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Abstract

Advancements in digital camera technologies have led to significantly smaller
camera sensors without compromising imaging quality. This trend opens avenues
for replacing single-camera systems with multi-camera arrays, offering benefits
such as an expanded field-of-view and 3D information. However, camera arrays
require additional processing to interpret the collected image data. This report
addresses two significant algorithmic challenges in developing a camera array.

The first challenge involves virtual view generation, which is the task of esti-
mating the image for a virtual camera using image data from multiview cameras.
Ideally, if the geometry of the underlying scene is known, the virtual view can be
generated by projecting the 3D geometry to the virtual camera. However, finding
the 3D geometry of a scene from multiview cameras is an active research topic in
Computer Vision. Considering the real-time processing requirement (<33 ms),
we propose a real-time 3D visualization (RT3DV) system using a multiview RGB
camera array that can process multiple synchronized video streams to produce
a stereo video of a dynamic scene from a chosen view angle. We implemented a
proof of concept RT3DV system tasked to process five synchronous video streams
acquired by an RGB camera array. It achieves a processing speed of 44 milliseconds
per frame and a peak signal-to-noise ratio (PSNR) of 15.9 dB from a viewpoint
coinciding with a reference view. As a comparison, an image-based MVS algorithm
will require 7 seconds to render a frame and yield a reference view PSNR of 16.3
dB.

The second challenge is to stabilize a video at a real-time rate. We propose
LSstab, a novel algorithm that efficiently suppresses unwanted motion jitters in
real-time. LSstab features a parallel realization of the a-contrario RANSAC (AC-
RANSAC) algorithm to estimate the inter-frame camera motion parameters. A novel
least-squares smoothing cost function is proposed to mitigate undesirable camera



x

jitters. A recursive least square solver is then derived to minimize the smoothing
cost function with a linear computation complexity. Evaluation against state-of-
the-art video stabilization methods using publicly available videos demonstrates
that LSstab achieves comparable or superior performance, particularly attaining
real-time processing speed with GPU utilization.
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CHAPTER 1
Introduction

It was not that long ago owing a camera was a luxury. Nowadays, anyone with
a cell phone can take pictures with ease, and millions, if not, more images are
shared over the internet every day. Cameras have become ubiquitous, affecting
almost every aspect of our daily lives. Unmanned vehicles employ cameras to
permit us to explore hazardous areas and execute complicated tasks safely and
efficiently. Surgical cameras allow surgery to be performed efficiently and safely
while maintaining minimum invasive. In all these applications, cameras are used
as an imaging device directly providing the 2D projection of the 3D environment.
However, a pair of dissimilar images of the 3D scene must be created for each of
our eyes to facilitate the perception of depth, which is a mission impossible for
a single-camera system. With two or more cameras viewing the same scene, we
begin to be capable of reconstructing the depth information that is critical for depth
perception and was lost during the projection process.

As digital camera sensors develop rapidly, the miniaturization of camera sensors
has made replacing single-camera systems with camera arrays possible. A camera
array consists of multiple cameras mounted on a rig, simultaneously capturing
videos of the same scene from different perspectives. This multiview property of a
camera array has enabled the possibility of reconstructing the depth information of a
scene, which is the key to solving challenging tasks that could not be accomplished
easily with a single camera system. For example, once the 3D model has been
computed, the corresponding image can be created by projecting the 3D model to
the desired virtual view.

However, depth reconstruction from multiview cameras requires the relative
camera pose to be known. If the individual cameras are not firmly mounted on
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the rig, we will have to consistently calibrate the cameras. Hence, the individual
cameras should be stable relative to each other. Moreover, a majority of videos
are created by hand-held cameras. As such, many video clips suffer from motion
jitters due to inevitable handshaking, and the visual quality can be tremendously
enhanced if videos are stabilized.

Many applications such as drone surveillance and laparoscopic surgery have
strictly real-time requirements. Switching to camera arrays, the real-time require-
ment should also be satisfied, but it is more difficult because more images are
needed to process within the real-time rate, i.e., 33 ms.

1.1 Contributions
There are several fundamental research challenges to the problem identified above:
(1) generating virtual views from camera arrays in real-time, (2) accurately re-
constructing the surgical tools maneuvered by surgeons, and (3) stabilizing video
frames in real-time. In my thesis, I will present new algorithms and techniques in
computer vision that address these challenges.

1.1.1 Real-time 3D visualization

A multiview camera array contains multiple cameras mounted on a rigid rig, cap-
turing videos in a synchronous manner. By properly arranging camera orientations,
one may estimate a dynamic 3D model of the foreground objects from the com-
ponent videos and synthesize a new video of stereo vision of these objects from a
desired view angle. A real-time 3D visualization (RT3DV) system consisting of a
camera array and a processing platform will synthesize the stereo video when the
camera array is capturing the dynamic scene.

An RT3DV system is very similar to the multi-view stereo (MVS) algorithm
[3, 4, 5, 1, 6] in that a 3D surface model will be estimated based on multiple images
(video frames). However, the primary design objective of current MVS systems
is to accurately reconstruct a 3D surface model of a foreground object. As such,
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a dense point cloud 3D model [3, 4, 5, 1, 6] often needs to be estimated based on
time-consuming optimization procedures. Hence, many of the traditional MVS
pipeline modules may not be cost-effective. RT3DV, on the other hand, is developed
to output a stereo video from a given viewing direction in real-time. A 3D model is
needed here only to provide depth sensation of a stereo vision from a given view
orientation.

In developing the RT3DV system, we focus on developing low complexity 3D
surface model estimation and update methods such that the resulting algorithm
may be executed on a commodity computing platform at a video frame rate (real-
time). The low-complexity 3D surface model contains very few triangular meshes,
formed with a sparse set of 3D key points. Periodically, the coordinates of these 3D
key points are estimated from matching 2D key points in temporally synchronized
video frames of multiple video streams via epipolar geometry and trifocal tensor.
Between successive periodic refreshing of 2D key points detection and matching,
their 2D positions are updated in intermediate frames using visual feature tracking.
These innovative 3D modeling approaches reduce computation time per video
frame by orders of magnitudes. Given the low-complexity 3D surface model and a
desired view point, a stereo view may be rendered by mapping the texture of each
triangular surface from the corresponding triangle in the closest view. Since the
objective of RT3DV is 3D visualization, the image quality of the rendered video
frame will be evaluated rather than the accuracy of the 3D coordinates of the 3D
surface model.

We built a proof-of-concept camera array [7, 8, 9] and developed the RT3DV
algorithm on this platform. In Fig. 1.1(a), five miniature cameras form a camera
array acquiring videos synchronously. In Fig. 1.1(b), three objects used in the
experiment are displayed. This camera array is mounted on the top of a surgical
training box, as shown from the side in Fig. 1.1(c). The electronics for transmitting
the multiview video streams to a close-by laptop are shown in Fig. 1.1(d). For
this kind of embedded system application, trade-offs between the image quality
of rendered 3D stereo video and corresponding computation costs become very
important.
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(a) (b)

(c)

(d)

Figure 1.1: (a)Micro-camera Array used to collect data (b)(c) Objects to reconstruct
are placed in a Fundamentals of Laparoscopic Surgery (FLS) laparoscope trainer
box while the camera array is recording. (d) Each Pi camera is connected to a
Raspberry Pi.

The technical contribution of the RT3DV system is the development of a low-
complexity 3D reconstruction algorithm for 3D visualization of dynamic scenes. It
does not require an expensive depth sensor (e.g., Kinect) and can be port to internet
of things (IoT) devices.

1.1.2 Real-time Moving Surgical Tool Reconstruction

In a typical laparoscopic surgery setting, the surgical tools, specifically graspers,
interact against a background objects that remains relatively stable between suc-
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cessive frames. These graspers play a pivotal role in surgical procedures, enabling
precise maneuvers that result in deliberate and controlled movements of tissues
and organs within human interior body. The accurate perception of the 3D states of
these surgical tools during operation is of utmost importance. Hence, the graspers
demand special attention due to their central role in the surgeon’s focus. A la-
paroscopic grasper, depicted in Fig. 4.1, is characterized by a semi-rigid structure
consisting of a rod, two finger tips, and a joint point.

RodJoint

Finger tips

Figure 1.2: The surgical tool for a laparoscopic surgery, e.g. a grasper, consist of a
rod, two finger tips and a joint point.

The primary objective is to efficiently and precisely reconstruct the 3D pose of
the laparoscopic grasper through the utilization of synchronized multiview video
streams. Our assumption is that the laparoscopic environment maintains a static
background, with two graspers serving as the surgical tools tasked with manipu-
lating beans within a laparoscopic surgery training box. The foreground objects
encompass rigid beans and the two graspers, simulating the tools in action, while
the background scene incorporates one or more cups to introduce depth variations
within the interior body, as shown in Fig. 4.2. To enhance the reconstruction and
rendering of these textureless foreground objects, we introduce color markers for
identifying key components and pre-established 3D models for generating virtual
views.

The proposed algorithm framework initiates with an offline calibration stage,
where we determine camera poses, obtain dense 3D models for background objects,
and establish a pre-built 3D model for the foreground object. In acquiring camera
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Grasper

Bean

Cap

Figure 1.3: Foreground and background objects

poses and dense 3D models for background objects, a structured light with a
random stride pattern is shined to backgrounds. Subsequently, Structure from
Motion (SfM) [10] is applied to derive camera poses. Next, Multi-View Stereo
(MVS)[1] is utilized to generate a dense 3D model for background objects. We
employ SolidWorks to acquire the 3D models of the grasper and beans.

In the reconstruction of the 3D pose for foreground objects, specifically the
graspers and beans, our approach involves initial tracking of the two finger tips, the
joint point, and the direction of the rod in each 2D view. We use the Kalman filter to
mitigate random jitters in 2D tracking. Subsequently, we establish correspondences
for the finger tips, joint point, and rod directions. Once these correspondences are
established, real-time calculation of the corresponding 3D poses is performed using
a combination of Direct Linear Transformation (DLT), as outlined in [11], and the
Kalman filter.
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1.1.3 Real-time online video stabilization

A video stabilization algorithm can be helpful in many applications, such as visual
tracking [12, 13], video surveillance [14], and wearable cameras [15]. If the video
stabilization algorithm is online and in real-time, it is also beneficial to minimally
invasive surgery [16, 17, 18], unmanned aerial vehicles [19, 20], etc.

Video stabilization is to reduce annoying jitter in the captured video due to
unwanted or uncontrolled camera shake during video capturing [21, 22, 23]. Hard-
ware video stabilizers have been developed to mitigate the physical shaking of
the camera [22, 24] while shooting the video. Video stabilization algorithms
[21, 25, 26, 24, 27, 22, 28] may also be applied to post-process a captured video to
produce a stabilized video that exhibits smoother global camera motion. Both the
hardware and software solutions can be combined to ensure desired video quality.

Algorithmically the process of video stabilization consists of the following steps:
(a) Estimate global camera motion trajectory in a given video clip; (b) Choose a
targeted (usually smoothed) camera motion trajectory; (c) Modify individual video
frames according to the targeted camera motion trajectory; (d) apply additional
post-processing steps to mitigate potential motion blurs due to (original) camera
jitters and irregular frame boundaries due to geometrical transformation applied
to realize the desired camera motion trajectory.

Depending on the context of the video, the global camera motion may not be
easily defined. If the video consists of a rapidly moving foreground object, one
may want to track the foreground object to maintain its position at the center
of the video frame. The camera trajectory should be estimated from the tracked
foreground object in this case. On the other hand, for surveillance purposes, the
desired camera motion may be stationary or smooth panning of the camera. In
this case, the background may be used to determine the camera’s global motion
trajectory. Thus, an ideal video stabilization algorithm must allow human input
to estimate the global camera motion and appropriately determine the targeted
global camera motion trajectory. Currently, almost all video stabilization algorithms
directly use static background objects to estimate the desired camera’s global motion.
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[25, 21] and [19, 26, 20, 24, 22, 28] compute optical flow and feature points and then
use RANSAC [29] to find a subset of feature points belonging to the background.
Liu et al. [22, 28] use Structure-from-Motion (SfM) to reconstruct the 3D camera
trajectory and a sparse 3D point cloud, where RANSAC is used to select a subset of
background feature points to derive the camera motions.

The targeted global motion trajectory is also affected by the length of the video
clips. Video processing may be applied in a batch mode, where the entire video
is to be processed at once, or in an online real-time mode, where the stabilization
may be applied incrementally for each additional short video clip which may be
a single frame. The targeted motion trajectory can be regarded as a smoothed
trajectory of the original trajectory. How “smooth” the targeted trajectory is relative
to the original motion trajectory is yet another hyper-parameter that may need to
be fine-tuned based on the outcome of a chosen view quality metric. Grundmann
et al. [24] and Liu et al. [22] state that a desirable stable camera path should follow
the cinematography principles. In other words, the desired motion path should be
composed of constant, linear, and parabolic segments as if the video is taken with
professional stabilization tools.

Motion smoothing is particularly challenging in the online real-time mode if
the unseen future motion trajectory cannot be reliably predicted based on prior
knowledge about the global camera motion. Successful video stabilization algo-
rithms [21, 25, 26, 24, 27, 22, 28] first compute the entire motion trajectory either
in 2D or 3D then smooth it at once. Several real-time approaches [25, 30] adapt
Kalman filters for smoothing, but their performance is limited.

Given the current and desired global motion trajectories, a 2D or 3D geometrical
transformation will be applied to each video frame to obtain the final stabilized
frame. During this process, the quality of the output video frame may be impacted,
and additional mitigating measures may be applied. These may include the correc-
tion of motion blurs due to rapid camera jitters and undefined frame boundaries
due to the geometrical transformation of the frame images. Several post-processing
techniques such as cropping [24, 22, 27] mosaicing [31], and inpainting [21] are
proposed to mitigate this issue, which can be considered as a supplement to the
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standard video stabilization procedure.
This paper proposes an online real-time geometry transformation-based al-

gorithm for video stabilization. Unlike other geometry transformation-based al-
gorithms, we adapt and parallelize a new technique called a-contrario RANSAC
(AC-RANSAC), which does not require any hard thresholds for inlier/outlier dis-
crimination appearing in RANSAC. Hence, it can compute inter-frame global mo-
tions more robustly.

