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ABSTRACT 

This dissertation introduces a comprehensive trajectory optimization method for connected automated 

vehicles (CAVs) operating on curved roads, augmented by infrastructure support. We offer detailed 

strategies for car-following and lane-changing, crafted specifically for intricate road structures. 

Specifically, this paper systematically formulates trajectory optimization in a spatial domain and on a 

curvilinear coordinate. This unique approach allows for a dynamic formulation that can adeptly 

accommodate spatially diverse road geometries, traffic regulations, road obstacles, and the dynamics of 

leading vehicles. The acquisition of this intricate data is facilitated through both vehicle-to-

infrastructure (V2I) and vehicle-to-vehicle (V2V) communication channels. Our proposed strategies – 

encompassing trajectory optimization, car-following, and lane-changing – are underpinned by three 

foundational segments: i) An initial mathematical validation, confirming the controllability of our 

system and thereby ensuring its operational feasibility; ii) The employment of a multi-objective model 

predictive control (MPC) framework, devised to refine trajectories in a rolling horizon manner. This 

setup guarantees simultaneous adherence to collision avoidance, traffic regulations, and vehicular 

kinematic constraints; iii) To corroborate the efficacy of our approach, we undertook numerical 

simulations across a spectrum of scenarios. The derived results indicate that our method is adept at 

sculpting smooth vehicular trajectories, adeptly navigating around obstacles, and consistently 

complying with traffic regulations across varying circumstances. Notably, the method exhibits 

resilience against variations in road geometries and other potential disruptions. In essence, this paper 

presents a holistic solution for CAVs maneuvering on complex road topographies, ensuring safety, 

compliance, and efficiency in their operations. 

KEYWORDS 

Car-following, Connected Automated Vehicles, Mandatory Lane-changing, Model Predictive Control, 

Spatial Domain, Trajectory Optimization 
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1. INTRODUCTION 

Advanced sensing and communication technologies integrated into vehicular and infrastructure 

systems have been experienced a fast development in very recent years (Cao et al., 2021; Wang 

et al., 2020a; Wang et al., 2020b). Automated vehicles (AVs) with advanced sensing 

technology provide the ability for the vehicle to take over its driving task from the human driver, 

which will eliminate all human errors and enable efficient microscopic control. Meanwhile, 

connected vehicles (CVs) incorporate communication technologies, such as V2V and V2I 

communication, to share information with each other. Although data privacy and security 

concerns may prevent AV and CV users from sharing data, Shi et al. (2021) showed that AV 

acceptability can be granted by providing a ride experience to people who are hesitant about 

AVs, and Acharya & Mekker (2022) showed that CV acceptability is affected by the reputation 

of the data manager. Through the integration of the advantages of both AV and CV 

technologies, CAVs are able to complete auto-driving tasks with a broader range of precise 

environment and vehicle dynamic information, which will assist them in obtaining current and 

future road situations, particularly the provision of information on previously unseen hazards 

in advance. 

1.1 Background  

Over the last decade, a large portion of all traffic accidents have been caused by inattention or fatigue 

of the driver. About 15 percent of all traffic accidents occurred due to unintended lane departure in 

German over the last 10 years, and 35 percent of those have been fatal (Pohl et al., 2007). In order to 

prevent these unintended lane departure types of accidents, many researches on LKAS or lane departure 

avoidance systems (LDAS) for human-driven vehicles has been performed, which tended to focus on 

the control algorithm considering the interaction of the human driver (Pilutti & Ulsoy, 1999; 

Raksincharoensak et al., 2008; Risack et al., 2000). The lane-keeping control without human driver 
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manipulation was less studied. Moreover, complex highway environments and unpredictable traffic 

conditions have set up higher requirements on accuracy and response time for CAVs to increase 

transportation safety and efficiency. Therefore, research on the management and avoidance of this 

problem has been carried out since the development of freeway roads.  

Traffic oscillations, commonly referred to as "stop-and-go" driving in congested scenarios, represent a 

peculiar traffic phenomenon. In these situations, vehicles on highways continuously cycle between 

acceleration and deceleration rather than maintaining a consistent speed. This cyclic movement pattern 

can lead to a host of challenges related to highway traffic efficiency and sustainability, such as 

prolonged delays, potential safety hazards, driver discomfort, and increased fuel consumption. Given 

its significance and intricate nature, traffic oscillations have been the subject of extensive research. Both 

empirical observations and theoretical models have been employed to better understand the 

phenomenon. A considerable volume of literature posits that the genesis and spread of these oscillations 

largely stem from car-following behavior (Chen et al., 2014; Laval & Leclercq, 2010). This behavior 

pertains to a driver's reactions to the movements of the vehicle ahead based on their observations and 

perceptions. Equipped with insights into the formation and progression of traffic oscillations, several 

traffic control and management strategies have been devised to temper this phenomenon and mitigate 

its ramifications. Some notable methodologies, such as traffic policies and variable speed limit (VSL) 

control (Carlson et al., 2010a; Carlson et al., 2010b; Han & Ahn, 2018), aim to control and manage 

traffic on a macro scale, providing broader solutions to alleviate the challenges posed by these 

oscillations. 

Over the past decade, there has been a marked progression in CAV technology. These advancements 

seamlessly meld connectivity with automation. As a result, CAVs are not only equipped to 

autonomously navigate using onboard systems but also have the ability to communicate inter-

vehicularly through V2V interfaces or relay information to infrastructure elements via V2I channels. A 

particularly innovative application harnessed in CAVs is the Cooperative Adaptive Cruise Control 

(CACC). This technology elevates the traditional adaptive cruise control by introducing cooperative 



3 

 

vehicular maneuvers. Through communication mediums like Dedicated Short-Range Communications 

(DSRC), LTE, and 5G, CACC facilitates the exchange of essential vehicle data—acceleration, speed, 

and position, among others. The adoption of CACC brings several significant advantages for CAVs: 1) 

enhanced driving safety owing to reduced actuation times. 2) increased roadway capacity due to 

decreased headways between vehicles. 3) diminished energy consumption and environmental pollution 

as a result of fewer unnecessary speed fluctuations, as highlighted by (Zhou et al., 2017a). Over time, 

CACC technology has been explored, refined, and implemented across varied traffic contexts. A notable 

application is its role in streamlining cooperative merging of CAVs, especially in on-ramp scenarios. 

The innovative concept of employing a 'virtual vehicle' within the CACC system for on-ramp merging 

was broached by Lu et al. (2004). Their proposition involved preemptively positioning a virtual vehicle 

on the primary road prior to the actual merge. Elements of this pioneering concept have influenced 

aspects of our research, details of which will be elaborated upon in subsequent chapters. 

In addition to the advancements made through V2V communication-based technologies, there's a 

burgeoning interest in harnessing infrastructure-centric solutions, notably through I2V communication. 

A standout example of an automated driving system utilizing this approach is the Connected and 

Automated Vehicle Highway (CAVH) (Ding et al., 2019). The CAVH system is a dual-layered 

construct, encompassing both the CAV subsystem and the Connected and Automated Highway (CAH) 

subsystem. The latter, as its name suggests, brings "intelligence" to the roadways by embedding Road 

Intelligent Units (RIUs). These units are armed with capabilities spanning sensing, predicting, decision-

making, and controlling. With these RIUs in place, the CAH subsystem becomes an active participant 

in the transportation landscape. The synthesis of CAV and CAH within the CAVH system promises 

remarkable improvements across the board. This includes enhanced transportation efficiency, bolstered 

traffic safety, and optimized energy utilization. Delving into specifics, in an on-ramp context, the CAH 

subsystem actively dispatches data—covering road geometry, vehicle specifics, and control 

directives—to CAVs within its communication purview. What's noteworthy is that these stationary 

RIUs, strategically positioned along the roadways, act as computational relief for the CAVs. By 
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offloading certain tasks to these units, CAVs can focus on core functionalities. Furthermore, the 

presence of these RIUs elevates the stability and reliability of the overarching system, making it less 

susceptible to lapses or failures. In essence, such forward-thinking technologies pave the way for a new 

era of transportation, fostering a conducive environment for the development and deployment of 

intricate microscopic control algorithms. 

1.2 Problem Statement 

With the above discussion, the following issues and questions appear as part of the problem formulation: 

• How to design a spatially formulated constrained CAV trajectory optimization strategy in a 

curvilinear coordinate? 

• How to design a dynamic two-dimensional (2D) spatially formulated constrained CAV car-

following algorithm in a curvilinear coordinate? 

• How to combine the spatially formulated constrained CAV trajectory optimization strategy with a 

dynamic CAV car-following strategy? 

• How to combine platoons within different lanes and form a new platoon when a mandatory lane-

changing is required? 

1.3 Research Objectives 

• Design a CAV trajectory optimization strategy that can significantly simplify the formulation 

compared with ones formulated in the time domain and Cartesian coordinates. 

• Design a CAV trajectory optimization strategy that can quickly converge to the desired vehicle 

operation state (e.g., target speed, following lane centerline) and robust to the spatial disturbances 

(e.g., lane curvature change) by the infrastructure communication and assistance. 

• Provide a multi-objective optimization (e.g., smoothness of vehicle control, less deviation from the 

desired state) framework which explicitly incorporates the spatial characteristics (e.g., lane 

curvature) and constraints (e.g., speed limit, obstacles, and lane width) while avoiding obstacles. 

• Fill the gap of no 2D CAV car-following in the literature by generating a state space combining 
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car-following and vehicle trajectory optimization. 

• Design a CAV car-following strategy that can quickly converge to the desired car-following state 

with optimized vehicle trajectory by communicating with the infrastructure and the leading vehicle. 

• Design a CAV car-following strategy that can maneuver a quick and smooth platooning obstacle 

avoidance without lane change. 

• Design a spatially formulated mandatory lane-changing algorithm for CAVs using the curvilinear 

coordinate system and integrates lane-changing and car-following concerns. 

• Design a spatially formulated mandatory lane-changing algorithm for CAVs integrating lane-

changing and car-following concerns. 

1.4 Scope and Assumption 

In this study, we present an illustrative example underscoring the significance of trajectory planning, 

car-following, and lane-changing strategies. When a platoon of CAVs navigates a challenging traffic 

environment, such as a winding two-lane highway segment with right-hand traffic. This scenario, 

depicted in FIG. 1-1, features a potential obstacle and an outer lane that eventually merges into an inner 

lane which is denoted as the target lane. The expectation is for CAVs, especially those in the outer lane, 

to execute a lane-changing maneuver well before the outer lane concludes. To facilitate this, several 

strategies come into play. The lead CAV requires a trajectory optimization strategy ensuring both lane 

adherence and obstacle avoidance. Subsequent CAVs must implement a robust car-following strategy 

to maintain the platoon formation. Moreover, those positioned in the outer lane necessitate a prescriptive 

lane-changing approach to seamlessly and safely transition to the target lane prior to the outer lane's 

end. While a myriad of potential paths exist for these CAVs, the decision-making window is tight. It is 

assumed that all CAVs can collect sensing data from not only their sensors but also road attributes (road 

geometry, traffic control devices) communicated with roadside units through V2I communication (Ran 

et al., 2020) and other vehicles' dynamics, like speed and acceleration, through V2V communication, 

by which CAVs know exact traffic environment information in advance. The chief aim of our trajectory 

planning algorithm is to rapidly discern the optimal path among a plethora of choices. This optimal path 
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hinges on its leading CAV's trajectory and is designed to meet criteria concerning safety, efficiency, 

comfort, and adherence to traffic regulations. Once this optimal trajectory is determined by the leading 

CAV, it transmits its vehicular dynamics and control parameters to the following CAVs through V2V 

communication. This data then informs the car-following and lane-changing algorithms of the 

subsequent vehicles. It's imperative to note that our design framework is tailored exclusively for 

environments populated by CAVs and operating under CAVH systems. 

 

FIG. 1-1. Schematic Diagram of the Proposed Methods. 

Ahead of detailed modeling, the following assumptions have been adopted: 

• The infrastructure has “intelligence” (Ding et al., 2019) that can sense both vehicle information and 

road geometrics information. 

• The vehicles are treated as points. 

• The CAVs are fully automated, which (International, 2014) means the vehicle can control by 

themselves. Furthermore, they can communicate with each other and with infrastructure. 

• All vehicle dynamics effects such as suspension movement, road inclination, and aerodynamic 

forces are negligible. 

• All actuation and communication delays from other sensors through V2V and/or V2I 

communication are negligible due to the increasing maturity of 5G communication technologies 

(Akpakwu et al., 2017). 
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• The geometric features of roads (e.g., road curvature), traffic regulations (e.g., speed limit), obstacle 

shapes (e.g., lane boundaries), and vehicular data can be sensed in real-time by the infrastructure 

and leading CAV and transmitted to the following CAVs. 

Note that our algorithm can be treated as an upper-level controller in a hierarchical framework, and the 

ignored factors are typically handled by lower level controllers, such as the controller proposed by Zhou 

& Ahn (2019). 

1.5 Dissertation Organization 

The rest of this paper is organized as follows. Chapter 2 introduces the relevant studies of CAV. 

Chapter 3 describes the vehicle trajectory optimization system by a state space and proves the 

controllability of our system. Based on that, we formulate a detailed MPC formulation and solve it using 

quadratic programming. Chapter 4 provides numerical simulation experiments to show the practicality 

and effectiveness of our vehicle trajectory optimization algorithm. Chapter 5 describes the CAV car-

following system by a state space and proves the controllability of our system. Based on that, we 

formulate a detailed MPC formulation and solve it using the quadratic programming method. Chapter 

6 provides numerical simulation to show the practicality and effectiveness of our car-following 

algorithm. Chapter 7 delves into the intricacies of the CAV lane-changing system by introducing the 

concept of 'virtual sequencing'. Building on this foundation, we formulate a mixed-integer programming 

based MPC, which is further enriched by incorporating a bi-directional communication topology, 

ensuring a holistic and interconnected design strategy. Chapter 8 provides numerical simulation to 

show the practicality and effectiveness of our lane-changing and car-following algorithm. Last, we give 

the conclusion and point out future works in Chapter 9.  
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2. LITERATURE REVIEW 

This chapter presents a literature review on research related to traditional CAV trajectory 

planning, car-following and lane-changing strategy. 

2.1 CAVs Trajectory Planning Strategy 

Due to the importance, CAVs trajectory planning algorithms have been widely researched in recent 

years (Bohren et al., 2008; Frazzoli et al., 2002; Gritschnede et al., 2018; Guo et al., 2018; Gutjahr et 

al., 2016; Manzinger et al., 2020; Mensing et al., 2011; Plessen, 2017; Werling et al., 2010). The state 

of art of CAV trajectory planning algorithms can be generally divided into four different approaches: 

(i) the graph search based approach (Bohren et al., 2008; Kala & Warwick, 2013); (ii) the interpolating 

curve planner (Fraichard & Scheuer, 2004; Labakhua et al., 2008; Reeds & Shepp, 1990); (iii) the 

sampling based approach (Karaman et al., 2011; Kuwata et al., 2009); and (iv) the function optimization 

approach (Cremean et al., 2006; Kogan & Murray, 2006). The graph search based approach divides the 

feasible vehicle travel region into multiple grids, and by that, finding the optimal trajectory can be 

equivalently treated as finding the shortest path among nodes of feasible grids. By the shortest path 

formulation, this type of approach (Wu et al., 2020a; Wu et al., 2020b) usually applied dynamic 

programming and A-star algorithm. By the nature of the shortest path problem, this type of approach 

can be slow depending on the number of lattices, and the resulting path may not continuous when the 

size of the grid is big. On the other hand, the interpolating curve planner, which uses predefined curve 

functions to generate reference points from the available space (Berglund et al., 2009; Labakhua et al., 

2008; Pérez et al., 2013), is comparatively computational less expensive. The above-mentioned 

approaches largely ignore vehicle kinematics by assuming the physical positions are attainable 

regardless of vehicle speed and steering angle. The sampling based approach executes a random search 

over the vehicle feasible state space (e.g., position, speed, and acceleration) and finds an optimal 

sequence of state heuristically by comparing these randomly sampled state spaces according to a 

predefined objective function (e.g., minimize travel delay and intensive acceleration or brake). Though 
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effective, these approaches usually render suboptimal solutions suggested by (Elbanhawi & Simic, 2014) 

due to the searching heuristics nature. As an opposite, the function optimization approach formulates 

the trajectory planning of CAV as a constrained optimization problem that is flexible in handling 

constraints from the environment (Gritschneder et al., 2018; Guo et al., 2018; Heilmeier et al., 2019; 

Nolte et al., 2017), which can minimize a multi-objective cost function meanwhile satisfying the vehicle 

dynamics and hazard avoidances constraints. Further, the constrained optimization approach is usually 

implemented in a rolling horizon fashion to be against unexpected disturbances, and it is also known as 

MPC in the control theory field, which is widely applied in CAV car-following control (Gong et al., 

2016; J. Wang et al., 2019; Zheng et al., 2016).  

Though promising, the constrained optimization based CAVs trajectory planning still faces some 

challenges. One challenge is to describe the road geometries in the formulation explicitly. Differed in 

the utilized coordinates, they can be further categorized as (i) CAV trajectory constrained optimization 

on a Cartesian coordinate (Gritschneder et al., 2018; Guo et al., 2018; Heilmeier et al., 2019; Nolte et 

al., 2017) and (ii) CAV trajectory constrained optimization on a curvilinear coordinate (Barfoot & Clark, 

2004; Khalifa et al., 2019; Manzinger et al., 2020; Plessen, 2017). As a most widely applied coordinate, 

the Cartesian coordinate is more suited to describe open spaces. However, road geometry is usually 

composed of complex and composite curves, which means using Cartesian coordinates will be 

technically challenging to formulate the road boundaries as constraints. On the other hand, the 

curvilinear coordinate system is born to describe geometries formed by curved lines (Héry et al., 2017). 

Especially for the road geometry description, one axle of the curvilinear coordinate can be the lane 

centerline, while the other axle can be perpendicular to the centerline tangent. By that, the road geometry 

and boundaries can be simply formulated, reducing a great formulation and computation complexity. 

Nevertheless, most of the vehicle trajectory optimization in the literature is vastly built by a temporal 

formulation (Guo et al., 2018; Gutjahr et al., 2016; Manzinger et al., 2020; Mensing et al., 2011; Plessen, 

2017; Werling et al., 2010), assuming that the road geometry characteristics (e.g., curvature, lane 

tangent directions) remain unchanged over time, have not fully exploited the potentials of the 
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curvilinear coordinate. The road geometries characteristics, traffic regulations (e.g., speed limit), and 

hazards are spatially varying rather than temporally varying, which serve as an unobservable exogenous 

disturbance impacting the performances further exert a negative impact on the desired planning 

objectives. Though the real-time information of road attributes can be conveyed to CAVs via V2I, with 

the increasing maturity of the V2I communication, explicitly incorporating these spatially varying 

characteristics in the temporal domain is still forbiddingly hard. However, the very recent works by 

Zhang et al., (2020) and Zhao et al., (2020), which utilize the spatial formulation for one-dimensional 

(1D) CAV car-following control and curvilinear coordinate based human-driven vehicles modeling in 

an intersection, respectively, provide a new angle to formulate the trajectory planning problems in a 

spatial domain. Inspired by their works, we found that the spatial domain formulation can explicitly 

incorporate the optimal formulation of spatially varying attributes on a curvilinear coordinate. Hence, 

an infrastructure-assisted spatially constrained optimal CAV trajectory planning algorithm based on a 

curvilinear coordinate is provided in this paper. 

2.2 CAV Car-following Strategy 

Among numerous algorithms comprising CAV technologies, the CAV car-following algorithm is a 

critical component that enhances control and traffic flow efficiency and decreases fuel consumption  

(e.g., Lu & Liu, 2021; Wei et al., 2019; Zeng et al., 2022). Due to its potential and significance, a vast 

number of notable CAV car-following control algorithms have been developed to increase the traffic 

flow's efficiency and stability. Despite the fact that numerous CAV car-following algorithms have been 

developed, the vast majority of the CAV car-following algorithms in the literature only apply to 1D 

CAV control, which prohibits their wide applications. In the urban environment or local street, incidents 

that can be detected by incident detection technology (e.g., Karim & Adeli, 2003) and the spatially 

varying road geometries can easily create bottlenecks for vehicle operation. Therefore, in the era of 

CAVs, the application of CAVs is not limited to an idealistic straight line, but the lateral vehicle 

dynamics are also essential to be considered (e.g., Attia et al., 2014). Moreover, the work zone area 

formed by the construction work in freeways or urban highways can affect the highway capacity and 
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lead to traffic delays and queueing problem (e.g., Jiang & Adeli, 2003, Jiang & Adeli, 2004a, Jiang & 

Adeli, 2004b). Even though literature has developed some algorithms to predict work zone areas (e.g., 

Adeli & Ghosh-Dastidar, 2004; Hooshdar & Adeli, 2004; Karim & Adeli, 2003) or applied lane change 

during congested areas  (Li et al., 2021), how to cooperatively pass a narrowed lane as a CAV platoon 

is not researched. A cooperation CAV car-following control algorithm for such a complex scenario is 

needed to increase the automation level and CAV applicability. 

