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Abstract

Representability results play a fundamental role in optimization since they provide char-

acterizations of the feasible sets that arise from optimization problems. In this work we

study classes of sets that appear in the feasibility version of mixed integer quadratic

optimization problems. We focus on two cases of quadratic inequalities.

In the first half of this work, we assume that the quadratic inequality is an ellipsoidal

inequality, a special case of a convex quadratic inequality. We provide complete char-

acterizations of sets that can be obtained as the projection of such feasible regions in

spaces extended by mixed binary variables. We provide another characterization allow-

ing for mixed integer extended variables under the assumption that the data defining

the feasible region is rational.

In the second half of this work, we assume that the quadratic inequality is convex. We

provide a complete characterization of the sets that can be obtained as the projection

of such feasible regions in spaces extended by mixed binary variables. In addition,

we provide a complete characterization of these sets in the special cases where (i) the

feasible region is bounded, (ii) only binary extended variables are present, and (iii) only

continuous variables are present.
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Chapter 1

Introduction

1.1 Background

The theory of representability studies one fundamental question: Given a system of

algebraic constraints of a specified form, which subsets of Rn can be represented in this

way, possibly using additional variables? A thorough answer to this question would be

given by a complete characterization of representable sets. Complete characterizations

are useful in that they demonstrate the class of problems which can be modeled using a

fixed set of constraints.

Representability is well understood for systems of linear inequalities. It is well known

that the projection of a set described by finitely many linear inequalities is again de-

scribed by finitely many linear inequalities. It follows from the Minkowski-Weyl Theorem

that such sets decompose as the Minkowski sum of a polytope and a polyhedral cone.

Integer programming is the study of optimization problems in which some or all of the

variables are restricted to be integers, see background references [20, 23, 3]. The feasible

regions of mixed integer linear programs are called mixed-integer linear sets. Several

researchers have investigated representability questions (see, e.g., [9, 12, 17, 18, 13]),

and a systematic study for mixed-integer linear systems is mainly due to Meyer and

Jeroslow.
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In the case of mixed binary linear systems geometric characterizations have been

given by Jeroslow and Lowe [14, 15]. A set S ⊆ Rn is mixed binary linear representable

if S is the projected solution set of a mixed binary linear system

Dw ≤ d

w ∈ Rn+p × {0, 1}q.

Then, Jeroslow and Lowe provide the following characterization.

Theorem 1.1 A set S ⊆ Rn is mixed binary linear representable if and only if there

exist rational polyhedra P1, . . . , Pk ⊆ Rn with the same recession cone such that

S =
k⋃

i=1

Pi.

In the case of mixed-integer linear systems, Jeroslow and Lowe find a similar char-

acterization. A set S ⊆ Rn is mixed-integer linear representable if S is the projected

solution set of a rational mixed-integer linear system

Dw ≤ d

w ∈ Rn+p × Zq.

Jeroslow and Lowe establish the following result.

Theorem 1.2 A set S ⊆ Rn is mixed-integer linear representable if and only if there

exist rational polytopes P1, . . . , Pk ⊆ Rn and vectors r1, . . . , rt ∈ Zn such that

S =
k⋃

i=1

Pi + int.cone{r1, . . . , rt}.

Representability has also been studied in the case of nonlinear constraints, but few

complete characterizations have been established. In second-order cone programming a
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linear functional is maximized over a set defined by linear inequalities and constraints

of the form ||Ax+ b||2 ≤ c>x+ d. These constraints are quite general and can express a

variety of different constraints, including convex quadratic inequalities. There has been

a large amount of work [16, 19] that shows different second order cone formulations for a

wide range of problems. However, a complete characterization similar to those obtained

by Jeroslow and Lowe is missing.

In semidefinite programming, a linear functional is maximized over a set defined by

a linear matrix inequality, i.e., a constraint of the form A0 +
∑n

i=1 xiAi � 0 where

the Ai are symmetric matrices. A linear matrix inequality defines a closed, convex,

semialgebraic set known as a spectrahedon. In [11], Helton and Vinnikov introduce the

notion of rigid convexity and conjecture that a set is a spectrahedron if and only if it is

rigidly convex. Another conjecture is stated in [10] where Helton and Nie study which

sets can be represented as the projection of a spectrahedon in a higher dimensional

space. They conjecture that every convex semialgebraic set can be represented as the

projection of a spectrahedron.

There are two main difficulties in establishing these conjectures, as well as forming a

characterization in the case of second-order cone programming. One difficulty lies in the

complexity of describing the projection of semialgebraic sets. The other lies in finding

an appropriate extended formulation of a representable set.

1.2 Our Contributions

In hopes of bridging the gap between characterization results for linear systems and sim-

ilar results for nonlinear systems, we have considered sets described by linear inequalities
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and a single convex quadratic inequality. We say that a region Q is a convex quadratic

region in Rn if

Q = {x ∈ Rn | x>Qx+ h>x+ g ≤ 0}

for a positive semidefinite matrix Q ∈ Rn×n, a vector h ∈ Rn, and g ∈ R.

We say that a set S ⊆ Rn is mixed binary convex quadratic representable if it can be

obtained as the projection onto Rn of the solution set of a system of the form

Dw ≤ d

w>Qw + h>w + g ≤ 0

w ∈ Rn+p × {0, 1}q,

(1.1)

where Q is positive semidefinite. Note that if a set S is the projection of the solution

set of a system of the form (1.1), but with bounded integer variables in the place of

the binary variables, then S is also the projection of the solution set of a system of the

form (1.1). We also note that since any convex quadratic region is second-order cone

representable, the sets that we characterize can be represented with second-order cone

constraints and mixed binary extended variables.

There is a strong connection between mixed binary convex quadratic representable

sets and mixed binary convex quadratic programming (MBCQP). This class of problems

has applications in many areas, including portfolio optimization and machine learning

[2, 1]. Since optimal solutions of MBCQP problems have polynomial size (see [21, 4]),

any MBCQP is polynomially equivalent to a polynomial number of MBCQP feasibility

problems. In particular, each feasibility problem is over a set of the form (1.1). More-

over, by linearizing the objective, any MBCQP can be transformed to the problem of

minimizing a linear function over a set described by (1.1).
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We have observed that a characterization of sets representable by more than one

convex quadratic inequality seems to be currently out of reach. In fact, the intersection

of two convex quadratic inequalities in R3 may project to a semialgebraic set described

by polynomials of degree four in R2. In this work, we present characterization results

for a number of cases of mixed binary convex quadratic representable sets.

In Chapter 2 we characterize mixed binary convex quadratic representable sets

under the additional assumption that the convex quadratic inequality has the form

(x − c)>Q(x − c) ≤ γ. Inequalities of this type are called ellipsoidal inequalities. We

say that a set E ⊆ Rn is an ellipsoidal region in Rn if it is the set of points satisfying an

ellipsoidal inequality.

Formally, we say that a set S ⊆ Rn is binary ellipsoidal mixed-integer (binary EMI)

representable if it can be obtained as the projection onto Rn of the solution set of a

system of the form

Dw ≤ d

(w − c)>Q(w − c) ≤ γ

w ∈ Rn+p × {0, 1}q,

(1.2)

where Q is symmetric and positive semidefinite. In Theorem 2.1 on page 8 we show that

a set S ⊆ Rn is binary EMI-representable if and only if S is a Minkowski sum of a finite

union of sets which are the intersection of an ellipsoidal region and a polytope together

with a polyhedral cone.

We also provide a characterization in the case where extended variables can be mixed

integer in Theorem 2.2 on page 9. In this setting, it is necessary that the data describing

system (1.2) is rational. We are able to obtain a similar result and in doing so directly
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extend the work of Jeroslow and Lowe in [14, 15].

In Chapter 3 we study the more general case where the quadratic inequality in (1.1)

is convex. We present characterization results for a number of cases of mixed binary

convex quadratic representable sets. More precisely, we characterize sets when Dw ≤ d

in (1.1) is bounded in Theorem 3.1 on page 31, when p = 0 in (1.1) in Theorem 3.2 on

page 33, and when q = 0 in (1.1) in Theorem 3.9 on page 54, before proceeding with the

general case in Theorem 3.10 on page 56.

We will provide further introductory discussion at the beginning of each chapter.

1.3 Notation

In the remainder of this work we will use the following notation. Given a set E ⊆ Rn×Rp

and a vector ȳ ∈ Rp, we define the ȳ-restriction of E as

E|y=ȳ = {x ∈ Rn | (x, ȳ) ∈ E}.

Note that E|y=ȳ geometrically consists of the intersection of E with coordinate hyper-

planes. Sometimes we will need to consider E|y=ȳ in the original space Rn × Rp, thus

we also define

Ẽ|y=ȳ = {(x, ȳ) ∈ Rn × Rp | (x, ȳ) ∈ E}.

We will also need to perform several restrictions y1 = ȳ1, . . . , yk = ȳk at the same time.

In such case we simply write E|y1=ȳ1,...,yk=ȳk and Ẽ|y1=ȳ1,...,yk=ȳk .

Given a set E ⊆ Rn, and a positive integer k ≤ n, we will denote by projk(E) the

orthogonal projection of E onto its first k coordinates. Formally,

projk(E) = {x ∈ Rk | ∃y ∈ Rn−k with (x, y) ∈ E}.
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We note that projk : Rn → Rk is a linear transformation, and thus respects vector

addition, i.e., Minkowski sums.

Given a set E ⊆ Rn we denote by rec(E) the recession cone of E, namely the set

of vectors r ∈ Rn such that for any λ > 0 and x ∈ E we have x + λr ∈ E. We note

that nearly all of the sets we consider in this paper are closed and convex, in which case

rec(E) coincides with the set of recession directions at any point of E. We also denote

by lin(E) the lineality space of E, by span(E) the linear space generated by E, and by

cone(E) the cone generated by E.

Given a matrix A we denote by range(A) the range of A and by ker(A) the kernel of A.

If A is positive semidefinite, we write A � 0. This implies that A is symmetric. Given a

half-space H+ = {x ∈ Rn | a>x ≤ b}, we write H for the hyperplane {x ∈ Rn | a>x = b}.
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Chapter 2

Ellipsoidal Representability1

2.1 Introduction

In this chapter we provide characterizations of ellipsoidal mixed integer (EMI) repre-

sentable sets. Recall that a set S ⊆ Rn is binary ellipsoidal mixed-integer (binary EMI)

representable if it can be obtained as the projection onto Rn of the solution set of a

system of the form

Dw ≤ d

(w − c)>Q(w − c) ≤ γ

w ∈ Rn+p × {0, 1}q,

(2.1)

where Q is symmetric and positive semidefinite. Our main results are the following

geometric characterizations of EMI-representable sets.

Theorem 2.1 A set S ⊆ Rn is binary EMI-representable if and only if there exist el-

lipsoidal regions Ei ⊆ Rn, i = 1, . . . , k, polytopes Pi ⊆ Rn, i = 1, . . . , k, and a polyhedral

cone C ⊆ Rn such that

S =
k⋃

i=1

(Ei ∩ Pi) + C. (2.2)

1This chapter is modified from Del Pia and Poskin [6, 5].
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In the rational mixed-integer case, i.e., when the binary variables {0, 1}q are replaced

with integer variables and the defining data is rational, we obtain a similar characteriza-

tion. Formally, we say that a set S ⊆ Rn is ellipsoidal mixed-integer (EMI) representable

if it can be obtained as the projection onto Rn of the solution set of a system of the form

Dw ≤ d

(w − c)>Q(w − c) ≤ γ

w ∈ Rn+p × Zq,

(2.3)

where Q is positive semidefinite. We say that a set S ⊆ Rn is rational EMI-representable

if the data D,Q, d, c, γ in (2.3) can be chosen to be rational.

Theorem 2.2 A set S ⊆ Rn is rational EMI-representable if and only if there exist

rational ellipsoidal regions Ei ⊆ Rn, i = 1, . . . , k, rational polytopes Pi ⊆ Rn, i =

1, . . . , k, and integral vectors ri ∈ Zn, i = 1, . . . , t such that

S =
k⋃

i=1

(Ei ∩ Pi) + int.cone{r1, . . . , rt}. (2.4)

An example of a binary EMI-representable set is given in Figure 1a while an example

of an EMI-representable set is given in Figure 1b. Note that the second set is not binary

EMI-representable as it is the disjoint union of an infinite number of convex regions.

The presence of rational data in Theorem 2.2 is essential to the development of a

meaningful statement. Even in the pure integer linear case, irrational data may cause

these kinds of complications. Consider the integer set S = {(z1, z2) ∈ Z2
≥0 | z2 ≤

√
2 z1}.

It can be shown that S cannot be represented as the Minkowski sum of a finite set and

the set of non-negative integer combinations of a finite number of integral vectors.

Both directions of Theorem 2.1 and Theorem 2.2 have geometric implications. Since

each set S of the form (2.2) or (2.4) can be obtained as the projection of a set described
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(a) A binary EMI-representable set in R3

-4 -2 0 2 4

-4

-2

0

2

4

…

(b) An EMI-representable set in R2

Figure 1: Examples of EMI-representable sets

by a system (2.1) or (2.3) this means that the k ellipsoidal regions Ei can be expressed

with just one ellipsoidal inequality in a higher dimension. We prove this direction of the

theorems by explicitly giving extended formulations for the sets S.

The other direction of Theorem 2.1 and Theorem 2.2 states that the projection of each

system (2.1) or (2.3) onto Rn is a set of the form (2.2) or (2.4). An important ingredient

of both proofs is showing that the projection of a set E ∩ P := {x ∈ Rn+1 | Dx ≤

d, (x − c)>Q(x − c) ≤ γ} onto Rn is a set of the form (2.2). In order to do so, we

introduce the key concept of a shadowing hyperplane. This hyperplane, that will be

formally introduced in Section 2.2, allows us to split the ellipsoidal region into two

‘parts’. In turn, this allows us to compute the projection of E ∩ P by computing a

finite number of projections of E intersected with a hyperplane. This will show that the

projection of E ∩ P is the union of a finite number of regions that are the intersection

of a polyhedron and one nonlinear inequality, which we will prove to be ellipsoidal.

