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Vegetation Change Along an Altitudina! Gradient, Santa Cruz Island, Galapagos 

William G. Reeder and Susan E. Riechert! 
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ABSTRACT 

Quantitative study of the vegetation along a limited altitudinal gradient (183 m rise in 12,900 traverse) on Santa Cruz 
Island, Galapagos, demonstrates the presence above the coastal mangrove zone of three distinctive zones, the Cryptocarpus, 
arid, and protean (transition) zones. The Cryptocarpus (immediate coastline) and arid zones differ only in species com- 
position, while the protean zone vegetation differs from that of the lower altitudes in both species representation and 
stand organization. The two lower zones are dominated by one or two species; the protean zone contains a larger 
number of more equitably represented species. Much of the variability of the vegetation is continuous and associated 
with altitude (39.8%, first canonical variate). Deviation from the altitudinal trend is evidenced in the arid zone vege- 
tation where local patchiness is characteristic. Factors contributing to the continuity include precipitation, evaporation, 
and substrate, but all associated with altitude. Cover provided by the tree canopy also increases with altitude. Dis- 
crete breaks in continuity were observed between zones. This disjunction might result from the effect of steep slopes on 
the physical environment; it is evidenced wherever a 10-meter rise in altitude occurs in a relatively short distance 
when compared with the remainder of the gradient. At this scale, few associations were observed among plant species; 
individual species presumably appear and disappear according to their range of tolerances. 

“El Cambio de la Vegetacion a lo Largo del Declive Altitudinal,” 
Isla de Santa Cruz, Galapagos’ 

COMPENDIO 

Un estudio cuantitativo de la vegetacién a lo largo de un declive altitudinal delimitado (183M aumento altitudinal en 
un travesero de 12,900M) en la Isla de Santa Cruz, Galapagos comprueba la presencia de tres zonas distintas superiores 
a la zona litoral de manglares: la zona Cryptocarpus, la zona Arida y la zona de Transicién. La zona Cryptocarpus (con- 
tingua al litoral) y la zona Arida se diferencian unicamente en la composicion de las especies mientras que la vege- 
tacion de la zona de Transicidn se diferencia de ésa de las altitudes inferiores tanto en las especfes representadas como 
en organizacién de la comunidad (Stand). Las dos zonas inferiores estan dominadas por una o dos especies, la zona de 
Transicién incluye mayor cantidad de especies con representacidn mas equitativa. La zonaci6n manifestada por este re- 
cuesto esté ampliamente relacionada con la casi equitativa representacién proporcional y la riqueza de las especies de 
Arboles. 

Mucha de la variabilidad de la vegetacién es continua y asociada con la altitud [39.8% en la primera variacién 
canonica (canonical variate) |. Desviacion de la tendencia altitudinal se manifiesta en la vegetacion de la zona 
Arida, caracterizada por sus manchones locales. Factores que contribuyen a esta continuidad incluyen la precipitacion, 
la evaporacién y el porcentaje de pedregal (todos asociados con la altitud). La cubierta formada por el baldaquin de los 
Arboles también aumenta con la altitud. Discretas brechas de continuidad se observaron entre las zonas. Dichas brechas 
se reflejan mas en el caracter total de la comunidad (Stand) que en un cambio stbito en la composicion de las especies. 
Este descoyuntamiento aparece donde ocurre un aumento altitudinal repentino dentro de una distancia relativamente 
corta en comparacion con el resto del declive. Sobre este recuesto, las disyunciones no fueron causadas por la exclusién 
competitiva que pueda suceder en la distancia horizontal limitada, caracterizada por los recuestos precipituosos, sino que 
fueron causadas por el alto nivel de densidad de los arboles jévenes ubicados en los recuestos escarpados, en compara- 
cién con la disposicién clasificada por altura a lo largo del resto del declive. Este aspecto estructural permitidel discerni- 
miento de brechas discretas que de otra manera se hubiera creido que la vegetacién cambia continuamente con la alti- 

tud, Usando la escala de obtener datos descrita en este informe, pocas asociaciones se observaron entre las especies de 
plantas; los datos implican que las especies individuales aparecen y desaparecen segtin su limite de tolerancia. 

THE UNIQUENESS OF THE VEGETATION of the Gala- 1905-1906; Astor Expedition, 1930; and Galapagos 

pagos Islands has been known since the initial re- Scientific Project, 1964) has resulted in a satisfactory 

ports of Darwin (1840) and the description of en- inventory of species for most of the more accessible 

demic plants by J. D. Hooker (1847a,b) and others. islands. The recent publication of the Flora of the 

Sporadic but occasionally intensive botanical ex- Galapagos Islands (Wiggins and Porter 1971) has 

ploration (e.g., Voyage of the H.MS. Sulphur, 1844- stimulated interest in further study of the island flora 

46; California Academy of Sciences Expeditions, (Simkin, Reeder, and MacFarland 1974). 

1 Present address: Department of Zoology, University of Plant SPeCles/ AS5OCKAkiORS, COMEDEDIIE:, and zoucs 
Tennessee, Knoxville, Tennessee 37916, U.S.A. of similarity have been described for various islands 

2 The government of Ecuador now requires that all papers (Steward 1911, 1915; Svenson 1930a, b, 1935; Bow- 

published on the Galapagos Islands have a Spanish sum- eon: : 
61; a : uali- inary man 1961; Wiggins and Porter 1971). These quali 
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tative descriptions allow comparison with vegetation FIELD METHODS 

Seer and permit-the Galapagos fauna, vertebrates Sampling sites were established at approximately 10 m 
in particular (e.g. Bowman 1961), to be placed in ~ 6 : 

intervals of altitude along the transect (see fig. 2). 
a vegetative context. There have been few attempts A ‘ ; é : 

ae in t each site, five linearly arranged contiguous 10 
at quantitative description of the Galapagos vegeta- 

: . ae x 10 m quadrats were set up to the east of the 
tion, though Itow (1965) related species distribu- , 

: transect and, so far as possible, along the contour. 
tions on the southern slopes of Isla Santa Cruz to Withi 

Bi ithin each quadrat all trees and shrubs (>1 m 
altitude and percentage of ground surface covered . . : : 3 
by 1 in height) were tallied as to species and height. 

