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"If you are working on something exciting that you really care about, you don’t have to be
pushed. The vision pulls you."

- Steve Jobs
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2.1 O�ce Scene run time comparison: This table shows the actual run time
for generating the results in Fig. 2.7. Our proposed method starts from
the captured wavefront and has the same volume size as the Direct
Integration method (150 x 150 x 125 voxels). For showing the best
reconstruction quality of the approx LCT and approx FK methods, we
use a voxel grid of 256 x 256 x 512 with 1 cm sampling resolution on
the relay wall. Approx LCT and approx FK can be much faster when
down-sampling the spatial dimensions as shown in brackets (128 x 128
x 512), but the results are even more blurry than the ones shown in
Fig. 2.7. Note that down-sampling the spatial domain is not possible, as
the number of spatial voxels has to equal the number of time bins and
lower time resolution would lead to even worse results (but faster run
time). The flexibility of adapting the full 3D voxel grid is an advantage
of our RSD algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2 Simple scenes run time comparison: This table shows the actual run
time for generating the results in Fig. 2.8. Our proposed method starts
from the captured wavefront and has the same volume size as the Direct
Integration method. For showing the best reconstruction quality of the
approx LCT and approx FK methods, we use a voxel grid of 256 x 256
x 512 with 1 cm sampling resolution on the relay wall. Approx LCT
and approx FK can be much faster when down-sampling the spatial
dimensions as shown in brackets (128 x 128 x 512). . . . . . . . . . . . 27

2.3 Target scene parameters: scene depth complexity (distance away from
the relay wall), targets material. . . . . . . . . . . . . . . . . . . . . . . 28
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1.1 This figure shows a conceptual understanding of Non-Line-of-Sight
imaging. People perform measurements indirectly from a scene. The
goal is to use collected measurements to form an image of the hidden
space. For example, as shown in the figure, people can only shoot light
using a pulse laser through this window shown in Figure. Light will
bounce back and forth between the wall and the hidden space. These
bouncing signals can be measured via a single photon detection device
which is shown at the detector point. Then smart algorithms are used to
form a three-dimensional image using captured signals which is shown
as a reconstruction in this figure. . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Three patches rotation example. Experimental reconstruction of a scene
containing three patches denoted by a, b, c. Patches a and c are parallel
but the latter one’s surface normal vector does not point towards the
NLOS relay wall and the patch does not appear in the reconstruction
shown on the right. The first row stands for the top view and the second
row for the front view. The explanation for this astonishing e�ect will be
developed in the main text, see Sec. 5.5, and also Fig. 5.8 for a graphical
explanation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 NLOS as a virtual LOS imaging system. Capturing scene data: a, A
pulsed laser sequentially scans a relay wall; b, the light reflected back
from the scene onto thewall is recorded at the sensor yielding an impulse
responseH of the scene. c, Virtual light source: The phasor field wave of
a virtual light source P(xp, t) is modeled after the wavefront of the light
source of the template LOS system. d, The scene response to this virtual
illumination P(xc, t) is computed using H. e, The scene is reconstructed
from the wavefront P(xc, t) using wave di�raction theory. The function
�(·) is also taken from the template LOS system. . . . . . . . . . . . . 10



viii

2.2 Reconstructions of a complex NLOS scene. a, Photograph of the scene
as seen from the relay wall. The scene contains occluding geometries,
multiple anisotropic surface reflectances, large depth, and strong ambi-
ent andmultiply scattered light. b, 3D visualization of the reconstruction
using phasor fields (� = 6 cm). We include the relay wall location and
the coverage of the virtual aperture for illustration purposes. c, Frontal
view of the scene, captured with an exposure time of 10 ms per laser
position. d, Frontal view captured with just a 1 ms exposure time (24
seconds for the complete scan). . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Illustration of proposed phasor field fast NLOS imaging method. a.
refers to the NLOS imaging scenarios, including relay wall, occluder,
and hidden object. Measurements are performed on the relay wall,
including illumination point ~xp and camera aperture ~xc. b. shows the
virtual illumination in the reconstruction in time and frequency domain.
d. shows the entire reconstruction pipeline. The wave propagation
model is described in the following. Overall, our proposed method can
be thought of as building a virtual lens as shown in c, which creates the
corresponding virtual image of hidden objects from the captured phasor
field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Rayleigh Sommerfeld Di�raction (RSD) calculation. a. shows the two
parallel planes geometrical setup for the reconstruction. The input and
output planes are space with zv. b. refers to the side view for a. . . . . 18

2.5 Space-time wave propagation using RSD. a. The phasor field collected
at the aperture forms a spatial frequency cube. Given the output plane,
by using the RSD propagation model, we can recover the hidden wave-
front at any time instances. b. shows this space-time wave propaga-
tion method where one can reveal a spherical wavefront that moves
into the hidden scene. Even though b only shows reconstruction at a
single depth plane, our proposed method can be generalized into the
three-dimensional volume as well, which leads to a four-dimensional
reconstruction space-time volume. . . . . . . . . . . . . . . . . . . . . . 20
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2.6 Illustration of Fourier Domain Histogram. Instead of binning the photon
event in time, we propose doing the binning in the frequency domain.
This allows us directly to sample the phasor field wavefront HF(~xc,⌦)

used for reconstructions. ⌦ stands for the frequency range for the phasor
field wavefront. The equation for the Fourier Domain Histogram can
be applied during measurements, which is a summation of complex
phasors (or a separated real and imaginary part). . . . . . . . . . . . . 22

2.7 Methods comparison on O�ce Scene: Exposure time per each pixel mea-
surement from first row to last row is 1ms, 5ms, 10ms, 20ms, 1000ms
(note that the 1000ms O�ce Scene dataset was acquired with slight
di�erences in the object location). The total acquisition time from first
row to last row is 23 s, 117 s, 4min, 8min, 390min. The width of re-
sult in each dimension is 3m as details provided in [1]. Each column
shows the reconstruction with di�erent methods. The first two columns
stand for our proposed RSD [1] based solver with one or two spatial
sections. The circle in the first column is actually the size of the farthest
reconstruction plane which is the one with the largest region that is
calculated with the same distance shift B1. All planes in front of this
one have a smaller reconstruction area; due to the maximum operation
along the depth dimension, the circle size is defined by the largest one
in the back. The third column is the Direct Integration (back-projection
solver) as a comparison for the first two columns. The last two columns
refer to the approximation method [2] which approximate non-confocal
by confocal data and solve it through the scanning-based solver (LCT:
forth column, FK-migration: fifth column). For the last two columns,
each small image shows the results from midpoint approximation[2] in
order to approximate confocal data from non-confocal measurements.
The respective larger image results from zero-padding applied to the
input data to show the same reconstruction volume as the first three
columns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
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2.8 Methods comparison on simple targets: Exposure time for these scenes
are all 1000ms per each pixel measurement. The total acquisition time
for each target is 390min. The width of result in each dimension is 2m
as details provided in [1]. Each row shows a di�erent simple target, each
column the reconstruction from di�erent methods. The first column
stands for our proposed RSD [1] based solver with one spatial section
(inside white circle) corresponding to one spatial section presented
in [1] . The second column is from Direct Integration (back-projection
solver) for comparison with the first column. The last two columns
show the approximate method [2] which approximate non-confocal as
a confocal datasets and reconstruct through confocal solvers (LCT: forth
column, FK-migration: fifth column). For the last two columns, each
small image shows the results frommidpoint approximation[2] in order
to approximate confocal data from non-confocal measurements. The
respective larger image results from zero-padding applied to the input
data to show the same reconstruction volume as the first three columns. 26

2.9 Comparisons on confocal scanning shortest exposure datasets [2]: The
first three rows correspond to the phasor field (PF) NLOS method [3]
out of which the first two rows present our fast implementation [1]
(one with RSD, one with Fresnel di�raction kernel[3]) and the third row
shows the results using the convolution backprojection kernel calculated
from the LCT [4]. The fourth (Laplacian filter) andfifth (LOG: Laplacian
of Gaussian) rows are filtered backprojection with filter implementation
from [3] and the backprojection step is calculated from the convolution
provided by LCT. The last two rows show LCT and FK-Migration [2].
For the shortest exposure dataset, we interestingly find out that LOG
is quite robust. The Fresnel di�raction solver seems suited for confocal
data, although it does not perform well on non-confocal data [3]. . . . 29
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2.10 Comparisons on confocal scanning longest exposure datasets [2]: The
first three rows correspond to the phasor field (PF) NLOS method [3]
out of which the first two rows present our fast implementation [1] (one
with RSD, one with Fresnel di�raction kernel [3]) and the third row
shows the results using the convolution backprojection kernel calculated
from the LCT [4]. The fourth (Laplacian filter) andfifth (LOG: Laplacian
of Gaussian) rows are filtered backprojection with filter implementation
from [3] and the backprojection step is calculated from the convolution
provided by LCT. The last two rows show LCT and FK-Migration [2].
For the longest exposure dataset, almost all methods perform well. The
Fresnel di�raction solver seems suited for confocal data, although it
does not perform well on non-confocal data [3]. . . . . . . . . . . . . . 30

3.1 shows proposed reconstruction comparing to past algorithms. Input
captured Phasor field wavefront is sampled uniformly on the relay wall
by �in. Past fast algorithms can reconstruct hidden images defined on
the same uniform grid in the output domain which means �out = �in.
We consider a fraction rate solver allows us to reconstruct hidden images
where input and output grid are defined by a fractional number which
means ↵ = �in

�out
. To construct a real world camera perspective projection,

our solver allows �out varies as a function of distance. This is illustrated
as red, green and purple color �out in the figure above. With a same
number of matrix element, but changing �out, it covers larger field of
view of hidden space as shown on the right. . . . . . . . . . . . . . . . 35
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3.2 We apply our proposed perspective projection solver to existing datasets.
The fractional rate ↵ = �in

�out
in Eq. (3.10) is chosen such that it varies in

distance. As results shows above, the first column refers to the ground
truth images where experiments are taken. Second column ↵ is a con-
stant and not varies in distance. So results in the second column refer
to the equal sampling case in Eq. (3.5). The rest columns refers to the
fractional sampling case in Eq. (3.7) and solved by our proposed solver
in Eq. (3.14). From the third column to the last one, we test our solvers
with a di�erent choices of ↵. In the third column, ↵ varies from 1 to 1

1.25 ,
and the last one is from 1 to 1

2 . This is just a verification of solvers and ↵

can be chosen optimally as a function of a physical aperture size. . . . 41

4.1 Two parallel planes (lines) setup geometry in Sec. 4.1. fi(x) and fo(x)

represent line slices of the field used in Eq. (4.5). . . . . . . . . . . . . . 46
4.2 The RSD and Fresnel di�raction in theWDF domain Eq. (4.10). Wfi(x,µ)

andWfo(x,µ) areWDF for the input field fi(x) and the output field fo(x)

in Fig. 4.1. The RSD in theWDF domain is shown in the first row and the
Fresnel is in the second row. Both propagators starts from a same target
field WDFWfi(x,µ), the di�erences lie in transformations in the WDF
domain. The RSD refers to a convolution along spatial coordinate xwith
WDF of the RSD kernelWhRSD

z
(xi,µ) in Eq. (4.8). The Fresnel di�raction

refers to a shear mapping in Eq. (4.9). We also plot the corresponding
value contours (level) for each WDF plot which are shown in dash
windows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
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4.3 Achievable lateral resolution from RSD discussed in Sec. 4.2 Eq. (4.16). a.
we show the point spread function PSF(xt,yt, z,!) from multiple point
targets in the hidden with T(x,y) (2m by 2m, red dash box), a target
depth z = 0.5m away from a relay wall, a central wavelength � = 4 cm.
Point spread function varies at each lateral location. b. we pick five
positions (color boxes from 1-5 in b) from a to illustrate the frequency
bandwidth (2d Fourier transform on the complex field). Point position
at the center of aperture (number 1, red box) achieves almost maximum
bandwidth corresponding to �/2. The further away from the center of
the aperture, the worse distortion, and the smaller region is covered
in the frequency domain. c. we show a PSF plot and a reconstructed
checkerboard pattern for two depth z = 0.5m - 2m. . . . . . . . . . . . 55

4.4 Di�erence between the RSD and the Fresnel propagation in the WDF
domain with Non-confocal, confocal acquisitionsin Eq. (4.18 & 4.19)
Sec. 4.2. This numerical simulation use the same aperture function
T(x,y) and a input hidden target f(x,y) for both non-confocal and con-
focal acquisitions. The non-confocal single illumination point (xi,yi)

is at the center. Illumination functions un-con(x,y) and ucon(x,y) are
shown in Eq. (4.18). Each row shows phasor field distributions in the
WDF domain as a function of distance z. WRSD

po (x,µ),WFre
po (x,µ) refers

to the phasor field WDF distribution from the RSD or the Fresnel di�rac-
tion. For each depth, we plot the absolute di�erence between normalized
WDF for RSD and Fresnel |WRSD

po -WFre
po |(x,µ) (NormalizedWDF’s value

between 0-1). The Fresnel approximation for the non-confocal and the
confocal show di�erent errors by the absolute di�erence map in the
WDF domain (from red to green box). . . . . . . . . . . . . . . . . . . . 58

4.5 Error plot for Eq. (4.20). |E(xt,yt, zt, x,y, z)| refers to complex error field
magnitude. PSF(xt,yt, z = 2m, � = 4cm) stands for the ideal PSF plot
from RSD propagator for referencing. . . . . . . . . . . . . . . . . . . . 60
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5.1 Three patches rotation example. Experimental reconstruction of a scene
containing three patches denoted by a, b, c. Patches a and c are parallel
but the latter one’s surface normal vector does not point towards the
NLOS relay wall and the patch does not appear in the reconstruction
shown on the right. The first row stands for the top view and the second
row for the front view. The explanation for this astonishing e�ect will be
developed in the main text, see Sec. 5.5, and also Fig. 5.8 for a graphical
explanation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2 Illustration of a NLOS measurement: The panels a and b show two
popular NLOS measurement setups. Subfigure a shows the confocal
measurement which means the illumination and detection point are
co-located, while b shows the non-confocal measurement. The green
curves in a and b sketch the acquired time responses, i.e., the integration
of reflecting scene features along each circle (confocal case) or ellipse
(non-confocal case). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.3 Local Measurement MTF: Fourier domain representations of the NLOS
Measurement Function for five points in the unknown geometry. The
left graphic represents the geometric setup. We construct a half meter
limited aperture with five volumes of interest varying in depth and
horizontal o�set. The panels show the measurement function for all
points for the di�erent models. Planar corresponds to the PRT, confocal
to the SRT, and non-confocal to the SRT. For each point, the first col-
umn shows the computed patterns, the middle column shows the same
pattern zoomed in, and the right column shows the zoomed in pattern
after correcting for the lower values at higher frequencies to enhance
visualization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
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5.4 Local scene features: This figure shows a set of common NLOS scene
features in the red boxes and their Fourier transforms. Rotating of the
features simply corresponds to rotating by the same angle in the Fourier
domain. The patterns are (top left to bottom right) a smooth planar
surface, a rough planar surface, the edge of a planar surface, a corner
between two surfaces, a gap in a planar surface, a convex curved surface,
and two concave curved surfaces. The spectrum of a planar surface is a
line. Roughness, curvature, and edges result in spectra that also cover
other regions of the Fourier space. . . . . . . . . . . . . . . . . . . . . . 71

5.5 Fourier slice theorem and cone generation. . . . . . . . . . . . . . . . . 73
5.6 Three wall examples. The first column represents the geometry, the

second column stands for the measurement g(i) after the intensity cor-
rection from t(i). The scenes in the first two rows lead to identical
captured data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.7 Simple letter S and rectangle patch rotation experiments The first row
represents the schematic of the setup including the entire visible wall,
limited aperture, targets (letter S and patch) as well as reconstruction
volume. The next two rows show the maximum projection along the
depth dimension, thus a 2D bird view and 2D front view are provided.
For clear illustration, we present results using two-color (bright and
dark view). The thickness of the letter S and the rectangular patch ap-
proximately equals 5 cm and 0.5 cm. As the angle increases, the ill-posed
e�ect becomes more obvious, and certain features are missing in the
measurement space and therefore cannot be resolved by the reconstruction 78
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5.8 Explanation of the missing feature in Fig. 5.1 The measurement cone is
shown as gray area and illustrates the part of the Fourier spectrum that
is actually acquired by NLOS measurements. It varies with the position
in the 3D space that is to be reconstructed. Both patches a and c of the
scene are oriented the same way; the spatial shift just corresponds to a
phase shift in the Fourier domain, but not in a change of the magnitude
spectrum. This means both patches have the same magnitude spectrum,
but due to the fact that the measurement cone is di�erent at their re-
spective positions, the measurement of patch c only captures the o�set
and not the rest of the spectrum. For this reason, this patch cannot be
reconstructed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.9 MTF pattern without/with intensity drop o� term: This shows the
MTF pattern di�erences without and with distance drop-o� in the for-
ward model. The first column represents no distance drop o� term. The
second one incorporates the distance drop-o�. Each box contains the
planar, confocal and non-confocal MTF patterns. Number 1-5 represent
the di�erent local positions which are the same as in main text Figure 3. 82

5.10 Non-confocal illumination variation: The non-confocal acquisition
setup has two degrees of freedom for focused detection and illumination
positions. In the figure, we fixed the array of detection positions at the
limited aperture (width 0.5m). We pick three illumination positions
(1-3) within the limited aperture. We consider the same local volume
position, and each local MTF pattern is shown on the right. Even though
each non-confocal Fourier cone is narrower than the planar cone on
the top, by using the multiple illumination source positions, the same
Fourier cone coverage can be achieved. . . . . . . . . . . . . . . . . . . . 83
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Non-line-of-sight (NLOS) imaging recovers objects from di�usely reflected indirect
light using transient illumination in combination with a computational inverse
method. Despite its many potential applications, existing methods lack practical
usability due to several shared limitations, including the assumption of single
scattering only, lack of occlusions, and Lambertian reflectance. Line-of-sight (LOS)
imaging systems, on the other hand, can address these and other imaging challenges
despite relying on the mathematically simple processes of linear di�ractive wave
propagation.

The goal of this dissertation is to design computational imaging solvers forNLOS
imaging using wave di�raction theory. To achieve this goal, we show that the NLOS
imaging problem can also be formulated as a di�ractive wave propagation problem.
This allows to image NLOS scenes from raw time-of-flight data by applying the
mathematical operators that model wave propagation inside a conventional line-of-
sight imaging system. By doing this, we have developed a method that yields a new
class of imaging algorithms mimicking the various capabilities of LOS cameras.
This new class of NLOS imaging algorithms relies on solving a wave di�raction
integral, namely the Rayleigh-Sommerfeld Di�raction (RSD) integral. We have
developed a Fast Fourier Transform based reconstruction algorithm based on RSD,
for the first time, NLOS imaging of complex scenes with strong multiple scattering
and ambient light, arbitrary materials, large depth range, and occlusions. Our new
RSD basedmethod presented in this thesis enables the reconstruction of room-sized
scenes from non-confocal, parallel multi-pixel captured measurements in seconds
with less memory usage.



1

� ������������

Time resolved Non-Line-of-Sight (NLOS) imaging uses measured signals from
an occluded scene with computational algorithms to see around a corner. A con-
ceptual image is shown in Fig. 1.1. This figure shows a conceptual understanding
of Non-Line-of-Sight imaging. People perform measurements indirectly from a
scene. The goal is to use collected measurements to form an image of the hidden
scene. As a growing topic in the Computational Imaging area, there have been
rich developments for both hardware and software algorithms. After a conceptual
exploration of time resolved NLOS imaging [5, 6], Velten et al. propose and demon-
strate NLOS imaging under a lab condition. On the hardware side, Velten et al.
use a femtosecond laser with a streak camera to capture signals, then use a filtered
backprojection (FBP) algorithm to perform reconstructions. This FBP method is
similar to the solution of a computed tomography problem [7, 8]. Instead of using
a costly streak camera, Buttafava et al. [9] shows a gated Single-Photon Avalanche
Diode (SPAD) can be used to capture fast NLOS signals with a lower cost than
a streak camera. Up until now, a picosecond laser and SPAD hardware setup is
commonly used in time resolved NLOS imaging [4, 2, 3, 10, 11, 12]. Based on acqui-
sition schemes, a measured time resolved signal can be divided into two branches
which is confocal [4] or non-confocal [7]. The confocal acquisition requires SPAD
and laser spots on a relay wall to be co-located as opposed to the non-confocal.
This non-confocal acquisition shows a great advantage in terms of real-time NLOS
imaging applications regarding signal to noise ratio [12]. Galindo et al. provide a
simulated dataset library about di�erent acquisition schemes by using computer
graphic rendering technics [13]. A conceptual understanding of Non-Line-of-Sight
imaging is shown in Fig. 1.1.