The remainder of this chapter is organized as follows. In Section 2.2, we provide a

number of results relating to the intersection of an ellipsoidal region with a polyhedron

and the projections of such regions. In Section 2.3, we prove Theorem 2.1. In Section 2.4,
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we prove Theorem 2.2.

2.2 Ellipsoidal Regions and Hyperplanes

In this section we formally define ellipsoidal regions. These regions will appear through-

out our study of representability. We will prove a few results on the intersection of

ellipsoidal regions with half-spaces as well as their projections. These results will be

necessary for our proofs of Theorem 2.1 and Theorem 2.2.

Recall, we say that a set E is an ellipsoidal region in Rn if there exists a real symmetric

n× n matrix Q � 0 (i.e., Q is positive semi-definite), a vector c ∈ Rn, and γ ∈ R, such

that

E = {x ∈ Rn | (x− c)>Q(x− c) ≤ γ}.

We note that if Q � 0 (i.e., Q is positive definite) and γ > 0, then E is an ellipsoid,

i.e., the image of the unit ball B = {x ∈ Rn | ||x||2 ≤ 1} under an invertible affine

transformation.

The following observation is well-known, and we give a proof for completeness.

Observation 1 Let q(x) = x>Qx + b>x be a quadratic function on Rn with Q a sym-

metric positive definite matrix. Then q(x) has a minimum on Rn if and only if b is in

the range of Q.

Proof. Assume b /∈ range(Q). Then since Q is symmetric, we can write b = Qr+ c with

Qc = 0 and c 6= 0. Consider the line x(t) = −tc for t ∈ R. Then we have

q(x(t)) = b>x(t) = −tc>c.
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Since c 6= 0, we see that q(x(t))→ −∞ as t→ +∞. Thus, q(x) has no minimum on Rn.

Assume there exists r ∈ Rn such that 1
2
b = Qr. Then

q(x) = (x+ r)>Q(x+ r)− r>Qr

and q(x) has a minimum at any x̄ such that x̄ + r ∈ ker(Q). In particular, −r is a

minimizer and q(−r) = −r>Qr is the optimal value. �

The following lemma shows that ellipsoidal regions are closed under intersections

with coordinate hyperplanes. This is equivalent to fixing a number of variables.

Lemma 2.3 Let E be an ellipsoidal region in Rn × Rp. Then for any ȳ ∈ Rp, the set

E|y=ȳ is an ellipsoidal region in Rn.

Proof. Let E = {(x, y) ∈ Rn×Rp | q(x, y) ≤ γ}, where q(x, y) is the quadratic polynomial

q(x, y) =

x− c
y − c′


> Q R

R> Q′


x− c
y − c′

 .

For any fixed ȳ ∈ Rp, since Q is symmetric and positive definite it suffices to show there

exists cȳ ∈ Rn and γȳ ∈ R such that

E|y=ȳ = {x ∈ Rn | (x− cȳ)>Q(x− cȳ) ≤ γȳ}. (2.5)

Let ȳ ∈ Rp. Since q(x, y) has a minimum on Rn × Rp by Observation 4, the quadratic

function

q(x, ȳ) = (x− c)>Q(x− c) + 2(ȳ − c′)>R>(x− c) + (ȳ − c′)>Q′(ȳ − c′),

has a minimum on Rn as it is bounded from below. By Observation 4, R(ȳ − c′) ∈

range(Q), and so there exists x̄ ∈ Rn such that Qx̄ = R(ȳ − c′). Then (2.5) is satisfied

with cȳ := c− x̄ and γȳ := γ + x̄>Qx̄− (ȳ − c′)>Q′(ȳ − c′). �
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We are now ready to provide a geometric description of ellipsoidal regions. A conse-

quence of this description is that any non-empty ellipsoidal region may be decomposed

as the Minkowski sum of an ellipsoid and a linear space.

Lemma 2.4 Let E be an ellipsoidal region in Rn. Then

(i) E = ∅, or

(ii) E is an affine space, or

(iii) There exists an integer k ∈ {0, . . . , n − 1}, a k-dimensional linear space L ⊆ Rn,

and k distinct indices i1, . . . , ik ∈ {1, . . . , n} such that the restriction

E|xi1
=x̄i1

,...,xik
=x̄ik

is an ellipsoid in Rn−k, and

E = Ẽ |xi1
=x̄i1

,...,xik
=x̄ik

+ L.

Proof. Let E = {x ∈ Rn | (x − c)>Q(x − c) ≤ γ} where Q is a symmetric positive

semidefinite matrix. If γ < 0, then E = ∅ since Q is positive semidefinite. Thus, we may

assume that γ ≥ 0 and E is non-empty.

We now show that

rec(E) = ker(Q) = {x ∈ Rn | x>Qx ≤ 0}. (2.6)

We first show that rec(E) = ker(Q). Since E is a closed convex set, rec(E) is equal to

the set of recession directions from any point x ∈ E . Consider the point c ∈ E . Then for

any r ∈ ker(Q) and λ > 0 we have c+ λr ∈ E since λ2r>Qr = 0 ≤ γ. Thus, r ∈ rec(E).

Assume now that r ∈ rec(E). Let Q = L>L be a Cholesky decomposition of Q. Then
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for any λ > 0 we have λ2r>Qr = λ2||Lr||2 ≤ γ, which implies Lr = 0 and r ∈ ker(Q).

Next we show that ker(Q) = {x ∈ Rn | x>Qx ≤ 0}. Clearly, the kernel is contained in

the right hand side. Suppose r ∈ Rn satisfies r>Qr ≤ 0. Since Q is positive semidefinite,

we must have r>Qr = 0. Replacing Q with its Cholesky decomposition, we see that

||Lr||2 = 0. This implies Lr = 0, and thus r ∈ ker(Q).

Now assume γ = 0. By the above argument, x ∈ E if and only if x ∈ c + ker(Q).

Thus E = c+ ker(Q) is an affine space.

Assume now γ > 0. If Q is invertible then E is an ellipsoid and we are done, in

this case k = 0. Thus, we may assume L := ker(Q) is nontrivial. Let k = dim(L) and

L = {l1, . . . , lk} be a basis for L. Note if k = n then E = Rn, an affine space, and we

are done. Thus, we may assume that k < n. Extend L to a basis L′ of Rn by adding a

subset of the standard basis vectors {e1, . . . , en} of Rn. Let J ⊆ {1, . . . , n} be the set

of indices j for which ej ∈ L′ − L, and suppose {i1, . . . , ik} = {1, . . . , n} − J . Define

E ′ := E|xi1
=0,...,xik

=0 and Ẽ ′ := Ẽ |xi1
=0,...,xik

=0.

We now show E = Ẽ ′ +L. Since Ẽ ′ ⊆ E and rec(E) = L, we clearly have Ẽ ′ +L ⊆ E .

Let v ∈ E . Expanding v in the basis L′, we have for some l ∈ L and scalars αj ∈ R, that

v = l +
∑

j∈J αjej. Since L = rec(E) we have v − l =
∑

j∈J αjej ∈ E ′ and E ⊆ Ẽ ′ + L.

By Lemma 2.3, E ′ is an ellipsoidal region in Rn−k. Note first that E is full-dimensional

in Rn, i.e., has n + 1 affinely independent vectors. This is immediate since γ > 0 and

there exists a vector, namely c ∈ Rn, for which the continuous function (x− c)>Q(x− c)

has value 0. If E ′ is unbounded, then E ′ has some recession direction outside of L which

contradicts the fact that rec(E) = L. Moreover, since E ′ is bounded it follows from (2.6)

that the matrix defining E ′ is invertible, and thus positive definite. Then E ′ is either an
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ellipsoid or a single point. Since E = Ẽ ′ +L is full dimensional, and dim(L) = k < n, E ′

cannot be a single point. �

We make the following remark about the proof of (iii) that will be used later. If one

of the standard basis vectors of Rn, say en, is not contained in L, then we may assume

that xn does not occur among the fixed variables xi1 , . . . , xik . To see this, note that in

completing the basis L of L to a basis of Rn we may first add the standard basis vector

en to the set L.

It can be shown that an appropriate converse of Lemma 2.4 holds. This provides

a complete geometric characterization of ellipsoidal regions. We use Lemma 2.4 to

make the following observation that distinguishes ellipsoidal regions from general convex

quadratic regions.

Observation 2 Let E be an ellipsoidal region in Rn. Then there exists a polyhedron

B ⊆ Rn such that E ⊆ B and rec(B) = rec(E).

Proof. By Lemma 2.4, E is either empty, an affine space, or the Minkowski sum of an

ellipsoid in a possibly lower dimensional space and a linear space. Since affine spaces

are polyhedral, and there is nothing to show for the empty case, it suffices to assume

that E = Ẽ |xi1
=x̄i1

,··· ,xik
=x̄ik

+ L for an ellipsoid E|xi1
=x̄i1

,··· ,xik
=x̄ik

in Rn−k and a linear

space L. Since Ẽ |xi1
=x̄i1

,··· ,xik
=x̄ik

is a bounded set there exists a polytope B̃ such that

Ẽ |xi1
=x̄i1

,··· ,xik
=x̄ik

⊆ B̃. Then the polyhedron defined by B := B̃ + L has the desired

properties. �

The next observation gives a description of the recession cones that will be encoun-

tered in this chapter.
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Observation 3 Let P be a polyhedron and E an ellipsoidal region in Rn. Then rec(E ∩

P) is a polyhedral cone.

Proof. Clearly, rec(E ∩ P) = rec(E) ∩ rec(P). The set rec(P) is a polyhedral cone

(see, e.g., [20]), and rec(E) is a linear space by (2.6) in Lemma 2.4. As a consequence

rec(E ∩ P) is a polyhedral cone. �

The following lemma shows that to compute the projection of an ellipsoidal region E

in Rn, it suffices to consider the projection of E ∩H for a specific hyperplane H ⊆ Rn.

We will refer to such a hyperplane H as a shadowing hyperplane, as it contains enough

information to completely describe the projection, or ‘shadow’, of E . See Figure 2 for

an illustration.

-4 -2 0 2 4

-4

-2

0

2

4

projn−1(E)

E
H

Figure 2: Illustration of a shadowing hyperplane

Lemma 2.5 Let E be an ellipsoidal region in Rn. Then there exists a hyperplane H ⊆

Rn with en /∈ lin(H) such that

projn−1(E) = projn−1(E ∩H).
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Proof. It clearly suffices to show that projn−1(E) ⊆ projn−1(E ∩H). Let E be described

by the ellipsoidal inequality q(x) = (x− c)>Q(x− c) ≤ γ. We note that this inequality

can be rearranged to q(x) = x>Qx+ b>x+ d ≤ 0 for a specific vector b ∈ range(Q) and

scalar d ∈ R. Split the variable x into two pieces (x′, xn) ∈ Rn−1 × R and write

Q =

Q′ l

l> a


for an (n − 1) × (n − 1) symmetric matrix Q′ � 0 and scalar a ≥ 0. After replacing b

with (b′, bn) we can write

q(x′, xn) = ax2
n + (2l>x′ + bn)xn + x′>Q′x′ + b′>x′ + d ≤ 0.

Assume first that a = 0. Then en ∈ ker(Q) since Q � 0. We claim that the

hyperplane H = {x ∈ Rn | xn = 0} has the desired property. For any x̄ ∈ projn−1(E),

there exists λ such that (x̄, λ) ∈ E . By the proof of Lemma 2.4, namely (2.6), since

en ∈ ker(Q) we have±en ∈ rec(E). Then (x̄, 0) ∈ E∩H which implies x̄ ∈ projn−1(E∩H).

Assume now that a 6= 0. Note that this forces a > 0 since Q � 0. We claim that

the hyperplane H = {x ∈ Rn | 2axn + 2l>x′ = −bn} has the desired property. Let

x̄ ∈ projn−1(E). Then the univariate polynomial q(x̄, xn) has real roots since a > 0. It

follows from the quadratic formula that the midpoint on the line segment between the

two roots say (x̄, λ) is in both E and H. �

The following proposition will be one of the main building blocks of both Theorem 2.1

and Theorem 2.2. It provides a geometric description of the projection of the intersection

of an ellipsoidal region and a polyhedron.
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Proposition 2.6 Let E ⊆ Rn+p be an ellipsoidal region and P ⊆ Rn+p be a polyhedron.

Let S = projn(E∩P). Then there exist ellipsoidal regions Ei ⊆ Rn, i = 1, . . . , k, polytopes

Pi ⊆ Rn, i = 1, . . . , k, and a polyhedral cone C ⊆ Rn such that

S =
k⋃

i=1

(Ei ∩ Pi) + C,

where C = projn(rec(E) ∩ rec(P)).

Proof. In the first two claims we prove that it suffices to show that S has an equivalent,

but simpler, decomposition.

Claim 1. It suffices to find ellipsoidal regions Ei ⊆ Rn, polytopes Pi ⊆ Rn, and

polyhedral cones Ci ⊆ Rn, for i = 1, . . . , k, that satisfy

S =
k⋃

i=1

(Ei ∩ Pi + Ci). (2.7)

Proof of claim. We first show that rec(S) = projn(rec(E)∩rec(P)), which by Lemma 2.4

is a polyhedral cone. By definition, rec(S) = rec(projn(E∩P)). Then since the projection

of a ray in E ∩ P is a ray in S, the containment of projn(rec(E) ∩ rec(P)) in rec(S) is

clear. Let r ∈ rec(projn(E ∩ P)). Consider a polyhedral approximation B of E as in

Observation 2 such that B ⊆ Rn+p is a polyhedron, E ⊆ B and rec(E) = rec(B). Then

clearly, r ∈ rec(projn(B∩P)) and since B∩P is a polyhedron we have rec(projn(B∩P)) =

projn(rec(B ∩P)). Then by construction, rec(B ∩P) = rec(E) ∩ rec(P). Henceforth, we

denote by C the polyhedral cone rec(S).