y lava. : 
. Overlying trees and shrubs (>1 m tall) were re- 

The present study reports on the presence, density, corded in each 0.5 m interval of a line intercept 
and cover of herbs, shrubs, and trees along a 200 m through the middle of the quadrats and plants (<1 
altitudinal range frequented by the Galapagos tor- m tall) in each 2 cm interval of the central 2 m. 
toise, Geochelone elephantopus Potters, OD the south- The substrate of 2 cm intervals was classified as 
ern slope of Isla Santa Cruz (fig. 1). This transect being predominantly a) lava rock, b) bare soil, 
runs through the arid and transition zones (of Bow- c) litter, or d) fallen wood. Where more than one 

man 1961) to the lowermost Scalesia forest. The type was present in a given interval, only the pre- 

sea-level mangrove forest, dominated by Rhizophora dominant type was tallied. A single oblique photo- 
and Laguncularia, and the Scalesia forest above 183 graph of the sample locality was taken from outside 
m altitude were not sampled. the southwest corner of each quadrat, while at each of 

eee! eight stations (the four corners of each quadrat 
eau | and four sites chosen by random numbers within 
a 3 “30 each of four 5 x 5 m quarter-quadrats) a vertical 

Ae L | | photograph of the overhead vegetation was taken 

stages buh a ns with the camera positioned at a standard height 
jaa a “ = ee of 180 cm. 

| j This sampling sequence was followed for each 
Fes Sas & | of the five successive quadrats along the 50 m line 

Sr nksa Ye a at each altitude. The combined data from the five 
| he! Mona "*° quadrats at each site constituted an altitudinal sample. 

CASEI AR TSBELLAVISTA 
CERRO } mit 

=e /transecr oy REM SF ANN RESULTS AND DISCUSSION 

= ae “° NATURE OF SPECIES GROUPINGS: Different views 
St a _ | exist as to what information is valuable in character- 

ae * . oa izing vegetation (Shimwell 1972; Whittaker 1973). 

——._ - —__ In the present study, dominance (importance) values 
FIGURE 1. Map of Isla Santa Cruz, Galapagos, showing were determined for individual tree species. Domi- 
location of caseta-coast transect. . . 5 

TT SCsnance is considered here to be the average of relative 
density, height class, and cover. Relative values 

Our interest was in evaluating the usefulness of were obtained by dividing individual frequencies 
both field techniques and methods of analysis in de- or densities by the sum of the frequencies or densities 
scribing the character of the Galapagos vegetation of all species in the sample. Figure 2 depicts the 
(species composition and structure, as measured by change in dominance of species with increasing al- 
presence, size, dominance, and diversity). In addi- titude along the transect. Species exhibiting a 
tion we wanted to examine changes of vegetation dominance value between 0.10 and 0.20 are arbitrarily 
with altitude on this gentle south-facing slope (183 designated as subdominants while those with values 
m rise in 12,900 m horizontal distance; mean greater than 0.20 are considered dominants. It is 
slope = 0°48’) to test whether a continuum (Glea- apparent from changes in the composition of the 
son 1926, 1939), a series of discrete zones (Clements dominance ranking that the species representation 
1905), or a combination of both (Whittaker 1951, is highly variable over the altitudinal gradient studied. 
1956; Beals 1969) best characterizes this vegetation. The coefficient of dissimilarity (1—2w(a-+-b); 
It is intended that this sampling be continued on Curtis 1956; Beals 1969) was used to measure the 
other slope exposures of Santa Cruz and additional degree of change occurring between adjacent al- 
selected islands of the archipelago. titudes (fig. 3A, B,C). The mean dissimilarity value 
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9 A . . : . 
er Baccara ing a continuous understory. Our quantitative assess- 

‘6a 5 Ghacecco ment indicates that Opwntia dominates stand character 
roron : as i 

= £ Gureere only along the coast in conjunction with the coastal 
2009 1 Gorsee shrub Cryptocarpus pyriformis HBK (fig. 2). Al- 

sood ee k Hispameae though Opuntia does form a low, open forest of 
U Tournetortio rufon sericea : Degas een ce 

a M Tournetortia ositostachyo arborescent cacti on the coastal plain, its distribution 

4000] Q  Cletedengtsm is limited to a relatively narrow zone, most of which 
ae was missed in our sampling, since it occurred within 

— ' € the interval between altitudinal samples at 15 and 
° i 

© epael 24 m. It is shown here that the entire zone is best 
5 =F characterized as a dense tangle of Croton, which forms 2 : : 
Z 7000 =a an almost continuous low canopy (mean height 

o Ee Lo 
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FIGURE 2. An altitudinal representation of species com- ao 
plexes imposed on a plot of sample location (altitude) aA 
against linear distance. Relative lengths of the horizontal 
lines signify species dominance scores. Open-circle loca- 2|2 £0 
tions are those for which exact linear distance measurements ;> 50 
are available. Positions of other points along the trail are ~- 40 

estimates. 30] 

20] 

10) 

ranged from 0.39-0.58 on a scale of 0-1 in the dif- 00 
fe 1 5 15 24 34 43 55 64 72 79 92 107 122 137 152 159167175 183 

erent samples. ALTITUDE IN METERS 
Just inland of the immediate coastline, Croton 

: : 1.0) 
scoulert Hook.f. appears to dominate the lower al- 

: . 90} 
titudes (15-43 m) with the taller but less numerous nd 
tree species Pisonia floribunda Hook.f, Piscidia car- 3 ,.| c 
thagenesis Jacqu. and Bursera graveolens (HBK). > ,, 
Trian & Planc. acting as subdominants and changing <= ,| 
in relative dominance from one altitude to the next = 4, 
(fig. 2). The coastline vegetation and Croton- 3 36 

. . . . . + . a 
dominated stands occur within the altitudinal limits 6 .,| 
(5-40 m) of the arid, coastal-zone vegetation de- ia 
scribed by earlier authors (Stewart 1911; Bowman oot to 

. ss 1 4 4: 4 72 79 92 107 122 137 152 159 167 175 183 
1961; Itow 1965, 1966). Based primarily on collec- ALTITUDE IN METERS 
tions and observations, Itow (1965) characterized FIGURE 3. Dissimilarity [1-2w(a+b)] of adjacent seg- 
the arid, coastal-zone vegetation as dominated by ments of the altitudinal gradient along the caseta-coast 
Opuntia echios Howell and Bursera, while Bowman trail based on A) herb cover, B) tree and shrub cover, 