NLOS imaging can be studied and solved by a wave propagation model, which
is called a phasor field NLOS imaging model [3, 14]. With this phasor field model,
one can study time resolved NLOS imaging problem from an optical di�raction
perspective. For example, this idea of di�raction can be used to perform hidden
scene reconstruction from measurements [1].
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Figure 1.1: This figure shows a conceptual understanding of Non-Line-of-Sight
imaging. People perform measurements indirectly from a scene. The goal is to use
collected measurements to form an image of the hidden space. For example, as
shown in the figure, people can only shoot light using a pulse laser through this
window shown in Figure. Light will bounce back and forth between the wall and
the hidden space. These bouncing signals can be measured via a single photon
detection device which is shown at the detector point. Then smart algorithms are
used to form a three-dimensional image using captured signals which is shown as
a reconstruction in this figure.

1.1 Related work

In this section, we summarize developments in NLOS imaging additional to the
works mentioned above. Based on the signals used in measurements, we categorize
works into two categories: picosecond time resolved NLOS imaging and others
without a use of temporal resolution.

Here is a list of developments for the former category. There are several in-
sightful developments for the NLOS phasor field model as well as experimental
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demonstration [15, 16, 17, 1, 18, 19]. These results can be used to study NLOS
image reconstructions, and new hardware designs. A geometrical based solution
is used to solve NLOS imaging problem [20, 10]. A joint albedo-normal e�cient
method is applied to recover NLOS geometry [21]. Algebraic based iterative so-
lutions [22, 23, 24] which is used in the Computed tomography achieve a similar
reconstruction quality as the FBP method [7, 8]. A faster GPU implementation of
backprojection solver [25] can be used to decrease the computational cost for itera-
tive solutions. An modified Laplacian of Gaussian (LOG) filter [26] is presented
and can be added to the FBP based solution. A modified FBP solution based on a
two weighting factors has shown robustness to noisy scenarios [27]. Making use
of occlusions can improve quality of reconstructions [28, 29, 30, 31]. Hardware
time delay can be used to co-design temporal focusing with reconstructions [32].
Circular, confocal NLOS imaging acquired data looks similar to a sinogram in
tomography which is di�erent from the confocal and the non-confocal acquisi-
tion method mentioned above [33]. To recover a room, one can estimate it by
fitting planes from temporal measurements [34]. Tracking people around the
corner can use a less computational resources than to recover an image around
the corner [35]. Bayesian statistics reconstruction account for random errors in
measurements. Benchmarks and simulated dataset are provided [36, 13]. Color
NLOS imaging uses signal-pixel SPAD sensors [37, 38]. Gated array SPAD sen-
sor as well as a dynamic scene reconstruction have been demonstrated [39, 40].
Deep learning based method can be used for a human pose estimation [41] and
reconstructions [42]. Unlike measurements are scanned on a large relay wall, a
small amount of measurements collected from a pinhole on the door can be used
to perform a hidden target tracking [43].

There are some works focusing on the analysis to this problem: feature visibility
(missing cone problem) [44], a justification for the FBP method [11], using the
Wigner Distributionmodel to explain NLOS imaging [45], a study related to hidden
object’s BRDF behavior in reconstructions [46], a calibration procedure for the
current NLOS imaging setups [47], a discussion related to some limitations of
current NLOS imaging methods [48]. There are some recent review papers which
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summarize developments in NLOS imaging [49, 50, 51].
Methods used with a nanosecond temporal resolution, or without any temporal

resolution, or non-optical signals are listed below. Nanosecond NLOS imaging
scene reconstructions with a modified hardware leads to a cheap design [52]. Some
passive approaches such as optical speckle correlationsmethod [53], optical speckle
tracking [54], image based tracking [55], localization [56] can be applied to an
active NLOS imaging environment. Superheterodyne synethetic wave method is
similar to the NLOS phasor field method which is interesting for the passive NLOS
imaging scenario [57, 58, 59, 60]. Computational periscopy uses a shadow from a
nature light to perform hidden scene reconstructions [61, 62, 63, 64]. Some works
explore NLOS imaging using other physical signals, such as acoustic [65], mid-
infrared speckle [66] and long-wave infrared [67] signals, optical polarization [68],
doppler radar signals [69].

1.2 Contributions

The goal of this thesis is to design of computational imaging solvers for NLOS
imaging using wave di�raction theory. In order to achieve this goal, we make the
following contributions in this thesis:

• Non-Line-of-Sight Phasor Field Di�raction Model [3, 1](Chapter 2): In this
work, despite its many potential applications in Non-line-of-sight imaging
(NLOS), existing methods lack practical usability due to several shared limi-
tations, including the assumption of single scattering only, lack of occlusions,
and Lambertian reflectance. Line-of-sight (LOS) imaging systems, on the
other hand, can address these and other imaging challenges despite relying
on the mathematically simple processes of linear di�ractive wave propagation.
In this work we show that the NLOS imaging problem can also be formu-
lated as a di�ractive wave propagation problem. This allows to image NLOS
scenes from raw time-of-flight data by applying the mathematical operators
that model wave propagation inside a conventional line-of-sight imaging
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system. By doing this, we have developed a method that yields a new class of
imaging algorithms mimicking the various capabilities of LOS cameras. To
demonstrate our method, we derive three imaging algorithms, each with its
own unique novel capabilities, modeled after three di�erent LOS imaging
systems. These algorithms rely on solving a wave di�raction integral, namely
the Rayleigh-Sommerfeld Di�raction (RSD) integral. Fast solutions to RSD
and its approximations are readily available, directly benefiting our method.
We demonstrate, for the first time, NLOS imaging of complex scenes with
strong multiple scattering and ambient light, arbitrary materials, large depth
range, and occlusions. Our method handles these challenging cases without
explicitly developing a light transport model. We believe that our approach
will help unlock the potential of NLOS imaging, and the development of
novel applications not restricted to laboratory conditions, as shown in our
results.

• Fast Phasor Field Di�raction Algorithm: [1](Chapter 3): We introduce an
NLOS reconstruction method using the phasor field formalism along with
a convolutional Fast Fourier Transform (FFT) based Rayleigh Sommerfeld
Di�raction (RSD) algorithm to provide fast non-approximative scene recon-
structions for general capture setups, in particular including non-confocal
setups using a single laser and a sensor array. Our hardware prototype in-
cludes a single-photon avalanche diode detector and a picosecond pulse laser
whichwill bementioned specifically later. When used in the confocal scenario,
this newmethod performs at speed similar to LCT and FKMigration, while re-
quiring significantly less memory. In addition to applying our new algorithm
to open source data [3, 2], we also perform several additional experiments.

• Wigner Distribution Model for Phasor Field Di�raction: [45](Chapter 4):
In phasor field NLOS imaging, the Rayleigh-Sommerfeld Di�raction (RSD)
model is shown to be a key solution to Non-Line-of-Sight imaging prob-
lems [3]. All existing applications of the Wigner Distribution Function are
used when Fresnel approximation is valid. However, in NLOS imaging ap-
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plication, the di�raction happens close to the relay wall where only the RSD
holds as an exact solution. This RSD also gives an exact solution to the wave
propagation as opposed to the approximations such as Fresnel or Fraunhofer
di�raction which are commonly known in classical optics [70, 71, 72]. It
is shown that the RSD can be used to solve scanning free, real-time, three-
dimensional NLOS reconstruction problem [1]. Dove et al. [15] present a two
dimensional spatial Wigner Distribution Function in a paraxial region with
the approximated Fresnel di�raction for NLOS phasor field model.

The RSD with the Wigner Distribution Function has never been discussed in
the context of real-world NLOS measurements. In this paper, we will study
the RSD in the Wigner Distribution Function domain and compare it with
the Fresnel di�raction under real-world parameters like finite relay wall size,
discrete spatial sampling, and di�erent acquisition schemes such as confocal
and non-confocal measurements. Another angle to describe our work is to
use the Wigner Distribution Function to explain Non-Line-of-Sight imaging
and clarify when approximations are useful and meaningful in practice.

The key contributions of this chapter are listed below: 1. We study Rayleigh-
Sommerfeld Di�raction in the Wigner Distribution domain and show that
the exact Rayleigh-Sommerfeld Di�raction solution does not have any geo-
metrical interpretations as opposed to the Fresnel approximation which has a
shear mapping interpretation in the Wigner Distribution Function domain.
2. We derive a lateral resolution limit from the exact Rayleigh-Sommerfeld
Di�raction solution for NLOS reconstructions. 3. We provide an understand-
ing of spatial sampling for phasor field wavefronts on a relay wall. 4. We
characterize errors from the Fresnel di�raction. We show that this error is
less in the confocal acquisition, which makes it an applicable candidate for
reconstruction algorithms. In addition, errors from the confocal acquisition
and the non-confocal acquisition are visualized in the Wigner Distribution
Function domain.

• Feature Visibility Analysis: [44](Chapter 5): In this work, we aim to provide
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a generic description for direct bounce (3rd bounce) NLOS measurements
and show how much information they encode and how this a�ects prac-
tical NLOS imaging problems. Consider the NLOS reconstruction shown
in Figure 1.2. It contains three very similar patches that only vary slightly
in orientation and have di�erent positions in the reconstruction space. Yet
while two of the patches are reconstructed clearly and accurately, the third
is completely missing from the reconstruction. A closer inspection of prior
published results reveals that similar artifacts are seen in reconstructions us-
ing a variety of diverse reconstruction methods. Surfaces with certain normal
vectors are missing in the reconstruction or scenes with simple surfaces are
chosen to avoid the problem. The main purpose of this work is to explain this
phenomenon. As we show in this chapter, any NLOS measurement can be
expressed as an integral operator known in the literature as elliptical Radon
integral. We analyze this measurement function in the Fourier domain and
show that a significant part of the measurement space is not accessed by the
NLOS measurement and thus represents a null space for NLOS reconstruc-
tion. Finally, we investigate the Fourier domain representations of common
scenes and scene features to identify features that fall into the null space and
cannot be reconstructed. Because our analysis involves a generic description
of the NLOS measurement, it is independent of the reconstruction algorithm
used. We expect our findings will inform inverse solution design and future
NLOS reconstruction methods.
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a b c
a

b c

abc

Figure 1.2: Three patches rotation example. Experimental reconstruction of a scene
containing three patches denoted by a, b, c. Patches a and c are parallel but the
latter one’s surface normal vector does not point towards the NLOS relay wall and
the patch does not appear in the reconstruction shown on the right. The first row
stands for the top view and the second row for the front view. The explanation
for this astonishing e�ect will be developed in the main text, see Sec. 5.5, and also
Fig. 5.8 for a graphical explanation.
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Liu et al.[3, 1] and Reza et al.[14] introduce a virtual wave phasor field formalism
that is the basis of this chapter. Using the phasor field method, the NLOS imaging
problem can be stated as a line of sight optical imaging problem based on di�raction
and solved using existing di�raction theory methods.

2.1 A formal definition

Time-of-flight LOS imaging has used a phasor formalism together with Fourier
domain ranging[73] to describe the emitted modulated light signal. Kadambi et
al.[74] extended this concept to reconstruct NLOS scenes using phasors to describe
hardware intensity modulation. We show that a similar description can be used
to model the physics of light transport through the scene. The key insight of our
method is that propagation through a scene of intensity-modulated light can be
modeled using a Rayleigh-Sommerfeld di�raction (RSD) operator acting on a
quantity we term the phasor field. This allows us to formulate any NLOS imaging
problem as a wave imaging problem (Figure 1), and to transfer well-established
insights and techniques from classic optics into theNLOS domain. Given a captured
time-resolved dataset of light transport through a NLOS scene, and a choice of a
template LOS imaging system, our method provides a recipe that results in a NLOS
imaging algorithm mimicking the capabilities of the corresponding LOS system.
This template system can be any real or hypothetical wave imaging system that
includes a set of light sources and detectors. The resulting algorithms can then be
e�ciently solved using di�raction integrals like the RSD. For now, we focus on the
phasor field framework and computational RSD solver will be introduced in Ch. 3.

We start bymathematically defining our phasor fieldP(~x, t). LetE(~x, t) [
p

Wm-2]

be a quasi-monochromatic scalar field at position ~x 2 S and time t, incident on (or
reflected from) a Lambertian surface S, with center frequency ⌦0 and bandwidth
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Figure 2.1: NLOS as a virtual LOS imaging system. Capturing scene data: a, A
pulsed laser sequentially scans a relay wall; b, the light reflected back from the
scene onto the wall is recorded at the sensor yielding an impulse response H of the
scene. c, Virtual light source: The phasor field wave of a virtual light source P(xp, t)
is modeled after the wavefront of the light source of the template LOS system. d,
The scene response to this virtual illumination P(xc, t) is computed using H. e, The
scene is reconstructed from the wavefront P(xc, t) using wave di�raction theory.
The function �(·) is also taken from the template LOS system.

�⌦ ⌧ ⌦0. We can then define

P(~x, t) ⌘
*
1
⌧

Z t+⌧/2

t-⌧/2

��E(~x, t 0)
��2 dt 0

+

-

*
1
T

Z t+T/2

t-T/2

��E(~x, t 0)
��2 dt 0

+

(2.1)

as the mean subtracted irradiance [Wm-2] at point ~x and time t. The h·i op-
erator denotes spatial speckle averaging (for the reflected case) accounting for
laser illumination, and ⌧ represents the averaging of the intensity at a fast detector,
with ⌧ ⌧ 1/�⌦ ⌧ T . The second integral in the equation above is a long-term
average intensity over an interval T � ⌧ of the signal as seen by a conventional
non-transient photodetector.

Now, let us define the Fourier component of P(~x, t) for frequency ! as

P0,!(~x) ⌘
Z+1

-1
P(~x, t) e-i!tdt, (2.2)
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from which we can define a monochromatic component of the phasor field
P!(~x, t) as

P!(~x, t) ⌘ P0,!(~x) e
i!t. (2.3)

Using the above, our phasor field P(~x, t) can be expressed as a superposition of
monochromatic plane waves as P(~x, t) =

R+1
-1 P!(~x, t)d!/2⇡. Since P(~x, t) is a

real quantity, the Fourier components P0,!(~x) are complex and symmetric about
! = 0. Note that in many places of this manuscript we assign P(~x, t) an explicitly
complex value; in these cases it is implied that the correct real representation is
1
2(P(~x, t) +P⇤(~x, t)). In practice the complex conjugate can be safely ignored in our
calculations. As can be seen in Section B in the supplemental, given an isotropic
source plane S and a destination plane D, and assuming that the electric field at S
is incoherent, the propagation of its monochromatic component P!(~x, t) is defined
by an RSD-like propagation integral:

P!(~xd, t) = �

Z

S
P!(~xs, t)

eik|~xd-~xs|

|~xd -~xs|
d~xs, (2.4)

where � is an attenuation factor, and k = 2⇡/� is the wave number for wavelength
� = 2⇡/!, ~xs 2 S and ~xd 2 D. Note that, as described in Section B in the sup-
plemental, we approximate � as a constant over the plane S as � ⇡ 1/| hSi-~xd|;
this approximation has a minor e�ect on the signal amplitude at the sensor, but
does not change the phase of our phasor field. While Equation 2.4 is defined for
monochromatic signals, it can be used to propagate broadband signals by propa-
gating each monochromatic component independently; this can be e�ciently done
by time-shifting the phasor field (more details are provided in Section B.1 of the
supplemental).

The key insight of Equation 2.4 is that, given the assumption of constant �, the
propagation of our phasor field is defined by the same RSD operator as any other
physical wave. Therefore, in order to image a scene from a virtual camera with
aperture at plane C, we can apply the image formation model of any wave-based
LOS imaging system directly over the phasor field P(~xc, t) at the aperture, with
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~xc 2 C. The challenge is how to compute P(~xc, t) from an illuminating input phasor
field P(~xp, t), where~xp is a point in the virtual projector aperture P, given a particular
NLOS scene (see Fig. 2.1).

Since light transport is linear in space and time-invariant[75, 76], we can charac-
terize light transport through the scene as an impulse response function H(~xp !
~xc, t), where ~xp and ~xc are the positions of the emitter and detector, respectively.
The phasor field at the virtual aperture P(~xc, t) can thus be expressed as a function
of the input phasor field P(~xp, t) and H(xp ! ~xc, t) as

P(~xc, t) =
Z

P
[P(~xp, t) ?H(~xp ! ~xc, t)]d~xp, (2.5)

where ? denotes the convolution operator. Any imaging system can be characterized
by its image formation function�(·), which transduces the incoming field into an
image

I(~xv) = � (P (~xc, t)) , (2.6)

where ~xv is the point being imaged (i.e., the point at the virtual sensor). This in turn
can be formulated as an RSD propagator, requiring to solve a di�raction integral in
order to generate the final image.

In an NLOS scenario, H(~xp ! ~xc, t) usually corresponds to 5D transients ac-
quired via an ultrafast sensor focused on ~xc, and sequentially illuminating the
relay wall with short pulses at di�erent points ~xp (see Fig. 2.1). Points ~xp and ~xc

correspond to a virtual LOS imaging system projected onto the relay wall. Once
H(~xp ! ~xc, t) has been captured, both the wavefront P(~xp, t) and the imaging
operator �(·) can be implemented computationally, so they are not bounded by
hardware limitations. We can leverage this to employ di�erent P(~xp, t) functions
from any existing LOS imaging system[71] to emulate its characteristics in an NLOS
setting.

Overall speaking, phasor field NLOS framework enables us to design and im-
plement a virtual camera to satisfy di�erent NLOS imaging tasks. Fig. 2.2 shows
the result on a complex scene with a virtual confocal camera. The scene contains
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Figure 2.2: Reconstructions of a complex NLOS scene. a, Photograph of the scene
as seen from the relay wall. The scene contains occluding geometries, multiple
anisotropic surface reflectances, large depth, and strong ambient and multiply
scattered light. b, 3D visualization of the reconstruction using phasor fields (� = 6
cm). We include the relay wall location and the coverage of the virtual aperture for
illustration purposes. c, Frontal view of the scene, captured with an exposure time
of 10 ms per laser position. d, Frontal view captured with just a 1 ms exposure time
(24 seconds for the complete scan).

multiple objects with occlusions distributed over a large depth, a wide range of
surface reflectances and albedos, and strong interreflections. Despite this challeng-
ing scenario, phasor field method is able to image many details of the scene, at
the correct depths, even with an ultra-short, 1 ms exposure. More analysis on the
robustness of our method to capture noise can be found in Liu et al.[3].

2.2 A signal processing framework

In this section, we apply phasor field framework introduced in Ch. 2.1 to NLOS
imaging reconstruction problem and describe it within a signal processing frame-
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work. The concept of phasor field NLOS imaging is shown in Fig. 2.3. Data from
the scene is collected by illuminating a set of points ~xp on a relay surface P and col-
lecting the light returned at points ~xc on a relay surface C. This data set represents
impulse responses H(~xp ! ~xc, t) of the scene. Using such an impulse response we
can compute the scene response at points ~xc to an input signal P(~xp, t) as

P(~xc, t) =
Z

P
[P(~xp, t) ⇤

t
H(~xp ! ~xc, t)]d~xp (2.7)

where the ⇤
t
operator indicates a convolution in time. We call the quantities

P(~xp, t) and P(~xc, t) phasor field wavefronts. P(~xc, t) describes the wavefront that
would be returned from the scene if it were illuminated by a illumination wave
P(~xp, t). Reconstructing an image from the wave front of a reflected wave is the
fundamental problem solved by a line of sight imaging system. The reconstruction
operation

I(~xv, t) = �(P(~xc, t)) (2.8)

resulting in a 3D image I(~xv) of the scene amounts to propagation of the wavefront
atC back into the scene into the points~xv where it has the shape of the scene objects.
The Fourier domain version �F(·) of the wave propagation operator �(·) is known
as the Rayleigh-Sommerfeld Di�raction (RSD) integral:

�(PF(~xc,⌦)) =
��R~xv(PF(~xc,⌦))

��2 . (2.9)

The RSD in the considered context is calculated by

R~xv(PF(~xc,⌦)) = ↵(~xv)

Z

C
PF(~xc,⌦)

e-ik|~xc-~xv|

|~xc -~xv|| {z }
RSD di�raction kernel

d~xc . (2.10)

In this equation, k = ⌦/c denotes the wavenumber and c across our paper refers
to the speed of light. The conventional RSD propagates the electric field, but in this
context propagation of an intensity modulation is required. The phasor field RSD
di�ers from the conventional version by the amplitude correction factor ↵(~xv) [3].
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This factor depends on the location ~xv of the reconstruction point and could be
precomputed once the geometry of the relay surface is known. Alternatively, it
can be disregarded, as it only causes a slowly varying error in brightness of re-
constructed points, but not their location. The RSD in Eq. (2.10) is a function
of each individual monochromatic phasor field component. For this reason, the
wavefront P(~xc, t) received at the aperture has been replaced by its Fourier domain
representation PF(~xc,⌦). Throughout this paper, frequency domain quantities are
denoted by the same variable as the respective time domain quantities, but with
the subscript F and the argument angular frequency⌦ instead of t. For instance,
Ft

�
P(~xp, t)

�
= PF(~xp,⌦) and Ft

�
H(~xp ! ~xc, t)

�
= HF(~xp ! ~xc,⌦), where Ft(·)

denotes the Fourier transform with respect to time. Note that in this paper, the RSD
propagation direction is from the camera aperture (i.e., relay surface C) into the
reconstruction volume.