Assume we have Ei,Pi, and Ci that satisfy (2.7). Since C = rec(S) for each i =

1, . . . , k, we have that Ci must be contained in C. It follows that

S = S + C =
k⋃

i=1

(Ei + Pi + Ci) + C =
k⋃

i=1

(Ei ∩ Pi) + C. �
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Claim 2. It suffices to find ellipsoidal regions Ei ⊆ Rn, polyhedra Pi ⊆ Rn, for

i = 1, . . . , k, that satisfy

S =
k⋃

i=1

(Ei ∩ Pi). (2.8)

Proof of claim. Assume we have ellipsoidal regions Ei and polyhedra Pi that satisfy (2.8).

Consider a polyhedral approximation Bi of Ei as in Observation 2 such that Bi ⊆ Rn

is a polyhedron, Ei ⊆ Bi, and rec(Ei) = rec(Bi). Then Bi ∩ Pi is a polyhedron and by

the Minkowki-Weyl theorem can be decomposed as Ri + Ci for a polytope Ri and a

polyhedral cone Ci. We claim that Ei ∩Ri + Ci = Ei ∩ Pi.

Let x ∈ Ei ∩ Ri + Ci. Note that Ri + Ci ⊆ Pi so that x ∈ Pi and since Ci ⊆ rec(Ei),

we have x ∈ Ei as well. Thus, Ei ∩ Ri + Ci ⊆ Ei ∩ Pi. Let x ∈ Ei ∩ Pi. Then

x ∈ Bi ∩ Pi = Ri + Ci and we may write x = r + c for some r ∈ Ri, c ∈ Ci. Note that

c ∈ rec(Ei), and since rec(Ei) is a linear space by Lemma 2.4, we obtain −c ∈ rec(Ei) as

well. Then x = (x− c) + c and x− c = r ∈ Ei ∩Ri, c ∈ Ci so x ∈ Ei ∩Ri + Ci. �

Claim 3. We can assume without loss of generality p = 1.

Proof of claim. Let E ∩ P ⊆ Rn+p. We prove that S = projn(E ∩ P) has the desired

decomposition (2.8), by induction on p. For this claim, we assume the base case, p = 1.

Now let p = m, and suppose the statement holds for p < m. Given E ∩ P ⊆ Rn+m, by

the base case p = 1 there exist ellipsoidal regions E ′i and polyhedra P ′i such that

projn+m−1(E ∩ P) =
t⋃

i=1

(E ′i ∩ P ′i).

Since the projection of a union is the union of the projections, we have

S = projn(E ∩ P) =
t⋃

i=1

projn(E ′i ∩ P ′i).
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Then by the induction hypothesis there exists ellipsoidal regions E ′i,j and polyhedra P ′i,j

such that

S =
t⋃

i=1

( ti⋃
j=1

E ′i,j ∩ P ′i,j
)
,

and we are done. �

To prove Proposition 2.6 it remains to show the following. Assume we are given

E ∩P ⊆ Rn+1. We must show the existence of ellipsoidal regions Ei ⊆ Rn, and polyhedra

Pi ⊆ Rn, for i = 1, . . . , k, that satisfy (2.8).

Given a half-space H+ = {x ∈ Rn | a>x ≥ b}, we write H for the hyperplane

{x ∈ Rn | a>x = b} and H− for the half-space {x ∈ Rn | a>x ≤ b}. A polyhedron is the

intersection of finitely many half-spaces. Thus, there exist half-spaces H+
1 , . . . , H

+
s ⊆

Rn+1 such that P = ∩si=1H
+
i . By Lemma 2.5, there exists a hyperplane H0 ⊂ Rn+1

with en+1 /∈ lin(H0) such that projn(E) = projn(E ∩H0). We arbitrarily pick one closed

half-space defined by H0 to be H+
0 and the other to be H−0 . Then

E ∩ P = (E ∩H+
0 ∩si=1 H

+
i ) ∪ (E ∩H−0 ∩si=1 H

+
i ),

and it suffices to show the existence of ellipsoidal regions and polyhedra satisfying (2.8)

for one of the regions E ∩H+
0 ∩s

i=1 H
+
i or E ∩H−0 ∩si=1 H

+
i . By symmetry, we show this

existence for E ∩H+
0 ∩si=1 H

+
i .

Claim 4. Let H be the collection of hyperplanes H among H0, . . . , Hs with en+1 /∈

lin(H). Then

projn(E ∩si=0 H
+
i ) =

⋃
H∈H

projn(E ∩H ∩si=0 H
+
i ).

Proof of claim. The right hand side is clearly contained in the left hand side, so it suffices

to show the forward containment. It suffices to show that E ∩si=0 H
+
i has the following



21

property: for any x ∈ E ∩si=0 H
+
i there exists a hyperplane H ∈ H and a λ ∈ R such

that x+ λen+1 ∈ E ∩H ∩si=0 H
+
i .

Let x̄ ∈ E ∩s
i=0 H

+
i . To prove the claim, we show that we can translate x̄ along

±en+1, and inside the feasible region, until it meets a half-space in H at equality. If

en+1 ∈ lin(Hi) for a half-space Hi, then x̄ + λen+1 ∈ H+
i for any λ ∈ R. Then, by the

existence of the shadowing hyperplane H0, there is one direction among ±en+1 along

which x̄ may be translated to intersect H0 while staying inside E . That is, there exists

λ̄ ∈ R such that x̄+ λ̄en+1 ∈ E ∩H0. Then, there exists a possibly different λ′ ∈ R with

the same sign as λ̄ and |λ′| ≤ |λ̄| such that x̄ + λ′en+1 ∈ E ∩s
i=0 H

+
i and x̄ + λ′en+1 lies

on at least one hyperplane H ∈ H. �

Now it suffices to show that for any H ∈ H there exists an ellipsoidal region E ′ ⊆ Rn

and a polyhedron P ′ ⊆ Rn such that

projn(E ∩H ∩s
i=0 H

+
i ) = E ′ ∩ P ′.

Without loss of generality, we may assume that Hi ∩H 6= ∅ for each i = 0, . . . , s. If not,

say Hj ∩H = ∅ for some 0 ≤ j ≤ s, i.e., the hyperplanes Hj and H are parallel. Then

either E ∩ H ∩ H+
j = ∅ and our region is empty, or E ∩ H ∩ H+

j = E ∩ H and H+
j is

redundant and may be removed.

We now show that each half-space H+
i , with Hi different from H, can be replaced

with a different half-space M+
i such that E ∩H∩H+

i = E ∩H∩M+
i and en+1 ∈ lin(M+

i ).

Fix j such that 0 ≤ j ≤ s and Hj 6= H. Consider H+
j and the region E ∩H ∩H+

j . Let

U = H ∩Hj. Since U 6= ∅ we have that U is an (n−1)-dimensional affine space in Rn+1,

say U = v+ V for a linear space V of dimension n− 1. Let W = V + span(en+1). Since

en+1 /∈ lin(U), because en+1 /∈ lin(H), we have that Mj := v + W is a hyperplane in
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Rn+1 that divides H into the same two regions that Hj does. In particular, upon choice

of direction, we have that M+
j has the desired properties.

We are now ready to describe the polyhedron P ′. First, remove from the intersection

E ∩H ∩si=0H
+
i any redundant H+

i and the H+
i such that Hi = H. Then upon relabeling

we may rewrite E ∩H ∩si=0 H
+
i as E ∩H ∩s′i=0 H

+
i . We may now replace each H+

i with

M+
i . By the requirement en+1 ∈ lin(M+

i ), we have that each M+
i is defined by a linear

inequality with the coefficient of xn+1 equal to 0. Thus, the projection projn(M+
i ) is a

half-space in Rn which we denote H̄+
i . Further, if each H+

i for i = 0, . . . , s′ is replaced

in this way, we have

projn(E ∩H ∩s′i=0 H
+
i ) = projn(E ∩H ∩s′

i=0 M
+
i ) = projn(E ∩H) ∩s′i=0 H̄

+
i ,

and we have the desired polyhedron P ′ := ∩s′i=0H̄
+
i .

It remains to show that projn(E ∩ H) is an ellipsoidal region E ′ ⊆ Rn. Let H =

{(x, y) ∈ Rn × R | a>(x, y) = b}. Consider the linear transformation from Rn+1 to

itself, defined by the matrix A whose first n rows are the first n standard unit vectors

of Rn+1 and whose last row is a. Note that A is invertible since en+1 is not in lin(H),

i.e., an+1 6= 0. Then, by the definition of A, for any vector (x, y) ∈ Rn+1 we have

A(x, y) = (x, c) where c = a>(x, y). It follows that A(H) gets mapped to the hyperplane

{(x, y) ∈ Rn+1 | y = b}. Now, since A is invertible we have

x ∈ projn(E ∩H)⇔ ∃y ∈ R such that (x, y) ∈ E ∩H

⇔ (x, b) ∈ A(E ∩H)

⇔ (x, b) ∈ A(E).

This shows that projn(E ∩ H) = A(E)|y=b. Ellipsoidal regions are clearly preserved

under invertible linear transformations, therefore A(E) is an ellipsoidal region. Finally,
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by Lemma 2.3, the set A(E)|y=b is an ellipsoidal region. This concludes the proof that

projn(E ∩H) is an ellipsoidal region E ′. �

We remark that all of the statements in this section (except Observation 4) behave

nicely with respect to rationality. In greater detail, if the given ellipsoidal regions,

polyhedra, and vectors are rational, then the resulting objects are also all rational. This

observation can be seen directly from the proofs of these results. In particular, the

rational version of Proposition 2.6 has the following statement.

Proposition 2.7 Let E ⊆ Rn+p be a rational ellipsoidal region and P ⊆ Rn+p be a

rational polyhedron. Let S = projn(E ∩ P). Then there exist rational ellipsoidal regions

Ei ⊆ Rn, i = 1, . . . , k, rational polytopes Pi ⊆ Rn, i = 1, . . . , k, and a rational polyhedral

cone C ⊆ Rn such that

S =
k⋃

i=1

(Ei ∩ Pi) + C,

where C = projn(rec(E) ∩ rec(P)).

2.3 The Binary Case

In this section, we prove Theorem 2.1 which characterizes binary ellipsoidal mixed integer

representable sets. We begin with a proposition that establishes the sufficiency of the

conditions given in Theorem 2.1.

Proposition 2.8 Let Ei ⊆ Rn, i = 1, . . . , k be ellipsoidal regions, Pi ⊆ Rn, i = 1, . . . k,

be polytopes and C ⊆ Rn a polyhedral cone. Suppose

S =
k⋃

i=1

(Ei ∩ Pi) + C.

Then S is binary EMI-representable.
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Proof. Assume that we are given a set

S =
k⋃

i=1

(Ei ∩ Pi) + C,

where Ei = {x ∈ Rn | (x − ci)
>Qi(x − ci) ≤ γi} are ellipsoidal regions, Pi = {x ∈

Rn | Aix ≤ bi} are polytopes, and C = cone{r1, . . . , rt} ⊆ Rn is a polyhedral cone. For

each ellipsoidal region Ei, if γi > 0 we can normalize the right hand side of the inequality

to 1. Else, Ei is either empty or an affine space and γi can be set to 1 at the cost of

adding additional linear inequalities to the system Aix ≤ bi. Thus, we may assume

γi = 1 for all i = 1, . . . , k.

We introduce new continuous variables xi ∈ Rn and binary variables δi ∈ {0, 1}, for

i = 1, . . . , k, that will model the individual regions Ei∩Pi +C. Then S can be described

as the set of x ∈ Rn such that

x =
k∑

i=1

(xi + δici) +
t∑

j=1

λjr
j

Aix
i ≤ δi(bi − Aici) i = 1, . . . , k

k∑
i=1

δi = 1

x1

x2

...

xk



>

Q1

Q2

. . .

Qk





x1

x2

...

xk


≤ 1

xi ∈ Rn, δi ∈ {0, 1} i = 1, . . . , k

λj ∈ R≥0 j = 1, . . . , t.

Now if δ1 = 1 the remaining δi must be 0. Then for each xi with i 6= 1, we have the
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constraint Aix
i ≤ 0 which has the single feasible point xi = 0 since Pi is a polytope.

The remaining constraints reduce to

x = x1 + c1 +
t∑

j=1

λjr
j

A1(x1 + c1) ≤ b1

(x1)>Q1x
1 ≤ 1

x1 ∈ Rn

λj ∈ R≥0 j = 1, . . . , t.

By employing a change of variables x′ = x1 +c1, it can be checked that the latter system

describes the region E1∩P1 +C. The remaining regions follow symmetrically. Therefore

S is binary EMI-representable. �

We are now ready to prove Theorem 2.1.

Proof of Theorem 2.1 Sufficiency of the conditions follows by Proposition 2.8. The

remainder of the proof is devoted to proving necessity of the condition. We are given an

ellipsoidal region E and a polyhedron P in Rn+p+q, and we define

S̄ := E ∩ P ∩ (Rn+p × {0, 1}q),

S := projn(S̄).

We must show the existence of ellipsoidal regions Ei ⊆ Rn, i = 1, . . . , k, polytopes

Pi ⊆ Rn, i = 1, . . . , k, and a polyhedral cone C ⊆ Rn such that

S =
k⋃

i=1

(Ei ∩ Pi) + C.
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Let S̃ := E ∩P ∩ (Rn+p× [0, 1]q). Then for every z̄ ∈ Rq, define S̄z̄ := E ∩P ∩ (Rn+p×

{z̄}). Clearly, for every z̄ ∈ {0, 1}q, we have rec(S̄z̄) = rec(S̃), and so projn(rec(S̄z̄)) =

projn(rec(S̃)). Since projections and recession cones operators commute for closed con-

vex sets, we obtain rec(projn(S̄z̄)) = projn(rec(S̃)). Let C := projn(rec(S̃)). By Ob-

servation 3, the set rec(S̃) is a polyhedral cone, thus so is its projection C. Note that

S̄ = ∪z̄∈{0,1}q S̄z̄ implies S = ∪z̄∈{0,1}qprojn(S̄z̄), therefore rec(S) = C.

Note that, using restrictions, we can write the set S in the form

S =
⋃

z̄∈{0,1}q
projn(S̄|z=z̄).