(1961) had considered Opuntia and Jasminocereus and C) dominance values. High values signify rapid chang- 
thouarsii, (Weber) Backg. to be dominant, with ¢ ip vegetation, lows valve signitygslouce ee Mean 
Bursera and Maytenus octogona (L’Her.) DC. form- CSE easN 22 SDR ge sincere “ean echoes 
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class = 1.5-+.53) throughout the area. It is this from that at higher altitudes (protean). We wished 
species which effects the quality of the local environ- to determine whether the vegetation is continuous 
ment encountered in the zone. 8 x sonia 

The remainder of the altitudinal gradient studied © Pisonia 
on this island differs markedly from the arid zone 7 9 z peaun 
in organization. Unlike the one to three species i @ Erythrina 
representation of the arid zone, throughout the 72- 6 i 0 Bursera 
183 m range of altitude, vegetation character is in- | \ ncalppomone 

. a : 1 v Jasminocereus 
fluenced by a number of species (fig. 2); in many |, § al g 
transects no one species exerts a dominant influence |= | { is 
(0.20), but rather a number of subdominants are |Z 4| | i iN 
present. Because of the variability exhibited in the [2 / o ! ' i} VA 

composition of species complexes in this altitudinal sq ja ¢ ‘ 
range (fig. 3A-C), this area has been termed a transi- yesh \ / ~ 

tion zone (Stewart 1911, 1915; Bowman 1961). 2 \ i Nex A a a8 ey : Q \ al oy 
By definition a transition zone is “the population of \ SKA\ \ ul ( he \ : 
taxa observable along a gradient between two unlike ie ‘oe | fk / » 
phytocoenoses” (Kuchler 1973). It implies a direct- Nees > fp Md 

ed change from one distinct group of taxa to another. °. “Ni Via 
Admittedly, @ great deal of change is occurring in 5 15 24 34 43 55 FE Gee WERCAS 152 159 167 175 183. 

species complexes here. The question though is 
whether this change represents a “phase-out” of the 14 : @ Croton 
arid, coastal-zone taxa and the introduction of the 4 Zanthoxylum 
Scalesia forest taxa (edge mixture), or rather re- ta @ Maytenus 

presents a synusia of species that merely blends into x Cordio 
the other zones at its boundaries. We feel the latter 10 
alternative best describes this range of the gradient 

in which individual species rapidly gain and lose 4g 6 * 
prominence (figs. 2 and 4A-C). For some species 2 
this situation denotes a rather sudden appearance, |° ¢ 
gain in prominence, and disappearance, as seen for 
example in the shrub Cordia lutea Lam. which ap- i 
pears at 64 m, is dominant at 72 m, subdominant \ \ 

at 79 m, and is absent from our transect samples all // fen, 
above 92 m (figs. 2 and 4B). Other species may | RoW wy ‘ws 
be present throughout most of the transect length, nay & see 
but they exhibit peaks in density and dominance 5 15 24 34 43 55 64 72 79 92 107 122 137 152 159 167175 183 

over but a short interval. Psychotria rufipes Hook. Dad Cera mee a 
is first encountered at 92 m (fig. 4C), but is domi- < 
nant only at 175 m (figs. 2 and 4C). Other species Seis 
show less pattern and occur sporadically along the © Tovenelartio 

: : : 4b 4 Clerodendron 
gradient, because their environmental requirements 
are not primarily altitudinal. For example, Hippo- mibsychetrio 
mane mancinella L. is present in pond areas (79, |&° 
167, and 183 m; figs. 2, 4A) and where clearings 2 A 
were maintained by tortoise and goat activity. In |° y Fareea i 

our opinion the term transition zone, while used x os SN. t 
in the interpretation of Galapagos vegetation for a 4 VV ‘Or 
very long time, is inappropriate and might well be ; ut 
superseded by a term such as protean. OS 15 24 34 45 55 64 72 79 92 107 122 137 152 159 167 175 183 

ALTITUDE IN METERS 

CONTINUITY OF CHANGE: On the basis of structure FIGURE 4. Distribution of canopy layer species along the 

and composition, the vegetation characterizing the  caseta-coast altitudinal gradient. A) trees, B) tree-shrubs, 
lower altitudes (arid coastal area) seems to differ aodi@)rshinbs ee 
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(Gleason 1926, 1939) or whether breaks in vegeta- ter is one that assumes no prior ordering and rather 

tional change along the altitudinal gradient occur, arranges stands on the basis of measurements of 
which would warrant defining zonal boundaries (Cle- interstand distances or similarities using a number 
ments 1905). of different variables. Such methods of analysis are 

One approach to the problem of continuity was the multivariate methods: canonical analysis, ordi- 
described by Beals (1969) in a study of vegetational ation, and association analysis. Canonical analysis 

change along altitudinal gradients in Ethiopia. He (Seal 1964) separates similar ‘ransects from  less- 
applied a chi square test to coefficients of dis- similar transects by making maximum the between- 
similarity to determine the degree of uniformity of ‘ansect variance while taking into account the pool- 
change. The mean coefficient is used to obtain the ¢d within-transect variances of a number of variates 
expected value, while the individual coefficients are (@8. tree and herb species frequencies, ire’ density, 
the observed. The chi square test was applied to 2nd mean height class). Ie considers all weighted 
all altitudinal, sample-dissimilarity measurements Vefages as linear combinations of the original vari- 
made in the present study [1-2w/(a+-b) measure- tes and finds the ordering that makes maximum the 
ments of tree and herb frequencies and tree domi- spread of the mean of the transects on the real line, 
nance value results}. In all cases the degree of change measured in units of the within-transect standard 
occurring along the altitudinal gradient was not uni- deviation. Y = ax = ax axe+.. oP apXp 
form (P<0.001). We consider peaks in dissimilar- Where the a; (i = 1.., p) are the coefficients of 
ity above the mean coefficient to signify relative the linear combination (Seal 1964). 7 4 
disjunction. For the most part, dissimilarity coef- When more than two samples are involved in the 
ficients exceeded the mean dissimilarity between 5 falysis, N-1 canonical variates are possible where 
and 15 meters, 43 and 55 meters, among adjacent N equals the number of samples. A restriction is 
transects between 64 and 92 meters and between Placed on subsequent canonical variates such that 
159 and 167 meters (fig. 3A,B,C). sample correlation between the variates is zero. : Thus 

