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Abstract

Pathogenic RNA viruses emerging from zoonotic reservoirs are among the highest
threats for global infectious disease control. Every single major epidemic or pandemic in
the 21st century has resulted from an emerging or re-emerging zoonotic RNA virus.
Severe Acute Respiratory Syndrome virus 1 (SARS-CoV) emerged in 2003, a novel
pandemic H1N1 influenza virus in 2009, Middle East Respiratory Syndrome virus (MERS-
CoV)in 2012 and 2015, Ebola in 2014, Zika virus in 2015, Yellow fever virus in 2016, and

SARS-CoV-2 in 2019.

It is clear the primary drivers of the emergence of these zoonotic RNA viruses are
increasing globalization, habitat fragmentation, and encroachment of a continuously
growing human population into wildlife habitats '. It is notable that this increased
interaction between humans and animals likely increases the risk of interspecies
transmission among a large number of potential pathogens, yet RNA viruses are the
dominant source of emerging human pathogens 2. The capacity for RNA viruses to rapidly
adapt to new host environments and to respond to shifting selective pressures is not
completely understood. Current dogma suggests this trait is tied to short generation times
and high mutation rates resulting from error-prone viral replication. RNA virus mutability
creates diverse viral populations which are more capable than homogenous populations
of adapting to new hosts and host environments 3. However, the generation of viral
variation is only the first step. Individual mutations that confer fithess benefits in particular
environments must then increase in frequency and/or make their way out of individual

hosts and into populations. This stage presents several obstacles that the virus must



overcome and is therefore likely to be rate-limiting for the overall pace of viral evolution

and host-switching.

The first three chapters (chapters 2-4) of this dissertation focus on investigating the
evolutionary processes by which zoonotic RNA viruses adapt to mammalian hosts. The
results of this work call attention to several significant obstacles that zoonotic RNA viruses
must overcome in order to successfully and efficiently emerge in and adapt to human
hosts. | suggest these obstacles all derive from the effects of randomness on viral
systems. The cumulative impact of these obstacles has critical implications in assessing
the pandemic potential of viruses that have already caused human epidemics, like avian
influenza viruses, and the adaptive potential of the current pandemic virus, SARS-CoV-

2.

The final two chapters (chapters 5-6) of this dissertation discuss our work combining
principles of viral evolution with epidemiology and population health to investigate the

early patterns of SARS-CoV-2 spread in the state of Wisconsin.

Taken together, this work suggests the effects of randomness on viral populations within
and between individual hosts are a previously underappreciated brake to the pace of viral
adaptation and host-switching for influenza A virus (IAV) and SARS-CoV-2. Additionally,
this work underscores the value of genomic epidemiology early in a pandemic to
understand patterns of viral transmission in different populations and to assess the impact

of public health guidelines and interventions on a rolling basis



Chapter 1:

Introduction

The emergence of zoonaotic viruses is one of the greatest threats to global health security.
More than half of all known human pathogens can be traced to a zoonotic source 2#5.
The list of known zoonotic viral pathogens is likely a very small fraction of the total
possible viral pathogens currently lurking in animal reservoirs. Even as the global
population continues to contend with the staggering loss of human life that has resulted
from explosive emergence and spread of SARS-CoV-2, we must also anticipate the yet-

to-emerge pathogens.

It is clear that a successful and sustainable global pathogen surveillance network will
require a One Health approach focused on maintaining healthy human populations,
healthy animal populations, and balanced ecosystems ¢7. Although surveillance systems
to detect novel pathogens in high-risk populations and other One Health initiatives
continue to improve and expand &9, we still do not understand the processes underpinning
the emergence and reemergence of zoonotic RNA viruses '°. The work in this dissertation
focuses on the evolutionary processes contributing to and impeding zoonotic RNA virus
emergence and adaptation to human populations. Specifically, | focus on Influenza A
virus, which has emerged multiple times from its avian reservoir to cause both sporadic
epidemics and multiple pandemics, as well as SARS-CoV-2, which emerged from its

zoonotic reservoir in 2019 and is responsible for the current global pandemic.



Overview of Avian Influenza Viruses, focusing on H7N9

The influenza virus is composed of eight negative-sense, RNA gene segments coated
with nucleoprotein and associated with a heterotrimeric polymerase complex packaged
with a protein capsid and a host-derived envelope. Influenza A virus’s (IAV) named
subtypes are defined by its two surface glycoproteins, hemagglutinin (HA) and
neuraminidase (NA), which are responsible for host cell entry and exit, respectively. HA
binds host receptors, sialic acids, to trigger receptor-mediated endocytosis, virion
uncoating, and release into the cytoplasm following acidification of the endosome. NA is
a sialidase and cleaves the HA-sialic-acid bond during viral exit, allowing progeny virions
to be released from the host cell following replication. In total, there are 18 known IAV HA

subtypes (H1-H18) and 10 known NA subtypes (N1-N10).

Aquatic birds (the Anseriformes and Charadriiformes orders) are the natural reservoir for
avian influenza viruses, harboring a vast viral population and substantial viral diversity .
Interestingly, H17, H18, and N10 have been exclusively identified in bats 2. The avian
IAV reservoir is particularly diverse because different virus subtypes co-infecting a single
host can swap gene segments and be co-packaged together into a new progeny virus
through a process called reassortment '3. Reassortment has been shown to occur at a
high rate between viruses belonging to the same subtype 46 viruses belonging to
different subtypes "7, and even among viruses from different host species 8. Indeed, most
HA-NA constellations have been detected while sampling the avian reservoir and in

environmental samples (watersheds) '°, suggesting reassortment is commonplace in the



avian reservoir and is acting to continuously shuffle existing diversity to generate new

virus combinations.

The capacity of influenza to undergo reassortment has important implications for host
switching because this process can create novel viruses to which the human population
has no prior immunity, called antigen shift. Notably, three of the influenza virus pandemics
(1957: H2N2, 1968: H3N2, 2009: H1N1) over the past century are hypothesized to have
arisen, at least in part, from reassortment events between avian viruses and swine or

human viruses 2021,

Only three IAV subtypes have achieved sustained human-to-human spread (H3N2,
H1N1, H2N2) and two of these now circulate seasonally as “seasonal influenza” (H1N1
and H3N2). Seasonal influenza epidemics cause 3 million to 5 million severe cases and
300,000 to 500,000 deaths globally most years 2. In a typical year, the United States
alone sees 140,000 to 710,000 influenza-related hospitalizations and 12,000 to 56,000
deaths 23, with the highest burden of disease affecting the very young, the very old, and
people with coexisting medical conditions. Interestingly, influenza infections and deaths
recorded during the 2020-2021 season were historically low and this was attributed to the
public health interventions in place to reduce the spread of SARS-CoV-2 (masking,

distancing) 4.

A subset of fully avian influenza viruses has occasionally “spilled over” into human

populations in the absence of reassortment and without achieving sustained human-to-



human spread, including H5N1, H5Nx, HON2, H7N7, and H7N9 viruses. Highly
pathogenic avian H5N1 virus was detected among domestic geese in China in 1996 and
in the first human in Hong Kong one year later 2°. Sporadic H5N1 infections throughout
Southeast Asia have since followed, totaling 862 infections (from January 2003 to 15 April
2021) and 455 deaths (53% case fatality rate) 2. H7N9 AlVs have been endemic in
chickens since the virus’s emergence in China in February 2013 27, Since then, H7N9
viruses have caused 1,568 confirmed human infections with a case fatality rate
approaching 40% across six epidemic waves 8. Although the avian reservoir harbors
extensive viral diversity, relatively few subtypes have ever been identified in human hosts,
and an even smaller subset has caused epidemics or pandemics. The key factors
underlying these phenotypic differences remain unknown. Relatedly, there are no reliable
methods to assess the “pandemic potential” of avian IAVs sampled from birds,

environmental sources, and human spillover infections.

Overview of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)

SARS-CoV-2 is one of seven coronaviruses known to infect humans 2°. It is a member of
the family Coronaviridae and from the genera betacornavirus. Betacoronaviruses
exclusively infect mammals, including humans, and cause a range of respiratory and

gastrointestinal diseases 2%3°.

Four betacoronaviruses cause mild upper respiratory illnesses and are common etiologic
agents of the “common cold”. These are HCoV-229E, HCoV-OC43, HCoV-NL63, and

HCoV-HKU1 3'32, Three more concerning betacoronaviruses have emerged from their



animal reservoirs since the start of the 21st century. Severe Acute Respiratory Syndrome
coronavirus (SARS-CoV) emerged in China in 2002-2003 from a yet unknown animal
reservoir. Middle East respiratory syndrome (MERS) emerged from dromedary camels in
Saudi Arabia in 2012. SARS-CoV-2 emerged in 2019, likely from bats 33, and as of 6 May
2021, there have been more than 155 million confirmed cases of coronavirus disease 19

(COVID-19), the disease caused by SARS-CoV-2, including 3,250,648 deaths 34,

SARS-CoV-2 is primarily transmitted via droplet and airborne transmission 353, The
clinical presentation associated with SARS-CoV-2 varies widely from asymptomatic to
multi-system inflammatory syndrome and death. The most common clinical signs are
fever, fatigue, and cough ¥-4° and the most specific signs are ageusia—loss of taste, and
anosmia—loss of smell, which only occur in around 5% of COVID-19 infections 4142, The
highest proportion of cases in the United States has generally been in the 18-to-24 year
age group, although death rates are dramatically higher in individuals >60 and especially
in individuals >80 years 3. The incubation period ranges from 1-14 days and the average

time from infection to symptom onset is 5 days 4445,

SARS-CoV-2 is a positive-sense, single-stranded, enveloped virus. Spike (S) is the
surface protein that binds the host receptor, angiotensin-converting enzyme 2, which is
expressed on respiratory epithelium 46-4°. Transmembrane serine protease 2 (TMPRSS2)
and/or furin -5 are required to proteolytically activate Spike to facilitate host-cell entry.
Once intracellular, viral RNA is replicated and translated into proteins and enzymes which

will be packaged into newly produced viral particles. The first two-thirds of the SARS-



CoV-2 genome is occupied by two open reading frames (ORF1a, ORF1b), which encode
15-16 non-structural proteins (nsp), including nsp14, which provides crucial 3-5’
exonuclease activity to proofread the copied RNA, maintain the integrity of the 30kb
genome, while driving down the mutation rate %59, Coronaviruses have the largest
genome of any RNA virus and Nsp14 is highly conserved within the Coronaviridae family
60, This suggests that the RNA proofreading function is important to the maintenance of

the large-for-an-RNA-virus genome size and to ensure ongoing replication competence

61,62

Viruses evolve in individuals and populations

In order to evolve, RNA viruses must first generate genetic variation, or mutations. Like
all RNA viruses, IAV and SARS-CoV-2 have high mutation rates: 1.8 x 1073-2.28 x 1073
63-65 and 2.28 x 1072 667 gubstitutions/site/year, respectively. Other sources of viral
variation include cytidine deaminases % and recombination, although the impact of
homologous recombination in IAV is negligible 8°. Coronaviruses, on the other hand, do
appear to shuffle genetic diversity through homologous recombination as their replication
strategy includes the generation of subgenomic RNAs, which predispose to
recombination events °. Virus generation times, the time between virus entry to virus
production, are typically very short, so the generation of viral diversity via RNA
polymerases and homologous recombination is compounded with each generation 7'.72,
The fate of individual mutations, broadly speaking, then depends on a combination of
deterministic factors, like selection, as well as stochastic (random) processes, like genetic

drift 73. Selection acts to increase the frequency of beneficial mutations (positive selection)



or decrease the frequency of deleterious mutations (negative or purifying selection).
Genetic drift is stochastic changes in allele frequencies due to the effects of random
sampling. The relative contributions of selection and genetic drift depend largely on the
effective population size, which is a useful construct that corresponds to the number of
individuals in a population that contribute mutations or genetic variation to the next
generation 7374, Specifically, selection is strongest in large populations and genetic drift
is strongest in small populations. The cumulative effect of these processes can be
partially reflected by the substitution rate, or the rate at which viral mutations achieve
fixation in a population. IAV’s substitution rate is approximately twice that of SARS-CoV-
2 (1 mutation per 7 days vs 15 days), which is likely tied to SARS-CoV-2’s proofreading

exonuclease activity.

At first glance, RNA viruses have everything you need for rapid and deterministic
evolution: a high mutation rate, short generation times, and large population sizes.
Despite this, adaptive evolution of viruses within individual hosts has rarely been
observed and very few zoonotic RNA viruses have successfully emerged in human
populations, suggesting there are barriers to efficient within-host evolution that are not

yet understood.

While deterministic evolution does not appear to play a significant role at the level of
individual hosts, positive selection has been shown to be a major driver of influenza
evolution on a global scale ">~’7. The evolutionary dynamics that transform viral variation

within individual hosts into global genetic diversity are poorly understood.



Virological barriers to viral adaptation: avian IAV and SARS-CoV-2

One of the primary determinants of a virus’s ability to infect a new host or host species is
the accessibility and distribution of the receptor required for host cell entry. Influenza
virus’s surface protein, hemagglutinin, binds sialic acid receptors to mediate virus entry.
Avian IAV binds a-2,3-linked sialic acid receptors, which are distributed along the avian
gastrointestinal tract 78. To improve infection and transmission in mammalian hosts, avian
IAV can switch or broaden its receptor repertoire to include a-2,6 linked sialic acids, which
predominate in the mammalian upper respiratory tract. A mixture of a-2,3 and a-2,6-linked
sialic acids can be found in the mammalian lower respiratory tract, although this
compartment is less accessible to airborne viruses. Although we typically dichotomize
sialic acid receptors into avian-type (a-2,3) and mammalian-type (a-2,6), sialic acid chains
vary widely in length and orientation along most internal epithelial surfaces 798, It is
generally believed that a-2,6 binding is required for efficient respiratory droplet
transmission and pandemic spread, 8'-82 although the 1918-H1N1 virus, H5N1, and H7N9

exhibit the capability to dually bind a-2,3 and a-2,6-linked sialic acid receptors 8384,

SARS-CoV-2 uses the human angiotensin | converting enzyme (ACEZ2) as a primary
receptor for host cell entry. Spike is cleaved into two subunits (S1 and S2) at a polybasic
furin cleavage site (RRAR), which triggers a conformational change and facilitates ACE2
recognition and binding as well as S2 fusion with the host membrane. Unfortunately,
ACEZ2 is relatively ubiquitous and conserved across a large number of mammals, making

it a useful receptor for SARS-CoV-2 to expand its host range 8586, Interestingly, though,



the furin cleavage site in spike is not present in SARS-CoVs infecting bats or pangolins,
which likely harbored the most recent ancestor to SARS-COV-2 8. This suggests that
changes to the spike glycoprotein may be one of the major determinants of host range
and cell- and tissue tropism for SARS-CoV-2. Similarly, the addition of a furin cleavage
site to influenza hemagglutinin has been shown to convert a low-pathogenic avian

influenza virus to a more highly pathogenic phenotype 2.

In addition to receptor preference, host restriction factors, co-factors, and conditions in
the host environment (i.e. humidity and temperature) can all pose significant barriers to
host adaptation. One well-known example of this for influenza is in the stability of the
polymerase heterotrimer (PB1, PB2, and PA) and its functional association with viral RNA
and the viral nucleoprotein to form the ribonucleoprotein (RNP) complexes that mediate
RNA-dependent RNA polymerase activity. IAV viral replication in humans requires a
lysine at position 627 in PB2 while glutamic acid predominates in most avian viruses. The
lysine at this position appears to play a role in mediating virus temperature sensitivity 8°
as well as interactions with human-specific restriction factors %092 Accordingly, PB2
E627K enhances viral replication and pathogenicity in mammalian systems %% and has
been identified in the majority of viruses successfully isolated and sequenced from H7N9

human spillover infections .

Host-specific restriction factors limiting the replication and transmission of SARS-CoV-2
remain unknown but may include viral inhibition of a robust interferon (IFN)-1 and IFN-III

response “°.
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Immunological barriers to viral adaptation: avian IAV and SARS-CoV-2
To achieve robust infection, a virus must also contend with preexisting and a host’s cross-

protective humoral and cell-mediated immunity.

Antibodies against influenza HA have long been known to be protective, although often
variably protective, against influenza virus infection and severe disease outcomes 9.
Antibodies against influenza HA do not typically offer lasting protection because HA,
specifically the globular head, is highly plastic and tolerates new point mutations, which
can interfere with antibody recognition ' and/or enhance receptor binding 1! through a
process called antigenic drift. Though less well-studied, T-cell responses significantly
contribute to protection against influenza virus infection as well as the induction of robust

antibody responses %2,

Seasonal influenza viruses are ubiquitous; most individuals are exposed to their first flu
virus in childhood '%. This first exposure is typically followed by subsequent infections
and, often, yearly vaccination so the depth and breadth of pre-existing influenza immune
profiles are varied and unique to each individual. Interestingly, the subtype and lineage
of an individual’s first infection may play an outsized role in shaping their lifelong immune
profile by inhibiting de-novo antibody responses against subsequent divergent viruses, a
phenomenon called “original antigenic sin” '° and, more recently, “imprinting” 19. This
phenomenon has been shown to play a role in avian influenza virus spillover infections

as well. A study by Gostic et al % showed age-dependent differences in disease severity
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of H5N1 and H7N9 spillover infections and hypothesized these differences could be
explained by group match/mismatch between the first virus infecting an individual and the
subsequent spillover infection. Specifically, individuals infected with an H5 virus (group 1)
were afforded some immune protection if their first influenza infection was likely an H1N1
seasonal virus (group 1), using birth year as a proxy. A similar protective effect was seen
between the H3N2 birth-year group and H7N9 spillover infections (group 2), suggesting
an individual's pre-existing immune repertoire likely impacts the clinical outcomes and

selective pressures involved in subsequent infections %,

Less is known about the immune response to SARS-CoV-2, but infection does appear to
elicit innate and adaptive responses. Pathogen recognition receptors (PRRs) present on
immune cells non-specifically recognize the virus and lead to an IFN cascade '%”. Humoral
responses initially involve responses to the N protein, followed by the S protein 108,
Seasonal coronavirus IgM and IgG antibodies do not appear to recognize SARS-CoV-2
epitopes, but SARS-CoV epitopes are cross-reactive with SARS-CoV-2. Antibodies
generated following SARS-CoV-2 infection '%° and following vaccination ' afford
significant protection from reinfection, although the duration of this protection remains
unclear. In addition, multiple “variants of concern” (VOC) have begun to emerge (in fall
2020) and a subset of these reduce the ability of antibodies to neutralize virus (though
not to the level that would render them inefficacious) "' and another subset increases
transmissibility 12113, The impact that these VOCs will have on the natural history and

selective pressures on SARS-CoV-2 remains unknown.
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Evolutionary barriers to viral adaptation: IAV and SARS-CoV-2

RNA viruses, including 1AV, are often described as “rapidly evolving”, due to their fast
generation times, frequently large and genetically diverse populations, and high mutation
rates. Virologists and infectious disease scientists therefore expect beneficial mutants,
such as antigenic escape variants, to enjoy a marked fithness advantage and rapidly
become dominant. While little is known about SARS-CoV-2, IAV mutants can rapidly
adapt to selective pressures in cell culture '4-116_ Likewise, on the global scale, seasonal
IAV evolution is characterized by antigenic drift, in which escape variants rise to high
frequency in the human population and initiate subsequent epidemics 76117118,
Perplexingly, however, there is little evidence of adaptive evolution of IAV within individual

humans 119-123,

Rare instances of within-host IAV adaptive evolution have been described in prolonged
infections in immunocompromised individuals and in atypical cases of drug resistance %4+
126, Together these observations suggest that positive selection (natural selection favoring
new mutations) is weak in individual IAV-infected hosts. Adaptive variants and escape
variants must arise within individuals and make their way out of individuals before
spreading through a population. This raises the question: why is IAV antigenic evolution
detectable in cell culture and in human populations, but not at the level of individual hosts?
Perhaps a clue lies with a recent influenza household cohort study that determined that
genetic drift, i.e. stochastic processes, could explain the observed patterns of within-host
diversity 22, In support of this idea, another study found the emergence of drug-resistant

IAV in cell culture was inhibited by pervasive genetic drift when virus titers were low 6.
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These studies suggest the role of genetic drift in slowing IAV evolution on the scale of
individual hosts underappreciated. Identifying the principal barriers impeding the
preservation and transmission of adaptive avian IAV and SARS-CoV-2 will improve
predictive models for vaccine design as well as for ongoing epidemic and pandemic

surveillance efforts.

A number of factors likely contribute to inefficient adaptive evolution within individual viral
infections. The vast majority of the IAV and SARS-CoV-2 genomes are coding, so the
vast majority of new mutations will range in phenotypic impact from mildly deleterious to
lethal, which limits viral evolutionary flexibility. Further, mutations do not occur in isolation
so the phenotypic impact of any mutation also depends on any co-occurring (linked)

mutations and their combined impact '%7.

Even when a beneficial mutation or haplotype, a group of mutations in linkage, arises, its
growth within the viral population is far from certain. The fate of a new mutation depends
on two factors: (1) the strength of its advantage (selection coefficient, s) and (2) the
effective population size (Ne). Ne is the number of genetically distinct variants
reproducing in a population. Note that Ne is distinct from census size, the overall number
of individuals: an infection initiated by 10 genetically identical viruses has a census size
of 10 and a Ne of 1. Ne correlates inversely with the strength of natural selection and is
directly proportional to genetic drift — small populations are more susceptible to the effects
of genetic drift than large populations. In a haploid population, the deterministic effect of

selection will remain negligible until 2 x Ne x s exceeds 1 '%. In the case of spillover
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viruses not fully adapted to mammalian hosts, viral replication may be inefficient, and
even beneficial mutations could be lost by chance if the viral population size is not

sufficiently large; this is genetic drift.

Finally, even if a beneficial variant arises and achieves consensus frequency (majority) in
a viral population, onward transmission can be very challenging. In most RNA virus
systems, between host transmission corresponds with a dramatic reduction in population
size, called a transmission bottleneck '2°-32, Narrow transmission bottlenecks cause a
founder effect and purge low-frequency intrahost single nucleotide variants (iISNVs),
regardless of their fitness. Conversely, wide transmission bottlenecks allow more viruses
to initiate infection, reducing the chance that beneficial or rare variants are lost at the time
of transmission. For example, in humans, airborne transmission of seasonal influenza
viruses has been shown to involve a narrow transmission bottleneck, with new infections
founded by as few as 1-2 genetically distinct viruses 122133136 _|n the absence of selection
acting during a transmission event, the likelihood of a variant being transmitted is equal
to its frequency in the index host at the time of transmission (e.g. a variant at 5%
frequency, has a 5% chance of being transmitted) '3’. When transmission involves the
transfer of very few variants, even beneficial variants present at low frequencies in the
transmitting host are likely to be lost. Accordingly, although antigenic escape variants can
sometimes be detected at very low levels in individual human hosts, the transmission of
these variants has rarely been observed in nature 120138, In this way, narrow transmission
bottlenecks are generally expected to slow the pace of seasonal IAV adaptation 139140

and may have similar effects on avian IAV and SARS-CoV-2. Overall, understanding the
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size of the transmission bottleneck is important for evaluating the probability that novel

variants arising within an individual host infection will be transmitted onward.

An overview of genomic epidemiology

Viral deep sequencing is the workhorse method involved in assessing viral diversity,
which is needed to analyze viral evolution within hosts. Sequencing viruses collected from
groups of infected individuals can additionally be used to reconstruct virus family trees
(phylogenies), which can be used to infer paths of transmission. The practice of
combining viral genomic data with epidemiological data is referred to as “genomic
epidemiology”. According to the CDC, genomic epidemiology is “the use of pathogen
genomic data to determine the distribution and spread of an infectious disease in a
specific population and the application of this information to control health problems" 141,
Genomic epidemiology first emerged as a critical tool while reconstructing patterns of viral
spread and evaluating the efficacy of public health strategies during the Ebola and Zika
outbreaks '%?-152 and has more recently played a critical role in the fight against SARS-
CoV-2. Viral sequencing can augment traditional methods of contact tracing. Specifically,
because the SARS-CoV-2 genome acquires new mutations at a relatively constant rate,
mutational patterns can be used to make inferences about likely paths of transmission
within populations 5459153 Additionally, the mutational differences contributing to a set of
viral sequences (reflected in a phylogeny) can be used to infer key parameters like the
basic reproductive number Ro, an important measure of the transmission potential of a

virus 1%, Such an analysis would allow you to evaluate the rate of viral spread and, with



16

longitudinal data, the effectiveness of a public health intervention in a given population

155,156

A brief outline of the chapters to follow

Chapter 2 discusses our characterization of within- and between-host diversity of H7N9
avian influenza viruses replicating in a mammalian model — the ferret. We find that H7N9
within-host diversity is under purifying selection in ferrets, variants are rarely transmitted
onward, and the transmission bottleneck is even narrower for H7N9 viruses than H1N1
viruses. We find no evidence of natural selection favoring new or mammalian-adaptive
mutations within ferrets or arising during transmission. These findings suggest that
purifying selection, randomness, and very narrow bottlenecks combine to severely
constrain the ability of H7N9 viruses to effectively adapt to mammalian hosts in typical

spillover infections, even with onward airborne transmission.

In chapter 3, we evaluate the forces shaping SARS-CoV-2 viral evolution within and
between hosts a different mammalian model — the domestic cat. Similar to our findings in
chapter 2, we show that SARS-CoV-2 genetic variation is predominantly influenced by
genetic drift and purifying selection within individual hosts and by narrow transmission
bottlenecks between hosts. In addition, we identify a notable variant at amino acid position
655 in Spike (H655Y) that arises rapidly in transmitting cats, persists at intermediate
frequencies in these cats, and becomes fixed following transmission in two of three

transmission pairs. This same variant has been shown to confer escape from human
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monoclonal antibodies and circulates in humans on multiple SARS-CoV-2 genetic

lineages.

In chapter 4, we investigate whether novel SARS-CoV-2 variants arise and transmit
efficiently among acutely infected humans. Employing a comprehensive approach to
exclude spurious, pipeline-induced variants, we find that very limited variation is
generated and transmitted during acute SARS-CoV-2 infection. Most infections in our
dataset are characterized by fewer than 5 total iSNVs, the majority of which are low-
frequency. Most iISNVs are not detected in global consensus genomes and are rarely
detected in downstream branches on local or global phylogenetic trees. Even among
putative household transmission pairs, iISNVs are shared infrequently, and we estimate
that a small number of viruses found infection after most transmission events (a narrow
transmission bottleneck). The combination of low within-host diversity, tight transmission
bottlenecks, and infrequent propagation along transmission chains may slow the rate of

novel variant emergence among acutely infected individuals.

While the emergence of novel variants of concern should be monitored closely, our data
suggest that rapid accumulation of novel mutations within-host is not the norm during
acute infection. Like influenza viruses, a significant portion of variation generated within
a host is likely lost during transmission. This implies that even if novel, beneficial variants
are generated de novo, these variants are unlikely to spread beyond that individual. When

this process is expanded across the global population, the combination of limited diversity
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within-host and tight transmission bottlenecks should slow the pace at which novel,

beneficial variants could emerge.

Chapter 5 discusses our use of genomic epidemiology to characterize the initial SARS-
CoV-2 outbreaks in the two most populous counties in Wisconsin, Dane and Milwaukee
Counties. These two counties provided a “natural experiment” to understand the impact
of the “Safer at Home” Executive Order on within- and between-county SARS-CoV-2
transmission in two nearby US counties with distinguishing demographic features. We
show that despite their proximity, distinct viral lineages drove each county’s outbreak. The
number of viral introductions into each county differed as well. In addition, we show that
the “Safer at Home” order decreased viral spread in both counties by at least 40%. These

findings have implications for the application of targeted public health guidance.

Finally, chapter 6 discusses our investigation into the most common source of infection
in healthcare personnel at a major academic medical institution in the Upper Midwest of
the United States during spring, 2020. We use viral sequencing to show that healthcare
personnel were most likely to become infected with SARS-CoV-2 through community
exposure rather than patient contact. These findings support the success of the CDC’s
infection control guidelines to protect healthcare personnel. These findings also
underscore the importance of ongoing measures to reduce community spread through
mask-wearing, physical distancing, robust testing programs, and rapid vaccine

distribution.
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Chapter 2:
Stochastic processes constrain adaptation of wildtype H7N9

avian influenza viruses to mammalian hosts

Katarina M. Braun', Chelsea Crooks', Luis Antonio Haddock IlI', Gabrielle L. Barry’,
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Abstract

H7N9 influenza viruses have caused over 1,500 human spillover infections and can be
transmitted by respiratory droplet in ferrets. Although these viruses seem poised to adapt
to humans and cause widespread outbreaks, no such event has occurred. Critical insights
have been offered regarding the molecular determinants restricting successful host-
switching of avian H7N9 viruses to human hosts, but little is known about the evolutionary
constraints. To address this, we deep sequence time series swabs collected from 23
ferrets infected with H7N9, including seven transmission events. We compare these

findings against nine ferrets infected with seasonal H1N1, including four transmission
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events. We find that H7N9 within-host diversity is under purifying selection in ferrets,
variants are rarely transmitted onward, and the transmission bottleneck is even narrower
for H7N9 viruses than H1N1 viruses. We find no evidence of natural selection favoring
new or mammalian-adaptive mutations within ferrets or arising during transmission.
Together, these findings suggest that purifying selection, randomness, and very narrow
bottlenecks combine to severely constrain the ability of H7N9 viruses to effectively adapt
to mammalian hosts in typical spillover infections, even with onward airborne

transmission.
Introduction

The potential emergence of a novel avian influenza virus in humans poses a significant
public health and economic threat 2%157-15% Despite significant advances in influenza
surveillance and forecasting '6%-162, we still do not understand the evolutionary processes
underlying the emergence of pandemic influenza viruses %1%, H7N9 avian influenza
viruses (AlVs) naturally circulate in aquatic birds and have been endemic in chickens
since the virus’s emergence in China in February, 2013 ?7. Since then, H7N9 viruses have
caused 1,568 confirmed human infections with a case fatality rate approaching 40%
across six epidemic waves 2. During the fifth and largest epidemic wave, some low-
pathogenicity avian influenza (LPAI) H7N9 viruses acquired a novel motif in
hemagglutinin (HA) which both facilitates systemic virus replication in chickens and
enhances pathogenicity in mammals '93-167; these viruses are designated highly
pathogenic avian influenza (HPAI) viruses. Many posit and are concerned ongoing human
spillover infections may facilitate mammalian adaptation of H7N9 AlVs, eventually

resulting in a mammalian-transmissible, and therefore pandemic, virus.
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High pandemic potential is currently assigned to both H7N9 and H5Nx AlVs 138.158.168-173
H7N9 viruses appear particularly threatening because, unlike H5N1 viruses, H7N9
viruses can be transmitted between ferrets via respiratory droplet without first needing to
acquire mammalian-adapting mutations 79174175 |n addition, H7N9 viruses bind human-
type receptors, in which sialic acids are linked to galactose in an a(2,6) pattern '35170_ |t
is therefore unclear why, despite causing over 1,500 human spillover infections, there are
no documented cases of human-to-human transmission of H7N9 viruses 7. Some have
speculated that the lack of human-to-human transmission can be explained by a number
of factors including H7N9 residual binding to avian-type («(2,3)) sialic acid receptors, viral
fusion occurring at a higher-than-optimal pH for human-transmissible viruses, reduced
polymerase activity at the human upper respiratory tract temperature (33 °C), and
variability in HA glycosylation patterns '35177-180 Another study cites limited within-host
diversity of LPAI H7N9 viruses in ferrets, compared to chickens, as a potential barrier to
rapid mammalian adaptation '3°. Although these studies offer critical insights for the
molecular determinants restricting host-switching of H7N9 viruses to mammalian hosts,
it remains unclear whether additional evolutionary barriers further restrict mammalian

adaptation and transmissibility of LPAI and HPAI H7N9 viruses.

In 2017, Dr. Kawaoka’s group characterized the replication and pathogenicity of H7N9
viruses in ferrets 7°. Using time series samples originally collected in this study, we
sought to investigate the evolutionary dynamics of LPAI and HPAI H7N9 avian influenza

viruses replicating and transmitting in a mammalian system. We performed whole-
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genome deep sequencing in duplicate and evaluated H7N9 population dynamics in seven
ferret transmission events and in an additional nine infections not resulting in
transmission. Importantly, we compare the viral genetic diversity of these AlVs in a
mammalian system to seasonal H1N1 in four ferret transmission events and an additional
non-transmitting infection 70181, In contrast to our initial predictions, we find no evidence
for mammalian adaptation in ferrets and postulate that stochastic forces play a significant
role in limiting avian influenza virus host-switching. We conclude the evolutionary barrier
to emergence of an H7N9 AlV capable of sustained spread in humans is quite high. We
speculate pandemic preparedness resources might be best directed toward ongoing
poultry vaccination 82183 safety regulations for wet markets '8¢ and ecological

restoration '8 as opposed to broad surveillance for particular AlV lineages or variants.

Materials and methods

Ferrets transmission experiments & sample collection and availability

No new transmission experiments were performed as part of this study. We took
advantage of nasal wash samples collected from ferrets participating in 2017 and 2020
studies conducted by Imai and colleagues to assess the transmissibility of H7N9 viruses
in mice, ferrets, and non-human primates %181 In these previously-described studies,
four groups of four ferrets were directly inoculated with various H7N9 viruses (1 x 108 pfu)
and one group of two ferrets was infected with an H1N1pdm seasonal virus for
comparison (inoculated or index ferrets). The H7N9 viruses included a high-pathogenic
human isolate — A/Guangdong/17SF003/2016 (“GD/3"), two recombinant viruses which

possess arginine or lysine at position 289 (H7 numbering) to confer neuraminidase-
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inhibitor sensitivity or resistance, respectively, on the background of the GD/3 consensus
sequence —rGD/3-NA289R and rGD/3-NA289K (“rGD/3”), and a low-pathogenic H7N9
virus — A/Anhui/1/2013 (“Anhui/1”). The H1N1 comparator group was infected with a

representative 2009 pandemic virus — A/California/04/2009 (“CA04”).

Four (GD/3, rGD/3-NA289R, rGD/3-NA289K, Anhui/1) or six (CA04) serologically-
confirmed naive ferrets (exposed/contact ferrets) were placed in a cage adjacent to an
infected ferret (separated by ~5cm) on day 2 post infection. Pairs of ferrets were
individually co-housed in adjacent wireframe cages which allow for spread of virus by
respiratory droplet, but not by direct or indirect (via fomite) contact. Nasal washes were
collected from infected ferrets on day 1 after inoculation and from contact ferrets on day
1 after co-housing, and then every other day (for up to 15 days) for virus titration. Virus
titers in nasal washes were determined by plaque assay on MDCK cells. Viral RNA was
available for isolation from nasal wash samples collected from index ferrets on days 1, 3,
5 and 7 post-infection and from contact ferrets on days 3, 5, 7, 9, 11, 13, and 15 post-

infection.

Viruses

A/Guangdong/17SF003/2016 was propagated in embryonated chicken eggs to prepare
a virus stock after being isolated from a fatal human case treated with oseltamivir 86, We
sequenced the GD/3 stock virus to verify consensus and sub-consensus variants (see
details in section below). The GD/3 stock consensus sequence differs from the human

isolate consensus sequence (GISAID isolate ID: EPI_ISL_249309) at nine sites (eight out
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of nine were non-synonymous changes). A/Anhui/1/2013 was also propagated in
embryonated chicken eggs after being isolated from an early human infection 174,
A/California/04/2009 was propagated in MDCK cells and was originally obtained from the
Centers for Disease Control (CDC) "®7. Recombinant viruses, rGD3-NA289K and rGD3-

NA289R, were generated by plasmid-based reverse genetics as previously described 88,

Template preparation

Total nucleic acids including viral RNA (vVRNA) were extracted from nasal washes and
were reverse transcribed using SSIV VILO (Invitrogen, USA) and the Uni12 primer
(AGCAAAAGCAGG) in a total reaction volume of 20 pl . The complete reverse
transcription protocol can be found here:

https://qgithub.com/tcflab/protocols/blob/master/VILO Reverse Transcription h7n9 GLB

2019-02-15.md.

Single-stranded cDNA was used as a template for PCR amplification to amplify all eight
genes using segment specific primers using high-fidelity Phusion 2X DNA polymerase
(New England BioLabs, Inc., USA). PCR was performed by incubating the reaction
mixtures at 98°C for 30 s, followed by 35 cycles of 98°C for 10 s, 51 - 72°C depending on
gene segment for 30 s, 72°C for 120 s, followed by a final extension step at 72°C for 5
min. The complete PCR protocol, including segment-specific annealing temperatures and
primer sequences, can be found here:

https://github.com/tcflab/protocols/blob/master/Phusion PCR h7n9 GLB 2019-02-

21.md.
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PCR products were separated by electrophoresis on a 1% agarose gel (Qiagen, USA).
The bands corresponding to full-length gene segments were excised and the DNA was
recovered using QIAquick gel extraction kit (Qiagen, USA). To control for RT-PCR and
sequencing errors, especially in low-titer samples, all samples were prepared in complete
technical replicate starting from vRNA 189190 After completing replicate whole-genome
sequencing for all 90 samples, we sequenced samples with low or no coverage, typically
from low-titer samples, a third time and merged sequencing reads with the first two
replicates with the goal of minimizing holes in our dataset. Samples for which we prepared
a third complete deep-sequencing library included GD3 ferret 1 day 5 (all genes other
than NA), GD3 ferret 1 day 7 (NA), GD3 ferret 5 day 7 (PA and NA), GD3 ferret 7 day 1
(PB1 and NA), rGD3 ferret 9 day 3 (NA), rGD3 ferret 15 day 7 (PA), rGD3 ferret 18 day
11 (PB1), rGD3 ferret 22 day 3 (MP), rGD3 ferret 23 day 7 (PA), Anhui ferret 25 day 7

(HA), Anhui ferret 31 day 3 (PB1), CA04 ferret 33 day 5 (NS) and day 7 (PB1).

Deep sequencing

Gel-purified PCR products were quantified using Qubit dsDNA high-sensitivity kit
(Invitrogen, USA) and were diluted in elution buffer to a concentration of 1 ng/ul. All
segments originating from the same samples with a non-zero concentration as
determined by hsDNA Qubit (Invitrogen, USA) were pooled equimolarly and these
genome pools were again quantified by Qubit. Each equimolar genome pool was diluted
to a final concentration of 0.2 ng/pl (1 ng in 5 yl volume). Each sample (90 complete
genomes in technical or duplicate or triplicate in addition to the stock virus) were made

compatible for deep sequencing using the Nextera XT DNA sample preparation kit
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(lllumina, USA). Specifically, each sample or genome was enzymatically fragmented and
tagged with short oligonucleotide adapters, followed by 15 cycles of PCR for template
indexing. Individual segments with undetectable concentrations by Qubit were tagmented
and indexed separately to maximize recovery of complete genomes. Samples were
purified using two consecutive AMPure bead cleanups (0.5x and 0.7x) and were
quantified once more using Qubit dsDNA high-sensitivity kit (Invitrogen, USA). If
quantifiable at this stage, independent gene segments were pooled into their
corresponding genome pools. The average sample fragment length and purity was
determined using Agilent High Sensitivity DNA kit and the Agilent 2100 Bioanalyzer
(Agilent, Santa Clara, CA). After passing quality control measures, genomes were pooled
into six groups of ~30, which were sequenced on independent sequencing runs. Libraries
of 30 genomes were pooled equimolarly to a final concentration of 4 nM, and 5 pl of each
4 nM pool was denatured in 5 ul of 0.2 N NaOH for 5 min. Denatured pooled libraries
were diluted to a final concentration of 16 pM, apart from the first library which was diluted
to 12pM, with a PhiX-derived control library accounting for 1% of total DNA loaded onto
the flowcell. Then 600 pl of diluted-denatured library was loaded onto a 600-cycle v3
reagent cartridge. Average quality metrics were recorded, reads were demultiplexed, and

FASTQ files were generated on lllumina’s BaseSpace platform 97,

Sequence data analysis — quality filtering and variant calling
FASTQ files were processed using custom bioinformatic pipelines, available at this

GitHub address https://github.com/tcflab/Sniffles2. Briefly, read ends were trimmed to

achieve an average read quality score of Q30 and a minimum read length of 100 bases
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using Trimmomatic '%2. Paired-end reads were merged and mapped to a reference
sequence using Bowtie2 9. GD/3 and rGD/3 samples were mapped to the consensus
sequence of the A/Guangdong/17SF006/2016 human isolate (GISAID isolate ID:
EPI_ISL_249309) '74. Anhui/1 samples were mapped to the consensus sequence of the
A/Anhui/1/2013 human isolate (GISAID isolate ID: EPI_ISL_138739) '"4. CA04 samples
were mapped to A/California/04/2009 reference sequence (GISAID isolate ID:
EPI_ISL_29618). Alignment files were randomly subsampled to 200,000 reads per
genome using seqtk to ensure even coverage and reduce resequencing bias '%. The
sequence depth per gene in each sample is shown in Supplementary Figure 1. Single
nucleotide variants (iISNVs) were called with Varscan "% using a frequency threshold of
1%, a minimum coverage of 100 reads, and a base quality threshold of Q30 or higher.
Variants were called independently for technical replicate pairs and only iSNVs (intrahost
single nucleotide variants) called in both replicates, “intersection iSNVs”, were retained
196, 1f an iISNV was only found in one replicate, it was discarded. iSNV frequency is
reported as the average frequency found across both replicates. iISNVs are annotated to
determine the impact of each variant on the amino acid sequence. iISNVs were annotated
in ten open reading frames: PB2 (polymerase basic protein 2), PB1 (polymerase basic
protein 1), PA (polymerase acidic), HA (hemagglutinin), NP (nucleoprotein), NA
(neuraminidase), M1 (matrix protein 1), M2 (matrix protein 2), NS1 (non-structural protein
1), and NEP (nuclear export protein), though for some analyses M1 and M2 are jointly
represented as MP (matrix proteins) an NS1 and NEP are jointly represented as NS (non-

structural proteins).
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Sequence data analysis — diversity statistics

Nucleotide diversity was calculated using 1T summary statistics. 11 quantifies the average
number of pairwise differences per nucleotide site among a set of sequences and was
calculated using SNPGenie '9:1%8, SNPGenie adapts the Nei and Gojobori method of
estimating nucleotide diversity (1), and its synonymous (11s) and nonsynonymous (TTn)
partitions from next-generation sequencing data '*°. As most random nonsynonymous
mutations are likely to be disadvantageous, we expect TTn = T1s points toward neutrality
suggesting that allele frequencies are determined primarily by genetic drift. TTn < TTs
indicates purifying selection is acting to remove new deleterious mutations, and 1In > TTs
indicates diversifying selection is favoring new mutations and may indicate positive
selection is acting to preserve multiple amino acid changes 2°°. We used paired t-tests to

evaluate the hypothesis that v = 1Ts within gene segments.

Sequence data analysis — estimating transmission bottleneck size

The beta-binomial model, explained in detail in Sobel-Leonard’s 2017 paper '3, was used
to infer effective transmission bottleneck size (Nb), the number of virions comprising the
founding viral population at the onset of infection in the recipient host that successfully
establish lineages persisting to the first sampling time point. In this model, the probability
of iISNV transmission is determined by iSNV frequency in the index at the time of
sampling. The probability of transmission is the probability that each iISNV is included at
least once in a sample size equal to the bottleneck. The model incorporates sampling
noise arising from a finite number of reads and therefore accounts for the possibility of

false-negative variants that are not called in contact animals due to conservative variant



29

calling thresholds (21% in both technical replicates). The frequencies of transmitted
variants are permitted to change from immediately following transmission to the first
sampling time point according to a beta distribution. The beta-binomial model makes
several limiting assumptions. The model assumes viral genetic diversity is neutral and
variant frequencies are not impacted by selection and that variant sites are independent,
which is unlikely to be true within a given gene segment because homologous
recombination is not known to occur in influenza viruses ©°. In addition, the beta-binomial
model ignores variants that arise de novo within contact animals to avoid artificially
inflating bottleneck sizes. Overall, bottleneck size estimates from the beta-binomial model
are conservative estimates. Computer code for estimating transmission bottleneck sizes
using the beta-binomial approach has been adapted from the original scripts, available

here: hitps://github.com/koellelab/betabinomial bottleneck.

Figures

All figures were generated using Python Matplotlib and packages including plotly,
seaborn, numpy, and scipy and were edited using Adobe lllustrator for clarity and
readability. All derived data and computer code used to generate figures is available in

the GitHub repository accompanying this manuscript 2°".

Results

H1N1 viruses transmit more frequently than H7N9 viruses among the ferrets

evaluated here
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We isolated and sequenced viral RNA (vVRNA) from nasal washes collected from two
previously published studies %181 Among 5 donor ferrets infected with H1N1, 4
successfully transmitted to a naive recipient ferret (80%). By comparison, 7 out of 12
ferrets infected with H7N9 AlV transmitted to a recipient ferret (58.3%) (Figure 1,
Supplemental Figure 2). These group sizes are small and the H1N1 transmission rate
is not significantly different from the H7N9 transmission rate (p=0.12; Mann-Whitney U).
This is notable, however, given that the H7N9 viruses evaluated are wildtype AIV
sequences capable of infecting and transmitting in ferrets, a mammalian model with

similar sialic-acid receptor distribution and respiratory system anatomy to humans 2%,

Rates of transmission varied substantially between H7N9 virus subgroups. One of four
ferrets resulted in transmission when infected with either the LPAI human isolate
(A/Anhui/1/2013; “Anhui/1”) or the HPAI human isolate (A/Guangdong/17SF003/2016;
“GD/3”). We also evaluated two recombinant viruses reverse engineered to contain a
neuraminidase-inhibitor escape mutation (NA-289K) or wildtype (NA-289R) at position
289 in neuraminidase (NA) on the background consensus sequence of GD/3. Two of four
ferrets infected with the neuraminidase-escape variant, rGD/3-NA289K, transmitted to the
donor ferret and three of four ferrets infected with the wildtype variant, rGD3/NA289R,

transmitted to the donor ferret (Supplemental Figure 2).

H7N9 within-host diversity is dominated by low-frequency iSNVs
Patterns of viral genetic variation provide rich information about how variants emerge

within, and transmit beyond, individual hosts. We mapped sequencing reads against the
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inoculating virus sequence and called within-host variants present in 21% of sequencing
reads in both technical replicates, called intersection iSNVs (see methods for additional
details). All coding region changes are reported using H7 numbering for the H7N9 viruses
and H1 numbering for the H1N1 viruses, consistent with the numbering schemes used in
the Nextstrain. We identified 867 unique iSNVs across all donor and recipient ferrets and

all timepoints (482 synonymous, 382 nonsynonymous, and 3 stop mutations).

The average number of unique iISNVs per ferret across all available time points varied
significantly across virus groups (Anhui/1, CA04, GD/3, and rGD/3) (p=6.83x10'°; one-
way ANOVA) (Figure 2a). The number of unique iSNVs was lowest in the CA04 group,
ranging from 3-83 iSNVs per ferret (n=9 ferrets). Unsurprisingly, the number of unique
iISNVs in the clonal recombinant H7N9 virus group was also low, ranging from 1-43 per
ferret (n=13 ferrets). Viral diversity was highest in the H7N9 isolate groups with 85-195
and 27-142 unique iSNVs per ferret in the Anhui/1 group (n=5 ferrets) and GD/3 group
(n=5 ferrets), respectively. The total count of unique iISNVs within a single ferret is

relatively stable over time (Supplementary Figure 3).

Most iISNVs were detected at <10% frequency (Figure 2b). Compared to expectations
under a neutral model, iSNVs detected within each virus group (Anhui/1, CA04, GD/3,
and rGD/3) were present in excess at low frequencies. This pattern is consistent with
purifying selection and population expansion acting on intrahost viral intrahost

populations.
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The frequency, genome location, and annotation (synonymous vs nonsynonymous) for
each iSNV detected in hemagglutinin (HA), the receptor binding protein, is shown in

Figure 2c. iSNVS in all other gene segments are plotted in Supplementary Figure 4.

H7N9 viral populations are subject to purifying selection in donor and recipient
ferret hosts

We used a common measure of nucleotide diversity, 11, within individual ferrets to assess
signals of H7N9 viruses adapting or diversifying within mammalian hosts. This summary
statistic quantifies the average number of pairwise differences per nucleotide site among
a set of viral sequences. In particular, we compared the nucleotide diversity at
synonymous sites (1T1S) to nucleotide diversity at nonsynonymous sites (1TN) to assess
the evolutionary forces acting on viral populations within individual hosts. In general,
TIN/TTS < 1 indicates that, on average, purifying selection is acting to remove deleterious
mutations from the viral population, and TN/1TS > 1 indicates that diversifying selection is
favoring new mutations, which might be expected in the case of an avian influenza virus
adapting to a mammalian host. When TN approximates 1S, this suggests that allele
frequencies are determined primarily by genetic drift, stochastic shifts in allele frequencies

primarily determined by population size 2°3,

As is expected for a fit viral population, TS exceeded or was equal to TTN in the ferrets
infected with H1N1 viruses (Figure 3a, orange). 1S was significantly greater than 1N in
PB2, PA, and NA and TN and 1TN never significantly exceeded 1S, suggesting these

viruses are under a combination of purifying selection and genetic drift in ferrets.
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Somewhat surprisingly, the H7N9 viruses were also under a combination of purifying
selection and genetic drift in ferrets. S significantly exceeded 1N in all genes apart from
NA in the GD/3 group and all genes apart from NA and HA in Anhui/1 (Figure 3a, blue
and turquoise). It is notable that HPAI and LPAI H7N9 are not subject to diversifying
selection as it suggests these avian influenza viruses are relatively fit in mammalian

hosts.

We compared nucleotide diversity in donor-recipient pairs to evaluate population forces
before and after transmission. Genetic diversity is lost during transmission. We found
genome-wide genetic diversity (17) is lower in recipient ferrets compared to donor ferrets
in the H1N1 group (p=0.125, paired t-test) and significantly lower in recipient ferrets
compared to donor ferrets in the H7N9 group (p=0.005; paired t-test). As we have done
previously 294205 we looked for selective sweeps by comparing the change in TN and TS
for each gene in paired donor and recipient ferrets. Within each gene segment, TN did
not differ significantly between donor and recipient and 1S similarly did not different
between donor and recipient. This was true across all H1IN1 transmission pairs (Figure
3b) and all H7N9 transmission pairs (Figure 3c). Taken together, this suggests that while
genetic diversity is purged during the transmission event, this diversity is purged equally
across the genome with no evidence for a selective reduction in any particular gene

segment.

Airborne transmission results in a dramatic shift of iSNV frequencies
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We took advantage of time series data to track iSNV frequency trends within each donor
ferret and following airborne transmission into the associated recipient ferret. Strikingly,
frequencies of specific H7N9 mutations in donor ferrets do not predict their likelihood of
transmission nor do they predict iSNV frequency post-transmission. For example, one
polymorphic site at position 137 in HA involving a glycine to glutamic acid mutation
(G137E) in the GD/3 transmission pair was present at 81% one day after inoculation in
the donor ferret and decreased to a sub-consensus frequency (39.3%) by 7 DPI. Despite
this marked downward trend in the donor animal, G137E was transmitted to the recipient
ferret and was found at 299% from first time point post-infection onward (Figure 4).
Another polymorphic site in the matrix protein (M1) with an arginine-to-lysine mutation at
position 210 (R210K) was conversely never detected in the donor ferret above 1%, yet
was nearly fixed (97.5%) at the first time point post infection in the recipient ferret.
Interestingly, M1 R210K then decreased in frequency in the recipient ferret and was found
at 54.5% at 9 DPI, suggesting this mutation might have conferred a mild fitness cost. We
observed similar patterns in synonymous variants. For example, a synonymous A-to-G
change at nucleotide 2,037 in the polymerase basic protein 1 (PB1) was found at 5.57%
at 1 DPI, 5.1% at 3 DPI, 4.76% at 5 DPI, 1.87% at 7 DPI and was nearly fixed immediately
following transmission, but again decreased in frequency to 57.57% at 9 DPI in the

recipient ferret.

Transmission dynamics of individual H7N9 GD/3 variants remained stochastic even in the
case of amino acids under positive selective pressure in humans. A valine to isoleucine

change at amino acid position 219 in M1 is thought to play a role in avian influenza virus
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adaptation to mammals 2°6 and accordingly increased in frequency from 34.7% to 84.3%
in the donor ferret, but nonetheless failed to transmit to the recipient and then amazingly
arose de novo once again in the recipient ferret. Similar iSNV dynamics were observed
in the Anhui/1 transmission pair as well in the recombinant GD/3 pairs (Figure 4, Figure

5a).

Unlike iSNV dynamics in the H7N9 transmission events, multiple iSNVs in the H1N1
CAO04 donor ferrets remained polymorphic immediately following transmission (e.g. HA
D127E and S183P (H1 numbering)) (Figure 4, Figure 5a). It is clear that airborne
transmission of H7N9 viruses in ferrets dramatically alters the viral population,
stochastically allowing minor variants to become dominant in subsequent generations
despite lacking a putative fitness benefit, and conversely preventing known mammalian-

adaptive consensus-level variants from transmitting.

Airborne transmission of H7N9 viruses in ferrets is characterized by a very narrow
transmission bottleneck

The number of viruses that found infection is a crucial determinant of the pace at which
novel, beneficial variants can emerge at the level of the population. Narrow transmission
bottlenecks cause a founder effect and purge low-frequency iSNVs, regardless of their
fithess. Conversely, wide transmission bottlenecks allow more viruses to initiate infection,
reducing the chance that beneficial or rare variants are lost. Understanding the size of the
transmission bottleneck is therefore important for evaluating the probability that novel

variants arising within an individual host infection will be transmitted onward. To infer
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transmission bottleneck sizes, we applied the beta-binomial inference method '¥7. To do
this, we used the first time point available in the recipient host and the time point

immediately preceding this in the associated donor host (see methods for details).

The vast majority of iSNVs detected in all donor ferrets were lost during transmission and
were not found in the recipient ferret. A very small number of iSNVs in the Anhui/1 and
GD/3 donor ferrets transmit and are found fixed (at 100% frequency) in the recipient ferret
(Figure 5a). Most notably, two synonymous iSNVs at 3.5% (A-to-G at nt 270 in PB1) and
3.6% (C-to-T at nt 1735 in PB1) in the GD/3 donor ferret transmit and were fixed
immediately following transmission. This pattern where iSNVs are dichotomously either
lost or fixed following transmission is consistent with a very narrow transmission
bottleneck '37. The majority of H1IN1 iSNVs were similarly lost during transmission,
although we found five iSNVs that were shared at sub-consensus frequencies (<50%)

among donor-recipient pairs (Figure 5a).

While bottleneck size estimates varied modestly between ferret pairs, we found consistent
support for fewer than 11 viruses initiating infection in all recipient ferrets. We found the
combined maximum likelihood estimate for the mean transmission bottleneck size for the
CAO04 (H1N1) pairs (n=4 pairs) was 6 (95% CI: 3-11) (Figure 5b). We evaluated seven
transmission events in the H7N9 group; one Anhui/1 pair, one GD/3 pair, and five rGD/3
pairs. However, two of the rGD/3 transmission events (pairs 9 and 11) were uninformative

because the donor ferret had no polymorphic sites. The combined maximum likelihood
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estimate for the mean transmission bottleneck size for the H7N9 group (n=5 pairs) was 1

(95% CI: 1-3) (Figure 5b).

Although group sizes are quite small, we compared the mean transmission bottleneck
sizes for the H1N1 group to the H7N9 group and found modest evidence that the H7N9
transmission bottlenecks in a mammalian model system are even narrower than the
H1N1 group (p=0.054; unpaired t-test). Overall, our data suggest the vast majority of
H7N9 iSNVs arising in ferret hosts are lost during transmission and because so few
viruses found infection following transmission, any iSNV that happens to be present in a
transmitting virus’ genome will likely become fixed in the post-transmission viral

population.

Discussion

The evolutionary processes by which avian influenza viruses adapt to mammalian hosts
are poorly understood despite the critical importance of these mechanisms in assessing
the pandemic potential of avian influenza viruses. Our study examined the viral dynamics
of wildtype LPAI and HPAI H7N9 viruses in a ferret model, a well-studied mammalian
system which closely resembles human respiratory physiology 2°’. Relatively few studies
have evaluated evolutionary dynamics of avian viruses in in vivo mammalian models,
particularly because such studies could not be conducted during the gain-of-function
research pause. In this study we hypothesized that an avian virus replicating and
transmitting in a mammalian system would be under strong selective pressure to become

more mammalian, but to our surprise we do not detect any evidence to support this
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hypothesis. We instead find evidence that HPAI and LPAI viruses are subject to mild
purifying selection in ferret hosts, which is a signature classically associated with a virus

that is already well-adapted to its host.

In some ways, H7N9 avian influenza isolates do appear well-adapted to mammalian
hosts; they replicate to high-titre in the upper and lower respiratory compartment of ferrets
70 achieve infection via airborne transmission between ferrets 135175177 and are
responsible for > 1,500 human spillover infections 74, Yet there is no evidence that H7N9
viruses are capable of sustained human-to-human transmission ' and there are very
few documented human spillover infections since the fifth epidemic wave in 2017 2. |t
follows that there are significant barriers to more efficient H7N9 mammalian infection and
transmission. Molecular barriers have been previously identified and include mixed avian-
and human-receptor preferences, fusion instability at high endosomal pHs in humans,
and reduced polymerase activity at lower temperatures in the upper respiratory
compartment 13%177-180_|n this study, we identified and characterized evolutionary barriers
which we posit combine with molecular barriers to severely constrain the ability of wildtype
H7N9 viruses to effectively adapt to mammalian hosts in typical spillover infections. These
constraints are most apparent during airborne transmission of influenza where variants
under possible positive selection in index ferrets and even putative mammalian-adapting
variants, like PB2 D701N and M1 V219I, are not preferentially transmitted to contact

ferrets.
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We are not the first to document that transmission of H7N9 viruses in ferrets involves a
stringent and attenuating transmission bottleneck. Zaraket et al also showed evidence of
this in ferrets using a LPAI H7N9 isolate '3. Additionally, other studies, including two from
our lab, have used similar methods to characterize the evolution of avian-like viruses in
ferret models. One of these studies evaluated a H5N1 laboratory reassortant virus with
an H5 HA segment and the other seven segments originating from a human H1N1 virus
205 The other study evaluated a genetically-modified avian virus resembling the 1918-
pandemic virus 2°4298_Upon initial comparison, the results of these prior studies appear
to be in part at odds with the results of this study. These studies involving reassortant
H5N1 and 1918-like viruses both detect evidence of selective sweeps on HA during
airborne transmission, as evidenced in part by a greater reduction in HA genetic diversity
than any other gene segment following transmission, suggesting that selection acted to
favor transmission and/or replication of only a subset of HA sequences from index
animals in contacts infected by respiratory droplets. We detect no such signal in this study
and more broadly detect no strong evidence for the role of positive or directional selection
acting on H7N9 viruses within or between ferret hosts. However, Wilker and Dinis et al
note in their discussion that the replication and transmission of wiltype avian viruses, in
contrast to engineered reassortant avian viruses, in mammals may result in patterns of
selection that differ from those observed in their study 2°°. We believe this rationale

precisely explains the differences in population dynamics observed across these studies.

It is helpful to imagine multiple “fitness peaks” and “fitness valleys” across a landscape

which captures the interaction of the virus and host genotypes '23. When placing wildtype
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H7N9 viruses on this landscape it is likely that the tallest fithess peak can be found when
wildtype avian H7N9 viruses infect avian hosts, though our results suggest wildtype H7N9
viruses are at least moderately fit in the context of a mammalian host as well. In contrast,
the reassortant and genetically modified H5N1 and 1918-like viruses are not viruses
found in nature and may be located in relative “fitness valleys" on this same fitness
landscape. Each of these viruses is likely subject to the same biological constraints,
including short-lived infections, the vast majority of new mutations conferring mildly
deleterious to lethal phenotypes 2°°-2"! and narrow transmission bottlenecks which permit
very few viruses from making their way into subsequent hosts '22133-136_However, the
overall impact of this molecular biology may differ significantly depending on where the
virus is located in the virus-host genotype landscape. If wildtype H7N9 viruses replicating
in mammalian hosts are already located on a relative fitness peak, any new mutations
are exceptionally unlikely to confer a sufficient benefit to be positively selected in the
setting of an acute infection. Additionally, wildtype H7N9 viruses in ferrets randomly
establishing successful infection following airborne transmission are very likely to carry
neutral and/or deleterious variants which then achieve de facto fixation because so few
viruses successfully passed through the transmission bottleneck. These predictions are
consistent with the results of this study. In contrast, diversifying selection and selective
sweeps are much more likely to be detected in the context of viruses located in a relative
“fitness valley”, which is consistent with results observed in the studies evaluating
reassortant H5N1 and 1918-like avian viruses in mammalian models. It has been
previously hypothesized that epistasis is crucial to the evolution of influenza viruses and

mutations that promote human adaptation in one viral and host genetic background may
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not be well-tolerated in others 74212, Additionally, given that we and similar studies identify
(even de novo) mammalian-adaptive mutations in the context of relatively few ferrets
suggest that generation of mammalian-adaptive mutations is not the rate-limiting step in
adaptation of avian viruses to mammalian hosts and instead is consistent with predictions
made by Russell et al who hypothesized H5N1 viruses would generate human-adapting
mutations during infection, but these mutations would remain at low frequencies and fail

to be transmitted 18,

The results of this study may have implications for assessing the adaptive potential of
avian influenza viruses in the setting of human spillover infections. Though it is not
unimaginable for a wildtype avian virus to quickly adapt to humans and achieve sustained
human-to-human transmission, the results of this study suggest there are significant
evolutionary barriers for wildtype avian viruses to do so. Each of the known influenza
pandemics have resulted from a major reassortant event typically by way of a “mixing
vessel”, rather than adaptation of avian influenza viruses in the setting of a human
spillover infection 2027, |t is true that avian virus spillover infections are responsible for
significant individual morbidity and mortality in southeast Asia, however these spillover
infections may be less concerning for ongoing and further human adaptation of avian
influenza viruses than previously recognized. Our results additionally emphasize the
importance of population and One Health interventions to reduce the opportunity for avian
and mammalian viruses to co-infect a single host — these interventions include, but are
not limited to, continued poultry vaccination, culling, poultry movement restrictions, best

practices at live animal markets and others 2'3. Like most ferret studies, the results of
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these experiments are limited by relatively small sample sizes and biological uncertainties
regarding the possible differences between viral infection and transmission between
ferrets and humans. Results described here cannot be mapped directly onto avian
influenza virus infections in human hosts and should continue to be explored and
corroborated by additional investigations, including targeted virological and

epidemiological research 2'4.
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Figure 1. Overview of the experimental system and sampling timeline

Schematic depicting sampling timeline for donor and recipient ferrets. Ferrets were
inoculated intranasally with 106 PFU of a HPAlI H7N9 isolate
(A/Guangdong/17SF003/2016; blue), a LPAI H7N9 isolate (A/Anhui/1/2013; turquoise),
or a HIN1pdm virus (A/California/04/2009; orange) on day 1 post infection (DPI).
Recombinant HPAI H7N9 viruses (rGD3-NA289R, rGD3-NA289K) are not depicted here

and can be seen in Supplemental Figure 1. One day after infection, one naive recipient
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ferret was paired with each donor ferret. Nasal washes were collected from donor (solid
line) and recipient (dotted line) ferrets up to 15 DPI. Small virions denote days on which
live virus was detected by plaque assay. Viral RNA was extracted from these same days

and was prepared in duplicate for whole-genome sequencing.

n =5 ferrets
a n =9 ferrets b
n =5 ferrets
P n =13 ferrets » X
IS z . Anhui/Ad
8 o 80 %] mmm CA04
58 e 2 = GD/3
Sg 2 = GD/3
£ 40 S
§ 2 g —=— neutral expectation
o 3 2 a
o
o s ) o d o
L I I ] S O S S S ]
0-50 50-100 100-150 150-200 ¢ Y 4 e @’6 @’4 © s°
number of unique iISNVs iSNV frequency (%)
(across all timepoints) (averaged across timepoints)
c G137E G1344A  C1497T
100 @ A A [ o
o [°] o (O GD/3, synonymous
° o o @ GD/3, nonsynonymous
80 ° o o o
3 ° o ° O rGD/3, synonymous
= ° A o ¢}
% 604 @ rGD/3, nonsynonymous
§ . - /\ Anhui/1, synonymous
]
5 4o H A n A Anhui/A, nonsynonymous
= )
° t. T AA’J [] CA04, synonymous
20 A o N
" A A B CA04, nonsynonymous
An
g A A'O 4 s % e x ‘§
A
o] @™t L et » Subaat® O“iéﬁ Cmim s © a0 & bodo% P
0 500 1000 1500

receptor binding domain

genome location (nt)

Figure 2. Frequency and location of intrahost single nucleotide variants

a. A histogram displaying the average number of unique iSNVs detected across all
available timepoints. The y-axis displays the proportion of ferrets with various numbers of
unique iSNV (x-axis bins) compared to the total group size across four virus groups. Virus

groups are the LPAI Anhui/1 group (turquoise; n=5), the H1N1 CA04 group (orange; n=9),
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the HPAI GD/3 group (blue; n=5) and the recombinant HPAI rGD/3 group (red; n=13). b.
The proportion of iSNVs that were detected at various within-host frequency bins is shown
for each virus group. Error bars represent the variance in the proportion of total within-
host iISNVs across individual ferrets within each group. The solid grey line indicates the
expected proportion of variants in each frequency bin under a neutral model. c. All iSNVs
detected in hemagglutinin (HA) across all virus groups. GD/3 and rGD/3 iSNVs are plotted
using circles, Anhui/1 iSNVs are plotted using triangles, and CA04 iSNVs are plotted with
squares. Synonymous iSNVs are denoted with open symbols and nonsynonymous iSNVs
are denoted with closed symbols. Three iSNVs found in multiple HPAI samples at high
frequencies are labeled; G137E and two synonymous mutations at nucleotides 1,344 and

1,497. iSNVs in all other gene segments can be found in Supplementary Figure 3.
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Figure 3. Patterns of viral genetic diversity within ferret hosts

a. TN / S nucleotide diversity is plotted for each gene segment. Each datapoint
represents a single ferret. Circles denote donor ferrets and triangles denote recipient
ferrets. The dotted grey line represents where 1N is equal to 1S (y=1). A grey star is
plotted below each gene on the x-axis when TS is significantly greater than TN,
suggesting that gene segment is under purifying selection. b. TN and 1S in the H1N1
donors and recipients are plotted for each gene segment. c. TN and 1S in the H7N9
donors and recipients are plotted for each gene segment. TN and 11S in the donor ferrets
are denoted by the salmon and green diamonds, respectively. TN and 11S in the recipient

ferrets are denoted by the dark blue and yellow diamonds, respectively.
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Figure 4. iSNV frequency dynamics across the transmission event.