It is important to note that both illumination P(~xp, t) and image formation �(·)
are implemented virtually on a computer. For this reason, they can be chosen to
mimic any LOS imaging system. For the purpose of NLOS 3D image reconstruction,
one option is to choose a transient camera sending a virtual phasor field pulse

P(~xp, t) = ei⌦Ct�(~xp -~xls)e
-

(t-t0)
2

2�2 (2.11)

from the virtual light source position ~xls into the scene. The center frequency
⌦C has to be chosen according to the spatial relay wall sampling. The smallest
achievable wavelength should be larger than twice the largest distance between
neighboring points~xp and~xc and larger than the temporal resolution of the imaging
hardware [3]. For example, given a spatial sampling of 1 cm, the smallest possible
modulation wavelength is larger than 2 cm. For the following, we set t0 = 0. The
illumination pulse as a function of time needs to be converted into the frequency
domain, so that each corresponding frequency is then propagated separately by
the RSD in Eq. (2.10). The temporal Fourier transform of the illumination phasor
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field yields

PF(~xp,⌦) = Ft

�
P(~xp, t)

�
= �(~xp -~xls)

✓
2⇡�(⌦-⌦C) ⇤

f
�
p
2⇡e-

�2⌦2
2

◆
. (2.12)

The result PF(~xp,⌦) in the frequency domain is a Gaussian centered around the
central frequency⌦C as it is shown in Fig.1. Figuratively, the RSD propagates the
light wave arriving at the aperture (i.e., relay surfaceC) back into the scene, thereby
reconstructing it. Equivalently, one can think of it as a virtual imaging system that
forms the image acquired by a virtual sensor behind the relay wall.

After processing all frequency components through space with the RSD, the
result at ~xv needs to be converted to the time domain again by applying the inverse
Fourier transform. The overall reconstruction is therefore calculated by

I(~xv, t) =

�������������

+1Z

-1

ei⌦tR~xv

⇣
PF(~xp,⌦)
| {z }

Illumination phasor field

· HF(~xp ! ~xc,⌦)

| {z }
Phasor field at the camera aperture (relay surface C)

⌘d⌦
2⇡

�������������

2

, (2.13)

where the integral over P has vanished as there is only one virtual illumination point
~xls. Calculating the square is omitted in the actual reconstruction implementation,
as it only a�ects the scene contrast.

The RSD as defined in Eq. (2.10) can propagate the wave from an arbitrary
surface to any arbitrary point ~xv. Consider a NLOS imaging measurement is
captured on a planar relay wall, then we can use two parallel planes setup for the
RSD calculation. Then multiple convolutional RSD methods have been introduced
in the literature [77, 78, 79]. We introduce the scalar coordinates ~xc = (xc,yc, 0)
and ~xv = (xv,yv, zv) and rewrite the RSD in Eq. (2.10) as follows:
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Figure 2.3: Illustration of proposed phasor field fast NLOS imaging method. a.
refers to the NLOS imaging scenarios, including relay wall, occluder, and hidden
object. Measurements are performed on the relay wall, including illumination point
~xp and camera aperture ~xc. b. shows the virtual illumination in the reconstruction
in time and frequency domain. d. shows the entire reconstruction pipeline. The
wave propagation model is described in the following. Overall, our proposed
method can be thought of as building a virtual lens as shown in c, which creates
the corresponding virtual image of hidden objects from the captured phasor field.

PF(~xv,⌦) = Rzv

⇣
PF(~xp,⌦) ·HF(~xp ! ~xc,⌦)

⌘

= Rzv

⇣
PF(~xc,⌦)

⌘

PF(xv,yv, zv,⌦) = Rzv

⇣
PF(xc,yc, 0,⌦)

⌘

=

+1ZZ

-1

PF(xc,yc, 0,⌦)
↵(xv,yv, zv)e-i⌦c

p
(xc-xv)2+(yc-yv)2+z2v

p
(xc - xv)2 + (yc - yv)2 + z2v| {z }

RSD di�raction kernel

dxc dyc

=

+1ZZ

-1

PF(xc,yc, 0,⌦) ·G(xv - xc,yv - yc, zv,⌦)| {z }
2D convolution kernel

dxc dyc

= PF(xc,yc, 0,⌦) ⇤G(xc,yc, zv,⌦)| {z }
Spatial 2D convolution

, (2.14)
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Figure 2.4: Rayleigh Sommerfeld Di�raction (RSD) calculation. a. shows the two
parallel planes geometrical setup for the reconstruction. The input and output
planes are space with zv. b. refers to the side view for a.

where the geometrical setup is illustrated in Fig. 2.4.
Equation (2.14) considers two parallel planes with spacing zv in a Cartesian

coordinate system. For this reason, the RSD notation changed from R~xv(·) for
the point ~xv to Rzv(·) to indicate that the propagation holds for all points in the
plane at distance zv from the relay wall. For a single frequency component ⌦,
the relation between the wavefront PF(xc,yc, 0,⌦) at the camera aperture plane
and the wavefront PF(xv,yv, zv,⌦) at the virtual image plane is a two-dimensional
spatial convolution with the 2D convolution kernel defined by G(xc,yc, zv,⌦) =
↵(xv,yv,zv)·exp(-i⌦c

p
x2c+y2c+z2v)p

x2c+y2c+z2v
where the factor ↵(xv,yv, zv) will be ignored during

reconstruction. Note that the RSD in Eq. (2.14) needs to be calculated for each
individual frequency component PF(xc,yc, 0,⌦). Considering the virtual pulse
illumination in Eq. (2.11), the wavefront PF(xc,yc, 0,⌦) is a broad-band signal; its
spectrum is a Gaussian centered around⌦C as shown in Eq. (2.12). For this reason,
it is su�cient to consider the frequency range⌦ 2 [⌦C-�⌦,⌦C+�⌦]. Although
the magnitude is not completely zero outside this interval, it is very small and
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can be neglected. The chosen range �⌦ depends on the virtual illumination pulse
bandwidth and thus on the pulse width parameter �. Thus, applying Eq. (2.14)
for the frequencies ⌦ 2 [⌦C - �⌦,⌦C + �⌦] and subsequent inverse Fourier
transform with respect to time is equivalent to sending the designed modulated

virtual illumination pulse wavefront P(~xp, t) = ei⌦Cte
- t2

2�2 into the hidden scene,
capturing its reflection at the visible relay wall, and propagating it back into the
scene or imaging it onto a virtual imaging sensor using a virtual lens. The relay
wall functions as a virtual aperture. Thus, with a finite frequency interval, a phasor
field propagation model is shown below,

P(xv,yv, zv, t) =
Z⌦C+�⌦

⌦C-�⌦
ej⌦t · Rzv

⇣
PF(xc,yc, 0,⌦)

⌘

| {z }
Monochromatic wavefront at depth zv

d⌦

2⇡ (2.15)

The output P(xv,yv, zv, t) in Eq. (2.15) depends on the time t, as each recon-
struction point is illuminated only for a short period of time. Taking the absolute
value of P(xv,yv, zv, t) in Eq. (2.15) and squaring it makes us arrive at a 4D re-
construction (cf. Eq. (2.13)). We can understand this reconstruction as a movie
of a virtual pulse travelling through the hidden scene, as shown in Fig. 2.5. In
this figure, a patch shaped as a 4 is being illuminated by a spherical wavefront
coming from the illumination point on the relay surface. This P(xv,yv, zv, t) in the
output as a four-dimensional function contains direct and indirect signals from a
unknown scene. This direct and indirect e�ect is shown in Liu et al.[3] with a movie
in the supplementary material. Typically, for a three-dimensional reconstruction,
we are interested the direct (3rd) bounce signal from a unknown scene. This can
be performed by calculating the spherical geometry as a function of point source
illumination position (xls,yls, 0) and replacing t at each voxel (xv,yv, zv):

t :=
1
c

q
(xv - xls)2 + (yv - yls)2 + z2v. (2.16)
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Figure 2.5: Space-time wave propagation using RSD. a. The phasor field collected
at the aperture forms a spatial frequency cube. Given the output plane, by using
the RSD propagation model, we can recover the hidden wavefront at any time
instances. b. shows this space-time wave propagation method where one can
reveal a spherical wavefront that moves into the hidden scene. Even though b
only shows reconstruction at a single depth plane, our proposed method can be
generalized into the three-dimensional volume as well, which leads to a four-
dimensional reconstruction space-time volume.

2.3 Appendix: Results and additional notes

Phasor field camera for confocal NLOS data

The RSD reconstruction method for NLOS data presented so far only deals with
the non-confocal case, which means that the illumination point ~xp and the camera
point ~xc on the relay wall are di�erent. However, a confocal dataset Hc(~xp ! ~xc, t)
as used in LCT and FK migration algorithms [4, 2] only contains data with ~xp = ~xc:

Hc(~xp ! ~xc, t) = H(~xp ! ~xc, t)�(~xp -~xc) . (2.17)

Such a dataset is not suitable for implementing the virtual point light source de-
scribed in Eq. (2.11). Instead, we can model an illumination wavefront that is



21

focused on ~xv:

P(~xp, t) = ej⌦(t- 1
c |~xv-~xp|)e

-
(t-t0-

1
c |~xv-~xp|)2

2�2 . (2.18)

Setting t0 to 0 and applying the Fourier transform leads to

PF(~xp,⌦) =

✓
2⇡�(⌦-⌦C) ⇤

f

p
2⇡�e-

�2⌦2
2

◆
e-j⌦c |~xv-~xp|. (2.19)

Inserting into Eq. (2.13) yields

I(~xv, t) =
������

+1Z

-1

ej⌦tR~xv

⇣ Z

P
(2⇡)

3
2�e-

�2(⌦-⌦C)2
2 e-j⌦c |~xv-~xp|�(~xp -~xc) ·HF(~xp ! ~xc,⌦)d~xp

⌘d⌦
2⇡

������

2

=

������

+1Z

-1

ej⌦tR~xv

⇣
(2⇡)

3
2�e-

�2(⌦-⌦C)2
2 e-j⌦c |~xv-~xc| ·HF(~xc ! ~xc,⌦)

⌘d⌦
2⇡

������

2

=

������

+1Z

-1

ej⌦t
Z

C
(2⇡)

3
2�e-

�2(⌦-⌦C)2
2 e-j⌦c |~xv-~xc| ·HF(~xc ! ~xc,⌦)e-jk|~xv-~xc|d~xc

d⌦

2⇡

������

2

=

������

+1Z

-1

ej⌦t
Z

C
(2⇡)

3
2�e-

�2(⌦-⌦C)2
2 ·HF(~xc ! ~xc,⌦)e-jk2|~xv-~xc|d~xc

d⌦

2⇡

������

2

. (2.20)

The reconstruction thus uses an RSD operator with an additional factor of two
doubling all distances. We use our fast RSD operator to evaluate this RSD integral.
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Fourier domain histogram

Figure 2.6: Illustration of Fourier DomainHistogram. Instead of binning the photon
event in time, we propose doing the binning in the frequency domain. This allows
us directly to sample the phasor field wavefrontHF(~xc,⌦) used for reconstructions.
⌦ stands for the frequency range for the phasor field wavefront. The equation for
the Fourier Domain Histogram can be applied during measurements, which is a
summation of complex phasors (or a separated real and imaginary part).

According to Eq. (2.13), the virtual wave acquired at the virtual aperture is
calculated by PF(~xc,⌦) = PF(~xp,⌦) ·HF(~xp ! ~xc,⌦). This requires the Fourier
domain representation of the impulse response HF(~xp ! ~xc,⌦) from ~xp to ~xc. A
new memory e�cient direct acquisition method for HF(~xp ! ~xc,⌦) is presented
in the following.

The SPAD detector uses Time-Correlated Single Photon Counting (TCSPC) to
generate the transient responses H(~xp ! ~xc, t). After the emission of a laser pulse,
a SPAD pixel receives one photon and an electronic signal is transmitted to the
TCPSC unit that encodes the time between the emission of the laser pulse and
the detection of an associated returning photon. The arrival times of all photons
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during a measurement interval are transferred to a computer and are arranged in a
histogram to obtain the transient scene response H(~xp ! ~xc, t) for a given ~xp and
~xc. To obtain HF(~xp ! ~xp,⌦)we could collect and store these TCSPC histograms
and perform the Fourier transform on it. A more memory e�cient way is to build
the frequency spectrum directly from the timing data obtained from the hardware.
We call this new capturing method a Fourier Domain Histogram (FDH) and its
creation process is shown in Fig. 2.6. It can be written as

HF(~xp ! ~xc,⌦) =

+1Z

-1

H(~xp ! ~xc, t) · e-j⌦t dt

=

+1Z

-1

 
IX

i=1
�(t- Ti)

!

· e-j⌦t dt

=
IX

i=1
e-j⌦Ti . (2.21)

The travel times Ti are discrete; the time resolution is determined by the acquisi-
tion hardware (in the context of NLOS imaging typically a few to tens of picosec-
onds). Equation (2.21) means that the Fourier domain histogram HF(~xp ! ~xc,⌦)

is acquired by multiplying each of the I photon travel times Ti, i = 1, . . . , I, by a
phase term depending on the considered frequency ⌦ and adding the result to the
previous value for that frequency. As a consequence, instead of a large number of
time bins (on the order of thousands), only one value for each⌦ needs to be stored
and processed. Fig. 2.6 illustrates the generation of the FDH. Similar to the time
domain histogram binning, this FDH performs binning for each captured photon.

We want to remark that the travel times Ti in Eq. (2.21) are measured from the
respective illumination position on the relay wall into the scene and back to the
relay wall at the detector focus position. The travel times from the laser setup to
the illumination on the relay wall and from the detector focus point on the relay
wall to the detector setup have been subtracted and are not part of H. Alternatively,
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the total travel time from laser to detector can be incorporated and the travel times
from laser to wall and wall to detector are combined into �t. The final result from
Eq. (2.21) is then multiplied by ej⌦�t to correct for this constant time o�set.

Results
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Figure 2.7: Methods comparison on O�ce Scene: Exposure time per each pixel
measurement from first row to last row is 1ms, 5ms, 10ms, 20ms, 1000ms (note
that the 1000ms O�ce Scene dataset was acquired with slight di�erences in the
object location). The total acquisition time from first row to last row is 23 s, 117 s,
4min, 8min, 390min. The width of result in each dimension is 3m as details
provided in [1]. Each column shows the reconstruction with di�erent methods.
The first two columns stand for our proposed RSD [1] based solver with one or
two spatial sections. The circle in the first column is actually the size of the farthest
reconstruction plane which is the one with the largest region that is calculated
with the same distance shift B1. All planes in front of this one have a smaller
reconstruction area; due to the maximum operation along the depth dimension,
the circle size is defined by the largest one in the back. The third column is the
Direct Integration (back-projection solver) as a comparison for the first two columns.
The last two columns refer to the approximation method [2] which approximate
non-confocal by confocal data and solve it through the scanning-based solver (LCT:
forth column, FK-migration: fifth column). For the last two columns, each small
image shows the results from midpoint approximation[2] in order to approximate
confocal data from non-confocal measurements. The respective larger image results
from zero-padding applied to the input data to show the same reconstruction
volume as the first three columns.
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Figure 2.8: Methods comparison on simple targets: Exposure time for these scenes
are all 1000ms per each pixel measurement. The total acquisition time for each
target is 390min. The width of result in each dimension is 2m as details provided
in [1]. Each row shows a di�erent simple target, each column the reconstruction
from di�erent methods. The first column stands for our proposed RSD [1] based
solver with one spatial section (inside white circle) corresponding to one spatial
section presented in [1] . The second column is from Direct Integration (back-
projection solver) for comparison with the first column. The last two columns show
the approximatemethod [2] which approximate non-confocal as a confocal datasets
and reconstruct through confocal solvers (LCT: forth column, FK-migration: fifth
column). For the last two columns, each small image shows the results from mid-
point approximation[2] in order to approximate confocal data from non-confocal
measurements. The respective larger image results from zero-padding applied to
the input data to show the same reconstruction volume as the first three columns.
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O�ce Scene
Acquisition Time

Proposed
1 section

Proposed
2 sections Direct Integration Approx. LCT

(low res)
Approx. FK
(low res)

1ms 19.9 s 30.1 s 8248 s 15.6 s (3.80 s) 22.4 s (5.52 s)
5ms 15.2 s 24.3 s 8685 s 15.7 s (3.76 s) 22.5 s (5.52 s)
10ms 15.7 s 24.7 s 8534 s 15.8 s (3.80 s) 22.9 s (5.5 s)
20ms 16 s 23.9 s 8667 s 15.5 s (3.79 s) 22.3 s (5.51 s)
1000ms 18.7 s 37 s 5776 s 15.5 s (3.74 s) 22.4 s (5.5 s)

Table 2.1: O�ce Scene run time comparison: This table shows the actual run time
for generating the results in Fig. 2.7. Our proposed method starts from the captured
wavefront and has the same volume size as the Direct Integration method (150 x
150 x 125 voxels). For showing the best reconstruction quality of the approx LCT
and approx FK methods, we use a voxel grid of 256 x 256 x 512 with 1 cm sampling
resolution on the relay wall. Approx LCT and approx FK can be much faster when
down-sampling the spatial dimensions as shown in brackets (128 x 128 x 512),
but the results are even more blurry than the ones shown in Fig. 2.7. Note that
down-sampling the spatial domain is not possible, as the number of spatial voxels
has to equal the number of time bins and lower time resolution would lead to even
worse results (but faster run time). The flexibility of adapting the full 3D voxel grid
is an advantage of our RSD algorithm.

Dataset Proposed Direct Integration Approx. LCT
(low res)

Approx. FK
(low res)

4 2.9 s 1298 s 15.5 s (3.7 s) 21.8 s (5.5 s)
44i 2.8 s 1316 s 15.4 s (3.72 s) 22.1 s (5.5 s)

NLOS 2.9 s 1292 s 15.6 s (3.69 s) 23 s (5.47 s)
Resolution Bar 2.9 s 1290 s 15.4 s (3.71 s) 25 s (5.49 s)
Shelf Light On 2.7 s 1302 s 15.3 s (3.67 s) 22.3 s (5.55 s)

Table 2.2: Simple scenes run time comparison: This table shows the actual run time
for generating the results in Fig. 2.8. Our proposed method starts from the captured
wavefront and has the same volume size as the Direct Integration method. For
showing the best reconstruction quality of the approx LCT and approx FKmethods,
we use a voxel grid of 256 x 256 x 512 with 1 cm sampling resolution on the relay
wall. Approx LCT and approx FK can be much faster when down-sampling the
spatial dimensions as shown in brackets (128 x 128 x 512).
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Dataset Scene Depth Material

O�cescene
1ms, 5ms, 10ms, 20ms 0.5m - 2.5m

Wooden chair, white shelf,
cardboard, books, plastic,
white board, statue ...

O�cescene
1000ms 0.5m - 2.5m

Wooden chair, white shelf,
cardboard, books, plastic,
white board, statue ...

4 1m White styrofoam
44i 0.5m - 1.3m White styrofoam

NLOS 0.75m White styrofoam
Resolution Bar 0.75m White styrofoam

Shelf Light On 0.8m White shelf, cardboard,
books, plastic ...