These results suggest that the vegetation of the the various canonical variates are defined as statistical- 

immediate coast 5 m (but landward of the mangrove ly independent oe oe Seceee and co cng 
forests) differs markedly from the remainder of the information; the first canonical variate offers more 
arid zone (15-34 m). It is suggested that the term sptonmation thanathe second, and cach subsequent Cryptocarpus zone is appropriate for this narrow variate accounts for less eat until all of the sig- 

ie Te a 
es NS eee ee Aiea in table 1 on the basis of their individual usefulness 

Another discrete break in continuity occurs be- jn discriminating among samples (a ratio of among- 
tween the arid and the protean zones (43-55 m) sample variance to within-sample variance). Figure 
with the vegetation evidenced at 55 and 64 meters 5 depicts the results of the best linear combination of 
probably representing a “real” transition from the the weighted variates (first canonical variate) plotted 
arid to the protean zone above (72-159 m). The against altitude. This first canonical variate accounts 
high degree of dissimilarity noted between transects for 39.8 percent of the total between-sample vari- 
at 72, 79, and 92 m reflects the presence at 79 m ance. Differences in stand representation based on 
of an open pond around which Hippomane domi- this first canonical variate are clearly related to the 
nates. Another discrete break in continuity occurs altitudinal gradient with discrete breaks occurring 

at the upper end of the gradient where an open between 5 and 15, 43 and 55, and 167 and 175 
grassland with intermittent clumps of shrubbery is meters. The range between 55 and 167 meters 
encountered. The species complex at 167 m appears shows a remarkable continuity in change from one 
dissimilar to both lower and higher altitudes. Once altitude to the next. However, the open-pond area 
again, this situation reflects the presence of a Hippo- represented at 79 meters is separated from the other 
mane-dominated pond area. For the most part, the species complexes in the protean zone, and greater 
change occurring in vegetation as characterized by irregularity occurs at the bottom of this zone than 
tree-species dominance throughout the protean zone at higher altitudes. These results closely coincide 
is not as great as that seen between zones. with those observed from the dissimilarity measures. 

Dissimilarity values, though useful in studying The arid-zone group of samples (15-43 m) shows 
uniformity of change, are somewhat biased in that the greatest deviation from the trend of increased 
the stands are ordered on the basis of altitude and canonical score with rise in altitude. We attribute 
only adjacent stands are compared. A more powerful this deviation to local patchiness noted throughout 
test of the influence of altitude on vegetation charac-. the arid region. 
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ee FIRST CANONICAL VARIATE SCORES 
TABLE 1. Initial canonical characters ranked according & 3 & S & 3 a 

to usefulness in discriminating among species 4 as 
complexes. Significance levels represent re- sho @ o 
sults of univariate F test. 2a] @o@o 

jee Neer Tae ads ene re ES Tea 2 Le 34 owo 

Character F Probability & Gs ae o@ 0 
i _ Si @00 

1 Total Tree and Shrub Density 30.82 < 0.000 5) 2 gree 
2 Total Herb Cover 30.23 < 0.000 ne 3 oe 
3 Density Croton scouleri 26.42 < 0.000 = 107 © 000 
4 Frequency Justicia galapagana 23.16 < 0.000 ™ 122| m0 0 
5 Frequency Lava 20.04 < 0.000 Ser OR ES 2S. 
6 Frequency Litter 14.57 < 0.000 a ise ao 

7 Frequency Scleria pterota 14.35 < 0.000 167| ao 
8 Height Croton scouleri 10.19 < 0.000 175} 000 

9 Density Psychotria rufipes 7.93 < 0.000 183 cae 
10 Density Opuntia echios 12 < 0.000 
11 Density Pisonia floribunda 6.68 <0000) == a ee 
12 Height Pisonia floribunda 6.41 < 0.000 FIGURE 5. First canonical variate scores for individual 
13 Height Opuntia echios 6.21 < 0.000 quadrat samples plotted against altitude. 
14 Height Clerodendrum molle 6.16 0000 
15 Density Tournefortia Fe oro < 0.000 

16 Density Galactia tenuiflora 5.9) < 0.000 tion, or in topography or substrate. One or a com- 17 Height Psidium galapageium 562, < 0000. pe a. er : Ui peerage trees, z 
18 Height Galactia tenuiflora 5.51  < 0.000 LRAT OOT OLR Cesc: ACLOrs ie Sb bit PiaDtspocics 
19 Height Psychotria rises 536 < 0.000 distributions. The pattern of change might also 
20 Height Bursera graveolens 533: < 0.000 sy 2 ot ci 
Ol Helche Heber marcela. 531. © 0.000. Tie Plant species competition’ along the Bran 
22 Density Cryptocarpus pyriformis 5.16 < 0.000 competitive exclusion (Gause and Witt 1935; Hut- 
23 Frequency Bare Ground 4.59 < 0.000 chinson 1953; Beals 1969). 
= ieee, ogee pera 135 eS Hee Ina previous study, Itow (1965) found that the 
26 Height Cryptocarpus pyriformis 4.25 < 0.000 distribution of several plant species was correlated 
27 Density Hippomane mancinella 4.21 < 0.000 ‘ t t. Th 
28 Density Bursera graveolens 4.14 < 0.000 with: the perce ec of lava substra © presehl . as ec 
29 Frequency Psychotria rufipes 3.73 < 0.000 range of percent lava over which the various species 

A Heer lponges nil A ae S 1900 occurred was broad in most cases (spread of be- 
1 eight Jasminocereus thouarsit ? q o <. qeee: a2 Helshe Pcie canbaconests 317 < 0.000 tween 20 and 70 percentage points). It is difficult 

33 Height Tournefortia rufo-sericea 3.06 < 0.000 to determine from those data whether plant distribu- 

34 eco ueney Stenotaphrum Ny Do oCo tions were directly related to the available substrate 
Secundatum A . . 