The frequencies of individual iISNVs are plotted over time in donor ferrets (top plot) and
following transmission into the associated recipient ferret (bottom plot). Colors denote
virus groups and markers denote particular iSNVs. iSNV are plotted as y=0 at time points
when an iSNV was not detected 21% frequency and are absent at time points when no

viral RNA was recovered for deep sequencing.
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Figure 5. H1IN1 and H7N9 transmission bottlenecks in ferret donor-recipient pairs

a. “TV plots” showing intersection iISNV frequencies in all 11 donor-recipient pairs. The
grey box highlights low-frequency iSNVs (1-10%). b. Maximum likelihood estimates for
mean transmission bottleneck size in individual donor-recipient pairs. Colors denote virus
groups. Bottleneck sizes could not be estimated for a few pairs (rGD/3 pair 9 and pair 11)

because there were no polymorphic sites detected in the donor. The combined H1N1
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estimate was calculated using pairs 3, 4, 5 and 6. The combined H7N9 estimate was

calculated using pairs 1, 2, 7, 8 and 10.
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Supplemental Figure 2. Overview of the experimental system and sampling timeline
for recombinant viruses

Schematic depicting sampling timeline for donor and recipient ferrets for recombinant
H7N9 viruses. Ferrets were inoculated intranasally with 10 PFU of rGD3-NA289R (red)
or rGD3-NA289K (pink). One day after infection, one naive recipient ferret was paired
with each donor ferret. Nasal washes were collected from donor (solid line) and recipient
(dotted line) ferrets up to 15 DPIl. Small virions denote days on which live virus was
detected by plaque assay. Viral RNA was extracted from these same days and was

prepared in duplicate for whole-genome sequencing.
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Supplemental Figure 3. Count of unique iSNVs within individual ferrets and over
time

Count of unique iISNVs within individual ferrets and over time in a. the LPAI H7N9 Anhui/1
group, b. the H1N1 CA04 group, c. the HPAI H7N9 GD/3 group, and d. the recombinant
HPAI rGD/3 group. Donor ferrets are denoted with solid lines and recipient ferrets are

denoted with dashed lines.
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Supplemental Figure 4. Patterns of viral diversity within ferret hosts

All iISNVs detected in a. PB2 (polymerase basic protein 2) b. PB1(polymerase basic
protein 2) c. PA (polymerase acidic protein) d. NP (nucleoprotein) e. NA (neuraminidase)
f. M1 (matrix protein 1) g. M2 (matrix protein 2) h. NS1 (non-structural protein 1) i. NEP
(nuclear export protein or non-structural protein 2). GD/3 and rGD/3 iSNVs are plotted
using circles, Anhui/1 iISNVs are plotted using triangles, and CA04 iSNVs are plotted with
squares. Synonymous iSNVs are denoted with open symbols and nonsynonymous iSNVs

are denoted with closed symbols.
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Transmission of SARS-CoV-2 in domestic cats imposes a narrow bottleneck. PLoS
Pathog. 2021 Feb 26;17(2):e1009373. doi: 10.1371/journal.ppat.1009373. PMID:

33635912; PMCID: PMC7946358.

Abstract

The evolutionary mechanisms by which SARS-CoV-2 viruses adapt to mammalian hosts
and, potentially, undergo antigenic evolution depend on the ways genetic variation is
generated and selected within and between individual hosts. Using domestic cats as a
model, we show that SARS-CoV-2 consensus sequences remain largely unchanged over
time within hosts, while dynamic sub-consensus diversity reveals processes of genetic
drift and weak purifying selection. We further identify a notable variant at amino acid
position 655 in Spike (H655Y), which was previously shown to confer escape from human
monoclonal antibodies. This variant arises rapidly and persists at intermediate
frequencies in index cats. It also becomes fixed following transmission in two of three
pairs. These dynamics suggest this site may be under positive selection in this system
and illustrate how a variant can quickly arise and become fixed in parallel across multiple
transmission pairs. Transmission of SARS-CoV-2 in cats involved a narrow bottleneck,
with new infections founded by fewer than ten viruses. In RNA virus evolution, stochastic
processes like narrow transmission bottlenecks and genetic drift typically act to constrain
the overall pace of adaptive evolution. Our data suggest that here, positive selection in
index cats followed by a narrow transmission bottleneck may have instead accelerated

the fixation of S H655Y, a potentially beneficial SARS-CoV-2 variant. Overall, our study



56

suggests species- and context-specific adaptations are likely to continue to emerge. This
underscores the importance of continued genomic surveillance for new SARS-CoV-2
variants as well as heightened scrutiny for signatures of SARS-CoV-2 positive selection

in humans and mammalian model systems.

Author summary

Through ongoing human adaptation, spill-back events from other animal intermediates,
or with the distribution of vaccines and therapeutics, the landscape of SARS-CoV-2
genetic variation is certain to change. The evolutionary mechanisms by which SARS-
CoV-2 will continue to adapt to mammalian hosts depend on genetic variation generated
within and between hosts. Here, using domestic cats as a model, we show that within-
host SARS-CoV-2 genetic variation is predominantly influenced by genetic drift and
purifying selection. Transmission of SARS-CoV-2 between hosts is defined by a narrow
transmission bottleneck, involving 2-5 viruses. We further identify a notable variant at
amino acid position 655 in Spike (H655Y), which arises rapidly and is transmitted in cats.
Spike H655Y has been previously shown to confer escape from human monoclonal
antibodies and is currently found in over 1000 human sequences. Overall, our study
suggests species- and context-specific adaptations are likely to continue to emerge,
underscoring the importance of continued genomic surveillance in humans and non-

human mammalian hosts.
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Introduction

Understanding the forces that shape genetic diversity of RNA viruses as they replicate
within, and are transmitted between, hosts may aid in forecasting the future evolutionary
trajectories of viruses on larger scales. The level and duration of protection provided by
vaccines, therapeutics, and natural immunity against severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) will depend in part on the amount of circulating viral
variation and the rate at which adaptive mutations arise within hosts, are transmitted
between hosts, and become widespread. Here, to model the evolutionary capacity of
SARS-CoV-2 within and between hosts, we characterize viral genetic diversity arising,

persisting, and being transmitted in domestic cats.

A translational animal model can serve as a critical tool to study within- and between-host
genetic variation of SARS-CoV-2 viruses. SARS-CoV-2 productively infects Syrian
hamsters, rhesus macaques, cynomolgus macaques, ferrets, cats, and dogs in laboratory
experiments. Natural infection with SARS-CoV-2 has also been documented in ferrets,
mink, dogs, and small and large cats. This makes each of these potentially viable animal
models, apart from large cats which are not typically used in biomedical research 215219,
Among these species, natural transmission has only been observed in mink, cats, and
ferrets 215220221 Transmission from humans to mink and back to humans has also
recently been documented 2?2, Infectious virus has been recovered from various upper-
and mid-respiratory tissues in cats and ferrets, including nasal turbinates, soft palate,

tonsils, and trachea 25220, However, only in cats has infectious virus been recovered from
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lung parenchyma, where infection is most commonly linked to severe disease in humans

215,220,223,224

Transmission bottlenecks, dramatic reductions in viral population size at the time of
transmission, play an essential role in the overall pace of respiratory virus evolution 122133~
136,139,204,205,225,226 For example, in humans airborne transmission of seasonal influenza
viruses appears to involve a narrow transmission bottleneck, with new infections founded
by as few as 1-2 genetically distinct viruses 122133-136_|n the absence of selection acting
during a transmission event, the likelihood of a variant being transmitted is equal to its
frequency in the index host at the time of transmission (e.g. a variant at 5% frequency,
has a 5% chance of being transmitted) '¥”. When transmission involves the transfer of
very few variants and selection is negligible, even beneficial variants present at low
frequencies in the transmitting host are likely to be lost. Accordingly, although antigenic
escape variants can sometimes be detected at very low levels in individual human hosts,
transmission of these variants has not been observed in nature 2138, |n this way, narrow
transmission bottlenecks are generally expected to slow the pace of seasonal influenza

virus adaptation 13%140 and may have similar effects on SARS-CoV-2.

Accurate estimates of the SARS-CoV-2 transmission bottleneck size will therefore aid in
forecasting future viral evolution. Previous studies have reported discordant estimates of
SARS-CoV-2 transmission bottleneck sizes in humans, ranging from “narrow” bottlenecks
involving 1-8 virions to “wide” bottlenecks involving 100-1,000 virions 3+227-22%, However,

studies of natural viral transmission in humans can be confounded by uncertainties
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regarding the timing of infection and directionality of transmission, and longitudinal
samples that can help resolve such ambiguities are rarely available. Animal models
overcome many of these uncertainties by providing access to longitudinal samples in well-

defined index and contact infections with known timing.

Here we use a cat transmission model to show that SARS-CoV-2 genetic diversity is
largely shaped by genetic drift and purifying selection, with the notable exception of a
single variant in Spike at residue 655 (H655Y). These findings are in broad agreement
with recent analyses of evolutionary forces acting on SARS-CoV-2 in humans, suggesting
human SARS-CoV-2 isolates are relatively well-adapted to feline hosts °4227-233_ While
estimates of the size of the SARS-CoV-2 transmission bottleneck remain highly
discordant in humans, we find very narrow transmission bottlenecks in cats, involving
transmission of only 2-5 viruses. Our findings show cat models recapitulate key aspects
of SARS-CoV-2 evolution in humans and we posit that the cat transmission model will be

useful for investigating within- and between-host evolution of SARS-CoV-2 viruses.

Methods

Ethics statement
No animal experiments were specifically performed for this study. We used residual nasal

swabs collected from domestic cats as part of a previously published study 234.
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Animal studies were approved prior to the start of the study by the Institutional Animal
Care and Use Committee and performed in accordance with the Animal Care and Use

Committee guidelines at the University of Wisconsin-Madison.

Domestic cat experiments

No animal experiments were specifically performed for this study. We used residual nasal
swabs collected from domestic cats as part of a previously published study 2*. Animals
used in this study were specific-pathogen-free animals from a research colony maintained
at the University of Wisconsin-Madison and were negative for feline coronavirus. As
previously described by Halfmann et al, domestic cats were housed in 0.56 m x 0.81 m x
1.07 m cages in a laboratory with 65% humidity at 230C, and with at least 15.2 air
exchanges per hour. Weight and body temperature (through implanted transponders)
were measured daily (days 1-14). Under ketamine and dexdomitor anesthesia, three cats
were inoculated with 5.2 x 105 plaque-forming units (PFU of SARS-CoV-2 given by a
combination of inoculation routes for every animal (nasal [100 pl per nare], tracheal [500
pl], oral [500 pl], and ocular [50 ul per eye]). To reverse the effects of the anesthesia,
antisedan was administered to the animals after completion of the inoculation. Nasal

swabs were collected daily during the study (days 1-10).

Nucleic acid extraction
For each sample, approximately 140 L of viral transport medium was passed through a
0.22 um filter (Dot Scientific, Burton, MIl, USA). Total nucleic acid was extracted using the

Qiagen QlAamp Viral RNA Mini Kit (Qiagen, Hilden, Germany), substituting carrier RNA
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with linear polyacrylamide (Invitrogen, Carlsbad, CA, USA) and eluting in 30 pL of

nuclease-free H20.

Complementary DNA (cDNA) generation

Complementary DNA (cDNA) was synthesized using a modified ARTIC Network
approach 235236 Briefly, RNA was reverse transcribed with SuperScript IV Reverse
Transcriptase (Invitrogen, Carlsbad, CA, USA) using random hexamers and dNTPs.
Reaction conditions were as follows: 1 yL of random hexamers and 1 puL of ANTPs were
added to 11 uL of sample RNA, heated to 65°C for 5 minutes, then cooled to 4°C for 1
minute. Then 7 pL of a master mix (4 yL 5x RT buffer,1 yL 0.1M DTT, 1uL RNaseOUT
RNase Inhibitor, and 1 yL SSIV RT) was added and incubated at 42°C for 10 minutes,

70°C for 10 minutes, and then 4°C for 1 minute.

Multiplex PCR for SARS-CoV-2 genomes

A SARS-CoV-2-specific multiplex PCR for Nanopore sequencing was performed, similar
to amplicon-based approaches as previously described 23%2%_ In short, primers for 96
overlapping amplicons spanning the entire genome with amplicon lengths of 500bp and
overlapping by 75 to 100bp between the different amplicons were used to generate cDNA.
Primers used in this manuscript were designed by ARTIC Network and are shown in S3
Table. cDNA (2.5 yL) was amplified in two multiplexed PCR reactions using Q5 Hot-Start
DNA High-fidelity Polymerase (New England Biolabs, Ipswich, MA, USA) using the

following cycling conditions; 98°C for 30 seconds, followed by 25 cycles of 98°C for 15
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seconds and 65°C for 5 minutes, followed by an indefinite hold at 4°C 235236, Following

amplification, samples were pooled together before TruSeq Illlumina library prep.

TrueSeq lllumina library prep and sequencing

Amplified cDNA was purified using a 1:1 concentration of AMPure XP beads (Beckman
Coulter, Brea, CA, USA) and eluted in 30 uL of water. PCR products were quantified using
Qubit dsDNA high-sensitivity kit (Invitrogen, USA) and were diluted to a final
concentration of 2.5 ng/pl (150 ng in 50 pl volume). Each sample was then made
compatible with deep sequencing using the Nextera TruSeq sample preparation kit
(Nlumina, USA). Specifically, each sample was enzymatically end repaired. Samples were
purified using two consecutive AMPure bead cleanups (0.6x and 0.8x) and were
quantified once more using Qubit dsDNA high-sensitivity kit (Invitrogen, USA). A non-
templated nucleotide was attached to the 3' ends of each sample, followed by adaptor
ligation. Samples were again purified using an AMPure bead cleanup (1x) and eluted in
25 pL of resuspension buffer. Lastly, samples were amplified using 8 PCR cycles, cleaned
with a 1:1 bead clean-up, and eluted in 30 yL of RSB. The average sample fragment
length and purity was determined using the Agilent High Sensitivity DNA kit and the
Agilent 2100 Bioanalyzer (Agilent, Santa Clara, CA). After passing quality control
measures, samples were pooled equimolarly to a final concentration of 4 nM, and 5 pl of
each 4 nM pool was denatured in 5 pl of 0.2 N NaOH for 5 min. Sequencing pools were
denatured to a final concentration of 10 pM with a PhiX-derived control library accounting

for 1% of total DNA and was loaded onto a 500-cycle v2 flow cell. Average quality metrics
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were recorded, reads were demultiplexed, and FASTQ files were generated on lllumina’s

BaseSpace platform.

Processing of the raw sequence data, mapping, and variant calling

Raw FASTQ files were analyzed using a workflow called “SARSquencer”. Briefly, reads
are paired and merged using BBMerge (https://jgi.doe.gov/data-and-tools/bbtools/bb-
tools-user-guide/bbmerge-guide/) and mapped to the reference (MW219695.1) using
BBMap (https://jgi.doe.gov/data-and-tools/bbtools/bb-tools-user-guide/bbmap-guide/).
Mapped reads were imported into Geneious (https://www.geneious.com/) for visual
inspection. Read coverage for index cat samples is plotted in S6 Fig and for contact
samples in S7 Fig. Variants were called using callvariants.sh (contained within BBMap)
and annotated using SnpEff (https://pcingola.github.io/SnpEff/). The complete
“‘SARSquencer” pipeline is available in the GitHub accompanying this manuscript in
‘code/SARSquencerr as well as in a separate GitHub repository -
https://github.com/gagekmoreno/SARS_CoV-2_Zequencer. BBMap’s output VCF files
were cleaned using custom Python scripts, which can be found in the GitHub
accompanying this manuscript
(https://github.com/katarinabraun/SARSCoV2_transmission_in_domestic_cats) 237
Variants were called at 20.01% in reads that were =100 bp in length and supported by a
minimum of 10 reads. Only variants at 23% frequency in both technical replicates were
used for downstream analysis. Variant concordance across technical replicates is plotted

in S8 Fig for index cats and S9 Fig for contact cats. In addition, all variants occurring in
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ARTIC v3 primer-binding sites were discarded before proceeding with downstream

analysis.

Quantification of SARS-CoV-2 vRNA

Plague forming unit analysis was performed on all nasal swabs as published in Halfmann
et al. 2019 2%, Viral load analysis was performed on all of the nasal swab samples
described above after they arrived in our laboratory. RNA was isolated using the Viral
Total Nucleic Acid kit for the Maxwell RSC instrument (Promega, Madison, WI) following
the manufacturer's instructions. Viral load quantification was performed using a sensitive
gRT-PCR assay developed by the CDC to detect SARS-CoV-2 (specifically the
N1 assay) and commercially available from IDT (Coralville, IA). The assay was run on a
LightCycler 96 or LC480 instrument (Roche, Indianapolis, IN) using the Tagman Fast
Virus 1-stepMaster Mix enzyme (Thermo Fisher, Waltham, MA). The limit of detection of
this assay is estimated to be 200 genome equivalents/ml saliva or swab fluid. To
determine the viral load, samples were interpolated onto a standard curve consisting of

serial 10-fold dilutions of in vitro transcribed SARS-CoV-2 N gene RNA.

Pairwise nucleotide diversity calculations

Nucleotide diversity was calculated using 1 summary statistics (S2 Table). 11 quantifies
the average number of pairwise differences per nucleotide site among a set of sequences
and was calculated per gene using SNPGenie
(https://github.com/chasewnelson/SNPgenie) 23¢. SNPGenie adapts the Nei and Gojobori

method of estimating nucleotide diversity (1), and its synonymous (TS) and
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nonsynonymous (TTN) partitions from next-generation sequencing data '°’. When TN =
1S, this indicates neutral evolution or genetic drift, with neither strong purifying nor
positive selection playing a large role in the evolution of the viral population. TN < 1S
indicates purifying selection is acting to remove deleterious mutations, and TN > 1S
shows positive or diversifying selection acting on nonsynonymous variation '%°. We tested
the null hypothesis that TN = 1S within each gene using an unpaired t-test (S1 Table).
The code to replicate these results can be found in the “diversity_estimates.ipynb® Jupyter

Notebook in the “code" directory of the GitHub repository 2%.

SNP Frequency Spectrum calculations

To generate SNP Frequency Spectrums (SFS), we binned all variants detected across
timepoints within each index cat into six bins — 3-10%, 10-20%, 20-30%, 30-40%, 40-
50%, 50-60%. We plotted the counts of variants falling into each frequency bin using
Matplotlib 3.3.2 (https://matplotlib.org). We used code written by Dr. Louise Moncla to
generate the distribution of SNPs for a given population assuming no selection or change
in population size, which is expected to follow a 1/x distribution 23°. The code to replicate
this can be found in the GitHub accompanying this manuscript, specifically in the
‘code/SFS.ipynb” Jupyter Notebook. This model predicts 42.8% of variants will fall within
the 3-10% frequency range, 24.6% will fall within the 10-20% frequency range, 14.4% of
variants will fall within the 20-30% frequency range, 10.2% of variants will fall within the
30-40% frequency range, and 7.9% of variants will fall within the 40-50% frequency range.
We used a Mann-Whitney U test to test the null hypothesis that the distribution of variant

frequencies for each index cat was equal to the neutral distribution. The code to replicate
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these results can be found in the "SFS.ipynb™ Jupyter Notebook in the "code™ directory of

the GitHub repository.

Focal Nextstrain build of S H655Y sequences

The focal H655Y build (S5 Fig) was prepared as described in Hodcroft et al. (2020), with
different mutations targeted for the S:655 mutation 24°. Briefly: sequences with a mutation
at nucleotide position 23525 (corresponding to a change at the 655 position in the spike
glycoprotein) were selected from all available sequences on GISAID as of 29th December
2020. These sequences were included as the 'focal' set for a Nextstrain phylogenetic
analysis, to which 'context' sequences were added, with the most genetically similar

sequences given priority.

Code and data availability

Code to replicate analyses and re-create most figures is available at
https://github.com/katarinabraun/SARSCoV2_transmission_in_domestic_cats. Fig 1 was
created by hand in Adobe lllustrator and S6 and S7 Figs were created using samtools
command line tools, were visualized in JMP Pro 15
(https://www.jmp.com/en_in/software/new-release/new-in-jmp-and-jmp-pro.html),  and
were then edited for readability in Adobe lllustrator. Code to process sequencing data is
available at https://github.com/gagekmoreno/SARS_CoV-2_Zequencer and
dependencies are available through Docker. Results were visualized using Matplotlib
3.3.2(https://matplotlib.org), Seaborn v0.10.0 (https://github.com/mwaskom/seaborn),

and Baltic v0.1.0 (https://github.com/evogytis/baltic).
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Results

Within-host diversity of SARS-CoV-2 in cats is limited

Recently, members of our team inoculated three domestic specific-pathogen free cats
with a second-passage SARS-CoV-2 human isolate from Tokyo (hCoV-19/Japan/UT-
NCGMO02/2020) 2%, Each index cat was co-housed with a contact cat beginning on day 1
post-inoculation (DPI). No new cat infections were performed for this study. Nasal swabs
were collected daily up to 10 days post-inoculation, Fig 1. Viral RNA burden is plotted in

S1A Fig and infectious viral titers are shown in S1B Fig.

Using conservative frequency thresholds previously established for tiled-amplicon
sequencing, we called within-host variants (both intrahost single-nucleotide variants
“ISNVs” and short insertions and deletions “indels”) throughout the genome against the
inoculum SARS-CoV-2 reference (Genbank: MW219695.1) 225236, Variants were required

to be present in technical replicates at 23% and <97% of sequencing reads '*° (all within-
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host variants detected at >97% frequency were assumed to be fixed; see Methods for
details). iSNVs were detected at least once at 38 different genome sites. Of the 38 unique
variants, 14 are synonymous changes, 23 are nonsynonymous changes, and one occurs
in an intergenic region; this distribution is broadly similar to recent reports of SARS-CoV-
2 variation in infected humans 3!, Similarly, we detected indels occurring at 11 different
genome sites across all animals and timepoints. We identified 6-19 distinct variants per
cat, of which 4-7 were observed on two or more days over the course of the infection
within each cat (S2 Fig). All variants (iISNVs and indels) are plotted by genome location

and frequency in Fig 2A.

Genetic drift and purifying selection shape within-host diversity

To probe the evolutionary pressures shaping SARS-CoV-2 viruses within hosts, we first
evaluated the proportion of variants shared between cats. Eighty-six percent of variants
(34 of 38 iISNVs and 8 of 11 indels) were found in a single cat (42/49), 8% of variants
were found in 2-5 cats (4/49), and the remaining 6% of variants were found in all 6 cats

(3/49).

Purifying selection, which acts to purge deleterious mutations from a population, is known
to result in an excess of low-frequency variants. In contrast, positive selection results in
the accumulation of intermediate- and high-frequency variation 2*°. Especially in the
setting of an acute viral infection, exponential population growth is also expected to result
in an excess of low-frequency variants %4'. To determine the type of evolutionary pressure

acting on SARS-CoV-2 in cats, we plotted these distributions against a simple “neutral
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model” (light grey bars in Fig 2B), which assumes a constant population size and the
absence of selection 23°. This model predicted that ~43% of polymorphisms would fall in
the 3-10% frequency bin, ~25% into the 10-20% bin, ~14% into the 20-30% bin, ~10%
into the 30-40% bin, and ~8% into the 40-50% bin. The frequency distribution of variants
detected in each index cat across all available timepoints did not differ significantly from
this “neutral” expectation (p=0.265, p=0.052, p=0.160, respectively; Mann Whitney U

test).

Next we compared nonsynonymous (TTN) and synonymous (1TTS) pairwise nucleotide
diversity to further evaluate the evolutionary forces shaping viral populations in index and
contact animals 2%, Broadly speaking, excess nonsynonymous polymorphism (TTN/mrS >
1) points toward diversifying or positive selection while excess synonymous
polymorphism (TTN/11S < 1) indicates purifying selection. When TN / T1S is approximately
1, genetic drift, i.e., stochastic changes in the frequency of viral genotypes over time, can
be an important force shaping genetic diversity. We observe that TS exceeds or is
approximately equal to TN in most genes, although there is substantial variation among
genes and cats (S1 Table, S10 Fig, S11 Fig). 1S is significantly higher than 17N in all 3
index cats in Spike (p=0.005, p=0.004, p=0.019, unpaired t-test) and ORF1ab (p=2.11e-
05, p=1.84e-06, p=1.99e-06, unpaired t-test) and in index cats 2 and 3 in ORF8 (p=0.03,
p=0.04, unpaired t-test). 7S and TN are not significantly different in at least one index cat
in ORF3a, envelope, and nucleocapsid. There was not enough genetic variation to
measure nucleotide diversity in the remaining four genes (S1 Table). Taken together,

these results suggest longitudinal genetic variation within feline hosts is principally
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shaped by genetic drift with purifying selection acting on individual genes, particularly

ORF1ab and Spike.

Longitudinal sampling reveals few consensus-level changes within hosts

The consensus sequence recovered from all three index cats on the first day post-
inoculation was identical to the inoculum or “stock” virus. This consensus sequence
remained largely unchanged throughout infection in all index cats with the notable
exception of two variants: H655Y in Spike (nucleotide site 23,525) and a synonymous
change at amino acid position 67 in envelope (nucleotide site 26,445; S67S), which arose
rapidly in all 3 index cats and rose to consensus levels (250% frequency) at various
timepoints throughout infection in all index cats. Neither of these iISNVs was detected
above 3% frequency in the inoculum, but when we mined all sequencing reads, S H655Y
and E S67S could be detected at 0.85% and 0.34%, respectively. S H655Y was the
consensus sequence on days 2-5 and days 7-8 in index cat 1, as well as on days 4 and
8 in index cat 2, and remained detectable above our 3% variant threshold throughout
infection (Fig 3). Similarly, envelope S67S (E S67S) was the consensus sequence on
day 8 in index cat 1 and day 1 in index cat 2. S H655Y and E S67S were detectable on

days 1-7 in cat 3 but stayed below consensus level.

Interestingly, S H655Y and E S67S became fixed together following transmission in two
transmission pairs (contact cats 4 and 6) and were lost together during transmission to
contact animal 5. In cat 5, however, two different variants in ORF1ab, G1756G and

L3606F, became fixed after transmission. ORF1ab G1756G was not detected above 3%
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and L3606F was found at 17.2% in the day 5 sample from the index cat 2 (the cat
transmitting to cat 5); it was not found in the inoculum at any detectable frequency. The
categorical loss or fixation of these variants immediately following transmission, and in
particular the fixation following transmission of a variant that was undetectable before,

are highly suggestive of a narrow bottleneck 242,

In addition, a synonymous variant in an alanine codon at amino acid position 1,222 in
Spike (nucleotide site 25,174) was found at >50% frequencies on days 4 and 8 in index
cat 3, but was not detected above 3% on any other days. All iSNVs over time are shown
in S2 Fig and all indels over time are shown in S3 Fig. These within-host analyses show
that genetic drift appears to play a prominent role in shaping low-frequency genetic

variation within hosts.

SARS-CoV-2 transmission in domestic cats is defined by a narrow transmission
bottleneck

To estimate the size of SARS-CoV-2 transmission bottlenecks, we investigated the
amount of genetic diversity lost following transmission in cats. We observed a reduction
in the cumulative number of variants detected in each contact cat compared to its index:
7 fewer variants in cat 4 (n=9) compared to cat 1 (n=16), 9 fewer in cat 5 (n=10) than cat
2 (n=19), and 10 fewer in cat 6 (n=16) than cat 3 (n=6). Likewise, the frequency
distribution of variants in all three contact cats following transmission differed from the
distribution of variants in all three index cats prior to transmission (p-value=0.052, Mann

Whitney U test). Following transmission, variant frequencies became more bimodally
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distributed than those observed in index cats, i.e., in contacts, most variants were either

very low-frequency or fixed (S2 Fig).

To quantitatively investigate the stringency of each transmission event, we compared the
genetic composition of viral populations immediately before and after viral transmission.
We chose to use the first timepoint when infectious virus was recovered in the contact cat
coupled with the timepoint immediately preceding this day in the index cat, as has been
done previously '35. We used days 2 (index) and 3 (contact) in pair 1, days 5 and 6 in pair
2, and days 4 and 5 in pair 3 (these sampling days are outlined in red in Fig 1). We applied
the beta-binomial sampling method developed by Sobel-Leonard et al. to compare the
shared set of variants (3%, <97%) in the pre/post-transmission timepoints for each pair
137 Maximum-likelihood estimates determined that a mean effective bottleneck size of 5
(99% CI: 1-10), 3 (99% CI: 1-7), and 2 (99% CI: 1-3) best described each of the three cat
transmission events evaluated here (Fig 4). This is in line with previous estimates for
other respiratory viruses, including airborne transmission of seasonal influenza viruses in
humans 2% It is important to note, however, that the cat transmission pairs evaluated
here shared physical enclosure spaces so the route of transmission could be airborne,
direct contact, fomite, or a combination of these. Additionally, it has been shown that the
route of influenza transmission can directly impact the size of the transmission bottleneck;
for example, in one study airborne transmission of influenza viruses resulted in a narrow

bottleneck, whereas contact transmission resulted in a wider bottleneck '34.
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Discussion

At the time of writing, the vast majority of humans remain immunologically naive to SARS-
CoV-2. Whether through ongoing human adaptation, spill-back events from other animal
intermediates, or with the distribution of vaccines and therapeutics, the landscape of
SARS-CoV-2 variation is certain to change. Understanding the forces that shape genetic
diversity of SARS-CoV-2 viruses within hosts will aid in forecasting the pace of genetic
change as the virus faces shifting population-level immunity. Additionally, this baseline
allows researchers to more easily identify a shift in the forces shaping within- and
between-host diversity; for example, identification of signatures of positive selection might

highlight rapidly-adapting, and therefore higher-risk, viruses.

Using domestic cats as a model system, we show stochastic processes like narrow
transmission bottlenecks and genetic drift are major forces shaping SARS-CoV-2 genetic
diversity within and between mammalian hosts. These stochastic forces typically act to
constrain the overall pace of RNA virus evolution 22, Despite this, we observe the rapid
outgrowth of S H655Y in all three index cats, suggesting that this site may be under
positive selection in this system. This variant achieved rapid fixation following

transmission in two of three transmission pairs.

Our finding of narrow transmission bottlenecks is at odds with some recent studies in
humans, which have estimated wide and variable SARS-CoV-2 transmission bottlenecks
54221229 ‘hut it is in line with other estimates suggesting that few SARS-CoV-2 viruses are

transmitted between humans 22722 These discordant estimates are likely due to a
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combination of factors, including variable routes of transmission, uncertain sources of
infection, difficulty collecting samples which closely bookend the transmission event, and
inaccurate variant calls. Human studies have commonly identified transmission pairs
using intrahousehold infections diagnosed within a defined timeframe. A major weakness
with this approach is the possibility that some of these cohabiting individuals will share an
alternative source of exposure. Furthermore, without fine-scale epidemiological and
clinical metadata, pinpointing the time of likely transmission is challenging, so even
samples collected before and after a real transmission event may be several days
removed from the time of transmission. Here we were able to circumvent many of these
challenges by taking advantage of domestic cats experimentally infected with SARS-CoV-
2 arranged in defined transmission pairs with clinical monitoring and daily sample

collection, making for a useful model system.

The size of the transmission bottleneck may have additional implications for individual
infections. The total number of founding virions, or the inoculum dose, has been posited
to play a role in coronavirus disease 2019 (COVID-19) clinical severity and outcomes
243,244 The transmission bottleneck can be parsed into two interdependent components:
the population bottleneck, or the number of virus particles that found infection (similar to
inoculation dose); and the genetic bottleneck, or the amount of viral diversity lost during
transmission. For example, an infection founded by 1,000 genetically identical viruses
would be categorized as resulting from a narrow genetic bottleneck (a single genotype
initiates the infection) and a relatively large population bottleneck. The beta-binomial

method used here measures the population bottleneck '37. Our data are consistent with
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a narrow population bottleneck and therefore a low inoculum dose in these cats. The
extent to which feline hosts experience symptoms when infected with SARS-CoV-2 is
unclear, but the cats involved in this study remained afebrile throughout the study, did not
lose body weight, and experienced no respiratory signs. Viral genetic diversity has been
linked to pathogenesis and clinical outcomes in the context of other viruses (e.g.,
influenza A virus, polio, and respiratory syncytial virus) and because narrow transmission
bottlenecks often reduce viral genetic diversity, bottlenecks may play an essential role in
the outcome of individual infections in this way as well 245249, The relationship between
SARS-CoV-2 viral genetic diversity and COVID-19 clinical severity remains unclear.
Some have proposed a direct relationship between particular viral lineages and COVID-
19 severity 2%, while others postulate that host factors, like age and comorbidities such
as hypertension, diabetes, and preexisting respiratory system disease, are more likely to

explain variable clinical outcomes 2°'.

Although within-host diversity was limited in the cats evaluated here, we identify two
notable variants. S H655Y and E S67S were found at 0.85% and 0.34% in the stock, but
were preferentially amplified in all three index cats and were detectable at intermediate
frequencies at the first-day post-inoculation. Interestingly, S H655Y is not found in any of
the 18 full-genome domestic cat, tiger, and lion SARS-CoV-2 sequences available on
GISAID (S4 Fig). S H655Y has, however, been reported in a variety of other settings,
including transmission studies in a hamster model, SARS-CoV-2 tissue culture
experiments 227255 and in a stock virus passaged on Vero E6 cells [BioProject

PRJNAG45906, experiment numbers SRX9287152 (p1), SRX9287151 (p2),
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SRX9287154 (p3a); BioProject PRINA627977]. S HE55Y additionally persisted in vivo in
rhesus macaques challenged with one of these stock viruses [BioProject PRINA645906,
experiment number SRX9287155]. As of 28 December, 2020, S H655Y has been
detected in 1,070 human SARS-CoV-2 viruses across 18 different countries in sequences
deposited in GISAID. The majority of these sequences come from the United Kingdom
(n=886) (S5B Fig, S5C Fig). It is important to note, however, that sampling of SARS-
CoV-2 sequences is heavily biased and sequences from the COVID-19 Genomics UK
consortium (COG-UK) are currently overrepresented in GISAID. Additionally, S H655Y is
the 16th most common variant detected in Spike among publicly-available SARS-CoV-2
sequences (Tze Chuen Lee R. Spike glycoprotein mutation surveillance. GISAID.
https://www.epicov.org/epi3/cfrontend#2ea2a6). Sequences containing S H655Y variant
are found in two distinct European clusters, EU1 and EU2, suggesting it has arisen more

than once (S5A Fig).

Relatively little is known about the phenotypic impact of S H655Y in cats, humans, and
other host species. Amino acid residue 655 is located near the polybasic cleavage site,
residing between the receptor binding domain (RBD) and the fusion peptide, and
therefore has been hypothesized to play a role in regulating Spike glycoprotein fusion
efficiency (812 Fig) 25225325 |n spite of its location outside of the RBD, S H655Y has
been shown to arise on the background of a vesicular stomatitis virus (VSV) pseudotyped
virus expressing various SARS-CoV-2 spike variants and confer escape from multiple
monoclonal human antibodies in cell culture 252, It is unlikely S H655Y represents a site

of antibody escape in these cats because they were specific pathogen-free and had
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undetectable 1gG antibody titers against SARS-CoV-2 Spike and Nucleocapsid proteins
on the day of infection 2**. We did not do any experiments to elucidate the functional
impact of this variant, but we speculate S H655Y could have improved Spike fusion
efficiency and therefore host-cell entry in cats. It is possible S H655Y offers a similar
advantage in human hosts and/or confers escape from some antibodies.

E S67S has not been documented elsewhere. Based on iSNV frequencies, S H655Y and
E S67S appear to be in linkage with each other (see mirrored iISNV frequencies in cat 2
and cat 5 in Fig 3 in particular), however with short sequence reads and sequencing
approaches relying on amplicon PCR, we cannot rigorously assess the extent of linkage
disequilibrium between these variants. It may be that S H655Y arose on the genetic
background of an existing S67S variant in envelope. If S H655Y facilitates viral entry or
replication in cats, viruses with this variant in linkage with E S67S might have been

positively selected in all index cats.

Our data alone cannot resolve the precise mechanisms by which SARS-CoV-2 diversity
is reduced during transmission, but the trajectories of S H655Y and E S67S raise some
interesting possibilities. Although our sample size is small, the outgrowth of S H655Y with
E S67S in all index cats, and the fixation of these variants in 2 of 3 contact cats, suggest
that selection for one or both of these variants could have played a role in shaping genetic
diversity recovered from contact cats. Viruses bearing these mutations could be

preferentially amplified prior to, during, and/or after transmission.
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If the transmission bottleneck is narrow and random, a variant’s likelihood of being
transmitted is equal to its frequency in the viral population at the time of transmission. If
selection acts primarily within index hosts prior to transmission, S H655Y could have
achieved a high enough frequency to be randomly drawn at the time of transmission. In
this case, even a random, narrow transmission bottleneck could have facilitated the rapid
fixation of a putatively beneficial variant. Next, suppose that viruses bearing S H655Y are
shed more efficiently from index animals. In this case, evidence of selection in index
animals would be limited and we would observe a small founding population in contact
hosts where the beneficial variant is dominant. Alternatively, suppose viruses bearing S
H655Y preferentially found infection in the recipient. In this case where selection is acting
primarily in the contact host, transmission may involve transfer of a larger virus population
after which beneficial variants may rapidly be swept to fixation. These scenarios are not
mutually exclusive and it is possible for selection to act in concert before, during, and after
transmission. In any of these scenarios, we would observe a low-diversity virus population
in contact animals in which the putatively beneficial variants had been enriched. Notably,
S H655Y and E S67S are absent from contact cat 5 (pair 2), despite being detectable and
even reaching consensus levels in the associated index animal. While these variants are
lost during transmission in this pair, a variant in ORF1ab (Gly1756Gly), which was
undetectable in index cat 2, became fixed in contact cat 5 following transmission. The
dramatic shifts in iISNV frequency we observe in all 3 pairs are characteristic of a narrow
transmission bottleneck '%2. Because narrow transmission bottlenecks can result in the
loss of even beneficial variants, the fact that S H655Y and E S67S failed to be transmitted

in pair 2 does not exclude the possibility that these variants enhance viral fitness.
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Altogether our data therefore support the conclusion that SARS-CoV-2 transmission

bottlenecks are narrow in this system, and may sometimes involve selection.

SARS-CoV-2 viruses can replicate and be shed via the respiratory tract. Differences in
cell types, receptor distribution, temperature and humidity along the length of the
respiratory tract may favor the emergence of different viral variants. If viral populations
vary genetically across anatomic location, virus collected from different parts of the
respiratory tract could result in different bottleneck size estimates. In this study, we had
access to nasal swabs and were therefore were only able to evaluate genetic diversity
arising in the upper respiratory tract. Others have previously documented foci of influenza
virus in the lower respiratory tract appear to be independent from upper respiratory tract
infections 257258, Current insights into potential differences in the genetic composition,
structure, and evolution in the upper vs. lower respiratory tract remain incomplete for both

influenza viruses and SARS-CoV-2.

Large SARS-CoV-2 outbreaks in mink have been reported recently, some with
“concerning” mutations that may evade human humoral immunity 2. These mink
outbreaks have resulted in the Danish authorities’ decision to cull 17 million mink as a
safeguard against spill-back transmission into humans. Similarly, the emergence of the
B.1.1.7 SARS-CoV-2 lineage has brought to light the importance of detecting and
characterizing novel variants which might confer increased transmissibility,
infectiousness, clinical severity, or other phenotypic change. The precise origins of the

defining B.1.1.7 variants are unknown. It has been speculated that it may have arisen
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from a chronically infected patient or through sub-curative doses of convalescent plasma
260 While S H655Y has not been found in mink and is not one of the defining B.1.1.7
mutations, another one of the defining B.1.1.7 mutations, Spike N501Y, has emerged
independently in mouse models 2%. This suggests that mammalian models can facilitate
the detection of novel mutations and signatures of positive selection, which might highlight
adaptive mutations. We observe one variant that arises early and is transmitted onward
in cats, a potential reservoir and model species. Little has been specifically documented
about this variant, but it was very interesting to note it confers escape from various human
monoclonal antibodies and has been detected in more than 1,000 human viruses 252261,
Our study and the mink example show that species- and context-specific adaptations are
likely as SARS-CoV-2 explores new hosts. Further investigation and ongoing surveillance
for such variants is warranted. It is also important to prevent the reintroduction of such
newly formed variants, of which we do not know the potential phenotypic impacts, by

limiting the spread and evolution of SARS-CoV-2 in non-human reservoir species

As SARS-CoV-2 continues to spread globally, we must have models in place to
recapitulate key evolutionary factors influencing SARS-CoV-2 transmission. With the
imminent release of SARS-CoV-2 vaccines and therapeutics and increasing prevalence
of natural exposure-related immunity, these models can help us forecast the future of
SARS-CoV-2 variation and population-level genetic changes. Continued efforts to
sequence SARS-CoV-2 across a wide variety of hosts, transmission routes, and

spatiotemporal scales will be necessary to determine the evolutionary and
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epidemiological forces responsible for shaping within-host genetic diversity into global

viral variation.
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Schematic representing the sampling timeline for the three transmission pairs. Index cats
were inoculated on day 0 with 5.2e5 PFU of a human isolate (hCoV-19/Japan/UT-
NCGMO02/2020) and were co-housed with a naive cat starting on day 1. Within each
transmission pair, the top row of circles represents the index cat and the bottom row
represents the contact cat. Open circles represent days on which there was no detectable
infectious virus as indicated by plaque assay, and closed circles highlight days when live
virus was recovered. Circles with a red outline indicate timepoints which were used in the

beta-binomial estimate to calculate transmission bottleneck sizes.
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Figure 2. Within-host diversity of SARS-CoV-2 viruses in domestic cats.
A) Plot representing all variants (iISNVs and indels) detected in any cat at any timepoint.

Variant frequencies are plotted by genome location and are colored by gene. Circles
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represent synonymous iSNVs, squares represent nonsynonymous iSNVs, and stars
represent indels. B) iSNV frequency spectrums with error bars showing standard
deviation for index cats plotted against a “neutral model” (light gray bars) which assumes

a constant population size and the absence of selection.
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variants are plotted with solid lines and synonymous variants are plotted with dashed
lines. Variants detected in index cats are denoted with squares and variants detected in
contact cats are denoted with circles. Timepoints with viral loads too low to yield high
quality sequences are shown by the gaps in data, but iISNVs are connected across these
gaps using light lines for readability (i.e. cat 1 day 9). The dotted line at 50% frequency

represents the consensus threshold.
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S1 Fig. Viral loads and viral titers over time. A) Viral RNA burden over time for each

cat. Index cats are represented by a solid line and contact cats are represented by a

dashed line. Transmission pairs are denoted by color. The grey, horizontal dotted line

represents when less than ~100 copies/uL are input into the reverse transcription

reaction. B) Infectious viral titer over time. Index cats are represented by a solid line and

contact cats are represented by a dashed line. Transmission pairs are denoted by color.
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S2 Fig. Longitudinal frequency of iSNVs detected in all cats and at all timepoints.
Each variant is colored based on gene location. Nonsynonymous variants are plotted with
solid lines and synonymous variants are plotted with dashed lines. Days with viral loads
too low to yield high quality sequences are shown by the gaps in data (i.e. cat 3 day 6

and cat 4 day 9).
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S3 Fig. Longitudinal frequency of indels detected in all cats and at all timepoints.
Each indel is colored based on gene location. Days with viral loads too low to yield high
quality sequences are shown by the gaps in data (i.e. cat 3 day 6 and cat 4 day 9). Note

the y-axis range is 0-12%, not 0-100%, to facilitate readability.

1946 3,946 5,946 7.946 9,946 11,946 13,946 15946 17,946 19,946 21,946 23,946 25,946 27,946 29782

MW219695.1

hCoV-19/tiger/lUSA/NY-040420/2020|EPI_ISL_420293|2020-04-02
hCoV-19/tiger/lUSA/NY-P4/2020|EPI_ISL_566043|2020-04-02
hCoV-19/tiger/lUSA/NY-2-040420/2020|EPI_ISL_566039|2020-04-04
hCoV-19/tiger/lUSA/NY-P3/2020|EPI_ISL_566040|2020-04-04
hCoV-19/tiger/lUSA/NY-3-040420/2020|EPI_ISL_566041|2020-04-04
hCoV-19/tiger/lUSA/NY-4-040420/2020|EPI_ISL_566042|2020-04-04
hCoV-19/lion/USA/NY-2-041520/2020|EPI_ISL_566036|2020-04-04
hCoV-19/lion/USA/NY-041520/2020|EPI_ISL_566038|2020-04-04
hCoV-19/lion/USA/NY-3-041520/2020|EPI_ISL_566037|2020-04-04
hCoV-19/lion/USA/NY-2/2020|EPI_ISL_566044|2020-04-04
hCoV-19/ca i/2020|EPI_ISL_: -05-14
hCoV- 19/Cat/France/Env Ba/2020|EPT_ISL_ 483063|2020 05-14
hCoV-19/cat/France/IDF-53/2020|EPI_ISL_437349|2020-04-17
hCoV-19/cat/England/CVR-Cat2/2020|EPI_ISL_536400|2020-05-02
hCoV-19/cat/Belgium/BE-MG-0320/2020|EPI_ISL_487275|2020-03-11
hCoV-19/cat/Denmark/mDK-317/2020|EPI_ISL_683166|2020-11-17
hCoV-19/cat/Denmark/mDK-315/2020|EPI_ISL_683164|2020-11-17
hCoV-19/cat/Denmark/mDK-316/2020|EPI_ISL_683165|2020-11-17
hCoV-19/cat/China/Wuhan/2020|EPI_ISL_421531|2020-03-15
hCoV-19/cat/USA/NYAD2/2020|EPI_TSL_450407|2020-04-06
hCoV-19/cat/USA/NYAD1/2020|EPI_ISL_450406|2020-04-01

S4 Fig. Sequence alignment of all tiger, lion, and domestic cat sequences available in
GISAID as of December 2020. Sequences were aligned against MW219695.1, the
inoculum virus used in these experiments. Consensus-level differences are highlighted
with a blue vertical marker. Indels are noted with a horizontal vertical marker. The spike
open reading frame is annotated with a green marker and site amino acid 655 in Spike is
highlighted with the orange box. None of these sequences contain a consensus mutation

at residue 655 in Spike.
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A Genotype at S site 655 B Date of frst detected Getected sequence

Country sequence with H655Y  Number of sequences with H655Y

United Kingdom 2020-03-13 943 2020-12-13

Denmark 2020-04-13 44 2020-11-30

USA 2020-03-01 42 2020-11-12

South Africa 2020-06-11 8 2020-10-9

India 2020-05-11 6 2020-9-2

China 2020-01-26 3 2020-3-13

Netherlands 2020-05-07 3 2020-12-7

Australia 2020-07-31 3 2020-8-12

Israel 2020-03-24 2 2020-4-5

United Arab Emirates 2020-05-15 2 2020-5-18

France 2020-05-26 2 2020-8-14

Rwanda 2020-10-17 2 2020-10-22

Taiwan 2020-03-19 1 2020-3-19

Portugal 2020-04-02 1 2020-4-2

Belize 2020-04-09 1 2020-4-9

Romania 2020-04-09 1 2020-4-9

Turkey 2020-04-26 1 2020-4-26

Brazil 2020-06-30 1 2020-6-30

Bangladesh 2020-07-12 1 2020-7-12

C - Czech Republic 2020-11-04 1 2020-11-4
2019-Dec 2020-Apr 2020-Aug 2020-Dec = e 1 p———

Date
Italy 2020-12-02 1 2020-12-2

C Geographic dispersion of SARS-CoV-2 viruses with Spike H655Y variant

| Q
LY

) ,
e

S5 Fig. Geographic dispersion of Spike H655Y variant. A) A time-resolved phylogeny

]
°
@ g

focused on viruses that contain Spike H655Y. Viruses that contain histidine (H) at Spike
655 are colored in teal. Viruses with tyrosine (Y) at Spike 655 are colored in yellow. B)
Counts of SARS-CoV-2 viruses that contain Spike H655Y, broken down by country. C)
Map highlighting the number viruses from each country. The size of the circle represents

the number of sequences from the appropriate country contained in the phylogeny.
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index cat 1, replicate A index cat 1, replicate B
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S6 Fig. Read depth across the SARS-CoV-2 genome in index cats. Each day is
represented by a different color. Replicate A is shown in the left column and replicate B

is shown in the right column.
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S7 Fig. Read depth across the SARS-CoV-2 genome in contact cats. Each day is
represented by a different color. Replicate A is shown in the left column and replicate B

is shown in the right column.
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S8 Fig. Intersection variants found across technical replicates in index cats. The
frequency of each variant per replicate is shown here. The diagonal line represents the
1:1 intersection of replicate variants. The subplot to the right of each primary plot is a
zoomed-in view of the low-frequency variants (3-15%). Each timepoint is denoted by a

different color.



replicate A iISNV and indel frequency replicate A iISNV and indel frequency

replicate A iISNV and indel frequency

0.15 4
contact cat 4
1.00 1 c}/
0.10 4
0.75 1
o
0.50 4 o
0.05 o 9
0.25 4
0
o o T T 1
0.05 0.10 0.15
0.00 v ¥ r v
0.00 0.25 0.50 0.75 1.00
replicate B iSNV and indel frequency
0.15 4
contact cat 5
1.00 3
@
0.751 0104
0.50 1 ©
0.05 1
o o]
0.25 1
4 0.05 0.10 0.15
0.00 r v v v
0.00 0.25 0.50 0.75 1.00
replicate B iSNV and indel frequency
0.15 1
contact cat 6
1.00 o
‘&
9
0.75 4 0.10 +
o
0.50 1
0.05 1
0.25
o
D o o ]
0,00 . . . . 0.05 0.10 0.15
0.00 0.25 0.50 0.75 1.00

replicate B iSNV and indel frequency

o )

o000

0000

O C
o

000

3 DPI
4 DPI
5 DPI
6 DPI
7 DPI
8 DPI
9 DPI
10 DPI

3 DPI
4 DPI
5DPI
6 DPI
7 DPI
8 DPI
9 DPI
10 DPI

3 DPI
4 DPI
5DPI
6 DPI
7 DPI
8 DPI
9 DPI
10 DPI

95



96

S9 Fig. Intersection variants found across technical replicates in contact cats. The
frequency of each variant per replicate is shown here. The diagonal line represents the
1:1 intersection of replicate variants. The subplot to the right of each primary plot is a
zoomed-in view of the low-frequency variants (3-15%). Each timepoint is denoted by a

different color.
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S10 Fig. Longitudinal pairwise nonsynonymous nucleotide diversity divided by

pairwise synonymous nucleotide diversity in index cats. Line color denotes gene.

The horizontal dotted gray line is plotted at y = 1 or when TN ~ 11S.



contact cat 4

10°
® 10" A
Z
E
107" 1
10_3 T T T T Ib T I/\ T
N Vv G} ™ © >
N N N N N N N K
S R S AN N S A
10* contact cat 5
© 10"
=
E
107" 1
10° +— ; & . = . : :
o) ™ © > o o
N N N N N N N
contact cat 6
10° 1
? 101
=
2 S g s
10 /
10‘3 T T |<3 T 1,\ . : :
o) ™ © > o N
N N N\ N N N N xS

98

gene-ORF1ab
gene-S
gene-ORF3a
gene-E
gene-M
gene-ORF6
gene-ORF7a
gene-ORF8
gene-N
gene-ORF10

gene-ORF1ab
gene-S
gene-ORF3a
gene-E
gene-M
gene-ORF6
gene-ORF7a
gene-ORF8
gene-N
gene-ORF10

gene-ORF1ab
gene-S
gene-ORF3a
gene-E
gene-M
gene-ORF6
gene-ORF7a
gene-ORF8
gene-N
gene-ORF10

S11 Fig. Longitudinal pairwise nonsynonymous nucleotide diversity divided by

pairwise synonymous nucleotide diversity in contact cats. Line color denotes gene.

The horizontal dotted gray line is plotted at y = 1 or when 1IN ~ 11S.
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[l ACE2 human rececptor

CoV spike glycoprotein trimer
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replacement? group
) Polar and Nonpolar and
Radical . .
relatively large relatively large
Charge'apd Radical Basic Neutralvapd
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S12 Fig. SARS-CoV-2 spike glycoprotein crystal structure. Spike HG55Y s

highlighted in blue. The table to the right of the crystal structure includes summary

information regarding the impact of a histidine to tyrosine change on amino acid charge,

volume, and aromaticity. * Qualitative definitions of radical amino acid replacements,

based on three alternative residue groupings, see Hanada et al., 2006 2%2. The crystal

structure and summary information were generated using GISAID’s CoVserver mutation

analysis tool.
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mean S std nS mean nN std nN niN/nS statistic, p-value

index cat 1

ORF1ab 0.015670 0.005609 0.003019 0.001124 0.195265
s | 0001564 | 0.000600 | 0.000644 | 0.000467 | 0.413995
"""" ORF3a | 0005367 | 0.000001 | 0005878 | 0.002267 | 0.641899
"""""" E | oot1707 | 0010139 | 0011930 | 0005719 | 0719601
"""""" m | | | ooo2t3s | oooooss |
~ ome | | | ooor3es | |
"""" ORF7a | oo011%92 | oooo4s7 | | |
~ omre | 0031186 | ooterss | | |
T 0005202 | 0002941 | 0003036 | 0.001403 | 0744626
"""" oRF0 | | | 0
index cat 2

ORF1ab 0.025570 0.007229 0.005423 0.001061 0.219071
s | 0004651 | 0.002567 | 0001476 | 0.000556 | 0457442
"""" ORF3a | 0008660 | 0.003052 | 0003867 | 0.001630 | 0535879
o e | 0008410 | 0.009696 | 0015842 | 0010396 | 436.372255
"""""" m | | | oooears | coo0sat |
~ omee | | | oooraes | |
"""" ORFTa | ootte2 | | | |
~ om | 0030343 | 0.012115 | 0005673 | 0002620 | 0.224566
N | 0.006988 | 0004962 | 0001398 | 0.000535 | 0346156
"""" oRF0 | | | 1
index cat 3

E 0.016174 0.000532” 0.023985 0.007123 1.553581

"""""" M | ooosae2 | | ooocors | oooooor |
Comes | | 1
"""" ORF7a | o0o0t2204 | ooo0z0s | | |
~ omrs | 0020154 | 0006891 | 0008740 | 0.002221 | 0509847
B 0005320 | ooote74 | ooo3sss | | 0925883
77777777 ORF10 I (statistic=nan, pvalue=nan)

S1 Table. Nonsynonymous and synonymous nucleotide diversity estimates in index cats.