The work related to the cooperative 2D CAV car-following control can be categorized into CAV car-

following algorithms and 2D trajectory optimization. The state-of-the-art CAV car-following 

algorithms usually focus on 1D control, which can be generally classified into three streams: (i) state 

feedback control of a linear or nonlinear system (Morbidi et al., 2013; Zhang & Orosz, 2016; Zhang & 

Orosz, 2017), (ii) constrained optimization control (Hoogendoorn et al., 2012; Wang et al., 2014a; 

Wang et al., 2014b; Yang et al., 2017b) and (iii) deep reinforcement learning (DRL) approach (Qu et 

al., 2020; Shi et al., 2020). These three streams have advantages as well as disadvantages concerning 

constraint handling, trajectory forecasting, and stability assessment. For linear state feedback control or 

those reduced from simple nonlinear systems, while the string stability property can be mathematically 

proved, collision-free constraints imposed by reasonable vehicle dynamic limits and the environment 

cannot be explicitly incorporated. Additionally, it is not only challenging to create a multiple objective 

optimization scheme but also difficult to improve platooning control performance by incorporating the 

leading vehicle's predicted trajectory. In comparison, the constrained optimization control method, also 

referred to as MPC, is typically operative with a shifting horizon and is effective at dealing with 

exogenous uncertainties (e.g., work zones). The MPC method is adaptable to constraints imposed by 

the vehicle's physical limits (e.g., maximum steering angle and maximum acceleration/deceleration) 

and the environment (e.g., speed limit and lane boundaries), minimizing a cost function while satisfying 

multiple vehicle performance criteria (e.g., safety, comfort, and fuel consumption, etc.) in order to 

improve control performance. Additionally, the MPC approach can be classified as distributed MPC 

(Wang et al., 2015), consisting of only two vehicles in a platoon, or centralized MPC (Chen et al., 2018; 
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Zhou et al., 2017b), which involves all vehicles in a platoon. The distributed MPC has lower 

computational requirements than the central MPC, which makes it more practical. In contrast, the 

centralized control system increases the computational burden to achieve the best performance. Similar 

to the MPC controller, methodologies based on DRL have been increasingly used in constructing CAV 

controllers (Wang et al., 2015). The benefits of DRL approaches are primarily manifested in their 

model-free property for capturing the characteristics of complex systems and its quick decision can 

support CAV in real-time once the offline training is completed. However, as a learning-based method, 

DRL requires a large amount of data during its offline training phase, which can be difficult to collect 

or extremely expensive. Despite the fact that various algorithms mentioned above have been developed 

to enhance car-following performances, they are restricted to longitudinal movement. Seldom research 

addresses CAV car-following behaviors from a general 2D space.  

On the other hand, the aforementioned CAV car-following and trajectory optimization approaches are 

largely constructed in the time domain (Guo et al., 2018; Gutjahr et al., 2016; Manzinger et al., 2020; 

Mensing et al., 2011; Plessen, 2017; Werling et al., 2010). However, the attributes and disturbances of 

the highway, such as the speed limit and work zones, are represented by coefficients that vary in space. 

Although real-time highway characteristics information can be transmitted to CAVs via V2V/V2I, 

converting from spatial to temporal information can still be difficult and quickly become a 

computational burden for the vehicles. In addition, the time domain based MPC assumes that the road 

geometry remains unchanged over time for each prediction horizon since there is no direct connection 

between each time step ∆𝑡 and spatially varying road geometry, which can be easily solved by utilizing 

the nature of the space domain. Some cutting-edge research based on the space domain has been recently 

developed. For example, Zhang et al. (2020) proposed a 1D spatially formulated CAV car-following 

control that is robust to communication delay and better maintains equilibrium. Unlike the trajectory 

optimization problem which only considers the control of a single vehicle, the car-following problem 

is essentially a control problem for an interconnected system. The intricacy of the 2D car-following 

problem lies in that the interconnection between vehicles needs to be explicitly considered. This is due 
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to the fact that the leading vehicles continue to generate disturbances by accelerating and decelerating, 

and these disturbances can further propagate through the vehicular string. These changes bring the 

fundamental change of the control target as well as additional property analysis and guarantees. In 

particular, the controlled vehicle must maintain a distance and the same speed as the leading vehicle to 

ensure string stability (e.g., the disturbance will not get amplified through vehicular string). These 

concerns should also be alighted with other driving tasks in the real world (e.g., ensuring lane centering 

and avoiding obstacles), which requires a novel control algorithm to systematically solve the problems. 

Hence, in this paper, we aim to develop a new 2D spatially formulated constrained CAV car-following 

algorithm that is capable of (i) formulating a 2D CAV car-following policy based on a curvilinear 

coordinate in the spatial domain, extending from the simplified Newell’s car-following model; (ii) 

developing optimally distributed CAV cooperative 2D-control through MPC-based trajectory planning; 

and (iii) achieving intelligent platoon behavior such as work zone avoidance without lane changes 

through the developed distributed policy. 

2.3 CAV Lane-changing Strategy 

Lane-changing, a pivotal element in vehicle operation, presents a challenging but common task for 

microscopic traffic control (Kesting et al., 2007; Sun & Elefteriadou, 2010; Zheng, 2014). Concerning 

drivers' reasons for lane changes, the literature classifies lane-changing research into two categories: 

discretionary lane-changing and mandatory lane-changing (Ali et al., 2020; Balal et al., 2016; Pan et 

al., 2016). Discretionary lane-changing refers to a driving maneuver where a vehicle's position is 

adjusted within the traffic flow out of preference or convenience, rather than out of necessity. On the 

other hand, mandatory lane-changing is necessitated by the conditions of the roadway or traffic rules. 

This can be due to an upcoming turn or exit that requires the driver to be in a specific lane, obstructions 

in the current lane, or lane closures. Comparatively, mandatory lane-changing is of more safety concerns 

due to the necessities and constraints. Further the act of lane-changing in traffic can induce abrupt 

alterations in both the distance maintained between vehicles and their relative speeds. These sudden 

shifts can have a cascading effect, contributing to the destabilization of the overall traffic flow (Chen 
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& Ahn, 2018; Wang et al., 2022; Zheng et al., 2013). Studies have empirically substantiated that lane-

changing maneuvers are a principal catalyst for traffic oscillations (Shi et al., 2022; Sun et al., 2023; 

Wang et al., 2022). These oscillations manifest as waves of acceleration and deceleration that propagate 

through the traffic stream. Furthermore, this kind of congestion can lead to inefficient use of road space, 

known as traffic void, and increased travel time (Leclercq et al., 2011; Leclercq et al., 2016; Yuan et 

al., 2017). It not only exacerbates fuel consumption and emissions due to the stop-and-go nature of the 

traffic flow but also increases the risk of collisions as drivers react to the sudden changes in the speeds 

of vehicles around them (Qu et al., 2020a; Zheng et al., 2010).  

Due to the importance, lane-changing planning has been widely investigated. One of the main 

approaches is curve interpolation method. For curve interpolation method, a vehicle's trajectory during 

a lane change is expected to conform to a predefined geometric curve (e.g., quantic polynomial curve 

(Papadimitriou & Tomizuka, 2003), cubic polynomial curve (Chu et al., 2012), and quadratic Bessel 

curve (Chen et al., 2013)). The parameters for this curve function are derived from the initial and 

terminal states of the lane-changing maneuver following certain polynomial types. For example, Luo et 

al. (2016) introduced a model that employed a time-dependent polynomial curve to sketch the lane-

changing trajectory. Another instance is Yang et al. (2018), which proposed a model that used a cubic 

polynomial curve to trace the lane-changing trajectory. However, these approaches greatly limit the 

curve possibilities and render suboptimality. The strategy known as minimizing overall braking induced 

by lane changes (MOBIL) has been extensively applied for collaborative lane alterations in lane-

changing (Nie et al., 2016; Treiber & Kesting, 2009; Zheng et al., 2020). However, this technique may 

not yield optimal mobility outcomes as a single lane change can potentially influence the progression 

of multiple vehicles behind it. Ali et al. (2019) proposed a game theory-based lane-changing approach. 

This approach assumes that CAVs continually share their individual utilities until they achieve a 

mutually beneficial decision that results in decreased travel times for all involved. Nevertheless, 

formulating this game involving numerous vehicles can become challenging, particularly in conditions 

of heavy traffic. Moreover, it might not always lead to a universally advantageous decision in real-
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world timeframes. Wang et al. (2018) and Xu et al. (2020) implement deep reinforcement learning 

methods to determine lane changes. Nonetheless, the intricate driving behaviors typically observed in 

heavy traffic situations, along with the vast array of possible scenarios, could potentially limit the 

effectiveness of learning-based strategies. Differed from above approaches, the constrained 

optimization-based method proposed recently (Sun et al., 2023; Tajalli et al., 2022), brings a systematic 

angle by comprehensive consider the vehicle dynamics as well as corresponding constraints, and multi-

objective functions, and make it excel other approaches.  Another dimension of previous research is the 

consideration of lane-changing and car-following in a holistic manner. From the perspective of traffic 

flow theory, those researches which incorporate car-following considerations (Chen et al., 2021; Sun et 

al., 2023; Wang et al., 2022; Wang et al., 2015) are generally more advanced.   

However, all these strategies are primarily constructed using the Cartesian coordinate system (Ren et 

al., 2011; Yang et al., 2018). While this system is ideal for describing open spaces, it proves challenging 

for accurately defining complex road geometries, which often consist of intricate curves (Chen et al., 

2013; Zhang et al., 2012). Conversely, the curvilinear coordinate system was designed to describe 

geometries formed by curved lines. Within this system, one axis could correspond to the lane centerline 

while the other axis could be aligned perpendicular to the centerline tangent, which are optimally suited 

for describing road geometries. This approach simplifies the depiction of road boundaries, thereby 

reducing the complexity of formulating and calculating such models. Moreover, road geometric 

characteristics, traffic regulations (e.g., speed limits), and hazards are typically spatially rather than 

temporally variable. These factors can act as unobservable exogenous disturbances, negatively 

impacting planning objectives. Although CAVs can receive real-time road parameter updates via V2I 

and V2V communication, directly integrating these spatially variable aspects in the temporal domain 

remains a formidable challenge. However, real-time information is unnecessary for the spatial domain 

as vehicle dynamics and road geometries are constant in each spatial unit, allowing CAVs to use stored 

data. The employment of Spatial Formulation and curvilinear coordinates in the realm of car-following 

planning by Zhang et al. (2021) haves demonstrated remarkable success through the employment of 
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Spatial Formulation and curvilinear coordinates. Spatial Formulation in this context plays a critical role 

in elucidating the spatial relationships and interactions between vehicles longitudinally. This 

amalgamation of methodologies has proven to not only enhance the accuracy of car-following models 

but also foster a higher degree of safety and efficiency. However, despite the commendable strides in 

regular traffic conditions, the algorithms presented in both studies reveal limitations when it comes to 

handling conflict traffic scenarios such as mandatory lane changes. In such circumstances, where a 

vehicle must alter its lane due to external factors like road closures or diversions, the algorithms find it 

challenging to effectively navigate the complex interplay and potential conflicts between multiple 

vehicles. This indicates that the models still warrant further advancements to address the intricacies of 

conflict traffic environments adequately. 

To address aforementioned challenges and inherit the merits of spatial formulation, constrained 

optimization as well as holistic lane change and car following treatment, this study aims to develop a 

spatially formulated mandatory lane-changing algorithm for CAVs using the curvilinear coordinate 

system. Specifically, we focused on developing a distributed trajectory planning policy for CAVs that 

integrates lane-changing and car-following concerns. In circumstances where vehicles are compelled to 

change lanes due to external exigencies such as road closures or diversions, it is crucial for the control 

algorithms to effectively deal with interactions and potential conflicts that may arise among multiple 

vehicles. By employing MPC in the trajectory planning process, our mandatory lane-changing 

algorithm is capable of ensuring safety and efficiency where complex scenarios are encountered.   
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3. SYSTEM MODELLING OF VEHICLE TRAJECTORY OPTIMIZATION  

This chapter describes the design and formulation of the proposed vehicle trajectory 

optimization strategy for the scenario where the lane centerline may or may not straight to 

increase the application on all road geometries. A curvilinear coordinate system has been 

introduced to reduce modeling complexity. Specifically, FIG 3-1 shows how to convert 

coordinates in a 2D Cartesian coordinate system into coordinates in a 2D curvilinear coordinate 

system as the x-axis deforms to 𝑥′-axis, where 𝐶 and object 𝑤 represent the road’s centerline 

and an object on the road, respectively. As we can see, the distance between the object 𝑤 and 

the road’s centerline 𝐶 in a 2D Cartesian coordinate is the distance between the object 𝑤 and 

the point 𝑐 as shown in FIG 3-1 (a). In contrast, the distance between the object 𝑤 and the 

road’s centerline 𝐶 in a 2D curvilinear coordinate is always the y-coordinate of the object 𝑤 as 

shown in FIG 3-1 (b). 

 

FIG. 3-1. Coordinate Transformation: (a) A 2D Cartesian Coordinate System; (b) A 2D Curvilinear 

Coordinate System. 

3.1 State Space Formulation 

Let 𝐶 represents the centerline of the lane as shown in FIG 3-2. The lane centerline, with respect to the 

global frame, {𝐺}, is represented by the [𝑥𝑑𝑒𝑠(𝑠), 𝑦𝑑𝑒𝑠(𝑠), 𝜃𝑑𝑒𝑠(𝑠)]
𝑇 ∈ 𝑅3, where its position is given 

by [𝑥𝑑𝑒𝑠(𝑠), 𝑦𝑑𝑒𝑠(𝑠)]
𝑇 and its orientation in the global frame is represented by 𝜃𝑑𝑒𝑠(𝑠). Let 𝑠 be the 

mapped length of the curvature along the lane centerline that vehicle has traveled. Based on that, we 
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define {𝑉}  represents the vehicle body-fixed reference frame with its speed (𝑣(𝑠))  represents the 

vehicle's forward direction and its orientation in the global frame is represented by 𝜃𝑣(𝑠). 

 

FIG. 3-2. Vehicle Modelling on the Defined Curvilinear Coordinate. 

To describe the vehicle dynamics over the established curvilinear coordinate, we construct a state space 

system and define the system state 𝑋(𝑠) for each space 𝑠 as: 

 

𝑋(𝑠) =  [

𝑟(𝑠)

𝜓(𝑠)

𝑝(𝑠)
], (1) 

where 𝑟(𝑠) is the lateral deviation, which equals to signed orthogonal distance from the CAV to the 

closest point on the lane centerline 𝐶, in meters;  𝜓(𝑠) = 𝜃𝑣(𝑠) − 𝜃𝑑𝑒𝑠(𝑠), where 𝜓(𝑠) is the angular 

deviation, 𝜃𝑣 is the angle between the CAV heading and the x-axis in the global frame {G} and 𝜃𝑑𝑒𝑠(𝑠) 

is the angle between the tangent of the lane centerline and the x-axis in the global frame {G}, in radians; 

𝑝(𝑠) =  𝑝𝑣(𝑠) − 𝑝𝑑𝑒𝑠(𝑠), where 𝑝(𝑠) is the pace deviation, 𝑝𝑣(𝑠) is the reciprocal of the vehicular 

velocity and 𝑝𝑑𝑒𝑠(𝑠) is the reciprocal of the road speed limit (𝑝𝑑𝑒𝑠(𝑠) is a nondifferentiable function of 

s, which can be treated as a constant), in second per meter. Note that, 𝜃𝑑𝑒𝑠(𝑠) and 𝑝𝑑𝑒𝑠(𝑠) are spatially 

varying and got in a real-time manner by the infrastructure. Specifically, the vehicle dynamics are 

modeled as a nonlinear state space system as: 
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𝑑𝑋(𝑠)

𝑑𝑠
=  
𝑑

𝑑𝑠
[

𝑟(𝑠)

𝜓(𝑠)

𝑝(𝑠)
] = [

𝑠𝑖𝑛(𝜓(𝑠))

𝑘(𝑠)

𝛼(𝑠)

] = 𝑓[𝑋(𝑠), 𝑈(𝑠)], 

   (2) 

where 𝑘(𝑠) = 𝑘𝑣(𝑠) − 𝑘𝑑𝑒𝑠(𝑠), which is the relative angular spatial change rate that controlled by the 

steering wheel.  𝑘𝑣(𝑠) is the curvature of the vehicle trajectory; 𝑘𝑑𝑒𝑠(𝑠) is the curvature of the lane 

centerline, in radian per meter; and 𝛼(𝑠) is relative moderation that indicates acceleration of the CAV, 

which can be treated as the control of the brake or throttle pedal (negative value indicates accelerating), 

in second per mater squared. 𝑘(𝑠) and 𝛼(𝑠) compose our 'road characteristics compensated' control 

input 𝑈(𝑠), given as 𝑈(𝑠) = [𝑘(𝑠), 𝛼(𝑠) ]𝑇. 

However, the road speed limit can be changed based on geometric road design in a real-world situation, 

which means 𝑝𝑑𝑒𝑠(𝑠) cannot be treated as a spatially invariant constant when speed limit change occurs. 

Moreover, the speed limit change for the road is a unit jump and 𝑝𝑑𝑒𝑠(𝑠) is still a nondifferentiable 

function of s. To solve this problem, we introduce a "buffer zone" in front of the speed limit changing 

area where a changed speed limit is posted at the same length as our MPC model's prediction horizon. 

The "buffer zone" section divides the speed limit difference by the "buffer zone" length to smoothly 

form a discrete velocity transit. With Δs is sufficiently small, the velocity change in the "buffer zone" 

is close enough to be treated as a continuous system. Thus 𝑝𝑑𝑒𝑠(𝑠) becomes a differentiable function of 

𝑠inside the "buffer zone", and 𝛼𝑑𝑒𝑠(𝑠) which is the parameter indicating acceleration of the road is the 

derivative of 𝑝𝑑𝑒𝑠(𝑠), in second per mater squared. The new nonlinear function with the "buffer zone" 

introduced is 
𝑑𝑋(𝑠)

𝑑𝑠
= 

𝑑

𝑑𝑠
[

𝑟(𝑠)

𝜓(𝑠)

𝑝(𝑠)
] = [

𝑠𝑖𝑛(𝜓(𝑠))

𝑘(𝑠)

𝛼(𝑠)
], where 𝛼(𝑠) = 𝛼𝑣(𝑠) − 𝛼𝑑𝑒𝑠(𝑠), where 𝛼𝑣(𝑠) is the 

parameter indicating acceleration of the CAV, in second per mater squared. 

3.2 Controllability Check 

Given the state space defined above, we first analyzed its controllability which describes the ability of 

any control variables that can move the state of a system from any initial state to any final state in a 

finite time interval. Hence, we applied the following definitions and theorems to approve the 
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controllability. 

Theorem 1. Nonlinear system small-time locally controllability (Mahmoud, 2018): The linear test: If a 

nonlinear �̇�  =  𝑓(𝑦, 𝑢) , whose linearized control system over an equilibrium point (𝑦𝑒 , 𝑢𝑒) : �̇�  =

 𝐴𝑦 +  𝐵𝑢 is controllable, then it is small-time locally controllable at (𝑦𝑒 , 𝑢𝑒).  

Definition 1. Equilibrium point: For a nonlinear differential equation  
𝑑𝑋(𝑠)

𝑑𝑠
= 𝑓[𝑋(𝑠), 𝑈(𝑠)], where 𝑓 

is a function mapping 𝑅𝑛 × 𝑅𝑚 → 𝑅𝑛 . A point Xe ∈ R
n is called an equilibrium point if there is a 

specific 𝑈𝑒 ∈ 𝑅
𝑚 such that 𝑓(𝑋𝑒 , 𝑈𝑒) = 0𝑛. 

By the Definition 1, it is trivial to find that the equilibrium point of the system as Eq. (2) occurs if and 

only if 𝑋𝑒 = [0,0,0]
𝑇, 𝑈𝑒 = [0,0]

𝑇 

Theorem 2. Linear time-invariant system controllability (Mahmoud, 2018): For a linear time-invariant 

system with the form �̇�  =  𝐴𝑥 +  𝐵𝑢, the controllability matrix can be written as: 

 𝐺 = 𝐺(𝐴, 𝐵) =  [𝐵, 𝐴𝐵, 𝐴2𝐵,… , 𝐴𝑛−1𝐵]⏟              
𝑛×(𝑚𝑛) 𝑚𝑎𝑡𝑟𝑖𝑥

. (3) 

If 𝑟𝑎𝑛𝑘(𝐺) = 𝑛, this linear system is controllable. 

Based on the Definition 1, Theorem 1 and 2, we can have the following Proposition: 

Proposition 1: The state space formulated as Eq. (2) is small-time locally controllable at the equilibrium 

point 𝑋𝑒 = [0,0,0]
𝑇, 𝑈𝑒 = [0,0]

𝑇. 

Proof: 

With Taylor series, Eq. (2) at the equilibrium point (𝑋𝑒 , 𝑈𝑒) can be rewritten as: 

𝑑𝑋(𝑠)

𝑑𝑠
=∑

[
 
 
 
 
𝑑𝑖𝑓(𝑋(𝑠), 𝑈(𝑠))

𝑋(𝑠)=𝑋𝑒

𝑑𝑖𝑋(𝑠)
(𝑋(𝑠) − 𝑋𝑒)

𝑛

𝑛!
+

𝑑𝑖𝑓(𝑋(𝑠), 𝑈(𝑠))
𝑈(𝑠)=𝑈𝑒

𝑑𝑖𝑈(𝑠)
(𝑈(𝑠) − 𝑈𝑒)

𝑛

𝑛!

]
 
 
 
 

.

𝑛

𝑖=1

 

   (4) 

According to the Taylor series, a representation of a function as an infinite sum of terms that are 

https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Series_(mathematics)
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calculated from the values of the function's derivatives at a single point. In our case, only 1st order 

derivative needs to be considered for the linearized control system. Moreover, the equilibrium in our 

system occurs when the CAV drives along the lane centerline, which means there is no deviation 

between the CAV and the lane centerline. The 1st order derivative of Eq. (4) at the equilibrium point 

(𝑋𝑒 , 𝑈𝑒) can be written as: 

 𝑑𝑋(𝑠)

𝑑𝑠
= [
0 𝑐𝑜𝑠 (𝜓) 0
0 0 0
0 0 0

]

𝜓=𝜓𝑒

(𝑋(𝑠) − 𝑋𝑒) + [
0 0
1 0
0 1

] (𝑈(𝑠) − 𝑈𝑒), 
  (5) 

and Eq. (5) can be simplified as: 

 𝑑𝑋(𝑠)

𝑑𝑠
=  𝐴𝑋(𝑠) + 𝐵𝑈(𝑠), 

  (6) 

where 𝐴 = [
0 1 0
0 0 0
0 0 0

] , 𝐵 = [
0 0
1 0
0 1

]. 