Asi Wensty Tbomoce al 286 < 0.001 % t some other factor whose properties changed 
36 Density Psidium galapageinm 262 < 0.002 with altitude as well. One method of discerning the 
af ye Canopy Coe ; al S p.008 factors which influence plant-species distribution is 

‘requency Cissus sicyoides : % 4 . e * 

39 Density Jasminocereus thouarsii 217 < 0.012 determine the dependence of plant-species associa- 

40 Reece Bare brownei 196 < 0.026 tions on physical factors by systematic removal of 
41 Density Clerodendrum molle 1.85 < 0.038 Soni : Ses 22 Helene Zaman facara 136 < 0.098 the significance contributed to the associations by 

43 Density Piscidia carthagenensis 128  < 0232 Single factors (Beals 1965; Riechert and Reeder 
a Higauencys Wood 10 [ ie 1973). Beals (1965) found that chi square associa- 

lensity aytenus octogona Z| . = =, 46) Wicaueney Rorulecs Gliecea 100 < 0490 ‘tions due to common or different preferences of a 

47 Density Erythrina velutina 0.94 < 0.531 factor could be eliminated, if samples were grouped 

according to the presence or absence of the particular 
FACTORS CONTRIBUTING TO CHANGE: Canonical re- factor, and if the expected values for joint occurrences 
sults demonstrate a fairly continuous variation in ve- were determined for the individual groups. The chi 
getation which is highly correlated with an altitudi- square value for the 2 X C table would then result 
nal gradient (fig. 5); this and other measures in- from the summation of individual values for all 
dicate that discrete breaks occur in this continuity groups. Chi square tests demonstrated 16 significant 
at specific altitudes. Diverse factors might account associations between plant species (table 3). Three 
for the observed patterns of change in vegetation of these associations were attributed to altitude 
along the caseta-coast transect. The altitudinal gra- (probably a combination of factors associated with 
dient, accounting for much of the among-transect- change in altitude), and only one to substrate, the 
sample variability (39.8% ), could reflect the gradual negative association (P<0.001) noted between Cro- 
change of number of parameters of the physical ton and Bursera. Bursera was limited in its distribu- 
environment; differences may exist in climatic factors, tion to altitudes below 79 meters, the point at which 
ie., rainfall, temperature, wind velocity, solar radia- a discrete break in an otherwise continuous decrease 
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in percentage of lava substrate occurs with increase while Psychotria and Scleria were both limited to 
in altitude (figs. 4A and 5) whereas Croton was far higher altitudes (figs. 4C and 6; table 2). Clero- 

more widely distributed (fig. 4B). The break in dendrum and Psychotria were negatively associated 
continuity of substrate cover at 79 meters (fig. 6) even though both were present from 92-183 m, 
disclosed the correlation of two other plant species because where one was very dense, the other was 
with substrate character. The shrubs Clerodendrum sparse (fig. 4C). The performance of these two 
and Psychotria (fig. 4C) were present only at alti- species in association with one another is indicative 
tudes where litter was the major substrate (fig. 6). of interspecific competition as discussed by Skellam 
Although substrate appears to affect the distribution (1951). They are able to coexist in an equilibrium 
of individual species and may contribute to the that depends on such factors as their patterns of dis- 
continuous change in vegetation associated with tribution and densities. By eliminating the altitude 
altitude, it apparently does not explain the major factor, the variability in their densities was removed, 
discontinuities observed in vegetation character. An and their negative association was no longer signifi- 
exception is the discontinuity observed at 79 meters cant. Associations of this type might account for 
which is related to the predominance of bare ground some of the continuous change observed; they do not 
in the pond area (fig. 6). explain the discontinuities. 

‘od According to Alpert (1962) “the areal distribu- 
*=LITTER tion of the (Galapagos) vegetation reflects the area 
@=LAVA rainfall distribution.” As with substrate, precipita- 

90) a tion and evaporation were found to vary continuously 
* along the altitudinal gradient. From weather sta- 

BO tions maintained along the caseta-coast trail (data 

* from C. MacFarland) and from measurements re- 
e e corded at the Charles Darwin Research Station, pre- 

70 ee o cipitation increased with altitude (ann. diff. betw. 

. 0 & 200 m = 230.2 mm), while evaporation de- 
60) * creased (ann. diff. betw. 55 & 200 mm = 815.2 ml). 

bE * We were unable to discern specific breaks in conti- 

a r 2 nuity along these moisture gradients at the level of 
o 50) xy nerd 
« sé measurement. We, thus, assume that climatic factors 
a and substrate, although undoubtedly influential in 

40 effecting the gradual vegetation change from one 
* é altitude to the next, are not responsible for the 

* ° breaks in continuity observed between the arid and 
30%- * = e 

e the protean zone nor between the protean zone and 
* ‘e the meadow area bordering the Scalesia forest zone. 

zo * A The results of the second canonical variate sug- 
* x gest the cause of the observed discontinuities (fig. 7). 

10 2 The second variate, accounting for 17.5 percent of 

¢ Z the total variance, separates 34-, 43-, 92-, 15-, 175-, 
and 183-meter samples from the remainder of the 

OS 15 24 34 43 55 64 72 79 92 107 122139 152 159167 175183 altitudinal gradient. These samples (excepting 152 
BE ISUCENENETERS m) represent altitudes at which greatest discontinuity 

FIGURE 6. Variation of substrate types with altitude. is observed (figs. 3, 4,5), and all (except 152 m) 

Only the two dominant substrates, lava and litter, are in- exhibit a 10-meter rise in altitude over a relatively 
cluded here, Values represent percentage of cover. short distance when compared with altitudinal sam- 

ples along the remainder of transect (fig. 2). The 
The three plant-species associations related to al- discontinuities between 43 and 55 m and between 

titude included positive correlations (P<0.001) 167 and 175 m, therefore, appear to represent slope 
between Cryptocarpus and Opuntia and between effects. The physical environment by the steep 
Psychotria and Scleria and a negative association be- slopes clearly differs from the more gentle slopes 
tween Clerodendrum and Psychotria. The entire in terms of water runoff and soil deposition. The 
population of Cryptocarpus was found within the plant species themselves (Beals 1969) may impose 
limits of the distribution of Opuntia (fig. 4A and C),  disjunctions on a steep slope; increased competition 
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TABLE 2. Altitudinal change in herb species frequency (percent). (Individual expected values for removal of the factor “altitude” were computed within 
the quadrat samples (altitude). Those for substrate were determined from groups of quadrat samples demonstrating similar substrate composition, 
ie., predominantly litter, lava, or bare ground.) 