The proposed algorithm starts by estimating the inter-frame global motion
between two consecutive frames except for the first one. First, features points for
the current frame are extracted and matched over the previous frame. We choose
SURF [32] and FLANN [33] as our feature extraction and matching algorithm
because of their delicate balance of robustness and efficiency [34, 35]. Then, the
parallel AC-RANSAC is used to estimate the inter-frame geometry transformation,
from which the motion parameters (translations, rotations, and scales) are derived.
The inter-frame global motion estimation is performed for each incoming frame.

Then the algorithm enters the motion smoothing phase, which requires a user-
specified parameter N. If the current frame number is less than N, the camera
motion for the current frame will be smoothed by our cinematography principles
guided modified recursive least squares algorithm (C-MRLS). After the Nth frame,
we stabilize the current camera motion with our modified sliding window least
squares algorithm (MSWLS). Finally, the current frame is warped to the previous
stable space in the motion compensation stage to create a stabilized video sequence.
The whole algorithm pipeline is shown in Fig. 5.1

The key contribution of the proposed algorithm is a novel least-squares-based
smoothing cost for estimating the intentional motion and its associating solver that
minimizes the cost in linear time.

1.2 Motivation
Minimally invasive surgery, in particular laparoscopic surgery, has become the
standard for many general surgeries. It is now the gold standard approach for many
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(a) Laparoscopic surgery (b) Trocar Camera Array

Figure 1.4: (a)One single camera (laparoscope) and surgical instruments are in-
serted through multiple ports. An operator holds and navigates the laparoscopic
surgery during the entire procedure. (b)A trocar camera array (TCA) consists of
several cameras built into a surgical trocar.

abdominal operations, as it can offer significantly less recovery time for patients and
fewer long-term consequences for the surgery. One single camera (laparoscope)
and surgical tools are inserted through multiple ports in laparoscopic surgery, as
shown in Figure 1.4 (a). An assistant is dedicated to navigating the camera through
the surgical scene during the entire procedure.

Despite the progress in the techniques and instruments of minimally invasive
surgery, the visualization system used by these procedures provides no depth
perception and is subject to unwanted motion jitters due to inevitable handshaking.
These deficiencies tend to increase operating time and the possibility of accidental
injuries. Surgeons and assistants must rely on extensive training to gain sufficient
spatial awareness of the surgical area and to maintain smooth communication.

We have built a prototype of a trocar camera array consisting of several cameras
with different viewing positions and angles, as shown in Figure 1.4 (b). With such a
multiview camera array, a fine 3D model of the surgical scene can be reconstructed
and used to generate a pair of stereo images for a wide range of view angles. If
stereo image pairs are generated in real-time, then an immersive and panoramic
3D view of the surgical area can be provided during the surgery in real-time. It is
shown that panoramic 3D views reduce operating time and blood loss, especially
for novice surgeons.

During surgery, the movement of surgical tools through the ports can cause
unwanted camera jitters on the camera array, giving rise to video blur and limiting
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the camera array’s utility. Moreover, a shaky near-field video can easily cause
dizziness and discomfort. An immediate and effective solution is to develop a
real-time scene stabilization algorithm that removes the camera jitter and deblur
the video.

Our goal is to develop a real-time 3D visualization system that behaves the
same as an open window into the surgical cavity. The ideal result is to augment the
generated 3D result on top of the patient’s body so that the maneuver of surgical
instruments behave the same as in open cavity surgery. Delivering such a visual-
ization system is a difficult task. However, it is essential to bear the ideal in mind
while we are approaching the end goal.
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CHAPTER 2
Related Work

2.1 Image-based 3D Reconstruction

Multi View Images Multiview Stereo[8] Surface Reconstruction[35] Textured meshes[38]

Dense point cloud 3D meshes Textured meshes

Structure-from-Motion[18]

Sparse point cloud and Camera poses

Figure 2.1: Baseline image-based 3D reconstruction pipeline

A typical image-based 3D reconstruction is the process of rebuilding the 3D
shape of the original scene captured by multiview images. Existing 3D reconstruc-
tion algorithms aim to estimate a dense point cloud 3D representation of the scene.
The objective is to enhance details of the estimated 3D surface model while con-
forming to visibility evidence. Computation complexity and computing time are
of lesser concern. In this work, a typical image-based 3D reconstruction pipeline
will be implemented as a baseline algorithm, of which the performance will be
compared against our proposed algorithm.

The typical image-based 3D reconstruction pipeline consists of 3 steps: (a)
3D dense point cloud estimation, (b) 3D surface reconstruction, and (c) texture
mapping. Before applying these three steps, a set of feature points (keypoints)
will be detected at each view (image) using a feature detection algorithm such as
SIFT [36], FAST[37], or SURF[32], etc. Then, a feature matching algorithm and
RANSAC will be applied to jointly calibrate the camera intrinsic parameters as
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well as camera extrinsic parameters relative to a reference world coordinate. The
baseline image-based 3D reconstruction pipeline is summarized in Fig. 2.1.

2.1.1 Multiview Stereo (3D Dense Point Cloud Reconstruction)

Furukawa et al. [3] proposed a point-growing multiview stereo algorithm (PMVS)
that iteratively grows the point cloud by adding new feature points according to
the epipolar geometry while not violating visibility constraints. Bleyer et al.[38]
introduced the PatchMatch algorithm[4, 39] for stereo matching. Initially, each
pixel is assigned to a 3D plane randomly. A good plane that reduces a cost function
will be propagated diagonally to neighboring pixels in an iterative manner. This
PatchMatch algorithm has been adopted and extended in other works [4, 39, 5, 1, 6].
Shen[4] employs PatchMatch stereo[38] for multiview reconstruction to generate
a depth map for each image and imposes depth consistency over neighboring
images. Based on the PatchMatch propagation scheme, Zheng et al. [5] propose a
probabilistic graphical model for jointly view selection and depth estimation for
each pixel without considering slanted 3D planes. Galliani et al. develop Gipuma[1]
in which they use a diffusion-like propagation scheme to efficiently propagate good
planes to half the amount of pixels at once, which utilizes the parallel computation
of Graphic Process Unit (GPU). Xu et al. [6] adopt an asymmetric checkerboard
propagation scheme based on the confidence of current neighbor hypotheses and
jointly selects a subset of views for cost aggregation.

2.1.2 3D Surface Reconstruction from Dense Point Clouds

When the dense point cloud is estimated using the PatchMatch method [40], the
surface reconstruction problem may be posed as an energy minimization prob-
lem using the Delaunay triangulation. The energy cost function measures the
agreement of inside/outside labeling of Delaunay tetrahedra based on the visibility
constraints. A globally optimal tetrahedra labeling can be obtained by solving
a graph S-T minimum cut problem. The method described in [40], however, as-
sumes a strong geometrical prior and may fail for weakly-supported surfaces well.
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Improvements were proposed in [41] and [41] which yield a more complete 3D
surface at additional computation cost.

2.1.3 Texture Mapping

Texture mapping [42, 43, 44] is the process of painting the triangular surface mesh
with realistic color, texture, and shade using images acquired from one or more
appropriated cameras. The selection of camera(s) for texture mapping is formulated
as a multi-label Markov random filed energy optimization problem. Each 3D
triangular mesh will be assigned to a close-by view so that its appearance can be
warped from a triangular area in the video frame with matching vertices. In [42],
the selection criterion is to align the surface normal of the triangular mesh to the
optical axis of the view. A global color adjustment and a local Poisson editing are
applied to minimize the seam line along the boundary of the triangular mesh. In
[43], instead of one view (camera), the corresponding 2D triangular regions in
multiple views (cameras) are collected and blended to yield the final texture of the
mesh. It reduces the blurring and ghosting artifacts due to blending but cannot
mitigate texture bleeding due to geometric registration error and camera calibration
error. In [44], post-processing efforts are introduced to ensure color consistency
and geometry consistency of textures in adjacent surface meshes.

2.2 Free-Viewpoint Video
Free-viewpoint video (FVV), a.k.a 4D video[45, 46] refers to a 3D video service
that allows viewers to choose their preferred viewing angles freely. A 4D video,
represented by a 3D surface model, associated texture maps, and the evolution of
this 3D model over time (hence 4D), is generated to achieve this goal.

The MVS algorithm is the basis of FVV for developing and updating the 3D
surface model. In [47], an initial dense correspondence is established to compute
depth for each pixel. The estimations of depths are then filtered and used to refine
the correspondence estimation in turn. Rendering from a given view angle is
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performed using both refined depths and updated correspondence. In [48] and
[49], the shapes and the segmentation of dynamic objects are jointly computed and
optimized. Many of the existing efforts focus on encoding and transmitting FVV
streams, assuming the models have been obtained offline. The online acquisition of
FVV has yet to be explored in depth. RT3DV developed in this work is perhaps the
first effort to generate free-viewpoint video in real-time.

2.3 Real-time 3D reconstruction with RGB-D camera
A real-time template-based reconstruction method of dynamic scenes is demon-
strated in [50], in which an online template was deformed to fit the depth data
from an RGB-D camera. The template is non-rigidly tracked to provide a detail
layer to account for high-frequency details. However, a rigid template must be
captured at the beginning[50]. DynamicFusion[51] is the pioneering work for real-
time and template-free 3D reconstruction of dynamic scenes using RGB-D cameras,
where a canonical reference model is updated incrementally by unwarping depth
measurements returned with a single RGB-D camera at a real-time rate. Several
follow-ups improved the quality of reconstruction via additional constraints. For
example, VolumeDeform[52] combines depth correspondences with robust sparse
correspondences (SIFT) to avoid drift. Fusion4D [53] extend [51, 52] to a multi-
view scenario in which 8 RGB-D cameras capture depth data simultaneously, and
multiple GPUs are used to compute the deformation field and the fusion of all data
frame. However, the examples shown in [51, 52, 53] are limited to the reconstructed
scene only undergoing slow motion and minor topological changes.

KillingFusion[54] estimates a dense deformation field in the TSDF space con-
strained by a damped Killing motion via a variational formulation, capturing more
free movements. SobolevFusion[55] proposes to use Sobolev gradient flow to com-
pute the deformation field and determine the voxel correspondences by matching
the low-dimensional signatures of their Laplacian eigenfunctions, allowing large
motion and topological changes of the scene. The recent work [56] uses the dual
back RGB cameras of a VR device to achieve real-time 3D rendering. In [57], a
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video encoder is used to find a sparse 70 × 70 depthmap by block matching over
a pair of rectified images, and then a fast Laplacian solver is used to smooth the
depthmap. These methods all take in as input the depthmaps return by RGB-D
cameras at a real-time rate. In our work, we tackle the problem of real-time 3D
rendering using multiview RGB cameras, where depth information is derived from
pure RGB images.

2.4 Neural Rendering
Neural rendering techniques leverage neural networks to generate virtual view.
Early approaches in novel view rendering employed deep neural networks to
explicitly learn the 3D model, based on either a single view or multiple views. For
instance, Dupont et al.[58] used a network to learn the 3D scene representation
from different views, rotated it into the desired view, and then transferred it back
to a 2D image. Transformable Bottleneck Networks [59] learned the 3D volumetric
representation from multiview images which then are warped to the desired output
view and finally generated the virtual 2D images using a network.

Implicit model representation methods, as opposed to explicit approaches, are
commonly employed in neural rendering. In the NeRF framework[60], a scene is
represented as a continuous 5D vector-valued function, taking 3D coordinates and
a 2D viewing direction as inputs and generating emitted color and volume density
as outputs. This 5D function is approximated using a multilayer perceptron (MLP).
Once the network is trained, a novel view can be synthesized using traditional
volume rendering techniques, projecting output colors and densities into an image.
The significant contributions of this work lie in both the novel problem formulation
and the associated optimization techniques.

Building upon NeRF[60], NeRV[61] includes the simulation of light transport,
enabling rendering under arbitrary illumination conditions. In contrast to NeRF,
NeRV represents a scene that absorbs and reflects light emitted by external sources.
NeRF utilizes two MLPs: a "shape" MLP estimating volume density δ and a "re-
flectance" MLP computing BRDF parameters for input 3D points. Drawbacks of
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both methods include the need for a dozen multiview images for training, a lengthy
training duration of approximately 1-2 days, and the restriction on static scenes.

To address processing time concerns, IBRNet[62] synthesizes novel views by
interpolating nearby source views. Density features are derived from multiview-
aware features using an MLP fed with 2D features from nearby multiview images.
A ray transformer module aggregates density features to predict the final density,
while multiview-aware features concatenated with view direction yield blending
weights using an MLP for color prediction.

Pixelnerf[63] aims to generalize NeRF[60] using very sparse input views. It
extracts a feature volume with a CNN encoder and generates image features for
each point on a camera ray by projecting the feature volume to the image plane.
NeRF[60] is then used to predicts density and color for the query point using
these image features. While Pixelnerf[63] can synthesize novel views with sparse
multiview images, there is room for improvement in network efficiency for real-time
applications.

