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Abstract 

 Viruses are omnipresent and influence life processes on micro and macro scales. All 

viruses require a host cell to replicate, which they accomplish by hijacking the host cells’ 

machinery and resources. Due to this, viruses, especially those that infect microorganisms, are 

keystone controllers of nutrient and biomass recycling, ecosystem-wide biogeochemical cycling, 

host population abundances, community interactions, evolutionary momentum, and more. 

Understanding viruses is critical to the advancement of diverse fields such as agriculture, medicine, 

industry, ecosystem science, oceanography, and biogeochemistry. Despite their importance, 

viruses remain difficult to study as they cannot be easily cultivated in a laboratory. Cultivation 

independent approaches such as metagenomics and viromics can enable the study of uncultivated 

viruses directly from the environment, though there is a lack of accurate bioinformatics tools to 

analyze viruses from metagenomes.  

I am interested in exploring the ecology, evolution, and diversity of viruses in nature and 

investigating their impacts on global biogeochemical cycles. My dissertation is categorized into 

two main Aims. Aim one of my research is to use systems biology approaches to expand our 

understanding of viruses by quantifying their impacts on microorganisms and ecosystems. I will 

specifically focus on viral encoded genes for assimilatory (Chapter 2) and dissimilatory (Chapter 

3) sulfur metabolism. Aim two of my dissertation research is to develop novel bioinformatics tools 

for the study of viruses in metagenomes and viromes. These approaches will serve as the 

foundation of next generation virology and studying how viruses fit within microbial communities 

and global biogeochemical cycles by identifying viral genomes (Chapter 4), deciphering active 

viruses from DNA sequences (Chapter 5), and constructing viral genomes from mixed 

communities (Chapter 6). Finally, I provide my observations on where the field of viral genomics 



 ii 

stands, established conventions that would benefit from change, and future prospects of the field 

as a whole (Chapter 7). 
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Chapter 1: Introduction 

 

The virosphere is intertwined with life 

In this dissertation I discuss the study of viruses in human and natural systems. Viruses are 

intracellular parasites of living cells, or even other viruses, that have the sole objective of 

replicating their genomes and propagating. At the most basic level, viruses are nothing more than 

a genome, containing all instructions to replicate, and a proteinaceous capsid to protect the 

genome. Viral genomes, in contrast to living organisms, can be comprised of ssDNA, dsDNA, (+\-

) ssRNA, dsRNA, and hybrids of DNA and RNA1,2.  

Viral particles on Earth, encompassing the virosphere3,4, outnumber every living cellular 

organism5,6. Most such viruses infect bacteria (bacteriophage, phage) and are omnipresent in all 

studied environments. Although viruses that infect humans and other animals are conspicuous 

everywhere we look—a prominent example being the SARS-CoV2 pandemic that began in 

2019—phages are often hidden from view or overlooked. Although viruses are not considered 

living, they are a central component of all life; life on Earth is intertwined with viruses7–10.  

The negative impact viruses have on life can be seen everywhere. As humans, we have 

become persistently aware of viral morbidity and mortality that pose threats to our health, 

wellbeing, and economies11–13; viral infections of crops, produce, and livestock are a major burden 

of food industries14–18. However, some impacts of viruses are beneficial, yet not so evident. For 

example, the formation of the placental barrier can be attributed in part to viral genes long ago co-

opted by mammals19,20 and that phages may be co-opted by the human immune system21. Modern 

biotechnology has thrived from biological discoveries owing in part to viruses, such as the utility 

of CRISPR-Cas gene editing systems22–24, plasmid expression vectors25,26, vaccine delivery 
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systems27,28, phage therapy treatments29–31, and more32–34. On a broad scale, viruses are drivers of 

system-wide processes, such as organic and inorganic nutrient turnover, which maintain healthy 

ecosystems5,35–38. In this dissertation, I will explore and provide evidence to the latter point, 

focusing on how viruses are key players in diverse ecosystem processes on global scales.  

 

Virus infection mechanics 

 Viruses follow a general infection cycle for replication. At first, a proteinaceous particle 

containing a viral genome (virion) contacts a susceptible host cell. Through various mechanisms, 

such as protein-protein receptor binding or protein-lipopolysaccharide binding, the virus 

physically attaches to the host. Once attached, the viral genome is injected or endocytosed into the 

host cytoplasm or can be directed to the nucleus. In the case of phages, the viral genome remains 

within the cytoplasm or specialized replication compartments. At this stage, viruses differ 

considerably in the mechanism of infection. Some viruses temporarily end their infection here by 

integrating or stably maintaining their genome within the host (lysogeny) before proceeding with 

infection later. However, many themes are common, including combating host defense systems, 

shutting off host transcription and translation, appropriating host nutrients and metabolites, and 

driving necessary metabolic pathways. Next, the viral genome is replicated and packaged into 

newly synthesized viral particles. Finally, the viral particles extrude from the host cell, or the host 

cell is physically burst (lysed) open to release as few as two progeny virions or up to tens of 

thousands. Once outside the host cell, the viral particle will continue to the next host, be actively 

taken up as nutrients by a non-host, or degrade over time. 

 

Viruses drive evolutionary diversification 
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Viruses have the unique characteristic of high genomic mutation rates and a propensity for 

gene transfer39–42, leading to the ability to evolve at a fast rate. The result is a remarkable pool of 

genomic and morphologic diversity in the virosphere1,8,9,43,44. Besides general adaptation 

strategies, the fast diversification of viruses aids in overcoming host defense systems or human 

intervention strategies (e.g., vaccines and anti-viral drugs).  

 The mutation rate of DNA and RNA viruses has been estimated to be approximately 10-8 

to 10-6 and 10-6 to 10-4 substitutions per nucleotide per cell infection, respectively45,46. Bacteria, in 

comparison, mutate at a rate of approximately 10-10 to 10-7 substitutions per nucleotide per 

generation47. With smaller genome sizes and faster generation turnover, viruses can often modify 

their genomes, in a somewhat randomized fashion, to overcome host defense systems faster than 

hosts can develop viral resistance. The constant ‘battle’ between productive viral infection and 

host resistance has been described as the viral-host arms race48,49. In addition to promoting 

expanding viral diversity, it has led to dozens of defense and anti-defense mechanisms, such as 

CRISPR-Cas, restriction modification, abortive infection, toxin/anti-toxin, and other systems50–52. 

In fact, due to this drive for diversification, viruses have been considered as vital to life processes; 

viruses are in part necessary for life diversity and evolutionary movement.  

 Another mechanism by which viruses drive diversification is through horizontal gene 

transfer. One example is recombination of a host gene with an infecting virus. Here, a virus can 

acquire a gene from the host and co-opt it for a viral function. Examples of transferring metabolic 

genes from host to virus are described extensively below. As long as the transferred gene provides 

a fitness advantage to the virus, overcoming the disadvantage of adding genetic content to a 

compact genome, the gene can be retained over time53,54. Another example is transfer in the 

opposite direction, where a virus can provide new genetic content to the host. A common 
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mechanism of this is viral genome integration into the host genome and stable retention of viral 

genetic content. Some bacteria have obtained virulence factors from viruses, such as 

Staphylococcus aureus and Vibrio cholerae55,56.  

 

Viruses are central to system processes and ecology 

 Viruses are integral, keystone members of microbial community dynamics, food webs, and 

nutrient cycles. The main mechanism by which viruses, mostly those infecting microbes, impact 

global process is by killing their host cell. In fact, it is estimated that 20-40% of all surface ocean 

microbes are lysed by viruses every day, leading to massive turnover of biomass37,57. As a result, 

viruses have the potential to impact global biogeochemical processes due to the large scale at 

which viruses influence biogeochemistry of their host and local microbial communities. By killing 

host cells, viruses contribute in two ways: facilitating diversity and shuttling nutrients.  

First, microbial abundances and assortment are controlled. Under a Kill the Winner 

mechanism, a microbial population that succeeds and grows to high abundance will be effectively 

sought out by viruses and reduced (killed)58. This facilitates dynamic niche differentiation by 

allowing diverse microbial populations to continuously rise and fall in dominance59. Low abundant 

taxa have periods of proliferation as niches open and nutrient competition is lower. Since microbes 

are often the main drivers of ecosystem and host (e.g., human) health and nutrient landscape, the 

control by viruses can have widespread impacts. Microbial viruses have even been identified as 

markers for human gut health and can be comprised of unique populations between 

individuals11,12,60. In the oceans, viral diversity follows natural gradients, such as depth, oxygen 

content, specific nutrients, and temperature10,61. 
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Second, the cellular contents liberated after host death are available as dissolved and 

particulate organic matter, in addition to any inorganic nutrients and metabolites. This process 

enables viruses to be a biomass recycling mechanism59,62. In a process termed the ‘viral shunt’, 

upwards of 25% of photosynthetically fixed carbon is recycled by viral lysis. Autotrophic (e.g., 

photosynthetic) microbe, heterotrophic microbe, and higher trophic level grazer biomass is 

converted into dissolved organic carbon which is in tern taken up by living cells5. Moreover, 

aggregated particles of dead biomass can form sinking particles to recycle nutrients to deeper ocean 

systems. These repositories of nutrients can also include the viruses themselves, which can account 

for significant levels of carbon, nitrogen, and phosphorous63. 

Third, viral infection manipulates the internal metabolic landscape of the host cell to drive 

nutrient acquisition and allocation to virus production64,65. The infected host cell (virocell) is 

necessary to support the carbon, nitrogen, sulfur, and phosphorus needs of the virus. Although 

viruses can cause the breakdown of host biomass from the inside, such as repurposing host 

genomic nucleotides for viral genome synthesis66, the labile nutrients currently within the host are 

insufficient to meet these demands. To meet the demand, a virocell sustains metabolic activity as 

seen by the incorporation of medium-derived nitrogen and phosphorus into newly synthesized 

virions67–69. Virocells have also been shown to have influenced and manipulated sulfur and carbon 

metabolic pathways that are dependent on the infecting virus70. Following host lysis, the nitrogen 

and phosphorus, in the form of excess nutrients or components of viral particles, is released into 

the environment.  

 

Breaking barriers: the metabolic propensity of viruses 
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 In general, we categorize viruses as non-living due to their inability to self-replicate, lack 

of ribosomes, and the notion that they are metabolically inert. This barrier is being strained by the 

identification of viruses encoding ribosomal71,72 and metabolic genes. Microbes sustain 

homeostasis and life via complex metabolic networks and nutrient acquisition and turnover. In 

contrast, viruses may be able to indirectly influence host metabolism as discussed above, but 

viruses themselves do not necessarily participate in virus driven metabolism. In the early 2000s, 

evidence to contradict this claim that viruses do not contribute directly to metabolic processes was 

discovered by identifying photosynthesis genes encoded on viral genomes73. It was shown that 

some viruses infection cyanobacteria can encode core proteins of photosystem II, namely psbA 

and psbD, that putatively sustain photosynthetic pathways. Subsequently, it was confirmed that 

viral psbA is actively transcribed during infection, generates protein that integrates into host 

photosystems, and is integral to viral infection by increasing NADPH (reducing power) for dNTP 

(nucleotide) production74–76. Following this discovery, the capability of viruses to participate in 

host photosynthesis was identified in a range of systems77,78.  

 Photosynthesis and nucleotide metabolism are not the only metabolic pathways that viruses 

can influence. In 2007, genes encoding metabolic capabilities were given the name auxiliary 

metabolic genes (AMGs), attributed to the idea that they are auxiliary, but beneficial, to successful 

viral infection44. AMGs can be categorized into two classes: Class I AMGs are directly involved 

in metabolic pathways (e.g., psbA) and Class II AMGs are supportive (e.g., transporters)36. Since 

the first descriptions, there have been AMGs identified for many major metabolisms: carbon 

fixation (psbA, psbD), central carbon metabolism36, nitrification (amoC)79, nitrogen assimilation80, 

methane oxidation (pmoC)81, sulfur oxidation (dsrA, dsrC)35,82, phosphorous scavenging (phoH)83, 

and more84,85. It is estimated that viruses acquire AMGs directly from their host during infection, 
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a process akin to ‘stealing’ metabolic propensity of their living host. Viruses then express and 

utilize these AMGs to attain a fitness advantage, leading to greater or more efficient viral 

replication.  