Based on Eq. (3), the controllability matrix of Eq. (6) can be written as: 

 
𝐺(𝐴, 𝐵) = [𝐵, 𝐴𝐵, 𝐴2𝐵] = [

0 0 1 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0

], 
  (7) 

which gives us the rank of the controllability matrix: 

 𝑟𝑎𝑛𝑘𝐺(𝐴, 𝐵) = 3.   (8) 

Remark 1: 

The above linearization process can also be proved by the small angle approximation. Specifically, 

when the angle is relevant small and 𝑐𝑜𝑠 (𝜓) ≈ 1, the small angle approximation can be applied. The 

same state-space model, as Eq. (6), can be derived based on the small angle approximation from Eq. 

(2). 

To reflect control frequency in the real world, we applied the zeroth-order hold (ZOH) for control input 

for discretization. Specifically, the control input is assumed to be a constant during each update spatial 

https://en.wikipedia.org/wiki/Derivative
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interval 𝛥𝑠, and when 𝛥𝑠 is sufficiently small, the discretization process can be treated as a continuous 

system (B. M. Chen, Lin, & Shamash, 2004). The discrete version of Eq. (5), according to Eq. (6), is 

shown as below: 

 𝑋(𝑚+1)𝛥𝑠 ≈ 𝐴𝑑𝑋𝑚𝛥𝑠 + 𝐵𝑑𝑈𝑚𝛥𝑠 ∀𝑚 > 0,   (9a) 

𝑠. 𝑡. 

 𝐴𝑑 = 𝑒
𝐴𝛥𝑠,   (9b) 

 
𝐵𝑑 = ∫ 𝑒𝐴𝛾𝑑𝛾𝐵

𝛥𝑠

0

. 
  (9c) 

For notation brevity, we use 𝑋𝑚 to represent 𝑋𝑚𝛥𝑠 for the rest of the chapter. 

3.3 Model Predictive Control Formulation 

 

FIG. 3-3. Illustration of Model Predictive Control. 

In this section, we provide an MPC formulation due to its great capability to systematically deal with 

system state and control constraints and meanwhile handling multi-objectives. Further, it is robust to be 

against system disturbances due to its rolling horizon implementation. Based on the discretized control 

Eq. (9a), a linear MPC formulation is formulated in our study. In our MPC framework, as illustrated by 

FIG. 3-3, at each current space step 𝑚, we solved a constrained trajectory optimization problem over a 

fixed finite prediction horizon with spatial length mp to calculate the optimal control input and state 



23 

 

sequences within the horizon. The controller only implements the first step optimal control input at 

space step m, and the algorithm continues this process repetitively until the end of the algorithm, shown 

as FIG. 3-3. 

To better illustrate the algorithm, we use 𝒰𝑚
𝑝
= [𝑈𝑚

𝑝,𝑚
, 𝑈𝑚+1

𝑝,𝑚
, … , 𝑈𝑚+𝑚𝑝−1

𝑝,𝑚
] to denote the optimal 

control vectors for CAV obtained at space 𝑚  for the prediction horizon, 𝑚  to 𝑚+𝑚𝑝 ; 𝒳𝑚
𝑝
=

[𝑋𝑚
𝑝,𝑚
, 𝑋𝑚+1
𝑝,𝑚

, … , 𝑋𝑚+𝑚𝑝

𝑝,𝑚
] to denote the predicted future states for CAV obtained at space 𝑚 for the 

prediction space horizon, 𝑚  to 𝑚 +𝑚𝑝 ; 𝒳𝑚
𝑟 = [𝑋0

𝑟 , 𝑋1
𝑟, … , 𝑋𝑚

𝑟 ]  to denote the realized states for 

CAV by space m, which can be seen as the optimal solution where 𝑋0
𝑟  is the initial state when the 

control introduces. 

By carefully considering the control efficiency and driving smoothness, an optimal control strategy can 

be obtained by solving the optimal control problem given as: 

 

(𝒳𝑚
𝑝∗
, 𝒰𝑚

𝑝∗
) = 𝑎𝑟𝑔𝑚𝑖𝑛 𝐹 (𝑋𝑚+𝑚𝑝

𝑝,𝑚
) + ∑ 𝐿(𝑋𝑖

𝑝,𝑚
, 𝑈𝑖

𝑝,𝑚
)

𝑚+𝑚𝑝−1

𝑖=𝑚

, 

 (10a) 

𝑠. 𝑡. 

 𝑋𝑖+1
𝑝,𝑚

= 𝐴𝑑𝑋𝑖
𝑝,𝑚

+ 𝐵𝑑𝑈𝑖
𝑝,𝑚
 ∀𝑖 ∈ {𝑚,𝑚 + 1,𝑚 + 2,… ,𝑚 +𝑚𝑝 − 1},  (10b) 

 𝑋𝑚
𝑝,𝑚

= 𝑋𝑚
𝑟 ,  (10c) 

 𝑋𝑖
𝑝,𝑚

∈ 𝕏𝑖 ∀𝑖 ∈ {𝑚,𝑚 + 1,𝑚 + 2,… ,𝑚 +𝑚𝑝},   (10d) 

 𝑈𝑖
𝑝,𝑚

∈ 𝕌𝑖 ∀𝑖 ∈ {𝑚,𝑚 + 1,𝑚 + 2,… ,𝑚 +𝑚𝑝}. (10e) 

where 𝑚𝑝  is the prediction space horizon; 𝐿(𝑋𝑖
𝑝,𝑚
, 𝑈𝑖

𝑝,𝑚
) is the running cost consists of the CAV 

penalties on the deviation from equilibrium point and driving discomfort; 𝐹 (𝑋𝑚+𝑚𝑝

𝑝,𝑚
) is the terminal 

cost which refers to the final stage of the prediction horizon. Eq. (10c) is the initial state for the 

prediction horizon at space step 𝑚, and Eq. (10d) is the state constraint used to guarantee the vehicle 
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states at each space point. Eq. (10e) is the control constraint used to regulate that the steering wheel 

rotation and acceleration/deceleration are within a reasonable range of 𝑈(𝑠). 

For the objective function formulated in Eq. (10a), the running cost is specified as follows: 

 𝐿(𝑋𝑚+𝑛
𝑝,𝑚

, 𝑈𝑚+𝑛
𝑝,𝑚

) = (𝑋𝑚+𝑛
𝑝,𝑚

)
𝑇
𝑃𝑋𝑚+𝑛

𝑝,𝑚
+ (𝑈𝑚+𝑛

𝑝,𝑚
)
𝑇
𝑄𝑈𝑚+𝑛

𝑝,𝑚
+ 2𝑞1𝑘𝑣,𝑚+𝑛𝑘𝑑𝑒𝑠,𝑚+𝑛 − 𝑞1𝑘𝑑𝑒𝑠,𝑚+𝑛

2 ,   (11a) 

where 𝑃 and 𝑄 are diagonal positive definite matrices, usually designed as the diagonal matrix below: 

 
𝑃 = [

𝑝1   
 𝑝2  
  𝑝3

] , 𝑝1, 𝑝2, 𝑝3 > 0,  
  (11b) 

 𝑄 = [
𝑞1  
 𝑞2

] , 𝑞1, 𝑞2 > 0. 
  (11c) 

Especially, if we want to regulate that the vehicles stick to the lane centerline for safety concerns, we 

can predefine p1 and p2 with large values, while on the other hand, if we are willing to provide the 

trajectories with flexibility, we can set  p1,2 → 0. 

We further specify the terminal cost as: 

 
𝐹 (Xm+mp

p,m
) = (Xm+mp

p,m
)
𝑇
SXm+mp

p,m
, 

  (12) 

In Eq. (10d) and (10e), by considering vehicle's physical limits, CAV's state constraint determined at 

space 𝑚 is formulated as: 

 𝑟𝑚+𝑛
𝐿 ≤ 𝐶𝑋𝑚+𝑛

𝑝,𝑚
≤ 𝑟𝑚+𝑛

𝑈  ∀𝑛 ∈ {0,1,2,… ,𝑚𝑝}, (13a) 

 𝜓𝑚𝑖𝑛 ≤ 𝐷𝑋𝑚+𝑛
𝑝,𝑚

≤ 𝜓𝑚𝑎𝑥 ∀𝑛 ∈ {0,1,2,… ,𝑚𝑝}, (13b) 

 0 ≤ 𝑇𝑋𝑚+𝑛
𝑝,𝑚

≤ +∞ ∀𝑛 ∈ {0,1,2,… ,𝑚𝑝}, (13c) 

 −
1

𝑅𝑚𝑖𝑛
− 𝑘𝑑𝑒𝑠(𝑚 + 𝑛) ≤ 𝐸𝑈𝑚+𝑛

𝑝,𝑚
≤

1

𝑅𝑚𝑖𝑛
− 𝑘𝑑𝑒𝑠(𝑚 + 𝑛) ∀𝑛 ∈ {0,1,2,… ,𝑚𝑝 − 1},  (13d) 

 𝛼𝑚𝑖𝑛 ≤ 𝐼𝑈𝑚+𝑛
𝑝,𝑚

≤ 𝛼𝑚𝑎𝑥 ∀𝑛 ∈ {0,1,2,… ,𝑚𝑝 − 1}. (13e) 
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Eq. (13a) is the constraint to make sure that the CAV drives within the drivable lane, where 𝐶 = [1,0,0], 

and 𝑟𝑚+𝑛
𝐿 = {

𝑟𝑚+𝑛
− , 𝑖𝑓 𝑂𝑏 ≤ 𝑚 + 𝑛 ≤ 𝑂𝑒

−𝑟𝑚𝑎𝑥, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 and 𝑟𝑚+𝑛

𝑈 = {
𝑟𝑚+𝑛
+ , 𝑖𝑓 𝑂𝑏 ≤ 𝑚+ 𝑛 ≤ 𝑂𝑒
𝑟𝑚𝑎𝑥, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

. Where 𝑟𝑚+𝑛
−  

and 𝑟𝑚+𝑛
+  are lower bound and upper bound that CAV can pass through within the obstacle zone, 

respectively; 𝑂𝑏 and 𝑂𝑒 are spatial positions where obstacle start and end; 𝑟𝑚𝑎𝑥 is the half of the lane 

width; Eq. (13b) is the constraint that the physical limits of allowable angular deviation for CAV, 

where 𝐷 = [0,1,0] , 𝜓𝑚𝑖𝑛  and 𝜓𝑚𝑎𝑥  indicates the lower and upper bound of allowable angular 

deviation; Eq. (13c) is the constraint to make sure that the CAV does not exceed the speed limit, 

where 𝑇 = [0,0,1]; Eq. (13d) is the constraint that the realized moving path of CAV is bounded by a 

given minimum turning radius, where 𝐸 = [1,0], 𝑅𝑚𝑖𝑛 is the minimum turning radius of the CAV; Eq. 

(13e) is the constraint based on the physical limits of the vehicle's acceleration/deceleration rate 𝑎, 

where 𝐼 = [0,1], 𝛼𝑚𝑖𝑛 is CAV's deceleration and 𝛼𝑚𝑎𝑥 is CAV's acceleration limits. 

To be noted that, the above formulation can be expanded in the scenario with speed limit change or stop 

sign by introducing the concept of "buffer zone", and correspondingly, Eq. (13e) changes to 𝛼𝑚𝑖𝑛 −

𝛼𝑑𝑒𝑠 ≤ 𝐼𝑈𝑚+𝑛
𝑝,𝑚

≤ 𝛼𝑚𝑎𝑥 − 𝛼𝑑𝑒𝑠 ∀𝑛 ∈ {0,1,2, … ,𝑚𝑝 − 1}. 

3.4 Quadratic Programming  

To solve the proposed MPC, we reformulated the above formulation as quadratic programming by 

introducing an auxiliary variable 𝑦 = [𝑋𝑚
𝑝,𝑚
; 𝑋𝑚+1

𝑝,𝑚
; … ; 𝑋𝑚+𝑚𝑝

𝑝,𝑚
; 𝑈𝑚

𝑝,𝑚
; 𝑈𝑚+1

𝑝,𝑚
; … ; 𝑈𝑚+𝑚𝑝−1

𝑝,𝑚
] . The 

optimization framework is given by Eqs. (10a) to (10e), can be reformulated as follows: 

 𝑚𝑖𝑛𝑓(𝑦) = 𝑦𝑇𝐻𝑦 + 𝑦𝑇𝐾, (14a) 

𝑠. 𝑡. 

 𝐹𝑒𝑞𝑦 = 𝑔𝑒𝑞 , (14b) 

 𝑦𝑚𝑖𝑛 ≤ 𝑦 ≤ 𝑦𝑚𝑎𝑥 , (14c) 

where 
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𝐻 =

[
 
 
 
 
 
 𝑃   
 
 
 

⋱
 
 

 
𝑃
 

 
 
 

 
 
 

 
 
 

⏞      

3𝑚𝑝

  
 
𝑆 
 
 

    
 
 

 
 
 

 
 
 

𝑄
 
 

 
⋱
 

 
 
𝑄

⏞      

]
 
 
 
 
 

2𝑚𝑝

, 

(15a) 

 
𝐾 = [

0 0 0 ⋯⏞        

3𝑚𝑝+3

2𝑞1𝑘𝑑𝑒𝑠,𝑚 0 2𝑞1𝑘𝑑𝑒𝑠,𝑚+1 ⋯⏞                    

2𝑚𝑝

]
𝑇

, 
(15b) 

 

𝐹𝑒𝑞 =

[
 
 
 
 
 𝑀 𝑂
𝐴𝑑 𝑁

𝑂 ⋯
𝑂 ⋯

𝑂 𝑂
𝑂 𝑂

𝑂 𝐴𝑑
⋮ ⋮

𝑁 ⋯
⋮ ⋮

𝑂 𝑂
⋮ ⋮

𝑂 𝑂 𝑂 ⋯ 𝐴𝑑 𝑁

⏞                

3𝑚𝑝+3

𝑅 𝑅
𝐵𝑑 𝑅

𝑅 ⋯
𝑅 ⋯

𝑅
𝑅

𝑜 𝐵𝑑
⋮ ⋮

𝑅 ⋯
⋮ ⋮

𝑅
⋮

𝑅 𝑅 𝑅 ⋯ 𝐵𝑑

⏞            

]
 
 
 
 
 

2𝑚𝑝

, 

(15c) 

 
𝑔𝑒𝑞 = [𝑟𝑚

𝑟 𝜓𝑚
𝑟 𝑝𝑚

𝑟 0 0 ⋯⏞      

5𝑚𝑝

]
𝑇

,  
(15d) 

with 𝑀 = [
1 0 0
0 1 0
0 0 1

]; 𝑁 = [
−1 0 0
0 −1 0
0 0 −1

]; 𝑂 = [
0 0 0
0 0 0
0 0 0

]; 𝑅 = [
0 0
0 0
0 0

]. 

Differed in the existence of buffer zone, the bound constraint 𝑦𝑚𝑖𝑛 and 𝑦𝑚𝑎𝑥 without a “buffer zone” 

can be defined as follows: 

 

𝑦𝑚𝑖𝑛 = [−𝑟𝑚𝑎𝑥 −
𝜋

6
0 . . .

⏞            

3𝑚𝑝+3

−𝑘𝑚𝑎𝑥 − 𝑘𝑑𝑒𝑠,𝑚+𝑛 𝛼𝑚𝑖𝑛 . . .⏞                    

2𝑚𝑝

]

𝑇

, 

(16a) 

 

𝑦𝑚𝑎𝑥 = [𝑟𝑚𝑎𝑥
𝜋

6
+∞ . . .

⏞            

3𝑚𝑝+3

𝑘𝑚𝑎𝑥 − 𝑘𝑑𝑒𝑠,𝑚+𝑛 𝛼𝑚𝑎𝑥 . . .⏞                  

2𝑚𝑝

]

𝑇

, 

(16b) 

For the buffer zone case, 𝑦𝑚𝑖𝑛 = [−𝑟𝑚𝑎𝑥 −
𝜋

6
0 . . .

⏞            

3𝑚𝑝+3

−𝑘𝑚𝑎𝑥 − 𝑘𝑑𝑒𝑠,𝑚+𝑛 𝛼𝑚𝑖𝑛 − 𝛼𝑑𝑒𝑠 . . .⏞                        

2𝑚𝑝

]

𝑇

 

and 𝑦𝑚𝑎𝑥 = [𝑟𝑚𝑎𝑥
𝜋

6
+∞ . . .

⏞            

3𝑚𝑝+3

𝑘𝑚𝑎𝑥 − 𝑘𝑑𝑒𝑠,𝑚+𝑛 𝛼𝑚𝑎𝑥 − 𝛼𝑑𝑒𝑠 . . .⏞                        

2𝑚𝑝

]

𝑇

.  
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4. NUMERICAL SIMULATION RESULT OF VEHICLE TRAJECTORY 

OPTIMIZATION STRATEGY 

This chapter presents numerical simulations to validate the efficiency and stability of our 

proposed control strategy. To test our optimal control model, we create a one-lane road segment 

with a series of curves as the numerical simulation environment shown in FIG. 4-1. The road 

comprises three continuous curves with a total length of 1600 𝑚 and 3.6 𝑚 lane width which 

means a 1.8 𝑚 width from lane centerline to left/right lane boundary. The first two curves have 

the same radius of 300 𝑚, and the radius of the third curve is 200 𝑚. The speed limit of the 

road is set as 54 𝑘𝑚/ℎ (15 𝑚/𝑠). 

 

FIG. 4-1. Illustration of Road Trajectory. 

To validate our proposed method, a simulation experiment is performed on MATLAB since 

the field test is expensive and beyond the scope of this paper. The parameter setting for the 

CAV trajectory optimization as Eq. (10a) to (10e) is given in Table 4-1, according to (Zhao et 

al., 2020) and (Y. Zhou, Ahn, Wang, & Hoogendoorn, 2020).  
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Table 4-1. Default Value Setting for the Vehicle Trajectory Optimization. 

Parameters Value 

𝜓𝑚𝑖𝑛 and 𝜓𝑚𝑎𝑥 

−𝜋/6 𝑟𝑎𝑑 and 𝜋/6 

𝑟𝑎𝑑 

𝑎𝑚𝑖𝑛 and 𝑎𝑚𝑎𝑥 -5 𝑚/𝑠2 and 3 𝑚/𝑠2 

𝑟𝑚𝑎𝑥 1.8 𝑚 

𝑝1, 𝑝2 and 𝑝3 0.33, 0.1 and 10 

𝑞1 and 𝑞2 1 and 500 

𝑠1, 𝑠2 and 𝑠3 5𝑝1, 5𝑝2 and 5𝑝3 

𝛥𝑠 2 𝑚 

𝑚𝑝 80 𝑚 

4.1 Scenario I: A continuous curvy road segment with the constant speed limit 

For the initial condition, we set the vehicle's lateral deviation from the lane centerline to be 1 𝑚, the 

angular deviation to be −
𝜋

6
 𝑟𝑎𝑑  and the pace deviation to be 

1

30
 𝑠/𝑚  (equivalently desired speed 

difference 5 𝑚/𝑠 in our case). To better analyze the convergence behavior of the proposed algorithm, 

we plot the proposed controller performance of the first 50 𝑚 in FIG. 4-2, which demonstrates the 

proposed trajectory optimization method's performance without the "buffer zone" introduced. To be 

noted that system states and control inputs maintain very closely to the system equilibrium point with 

nearly no oscillation from 50 𝑚 to 1600 𝑚. FIG. 4-2 (a)-(c) and FIG. 4-2 (d)-(e) indicate the system 

state evolution, including lateral deviation, angular deviation, and pace deviation, and how the control 

inputs change in the space domain as the CAV moves by our control, respectively. As can be seen, 

similar trends are observed for different system states and the control input values. To be more specific, 

the lateral deviation exhibits some reasonable fluctuation initially: CAV moves 1.386 m laterally from 

lane centerline's left side to the right side in the first 6 𝑚 along the road, where the positive sign indicates 
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that the CAV has been off the track and is at the left side of the lane centerline and the negative sign 

indicates that the CAV has off the track and is at the right side of the lane centerline. Then it quickly 

turns back from the right side to the lane centerline in the next 6 m and keeps driving on the lane 

centerline afterward. Angular deviation and relative angular spatial change rates converge in a nearly 

similar fashion as lateral deviation. As for the pace deviation and relative moderation converges to zero 

gradually. These results show that the algorithm quickly finds the difference between the vehicle states 

and the lane centerline and calculates the optimal control inputs to achieve the system equilibrium 

dynamically. Moreover, even though the 𝜃𝑑𝑒𝑠(𝑠) and 𝑘𝑑𝑒𝑠(𝑠) evolve spatially, the proposed controller 

shows great robustness to these disturbances mentioned above. Rather than the time domain approach 

(B. C. Chen, Luan, & Lee, 2014), the proposed method can better handle the space varying 𝜃𝑑𝑒𝑠(𝑠)  

and 𝑘𝑑𝑒𝑠(𝑠), which shows the superiority of proposed algorithm by incorporating the road geometric 

attributes via infrastructure to vehicle communication.  
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FIG. 4-2. CAV State and Control Results of the first 50 Meters: (a) Lateral Deviation 𝑟(s); (b) 

Angular Deviation 𝜓(s); (c) Pace Deviation 𝑝(s); (d) Relative Moderation 𝛼(s); (e) Relative Angular 

Spatial Change Rate 𝑘(s). 

