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Abstract

Representability results play a fundamental role in optimization since they provide char-
acterizations of the feasible sets that arise from optimization problems. In this work we
study classes of sets that appear in the feasibility version of mixed integer quadratic
optimization problems. We focus on two cases of quadratic inequalities.

In the first half of this work, we assume that the quadratic inequality is an ellipsoidal
inequality, a special case of a convex quadratic inequality. We provide complete char-
acterizations of sets that can be obtained as the projection of such feasible regions in
spaces extended by mixed binary variables. We provide another characterization allow-
ing for mixed integer extended variables under the assumption that the data defining
the feasible region is rational.

In the second half of this work, we assume that the quadratic inequality is convex. We
provide a complete characterization of the sets that can be obtained as the projection
of such feasible regions in spaces extended by mixed binary variables. In addition,
we provide a complete characterization of these sets in the special cases where (i) the
feasible region is bounded, (ii) only binary extended variables are present, and (iii) only

continuous variables are present.
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Chapter 1

Introduction

1.1 Background

The theory of representability studies one fundamental question: Given a system of
algebraic constraints of a specified form, which subsets of R™ can be represented in this
way, possibly using additional variables? A thorough answer to this question would be
given by a complete characterization of representable sets. Complete characterizations
are useful in that they demonstrate the class of problems which can be modeled using a

fixed set of constraints.

Representability is well understood for systems of linear inequalities. It is well known
that the projection of a set described by finitely many linear inequalities is again de-
scribed by finitely many linear inequalities. It follows from the Minkowski-Weyl Theorem
that such sets decompose as the Minkowski sum of a polytope and a polyhedral cone.

Integer programming is the study of optimization problems in which some or all of the
variables are restricted to be integers, see background references [20], 23] [3]. The feasible
regions of mixed integer linear programs are called mixed-integer linear sets. Several
researchers have investigated representability questions (see, e.g., [9, 12, 17, 18, 13]),
and a systematic study for mixed-integer linear systems is mainly due to Meyer and

Jeroslow.



In the case of mixed binary linear systems geometric characterizations have been
given by Jeroslow and Lowe [14, [15]. A set S C R" is mized binary linear representable

if S is the projected solution set of a mixed binary linear system

Dw <d

w e R™P x {0,1}9.
Then, Jeroslow and Lowe provide the following characterization.

Theorem 1.1 A set S C R" is mixed binary linear representable if and only if there

exist rational polyhedra Py, ..., P, C R™ with the same recession cone such that

In the case of mixed-integer linear systems, Jeroslow and Lowe find a similar char-
acterization. A set S C R" is mized-integer linear representable if S is the projected

solution set of a rational mixed-integer linear system

Dw <d

w e R"P x 74
Jeroslow and Lowe establish the following result.

Theorem 1.2 A set S C R" is mized-integer linear representable if and only if there

exist rational polytopes P, ..., P, C R™ and vectors r',...,rt € Z™ such that

k
S = U P; + int.cone{r',... r'}.

i=1
Representability has also been studied in the case of nonlinear constraints, but few

complete characterizations have been established. In second-order cone programming a



linear functional is maximized over a set defined by linear inequalities and constraints
of the form ||Ax + b||y < ¢z + d. These constraints are quite general and can express a
variety of different constraints, including convex quadratic inequalities. There has been
a large amount of work [10], 19] that shows different second order cone formulations for a
wide range of problems. However, a complete characterization similar to those obtained
by Jeroslow and Lowe is missing.

In semidefinite programming, a linear functional is maximized over a set defined by
a linear matrix inequality, i.e., a constraint of the form Ay + Z?:l x;A; = 0 where
the A; are symmetric matrices. A linear matrix inequality defines a closed, convex,
semialgebraic set known as a spectrahedon. In [I1], Helton and Vinnikov introduce the
notion of rigid convexity and conjecture that a set is a spectrahedron if and only if it is
rigidly convex. Another conjecture is stated in [10] where Helton and Nie study which
sets can be represented as the projection of a spectrahedon in a higher dimensional
space. They conjecture that every convex semialgebraic set can be represented as the
projection of a spectrahedron.

There are two main difficulties in establishing these conjectures, as well as forming a
characterization in the case of second-order cone programming. One difficulty lies in the
complexity of describing the projection of semialgebraic sets. The other lies in finding

an appropriate extended formulation of a representable set.

1.2 Owur Contributions

In hopes of bridging the gap between characterization results for linear systems and sim-

ilar results for nonlinear systems, we have considered sets described by linear inequalities



and a single convex quadratic inequality. We say that a region Q is a convezr quadratic

region in R™ if
Q={zeR"|2'Qr+h'2+g<0}

for a positive semidefinite matrix ) € R"*" a vector h € R”, and g € R.

We say that a set S C R"™ is mized binary convex quadratic representable if it can be

obtained as the projection onto R™ of the solution set of a system of the form

Dw <d

w Quw+h"w+g<0 (1.1)

w € R"P x {0,1}7,
where () is positive semidefinite. Note that if a set S is the projection of the solution
set of a system of the form , but with bounded integer variables in the place of
the binary variables, then S is also the projection of the solution set of a system of the
form . We also note that since any convex quadratic region is second-order cone
representable, the sets that we characterize can be represented with second-order cone
constraints and mixed binary extended variables.

There is a strong connection between mixed binary convex quadratic representable
sets and mixed binary convex quadratic programming (MBCQP). This class of problems
has applications in many areas, including portfolio optimization and machine learning
[2, [I]. Since optimal solutions of MBCQP problems have polynomial size (see [21], [4]),
any MBCQP is polynomially equivalent to a polynomial number of MBCQP feasibility
problems. In particular, each feasibility problem is over a set of the form . More-
over, by linearizing the objective, any MBCQP can be transformed to the problem of

minimizing a linear function over a set described by (1.1).



We have observed that a characterization of sets representable by more than one
convex quadratic inequality seems to be currently out of reach. In fact, the intersection
of two convex quadratic inequalities in R® may project to a semialgebraic set described
by polynomials of degree four in R2. In this work, we present characterization results

for a number of cases of mixed binary convex quadratic representable sets.

In Chapter [2] we characterize mixed binary convex quadratic representable sets
under the additional assumption that the convex quadratic inequality has the form
(x —¢)"Q(z — ¢) < 7. Inequalities of this type are called ellipsoidal inequalities. We
say that a set £ C R" is an ellipsoidal region in R™ if it is the set of points satisfying an
ellipsoidal inequality.

Formally, we say that a set S C R™ is binary ellipsoidal mized-integer (binary EMI)
representable if it can be obtained as the projection onto R™ of the solution set of a

system of the form

Dw <d
(=) Qw—c) <4 (1.2
w € R" x {0,1}7,
where () is symmetric and positive semidefinite. In Theorem on page 8| we show that
a set S C R" is binary EMI-representable if and only if S is a Minkowski sum of a finite
union of sets which are the intersection of an ellipsoidal region and a polytope together
with a polyhedral cone.
We also provide a characterization in the case where extended variables can be mixed
integer in Theorem on page [0 In this setting, it is necessary that the data describing

system ([1.2)) is rational. We are able to obtain a similar result and in doing so directly



extend the work of Jeroslow and Lowe in [14] [15].

In Chapter [3| we study the more general case where the quadratic inequality in (1.1
is convex. We present characterization results for a number of cases of mixed binary
convex quadratic representable sets. More precisely, we characterize sets when Dw < d
in is bounded in Theorem [3.1] on page 31} when p = 0 in in Theorem [3.2] on

page , and when ¢ = 0 in ([L.1)) in Theorem on page before proceeding with the

general case in Theorem [3.10| on page |56

We will provide further introductory discussion at the beginning of each chapter.

1.3 Notation

In the remainder of this work we will use the following notation. Given a set £ C R"™ xRP

and a vector y € RP, we define the y-restriction of E as
Elyy={z € R" | (z,y) € E}.

Note that E|,—; geometrically consists of the intersection of E with coordinate hyper-
planes. Sometimes we will need to consider E|,_; in the original space R" x RP, thus

we also define

Ely—y = {(z,5) e R" xR” | (z,7) € E}.
We will also need to perform several restrictions y; = 41,...,yx = ¥r at the same time.
In such case we simply write E|y,—g,.. yieg a0d Elyi—g,. -
Given a set £ C R", and a positive integer k& < n, we will denote by proj,(F) the

orthogonal projection of E onto its first k coordinates. Formally,

proj,(E) = {r € R* | 3y € R"* with (z,y) € E}.



We note that proj, : R® — RF is a linear transformation, and thus respects vector
addition, i.e., Minkowski sums.

Given a set £ C R"™ we denote by rec(E) the recession cone of E, namely the set
of vectors r € R™ such that for any A > 0 and x € E we have x + A\r € E. We note
that nearly all of the sets we consider in this paper are closed and convex, in which case
rec(E) coincides with the set of recession directions at any point of E. We also denote
by lin(E) the lineality space of E, by span(E) the linear space generated by E, and by
cone(E) the cone generated by E.

Given a matrix A we denote by range(A) the range of A and by ker(A) the kernel of A.
If A is positive semidefinite, we write A > 0. This implies that A is symmetric. Given a

half-space HT = {z € R" | a2 < b}, we write H for the hyperplane {x € R" | a'x = b}.



Chapter 2

Ellipsoidal Representabilityﬂ

2.1 Introduction

In this chapter we provide characterizations of ellipsoidal mixed integer (EMI) repre-
sentable sets. Recall that a set S C R™ is binary ellipsoidal mized-integer (binary EMI)
representable if it can be obtained as the projection onto R™ of the solution set of a

system of the form

(=) Qw—c) <~ (2.1
w e R™? x {0,1}4,
where () is symmetric and positive semidefinite. Our main results are the following

geometric characterizations of EMI-representable sets.

Theorem 2.1 A set S C R" is binary EMI-representable if and only if there exist el-
lipsoidal regions & CR"™, i =1,...,k, polytopes P; CR™, 1+ =1,...,k, and a polyhedral

cone C C R"™ such that

k
S=Je&EnP)+c. (2.2)

IThis chapter is modified from Del Pia and Poskin [6] [5].



In the rational mixed-integer case, i.e., when the binary variables {0, 1}7 are replaced
with integer variables and the defining data is rational, we obtain a similar characteriza-
tion. Formally, we say that a set S C R"™ is ellipsoidal mized-integer (EMI) representable

if it can be obtained as the projection onto R™ of the solution set of a system of the form
Dw <d
(w—1c)"Q(w —c) < v (2.3)
w € R"P x 74,

where () is positive semidefinite. We say that a set S C R" is rational EMI-representable

if the data D, @, d, ¢,y in (2.3) can be chosen to be rational.

Theorem 2.2 A set S C R" is rational EMI-representable if and only if there exist
rational ellipsoidal regions & C R™, ¢ = 1,...,k, rational polytopes P; C R", i =

1,...,k, and integral vectors r* € Z", i = 1,...,t such that

k
S = U(& N P;) + int.cone{r*,... r'}. (2.4)

=1

An example of a binary EMI-representable set is given in Figure [Ia] while an example
of an EMI-representable set is given in Figure Note that the second set is not binary
EMI-representable as it is the disjoint union of an infinite number of convex regions.

The presence of rational data in Theorem is essential to the development of a
meaningful statement. Even in the pure integer linear case, irrational data may cause
these kinds of complications. Consider the integer set S = {(z1,22) € Z%, | 220 < V221 }.
It can be shown that S cannot be represented as the Minkowski sum of a finite set and
the set of non-negative integer combinations of a finite number of integral vectors.

Both directions of Theorem [2.1| and Theorem [2.2| have geometric implications. Since

each set S of the form ([2.2]) or (2.4) can be obtained as the projection of a set described
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(a) A binary EMI-representable set in R? (b) An EMI-representable set in R?

Figure 1: Examples of EMI-representable sets

by a system or this means that the £ ellipsoidal regions &; can be expressed
with just one ellipsoidal inequality in a higher dimension. We prove this direction of the
theorems by explicitly giving extended formulations for the sets S.