Table 2.3: Target scene parameters: scene depth complexity (distance away from
the relay wall), targets material.
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Figure 2.9: Comparisons on confocal scanning shortest exposure datasets [2]: The
first three rows correspond to the phasor field (PF) NLOS method [3] out of which
the first two rows present our fast implementation [1] (one with RSD, one with
Fresnel di�raction kernel[3]) and the third row shows the results using the convo-
lution backprojection kernel calculated from the LCT [4]. The fourth (Laplacian
filter) and fifth (LOG: Laplacian of Gaussian) rows are filtered backprojection with
filter implementation from [3] and the backprojection step is calculated from the
convolution provided by LCT. The last two rows show LCT and FK-Migration [2].
For the shortest exposure dataset, we interestingly find out that LOG is quite robust.
The Fresnel di�raction solver seems suited for confocal data, although it does not
perform well on non-confocal data [3].
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Figure 2.10: Comparisons on confocal scanning longest exposure datasets [2]: The
first three rows correspond to the phasor field (PF) NLOS method [3] out of which
the first two rows present our fast implementation [1] (one with RSD, one with
Fresnel di�raction kernel [3]) and the third row shows the results using the convo-
lution backprojection kernel calculated from the LCT [4]. The fourth (Laplacian
filter) and fifth (LOG: Laplacian of Gaussian) rows are filtered backprojection with
filter implementation from [3] and the backprojection step is calculated from the
convolution provided by LCT. The last two rows show LCT and FK-Migration [2].
For the longest exposure dataset, almost all methods perform well. The Fresnel
di�raction solver seems suited for confocal data, although it does not perform well
on non-confocal data [3].
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In this section, we present a computational solver based on the Phasor field NLOS
imaging framework mentioned in Ch. 2. Using this computational solver, we can
perform a reconstruction using a captured NLOS data. To do that, we start from
a continuous model and its discrete version first. Then we carry out its step-by-
step recipe for its numerical implementation. Unless otherwise specific mention
the input/output geometry, we assume input wavefront is captured on a plane
in the Cartesian coordinate. As shown in Ch. 2 Eq. (2.15), solving this Rayleigh
Sommerfeld Di�raction (RSD) e�ciently is a key to a reconstruction step. A side
from notation used in the previous chapter, we use all scalar notation in this chapter
which makes it converges to a self-contain programming recipe.

3.1 Continuous model

Starting with the RSD equation in an analytical form shown in Eq. (3.1). The output
wavefront u2(µ,⌫,k) is calculated through a spatial convolution of input wavefront
u1(x,y,k) and a convolution kernel h(x,y,k,Z). (x,y), (µ,⌫) stand for coordinate
variables on input and output plane. Since input and output planes are parallel to
each other, Z denotes the spacing between them. Equation only describes a single
monochromatic wave’s behavior, thus it is a function of wavenumber k = 2⇡

� = !
c

which �,!, c refers to wavelength, angular frequency and speed of light in air.

u2(µ,⌫,k) =
+1ZZ

-1

u1(x,y,k)
e-jk

p
(x-µ)2+(y-⌫)2+Z2

p
(x- µ)2 + (y- ⌫)2 +Z2

dxdy

=
⇣
u1(x,y,k) ⇤

x-y
h(x,y,k,Z)

⌘
(µ,⌫) (3.1)

h(x,y,k,Z) refers to the RSD propagation kernel hRSD(x,y, z) in Eq.(4.12).
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h(x,y,k,Z) in Eq. (3.1) is as below,

h(x,y,k,Z) = e-jk
p

x2+y2+Z2

p
x2 + y2 +Z2

(3.2)

From Eq. (3.1), we can study the RSD propagation in the spatial frequency
Fourier domain using Fourier transform convolution property,

U2(fµ, f⌫,k) = U1(fx, fy,k) ·H(fx, fy,k,Z) (3.3)

A short explanation for symbols used in Eq. (3.3) is provided here: U1(fx, fy,k)
and U2(fµ, f⌫,k) stands for the two dimensional Fourier transform F(u1(x,y,k))
and F(u2(µ,⌫,k)) along (x,y), (µ,⌫) dimension. k,Z stands for the wavenumber
and distance. Next, we are going to discretize this RSD model in order to build its
numerical solver.

3.2 Discrete model

To carry out a numerical procedure, we have to discretize the continuous RSD
model shown in the Eq. (3.1).

There are several key parameters related to a discrete sampling:

• Input, output aperture Sin - Sin Sout - Sout refer to a physical dimension,
unit in meter, same side length in both dimension.

• Input, output discrete matrix in size N-N

• Input, output aperture spatial sampling �in �out, unit meter. It also means a
spacing between sampling grids.

In practice, Sin and �in refers to the physical size of the scanning area on the
visible wall and sampling spacing of the discrete aperture array. Sout governs the
physical size of the reconstruction area for each depth slice, and �out stands for the
spacing of reconstruction grid.
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We use additional symbols [nµ,n⌫] and [nx,ny] to represent discrete index.
Consider an input and output square window of N by N, which their origin are at
the center of the aperture. We choose N as an even number for the simplification.
Moreover, we consider a spatial sampling interval for any plane is the same in both
horizontal and vertical direction.

Thus, the discrete model for the Eq.(3.1) is defined as follows:

u2[nµ,n⌫] = �2in

N/2-1X N/2-1X

nx,ny=-N/2
u1[nx,ny] ·

exp
h
- j · k · r[nµ,n⌫,nx,ny]

i

r[nµ,n⌫,nx,ny]

r[nµ,n⌫,nx,ny] =
h
(nx · �in -nµ · �out)2 + (ny · �in -n⌫ · �out)2 +Z2

i1/2

�in = Sin/N

�out = Sout/N (3.4)

Now, there are two cases based on whether an input and output grid sampling
spacing is equal to each other or not. When it is equal to each other, it falls down to
the common used scenario shown before [1].

Case 1 - equal sampling

When �in = �out = �, Eq. (3.4) turns into a standard discrete linear convolution as
follows:

u2[nµ,n⌫] =
N/2-1X N/2-1X

nx,ny=-N/2
u1[nx,ny] · h[nµ-nx,n⌫-ny,Z]

h[nx,ny] = �2 · exp[-jk
p

nx2�2 +ny2�2 +Z2]p
nx2�2 +ny2�2 +Z2

(3.5)

With equally sampling case above in Eq. (3.5), final reconstructions can be
calculated using the convolution-multiplication theorem,
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u2(µ,⌫) = F-1
⇣
F(u1(x,y)) · F(h(x,y))

⌘
(3.6)

This type of equal sampling case for reconstructions is shown in Liu et al.[3].

Case 2 - fractional sampling

As show in Fig. 3.1, when �in 6= �out, input and output spatial sampling spacing
is connected by a fractional number ↵ = �in/�out. Thus, �out > �in in this case to
account for the loss of resolution in the reconstruction domain. ↵ also means the
reconstructed image resolution drops linearly as a function of distance. Remember
that we did not change the size of a numerical matrix, so by changing the output
grid spacing �out, it allows us to cover a larger unknown area with the same number
of numerical matrix. By doing this fractional sampling mentioned above, it gives
us a trapezoidal grip as opposed to a cube grid using a same number of numerical
elements for reconstruction which is shown in Fig. 3.1.

We define ↵ = �in/�out which is a fractional number, � = �out and �in = ↵ · �.
Thus, Eq. (3.4) turns into

u2[nµ,n⌫] = ↵2�2
N/2-1X N/2-1X

nx,ny=-N/2
u1[nx,ny] ·

exp
h
- j · k · r[nµ,n⌫,nx,ny]

i

r[nµ,n⌫,nx,ny]

r[nµ,n⌫,nx,ny] =
h
(nx ·↵ · �-nµ · �)2 + (ny ·↵ · �-n⌫ · �)2 +Z2

i1/2
(3.7)

Unlike Eq. (3.5) turns in a standard linear convolutionwhich uses the convolution-
multiplication property in Eq. (3.6), in this fractional sampling case, Eq. (3.7) can
not performed directly using a stand Fourier transform. To solve this fractional
situation, a new type of fractional scale convolution need to be considered.

To see how this new type of solver works, first, let’s define new variables nx 0 =

nx ·↵ and ny 0 = ny ·↵, rewrite Eq. (3.7) as follows,
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Figure 3.1: shows proposed reconstruction comparing to past algorithms. Input
captured Phasor field wavefront is sampled uniformly on the relay wall by �in. Past
fast algorithms can reconstruct hidden images defined on the same uniform grid
in the output domain which means �out = �in. We consider a fraction rate solver
allows us to reconstruct hidden images where input and output grid are defined
by a fractional number which means ↵ = �in

�out
. To construct a real world camera

perspective projection, our solver allows �out varies as a function of distance. This
is illustrated as red, green and purple color �out in the figure above. With a same
number of matrix element, but changing �out, it covers larger field of view of hidden
space as shown on the right.

u2[nµ,n⌫] = ↵2�2
N/2-1X N/2-1X

nx,ny=-N/2
u1[

nx 0

↵
, ny

0

↵
] ·

exp
h
- j · k · r[nµ,n⌫,nx,ny]

i

r[nµ,n⌫,nx,ny]

r[nµ,n⌫,nx,ny] =
h
(nx 0 · �-nµ · �)2 + (ny 0 · �-n⌫ · �)2 +Z2

i1/2
(3.8)

Then in order to perform Eq. (3.8) using a similar convolution-multiplication
property, the Fourier transform of u1[

nx 0
↵ , ny

0

↵ ] which it is on a scaled grid has to
be calculated. So we define U↵

1 (nx
0,ny 0) = F↵(u1(nx,ny)) as a scaled version

of Fourier transform as follows. Both nx,nx 0,ny,ny 0 are variables with a range
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from N/2 to N/2- 1. Term (-j2⇡N ) inside the complex exponential is the same as a
standard discrete Fourier transform which it defines a fundamental frequency.

Thus, this scaled Fourier transform solver is shown below in Eq. (3.9),

U↵
1 (nx

0,ny 0) = F↵(u1(nx,ny))

=

N/2-1X N/2-1X

nx,ny=-N/2
u1(nx,ny) · exp

h
(-j

2⇡
N

) ·-↵(nx ·nx 0 +ny ·ny 0)
i

(3.9)

Then, with the defined scaled Fourier transform in Eq. (3.9), the case 2 fractional
sampling scenario in Eq. (3.7) can be calculated as follows,

u2(µ,⌫) = F-1
⇣
F↵(u1(x,y)) · F(h(x,y))

⌘
(3.10)

There are three numerical procedures in Eq. (3.10), one is a solver to perform the
scaled Fourier transform F↵(·) shown in Eq. (3.9), one is a solver to construct the
RSD kernel h(x,y) from Eq. (3.7), the last solver is a standard fast Fourier transform
F(·)which is available directly. In the next section, based on equations above, we
derive close-formed numerical procedures for Eq. (3.10).

3.3 Numerical procedure

Twonumerical solvers are shown in this sectionwhich are a scaled Fourier transform
solver and a RSD kernel solver. For the equal sampling scenario shown in Eq. (3.6)
Sec. 3.2, it only needs the RSD kernel solver. For the fractional sampling scenario
shown in Eq. (3.10) Sec. 3.2, it needs both the scaled Fourier transform solver as
well as the RSD kernel solver.
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Scaled Fourier transform solver

We derive a numerical procedure to implement the scaled Fourier transform F↵(·)
shown in Eq. (3.9). As we show later in this section that a multi-dimensional scaled
Fourier transform solver can be treated as a one-dimensional version in multiple
times. Thus, we start from a one-dimensional scaled Fourier transform and then
prove how we extend this one-dimensional solver into multi-dimensional cases.

First, we consider a one-dimensional example as following: U↵
1 (nx

0) = F↵(u1(nx))

which it calculates F↵(u1(nx)) at the fractional rate ↵. Eq. (3.9) can be further sim-
plified as following,

U↵
1 (nx

0) = F↵(u1(nx))

=

N/2-1X

nx=-N/2
u1(nx) · k-↵·nx·nx 0

N where kN = exp
⇥
- j

2⇡
N

⇤

since ↵ ·nx ·nx 0 =
↵

2nx
2 +

↵

2nx
02 -

↵

2 (nx
0 -nx)2

:=

N/2-1X

nx=-N/2
u1(nx) · k

↵
2 (nx

0-nx)2

N · k-
↵
2 nx

2

N · k-
↵
2 nx

02

N

= k
-↵

2 nx
02

N ·
N/2-1X

nx=-N/2
u1(nx) · k

-↵
2 nx

2

N| {z }
u
0
1(nx)

· k
↵
2 (nx

0-nx)2

N| {z }
k
0
N(nx 0-nx)

= k
-↵

2 nx
02

N ·
N/2-1X

nx=-N/2
u

0
1(nx) · k

0
N(nx

0 -nx) (3.11)

= k
-↵

2 nx
02

N ·A(nx 0) (3.12)

Moreover, Eq. (3.11) can be treated directly as a standard convolution. This
meansA(nx 0) in Eq. (3.12) can be calculated from a standard fast Fourier transform
algorithm as shown below in Eq. (3.13). FFT and IFFT below refer to the fast
Fourier transform and its inverse. • refers to the point-wise multiplication.
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A(nx 0) =

N/2-1X

nx=-N/2
u

0
1(nx) · k

0
N(nx

0 -nx)

define u
0
1(nx) = u1(nx) · k

-↵
2 nx

2

N andk
0
N(nx) = k

↵
2 nx

2

N

:= IFFT
⌦
FFT

�
u

0
1(nx)

 
• FFT

�
k

0
N(nx)

 ↵
(3.13)

In Eq. (3.13), u 0
1(nx) is the product between input u1(nx) and k

-↵
2 nx

2

N which is
given from the grid vector nx = -N/2 to N/2- 1. Then, once A(nx 0) is calculated
from the fast Fourier transform algorithm in Eq. (3.13), the last step as shown in
Eq. (3.12) is to do a multiplication between k

-↵
2 nx

02

N and A(nx 0). This quadratic
phase kernel k-

↵
2 nx

02

N is also a function of the grid vector nx 0 = -N/2 to N/2- 1.
Thus, a three steps illustration of this scaled Fourier transform solver in a one-

dimensional case is shown as below.

U↵
1 (nx

0) = F↵(u1(nx))

=

N/2-1X

nx=-N/2
u1(nx) · k-↵·nx·nx 0

N where kN = exp
⇥
- j

2⇡
N

⇤

= k
-↵

2 nx
02

N • IFFT
⌦
FFT

�
u1(nx) • k

-↵
2 nx

2

N

 
• FFT

�
k

↵
2 nx

2

N

 ↵

= k
-↵

2 nx
02

N •|{z}
step 3

IFFT
⌦
FFT

�
u1(nx) • k

-↵
2 nx

2

N| {z }
step 1 multiplication

 
• FFT

�
k

↵
2 nx

2

N

 ↵

| {z }
step 2 convolution

(3.14)

A multi-dimensional scaled Fourier transform solver can be constructed by
using the one-dimensional solver shown in Eq. (3.14) multiple times. Since we deal
with a wavefront captured on a planar relay wall, we use a two dimensional case as
an example in the following.

Eq. (3.15) shows a procedure to evaluate a two-dimensional scaled Fourier
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transform using the one-dimensional solver mentioned above. U↵(u, v) stands for
a scaled Fourier transform of u(x,y) and the fractional rate ↵ is the same for both x

and y dimension.

U↵(u, v) = F↵(u1(x,y))

=

N/2-1X

y=-N/2

N/2-1X

x=-N/2
u(x,y) · k-↵(xu+yv)

N where kN = exp
⇥
- j

2⇡
N

⇤

=

N/2-1X

y=-N/2

N/2-1X

x=-N/2
u(x,y) · k-↵xu

N · k-↵yv
N

=

N/2-1X

y=-N/2

⌦ N/2-1X

x=-N/2
u(x,y) · k-↵xu

N

↵

| {z }
Use 1d solver in Eq. (3.14) on u(x,y) along y-dim

·k-↵yv
N

=

N/2-1X

y=-N/2
u

0
(x,y) · k-↵yv

N

| {z }
Use 1d solver in Eq. (3.14) on u

0
(x,y) along x-dim

(3.15)

RSD kernel solver

A numerical step for the RSD kernel implementation is presented in [1]. Notice
that no matter a equal or a fractional sampling scenario, this RSD kernel solver is
just a function of spatial sampling �. Then it can be calculated as follows. Notations
follows the same as in Eq.(3.4).

Step 1: Discretize depth

ẑ =
Z

�
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Step 2: Symmetry zero padding and precision control

N 0 =
�Z

�2

pad = ↵ · N
0 -N

2 where (↵ > 1)

u1[nx,ny] = padarray
⇣
u1[nx,ny], [pad,pad], 0

⌘

Update discrete size:N = N 0

Step 3: Uncertainty parameter

⌘2 =
�Z

N�2
=

�ẑ

N�

Step 4: Compute Convolution kernel

r =
q

nx2/ẑ2 +ny2/ẑ2 + 1

h[nx,ny] =
exp

⇥
- j2⇡ · ẑ2/(⌘2N) · r

⇤

r

Thus h[nx,ny] refers to the final RSD convolutional kernel.

3.4 Appendix: Result

We use publicly available datasets to verify our results [1]. As it is shown in Fig. 3.2,
we verify our proposed solvers in two cases with a di�erent choice of fractional
sampling rate parameters. The running time for the first row (letter 44i) is 4.5
second, and the seconds row (o�ce scene) is 35 seconds. As it can be seen from
the results, as the fractional rate changes in distance, targets are getting smaller.
Even though we test our solvers with a set of fractional sampling rate ↵, this is just
a verification for us to test the tolerance of numerical errors. Since there are some
works can be found regarding NLOS imaging resolution statement [7, 4, 3, 45], we
believe ↵ can be chosen optimally but this is beyond what we aim for this project for
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Figure 3.2: We apply our proposed perspective projection solver to existing datasets.
The fractional rate ↵ = �in

�out
in Eq. (3.10) is chosen such that it varies in distance.

As results shows above, the first column refers to the ground truth images where
experiments are taken. Second column ↵ is a constant and not varies in distance.
So results in the second column refer to the equal sampling case in Eq. (3.5). The
rest columns refers to the fractional sampling case in Eq. (3.7) and solved by our
proposed solver in Eq. (3.14). From the third column to the last one, we test our
solvers with a di�erent choices of ↵. In the third column, ↵ varies from 1 to 1

1.25 ,
and the last one is from 1 to 1

2 . This is just a verification of solvers and ↵ can be
chosen optimally as a function of a physical aperture size.

now. Some future works can also focus on simplifying the proposed solver more,
or approximating some steps for a faster computation [80, 81].
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� ������ ������������ ����������� ��� ������ �����
���-����-��-����� �������

In classical optics, the Wigner Distribution Function (WDF) [82] and its Fourier
transform pair the Ambiguity Function [83] are powerful analytical tools to study
optical di�raction, phase space [84], and partially coherent light [85]. An op-
tical imaging process (such as propagation through a lens or free-space propa-
gations) can be interpreted as a simple geometrical transformation in the WDF
domain [86, 87, 88]. This conceptual understanding is also useful in light field
imaging. Several works draw connections between light fields and the Wigner
Distribution Function [89, 90, 91, 92]. In this section, we describe the connections
between Wigner Distribution Function and Non-Line-of-Sight imaging within the
Phasor field framework [45].

In phasor field NLOS imaging, the Rayleigh-Sommerfeld Di�raction (RSD)
model is shown to be a key solution to Non-Line-of-Sight imaging problems [3].
All existing applications of theWigner Distribution Function are used when Fresnel
approximation is valid. However, in NLOS imaging application, the di�raction
happens close to the relay wall where only the RSD holds as an exact solution.
This RSD also gives an exact solution to the wave propagation as opposed to the
approximations such as Fresnel or Fraunhofer di�raction which are commonly
known in classical optics [70, 71, 72]. It is shown that the RSD can be used to
solve scanning free, real-time, three-dimensional NLOS reconstruction problem [1].
Dove et al. [15] present a two dimensional spatial Wigner Distribution Function in
a paraxial region with the approximated Fresnel di�raction for NLOS phasor field
model.

The RSD with the Wigner Distribution Function has never been discussed in
the context of real-world NLOS measurements. In this section, we will study the
RSD in the Wigner Distribution Function domain and compare it with the Fresnel
di�raction under real-world parameters like finite relay wall size, discrete spatial
sampling, and di�erent acquisition schemes such as confocal and non-confocal
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measurements. Another angle to describe ourwork is to use theWignerDistribution
Function to explain Non-Line-of-Sight imaging and clarify when approximations
are useful and meaningful in practice.

The first part of this section contains a short review of the Wigner Distribu-
tion Function and its description of a linear system in Ch. 4.1. Then using this
linear system Wigner Distribution Function description, we show how the Wigner
Distribution Function is being used to model and solve problems in Ch. 4.2.

Notation Setup
Throughout this section, we use notations as follows. F(·) stands for the Fourier
transform, Wf(·, ·) for the Wigner Distribution Function (WDF) where the footnote
f refers to an input function. We use integral(s) to describe a linear operator (for
example, di�raction throughout this paper).

