergenic SNVs and closed symbols denote nonsynonymous SNVs. C) 

A divergence-based phylogenetic tree built using Nextstrain tools for the 122 Dane 

County (red) and 125 Milwaukee County (blue) sequences. Wisconsin samples are 

rooted against Wuhan-Hu-1/2019 and Wuhan/WH01/2019.  
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Figure 3.  

Dane and Milwaukee County outbreaks are defined by genetically distinct viruses. A) A 

time-resolved phylogenetic tree built using Nextstrain tools for 122 samples collected in 

Dane County. B) A time-resolved phylogenetic tree for 125 samples collected in 

Milwaukee County. Clade is denoted by color. Both phylogenies include Wuhan 



   

 

214 

sequences (Wuhan-Hu-1/2019 and Wuhan/WH01/2019, denoted in grey) to more 

effectively time-align each tree. 
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Figure 4.  

Estimate of the number of introduction events into Milwaukee and Dane County and their 

relative contribution to downstream epidemic dynamics. A) Maximum likelihood (ML) 

time-resolved tree with subsampled global sequences and closest phylogenetic 

neighbors relatives included (grey branches). Sequences from Dane and Milwaukee 

Counties are highlighted in red and blue, respectively. Sequences with geolocation 

information available to the state level, or that are located outside of Dane and Milwaukee 

Counties (i.e. La Crosse) are shown in purple. B) Estimated cumulative number of 

introduction events into each county. C) Gaussian Kernel Density Estimate plots showing 

the estimated timing of each introduction event (3 curves per replicate: mean and 90% 

confidence intervals) into Dane County (red) or Milwaukee County (blue). The relative 

number of samples from each region attributable to an introduction event is represented 

on the y-axis. Curves are normalized to a cumulative density of one; therefore, y-axis 

scale is not shown.  
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Figure 5.  

Phylodynamic modelling of regional outbreaks informs regional outbreak dynamics before 

and after government interventions. Bayesian phylodynamic modelling of cumulative 

incidence up to 26 April for outbreaks in A) Dane County and B) Milwaukee County under 

low (left), medium (center), and high (right) transmission heterogeneity conditions. Model 

parameters for low, medium, and high transmission heterogeneity were fixed such that 

20, 10, and 5% of superspreading events contribute 80% of cumulative infections, 

respectively. Median cumulative incidence (solid black line) is bound by the 95% 

confidence intervals (CI; gray ribbon). Dots represent reported cumulative positive tests 

in Dane County (red) and Milwaukee County (blue). Estimated median reproductive 

numbers (R0) with 95% HDI are listed for the period before the Wisconsin “Safer at Home” 
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order was issued on 25 March 2020. Percent reduction in R0 with 95% HDI is provided 

for the period after 25 March 2020. 

 
County-level demographic data Dane Milwaukee 
Population size (2015) 516,850 952,150 
Population per square mile (2015) 430 3942 
Average number of persons per dwelling (2014-2018) 2.35 2.44 
Age (2014-2018):   

   % of population under 5 5.6 6.9 
   % of population under 18 20.4 24 
   % of population over 65 13.7 13.6 
Race/ethnicity (2015):   

   White 81.5% 53.3% 
   African American 5.9% 27.2% 
   American Indian 0.3% 0.7% 
   Hispanic 6.3% 14.5% 
   Asian 6.0% 4.3% 
Median income (2015) $65,416 $45,905 
% of population that is uninsured, under 65 (2014-2018) 4.9% 8.2% 
Poverty estimate, all ages (2015) 11.2% 20.3% 
% of population reported overweight or obese (2012-2016) 54.3% - 58.5% 64.7% - 69% 

% of adults reporting diagnosed diabetes (2012-2016) 4.2% - 6.8% 8.6% - 9.8% 
 

Table 1.  

County level demographics for Dane and Milwaukee County.  



   

 

219 

 

Supplemental Figure 1.  

Diagnostic deletion in the index Dane County sample. Consensus-level deletion identified 

in the Dane County index sample. Zoomed in panel shows nucleotide and amino acid 

identities of the in-frame deletion. 
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Supplemental Figure 2.  

Sampling sensitivity of estimates for the number of introductions into Dane and Milwaukee 

Counties. Estimates of the number of introductions into Dane and Milwaukee Counties 

using a time aligned maximum likelihood phylogeny. N sequences (x-axis) were randomly 

sampled from the available Dane and Milwaukee County samples and the remaining were 

pruned from the tree. Ten replicates of each N were conducted and the number of 

introductions (y-axis) was estimated for each. 
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Supplemental Figure 3.  

Temporal distribution of SARS-CoV-2 samples. The total count of samples collected (y-

axis) during 1-week intervals (x-axis) from the first documented Wisconsin case through 

18 April, 2020. Weeks with no samples are still shown here as indicated by data points at 

y = 0. Code to recreate this figure can be found in the GitHub repository 

–  `data_raw/supplementary_figure_3.ipynb`.  
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Supplemental Figure 4.  

Geographic distribution of Milwaukee County sequences (left) compared to test positive 

cases (right) by zip code. Case count data were collated using the Wisconsin Electronic 

Disease Surveillance System (WEDSS) and data were sorted and plotted using Tableau 

(https://www.tableau.com/) to create counts and color gradients by ZIP code.  
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Division Number of sequences Number of positive SARS-CoV-2 cases Percent sequenced (%) 
England 23212 265,849 8.73 
Wales 5425 17389 31.20 

Scotland 5121 18847 27.17 
Washington 3957 55600 7.12 
California 2189 500600 0.44 
Victoria 1522 13469 11.30 

New York 1505 411600 0.37 
Michigan 1069 86200 1.24 
Wisconsin 963 52900 1.82 
Louisiana 786 116300 0.68 
Singapore 770 54555 1.41 
Denmark 735 14306 5.14 

Northern Ireland 717 6049 11.85 
Netherlands 692 56381 1.23 

Utah 688 32400 2.12 
New South Wales 656 3832 17.12 

Portugal 642 52061 1.23 
British Columbia 604 3834 15.75 

Reykjavik 601 1932 31.11 
Florida 560 469800 0.12 

Basque Country 559 15634 3.58 
Minnesota 545 54300 1.00 

Virginia 522 89900 0.58 
Gujarat 447 66777 0.67 

Massachusetts 418 117200 0.36 
Dane County - April 26th 122 405 30.12 

Milwaukee County - April 26th 125 2629 4.75 
 

Supplemental Table 1.  

SARS-CoV-2 sequencing depth per admin division. Admin division is defined as the state 

or country. Percent sequenced (%) is calculated as the number of consensus sequences 

over the number of documented positive SARS-CoV-2 cases across a variety of 

geographic locations as of July 31, 2020. The number of sequences per geographic 

location were obtained on GISAID by downloading the NextMeta file and filtering on the 
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‘Admin Division’ search field. We compared the sequencing depth to the sequencing 

depth obtained by our study (indicated by ‘- April 26th’) to highlight that we are one of the 

top 25 deepest sequenced divisions.  

Location Number of sequences Number of positive SARS-CoV-2 cases Percent sequenced (%) 
Yakima County 1704 9971 17.09 

San Diego 702 29577 2.37 
Sydney 543 3809 14.26 

East Baton Rouge Parish 424 11263 3.76 
Manhattan 419 222522 0.19 
Brooklyn 373 61948 0.60 
Valencia 343 12999 2.64 

Dane County 334 4145 8.06 
King County 322 15946 2.02 

Greater Houston Area 320 80914 0.40 
Santa Clara County 313 11128 2.81 

Donostia-San Sebastian & Vitoria-Gasteiz 535 15634 3.42 

Wuhan 257 68138 0.38 
Nassau County 202 43482 0.46 

Snohomish County 187 6033 3.10 
Orange County 184 38131 0.48 

Munich 181 51068 0.35 
Queens 175 67598 0.26 

South Yorkshire 171 9610 1.78 
San Francisco 163 7231 2.25 
Pierce County 159 5851 2.72 

Milwaukee County 153 19332 0.79 
Los Angeles County 146 198355 0.07 

Hyderabad 144 73050 0.20 
Dane County - April 26th 122 405 30.12 

Milwaukee County - April 26th 125 2629 4.75 
 

Supplemental Table 2.  

SARS-CoV-2 sequencing depth per location. Percent sequenced (%) is calculated as the 

number of consensus sequences over the number of documented positive SARS-CoV-2 



   

 

225 

cases across a variety of geographic locations. The number of sequences per geographic 

location were obtained on GISAID by downloading the NextMeta file and filtering on the 

‘Location’ search field. We compared the sequencing depth to the sequencing depth 

obtained by our study (indicated by ‘- April 26th’) to highlight that we are one of the top 

25 deepest sequenced locations. 

 

strain gisaid_
epi_isl 

Genb
ank 
acce
ssion 

sra_ac
ession 

srr_ru
n_num
ber 

biosamp
le_id bioproject date region country division location Region 

exposure 
Country 
exposure 

Division 
exposure 

USA/WI1/2
020 

EPI_IS
L_4086
70 

MT03
9887 

SRX77
77165 

SRR11
140745 

SAMN14
154204 

PRJNA607
948 

2020-
1-31 

North 
America USA Wisconsi

n 
Dane 
county Asia China Hubei 

USA/WI-
UW-
02/2020 

EPI_IS
L_4164
89 

- SRX79
72381 

SRR11
393278 

SAMN14
428237 

PRJNA614
504 

2020-
3-15 

North 
America USA Wisconsi

n 
Dane 
county 

North 
America USA Wisconsin 

USA/WI-
UW-
04/2020 

EPI_IS
L_4164
91 

- SRX79
72383 

SRR11
393276 

SAMN14
428239 

PRJNA614
504 

2020-
3-15 

North 
America USA Wisconsi

n 
Dane 
county 

North 
America USA Wisconsin 

USA/WI-
UW-
05/2020 

EPI_IS
L_4164
92 

- SRX79
72384 

SRR11
393275 

SAMN14
428240 

PRJNA614
504 

2020-
3-15 

North 
America USA Wisconsi

n 
Dane 
county 

North 
America USA Wisconsin 

USA/WI-
UW-
03/2020 

EPI_IS
L_4165
23 

- 
SRX79
72382 

SRR11
393277 

SAMN14
428238 

PRJNA614
504 

2020-
3-14 

North 
America USA 

Wisconsi
n 

Dane 
county 

North 
America USA Wisconsin 

USA/WI-
UW-
06/2020 

EPI_IS
L_4172
00 

- SRX79
88797 

SRR11
410125 

SAMN14
443954 

PRJNA614
504 

2020-
3-21 

North 
America USA Wisconsi

n 
Dane 
county 

North 
America USA Wisconsin 

USA/WI-
UW-
07/2020 

EPI_IS
L_4172
01 

- 
SRX79
88798 

SRR11
410124 

SAMN14
443955 

PRJNA614
504 

2020-
3-21 

North 
America USA 

Wisconsi
n 

Dane 
county 

North 
America USA Wisconsin 

USA/WI-
UW-
08/2020 

EPI_IS
L_4172
02 

- SRX79
88799 

SRR11
410123 

SAMN14
443956 

PRJNA614
504 

2020-
3-21 

North 
America USA Wisconsi

n 
Dane 
county 

North 
America USA Wisconsin 

USA/WI-
UW-
09/2020 

EPI_IS
L_4172
03 

- SRX79
88800 

SRR11
410122 

SAMN14
443957 

PRJNA614
504 

2020-
3-21 

North 
America 

USA Wisconsi
n 

Dane 
county 

North 
America 

USA Wisconsin 

USA/WI-
UW-
10/2020 

EPI_IS
L_4172
04 

- SRX79
88801 

SRR11
410121 

SAMN14
443958 

PRJNA614
504 

2020-
3-21 

North 
America USA Wisconsi

n 
Dane 
county 

North 
America USA Wisconsin 

USA/WI-
UW-
25/2020 

EPI_IS
L_4212
83 

- SRX80
79441 

SRR11
507378 

SAMN14
555931 

PRJNA614
504 

2020-
3-23 

North 
America USA Wisconsi

n 
Dane 
county 

North 
America USA Wisconsin 

USA/WI-
UW-
26/2020 

EPI_IS
L_4212
84 

- SRX80
79442 

SRR11
507377 

SAMN14
555932 

PRJNA614
504 

2020-
3-24 

North 
America USA Wisconsi

n 
Dane 
county 

North 
America USA Wisconsin 

USA/WI-
UW-
27/2020 

EPI_IS
L_4212
85 

- SRX80
79453 

SRR11
507366 

SAMN14
555933 

PRJNA614
504 

2020-
3-25 

North 
America USA Wisconsi

n 
Dane 
county 

North 
America USA Wisconsin 

USA/WI-
UW-
28/2020 

EPI_IS
L_4212
86 

- SRX80
79464 

SRR11
507355 

SAMN14
555934 

PRJNA614
504 

2020-
3-25 

North 
America USA Wisconsi

n 
Dane 
county 

North 
America USA Wisconsin 

USA/WI-
UW-
29/2020 

EPI_IS
L_4212
87 

- SRX80
79475 

SRR11
507344 

SAMN14
555935 

PRJNA614
504 

2020-
3-24 

North 
America USA Wisconsi

n 
Dane 
county 

North 
America USA Wisconsin 

USA/WI-
UW-
31/2020 

EPI_IS
L_4212
89 

- 
SRX80
79497 

SRR11
507322 

SAMN14
555937 

PRJNA614
504 

2020-
3-25 

North 
America USA 

Wisconsi
n 

Dane 
county 

North 
America USA Wisconsin 

USA/WI-
UW-
32/2020 

EPI_IS
L_4212
90 

- SRX80
79498 

SRR11
507321 

SAMN14
555938 

PRJNA614
504 

2020-
3-24 

North 
America USA Wisconsi

n 
Dane 
county 

North 
America USA Wisconsin 

USA/WI-
UW-
33/2020 

EPI_IS
L_4212
91 

- 
SRX80
79499 

SRR11
507320 

SAMN14
555939 

PRJNA614
504 

2020-
3-23 

North 
America USA 

Wisconsi
n 

Dane 
county 

North 
America USA Wisconsin 

USA/WI-
UW-
34/2020 

EPI_IS
L_4212
92 

- SRX80
79500 

SRR11
507319 

SAMN14
555940 

PRJNA614
504 

2020-
3-26 

North 
America USA Wisconsi

n 
Dane 
county 

North 
America USA Wisconsin 



   

 

226 

USA/WI-
UW-
35/2020 

EPI_IS
L_4212
93 

- SRX80
79443 

SRR11
507376 

SAMN14
555941 

PRJNA614
504 

2020-
3-24 

North 
America USA Wisconsi

n 
Dane 
county 

North 
America USA Wisconsin 

USA/WI-
UW-
37/2020 

EPI_IS
L_4212
95 

- SRX80
79445 

SRR11
507374 

SAMN14
555943 

PRJNA614
504 

2020-
3-22 

North 
America USA Wisconsi

n 
Dane 
county 

North 
America USA Wisconsin 

USA/WI-
UW-
38/2020 

EPI_IS
L_4212
96 

- SRX80
79446 

SRR11
507373 

SAMN14
555944 

PRJNA614
504 

2020-
3-25 

North 
America USA Wisconsi

n 
Dane 
county 

North 
America USA Wisconsin 

USA/WI-
UW-
39/2020 

EPI_IS
L_4212
97 

- SRX80
79447 

SRR11
507372 

SAMN14
555945 

PRJNA614
504 

2020-
3-22 

North 
America USA Wisconsi

n 
Dane 
county 

North 
America USA Wisconsin 

USA/WI-
UW-
40/2020 

EPI_IS
L_4212
98 

- SRX80
79448 

SRR11
507371 

SAMN14
555946 

PRJNA614
504 

2020-
3-24 

North 
America USA Wisconsi

n 
Dane 
county 

North 
America USA Wisconsin 

USA/WI-
UW-
41/2020 

EPI_IS
L_4212
99 

- SRX80
79449 

SRR11
507370 

SAMN14
555947 

PRJNA614
504 

2020-
3-25 

North 
America USA Wisconsi

n 
Dane 
county 

North 
America USA Wisconsin 

USA/WI-
UW-
42/2020 

EPI_IS
L_4213
00 

- 
SRX80
79450 

SRR11
507369 

SAMN14
555948 

PRJNA614
504 

2020-
3-18 

North 
America USA 

Wisconsi
n 

Dane 
county 

North 
America USA Wisconsin 

USA/WI-
UW-
43/2020 

EPI_IS
L_4213
01 

- SRX80
79451 

SRR11
507368 

SAMN14
555949 

PRJNA614
504 

2020-
3-19 

North 
America USA Wisconsi

n 
Dane 
county 

North 
America USA Wisconsin 

USA/WI-
UW-
44/2020 

EPI_IS
L_4213
02 

- 
SRX80
79452 

SRR11
507367 

SAMN14
555950 

PRJNA614
504 

2020-
3-17 

North 
America USA 

Wisconsi
n 

Dane 
county 

North 
America USA Wisconsin 

USA/WI-
UW-
45/2020 

EPI_IS
L_4213
03 

- SRX80
79454 

SRR11
507365 

SAMN14
555951 

PRJNA614
504 

2020-
3-22 

North 
America USA Wisconsi

n 
Dane 
county 

North 
America USA Wisconsin 

USA/WI-
UW-
46/2020 

EPI_IS
L_4213
04 

- SRX80
79455 

SRR11
507364 

SAMN14
555952 

PRJNA614
504 

2020-
3-22 

North 
America 

USA Wisconsi
n 

Dane 
county 

North 
America 

USA Wisconsin 

USA/WI-
UW-
48/2020 

EPI_IS
L_4213
06 

- SRX80
79457 

SRR11
507362 

SAMN14
555954 

PRJNA614
504 

2020-
3-25 

North 
America USA Wisconsi

n 
Dane 
county 

North 
America USA Wisconsin 

USA/WI-
UW-
49/2020 

EPI_IS
L_4213
07 

- SRX80
79458 

SRR11
507361 

SAMN14
555955 

PRJNA614
504 

2020-
3-25 

North 
America USA Wisconsi

n 
Dane 
county 

North 
America USA Wisconsin 

USA/WI-
UW-
50/2020 

EPI_IS
L_4213
08 

- SRX80
79459 

SRR11
507360 

SAMN14
555956 

PRJNA614
504 

2020-
3-25 

North 
America USA Wisconsi

n 
Green 
County 

North 
America USA Wisconsin 

USA/WI-
UW-
51/2020 

EPI_IS
L_4213
09 

- SRX80
79460 

SRR11
507359 

SAMN14
555957 

PRJNA614
504 

2020-
3-20 

North 
America USA Wisconsi

n 
Dane 
county 

North 
America USA Wisconsin 

USA/WI-
UW-
52/2020 

EPI_IS
L_4213
10 

- SRX80
79461 

SRR11
507358 

SAMN14
555958 

PRJNA614
504 

2020-
3-18 

North 
America USA Wisconsi

n 
Dane 
county 

North 
America USA Wisconsin 

USA/WI-
UW-
53/2020 

EPI_IS
L_4213
11 

- SRX80
79462 

SRR11
507357 

SAMN14
555959 

PRJNA614
504 

2020-
3-18 

North 
America USA Wisconsi

n 
Dane 
county 

North 
America USA Wisconsin 

USA/WI-
UW-
54/2020 

EPI_IS
L_4213
12 

- 
SRX80
79463 

SRR11
507356 

SAMN14
555960 

PRJNA614
504 

2020-
3-20 

North 
America USA 

Wisconsi
n 

Dane 
county 

North 
America USA Wisconsin 

USA/WI-
UW-
55/2020 

EPI_IS
L_4213
13 

- SRX80
79465 

SRR11
507354 

SAMN14
555961 

PRJNA614
504 

2020-
3-23 

North 
America USA Wisconsi

n 
Dane 
county 

North 
America USA Wisconsin 

USA/WI-
UW-
56/2020 

EPI_IS
L_4213
14 

- 
SRX80
79466 

SRR11
507353 

SAMN14
555962 

PRJNA614
504 

2020-
3-18 

North 
America USA 

Wisconsi
n 

Dane 
county 

North 
America USA Wisconsin 

USA/WI-
UW-
58/2020 

EPI_IS
L_4213
16 

- SRX80
79468 

SRR11
507351 

SAMN14
555964 

PRJNA614
504 

2020-
3-23 

North 
America USA Wisconsi

n 
Dane 
county 

North 
America USA Wisconsin 

USA/WI-
UW-
59/2020 

EPI_IS
L_4213
17 

- SRX80
79469 

SRR11
507350 

SAMN14
555965 

PRJNA614
504 

2020-
3-24 

North 
America 

USA Wisconsi
n 

Dane 
county 

North 
America 

USA Wisconsin 

USA/WI-
UW-
60/2020 

EPI_IS
L_4213
18 

- SRX80
79470 

SRR11
507349 

SAMN14
555966 

PRJNA614
504 

2020-
3-19 

North 
America USA Wisconsi

n 
Dane 
county 

North 
America USA Wisconsin 

USA/WI-
UW-
61/2020 

EPI_IS
L_4213
19 

- SRX80
79471 

SRR11
507348 

SAMN14
555967 

PRJNA614
504 

2020-
3-23 

North 
America 

USA Wisconsi
n 

Dane 
county 

North 
America 

USA Wisconsin 

USA/WI-
UW-
62/2020 

EPI_IS
L_4213
20 

- SRX80
79472 

SRR11
507347 

SAMN14
555968 

PRJNA614
504 

2020-
3-25 

North 
America USA Wisconsi

n 
Dane 
county 

North 
America USA Wisconsin 

USA/WI-
UW-
63/2020 

EPI_IS
L_4213
21 

- SRX80
79473 

SRR11
507346 

SAMN14
555969 

PRJNA614
504 

2020-
3-24 

North 
America USA Wisconsi

n 
Dane 
county 

North 
America USA Wisconsin 

USA/WI-
UW-
64/2020 

EPI_IS
L_4213
22 

- SRX80
79474 

SRR11
507345 

SAMN14
555970 

PRJNA614
504 

2020-
3-24 

North 
America USA Wisconsi

n 
Dane 
county 

North 
America USA Wisconsin 

USA/WI-
UW-
65/2020 

EPI_IS
L_4213
23 

- SRX80
79476 

SRR11
507343 

SAMN14
555971 

PRJNA614
504 

2020-
3-22 

North 
America USA Wisconsi

n 
Dane 
county 

North 
America USA Wisconsin 
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USA/WI-
UW-
66/2020 

EPI_IS
L_4213
24 

- SRX80
79477 

SRR11
507342 

SAMN14
555972 

PRJNA614
504 

2020-
3-24 

North 
America USA Wisconsi

n 
Dane 
county 

North 
America USA Wisconsin 

USA/WI-
UW-
67/2020 

EPI_IS
L_4213
25 

- SRX80
79478 

SRR11
507341 

SAMN14
555973 

PRJNA614
504 

2020-
3-25 

North 
America USA Wisconsi

n 
Dane 
county 

North 
America USA Wisconsin 

USA/WI-
UW-
68/2020 

EPI_IS
L_4213
26 

- SRX80
79479 

SRR11
507340 

SAMN14
555974 

PRJNA614
504 

2020-
3-24 

North 
America USA Wisconsi

n 
Dane 
county 

North 
America USA Wisconsin 

USA/WI-
UW-
69/2020 

EPI_IS
L_4213
27 

- SRX80
79480 

SRR11
507339 

SAMN14
555975 

PRJNA614
504 

2020-
3-19 

North 
America USA Wisconsi

n 
Dane 
county 

North 
America USA Wisconsin 

USA/WI-
UW-
70/2020 

EPI_IS
L_4213
28 

- SRX80
79481 

SRR11
507338 

SAMN14
555976 

PRJNA614
504 

2020-
3-19 

North 
America USA Wisconsi

n 
Dane 
county 

North 
America USA Wisconsin 

USA/WI-
UW-
71/2020 

EPI_IS
L_4213
29 

- SRX80
79482 

SRR11
507337 

SAMN14
555977 

PRJNA614
504 

2020-
3-24 

North 
America USA Wisconsi

n 
Dane 
county 

North 
America USA Wisconsin 

USA/WI-
UW-
72/2020 

EPI_IS
L_4213
30 

- 
SRX80
79483 

SRR11
507336 

SAMN14
555978 

PRJNA614
504 

2020-
3-25 

North 
America USA 

Wisconsi
n 

Dane 
county 

North 
America USA Wisconsin 

USA/WI-
UW-
73/2020 

EPI_IS
L_4213
31 

- SRX80
79484 

SRR11
507335 

SAMN14
555979 

PRJNA614
504 

2020-
3-24 

North 
America USA Wisconsi

n 
Dane 
county 

North 
America USA Wisconsin 

USA/WI-
UW-
74/2020 

EPI_IS
L_4213
32 

- 
SRX80
79485 

SRR11
507334 

SAMN14
555980 

PRJNA614
504 

2020-
3-20 

North 
America USA 

Wisconsi
n 

Dane 
county 

North 
America USA Wisconsin 

USA/WI-
UW-
75/2020 

EPI_IS
L_4213
33 

- SRX80
79487 

SRR11
507332 

SAMN14
555981 

PRJNA614
504 

2020-
3-26 

North 
America USA Wisconsi

n 
Dane 
county 

North 
America USA Wisconsin 

USA/WI-
UW-
76/2020 

EPI_IS
L_4213
34 

- SRX80
79488 

SRR11
507331 

SAMN14
555982 

PRJNA614
504 

2020-
3-22 

North 
America 

USA Wisconsi
n 

Dane 
county 

North 
America 

USA Wisconsin 

USA/WI-
UW-
77/2020 

EPI_IS
L_4213
35 

- SRX80
79489 

SRR11
507330 

SAMN14
555983 

PRJNA614
504 

2020-
3-19 

North 
America USA Wisconsi

n 
Dane 
county 

North 
America USA Wisconsin 

USA/WI-
UW-
78/2020 

EPI_IS
L_4213
36 

- SRX80
79490 

SRR11
507329 

SAMN14
555984 

PRJNA614
504 

2020-
3-24 

North 
America USA Wisconsi

n 
Dane 
county 

North 
America USA Wisconsin 

USA/WI-
UW-
79/2020 

EPI_IS
L_4213
38 

- SRX80
79491 

SRR11
507328 

SAMN14
555985 

PRJNA614
504 

2020-
3-23 

North 
America USA Wisconsi

n 
Dane 
county 

North 
America USA Wisconsin 

USA/WI-
UW-
80/2020 

EPI_IS
L_4213
39 

- SRX80
79492 

SRR11
507327 

SAMN14
555986 

PRJNA614
504 

2020-
3-24 

North 
America USA Wisconsi

n 
Dane 
county 

North 
America USA Wisconsin 

USA/WI-
UW-
81/2020 

EPI_IS
L_4213
40 

- SRX80
79493 

SRR11
507326 

SAMN14
555987 

PRJNA614
504 

2020-
3-25 

North 
America USA Wisconsi

n 
Dane 
county 

North 
America USA Wisconsin 

USA/WI-
UW-
82/2020 

EPI_IS
L_4213
41 

- SRX80
79494 

SRR11
507325 

SAMN14
555988 

PRJNA614
504 

2020-
3-25 

North 
America USA Wisconsi

n 
Dane 
county 

North 
America USA Wisconsin 

USA/WI-
UW-
84/2020 

EPI_IS
L_4213
43 

- 
SRX80
79496 

SRR11
507323 

SAMN14
555990 

PRJNA614
504 

2020-
3-24 

North 
America USA 

Wisconsi
n 

Dane 
county 

North 
America USA Wisconsin 

USA/WI-
UW-
85/2020 

EPI_IS
L_4251
42 

- SRX81
14902 

SRR11
544850 

SAMN14
596861 

PRJNA614
504 

2020-
4-2 

North 
America USA Wisconsi

n 
Dane 
county 

North 
America USA Wisconsin 

USA/WI-
UW-
86/2020 

EPI_IS
L_4251
43 

- 
SRX81
14903 

SRR11
544849 

SAMN14
596862 

PRJNA614
504 

2020-
4-2 

North 
America USA 

Wisconsi
n 

Dane 
county 

North 
America USA Wisconsin 

USA/WI-
UW-
87/2020 

EPI_IS
L_4251
44 

- SRX81
14914 

SRR11
544838 

SAMN14
596863 

PRJNA614
504 

2020-
4-2 

North 
America USA Wisconsi

n 
Dane 
county 

North 
America USA Wisconsin 

USA/WI-
UW-
88/2020 

EPI_IS
L_4251
45 

- SRX81
14925 

SRR11
544827 

SAMN14
596864 

PRJNA614
504 

2020-
4-5 

North 
America 

USA Wisconsi
n 

Dane 
county 

North 
America 

USA Wisconsin 

USA/WI-
UW-
89/2020 

EPI_IS
L_4251
46 

- SRX81
14931 

SRR11
544821 

SAMN14
596865 

PRJNA614
504 

2020-
3-31 

North 
America USA Wisconsi

n 
Dane 
county 

North 
America USA Wisconsin 

USA/WI-
UW-
90/2020 

EPI_IS
L_4251
47 

- SRX81
14932 

SRR11
544820 

SAMN14
596866 

PRJNA614
504 

2020-
4-3 

North 
America 

USA Wisconsi
n 

Dane 
county 

North 
America 

USA Wisconsin 

USA/WI-
UW-
91/2020 

EPI_IS
L_4251
48 

- SRX81
14933 

SRR11
544819 

SAMN14
596867 

PRJNA614
504 

2020-
4-1 

North 
America USA Wisconsi

n 
Dane 
county 

North 
America USA Wisconsin 

USA/WI-
UW-
92/2020 

EPI_IS
L_4251
49 

- SRX81
14934 

SRR11
544818 

SAMN14
596868 

PRJNA614
504 

2020-
3-30 

North 
America USA Wisconsi

n 
Dane 
county 

North 
America USA Wisconsin 

USA/WI-
UW-
93/2020 

EPI_IS
L_4251
50 

- SRX81
14935 

SRR11
544817 

SAMN14
596869 

PRJNA614
504 

2020-
4-4 

North 
America USA Wisconsi

n 
Dane 
county 

North 
America USA Wisconsin 

USA/WI-
UW-
94/2020 

EPI_IS
L_4251
51 

- SRX81
14936 

SRR11
544816 

SAMN14
596870 

PRJNA614
504 

2020-
3-30 

North 
America USA Wisconsi

n 
Dane 
county 

North 
America USA Wisconsin 
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USA/WI-
UW-
95/2020 