It suffices to show that each restriction S̄|z=z̄ = E ′ ∩ P ′ for some ellipsoidal region

E ′ ⊆ Rn+p and polyhedron P ′ ⊆ Rn+p. Then, by Proposition 2.6, for each z̄ ∈ {0, 1}q

we have projn(S̄|z=z̄) = ∪ki=1(Ei ∩ Pi) + C. Since S is the finite union of such sets, the

result follows.

Let z̄ ∈ {0, 1}q. We note S̄|z=z̄ = E|z=z̄ ∩ P|z=z̄. By Lemma 2.3, E ′ := E|z=z̄ is an

ellipsoidal region in Rn+p. Let P = {(x, y, z) ∈ Rn+p+q | Ax + By + Cz ≤ d}. Also,

P ′ := P|z=z̄ = {(x, y) ∈ Rn+p | Ax + By ≤ d − Cz̄} is clearly a polyhedron. This

completes the proof of Theorem 2.1.

2.4 The Mixed Integer Case

In this section, we prove Theorem 2.2 which characterizes rational ellipsoidal mixed

integer representable sets. A proposition similar to Proposition 2.8 proves sufficiency of

the conditions given in Theorem 2.2.
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Proposition 2.9 Let Ei ⊆ Rn, i = 1, . . . , k be rational ellipsoidal regions, Pi ⊆ Rn, i =

1, . . . k, be rational polytopes and ri ∈ Zn, i = 1, . . . , t be integral vectors. Suppose

S =
k⋃

i=1

(Ei ∩ Pi) + int.cone{r1, . . . , rt}.

Then S is rational EMI-representable.

The proof of Proposition 2.9 is identical to the proof of Proposition 2.8 except that the

constraints λj ∈ R≥0 are replaced with λj ∈ Z≥0 and the binary constraints δi ∈ {0, 1}

are replaced with 0 ≤ δi ≤ 1 and δi ∈ Z.

We now proceed with a proof of Theorem 2.2.

Proof of Theorem 2.2 Sufficiency of the conditions follows by Proposition 2.9. The

remainder of the proof is devoted to proving necessity of the condition. We are given a

rational ellipsoidal region E and a rational polyhedron P in Rn+p+q, and we define

S̄ := E ∩ P ∩ (Rn+p × Zq),

S := projn(S̄).

We must show the existence of rational ellipsoidal regions Ei ⊆ Rn, i = 1, . . . , k, rational

polytopes Pi ⊆ Rn, i = 1, . . . , k, and integral vectors r1, . . . , rt ∈ Zn such that

S =
k⋃

i=1

(Ei ∩ Pi) + int.cone{r1, . . . , rt}.

We first show that we can decompose S̄ into a bounded region and an integer cone.

Claim 5. There exists a rational polytope R ⊆ Rn+p+q and integral vectors r1, . . . , rt ∈

Zn+p+q such that

S̄ = E ∩ R ∩ (Rn+p × Zq) + int.cone{r1, . . . , rt}.
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Proof of claim. Let B ⊆ Rn+p+q be a rational polyhedral approximation of E as in

Observation 2 such that B is a rational polyhedron, E ⊆ B, and rec(E) = rec(B). Then

E∩P = E∩(B∩P). Since B∩P is a rational polyhedron, we can decompose B∩P = R′+C

for some rational polytope R′ and a rational polyhedral cone C. Since C is rational, there

exist integral vectors r1, . . . , rt ∈ Zn+p+q such that C = cone{r1, . . . , rt}. Note that each

ri ∈ rec(E). Let

R = R′ +
{ t∑

i=1

λir
i
∣∣∣ 0 ≤ λi ≤ 1 for each i = 1, . . . , t

}
.

It is well-known that B ∩ P = R′ + C = R+ int.cone{r1, . . . , rt}.

We now show that R meets the conditions of the claim. Let p ∈ S̄. Then p ∈ B ∩P

so p = q +
∑t

i=1 µir
i for some q ∈ R and µi ∈ Z≥0. Since p ∈ Rn+p × Zq and µi, r

i are

integral, we have q ∈ Rn+p × Zq. Moreover, q ∈ E since p ∈ E and rec(E) is a linear

space and each ri ∈ rec(E). Thus, S̄ ⊆ E ∩R ∩ (Rn+p × Zq) + int.cone{r1, . . . , rt}.

For the reverse inclusion, let q ∈ E ∩ R ∩ (Rn+p × Zq) and µi ∈ Z≥0 for i = 1, . . . , t.

Let p = q+
∑t

i=1 µir
i. Since q ∈ Rn+p×Zq and µi, r

i are integral, we have p ∈ Rn+p×Zq.

Also, each ri ∈ rec(E) which implies that p ∈ E . Finally, p ∈ R+ C = B ∩P ⊆ P which

implies p ∈ P . Therefore, p ∈ S̄. �

Let r̄1, . . . , r̄t ∈ Zn be the vectors consisting of the first n components of r1, . . . , rt.

Then by linearity of the projection operator, we have

S = projn(E ∩ R ∩ (Rn+p × Zq)) + int.cone{r̄1, . . . , r̄t}.

Let T = {z̄ ∈ Zq | E ∩ R ∩ (Rn+p × {z̄}) 6= ∅} and note that T is finite since R is

bounded. Let S̄ ′ = E ∩ R ∩ (Rn+p × Zq). Then, by using restriction notation, we can
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write the set S in the form

S =
⋃
z̄∈T

projn(S̄ ′|z=z̄) + int.cone{r̄1, . . . , r̄t}.

We now show that for each z̄ ∈ T the restriction S̄ ′|z=z̄ is equal to Ē ∩ R̄ for some

ellipsoidal region Ē ⊆ Rn+p and polytope R̄ ⊆ Rn+p. We note S̄ ′|z=z̄ = E|z=z̄∩R|z=z̄. By

Lemma 2.3, Ē = E|z=z̄ is an ellipsoidal region in Rn+p. LetR = {(x, y, z) ∈ Rn+p+q | Ax+

By + Cz ≤ d}. Then R̄ = R|z=z̄ = {(x, y) ∈ Rn+p | Ax + By ≤ d − Cz̄} is clearly a

polyhedron and is bounded since R is bounded.

Then, by Proposition 2.7, for each z̄ ∈ T we have projn(S̄ ′|z=z̄) = projn(Ē ∩ R̄) =

∪kz̄i=1(Ei∩Pi) for rational ellipsoidal regions Ei and rational polytopes Pi. Note that since

each R̄ is a polytope, there is no cone C. Since T is a finite set, the theorem follows. �
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Chapter 3

Convex Quadratic Representability1

3.1 Introduction

In this chapter, we consider sets described by linear inequalities and a single convex

quadratic inequality. Recall, we say that a region Q is a convex quadratic region in Rn

if

Q = {x ∈ Rn | x>Qx+ h>x+ g ≤ 0}

for a positive semidefinite matrix Q ∈ Rn×n, a vector h ∈ Rn, and g ∈ R. In general, a

convex quadratic inequality cannot be factored into an ellipsoidal inequality (see Chap-

ter 2). This implies that the family of ellipsoidal regions is a strict subset of the family

of convex quadratic regions.

Recall, we say that a set S ⊆ Rn is mixed binary convex quadratic representable if it

can be obtained as the projection onto Rn of the solution set of a system of the form

Dw ≤ d

w>Qw + h>w + g ≤ 0

w ∈ Rn+p × {0, 1}q,

(3.1)

where Q is positive semidefinite.

1This chapter is modified from Del Pia and Poskin [7].
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In this chapter, we present characterization results for a number of cases of mixed

binary convex quadratic representable sets. See Figure 3 and Figure 4 for examples of

representable sets. Before proceeding with the proofs, we provide a brief description of

the statements and preview the proof techniques.

Figure 3: A bounded mixed binary con-
vex quadratic representable set

Figure 4: A binary convex quadratic
representable set

In Section 3.2, we characterize sets that are bounded mixed binary convex quadratic

representable, defined as the projection of the solution set of (3.1) where Dw ≤ d

describes a polytope.

Theorem 3.1 A set S ⊆ Rn is bounded mixed binary convex quadratic representable

if and only if there exist convex quadratic regions Qi ⊆ Rn, i = 1, . . . , k, and polytopes

Pi ⊆ Rn, i = 1, . . . , k, such that

S =
k⋃

i=1

(Qi ∩ Pi). (3.2)

The characterization given in Theorem 3.1 is quite general in the sense that there

is no restriction on the structure of the convex quadratic regions that may appear in

the union (3.2). This is quite similar to what holds for ellipsoidal regions in Chapter 2,
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and indeed the fact that each region Qi ∩ Pi in (3.2) is bounded allows us to find

an extended formulation where each Qi appears as a binary slice of a global convex

quadratic region Q. In the case of ellipsoidal regions this level of generality still holds

even for unbounded regions. We will see in Section 3.5, where the bounded assumption

is removed, that although a decomposition of representable sets into a union (3.2) holds,

the convex quadratic regions that appear must share common structure.

In Section 3.3, we characterize sets that are binary convex quadratic representable,

i.e., where p = 0 is fixed in (3.1). In order to provide a characterization of such sets, we

need to remark on the geometry of convex quadratic sets in more detail. We make the

following observation and definition. Let Q ⊆ Rn be a convex quadratic region defined

by

Q = {x ∈ Rn | x>Qx+ h>x+ g ≤ 0},

where Q � 0. Since Q is symmetric, it is a fact of linear algebra that Rn = range(Q)⊕

ker(Q). Thus, we can decompose h = Qw+ v where v ∈ ker(Q) is uniquely determined.

We note that Q is an ellipsoidal region if and only if v = 0.

The pair Q, v defining Q is essential in understanding the geometry of Q. In this

vein, we say that two convex quadratic regions Q1,Q2 ⊆ Rn have the same shape if there

exists a positive semidefinite matrix Q, a vector v ∈ ker(Q), vectors wi, and scalars gi

such that

Qi = {x ∈ Rn | x>Qx+ (Qwi + v)>x+ gi ≤ 0}, i = 1, 2.

Geometrically, this means that Q1 and Q2 have the same structure, up to translation

and constant term. Note that having the same shape is a transitive property and thus

it makes sense for a collection of convex quadratic regions to have the same shape. We
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will establish the following result.

Theorem 3.2 A set S ⊆ Rn is binary convex quadratic representable if and only if

there exist convex quadratic regions Q1, . . . ,Qk ⊆ Rn with the same shape, and polyhedra

P1, . . . ,Pk ⊆ Rn with the same recession cone such that

S =
k⋃

i=1

(Qi ∩ Pi). (3.3)

In Section 3.4 we obtain an algebraic characterization of continuous convex quadratic

representable sets, i.e., where q = 0 is fixed in (3.1). This sort of algebraic description

is quite different from the geometric characterizations obtained prior to this. The com-

bination of extended continuous variables and unbounded regions creates a number of

difficulties. Part of this difficulty is due to the complexity of describing the projection

of semialgebraic sets. While methods such as Cylindrical Algebraic Decomposition may

be used to compute the projection of (3.1), these outputs give little insight into the re-

quirements that must be met for a set to be representable. Another difficulty is that we

are not able to use standard disjunctive extended formulations. This is due to the fact

that in general a convex quadratic region cannot be decomposed as the Minkowski sum

of a bounded region and a polyhedral cone, in contrast to both polyhedra and ellipsoidal

regions (see Chapter 2).

In order to overcome these difficulties, we design a method to explicitly compute

S := projn(Q ∩ P) for a general convex quadratic region Q ⊆ Rn+p and a polyhedron

P ⊆ Rn+p. A crucial step, stated in Proposition 3.7, is the construction of a ‘shadowing

skeleton’ of Q ∩ P , namely a finite set L of n-dimensional affine spaces that satisfy

projn(Q ∩ P) =
⋃

L∈L projn(Q ∩ L) ∩ projn(P ∩ L). The idea of this skeleton is a

general version of the projection method done in Chapter 2. The explicit computation of
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projn(Q∩P) leaves us with an algebraic description of S which we use to make a technical

definition of sets of Type 1 and Type 2. These definitions allow us to characterize

continuous convex quadratic representable sets as shown in Theorem 3.9.

In Section 3.5 we present an algebraic characterization for the general case of mixed

binary convex quadratic representable sets. Theorem 3.10 follows naturally from the

combination of our results in Section 3.2 and Section 3.4. It follows immediately from

Theorem 3.10 that mixed binary convex quadratic representable sets can be expressed as

a finite union of Qi∩Pi for convex quadratic regions Qi and polyhedron Pi. However, in

contrast to Theorem 3.1, the convex quadratic regionsQi that appear in a decomposition

share a common geometry. This compatibility requirement is captured by our definition

of sets with the same structure which follows from combining our definition of sets of

Type 1 and Type 2 with the notion of convex quadratic regions with the same shape.

In Section 3.6 we work towards a geometric characterization of mixed binary convex

quadratic representable sets. We derive obvious necessary conditions for a set to be

representable from Theorem 3.9 and Theorem 3.10, and explore whether these neces-

sary conditions are in fact sufficient. We conclude the section, and chapter, with open

questions, and an instructive example of a set that is not mixed binary convex quadratic

representable.

3.2 The Bounded Case

In this section we give a characterization of bounded mixed binary convex quadratic

representable sets, i.e., when the system Dw ≤ d in (3.1) describes a polytope.
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Proof.[Proof of Theorem 3.1] We prove sufficiency of the condition by giving an ex-

plicit extended formulation for a set S described by (3.2). It is similar to the proof

of Theorem 2.1. Assume that we are given a set S as in (3.2), where Qi = {x ∈

Rn | x>Qix+(hi)>x+gi ≤ 0} are convex quadratic regions and Pi = {x ∈ Rn | Aix ≤ bi}

are polytopes. We now introduce new continuous variables xi ∈ Rn and binary variables

δi ∈ {0, 1}, for i = 1, . . . , k, that will model the individual regions Qi ∩ Pi. Then S can

be described as the set of x ∈ Rn such that

x =
k∑

i=1

xi

Aixi ≤ δibi i = 1, . . . , k

k∑
i=1

δi = 1

k∑
i=1

(
(xi)>Qix

i + (hi)>xi + δigi

)
≤ 0

0 ≤ δi ≤ 1 i = 1, . . . , k

xi ∈ Rn, δi ∈ {0, 1} i = 1, . . . , k.