Cat1 Cat 2 Cat3 Cat4 Cat5 Cat6

nt DPI 1 0.000246 0.000290 0.000433
nt DPI 2 0.000314 0.000705 0.000546
n DPI 3 0.000458 0.000557 0.000781 0.000712 0.000153
n DPI 4 0.000577 0.000650 0.000568 0.000796 0.000206 0.000037
n DPI5 0.000489 0.000513 0.000540 0.001007 0.000149 0.000576
n DPI 6 0.000430 0.000720 0.000917 0.000854 0.000156
n DPI17 0.000365 0.000541 0.000683 0.000721 0.000876 0.000025
n DPI 8 0.000214 0.000591 0.000458 0.000879 0.000872 0.000720
n DPI9 0.000125 0.000965 0.000070
n DPI 10 0.000371 0.000932 0.000000
mean 1t 0.000387 0.000571 0.000573 0.000691 0.000626 0.000226

stdnt 0.000117 0.000128 0.000114 0.000279 0.000355 0.000273
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S2 Table. Genome-wide pairwise nucleotide diversity estimates in index and contact cats

name pool sequence length|%gc |tm (use 65)
nCoV-2019_1_LEFT nCoV-2019_1]ACCAACCAACTTTCGATCTCTTGT 24 41.67160.69
nCoV-2019_1_RIGHT nCoV-2019_1|CATCTTTAAGATGTTGACGTGCCTC 25 44 160.45
nCoV-2019_2_LEFT nCoV-2019_2|CTGTTTTACAGGTTCGCGACGT 22 50 |61.67
nCoV-2019_2_RIGHT nCoV-2019_2|TAAGGATCAGTGCCAAGCTCGT 22 50 |61.74
nCoV-2019_3_LEFT nCoV-2019_1|CGGTAATAAAGGAGCTGGTGGC 22 54.55|61.32
nCoV-2019_3_RIGHT nCoV-2019_1|AAGGTGTCTGCAATTCATAGCTCT 24 41.67160.32
nCoV-2019_4_LEFT nCoV-2019_2|GGTGTATACTGCTGCCGTGAAC 22 54.55|61.56
nCoV-2019_4_RIGHT nCoV-2019_2|CACAAGTAGTGGCACCTTCTTTAGT 25 44 160.97
nCoV-2019_5_LEFT nCoV-2019_1|TGGTGAAACTTCATGGCAGACG 22 50 161.39
nCoV-2019_5_RIGHT nCoV-2019_1|ATTGATGTTGACTTTCTCTTTTTGGAGT 28 32.14160.17
nCoV-2019_6_LEFT nCoV-2019_2|GGTGTTGTTGGAGAAGGTTCCG 22 54.55|61.64




nCoV-2019_6_RIGHT nCoV-2019_2|TAGCGGCCTTCTGTAAAACACG 22 50 [61.18
nCoV-2019_7_LEFT nCoV-2019_1|ATCAGAGGCTGCTCGTGTTGTA 22 50 [61.73
nCoV-2019_7_LEFT_alt0 |nCoV-2019_1|CATTTGCATCAGAGGCTGCTCG 22 54.55(62.44
nCoV-2019_7_RIGHT nCoV-2019_1|TGCACAGGTGACAATTTGTCCA 22 45.45(60.95
nCoV-2019_7_RIGHT _alt5 |nCoV-2019_1|AGGTGACAATTTGTCCACCGAC 22 50 |61.07
nCoV-2019_8_LEFT nCoV-2019_2|AGAGTTTCTTAGAGACGGTTGGGA 24 45.83(61
nCoV-2019_8_RIGHT nCoV-2019_2|GCTTCAACAGCTTCACTAGTAGGT 24 45.83(60.56
nCoV-2019_9_LEFT nCoV-2019_1|TCCCACAGAAGTGTTAACAGAGGA 24 45.83(61.18
nCoV-2019_9_LEFT_alt4 |nCoV-2019_1[TTCCCACAGAAGTGTTAACAGAGG 24 45.83(60.44
nCoV-2019_9_RIGHT nCoV-2019_1|ATGACAGCATCTGCCACAACAC 22 50 |61.71
nCoV-2019_9_RIGHT _alt2 |nCoV-2019_1|GACAGCATCTGCCACAACACAG 22 54.55(62.26
nCoV-2019_10_LEFT nCoV-2019_2|TGAGAAGTGCTCTGCCTATACAGT 24 45.83(61.12
nCoV-2019_10_RIGHT nCoV-2019_2|TCATCTAACCAATCTTCTTCTTGCTCT 27 37.04/60.31
nCoV-2019_11_LEFT nCoV-2019_1|GGAATTTGGTGCCACTTCTGCT 22 50 |61.66
nCoV-2019_11_RIGHT nCoV-2019_1|TCATCAGATTCAACTTGCATGGCA 24 41.67(61.35
nCoV-2019_12_LEFT nCoV-2019_2|AAACATGGAGGAGGTGTTGCAG 22 50 |61.08
nCoV-2019_12_RIGHT nCoV-2019_2|TTCACTCTTCATTTCCAAAAAGCTTGA 27 33.33/60.36
nCoV-2019_13_LEFT nCoV-2019_1|TCGCACAAATGTCTACTTAGCTGT 24 41.67(60.56
nCoV-2019_13_RIGHT nCoV-2019_1|ACCACAGCAGTTAAAACACCCT 22 45.45(60.36
nCoV-2019_14_LEFT nCoV-2019_2|CATCCAGATTCTGCCACTCTTGT 23 47.83(60.62
nCoV-2019_14_LEFT_alt4 |nCoV-2019_2|[TGGCAATCTTCATCCAGATTCTGC 24 45.83(61.47
nCoV-2019_14_RIGHT nCoV-2019_2|AGTTTCCACACAGACAGGCATT 22 45.45(60.42
nCoV-2019_14_RIGHT_alt2|nCoV-2019_2|[TGCGTGTTTCTTCTGCATGTGC 22 50 [62.76
nCoV-2019_15_LEFT nCoV-2019_1|ACAGTGCTTAAAAAGTGTAAAAGTGCC 27 37.04/61.32
nCoV-2019_15_LEFT_alt1 |nCoV-2019_1|AGTGCTTAAAAAGTGTAAAAGTGCCT 26 34.62|60.13
nCoV-2019_15_RIGHT nCoV-2019_1|AACAGAAACTGTAGCTGGCACT 22 45.45(60.16
nCoV-2019_15_RIGHT_alt3|nCoV-2019_1(ACTGTAGCTGGCACTTTGAGAGA 23 47.83[61.57
nCoV-2019_16_LEFT nCoV-2019_2|AATTTGGAAGAAGCTGCTCGGT 22 45.45(60.82
nCoV-2019_16_RIGHT nCoV-2019_2|CACAACTTGCGTGTGGAGGTTA 22 50 61.32
nCoV-2019_17_LEFT nCoV-2019_1|CTTCTTTCTTTGAGAGAAGTGAGGACT 27 40.74(60.69
nCoV-2019_17_RIGHT nCoV-2019_1|TTTGTTGGAGTGTTAACAATGCAGT 25 36 |60.11
nCoV-2019_18_LEFT nCoV-2019_2|TGGAAATACCCACAAGTTAATGGTTTAAC |29 34.48160.69
nCoV-2019_18_LEFT_alt2 |nCoV-2019_2|ACTTCTATTAAATGGGCAGATAACAACTGT |30 33.3361.38
nCoV-2019_18_RIGHT nCoV-2019_2|AGCTTGTTTACCACACGTACAAGG 24 45.83(61.51
nCoV-2019_18_RIGHT_alt1|nCoV-2019_2|GCTTGTTTACCACACGTACAAGG 23 47.83(60.3
nCoV-2019_19_LEFT nCoV-2019_1|GCTGTTATGTACATGGGCACACT 23 47.83(61.18
nCoV-2019_19_RIGHT nCoV-2019_1|TGTCCAACTTAGGGTCAATTTCTGT 25 40 [60.4
nCoV-2019_20_LEFT nCoV-2019_2|ACAAAGAAAACAGTTACACAACAACCA 27 33.33/60.68
nCoV-2019_20_RIGHT nCoV-2019_2|ACGTGGCTTTATTAGTTGCATTGTT 25 36 |60.28
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nCoV-2019_21_LEFT nCoV-2019_1|TGGCTATTGATTATAAACACTACACACCC |29 37.9361.49
nCoV-2019_21_LEFT_alt2 |nCoV-2019_1|GGCTATTGATTATAAACACTACACACCCT |29 37.9361.29
nCoV-2019_21_RIGHT nCoV-2019_1|TAGATCTGTGTGGCCAACCTCT 22 50 160.83
nCoV-2019_21_RIGHT_alt0|nCoV-2019_1|GATCTGTGTGGCCAACCTCTTC 22 54.55|61.2
nCoV-2019_22_LEFT nCoV-2019_2|ACTACCGAAGTTGTAGGAGACATTATACT |29 37.93/61.25
nCoV-2019_22_RIGHT nCoV-2019_2|ACAGTATTCTTTGCTATAGTAGTCGGC 27 40.74(60.73
nCoV-2019_23_LEFT nCoV-2019_1|ACAACTACTAACATAGTTACACGGTGT 27 37.0460.26
nCoV-2019_23_RIGHT nCoV-2019_1|ACCAGTACAGTAGGTTGCAATAGTG 25 44 160.57
nCoV-2019_24_LEFT nCoV-2019_2|AGGCATGCCTTCTTACTGTACTG 23 47.83(60.37
nCoV-2019_24_RIGHT nCoV-2019_2|ACATTCTAACCATAGCTGAAATCGGG 26 42.31(61.19
nCoV-2019_25_LEFT nCoV-2019_1|GCAATTGTTTTTCAGCTATTTTGCAGT 27 33.33/60.73
nCoV-2019_25_RIGHT nCoV-2019_1|ACTGTAGTGACAAGTCTCTCGCA 23 47.83(61.3
nCoV-2019_26_LEFT nCoV-2019_2|TTGTGATACATTCTGTGCTGGTAGT 25 40 [60.28
nCoV-2019_26_RIGHT nCoV-2019_2|TCCGCACTATCACCAACATCAG 22 50 |60.42
nCoV-2019_27_LEFT nCoV-2019_1|ACTACAGTCAGCTTATGTGTCAACC 25 44 160.8
nCoV-2019_27_RIGHT nCoV-2019_1|AATACAAGCACCAAGGTCACGG 22 50 [61.13
nCoV-2019_28_LEFT nCoV-2019_2|ACATAGAAGTTACTGGCGATAGTTGT 26 38.46/60.13
nCoV-2019_28_RIGHT nCoV-2019_2|TGTTTAGACATGACATGAACAGGTGT 26 38.46|60.91
nCoV-2019_29_LEFT nCoV-2019_1|ACTTGTGTTCCTTTTTGTTGCTGC 24 41.67(61.39
nCoV-2019_29_RIGHT nCoV-2019_1|AGTGTACTCTATAAGTTTTGATGGTGTGT |29 34.48/60.69
nCoV-2019_30_LEFT nCoV-2019_2|GCACAACTAATGGTGACTTTTTGCA 25 40 [61.19
nCoV-2019_30_RIGHT nCoV-2019_2|ACCACTAGTAGATACACAAACACCAG 26 42.31(60.3
nCoV-2019_31_LEFT nCoV-2019_1|TTCTGAGTACTGTAGGCACGGC 22 54.55(62.03
nCoV-2019_31_RIGHT nCoV-2019_1|ACAGAATAAACACCAGGTAAGAATGAGT (28 35.71160.69
nCoV-2019_32_LEFT nCoV-2019_2|TGGTGAATACAGTCATGTAGTTGCC 25 44 161.09
nCoV-2019_32_RIGHT nCoV-2019_2|AGCACATCACTACGCAACTTTAGA 24 41.67(60.56
nCoV-2019_33_LEFT nCoV-2019_1|ACTTTTGAAGAAGCTGCGCTGT 22 45.45(61.58
nCoV-2019_33_RIGHT nCoV-2019_1|TGGACAGTAAACTACGTCATCAAGC 25 44 [61.08
nCoV-2019_34_LEFT nCoV-2019_2|TCCCATCTGGTAAAGTTGAGGGT 23 47.83(61.02
nCoV-2019_34_RIGHT nCoV-2019_2|AGTGAAATTGGGCCTCATAGCA 22 45.45(60.03
nCoV-2019_35_LEFT nCoV-2019_1|TGTTCGCATTCAACCAGGACAG 22 50 61.39
nCoV-2019_35_RIGHT nCoV-2019_1|ACTTCATAGCCACAAGGTTAAAGTCA 26 38.46/60.69
nCoV-2019_36_LEFT nCoV-2019_2|TTAGCTTGGTTGTACGCTGCTG 22 50 |61.44
nCoV-2019_36_RIGHT nCoV-2019_2|GAACAAAGACCATTGAGTACTCTGGA 26 42.31(60.74
nCoV-2019_37_LEFT nCoV-2019_1|ACACACCACTGGTTGTTACTCAC 23 47.83(60.93
nCoV-2019_37_RIGHT nCoV-2019_1|GTCCACACTCTCCTAGCACCAT 22 54.55|61.48
nCoV-2019_38_LEFT nCoV-2019_2|ACTGTGTTATGTATGCATCAGCTGT 25 40 [60.86
nCoV-2019_38_RIGHT nCoV-2019_2|CACCAAGAGTCAGTCTAAAGTAGCG 25 48 [61.13
nCoV-2019_39_LEFT nCoV-2019_1|AGTATTGCCCTATTTTCTTCATAACTGGT |29 34.48|61
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nCoV-2019_39_RIGHT nCoV-2019_1|TGTAACTGGACACATTGAGCCC 22 50 60.55
nCoV-2019_40_LEFT nCoV-2019_2|TGCACATCAGTAGTCTTACTCTCAGT 26 42.31[61.25
nCoV-2019_40_RIGHT nCoV-2019_2|CATGGCTGCATCACGGTCAAAT 22 50 62.09
nCoV-2019_41_LEFT nCoV-2019_1|GTTCCCTTCCATCATATGCAGCT 23 47.83(60.75
nCoV-2019_41_RIGHT nCoV-2019_1|TGGTATGACAACCATTAGTTTGGCT 25 40  [60.75
nCoV-2019_42_LEFT nCoV-2019_2|TGCAAGAGATGGTTGTGTTCCC 22 50 |61.08
nCoV-2019_42_RIGHT nCoV-2019_2|CCTACCTCCCTTTGTTGTGTTGT 23 47.83(60.69
nCoV-2019_43_LEFT nCoV-2019_1|TACGACAGATGTCTTGTGCTGC 22 50 60.93
nCoV-2019_43_RIGHT nCoV-2019_1|AGCAGCATCTACAGCAAAAGCA 22 45.45(61.14
nCoV-2019_44_LEFT nCoV-2019_2|TGCCACAGTACGTCTACAAGCT 22 50 |61.66
nCoV-2019_44_LEFT_alt3 |nCoV-2019_2|CCACAGTACGTCTACAAGCTGG 22 54.55|60.67
nCoV-2019_44_RIGHT nCoV-2019_2|AACCTTTCCACATACCGCAGAC 22 50 |60.87
nCoV-2019_44_RIGHT_alt0|nCoV-2019_2|CGCAGACGGTACAGACTGTGTT 22 54.55(62.77
nCoV-2019_45_LEFT nCoV-2019_1|TACCTACAACTTGTGCTAATGACCC 25 44 160.57
nCoV-2019_45_LEFT_alt2 |nCoV-2019_1|AGTATGTACAAATACCTACAACTTGTGCT |29 34.48|60.94
nCoV-2019_45_RIGHT nCoV-2019_1|AAATTGTTTCTTCATGTTGGTAGTTAGAGA (30 30 |60.01
nCoV-2019_45_RIGHT_alt7|nCoV-2019_1|TTCATGTTGGTAGTTAGAGAAAGTGTGTC |29 37.93|61.53
nCoV-2019_46_LEFT nCoV-2019_2|TGTCGCTTCCAAGAAAAGGACG 22 50 61.38
nCoV-2019_46_LEFT_alt1 |nCoV-2019_2|CGCTTCCAAGAAAAGGACGAAGA 23 47.83(61.35
nCoV-2019_46_RIGHT nCoV-2019_2|CACGTTCACCTAAGTTGGCGTA 22 50 |60.86
nCoV-2019_46_RIGHT_alt2|nCoV-2019_2|CACGTTCACCTAAGTTGGCGTAT 23 47.83[61.17
nCoV-2019_47_LEFT nCoV-2019_1|AGGACTGGTATGATTTTGTAGAAAACCC (28 39.29(61.42
nCoV-2019_47_RIGHT nCoV-2019_1|AATAACGGTCAAAGAGTTTTAACCTCTC (28 35.71160.06
nCoV-2019_48_LEFT nCoV-2019_2|TGTTGACACTGACTTAACAAAGCCT 25 40 [61.09
nCoV-2019_48_RIGHT nCoV-2019_2|TAGATTACCAGAAGCAGCGTGC 22 50 |60.74
nCoV-2019_49_LEFT nCoV-2019_1|AGGAATTACTTGTGTATGCTGCTGA 25 40  [60.57
nCoV-2019_49_RIGHT nCoV-2019_1|TGACGATGACTTGGTTAGCATTAATACA (28 35.71161.05
nCoV-2019_50_LEFT nCoV-2019_2|GTTGATAAGTACTTTGATTGTTACGATGGT (30 33.33/60.59
nCoV-2019_50_RIGHT nCoV-2019_2|TAACATGTTGTGCCAACCACCA 22 45.45(60.95
nCoV-2019_51_LEFT nCoV-2019_1|TCAATAGCCGCCACTAGAGGAG 22 54.55|61.34
nCoV-2019_51_RIGHT nCoV-2019_1|AGTGCATTAACATTGGCCGTGA 22 45.45(61.14
nCoV-2019_52_LEFT nCoV-2019_2|CATCAGGAGATGCCACAACTGC 22 54.55|61.83
nCoV-2019_52_RIGHT nCoV-2019_2|GTTGAGAGCAAAATTCATGAGGTCC 25 44 160.62
nCoV-2019_53_LEFT nCoV-2019_1|AGCAAAATGTTGGACTGAGACTGA 24 41.67(60.69
nCoV-2019_53_RIGHT nCoV-2019_1|AGCCTCATAAAACTCAGGTTCCC 23 47.83(60.31
nCoV-2019_54_LEFT nCoV-2019_2|TGAGTTAACAGGACACATGTTAGACA 26 38.46|60.18
nCoV-2019_54_RIGHT nCoV-2019_2|AACCAAAAACTTGTCCATTAGCACA 25 36 |60.11
nCoV-2019_55_LEFT nCoV-2019_1|ACTCAACTTTACTTAGGAGGTATGAGCT (28 39.29(61.43
nCoV-2019_55_RIGHT nCoV-2019_1|GGTGTACTCTCCTATTTGTACTTTACTGT |29 37.93|60.54
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nCoV-2019_56_LEFT nCoV-2019_2|ACCTAGACCACCACTTAACCGA 22 50 60.49
nCoV-2019_56_RIGHT nCoV-2019_2|ACACTATGCGAGCAGAAGGGTA 22 50 |61.21
nCoV-2019_57_LEFT nCoV-2019_1|ATTCTACACTCCAGGGACCACC 22 54.55|61.16
nCoV-2019_57_RIGHT nCoV-2019_1|GTAATTGAGCAGGGTCGCCAAT 22 50 |61.26
nCoV-2019_58_LEFT nCoV-2019_2|TGATTTGAGTGTTGTCAATGCCAGA 25 40 [61.44
nCoV-2019_58_RIGHT nCoV-2019_2|CTTTTCTCCAAGCAGGGTTACGT 23 47.83|61.06
nCoV-2019_59_LEFT nCoV-2019_1|TCACGCATGATGTTTCATCTGCA 23 43.48(61.42
nCoV-2019_59_RIGHT nCoV-2019_1|AAGAGTCCTGTTACATTTTCAGCTTG 26 38.46(60.02
nCoV-2019_60_LEFT nCoV-2019_2|TGATAGAGACCTTTATGACAAGTTGCA 27 37.04/60.53
nCoV-2019_60_RIGHT nCoV-2019_2|GGTACCAACAGCTTCTCTAGTAGC 24 50 |60.44
nCoV-2019_61_LEFT nCoV-2019_1|TGTTTATCACCCGCGAAGAAGC 22 50 |61.5

nCoV-2019_61_RIGHT nCoV-2019_1|ATCACATAGACAACAGGTGCGC 22 50 [61.25
nCoV-2019_62_LEFT nCoV-2019_2|GGCACATGGCTTTGAGTTGACA 22 50 |61.91
nCoV-2019_62_RIGHT nCoV-2019_2|GTTGAACCTTTCTACAAGCCGC 22 50 60.35
nCoV-2019_63_LEFT nCoV-2019_1|TGTTAAGCGTGTTGACTGGACT 22 45.45(60.16
nCoV-2019_63_RIGHT nCoV-2019_1|ACAAACTGCCACCATCACAACC 22 50 |61.85
nCoV-2019_64_LEFT nCoV-2019_2|TCGATAGATATCCTGCTAATTCCATTGT 28 35.71160.11
nCoV-2019_64_RIGHT nCoV-2019_2|AGTCTTGTAAAAGTGTTCCAGAGGT 25 40 [60.1

nCoV-2019_65_LEFT nCoV-2019_1|GCTGGCTTTAGCTTGTGGGTTT 22 50 [61.92
nCoV-2019_65_RIGHT nCoV-2019_1|TGTCAGTCATAGAACAAACACCAATAGT |28 35.71160.9

nCoV-2019_66_LEFT nCoV-2019_2|GGGTGTGGACATTGCTGCTAAT 22 50 |61.21
nCoV-2019_66_RIGHT nCoV-2019_2|TCAATTTCCATTTGACTCCTGGGT 24 41.67(60.45
nCoV-2019_67_LEFT nCoV-2019_1|GTTGTCCAACAATTACCTGAAACTTACT (28 35.71160.43
nCoV-2019_67_RIGHT nCoV-2019_1|CAACCTTAGAAACTACAGATAAATCTTGGG(30 36.67|60.4

nCoV-2019_68_LEFT nCoV-2019_2|ACAGGTTCATCTAAGTGTGTGTGT 24 41.67(60.14
nCoV-2019_68_RIGHT nCoV-2019_2|CTCCTTTATCAGAACCAGCACCA 23 47.83(60.31
nCoV-2019_69_LEFT nCoV-2019_1|TGTCGCAAAATATACTCAACTGTGTCA 27 37.04/61.43
nCoV-2019_69_RIGHT nCoV-2019_1|TCTTTATAGCCACGGAACCTCCA 23 47.83|61.14
nCoV-2019_70_LEFT nCoV-2019_2|ACAAAAGAAAATGACTCTAAAGAGGGTTT |29 31.03/60.13
nCoV-2019_70_RIGHT nCoV-2019_2|TGACCTTCTTTTAAAGACATAACAGCAG (28 35.71160.27
nCoV-2019_71_LEFT nCoV-2019_1|ACAAATCCAATTCAGTTGTCTTCCTATTC |29 34.48160.54
nCoV-2019_71_RIGHT nCoV-2019_1|TGGAAAAGAAAGGTAAGAACAAGTCCT 27 37.04|60.8

nCoV-2019_72_LEFT nCoV-2019_2|ACACGTGGTGTTTATTACCCTGAC 24 45.83(61.04
nCoV-2019_72_RIGHT nCoV-2019_2|ACTCTGAACTCACTTTCCATCCAAC 25 44 160.97
nCoV-2019_73_LEFT nCoV-2019_1|CAATTTTGTAATGATCCATTTTTGGGTGT |29 31.03/60.29
nCoV-2019_73_RIGHT nCoV-2019_1|CACCAGCTGTCCAACCTGAAGA 22 54.55(62.45
nCoV-2019_74_LEFT nCoV-2019_2|ACATCACTAGGTTTCAAACTTTACTTGC 28 35.71160.68
nCoV-2019_74_RIGHT nCoV-2019_2|GCAACACAGTTGCTGATTCTCTTC 24 45.83(60.85
nCoV-2019_75_LEFT nCoV-2019_1|AGAGTCCAACCAACAGAATCTATTGT 26 38.46(60.24
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nCoV-2019_75_RIGHT nCoV-2019_1|ACCACCAACCTTAGAATCAAGATTGT 26 38.46|60.69
nCoV-2019_76_LEFT nCoV-2019_2|AGGGCAAACTGGAAAGATTGCT 22 45.45(60.76
nCoV-2019_76_LEFT_alt3 |nCoV-2019_2|GGGCAAACTGGAAAGATTGCTGA 23 47.83(61.87
nCoV-2019_76_RIGHT nCoV-2019_2|ACACCTGTGCCTGTTAAACCAT 22 45.45(60.42
nCoV-2019_76_RIGHT_alt0|nCoV-2019_2|[ACCTGTGCCTGTTAAACCATTGA 23 43.48(60.69
nCoV-2019_77_LEFT nCoV-2019_1|CCAGCAACTGTTTGTGGACCTA 22 50 60.75
nCoV-2019_77_RIGHT nCoV-2019_1|CAGCCCCTATTAAACAGCCTGC 22 54.55|61.59
nCoV-2019_78_LEFT nCoV-2019_2|CAACTTACTCCTACTTGGCGTGT 23 47.83(60.55
nCoV-2019_78_RIGHT nCoV-2019_2|TGTGTACAAAAACTGCCATATTGCA 25 36 60.22
nCoV-2019_79_LEFT nCoV-2019_1|GTGGTGATTCAACTGAATGCAGC 23 47.83(60.92
nCoV-2019_79_RIGHT nCoV-2019_1|CATTTCATCTGTGAGCAAAGGTGG 24 45.83(60.62
nCoV-2019_80_LEFT nCoV-2019_2|TTGCCTTGGTGATATTGCTGCT 22 45.45(60.89
nCoV-2019_80_RIGHT nCoV-2019_2|TGGAGCTAAGTTGTTTAACAAGCG 24 41.67(60.02
nCoV-2019_81_LEFT nCoV-2019_1|GCACTTGGAAAACTTCAAGATGTGG 25 44 [61.24
nCoV-2019_81_RIGHT nCoV-2019_1|GTGAAGTTCTTTTCTTGTGCAGGG 24 45.83(60.73
nCoV-2019_82_LEFT nCoV-2019_2|GGGCTATCATCTTATGTCCTTCCCT 25 48 [61.52
nCoV-2019_82_RIGHT nCoV-2019_2|TGCCAGAGATGTCACCTAAATCAA 24 41.67(60.02
nCoV-2019_83_LEFT nCoV-2019_1|TCCTTTGCAACCTGAATTAGACTCA 25 40 [60.46
nCoV-2019_83_RIGHT nCoV-2019_1|TTTGACTCCTTTGAGCACTGGC 22 50 61.33
nCoV-2019_84_LEFT nCoV-2019_2|TGCTGTAGTTGTCTCAAGGGCT 22 50 |61.61
nCoV-2019_84_RIGHT nCoV-2019_2|AGGTGTGAGTAAACTGTTACAAACAAC 27 37.04160.36
nCoV-2019_85_LEFT nCoV-2019_1|ACTAGCACTCTCCAAGGGTGTT 22 50 |61.03
nCoV-2019_85_RIGHT nCoV-2019_1|ACACAGTCTTTTACTCCAGATTCCC 25 44 160.51
nCoV-2019_86_LEFT nCoV-2019_2|TCAGGTGATGGCACAACAAGTC 22 50 |61.07
nCoV-2019_86_RIGHT nCoV-2019_2|ACGAAAGCAAGAAAAAGAAGTACGC 25 40 [61.01
nCoV-2019_87_LEFT nCoV-2019_1|CGACTACTAGCGTGCCTTTGTA 22 50 |60.16
nCoV-2019_87_RIGHT nCoV-2019_1|ACTAGGTTCCATTGTTCAAGGAGC 24 45.83(60.81
nCoV-2019_88_LEFT nCoV-2019_2|CCATGGCAGATTCCAACGGTAC 22 54.55|61.58
nCoV-2019_88_RIGHT nCoV-2019_2|TGGTCAGAATAGTGCCATGGAGT 23 47.83[61.4

nCoV-2019_89_LEFT nCoV-2019_1|GTACGCGTTCCATGTGGTCATT 22 50 |61.5

nCoV-2019_89_LEFT_alt2 |nCoV-2019_1|CGCGTTCCATGTGGTCATTCAA 22 50 |62.01
nCoV-2019_89_RIGHT nCoV-2019_1|ACCTGAAAGTCAACGAGATGAAACA 25 40  [60.91
nCoV-2019_89_RIGHT_alt4|nCoV-2019_1|ACGAGATGAAACATCTGTTGTCACT 25 40 [60.74
nCoV-2019_90_LEFT nCoV-2019_2|ACACAGACCATTCCAGTAGCAGT 23 47.83|61.58
nCoV-2019_90_RIGHT nCoV-2019_2|TGAAATGGTGAATTGCCCTCGT 22 45.45(60.82
nCoV-2019_91_LEFT nCoV-2019_1|TCACTACCAAGAGTGTGTTAGAGGT 25 44 160.93
nCoV-2019_91_RIGHT nCoV-2019_1|TTCAAGTGAGAACCAAAAGATAATAAGCA |29 31.03/60.03
nCoV-2019_92_LEFT nCoV-2019_2|TTTGTGCTTTTTAGCCTTTCTGCT 24 37.5 160.14
nCoV-2019_92_RIGHT nCoV-2019_2|AGGTTCCTGGCAATTAATTGTAAAAGG 27 37.04/60.53
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nCoV-2019_93_LEFT nCoV-2019_1|TGAGGCTGGTTCTAAATCACCCA 23 47.83(61.59
nCoV-2019_93_RIGHT nCoV-2019_1|AGGTCTTCCTTGCCATGTTGAG 22 50 60.55
nCoV-2019_94_LEFT nCoV-2019_2|GGCCCCAAGGTTTACCCAATAA 22 50 |60.56
nCoV-2019_94_RIGHT nCoV-2019_2|TTTGGCAATGTTGTTCCTTGAGG 23 43.48(60.18
nCoV-2019_95_LEFT nCoV-2019_1|TGAGGGAGCCTTGAATACACCA 22 50 |61.1

nCoV-2019_95_RIGHT nCoV-2019_1|CAGTACGTTTTTGCCGAGGCTT 22 50 61.95
nCoV-2019_96_LEFT nCoV-2019_2|GCCAACAACAACAAGGCCAAAC 22 50 |61.82
nCoV-2019_96_RIGHT nCoV-2019_2|TAGGCTCTGTTGGTGGGAATGT 22 50 |61.36
nCoV-2019_97_LEFT nCoV-2019_1|TGGATGACAAAGATCCAAATTTCAAAGA (28 32.14/60.22
nCoV-2019_97_RIGHT nCoV-2019_1|ACACACTGATTAAAGATTGCTATGTGAG (28 35.71160.17
nCoV-2019_98_LEFT nCoV-2019_2|AACAATTGCAACAATCCATGAGCA 24 37.5 160.5

nCoV-2019_98_RIGHT nCoV-2019_2|TTCTCCTAAGAAGCTATTAAAATCACATGG (30 33.33|60.01

S3 Table. ARTIC v3 primer sequences.
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Abstract

The emergence of divergent SARS-CoV-2 lineages has raised concern that novel
variants eliciting immune escape or enhanced transmissibility could emerge within
individual hosts. Though growing evidence suggests that novel variants arise during
prolonged infections, most infections are acute. Understanding how efficiently variants
emerge and transmit among acutely-infected hosts is therefore critical for predicting the
pace of long-term SARS-CoV-2 evolution. To characterize how within-host diversity is
generated and propagated, we combine extensive laboratory and bioinformatic controls
with metrics of within- and between-host diversity to 133 SARS-CoV-2 genomes from
acutely-infected individuals. We find that within-host diversity is low and transmission
bottlenecks are narrow, with very few viruses founding most infections. Within-host
variants are rarely transmitted, even among individuals within the same household, and
are rarely detected along phylogenetically linked infections in the broader community.
These findings suggest that efficient selection and transmission of novel SARS-CoV-2

variants is unlikely during typical, acute infection.

Introduction

The recent emergence of variants of concern has spurred uncertainty about how severe
acute respiratory coronavirus 2 (SARS-CoV-2) will evolve in the longer term. SARS-CoV-

2 acquires a fixed consensus mutation approximately every 11 days as it replicates in a
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population 53, Recently, however, lineages of SARS-CoV-2 have arisen harboring more
variants than expected based on this clock rate, with some variants conferring enhanced
transmissibility and/or antibody escape #**2?%*. The emergence of these lineages has
raised concern that SARS-CoV-2 may rapidly evolve to evade vaccine-induced immunity,
and that vaccines may need to be frequently updated. A current leading hypothesis posits
that these lineages may have emerged during prolonged infections. Under this
hypothesis, longer infection times, coupled with antibody selection 265, may allow more
time for novel mutations to be generated and selected before transmission. Studies of
SARS-CoV-2 %°2° gnd other viruses 2°?"" support this hypothesis. Longitudinal
sequencing of SARS-CoV-2 from immunocompromised or persistently infected
individuals accordingly reveals an accumulation of single-nucleotide variants (iSNVs) and
short insertions and deletions (indels) during infection 2°>%7272_ |n influenza virus and
norovirus infections, variants that arose in immunocompromised patients were later
detected globally, suggesting that long-term infections may mirror global evolutionary
dynamics 270273, Mutations defining novel variant lineages resulting in enhanced
transmissibility and/or immune escape in SARS-CoV-2 Spike, like A69/70, N501Y and
E484K, have already been documented arising in persistently infected and

immunocompromised individuals 265266,

While prolonged infections occur, the vast majority of SARS-CoV-2 infections are acute
214 Viral evolutionary capacity is limited by the duration of infection #°, and it is not yet
clear whether the evolutionary patterns observed during prolonged SARS-CoV-2

infections also occur in acutely infected individuals. Replication-competent virus has



111

rarely been recovered from individuals with mild to moderate coronavirus disease 2019
(COVID-19) beyond ~10 days following symptom onset *"?"¢. Multiple studies of influenza
viruses show that immune escape variants are rarely detected during acute infection,
even within vaccinated individuals '®'%2, Detailed modeling of influenza dynamics
suggests that the likelihood of within-host mutation emergence depends on the interplay
of immune response timing, the de-novo mutation rate, and the number of virus particles
transmitted between hosts #°. Understanding the speed with which SARS-CoV-2 viruses
acquire novel mutations that may escape population immunity will be critical for
formulating future vaccine updates. If novel immune-escape variants emerge primarily
within long-term infections, then managing long-term infections in an effort to reduce any
onward transmission may be critically important. Conversely, if novel variants are
efficiently selected and transmitted during acute infections, then vaccine updates may

need to occur frequently.

While understanding the process of variant generation and transmission is critically
important, a clear consensus on how frequently variants are shared and transmitted
between individuals has been elusive. Estimates of SARS-CoV-2 diversity within hosts
have been highly variable, and comparing results among labs has been complicated by
sensitivity to variant-calling thresholds and inconsistent laboratory controls °6:136:189.228
Some data suggest that SARS-CoV-2 genetic diversity within individual hosts during
acute infections is limited **?*? and shaped by genetic drift and purifying selection
57228229277 Estimates of the size of SARS-CoV-2 transmission bottlenecks >??%278 have

ranged considerably, and recent validation work has shown that estimates of within-host
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diversity and transmission bottleneck sizes are highly sensitive to sequencing protocols
and data analysis parameters, like the frequency cutoff used to define/identify within-host
variants 56279, Clarifying the extent to which within-host variants arise and transmit among
acutely infected individuals, while controlling for potential error, will be critical for

assessing the speed at which SARS-CoV-2 evolves and adapts.

To characterize how within-host variants are generated and propagated, we employ
extensive laboratory and bioinformatic controls to characterize 133 SARS-CoV-2 samples
collected from acutely-infected individuals in Wisconsin, United States. By comparing
patterns of intrahost single nucleotide variants (iISNVs) to densely-sampled consensus
genomes from the same geographic area, we paint a clear picture of how variants emerge
and transmit within communities and households. We find that overall within-host diversity
is low during acute infection, and that iISNVs detected within hosts almost never become
dominant in later-sampled sequences. We find that iSNVs are infrequently transmitted,
even between members of the same household, and we estimate that transmission
bottlenecks between putative household pairs are narrow. This suggests that most iSNVs
are transient and very rarely transmit beyond the individual in which they have originated.
Our results imply that during typical, acute SARS-CoV-2 infections, the combination of
limited intrahost genetic diversity and narrow transmission bottlenecks may slow the pace
by which novel variants arise, are selected, and transmit onward. Finally, most individual
infections likely play a minor role in SARS-CoV-2 evolution, consistent with the hypothesis

that novel variants are more likely to arise in rare instances of prolonged infection.
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Materials and Methods

Sample approvals and sample selection criteria

Samples selected for iISNV characterization were derived from 150 nasopharyngeal (NP)
swab samples collected from March 2020 through July 2020, originating from the
University of Wisconsin Hospital and Clinics and the Milwaukee Health Department
Laboratories. Submitting institutions provided a cycle threshold (Ct) or relative light unit
(RLU) for all samples. Sample metadata, including GISAID and SRA accession

identifiers, are available in Supplemental Table 2.

We obtained a waiver of HIPAA Authorization and were approved to obtain the clinical
samples along with a Limited Data Set by the Western Institutional Review Board (WIRB
#1-1290953-1) and the FUE IRB 2016-0605. This limited dataset contains sample
collection data and county of collection. Additional sample metadata, e.g. race/ethnicity,

were not shared.

Diagnostic assays for the samples included in this study were performed at the University
of Wisconsin Hospital and Clinical diagnostic laboratory using CDC’s diagnostic RT-PCR

20 the Hologic Panther SARS-CoV-2 assay ?®', or the Aptima SARS-CoV-2 assay ?*2.

Nucleic acid extraction
Viral RNA (vVRNA) was extracted from 100 pl of VTM using the Viral Total Nucleic Acid
Purification kit (Promega, Madison, WI, USA) on a Maxwell RSC 48 instrument and eluted

in 50 pL of nuclease-free H20.
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Complementary DNA (cDNA) generation and PCR

Complementary DNA (cDNA) was synthesized according to a modified ARTIC Network
approach 23528, RNA was reverse transcribed with SuperScript IV VILO (Invitrogen,
Carlsbad, CA, USA) according to manufacturer guidelines 2%, A SARS-CoV-2-specific
multiplex PCR for Nanopore sequencing was performed using the ARTIC v3 primers
(Supplemental Table 3). cDNA (2.5 yL) was amplified in two multiplexed PCR reactions
using Q5 Hot-Start DNA High-fidelity Polymerase (New England Biolabs, Ipswich, MA,

USA).

TruSeq lllumina library prep and sequencing for minor variants

All Wisconsin surveillance samples were prepped and sequenced by Oxford Nanopore
Technologies (details below) and a subset described in this paper were additionally
prepped for sequencing on an lllumina MiSeq. These SARS-CoV-2 samples (n=150)
consisted of household pairs as well as a random sampling of the surveillance cohort
selective for enhanced iSNV characterization. Amplified cDNA was purified and made
compatible for sequencing on an lllumina MiSeq according to the TruSeq Nano DNA
manufacturer instructions (lllumina, USA). The average DNA fragment length and purity
was determined using the Agilent High Sensitivity DNA kit and the Agilent 2100
Bioanalyzer (Agilent, Santa Clara, CA). Samples were pooled at equimolar
concentrations to a final concentration of 4 nM. All libraries were run on a 500-cycle v2

flow cell. The samples included in this study were sequenced across seven distinct MiSeq
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runs. Each sample was library prepped and sequenced in technical replicate. Replicates

were true replicates in that we started from two aliquots taken from the original samples.

Oxford nanopore library preparation and sequencing for consensus sequences
All consensus-level surveillance sequencing of SARS-CoV-2 was performed using

Oxford Nanopore sequencing (n=3,351) as described previously *.

Processing raw ONT data

Sequencing data was processed using the ARTIC bioinformatics pipeline scaled up using
on campus computing cores (https://github.com/artic-network/artic-ncov2019). The entire
ONT analysis pipeline is available at https://github.com/gagekmoreno/SARS-CoV-2-in-

Southern-Wisconsin.

Processing raw lllumina data

Raw FASTQ files were analyzed using the workflow available in the following GitHub
repository — https://github.com/gagekmoreno/SARS_CoV-2_Zequencer. Reads were
paired and merged using BBMerge (https://jgi.doe.gov/data-and-tools/bbtools/bb-tools-
user-guide/bbmerge-guide/) and mapped to the Wuhan-Hu-1/2019 reference (Genbank
accession MN908947.3) using BBMap (https://jgi.doe.gov/data-and-tools/bbtools/bb-
tools-user-guide/bbmap-guide/). Mapped reads were imported into Geneious
(https://www.geneious.com/) for visual inspection. Variants were called using
callvariants.sh  (contained within BBMap) and annotated using SnpEff

(https://pcingola.github.io/SnpEff/). Variants were called at 20.01% in high-quality reads
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(phred score >30) that were 2100 base pairs in length and supported by a minimum of 10
reads. The total minimum read support was set to 10 to generate initial VCF files with
complete consensus genomes for the few samples where coverage fell below 100 reads
in a few areas. Substantial downstream variant cleaning was performed as outlined

below.

iSNV quality control

BBMap’s output VCF files were cleaned using custom Python scripts, which can be found
in the GitHub accompanying this manuscript (https://github.com/Imoncla/ncov-WI-within-
host). First, any samples without technical replicates were excluded. Next, we discarded
all iISNVs which occurred at primer-binding sites (Supplemental Table 3). These
“recoded” VCFs can be found in the GitHub repository in “data/vcfs-recode”. We then
filtered these recoded VCF files and for variants with (1) 100x coverage; (2) found at 23%
frequency; (3) and found between nucleotides 54 and 29,837 (based on the first and last
ARTIC v3 amplicon). We excluded all indels from our analysis, including those that occur

in intergenic regions.

We inspected our filtered iSNV datasets across replicate pairs. We visually inspected
each replicate pair VCF and plotted replicate frequencies against each other (available in
the GitHub repository). This identified a few samples which were outliers for having very
limited overlap in their iISNV populations. This could be traced to low coverage or amplicon
drop-out in each sample. FASTQs for these samples are available in GenBank, but we

have excluded them from downstream analyses presented here (n=11; tube/flename
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identifier 65, 124, 125, 303, 316, 1061, 1388, 1103, 1104, 1147, and 1282) (iSNVs in

technical replicates are shown for sample 1104 in Supplemental Figure 4b).

We generated one cleaned VCF file by averaging the frequencies found for overlapping
iISNVs and discarding all iISNVs which were only found in one replicate. In addition to the
SARS-CoV-2 diagnostic swabs, we sequenced a SARS-CoV-2 synthetic RNA control
(Twist Bioscience, San Francisco, CA) representing the Wuhan-Hu-1 sequence
(Genbank: MN908947.3) in technical replicate at 1x106 template copies per reaction in
order to identify spurious variants introducing during library prep and sequencing. We
then excluded variants detected in the synthetic RNA control (Supplemental Table 4)
from all downstream analyses. Notably, this filter removed a single variant at nucleotide
position 6,669 from our analysis 5. Finally, within-host variants called at 250% and <97%
frequency comprise consensus-level mutations relative to the Wuhan-Hu-1/2019
reference sequence. To ensure that the corresponding minor variant was reported we
report the opposite minor allele at a frequency of 1 - the consensus variant frequency.
For example, a C to T variant detected at 75% frequency relative to the Wuhan-1

reference was converted to a T to C variant at 25% frequency.

Processing of the raw sequence data, mapping, and variant calling with the
Washington pipeline

To assess the sensitivity of our iSNV calls to bioinformatic pipelines, we generated VCF
files using an independent bioinformatic pipeline. Raw reads were assembled against the

SARS-CoV-2 reference genome Wuhan-Hu-1/2019 (Genbank accession MN908947.3;
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the same reference used for the alternative basecalling method) to generate pileup files
using the bioinformatics pipeline available at https://github.com/seattleflu/assembly.
Briefly, reads were trimmed with Trimmomatic
(http://www.usadellab.org/cms/?page=trimmomatic) '°2 in paired end mode, in sliding
window of 5 base pairs, discarding all reads that were trimmed to <50 base pairs.
Trimmed reads were mapped using Bowtie 2 (http://bowtie-
bio.sourceforge.net/bowtie2/index.shtml) '°3, and pileups were generated using samtools
mpileup (http://www.htslib.org/doc/samtools-mpileup.html). Variants were then called
from pileups using varscan mpileup2cns v2.4.4 (http://varscan.sourceforge.net/using-
varscan.html#v2.3_mpileup2cns). Variants were called at 21% frequency, with a

minimum coverage of 100, and were supported by a minimum of 2 reads.

Phylogenetic analysis

All available full-length sequences from Wisconsin through February 16, 2021 were used
for phylogenetic analysis using the tools implemented in Nextstrain custom builds
(https://github.com/nextstrain/ncov) '**?%. Phylogenetic trees were built using the
standard Nextstrain tools and scripts "*?%*. We used custom python scripts to filter and
clean metadata. A custom “Wisconsin” profile was made to create a Wisconsin-centric
subsampled build to include representative sequences. The scripts and output are

available at https://github.com/gagekmoreno/Wisconsin-SARS-CoV-2.

Household pairs permutation test
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For household groups, we performed all pairwise comparisons between members of the
household, excluding pairs for which the consensus genomes differed by >2 nucleotide
changes. We determined this cutoff by modeling the probability that 2 consensus
genomes separated by one serial interval differ by n mutations. We model this process
as Poisson-distributed with lambda equal to the expected number of substitutions per
serial interval, as described previously 34. We chose to model this expectation using the

serial interval rather than the generation interval for the following reason.

The sequence data we have represent cases that were sampled via passive surveillance,
usually from individuals seeking testing after developing symptoms. Differences in the
genome sequences from two individuals therefore represent the evolution that occurred
between the sampling times of those two cases. Although neither the serial interval nor
the generation interval perfectly matches this sampling process, we reasoned that the
serial interval, or the time between the symptom onsets of successive cases, may more
accurately capture how the data were sampled. We evaluated probabilities across a
range of serial interval and clock rates. For serial interval, we use the values inferred by
He et al, of a mean of 5.8 days with a 95% confidence interval of 4.8-6.8 days 25. For
substitution rate, we employ estimates from Duchene et al, who estimate a mean
substitution rate of 1.10 x 10-3 substitutions per site per year, with a 95% credible interval
of 7.03 x 10-4 and 1.15 x 10-3 1. To model the expectation across this range of values,
we evaluate the probabilities for serial intervals at the mean (5.8), as well as for 4, 5, 6,
7, and 8 days, and substitution rates at the mean (1.10 x 10-3) and at the bounds of the

95% credible interval. For each combination of serial interval and substitution rate, we
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calculate the expected substitutions in one serial interval as: (substitution rate per site per
year * genome length/365 days) *serial interval. The results using the mean serial interval
(5.8 days) and substitution rate (1.10 x 10-3) are shown in the main text, while the full set
of combinations is shown in the supplement. Under this model, the vast majority of
consensus genomes derived from cases separated by a single serial interval are
expected to differ by <2 mutations. The probability that two genomes that are separated
by one serial interval differ by 3 mutations ranges from 0.0016-0.059. Only in the case of
an 8-day serial interval with the highest bound of the substitution rate do we infer a
probability of 3 mutations that is greater than 0.05. We therefore classified all pairs of
individuals from each household that differed by <2 consensus mutations and who were

tested within 14 days of each other as putative transmission pairs.

To determine whether putative household transmission pairs shared more variants than
individuals without an epidemiologic link, we performed a permutation test. At each
iteration, we randomly selected a pair of samples (with replacement) and computed the
proportion of variants they share as: (2 x total number of shared variants) / (the total
number of variants detected among the two samples). For example, if sample A contained
5 iSNVs relative to the reference (Wuhan-1, Genbank accession MN908947.3), sample
B harbored 4 iSNVs, and 1 iSNV was shared, then the proportion of sample A and B'’s
variants that are shared would be 2/9 = 0.22. We performed 10,000 iterations in which
pairs were sampled randomly to generate a null distribution. We then compared the

proportion of variants shared by each putative household transmission pair to this null
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distribution. The proportion of variants shared by a household pair was determined to be

statistically significant if it was greater than 95% of random pairs.

Transmission bottleneck calculation

The beta-binomial method '*’, was used to infer the transmission bottleneck size Nb. Nb
quantifies the number of virions donated from the index individual to the contact (recipient)
individual that successfully establish lineages in the recipient that are present at the
sampling time point. The beta-binomial method assumes variant sites are independent,
which may not be true given that SARS-CoV-2 contains a continuous genome thought to
undergo limited recombination 2. In addition, the beta-binomial method assumes that
identical variants found in the index and contact are shared as a result of transmission,
though it is possible that identical variants occurring in a donor and a recipient individual
occurred independently of one another and are not linked through transmission. We
consider this possibility at one site in particular which commonly appears at low
frequencies in donor-recipient pairs. Code for estimating transmission bottleneck sizes
using the beta-binomial approach has been adapted from the original scripts
(https://github.com/koellelab/betabinomial_bottleneck) and is included in the GitHub

accompanying this manuscript (https://github.com/Imoncla/ncov-WI-within-host).

We calculated individual transmission bottleneck size estimates for each household
transmission pair as were identified in the household permutation test (n=28). We used
the date of symptom onset and/or date of sample collection to assign donor and recipient

within each pair. Within each pair, if the date of symptom onset differed by =3 days, we
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assigned the individual with the earlier date as the donor. If this information was
unavailable or uninformative (<3 days) for both individuals in a pair, we looked at the date
of sample collection and if these dates differed by =3 days, we assigned the individual
with the earlier date as the donor. If this information was also not available or was not
informative (<3 days), we calculated the bottleneck size with each individual as a donor.
These bidirectional comparisons are denoted with an “a” or “b” appended to the filename
(n=16 pairs were analyzed bidirectionally). In total, we analyzed 44 pairs (including

bidirectional comparisons). Metadata and GISAID accession numbers for each pair are

described in Supplemental Table 4.

Combined transmission bottleneck size estimates (as seen in Figure 6¢) were estimated
as described in the supplemental methods in Martin & Koelle 27°. Briefly, overall
transmission bottleneck sizes were estimated based on the assumption that transmission
bottleneck sizes are distributed according to a zero-truncated Poisson-distribution and
bidirectional bottleneck estimates were each assigned 50% of the weight in this
calculation compared to the unidirectional pairs. Matlab code to replicate the combined
bottleneck estimates can be found in the GitHub accompanying this paper

(https://github.com/Imoncla/ncov-WI-within-host).

Enumerating mutations along the phylogeny
We used the global Nextstrain " phylogenetic tree (nextstrain.org/ncov/global) accessed
on February 24, 2021 to query whether mutations detected within-host are detected on

the global tree. We accessed the tree in JSON format and traverse the tree using baltic
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%7 To determine the fraction of within-host variants detected on the phylogenetic tree, we
traversed the tree from root to tip, gathering each mutation that arose on the tree in the
process. For each mutation, we counted the number of times it arose on internal and
terminal nodes. We then compared the fraction of times each iSNV identified within-host
was detected on an internal node vs. a terminal node. To determine whether particular
iISNVs were enriched at internal nodes, we compared the frequency of that iSNV’s
detection against the overall ratio of mutations arising on internal vs. terminal nodes in

the phylogeny with a Fisher’s exact test.

To query whether iISNVs ever became dominant in tips sampled downstream, we used a
transmission metric developed previously 28. Using the tree JSON output from the
Nextstrain pipeline 145, we traversed the tree from root to tip. We collapsed very small
branches (those with branch lengths less than 1 x 10-16) to obtain polytomies. For each
tip for which we had within-host data that lay on an internal node, i.e., had a branch length
of nearly 0 (< 1 x 10-16), we then determined whether any subsequent tips occurred in
the downstream portion of the tree, i.e., tips that fall along the same lineage but to the
right of the parent tip. We then traversed the tree and enumerated every mutation that
arose from the parent tip to each downstream tip. If any mutations along the path from
the parent to downstream tip matched a mutation found within-host in the parent, this was
classified as a potential instance of variant transmission. A diagram of how “downstream

tips” and mutations were classified is shown in Figure 4a.

Linear regression model
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To determine the relative contributions of phylogenetic divergence, geographic distance,
clade membership, and household membership to the probability of sharing within-host
variants, we fit linear regression models to the data in R. As our outcome variable, we
performed pairwise comparisons for each pair of samples in the dataset (including
household and non-household pairs) and compute the proportion of variants shared for
each pair. We then model the proportion of shared variants as the combined function of
4 predictor variables as follows: Proportion of variants shared ~ 0 + 31x1 + 32x2 + 33x3
+ B4x4, where x1 represents a 0 or 1 value for household, where a 1 indicates the same
household and a 0 indicates no household relationship. X2 denotes the divergence, i.e.,
the branch length in mutations between tip A and tip B as a continuous variable, x3
indicates the great circle distance in kilometers between the location of sample collection
as a continuous variable, and x4 denotes a 0 or 1 for whether the two tips belong to the
same clade (same clade coded as a 1, different clade coded as a 0). We fit a univariate
model for each variable independently, a model with an intercept alone, and a combined
model using the Rethinking package in R
(https://www.rdocumentation.org/packages/rethinking/versions/1.59). We perform model
comparison with the WAIC metric and select the combined model as the one with the best
fit. We compute mean coefficient estimates and 95% highest posterior density intervals

(HPDI) by sampling and summarizing 10,000 values from the posterior distribution.

Data and code availability
Consensus genomes have been deposited in GISAID with accession numbers available

in Supplemental Table 1. Raw lllumina reads are available in the Short Read Archive
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under bioproject PRINA718341. All raw Nanopore reads are available in the Short Read
Archive under bioproject PRINA614504. All code used to analyze the data and generate
the figures shown in this manuscript are available at https://github.com/Imoncla/ncov-WI-

within-host.

Results

Within-host variation is limited and sensitive to iSNV-calling parameters

Viral sequence data provide rich information about how variants emerge within, and
transmit beyond, individual hosts. Viral nucleotide variation generated during infection
provides the raw material upon which selection can act. However, viral sequence data
are sensitive to multiple sources of error %:136.189 which has obscured easy comparison
among existing studies of SARS-CoV-2 within-host evolution. Here, we take several steps
to minimize sources of error and to assess the robustness of our results against variable

within-host single nucleotide variant (iISNV)-calling parameters.

First, we identified spurious iSNVs introduced by our library preparation pipeline by
sequencing in duplicate a clonal, synthetic RNA transcript identical to our reference
genome (MN90847.3). We considered only variants found in both technical replicates,
which we refer to as “intersection iISNVs”. We detected 7 intersection iSNVs at 21%
frequency (Supplemental Table 1); 2 of these were previously identified by a similar
experiment in Valesano et al. 6. We excluded all 7 of these iISNVs from downstream
analyses. To exclude laboratory contamination, we sequenced a no-template control

(water) with each large sequencing batch and confirmed that these negative controls
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contained <10x coverage across the SARS-CoV-2 genome (Supplemental Figure 1,
Supplemental Figure 2). To ensure that spurious variants were not introduced by our
bioinformatic pipelines, we validated our iSNV calls using a second pipeline which
employs distinct trimming, mapping, and variant calling softwares. We found near-
equivalence between the two pipelines’ iISNV calls (R2=0.998; Supplemental Figure 3a),
providing additional independent support for our bioinformatic pipeline to accurately call

iISNVs.

Viral iSNV calls are also sensitive to the variant-calling threshold (i.e., a minimum
frequency at which iSNVs must occur to be considered non-artefactual) applied '® and
the number of viral input copies. Work by Grubaugh et al. ' showed highly accurate
iISNV calls with tiled amplicon sequencing using technical replicates and a 3% frequency
threshold. Consistent with this observation, we observed a near-linear correlation
between iSNVs called in each replicate at a 3% frequency threshold (R2=0.992) (Figure
1a). Unsurprisingly, we find the proportion of intersection iISNVs compared to all iSNVs
within a given sample increases as the frequency threshold increases (Supplemental
Figure 3b). Additionally, the majority of iSNVs detected in our clonal RNA controls occur

<3% frequency (Supplemental Figure 3c).

Consistent with previous studies, we observed a negative correlation between Ct and the
overlap in variants between replicates such that high-Ct (i.e., low VRNA copy number)
samples had fewer intersection iSNVs called in each replicate (Figure 1b) 189190,

Although we do not have access to absolute quantification for viral input copies for our
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sampleset, we can use results of semi-quantitative clinical assays on the sequenced
specimens as a proxy for viral RNA (VRNA) concentration. Using input data from two
different clinical assay platforms, we find no correlation between viral input copies and
the number of intersection iSNVs detected (Supplemental Figure 3d and Supplemental

Figure 3e).

Based on these observations, we chose to use a 3% iSNV frequency cutoff for all
downstream analyses, and report only iSNVs that were detected in both technical
replicates, at a frequency =3%. Using these criteria, we found limited SARS-CoV-2
genetic diversity in most infected individuals: 22 out of 133 samples did not harbor even
a single intersection iISNV at 23% frequency. Among the 111 samples that did harbor
within-host variation, the average number of iISNVs per sample was 3.5 (median=3,
range=1-11) (Figure 1c). Most iSNVs were detected at <10% frequency (Figure 1d).
Compared to expectations under a neutral model, every type of mutation we evaluated
(synonymous, nonsynonymous, intergenic region, and stop) was present in excess at low
frequencies, consistent with purifying selection or population expansion within the host
(Figure 1d). Taken together, our results confirm that the number of iISNVs detected
within-host are dependent on variant-calling criteria. Once rigorous laboratory and
bioinformatic controls are applied, we find that most infections are characterized by very

few iSNVs, and primarily low-frequency variants.

Recurrent iISNVs consist of Wuhan-1 reversions and common polymorphic sites
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Previous studies of SARS-CoV-2 evolution have noted the unusual observation that
iISNVs are sometimes shared across multiple samples. Understanding the source and
frequency of shared iSNVs is important for measuring the size of transmission bottlenecks
and for identifying potential sites of selection. In our dataset, most iSNVs were unique to
a single sample (Figure 2a). However, 41 iSNVs were detected in at least 2 samples.
These “shared iISNVs” were detected across multiple sequencing runs (Supplemental
Figure 5), and were absent in our negative controls, suggesting they are unlikely to be
artefacts of method error. Most of the shared iISNVs we detect fall into two categories:
iISNVs that occur within or adjacent to a homopolymer region (8/41 iSNVs, Figure 2b,
yellow and purple bars), or iSNVs that represent “Wuhan-1 reversions” (31/41 iSNVs,
Figure 2b, blue and purple bars). iSNVs in or near homopolymer regions were defined
as those that fall within or one nucleotide outside of a span of at least 3 identical
nucleotide bases. Shared iISNVs were more commonly detected in A/T homopolymer
regions than in G/C homopolymer regions. We classified iSNVs as “Wuhan-1 reversions”
when a sample’s consensus sequence had a near-fixed variant (50-97% frequency)
relative to the Wuhan-1 reference, with the original Wuhan-1 nucleotide present as an
iISNV. Overall, this suggests that shared variants in our dataset may be at least partially
explained by viral polymerase incorporation errors, potentially in A/T-rich regions, and at

sites that are frequently polymorphic.

The most commonly detected iSNVs in our dataset represent Wuhan-1 reversion at
nucleotide sites 241 (detected 18 times; within/adjacent to a homopolymer region) and

3037 (detected 21 times; not in a homopolymer region). Both of these sites are
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polymorphic deep in the SARS-CoV-2 phylogeny near the branch point for clade 20A
(Nextstrain clade nomenclature). Within-host polymorphisms at sites 241 and 3037 were
also detected in recent studies in the United Kingdom and Austria %%, T241C and
T3037C are both synonymous variants, and have emerged frequently on the global
SARS-CoV-2 phylogenetic tree, suggesting that these sites may be frequently

polymorphic within and between hosts across multiple geographic areas (Figure 2c).

Most within-host variation does not contribute to consensus diversity

The emergence of divergent SARS-CoV-2 lineages has raised concerns that new variants
may be selected during infection and efficiently transmitted onward. We next sought to
characterize whether iSNVs arising within hosts contribute to consensus diversity
sampled later in time. Using the Wisconsin-specific phylogenetic tree (Supplemental
Figure 6), we queried whether iISNVs detected within hosts are ever found at consensus
in tips sampled downstream. For each Wisconsin tip that lay on an internal node and for
which we had within-host data, we traversed the tree from that tip to each subtending tip.
We then enumerated each mutation that occurred along that path, and compared whether
any mutations that arose on downstream branches matched iSNVs detected within-host
(see Figure 3a for a schematic). Of the 110 Wisconsin tips harboring within-host variation,
93 occurred on internal nodes. Of those, we detect only a single instance in which an
iISNV detected within a host was later detected at consensus. C1912T (a synonymous
variant) was present in USA/WI-UW-214/2020 at ~4% frequency, and arose on the
branch leading to USA/WI-WSLH-200068/2020 (Figure 3b). USA/WI-UW-214/2020 is

part of a large polytomy, so this does not necessarily suggest that USA/WI-UW-214/2020
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and USA/WI-WSLH-200068/2020 fall along the same transmission chain. These results
indicate that despite relatively densely sampling consensus genomes from related viruses
from Wisconsin, we do not find evidence that iISNVs frequently rise to consensus along

phylogenetically linked infections.

If iISNVs arising during infection are adaptive and efficiently transmitted, then they should
be found frequently in consensus genomes, and may be enriched on internal nodes of
the phylogenetic tree. For each within-host variant detected in our dataset, we queried
the number of times it occurred on the global SARS-CoV-2 phylogeny on tips and internal
nodes. We then compared the ratio of detections on tips vs. internal nodes to the overall
ratio of mutations on tips vs. internal nodes on the phylogeny. 42% (77/185) of iSNVs are
present at least once at consensus level on the global phylogeny (Supplemental Figure
7). When present, iSNVs from our dataset that also occur in consensus genomes on the
global tree tend to be rare, and predominantly occur on terminal nodes (Figure 3c,
Supplemental Figure 7). Overall, iSNVs that are also found at consensus are present
on internal nodes and tips at a ratio similar to that of consensus mutations overall (ratio
of mutations on phylogeny nodes:tips = 4,637:17,200; ratio of iSNVs on nodes:tips =
128:411, p=0.16, Fisher’s exact test). Although this is the predominant pattern, we detect
one exception. C28887T is present in one sample in our dataset at a frequency of ~6%,
but is found on 10 internal nodes and 15 tips (p = 0.028, Fisher’s exact test) (Figure 3c).
C28887T encodes a threonine-to-isoleucine change at position 205 in the N protein, and
is a clade-defining mutation for the B.1.351 lineage. Although the functional impact of this

mutation is not completely understood, N T205] may increase stability of the N protein
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32,33. Despite the detection within-host and subsequent emergence of N205I globally,
this iISNV was only detected in our dataset in one sample at low frequency. In general,
across our dataset, the frequency with which iISNVs were detected within-host vs. on the
phylogenetic tree is not correlated (Figure 2c). This suggests that although putative
functional mutations may arise within a host, these events are rare. iISNV detection within
a host, at least in typical acute infections, may therefore have limited utility for predicting
future variant emergence. Together, these data suggest that with rare exception, most
within-host variants are purged over time, and typically do not contribute to consensus-
level diversity sampled later in time. As such, these findings suggest that most iSNVs are

not selectively beneficial and are not efficiently transmitted.

Variation is shared among some household samples, but is likely insufficient for
transmission resolution

Household studies provide the opportunity to investigate transmission dynamics in a
setting of known epidemiologic linkage. We analyzed 44 samples collected from 19
households from which multiple individuals were infected with SARS-CoV-2. To define
putative transmission pairs from our household dataset, we modeled the expected
number of mutations that should differ between consensus genomes given one serial
interval as previously described?®® (see Methods for details and rationale). We estimate
that members of a transmission pair should generally differ by 0 to 2 consensus mutations
(Figure 4a), and classify all such pairs within a household as putative transmission pairs.
While most samples derived from a single household had near-identical consensus

genomes, we observed a few instances in which consensus genomes differed
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substantially. In particular, USA/WI-UW-476/2020 differed from both other genomes from
the same household by 11 mutations, strongly suggesting that this individual was

independently infected.

To determine whether putative household transmission pairs shared more within-host
variation than randomly sampled pairs of individuals, we performed a permutation test.
We randomly sampled individuals with replacement and computed the proportion of
iISNVs shared among random pairs to generate a null distribution (Figure 4b, grey bars).
We then computed the proportion of variants shared among each putative household
transmission pair. Finally, we compared the distribution of shared variants among
household pairs and random pairs (Figure 4b). 90% of random pairs do not share any
iISNVs. Although household pairs share more iISNVs than random pairs on average, half
(14/28) of all household pairs share no iISNVs at all. Only 7 out of 28 of household pairs

share more iSNVs than expected by chance (p < 0.05).

While we hypothesized that putative transmission linkage would be the best predictor of
sharing iSNVs, other processes could also result in shared iSNVs. For example, if
transmission bottlenecks are wide and iSNVs are efficiently transmitted along
transmission chains, then iISNVs may be propagated during community transmission. If
so, then iSNVs should be shared among samples that are phylogenetically close together.
If transmission chains circulate within local geographic areas, then iSNVs may be

commonly shared by samples from the same geographic location. Finally, if iSNVs are
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strongly constrained by genetic backbone, then variants may be more likely to be shared

across samples from the same clade.

To measure the contribution of these factors, we computed the proportion of iISNVs
shared by each pair of samples in our dataset (including household and non-household
samples), and model the proportion of shared iISNVs as the combined effect of
phylogenetic divergence between the tips (i.e., the branch length in mutations between
tips), clade membership, geographic distance between sampling locations, and
household membership. Phylogenetic divergence and geographic distance between
sampling locations have minimal predicted impact on iISNV sharing (Figure 4c and
Supplemental Figure 9). The strongest predictor of sharing iSNVs is being sampled from
the same household, which increased the predicted proportion of shared iSNVs by 0.22
(0.16 - 0.27, 95% HPDI). Belonging to the same clade increases the predicted proportion
of shared iSNVs by 0.043 (0.033 - 0.053, 95% HPDI), likely because sharing a within-
host variant is contingent on sharing the same consensus base. Taken together, being
sampled from the same household is the strongest predictor of sharing iISNVs, and some
household pairs share more variation than expected by chance. However, these effects
are modest. Given the low overall diversity within hosts and presence of shared iSNVs,
the degree of sharing we observe is unlikely sufficient for inferring transmission linkage

independent of epidemiologic investigation.

Transmission bottlenecks are likely narrow, and sensitive to variant calling

threshold
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The number of viral particles that found infection is a crucial determinant of the pace at
which novel, beneficial variants can emerge. Narrow transmission bottlenecks can induce
a founder effect that purges low-frequency iSNVs, regardless of their fitness. Conversely,
wide transmission bottlenecks result in many viral particles founding infection, reducing
the chance that beneficial variants are lost. Understanding the size of the transmission
bottleneck is therefore important for evaluating the probability that novel SARS-CoV-2
variants arising during acute infection will be transmitted onward. To infer transmission
bottleneck sizes, we applied the beta-binomial inference method . We inferred
transmission directionality using the date of symptom onset or date of sample collection
(see methods for details). If this information was not informative, we calculated a
bottleneck size bi-directionally evaluating each individual as the possible donor. In total,

we performed 40 transmission bottleneck size estimates in 28 putative household pairs.

iISNV frequencies in donor and recipient pairs are plotted in Figure 5a. Most iSNVs
detected in the donor are either lost or fixed following transmission in the recipient.
However, there are a few low-frequency and near-fixed iSNVs which are shared in donor-
recipient pairs. The combined maximum likelihood estimate for mean transmission
bottleneck size at our defined 3% frequency threshold is 15 (95% CI: 11-21), although
results vary across pairs (Figure 5b). Prior transmission bottleneck estimates have
changed based on the variant-calling threshold employed %*27°, To determine whether
our estimates were sensitive to our choice of a 3% variant threshold, we evaluated
bottleneck sizes using variant thresholds ranging from 1% to 20%. We estimate the

highest mean transmission bottleneck size when we employ a 1% frequency threshold
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(38, 95% CI: 33-43), and lowest when we use a 27% frequency threshold (2, 95% CI: 1-
4) (Figure 5c; Supplemental Figure 10). The finding of larger bottleneck sizes at a 1%
threshold may be due to increased false-positive iSNVs at lower thresholds, in agreement
with our findings that a majority of iISNVs detected in the clonal RNA control occurred at
frequencies <3%. Importantly though, while variant threshold clearly impacts estimated
bottleneck size, our estimates are quite consistent. Even across a wide range of
thresholds, our transmission bottleneck size estimates range from 2-43, and never

exceed 50.

The beta-binomial inference method assumes that shared variation in donor-recipient
pairs is due to transmission. However, it is possible that shared low-frequency iISNVs are
recurring mutations (i.e. homoplasies) that should be excluded from the beta-binomial
analysis. One site in particular, a synonymous change at nucleotide 15,168 in ORF1ab,
was commonly found at low frequencies in donor-recipient pairs. To account for the
possibility that this variant is a homoplasy rather than shared via transmission, we
dropped this site from our dataset and re-calculated bottleneck sizes. While bottleneck
size estimates decrease in individual pairs where this variant is found (Supplemental
Figure 10c), the average bottleneck size across all transmission pairs remains low (mean

=9, 95% Cl: 6-14).

It is possible that some of the pairs evaluated were not direct transmission pairs. Instead
individuals may be part of the same transmission chain or share a common source of

infection. We reasoned if two individuals were infected from a common source, then they
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may have developed symptoms around the same time. In contrast, if one individual
infected the other, then their symptom onset dates should be staggered. To assess this,
we compared bottleneck sizes to the time between symptom onset in donor-recipient
pairs for which symptom onset dates were available (n=17) (Supplemental Figure 11).
We observed no clear trend between bottleneck size and symptom onset intervals.
Finally, all bottleneck estimates are inherently limited by access to a single time point from
each donor and recipient. Because it is impossible to know the exact date of infection and
transmission, the donor iISNV frequencies may not reflect the true diversity present at the
time of transmission. Taken together, we find that even among household pairs, the
number of transmitted viruses is likely small. Although bottleneck size estimates vary by
variant calling threshold, we find consistent support for fewer than 50 viruses founding
infection and suspect that the majority of transmission events are founded by very few
viruses (<10). Our data suggest that iSNVs generated within-host are generally lost during
the transmission event, and are not efficiently propagated among epidemiologically linked

individuals.

Discussion

The emergence of divergent SARS-CoV-2 lineages has called into question the role of
within-host selection in propagating novel variants. Our results suggest that very limited
variation is generated and transmitted during acute SARS-CoV-2 infection. Most
infections in our dataset are characterized by fewer than 5 total intersection iSNVs, the
majority of which are low-frequency. Most iISNVs are not detected in global consensus

genomes, and are rarely detected in downstream branches on the phylogenetic tree. We
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show that even among putative household transmission pairs, iSNVs are shared
infrequently, and we estimate that a small number of viruses found infection after most
transmission events. The combination of low overall within-host diversity, tight
transmission bottlenecks, and infrequent propagation along transmission chains may
slow the rate of novel variant emergence among acutely infected individuals. Importantly,
our results imply that the accumulation of multiple iSNVs is unlikely during typical, acute
infection. Together, our findings are consistent with a regime in which typical acute
infections play a limited role in the generation and spread of new SARS-CoV-2 variants,
and argue for the need to better understand the role of prolonged infections as a source
of consequential new variants. Targeted interventions to prevent the number of long-term
infections and to prevent transmission from persistently infected individuals may be

particularly fruitful for slowing the rate of emergence of novel variants of concern.

Relatively few studies have reported on SARS-CoV-2 within-host diversity, and their
results have varied. SARS-CoV-2 within-host sequence data appear to be particularly
vulnerable to method error, including sensitivity to cycle threshold *%%, putative false
positive iISNV calls in control runs *, an uncertain degree of recurrent mutations shared
across unrelated samples 54228278290  gnd variation between technical replicates.
Complicating matters, each lab employs its own sample preparation and variant calling
pipelines, making comparison across datasets challenging, and concern has been raised
regarding recurrent errors that are platform- and lab-specific *'. iISNVs that recur in nature

pose a challenge because they result in the same data pattern that would be expected
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from recurrent pipeline errors. We have attempted to employ multiple, overlapping
controls to mitigate errors that could arise from sample preparation, bioinformatic
processing, and improper variant thresholds. In particular, our results emphasize the
importance of duplicate sequencing for any studies relying on low-frequency iSNVs to
infer biological processes. Like Valesano et al. *® we observe that SARS-CoV-2 variant
calls are sensitive to Ct and variant-calling criteria. We echo their expressed caution in

interpreting SARS-CoV-2 within-host data in the absence of pipeline-specific controls.