EPI_IS
L_4251
52 

- SRX81
14904 

SRR11
544848 

SAMN14
596871 

PRJNA614
504 

2020-
3-30 

North 
America USA Wisconsi

n 
Dane 
county 

North 
America USA Wisconsin 

USA/WI-
UW-
96/2020 

EPI_IS
L_4251
53 

- SRX81
14905 

SRR11
544847 

SAMN14
596872 

PRJNA614
504 

2020-
4-1 

North 
America USA Wisconsi

n 
Dane 
county 

North 
America USA Wisconsin 

USA/WI-
UW-
97/2020 

EPI_IS
L_4251
54 

- SRX81
14906 

SRR11
544846 

SAMN14
596873 

PRJNA614
504 

2020-
3-30 

North 
America USA Wisconsi

n 
Dane 
county 

North 
America USA Wisconsin 

USA/WI-
UW-
98/2020 

EPI_IS
L_4251
55 

- SRX81
14907 

SRR11
544845 

SAMN14
596874 

PRJNA614
504 

2020-
3-31 

North 
America USA Wisconsi

n 
Dane 
county 

North 
America USA Wisconsin 

USA/WI-
UW-
99/2020 

EPI_IS
L_4251
56 

- SRX81
14908 

SRR11
544844 

SAMN14
596875 

PRJNA614
504 

2020-
4-2 

North 
America USA Wisconsi

n 
Dane 
county 

North 
America USA Wisconsin 

USA/WI-
UW-
100/2020 

EPI_IS
L_4251
57 

- SRX81
14909 

SRR11
544843 

SAMN14
596876 

PRJNA614
504 

2020-
4-3 

North 
America USA Wisconsi

n 
Dane 
county 

North 
America USA Wisconsin 

USA/WI-
UW-
101/2020 

EPI_IS
L_4251
58 

- 
SRX81
14910 

SRR11
544842 

SAMN14
596877 

PRJNA614
504 

2020-
3-31 

North 
America USA 

Wisconsi
n 

Dane 
county 

North 
America USA Wisconsin 

USA/WI-
UW-
102/2020 

EPI_IS
L_4251
59 

- SRX81
14911 

SRR11
544841 

SAMN14
596878 

PRJNA614
504 

2020-
3-30 

North 
America USA Wisconsi

n 
Dane 
county 

North 
America USA Wisconsin 

USA/WI-
UW-
103/2020 

EPI_IS
L_4251
60 

- 
SRX81
14912 

SRR11
544840 

SAMN14
596879 

PRJNA614
504 

2020-
4-3 

North 
America USA 

Wisconsi
n 

Dane 
county 

North 
America USA Wisconsin 

USA/WI-
UW-
105/2020 

EPI_IS
L_4251
62 

- SRX81
14915 

SRR11
544837 

SAMN14
596881 

PRJNA614
504 

2020-
3-30 

North 
America USA Wisconsi

n 
Dane 
county 

North 
America USA Wisconsin 

USA/WI-
UW-
106/2020 

EPI_IS
L_4251
63 

- SRX81
14916 

SRR11
544836 

SAMN14
596882 

PRJNA614
504 

2020-
3-30 

North 
America 

USA Wisconsi
n 

Dane 
county 

North 
America 

USA Wisconsin 

USA/WI-
UW-
107/2020 

EPI_IS
L_4251
64 

- SRX81
14917 

SRR11
544835 

SAMN14
596883 

PRJNA614
504 

2020-
3-31 

North 
America USA Wisconsi

n 
Dane 
county 

North 
America USA Wisconsin 

USA/WI-
UW-
108/2020 

EPI_IS
L_4251
65 

- SRX81
14918 

SRR11
544834 

SAMN14
596884 

PRJNA614
504 

2020-
3-30 

North 
America USA Wisconsi

n 
Dane 
county 

North 
America USA Wisconsin 

USA/WI-
UW-
109/2020 

EPI_IS
L_4251
66 

- SRX81
14919 

SRR11
544833 

SAMN14
596885 

PRJNA614
504 

2020-
3-30 

North 
America USA Wisconsi

n 
Dane 
county 

North 
America USA Wisconsin 

USA/WI-
UW-
110/2020 

EPI_IS
L_4251
67 

- SRX81
14920 

SRR11
544832 

SAMN14
596886 

PRJNA614
504 

2020-
3-31 

North 
America USA Wisconsi

n 
Dane 
county 

North 
America USA Wisconsin 

USA/WI-
UW-
111/2020 

EPI_IS
L_4251
68 

- SRX81
14921 

SRR11
544831 

SAMN14
596887 

PRJNA614
504 

2020-
3-31 

North 
America USA Wisconsi

n 
Dane 
county 

North 
America USA Wisconsin 

USA/WI-
UW-
112/2020 

EPI_IS
L_4251
69 

- SRX81
14922 

SRR11
544830 

SAMN14
596888 

PRJNA614
504 

2020-
3-30 

North 
America USA Wisconsi

n 
Dane 
county 

North 
America USA Wisconsin 

USA/WI-
UW-
114/2020 

EPI_IS
L_4251
71 

- 
SRX81
14924 

SRR11
544828 

SAMN14
596890 

PRJNA614
504 

2020-
3-30 

North 
America USA 

Wisconsi
n 

Dane 
county 

North 
America USA Wisconsin 

USA/WI-
UW-
115/2020 

EPI_IS
L_4251
72 

- SRX81
14926 

SRR11
544826 

SAMN14
596891 

PRJNA614
504 

2020-
3-31 

North 
America USA Wisconsi

n 
Dane 
county 

North 
America USA Wisconsin 

USA/WI-
UW-
116/2020 

EPI_IS
L_4251
73 

- 
SRX81
14927 

SRR11
544825 

SAMN14
596892 

PRJNA614
504 

2020-
3-30 

North 
America USA 

Wisconsi
n 

Dane 
county 

North 
America USA Wisconsin 

USA/WI-
UW-
117/2020 

EPI_IS
L_4251
74 

- SRX81
14928 

SRR11
544824 

SAMN14
596893 

PRJNA614
504 

2020-
3-30 

North 
America USA Wisconsi

n 
Dane 
county 

North 
America USA Wisconsin 

USA/WI-
UW-
119/2020 

EPI_IS
L_4251
76 

- SRX81
14930 

SRR11
544822 

SAMN14
596895 

PRJNA614
504 

2020-
4-10 

North 
America 

USA Wisconsi
n 

Dane 
county 

North 
America 

USA Wisconsin 

USA/WI-
UW-
120/2020 

EPI_IS
L_4274
27 

- SRX81
49929 

SRR11
582218 

SAMN14
654585 

PRJNA614
504 

2020-
4-13 

North 
America USA Wisconsi

n 
Dane 
county 

North 
America USA Wisconsin 

USA/WI-
UW-
122/2020 

EPI_IS
L_4274
29 

- SRX81
49905 

SRR11
582242 

SAMN14
654587 

PRJNA614
504 

2020-
4-7 

North 
America 

USA Wisconsi
n 

Dane 
county 

North 
America 

USA Wisconsin 

USA/WI-
UW-
124/2020 

EPI_IS
L_4274
31 

- SRX81
49923 

SRR11
582224 

SAMN14
654589 

PRJNA614
504 

2020-
4-7 

North 
America USA Wisconsi

n 
Dane 
county 

North 
America USA Wisconsin 

USA/WI-
UW-
127/2020 

EPI_IS
L_4274
34 

- SRX81
49926 

SRR11
582221 

SAMN14
654592 

PRJNA614
504 

2020-
4-7 

North 
America USA Wisconsi

n 
Dane 
county 

North 
America USA Wisconsin 

USA/WI-
UW-
128/2020 

EPI_IS
L_4274
35 

- SRX81
49927 

SRR11
582220 

SAMN14
654593 

PRJNA614
504 

2020-
4-7 

North 
America USA Wisconsi

n 
Dane 
county 

North 
America USA Wisconsin 

USA/WI-
UW-
129/2020 

EPI_IS
L_4274
36 

- SRX81
49928 

SRR11
582219 

SAMN14
654594 

PRJNA614
504 

2020-
4-6 

North 
America USA Wisconsi

n 
Dane 
county 

North 
America USA Wisconsin 
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USA/WI-
UW-
135/2020 

EPI_IS
L_4274
42 

- SRX81
49900 

SRR11
582247 

SAMN14
654600 

PRJNA614
504 

2020-
4-9 

North 
America USA Wisconsi

n 
Dane 
county 

North 
America USA Wisconsin 

USA/WI-
UW-
140/2020 

EPI_IS
L_4274
47 

- SRX81
49906 

SRR11
582241 

SAMN14
654605 

PRJNA614
504 

2020-
4-9 

North 
America USA Wisconsi

n 
Dane 
county 

North 
America USA Wisconsin 

USA/WI-
UW-
144/2020 

EPI_IS
L_4274
51 

- SRX81
49910 

SRR11
582237 

SAMN14
654609 

PRJNA614
504 

2020-
4-6 

North 
America USA Wisconsi

n 
Dane 
county 

North 
America USA Wisconsin 

USA/WI-
UW-
145/2020 

EPI_IS
L_4274
52 

- SRX81
49911 

SRR11
582236 

SAMN14
654610 

PRJNA614
504 

2020-
4-10 

North 
America USA Wisconsi

n 
Dane 
county 

North 
America USA Wisconsin 

USA/WI-
UW-
146/2020 

EPI_IS
L_4274
53 

- SRX81
49912 

SRR11
582235 

SAMN14
654611 

PRJNA614
504 

2020-
4-6 

North 
America USA Wisconsi

n 
Dane 
county 

North 
America USA Wisconsin 

USA/WI-
UW-
147/2020 

EPI_IS
L_4274
54 

- SRX81
49913 

SRR11
582234 

SAMN14
654612 

PRJNA614
504 

2020-
4-10 

North 
America USA Wisconsi

n 
Dane 
county 

North 
America USA Wisconsin 

USA/WI-
UW-
148/2020 

EPI_IS
L_4274
55 

- 
SRX81
49914 

SRR11
582233 

SAMN14
654613 

PRJNA614
504 

2020-
4-7 

North 
America USA 

Wisconsi
n 

Dane 
county 

North 
America USA Wisconsin 

USA/WI-
UW-
150/2020 

EPI_IS
L_4274
57 

- SRX81
49917 

SRR11
582230 

SAMN14
654615 

PRJNA614
504 

2020-
4-13 

North 
America USA Wisconsi

n 
Dane 
county 

North 
America USA Wisconsin 

USA/WI-
UW-
151/2020 

EPI_IS
L_4274
58 

- 
SRX81
49918 

SRR11
582229 

SAMN14
654616 

PRJNA614
504 

2020-
4-8 

North 
America USA 

Wisconsi
n 

Dane 
county 

North 
America USA Wisconsin 

USA/WI-
UW-
152/2020 

EPI_IS
L_4274
59 

- SRX81
49919 

SRR11
582228 

SAMN14
654617 

PRJNA614
504 

2020-
4-6 

North 
America USA Wisconsi

n 
Dane 
county 

North 
America USA Wisconsin 

USA/WI-
UW-
153/2020 

EPI_IS
L_4274
60 

- SRX81
49920 

SRR11
582227 

SAMN14
654618 

PRJNA614
504 

2020-
4-9 

North 
America 

USA Wisconsi
n 

Dane 
county 

North 
America 

USA Wisconsin 

USA/WI-
UW-
155/2020 

EPI_IS
L_4274
62 

- SRX81
49922 

SRR11
582225 

SAMN14
654620 

PRJNA614
504 

2020-
4-10 

North 
America USA Wisconsi

n 
Dane 
county 

North 
America USA Wisconsin 

USA/WI-
UW-
156/2020 

EPI_IS
L_4282
52 

- SRX81
51738 

SRR11
584248 

SAMN14
656612 

PRJNA614
504 

2020-
3-25 

North 
America USA Wisconsi

n 
Milwauke
e county 

North 
America USA Wisconsin 

USA/WI-
UW-
157/2020 

EPI_IS
L_4282
53 

- SRX81
51739 

SRR11
584247 

SAMN14
656613 

PRJNA614
504 

2020-
3-15 

North 
America USA Wisconsi

n 
Milwauke
e county 

North 
America USA Wisconsin 

USA/WI-
UW-
158/2020 

EPI_IS
L_4282
54 

- SRX81
51750 

SRR11
584236 

SAMN14
656614 

PRJNA614
504 

2020-
3-15 

North 
America USA Wisconsi

n 
Milwauke
e county 

North 
America USA Wisconsin 

USA/WI-
UW-
159/2020 

EPI_IS
L_4282
55 

- SRX81
51761 

SRR11
584225 

SAMN14
656615 

PRJNA614
504 

2020-
3-15 

North 
America USA Wisconsi

n 
Milwauke
e county 

North 
America USA Wisconsin 

USA/WI-
UW-
160/2020 

EPI_IS
L_4282
56 

- SRX81
51772 

SRR11
584214 

SAMN14
656616 

PRJNA614
504 

2020-
3-15 

North 
America USA Wisconsi

n 
Milwauke
e county 

North 
America USA Wisconsin 

USA/WI-
UW-
161/2020 

EPI_IS
L_4282
57 

- 
SRX81
51783 

SRR11
584203 

SAMN14
656617 

PRJNA614
504 

2020-
3-29 

North 
America USA 

Wisconsi
n 

Milwauke
e county 

North 
America USA Wisconsin 

USA/WI-
UW-
162/2020 

EPI_IS
L_4282
58 

- SRX81
51794 

SRR11
584192 

SAMN14
656618 

PRJNA614
504 

2020-
3-29 

North 
America USA Wisconsi

n 
Milwauke
e county 

North 
America USA Wisconsin 

USA/WI-
UW-
165/2020 

EPI_IS
L_4282
61 

- 
SRX81
51827 

SRR11
584159 

SAMN14
656621 

PRJNA614
504 

2020-
3-17 

North 
America USA 

Wisconsi
n 

Milwauke
e county 

North 
America USA Wisconsin 

USA/WI-
UW-
166/2020 

EPI_IS
L_4282
62 

- SRX81
51740 

SRR11
584246 

SAMN14
656622 

PRJNA614
504 

2020-
3-17 

North 
America USA Wisconsi

n 
Milwauke
e county 

North 
America USA Wisconsin 

USA/WI-
UW-
168/2020 

EPI_IS
L_4282
64 

- SRX81
51742 

SRR11
584244 

SAMN14
656624 

PRJNA614
504 

2020-
3-19 

North 
America 

USA Wisconsi
n 

Milwauke
e county 

North 
America 

USA Wisconsin 

USA/WI-
UW-
170/2020 

EPI_IS
L_4282
66 

- SRX81
51744 

SRR11
584242 

SAMN14
656626 

PRJNA614
504 

2020-
3-19 

North 
America USA Wisconsi

n 
Milwauke
e county 

North 
America USA Wisconsin 

USA/WI-
UW-
171/2020 

EPI_IS
L_4282
67 

- SRX81
51745 

SRR11
584241 

SAMN14
656627 

PRJNA614
504 

2020-
3-19 

North 
America 

USA Wisconsi
n 

Milwauke
e county 

North 
America 

USA Wisconsin 

USA/WI-
UW-
172/2020 

EPI_IS
L_4282
68 

- SRX81
51746 

SRR11
584240 

SAMN14
656628 

PRJNA614
504 

2020-
3-19 

North 
America USA Wisconsi

n 
Milwauke
e county 

North 
America USA Wisconsin 

USA/WI-
UW-
173/2020 

EPI_IS
L_4282
69 

- SRX81
51747 

SRR11
584239 

SAMN14
656629 

PRJNA614
504 

2020-
3-20 

North 
America USA Wisconsi

n 
Milwauke
e county 

North 
America USA Wisconsin 

USA/WI-
UW-
176/2020 

EPI_IS
L_4282
72 

- SRX81
51751 

SRR11
584235 

SAMN14
656632 

PRJNA614
504 

2020-
3-20 

North 
America USA Wisconsi

n 
Milwauke
e county 

North 
America USA Wisconsin 

USA/WI-
UW-
177/2020 

EPI_IS
L_4282
73 

- SRX81
51752 

SRR11
584234 

SAMN14
656633 

PRJNA614
504 

2020-
3-20 

North 
America USA Wisconsi

n 
Milwauke
e county 

North 
America USA Wisconsin 
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USA/WI-
UW-
178/2020 

EPI_IS
L_4282
74 

- SRX81
51753 

SRR11
584233 

SAMN14
656634 

PRJNA614
504 

2020-
3-20 

North 
America USA Wisconsi

n 
Milwauke
e county 

North 
America USA Wisconsin 

USA/WI-
UW-
179/2020 

EPI_IS
L_4282
75 

- SRX81
51754 

SRR11
584232 

SAMN14
656635 

PRJNA614
504 

2020-
3-21 

North 
America USA Wisconsi

n 
Milwauke
e county 

North 
America USA Wisconsin 

USA/WI-
UW-
181/2020 

EPI_IS
L_4282
77 

- SRX81
51756 

SRR11
584230 

SAMN14
656637 

PRJNA614
504 

2020-
3-22 

North 
America USA Wisconsi

n 
Milwauke
e county 

North 
America USA Wisconsin 

USA/WI-
UW-
182/2020 

EPI_IS
L_4282
78 

- SRX81
51757 

SRR11
584229 

SAMN14
656638 

PRJNA614
504 

2020-
3-22 

North 
America USA Wisconsi

n 
Milwauke
e county 

North 
America USA Wisconsin 

USA/WI-
UW-
183/2020 

EPI_IS
L_4282
79 

- SRX81
51758 

SRR11
584228 

SAMN14
656639 

PRJNA614
504 

2020-
3-22 

North 
America USA Wisconsi

n 
Milwauke
e county 

North 
America USA Wisconsin 

USA/WI-
UW-
184/2020 

EPI_IS
L_4282
80 

- SRX81
51759 

SRR11
584227 

SAMN14
656640 

PRJNA614
504 

2020-
3-22 

North 
America USA Wisconsi

n 
Milwauke
e county 

North 
America USA Wisconsin 

USA/WI-
UW-
185/2020 

EPI_IS
L_4282
81 

- 
SRX81
51760 

SRR11
584226 

SAMN14
656641 

PRJNA614
504 

2020-
3-22 

North 
America USA 

Wisconsi
n 

Milwauke
e county 

North 
America USA Wisconsin 

USA/WI-
UW-
186/2020 

EPI_IS
L_4282
82 

- SRX81
51762 

SRR11
584224 

SAMN14
656642 

PRJNA614
504 

2020-
3-23 

North 
America USA Wisconsi

n 
Milwauke
e county 

North 
America USA Wisconsin 

USA/WI-
UW-
187/2020 

EPI_IS
L_4282
83 

- 
SRX81
51763 

SRR11
584223 

SAMN14
656643 

PRJNA614
504 

2020-
3-23 

North 
America USA 

Wisconsi
n 

Milwauke
e county 

North 
America USA Wisconsin 

USA/WI-
UW-
188/2020 

EPI_IS
L_4282
84 

- SRX81
51764 

SRR11
584222 

SAMN14
656644 

PRJNA614
504 

2020-
3-23 

North 
America USA Wisconsi

n 
Milwauke
e county 

North 
America USA Wisconsin 

USA/WI-
UW-
189/2020 

EPI_IS
L_4282
85 

- SRX81
51765 

SRR11
584221 

SAMN14
656645 

PRJNA614
504 

2020-
3-23 

North 
America 

USA Wisconsi
n 

Milwauke
e county 

North 
America 

USA Wisconsin 

USA/WI-
UW-
190/2020 

EPI_IS
L_4282
86 

- SRX81
51766 

SRR11
584220 

SAMN14
656646 

PRJNA614
504 

2020-
3-23 

North 
America USA Wisconsi

n 
Milwauke
e county 

North 
America USA Wisconsin 

USA/WI-
UW-
191/2020 

EPI_IS
L_4282
87 

- SRX81
51767 

SRR11
584219 

SAMN14
656647 

PRJNA614
504 

2020-
3-23 

North 
America USA Wisconsi

n 
Milwauke
e county 

North 
America USA Wisconsin 

USA/WI-
UW-
192/2020 

EPI_IS
L_4282
88 

- SRX81
51768 

SRR11
584218 

SAMN14
656648 

PRJNA614
504 

2020-
3-23 

North 
America USA Wisconsi

n 
Milwauke
e county 

North 
America USA Wisconsin 

USA/WI-
UW-
195/2020 

EPI_IS
L_4282
91 

- SRX81
51771 

SRR11
584215 

SAMN14
656651 

PRJNA614
504 

2020-
3-24 

North 
America USA Wisconsi

n 
Milwauke
e county 

North 
America USA Wisconsin 

USA/WI-
UW-
196/2020 

EPI_IS
L_4282
92 

- SRX81
51773 

SRR11
584213 

SAMN14
656652 

PRJNA614
504 

2020-
3-21 

North 
America USA Wisconsi

n 
Milwauke
e county 

North 
America USA Wisconsin 

USA/WI-
UW-
197/2020 

EPI_IS
L_4282
93 

- SRX81
51774 

SRR11
584212 

SAMN14
656653 

PRJNA614
504 

2020-
3-24 

North 
America USA Wisconsi

n 
Milwauke
e county 

North 
America USA Wisconsin 

USA/WI-
UW-
200/2020 

EPI_IS
L_4282
96 

- 
SRX81
51777 

SRR11
584209 

SAMN14
656656 

PRJNA614
504 

2020-
3-24 

North 
America USA 

Wisconsi
n 

Milwauke
e county 

North 
America USA Wisconsin 

USA/WI-
UW-
205/2020 

EPI_IS
L_4283
01 

- SRX81
51782 

SRR11
584204 

SAMN14
656661 

PRJNA614
504 

2020-
3-25 

North 
America USA Wisconsi

n 
Milwauke
e county 

North 
America USA Wisconsin 

USA/WI-
UW-
207/2020 

EPI_IS
L_4283
03 

- 
SRX81
51785 

SRR11
584201 

SAMN14
656663 

PRJNA614
504 

2020-
3-23 

North 
America USA 

Wisconsi
n 

Milwauke
e county 

North 
America USA Wisconsin 

USA/WI-
UW-
208/2020 

EPI_IS
L_4283
04 

- SRX81
51786 

SRR11
584200 

SAMN14
656664 

PRJNA614
504 

2020-
3-25 

North 
America USA Wisconsi

n 
Milwauke
e county 

North 
America USA Wisconsin 

USA/WI-
UW-
209/2020 

EPI_IS
L_4283
05 

- SRX81
51787 

SRR11
584199 

SAMN14
656665 

PRJNA614
504 

2020-
3-25 

North 
America 

USA Wisconsi
n 

Milwauke
e county 

North 
America 

USA Wisconsin 

USA/WI-
UW-
210/2020 

EPI_IS
L_4283
06 

- SRX81
51788 

SRR11
584198 

SAMN14
656666 

PRJNA614
504 

2020-
3-24 

North 
America USA Wisconsi

n 
Milwauke
e county 

North 
America USA Wisconsin 

USA/WI-
UW-
211/2020 

EPI_IS
L_4283
07 

- SRX81
51789 

SRR11
584197 

SAMN14
656667 

PRJNA614
504 

2020-
3-25 

North 
America 

USA Wisconsi
n 

Milwauke
e county 

North 
America 

USA Wisconsin 

USA/WI-
UW-
212/2020 

EPI_IS
L_4283
08 

- SRX81
51790 

SRR11
584196 

SAMN14
656668 

PRJNA614
504 

2020-
3-25 

North 
America USA Wisconsi

n 
Milwauke
e county 

North 
America USA Wisconsin 

USA/WI-
UW-
213/2020 

EPI_IS
L_4283
09 

- SRX81
51791 

SRR11
584195 

SAMN14
656669 

PRJNA614
504 

2020-
3-25 

North 
America USA Wisconsi

n 
Milwauke
e county 

North 
America USA Wisconsin 

USA/WI-
UW-
215/2020 

EPI_IS
L_4283
11 

- SRX81
51793 

SRR11
584193 

SAMN14
656671 

PRJNA614
504 

2020-
3-25 

North 
America USA Wisconsi

n 
Milwauke
e county 

North 
America USA Wisconsin 

USA/WI-
UW-
216/2020 

EPI_IS
L_4283
12 

- SRX81
51795 

SRR11
584191 

SAMN14
656672 

PRJNA614
504 

2020-
3-25 

North 
America USA Wisconsi

n 
Milwauke
e county 

North 
America USA Wisconsin 
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USA/WI-
UW-
217/2020 