Now if δ1 = 1 the remaining δi must be 0. Then for each xi with i 6= 1, we have the

constraint Aixi ≤ 0 which has the single feasible point xi = 0 since Pi is a polytope.

The remaining constraints reduce to

x = x1

A1x1 ≤ b1

(x1)>Q1x
1 + (h1)>x1 + g1 ≤ 0

x1 ∈ Rn.
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This describes the set Q1 ∩ P1 exactly. The remaining regions follow symmetrically.

We note that the constraint
∑k

i=1

(
(xi)>Qix

i+(hi)>xi+δigi

)
≤ 0 describes a convex

quadratic region since it can be described as a quadratic inequality with defining matrix

a block diagonal matrix with blocks either 0 or Qi, and each Qi � 0.

We show that the linear system is bounded by demonstrating that its set of feasible

points is the graph of a linear transformation restricted to a polytope. Each system

Aixi ≤ δibi, 0 ≤ δi ≤ 1 is independent of any other xj, δj. Moreover, each system is

bounded in (xi, δi) as it is the convex hull of the polytope {xi ∈ Rn |Aixi ≤ bi} × {1}

and the origin. Then the set of feasible points in x1, . . . , xk, δ1, . . . , δk is just a Cartesian

product of bounded sets. Finally, the set of points x satisfying equation x =
∑k

i=1 x
i is

bounded since it is the image of this Cartesian product under a linear transformation.

Thus, S is bounded mixed binary convex quadratic representable.

The remainder of the proof is devoted to proving necessity of the condition. We are

given a convex quadratic region Q and a polytope P in Rn+p+q, and define

S̄ := Q∩ P ∩ (Rn+p × {0, 1}q),

S := projn(S̄).

We must show the existence of convex quadratic regions Qi ⊆ Rn, i = 1, . . . , k, and

polytopes Pi ⊆ Rn, i = 1, . . . , k, such that

S =
k⋃

i=1

(Qi ∩ Pi).

Claim 6. It is enough to prove the theorem in the case q = 0.

Proof of claim. Note that, using restrictions, we can write the set S in the form

S =
⋃

z̄∈{0,1}q
projn(S̄|z=z̄).



37

We first show that each restriction S̄|z=z̄ can be written as Q′ ∩ P ′ for some convex

quadratic region Q′ ⊆ Rn+p and polytope P ′ ⊆ Rn+p. Let z̄ ∈ {0, 1}q. We note

S̄|z=z̄ = Q|z=z̄ ∩P|z=z̄. A short algebraic verification shows that Q′ := Q|z=z̄ is a convex

quadratic region and P ′ := P|z=z̄ is a polytope.

Now assuming the theorem in the case q = 0, for each z̄ ∈ {0, 1}q we have projn(S̄|z=z̄) =

∪ti=1(Qi ∩ Pi). Since S is the finite union of such sets, the theorem follows. �

Claim 7. It is enough to prove the theorem in the case p = 1.

Proof of claim. Let Q ∩ P ⊆ Rn+p. We prove S = projn(Q ∩ P) has the desired

decomposition by induction on p. For this claim, we assume the base case, p = 1. Now

let p = k, and suppose the statement holds for p < k. Given Q∩P ⊆ Rn+k, by the base

case p = 1 we have

projn+k−1(Q∩ P) =
t⋃

i=1

(Qi ∩ Pi)

where each Qi is a convex quadratic region in Rn+k−1 and each Pi is a polytope in

Rn+k−1. Since the projection of a union is the union of projections we have

S = projn(Q∩ P) =
t⋃

i=1

projn(Qi ∩ Pi).

Then by induction hypothesis, we have

S =
t⋃

i=1

( si⋃
j=1

(Qi,j ∩ Pi,j)
)

where each Qi,j is a convex quadratic region in Rn and each Pi,j is a polytope in Rn. �

It remains to prove Theorem 3.1 in the case that we have a convex quadratic region

Q ⊆ Rn+1 and a polytope P ⊆ Rn+1. The following claim then completes the proof of

Theorem 3.1.
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Claim 8. Let Q ⊆ Rn+1 be a convex quadratic region described by

Q =
{

(x, y) ∈ Rn+1
∣∣∣
x
y


>Q q

q> γ

+

hx
hy


>x

y

+ g ≤ 0
}

and P ⊆ Rn+1 be a polytope. Then there exist convex quadratic regions Qi ⊆ Rn,

i = 1, . . . , k, and polytopes Pi ⊆ Rn, i = 1, . . . , k, such that (3.2) holds.

Proof of claim. We first claim that projn(Q ∩ P) = ∪H∈Hprojn(Q ∩ P ∩ H) where H

is a finite set of hyperplanes. Suppose P is defined as the intersection H+
1 ∩ · · · ∩ H+

s

for half-spaces H+
i . Let H be the subset of hyperplanes H ∈ {H1, . . . , Hs} such that

en+1 /∈ lin(H). In the case that γ 6= 0, define the hyperplane H0 := {(x, y) ∈ Rn+1 | q>x+

γy = −1
2
hy} and include H0 in the set H. This hyperplane has the property that for

any fixed x̄ ∈ Rn, the unique point (x̄, ȳ) ∈ H0 minimizes the univariate quadratic

polynomial q(x̄, y) defining Q|x=x̄. Moreover, en+1 /∈ lin(H0).

We claim that projn(Q ∩ P) = ∪H∈Hprojn(Q ∩ P ∩ H). Let x̄ ∈ projn(Q ∩ P).

Define Lx̄ = {(x̄, y) ∈ Rn+1 | (x̄, y) ∈ Q∩P}. Since P is a polytope, Lx̄ is a non-empty

line segment. Consider the endpoints, possibly both the same point, of Lx̄. If either

endpoint lies on the boundary of P then we are done as this point must lie on some

H ∈ H. Otherwise, both endpoints lie on the boundary of Q and are thus roots of the

quadratic polynomial q(x̄, y). Then the midpoint of Lx̄ lies on H0.

It remains to show that for each H ∈ H, there exists a convex quadratic region

QH and a polytope PH such that projn(Q ∩ P ∩ H) = QH ∩ PH . Let H = {(x, y) ∈

Rn+1 | a>x + αy = b} and note that α 6= 0 since en+1 /∈ lin(H). It follows that

projn(Q∩P ∩H) = projn(Q∩H)∩ projn(P ∩H) as there is a unique point (x, y) ∈ H

lying over any x ∈ Rn.
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We now show that QH := projn(Q ∩ H) is a convex quadratic region and PH :=

projn(P ∩H) is a polytope. The polyhedron PH is clearly a polytope since P is a poly-

tope. Define the invertible linear transformation TA : Rn+1 → Rn+1 by multiplication

on the left by the matrix

A =

In 0

a> α

 .

Then we have that

QH = projn(Q∩H) = TA(Q)|y=b.

Note that QH is a convex quadratic region as it obtained from Q by an invertible linear

transformation followed by fixing a single variable. �

�

3.3 The Binary Case

In this section we characterize binary convex quadratic representable sets, i.e., when

p = 0 is fixed in (3.1). We refer the reader back to the introduction for the definition of

convex quadratic regions with the same shape. Before proving Theorem 3.2 we state a

number of lemmas that detail the interaction of binary variables and convex quadratic

regions.

Lemma 3.3 Let Q ⊆ Rn+q be a convex quadratic region. Then for all z̄ ∈ {0, 1}q, the

sets Q|z=z̄ are convex quadratic regions with the same shape.
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Proof. Assume that Q is given by

Q =
{

(x, z) ∈ Rn+q
∣∣∣
x
z


> Q R

R> Q̄


x
z

+

hx
hz


>x

z

+ g ≤ 0
}
.

Then for any z̄ ∈ {0, 1}q we have

Q|z=z̄ = {x ∈ Rn | x>Qx+ (2Rz̄ + hx)>x+ g + h>z z̄ + z̄>Q̄z̄ ≤ 0}.

Now since Q is a convex quadratic region, the matrix Q must be positive semidefinite.

Moreover, the matrix Q is clearly independent of the choice of z̄ ∈ {0, 1}q.

It remains to show that the vector 2Rz̄+hx decomposes into Qw+v where v ∈ ker(Q)

is independent of z̄. We claim that 2Rz̄ ∈ range(Q). Decompose 2Rz̄ = Qw + v for a

unique vector v ∈ ker(Q). If v 6= 0, then for λ < − z̄>Q̄z̄
v>v

we haveλv
z̄


> Q R

R> Q̄


λv
z̄

 = λ2v>Qv + 2z̄>R>(λv) + z̄>Q̄z̄ = λv>v + z̄>Q̄z̄ < 0,

a contradiction. Since 2Rz̄ ∈ range(Q), the vector v depends only on hx and is thus

independent of z̄ ∈ {0, 1}q. �

The next lemma can be seen as a converse of Lemma 3.3. We denote by ei ∈ Rk the

ith standard basis vector of Rk.

Lemma 3.4 Let Q1, . . . ,Qk ⊆ Rn be convex quadratic regions with the same shape.

Then there exists a convex quadratic region Q ⊆ Rn+k such that Q|z=ei = Qi for each

1 ≤ i ≤ k.

Proof. Suppose that each Qi is described by

Qi = {x ∈ Rn | x>Qx+ (2Qwi + v)>x+ gi ≤ 0},
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where Q � 0 and v ∈ ker(Q). Set γi ≥ k(wi)>Qwi and hi = gi − γi, and define

R :=

(
Qw1 | · · · | Qwk

)
, Λ := diag(γ1, . . . , γk), and h> := (v>, h1, . . . , hk). We

claim that

Q :=
{

(x, z) ∈ Rn+k
∣∣∣
x
z


> Q R

R> Λ


x
z

+ h>

x
z

 ≤ 0
}

is a convex quadratic region with the desired restriction property. Then

Q|z=ei = {x ∈ Rn | x>Qx+ (2Rei + v)>x+ hi + γi ≤ 0}

and by construction 2Rei = 2Qwi and hi + γi = gi. Thus, Q|z=ei = Qi.

We now show that Q is a convex quadratic region by demonstrating that matrix

defining Q is positive semidefinite. Let (x, z) ∈ Rn+k. We have thatx
z


> Q R

R> Λ


x
z

 = x>Qx+ 2z>R>x+
k∑

i=1

γiz
2
i

= x>Qx+
k∑

i=1

(
2(ziQw

i)>x+ γiz
2
i

)
=

1

k

k∑
i=1

(
x>Qx+ 2(Qkziw

i)>x+ kγiz
2
i

)
.

We show by choice of γi that each summand x>Qx+2(Qkziw
i)>x+kγiz

2
i is nonnegative

by completing the square. Note

x>Qx+ 2(Qkziw
i)>x+ kγiz

2
i = (x+ kziw

i)>Q(x+ kziw
i) + (kγi − k2(wi)>Qwi)z2

i .

Now since γi ≥ k(wi)>Qwi we have expressed each summand as the sum of two non-

negative numbers. In particular, each x>Qx + 2(Qkziw
i)>x + kγiz

2
i ≥ 0 and Q is a

convex quadratic region. �
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We note that Lemma 3.4 shows that a union of convex quadratic regions with the

same shape have a binary lift to a convex quadratic region provided we intersect it with

an appropriate polyhedron.

The proof of Theorem 3.2 is now a simple combination of the preceding lemmas.

We note that for the construction of the extended formulation, we cannot use a system

similar to that which appeared in Theorem 3.1 as it requires additional continuous

variables.

Proof.[Proof of Theorem 3.2] We start with sufficiency of the condition. Assume we

have convex quadratic regions Q1, . . . ,Qk ⊆ Rn with the same shape, and polyhedra

P1, . . . ,Pk ⊆ Rn with the same recession cone and let S be defined by (3.3). Then by

Lemma 3.4, we obtain a convex quadratic region Q ⊆ Rn+k such that Q|z=ei = Qi for

each 1 ≤ i ≤ k. We use a standard technique to obtain a polyhedron P ⊆ Rn+k such

that P|z=ei = Pi for 1 ≤ i ≤ k and P|z=z̄ = ∅ for z̄ ∈ {0, 1}k − {e1, . . . , ek}. This

technique is known as a Big-M formulation, and the existence of such a polyhedron is

proved in Proposition 6.1 in [22]. It follows that S = projn(Q∩ P ∩ (Rn × {0, 1}k)).

It remains to show necessity. Let Q ⊆ Rn+q be a convex quadratic region and

P ⊆ Rn+q be a polyhedron. Let S := projn(Q∩ P ∩ (Rn × {0, 1}q)). Then

S =
⋃

z̄∈{0,1}q
(Q∩ P)|z=z̄.

Choose z̄ ∈ {0, 1}q and note that (Q∩P)|z=z̄ = Q|z=z̄ ∩ P|z=z̄. Then by Lemma 3.3 all

Q|z=z̄ are convex quadratic regions with the same shape. Since each polyhedron P|z=z̄

has recession cone independent of z̄ the theorem follows. �
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3.4 The Continuous Case

In this section we find an algebraic characterization of continuous convex quadratic

representable sets, i.e., where q = 0 is fixed in (3.1). In the first part of this section

we consider a convex quadratic region Q ⊆ Rn+p and a polyhedron P ⊆ Rn+p. We

proceed by computing explicitly the projection projn(Q ∩ P) and in doing so come to

the definitions for sets of Type 1 and Type 2. In particular, each set of Type 1 or

Type 2 can be written as a finite union of Qi ∩ Pi for convex quadratic regions Qi and

polyhedra Pi. These definitions will be sufficient conditions for a set to be continuous

convex quadratic representable. In order to show this, we demonstrate that every set of

Type 1 or Type 2 has a lift to Q ∩ P ⊆ Rn+p for some convex quadratic region Q and

polyhedron P .

Assume now that we are given a convex quadratic region Q ⊆ Rn+p, a polyhedron

P ⊆ Rn+p, and wish to compute S := projn(Q∩P). We begin by applying an invertible

affine transformation to Rn+p that brings Q to a normalized form.

Lemma 3.5 Let Q ⊆ Rn+p be a convex quadratic region defined by

Q =
{

(x, y) ∈ Rn+p
∣∣∣
x
y


> Q R

R> S


x
y

+

hx
hy


>x

y

+ g ≤ 0
}
.