To expand NeRF[60] to dynamic scenes, [64] introduced a deep learning model
to implicitly encode the scene and generate novel views at any given time. The
architecture proposed in D-NeRF[64] incorporates time as an additional input and
divides the learning process into two distinct fully connected networks. The first, a
deformation network, is responsible for mapping all scene deformations to a shared
canonical representation. The second, a canonical network, then takes this canonical
representation and maps it to the deformed scene for a specific time instance. In a
multiview setup, DyNeRF[65] is efficiently trained to learn a time-conditioned neu-
ral radiance field, capturing dynamic scene variations through a learned compact
and expressive time-variant latent code. Despite the effectiveness of both methods
in handling general dynamic scenes, they share a common limitation of relying on
dense training data and have slower inference speeds. Furthermore, these methods
are naturally offline, whereas videos must be processed in an online fashion.
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2.5 2D and 3D Video Stabilization Methods
Video stabilization algorithms can generally be divided into three categories: (1)
2D methods [25, 21, 19, 26, 20, 24, 22, 28], (2) 3D methods [66, 67, 68, 69, 70], and
(3) learning-based methods [71, 72, 73, 74, 75, 76]. The 2D and 3D methods are
considered conventional but differ in the assumed global camera motion model. A
2D method assumes that the global camera motion between consecutive frames is
an affine or homography transformation, whereas 3D methods try to reconstruct
the relative 3D camera poses for each video frame.

2D algorithms start by estimating 2D global camera motion, such as affine trans-
formation or Homography, between consecutive frames. Optical flow [25, 21] and
geometry transformation [19, 26, 20, 24, 22, 28] are two conventional methods. Fea-
ture points are first extracted from both video frames. Then RANSAC [29] is used
to select a subset of matched features to estimate the transformation parameters.

The next step is to derive a smooth motion path. The processed motion path
should be sufficiently smooth so as not to cause discomfort during viewing. Several
motion-smoothing methods have been proposed in the literature, including low
pass filtering [22], Kalman filtering [77, 31, 78], Gaussian Filtering [21], Spline
Smoothing [20], Motion Vector Integration[26], etc. Grundmann et al. [24] and Liu
et al. [22] state that a desirable stable camera path should follow the cinematography
principles. Grundmann et al. [24] also propose an offline algorithm based on
Linear Program optimization with L1-smoothness constraints to find a camera path
obeying such principles.

The 2D method achieves a great balance of robustness and efficiency and thus
is a great choice for real-time development. Optical flow [25, 21] and geometry
transformation [19, 26, 20, 24, 22, 28] are two conventional ways to estimate the 2D
inter-frame motion. The latter is becoming more popular because of its efficiency
and robustness. Geometry transformation-based methods directly estimate 2D
transformation due to camera jitters between adjacent video frames. Feature points
are first extracted from both video frames. Then, a subset of matched feature
points is selected to estimate the transformation parameters using the RANSAC
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[29] algorithm, whose performance heavily depends on a user-specified parameter.
3D methods stabilize videos by reconstructing the camera poses in 3D space.

Liu et al. [22] proposed to use Structure-from-Motion(SfM) to compute the relative
camera and sparse feature trajectory in 3D space. Then each frame is wrapped to a
user-specified path with the "content-preserving" principles to generate a stable
virtual output. To avoid reconstructing long camera and feature trajectory, Liu et al.
[28] smooth the basis trajectories of the subspace formed by the 3D feature track.
Goldstein et al. [66] used epipolar constraints to estimate the fundamental matrices
accounting for the stabilized 3D camera motion, reducing the dependency on long
feature tracks. Methods [67, 68] using gyroscope are also proposed to estimate
and 3D rotation. Additional hardware, such as depth sensor [69] and light field
cameras [70], are also used to estimate the 3D camera motion and synthesize the
stable virtual video.

Generally speaking, 2D methods are more robust and faster than 3D methods,
but the 2D motion is insufficient to deal with complex scenes with significant depth
variations and severe parallax. On the other hand, 3D methods can handle depth
variation and generate great stabilized results in principle. However, the 3D motion
model estimation is fragile to various degeneration, such as feature tracking failure,
motion blue, etc. Besides, 3D methods often have expensive computational costs or
require additional hardware devices. Hence, it is much slower and less robust than
2D methods, which limits its usage in real-time applications.

2.6 Learning-based Video Stabilization Methods and
Real-time Methods

Recently DNN based video stabilization has attracted more and more attention.
According to [23], StabNet [71, 23] is the first deep-learning approach for video
stabilization, where an encoder and multigrain transformation regressor are trained
under a Siamese network. The authors of StabNet [71] also collect 61 pairs of train-
ing videos. Xu et al. [72] train a GAN network to extract the affine transformation
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for warping unsteady frames.
Instead of predicting transformations between images or in coarse grid level,

PWStableNet [73] learns a pixel-wise warping map through a cascade encoder-
decoder based on the siamese network. Yu et al. [74] first run a 2D method to
stabilize the video. Then the optical flows are computed and fed into an encoder-
decoder network to train a pixel-wise warp map. Choi et al. [75] propose an
unsupervised deep approach that iteratively interpolates the input video to a stable
video without cropping. Another unsupervised method is suggested by Shi et al.
[76], where gyroscopes provide the actual camera poses.

It is noted that the performances of these learning-based methods highly depend
on the training data [23] and can suffer from large motions [76]. Due to the lack of
publicly available data sets, the conventional methods are more robust and perform
better in a general setting than the learning-based methods [23]. Learning-based
methods are typically computationally demanding and also unsuitable for real-time
applications.

Although most techniques are offline for post-processing, several real-time ap-
proaches [25, 19, 20, 30, 78, 79] have been studied for video stabilization. Ratakonda
et al. [79] uses Integration Projection Matching, which is very computationally
efficient for computing the translation of consecutive frames. However, the method
is limited as they assume camera motions are always translational. Most of the
current real-time methods [19, 30, 78] are geometry-transformation-based, in which
RANSAC is used to estimate the inter-frame transformation, and Modified Kalman
filter [25, 30, 78], Spline smoothing [20], and low-pass filter [19] is employed to
smooth the motion parameters on-the-fly.
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CHAPTER 3
Towards Real-Time 3D Visualization
with Multiview RGB Camera Array

3.1 Overview
The inputs to the RT3DV algorithm are video streams acquired synchronously
by cameras on a camera array. The outputs are a 3D surface model consisting of
connected triangular meshes and a texture map (color, texture, and shade) for
each triangular mesh. These outputs will be forwarded to a 3D rendering engine
(Unity[80] in this work) to display a stereopsis video from given viewpoints. The
RT3DV algorithm performs the following tasks for each video frame: (a) identifying
2D distinct feature points at each view (camera), (b) establishing correspondence
of 2D feature points across all pairs of views, (c) estimating the 3D world coordinate
of corresponding 2D feature points, (d) applying the Delaunay graph cut algorithm
[40] to reconstruct the 3D triangular mesh surface model using the estimated 3D
feature points as its vertices, and (e) estimating corresponding appearance map
(texture, color, shade) for each triangle surface pigment.

When the algorithm is initiated (initiation mode), the cameras need to be cali-
brated to estimate their intrinsic parameters (focal length, pixel scaling, etc.) and
extrinsic parameters (positions and poses). If the camera array remains stationary
throughout the video, the camera parameters will be assumed available, and the
initiation mode will not be executed anymore. Once the cameras are calibrated, the
RT3DV algorithm will be executed in either a feature detection mode or a feature
tracking mode. In the feature detection mode, 2D feature points will be detected
at each camera’s current frame. In the feature tracking mode, existing 2D features
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Figure 3.1: Block diagram of the proposed pipeline RT3DV

from the previous frame will be tracked. Leveraging the temporal correlations
between successive video frames, the feature detection mode will be executed pe-
riodically with the feature tracking mode executed in between. The pipeline and
block diagram of RT3DV are shown in Fig. 3.1.
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3.2 Towards real time 3D visualization

3.2.1 Initiation

To initiate the RT3DV algorithm, camera calibration will be performed. An incre-
mental structure from motion (iSfM) algorithm [81, 10, 82, 83] will be applied to
jointly estimate the camera intrinsic and extrinsic parameters and 3D coordinates
of feature points.

First, the speeded-up robust feature (SURF)[32] detection algorithm is applied
to the first video frames of all cameras to detect local features. Each detected local
feature is represented by its 2D image coordinate within the video frame and a
feature descriptor characterizing its local appearance. A fast matching algorithm
FLANN[33] will then be applied to find figures across neighboring views hav-
ing similar feature descriptors (appearance consistency). This appearance-based
matching results will be verified using the epipolar geometry constraints. The
RANSAC[29] algorithm will be applied to select a subset of matching 2D feature
points of two views to estimate the corresponding fundamental matrix[11]. If
the majority of remaining 2D feature points of both views also meet the epipolar
constraints with the estimated fundamental matrix, the relative positions (extrinsic
parameters) between this pair of cameras then may be determined. Matching 2D
feature points that fail this geometric consistency check will be deemed as outliers
and discarded. Based on the estimated positions and poses of cameras, 3D coordi-
nates of the matching 2D feature points may be determined. Given these estimated
3D coordinates, one may proceed to refine the camera calibration. And then, the 3D
coordinates will be refined further. This iterative Bundle Adjustment [84] process
will converge as no further changes are observed. The iSfM repeats the above steps
for one camera at a time until all cameras are processed. On completion of iSfM,
the calibrated camera parameters and estimated 3D coordinates of feature points
will be made available for subsequent frames.
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3.2.2 Fast Reconstruction with Feature Tracking

Given the calibrated camera parameters, the set of matching 2D feature points,
and corresponding 3D coordinates, one may leverage the temporal correlation of
videos to update the 2D feature positions using feature tracking instead of the
time-consuming feature detection.

The Kanade–Lucas–Tomasi (KLT) feature tracker [85] will be used to track
local movement of an existing 2D feature available from the previous frame. The
outcome will further be refined by applying a block matching algorithm using the
Sum of Absolute Differences (SAD) similarity metric.

SAD(k, l) =
∑

(i,j)∈N

|Ep(i, j) − Ec(i+ k, j+ l)| (3.1)

where Ep,Ec denote the previous and current frame and N denotes a template
window in a feature point’s local neighborhood.

Since only existing 2D feature points from the previous frame are tracked, the
feature correspondence relationship will remain unchanged unless a 2D feature
disappears (cannot be tracked) due to dynamic scene change, in which case the
track will be discarded. If a matching 2D feature point changes its position after
tracking, its corresponding 3D coordinates will also be updated by triangulation
using the stander DLT method for [11]. Otherwise, the previously estimated 3D
coordinates will remain unchanged. This on-demand update strategy saves lots of
computation when only a small fraction of feature points move between successive
frames.

3.2.3 Fast Reconstruction based on Feature Detection

Feature tracking will capture movements of existing features in a dynamic scene. It
does not, however, detects the presence of new features. Thus feature detection will
be performed periodically in the RT3DV algorithm. The period between two feature
detection frames depends on prior knowledge of the dynamics of the scene and
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Figure 3.2: (a)A feature point is shown in the first view. (b)The corresponding point
in the second view. (c) The corresponding point in the third view can be found by
intersecting two epipolar lines or trifocal tensor. The epipolar method is prone to
error while trifocal tensor method is more robust. (d) Average transfer errors for
the epipolar method and trifocal tensor method over DTU dataset. Gaussian noise
with different standard deviation values are added to the corresponding image
points.

can be adjusted. We assume that the camera calibration parameters are available.
Therefore, after new feature detection is performed, the robust feature matching
process can be accelerated by enforcing the epipolar geometry[11] and aided by
trifocal tensor [11]. Specifically, with calibrated cameras, the essential matrix E
between any two cameras in the camera array is available. If a 2D feature point x in
the video frame of one camera and another 2D feature point x ′ in the video frame



26

of another camera correspond to the same 3D point, then

x ′TEx = x ′T ℓ = 0 (3.2)

where ℓ = Ex is the epipolar line.
Instead of using equation (3.2) to verify the matches, we only retain the matches

if the corresponding point is within 3 pixels from the epipolar line. This verification
procedure only takes constant operations for each match, and thus the complexity is
O(Nm), where Nm is the number of initial matches returned by FLANN. Then, we
build feature tracks (2D feature correspondences across all views) from the remain-
ing matches. The above procedure is called epipolar-geometry-aided matching.
These tracks are then further refined by trifocal tensors.

Since all camera poses are available, we can quickly calculate the epipolar line
for each 2D feature. A simple extension of epipolar geometry can help us find
outliers: given a pair of matched points (x1, x2), the third corresponding point x3
must pass both epipolar lines ℓ13 and ℓ23, where

ℓ13 = K−T
3 T̂13R13K−1 x1 (3.3)

ℓ23 = K−T
3 T̂23R23K−1

2 x3 (3.4)

In principle, we can determine x3 by intersecting ℓ13 and ℓ23:

x3 = ℓ13 × ℓ23 (3.5)

However, this approach fails when ℓ13 and ℓ23 are parallel and will be inaccurate
if they are nearly colinear. This happens if the 3D point X lies on or near the trifocal
plane defined by the three camera centers.

The degeneracy of the epipolar method can be avoided by using the trifocal
tensor in three views which is analogous to fundamental matrix in two [11] views.
The idea is to construct a homograpy by finding a plane defined by the back-
projection of a line in the second view using the trifocal tensor. The homography
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and x3 are [11],
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i = lj2T
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i is the trifocal tensor, and aj

i,bj
i are the (i, j) element of

the camera projection matrices P2 and P3 for the second and third view. A good
chioce for l2 is the line that is through x2 and perpendiculat to the epipolar line. A
comparison of accuracy for the epopolar method and the trifocal tensor method is
shown in Fig. 3.2.

We couple the above procedure with RANSAC to filter outliers in a track and
find the largest support set of corresponding points. Because each view has at most
five elements (thus ten pairs possible), we can quickly iterate the ten possible pairs
for each track. Once the outliers are filtered out, the stander DLT method[11] is
used to triangulate for the 3D position for each track. As shown in Fig. 3.3, a better
rendering result is achieved with the proposed trifocal tensor filtering procedure.
More discussion about Fig. 3.3 can be found in Sec. 5.5

The Trifocal-Tensor-based Track Filtering is summarized in Algorithm 1.