EPI_IS
L_4283
13 

- SRX81
51796 

SRR11
584190 

SAMN14
656673 

PRJNA614
504 

2020-
3-25 

North 
America USA Wisconsi

n 
Milwauke
e county 

North 
America USA Wisconsin 

USA/WI-
UW-
218/2020 

EPI_IS
L_4283
14 

- SRX81
51797 

SRR11
584189 

SAMN14
656674 

PRJNA614
504 

2020-
3-25 

North 
America USA Wisconsi

n 
Milwauke
e county 

North 
America USA Wisconsin 

USA/WI-
UW-
219/2020 

EPI_IS
L_4283
15 

- SRX81
51798 

SRR11
584188 

SAMN14
656675 

PRJNA614
504 

2020-
3-25 

North 
America USA Wisconsi

n 
Milwauke
e county 

North 
America USA Wisconsin 

USA/WI-
UW-
221/2020 

EPI_IS
L_4283
17 

- SRX81
51800 

SRR11
584186 

SAMN14
656677 

PRJNA614
504 

2020-
3-25 

North 
America USA Wisconsi

n 
Milwauke
e county 

North 
America USA Wisconsin 

USA/WI-
UW-
222/2020 

EPI_IS
L_4283
18 

- SRX81
51801 

SRR11
584185 

SAMN14
656678 

PRJNA614
504 

2020-
3-25 

North 
America USA Wisconsi

n 
Milwauke
e county 

North 
America USA Wisconsin 

USA/WI-
UW-
223/2020 

EPI_IS
L_4283
19 

- SRX81
51802 

SRR11
584184 

SAMN14
656679 

PRJNA614
504 

2020-
3-26 

North 
America USA Wisconsi

n 
Milwauke
e county 

North 
America USA Wisconsin 

USA/WI-
UW-
225/2020 

EPI_IS
L_4283
21 

- 
SRX81
51804 

SRR11
584182 

SAMN14
656681 

PRJNA614
504 

2020-
3-26 

North 
America USA 

Wisconsi
n 

Milwauke
e county 

North 
America USA Wisconsin 

USA/WI-
UW-
226/2020 

EPI_IS
L_4283
22 

- SRX81
51806 

SRR11
584180 

SAMN14
656682 

PRJNA614
504 

2020-
3-26 

North 
America USA Wisconsi

n 
Milwauke
e county 

North 
America USA Wisconsin 

USA/WI-
UW-
227/2020 

EPI_IS
L_4283
23 

- 
SRX81
51807 

SRR11
584179 

SAMN14
656683 

PRJNA614
504 

2020-
3-26 

North 
America USA 

Wisconsi
n 

Milwauke
e county 

North 
America USA Wisconsin 

USA/WI-
UW-
228/2020 

EPI_IS
L_4283
24 

- SRX81
51808 

SRR11
584178 

SAMN14
656684 

PRJNA614
504 

2020-
3-26 

North 
America USA Wisconsi

n 
Milwauke
e county 

North 
America USA Wisconsin 

USA/WI-
UW-
229/2020 

EPI_IS
L_4283
25 

- SRX81
51809 

SRR11
584177 

SAMN14
656685 

PRJNA614
504 

2020-
3-26 

North 
America 

USA Wisconsi
n 

Milwauke
e county 

North 
America 

USA Wisconsin 

USA/WI-
UW-
230/2020 

EPI_IS
L_4283
26 

- SRX81
51810 

SRR11
584176 

SAMN14
656686 

PRJNA614
504 

2020-
3-26 

North 
America USA Wisconsi

n 
Milwauke
e county 

North 
America USA Wisconsin 

USA/WI-
UW-
231/2020 

EPI_IS
L_4283
27 

- SRX81
51811 

SRR11
584175 

SAMN14
656687 

PRJNA614
504 

2020-
3-26 

North 
America USA Wisconsi

n 
Milwauke
e county 

North 
America USA Wisconsin 

USA/WI-
UW-
232/2020 

EPI_IS
L_4283
28 

- SRX81
51812 

SRR11
584174 

SAMN14
656688 

PRJNA614
504 

2020-
3-27 

North 
America USA Wisconsi

n 
Milwauke
e county 

North 
America USA Wisconsin 

USA/WI-
UW-
233/2020 

EPI_IS
L_4283
29 

- SRX81
51813 

SRR11
584173 

SAMN14
656689 

PRJNA614
504 

2020-
3-27 

North 
America USA Wisconsi

n 
Milwauke
e county 

North 
America USA Wisconsin 

USA/WI-
UW-
234/2020 

EPI_IS
L_4283
30 

- SRX81
51814 

SRR11
584172 

SAMN14
656690 

PRJNA614
504 

2020-
3-26 

North 
America USA Wisconsi

n 
Milwauke
e county 

North 
America USA Wisconsin 

USA/WI-
UW-
235/2020 

EPI_IS
L_4283
31 

- SRX81
51815 

SRR11
584171 

SAMN14
656691 

PRJNA614
504 

2020-
3-28 

North 
America USA Wisconsi

n 
Milwauke
e county 

North 
America USA Wisconsin 

USA/WI-
UW-
236/2020 

EPI_IS
L_4283
32 

- 
SRX81
51817 

SRR11
584169 

SAMN14
656692 

PRJNA614
504 

2020-
3-27 

North 
America USA 

Wisconsi
n 

Milwauke
e county 

North 
America USA Wisconsin 

USA/WI-
UW-
237/2020 

EPI_IS
L_4283
33 

- SRX81
51818 

SRR11
584168 

SAMN14
656693 

PRJNA614
504 

2020-
3-27 

North 
America USA Wisconsi

n 
Milwauke
e county 

North 
America USA Wisconsin 

USA/WI-
UW-
238/2020 

EPI_IS
L_4283
34 

- 
SRX81
51819 

SRR11
584167 

SAMN14
656694 

PRJNA614
504 

2020-
3-27 

North 
America USA 

Wisconsi
n 

Milwauke
e county 

North 
America USA Wisconsin 

USA/WI-
UW-
240/2020 

EPI_IS
L_4283
36 

- SRX81
51821 

SRR11
584165 

SAMN14
656696 

PRJNA614
504 

2020-
3-27 

North 
America USA Wisconsi

n 
Milwauke
e county 

North 
America USA Wisconsin 

USA/WI-
UW-
241/2020 

EPI_IS
L_4283
37 

- SRX81
51822 

SRR11
584164 

SAMN14
656697 

PRJNA614
504 

2020-
3-27 

North 
America 

USA Wisconsi
n 

Milwauke
e county 

North 
America 

USA Wisconsin 

USA/WI-
UW-
242/2020 

EPI_IS
L_4283
38 

- SRX81
51823 

SRR11
584163 

SAMN14
656698 

PRJNA614
504 

2020-
3-28 

North 
America USA Wisconsi

n 
Milwauke
e county 

North 
America USA Wisconsin 

USA/WI-
UW-
245/2020 

EPI_IS
L_4283
41 

- SRX81
51826 

SRR11
584160 

SAMN14
656701 

PRJNA614
504 

2020-
3-28 

North 
America 

USA Wisconsi
n 

Milwauke
e county 

North 
America 

USA Wisconsin 

USA/WI-
UW-
246/2020 

EPI_IS
L_4283
42 

- SRX81
51828 

SRR11
584158 

SAMN14
656702 

PRJNA614
504 

2020-
3-28 

North 
America USA Wisconsi

n 
Milwauke
e county 

North 
America USA Wisconsin 

USA/WI-
UW-
248/2020 

EPI_IS
L_4283
44 

- SRX81
51830 

SRR11
584156 

SAMN14
656704 

PRJNA614
504 

2020-
3-28 

North 
America USA Wisconsi

n 
Milwauke
e county 

North 
America USA Wisconsin 

USA/WI-
UW-
259/2020 

EPI_IS
L_4289
35 

- SRX81
55700 

SRR11
588239 

SAMN14
669377 

PRJNA614
504 

2020-
4-17 

North 
America USA Wisconsi

n 
Dane 
county 

North 
America USA Wisconsin 

USA/WI-
UW-
260/2020 

EPI_IS
L_4289
36 

- SRX81
55701 

SRR11
588238 

SAMN14
669378 

PRJNA614
504 

2020-
4-18 

North 
America USA Wisconsi

n 
Dane 
county 

North 
America USA Wisconsin 
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USA/WI-
UW-
270/2020 

EPI_IS
L_4365
64 

- SRX82
81160 

SRR11
721857 

SAMN14
844834 

PRJNA614
504 

2020-
3-12 

North 
America USA Wisconsi

n 
Milwauke
e county 

North 
America USA Wisconsin 

USA/WI-
UW-
272/2020 

EPI_IS
L_4365
66 

- SRX82
81172 

SRR11
721845 

SAMN14
844836 

PRJNA614
504 

2020-
3-27 

North 
America USA Wisconsi

n 
Milwauke
e county 

North 
America USA Wisconsin 

USA/WI-
UW-
273/2020 

EPI_IS
L_4365
67 

- SRX82
81183 

SRR11
721834 

SAMN14
844837 

PRJNA614
504 

2020-
3-31 

North 
America USA Wisconsi

n 
Milwauke
e county 

North 
America USA Wisconsin 

USA/WI-
UW-
274/2020 

EPI_IS
L_4365
68 

- SRX82
81194 

SRR11
721823 

SAMN14
844838 

PRJNA614
504 

2020-
3-31 

North 
America USA Wisconsi

n 
Milwauke
e county 

North 
America USA Wisconsin 

USA/WI-
UW-
275/2020 

EPI_IS
L_4365
69 

- SRX82
81128 

SRR11
721889 

SAMN14
844839 

PRJNA614
504 

2020-
4-1 

North 
America USA Wisconsi

n 
Milwauke
e county 

North 
America USA Wisconsin 

USA/WI-
UW-
276/2020 

EPI_IS
L_4365
70 

- SRX82
81139 

SRR11
721878 

SAMN14
844840 

PRJNA614
504 

2020-
4-1 

North 
America USA Wisconsi

n 
Milwauke
e county 

North 
America USA Wisconsin 

USA/WI-
UW-
277/2020 

EPI_IS
L_4365
71 

- 
SRX82
81150 

SRR11
721867 

SAMN14
844841 

PRJNA614
504 

2020-
4-2 

North 
America USA 

Wisconsi
n 

Milwauke
e county 

North 
America USA Wisconsin 

USA/WI-
UW-
278/2020 

EPI_IS
L_4365
72 

- SRX82
81158 

SRR11
721859 

SAMN14
844842 

PRJNA614
504 

2020-
4-3 

North 
America USA Wisconsi

n 
Milwauke
e county 

North 
America USA Wisconsin 

USA/WI-
UW-
279/2020 

EPI_IS
L_4365
73 

- 
SRX82
81159 

SRR11
721858 

SAMN14
844843 

PRJNA614
504 

2020-
4-3 

North 
America USA 

Wisconsi
n 

Milwauke
e county 

North 
America USA Wisconsin 

USA/WI-
UW-
280/2020 

EPI_IS
L_4365
74 

- SRX82
81162 

SRR11
721855 

SAMN14
844844 

PRJNA614
504 

2020-
4-3 

North 
America USA Wisconsi

n 
Milwauke
e county 

North 
America USA Wisconsin 

USA/WI-
UW-
285/2020 

EPI_IS
L_4365
79 

- SRX82
81167 

SRR11
721850 

SAMN14
844849 

PRJNA614
504 

2020-
4-6 

North 
America 

USA Wisconsi
n 

Milwauke
e county 

North 
America 

USA Wisconsin 

USA/WI-
UW-
288/2020 

EPI_IS
L_4365
82 

- SRX82
81170 

SRR11
721847 

SAMN14
844852 

PRJNA614
504 

2020-
4-8 

North 
America USA Wisconsi

n 
Milwauke
e county 

North 
America USA Wisconsin 

USA/WI-
UW-
289/2020 

EPI_IS
L_4365
83 

- SRX82
81171 

SRR11
721846 

SAMN14
844853 

PRJNA614
504 

2020-
4-8 

North 
America USA Wisconsi

n 
Milwauke
e county 

North 
America USA Wisconsin 

USA/WI-
UW-
290/2020 

EPI_IS
L_4365
84 

- SRX82
81173 

SRR11
721844 

SAMN14
844854 

PRJNA614
504 

2020-
4-8 

North 
America USA Wisconsi

n 
Milwauke
e county 

North 
America USA Wisconsin 

USA/WI-
UW-
291/2020 

EPI_IS
L_4365
85 

- SRX82
81174 

SRR11
721843 

SAMN14
844855 

PRJNA614
504 

2020-
4-8 

North 
America USA Wisconsi

n 
Milwauke
e county 

North 
America USA Wisconsin 

USA/WI-
UW-
293/2020 

EPI_IS
L_4365
87 

- SRX82
81176 

SRR11
721841 

SAMN14
844857 

PRJNA614
504 

2020-
4-9 

North 
America USA Wisconsi

n 
Milwauke
e county 

North 
America USA Wisconsin 

USA/WI-
UW-
296/2020 

EPI_IS
L_4365
90 

- SRX82
81179 

SRR11
721838 

SAMN14
844860 

PRJNA614
504 

2020-
4-9 

North 
America USA Wisconsi

n 
Milwauke
e county 

North 
America USA Wisconsin 

USA/WI-
UW-
299/2020 

EPI_IS
L_4365
93 

- 
SRX82
81182 

SRR11
721835 

SAMN14
844863 

PRJNA614
504 

2020-
4-13 

North 
America USA 

Wisconsi
n 

Milwauke
e county 

North 
America USA Wisconsin 

USA/WI-
UW-
301/2020 

EPI_IS
L_4365
95 

- SRX82
81185 

SRR11
721832 

SAMN14
844865 

PRJNA614
504 

2020-
4-13 

North 
America USA Wisconsi

n 
Milwauke
e county 

North 
America USA Wisconsin 

USA/WI-
UW-
302/2020 

EPI_IS
L_4365
96 

- 
SRX82
81186 

SRR11
721831 

SAMN14
844866 

PRJNA614
504 

2020-
4-13 

North 
America USA 

Wisconsi
n 

Milwauke
e county 

North 
America USA Wisconsin 

USA/WI-
UW-
303/2020 

EPI_IS
L_4365
97 

- SRX82
81187 

SRR11
721830 

SAMN14
844867 

PRJNA614
504 

2020-
4-13 

North 
America USA Wisconsi

n 
Milwauke
e county 

North 
America USA Wisconsin 

USA/WI-
UW-
304/2020 

EPI_IS
L_4365
98 

- SRX82
81188 

SRR11
721829 

SAMN14
844868 

PRJNA614
504 

2020-
4-13 

North 
America 

USA Wisconsi
n 

Milwauke
e county 

North 
America 

USA Wisconsin 

USA/WI-
UW-
305/2020 

EPI_IS
L_4365
99 

- SRX82
81189 

SRR11
721828 

SAMN14
844869 

PRJNA614
504 

2020-
4-14 

North 
America USA Wisconsi

n 
Milwauke
e county 

North 
America USA Wisconsin 

USA/WI-
UW-
306/2020 

EPI_IS
L_4366
00 

- SRX82
81190 

SRR11
721827 

SAMN14
844870 

PRJNA614
504 

2020-
4-14 

North 
America 

USA Wisconsi
n 

Milwauke
e county 

North 
America 

USA Wisconsin 

USA/WI-
UW-
308/2020 

EPI_IS
L_4366
02 

- SRX82
81192 

SRR11
721825 

SAMN14
844872 

PRJNA614
504 

2020-
4-16 

North 
America USA Wisconsi

n 
Milwauke
e county 

North 
America USA Wisconsin 

USA/WI-
UW-
309/2020 

EPI_IS
L_4366
03 

- SRX82
81193 

SRR11
721824 

SAMN14
844873 

PRJNA614
504 

2020-
4-16 

North 
America USA Wisconsi

n 
Milwauke
e county 

North 
America USA Wisconsin 

USA/WI-
UW-
310/2020 

EPI_IS
L_4366
04 

- SRX82
81195 

SRR11
721822 

SAMN14
844874 

PRJNA614
504 

2020-
4-15 

North 
America USA Wisconsi

n 
Milwauke
e county 

North 
America USA Wisconsin 

USA/WI-
UW-
313/2020 

EPI_IS
L_4366
07 

- SRX82
81121 

SRR11
721896 

SAMN14
844877 

PRJNA614
504 

2020-
4-16 

North 
America USA Wisconsi

n 
Milwauke
e county 

North 
America USA Wisconsin 
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USA/WI-
UW-
316/2020 

EPI_IS
L_4366
10 

- SRX82
81124 

SRR11
721893 

SAMN14
844880 

PRJNA614
504 

2020-
4-18 

North 
America USA Wisconsi

n 
Milwauke
e county 

North 
America USA Wisconsin 

USA/WI-
UW-
319/2020 

EPI_IS
L_4366
13 

- SRX82
81127 

SRR11
721890 

SAMN14
844883 

PRJNA614
504 

2020-
4-21 

North 
America USA Wisconsi

n 
Milwauke
e county 

North 
America USA Wisconsin 

USA/WI-
UW-
320/2020 

EPI_IS
L_4366
14 

- SRX82
81129 

SRR11
721888 

SAMN14
844884 

PRJNA614
504 

2020-
4-21 

North 
America USA Wisconsi

n 
Milwauke
e county 

North 
America USA Wisconsin 

USA/WI-
UW-
321/2020 

EPI_IS
L_4366
15 

- SRX82
81130 

SRR11
721887 

SAMN14
844885 

PRJNA614
504 

2020-
4-23 

North 
America USA Wisconsi

n 
Milwauke
e county 

North 
America USA Wisconsin 

USA/WI-
UW-
322/2020 

EPI_IS
L_4366
16 

- SRX82
81131 

SRR11
721886 

SAMN14
844886 

PRJNA614
504 

2020-
4-23 

North 
America USA Wisconsi

n 
Milwauke
e county 

North 
America USA Wisconsin 

USA/WI-
UW-
323/2020 

EPI_IS
L_4366
17 

- SRX82
81132 

SRR11
721885 

SAMN14
844887 

PRJNA614
504 

2020-
4-23 

North 
America USA Wisconsi

n 
Milwauke
e county 

North 
America USA Wisconsin 

USA/WI-
UW-
324/2020 

EPI_IS
L_4366
18 

- 
SRX82
81133 

SRR11
721884 

SAMN14
844888 

PRJNA614
504 

2020-
4-24 

North 
America USA 

Wisconsi
n 

Milwauke
e county 

North 
America USA Wisconsin 

USA/WI-
UW-
325/2020 

EPI_IS
L_4366
19 

- SRX82
81134 

SRR11
721883 

SAMN14
844889 

PRJNA614
504 

2020-
4-24 

North 
America USA Wisconsi

n 
Milwauke
e county 

North 
America USA Wisconsin 

USA/WI-
UW-
328/2020 

EPI_IS
L_4366
22 

- 
SRX82
81137 

SRR11
721880 

SAMN14
844892 

PRJNA614
504 

2020-
4-26 

North 
America USA 

Wisconsi
n 

Milwauke
e county 

North 
America USA Wisconsin 

USA/WI-
UW-
329/2020 

EPI_IS
L_4366
23 

- SRX82
81138 

SRR11
721879 

SAMN14
844893 

PRJNA614
504 

2020-
4-25 

North 
America USA Wisconsi

n 
Milwauke
e county 

North 
America USA Wisconsin 

USA/WI-
UW-
330/2020 

EPI_IS
L_4366
24 

- SRX82
81140 

SRR11
721877 

SAMN14
844894 

PRJNA614
504 

2020-
4-26 

North 
America 

USA Wisconsi
n 

Milwauke
e county 

North 
America 

USA Wisconsin 

USA/WI-
UW-
331/2020 

EPI_IS
L_4366
25 

- SRX82
81141 

SRR11
721876 

SAMN14
844895 

PRJNA614
504 

2020-
4-26 

North 
America USA Wisconsi

n 
Milwauke
e county 

North 
America USA Wisconsin 

USA/WI-
UW-
332/2020 

EPI_IS
L_4366
26 

- SRX82
81142 

SRR11
721875 

SAMN14
844896 

PRJNA614
504 

2020-
4-26 

North 
America USA Wisconsi

n 
Milwauke
e county 

North 
America USA Wisconsin 

USA/WI-
UW-
333/2020 

EPI_IS
L_4366
27 

- SRX82
81143 

SRR11
721874 

SAMN14
844897 

PRJNA614
504 

2020-
3-24 

North 
America USA Wisconsi

n 
Milwauke
e county 

North 
America USA Wisconsin 

USA/WI-
UW-
334/2020 

EPI_IS
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Supplemental Table 3.  
GISAID accession numbers and associated information for all consensus sequences 
included in this manuscript.  
 