Then there exists an invertible affine transformation T : Rn+p → Rn+p that takes Q to

a convex quadratic region Q′ ⊆ Rn+p such that projn(Q) = projn(Q′) and

Q′ =
{

(x, y, t) ∈ Rn+k+(p−k)
∣∣∣

x

y

t


>

Q′ 0 0

0 Ik 0

0 0 0



x

y

t

+


h′

0

l


>

x

y

t

+ g′ ≤ 0
}
,

(3.4)
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where k = rank(S), Ik is the k × k identity matrix, and either l = e1 or l = 0.

Proof. We will define T as the composition of three invertible affine transformations.

Since S � 0, there exists an orthogonal p × p matrix U such that S = U>ΛU where

Λ = diag(λ1, . . . , λp) and λ1 ≥ · · · ≥ λp ≥ 0. Suppose the first k eigenvalues of S are

positive, and define V = diag(
√
λ1, . . . ,

√
λk, 1, . . . , 1). Then S = U>V EV U where E is

a diagonal matrix whose first k diagonal entries are 1 and the remaining p − k entries

are 0.

Define the transformation T ′ : Rn+p → Rn+p by multiplication on the left by the

matrix

A =

I 0

0 V U

 .

Consider the change of coordinates defined by (x, u)> = A(x, y)>. Then T ′(Q) is de-

scribed by

{
(x, u) ∈ Rn+p

∣∣∣
x
u


> Q RU>V −1

V −1UR> E


x
u

+

 hx

V −1Uhy


>x

u

+ g ≤ 0
}
.

Note now that the matrix defining the quadratic region T ′(Q) is positive semidefinite.

This implies that any diagonal entry being 0 forces the entire corresponding row and

column to be 0 as well. Let B denote the first k columns of RU>V −1. Then

 Q RU>V −1

V −1UR> E

 =


Q B 0

B> Ik 0

0 0 0

 .
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Define T ′′ : Rn+p → Rn+p by multiplication on the left by the invertible matrix

C =


In 0 0

B> Ik 0

0 0 Ip−k

 .

Consider the change of coordinates defined by (x, v, w)> = C(x, u)>. Then T ′′(T ′(Q)) is

described by

{
(x, v, w) ∈ Rn+k+(p−k)

∣∣∣

x

v

w


>

Q′ 0 0

0 Ik 0

0 0 0



x

v

w

+


h′

hv

hw


>

x

v

w

+ g ≤ 0
}
,

where Q′ := Q−BB>, h′ := hx −B(V −1Uhy)+, and

hv
hw

 := V −1Uhy.

Finally, define the affine transformation L : Rn+p → Rn+p by L(x, v, w) = H(x, v, w)>+

r where

H =


In 0 0

0 Ik 0

0 0 M

 ,

and M is either an invertible matrix such that (M−1)>hw = e1 if hw 6= 0 or M = Ip−k if

hw = 0, and r = (0,−1
2
hv, 0)>. We now change coordinates (x, y, t)> = H(x, v, w)> + r.

Define T = L ◦ T ′′ ◦ T ′. Then T is an invertible affine transformation that takes Q

to Q′ := T (Q) described by (3.4). Note that T is determined by multiplication by a

matrix whose first n rows are

(
In| 0

)
and a vector r whose first n entries are zero.

This implies that projn(Q) = projn(Q′) and the proof is complete. �

Note that by Lemma 3.5, without loss of generality, we may assume that Q is de-

scribed by (3.4). We can further simplify the structure of Q by projecting out all
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variables ti that do not explicitly appear in the description of Q.

Lemma 3.6 Assume that Q ⊆ Rn+p is a convex quadratic region described by (3.4)

and that P ⊆ Rn+p is a polyhedron. If l = 0 then projn+k(Q ∩ P) = Q′ ∩ P ′ where

P ′ = projn+k(P) and Q′ is described by

{
(x, y) ∈ Rn+k

∣∣∣
x
y


>Q 0

0 Ik


x
y

+

h
0


>x

y

+ g ≤ 0
}
. (3.5)

If l = e1, then projn+k+1(Q∩P) = Q′∩P ′ where P ′ = projn+k+1(P) and Q′ is described

by

{
(x, y, t) ∈ Rn+k+1

∣∣∣

x

y

t


>

Q 0 0

0 Ik 0

0 0 0



x

y

t

+


h

0

1


>

x

y

t

+ g ≤ 0
}
. (3.6)

Proof. Let r = k in the case of (3.5) and r = k + 1 in the case of (3.6). It suffices to

show that projn+r(Q ∩ P) = projn+r(Q) ∩ projn+r(P). Then for any x̄ ∈ projn+r(Q) ∩

projn+r(P) there exists s1, s2 ∈ Rp−r such that (x̄, s1) ∈ Q and (x̄, s2) ∈ P . Since

en+r+j ∈ lin(Q) for each j ≥ 1 we have (x̄, s2) ∈ Q and hence x̄ ∈ projn+r(Q ∩ P). The

reverse containment is clear. �

Then by Lemma 3.6, without loss of generality, we may assume that Q is described

by either (3.5) or (3.6).

We now construct a family of affine spaces that will simplify the computation of

projn(Q ∩ P). These affine spaces will form a sort of skeleton of the region Q ∩ P that

will contain all the essential information of projn(Q ∩ P). We will make use of the

following observations whose short proofs we include for completion.
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Observation 4 Let q(x) = x>Qx + h>x + g be a quadratic polynomial in n variables

where Q is a positive semidefinite matrix. Then q(x) has a minimum on Rn if and only

if h ∈ range(Q). In this case, the set of minimizers of q(x) is {x ∈ Rn | 2Qx+ h = 0}.

Proof. Assume h /∈ range(Q). Then since Q is symmetric, we can write h = Qw + v

with Qv = 0 and v 6= 0. Consider x(t) = −tv for t ∈ R. Then we have

q(x(t)) = h>x(t) + g = −tv>v + g.

Since v 6= 0, we see that q(x(t)) → −∞ as t → +∞. Thus, q(x) has no minimum on

Rn.

We now prove the reverse direction. Since Q is positive semidefinite, the function

q(x) attains its minimum at x̄ if and only if x̄ solves ∇q(x) = 2Qx+ h = 0. This set is

nonempty since h ∈ range(Q). �

Observation 5 Let Q = {x ∈ Rn | x>Qx + h>x + g ≤ 0} be a non-empty convex

quadratic region. Then

rec(Q) = {r ∈ Rn | Qr = 0, h>r ≤ 0}.

Proof. Let r ∈ Rn such that Qr = 0 and h>r ≤ 0. Fix x̄ ∈ Q and λ ≥ 0. Then

(x̄ + λr)>Q(x̄ + λr) + h>(x̄ + λr) + g = x̄>Qx̄ + h>x̄ + g + λh>r ≤ 0 and x̄ + λr ∈ Q.

It follows that r ∈ rec(Q).

Assume now that r ∈ Rn either satisfies Qr 6= 0 or Qr = 0 and h>r > 0. Fix x̄ ∈ Q.

Then for any λ ≥ 0 we have

(x̄+ λr)>Q(x̄+ λr) + h>(x̄+ λr) + g = λ2r>Qr + λ(h+ 2Qx̄)>r + x̄>Qx̄+ h>x̄+ g,

a polynomial in λ. Since Q � 0, as λ→∞, this polynomial increases indefinitely. Thus,

r /∈ rec(Q). �
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Proposition 3.7 Assume that Q ⊆ Rn+p is a convex quadratic region described by (3.5)

or (3.6) and that P ⊆ Rn+p is a polyhedron. Then either projn(Q ∩ P) = projn(P) or

there exists a finite collection L of affine spaces such that

projn(Q∩ P) =
⋃
L∈L

projn(Q∩ P ∩ L). (3.7)

Moreover, each L ∈ L has dimension n and can be described by a system Fx + Gy = d

where G is an invertible p× p matrix.

Proof. Assume first that Q is described by (3.5) and let

q(x, y) =

x
y


>Q 0

0 Ik


x
y

+

h
0


>x

y

+ g.

Suppose that P = {(x, y) ∈ Rn+p | (ai)>x + (bi)>y ≤ ci for all i ∈ I} where I is some

finite index set. Define J to be the collection of subsets J ⊆ I with |J | ≤ p and such

that the set {bi}i∈J is linearly independent. For each J ∈ J we construct an affine space

LJ to include in L. We construct LJ so that for every fixed x̄ ∈ Rn, the unique point

(x̄, yJx̄ ) ∈ LJ minimizes q(x̄, y) over the affine space determined by setting to equality

the inequalities indexed by J and fixing x = x̄.

We first note that ∅ ∈ J trivially. In the case that J = ∅, we define LJ = {(x, y) ∈

Rn+p | y = 0}. Then for any fixed x̄ ∈ Rn the point y = 0 minimizes q(x̄, y) on Rp. We

will have need to refer to following construction again, so we emphasize it here.

Construction of a Minimizing Affine Space. Consider a nonempty set J ∈ J , say

|J | = m, and define R,U, and l to be the matrices with rows (ai)>, (bi)>, and ci for

i ∈ J , respectively. Consider the affine space KJ defined by Rx+ Uy = l.

Since m ≤ p we know U has rank m and we can partition the y variables into new

variables u and v where the v variables correspond to columns of U that define a full
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rank submatrix. This division into (u, v) ∈ Rp−m × Rm causes KJ to be described by

Rx + Su + Tv = l where T is invertible. Substitute v = T−1(l − Rx − Su) into the

polynomial q(x, u, v) and fix a point x̄ ∈ Rn to obtain the polynomial q(x̄, u) defined by

u>(I + S>(T−1)>T−1S)u+ 2(S>(T−1)>T−1Rx̄+ 2S>(T−1)>T−1l)>u+ g(x̄).

Now since I+S>(T−1)>T−1S is positive definite, by Observation 4, the unique minimum

of q(x̄, u) is the point satisfying

2(I + S>(T−1)>T−1S)u+ 2(S>(T−1)>T−1Rx̄− S>(T−1)>T−1l) = 0.

Note that this minimum depends linearly on x̄. We thus define LJ to be the affine space

determined by

S>(T−1)>T−1Rx+ (I + S>(T−1)>T−1S)u = S>(T−1)>T−1l

Rx+ Su+ Tv = l.

(3.8)

Since I+S>(T−1)>T−1S and T are invertible matrices, LJ is an affine space of dimension

n and is described by a system Fx+Gy = d where G is an invertible p× p matrix. This

marks the end of the construction. †

Set

L = {LJ | J ∈ J }. (3.9)

We claim that L satisfies (3.7). It suffices to show that for any point x̄ ∈ projn(Q∩P),

there exists ȳ ∈ Rp and L ∈ L such that (x̄, ȳ) ∈ Q ∩ P ∩ L.

Let x̄ ∈ projn(Q ∩ P). Then there exists y0 ∈ Rp such that (x̄, y0) ∈ Q ∩ P . This

implies that q(x̄, y0) ≤ 0 and since q(x̄, 0) minimizes q(x̄, y) on Rp we have (x̄, 0) ∈ Q as

well. If y0 = 0, we may choose LJ corresponding to J = ∅ and we are done. Otherwise,

the line segment joining (x̄, y0) and (x̄, 0) is completely contained in Q. Then by moving
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along this line segment from (x̄, y0) toward (x̄, 0) and inside P we either reach the point

(x̄, 0) or stop at a point (x̄, y1) ∈ P . Then there exists an inequality (ai)>x+(bi)>y ≤ ci

with bi 6= 0 that is satisfied at equality by (x̄, y1) and is not satisfied by (x̄, 0). We then

set J = {i} and continue this sliding process recursively.

Assume that we are at the point (x̄, yk) with current index set J . We now consider

the line segment joining (x̄, yk) and (x̄, yJx̄ ). Since (x̄, yJx̄ ) is the minimizer of q(x̄, y) on

KJ , this line segment is contained in Q ∩ KJ . Again, slide the point (x̄, yk) toward

(x̄, yJx̄ ) inside P and we either reach the point (x̄, yJx̄ ) or stop at a point (x̄, yk+1) ∈ P .

Then there exists an inequality (aj)>x + (bj)>y ≤ cj with bj /∈ Span({bi}i∈J) that is

satisfied at equality by (x̄, yk+1) and is not satisfied by (x̄, yJx̄ ). We update J to include

j and repeat this process.

The end result is that we find a point (x̄, ȳ) ∈ Q ∩ P ∩ LJ for some J ∈ J . In fact,

either we hit a point (x̄, yJx̄ ) at some iteration or after applying the procedure p times

we restrict ourselves to an n-dimensional affine space, which by construction must be in

L.

Now assume Q is described by (3.6). There is one degenerate case to consider.

Note that for any fixed x̄ ∈ Rn we have rec(Q|x=x̄) = {(0,−λ) ∈ Rp+1 | λ ≥ 0} by

Observation 5. Moreover, for any (x̄, ȳ) ∈ Rn+p there exists t̄ ∈ R such that (x̄, ȳ, t̄) ∈ Q.

To see this, simply take t̄ ≤ −(x̄>Qx̄+ȳ>ȳ+h>x̄+g). Suppose that (0,−1) ∈ rec(P|x=x̄)

for every x̄ ∈ Rn. We claim that projn(Q ∩ P) = projn(P). Let x̄ ∈ projn(P) so that

there exists (ȳ, t̄) ∈ Rp+1 such that (x̄, ȳ, t̄) ∈ P . Then, by the note above, for sufficiently

large λ ≥ 0 we have (x̄, ȳ, t̄− λ) ∈ Q ∩ P and x̄ ∈ projn(Q∩ P).

The remaining case when Q is described by (3.6) and (0,−1) /∈ rec(P|x=x̄) for any

x̄ ∈ Rn follows similarly to the case where Q is described by (3.5). We make note of
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the necessary changes in the proof. Adjust J to be the set of subsets J ⊆ I such that

|J | ≤ p+ 1 and where KJ is described by a system Rx+ Uy + V t = l where (U | V ) is

of full rank and at least one entry of V is negative. This guarantees that for each fixed

x̄ ∈ Rn the polynomial q(x̄, y) has a minimum on KJ |x=x̄, the same condition that we

needed before. Note that in this case the empty set is not a member of J .