3.2.4 Surface Reconstruction and Texture Mapping

Once we have an accurate point cloud, the next step is to reconstruct a 3D surface
model out of it. The desired surface reconstruction algorithm should not only
work well with the sparse nature of our reconstructed point cloud but also be very
computationally efficient to satisfy the real-time requirement. We use the Delaunay
graph cut algorithm by Labatut et al. [40] because it is fast and robust to changes
in point density, which helps to reconstruct difficult surface parts. In their work,
they also showed that their approach is very robust against outliers.

Once we obtain the 3D surfaces, each surface is projected to all views that
observe it. If the 3D surface is viewable by multiple views, we retrieve the texture
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Figure 3.3: Rendering result. (a) rendered view without trifocal tensor filtering (b)
with trifocal tensor filtering (c) the ground truth (d) Structural similarity (SSIM)
index for rendering result with and without trifocal tensor filtering.

from the view whose viewing angle is smallest with the normal of the 3D surface:

arg min
C

⟨vC, n⟩ (3.8)

where vC is the viewing angle of view C, and n is the normal of the 3D surface.
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Algorithm 1 Trifocal-Tensor-based Track Filtering
1: procedure Track Filtering(Tracks, k)
2: for each track T in Tracks do
3: for each possible element pair ti, tj in T do
4: Maintain set C for each pair
5: for each tr in T\{ti, tj} do
6: Compute t̂r by Equation 3.7
7: if dist(tr, t̂r) < k then
8: Add tr to C

9: end if
10: end for
11: end for
12: T = arg maxC |C| ▷ keep the largest support set
13: end for
14: end procedure

3.3 Experiment

3.3.1 Setup and Protocol

We evaluate the proposed RT3DV algorithm using the hardware platform shown
in Fig. 1.1. Five synchronous video streams are acquired from five micro-cameras
(dark squares in Fig. 1.1(a)) simultaneously. The displacements between cameras
are around 5 cm, as shown in Fig. 1.1(a). The camera array assembly is mounted on
the top of an FLC laparoscope trainer box. The objects are placed at the bottom of
the box and will be moved manually during the video capture to emulate a dynamic
scene.

This platform is a prototype 3D visualization system developed to enhance the
visualization of traditional laparoscope [8, 9]. Each camera has a resolution of
640×480 pixels and has a frame rate of 30 frames per second (fps). Each camera
is attached to a Raspberry Pi video capturing board, which compresses the video
into Mpeg-4 format. The compressed video is then transmitted through Ethernet
cables to a desktop PC to be processed. The PC is equipped with an 8-core 4.00 Hz
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i7-6770k CPU, a GeForce GTX 2080 Ti GPU, 16 GB main memory running Ubuntu
16.04 operating system.

For the baseline pipeline, we used the C++ implementation as SfM[10]. We
chose the Cuda implementation of MVS[1]. The surface reconstruction[40] is
implemented in C++ by[82]. RT3DV is implemented in C++ using OpenCV with
CUDA 9 enabled, where SURF[32] and FLANN[33] matching run in GPU.

We generated three sets of multiview video streams, one for each object, using
the experiment platform described above. Besides, we perform the same experiment
on the public available DTU MVS dataset[2], where underlying point clouds, the
camera poses, and the images for each camera are all available. Since the objects
are stationary, we first translate the underlying point cloud and then back-project it
to all cameras to generate the multiview videos of moving objects.

We ran the baseline pipeline and RT3DV on all the multiview video frames
in both datasets. We chose the running time to be the time interval between the
completion of texture mapping between the successive frames. For the baseline
pipeline, we excluded SfM and only measured the running time between the end
of SfM to the end of texture mapping because SfM is only performed once as the
initiation step in RT3DV. The processing time per frame is the average running time
of all successive frames for each video. We conducted three trials of the experiment
and reported the average processing time per frame of the three trials.

3.3.2 Results

Timing

Table 3.1: Timing for baseline pipeline

Objects Dense[1] Surface Texture Total
Mushroom 1.4 s 1.2 s 1.4 s 4.0 s
Post Office 1.3 s 2.0 s 2.1 s 5.4 s

Owl 1.4 s 1.9 s 2.4 s 5.7 s



31

Table 3.2: Timing for RT3DV. (Feature detection is performed every 10 frames)

Objects Detect KLT Tri Surface Texture Avg
Mushroom 66 ms 9 ms 10 ms 10 ms 13ms 43 ms
Post Office 57 ms 8 ms 9 ms 8ms 11ms 38 ms

Owl 63 ms 10 ms 11 ms 10 ms 12 ms 45 ms

For the three multiview videos collected in the FLC laparoscope trainer box, we
remove the tracked features whose error is greater than five and triangulate the rest.
The algorithm is set to re-detect features per 10 frames. The running time is related
to the number of feature points being processed. With a large number of features,
the processing time for tracking, epipolar-geometry-aided matching, and trifocal-
tensor-based track filtering and surface reconstruction can worsen.The baseline
pipeline tries to find the dense feature point cloud. However, for scenes that have
few feature points, it fails to compute the scene geometry, which introduces holes in
the reconstruction, as shown in the last row of Fig. 3.8. The timing for RT3DV and
the baseline pipeline are summarized in Table 3.1 and 3.2. The number of feature
points and 3D triangles can be found in Table 3.4.

Quality Metric and Evaluatoin

A key result of this work is that the visual quality of rendered images using a
sparse point cloud is comparable to that using a dense point cloud. To facilitate
objective visual quality evaluation, we adopt a protocol similar to the leave one out
cross-validation method: we render a view at a viewing angle that coincides with
one of the cameras and compute the peak signal to noise ratio (PSNR) between the
rendered video frame and the acquired video frame (ground truth) without using
any video frames from that validation camera.

Fig. 3.4 shows the original image and the rendered view generated by our
method and the baseline pipeline. In our experiment, we track feature points for
ten frames and re-detect new feature points. Fig. 3.5 shows the tracking result
of our method as opposed to the classic pipeline. The averaged PSNR of Fig. 3.5
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Original RTMVS Baseline

Figure 3.4: Rendered view to an original view using depthmaps only. Images in
the 1st column are original images. The 2nd column are generated by RTMVS. The
3rd column are generated by the Patchmatch-based MVS implemented by Galliani
et al. [1]

is recorded Table 3.4. The experiment is repeated with and without the epipolar
geometry aided matching and the proposed trifocal tensor based filtering procedure.
The rendered view and the structural similarity (SSIM) are computed and shown
in Fig. 3.3. A qualitatively and quantitatively better result is obtained with the
proposed matching and filtering procedure.
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Figure 3.5: From left to right are the rendered view for the moving objects. The 1st
row are the results of the baseline pipeline which takes more than 5s per frame. The
2nd row are the rendered results for RTMVS that takes 44ms per frame on average.

Figure 3.6: Camera configuration for computing PNSR for virtual view. Each cam-
era configuration has five cameras. We reconstruct the middle view and compute
the PSNRs with the real image of the middle view using RTMVS and the baseline
pipeline. Config 1-6 correspond to camera group of Green, Blue, Red, Cyan, Ma-
genta, Yellow.



34

RTMVS Baseline

Figure 3.7: Comparison of processing time per frame and PSNR between RTMVS
and the baseline pipeline. Config 1-6 correspond to Green, Blue, Red, Cyan, Ma-
genta, Yellow. Object 1, 5, 6, 45 correspond to markers of cycle, plus, star, cross.
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For the DTU dataset, the camera configurations are shown in Fig. 3.6. We
test the baseline pipeline and RT3DV on four objects (object 1, 5, 6, 45) for six
camera configurations (Green, Blue, Red, Cyan, Magenta, Yellow), as shown in Fig.
3.6. For each camera configuration, we reconstruct the image of the center view
and computer the PSNRs with the original image using RT3DV and the baseline
pipeline. Fig. 3.7 shows the generated view. Table 3.3 and Fig. 3.9 show the PNSR
and averaged processing time of our pipeline and the baseline pipeline, from which
we see that the results of RT3DV and the baseline pipeline have similar PSNR but
RT3DV is orders of magnitude faster than the baseline.

Table 3.4: Comparison of number of features and triangles and PSNR

Features Triangles PNSR
Baseline Ours Baseline Ours Baseline Ours

Mushroom 14733 370 29418 715 14.9 dB 14.4 dB
Post Office 15710 281 31383 585 17.1 dB 16.1 dB

Owl 17637 303 35240 622 16.9 dB 16.0 dB

3.4 Discussion
Number of features and processing time. The processing time of the proposed
pipeline heavily relies on the accuracy and the number of feature points extracted
from the scene. Our virtual view is generated by rendering the 3D model computed
by the sparse point cloud. If the number of points in the point cloud is too few,
the point cloud will not capture the 3D geometry of the scene well. On the other
hand, if the number of features is too large with similar accuracy, the reconstruction
would take too long to complete, as the number of features has a direct relation to
each stage of the pipeline. In our experiment of the laparoscope training box, the
number of features is between 280 to 400, and the averages reconstruction time per
frame is around 42 ms.
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Stationary camera poses The proposed pipeline assumes the relative camera
poses are stationary. If the relative camera poses have changed, then we need to
calibrate the cameras, which can be done by running SfM from scratch.

3.5 Conclusion
In this work, we propose RT3DV for near-field scenes. The proposed algorithm
utilizes the temporal and spatial correlation of multiview videos and is faster
than the state-of-the-art pipeline in order of magnitude. While the state-of-the-art
pipeline reconstructs fine details on parts of the scene, it introduces holes on the
part that has fewer features. Our efficient and straightforward pipeline can preserve
the integrity of the scene and provide an adequate visualization result.
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Original Left Front Right 

Figure 3.8: Virtual views using textured 3D surfaces for the objects Owl, Post Office,
and Mushroom at a given frame. The virtual view is generated by 3D rendering
engine. The 1st, 2nd, 3rd columns are the left, front, and right virtual view. The
1st row of each object is the result generated by the baseline pipeline, which takes
around 5 s. The 2nd row is the result of the proposed pipeline, which takes around
42 ms on average.
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Original Baseline RTMVS Original Baseline RTMVS Original Baseline RTMVS

Group 1 Group 2 Group 3

Group 4 Group 5 Group 6

Group 1 Group 2 Group 3

Group 4 Group 5 Group 6

Group 1 Group 2 Group 3

Group 4 Group 5 Group 6

Config 1 Config 2 Config 3

Config 4 Config 5 Config 6

Figure 3.9: Generated virtual center views for object 1, object 5, object 6, object 45
(in order) of the DTU dataset[2] by baseline pipeline and RT3DV.
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CHAPTER 4
Real-time Moving Surgical Tool Recon-
struction

4.1 Overview
In a typical laparoscopic surgery setting, the surgical tools, specifically graspers,
interact against a background objects that remains relatively stable between suc-
cessive frames. These graspers play a pivotal role in surgical procedures, enabling
precise maneuvers that result in deliberate and controlled movements of tissues
and organs within human interior body. The accurate perception of the 3D states of
these surgical tools during operation is of utmost importance. Hence, the graspers
demand special attention due to their central role in the surgeon’s focus. A la-
paroscopic grasper, depicted in Fig. 4.1, is characterized by a semi-rigid structure
consisting of a rod, two finger tips, and a joint point.

RodJoint

Finger tips

Figure 4.1: The surgical tool for a laparoscopic surgery, e.g. a grasper, consist of a
rod, two finger tips and a joint point.

The primary objective is to efficiently and precisely reconstruct the 3D pose of
the laparoscopic grasper through the utilization of synchronized multiview video
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streams. Our assumption is that the laparoscopic environment maintains a static
background, with two graspers serving as the surgical tools tasked with manipu-
lating beans within a laparoscopic surgery training box. The foreground objects
encompass rigid beans and the two graspers, simulating the tools in action, while
the background scene incorporates one or more cups to introduce depth variations
within the interior body, as shown in Fig. 4.2. To enhance the reconstruction and
rendering of these textureless foreground objects, we introduce color markers for
identifying key components and pre-established 3D models for generating virtual
views.

Grasper

Bean

Cap

Figure 4.2: Foreground and background objects

Our hardware system comprises a laparoscopic training box replicating the
abdominal cavity, a camera array facilitating synchronized real-time video streams,
and specialized testing objects emulating surgical operations. The camera array
consists of a camera holder and five Raspberry Pi units, each equipped with a Pi
Camera. These Raspberry Pi units record real-time video streams, transmitting
them to a PC via Ethernet cables. Positioned approximately 15 to 20 cm away, the
camera array is oriented towards the objects undergoing simulated procedures, as
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illustrated in Figure 4.3, showcasing the comprehensive hardware setup.

Figure 4.3: Hardware system

The proposed algorithm framework initiates with an offline calibration stage,
where we determine camera poses, obtain dense 3D models for background objects,
and establish a pre-built 3D model for the foreground object. In acquiring camera
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poses and dense 3D models for background objects, a structured light with a
random stride pattern is shined to backgrounds. Subsequently, Structure from
Motion (SfM) [10] is applied to derive camera poses. Next, Multi-View Stereo
(MVS)[1] is utilized to generate a dense 3D model for background objects. We
employ SolidWorks to acquire the 3D models of the grasper and beans, stored as
.PLY format.

The foreground objects testing encompass two graspers, one cup, and one bean
A grasper is a semi-rigid object whose real-time configuration, i.e., shape and pose,
can be determined by the 3D position of the joint point, the two fingertips, and
the center line of the rod. The real-time configuration of the ball-shaped bean is
determined by the 3D position of its center. Upon establishing the 3D configuration,
we augment the pre-built 3D model of the object with respect to that configuration
for virtual view generation. To facilitate robust reconstruction of these important
key points and the center line of the rod, color patches is attached to the joint and
the two fingertips of a grasper, as shown in Figure. 4.2.