 The exact fitness advantage depends on the viral replication strategy, host metabolic 

capabilities, individual AMG, and influenced metabolic pathway. Moreover, viruses often only 

encode a single AMG, or partial set of AMGs, for any given metabolic pathway. For example, 

some viruses identified at deep-sea hydrothermal vents have been identified to encode 

dissimilatory sulfite reductase A (dsrA)82, a major component of dissimilatory sulfate 

reduction/oxidation. Without context, dsrA can contribute to either sulfide oxidation or sulfate 

reduction, which is dependent on the metabolic capabilities of the host cell. According to sequence 

homology to dsrA of bacteria, since these dsrA-encoding viruses likely acquired their AMGs from 

hosts by lateral gene transfer, the viruses participate in sulfide oxidation. Here, though oxidation 

of sulfide or stored elemental sulfur, energy (i.e., ATP) is generated and putatively stolen by the 

virus for more efficient replication. Other key enzymes, such as dsrB, have not been identified on 

any viral genomes. Thus, it is hypothesized that viruses target key, bottleneck components and 

steps of metabolic pathways for the greatest fitness advantage.  

 

Metagenomics and viromics 

 Cellular life and viruses exist, in the basic sense, as compartments containing genetic 

material (i.e., genomes). These genomes contain the instructions for life processes, such as 

replication and metabolism. Isolating a microbial population and sequencing its genome can yield 

fundamental information about the way in which the microbes metabolize nutrients, connect with 

other members of the community, diversify or change in abundance over time, and contribute to 
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gene transfers. Over time, through biochemical analyses and subsequent genome sequencing, the 

scientific community has constructed dozens of curated databases of gene annotations to gather 

information from this genome sequencing.  

Early work utilized microbes’ 16S small subunit ribosomal RNA sequence (16S) as a 

marker for taxonomy, abundance, and eventually estimations of metabolism (amplicon 

sequencing)86,87. The 16S gene is favorable because it is well-conserved among members of similar 

taxonomic groups and is universal in prokaryotes. Using the 16S gene, or even other universal 

protein-encoding ribosomal genes, microbiomes and systems can be easily and succinctly assessed 

with relatively low financial or computational burdens. This further led to the construction of large 

databases of functional annotations for microbial genes, driven by experimental validations, to 

rapidly analyze the functions of uncultivated microbes in nature.  

Rather than the isolation of individual microbes and populations, or sequencing a single 

gene (e.g., 16S), metagenomics expands on the potential discoveries from genomic information by 

sequencing whole genomes of an entire community of microbes mixed together. In metagenomics, 

hundreds to thousands of microbial populations can be sequenced at one time. Metagenomic 

sequencing can be performed using short-reads, the focus of this dissertation, or long-reads. 

Extracted genomes are sheared into small fragments and pairs of short reads (e.g., 150bp) are 

sequenced. Many software tools have thus been developed for analyses of short-read sequencing 

data. Foremost, assembly can be performed on short reads to re-form respective genomes88–91. 

Often the assembled sequences (contigs or scaffolds) remain highly fragmented, so binning is 

employed to re-construct metagenome assembled genomes (MAGs) into respective populations92–

97. From here, there are numerous options for analyzing genomes, such as open reading frame (i.e., 

gene and protein) prediction98–100, gene search and functional annotation101,102, mapping short 



 9 
 

reads back onto genomes to obtain relative abundances103–105, and more. In addition to software 

development, methods for the physical collection and extraction of genomes from diverse 

environments have been developed, including filtering microbes from aquatic environments onto 

a 0.22-micron filter or releasing microbes attached to particles in complex soils.  

Following the pioneering of metagenomics for the sequencing of microbial genomes, 

viromics was established. A virome, analogous to a metagenome, is the collection and sequencing 

of the viral component of a community or microbiome. Although viruses are often in 10 times 

greater abundance than microbes in a given system, viral genomes are an average of 100 times 

smaller than those of bacteria. This leads to disparities in sequencing depth for viruses and 

microbes, in which more microbial genomes are assembled from a standard metagenome. The 

disparity is even more evident in filtered samples (e.g., 0.22-micron) because most viruses pass 

through the filter and are not collected. Viromes allow for the specific sequencing of the viral 

fraction and can generate distinct, and more robust, information about the viral communities 

compared to sequencing viruses from a standard metagenome106.  

 

Computational approaches and methods to study viruses 

 The expansion of metagenomics and the technology’s utility in studying microbial ecology, 

evolution and metabolism, and subsequent software tool development, has mostly focused on 

microbes. Viruses pose unique challenges compared to microbes: lack of universally shared 

genes107, taxonomic rankings based on morphology rather than sequence similarity108, less 

extensive functional annotation databases (i.e., many genes of unknown function), short and fused 

genes75,109, highly variable genome sizes (e.g., 4kb to 2500kb)110,111, the ability to integrate viral 

genomes into host genomes112, and more. Future work in viral metagenomics requires methods to 
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be developed that address these unique challenges and allow for the large-scale study of uncultured 

viruses. In addition to host prediction and taxonomy, methods that can be improved upon include 

virus sequence prediction and prophage extraction, prophage activity estimation (i.e., lysogenic to 

lytic switch), and binning to construct viral MAGs (vMAGs).  

 Virus sequence prediction is the process of searching for sequences within a metagenome 

assembly that are of viral origin or for decontaminating a virome assembly. Likewise, prophage 

extraction is the identification of host genome regions that are integrated viruses (prophages). 

There are two very general methods for predicting viruses: k-mer patterns and protein annotation. 

For k-mer patterns, a machine learning model, from random forest decision trees to deep learning 

long short-term memory networks, is constructed based on observed differences in nucleotide k-

mer patterns between viruses and non-viruses113,114. For protein annotation, coding sequences are 

annotated and viral-specific or virus-like patterns are observed115. The latter method can also 

incorporate machine learning116,117. Either method employed identifies sequences or sequence 

regions that are likely to be viral.  

 Prophage activity estimation is the process of labeling a prophage with its current infection 

stage, either lytic (active) or lysogenic (dormant). Prophages are unique in that they can exist in a 

dormant state in which the genome is not be produced for progeny virion formation. However, an 

integrated prophage continues to be replicated along with the host genome as the host grows and 

divides. Detecting if a prophage is actively infecting the host and producing progeny genomes 

versus existing in a dormant state can provide essential ecological information about how a given 

prophage is impacting the system.  

 Metagenome or virome assembly often generate fragments of genomes rather than 

complete genomes. Often, total viral diversity is overestimated due to assuming all viral fragments 
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represent separate genomes. Constructing vMAGs by binning fragmented genomes allows for 

more accurate and robust evaluation of viral ecology and metabolism. Yet, binning is not a 

convention in viral analyses as it is for microbes. Binning vMAGs can be completed in a manner 

similar to established methods for microbial MAGs, in that sequence feature similarity (e.g., k-

mer patterns) and coverage profiles (e.g., relative abundance) between sequence fragments can be 

used as signatures to re-construct the original genomes118–120.  

  

Motivation: using bioinformatics to connect viral ecology and metabolism 

 The evaluation of viruses from metagenome and virome data, such as identifying AMGs 

or microdiversity patterns, is reliant on a suite of bioinformatics tools. It is essential that such tools 

are efficient, accurate, and user-friendly for the scientific community. This dissertation follows my 

research progression through the study of viral ecology and into development of relevant 

bioinformatics tools and methods. My goal was to apply my foundational knowledge and 

experiences in microbiology and virology to inform the development of tools that have a strong 

basis in biological reasoning.  

I start by evaluating sulfur metabolism AMGs encoded by viruses, including AMGs of 

both the assimilatory121 (Chapter 2) and dissimilatory122 (Chapter 3) pathways. This includes the 

global distribution and genomic diversity of the viruses, bioinformatic and experimental evidence 

of AMG function, and extrapolation to the estimated impacts on microbial community dynamics. 

These projects highlighted the need for innovations in virus and prophage identification methods, 

which led to my development of VIBRANT: Virus Identification By iteRative ANnoTation117 

(Chapter 4). Subsequently, I developed PropagAtE: Prophage Activity Estimator123 to classify 

prophages as being in the lytic or lysogenic stage of infection (Chapter 5). Finally, at the time of 
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completing VIBRANT and PropagAtE there was no tool explicitly designed for the binning of 

vMAGs. Therefore, I created vRhyme, which is a tool and novel method for the binning of viruses 

from metagenomes or viromes124 (Chapter 6). Despite the field of viral bioinformatics surging in 

popularity in the last few years and becoming saturated in bioinformatics tools for some 

workflows, there is still essential room for improvement. I will conclude this dissertation with my 

thoughts and opinions on what the future holds for the advancement of bioinformatics methods 

and conventions for the study of viruses125 (Chapter 7).  
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Summary 

Viruses influence the fate of nutrients and human health by killing microorganisms and altering 

metabolic processes. Organosulfur metabolism and biologically-derived hydrogen sulfide play 

dynamic roles in manifestation of diseases, infrastructure degradation, and essential biological 

processes. While microbial organosulfur metabolism is well-studied, the role of viruses in 

organosulfur metabolism is unknown. Here we report the discovery of 39 gene families involved 

in organosulfur metabolism encoded by 3,749 viruses from diverse ecosystems, including human 

microbiomes. The viruses infect organisms from all three domains of life. Six gene families encode 

for enzymes that degrade organosulfur compounds into sulfide, while others manipulate 

organosulfur compounds and may influence sulfide production. We show that viral metabolic 

genes encode key enzymatic domains, are translated into protein, are maintained after 

recombination, and that sulfide provides a fitness advantage to viruses. Our results reveal viruses 

as drivers of organosulfur metabolism with important implications for human and environmental 

health. 

 

Introduction 

Biological sulfur cycling is one of the oldest and most influential biochemical processes 

on Earth and is primarily driven by microbial reduction of sulfate to produce hydrogen sulfide 126–

128. Sulfide plays dynamic roles in the degradation of infrastructure and souring of oil reserves 

129,130, microbial respiration and essential biosynthesis processes, and manifestation of human 

gastrointestinal disorders such as colitis, inflammatory bowel diseases (IBD) and colorectal cancer 

(CRC) 131. Much of our knowledge of sulfur cycling focuses on a small subset of microbes that are 

capable of respiring and transforming inorganic sulfur compounds, a process known as 
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dissimilatory metabolism 132. Consequently, the cycling of sulfur-containing organic 

(organosulfur) compounds and resulting sulfide production from more widespread biological 

mechanisms and sources has largely been ignored.   

Two mechanisms of sulfide production include the degradation of organosulfur compounds 

and assimilatory sulfur metabolism. Sulfide production from microbial-driven degradation of 

organosulfur compounds, such as the amino acid cysteine, has been noted as a significant 

contributor to sulfide concentrations in environmental and human systems 133–135. However, there 

exists no comprehensive analysis of the specific microbes involved. Assimilatory sulfur 

metabolism, a common strategy used by many microbes and some eukaryotes to incorporate 

sulfide into biological compounds, has similarly been routinely discounted as a mechanism of 

significant sulfide release into either environmental or human systems. Notably, the role of viruses 

in these processes has not been explored.  

Microbial viruses, mainly comprising bacteriophages (phages) are extraordinarily 

abundant on Earth. Microbial viruses are known to redirect and recycle nutrients on the scale of 

ecosystems by infecting and lysing host cells 5,63,136,137. In the oceans alone, the number of viral 

infections per second exceeds the number of stars in the known universe, which likely leads to the 

lysis of over 20% of all microbes per day 37,138. In addition to lysis, viruses can actively redirect 

host metabolism during infection which manipulates major biogeochemical cycles, including 

carbon, nitrogen, and sulfur. One such mechanism involves viruses “stealing” metabolic genes 

from their host in order to gain fitness advantages during infection 78. Such host-derived viral genes 

are termed auxiliary metabolic genes (AMGs), and are expressed during infection to modulate 

microbial respiration, biosynthesis processes, and/or direct intracellular nutrients towards virus 

replication and virion production 6,38,44,73,75,82,84,122,139,140. For example, some viruses of 
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Cyanobacteria encode core photosystem proteins that augment host metabolism in order to 

increase the biosynthesis of dNTPs that are utilized for viral genome replication 75. The viral 

auxiliary metabolism of iron-sulfur clusters, central carbon metabolism, nitrification, methane 

oxidation, and other metabolic processes could also provide viruses with a multi-faceted method 

of manipulating nutrients within their host cell to enable efficient, rapid or otherwise a more 

improved viral replication cycle 36,79,81,139. 