To gain further insight into the proposed trajectory optimization method, we convert 𝑝𝑣(𝑠), 𝛼(𝑠) and 

𝑘𝑣(𝑠) in the spatial domain into speed, acceleration, and angular deviation rate in the time domain, as 

shown in FIG. 4-3. The CAV starts with and keeps a high acceleration for the first 15 𝑚, and then it 

decreased gradually until it achieves equilibrium points, as shown in FIG. 4-3 (a). These acceleration 

changes lead to a speed increase in the first 50 𝑚, and make the speed converge to the desired speed, as 

shown in FIG. 4-3 (b). We can also find that the angular deviation rate is within a reasonable range 

initially and gradually converges to zero. 

 

FIG. 4-3. Speed, Acceleration, and Angular Deviation Rate of CAV without the "buffer zone": (a) 

Acceleration; (b) Speed; (c) Angular Deviation Rate. 

4.2 Scenario II: A curved road with two different desired driving behaviors 

The previous sections demonstrated the performance of our proposed trajectory optimization method. 
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In this section, we further conduct a comparison to see the 𝑝1 and 𝑝2 weight impact on the obedience 

to the lane centerline. To see the flexibility of CAV's decision, we set an obedient driving behavior with 

𝑝1 and 𝑝2 as the default case, and a flexible one with weights approaches to zero. To better visualize, 

we create a new one-lane 150 𝑚 curvy road with the same CAV initial conditions and adjust the 

reference line's weight. The dash-dotted line in FIG. 4-4 shows the result with original weight, and the 

dotted line shows the result of all 𝑞1, 𝑞2, 𝑠1 and 𝑠2 changed to 0, which means that there is no reference 

line to follow. 

 

FIG. 4-4. Comparison of Different p1 and p2 Values. 

The results shown in FIG. 4-4 illustrate that CAV makes much more aggressive decisions with the 

obedient driving behavior than those with flexible driving behavior. As we can see, CAV, with the 

obedient driving behavior, makes sharp turning decisions and quickly turns back to the lane centerline. 

In contrast, CAV makes smooth turning decisions and needs more time to reach the lane centerline with 

the flexible driving behavior. Moreover, unlike CAV with obedient driving behavior tightly follows the 

reference line as long as it reaches the reference line, CAV with the flexible driving behavior can deviate 

from the reference line when the curve occurs. 
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4.3 Scenario III: A curved road with an obstacle 

We further conduct a simulation experiment using the same initial condition and one-lane road as shown 

in FIG. 4-4 to test our proposed trajectory optimization method with a 10 𝑚 obstacle created. The 

𝑟𝑚+𝑛
𝐿 = 0.5 𝑚 and 𝑟𝑚+𝑛

𝑈 = 1.8 𝑚 during the obstacle section. To meet both safety and driving comfort 

requirements, a joint driving mode is designed, which means a flexible driving behavior before and 

during the obstacle and an obedient driving behavior afterward.  

 

FIG. 4-5. CAV Trajectory with Obstacle introduced. 

As we can see from FIG. 4-5, the CAV quickly detects the obstacle and makes smooth and comfortable 

control decisions to avoid the obstacle. The flexible driving behavior makes the CAV drive in the center 

to prevent any potential collision between the CAV and the obstacle during the obstacle section. In 

contrast, the obedient driving behavior lets the CAV quickly turn back and keep to the lane centerline 

after the CAV passes the obstacle section. 

4.4 Scenario IV: A continuous curvy road segment with speed limit change 

The results in the previous sections show that the proposed trajectory optimization method is efficient 

and stable without speed limit change to be considered. However, in order to test how the proposed 

trajectory optimization method works in a real-world situation, we change the speed limit of the road 
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segment from 1104 𝑚 to 1600 𝑚 to be 10 𝑚/𝑠 and create a "buffer zone" of the same length as 𝑚𝑝. In 

other words, we now pay our attention to a new situation where the road segment from 1024 𝑚 to 1104 

𝑚 is replaced by the "buffer zone" with αdes equals 
1

1200
 𝑠/𝑚2. The illustration for the road trajectory 

with a "buffer zone" is given in FIG. 4-6. 

 

FIG. 4-6. Illustration of Road Trajectory with a "buffer zone". 

The results in FIG. 4-7 give us a generalized illustration of how the proposed trajectory optimization 

method performs with the "buffer zone". Although the "buffer zone" is introduced, the system state 

evolution and how the control inputs change in the space domain, as shown in FIG. 4-7 (a)-(c) and FIG. 

4-7 (d)-(e) respectively, is stable and shows great robustness to the real-world disturbance. The change 

of angular deviation rate that indicates the relative turning speed and direction of the CAV shown in 

FIG. 4-7 (h) shows a similar trend as that in FIG. 4-3 (c). Furthermore, as expected, CAV's speed and 

acceleration oscillate around the "buffer zone". 
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FIG. 4-7. CAV State and Control Results with the “buffer zone”: (a) Lateral Deviation 𝑟(s); (b) 

Angular Deviation 𝜓(s); (c) Pace Deviation 𝑝(s); (d) Relative Moderation 𝛼(s); (e) Relative Angular 

Spatial Change Rate 𝑘(s); (f) Acceleration; (g) Speed; (h) Angular Deviation Rate. 

FIG. 4-8 gives us a detailed illustration of CAV's speed and acceleration changes inside the "buffer 

zone". FIG. 4-8 (a) shows that the algorithm quickly detects the speed limit change in the "buffer zone" 

and makes the deceleration decision to achieve the system equilibrium dynamically, which leads to a 

smooth speed transition, as shown in FIG. 4-8 (b). 
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FIG. 4-8. Speed and Acceleration inside the "buffer zone": (a) Acceleration; (b) Speed. 
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5. SYSTEM MODELLING OF CAV CAR-FOLLOWING STRATEGY 

This chapter delves into the design and formulation of the advanced CAV car-following 

strategy we propose. Contrary to existing CAV car-following algorithms in the literature, 

which primarily concentrate on the longitudinal driving aspect, our model integrates both lane-

keeping and car-following behaviors. For instance, in complex traffic scenarios like a curved 

lane with potential obstacles, following CAVs must manage not only longitudinal force to tail 

the lead CAV but also the lateral force to fine-tune their trajectory for obstacle evasion. We 

operate under the assumption that the following CAV can garner road attributes from RIUs and 

grasp the dynamics of the leading vehicle directly from the lead CAV. This enables subsequent 

CAVs to possess comprehensive knowledge of the traffic environment and the dynamics of the 

lead vehicle in advance. The ultimate goal of our 2D CAV car-following algorithm is to 

determine the optimal trajectory for a CAV platoon, ensuring safety, efficiency, and comfort 

even in the face of unforeseen hazards. 

5.1 State Space Formulation 

For demonstration convenience, notations are illustrated in FIG. 5-1. Let {𝑉𝑖−1} represents the leading 

vehicle with its speed (𝑣𝑖−1(𝑠)) represents the vehicle’s forward direction, we first characterize the 

location of a vehicle {𝑉𝑖}  by curvilinear coordinates. Suppose vehicles aim to travel along a 

predetermined curved road, with a centerline C. Let 𝑠 be the projected vehicle travel distance along C. 

The corresponding signed perpendicular deviation from C is denoted by 𝑟(𝑠), and the arrival time is 

𝑡(𝑠). The mapping from the curvilinear coordinates to a fixed Cartesian coordinates is denoted by 

𝑥(𝑠, 𝑟(𝑠)), �̂�(𝑠, 𝑟(𝑠)), and the corresponding moving direction referenced by a fixed horizontal line 

(e.g., �̂� = 0) is represented by 𝜃(𝑠) . Note that if indexed by time 𝑡 , the trajectory of vehicle is 

determined by a current location (𝑥(𝑡), �̂�(𝑡)) and its velocity (𝜃(𝑡), 𝑞(𝑡)), where 𝑞(𝑡) is the speed. In 

a curvilinear coordinates system indexed by distance 𝑠, we only need three dimensions (𝑠, 𝑟(𝑠), 𝜃(𝑠)) 
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to determine the trajectory. The speed information is decomposed with the trajectory information, which 

is given by pace, or inverse of speed, 𝑝(𝑠), i.e., the travel time needed to go through one unit distance 

at location 𝑠. Therefore, a trajectory of vehicle can be expressed by a fixed Cartesian coordinates 

[𝑥(𝑠), �̂�(𝑠), 𝜃(𝑠)]𝑇 ∈ ℝ3 parameterized by 𝑠 ∈ ℝ+.  

 

FIG. 5-1. Vehicle Modelling on the Defined Curvilinear Coordinate. 

Suppose a platoon of vehicles indexed by 𝑖 = 1,2,…, and the head vehicle is indexed by 1. The notation 

with subscript 𝑖 will indicate the corresponding characterization for Vehicle 𝑖. We establish the car-

following behavior for each vehicle in 2D given the leading vehicle information. For vehicle 𝑖, let 

𝜏𝑖(𝑠) = 𝑡𝑖(𝑠) − 𝑡𝑖−1(𝑠 − 𝑙𝑠) be the headway to its leading vehicle i − 1, where 𝑡𝑖(𝑠) is the time when 

vehicle 𝑖  arrives at point 𝑠  and 𝑙s  is the standstill length. The primary principle of Newell's car-

following model is to maintain a constant time gap between a vehicle and its preceding vehicle similar 

to the constant time gap policy that’s widely adopted. We further modified the original Newell’s model 

to a 2D version, as shown in FIG. 5-2. To describe the vehicle dynamics, we define a system state 𝑋𝑖 

for vehicle 𝑖 which can be represented by  [𝛥𝜏𝑖, 𝛥𝑝𝑖 , 𝑟𝑖, 𝜓𝑖]
𝑇, which contains the headway deviation 

𝛥𝜏𝑖(𝑠) between vehicle 𝑖 and its leading vehicle 𝑖 − 1, the pace deviation 𝛥𝑝𝑖(𝑠) between vehicle 𝑖 and 

its leading vehicle 𝑖 − 1, the lateral deviation 𝑟𝑖(𝑠) between vehicle 𝑖  and road centerline, and the 

angular deviation 𝜓𝑖(𝑠) between vehicle 𝑖 and road centerline. Then, the vehicle state 𝑋𝑖 is represented 

by: 
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𝑋𝑖(𝑠) =  

[
 
 
 
𝛥𝜏𝑖(𝑠)

𝛥𝑝𝑖(𝑠)

𝑟𝑖(𝑠)

𝜓𝑖(𝑠) ]
 
 
 
, 

(17) 

where 𝛥𝜏𝑖(𝑠) = 𝜏𝑖(𝑠) − 𝜏
∗ , where 𝜏∗  is the desired headway, in 𝑠; 𝛥𝑝𝑖(𝑠) =  𝑝𝑖−1(𝑠 − 𝑙𝑠) − 𝑝𝑖(𝑠), 

where 𝑝𝑖−1(𝑠) is the reciprocal of the vehicular velocity of its leading vehicle 𝑖 − 1 and 𝑝𝑖(𝑠) is the 

reciprocal of the vehicular velocity of the vehicle 𝑖, in 𝑠/𝑚; 𝑟𝑖(𝑠) is the signed orthogonal distance from 

the vehicle 𝑖 to the closest point on the road centerline, in 𝑚;  𝜓𝑖(𝑠) = 𝜃𝑖(𝑠) − 𝜃𝑑𝑒𝑠(𝑠), where 𝜃𝑖(𝑠) is 

the angle between the vehicle 𝑖 heading and the x-axis in the global frame {G} and 𝜃𝑑𝑒𝑠(𝑠) is the angle 

between the tangent of the road centerline and the x-axis in the global frame {G}, in 𝑟𝑎𝑑.  

 

FIG. 5-2. Illustration of Extended 2D Newell’s Car-following Model. 

Specifically, the vehicle dynamics are modeled as a nonlinear state space system as: 

 
𝑑𝑋𝑖(𝑠)

𝑑𝑠
=  

𝑑

𝑑𝑠
[
 
 
 
𝛥𝜏𝑖(𝑠)

𝛥𝑝𝑖(𝑠)

𝑟𝑖(𝑠)

𝜓𝑖(𝑠) ]
 
 
 
=

[
 
 
 
𝑝𝑖(𝑠) − 𝑝𝑖−1(𝑠 − 𝑙𝑠)

𝛼𝑖−1(𝑠 − 𝑙𝑠) − 𝛼𝑖(𝑠)

sin(𝜓𝑖(𝑠))

𝑘𝑖(𝑠) ]
 
 
 

=  𝑓[𝑋𝑖(𝑠), 𝑈𝑖(𝑠)]. 

(18) 

Here, 𝛼𝑖(𝑠) is the derivative of pace (on the contrary to the acceleration as the derivative of speed, 

𝛼𝑖(𝑠) > 0  indicates the vehicle is decelerating).  𝑘𝑖(𝑠):= 𝑘𝑖,𝑣(𝑠) − 𝑘des(𝑠) , where 𝑘𝑖,𝑣(𝑠)  is the 

curvature (reciprocal of vehicle turning radius) of the vehicle trajectory and 𝑘des(𝑠) is the curvature of 
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the centerline. Since 𝑘des(𝑠)  is given by the road geometry in advance, we do not explicitly write it 

out for 𝑘𝑖(𝑠) due to model convenience. Note that 𝛼𝑖(𝑠) and 𝑘𝑖(𝑠) are the decomposed control of the 

system (one dimension is for the pace and the other one is for turning), represented as 𝑈𝑖(𝑠) =

[𝛼𝑖(𝑠) − 𝛼𝑖−1(𝑠 − 𝑙𝑠), 𝑘𝑖(𝑠) ]
𝑇, which shows the beauty of our curvilinear coordinate system indexing 

by 𝑠. 

However, unlike the information that is needed for the time domain is time sensitive, our model 

formulates based on 𝑠. As the leading vehicle passes point 𝑠, its state 𝑝𝑖−1(𝑠), and time arriving at 𝑠, 

𝑡𝑖−1(𝑠), are measured and recorded by leading vehicle. During the communication, this information 

will be delivered to the following vehicle. Since 𝑡𝑖−1(𝑠) has been contained in the communication 

information, even there is communication delay, vehicles can still know exact 𝑡𝑖−1(𝑠), based on which 

the following vehicle can compute 𝜏𝑖(𝑠) and 𝛥𝜏𝑖(𝑠). Under this mechanism, the communication delay 

will exert minor impacts. 

5.2 Controllability Check 

The vehicle control system is formulated as a state space system. Specifically, the system state is defined 

as 𝑋𝑖(𝑠) and the input state is defined as 𝑈𝑖(𝑠). The controllability check is needed to ensure the system 

must be controllable to do whatever we want with the state space defined above using control variables.  

Based on the Theorem 2 and Remark 1, we can have the following Proposition: 

Proposition 2: The state space formulated as Eq. (18) is controllable if the change rate of the angular 

deviation is relevant small. 

Proof: 

The state-space model of Eq. (18) can be derived based on the small-angle approximation as follows: 

 𝑑𝑋𝑖(𝑠)

𝑑𝑠
= 𝐴𝑋𝑖(𝑠) + 𝐵𝑈𝑖(𝑠), 

(19) 
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where 𝐴 = [

0
0
0
0

−1
0
0
0

0
0
0
0

0
0
1
0

], 𝐵 = [

0
−1
0
0

0
0
0
1

]. 

Based on Eq. (3), the controllability matrix of Eq. (19) can be written as: 

 

𝐺(𝐴, 𝐵) = [𝐵, 𝐴𝐵, 𝐴2𝐵, 𝐴3𝐵] = [

0 0 1 0 0 0 0 0
−1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0

], 

(20) 

which gives us the rank of the controllability matrix: 

 

𝑟𝑎𝑛𝑘𝐺(𝐴, 𝐵) = 𝑟𝑎𝑛𝑘 [

0 0 1 0 0 0 0 0
−1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0

] = 4. 

(21) 

5.3 Model Predictive Control Formulation 

In this section, we present a nonlinear MPC formulation in this section to manage system state and 

control constraints efficiently as illustrated by FIG. 5-3. Different from traditional MPC defined on 

time domain, we formulate based on the space domain instead. For each vehicle, we consider a space 

window 𝑠 ∈ [𝑚,𝑚 +𝑚𝑝], where the vehicle’s projected location at the centerline is at 𝑚 and our 

prediction horizon covers a distance 𝑚𝑝 . Given the leading vehicle’s trajectory input/prediction 

(derivative of pace in particular), the controller solves an optimal control problem over the space 

window, and only implement the control at 𝑚. Such calculation and control are conducted sequentially 

with a moving prediction window with length 𝑚𝑝. 
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FIG. 5-3. Illustration of Nonlinear Model Predictive Control. 

To better illustrate the MPC algorithm, we introduce serval additional notations. First, we use 

superscript (𝑝,𝑚) to represent the variables predicted at moving window starting from 𝑚. In addition, 

superscript 𝑟 is used to represent those variables already realized. For example, 𝑋𝑖
𝑝,𝑚
(𝑚) indicates the 

predicted system state at location 𝑚, with a moving window starting from 𝑚. Therefore, we can define 

the predicted control set 𝒰𝑖
𝑝(𝑚) = {𝑈𝑖

𝑝,𝑚(𝑠)|𝑚 ≤ 𝑠 ≤ 𝑚 +𝑚𝑝}  to denote the predicted control 

sequences for Vehicle 𝑖  at location 𝑚 with moving window [𝑚,𝑚 +𝑚𝑝]. In addition, we define the 

realized control set 𝒰𝑖
𝑟(𝑚) = {𝑈𝑖

𝑟(𝑠)|0 ≤ 𝑠 ≤ 𝑚} to denote the realized control sequences for Vehicle 

𝑖 at location 𝑚. In particular, 𝑈𝑖
𝑟(0) is the initial control inputs, and 𝑈𝑖

𝑟(𝑠) = 𝑈𝑖
𝑝,𝑠(𝑠) always holds. 

Similarly, we have 𝒳𝑖
𝑝(𝑚) = {𝑋𝑖

𝑝,𝑚(𝑠)|𝑚 ≤ 𝑠 ≤ 𝑚 +𝑚𝑝} to be the predicted future states for Vehicle 

𝑖 obtained at location 𝑚, and 𝒳𝑖
𝑟(𝑚) = {𝑋𝑖

𝑟(𝑠)|0 ≤ 𝑠 ≤ 𝑚} to be its realized states, where 𝑋0
𝑟 is the 

initial state and 𝑋𝑖
𝑟(𝑠) = 𝑋𝑖

𝑝,𝑠(𝑠). 

Then, given the leading vehicle information �̂�𝑖−1 (can be already realized or be predicted), we can 

formulate an optimal control problem incorporating the control efficiency and driving smoothness, 

which is given as: 

 
𝐽 = 𝑎𝑟𝑔𝑚𝑖𝑛 𝐹 (𝑋𝑖

𝑝,𝑚
(𝑚 +𝑚𝑝)) +∫ 𝐿 (𝑋𝑖

𝑝,𝑚(𝑠), 𝑈𝑖
𝑝,𝑚(𝑠))𝑑𝑠

𝑚+𝑚𝑝

𝑚

, 
(22a) 

𝑠. 𝑡. 
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 𝑑𝑋𝑖
𝑝,𝑚(𝑠)

𝑑𝑠
= 𝑓[𝑋𝑖(𝑠), 𝑈𝑖(𝑠), 𝛼𝑖−1(𝑠 − 𝑙𝑠)] ∀𝑠 ∈ [𝑚,𝑚 +𝑚𝑝], 

(22b) 

 𝑋𝑖
𝑝,𝑚(𝑚) = 𝑋𝑖

𝑟(𝑚), (22c) 

 𝑈𝑖
𝑝,𝑚(𝑚) = 𝑈𝑖

𝑟(𝑚), (22d) 

 𝑋𝑖
𝑝,𝑚(𝑠) ∈ 𝕏𝑖(𝑠) ∀𝑠 ∈ [𝑚,𝑚 +𝑚𝑝],  (22e) 

 𝑈𝑖
𝑝,𝑚(𝑠) ∈ 𝕌𝑖(𝑠) ∀𝑠 ∈ [𝑚,𝑚 +𝑚𝑝]. (22f) 

where 𝑚𝑝 is the prediction space horizon; 𝐿 (𝑋𝑖
𝑝,𝑚(𝑠), 𝑈𝑖

𝑝,𝑚(𝑠)) is the running cost consists of the 

vehicle 𝑖  travel distance and driving smoothness before reaching the equilibrium point 𝑋𝑒 ; 

and 𝐹 (𝑋𝑖
𝑝,𝑚
(𝑚 +𝑚𝑝))  is the terminal cost that penalizes a deviation from the equilibrium 

point 𝑋𝑒 from the desired final state (i.e., the end of the prediction horizon). Eq. (22c) and Eq. (22d) are 

the initial condition at space step 𝑚; and Eq. (22e) is the state constraint to regulate the transition 

vehicle states at each space point. The constraint in Eq. (22f) is used to guarantee that the commanded 

steering wheel rotation and acceleration are within a reasonable range of 𝑈𝑖(𝑠). 

For the optimal control formulated in Eq. (22a), we specify the running cost and the terminal cost as 

follows: 

 
𝐿 (𝑋𝑖

𝑝,𝑚(𝑠), 𝑈𝑖
𝑝,𝑚(𝑠)) =  (𝑋𝑖

𝑝,𝑚(𝑠))
𝑇
𝑊𝑋𝑖

𝑝,𝑚(𝑠) + (𝑈𝑖
𝑝,𝑚(𝑠))

𝑇
𝑄𝑈𝑖

𝑝,𝑚(𝑠) ∀𝑠

∈ [𝑚,𝑚 +𝑚𝑝], 

(23a) 

 
𝐹 (𝑋𝑖

𝑝,𝑚
(𝑚 +𝑚𝑝)) = (𝑋𝑖

𝑝,𝑚
(𝑚 +𝑚𝑝))

𝑇
𝑆𝑋𝑖

𝑝,𝑚
(𝑚 +𝑚𝑝), 

(23b) 

where 𝑊, 𝑄 and 𝑆 are positive definite diagonal coefficients matrices, which are usually designed as 

the diagonal matrix below: 
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𝑊 = [

𝑤1  
 𝑤2

  
  

  
  

𝑤3  
 𝑤4

] , 𝑤1, 𝑤2, 𝑤3, 𝑤4 > 0, 

(24a) 

 𝑄 = [
𝑞1  
 𝑞2

] , 𝑞1, 𝑞2 > 0, 
(24b) 

 

𝑆 = [

𝑠1  
 𝑠2

  
  

  
  

𝑠3  
 𝑠4

] , 𝑠1, 𝑠2, 𝑠3 > 0. 