The other direction of Theorem [2.T]and Theorem [2.2]states that the projection of each
system or onto R" is a set of the form or . An important ingredient
of both proofs is showing that the projection of a set ENP := {x € R*™ | Dx <
d, (x —c)TQ(x — ¢) < v} onto R" is a set of the form (2.2). In order to do so, we
introduce the key concept of a shadowing hyperplane. This hyperplane, that will be
formally introduced in Section [2.2] allows us to split the ellipsoidal region into two
‘parts’. In turn, this allows us to compute the projection of £ NP by computing a
finite number of projections of £ intersected with a hyperplane. This will show that the
projection of £ NP is the union of a finite number of regions that are the intersection
of a polyhedron and one nonlinear inequality, which we will prove to be ellipsoidal.

The remainder of this chapter is organized as follows. In Section 2.2] we provide a
number of results relating to the intersection of an ellipsoidal region with a polyhedron

and the projections of such regions. In Section[2.3] we prove Theorem 2.1 In Section [2.4]
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we prove Theorem [2.2]

2.2 Ellipsoidal Regions and Hyperplanes

In this section we formally define ellipsoidal regions. These regions will appear through-
out our study of representability. We will prove a few results on the intersection of
ellipsoidal regions with half-spaces as well as their projections. These results will be
necessary for our proofs of Theorem and Theorem

Recall, we say that a set £ is an ellipsoidal region in R™ if there exists a real symmetric
n x n matrix @ = 0 (i.e., @ is positive semi-definite), a vector ¢ € R", and v € R, such

that
E={zeR"|(z-¢)'Qx—c) <}

We note that if @ > 0 (i.e., @Q is positive definite) and v > 0, then £ is an ellipsoid,
i.e., the image of the unit ball B = {x € R™ | ||z||2 < 1} under an invertible affine
transformation.

The following observation is well-known, and we give a proof for completeness.

Observation 1 Let q(z) = 2"Qx + b"x be a quadratic function on R™ with Q a sym-
metric positive definite matriz. Then q(x) has a minimum on R™ if and only if b is in

the range of Q.

Proof. Assume b ¢ range((Q). Then since @) is symmetric, we can write b = Qr + ¢ with

Qc =0 and ¢ # 0. Consider the line z(t) = —tc for t € R. Then we have

q(z(t)) =b"z(t) = —tc'c.
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Since ¢ # 0, we see that ¢(x(t)) — —oo as t — +o00. Thus, ¢(z) has no minimum on R".

Assume there exists » € R"™ such that %b = @Qr. Then
q(2) =(z+7) Q@ +r)—r'Qr

and ¢(z) has a minimum at any Z such that  + r € ker(Q). In particular, —r is a

minimizer and ¢(—r) = —r" Qr is the optimal value. O

The following lemma shows that ellipsoidal regions are closed under intersections

with coordinate hyperplanes. This is equivalent to fixing a number of variables.

Lemma 2.3 Let € be an ellipsoidal region in R™ x RP. Then for any y € RP, the set
Ely=y 1s an ellipsoidal region in R".

Proof. Let € = {(z,y) € R"xXRP | q(z,y) < 7}, where ¢(x,y) is the quadratic polynomial
T
r—c Q R r—c
q(z,y) =
Y — c RT Q/ Y — c
For any fixed y € RP, since () is symmetric and positive definite it suffices to show there

exists c; € R" and 75 € R such that
Ely—g ={z €R" | (z—¢) ' Qz — ¢) < 5} (2.5)

Let g € RP. Since ¢(x,y) has a minimum on R™ x R? by Observation {4}, the quadratic

function

gz, ) =(x—0)'Qx—c)+2(J—¢) R (z—c)+ (7 —¢) Q' —¢),

has a minimum on R" as it is bounded from below. By Observation 4, R(y — ¢) €
range(Q), and so there exists Z € R™ such that Q7 = R(y — ¢’). Then ([2.5)) is satisfied

with ¢ :=c—Z and 15 :=7+2'Qz — (§— ) 'Q'(y — ¢). O
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We are now ready to provide a geometric description of ellipsoidal regions. A conse-
quence of this description is that any non-empty ellipsoidal region may be decomposed

as the Minkowski sum of an ellipsoid and a linear space.

Lemma 2.4 Let £ be an ellipsoidal region in R™. Then
(i) E=10, or

(i1) € is an affine space, or

(i1i) There exists an integer k € {0,...,n — 1}, a k-dimensional linear space L. C R",
and k distinct indices iy, ..., i, € {1,...,n} such that the restriction
g Ty =Tiq yeeesTip, =T,

is an ellipsoid in R, and

E=E + L.

Ty =Tiq yeyTip, =Tiy,

Proof. Let & = {x € R" | (x — ¢)'Q(x — ¢) < v} where Q is a symmetric positive
semidefinite matrix. If v < 0, then £ = ) since @ is positive semidefinite. Thus, we may
assume that v > 0 and £ is non-empty.

We now show that
rec(€) = ker(Q) = {z € R" | 2" Qz < 0}. (2.6)

We first show that rec(€) = ker(Q). Since £ is a closed convex set, rec(€) is equal to
the set of recession directions from any point z € £. Consider the point ¢ € £. Then for
any 7 € ker(Q) and A\ > 0 we have ¢ + M € € since \2r"Qr = 0 < v. Thus, r € rec(€).

Assume now that r € rec(€). Let Q = LTL be a Cholesky decomposition of ). Then
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for any A > 0 we have \2r"Qr = \2||Lr||?> < v, which implies Lr = 0 and r € ker(Q).
Next we show that ker(Q) = {z € R" | z"Qx < 0}. Clearly, the kernel is contained in
the right hand side. Suppose r € R" satisfies 7' Qr < 0. Since @ is positive semidefinite,
we must have r'Qr = 0. Replacing @ with its Cholesky decomposition, we see that
||Lr||* = 0. This implies Lr = 0, and thus r € ker(Q).

Now assume 7 = 0. By the above argument, € £ if and only if z € ¢ + ker(Q).
Thus € = ¢ + ker(Q) is an affine space.

Assume now v > 0. If @ is invertible then £ is an ellipsoid and we are done, in
this case k = 0. Thus, we may assume L := ker(() is nontrivial. Let k = dim(L) and
L ={ly,...,l;} be a basis for L. Note if k = n then £ = R™, an affine space, and we
are done. Thus, we may assume that & < n. Extend L to a basis £ of R™ by adding a
subset of the standard basis vectors {ey,...,e,} of R". Let J C {1,...,n} be the set

of indices j for which e; € £ — L, and suppose {i1,..., i} = {1,...,n} —J. Define

We now show €& = £ + L. Since £ C £ and rec(§) = L, we clearly have & 4+ L C £.
Let v € £. Expanding v in the basis £’, we have for some [ € L and scalars o; € R, that
v=1+3) . saje;. Since L =rec(E) we have v — 1 =3 . ;aje; € £ and € C &+ L.

By Lemma , £'is an ellipsoidal region in R"~*. Note first that £ is full-dimensional
in R”, i.e., has n + 1 affinely independent vectors. This is immediate since v > 0 and
there exists a vector, namely ¢ € R", for which the continuous function (z —¢)" Q(x —¢)
has value 0. If £ is unbounded, then & has some recession direction outside of L which
contradicts the fact that rec(€) = L. Moreover, since £’ is bounded it follows from

that the matrix defining £’ is invertible, and thus positive definite. Then £’ is either an



15

ellipsoid or a single point. Since & = & + L is full dimensional, and dim(L) = k < n, &'

cannot be a single point. O

We make the following remark about the proof of (iii) that will be used later. If one
of the standard basis vectors of R", say e,, is not contained in L, then we may assume
that z,, does not occur among the fixed variables z;,,...,z;, . To see this, note that in
completing the basis £ of L to a basis of R" we may first add the standard basis vector
e, to the set L.

It can be shown that an appropriate converse of Lemma holds. This provides
a complete geometric characterization of ellipsoidal regions. We use Lemma to
make the following observation that distinguishes ellipsoidal regions from general convex

quadratic regions.

Observation 2 Let £ be an ellipsoidal region in R™. Then there exists a polyhedron

B C R™ such that £ C B and rec(B) = rec(E).

Proof. By Lemma [2.4] £ is either empty, an affine space, or the Minkowski sum of an
ellipsoid in a possibly lower dimensional space and a linear space. Since affine spaces
are polyhedral, and there is nothing to show for the empty case, it suffices to assume

that € = £l,,,

. . . n*k .
i =z, + L for an ellipsoid €|y, =z, . 2, =z, in R"7" and a linear

=Ty, o .

space L. Since &€ o=@, 18 @ bounded set there exists a polytope B such that

Iilzjil 30T k

£

iy =iy e iy, =iy, = B. Then the polyhedron defined by B := B + L has the desired

k

properties. 0

The next observation gives a description of the recession cones that will be encoun-

tered in this chapter.
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Observation 3 Let P be a polyhedron and € an ellipsoidal region in R™. Then rec(E N

P) is a polyhedral cone.

Proof. Clearly, rec(€ NP) = rec(€) Nrec(P). The set rec(P) is a polyhedral cone
(see, e.g., [20]), and rec(&) is a linear space by (2.6 in Lemma As a consequence

rec(£ NP) is a polyhedral cone. O

The following lemma shows that to compute the projection of an ellipsoidal region &£
in R”, it suffices to consider the projection of £ N H for a specific hyperplane H C R".
We will refer to such a hyperplane H as a shadowing hyperplane, as it contains enough
information to completely describe the projection, or ‘shadow’, of £. See Figure [2| for

an illustration.

proj,_1(€)
Figure 2: Illustration of a shadowing hyperplane

Lemma 2.5 Let £ be an ellipsoidal region in R™. Then there exists a hyperplane H C

R™ with e, ¢ lin(H) such that

projn—l(g) = projn—l(g N H)
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Proof. 1t clearly suffices to show that proj,_,(€) C proj,,_(E N H). Let € be described
by the ellipsoidal inequality ¢(z) = (z — ¢)"Q(z — ¢) < y. We note that this inequality
can be rearranged to q(r) = " Qz +b"z + d < 0 for a specific vector b € range(Q) and
scalar d € R. Split the variable z into two pieces (2/,z,) € R"! x R and write
/
o- <
Il

a

for an (n — 1) x (n — 1) symmetric matrix @’ = 0 and scalar a > 0. After replacing b

with (b, b,) we can write
q(2',x,) = ax® + 21" + b))z, + 2T Q 2 + ¥ +d <0,

Assume first that @ = 0. Then e, € ker(Q) since @ > 0. We claim that the
hyperplane H = {x € R" | x,, = 0} has the desired property. For any z € proj,_,(&),
there exists A such that (z,A) € €. By the proof of Lemma namely (2.6), since
en € ker(Q) we have te,, € rec(€). Then (z,0) € ENH which implies Z € proj,,_,(ENH).

Assume now that a # 0. Note that this forces a > 0 since ¢ = 0. We claim that
the hyperplane H = {x € R" | 2az, + 2l"2’ = —b,} has the desired property. Let
z € proj,_,(£). Then the univariate polynomial ¢(Z,x,) has real roots since a > 0. It
follows from the quadratic formula that the midpoint on the line segment between the

two roots say (Z,\) is in both £ and H. O

The following proposition will be one of the main building blocks of both Theorem [2.1]
and Theorem [2.2] It provides a geometric description of the projection of the intersection

of an ellipsoidal region and a polyhedron.
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Proposition 2.6 Let £ C R™P be an ellipsoidal region and P C R™P be a polyhedron.
Let S = proj,,(ENP). Then there exist ellipsoidal regions & C R", i = 1,..., k, polytopes

P CR" 1=1,...,k, and a polyhedral cone C C R"™ such that

k
S=JeEnr)+c,

=1

where C = proj,, (rec(E) Nrec(P)).

Proof. In the first two claims we prove that it suffices to show that S has an equivalent,

but simpler, decomposition.