name pool sequence length %gc tm (use 65) 
nCoV-2019_1_LEFT nCoV-2019_1 ACCAACCAACTTTCGATCTCTTGT 24 41.67 60.69 
nCoV-2019_1_RIGHT nCoV-2019_1 CATCTTTAAGATGTTGACGTGCCTC 25 44 60.45 
nCoV-2019_2_LEFT nCoV-2019_2 CTGTTTTACAGGTTCGCGACGT 22 50 61.67 
nCoV-2019_2_RIGHT nCoV-2019_2 TAAGGATCAGTGCCAAGCTCGT 22 50 61.74 
nCoV-2019_3_LEFT nCoV-2019_1 CGGTAATAAAGGAGCTGGTGGC 22 54.55 61.32 
nCoV-2019_3_RIGHT nCoV-2019_1 AAGGTGTCTGCAATTCATAGCTCT 24 41.67 60.32 
nCoV-2019_4_LEFT nCoV-2019_2 GGTGTATACTGCTGCCGTGAAC 22 54.55 61.56 
nCoV-2019_4_RIGHT nCoV-2019_2 CACAAGTAGTGGCACCTTCTTTAGT 25 44 60.97 
nCoV-2019_5_LEFT nCoV-2019_1 TGGTGAAACTTCATGGCAGACG 22 50 61.39 
nCoV-2019_5_RIGHT nCoV-2019_1 ATTGATGTTGACTTTCTCTTTTTGGAGT 28 32.14 60.17 
nCoV-2019_6_LEFT nCoV-2019_2 GGTGTTGTTGGAGAAGGTTCCG 22 54.55 61.64 
nCoV-2019_6_RIGHT nCoV-2019_2 TAGCGGCCTTCTGTAAAACACG 22 50 61.18 
nCoV-2019_7_LEFT nCoV-2019_1 ATCAGAGGCTGCTCGTGTTGTA 22 50 61.73 
nCoV-2019_7_LEFT_alt0 nCoV-2019_1 CATTTGCATCAGAGGCTGCTCG 22 54.55 62.44 
nCoV-2019_7_RIGHT nCoV-2019_1 TGCACAGGTGACAATTTGTCCA 22 45.45 60.95 
nCoV-2019_7_RIGHT_alt5 nCoV-2019_1 AGGTGACAATTTGTCCACCGAC 22 50 61.07 
nCoV-2019_8_LEFT nCoV-2019_2 AGAGTTTCTTAGAGACGGTTGGGA 24 45.83 61 
nCoV-2019_8_RIGHT nCoV-2019_2 GCTTCAACAGCTTCACTAGTAGGT 24 45.83 60.56 
nCoV-2019_9_LEFT nCoV-2019_1 TCCCACAGAAGTGTTAACAGAGGA 24 45.83 61.18 
nCoV-2019_9_LEFT_alt4 nCoV-2019_1 TTCCCACAGAAGTGTTAACAGAGG 24 45.83 60.44 
nCoV-2019_9_RIGHT nCoV-2019_1 ATGACAGCATCTGCCACAACAC 22 50 61.71 
nCoV-2019_9_RIGHT_alt2 nCoV-2019_1 GACAGCATCTGCCACAACACAG 22 54.55 62.26 
nCoV-2019_10_LEFT nCoV-2019_2 TGAGAAGTGCTCTGCCTATACAGT 24 45.83 61.12 
nCoV-2019_10_RIGHT nCoV-2019_2 TCATCTAACCAATCTTCTTCTTGCTCT 27 37.04 60.31 
nCoV-2019_11_LEFT nCoV-2019_1 GGAATTTGGTGCCACTTCTGCT 22 50 61.66 
nCoV-2019_11_RIGHT nCoV-2019_1 TCATCAGATTCAACTTGCATGGCA 24 41.67 61.35 
nCoV-2019_12_LEFT nCoV-2019_2 AAACATGGAGGAGGTGTTGCAG 22 50 61.08 
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nCoV-2019_12_RIGHT nCoV-2019_2 TTCACTCTTCATTTCCAAAAAGCTTGA 27 33.33 60.36 
nCoV-2019_13_LEFT nCoV-2019_1 TCGCACAAATGTCTACTTAGCTGT 24 41.67 60.56 
nCoV-2019_13_RIGHT nCoV-2019_1 ACCACAGCAGTTAAAACACCCT 22 45.45 60.36 
nCoV-2019_14_LEFT nCoV-2019_2 CATCCAGATTCTGCCACTCTTGT 23 47.83 60.62 
nCoV-2019_14_LEFT_alt4 nCoV-2019_2 TGGCAATCTTCATCCAGATTCTGC 24 45.83 61.47 
nCoV-2019_14_RIGHT nCoV-2019_2 AGTTTCCACACAGACAGGCATT 22 45.45 60.42 
nCoV-2019_14_RIGHT_alt2 nCoV-2019_2 TGCGTGTTTCTTCTGCATGTGC 22 50 62.76 
nCoV-2019_15_LEFT nCoV-2019_1 ACAGTGCTTAAAAAGTGTAAAAGTGCC 27 37.04 61.32 
nCoV-2019_15_LEFT_alt1 nCoV-2019_1 AGTGCTTAAAAAGTGTAAAAGTGCCT 26 34.62 60.13 
nCoV-2019_15_RIGHT nCoV-2019_1 AACAGAAACTGTAGCTGGCACT 22 45.45 60.16 
nCoV-2019_15_RIGHT_alt3 nCoV-2019_1 ACTGTAGCTGGCACTTTGAGAGA 23 47.83 61.57 
nCoV-2019_16_LEFT nCoV-2019_2 AATTTGGAAGAAGCTGCTCGGT 22 45.45 60.82 
nCoV-2019_16_RIGHT nCoV-2019_2 CACAACTTGCGTGTGGAGGTTA 22 50 61.32 
nCoV-2019_17_LEFT nCoV-2019_1 CTTCTTTCTTTGAGAGAAGTGAGGACT 27 40.74 60.69 
nCoV-2019_17_RIGHT nCoV-2019_1 TTTGTTGGAGTGTTAACAATGCAGT 25 36 60.11 
nCoV-2019_18_LEFT nCoV-2019_2 TGGAAATACCCACAAGTTAATGGTTTAAC 29 34.48 60.69 
nCoV-2019_18_LEFT_alt2 nCoV-2019_2 ACTTCTATTAAATGGGCAGATAACAACTGT 30 33.33 61.38 
nCoV-2019_18_RIGHT nCoV-2019_2 AGCTTGTTTACCACACGTACAAGG 24 45.83 61.51 
nCoV-2019_18_RIGHT_alt1 nCoV-2019_2 GCTTGTTTACCACACGTACAAGG 23 47.83 60.3 
nCoV-2019_19_LEFT nCoV-2019_1 GCTGTTATGTACATGGGCACACT 23 47.83 61.18 
nCoV-2019_19_RIGHT nCoV-2019_1 TGTCCAACTTAGGGTCAATTTCTGT 25 40 60.4 
nCoV-2019_20_LEFT nCoV-2019_2 ACAAAGAAAACAGTTACACAACAACCA 27 33.33 60.68 
nCoV-2019_20_RIGHT nCoV-2019_2 ACGTGGCTTTATTAGTTGCATTGTT 25 36 60.28 
nCoV-2019_21_LEFT nCoV-2019_1 TGGCTATTGATTATAAACACTACACACCC 29 37.93 61.49 
nCoV-2019_21_LEFT_alt2 nCoV-2019_1 GGCTATTGATTATAAACACTACACACCCT 29 37.93 61.29 
nCoV-2019_21_RIGHT nCoV-2019_1 TAGATCTGTGTGGCCAACCTCT 22 50 60.83 
nCoV-2019_21_RIGHT_alt0 nCoV-2019_1 GATCTGTGTGGCCAACCTCTTC 22 54.55 61.2 
nCoV-2019_22_LEFT nCoV-2019_2 ACTACCGAAGTTGTAGGAGACATTATACT 29 37.93 61.25 
nCoV-2019_22_RIGHT nCoV-2019_2 ACAGTATTCTTTGCTATAGTAGTCGGC 27 40.74 60.73 
nCoV-2019_23_LEFT nCoV-2019_1 ACAACTACTAACATAGTTACACGGTGT 27 37.04 60.26 
nCoV-2019_23_RIGHT nCoV-2019_1 ACCAGTACAGTAGGTTGCAATAGTG 25 44 60.57 
nCoV-2019_24_LEFT nCoV-2019_2 AGGCATGCCTTCTTACTGTACTG 23 47.83 60.37 
nCoV-2019_24_RIGHT nCoV-2019_2 ACATTCTAACCATAGCTGAAATCGGG 26 42.31 61.19 
nCoV-2019_25_LEFT nCoV-2019_1 GCAATTGTTTTTCAGCTATTTTGCAGT 27 33.33 60.73 
nCoV-2019_25_RIGHT nCoV-2019_1 ACTGTAGTGACAAGTCTCTCGCA 23 47.83 61.3 
nCoV-2019_26_LEFT nCoV-2019_2 TTGTGATACATTCTGTGCTGGTAGT 25 40 60.28 
nCoV-2019_26_RIGHT nCoV-2019_2 TCCGCACTATCACCAACATCAG 22 50 60.42 
nCoV-2019_27_LEFT nCoV-2019_1 ACTACAGTCAGCTTATGTGTCAACC 25 44 60.8 
nCoV-2019_27_RIGHT nCoV-2019_1 AATACAAGCACCAAGGTCACGG 22 50 61.13 
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nCoV-2019_28_LEFT nCoV-2019_2 ACATAGAAGTTACTGGCGATAGTTGT 26 38.46 60.13 
nCoV-2019_28_RIGHT nCoV-2019_2 TGTTTAGACATGACATGAACAGGTGT 26 38.46 60.91 
nCoV-2019_29_LEFT nCoV-2019_1 ACTTGTGTTCCTTTTTGTTGCTGC 24 41.67 61.39 
nCoV-2019_29_RIGHT nCoV-2019_1 AGTGTACTCTATAAGTTTTGATGGTGTGT 29 34.48 60.69 
nCoV-2019_30_LEFT nCoV-2019_2 GCACAACTAATGGTGACTTTTTGCA 25 40 61.19 
nCoV-2019_30_RIGHT nCoV-2019_2 ACCACTAGTAGATACACAAACACCAG 26 42.31 60.3 
nCoV-2019_31_LEFT nCoV-2019_1 TTCTGAGTACTGTAGGCACGGC 22 54.55 62.03 
nCoV-2019_31_RIGHT nCoV-2019_1 ACAGAATAAACACCAGGTAAGAATGAGT 28 35.71 60.69 
nCoV-2019_32_LEFT nCoV-2019_2 TGGTGAATACAGTCATGTAGTTGCC 25 44 61.09 
nCoV-2019_32_RIGHT nCoV-2019_2 AGCACATCACTACGCAACTTTAGA 24 41.67 60.56 
nCoV-2019_33_LEFT nCoV-2019_1 ACTTTTGAAGAAGCTGCGCTGT 22 45.45 61.58 
nCoV-2019_33_RIGHT nCoV-2019_1 TGGACAGTAAACTACGTCATCAAGC 25 44 61.08 
nCoV-2019_34_LEFT nCoV-2019_2 TCCCATCTGGTAAAGTTGAGGGT 23 47.83 61.02 
nCoV-2019_34_RIGHT nCoV-2019_2 AGTGAAATTGGGCCTCATAGCA 22 45.45 60.03 
nCoV-2019_35_LEFT nCoV-2019_1 TGTTCGCATTCAACCAGGACAG 22 50 61.39 
nCoV-2019_35_RIGHT nCoV-2019_1 ACTTCATAGCCACAAGGTTAAAGTCA 26 38.46 60.69 
nCoV-2019_36_LEFT nCoV-2019_2 TTAGCTTGGTTGTACGCTGCTG 22 50 61.44 
nCoV-2019_36_RIGHT nCoV-2019_2 GAACAAAGACCATTGAGTACTCTGGA 26 42.31 60.74 
nCoV-2019_37_LEFT nCoV-2019_1 ACACACCACTGGTTGTTACTCAC 23 47.83 60.93 
nCoV-2019_37_RIGHT nCoV-2019_1 GTCCACACTCTCCTAGCACCAT 22 54.55 61.48 
nCoV-2019_38_LEFT nCoV-2019_2 ACTGTGTTATGTATGCATCAGCTGT 25 40 60.86 
nCoV-2019_38_RIGHT nCoV-2019_2 CACCAAGAGTCAGTCTAAAGTAGCG 25 48 61.13 
nCoV-2019_39_LEFT nCoV-2019_1 AGTATTGCCCTATTTTCTTCATAACTGGT 29 34.48 61 
nCoV-2019_39_RIGHT nCoV-2019_1 TGTAACTGGACACATTGAGCCC 22 50 60.55 
nCoV-2019_40_LEFT nCoV-2019_2 TGCACATCAGTAGTCTTACTCTCAGT 26 42.31 61.25 
nCoV-2019_40_RIGHT nCoV-2019_2 CATGGCTGCATCACGGTCAAAT 22 50 62.09 
nCoV-2019_41_LEFT nCoV-2019_1 GTTCCCTTCCATCATATGCAGCT 23 47.83 60.75 
nCoV-2019_41_RIGHT nCoV-2019_1 TGGTATGACAACCATTAGTTTGGCT 25 40 60.75 
nCoV-2019_42_LEFT nCoV-2019_2 TGCAAGAGATGGTTGTGTTCCC 22 50 61.08 
nCoV-2019_42_RIGHT nCoV-2019_2 CCTACCTCCCTTTGTTGTGTTGT 23 47.83 60.69 
nCoV-2019_43_LEFT nCoV-2019_1 TACGACAGATGTCTTGTGCTGC 22 50 60.93 
nCoV-2019_43_RIGHT nCoV-2019_1 AGCAGCATCTACAGCAAAAGCA 22 45.45 61.14 
nCoV-2019_44_LEFT nCoV-2019_2 TGCCACAGTACGTCTACAAGCT 22 50 61.66 
nCoV-2019_44_LEFT_alt3 nCoV-2019_2 CCACAGTACGTCTACAAGCTGG 22 54.55 60.67 
nCoV-2019_44_RIGHT nCoV-2019_2 AACCTTTCCACATACCGCAGAC 22 50 60.87 
nCoV-2019_44_RIGHT_alt0 nCoV-2019_2 CGCAGACGGTACAGACTGTGTT 22 54.55 62.77 
nCoV-2019_45_LEFT nCoV-2019_1 TACCTACAACTTGTGCTAATGACCC 25 44 60.57 
nCoV-2019_45_LEFT_alt2 nCoV-2019_1 AGTATGTACAAATACCTACAACTTGTGCT 29 34.48 60.94 
nCoV-2019_45_RIGHT nCoV-2019_1 AAATTGTTTCTTCATGTTGGTAGTTAGAGA 30 30 60.01 
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nCoV-2019_45_RIGHT_alt7 nCoV-2019_1 TTCATGTTGGTAGTTAGAGAAAGTGTGTC 29 37.93 61.53 
nCoV-2019_46_LEFT nCoV-2019_2 TGTCGCTTCCAAGAAAAGGACG 22 50 61.38 
nCoV-2019_46_LEFT_alt1 nCoV-2019_2 CGCTTCCAAGAAAAGGACGAAGA 23 47.83 61.35 
nCoV-2019_46_RIGHT nCoV-2019_2 CACGTTCACCTAAGTTGGCGTA 22 50 60.86 
nCoV-2019_46_RIGHT_alt2 nCoV-2019_2 CACGTTCACCTAAGTTGGCGTAT 23 47.83 61.17 
nCoV-2019_47_LEFT nCoV-2019_1 AGGACTGGTATGATTTTGTAGAAAACCC 28 39.29 61.42 
nCoV-2019_47_RIGHT nCoV-2019_1 AATAACGGTCAAAGAGTTTTAACCTCTC 28 35.71 60.06 
nCoV-2019_48_LEFT nCoV-2019_2 TGTTGACACTGACTTAACAAAGCCT 25 40 61.09 
nCoV-2019_48_RIGHT nCoV-2019_2 TAGATTACCAGAAGCAGCGTGC 22 50 60.74 
nCoV-2019_49_LEFT nCoV-2019_1 AGGAATTACTTGTGTATGCTGCTGA 25 40 60.57 
nCoV-2019_49_RIGHT nCoV-2019_1 TGACGATGACTTGGTTAGCATTAATACA 28 35.71 61.05 
nCoV-2019_50_LEFT nCoV-2019_2 GTTGATAAGTACTTTGATTGTTACGATGGT 30 33.33 60.59 
nCoV-2019_50_RIGHT nCoV-2019_2 TAACATGTTGTGCCAACCACCA 22 45.45 60.95 
nCoV-2019_51_LEFT nCoV-2019_1 TCAATAGCCGCCACTAGAGGAG 22 54.55 61.34 
nCoV-2019_51_RIGHT nCoV-2019_1 AGTGCATTAACATTGGCCGTGA 22 45.45 61.14 
nCoV-2019_52_LEFT nCoV-2019_2 CATCAGGAGATGCCACAACTGC 22 54.55 61.83 
nCoV-2019_52_RIGHT nCoV-2019_2 GTTGAGAGCAAAATTCATGAGGTCC 25 44 60.62 
nCoV-2019_53_LEFT nCoV-2019_1 AGCAAAATGTTGGACTGAGACTGA 24 41.67 60.69 
nCoV-2019_53_RIGHT nCoV-2019_1 AGCCTCATAAAACTCAGGTTCCC 23 47.83 60.31 
nCoV-2019_54_LEFT nCoV-2019_2 TGAGTTAACAGGACACATGTTAGACA 26 38.46 60.18 
nCoV-2019_54_RIGHT nCoV-2019_2 AACCAAAAACTTGTCCATTAGCACA 25 36 60.11 
nCoV-2019_55_LEFT nCoV-2019_1 ACTCAACTTTACTTAGGAGGTATGAGCT 28 39.29 61.43 
nCoV-2019_55_RIGHT nCoV-2019_1 GGTGTACTCTCCTATTTGTACTTTACTGT 29 37.93 60.54 
nCoV-2019_56_LEFT nCoV-2019_2 ACCTAGACCACCACTTAACCGA 22 50 60.49 
nCoV-2019_56_RIGHT nCoV-2019_2 ACACTATGCGAGCAGAAGGGTA 22 50 61.21 
nCoV-2019_57_LEFT nCoV-2019_1 ATTCTACACTCCAGGGACCACC 22 54.55 61.16 
nCoV-2019_57_RIGHT nCoV-2019_1 GTAATTGAGCAGGGTCGCCAAT 22 50 61.26 
nCoV-2019_58_LEFT nCoV-2019_2 TGATTTGAGTGTTGTCAATGCCAGA 25 40 61.44 
nCoV-2019_58_RIGHT nCoV-2019_2 CTTTTCTCCAAGCAGGGTTACGT 23 47.83 61.06 
nCoV-2019_59_LEFT nCoV-2019_1 TCACGCATGATGTTTCATCTGCA 23 43.48 61.42 
nCoV-2019_59_RIGHT nCoV-2019_1 AAGAGTCCTGTTACATTTTCAGCTTG 26 38.46 60.02 
nCoV-2019_60_LEFT nCoV-2019_2 TGATAGAGACCTTTATGACAAGTTGCA 27 37.04 60.53 
nCoV-2019_60_RIGHT nCoV-2019_2 GGTACCAACAGCTTCTCTAGTAGC 24 50 60.44 
nCoV-2019_61_LEFT nCoV-2019_1 TGTTTATCACCCGCGAAGAAGC 22 50 61.5 
nCoV-2019_61_RIGHT nCoV-2019_1 ATCACATAGACAACAGGTGCGC 22 50 61.25 
nCoV-2019_62_LEFT nCoV-2019_2 GGCACATGGCTTTGAGTTGACA 22 50 61.91 
nCoV-2019_62_RIGHT nCoV-2019_2 GTTGAACCTTTCTACAAGCCGC 22 50 60.35 
nCoV-2019_63_LEFT nCoV-2019_1 TGTTAAGCGTGTTGACTGGACT 22 45.45 60.16 
nCoV-2019_63_RIGHT nCoV-2019_1 ACAAACTGCCACCATCACAACC 22 50 61.85 
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nCoV-2019_64_LEFT nCoV-2019_2 TCGATAGATATCCTGCTAATTCCATTGT 28 35.71 60.11 
nCoV-2019_64_RIGHT nCoV-2019_2 AGTCTTGTAAAAGTGTTCCAGAGGT 25 40 60.1 
nCoV-2019_65_LEFT nCoV-2019_1 GCTGGCTTTAGCTTGTGGGTTT 22 50 61.92 
nCoV-2019_65_RIGHT nCoV-2019_1 TGTCAGTCATAGAACAAACACCAATAGT 28 35.71 60.9 
nCoV-2019_66_LEFT nCoV-2019_2 GGGTGTGGACATTGCTGCTAAT 22 50 61.21 
nCoV-2019_66_RIGHT nCoV-2019_2 TCAATTTCCATTTGACTCCTGGGT 24 41.67 60.45 
nCoV-2019_67_LEFT nCoV-2019_1 GTTGTCCAACAATTACCTGAAACTTACT 28 35.71 60.43 
nCoV-2019_67_RIGHT nCoV-2019_1 CAACCTTAGAAACTACAGATAAATCTTGGG 30 36.67 60.4 
nCoV-2019_68_LEFT nCoV-2019_2 ACAGGTTCATCTAAGTGTGTGTGT 24 41.67 60.14 
nCoV-2019_68_RIGHT nCoV-2019_2 CTCCTTTATCAGAACCAGCACCA 23 47.83 60.31 
nCoV-2019_69_LEFT nCoV-2019_1 TGTCGCAAAATATACTCAACTGTGTCA 27 37.04 61.43 
nCoV-2019_69_RIGHT nCoV-2019_1 TCTTTATAGCCACGGAACCTCCA 23 47.83 61.14 
nCoV-2019_70_LEFT nCoV-2019_2 ACAAAAGAAAATGACTCTAAAGAGGGTTT 29 31.03 60.13 
nCoV-2019_70_RIGHT nCoV-2019_2 TGACCTTCTTTTAAAGACATAACAGCAG 28 35.71 60.27 
nCoV-2019_71_LEFT nCoV-2019_1 ACAAATCCAATTCAGTTGTCTTCCTATTC 29 34.48 60.54 
nCoV-2019_71_RIGHT nCoV-2019_1 TGGAAAAGAAAGGTAAGAACAAGTCCT 27 37.04 60.8 
nCoV-2019_72_LEFT nCoV-2019_2 ACACGTGGTGTTTATTACCCTGAC 24 45.83 61.04 
nCoV-2019_72_RIGHT nCoV-2019_2 ACTCTGAACTCACTTTCCATCCAAC 25 44 60.97 
nCoV-2019_73_LEFT nCoV-2019_1 CAATTTTGTAATGATCCATTTTTGGGTGT 29 31.03 60.29 
nCoV-2019_73_RIGHT nCoV-2019_1 CACCAGCTGTCCAACCTGAAGA 22 54.55 62.45 
nCoV-2019_74_LEFT nCoV-2019_2 ACATCACTAGGTTTCAAACTTTACTTGC 28 35.71 60.68 
nCoV-2019_74_RIGHT nCoV-2019_2 GCAACACAGTTGCTGATTCTCTTC 24 45.83 60.85 
nCoV-2019_75_LEFT nCoV-2019_1 AGAGTCCAACCAACAGAATCTATTGT 26 38.46 60.24 
nCoV-2019_75_RIGHT nCoV-2019_1 ACCACCAACCTTAGAATCAAGATTGT 26 38.46 60.69 
nCoV-2019_76_LEFT nCoV-2019_2 AGGGCAAACTGGAAAGATTGCT 22 45.45 60.76 
nCoV-2019_76_LEFT_alt3 nCoV-2019_2 GGGCAAACTGGAAAGATTGCTGA 23 47.83 61.87 
nCoV-2019_76_RIGHT nCoV-2019_2 ACACCTGTGCCTGTTAAACCAT 22 45.45 60.42 
nCoV-2019_76_RIGHT_alt0 nCoV-2019_2 ACCTGTGCCTGTTAAACCATTGA 23 43.48 60.69 
nCoV-2019_77_LEFT nCoV-2019_1 CCAGCAACTGTTTGTGGACCTA 22 50 60.75 
nCoV-2019_77_RIGHT nCoV-2019_1 CAGCCCCTATTAAACAGCCTGC 22 54.55 61.59 
nCoV-2019_78_LEFT nCoV-2019_2 CAACTTACTCCTACTTGGCGTGT 23 47.83 60.55 
nCoV-2019_78_RIGHT nCoV-2019_2 TGTGTACAAAAACTGCCATATTGCA 25 36 60.22 
nCoV-2019_79_LEFT nCoV-2019_1 GTGGTGATTCAACTGAATGCAGC 23 47.83 60.92 
nCoV-2019_79_RIGHT nCoV-2019_1 CATTTCATCTGTGAGCAAAGGTGG 24 45.83 60.62 
nCoV-2019_80_LEFT nCoV-2019_2 TTGCCTTGGTGATATTGCTGCT 22 45.45 60.89 
nCoV-2019_80_RIGHT nCoV-2019_2 TGGAGCTAAGTTGTTTAACAAGCG 24 41.67 60.02 
nCoV-2019_81_LEFT nCoV-2019_1 GCACTTGGAAAACTTCAAGATGTGG 25 44 61.24 
nCoV-2019_81_RIGHT nCoV-2019_1 GTGAAGTTCTTTTCTTGTGCAGGG 24 45.83 60.73 
nCoV-2019_82_LEFT nCoV-2019_2 GGGCTATCATCTTATGTCCTTCCCT 25 48 61.52 
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nCoV-2019_82_RIGHT nCoV-2019_2 TGCCAGAGATGTCACCTAAATCAA 24 41.67 60.02 
nCoV-2019_83_LEFT nCoV-2019_1 TCCTTTGCAACCTGAATTAGACTCA 25 40 60.46 
nCoV-2019_83_RIGHT nCoV-2019_1 TTTGACTCCTTTGAGCACTGGC 22 50 61.33 
nCoV-2019_84_LEFT nCoV-2019_2 TGCTGTAGTTGTCTCAAGGGCT 22 50 61.61 
nCoV-2019_84_RIGHT nCoV-2019_2 AGGTGTGAGTAAACTGTTACAAACAAC 27 37.04 60.36 
nCoV-2019_85_LEFT nCoV-2019_1 ACTAGCACTCTCCAAGGGTGTT 22 50 61.03 
nCoV-2019_85_RIGHT nCoV-2019_1 ACACAGTCTTTTACTCCAGATTCCC 25 44 60.51 
nCoV-2019_86_LEFT nCoV-2019_2 TCAGGTGATGGCACAACAAGTC 22 50 61.07 
nCoV-2019_86_RIGHT nCoV-2019_2 ACGAAAGCAAGAAAAAGAAGTACGC 25 40 61.01 
nCoV-2019_87_LEFT nCoV-2019_1 CGACTACTAGCGTGCCTTTGTA 22 50 60.16 
nCoV-2019_87_RIGHT nCoV-2019_1 ACTAGGTTCCATTGTTCAAGGAGC 24 45.83 60.81 
nCoV-2019_88_LEFT nCoV-2019_2 CCATGGCAGATTCCAACGGTAC 22 54.55 61.58 
nCoV-2019_88_RIGHT nCoV-2019_2 TGGTCAGAATAGTGCCATGGAGT 23 47.83 61.4 
nCoV-2019_89_LEFT nCoV-2019_1 GTACGCGTTCCATGTGGTCATT 22 50 61.5 
nCoV-2019_89_LEFT_alt2 nCoV-2019_1 CGCGTTCCATGTGGTCATTCAA 22 50 62.01 
nCoV-2019_89_RIGHT nCoV-2019_1 ACCTGAAAGTCAACGAGATGAAACA 25 40 60.91 
nCoV-2019_89_RIGHT_alt4 nCoV-2019_1 ACGAGATGAAACATCTGTTGTCACT 25 40 60.74 
nCoV-2019_90_LEFT nCoV-2019_2 ACACAGACCATTCCAGTAGCAGT 23 47.83 61.58 
nCoV-2019_90_RIGHT nCoV-2019_2 TGAAATGGTGAATTGCCCTCGT 22 45.45 60.82 
nCoV-2019_91_LEFT nCoV-2019_1 TCACTACCAAGAGTGTGTTAGAGGT 25 44 60.93 
nCoV-2019_91_RIGHT nCoV-2019_1 TTCAAGTGAGAACCAAAAGATAATAAGCA 29 31.03 60.03 
nCoV-2019_92_LEFT nCoV-2019_2 TTTGTGCTTTTTAGCCTTTCTGCT 24 37.5 60.14 
nCoV-2019_92_RIGHT nCoV-2019_2 AGGTTCCTGGCAATTAATTGTAAAAGG 27 37.04 60.53 
nCoV-2019_93_LEFT nCoV-2019_1 TGAGGCTGGTTCTAAATCACCCA 23 47.83 61.59 
nCoV-2019_93_RIGHT nCoV-2019_1 AGGTCTTCCTTGCCATGTTGAG 22 50 60.55 
nCoV-2019_94_LEFT nCoV-2019_2 GGCCCCAAGGTTTACCCAATAA 22 50 60.56 
nCoV-2019_94_RIGHT nCoV-2019_2 TTTGGCAATGTTGTTCCTTGAGG 23 43.48 60.18 
nCoV-2019_95_LEFT nCoV-2019_1 TGAGGGAGCCTTGAATACACCA 22 50 61.1 
nCoV-2019_95_RIGHT nCoV-2019_1 CAGTACGTTTTTGCCGAGGCTT 22 50 61.95 
nCoV-2019_96_LEFT nCoV-2019_2 GCCAACAACAACAAGGCCAAAC 22 50 61.82 
nCoV-2019_96_RIGHT nCoV-2019_2 TAGGCTCTGTTGGTGGGAATGT 22 50 61.36 
nCoV-2019_97_LEFT nCoV-2019_1 TGGATGACAAAGATCCAAATTTCAAAGA 28 32.14 60.22 
nCoV-2019_97_RIGHT nCoV-2019_1 ACACACTGATTAAAGATTGCTATGTGAG 28 35.71 60.17 
nCoV-2019_98_LEFT nCoV-2019_2 AACAATTGCAACAATCCATGAGCA 24 37.5 60.5 
nCoV-2019_98_RIGHT nCoV-2019_2 TTCTCCTAAGAAGCTATTAAAATCACATGG 30 33.33 60.01 
 

Supplemental Table 4. 

ARTIC primers. 
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Author summary 

We investigated SARS-CoV-2 infections in 95 healthcare personnel (HCP). The majority 

of HCP infections could not be linked to a patient or co-worker. Infection control 

procedures, consistently followed, offer significant protection to HCP caring for COVID-

19 patients. 

 

Abstract 

Background 

Healthcare personnel (HCP) are at increased risk of infection with severe acute 

respiratory syndrome coronavirus 2 (SARS-CoV-2). We posit current infection control 

guidelines generally protect HCP from SARS-CoV-2 infection in a healthcare setting.  

Methods 

In this retrospective case series, we use viral genomics to investigate the likely source of 

SARS-CoV-2 infection in HCP at a major academic medical institution in the Upper 

Midwest of the United States between 25 March - 27 December, 2020. We obtain limited 

epidemiological data through informal interviews and review of the electronic health 

record. We combine epidemiological information with healthcare-associated viral 

sequences and with viral sequences collected in the broader community to infer the most 

likely source of infection in HCP. 
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Results 

We investigated SARS-CoV-2 infection clusters involving 95 HCP and 137 possible 

patient contact sequences. The majority of HCP infections could not be linked to a patient 

or co-worker (55/95; 57.9%) and were genetically similar to viruses circulating 

concurrently in the community. We found 10.5% of infections could be traced to a 

coworker (10/95). Strikingly, only 4.2% of HCP infections could be traced to a patient 

source (4/95).  