In spite of the importance and global prevalence of viruses, nothing is known about their 

contribution and impact on AMG-driven organosulfur metabolism in the environment. Moreover, 

the role of AMGs in human microbiomes has been largely unexplored. Here, we investigated 

environmental and human microbiomes for the presence of viruses involved in production of 

hydrogen sulfide and manipulation of organosulfur metabolism. By screening publicly available 

partial and complete viral genomes from cultivated and uncultivated viruses, we identified genes 

involved in direct and indirect sulfide production from organosulfur degradation and assimilatory 

sulfur metabolism. We followed this up with experiments to validate the impacts of genes for 

organosulfur metabolism as well as hydrogen sulfide on viral fitness.  

 

Results 

Metabolic pathways for organosulfur metabolism driven by viral AMGs 

We queried a comprehensive dataset of approximately 135,000 partial and complete viral 

genomes (contigs) publicly available on Integrated Microbial Genomes/Viruses (IMG/VR) 9,141 

and the National Center for Biotechnology Information (NCBI) databases, and two metagenomic 

studies from Lake Mendota, WI 142, for the presence of virally encoded proteins for organosulfur 

metabolism. In total, we identified 4,103 viral AMGs representative of 39 unique gene families. 
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All genes identified are categorized as Class I AMGs, or those for central metabolic functions but 

auxiliary to productive viral infection 36. These AMGs were detected on 3,749 non-redundant viral 

genomes from all major bacterial dsDNA viral families (Myoviridae, Podoviridae and 

Siphoviridae) including viruses infecting an archaea 143 and eukaryote (amoeba) 144. Therefore, 

AMGs for organosulfur metabolism were identified on viruses infecting all three domains of life, 

representing a shared metabolic constraint regardless of host domain. The viruses represent 

cultivated and uncultivated viruses, linear and circular genomes, and lytic and lysogenic cycles of 

viral replication across a vast range of environmental and human microbiomes. Of these, 164 have 

been isolated and cultivated on hosts spanning nine major bacterial lineages (Alphaproteobacteria, 

Betaproteobacteria, Gammaproteobacteria, Cyanobacteria, Actinobacteria, Firmicutes, 

Bacteroidetes, Verrucomicrobia and Deinococcus-Thermus) as well as an amoeba (Vermamoeba 

vermiformis) (Table S1). The isolation of viruses encoding organosulfur metabolism AMGs 

Figure 1. Reaction diagram of organosulfur transformations mediated by viruses. All 
genes shown have been identified on viruses and are colored coordinated respective to the 
process with which they are putatively associated. Colored circles represent the abundance of 
each AMG across all viral genomes according to the color scale (heatmap) on the right. 
Complete reactions and full names of acronyms are listed in Table 1. 
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indicates that the identification of such viral driven metabolism is not an artifact of metagenomic 

analysis.  

Viral AMGs are putatively associated with five distinct processes: sulfide production from 

organic sulfur, the assimilatory sulfate reduction pathway, sulfite production from organic sulfur, 

metabolism of organic sulfur, and sulfur-related amino acid metabolism (Figure 1 and Table 1). 

Six different AMG families (cysK, cysM, malY, dcyD, metC and metY) encode for enzymes able 

to directly produce sulfide from the degradation of cysteine and homocysteine, which are 

important organosulfur compounds and central sources of sulfur in the environment and human 

body 145,146. Six other AMG families (cysD, cysN, cysC, bifunctional-cysNC, cysH and cysJ) are 

components of the assimilatory sulfate reduction pathway, which is widely utilized across all three 

domains of life for incorporation of sulfide into cysteine. Sulfite can be directly produced from the 

breakdown of several organosulfur compounds (e.g., taurine) by three families of AMGs (tauD, 

ssuD and msmA) and successively fed into dissimilatory and assimilatory sulfate reduction. Eleven 

of the AMG families (aspB, metB, metH, metE, msrC, metK, megL, dcm, mtnN, ahcY and luxS) 

are inferred to indirectly produce sulfide by manipulating abundant organosulfur compounds (e.g., 

methionine and cystathionine) that funnel into the synthesis of cysteine or homocysteine. Finally, 

indirect organosulfur metabolism by the remaining thirteen AMG families (lysC, thrA, asd, hom, 

metA, cysE, cysQ, nrnA, speE, mdh, mtnD, mtnA and mtnK) would influence the synthesis of 

organosulfur compounds (e.g., synthesis of cysteine using serine) that feed into sulfide producing 

reactions.  

 

Viruses encoding AMGs for organosulfur metabolism are globally distributed 
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Uncultivated viruses encoding AMGs for organosulfur metabolism were recovered from 

diverse environmental (marine, freshwater, engineered, soil, hydrothermal vent, non-marine saline 

and alkaline, deep subsurface, wetland and thermal spring), non-human host-associated 

(mammalian gut, other animal-associated and plant-associated) and human host-associated 

(gastrointestinal, oral and vaginal) microbiomes (Figure 2A). Cultivated and well-characterized 

viruses exhibited likewise microbiome dispersal because they were recovered from more than one 

ecosystem (e.g., food production, marine, freshwater, soil, engineered, hot springs, animal-

associated, plant-associated, as well as human-associated gastrointestinal, oral and skin) (Table 

S1). These results encompassed every ecosystem category, with the exception of air, in which 

viruses are routinely identified. This displays evidence that viruses encoding AMGs for sulfide 

production are ubiquitous on Earth.  

Next, we estimated the proportion of viral richness in each ecosystem category found to 

encode organosulfur metabolism AMGs. Viruses encoding at least one AMG were found to be 

highly abundant in human vaginal, gastrointestinal and oral microbiomes comprising 8%, 6% and 

3% of all identified viruses, respectively. Mammalian-associated, other animal-associated and 

plant-associated microbiomes likewise had significant AMG-encoding virus abundances of 8%, 

6% and 6%, respectively. Notably, previous reports have determined that expanded viral richness 

in the gastrointestinal tract is correlated with the manifestation of IBD 147 and our results support 

the possibility of this being in part due to the metabolic potential of viruses, such as for sulfide 

production. This points to an important distinction that the collective metabolic potential of viruses 

in these host-associated environments, in conjuction with measuring total viral richness, could 

have significant implications for host health. Viruses encoding organosulfur AMGs beyond host-

associated microbiomes may also impact ecosystem health. Major environmental systems, such as 
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the deep subsurface (6%), engineered (3%), soil (3%), freshwater (2%), wetlands (2%), marine 

(2%) and hydrothermal vents (2%), likewise display significant richness of organosulfur AMG 

encoding viruses (Table S2C). The net impact of viral metabolism on organic and inorganic sulfur 

Figure 2. Distribution of viral AMGs in environmental and human microbiomes. (A) 
Heatmap of each AMG’s relative abundance in environmental and human systems with colors 
coordinated by the AMG’s pathway respective to Figure 1. Per AMG, darker colors represent 
greater abundance. A total of 3,584 AMGs derived from IMG/VR are shown. (B) Global 
distribution of viruses encoding AMGs, color coordinated by environment classification. The 
bar graphs represent the number of AMGs and IMG studies from which viruses were recovered. 
See Tables S2A and S2B for exact abundances for (A) and (B), respectively. Only studies with 
published coordinates and environment categories are shown. (C) Abundance of AMGs 
derived from incomplete or uncultivated viruses from human oral, gastrointestinal and vaginal 
microbiomes. Only values greater than five are shown. 
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compound concentrations in these environments is unknown, but it is nonetheless striking that up 

to 8% of all resident viruses may be involved.  

Viruses recovered from non-human microbiomes also displayed extensive geographical 

and niche distributions, which demonstrates their relevance in global sulfur biochemistry (Figure 

2B). Individual distributions of abundant AMGs (e.g., dcm, cysC, cysK, cysH, metK, and tauD) 

likewise had no geographical or environmental restrictions (Figure S1A-F). For example, cysH 

which encodes a critical enzyme for assimilatory sulfur metabolism was found in every ecosystem 

except the deep subsurface. CysK, a predominant enzyme involved in sulfide generation from 

cysteine degradation was also broadly dispersed in marine, freshwater, engineered, hydrothermal 

vent and host-associated environments. Even msmA which was only identified in marine 

environments showed strong geographical dispersal (Figure S1G).  

AMG distributions between environments may depend on different factors, such as how 

universal the AMG function is (e.g., CysH and CysK are common amongst bacteria) or the nutrient 

landscape in a specific environment (e.g., MsmA is capable of degrading methanesulfonate, a 

common compound in marine environments 148. However, human-associated samples contained 

the greatest fraction of identified cysH and cysD AMGs overall, while marine and freshwater 

environments contained nearly all of the identified cysC. In human-associated samples, nearly 97% 

of AMGs were cysD, cysH, metK, mtnN, luxS and dcm which encompass essential steps of cysteine 

and methionine degradation (Figure 2C). The uneven distribution of these assimilatory sulfate 

reduction AMGs suggests that further constraints on nutrient availability or variance in rate 

limiting steps based on thermodynamics in different environments play a role in determining the 

distribution of organosulfur metabolism AMGs.  

 



 22 
 

Viral organosulfur AMGs result in likely functional proteins and provide a fitness advantage to 

the virus 

To overcome the challenge of assigning conclusive function to protein sequences in the 

absence of biochemical evidence, we analyzed functional and conserved domains of AMG-

encoded proteins with biochemically characterized bacterial homologs. Overall, we examined 24 

AMG families and found broad conservation of whole protein sequence and functional amino acid 

residues (Figure S2). For example, viral sequences encode specific domains for: CysC: ATP 

binding (gsGKss) and required motifs (dgD) 149; CysK: cofactor pyridoxal phosphate binding 

(KDR, NtG, GT/SgGT and SS/AG), substrate binding (T/SSGN and QF) and phosphate 

recognition (GI/V) 150; MetK: substrate binding (egHPDk, acE, gEit, GDqG, DaK, TgRKi, sGKd 

and kvDrs) 151; CysH: iron-sulfur cluster motif (CC…CxxC) 152; TauD: nitrogen and oxygen 

binding (e.g., WH and H) 153. Conserved amino acid residues that are not functional are likely 

preserved for structural features. The retention of AMGs on viral genomes despite strong selective 

pressures for reduced genome size suggests that most of these AMGs are functional 74. In addition 

to functional and conserved domain analysis we calculated the ratio of non-synonymous to 

synonymous nucleotide differences (dN/dS) for a subset of the abundant viral AMG families. A 

dN/dS value less than one would suggest that the virus is under selective pressures to retain a 

functional AMG. dN/dS calculations for cysK, cysC, cysD, cysH, tauD, msmA, metK, mtmN and 

luxS AMG pairs revealed that viral AMGs appear to be under purifying selective pressures to retain 

function of the encoded AMGs (Figure S3).  

To assess if viral AMGs are active in the environment, we queried a comprehensive 

metagenomic and metatranscriptomic dataset from Lake Mendota, WI. We identified 23 AMGs 

representative of six gene families (aspB, cysC, cysH, metK, speE and tauD) that were actively 
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expressed by 22 different viruses over a 48-hour time period (Table S3). One cysC in particular 

was expressed by a virus with a 210kb genome that was bioinformatically determined to be 

complete and circular. Analysis of the genome’s GC-skew, a metric to evaluate genome replication 

patterns using nucleotide coverage 154, was used to determine that the virus performs rolling circle 

replication (i.e., unidirectional) which is a common method utilized by viruses 155 (Figure S4A). 

To assess if the virus was actively replicating when cysC was expressed we used a metagenomic 

read mapping approach to estimate the genome’s in situ index of replication (iRep) 156. The 

genome’s iRep value of 1.54 falls within the range of typical values of growing populations and 

indicates that the virus was actively replicating its genome in the environment when cysC was 

expressed (Figure S4B). Analyses of other host-virus systems with transcriptomic data enabled 

the identification of cysH expression by Enterobacteria phage Lambda during infection of 

Escherichia coli MG1655 157. The activity and expression of viral AMGs in various systems 

provides further evidence that they are likely utilized for a specific function during infection. 

To validate that AMGs are in fact transcribed during infection we developed a model host-

virus system with Lactococcus lactis C10 and its cysK-encoding virus Lactococcus phage P087. 