Similar to work reported by others 62?829 we find that most samples harbor very few
iISNVs, and that most variants are low-frequency. Although we employ distinct methods,
we corroborate findings by Lythgoe & Hall et al.??® that iSNVs do not cluster
geographically or phylogenetically, suggesting that they are not transmitted efficiently
within communities. One difference is that we detect a higher number of shared/recurrent
iISNVs in our dataset than reported by Lythgoe & Hall et al. ?*, Valesano et al. *, and
Shen et al. ?*°, but fewer than Popa & Genger et al. ** and James et al. 2. While some
degree of shared iSNVs is reported across most SARS-CoV-2 datasets °6:228:2782% the
exact frequency of shared sites is highly variable. The higher number of shared iSNVs in
our results may be partially accounted for by our method of variant reporting. While most
studies mapped reads to the Wuhan-1 reference and report variants present at <50%
frequency °%022829% e converted consensus-level variants to their low-frequency
counterparts, and counted the minor allele for near-fixed variants. The higher level of
shared iSNVs we observe could also be explained by sampling many closely related,

cohabiting individuals. Though relatively few, some household transmission pairs do
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share iSNVs, likely accounting for some of the shared variation we observe. Future work
will be necessary to determine the precise degree to which iSNVs recur across unrelated
individuals and the extent to which factors like viral copy number, time of infection, host
factors including pre-existing immunity, and sequencing pipeline influence these

estimates.

Four other groups have previously estimated the size of the SARS-CoV-2 transmission
bottleneck, although the total number of transmission events evaluated to date across
studies remains small (~66). Lythgoe & Hall et al. (n=14 pairs) ?*2, James & Ngcapu et al.
(n=11 pairs) 2, and Wang et al. (n=2 pairs) **’ report narrow bottlenecks, in which
infection is founded by fewer than 10 viruses. Popa & Genger et al. (n=39 pairs) > report
bottleneck sizes ranging from 10 to 5000, and an average size of 1000. Reanalysis of the
Popa & Genger data using a more conservative variant dataset resulted in an average
bottleneck size of 1-3 #°. Similarly, we find a combined average bottleneck size of 15
using a 3% frequency threshold, and 2 using a 7% frequency threshold. Thus, current
evidence is converging to support narrow transmission bottlenecks for SARS-CoV-2,
similar to influenza virus 2233135 _gGtijll, these estimates rely on a small number of putative
transmission events, including the pairs analyzed here. Genuine differences in the SARS-
CoV-2 transmission bottleneck size, depending on route of transmission ** and host

factors may exist.

When transmission bottlenecks are narrow, even beneficial variants present at low

frequencies in the transmitting host are likely to be lost. However, the recent emergence
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of multiple divergent lineages, some of which increase infectiousness, underscore that
transmission of such variants clearly can occur **. This raises the question: how did these
variants make their way out of individual hosts? Narrow transmission bottlenecks
generally purge within-host diversity through a founder effect. Although rare, a low-
frequency variant that successfully passes through a transmission bottleneck could
quickly become the dominant variant in the next host. Such events would become
increasingly common as the total number of infected individuals and transmission events

occurring in the population climbs, making it possible to observe these rare events.

The model outlined above aligns with the hypothesis that prolonged SARS-CoV-2
infection leads to accumulation of intrahost mutations %°>%°, Prolonged infections may
permit additional cycles of viral replication, allowing for more variants to be generated and
more time for selection to increase the frequency of beneficial variants. Even a modest
increase in frequency within a donor enhances the likelihood of a beneficial variant
becoming fixed following transmission in the setting of a narrow transmission bottleneck.
Alternatively, it is possible for selection to act during transmission such that some viruses
harboring a particular mutation or group of mutations are preferentially transmitted 2. In
a previous study evaluating SARS-CoV-2 genetic diversity within and between domestic
cats, we documented modest evidence supporting preferential transmission of a
particular nonsynonymous variant in Spike *’. However, we saw no evidence for selective
bottlenecks in this study. Additional studies evaluating the SARS-CoV-2 transmission
bottleneck are needed, in particular in the setting of long-term infections and

immunocompromised hosts.
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Our findings that within-host variation is limited and infrequently transmitted are important.
Our data, combined with findings from others, suggest that rapid accumulation of novel
mutations within-host is not the norm during acute infection. Like influenza viruses, a
significant portion of variation generated within one infected host is likely lost during
transmission. The combination of within-host limited diversity and tight transmission
bottlenecks should slow the pace at which novel, beneficial variants could emerge during
transmission among acutely infected individuals. Future studies that compare within-host
diversity in individuals with and without SARS-CoV-2 antibodies will be necessary to
evaluate whether immunity imposes signatures of within-host selection. Finally, given the
increasing appreciation for the potential role of long infections to promote variant
emergence, within-host data may provide its maximum benefit for dissecting the process

of variant evolution during prolonged infections.
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Figure 1: Within host variation is limited after data quality control

a. iSNV frequencies in replicate 1 are shown on the x-axis and frequencies in replicate 2
are shown on y-axis. The yellow box highlights low-frequency iSNVs (3-15%), which is
expanded out to the right. b. The Ct value is compared to the percent of iSNVs shared
between technical replicates. The blue line is a line of best fit to highlight the observed
negative trend. c. Distribution of the number of total iISNVs detected per sample. Many
samples harbor no iSNVs at all, and the maximum number of iSNVs in a single sample
was 11. d. The proportion of iSNVs that were detected at various within-host frequency
bins is shown. Error bars represent the variance in the proportion of total within-host
iISNVs within that frequency bin across samples in the dataset as calculated by

bootstrapping. There was a single stop variant in the entire dataset, so no error bar is
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shown for the stop category. The solid grey line indicates the expected proportion of

variants in each frequency bin under a neutral model.
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Figure 2: Shared iSNVs represent homopolymers and common polymorphic sites

a. The number of iISNVs (y-axis) present within n individuals (x-axis) is shown. The vast

majority of iSNVs are found in only a single sample. 6 iSNVs are shared by at least 10

samples. b. Each iSNV detected in at least 2 samples is shown. Variants that occur within,

or 1 nucleotide outside of, a homopolymer region (classified as a span of the same base
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that is at least 3 nucleotides long) are colored in yellow. Variants that represent the minor
allele for variants that were nearly fixed at consensus (annotated here as “Wuhan1
reversions”) are shown in blue, and variants that were both Wuhan1 reversions and
occurred in homopolymer regions are colored in purple. ¢. For each unique iSNV detected
within a host, the x-axis represents the number of samples in which that iSNV was
detected, and the y-axis represents the number of times it is present on the global SARS-
CoV-2 phylogenetic tree. The counts on the phylogenetic tree represent the number of
times the mutation arose along internal and external branches. The variants labeled with
text are those that are detected at least 5 times within-host and at least 5 times on the
phylogeny. Two of the most commonly detected iSNVs, T3037C and T241C (shown as

the furthest to the left in panel b), are also frequently detected on the phylogenetic tree.
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Figure 3: Variants are not common in consensus sequences or in downstream
branches

a. We traversed the Wisconsin-focused full-genome SARS-CoV-2 phylogeny from root to
tip. For each Wisconsin tip for which we had within-host data, we queried whether any of
the iISNVs detected in that sample were ever detected in downstream branches at
consensus. In this example, the purple tip represents a Wisconsin sample for which we
have within-host data. This sample harbors 2 iISNVs, A and B. iSNV A arises on a tip that

falls downstream from the starting, purple tip. iSNV B is present on a downstream branch
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leading to an internal node. Both A and B would be counted as instances in which an
iISNV was detected at consensus in a downstream branch. b. In the Wisconsin-specific
phylogenetic tree, we applied the metric described in a. Among 110 Wisconsin samples
that harbored within-host variation, 93 occurred on internal nodes. Of those, we detect
one instance in which a mutation detected as an iISNV in one sequence was detected in
a downstream consensus sequence. (C1912T, an iSNV in USA/WI-UW-214/2020, was
detected downstream in USA/WI-WSLH-200068/2020.) c. For each iSNV identified in the
study (in at least 1 sample), we enumerated the number of times that variant occurred on
the global SARS-CoV-2 phylogeny on an internal node (yellow) or on a tip (blue). The
results for every variant are shown in Supplemental Figure 6. Here, we show only the
variants that were detected at least 10 times on the global phylogeny. Each such iSNV is
found at internal nodes and tips at a ratio comparable to overall mutations on the tree,
except for C28887T, which is enriched on internal nodes (p=0.028, Fishers’ exact test).

* indicates p-value < 0.05.
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Figure 4: Household pairs share a modest degree of within-host variation

a. We modeled the probability that 2 consensus genomes will share x mutations as

Poisson-distributed with lambda equal to the number of mutations expected to

accumulate in the SARS-CoV-2 genome over 5.8 days 2% given a substitution rate of 1.10

x 1073 substitutions per site per year '53. Exploration of how these probabilities change

using a range of plausible serial intervals and substitution rates is shown in

Supplemental Figure 8. The vast majority of genomes that are separated by one serial
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interval are expected to differ by <2 consensus mutations. b. The proportion of random
pairs (grey) and putative household transmission pairs (purple) is shown on the y-axis vs.
the proportion of iISNVs shared. The dotted line indicates the 95th percentile among the
random pairs. Household pairs that share a greater proportion of iSNVs than 95% of
random pairs (i.e., are plotted to the right of the dotted line) are considered statistically
significant at p=0.05. iISNVs had to be present at a frequency of 23% to be considered in
this analysis. c¢. We assessed the impact of household membership, clade membership,
phylogenetic divergence, and geographic distance on the proportion of iSNVs shared
between each pair of samples in our dataset. The mean of each estimated coefficient in
the combined linear regression model including all predictors is shown on the x-axis, with
lines of spread indicating the range of the estimated 95% highest posterior density interval

(HPDI).
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Figure 5: SARS-CoV-2 transmission bottlenecks in household transmission pairs
a. “TV plots” showing intersection iSNV frequencies in all 44 donor-recipient pairs using

a 3% frequency threshold. The yellow box highlights low-frequency iSNVs (3-10%) and
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the mauve box highlights high-frequency iSNVs (90-100%). b. Maximum likelihood
estimates for mean transmission bottleneck size in individual donor-recipient pairs.
Bottleneck sizes could not be estimated for a few pairs (e.g. pairs 5, 10a, 11a, etc)
because there were no polymorphic sites detected in the donor. c. Bidirectional
comparisons are denoted with an “a” and “b” following the pair number. Combined
maximum likelihood estimates across all 44 donor-recipient pairs plotted against variant
calling thresholds ranging from 1-20%. The purple line shows combined estimates at each
variant calling threshold shown and the mauve band displays the 95% confidence interval
for this estimate. The dashed grey line indicates a bottleneck size equal to 1. The vertical

yellow band highlights the combined transmission bottleneck size using a 3% variant

calling threshold.
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Supplemental Figure 1: Read depth
Read depth by genome location in 1,000-bp bins for MiSeq runs a. 627, b. 628, c. 643,
and d. 644. Water controls and low-coverage samples are labeled. Samples included in

each run are labeled according to the color to the right of each plot.



153

run 627 +

N NN
o aoaaaa

303_re)
316_re;

ol
02
ol
02
ol

188 _re;
188 _re;
195_re;
195_re;
196_re;

~=- 8_re

_repl

2
au B
2 a ©
£e o
22 %

[+
445

. 2

o

1<
o
o o
m_w._
oo~
o
a3

0000€E-0006Z
- 0006Z-0008Z
r 0008Z-00042
000£2-0009¢
r 00092-0005Z
00052-000¥Z
000+Z-000€2
r 000€Z-0002Z
r 0002Z-000TZ
000T1Z-0000Z
0000Z-0006T
r 0006T-0008T
- 00C8T-000LT
r 000LT-0009T
r 00091-000ST
000ST-000¢T
00CYT-000ET
~ 00CET-000CT
r 000ZT-000TT
00CTT-0000T
0000T-0006
r 0006-0008

- 0008-000Z
000£-0009

r 0009-0005
0005000t
00C-000€

r 00CE-000C

- 0002-000T
0oeT-0

<

10% 4
102 4

(60) yadap peal

10t 4
10°

genome location

pl

—== 6_re|

=== 6_re

pl

=== 118_re|

run 628

118 _re

p2

“ee 74_re

}_rep2
=== 18 _repl

pl

- 74re

-—- 18 re

p2

=== 81_re

p2
p2
pl

- 20_re

pl
p2

——— 81:re
~-- 8_re

_rep2
no negative control

p2

~~~ 28 rep2
p2
pl

=== 25 re|
~— 25_re|
=== 50_re|
=== 54 re|
=== 54 _rep2
-== 5_rep2
=== 61_rep2
=== 64_repl
~==~ 64 rep2

[ 0000E-0006Z
00062-0008Z
r 0008Z-000LZ
F 000LZ-00092
r 00092-0005Z
r 00052-000vZ
000VZ-000€£T
000€Z-0002Z
0002Z-00012
F 000TZ-0000Z
r 0000Z-00061
r 00061-00081
0008T-0004T
r 000LT-0009T
00091-000ST
F 000ST-000 T
r 000PT-000€ T
r 00CET-000Z1
r 00ZT-000TT
r 000TT-0000T
0000T-0006
r 0006-0008

- 0008-000L

r 000£-0009

r 0009-000S

r 0005-000%
000¥-000€

- 000€-000Z

r 000Z-000T
r000T-0

o

10* 4

@ o
=) S
- -

(60)) yrdap peas

10t

2
=)
-

genome location

_repl

=== 377_re|
=== 377_re|

~—- 276_rep2
~ 277_repl

~==- 218_repl
== 218_rey

p2
pl

—-- 391 re

- 277re

—-- 391 re

D2

——- 289 repl

p2
pl

——- 245 rey

=== 245 re

p2

397 re

~-- 289 re

2

——- 252 re

pl
p2
pl
p2
pl
p2
pl

=== 397_re|

402_rey
—=- 408_rey

~~~ 402_re)