In the reconstruction of the 3D pose for foreground objects, specifically the
graspers and beans, our method involves an initial tracking phase for the two finger
tips, the joint point, and the center line of the rod in each 2D view. To enhance
the stability of 2D tracking and mitigate random jitters, we employ the Kalman
filter. Subsequently, correspondences are established for the finger tips, joint point,
and rod center line. With these correspondences in place, we perform real-time
calculation of the corresponding 3D poses using a combination of Direct Linear
Transformation (DLT)[11] and the Kalman filter.

4.2 2D foreground detection tracking
The foreground objects consist of two graspers and one bean. To reconstruct the 3D
pose for a grasper, our focus lies in determining the 3D positions of the joint point,
two finger tips, and the center line of the rod. This simplified approach is attributed
to the semi-rigid nature of the grasper. In the case of beans, the reconstruction solely
requires the 3D position of the center, as it represents a known 3D ball. In short,
he reconstruction process for foreground objects can be distilled into two main
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components: 3D key point reconstruction and 3D line reconstruction, summarized
as followed:

• Key point reconstruction: grapser joint point, grasper finger tip, bean center

• Line reconstruction: grasper rod.

4.2.1 2D key point detection

The joint point and finger tips of the grasper and the bean are attached with color
patches. In each frame, we initiate the process by obtaining a binary mask through
moving object subtraction. Within this mask, template matching in the YCbCr
space is employed to precisely locate the color patch. In instances where moving
objects are absent or the color patch cannot be located, further processing of the
object associated with the color patch is omitted.

Even upon locating the color patch, it often appears incomplete and is susceptible
to noise contamination. To address this, we employ a series of iterations involving
erosion and dilation to eliminate noise. Ultimately, the centroid of the detected mask
serves as the 2D location for the color patch. This entire procedure is iteratively
repeated for each color patch.

4.2.2 Rod center line detection

Given our knowledge of the rod’s 3D model, deriving its 3D pose becomes feasible
through analysis of its center line, considering one end of the rod is the joint point.
Recognizing that the mask of the rod always have a pair of straight lines—due to the
3D-to-2D transformation of lines in perspective projection—we propose employing
Hough transform to identify edges within the foreground mask.

In cases where the foreground mask includes the grasper, the Hough transform
may yield multiple lines on each edge. To refine this, we utilize K-means with two
classes, and the final two centroids resulting from K-means are considered as the
images of the two edges of the rod. The ultimate step involves computing the 2D
center line of the rod as the midpoint between the two detected edges.
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4.2.3 Tracking

To alleviate the impact of noise and jitters associated with detected 2D key points
and edge lines in each view, we suggest employing the Kalman filter with a constant-
acceleration model, i.e.

st+1 = st + vt∆t+
1
2at∆t

2 (4.1)

where st, vt, at are the states, velocity, acceleration at time t.
For 2D key points sp = [sx, xy] ∈ R2 and 2D directions sl = [sx, sy, sz] ∈ R3, the

state vectors are
sp =

[
sx sy vx vy ax ay

]T
∈ R6

sl =
[
sx sy sz vx vy vz ax ay az

]T
∈ R9

The state transition equation is

s̃n+1,n = F · s̃n,n + Gun +ωn

where

• s̃n+1,n is the predicted system state vector at time n+ 1

• s̃n,n is the estimated system state vector at time n.

• un is the control vector

• ωn is the process noise

• F is the state transition matrix

• G is the control matrix

Since the model has no input (control) vector, un is 0. Hence,

s̃n+1,n = F · s̃n,n +ωn
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where F for 2D key points and lines are

Fp =



1 0 ∆t 0 1
2∆t

2 0
0 1 0 ∆t 0 1

2∆t
2

0 0 1 0 ∆t 0
0 0 0 1 0 ∆t

0 0 0 0 1 0
0 0 0 0 0 1


∈ R6×6

Fl =



1 0 0 ∆t 0 0 1
2∆t

2 0 0
0 1 0 0 ∆t 0 0 1

2∆t
2 0

0 0 1 0 0 ∆t 0 0 1
2∆t

2

0 0 0 1 0 0 ∆t 0 0
0 0 0 0 1 0 0 ∆t 0
0 0 0 0 0 1 0 0 ∆t

0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1


∈ R9×9

The observation matrix for 2D key points and lines are

Hp =

[
1 0 0 0 0 0
0 1 0 0 0 0

]
∈ R2×6

Hl =

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0

 ∈ R3×9

Assuming that measurements are uncorrelated, the measurement covariance
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matrices are respectively

Rp =

[
σ2
xmxm

0
0 σ2

ymym

]
∈ R2×2

Rl =

σ2
xmxm

0 0
0 σ2

ymym
0

0 0 σ2
zmzm

 ∈ R3×3

First we compute the Kalman Gain

Kn = Pn,n−1HT (HPn,n−1HT + R)−1 (4.2)

Once we have the measurement, i.e. 2D key points or lines, we update the
estimates with the measurement.

ŝn,n = ŝn,n−1 + Kn(zn − Hŝn,n−1) (4.3)

Followed by updating the estimate uncertainty

Pn,n = (I − KnH)Pn,n−1(I − KnH)T + KnRnKT
n (4.4)

Finally, state prediction is done by

s̃n+1,n = F · s̃n,n +ωn (4.5)

and extrapolating uncertainty by

Pn+1,n = FPn,nFT + Q (4.6)

The corrected state will be used as the final detected value for 2D key points or the
line.
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4.3 Real-time 3D reconstruction
Given the relative camera poses, the process of reconstructing a 3D point or line
simplifies to establishing 2D correspondences across the multiple views.

4.3.1 Building Correspondence

With the bean possessing a unique color, establishing the correspondence for the
bean is straightforward upon detection. Distinguishing between the two graspers
relies on their respective colors, although the joint point and the two finger tips
share the same color within a grasper.

Following the processing of the foreground mask in Section 4.2.1, three centroids
remain for a grasper after filtering out other colors. Among these centroids, the
one closest to the grasper center is identified as the joint point. To differentiate
between the two fingers, we compute normal vectors: ncj from the grasper centroid
to the joint point, njl from the joint point to the left finger tip, and njl from the joint
point to the left finger tip. The signs of the cross products njr × ncj and njl × ncj

uniquely correspond to the left and right finger tips.

4.3.2 Reconstruction

Upon establishing the corresponding relationships for key points or center lines
across different views, the reconstruction of 3D key points or center lines can be
achieved through DLT[11]. However, recognizing that each tracked 2D observation
comes with an associated uncertainty score calculated by the Kalman Filter, we
propose employing a weighted DLT approach. This involves using the uncertainties
as weights.

Suppose A is the design matrix in DLT, where we try to solve a homogeneous
least square problem

AX = 0
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For 3D point reconstruction

A =


x1p3T − p1T

y1p3T − p2T

...
xnp3T − p1T

ynp3T − p2T

 ∈ R2n×4 (4.7)

where pjT
i are the jth row of the projection matrix Pi.

For 3D line reconstruction

A =

 lT1 P1
...

lTnPn

 ∈ Rn×4 (4.8)

where li is the projection of the 3D line in view i, Pi is the projection matrix for the
ith camera.

Suppose the weight matrix is W, then the weighted error e is

e = WAX

Minimizing
eTe = XTATWTWAX

leads to the following system of equations

ATWTWAX = 0

Hence, the right singular vector of the smallest singular value of ATWTWA is the
least squares solution, where the weight matrix is defined to be

W =
Pn,n
100
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4.4 Result
To assess the correctness of the proposed algorithm, we adapt the leave-one-out
strategy, where we compare the hold-out view with the rendered 3D model using
the remaining views. If a the 3D model is perfect, the rendered view will be exactly
the same as the hold-out view as shown in Figure. 4.4.

We also plot compared trajectory for the joint point with the proposed algorithm
and vanilla DLT. As we can see from Figure4.5, the reconstruction result of the
proposed algorithm is much more stable than the vanilla DLT.

4.5 Discussion and Conclusion
In this work, we focus on reconstructing the foreground objects, i.e. the surgical
grasper and a bean. The proposed algorithm framework starts with an offline
calibration stage, where we determine camera poses, obtain dense 3D models for
background objects, and establish a pre-built 3D model for the foreground object
with SfM[10] and MVS[1]. We Use SolidWorks to acquire the 3D models of the
surgical grasper and beans.

The foreground objects testing encompass two graspers, and one bean. A grasper
is a semi-rigid object whose real-time configuration can be determined by the 3D
position of the joint point, the two fingertips, and the center line of the rod. The
real-time configuration of the ball-shaped bean is determined by the 3D position of
its center. Upon establishing the 3D configuration, we augment the pre-built 3D
model of the object with respect to that configuration for virtual view generation.
To facilitate robust reconstruction of these important key points and the center line,
color patches is attached to the joint and the two fingertips of a grasper.

In the reconstruction of the 3D pose for foreground objects, our approach in-
volves initial tracking of the two finger tips, the joint point, and the direction of
the rod in each 2D view. We use the Kalman filter to mitigate random jitters in 2D
tracking. Subsequently, we establish correspondences for the finger tips, joint point,
and rod directions.
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For reconstructing each corresponding track, we propose a framework that
seamlessly integrates the Kalman filter and DLT, where DLT is reformulated as a
weighted least squares problem, with weights determined by tracking uncertainties
from the Kalman filter. This design stabilizes tracking results using the Kalman
filter and improves the accuracy of reconstruction by accounting for tracking errors
within the standard DLT.

The experimental results affirm the accuracy and efficiency of our algorithm. It’s
important to note, however, that our setup simplifies the complexity of laparoscopic
surgery, involving only two graspers and a bean as foreground objects. Additionally,
we make the assumption that the background remains static and possesses a distinct
color from the foreground objects.
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Figure 4.4: The rendered result of the proposed algorithm and the ground truth.
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Figure 4.5: Stabilization result for the propose algorithm.
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CHAPTER 5
Real-time Video Stabilization

5.1 Overview
This paper proposes an online real-time geometry transformation-based algorithm
for video stabilization. Unlike other geometry transformation-based algorithms, we
adapt and parallelize a new technique called a-contrario RANSAC (AC-RANSAC),
which does not require any hard thresholds for inlier/outlier discrimination appear-
ing in RANSAC. Hence, it can compute inter-frame global motions more robustly.

The proposed algorithm starts by estimating the inter-frame global motion
between two consecutive frames except for the first one. First, features points for
the current frame are extracted and matched over the previous frame. We choose
SURF [32] and FLANN [33] as our feature extraction and matching algorithm
because of their delicate balance of robustness and efficiency [34, 35]. Then, the
parallel AC-RANSAC is used to estimate the inter-frame geometry transformation,
from which the motion parameters (translations, rotations, and scales) are derived.
The inter-frame global motion estimation is performed for each incoming frame.

Then the algorithm enters the motion smoothing phase, which requires a user-
specified parameter N. If the current frame number is less than N, the camera
motion for the current frame will be smoothed by our cinematography principles
guided modified recursive least squares algorithm (C-MRLS). After the Nth frame,
we stabilize the current camera motion with our modified sliding window least
squares algorithm (MSWLS). Finally, the current frame is warped to the previous
stable space in the motion compensation stage to create a stabilized video sequence.
The whole algorithm pipeline is shown in Fig. 5.1

The key contribution of the proposed algorithm is a novel least-squares-based
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smoothing cost for estimating the intentional motion and its associating solver that
minimizes the cost in linear time.

New Frame

SURF FLANN

Extract motion parameters

C-MRLS

Motion Compensation 

Inter-frame motion estimation

Motion smoothing

 Parallel-AC-RANSAC

MSWLS

Current Frame 
Number < N?

Figure 5.1: Overall flowchart of the proposed algorithm, where N is specified by
users.

5.2 Inter-frame global motion estimation

5.2.1 Match Selection

Matches returned by FLANN are outliers contaminated. There are three main
types of outliers: (1) matches with low matching scores, (2) matches belonging
to moving foreground objects which would disturb the estimation of the global
camera motion, and (3) matches with high matching scores but do not correspond
to the same 3D point. We could use a threshold for the first type of outliers to filter
out the low-score matches. Although finding a generic threshold that works well
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Figure 5.2: Match selection. (a)Motion vectors of feature points belonging to
foreground moving and background static feature points. (b)Motion vectors of
background only. (c) Histogram of model error estimated with background and
foreground feature points and (d)with background feature points only

for all images is nearly impossible, a popular alternative is the ratio test proposed
in [29]. Therefore, we use the ratio test to filter the matches returned by FLANN
and pick the 1024 matches with the highest matching scores.

Scenes with moving foreground objects are always challenging to a video stabi-
lization algorithm because the algorithm cannot distinguish whether the displace-
ments of image contents in consecutive frames are caused by foreground object
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movement or camera motion. For example, a camera can remain stationary while
foreground objects actually move. Then, any non-stationary motion estimated by
those moving feature matches would be erroneous. On the contrary, the movements
of background objects in an image purely result from camera motion and are ideal
for camera motion estimation. For a general scene where static background objects
are relatively far away from the camera, background objects’ 2D motions usually
share a similar direction, as shown in Figure 5.2(a). Based on this observation,
we first compute the 2D motion direction for each match by first subtracting the
corresponding feature point coordinates and then normalizing the difference:

v =
Inext − Icur

∥Inext − Icur∥2
(5.1)

where Icur is a feature point in the current frame, and Inext is the corresponding
feature point in the next frame, v is the normalized motion vector.

We filter out those matches whose directions are one standard deviation away
from the average direction. As shown in Fig.5.2(b)(c)(d), this simple pre-processing
step effectively eliminates most matches from foreground objects and results in a
more accurate global camera model, where the model error is defined in equation
(5.33).

In the next section, we will discuss that the parallel implementation of AC-
RANSAC can only handle less than 1024 matches due to GPU’s inherent hardware
limitation, which makes match selection a necessary step. The third type of outliers
can be effectively removed by robust estimation techniques such as RANSAC or
AC-RANSAC.