(24c) 

For Eq. (22e) and Eq. (22f), by considering collision-free constraints, steering wheel, and 

acceleration/deceleration limits, CAV’s state constraint determined at space 𝑚 is formulated in detail 

as follows: 

 −𝜏𝑑𝑒𝑣 ≤ 𝐷𝑋𝑖
𝑝,𝑚(𝑠) ∀𝑠 ∈ [𝑚,𝑚𝑝], (25a) 

 𝐸𝑋𝑖
𝑝,𝑚(𝑠) ≤ 𝑝𝑖−1(𝑠 − 𝑙𝑠) − 𝑝𝑚𝑖𝑛 ∀𝑠 ∈ [𝑚,𝑚𝑝], (25b) 

 𝑟𝑖
𝐿(𝑠) ≤ 𝐹𝑋𝑖

𝑝,𝑚(𝑠) ≤ 𝑟𝑖
𝑈(𝑠) ∀𝑠 ∈ [𝑚,𝑚𝑝], (25c) 

 𝜓𝑖,𝑚𝑖𝑛 ≤ 𝐼𝑋𝑖
𝑝,𝑚(𝑠) ≤ 𝜓𝑖,𝑚𝑎𝑥 ∀𝑠 ∈ [𝑚,𝑚𝑝],  (25d) 

 𝛼𝑖,𝑚𝑖𝑛(𝑠) − 𝛼𝑖−1(𝑠 − 𝑙𝑠) ≤ 𝑀𝑈𝑖
𝑝,𝑚(𝑠) ≤ 𝛼𝑖,𝑚𝑎𝑥(𝑠) − 𝛼𝑖−1(𝑠 − 𝑙𝑠) ∀𝑠 ∈ [𝑚,𝑚𝑝), (25e) 

 
−

1

𝑅𝑖,𝑚𝑖𝑛
− 𝑘𝑑𝑒𝑠(𝑠) ≤ 𝑁𝑈𝑖

𝑝,𝑚(𝑠) ≤
1

𝑅𝑖,𝑚𝑖𝑛
− 𝑘𝑑𝑒𝑠(𝑠) ∀𝑠 ∈ [𝑚,𝑚𝑝). 

(25f) 

Eq (25a) is a constraint to make sure that the headway between the vehicle 𝑖 and its preceding vehicle 

along the road centerline does not deviate from equilibrium headway significantly for the safety concern, 

where 𝐷 = [1,0,0,0]. To be noted that, 𝜏𝑑𝑒𝑣 can be picked according to the safety requirement. For the 

extreme case (e.g., a vehicle suddenly cut in the front of controlled vehicle), we can set  𝜏𝑑𝑒𝑣 = 𝜏
∗, to 

increase feasible region while guaranteeing collision avoidance; Eq (25b) is used to ensure that vehicle 

𝑖 will never surpass the road’s speed limit, where 𝑝𝑚𝑖𝑛 indicates the reciprocal of the maximum speed 

limit and 𝐸 = [0,1,0,0]; Eq (25c) is the constraint imposed on the vehicle 𝑖 to ensure that it stays within 
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the lane, where 𝐹 = [0,0,1,0] , and 𝑟𝑖
𝐿(𝑠) = {

𝑟𝑖
−(𝑠), 𝑖𝑓 𝑂𝑏 ≤ 𝑠 ≤ 𝑂𝑒

−𝑟𝑚𝑎𝑥, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 and 𝑟𝑖

𝑈(𝑠) =

{
𝑟𝑖
+(𝑠), 𝑖𝑓 𝑂𝑏 ≤ 𝑠 ≤ 𝑂𝑒
𝑟𝑚𝑎𝑥, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

. Where 𝑟𝑖
−(𝑠) and 𝑟𝑖

+(𝑠) are the lower and upper bounds of the work zone 

through which vehicle 𝑖 may pass, respectively; 𝑂𝑏 and 𝑂𝑒 are starting and ending positions of the work 

zone; 𝑟𝑚𝑎𝑥 is equal to a half the width of the lane; Eq (25d) is used to impose the vehicle's permissible 

angular deviation's physical restrictions, where 𝐼 = [0,0,0,1], 𝜓𝑖,𝑚𝑖𝑛 and 𝜓𝑖,𝑚𝑎𝑥 specify the allowable 

angular deviation's lower and upper bounds; Eq (25e) is used to ensure the actual 

acceleration/deceleration of the vehicle is within the vehicle's physical limits, where 𝑀 = [1,0] , 

𝛼𝑖,𝑚𝑖𝑛(𝑠) = −𝑎𝑖,𝑚𝑎𝑥𝑝𝑖
3(𝑠)  and 𝛼𝑖,𝑚𝑎𝑥(𝑠) = −𝑎𝑖,𝑚𝑖𝑛𝑝𝑖

3(𝑠)  with 𝑎𝑖,𝑚𝑎𝑥  is the vehicle 𝑖 ’s maximum 

acceleration and 𝑎𝑖,𝑚𝑖𝑛 is the vehicle 𝑖’s maximum deceleration limits; Eq (25f) is the constraint that 

the vehicle 𝑖's actual moving path is constrained by a specified minimum turning radius, where 𝑁 =

[0,1], 𝑅𝑖,𝑚𝑖𝑛 is the minimum turning radius of the vehicle 𝑖.  

String stability is a critical property of vehicle platoons because it ensures that system state disturbances 

do not propagate along the string of vehicles (Dunbar & Caveney, 2011; Kianfar et al., 2015). However, 

due to the complexity of MPC caused by state and control constraints, analyzing the string stability of 

MPC based car-following control is typically difficult. Hence, we conducted an approximated linear 

stability analysis for our proposed control, as suggested by Liu et al. (2021) and Zhou et al. (2019). 

5.4 Discretization and linearization 

The stability analysis is important for a vehicle control model that could introduce system-level impacts 

on traffic. String stability signifies disturbances (e.g., 𝛼𝑖(𝑠)) dampening performance as it propagates 

through a platoon of vehicles. 

Due to the non-analytical form of MPC, we simplify the proof by assuming that the constraints are 

inactive and mp  is large enough, which describes the MPC’s long-term control behaviors given 

disturbances are small. By which, the MPC given by Eqs (25) can be reduced to a linear quadratic 

regulator, whose control law is analytical. The linear quadratic regulator is as follows: 
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𝐽 =∫ ((𝑋𝑖(𝑠))
𝑇
𝑊𝑋𝑖(𝑠) + (𝑈𝑖(𝑠))

𝑇
𝑄𝑈𝑖(𝑠))

+∞

0

𝑑𝑠, 
(26a) 

 𝑠. 𝑡. 

  
𝑑

𝑑𝑠
𝑋𝑖(𝑠) = 𝐴𝑋𝑖(𝑠) + 𝐵𝑈𝑖(𝑠). (26b) 

As can be found that, the constrained control problem above is a linear quadratic regulator (LQR), 

which gives linear control law as below: 

  𝑈𝑖(𝑠) = 𝐾𝑖𝑋𝑖(𝑠), (26c) 

where 𝐾𝑖 is the continual feedback gain of vehicle 𝑖, which is resolved using Algebraic Riccati Equation 

as below: 

 𝐾𝑖 = 𝑄
−1𝐵𝑇𝑌, (27a) 

 𝑌𝐴 + 𝐴𝑇𝑃 − 𝑌𝐵𝑄−1𝐵𝑇𝑌 +𝑊 = 0. (27b) 

To simplify the calculation, we use block matrix to illustrate matrix 𝐴, 𝐴𝑇, 𝐵, 𝐵𝑇, 𝑊, and 𝑌 as below: 

 
𝐴 = [

𝐴11̃ 02×2

02×2 𝐴22̃
], 

(28a) 

 

𝐴𝑇 = [

0
−1
0
0

0
0
0
0

0
0
0
1

0
0
0
0

] = [
𝐴11
�̃� 02×2 

02×2 𝐴22
�̃�
], 

(28b) 

 
𝐵 = [

𝐵11̃ 02×1

02×1 𝐵22̃
], 

(28c) 

 
𝐵𝑇 = [

0 −1 0 0
0 0 0 1

] = [
𝐵11
�̃� 01×2

01×2 𝐵22
�̃�
],  

(28d) 

 
𝑊 = [

𝑊11̃ 02×2

02×2 𝑊22̃
], 

(28e) 
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𝑌 = [

𝑌11̃ 𝑌12̃
𝑌21̃ 𝑌22̃

]. 
(28f) 

Based on that, Eq. (27b) can be calculated as: 

 

{
 
 
 
 

 
 
 
 𝑌11̃𝐴11̃ + 𝐴11

�̃� 𝑌11̃ − 𝑌11̃𝐵11̃
1

𝑞1
𝐵11
�̃� 𝑌11̃ +𝑊11̃ = 0

2×2

𝑌12̃𝐴22̃ + 𝐴11
�̃� 𝑌12̃ − 𝑌12̃ × 0

1×2 ×
1

𝑞2
𝐵11
�̃� 𝑌12̃ = 0

2×2

𝑌21̃𝐴11̃ + 𝐴22
�̃� 𝑌21̃ − 𝑌21̃𝐵11̃

1

𝑞1
𝐵22
�̃� 𝑌21̃ = 0

2×2

𝑌22̃𝐴22̃ + 𝐴22
�̃� 𝑌22̃ − 𝑌22̃ × 0

1×2 ×
1

𝑞2
𝐵22
�̃� 𝑌22̃ +𝑊22̃ = 0

2×2

. (29) 

Based on Eq (29), we can get {
𝑌12̃𝐴22̃ + 𝐴11

�̃� 𝑌12̃ = 0
2×2

𝑌21̃𝐴11̃ + 𝐴22
�̃� 𝑌21̃ = 0

2×2
 , which suggests 𝑌12̃ = 𝑌21̃ = 0

2×2. Hence, 𝑌 

and 𝐾𝒊 should follow the form as: 

 

𝑌 = [
𝑌11̃ 02×2

02×2 𝑌22̃
] = [

𝑦11
𝑦21
0
0

𝑦12
𝑦22
0
0

0
0
𝑦33
𝑦43

0
0
𝑦34
𝑦44

], 

(30a) 

 

 𝐾𝑖 = 𝑄
−1𝐵𝑇𝑌 = [

−
𝑦21

𝑞1
−
𝑦22

𝑞1
0 0

0 0
𝑦43

𝑞2

𝑦44

𝑞2

]. 

(30b) 

By applying Eq (30b) into Eq (26c), we can get that: 

𝛼𝑖(𝑠) − 𝛼𝑖−1(𝑠 − 𝑙𝑠) = −
𝑦21
𝑞1
(𝑡𝑖(𝑠) − 𝑡𝑖−1(𝑠 − 𝑙𝑠) − 𝜏

∗) −
𝑦22
𝑞1
(𝑝𝑖−1(𝑠 − 𝑙𝑠) − 𝑝𝑖(𝑠)). 

(31) 

By applying the Laplacian transformation on Eq (31), we have 

𝛼𝑖(𝑧) − 𝛼𝑖−1(𝑧)𝑒
−𝑙𝑠𝑧 = −

𝑦21
𝑞1
×
𝛼𝑖(𝑧) − 𝛼𝑖−1(𝑧)𝑒

−𝑙𝑠𝑧

𝑧2
−
𝑦22
𝑞1
×
𝛼𝑖−1(𝑧)𝑒

−𝑙𝑠𝑧 − 𝛼𝑖(𝑧)

𝑧
, 

(32) 

where 𝛼𝑖(𝑧) is the Laplacian transformation of 𝛼𝑖(𝑠); 𝑧 =  𝑗𝜔, where 𝑗 is the imaginary unit and 𝜔 

denotes the frequency of the signal. After simplification, we have 
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 𝛼𝑖(𝑧)

𝛼𝑖−1(𝑧)
= |

𝛼𝑖(𝑧)

𝛼𝑖−1(𝑧)
| ∡

𝛼𝑖(𝑧)

𝛼𝑖−1(𝑧)
, 

(33a) 

where |
𝛼𝑖(𝑧)

𝛼𝑖−1(𝑧)
| represents the acceleration amplification magnitude, and ∡

𝛼i(z)

𝛼i−1(z)
 represents the phase 

shift of acceleration. In our case, we have: 

  |
𝛼𝑖(𝑧)

𝛼𝑖−1(𝑧)
| = 1, (33b) 

  ∡
𝛼𝑖(𝑧)

𝛼𝑖−1(𝑧)
= 𝑙𝑠 . 

(33b) 

Based on the above analysis, we can conclude that our spatial formulation can greatly pertain to the 2D 

Newell’s car-following model, as the acceleration after reaching equilibrium is not affected by the 

choice of 𝑊 and 𝑄. Compared with the time domain method (e.g., Zhou et al., 2019), which requires 

careful 𝑊 and 𝑄 design, our MPC in spatial domain simplifies the weighting matrix tuning procedure. 

Additionally, compared with works suffering from continuous deviation from equilibrium, our design 

is capable of sticking to equilibrium in a straightforward manner. 

The reason why we prove an approximated linear string stability is due to the non-analytical form of 

MPC makes it challenging to conduct theoretical string stability analysis. we further simplify the proof 

by considering the case that the constraints are inactive and mp is large enough, which describes the 

MPC’s long-term control behaviors given disturbances are small. There are currently no mature 

mathematical tools to conduct theoretical string stability analysis for non-analytical control law such as 

MPC. One approach is to adding constraints such as Zhou et al. (2019), whereas this approach may 

render infeasibility due to the extra constraints. Another approach is to evaluate the string stability 

empirically. 

5.5 Discretization and linearization 

We divide the prediction horizon into N steps and discretize the optimal control problem on the s-axis. 

To accurately represent control frequency in the real world, we used the ZOH technique for control 
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input discretization. To be more precise, the control input is assumed to be constant during each update 

spatial interval ∆𝑠 , and when ∆𝑠  is small enough, the discretization process can be treated as a 

continuous system. 

 𝑋𝑖,𝑠+∆𝑠
𝑝,𝑚

≈ 𝐴𝑑𝑋𝑖,𝑠 + 𝐵𝑑𝑈𝑖,𝑠 ∀𝑠 ∈ {𝑚,𝑚 + 1,… ,𝑚 + 𝑁 − 1}, (34a) 

𝑠. 𝑡. 

 𝐴𝑑 = 𝑒
𝐴𝑠, (26b) 

 
𝐵𝑑 = ∫ 𝑒𝐴𝛾𝑑𝛾𝐵

𝑠

0

. 
(26c) 

with ∆𝑠 =
𝑚𝑝

𝑁
. 

The objective function in Eqs. (22) can be transformed into 

 

𝐽 = 𝑎𝑟𝑔𝑚𝑖𝑛 𝐹(𝑋𝑖,𝑚+𝑁
𝑝,𝑚

) + ∑ 𝐿(𝑋𝑖,𝑠
𝑝,𝑚
, 𝑈𝑖,𝑠

𝑝,𝑚
)

𝑚+𝑁−1

𝑠=𝑚

, 
(35a) 

𝑠. 𝑡. 

 𝑋𝑖,𝑠+∆𝑠
𝑝,𝑚

≈ 𝐴𝑑𝑋𝑖,𝑠 + 𝐵𝑑𝑈𝑖,𝑠 ∀𝑠 ∈ {𝑚,𝑚 + 1,… ,𝑚 + 𝑁 − 1}, (27b) 

 𝑋𝑖,𝑚
𝑝,𝑚

= 𝑋𝑖,𝑚
𝑟 , (27c) 

 𝑈𝑖,𝑚
𝑝,𝑚

= 𝑈𝑖,𝑚
𝑟 , (27d) 

 𝑋𝑖
𝑝,𝑚

∈ 𝕏𝑖 ∀𝑖 ∈ {𝑚,𝑚 + 𝛥𝑠,… ,𝑚 +𝑚𝑝},  (27e) 

 𝑈𝑖
𝑝,𝑚

∈ 𝕌𝑖 ∀𝑖 ∈ {𝑚,𝑚 + 𝛥𝑠,… ,𝑚 +𝑚𝑝}. (27f) 

With the optimization framework becoming a discretized linear quadratic equation, quadratic 

programing can be applied. we specialize the result in Eqs. (27) to the fundamental quadratic 

programing problem.  
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5.6 Online Vehicle Control Scheme 

The proposed algorithm uses the most recent information from the leading vehicle, and therefore, 

control of CAVs in a platoon is performed sequentially. This setting enhances the performance of the 

controller by utilizing the most recent information and is shown in Algorithm 1. 

Algorithm 1 Online Vehicle Control Scheme 

1: initialization: Without losing generality, CAV 𝑖 = 1 start with the space 𝑠1,0 = 0, at global 

time frame 𝑡 =  0. 

2: at time point 𝑡, if 𝑖 = 1, Update and Record 𝑠𝑖,𝑡
𝑟 ; 

3: if 𝑖 = 1, Compute 𝒰𝑖,𝑡
𝑝
,𝒳𝑖,𝑡

𝑝
by solving the leading vehicle trajectory problem and record 𝒳𝑖

𝑟, 

𝒰𝑖
𝑟; else Compute 𝒰𝑖,𝑡

𝑝
,𝒳𝑖,𝑡

𝑝
by solving the CF problem and record 𝒳𝑖

𝑟, 𝒰𝑖
𝑟;   

4: check whether 𝑠𝑖,𝑡
𝑟 + 𝑙𝑠 ≥ 𝑠𝑖+1,𝑡

𝑟 +𝑚𝑝 , if yes, transmit 𝒳𝑖
𝑟 , 𝒰𝑖

𝑟  to vehicle 𝑖 + 1 ; else 

calculate �̃�𝑖
𝑝
= [𝑥𝑖,𝑠𝑖+1,𝑡

𝑟 −𝑙𝑠

𝑟 , 𝑥𝑖,𝑠𝑖+1,𝑡
𝑟 −𝑙𝑠+1

𝑟  … , 𝑥𝑖,𝑠𝑖,𝑡
𝑟

𝑟 , 𝑥
𝑖,𝑠𝑖,𝑡
𝑟 +1

𝑝
, … , 𝑥

𝑖,𝑠𝑖+1,𝑡
𝑟 +𝑚𝑝−𝑙𝑠

𝑝
] , �̃�𝑖

𝑝
=

[𝑢𝑖,𝑠𝑖+1,𝑡
𝑟 −𝑙𝑠

𝑟 , 𝑢𝑖,𝑠𝑖+1,𝑡
𝑟 −𝑙𝑠+1

𝑟  … , 𝑢𝑖,𝑠𝑖,𝑡
𝑟

𝑟 , 𝑢
𝑖,𝑠𝑖,𝑡
𝑟 +1

𝑝
, … , 𝑢

𝑖,𝑠𝑖+1,𝑡
𝑟 +𝑚𝑝

𝑝
]. 

5: implement 𝑢𝑖,𝑠𝑖,𝑡
𝑟

𝑟 ; 

6: if 𝑖 < 𝑁, update CAV number: 𝑖 = 𝑖 + 1, and go to Step 2; Else, go to Step 7; 

7: update time point: t = t + 1. Set i = 1; Go to Step 2. 

FIG. 5-4 illustrates two cases described in step 4. If the leading vehicle 𝑖 is 𝑚𝑝 − 𝑙𝑠 meters ahead of its 

following vehicle 𝑖 + 1  when vehicle 𝑖 + 1  arrives at 𝑠𝑖+1 , the leading vehicle 𝑖  will transmit its 

realized states sequences from 𝑠𝑖+1 − 𝑙𝑠 to 𝑠𝑖+1 +𝑚𝑝 − 𝑙𝑠 to its following vehicle 𝑖 + 1, as shown in 

FIG. 5-4 (a). Otherwise, the leading vehicle 𝑖 will send a total of 𝑚𝑝 meters of joint state sequences 

that combine realized state sequences and predicted state sequences of its current space 𝑠𝑖+1, as shown 

in FIG. 5-4 (b). To be noted that, in comparison to the time domain approach that comprises entirely 
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of predicted state sequences, as shown in FIG. 5-4 (c), we believe that these predicted state sequences 

will never be realized because they will be out of date once they are realized. Additionally, 

communication delay is a significant concern for the time domain approach, as the following vehicle 

𝑖 + 1  will use the most recently received information from its leading vehicle 𝑖  as the current 

information due to the nature of the time domain approach. However, the information that CAV uses in 

the spatial domain does not have to be real-time. Because road geometries are fixed in space, the CAV 

can even use saved information, which means that our model can be implemented properly as long as 

the CAV receives road information in advance. 

 

FIG. 5-4. Illustration of State Sequences transmission for Different Cases: (a) The Distance between 

Vehicles is Greater than or Equal to Prediction Horizon in Space Domain; (b) The Distance between 
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Vehicles is Smaller than Prediction Horizon in Space Domain; (c) State Sequences transmission in 

Time Domain. 
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6. NUMERICAL SIMULATION RESULT OF CAV CAR-FOLLOWING 

STRATEGY 

We conducted a numerical simulation experiment using MATLAB to validate the efficiency 

of our proposed method. Vehicle 1, which is the leading vehicle, has its dynamics calculated 

using our CAV trajectory optimization strategy. Table 6-1 contains the parameter settings for 

the CAV trajectory optimization as Eqs (25a) to (25f). 