The transcript abundance of cysK was measured in a culture of either L. lactis C10 grown alone 

(control) or with P087 at timepoints 15-, 60- and 120-minutes post infection (Figure S5 and Table 

S4A). At 120 minutes the host cells in the infection condition had mostly lysed from viral infection. 

Transcript abundance of L. lactis C10 cysK was found to be comparable at 15 minutes and 60 

minutes in either the uninfected control or infected with P087. At 120 minutes transcripts of L. 

lactis C10 cysK were 4x greater than at 60 minutes in the control but were undetectable in the 

infected condition. This suggests that L. lactis C10 cysK transcripts are greatly reduced during mid 

to late infection by P087. The transcript abundance of P087 cysK follows a similar trend as L. 
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lactis C10 cysK. At 15 minutes P087 cysK transcripts were near zero and by 60 minutes were in 

approximately 2x greater abundance compared to transcripts of the host. By 120 minutes P087 

cysK transcripts likewise reduced nearly to initial levels. There was no detection of P087 cysK 

transcripts within the uninfected control. Although P087 cysK transcript abundance never 

exceeded that of L. lactis C10 cysK, we provide further evidence that the viral AMG cysK is 

actively transcribed during infection and potentially replaced host cysK to an extent with the 

greatest abundance during mid infection rather than early or late infection.  

To validate that transcribed AMGs in fact produce protein, we further leveraged the L. 

lactis and P087 system. Using untargeted mass spectrometry at the endpoint of virus infection (i.e., 

lysis) we identified that P087’s AMG cysK produces protein and at approximately 1.5x greater 

abundance than L. lactis C10 cysK (Table S4B). The higher ratio of virus CysK to host CysK 

suggests the virus gains a fitness advantage from compensation of CysK levels in the cell. These 

findings build upon the results from our qPCR-based analysis of transcript abundance in which 

host transcripts were more abundant than viral but may be explained by higher stability of either 

viral CysK or cysK transcripts. Moreover, since viruses demand a substantial fraction of cellular 

resources during infection 53, the high viral CysK levels measured here supports our hypothesis 

that CysK is actively utilized during productive infection in contrast to being metabolically 

inactive. The presence of the gene on the genome in conjunction with transcription and translation 

measurements is consistent with the AMG providing a fitness advantage, which has been modeled 

to be as much as a 4% gain for some AMGs 74. The mechanism(s) by which this functions is likely 

different than what has been observed previously for AMGs. For example, AMGs for 

photosynthesis were found to have differential effects during light-dark cycles as well as transcript 

compensatory effects over an ~8 hour time period 75. Conversely, P087 is not influenced by light-
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dark cycles and complete lysis can occur within ~2.5 hours. Beyond providing evidence that 

AMGs can be remarkably active during infection this further underlines the diverse nature by 

which AMGs are utilized by viruses. In addition, the identification of similar gene families on 

genomes of diverse, geographically spread viruses strongly supports the hypothesis that 

organosulfur metabolism AMGs play a functional role during infection 140. 

 

Viruses encoding organosulfur AMGs are phylogenetically diverse  

To investigate the diversity of AMGs we conducted phylogenetic analysis of encoded 

amino acid sequences for five gene families. Phylogeny of CysH from complete viral genomes 

show close relationships between viruses and their known hosts, supporting previous observations 

that AMGs are most often acquired from the host 78 (Figure S6A). One clade in particular encoded 

an addition domain of unknown function (DUF3440) which suggests a shared evolutionary history. 

Analysis of CysH phylogeny of viral contigs with no known host revealed a similar clustering of 

viruses with their putative bacterial hosts (phyla Bacteroidetes and Firmicutes) (Figure S6B). In 

contrast to CysH, phylogenetic analysis for several abundant AMG protein sequences (CysC, 

CysK, TauD and MetK) on complete and incomplete viral genomes displayed clustering of viral 

sequences in separate clades from bacterial homologs with few exceptions of the virus clustering 

with a putative host (Figure S6C-F).  

Separate clustering would suggest that viruses may have acquired AMGs beyond their 

current or known host range, which is supported by the observation that viruses can encode an 

AMG that their host does not (e.g., cysC for Xylella phage Sano) and that AMGs can cluster 

separately from their host (e.g., CysH for Vibrio phages). However, based on the CysH phylogeny 

of complete viral genomes another likely explanation for distinct viral clustering is that the full 



 26 
 

range of host sequences has yet to be identified. Within the human microbiome alone, thousands 

of novel bacterial genomes have been identified recently and may provide further insight into host 

ranges or origins of AMG transfer 158–160. Even so, in comparison to human microbiomes, little is 

known about the breadth and diversity of environmental or human viromes. Analysis of all AMGs 

suggests they have collectively been derived from bacteria (with the exceptions of the archaeal 

and eukaryotic viruses) affiliated with the phyla Firmicutes, Bacteroidetes, Alphaproteobacteria 

and Gammaproteobacteria, which is supported by the host range of cultivated AMG-encoding 

viruses (Table S1).  

 

Directed recombination and AMG sequence conservation validates proposed mechanism of 

AMG transfer and retention 

The proposed mechanism of AMG acquisition by viruses in nature is the transfer of a host 

metabolic gene to the virus by recombination. Over multiple replication cycles of the viral genome, 

the AMG is retained as a functional gene. To verify this proposed mechanism, we engineered 

Escherichia coli phage T7 by inserting the host gene cysK (T7::cysK) to simulate a recombination 

event. Following successful insertion, T7::cysK was passaged, in three biological replicates, for 

nine complete infection cycles to simulate infection in nature over time. After passaging, the 

T7::cysK construct was sequenced to check for retention of the AMG in the viral population. 

Sequencing confirmed retention of the gene, indicating that recombination of a host metabolic 

gene onto a viral genome (i.e., AMG acquisition) can lead to stable retention of an AMG over 

time. Furthermore, between three biological replicates no mutations from the wildtype cysK 

sequence were observed.  
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Importantly, these observations show that a recombination event can occur without 

environmental triggers (e.g., nutrient limitation during infection) or fitness constraints (e.g., 

metabolic bottlenecks in the host), which provides further 

credibility for the proposed mechanism that AMG transfer 

occurs frequently and randomly in nature. If the AMG 

provides sufficient fitness benefits, or a lack of detrimental 

effects on viral replication it will be retained over multiple 

infection cycles. In the system developed here, conditions 

resulting in a fitness benefit (e.g., greater burst size or 

faster replication) for the T7::cysK virus compared to wild-

type T7 were not identified. 

 

Sulfide can provide a fitness advantage to viruses 

Since active expression and function of AMGs 

likely can result in the production of sulfide in the 

environment and human microbiome, we sought to 

determine if sulfide does indeed confer a fitness advantage 

to viruses. A highly plausible method for viruses to achieve 

this would be through the degradation of cysteine which is 

present in nearly all environments. As a result, we 

hypothesized the cysK-encoding virus P087 would have 

the capacity to gain a fitness advantage in the presence of 

sulfide. Theoretically P087 would be involved in the direct 

Figure 3. Increased viral fitness 
is associated with sulfide 
concentrations. Impact of 
varying sulfide concentrations on 
(A) Lactococcus phage P087 
virus production as measured by 
plaque forming units (PFUs). The 
average of three independent 
experiments each with three 
biological replicates, with 
standard deviation error bars, are 
shown. (B) Corresponding 
uninfected host growth as an 
average of two biological 
replicates. Experimental 
conditions are normalized to 
percent of control. Asterisk 
represents statistical significance 
(p<0.02) compared to the control.  
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degradation of intracellular cysteine via the action of virally encoded CysK under some conditions. 

To elucidate if sulfide alone confers a fitness advantage, we exogenously added sulfide during 

P087 infection of L. lactis and quantified the impact on virus and host growth. We found that 

viable virus production increased linearly with the addition of physiologically relevant 

concentrations of sulfide (Figure 3A) with no significant observed differences in host growth 

(Figure 3B). This indicates that under the conditions tested P087 benefits from increased 

production of sulfide in the system through either AMG or host-driven mechanisms, and that the 

resulting fitness gain is not due to a simple increase in host abundance. We performed the same 

experiment with exogenously added cysteine but did not observe any effect on viral fitness (data 

not shown). This has significant biological implications as microorganisms contain high 

intracellular concentrations of cysteine, with L. lactis species reported to contain approximately 

3.5mM intracellular cysteine 161. Likewise, Escherichia coli has a free cysteine pool of 

approximately 150µM 162. We believe other viruses encoding organosulfur metabolism AMGs 

would likewise derive a fitness advantage under similar conditions and that this phenotype is not 

restricted to the ability to directly produce sulfide from cysteine degradation.    

 

Viral organosulfur auxiliary metabolism associated with human gut bacteria 

Among viruses with known hosts, 107 were found to be associated with 35 different 

bacterial species known to be commensal or pathogenic residents of the human gastrointestinal 

tract (Table S1). These viruses encode five AMGs (cysE, cysH, cysK, dcm and metK) for both the 

assimilation of sulfur and capacity to degrade organosulfur compounds into sulfide. Most of these 

viruses were isolated from a variety of dairy, soil, sewage, and wastewater environments indicating 

a potential for environmental reservoirs of sulfide producing viruses, or in the case of wastewater 
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environments the viruses may have been resident in human gastrointestinal tracts. Five AMG-

encoding viruses of the pathogens Salmonella enterica, Staphylococcus aureus, Vibrio cholerae 

and Clostridium difficile were isolated from human fecal samples indicating transmission and 

replication in human gastrointestinal tracts likely does occur and may contribute to dysbiosis via 

the production of sulfide or altering the organosulfur metabolic potential of the pathogenic host. 

Uncultivated viruses from the human gastrointestinal tract encoding AMGs putatively 

involved in direct sulfide production (cysM, malY and metY) had high protein identity (>97%) to 

Alistipes putredinis, Alistipes obesi, Alistipes finegoldii, Bacteroides uniformis and Bacteroides 

vulgatus suggesting they are viruses closely associated with these human gut bacteria from the 

order Bacteroidales (phylum Bacteroidetes) 163–166. Viruses encoding metK, mtnN and metE (i.e., 

capacity for methionine degradation to sulfide) in human gastrointestinal samples were likewise 

inferred to be closely associated with the human gut bacteria Alistipes ihumii, Faecalibacterium 

prausnitzii, Flavonifractor sp., Bacteroides intestinalis, Bacteroides xylanisolvens, Bacteroides 

uniformis, Bacteroides thetaiotaomicron, Haemophilus parainfluenzae, Aggregatibacter sp. and 

Eubacterium sp. based on high protein identity 167–175. At lower protein identity (96%-80%), 

viruses encoding metK, luxS and mtnN were inferred to be in some part associated with the gut 

bacteria Prevotella spp. (Bacteroidales), Butyricicoccus spp. and Clostridiales sp. 165,176,177 (Table 

S5).  

Many of these Bacteroidales (i.e., Alistipes spp., Bacteroides spp. and Prevotella spp.) and 

some members of the phylum Firmicutes (e.g., Haemophilus parainfluenzae and Butyricicoccus 

spp.) have been strongly associated with IBD 166,175,176,178 and their role in inflammation may be in 

part attributed to virus-mediated or influenced production of sulfide. Importantly, viruses of these 

Bacteroidales, including Prevotella megaphages with high coding capacity, have been shown to 
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be dominant and abundant in human gastrointestinal tracts which could promote the continuous 

viral-driven production of sulfide to exacerbate inflammation 179,180. 

 

 

Figure 4. Genome comparisons of viruses encoding AMGs. Comparisons of (A) 
uncultivated viruses and complete Salmonella enterica viruses encoding dcm (pink), (B) 
uncultivated viruses encoding cysC (cyan) with (C) respective protein phylogeny (orange 
highlighting, refer to Figure S6 for full phylogenetic tree), and (D) complete Streptococcus 
thermophilus viruses encoding cysE (orange), dcm (pink) or cysH (yellow). For all 
comparisons, predicted open readings frames are annotated by dark blue arrows and genomes 
are connected with lines according to protein identity by tblastx alignment. Colored circles 
refer to the environment in which the virus was isolated or identified. 
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Comparative genomics displays diversity of viral genome organization 

We used comparative genomics to examine the diversity of viruses found to be associated 

with human microbiomes. We identified four distinct uncultivated virus contigs encoding dcm 

from human oral samples to be closely related to known Streptococcus pneumoniae viruses based 

on genome sequence identity (Figure S7A). However, there are large stretches of dissimilarity 

between some of the genomes which may indicate evidence for large genetic exchange between 

viruses that frequently share the same niche and not the same host, which has been demonstrated 

before between Lactococcus and Enterococcus viruses 181. This observation supports the 

likelihood of AMG transfer between viruses in human and environmental microbiomes. 