5 15 24 34 43 55 64 12 79 92 107 122 137 152 159 167 175-183 

Acacia rorudiana 5:2 

Alternanthera halimifolia 4 A 38 6 12 74 6.2 18 56 28 9.6 

Bastardia viscosa iL 1.8 8 

Blechum browne 5.0 21.4 22.6 1.0 

Boerhaavia erecta 42 7 2.8 

Castela galapageia 6 
Cissus sicyoides 18 14 #1 4 

Clerodendrum molle oe 1 13.6 10.6 7.8 

Croton scouleri 14 48 
Desmodium canum 6 1 6 8 24 1 5.4 
Desmodium procumbens 2 2 2 

Fleury aestuans 6 6.8 64 3 
Galactia tenuiflora 4 1 10.6 17.2 8 6 13.8 6 4.2 

Ipomoea nil 44 6 4 6 2:2 6 6 46 6 12.4 

Ipomoea triloba 1.6 2.8 

Justicia galapagana 2 96 166 166 100 47.8 
s Momordica charantia 1.4 8 16 1 46 42 16 2 

‘3  Oblismenus setarius 8 16 1 2 2 18) 62 =" 6 8 
2 Opuntia echios 4 
S Phyllanthus caroliniensis 2 6 

o ——~Pisonia floribunda 1 4 6 8 

Fy Psychotria rufipes 4 8.2 10.8 10.8 

a Salvia occidentalis 6 1.6 
8 Scleria pterota 84.4 
5  Solarum nodiflorum 2 4 4 32 
5 Stenotaphrum secundatum 14 

a Tournefortia psilostachya i 1.6 
o Tournefortia rufo-sericea 48 2.8 

Zanthoxylum fagara 6 
8 DN ee gg... ss ssssaesssssssesws-/)$:.___Q°Q°Q°::°:.,.OX 

a 

8



might occur where little marginal habitat is offered according to Gleason’s principle (Gleason 1926, 
for mutual invasion by similar species. At least the 1929). 
former of these possibilities seems to be operating Some general observations can be made concern- 
in the present study, since differences in the structure ing plant-species diversity along the gradient as well. 
of the species complexes can be seen between the Various diversity measures were performed on the 
steep-slope samples and the remainder of the gradient. vegetation samples. These included (table 4): the 
Semilog plots of percent of stand representation of - 
tree-height classes show a much higher representa- KEY: ke 

tion of small-height-class individuals on steep slopes e = 183 eee 
than on other parts of the gradient (fig. 8A, B,C). + «175 a 
With greater runoff of water one would expect less + -167 to 
growth on these slopes and therefore smaller trees. In a =159 x 

addition, steep slopes tend to be more open than =152 o ne a” 
gentle slopes and thus might exhibit greater seedling @ = 137 Sue laz ez Aaa 
production (Beals, personal communication). The Q-i22 y z . go 
operation of physical-slope effects on vegetation 6-107 & 3} e Sens oo a 
character does not necessarily exclude disjunction 4.92 £& & UOe Te 2 
due to plant-species competition. Both factors might g.79 ~ o ° < ° ao, 8 
influence the discontinuity observed on these steep ,.. 7. & 2 ° nv 

slopes. +60 § a a 
v=55 G_ ae Coo” 

TRENDS: Analysis of the vegetation of this altitudinal , 4, , ; 
gradient has disclosed several generalities or trends | _ 4, © o 
in vegetation character. A striking feature of the , 5, “ v . 

vegetation as a whole is the apparent paucity of as- , _ ,, -10 YJ 

sociations among plant species. Of the 72 species ,. 5 ¥ 
encountered in the samples, only 16 significant as- a% - 

sociations were found to exist (table 3). This si- aA x xX 

tuation might well be expected along an altitudinal i“ . 

gradient where individual species appear and dis- 

appear according to their ranges of tolerance. It is TEECOND CANONICR ARTZ etotee 
probably indicative of the variability in physiological 0 

capabilities of plants at the species level and is FIGURE 7. Second canonical variate scores plotted against 
one expression of their distributional individuality hoses off the) rst Symbols indicate (slunidinal amelie 

TABLE 3. Plant species associations before and after factor removal. 

Chi square After factor removal 
Species associations probability Altitude Substrate 

Blechum - Hippomane — P< 0.001 P < 0.001 P < 0.001 
Blechum - Zanthoxylum +P < 0.001 P < 0.001 P < 0.001 

Bursera - Croton — P < 0.001 P < 0.001 NS 
Clerodendrum - Justicia — P < 0.001 P < 0.001 P < 0.001 
Clerodendrum - Psychotria — P < 0.001 NS P < 0.001 

Clerodendrum - Zanthoxylum +P < 0.001 P < 0.001 P < 0.001 

Croton - Pisonia — P< 0.001 P < 0.001 P < 0.001 

Cryptocarpus - Opuntia +P < 0.001 NS P < 0.001 
Erythrina - Pisonia +P < 0.001 P < 0.001 P < 0.001 
Hippomane - Cissus — P < 0.001 P < 0.001 P < 0.001 
Justicia - Psychotria +P < 0.001 P < 0.001 P < 0.001 

Justicia - Scleria — P < 0.001 P < 0.001 P < 0.001 
Justicia - Tournefortia rufo-sericea — P < 0.001 P < 0.001 P < 0.001 

Psidium - Psychotria + P < 0.001 P < 0.001 P < 0.001 
Psychotria - Scleria + P < 0.001 NS P < 0.001 
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diversity indices combining species richness and 90 

equitability devised by Simpson (1949), McIntosh 80] 8 
(1967), and the Hbar of Shannon and Weaver 70k ize 
(1949); a measure of equitability (Evar) proposed 
by Peet (1971); and two measurements devised £0 . 
by Hurlbert (1971) to estimate 1) the probability of sol” | 
intraspecific encounter (Delta 2) and 2) a ratio of 
the probability of interspecific to intraspecific en- 40 
counter (Delta 4). These measures were applied 
to individual and combined herb- and tree-frequency 9 ,, 
values and tree-density counts from the quadrat sam- 

ples. A trend test (Cox and Stuart 1955) computed ? ls 
on sample values ranked according to altitude in all ° ,|'93%7) AX % 
cases indicated a significant increase in tree-species = |'? ls 
diversity and the probability of int ifi unter «S| 72 \ iversity an pi y of interspecific encounter 2 Ly Nee 
over intraspecific encounter of the species with in- ¥ — |\390 RY 
crease in altitude (table 4). By its nature the trend VI 
test compares the upper half of the gradient to the 1m 
lower (in this case the protean zone to the arid and | a 
Cryptocarpus zones). In actuality, the results reflect e \; Q 
the difference in diversity existing between the upper zi y \, 
and lower zones rather than necessarily asserting a 4 rp 2 
trend of increased diversity with increasing altitude. NO a 