Table 6-1. Default Parameters for Car-following Model 

Parameters Value 

𝑙𝑠 2 𝑚 

𝜏∗ 1 𝑠 

𝜏𝑑𝑒𝑣 0.5 𝑠 

𝑚𝑝 80 𝑚 

𝑝𝑚𝑖𝑛 1/15 𝑠/𝑚 

𝜓𝑚𝑖𝑛 and 𝜓𝑚𝑎𝑥 −
𝜋

6
𝑟𝑎𝑑 and 𝜋/6 𝑟𝑎𝑑 

𝛼𝑚𝑖𝑛 and 𝛼𝑚𝑎𝑥 −5 𝑚/𝑠2 and 3 𝑚/𝑠2 

𝑅𝑚𝑖𝑛 10 𝑚 

𝑤1, 𝑤2, 𝑤3, and 𝑤4 1, 10, 0.33, and 0.1 

𝑞1 and 𝑞2 5000 and 1 

𝑠1, 𝑠2, 𝑠3, and 𝑠4 5, 50, 1.65, and 0.5 

6.1 Scenario I: A continuous curvy road segment without an obstacle 

To validate our optimal control model, we create a numerical simulation environment consisting of an 

800 m one-lane road segment with a series of curves as shown in FIG. 6-1. The road is divided into 

two continuous curves with the same radius of 300 meters and lane width of 3.6 meters. The leading 
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vehicle is designed to drive at varying speeds in order to simulate our car-following strategy in real-

world situations, which means that the leading vehicle's speed limit changes. The road's speed limit is 

set at 15 m/s for the first 200 meters, 10 m/s between 250 and 350 meters, and 15 m/s between 400 

and 800 meters, with the remainder of the road designated as a "buffer zone." We set the leading 

vehicle's lateral deviation from the lane centerline to 1 m, its angular deviation to −
𝜋

6
 rad, and its pace 

deviation to 
1

30
 s/m (equivalently desired speed difference of 10 m/s in our case). Additionally, we add 

three vehicles as car-following vehicles: vehicle 2 begins with the majority of its states at equilibrium 

points but with a -0.2 s headway deviation, while vehicles 3 and 4 begin at equilibrium states. 

 

FIG. 6-1. Illustration of Road Trajectory. 

To better understand the proposed algorithm's convergence behavior, we plot the proposed controller's 

performance in FIG. 6-2 (a)-(d) and FIG. 6-2 (e)-(f), which demonstrates the system state evolution, 

including headway deviation, pace deviation, lateral deviation, and angular deviation, as well as how 

the control inputs change in the space domain as CAVs move under our control. To gain a better 

understanding of the proposed car-following method, we convert 𝑝𝑖,𝑣(𝑠), 𝛼𝑖(𝑠) in the spatial domain to 

speed and acceleration in both the spatial and temporal domains, as illustrated in FIG. 6-2 (g)-(j). The 

initial headway deviation of vehicle 2 is -0.2 s, indicating that the initial headway between vehicles 1 

and 2 is smaller than expected. To achieve headway equilibrium, vehicle 2 begins with a deceleration 

phase followed by an acceleration phase, which accounts for the vehicle's inevitable fluctuation in pace 



54 

 

deviation during the initial stage. As can be seen, analogous trends exist for vehicles 2, 3, and 4, with 

the lateral deviation, the angular deviation, and the relative angular spatial change rate remaining nearly 

constant. The relative moderation for vehicles 2, 3, and 4 fluctuates slightly during both acceleration 

processes of the leading vehicle, then quickly returns to equilibrium, and the fluctuation wave decreases 

as the order of platoon vehicles increases. To be more precise, while vehicle 1's speed changes as it 

moves, car-following vehicles 2, 3, and 4 rapidly detect these speed changes and dynamically adjust 

their acceleration/deceleration to maintain system equilibrium. This explains why the speed and 

acceleration of car-following vehicles are nearly identical to those of the leading vehicle in the space 

domain and imperatively shift right in the time domain, as shown in FIG. 6-2 (g)-(j). These results 

demonstrate that the algorithm rapidly determines the difference between the leading and following 

vehicles and calculates the optimal control inputs required to dynamically achieve system equilibrium. 

Additionally, the infinitesimal oscillation demonstrates our proposed controller's high robustness to 

disturbances such as the leading vehicle's speed change and road curvature. Rather than using a time-

domain approach, the proposed method can better handle disturbances that vary in space, demonstrating 

the proposed algorithm's superiority by incorporating road geometric attributes and leading vehicle 

dynamics via V2V communication. 
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FIG. 6-2. CAVs States and controls Results with no Obstacle: (a) Headway Deviation 𝛥𝜏𝑖(𝑠); (b) 

Pace Deviation 𝛥𝑝𝑖(𝑠); (c) Lateral Deviation 𝑟𝑖(𝑠); (d) Angular Deviation 𝜓𝑖(𝑠); (e) Relative 

Moderation 𝛼𝑖(s); (f) Relative Angular Spatial Change Rate 𝑘𝑖(s); (g) Speed in Space Domain; (h) 

Speed in Time Domain; (i) Acceleration in Space Domain; (j) Acceleration in Time Domain. 
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6.2 Scenario II: A curved road with an obstacle 

The results in the preceding section demonstrate that the proposed CAV car-following strategy is 

efficient and stable in the absence of an obstacle. Therefore, to validate the proposed CAV car-following 

strategy in the presence of an obstacle, we conduct a simulation experiment using a 155 m one-lane 

road as shown in FIG. 6-3 to evaluate our proposed trajectory optimization method in the presence of 

a 10 m obstacle located between 50 𝑚  and 60 𝑚 . During the obstacle section, 𝑟𝑚+𝑛
𝐿 = 0.5 m and 

𝑟𝑚+𝑛
𝑈 = 1.8 m. To meet both safety and driving comfort requirements, a combined driving mode is 

designed that combines an obstacle avoidance driving behavior 5 meters before and during the obstacle 

section with an obedient driving behavior during the non-obstacle sections. The default weights are 

used for obedient driving, whereas the weights for obstacle avoidance driving with 𝑔3and 𝑔4  are 

approaching zero. For the initial condition, we set the leading vehicle's lateral deviation from the lane 

centerline to 1 m, its angular deviation to −
𝜋

12
 rad, and its pace deviation to 0 s/m (driving at a speed 

of 15 m/s). Vehicle 2 starts with the majority of its states at equilibrium points except for a 0.2 s 

headway deviation, and vehicles 3 and 4 both start at an equilibrium state. 

 

FIG. 6-3. Illustration of Road Trajectory with the Obstacle. 

The results in FIG. 6-4 clearly demonstrate how the proposed CAV car-following strategy addresses 

the situation that arises when an obstacle is observed. Albeit the obstacle is introduced, how the 
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evolution of the system state and control input change in the spatial domain, as illustrated in FIG. 6-4 

(a)-(d) and FIG. 6-4 (e)-(f), respectively, is stable and demonstrates exceptional robustness to the 

obstacle. Additionally, FIG. 6-4 (g)-(j) illustrates the evolution of speed and acceleration in both the 

spatial and temporal domains. Vehicle 2's initial headway deviation is 0.2 seconds, indicating that the 

initial headway difference between vehicles 1 and 2 is 0.2 seconds greater than expected. FIG. 6-4 (a), 

(b) and (e) show that during the initial stage of achieving headway equilibrium, vehicle 2 goes through 

an acceleration phase followed by a deceleration phase, which accounts for the vehicle's inevitable 

fluctuations in pace deviation and corresponding relative moderation changes that occur during the 

initial stage and explains the acceleration and speed change shown in FIG. 6-4 (g)-(j). FIG. 6-4 (c), (d) 

and (f) illustrate how CAV reacts when the obstacle avoidance driving behavior is applied, the vehicles 

2, 3, and 4 quickly rotate left and continue driving on the left side of the lane throughout the obstacle 

section, then return to the center of the lane once the obstacle section is passed. These results 

demonstrate that the algorithm quickly determines the difference between the obstacle section and the 

non-obstacle section and calculates the optimum control inputs necessary to achieve dynamic system 

balance. The proposed method can, instead of using a time-domain approach, manage obstacles that 

vary spatially and demonstrate the superiority of the proposed algorithm through the integration of the 

geometric road attributes and leading vehicle dynamics via V2V communication. 
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FIG. 6-4. CAVs States and controls Results with an Obstacle: (a) Headway Deviation 𝛥𝜏𝑖(𝑠); (b) 

Pace Deviation 𝛥𝑝𝑖(𝑠); (c) Lateral Deviation 𝑟𝑖(𝑠); (d) Angular Deviation 𝜓𝑖(𝑠); (e) Relative 

Moderation 𝛼𝑖(s); (f) Relative Angular Spatial Change Rate 𝑘𝑖(s); (g) Speed in Space Domain; (h) 

Speed in Time Domain; (i) Acceleration in Space Domain; (j) Acceleration in Time Domain. 
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6.3 Scenario III: Comparison with Temporal LQR 

The preceding section's results establish that the proposed CAV car-following strategy is both efficient 

and stable in dealing with the road situation whether a work zone exists or not. To validate the proposed 

CAV car-following strategy against a time-domain CAV car-following strategy, we compared our 

method with a temporal LQR trajectory optimization method mentioned by Chen et al. (2021).  

Specifically, we conduct a simulation experiment with 6 continuous curves, which all have the same 

radius of 
60

𝜋
 𝑚, as illustrated in FIG. 6-5. The result of the temporal LQR trajectory optimization 

method is the joint results of the temporal lane-keeping algorithm and temporal car-following algorithm. 

 

FIG. 6-5. Illustration of Road Trajectory. 

To facilitate the comparison of the results of two distinct strategies, the results were transformed into 

the time domain, as illustrated in FIG. 6-6. As can be seen, both algorithms perform admirably when 

driving on this curvy road at a relatively low speed. However, when the vehicle speed approaches 20 

𝑚/𝑠, the temporal LQR model's lateral and angular deviations begin to degrade, indicating that the 

angular speed is too fast and exceeds the angular speed boundary. Additionally, when the CAV transits 

from curve 3 to curve 4 at 11 seconds, the temporal LQR model's reaction lags, resulting in sharp turning 

decisions, thus leading to lateral control oscillation, as illustrated in FIG. 6-6 (b)-(d), resulting in further 
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control failure and a 0.5 𝑚 lateral deviation. When the CAV’s speed is reduced to 18 𝑚/𝑠, the lateral 

and angular control oscillations begin to subside. 

 

FIG. 6-6. Comparison of 2D Car-following Strategy and Temporal LQR Trajectory Optimization 

Method: (a) Speed; (b) Lateral Deviation 𝑟𝑖(𝑡); (c) Angular Deviation 𝜓𝑖(𝑡); (d) angular velocity. 

In addition, we evaluate the effectiveness of our model by comparing the processing time of three 

different MPC horizon lengths. The proposed model runs on a 64-bit Intel i7-11800H with a 2.30 GHz 

CPU and 32G RAM. The calculation time is about 0.03 𝑠/𝑚, 0.016 𝑠/𝑚, and 0.007 𝑠/𝑚 for MPC 

horizon lengths 80 𝑚, 60 𝑚, and 40 𝑚, respectively, which suggests that our method meets real-time 

computation needs.  



61 

 

7. SYSTEM MODELLING OF LANE CHANGE STRATEGY 

This chapter centers on a segment of a two-lane highway with right-hand traffic. The outer lane 

eventually ends over a specified distance, merging into the inner lane, which is referred to as 

the target lane. Vehicles, especially CAVs, are anticipated to perform a lane-changing 

maneuver before the outer lane terminates. We postulate that CAVs can collect data regarding 

traffic and road geometry from their onboard sensors, RIUs, and other CAVs. This means that 

CAVs possess detailed and accurate knowledge of both the road and prevailing traffic 

conditions. Notably, this CAV lane-changing strategy is an integration of the CAV trajectory 

optimization algorithm and the advanced CAV car-following strategy we proposed in the 

previous chapters. 

7.1 State Space Formulation 

In this section, we present a formulation that capitalizes on employing a spatial domain state space to 

articulate vehicle kinematics within a curvilinear coordinate framework drawing from the assumptions 

delineated above. This approach is paramount in rendering a more flexible representation of vehicle 

kinematics, particularly when navigating through trajectories that are not strictly linear. 

The vehicle state 𝑋𝑖,𝑚(s)  for vehicle 𝑉𝑖,𝑤  at each space 𝑠  as 𝑋𝑖,𝑚(𝑠) =

 [𝑡𝑖,𝑤(𝑠), 𝑝𝑖,𝑤(𝑠), 𝑟𝑖,𝑤(𝑠), 𝜓𝑖,𝑤(𝑠)]
𝑇

. 𝑖 is the lane index, 𝑖 = 1,2;  𝑚 is the vehicle index in each lane, 

𝑤 = 1,2,… ,𝑊𝑖  and  𝑊𝑖  is the total number of vehicles in lane 𝑖; 𝑡𝑖,𝑤(𝑠) is the time when the 𝑤𝑡ℎ 

vehicle in lane 𝑖 arrives space 𝑠; 𝑝𝑖,𝑤(𝑠) is the reciprocal of the vehicular speed of the 𝑤𝑡ℎ vehicle in 

lane 𝑖; 𝑟𝑖,𝑤(𝑠) is the lateral deviation of the 𝑤𝑡ℎ vehicle in lane 𝑖, which equals to signed orthogonal 

distance from the CAV to the closest point on the lane centerline; 𝜓𝑖,𝑤(𝑠) = 𝜃𝑖,𝑤(𝑠) − 𝜃𝑑𝑒𝑠(𝑠), where 

𝜓𝑖,𝑤(𝑠) is the angular deviation of the 𝑚𝑡ℎ vehicle in lane 𝑖, 𝜃𝑖,𝑤(𝑠) is the angle between the CAV 

heading and the x-axis in the global frame and 𝜃𝑑𝑒𝑠(𝑠) is the angle between the tangent of the lane 

centerline and the x-axis in the global frame as FIG. 7-1. 
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FIG. 7-1. Illustration of Vehicles Kinematics on the Curvilinear Coordination. 

 

FIG. 7-2. Illustration of Virtual Sequencing. 

Leveraging the state information of the vehicles, we introduce the concept of 'virtual sequencing'. This 

process, crucial for defining the sequence of lane-changing vehicles, can be conceptualized as 

identifying the optimal car-following order within a virtual lane guided by a predefined law. The key 

benefit of this maneuver is the significant reduction in modeling complexity it offers, essentially 

transforming the mandatory lane-changing problem into a ‘virtual’ car-following problem as FIG. 7-2. 

A notably simple yet effective strategy within this framework involves sorting the car-following 
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sequence based on the vehicles' arrival time to the point 𝑠. Adopting this approach facilitates a more 

efficient and streamlined lane-changing process. 

Let 𝐼1 = [
1
⋮
𝑊1

] and 𝐼2 = [
1
⋮
𝑊2

], we can combine and number all vehicle in the virtual lane and get new 

vehicle states at point 𝑠 in the virtual lane as 

 �̃�𝑗(𝑠) = 𝑓[𝑋𝐼1(𝑠), 𝑋𝐼2(𝑠)]. (36) 

According to the arrival time of the CAVs at point 𝑠, we can swiftly determine the virtual car-following 

and lane-changing sequences on the virtual lane. This is achieved by the sorting function 𝑓 that sorts 

the variable 𝑡𝑗(𝑠) in a monotonically descending order. To be noted that, in cases where two vehicles 

reach point s simultaneously, the function would sequence them based on their pace. This precision 

ensures the method retains its efficacy even in the face of such potential coincidences. 

Consider a virtual platoon of vehicles indexed by 𝑗 =  1, 2, … , 𝐾 with the lead vehicle indexed by 1. 

The notation with subscript 𝑗  will denote the vehicle 𝑗  after sequencing. On the basis of the 

aforementioned assumptions, we give a formulation by a spatial domain state pace to describe the 

vehicle kinematics of the cooperative lane-changing and car-following behavior in the virtual lane, 

given information about the leading vehicle. For any vehicle 𝑗, we define its adjusted system state for 

each space 𝑠  as �̃�𝑗(𝑠) = [�̃�𝑗(𝑠) + 𝜏
∗, �̃�𝑗−1(𝑠 − 𝑙𝑠) − �̃�𝑗(𝑠), �̃�𝑗(𝑠), �̃�𝑗(𝑠)]

𝑇
, where �̃�𝑗(𝑠) = �̃�𝑗−1(𝑠 −

𝑙𝑠) − �̃�𝑗(𝑠) is the headway between vehicle 𝑗 and vehicle 𝑗 − 1 and 𝑙𝑠 is the safe distance when vehicles 

are standstill and 𝜏∗ is the desired headway.  

By above definition, the vehicle dynamics can be modeled as a nonlinear system with respect to distance 

s as 
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𝑑�̃�𝑗(𝑠)

𝑑𝑠
=

[
 
 
 
 
�̃�𝑗−1(𝑠 − 𝑙𝑠) − �̃�𝑗(𝑠)

�̃�𝑗−1(𝑠 − 𝑙𝑠) − �̃�𝑗(𝑠)

𝑠𝑖𝑛 (�̃�𝑗(𝑠))

�̃�𝑗(𝑠) ]
 
 
 
 

.  (37) 

Here, �̃�𝑗(𝑠) is the derivative of pace (on the contrary to the acceleration as the derivative of speed, 

�̃�𝑗(𝑠) < 0 indicates the vehicle is accelerating).  �̃�𝑗(𝑠) = �̃�𝑗,𝑣(𝑠) − �̃�𝑑𝑒𝑠(𝑠), where �̃�𝑗,𝑣(𝑠), �̃�𝑑𝑒𝑠(𝑠) is 

the curvature of the CAV’s path and the centerline, respectively. Since �̃�𝑑𝑒𝑠(𝑠)  is given by the road 

geometry in advance, we do not explicitly write it out for �̃�𝑗(𝑠) due to model convenience. Note that 

�̃�𝑗(𝑠) and �̃�𝑗(𝑠) are the decomposed control of the system (one dimension is for the pace and the other 

one is for turning), represented as  �̃�𝑗(𝑠) = [�̃�𝑗−1(𝑠 − 𝑙𝑠) − �̃�𝑗(𝑠),  �̃�𝑗(𝑠)]
𝑇

. 

To be note that for the leading vehicle lane-changing problem, which is when vehicle 𝑗 is the leading 

vehicle without any preceding vehicle, the system state becomes �̃�𝑗(𝑠) = [

�̃�𝑑𝑒𝑠(𝑠) − �̃�𝑗(𝑠)

�̃�𝑗(𝑠)

�̃�𝑗(𝑠)

]  with 

control state �̃�𝑗(𝑠) = [
�̃�𝑑𝑒𝑠(𝑠) − �̃�𝑗(𝑠)

�̃�𝑗(𝑠)
]. Where �̃�𝑑𝑒𝑠(𝑠) is the reciprocal of the road speed limit and 

�̃�𝑑𝑒𝑠(𝑠) is the parameter indicating acceleration of the road speed limit. 

When 𝜓𝑖(𝑠) is small, we have 𝑠𝑖𝑛(𝜓𝑖(𝑠)) ≈ 𝜓𝑖(𝑠) according to small angle approximation, and the 

state-space model of Eq. (37) can be approximated as 

 
𝑑�̃�𝑗(𝑠)

𝑑𝑠
= 𝐴�̃�𝑗(𝑠) + 𝐵�̃�𝑗(𝑠), (38) 

where 𝐴 = [

0
0
0
0

1
0
0
0

0
0
0
0

0
0
1
0

], 𝐵 = [

0
1
0
0

0
0
0
1

]. 

7.2 Mixed-integer Programming Based MPC Formulation and Implementation 

In this section, we present the MPC formulation of our approach. This choice is motivated by the 
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inherent capabilities of MPC to handle system state and control constraints in a systematic manner. 

Further, its rolling horizon implementation offers robustness against system disturbances. This balance 

between predictive modeling and real-time adjustments allows the MPC approach to perform 

effectively in dynamic and uncertain environments. 

7.3 Mixed-integer programming based MPC 

We introduce several additional notations to enhance the understanding of the MPC algorithm. First, 

we use superscript (𝑐,𝑚)  to denote variables computed at the moving window starting from 𝑚 . 

Additionally, superscript 𝑟 is used to represent variables that have already been realized. For example, 

�̃�𝑗
𝑐,𝑚(𝑚) denotes the system state to be computed at location 𝑚, with a moving window initiating from 

𝑚.  

To realistically represent control frequency as experienced in the real world, we segment the prediction 

horizon into N steps and discretize the optimal control problem along the s-axis. To discretize control 

inputs, we employ the ZOH technique. Specifically, at each spatial update interval ∆𝑠, the control input 

is assumed to remain constant. When ∆𝑠  is sufficiently small, this discretization process can be 

approximated as a continuous system. 

 �̃�𝑗,𝑠+∆𝑠
𝑐,𝑚 ≈ 𝐴𝑑�̃�𝑗,𝑠

𝑐,𝑚 + 𝐵𝑑�̃�𝑗,𝑠
𝑐,𝑚 ∀𝑠 ∈ {𝑚,𝑚 + ∆𝑠,… ,𝑚 + 𝑁 − ∆𝑠}, (39) 

where, 𝐴𝑑 = 𝑒
𝐴𝛥𝑠 = [

1
0
0
0

𝛥𝑠
1
0
0

0
0
1
0

0
0
𝛥𝑠
1

], 𝐵𝑑 = ∫ 𝑒𝐴𝛾𝑑𝛾𝐵
𝛥𝑠

0
=

[
 
 
 
𝛥𝑠2

2

𝛥𝑠
0
0

0
0
𝛥𝑠2

2

𝛥𝑠]
 
 
 

, and ∆𝑠 is the discretization 

step. 