Furthermore, two plant-associated viruses were identified to be closely related to known 

Salmonella enterica viruses originally derived from human fecal samples (Figure 4A). These 

plant-associated viruses may represent examples of environmental reservoirs for AMG-encoding 

viruses in the human gastrointestinal tract.  

However, for either case above the exact nature of viral transfer of AMGs is challenging 

to determine because AMG sequences that closely share evolutionary history can be encoded on 

dissimilar and geographically diverse viruses. For example, five cysC-encoding viruses that group 

closely by CysC phylogeny conversely depict dissimilarity by genome comparison and are 

geographically dispersed in marine environments (Figure 4B, C). The same is true for six different 

metK-encoding viruses in which MetK shows phylogenetic similarity but the genomes are diverse 

and geographically spread (Figure S7B).  

To further investigate the relationships of AMGs on viral genomes, we examined the 

prevalence of multiple AMG copies on individual genomes. In total we identified 285 viral 

genomes that contained multiple copies. While most such genes encoded for identical functions 
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(i.e., two copies of protein from the same gene family), some with connected (e.g., metK and dcm, 

luxS and mtnN) or disparate functions (e.g., dcm and cysM, cysH and mtnN) were also found. These 

findings suggest viruses may utilize these genes for diverse regulation of host organosulfur 

metabolism to fit their individual requirements (Table S6). For example, a single virus may 

augment both assimilatory sulfate reduction (e.g., using CysH) as well as methionine degradation 

(e.g., using MetK) during infection by encoding and expressing both AMGs.  

Figure 5. Genome organization of 9 complete viral genomes encoding organosulfur 
AMGs. Genome representation of circular and linear viruses. Arrows indicate open reading 
frames and are annotated by general function: virion structural assembly (green), auxiliary 
metabolism and general functions (red), nucleotide metabolism and genome replication 
(blue), lysis (orange) and unknown function (yellow). AMGs are annotated in purple.  
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We next compared viral genome organization to identify relationships in the physical 

location of AMGs between different viral genomes and interpret affiliations with other encoded 

genes. We found no universal organization of AMGs which were broadly encoded in various 

locations, such as between structural genes, adjacent to lysis factors, near genes for genome 

replication or nucleotide metabolism and within regions comprising genes of unknown function 

(Figure 5). Additionally, no pattern associated with encoding specific AMGs was detected 

according to virus classification, genome length or isolation source. There were a small number of 

outliers, such as a comparison of 10 complete viral genomes encoding cysH that indicated a trend 

towards co-location of the AMG with genome replication and/or nucleotide metabolism genes to 

suggest similar transcriptional regulation or function of this AMG across different viruses (Figure 

S7C).  

The model that viruses acquire AMGs from diverse sources and for disparate functions is 

further supported by looking at AMG-encoding viruses that share the same host but not the same 

AMG. There are several different variations in which this occurs. One example involves Bacillus 

cereus phages PBC5, Basilisk, BCU4 and PBC6 where the viruses have low sequence similarity 

between genomes and AMG sequences (i.e., cysH) (Figure S7D). Another example involves 

Streptococcus suis phages phiJH1301-2, phiSC070807, phiNJ3 and phiD12 where the viruses have 

very similar genome sequences but encode multiple AMGs with similarity shared only among a 

subset of them (i.e., metK and dcm) (Figure S7E). A final example involves Streptococcus 

thermophilus phages 9871, CHPC577, P0095, CHPC1151, 5093, CHPC877, D4276 and 

CHPC1062 where the viruses group separately according to the single AMG each encodes (cysE, 

cysH or dcm) (Figure 4D). Taken together, these three examples indicate that viruses are able to 

employ separate strategies to accomplish a similar function of manipulating host organosulfur 
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metabolism. This may be in the form of acquiring the same AMG from different sources to perform 

a shared task or acquiring disparate AMGs to perform separate tasks towards the same objective, 

such as sulfide production.  

 

Discussion 

The metabolic potential of viruses, the most abundant biological entities on Earth, is all too 

often overlooked because viruses do not independently conduct metabolic transformations. Here 

we show that viral manipulation of host metabolism in contrast to solely measurements of viral 

richness and host range is likely important to the environmental sulfur cycle and human health. 

Furthermore, we propose that assimilatory sulfur metabolism, a ubiquitous method of fixing sulfur 

and manipulating organosulfur compounds, is frequently modulated by viruses during infection of 

organisms from all three domains, and in almost all microbiomes on Earth. This poses an important 

question, what have we been overlooking in viromes by frequently assessing sequence reads 

instead of metagenomically assembled genomes that encode AMGs? Are we giving enough 

emphasis on viruses as core drivers in the metabolism of microbiomes?  

AMG-driven organosulfur metabolism mediated by viruses may lead to sulfide production 

in the gastrointestinal tract during infection or following microbial lysis. The result would be a 

sulfide-induced inflammatory response in conjunction with the activity of resident microbiota or 

invading pathogens, though the extent to which this occurs in human or environmental systems 

has yet to be quantified. Indeed, it has been observed that infected bacterial cells have manipulated 

and ‘rewired’ sulfur assimilation that will impact cysteine metabolism and likely sulfide 

production 70. Furthermore, viruses encoding sulfur assimilation AMGs may be short-circuiting 

the assimilatory sulfur pathway by reducing the steps necessary for assimilation of sulfur into 
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organosulfur compounds. This concept is supported by the observation that cysH is the most 

abundant organosulfur metabolism AMG, which plays a role in both the canonical sulfate 

assimilation pathway as well as direct sulfonation of organic molecules 182. The latter mechanism 

may explain the high abundance of cysH on viral genomes.  

The evidence presented here strongly points towards sulfide production as a component of 

viral organosulfur auxiliary metabolism, either directly or indirectly by AMG activity, which could 

provide many fitness advantages for viruses (Figure 6A). As obligate intracellular pathogens, 

viruses could benefit from the survival and enhanced growth of their host, which could be achieved 

by responding to sulfur starvation signals, assimilating sulfide for biosynthesis (e.g., for 

Figure 6. Virus-driven production of sulfide and its effects on human health, viral fitness 
and microbial communities. (A) Mechanisms by which sulfide could benefit viral fitness and 
(B) effect microbial communities, human health and environmental conditions. (C) Proposed 
impact of viral driven production of sulfide, in conjunction with activity of pathogenic bacteria, 
on inflammation in the gastrointestinal tract and its implications in IBD and CRC. 
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sulfolipids), upregulating sulfide utilization (e.g., sulfide oxidation), antibiotic stress response 

(Figure 6A.1), or redox balance and free radical scavenging (Figure 6A.2) 35,53,82,135,183–185. To 

benefit the virus directly, sulfide could be utilized for amino acid synthesis or protein function, 

such as for co-factor binding (e.g., metal ions) (Figure 6A.3.1), persulfidation of cysteine residues 

for signaling (Figure 6A.3.2), structural sulfide bridge formation (Figure 6A.3.3), iron-sulfur 

cluster formation (Figure 6A.3.4) or for viral structural proteins in virion assembly (Figure 6A.4) 

186,187. Furthermore, thiol modification of nucleic acids (i.e., dsDNA, tRNA and sRNA) could 

provide an avenue for responding to stresses (Figure 6A.5) or regulating gene expression for the 

virus or host (Figure 6A.6) 186,188–192. Another method of nucleic acid modification that viruses 

may rely on is dsDNA recombination or integration (Figure 6A.7.1), or dsDNA repair (Figure 

6A.7.2) which can be enabled by essential thiol components of enzymes 193–195. Sulfide may even 

be a key component in the ability of viruses to effectively lyse their host (Figure 6A.8) 196. 

However, due to the diversity of functions encoded by AMGs (e.g., degradation of 

organosulfur compounds directly into sulfide or sulfite, manipulation of organosulfur compound 

forms or fixing sulfur) it is likely that host physiology and local environmental conditions drive 

their acquisition and function. Regardless of the utility of AMGs employed by individual viruses, 

the eventual lysis and release of virus-derived sulfide or virus-influenced sulfur chemistry could 

have significant impacts on the surrounding environment and local microbial communities (Figure 

6B). Increased sulfide concentrations could either enhance the growth of sulfide oxidizing 

organisms (Figure 6B.9) or act as a toxin to inhibit the growth of others (Figure 6B.10) 185. 

Likewise, in both environmental and human systems, intracellular content released through viral 

lysis could alter nutrient availability and sulfide concentrations in the microbial community 
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(Figure 6B.11) or lead to the degradation of iron, steel and concrete in infrastructure (Figure 

6B.12). 

In humans, balancing organic and inorganic sulfur concentrations is pivotal to both the 

health of the gastrointestinal tract and the resident microbiota 197, and our evidence suggests that 

viruses may interfere with this equilibrium. Moreover, dozens of microbial species have been 

linked to accumulation of sulfide within the human gut via the degradation of organosulfur 

compounds (e.g., cysteine and taurine) and implicated in CRC and IBD 131,133, but the role of 

viruses in facilitating or upregulating these processes is unknown. Specifically, virus-mediated 

sulfide production could accelerate the development of sulfide-associated gastrointestinal 

disorders such as colitis, IBD and CRC (Figure 6C).  

Our discovery of AMGs for organosulfur metabolism and sulfide production also has 

widespread ramifications for interpreting Earth history (Figure 6B.13). Sulfur isotope 

fractionation (34S/32S) analysis is widely used to interpret geological records and estimate rates of 

microbial processes such as sulfate reduction 198–200. Microbial assimilatory sulfate reduction and 

viral auxiliary metabolism have been ignored as contributors to fractionation in the environment, 

mainly because sulfide is incorporated into organosulfur compounds instead of being exported into 

the environment as it is in dissimilatory reactions. As a result, assimilatory fractionation appears 

to be negligible (~3‰), whereas dissimilatory fractionation is frequently measured closer to 47‰ 

201,202. Without the incorporation of sulfide into organosulfur compounds, assimilatory sulfite to 

sulfide reduction fractionates up to 36-42‰ in Salmonella, Clostridium and Bacillus species 202. 

We propose that virus-mediated sulfide production can directly impact the observed fraction of 

32S-enriched sulfide at scales relevant to dissimilatory sulfate reduction.  
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Overall, the global distribution and diversity of viruses encoding organosulfur 

transforming AMGs represents a so-far unexplored cog in the global organic and inorganic sulfur 

cycles. By modulating organic and inorganic sulfur compound concentrations, viruses likely play 

important roles in infrastructure degradation, human disease and ecosystem health. Beyond viral 

organosulfur metabolism, this study serves as a model for elucidating the impacts of virus-driven 

degradation of amino acids, whose fate is an important driver in human health and biotechnology 

and associated with ecosystem services in agriculture. 

 

Limitations of Study 

This study provides preliminary evidence for the function of organosulfur AMGs and viral 

influences on organosulfur compounds, namely hydrogen sulfide, in environmental and human 

microbiomes. One limitation is that the direct roles and interactions of AMGs within organosulfur 

metabolic frameworks and the elucidation of incurred benefits of hydrogen sulfide for some 

viruses was not shown. We show that the AMG cysK can be conserved evolutionarily over time 

which points towards, rather than measures, a fitness benefit of retaining the AMG. Furthermore, 

our experimental evidence for the benefit of sulfide to Lactococcus Phage P087, despite 

identifying viral CysK protein translation, did not distinguish if the measured fitness effect was 

the result of viral CysK or due to other unknown viral or host factors. Finally, our attempts to 

purify viral CysK protein and measure its activity in degrading cysteine was unsuccessful.  