For example, to describe a standard linear operator in space or frequency (input,
output spatial/frequency representation), we express the linear integral as follows:

fo(xo) =

Z
hxx(xo, xi)fi(xi)dxi

Fo(µo) =
1
2⇡

Z
hµµ(µo,µi)Fi(µi)dµi , (4.1)

In Eq. (4.1), an input fi(xi) and a output fo(xo) are denoted by footnotes (the
same for their frequency representations Fi(µi) = F(fi(xi)), Fo(µo) = F(fo(xo))).
For a one dimensional linear operator above, the kernel hxx(xo, xi) in its primary
domain x or hµµ(µo,µi) in its frequency domain µ can be used to describe the
relationship between input fi(xi) and output fo(xo) functions (signals). In later
sections, hxx(xo, xi) is used to describe awave propagationwhich is tied to a physical
di�raction process.

We list the most frequently used notations below:

• F(·): Fourier transform

• fi(xi)/Fi(µi): Input spatial/frequency representation
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• fo(xo)/Fo(µo): Output spatial/frequency representation

• f⇤(x)/F⇤(µ): Complex conjugate of spatial/frequency representation

• hxx(xo, xi): Linear operator spatial integral kernel

• hxx(x): Linear operator spatial convolution kernel

• hµµ(µo,µi): Linear operator frequency integral kernel

• Wfi(xi,µi): Input Wigner Distribution Function for object fi.

• Wfo(xo,µo): Output Wigner Distribution Function for object fo.

• ⇤
x-y

: A convolution along both x- y dimension.

4.1 Wigner distribution in classical imaging

Most imaging phenomena can be (approximately) described by the linearity of
coherent wave or its intensity and formulated as linear operators. In this section, we
review the linear operator in the WDF domain in a formula cookbook fashion [93,
87, 88]. Thenwe apply thisWDF framework to show the RSD and Fresnel di�raction
(RSD, Fresnel propagators) in the WDF domain.

What is Wigner distribution

To describe a physical object, its spatial f(x) (x refers to the spatial coordinate) and
spatial frequency F(µ) signal representations can be converted through the Fourier
transform. For example, f(x) can be a image on the x coordinate and F(µ) refers
to its Fourier transform. In a word, a standard way to present this object is either
in the space or in the spatial frequency domain. However, WDF Wf(x,µ) gives us
both space and spatial frequency representation for this object which is di�erent
from the Fourier transform.

The WDFWf(x,µ) of this object f can be calculated through its f(x) or F(µ) is
given below:
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Wf(x,µ) =
Z+1

-1
f(x+

⌧

2) f
⇤(x-

⌧

2)| {z }
Spatial representation

e-j2⇡µ⌧d⌧

=

Z+1

-1
F(µ+

⇠

2 ) F
⇤(µ-

⇠

2 )| {z }
Spatial frequency representation

ej2⇡x⇠d⇠ , (4.2)

Wf(x,µ) in Eq. (4.2) is a function of both space x and spatial frequency µ for a
one dimensional object f. Overall, the Wigner Distribution Function representation
always doubles the dimension for the notation of an object (1d signals have 2d
WDF, 2d signals have 4d WDF).

Linear operators in the Wigner distribution domain

Given an integral expression in space or frequency for a linear operator, the skeleton
for this linear operator in the WDF domain can be derived immediately [93, 87, 88].
For example, a linear system can be described as a linear operator to describe wave
propagation in the context of wave optics. For simplicity, we use a one-dimensional
linear operator as an example in this section.

The linear system WDF description aims to build a relationship between an
input WDF Wfi(xi,µi) and a output WDF Wfo(xo,µo) by using a four dimensional
kernel K(xo,µo, xi,µi). Intuitively speaking, it tries to capture how a transformation
e�ects in both space and spatial frequency domains.

Wfo(xo,µo) =
1
2⇡

ZZ
K(xo,µo, xi,µi)Wfi(xi,µi)dxidµi , (4.3)

K(xo,µo, xi,µi) in Eq. (4.3) links an input object Wfi(xi,µi) and a output object
Wfo(xo,µo) in the WDF domain. Once we know a spatial hxx(xo, xi) or a frequency
description hµµ(µo,µi) (notations are stated in Eq. (4.1)) for a linear system, we
can derive the associated K(xo,µo, xi,µi) in Eq. (4.3) as follows,
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Figure 4.1: Two parallel planes (lines) setup geometry in Sec. 4.1. fi(x) and fo(x)
represent line slices of the field used in Eq. (4.5).

K(xo,µo, xi,µi) =

:=

ZZ
hxx(xo +

x
0
o
2 , xi +

x
0
i
2 )h⇤

xx(xo -
x

0
o
2 , xi -

x
0
i
2 ) exp

h
- jµox

0
o + jµix

0
i

i
dx

0
odx

0
i

:=
� 1
2⇡
�2
ZZ

hµµ(µo +
µ

0
o
2 ,µi +

µ
0
i
2 )h⇤

µµ(µo -
µ

0
o
2 ,µi -

µ
0
i
2 ) exp

h
jµ

0
oxo - jµ

0
ixi
i
dµ

0
odµ

0
i ,

(4.4)

Eq. (4.3) and Eq. (4.4) can be adapted to any linear operators with hxx(xo, xi) (or
hµµ(µo,µi)) in analytical forms. Notice that K(xo,µo, xi,µi) is completely described
the linear physical process. Constraints on variables (xo,µo, xi,µi) can be made
to model this linear physical process even more (such as an energy constraint,
a frequency bandwidth, and a spatial truncation). Some special linear systems
directly have closed-form expressions without deriving by definitions from Eq. (4.3)
and Eq. (4.4).
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Di�raction in the Wigner distribution domain

In this section, we describe the RSD and Fresnel di�raction in the WDF domain
by using formulas in Sec.4.1. These two di�raction propagators are related to the
NLOS imaging problem.

Before deriving the RSD and Fresnel di�raction in the WDF domain, we need to
introduce a notation setup for this section. For simplicity, in the one-dimensional
Cartesian coordinate system, we consider two parallel lines with a spacing z (dis-
tance between lines). The geometrical setup is shown in Fig. 4.1. Spatial represen-
tations for hRSD

xx (xo, xi) (RSD) and hFre
xx (xo, xi) (Fresnel) are used to describe the

propagation from an input field fi(xi) to a output field fo(xo). In order to derive
the RSD and Fresnel di�raction in the WDF domain, the first step is to write down
hxx(xo, xi) in an analytical form, then plugging hxx(xo, xi) into Eq. (4.3) and Eq. (4.4)
leads to WDF descriptions for the RSD and Fresnel di�raction.

The first step is to review a standard way of describing the RSD and Fresnel
di�raction in the space domain. Both the RSD and the Fresnel di�raction in this
geometrical parallel plane setup case, can be treated as a spatial convolution [77, 78,
71]. Thus, it reduces one variable x = xo-xi for the kernel from hxx(xo, xi) to hxx(x)

in Eq. (4.5). We use notation ⇤
x
to represent the convolution along x dimension.

fo(xo) = fi(xi) ⇤ hxx(xo, xi) := fi(xi) ⇤
x
hxx(x) , (4.5)

For the RSD, hxx(x) refers to:

hxx(x) = hRSD
xx (x) =

ejk
p
x2+z2

p
x2 + z2

(4.6)

For the Fresnel di�raction, hxx(x) refers to:

hxx(x) = hFre
xx (x) =

ejkz

j�z
e

jk
2zx

2
= ↵(z)e

jk
2zx

2 , (4.7)

k = !/c in both cases stand for the wavenumber of a monochromatic wave, which
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Figure 4.2: The RSD and Fresnel di�raction in theWDF domain Eq. (4.10). Wfi(x,µ)
andWfo(x,µ) are WDF for the input field fi(x) and the output field fo(x) in Fig. 4.1.
The RSD in the WDF domain is shown in the first row and the Fresnel is in the
second row. Both propagators starts from a same target field WDFWfi(x,µ), the
di�erences lie in transformations in the WDF domain. The RSD refers to a con-
volution along spatial coordinate x with WDF of the RSD kernel WhRSD

z
(xi,µ) in

Eq. (4.8). The Fresnel di�raction refers to a shear mapping in Eq. (4.9). We also
plot the corresponding value contours (level) for each WDF plot which are shown
in dash windows.

! refers to the angular frequency and cmeans the speed of light travelling in air.
z refers to the propagation distance (The spacing between an input and a output
plane).

The next step is to show the RSD and the Fresnel di�raction in the WDF domain.
Given a spatial kernel description hxx(xo, xi) either from the RSD or the Fresnel
di�raction, we can plug Eq. (4.6 & 4.7) into Eq. (4.4) to calculate the corresponding
kernel K(xo,µo, xi,µi). Then, we use Eq. (4.3) to link input WDF Wfi(xi,µ) with
output WDF Wfo(xo,µ) by K(xo,µo, xi,µi). Thus, we achieve WDF descriptions for
the RSD and the Fresnel di�raction. We skip algebraic steps here, calculations are
provided in Sec. 4.3

The RSD and the Fresnel di�raction in the WDF domain are given below.
Wfi(xi,µ) and Wfo(xo,µ) stand for the WDF of an input and a output wavefront.

• RSD in the WDF domain in Eq. (4.8) refers to a convolution along the spatial
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x direction. WhRSD
z

(xi,µ) stands for the WDF of the RSD convolution kernel

hRSD
z (x) = ejk

p
x2+z2

p
x2+z2

where a footnote z denotes a propagating distance.

Wfo(xo,µ) = WhRSD
z

(xi,µ) ⇤
x
Wfi(xi,µ)

:=

Z
WhRSD

z
(xo - xi,µ)Wfi(xi,µ)dxi , (4.8)

• Fresnel di�raction in theWDF domain in Eq. (4.9) refers to a shear mapping
(coordinate transformation) as a function of a propagating distance z.

Wfo(x,µ) = Wfi(x-
z

k
µ,µ) , (4.9)

Then, an output intensity Io(xo) = |fo(xo)|2 of the wavefront fo(xo) can be
calculated from the marginal distribution of the output WDFWfo(xo,µ) (projection
along frequency coordinate µ),

Io(xo) = |fo(xo)|
2

=

Z
Wfo(xo,µ)| {z }
Eq.(4.8 or 4.9)

dµ - projection along µ

IRSDo (x) :=

ZZ
WhRSD

z
(x- xi,µ)Wfi(xi,µ)dxi dµ

IFreo (x) :=

Z
Wfi(x-

z

k
µ,µ)dµ , (4.10)

Fig. 4.2 illustrates calculation steps in Eq. (4.10). Propagation using the Fres-
nel di�raction results in shearing of the WDF. Propagation using the exact RSD
propagator, however, does not have a simple geometrical interpretation in the WDF
domain. In the next section, more details are discussed in the context of NLOS
imaging.
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4.2 Wigner distribution in Non-Line-of-Sight imaging

In this section, we discuss NLOS imaging within the phasor field virtual wave
optics and the WDF framework. To understand how the NLOS imaging problem
is related to wave optics, we review the phasor field method [3, 14, 15, 16, 17, 1].
Then combining the phasor field framework with WDF descriptions, we derive a
spatial lateral resolution limit using the exact RSD solution. We explore di�erences
between confocal and non-confocal measurements, and errors from the Fresnel
approximation. Notice that, previous chapter Ch. 2 presents an extensive discussion
regarding to the Phasor field model. This short review in this section is only for the
sake of clarifications. Readers with enough background in the Phasor field model
are encouraged to skip this short review section.

Phasor field model review

We need to introduce some additional variables to illustrate captured NLOS signals.
g(x,y, t) represents a captured time response a, coordinate (x,y) refers to a spatial
location of a detector pixel on a relay wall, t refers to a time index. We assume all
time responses g(x,y, t) are captured from a plane relay wall.

First, the phasor field p(x,y) is defined to be a single frequency component
of G(x,y,!) which G(x,y,!) stands for the temporal Fourier transform of the
captured time response g(x,y, t). In Eq. (4.11), p(x,y) can be calculated through
the Fourier transform of a convolution in time with a temporal harmonic function
ej!t, or product with a shifted delta �(⇠-!) in the Fourier domain,

p(x,y) = F(g(x,y, t) ⇤
t
ej!t)

= G(x,y, ⇠) · �(⇠-!) (4.11)

aAcross the entire paper, captured time responses (signal) refer to shifted version of raw temporal
measurements. This shifting process could be done during the acquisition by calculating a line-of-
sight time delay respect to a distance between physical hardware and focused points on the relay
wall. More descriptions please refer to [7].
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The angular frequency variable! and its associated wavelength � are connected
through the wavenumber k = !/c = 2⇡/�. Overall, the phasor field p(x,y) is
defined to be a single frequency content of each captured time response g(x,y, t)
in the Fourier domain.

Then, a NLOS imaging process can be understood as follows: An unknown
phasor field pi(x,y) (input) carrying the object’s information propagates to a relay
wall, where the phasor field po(x,y) is captured (output). The goal for reconstruc-
tions is to invert this di�raction process from the captured field po(x,y) to have a
virtual image representation which ideally is the same as pi(x,y). This di�raction
process from pi(x,y) to po(x,y) can be modeled as the RSD propagator which is
shown in [3]. ↵(x,y) refers to an additional amplitude correction factor.

po(x,y) = ↵(x,y)
⇣
pi(x,y) ⇤

x-y
hRSD
xx (x,y, z)

⌘

/ pi(x,y) ⇤
x-y

hRSD
xx (x,y, z) (4.12)

hRSD
xx (x,y, z) in Eq.(4.12) refers to the RSD convolution kernel in two dimensional

case as following (one dimension in Eq. (4.6)),

hRSD
xx (x,y, z) = ejk

p
x2+y2+z2

p
x2 + y2 + z2

(4.13)

Next, since Eq. (4.12) describes the phasor field di�raction at each frequency!,
by using Eq. (4.11) with di�erent choices of!, pi(x,y,!) has another frequency
dimension. Then, one can extend the model into a space-time broadband propaga-
tor [1] for describing the captured space-time signals as following,

po(x,y, t) =
Z

!2⌦
ej!t

⇣
pi(x,y,!) ⇤

x-y
hxx(x,y, z)

| {z }
Di�raction function at!

⌘
d! (4.14)

Here are some additional explanations for Eq.(4.14):
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• Eq. (4.14) can be used to describe a propagation either from a hidden target to
captured signals (forward propagation), or from captured signals to a virtual
image (reconstruction).

• ! 2 ⌦ stands for a closed frequency interval that is chosen to match the
captured system spatial and temporal resolution (resolvable wavefronts).
A NLOS picosecond time-resolved system usually has 60 to 70 picosecond
temporal resolution, but phasor field wavefronts are limited by the spatial
sampling resolution on a relay wall. Given a discrete spatial sampling grid
with a spacing � on the relay wall (for example 1 cm), phasor field wave
components need to be satisfied the half wavelength condition �! > �/2,! =

2⇡c/�! [94].

• In Eq.(4.11), one can also use a temporal illumination convolution kernel

function ej!cte
- t2

2�2 (Gaussian-modulated sinusoidal pulse) to generate the

phaosr field pi(x,y,!) = F(g(x,y, t) ⇤
t
ej!cte

- t2
2�2 ), then uses Eq.(4.14) for

reconstruction. This Gaussian-modulated sinusoidal pulse models an object
that reflects a temporally changing phasor field wavefront which is shown
in [3].

• The benefit of using Eq. (4.14) is that we can study the space-time NLOS
signals by decomposing them into di�raction processes at each individual
frequency. For example, the di�raction inside Eq. (4.14), one can approximate
hxx(x,y, z) in Eq. (4.14) by the Fresnel propagator hFre

xx (x,y, z) instead of the
RSD kernel hRSD

xx (x,y, z). So that each frequency component has a geometrical
shear mapping transformation in the WDF domain as shown in Eq. (4.10).

Resolution analysis

To understand the achievable lateral resolution in NLOS reconstructions, one have
to understand the central frequency for the phasor field. Here we provide an
example of the phasor field central frequency in a reconstruction pipeline. As



53

we discussed ealier in the previous section for Eq.(4.14), considering the phasor

field coming from a gaussian-modulated sinusoidal pulse ej!cte
- t2

2�2 ,!c defines the
central frequency for the captured phasor field. Lateral resolution is bounded by the
di�raction limits at the central frequency !c without exploiting optical occlusions
in the hidden scene [15]. Next, we want to show the lateral resolution at a central
frequency when using the exact RSD propagator given a finite size relay wall.

First, we model a limited size relay wall using an aperture function T(x,y). Gen-
erally speaking, this aperture function can be modeled as real or complex functions
which is used in optical coded imaging. However, to derive lateral resolution limits,
we consider the aperture function as an binary function T(x,y) 2 {0, 1} in Eq. (4.15).
N stands for the aperture half side length (for example N = 1 as a 2m by 2m
scanning wall).

T(x,y) =

8
<

:
1, if |x| 6 N, |y| 6 N

0, otherwise
(4.15)

Second, the achievable lateral resolution can be characterized by the point spread
function PSF(xt,yt, z,!) from a point object in the hidden scene at (xt,yt, z) shown
in Eq. (4.16). h(x- xt,y- yt, z) stands for the scattered phasor field wavefront
from a point object with distance z away from the aperture. The multiplication
between T(x,y) and h(x- xt,y- yt, z) stands for the captured phasor field on the
relay wall. h⇤(x,y, z) stands for the complex conjugate of the RSD propagation
convolution kernel h(x,y, z) = hRSD

xx (x,y, z) shown in Eq. (4.13).

PSF(xt,yt, z,!)

=

�������

⇣Aperture functionz }| {
T(x,y)

Point object wavefrontz }| {
h(x- xt,y- yt, z)| {z }

Captured wavefront

⌘
⇤

x-y
h⇤(x,y, z)| {z }

RSD propagation kernel

�������

2

(4.16)

Eq. (4.16) can be used to calculate the lateral resolution limit as a function of
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an aperture function T(x,y), the central frequency!c = 2⇡c/�c, the hidden point
object position (xt,yt, z). The choice of central wavelength �c depends on the spatial
sampling spacing �which is �c > ↵ · 2� for↵ > 1 in the discussion for Eq. (4.14)
and a system’s temporal resolution. Decreasing spatial sampling spacing � for a
fixed aperture function T(x,y) would lead more spatial sampling points N, but
lower the achievable central wavelength �c which leads a higher lateral resolution.
This central wavelength �c is chosen to be at the scale of 4 cm ⇠ 6 cm with � = 1 cm
in the previous phasor field experiments [3]. Fig. 4.3 shows the reconstructed
image of multiple point targets that lie in di�erent lateral positions. Fig. 4.3 plots
PSF(xt,yt, z,!) in Eq. (4.16) by using a central frequency !c = 2⇡c/(�c = 4 cm)

with di�erent target depth z settings. We can also study the lateral resolution
in the frequency space by applying the Fourier transform to the phasor field
F
�
(T(x,y)h(x- xt,y- yt, z)) ⇤

x-y
h⇤(x,y, z)

�
as shown in Fig. 4.3.

In the WDF domain, when using the Fresnel approximation instead of the RSD
to model di�raction, the resolution loss has a more straightforward geometrical
explanation. Given an input field WDFWpi(x,µ) and an aperture WDFWT (x,µ),
which T(x) = rect[x] = 1 (|x| < 1/2), 0 (oterwise) is a one dimensional version of
Eq. (4.15), then the output fieldWpo(x,µ) in the WDF domain is as below,

Wpo(x,µ) = WT (x,µ)| {z }
WDF of T(x)

⇤
µ
Wpi(x-

z

k
µ,µ)

=
⌦ WT (x,µ)z }| {
2(1- |2x|) rect[x]| {z }

spatial truncation

sinc[2(1- |2x|µ)]
↵

⇤
µ
Wpi(x-

z

k
µ,µ) (4.17)

Eq. (4.17) uses the WDF Multiplication theorem: the multiplication of T(x) and
pi(x) in the space domain corresponds to the convolution in the Fourier domain
which is corresponding to a convolution along the frequency coordinate ⇤

µ
in the

WDF domain. The loss of resolution comes from WDF of the aperture function
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Figure 4.3: Achievable lateral resolution from RSD discussed in Sec. 4.2 Eq. (4.16).
a. we show the point spread function PSF(xt,yt, z,!) from multiple point targets
in the hidden with T(x,y) (2m by 2m, red dash box), a target depth z = 0.5m
away from a relay wall, a central wavelength � = 4 cm. Point spread function
varies at each lateral location. b. we pick five positions (color boxes from 1-5 in b)
from a to illustrate the frequency bandwidth (2d Fourier transform on the complex
field). Point position at the center of aperture (number 1, red box) achieves almost
maximum bandwidth corresponding to �/2. The further away from the center of
the aperture, theworse distortion, and the smaller region is covered in the frequency
domain. c. we show a PSF plot and a reconstructed checkerboard pattern for two
depth z = 0.5m - 2m.