58

(a) (b) (c)

Figure 5.3: Robust Affine estimation. (a)If RANSAC error threshold (σ = 0.05)
is small, good matches are filtered out. (b)AC-RANSAC: The error threshold
is statistically computed, which provides a well balanced between the number of
matches and the correctness. (c)Error threshold σ = 0.3. All the matches (including
false matches) are returned.

5.2.2 Parallel AC-RANSAC

We choose our camera motion model to be the simplified affine transformation as it
provides an excellent trade-off between effectiveness and complexity [26]:

A =

s · cos(θ) −s · sin(θ) tx

s · sin(θ) s · cos(θ) ty

0 0 1

 (5.2)

where s is the scale, θ is the rotation, and tx and ty are translations in x,y axis.
Feature matching plays a vital role in estimating A, but matches returned by

matching algorithms are often outlier-contaminated. Therefore robust estimation
techniques such as RANSAC [29] are required.

RANSAC randomly draws Nsample samples to estimate a temporary model
Atemp. Then it counts the number of inliers according to a threshold σ(specified
by the user) on the residual error. After Niter iterations, the model with the largest
number of inliers is returned. Finally, all the inliers are used to generate a final
robust model. In our case, we need Nsample = 2 samples to estimate Atemp.

The correct choice of σ is critical but depends profoundly on the underlying
data and model. If σ is too small, numerous true inliers are classified as outliers
and eliminated. If it is too large, the algorithm treats many outliers as inliers, and
an inaccurate model will be generated, as shown in Fig. 5.3.

AC-RANSAC [86, 87] avoids the problem of manually setting σ arising in
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RANSAC by leveraging an a contrario criterion, which has been successfully applied
to estimating Homography [88], Fundamental matrix [86], and Structure-from-
Motion [10]. Here, we extend it to estimating affine model and apply it to affine
model estimation and video stabilization.

The essence of AC-RANSAC is that an observed geometric event is significant if
the expectation of its occurrences is minimal in a random image [87]. In our case,
a subset of feature matches is significant to the model Atemp if the occurrence of
this subset’s matches compatible with Atemp is minimal, assuming all features and
matches are independent and uniformly distributed. Hence, we can use the most
meaningful subset of matches that complies with Atemp as the proxy of the largest
consensus support subset of Atemp.

The meaningfulness of a set of feature matches is quantified by the expected
number of false alarms (NFA), defined as [86, 87, 88]

NFA(k) = Noutcome(n−Nsample)

(
n

k

)(
k

Nsample

)
αk−Nsample (5.3)

- Noutcome is the number of possible models (In the case of affine model,
Noutcome = 1).

- n is the total number of feature matches.

- k is the number of inliers.

- α is the probability of feature matches being an inlier assuming they follow a
uniform distribution

Indeed, if there are k inliers, a total of
(

k
Nsample

)
inliers would generate Atemp.

Under the null hypothesis that all data are independent and uniformly distributed,
there are

(
n
k

)
number of k tuples out of the total n feature matches. The number k

of inliers is usually unknown, so all values of k (from Nsample + 1 to n) are tested,
which gives rise to the factor (n−Nsample). The probability of all k matches are
inliers is αk−Nsample because the Nsample ones used to yield Atamp have zero errors
by default. For a rigorous proof of (2), we refer the reader to [86, 87].
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Similar to [88], let α0 be the ratio of the area a disk with radius 1 and the area
of the image. Then α can be defined as

α = ϵ2
kα0 =

ϵ2
kπ

image size (5.4)

where ϵk is the kth least error among all feature matches.
Therefore, the formula of the NFA for our simplified affine transformation is

NFA(k) = (n− 2)
(
n

k

)(
k

2

)(
ϵ2
kπ

image size

)k−2
(5.5)

To find the largest consensus support subset of Atemp generated by Nsample = 2
random matches, we can first sort all the matches ascendingly by the residual error,
then compute the NFA(k) according to (4) for k from 3 to n (since the selected 2
random matches to generate Atemp have 0 error). Finally, the first k matches where
k minimizes NFA(k) are chosen to be the consensus support set of Atemp. The
above procedure is summarized in Algorithm 2.

As opposed to RANSAC, without any user-specified thresholds, AC-RANSAC
adaptively chooses the most meaningful set in the sense of generating the model as
the largest consensus support set. However, AC-RANSAC requires sorting all data
samples at each iteration. With a large number of iterations, AC-RANSAC becomes
impractical. Due to this high demand for computational power and opaqueness
in interpreting the a-contrario principle, AC-RANSAC has yet to become pervasive
in many Computer Vision tasks. To our best knowledge, we are the first to apply
AC-RANSAC to video stabilization.

Taking advantage of the parallel nature of AC-RANSAC, we propose a parallel
optimization and real-time CUDA implementation of AC-RANSAC. The key idea
is to process each AC-RANSAC iteration in parallel and combine the results at the
last step. In the CUDA programming model, threads are organized into thread
blocks, and grids hold thread blocks. On current GPUs, a thread block can contain
no more than 1204 threads. Each thread has its private local memory, and each
thread block has shared memory accessible to all threads of the block. The global,
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Algorithm 2 Parallel AC-RANSAC for affine model
1: procedure Parallel AC-RANSAC(M,Niter)

▷M is the list of matches
▷ Niter is the number of iterations

2: Lran = Generate a list of 2Niterrandom numbers
3: minNFA = ∞
4: nBlocks = dim3(Niter, 1, 1)
5: nThreads = dim3(32, 32, 1)
6: run AC-RANSAC-KERNEL with nBlocks and nThreads
7: model = element in models with smallest NFA
8: end procedure
9: procedure AC-RANSAC-KERNEL(models)

10: Thread0 estimate affine model Atemp

11: Each thread compute model error for each match
12: Block-wise Radixsort for model errors
13: Each thread computes NFA for each match
14: Use reduction to find the model with min NFA in the block
15: end procedure

constant, and texture memory optimized for different memory usages are visible
to all threads [89].

Specifically, each CUDA thread block is responsible for one AC-RANSAC itera-
tion, and each thread in a thread block is used to estimate the error for each feature
meach. The main steps are as follows:

1. Generate 2Niter of random integers ranging from 1 to M in CPU host, where
Niter is the number of iteration, and M is the total number of feature matches.

2. Thread 0 of each thread block retrieves two random numbers and the corre-
sponding feature matches from the constant memory in GPU, and then uses
the two matches to estimate a simplified affine model Atemp.

3. Each thread retrieves a feature match according to its thread ID and computes
the error to the model Atemp associated with the block.
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4. The M number of errors computed in the previous step for each block is
sorted ascendingly by blockwise RadixSort.

5. Each thread in a block computes NFA(k), where k is the same as the thread
ID. Reduction [90] is used to find the minimal NFA within a block. Thread 0
stores the minimal NFA for the block and Atemp.

6. Finally, the NFAs and their models are sent back to the CPU host, and CPU
finds the minimal NFA and its corresponding model Atemp which is the final
model.

The whole parallel AC-RANSAC is also shown in Algorithm 2, and the specific
configuration of CUDA are detailed in the experiment section.

5.3 Least Squares-based Motion Stabilization
After estimating a robust affine model A, we can extract the motion parameters
s, θ, tx, ty, from which we need to obtain a stable camera motion without annoy-
ing shakes and perturbation. There are multiple ways to approach this problem,
such as low pass filter [22], Kalman filter [77, 31, 78], Gaussian Filter [21], Spline
Smoothing [20], Motion Vector Integration [26] and so on. Here, we propose a
novel least squares-based formulation for finding smooth camera motions obeying
cinematography principles.

For ease of notation, from now on, we denote the motion parameter as m, which
can be s, θ, tx or ty. We start by considering the problem of finding the stable
camera motions as a least squares optimization:

arg min
m1,...mn

n∑
i=1

(mi −mi)
2 + λ

n∑
i=2

(mi −mi−1)
2 (5.6)

where

- mi(mi) is the original(stabilized) camera motion for the ith frame.

- n is the current frame number.
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The data term ∑n
i=1(mi −mi)

2 ensures that the difference between the original
and stabilized motions is small in order to reduce the distortion introduced in
warping. The regularization term ∑n

i=2(mi −mi−1)2 guarantees that the estimated
camera motions (m1, . . . ,mn) are stable. The regularization parameter λ controls
the degree of motion smoothness and the tracking ability of the stable camera
motions (m1, . . . ,mn)

This formulation and its variants are used in offline video stabilization [25, 27]
and yield good results. However, (5.6) in [25, 27] operates in a batch fashion
that computes all the stable motions at once offline. Next, we propose three new
formulations based on (5.6) that robustly estimate the current stabilized motion
online in real-time.

5.3.1 A direct approach

For (5.6) to be applicable to an online and real-time manner, a direct modification
is

mn = arg min
mn

n−1∑
i=1

(mi − m̂i)
2 + (mn −mn)

2+ (5.7)

λ

n∑
i=2

(m̂i − m̂i−1)
2 + λ(mn − m̂n−1)

2

where we try to find the current estimate mn using all initial estimates m1, . . . ,mn

and all previous stabilized results m̂1, . . . , m̂n−1. We can further simplify (5.7) to:

mn = arg min
mn

(mn −mn)
2 + λ(mn − m̂n−1)

2 (5.8)

Since (5.8) is quadratic, the minimum occurs when the derivative is zero. The
solution to (5.8) is

mn =
mn + λm̂n−1

1 + λ
(5.9)

However, (5.9) is simply the weighted average of the last stabilized motion m̂n−1
and the current motion mn, where the weight is controlled by λ. Hence, (5.9) has a
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limited capability of stabilizing the current frame, as shown in Fig.5.4.

5.3.2 Modified Recursive Least Squares Stabilization (MRLS)

The direct approach provides a formulation that runs online and in real-time but
with a limited stabilization ability. Although (5.6) operates in a batch fashion, it is
still suitable for real-time stabilization if we can efficiently and robustly estimate
the current stabilized motion.

At the nth frame, suppose we compute (m1, . . . ,mn) in (5.6) in real-time, then
we can use mn as the stabilized motion for current frame, i.e. m̂n = mn. However,
(5.6) does not take into account the past stabilized motions (m̂1, . . . , m̂n−1) when
computing mn, hence there is no guarantee that (m̂1, . . . , m̂n−1, m̂n = mn) will
form a smooth path. To remedy this, we further propose the following cost function:

arg min
m1,...mn

n∑
i=1

(mi −mi)
2 + λ1

n∑
i=2

(mi −mi−1)
2 + λ2

n−1∑
i=1

(mi − m̂i)
2 (5.10)
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(c)

(b)

(a)

Stabilized translation in x direction

Stabilized translation in x direction

Stabilized translation in x direction

Figure 5.4: Stabilization of translation in x direction, i.e. m = tx, via the original
approach (5.6), the direct approach (5.7) and MRLS (5.10). (a) Comparison of
stabilization effects of the three formulae. (b) The direct approach has limited
freedom to stabilize the motions. As λ increases, it can over-stabilize the original
motions resulting in a static, instead of stabilized, video. (c) MRLS makes use of
all the previous estimates for stabilization and avoids over-stabilizing the motions.
The stabilized motions can still reflect the intentional motion of the camera.
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(a) (b)

Figure 5.5: Stabilization of translation in x direction, i.e. m = tx. m̂ denotes final
stabilized estimates. mk denotes the optimal solution (m1, . . . ,mk) to (5.6) for (a)
or (5.10) at frame k for (b). (a) At each frame, (5.6) tries to estimate an augmented
path (m1, . . . ,mk) without considering the previous estimate (m̂1, . . . , m̂k−1). (b)
(5.10) assures that m̂i and mi, i = 1, . . . ,n− 1 are similar, so (m̂1, . . . , m̂k−1, m̂k =
mk) will be smooth.
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Similar to (5.6), here (5.10) tries to estimate an augmented path (m1, . . . ,mn)

that starts at the first frame and ends at the current frame, and m̂n is set to mn for
the next round of estimation.

The data term ∑n
i=1(mi −mi)

2 ensures that the distortion between the original
path (m1, . . . ,mn) and the augmented path is small. The augmented path is guaran-
teed to be smooth by the minimization of the first regularization term λ1

∑n
i=2(mi−

mi−1)2. Furthermore, the second regularization term λ2
∑n−1

i=1 (mi − m̂i−1)2 secures
that the augmented path is similar to the previous smoothed path (m̂1, . . . , m̂n−1),
making sure that (m̂1, . . . , m̂n−1, m̂n = mn) will form a smooth curve, as shown in
Fig. 5.5.

Similarly, (5.10) is quadratic, so we can find the optimal augmented path
(m1, . . . ,mn) to achieve the minimum of (5.10) by setting all partial derivatives
to zero, which is equivalent to solve the system of linear equations (5.11). The
derivation for (5.11) is detailed in Appendix 5.9. Note that (5.11) can be written
compactly in matrix form Snmn = Yn.

For small Sn, we could just invert it to find m̂n, i.e. m̂n = mn =
[
S−1
n Yn

]
n

,
where [·]i denotes ith element of a vector. However, the size of Sn increases with
n, which makes computing S−1 not practical to a real-time application for large
n. Since m̂n is the quantity that we try to estimate, we do not have to compute
the complete inverse of Sn. Instead, knowing the last row of S−1

n is enough for
computing m̂n. Thanks to the unique structure of Sn, we derive a recursive formula
for computing the last row of S−1

n by recursively constructing the row echelon form
of Sn from Sn−1 in O(n) operations.

The key observations are (1) that the (n − 2)th row of Sn−1’s echelon form is
the same as Sn’s echelon form and (2) that the operations to derive the last row of
Sn’s echelon form from the (n− 2)th row is straightforward.