Claim 1. [t suffices to find ellipsoidal regions & C R", polytopes P; C R", and

polyhedral cones C; C R™, fori=1,...,k, that satisfy
k
S=JEnP +C). (2.7)
i=1

Proof of claim. We first show that rec(S) = proj, (rec(€) Nrec(P)), which by Lemma[2.4]
is a polyhedral cone. By definition, rec(S) = rec(proj,(€NP)). Then since the projection
of aray in ENP is a ray in S, the containment of proj,,(rec(€) Nrec(P)) in rec(S) is
clear. Let r € rec(proj,(€ NP)). Consider a polyhedral approximation B of £ as in
Observation [2[ such that B C R™? is a polyhedron, & C B and rec(€) = rec(B). Then
clearly, r € rec(proj,,(BNP)) and since BNP is a polyhedron we have rec(proj,,(BNP)) =
proj, (rec(B N P)). Then by construction, rec(BNP) = rec(E) Nrec(P). Henceforth, we
denote by C the polyhedral cone rec(S).

Assume we have &;,P;, and C; that satisfy . Since C = rec(S) for each i =
1,...,k, we have that C; must be contained in C. It follows that

k k
S=S+C=JE+P+C)+c=JEnP)+C. o

i=1 =1
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Claim 2. It suffices to find ellipsoidal regions & C R™, polyhedra P; C R", for

1=1,...,k, that satisfy
k
S=JEnP). (2.8)
i=1

Proof of claim. Assume we have ellipsoidal regions &; and polyhedra P; that satisfy .
Consider a polyhedral approximation B; of & as in Observation [2 such that B; C R"”
is a polyhedron, & C B;, and rec(&;) = rec(B;). Then B; N P; is a polyhedron and by
the Minkowki-Weyl theorem can be decomposed as R; + C; for a polytope R; and a
polyhedral cone C;. We claim that & N"R; +C; = & N P;.

Let x € & NR; + C;. Note that R; + C; C P; so that x € P; and since C; C rec(&;),
we have ¢ € & as well. Thus, & "R, +C; C & NP;. Let x € & N P;. Then
r € B,NP; =R; +C; and we may write x = r + ¢ for some r € R;, ¢ € C;. Note that
c € rec(&;), and since rec(&;) is a linear space by Lemma [2.4] we obtain —c € rec(&;) as

well. Thenz=(x—c¢)+candez—c=re€e&ENR;,ce€Cisox € ENR; +C,. o
Claim 3. We can assume without loss of generality p = 1.

Proof of claim. Let € NP C R™P. We prove that S = proj,(€ NP) has the desired
decomposition ([2.8]), by induction on p. For this claim, we assume the base case, p = 1.
Now let p = m, and suppose the statement holds for p < m. Given £ NP C R"t™ by

the base case p = 1 there exist ellipsoidal regions £/ and polyhedra P! such that

t

projn—i—m—l(S M 73) = U(gz/ N Pz/)

i=1

Since the projection of a union is the union of the projections, we have

t
S = proj,(ENP) = proj, (& NP)).

i=1
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Then by the induction hypothesis there exists ellipsoidal regions &/ ; and polyhedra P} ;

such that
t;

s=U(Us,nPy).

=1 j=1
and we are done. o

To prove Proposition [2.6] it remains to show the following. Assume we are given
ENP C R We must show the existence of ellipsoidal regions & C R”, and polyhedra
P; CR™ fort=1,...,k, that satisfy .

Given a half-space H* = {z € R" | a'x > b}, we write H for the hyperplane
{r e R"| a"x =b} and H~ for the half-space {x € R" | a"x < b}. A polyhedron is the
intersection of finitely many half-spaces. Thus, there exist half-spaces H;,..., H C
R"*! such that P = N3, H;". By Lemma [2.5 there exists a hyperplane H, C R"*!
with e, ¢ lin(Hy) such that proj,,(£) = proj, (£ N Hy). We arbitrarily pick one closed

half-space defined by Hy to be H; and the other to be H; . Then
ENP=(ENHy N_, H)U(ENH, Ni_, H"),

and it suffices to show the existence of ellipsoidal regions and polyhedra satisfying (12.8))
for one of the regions €N Hy Ni_; H; or EN Hy Ni_; H;". By symmetry, we show this

existence for €N H Ni_, H;".

Claim 4. Let H be the collection of hyperplanes H among Hy, ..., Hs with e, ¢
lin(H). Then

proj, (€ Ni_o H;") = | J proj,(E N H N_, HY).
HeH

Proof of claim. The right hand side is clearly contained in the left hand side, so it suffices

to show the forward containment. It suffices to show that £ Ni_, H;" has the following
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property: for any z € £ Ni_, H," there exists a hyperplane H € 3 and a A € R such
that = + Ae,p1 € ENH Ny H

Let T € £Ni_, H. To prove the claim, we show that we can translate Z along
+e,.1, and inside the feasible region, until it meets a half-space in H{ at equality. If
ent1 € lin(H;) for a half-space H;, then T + Ae,1 € H;" for any A € R. Then, by the
existence of the shadowing hyperplane Hj, there is one direction among =+e, ., along
which z may be translated to intersect Hy while staying inside £. That is, there exists
A € R such that Z + Ae,; € €N Hy. Then, there exists a possibly different X' € R with
the same sign as A and |X| < || such that Z + Ne,,1 € ENS_y H" and 7 + Ve, lies

on at least one hyperplane H € J. o

Now it suffices to show that for any H € H there exists an ellipsoidal region £ C R”

and a polyhedron P’ C R" such that
proj,(ENHN_,H ) =& NP,

Without loss of generality, we may assume that H; N H # () for each ¢ = 0, ..., s. If not,
say H; N H = () for some 0 < j < s, i.e., the hyperplanes H; and H are parallel. Then
either £N H N H = () and our region is empty, or ENH N H; = &N H and Hj is
redundant and may be removed.

We now show that each half-space H;", with H; different from H, can be replaced
with a different half-space M;" such that ENHNH;" = ENHNM;" and e,,41 € lin(M;").
Fix j such that 0 < j < s and H; # H. Consider H]Jr and the region £N H N H;“. Let
U = HNH;. Since U # () we have that U is an (n — 1)-dimensional affine space in R" !,

say U = v+ V for a linear space V' of dimension n — 1. Let W = V + span(e,1). Since

en+1 ¢ lin(U), because e, ¢ lin(H), we have that M; := v+ W is a hyperplane in
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R™*! that divides H into the same two regions that H; does. In particular, upon choice
of direction, we have that M j+ has the desired properties.

We are now ready to describe the polyhedron P’. First, remove from the intersection
ENHN;_yH;" any redundant H;" and the H;" such that H; = H. Then upon relabeling
we may rewrite £ N H N{_y H;" as €N H N, H;". We may now replace each H;" with
M;". By the requirement e, ; € lin(M;"), we have that each M;" is defined by a linear
inequality with the coefficient of x,; equal to 0. Thus, the projection proj, (M;") is a
half-space in R" which we denote H; . Further, if each H;" for i = 0,...,s" is replaced

in this way, we have
proj,(€ N H mflzo H) =proj,(ENH r\'f/:o M;") = proj, (€ N H) f/:o H,
and we have the desired polyhedron P’ := N3 H;".

It remains to show that proj,(€ N H) is an ellipsoidal region & C R". Let H =
{(z,y) € R*" xR | a'(z,y) = b}. Consider the linear transformation from R"! to
itself, defined by the matrix A whose first n rows are the first n standard unit vectors
of R and whose last row is a. Note that A is invertible since e, is not in lin(H),
i.e., anr1 # 0. Then, by the definition of A, for any vector (z,y) € R™" we have

A(z,y) = (z,c) where ¢ = a' (z,y). It follows that A(H) gets mapped to the hyperplane

{(x,y) € R"" | y = b}. Now, since A is invertible we have
x € proj, (€ N H) < Jy € R such that (z,y) e ENH
& (z,b) € A(ENH)
& (x,b) € A(E).

This shows that proj,(€ N H) = A(E)|,=. Ellipsoidal regions are clearly preserved

under invertible linear transformations, therefore A(€) is an ellipsoidal region. Finally,
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by Lemma [2.3] the set A(&)[,—p is an ellipsoidal region. This concludes the proof that

proj, (€ N H) is an ellipsoidal region &’. O

We remark that all of the statements in this section (except Observation {4)) behave
nicely with respect to rationality. In greater detail, if the given ellipsoidal regions,
polyhedra, and vectors are rational, then the resulting objects are also all rational. This
observation can be seen directly from the proofs of these results. In particular, the

rational version of Proposition has the following statement.

Proposition 2.7 Let £ C R™? be a rational ellipsoidal region and P C R"*? be a
rational polyhedron. Let S = proj,,(E N'P). Then there exist rational ellipsoidal regions
ECR, i =1,...,k, rational polytopes P CR"™, i =1,...,k, and a rational polyhedral
cone C C R"™ such that

s=JeEnr)+c,

where C = proj,,(rec(E) Nrec(P)).

2.3 The Binary Case

In this section, we prove Theorem 2.1 which characterizes binary ellipsoidal mixed integer
representable sets. We begin with a proposition that establishes the sufficiency of the

conditions given in Theorem [2.1]

Proposition 2.8 Let & CR", i = 1,...,k be ellipsoidal regions, P; CR", 1 =1,...k,

be polytopes and C C R™ a polyhedral cone. Suppose

k
S=JEnP)+c.

=1

Then S is binary EMI-representable.
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Proof. Assume that we are given a set

k
S=JEnP)+c,

i=1
where & = {x € R" | (z — ¢;)"Qi(x — ¢;) < v} are ellipsoidal regions, P; = {z €
R" | A;x < b;} are polytopes, and C = cone{r!,... r'} C R" is a polyhedral cone. For
each ellipsoidal region &;, if 7; > 0 we can normalize the right hand side of the inequality
to 1. Else, &; is either empty or an affine space and 7; can be set to 1 at the cost of
adding additional linear inequalities to the system A;x < b;. Thus, we may assume
v =1foralli=1,... k.

We introduce new continuous variables z* € R™ and binary variables ¢; € {0,1}, for
1=1,...,k, that will model the individual regions & NP; +C. Then S can be described

as the set of x € R™ such that

k t
x = z:(:ltZ + d;¢i) + Z A
i=1 Jj=1
k
>
=1
T
:L‘l Ql :L‘l
[L’2 Qz ZL’2
<1
:L‘k Qk :L‘k
' € R", §; € {0,1} i=1,...k
/\jERZO g=1,...,1

Now if 4; = 1 the remaining §; must be 0. Then for each x' with i # 1, we have the
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constraint A;z° < 0 which has the single feasible point 2 = 0 since P; is a polytope.

The remaining constraints reduce to

t
$:x1+cl+2)\jrj

j=1
Azt +¢) <
(T Qurt < 1
v € R

/\jeRZO g=1,...,1

By employing a change of variables 2/ = x' 4+ ¢, it can be checked that the latter system
describes the region & NPy +C. The remaining regions follow symmetrically. Therefore

S is binary EMI-representable. 0
We are now ready to prove Theorem [2.1]

Proof of Theorem Sufficiency of the conditions follows by Proposition 2.8 The
remainder of the proof is devoted to proving necessity of the condition. We are given an

ellipsoidal region £ and a polyhedron P in R"*?*% and we define

S:=ENPN[R"™ x {0,1}9),

S := proj,(9).

We must show the existence of ellipsoidal regions & C R"™, ¢ = 1,...,k, polytopes

P CR" i=1,...,k, and a polyhedral cone C C R" such that

k
S=Je&nr)+c.

i=1
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Let S := ENPN (R x [0,1]9). Then for every z € RY, define S; := ENPN (R x
{z}). Clearly, for every z € {0,1}9, we have rec(Sz) = rec(S), and so proj, (rec(Sz)) =

proj,(rec(S)). Since projections and recession cones operators commute for closed con-
vex sets, we obtain rec(proj,(Ss)) = proj,(rec(S)). Let C := proj,(rec(S)). By Ob-
servation , the set reC(S’ ) is a polyhedral cone, thus so is its projection C. Note that
S = Usefo,134 5z implies S = Uze(o.134proj, (Ss), therefore rec(S) = C.