—~== 408 _re|
—-- 418 re

=== 418 re

02
=== 292 repl
D2
ol
D2

02
ol
~~~ 366_repl

=== 290_re|

——= 292 re

~~- 365_re

290_rey
~== 365_re

pl
02
pl
p2
pl
02
pl

== 252_re]
~ 255_rey

— - 255 rey
258 _re
~—~ 258 rej

~=- 261_rey

== 261 _re|

p2
pl
p2

- 468 re

—-- 366 re

468 re,

370_re

~== 370_re

=== 376_re|

~==~ negative_repl
~== negative_rep2

02
ol
2
pl
02

~—- 376_re|

p2
pl
02
pl
02
pl

——- 268_rey

268_rey
== 270_re|

=== 270_re|

=

o
(=}
=1

103 4

(601) yidap peas

10 4

— - 276_rey

0000€-00062
00062-00082
00082-000LC
000£2-00092
0009Z-0005Z
0005Z-000%Z
000%Z-000€Z
000€2-00022
0002Z-000TZ
00012-00002
0000Z-0006T
0006T-0008T
00081-000£T
000£1-0009T
00091-000ST
000ST-000%T
000¥T-000€T
000ET-000ZT
000ZT-000TT
0001T-0000T
0000T-0006
0006-0008
0008-000L
000£-0009
0009-000S
0005-000v
000¥-000€
000€£-0002
0002Z-000T
00010

genome location

=== 56_rep2
- 57 _re

pl

26P_re|

=== 124_repl

run 644

pl
p2

—e- 57 re
- 60_re

_repl

~== 30_re
== 30_re|

p2

p1
——- 125_rep2
=== 12_repl

=== 12_re|

=== 125 re|

pl

_rep2

2121212
coocaocaoao
ﬂR_m_m_ah_m_m_m_
QUL NN ST
WO
TR
[N [
LI B R | L)
-

- N aa oo
535883
U]

Y Yo o St
= mm < -
m;m mom <
t e el
LI I B | [
LI B B} LI
NN e
N aocaac
pm_m_m_m_m_
U e N
m m ) on n
LEEEE
ST
LI ) [}

LI ) LI )

~—~ A_repl
~== A_rep2

_rep2
pl

=== 51_re|
=== 53_re

_rep2
=== 175_repl

~== 158 _re|
=== 175_re|

~—- B_rej

~== 53 re|

AN
Pt

_repl
=== B_rep2

p2

——- 55 re

_rep2
~== 17_repl
~== 17_rep2
~-- 182_re

=N,

’

p1

—
-

- 55_re|

10%
10?

(6oj) yidap peal

10*

10°

negative_repl

~== negative

e_rep2

p2
pl

=== 56_re|

pl
p2

~== 182 _re|

0000€-0006Z
00062-0008Z
0008Z-000£LZ
000£2-00092
00092-0005Z
00052-000vZ
000¥Z-000€2
000€Z-00022
0002Z-00012
00012-0000Z
00002-0006T
00061-00081
0008T-000LT
000L1-00091
0009T-000ST
000ST-00001
000¥T-000ET
000ET-000ZT
000ZT-0001T
000TT-0000T
0000T-0006
0006-0008
0008-000L
000£-0009
0009-0005
0005-000%
000¥-000€
000€-000Z
000Z-000T
000T-0

genome location



Supplemental Figure 2: Read depth
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Read depth by genome location in 1,000-bp bins for MiSeq runs a. 645, b. 667, and c.

671. Water controls and low-coverage samples are labeled within each plot. Samples

included in each run are labeled according to the color to the right of each plot.
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Supplemental Figure 3: Additional iSNV quality control information

a. Variant frequencies generated using the Wisconsin bioinformatic pipelines are shown
on the x-axis and frequencies generated using the Washington bioinformatic pipeline are
shown on the y-axis. The yellow box highlights low-frequency variants (3-15%), which is
expanded out to the right. b. Proportion of intersection iSNVs relative to the total number
of iISNVs increases as variant frequency threshold increases. ¢. The total number of
iISNVs detected across both Twist RNA control replicates compared to the iSNV
frequency threshold. The majority of iISNVs detected in these clonal samples occur <3%
frequency. Note that the iISNVs reported in Supplemental Table 1 are intersection iISNVs
only. The identities of all iISNVs detected =21% frequency in the Twist RNA control can be
found in the GitHub accompanying this manuscript. d. The number of intersection variants
is compared to the Ct value for all samples where a Ct value was available. Out of 133
total samples, Ct values were available for 94. e. The number of intersection variants is
compared to the RLU (relative light unit) value for all samples where a RLU value was

available.
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Supplemental Figure 4: iSNVs in technical replicates across all samples. a. Variant
frequencies in replicate 1 are shown on the x-axis and frequencies in replicate 2 are
shown on y-axis. This plot includes all variants found in both replicates and not just the
intersection variants as shown Figure 1a. b. Example of one sample with very poor
overlap between technical replicates; this sample (sample 1104) was excluded from the

experimental dataset.
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Supplemental Figure 5: iISNVs do not cluster by sequencing run. iSNVs detected in
at least 2 samples are shown on the x-axis and are plotted against the number of times
they are detected in our dataset. Each iSNV bar is colored according to the number of

times it was detected within each sequencing batch.
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Supplemental Figure 6: Wisconsin divergence phylogeny

A full-genome phylogenetic tree built showing X Wisconsin consensus sequences with
the Nextstrain pipeline is shown. The x-axis represents divergence expressed as the
number of nucleotide mutations. Nextstrain clade labels are shown on the corresponding
branch. Yellow tips represent Wisconsin samples that were lllumina sequenced in
duplicate and analyzed in this manuscript. Purple tips represent samples from

households.
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Supplemental Figure 7: Most iISNVs are not detected on the phylogeny

We queried every iSNV that was detected within-host (in at least 1 sample) in the global
SARS-CoV-2 phylogenetic tree and quantified the number of times that iSNV was
detected on an internal node (yellow bar heights) or on a terminal node/tip (blue bar
heights). Only approximately 1/3 of all SNVs detected within-host were found on the tree,
and none of the indels detected within-host were detected on the phylogeny. Most SNVs

that were detected on the tree were rare, and occurred predominantly on terminal nodes.
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Supplemental Figure 8: Modeling the expected number of mutations distinguishing
genomes separated by one serial interval

To define whether infections sampled from the same household might be true
transmission pairs, we explored the expected number of consensus mutations that should
differ between genomes separated by one serial interval. We modeled the probability that
2 consensus genomes will share x mutations as Poisson distributed with lambda equal to
the number of mutations expected to accumulate in the SARS-CoV-2 genome over a
single serial interval, given a known substitution rate. He et al. estimate a serial interval
for SARS-CoV-2 of 5.8 days, with a 95% confidence interval between 4.8-6.8 days 2.
We therefore evaluated serial intervals of 4, 5, 6, 7, and 8 days. For the substitution rate,
we use estimates from Duchene et al 53, who estimate a mean substitution rate of 1.10
x 10- substitutions per site per year, with a 95% credible interval of 7.03 x 10 and 1.15
x 103. We evaluated the probabilities that two consensus genomes differ by 0, 1, 2, 3,
and 4 mutations given serial intervals ranging from 4-8, and clock rates at the mean, and

upper and lower bounds of the 95% credible interval. For each calculated probability, the



161

serial interval is represented by color and the substitution rate is shown above each plot.

The dotted line represents a probability of 0.05. Given these combinations of values, the

vast majority of consensus genomes are expected to differ by 0-2 mutations.
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Supplemental Figure 9: Posterior density estimates for regression coefficients
For each regression coefficient evaluated in the combined regression model, the full

posterior distribution is shown as a density plot. The posterior distribution of the estimated

variance and intercept are also shown.
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transmission pairs

Supplemental Figure 10: Sensitivity testing of transmission bottleneck estimates

Maximum likelihood estimates for mean transmission bottleneck size in individual donor-

recipient pairs using a. 1% frequency threshold, b. 3% frequency threshold, c. excluding

site 15,168 as a possible homoplasy with a 3% frequency threshold, and d. 7% frequency
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threshold. Data are not shown for donor-recipient pairs where no bottleneck estimate
could be generated due to lack of variant data. Bidirectional comparisons are indicated

with an “a” and “b” following the pair number.
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Supplemental Figure 11: Variance in transmission bottleneck size cannot be
explained by time between symptom onset in donor:recipient pairs. We plotted
transmission bottleneck size on the y-axis against time (days) between symptom onset in

17 donor-recipient pairs on the x-axis for which we had symptom metadata.



Gene

orflab

orflab

orflab

orflab

Reference
amino acid

Ser

Trp

Gly

Thr

Met

Trp

Amino acid
position

1029

2135

2863

2967

920

90

92

Mutation
Variant Reference Nucleotide
amino acid nucleotide position
Cys A 3350
*Stop G 6669
Val G 8853
Ser A 9164
*Stop T 26791
Val A 26793
Arg T 26796

Variant rep1
nucleotide percent

T

A

0.0406

0.0304

0.0103

0.0125

0.1329

0.1313

0.131

rep2
percent

0.0441

0.0347

0.011

0.0109

0.1368

0.1354

0.1352

Average
percent

0.04235

0.03255

0.01065

0.0117

0.13485

0.13335

0.1331

Supplemental Table 1. iSNVs detected in replicate sequencing of the synthetic

control (Twist-Biosciences).

Strain

USA/WI-UW-06/2020

USA/WI-UW-07/2020

USA/WI-UW-11/2020

USA/WI-UW-29/2020

USA/WI-UW-30/2020

USA/WI-UW-14/2020

USA/WI-UW-32/2020

USA/WI-UW-34/2020

USA/WI-UW-17/2020

USA/WI-UW-38/2020

USA/WI-UW-40/2020

USA/WI-UW-39/2020

USA/WI-UW-41/2020

USA/WI-UW-21/2020

USA/WI-UW-45/2020

USA/WI-UW-22/2020

USA/WI-UW-48/2020

USA/WI-UW-24/2020

USA/WI-UW-50/2020

USA/WI-UW-51/2020

Tube

20

24P

25

26P

28

29P

30

31

State

Wisconsin

Wisconsin

Wisconsin

Wisconsin

County

Dane County

Dane County

Dane County

Dane County

‘Wisconsin Columbia County

Wisconsin

Wisconsin

Wisconsin

Wisconsin

Wisconsin

Wisconsin

Wisconsin

Wisconsin

Wisconsin

Wisconsin

Wisconsin

Wisconsin

Wisconsin

Wisconsin

Wisconsin

Dane County

Dane County

Dane County

Dane County

Dane County

Dane County

Dane County

Dane County

Dane County

Dane County

Dane County

Dane County

Dane County

Green County

Dane County

Collection Date

2020-3-21

2020-3-21

2020-3-15

2020-3-24

2020-3-26

2020-3-16

2020-3-24

2020-3-26

2020-3-13

2020-3-25

2020-3-24

2020-3-22

2020-3-25

2020-3-16

2020-3-22

2020-3-13

2020-3-25

2020-3-15

2020-3-25

2020-3-20

GISAID Accession

EPI_ISL_417200

EPI_ISL_417201

EPI_ISL_417505

EPI_ISL_421287

EPI_ISL_421288

EPI_ISL_417513

EPI_ISL_421290

EPI_ISL_421292

EPLISL 417517

EPI_ISL_421296

EPI_ISL_421298

EPI_ISL_421297

EPI_ISL_421299

EPI_ISL_417508

EPI_ISL_421303

EPI_ISL_417514

EPI_ISL_421306

EPLISL 417512

EPI_ISL_421308

EPI_ISL_421309

Nanopore data lllumina data
Accession i G
MT772088 PRJNAG614504 PRJNA718341
MT772089 PRJINA614504 PRJNA718341
MT706133 PRJNA614504 PRJNA718341
MT706150 PRJNAG14504 PRJNA718341
MT706151 PRJNAG14504 PRJNA718341
MT706136 PRJNAG14504 PRJNA718341
MT706153 PRJNAG14504 PRJNA718341
MT706155 PRJNAG14504 PRJNA718341
MT706139 PRJNA614504 PRJNA718341
MT706159 PRJNAG614504 PRJNA718341
MT706161 PRJINAG14504 PRJNA718341
MT706160 PRJNAG14504 PRJNA718341
MT706162 PRJNAG14504 PRJNA718341
MT706142 PRJNAG614504 PRJNA718341
MT706166 PRJNAG14504 PRJNA718341
MT706143 PRJNAG14504 PRJINA718341
MT706169 PRJNAG14504 PRJNA718341
MT706145 PRJNAG14504 PRJNA718341
MT706171 PRJNAG614504 PRJNA718341
MT706172 PRJNAG14504 PRJNA718341

NiCt N2 Ct
value value
26.53 27.29
16.28 16.49
16.14 16.05
2476 2541
2427 24.83
27.81 29.4
27.98 29.23
23.52 24.46
18.2 20.06
2432 25.31
20.22 20.7
23.02 23.79
19.13 19.78
17.11 173

164

RNA
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USAWI-UW-52/2020 32 Wisconsin | Dane Gounty 2020-3-18 EPI_ISL_421310 MT706173 PRINAG14504 PRINAT18341 1598 | 1657 | -
USAMWI-UW-61/2020 “ Wisconsin | Dane County 20203-23 EPLISL 421319 MT706182 PRUNAB14504 PRINA718341 2828 | 2411 5
USAWI-UW-63/2020 % Wisconsin | Dane Gounty 2020-3-24 EPLISL_421321 MT706184 PRUNAB14504 PRINAT18341 54 | 2521 -
USAWI-UW-65/2020 50 Wisconsin | Dane County 2020-3-22 EPI_ISL. 421323 MT706186 PRINAG14504 PRINAT18341 1554 | 1533 | -
USAWI-UW-66/2020 51 Wisconsin | Dane County 2020-3-24 EPI_ISL._421324 MT706187 PRINAG14504 PRINAT18341 %52 | 2761 -
USAWI-UW-67/2020 Wisconsin | Dane Gounty 2020-3-25 EPI_ISL._421325 MT706188 PRINAG14504 PRINAT18341 %62 | 2101 =
USAWI-UW-68/2020 Wisconsin | Dane County 2020-3-24 EPI_ISL._421326 MT706189 PRINAG14504 PRINAT18341 1596 | 1613 | -
USAWI-UW-69/2020 Wisconsin | Dane Gounty 2020-3-19 EPILISL 421327 MT706190 PRINAG14504 PRINA718341 158 | 1607 | -
USAWI-UW-70/2020 Wisconsin | Dane Gounty 2020-3-19 EPI_ISL 421328 MT706191 PRUNAB14504 PRINAT18341 2012 | 2077 | -
USAWI-UW-71/2020 57 Wisconsin | Dane County 2020-3-24 EPI_ISL._421329 MT706192 PRINAG14504 PRINAT18341 1898 | 1864 | -
USAWI-UW-73/2020 60 Wisconsin | Dane County 2020-3-24 EPISL_421331 MT706194 PRINAG14504 PRINAT18341 2060 | 2093 | -
USAWI-UW-74/2020 61 Wisconsin | Dane Gounty 2020-3-20 EPI_ISL._421332 MT706195 PRINAG14504 PRINAT18341 14t | 1436 | -
USAWI-UW-76/2020 64 Wisconsin | Dane Gounty 2020-3-22 EPI_ISL._421334 MT706197 PRINAG14504 PRINAT18341 1749 | 178 | -
USAWI-UW-77/2020 65 Wisconsin | Dane Gounty 2020-3-19 EPI_ISL 421335 MT706198 PRINAG14504 PRINA718341 2019 | 2085 | -
USAWI-UW-84/2020 74 Wisconsin | Dane Gounty 2020-3-24 EPILISL 421343 MT706205 PRINAG14504 PRINAT18341 212 | 282 | -
USAWI-UW-85/2020 70 Wisconsin | Dane County 202042 EPI_ISL._425142 MT706206 PRINAG14504 PRINAT18341 244 5 .
USAMWI-UW-86/2020 80 Wisconsin | Dane County 20204-2 EPL_ISL 425143 MT706207 PRUNAB14504 PRINAT18341 221 - -
USAWI-UW-87/2020 81 Wisconsin | Dane County 20204-2 EPILISL._425144 MT706208 PRINAG14504 PRINAT18341 221 s 5
USAWI-UW-88/2020 82 Wisconsin | Dane County 20204-5 EPI_ISL._425145 MT706209 PRINAG14504 PRINAT18341 %20 | 2593 | -
USAMWI-UW-96/2020 Wisconsin | Dane County 20204-1 EPI_ISL._425153 MT706216 PRINAG14504 PRINA718341 173 | 1805 | -
USAWI-UW-97/2020 Wisconsin | Dane Gounty 2020-3-30 EPI_ISL._425154 MT706217 PRINAG14504 PRINAT18341 273 - -
USAWI-UW-99/2020 % Wisconsin | Dane Gounty 20204-2 EPL_ISL_425156 MT706219 PRUNAB14504 PRINA718341 188 o 5
USAWI-UW-110/2020 17 Wisconsin | Dane County 2020331 EPLISL_425167 MT706230 PRINAG14504 PRINAT18341 222 - -
USAWI-UW-111/2020 118 Wisconsin | Dane County 2020331 EPLISL_425168 MT706231 PRINAG14504 PRINAT18341 2561 | 2629 | -
USAWI-UW-116/2020 124 Wisconsin | Dane County 2020330 EPLISL_425173 MT706236 PRINAG14504 PRINAT18341 a1s1 | st -
USAWI-UW-117/2020 125 Wisconsin | Dane County 2020-3-30 EPI_ISL_425174 MT706237 PRINAG14504 PRINA718341 282 5 5
USAWI-UW-119/2020 128 Wisconsin | Dane County 2020-4-10 EPLISL_425176 MT706239 PRINAG14504 PRINAT18341 4z | 1482 | -
USAWI-UW-120/2020 130 Wisconsin | Dane County 2020-4-13 EPLISL 427427 MT706240 PRINAG14504 PRINAT18341 183 . =
USAWI-UW-255/2020 1290 Wisconsin | Dane County 20204-2 EPI_ISL_428729 MT706248 PRINAG14504 PRINA718341 - - -
USAMWI-UW-124/2020 145 Wisconsin | Dane County 202047 EPLISL 427431 MT706252 PRINAG14504 PRINAT18341 175 . =
USAWI-UW-127/2020 148 Wisconsin | Dane County 202047 EPLISL 427434 MT706255 PRINAG14504 PRINAT18341 191 - -
USAWI-UW-129/2020 151 Wisconsin | Dane County 20204-6 EPLISL_427436 MT706257 PRINAG14504 PRINAT18341 307 . .
USAMWI-UW-132/2020 158 Wisconsin | Rock County 2020-4-10 EPLISL_427439 MT706260 PRINAG14504 PRINAT18341 174 - -
USAWI-UW-140/2020 168 Wisconsin | Dane County 20204-9 EPLISL_427447 MT706268 PRINAG14504 PRINAT18341 2143 5 5
USAWI-UW-144/2020 172 Wisconsin | Dane County 20204-6 EPLISL_427451 MT706272 PRINAG14504 PRINAT18341 2892 | 2431 -
USAWI-UW-146/2020 15 Wisconsin | Dane County 2020-4-6 EPLISL_427453 MT706274 PRINAG14504 PRINAT18341 261 5 -
USANIL-UW-149/2020 182 Hinois Waneego 202047 EPLISL_427456 MT706277 PRINAG14504 PRINAT18341 126 - -
USAWI-UW-154/2020 188 Wisconsin | Monroe County | 2020-4-12 EPI_ISL_427461 MT706282 PRINAG14504 PRINA718341 215 5 -
USAWI-UW-158/2020 195 Wisconsin Miwaukee 20203-15 EPLISL_428254 MT706286 PRINAG14504 PRINAT18341 269 | 2433 | -
USAWI-UW-159/2020 196 Wisconsin RN 2020315 EPI_ISL._428255 MT706287 PRINAG14504 PRINAT18341 2057 | 2106 =
USAWI-UW-160/2020 197 Wisconsin Miwaukee 2020315 EPLISL_428256 MT706288 PRINAG14504 PRINAT18341 186 | 1908 | -
USAWI-UW-179/2020 218 Wisconsin I 2020321 EPLISL 428275 MT706307 PRUNAG14504 PRINA718341 1989 | 1858 | -
USAWI-UW-188/2020 229 Wisconsin Maukee 2020323 EPI_ISL 428284 MT706316 PRINAG14504 PRINAT18341 3005 | 2006 -
USAWI-UW-201/2020 25 Wisconsin | Ozaukee County | 2020-3-25 EPLISL_428297 MT706329 PRINAG14504 PRINAT18341 219 | 2128 | -
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USAMWI-UW-205/2020 249 Wisconsin Vaokee 2020-3-25 EPI_ISL 428301 MT706333 PRINAG14504 PRINA718341 2703 | 2123 -
USAWI-UW-208/2020 252 Wisconsin o 2020325 EPI_ISL_428304 MT706336 PRINAG14504 PRUNAT18341 2572 | 2487 -
USAMWI-UW-211/2020 255 Wisconsin Vaokee 2020-3-25 EPI_ISL 428307 MT706339 PRUNAG14504 PRINA718341 %72 | 2721 -
USAMWI-UW-214/2020 258 Woonsn | Coaukes County | 202025 EPI_ISL 428310 MT706342 PRINAG14504 PRINA718341 2156 | 2152 =
USAMWI-UW-217/2020 261 Wisconsin Vaukee 2020-3-25 EPI_ISL 428313 MT706345 PRUNAG14504 PRINA718341 2014 | 206 -
USAMWI-UW-223/2020 268 Wisconsin s 2020326 EPI_ISL 428319 MT706351 PRINAG14504 PRINA718341 2667 | 2825 =
USAMWI-UW-225/2020 270 Wisconsin Ve 2020-3-26 EPI_ISL 428321 MT706353 PRUNAG14504 PRINA718341 1855 | 1891 -
USAWI-UW-230/2020 275 Wisconsin R o 2020-3-26 EPI_ISL 428326 MT706358 PRINAG14504 PRUNAT18341 244 | 2599 -
USAMWI-UW-231/2020 276 Wisconsin Vaukee 2020-3-26 EPI_ISL 428327 MT706359 PRINAG14504 PRINA718341 1942 | 1994 -
USAWI-UW-232/2020 217 Wisconsin o 2020327 EPI_ISL 428328 MT706360 PRINAG14504 PRUNAT18341 1954 | 1833 -
USAMWI-UW-238/2020 283 Wisconsin Vaakee 2020-3-27 EPI_ISL_428334 MT706366 PRINAG14504 PRINAT18341 2638 | 2552 -
USAMWI-UW-242/2020 288 Wisconsin e 2020328 EPI_ISL 428338 MT706370 PRINAG14504 PRINA718341 1798 | 1752 =
USAMWI-UW-243/2020 289 Wisconsin | Ozaukee County | 2020-3-28 EPI_ISL 428339 MT706371 PRINAG14504 PRINA718341 229 | 2504 -
USAMWI-UW-244/2020 200 Wisconsin | Ozaukee County | 2020-3-28 EPI_ISL 428340 MT706372 PRUNAG14504 PRINA718341 1965 | 1925 =
USAMWI-UW-246/2020 202 Wisconsin Vaakee 2020-3-28 EPI_ISL_428342 - PRINAG14504 PRINA718341 216 | 2197 -
Tube-302 302 Wisconsin Dane County 20204-16 s - 5 PRINA718341 205 = =
Tube-303 303 Wisconsin | Monroe County | 2020-4-16 - - - PRINA718341 - - -
Tube-304 304 Wisconsin Dane County 2020-4-19 s - 5 PRINA718341 307 = =
USAMWI-UW-348/2020 310 Wisconsin Dane County 2020-4-15 EPI_ISL_450702 MT506887 PRINAG14504 PRINA718341 - - -
USAMWI-UW-351/2020 316 Wisconsin Dane County 20204-14 EP1_ISL 450705 MT506890 PRUNAG14504 PRINA718341 2551 | 2664 s
USAMWI-UW-367/2020 338 Wisconsin Dane County 20204-1 EPI_ISL_450721 MT506906 PRINAG14504 PRINA718341 - - -
USAMWI-UW-273/2020 356 Wisconsin RN 2020-3-31 EPI_ISL 436567 MT706381 PRINAG14504 PRINA718341 2029 | 2047 =
USAMWI-UW-275/2020 358 Wisconsin Minaskee 20204-1 EPI_ISL 436569 MT706383 PRINAG14504 PRINA718341 1854 | 1814 - ‘
USAMWI-UW-276/2020 359 Wisconsin RN 202041 EPI_ISL 436570 MT706384 PRUNAG14504 PRINA718341 1927 | 1902 -
USAWI-UW-277/2020 361 Wisconsin Miwaukee 20204-2 EPI_ISL_436571 MT706385 PRINAG14504 PRINA718341 2028 | 2006 - ‘
USAMWI-UW-278/2020 365 Wisconsin TN 20204-3 EPI_ISL 436572 MT706386 PRINAG14504 PRINA718341 1608 | 1612 -
USAWI-UW-279/2020 366 Wisconsin Maokee 20204-3 EPI_ISL 436573 MT706387 PRINAG14504 PRINAT18341 156 | 1535 - ‘
USAMWI-UW-282/2020 a0 Wisconsin s 20204-6 EPI_ISL 436576 MT706390 PRINAG14504 PRINA718341 1539 | 1491 =
USAMWI-UW-285/2020 a4 Wisconsin Maokee 20204-6 EPI_ISL 436579 MT706393 PRINAG14504 PRINA718341 2755 | 2147 - ‘
USAWI-UW-286/2020 376 Wisconsin e 202046 EPI_ISL_436580 MT706394 PRINAG14504 PRUNAT18341 252 | 2509 -
USAMWI-UW-287/2020 a7 Wisconsin Maokee 20204-6 EPI_ISL_436581 MT706395 PRINAG14504 PRINA718341 243 | 2335 - ‘
USA/WI-UW-296/2020 388 Wisconsin = 20204-9 EPI_ISL_436590 MT706404 PRINAG14504 PRINA718341 1613 | 1552 s
USAMWI-UW-299/2020 391 Wisconsin Muaokee 2020413 EPI_ISL 436593 MT706407 PRINAG14504 PRINA718341 1884 | 1837 - ‘
USAWI-UW-302/2020 397 Wisconsin T 2020413 EPI_ISL_436596 MT706410 PRINAG14504 PRINA718341 176 | 1708 5
USA/WI-UW-306/2020 402 Wisconsin Minaskee 20204-14 EPI_ISL_436600 MT706414 PRINAG14504 PRINA718341 42 | 3122 - ‘
USAWI-UW-310/2020 408 Wisconsin T 2020415 EPI_ISL 436604 MT706418 PRINAG14504 PRINAT18341 2064 | 19.45 =
USA/WI-UW-315/2020 48 Wisconsin Miwaukee 20204-17 EPI_ISL_436600 MT706423 PRINAG14504 PRINA718341 %33 | 2642 - ‘
USAMWI-UW-323/2020 437 Wisconsin e 2020423 EPI_ISL 436617 MT706430 PRINAG14504 PRINA718341 262 286 =
USAMWI-UW-333/2020 453 Wisconsin Maokee 2020324 EPI_ISL 436627 MT706439 PRINAG14504 PRINATIB341 | 2745 | 2654 | - ‘
USAWI-UW-334/2020 454 Wisconsin o 2020-3-24 EPI_ISL 436628 MT706440 PRINAG14504 PRUNAT18341 2824 | 22719 -
USAMWI-UW-337/2020 461 Wisconsin Maokee 2020326 EPI_ISL_436631 MT706443 PRINAG14504 PRINA718341 %46 | 265 - ‘
USAWI-UW-338/2020 462 Wisconsin e 2020326 EPI_ISL_436632 MT706444 PRINAG14504 PRINAT18341 12 | 216 -
USAWI-UW-340/2020 468 Wisconsin e 2020-4-1 EPI_ISL 436634 MT706446 PRINAG14504 PRUNAT18341 3515 | 3347 - ‘
USA/WI-UW-341/2020 469 Wisconsin 2 20204-2 EPI_ISL 436635 MT706447 PRINAG14504 PRINA718341 218 | 25 s
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USA/WI-UW-749/2020 1147 Wisconsin Dane County 2020-6-30 EPI_ISL_491422 - PRJNAG14504 PRJNA718341 - - 1287
USA/WI-UW-756/2020 1157 Wisconsin Dane County 2020-7-5 EPI_ISL_495461 MT795871 PRJNAG14504 PRJNA718341 o = 1233
USA/WI-UW-780/2020 1195 Wisconsin Dane County 2020-7-3 EPI_ISL_495484 MT795891 PRJNAG14504 PRJNA718341 - - 1269
USA/WI-UW-784/2020 1199 Wisconsin Dane County 2020-7-6 EPI_ISL_495488 - PRJNAG14504 PRJNA718341 - - 1238
USA/WI-UW-798/2020 1217 Wisconsin Dane County 2020-7-6 EPI_ISL_495502 - PRJNAG14504 PRJNA718341 - - 1223
USA/WI-UW-855/2020 1282 Wisconsin Dane County 2020-7-9 EPI_ISL_509861 MT846545 PRJNAG14504 PRJINA718341 = = 1247
USA/WI-UW-861/2020 1293 Wisconsin Dane County 2020-7-14 EPI_ISL_509864 MT846550 PRJNAG14504 PRJINA718341 - - 1210
USA/WI-UW-863/2020 1297 Wisconsin Dane County 2020-7-13 EPI_ISL_509866 MT846552 PRJNAG14504 PRJNA718341 - - 1159
USA/WI-UW-874/2020 1326 Wisconsin Dane County 2020-7-13 EPI_ISL_509876 MT846562 PRJNAG14504 PRJNA718341 - - 1227
USA/WI-UW-876/2020 1328 Wisconsin Dane County 2020-7-13 EPI_ISL_509878 MT846564 PRJNAG14504 PRJINA718341 = = 1241
USA/WI-UW-893/2020 1346 Wisconsin Dane County 2020-7-12 EPI_ISL_509895 MT846581 PRJNAG14504 PRJNA718341 - - 1181
USA/WI-UW-895/2020 1353 Wisconsin Dane County 2020-7-13 EPI_ISL_509897 MT846583 PRJNAG14504 PRJNA718341 - - 1200
USA/WI-UW-897/2020 1357 Wisconsin Dane County 2020-7-12 EPI_ISL_509899 MT846585 PRJNAG14504 PRJNA718341 - - 1224
USA/WI-UW-906/2020 1373 Wisconsin Dane County 2020-7-15 EPI_ISL_509907 MT846593 PRJNA614504 PRJNA718341 = = 1246
USA/WI-UW-916/2020 1388 Wisconsin Dane County 2020-7-12 EPI_ISL_509917 MT846603 PRJNAG14504 PRJNA718341 - - 1209
USA/WI-UW-927/2020 1409 Wisconsin Dane County 2020-7-13 EPI_ISL_509927 MTB846614 PRJNAG14504 PRJNA718341 - - 1160
USA/WI-UW-931/2020 1414 Wisconsin Dane County 2020-7-13 EPI_ISL_509931 MT846618 PRJNAG14504 PRJNA718341 - - 1221
USA/WI-UW-986/2020 1495 Wisconsin Dane County 2020-7-16 EPI_ISL_509982 MT846672 PRJNA614504 PRJNA718341 = = 1267
USA/WI-UW-991/2020 1502 Wisconsin Dane County 2020-7-16 EPI_ISL_509986 MT846677 PRJNA614504 PRJNA718341 - - 1265
USA/WI-UW-997/2020 1512 Wisconsin Dane County 2020-7-16 EPI_ISL_509991 MTB846683 PRJNAG14504 PRJNA718341 - - 1220
USA/WI-UW-721/2020 1103 Wisconsin Dane County 2020-7-1 EPI_ISL_491396 = PRJNA614504 PRJNA718341 = = n77
USA/WI-UW-722/2020 1104 Wisconsin Dane County 2020-6-30 EPI_ISL_491397 - PRJNA614504 PRJNA718341 - - 1276
USA/WI-UW-747/2020 1144 Wisconsin Dane County 2020-7-2 EPI_ISL_491420 MT772518 PRJNA614504 PRJNA718341 = = 1222

Supplemental Table 2. Sample identifiers and accession numbers. This table includes
strain name, tube/filename, state of collection, county of collection, collection date,
GISAID accession number, Genbank accession number, as well as Ct values and RLU

values where available for each sample included in this study.



name pool sequence length|%gc |tm (use 65)
nCoV-2019_1_LEFT nCoV-2019_1]ACCAACCAACTTTCGATCTCTTGT 24 41.67160.69
nCoV-2019_1_RIGHT nCoV-2019_1|CATCTTTAAGATGTTGACGTGCCTC 25 44 160.45
nCoV-2019_2_LEFT nCoV-2019_2|CTGTTTTACAGGTTCGCGACGT 22 50 |61.67
nCoV-2019_2_RIGHT nCoV-2019_2|TAAGGATCAGTGCCAAGCTCGT 22 50 |61.74
nCoV-2019_3_LEFT nCoV-2019_1|CGGTAATAAAGGAGCTGGTGGC 22 54.55|61.32
nCoV-2019_3_RIGHT nCoV-2019_1|AAGGTGTCTGCAATTCATAGCTCT 24 41.67160.32
nCoV-2019_4_LEFT nCoV-2019_2|GGTGTATACTGCTGCCGTGAAC 22 54.55|61.56
nCoV-2019_4_RIGHT nCoV-2019_2|CACAAGTAGTGGCACCTTCTTTAGT 25 44 160.97
nCoV-2019_5_LEFT nCoV-2019_1|TGGTGAAACTTCATGGCAGACG 22 50 161.39
nCoV-2019_5_RIGHT nCoV-2019_1|ATTGATGTTGACTTTCTCTTTTTGGAGT 28 32.14160.17
nCoV-2019_6_LEFT nCoV-2019_2|GGTGTTGTTGGAGAAGGTTCCG 22 54.55|61.64
nCoV-2019_6_RIGHT nCoV-2019_2|TAGCGGCCTTCTGTAAAACACG 22 50 |61.18
nCoV-2019_7_LEFT nCoV-2019_1|ATCAGAGGCTGCTCGTGTTGTA 22 50 |61.73
nCoV-2019_7_LEFT_alt0 |nCoV-2019_1|CATTTGCATCAGAGGCTGCTCG 22 54.55|62.44
nCoV-2019_7_RIGHT nCoV-2019_1|TGCACAGGTGACAATTTGTCCA 22 45.45160.95
nCoV-2019_7_RIGHT_alt5 |nCoV-2019_1]AGGTGACAATTTGTCCACCGAC 22 50 |61.07
nCoV-2019_8_LEFT nCoV-2019_2|AGAGTTTCTTAGAGACGGTTGGGA 24 45.83|61
nCoV-2019_8_RIGHT nCoV-2019_2|GCTTCAACAGCTTCACTAGTAGGT 24 45.83160.56
nCoV-2019_9_LEFT nCoV-2019_1|TCCCACAGAAGTGTTAACAGAGGA 24 45.83161.18
nCoV-2019_9_LEFT_alt4 |nCoV-2019_1|TTCCCACAGAAGTGTTAACAGAGG 24 45.83160.44
nCoV-2019_9_RIGHT nCoV-2019_1]ATGACAGCATCTGCCACAACAC 22 50 |61.71
nCoV-2019_9_RIGHT_alt2 |nCoV-2019_1|GACAGCATCTGCCACAACACAG 22 54.55|62.26
nCoV-2019_10_LEFT nCoV-2019_2|TGAGAAGTGCTCTGCCTATACAGT 24 45.83161.12
nCoV-2019_10_RIGHT nCoV-2019_2|TCATCTAACCAATCTTCTTCTTGCTCT 27 37.04|60.31
nCoV-2019_11_LEFT nCoV-2019_1|GGAATTTGGTGCCACTTCTGCT 22 50 |61.66
nCoV-2019_11_RIGHT nCoV-2019_1|TCATCAGATTCAACTTGCATGGCA 24 41.67161.35
nCoV-2019_12_LEFT nCoV-2019_2|AAACATGGAGGAGGTGTTGCAG 22 50 |61.08
nCoV-2019_12_RIGHT nCoV-2019_2|TTCACTCTTCATTTCCAAAAAGCTTGA 27 33.33|60.36
nCoV-2019_13_LEFT nCoV-2019_1|TCGCACAAATGTCTACTTAGCTGT 24 41.67]60.56
nCoV-2019_13_RIGHT nCoV-2019_1]ACCACAGCAGTTAAAACACCCT 22 45.45160.36
nCoV-2019_14_LEFT nCoV-2019_2|CATCCAGATTCTGCCACTCTTGT 23 47.83160.62
nCoV-2019_14_LEFT_alt4 |nCoV-2019_2|TGGCAATCTTCATCCAGATTCTGC 24 45.83161.47
nCoV-2019_14_RIGHT nCoV-2019_2|AGTTTCCACACAGACAGGCATT 22 45.45160.42
nCoV-2019_14_RIGHT_alt2|nCoV-2019_2|TGCGTGTTTCTTCTGCATGTGC 22 50 |62.76
nCoV-2019_15_LEFT nCoV-2019_1]ACAGTGCTTAAAAAGTGTAAAAGTGCC 27 37.04|61.32
nCoV-2019_15_LEFT_alt1 |nCoV-2019_1|AGTGCTTAAAAAGTGTAAAAGTGCCT 26 34.62|60.13
nCoV-2019_15_RIGHT nCoV-2019_1]AACAGAAACTGTAGCTGGCACT 22 45.45160.16
nCoV-2019_15_RIGHT_alt3|nCoV-2019_1|ACTGTAGCTGGCACTTTGAGAGA 23 47.831|61.57
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nCoV-2019_16_LEFT nCoV-2019_2|AATTTGGAAGAAGCTGCTCGGT 22 45.45(60.82
nCoV-2019_16_RIGHT nCoV-2019_2|CACAACTTGCGTGTGGAGGTTA 22 50 61.32
nCoV-2019_17_LEFT nCoV-2019_1|CTTCTTTCTTTGAGAGAAGTGAGGACT 27 40.74(60.69
nCoV-2019_17_RIGHT nCoV-2019_1|TTTGTTGGAGTGTTAACAATGCAGT 25 36 |60.11
nCoV-2019_18_LEFT nCoV-2019_2|TGGAAATACCCACAAGTTAATGGTTTAAC |29 34.48/60.69
nCoV-2019_18_LEFT_alt2 |nCoV-2019_2|ACTTCTATTAAATGGGCAGATAACAACTGT |30 33.33/61.38
nCoV-2019_18_RIGHT nCoV-2019_2|AGCTTGTTTACCACACGTACAAGG 24 45.83(61.51
nCoV-2019_18_RIGHT_alt1|nCoV-2019_2|GCTTGTTTACCACACGTACAAGG 23 47.83(60.3

nCoV-2019_19_LEFT nCoV-2019_1|GCTGTTATGTACATGGGCACACT 23 47.83(61.18
nCoV-2019_19_RIGHT nCoV-2019_1|TGTCCAACTTAGGGTCAATTTCTGT 25 40 [60.4

nCoV-2019_20_LEFT nCoV-2019_2|ACAAAGAAAACAGTTACACAACAACCA 27 33.33/60.68
nCoV-2019_20_RIGHT nCoV-2019_2|ACGTGGCTTTATTAGTTGCATTGTT 25 36 |60.28
nCoV-2019_21_LEFT nCoV-2019_1|TGGCTATTGATTATAAACACTACACACCC |29 37.9361.49
nCoV-2019_21_LEFT_alt2 |nCoV-2019_1|GGCTATTGATTATAAACACTACACACCCT |29 37.9361.29
nCoV-2019_21_RIGHT nCoV-2019_1|TAGATCTGTGTGGCCAACCTCT 22 50 160.83
nCoV-2019_21_RIGHT_alt0|nCoV-2019_1|GATCTGTGTGGCCAACCTCTTC 22 54.55|61.2

nCoV-2019_22_LEFT nCoV-2019_2|ACTACCGAAGTTGTAGGAGACATTATACT |29 37.93/61.25
nCoV-2019_22_RIGHT nCoV-2019_2|ACAGTATTCTTTGCTATAGTAGTCGGC 27 40.74(60.73
nCoV-2019_23_LEFT nCoV-2019_1|ACAACTACTAACATAGTTACACGGTGT 27 37.0460.26
nCoV-2019_23_RIGHT nCoV-2019_1|ACCAGTACAGTAGGTTGCAATAGTG 25 44 160.57
nCoV-2019_24_LEFT nCoV-2019_2|AGGCATGCCTTCTTACTGTACTG 23 47.83(60.37
nCoV-2019_24_RIGHT nCoV-2019_2|ACATTCTAACCATAGCTGAAATCGGG 26 42.31(61.19
nCoV-2019_25_LEFT nCoV-2019_1|GCAATTGTTTTTCAGCTATTTTGCAGT 27 33.33/60.73
nCoV-2019_25_RIGHT nCoV-2019_1|ACTGTAGTGACAAGTCTCTCGCA 23 47.83(61.3

nCoV-2019_26_LEFT nCoV-2019_2|TTGTGATACATTCTGTGCTGGTAGT 25 40 [60.28
nCoV-2019_26_RIGHT nCoV-2019_2|TCCGCACTATCACCAACATCAG 22 50 60.42
nCoV-2019_27_LEFT nCoV-2019_1|ACTACAGTCAGCTTATGTGTCAACC 25 44 160.8

nCoV-2019_27_RIGHT nCoV-2019_1|AATACAAGCACCAAGGTCACGG 22 50 [61.13
nCoV-2019_28_LEFT nCoV-2019_2|ACATAGAAGTTACTGGCGATAGTTGT 26 38.46/60.13
nCoV-2019_28_RIGHT nCoV-2019_2|TGTTTAGACATGACATGAACAGGTGT 26 38.46|60.91
nCoV-2019_29_LEFT nCoV-2019_1|ACTTGTGTTCCTTTTTGTTGCTGC 24 41.67(61.39
nCoV-2019_29_RIGHT nCoV-2019_1|AGTGTACTCTATAAGTTTTGATGGTGTGT |29 34.48160.69
nCoV-2019_30_LEFT nCoV-2019_2|GCACAACTAATGGTGACTTTTTGCA 25 40 [61.19
nCoV-2019_30_RIGHT nCoV-2019_2|ACCACTAGTAGATACACAAACACCAG 26 42.31(60.3

nCoV-2019_31_LEFT nCoV-2019_1|TTCTGAGTACTGTAGGCACGGC 22 54.55(62.03
nCoV-2019_31_RIGHT nCoV-2019_1|ACAGAATAAACACCAGGTAAGAATGAGT (28 35.71160.69
nCoV-2019_32_LEFT nCoV-2019_2|TGGTGAATACAGTCATGTAGTTGCC 25 44 161.09
nCoV-2019_32_RIGHT nCoV-2019_2|AGCACATCACTACGCAACTTTAGA 24 41.67(60.56
nCoV-2019_33_LEFT nCoV-2019_1|ACTTTTGAAGAAGCTGCGCTGT 22 45.45(61.58
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nCoV-2019_33_RIGHT nCoV-2019_1|TGGACAGTAAACTACGTCATCAAGC 25 44 [61.08
nCoV-2019_34_LEFT nCoV-2019_2|TCCCATCTGGTAAAGTTGAGGGT 23 47.83(61.02
nCoV-2019_34_RIGHT nCoV-2019_2|AGTGAAATTGGGCCTCATAGCA 22 45.45(60.03
nCoV-2019_35_LEFT nCoV-2019_1|TGTTCGCATTCAACCAGGACAG 22 50 61.39
nCoV-2019_35_RIGHT nCoV-2019_1|ACTTCATAGCCACAAGGTTAAAGTCA 26 38.46/60.69
nCoV-2019_36_LEFT nCoV-2019_2|TTAGCTTGGTTGTACGCTGCTG 22 50 |61.44
nCoV-2019_36_RIGHT nCoV-2019_2|GAACAAAGACCATTGAGTACTCTGGA 26 42.31(60.74
nCoV-2019_37_LEFT nCoV-2019_1|ACACACCACTGGTTGTTACTCAC 23 47.83(60.93
nCoV-2019_37_RIGHT nCoV-2019_1|GTCCACACTCTCCTAGCACCAT 22 54.55|61.48
nCoV-2019_38_LEFT nCoV-2019_2|ACTGTGTTATGTATGCATCAGCTGT 25 40 |60.86
nCoV-2019_38_RIGHT nCoV-2019_2|CACCAAGAGTCAGTCTAAAGTAGCG 25 48 [61.13
nCoV-2019_39_LEFT nCoV-2019_1|AGTATTGCCCTATTTTCTTCATAACTGGT |29 34.48|61

nCoV-2019_39_RIGHT nCoV-2019_1|TGTAACTGGACACATTGAGCCC 22 50 60.55
nCoV-2019_40_LEFT nCoV-2019_2|TGCACATCAGTAGTCTTACTCTCAGT 26 42.31(61.25
nCoV-2019_40_RIGHT nCoV-2019_2|CATGGCTGCATCACGGTCAAAT 22 50 62.09
nCoV-2019_41_LEFT nCoV-2019_1|GTTCCCTTCCATCATATGCAGCT 23 47.83(60.75
nCoV-2019_41_RIGHT nCoV-2019_1|TGGTATGACAACCATTAGTTTGGCT 25 40 [60.75
nCoV-2019_42_LEFT nCoV-2019_2|TGCAAGAGATGGTTGTGTTCCC 22 50 |61.08
nCoV-2019_42_RIGHT nCoV-2019_2|CCTACCTCCCTTTGTTGTGTTGT 23 47.83(60.69
nCoV-2019_43_LEFT nCoV-2019_1|TACGACAGATGTCTTGTGCTGC 22 50 60.93
nCoV-2019_43_RIGHT nCoV-2019_1|AGCAGCATCTACAGCAAAAGCA 22 45.45(61.14
nCoV-2019_44_LEFT nCoV-2019_2|TGCCACAGTACGTCTACAAGCT 22 50 |61.66
nCoV-2019_44_LEFT_alt3 |nCoV-2019_2|CCACAGTACGTCTACAAGCTGG 22 54.55|60.67
nCoV-2019_44_RIGHT nCoV-2019_2|AACCTTTCCACATACCGCAGAC 22 50 |60.87
nCoV-2019_44_RIGHT_alt0|nCoV-2019_2|CGCAGACGGTACAGACTGTGTT 22 54.55(62.77
nCoV-2019_45_LEFT nCoV-2019_1|TACCTACAACTTGTGCTAATGACCC 25 44 160.57
nCoV-2019_45_LEFT_alt2 |nCoV-2019_1|AGTATGTACAAATACCTACAACTTGTGCT |29 34.48160.94
nCoV-2019_45_RIGHT nCoV-2019_1|AAATTGTTTCTTCATGTTGGTAGTTAGAGA (30 30 |60.01
nCoV-2019_45_RIGHT_alt7|nCoV-2019_1|TTCATGTTGGTAGTTAGAGAAAGTGTGTC |29 37.93|61.53
nCoV-2019_46_LEFT nCoV-2019_2|TGTCGCTTCCAAGAAAAGGACG 22 50 |61.38
nCoV-2019_46_LEFT_alt1 |nCoV-2019_2|CGCTTCCAAGAAAAGGACGAAGA 23 47.83(61.35
nCoV-2019_46_RIGHT nCoV-2019_2|CACGTTCACCTAAGTTGGCGTA 22 50 |60.86
nCoV-2019_46_RIGHT_alt2|nCoV-2019_2|CACGTTCACCTAAGTTGGCGTAT 23 47.83[61.17
nCoV-2019_47_LEFT nCoV-2019_1|AGGACTGGTATGATTTTGTAGAAAACCC (28 39.29(61.42
nCoV-2019_47_RIGHT nCoV-2019_1|AATAACGGTCAAAGAGTTTTAACCTCTC (28 35.71160.06
nCoV-2019_48_LEFT nCoV-2019_2|TGTTGACACTGACTTAACAAAGCCT 25 40 [61.09
nCoV-2019_48_RIGHT nCoV-2019_2|TAGATTACCAGAAGCAGCGTGC 22 50 |60.74
nCoV-2019_49_LEFT nCoV-2019_1|AGGAATTACTTGTGTATGCTGCTGA 25 40  [60.57
nCoV-2019_49_RIGHT nCoV-2019_1|TGACGATGACTTGGTTAGCATTAATACA (28 35.71161.05
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nCoV-2019_50_LEFT nCoV-2019_2|GTTGATAAGTACTTTGATTGTTACGATGGT (30 33.33/60.59
nCoV-2019_50_RIGHT nCoV-2019_2|TAACATGTTGTGCCAACCACCA 22 45.45(60.95
nCoV-2019_51_LEFT nCoV-2019_1|TCAATAGCCGCCACTAGAGGAG 22 54.55|61.34
nCoV-2019_51_RIGHT nCoV-2019_1|AGTGCATTAACATTGGCCGTGA 22 45.45(61.14
nCoV-2019_52_LEFT nCoV-2019_2|CATCAGGAGATGCCACAACTGC 22 54.55|61.83
nCoV-2019_52_RIGHT nCoV-2019_2|GTTGAGAGCAAAATTCATGAGGTCC 25 44 160.62
nCoV-2019_53_LEFT nCoV-2019_1|AGCAAAATGTTGGACTGAGACTGA 24 41.67(60.69
nCoV-2019_53_RIGHT nCoV-2019_1|AGCCTCATAAAACTCAGGTTCCC 23 47.83(60.31
nCoV-2019_54_LEFT nCoV-2019_2|TGAGTTAACAGGACACATGTTAGACA 26 38.46|60.18
nCoV-2019_54_RIGHT nCoV-2019_2|AACCAAAAACTTGTCCATTAGCACA 25 36 |60.11
nCoV-2019_55_LEFT nCoV-2019_1|ACTCAACTTTACTTAGGAGGTATGAGCT (28 39.29161.43
nCoV-2019_55_RIGHT nCoV-2019_1|GGTGTACTCTCCTATTTGTACTTTACTGT |29 37.93|60.54
nCoV-2019_56_LEFT nCoV-2019_2|ACCTAGACCACCACTTAACCGA 22 50 60.49
nCoV-2019_56_RIGHT nCoV-2019_2|ACACTATGCGAGCAGAAGGGTA 22 50 |61.21
nCoV-2019_57_LEFT nCoV-2019_1|ATTCTACACTCCAGGGACCACC 22 54.55|61.16
nCoV-2019_57_RIGHT nCoV-2019_1|GTAATTGAGCAGGGTCGCCAAT 22 50 |61.26
nCoV-2019_58_LEFT nCoV-2019_2|TGATTTGAGTGTTGTCAATGCCAGA 25 40 [61.44
nCoV-2019_58_RIGHT nCoV-2019_2|CTTTTCTCCAAGCAGGGTTACGT 23 47.83|61.06
nCoV-2019_59_LEFT nCoV-2019_1|TCACGCATGATGTTTCATCTGCA 23 43.48(61.42
nCoV-2019_59_RIGHT nCoV-2019_1|AAGAGTCCTGTTACATTTTCAGCTTG 26 38.46/60.02
nCoV-2019_60_LEFT nCoV-2019_2|TGATAGAGACCTTTATGACAAGTTGCA 27 37.04/60.53
nCoV-2019_60_RIGHT nCoV-2019_2|GGTACCAACAGCTTCTCTAGTAGC 24 50 |60.44
nCoV-2019_61_LEFT nCoV-2019_1|TGTTTATCACCCGCGAAGAAGC 22 50 |61.5

nCoV-2019_61_RIGHT nCoV-2019_1|ATCACATAGACAACAGGTGCGC 22 50 [61.25
nCoV-2019_62_LEFT nCoV-2019_2|GGCACATGGCTTTGAGTTGACA 22 50 |61.91
nCoV-2019_62_RIGHT nCoV-2019_2|GTTGAACCTTTCTACAAGCCGC 22 50 60.35
nCoV-2019_63_LEFT nCoV-2019_1|TGTTAAGCGTGTTGACTGGACT 22 45.45(60.16
nCoV-2019_63_RIGHT nCoV-2019_1|ACAAACTGCCACCATCACAACC 22 50 |61.85
nCoV-2019_64_LEFT nCoV-2019_2|TCGATAGATATCCTGCTAATTCCATTGT 28 35.71160.11
nCoV-2019_64_RIGHT nCoV-2019_2|AGTCTTGTAAAAGTGTTCCAGAGGT 25 40 [60.1

nCoV-2019_65_LEFT nCoV-2019_1|GCTGGCTTTAGCTTGTGGGTTT 22 50 [61.92
nCoV-2019_65_RIGHT nCoV-2019_1|TGTCAGTCATAGAACAAACACCAATAGT |28 35.71160.9

nCoV-2019_66_LEFT nCoV-2019_2|GGGTGTGGACATTGCTGCTAAT 22 50 |61.21
nCoV-2019_66_RIGHT nCoV-2019_2|TCAATTTCCATTTGACTCCTGGGT 24 41.67(60.45
nCoV-2019_67_LEFT nCoV-2019_1|GTTGTCCAACAATTACCTGAAACTTACT (28 35.71160.43
nCoV-2019_67_RIGHT nCoV-2019_1|CAACCTTAGAAACTACAGATAAATCTTGGG(30 36.67|60.4

nCoV-2019_68_LEFT nCoV-2019_2|ACAGGTTCATCTAAGTGTGTGTGT 24 41.67(60.14
nCoV-2019_68_RIGHT nCoV-2019_2|CTCCTTTATCAGAACCAGCACCA 23 47.83(60.31
nCoV-2019_69_LEFT nCoV-2019_1|TGTCGCAAAATATACTCAACTGTGTCA 27 37.04/61.43
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nCoV-2019_69_RIGHT nCoV-2019_1|TCTTTATAGCCACGGAACCTCCA 23 47.83[61.14
nCoV-2019_70_LEFT nCoV-2019_2|ACAAAAGAAAATGACTCTAAAGAGGGTTT |29 31.03/60.13
nCoV-2019_70_RIGHT nCoV-2019_2|TGACCTTCTTTTAAAGACATAACAGCAG (28 35.71160.27
nCoV-2019_71_LEFT nCoV-2019_1|ACAAATCCAATTCAGTTGTCTTCCTATTC |29 34.48160.54
nCoV-2019_71_RIGHT nCoV-2019_1|TGGAAAAGAAAGGTAAGAACAAGTCCT 27 37.04|60.8

nCoV-2019_72_LEFT nCoV-2019_2|ACACGTGGTGTTTATTACCCTGAC 24 45.83(61.04
nCoV-2019_72_RIGHT nCoV-2019_2|ACTCTGAACTCACTTTCCATCCAAC 25 44 160.97
nCoV-2019_73_LEFT nCoV-2019_1|CAATTTTGTAATGATCCATTTTTGGGTGT |29 31.03/60.29
nCoV-2019_73_RIGHT nCoV-2019_1|CACCAGCTGTCCAACCTGAAGA 22 54.55(62.45
nCoV-2019_74_LEFT nCoV-2019_2|ACATCACTAGGTTTCAAACTTTACTTGC 28 35.71160.68
nCoV-2019_74_RIGHT nCoV-2019_2|GCAACACAGTTGCTGATTCTCTTC 24 45.83(60.85
nCoV-2019_75_LEFT nCoV-2019_1|AGAGTCCAACCAACAGAATCTATTGT 26 38.46(60.24
nCoV-2019_75_RIGHT nCoV-2019_1|ACCACCAACCTTAGAATCAAGATTGT 26 38.46/60.69
nCoV-2019_76_LEFT nCoV-2019_2|AGGGCAAACTGGAAAGATTGCT 22 45.45(60.76
nCoV-2019_76_LEFT_alt3 |nCoV-2019_2|GGGCAAACTGGAAAGATTGCTGA 23 47.83(61.87
nCoV-2019_76_RIGHT nCoV-2019_2|ACACCTGTGCCTGTTAAACCAT 22 45.45(60.42
nCoV-2019_76_RIGHT_alt0|nCoV-2019_2|[ACCTGTGCCTGTTAAACCATTGA 23 43.48(60.69
nCoV-2019_77_LEFT nCoV-2019_1|CCAGCAACTGTTTGTGGACCTA 22 50 60.75
nCoV-2019_77_RIGHT nCoV-2019_1|CAGCCCCTATTAAACAGCCTGC 22 54.55|61.59
nCoV-2019_78_LEFT nCoV-2019_2|CAACTTACTCCTACTTGGCGTGT 23 47.83(60.55
nCoV-2019_78_RIGHT nCoV-2019_2|TGTGTACAAAAACTGCCATATTGCA 25 36 60.22
nCoV-2019_79_LEFT nCoV-2019_1|GTGGTGATTCAACTGAATGCAGC 23 47.83(60.92
nCoV-2019_79_RIGHT nCoV-2019_1|CATTTCATCTGTGAGCAAAGGTGG 24 45.83(60.62
nCoV-2019_80_LEFT nCoV-2019_2|TTGCCTTGGTGATATTGCTGCT 22 45.45(60.89
nCoV-2019_80_RIGHT nCoV-2019_2|TGGAGCTAAGTTGTTTAACAAGCG 24 41.67(60.02
nCoV-2019_81_LEFT nCoV-2019_1|GCACTTGGAAAACTTCAAGATGTGG 25 44 [61.24
nCoV-2019_81_RIGHT nCoV-2019_1|GTGAAGTTCTTTTCTTGTGCAGGG 24 45.83(60.73
nCoV-2019_82_LEFT nCoV-2019_2|GGGCTATCATCTTATGTCCTTCCCT 25 48 [61.52
nCoV-2019_82_RIGHT nCoV-2019_2|TGCCAGAGATGTCACCTAAATCAA 24 41.67(60.02
nCoV-2019_83_LEFT nCoV-2019_1|TCCTTTGCAACCTGAATTAGACTCA 25 40 [60.46
nCoV-2019_83_RIGHT nCoV-2019_1|TTTGACTCCTTTGAGCACTGGC 22 50 61.33
nCoV-2019_84_LEFT nCoV-2019_2|TGCTGTAGTTGTCTCAAGGGCT 22 50 |61.61
nCoV-2019_84_RIGHT nCoV-2019_2|AGGTGTGAGTAAACTGTTACAAACAAC 27 37.04160.36
nCoV-2019_85_LEFT nCoV-2019_1|ACTAGCACTCTCCAAGGGTGTT 22 50 |61.03
nCoV-2019_85_RIGHT nCoV-2019_1|ACACAGTCTTTTACTCCAGATTCCC 25 44 160.51
nCoV-2019_86_LEFT nCoV-2019_2|TCAGGTGATGGCACAACAAGTC 22 50 |61.07
nCoV-2019_86_RIGHT nCoV-2019_2|ACGAAAGCAAGAAAAAGAAGTACGC 25 40 [61.01
nCoV-2019_87_LEFT nCoV-2019_1|CGACTACTAGCGTGCCTTTGTA 22 50 |60.16
nCoV-2019_87_RIGHT nCoV-2019_1|ACTAGGTTCCATTGTTCAAGGAGC 24 45.83(60.81
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nCoV-2019_88_LEFT nCoV-2019_2|CCATGGCAGATTCCAACGGTAC 22 54.55|61.58
nCoV-2019_88_RIGHT nCoV-2019_2|TGGTCAGAATAGTGCCATGGAGT 23 47.83[61.4

nCoV-2019_89_LEFT nCoV-2019_1|GTACGCGTTCCATGTGGTCATT 22 50 |61.5

nCoV-2019_89_LEFT_alt2 |nCoV-2019_1|CGCGTTCCATGTGGTCATTCAA 22 50 |62.01
nCoV-2019_89_RIGHT nCoV-2019_1|ACCTGAAAGTCAACGAGATGAAACA 25 40  160.91
nCoV-2019_89_RIGHT_alt4|nCoV-2019_1|ACGAGATGAAACATCTGTTGTCACT 25 40 [60.74
nCoV-2019_90_LEFT nCoV-2019_2|ACACAGACCATTCCAGTAGCAGT 23 47.83|61.58
nCoV-2019_90_RIGHT nCoV-2019_2|TGAAATGGTGAATTGCCCTCGT 22 45.45(60.82
nCoV-2019_91_LEFT nCoV-2019_1|TCACTACCAAGAGTGTGTTAGAGGT 25 44 160.93
nCoV-2019_91_RIGHT nCoV-2019_1|TTCAAGTGAGAACCAAAAGATAATAAGCA |29 31.03/60.03
nCoV-2019_92_LEFT nCoV-2019_2[TTTGTGCTTTTTAGCCTTTCTGCT 24 37.5 160.14
nCoV-2019_92_RIGHT nCoV-2019_2|AGGTTCCTGGCAATTAATTGTAAAAGG 27 37.04/60.53
nCoV-2019_93_LEFT nCoV-2019_1|TGAGGCTGGTTCTAAATCACCCA 23 47.83(61.59
nCoV-2019_93_RIGHT nCoV-2019_1|AGGTCTTCCTTGCCATGTTGAG 22 50 60.55
nCoV-2019_94_LEFT nCoV-2019_2|GGCCCCAAGGTTTACCCAATAA 22 50 |60.56
nCoV-2019_94_RIGHT nCoV-2019_2|TTTGGCAATGTTGTTCCTTGAGG 23 43.48(60.18
nCoV-2019_95_LEFT nCoV-2019_1|TGAGGGAGCCTTGAATACACCA 22 50 |61.1

nCoV-2019_95_RIGHT nCoV-2019_1|CAGTACGTTTTTGCCGAGGCTT 22 50 61.95
nCoV-2019_96_LEFT nCoV-2019_2|GCCAACAACAACAAGGCCAAAC 22 50 [61.82
nCoV-2019_96_RIGHT nCoV-2019_2|TAGGCTCTGTTGGTGGGAATGT 22 50 |61.36
nCoV-2019_97_LEFT nCoV-2019_1|TGGATGACAAAGATCCAAATTTCAAAGA (28 32.14/60.22
nCoV-2019_97_RIGHT nCoV-2019_1|ACACACTGATTAAAGATTGCTATGTGAG (28 35.71160.17
nCoV-2019_98_LEFT nCoV-2019_2|AACAATTGCAACAATCCATGAGCA 24 37.5 160.5

nCoV-2019_98_RIGHT nCoV-2019_2|TTCTCCTAAGAAGCTATTAAAATCACATGG (30 33.33|60.01
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Supplemental Table 3. ARTIC v3 primer sequences used to amplify cDNA for library

preparation.
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Column 3 Column 4 c
tipt i
USAMWI-UW-41/2020 USAWI-UW-48/2020 0
USAWIUW-65/2020 USAWI-UW-3212020 0
USAWI-UW-69/2020 USAWI-UW-61/2020 0
USAWI-UW-7012020 USAWI-UW-67/2020 0
USAWI-UW-7412020 USAWI-UW-29/2020 0
USAWI-UW-438/202 USAWI-UW-432/2021 0
USAMWI-UW-544/202 USAWI-UW-551/2021 1
USAWI-UW-544/202 USAWI-UW-575/2021 0
USAWI-UW-551/202 USAWI-UW-575/2021 1
USAWI-UW-545202 USAWI-UW-586/202 0
USAWI-UW-5461202 USAWI-UW-443/2021 0
USAWI-UW-586/202 USAWI-UW-443/2021 0
USAMWIUW-577/202 USAWI-UW-536/202 0
USAMWI-UW-598/202 USAWI-UW-602/2021 0
USAMWI-UW-601/202 USAWI-UW-780/2021 0

g
:
H
H
g

9867202 USAMWI-U)
USAWI-UW-997/202 USAWI-UW-991/2021 0
USAWI-UW-895/202 USAWI-UW-876/2021 0
USAWI-UW-895/202 USAWI-UW-B63/2021 2
USAWI-UW-8761202 USAWI-UW-863/2021 2
USAWI-UW-1581202 USAWI-UW-160/2021 0
USAMWI-UW-333/202 USAWI-UW-334/202 0
USAMWI-UW-119/202 USAWI-UW-120/2021 0
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Table 4.

Column7 Column 8 Column 9 Column 10 Column 11
probabilty_1_serial_inteval tube_IDs time_between_test _direction_based_on_test dale  time_between_symploms
0.7496528051576363 028 0 1
0.749652805157663 s08 2 2
0.7496528051576963 5544 4 3
0.7496528051576363 5655 6 H
0.7496528051576963 615 4 4
0.7496528051576963 741738 2 2
0.21600878707411836 893884 1 4
0.7496528051576963 884903 1 asx
0.21600878707411836 893903 0 893 <> 003 asx
0.7496528051576963 837916 0 887 <->916 1
0.7496528051576963 887,749 0 0
0.7496528051576963 916749 0 1
0.7496528051576963 206849 0 asx
0.7496528051576963 956962 3 4
0.7496528051576863 961,195 & 5
0.749652805157663 1157,1346 7 6
0.7496528051576963 13261495 3 asx
0.7496528051576363 132615123 asx
0.7496528051576963 1326,15023 asx
0.7496528051576963 149515120 asx
0.749652805157663 1495,15020 asx
0.7496528051576963 151215020 asx
0.7496528051576963 135313280 3
0.031120937434107567 13531207 0 3
0,03112037434107567 1328,1297 0 0
0.7496528051576963 195,197 0 NA
0.7496528051576963 453454 0 NA
0.7496528051576963 128130 3 10
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olumn 12
direction_based_on_symptoms
28<>20

130> 128

Column 13
#comparisons
2
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Column 14
pair_number

pair1, pairia (28 --> 20), pair 1b (20 > 28)
pair2, pair2a (8 -5 50), par2b (50 -5 6
pair3, paida (55 > 44),pair3b (44 —> 55)
paird

pairs
pai, pair 6a (738 > 744), pair 60 (744 --> 738)
air7

pai, pairga (884 > 903), pairg (903 > 884)
paio, pair9a (893 > 903), pairdb (903 > 893)
pairt0, pair10a (887 > 916), pair 10b (916 > 887)
pairt1, pair 11a (887 -—> 749}, pair 110 (749 > 887)
pairi2, pairi2a (916

pairt3, pair3a (906 > B48), piartb (849 -
pairld

pair20, pair20a (1495 —> 1512), pair20b (112 > 1495)
pair21, pai21a (1495 > 1502), pair21b (1502

pair22, pair22a (1512 > 1602), pair220 (1502 > 1512)
pair23.

> 1495)

pair24.
pair25, pair25a (1297 > 1326), pair2sD (1328 > 1297)

> 197), pair26b (197 > 195)
pair27, pair27a (453 > 454), pair27b (454 -
oair28.

453)

pair metadata including accession

numbers, difference in days between symptom onset, difference in days between

collection dates, and pair identifier.
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Abstract

Evidence-based public health approaches that minimize the introduction and spread of
new SARS-CoV-2 transmission clusters are urgently needed in the United States and
other countries struggling with expanding epidemics. Here we analyze 247 full-genome
SARS-CoV-2 sequences from two nearby communities in Wisconsin, USA, and find
surprisingly distinct patterns of viral spread. Dane County had the 12th known introduction
of SARS-CoV-2 in the United States, but this did not lead to descendant community
spread. Instead, the Dane County outbreak was seeded by multiple later introductions,
followed by limited community spread. In contrast, relatively few introductions in

Milwaukee County led to extensive community spread. We present evidence for reduced
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viral spread in both counties following the statewide “Safer-at-Home” order, which went
into effect 25 March 2020. Our results suggest patterns of SARS-CoV-2 transmission may
vary substantially even in nearby communities. Understanding these local patterns will

enable better targeting of public health interventions.

Introduction

The earliest outbreaks of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-
2) in the United States were seeded by travelers who became infected abroad and
initiated chains of community transmission. Several months later, SARS-CoV-2 is now
ubiquitous. More than 96% of the 3,144 United States administrative subdivisions (i.e.,
counties, boroughs, and parishes) have reported at least one SARS-CoV-2 case by June
23, 2020%**, Movement between administrative subdivisions and states, rather than
introduction from abroad, now poses the greatest risk for seeding new clusters of
community transmission. However, trends in SARS-CoV-2 caseload and spread are often
reported on large geographic scales, such as US states, which obscures the degree to
which trends may differ on smaller geographic scales. Finescale spatiotemporal patterns
of SARS-CoV-2 spread, particularly below the level of a state or territory, remain poorly

defined.

Case counts from diagnostic SARS-CoV-2 testing are used to understand community
transmission, but community-level testing may not be widely available and passive
surveillance is unlikely to detect asymptomatic or presymptomatic infections. Viral
genome sequencing has emerged as a critical tool to overcome these limitations and

provides a complementary means of understanding viral transmission dynamics. The
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value of this approach was demonstrated during the West African Ebolavirus outbreak in
2014-2016 and again during the emergence of Zika virus in the Americas in 2015-

2016142,143_

The collective global effort to sequence SARS-CoV-2 dwarfs these earlier efforts. As of
28 June 2020, more than 55,000 SARS-CoV-2 sequences collected from over 82
countries have been sequenced and shared publicly on repositories like the Global
Initiative on Sharing All Influenza Data (GISAID), enabling real-time phylogenetic
analyses encompassing global SARS-CoV-2 diversity '45295.29%  Patterns of viral
sequence variation can also be used to estimate epidemiological parameters, including
the total number of infections in a given population and epidemic doubling time,
independent of case counts 145-152297-299 Here we apply these methods to gain a nuanced
view of SARS-CoV-2 transmission within and between regions of the American Upper

Midwest.

Dane and Milwaukee Counties are the two most populous counties in the US state of
Wisconsin. They are separated by approximately 100 kilometers of rural and suburban
communities in Jefferson and Waukesha Counties. An interstate highway that typically
carries ~40,000 vehicles a day connects all four of these counties®®. Madison and
Milwaukee are the largest cities in Wisconsin as well as in Dane and Milwaukee Counties,
respectively, and are demographically dissimilar 30132, On 25 March 2020, the Wisconsin
Department of Health Services ordered most individuals to stay at home, closed non-

essential businesses, and prohibited most gatherings, an order termed “Safer at Home”
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303-305 \While there were some policies enacted to reduce the viral spread prior to this
order 3%, the “Safer at Home” order represented the most significant restriction on
individuals and businesses. This Executive Order remained in effect until 13 May 2020,
when it was struck down by the Wisconsin Supreme Court. From the start of the Executive
Order through 21 April 2020, Dane and Milwaukee Counties had the highest documented
number of SARS-CoV-2 cases in Wisconsin. Therefore, these two counties provide a
“natural experiment” to understand the impact of the “Safer at Home” Executive Order on
within- and between-county SARS-CoV-2 transmission in two US counties with

distinguishing demographic features.

Here we use our deeply sampled SARS-CoV-2 sequence data to characterize spread in
southeastern Wisconsin and, more importantly, illustrate distinct patterns of
spatiotemporal SARS-CoV-2 spread in two very nearby communities. We note that this
study was not designed prospectively. Moreover, we find that the virus’s basic
reproductive number decreased in both counties evaluated during the time in which the
“Safer at Home” order was in place, consistent with adoption of physical distancing, use

of face coverings, and other related practices 3.

Materials and methods

Sample approvals and sample selection criteria
Sequences for this study were derived from 247 nasopharyngeal (NP) swab samples
collected from Dane County between 14 March 2020 through 18 April 2020, and

Milwaukee County from 12 March 2020 though 26 April 2020, Wisconsin. Most samples
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originated from the University of Wisconsin Hospital and Clinics and the Milwaukee Health
Department Laboratories. Available sample metadata, including GISAID accession

identifiers, are available in Supplemental Information 1.

We worked with residual diagnostic specimens in a biosafety level-3 containment
laboratory at the AIDS Vaccine Research Laboratory at the University of Wisconsin —
Madison. We obtained a waiver of HIPAA Authorization and were approved to obtain the
clinical samples along with a Limited Data Set by the Western Institutional Review Board
(WIRB #1-1290953-1). This limited dataset comprised sample collection data and county

of collection. Additional sample metadata, e.g. race/ethnicity and income were not shared.

Sample inclusion criteria were retrospectively applied and were threefold: (1) sample had
a high-quality consensus sequence (passing GISAID quality control filters), (2) county of
origin was Dane county or Milwaukee county, and (3) collection date was on or before

our defined endpoint, 18 April 2020.

County-level case data and demographics
We obtained a county-level map of Wisconsin from the State Cartographer's Office

(https://www.sco.wisc.edu/maps/wisconsin-outline/). We obtained Wisconsin county-

level COVID-19 cumulative case data from the Wisconsin Department of Health Services

COVID-19 dashboard (https://data.dhsgis.wi.gov/datasets/covid-19-historical-data-

table/,

https://cityofmadison.maps.arcqgis.com/apps/opsdashboard/index.html#/e22f5ba4f1f94e
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0bb0b9529dc82db6a3, and https://county.milwaukee.gov/EN/COVID-19). All Dane and

Milwaukee county demographic data came from the Wisconsin Department of Health

Services Data & Statistics (https://www.dhs.wisconsin.gov/stats) or the U.S. Census

Bureau QuickFacts table (https://www.census.gov/quickfacts/fact/table/).

VRNA isolation for the first confirmed SARS-CoV-2 case in Dane County

The first confirmed case of SARS-CoV-2 in Dane County occurred on 30 January, 2020.
This early sample was processed using an early iteration of our SARS-CoV-2 sequencing
protocol, as outlined here. All other samples included in this study were processed using
the a modified-version of the ARTIC-sequencing protocol, as outlined below.
Approximately 140 pL of VTM was passed through a 0.22um filter (Dot Scientific, Burton,
MI, USA). Total nucleic acid was extracted using the Qiagen QlAamp Viral RNA Mini Kit
(Qiagen, Hilden, Germany), substituting carrier RNA with linear polyacrylamide
(Invitrogen, Carlsbad, CA, USA) and eluting in 30 pL of nuclease free H2.0O. The sample
was treated with TURBO DNase (Thermo Fisher Scientific, Waltham, MA, USA) at 37°C
for 30 min and concentrated to 8uL using the RNA Clean & Concentrator-5 kit (Zymo
Research, Irvine, CA, USA). The full protocol for nucleic acid extraction and subsequent

cDNA generation is available at https://www.protocols.io/view/sequence-independent-

single-primer-amplification-o-bckxiuxn.
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Complementary DNA (cDNA) generation for first confirmed SARS-CoV-2 case in
Dane County

Complementary DNA (cDNA) was synthesized using a modified Sequence Independent
Single Primer Amplification (SISPA) approach described by Kafetzopoulou et al. 308309,
RNA was reverse-transcribed with SuperScript IV Reverse Transcriptase (Invitrogen,
Carlsbad, CA, USA) using Primer A (5'-GTT TCC CAC TGG AGG ATA-(Ng)-3'). Reaction
conditions were as follows: 1uL of primer A was added to 4 yL of sample RNA, heated to
65°C for 5 minutes, then cooled to 4°C for 5 minutes. Then 5 pL of a master mix (2 pL 5x
RT buffer, 1 yL 10 mM dNTP, 1 pL nuclease free H20, 0.5 yL 0.1M DTT, and 0.5 pL SSIV
RT) was added and incubated at 42°C for 10 minutes. For generation of second strand
cDNA, 5 pL of Sequenase reaction mix (1 yL 5x Sequenase reaction buffer, 3.85 uL
nuclease free H2O, 0.15 yL Sequenase enzyme) was added to the reaction mix and
incubated at 37°C for 8 minutes. This was followed by the addition of a secondary
Sequenase reaction mix (0.45 pl Sequenase Dilution Buffer, 0.15 pl Sequenase Enzyme),
and another incubation at 37°C for 8 minutes. Following incubation, 1uL of RNase H (New
England BiolLabs, Ipswich, MA, USA) was added to the reaction and incubated at 37°C
for 20 min. Conditions for amplifying Primer-A labeled cDNA were as follows: 5 pL of
primer-A labeled cDNA was added to 45 pyL of AccuTaq master mix per sample (5 yL
AccuTaq LA 10x Buffer, 2.5 yL dNTP mix, 1uL DMSO, 0.5 pL AccuTaq LA DNA
Polymerase, 35 uL nuclease free water, and 1 pL Primer B (5-GTT TCC CAC TGG AGG
ATA-3'). Reaction conditions for the PCR were: 98°C for 30s, 30 cycles of 94°C for 15 s,

50°C for 20 s, and 68°C for 2 min, followed by 68°C for 10 min.
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VRNA isolation

As SARS-CoV-2 cases began to increase in Dane and Milwaukee Counties, we
adjusted our sequencing protocol. All samples from 10 March onward were isolated
using a Maxwell isolation instrument and subsequently processed using a modified
ARTIC tiled amplicon approach 235310 Nasopharyngeal swabs received in transport
medium (VTM) were briefly centrifuged at 21,130 xg for 30 seconds at room
temperature to ensure all residual sample sediments at the bottom of the tube. Viral
RNA (vRNA) was extracted from 100 pl of VTM using the Viral Total Nucleic Acid
Purification kit (Promega, Madison, WI, USA) on a Maxwell RSC 48 instrument and was

eluted in 50 pL of nuclease free H20.

Complementary DNA (cDNA) generation

Complementary DNA (cDNA) was synthesized using a modified ARTIC Network
approach 235310 Briefly, vRNA was reverse transcribed with SuperScript IV Reverse
Transcriptase (Invitrogen, Carlsbad, CA, USA) using random hexamers and dNTPs.
Reaction conditions were as follows: 1L of random hexamers and 1uL of ANTPs were
added to 11 L of sample RNA, heated to 65°C for 5 minutes, then cooled to 4°C for 1
minute. Then 7 pL of a master mix (4 pL 5x RT buffer, 1 yL 0.1M DTT, 1uL RNaseOUT
RNase Inhibitor, and 1 uL SSIV RT) was added and incubated at 42°C for 10 minutes,

70°C for 10 minutes, and then 4°C for 1 minute.
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Multiplex PCR to generate SARS-CoV-2 genomes

A SARS-CoV-2-specific multiplex PCR for Nanopore sequencing was performed, similar
to amplicon-based approaches as previously described 235310 In short, primers for 96
overlapping amplicons spanning the entire genome with amplicon lengths of 500bp and
overlapping by 75 to 100bp between the different amplicons were used to generate cDNA.
Primers used in this manuscript were designed by ARTIC Network and are shown in
supplementary table 3. cDNA (2.5 uL) was amplified in two multiplexed PCR reactions
using Q5 Hot-Start DNA High-fidelity Polymerase (New England Biolabs, Ipswich, MA,
USA) using the following cycling conditions; 98°C for 30 seconds, followed by 25 cycles
of 98°C for 15 seconds and 65°C for 5 minutes, followed by an indefinite hold at 4°C 235310,

Following amplification, samples were pooled together before ONT library prep.

Library preparation and sequencing

Amplified PCR product was purified using a 1:1 concentration of AMPure XP beads
(Beckman Coulter, Brea, CA, USA) and eluted in 30pL of water. PCR products were
quantified using Qubit dsDNA high-sensitivity kit (Invitrogen, USA) and were diluted to a
final concentration of 1 ng/ul. A total of 5ng for each sample was then made compatible
for deep sequencing using the one-pot native ligation protocol with Oxford Nanopore kit
SQK-LSK109 and its Native Barcodes (EXP-NBD104 and EXP-NBD114) 283, Specifically,
samples were end-repaired using the NEBNext Ultra Il End Repair/dA-Tailing Module
(New England Biolabs, Ipswich, MA, USA). Samples were then barcoded using 2.5uL of
ONT Native Barcodes and the Ultra || End Repair Module. After barcoding, samples were

pooled directly into a 1:1 concentration of AMPure XP beads (Beckman Coulter, Brea,
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CA, USA) and eluted in 30pL of water. Samples were then tagged with ONT sequencing
adaptors according to the modified one-pot ligation protocol 28. Up to 24 samples were
pooled prior to being run on the appropriate flow cell (FLO-MIN106) using the 72hr run

script.

Processing raw ONT data
Sequencing data was processed using the ARTIC bioinformatics pipeline

(https://github.com/artic-network/artic-ncov2019), with a few modifications. Briefly, we

have modified the ARTIC pipeline so that it demultiplexes raw fastq files using gcat as

each fastq file is generated by the GridION (https://github.com/nanoporetech/gcat). Once

a barcode reaches 100k reads, it will trigger the rest of the ARTIC bioinformatics workflow
which will map to the Severe acute respiratory syndrome coronavirus 2 isolate Wuhan-
Hu-1 reference (Genbank: MN908947.3) using minimap2. This alignment will then be
used to generate consensus sequences and variant calls using medaka

(https://github.com/nanoporetech/medaka). The entire ONT analysis pipeline is available

at https://github.com/gagekmoreno/SARS-CoV-2-in-Southern-Wisconsin.

Phylogenetic analysis
All 247 available full-length sequences from Dane and Milwaukee County through 26 April
2020 were used for phylogenetic analysis using the tools implemented in Nextstrain

custom builds (https://github.com/nextstrain/ncov) %284, Time-resolved and divergence

phylogenetic trees were built using the standard Nextstrain tools and scripts 4528, We

used custom python scripts to filter and clean metadata.
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An additional subsampled global phylogeny using all available sequences in GISAID as
of 21 June 2020 were input into the Nextstrain pipeline. A custom “Wisconsin” profile was
made to create a Wisconsin-centric subsampled build to include representative
sequences. To reduce combat bias, we defined representative sequences as 20
sequences from each US state, and 30 sequences from each country, per month per
year. This subsampled global build includes 5,377 sequences or roughly 11% of the total
sequences in GISAID as of 21 June 2020. All available Wisconsin sequences available
on GISAID by 21 June 2020 were incorporated into the subsampled global tree. All of the
Wisconsin sequences included in this study are listed in the include.txt to ensure they
were represented in the global phylogeny. The scripts and output are available at

https://qgithub.com/gagekmoreno/SARS-CoV-2-in-Southern-Wisconsin.

Estimating the number of introductions

To estimate the number of unique introductions into Dane and Milwaukee County we first
identified the closest phylogenetic neighbor of each Dane and Milwaukee County
sequence in the global (as of 14 June 2020) SARS-CoV-2 phylogenetic tree generated
by Dr. Rob Lanfear at the Australian National University. These trees are generated using
MAFFT 311 and FastTree 312 and are available at

https://github.com/roblanf/sarscov2phylo/. To identify the closest phylogenetic neighbors

we first pruned all tips from this tree with ambiguous collection dates (e.g. those given
only by month and year as opposed to day, month, and year) and all tips which were

excluded from our global alignment using the Nextstrain exclusion criteria (minimum
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length of 27000 nucleotides, sequences listed in the “exclude” configuration file,
sequences with admin division listed as “USA”) using BioPython. Next, we identified the
parent node of each Dane and Milwaukee County tip and then identified the closest
phylogenetic neighbor as the other descendant from this node. Aligned neighbor
sequences, if not already present, were added to the down-sampled alignment described
above, resulting in an alignment of 5,417 sequences. We inferred a maximum likelihood
phylogeny of this alignment using IQ-TREE 3'® with 1000 Ultrafast bootstrap replicates 34
using the flags -nt 4 -ninit 10 -me 0.05 -bb 1000 -wbtl -czb. The tree was rooted at
Wuhan/WHO01/2019 and TreeTime {29340210} was used to prune tips from the maximum
likelihood tree which did not follow a molecular clock (n_iqd = 4), create a time aligned
tree (infer_gtr=True max_iter=2 branch_length_mode="auto’ resolve_polytomies=False
time_marginal="assign’ vary_rate=0.0004 fixed_clock_rate=0.0008 {2020356}), and infer
the geographical locations (Dane County, Milwaukee County, U.S. States, County) of

internal nodes (sampling_bias_correction=2.5 to account for undersampling).

To estimate the number of introductions into Dane County and Milwaukee County, this
procedure was repeated on 100 of the bootstrap replicate trees. Using each of the 100
bootstrap replicate trees, we identified the earliest node in the path between the root of
the tree and each Wisconsin (Dane County, Milwaukee County, and other Wisconsin) tip
which was assigned to Wisconsin using the ancestral state reconstruction. Introduction
into Wisconsin was assumed to occur mid-way between the earliest Wisconsin node and
its parent. The time of introduction was evaluated using the mean estimate as well as the

lower and upper limits of the timing for each node. Thus, each bootstrap replicate
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contributes three lines to the plots shown in Fig 3B and Fig 3C. As we do not know
whether Wisconsin samples included in the tree from other studies are from Dane or
Milwaukee County (or elsewhere in Wisconsin), our estimates for the timing of
introduction into each county represent the timing of introduction of that lineage into
Wisconsin generally. We conservatively attribute any Dane or Milwaukee County tips or

lineages directly descending from a polytomic internal node to a single importation event.

To account for biased sampling within Dane and Milwaukee County we conducted a
rarefaction analysis. This was done using the time aligned maximum likelihood tree
described above. N (20 to 240, in increments of 20) sequences were randomly sampled
from the set of Dane and Milwaukee County sequences and all non-sampled Dane and
Milwaukee County sequences were pruned from the tree prior to ancestral state
reconstruction and estimation of the number of introductions as described above. Ten

replicates for each N were conducted.

Code to replicate this analysis is available at https://github.com/gagekmoreno/SARS-

CoV-2-in-Southern-Wisconsin. Results were visualized using Matplotlib 3%, Seaborn

(https://github.com/mwaskom/seaborn), and Baltic (https://github.com/evogytis/baltic).

Phylodynamic analysis
Bayesian phylogenetic inference and dynamic modelling were performed with BEAST2
software (v2.6.2) 3'6 and the PhyDyn package (v1.3.6) . The phylodynamic analysis

infers SARS-CoV-2 phylogenies of sequences within a region of interest and exogenous
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sequences representing the global phylogeny, and uses tree topology to inform a SEIJR
compartmental model. For the Bayesian phylogenetic analysis, an HKY substitution
model (gamma count=4; K lognormal prior (u=1, S=1.25)) and a strict molecular clock
(uniform prior 0.0005 to 0.005 substitution/site/year) were used. To select the exogenous
sequences, a maximume-likelihood global phylogeny was generated with 1QTree and
randomly downsampled in a time-stratified manner by collection week. Closest
cophenetic neighbors for each of the Wisconsin sequences were additionally included, if
not present already. Only sequences with coverage of the entire coding region and less
than 1% of N base calls were used. For the Dane County analyses, 107 local and 107
exogenous SARS-CoV-2 sequences were used. For the Milwaukee County analyses, 117

local and 129 exogenous SARS-CoV-2 sequences were used.

The SEIJR model dynamics are defined by the following ordinary differential equations:

S
S@+E@+1(6) +]() + R(®)

S
S +E@+1(6) +]() + R(®)

dS/dt = —(BI(t) + BTJ(t))

dE/dt = (BI(t) + BTJ (1)) —YoE(®)

dl/dt = yo(1 —pr)E(t) — v/ (1)
dj/dt = yoprE(t) — yJ (0)

dR/dt =y, (E(t) +](1))

The dynamics of the exogenous compartment is defined by:
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dY/dt = (IBexog - Yexog)y(t)

During phylodynamic model fitting, g, B and « are estimated. Estimated Ro was

exog’

derived from g as follows.

Ro = (B(1 = pp) + B(tPn)) /71

The epidemic growth rate of the phylodynamic model is governed by the system of
differential equations, and can thus be informed by SARS-CoV-2-specific transmission
parameters. The SEIJR model includes a “high transmission” compartment (J) that
accounts for heterogeneous transmission due to superspreading, an important
component of SARS-CoV-2 epidemiology '9317-31°  Published empirical estimates
informed parameterization of superspreading and other epidemiological parameters. The
mean duration of latent (1/y,) and infectious periods (1/y;) was 3 and 5.5 days,
respectively 28. Likewise, the mean duration of infection for the exogenous compartment
(1/Yexog) Was fixed at 8.5 days. To model low, medium, and high transmission
heterogeneity, the proportion of infectious individuals in the J compartment (p;,) and their
transmission rate multiplier (z) were set to 0.2 and 16, 0.1 and 36, or 0.05 and 76,
respectively. These p, and t settings result in 20, 10, or 5% of individuals contributing
80% of total infections. The initial size of the S compartment was fixed at 5 x 10° for Dane
County and 9.5 x 10° for Milwaukee County. To account for changes in epidemic
dynamics after the Executive Orders, a 25% reduction in importation/exportation of

sequences was applied at a 25 March breakpoint, per observed reductions in Google
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mobility indices for individuals in Wisconsin 329, Additionally, the estimated R after 25
March was allowed to vary from the pre-intervention Ro proportionally by a modifier

variable, «a.

Each analysis was run in duplicate for at least 3 million states in BEAST2. Parameter
traces were visually inspected for adequate mixing and convergence in Tracer (v1.7.1).
Log files from duplicate runs were merged with LogCombiner and 10% burn-in applied.
Similarly, trajectory files from duplicate runs were merged with an in-house R script and
10% burn-in applied. BEAST2 XML files and scripts for exogenous sequence selection
and phylodynamic data analysis/visualization are provided in the GitHub repository listed

below.

Data availability

Source data have been deposited in the Sequence Read Archive (SRA) under bioproject
PRJNAG14504. The consensus genome sequences for national and international
genomes are available from GISAID (www.gisaid.org; see Supplementary Table 3).
Source data, derived data, analysis pipelines, and figures have been made available for
replication of these results at a publicly accessible GitHub repository®?'. For the county-
level case data and demographic data presented in Fig. 1, we obtained a county-level
map of Wisconsin from the State Cartographer’s Office
(https://www.sco.wisc.edu/maps/wisconsin-outline/). We obtained Wisconsin county-
level COVID-19 cumulative case data from the Wisconsin Department of Health Services

COVID-19 dashboard (https://data.dhsgis.wi.gov/datasets/covid-19-historical-data-
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table/,

https://cityofmadison.maps.arcqgis.com/apps/opsdashboard/index.html#/e22f5ba4{1f94e

0Obb0b9529dc82db6a3, and https://county.milwaukee.gov/EN/COVID-19). All Dane and

Milwaukee county demographic data came from the Wisconsin Department of Health

Services Data & Statistics (https://www.dhs.wisconsin.gov/stats) or the U.S. Census

Bureau QuickFacts table (https://www.census.gov/quickfacts/fact/table/). Source data are

provided with this paper.

Code availability

Code to replicate this analysis is available at https://github.com/gagekmoreno/SARS-

CoV-2-in-Southern-Wisconsin. Code to process sequencing data was made available by

ARTIC bioinformatics pipeline (https://github.com/artic-network/artic-ncov2019) and uses

Minimap2 v2.17 (https://github.com/Ih3/minimap?2) and medaka v1.03

(https://github.com/nanoporetech/medaka). Phylogenetic trees were built using

Nextstrain tools and clade nomenclature (https://github.com/nextstrain/ncov). The global

sub-sampled trees were generated using MAFFT v7.464

(https://mafft.cbrc.jp/alignment/software/) , FastTree v2.1.10 {20224823}, and IQ-TREE