Theorem 5.1. Let Sn−1 = [Sn−1|I] be an augmented matrix, where I is the identity matrix.
Se
n−1 = [Se

n−1|An−1] is the echelon form of Sn−1 with b = −λ1 as leading term for each
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row. Then {Sn−1}n−2 ∈ R2(n−1) and {Sn}n−2 ∈ R2n have the form:

{Sn−1}n−2 = (5.12)[
0 · · · b x

(n−1)
1 y

(n−1)
1 · · · y

(n−1)
n−3 0

]

{Sn}n−2 = (5.13)[
0 · · · b x

(n−1)
1 0 y

(n−1)
1 · · · y

(n−1)
n−3 0 0

]
where {·}i denotes the ith row of a matrix, and

x
(n−1)
1 =

b2

c− x
(n−2)
1

(5.14)

y
(n−1)
i =

−y
(n−2)
i b

c− x
(n−2)
1

, i = 1 . . .n− 3 (5.15)

y
(n−1)
n−2 =

b

c− x
(n−2)
1

(5.16)

(5.17)

where

a = (1 + λ1 + λ2) (5.18)
b = −λ1 (5.19)
c = (1 + 2λ1 + λ2) (5.20)
d = (λ1 + 1) (5.21)

Proof. See Appendix 5.9
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Once we have {Sn}n−2, we can obtain the {Sn}n by two more row operations:

b2

c− x
(n−1)
1

({Sn}n−1 − {Sn}n−2) → {Sn}n−1 (5.22)

c− x
(n−1)
1

qn

({Sn}n − {Sn}n−1) → {Sn}n (5.23)

where qn = cd−x
(n−1)
1 d−b2. Note that the first of half of {Sn}n, denoted as {Sn}

1st
n ,

is a unity row vector with the last element being 1, and its second half, denoted as
{Sn}

2nd
n , is {S−1

n }n (the last row of S−1
n ), which can be used to find m̂n:

m̂n = mn = {S−1
n }n · Yn = {Sn}

2nd
n · Yn (5.24)

To estimate m̂n recursively, we will first need to store {Sn−1}n−2 and Yn which
takes O(n) storage, then use (5.22),(5.23) to compute m̂n which takes O(n) opera-
tions, and finally store {Sn}n−1 for estimating m̂n+1 which also takes O(n) storage.
Therefore, solving (5.11) has O(n) time and space complexity in total.

Note that (5.11) differs from a typical recursive least squares [91] in that Sn, mn

and Yn change at each time step. Hence we refer (5.11) as the modified recursive
least square(MRLS) in our algorithm pipeline.

5.3.3 Cinematography Principles guided Modified Recursive
Least Squares Stabilization (C-MRLS)

MRLS assures that the estimated path is smooth and close to the original path
by adding the two regularization terms. However, according to cinematography
principles [22, 24], the desired stabilized path should have constant velocity and
constant accelerations, i.e., the second and third derivatives for the path are zero.
For our stabilized path to have these cinematographic characteristics, we first define
two proxies as the variations of velocity and acceleration.

From finite difference methods [92], the backward difference approximation
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for the second and the third derivatives are[92]

(dv)i = mi − 2mi−1 +mi−2 (5.25)

(dc)i = mi − 3mi−1 + 3mi−2 −mi−3 (5.26)

Note that (5.25) and (5.26) have first-order truncation error[92]. We could also
choose other more complex forms for approximating dv and dc with smaller trun-
cation errors in principle.

Hence, the desired cost function following the cinematography principle is

arg min
m1,...mn

n∑
i=1

(mi −mi)
2 + λ1

n∑
i=2

(mi −mi−1)
2 + λ2

n−1∑
i=1

(mi − m̂i)
2 (5.27)

+ λ3

n∑
i=3

(dv)2
i + λ4

n∑
i=4

(dc)2
i

The path that minimizes (5.27) will be smooth and have near-constant velocity and
near-constant acceleration, which obeys the cinematography principles.

Since (5.27) is also quadratic, we can find the solution by solving the corre-
sponding system of linear equations whose data matrix is (5.28). The derivation
for (5.28) and its linear solver are the same as (5.11). Hence we refer (5.28) as the
cinematography principles guided modified recursive least square(C-MRLS). As
shown in Fig. 5.6, C-MRLS avoids rapid changes in the resulting path, and thus the
result is smoother than that of MRLS but well still preserves the intentional camera
global motion.
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Stabilized translation in x direction:  MRLS VS A-MRLS

Figure 5.6: Comparison of MRLS and C-MRLS in translation in x direction, i.e.
m = tx. The result for C-MRLS is smoother than MRLS but well preserves the
intentional camera global motion.
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5.3.4 Modified Sliding Window Least Squares Stabilization
(MSWLS)

In MRLS and C-MRLS, all previous frames are used to estimate the stable motion,
which takes O(n) time and space complexity. As n increases, MRLS and C-MRLS
will eventually become impractical. In practice, the frames far before the current
frame contain little information for the inference of the current frame’s stable motion.
Hence, we propose to use only the latest N frames to estimate the motion of the
current frame, where N is specified by users:

arg min
mn−N+1,...mn

n∑
i=n−N+1

(mi −mi)
2 + λ1

n∑
i=n−N+2

(mi −mi−1)
2 (5.29)

+ λ2

n−1∑
i=n−N+1

(mi − m̂i)
2 + λ3

n∑
i=n−N+1

(dv)2
i + λ4

n∑
i=n−N+1

(dc)2
i

(5.29) not only emphasizes the most relevant information in the time domain but
also can be regarded as a failsafe for MRLS. Similarly, to find the m that minimizes
(5.10), we can set all the partial derivatives to zero, which is equivalent to solving
the linear system:

SN ·


mn−N+1

m2
...

mn−1
mn


︸ ︷︷ ︸

m ′
N

=


mn−N+1 + λ2m̂n−N+1
mn−N+2 + λ2m̂n−N+2

...
mn−1 + λ2m̂n−1

mn


︸ ︷︷ ︸

YN

(5.30)

m̂n = mn = {S−1
N }NYN (5.31)

where {S−1
N }N can be precomputed or set to {Sn}

2nd
n when n = N in MRLS, and N is

specified by users.
We see that saving YN requires O(N) storage and computing m̂n by (5.31) takes
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O(N) operation, so MSWLS also has O(N) time and space complexity.For similar
reason, we refer (5.30) as the modified sliding window least square(MSWLS) in
our algorithm pipeline. Our least squares motion stabilization is summarized in
Algorithm 3.

Algorithm 3 Least Squares-based Motion Stabilization
1: procedure C-MRLS(m,n, Y, S)
2: append mn to Y
3: construct S in (5.13) from (5.12) ▷ differs from MSWLS
4: estimate m̂n

5: set the last element of (mn + λ2m̂n)
return m̂, Y, S

6: end procedure
7: procedure MSWLS(m,n, Y)
8: append mn to Y
9: estimate m̂n using (5.31) ▷ differs from C-MRLS

10: remove mn−N+1 + λ2m̂n−N+1 from Y
11: set the last element of (mn + λ2m̂n)

return m̂, Y
12: end procedure
13: procedure LS-Stabilize(m,n, Y, S)
14: if n < 1 then
15: m̂ = mn

16: append m1 + λ2m̂1 to Y
17: else if n < N then
18: [m̂, Y, S] = C-MRLS(m,n, Y, S)
19: else
20: [m̂, Y] = MSWLS(m,n, Y)
21: end if

return m̂, Y, S
22: end procedure
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F1 F2 Fn

F2 FnF1

...

...

I

...

...

A1 A2 An-1

A1 A2 An-1

Figure 5.7: Global transformation relationship between original Fi and stable Fi
frames

5.4 Motion Compensation
After the stabilized motions are estimated, we need to warp the current frame to
generate the final stabilized frame. Let Fi, Fi denote the ith original frame and
stabilized frame, Ai denote the simplified affine between Fi and, Fi+1, Ai denote
the stabilized affine transformation between Fi and Fi+1. From Fig. 5.7, we see that
Fn relates F1 with

Fn =

(
n∏

i=1
Ai

)
F1 = (An · . . . ·A1) F1

and Fn relates F1 with

Fn =

(
n∏

i=1
Ai

)
F1 =

(
An · . . . ·A1

)
F1

Therefore, the nth stabilized frame Fn can be obtained from the current input Fn by

Fn =

(
n∏

i=1
Ai

)
·

(
n∏

i=1
Ai

)−1

Fn (5.32)

=
(
An · . . . ·A1

)
·
(
A−1

1 · . . . ·A−1
n

)
Fn
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5.5 Experiment and Result
We implement our algorithm on a PC with a Core i7-6770 4.0 GHz CPU and a
GeForce GTX2080 Ti GPU. SURF and FLANN are based on the GPU implementation
of OpenCV. We implement both Parallel AC-RANSAC and RANSAC on GPU with
CUDA, and the rest is run on CPU. Table 5.1 presents the timing profile for the
proposed algorithm. For videos with resolutions of 1920 × 1080 or higher, we
downsample them to 1280 × 720 before further processing.

Table 5.1: Timing Performance of the proposed algorithm in milliseconds (Total
time is computed with parallel AC-RANSAC)

Resolution
SURF
and

FLANN

Parallel
AC-

RANSAC
AC-

RANSAC
Motion

Smoothing Total

320 × 240 6.83 3.19 79.75 0.14 12.59
640 × 360 8.48 5.10 128.52 0.56 16.21

1280 × 720 17.00 7.28 181.27 1.04 31.67
1920 × 1080 17.10 7.30 183.23 1.25 32.80

5.5.1 Feature Detection, Matching, and Match Selection

We use SURF and FLANN as our feature detection and matching method, as they
provide a fair tradeoff of robustness and efficiency [34, 35]. We use OpenCV’s
parallel implementation for SURF and FLANN on GPU. As we can see from Table
5.1, SURF and FLANN are the most time-consuming compared to other parts
because of the computation of SURF features and the descriptors. Since OpenCV’s
GPU implementation of SURF is at the pixel level, the number of pixels easily
dominates the number of CUDA cores in a GPU, which diminishes the gain of
parallelism when the image resolution is high.

5.5.2 RANSAC vs AC-RANSAC

Compared to RANSAC, AC-RANSAC automatically selects thresholds for inlier/out-
lier discrimination, but the extra computation of AC-RANSAC prevents it from
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Video 5
Video 6
Video 7
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Video 9
Video 10

RANSAC
AC-RANSAC

Figure 5.8: The threshold for RANSAC ranges from 0.001 to 0.3. Each data point in
RANSAC is the result of a run with a threshold value. For all the 10 testing data,
AC-RANSAC computes a model with more inliers (less outliers in the plot) and
smaller model error.
being used in real-time applications. We hence propose the parallel AC-RANSAC
implemented with CUDA on GPU. To further reduce the processing time, we mas-
sively utilize the on-chip shared memory. In our implementation, each thread
inside a thread block independently estimates the model error for a match. Since a
maximum of 1024 threads is allowed in a thread block in GPU, only consecutive
frames that generate less than 1024 matches can be handled inherently, which is
usually valid for videos with less than 1920x1080 pixels. Otherwise, as described
in 5.2.1, the matches selection method is applied to choose the most 1024 robust
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Figure 5.9: Timing performance between GPU and CPU implementation of AC-
RANSAC as number of matches increases. The result is the average of three trials.

matches for AC-RANSAC.
For challenging frames that do not have enough feature points or undergo sig-

nificant non-ridge motion, etc., AC-RANSAC (or RANSAC) will not be able to
estimate a robust affine/homography model that well explains the geometric trans-
formation between the frames. In such cases, the model returned by AC-RANSAC
(or RANSAC) is ill-conditioned. Hence, we discard the estimated simplified affine
transformation and set it to the identity matrix if the smallest singular value of it is
less than 0.001.
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As discussed in 5.2.2, the drawback of AC-RANSAC is the high computational
complexity compared to RANSAC. As shown in Fig.5.9, our parallel implementation
achieves 25X speed up and around 20 ms for the 1024 matches. We use the number
of inliers and model errors to assess AC-RANSAC’s and RANSAC’s effectiveness.
We define the model error as

e = max
(
AIl − Ir, Il −A−1Ir

)
(5.33)

where A is the estimated affine model, Il is the feature point in the current frame,
and Ir is the matched feature point in the next frame.

For RANSAC, we range the discrimination threshold from 0.001 to 0.5 and plot
the number of inliers and model errors for each run. In AC-RANSAC, the inliers
are the matches whose evaluated errors are smaller than the match that achieves
minNFA. Since AC-RANSAC doesn’t require a threshold, there is only one data
point for each video for AC-RANSAC. As shown in Fig.5.8, AC-RANSAC results in
a model that has more inliers and a smaller model error than RANSAC.

5.5.3 Stabilization

We compare three real-time [30, 78, 93] and three offline video stabilization algo-
rithms [21, 24, 94] with the proposed algorithm, and further quantify two essential
aspects (distortion and smoothness) of stabilization quality with two objectives
metrics.

We use Inter-frame Transformation Fidelity (ITF) to compute the distortion
introduced by stabilization algorithms. ITF is a popular evaluation metric of stabi-
lization quality, which is defined as

ITF =
1

N− 1
N−1∑
k=1

PSNR(Fk+1, Fk) (5.34)

where N is the total number of frames and

PSNR(Fk+1, Fk) = 10 log10

(
peakval2

MSE(Fk+1, Fk)

)
(5.35)
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is the peak signal-to-noise ration between the two consecutive frames with peakval

being the maximum pixel value and MSE(Fk+1, Fk) the mean square error between
consecutive frames Fk and Fk+1.

A higher value of ITF indicates smaller average inter-frame distortion across the
video and thus better stabilization quality. We compare the proposed algorithm
with other state-of-the-art stabilization algorithms in terms of ITF. Since [21, 78] use
inpainting to fill the missing borders of the stabilized frame, for a fair comparison,
we crop all the stabilized video by 20 pixels before computing ITF for the stabilized
videos produced by other algorithms.