Thus, we define the state set to be computed 𝒴𝑗,𝑚
𝑐 = {�̃�𝑗,𝑠

𝑐,𝑚|𝑠 ∈ {𝑚,𝑚 + ∆𝑠,… ,𝑚 + 𝑁}} to be the 

predicted future states for vehicle 𝑗 obtained at location 𝑚 with a moving window spanning from 𝑚 to 

𝑚 +𝑁. Furthermore, we define the realized state set 𝒴𝑗,𝑚
𝑟 = {�̃�𝑗,𝑠

𝑟 |𝑠 ∈ {0, ∆𝑠, … ,𝑚}} to capture all the 

realized states of vehicle 𝑖 at location 𝑚. Particularly, �̃�𝑗,0
𝑟  signifies the initial state inputs, and �̃�𝑗,𝑠

𝑟 =
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�̃�𝑗,𝑠
𝑐,𝑠

 is always maintained. In a similar manner, we define the predicted control set 𝒰𝑗,𝑚
𝑐 =

{�̃�𝑗,𝑠
𝑐,𝑚|𝑠 ∈ {𝑚,𝑚 + ∆𝑠,… ,𝑚 + 𝑁 − ∆𝑠}}  to be the computed future control sequences for vehicle 

𝑗  obtained at location 𝑚 , and 𝒰𝑗,𝑚
𝑟 = {�̃�𝑗,𝑠

𝑟 |𝑠 ∈ {0, ∆𝑠, … ,𝑚}}  to be its realized control sequences, 

where �̃�𝑗,𝑠
𝑟 = �̃�𝑗,𝑠

𝑐,𝑠
. 

We can define the discretized optimal control problem that includes both control efficiency and driving 

smoothness as follows: 

 𝐽 =𝑚𝑖𝑛

{
 
 

 
 (�̃�𝑗,𝑚+𝑁

𝑐,𝑚 )
𝑇
𝑄𝑚+𝑁�̃�𝑗,𝑚+𝑁

𝑐,𝑚 +

∑ ((�̃�𝑗,𝑠
𝑐,𝑚)

𝑇
𝐺𝑠�̃�𝑗,𝑠

𝑐,𝑚 + (�̃�𝑗,𝑠
𝑐,𝑚)

𝑇
𝐿𝑠�̃�𝑗,𝑠

𝑐,𝑚)

𝑚+𝑁−1

𝑠=𝑚 }
 
 

 
 

  (40a) 

𝑠. 𝑡. 

 �̃�𝑗,𝑠+∆𝑠
𝑐,𝑚 ≈ 𝐴𝑑�̃�𝑗,𝑠

𝑐,𝑚 +𝐵𝑑�̃�𝑗,𝑠
𝑐,𝑚 ∀𝑠 ∈ {𝑚,𝑚 + 1,… ,𝑚 + 𝑁 − 1}, (40b) 

 �̃�𝑗,𝑚
𝑐,𝑚 = �̃�𝑗,𝑚

𝑟 , (40c) 

 �̃�𝑗,𝑚
𝑐,𝑚 = �̃�𝑗,𝑚

𝑟 , (40d) 

 �̃�𝑗,𝑠
𝑐,𝑚 ∈ �̃�𝑗,𝑠 ∀𝑠 ∈ {𝑚,𝑚 + ∆𝑠,… ,𝑚 + 𝑁}, (40e) 

 �̃�𝑗,𝑠
𝑐,𝑚 ∈ �̃�𝑗,𝑠 ∀𝑠 ∈ {𝑚,𝑚 + ∆𝑠,… ,𝑚 + 𝑁 − ∆𝑠}. (40f) 

Eq. (40c) is the initial condition and Eq. (40e) is the state constraint applied to each space point 

regulating the transition between states of a vehicle. The constraint in Eq. (40f) is the constraint ensuring 

that the steering wheel and acceleration/deceleration commanded by the algorithm remain within a 

suitable range of �̃�𝑗,𝑠. The diagonal coefficients matrices 𝐺𝑠, 𝐿𝑠, and 𝑄𝑚+𝑁 are all positive definite, and 

they are typically designed in the manner of the diagonal matrix below: 
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 𝐺𝑠 = [

𝑔1  
 𝑔2

  
  

  
  

𝑔3,𝑠  
 𝑔4

] , 𝑔1, 𝑔2, 𝑔3,𝑠, 𝑔4 > 0, (41a) 

 
𝐿𝑠 = [

𝑙1  
 𝑙2

] , 𝑙1, 𝑙2 > 0, 
(41b) 

 

𝑄𝑚+𝑁 = [

𝑞1  
 𝑞2

  
  

  
  

𝑞3,𝑚+𝑁  
 𝑞4

] , 𝑞1, 𝑞2, 𝑞3,𝑚+𝑁, 𝑞4 > 0. 

(41c) 

It should be noted that all diagonal coefficient matrices are set to a fixed coefficient, except for 𝑔3,𝑠 and 

𝑞3,𝑚+𝑁, which are dynamically determined by a function as below: 

 𝑔3,𝑠 = 𝑒
𝛼(𝑠−

𝑂𝑏+𝑂𝑒
2

)
, (42a) 

 
𝑞3,𝑚+𝑁 = 𝛽𝑒

𝛼(𝑚+𝑁−
𝑂𝑏+𝑂𝑒
2

)
. (42b) 

𝑂𝑏 is the spatial point where the merging lane physically starts shrinking, 𝑂𝑒 is the spatial point where 

the merging lane fully ends. Eqs. (42) are adopted to balance the merge lane utilization by 𝛼 and 𝛽. We 

assign less weight to lane-changing decisions when vehicles are farther from the lane ending point, to 

maintain passenger comfort. Conversely, as vehicles approach the lane ending point, we assign more 

weight to lane-changing decisions, to prioritize safety. 

Considering collision-free limitations, steering wheel rotation, and acceleration/deceleration limits, the 

state constraints for the CAV at location 𝑚 are as follows: 

 𝐶�̃�𝑗,𝑠
𝑐,𝑚 ≤ ℎ𝑚𝑖𝑛,𝑠 ∀𝑠 ∈ {𝑚,𝑚 + ∆𝑠,… ,𝑚 + 𝑁}, (43a) 

 𝐷�̃�𝑗,𝑠
𝑐,𝑚 ≤ �̃�𝑗−1,𝑠−𝑙𝑠 − �̃�𝑑𝑒𝑠,𝑠 ∀𝑠 ∈ {𝑚,𝑚 + ∆𝑠,… ,𝑚 + 𝑁} (43b) 

 �̃�𝑗,𝑠
𝐿 ≤ 𝐸�̃�𝑗,𝑠

𝑐,𝑚 ≤ �̃�𝑗,𝑠
𝑅  ∀𝑠 ∈ {𝑚,𝑚 + ∆𝑠,… ,𝑚 + 𝑁}, (43c) 

 �̃�𝑗,𝑚𝑖𝑛 ≤ 𝐹�̃�𝑗,𝑠
𝑐,𝑚 ≤ �̃�𝑗,𝑚𝑎𝑥 ∀𝑠 ∈ {𝑚,𝑚 + ∆𝑠,… ,𝑚 + 𝑁}, (43d) 



68 

 

 

�̃�𝑗−1,𝑠−𝑙𝑠 + �̃�𝑗,𝑚𝑖𝑛�̃�𝑗,𝑠
3 ≤ 𝑀�̃�𝑗,𝑠

𝑐,𝑚 ≤ �̃�𝑗−1,𝑠−𝑙𝑠 + �̃�𝑗,𝑚𝑎𝑥�̃�𝑗,𝑠
3  ∀𝑠

∈ {𝑚,𝑚 + ∆𝑠,… ,𝑚 + 𝑁 − ∆𝑠}, 

(43e) 

 −
1

�̃�𝑗,𝑚𝑖𝑛
− 𝑘𝑑𝑒𝑠,𝑠 ≤ 𝑁�̃�𝑗,𝑠

𝑐,𝑚 ≤
1

�̃�𝑗,𝑚𝑖𝑛
− 𝑘𝑑𝑒𝑠,𝑠 ∀𝑠 ∈ {𝑚,𝑚 + ∆𝑠,… ,𝑚 + 𝑁 − ∆𝑠}. (43f) 

Eq.(43a) is the constraint to make sure that there will be no collision between vehicle 𝑗 and its virtual 

lane preceding vehicle (not necessary for leading vehicle lane changing problem), where ℎ𝑚𝑖𝑛,𝑠 is the 

minimum headway allowed at point 𝑠 and 𝐶 = [1,0,0,0]; Eq. (43b) is the constraint that the vehicle 𝑗 

does not exceed the speed limit, �̃�𝑑𝑒𝑠,𝑠 is the reciprocal of the road speed limit and 𝐷 = [0,1,0,0]; Eq. 

(43c) is the constraint imposed on the vehicle 𝑗 to ensure that it stays within the proper lane, where 𝐸 =

[0,0,1,0], and �̃�𝑗,𝑠
𝑅  is the maximum right lateral deviation following  �̃�𝑗,𝑠

𝑅 =

{
 
 

 
 

3

2
𝑟𝑚𝑎𝑥 ,                𝑠 ≤ 𝑂𝑏

𝑟𝑚𝑎𝑥

2
+ 𝐿𝑤 , 𝑂𝑏 ≤ 𝑠 ≤ 𝑂𝑒

𝑟𝑚𝑎𝑥

2
,                  𝑠 ≥ 𝑂𝑒 

. 

�̃�𝑗,𝑠
𝐿  is the maximum left lateral deviation, following �̃�𝑗,𝑠

𝐿 = −
𝑟𝑚𝑎𝑥

2
.  𝑟𝑚𝑎𝑥 is the lane width and 𝐿𝑤 is the 

actual lane width while lane shrinking; Eq. (43d) is used to impose the vehicle's permissible angular 

deviation's physical restrictions, where 𝐹 = [0,0,0,1], �̃�𝑗,𝑚𝑖𝑛 and �̃�𝑗,𝑚𝑎𝑥 specify the allowable angular 

deviation's lower and upper bounds; Eq. (43e) is the constraint to ensure that the vehicle's actual 

acceleration/deceleration is within the vehicle's physical limits, where 𝑀 = [1,0], �̃�𝑗,𝑚𝑎𝑥 is the vehicle 

𝑗’s maximum acceleration and �̃�𝑗,𝑚𝑖𝑛 is the vehicle 𝑗’s maximum deceleration limits; Eq. (43f) is the 

constraint that the vehicle 𝑗's actual moving path is constrained by a specified minimum turning radius, 

where 𝑁 = [0,1], 𝑅𝑖,𝑚𝑖𝑛 is the minimum turning radius of the vehicle 𝑗.  

In fact, many constraints in Eqs. (43) are not explicit due to their nonlinearity. We will provide 

reformulations for them so that the resulted programming problem can be solved by solvers.  

There are two different situations for Eq.(43a), depending on whether two vehicles are within the same 

lane: (i) If two vehicles are within the same lane, the headway deviation between two vehicles will 

follow car-following constraint; (ii) Otherwise, the headway deviation will not be constrained as long 
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as vehicle 𝑗 does not exceed vehicle 𝑗 − 1 to ensure the sequencing consistency. These two different 

situations are shown as: 

i If (𝐸�̃�𝑗−1,𝑠−𝑙𝑠
𝑟 −

𝑟𝑚𝑎𝑥

2
) ∗ (𝐸�̃�𝑗,𝑠

𝑐,𝑚 −
𝑟𝑚𝑎𝑥

2
) ≥ 0, we have ℎ𝑚𝑖𝑛,𝑠 = 𝜏𝑚𝑖𝑛. 

ii Otherwise, we have ℎ𝑚𝑖𝑛,𝑠 = 𝜏
∗. 

𝜏𝑚𝑖𝑛  is the minimum car-following headway. To formulate these two different situations more 

canonically, we introduce indicator binary variable 𝑏𝑠 ∈ {0,1} and 𝑉 be a positive big number: 

Suppose 𝑏𝑠 = 1 requires  (𝐸�̃�𝑗−1,𝑠−𝑙𝑠
𝑟 −

𝑟𝑚𝑎𝑥

2
) ∗ (𝐸�̃�𝑗,𝑠

𝑐,𝑚 −
𝑟𝑚𝑎𝑥

2
) ≥ 0, which can be expressed as 

 (𝐸�̃�𝑗−1,𝑠−𝑙𝑠
𝑟 −

𝑟𝑚𝑎𝑥

2
) ∗ (𝐸�̃�𝑗,𝑠

𝑐,𝑚 −
𝑟𝑚𝑎𝑥

2
) ≥ (𝑏𝑠 − 1) ∗ 𝑉, (44a) 

Furthermore, suppose 𝑏1,𝑠 = 0  requires (𝐸�̃�𝑗−1,𝑠−𝑙𝑠
𝑟 −

𝑟𝑚𝑎𝑥

2
) ∗ (𝐸�̃�𝑗,𝑠

𝑐,𝑚 −
𝑟𝑚𝑎𝑥

2
) ≤ 0 , which can be 

expressed as 

 (𝐸�̃�𝑗−1,𝑠−𝑙𝑠
𝑟 −

𝑟𝑚𝑎𝑥

2
) ∗ (𝐸�̃�𝑗,𝑠

𝑐,𝑚 −
𝑟𝑚𝑎𝑥

2
) ≤ 𝑏𝑠 ∗ 𝑉, (44b) 

By combining Eqs. (44a) and (44b), Eq.(43a) can be reformulated as  

 𝐶�̃�𝑗,𝑠
𝑐,𝑚 ≤ 𝑏𝑠 ∗ 𝜏𝑚𝑖𝑛 + (1 − 𝑏𝑠) ∗ 𝜏

∗. (44c) 

There are three different situations for vehicle 𝑗 under Eq. (43c): (i) If vehicle 𝑗 − 1 is at target lane and 

meanwhile the headway deviation of vehicle 𝑗 exceeds the maximum car-following headway deviation, 

vehicle 𝑗 cannot change lane; (ii) If vehicle 𝑗 + 1 is at target lane and the headway deviation of vehicle 

𝑗 + 1 exceeds the maximum allowance of car-following headway deviation, then vehicle 𝑗  cannot 

change lane;  (iii) Otherwise, vehicle 𝑗 can make lane change. These three different situations are shown 

as: 

i If 𝐸�̃�𝑗−1,𝑠−𝑙𝑠
𝑟 −

𝑟𝑚𝑎𝑥

2
≤ 0, 𝐶�̃�𝑗,𝑠

𝑐,𝑚 − 𝜏𝑚𝑖𝑛 ≥ 0, we have �̃�𝑗,𝑠
𝐿 =

𝑟𝑚𝑎𝑥

2
. 

ii If 𝐸�̃�𝑗+1,𝑠+𝑙𝑠
𝑐,𝑚 −

𝑟𝑚𝑎𝑥

2
≤ 0, 𝐶�̃�𝑗+1,𝑠+𝑙𝑠

𝑐,𝑚 − 𝜏𝑚𝑖𝑛 ≥ 0, we have �̃�𝑗,𝑠
𝐿 =

𝑟𝑚𝑎𝑥

2
. 
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iii Otherwise, �̃�𝑗,𝑠
𝐿 = −

𝑟𝑚𝑎𝑥

2
. 

To further formulate the problem as a canonical format, we introduce binary variables 

𝑧1,𝑠, 𝑧2,𝑠, 𝑧3,𝑠, 𝑧4,𝑠, 𝑧5,𝑠, 𝑧6,𝑠, and 𝑧𝑠 ∈ {0,1}, by defining:  

𝑧1,𝑠 = 1 if  𝐸�̃�𝑗−1,𝑠−𝑙𝑠
𝑟 −

𝑟𝑚𝑎𝑥

2
≤ 0 and 𝑧2,𝑠 = 1 if  𝐶�̃�𝑗,𝑠

𝑐,𝑚 − 𝜏𝑚𝑖𝑛 ≥ 0, which can be expressed as: 

 −𝑧1,𝑠 ∗ 𝑉 ≤ 𝐸�̃�𝑗−1,𝑠−𝑙𝑠
𝑟 −

𝑟𝑚𝑎𝑥

2
≤ (1 − 𝑧1,𝑠) ∗ 𝑉, (45a) 

 (𝑧2,𝑠 − 1) ∗ 𝑉 ≤ 𝐶�̃�𝑗,𝑠
𝑐,𝑚 − 𝜏𝑚𝑖𝑛 ≤ 𝑧2,𝑠 ∗ 𝑉, (45b) 

𝑧3,𝑠 = 1 if 𝑧1,𝑠 = 𝑧2,𝑠 = 1. 

𝑧4,𝑠 = 1 if  𝐸�̃�𝑗−1,𝑠−𝑙𝑠
𝑟 −

𝑟𝑚𝑎𝑥

2
≤ 0 and 𝑧5,𝑠 = 1 if  𝐶�̃�𝑗,𝑠

𝑐,𝑚 − 𝜏𝑚𝑖𝑛 ≥ 0, which can be expressed as: 

 −𝑧4,𝑠 ∗ 𝑉 ≤ 𝐸�̃�𝑗+1,𝑠+𝑙𝑠
𝑐,𝑚 −

𝑟𝑚𝑎𝑥

2
≤ (1 − 𝑧4,𝑠) ∗ 𝑉, (45c) 

 (𝑧5,𝑠 − 1) ∗ 𝑉 ≤ 𝐶�̃�𝑗+1,𝑠+𝑙𝑠
𝑐,𝑚 − 𝜏𝑚𝑖𝑛 ≤ 𝑧5,𝑠 ∗ 𝑉, (45d) 

𝑧6,𝑠 = 1 if 𝑧4,𝑠 = 𝑧5,𝑠 = 1 and 𝑧𝑠 = 1 for either 𝑧3,𝑠 = 1 or 𝑧6,𝑠 = 1.  

Based on that, Eq. (43c) can be reformulated as: 

 𝑧𝑠 ∗
𝑟𝑚𝑎𝑥

2
+ (𝑧𝑠 − 1) ∗

𝑟𝑚𝑎𝑥

2
≤ 𝐸�̃�𝑗,𝑠

𝑐,𝑚.  (45e) 

7.4 Bi-directional communication topology and MPC implementation scheme 

To ensure the robustness of trajectory planning against the disturbance, we designed a bi-directional 

communication topology as well as an implementation scheme by modifying the work before. As 

depicted in FIG. 7-3, each vehicle utilizes information from its leading and (virtually) following 

vehicles to perform sequential CAV control within the virtual platoon. Note that, the mixed integer 

based MPC is formulated in spatial domain, whereas we need to implement it in the time domain since 

we cannot utilize the information that either not known or not computed. At a given time point 𝑡, vehicle 
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𝑗 utilizes recorded data from its following vehicle 𝑗 + 1 received at time 𝑡 − 1 and real-time data from 

its leading vehicle 𝑗 − 1. Then vehicle 𝑗 will transmit its anticipated movement to both vehicles 𝑗 − 1 

and 𝑗 + 1. This process is repeated until the end of the platooning. 

 

FIG. 7-3. Bi-directional Information Topology. 

The proposed algorithm leverages the most recent data from both its leading and following vehicles, 

enabling sequential CAV control within the platoon. By utilizing the latest data, the algorithm enhances 

the efficiency of the lane-changing planning, as exemplified in Algorithm 2.  

Algorithm 2 Bi-directional Vehicle Control Scheme for Each Vehicle 

1: at space point 𝑚𝑗, for vehicle 𝑗 update and record the time 𝑡 

2: if 𝑗 = 1, compute and record 𝒰𝑗,𝑚𝑗

𝑐 , 𝒴𝑗,𝑚𝑗

𝑐  using the predicted information of its following 

vehicle [�̃�𝑗+1,𝑚𝑗+𝑙𝑠
𝑐 , … , �̃�𝑗+1,𝑚𝑗+1+𝑁

𝑐 ] ; If 1 < 𝑗 < 𝐾 , find 𝑚𝑗−1  at time 𝑡 , for 𝑚𝑗 ≤ 𝑚𝑗−1 +

𝑙𝑠 −𝑁: compute and record 𝒰𝑗,𝑚𝑗

𝑐 , 𝒴𝑗,𝑚𝑗

𝑐  using the predicted information of its following 

vehicle [�̃�𝑗+1,𝑚𝑗+𝑙𝑠
𝑐 , … , �̃�𝑗+1,𝑚𝑗+1+𝑁

𝑐 ]  and the realized information of its leading vehicle 

[�̃�𝑗−1,𝑚𝑗−𝑙𝑠
𝑟 , … , �̃�𝑗−1,𝑚𝑗+𝑁−𝑙𝑠

𝑟 ]; otherwise: compute and record 𝒰𝑗,𝑚𝑗

𝑐 , 𝒴𝑗,𝑚𝑗

𝑐  using the predicted 

information of its following vehicle [�̃�𝑗+1,𝑚𝑗+𝑙𝑠
𝑐 , … , �̃�𝑗+1,𝑚𝑗+1+𝑁

𝑐 ] and the realized information 

of its leading vehicle [�̃�𝑗−1,𝑚𝑗−𝑙𝑠
𝑟 , … , �̃�𝑗−1,𝑚𝑗+𝑁−𝑙𝑠

𝑐 ]; If 𝑗 = 𝐾, find 𝑚𝑗−1 at time 𝑡, for 𝑚𝑗 ≤

𝑚𝑗−1 + 𝑙𝑠 −𝑁: compute and record 𝒰𝑗,𝑚𝑗

𝑐 , 𝒴𝑗,𝑚𝑗

𝑐  using the realized information of its leading 
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vehicle [�̃�𝑗−1,𝑚𝑗−𝑙𝑠
𝑟 , … , �̃�𝑗−1,𝑚𝑗+𝑁−𝑙𝑠

𝑟 ] ; otherwise: compute and record 𝒰𝑗,𝑚𝑗

𝑐 , 𝒴𝑗,𝑚𝑗

𝑐  the 

realized information of its leading vehicle [�̃�𝑗−1,𝑚𝑗−𝑙𝑠
𝑟 , … , �̃�𝑗−1,𝑚𝑗+𝑁−𝑙𝑠

𝑐 ]; 

3: Update �̂�𝑗,𝑠𝑗
𝑐 = [�̃�𝑗,0

𝑟 , … , �̃�𝑗,𝑚𝑗

𝑟 , �̃�𝑗,𝑚𝑗+Δs
𝑐 , … , �̃�𝑗,𝑚𝑗+𝑁

𝑐 ] , �̂�𝑗,𝑠𝑗
𝑐 =

[�̃�𝑗,0
𝑟 , … , �̃�𝑗,𝑚𝑗

𝑟 , �̃�𝑗,𝑚𝑗+Δs
𝑐 , … , �̃�𝑗,𝑚𝑗+𝑁−Δs

𝑐 ]; 

4 if 𝑗 > 1, transmit 𝒴𝑗,𝑚𝑗

𝑐  to vehicle 𝑗 − 1;  

5: if 𝑗 < 𝐾, transmit �̂�𝑗,𝑚𝑗

𝑐 , �̂�𝑗,𝑚𝑗

𝑐  to vehicle 𝑗 + 1; 

6: implement �̃�𝑗,𝑚𝑗

𝑟 ; 

Our implementation scheme together with spatial formulation, distinct from the traditional real-time 

based approach (Zhou et al., 2017; Zhou et al., 2019), uses spatial formulation. The control, as per Eqs. 