Note that, using restrictions, we can write the set .S in the form

5= |J proj.(Sl—s).
ze{0,1}¢

It suffices to show that each restriction S l.—z = & NP’ for some ellipsoidal region
& C R™? and polyhedron P’ C R™"?. Then, by Proposition , for each z € {0,1}¢
we have proj,,(S|.—z) = UE_, (& NP;) + C. Since S is the finite union of such sets, the
result follows.

Let z € {0,1}9. We note S|.,—; = &|.—> N P|.—.. By Lemma , E = E&|,=z is an
ellipsoidal region in R, Let P = {(x,y,2) € R"™P*7 | Ax + By + Cz < d}. Also,
P = Pl.=z = {(z,y) € R"? | Az + By < d — Cz} is clearly a polyhedron. This

completes the proof of Theorem [2.1]

2.4 The Mixed Integer Case

In this section, we prove Theorem which characterizes rational ellipsoidal mixed
integer representable sets. A proposition similar to Proposition proves sufficiency of

the conditions given in Theorem [2.2]
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Proposition 2.9 Let & CR", i =1,...,k be rational ellipsoidal regions, P; C R", i =

1,...k, be rational polytopes and r* € Z™, i = 1,...,t be integral vectors. Suppose

k
S = U(& N P;) + int.cone{r*,... r'}.

=1

Then S is rational EMI-representable.

The proof of Proposition [2.9|is identical to the proof of Proposition [2.8except that the
constraints \; € R> are replaced with A\; € Z>( and the binary constraints J; € {0, 1}
are replaced with 0 < 9; <1 and ¢; € Z.

We now proceed with a proof of Theorem 2.2

Proof of Theorem Sufficiency of the conditions follows by Proposition 2.9, The
remainder of the proof is devoted to proving necessity of the condition. We are given a

rational ellipsoidal region £ and a rational polyhedron P in R"*?*7 and we define

S:=ENPN (R x 79),

S := proj,(S).

We must show the existence of rational ellipsoidal regions & C R", i = 1,..., k, rational

polytopes P; C R™, i = 1,...,k, and integral vectors r!,...,r* € Z" such that

k
S = U(EZ N P;) + int.cone{r', ... 7'}

i=1

We first show that we can decompose S into a bounded region and an integer cone.

Claim 5. There exists a rational polytope R C R™™P*9 and integral vectors r,... rt €

2P sych that

S =ENRN(R"™P x Z9) + int.cone{r*,... r'}.
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Proof of claim. Let B C R™P%¢ be a rational polyhedral approximation of £ as in
Observation |2 such that B is a rational polyhedron, £ C B, and rec(€) = rec(B). Then
ENP = EN(BNP). Since BNP is a rational polyhedron, we can decompose BNP = R'+C
for some rational polytope R’ and a rational polyhedral cone C. Since C is rational, there
exist integral vectors !, ... rt € Z"™4 such that C = cone{r!,... r'}. Note that each

rt € rec(€). Let

R=R'+{ Xt:mi
=1

It is well-known that BNP =R’ +C = R + int.cone{r', ... r'}.

OS)\iglforeachizl,...,t}.

We now show that R meets the conditions of the claim. Let p € S. Then p € BNP
sop=q+ 3. _ pr for some ¢ € R and j; € Zsg. Since p € R™? x Z¢ and p;, " are
integral, we have ¢ € R""P x Z?. Moreover, ¢ € & since p € £ and rec(€) is a linear
space and each r’ € rec(£). Thus, S C ENRN (R™P x Z9) + int.cone{r, ... rt}.

For the reverse inclusion, let ¢ € ENR N (R™P x Z%) and p; € Zsg fori=1,...,t.
Let p = q+>.._, pir'. Since ¢ € R™P x 79 and y;, 7" are integral, we have p € R"*? x Z4.
Also, each r* € rec(€) which implies that p € £. Finally, p € R +C = BNP C P which

implies p € P. Therefore, p € S. o

Let 71, ...,7 € Z™ be the vectors consisting of the first n components of r!,... 7%

Then by linearity of the projection operator, we have
S = proj,(E NR N (R™P x Z9)) + int.cone{r", ... 7'}.

Let T ={z € Z ] ENRNR" x {z}) # 0} and note that T is finite since R is

bounded. Let 8" = £NR N (R"™P x Z7). Then, by using restriction notation, we can
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write the set S in the form
S = U proj,,(S’|.=) + int.cone{r', ... #'}.
zeT

We now show that for each Z € T the restriction S’ |.—5 is equal to ENR for some
ellipsoidal region & C R™? and polytope R C R"*?. We note S’|.—; = &|.—sNR|.—:. By
Lemma[2.3| £ = £|.— is an ellipsoidal region in R"*?. Let R = {(z,y, 2) € R"?* | Az+
By+Cz < d}. Then R = R|.—; = {(z,y) € R"*P | Az + By < d — Cz} is clearly a
polyhedron and is bounded since R is bounded.

Then, by Proposition 2.7, for each z € T' we have proj,(S'|,—z) = proj,(£E N R) =
Ufil(& NP;) for rational ellipsoidal regions &; and rational polytopes P;. Note that since

each R is a polytope, there is no cone C. Since T is a finite set, the theorem follows. O
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Chapter 3

Convex Quadratic Representabilityﬂ

3.1 Introduction

In this chapter, we consider sets described by linear inequalities and a single convex
quadratic inequality. Recall, we say that a region Q is a conver quadratic region in R"

if
Q={zeR"|2'Qx+h"z+g<0}

for a positive semidefinite matrix @ € R™*", a vector h € R", and g € R. In general, a
convex quadratic inequality cannot be factored into an ellipsoidal inequality (see Chap-
ter . This implies that the family of ellipsoidal regions is a strict subset of the family
of convex quadratic regions.

Recall, we say that a set S C R" is mized binary convex quadratic representable if it

can be obtained as the projection onto R™ of the solution set of a system of the form
Dw <d
w'Quw+h'w+g<0 (3.1)
w € R"P x {0,1}7,

where () is positive semidefinite.

!This chapter is modified from Del Pia and Poskin [7].
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In this chapter, we present characterization results for a number of cases of mixed
binary convex quadratic representable sets. See Figure [3] and Figure [4] for examples of
representable sets. Before proceeding with the proofs, we provide a brief description of

the statements and preview the proof techniques.

Figure 3: A bounded mixed binary con- Figure 4: A binary convex quadratic
vex quadratic representable set representable set

In Section we characterize sets that are bounded mized binary convex quadratic
representable, defined as the projection of the solution set of (3.1) where Dw < d

describes a polytope.

Theorem 3.1 A set S C R" is bounded mized binary convexr quadratic representable
if and only if there exist convex quadratic regions Q; C R™, ¢ = 1,...,k, and polytopes

P, CR" 1=1,...,k, such that
k
i=1

The characterization given in Theorem is quite general in the sense that there
is no restriction on the structure of the convex quadratic regions that may appear in

the union (3.2)). This is quite similar to what holds for ellipsoidal regions in Chapter ,
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and indeed the fact that each region Q; N P; in is bounded allows us to find
an extended formulation where each O, appears as a binary slice of a global convex
quadratic region Q. In the case of ellipsoidal regions this level of generality still holds
even for unbounded regions. We will see in Section [3.5, where the bounded assumption
is removed, that although a decomposition of representable sets into a union holds,
the convex quadratic regions that appear must share common structure.

In Section |3.3] we characterize sets that are binary convexr quadratic representable,
i.e., where p = 0 is fixed in . In order to provide a characterization of such sets, we
need to remark on the geometry of convex quadratic sets in more detail. We make the
following observation and definition. Let @ C R"™ be a convex quadratic region defined
by

Q={rcR" | 2" Qv +h'z+g<0},

where ) > 0. Since ) is symmetric, it is a fact of linear algebra that R” = range(Q) &
ker(@). Thus, we can decompose h = Quw + v where v € ker(Q) is uniquely determined.
We note that Q is an ellipsoidal region if and only if v = 0.

The pair ), v defining Q is essential in understanding the geometry of Q. In this
vein, we say that two convex quadratic regions Q;, Qs C R™ have the same shape if there
exists a positive semidefinite matrix @, a vector v € ker(Q), vectors w’, and scalars g;

such that
Qi={reR"|2'Qz+ (Qu' +v) z4+¢ <0}, i=12

Geometrically, this means that Q; and Oy have the same structure, up to translation
and constant term. Note that having the same shape is a transitive property and thus

it makes sense for a collection of convex quadratic regions to have the same shape. We
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will establish the following result.

Theorem 3.2 A set S C R" is binary conver quadratic representable if and only if

there exist convex quadratic regions Qq, ..., Qr C R™ with the same shape, and polyhedra
Pi,....,Pr € R"™ with the same recession cone such that
k
S=Jnp). (3.3)
i=1

In Section [3.4] we obtain an algebraic characterization of continuous convexr quadratic
representable sets, i.e., where ¢ = 0 is fixed in (3.1). This sort of algebraic description
is quite different from the geometric characterizations obtained prior to this. The com-
bination of extended continuous variables and unbounded regions creates a number of
difficulties. Part of this difficulty is due to the complexity of describing the projection
of semialgebraic sets. While methods such as Cylindrical Algebraic Decomposition may
be used to compute the projection of , these outputs give little insight into the re-
quirements that must be met for a set to be representable. Another difficulty is that we
are not able to use standard disjunctive extended formulations. This is due to the fact
that in general a convex quadratic region cannot be decomposed as the Minkowski sum
of a bounded region and a polyhedral cone, in contrast to both polyhedra and ellipsoidal
regions (see Chapter [2)).

In order to overcome these difficulties, we design a method to explicitly compute
S := proj,(Q N7P) for a general convex quadratic region @ C R"*? and a polyhedron
P C R™P. A crucial step, stated in Proposition , is the construction of a ‘shadowing
skeleton” of Q N P, namely a finite set £ of n-dimensional affine spaces that satisfy
proj, (@ NP) = U,e,Proj,(Q N L) N proj,(P N L). The idea of this skeleton is a

general version of the projection method done in Chapter 2] The explicit computation of



34

proj,, (QNP) leaves us with an algebraic description of S which we use to make a technical
definition of sets of Type 1 and Type 2. These definitions allow us to characterize
continuous convex quadratic representable sets as shown in Theorem 3.9

In Section [3.5] we present an algebraic characterization for the general case of mixed
binary convex quadratic representable sets. Theorem follows naturally from the
combination of our results in Section and Section [3.4] It follows immediately from
Theorem that mixed binary convex quadratic representable sets can be expressed as
a finite union of Q; N'P; for convex quadratic regions Q; and polyhedron P;. However, in
contrast to Theorem [3.1] the convex quadratic regions Q; that appear in a decomposition
share a common geometry. This compatibility requirement is captured by our definition
of sets with the same structure which follows from combining our definition of sets of
Type 1 and Type 2 with the notion of convex quadratic regions with the same shape.

In Section |3.6| we work towards a geometric characterization of mixed binary convex
quadratic representable sets. We derive obvious necessary conditions for a set to be
representable from Theorem and Theorem [3.10, and explore whether these neces-
sary conditions are in fact sufficient. We conclude the section, and chapter, with open
questions, and an instructive example of a set that is not mixed binary convex quadratic

representable.

3.2 The Bounded Case

In this section we give a characterization of bounded mixed binary convex quadratic

representable sets, i.e., when the system Dw < d in (3.1]) describes a polytope.
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Proof.[Proof of Theorem We prove sufficiency of the condition by giving an ex-
plicit extended formulation for a set S described by . It is similar to the proof
of Theorem Assume that we are given a set S as in (3.2), where Q; = {z €
R" | 27 Qx4 (h) T2 +g; < 0} are convex quadratic regions and P; = {z € R" | A’z < b;}
are polytopes. We now introduce new continuous variables z° € R™ and binary variables
0; € {0,1}, for i = 1,..., k, that will model the individual regions Q; NP;. Then S can

be described as the set of x € R" such that

=1
k
> (@) Q' + (W)’ +8ig:) <0
i=1
0<6 <1 i=1,.. .k

' €R", §; € {0,1} i=1,... k.