We use the normalized decrease in feature point acceleration to measure the
smoothness of a stabilized video„ as feature points in a smooth video should have
zero or constant acceleration [24]. [78] adopts such an idea to assess the smoothness
of a stabilized video. For each output video, we first extract SURF features for each
frame and perform matching to build feature trajectories. Then we compute the
sum of acceleration for each trajectory by

V(I) =
∑√(

Ixi+1 − 2Ixi + Ixi−1
)2

+
(
Iyi+1 − 2Iyi − Iyi−1

)2 (5.36)

where (Ixi , Iyi ) is the image coordinate of feature point I at the ith frame. Finally,
the smoothness can be calculated as the average normalized decrease in trajectory
acceleration [78]:

smoothness =
1
N

∑
k=1

|Vo
k − Vs

k|

Vo
k

(5.37)

where Vo
k is the sum of acceleration of the trajectory in the original video, and Vs

k

is the sum of acceleration in the stabilized video. An output video with higher
smoothness is superior.

We use the OpenCV implementations for [21, 24], the official implementation
for [94] provided by Adobe After Effect, and the original implementation or software
available in GitHub for [30, 78, 93] provided by the authors. All algorithms are
run on public data set available in [24, 93, 94] and compared in terms of distortion
and smoothness. We compared LSstab with state-of-the-art real-time algorithms
[30, 78, 93] and offline algorithms [24, 94, 21] for videos with different resolutions.
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Because the undefined borders of the stabilized outputs for the algorithms above
[21, 24, 94, 93, 30, 78] are removed or inpainted, we remove 10% border, i.e., 0.9
cropping ratio, before comparing the results.

As shown in Table 5.2, the proposed method does the best in minimizing distor-
tion, and [93] does the best in encouraging smoothness. However, the processing
time for [93] grows rapidly as video resolution increases, even after we decrease
the grid resolution to 0.8 of the default value. As shown in Fig. 5.11, [93, 78] and
the proposed algorithm are competitive to [21, 24] compared to offline algorithms.
[22] and [93] have the best performance on average in terms of distortion and
smoothness.

To investigate the impact of the four regularization parameters λ1, λ2, λ3, and λ4,
we run the proposed algorithm with different values on the first video in Fig. 5.11.

0

5

10

15

20

25

30

d
B

0

5

10

15

20

25

30

d
B

0

5

10

15

20

25

30

d
B

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

λ1 = 10
λ2 = 50
λ3 = 10
λ4 = 10

λ1 = 10
λ2 = 200
λ3 = 20
λ4 = 20

λ1 = 20
λ2 = 200
λ3 = 50
λ4 = 50

λ1 = 50
λ2 = 200
λ3 = 50
λ4 = 100

ITF Smoothness

λ1 = 10
λ2 = 50
λ3 = 10
λ4 = 10

λ1 = 10
λ2 = 200
λ3 = 20
λ4 = 20

λ1 = 20
λ2 = 200
λ3 = 50
λ4 = 50

λ1 = 50
λ2 = 200
λ3 = 50
λ4 = 100

Figure 5.10: Comparison with different combination of λ1, λ2, λ3, λ4

As Fig. 5.10 shows, larger regularization parameters will encourage smoothness.
However, as they get larger and larger, the algorithm will try to compensate for
inter-frame global motions as much as possible, resulting in a static video instead
of a stable video. Moreover, overcompensating inter-frame global motions will also
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introduce an undefined area in the result frames, which makes the distortion more
significant.
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Figure 5.11: Comparison with state-of-the-art video stabilization algorithms.
Higher ITF and Smoothness means better stabilization result.

5.6 Limitations
The choice of parameters has a direct impact on the quality of stabilization. If
λ1, λ2, λ3, and λ4 are set too large, the proposed algorithm will produce an over-
stabilized video and introduce a large cropping area. On the other hand, if they are
too small, the algorithm can not remove the jitters in the input video. We found
that λ1 = 2, λ2 = 200, λ3 = 50, λ4 = 50 produce good empirical results. The other
limitation is the accumulated error in the proposed algorithm. The stabilized frame
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is obtained through the accumulating products of m̂ and mi based on (5.32) in the
motion compensation stage so that any wrong estimates will affect the subsequent
frames.

5.7 Conclusions and Future Work
While most video stabilization algorithms are offline and require future frames for
smoothing, we propose an online real-time video stabilization algorithm, LSstab,
which stabilizes the incoming video frame in real-time using only past frames.
LSstab features a parallel realization of the a-contrario RANSAC (AC-RANSAC)
algorithm to estimate the inter-frame camera motion parameters and a novel fast
recursive least squares algorithm to find the stable camera motion obeying cine-
matography principles. Techniques such as inpainting can be readily included in
our algorithm. Currently, the cost function (5.27) does not include the cropping
area yet. In the future, one possible direction is to incorporate a proxy of cropping
area that is a function of λ1 and λ2 to the cost function and further develop an adap-
tive approach for setting λ1 and λ2. The keyframe selection technique proposed in
[24] can smoothly be adapted to mitigate the accumulated error.

5.8 Derivation of (5.10) in matrix form

E = P + λ1Q+ λ2U

=

n∑
i=1

(mi −mi)
2 + λ1

n∑
i=2

(mi −mi−1)
2 + λ2

n−1∑
i=1

(mi − m̂i)
2

Taking all partial derivatives of E w.r.t m1, . . . ,mn and setting them to zero, we have

∂E

∂m1
=

∂

∂m1
[(m1 −m1)

2 + λ1(m2 −m1)
2 + λ2(m1 − m̂1)

2] = 0

⇒ (1 + λ1 + λ2)m1 − λ1m2 = m1 + λ2m̂1
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For i = 2, . . . ,n− 1

∂E

∂mi

=
∂

∂mi

[(mi −mi)
2 + λ1(mi −mi−1)

2 + λ1(mi+1 −mi)
2+

λ2(mi − m̂i)
2] = 0

⇒ −λ1mi−1 + (1 + 2λ1 + λ2)mi − λ1mi+1 = mi + λ2m̂i

Finally,

∂E

∂mn

=
∂

∂mn

[(mn −mn)
2 + λ1(mn −mn−1)

2] = 0

⇒ −λ1mn−1 + (1 + λ1)mn = mn

Therefore, solving (5.10) is equivalent to solve the system (5.11) of linear equa-
tions.

5.9 Recursive solution for finding mn in (5.11)
Let a = (1 + λ1 + λ2),b = −λ1, c = (1 + 2λ1 + λ2),d = (1 + λ1)

For n = 2, We have S2 =

[
a b

b d

]
, S−1

2 = 1
ad−b2

[
d −b

−b a

]
, so

m̂2 =
−b(1 + λ2)m1 + am2

ad− b2 (5.38)

For n = 3,
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We perform the Gauss−Jordan elimination on S3:a b 0 1 0 0
b c b 0 1 0
0 b d 0 0 1


(1)−→

b
b2
a

0 b
a

0 0
b c b 0 1 0
0 b d 0 0 1


(2)−→

b
b2
a

0 b
a

0 0
0 ac−b2

a
b −b

a
1 0

0 b d 0 0 1


(3)−→

b
b2
a

0 b
a

0 0
0 b ab2

ac−b2 − b2
ac−b2

ab
ac−b2 0

0 b d 0 0 1


(4)−→

b
b2
a

0 b
a

0 0
0 b ab2

ac−b2 − b2
ac−b2

ab
ac−b2 0

0 0 d− ab2
ac−b2

b2
ac−b2 − ab

ac−b2 1


(5)−→

b
b2
a

0 b
a

0 0
0 b ab2

ac−b2 − b2
ac−b2

ab
ac−b2 0

0 0 1 b2
q3

−ab
q3

ac−b2
q3


Then, m̂3 =

[
b2
q3

−ab
q3

ac−b2
q3

]
· Y3 where q3 = acd− b2d− ab2d

For n = 4,
Note that first 3 row operations on S3 will yield the same result for S4. Hence, we

can reuse the partial result of Gauss−Jordan elimination of S3 for S4. We first record
the 2nd row of the above echelon form of S3, x(3)

1 = ab2
ac−b2 ,y(3)

1 = − b2
ac−b2 ,y(3)

2 =
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ab
ac−b2 , then we have


a b 0 0 1 0 0 0
b c b 0 0 1 0 0
0 b c b 0 0 1 0
0 0 b d 0 0 0 1



(3)−→


b b2

a
0 0 b

a
0 0 0

0 b x
(3)
1 0 y

(3)
1 y

(3)
2 0 0

0 b c b 0 0 1 0
0 0 b d 0 0 0 1



(4)−→


b b2

a
0 0 b

a
0 0 0

0 b x
(3)
1 0 y

(3)
1 y

(3)
2 0 0

0 0 b b2

c−x
(3)
1

−y
(3)
1 b

c−x
(3)
1

−y
(3)
2 b

c−x
(3)
1

b

c−x
(3)
1

0
0 0 b d 0 0 0 1



(5)−→


b b2

a
0 0 b

a
0 0 0

0 b x
(3)
1 0 y

(3)
1 y

(3)
2 0 0

0 0 b b2

c−x
(3)
1

−y
(3)
1 b

c−x
(3)
1

−y
(3)
2 b

c−x
(3)
1

b

c−x
(3)
1

0
0 0 0 1 y1b

q4
y2b
q4

−b
q4

c−x1
q4



Then, m̂4 =
[
y1b
q4

y2b
q4

−b
q4

c−x1
q4

]
· Y4 where q4 = cd − x

(3)
1 d − b2. Note that we

directly use the result from the previous iteration in (3), and the row operations(4)
(5) are the same for each iteration.

For n = 5, we would need to store 3rd row of the above echelon form of S4, i.e.
x
(4)
1 = b2

c−x
(3)
1

,y(4)
1 =

−y
(3)
1 b

c−x
(3)
1

,y(4)
2 =

−y
(3)
2 b

c−x
(3)
1

,y(4)
3 = b

c−x
(3)
1

.

Suppose we have compute the echelon form for Sn−1 and store the (n− 1)th row
as x(n−1)

1 ,y(n−1)
1 , . . . ,y(n−1)

n−3 , Then we have the Gauss−Jordan elimination for Sn as:
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
a b . . . 0 1 0 0 0
... . . . . . . ... . . . . . . . . . ...
0 b c b 0 0 1 0
0 0 b d 0 0 0 1

 −→


... . . . . . . ... ... . . . . . . . . . . . . ...
· · · b x

(n−1)
1 0 y

(n−1)
1 y

(n−1)
2 · · ·y(n−1)

n−3 0 0
· · · b c b 0 0 0 0 1 0
· · · 0 b d 0 0 0 0 0 1

 −→


... . . . . . . ... . . . . . . . . . . . . ...
· · · b x

(n−1)
1 0 y

(n−1)
1 · · · y

(n−1)
n−3 0 0

· · · 0 b b2

c−x
(n−1)
1

−y
(n−3)
1 b

c−x
(n−1)
1

· · · −y
(n−1)
n−3 b

c−x
(n−1)
1

b

c−x
(n−1)
1

0
· · · 0 b d 0 0 0 0 1

 −→



... . . . . . . ... . . . . . . . . . . . . ...
· · · b x

(n−1)
1 0 y

(n−1)
1 · · · y(n−1)

n−3 0 0
· · · 0 b b2

c−x
(n−1)
1

−y
(n−3)
1 b

c−x
(n−1)
1

· · ·−y
(n−1)
n−3 b

c−x
(n−1)
1

b

c−x
(n−1)
1

0

· · · 0 0 1 y
(n−1)
1 b

qn
· · · y

(n−1)
n−3 b

qn

−b
qn

c−x
(n−1)
1

qn



Therefore,
m̂n =

[
y
(n−1)
2 b

qn
· · ·y

(n−1)
n−3 b

qn

−b
qn

c−x
(n−1)
1

qn

]
· Yn (5.39)

where qn = cd−x
(n−1)
1 d−b2. Then we store the (n−1)th row of the above echelon

form of Sn for the next iteration.
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CHAPTER 6
Conclusion

The thesis is focused on the development of algorithms for 3D visualization in
laparoscopic surgery, particularly utilizing real-time video feeds from multiple
camera arrays. Here’s a summary of the main contributions:

• Quasi Real-time Image-based 3D Reconstruction and Rendering:

– The proposed algorithm reconstructs a 3D model in quasi real-time using
multiview images.

– No special hardware is required for the reconstruction process.
– Depth estimation is focused specifically on sparse feature points rather

than estimating depth for each pixel.
– Two novel filters, based on epipolar geometry and trifocal tensor, are

introduced to robustly estimate depths for these sparse feature points.

• Efficient and Robust Surgical Grasper Reconstruction:

– A novel method is presented for reconstructing the surgical grasper in
an efficient and robust manner.

– The framework seamlessly integrates the Kalman filter and Direct Linear
Transform (DLT).

– DLT is reformulated as a weighted least squares problem, with weights
determined by tracking uncertainties from the Kalman filter.

– This design stabilizes tracking results using the Kalman filter and im-
proves the accuracy of reconstruction by accounting for tracking errors
within the standard DLT.
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• Online Real-time Video Stabilization Algorithm:

– A novel algorithm, LSstab, is introduced for real-time video stabilization,
focusing on suppressing unwanted motion jitters.

– The algorithm incorporates cinematography principles in its approach.
– It features a parallel realization of AC-RANSAC for estimating inter-

frame camera motion parameters.
– A new least squares-based smoothing cost function is proposed to miti-

gate undesirable camera jitters based on cinematography principles. A
recursive least square solver is derived to minimize the smoothing cost
function with linear computation complexity.

– Results demonstrate that the proposed algorithm achieves comparable or
superior performance, especially in terms of real-time processing speed
when utilizing a GPU.

Overall, this work addresses key challenges in 3D visualization for laparoscopic
surgery, providing innovative solutions for real-time 3D visualization, surgical
grasper reconstruction, and real-time video stabilization, with a focus on practical
applicability in a practical setting.
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