Conclusions 

Infections among HCP add further strain to the healthcare system and put patients, HCP, 

and communities at risk. We found no evidence for healthcare-associated transmission 

in the majority of HCP infections evaluated here. Though we cannot rule out the possibility 

of cryptic healthcare-associated transmission, it appears that HCP most commonly 

becomes infected with SARS-CoV-2 via community exposure. This emphasizes the 

ongoing importance of mask-wearing, physical distancing, robust testing programs, and 

rapid distribution of vaccines. 

 
Introduction 

 
Despite the use of personal protective equipment (PPE) and other strategies to mitigate 

risk, front-line healthcare workers are at increased risk for infection with severe acute 

respiratory syndrome coronavirus 2 (SARS-CoV-2) compared to the general population 

354–356. Healthcare-associated SARS-CoV-2 infections negatively affect healthcare 

personnel (HCP) through direct health impacts, lost wages, and secondary consequences 

for their close contacts 357. Additional repercussions include staffing shortages, 
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environmental contamination, low morale and other mental health impacts on HCP. Each 

of these can impact overall quality of care 358,359. Here we use rapid viral sequencing and 

forensic genomics to investigate the likely sources of infection in 95 confirmed cases of 

coronavirus-disease 2019 (COVID-19) in HCP. We further describe how the results of 

these investigations informed infection control recommendations within a large academic 

medical system in the midwestern United States.  

 

The US Centers for Disease Control and Prevention (CDC) have released guidelines for 

infection prevention for HCP interacting directly with patients with SARS-CoV-2 360. These 

guidelines include recommendations for the proper use of PPE, hand hygiene, 

precautions to be taken during aerosol-generating procedures, environmental infection 

control practices and many others. These guidelines, and additional institution-specific 

infection control measures 361, were in place at the institution evaluated here. We posit 

that these guidelines are generally successful in protecting HCP from SARS-CoV-2 

infection in a healthcare setting. Here we test this hypothesis using viral sequences 

collected from infected HCP, as well as concurrent viral sequences collected from the 

broader community, to investigate possible sources of infection in a series of HCP.  

 

With a few exceptions 362–364, viral sequencing is not currently standard practice for 

investigating healthcare-associated SARS-CoV-2 infections, although we and others 

have highlighted the potential utility of this approach 365–368. It is currently estimated that 

SARS-CoV-2 acquires ~2-2.5 consensus mutations per month 369,370. Viral sequences 

can therefore be used to infer likely epidemiological relationships. Viruses collected from 
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transmission pairs or from individuals with a shared source of infection are expected to 

share higher levels of genetic diversity than individuals who become infected at similar 

times, but from distinct sources. This was especially true during March - December 2020 

in the United States, when transmission rates were high and multiple viruses of distinct 

genetic lineages co-circulated in many areas 371. By increasing the resolution of inference, 

rapid viral sequencing can facilitate a targeted approach to examine SARS-CoV-2 

nosocomial outbreaks at the level of the individual and the institution, which others have 

referred to collectively as “precision epidemiology” 372. 

 

 
Materials and methods  

 
Sample approvals and sample selection criteria  

From 12 March 2020 to 10 January 2021, ~1,172 HCP tested positive for SARS-CoV-2 

at a major academic medical institution in the Upper Midwest. Whenever possible, 

informal interviews and contact tracing information was collected for each HCP infection. 

HCP viruses and viruses from other individuals involved in each outbreak (patients, co-

workers) were sequenced if epidemiological data did not reveal a likely exposure source 

and if residual swab was available. Individuals who had high-risk exposures to family or 

community members with confirmed COVID-19 were not sequenced. Individuals who 

reported high-risk community activities, such as attending a wedding, funeral, indoor bar, 

or plane travel, were also not sequenced. Relevant patient contacts of individuals with no 

likely exposure source were identified in the Epic electronic medical record using a 

comprehensive caregiver trace. This function identifies all patient records accessed by a 
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HCP being traced. Diagnostic assays for the samples included in this study were 

performed in a clinical lab using CDC’s diagnostic RT-PCR 280, the Hologic Panther 

SARS-CoV-2 assay 281, or the Aptima SARS-CoV-2 assay 282. 

 

Summary of infection control measures to prevent transmission of SARS-CoV-2 at 

our institution 

Detailed descriptions of all infection control measures implemented to prevent 

transmission of SARS-CoV-2 at the medical institution evaluated here can be found in a 

recent report by Lepak et al 361. Briefly, these guidelines include a universal testing policy 

for all patients, negative air pressure in all locations where SARS-CoV-2 patients are 

treated, a limit of one visitor or primary support person per patient per day (required to 

undergo screening prior to entry), establishment of an employee testing site with required 

employee self-monitoring for symptoms, maintenance of a log of persons entering the 

room of a confirmed or suspected COVID-19 patient for contact tracing purposes, detailed 

PPE guidelines, among others. 

 

Sample preparation and sequencing  

Detailed methods descriptions can be found in Moreno et al. 55. Briefly, viral RNA was 

extracted using the Viral Total Nucleic Acid Purification kit (Promega, Madison, WI, USA) 

on a Maxwell RSC 48 instrument. Complementary DNA (cDNA) was synthesized using 

SuperScript IV Reverse Transcriptase 235,283. A SARS-CoV-2-specific multiplex PCR was 

performed using the ARTIC v3 primers 235,283. DNA was made compatible for sequencing 

using the one-pot native ligation protocol with Oxford Nanopore kit SQK-LSK109 and its 



   

 

246 

Native Barcodes (EXP-NBD104 and EXP-NBD114) 283. Up to 23 samples, with one no-

template control (water), were pooled prior to being run on the appropriate Nanopore flow 

cell (FLO-MIN106) using the 72hr run script.  

 

Processing raw ONT data  

Sequencing data was processed using the ARTIC bioinformatics pipeline 

(https://github.com/artic-network/artic-ncov2019), with a few modifications. Briefly, we 

have modified the ARTIC pipeline so that it demultiplexes raw fastq files using qcat as 

each fastq file is generated by the GridION (https://github.com/nanoporetech/qcat). Once 

a barcode reaches 100k reads, it maps to the Wuhan-Hu-1 reference (Genbank: 

MN908947.3) using minimap2. This alignment will then be used to generate consensus 

sequences and variant calls using medaka (https://github.com/nanoporetech/medaka). 

The analysis pipeline is available at https://github.com/gagekmoreno/SARS-CoV-2-in-

Southern-Wisconsin.  

 

Consensus sequence analysis – clade and lineage generation 

Samples were excluded from downstream analysis if gaps in the consensus sequence 

totaled ≥20% of the genome. Each sample’s consensus sequence was visually inspected 

in Geneious Prime (https://www.geneious.com) and/or in Nextstrain’s Nextclade online 

tool (https://clades.nextstrain.org/). We used Pangolin’s command-line tool to assign 

sequences to Pangolin lineages (https://github.com/cov-lineages/pangolin). 
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Consensus sequence analysis – Southeast Wisconsin Phylogenetic tree  

Wisconsin-centric time-resolved and divergence phylogenetic trees (seen in 

Supplementary File 1) were built using the standard Nextstrain tools and scripts 145. 

Laboratories responsible for obtaining and genetic sequence data included here, if not 

our own, are documented in Supplementary File 2. An interactive view of this Nextstrain 

phylogenetic tree can be found here.  

 

Genetic distance comparisons  

Full length SARS-CoV-2 sequences available on GISAID as of 10 March, 2020 were 

obtained and filtered on “Wisconsin” and parsed by date of collection into month bins. We 

used this dataset as a community comparator set. Consensus mutations were called 

against Wuhan-Hu-1 reference (Genbank: MN908947.3) using Varscan v2.4.3. HCP and 

patient samples were similarly binned by month. We performed a permutation test 

comparing the percent overlap in mutation identities in 100,000 randomly selected pairs 

from the community comparator set and plotted these values as a distribution in Figure 

5. We plotted the genetic diversity of n-choose-2 random pairs for healthcare-associated 

sample, where n is the number of HCP and patient samples available for comparison 

each month.  

 

Data availability  

Accession numbers for all healthcare-associated samples can be found in Supplemental 

File 1. Code to replicate the genetic distance analyses can be found in the GitHub 
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accompanying this manuscript 373. Figures 1A, 2A, and 3A were created with BioRender 

(http://biorender.com). 
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Results 

 
HCP began testing positive for SARS-CoV-2 at a major academic biomedical institution 

in the American Upper Midwest in early March 2020. We began sequencing viral 

genomes from residual nasopharyngeal specimens from the individuals involved in these 

infection clusters. We focused our analyses on HCP infections and infection clusters that 
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were highest risk for nosocomial transmission, as when healthcare-associated 

transmission could not be ruled out using epidemiological data alone (see methods for 

details). Each investigation included at least one HCP, all known direct and indirect 

SARS-CoV-2-positive patient contacts where residual swab was available, and 

occasionally extended to epidemiologically-linked household contacts.  

 

We consider three potential sources of HCP infection: “patient source” (via HCP-patient 

interactions), “employee source” (via HCP-HCP interactions), and “no evidence of 

healthcare-associated transmission”. Some HCP infections did not fit neatly into these 

categories so we have included three additional categories which are defined in full in the 

Supplemental File 1. These additional categories are “combined patient and employee 

cluster”, “outside community”, and “inconclusive”. In each category, for us to conclude 

person A was a likely source of infection for person B, persons A and B must have had 

known contact with each other, must have been tested within 14 days of each other, and 

must have been infected with viruses differing by no more than a single mutation 285. 

 

From 12 March, 2020 to 10 January, 2021 ~1,172 HCP tested positive for SARS-CoV-2 

at the institution we evaluate in this study. In total, we investigated 95 HCP (8.1%) and 

137 possible patient contacts collected between 25 March and 27 December, 2020 

(n=232). Of these, we were able to generate 87 complete HCP sequences and 87 

complete patient contact sequences which were used in downstream analyses (n=174). 

Of the 87 patient sequences, 4 were included in 2 or more outbreak investigations.  
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We did not find a closely related virus among co-worker and patient contacts in 55 HCP 

infections. We identified a specific household or community source of infection in an 

additional 3 cases (58/95; 61.1%). We find a smaller percentage could be traced to a 

coworker (10/95; 10.5%) or were part of a patient-employee cluster (12/95; 12.6%). 

Strikingly, the smallest proportion of HCP infections could be clearly traced to a patient 

source (4/95; 4.2%). The remaining HCP infections could not be definitively traced to a 

single source and were therefore inconclusive (11/95; 11.6%) (Table 1). Below, we 

describe one representative example of three distinct transmission scenarios – no 

evidence of healthcare-associated transmission, HCP-to-HCP, and patient-to-HCP.  

 

In case #20, we compared the viral sequence of a HCP (HCP 20-1), who tested positive on 

5 October, to a patient contact who tested positive eight days prior. A comprehensive 

caregiver trace of HCP 20-1 revealed a single patient contact with diagnosed COVID-19 

(patient 20-A) within the 14 days prior HCP 20-1’s symptom onset. HCP 20-1 provided direct 

care to patient 20-A while wearing appropriate PPE and with no reported lapses in PPE. 

HCP 20-1 was infected with a virus clustering with the 20G clade whereas patient 20-A was 

infected with a 20A-clade virus. The sequences of these viruses differed at >20 sites, so we 

concluded these individuals were unlikely to represent a transmission pair (Figure 1).  

 

In case #16, we investigated infections in three HCP who worked in the same department 

and tested positive on 8 September (HCP 16-2), 18 September (HCP 16-1), and 29 

September (HCP 16-3). Contact tracing revealed HCP 16-2 worked for two days prior to 

symptom onset and may have had unmasked contact with HCP 16-1 during overlapping 
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meal breaks. Contact tracing additionally revealed HCP 16-3 had an exposure event lasting 

>15 minutes in the outside community prior to testing positive. Viral sequencing in this 

cluster showed HCP 16-1 and 16-2 were infected with 20G-clade viruses identical at the 

consensus level, while HCP 16-3 was infected with a genetically dissimilar 20A-clade virus. 

We therefore concluded HCP 16-2 was a likely source of infection for HCP 16-1, while HCP 

16-3 was likely infected elsewhere (Figure 2). 

 

Case #10 involved a HCP (HCP 10-1) who provided care for 15 patients diagnosed with 

COVID-19 in the 14 days prior to symptom onset. HCP 10-1 provided direct care to each of 

these patients while wearing appropriate PPE with no reported lapses in PPE. We generated 

consensus sequences from HCP 10-1 and nine patient contacts. There was insufficient viral 

RNA (vRNA) in the remaining six patient contacts to generate high-quality consensus 

sequences for comparison. The virus isolated from patient 10-G was identical to the virus 

from HCP 10-1. Given the known epidemiological association between these two 

individuals, the time separating sample collections (28 July & 5 August), and identical viral 

sequences, we concluded patient 10-G is a likely source of infection for HCP 10-1 (Figure 

3). However, we cannot rule out the possibility that another patient whose sample could not 

be sequenced also shared an identical virus. 

 

HCP and patient viruses are broadly distributed throughout a phylogenetic tree showing the 

diversity of circulating viruses collected from the areas surrounding the academic medical 

center (Figure 4). To investigate the possibility that we missed cryptic healthcare-associated 

transmission, we compared genetic distances between random pairs of healthcare-
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associated samples against the genetic distances between randomly paired sequences 

from the community dataset (grey tips in Figure 4) within each month in our study period 

(Figure 5). Overall, healthcare-associated pairs do not share substantially greater sequence 

identity than randomly paired sequences from the community. This is consistent with a 

relatively limited role for nosocomial spread of SARS-CoV-2. We additionally plot 14 pairs 

which are very likely to be true transmission pairs based on epidemiological data (e.g. HCP 

2-1 and their household contact) and show these pairs are uniformly genetically identical 

(see dashed magenta lines in Figure 5).  

 

The center where we conducted this case series implemented a number of changes to 

their institutional infection control guidelines based on these sequencing results 361. The 

recommendations for extended reuse of medical grade face masks were clarified and 

now instruct HCP to consider barrier mask replacement after three days of wear and to 

inspect the barrier mask prior to each use and to replace if soiled or damaged. N-95s or 

powered air-purifying respirators (PAPR) are now universally required on inpatient units 

housing COVID-19-confirmed and suspected patients. In addition, medical-grade face 

masks, instead of cloth masks, are now required for HCP in all clinical areas, and not just 

direct patient care areas. This final recommendation was based on likely HCP-to-HCP 

transmission involving a HCP who was not directly involved in patient care of COVID-19 

patients (case #14 in Supplementary File 1).  
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Discussion  

HCP across the hospital are involved in caring for people with COVID-19, whether or not 

they work on an actual COVID-19 ward. With shifting guidelines and PPE shortages that 

persist today, it is critical to assess the risk that HCP treating people with known SARS-

CoV-2 infection will become infected themselves. We used viral genome sequencing to 

assess the risk that HCP in a large academic medical system treating COVID-19 patients 

would acquire nosocomial infections. Our results suggest that caring for COVID-19 

patients accounted for a minority of HCP infections (n=4). In contrast, HCP at this 

institution were much more likely to acquire SARS-CoV-2 from infected coworkers (n=10) 

or outside of the healthcare system (n=58). This result suggests that infection control 

procedures, consistently followed, offer significant protection to HCP caring for COVID-

19 patients in the United States. A similar conclusion was drawn by recent studies 

evaluating healthcare-associated infections in the Netherlands and in the UK, suggesting 

this conclusion may hold across healthcare systems 358,374. These results are further 

supported by another recent study which found the most important risk factor for HCP 

SARS-CoV-2 seropositivity was cumulative COVID-19 incidence in surrounding 

communities, not workplace factors 375.  

 

This study has important limitations. We were able to generate high-quality sequence 

information for a minority of documented COVID-19 cases in HCP (87/1,172; 7.4%) 

during our study period (25 March - 27 December, 2020). Our dataset is therefore 

incomplete and may not be entirely representative of viruses circulating in this healthcare 

setting, particularly for asymptomatic cases. Similarly, we did not sequence viruses from 
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all SARS-CoV-2-positive patients who were treated at the medical center where we 

conducted this study. Given this limitation, we were often able to exclude patient contacts 

and co-workers as likely sources of infection in HCP, but we were rarely able to pinpoint 

the exact source of infection. It is therefore possible we have underestimated the true rate 

of SARS-CoV-2 transmission in this healthcare setting. However, the finding that 

randomly paired HCP and patient sequences do not have greater sequence identity than 

randomly paired sequences from across the surrounding community suggests to us that 

we have not severely underestimated nosocomial transmission. Our ability to determine 

the source of infections in these outbreaks was also often limited by incomplete contact 

tracing data; undocumented exposures between HCP may have occurred inside and 

outside of the workplace. 

 

This study examined SARS-CoV-2 infections in HCP from a single academic medical 

center so our conclusions may not be broadly generalizable. However, another recent 

study evaluated healthcare-associated infections in the Netherlands and similarly found 

no evidence for widespread nosocomial transmission of SARS-CoV-2, suggesting our 

conclusions may hold across institutions and healthcare systems 374. Further, we were 

not able to differentiate between routes of infection (airborne, droplet, contact) with the 

limited epidemiological data available to us in this study. 

 

Sampling and contact tracing of nosocomial outbreaks is often coordinated by local 

hospitals and/or departments of health while expertise in viral sequencing, bioinformatics, 

and phylogenetics can more often be found in academic laboratories. Successful 
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application of precision epidemiology requires the integration of these areas. This is 

possible now at academic medical institutions like ours, but presents more of a challenge 

at smaller, rural, and private patient care centers. Federal support should be provided to 

help establish and maintain these collaborations in the current pandemic and in 

anticipation of future outbreaks.  

 

Here we demonstrated how rapid whole-genome sequencing of current SARS-CoV-2 

outbreaks in hospitals can be used retrospectively to reconstruct the likely source of HCP 

infection and prospectively to adjust and improve infection control practices and 

guidelines. The approach we describe here need not be limited to investigation of 

pandemic virus outbreaks. Key concepts from genome sequencing and routine pathogen 

surveillance can be applied to any nosocomial pathogen and inform changes to infection 

control practices. Overall, while we do find examples of patient-to-HCP and HCP-to-HCP 

spread, we found no evidence of healthcare-associated transmission in a majority of HCP 

infections, emphasizing the importance of ongoing measures to reduce community 

spread through mask-wearing, physical distancing, robust testing programs, and rapid 

distribution of vaccines.  
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where genetic sequence data were generated and shared via the GISAID initiative 

(Supplementary File 2).  

 
 

Figures, tables, and supplemental material 
 
 

 

Figure 1. Graphical representation of case #20.  

A. Virus sequences are aligned against SARS-CoV-2 reference sequence Wuhan-Hu-1 

(MN908947.3). Vertical markers denote the location of consensus nucleotide differences 

between patient viruses and the reference. B. A time-resolved phylogenetic tree built 

using Nextstrain tools with all Wisconsin sequences available as of 2021-01-15. Viruses 

involved in this case are denoted with thick branches and labeled tips. Color denotes 

clade.  
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Figure 2. Graphical representation of case #16. 

A. Virus sequences are aligned against SARS-CoV-2 reference sequence Wuhan-Hu-1 

(MN908947.3). Vertical markers denote the location of consensus nucleotide differences 

between patient viruses and the reference. Purple vertical markers indicate identical virus 

sequences. B. A time-resolved phylogenetic tree built using Nextstrain tools with all 

Wisconsin sequences available as of 2021-01-15. Viruses involved in this case are 

denoted with thick branches and labeled tips. Color denotes clade.  
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Figure 3. Graphical representation of case #10.  

A. Virus sequences are aligned against SARS-CoV-2 reference sequence Wuhan-Hu-1 

(MN908947.3). Vertical markers denote the location of consensus nucleotide differences 

between patient viruses and the reference. Purple vertical markers indicate identical virus 

sequences. B. A time-resolved phylogenetic tree built using Nextstrain tools with all 

Wisconsin sequences available as of 2021-01-15. Viruses involved in this case are 

denoted with thick branches and labeled tips. Color denotes clade.  
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Figure 4. A time-resolved phylogenetic tree built using Nexstrain tools for all 

samples collected and shared in Wisconsin from March - December, 2020. 

Healthcare-associated samples are denoted with enlarged tips and colored according to 

sample type. The grey tips reflect the community surveillance samples. It is likely 

additional HCP and patient sequences are represented in the community dataset, but we 

do not have access to sufficient metadata to make these designations. Laboratories 

responsible for obtaining and genetic sequence data included here, if not our own, are 

documented in Supplementary File 2.  
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Figure 5.  

Genetic diversity among pairwise comparisons of healthcare-associated viruses (HCP 

and patient samples) are generally similar to that of viruses circulating in the areas 

surrounding the academic medical center evaluated in this study. The grey distribution 

reflects 100,000 pairwise random comparisons of the community dataset per month (A-

I). The turquoise distribution shows n-choose-2 comparisons from the healthcare-

associated dataset per month where n is the total number of HCP and patient sequences 
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available within each month. The magenta dashed lines reflect the shared genetic 

diversity in healthcare-associated pairs where we have high confidence, based on 

epidemiological data, that these are true transmission pairs. The number of pairs 

represented in each magenta line is shown in magenta text to the right of each plot. 

 

 

Likely source of infection in HCP Number of cases 

No evidence of healthcare-associated transmission 55 (57.9%) 

Combined patient and employee cluster 12 (12.6%) 

Inconclusive 11 (11.6%) 

Employee source (via employee-employee interactions) 10 (10.5%) 

Patient source (via employee-patient interactions) 4 (4.2%) 

Outside community 3 (3.2%) 

Total 95 

 

Table 1.  

Summary of the likely source of infection in the HCP evaluated in this study. Full 

definitions for each transmission bin can be found in Supplemental File 1. Briefly, “no 

evidence of healthcare-associated transmission” includes cases where available 



   

 

262 

sequences do not support transmission in the healthcare setting and “outside community” 

includes cases in which transmission outside the healthcare setting could be reasonably 

established. “Inconclusive” includes cases where no consensus sequence was available 

for the HCP and/or there were no appropriate comparator sequences. 

 
 

Supplementary File 1 
Likely sources of infection in HCP: definitions 

Outside community. Among the sequences available for comparison, the likely source 

of infection was not a patient and was not a co-worker/employee.  

 
Patient source. The most likely source of infection in the HCP was a patient source.  

 
Employee source. The most likely source of infection in the HCP was a co-

worker/employee. 

 
Combined patient and employee cluster. A patient to HCP transmission event likely 

started this cluster and was followed by HCP-to-HCP transmission. However, we are 

unable to pinpoint the first HCP to become infected and/or are unable to distinguish 

ongoing sources of transmission as patient-to-HCP and HCP-to-HCP are both possible.  

 
Inconclusive. No consensus sequence available, and/or there were no appropriate 

comparator sequences available, and/or epidemiological information were insufficient to 

interpret sequence data 
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Likely source of infection in HCP Number of cases 

Outside community 58 (60.4%) 

Patient source (via employee-patient interactions) 4 (4.2%) 

Employee source (via employee-employee interactions) 10 (10.4%) 

Combined patient and employee cluster  12 (12.5) 

Inconclusive 12 (12.5) 

Total 96 

 

Supplemental table 1. 
Total number of patient comparator samples = 140 (96 consensus sequences).  

 
Each case included in the above table is summarized below. For each case, we include 

the likely source of infection for all involved healthcare personnel (HCP). Next, we 

provide essential information for each associated sample in the form of a table, 

including sample collection date, GISAID identifier, Nextstrain clade, and Pangolin 

lineage. We report clades using the updated Nextstrain clade naming strategy as 

outlined by Bedford, Hodcroft, and Neher in Virological.org 1. We report lineages 

according to the Pangolin nomenclature as outlined by Rambaut and colleagues 3. A 

description of each Pangolin lineage can be found at cov-lineages 2. Next, we provide a 

very brief overview of any known epidemiological interactions among the involved 

individuals. The level of epidemiological detail associated with each case is variable, but 

we have included all known information here. We include a simple alignment showing 

the consensus sequences mapped against the Wuhan-Hu-1 reference sequence. 
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Consensus-level differences amongst the reference and the sample sequences are 

denoted with a vertical black line. Particular variant identities for each sample can be 

found on the GitHub accompanying this manuscript. Finally, we include a time-resolved 

phylogenetic tree, built using Nextstrain algorithms, for each case. These trees include 

all sequences which are publicly available in the GISAID database from the state of 

Wisconsin. We highlight the samples involved in each case using bolded branches and 

nodes. An interactive view of this tree can be found here.  

 
1 https://virological.org/t/updated-nextstain-sars-cov-2-clade-naming-strategy/581 

2 https://cov-lineages.org/lineages.html 

3 Rambaut A, Holmes EC, O'Toole Á, Hill V, McCrone JT, Ruis C, du Plessis L, Pybus 

OG. A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic 

epidemiology. Nat Microbiol. 2020 Nov;5(11):1403-1407. doi: 10.1038/s41564-020-

0770-5. Epub 2020 Jul 15. PMID: 32669681. 

 
 
 
 
 
 

 

 

 

 

 
 
 



   

 

265 

Report #1. 2020-04-15.  

 
Likely source of HCP infection 

HCP 1. Outside community. 

 

Sample 
type 

Sample collection 
date 

GISAID identifier Clade 
(Nextstrain) 

Lineage 
(Pangolin) 

HCP 1 April 2020 hCoV-19/USA/IA-UW-
121/2020 

20A B.1 

patient A April 2020 hCoV-19/USA/WI-UW-
120/2020 

20A B.1.19 

patient B April 2020 hCoV-19/USA/WI-UW-
122/2020 

20A B.1.19 

 
Epidemiological information 

In the 14 days before symptom onset, HCP 1 interacted with patients A and B per 

comprehensive caregiver trace (see Methods, “Sample approvals and sample selection 

criteria” for further information). HCP 1 reported wearing appropriate personal protective 

equipment (PPE) while providing care to these patients 
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Alignment

 

 

Phylogeny
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Report #2. 2020-04-16. 

 
Likely source of HCP infection 

HCP 1. Outside community (household contact). 

HCP 2. Outside community.  

HCP 3. Outside community.   

 

Sample type Sample collection 
date 

GISAID identifier Clade 
(Nextstrain) 

Lineage 
(Pangolin) 

HCP 1 April 2020 hCoV-19/USA/WI-UW-
119/2020 

20A B.1.19 

HCP 2 April 2020 hCoV-19/USA/WI-UW-
259/2020 

20A B.1.19 

HCP 3 April 2020 hCoV-19/USA/WI-UW-
260/2020 

20C B.1 

Household contact 
(HCP 1) 

April 2020 hCoV-19/USA/WI-UW-
120/2020 

20A B.1.19 

patient A March 2020 hCoV-19/USA/WI-UW-
118/2020 

20C B.1 

patient B March 2020 hCoV-19/USA/WI-UW-
110/2020 

20A B.1.139 

 
Epidemiological information 

HCP 1 tested positive for SARS-CoV-2 after providing care for two SARS-CoV-2 positive 

patients, patients A and B. HCP 1 also had a household contact who tested positive for 

SARS-CoV-2 16 days before HCP 1. In the week following HCP 1’s positive test, two 

additional HCP, HCP 2 and HCP 3 tested positive for SARS-CoV-2. HCPs 1, 2, and 3 all 

work in the same department, but we do not know whether these individuals had any 

high-risk contact with HCP 1 before their positive test results.  
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Alignment

 

Phylogeny 

 

Notes 

This case was published as an independent case report in Emerging Infectious Disease 

224 
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Report #3. 2020-06-04.  