Now if §; = 1 the remaining §; must be 0. Then for each z° with ¢ # 1, we have the
constraint Az’ < 0 which has the single feasible point ' = 0 since P; is a polytope.

The remaining constraints reduce to

I:$1

All’l S bl
()T Quat + (W) T2 + g1 <0

! e R
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This describes the set Q; NPy exactly. The remaining regions follow symmetrically.

We note that the constraint 3% | ((wl)TQ,.’El +(h%) Tt —|—5igi> < 0 describes a convex
quadratic region since it can be described as a quadratic inequality with defining matrix
a block diagonal matrix with blocks either 0 or ();, and each @); > 0.

We show that the linear system is bounded by demonstrating that its set of feasible
points is the graph of a linear transformation restricted to a polytope. Each system
Atz < §;b;, 0 < 6; < 1 is independent of any other a7,d;. Moreover, each system is
bounded in (z°,4;) as it is the convex hull of the polytope {z € R" |A'z" < b;} x {1}
and the origin. Then the set of feasible points in z', ..., 2% d;,...,d; is just a Cartesian
product of bounded sets. Finally, the set of points x satisfying equation x = Zle xt is
bounded since it is the image of this Cartesian product under a linear transformation.

Thus, S is bounded mixed binary convex quadratic representable.

The remainder of the proof is devoted to proving necessity of the condition. We are

given a convex quadratic region @ and a polytope P in R™*?*% and define
S:=9NPnN[R"™ x {0,1}9),
S := proj,,(S).

We must show the existence of convex quadratic regions Q; C R", ¢ = 1,...,k, and

polytopes P; CR™ i=1,...,k, such that
k
S=Jnp).
i=1
Claim 6. It is enough to prove the theorem in the case g = 0.

Proof of claim. Note that, using restrictions, we can write the set S in the form

s= U proju(5l—).

ze{0,1}9
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We first show that each restriction S|.—; can be written as @ N P’ for some convex
quadratic region @ C R™P and polytope P’ C R™™P. Let z € {0,1}9. We note
S|.—z = Q|.—sNP|.—=. A short algebraic verification shows that Q" := Q|._; is a convex
quadratic region and P’ := P|,_; is a polytope.

Now assuming the theorem in the case ¢ = 0, for each z € {0, 1} we have proj,, (S|.—z) =

UL_,(Q; N'P;). Since S is the finite union of such sets, the theorem follows. o
Claim 7. [t is enough to prove the theorem in the case p = 1.

Proof of claim. Let QNP C R"™P. We prove S = proj,(Q N P) has the desired
decomposition by induction on p. For this claim, we assume the base case, p = 1. Now
let p = k, and suppose the statement holds for p < k. Given QNP C R"** by the base

case p = 1 we have
t

proj,x1(2N7P) = J(QinP)

i=1

where each Q; is a convex quadratic region in R"**~! and each P; is a polytope in

R™*=1Since the projection of a union is the union of projections we have
t
S = proj,(QNP) = proj,(Qi N P,).
i=1

Then by induction hypothesis, we have

S = LtJ (D(Qm um))

i=1  j=1

where each Q; ; is a convex quadratic region in R"™ and each P; ; is a polytope in R". ¢

It remains to prove Theorem in the case that we have a convex quadratic region
Q C R™! and a polytope P C R"*!. The following claim then completes the proof of

Theorem [B.11
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Claim 8. Let Q C R™™! be a conver quadratic region described by

T T
Q q ha x
+

0= {(z,y) er™ ]
y q hy y

+g§0}

and P C R™1 be a polytope. Then there exist convex quadratic regions Q; C R™,

i=1,...,k, and polytopes P; CR™, i =1,...,k, such that (3.2)) holds.

Proof of claim. We first claim that proj,(Q NP) = Ugexproj,(Q NP N H) where H
is a finite set of hyperplanes. Suppose P is defined as the intersection H;" N--- N H
for half-spaces H; . Let H be the subset of hyperplanes H € {Hy, ..., H,} such that
ent1 ¢ lin(H). In the case that v # 0, define the hyperplane Hy := {(z,y) € R*™! | ¢ z+
vy = —%hy} and include Hy in the set H. This hyperplane has the property that for
any fixed z € R", the unique point (Z,y) € Hp minimizes the univariate quadratic
polynomial ¢(Z,y) defining Q|,—z. Moreover, e,,+1 ¢ lin(Hy).

We claim that proj,(Q NP) = Ugeyproj,(QNPNH). Let z € proj,(Q N P).
Define L; = {(z,y) € R"*! | (z,y) € QN P}. Since P is a polytope, L; is a non-empty
line segment. Consider the endpoints, possibly both the same point, of L;. If either
endpoint lies on the boundary of P then we are done as this point must lie on some
H € H. Otherwise, both endpoints lie on the boundary of Q and are thus roots of the
quadratic polynomial ¢(z,y). Then the midpoint of L lies on H.

It remains to show that for each H € H, there exists a convex quadratic region
Qp and a polytope Py such that proj,,(QNPNH) = Qu NPy. Let H = {(z,y) €
R | "z + ay = b} and note that a # 0 since e,,; ¢ lin(H). Tt follows that
proj,,(QNPNH) = proj,,(QN H)Nproj,(P N H) as there is a unique point (z,y) € H

lying over any x € R".
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We now show that Qg := proj,,(Q N H) is a convex quadratic region and Py :=
proj,, (P N H) is a polytope. The polyhedron Py is clearly a polytope since P is a poly-
tope. Define the invertible linear transformation 7y : R**! — R™*! by multiplication

on the left by the matrix

Then we have that

Qu = proj,(QN H) = Ta(Q)ly=b-

Note that Qg is a convex quadratic region as it obtained from Q by an invertible linear

transformation followed by fixing a single variable. o

l

3.3 The Binary Case

In this section we characterize binary convex quadratic representable sets, i.e., when
p =0 is fixed in . We refer the reader back to the introduction for the definition of
convex quadratic regions with the same shape. Before proving Theorem we state a
number of lemmas that detail the interaction of binary variables and convex quadratic

regions.

Lemma 3.3 Let Q C R™ be a convexr quadratic region. Then for all Z € {0,1}9, the

sets Q|,—z are convex quadratic regions with the same shape.
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Proof. Assume that Q is given by

T T
x Q R x hy x
Q:{(x,z)ER"+q o + +9§0}-
z R' Q

I
=
N
I

Then for any z € {0, 1} we have
Ql.:={reR"|2'Qr+ 2Rz + h,) v +g+h]z+2'Qz <0}

Now since Q is a convex quadratic region, the matrix () must be positive semidefinite.
Moreover, the matrix @ is clearly independent of the choice of z € {0, 1}2.
It remains to show that the vector 2RzZ+h, decomposes into Quw-+v where v € ker(Q)

is independent of z. We claim that 2Rz € range(Q). Decompose 2Rz = Quw + v for a

z'Qz

== we have
Vv

unique vector v € ker(Q). If v # 0, then for A < —

-
Av Q@ R Av

= ATQu+22"RT(W) +2'Qz= v+ 2'Qz <0,
z RT Q Z
a contradiction. Since 2Rz € range(Q), the vector v depends only on h, and is thus

independent of z € {0,1}. O

The next lemma can be seen as a converse of Lemma [3.3] We denote by e; € R¥ the

ith standard basis vector of RF.

Lemma 3.4 Let Qy,...,9r C R" be convex quadratic regions with the same shape.
Then there exists a convex quadratic region @ C R™* such that Ql.—, = Q; for each

1<i<k.
Proof. Suppose that each Q; is described by

Qi ={zeR"|z"Qz+ (2Qu' +v) z + g; <0},
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where Q@ = 0 and v € ker(Q). Set v > k(w')'Qu' and h; = g; — 7;, and define

R = (le | - ’ka) A = diag(vi,..., V), and A" = (v', hy,..., hy). We

claim that

T

x @ R x x
+a" [ ] <0}

Q= {(x, z) € R™F ‘ .
z R A z z

is a convex quadratic region with the desired restriction property. Then
Qliee, ={z €R" | 2" Qx + (2Re; +v) 'x + h; +; <0}

and by construction 2Re; = 2Quw" and h; + ; = g;. Thus, Q|.—., = Q.
We now show that Q is a convex quadratic region by demonstrating that matrix

defining Q is positive semidefinite. Let (z,z) € R"*k. We have that

T

x Q R x k
=2 Qr+22"R'x+ Z viz?
z RT A z i=1
k
=1 Qu+ Z (2(z:Qu") "x + 7:27)
i=1
1< |
= Z (2" Qx + 2(Qkzyw') "z + kv;27).
i=1

We show by choice of ; that each summand 2" Qz +2(Qkzw?) "z + kv;2? is nonnegative

by completing the square. Note
Qx4 2(Qkzw') 'w + kyi2? = (v + kzw') T Q(x + kzaw') + (ki — K (w') T Qu')22.

Now since v; > k(w')"Qu' we have expressed each summand as the sum of two non-
negative numbers. In particular, each z"Qx + 2(Qkzw') "z + ky;2? > 0 and Q is a

convex quadratic region. 0
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We note that Lemma [3.4] shows that a union of convex quadratic regions with the
same shape have a binary lift to a convex quadratic region provided we intersect it with
an appropriate polyhedron.

The proof of Theorem [3.2] is now a simple combination of the preceding lemmas.
We note that for the construction of the extended formulation, we cannot use a system
similar to that which appeared in Theorem as it requires additional continuous

variables.

Proof.[Proof of Theorem We start with sufficiency of the condition. Assume we
have convex quadratic regions Qi,..., 9y C R™ with the same shape, and polyhedra
P1, ..., Pr C R" with the same recession cone and let S be defined by . Then by
Lemma , we obtain a convex quadratic region @ C R™** such that Ql.—, = Q; for
each 1 < i < k. We use a standard technique to obtain a polyhedron P C R"** such
that P|,—., = P; for 1 < i < k and P|,—; = 0 for z € {0,1}* — {ey1,...,e,}. This
technique is known as a Big-M formulation, and the existence of such a polyhedron is
proved in Proposition 6.1 in [22]. It follows that S = proj,(Q NP N (R™ x {0, 1}¥)).

It remains to show necessity. Let @ C R"Y be a convex quadratic region and
P C R"1 be a polyhedron. Let S := proj,(QNP N (R" x {0,1}7)). Then

s= | @nP).—.
ze{0,1}q

Choose z € {0,1} and note that (QNP)|.—z = Q|.— N P|.—z. Then by Lemma [3.3] all
Q|.—; are convex quadratic regions with the same shape. Since each polyhedron P|,_;

has recession cone independent of Z the theorem follows. O
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3.4 The Continuous Case

In this section we find an algebraic characterization of continuous convex quadratic
representable sets, i.e., where ¢ = 0 is fixed in . In the first part of this section
we consider a convex quadratic region @ C R"” and a polyhedron P C R"*?. We
proceed by computing explicitly the projection proj,,(Q N P) and in doing so come to
the definitions for sets of Type 1 and Type 2. In particular, each set of Type 1 or
Type 2 can be written as a finite union of Q; N P; for convex quadratic regions Q; and
polyhedra P;. These definitions will be sufficient conditions for a set to be continuous
convex quadratic representable. In order to show this, we demonstrate that every set of
Type 1 or Type 2 has a lift to @ NP C R for some convex quadratic region @ and
polyhedron P.

Assume now that we are given a convex quadratic region @ C R™*?, a polyhedron
P C R and wish to compute S := proj,,(QNP). We begin by applying an invertible

affine transformation to R"*? that brings Q to a normalized form.

Lemma 3.5 Let Q@ C R™P be a convex quadratic region defined by

T T
x Q@ R x h x
Q:{(:c,y)ER’”p + —i—gSO}.
y) \R" S) \y hy) \y
Then there exists an invertible affine transformation T : R"™P — R that takes Q to

a convex quadratic region Q@ C R™P such that proj, (Q) = proj,(Q) and

T T
x Q 0 0 x n x
Q= {(x,y,t) e RHHER L, o L oflyl+]o y +g’§0},
t 0O 0 O t l t

(3.4)
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where k = rank(S), I is the k X k identity matriz, and either | =e; orl = 0.