 

Table 1. Complete reaction(s) performed by each AMG-encoded protein. Each protein is 
grouped respective to the main organosulfur metabolism pathway in which it is involved. Full 
names of acronyms are as follows. PAP: adenosine 3',5'-bisphosphate, APS: adenosine 5'-
phosphosulfate, PAPS: 3'-Phosphoadenosine-5'-phosphosulfate, CoA: Coenzyme A, OG: 
oxoglutarate, OAS: O-acetyl-L-serine, OASH: O-acetyl-L-homoserine, OSHS: O-succinyl-L-
homoserine, SAMe: S-adenosyl-L-methionine, dAdoMT: S-adenosyl 3-
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(methylsulfanyl)propylamine, MTA: S-methyl-5'-thioadenosine, MTR: 5-(methylsulfanyl)-α-D-
ribose, MT: methylsulfanyl, SAH: S-adenosyl-L-homocysteine, SRH: S-ribosyl-L-homocysteine, 
DHK-MTPene: 1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one, ASSA: L-aspartate 4-
semialdehyde, ASP: L-aspartyl-4-phosphate, MHO: L-methionine-(R)-S-oxide, Trdx: 
thioredoxin, THF: tetrahydrofolate, THP-3G: tetrahydropteroyl tri-L-glutamate. 

Pathway Protein Reaction(s) 

Assimilatory 
sulfate 

reduction 

CysC APS + ATP ↔ PAPS + ADP + H+ 
CysN SO4

2- + ATP + H+ ↔ APS+ P2O7
4- 

CysD SO4
2- + ATP + H+ ↔ APS+ P2O7

4- 
CysH PAP + SO3

2- + an oxidized Trdx + 2 H+ ↔ PAPS + a reduced Trdx 

CysNC 
PAP + ATP ↔ PAPS + ADP + H+  
SO4

2- + ATP + H+ ↔ APS + P2O7
4- 

CysJ SO3
2- + 3 NADPH + 5 H+ → H2S + 3 NADP+ + 3 H2O  

Direct 
sulfide 

production 

CysK 
OAS + H2S → L-cysteine + acetate + H+  
L-cysteine + H2O → pyruvate + H2S + NH4

+ 

CysM 
OAS + S2O3

2- ↔ S-sulfo-L-cysteine + acetate + H+ 
OAS + H2S → L-cysteine + acetate + H+  
L-cysteine + H2O → pyruvate + H2S + NH4

+ 

MalY 
L-cystathionine + H2O → L-homocysteine + pyruvate + NH4

+   
L-cysteine + H2O → pyruvate + H2S + NH4

+  

DcyD 
D-cysteine + H2O → NH4

+ + pyruvate + H2S  
3-chloro-D-alanine + thioglycolate → S-carboxymethyl-D-cysteine + Cl- + H+ 

MetC 
L-cystathionine + H2O → L-homocysteine + pyruvate + NH4

+  
L-cysteine + H2O → pyruvate + H2S + NH4

+ 
MetY OASH + H2S ↔ L-homocysteine + acetate + H+ 

Direct 
sulfite 

production 

TauD taurine + 2-OG + O2 → SO3
2- + 2-aminoacetaldehyde + succinate + CO2 + H+ 

SsuD 
an alkylsulfonate + FMNH2 + O2 → an aldehyde + SO3

2- + FMN + H2O + 2H+  
isethionate + FMNH2 + O2 → glycolaldehyde + SO3

2- + FMN + H2O + 2H+ 
MsmA methanesulfonate + NADH + O2 → formaldehyde + SO3

2- + NAD+ + H2O 

Indirect 
sulfide 

production 

MetB 
OSHS + L-cysteine ↔ L-cystathionine + succinate + H+  
OSHS + H2O → 2-oxobutanoate + succinate + NH4

+ + H+ 
MetH L-homocysteine + a 5-methyl-THF → L-methionine + a THF 
MetE L-homocysteine + 5-methyl-THP-3G ↔ L-methionine + THP-3G 
MetK ATP + L-methionine + H2O → SAMe + PO4

3- + P2O7
4- 

MtnN 
SAH + H2O → SRH + adenine  
MTA + H2O → MTR + adenine 

Dcm SAMe + a cytosine in DNA → a 5-methylcytosine in DNA + SAH + H+ 
AhcY SAH + H2O → L-homocysteine + adenosine 
LuxS SRH → L-homocysteine + autoinducer 2 
MsrC MHO + a reduced Trdx → L-methionine + an oxidized Trdx + H2O 
MegL L-methionine + H2O → methanethiol + 2-oxobutanoate + NH4

+ 

AspB 
L-aspartate + 2-OG ↔ oxaloacetate + L-glutamate  
L-cysteine + 2-OG ↔ 3-mercaptopyruvate + L-glutamate 

Indirect 
sulfur 

metabolism 

CysE L-serine + acetyl-CoA → OAS + CoA 
NrnA PAP + H2O → AMP + PO4

3- 

SpeE 
putrescine + dAdoMT ↔ spermidine + MTA + H+  
cadaverine + dAdoMT → aminopropylcadaverine + MTA + H+ 

MetA L-homoserine + succinyl-CoA → OSHS + CoA 
MtnK ATP + MTR → ADP + 5-MTR-1-phosphate + H+ 
MtnA 5-MTR-1-phosphate → 5-(MT)-ribulose 1-phosphate 

MtnD 
DHK-MTPene + O2 → 4-(MT)-2-oxobutanoate + formate + H+  
DHK-MTPene + O2 → 3-(MT)propanoate + formate + CO + H+ 
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Methods 

RESOURCE AVAILABILITY 

Materials Availability 

The recombinant phage line generated in this study is available upon request.  

 

Data and Code Availability 

All sequences used in this study are publicly available and can be found at their original sources. 

The genomic and protein sequences of viruses highlighted in this study and respective AMG 

protein sequences identified can be found on GitHub 

(https://github.com/AnantharamanLab/Kieft_et_al_2021_organosulfur_AMGs) and Zenodo 

(http://doi.org/10.5281/zenodo.4947151). This paper does not report original code. Any additional 

information required to analyze the data reported in this paper is available from the lead contact 

upon request.  

 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 

Lactococcus system growth conditions 

Lactococcus lactis subs. lactis C10 and Lactococcus phage P087 were obtained from Université 

Laval’s Félix d’Hérelle Reference Center for Bacterial Viruses (Canada, www.phage.ulaval.ca). 

L. lactis C10 was grown without agitation at 30°C in M17 broth (Oxoid) supplemented with 0.5% 

LysC L-aspartate + ATP → ASP + ADP 

ThrA 
L-aspartate + ATP → ASP + ADP  
ASSA + NAD(P)H + H+ → L-homoserine + NAD(P)+  

Asd ASSA + NADP+ + PO4
3- ↔ ASP + NADPH + H+ 

Hom ASSA + NAD(P)H + H+ → L-homoserine + NAD(P)+ 
Mdh (S)-malate + NAD+ ↔ oxaloacetate + NADH + H+ 
CysQ PAP + H2O → AMP + PO4

3- 
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glucose (GM17). Infections were supplemented with 10mM CaCl2 and incubated without agitation 

at room temperature. 

 

T7 system growth conditions 

T7 phage was obtained from ATCC (ATCC® BAA-1025-B2). Saccharomyces cerevisiae 

BY4741 and E. coli BL21 are lab stocks, and E. coli 10G is a highly competent DH10B derivative 

203 originally obtained from Lucigen (60107-1). E. coli BW25113 and BW25113ΔcysK were 

obtained from Doug Weibel (University of Wisconsin, Madison).  

All bacterial hosts were grown in and plated on LB media (1% Tryptone, 0.5% Yeast 

Extract, 1% NaCl in dH2O, plates additionally contain 1.5% agar, while top agar contained 0.5% 

agar) and LB media was used for all experimentation. All incubations of bacterial cultures were 

performed at 37°C, with liquid cultures shaking at 200-250 rpm unless otherwise specified. 

Bacterial hosts were streaked on appropriate LB plates and stored at 4°C. S. cerevisiae BY4741 

was grown on YPD (2% peptone, 1% yeast extract, 2% glucose in dH2O, plates additionally 

contain 2.4% agar), after Yeast Artificial Chromosomes (YAC) transformation S. cerevisiae 

BY4741 was grown on SD-Leu (0.17% yeast nitrogen base, 0.5% ammonium sulfate, 0.162% 

amino acids – Leucine [Sigma Y1376], 2% glucose in dH20, plates additionally contain 2% agar). 

All incubations of S. cerevisiae were performed at 30°C, with liquid cultures shaking at 200-250 

rpm. S. cerevisiae BY4741 was streaked on YPD or SD-Leu plates as appropriate and stored at 

4°C. 

T7 phage was propagated using E. coli BL21 after initial receipt from ATCC and then as 

described on various hosts in methods. All phage experiments were performing using LB and 

culture conditions as described for bacterial hosts. Phages were stored in LB at 4°C. For long term 
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storage all microbes were stored as liquid samples at -80°C in 10% glycerol, 90% relevant media. 

SOC (2% tryptone, 0.5% yeast extract, 0.2% 5M NaCl, 0.25% 1M KCL, 1% 1M MgCl2, 1% 1M 

MgSO4, 2% 1M glucose in dH2O) was used to recover host and phages after transformation.  

For infection experiments, stationary phase cultures were created by growing bacteria 

overnight (totaling ~20-30 hours of incubation) at 37°C. Exponential phase culture consisted of 

stationary culture diluted 1:20 in LB then incubated at 37°C until an OD600 of ~0.4-0.8 was 

reached, typically after 40 minutes. Phage lysate was purified by centrifuging phage lysate at 16g, 

then filtering supernatant through a 0.22 μM filter. To establish titer, phage samples were serially 

diluted (1:10 or 1:100 dilutions made to 1 mL in 1.5 mL microcentrifuge tubes) in LB to a 10-8 

dilution for titering by spot assay. Spot assays were performed by mixing 250 μl of relevant 

bacterial host in the stationary phase with 3.5 mL of 0.5% top agar, briefly vortexing, then plating 

on LB plates pre-warmed to 37°C. After plates solidified (typically ~5 minutes), 1.5 μl of each 

dilution of phage sample was spotted in series on the plate. Plates were incubated and checked 

every 2-4 hours or overnight (~20-30 hours) to establish a preliminary titer. MOI was estimated 

by calculated by dividing phage titer by estimated bacterial concentration.  

 

METHOD DETAILS 

Identification of viral genomes 

A total of 125,842 viral genomes from the Integrated Microbial Genomes/Virus (IMG/VR) 141 v1 

database were used for analysis (accessed October 2017). Only publicly available genomes >5kb 

analyzed by Paez-Espino et al. (2016) were used in this study 9. Open reading frames were 

predicted using Prodigal with default parameters (v2.6.3) 98. All viral genomes were annotated 

using a combination of Prokka (v1.13.3) 204, Integrated Microbial Genomes and Microbiomes 
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pipeline 205, and InterProScan (v65.0) 206. Contigs with a high ratio of bacterial to viral protein 

annotations were manually identified and discarded. Contigs were further validated and annotated 

using a combination of VIBRANT (v1.2.1) and VirSorter (v1.0.3, virome database, categories 1, 

2, 4, 5) 115,117. All viral genomes encoding AMGs were manually inspected. Additional viral 

genomes were identified on the National Center for Biotechnology Information (NCBI) RefSeq 

207–209 or Genbank database 210 (accessed Jan 2019) by querying viral genomes for AMGs of 

interest by blastp domain analysis 101,211. Approximately 9,500 genomes corresponding to the viral 

classification Caudovirales were searched. VIBRANT and VirSorter were used to identify viruses 

>5kb from Lake Mendota, WI. 

 

AMG identification and annotation 

 In-house hidden Markov model (HMM) profiles were built corresponding to the Kyoto 

Encyclopedia of Genes and Genomes (KEGG) pathway of organosulfur Metabolism as well as 

Cysteine and Methionine Metabolism (accessed December 2018) 212. The two pathways’ KEGG 

Orthology (KO) numbers (189 total) were used to access corresponding proteins from the UniProt 

database (release 2018_11) 213. The resulting proteins were aligned with MAFFT (v7.388, default 

parameters) 214 and HMM profiles were built using hmmbuild (HMMER v3.1, default parameters) 

102. HMM profiles for CysC and CysH were built in the same manner, except manually verified 

viral CysC and CysH sequences, respectively, were added to the alignment for robustness. 

Hmmsearch (HMMER v3.1, evalue < 1e-5) was used to scan proteins on viral genomes. Proteins 

identified by the in-house HMM profiles were uploaded to the KEGG BlastKOALA server (v2.1) 

215 and queried under “prokaryotes” taxonomy and “genus prokaryotes” database for best hit 

annotations. Proteins annotated according to the original 189 KO numbers were selected for further 
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verification. Manual verification of several representatives of each KO number (i.e., protein 

family) was done to curate the results using blastp (NCBI non-redundant database, accessed Jan 

2019) and InterProScan (v71.0) to check for the presence of all expected conserved domains. 