1 MY Yn 5 
90 z . 
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HEIGHT CLASS (M) 
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FIGURE 8. Semilog plot of percentage of stand repre- 1 235 4 5 6 7 8 9 10 1 12.13 14 
sentation versus tree-height class. A) 5-64 meters alti- HEIGHT CLASS (M) 

tude, B) 72-152 meters altitude, and C) 159-183 meters 
altitude. 
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The equitability measure when applied to tree den- The observed increase in species richness and 
sity also showed a significant increase with altitude. equitability from the arid zone to the protean zone 
It did not show a trend to exist with frequency data. is reasonable when one considers that available 
This result is probably more indicative of the in- moisture increases with altitude and, therefore, more 
sufficient numbers of individuals provided by the mesic conditions are approached in the protean zone. 
transect method rather than a lack of trend. Herb- The extremes of any moisture gradient, in general, 
species diversity and equitability, for the most part, are more restrictive (Curtis 1956), and one would 
demonstrated no trend toward increasing diversity expect to find fewer species inhabiting the arid zone 
with altitude. In actuality the trend is there (tables than as one approaches the more mesic conditions in 
2 and 4); the extreme variability of the individual the protean zone. Greater equitability in vegetation 
samples masked the results of the nonparametric sig- was also observed in the protean zone than in the 
nificance test used except in the case of the informa- arid zone (table 4). It is possible that competition 
tion-based index (Hbar) and Delta 4. in this area of species complexity is involved in 

TABLE 4. Altitudinal variation in vegetation diversity. 

ALL TRANSECT VEGETATION 
SIMPSON MCINTOSH H BAR PEET DELTA 2 DELTA 4 

EVAR 

Sign. p<0.001 p<0.001 p<0.001 p<0.1 p<0.001 p<0.001 

x # x a x eS x z x 2 x = 
5 oar stl wag 12 202 428 “83.10 43) 311. 17 al 

15 -16 502 +76 ©.02 .07 12 «91 02 “73.02 +29 +39 
24 +68 .02 -68 .02 +82 .07 -78 204 +66 .02 20 +27 
34 +65  .08 265 -..08 sTL 328 of? 310 +63 08 249 81 
43 e12- 506 <12 406 507 428 +79 08 +70 306 204 61 
55 -68  .06 +68 .06 «95022 267) | .10 +68 =©.05 -58 Oi 
(64 3630 1207) %68° 07 +80 .25 +66 08 +60 07 06 +43 

a 72 -67 02 +67 .02 -59 06 509) 207 -65  =.04 06 18 
Ba -54 214 -54 414 ~30) 43 -64  .19 ee) +02 o12 
ne o2 -86  .01 +86 .01 -89 18 +90 .02 384 401 4 252 88 
y «107 -84 02 -80 .06 19s 22 92 02 -82 03 -12 (4.44 
e122 “82, 02 -64 .03 282 513 +88 03 +82 .02 321.08 

237) +85 .01 -68 01 -07 .08 -88 = .01 +84 .01 +99 243 
152 +74 07 255. 0 +540 ..27 si .09 13.07 202 12.21 
159 -88  .02 2106 9203 «35.18 +91 02 287 © 02 -88 «1.49 
164 -85 03 +66 04 .25° 423 -87 04 -84 03 670, 1.42 
175 -67  .04 +45 9.03 2.30! 12 +69 05 -66 .04 ey) 132 
183 +7306 +53 06 2060) 24 a7 07 -73 06 49 -83 

TREE FREQUENCY (TRANSECTS) 
SIMPSOW iICINTOSH H BAR PEET DELTA 2 DELTA 4 

EVAR 
Sign. p<0.001 p<0.001 p<0.001 ns p<0.001 p<0.001 

x 2 X a x a x 2 X af x By 

5 osee wl 3 24 oO. 66 2g 78 14 «28. wl2 68 30 
15 -64 04 -48 0.03 Vesa ae ig -88 .03 61 305 1.90 30 
24 “55 +05 -40 05 37 218 -69 .08 =53 05 1.41 38 
34 +54 .09 +40  .08 L27) 28 +79 08 <52 \ 408 1.59 +59 
43 -65 .05 -48 © 04 Mage 613 +75 08 <64 «05 2.06 338 
55 Ue 708 | 208 +240 «424 +94 06 elles 1 225 25 
64 745 305 soil en 704 T5059). 12 254 elt “43 305 +88 19 

a 72 435 214 <26°° ld «14.31 +90 07 e300 ees 86 +38 
BP 79 yl 12 S12) 208 258 431 EOl ee 7 20ers 12 335 121 

HH 92 278) 804 -63 204 2.26 24 -88. 03 <15).05 4.20 oT 
a 107 «18 05 «59 06 2.22 26 -88 03 74 05 35972: 93: 
= 122 x72 15:04 254 “904 2.03 1.14 sole. 07 +70 .04 2.87 60 

137 “10 es 05: 252.05 2.01 523 213 00 -68  .06 2.70 61 
152 12) e305, 553 meee 05) 2.14 16 19 07, 30 9) 305 2697 60 
159 715 06 -58 06 2226 222 «82.08 213i 06 3.70 87 
164 S12 07 +56 .06 2.11.24 218) ele -70 307 3123 a7 
175 -14 02 -56 02 1.99.10 585  ..02 a1 | 102 2.85 28 
183 255 14 o41 -10 1.38 36 88 205 «53. sls 1.81 23 
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equalizing species numbers. within an interval (50 cm). It does not provide 
In addition to trends in moisture, productivity, information as to the quality of the cover and in ad- 

and amount of litter accumulation, there was an dition overestimates the existing cover when compared 
increase in percentage of canopy cover with increas- with the results of the photographic method (fig. 9). 
ing altitude. Figure 9 is a graphic representation The line-transect-cover measure only partially re- 
of the two measures of cover used in the study, line flects canopy cover in that it appears to yield high 
intercept and photographic. The line-intercept meth- values whether sampling dense canopy or high in- 
od suggests that tree cover is high at most altitudes, dividual numbers, factors which are not biologically 
excepting the more open areas associated with steep equivalent. 

slopes or ponds (figs. 2 and 9). This method por- On the other hand the pattern of change in 
trays cover as the presence of some part of a tree canopy cover with altitude using the photographic 

TABLE 4. (Cont’d.) 