We demonstrate how to modify the first step of the recursive descent described in

the previous case. After this initial step the recursion continues exactly as in the general

step detailed above. Let x̄ ∈ projn(Q ∩ P). Then there exists (y0, t0) ∈ Rp such

that (x̄, y0, t0) ∈ Q ∩ P . Since (0,−1) /∈ rec(P|x=x̄), the ray based at (x̄, y0, t0) and

directed along (0, 0,−1) cannot be completely contained in P . In particular, moving

in the direction (0, 0,−1) from the point (x̄, y0, t0) and inside P we stop at a point

(x̄, y1, t1) ∈ P . Then there exists an inequality (ai)>x + (bi)>y + vit ≤ ci with vi < 0

that is satisfied at equality by (x̄, y1, t1). We now set J = {i} and the recursion process

continues identically as before. �

The family L of affine spaces defined in Proposition 3.7 allows us to explicitly compute

the set projn(Q∩ P). We do so by considering each set Q∩ P ∩ L in turn. In the next

lemma we will see that for each L ∈ L, the projection projn(Q∩ P ∩ L) = QL ∩ PL for

some convex quadratic region QL ⊆ Rn and polyhedron PL ⊆ Rn. This implies that

the set projn(Q ∩ P) is a finite union of the sets QL ∩ PL. However, in contrast to

Theorem 2.1, the QL and PL appearing in the projection cannot be arbitrary. We will

see that they share a common structure. An understanding of this structure is essential

to finding an extended formulation and thus obtaining a full algebraic characterization.

This compatibility requirement is captured in our definition of sets of Type 1 and Type
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2.

From here on, we compute an algebraic description of projn(Q ∩ P) where Q is

described by (3.5) or (3.6). The region resulting from projn(Q∩P) in the case (3.5) will

be called a set of Type 1 and in the case of (3.6) a set of Type 2.

We are thus interested in computing projn(Q∩P ∩ L) where L ∈ L. We claim that

projn(Q∩P ∩L) = projn(Q∩L)∩ projn(P ∩L). Let x̄ ∈ projn(Q∩P)∩ projn(P ∩L).

Then there exists y1, y2 ∈ Rp such that (x̄, y1) ∈ Q∩L and (x̄, y2) ∈ P ∩L. Now since L

is defined by Fx+Gy = d with G an invertible p× p matrix, we have yi = G−1(d−Fx̄)

for i = 1, 2. In particular, y1 = y2 and we have that x̄ ∈ projn(Q∩ P ∩ L). The reverse

containment is obvious.

Therefore, a description of the sets projn(Q ∩ L) and projn(P ∩ L) is of particular

interest to us as they serve as the base regions making up continuous convex quadratic

representable sets. We define two functions f1, f2 that take as input a convex quadratic

region Q of the form (3.5) or (3.6), respectively, and a special n-dimensional affine space

L and output a convex quadratic region, which we will show to be the projection onto

Rn of the set Q∩ L.

LetQ be a convex quadratic region described by (3.5) and L an affine space described

by Fx + Gy = d with G an invertible p× p matrix. We define f1[Q, L] to be the set of

x ∈ Rn satisfying

x>(Q+ F>(G−1)>G−1F )x+ (h− 2F>(G−1)>G−1d)>x+ d>(G−1)>G−1d+ g ≤ 0.

LetQ be a convex quadratic region described by (3.6) and L an affine space described

by Fx+G(y, t)> = d where G is an invertible (p+1)×(p+1) matrix. We define f2[Q, L]
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to be the set of x ∈ Rn satisfying

x>(Q+ F>(G−1)>EkG
−1F )x+ (h− F>(G−1)>ek+1 − 2F>(G−1)>EkG

−1d)>x

+d>(G−1)>EkG
−1d+ ((G−1)>ek+1)>d+ g ≤ 0,

where Ek is the (k + 1)× (k + 1) matrix with principal k × k minor the identity matrix

and zero elsewhere. We note that f1[Q, L] and f2[Q, L] are convex quadratic regions

in Rn, since the matrices defining them are each the sum of two positive semidefinite

matrices.

Assume now that Q is described by (3.5). We show that projn(Q ∩ L) = f1[Q, L].

Define the invertible linear transformation TA : Rn+p → Rn+p by multiplication on the

left by the matrix

A =

In 0

F G

 .

Then, we have that projn(Q ∩ L) = TA(Q)|y=d = f1[Q, L]. A similar proof shows that

projn(Q∩ L) = f2[Q, L] when Q is described by (3.6).

Similarly, we define a function Π that takes as input a polyhedron P in Rn+r and

a special n-dimensional affine space and outputs a polyhedron in Rn. Let P = {x ∈

Rn+r | (ai)>x+(bi)>y ≤ ci for all i ∈ I} be a polyhedron and L an affine space described

by Fx+Gy = d with G an invertible r×r matrix. We define Π[P , L] to be the polyhedron

{x ∈ Rn | (ai)>x+ (bi)>G−1(d− Fx) ≤ ci for all i ∈ I}.

It is immediate from the substitution y = G−1(d − Fx) that projn(P ∩ L) = Π[P , L].

Thus, we have established the following lemma.

Lemma 3.8 Let Q ⊆ Rn+p be a convex quadratic region given by (3.5) or (3.6) and

P ⊆ Rn+p a polyhedron. Let L be the family defined in Proposition 3.7. For each L ∈ L
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define PL = Π[P , L] and either QL = f1[Q, L] in the case of (3.5), or QL = f2[Q, L] in

the case of (3.6). Then

projn(Q∩ P) =
⋃
L∈L

QL ∩ PL.

We can use the algebraic description from Lemma 3.8 to complete our characteriza-

tion. We are now ready for our technical definitions of Type 1 and Type 2.

Let S ⊆ Rn. We say that S is a set of Type 1 if there exists a convex quadratic

region Q̄ = {x ∈ Rn | x>Qx+ h>x+ g ≤ 0}, an integer k ≥ 0, a finite index set I, and

vectors (ai, bi, ci) ∈ Rn+k+1 for each i ∈ I with the following compatibility structure.

Let J be the collection of subsets J ⊆ I with |J | ≤ k such that the set {bi}i∈J

is linearly independent. Then for each nonempty J ∈ J we define the affine space

LJ ⊆ Rn+k to be the output of the construction of a minimizing affine space found in

the proof of Proposition 3.7. These objects are required to satisfy

S = (Q̄ ∩i∈I {x ∈ Rn | (ai)>x ≤ ci})
⋃
J∈J

(QLJ
∩ PLJ

)

where each PLJ
= Π[P , LJ ] and each QLJ

= f1[Q, LJ ].

The definition of a set of Type 2 is exactly as above, except that S is required to

satisfy

S =
⋃
J∈J

(QLJ
∩ PLJ

)

where each PLJ
= Π[P , LJ ] and each QLJ

= f2[Q,LJ ].

Theorem 3.9 Let S ⊆ Rn. Then S is continuous convex quadratic representable if and

only if S is a set of Type 1 or Type 2.

Proof. Assume first that Q ⊆ Rn+p is a convex quadratic region and P ⊆ Rn+p is a

polyhedron. Then Lemma 3.5, Lemma 3.6, Proposition 3.7, and Lemma 3.8 show that

S is of Type 1 or Type 2.
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Assume now that S is a set of Type 1. Consider the convex quadratic region Q ⊆

Rn+k described by (3.5), i.e.,x
y


>Q 0

0 Ik


x
y

+

h
0


>x

y

+ g ≤ 0,

and the polyhedron P ⊆ Rn+k described as

{(x, y) ∈ Rn+k | (ai)>x+ (ui)>y ≤ ci for all i ∈ I}.

Then Proposition 3.7 and Lemma 3.8 show that S = projn(Q∩ P).

The case of S being a set of Type 2 is identical to the case of Type 1, save for the

construction of Q satisfying (3.6) instead of (3.5). �

3.5 The Mixed Binary Case

In this section, we combine the results of Sections 3.3 and 3.4 to state a characterization

theorem for sets S ⊆ Rn that are mixed binary convex quadratic representable.

Let S ⊆ Rn be a set of Type 1 (or 2). Then S is determined by the data of

a convex quadratic region Q̄ ⊆ Rn, an integer k ≥ 0, an index set I, and vectors

(ai, bi, ci) ∈ Rn+k+1 for i ∈ I.

Given two sets S, S ′ ⊆ Rn both of Type 1 (resp. both of Type 2), we say that S

and S ′ have the same structure if the data determining S and S ′ as sets of Type 1

(resp. Type 2) can be chosen so that

(i) k = k′,

(ii) Q̄ and Q̄′ have the same shape,
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(iii) I = I ′ and (ai, bi) = (a′i, b′i) for each i ∈ I.

We can now state and prove our characterization theorem.

Theorem 3.10 Let S ⊆ Rn. Then S is mixed binary convex quadratic representable if

and only if there exist sets S1, . . . , Sr ⊆ Rn all of Type 1 (or all of Type 2) with the same

structure, such that S = ∪ri=1Si.

Proof. Assume first that there exist sets S1, . . . , Sr ⊆ Rn of Type 1 all with the same

structure such that S = ∪ri=1Si. Then by Theorem 3.9 there exist convex quadratic

regions Qi ⊆ Rn+k and polyhedra Pi ⊆ Rn+k for i = 1, . . . , r such that Si = projn(Qi ∩

Pi). Moreover, it follows from the construction given in the proof of Theorem 3.9 that

all the Qi have the same shape and all Pi have the same recession cone. It follows

by applying Theorem 3.2 to ∪ri=1(Qi ∩ Pi) that there exists a convex quadratic region

Q ⊆ Rn+k+r and a polyhedron P ⊆ Rn+k+r such that

r⋃
i=1

(Qi ∩ Pi) = projn+k(Q∩ P ∩ (Rn+k × {0, 1}r)).

Now,

projn(
r⋃

i=1

(Qi ∩ Pi)) =
r⋃

i=1

projn(Qi ∩ Pi) =
r⋃

i=1

Si = S.

In particular, S is mixed binary convex quadratic representable. The proof for sets of

Type 2 follows similarly.

For the reverse direction, let Q ⊆ Rn+p+q be a convex quadratic region and P ⊆

Rn+p+q be a polyhedron and set

S := projn(Q∩ P ∩ (Rn+p × {0, 1}q)).
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Then by allowing z̄ to vary over {0, 1}q and Lemma 3.3 we have

S =
⋃

z̄∈{0,1}q
projn(Q|z=z̄ ∩ P|z=z̄),

where each Q|z=z̄ has the same shape and each P|z=z̄ has the same recession cone. We

use the following technical claim to complete the proof of the theorem.

Claim 9. Let Q,Q′ ⊆ Rn+p be two convex quadratic regions with the same shape

and P ,P ′ ⊆ Rn+p be polyhedra with the same recession cone. Then projn(Q ∩ P) and

projn(Q′ ∩ P ′) are both sets of Type 1 (or both sets of Type 2) with the same structure.

Proof of claim. Let S = projn(Q ∩ P) and S ′ = projn(Q′ ∩ P ′). We first normalize Q

and Q′ as in Lemma 3.5. Note that an invertible affine transformation takes two convex

quadratic regions with the same shape to two convex quadratic regions with the same

shape. Similarly, an invertible transformation preserves equality of the recession cones

of two polyhedron.

Thus, we can assume that Q and Q′ have the same shape and are described by (3.4).

We can now apply Lemma 3.6 and further assume that Q and Q′ are both described

by (3.5), or both by (3.6), and still having the same shape. Moreover, since projn+k(rec(P)) =

rec(projn+k(P)) we may still assume that P and P ′ have the same recession cone.

Assume now that Q and Q′ are described by (3.5) having the same shape and that

P and P ′ have the same recession cone. It is well known that there exists a matrix

M ∈ Rm×(n+k) and vectors r, r′ ∈ Rm such that P = {z ∈ Rn+k | Mz ≤ r} and

P ′ = {z ∈ Rn+k | Mz ≤ r′}. It now follows that S and S ′ are both sets of Type 1 (or

both of Type 2) with the same structure. �

By Claim 9, it follows that the sets projn(Q|z=z̄ ∩ P|z=z̄) are all sets of Type 1 (or

all sets of Type 2) with the same structure. �
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3.6 Toward a Geometric Characterization

The algebraic characterizations in Section 3.4 of continuous convex quadratic repre-

sentable sets and in Section 3.5 of mixed binary convex quadratic representable sets

lead to a natural question. Are there geometric conditions that characterize continu-

ous and mixed binary convex quadratic representable sets? In this section, we focus

on what these algebraic characterizations imply concerning a geometric description of

representable sets.

Consider a continuous convex quadratic representable set S ⊆ Rn. As a consequence

of Theorem 3.9, there exist convex quadratic regions Qi ⊆ Rn and polyhedra Pi ⊆ Rn

for i = 1, . . . , k such that S = ∪ki=1Qi ∩ Pi. Since S is representable it can be realized

as the projection of a convex set which implies that S must be convex as well.

It is unclear whether these two obvious necessary conditions are in fact sufficient as

well. This leads us to the following question.

Question 3.11 Let S ⊆ Rn. Is it true that S is continuous convex quadratic repre-

sentable if and only if S is convex and there exist convex quadratic regions Qi ⊆ Rn and

polyhedra Pi ⊆ Rn for i = 1, . . . , k such that

S =
k⋃

i=1

Qi ∩ Pi ? (3.10)

The main difficulty in establishing a positive answer to this question is finding an

extended formulation for a set S given by (3.10). As a step in this direction, given a

finite collection of convex quadratic regions Q1, . . . ,Qk in Rn we can show that there

exist a convex quadratic region Q in Rn+k(n+1) and affine spaces L1, . . . , Lk in Rn+k(n+1),

described by Fix+Giy = di with each Gi an invertible matrix, such that Qi = projn(Q∩
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Li) for i = 1, . . . , k. It is unclear whether this construction allows for a polyhedron P

that would complete the extended formulation.