v1.5.5 (http://www.igtree.orq), and are available at

http://github.com/roblanf/sarscov2phylo/. Results were visualized using Matplotlib

3.3.2(https://matplotlib.org), Seaborn v0.10.0 (https://github.com/mwaskom/seaborn),

and Baltic v0.1.0 (https://github.com/evogytis/baltic). Bayesian phylogenetic inference

and dynamic modelling were performed with BEAST2 software v2.6.2 {30958812} and
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the PhyDyn package v1.3.6 {30422979}. Parameter traces were visualized in Tracer

v1.7.1 (http://tree.bio.ed.ac.uk/software/tracer/).

Results

SARS-CoV-2 epidemics and community demographics in Dane and Milwaukee
Counties

Dane County is home to the 12th reported SARS-CoV-2 case in the United States,
detected on 30 January 2020. Subsequent cases were not reported until 9 March 2020.
By 26 April, Dane County had 405 confirmed SARS-CoV-2 cases and 19 deaths 3%,
Milwaukee County reported its first case on 11 March 2020. By 26 April, Milwaukee
County had reported 2,629 confirmed SARS-CoV-2 infections and 126 deaths 323 (Fig

1B).

Dane County and Milwaukee County are both located in Southern Wisconsin. Milwaukee
County is 127 km east of Dane County, measured from center to center. As of 2015, Dane
County had a population of 516,850 at a density of 166 people per km? compared to

952,150 at 1,522 per km? for Milwaukee County (Fig 1A) 301302,

The majority of individuals living in Dane County are White (81.5%). The next largest
group identifies as Hispanic or Latinx (6.3%), followed by Asian (6.0%), Black (5.9%), and
American Indian (0.3%) 3%2. Milwaukee County is less predominantly White (53.3%) with
much larger Black (27.2%) and Hispanic or Latinx (14.5%) populations, followed by Asian

(4.3%) and American Indian (0.7%) 2°'. The percent of individuals 265 years old is similar
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in Dane County (13.7%) and Milwaukee County (13.6%), while the percent of individuals
under 18 years is slightly lower in Dane County (20.4%) than Milwaukee County (24%).
In addition, median income and access to healthcare resources is lower in Milwaukee
County than in Dane County 3?4, The median individual in Milwaukee County is also more
likely to experience poverty and to live with comorbidities such as type Il diabetes,

hypertension, and obesity (Table 1) 3%

Dane and Milwaukee County viruses are genetically distinct

If an outbreak is fueled by community spread following a single introduction, one would
expect viral genomes to be close phylogenetic relatives, in which case genetic distances
measured in any pairwise comparisons of sequences would be low. To examine this, we
generated SARS-CoV-2 consensus sequences using the ARTIC Network protocol 235310
and defined the population of consensus single-nucleotide variants (SNVs) relative to the

initial SARS-CoV-2 Wuhan reference (Genbank: MN908947.3).

In Dane County, we identified 155 distinct SNVs across 122 samples evaluated. These
SNVs are evenly distributed throughout the genome, and 92.9% (144/155) are located in
open reading frames (ORFs). In Dane County, 52.9% (82/155) of consensus SNVs result
in an amino acid change (nonsynonymous) and 40% (62/155) do not (synonymous) (Fig
2A).

In Milwaukee County, we identified 148 distinct SNVs across 125 samples evaluated.
Among the observed consensus SNVs in Milwaukee County, 63.5% (94/148) are

nonsynonymous and 31.8% (47/148) are synonymous (Fig 2B).
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Mean inter-sequence pairwise SNV distance was 7.65 (std 1.83) and 5.02 (std 3.63)
among Dane County and Milwaukee County sequences, respectively (Fig 2C). Likewise,
we detected an average of 4.4 new SNVs per day (sampling period of 35 days) in Dane
County and 3.6 new SNVs per day (sampling period of 41 days) in Milwaukee County.
Previous reports suggested SARS-CoV-2 is expected to acquire approximately one fixed
SNV every fifteen days following a single introduction 32°. Compared to this benchmark,
both Dane County and Milwaukee County have “excess” diversity which can be most
parsimoniously explained by multiple introductions of divergent viruses. These patterns
are consistent with a greater number of introductions of distinct viruses into Dane County

compared to Milwaukee County.

To further analyze genetic differences among viruses in the two locations, we assigned
clades using the Nextstrain nomenclature. For example, clade 19B is defined by two
mutations at nucleotides 8,782 (ORF1ab S2839S) and 28,144 (Spike L84S) relative to a
reference SARS-CoV-2 isolate from Wuhan, China (Genbank: MN908947.3). The
majority of Dane County sequences (n = 63 sequences; 51.6%) cluster in the 20A clade
(Fig 3A). This clade is defined by four variants, at nucleotide positions 241 (upstream of
the first open reading frame), 3,037 (ORF1a F924F), 14,408 (ORF1b P314L), and 23,403
(S D614G). A minority (n = 31 sequences; 24.8%) of Milwaukee County sequences also
cluster in this clade. In contrast, the 19A clade designation is most common (n = 75
sequences; 60.0%) in sequences from Milwaukee County. This clade is distinguished by

a U-to-C variant at nucleotide position 29,711 (downstream of ORF10) (Fig 3B).
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No onward spread from Dane County index case

The first known SARS-CoV-2 case in Wisconsin was a person who was likely infected
during travel to Wuhan, Hubei province, China, where they were exposed to family
members with confirmed SARS-CoV-2 infections. The patient reported a sore throat
shortly before departing China and returning to the US on 30 January 2020. The person
wore a mask during the return flight. Upon arrival in the US, the person immediately
presented to an emergency department while still wearing a mask. The person was
afebrile and had no respiratory or gastrointestinal signs or symptoms, but began to
develop mild respiratory symptoms shortly thereafter. The person’s condition remained
stable and never required hospitalization or advanced care, with symptoms resolving five
days later. The person self-quarantined in an isolated room in a home with a dedicated
bathroom for 30 days following symptom onset. During this time, nasopharynx samples

repeatedly tested positive for SARS-CoV-2 viral RNA.

Documentation of asymptomatic infections of SARS-CoV-2 has led to concerns about the
role of cryptic community transmission in the United States 47326327 However,
sequencing in other locations in the United States has revealed early introduction events
did not always go on to seed downstream community spread 3?8. To determine whether
SARS-CoV-2 cases detected in Dane County in March might have been due to
undetected spread from the first Wisconsin introduction, we compared the sequence of
this early case with local and global SARS-CoV-2 sequence diversity. The first Dane

County patient’s virus contains an in-frame deletion at nucleotide positions 20,298 -
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20,300, in a region that codes for the poly(U)-specific endoribonuclease; the impact of
this mutation on viral fitness is unknown 32° (Supplemental Fig 1). Notably, this deletion
was not detected in any other Dane County sequence, nor in any other sample(s)
submitted to GISAID as of 18 April 2020. Moreover, there are no branches originating
from the index Dane County case on either the global (Wisconsin sequences plus a
subsampled set of global sequences) or local phylogenies (Wisconsin sequences only,
maximum likelihood) (Fig 2C, Fig 3A). Thus, this early case appears to be an example

of successful infection control practices.

SARS-CoV-2 outbreak dynamics differ between Milwaukee and Dane Counties

The independent local phylogenies in Dane and Milwaukee County suggested that these
two nearby locations had largely distinct SARS-CoV-2 epidemics through April 2020. To
better understand the number of introductions and continued transmission dynamics, we
generated a time-resolved sub-sampled global phylogeny incorporating Dane County
(red tips) and Milwaukee County (blue tips) sequences alongside representative global
SARS-CoV-2 sequences, including all other available Wisconsin sequences (purple tips)
(Fig 4A). Dane County viruses are distributed throughout the tree, consistent with multiple
unique introductions. In contrast, Milwaukee County viruses cluster more closely together,

consistent with fewer introductions leading to subsequent community transmission.

To estimate the number of introductions into the state and subsequently each county, we
used an ancestral state reconstruction of internal nodes. We performed 100 bootstrap

replicates to account for uncertainty in the phylogenetic inference. This yielded an
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estimate of 59 [59, 63] (median [95% highest density interval (HDI)]) independent
introductions of SARS-CoV-2 into the state of Wisconsin. Of these, 29 [28, 31] led to
introductions into Dane county whereas only 21 [19, 21] led to introductions into
Milwaukee county (Fig 4B). Surprisingly, only 9 [6, 10] of the introductions into Wisconsin
were associated with sequences from both counties. Furthermore, these shared
introductions accounted for only 20-30% of the samples from Dane and Milwaukee
County present in our dataset. Together, our analyses suggest that transmission between
Dane and Milwaukee counties has not been a principal component of viral spread within
either region. We find that local transmission in Milwaukee County began earlier, with an
introduction event in late January/early February leading to a large number of the
Milwaukee County sequences (Fig 4C). In comparison, most samples collected from
Dane County are associated with multiple introductions in late February/early March (Fig
4C). Despite the fact that there were more introductions into Dane County, the reported
number of cases was considerably less than in Milwaukee County. This indicates that
each introduction into Dane County contributed less to onward viral transmission than in

Milwaukee County.

To account for sampling bias on our estimates, we randomly sampled sequences from
our set of Dane and Milwaukee County samples (N = 20-240, increments of 20) and
pruned all other Dane and Milwaukee samples from the maximum likelihood tree. This
was repeated 10 times for each N, creating a set of 120 trees. We repeated the ancestral
state reconstruction on each of these trees and re-estimated the number of introductions

(Supplemental Fig 2). The number of estimated introductions into Dane County
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continued to increase with the number of sampled sequences, indicating that these data
may be undersampling the true number of circulating viral lineages. In contrast, the
number of estimated introductions into Milwaukee County decreases more slowly than
Dane County, consistent with a small number of introductions. However, we cannot
entirely rule out the possibility that the small number of introductions in Milwaukee County
may be an artifact of biased sampling, where the available sequences may only represent
a portion of the transmission chains and not a true estimation of the total circulating viral
population. Because of this, the true number of introductions is likely to change as more
sequences become available in each county. Taken together, these results suggest that
patterns of SARS-CoV-2 introduction and spread can differ dramatically in two small
administrative regions (here, Dane and Milwaukee Counties), despite their close

geographic, economic, and political connections.

Spread of SARS-CoV-2 was reduced following Wisconsin’s “Safer at Home” Order
We next used viral sequence data to assess the impact of Wisconsin's “Safer at Home”
order on SARS-CoV-2 transmission by estimating the basic reproduction number (Ro).
Transmission heterogeneity, or superspreading, is thought to play an important role in
SARS-CoV-2 epidemics '49:330.331 \We therefore modeled Ro before and after the “Safer
at Home” order in scenarios in which the level of transmission heterogeneity was low,
medium, or high. In both counties, under all three scenarios, Ro fell by at least 40% after
25 March, indicating that the sequencing data support the observed decline in reported
cases. In Dane County, estimated median Ro was reduced by 40% [4, 74], 49% [13, 79],

and 60% [30, 83] under low, medium, and high transmission heterogeneity, respectively.
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Similarly, in Milwaukee County, estimated median Ro was reduced by 68% [50, 83], 71%
[56, 86], and 72% [60, 84] under low, medium, and high transmission heterogeneity,

respectively.

In Dane County, estimated cumulative incidence was best predicted with the medium
transmission heterogeneity model, based on alignment with reported incidence (Fig 5A),
whereas Milwaukee County’s cumulative incidence was best predicted with the model
using high transmission heterogeneity (Fig 5B). A greater role for superspreading events
in Milwaukee versus Dane County could be explained by higher population density, higher
poverty rates, and/or worse healthcare access (Table 1), all of which may increase
contact rates and impede physical distancing efforts 331335 Assuming moderate
transmission heterogeneity in Dane County, estimated Ro prior to 25 March was 2.24
[1.86, 2.65] and the median estimated cumulative incidence at the end of the study period
(26 April) was 4,546 infections [1,187, 23,709] compared to 405 positive tests. In contrast,
assuming high transmission heterogeneity in Milwaukee County, estimated Rq prior to 25
March was 2.82 [2.48, 3.20] and the median cumulative incidence on 26 April was only

3,008 infections [1,483, 7,508] compared to 2,629 positive tests.

With passive SARS-CoV-2 surveillance efforts in both counties likely missing subclinical
and asymptomatic SARS-CoV-2 infections, we expect the true cumulative incidence to
be considerably greater than the reported incidence, as has been suggested by others
336 Indeed, estimated cases were ~10x higher than reported cases in Dane County.

Given that there were no substantial differences in the surveillance efforts between
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counties, we expected more than the 1.1-fold difference in estimated and reported cases
in Milwaukee County. Nearly equivalent estimated and reported cumulative incidence in
Milwaukee County could be explained by better detection rates, inaccurate model
parameters, and/or biased sampling. However, we likely have representative sampling
across Milwaukee County, just on a smaller scale in comparison to Dane County. In an
effort generate representative sequence data from Milwaukee County, samples were
collected from over 35 zip codes and included samples from known outbreaks, community
centers, healthcare facilities, congregate settings (long-term care facilities, jails,
correction facilities), meat processing/packing plants as well as households in hotspots
where SARS-CoV-2 transmission was detected within Milwaukee County (Supplemental
Fig 4). With better detection rates, a greater proportion of actual infections would be
reported, but given the similar surveillance efforts between counties we expect detection
rates to be comparable. Another possible explanation we cannot rule out is that different
model parameters are required to more accurately model Milwaukee County’s epidemic.
Our testing of three superspreading scenarios demonstrated that the superspreading
parameters, at least, may be county-specific. In the case of biased sampling, where the
available sequences only represent a portion of transmission chains in the county, our
model would only estimate the caseload resulting from a subset of transmission chains in
Milwaukee County and would underestimate the county-wide caseload. In support of
representative county-wide sampling in Dane, but not Milwaukee County, sequences from
26.4% (107/405) of test-positive cases in Dane County, but only 3.9% (117/3008) of test-

positive cases in Milwaukee County were available for phylodynamic modelling 322323,
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Discussion

A clear understanding of SARS-CoV-2 transmission patterns in a given location may
permit and promote more effective targeting of public health messaging and infection
mitigation efforts. Several studies have described how SARS-CoV-2 entered and began
circulating within broad geographic regions, like entire countries (England, Brazil, Austria,
Australia) or large and populous US states (Bay Area, NYC) '47-149,298,337-340 Byt few
studies to date have explored how such patterns may differ on finer geographic and
temporal scales, even though many interventions will necessarily be highly localized in
scope. Here, we examined differences in SARS-CoV-2 introduction and spread in two
nearby counties — Dane County and Milwaukee County — as an example of how such
patterns may differ even on small geographic scales. Dane County, Wisconsin had one
of the earliest detected cases of SARS-CoV-2 infection in the United States, but this
infection did not spark community spread. This is probably due to a combination of good
infection control practices by healthcare providers, the patient, and sheer luck. Since
March 2020 we find evidence for extensive introductions of SARS-CoV-2 into Dane
County, none of which led to large-scale transmission clusters by the end of April 2020.
As of 18 August 2020, Dane County has had a cumulative prevalence of 124.9 cases per
100,000 residents. In contrast, Milwaukee County, a larger and more densely populated
region ~100km away, has had 2,627 cases per 100,000 residents as of 18 August 2020
341 Our findings suggest that Milwaukee County’s higher caseload stems from greater
levels of community spread descendant from fewer introduction points than in Dane
County. Strikingly, we see little evidence for mixing of virus populations between these

two closely-linked communities in the same US state.
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We used patterns of SARS-CoV-2 diversification in a phylodynamic model to estimate the
initial reproductive rate of infections in each county before official physical distancing
policies were enacted. In this initial phase of the outbreak, the median estimated Ro
trended lower in Dane County than in Milwaukee County (2.24 vs 2.82). Higher overall
population density and a higher average number of individuals residing in one dwelling in
Milwaukee County could have contributed to a higher reproductive rate and greater
community spread. A potential additional explanation for greater community spread is that
the average individual in Milwaukee County, compared to Dane County, has access to
fewer financial and healthcare resources and is more likely to experience poverty and to
live with comorbid conditions, many of which are also risk factors for testing positive for
SARS-CoV-2, the latter of which are also risk factors for severe COVID-19 301,302:342,343
Additionally, Milwaukee County is home to a higher proportion of Black and Hispanic or
Latinx individuals compared to Dane County. Because of race-based discrimination,
people belonging to these groups experience worse health outcomes than White
individuals, on average, despite being treated in the same healthcare systems
301,302,344,345_The social vulnerability index (SVI) is a metric ranging designed to determine
how resilient a community is when confronted with external stressors like natural disasters
or a pandemic 3. A higher SVI indicates a community is vulnerable to experiencing
worsened outcomes secondary to an external stressor (range of zero to one). All of the
factors mentioned above contribute to a higher SVI in Milwaukee County (0.8268)
compared to Dane County (0.1974) 346, While the association between SVI and SARS-

CoV-2 incidence is not significant, according to a recent study, the SVI components of
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socioeconomic and minority status are both predictors of higher SARS-CoV-2 incidence
and case fatality rates 3#7. These sub-components are likely to be among the main drivers

in the outbreak dynamics between Dane and Milwaukee County.

Like most US states, in late March 2020 Wisconsin enacted a set of physical distancing
policies aimed at reducing the spread of SARS-CoV-2. Wisconsin’s order, termed “Safer
at Home,” was enacted 25 March 2020. After this timepoint, the estimated Ro was reduced
by 40% or more in both counties. The sequencing data is consistent with the observed
reduction in positive tests, as clusters expanded more slowly and new clusters arose
more slowly. Throughout this time, we find that the Dane County and Milwaukee County
outbreaks were largely independent of one another. Our data reveal only limited mixing
of SARS-CoV-2 genotypes between these geographically-linked communities, supporting
the notion that public health policies emphasizing physical distancing effectively reduce
transmission between communities. Notably, “Safer at Home" ended abruptly 13 May
2020, when it was overturned by the Wisconsin Supreme Court. Additional sequencing
and epidemiological data will be necessary to understand whether virus intermingling

between these counties increased after the cessation of the Executive Order.

Viral determinants could also affect differential transmission patterns within and between
Dane and Milwaukee Counties. If variants with greater transmission potential exist, then
early introductions of such a variant into a community could contribute to greater spread
there. Recent reports have suggested that a point mutation in the SARS-CoV-2 spike

protein-encoding an aspartate-to-glycine substitution at amino acid residue 614 (D164G)
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may enhance transmissibility 348350 This mutation confers increased infectivity of
pseudotyped murine retroviruses in ACE2-expressing HEK293T cells 3%° and has been
proposed to be increasing in global prevalence, perhaps under natural selection 3.
Importantly, however, the rise in D614G frequency could also be due to founder effects,
as viruses bearing the glycine allele may have been the first to establish local
transmission in Europe. D614G is one of the mutations defining the 20A clade; these
viruses remain dominant in Europe 32, so introductions from Europe into the United
States, including into Dane County, predominantly carry D614G. In comparison, in
Milwaukee County, the vast majority of viruses have an aspartic acid residue at this site
despite much higher levels of community transmission early in the pandemic. This
observation does not necessarily indicate that D614G does not impact viral
transmissibility; its role may be muted by other determinants of transmission, including
demographic and socioeconomic factors. Viruses encoding D614G may displace 614D
variants over time in regions like Milwaukee County, where 614D viruses have sustained

community spread.

There are some important caveats to this study. Of the total reported positives in each
county during the study period, high-quality sequences were available for 30% of test-
positive cases in Dane County, but only 5% of test-positive cases in Milwaukee County
322323 Despite the deep sampling of SARS-CoV-2 sequences in Wisconsin relative to
other regions in the US, even greater targeted sequencing efforts may be required to fully
capture the sequence heterogeneity conferred by multiple introduction events and

variable superspreading dynamics. It is possible additional sequencing in Milwaukee
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County would uncover additional viral lineages, or that the 5% of cases we sequenced do
not fully represent the diversity of viruses found throughout the county, skewing our
observations. However, in analyzing sample metadata we find no evidence that particular
locations within Milwaukee County were dramatically over- or under-sampled relative to
their known SARS-CoV-2 prevalence (Supplemental Fig. 4). Another potential
explanation is that Milwaukee County was under-testing relative to Dane County.
Throughout the period analyzed here, the percentage of SARS-CoV-2 tests returning
positive in Milwaukee County was ~20%, compared to only ~5% in Dane County 322323
indicating that a higher proportion of infections might have been missed by testing in
Milwaukee County relative to Dane County. As we are only able to sequence test-positive
samples, it is possible that under-testing in Milwaukee County limited our ability to capture
a complete representation of their epidemic. However, we have no reason to suspect
Milwaukee testing regimes were biased toward or against subsets of the overall
population. During this time, there were three free community testing sites (supported by
the Wisconsin National Guard) and several additional community testing and shelter sites
located throughout the city. COVID-19 testing criteria for Milwaukee public health
laboratories targeted all sectors of the population per Wisconsin Department of Health
Services guidelines 3%2. In sum, we have taken steps to minimize systematic sampling
bias in Milwaukee County in this study, but we cannot entirely exclude the possibility that
the samples available to us for sequencing did not fully capture the diversity of SARS-

CoV-2 circulating in Milwaukee County during the study period.
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It is also possible that other sequences from these counties relevant to our analyses were
collected by other groups. As of 21 June 2020, there were 477 Wisconsin sequences
available, but only 351 of these had geolocation information resolved to the county level.
Some of the remaining 126 sequences likely originated from Dane County or Milwaukee
County, but we cannot include these sequences in our analysis given their geolocation
data resolved only to the state level. Currently there is no clearly stated national-level
guidance for metadata to be associated with pathogen sequences. Dates and geographic
locations with greater than state-level resolution are required to track the emergence and
spread of novel pathogens like SARS-CoV-2. Explicit regulatory guidance from the United
States enabling the disclosure of sequencing data with county-level geolocation data and
sampling dates would enable other institutions to harmonize reporting of viral sequences
and improve subsequent studies comparing viral sequences from different locations, as
described previously 3%. Such reporting may be especially important for identifying
disparities in viral transmission due to socioeconomic vulnerabilities in specific counties

that would otherwise be masked using state-level data reporting.

Few previous studies have carefully evaluated patterns of SARS-CoV-2 introduction and
spread below the level of US regions or states. Yet, with little US federal guidance, the
majority burden of organizing and implementing anti-SARS-CoV-2 public health
campaigns has fallen to US cities and counties. Tailoring public health messaging and
intervention strategies to specific communities and locations can enhance their efficacy
and durability. Our study exemplifies how viral sequence dynamics can enhance our

understanding of the finescale patterns of virus introduction and spread, revealing
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differences in transmission patterns between even nearby communities that could inform
the design of targeted interventions. For example, our data suggest Dane County, which
had a large number of introductions but relatively little sustained community spread during
the study period, might have benefited most from travel restrictions and/or quarantine for
people entering the community. In contrast, our data suggest that community spread was
established early in the study period in Milwaukee County, so interventions targeted at
interrupting transmission clusters might have had the most impact. These could include
limiting indoor community gatherings, targeting messaging or social marketing campaigns
promoting masking and other physical distancing measures, and improving access to
economic and healthcare resources — not only direct access to care, but also paid leave
and other support systems for workers who are ill. To this end, continued efforts to
sequence SARS-CoV-2 viruses across multiple spatio-temporal scales remain critical for
tracking viral transmission dynamics within and between communities and for guiding
“precision medicine” public health interventions to suppress future SARS-CoV-2

outbreaks.
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Figure 1.

210

Demography and epidemiology of SARS-CoV-2 in southern Wisconsin. A) A map of

Wisconsin highlighting Dane County (red) and Milwaukee County (blue). Cumulative case

counts through 26 April 2020 are reported within each county border. B) Cumulative
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SARS-CoV-2 cases in Dane County (red) and Milwaukee County (blue) from 9 March

through 26 April. The vertical dashed line indicates the start date of Wisconsin’s “Safer at

Home” order, which went into effect 25 March 2020.
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Figure 2.

Characterizing consensus-level variants and sequence divergence among Dane and
Milwaukee County sequences. SNVs are annotated relative to the initial Wuhan SARS-
CoV-2 reference (Genbank: MN908947.3). A) Frequency of consensus SNVs among the
Dane County sequences, represented in red. B) Frequency of consensus SNVs among

the Milwaukee County sequences, represented in blue. Open symbols denote
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synonymous or intergenic SNVs and closed symbols denote nonsynonymous SNVs. C)
A divergence-based phylogenetic tree built using Nextstrain tools for the 122 Dane
County (red) and 125 Milwaukee County (blue) sequences. Wisconsin samples are

rooted against Wuhan-Hu-1/2019 and Wuhan/WH01/2019.
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Figure 3.

Dane and Milwaukee County outbreaks are defined by genetically distinct viruses. A) A
time-resolved phylogenetic tree built using Nextstrain tools for 122 samples collected in
Dane County. B) A time-resolved phylogenetic tree for 125 samples collected in

Milwaukee County. Clade is denoted by color. Both phylogenies include Wuhan
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sequences (Wuhan-Hu-1/2019 and Wuhan/WHO01/2019, denoted in grey) to more

effectively time-align each tree.
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Figure 4.

Estimate of the number of introduction events into Milwaukee and Dane County and their
relative contribution to downstream epidemic dynamics. A) Maximum likelihood (ML)
time-resolved tree with subsampled global sequences and closest phylogenetic
neighbors relatives included (grey branches). Sequences from Dane and Milwaukee
Counties are highlighted in red and blue, respectively. Sequences with geolocation
information available to the state level, or that are located outside of Dane and Milwaukee
Counties (i.e. La Crosse) are shown in purple. B) Estimated cumulative number of
introduction events into each county. C) Gaussian Kernel Density Estimate plots showing
the estimated timing of each introduction event (3 curves per replicate: mean and 90%
confidence intervals) into Dane County (red) or Milwaukee County (blue). The relative
number of samples from each region attributable to an introduction event is represented
on the y-axis. Curves are normalized to a cumulative density of one; therefore, y-axis

scale is not shown.
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Figure 5.

Phylodynamic modelling of regional outbreaks informs regional outbreak dynamics before
and after government interventions. Bayesian phylodynamic modelling of cumulative
incidence up to 26 April for outbreaks in A) Dane County and B) Milwaukee County under
low (left), medium (center), and high (right) transmission heterogeneity conditions. Model
parameters for low, medium, and high transmission heterogeneity were fixed such that
20, 10, and 5% of superspreading events contribute 80% of cumulative infections,
respectively. Median cumulative incidence (solid black line) is bound by the 95%
confidence intervals (Cl; gray ribbon). Dots represent reported cumulative positive tests
in Dane County (red) and Milwaukee County (blue). Estimated median reproductive

numbers (Ro) with 95% HDI are listed for the period before the Wisconsin “Safer at Home”
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order was issued on 25 March 2020. Percent reduction in Rg with 95% HDI is provided

for the period after 25 March 2020.

County-level demographic data Dane Milwaukee
Population size (2015) 516,850 952,150
Population per square mile (2015) 430 3942
Average number of persons per dwelling (2014-2018) 2.35 2.44
Age (2014-2018):

% of population under 5 5.6 6.9

% of population under 18 20.4 24

% of population over 65 13.7 13.6
Race/ethnicity (2015):

White 81.5% 53.3%

African American 5.9% 27.2%

American Indian 0.3% 0.7%

Hispanic 6.3% 14.5%

Asian 6.0% 4.3%
Median income (2015) $65,416 $45,905
% of population that is uninsured, under 65 (2014-2018) 4.9% 8.2%
Poverty estimate, all ages (2015) 11.2% 20.3%

% of population reported overweight or obese (2012-2016)

54.3% - 58.5%

64.7% - 69%

% of adults reporting diagnosed diabetes (2012-2016)

Table 1.

4.2% - 6.8%

8.6% - 9.8%

County level demographics for Dane and Milwaukee County.
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Supplemental Figure 1.
Diagnostic deletion in the index Dane County sample. Consensus-level deletion identified

in the Dane County index sample. Zoomed in panel shows nucleotide and amino acid

identities of the in-frame deletion.



220

' | *

g

304

25+

20

1

15
0 '
|

20 40

Supplemental Figure 2.

1

# of introductions

1

|

"'N‘!l“l _

- Dane

60 80 100 120 140 160 180 200 220 240
Milwaukee and Dane County samples

Sampling sensitivity of estimates for the number of introductions into Dane and Milwaukee
Counties. Estimates of the number of introductions into Dane and Milwaukee Counties
using a time aligned maximum likelihood phylogeny. N sequences (x-axis) were randomly
sampled from the available Dane and Milwaukee County samples and the remaining were
pruned from the tree. Ten replicates of each N were conducted and the number of

introductions (y-axis) was estimated for each.
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Supplemental Figure 3.

Temporal distribution of SARS-CoV-2 samples. The total count of samples collected (y-
axis) during 1-week intervals (x-axis) from the first documented Wisconsin case through
18 April, 2020. Weeks with no samples are still shown here as indicated by data points at
y = 0. Code to recreate this figure can be found in the GitHub repository

— “data_raw/supplementary_figure_3.ipynb".
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Number of Confirmed Cases by ZIP Code - Milwaukee County
March 11th - May 1st

Supplemental Figure 4.

© 2020 Mapbox © OpenStreetMap

Geographic distribution of Milwaukee County sequences (left) compared to test positive

cases (right) by zip code. Case count data were collated using the Wisconsin Electronic

Disease Surveillance System (WEDSS) and data were sorted and plotted using Tableau

(https://www.tableau.com/) to create counts and color gradients by ZIP code.
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Division Number of sequences [ Number of positive SARS-CoV-2 cases |Percent sequenced (%)
England 23212 265,849 8.73
Wales 5425 17389 31.20
Scotland 5121 18847 2717
Washington 3957 55600 712
California 2189 500600 0.44
Victoria 1522 13469 11.30
New York 1505 411600 0.37
Michigan 1069 86200 1.24
Wisconsin 963 52900 1.82
Louisiana 786 116300 0.68
Singapore 770 54555 1.41
Denmark 735 14306 5.14
Northern Ireland 77 6049 11.85
Netherlands 692 56381 1.23
Utah 688 32400 212
New South Wales 656 3832 17.12
Portugal 642 52061 1.23
British Columbia 604 3834 15.75
Reykjavik 601 1932 31.11
Florida 560 469800 0.12
Basque Country 559 15634 3.58
Minnesota 545 54300 1.00
Virginia 522 89900 0.58
Gujarat 447 66777 0.67
Massachusetts 418 117200 0.36
Dane County - April 26th 122 405 30.12
Milwaukee County - April 26th 125 2629 4.75

Supplemental Table 1.

SARS-CoV-2 sequencing depth per admin division

. Admin division is defined as the state

or country. Percent sequenced (%) is calculated as the number of consensus sequences

over the number of documented positive SARS-CoV-2 cases across a variety of

geographic locations as of July 31, 2020. The number of sequences per geographic

location were obtained on GISAID by downloading the NextMeta file and filtering on the
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‘Admin Division’ search field. We compared the sequencing depth to the sequencing
depth obtained by our study (indicated by ‘- April 26th’) to highlight that we are one of the

top 25 deepest sequenced divisions.

Location Number of sequences [ Number of positive SARS-CoV-2 cases |Percent sequenced (%)
Yakima County 1704 9971 17.09
San Diego 702 29577 2.37
Sydney 543 3809 14.26
East Baton Rouge Parish 424 11263 3.76
Manhattan 419 222522 0.19
Brooklyn 373 61948 0.60
Valencia 343 12999 2.64
Dane County 334 4145 8.06
King County 322 15946 2.02
Greater Houston Area 320 80914 0.40
Santa Clara County 313 11128 2.81
Donostia-San Sebastian & Vitoria-Gasteiz 535 15634 3.42
Wuhan 257 68138 0.38
Nassau County 202 43482 0.46
Snohomish County 187 6033 3.10
Orange County 184 38131 0.48
Munich 181 51068 0.35
Queens 175 67598 0.26
South Yorkshire 171 9610 1.78
San Francisco 163 7231 2.25
Pierce County 159 5851 2.72
Milwaukee County 153 19332 0.79
Los Angeles County 146 198355 0.07
Hyderabad 144 73050 0.20
Dane County - April 26th 122 405 30.12
Milwaukee County - April 26th 125 2629 4.75

Supplemental Table 2.
SARS-CoV-2 sequencing depth per location. Percent sequenced (%) is calculated as the

number of consensus sequences over the number of documented positive SARS-CoV-2
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cases across a variety of geographic locations. The number of sequences per geographic

location were obtained on GISAID by downloading the NextMeta file and filtering on the

‘Location’ search field. We compared the

sequencing depth to the sequencing depth

obtained by our study (indicated by ‘- April 26th’) to highlight that we are one of the top

25 deepest sequenced locations.

Genb
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35/2020 95 79443 507376 | 555941 504 3-24 | America n county America

ow | | [sman s s | e |2 ||y, |t [ ome {hrn fusa | o
37/2020 95

3§VA>/WI> EP‘I&Iz SRX80 SRR11 SAMN14 PRJNA614 | 2020- | North USA Wisconsi Dane North USA Wisconsin
38/2020 gg 79446 507373 | 555944 504 3-25 | America n county America

i e R e o e el oot ol IS FEl i P [ -
39/2020 97

3§VA>/WI> EP‘I&Iz SRX80 SRR11 SAMN14 PRJNA614 | 2020- | North USA Wisconsi Dane North USA Wisconsin
40/2020 gg 79448 507371 | 555946 504 3-24 | America n county America

ﬂsﬁlvw_ EP‘I&I182 SRX80 | SRR11 SAMN14 | PRJNAG614 | 2020- | North USA Wisconsi | Dane North USA Wisconsin
41/2020 g§ 79449 507370 | 555947 504 3-25 | America n county America

3§VA/WI EFT&'% SRX80 | SRR11 | SAMN14 | PRINA614 | 2020- | North USA Wisconsi | Dane North USA Wisconsin
4212020 06 79450 507369 | 555948 504 3-18 | America n county America

ﬂsﬁlvw_ EFT&I% SRX80 | SRR11 SAMN14 | PRJNAG614 | 2020- | North USA Wisconsi | Dane North USA Wisconsin
43/2020 OT 79451 507368 | 555949 504 3-19 | America n county America

3§VA/WI EFT&'% SRX80 | SRR11 [ SAMN14 | PRINA614 [ 2020- | North USA Wisconsi | Dane North USA Wisconsin
44/2020 05 79452 507367 | 555950 504 3-17 | America n county America

ﬂsﬁlvw_ EFT&I% SRX80 SRR11 SAMN14 PRJUNAG14 | 2020- | North USA Wisconsi Dane North USA Wisconsin
45/2020 05 79454 507365 | 555951 504 3-22 | America n county America

i ) B = e e e Pl P el el P I [
46/2020 04 - y America

ﬂsﬁlvw_ EFT&I% SRX80 SRR11 SAMN14 PRJNAG14 | 2020- | North USA Wisconsi Dane North USA Wisconsin
48/2020 Og 79457 507362 | 555954 504 3-25 | America n county America

ow | | [sman s s | |2 | v g, |t [ 0me {rnusa | o
49/2020 07

33\7\,\”_ EP‘I&I183 SRX80 SRR11 SAMN14 PRJNAG614 | 2020- | North USA Wisconsi Green North USA Wisconsin
50/2020 Og 79459 507360 | 555956 504 3-25 | America n County America

A i B vl g el Fronl s Bl RS el S I IR P
51/2020 09

33\7\,\”_ EP‘I&I183 SRX80 | SRR11 | SAMN14 | PRJINA614 | 2020- | North USA Wisconsi | Dane North USA Wisconsin
52/2020 16 79461 507358 | 555958 504 3-18 | America n county America

ﬂst/WI EPJ&'% SRX80 | SRR11 | SAMN14 | PRINA614 [ 2020- | North USA Wisconsi | Dane North USA Wisconsin
53/2020 1? 79462 507357 | 555959 504 3-18 | America n county America

337W|_ EP‘I&IE SRX80 | SRR11 SAMN14 | PRJNAG614 | 2020- | North USA Wisconsi | Dane North USA R
54/2020 15 79463 507356 | 555960 504 3-20 | America n county America

stl-}/\NI» EP‘I&I1S3 SRX80 SRR11 SAMN14 PRJNA614 | 2020- | North USA Wisconsi Dane North USA Wisconsin
55/2020 15 79465 507354 | 555961 504 3-23 | America n county America

337W|_ EP‘I&IE SRX80 | SRR11 SAMN14 | PRJNAG614 | 2020- | North USA Wisconsi | Dane North USA R
56/2020 12 79466 507353 | 555962 504 3-18 | America n county America

ﬂst/WI EPJ&'% SRX80 | SRR11 | SAMN14 | PRINA614 [ 2020- | North USA Wisconsi | Dane North USA Wisconsin
58/2020 15 79468 507351 | 555964 504 3-23 | America n county America

ﬂsﬁlvw_ EFT&I% SRX80 | SRR11 SAMN14 | PRJNAG614 | 2020- | North USA Wisconsi | Dane North USA Wisconsin
59/2020 1; 79469 507350 | 555965 504 3-24 | America n county America

stl-}/\NI» EP‘I&I1S3 SRX80 SRR11 SAMN14 PRJNA614 | 2020- | North USA Wisconsi Dane North USA Wisconsin
60/2020 15 79470 507349 | 555966 504 3-19 | America n county America

ﬂsﬁlvw_ EFT&I% SRX80 SRR11 SAMN14 PRJNAG614 | 2020- | North USA Wisconsi Dane North USA Wisconsin
61/2020 15 79471 507348 | 555967 504 3-23 | America n county America

stl-}/\NI» EP‘I&I1S3 SRX80 SRR11 SAMN14 PRJNA614 | 2020- | North USA Wisconsi Dane North USA Wisconsin
62/2020 26 79472 507347 | 555968 504 3-25 | America n county America

i e R e o e el oot Pl IS FEl o P [ -
63/2020 21

3§VA/WI EPJ&I% SRX80 | SRR11 | SAMN14 | PRINA614 [ 2020- | North USA Wisconsi | Dane North USA Wisconsin
64/2020 25 79474 507345 | 555970 504 3-24 | America n county America

ﬂsﬁlvw_ EFT&I% SRX80 | SRR11 SAMN14 | PRJNA614 | 2020- | North USA Wisconsi | Dane North USA Wisconsin
65/2020 25 79476 507343 | 555971 504 3-22 | America n county America
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ﬂst/WI EPJ&'% SRX80 | SRR11 | SAMN14 | PRINA614 | 2020- | North USA Wisconsi | Dane North USA Wisconsin
66/2020 22 79477 507342 | 555972 504 3-24 | America n county America

i e R e o e el o Pl IS Fl o P [ -
67/2020 25

3§VA/WI EPJ&I% SRX80 | SRR11 | SAMN14 | PRINA614 | 2020- | North USA Wisconsi | Dane North USA Wisconsin
68/2020 25 79479 507340 | 555974 504 3-24 | America n county America

i e R e o e el el Pl IS FEl O P [ -
69/2020 27

33\;}/\,\”» EP‘;EI‘% SRX80 SRR11 SAMN14 PRJNA614 | 2020- | North USA Wisconsi Dane North USA Wisconsin
70/2020 25 79481 507338 | 555976 504 3-19 | America n county America

ﬂsﬁlvw_ EFT&I% SRX80 | SRR11 SAMN14 | PRJNAG614 | 2020- | North USA Wisconsi | Dane North USA Wisconsin
71/2020 25 79482 507337 | 555977 504 3-24 | America n county America

3§VA/WI EFT&'% SRX80 | SRR11 | SAMN14 | PRINA614 | 2020- | North USA Wisconsi | Dane North USA Wisconsin
7212020 36 79483 507336 | 555978 504 3-25 | America n county America

ﬂsﬁlvw_ EFT&I% SRX80 | SRR11 SAMN14 | PRJNAG614 | 2020- | North USA Wisconsi | Dane North USA Wisconsin
73/2020 37 79484 507335 | 555979 504 3-24 | America n county America

3§VA/WI EFT&'% SRX80 | SRR11 [ SAMN14 | PRINA614 [ 2020- | North USA Wisconsi | Dane North USA Wisconsin
74/2020 35 79485 507334 | 555980 504 3-20 | America n county America

ﬂsﬁlvw_ EFT&I% SRX80 SRR11 SAMN14 PRJUNAG614 | 2020- | North USA Wisconsi Dane North USA Wisconsin
752020 35 79487 507332 | 555981 504 3-26 | America n county America

e A e e e N A N N S A N
76/2020 34 - y America

ﬂsﬁlvw_ EFT&I% SRX80 SRR11 SAMN14 PRJUNAG14 | 2020- | North USA Wisconsi Dane North USA Wisconsin
7712020 35 79489 507330 | 555983 504 3-19 | America n county America

A e R el T el vl ool Pl IS Pl o P [ -
78/2020 36

33\7\,\”_ EP‘I&I183 SRX80 | SRR11 SAMN14 | PRJNAG614 | 2020- | North USA Wisconsi | Dane North USA Wisconsin
79/2020 35 79491 507328 | 555985 504 3-23 | America n county America

A i N o T ol Fronl g Bl RS el S I ISR P
80/2020 39

33\7\,\”_ EP‘I&I183 SRX80 | SRR11 | SAMN14 | PRJINA614 | 2020- | North USA Wisconsi | Dane North USA Wisconsin
81/2020 46 79493 507326 | 555987 504 3-25 | America n county America

ﬂst/WI EPJ&'% SRX80 | SRR11 | SAMN14 | PRINA614 [ 2020- | North USA Wisconsi | Dane North USA Wisconsin
82/2020 47 79494 507325 | 555988 504 3-25 | America n county America

337W|_ EP‘I&IE SRX80 | SRR11 SAMN14 | PRJNAG614 | 2020- | North USA Wisconsi | Dane North USA R
84/2020 45 79496 507323 | 555990 504 3-24 | America n county America

i e R e e el el Kt Pl I el o - [ -
85/2020 42

i e B b e e o e T e el P [ e
86/2020 43 = y America

i e B el Ere o P o e e el T P [
87/2020 44

S S R R A N S N N
88/2020 45 = y America

A A N R I G R N
89/2020 46

o e || o e [ [ e oo [ [ [ [ [
90/2020 47 = y America

i e R e e e el Kl Pl IS Frl o P [ -
91/2020 48

i e B e e el el el Pl IS Frl o P [ -
92/2020 49

N = B el e e e o ol S Pl S e [P -
93/2020 50

ﬂsﬁlvw_ EPJ&I; SRX81 SRR11 SAMN14 | PRJNA614 | 2020- | North USA Wisconsi | Dane North USA Wisconsin
94/2020 5? 14936 544816 | 596870 504 3-30 | America n county America




228

usawl- EPLIS SRX81 SRR11 SAMN14 | PRJNAG614 | 2020- | North Wisconsi | Dane North . .
uw- L_4251 14904 | 544848 | 596871 | 504 330 | America | YSA n count America UsA Wisconsin
952020 | 52 Y

USAWI- EPLIS SRX81 | SRR11 | SAMN14 | PRJINA614 | 2020- | North Wisconsi | Dane North . X
Jw L4251 14905 | 544847 | 596872 | 504 41 | America | YSA n county | America | USA Wisconsin
96/2020 | 53 Y

USAWI- EPLIS SRX81 SRR11 | SAMN14 | PRJNA614 | 2020- | North Wisconsi | Dane North . .
uw- L_4251 14906 | 544846 | 596873 | 504 330 | America | YSA n count America UsA Wisconsin
97/2020 | 54 Y

ﬂsﬁlvw_ EPJ&I; SRX81 SRR11 SAMN14 PRJNAG14 | 2020- | North USA Wisconsi Dane North USA Wisconsin
98/2020 55 14907 544845 | 596874 504 3-31 | America n county America

USAWLE EPLIS SRX81 | SRR11 | SAMN14 | PRJNA614 | 2020- [ North Wisconsi | Dane North ) )
uw- L_4251 14908 | 544844 | 596875 | 504 42 | America | USA n count America UsA Wisconsin
992020 | 56 Y

ﬂsﬁlvw_ EPJ&I; SRX81 SRR11 SAMN14 PRJUNAG614 | 2020- | North USA Wisconsi Dane North USA Wisconsin
100/2020 57 14909 544843 | 596876 504 4-3 | America n county America

USAWL- EPLIS SRX81 SRR11 | SAMN14 | PRJNA614 | 2020- | North Wisconsi | Dane North . .
uw- L_4251 14910 | 544842 | 596877 | 504 331 | America | YSA n count America UsA Wisconsin
101/2020 58 Ly

ﬂsﬁlvw_ EPJ&I; SRX81 SRR11 SAMN14 PRJNAG614 | 2020- | North USA Wisconsi Dane North USA Wisconsin
102/2020 55 14911 544841 | 596878 504 3-30 | America n county America

usawi- EPLIS SRX81 SRR11 SAMN14 | PRJNAG14 | 2020- | North Wisconsi | Dane North X .
uw- L_4251 14912 | 544840 | 596879 | 504 43 | America | USA n count America UsA Wisconsin
1032020 | 60 Y

ﬂsﬁlvw_ EPJ&I; SRX81 SRR11 SAMN14 PRJUNAG614 | 2020- | North USA Wisconsi Dane North USA Wisconsin
105/2020 65 14915 544837 | 596881 504 3-30 | America n county America

USAWL- EPLIS SRX81 SRR11 | SAMN14 | PRJNA614 | 2020- | North Wisconsi | Dane North . .
uw- L_4251 14916 | 544836 | 596882 | 504 3-30 | Ameri USA I Ameri USA Wisconsin
106/2020 63 - merica n county merica

ﬂsﬁlvw_ EPJ&I; SRX81 SRR11 SAMN14 PRJNAG14 | 2020- | North USA Wisconsi Dane North USA Wisconsin
107/2020 GZ 14917 544835 | 596883 504 3-31 | America n county America

UsAwl- EPLIS SRX81 | SRR11 | SAMN14 | PRJNA614 | 2020- [ North Wisconsi | Dane North ) )
uw- L_4251 14918 | 544834 | 596884 | 504 330 | America | YSA n count America UsA Wisconsin
108/2020 | 65 Y

33\7\,\”_ EP‘I&I; SRX81 SRR11 SAMN14 PRJNAG614 | 2020- | North USA Wisconsi Dane North USA Wisconsin
109/2020 Gg 14919 544833 | 596885 504 3-30 | America n county America

USAWI- EPLIS SRX81 | SRR11 | SAMN14 | PRINA614 | 2020- | North Wisconsi | Dane North . X
uw- L_4251 14920 | 544832 | 596886 | 504 331 | America | YSA n count America UsA Wisconsin
110/2020 67 Ly

USAWL EPLIS SRX81 | SRR11 | SAMN14 | PRJNA614 | 2020- [ North Wisconsi | Dane North ] )
P L e 14921 544831 | 596887 504 3-31 | America U n county America U VTR
111/2020 68 y

33\[/—}/\NI» EPJ&I; SRX81 SRR11 SAMN14 | PRJNAG14 | 2020- | North USA Wisconsi | Dane North USA Wisconsin
112/2020 65 14922 544830 | 596888 504 3-30 | America n county America

3§VANVI_ EP‘;EI; SRX81 SRR11 SAMN14 | PRJNAG614 | 2020- | North USA Wisconsi | Dane North USA R
114/2020 7? 14924 544828 | 596890 504 3-30 | America n county America

usawi- EPLIS SRX81 SRR11 SAMN14 | PRJNAG614 | 2020- | North Wisconsi | Dane North . .
uw L4251 14926 | 544826 | 596891 | 504 3-31 | America | YSA n county | America | USA Wisconsin
115/2020 72 Ly

3§VANVI_ EP‘;EI; SRX81 SRR11 SAMN14 | PRJNAG614 | 2020- | North USA Wisconsi | Dane North USA R
116/2020 75 14927 544825 | 596892 504 3-30 | America n county America

USAWL- EPLIS SRX81 SRR11 | SAMN14 | PRJNA614 | 2020- | North Wisconsi | Dane North . .
uw- L_4251 14928 | 544824 | 596893 | 504 330 | America | YSA n count America UsA Wisconsin
117/2020 74 Ly

UsAwl- EPLIS SRX81 | SRR11 | SAMN14 | PRJNA614 | 2020- [ North Wisconsi | Dane North ] )
ol L cAs 14930 | 544822 | 596895 | 504 4-10 | Ameri U I Ameri U WEaEin
119/2020 76 - encs m county merica

33\[/—}/\NI» EP‘;EIZ SRX81 SRR11 SAMN14 PRJUNAG14 | 2020- | North USA Wisconsi Dane North USA Wisconsin
120/2020 27 49929 582218 | 654585 504 4-13 | America n county America

UsAwl- EPLIS SRX81 | SRR11 | SAMN14 | PRJNA614 | 2020- [ North Wisconsi | Dane North ] )
o L ca 49905 | 582242 | 654587 | 504 47 | Ameri U I Ameri U WEaEin
122/2020 29 - encs m county merica

33\[/—}/\NI» EP‘;EIZ SRX81 SRR11 SAMN14 | PRJNAG14 | 2020- | North USA Wisconsi | Dane North USA Wisconsin
124/2020 37 49923 582224 | 654589 504 4-7 | America n county America

ﬂsﬁlvw_ EP‘I&I7S4 SRX81 SRR11 SAMN14 PRJUNAG14 | 2020- | North USA Wisconsi Dane North USA Wisconsin
127/2020 32 49926 582221 | 654592 504 4-7 | America n county America

33\;}/\,\”» EP‘;EIZ SRX81 SRR11 SAMN14 | PRJNAG614 | 2020- | North USA Wisconsi | Dane North USA Wisconsin
128/2020 35 49927 582220 | 654593 504 4-7 | America n county America

ﬂsﬁlvw_ EP‘I&I7S4 SRX81 SRR11 SAMN14 | PRJNA614 | 2020- | North USA Wisconsi | Dane North USA Wisconsin
129/2020 35 49928 582219 | 654594 504 4-6 | America n county America
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33\[/—}/\NI» EP‘;EIZ SRX81 SRR11 SAMN14 | PRJNAG614 | 2020- | North USA Wisconsi | Dane North USA Wisconsin
135/2020 45 49900 582247 | 654600 504 4-9 | America n county America

ﬂsﬁlvw_ EP‘I&I7S4 SRX81 SRR11 SAMN14 PRJUNAG614 | 2020- | North USA Wisconsi Dane North USA Wisconsin
140/2020 47 49906 582241 | 654605 504 4-9 | America n county America

33\;}/\,\”» EP‘;EIZ SRX81 SRR11 SAMN14 | PRJNAG14 | 2020- | North USA Wisconsi | Dane North USA Wisconsin
144/2020 5? 49910 582237 | 654609 504 4-6 | America n county America

ﬂsﬁlvw_ EP‘I&I7S4 SRX81 SRR11 SAMN14 PRJNAG14 | 2020- | North USA Wisconsi Dane North USA Wisconsin
145/2020 55 49911 582236 | 654610 504 4-10 | America n county America

33\;}/\,\”» EP‘;EIZ SRX81 SRR11 SAMN14 PRJUNAG14 | 2020- | North USA Wisconsi Dane North USA Wisconsin
146/2020 55 49912 582235 | 654611 504 4-6 | America n county America

USAWI- EPLIS SRX81 | SRR11 | SAMN14 [ PRJINA614 | 2020- | North Wisconsi | Dane North . X
P L coes 49913 582234 | 654612 504 4-10 | America U n county America U VTR
147/2020 54 y

3§VA/\N|> EP‘:EI; SRX81 SRR11 SAMN14 | PRJNAG614 | 2020- | North USA Wisconsi | Dane North USA Wisconsin
148/2020 55 49914 582233 | 654613 504 4-7 | America n county America

UsAwl- EPLIS SRX81 | SRR11 | SAMN14 | PRJNA614 | 2020- [ North Wisconsi | Dane North ] )
P L el 49917 582230 | 654615 504 4-13 | America U n county America U VTR
1502020 | 57 Y

3§VA/\N|> EP‘:EI; SRX81 SRR11 SAMN14 | PRJNAG14 | 2020- | North USA Wisconsi | Dane North USA Wisconsin
151/2020 Sg 49918 582229 | 654616 504 4-8 | America n county America

ﬂsﬁlvw_ EP‘I&I7S4 SRX81 SRR11 SAMN14 PRJUNAG614 | 2020- | North USA Wisconsi Dane North USA Wisconsin
152/2020 55 49919 582228 | 654617 504 4-6 | America n county America

33\[/—}/\NI» EP‘;EIZ SRX81 SRR11 SAMN14 | PRJNAG614 | 2020- | North USA Wisconsi | Dane North USA Wisconsin
153/2020 65 49920 582227 | 654618 504 4-9 | America n county America

USAWI- EPLIS SRX81 | SRR11 | SAMN14 | PRJINA614 | 2020- | North Wisconsi | Dane North . X
poa L s 49922 582225 | 654620 504 4-10 | America U n county America U VTR
1552020 | 62 Y

USAWI- EPLIS SRX81 | SRR11 | SAMN14 | PRJINA614 | 2020- | North Wisconsi | Milwauke | North . X
uw- L_4282 51738 | 584248 | 656612 | 504 325 | America | YSA n ecounty | America UsA Wisconsin
156/2020 52 ty

USAWL EPLIS SRX81 | SRR11 | SAMN14 | PRJNA614 | 2020- [ North Wisconsi | Milwauke | North ] )
P Lcns 51739 584247 | 656613 504 3-15 | America U n e coun America U VTR
157/2020 53 ty

UsAwl- EPLIS SRX81 | SRR11 | SAMN14 | PRJNA614 | 2020- [ North Wisconsi | Milwauke | North ) )
uw L4282 51750 | 584236 | 656614 | 504 3-15 | America | YSA n ecounty | America | USA Wisconsin
158/2020 54 ty

usAwI- EPLIS SRX81 | SRR11 | SAMN14 | PRJINA614 | 2020- | North Wisconsi | Milwauke | North . X
P Lcnz 51761 584225 | 656615 504 3-15 | America U n e coun America U VTR
159/2020 55 ty

USAWI- EPLIS SRX81 | SRR11 | SAMN14 | PRJINA614 | 2020- | North Wisconsi | Milwauke | North . X
uw L4282 51772 | 584214 | 656616 | 504 3-15 | America | YSA n ecounty | America | USA Wisconsin
16012020 | 56 vy

3§VANVI_ EP‘I&I; SRX81 SRR11 SAMN14 | PRJNAG614 | 2020- | North USA Wisconsi | Milwauke | North USA R
161/2020 57 51783 584203 | 656617 504 3-29 | America n e county America

UsAwl- EPLIS SRX81 | SRR11 | SAMN14 | PRJNA614 | 2020- [ North Wisconsi | Milwauke | North ) )
uw- L_4282 51794 | 584192 | 656618 | 504 329 | America | YSA n ecounty | America UsA Wisconsin
1622020 | 58 vy

USAWI- EPLIS SRX81 | SRR11 | SAMN14 | PRJINA614 | 2020- | North Wisconsi | Milwauke | North . .
P Lons 51827 584159 | 656621 504 3-17 | America U n e coun America U VTR
165/2020 61 ty

USAWI- EPLIS SRX81 | SRR11 | SAMN14 | PRJINA614 | 2020- | North Wisconsi | Milwauke | North . X
uw- L_4282 51740 | 584246 | 656622 | 504 317 | America | YSA n ecounty | America UsA Wisconsin
166/2020 | 62 vy

UsAwl- EPLIS SRX81 | SRR11 | SAMN14 | PRJNA614 | 2020- | North Wisconsi | Milwauke | North ] )
o 252 51742 | 584244 | 656624 | 504 3-19 | Ameri U Ameri U WEaEin
168/2020 64 - merica n e county merica

33\[/—}/\NI» EP‘;EI; SRX81 SRR11 SAMN14 PRJUNAG14 | 2020- | North USA Wisconsi Milwauke | North USA Wisconsin
170/2020 Gg 51744 584242 | 656626 504 3-19 | America n e county America

USAWI- EPLIS SRX81 | SRR11 | SAMN14 | PRJINA614 | 2020- | North Wisconsi | Milwauke | North . X
o 252 51745 | 584241 | 656627 | 504 3-19 | Ameri U Ameri U WEaEin
171/2020 67 - merica n e county merica

UsAwl- EPLIS SRX81 | SRR11 | SAMN14 | PRJNA614 | 2020- [ North Wisconsi | Milwauke | North ) )
uw- L_4282 51746 | 584240 | 656628 | 504 319 | America | YSA n ecounty | America UsA Wisconsin
17212020 | 68 vy

ﬂsﬁlvw_ EP‘I&I882 SRX81 SRR11 SAMN14 PRJUNAG14 | 2020- | North USA Wisconsi Milwauke | North USA Wisconsin
173/2020 65 51747 584239 | 656629 504 3-20 | America n e county America

USAWL EPLIS SRX81 | SRR11 | SAMN14 | PRJNA614 | 2020- [ North Wisconsi | Milwauke | North ) )
uw L4282 51751 | 584235 | 656632 | 504 320 | America | YSA n ecounty | America | USA Wisconsin
17612020 | 72 vy

ﬂsﬁlvw_ EP‘I&I882 SRX81 SRR11 SAMN14 PRJUNAG14 | 2020- | North USA Wisconsi Milwauke | North USA Wisconsin
177/2020 75 51752 584234 | 656633 504 3-20 | America n e county America
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ﬂs\ﬁlwl_ EP‘;EI; SRX81 SRR11 SAMN14 PRJUNAG14 | 2020- | North USA Wisconsi Milwauke | North USA Wisconsin
178/2020 74 51753 584233 | 656634 504 3-20 | America n ecounty | America

ﬂsﬁlvw_ EP‘I&I882 SRX81 SRR11 SAMN14 PRJUNAG614 | 2020- | North USA Wisconsi Milwauke | North USA Wisconsin
179/2020 75 51754 584232 | 656635 504 3-21 | America n e county America

usAwl- EPLIS SRX81 | SRR11 | SAMN14 | PRJINA614 | 2020- | North Wisconsi | Milwauke | North . X
uw L4282 51756 | 584230 | 656637 | 504 322 | America | YSA n ecounty | America | USA Wisconsin
181/2020 77 ty

ﬂsﬁlvw_ EP‘I&I882 SRX81 SRR11 SAMN14 PRJNAG14 | 2020- | North USA Wisconsi Milwauke | North USA Wisconsin
182/2020 75 51757 584229 | 656638 504 3-22 | America n e county America

usAwl- EPLIS SRX81 | SRR11 | SAMN14 | PRJINA614 | 2020- | North Wisconsi | Milwauke | North . X
uw- L_4282 51758 | 584228 | 656639 | 504 322 | America | YSA n ecounty | America UsA Wisconsin
1832020 | 79 vy

ﬂsﬁlvw_ EP‘I&I882 SRX81 SRR11 | SAMN14 | PRINA614 | 2020- | North USA Wisconsi | Milwauke | North USA Wisconsin
184/2020 86 51759 584227 | 656640 504 3-22 | America n e county America

USAWI- EPLIS SRX81 | SRR11 | SAMN14 | PRJINA614 | 2020- | North Wisconsi | Milwauke | North . .
uw L4282 51760 | 584226 | 656641 | 504 322 | America | YSA n ecounty | America | USA Wisconsin
185/2020 81 ty

ﬂsﬁlvw_ EP‘I&I882 SRX81 SRR11 | SAMN14 | PRINA614 | 2020- | North USA Wisconsi | Milwauke | North USA Wisconsin
186/2020 85 51762 584224 | 656642 504 3-23 | America n e county America

UsAWI- EPLIS SRX81 | SRR11 | SAMN14 | PRJNA614 | 2020- [ North Wisconsi | Milwauke | North ) )
uw L4282 51763 | 584223 | 656643 | 504 323 | America | YSA n ecounty | America | USA Wisconsin
18772020 | 83 vy

ﬂsﬁlvw_ EP‘I&I882 SRX81 SRR11 | SAMN14 | PRINA614 | 2020- | North USA Wisconsi | Milwauke | North USA Wisconsin
188/2020 82 51764 584222 | 656644 504 3-23 | America n e county America

UsAwl- EPLIS SRX81 | SRR11 | SAMN14 | PRJNA614 | 2020- [ North Wisconsi | Milwauke | North ) )
uw- L_4282 51765 | 584221 | 656645 | 504 3-23 | Ameri USA Ameri USA Wisconsin
189/2020 85 - merica n e county merica

ﬂsﬁlvw_ EP‘I&I882 SRX81 SRR11 | SAMN14 | PRINA614 | 2020- | North USA Wisconsi | Milwauke | North USA Wisconsin
190/2020 85 51766 584220 | 656646 504 3-23 | America n e county America

UsAwl- EPLIS SRX81 | SRR11 | SAMN14 | PRJNA614 | 2020- [ North Wisconsi | Milwauke | North ) )
uw- L4282 51767 | 584219 | 656647 | 504 323 | America | YSA n ecounty | America | USA Wisconsin
191/2020 87 ty

33\7\,\”_ EP‘I&I882 SRX81 SRR11 | SAMN14 | PRINA614 | 2020- | North USA Wisconsi | Milwauke | North USA Wisconsin
192/2020 85 51768 584218 | 656648 504 3-23 | America n e county America

USAWI- EPLIS SRX81 | SRR11 | SAMN14 | PRINA614 | 2020- | North Wisconsi | Milwauke | North . X
uw L4282 51771 | 584215 | 656651 | 504 324 | America | YSA n ecounty | America | USA Wisconsin
195/2020 91 ty

33\7\,\”_ EP‘I&I882 SRX81 SRR11 | SAMN14 | PRINA614 | 2020- | North USA Wisconsi | Milwauke | North USA Wisconsin
196/2020 95 51773 584213 | 656652 504 3-21 | America n e county America

USAWI- EPLIS SRX81 | SRR11 | SAMN14 | PRJINA614 | 2020- | North Wisconsi | Milwauke | North . X
uw- L 4282 51774 | 584212 | 656653 | 504 324 | America | YSA n ecounty | America UsA Wisconsin
1972020 | 93 vy

3§VANVI_ EP‘I&I; SRX81 SRR11 SAMN14 | PRJNAG614 | 2020- | North USA Wisconsi | Milwauke | North USA R
200/2020 gg 51777 584209 | 656656 504 3-24 | America n e county America

ﬂs\ﬁlwl_ EP4|15|883 SRX81 SRR11 SAMN14 PRJUNAG14 | 2020- | North USA Wisconsi Milwauke | North USA Wisconsin
205/2020 OT 51782 584204 | 656661 504 3-25 | America n e county America

3§VANVI_ EP‘I&I; SRX81 SRR11 SAMN14 | PRJNAG614 | 2020- | North USA Wisconsi | Milwauke | North USA R
207/2020 05 51785 584201 | 656663 504 3-23 | America n e county America

ﬂs\ﬁlwl_ EP4|15|883 SRX81 SRR11 SAMN14 | PRJNAG14 | 2020- | North USA Wisconsi | Milwauke | North USA Wisconsin
208/2020 04 51786 584200 | 656664 504 3-25 | America n ecounty | America

USAWI- EPLIS SRX81 | SRR11 | SAMN14 | PRJINA614 | 2020- | North Wisconsi | Milwauke | North . X
pocd Lo 51787 | 584199 | 656665 | 504 3-25 | Ameri U Ameri U WEaEin
209/2020 05 - merica n e county merica

ﬂs\ﬁlwl_ EP4|15|883 SRX81 SRR11 SAMN14 PRJUNAG14 | 2020- | North USA Wisconsi Milwauke | North USA Wisconsin
210/2020 Og 51788 584198 | 656666 504 3-24 | America n e county America

USAWI- EPLIS SRX81 | SRR11 | SAMN14 | PRJINA614 | 2020- | North Wisconsi | Milwauke | North . X
o Lom: 51780 | 584197 | 656667 | 504 3-25 | Ameri U Ameri U WEaEin
211/2020 07 - merica n e county merica

ﬂs\ﬁlwl_ EP4|15|883 SRX81 SRR11 SAMN14 PRJUNAG14 | 2020- | North USA Wisconsi Milwauke | North USA Wisconsin
212/2020 Og 51790 584196 | 656668 504 3-25 | America n e county America

ﬂsﬁlvw_ EP4|13|883 SRX81 SRR11 | SAMN14 | PRINA614 | 2020- | North USA Wisconsi | Milwauke | North USA Wisconsin
213/2020 05 51791 584195 | 656669 504 3-25 | America n e county America

USAWL EPLIS SRX81 | SRR11 | SAMN14 | PRJNA614 | 2020- [ North Wisconsi | Milwauke | North ) )
uw- L_4283 51793 584193 | 656671 504 3-25 | America UsA n e coun America UsA Wisconsin
215/2020 11 ty

ﬂsﬁlvw_ EP4|13|883 SRX81 SRR11 | SAMN14 | PRINA614 | 2020- | North USA Wisconsi | Milwauke | North USA Wisconsin
216/2020 15 51795 584191 | 656672 504 3-25 | America n e county America
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ﬂs\ﬁlwl_ EP4|15|883 SRX81 SRR11 SAMN14 PRJUNAG14 | 2020- | North USA Wisconsi Milwauke | North USA Wisconsin
217/2020 15 51796 584190 | 656673 504 3-25 | America n e county America

ﬂsﬁlvw_ EP4|13|883 SRX81 SRR11 SAMN14 PRJUNAG614 | 2020- | North USA Wisconsi Milwauke | North USA Wisconsin
218/2020 12 51797 584189 | 656674 504 3-25 | America n e county America

USAWL EPLIS SRX81 | SRR11 | SAMN14 | PRJNA614 | 2020- [ North Wisconsi | Milwauke | North ) )
uw- L_4283 51798 | 584188 | 656675 | 504 325 | America | YSA n ecounty | America UsA Wisconsin
219/2020 15 ty

ﬂsﬁlvw_ EP4|13|883 SRX81 SRR11 SAMN14 PRJNAG14 | 2020- | North USA Wisconsi Milwauke | North USA Wisconsin
991/2020 1; 51800 584186 | 656677 504 3-25 | America n e county America

USAWLE EPLIS SRX81 | SRR11 | SAMN14 | PRJNA614 | 2020- [ North Wisconsi | Milwauke | North ) )
uw- L_4283 51801 | 584185 | 656678 | 504 325 | America | YSA n ecounty | America UsA Wisconsin
222/2020 18 ty

ﬂsﬁlvw_ EP4|13|883 SRX81 SRR11 SAMN14 PRJUNAG614 | 2020- | North USA Wisconsi Milwauke | North USA Wisconsin
223/2020 15 51802 584184 | 656679 504 3-26 | America n e county America

usAwl- EPLIS SRX81 | SRR11 | SAMN14 | PRJNA614 | 2020- [ North Wisconsi | Milwauke | North ) )
g L4283 51804 | 584182 | 656681 | 504 326 | America | YSA n ecounty | America | USA Wisconsin
225/2020 21 ty

ﬂsﬁlvw_ EP4|13|883 SRX81 SRR11 SAMN14 PRJNAG614 | 2020- | North USA Wisconsi Milwauke | North USA Wisconsin
226/2020 25 51806 584180 | 656682 504 3-26 | America n e county America

UsAWI- EPLIS SRX81 | SRR11 | SAMN14 | PRJNA614 | 2020- [ North Wisconsi | Milwauke | North ) )
g L4283 51807 | 584179 | 656683 | 504 326 | America | YSA n ecounty | America | USA Wisconsin
227/2020 23 ty

ﬂsﬁlvw_ EP4|13|883 SRX81 SRR11 SAMN14 PRJUNAG614 | 2020- | North USA Wisconsi Milwauke | North USA Wisconsin
228/2020 2; 51808 584178 | 656684 504 3-26 | America n e county America

UsAwl- EPLIS SRX81 | SRR11 | SAMN14 | PRJNA614 | 2020- [ North Wisconsi | Milwauke | North ) )
.y L4283 51809 | 584177 | 656685 | 504 326 | Ameri usA Ameri USA Wiscansin
229/2020 25 - merica n e county merica

ﬂsﬁlvw_ EP4|13|883 SRX81 SRR11 | SAMN14 | PRINA614 | 2020- | North USA Wisconsi | Milwauke | North USA Wisconsin
230/2020 25 51810 584176 | 656686 504 3-26 | America n e county America

UsAwl- EPLIS SRX81 | SRR11 | SAMN14 | PRJNA614 | 2020- [ North Wisconsi | Milwauke | North ) )
o L4283 51811 | 584175 | 656687 | 504 326 | America | YSA n ecounty | America | USA Wisconsin
231/2020 27 ty

33\7\,\”_ EP‘I&I; SRX81 SRR11 | SAMN14 | PRINA614 | 2020- | North USA Wisconsi | Milwauke | North USA Wisconsin
232/2020 25 51812 584174 | 656688 504 3-27 | America n e county America

UsAwl- EPLIS SRX81 | SRR11 | SAMN14 | PRJNA614 | 2020- [ North Wisconsi | Milwauke | North ) )
o L4283 51813 | 584173 | 656689 | 504 327 | America | YSA n ecounty | America | USA Wisconsin
233/2020 29 ty

33\7\,\”_ EP‘I&I; SRX81 SRR11 | SAMN14 | PRINA614 | 2020- | North USA Wisconsi | Milwauke | North USA Wisconsin
234/2020 36 51814 584172 | 656690 504 3-26 | America n e county America

UsAwl- EPLIS SRX81 | SRR11 | SAMN14 | PRJNA614 | 2020- [ North Wisconsi | Milwauke | North ) )
o L4283 51815 | 584171 | 656691 | 504 3.28 | America | USA n ccounty | America | YSA Wisconsin
235/2020 31 ty

3§VANVI_ EP‘I&I; SRX81 SRR11 SAMN14 | PRJNAG614 | 2020- | North USA Wisconsi | Milwauke | North USA R
236/2020 35 51817 584169 | 656692 504 3-27 | America n e county America

ﬂs\ﬁlwl_ EP4|15|883 SRX81 SRR11 SAMN14 PRJUNAG14 | 2020- | North USA Wisconsi Milwauke | North USA Wisconsin
237/2020 35 51818 584168 | 656693 504 3-27 | America n e county America

3§VANVI_ EP‘I&I; SRX81 SRR11 SAMN14 | PRJNAG614 | 2020- | North USA Wisconsi | Milwauke | North USA R
238/2020 32 51819 584167 | 656694 504 3-27 | America n e county America

ﬂs\ﬁlwl_ EP4|15|883 SRX81 SRR11 SAMN14 PRJUNAG614 | 2020- | North USA Wisconsi Milwauke | North USA Wisconsin
240/2020 35 51821 584165 | 656696 504 3-27 | America n e county America

USAWI- EPLIS SRX81 | SRR11 | SAMN14 | PRJINA614 | 2020- | North Wisconsi | Milwauke | North . X
o = 51822 | 584164 | 656697 | 504 327 | Ameri usA Ameri U Wisconsin
241/2020 37 - merica n e county merica

ﬂs\ﬁlwl_ EP4|15|883 SRX81 SRR11 SAMN14 PRJUNAG14 | 2020- | North USA Wisconsi Milwauke | North USA Wisconsin
242/2020 35 51823 584163 | 656698 504 3-28 | America n e county America

USAWI- EPLIS SRX81 | SRR11 | SAMN14 | PRJINA614 | 2020- | North Wisconsi | Milwauke | North . X
e i 51826 | 584160 | 656701 | 504 328 | Ameri usA Ameri U Wisconsin
245/2020 41 - merica n e county merica

ﬂs\ﬁlwl_ EP4|15|883 SRX81 SRR11 SAMN14 PRJUNAG14 | 2020- | North USA Wisconsi Milwauke | North USA Wisconsin
246/2020 45 51828 584158 | 656702 504 3-28 | America n e county America

ﬂsﬁlvw_ EP4|13|883 SRX81 SRR11 SAMN14 PRJUNAG14 | 2020- | North USA Wisconsi Milwauke | North USA Wisconsin
248/2020 42 51830 584156 | 656704 504 3-28 | America n e county America

33\7\,\”_ EP‘;EISSQ SRX81 SRR11 SAMN14 PRJUNAG14 | 2020- | North USA Wisconsi Dane North USA Wisconsin
259/2020 35 55700 588239 | 669377 504 4-17 | America n county America

UsAwl- EPLIS SRX81 | SRR11 | SAMN14 | PRJNA614 | 2020- [ North Wisconsi | Dane North ] )
Uw- L_4289 N USA N USA Wisconsin
260/2020 35 55701 588238 | 669378 504 4-18 | America n county America




232

usawl- EPLIS SRX82 SRR11 SAMN14 PRJNA614 | 2020- | North Wisconsi Milwauke | North . .
uw- L_4365 81160 | 721857 | 844834 | 504 312 | America | YSA n ecounty | America UsA Wisconsin
270/2020 64 ty

ﬂsﬁlvw_ EPAIESIGSS SRX82 SRR11 SAMN14 PRJUNAG614 | 2020- | North USA Wisconsi Milwauke | North USA Wisconsin
972/2020 Gg 81172 721845 | 844836 504 3-27 | America n e county America

USAWL- EPLIS SRX82 SRR11 SAMN14 PRJNA614 | 2020- | North Wisconsi Milwauke | North . .
g L4365 81183 | 721834 | 844837 | 504 3-31 | America | YSA n ecounty | America | USA Wisconsin
2732020 | 67 vy

ﬂsﬁlvw_ EPAIESIGSS SRX82 SRR11 SAMN14 PRJNAG14 | 2020- | North USA Wisconsi Milwauke | North USA Wisconsin
27412020 Gg 81194 721823 | 844838 504 3-31 | America n e county America

USAWL | EPLIS SRX82 | SRR11 | SAMN14 | PRINA614 [ 2020- | North Wisconsi | Miwauke | North ) )
uw- L_4365 81128 | 721889 | 844839 | 504 41 | America | USA n ecounty | America UsA Wisconsin
275/2020 69 ty

ﬂsﬁlvw_ EPAIESIGSS SRX82 SRR11 SAMN14 PRJUNAG614 | 2020- | North USA Wisconsi Milwauke | North USA Wisconsin
276/2020 76 81139 721878 | 844840 504 4-1 | America n e county America

usawl- EPLIS SRX82 SRR11 SAMN14 PRJNA614 | 2020- | North Wisconsi Milwauke | North . .
uw- L_4365 81150 | 721867 | 844841 | 504 42 | America | USA n ecounty | America UsA Wisconsin
277/2020 71 ty

ﬂsﬁlvw_ EPAIESIGSS SRX82 SRR11 SAMN14 PRJNAG614 | 2020- | North USA Wisconsi Milwauke | North USA Wisconsin
£78/2020 75 81158 721859 | 844842 504 4-3 | America n e county America

USAWL | EPLIS SRX82 | SRR11 | SAMN14 | PRINA614 [ 2020- | North Wisconsi | Miwauke | North ! )
uw- L_4365 81159 | 721858 | 844843 | 504 43 | America | USA n ecounty | America UsA Wisconsin
279/2020 73 ty

ﬂsﬁlvw_ EPAIESIGSS SRX82 SRR11 SAMN14 PRJUNAG614 | 2020- | North USA Wisconsi Milwauke | North USA Wisconsin
280/2020 72 81162 721855 | 844844 504 4-3 | America n e county America

usawi- EPLIS SRX82 SRR11 SAMN14 PRJNA614 | 2020- | North Wisconsi Milwauke | North . .
uw- L_4365 81167 | 721850 | 844849 | 504 46 | Ameri USA Ameri USA Wisconsin
285/2020 79 - merica n e county merica

ﬂsﬁlvw_ EPAIESIGSS SRX82 | SRR11 | SAMN14 | PRJINA614 | 2020- | North USA Wisconsi | Milwauke | North USA Wisconsin
288/2020 85 81170 721847 | 844852 504 4-8 | America n e county America

USAWI- | EPLIS SRX82 | SRR11 | SAMN14 | PRINA614 [ 2020- | North Wisconsi | Miwauke | North ) )
uw- L_4365 81171 | 721846 | 844853 | 504 48 | America | USA n ecounty | America UsA Wisconsin