WT (x,µ) in Eq. (4.17). SinceWT (x,µ) has a truncation term 2(1- |2x|) rect[x] along
the spatial xdimension. Multiplicationwith rect[x]would result in zero everywhere
in the WDF for x > |12 |. For a fixed size scanning aperture, the output field shears
more in the WDF domain as the distance z is increasing which causes more loss of
information in the frequency domain for the output field WDFWpo(x,µ).
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Confocal and Non-confocal measurements analysis

The confocal NLOS measurement requires co-locating a SPAD and a laser focused
point on a relaywall and sequentially scanning the co-located focused points tomea-
sure time responses [4]. Otherwise, general measurement setups are referred to as
non-confocal measurements [7]. In this section, we add an illumination wavefront
function into the phasor field forward di�raction model, which characterize the
di�erences between the confocal and the non-confocal measurement. We model at
the central wavelength �c (with angular frequency !c = 2⇡c/�c), but the analysis
can be applied to each frequency component.

Here are notations would be used in the following. The geometrical setup is
shown in Fig. 4.4 on the left side. We consider a hidden object f(x,y) as an amplitude
object at a depth z away from a relay wall (on the x- y plane at z = 0). For a non-
confocal measurement, we have to assign variables (xi,yi) to represent a single
illumination point source on the relay wall. Collected phasor field wavefronts at
the central frequency are denoted by pcono (x,y,!c) for confocal and pn-cono (x,y,!c)

for non-confocal. The aperture function T(x,y) follows the same notation as in the
previous section.

We modify the phasor field forward di�raction model to include two steps b:
1. Propagation from a virtual illumination on the relay wall to a target plane.
2. Propagation from the target plane back to the relay wall. For the confocal
configuration, the illumination aperture is as the same size as the aperture function.
Thus the illumination field can be modeled as a wavefront starting from T(x,y).
For the non-confocal configuration, the illumination field is a spherical wavefront
starting from a point illumination source at (xi,yi) on x- y plane.

For the first step, Eq. (4.18) calculates the illumination wavefront u(x,y) for
confocal ucon(x,y) and non-confocal un-con(x,y) at the target plane z. h(x,y, z) =
hRSD
xx (x,y, z) refers to Eq. (4.13),

bAs for the confocal measurement, two-way propagation (from illumination to object and object
to relay wall) can also be modeled as one-way propagation by thinking the object emits light at the
same time but traveling at the half-speed [2].
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ucon(x,y) =
�
T(x,y)ej�(x,y)

�
⇤

x-y
h(x,y, z)

un-con(x,y) = h(x- xi,y- yi, z) (4.18)

For the second step, the received phasor field wavefront po(x,y,!c) from the
hidden object f(x,y) is as follows,

po(x,y,!c) =

ZZ Illuminationz }| {
u(x,y)

hidden objectz }| {
f(x,y)| {z }

Target wavefrontpi(x,y,!c)

h⇤(x- ⌫,y- µ, z)d⌫dµ

= pi(x,y,!c) ⇤
x-y

h⇤(x,y, z) (4.19)

For the same hidden object f(x,y), confocal and non-confocal measurements
"see" di�erent unknown target wavefronts pi(x,y,!c) because of the illumination
wavefront u(x,y) as shown in Eq. (4.19). More importantly, Eq. (4.19) also refers
that one can probe hidden object’s f(x,y) di�erent frequency components by creat-
ing illuminating u(x,y) from di�erent spatial points on the relay wall. The reason
is as follows. pi(x,y,!c) = u(x,y)f(x,y) comes from the hidden object f(x,y)with
a spatial modulation from the illumination wavefront u(x,y). u(x,y) is di�erent
between ucon(x,y) in confocal measurements and un-con(x,y) in non-confocal mea-
surements in Eq. (4.18). Even for non-confocal measurements from di�erent single
illumination points (xi,yi), the unknown target field pi(x,y,!c)would be di�erent.
Based on the Fourier transform multiplication and convolution properties, multi-
plication in the space x- y domain corresponding to a convolution in the spatial
frequency space. Di�erent illumination wavefronts result in di�erent frequency
convolution samples on the hidden object f(x,y).

Fig. 4.4 uses Eq. (4.19) to show di�erences between the non-confocal and the
confocal measurement in the WDF domain. In Fig. 4.4, |WRSD

po -WFre
po |(x,µ) shows

error maps between the RSD and Fresnel di�raction in the WDF domain. The



58

Figure 4.4: Di�erence between the RSD and the Fresnel propagation in the WDF
domain with Non-confocal, confocal acquisitionsin Eq. (4.18 & 4.19) Sec. 4.2. This
numerical simulation use the same aperture function T(x,y) and a input hidden
target f(x,y) for both non-confocal and confocal acquisitions. The non-confocal
single illumination point (xi,yi) is at the center. Illumination functions un-con(x,y)
and ucon(x,y) are shown in Eq. (4.18). Each row shows phasor field distributions
in the WDF domain as a function of distance z. WRSD

po (x,µ), WFre
po (x,µ) refers to

the phasor field WDF distribution from the RSD or the Fresnel di�raction. For
each depth, we plot the absolute di�erence between normalized WDF for RSD and
Fresnel |WRSD

po -WFre
po |(x,µ) (Normalized WDF’s value between 0-1). The Fresnel

approximation for the non-confocal and the confocal show di�erent errors by the
absolute di�erence map in the WDF domain (from red to green box).

Fresnel di�raction (shear mapping transform in the WDF domain) works as a
better approximation for the confocal acquisition than the non-confocal acquisition.
A confocal measurement contains more frequency components of the hidden target
than a single illumination non-confocal measurement. This means that reconstruc-
tions from confocal data should always look "sharper" than reconstructions from
single illumination non-confocal data even under the same lab condition. With
multiple illumination points, non-confocal measurements can increase frequency
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components of the hidden target.

Error metric for the Fresnel di�raction

Using Fresnel di�raction for reconstructions can be understood as choosing a poor
lens with "aberrations" as opposed to use RSD to model a perfect imaging system.
The formula to describe the errors made by the Fresnel di�raction can be obtained
by replacing the kernel h⇤(x,y, z) in Eq. (4.16) by the Fresnel propagation kernel
hFre(x,y, z) = ↵(z)e

jk
2z (x

2+y2). This focusing error E(xt,yt, zt, x,y, z) is as follows,

E(xt,yt, zt, x,y, z)

=

ZZ Aperture functionz }| {
T(x,y)

Point object wavefrontz }| {
h(x- xt,y- yt, zt)

Illumination wavefrontz }| {
u(xt,yt, zt) h⇤

Fre(x- ⌫,y- µ, z)| {z }
Fresnel propagation kernel

d⌫dµ

(4.20)

As shown in Eq. (4.20), the focusing error E(xt,yt, zt, x,y, z) is a six dimensional
function. The first three arguments (xt,yt, zt) are from a location of hidden point
object and the remaining (x,y, z) are from the Fresnel propagator hFre(x,y, z). Since
E(xt,yt, zt, x,y, z) depends on the illuminationwavefrontu(xt,yt, zt) at the location
of hidden target shown in Eq. (4.18), this error in reconstructions made by the
Fresnel di�raction for confocal measurements and non-confocal measurements
are di�erent. The behavior of Fresnel di�raction operator varies depending on
acquisitions is also provided in Fig. 4.4 in the WDF domain.

Overall, this error E(xt,yt, zt, x,y, z) 2 C leads to both magnitude and phase
error in the reconstruction domain. We give an illustration of this error inmagnitude
in Fig. 4.5 using the illumination function ucon(x,y). One can use Eq. (4.20) to
evaluate more general situations with di�erent error metrics depending on desired
applications.
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Figure 4.5: Error plot for Eq. (4.20). |E(xt,yt, zt, x,y, z)| refers to complex error field
magnitude. PSF(xt,yt, z = 2m, � = 4cm) stands for the ideal PSF plot from RSD
propagator for referencing.

4.3 Appendix: Algebraic steps for two Phasor field
propagators in the Wigner distribution domain

In this section, we provide an algebraic steps to shown the RSD and the Fresnel
di�raction in the WDF domain. Consider two parallel planes with spacing z, both
Rayleigh-Sommerfeld Di�raction (RSD) and Fresnel di�raction link an input wave-
front fi(xi) to a output wavefront fo(xo) by a spatial convolution with a convolution
kernel hxx(xo, xi). Because of the convolution kernel is a special case of an integral
kernel, hxx(xo, xi) becomes hxx(xo - xi).

fo(xo) = fi(xi) ⇤ hxx(xo, xi) = fi(xi) ⇤ hxx(xo - xi) , (4.21)

Using the Wigner Distribution Function (WDF) convolution theorem, convolu-
tion along x in spatial domain applies convolution along x but in the WDF domain.
This infers Eq. (4.21) has a equivalent transformation in theWDF domain as follows,

Wfo(xo,µo) = Wh(x,µ) ⇤
x
Wfi(x,µ) (4.22)
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Overall, there are two approaches to derive the RSD, Fresnel di�raction in
the WDF domain. One is to apply WDF’s convolution theorem, which means
that the only thing that has to be done is to simplifyWh(x,µ) given the RSD and
Fresnel convolution kernel expressions. Another is to use Eq. (4.3,4.4) to derive by
definitions. We show the challenge of deriving the RSD in the WDF using the first
approach and derive the Fresnel di�raction in the WDF based on definitions.

For the RSD, to best of our knowledge, its kernel expression hxx(xo - xi) =

ejk
p

(xo-xi)2+z2p
(xo-xi)2+z2

does not have a simplified analytical form in the WDF domain. In
this work, we rely on numerical implementations to evaluate the RSD in the WDF
domain.

As for the Fresnel di�raction, given approximations coming from a binomial
expansion on the RSD kernel, it is way more easier to treat analytically. In the
following, we show the Fresnel di�raction in the WDF domain by definitions
following algebraic procedures in Eq. (4.3,4.4). The Fresnel spatial convolution
kernel hxx(xo - xi) can be written down as below and k stands for the wavenumber,

hxx(xo - xi) =
ejkz

j�z
exp

h jk
2z(xo - xi)

2
i

= ↵(z) exp
h jk
2z(xo - xi)

2
i
, (4.23)

Eq. (4.23) describes the Fresnel di�raction in its spatial representation. Use
Eq. (4.24) to derive the integral kernelK(xo,µo, xi,µi) in theWDFdomain as follows:

K(xo,µo, xi,µi) =

ZZ
hxx(xo +

x
0
o
2 , xi +

x
0
i
2 )

| {z }
term 1

h⇤
xx(xo -

x
0
o
2 , xi -

x
0
i
2 )

| {z }
term 2

exp
h
- jµox

0
o + jµix

0
i

i
dx

0
odx

0
i ,

(4.24)

Plug hxx(xo, xi) from Eq. (4.23) into Eq. (4.24), simplify term 1 and term 2,
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term 1 = ↵(z) exp
h jk
2z(xo - xi +

x
0
o
2 -

x
0
i
2 )2

i

term 2 = exp
h
-

jk

2z(xo - xi -
x

0
o
2 +

x
0
i
2 )2

i
↵⇤(z) , (4.25)

Plugging in terms from Eq. (4.25), Eq. (4.24) becomes,

K(xo,µo, xi,µi)

=

ZZ
|↵(z)|2 exp

h jk
z

(xo - xi)(x
0
o - x

0
i )| {z }

use a2-b2=(a+b)(a-b)

i
exp

h
- jµox

0
o + jµix

0
i

i
dx

0
odx

0
i

= |↵(z)|2
Z Z

exp
h jk
z
(xo - xi)x

0
o

i
exp

h
- jµox

0
o

i
dx

0
o

| {z }
term 3

exp
h
-

jk

z
(xo - xi)x

0
i

i
exp

h
jµix

0
i

i
dx

0
i ,

(4.26)

Simplify term 3 in Eq. (4.26) by using the Fourier transform property,

term 3 =

Z
exp

h jk
z
(xo - xi)x

0
o

i
exp

h
- jµox

0
o

i
dx

0
o

= 2⇡�(µo -
k(xo - xi)

z
)

= 2⇡�(xi - xo +
z

k
µo) , (4.27)

Replace term 3 in Eq. (4.26) by Eq. (4.27),
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K(xo,µo, xi,µi)

= |↵(z)|2 · 2⇡�(xi - xo +
z

k
µo) ·

Z
1 · exp

h
- j
�k(xo - xi)

z
- µi

�
x

0
i

i
dx

0
i

= |↵(z)|2 · 2⇡�(xi - xo +
z

k
µo) · 2⇡�(

k

z
(xo - xi)- µi) , (4.28)

Since Eq. (4.28) consists of a multiplication between two delta functions, we can
use it as a constraint to simplify variables,

8
<

:
xi - xo +

z
kµo = 0

k
z (xo - xi)- µi = 0 ,

(4.29)

which leads to constraints xi = xo -
z
kµo and µi = µo.

Above all, in theWDFdomain, the Fresnel di�raction integral kernelK(xo,µo, xi,µi)

is as follows,

K(xo,µo, xi,µi) = (2⇡)2|↵(z)|2 �(xi - xo +
z

k
µo) �(µi - µo)

K(xo,µo, xi,µi)
normalizez}|{

= �(xi - xo +
z

k
µo) �(µi - µo) , (4.30)

Using K(xo,µo, xi,µi) in Eq. (4.30) and plugging it in Eq. (4.3), then the corre-
sponding input, output field WDF transformation using the Fresnel di�raction is
as follows,

Wfo(xo,µo)

=
1
2⇡

ZZ
K(xo,µo, xi,µi)Wfi(xi,µi)dxidµi

/
ZZ

�(xi - xo +
z

k
µo)�(µi - µo)Wfi(xi,µi)dxidµi , (4.31)
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Finally, applying constraints on variables for Eq. (4.31) leads to a shear mapping
in the WDF domain,

Wfo(x,µ) = Wfi(x-
z

k
µ,µ) , (4.32)
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In this chapter, we formulate an equation describing a general Non-line-of-sight
(NLOS) imaging measurement and analyze the properties of the measurement
in the Fourier domain regarding the spatial frequencies of the scene it encodes.
We conclude that for a relay wall with finite size, certain scene configurations and
features are not detectable in anNLOSmeasurement. We then provide experimental
examples of invisible scene features and their reconstructions, as well as a set of
example scenes that lead to an ill-posed NLOS imaging problem.

5.1 Introduction

In this chapter, we aim to provide a generic description for direct bounce (3rd
bounce) NLOS measurements and show how much information they encode and
how this a�ects practical NLOS imaging problems. Consider the NLOS recon-
struction shown in Figure 5.1. It contains three very similar patches that only vary
slightly in orientation and have di�erent positions in the reconstruction space. Yet
while two of the patches are reconstructed clearly and accurately, the third is com-
pletely missing from the reconstruction. A closer inspection of prior published
results reveals that similar artifacts are seen in reconstructions using a variety of
diverse reconstruction methods. Surfaces with certain normal vectors are missing
in the reconstruction or scenes with simple surfaces are chosen to avoid the problem.
The main purpose of this work is to explain this phenomenon.

As we show below, any NLOS measurement can be expressed as an integral
operator known in the literature as elliptical Radon integral. We analyze this
measurement function in the Fourier domain and show that a significant part
of the measurement space is not accessed by the NLOS measurement and thus
represents a null space for NLOS reconstruction. Finally, we investigate the Fourier
domain representations of common scenes and scene features to identify features
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a b c
a

b c

abc

Figure 5.1: Three patches rotation example. Experimental reconstruction of a scene
containing three patches denoted by a, b, c. Patches a and c are parallel but the
latter one’s surface normal vector does not point towards the NLOS relay wall and
the patch does not appear in the reconstruction shown on the right. The first row
stands for the top view and the second row for the front view. The explanation
for this astonishing e�ect will be developed in the main text, see Sec. 5.5, and also
Fig. 5.8 for a graphical explanation.

that fall into the null space and cannot be reconstructed. Because our analysis
involves a generic description of the NLOS measurement, it is independent of the
reconstruction algorithm used. We expect our findings will inform inverse solution
design and future NLOS reconstruction methods.

5.2 Related Work

Statements of the properties of NLOS reconstructions are sometimes included with
a presentation of reconstruction algorithms. For example, the available resolution
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Limited 
aperture

Physical 
setup
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targets

Invisible
aperture

(pi = pd) (pi, pd)a. b.

f(p) f(p)

Figure 5.2: Illustration of a NLOS measurement: The panels a and b show two
popular NLOS measurement setups. Subfigure a shows the confocal measurement
which means the illumination and detection point are co-located, while b shows
the non-confocal measurement. The green curves in a and b sketch the acquired
time responses, i.e., the integration of reflecting scene features along each circle
(confocal case) or ellipse (non-confocal case).

has been analyzed [9, 4]. Since the underlying mathematical forward model shares
a similar root as the computed tomography problem (Radon integral), much more
extensive work on this problem is available through related problems. Radon
integrals have been studied for their applications in ultrasound imaging andmedical
computed tomographies [95, 96, 97]. The e�ect of a finite-sized sampling aperture is
similar to the missing cones problem that has been the subject of extensive research
in medical computed tomography (CT) imaging [98, 99].

Radon integrals can be categorized into classical Radon integral (planar), spher-
ical Radon transform (SRT) and elliptical (ellipsoid) Radon transform (ERT). The
planar Radon transform with its high dimensional model [100] is well known in
the CT field. The spherical Radon transform (SRT) with its inverse solution design
can be found in [95, 96]. A similar inverse formula for the confocal measurement
setup applies for the SRT model used in ultrasound [96] and NLOS imaging [4].
The elliptical Radon transform (ERT) has been studied by Moon et al. [97]. An
inverse to the ERT was proposed in [101] and is similar to (but not the same as)
the NLOS non-confocal filtered backprojection method [7, 8, 9].
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5.3 NLOS imaging problem

In this section, we are going to provide basic mathematical tools for modeling the
NLOS imaging problem in a general way by introducing the NLOS measurement
function and its properties. Then we introduce the concept of limited aperture
NLOS imagingwhich results in an incomplete measurement space. This incomplete
measurement space is essential for the next section dealing with our measurement
analysis in the spatial Fourier domain in Sec. 5.4.

NLOSMeasurement Function

The NLOS measurement scenarios are illustrated in Figure 5.2 on the left, and two
measurement setups are shown in the subfigures a andb. In anNLOSmeasurement,
the scene is illuminated from a point ~pi (illumination position) and light returning
from the scene is recorded at a detection point ~pd (detection position) after a certain
time interval t. Both ~pi and ~pd are within the finite area of the relay wall that we
call the NLOS sampling aperture. In practice, this sampling aperture is bounded
by the limited field of view because of the remote detection.

We use f(~p) to represent the unknown 3D scene we would like to recover. Here
f(~p) is a function of the vector ~p = (x,y, z) storing the reflectance values in space.
We assume uniform scattering, thus the reflectance value is angle independent.
The function g represents one single time response measurement at illumination
position ~pi and detection position ~pd. Thus, each time resolved measurement
g(~pi,~pd, t) is a function of illumination position ~pi, detection position ~pd and time
t. The NLOS measurement is made up of a set of detection positions (detection
grid) from a single or multiple subsequent point illuminations on the wall. We
use G = {g1,g2,g3, ...,gn} to represent all measurements. We focus on illustrating
the transformation from f(~p) to one single measurement g(~pi,~pd, t) first. Then it is
straightforward to understand the transformation from f(~p) to the entire measure-
ment setG. Subfigures a and b of Figure 5.2 represent the confocal and non-confocal
measurement setups. Since the non-confocal case is the more general version of
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NLOS measurement, we start our forward modeling from the non-confocal mea-
surement.

We can use an integral operator A : f(~p) ! g(~pi,~pd, t) to represent the linear
transform from the unknown function f(~p) to a temporal measurement at given
detection and illumination positions and time g(~pi,~pd, t). This results in the NLOS
measurement equation:

g(~pi,~pd, t) =
Z

R3
⌥(di,dd) · �(di + dd - t · c) · f(~p)d~p . (5.1)

In the literature, this integral is ofter referred to as the Elliptical Radon Transform
(ERT). The delta function kernel in this equation describes the geometry of the
integration, and c denotes the speed of light. To simplify notation, we use the
distance terms di = |~p-~pi| and dd = |~p-~pd|which represent the distances between
the integral variable ~p and illumination/detection position, respectively. The term
⌥(di,dd) stands for the intensity drop-o� associated with distances traveled by the
light. This intensity term is normally not included in the ERT, however we add it in
this treatment as it is needed to correctly model the physical measurement process.
The integration (5.1) can be performed for an entire family of thin ellipsoid surfaces
having di�erent foci ~pi and ~pd.