 
Likely source of HCP infection 

HCP 1. Outside community.   

 

Sample 
type 

Sample collection 
date 

GISAID identifier Clade 
(Nextstrain) 

Lineage 
(Pangolin) 

HCP 1 May 2020 hCoV-19/USA/WI-UW-
388/2020 

20A B.1.139 

HCP-C Sample was not available 

patient A May 2020 hCoV-19/USA/WI-UW-
386/2020 

20A B.1.139 

patient B May 2020 hCoV-19/USA/WI-UW-
390/2020 

20A B.1.139 

patient C May 2020 hCoV-19/USA/WI-UW-
389/2020 

20A B.1.139 

patient D May 2020 hCoV-19/USA/WI-UW-
387/2020 

20A B.1.139 

 
Epidemiological information 

HCP 1 did not have direct contact with any of the patients included here. In this case, a 

household contact (HCP-C) of HCP 1 also works in healthcare, but in a different 

healthcare facility than HCP 1. The healthcare facility employing HCP-C was experiencing 

a COVID-19 outbreak at the time that HCP 1 tested positive. Patients A-D were patient 

samples collected from the HCP-C outbreak. A sample from the HCP-C was not available 

for comparison. Given the similarity in viral sequences between HCP 1 and all four 

patients from the outside healthcare facility, it is likely HCP 1 was exposed/infected via 

their household contact, who was likely exposed through patient contact.  
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Alignment

 
 
Phylogeny 
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Report #4. 2020-06-04.  

 
Likely source of HCP infection 

HCP 1. Patient source (patient D).  

 

Sample 
type 

Sample collection 
date 

GISAID identifier Clade 
(Nextstrain) 

Lineage 
(Pangolin) 

HCP 1 May 2020 hCoV-19/USA/WI-UW-
391/2020 

20A B.1.139 

patient A May 2020 hCoV-19/USA/WI-UW-
392/2020 

20A B.1.276 

patient B May 2020 hCoV-19/USA/WI-UW-
393/2020 

20A B.1.139 

patient C May 2020 N/A - no consensus sequence 
 

patient D May 2020 hCoV-19/USA/WI-UW-
389/2020 

20A B.1.139 

 
Epidemiological information 

In the two weeks before symptom onset, HCP 1 provided direct care to patients A-D. HCP 

1 wore appropriate PPE while providing care and was also present during patient D’s 

treatment with the Aerobika nebulizer.  

 
Alignment 
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Phylogeny 

 
Notes 

The Aerobika nebulizer was added to the list of aerosol-generating procedures requiring 

enhanced PPE based on this case.  
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Report #5. 2020-07-08.  

 
Likely source of HCP infection 

HCP 1. Outside community.  

HCP 2. Outside community (likely source was HCP 1, but infection took place outside of 

the workplace).   

 

Sample 
type 

Sample collection 
date 

GISAID identifier Clade 
(Nextstrain) 

Lineage 
(Pangolin) 

HCP 1 June 2020 hCoV-19/USA/WI-UW-
588/2020 

20C B.1 

HCP 2 June 2020 hCoV-19/USA/WI-UW-
610/2020 

20C B.1 

patient A June 2020 hCoV-19/USA/FL-UW-
473/2020 

20A B.1.162 

patient B June 2020 hCoV-19/USA/WI-UW-
469/2020 

20A B.1.162 

patient C June 2020 hCoV-19/USA/WI-UW-
497/2020 

20A B.1.139 

patient D June 2020 hCoV-19/USA/WI-UW-
493/2020 

20A B.1.139 

patient E June 2020 hCoV-19/USA/WI-UW-
479/2020 

20A B.1.139 

patient F June 2020 N/A - no consensus sequence 

 
Epidemiological information 

HCP 1 had direct contact while wearing appropriate PPE with patients A-E. HCP 1 and 

HCP 2 had unmasked interactions (>15 mins) with each other outside of the workplace. 

HCP 2 did not have contact with any SARS-CoV-2 positive patients in the 14 days before 

symptom onset.  
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Alignment

 

Phylogeny 
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Report #6. 2020-08-13. 

 
Likely source of HCP infection 

HCP 1. Outside community (based on epidemiological risk factors).  

HCP 2. Employee source (likely source was HCP 1).   

 

Sample 
type 

Sample collection 
date 

GISAID identifier Clade 
(Nextstrain) 

Lineage 
(Pangolin) 

HCP 1 June 2020 hCoV-19/USA/WI-UW-
520/2020 

20A B.1.139 

HCP 2 June 2020 hCoV-19/USA/WI-UW-
726/2020 

20A B.1.139 

 
Epidemiological information 

HCP 1 had a high-risk exposure event in the community before testing positive. This event 

was indoors, unmasked, and lasted longer than 15 minutes. HCP 1 works in the same 

department as HCP 2. Neither HCP 1 nor HCP 2 provided direct care to patients 

diagnosed with COVID-19 in the 14 days before their symptom onset. HCP 2 reported 

wearing a mask around all coworkers except while eating in the breakroom. HCP 2 reports 

removing their mask while eating, but maintaining a 6-foot physical distance from others 

during this time.  
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Alignment

 
 
Phylogeny
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Report #7. 2020-08-04. 

 
Likely source of HCP infection 

HCP 1. Outside community.  

 

Sample 
type 

Sample collection 
date 

GISAID identifier Clade 
(Nextstrain) 

Lineage 
(Pangolin) 

HCP 1 July 2020 hCoV-19/USA/WI-UW-
973/2020 

20C B.1.2 

patient A July 2020 N/A - no consensus sequence 
 

patient B July 2020 N/A - no consensus sequence 
 

patient C July 2020 N/A - no consensus sequence 
 

patient D July 2020 N/A - no consensus sequence 
 

patient E July 2020 N/A - no consensus sequence 
 

patient F July 2020 hCoV-19/USA/WI-UW-
852/2020 

20A B.1.139 

patient G July 2020 N/A - no consensus sequence 
 

patient H July 2020 hCoV-19/USA/WI-UW-
870/2020 

20A B.1.139 

patient I July 2020 hCoV-19/USA/WI-UW-
847/2020 

20A B.1.139 

patient J July 2020 N/A - no consensus sequence 
 

patient K July 2020 N/A - no consensus sequence 
 

patient L July 2020 hCoV-19/USA/WI-UW-
927/2020 

20A B.1.139 

patient M July 2020 hCoV-19/USA/WI-UW-
878/2020 

20C B.1.369 
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patient N July 2020 N/A - no consensus sequence 
 

patient O July 2020 hCoV-19/USA/WI-UW-
886/2020 

20A B.1.162 

patient P July 2020 hCoV-19/USA/WI-UW-
880/2020 

20A B.1.139 

patient Q July 2020 hCoV-19/USA/WI-UW-
894/2020 

20B B1.1 

patient R July 2020 N/A - no consensus sequence 
 

patient S July 2020 hCoV-19/USA/WI-UW-
895/2020 

20C B.1.1369 

patient T July 2020 hCoV-19/USA/WI-UW-
876/2020 

20C B.1.369 

patient U July 2020 hCoV-19/USA/WI-UW-
931/2020 

20C B.1.369 

patient V July 2020 N/A - no consensus sequence 
 

patient W July 2020 N/A - no consensus sequence 
 

patient X July 2020 hCoV-19/USA/WI-UW-
898/2020 

20A B.1.369 

patient Y July 2020 hCoV-19/USA/WI-UW-
883/2020 

20C B.1 

patient Z July 2020 N/A - no consensus sequence 
 

patient AA July 2020 N/A - no consensus sequence 
 

 
Epidemiological information 

HCP 1 collected nasopharyngeal specimens from patients with suspected COVID-19. 

HCP 1 wore appropriate PPE while collecting these specimens and reported no breach 

in PPE. Patients A-AA were collected in the 14 days before symptom onset in HCP 1.  
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Alignment

 
 
Phylogeny 
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Report #8. 2020-08-18. 

 
Likely source of HCP infection 

HCP 1. Outside community.  

 

Sample 
type 

Sample collection 
date 

GISAID identifier Clade 
(Nextstrain) 

Lineage 
(Pangolin) 

HCP 1 July 2020 hCoV-19/USA/WI-UW-
1022/2020 

20B B.1.1.73 

patient A July 2020 N/A - no consensus sequence 
 

patient B Unknown  N/A - no consensus sequence 
 

patient C July 2020 N/A - no consensus sequence 
 

patient D July 2020 hCoV-19/USA/WI-UW-
923/2020 

20A B.1.240 

patient E June 2020 hCoV-19/USA/WI-UW-
614/2020 

20C B.1.330 

patient F July 2020 hCoV-19/USA/WI-UW-
875/2020 

20C B.1.369 

patient G July 2020 hCoV-19/USA/WI-UW-
889/2020 

20A B.1.139 

patient H July 2020 hCoV-19/USA/WI-UW-
1100/2020 

20A B.1.139 

 
Epidemiological information 

HCP 1 likely did not have direct interactions with any of the patients listed here. HCP 1 

did, however, perform cleaning duties in the rooms of each of these patients in the 14 

days before symptom onset.  
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Alignment

 

Phylogeny 
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Report #9. 2020-08-21. 

 
Likely source of HCP infection 

HCP 1. Outside community.  

 

Sample 
type 

Sample collection 
date 

GISAID identifier Clade 
(Nextstrain) 

Lineage 
(Pangolin) 

HCP 1 July 2020 hCoV-19/USA/WI-UW-
965/2020 

20B B.1.1.73 

patient A July 2020 hCoV-19/USA/WI-UW-
765/2020 

20A B.1.139 

patient B July 2020 hCoV-19/USA/WI-UW-
792/2020 

20A B.1.139 

patient C July 2020 hCoV-19/USA/WI-UW-
761/2020 

20C B.1.3 

patient D July 2020 hCoV-19/USA/WI-UW-
781/2020 

20A B.1.139 

patient E July 2020 hCoV-19/USA/WI-UW-
794/2020 

20A B.1.139 

patient F July 2020 hCoV-19/USA/WI-UW-
796/2020 

20C B.1.294 

patient G July 2020 hCoV-19/USA/WI-UW-
790/2020 

20A B.1.139 

patient H July 2020 hCoV-19/USA/WI-UW-
768/2020 

20A B.1.139 

patient I July 2020 hCoV-19/USA/WI-UW-
803/2020 

20A B.1.162 

patient J July 2020 N/A - no consensus sequence 
 

patient K July 2020 hCoV-19/USA/MO-UW-
771/2020 

20C B.1.370 

patient L July 2020 N/A - no consensus sequence 
 

patient M July 2020 N/A - no consensus sequence 
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patient N July 2020 hCoV-19/USA/WI-UW-
784/2020 

20A B.1 

patient O July 2020 hCoV-19/USA/WI-UW-
787/2020 

20A B.1.139 

patient P July 2020 N/A - no consensus sequence 
 

patient Q July 2020 hCoV-19/USA/WI-UW-
786/2020 

20A B.1.112 

patient R July 2020 hCoV-19/USA/WI-UW-
766/2020 

20C B.1.370 

patient S July 2020 hCoV-19/USA/WI-UW-
798/2020 

20A B.1 

 
Epidemiological information 

HCP 1 collected nasopharyngeal specimens from patients with suspected COVID-19. 

HCP 1 wore appropriate PPE while collecting these specimens and reported no breach 

in PPE. Patients A-S were collected in the 14 days before symptom onset in HCP 1.  
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Alignment

 

Phylogeny
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Report #10. 2020-08-26. 

 
Likely source of HCP infection 

HCP 1. Patient source (patient G).   

 

Sample 
type 

Sample collection 
date 

GISAID identifier Clade 
(Nextstrain) 

Lineage 
(Pangolin) 

HCP 1 August 2020 hCoV-19/USA/WI-UW-
1125/2020 

20A B.1.139 

patient A August 2020 hCoV-19/USA/WI-UW-
867/2020 

20A B.1.255 

patient B July 2020 hCoV-19/USA/WI-UW-
889/2020 

20A B.1.139 

patient C July 2020 N/A - no consensus sequence 
 

patient D July 2020 N/A - no consensus sequence 
 

patient E August 2020 N/A - no consensus sequence 
 

patient F July 2020 hCoV-19/USA/WI-UW-
923/2020 

20A B.1.240 

patient G July 2020 hCoV-19/USA/WI-UW-
1100/2020 

20A B.1.139 

patient H July 2020 hCoV-19/USA/WI-UW-
998/2020 

20B B.1.1.73 

patient I August 2020 hCoV-19/USA/WI-UW-
1035/2020 

20A B.1.162 

patient J July 2020 N/A - no consensus sequence 
 

patient K July 2020 N/A - no consensus sequence 
 

patient L July 2020 N/A - no consensus sequence 
 

patient M July 2020 hCoV-19/USA/WI-UW-
1054/2020 

20B B.1.1.73 
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patient N July 2020 hCoV-19/USA/WI-UW-
805/2020 

20C B.1.330 

patient O July 3030 hCoV-19/USA/WI-UW-
1090/2020 

20B B.1.1.73 

 
Epidemiological information 

HCP 1 had direct contact while wearing appropriate PPE with patients A-O in the 14 days 

before symptom onset.  

 

Alignment

 
 
Phylogeny 
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Report #11. 2020-09-11. 
 
Likely source of HCP infection 

HCP 1. Outside community.   

 

Sample 
type 

Sample collection 
date 

GISAID identifier Clade 
(Nextstrain) 

Lineage 
(Pangolin) 

HCP 1 August 2020 hCoV-19/USA/WI-UW-
1213/2020 

20C B.1.2 

patient A August 2020 N/A - no consensus sequence 
 

patient B August 2020 hCoV-19/USA/WI-UW-
1163/2020 

20B B.1.1.130 

patient C August 2020 hCoV-19/USA/WI-UW-
1240/2020 

20C B.1.2 

patient D August 2020 hCoV-19/USA/WI-UW-
1170/2020 

20A B.1.5 

 
Epidemiological information 

HCP 1 had direct contact while wearing appropriate PPE with patients A-D in the 14 

days before symptom onset. HCP 1 denied any lapses in PPE and did not interact with 

coworkers without a surgical mask on. 

 

Alignment
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Phylogeny
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Report #12. 2020-09-11. 

 
Likely source of HCP infection 

HCP 1. Inconclusive.  

HCP 2. Outside community.  

 

Sample 
type 

Sample collection 
date 

GISAID identifier Clade 
(Nextstrain) 

Lineage 
(Pangolin) 

HCP 1 August 2020 N/A - no consensus sequence 
 

HCP 2 August 2020 hCoV-19/USA/WI-UW-
1278/2020 

20A B.1.139 

patient A July 2020 hCoV-19/USA/WI-UW-
1100/2020 

20A B.1.139 

patient B July 2020 N/A - no consensus sequence 
 

patient C July 2020 N/A - no consensus sequence 
 

patient D August 2020 N/A - no consensus sequence 
 

patient E July 2020 hCoV-19/USA/WI-UW-
850/2020 

20C B.1.2 

patient F August 2020 hCoV-19/USA/WI-UW-
1248/2020 

20B B.1.1.244 

patient G August 2020 hCoV-19/USA/WI-UW-
1204/2020 

20A B.1.139 

patient H August 2020 N/A - no consensus sequence 
 

 
Epidemiological information  

HCP 1 and HCP 2 are household contacts and one or both of these HCP provided 

direct patient care to patients A-H while wearing appropriate PPE in the two weeks 

before their symptom onset.  
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Phylogeny 
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Report #13. 2020-09-14. 

 
Likely source of HCP infection 

HCP 1. Outside community.   

 

Sample 
type 

Sample collection 
date 

GISAID identifier Clade 
(Nextstrain) 

Lineage 
(Pangolin) 

HCP 1 August 2020 hCoV-19/USA/WI-UW-
1305/2020 

20A B.1.139 

patient A July 2020 hCoV-19/USA/WI-UW-
1100/2020 

20A B.1.139 

patient B August 2020 hCoV-19/USA/WI-UW-
1231/2020 

20C B.1.337 

patient C August 2020 N/A - no consensus sequence 
 

patient D August 2020 N/A - no consensus sequence 
 

 
Epidemiological information 

HCP 1 provided direct care while wearing appropriate PPE to patients A-D in the 14 

days before symptom onset. 
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Phylogeny
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Report #14. 2020-09-22.  

 
Likely source of HCP infection 

HCP 1. Outside community. 

HCP 2. Combined patient and employee cluster. 

HCP 3. Inconclusive. 

HCP 4. Combined patient and employee cluster. 

HCP 5. Outside community.  

HCP 6. Employee source (HCP 9 is a likely source of infection, although the HCP 6 → 

HCP 9 is also possible). 

HCP 7. Outside community.  

HCP 8. Inconclusive.  

HCP 9. Outside community. 

HCP 10. Inconclusive.  

HCP 11. Combined patient and employee cluster. 

HCP 12. Combined patient and employee cluster. 

HCP 13. Combined patient and employee cluster. 

HCP 14. Inconclusive. 

HCP 15. Inconclusive. 

HCP 16. Combined patient and employee cluster. 

HCP 17. Combined patient and employee cluster. 

HCP 18. Inconclusive. 

HCP 19. Inconclusive. 

HCP 20. Combined patient and employee cluster. 
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HCP 21. Inconclusive. 

 
Patients A and C are the patients involved in this combined patient and employee 

cluster.  

 

Sample 
type 

Sample collection 
date 

GISAID identifier Clade 
(Nextstrain) 

Lineage 
(Pangolin) 

HCP 1 September 2020 hCoV-19/USA/WI-UW-
1348/2020 

20G B.1.2 

HCP 2 September 2020 hCoV-19/USA/WI-UW-
1344/2020 

20G B.1.2 

HCP 3 September 2020 N/A - no consensus sequence 

HCP 4 September 2020 hCoV-19/USA/WI-UW-
1412/2020 

20G B.1.2 

HCP 5 September 2020 hCoV-19/USA/WI-UW-
1325/2020 

20G B.1.5 

HCP 6 September 2020 hCoV-19/USA/WI-UW-
1480/2020 

20B B.1.1.251 

HCP 7 September 2020 hCoV-19/USA/WI-UW-
1477/2020 

20G B.1.369 

HCP 8 September 2020 N/A - no consensus sequence 

HCP 9 September 2020 hCoV-19/USA/WI-UW-
1475/2020 

20B B.1.1.251 

HCP 10 September 2020 N/A - no consensus sequence 

HCP 11 September 2020 hCoV-19/USA/WI-UW-
1441/2020 

20G B.1.2 

HCP 12 September 2020 hCoV-19/USA/WI-UW-
1445/2020 

20G B.1.2 

HCP 13 September 2020 hCoV-19/USA/WI-UW-
1452/2020 

20G B.1.2 

HCP 14 September 2020 N/A - no consensus sequence 
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HCP 15 September 2020 N/A - no consensus sequence 

HCP 16 September 2020 hCoV-19/USA/WI-UW-
1459/2020 

20G B.1.2 

HCP 17 September 2020 hCoV-19/USA/WI-UW-
1436/2020 

20G B.1.2 

HCP 18 September 2020 N/A - no consensus sequence 

HCP 19 September 2020 N/A - no consensus sequence 

HCP 20 September 2020 hCoV-19/USA/WI-UW-
1461/2020 

20G B.1.2 

HCP 21 September 2020 N/A - no consensus sequence 

patient A September 2020 hCoV-19/USA/WI-UW-
1406/2020 

20G B.1.2 

patient B September 2020 hCoV-19/USA/WI-UW-
1499/2020 

20G B.1.2 

patient C September 2020 hCoV-19/USA/WI-UW-
1900/2020 

20G B.1.2 

patient D September 2020 hCoV-19/USA/WI-UW-
1941/2020 

20G B.1.2 

 
Epidemiological information 

These HCP work in the same department. HCP 2, 4, 11, 12, 13, 16, and 20 provided 

direct care to patient A and/or patient C. HCP 17 and HCP 1 did not provide direct care 

to patient A or C.  
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Alignment

 
 
Phylogeny 
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Report #15. 2020-09-18.   

 
Likely source of HCP infection 

HCP 1. Outside community.   

 

Sample 
type 

Sample collection 
date 

GISAID identifier Clade 
(Nextstrain) 

Lineage 
(Pangolin) 

HCP 1 September 2020 hCoV-19/USA/WI-UW-
1347/2020 

20G B.1.2 

patient A August 2020 hCoV-19/USA/WI-UW-
1220/2020 

20G B.1.2 

 
Epidemiological information 

HCP 1 provided direct care to patient A while wearing appropriate PPE and with no 

reported lapses in PPE use.  

 

Alignment 
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Phylogeny 
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Report #16. 2020-10-29.   

 
Likely source of HCP infection 

HCP 1. Employee source (HCP 2).   

HCP 2. Inconclusive.  

HCP 3. Outside community.  

 

Sample 
type 

Sample collection 
date 

GISAID identifier Clade 
(Nextstrain) 

Lineage 
(Pangolin) 

HCP 1 September 2020 hCoV-19/USA/WI-UW-
1901/2020 

20G B.1.2 

HCP 2 September 2020 hCoV-19/USA/WI-UW-
1350/2020 

20G B.1.2 

HCP 3 September 2020 hCoV-19/USA/WI-UW-
1898/2020 

20A B.1 

 
Epidemiological information 

Contact tracing revealed HCP 2 worked for two days prior to symptom onset and may 

have had unmasked contact with HCP 1 during overlapping meal breaks. Contact tracing 

additionally revealed HCP 3 had a high-risk exposure even lasting >15 minutes in the 

outside community prior to testing positive.  
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Alignment 

 
 
Phylogeny 
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Report #17. 2020-10-29.   

 
Likely source of HCP infection 

HCP 1. Outside community.  

 

Sample 
type 

Sample collection 
date 

GISAID identifier Clade 
(Nextstrain) 

Lineage 
(Pangolin) 

HCP 1 September 2020 hCoV-19/USA/WI-UW-
1895/2020 

20C B.1.369 

patient A September 2020 N/A - no consensus sequence 
 

patient B July 2020 hCoV-19/USA/WI-UW-
774/2020 

20A B.1.139 

patient C August 2020 hCoV-19/USA/WI-UW-
1198/2020 

20A B.1.139 

patient D August 2020 hCoV-19/USA/WI-UW-
1166/2020 

20A B.1.139 

patient E August 2020 N/A - no consensus sequence 
 

patient F September 2020 N/A - no consensus sequence 
 

patient G August 2020 N/A - no consensus sequence 
 

patient H August 2020 hCoV-19/USA/WI-UW-
1301/2020 

20C B.1 

patient I August 2020 N/A - no consensus sequence 
 

 
Epidemiological information 

HCP 1 provided direct care to patients A-I while wearing appropriate PPE and with no 

reported lapses in PPE use. HCP 1 also had a household contact with confirmed SARS-

CoV-2 infection who had symptoms onset prior to HCP 1’s symptom onset.  
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Alignment 

 
 
Phylogeny 
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Report #18. 2020-10-29.  

 
Likely source of HCP infection 

HCP 1. Outside community.  

HCP 2. Outside community.  

HCP 3. Outside community.  

 

Sample 
type 

Sample collection 
date 

GISAID identifier Clade 
(Nextstrain) 

Lineage 
(Pangolin) 

HCP 1 September 2020 hCoV-19/USA/WI-UW-
1475/2020 

20B B.1.1.251 

HCP 2 September 2020 hCoV-19/USA/WI-UW-
1896/2020 

20B B.1.1.251 

HCP 3 September 2020 hCoV-19/USA/WI-UW-
1894/2020 

20B B.1.1.251 

 
Epidemiological information 

HCP 1 worked with HCP 3. HCP 3 was a household contact of HCP 2. None of these 

HCP had direct interactions with patients with known SARS-CoV-2 infection.  

 
Alignment 
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Phylogeny
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Report #19. 2020-11-05.   

 
Likely source of HCP infection 

HCP 1. Outside community.  

 

Sample 
type 

Sample collection 
date 

GISAID identifier Clade 
(Nextstrain) 

Lineage 
(Pangolin) 

HCP 1 October 2020 hCoV-19/USA/WI-UW-
1928/2020 

19A B.1 

patient A September 2020 hCoV-19/USA/WI-UW-
1930/2020 

20G B.1.2 

 
Epidemiological information 

In the two weeks before symptom onset, HCP 1 provided direct care to patient A. HCP 1 

wore appropriate PPE while providing care and reported no lapses in PPE use.  

 
Alignment
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Phylogeny 
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Report #20. 2020-11-05.   

 
Likely source of HCP infection 

HCP 1. Outside community.  

 

Sample 
type 

Sample collection 
date 

GISAID identifier Clade 
(Nextstrain) 

Lineage 
(Pangolin) 

HCP 1 October 2020 hCoV-19/USA/WI-UW-
1931/2020 

20G B.1.2 

patient A September 2020 hCoV-19/USA/WI-UW-
1935/2020 

20A B.1 

 
Epidemiological information 

In the two weeks before symptom onset, HCP 1 provided direct care to patient A. HCP 1 

wore appropriate PPE while providing care and reported no lapses in PPE use.  
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Alignment

 

 
Phylogeny 
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Report #21. 2020-11-05.   
 
Likely source of HCP infection 

HCP 1. Outside community.  

HCP 2. Outside community.  

 

Sample 
type 

Sample collection 
date 

GISAID identifier Clade 
(Nextstrain) 

Lineage 
(Pangolin) 

HCP 1 October 2020 hCoV-19/USA/WI-UW-
1929/2020 

20G B.1.2 

HCP 2 October 2020 hCoV-19/USA/WI-UW-
1938/2020 

20B B.1.1.73 

patient A September 2020 N/A - no consensus sequence 
 

patient B September 2020 N/A - no consensus sequence 
 

patient C September 2020 hCoV-19/USA/WI-UW-
1934/2020 

20G B.1.2 

patient D September 2020 hCoV-19/USA/IL-UW-
1937/2020 

20G B.1.2 

patient E October 2020 N/A - no consensus sequence 
 

 

Epidemiological information 

HCP 1 and 2 worked in the same department and both provided direct patient care to 

patients A-E in the two weeks before their onset of symptoms. HCP 1 and HCP 2 reported 

no lapses in PPE with each other or with their patients.  
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Alignment

 

 
Phylogeny
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Report #22. 2020-11-05.   

 
Likely source of HCP infection 

HCP 1. Outside community.  