289/2020 83 ty

33\7\,\”_ EPAIBIGSS SRX82 SRR11 SAMN14 PRJNAG614 | 2020- | North USA Wisconsi Milwauke | North USA Wisconsin
290/2020 82 81173 721844 | 844854 504 4-8 | America n e county America

USAWL- | EPLIS SRX82 | SRR11 | SAMN14 | PRINA614 [ 2020- | North Wisconsi | Miwauke | North ) )
uw- L_4365 81174 | 721843 | 844855 | 504 48 | America | USA n ecounty | America UsA Wisconsin
291/2020 85 ty

33\7\,\”_ EPAIBIGSS SRX82 SRR11 SAMN14 PRJNAG614 | 2020- | North USA Wisconsi Milwauke | North USA Wisconsin
293/2020 87 81176 721841 | 844857 504 4-9 | America n e county America

USAWL- | EPLIS SRX82 | SRR11 | SAMN14 | PRINA614 [ 2020- | North Wisconsi | Miwauke | North ) )
uw- L_4365 81179 | 721838 | 844860 | 504 49 | America | USA n ecounty | America UsA Wisconsin
296/2020 | 90 Y

3§VANVI_ EP‘IBIGSS SRX82 | SRR11 SAMN14 | PRJNAG614 | 2020- | North USA Wisconsi | Milwauke | North USA R
299/2020 95 81182 721835 | 844863 504 4-13 | America n e county America

usawi- EPLIS SRX82 SRR11 SAMN14 PRJNA614 | 2020- | North Wisconsi Milwauke | North . .
uw- L_4365 81185 | 721832 | 844865 | 504 413 | America | USA n ecounty | America UsA Wisconsin
30112020 | 95 vy

3§VANVI_ EP‘IBIGSS SRX82 | SRR11 SAMN14 | PRJNAG614 | 2020- | North USA Wisconsi | Milwauke | North USA R
302/2020 gg 81186 721831 | 844866 504 4-13 | America n e county America

usawl- EPLIS SRX82 SRR11 SAMN14 PRJNA614 | 2020- | North Wisconsi Milwauke | North . .
uw- L_4365 81187 | 721830 | 844867 | 504 413 | America | USA n ecounty | America UsA Wisconsin
3032020 | 97 vy

USAWI- EPLIS SRX82 | SRR11 | SAMN14 | PRJINA614 | 2020- | North Wisconsi | Milwauke | North . X
o L dees 81188 | 721829 | 844868 | 504 4-13 | Ameri U Ameri U WEaEin
304/2020 98 - merica n e county merica

3\?\7}/\,\”» EPAIESIGSS SRX82 SRR11 SAMN14 PRJNA614 | 2020- | North USA Wisconsi Milwauke | North USA Wisconsin
305/2020 95 81189 721828 | 844869 504 4-14 | America n e county America

USAWI- EPLIS SRX82 | SRR11 | SAMN14 [ PRJINA614 | 2020- | North Wisconsi | Milwauke | North . X
o L cRes 81190 | 721827 | 844870 | 504 4-14 | Ameri U Ameri U WEaEin
306/2020 00 - merica n e county merica

usawi- EPLIS SRX82 SRR11 SAMN14 PRJNA614 | 2020- | North Wisconsi Milwauke | North . .
uw- L_4366 81192 | 721825 | 844872 | 504 416 | America | USA n ecounty | America UsA Wisconsin
308/2020 02 ty

ﬂsﬁlvw_ EPAIESIGSG SRX82 SRR11 SAMN14 PRJUNAG14 | 2020- | North USA Wisconsi Milwauke | North USA Wisconsin
309/2020 05 81193 721824 | 844873 504 4-16 | America n e county America

USAWL- EPLIS SRX82 SRR11 SAMN14 PRJNA614 | 2020- | North Wisconsi Milwauke | North . .
uw- L_4366 81195 | 721822 | 844874 | 504 415 | America | USA n ecounty | America UsA Wisconsin
310/2020 04 ty

ﬂsﬁlvw_ EPAIESIGSG SRX82 | SRR11 | SAMN14 | PRJINA614 | 2020- | North USA Wisconsi | Milwauke | North USA Wisconsin
313/2020 07 81121 721896 | 844877 504 4-16 | America n e county America
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USAWI- EPLIS SRX82 SRR11 SAMN14 PRJNA614 | 2020- | North Wisconsi Milwauke | North . .
uw- L4366 | - 81124 | 721893 | 844880 | 504 418 | America | USA n ecounty | America USA Wisconsin
316/2020 | 10 vy

gsvl-}NVI- EPAIESIGSG R SRX82 | SRR11 | SAMN14 | PRJINA614 | 2020- | North USA Wisconsi | Milwauke | North USA Wisconsin
319/2020 15 81127 721890 | 844883 504 4-21 | America n ecounty | America

USAW- EPLIS SRX82 SRR11 SAMN14 PRJNA614 | 2020- | North Wisconsi Milwauke | North . .
uw- L_4366 | - 81129 | 721888 | 844884 | 504 421 | America | USA n ecounty | America USA Wisconsin
32012020 | 14 vy

gsvl-}NVI- EPAIESIGSG R SRX82 | SRR11 | SAMN14 | PRJINA614 | 2020- | North USA Wisconsi | Milwauke | North USA Wisconsin
321/2020 15 81130 721887 | 844885 504 4-23 | America n ecounty | America

USAWI- EPLIS SRX82 SRR11 SAMN14 PRJNA614 | 2020- | North Wisconsi Milwauke | North . .
uw- L4366 | - 81131 | 721886 | 844886 | 504 423 | America | USA n ccounty | America | YSA Wisconsin
32212020 | 16 vy

gsvl-}NVI- EPAIESIGSG R SRX82 | SRR11 | SAMN14 [ PRJINA614 | 2020- | North USA Wisconsi | Milwauke | North USA Wisconsin
323/2020 17 81132 721885 | 844887 504 4-23 | America n ecounty | America

USAW- EPLIS SRX82 SRR11 SAMN14 PRJNA614 | 2020- | North Wisconsi Milwauke | North . .
uw- L4366 | - 81133 | 721884 | 844888 | 504 424 | America | USA n ecounty | America USA Wisconsin
32412020 | 18 vy

gsvl-}NVI- EPAIESIGSG R SRX82 | SRR11 | SAMN14 | PRJINA614 | 2020- | North USA Wisconsi | Milwauke | North USA Wisconsin
325/2020 19 81134 721883 | 844889 504 4-24 | America n ecounty | America

USAWI- EPLIS SRX82 SRR11 SAMN14 PRJNA614 | 2020- | North Wisconsi Milwauke | North . .
uw- L4366 | - 81137 | 721880 | 844892 | 504 426 | America | USA n ecounty | America USA Wisconsin
328/2020 22 ty

gsvl-}NVI- EPAIESIGSG R SRX82 | SRR11 | SAMN14 | PRJINA614 | 2020- | North USA Wisconsi | Milwauke | North USA Wisconsin
329/2020 23 81138 721879 | 844893 504 4-25 | America n ecounty | America

USAWI- EPLIS SRX82 SRR11 SAMN14 PRJNA614 | 2020- | North Wisconsi Milwauke | North . .
uw- L4366 | - 81140 | 721877 | 844804 | 504 4-26 | Ameri USA Ameri USA Wisconsin
330/2020 24 - merica n e county merica

gsvl-}NVI- EPAIESIGSG R SRX82 | SRR11 | SAMN14 | PRJINA614 | 2020- | North USA Wisconsi | Milwauke | North USA Wisconsin
331/2020 25 81141 721876 | 844895 504 4-26 | America n ecounty | America

USAWI- EPLIS SRX82 SRR11 SAMN14 PRJNA614 | 2020- | North Wisconsi Milwauke | North . .
uw- L4366 | - 81142 | 721875 | 844896 | 504 426 | America | USA n ecounty | America USA Wisconsin
332/2020 26 ty

33\7\,\”_ EPAIESIGSG R SRX82 | SRR11 | SAMN14 | PRJINA614 | 2020- | North USA Wisconsi | Milwauke | North USA Wisconsin
333/2020 27 81143 721874 | 844897 504 3-24 | America n ecounty | America

USAWI- EPLIS SRX82 SRR11 SAMN14 PRJNA614 | 2020- | North Wisconsi Milwauke | North . .
uw- L4366 | - 81144 | 721873 | 844898 | 504 3.24 | America | USA n ecounty | America USA Wisconsin
334/2020 28 ty

33\7\,\”_ EPAIESIGSG R SRX82 | SRR11 | SAMN14 | PRJINA614 | 2020- | North USA Wisconsi | Milwauke | North USA Wisconsin
335/2020 29 81145 721872 | 844899 504 3-24 | America n ecounty | America

USAWI- EPLIS SRX82 SRR11 SAMN14 PRJNA614 | 2020- | North Wisconsi Milwauke | North . .
uw- L4366 | - 81146 | 721871 | 844900 | 504 3.25 | America | USA n ecounty | America USA Wisconsin
336/2020 | 30 vy

3§VANVI_ EPAIESIGSG SRX82 | SRR11 | SAMN14 | PRJINA614 | 2020- | North USA Wisconsi | Milwauke | North USA Wisconsin
337/2020 31 81147 721870 | 844901 504 3-26 | America n ecounty | America

USAWI- EPLIS SRX82 SRR11 SAMN14 PRJNA614 | 2020- | North Wisconsi Milwauke | North . .
uw- L4366 | - 81148 | 721869 | 844902 | 504 3.26 | America | USA n ecounty | America USA Wisconsin
338/2020 | 32 vy

3§VANVI_ EPAIESIGSG SRX82 | SRR11 | SAMN14 [ PRJINA614 | 2020- | North USA Wisconsi | Milwauke | North USA Wisconsin
339/2020 33 81149 721868 | 844903 504 3-31 | America n ecounty | America

USAWI- EPLIS SRX82 SRR11 SAMN14 PRJNA614 | 2020- | North Wisconsi Milwauke | North . .
uw- L4366 | - 81151 | 721866 | 844904 | 504 41| America | USA n ecounty | America USA Wisconsin
34012020 | 34 Y

Uit =L SRX82 | SRR11 | SAMN14 [ PRJINA614 | 2020- | North Wisconsi | Milwauke | North . .
uw- RERES || = 81152 | 721865 | 844905 | 504 42 | Ameri SR Ameri SR Wisconsin
341/2020 35 - merica n e county merica

USAWI- EPLIS SRX82 SRR11 SAMN14 PRJNA614 | 2020- | North Wisconsi Milwauke | North . .
uw- L4366 | - 81153 | 721864 | 844906 | 504 44 | America | USA n ecounty | America USA Wisconsin
34212020 | 36 vy

Uit =L SRX82 | SRR11 | SAMN14 [ PRJINA614 | 2020- | North Wisconsi | Milwauke | North . .
uw- RERES || = 81154 | 721863 | 844907 | 504 45 | Ameri SR Ameri SR Wisconsin
343/2020 37 - merica n e county merica

USAWI- EPLIS SRX82 SRR11 SAMN14 PRJNA614 | 2020- | North Wisconsi Milwauke | North . .
uw- L4366 | - 81155 | 721862 | 844908 | 504 46 | America | USA n ecounty | America USA Wisconsin
34412020 | 38 vy

gsvl-}NVI- EPAIESIGSG R SRX82 | SRR11 | SAMN14 | PRJINA614 | 2020- | North USA Wisconsi | Milwauke | North USA Wisconsin
345/2020 35 81156 721861 | 844909 504 4-9 | America n ecounty | America

USAW- EPLIS SRX82 SRR11 SAMN14 PRJNA614 | 2020- | North Wisconsi Milwauke | North . .
uw- L_4366 | - 81157 | 721860 | 844910 | 504 421 | America | USA n ecounty | America USA Wisconsin
346/2020 | 40 vy

gsvl-}NVI- EP‘;—SI; MT50 | SRX83 | SRR11 | SAMN14 | PRIJNA614 | 2020- | North USA Wisconsi | Dane North USA Wisconsin
347/2020 OT 6886 79446 828929 | 995484 504 4-18 | America n county America
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ow | sy |MIS0 | SRS | St | sare | eS| 2020 | ot | gy | Wt | Dane ot sa | wionan
351/2020 05

ow | Uy |0 | s | s | s | rivere | 205 | o g, | o | 0o [N g oo
356/2020 10

o | Lo | M0 | s | st | smnie | puore |20 | Mo gy | st | Dare N s wsoonsn
359/2020 13

SSVWI_ EP‘:—SI; MT50 | SRX83 SRR11 SAMN14 PRJUNA614 | 2020- | North USA Wisconsi Dane North USA Wisconsin
362/2020 15 6901 79453 828922 | 995499 504 4-17 | America n county America

Supplemental Table 3.
GISAID accession numbers and associated information for all consensus sequences
included in this manuscript.

name pool sequence length|%gc |tm (use 65)
nCoV-2019_1_LEFT nCoV-2019_1]ACCAACCAACTTTCGATCTCTTGT 24 41.67160.69
nCoV-2019_1_RIGHT nCoV-2019_1|CATCTTTAAGATGTTGACGTGCCTC 25 44 160.45
nCoV-2019_2_LEFT nCoV-2019_2|CTGTTTTACAGGTTCGCGACGT 22 50 |61.67
nCoV-2019_2_RIGHT nCoV-2019_2|TAAGGATCAGTGCCAAGCTCGT 22 50 |61.74
nCoV-2019_3_LEFT nCoV-2019_1|CGGTAATAAAGGAGCTGGTGGC 22 54.55|61.32
nCoV-2019_3_RIGHT nCoV-2019_1|AAGGTGTCTGCAATTCATAGCTCT 24 41.67160.32
nCoV-2019_4_LEFT nCoV-2019_2|GGTGTATACTGCTGCCGTGAAC 22 54.55|61.56
nCoV-2019_4_RIGHT nCoV-2019_2|CACAAGTAGTGGCACCTTCTTTAGT 25 44 160.97
nCoV-2019_5_LEFT nCoV-2019_1|TGGTGAAACTTCATGGCAGACG 22 50 161.39
nCoV-2019_5_RIGHT nCoV-2019_1|ATTGATGTTGACTTTCTCTTTTTGGAGT 28 32.14160.17
nCoV-2019_6_LEFT nCoV-2019_2|GGTGTTGTTGGAGAAGGTTCCG 22 54.55|61.64
nCoV-2019_6_RIGHT nCoV-2019_2|TAGCGGCCTTCTGTAAAACACG 22 50 |61.18
nCoV-2019_7_LEFT nCoV-2019_1]ATCAGAGGCTGCTCGTGTTGTA 22 50 |61.73
nCoV-2019_7_LEFT_alt0 |nCoV-2019_1|CATTTGCATCAGAGGCTGCTCG 22 54.55|62.44
nCoV-2019_7_RIGHT nCoV-2019_1|TGCACAGGTGACAATTTGTCCA 22 45.45160.95
nCoV-2019_7_RIGHT_alt5 |nCoV-2019_1]AGGTGACAATTTGTCCACCGAC 22 50 |61.07
nCoV-2019_8_LEFT nCoV-2019_2|AGAGTTTCTTAGAGACGGTTGGGA 24 45.83|61
nCoV-2019_8_RIGHT nCoV-2019_2|GCTTCAACAGCTTCACTAGTAGGT 24 45.83160.56
nCoV-2019_9_LEFT nCoV-2019_1|TCCCACAGAAGTGTTAACAGAGGA 24 45.83161.18
nCoV-2019_9_LEFT_alt4 |nCoV-2019_1|TTCCCACAGAAGTGTTAACAGAGG 24 45.83160.44
nCoV-2019_9_RIGHT nCoV-2019_1]ATGACAGCATCTGCCACAACAC 22 50 |61.71
nCoV-2019_9_RIGHT_alt2 |nCoV-2019_1|GACAGCATCTGCCACAACACAG 22 54.55|62.26
nCoV-2019_10_LEFT nCoV-2019_2|TGAGAAGTGCTCTGCCTATACAGT 24 45.83161.12
nCoV-2019_10_RIGHT nCoV-2019_2|TCATCTAACCAATCTTCTTCTTGCTCT 27 37.04160.31
nCoV-2019_11_LEFT nCoV-2019_1|GGAATTTGGTGCCACTTCTGCT 22 50 |61.66
nCoV-2019_11_RIGHT nCoV-2019_1|TCATCAGATTCAACTTGCATGGCA 24 41.67161.35
nCoV-2019_12_LEFT nCoV-2019_2|AAACATGGAGGAGGTGTTGCAG 22 50 |61.08




nCoV-2019_12_RIGHT nCoV-2019_2|TTCACTCTTCATTTCCAAAAAGCTTGA 27 33.33/60.36
nCoV-2019_13_LEFT nCoV-2019_1|TCGCACAAATGTCTACTTAGCTGT 24 41.67(60.56
nCoV-2019_13_RIGHT nCoV-2019_1|ACCACAGCAGTTAAAACACCCT 22 45.45(60.36
nCoV-2019_14_LEFT nCoV-2019_2|CATCCAGATTCTGCCACTCTTGT 23 47.83(60.62
nCoV-2019_14_LEFT_alt4 |nCoV-2019_2|[TGGCAATCTTCATCCAGATTCTGC 24 45.83(61.47
nCoV-2019_14_RIGHT nCoV-2019_2|AGTTTCCACACAGACAGGCATT 22 45.45(60.42
nCoV-2019_14_RIGHT_alt2|nCoV-2019_2|[TGCGTGTTTCTTCTGCATGTGC 22 50 [62.76
nCoV-2019_15_LEFT nCoV-2019_1|ACAGTGCTTAAAAAGTGTAAAAGTGCC 27 37.04/61.32
nCoV-2019_15_LEFT_alt1 |nCoV-2019_1|AGTGCTTAAAAAGTGTAAAAGTGCCT 26 34.62|60.13
nCoV-2019_15_RIGHT nCoV-2019_1|AACAGAAACTGTAGCTGGCACT 22 45.45(60.16
nCoV-2019_15_RIGHT_alt3|nCoV-2019_1|ACTGTAGCTGGCACTTTGAGAGA 23 47.83(61.57
nCoV-2019_16_LEFT nCoV-2019_2|AATTTGGAAGAAGCTGCTCGGT 22 45.45(60.82
nCoV-2019_16_RIGHT nCoV-2019_2|CACAACTTGCGTGTGGAGGTTA 22 50 61.32
nCoV-2019_17_LEFT nCoV-2019_1|CTTCTTTCTTTGAGAGAAGTGAGGACT 27 40.74(60.69
nCoV-2019_17_RIGHT nCoV-2019_1|TTTGTTGGAGTGTTAACAATGCAGT 25 36 |60.11
nCoV-2019_18_LEFT nCoV-2019_2|TGGAAATACCCACAAGTTAATGGTTTAAC |29 34.48160.69
nCoV-2019_18_LEFT_alt2 |nCoV-2019_2|ACTTCTATTAAATGGGCAGATAACAACTGT |30 33.33/61.38
nCoV-2019_18_RIGHT nCoV-2019_2|AGCTTGTTTACCACACGTACAAGG 24 45.83(61.51
nCoV-2019_18_RIGHT_alt1|nCoV-2019_2|GCTTGTTTACCACACGTACAAGG 23 47.83(60.3

nCoV-2019_19_LEFT nCoV-2019_1|GCTGTTATGTACATGGGCACACT 23 47.83(61.18
nCoV-2019_19_RIGHT nCoV-2019_1|TGTCCAACTTAGGGTCAATTTCTGT 25 40 [60.4

nCoV-2019_20_LEFT nCoV-2019_2|ACAAAGAAAACAGTTACACAACAACCA 27 33.33/60.68
nCoV-2019_20_RIGHT nCoV-2019_2|ACGTGGCTTTATTAGTTGCATTGTT 25 36 |60.28
nCoV-2019_21_LEFT nCoV-2019_1|TGGCTATTGATTATAAACACTACACACCC |29 37.9361.49
nCoV-2019_21_LEFT_alt2 |nCoV-2019_1|GGCTATTGATTATAAACACTACACACCCT |29 37.9361.29
nCoV-2019_21_RIGHT nCoV-2019_1|TAGATCTGTGTGGCCAACCTCT 22 50 160.83
nCoV-2019_21_RIGHT_alt0|nCoV-2019_1|GATCTGTGTGGCCAACCTCTTC 22 54.55(61.2

nCoV-2019_22_LEFT nCoV-2019_2|ACTACCGAAGTTGTAGGAGACATTATACT |29 37.93/61.25
nCoV-2019_22_RIGHT nCoV-2019_2|ACAGTATTCTTTGCTATAGTAGTCGGC 27 40.74(60.73
nCoV-2019_23_LEFT nCoV-2019_1|ACAACTACTAACATAGTTACACGGTGT 27 37.0460.26
nCoV-2019_23_RIGHT nCoV-2019_1|ACCAGTACAGTAGGTTGCAATAGTG 25 44 160.57
nCoV-2019_24_LEFT nCoV-2019_2|AGGCATGCCTTCTTACTGTACTG 23 47.83(60.37
nCoV-2019_24_RIGHT nCoV-2019_2|ACATTCTAACCATAGCTGAAATCGGG 26 42.31(61.19
nCoV-2019_25_LEFT nCoV-2019_1|GCAATTGTTTTTCAGCTATTTTGCAGT 27 33.33/60.73
nCoV-2019_25_RIGHT nCoV-2019_1|ACTGTAGTGACAAGTCTCTCGCA 23 47.83(61.3

nCoV-2019_26_LEFT nCoV-2019_2|TTGTGATACATTCTGTGCTGGTAGT 25 40 [60.28
nCoV-2019_26_RIGHT nCoV-2019_2|TCCGCACTATCACCAACATCAG 22 50 |60.42
nCoV-2019_27_LEFT nCoV-2019_1|ACTACAGTCAGCTTATGTGTCAACC 25 44 160.8

nCoV-2019_27_RIGHT nCoV-2019_1|AATACAAGCACCAAGGTCACGG 22 50 [61.13
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nCoV-2019_28_LEFT nCoV-2019_2|ACATAGAAGTTACTGGCGATAGTTGT 26 38.46/60.13
nCoV-2019_28_RIGHT nCoV-2019_2|TGTTTAGACATGACATGAACAGGTGT 26 38.46|60.91
nCoV-2019_29_LEFT nCoV-2019_1|ACTTGTGTTCCTTTTTGTTGCTGC 24 41.67(61.39
nCoV-2019_29_RIGHT nCoV-2019_1|AGTGTACTCTATAAGTTTTGATGGTGTGT |29 34.48160.69
nCoV-2019_30_LEFT nCoV-2019_2|GCACAACTAATGGTGACTTTTTGCA 25 40 [61.19
nCoV-2019_30_RIGHT nCoV-2019_2|ACCACTAGTAGATACACAAACACCAG 26 42.31(60.3
nCoV-2019_31_LEFT nCoV-2019_1|TTCTGAGTACTGTAGGCACGGC 22 54.55(62.03
nCoV-2019_31_RIGHT nCoV-2019_1|ACAGAATAAACACCAGGTAAGAATGAGT (28 35.71160.69
nCoV-2019_32_LEFT nCoV-2019_2|TGGTGAATACAGTCATGTAGTTGCC 25 44 161.09
nCoV-2019_32_RIGHT nCoV-2019_2|AGCACATCACTACGCAACTTTAGA 24 41.67(60.56
nCoV-2019_33_LEFT nCoV-2019_1|ACTTTTGAAGAAGCTGCGCTGT 22 45.45(61.58
nCoV-2019_33_RIGHT nCoV-2019_1|TGGACAGTAAACTACGTCATCAAGC 25 44 [61.08
nCoV-2019_34_LEFT nCoV-2019_2|TCCCATCTGGTAAAGTTGAGGGT 23 47.83(61.02
nCoV-2019_34_RIGHT nCoV-2019_2|AGTGAAATTGGGCCTCATAGCA 22 45.45(60.03
nCoV-2019_35_LEFT nCoV-2019_1|TGTTCGCATTCAACCAGGACAG 22 50 61.39
nCoV-2019_35_RIGHT nCoV-2019_1|ACTTCATAGCCACAAGGTTAAAGTCA 26 38.46/60.69
nCoV-2019_36_LEFT nCoV-2019_2|TTAGCTTGGTTGTACGCTGCTG 22 50 |61.44
nCoV-2019_36_RIGHT nCoV-2019_2|GAACAAAGACCATTGAGTACTCTGGA 26 42.31(60.74
nCoV-2019_37_LEFT nCoV-2019_1|ACACACCACTGGTTGTTACTCAC 23 47.83(60.93
nCoV-2019_37_RIGHT nCoV-2019_1|GTCCACACTCTCCTAGCACCAT 22 54.55|61.48
nCoV-2019_38_LEFT nCoV-2019_2|ACTGTGTTATGTATGCATCAGCTGT 25 40 [60.86
nCoV-2019_38_RIGHT nCoV-2019_2|CACCAAGAGTCAGTCTAAAGTAGCG 25 48 [61.13
nCoV-2019_39_LEFT nCoV-2019_1|AGTATTGCCCTATTTTCTTCATAACTGGT |29 34.48|61
nCoV-2019_39_RIGHT nCoV-2019_1|TGTAACTGGACACATTGAGCCC 22 50 |60.55
nCoV-2019_40_LEFT nCoV-2019_2|TGCACATCAGTAGTCTTACTCTCAGT 26 42.31(61.25
nCoV-2019_40_RIGHT nCoV-2019_2|CATGGCTGCATCACGGTCAAAT 22 50 62.09
nCoV-2019_41_LEFT nCoV-2019_1|GTTCCCTTCCATCATATGCAGCT 23 47.83(60.75
nCoV-2019_41_RIGHT nCoV-2019_1|TGGTATGACAACCATTAGTTTGGCT 25 40 [60.75
nCoV-2019_42_LEFT nCoV-2019_2|TGCAAGAGATGGTTGTGTTCCC 22 50 |61.08
nCoV-2019_42_RIGHT nCoV-2019_2|CCTACCTCCCTTTGTTGTGTTGT 23 47.83(60.69
nCoV-2019_43_LEFT nCoV-2019_1|TACGACAGATGTCTTGTGCTGC 22 50 60.93
nCoV-2019_43_RIGHT nCoV-2019_1|AGCAGCATCTACAGCAAAAGCA 22 45.45(61.14
nCoV-2019_44_LEFT nCoV-2019_2|TGCCACAGTACGTCTACAAGCT 22 50 |61.66
nCoV-2019_44_LEFT_alt3 |nCoV-2019_2|CCACAGTACGTCTACAAGCTGG 22 54.55|60.67
nCoV-2019_44_RIGHT nCoV-2019_2|AACCTTTCCACATACCGCAGAC 22 50 |60.87
nCoV-2019_44_RIGHT_alt0|nCoV-2019_2|CGCAGACGGTACAGACTGTGTT 22 54.55(62.77
nCoV-2019_45_LEFT nCoV-2019_1|TACCTACAACTTGTGCTAATGACCC 25 44 160.57
nCoV-2019_45_LEFT_alt2 |nCoV-2019_1|AGTATGTACAAATACCTACAACTTGTGCT |29 34.48|60.94
nCoV-2019_45_RIGHT nCoV-2019_1|AAATTGTTTCTTCATGTTGGTAGTTAGAGA (30 30 |60.01
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nCoV-2019_45_RIGHT_alt7|nCoV-2019_1|TTCATGTTGGTAGTTAGAGAAAGTGTGTC |29 37.93/61.53
nCoV-2019_46_LEFT nCoV-2019_2|TGTCGCTTCCAAGAAAAGGACG 22 50 61.38
nCoV-2019_46_LEFT_alt1 |nCoV-2019_2|CGCTTCCAAGAAAAGGACGAAGA 23 47.83(61.35
nCoV-2019_46_RIGHT nCoV-2019_2|CACGTTCACCTAAGTTGGCGTA 22 50 |60.86
nCoV-2019_46_RIGHT_alt2|nCoV-2019_2|CACGTTCACCTAAGTTGGCGTAT 23 47.83[61.17
nCoV-2019_47_LEFT nCoV-2019_1|AGGACTGGTATGATTTTGTAGAAAACCC (28 39.29(61.42
nCoV-2019_47_RIGHT nCoV-2019_1|AATAACGGTCAAAGAGTTTTAACCTCTC (28 35.71160.06
nCoV-2019_48_LEFT nCoV-2019_2|TGTTGACACTGACTTAACAAAGCCT 25 40 [61.09
nCoV-2019_48_RIGHT nCoV-2019_2|TAGATTACCAGAAGCAGCGTGC 22 50 |60.74
nCoV-2019_49_LEFT nCoV-2019_1|AGGAATTACTTGTGTATGCTGCTGA 25 40  [60.57
nCoV-2019_49_RIGHT nCoV-2019_1|TGACGATGACTTGGTTAGCATTAATACA (28 35.71161.05
nCoV-2019_50_LEFT nCoV-2019_2|GTTGATAAGTACTTTGATTGTTACGATGGT (30 33.33/60.59
nCoV-2019_50_RIGHT nCoV-2019_2|TAACATGTTGTGCCAACCACCA 22 45.45(60.95
nCoV-2019_51_LEFT nCoV-2019_1|TCAATAGCCGCCACTAGAGGAG 22 54.55|61.34
nCoV-2019_51_RIGHT nCoV-2019_1|AGTGCATTAACATTGGCCGTGA 22 45.45(61.14
nCoV-2019_52_LEFT nCoV-2019_2|CATCAGGAGATGCCACAACTGC 22 54.55|61.83
nCoV-2019_52_RIGHT nCoV-2019_2|GTTGAGAGCAAAATTCATGAGGTCC 25 44 160.62
nCoV-2019_53_LEFT nCoV-2019_1|AGCAAAATGTTGGACTGAGACTGA 24 41.67(60.69
nCoV-2019_53_RIGHT nCoV-2019_1|AGCCTCATAAAACTCAGGTTCCC 23 47.83(60.31
nCoV-2019_54_LEFT nCoV-2019_2|TGAGTTAACAGGACACATGTTAGACA 26 38.46|60.18
nCoV-2019_54_RIGHT nCoV-2019_2|AACCAAAAACTTGTCCATTAGCACA 25 36 |60.11
nCoV-2019_55_LEFT nCoV-2019_1|ACTCAACTTTACTTAGGAGGTATGAGCT (28 39.29/61.43
nCoV-2019_55_RIGHT nCoV-2019_1|GGTGTACTCTCCTATTTGTACTTTACTGT |29 37.93|60.54
nCoV-2019_56_LEFT nCoV-2019_2|ACCTAGACCACCACTTAACCGA 22 50 60.49
nCoV-2019_56_RIGHT nCoV-2019_2|ACACTATGCGAGCAGAAGGGTA 22 50 |61.21
nCoV-2019_57_LEFT nCoV-2019_1|ATTCTACACTCCAGGGACCACC 22 54.55|61.16
nCoV-2019_57_RIGHT nCoV-2019_1|GTAATTGAGCAGGGTCGCCAAT 22 50 |61.26
nCoV-2019_58_LEFT nCoV-2019_2|TGATTTGAGTGTTGTCAATGCCAGA 25 40 [61.44
nCoV-2019_58_RIGHT nCoV-2019_2|CTTTTCTCCAAGCAGGGTTACGT 23 47.83|61.06
nCoV-2019_59_LEFT nCoV-2019_1|TCACGCATGATGTTTCATCTGCA 23 43.48(61.42
nCoV-2019_59_RIGHT nCoV-2019_1|AAGAGTCCTGTTACATTTTCAGCTTG 26 38.46/60.02
nCoV-2019_60_LEFT nCoV-2019_2|TGATAGAGACCTTTATGACAAGTTGCA 27 37.04/60.53
nCoV-2019_60_RIGHT nCoV-2019_2|GGTACCAACAGCTTCTCTAGTAGC 24 50 |60.44
nCoV-2019_61_LEFT nCoV-2019_1|TGTTTATCACCCGCGAAGAAGC 22 50 |61.5

nCoV-2019_61_RIGHT nCoV-2019_1|ATCACATAGACAACAGGTGCGC 22 50 [61.25
nCoV-2019_62_LEFT nCoV-2019_2|GGCACATGGCTTTGAGTTGACA 22 50 |61.91
nCoV-2019_62_RIGHT nCoV-2019_2|GTTGAACCTTTCTACAAGCCGC 22 50 60.35
nCoV-2019_63_LEFT nCoV-2019_1|TGTTAAGCGTGTTGACTGGACT 22 45.45(60.16
nCoV-2019_63_RIGHT nCoV-2019_1|ACAAACTGCCACCATCACAACC 22 50 |61.85
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nCoV-2019_64_LEFT nCoV-2019_2|TCGATAGATATCCTGCTAATTCCATTGT 28 35.71160.11
nCoV-2019_64_RIGHT nCoV-2019_2|AGTCTTGTAAAAGTGTTCCAGAGGT 25 40  [60.1

nCoV-2019_65_LEFT nCoV-2019_1|GCTGGCTTTAGCTTGTGGGTTT 22 50 61.92
nCoV-2019_65_RIGHT nCoV-2019_1|TGTCAGTCATAGAACAAACACCAATAGT |28 35.71160.9

nCoV-2019_66_LEFT nCoV-2019_2|GGGTGTGGACATTGCTGCTAAT 22 50 |61.21
nCoV-2019_66_RIGHT nCoV-2019_2|TCAATTTCCATTTGACTCCTGGGT 24 41.67(60.45
nCoV-2019_67_LEFT nCoV-2019_1|GTTGTCCAACAATTACCTGAAACTTACT (28 35.71160.43
nCoV-2019_67_RIGHT nCoV-2019_1|CAACCTTAGAAACTACAGATAAATCTTGGG|30 36.67|60.4

nCoV-2019_68_LEFT nCoV-2019_2|ACAGGTTCATCTAAGTGTGTGTGT 24 41.67(60.14
nCoV-2019_68_RIGHT nCoV-2019_2|CTCCTTTATCAGAACCAGCACCA 23 47.83(60.31
nCoV-2019_69_LEFT nCoV-2019_1|TGTCGCAAAATATACTCAACTGTGTCA 27 37.04/61.43
nCoV-2019_69_RIGHT nCoV-2019_1|TCTTTATAGCCACGGAACCTCCA 23 47.83|61.14
nCoV-2019_70_LEFT nCoV-2019_2|ACAAAAGAAAATGACTCTAAAGAGGGTTT |29 31.03/60.13
nCoV-2019_70_RIGHT nCoV-2019_2|TGACCTTCTTTTAAAGACATAACAGCAG (28 35.71160.27
nCoV-2019_71_LEFT nCoV-2019_1|ACAAATCCAATTCAGTTGTCTTCCTATTC |29 34.48|60.54
nCoV-2019_71_RIGHT nCoV-2019_1|TGGAAAAGAAAGGTAAGAACAAGTCCT 27 37.04|60.8

nCoV-2019_72_LEFT nCoV-2019_2|ACACGTGGTGTTTATTACCCTGAC 24 45.83(61.04
nCoV-2019_72_RIGHT nCoV-2019_2|ACTCTGAACTCACTTTCCATCCAAC 25 44 160.97
nCoV-2019_73_LEFT nCoV-2019_1|CAATTTTGTAATGATCCATTTTTGGGTGT |29 31.03/60.29
nCoV-2019_73_RIGHT nCoV-2019_1|CACCAGCTGTCCAACCTGAAGA 22 54.55(62.45
nCoV-2019_74_LEFT nCoV-2019_2|ACATCACTAGGTTTCAAACTTTACTTGC 28 35.71160.68
nCoV-2019_74_RIGHT nCoV-2019_2|GCAACACAGTTGCTGATTCTCTTC 24 45.83(60.85
nCoV-2019_75_LEFT nCoV-2019_1|AGAGTCCAACCAACAGAATCTATTGT 26 38.46(60.24
nCoV-2019_75_RIGHT nCoV-2019_1|ACCACCAACCTTAGAATCAAGATTGT 26 38.46/60.69
nCoV-2019_76_LEFT nCoV-2019_2|AGGGCAAACTGGAAAGATTGCT 22 45.45(60.76
nCoV-2019_76_LEFT_alt3 |nCoV-2019_2|GGGCAAACTGGAAAGATTGCTGA 23 47.83(61.87
nCoV-2019_76_RIGHT nCoV-2019_2|ACACCTGTGCCTGTTAAACCAT 22 45.45(60.42
nCoV-2019_76_RIGHT_alt0|nCoV-2019_2|[ACCTGTGCCTGTTAAACCATTGA 23 43.48(60.69
nCoV-2019_77_LEFT nCoV-2019_1|CCAGCAACTGTTTGTGGACCTA 22 50 60.75
nCoV-2019_77_RIGHT nCoV-2019_1|CAGCCCCTATTAAACAGCCTGC 22 54.55|61.59
nCoV-2019_78_LEFT nCoV-2019_2|CAACTTACTCCTACTTGGCGTGT 23 47.83(60.55
nCoV-2019_78_RIGHT nCoV-2019_2|TGTGTACAAAAACTGCCATATTGCA 25 36 60.22
nCoV-2019_79_LEFT nCoV-2019_1|GTGGTGATTCAACTGAATGCAGC 23 47.83(60.92
nCoV-2019_79_RIGHT nCoV-2019_1|CATTTCATCTGTGAGCAAAGGTGG 24 45.83(60.62
nCoV-2019_80_LEFT nCoV-2019_2|TTGCCTTGGTGATATTGCTGCT 22 45.45(60.89
nCoV-2019_80_RIGHT nCoV-2019_2|TGGAGCTAAGTTGTTTAACAAGCG 24 41.67(60.02
nCoV-2019_81_LEFT nCoV-2019_1|GCACTTGGAAAACTTCAAGATGTGG 25 44 [61.24
nCoV-2019_81_RIGHT nCoV-2019_1|GTGAAGTTCTTTTCTTGTGCAGGG 24 45.83(60.73
nCoV-2019_82_LEFT nCoV-2019_2|GGGCTATCATCTTATGTCCTTCCCT 25 48 [61.52
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nCoV-2019_82_RIGHT nCoV-2019_2|TGCCAGAGATGTCACCTAAATCAA 24 41.67(60.02
nCoV-2019_83_LEFT nCoV-2019_1|TCCTTTGCAACCTGAATTAGACTCA 25 40 [60.46
nCoV-2019_83_RIGHT nCoV-2019_1|TTTGACTCCTTTGAGCACTGGC 22 50 61.33
nCoV-2019_84_LEFT nCoV-2019_2|TGCTGTAGTTGTCTCAAGGGCT 22 50 |61.61
nCoV-2019_84_RIGHT nCoV-2019_2|AGGTGTGAGTAAACTGTTACAAACAAC 27 37.04160.36
nCoV-2019_85_LEFT nCoV-2019_1|ACTAGCACTCTCCAAGGGTGTT 22 50 |61.03
nCoV-2019_85_RIGHT nCoV-2019_1|ACACAGTCTTTTACTCCAGATTCCC 25 44 160.51
nCoV-2019_86_LEFT nCoV-2019_2|TCAGGTGATGGCACAACAAGTC 22 50 |61.07
nCoV-2019_86_RIGHT nCoV-2019_2|ACGAAAGCAAGAAAAAGAAGTACGC 25 40 [61.01
nCoV-2019_87_LEFT nCoV-2019_1|CGACTACTAGCGTGCCTTTGTA 22 50 |60.16
nCoV-2019_87_RIGHT nCoV-2019_1|ACTAGGTTCCATTGTTCAAGGAGC 24 45.83(60.81
nCoV-2019_88_LEFT nCoV-2019_2|CCATGGCAGATTCCAACGGTAC 22 54.55|61.58
nCoV-2019_88_RIGHT nCoV-2019_2|TGGTCAGAATAGTGCCATGGAGT 23 47.83(61.4

nCoV-2019_89_LEFT nCoV-2019_1|GTACGCGTTCCATGTGGTCATT 22 50 |61.5

nCoV-2019_89_LEFT_alt2 |nCoV-2019_1|CGCGTTCCATGTGGTCATTCAA 22 50 |62.01
nCoV-2019_89_RIGHT nCoV-2019_1|ACCTGAAAGTCAACGAGATGAAACA 25 40  160.91
nCoV-2019_89_RIGHT_alt4|nCoV-2019_1|ACGAGATGAAACATCTGTTGTCACT 25 40 [60.74
nCoV-2019_90_LEFT nCoV-2019_2|ACACAGACCATTCCAGTAGCAGT 23 47.83|61.58
nCoV-2019_90_RIGHT nCoV-2019_2|TGAAATGGTGAATTGCCCTCGT 22 45.45(60.82
nCoV-2019_91_LEFT nCoV-2019_1|TCACTACCAAGAGTGTGTTAGAGGT 25 44 160.93
nCoV-2019_91_RIGHT nCoV-2019_1|TTCAAGTGAGAACCAAAAGATAATAAGCA |29 31.03/60.03
nCoV-2019_92_LEFT nCoV-2019_2|TTTGTGCTTTTTAGCCTTTCTGCT 24 37.5 160.14
nCoV-2019_92_RIGHT nCoV-2019_2|AGGTTCCTGGCAATTAATTGTAAAAGG 27 37.04/60.53
nCoV-2019_93_LEFT nCoV-2019_1|TGAGGCTGGTTCTAAATCACCCA 23 47.83(61.59
nCoV-2019_93_RIGHT nCoV-2019_1|AGGTCTTCCTTGCCATGTTGAG 22 50 60.55
nCoV-2019_94_LEFT nCoV-2019_2|GGCCCCAAGGTTTACCCAATAA 22 50 |60.56
nCoV-2019_94_RIGHT nCoV-2019_2|TTTGGCAATGTTGTTCCTTGAGG 23 43.48(60.18
nCoV-2019_95_LEFT nCoV-2019_1|TGAGGGAGCCTTGAATACACCA 22 50 |61.1

nCoV-2019_95_RIGHT nCoV-2019_1|CAGTACGTTTTTGCCGAGGCTT 22 50 61.95
nCoV-2019_96_LEFT nCoV-2019_2|GCCAACAACAACAAGGCCAAAC 22 50 [61.82
nCoV-2019_96_RIGHT nCoV-2019_2|TAGGCTCTGTTGGTGGGAATGT 22 50 |61.36
nCoV-2019_97_LEFT nCoV-2019_1|TGGATGACAAAGATCCAAATTTCAAAGA (28 32.14/60.22
nCoV-2019_97_RIGHT nCoV-2019_1|ACACACTGATTAAAGATTGCTATGTGAG (28 35.71160.17
nCoV-2019_98_LEFT nCoV-2019_2|AACAATTGCAACAATCCATGAGCA 24 37.5 160.5

nCoV-2019_98_RIGHT nCoV-2019_2|TTCTCCTAAGAAGCTATTAAAATCACATGG (30 33.33|60.01

Supplemental Table 4.

ARTIC primers.
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Author summary

We investigated SARS-CoV-2 infections in 95 healthcare personnel (HCP). The majority
of HCP infections could not be linked to a patient or co-worker. Infection control
procedures, consistently followed, offer significant protection to HCP caring for COVID-

19 patients.

Abstract

Background

Healthcare personnel (HCP) are at increased risk of infection with severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2). We posit current infection control
guidelines generally protect HCP from SARS-CoV-2 infection in a healthcare setting.
Methods

In this retrospective case series, we use viral genomics to investigate the likely source of
SARS-CoV-2 infection in HCP at a major academic medical institution in the Upper
Midwest of the United States between 25 March - 27 December, 2020. We obtain limited
epidemiological data through informal interviews and review of the electronic health
record. We combine epidemiological information with healthcare-associated viral
sequences and with viral sequences collected in the broader community to infer the most

likely source of infection in HCP.
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Results

We investigated SARS-CoV-2 infection clusters involving 95 HCP and 137 possible
patient contact sequences. The majority of HCP infections could not be linked to a patient
or co-worker (55/95; 57.9%) and were genetically similar to viruses circulating
concurrently in the community. We found 10.5% of infections could be traced to a
coworker (10/95). Strikingly, only 4.2% of HCP infections could be traced to a patient
source (4/95).

Conclusions

Infections among HCP add further strain to the healthcare system and put patients, HCP,
and communities at risk. We found no evidence for healthcare-associated transmission
in the majority of HCP infections evaluated here. Though we cannot rule out the possibility
of cryptic healthcare-associated transmission, it appears that HCP most commonly
becomes infected with SARS-CoV-2 via community exposure. This emphasizes the
ongoing importance of mask-wearing, physical distancing, robust testing programs, and

rapid distribution of vaccines.

Introduction

Despite the use of personal protective equipment (PPE) and other strategies to mitigate
risk, front-line healthcare workers are at increased risk for infection with severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) compared to the general population
354-356  Healthcare-associated SARS-CoV-2 infections negatively affect healthcare
personnel (HCP) through direct health impacts, lost wages, and secondary consequences

for their close contacts 3%7. Additional repercussions include staffing shortages,
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environmental contamination, low morale and other mental health impacts on HCP. Each
of these can impact overall quality of care 35835, Here we use rapid viral sequencing and
forensic genomics to investigate the likely sources of infection in 95 confirmed cases of
coronavirus-disease 2019 (COVID-19) in HCP. We further describe how the results of
these investigations informed infection control recommendations within a large academic

medical system in the midwestern United States.

The US Centers for Disease Control and Prevention (CDC) have released guidelines for
infection prevention for HCP interacting directly with patients with SARS-CoV-2 3¢, These
guidelines include recommendations for the proper use of PPE, hand hygiene,
precautions to be taken during aerosol-generating procedures, environmental infection
control practices and many others. These guidelines, and additional institution-specific
infection control measures 3¢, were in place at the institution evaluated here. We posit
that these guidelines are generally successful in protecting HCP from SARS-CoV-2
infection in a healthcare setting. Here we test this hypothesis using viral sequences
collected from infected HCP, as well as concurrent viral sequences collected from the

broader community, to investigate possible sources of infection in a series of HCP.

With a few exceptions 3627364 viral sequencing is not currently standard practice for
investigating healthcare-associated SARS-CoV-2 infections, although we and others
have highlighted the potential utility of this approach 365-368 |t is currently estimated that
SARS-CoV-2 acquires ~2-2.5 consensus mutations per month 369370 Vjral sequences

can therefore be used to infer likely epidemiological relationships. Viruses collected from
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transmission pairs or from individuals with a shared source of infection are expected to
share higher levels of genetic diversity than individuals who become infected at similar
times, but from distinct sources. This was especially true during March - December 2020
in the United States, when transmission rates were high and multiple viruses of distinct
genetic lineages co-circulated in many areas 3'. By increasing the resolution of inference,
rapid viral sequencing can facilitate a targeted approach to examine SARS-CoV-2
nosocomial outbreaks at the level of the individual and the institution, which others have

referred to collectively as “precision epidemiology” 372.

Materials and methods

Sample approvals and sample selection criteria

From 12 March 2020 to 10 January 2021, ~1,172 HCP tested positive for SARS-CoV-2
at a major academic medical institution in the Upper Midwest. Whenever possible,
informal interviews and contact tracing information was collected for each HCP infection.
HCP viruses and viruses from other individuals involved in each outbreak (patients, co-
workers) were sequenced if epidemiological data did not reveal a likely exposure source
and if residual swab was available. Individuals who had high-risk exposures to family or
community members with confirmed COVID-19 were not sequenced. Individuals who
reported high-risk community activities, such as attending a wedding, funeral, indoor bar,
or plane travel, were also not sequenced. Relevant patient contacts of individuals with no
likely exposure source were identified in the Epic electronic medical record using a

comprehensive caregiver trace. This function identifies all patient records accessed by a
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HCP being traced. Diagnostic assays for the samples included in this study were
performed in a clinical lab using CDC’s diagnostic RT-PCR 28, the Hologic Panther

SARS-CoV-2 assay %1, or the Aptima SARS-CoV-2 assay 222,

Summary of infection control measures to prevent transmission of SARS-CoV-2 at
our institution

Detailed descriptions of all infection control measures implemented to prevent
transmission of SARS-CoV-2 at the medical institution evaluated here can be found in a
recent report by Lepak et al 3. Briefly, these guidelines include a universal testing policy
for all patients, negative air pressure in all locations where SARS-CoV-2 patients are
treated, a limit of one visitor or primary support person per patient per day (required to
undergo screening prior to entry), establishment of an employee testing site with required
employee self-monitoring for symptoms, maintenance of a log of persons entering the
room of a confirmed or suspected COVID-19 patient for contact tracing purposes, detailed

PPE guidelines, among others.

Sample preparation and sequencing

Detailed methods descriptions can be found in Moreno et al. *°. Briefly, viral RNA was
extracted using the Viral Total Nucleic Acid Purification kit (Promega, Madison, WI, USA)
on a Maxwell RSC 48 instrument. Complementary DNA (cDNA) was synthesized using
SuperScript IV Reverse Transcriptase 235283, A SARS-CoV-2-specific multiplex PCR was
performed using the ARTIC v3 primers 235283 DNA was made compatible for sequencing

using the one-pot native ligation protocol with Oxford Nanopore kit SQK-LSK109 and its
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Native Barcodes (EXP-NBD104 and EXP-NBD114) 283, Up to 23 samples, with one no-
template control (water), were pooled prior to being run on the appropriate Nanopore flow

cell (FLO-MIN106) using the 72hr run script.

Processing raw ONT data
Sequencing data was processed using the ARTIC bioinformatics pipeline

(https://github.com/artic-network/artic-ncov2019), with a few modifications. Briefly, we

have modified the ARTIC pipeline so that it demultiplexes raw fastq files using gcat as

each fastq file is generated by the GridION (https://github.com/nanoporetech/gcat). Once

a barcode reaches 100k reads, it maps to the Wuhan-Hu-1 reference (Genbank:
MN908947.3) using minimap2. This alignment will then be used to generate consensus

sequences and variant calls using medaka (https://github.com/nanoporetech/medaka).

The analysis pipeline is available at https://github.com/gagekmoreno/SARS-CoV-2-in-

Southern-Wisconsin.

Consensus sequence analysis — clade and lineage generation
Samples were excluded from downstream analysis if gaps in the consensus sequence
totaled 220% of the genome. Each sample’s consensus sequence was visually inspected

in Geneious Prime (https://www.geneious.com) and/or in Nextstrain’s Nextclade online

tool (https://clades.nextstrain.org/). We used Pangolin’s command-line tool to assign

sequences to Pangolin lineages (https://github.com/cov-lineages/pangolin).
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Consensus sequence analysis — Southeast Wisconsin Phylogenetic tree

Wisconsin-centric time-resolved and divergence phylogenetic trees (seen in
Supplementary File 1) were built using the standard Nextstrain tools and scripts '4°.
Laboratories responsible for obtaining and genetic sequence data included here, if not
our own, are documented in Supplementary File 2. An interactive view of this Nextstrain

phylogenetic tree can be found here.

Genetic distance comparisons

Full length SARS-CoV-2 sequences available on GISAID as of 10 March, 2020 were
obtained and filtered on “Wisconsin” and parsed by date of collection into month bins. We
used this dataset as a community comparator set. Consensus mutations were called
against Wuhan-Hu-1 reference (Genbank: MN908947.3) using Varscan v2.4.3. HCP and
patient samples were similarly binned by month. We performed a permutation test
comparing the percent overlap in mutation identities in 100,000 randomly selected pairs
from the community comparator set and plotted these values as a distribution in Figure
5. We plotted the genetic diversity of n-choose-2 random pairs for healthcare-associated
sample, where n is the number of HCP and patient samples available for comparison

each month.

Data availability
Accession numbers for all healthcare-associated samples can be found in Supplemental

File 1. Code to replicate the genetic distance analyses can be found in the GitHub
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accompanying this manuscript 373. Figures 1A, 2A, and 3A were created with BioRender

(http://biorender.com).
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Results

HCP began testing positive for SARS-CoV-2 at a major academic biomedical institution
in the American Upper Midwest in early March 2020. We began sequencing viral
genomes from residual nasopharyngeal specimens from the individuals involved in these

infection clusters. We focused our analyses on HCP infections and infection clusters that
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were highest risk for nosocomial transmission, as when healthcare-associated
transmission could not be ruled out using epidemiological data alone (see methods for
details). Each investigation included at least one HCP, all known direct and indirect
SARS-CoV-2-positive patient contacts where residual swab was available, and

occasionally extended to epidemiologically-linked household contacts.

We consider three potential sources of HCP infection: “patient source” (via HCP-patient
interactions), “employee source” (via HCP-HCP interactions), and “no evidence of
healthcare-associated transmission”. Some HCP infections did not fit neatly into these
categories so we have included three additional categories which are defined in full in the
Supplemental File 1. These additional categories are “combined patient and employee
cluster”, “outside community”, and “inconclusive”. In each category, for us to conclude
person A was a likely source of infection for person B, persons A and B must have had

known contact with each other, must have been tested within 14 days of each other, and

must have been infected with viruses differing by no more than a single mutation 2,

From 12 March, 2020 to 10 January, 2021 ~1,172 HCP tested positive for SARS-CoV-2
at the institution we evaluate in this study. In total, we investigated 95 HCP (8.1%) and
137 possible patient contacts collected between 25 March and 27 December, 2020
(n=232). Of these, we were able to generate 87 complete HCP sequences and 87
complete patient contact sequences which were used in downstream analyses (n=174).

Of the 87 patient sequences, 4 were included in 2 or more outbreak investigations.
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We did not find a closely related virus among co-worker and patient contacts in 55 HCP
infections. We identified a specific household or community source of infection in an
additional 3 cases (58/95; 61.1%). We find a smaller percentage could be traced to a
coworker (10/95; 10.5%) or were part of a patient-employee cluster (12/95; 12.6%).
Strikingly, the smallest proportion of HCP infections could be clearly traced to a patient
source (4/95; 4.2%). The remaining HCP infections could not be definitively traced to a
single source and were therefore inconclusive (11/95; 11.6%) (Table 1). Below, we
describe one representative example of three distinct transmission scenarios — no

evidence of healthcare-associated transmission, HCP-to-HCP, and patient-to-HCP.

In case #20, we compared the viral sequence of a HCP (HCP 20-1), who tested positive on
5 October, to a patient contact who tested positive eight days prior. A comprehensive
caregiver trace of HCP 20-1 revealed a single patient contact with diagnosed COVID-19
(patient 20-A) within the 14 days prior HCP 20-1’s symptom onset. HCP 20-1 provided direct
care to patient 20-A while wearing appropriate PPE and with no reported lapses in PPE.
HCP 20-1 was infected with a virus clustering with the 20G clade whereas patient 20-A was
infected with a 20A-clade virus. The sequences of these viruses differed at >20 sites, so we

concluded these individuals were unlikely to represent a transmission pair (Figure 1).

In case #16, we investigated infections in three HCP who worked in the same department
and tested positive on 8 September (HCP 16-2), 18 September (HCP 16-1), and 29
September (HCP 16-3). Contact tracing revealed HCP 16-2 worked for two days prior to

symptom onset and may have had unmasked contact with HCP 16-1 during overlapping
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meal breaks. Contact tracing additionally revealed HCP 16-3 had an exposure event lasting
>15 minutes in the outside community prior to testing positive. Viral sequencing in this
cluster showed HCP 16-1 and 16-2 were infected with 20G-clade viruses identical at the
consensus level, while HCP 16-3 was infected with a genetically dissimilar 20A-clade virus.
We therefore concluded HCP 16-2 was a likely source of infection for HCP 16-1, while HCP

16-3 was likely infected elsewhere (Figure 2).

Case #10 involved a HCP (HCP 10-1) who provided care for 15 patients diagnosed with
COVID-19 in the 14 days prior to symptom onset. HCP 10-1 provided direct care to each of
these patients while wearing appropriate PPE with no reported lapses in PPE. We generated
consensus sequences from HCP 10-1 and nine patient contacts. There was insufficient viral
RNA (vRNA) in the remaining six patient contacts to generate high-quality consensus
sequences for comparison. The virus isolated from patient 10-G was identical to the virus
from HCP 10-1. Given the known epidemiological association between these two
individuals, the time separating sample collections (28 July & 5 August), and identical viral
sequences, we concluded patient 10-G is a likely source of infection for HCP 10-1 (Figure
3). However, we cannot rule out the possibility that another patient whose sample could not

be sequenced also shared an identical virus.

HCP and patient viruses are broadly distributed throughout a phylogenetic tree showing the
diversity of circulating viruses collected from the areas surrounding the academic medical
center (Figure 4). To investigate the possibility that we missed cryptic healthcare-associated

transmission, we compared genetic distances between random pairs of healthcare-
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associated samples against the genetic distances between randomly paired sequences
from the community dataset (grey tips in Figure 4) within each month in our study period
(Figure 5). Overall, healthcare-associated pairs do not share substantially greater sequence
identity than randomly paired sequences from the community. This is consistent with a
relatively limited role for nosocomial spread of SARS-CoV-2. We additionally plot 14 pairs
which are very likely to be true transmission pairs based on epidemiological data (e.g. HCP
2-1 and their household contact) and show these pairs are uniformly genetically identical

(see dashed magenta lines in Figure 5).

The center where we conducted this case series implemented a number of changes to
their institutional infection control guidelines based on these sequencing results 3¢'. The
recommendations for extended reuse of medical grade face masks were clarified and
now instruct HCP to consider barrier mask replacement after three days of wear and to
inspect the barrier mask prior to each use and to replace if soiled or damaged. N-95s or
powered air-purifying respirators (PAPR) are now universally required on inpatient units
housing COVID-19-confirmed and suspected patients. In addition, medical-grade face
masks, instead of cloth masks, are now required for HCP in all clinical areas, and not just
direct patient care areas. This final recommendation was based on likely HCP-to-HCP
transmission involving a HCP who was not directly involved in patient care of COVID-19

patients (case #14 in Supplementary File 1).
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Discussion

HCP across the hospital are involved in caring for people with COVID-19, whether or not
they work on an actual COVID-19 ward. With shifting guidelines and PPE shortages that
persist today, it is critical to assess the risk that HCP treating people with known SARS-
CoV-2 infection will become infected themselves. We used viral genome sequencing to
assess the risk that HCP in a large academic medical system treating COVID-19 patients
would acquire nosocomial infections. Our results suggest that caring for COVID-19
patients accounted for a minority of HCP infections (n=4). In contrast, HCP at this
institution were much more likely to acquire SARS-CoV-2 from infected coworkers (n=10)
or outside of the healthcare system (n=58). This result suggests that infection control
procedures, consistently followed, offer significant protection to HCP caring for COVID-
19 patients in the United States. A similar conclusion was drawn by recent studies
evaluating healthcare-associated infections in the Netherlands and in the UK, suggesting
this conclusion may hold across healthcare systems 358374 These results are further
supported by another recent study which found the most important risk factor for HCP
SARS-CoV-2 seropositivity was cumulative COVID-19 incidence in surrounding

communities, not workplace factors 375,

This study has important limitations. We were able to generate high-quality sequence
information for a minority of documented COVID-19 cases in HCP (87/1,172; 7.4%)
during our study period (25 March - 27 December, 2020). Our dataset is therefore
incomplete and may not be entirely representative of viruses circulating in this healthcare

setting, particularly for asymptomatic cases. Similarly, we did not sequence viruses from
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all SARS-CoV-2-positive patients who were treated at the medical center where we
conducted this study. Given this limitation, we were often able to exclude patient contacts
and co-workers as likely sources of infection in HCP, but we were rarely able to pinpoint
the exact source of infection. It is therefore possible we have underestimated the true rate
of SARS-CoV-2 transmission in this healthcare setting. However, the finding that
randomly paired HCP and patient sequences do not have greater sequence identity than
randomly paired sequences from across the surrounding community suggests to us that
we have not severely underestimated nosocomial transmission. Our ability to determine
the source of infections in these outbreaks was also often limited by incomplete contact
tracing data; undocumented exposures between HCP may have occurred inside and

outside of the workplace.

This study examined SARS-CoV-2 infections in HCP from a single academic medical
center so our conclusions may not be broadly generalizable. However, another recent
study evaluated healthcare-associated infections in the Netherlands and similarly found
no evidence for widespread nosocomial transmission of SARS-CoV-2, suggesting our
conclusions may hold across institutions and healthcare systems 374, Further, we were
not able to differentiate between routes of infection (airborne, droplet, contact) with the

limited epidemiological data available to us in this study.

Sampling and contact tracing of nosocomial outbreaks is often coordinated by local
hospitals and/or departments of health while expertise in viral sequencing, bioinformatics,

and phylogenetics can more often be found in academic laboratories. Successful
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application of precision epidemiology requires the integration of these areas. This is
possible now at academic medical institutions like ours, but presents more of a challenge
at smaller, rural, and private patient care centers. Federal support should be provided to
help establish and maintain these collaborations in the current pandemic and in

anticipation of future outbreaks.

Here we demonstrated how rapid whole-genome sequencing of current SARS-CoV-2
outbreaks in hospitals can be used retrospectively to reconstruct the likely source of HCP
infection and prospectively to adjust and improve infection control practices and
guidelines. The approach we describe here need not be limited to investigation of
pandemic virus outbreaks. Key concepts from genome sequencing and routine pathogen
surveillance can be applied to any nosocomial pathogen and inform changes to infection
control practices. Overall, while we do find examples of patient-to-HCP and HCP-to-HCP
spread, we found no evidence of healthcare-associated transmission in a majority of HCP
infections, emphasizing the importance of ongoing measures to reduce community
spread through mask-wearing, physical distancing, robust testing programs, and rapid

distribution of vaccines.
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where genetic sequence data were generated and shared via the GISAID initiative

(Supplementary File 2).
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Figure 1. Graphical representation of case #20.

A. Virus sequences are aligned against SARS-CoV-2 reference sequence Wuhan-Hu-1
(MN908947.3). Vertical markers denote the location of consensus nucleotide differences
between patient viruses and the reference. B. A time-resolved phylogenetic tree built
using Nextstrain tools with all Wisconsin sequences available as of 2021-01-15. Viruses

involved in this case are denoted with thick branches and labeled tips. Color denotes

clade.
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Figure 2. Graphical representation of case #16.

A. Virus sequences are aligned against SARS-CoV-2 reference sequence Wuhan-Hu-1
(MN908947.3). Vertical markers denote the location of consensus nucleotide differences
between patient viruses and the reference. Purple vertical markers indicate identical virus
sequences. B. A time-resolved phylogenetic tree built using Nextstrain tools with all
Wisconsin sequences available as of 2021-01-15. Viruses involved in this case are

denoted with thick branches and labeled tips. Color denotes clade.
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A. Virus sequences are aligned against SARS-CoV-2 reference sequence Wuhan-Hu-1

(MN908947.3). Vertical markers denote the location of consensus nucleotide differences

between patient viruses and the reference. Purple vertical markers indicate identical virus

sequences. B. A time-resolved phylogenetic tree built using Nextstrain tools with all

Wisconsin sequences available as of 2021-01-15. Viruses involved in this case are

denoted with thick branches and labeled tips. Color denotes clade.
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Figure 4. A time-resolved phylogenetic tree built using Nexstrain tools for all
samples collected and shared in Wisconsin from March - December, 2020.

Healthcare-associated samples are denoted with enlarged tips and colored according to
sample type. The grey tips reflect the community surveillance samples. It is likely
additional HCP and patient sequences are represented in the community dataset, but we
do not have access to sufficient metadata to make these designations. Laboratories
responsible for obtaining and genetic sequence data included here, if not our own, are

documented in Supplementary File 2.
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Figure 5.

Genetic diversity among pairwise comparisons of healthcare-associated viruses (HCP
and patient samples) are generally similar to that of viruses circulating in the areas
surrounding the academic medical center evaluated in this study. The grey distribution
reflects 100,000 pairwise random comparisons of the community dataset per month (A-
[). The turquoise distribution shows n-choose-2 comparisons from the healthcare-

associated dataset per month where n is the total number of HCP and patient sequences
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available within each month. The magenta dashed lines reflect the shared genetic
diversity in healthcare-associated pairs where we have high confidence, based on
epidemiological data, that these are true transmission pairs. The number of pairs

represented in each magenta line is shown in magenta text to the right of each plot.

Likely source of infection in HCP Number of cases

| |
No evidence of healthcare-associated transmission 55 (57.9%)

| |
Combined patient and employee cluster 12 (12.6%)

| |
Inconclusive 11 (11.6%)

| |
Employee source (via employee-employee interactions) 10 (10.5%)

| |
Patient source (via employee-patient interactions) 4 (4.2%)

| |
Outside community 3 (3.2%)

| |
Total 95

Table 1.

Summary of the likely source of infection in the HCP evaluated in this study. Full
definitions for each transmission bin can be found in Supplemental File 1. Briefly, “no

evidence of healthcare-associated transmission” includes cases where available
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sequences do not support transmission in the healthcare setting and “outside community”
includes cases in which transmission outside the healthcare setting could be reasonably
established. “Inconclusive” includes cases where no consensus sequence was available

for the HCP and/or there were no appropriate comparator sequences.

Supplementary File 1
Likely sources of infection in HCP: definitions

Outside community. Among the sequences available for comparison, the likely source

of infection was not a patient and was not a co-worker/employee.

Patient source. The most likely source of infection in the HCP was a patient source.

Employee source. The most likely source of infection in the HCP was a co-

worker/employee.

Combined patient and employee cluster. A patient to HCP transmission event likely
started this cluster and was followed by HCP-to-HCP transmission. However, we are
unable to pinpoint the first HCP to become infected and/or are unable to distinguish

ongoing sources of transmission as patient-to-HCP and HCP-to-HCP are both possible.

Inconclusive. No consensus sequence available, and/or there were no appropriate
comparator sequences available, and/or epidemiological information were insufficient to

interpret sequence data
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Likely source of infection in HCP Number of cases

|
Outside community 58 (60.4%)

| |
Patient source (via employee-patient interactions) 4 (4.2%)

|
Employee source (via employee-employee interactions) 10 (10.4%)

|
Combined patient and employee cluster 12 (12.5)

| |
Inconclusive 12 (12.5)

| |

Total 96

Supplemental table 1.

Total number of patient comparator samples = 140 (96 consensus sequences).

Each case included in the above table is summarized below. For each case, we include
the likely source of infection for all involved healthcare personnel (HCP). Next, we
provide essential information for each associated sample in the form of a table,
including sample collection date, GISAID identifier, Nextstrain clade, and Pangolin
lineage. We report clades using the updated Nextstrain clade naming strategy as
outlined by Bedford, Hodcroft, and Neher in Virological.org . We report lineages
according to the Pangolin nomenclature as outlined by Rambaut and colleagues 3. A
description of each Pangolin lineage can be found at cov-lineages 2. Next, we provide a
very brief overview of any known epidemiological interactions among the involved
individuals. The level of epidemiological detail associated with each case is variable, but
we have included all known information here. We include a simple alignment showing

the consensus sequences mapped against the Wuhan-Hu-1 reference sequence.
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Consensus-level differences amongst the reference and the sample sequences are
denoted with a vertical black line. Particular variant identities for each sample can be

found on the GitHub accompanying this manuscript. Finally, we include a time-resolved

phylogenetic tree, built using Nextstrain algorithms, for each case. These trees include
all sequences which are publicly available in the GISAID database from the state of
Wisconsin. We highlight the samples involved in each case using bolded branches and

nodes. An interactive view of this tree can be found here.

" https://virological.org/t/updated-nextstain-sars-cov-2-clade-naming-strategy/581

2 https://cov-lineages.org/lineages.html

3Rambaut A, Holmes EC, O'Toole A, Hill V, McCrone JT, Ruis C, du Plessis L, Pybus
OG. A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic
epidemiology. Nat Microbiol. 2020 Nov;5(11):1403-1407. doi: 10.1038/s41564-020-

0770-5. Epub 2020 Jul 15. PMID: 32669681.
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2020-04-15.

Likely source of HCP infection

HCP 1. Outside community.
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Sample Sample collection GISAID identifier Clade Lineage
type date (Nextstrain) (Pangolin)
| |
HCP 1 April 2020 hCoV-19/USA/IA-UW- 20A B.1
121/2020
patient A April 2020 hCoV-19/USA/WI-UW- 20A B.1.19
120/2020
patient B April 2020 hCoV-19/USA/WI-UW- 20A B.1.19

Epidemiological information

122/2020

In the 14 days before symptom onset, HCP 1 interacted with patients A and B per

comprehensive caregiver trace (see Methods, “Sample approvals and sample selection

criteria” for further information). HCP 1 reported wearing appropriate personal protective

equipment (PPE) while providing care to these patients
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Report #2. 2020-04-16.

Likely source of HCP infection
HCP 1. Outside community (household contact).
HCP 2. Outside community.

HCP 3. Outside community.

Sample type Sample collection GISAID identifier Clade Lineage
date (Nextstrain) (Pangolin)
| 1
HCP 1 April 2020 hCoV-19/USA/WI-UW- 20A B.1.19
119/2020
HCP 2 April 2020 hCoV-19/USA/WI-UW- 20A B.1.19
259/2020
HCP 3 April 2020 hCoV-19/USA/WI-UW- 20C B.1
260/2020
Household contact April 2020 hCoV-19/USA/WI-UW- 20A B.1.19
(HCP 1) 120/2020
patient A March 2020 hCoV-19/USA/WI-UW- 20C B.1
118/2020
patient B March 2020 hCoV-19/USA/WI-UW- 20A B.1.139
110/2020

Epidemiological information

HCP 1 tested positive for SARS-CoV-2 after providing care for two SARS-CoV-2 positive
patients, patients A and B. HCP 1 also had a household contact who tested positive for
SARS-CoV-2 16 days before HCP 1. In the week following HCP 1’s positive test, two
additional HCP, HCP 2 and HCP 3 tested positive for SARS-CoV-2. HCPs 1, 2, and 3 all
work in the same department, but we do not know whether these individuals had any

high-risk contact with HCP 1 before their positive test results.
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Notes

This case was published as an independent case report in Emerging Infectious Disease

224



Report #3.

2020-06-04.

Likely source of HCP infection

HCP 1. Outside community.
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Sample Sample collection GISAID identifier Clade Lineage
type date (Nextstrain) (Pangolin)
| |
HCP 1 May 2020 hCoV-19/USA/WI-UW- 20A B.1.139
388/2020
HCP-C Sample was not available ‘
patient A May 2020 hCoV-19/USA/WI-UW- 20A B.1.139
386/2020
patient B May 2020 hCoV-19/USA/WI-UW- 20A B.1.139
390/2020
patient C May 2020 hCoV-19/USA/WI-UW- 20A B.1.139
389/2020
patient D May 2020 hCoV-19/USA/WI-UW- 20A B.1.139
387/2020

Epidemiological information

HCP 1 did not have direct contact with any of the patients included here. In this case, a

household contact (HCP-C) of HCP 1 also works in healthcare, but in a different

healthcare facility than HCP 1. The healthcare facility employing HCP-C was experiencing

a COVID-19 outbreak at the time that HCP 1 tested positive. Patients A-D were patient

samples collected from the HCP-C outbreak. A sample from the HCP-C was not available

for comparison. Given the similarity in viral sequences between HCP 1 and all four

patients from the outside healthcare facility, it is likely HCP 1 was exposed/infected via

their household contact, who was likely exposed through patient contact.
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Report #4. 2020-06-04.

Likely source of HCP infection

HCP 1. Patient source (patient D).

Sample Sample collection GISAID identifier Clade Lineage
type date (Nextstrain) (Pangolin)
| 1

HCP 1 May 2020 hCoV-19/USA/WI-UW- 20A B.1.139
391/2020

patient A May 2020 hCoV-19/USA/WI-UW- 20A B.1.276
392/2020

patient B May 2020 hCoV-19/USA/WI-UW- 20A B.1.139
393/2020

patient C May 2020 N/A - no consensus sequence

patient D May 2020 hCoV-19/USA/WI-UW- 20A B.1.139
389/2020

Epidemiological information
In the two weeks before symptom onset, HCP 1 provided direct care to patients A-D. HCP
1 wore appropriate PPE while providing care and was also present during patient D’s

treatment with the Aerobika nebulizer.
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Phylogeny
I 20A
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2019-Dec 2020-Feb 2020-Apr 2020-Jun 2020-Aug 2020-Oct 2020-Dec 2021-Feb
Notes

The Aerobika nebulizer was added to the list of aerosol-generating procedures requiring

enhanced PPE based on this case.



Report #5.

2020-07-08.

Likely source of HCP infection

HCP 1. Outside community.
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HCP 2. Outside community (likely source was HCP 1, but infection took place outside of

the workplace).

Sample Sample collection GISAID identifier Clade Lineage
type date (Nextstrain) (Pangolin)
| |

HCP 1 June 2020 hCoV-19/USA/WI-UW- 20C B.1
588/2020

HCP 2 June 2020 hCoV-19/USA/WI-UW- 20C B.1
610/2020

patient A June 2020 hCoV-19/USA/FL-UW- 20A B.1.162
473/2020

patient B June 2020 hCoV-19/USA/WI-UW- 20A B.1.162
469/2020

patient C June 2020 hCoV-19/USA/WI-UW- 20A B.1.139
497/2020

patient D June 2020 hCoV-19/USA/WI-UW- 20A B.1.139
493/2020

patient E June 2020 hCoV-19/USA/WI-UW- 20A B.1.139
479/2020

patient F June 2020 N/A - no consensus sequence

Epidemiological information

HCP 1 had direct contact while wearing appropriate PPE with patients A-E. HCP 1 and

HCP 2 had unmasked interactions (>15 mins) with each other outside of the workplace.

HCP 2 did not have contact with any SARS-CoV-2 positive patients in the 14 days before

symptom onset.
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Report #6.

2020-08-13.

Likely source of HCP infection

HCP 1. Outside community (based on epidemiological risk factors).

HCP 2. Employee source (likely source was HCP 1).
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Sample Sample collection GISAID identifier Clade Lineage
type date (Nextstrain) (Pangolin)
| |
HCP 1 June 2020 hCoV-19/USA/WI-UW- 20A B.1.139
520/2020
HCP 2 June 2020 hCoV-19/USA/WI-UW- 20A B.1.139

Epidemiological information

726/2020

HCP 1 had a high-risk exposure event in the community before testing positive. This event

was indoors, unmasked, and lasted longer than 15 minutes. HCP 1 works in the same

department as HCP 2. Neither HCP 1 nor HCP 2 provided direct care to patients

diagnosed with COVID-19 in the 14 days before their symptom onset. HCP 2 reported

wearing a mask around all coworkers except while eating in the breakroom. HCP 2 reports

removing their mask while eating, but maintaining a 6-foot physical distance from others

during this time.
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Report #7.

2020-08-04.

Likely source of HCP infection

HCP 1. Outside community.
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Sample Sample collection GISAID identifier Clade Lineage
type date (Nextstrain) (Pangolin)
| |

HCP 1 July 2020 hCoV-19/USA/WI-UW- 20C B.1.2
973/2020

patient A July 2020 N/A - no consensus sequence

patient B July 2020 N/A - no consensus sequence

patient C July 2020 N/A - no consensus sequence

patient D July 2020 N/A - no consensus sequence

patient E July 2020 N/A - no consensus sequence

patient F July 2020 hCoV-19/USA/WI-UW- 20A B.1.139
852/2020

patient G July 2020 N/A - no consensus sequence

patient H July 2020 hCoV-19/USA/WI-UW- 20A B.1.139
870/2020

patient | July 2020 hCoV-19/USA/WI-UW- 20A B.1.139
847/2020

patient J July 2020 N/A - no consensus sequence

patient K July 2020 N/A - no consensus sequence

patient L July 2020 hCoV-19/USA/WI-UW- 20A B.1.139
927/2020

patient M July 2020 hCoV-19/USA/WI-UW- 20C B.1.369

878/2020




Epidemiological information

hCoV-19/USA/WI-UW-
886/2020

hCoV-19/USA/WI-UW-
880/2020

hCoV-19/USA/WI-UW-
894/2020

hCoV-19/USA/WI-UW-
895/2020

hCoV-19/USA/WI-UW-
876/2020

hCoV-19/USA/WI-UW-
931/2020

hCoV-19/USA/WI-UW-
898/2020

hCoV-19/USA/WI-UW-
883/2020

HCP 1 collected nasopharyngeal specimens from patients with suspected COVID-19.

HCP 1 wore appropriate PPE while collecting these specimens and reported no breach

in PPE. Patients A-AA were collected in the 14 days before symptom onset in HCP 1.
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Report #8.

2020-08-18.

Likely source of HCP infection

HCP 1. Outside community.
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Sample Sample collection GISAID identifier Clade Lineage
type date (Nextstrain) (Pangolin)
| |
HCP 1 July 2020 hCoV-19/USA/WI-UW- 20B B.1.1.73
1022/2020
patient A July 2020 N/A - no consensus sequence
patient B Unknown N/A - no consensus sequence
patient C July 2020 N/A - no consensus sequence
patient D July 2020 hCoV-19/USA/WI-UW- 20A B.1.240
923/2020
patient E June 2020 hCoV-19/USA/WI-UW- 20C B.1.330
614/2020
patient F July 2020 hCoV-19/USA/WI-UW- 20C B.1.369
875/2020
patient G July 2020 hCoV-19/USA/WI-UW- 20A B.1.139
889/2020
patient H July 2020 hCoV-19/USA/WI-UW- 20A B.1.139
1100/2020

Epidemiological information

HCP 1 likely did not have direct interactions with any of the patients listed here. HCP 1

did, however, perform cleaning duties in the rooms of each of these patients in the 14

days before symptom onset.
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Report #9. 2020-08-21.

Likely source of HCP infection

HCP 1. Outside community.
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Sample Sample collection GISAID identifier Clade Lineage
type date (Nextstrain) (Pangolin)
| |

HCP 1 July 2020 hCoV-19/USA/WI-UW- 20B B.1.1.73
965/2020

patient A July 2020 hCoV-19/USA/WI-UW- 20A B.1.139
765/2020

patient B July 2020 hCoV-19/USA/WI-UW- 20A B.1.139
792/2020

patient C July 2020 hCoV-19/USA/WI-UW- 20C B.1.3
761/2020

patient D July 2020 hCoV-19/USA/WI-UW- 20A B.1.139
781/2020

patient E July 2020 hCoV-19/USA/WI-UW- 20A B.1.139
794/2020

patient F July 2020 hCoV-19/USA/WI-UW- 20C B.1.294
796/2020

patient G July 2020 hCoV-19/USA/WI-UW- 20A B.1.139
790/2020

patient H July 2020 hCoV-19/USA/WI-UW- 20A B.1.139
768/2020

patient | July 2020 hCoV-19/USA/WI-UW- 20A B.1.162
803/2020

patient J July 2020 N/A - no consensus sequence

patient K July 2020 hCoV-19/USA/MO-UW- 20C B.1.370
771/2020

patient L July 2020 N/A - no consensus sequence

patient M July 2020 N/A - no consensus sequence




Epidemiological information

hCoV-19/USA/WI-UW- 20A
784/2020

hCoV-19/USA/WI-UW- 20A
787/2020

N/A - no consensus sequence
hCoV-19/USA/WI-UW- 20A
786/2020

hCoV-19/USA/WI-UW- 20C
766/2020

hCoV-19/USA/WI-UW- 20A
798/2020

HCP 1 collected nasopharyngeal specimens from patients with suspected COVID-19.

HCP 1 wore appropriate PPE while collecting these specimens and reported no breach

in PPE. Patients A-S were collected in the 14 days before symptom onset in HCP 1.



284

Alignment

- ;I 2,900 4,0'00 6.900 8,900 1 0,[(}00 1 2,pOG |d,900 1 6,[000 1 S,POO ZO,POO 22,[000 24,900 ZG,pOG ZB,IODO 29,90|3
Consensus ' ' ! !
Identity

16
Coverage
0.
1

2,000 4,000 6,000 8,000 10,000 12,000 14,000 16,000 18,000 20,000 22,000 24,000 26,000 29,903

MN908947.3
HCP_1
Patient_A
Patient_B
Patient_C
Patient_D
Patient_E
Patient_F
Patient_G

Patient_H
Patient_|

Patient_K
Patient_N
Patient_O
Patient_Q
Patient_R

1 !
' 1
' 1
' 1
' 1
1 i
1 !
' !
1 ! il 1 1
1 |
1 1
' 1
' 1
' 1
1 !
Patient_S ! '

Phylogeny

I 20A ———
[ 208 —

———————
[7] 20c

A/WI-UW-766/2020
USA/MO-UW-771/2020

- USA/WI-UW-796/2020

- USA/WI-UW-761/2020
— — USA/WI-UW-803/2020
— ) USA/WI-UW-786/2020

USAMWI-UW-787/2020
O USAWI-UW-794/2020
=S ek
-UW- 0 USA/WI-UW-768/2020
- -7 9212020 USAWI-UW-784/2020

O USAWI-UW-798/2020
USA/WI-UW-965/2020

2019-Dec 2020-Feb 2020-Apr 2020-Jun 2020-Aug 2020-Oct 2020-Dec 2021-Feb



Report #10. 2020-08-26.

Likely source of HCP infection

HCP 1. Patient source (patient G).
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Sample Sample collection GISAID identifier Clade Lineage
type date (Nextstrain) (Pangolin)
| |

HCP 1 August 2020 hCoV-19/USA/WI-UW- 20A B.1.139
1125/2020

patient A August 2020 hCoV-19/USA/WI-UW- 20A B.1.255
867/2020

patient B July 2020 hCoV-19/USA/WI-UW- 20A B.1.139
889/2020

patient C July 2020 N/A - no consensus sequence

patient D July 2020 N/A - no consensus sequence

patient E August 2020 N/A - no consensus sequence

patient F July 2020 hCoV-19/USA/WI-UW- 20A B.1.240
923/2020

patient G July 2020 hCoV-19/USA/WI-UW- 20A B.1.139
1100/2020

patient H July 2020 hCoV-19/USA/WI-UW- 20B B.1.1.73
998/2020

patient | August 2020 hCoV-19/USA/WI-UW- 20A B.1.162
1035/2020

patient J July 2020 N/A - no consensus sequence

patient K July 2020 N/A - no consensus sequence

patient L July 2020 N/A - no consensus sequence

patient M July 2020 hCoV-19/USA/WI-UW- 20B B.1.1.73

1054/2020
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patient N July 2020 hCoV-19/USA/WI-UW- 20C B.1.330
805/2020

patient O July 3030 hCoV-19/USA/WI-UW- 20B B.1.1.73
1090/2020

Epidemiological information
HCP 1 had direct contact while wearing appropriate PPE with patients A-O in the 14 days

before symptom onset.
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Report #11. 2020-09-11.

Likely source of HCP infection

HCP 1. Outside community.

Sample Sample collection GISAID identifier Clade Lineage
type date (Nextstrain) (Pangolin)
| 1
HCP 1 August 2020 hCoV-19/USA/WI-UW- 20C B.1.2
1213/2020
patient A August 2020 N/A - no consensus sequence
patient B August 2020 hCoV-19/USA/WI-UW- 20B B.1.1.130
1163/2020
patient C August 2020 hCoV-19/USA/WI-UW- 20C B.1.2
1240/2020
patient D August 2020 hCoV-19/USA/WI-UW- 20A B.1.5
1170/2020

Epidemiological information