Proof. We will define T as the composition of three invertible affine transformations.
Since S = 0, there exists an orthogonal p x p matrix U such that S = UTAU where
A = diag(A,...,A,) and Ay > --- > A, > 0. Suppose the first k eigenvalues of S are
positive, and define V = diag(v/ A1, ...,V M, 1,...,1). Then S = UTVEVU where FE is
a diagonal matrix whose first £ diagonal entries are 1 and the remaining p — k entries
are (.

Define the transformation 7" : R"*? — R"*? by multiplication on the left by the

matrix

I 0
A:

0 VU
Consider the change of coordinates defined by (z,u)" = A(z,y)". Then T'(Q) is de-

scribed by

T T

x Q RUTV! x Dy x
{(:B,u)GR"+p + +g§0}.
u VIURT E u V-1iUh, u

Note now that the matrix defining the quadratic region 7"(Q) is positive semidefinite.

This implies that any diagonal entry being 0 forces the entire corresponding row and

column to be 0 as well. Let B denote the first k columns of RUTV~!. Then

Q B 0
Q  RUTV!
=BT I, 0
V-WURT  E
0 0 0
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Define 7" : R"*? — R™*? by multiplication on the left by the invertible matrix
I, 0 O
C=([BT I, o©
0 0 I
Consider the change of coordinates defined by (z,v,w)" = C(z,u)". Then T"(T"(Q)) is

described by

T T
x Q@ 0 0 x n x
{(m,v,w) S RTH-’H'(P—]C) (% 0 Ik 0 v + hv v + g S 0}7
w 0O 0 O w hw w
Py
where Q' :=Q — BB', ' := h, — B(V~'Uh,), and = V=1Uh,,.
Py

Finally, define the affine transformation L : R*™? — R"*? by L(x,v,w) = H(z,v,w) "+

r where
I, 0 0

H = 0 I O )

0 0 M

and M is either an invertible matrix such that (M~')"h, = ey if h, # 0 or M = I, 4 if
hy, =0, and r = (0, —%hv, 0)". We now change coordinates (z,y,t)" = H(z,v,w)" + .

Define T'= L oT"” oT'". Then T is an invertible affine transformation that takes Q
to @ := T(Q) described by (3.4). Note that T is determined by multiplication by a
matrix whose first n rows are ( L,| 0) and a vector r whose first n entries are zero.

This implies that proj,(Q) = proj,,(Q') and the proof is complete. O

Note that by Lemma [3.5] without loss of generality, we may assume that Q is de-

scribed by (3.4). We can further simplify the structure of Q by projecting out all
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variables t; that do not explicitly appear in the description of Q.

Lemma 3.6 Assume that Q@ C R"7P is a conver quadratic region described by (i3.4))
and that P C R™? is a polyhedron. If 1 = 0 then proj, . (Q NP) = Q NP’ where

P’ = proj,.,(P) and Q' is described by

T T
x Q 0 x h x

{(m,y) c R + +g < 0}. (3.5)
y 0 I} \y 0 Y
Ifl = eq, then proj, ;. (QNP) = Q' NP where P' = proj,, ;.1 (P) and Q' is described
by
x Q@ 0 0 T h T
{(az,y,t) c Rk

o ollul+o| |y —i—gSO}. (3.6)

t/) \0O O 0/ \t 1/ \t

Proof. Let r = k in the case of and r = k + 1 in the case of (3.6). It suffices to
show that proj,,.(Q N P) = proj,,,(Q) Nproj,,,.(P). Then for any Z € proj,,,.(Q) N
proj,..(P) there exists s',s*> € RP™" such that (z,s') € Q and (z,s*) € P. Since
entrtj € lin(Q) for each j > 1 we have (z,s?) € Q and hence Z € proj,,,,.(QNP). The

reverse containment is clear. O

Then by Lemma [3.6], without loss of generality, we may assume that Q is described
by either or (3.6).

We now construct a family of affine spaces that will simplify the computation of
proj,,(Q NP). These affine spaces will form a sort of skeleton of the region Q NP that
will contain all the essential information of proj,(Q N P). We will make use of the

following observations whose short proofs we include for completion.
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Observation 4 Let q(x) = 2'Qx + h'x + g be a quadratic polynomial in n variables
where Q is a positive semidefinite matriz. Then q(x) has a minimum on R™ if and only

if h € range(Q). In this case, the set of minimizers of q(x) is {x € R" | 2Qz + h = 0}.

Proof. Assume h ¢ range(Q). Then since @ is symmetric, we can write h = Qw + v

with Qu = 0 and v # 0. Consider x(t) = —tv for t € R. Then we have
qz(t)) =hTz(t)+g=—tv v +g.
Since v # 0, we see that ¢(z(t)) — —oo as t — +o00. Thus, ¢(z) has no minimum on
R™.
We now prove the reverse direction. Since () is positive semidefinite, the function

q(z) attains its minimum at Z if and only if Z solves V¢(x) = 2Qz + h = 0. This set is

nonempty since h € range(Q). O

Observation 5 Let Q = {x € R" | 2'Qx + h'z + g < 0} be a non-empty convex

quadratic region. Then

rec(Q) ={reR" | Qr =0, h'r <0}.
Proof. Let r € R™ such that Qr = 0 and h'r < 0. Fix 2 € Q and A > 0. Then
Z+M)TQE+M)+hT(Z+A)+g=2"Qz+h"Z+g+ATr<0and Z+\r € Q.
It follows that r € rec(Q).

Assume now that r € R” either satisfies Qr # 0 or Qr =0 and h'r > 0. Fix z € Q.

Then for any A > 0 we have
Z+M)TQE+A)+h (Z+M)+g= r"Qr+ ANh+2Q2) r+2'Qz+h"z + g,

a polynomial in A. Since ) = 0, as A — oo, this polynomial increases indefinitely. Thus,

r & rec(Q). O
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Proposition 3.7 Assume that @ C R"™P is a convezr quadratic region described by (i3.5))
or (3.6) and that P C R™? is a polyhedron. Then either proj,(Q NP) = proj,, (P) or

there exists a finite collection L of affine spaces such that

proj,(QNP) = U proj,(QNPNL). (3.7)
Lel

Moreover, each L € L has dimension n and can be described by a system Fx + Gy = d

where G is an invertible p X p matriz.

Proof. Assume first that Q is described by (3.5)) and let
T T
x Q 0 x h x

q(z,y) = + +g.
y 0 Ix) \v 0 Y

Suppose that P = {(z,y) € R"™ | (a!)Tz + (b") "y < ¢; for all i € I} where I is some
finite index set. Define J to be the collection of subsets J C I with |J| < p and such
that the set {b'};c s is linearly independent. For each J € J we construct an affine space
Lj to include in £. We construct L; so that for every fixed z € R", the unique point
(z,y)) € L; minimizes ¢(Z,y) over the affine space determined by setting to equality
the inequalities indexed by J and fixing z = Z.

We first note that () € J trivially. In the case that J = 0, we define L; = {(z,y) €
R"*? | y = 0}. Then for any fixed T € R the point y = 0 minimizes ¢(Z,y) on R?. We
will have need to refer to following construction again, so we emphasize it here.
Construction of a Minimizing Affine Space. Consider a nonempty set J € J, say
|J| = m, and define R, U, and [ to be the matrices with rows (a’)", (b')", and ¢; for
1 € J, respectively. Consider the affine space K; defined by Rx + Uy = 1.

Since m < p we know U has rank m and we can partition the y variables into new

variables v and v where the v variables correspond to columns of U that define a full



49

rank submatrix. This division into (u,v) € RP~™ x R™ causes K to be described by
Rx + Su + Tv = [ where T is invertible. Substitute v = T7(l — Rx — Su) into the

polynomial g(z,u,v) and fix a point Z € R" to obtain the polynomial ¢(z,u) defined by
u' (I+ ST (T )T ) u+ 28 (T )T 'Rz +2ST(TH) T T71) Tu + g(2).

Now since [+ ST (T—1)TT~1S is positive definite, by Observation , the unique minimum

of q(z,u) is the point satisfying
20+ ST (TH'T*SYu+2(S(T"H' TRz — ST(TH'T7) = 0.

Note that this minimum depends linearly on . We thus define L; to be the affine space

determined by

ST H' TR+ (I +ST(TH'TSu=S"(TH'T
(3.8)
Rx+ Su+Tv=1.

Since [+ST(T~')"T~1S and T are invertible matrices, L is an affine space of dimension
n and is described by a system Fx 4+ Gy = d where G is an invertible p X p matrix. This
marks the end of the construction. {

Set

L=1{L,|JeJ). (3.9)

We claim that £ satisfies . It suffices to show that for any point & € proj,,(Q NP),
there exists y € RP and L € L such that (z,9) € QNPNL.

Let Z € proj,(Q NP). Then there exists y° € R? such that (z,y°) € QN P. This
implies that ¢(7,4°) < 0 and since ¢(7,0) minimizes ¢(7,y) on R? we have (7,0) € Q as
well. If y° = 0, we may choose L; corresponding to J = () and we are done. Otherwise,

the line segment joining (7,4°) and (z, 0) is completely contained in Q. Then by moving
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along this line segment from (7,y°) toward (z,0) and inside P we either reach the point
(z,0) or stop at a point (Z,y') € P. Then there exists an inequality (a*) "z + (b°) "y < ¢
with b" # 0 that is satisfied at equality by (Z,y') and is not satisfied by (z,0). We then
set J = {i} and continue this sliding process recursively.

Assume that we are at the point (Z,y*) with current index set J. We now consider
the line segment joining (7,4"*) and (Z,y7). Since (Z,y7) is the minimizer of ¢(Z,y) on
K, this line segment is contained in Q N K;. Again, slide the point (z,y*) toward
(z,y7) inside P and we either reach the point (Z,y?) or stop at a point (z,y*™!) € P.
Then there exists an inequality (a/)"2 + (0)"y < ¢; with ¥ ¢ Span({b'},c;s) that is
satisfied at equality by (Z,4"™!) and is not satisfied by (z,y7). We update J to include
7 and repeat this process.

The end result is that we find a point (z,y) € QNP N L; for some J € J. In fact,
either we hit a point (Z,yJ) at some iteration or after applying the procedure p times
we restrict ourselves to an n-dimensional affine space, which by construction must be in
L.

Now assume Q is described by . There is one degenerate case to consider.
Note that for any fixed 7 € R" we have rec(Q|,—z) = {(0,—\) € RP*t | X > 0} by
Observation 5] Moreover, for any (Z, §) € R there exists ¢ € R such that (z,7,1) € Q.
To see this, simply take < —(zZ'Qz+7y'y+h'z+g). Suppose that (0, —1) € rec(P|,—z)
for every T € R". We claim that proj,(Q N P) = proj,(P). Let & € proj, (P) so that
there exists (i, ) € RP™! such that (Z,7,7) € P. Then, by the note above, for sufficiently
large A > 0 we have (Z,7,t — \) € QNP and T € proj,(QNP).

The remaining case when Q is described by and (0, —1) ¢ rec(P|,=z) for any

T € R™ follows similarly to the case where Q is described by (3.5). We make note of
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the necessary changes in the proof. Adjust J to be the set of subsets J C I such that
|J| <p+ 1 and where K is described by a system Rx + Uy + Vt =1 where (U | V) is
of full rank and at least one entry of V' is negative. This guarantees that for each fixed
Z € R™ the polynomial ¢(z,y) has a minimum on Kj|,—z, the same condition that we
needed before. Note that in this case the empty set is not a member of 7.