(40), relies on both recorded and predicted leading vehicle information according to real-time distance. 

The leading vehicle always sends its realized and predicted state sequences to its following vehicle and 

the following vehicle will auto detect which information it needs. If the leading vehicle is less than 𝑁 −

𝑙𝑠 meters ahead, the following vehicle will use a total of N meters of joint state sequences. The following 

vehicle calculates its trajectory using these and shares its future predicted states (FIG. 7-4 (a)). If the 

leading vehicle is more than 𝑁 − 𝑙𝑠  meters ahead, the following vehicle will use all realized state 

sequences to calculate its trajectory and share predicted states (FIG. 7-4 (b)). The time domain MPC 

system (FIG. 7-4 (c)) transmits recent lead vehicle data, potentially causing communication delay 

issues leading to inaccurate control and accidents. The spatial domain approach proves more robust 

against communication failures (Zhang et al., 2021) and is preferable for platoons negotiating curvy 

roads. 
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FIG. 7-4. V2V Information Transmission and Selection: (a) Close Distance under Space Domain; (b) 

Far Distance under Space Domain; (c) Under Time Domain. 
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8. NUMERICAL SIMULATION RESULT OF LANE-CHANGING STRATEGY 

To demonstrate the effectiveness of the proposed method, a series of numerical simulation 

experiments were carried out using the Python programming language. Given the spatially 

dependent nature of our algorithm, each following vehicle requires data of its leading vehicle 

extending 𝑙𝑠 meters ahead of the starting point for safety concerns (if vehicle 1 starts from point 

0 m, vehicle 2 starts from point 𝑙𝑠 meters). The parameters utilized for the trajectory planning 

of the CAVs are comprehensively detailed in Table 8-1. These settings were carefully chosen 

to optimize the performance of our algorithm and represent a comprehensive set of realistic 

driving conditions. We have designed three distinct traffic scenarios: uncongested traffic, 

uncongested traffic with obstacle presence, and congested traffic. These scenarios aim to 

evaluate the efficiency of our proposed trajectory planning algorithm in managing mandatory 

lane-changing, addressing unexpected disruptions, and minimizing collision risks. 

Table 8-1. Default Parameters for Vehicle Lane-changing 

Parameters Value 

𝜏∗ 1 𝑠 

𝜏𝑚𝑖𝑛 0.5 𝑠 

𝑙𝑠 2 𝑚 

𝑝𝑑𝑒𝑠,𝑠 1/20 𝑠/𝑚 

�̃�𝑑𝑒𝑠,𝑠 0 𝑠/𝑚2 

𝑟𝑚𝑎𝑥 3.6 𝑚 

∆𝑠 1 𝑚 

𝑁 20 

�̃�𝑗,𝑚𝑖𝑛 10 𝑚 
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�̃�𝑗,𝑚𝑖𝑛 and �̃�𝑗,𝑚𝑎𝑥 −𝜋/6 𝑟𝑎𝑑 and 𝜋/6 𝑟𝑎𝑑 

�̃�𝑗,𝑚𝑖𝑛 and �̃�𝑗,𝑚𝑎𝑥 −5 𝑚/𝑠2 and 3 𝑚/𝑠2 

𝑙1,𝑠 and 𝑙2,𝑠 10000 and 1 

𝛼 0.1 

𝛽 5 

𝑔3,s for car-following 0.0001 

𝑔1, 𝑔2, and 𝑔4 1, 10, and 0.1 

𝑞3,𝑚+𝑁 for car-following 0.03 

𝑞1, 𝑞2, and 𝑞4 5, 50, and 0.5 

8.1 Scenario I: Uncongested Mandatory Lane-changing 

To evaluate the performance of the optimized control model, a numerical simulation environment is 

constructed, which features a 180 meters long section of a two-lane road with an outer/right lane 

merging from 126 meters to 146 meters, as illustrated in FIG. 8-1. The inner lane, with a width of 3.6 

meters, has a curvature corresponding to a radius of 360/𝜋 meters. Similarly, the outer lane has a width 

of 3.6 meters, but with a slightly larger curvature radius of 360/𝜋 + 3.6 meters, to account for its 

position. The section designated for lane-changing section from 30 meters to 146 meters shown as 

magenta dashed line. A speed limit of 20 𝑚/𝑠 is imposed on this road. The leading vehicle is initialized 

with a pace deviation of −1/180 𝑠/𝑚, no lateral and no angular deviation, corresponding to an initial 

speed of 18 𝑚/𝑠 (note that the leading vehicle's speed is capped at 18 𝑚/𝑠 to avert any potential gap 

in headway). Additionally, three more vehicles are integrated into the simulation initialized as 

uncongested traffic condition. Vehicle 2 begins with a headway deviation of −0.1 seconds, no pace 

deviation, a lateral deviation of 3.6 meters (positioned in the outer lane), and no angular deviation. 

Vehicle 3 is set with a headway deviation of 0.1 seconds, while its other states are at equilibrium. Lastly, 

Vehicle 4 starts with a headway deviation of 0.3 seconds, a pace deviation of −1/200 𝑠/𝑚 (equivalent 
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to a starting speed of 16.5 𝑚/𝑠), a lateral deviation of 3.6 meters (positioned in the outer lane), and no 

angular deviation. 

 

FIG. 8-1. Illustration of Road Trajectory. 

To illustrate the performance of the algorithm, Fig. 6 plots the positions of the vehicles within a time 

frame starting from 0 seconds to 8 seconds, with a 1 second resolution. Due to the spatial formulation 

of the algorithm, only vehicle 1 is depicted in FIG. 8-2 (a)-(b). This is because vehicle 2 enters the 

section at approximately 1.1 seconds. A closer analysis of FIG. 8-2 (d)-(h) for vehicle 2 and vehicle 4, 

reveals that as vehicles enter the lane-changing section, they begin to execute lane-changing decisions. 

This merging process is initially unhurried, particularly when vehicles are at a considerable distance 

from the merging endpoint for convenience consideration. As they approach the merging endpoint, 

however, they accelerate to ensure safety. This transition in speed is modulated by our dynamic 

weighting strategy, which adeptly balances convenience and safety concerns. 
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FIG. 8-2. CAVs Trajectories Snapshots. 

FIG. 8-3 further illustrates the evolution of various system state parameters of the proposed planning 

algorithm. This graph elucidates the dynamics of headway deviation, pace deviation, lateral deviation, 

and angular deviation. To provide a more comprehensive comprehension of the car-following and lane-

changing approach, we transposed the system states from the spatial domain to the temporal domain, 

and additionally transformed pace into speed for ease of understanding. Notably, vehicle 1, as the role 

of the lead vehicle, does not have any headway deviation. Vehicle 2, on the other hand, starts off with 

an initial headway deviation of −0.1 seconds, implying that the gap between vehicle 1 and vehicle 2 is 

initially greater than anticipated. In pursuit of attaining headway equilibrium, vehicle 2 engages in an 

initial acceleration phase, swiftly succeeded by a deceleration phase. Furthermore, vehicle 2 initiates a 
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lane-change maneuver as it enters the designated lane-changing section at 3 seconds, which leads to 

lateral deviation and angular deviation change. Vehicle 3 initiates with a headway deviation of 0.1 

seconds, indicating that the spacing between vehicle 2 and vehicle 3 is initially tighter than expected. 

To achieve headway equilibrium, vehicle 3 starts with a small deceleration phase, taking into account 

that the speed of vehicle 2 surpasses its own. This measured deceleration is a strategic maneuver aimed 

at creating an optimal distance between the vehicles with the lowest cost. Vehicle 4 starts with a 

headway of 0.3 seconds, which is relatively close for car-following, resulting in a sharp deceleration to 

attain an equilibrium distance. Furthermore, vehicle 4 starts a lane-change maneuver as it navigates into 

the lane-changing section at 5.5 seconds, which induces fluctuations in lateral deviation and angular 

deviation. Moreover, the infinitesimal oscillations after vehicles achieve equilibrium also demonstrate 

the robustness of our proposed trajectory planning algorithm, which is achieved through the integration 

of road geometric characteristics and the dynamics of the leading and following vehicles.  

 

FIG. 8-3. CAVs States Results in Time Domain: (a) Headway Deviation; (b) Speed Deviation; (c) 

Lateral Deviation; (d) Angular Deviation. 



79 

 

8.2 Scenario II: Uncongested Mandatory Lane-changing with Obstacle Presence 

The preceding section's results demonstrate the efficacy and stability of the proposed CAV car-

following and lane-changing methodology without any obstacles. To make a more rigorous test, we 

executed a simulation experiment factoring in the presence of an obstacle. In this simulation, we 

introduced a 20 meters long obstacle situated between 60 meters and 80 meters, as depicted in FIG. 8-

4. Within the bounds of this obstacle, the lane width is constricted to �̃�𝑗,𝑠
𝐿 = 0.5 meters. This inclusion 

of an obstacle is to test how the proposed CAV car-following and lane-changing strategy navigates to 

constrained environments, thus providing a more comprehensive evaluation of its real-world 

applicability.  

 

FIG. 8-4. Illustration of Road Trajectory with Obstacle Presence. 

The leading vehicle is initialized with a pace deviation of −1/180 s/m, no lateral and no angular 

deviation, corresponding to an initial speed of 18 m/s (note that the leading vehicle's speed is capped at 

18 m/s to avert any potential gap in headway). Both vehicle 2 and vehicle 3 begins with a headway 

deviation of 0.2 seconds except vehicle 2 has a lateral deviation of 3.6 meters. Vehicle 4 starts with a 

headway deviation of 0 seconds, a pace deviation of −1/200 𝑠/𝑚 (equivalent to a starting speed of 

16.5 𝑚/𝑠 ), a lateral deviation of 3.6 meters, and no angular deviation. To provide a visual 
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representation of the algorithm's performance, FIG. 8-5 delineates the positions of the vehicles within 

a time frame of the first 8 seconds. As can be observed in FIG. 8-5 (d)-(g), vehicles 1 and 3, occupying 

the inner lane, exhibit quick a response to the obstacle. They use flexible and intelligent control 

decisions that facilitate smooth avoidance of obstacles, ultimately guiding them to maintain a central 

path. This central positioning is a strategic maneuver aimed at avoiding any possible collisions with the 

obstacle while navigating through the obstacle section. Conversely, as seen in FIG. 8-5 (e)-(h), vehicles 

2 and 4, which are situated in the outer lane, choose a different strategy. They decide against fully 

merging before entering the obstacle section, demonstrating the algorithm's adaptability in facilitating 

diverse vehicular responses based on positioning and surrounding conditions. 

 

FIG. 8-5. CAVs Trajectories Snapshots with Obstacle Presence. 
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To validate the convergence properties of the algorithm, FIG. 8-6 presents details of system state 

parameters through the performance of the proposed planning algorithm. By analyzing the trends and 

interactions exhibited in the intricate dynamics of headway deviation, speed deviation, lateral deviation, 

and angular deviation, we can garner valuable insights into how the planning algorithm operates and 

adapts in response to the obstacle. Because vehicles 2, 3 have an initial headway of 0.2 seconds, they 

both engage in an initial deceleration phase to achieve headway equilibrium which lead to a deceleration 

phase of vehicle 4 as can be seen in FIG. 8-6 (b). FIG. 8-6 (c)-(d) offer a detailed illustration of the 

dynamic responses of vehicles when confronted with an obstacle. Vehicles 1 and 3, as the inner lane 

vehicles, demonstrate an agile reaction to the obstacle. They successfully execute smooth maneuvers to 

evade the obstacle while ensuring that they maintain a safe clearance from it. In contrast, vehicles 2 and 

4, as the outer lane vehicles, adopt a more conservative approach by moderating their merging speed 

which can be seen from 5.5 seconds and 7 seconds. This contrasting behavior highlights the algorithm's 

capacity to enable vehicles to employ different strategies based on their positions and surrounding 

environments, ensuring both effective navigation and safety. FIG. 8-6 (e) illustrates the trajectories of 

4 vehicles in the spatial domain where the obstacle is present. As evident in the diagram, each vehicle 

consistently maintains a safe distance from the obstacle. 
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FIG. 8-6. CAVs States Results with Obstacle Presence: (a) Headway Deviation; (b) Speed Deviation; 

(c) Angular Deviation; (d) Lateral Deviation; (d) Lateral Deviation in Space Domain. 

8.3 Scenario III: Congested Mandatory Lane-changing 

To validate the effectiveness of the proposed lane-changing planning algorithm under congested 

environment, an extreme case is given using the same simulation environment as scenario 1. The leading 

vehicle is initialized with a pace deviation of −1/180 𝑠/𝑚, no lateral and no angular deviation. Vehicle 

2 begins with a headway deviation of 0.7 seconds, no pace deviation, a lateral deviation of 3.6 meters 

(positioned in the outer lane), and no angular deviation. Vehicle 3 is set with a headway deviation of 

0.7 seconds, while its other states are at equilibrium. Lastly, Vehicle 4 starts with a headway deviation 

of −0.2 𝑠𝑒𝑐𝑜𝑛𝑑𝑠, a lateral deviation of 3.6 meters (positioned in the outer lane), and no pace and 

angular deviation.  

FIG. 8-7 illustrates that Vehicles 1, 2, and 3 start in close proximity to each other. Initially, Vehicles 2 

and 4 do not exhibit any lane-changing behavior as they enter the lane-changing section. The lane-

changing behavior is influenced by the spacing between each vehicle and its neighboring vehicles, 

which can be clearly observed in FIG. 8-7 (e)-(h). More specifically, lane-changing is only initiated 

when the distance between both the leading and following vehicles is adequately large, preventing risky 

mandatory lane-changing maneuvers when vehicles are too closely spaced. 
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FIG. 8-7. CAVs Trajectories Snapshots. 

FIG. 8-8 shows the details of system state parameters. Vehicles 2 and 3 commence their journey with 

an initial headway deviation of 0.7 seconds, suggesting that the spatial gap between Vehicles 1, 2, and 

3 is initially significantly smaller than expected. Both vehicles 2 and 3 engage in an initial deceleration 

phase in pursuit of attaining headway equilibrium, which explains that the headway between vehicles 

2 and 3 stays unchanged until vehicle 3's speed falls below that of vehicle 2. Meanwhile, vehicle 4 starts 

with a deceleration phase even though the initial headway deviation of vehicle 4 is smaller than 

anticipated, taking into account the fast deceleration of vehicle 3. Further, both the lateral and angular 

deviations maintain the same trends as observed in Scenario 1. 
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FIG. 8-8. CAVs States Results: (a) Headway Deviation; (b) Speed Deviation; (c) Lateral Deviation; 

(d) Angular Deviation. 

To further evaluate the collision risks, we further customize a surrogate safety measure, Inverse TTC, 

which is the reciprocal of Time to Collision (TTC). TTC is a common safety metric used in traffic and 

vehicle safety studies. It represents the time that remains until a collision with an object or vehicle will 

occur if both continue at their current speed and along their current path. The customized Inverse TTC 

is given as 

 𝐼𝑛𝑣𝑒𝑟𝑠𝑒 𝑇𝑇𝐶𝑗,𝑡 = {

𝑣𝑗,𝑡 − 𝑣𝑗−1,𝑡

𝑠𝑗−1,𝑡 − 𝑠𝑗,𝑡
, 𝑖𝑓 |𝑟𝑗,𝑡  − 𝑟𝑗−1,𝑡|  ≤ 0.5 𝑎𝑛𝑑 𝑣𝑗,𝑡  >  𝑣𝑗−1,𝑡

0,                             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                             

, (46) 

where 𝑣𝑗,𝑡 and 𝑣𝑗−1,𝑡 are the speeds of vehicle 𝑗 and vehicle 𝑗 − 1 at time 𝑡. 

FIG. 8-9 illustrates the Inverse TTC for vehicles 2, 3, and 4. It's worth noting that the Inverse TTC is 
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computed based on the sequence of the vehicles in each lane prior to their entry into the lane-changing 

section, as well as their sequence in the virtual lane following this entry. The red, orange, and green 

dots displayed in FIG. 8-9 serve as markers indicating the moments when Vehicles 2, 3, and 4 

commence their transition into the lane-changing section. The performance of our algorithm, as 

evaluated through the Inverse TTC metric, has demonstrated commendable results. The highest Inverse 

TTC values are 0.02 1/𝑠, 0.10 1/𝑠, and 0.08 1/𝑠 for vehicles 2, 3, and 4, which are sufficiently small. 

The results show that the algorithm effectively ensures safer vehicle transitions during lane-changing, 

providing an ample margin for collision avoidance. The algorithm manages to keep the Inverse TTC 

values within a reasonable range, thereby signifying a guaranteed safety. The consistent efficiency of 

the algorithm in maintaining desirable Inverse TTC values serves as a strong testament to its robustness 

and reliability in managing vehicle sequences during lane-changing procedures, thus substantially 

enhancing road safety. 

 

FIG. 8-9. Inverse TTC. 
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9. CONCLUSION 

This paper proposes 2D spatially formulated trajectory optimization, car-following, and lane-

changing methods of CAVs. Vehicular trajectory optimization, car-following and lane-

changing strategy play an essential role in ensuring vehicles' travel safety and efficiency. 

Traditional trajectory planning algorithms and methods are primarily formulated in the time 

domain by detecting the road information with a limited range and optimizing the trajectory 

myopically, which cannot competently handle the spatially varying road geometric change, 

obstacles, and traffic regulations. To remedy that, this paper provided a new angle to plan long-

term trajectories in a spatial domain with the help of infrastructure. Specifically, this paper 

systematically formulates trajectory optimization in a spatial domain and on a curvilinear 

coordinate, enabling our method to flexibly formulate spatially varying complex road 

geometries, traffic regulations, and road obstacles whose information can be obtained through 

V2I communication. Traditional car-following strategies are primarily formulated in the 1D 

time domain, which only focus on vehicle longitudinal control and ignore all lateral force. This 

paper provided a new angle to combine 1D car-following algorithm with our vehicle trajectory 

optimization algorithm in the spatial domain, which forms a new car-following algorithm that 

fills the gap of no 2D CAV car-following in the literature. For rigor, the controllability of the 

state space was mathematically proved by using both the linear test and the small-angle 

approximation. Considering vehicle travel efficiency and trajectory smoothness while 

satisfying the collision avoidance and vehicle kinematics constraint, a multi-objective MPC 

was constructed, which can be efficiently solved by the state of arts optimization methods.  

To demonstrate the usefulness and wide applications of our proposed trajectory planning 

optimization algorithm, car-following, and lane-changing algorithm, multi-scenarios numerical 

simulations were conducted for our proposed trajectory planning optimization algorithm 



87 

 

including: (i) a continuous curvy road segment with the constant speed limit, (ii) a curved road 

with two different desired driving behaviors, (iii) a curved road with an obstacle, and (iv) a 

continuous curvy road segment with speed limit change. Moreover, (i) a continuous curvy road 

segment without an obstacle and (ii) a curved road with an obstacle were designed to test our 

car-following algorithm. Finally, (i) uncongested two-lane curved highway mandatory lane-

changing, testing the algorithm's handling of the lane-merging process in curved highway 

conditions, (ii) uncongested two-lane curved highway mandatory lane-changing with the 

introduction of an obstacle, testing the algorithm's ability to adapt and respond to unexpected 

disruptions in the driving environment, and (iii) congested two-lane curved highway mandatory 

lane-changing, testing the algorithm's effectiveness in reducing collision risks during lane-

changing and car-following. The simulation results show that our algorithm adeptly finds 

optimal control inputs to regain system equilibrium, factoring in vehicle states and upcoming 

obstacles. By managing vehicle sequences and gap acceptance, it enables safer, smoother lane 

changes, reducing potential collisions. It demonstrates resilience in handling traffic variations, 

including fluctuating speeds and unexpected obstacles, proving its versatility and robustness. 

Unlike strategies using only time-domain approaches, our method handles spatial disturbances 

better, leveraging precise road geometric data and leading vehicle dynamics. 

Nevertheless, some directions can be extended on the current framework in the future. For 

example, future research could enhance realism by incorporating factors like communication 

delays, vehicle dynamics uncertainties, and measurement errors. Possible improvements 

include using a comprehensive control model, like a four-wheel vehicle model, integrating 

dynamics uncertainties for robustness, and examining more complex scenarios like CAV 

control at intersections. 
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