 

Sample 
type 

Sample collection 
date 

GISAID identifier Clade 
(Nextstrain) 

Lineage 
(Pangolin) 

HCP 1 October 2020 hCoV-19/USA/WI-UW-
1936/2020 

20G B.1.2 

patient A July 2020 hCoV-19/USA/WI-UW-
1100/2020 

20A B.1.139 

 
Epidemiological information  

HCP 1 performed a postmortem examination on patient A. At the time the patient expired, 

they were known to have an active COVID-19 infection.  

 

Alignment
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Phylogeny
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Report #23. 2020-11-05.   

 
Likely source of HCP infection 

HCP 1. Outside community (household contact).  

HCP 2. Employee source.  

HCP 3. Employee source.  

HCP 4. Employee source.  

HCP 5. Outside community.  

 

Sample 
type 

Sample collection 
date 

GISAID identifier Clade 
(Nextstrain) 

Lineage 
(Pangolin) 

HCP 1 October 2020 hCoV-19/USA/WI-UW-
1933/2020 

20G B.1.2 

HCP 2 October 2020 hCoV-19/USA/WI-UW-
1926/2020 

20G B.1.2 

HCP 3 October 2020 hCoV-19/USA/WI-UW-
1939/2020 

20G B.1.2 

HCP 4 October 2020 hCoV-19/USA/WI-UW-
1927/2020 

20G B.1.2 

HCP 5 October 2020 hCoV-19/USA/WI-UW-
1932/2020 

20A B.1.139 

 
Epidemiological information 

All of these HCP work in the same department, with the exception of HCP 1 who is a 

household contact of HCP 2. HCP 2-5 reported sharing an unmasked meal together prior 

to testing positive.  
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Alignment

 

 

Phylogeny
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Report #25. 2020-12.08.  

 
Likely source of HCP infection 

HCP 1. Patient source (patient A).  

 

Sample 
type 

Sample collection 
date 

GISAID identifier Clade 
(Nextstrain) 

Lineage 
(Pangolin) 

HCP 1 October 2020 hCoV-19/USA/WI-UW-
2326/2020 

20C B.1.2 

patient A October 2020 hCoV-19/USA/WI-UW-
2362/2020 

20C B.1.2 

patient B October 2020 hCoV-19/USA/WI-UW-
2389/2020 

20C B.1.2 

 
Epidemiological information 

In the two weeks before symptom onset, HCP 1 provided direct care to patients A and B. 

  

Alignment
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Phylogeny
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Report #27. 2020-12.09.  

 
Likely source of HCP infection 

HCP 1. Outside community.  

HCP 2. Outside community.  

HCP 3. Outside community.  

HCP 4. Outside community.  

 

Sample 
type 

Sample collection 
date 

GISAID identifier Clade 
(Nextstrain) 

Lineage 
(Pangolin) 

HCP 1 October 2020 hCoV-19/USA/WI-UW-
2226/2020 

20A B.1 

HCP 2 October 2020 N/A 20G B.1.2 

HCP 3 October 2020 hCoV-19/USA/WI-UW-
2227/2020 

20G B.1.2 

HCP 4 October 2020 hCoV-19/USA/WI-UW-
2228/2020 

20G B.1.2 

patient A September 2020 hCov-19/USA/IL-UW-
2327/2020 

20A B.1 

patient B September 2020 hCoV-19/USA/WI-UW-
1972/2020 

20G B.1 

 
Epidemiological information 

HCP 1-4 work in the same department. HCP 1-4 all had direct interactions with patients 

A and/or B during the 14 days prior to symptom onset.  
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Alignment

 

 
Phylogeny
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Report #28. 2020-12.09.  

 
Likely source of HCP infection 

HCP 1. Outside community.  

HCP 2. Outside community.  

HCP 3. Outside community.  

 

Sample 
type 

Sample collection 
date 

GISAID identifier Clade 
(Nextstrain) 

Lineage 
(Pangolin) 

Patient A November 2020 hCoV-19/USA/WI-UW-
2265/2020 

20G B.1.2 

HCP 1 October 2020 hCoV-19/USA/WI-UW-
2266/2020 

20G B.1.2 

HCP 2 October 2020 hCoV-19/USA/WI-UW-
2267/2020 

20G B.1.2 

HCP 3 October 2020 hCoV-19/USA/WI-UW-
2268/2020 

20G B.1.2 

 
Epidemiological information 

HCP 1-3 provided direct patient care to patient A in the 14 days before symptom onset. 

All HCP reported appropriate use of PPE with no lapses. HCP 1 and 2 had no known 

interactions prior to their infections. HCP 2 and HCP 3 both attended a high-risk 

community event for greater than 15 minutes together.  
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Alignment

 

 
Phylogeny
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Report #29. 2020-12.09.  

 
Likely source of HCP infection 

HCP 1. Employee source (HCP 3).  

HCP 2. Outside community.  

HCP 3. Outside community.  

 

Sample 
type 

Sample collection 
date 

GISAID identifier Clade 
(Nextstrain) 

Lineage 
(Pangolin) 

HCP 1 November 2020 hCoV-19/USA/WI-UW-
2269/2020 

20G B.1.2 

HCP 2 November 2020 hCoV-19/USA/WI-UW-
2270/2020 

20G B.1.2 

HCP 3 November 2020 hCoV-19/USA/WI-UW-
2271/2020 

20G B.1.2 

 
Epidemiological information 

HCP 1-3 work in the same department. HCP 1 and 3 attended an in person meeting 

together and reported sitting 6-feet apart while wearing masks. HCP 2 did not attend this 

meeting. HCP 3 reported symptoms before HCP 1.  

 

Alignment
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Phylogeny
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Report #30. 2020-12.09.  

 
Likely source of HCP infection  

HCP 1. Patient source (patient C).  

 

Sample 
type 

Sample collection 
date 

GISAID identifier Clade 
(Nextstrain) 

Lineage 
(Pangolin) 

HCP 1 November 2020 hCoV-19/USA/WI-UW-
2272/2020 

20G B.1.2 

patient A November 2020 hCov-19/USA/WI-UW-
2324/2020 

20G B.1.2 

patient B October 2020 hCoV-19/USA/WI-UW-
2273/2020 

20G B.1.2 

patient C November 2020 hCoV-19/USA/WI-UW-
2274/2020 

20G B.1.2 

patient D November 2020 hCoV-19/USA/WI-UW-
2275/2020 

20A B.1.139 

patient E November 2020 hCoV-19/USA/WI-UW-
2276/2020 

20G B.1.2 

 
Epidemiological information 

HCP 1 provided direct patient care to patients A-E and reported no lapses in PPE use.  

 

Alignment
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Phylogeny
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Report #31. 2020-12.09.   

 
Likely source of HCP infection  

HCP 1. Outside community.  

HCP 2. Outside community.  

HCP 3. Outside community.  

HCP 4. Employee source (HCP 2).  

HCP 5. Employee source (HCP 2).  

HCP 6. Outside community.  

HCP 7. Outside community.  

 

Sample 
type 

Sample collection 
date 

GISAID identifier Clade 
(Nextstrain) 

Lineage 
(Pangolin) 

HCP 1 November 2020 hCoV-19/USA/WI-UW-
2312/2020 

20C B.1.363 

HCP 2 November 2020 hCoV-19/USA/WI-UW-
2277/2020 

20G B.1.2 

HCP 3 November 2020 hCoV-19/USA/WI-UW-
2278/2020 

20G B.1.2 

HCP 4 November 2020 hCoV-19/USA/WI-UW-
2279/2020 

20G B.1.2 

HCP 5 November 2020 hCoV-19/USA/WI-UW-
2280/2020 

20G B.1.2 

HCP 6 November 2020 hCoV-19/USA/WI-UW-
2281/2020 

20G B.1.2 

HCP 7 November 2020 hCoV-19/USA/WI-UW-
2282/2020 

20G B.1.2 

 
Epidemiological information 

These HCP are all in the same department. Their level of interaction with each other is 

unclear.  
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Alignment

 

 
Phylogeny
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Report #32. 2020-12.09.   

 
Likely source of HCP infection  

HCP 1. Outside community.  

HCP 2. Outside community.  

HCP 3. Outside community.  

HCP 4. Outside community.  

HCP 5. Outside community.  

HCP 6. Outside community.  

HCP 7. Outside community.  

HCP 8. Outside community.  

HCP 9. Outside community.  

HCP 10. Outside community.  

HCP 11. Outside community.  

HCP 12. Outside community.  

HCP 13. Inconclusive (could be HCP 8, but these samples were collected >14 apart).  

HCP 14. Employee source (HCP 8 or HCP 13).  
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Sample 
type 

Sample collection 
date 

GISAID identifier Clade 
(Nextstrain) 

Lineage 
(Pangolin) 

HCP 1 October 2020 hCoV-19/USA/WI-UW-
2283/2020 

20G B.1.370 

HCP 2 October 2020 hCoV-19/USA/WI-UW-
2284/2020 

20G B.1.2 

HCP 3 October 2020 hCoV-19/USA/WI-UW-
2285/2020 

20A B.1.216 

HCP 4 October 2020 hCoV-19/USA/WI-UW-
2286/2020 

20G B.1.2 

HCP 5 October 2020 hCoV-19/USA/WI-UW-
2390/2020 

20G B.1.2 

HCP 6 October 2020 hCoV-19/USA/WI-UW-
2391/2020 

20G B.1 

HCP 7 November 2020 hCoV-19/USA/WI-UW-
2287/2020 

20G B.1.2 

HCP 8 November 2020 hCoV-19/USA/WI-UW-
2288/2020 

20G B.1.2 

HCP 9 November 2020 hCoV-19/USA/WI-UW-
2289/2020 

20G B.1.2 

HCP 10 November 2020 hCoV-19/USA/WI-UW-
2313/2020 

20G B.1.2 

HCP 11 November 2020 hCoV-19/USA/WI-UW-
2290/2020 

20G B.1.2 

HCP 12 November 2020 hCoV-19/USA/WI-UW-
2291/2020 

20G B.1.2 

HCP 13 November 2020 hCoV-19/USA/WI-UW-
2292/2020 

20G B.1.2 

HCP 14 November 2020 hCoV-19/USA/WI-UW-
2293/2020 

20G B.1.2 

patient A November 2020 hCoV-19/USA/WI-UW-
2325/2020 

20B B.1.1.73 

 
Epidemiological information 

HCP 1-14 work in the same department together. One or more of these HCP provided direct 

patient care to patient A.  
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Alignment

 

 
Phylogeny
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Report #33. 2021-01-03.   

 
Likely source of HCP infection  

HCP 1. Combined patient and employee cluster. 

HCP 2. Combined patient and employee cluster. 

HCP 3. Combined patient and employee cluster. 

HCP 4. Outside community.  

HCP 5. Combined patient and employee cluster. 

 
Patients A, B and C are the patients involved in this combined patient and employee 

cluster.  

 

Sample 
type 

Sample collection 
date  

GISAID identifier Clade 
(Nextstrain) 

Lineage 
(Pangolin) 

HCP 1 December 2020 hCoV-19/USA/WI-UW-
2394/2020 

20G B.1.2 

HCP 2 December 2020 hCoV-19/USA/WI-UW-
2396/2020 

20G B.1.2 

HCP 3 December 2020 hCoV-19/USA/WI-UW-
2451/2020 

20G B.1.2 

HCP 4 December 2020 hCoV-19/USA/WI-UW-
2452/2020 

20G B.1.2 

HCP 5 December 2020 hCoV-19/USA/WI-UW-
2450/2020 

20G B.1.2 

patient A December 2020 hCoV-19/USA/WI-UW-
2392/2020 

20G B.1.2 

patient B December 2020 hCoV-19/USA/WI-UW-
2393/2020 

20G B.1.2 

patient C December 2020 hCoV-19/USA/IL-UW-
2449/2020 

20G B.1.2 

 



   

 

331 

Epidemiological information 

HCP 1-5 provided direct care to one or more of these patients, A-C. HCP 1-5 may have 

also interacted with each other. No lapses in PPE were reported. Patient A had the 

earliest reported symptom onset.  

 

Alignment

 

 
Phylogeny
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Report #34. 2021-01-03.   

 
Likely source of HCP infection  

HCP 1. Outside community.  

 

Sample 
type 

Sample collection 
date 

GISAID identifier Clade 
(Nextstrain) 

Lineage 
(Pangolin) 

HCP 1 December 2020 hCoV-19/USA/WI-UW-
2453/2020 

20G B.1.2 

patient A December 2020 hCoV-19/USA/WI-UW-
2395/2020 

20G B.1.2 

 
Epidemiological information 

HCP 1 provided direct care to patient A during the 14 days prior to HCP 1's symptom 

onset.  HCP 1 reported no lapse in PPE when providing care to patient A. 

 

Alignment
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Phylogeny

 

 
Supplemental file 2 can be accessed here.  
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Chapter 7: 

Conclusions and future directions 

 
The emergence of zoonotic viruses is one of the greatest threats to global health security. 

More than half of all known human pathogens can be traced to a zoonotic source 2,4,5. 

Yet, the capacity for RNA viruses to rapidly adapt to new host environments and to 

respond to shifting selective pressures is not completely understood. In this dissertation, 

I investigated the evolutionary processes by which zoonotic RNA viruses adapt to 

mammalian hosts and I combine principles of viral evolution with epidemiology and 

population health to investigate the early patterns of SARS-CoV-2 spread in the state of 

Wisconsin.   

 

Altogether, this work suggests the effects of randomness on viral populations within and 

between individual hosts are a previously underappreciated brake to the pace of viral 

adaptation and host-switching for influenza A virus (IAV) and SARS-CoV-2. Additionally, 

this work underscores the value of genomic epidemiology early in a pandemic to 

understand patterns of viral transmission in different populations and to assess the impact 

of public health guidelines and interventions on a rolling basis.  

 

The effects of randomness contribute significantly to viral evolutionary dynamics 

within individual hosts  

In chapter 2, we examined the within- and between-host viral dynamics of wildtype H7N9 

viruses in a ferret model system. On its face, the fact that fully avian H7N9 viruses 
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efficiently replicate and transmit in a ferret model is somewhat alarming and raises the 

question: if wildtype H7N9 viruses can do this, what is stopping these viruses from 

causing a full-blown pandemic? In this chapter, we hypothesized that HPAI and LPAI 

avian H7N9 viruses would be under strong selective pressure to become more 

mammalian in the context of a ferret model system. To our surprise, we found no evidence 

to support this hypothesis. Instead, we found HPAI and LPAI H7N9 viruses in ferrets are 

under mild purifying selection and new mutations were generally being purged from the 

viral population, which is a signature classically associated with a virus that is at least 

moderately well adapted to its host. This is not to say the avian H7N9 viruses are optimally 

adapted to ferrets or mammals more generally, but they do replicate to high titer, transmit 

often, and are not subject to diversifying or positive selection to any measurable degree. 

I will expand on these nuances of these conclusions in the theoretical framework outlined 

below.  

 

In this study we found HPAI and LPAI H7N9 viral diversity was dominated by low-

frequency iSNVs in ferrets, which is consistent with purifying selection and population 

expansion. By leveraging the longitudinal sampling schema, we evaluated iSNV 

dynamics over time and observed some surprising patterns. Frequencies of specific 

mutations in donor ferrets, even in the case of known mammalian adaptive mutations, did 

not predict their frequencies post-transmission. We estimated a very narrow transmission 

bottleneck size for H7N9 virus in ferrets where a single virus (95% CI: 1-3) is likely 

responsible for initiating infection following transmission. Interestingly, while the H1N1 

transmission bottlenecks were narrow (6, 95% CI: 3-11), they were not as stringent as 
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the H7N9 pairs. The vast majority of H7N9 iSNVs arising in ferret hosts are lost during 

transmission and because so few viruses found infection following transmission, any 

iSNV that happens to be present in a transmitting virus’ genome will likely become fixed 

in the post-transmission viral population. Together, we speculate that purifying selection, 

randomness, and tight bottlenecks combine to severely constrain the ability of H7N9 

viruses to efficiently adapt to mammalian hosts in typical spillover infections, even with 

onward airborne transmission. 

 

In chapter 3, we did a similar study, but instead of avian H7N9 in ferrets, we looked at 

SARS-CoV-2 in domestic cats. This study was among the first to evaluate the within- and 

between-host dynamics of SARS-CoV-2 in a mammalian model system so we did not 

know what to expect. In this study, we showed that SARS-CoV-2 genetic variation, like 

H7N9 viruses in ferrets, is predominantly influenced by genetic drift and purifying 

selection. Additionally, we found transmission bottlenecks were very narrow (combined 

estimate = 5, 99% CI 1-7), which was at odds with one 54 of the two other available studies 

that had also measured bottleneck sizes. Subsequent research that has been done since, 

including the work presented in chapter 4, supports narrow transmission bottlenecks in 

SARS-CoV-2. While we observed many similarities between SARS-CoV-2 evolutionary 

dynamics in domestic cats and H7N9 viruses in ferrets, there was one notable difference. 

A variant at amino acid position 655 in Spike (H655Y) arose rapidly in index cats, 

persisted at intermediate frequencies in the donor cats, and then became fixed following 

transmission in two of three pairs. This same variant has been shown to confer escape 

from human monoclonal antibodies and circulates in humans on multiple SARS-CoV-2 
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genetic lineages and is one of the defining mutations in the P.1. VOC. Although we did 

no functional studies to investigate the phenotypic impact of S H655Y in cats specifically, 

we speculated that S H655Y could have improved Spike fusion efficiency and host cell 

entry in cats. This was a subtle, but notable departure from the otherwise stochastic 

evolutionary dynamics of SARS-CoV-2 in a mammalian host.  

 

In our third and final within- and between-host study, presented in chapter 4, we carefully 

characterized SARS-CoV-2 viral diversity in 133 natural infections in human hosts 

including 28 putative household transmission pairs and we took advantage of our large 

consensus-level surveillance dataset from the community where those individuals reside 

to compare within-host diversity to population-level diversity. We found most SARS-CoV-

2 infections were characterized by very few iSNVs and the majority of these were low 

frequency. Most iSNVs detected in individuals were not detected in the local or global 

consensus genomes and were very rarely detected in downstream branches on the local 

and global phylogenetic trees. Even among putative household transmission pairs, iSNVs 

were shared very infrequently and the transmission bottleneck was narrow. We reasoned 

that the combination of low within-host diversity, narrow transmission bottlenecks, and 

infrequently propagation along transmission chains combines to slow the rate of novel 

variant emergence and the pace of viral evolution in typical, acute human infections. 

 

Looking across these three within-host studies, viral diversity of H7N9 in ferrets and 

SARS-CoV-2 in cats and humans is subject to the combined effects of purifying selection 

and genetic drift with no evidence of diversifying selection. Airborne transmission in all of 
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these cases is characterized by a very narrow bottleneck where very few viruses make it 

out of a donor and into a recipient, which results in a dramatic reduction in viral diversity 

across the transmission event. While the similarities are obvious, there are some key 

differences as well. It is clear that within-host diversity is even more limited in SARS-CoV-

2 infections than IAV infections. Additionally, the rapid outgrowth and preferential 

transmission of Spike H655Y in the cat transmission study was the only exception to the 

otherwise stochastic evolutionary dynamics driving SARS-CoV-2 and H7N9 in 

mammalian hosts. In an effort to unify these observations and the results of two previous 

studies led by past graduates of the Friedrich lab 204,205, I describe a theoretical model of 

respiratory virus evolution within and between hosts in the following section.  

 

A proposed framework zoonotic respiratory RNA virus evolution within and 

between hosts 

As I described in the introduction of this dissertation, positive selection appears to be a 

major driver of IAV and SARS-CoV-2 globally, but it does not drive evolution within hosts. 

Although the work in SARS-CoV-2 is more recent and limited, study after study has shown 

this to be true for seasonal IAV 122,133,376 and for avian IAV 135,239. This has perplexed 

many virologists because RNA viruses appear to have many of the traits required for 

efficient and deterministic selection. RNA viruses generate plenty of genetic diversity, the 

substrate for evolution, through error-prone RNA polymerases, reassortment, and 

homologous recombination (in the case of SARS-CoV-2). Adaptive evolution is most 

efficient in large populations and RNA viruses often appear to achieve large population 

sizes via explosive replication within hosts. Even still, respiratory RNA viruses must 
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contend with genetic drift and narrow transmission bottlenecks and it appears that very 

often the effects of these stochastic processes dominate viral evolutionary trajectories 

within and between hosts.  

 

If we accept that stochasticity drives evolution of RNA respiratory viruses at the level of 

the individual host, how can we explain IAV antigenic drift and positive selection of SARS-

CoV-2 VOCs on a population scale? Well, I think RNA respiratory viruses might have 

taken a page out of Charles F. Kettering’s playbook when he said “an inventor fails 999 

times, and if he succeeds once, he’s in. He treats his failures simply as practice shots.” 

By this I mean that I imagine RNA viruses overcome the effects of stochasticity and 

randomness within individuals by pursuing large numbers of infections in a host 

population. RNA viruses are often able to escape humoral immunity, significantly improve 

receptor specificity, and bolster transmissibility with relatively few mutations. So, suppose 

an RNA virus infects millions (IAV) of hosts in a single year, even a single “jackpot event” 

involving the onward transmission of a novel escape variant or equivalent might be all 

that a virus needs to initiate a selective sweep across a host population. It follows that the 

pace of adaptive evolution of any RNA virus would generally correspond to the volume of 

recent viral infections and this is consistent with rapid global evolution of SARS-CoV-2 

and limited global evolution of seasonal influenza. This comparison is not apples-to-

apples because there was no preexisting human immunity to SARS-CoV-2, which is 

clearly not the case for IAV.  
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While the total number of infections a respiratory RNA virus achieves may be a key 

predictor of evolutionary pace, another key factor is the position of a virus on its “fitness 

landscape” which captures all of the complex fitness “peaks” and “valleys” resulting from 

the many combinations of virus and host genotypes/environments. Figure 1 depicts a 

theoretical fitness landscape for IAV, which I will use to further illustrate these ideas. The 

y-axis of this figure represents virus genotypes as a virus transitions from avian to 

mammalian, the x-axis represents host genetics and conditions ranging from the avian 

reservoir to humans, and the z-axis (height) represents relative fitness at all possible x-y 

coordinates. The peaks and valleys shown here are conceptual and not derived from 

actual data. I have included five different IAV viruses in different host environments as 

colored dots and I will briefly discuss each of these below.  

 

The dark red virus represents a seasonal H1N1 virus replicating in a human host, which 

I positioned on a fitness peak. The contours of this landscape are likely very dynamic and 

a new fitness peak might emerge after this seasonal H1N1 infects a large number of hosts 

and subsequently must contend with host immune responses. The orange virus is on a 

similar fitness peak, but is an avian-adapted virus in an avian host, like a H7N9 virus in a 

water fowl.  

 

The yellow virus represents the avian H7N9 virus we investigated in ferret hosts in 

chapter 2. As outlined above, this virus appeared to be relatively well-adapted to ferret 

hosts so I placed them on a small fitness peak on this landscape. If a virus is on a fitness 

peak in this landscape, there are fewer possible genetic changes available to it that will 
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result in a fitness advantage (i.e. it is already towards the top of a fitness hill so it is hard 

for it move even further uphill). Consistent with this, we found no evidence of positive or 

adaptive evolution of these viruses in ferret hosts. Similarly, another recent study by 

Moncla et al. showed that while H5N1 spillover infections can generate low-frequency, 

mammalian-adaptive mutations, their spread is limited by purifying selection, genetic drift, 

and acute infection timeframes 239. A fitness peak in the upper right-hand corner of this 

landscape is likely taller than the peak H7N9 and H5N1 viruses in mammalian spillover 

infections are located on, but making the move toward that peak is tough. I can imagine 

two routes for the yellow virus (an avian virus in a mammalian model or a spillover 

infection) to move to the red virus (a seasonal human IAV): (1) incremental changes via 

antigenic drift across this landscape, but this would require movement through fitness 

valleys so this is pretty unlikely unless the total number of infections is massive or (2) a 

giant jump, which a virus might achieve through a major reassortment event, as has been 

seen in all IAV pandemics.  

 

The blue and green viruses represent genetically modified, partially avian and partially 

mammalian IAVs in two previous studies.  The blue virus represents an avian H5 HA 

protein in the background of a human H1N1 virus 205. The green virus represents a 1918-

like avian virus with engineered mammalian-adaptive mutations 204,208. Importantly, 

neither of these viruses exist in nature suggesting they are not fit and likely occupy valleys 

on this fitness landscape. While these viruses are subject to the same evolutionary 

constraints as the red, yellow and orange viruses (short infection times, genetic drift, and 

narrow transmission bottlenecks), the position of these viruses in a fitness valley means 
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that there are many possible genetic changes which will confer improved fitness. 

Diversifying selection and selective sweeps are much more likely to be detected in the 

context of viruses in this position. This is consistent with the results of this study, which 

were able to identify adaptive evolution and selective sweeps across the transmission 

bottleneck.  

 

A similar fitness landscape likely exists for SARS-CoV-2, although its dimensionality may 

be even more complex given the diverse host range of this virus. I suspect SARS-CoV-2 

in cats was positioned on a modest fitness valley, consistent with the preferential 

amplification and transmission of H655Y in Spike. I suspect SARS-CoV-2 in human hosts 

are already on a modest fitness peak, consistent with purifying selection within hosts and 

infrequent propagation of iSNVs along transmission chains. As SARS-CoV-2 continues 

to infect massive numbers of people, it is likely to discover even higher fitness peaks. 

Indeed, variants of interest and variants and concern with enhanced phenotypic changes 

began emerging beginning in fall 2020, so we are forced to wonder “has SARS-CoV-2 

reached peak fitness?”. While SARS-CoV-2 continues to spread through the global 

population, it might seem like the virus is optimally adapted to humans, however 

convergent evolution of multiple lineages and the ongoing emergence of divergent 

lineages suggests that SARS-CoV-2 is becoming even more fit. Additionally, it also 

unfortunately suggests that if the global burden of infection continues, SARS-CoV-2 may 

be able to respond to the changing human immune landscape. Future evolution studies 

within and between hosts, across a variety of hosts and virus subtypes, are needed to 

understand the trajectory of SARS-CoV-2 evolution.  
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Future work on within and between host evolution of zoonotic respiratory RNA 

viruses  

It is worth testing the hypothesis that the pace of adaptive evolution of IAV and SARS-

CoV-2 in humans can be predicted by the prevalence of recent viral infections. If true, this 

supports the “jackpot event” model of evolution where a virus overcomes the stochastic 

forces driving within-host infections by infecting a large number of hosts and making 

incremental fitness jumps via relatively rare events.  

 

Relatedly, there is an emerging hypothesis that prolonged IAV and SARS-CoV-2 infection 

allows for more time for selection to drive newly arising variants to a level where they can 

be detected and/or where they are more likely to transmit onward to a new host. Even a 

modest increase in frequency within a donor host enhances the likelihood of a beneficial 

variant becoming fixed following transmission in the setting of a narrow transmission 

bottleneck. It is also possible for selection to act during transmission such that some 

viruses harboring a particular mutation or group of mutations are preferentially transmitted 

204. Consistent with this model, Xue et al 136 identified strong evidence for positive 

selection in four immunocompromised hosts infected with IAV for a prolonged period. In 

this study, several mutations arose independently in these hosts and a subset of these 

mutations subsequently circulated globally at high frequency the following flu season. 