Individual proteins and protein families of irrelevance or incorrect annotation were removed.  

 

Sequence alignment and dN/dS analysis 

 Alignment of CysH, CysK, CysC, TauD and MetK sequences was performed using 

MAFFT (v7.388, default parameters). For cysH-encoding genomes identified from NCBI, all viral 

sequences were used. Host genomes were scanned, by annotation and blastp domain analysis, for 

multiple copies of cysH and all those identified were used, along with non-host bacterial sequences 

that were found to be highly similar to viral sequences according to pairwise identity. For the 

remaining alignments, all viral AMG protein sequences that shared at least 95% pairwise identity 

were restricted to one representative using CD-HIT (accessed Jan 2019) 216–218 and aligned. Viral 

CysK and CysH sequences were limited to lengths 200-330 and 117-600 amino acids, respectively. 

To obtain bacterial representatives, the majority consensus sequence of aligned viral proteins was 

queried against the NCBI RefSeq database by blastp (evalue < 1e-5). In order to ensure broad 

phylogenetic distribution of blastp results, the output was restricted to the top 500 hits from each 

of five phylogenetic groups based on NCBI categorization: [1] Proteobacteria, [2] Terrabacteria, 

[3] FCB superphlylum, [4] PVC superphylum and [5] a group containing all other phyla. The 

resulting sequences were manually limited to specific lengths to match viral sequences (CysC: 

210-360, CysH: 150-600, CysK: 269-400, TauD: 314-400 amino acids, MetK: all) and reduced to 

one representative per 50% pairwise identity using CD-HIT. Viral and bacterial representatives 

were aligned together using MAFFT (default parameters) and gaps were stripped by 98%. The 



 45 
 

resulting alignments were used for phylogenetic analysis. Visualization of alignments was done 

using Geneious Prime 2019.0.3. For reference to full virus protein name and genome, see Table 

S1. 

The AMGs for cysK, cysC, cysD, cysH, tauD, msmA, metK, mtmN and luxS were used to 

calculate dN/dS ratios. dRep (v2.6.2) was used to compare AMG sequences separately (dRep 

compare --SkipMash --S_algorithm goANI) and dnds_from_drep.py was used to calculate dN/dS 

ratios from the AMG pairs 219. The dN/dS ratios were visualized with Seaborn (v0.8.1) and 

Matplotlib (v3.0.0).  

 

Sequence phylogeny 

 Phylogenetic analysis was performed using protein alignments of CysH, CysK, CysC, 

TauD and MetK as described above. To infer phylogenetic relationships RAxML (v8.2.4) 220 was 

used with the following parameters: raxmlHPC-PTHREADS -N 100 -f a -m PROTCATLG. 

Resulting best trees were used and rooted by manual identification of most distant (outgroup) taxa. 

Trees were visualized using FigTree (v1.4.3) 221. 

 

Protein functional analysis 

For domain and residue analysis, phylogenetic trees were used as a reference to select 

representative viral and bacterial sequences, which were then aligned using MAFFT (default 

parameters). Annotations of functional amino acid residues were labeled according to the Protein 

Data Bank (PDB, accessed January 2019)222 with the following identification numbers: 4BZQ and 

4BZP (CysC), 2GOY (CysH), 3ZEI (CysK), 3SWT (TauD), and 1RG9 (MetK). For alignments 

with no phylogenetic tree, up to five viral sequences and five PDB homologs (when available) 
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were randomly selected for all AMGs with abundance of five or greater. The PDB sequences used 

for annotation were added to the alignment. N- and C-terminal ends of protein alignments were 

manually removed for clarity and gaps were stripped by 90% (for alignments with phylogenetic 

trees) or 80% (for all others). Residues were highlighted according to 85% pairwise identity 

between sequences, excluding sequence gaps. An identity graph, generated by Geneious, was fitted 

to the alignment to visualize pairwise identity of 100% (green), 99-30% (yellow) and 29-0% (red).  

 

Protein Reactions 

 Enzymatic reactions, diagrams and pathways were created by referencing KEGG and 

MetaCyc (v22.6) 223 annotations.  

 

Viral transcriptomics and growth rates 

 Publicly available metatranscriptomic data from Lake Mendota, WI was assessed for 

AMGs by querying annotation names 224. This gene expression data comprises a two-day time 

series and is accompanied by metagenomic assemblies (IMG Taxon Object IDs 3300013004 and 

3300013005). Metatranscriptomic reads were mapped to a custom, non-redundant database of 

freshwater reference data, including the metagenome assemblies; annotations in this study are 

derived from the annotations of the reference database. We used read counts normalized to 

transcripts per liter as the input for our study, and we searched for AMGs in the metagenomic 

assemblies as described above.    

The growth rate of the cysC-encoding Lake Mendota virus was identified using index of 

replication (iRep) with default parameters 156. Metagenomic assembly reads used for iRep are 

available on IMG under the Taxon Object ID 3300013005. Reads were mapped to the viral genome 
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using Bowtie2 (v2.3.4.1) 225. GC-skew to indicate rolling circle replication of the viral genome 

was likewise completed using the iRep toolkit.   

   

Virus growth and fitness assay 

Approximately 108 plaque forming units (PFUs) of Lactococcus phage P087 (approximate 

multiplicity of infection (MOI) of 1 were used to infect 1mL of L. lactis C10 which had been 

brought to an optical density (OD600) of approximately 0.15 in GM17 broth. For fitness 

experiments, either vehicle control (water), 10µM Na2S or 100µM Na2S was supplemented to the 

media at time of infection. Infections were incubated without agitation at room temperature for 

approximately three hours. Additional cultures of uninfected L. lactis C10 with all other variables 

identical were measured for growth at the endpoint of infections using OD600. To end infections, 

L. lactis C10 were spun out of solution at 10,000 rcf and the supernatant (i.e viral fraction) was 

removed and cooled to 4°C. Plaque assays were done using the standard double agar method 226 

with diluted viral fraction and L. lactis C10 brought to high concentration. A 1% bottom agar and 

0.4% top agar of GM17 were used, both supplemented with 0.5% glycine and 10mM CaCl2.  

 

Virus and host cysK qPCR assay 

An overnight culture of L. lactis C10 was diluted in GM17 broth to OD 0.08 and grown at 

30°C for ~2 hours until OD reached 0.15. In a batch culture 10mM CaCl2 was added. Two different 

conditions were assayed, each in duplicate (biological replicates): (1) L. lactis C10 control and (2) 

L. lactis C10 plus Lactococcus phage P087. For infection conditions, Lactococcus phage P087 was 

added at a MOI of 1 (time 0 minutes). RNA was extracted using the PureLink RNA Mini Kit 

(Ambion) from 500µL of the cellular fraction at 15, 60 and 120 minutes post-infection. RNA was 
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then treated with DNase with the DNase Max Kit (Qiagen) and converted to cDNA using the High 

Capacity cDNA Reverse Transcription Kit (Applied Biosystems). qPCR of viral and host cysK 

was performed using Power SYBR Green PCR Master Mix (Applied Biosystems) with 7ng of 

cDNA template and the following primer sets (IDT): L. lactis C10 forward 

(CCTTCGTTGGCTCTGCTTTG), L. lactis C10 reverse (TGGCATCATCTCCTTTGACCC), 

Lactococcus phage P087 forward (CAGAAACTATCGGAAACACACCAC), and Lactococcus 

phage P087 reverse (TTGAGTGAATGACCTGCTCCA) (Table S10). The concentration of 

template cDNA was measured with the Qubit dsDNA BR Assay Kit (Invitrogen). The viral and 

host cysK sequences were sufficiently dissimilar in sequence identity (<60% at the protein level) 

to allow for accurate distinction by qPCR and the primers selected.  

 

Mass spectrometry and protein identification 

L. lactis C10 was grown without agitation at 30°C in modified M17 broth supplemented 

with 0.5% glucose (mGM17). mGM17 was made by adding 1.25g glucose, 0.625g tryptone, 1.25g 

peptone, 0.125g yeast extract, 0.125g ascorbic acid, 0.0626g anhydrous magnesium sulfate and 

4.75g disodium glycerophosphate to 250mL deionized water. Approximately 108 PFUs of 

Lactococcus phage P087 were used to infect 3mL of L. lactis C10 which had been brought to 

OD600 of approximately 0.15 and supplemented with 10mM CaCl2. Infections proceeded to 

complete lysis without agitation at room temperature for approximately three hours. To end the 

infection, L. lactis C10 were spun out of solution at 10,000 rcf and the supernatant was removed 

and stored at 4°C. The supernatant was size fractionated by filtration for the 100kDa to 10kDa size 

fraction before trypsin solution digestion and analysis by Long Orbitrap LC/MS/MS (University 

of Wisconsin-Madison Biotechnology Center).  
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Genome organization and comparisons 

 Genome organization was visualized using Geneious Prime. Genes were manually colored 

by referencing functions according to NCBI RefSeq or Genbank annotation, or blastp search. Viral 

genomes in genbank format were compared and visualized with EasyFig (v2.2.2) 227 using the 

tblastx function. Only tblastx (v2.8.1+) hits with percent identities greater than 30% and e-values 

less than 0.001 are shown. Remaining analysis parameters were set to default. Circular sequences 

were visualized linearly for ease of comparison.  

 

Geographical distributions 

IMG Taxon Object ID numbers were used to identify global coordinates of studies in which 

AMGs were identified. Coordinates were mapped using Matplotlib’s Basemap (v1.2.0) 228. Human 

studies were excluded from coordinate maps.  

 

Host classification 

GhostKOALA (v2.0) 215 with the “genus prokaryotes” database was used to query all 3,794 

AMG-encoded proteins identified from IMG/VR derived viruses (3,421 annotated and used for 

taxonomy). To benchmark accuracy of the analysis, all 282 AMG-encoded proteins identified from 

NCBI-derived viruses with known hosts were queried in the same manner (278 were annotated 

and used for taxonomy) and compared to the taxonomy of hosts.  

 

T7 recombination: cloning 



 50 
 

All primers can be found in Table S10. PCR was performed using KAPA HiFi (Roche) 

for all experiments with the exception of multiplex PCR for screening Yeast Artificial 

Chromosomes (YACs), which was performed using KAPA2G Robust PCR kits (Roche). DNA 

purification was performed using EZNA Cycle Pure Kits (Omega Bio-tek) using the centrifugation 

protocol. YAC extraction was performed using YeaStar Genomic DNA Extraction kits (Zymo 

Research). All cloning was performed according to manufacturer documentation except where 

noted in methods. PCR reactions using phage as template use 1 μl of undiluted phage stock, with 

extension of the 95°C denaturation step to 5 minutes. 

Electroporation of YACs was performed using a Bio-rad MicroPulser (165-2100), Ec2 

setting (2 mm cuvette, 2.5 kV, 1 pulse) using 50 μl competent cells and 2 μl YAC DNA for 

transformation. Electroporated cells were immediately recovered with 950 μl SOC, then incubated 

at 37°C for 1 to 1.5 hours and plated or grown in Lb.  

E. coli 10G competent cells were made by adding 8 mL overnight 10G cells to 192 mL 

SOC (with antibiotics as necessary) and incubating at 21°C and 200 rpm until ~OD600 of 0.4 as 

determined using an Agilent Cary 60 UV-Vis Spectrometer using manufacturer documentation 

(actual incubation time varies based on antibiotic, typically overnight). Cells are centrifuged at 

4°C, 800-1000g for 20 minutes, the supernatant is discarded, and cells are resuspended in 50 mL 

10% glycerol. Centrifugation and washing are repeated three times, then cells are resuspended in 

a final volume of ~1 mL 10% glycerol and are aliquoted and stored at -80°C. Cells are competent 

for plasmid and YACs. All primers used in experiments in this publication are listed in 

supplemental. 

 

T7 recombination: engineering T7 with cysK 
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Phages were assembled using YAC rebooting 229,230, which requires yeast transformation 

of relevant DNA segments, created as follows. A prs415 yeast centromere plasmid was split into 

three segments by PCR, separating the centromere and leucine selection marker, which partially 

limits recircularization and improved assembly efficiency 231. Wildtype T7 segments were made 

by PCR using wildtype T7 as template. CysK segments were made by colony PCR of BW25113. 