HERB FREQU=NCY (TRANSECTS) 

SIMPSON MCINTOSH H BAR PEET DELTA 2 DELTA 4 
EVAR 

sign, — p<0.05 p<0.1 p<0.001 Ns p<0.001 p<0.05 

x ze x 2 x = x i x = x = 
5 0.00 0.00 0.90 0.00 0.00 0.00 1.00 0.00 0,00 0.00 0.00 0.00 

15, 48 204 531 03 +89 +05 oa 10 43 03 95 oy 
24 Siw ell +09 +09 +20 +20 99 201 +10 +10 +27 Bou 
34 219 213 14 +09 40 23 252 +29 17 ld “31 23 
43 40 3 pen ad +70 224 +74 +25 234 on +68 +28 
55 etd 202 264 203 0«-1.85 +09 +78 +06 +70 202 3.40 =30 
64 +70 +06 -60 +06 1.48 +20 87 +05 +61 06 2.76 62 

wy 72 44 223 36 +19 1.24 64 98 +01 238 +20 1.42 -87 
s 79 54 +18 47 +16 1.04 44 +98 +03 44 216 2.06 +86 
5 92 -80 206 271. +08 1.56 -28 eal 19 +61 205 3.29 63 
5 107 48 14 38 sl 117 +36 75 +10 45 -130«1.65 81 
= 122 67 +05 49 05 1.80 .18 +78 04 265 04 2.28 48 

137 10 +05 53 .05  —- 2,06 124 +72 06 +67 04 2.85 96 
152 51 wd 239 eL0) L.2i 229 32 +17 245 +10 1.44 48 
159 -78 04 a) -05 2.55 +19 85 06 27 04 4.14 +78 
164 +76 +05 +56 208 2.55 523 -80 +06 15) 205 3.93 98 
175 54 205 235 204 1572 10 58 07 54 “05 «1.28 oa 
182 -66 +08 46 507 2,14 +26 71 +09 266 “08 2.55 +67 

TREL DENS[TY (QUADFATS) 

SIMPSON MCINTOSH H BAR PEET DELTA 2 DELTA 4 
EV2..R 

Sign. p<0.001 p<0.001 p<0.001 p<0.001 p<0.001 p<0.001 

x = x = K = x = x = x a 
5 54 +05 41 +05 ie 21 +16 oT +08 +50 +04 b3L +28 

15, +20 +04 2) 205 232 +20 +19 205 20 04 o27 +06 
24 241 .10 27 +07 1.20 +26 43 +10 41 209 +90 230 
34 34 08 220 +05 1.06 +24 +30 09 33 08 61 +19 
43 +14 04 +08 200 49 el 220 +08 14 04 +18 +06 
55 69 cath 60 14 1235 aay 40 nay 52 +06 2.48 1.65 
64 =30 +07 219 205 +98 2) 322 +08 =30 107 noo) 2158 

ws 7 83 06 +75 -08 1.97 215) 239 18 +70 SOA ISi22 2.97 
s 79 +66 +09 62 #02 - 72550 +09 46 +15 57 o00, ¥2 352 Ras) 
5 92 +79 +02 Ss .10 1.48 +20 0 +02 std +02 3.94 37 
2 107 265 +07 48 507-9 2501 +20 65 ell +64 “07 . 2.42 +65 

122 +74 +06 59 07 2.2 24 14 +09 oT +06 3.77 1:06 
137 82 204 +65 205) = 2.80 19 83 +04 +80 303) "5.538! 0.48 
152 +81 205 +66 -06 =. 2.63 23 88 07 +79 405) 5.72) 1.58 
159 81 202 +66 +03 2.33 LL -81 05 eit -02 4.31 46 
164 7h +08 55 208 2,07 -36 -80 205 +68 .08 3.45 98 
175 -67 04 50 +04 173 lg +78 +03 365 04 2.24 242 
183 +65 +10 s52 S10 1.78 27 62 13 +61 209 2.79 +90 

* Significance levels represent results of Cox and Stuart (1955) Trend Test computed on individual sample values. 
Only sample means are presented here. 
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og . ie Tis provided by the sparsely distributed Hippomane. 
‘ ° This trend in cover signifies the change from species 

90) - ¢ exhibiting protective mechanisms against desiccation 

; . . including smaller leaves and drought deciduousness. 
ao ° In the more mesic situations, existing at higher al- 

. titudes on this transect, species exhibiting larger 
leaves would be favored, since desiccation is increas- 

eo ingly less a problem. 

& 60) 
3 CONCLUSIONS 
8 
+ 50k e | In our study of vegetation change on the south slope 

Fr ° | { of Santa Cruz Island, we have found structural 
& ao . features rather than species representation to con- 
. tribute much of the variability exhibited in this 

vegetation. In fact, the zonation evidenced on this 
30} slope is largely related to tree-species equitability and 

richness: the protean zone is separated from the lower 
20 t | zones by its greater number of equally dominant 

t plant species. Breaks in the continuity of vegeta- 
tion change likewise are reflected more in the total 

re { character of the stand than in a sudden change in 
species composition. We found steep slopes to im- 

Ol S15 24 34 43 85 G4 7279 S2TOT ASS eTI7S1e3 | Pose disjunctions on the continuity of vegetation 
ALTITUDE IN METERS change similar to those observed by Beals (1969) 

@ Hinevinterce pi: afernod along an altitudinal gradient in Ethiopia. However, 
$ Protograpnic technique, with stondora error in our study, the disjunctions were not caused by 

competitive exclusion occurring ‘in the limited hori- 
—— _—_____——_ zontal distance afforded by steep slopes (Beals 

FIGURE 9. Graph of canopy cover plotted against alti 1969) but rather by the unusually large number of 
tude using two measures, line intercept (mean value) and 
photographic scanning. young trees present on steep slopes when compared 

with the height-class distributions along the re- 
mainder of the gradient. This structural feature 

method demonstrates finer discrimination than the allowed discrimination of discrete breaks in what 
line-intercept method. The scanning unit consisting otherwise might have been considered continuous 
of a KGM 113T camera (KGM Vidraids, Ltd), a vegetational change with altitude. 

Tektronix R4501 scan converter (Tektronix, Inc.), 
and a Data Craft 6024/5 computer, used to analyze 
the cover photographs, placed all sampled densities ACKNOWLEDGEMENTS 

in’ a giyen photograph on a relative ‘voltage scale We acknowledge gratefully the support of the National 
of 1 to 10. Percentage of cover was evaluated by science Foundation (Grant GB-12256) and the National 
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The photographiccover percentage represents an ac- (Gempbeloe), The Unizei of Wisnsin, Gradua 
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ber of line segments. The photographic-cover mea- thank Dr. Robert Kowal, Mr. Wilfred Post III, and Mr. 
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