HCP 1 had direct contact while wearing appropriate PPE with patients A-D in the 14
days before symptom onset. HCP 1 denied any lapses in PPE and did not interact with

coworkers without a surgical mask on.
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Report #12. 2020-09-11.

Likely source of HCP infection

HCP 1. Inconclusive.

HCP 2. Outside community.

Sample
type

Sample collection
date

GISAID identifier

Clade
(Nextstrain)

289

Lineage
(Pangolin)

|
HCP 1

August 2020

Epidemiological information

N/A - no consensus sequence

hCoV-19/USA/WI-UW-
1278/2020
hCoV-19/USA/WI-UW-
1100/2020

hCoV-19/USA/WI-UW-
850/2020
hCoV-19/USA/WI-UW-
1248/2020
hCoV-19/USA/WI-UW-
1204/2020

HCP 1 and HCP 2 are household contacts and one or both of these HCP provided

direct patient care to patients A-H while wearing appropriate PPE in the two weeks

before their symptom onset.
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Report #13. 2020-09-14.

Likely source of HCP infection

HCP 1. Outside community.
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Sample Sample collection GISAID identifier Clade Lineage
type date (Nextstrain) (Pangolin)
| |
HCP 1 August 2020 hCoV-19/USA/WI-UW- 20A B.1.139
1305/2020
patient A July 2020 hCoV-19/USA/WI-UW- 20A B.1.139
1100/2020
patient B August 2020 hCoV-19/USA/WI-UW- 20C B.1.337
1231/2020
patient C August 2020 N/A - no consensus sequence
patient D August 2020 N/A - no consensus sequence

Epidemiological information

HCP 1 provided direct care while wearing appropriate PPE to patients A-D in the 14

days before symptom onset.
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Report #14. 2020-09-22.

Likely source of HCP infection

HCP 1. Outside community.

HCP 2. Combined patient and employee cluster.
HCP 3. Inconclusive.

HCP 4. Combined patient and employee cluster.
HCP 5. Outside community.

HCP 6. Employee source (HCP 9 is a likely source of infection, although the HCP 6 —
HCP 9 is also possible).

HCP 7. Outside community.

HCP 8. Inconclusive.

HCP 9. Outside community.

HCP 10. Inconclusive.

HCP 11. Combined patient and employee cluster.
HCP 12. Combined patient and employee cluster.
HCP 13. Combined patient and employee cluster.
HCP 14. Inconclusive.

HCP 15. Inconclusive.

HCP 16. Combined patient and employee cluster.
HCP 17. Combined patient and employee cluster.
HCP 18. Inconclusive.

HCP 19. Inconclusive.

HCP 20. Combined patient and employee cluster.



HCP 21. Inconclusive.
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Patients A and C are the patients involved in this combined patient and employee

cluster.
Sample Sample collection GISAID identifier Clade Lineage
type date (Nextstrain) (Pangolin)
| |

HCP 1 September 2020 hCoV-19/USA/WI-UW- 20G B.1.2
1348/2020

HCP 2 September 2020 hCoV-19/USA/WI-UW- 20G B.1.2
1344/2020

HCP 3 September 2020 N/A - no consensus sequence

HCP 4 September 2020 hCoV-19/USA/WI-UW- 20G B.1.2
1412/2020

HCP 5 September 2020 hCoV-19/USA/WI-UW- 20G B.1.5
1325/2020

HCP 6 September 2020 hCoV-19/USA/WI-UW- 20B B.1.1.251
1480/2020

HCP 7 September 2020 hCoV-19/USA/WI-UW- 20G B.1.369
1477/2020

HCP 8 September 2020 N/A - no consensus sequence ‘

HCP 9 September 2020 hCoV-19/USA/WI-UW- 20B B.1.1.251
1475/2020

HCP 10 September 2020 N/A - no consensus sequence ‘

HCP 11 September 2020 hCoV-19/USA/WI-UW- 20G B.1.2
1441/2020

HCP 12 September 2020 hCoV-19/USA/WI-UW- 20G B.1.2
1445/2020

HCP 13 September 2020 hCoV-19/USA/WI-UW- 20G B.1.2
1452/2020

HCP 14 September 2020 N/A - no consensus sequence




Epidemiological information

hCoV-19/USA/WI-UW- 20G B.1.2
1459/2020
hCoV-19/USA/WI-UW- 20G B.1.2
1436/2020

hCoV-19/USA/WI-UW- 20G B.1.2
1461/2020

hCoV-19/USA/WI-UW- 20G B.1.2
1406/2020
hCoV-19/USA/WI-UW- 20G B.1.2
1499/2020
hCoV-19/USA/WI-UW- 20G B.1.2
1900/2020
hCoV-19/USA/WI-UW- 20G B.1.2
1941/2020

These HCP work in the same department. HCP 2, 4, 11, 12, 13, 16, and 20 provided

direct care to patient A and/or patient C. HCP 17 and HCP 1 did not provide direct care

to patient A or C.
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Report #15. 2020-09-18.

Likely source of HCP infection

HCP 1. Outside community.

Sample Sample collection GISAID identifier Clade Lineage
type date (Nextstrain) (Pangolin)
| 1
HCP 1 September 2020 hCoV-19/USA/WI-UW- 20G B.1.2
1347/2020
patient A August 2020 hCoV-19/USA/WI-UW- 20G B.1.2
1220/2020

Epidemiological information
HCP 1 provided direct care to patient A while wearing appropriate PPE and with no

reported lapses in PPE use.

Alignment
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Report #16. 2020-10-29.

Likely source of HCP infection

HCP 1. Employee source (HCP 2).

HCP 2. Inconclusive.

HCP 3. Outside community.
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Sample Sample collection GISAID identifier Clade Lineage
type date (Nextstrain) (Pangolin)
| |
HCP 1 September 2020 hCoV-19/USA/WI-UW- 20G B.1.2
1901/2020
HCP 2 September 2020 hCoV-19/USA/WI-UW- 20G B.1.2
1350/2020
HCP 3 September 2020 hCoV-19/USA/WI-UW- 20A B.1
1898/2020

Epidemiological information

Contact tracing revealed HCP 2 worked for two days prior to symptom onset and may

have had unmasked contact with HCP 1 during overlapping meal breaks. Contact tracing

additionally revealed HCP 3 had a high-risk exposure even lasting >15 minutes in the

outside community prior to testing positive.
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Report #17. 2020-10-29.

Likely source of HCP infection

HCP 1. Outside community.
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Sample Sample collection GISAID identifier Clade Lineage
type date (Nextstrain) (Pangolin)
| |
HCP 1 September 2020 hCoV-19/USA/WI-UW- 20C B.1.369
1895/2020
patient A September 2020 N/A - no consensus sequence
patient B July 2020 hCoV-19/USA/WI-UW- 20A B.1.139
774/2020
patient C August 2020 hCoV-19/USA/WI-UW- 20A B.1.139
1198/2020
patient D August 2020 hCoV-19/USA/WI-UW- 20A B.1.139
1166/2020
patient E August 2020 N/A - no consensus sequence
patient F September 2020 N/A - no consensus sequence
patient G August 2020 N/A - no consensus sequence
patient H August 2020 hCoV-19/USA/WI-UW- 20C B.1
1301/2020
patient | August 2020 N/A - no consensus sequence

Epidemiological information

HCP 1 provided direct care to patients A-l while wearing appropriate PPE and with no

reported lapses in PPE use. HCP 1 also had a household contact with confirmed SARS-

CoV-2 infection who had symptoms onset prior to HCP 1’s symptom onset.
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Report #18. 2020-10-29.

Likely source of HCP infection
HCP 1. Outside community.
HCP 2. Outside community.

HCP 3. Outside community.

Sample Sample collection GISAID identifier Clade Lineage
type date (Nextstrain) (Pangolin)
| 1
HCP 1 September 2020 hCoV-19/USA/WI-UW- 20B B.1.1.251
1475/2020
HCP 2 September 2020 hCoV-19/USA/WI-UW- 20B B.1.1.251
1896/2020
HCP 3 September 2020 hCoV-19/USA/WI-UW- 20B B.1.1.251
1894/2020

Epidemiological information
HCP 1 worked with HCP 3. HCP 3 was a household contact of HCP 2. None of these

HCP had direct interactions with patients with known SARS-CoV-2 infection.

Alignment
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Report #19. 2020-11-05.

Likely source of HCP infection

HCP 1. Outside community.

Sample Sample collection GISAID identifier Clade Lineage
type date (Nextstrain) (Pangolin)
| 1
HCP 1 October 2020 hCoV-19/USA/WI-UW- 19A B.1
1928/2020
patient A September 2020 hCoV-19/USA/WI-UW- 20G B.1.2
1930/2020

Epidemiological information

In the two weeks before symptom onset, HCP 1 provided direct care to patient A. HCP 1

wore appropriate PPE while providing care and reported no lapses in PPE use.
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Report #20. 2020-11-05.

Likely source of HCP infection

HCP 1. Outside community.

Sample

307

Sample collection GISAID identifier Clade Lineage
type date (Nextstrain) (Pangolin)
| |
HCP 1 October 2020 hCoV-19/USA/WI-UW- 20G B.1.2
1931/2020
patient A September 2020 hCoV-19/USA/WI-UW- 20A B.1
1935/2020

Epidemiological information

In the two weeks before symptom onset, HCP 1 provided direct care to patient A. HCP 1

wore appropriate PPE while providing care and reported no lapses in PPE use.
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Report #21. 2020-11-05.

Likely source of HCP infection
HCP 1. Outside community.

HCP 2. Outside community.
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Sample Sample collection GISAID identifier Lineage
type date (Nextstrain) (Pangolin)
| |
HCP 1 October 2020 hCoV-19/USA/WI-UW- 20G B.1.2
1929/2020
HCP 2 October 2020 hCoV-19/USA/WI-UW- 20B B.1.1.73
1938/2020
patient A September 2020 N/A - no consensus sequence
patient B September 2020 N/A - no consensus sequence
patient C September 2020 hCoV-19/USA/WI-UW- 20G B.1.2
1934/2020
patient D September 2020 hCoV-19/USA/IL-UW- 20G B.1.2
1937/2020

Epidemiological information

HCP 1 and 2 worked in the same department and both provided direct patient care to

patients A-E in the two weeks before their onset of symptoms. HCP 1 and HCP 2 reported

no lapses in PPE with each other or with their patients.
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Report #22. 2020-11-05.

Likely source of HCP infection

HCP 1. Outside community.

Sample Sample collection GISAID identifier Clade Lineage
type date (Nextstrain) (Pangolin)
I |
HCP 1 October 2020 hCoV-19/USA/WI-UW- 20G B.1.2
1936/2020
patient A July 2020 hCoV-19/USA/WI-UW- 20A B.1.139
1100/2020

Epidemiological information

HCP 1 performed a postmortem examination on patient A. At the time the patient expired,

they were known to have an active COVID-19 infection.
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Report #23. 2020-11-05.

Likely source of HCP infection

HCP 1. Outside community (household contact).

HCP 2. Employee source.

HCP 3. Employee source.

HCP 4. Employee source.

HCP 5. Outside community.
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Sample Sample collection GISAID identifier Clade Lineage
type date (Nextstrain) (Pangolin)
| |
HCP 1 October 2020 hCoV-19/USA/WI-UW- 20G B.1.2
1933/2020
HCP 2 October 2020 hCoV-19/USA/WI-UW- 20G B.1.2
1926/2020
HCP 3 October 2020 hCoV-19/USA/WI-UW- 20G B.1.2
1939/2020
HCP 4 October 2020 hCoV-19/USA/WI-UW- 20G B.1.2
1927/2020
HCP 5 October 2020 hCoV-19/USA/WI-UW- 20A B.1.139
1932/2020

Epidemiological information

All of these HCP work in the same department, with the exception of HCP 1 who is a

household contact of HCP 2. HCP 2-5 reported sharing an unmasked meal together prior

to testing positive.
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Report #25. 2020-12.08.

Likely source of HCP infection

HCP 1. Patient source (patient A).
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Sample Sample collection GISAID identifier Clade Lineage
type date (Nextstrain) (Pangolin)
I |

HCP 1 October 2020 hCoV-19/USA/WI-UW- 20C B.1.2
2326/2020

patient A October 2020 hCoV-19/USA/WI-UW- 20C B.1.2
2362/2020

patient B October 2020 hCoV-19/USA/WI-UW- 20C B.1.2
2389/2020

Epidemiological information

In the two weeks before symptom onset, HCP 1 provided direct care to patients A and B.
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Report #27. 2020-12.09.

Likely source of HCP infection

HCP 1. Outside community.

HCP 2. Outside community.

HCP 3. Outside community.

HCP 4. Outside community.
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Sample Sample collection GISAID identifier Clade Lineage
type date (Nextstrain) (Pangolin)
| |

HCP 1 October 2020 hCoV-19/USA/WI-UW- 20A B.1
2226/2020

HCP 2 October 2020 N/A 20G B.1.2

HCP 3 October 2020 hCoV-19/USA/WI-UW- 20G B.1.2
2227/2020

HCP 4 October 2020 hCoV-19/USA/WI-UW- 20G B.1.2
2228/2020

patient A September 2020 hCov-19/USA/IL-UW- 20A B.1
2327/2020

patient B September 2020 hCoV-19/USA/WI-UW- 20G B.1
1972/2020

Epidemiological information

HCP 1-4 work in the same department. HCP 1-4 all had direct interactions with patients

A and/or B during the 14 days prior to symptom onset.



318

Alignment

1 2,000 4,000 6,000 8000 10,000 12,000 14,000 16,000 18,000 20,000 22,000 24,000 26,000 28000 29,903
Consensus —— - - - -
6
Coverage
0.
Identity W 1 1§ W WO 1 111 1 s F ] i

1 2,000 4,000 6,000 8,000 10,000 12,000 14,000 16,000 18,000 20,000 22,000 24,000 26,000 29,903
MNO908947.3 (Se...

Patient_A !
Patient_B

I
[a}
o
w

Phylogeny

[ 204 =
7] 20C e —
————

.20G =

712020

- - USA/WI-UW-1972/2020

USA/WI-UW-2226/2020

USA/L-UW-2327/2020

==

2019-Dec 2020-Feb 2020-Apr 2020-Jun 2020-Aug 2020-Oct 2020-Dec 2021-Feb



Report #28. 2020-12.09.

Likely source of HCP infection

HCP 1. Outside community.

HCP 2. Outside community.

HCP 3. Outside community.
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Sample Sample collection GISAID identifier Clade Lineage
type date (Nextstrain) (Pangolin)
| |
Patient A November 2020 hCoV-19/USA/WI-UW- 20G B.1.2
2265/2020
HCP 1 October 2020 hCoV-19/USA/WI-UW- 20G B.1.2
2266/2020
HCP 2 October 2020 hCoV-19/USA/WI-UW- 20G B.1.2
2267/2020
HCP 3 October 2020 hCoV-19/USA/WI-UW- 20G B.1.2
2268/2020

Epidemiological information

HCP 1-3 provided direct patient care to patient A in the 14 days before symptom onset.

All HCP reported appropriate use of PPE with no lapses. HCP 1 and 2 had no known

interactions prior to their infections. HCP 2 and HCP 3 both attended a high-risk

community event for greater than 15 minutes together.
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Report #29. 2020-12.09.

Likely source of HCP infection

HCP 1. Employee source (HCP 3).

HCP 2. Outside community.

HCP 3. Outside community.
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Sample Sample collection GISAID identifier Clade Lineage
type date (Nextstrain) (Pangolin)
| 1
HCP 1 November 2020 hCoV-19/USA/WI-UW- 20G B.1.2
2269/2020
HCP 2 November 2020 hCoV-19/USA/WI-UW- 20G B.1.2
2270/2020
HCP 3 November 2020 hCoV-19/USA/WI-UW- 20G B.1.2
2271/2020

Epidemiological information

HCP 1-3 work in the same department. HCP 1 and 3 attended an in person meeting

together and reported sitting 6-feet apart while wearing masks. HCP 2 did not attend this

meeting. HCP 3 reported symptoms before HCP 1.
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Report #30. 2020-12.09.

Likely source of HCP infection

HCP 1. Patient source (patient C).

Sample Sample collection GISAID identifier Clade Lineage
type date (Nextstrain) (Pangolin)
| 1
HCP 1 November 2020 hCoV-19/USA/WI-UW- 20G B.1.2
2272/2020
patient A November 2020 hCov-19/USA/WI-UW- 20G B.1.2
2324/2020
patient B October 2020 hCoV-19/USA/WI-UW- 20G B.1.2
2273/2020
patient C November 2020 hCoV-19/USA/WI-UW- 20G B.1.2
2274/2020
patient D November 2020 hCoV-19/USA/WI-UW- 20A B.1.139
2275/2020
patient E November 2020 hCoV-19/USA/WI-UW- 20G B.1.2
2276/2020
Epidemiological information
HCP 1 provided direct patient care to patients A-E and reported no lapses in PPE use.
Alignment
Consensus 'II , 7,Q00 . /I,QOO G,QOO S,Q(I‘,O WO,pﬂlﬂ 1?,?00 1/1,:’)0[1] . 16\000 18,90(}[ ?C,pUO . 77,'0(10 Im,pm I7GI,I000 78,3000: :PQ:,QOIG
e, 2000000000000 ]
Identity | | [THN] | = | | |
MN908947.3 (Se.. Il 7,(](‘,0 A,QOO n,qon R,QCO WO,pﬂﬂ 1),?00 14,I(JOO 16\000 18,5100 70,900 77,p00 74,5700 76,?00 78,p00 79,90.}
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Report #31. 2020-12.09.

Likely source of HCP infection

HCP 1. Outside community.

HCP 2. Outside community.

HCP 3. Outside community.

HCP 4. Employee source (HCP 2).

HCP 5. Employee source (HCP 2).

HCP 6. Outside community.

HCP 7. Outside community.
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Sample Sample collection GISAID identifier Clade Lineage
type date (Nextstrain) (Pangolin)
| |

HCP 1 November 2020 hCoV-19/USA/WI-UW- 20C B.1.363
2312/2020

HCP 2 November 2020 hCoV-19/USA/WI-UW- 20G B.1.2
2277/2020

HCP 3 November 2020 hCoV-19/USA/WI-UW- 20G B.1.2
2278/2020

HCP 4 November 2020 hCoV-19/USA/WI-UW- 20G B.1.2
2279/2020

HCP 5 November 2020 hCoV-19/USA/WI-UW- 20G B.1.2
2280/2020

HCP 6 November 2020 hCoV-19/USA/WI-UW- 20G B.1.2
2281/2020

HCP 7 November 2020 hCoV-19/USA/WI-UW- 20G B.1.2
2282/2020

Epidemiological information

These HCP are all in the same department. Their level of interaction with each other is

unclear.
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Alignment
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Report #32. 2020-12.09.

Likely source of HCP infection
HCP 1. Outside community.
HCP 2. Outside community.
HCP 3. Outside community.
HCP 4. Outside community.
HCP 5. Outside community.
HCP 6. Outside community.
HCP 7. Outside community.
HCP 8. Outside community.
HCP 9. Outside community.
HCP 10. Outside community.
HCP 11. Outside community.
HCP 12. Outside community.
HCP 13. Inconclusive (could be HCP 8, but these samples were collected >14 apart).

HCP 14. Employee source (HCP 8 or HCP 13).
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Sample Sample collection GISAID identifier Clade Lineage
type date (Nextstrain) (Pangolin)
| |

HCP 1 October 2020 hCoV-19/USA/WI-UW- 20G B.1.370
2283/2020

HCP 2 October 2020 hCoV-19/USA/WI-UW- 20G B.1.2
2284/2020

HCP 3 October 2020 hCoV-19/USA/WI-UW- 20A B.1.216
2285/2020

HCP 4 October 2020 hCoV-19/USA/WI-UW- 20G B.1.2
2286/2020

HCP 5 October 2020 hCoV-19/USA/WI-UW- 20G B.1.2
2390/2020

HCP 6 October 2020 hCoV-19/USA/WI-UW- 20G B.1
2391/2020

HCP 7 November 2020 hCoV-19/USA/WI-UW- 20G B.1.2
2287/2020

HCP 8 November 2020 hCoV-19/USA/WI-UW- 20G B.1.2
2288/2020

HCP 9 November 2020 hCoV-19/USA/WI-UW- 20G B.1.2
2289/2020

HCP 10 November 2020 hCoV-19/USA/WI-UW- 20G B.1.2
2313/2020

HCP 11 November 2020 hCoV-19/USA/WI-UW- 20G B.1.2
2290/2020

HCP 12 November 2020 hCoV-19/USA/WI-UW- 20G B.1.2
2291/2020

HCP 13 November 2020 hCoV-19/USA/WI-UW- 20G B.1.2
2292/2020

HCP 14 November 2020 hCoV-19/USA/WI-UW- 20G B.1.2
2293/2020

patient A November 2020 hCoV-19/USA/WI-UW- 20B B.1.1.73
2325/2020

Epidemiological information

HCP 1-14 work in the same department together. One or more of these HCP provided direct

patient care to patient A.
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Report #33. 2021-01-03.

Likely source of HCP infection

HCP 1. Combined patient and employee cluster.

HCP 2. Combined patient and employee cluster.

HCP 3. Combined patient and employee cluster.

HCP 4. Outside community.

HCP 5. Combined patient and employee cluster.
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Patients A, B and C are the patients involved in this combined patient and employee

cluster.
Sample Sample collection GISAID identifier Clade Lineage
type date (Nextstrain) (Pangolin)
| |
HCP 1 December 2020 hCoV-19/USA/WI-UW- 20G B.1.2
2394/2020

HCP 2 December 2020 hCoV-19/USA/WI-UW- 20G B.1.2
2396/2020

HCP 3 December 2020 hCoV-19/USA/WI-UW- 20G B.1.2
2451/2020

HCP 4 December 2020 hCoV-19/USA/WI-UW- 20G B.1.2
2452/2020

HCP 5 December 2020 hCoV-19/USA/WI-UW- 20G B.1.2
2450/2020

patient A December 2020 hCoV-19/USA/WI-UW- 20G B.1.2
2392/2020

patient B December 2020 hCoV-19/USA/WI-UW- 20G B.1.2
2393/2020

patient C December 2020 hCoV-19/USA/IL-UW- 20G B.1.2
2449/2020
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Epidemiological information
HCP 1-5 provided direct care to one or more of these patients, A-C. HCP 1-5 may have
also interacted with each other. No lapses in PPE were reported. Patient A had the

earliest reported symptom onset.

Alignment
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Report #34. 2021-01-03.

Likely source of HCP infection

HCP 1. Outside community.

Sample Sample collection GISAID identifier Clade Lineage
type date (Nextstrain) (Pangolin)
| 1
HCP 1 December 2020 hCoV-19/USA/WI-UW- 20G B.1.2
2453/2020
patient A December 2020 hCoV-19/USA/WI-UW- 20G B.1.2
2395/2020

Epidemiological information
HCP 1 provided direct care to patient A during the 14 days prior to HCP 1's symptom

onset. HCP 1 reported no lapse in PPE when providing care to patient A.

Alignment
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Chapter 7:

Conclusions and future directions

The emergence of zoonotic viruses is one of the greatest threats to global health security.
More than half of all known human pathogens can be traced to a zoonotic source 242,
Yet, the capacity for RNA viruses to rapidly adapt to new host environments and to
respond to shifting selective pressures is not completely understood. In this dissertation,
| investigated the evolutionary processes by which zoonotic RNA viruses adapt to
mammalian hosts and | combine principles of viral evolution with epidemiology and
population health to investigate the early patterns of SARS-CoV-2 spread in the state of

Wisconsin.

Altogether, this work suggests the effects of randomness on viral populations within and
between individual hosts are a previously underappreciated brake to the pace of viral
adaptation and host-switching for influenza A virus (IAV) and SARS-CoV-2. Additionally,
this work underscores the value of genomic epidemiology early in a pandemic to
understand patterns of viral transmission in different populations and to assess the impact

of public health guidelines and interventions on a rolling basis.

The effects of randomness contribute significantly to viral evolutionary dynamics
within individual hosts
In chapter 2, we examined the within- and between-host viral dynamics of wildtype H7N9

viruses in a ferret model system. On its face, the fact that fully avian H7N9 viruses
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efficiently replicate and transmit in a ferret model is somewhat alarming and raises the
question: if wildtype H7N9 viruses can do this, what is stopping these viruses from
causing a full-blown pandemic? In this chapter, we hypothesized that HPAI and LPAI
avian H7N9 viruses would be under strong selective pressure to become more
mammalian in the context of a ferret model system. To our surprise, we found no evidence
to support this hypothesis. Instead, we found HPAI and LPAI H7N9 viruses in ferrets are
under mild purifying selection and new mutations were generally being purged from the
viral population, which is a signature classically associated with a virus that is at least
moderately well adapted to its host. This is not to say the avian H7N9 viruses are optimally
adapted to ferrets or mammals more generally, but they do replicate to high titer, transmit
often, and are not subject to diversifying or positive selection to any measurable degree.
| will expand on these nuances of these conclusions in the theoretical framework outlined

below.

In this study we found HPAI and LPAI H7N9 viral diversity was dominated by low-
frequency iSNVs in ferrets, which is consistent with purifying selection and population
expansion. By leveraging the longitudinal sampling schema, we evaluated iSNV
dynamics over time and observed some surprising patterns. Frequencies of specific
mutations in donor ferrets, even in the case of known mammalian adaptive mutations, did
not predict their frequencies post-transmission. We estimated a very narrow transmission
bottleneck size for H7N9 virus in ferrets where a single virus (95% CI: 1-3) is likely
responsible for initiating infection following transmission. Interestingly, while the H1N1

transmission bottlenecks were narrow (6, 95% CI: 3-11), they were not as stringent as
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the H7N9 pairs. The vast majority of H7N9 iSNVs arising in ferret hosts are lost during
transmission and because so few viruses found infection following transmission, any
iISNV that happens to be present in a transmitting virus’ genome will likely become fixed
in the post-transmission viral population. Together, we speculate that purifying selection,
randomness, and tight bottlenecks combine to severely constrain the ability of H7N9
viruses to efficiently adapt to mammalian hosts in typical spillover infections, even with

onward airborne transmission.

In chapter 3, we did a similar study, but instead of avian H7N9 in ferrets, we looked at
SARS-CoV-2 in domestic cats. This study was among the first to evaluate the within- and
between-host dynamics of SARS-CoV-2 in a mammalian model system so we did not
know what to expect. In this study, we showed that SARS-CoV-2 genetic variation, like
H7N9 viruses in ferrets, is predominantly influenced by genetic drift and purifying
selection. Additionally, we found transmission bottlenecks were very narrow (combined
estimate = 5, 99% CI 1-7), which was at odds with one * of the two other available studies
that had also measured bottleneck sizes. Subsequent research that has been done since,
including the work presented in chapter 4, supports narrow transmission bottlenecks in
SARS-CoV-2. While we observed many similarities between SARS-CoV-2 evolutionary
dynamics in domestic cats and H7N9 viruses in ferrets, there was one notable difference.
A variant at amino acid position 655 in Spike (H655Y) arose rapidly in index cats,
persisted at intermediate frequencies in the donor cats, and then became fixed following
transmission in two of three pairs. This same variant has been shown to confer escape

from human monoclonal antibodies and circulates in humans on multiple SARS-CoV-2
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genetic lineages and is one of the defining mutations in the P.1. VOC. Although we did
no functional studies to investigate the phenotypic impact of S H655Y in cats specifically,
we speculated that S H655Y could have improved Spike fusion efficiency and host cell
entry in cats. This was a subtle, but notable departure from the otherwise stochastic

evolutionary dynamics of SARS-CoV-2 in a mammalian host.

In our third and final within- and between-host study, presented in chapter 4, we carefully
characterized SARS-CoV-2 viral diversity in 133 natural infections in human hosts
including 28 putative household transmission pairs and we took advantage of our large
consensus-level surveillance dataset from the community where those individuals reside
to compare within-host diversity to population-level diversity. We found most SARS-CoV-
2 infections were characterized by very few iSNVs and the majority of these were low
frequency. Most iISNVs detected in individuals were not detected in the local or global
consensus genomes and were very rarely detected in downstream branches on the local
and global phylogenetic trees. Even among putative household transmission pairs, iSNVs
were shared very infrequently and the transmission bottleneck was narrow. We reasoned
that the combination of low within-host diversity, narrow transmission bottlenecks, and
infrequently propagation along transmission chains combines to slow the rate of novel

variant emergence and the pace of viral evolution in typical, acute human infections.

Looking across these three within-host studies, viral diversity of H7N9 in ferrets and
SARS-CoV-2 in cats and humans is subject to the combined effects of purifying selection

and genetic drift with no evidence of diversifying selection. Airborne transmission in all of
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these cases is characterized by a very narrow bottleneck where very few viruses make it
out of a donor and into a recipient, which results in a dramatic reduction in viral diversity
across the transmission event. While the similarities are obvious, there are some key
differences as well. It is clear that within-host diversity is even more limited in SARS-CoV-
2 infections than IAV infections. Additionally, the rapid outgrowth and preferential
transmission of Spike H655Y in the cat transmission study was the only exception to the
otherwise stochastic evolutionary dynamics driving SARS-CoV-2 and H7N9 in
mammalian hosts. In an effort to unify these observations and the results of two previous
studies led by past graduates of the Friedrich lab 294205 | describe a theoretical model of

respiratory virus evolution within and between hosts in the following section.

A proposed framework zoonotic respiratory RNA virus evolution within and
between hosts

As | described in the introduction of this dissertation, positive selection appears to be a
major driver of IAV and SARS-CoV-2 globally, but it does not drive evolution within hosts.
Although the work in SARS-CoV-2 is more recent and limited, study after study has shown
this to be true for seasonal 1AV 122133376 gnd for avian IAV 135239, This has perplexed
many virologists because RNA viruses appear to have many of the traits required for
efficient and deterministic selection. RNA viruses generate plenty of genetic diversity, the
substrate for evolution, through error-prone RNA polymerases, reassortment, and
homologous recombination (in the case of SARS-CoV-2). Adaptive evolution is most
efficient in large populations and RNA viruses often appear to achieve large population

sizes via explosive replication within hosts. Even still, respiratory RNA viruses must
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contend with genetic drift and narrow transmission bottlenecks and it appears that very
often the effects of these stochastic processes dominate viral evolutionary trajectories

within and between hosts.

If we accept that stochasticity drives evolution of RNA respiratory viruses at the level of
the individual host, how can we explain AV antigenic drift and positive selection of SARS-
CoV-2 VOCs on a population scale? Well, | think RNA respiratory viruses might have
taken a page out of Charles F. Kettering’s playbook when he said “an inventor fails 999
times, and if he succeeds once, he’s in. He treats his failures simply as practice shots.”
By this | mean that | imagine RNA viruses overcome the effects of stochasticity and
randomness within individuals by pursuing large numbers of infections in a host
population. RNA viruses are often able to escape humoral immunity, significantly improve
receptor specificity, and bolster transmissibility with relatively few mutations. So, suppose
an RNA virus infects millions (IAV) of hosts in a single year, even a single “jackpot event”
involving the onward transmission of a novel escape variant or equivalent might be all
that a virus needs to initiate a selective sweep across a host population. It follows that the
pace of adaptive evolution of any RNA virus would generally correspond to the volume of
recent viral infections and this is consistent with rapid global evolution of SARS-CoV-2
and limited global evolution of seasonal influenza. This comparison is not apples-to-
apples because there was no preexisting human immunity to SARS-CoV-2, which is

clearly not the case for IAV.
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While the total number of infections a respiratory RNA virus achieves may be a key
predictor of evolutionary pace, another key factor is the position of a virus on its “fitness
landscape” which captures all of the complex fithess “peaks” and “valleys” resulting from
the many combinations of virus and host genotypes/environments. Figure 1 depicts a
theoretical fitness landscape for IAV, which | will use to further illustrate these ideas. The
y-axis of this figure represents virus genotypes as a virus transitions from avian to
mammalian, the x-axis represents host genetics and conditions ranging from the avian
reservoir to humans, and the z-axis (height) represents relative fitness at all possible x-y
coordinates. The peaks and valleys shown here are conceptual and not derived from
actual data. | have included five different AV viruses in different host environments as

colored dots and | will briefly discuss each of these below.

The dark red virus represents a seasonal H1N1 virus replicating in a human host, which
| positioned on a fithess peak. The contours of this landscape are likely very dynamic and
a new fitness peak might emerge after this seasonal H1N1 infects a large number of hosts
and subsequently must contend with host immune responses. The orange virus is on a
similar fitness peak, but is an avian-adapted virus in an avian host, like a H7N9 virus in a

water fowl.

The yellow virus represents the avian H7N9 virus we investigated in ferret hosts in
chapter 2. As outlined above, this virus appeared to be relatively well-adapted to ferret
hosts so | placed them on a small fitness peak on this landscape. If a virus is on a fithess

peak in this landscape, there are fewer possible genetic changes available to it that will
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result in a fithess advantage (i.e. it is already towards the top of a fitness hill so it is hard
for it move even further uphill). Consistent with this, we found no evidence of positive or
adaptive evolution of these viruses in ferret hosts. Similarly, another recent study by
Moncla et al. showed that while H5N1 spillover infections can generate low-frequency,
mammalian-adaptive mutations, their spread is limited by purifying selection, genetic drift,
and acute infection timeframes 2%°. A fitness peak in the upper right-hand corner of this
landscape is likely taller than the peak H7N9 and H5N1 viruses in mammalian spillover
infections are located on, but making the move toward that peak is tough. | can imagine
two routes for the yellow virus (an avian virus in a mammalian model or a spillover
infection) to move to the red virus (a seasonal human IAV): (1) incremental changes via
antigenic drift across this landscape, but this would require movement through fitness
valleys so this is pretty unlikely unless the total number of infections is massive or (2) a
giant jump, which a virus might achieve through a major reassortment event, as has been

seen in all IAV pandemics.

The blue and green viruses represent genetically modified, partially avian and partially
mammalian IAVs in two previous studies. The blue virus represents an avian H5 HA
protein in the background of a human H1N1 virus 2°°. The green virus represents a 1918-
like avian virus with engineered mammalian-adaptive mutations 29428, |mportantly,
neither of these viruses exist in nature suggesting they are not fit and likely occupy valleys
on this fitness landscape. While these viruses are subject to the same evolutionary
constraints as the red, yellow and orange viruses (short infection times, genetic drift, and

narrow transmission bottlenecks), the position of these viruses in a fitness valley means
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that there are many possible genetic changes which will confer improved fitness.
Diversifying selection and selective sweeps are much more likely to be detected in the
context of viruses in this position. This is consistent with the results of this study, which
were able to identify adaptive evolution and selective sweeps across the transmission

bottleneck.

A similar fitness landscape likely exists for SARS-CoV-2, although its dimensionality may
be even more complex given the diverse host range of this virus. | suspect SARS-CoV-2
in cats was positioned on a modest fithess valley, consistent with the preferential
amplification and transmission of H655Y in Spike. | suspect SARS-CoV-2 in human hosts
are already on a modest fitness peak, consistent with purifying selection within hosts and
infrequent propagation of iSNVs along transmission chains. As SARS-CoV-2 continues
to infect massive numbers of people, it is likely to discover even higher fithess peaks.
Indeed, variants of interest and variants and concern with enhanced phenotypic changes
began emerging beginning in fall 2020, so we are forced to wonder “has SARS-CoV-2
reached peak fitness?”. While SARS-CoV-2 continues to spread through the global
population, it might seem like the virus is optimally adapted to humans, however
convergent evolution of multiple lineages and the ongoing emergence of divergent
lineages suggests that SARS-CoV-2 is becoming even more fit. Additionally, it also
unfortunately suggests that if the global burden of infection continues, SARS-CoV-2 may
be able to respond to the changing human immune landscape. Future evolution studies
within and between hosts, across a variety of hosts and virus subtypes, are needed to

understand the trajectory of SARS-CoV-2 evolution.
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Future work on within and between host evolution of zoonotic respiratory RNA
viruses

It is worth testing the hypothesis that the pace of adaptive evolution of IAV and SARS-
CoV-2 in humans can be predicted by the prevalence of recent viral infections. If true, this
supports the “jackpot event” model of evolution where a virus overcomes the stochastic
forces driving within-host infections by infecting a large number of hosts and making

incremental fithess jumps via relatively rare events.

Relatedly, there is an emerging hypothesis that prolonged IAV and SARS-CoV-2 infection
allows for more time for selection to drive newly arising variants to a level where they can
be detected and/or where they are more likely to transmit onward to a new host. Even a
modest increase in frequency within a donor host enhances the likelihood of a beneficial
variant becoming fixed following transmission in the setting of a narrow transmission
bottleneck. It is also possible for selection to act during transmission such that some
viruses harboring a particular mutation or group of mutations are preferentially transmitted
204 Consistent with this model, Xue et al ' identified strong evidence for positive
selection in four immunocompromised hosts infected with 1AV for a prolonged period. In
this study, several mutations arose independently in these hosts and a subset of these
mutations subsequently circulated globally at high frequency the following flu season.
Similarly, the only time SARS-CoV-2 variants of concern have been detected sub-
consensus within hosts are in rare cases of prolonged infection 26%266.377_|f true, this has

implications for the importance of infection control and contact tracing of viral infections
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in any cases of prolonged infection, particularly in immunocompromised hosts. Already,
we have begun enrolling individuals with prolonged SARS-CoV-2 infection in a small case
series. In the first individual enrolled in this case series we documented the emergence
of Spike A142-144 and E484A. Interestingly, both of these mutations emerged
independently in an immunocompromised individual in Boston 268, Future studies could
enroll a larger cohort ofimmunocompromised individuals or patients with prolong infection
to characterize within-host viral evolution longitudinally and to document mutations
emerging convergently across cases. Already it is apparent that collectively, prolonged
infections pose a risk for the pace of the emergence of SARS-CoV-2 variants that escape

immune recognition.

An exciting, though far-reaching, goal would be to work on uncovering the contours of
these viral fitness landscapes using real data generated from a combination of
experimental studies and modelling. Although studies would need to be designed with
biosafety in mind, it would be valuable to investigate the evolutionary forces shaping
SARS-CoV-2 in a wide range of host species, including the likely ancestral intermediate
hosts, bats and pangolins. Any viruses sampled from the zoonotic reservoir or from
humans are likely to be relatively fit viruses because they are currently replicating in
nature. Therefore, to uncover the fitness valleys in this landscape, additional studies
should evaluate SARS-CoV-2 genetically modified with bat-defining, pangolin-defining,
and other zoonotic-defining mutations. Studying these genetically modified viruses which
are not found in nature in mammalian systems might allow us to understand the routes

that newly-emerging SARS-CoV-2 viruses might take in order to adapt to humans.
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Additionally, novel sequencing strategies should be leveraged to more carefully evaluate
viral population dynamics within and between individual hosts. Current SARS-CoV-2
sequencing strategies largely rely on short-amplicon sequencing in multiplexed PCRs.
Chapter 4 discusses the pitfalls of this sequencing approach and the caution that should
be taken when making biological conclusions from low frequency iISNVs generated in
similar studies. Novel sequencing approaches that use long-amplicon sequencing might
be less prone to common method errors and would also preserve information about
mutations that co-occur on a single molecule (linkage information). An additional
promising approach for characterizing viral populations within and between hosts is to
use libraries of molecularly-barcoded viruses in order to track individual members of the
virus population. Though not included in the primary chapters of my thesis, | have worked
closely with the Mehle Laboratory to develop sequencing approaches and bioinformatic
tools to analyze populations of molecularly-barcoded IAV viruses. These methods could
be applied to SARS-CoV-2 as a parallel method to quantify transmission bottlenecks and

to investigate compartmentalization and movement of viruses within individual hosts.

Using viral sequencing to characterize patterns of viral spread in nearby
communities and to evaluate the effectiveness of mitigation strategies

In chapter 5, | described our use of viral sequencing across individuals to evaluate
disparate patterns of introduction and spread. In this study we sequenced viruses from
two counties in Wisconsin which are less than 100km apart from each other, but have

important demographic differences — Dane and Milwaukee counties. Other
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contemporaneous studies look at patterns of SARS-CoV-2 introduction and spread in one
city or geographic region 147-149.298,337.338,340 bt none compared patterns of viral spread
in nearby communities and contextualized these differences in the demographic and

socioeconomic features of each community.

Working closely with the Milwaukee Health Department and other public health partners
throughout the state, we were able to sequence a representative set of viruses circulating
in Dane County as well as viruses circulating in Milwaukee County during spring 2020.
We found Dane County’s outbreak was defined by an early introduction of European-
lineage viruses that contained the Spike D614G variant, whereas Milwaukee County’s
outbreak was defined by more frequent introductions of Asian-lineage viruses.
Subsequent research showed Spike D614G confers increased transmissibility and its
clade, 20G, outpaced growth in other clades during the summer and fall of 2020 378382,
Despite this, Dane County actually saw less community spread than Milwaukee County.
We hypothesized that this difference in early viral spread was driven by human and
behavioral factors as opposed to virus-specific factors. We were not able to directly test
this hypothesis, but did compare the social vulnerability index in each county, which is a
metric referring to the potential negative effects on communities caused by external
stresses on human health (like a global pandemic) 383. Milwaukee County has a higher
social vulnerability index, meaning this community was more vulnerable, compared to
Dane County (0.8268 vs 0.1974). We speculated that factors contributing to the SVI, like

population density, access to financial, healthcare, and other support resources, as well
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as race-based discrimination in healthcare systems, were likely at the root of these

differences.

As part of this study, we sequenced viruses from before and after Wisconsin’s state-wide
“Safer-at-Home” order so we took advantage of this natural experiment to assess the
effectiveness of this public health order. Amazingly, we showed evidence that viral spread
in Dane and Milwaukee county fell by at least 40% following the “Safer-at-Home” order.
These results were useful to state and public health officials who continued to advocate
for state-wide distancing and density-reduction orders. In addition, the results of this work
suggested that patterns of viral introduction and spread in very nearby communities can
differ and careful characterization of these differences might allow public health
interventions to be targeted to particular pattern of spread in a community — we often

referred to this relatively novel concept as “precision public health”.

The final chapter of this dissertation, chapter 6, describes our work using viral
sequencing as an infection control tool in the setting of a large academic medical system
in the upper midwestern United States. In accordance with CDC recommendations, this
healthcare system implemented a number of policies and procedures aimed at protecting
patients and healthcare personnel (HCP) from becoming infected with SARS-CoV-2 in
the setting of the healthcare system 3¢, To assess the effectiveness of these strategies,
we sequenced viruses collected from HCP who became infected with SARS-CoV-2, their
patient contacts, and cases circulating in the surrounding community. We found the

majority of HCP infections could not be linked to a patient or co-worker and were more
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likely to occur outside of the workplace. We found a smaller percentage could be traced
to a coworker. The smallest proportion of HCP infections could be clearly traced to a
patient source. These results suggested infection control measures in place at the
institution evaluated in this case series were successfully working to protect HCP from
healthcare-associated SARS-CoV-2 infections. To our knowledge, this was the first
retrospective case series using viral sequencing to specifically investigate the source of
SARS-CoV-2 infections in healthcare workers in the United States. A related study was
published on similar work that was conducted in the Netherlands 374. Like us, this group

found little evidence for widespread nosocomial transmission of SARS-CoV-2.

Future directions on the application of viral sequencing to the health of humans
and populations

Taken together, chapters 5 and 6 illustrate that viral sequencing can augment traditional
public health methods as well as infection control interventions. Already, seeing the value
in viral sequencing to supplement track-and-trace efforts, Wisconsin’'s public health
groups have increased their capacity to surveil viruses circulating in the state through
high throughput viral sequencing and have created dashboards to publicly report the
summary findings of these efforts. In addition, the infection control group has integrated
viral sequencing into their investigation of all possible healthcare-associated transmission
of SARS-CoV-2. Additionally, in collaboration with the infection control team, we have
begun incorporating viral sequencing into investigations of SARS-CoV-2 breakthrough
following infection and vaccination. The COVID-19 pandemic has shined light on the

value of viral sequencing applied to public health datasets and even more importantly has
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shined light on the value of collaborations between academic groups and public health

partners.

Altogether, the work in this dissertation contributes to our understanding of IAV and
SARS-CoV-2 evolution within and between individual hosts and in populations. The
observations made here have contributed to funded grant proposals and additional
ongoing studies, which are also likely to further advance our understanding of RNA virus

evolution.
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Figures, tables, and supplemental material
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coordinates. The peaks and valleys shown here are conceptual and not derived from

actual data.
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Abstract

Background

Influenza vaccination may provide a “back-boost” to antibodies against previously
encountered strains. If the back-boost effect is common, this could allow more
aggressive vaccine updates, as emerging variants would be expected to both elicit de-
novo responses and boost pre-existing responses against recently circulating strains.
Here we used the emergence of an antigenically novel A(H3N2) strain to determine
whether an antigenically updated vaccine boosted antibodies against historical strains.

Methods

We performed hemagglutination-inhibition (HI) assays on pre- and post-vaccination sera
from 124 children 5-17 years old who received 2015-2016 inactivated influenza
vaccine, containing an antigenically updated A(H3N2) strain. We evaluated the mean
fold increase in HI titer against both the 2015-2016 vaccine strain and representative
strains from two prior antigenic clusters. Factors associated with post-vaccination titers
against historical strains were evaluated using linear regression, adjusting for baseline
titer.

Results

Geometric mean titers against each antigen examined increased significantly after
vaccination (P <.0001). Mean fold increase was 3.29 against the vaccine strain and
1.22—-1.46 against historical strains. Response to vaccine strain was associated with
increased post-vaccination titers against historical strains.
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Conclusions
A vaccine containing an antigenically novel A(H3NZ2) strain modestly boosted antibody
responses against historical influenza strains in children.

Vaccine 36.5 (2018): 758-764.
Contributions

| performed hemagglutination-inhibition assays, assisted with data analysis, and edited
the manuscript.



353

Influenza evolution with little host selection
Katarina M. Braun' & Thomas C. Friedrich’

'Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison,
WI, USA

Nat Ecol Evol 3, 159-160 (2019). https://doi.org/10.1038/s41559-018-0782-1

Abstract

Influenza viruses undergo rapid antigenic evolution. Analysis of a large dataset of
influenza virus sequences, using host age as a proxy for immune experience, shows no
evidence for immune positive selection driving antigenic evolution in individual infected
humans.

Contributions

| reviewed the manuscript this commentary was based on (Han, A.X., Maurer-Stroh, S.
& Russell, C.A. Individual immune selection pressure has limited impact on seasonal
influenza virus evolution. Nat Ecol Evol 3, 302-311 (2019).
https://doi.org/10.1038/s41559-018-0741-x) for Nature Ecology and Evolution and
drafted this News and Views article with Dr. Friedrich.
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Abstract

Following the Zika virus (ZIKV) outbreak in the Americas, ZIKV was causally associated
with microcephaly and a range of neurological and developmental symptoms, termed
congenital Zika syndrome (CZS). The viruses responsible for this outbreak belonged to
the Asian lineage of ZIKV. However, in-vitro and in-vivo studies assessing the
pathogenesis of African-lineage ZIKV demonstrated that African-lineage isolates often
replicated to high titer and caused more severe pathology than Asian-lineage isolates.
To date, the pathogenesis of African-lineage ZIKV in a translational model, particularly
during pregnancy, has not been rigorously characterized. Here we infected four
pregnant rhesus macaques with a low-passage strain of African-lineage ZIKV and
compared its pathogenesis to a cohort of four pregnant rhesus macaques infected with
an Asian-lineage isolate and a cohort of mock-inoculated controls. Viral replication
kinetics were not significantly different between the two experimental groups and both
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groups developed robust neutralizing antibody titers above levels considered to be
protective. There was no evidence of significant fetal head growth restriction or gross
fetal harm at delivery (1-1.5 weeks prior to full term) in either group. However, a
significantly higher burden of ZIKV vRNA was found in maternal-fetal interface tissues in
the macaques exposed to an African-lineage isolate. Our findings suggest that ZIKV of
any genetic lineage poses a threat to pregnant individuals and their infants.

Contributions
| performed placental dissections and assisted with tissue processing. | provided
feedback on figure design and edited the manuscript.
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Abstract

Concerns have arisen that pre-existing immunity to dengue virus (DENV) could
enhance Zika virus (ZIKV) disease, due to the homology between ZIKV and DENV and
the observation of antibody-dependent enhancement (ADE) among DENV serotypes.
To date, no study has examined the impact of pre-existing DENV immunity on ZIKV
pathogenesis during pregnancy in a translational non-human primate model. Here we
show that prior DENV-2 exposure enhanced ZIKV infection of maternal-fetal interface
tissues in macaques. However, pre-existing DENV immunity had no detectable impact
on ZIKV replication kinetics in maternal plasma, and all pregnancies progressed to term
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without adverse outcomes or gross fetal abnormalities detectable at delivery.
Understanding the risks of ADE to pregnant women worldwide is critical as vaccines

against DENV and ZIKV are developed and licensed and as DENV and ZIKV continue
to circulate.
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| performed placental dissections and assisted with tissue processing. | provided
feedback on figure design and edited the manuscript.
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Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is causing an
exponentially increasing number of coronavirus disease 19 (COVID-19) cases globally.
Prioritization of medical countermeasures for evaluation in randomized clinical trials is
critically hindered by the lack of COVID-19 animal models that enable accurate,
quantifiable, and reproducible measurement of COVID-19 pulmonary disease free from
observer bias. We first used serial computed tomography (CT) to demonstrate that
bilateral intrabronchial instillation of SARS-CoV-2 into crab-eating macaques (Macaca
fascicularis) results in mild-to-moderate lung abnormalities qualitatively characteristic of
subclinical or mild-to-moderate COVID-19 (e.g., ground-glass opacities with or without
reticulation, paving, or alveolar consolidation, peri-bronchial thickening, linear opacities)
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at typical locations (peripheral>central, posterior and dependent, bilateral, multi-lobar).
We then used positron emission tomography (PET) analysis to demonstrate increased
FDG uptake in the CT-defined lung abnormalities and regional lymph nodes. PET/CT
imaging findings appeared in all macaques as early as 2 days post-exposure, variably
progressed, and subsequently resolved by 6—12 days post-exposure. Finally, we
applied operator-independent, semi-automatic quantification of the volume and
radiodensity of CT abnormalities as a possible primary endpoint for immediate and
objective efficacy testing of candidate medical countermeasures.

Contributions
| assisted with experimental design, figure generation, and editing of the manuscript.
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Abstract

Since the first reports of pneumonia associated with a novel coronavirus (COVID-19)
emerged in Wuhan, Hubei province, China, there have been considerable efforts to
sequence the causative virus, SARS-CoV-2 (also referred to as hCoV-19) and to make
viral genomic information available quickly on shared repositories. As of 30 March 2020,
7,680 consensus sequences have been shared on GISAID, the principal repository for
SARS-CoV-2 genetic information. These sequences are primarily consensus sequences
from clinical and passaged samples, but few reports have looked at diversity of virus
populations within individual hosts or cultures. Understanding such diversity is essential
to understanding viral evolutionary dynamics. Here, we characterize within-host viral
diversity from a primary isolate and passaged samples, all originally deriving from an
individual returning from Wuhan, China, who was diagnosed with COVID-19 and
subsequently sampled in Wisconsin, United States. We use a metagenomic approach
with Oxford Nanopore Technologies (ONT) GridlION in combination with Illlumina MiSeq
to capture minor within-host frequency variants 21%. In a clinical swab obtained from the
day of hospital presentation, we identify 15 single nucleotide variants (SNVs) 21%
frequency, primarily located in the largest gene — ORF1a. While viral diversity is low
overall, the dominant genetic signatures are likely secondary to population size changes,
with some evidence for mild purifying selection throughout the genome. We see little to
no evidence for positive selection or ongoing adaptation of SARS-CoV-2 within cell
culture or in the primary isolate evaluated in this study.

Contributions
| generated the deep sequencing dataset. | analyzed the data, and created the figure
displays. | wrote the first draft of the manuscript and edited the manuscript.
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Abstract

Whether a healthcare worker’s severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) infection is community or hospital acquired affects prevention practices. We used
virus sequencing to determine that infection of a healthcare worker who cared for 2 SARS-
CoV-2—-infected patients was probably community acquired. Appropriate personal
protective equipment may have protected against hospital-acquired infection.

Contributions
| generated and analyzed the sequence dataset. | wrote the first draft of the manuscript,
and assisted in manuscript editing.
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Abstract

We identified a new SARS-CoV-2 lineage with Spike deletion A69/70 (designated
‘B.1.375’) that has been circulating in the United States since September 2020. We
characterize the timing and geographic spread of this lineage and report a possible case
of reinfection with B.1.375 virus.

Contributions

| generated the deep sequencing dataset. | assisted in analyzing the data and provided
feedback on data visualization. | additionally assisted in writing the first draft of the
manuscript, and manuscript editing.
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Abstract

Zika virus (ZIKV) has the unusual capacity to circumvent natural alternating mosquito-
human transmission and be directly transmitted human to human via sexual and vertical
routes. The impact of direct transmission on ZIKV evolution and adaptation to vertebrate
hosts is unknown. Here, we show that molecularly barcoded ZIKV rapidly adapted to a
mammalian host during direct transmission chains in mice, coincident with the
emergence of an amino acid substitution previously shown to enhance virulence. In
contrast, little to no adaptation of ZIKV to mice was observed following chains of direct
transmission in mosquitoes or alternating host transmission. Detailed genetic analyses
revealed that ZIKV evolution in mice was generally more convergent and subjected to
more relaxed purifying selection than that in mosquitoes or alternate passages. These
findings suggest that prevention of direct human transmission chains is paramount to
resist gains in ZIKV virulence.

Contributions

| created and validated the wet-lab and bioinformatic protocols used to sequence
barcoded ZIKV viruses in this project: unique molecular identifier (UMI) sequencing for
barcoded viruses.
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Abstract

Background:

Female physician-scientists have led major advances in medicine broadly and
particularly in women's health. Women remain underrepresented in dual MD-PhD
degree programs that train many physician-scientists despite gender parity among
medical and biomedical research students.

Materials and Methods:

To explore how the training environment might be experienced differently for male and
female students in one MD-PhD program, the authors analyzed gender differences in
annual symposium speakers with exact binomial tests, student participation as
question-askers at a weekly seminar with logistic regression, and number of
publications with quasi-Poisson generalized linear models. They compared male and
female students' perceptions of gender-based discrimination using a survey, including
qualitative analysis of free text responses. The program consisted of 71 total students in
the 2017-2018 and 2018-2019 academic years. Female students comprised 42.0%
(81/191) of program matriculants from 1997 to 2019.
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Results:

Male and female students were equally likely to present at the annual program
symposium, but faculty (p = 0.001) and keynote (p = 0.012) presenters were more likely
to be male. Compared with male counterparts, female students asked fewer seminar
questions (p < 0.005) and female speakers received more questions (p = 0.03). Female
students perceived less support and differed from men in reasons for asking or not
asking seminar questions. Free text responses described repeated small acts of
discrimination toward women with cumulative impact. Positive program changes
followed presentation of findings to program leaders and students.

Conclusions:

The authors identified several aspects of one MD-PhD program that could discourage
career or training persistence of female students. Increasing awareness of these issues
was temporally related to positive programmatic changes.

Contributions
| designed the study, collected the data, analyzed the data, generated figures, wrote
and edited the manuscript, and took this project through the review process.
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Abstract

University settings have demonstrated potential for COVID-19 outbreaks, as they can
combine congregate living, substantial social activity, and a young population
predisposed to mild illness. Using genomic and epidemiologic data, we describe a
COVID-19 outbreak at the University of Wisconsin (UW)—Madison. During August —
October 2020, 3,485 students tested positive, including 856/6,162 students living in
residence halls. Case counts began rising during move-in week for on-campus students
(August 25-31, 2020), then rose rapidly during September 1-11, 2020. UW-Madison
initiated multiple prevention efforts, including quarantining two residence halls; a
subsequent decline in cases was observed. Genomic surveillance of cases from Dane
County, where UW-Madison is located, did not find evidence of transmission from a
large cluster of cases in the two residence halls quarantined during the outbreak.
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Coordinated implementation of prevention measures can effectively reduce SARS-CoV-
2 spread in university settings and may limit spillover to the community surrounding the
university.
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| generated the deep sequencing dataset. | assisted in analyzing the data and provided
feedback on data visualization. | additionally assisted in writing the first draft of the
manuscript and provided edits on manuscript revisions.
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Abstract

High-frequency, rapid-turnaround SARS-CoV-2 testing continues to be proposed as a
way of efficiently identifying and mitigating transmission in congregate settings.
However, two SARS-CoV-2 outbreaks occurred among intercollegiate university athletic
programs during the fall 2020 semester despite mandatory directly observed daily
antigen testing. During the fall 2020 semester, athletes and staff in both programs were
tested daily using Quidel's Sofia SARS Antigen Fluorescent Immunoassay (FIA), with
positive antigen results requiring confirmatory testing with real-time reverse transcription
polymerase chain reaction (RT-PCR). We used genomic sequencing to investigate
transmission dynamics in these two outbreaks. In Outbreak 1, 32 confirmed cases
occurred within a university athletics program after the index patient attended a meeting
while infectious despite a negative antigen test on the day of the meeting. Among
isolates sequenced from Outbreak 1, 24 (92%) of 26 were closely related, suggesting
sustained transmission following an initial introduction event. In Outbreak 2, 12
confirmed cases occurred among athletes from two university programs that faced each
other in an athletic competition despite receiving negative antigen test results on the
day of the competition. Sequences from both teams were closely related and distinct
from viruses circulating in Team 1’s community, suggesting transmission during
intercollegiate competition in Team 2’s community. These findings suggest that antigen
testing alone, even when mandated and directly observed, may not be sufficient as an
intervention to prevent SARS-CoV-2 outbreaks in congregate settings, and highlight the
importance of supplementing serial antigen testing with appropriate mitigation strategies
to prevent SARS-CoV-2 outbreak in congregate settings.
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| generated the deep sequencing dataset. | analyzed the data and performed data
visualization. | wrote the first draft of the manuscript, performed manuscript editing, and
carried the manuscript through peer review.
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Abstract

Importance:

Little is known about the role of school-aged children and household transmission in the
early phases of the SARS-CoV-2 pandemic in the United States.

Objective:
To evaluate the prevalence of SARS-CoV-2 in a low-risk population of school-aged
children and assess possible household transmission.

Design:

Longitudinal, community-based influenza and other respiratory virus surveillance study.
Setting: Oregon School District, Dane County, Wisconsin from December 1, 2019
through June 30, 2020.

Participants:
School-aged children, aged 4-18 years, with acute respiratory infections, and household
members participating in a household influenza transmission sub-study.

Intervention:
None

Main Outcome Measures:
Detection of SARS-CoV-2 using RT-PCR in 567 archived nasal swab specimens.
Evaluation of virus lineage using whole genome sequencing.

Results:
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Very low prevalence (0.2% [95% CI: 0.03-0.99]) of SARS-CoV-2 was detected in this
population of school-aged children during the analysis period. The single case detected
in March 2020 was associated with SARS-CoV-2 detection in all other household
members. All sequences were identical or near-identical to Clade 17B (A.4 lineage).

Conclusions and Relevance:

In the very early phases of the SARS-CoV-2 pandemic, infection in school-aged children
was associated with strong evidence of household transmission. Such unrecognized
transmission likely contributed to wide seeding across populations.
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| generated the and analyzed the deep sequence data included in this manuscript.
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Abstract

Transmission of influenza A virus (IAV) is constrained by numerous physical and
biological barriers to infection.|AV overcomes these barriers in part by low-fidelity
replication that drives the emergence of new variants, but bottlenecks limit population-
level diversity and shape evolutionary pathways taken during infection and transmission.
High-resolution characterization of the nature and stringency of bottlenecks on IAV
infection has not been previously possible. To characterize viral populations and quantify
bottlenecks, we created two molecularly barcoded IAV libraries, each with ~60,000
individual members identifiable by deep sequencing. Our barcoded libraries captured
selective sweeps as adaptive mutations arose in HA during tissue culture passage. The
barcode revealed that the adaptive variant arose only once in the diverse starting
population followed by a selective sweep to dominate as ~70% of all HA genotypes. Using
a similar technical approach, we produced two highly diverse and evenly distributed
barcoded libraries with ~20,000 barcodes on the HA segment. Upon infection in mice,
these barcoded viruses caused weight loss as well as viral titers at 3 and 6 days post-
infection that were indistinguishable from the parental IAV. Whereas mice were inoculated
with the entire library, barcode sequencing demonstrated an effective inoculation
bottleneck size of (TBD) post inoculation. We then applied this quantitative approach to
study the movement of viruses within infected animals by initiating site-specific infections
in ferrets. We detected large bottlenecks during inoculation, where less than 10% of the
viruses in our starting population initiated infection. While the majority of our virus
established compartmentalized infections, small populations moved between upper and
lower respiratory tract and made detectable contributions to the genetic diversity in each
location. The use of large populations with uniquely quantifiable members allows us to
measure population dynamics during IAV infection and identify major reductions in
genetic diversity before and after transmission events.
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data from the mouse and ferret experiments outlined in this paper.
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