We can make a similar analysis of necessary conditions in the case of a mixed binary

convex quadratic representable set S ⊆ Rn. It follows from Theorem 3.10 that S must be

the union of convex regions R1, . . . , Rk where each Ri is a continuous convex quadratic

representable set. It can be checked that each of the regions Ri must have the same set

of recession directions. However, these necessary conditions are not sufficient.

An example of a set that is not representable. Consider the set S ⊆ R2 illustrated

in Figure 5 below and described by S = S1 ∪ S2 where S1 = {(x, y) ∈ R2 | x2 − y ≤

0, x ≥ 1} and S2 = {(x, y) ∈ R2 | x2 − y ≤ 0, x ≤ −1}. Then S is the union of two

continuous convex quadratic representable sets with the same recession cone, and thus

meets the two obvious necessary conditions described above. We will show however,

that S is not mixed binary convex quadratic representable. In order to do so, we will

derive a stronger necessary condition for mixed binary convex quadratic representable

sets. †

Figure 5: A set that is not mixed binary convex quadratic representable

Let C ⊆ Rn be a nonempty closed convex set. Let a ∈ Rn be a nonzero vector. We
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say that a is an unbounded linear objective of C if max{a>x | x ∈ C} = +∞. We can

now establish the following proposition.

Proposition 3.12 Let Q be a convex quadratic region in Rn described by

Q = {x ∈ Rn | x>Qx+ (Qw + v)>x+ g ≤ 0},

where v ∈ ker(Q) and v 6= 0. Let P ⊆ Rn be a polyhedron. Assume that Q ∩ P is

nonempty. Then a ∈ Rn is an unbounded linear objective of Q∩ P if and only if either

(a) there exists r ∈ rec(P) ∩ rec(Q) such that a>r > 0; or

(b) there exist both r ∈ rec(P)∩ relint(rec(Q)) such that a>r ≥ 0 and s ∈ rec(P) such

that a>s > 0.

Proof. We first note that by Observation 5, relint(rec(Q)) = {x ∈ Rn | Qx = 0, v>x <

0}.

Assume first that there exists r ∈ rec(P) ∩ rec(Q) such that a>r > 0. Fix M ≥ 0.

We show how to find a point in Q∩P with objective value at least M . Let x̄ ∈ Q∩P .

There exists λ ≥ 0 such that x̄ + λr ∈ Q ∩ P and a>(x̄ + λr) ≥ M . Thus, a is an

unbounded linear direction of Q∩ P .

Suppose there exist r ∈ rec(P)∩relint(rec(Q)) such that a>r ≥ 0 and s ∈ rec(P) such

that a>s > 0. Fix M ≥ 0. We show how to find a point in Q ∩ P with objective value

at least M . Let x̄ ∈ Q ∩ P . Now, we may assume that M ≥ a>x̄ else we are done. Set

γ = M−a>x̄
a>s

and y = x̄+γs. Then, since v>r < 0, for any λ ≥ max{−y>Qy+(Qw+v)>y+g
v>r

, 0},

we have a>(y + λr) ≥ a>y = M . It now suffices to show that y + λr ∈ Q ∩ P . Since

r, s ∈ rec(P), clearly y + λr = x̄+ γs+ λr ∈ P . Now since Qr = 0, we have

(y + λr)>Q(y + λr) + (Qw + v)>(y + λr) + g = λv>r + y>Qy + (Qw + v)>y + g ≤ 0,
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by choice of λ. Thus, y + λr ∈ Q∩P and a is an unbounded linear objective of Q∩P .

We prove the reverse direction by induction on dim(lin(Q)). Suppose that a is an

unbounded linear objective of Q∩P . Then there exists a sequence {xk} in Q∩P such

that a>xk → +∞. Let wk = xk

||xk|| . Then {wk} is a bounded sequence and therefore must

have a convergent subsequence. Suppose w̄ is a limit point of this sequence. Then w̄ is a

unit vector, satisfies a>w̄ ≥ 0, and it is a fact of convex analysis that w̄ ∈ rec(P)∩rec(Q).

If w̄ satisfies a>w̄ > 0 then we have met condition (a), and we are done. Thus, we

may assume that a>w̄ = 0. Since a is an unbounded linear objective of P , it follows

from the Minkowski-Weyl decomposition theorem that there exists s ∈ rec(P) such that

a>s > 0. If w̄ satisfies v>w̄ < 0 then w̄ ∈ relint(rec(Q)) and we are done.

In the base case, dim(lin(Q)) = 0, we have rec(Q) = {λv | λ ≤ 0} and since w̄ 6= 0

it follows that v>w̄ < 0.

In order to prove the inductive step we assume that either condition (a) or (b) holds

for an unbounded linear objective provided dim(lin(Q)) < k. Assume dim(lin(Q)) = k.

By the same construction as before, we either meet condition (a) or (b) or have a vector

w̄ ∈ rec(P) ∩ rec(Q) satisfying a>w̄ = 0 and v>w̄ = 0.

It remains to find r ∈ rec(P) ∩ relint(rec(Q)) satisfying a>r ≥ 0. We note that by

Observation 5, we have w̄ ∈ lin(Q). Consider the projection of Q ∩ P and the vector

a onto the orthogonal complement of Span({w̄}). Let Q′ denote the projection of Q,

P ′ the projection of P , and a′ the projection of a. Since w̄ ∈ lin(Q) and a>w̄ = 0 we

have that a′ is unbounded linear objective of Q′ ∩ P ′ and dim(lin(Q′)) = k − 1. We

can now apply the induction hypothesis to obtain either a vector r′ ∈ rec(P ′) ∩ rec(Q′)

satisfying a′>r′ > 0 or two vectors u′ ∈ rec(P ′)∩ relint(rec(Q′)) satisfying a′>u′ ≥ 0 and

s′ ∈ rec(P ′) satisfying a′>s′ > 0. We claim that by lifting the vectors r′, u′, and s′ back
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to the original space, we can obtain vectors satisfying either (a) or (b) for the initial

region Q∩ P .

Assume first that there exists r′ ∈ rec(P ′) ∩ rec(Q′) satisfying a′>r′ > 0. Since

r′ ∈ rec(P ′) there exists r ∈ rec(P) that projects down to r′. In particular, r = r′ + αw̄

for some α ∈ R. It follows that r ∈ rec(Q) and a>r > 0 so that condition (a) is met.

Assume now that there exist two vectors u′ ∈ rec(P ′) ∩ relint(rec(Q′)) satisfying

a′>u′ ≥ 0 and s′ ∈ rec(P ′) satisfying a′>s′ > 0. Again, there exists u ∈ rec(P) such

that u = u′ + αw̄ for some α ∈ R. Since w̄ ∈ lin(Q) and a>w̄ = 0 , it follows that

u ∈ rec(P)∩ relint(rec(Q)) and a>u ≥ 0. Similarly, there exists s ∈ rec(P) that projects

down to s′. Then a>s > 0 and condition (b) is met. �

A description of unbounded linear objectives for convex quadratic regions, with v 6= 0,

can be obtained by considering Proposition 3.12 when P = Rn. In this case, a is an

unbounded linear objective of Q if and only if there exists r ∈ relint(rec(Q)) such that

a>r ≥ 0.

We note that a similar characterization of bounded linear objectives holds when

v = 0, i.e., when Q is an ellipsoidal region, see Chapter 2 for more details.

Proposition 3.13 Let E ⊆ Rn be an ellipsoidal region and P ⊆ Rn be a polyhedron.

Assume that E ∩P is nonempty. Then a ∈ Rn is an unbounded linear objective of E ∩P

if and only if there exists r ∈ rec(P) ∩ rec(E) such that a>r > 0.

Proof. We first note that by the proof of Claim 2, we have E ∩P = B+C for a bounded

set B ⊆ Rn and a polyhedral cone C. Moreover, by Observations 2 and 3, C is the

polyhedral cone rec(P) ∩ rec(E). Assume now that a is an unbounded linear objective

of E ∩ P . Since B is a bounded set, there exists r ∈ rec(P) ∩ rec(E) such that a>r > 0.
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Assume now that there exists r ∈ rec(P)∩ rec(E) satisfying a>r > 0. Fix x̄ ∈ E ∩P and

M ≥ 0. Since a>r > 0, there exists λ ≥ 0 such that x̄+λr ∈ E ∩P and a>(x̄+λr) ≥M .

�

Again, a description of unbounded linear objectives for ellipsoidal regions can be

recovered by considering Proposition 3.13 when P = Rn. In this case, a is an unbounded

linear objective of E if and only if there exists r ∈ rec(E) such that a>r > 0.

Together Propositions 3.12 and 3.13 describe the set of unbounded linear objectives

of sets that are the intersection of a convex quadratic region and a polyhedron. The

following corollary to Propositions 3.12 and 3.13 establishes a new necessary condition

for mixed binary convex quadratic representable sets.

Corollary 3.14 Let S ⊆ Rn be a mixed binary convex quadratic representable set. Then

there exist continuous convex quadratic representable sets R1, . . . , Rk ⊆ Rn each with the

same set of unbounded linear objectives such that S = ∪k
i=1Ri.

Proof. Since S is mixed binary convex quadratic representable, there exists a convex

quadratic region Q ⊆ Rn+p+q and a polyhedron P ⊆ Rn+p+q such that

S = projn(Q∩ P ∩ (Rn+p × {0, 1}q)).

Take R1, . . . , Rk to be the nonempty regions among projn((Q ∩ P)|z=z̄) for z̄ ∈ {0, 1}q.

Then clearly, each Ri is continuous convex quadratic representable, S = ∪ki=1Ri, and it

remains to show that each Ri has the same set of unbounded linear objectives.

Now, by Propositions 3.12 and 3.13 the set of unbounded linear objectives of a non-

empty set Q′ ∩ P ′ depends only on the recession cone of Q′ and the recession cone

of P ′. We now apply Lemma 3.3 to observe that each region (Q ∩ P)|z=z̄ has shape
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of Q|z=z̄ and recession cone of P|z=z̄ independent of choice of z̄ ∈ {0, 1}q. It then

follows by Observation 5, that the recession cone of Q|z=z̄ is independent of choice of

z̄ ∈ {0, 1}q. In particular, each nonempty (Q ∩ P)|z=z̄ has the same set of unbounded

linear objectives. It follows that their projections, R1, . . . , Rk have the same set of

unbounded linear objectives as well. �

An example of a set that is not representable (cont.). Assume then that S is

mixed binary convex quadratic representable. Then, by Corollary 3.14, S decomposes

into a union of regions R1, . . . , Rk each with the same set of unbounded linear objectives.

However, the two regions S1 and S2 do not have the same set of unbounded linear

objectives. In particular, (1, 0)> must be an unbounded linear objective for at least one

Ri contained in S1. However, max{x | x ∈ S2} = −1 which implies that (1, 0)> is not an

unbounded linear objective for some Rj, a contradiction. It follows that S is not mixed

binary convex quadratic representable. †

We note that Corollary 3.14 imposes a stronger necessary condition on mixed binary

convex quadratic representable sets than our initial observation provides. It is unclear

whether stronger necessary conditions are required. Thus, we are left to consider the

following question.

Question 3.15 Let S ⊆ Rn. Is it true that S is mixed binary convex quadratic repre-

sentable if and only if there exist continuous convex quadratic representable sets R1, . . . , Rk ⊆

Rn each with the same set of unbounded linear objectives such that S = ∪ki=1Ri ?

As for Question 3.11, in order to show that Question 3.15 is true, the main difficulty

is in finding a suitable extended formulation for the given set S. This is due to the fact
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that the extended formulations pervasive throughout disjunctive programming fail in

the presence of nonlinear constraints. While such extended formulations can be altered

to behave nicely under certain conditions, e.g., when S is bounded, it seems that entirely

different formulations must be found for the general case.

If we were to show that the questions were false, we should search for strictly stronger

necessary conditions satisfied by the respective classes of representable sets. The alge-

braic characterizations found in Sections 3.4 and 3.5 provide a solid foundation for this

search. In particular, there is still much to explore in the projection procedure de-

scribed in Section 3.4. At the current moment however, it is unclear what further sort

of geometric conditions are implied by the algebraic characterizations.

An interesting future work would be exploring whether imposing stronger conditions

on a given set S ⊆ Rn would lead to a readily constructible extended formulation. In

particular, can we find certain classes of mixed binary convex quadratic representable

sets for which we can provide explicit extended formulations?

The notion of unbounded linear objective is quite similar to the notion of thin convex

sets explored in [8]. Let K ⊆ Rn be a closed convex set. A set K is thin if the following

holds for all a ∈ Rn: max{a>x | x ∈ K} = +∞ if and only if there exists r ∈ rec(K)

such that a>r > 0. We conclude this section by characterizing which convex quadratic

regions are thin.

Proposition 3.16 Let Q ⊆ Rn be a convex quadratic region. Then Q is thin if and

only if Q is either an ellipsoidal region or a half-space.

Proof. Suppose that Q is described by

Q = {x ∈ Rn | x>Qx+ (Qw + v)>x+ g ≤ 0}
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where v ∈ ker(Q).

Assume first thatQ is either an ellipsoidal region or a half-space. Since a half-space is

clearly thin, we may assume that Q is an ellipsoidal region. Then by the characterization

of unbounded linear objectives of Q following Proposition 3.13 Q is thin.

Assume now that Q is neither an ellipsoidal region nor a half-space. This implies

that Q 6= 0 and v 6= 0. Then by the characterization of unbounded linear objectives

of Q following Proposition 3.12, any nonzero vector a in the orthogonal complement of

ker(Q) is an unbounded linear objective of Q. Any such vector a is orthogonal to all

vectors in rec(Q) and thus Q is not thin. �

In [8], the authors show that if a closed convex set K ⊆ Rn with int(K) ∩ Zn 6= ∅

is not thin, then the region conv(K ∩ Zn) is not a polyhedron. Thus, for a general

convex quadratic set Q ⊆ Rn the region conv(Q∩ Zn) is not a polyhedron. The lack of

a succinct description of the points in Q∩Zn is one of the reasons we do not investigate

extended integer variables in this work. A possible future work could consider this more

general setting.
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