We demonstrate how to modify the first step of the recursive descent described in
the previous case. After this initial step the recursion continues exactly as in the general
step detailed above. Let Z € proj,(Q N P). Then there exists (y°,t°) € R? such
that (z,y°,t°) € @NP. Since (0,—1) ¢ rec(P|,=z), the ray based at (z,y°t°) and
directed along (0,0,—1) cannot be completely contained in P. In particular, moving
in the direction (0,0, —1) from the point (z,y° t°) and inside P we stop at a point
(z,y',t') € P. Then there exists an inequality (a’)"z + (b") Ty + vit < ¢; with v; < 0
that is satisfied at equality by (Z,y', ). We now set J = {i} and the recursion process

continues identically as before. U

The family £ of affine spaces defined in Proposition 3.7/allows us to explicitly compute
the set proj,(Q@ NP). We do so by considering each set @ NP N L in turn. In the next
lemma we will see that for each L € L, the projection proj,(Q NP NL)= Q; NPy for
some convex quadratic region Q; C R™ and polyhedron P, C R". This implies that
the set proj,(Q N P) is a finite union of the sets Q; N Pr. However, in contrast to
Theorem [2.1], the Q; and Py, appearing in the projection cannot be arbitrary. We will
see that they share a common structure. An understanding of this structure is essential
to finding an extended formulation and thus obtaining a full algebraic characterization.

This compatibility requirement is captured in our definition of sets of Type 1 and Type
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From here on, we compute an algebraic description of proj,(Q N P) where Q is
described by or (3.6). The region resulting from proj,(QNP) in the case will
be called a set of Type I and in the case of a set of Type 2.

We are thus interested in computing proj,(Q NP N L) where L € £. We claim that
proj,(Q@NPNL)=proj,(QNL)Nproj,(PNL). Let z € proj,(QNP)Nproj,(PNL).
Then there exists y', y* € R? such that (z,y') € QN L and (7,4*) € PN L. Now since L
is defined by Fz + Gy = d with G an invertible p x p matrix, we have y' = G~(d — Fz)
for i = 1,2. In particular, y' = y? and we have that = € proj,(Q NP N L). The reverse
containment is obvious.

Therefore, a description of the sets proj,,(Q N L) and proj, (P N L) is of particular
interest to us as they serve as the base regions making up continuous convex quadratic
representable sets. We define two functions fi, fo that take as input a convex quadratic
region Q of the form (3.5)) or , respectively, and a special n-dimensional affine space
L and output a convex quadratic region, which we will show to be the projection onto
R™ of the set O N L.

Let Q be a convex quadratic region described by and L an affine space described
by Fx + Gy = d with G an invertible p X p matrix. We define f;[Q, L] to be the set of

x € R" satisfying
" (Q+F (GG 'Fz+(h-2F" (G HY'G ') 24+d"(GH'Gd+g<0.

Let Q be a convex quadratic region described by (3.6 and L an affine space described

by Fx+G(y,t)" = d where G is an invertible (p+1) x (p+1) matrix. We define f5[Q, L]
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to be the set of x € R" satisfying
e (Q+F (G EG'F)r+(h—F (G Y e —2F (GHTEG ) o
+d" (G EG ' d+ (G Tepyr) Td+g <0,
where Ej, is the (k+ 1) x (k+ 1) matrix with principal k£ x k minor the identity matrix
and zero elsewhere. We note that fi[Q, L] and f5[Q, L] are convex quadratic regions
in R™, since the matrices defining them are each the sum of two positive semidefinite
matrices.
Assume now that Q is described by . We show that proj,(Q N L) = f,[Q, L].
Define the invertible linear transformation T4 : R"*? — R"? by multiplication on the

left by the matrix

I, O
A—

F G
Then, we have that proj,(Q N L) = T4(Q)|y=¢ = f1[Q, L]. A similar proof shows that

proj,(QN L) = f»[Q, L] when Q is described by (3.6)).

Similarly, we define a function II that takes as input a polyhedron P in R"*" and
a special n-dimensional affine space and outputs a polyhedron in R". Let P = {z €
R | (a') T2+ (b)) Ty < ¢; for all i € I'} be a polyhedron and L an affine space described

by Fz+Gy = d with G an invertible r xr matrix. We define I1[P, L] to be the polyhedron
{reR"| (a") 2+ () 'GHd—~ Frx) < ¢ foralli € I}.

It is immediate from the substitution y = G~'(d — Fx) that proj,(P N L) = I[P, L].

Thus, we have established the following lemma.

Lemma 3.8 Let Q C R"™? be a convexr quadratic region given by (3.5) or (3.6) and

P C R™7P q polyhedron. Let L be the family defined in Proposition[3.7. For each L € L
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define Py, = I[P, L] and either Q; = f1[Q, L] in the case of (3.5), or Q1 = f2[Q, L] in
the case of . Then
proj,(QN7P) = U QrNPr.

LeL
We can use the algebraic description from Lemma to complete our characteriza-

tion. We are now ready for our technical definitions of Type 1 and Type 2.

Let S C R™. We say that S is a set of Type 1 if there exists a convex quadratic
region @ = {x € R" | 27Qxz + h'x + g < 0}, an integer k > 0, a finite index set I, and
vectors (a',b?, ¢;) € R"*+1 for each i € I with the following compatibility structure.

Let J be the collection of subsets J C I with |J| < k such that the set {b'};c;
is linearly independent. Then for each nonempty J € J we define the affine space
L; C R"* to be the output of the construction of a minimizing affine space found in

the proof of Proposition [3.7. These objects are required to satisfy

S=(Qnier {z eR" | (&) x <)) |J(QL, NPL)
JeJ

where each P, = II[P, L;] and each Qy, = f1[Q, L,].
The definition of a set of Type 2 is exactly as above, except that S is required to

satisfy
S={J(Qr,NPL,)

Jeg
where each Py, = II[P, L;] and each Qp, = f»[Q, L,].

Theorem 3.9 Let S CR"™. Then S is continuous convex quadratic representable if and

only if S is a set of Type 1 or Type 2.

Proof. Assume first that @ C R"*? is a convex quadratic region and P C R"P is a
polyhedron. Then Lemma [3.5 Lemma [3.6] Proposition 3.7, and Lemma [3.8 show that

S is of Type 1 or Type 2.
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Assume now that S is a set of Type 1. Consider the convex quadratic region Q C

R™* described by (3.5), i.e.,

T T
x Q 0 x h x

y 0 I/ \y 0 Yy

and the polyhedron P C R™** described as
{(z,y) e R"™ | (a") T2+ (u') Ty < ¢ for all i € I}.

Then Proposition [3.7] and Lemma [3.8 show that S = proj,(Q N P).

The case of S being a set of Type 2 is identical to the case of Type 1, save for the

construction of Q satisfying (3.6)) instead of ({3.5)). O

3.5 The Mixed Binary Case

In this section, we combine the results of Sections [3.3| and [3.4] to state a characterization
theorem for sets S C R” that are mixed binary convex quadratic representable.

Let S C R"™ be a set of Type 1 (or 2). Then S is determined by the data of
a convex quadratic region @ C R", an integer k > 0, an index set I, and vectors
(a, b, ') € R*TAL for i € 1.

Given two sets S,S" C R"™ both of Type 1 (resp. both of Type 2), we say that S
and S’ have the same structure if the data determining S and S’ as sets of Type 1

(resp. Type 2) can be chosen so that
(i) k=K,

(ii) Q and Q' have the same shape,
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(iii) I =1I" and (a’,b") = (a’*, V") for each i € I.
We can now state and prove our characterization theorem.

Theorem 3.10 Let S C R™. Then S is mixzed binary conver quadratic representable if
and only if there ezist sets Sy, ..., S, CR"™ all of Type 1 (or all of Type 2) with the same

structure, such that S = U}_,.S;.

Proof. Assume first that there exist sets Si,...,S, C R” of Type 1 all with the same
structure such that S = U]_;.S;. Then by Theorem there exist convex quadratic
regions Q; € R"** and polyhedra P; C R™** for i = 1,...,r such that S; = proj,,(Q; N
P;). Moreover, it follows from the construction given in the proof of Theorem that
all the Q; have the same shape and all P; have the same recession cone. It follows
by applying Theorem to UI_,(Q; N P;) that there exists a convex quadratic region

Q C R"**7 and a polyhedron P C R*"*+" such that

r

LJ(QinPi) = proj, ,(QNP N (R™ x {0,1}")).

i=1

Now,
T

proj, (| J(QinPy) = Jproj,(Q:nP) =S =5
=1 =1

i=1

In particular, S is mixed binary convex quadratic representable. The proof for sets of
Type 2 follows similarly.
For the reverse direction, let @ C R™"P*4 be a convex quadratic region and P C

R™*P*4 he a polyhedron and set

S :=proj,(QNPN (R x {0,1}9)).
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Then by allowing z to vary over {0,1}¢ and Lemma [3.3 we have

S= |J proj,(Ql:=: N P|.—s),

ze{0,1}4

where each Q|,—; has the same shape and each P|,—; has the same recession cone. We

use the following technical claim to complete the proof of the theorem.

Claim 9. Let Q,Q" C R"P be two conver quadratic regions with the same shape
and P, P’ C R"P be polyhedra with the same recession cone. Then proj,(Q NP) and

proj,,(Q NP’) are both sets of Type 1 (or both sets of Type 2) with the same structure.

Proof of claim. Let S = proj,(QN7P) and S’ = proj,(Q NP’). We first normalize Q
and Q' as in Lemma 3.5l Note that an invertible affine transformation takes two convex
quadratic regions with the same shape to two convex quadratic regions with the same
shape. Similarly, an invertible transformation preserves equality of the recession cones
of two polyhedron.

Thus, we can assume that Q and Q' have the same shape and are described by .
We can now apply Lemma [3.6| and further assume that Q@ and Q' are both described
by ([3.5), or both by (3.6), and still having the same shape. Moreover, since proj,, ,(rec(P)) =
rec(proj, ., (P)) we may still assume that P and P’ have the same recession cone.

Assume now that Q and Q' are described by having the same shape and that
P and P’ have the same recession cone. It is well known that there exists a matrix
M € R™*+F) and vectors r,7’ € R™ such that P = {z € R"™* | Mz < r} and
P ={z e R | Mz < r'}. It now follows that S and S are both sets of Type 1 (or

both of Type 2) with the same structure. o

By Claim [J} it follows that the sets proj,(Q|.—z N P|.—) are all sets of Type 1 (or

all sets of Type 2) with the same structure. 0
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3.6 Toward a Geometric Characterization

The algebraic characterizations in Section of continuous convex quadratic repre-
sentable sets and in Section of mixed binary convex quadratic representable sets
lead to a natural question. Are there geometric conditions that characterize continu-
ous and mixed binary convex quadratic representable sets? In this section, we focus
on what these algebraic characterizations imply concerning a geometric description of
representable sets.

Consider a continuous convex quadratic representable set S C R™. As a consequence
of Theorem there exist convex quadratic regions Q; C R" and polyhedra P; C R"
for2 =1,...,k such that S = Ui?:l Q; NP;. Since S is representable it can be realized
as the projection of a convex set which implies that S must be convex as well.

It is unclear whether these two obvious necessary conditions are in fact sufficient as

well. This leads us to the following question.

Question 3.11 Let S C R™. Is it true that S is continuous convex quadratic repre-
sentable if and only if S is convexr and there exist convexr quadratic regions Q; C R™ and
polyhedra P; CR™ fori=1,... k such that
k
S={JainP ? (3.10)
i=1
The main difficulty in establishing a positive answer to this question is finding an
extended formulation for a set S given by . As a step in this direction, given a
finite collection of convex quadratic regions Q;,..., 9, in R™ we can show that there
exist a convex quadratic region Q in R*t*("+1) and affine spaces Ly, ..., Ly in R*H0+D

described by Fyz+ Gy = d* with each G; an invertible matrix, such that Q; = proj,(QN
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L;) for i = 1,...,k. Tt is unclear whether this construction allows for a polyhedron P
that would complete the extended formulation.

We can make a similar analysis of necessary conditions in the case of a mixed binary
convex quadratic representable set S C R™. It follows from Theorem [3.10|that S must be
the union of convex regions Ry, ..., R, where each R; is a continuous convex quadratic
representable set. It can be checked that each of the regions R; must have the same set

of recession directions. However, these necessary conditions are not sufficient.