Similarly, the only time SARS-CoV-2 variants of concern have been detected sub-

consensus within hosts are in rare cases of prolonged infection 265,266,377. If true, this has 

implications for the importance of infection control and contact tracing of viral infections 
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in any cases of prolonged infection, particularly in immunocompromised hosts. Already, 

we have begun enrolling individuals with prolonged SARS-CoV-2 infection in a small case 

series. In the first individual enrolled in this case series we documented the emergence 

of Spike ∆142-144 and E484A. Interestingly, both of these mutations emerged 

independently in an immunocompromised individual in Boston 266. Future studies could 

enroll a larger cohort of immunocompromised individuals or patients with prolong infection 

to characterize within-host viral evolution longitudinally and to document mutations 

emerging convergently across cases. Already it is apparent that collectively, prolonged 

infections pose a risk for the pace of the emergence of SARS-CoV-2 variants that escape 

immune recognition.  

 

An exciting, though far-reaching, goal would be to work on uncovering the contours of 

these viral fitness landscapes using real data generated from a combination of 

experimental studies and modelling. Although studies would need to be designed with 

biosafety in mind, it would be valuable to investigate the evolutionary forces shaping 

SARS-CoV-2 in a wide range of host species, including the likely ancestral intermediate 

hosts, bats and pangolins. Any viruses sampled from the zoonotic reservoir or from 

humans are likely to be relatively fit viruses because they are currently replicating in 

nature. Therefore, to uncover the fitness valleys in this landscape, additional studies 

should evaluate SARS-CoV-2 genetically modified with bat-defining, pangolin-defining, 

and other zoonotic-defining mutations. Studying these genetically modified viruses which 

are not found in nature in mammalian systems might allow us to understand the routes 

that newly-emerging SARS-CoV-2 viruses might take in order to adapt to humans.   
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Additionally, novel sequencing strategies should be leveraged to more carefully evaluate 

viral population dynamics within and between individual hosts. Current SARS-CoV-2 

sequencing strategies largely rely on short-amplicon sequencing in multiplexed PCRs. 

Chapter 4 discusses the pitfalls of this sequencing approach and the caution that should 

be taken when making biological conclusions from low frequency iSNVs generated in 

similar studies. Novel sequencing approaches that use long-amplicon sequencing might 

be less prone to common method errors and would also preserve information about 

mutations that co-occur on a single molecule (linkage information). An additional 

promising approach for characterizing viral populations within and between hosts is to 

use libraries of molecularly-barcoded viruses in order to track individual members of the 

virus population. Though not included in the primary chapters of my thesis, I have worked 

closely with the Mehle Laboratory to develop sequencing approaches and bioinformatic 

tools to analyze populations of molecularly-barcoded IAV viruses. These methods could 

be applied to SARS-CoV-2 as a parallel method to quantify transmission bottlenecks and 

to investigate compartmentalization and movement of viruses within individual hosts.  

 

Using viral sequencing to characterize patterns of viral spread in nearby 

communities and to evaluate the effectiveness of mitigation strategies 

In chapter 5, I described our use of viral sequencing across individuals to evaluate 

disparate patterns of introduction and spread. In this study we sequenced viruses from 

two counties in Wisconsin which are less than 100km apart from each other, but have 

important demographic differences – Dane and Milwaukee counties. Other 
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contemporaneous studies look at patterns of SARS-CoV-2 introduction and spread in one 

city or geographic region 147–149,298,337,338,340, but none compared patterns of viral spread 

in nearby communities and contextualized these differences in the demographic and 

socioeconomic features of each community.  

 

Working closely with the Milwaukee Health Department and other public health partners 

throughout the state, we were able to sequence a representative set of viruses circulating 

in Dane County as well as viruses circulating in Milwaukee County during spring 2020. 

We found Dane County’s outbreak was defined by an early introduction of European-

lineage viruses that contained the Spike D614G variant, whereas Milwaukee County’s 

outbreak was defined by more frequent introductions of Asian-lineage viruses. 

Subsequent research showed Spike D614G confers increased transmissibility and its 

clade, 20G, outpaced growth in other clades during the summer and fall of 2020 378–382. 

Despite this, Dane County actually saw less community spread than Milwaukee County. 

We hypothesized that this difference in early viral spread was driven by human and 

behavioral factors as opposed to virus-specific factors. We were not able to directly test 

this hypothesis, but did compare the social vulnerability index in each county, which is a 

metric referring to the potential negative effects on communities caused by external 

stresses on human health (like a global pandemic) 383. Milwaukee County has a higher 

social vulnerability index, meaning this community was more vulnerable, compared to 

Dane County (0.8268 vs 0.1974). We speculated that factors contributing to the SVI, like 

population density, access to financial, healthcare, and other support resources, as well 
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as race-based discrimination in healthcare systems, were likely at the root of these 

differences.   

 

As part of this study, we sequenced viruses from before and after Wisconsin’s state-wide 

“Safer-at-Home” order so we took advantage of this natural experiment to assess the 

effectiveness of this public health order. Amazingly, we showed evidence that viral spread 

in Dane and Milwaukee county fell by at least 40% following the “Safer-at-Home” order.  

These results were useful to state and public health officials who continued to advocate 

for state-wide distancing and density-reduction orders. In addition, the results of this work 

suggested that patterns of viral introduction and spread in very nearby communities can 

differ and careful characterization of these differences might allow public health 

interventions to be targeted to particular pattern of spread in a community – we often 

referred to this relatively novel concept as “precision public health”.  

 

The final chapter of this dissertation, chapter 6, describes our work using viral 

sequencing as an infection control tool in the setting of a large academic medical system 

in the upper midwestern United States. In accordance with CDC recommendations, this 

healthcare system implemented a number of policies and procedures aimed at protecting 

patients and healthcare personnel (HCP) from becoming infected with SARS-CoV-2 in 

the setting of the healthcare system 361. To assess the effectiveness of these strategies, 

we sequenced viruses collected from HCP who became infected with SARS-CoV-2, their 

patient contacts, and cases circulating in the surrounding community. We found the 

majority of HCP infections could not be linked to a patient or co-worker and were more 
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likely to occur outside of the workplace. We found a smaller percentage could be traced 

to a coworker. The smallest proportion of HCP infections could be clearly traced to a 

patient source. These results suggested infection control measures in place at the 

institution evaluated in this case series were successfully working to protect HCP from 

healthcare-associated SARS-CoV-2 infections. To our knowledge, this was the first 

retrospective case series using viral sequencing to specifically investigate the source of 

SARS-CoV-2 infections in healthcare workers in the United States. A related study was 

published on similar work that was conducted in the Netherlands 374. Like us, this group 

found little evidence for widespread nosocomial transmission of SARS-CoV-2.  

 

Future directions on the application of viral sequencing to the health of humans 

and populations 

Taken together, chapters 5 and 6 illustrate that viral sequencing can augment traditional 

public health methods as well as infection control interventions. Already, seeing the value 

in viral sequencing to supplement track-and-trace efforts, Wisconsin’s public health 

groups have increased their capacity to surveil viruses circulating in the state through 

high throughput viral sequencing and have created dashboards to publicly report the 

summary findings of these efforts. In addition, the infection control group has integrated 

viral sequencing into their investigation of all possible healthcare-associated transmission 

of SARS-CoV-2. Additionally, in collaboration with the infection control team, we have 

begun incorporating viral sequencing into investigations of SARS-CoV-2 breakthrough 

following infection and vaccination. The COVID-19 pandemic has shined light on the 

value of viral sequencing applied to public health datasets and even more importantly has 
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shined light on the value of collaborations between academic groups and public health 

partners.  

 

Altogether, the work in this dissertation contributes to our understanding of IAV and 

SARS-CoV-2 evolution within and between individual hosts and in populations. The 

observations made here have contributed to funded grant proposals and additional 

ongoing studies, which are also likely to further advance our understanding of RNA virus 

evolution.  
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Figures, tables, and supplemental material 
 

 

Figure 1 depicts a theoretical fitness landscape for IAV 

The y-axis of this figure represents virus genotypes as a virus transitions from avian to 

mammalian, the x-axis represents host genetics and conditions ranging from the avian 

reservoir to humans, and the z-axis (height) represents relative fitness at all possible x-y 

coordinates. The peaks and valleys shown here are conceptual and not derived from 

actual data. 
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An updated influenza A(H3N2) vaccine generates limited antibody 

responses to previously encountered antigens in children 
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Jennifer P. Kingb, Brendan Flanneryc, Edward A. Belongiab,*, Thomas C. Friedricha,d,* 

 

aDepartment of Pathobiological Sciences, University of Wisconsin School of Veterinary 
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Abstract 
Background 
Influenza vaccination may provide a “back-boost” to antibodies against previously 
encountered strains. If the back-boost effect is common, this could allow more 
aggressive vaccine updates, as emerging variants would be expected to both elicit de-
novo responses and boost pre-existing responses against recently circulating strains. 
Here we used the emergence of an antigenically novel A(H3N2) strain to determine 
whether an antigenically updated vaccine boosted antibodies against historical strains. 
 
Methods 
We performed hemagglutination-inhibition (HI) assays on pre- and post-vaccination sera 
from 124 children 5–17 years old who received 2015–2016 inactivated influenza 
vaccine, containing an antigenically updated A(H3N2) strain. We evaluated the mean 
fold increase in HI titer against both the 2015–2016 vaccine strain and representative 
strains from two prior antigenic clusters. Factors associated with post-vaccination titers 
against historical strains were evaluated using linear regression, adjusting for baseline 
titer. 
 
Results 
Geometric mean titers against each antigen examined increased significantly after 
vaccination (P < .0001). Mean fold increase was 3.29 against the vaccine strain and 
1.22–1.46 against historical strains. Response to vaccine strain was associated with 
increased post-vaccination titers against historical strains. 
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Conclusions 
A vaccine containing an antigenically novel A(H3N2) strain modestly boosted antibody 
responses against historical influenza strains in children. 
 
Vaccine 36.5 (2018): 758-764. 
 
Contributions 
I performed hemagglutination-inhibition assays, assisted with data analysis, and edited 
the manuscript.  
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Influenza evolution with little host selection 
 
Katarina M. Braun1 & Thomas C. Friedrich1 
 

1Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, 
WI, USA 
 
Nat Ecol Evol 3, 159–160 (2019). https://doi.org/10.1038/s41559-018-0782-1 
 
Abstract 
Influenza viruses undergo rapid antigenic evolution. Analysis of a large dataset of 
influenza virus sequences, using host age as a proxy for immune experience, shows no 
evidence for immune positive selection driving antigenic evolution in individual infected 
humans. 
 
Contributions 
I reviewed the manuscript this commentary was based on (Han, A.X., Maurer-Stroh, S. 
& Russell, C.A. Individual immune selection pressure has limited impact on seasonal 
influenza virus evolution. Nat Ecol Evol 3, 302–311 (2019). 
https://doi.org/10.1038/s41559-018-0741-x) for Nature Ecology and Evolution and 
drafted this News and Views article with Dr. Friedrich.  
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African-lineage Zika virus replication dynamics and maternal-fetal 
interface infection in pregnant rhesus macaques 
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Accepted for publication in the Journal of Virology, 2021-05-06.  
 
Abstract 
Following the Zika virus (ZIKV) outbreak in the Americas, ZIKV was causally associated 
with microcephaly and a range of neurological and developmental symptoms, termed 
congenital Zika syndrome (CZS). The viruses responsible for this outbreak belonged to 
the Asian lineage of ZIKV. However, in-vitro and in-vivo studies assessing the 
pathogenesis of African-lineage ZIKV demonstrated that African-lineage isolates often 
replicated to high titer and caused more severe pathology than Asian-lineage isolates. 
To date, the pathogenesis of African-lineage ZIKV in a translational model, particularly 
during pregnancy, has not been rigorously characterized. Here we infected four 
pregnant rhesus macaques with a low-passage strain of African-lineage ZIKV and 
compared its pathogenesis to a cohort of four pregnant rhesus macaques infected with 
an Asian-lineage isolate and a cohort of mock-inoculated controls. Viral replication 
kinetics were not significantly different between the two experimental groups and both 
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groups developed robust neutralizing antibody titers above levels considered to be 
protective. There was no evidence of significant fetal head growth restriction or gross 
fetal harm at delivery (1-1.5 weeks prior to full term) in either group. However, a 
significantly higher burden of ZIKV vRNA was found in maternal-fetal interface tissues in 
the macaques exposed to an African-lineage isolate. Our findings suggest that ZIKV of 
any genetic lineage poses a threat to pregnant individuals and their infants.  

Contributions 
I performed placental dissections and assisted with tissue processing. I provided 
feedback on figure design and edited the manuscript.  
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Abstract 
Concerns have arisen that pre-existing immunity to dengue virus (DENV) could 
enhance Zika virus (ZIKV) disease, due to the homology between ZIKV and DENV and 
the observation of antibody-dependent enhancement (ADE) among DENV serotypes. 
To date, no study has examined the impact of pre-existing DENV immunity on ZIKV 
pathogenesis during pregnancy in a translational non-human primate model. Here we 
show that prior DENV-2 exposure enhanced ZIKV infection of maternal-fetal interface 
tissues in macaques. However, pre-existing DENV immunity had no detectable impact 
on ZIKV replication kinetics in maternal plasma, and all pregnancies progressed to term 
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without adverse outcomes or gross fetal abnormalities detectable at delivery. 
Understanding the risks of ADE to pregnant women worldwide is critical as vaccines 
against DENV and ZIKV are developed and licensed and as DENV and ZIKV continue 
to circulate. 
 
Contributions 
I performed placental dissections and assisted with tissue processing. I provided 
feedback on figure design and edited the manuscript.  
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Abstract 
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is causing an 
exponentially increasing number of coronavirus disease 19 (COVID-19) cases globally. 
Prioritization of medical countermeasures for evaluation in randomized clinical trials is 
critically hindered by the lack of COVID-19 animal models that enable accurate, 
quantifiable, and reproducible measurement of COVID-19 pulmonary disease free from 
observer bias. We first used serial computed tomography (CT) to demonstrate that 
bilateral intrabronchial instillation of SARS-CoV-2 into crab-eating macaques (Macaca 
fascicularis) results in mild-to-moderate lung abnormalities qualitatively characteristic of 
subclinical or mild-to-moderate COVID-19 (e.g., ground-glass opacities with or without 
reticulation, paving, or alveolar consolidation, peri-bronchial thickening, linear opacities) 
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at typical locations (peripheral>central, posterior and dependent, bilateral, multi-lobar). 
We then used positron emission tomography (PET) analysis to demonstrate increased 
FDG uptake in the CT-defined lung abnormalities and regional lymph nodes. PET/CT 
imaging findings appeared in all macaques as early as 2 days post-exposure, variably 
progressed, and subsequently resolved by 6–12 days post-exposure. Finally, we 
applied operator-independent, semi-automatic quantification of the volume and 
radiodensity of CT abnormalities as a possible primary endpoint for immediate and 
objective efficacy testing of candidate medical countermeasures. 
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I assisted with experimental design, figure generation, and editing of the manuscript.  
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Abstract 
Since the first reports of pneumonia associated with a novel coronavirus (COVID-19) 
emerged in Wuhan, Hubei province, China, there have been considerable efforts to 
sequence the causative virus, SARS-CoV-2 (also referred to as hCoV-19) and to make 
viral genomic information available quickly on shared repositories. As of 30 March 2020, 
7,680 consensus sequences have been shared on GISAID, the principal repository for 
SARS-CoV-2 genetic information. These sequences are primarily consensus sequences 
from clinical and passaged samples, but few reports have looked at diversity of virus 
populations within individual hosts or cultures. Understanding such diversity is essential 
to understanding viral evolutionary dynamics. Here, we characterize within-host viral 
diversity from a primary isolate and passaged samples, all originally deriving from an 
individual returning from Wuhan, China, who was diagnosed with COVID-19 and 
subsequently sampled in Wisconsin, United States. We use a metagenomic approach 
with Oxford Nanopore Technologies (ONT) GridION in combination with Illumina MiSeq 
to capture minor within-host frequency variants ≥1%. In a clinical swab obtained from the 
day of hospital presentation, we identify 15 single nucleotide variants (SNVs) ≥1% 
frequency, primarily located in the largest gene – ORF1a. While viral diversity is low 
overall, the dominant genetic signatures are likely secondary to population size changes, 
with some evidence for mild purifying selection throughout the genome. We see little to 
no evidence for positive selection or ongoing adaptation of SARS-CoV-2 within cell 
culture or in the primary isolate evaluated in this study.  

Contributions 
I generated the deep sequencing dataset. I analyzed the data, and created the figure 
displays. I wrote the first draft of the manuscript and edited the manuscript.  
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Abstract 
Whether a healthcare worker’s severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) infection is community or hospital acquired affects prevention practices. We used 
virus sequencing to determine that infection of a healthcare worker who cared for 2 SARS-
CoV-2–infected patients was probably community acquired. Appropriate personal 
protective equipment may have protected against hospital-acquired infection. 
 
Contributions 
I generated and analyzed the sequence dataset. I wrote the first draft of the manuscript, 
and assisted in manuscript editing. 
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Abstract  
We identified a new SARS-CoV-2 lineage with Spike deletion ∆69/70 (designated 
‘B.1.375’) that has been circulating in the United States since September 2020. We 
characterize the timing and geographic spread of this lineage and report a possible case 
of reinfection with B.1.375 virus. 
 
Contributions 
I generated the deep sequencing dataset. I assisted in analyzing the data and provided 
feedback on data visualization. I additionally assisted in writing the first draft of the 
manuscript, and manuscript editing. 
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Abstract 
Zika virus (ZIKV) has the unusual capacity to circumvent natural alternating mosquito-
human transmission and be directly transmitted human to human via sexual and vertical 
routes. The impact of direct transmission on ZIKV evolution and adaptation to vertebrate 
hosts is unknown. Here, we show that molecularly barcoded ZIKV rapidly adapted to a 
mammalian host during direct transmission chains in mice, coincident with the 
emergence of an amino acid substitution previously shown to enhance virulence. In 
contrast, little to no adaptation of ZIKV to mice was observed following chains of direct 
transmission in mosquitoes or alternating host transmission. Detailed genetic analyses 
revealed that ZIKV evolution in mice was generally more convergent and subjected to 
more relaxed purifying selection than that in mosquitoes or alternate passages. These 
findings suggest that prevention of direct human transmission chains is paramount to 
resist gains in ZIKV virulence. 
 
Contributions 
I created and validated the wet-lab and bioinformatic protocols used to sequence 
barcoded ZIKV viruses in this project: unique molecular identifier (UMI) sequencing for 
barcoded viruses.  
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Abstract 
Background:  
Female physician-scientists have led major advances in medicine broadly and 
particularly in women's health. Women remain underrepresented in dual MD-PhD 
degree programs that train many physician-scientists despite gender parity among 
medical and biomedical research students.  
 
Materials and Methods:  
To explore how the training environment might be experienced differently for male and 
female students in one MD-PhD program, the authors analyzed gender differences in 
annual symposium speakers with exact binomial tests, student participation as 
question-askers at a weekly seminar with logistic regression, and number of 
publications with quasi-Poisson generalized linear models. They compared male and 
female students' perceptions of gender-based discrimination using a survey, including 
qualitative analysis of free text responses. The program consisted of 71 total students in 
the 2017-2018 and 2018-2019 academic years. Female students comprised 42.0% 
(81/191) of program matriculants from 1997 to 2019.  
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Results:  
Male and female students were equally likely to present at the annual program 
symposium, but faculty (p = 0.001) and keynote (p = 0.012) presenters were more likely 
to be male. Compared with male counterparts, female students asked fewer seminar 
questions (p < 0.005) and female speakers received more questions (p = 0.03). Female 
students perceived less support and differed from men in reasons for asking or not 
asking seminar questions. Free text responses described repeated small acts of 
discrimination toward women with cumulative impact. Positive program changes 
followed presentation of findings to program leaders and students.  
 
Conclusions:  
The authors identified several aspects of one MD-PhD program that could discourage 
career or training persistence of female students. Increasing awareness of these issues 
was temporally related to positive programmatic changes. 
 
Contributions 
I designed the study, collected the data, analyzed the data, generated figures, wrote 
and edited the manuscript, and took this project through the review process.  
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Under review.  
 
 Abstract 
University settings have demonstrated potential for COVID-19 outbreaks, as they can 
combine congregate living, substantial social activity, and a young population 
predisposed to mild illness. Using genomic and epidemiologic data, we describe a 
COVID-19 outbreak at the University of Wisconsin (UW)–Madison. During August – 
October 2020, 3,485 students tested positive, including 856/6,162 students living in 
residence halls. Case counts began rising during move-in week for on-campus students 
(August 25-31, 2020), then rose rapidly during September 1-11, 2020.   UW-Madison 
initiated multiple prevention efforts, including quarantining two residence halls; a 
subsequent decline in cases was observed. Genomic surveillance of cases from Dane 
County, where UW-Madison is located, did not find evidence of transmission from a 
large cluster of cases in the two residence halls quarantined during the outbreak. 
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Coordinated implementation of prevention measures can effectively reduce SARS-CoV-
2 spread in university settings and may limit spillover to the community surrounding the 
university.  
 
Contributions 
I generated the deep sequencing dataset. I assisted in analyzing the data and provided 
feedback on data visualization. I additionally assisted in writing the first draft of the 
manuscript and provided edits on manuscript revisions.  
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Abstract 
High-frequency, rapid-turnaround SARS-CoV-2 testing continues to be proposed as a 
way of efficiently identifying and mitigating transmission in congregate settings. 
However, two SARS-CoV-2 outbreaks occurred among intercollegiate university athletic 
programs during the fall 2020 semester despite mandatory directly observed daily 
antigen testing. During the fall 2020 semester, athletes and staff in both programs were 
tested daily using Quidel’s Sofia SARS Antigen Fluorescent Immunoassay (FIA), with 
positive antigen results requiring confirmatory testing with real-time reverse transcription 
polymerase chain reaction (RT-PCR). We used genomic sequencing to investigate 
transmission dynamics in these two outbreaks. In Outbreak 1, 32 confirmed cases 
occurred within a university athletics program after the index patient attended a meeting 
while infectious despite a negative antigen test on the day of the meeting. Among 
isolates sequenced from Outbreak 1, 24 (92%) of 26 were closely related, suggesting 
sustained transmission following an initial introduction event. In Outbreak 2, 12 
confirmed cases occurred among athletes from two university programs that faced each 
other in an athletic competition despite receiving negative antigen test results on the 
day of the competition. Sequences from both teams were closely related and distinct 
from viruses circulating in Team 1’s community, suggesting transmission during 
intercollegiate competition in Team 2’s community. These findings suggest that antigen 
testing alone, even when mandated and directly observed, may not be sufficient as an 
intervention to prevent SARS-CoV-2 outbreaks in congregate settings, and highlight the 
importance of supplementing serial antigen testing with appropriate mitigation strategies 
to prevent SARS-CoV-2 outbreak in congregate settings. 
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I generated the deep sequencing dataset. I analyzed the data and performed data 
visualization. I wrote the first draft of the manuscript, performed manuscript editing, and 
carried the manuscript through peer review.  
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Abstract 
Importance:   
Little is known about the role of school-aged children and household transmission in the 
early phases of the SARS-CoV-2 pandemic in the United States. 
 
Objective:   
To evaluate the prevalence of SARS-CoV-2 in a low-risk population of school-aged 
children and assess possible household transmission. 
 
Design:   
Longitudinal, community-based influenza and other respiratory virus surveillance study. 
Setting:  Oregon School District, Dane County, Wisconsin from December 1, 2019 
through June 30, 2020. 
 
Participants:   
School-aged children, aged 4–18 years, with acute respiratory infections, and household 
members participating in a household influenza transmission sub-study. 
 
Intervention:   
None 
 
Main Outcome Measures:   
Detection of SARS-CoV-2 using RT-PCR in 567 archived nasal swab specimens.  
Evaluation of virus lineage using whole genome sequencing.  
 
Results:   
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Very low prevalence (0.2% [95% CI: 0.03–0.99]) of SARS-CoV-2 was detected in this 
population of school-aged children during the analysis period.  The single case detected 
in March 2020 was associated with SARS-CoV-2 detection in all other household 
members.  All sequences were identical or near-identical to Clade 17B (A.4 lineage). 
 
Conclusions and Relevance:   
In the very early phases of the SARS-CoV-2 pandemic, infection in school-aged children 
was associated with strong evidence of household transmission.  Such unrecognized 
transmission likely contributed to wide seeding across populations. 
 
Contributions 
I generated the and analyzed the deep sequence data included in this manuscript.  
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Abstract 
Transmission of influenza A virus (IAV) is constrained by numerous physical and 
biological barriers to infection.IAV overcomes these barriers in part by low-fidelity 
replication that drives the emergence of new variants, but bottlenecks limit population-
level diversity and shape evolutionary pathways taken during infection and transmission. 
High-resolution characterization of the nature and stringency of bottlenecks on IAV 
infection has not been previously possible. To characterize viral populations and quantify 
bottlenecks, we created two molecularly barcoded IAV libraries, each with ~60,000 
individual members identifiable by deep sequencing. Our barcoded libraries captured 
selective sweeps as adaptive mutations arose in HA during tissue culture passage. The 
barcode revealed that the adaptive variant arose only once in the diverse starting 
population followed by a selective sweep to dominate as ~70% of all HA genotypes. Using 
a similar technical approach, we produced two highly diverse and evenly distributed 
barcoded libraries with ~20,000 barcodes on the HA segment. Upon infection in mice, 
these barcoded viruses caused weight loss as well as viral titers at 3 and 6 days post-
infection that were indistinguishable from the parental IAV. Whereas mice were inoculated 
with the entire library, barcode sequencing demonstrated an effective inoculation 
bottleneck size of (TBD) post inoculation. We then applied this quantitative approach to 
study the movement of viruses within infected animals by initiating site-specific infections 
in ferrets. We detected large bottlenecks during inoculation, where less than 10% of the 
viruses in our starting population initiated infection. While the majority of our virus 
established compartmentalized infections, small populations moved between upper and 
lower respiratory tract and made detectable contributions to the genetic diversity in each 
location. The use of large populations with uniquely quantifiable members allows us to 
measure population dynamics during IAV infection and identify major reductions in 
genetic diversity before and after transmission events. 
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I worked closely with Katie Amato to characterize the barcoded viral libraries. I developed 
and validated sequencing approaches to perform amplicon sequencing of the barcoded 
regions and I developed bioinformatic tools sets to analyze and deploy clustering 
algorithms to the libraries of barcoded viruses. I processed, sequenced, and analyzed 
data from the mouse and ferret experiments outlined in this paper.  
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