Any set of NLOS measurements made from locations within the NLOS aperture
area can be expressed as a set of these measurement functions. The integral in
Equation (5.1) is di�cult to treat analytically because of non-constant curvatures.
Therefore we also consider two simplified scenarios. If we allow onlymeasurements
where ~pi = ~pd, we obtain the confocal NLOS measurement (Figure 5.2 a)

g(~pi,~pi, t) =
Z

R3
⌥(di) · �(2 · di - t · c) · f(~p)d~p . (5.2)

This integral without intensity term ⌥(di) is also known in the literature as the
spherical Radon transform (SRT) [95, 96].

Another useful tool to approximate the measurement function is to locally
replace the elliptical integral by integrals over planes that are tangential to the
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ellipsoids. This refers to a zoom-in version of the integration at a local volume.
Since the integral is a linear operator, the measurement can be represented as
superposition of all individual inputs (linearity). Then for each individual input,
the local integral version can be approximated by the planar integral. This means:

We linearize the unknown 3D function f(~p) by a summation of local functions
f1, f2, ..., fn which store the features representing the 3D image. Each local function
represents a local pattern within cube volumes at di�erent positions such that each
subspace contains only small sections of the ellipsoids. Each ellipsoid g(~pi,~pi, t)
can within that subspace be approximated by planes g 0(t, ✓,�)where the planar
angles ✓ and � are such that the plane normal vector points to the center of the
ellipsoid and t is proportional to twice the distance between the ellipsoid center
and the plane. In polar coordinates, this yields

g 0
(✓,�)(t) =

ZZZ1

-1
f(x,y, z) · �(sin ✓ cos�x+ sin ✓ sin�y+ cos ✓z- t · c)dxdydz .

This planar approximation has been described before in [7, 8] to approximate the
NLOS imaging result from non-confocal streak camera measurements. It is also
similar in nature to the approximation made when using a piecewise definition of
a locally varying point spread function as is often done in point spread function
deconvolution problems.

Above all, we provide the basic tools for describing the NLOS forward model
which we are going to use in Section 5. There, we provide our main tools to analyze
the incomplete measurement space e�ect. Our idea is to mimic the imaging system
by illustrating the information content in the Fourier domain by the modulation
transfer function (MTF) dependent on a given limited aperture.

5.4 NLOSMeasurements in the Fourier domain

A complete description of a measurement of a section of f(~p) can be described as
the set of all g(~pi,~pd, t) for which ~pi and ~pd are in the NLOS aperture plane and t is
such that the measurement ellipsoid goes through f(~p). To obtain insight into the
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Non-confocal

Confocal

Planar
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Figure 5.3: Local Measurement MTF: Fourier domain representations of the NLOS
Measurement Function for five points in the unknown geometry. The left graphic
represents the geometric setup. We construct a half meter limited aperture with
five volumes of interest varying in depth and horizontal o�set. The panels show the
measurement function for all points for the di�erent models. Planar corresponds to
the PRT, confocal to the SRT, and non-confocal to the SRT. For each point, the first
column shows the computed patterns, the middle column shows the same pattern
zoomed in, and the right column shows the zoomed in pattern after correcting for
the lower values at higher frequencies to enhance visualization.

Local pattern Fourier spectrumScene Local scene features Fourier spectra of local 
scene features 

…

Figure 5.4: Local scene features: This figure shows a set of common NLOS scene
features in the red boxes and their Fourier transforms. Rotating of the features
simply corresponds to rotating by the same angle in the Fourier domain. The
patterns are (top left to bottom right) a smooth planar surface, a rough planar
surface, the edge of a planar surface, a corner between two surfaces, a gap in a
planar surface, a convex curved surface, and two concave curved surfaces. The
spectrum of a planar surface is a line. Roughness, curvature, and edges result in
spectra that also cover other regions of the Fourier space.

patterns in the scene that are sampled by this measurement, we want to analyze
them in the Fourier domain. The Fourier domain NLOS measurement function can
be understood as a Modulation Transfer Function (MTF) of NLOS imaging.
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For the planar Radon transform (PRT, Equation (5.3)), the Fourier transform of
g 0 can be computed analytically using the projection-slice theorem.

Projection slice theorem

The projection slice theorem (PST) is well-known and widely used in the area of
computed tomography and other fields. We will give a short explanation of the
2D version here; the 3D version is shown in the supplemental document. The PST
provides an elegant tool for using projections (i.e., integrals) along parallel lines of
an unknown 2D scene: it shows that the 1D Fourier transform of such projections
actually represents one line through the origin of the 2D Fourier spectrum of the
unknown scene. Repeating the process for di�erent projection angles provides the
missing lines; scene reconstruction is then easily achieved by inverse 2D FT.

The unknown 2D function is denoted by f(x,y). Let us first assume that the
projection angle ✓ is zero. The projection dependent on the displacement uwith
respect to the origin and vertically to the projection direction is then given by [102]

fproj(u, ✓ = 0) =
ZZ

f(x,y)�(x- u)dxdy

=

Z
f(u,y)dy .

Performing the 1D Fourier transform with respect to u yields

Fu{fproj(u, 0)} =
ZZ

f(u,y)e-j2⇡fuududy (5.3)

=

ZZ
f(x,y)e-j2⇡fxxdxdy

=

ZZ
f(x,y)e-j2⇡(fxx+fyy)dxdy

����
fy=0

.

This corresponds to the 2D Fourier transform of the unknown function f(x,y)
at the line with fy = 0. Repeating the projection with di�erent angles ✓ results in
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the corresponding line of the 2D Fourier transform; note that rotation in the spatial
domain corresponds to a rotation by the same angle in the frequency domain. By
considering all angles ✓ from 0 to 2⇡ and adding all Fourier spectrum lines, the full
function f(x,y) can then be reconstructed by inverse 2D Fourier transform. It is
advisable to apply a high pass filter before the inverse Fourier transform, as high
frequencies are underrepresented because of the spectral lines meeting in the origin,
but diverging for higher frequencies, which means that there is less information
available for these frequencies. This is called filtered backprojection [100].

In the 3D case, the projection along parallel planes and subsequent 1D Fourier
transform of the calculated (scalar) projection values for each plane provides one
line of the 3D spectrum of f(~p). Rotating the projection planes about the origin
provides the spectrum along all lines through the origin. See the supplementary
document for details.

Local Fourier cone
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Figure 5.5: Fourier slice theorem and cone generation.

The left part of Figure 5.5 shows the measurement for two cases where the
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illumination and detection points are co-located at a or b at either side of the relay
wall. In the middle of that figure, we can see that the collected time response for
those two cases are projections along directions with angles ⇥1 or ⇥2 with respect
to the relay wall. The exact projections are performed along ellipsoids; however, we
approximate these as planes. As it is shown on the right of Figure 5.5, the Fourier
slice theorem states that the 1D Fourier transform of the projections of the scene
along parallel planes at angle ⇥ in the primal domain is equal to a slice at angle ⇥
in the 2D Fourier spectrum of the scene. To create a cone we then simply draw the
corresponding lines for all accessible points on the relay wall. By using a limited
size relay wall, the black part of the spectrum is not contained in any measurements.

Null space and cone variation: As shown in Fig. 5.3, given the same size of the
limited aperture, the closer the considered volume is to the sampling aperture, the
larger the visible angle range of this cone is (compared with position 1 and position
4 in Fig. 5.3). Moreover, o�set with regard to the center of the aperture also tilts this
sampling cone in the Fourier domain (refer to positions 2, 3 and 5 in Figure 5.3).
Overall, things outside this cone will never be sampled in the Fourier domain by
the limited aperture unless the aperture size is increased. This means that, e.g., a
wall placed perpendicularly to the relay wall has a Fourier transform which, apart
from the DC value at frequency 0, will fully vanish in the missing cone and cannot
be seen in any reconstruction not accounting for the missing cone.

Model validity: To verify the model validity, we perform a computation for
planar, confocal and non-confocal measurement (fixed illumination as one focus at
the center) with the same limited aperture. With an acceptable error in the discrete
model, we can see from Fig. 5.3 that the local planar model gives a good boundary
estimation for the confocal and non-confocal cases. Notice that we fixed one focus
~pi in the non-confocal case resulting in a more narrow MTF pattern. By moving
the non-confocal illumination spot, this narrow cone slightly rotates which could
achieve a similar angle coverage in the confocal measurement.
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5.5 Measurement of scene features

Local scene features: To use the proposed analysis, we need to decompose any
complicated NLOS imaging scenes into simple features such as planes etc. This
is shown in Fig. 5.4, which also displays their Fourier spectra which defines their
reconstructability, cf. Fig. 5.5 and the following paragraph. Most of the simple
features can be represented as a thin surface with di�erent roughness level as well
as edge like discontinuity patterns and curvatures. Rotation of the patterns in space
simply corresponds to the same rotation in the Fourier domain.

MTF with scene features: To assess visibility of the targets we have to consider
the overlap between the target spectra and the MTF sampling cone. This will be
shown illustratively in the results, see Section 5.5. Note that the most valuable
information is encoded in the high frequency components of the cone. The center
of the cone is at the origin and thus samples the low spatial frequencies. The
high frequency components far away from the origin are necessary to create high
resolution reconstructions.

Limited aperture ill-posed example: Limited aperture NLOS imaging with
arbitrary targets should be viewed as an ill-posed problem. Consider a simple
patch with di�erent rotation angles with respect to the limited aperture. Once it is
facing the sampling aperture and located at its center, its local Fourier spectrum
is optimally covered by the MTF Fourier cone. However, when the patch pattern
rotates, its Fourier pattern also rotates by the same angle. Once it rotates outside the
angle covered by each local cone, the recorded information only includes the origin
in the Fourier plane, corresponding to a constant or zero spatial frequency. See the
experiments in Sec. 5.5 for an illustration of this e�ect. Overall, this means we can
still see that a structure is there (after all, there is light coming back) but we cannot
actually uniquely reconstruct it. On the other hand, a local pattern containing high
spatial frequency contents like edges or surface roughness has a much broader
spectrum and at least part of it always overlaps with the measurement cone making
it at least partially reconstructible.

Rule-of-thumb criterion: From this, we can also derive a simple rule for visibil-
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ity of scene patches. Since a planar scene segment is represented by a line through
the origin in the Fourier domain, the segment will be completely visible if the line
lies within the sampled cone, and invisible if it is at an angle outside the cone. In
the primal domain this means that a segment is only visible when its normal
vector points toward the relay wall.

Overall, for NLOS imaging scenarios, more higher spatial frequency compo-
nents of unknown targets subsequently result in more fluctuations in the temporal
measurements. For this reason, they lead to a higher chance to actually see the
target by using all deterministic linear inverse solutions from a limited aperture.

Completely invisible feature example

To provide further evidence for the existence of a universal, reconstruction indepen-
dent null-space, we provide a set of example scenes that are simple enough to be
treated analytically for a confocal measurement set. To do this, we replace f(~p) by
specific functions to represent the scene features inside the integral measurement
equations (5.1) and (5.2). To simplify the calculation, we consider only a two
dimensional scenario of a confocal NLOS measurement.

Smooth wall example (Challenge scene): As it is shown in Figure 5.6, the un-
known target is a smooth wall at an angle to the relay wall described by �(cos(✓)x-
sin(✓)y) for y > 0. For confocal NLOS measurements, our illumination and de-
tection are co-located at the x-axis meaning that ~pi = ~pd = (x0, 0), x0 > 0. Since
the distance correction simply amplifies the signal at each given time index i, we
use the notation C(i) to represent this correction term. We use the term g(i) to
represent the reflectance integration at each time index i. By plugging this special
function into the Radon integral, we obtain the following equation:

g(i) = C(i) ·
Z1

0

Z1

-1
�(cos(✓)x- sin(✓)y) · �((x- x0)

2 + y2 - (
c · i
2 )2)dxdy .

(5.4)

By performing the distance correction C(i) to account for the distortion from the
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Figure 5.6: Three wall examples. The first column represents the geometry, the
second column stands for the measurement g(i) after the intensity correction from
t(i). The scenes in the first two rows lead to identical captured data.

intensity drop o�, the measurement g(i) simply represents a set of reflectance
integrals in the unknown space.

Using the fact that �(cos(✓)x- sin(✓)y) is only 1 for cos(✓)x = sin(✓)y, we can
replace x by y tan(✓) and further simplify the equation by getting rid of integral
variable x as follows:

g(i) = C(i) ·
Z1

0
�((tan(✓)y- x0)

2 + y2 - (
c · i
2 )2)dy (5.5)

From this equation, it is clear to see that the final measurement can be viewed
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Figure 5.7: Simple letter S and rectangle patch rotation experiments The first
row represents the schematic of the setup including the entire visible wall, limited
aperture, targets (letter S and patch) as well as reconstruction volume. The next
two rows show the maximum projection along the depth dimension, thus a 2D bird
view and 2D front view are provided. For clear illustration, we present results using
two-color (bright and dark view). The thickness of the letter S and the rectangular
patch approximately equals 5 cm and 0.5 cm. As the angle increases, the ill-posed
e�ect becomes more obvious, and certain features are missing in the measurement
space and therefore cannot be resolved by the reconstruction

as a sum of 1 or 0 at any given time index î when the kernel inside the integral
(tan(✓)y- x0)

2 + y2 - (c·î2 )
2 = 0. This parabolic equation may have zero, one or

two solutions with fixed ✓, x0. This means the final measurement gmay be 0, 1 or 2
at any given time index. A simple observation is that, once the wall reaches angle
✓ = ⇡/2, the value of the integral is the same for all ~pi = (x0, 0), x0 > 0 on the
aperture line. The signal gwith di�erent wall rotation angles is shown in Figure 5.6.
Thus, all scenes with walls at angles above ✓ = ⇡/2 result in the same NLOS data
and are thus not distinguishable without any prior constraints. Extending this
treatment to a 3D space results in more complex equations and is therefore less
instructive. It is subject of further study.
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Experiments

We perform two experiments of ill-posed scenarios which are first predicted by our
proposed local cone model. For the reconstruction process, we choose a filtered
backprojection [7, 8, 9] without thresholding process. For visualization, we choose
the maximum projection along the depth dimension in the front view. Also, we
provide a maximum projection for the bird view.

In Figure 5.7 we show a rotating letter S and planar patch example. As shown
in the result, the simple patch pattern is completely resolvable when facing directly
to the limited aperture. In this situation all patch normals are pointing at the relay
wall aperture. As the targets rotate, normals start pointing past the aperture and the
planes start to disappear. Not all target patches disappear simultaneously due to the
local variations in Fourier cone discussed above. Eventually, all patch normals point
outside the aperture and the entire targets are outside the Fourier cone. We can
only resolve the high spatial frequency pattern at edges in the final reconstruction.

Another three patches example was already shown in Figure 5.1. Having now
the theoretical tools at hand, we see in Fig. 5.8 that both patches a and c have the
same magnitude spectrum, but because of the spatially dependent measurement
cone, only the o�set of patch c is captured. In the reconstruction, this patch is
therefore almost entirely invisible.

5.6 Appendix: Results and additional notes

Local MTF pattern with/without intensity drop o�

As mentioned in main text section 4.1, the generalized NLOS forward model
without the intensity drop o� term ⌥(di,dd) can be described as a Radon integral.
All previous works approximate the intensity drop o� by the squared traveling
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Figure 5.8: Explanation of the missing feature in Fig. 5.1 The measurement cone is
shown as gray area and illustrates the part of the Fourier spectrum that is actually
acquired by NLOS measurements. It varies with the position in the 3D space that
is to be reconstructed. Both patches a and c of the scene are oriented the same way;
the spatial shift just corresponds to a phase shift in the Fourier domain, but not
in a change of the magnitude spectrum. This means both patches have the same
magnitude spectrum, but due to the fact that the measurement cone is di�erent at
their respective positions, the measurement of patch c only captures the o�set and
not the rest of the spectrum. For this reason, this patch cannot be reconstructed.

distance:

g(~pi,~pd, t) =
Z

D
⌥(di,dd) · �(di + dd - t · c) · f(~p)d~p (5.6)

⇡
Z

D

1
d2
i

· 1
d2
d

· �(di + dd - t · c) · f(~p)d~p . (5.7)
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In the main text, we provide the MTF pattern without the intensity drop o�. Here
we provide the MTF pattern at the same five positions but considering the intensity
drop o� e�ect. As it is shown in Fig. 5.9, this intensity drop o� is negligible for the
spatial frequency analysis.

An intuition behind Equation (5.6) is that the modeling process starting from
the unknown reflectance f(~p) instead of the field amplitude should be observed.
Furthermore, the kernel �(di + dd - t · c) governs the integral geometry, whereas
the intensity drop-o� ⌥(di,dd) reduces the value by a specific weight. This e�ect is
similar to the amplitude error made in the di�raction integral approximation.

Non-confocal illumination extended MTF cone

There are twomain types of the NLOS forward samplingmethod: confocal and non-
confocal setup. As it can be seen in main text Figure 2, confocal illumination and
detection positions are co-locatedwhereas for the non-confocal setup, both positions
are di�erent. To allow for easier comparison, we consider the same detection grid
sampling at a finite relay wall. Then for the non-confocal measurement, we analyze
the di�erent Fourier cone behaviors alongwith varying illumination source position.
This is shown in Figure 5.10. We consider a fixed local window (symmetry at the
center, 0.5m in depth) and three illumination positions within the limited sampling
area. Di�erent illumination positions also provide rotation in the Fourier cone for
the non-confocal measurement. Even though the Fourier cone varies, as long as
the illumination positions only cover the limited relay area, the cone stays within
the boundary estimated from the planar model.

We show the generalized extended MTF cone by changing the illumination
position at the limited sampling area. Also, we show the consistency with our
proposed model.

An intuition for why the non-confocal measurement cone varies depending
on the illumination position is provided in the following. We know that the non-
confocal forward model can be described as the integration along a thin ellipsoid
surface in space having two foci (one is the illumination, the other the detection
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Figure 5.9: MTF pattern without/with intensity drop o� term: This shows the
MTF pattern di�erences without and with distance drop-o� in the forward model.
The first column represents no distance drop o� term. The second one incorporates
the distance drop-o�. Each box contains the planar, confocal and non-confocal MTF
patterns. Number 1-5 represent the di�erent local positions which are the same as
in main text Figure 3.
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Figure 5.10: Non-confocal illumination variation: The non-confocal acquisition
setup has two degrees of freedom for focused detection and illumination positions.
In the figure, we fixed the array of detection positions at the limited aperture (width
0.5m). We pick three illumination positions (1-3) within the limited aperture. We
consider the same local volume position, and each local MTF pattern is shown
on the right. Even though each non-confocal Fourier cone is narrower than the
planar cone on the top, by using the multiple illumination source positions, the
same Fourier cone coverage can be achieved.

position). For a fixed positionwindow, the ellipsoid curvature is changed bymoving
one of the foci. In this case, the tangent line with its normal vector changes also.
Thus each local cone also rotates when moving the illumination source along the
hyperplane.

Here we list a summary considering two types of NLOS measurement in both
mathematical and practical sense. Mathematically speaking, the non-confocal
NLOS measurement is a more generalized version of confocal measurement. How-
ever, it can be seen in main text Figure 3 that using the same limited size relay wall,
the confocal setup covers a slightly wider area in the Fourier domain compared
to one single illumination for the non-confocal measurement. As we show in this
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section, this downside of the non-confocal measurement can be reduced in practice
by simply adding some extra illumination source positions.

NLOS Radon integral modeling error

Some modeling error still constrains the model used for the NLOS problem. Notice
that this modeling error is the error in the mathematical sense. Researchers avoid
conflicting this error by adjusting the scene targets to fulfill the modeling gap. Here
we provide a specific description for the modeling error may cause the inverse
crime (Inverse crime means the forward model is not accurate enough causing the
corresponding inverse solutions to fail in the real-world measurements).

Basic notation: We use the symbol f to represent the unknown function we
would like to recover, A for a linear operator as the forward model, g for one
measurement, G for a finite set of measurements, ~p represent the space variables
(x,y, z). ~pi and ~pd stands for illumination point and detector point on the visible
relay wall.

1. Lambertian approximation This is the approximation for the unknown
function. By assuming the hidden scene reflects light isotropically, the unknown
function f can be described as f(~p) = f(x,y, z) meaning that the reflectance is a
constant value in space. However, in reality, surface reflectance should at least
based on incident and observation which leads to a higher dimension. This is well
known in the computer graphic society.