An example of a set that is not representable. Consider the set S C R? illustrated
in Figure [5| below and described by S = S; U Sy where S; = {(z,y) € R* | 22 —y <
0, z > 1} and Sy = {(x,y) € R?* | 2> —y < 0, # < —1}. Then S is the union of two
continuous convex quadratic representable sets with the same recession cone, and thus
meets the two obvious necessary conditions described above. We will show however,
that S is not mixed binary convex quadratic representable. In order to do so, we will
derive a stronger necessary condition for mixed binary convex quadratic representable

sets. T

Figure 5: A set that is not mixed binary convex quadratic representable

Let C' C R™ be a nonempty closed convex set. Let a € R™ be a nonzero vector. We
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say that a is an unbounded linear objective of C' if max{a'z | x € C} = +00. We can

now establish the following proposition.
Proposition 3.12 Let Q be a convex quadratic region in R™ described by
OQ={zeR" | 2'Qz+ (Qu+v)'z+ g <0},

where v € ker(Q) and v # 0. Let P C R be a polyhedron. Assume that Q NP is

nonempty. Then a € R™ is an unbounded linear objective of Q NP if and only if either

(a) there exists r € rec(P) Nrec(Q) such that a'r > 0; or

(b) there exist both r € rec(P) Nrelint(rec(Q)) such that a'r > 0 and s € rec(P) such

that a's > 0.

Proof. We first note that by Observation [5] relint(rec(Q)) = {z € R" | Qv =0, v’z <
0}.

Assume first that there exists r € rec(P) Nrec(Q) such that a'r > 0. Fix M > 0.
We show how to find a point in @ NP with objective value at least M. Let x € QNP.
There exists A > 0 such that z + Ar € QNP and a'(Z + Ar) > M. Thus, a is an
unbounded linear direction of Q N P.

Suppose there exist r € rec(P)Nrelint(rec(Q)) such that a'r > 0 and s € rec(P) such
that a's > 0. Fix M > 0. We show how to find a point in Q NP with objective value
at least M. Let £ € QN P. Now, we may assume that M > a'Z else we are done. Set

M—a'Zz

v = ~~+-"and y = T+7vs. Then, since v'r <0, for any A > max{—

T Qy+(Qu+v) Ty+
Yy Qy (Ugrv) y g,O},

we have a' (y + Ar) > a'y = M. It now suffices to show that y + A\r € Q@ N P. Since

r,s € rec(P), clearly y + A\r = T + vs + Ar € P. Now since Qr = 0, we have

Y+ A)TQy+ M)+ (Quw+v) (y+Ar)+g=X v"r+y Qy+ (Qu+v) y+g <0,
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by choice of A\. Thus, y + Ar € QNP and a is an unbounded linear objective of Q N P.

We prove the reverse direction by induction on dim(lin(Q)). Suppose that a is an

unbounded linear objective of @ NP. Then there exists a sequence {z*} in Q NP such

that a' 2% — +oo. Let w* = |I§ZH' Then {w"*} is a bounded sequence and therefore must

have a convergent subsequence. Suppose w is a limit point of this sequence. Then w is a
unit vector, satisfies a"w > 0, and it is a fact of convex analysis that @ € rec(P)Nrec(Q).

If w satisfies a"@w > 0 then we have met condition (a), and we are done. Thus, we
may assume that a'w = 0. Since a is an unbounded linear objective of P, it follows
from the Minkowski-Weyl decomposition theorem that there exists s € rec(P) such that
a's > 0. If w satisfies v' @ < 0 then @ € relint(rec(Q)) and we are done.

In the base case, dim(lin(Q)) = 0, we have rec(Q) = {Av | A < 0} and since w # 0
it follows that v'w < 0.

In order to prove the inductive step we assume that either condition (a) or (b) holds
for an unbounded linear objective provided dim(lin(Q)) < k. Assume dim(lin(Q)) = k.
By the same construction as before, we either meet condition (a) or (b) or have a vector
w € rec(P) Nrec(Q) satisfying a'w = 0 and v w = 0.

It remains to find r € rec(P) N relint(rec(Q)) satisfying a'r > 0. We note that by
Observation , we have w € lin(Q). Consider the projection of @ NP and the vector
a onto the orthogonal complement of Span({w}). Let Q" denote the projection of Q,
P’ the projection of P, and a’ the projection of a. Since w € lin(Q) and a’'w = 0 we
have that o’ is unbounded linear objective of @' NP’ and dim(lin(Q’)) = &k — 1. We
can now apply the induction hypothesis to obtain either a vector 1’ € rec(P’) Nrec(Q’)
satisfying a’Tr’ > 0 or two vectors u' € rec(P’) Nrelint(rec(Q’)) satisfying a’"u’ > 0 and

s' € rec(P’) satisfying a’"s’ > 0. We claim that by lifting the vectors 7/, v/, and s’ back
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to the original space, we can obtain vectors satisfying either (a) or (b) for the initial
region Q NP.

Assume first that there exists ' € rec(P’) Nrec(Q') satisfying a’Tr’ > 0. Since
" € rec(P’) there exists r € rec(P) that projects down to r’. In particular, r = r' + aw
for some a € R. Tt follows that r € rec(Q) and a'r > 0 so that condition (a) is met.

Assume now that there exist two vectors v € rec(P’) N relint(rec(Q’)) satisfying
a'"u' > 0 and s’ € rec(P’) satisfying a’"s’ > 0. Again, there exists u € rec(P) such
that u = «/ + aw for some a € R. Since w € 1in(Q) and a'w = 0 , it follows that

u € rec(P) Nrelint(rec(Q)) and a’u > 0. Similarly, there exists s € rec(P) that projects

down to s'. Then a's > 0 and condition (b) is met. O

A description of unbounded linear objectives for convex quadratic regions, with v # 0,
can be obtained by considering Proposition [3.12] when P = R". In this case, a is an
unbounded linear objective of Q if and only if there exists r € relint(rec(Q)) such that
a'r>0.

We note that a similar characterization of bounded linear objectives holds when

v =0, i.e., when Q is an ellipsoidal region, see Chapter [2| for more details.

Proposition 3.13 Let £ C R"™ be an ellipsoidal region and P C R™ be a polyhedron.
Assume that ENP is nonempty. Then a € R™ is an unbounded linear objective of E NP

if and only if there exists r € rec(P) Nrec(€) such that a'r > 0.

Proof. We first note that by the proof of Claim [2], we have £NP = B+ for a bounded
set B C R"™ and a polyhedral cone C. Moreover, by Observations 2] and [3| C is the
polyhedral cone rec(P) Nrec(€). Assume now that a is an unbounded linear objective

of ENP. Since B is a bounded set, there exists r € rec(P) Nrec(€) such that a'r > 0.
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Assume now that there exists r € rec(P) Nrec(€) satisfying a’r > 0. Fix € ENP and
M > 0. Since a'r > 0, there exists A > 0 such that 2+ r € ENP and a’ (Z+Ar) > M.

O

Again, a description of unbounded linear objectives for ellipsoidal regions can be
recovered by considering Proposition [3.13|when P = R™. In this case, a is an unbounded
linear objective of £ if and only if there exists r € rec(€) such that a7 > 0.

Together Propositions and describe the set of unbounded linear objectives
of sets that are the intersection of a convex quadratic region and a polyhedron. The
following corollary to Propositions [3.12] and establishes a new necessary condition

for mixed binary convex quadratic representable sets.

Corollary 3.14 Let S C R" be a mized binary convex quadratic representable set. Then
there exist continuous convex quadratic representable sets Ry, ..., Ry C R"™ each with the

same set of unbounded linear objectives such that S = UF_| R;.

Proof. Since S is mixed binary convex quadratic representable, there exists a convex

quadratic region @ C R""P*¢ and a polyhedron P C R"*?*4 such that
S = proj, (@ NP N (R x {0,1}9)).

Take Ry, ..., Ry to be the nonempty regions among proj,,((Q NP)|.—z) for z € {0, 1}.
Then clearly, each R; is continuous convex quadratic representable, S = UF | R;, and it
remains to show that each R; has the same set of unbounded linear objectives.

Now, by Propositions and the set of unbounded linear objectives of a non-
empty set @' N P’ depends only on the recession cone of @' and the recession cone

of P'. We now apply Lemma to observe that each region (Q N P)|,—; has shape
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of 9Q|,—: and recession cone of P|,—: independent of choice of z € {0,1}9. It then
follows by Observation [5| that the recession cone of Q|.—; is independent of choice of
z € {0,1}9. In particular, each nonempty (Q N P)|,—: has the same set of unbounded
linear objectives. It follows that their projections, Ri,..., Ry have the same set of

unbounded linear objectives as well. O

An example of a set that is not representable (cont.). Assume then that S is
mixed binary convex quadratic representable. Then, by Corollary S decomposes
into a union of regions Ry, ..., R each with the same set of unbounded linear objectives.
However, the two regions S; and Sy do not have the same set of unbounded linear
objectives. In particular, (1,0)" must be an unbounded linear objective for at least one
R; contained in S;. However, max{x | z € Sy} = —1 which implies that (1,0)" is not an
unbounded linear objective for some R;, a contradiction. It follows that S is not mixed

binary convex quadratic representable. {

We note that Corollary imposes a stronger necessary condition on mixed binary
convex quadratic representable sets than our initial observation provides. It is unclear
whether stronger necessary conditions are required. Thus, we are left to consider the

following question.

Question 3.15 Let S C R™. Is it true that S is mized binary convexr quadratic repre-
sentable if and only if there exist continuous convex quadratic representable sets Ry, ..., R C

R™ each with the same set of unbounded linear objectives such that S = UY_|R; ¢

As for Question [3.11}, in order to show that Question |3.15|is true, the main difficulty

is in finding a suitable extended formulation for the given set S. This is due to the fact
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that the extended formulations pervasive throughout disjunctive programming fail in
the presence of nonlinear constraints. While such extended formulations can be altered
to behave nicely under certain conditions, e.g., when S is bounded, it seems that entirely
different formulations must be found for the general case.

If we were to show that the questions were false, we should search for strictly stronger
necessary conditions satisfied by the respective classes of representable sets. The alge-
braic characterizations found in Sections [3.4] and provide a solid foundation for this
search. In particular, there is still much to explore in the projection procedure de-
scribed in Section [3.4] At the current moment however, it is unclear what further sort
of geometric conditions are implied by the algebraic characterizations.

An interesting future work would be exploring whether imposing stronger conditions
on a given set S C R™ would lead to a readily constructible extended formulation. In
particular, can we find certain classes of mixed binary convex quadratic representable

sets for which we can provide explicit extended formulations?

The notion of unbounded linear objective is quite similar to the notion of thin convex
sets explored in [§]. Let K C R™ be a closed convex set. A set K is thin if the following
holds for all @ € R™: max{a'z | z € K} = +oo0 if and only if there exists r € rec(K)
such that a'r > 0. We conclude this section by characterizing which convex quadratic

regions are thin.

Proposition 3.16 Let Q C R" be a conver quadratic region. Then Q is thin if and

only if Q is either an ellipsoidal region or a half-space.
Proof. Suppose that Q is described by

Q={zeR"|z'Qr+ (Quw+v) z+g<0}
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where v € ker(Q).

Assume first that Q is either an ellipsoidal region or a half-space. Since a half-space is
clearly thin, we may assume that Q is an ellipsoidal region. Then by the characterization
of unbounded linear objectives of Q following Proposition Q is thin.

Assume now that Q is neither an ellipsoidal region nor a half-space. This implies
that @@ # 0 and v # 0. Then by the characterization of unbounded linear objectives
of Q following Proposition [3.12] any nonzero vector a in the orthogonal complement of
ker(Q) is an unbounded linear objective of Q. Any such vector a is orthogonal to all

vectors in rec(Q) and thus Q is not thin. O

In 8], the authors show that if a closed convex set K C R™ with int(K)NZ" # 0
is not thin, then the region conv(K N Z") is not a polyhedron. Thus, for a general
convex quadratic set @ C R” the region conv(Q N Z") is not a polyhedron. The lack of
a succinct description of the points in QN Z" is one of the reasons we do not investigate
extended integer variables in this work. A possible future work could consider this more

general setting.
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