2. Direct bounce modeling approximation With Approximation 1, one can
model direct bounce in the integral equation as described in Eq. (5.8). However,
this approximation ignores the indirect bounces (multi-bounces) signal within the
invisible area. To make a distinction, we use B to represent the direct bounce model:

g(~pi,~pd, t) ⇡ Bf(~p) =

Z
⌥(|~p- ~pi|, |~p- ~pd|) · f(~p) · �(|~p- ~pi|+ |~p- ~pd|- t · c)d~p .

(5.8)
In this equation, g(~pi,~pd, t) stands for a single time response captured from given
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illumination and detector positions. ⌥(|~p- ~pi|, |~p- ~pd|) stands for the intensity
drop-o� term. The kernel function �(|~p- ~pi|+ |~p- ~pd|- t · c) mainly describes
the geometry of the integral. Based on whether illumination position ~pi and de-
tector position ~pd are co-located or not, the geometry looks either spherically or
ellipsoidally.

However, the actual forward model A is not equal to B only if the multibounce
light is negligible. In fact, we can model the time response measurement g(~p) into
two parts g 0

(~p)direct and g
0
(f(~p))multi.

The actual physically accurate model results to

g(~pi,~pd, t) = Af(~p) = g
0
(~pi,~pd, t)direct + g

0
(f(~p))multi = Bf(~p)| {z }

Direct

+g
0
(f(~p))| {z }
MPI

(5.9)

It is obvious to see that the multibounce light depends on the unknown function
f. Solving the entire inverse problem accounting for the multibounce signal is a
bi-convex problem sinceA and f are both unknown. Most of the methods presented
so far are trying to approximate B-1(g(~pi,pd, t)) by numerical optimization or a
linear combination of backprojection method. Both of them fail mathematically
with the term g

0
(f(p)) in Eq. (5.9) causing some multibounce signal artifacts in the

reconstruction volume.
3. Delta kernel model error Even though the model used before gives a well-

approximated result (Eq. (5.8)), the direct bounce modeling still has an internal
error in reality.

The kernel function �(|~p- ~pi|+ |~p- ~pd|- t · c) in the integral (5.8) refers to infi-
nite temporal resolution. Since inverse methods trying to solve the model refers to
the infinite temporal resolution, based on our observation, this inaccurate modeling
may harm the inverse solution more and more when the temporal resolution from
the measurement becomes lower. This means the inverse crime happens.

In reality, the actual light pulse coming from the physical setup may have a
specific temporal degradation or shape distortion resulting from the complex relay
wall surface. Previous methods try to ignore the first returning pulse reflected from
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the visible surface. We argue that it would be useful to use it to correct this delta
modeling error.

The good thing for the approximation is that it makes the inverse process
tractable by only adding extra physical constraints, such as looking at a simple
patch or reducing the scene complexity. On the other hand, modeling a proper
NLOS formation may result in the inverse becoming mathematically intractable.
We want to address those di�culties and gaps for the readers for future research.
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Three-dimensional Fourier slice sampling

In our main text Section 4.1, we mention the planar model for the NLOS forward
measurement function. Here we provide a detailed model to represent the 3D
Fourier slice sampling (main text Section 5.1 refers to 2D case).

Basic notation: I(x,y, z) represents the unknown volume function in the carte-
sian coordinates x,y, z. F(u, v,h) refers to its Fourier transform. t(x,y, z) refers to
the measurement (integral) data.

Cartesian to spherical coordinates: If we regard the center of the 3D unknown
volume as the origin, ⇢ can be regarded as the distance of each plane integral and ✓

and � directly refer to the direction of each projection integral.
For the measurement data:

g(⇢, ✓,�) = t(x,y, z) . (5.10)

For the unknown volume function, g(⇢, ✓,�) refers to the measurement data in
spherical coordinates. To agree with the coordinate, we translate the coordinate for
F(u, v,h) to G(!, ✓,�) as well.

3D Plane Radon integral: Based on the 3D Radon transform, the transformation
between the original data I(x,y, z) and measurement data in spherical coordinates
g(⇢, ✓,�) can be interpreted as follows:

g(⇢, ✓,�) =
ZZZ1

-1
I(x,y, z)�(sin ✓ cos�x+ sin ✓ sin�y+ cos ✓z- ⇢)dxdydz .

(5.11)
Then, we calculate the 1D Fourier transform of the measurement g(⇢, ✓,�) along �

as follows:
G(!, ✓,�) =

Z1

-1
g(⇢, ✓,�)e-j2⇡!⇢ d⇢ . (5.12)
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Replacing g(⇢, ✓,�)with equation in 5.11 yields full expression.

G(!, ✓,�) =
Z1

-1

ZZZ1

-1
I(x,y, z)

�(sin ✓ cos�x+ sin ✓ sin�y+ cos ✓z- ⇢)dxdydze-j2⇡!⇢ d⇢ . (5.13)

Then the to make delta kernel �(sin ✓ cos�x+ sin ✓ sin�y+ cos ✓z- ⇢) inside
the equation become one, we can get rid of the ⇢ variable by using ⇢ = sin ✓ cos�x+
sin ✓ sin�y+ cos ✓z. Then we simplify the equation:

G(!, ✓,�) =
ZZZ1

-1
I(x,y, z)e-j2⇡(! sin ✓ cos�x+! sin ✓ sin�y+! cos ✓z) dxdydz ,

(5.14)
whereas the Fourier transform of the unknown volume function f(x,y, z) in Carte-
sian coordinate results as follows:

F(u, v,h) =
ZZZ1

-1
I(x,y, z)e-j2⇡(ux+vy+hz) dxdydz . (5.15)

It is easy to see comparing Eqs. (5.14) and (5.15) that the 3D Fourier slice can be
achieved as follows:

G(!, ✓,�) = F(! sin ✓ cos�,! sin ✓ sin�,! cos ✓) . (5.16)

From Eq. (5.16) we can see that, with a given projection direction, the Fourier
transform of the spatial-temporal measurement G(!, ✓,�) is a slice of the Fourier
transform of the original data F(u, v,h).

Planar model filtered backprojection method

The previous section mentioned the 3D Fourier slice form of the 3D planar Radon
integral. Here we list the filter backprojection method for this type of integration.
We keep the same notation as in the previous section.

To recover I(x,y, z) from its Fourier spectrum F(u, v,h), we can simply apply
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the inverse Fourier transform as follows:

I(x,y, z) =
ZZZ1

-1
F(u, v,h)ej2⇡(ux+vy+hz) dudvdh . (5.17)

Rewriting Equation (5.17) by replacing the Cartesian coordinate with spherical
coordinates yields

I(x,y, z) =
ZZZ1

-1
F(! sin ✓ cos�,! sin ✓ sin�,! cos ✓)

ej2⇡(! sin ✓ cos�x+! sin ✓ sin�y+! cos ✓z)!2 sin ✓d!d✓d� . (5.18)

As we know from Equation (5.16), we could replace the term
F(! sin ✓ cos�,! sin ✓ sin�,! cos ✓) in Equation (5.18) as follows:

I(x,y, z) =
ZZZ1

-1
G(!, ✓,�)ej2⇡(! sin ✓ cos�x+! sin ✓ sin�y+! cos ✓z)!2 sin ✓d!d✓d� .

(5.19)
We reuse the defined ⇢ = sin ✓ cos�x+ sin ✓ sin�y+ cos ✓z again to simplify the
equation and rewrite Equation (5.18) as:

I(x,y, z) =
ZZZ1

-1
G(!, ✓,�)ej2⇡!⇢!2 sin ✓d!d✓d�

=

Z2⇡

0

Z⇡

0
[

Z1

-1
!2 ·G(!, ✓,�)ej2⇡!⇢ d⇢] sin ✓d✓d�

=

Z2⇡

0

Z⇡

0
[kernel ⇤ g(⇢, ✓,�)] sin ✓d✓d�

(5.20)

Notice that in this equation, the final line ⇤ represents the convolution operator
which its frequency response is!2. Based on the definition, it is Laplacian filter.
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Throughout this thesis, we design computational imaging solvers for Non-line-
of-sight (NLOS) imaging using wave di�raction theory. By doing this, we have
developed a method that yields a new class of imaging algorithms mimicking the
various capabilities of line of sight cameras.

In Chapter 2, we drive new class of NLOS imaging algorithms rely on solving
wave di�raction integral, namely the Rayleigh-Sommerfeld Di�raction (RSD) inte-
gral. We illustrate the robustness and versatility of our method by implementing
three virtual NLOS imaging systems based on common LOS techniques: a conven-
tional photography camera capable of imaging NLOS scenes without knowledge of
the timing or location of the illumination source; a transient photography system
capable of capturing transient videos of the hidden scene revealing higher-order
interreflections beyond 3rd bounce; and a confocal time-gated imaging system ro-
bust to interreflections. The computational cost of our algorithm is bounded by the
RSD solver computing the image formation model with complexity O(N3 log(N)).
The examples shown highlight the primary benefit of our approach: By turning
NLOS into a virtual LOS system, the intrinsic limitations of previous approaches
no longer apply, enabling a new class of NLOS imaging methods that leverage
existing wave-based imaging methods. Formulating NLOS light propagation as a
wave does not impose limitations on the types of problems that can be addressed,
nor the datasets that can be used. Any signal can be represented as a superpo-
sition of phasor field waves; our formulation thus can be viewed as a choice of
basis to represent any kind of NLOS data. Expressing the NLOS problem this way
allows to create a direct analogy to LOS imaging, which can be exploited to derive
suitable imaging algorithms, and to implement them e�ciently. In the future, we
anticipate its application to other LOS imaging systems to, for instance, separate
light transport into direct and global components, or utilize the phase of phasor
field for enhanced depth resolution. Our virtual imaging system could also be
used to create a second virtual imaging system to see around two corners, assuming
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the presence of a secondary relay Lambertian surface in the hidden scene, or to
select and manipulate individual light paths to isolate specific aspects of the light
transport in di�erent NLOS scenes. In that context, combining our theory with
light transport inversions, via, e.g., an iterative approach, could potentially lead to
better results, and is an interesting avenue of future work.

In Chapter 3, we introduce an NLOS reconstruction method using the phasor
field formalism along with a convolutional Fast Fourier Transform (FFT) based
Rayleigh SommerfeldDi�raction (RSD) algorithm to provide fast non-approximative
scene reconstructions for general capture setups, in particular including non-confocal
setups using a single laser and a sensor array. Our hardware prototype includes a
single-photon avalanche diode detector and a picosecond pulse laser which will be
mentioned specifically later. When used in the confocal scenario, this new method
performs at speed similar to LCT and FK Migration, while requiring significantly
less memory. In addition to applying our new algorithm to open source data [3, 2],
we also perform several additional experiments. To the best of our knowledge, our
proposed method is the first to solve the general non-confocal NLOS imaging sce-
nario with a similar time requirement and computational complexity as the fastest
existing algorithms. In contrast to them, however, our method has much lower
memory requirements. This allows us to reconstruct larger scenes and will enable
implementation on embedded systems and GPU units where memory is limited.
Knowledge of the relative layouts of the two grids may reduce or eliminate the
requirement for working memory in the interpolation. One can also fine tune the
trade-o� between Fourier domain oversampling, more sophisticated interpolation
methods, and reconstruction quality. It might also be possible to perform further
down-sampling along the temporal dimension and use single instead of double
precision variables to require less memory. These approaches are interesting topics
for future research and can draw from considerable prior work on this problem in
related FK Migration application areas. At present, however, the method takes sev-
eral hundred times more memory than our proposed method. The LCT includes a
similar re-sampling step that creates large memory requirements. Re-sampling and
interpolation problems in this domain are studied in the literature covering planar
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and spherical inverse radon transforms. We believe our method will enable real
time NLOS imaging and reconstruction of large room scale scenes at full resolution.

In Chapter 4, we provide the Wigner Distribution Model for Phasor field NLOS
imaging. Our work also provides an understanding of the connections between
wave optics, Wigner Distribution Function, and NLOS imaging problems. We show
that the phasor field NLOS imaging method with an exact Rayleigh-Sommerfeld
Di�raction operator does not have any standard geometrical interpretations in the
Wigner Distribution Function domain. The achievable theoretical lateral resolution
from the Rayleigh-Sommerfeld Di�raction operator is given, and it can be evaluated
numerically for di�erent settings. For analytical purposes, it is possible to use the
Fresnel di�raction as an approximation to model the phasor field propagation as a
shear mapping in theWigner Distribution Function domain if errors are considered.
This error is di�erent among di�erent acquisition schemes, and it is less for confocal
than for non-confocal measurements. Thus, the Fresnel approximations can be
considered on confocal measurements. The di�erences between the confocal and
non-confocal measurements are described by adding the illumination wavefront
function into the phasor field model. This means that, theoretically, one can probe
a hidden object’s spatial frequency contents under non-confocal acquisitions by
illuminating virtual point source from di�erent positions on the relay wall. One
can also apply concepts introduced in Sec. 4.1 to other linear NLOS imaging for-
mation models in the Wigner Distribution Function domain. Our reliance on the
Rayleigh-Sommerfeld Di�raction operator o�ers both advantages and disadvan-
tages. The Rayleigh-Sommerfeld Di�raction operator is known to be hard to treat
analytically. This is why past treatments of Wigner Distribution Function imaging
rely on the Fresnel di�raction operator to have a simplified analytical equation.
Unfortunately, this Fresnel approximation is not valid in most Non-Line-of-Sight
reconstructions. Knowing theoretical limits of the exact solution is helpful, such as
knowing the lateral resolution limit. Our work may stimulate further researches,
such as the compressed Non-Line-of-Sight sampling, co-designing measurements
and reconstruction methods, and other Non-Line-of-Sight imaging related areas.

In Chapter 5, we introduce a feature visibility model. Our statements apply to
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any NLOS measurement that involves only the direct (3rd bounce) light from the
hidden scene. Missing features may be reconstructed by algorithms by making use
of higher order bounces, or missing information may be filled in using priors. This
hole filling solution is di�erent from deblurring and de-noising tasks common in
imaging. The modulation transfer functions we derive are zero outside the Fourier
cone (as opposed to just being very small like a Gaussian). This means deblurring
methods based on deconvolution will fail, even for noiseless data. The limited
aperture NLOS scenario is essential to be understood for future inverse method
design. All the deterministic linear inverse methods can only recover the scene
features which are contained in the limited measurement space. Overall, based on
our local MTF sampling cone model, it is easy to see this limited aperture problem.
By allowing any targets around the corner, some scene features may not be well
represented, or completely missing in the incomplete measurement space. Future
inverse method design should go beyond deterministic inverse methods by adding
prior constraints to the inversemodel to specifically account for this ill-posed limited
aperture problem. In this work we provide only an approximate analytical model
that we back up with numerical computations of the exact functions. An exact
analytical expression for the Fourier cone is subject of further research.
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[78] VictorNascov andPetreCătălin Logofătu. Fast computation algorithm for the
Rayleigh-Sommerfeld di�raction formula using a type of scaled convolution.
Applied optics, 48(22):4310–4319, 2009.

[79] Jaakko Astola and Leonid Yaroslavsky. Advances in signal transforms: theory
and applications, volume 7. Hindawi Publishing Corporation, 2007.



102

[80] Deyang Jiang, Xiaochun Liu, Jianwen Luo, Zhengpeng Liao, Andreas Vel-
ten, and Xin Lou. Ring and radius sampling based phasor field di�raction
algorithm for non-line-of-sight reconstruction. IEEE Transactions on Pattern
Analysis & Machine Intelligence, (01):1–1, 2021.

[81] Zhengpeng Liao, Deyang Jiang, Xiaochun Liu, Andreas Velten, Yajun Ha,
and Xin Lou. Fpga accelerator for real-time non-line-of-sight imaging. IEEE
Transactions on Circuits and Systems I: Regular Papers, 2021.

[82] Eugene P Wigner. On the quantum correction for thermodynamic equilib-
rium. In Part I: Physical Chemistry. Part II: Solid State Physics, pages 110–120.
Springer, 1997.

[83] Philip Mayne Woodward. Probability and Information Theory, with Applications
to Radar: International Series of Monographs on Electronics and Instrumentation,
volume 3. Elsevier, 2014.

[84] Markus Testorf, Bryan Hennelly, and Jorge Ojeda-Castaneda. Phase-Space
Optics: Fundamentals and Applications: Fundamentals and Applications. McGraw
Hill Professional, 2009.

[85] Martin J Bastiaans. Application of the wigner distribution function to par-
tially coherent light. JOSA A, 3(8):1227–1238, 1986.

[86] Martin J Bastiaans. The wigner distribution function applied to optical
signals and systems. Optics communications, 25(1):26–30, 1978.

[87] Martin J Bastiaans. Application of the wigner distribution function in optics.
The Wigner Distribution—Theory and Applications in Signal Processing, pages
375–426, 1997.

[88] Haldun M. Ozaktas, Zeev Zalevsky, and M. Alper Kutay. The Fractional
Fourier Transform with applications in optics and signal processing. Wiley, 2001.

[89] Walter D Furlan, Manuel Martinez-Corral, Bahram Javidi, and Genaro Saave-
dra. Analysis of 3-d integral imaging displays using the wigner distribution.
Journal of Display Technology, 2(2):180–185, 2006.

[90] Remo Ziegler, Simon Bucheli, Lukas Ahrenberg, Marcus Magnor, and
Markus Gross. A bidirectional light field-hologram transform. In Computer
Graphics Forum, volume 26, pages 435–446. Wiley Online Library, 2007.



103

[91] Zhengyun Zhang and Marc Levoy. Wigner distributions and how they
relate to the light field. In 2009 IEEE International Conference on Computational
Photography (ICCP), pages 1–10. IEEE, 2009.

[92] Roarke Horstmeyer, Se Baek Oh, and Ramesh Raskar. Iterative aperturemask
design in phase space using a rank constraint. Optics express, 18(21):22545–
22555, 2010.

[93] Martin J Bastiaans. The wigner distribution function and its applications to
optics. In AIP conference proceedings, volume 65, pages 292–312. AIP, 1980.

[94] Mathias Fink. Time-reversed acoustics. Scientific American, 281(5):91–97,
1999.

[95] Minghua Xu and Lihong VWang. Universal back-projection algorithm for
photoacoustic computed tomography. Physical Review E, 71(1):016706, 2005.

[96] Jurij Tasinkevych and Ihor Trots. Circular Radon transform inversion tech-
nique in synthetic aperture ultrasound imaging: an ultrasound phantom
evaluation. Archives of Acoustics, 39(4):569–582, 2015.

[97] Sunghwan Moon. On the determination of a function from an elliptical
Radon transform. Journal ofMathematical Analysis andApplications, 416(2):724–
734, 2014.

[98] Alexander H Delaney and Yoram Bresler. Globally convergent edge-
preserving regularized reconstruction: an application to limited-angle to-
mography. IEEE Transactions on Image Processing, 7(2):204–221, 1998.

[99] Martin Benning, Christoph Brune, Marinus Jan Lagerwerf, and Carola-
Bibliane Schönlieb. TGV sinogram inpainting for limited angle tomography.
In Technical Report. University of Cambridge, 2015.

[100] Stanley R Deans. The Radon transform and some of its applications. Courier
Corporation, 2007.

[101] Rim Gouia-Zarrad and Gaik Ambartsoumian. Approximate inversion algo-
rithm of the elliptical Radon transform. InMechatronics and its Applications
(ISMA), 2012 8th International Symposium on, pages 1–4. IEEE, 2012.

[102] Jürgen Beyerer, Fernando Puente León, and Christian Frese. Machine vision:
Automated visual inspection: Theory, practice and applications. Springer, 2015.


	Contents
	List of Tables
	List of Figures
	Abstract
	Introduction
	Related work
	Contributions

	Non-Line-of-Sight Phasor Field Diffraction Model
	A formal definition
	A signal processing framework
	Appendix: Results and additional notes

	Computational Solver for Phasor Field Non-Line-of-Sight Imaging
	Continuous model
	Discrete model
	Numerical procedure
	Appendix: Result

	Wigner Distribution Description for Phasor Field Non-Line-of-Sight Imaging
	Wigner distribution in classical imaging
	Wigner distribution in Non-Line-of-Sight imaging
	Appendix: Algebraic steps for two Phasor field propagators in the Wigner distribution domain

	Analysis of Feature Visibility in Non-Line-of-Sight Measurements
	Introduction
	Related Work
	NLOS imaging problem
	NLOS Measurements in the Fourier domain
	Measurement of scene features
	Appendix: Results and additional notes

	Conclusions and Future Work
	Bibliography