CysK was inserted into two locations to create two phage constructs. The first location was 

replacement of gp1.7 to establish CysK in early Class II genes. This insertion causes a two amino 

acid extension (YE) of the immediate 5’ gene gp1.6 that was not anticipated to have an effect on 

phage viability. The second location was inserted adjacent to gp6.3 to establish CysK in early class 

III genes and leverages a copy of phage promoter phi6.5 for expression.  

DNA parts were combined together (0.1 pmol/segment) and transformed into S. cerevisiae 

BY4741 using a high efficiency yeast transformation protocol 232 using SD-Leu selection. After 2-

3 days colonies were picked and directly assayed by multiplex colony PCR to assay assembly. 

Multiplex PCR interrogated junctions in the YAC construct and was an effective way of 

distinguishing correctly assembled YACs. Correctly assembled YACs were purified and 

transformed into E. coli 10G cells and these cultures incubated until lysis, after which phages were 

purified to create the initial phage stock.  

 

T7 recombination: passaging and AMG retention 

Either T7Δ1.7::cysK or T7::cysK phages were added to 5 mL exponential phase BW25113 

or BW25113ΔcysK at an estimated MOI of 10-4 to allow for an estimated three phage passages. 

After the culture had fully lysed, typically ~1 hour and 30 minutes, lysate was purified and then 

the titer established by spot assay. This process was then repeated twice for a total of an estimated 
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9 phage passages assuming at least 100 phage progeny per host. Phage lysate from the final passage 

was used as template for sequencing to determine if the cysK insert remained as the consensus 

sequence in the phage population. The entire process was repeated in biological triplicate for both 

host and phage combinations. 

 

QUANTIFICATION AND STATISTICAL ANALYSIS 

Virus growth and fitness 

The number of resulting plaques from the growth and fitness assays were normalized to 

100% of controls for each experiment. Three independent experiments with three biological 

infection replicates and two biological growth replicates each was performed. Further information 

of experiments can be found in Method Details below. 

 

Virus and host cysK qPCR 

For each replicate of the two conditions assayed both primer sets were used for qPCR. To 

analyze the qPCR results, the Cq readings were averaged between the three replicates for each 

treatment at each timepoint to obtain a single datapoint per treatment:primer pair per timepoint, 

termed average Cq. Using time point zero for the uninfected L. lactis C10 condition with L. lactis 

C10 cysK primers as the baseline control, delta-delta-Cq values were calculated by subtracting the 

control value from the average Cq values. This result calculates the expression of L. lactis C10 

cysK at time point zero to be normalized to zero (delta-delta-Cq of zero). Finally, all delta-delta-

Cq values were transformed using the formula 2-(delta-delta-Cq) 233. All raw Cq values and normalized 

results, including equations, can be found in Table S6. Further information of experiments can be 

found in Method Details below. 
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Abstract 

Microbial sulfur metabolism contributes to biogeochemical cycling on global scales. Sulfur 

metabolizing microbes are infected by phages that can encode auxiliary metabolic genes (AMGs) 

to alter sulfur metabolism within host cells but remain poorly characterized. Here we identified 

191 phages derived from twelve environments that encoded 227 AMGs for oxidation of sulfur and 

thiosulfate (dsrA, dsrC/tusE, soxC, soxD and soxYZ). Evidence for retention of AMGs during 

niche-differentiation of diverse phage populations provided evidence that auxiliary metabolism 

imparts measurable fitness benefits to phages with ramifications for ecosystem biogeochemistry. 

Gene abundance and expression profiles of AMGs suggested significant contributions by phages 

to sulfur and thiosulfate oxidation in freshwater lakes and oceans, and a sensitive response to 

changing sulfur concentrations in hydrothermal environments. Overall, our study provides 

fundamental insights on the distribution, diversity, and ecology of phage auxiliary metabolism 

associated with sulfur and reinforces the necessity of incorporating viral contributions into 

biogeochemical configurations. 

 

Introduction 

 Viruses that infect bacteria (bacteriophages, or phages) are estimated to encode a larger 

repertoire of genetic capabilities than their bacterial hosts and are prolific at transferring genes 

throughout microbial communities41,234–236. The majority of known phages have evolved compact 

genomes by minimizing non-coding regions, reducing the average length of encoded proteins, 

fusing proteins and retaining few non-essential genes109,237. Despite their reduced genome size and 

limited coding capacity, phages are known for their ability to modulate host cells during infection, 

take over cellular metabolic processes and proliferate through a bacterial population, typically 
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through lysis of host cells36,38. Phage-infected hosts, termed virocells, take on a distinct physiology 

compared to an uninfected state70. According to some estimates, as many as 20-40% of all bacteria 

in aquatic environments are assumed to be in a virocell state, undergoing phage-directed 

metabolism37,57. This has led to substantial interest in understanding the mechanisms that provide 

phages with the ability to redirect nutrients within a host and ultimately how this manipulation 

may affect microbiomes and ecosystems. 

One such mechanism by which phages can alter the metabolic state of their host is through 

the activity of phage-encoded auxiliary metabolic genes (AMGs)73,74. AMGs are typically acquired 

from the host cell (i.e., recombined onto the phage genome) and can be utilized during infection 

to augment or redirect specific metabolic processes within the host cell44,75,140. These 

augmentations likely function to maintain, drive or short-circuit important steps of a metabolic 

pathway and can provide the phage with sufficient fitness advantages under specific metabolic or 

nutrient conditions in order to retain these genes over time74,76. Two notable examples of AMGs 

are core photosystem II proteins psbA and psbD, which are commonly encoded by phages infecting 

Cyanobacteria in both freshwater and marine environments, and responsible for supplementing 

photosystem function in virocells during infection77,78,238,239. PsbA and PsbD play important roles 

in maintenance of photosynthetic energy production over time within the host; this energy is 

subsequently utilized for the production of resources (e.g., nucleotides) for phage propagation74,75. 

The Cyanobacteria host does not benefit from the additional gene copy (i.e., phage AMG) since 

the replication benefits and energy acquisition are in favor of the infecting phage. Other 

descriptions of AMGs include those for sulfur oxidation in the pelagic oceans82,140, methane 

oxidation in freshwater lakes81, ammonia oxidation in surface oceans79, carbon utilization (e.g., 

carbohydrate hydrolysis) in soils84,85, and marine ammonification240. As a further example, it has 



 57 
 

been hypothesized that some phages encoding carbon utilization AMGs function to redirect carbon 

from glycolysis to dNTP synthesis, for phage genome replication, by inducing a state of host 

starvation36. In this scenario, the phages encode their own AMG for specific manipulation of host 

processes rather than simply providing an extra gene copy to the host. Beyond these examples, the 

combined effect of phage auxiliary metabolism on ecosystems scales has yet to be fully explored 

or implemented into conceptualizations of microbial community functions and interactions. 

Dissimilatory sulfur metabolism (DSM) encompasses both reduction (e.g., sulfate to 

sulfide) and oxidation (e.g., sulfide or thiosulfate to sulfate) and accounts for the majority of sulfur 

metabolism on Earth128. Bacteria capable of DSM (termed as sulfur microbes) are phylogenetically 

diverse, spanning 13 separate phyla, and can be identified throughout a range of natural and human 

systems, aquatic and terrestrial biomes, aerobic or anaerobic environments, and in the light or 

dark132. Since DSM is often coupled with primary production and the turnover of buried organic 

carbon, understanding these processes is essential for interpreting the biogeochemical significance 

of both microbial- and phage-mediated nutrient and energy transformations132. Phages of DSM-

mediating microorganisms are not well characterized beyond the descriptions of phages encoding 

dsrA and dsrC genes infecting known sulfur oxidizers from the SUP05 group of 

Gammaproteobacteria82,140, and viruses encoding dsrC and soxYZ genes associated with 

proteobacterial hosts in the epipelagic ocean35. Despite the identification of DSM AMGs across 

multiple host groups and environments, there remains little context for their global diversity and 

roles in the biogeochemical cycling of sulfur. Characterizing the ecology, function and roles of 

phages associated with DSM is crucial to an integral understanding of the mechanisms by which 

sulfur species are transformed and metabolized. 



 58 
 

Here we leveraged publicly available metagenomic and metatranscriptomic data to identify 

phages capable of manipulating DSM within host cells. We identified 191 phages encoding AMGs 

for oxidation and disproportionation of reduced sulfur species, such as elemental sulfur and 

thiosulfate, in coastal ocean, pelagic ocean, hydrothermal vent, human, and terrestrial 

environments. We refer to these phages encoding AMGs for DSM as sulfur phages. These sulfur 

phages represent different taxonomic clades of Caudovirales, namely from the families 

Siphoviridae, Myoviridae and Podoviridae, with diverse gene contents, and evolutionary history. 

Using paired viral-host gene coverage measurements from metagenomes recovered from 

hydrothermal environments, freshwater lakes, and Tara Ocean samples, we provide evidence for 

the significant contribution of viral AMGs to sulfur and thiosulfate oxidation. Investigation of 

metatranscriptomic data suggested that phage-directed sulfur oxidation activities showed 

significant increases with the increased substrate supplies in hydrothermal ecosystems, which 

indicates rapid and sensitive responses of virocells to altered environmental conditions. Overall, 

our study provides key insights on the distribution, diversity, and ecology of phage-directed 

dissimilatory sulfur and thiosulfate metabolisms and reinforces the need to incorporate viral 

contributions into assessments of biogeochemical cycling.  

 

Results 

Unique sulfur phages encode AMGs for oxidation of elemental sulfur and thiosulfate 

We queried the Integrated Microbial Genomes/Viruses (IMG/VR v2.1) database for 

phages encoding genes associated with pathways for dissimilatory sulfur oxidation and reduction 

processes. We identified 190 metagenomic viral contigs (mVCs) and one viral single-amplified 

genome241 carrying genes encoding for reverse dissimilatory sulfite reductase subunits A and C 
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(dsrA and dsrC), thiouridine 

synthase subunit E (tusE, a 

homolog of dsrC), sulfane 

dehydrogenase subunits C and 

D (soxC, soxD), and fused 

sulfur carrier proteins Y and Z 

for thiosulfate oxidation 

(soxYZ). All mVCs except one 

(KiloMoana_10000689) were 

estimated to be partial genome 

scaffolds. While phages 

carrying dsrA, dsrC/tusE and 

soxYZ have been previously 

described in specific marine 

environments, this is the first 

report of soxC and soxD 

encoded on viral genomes. 

Each identified mVC encoded 

between one to four total DSM 

AMGs for a total of 227 AMGs 

(Fig. 1a, Supplementary Data 

1). The mVCs ranged in length 

from 5 kb to 308 kb, with an 

Fig. 1 Dataset summary statistics and representative genome 
organization diagrams of mVCs. a The number of mVCs, 191 
total, encoding single or multiple DSM AMGs. b Estimated 
mVC genome qualities as a function of scaffold lengths. mVCs 
encoding c dsrA and dsrC, d dsrA and two dsrC, e soxC and 
soxD, and f soxYZ. For c, d, e and f linear mVC scaffolds are 
visualized as circular with the endpoints indicated by dashed 
lines, and predicted open reading frames are colored according 
to VIBRANT annotation functions. Abbreviation: vSAG, viral 
single-amplified genome; GC, guanine-cytosine content; bp, 
base pairs. 
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average length of approximately 31 kb and a total of 83 sequences greater than 20 kb. The mVCs 

consisted of 124 low-, 26 medium- and 41 high-quality draft scaffolds according to quality 

estimations based on gene content (Fig. 1b). Only one mVC was a complete circular genome and 

was identified as previously described82. The majority of viruses in this study, with the exception 

of several mVCs encoding tusE-like AMGs were predicted to have an obligate lytic lifestyle on 

the basis of encoded proteins functions.  

The mVCs displayed unique and diverse genomic arrangements, regardless of the encoded 

AMG(s). However, in most cases the encoded AMGs were found within auxiliary gene cassettes, 

separate from structural and nucleotide metabolism cassettes (Fig. 1c, d, e, f). Auxiliary cassettes 

in phages typically encode genes that are not essential for productive propagation but can provide 

selective advantages during infection, such as in specific nutrient limiting conditions or to 

overcome metabolic bottlenecks242. This genomic arrangement suggests that the role of DSM 

AMGs is related to host modulation rather than essential tasks such as transcription/translation, 

genome replication or structural assembly.  

 

Validation of conserved amino acid residues and domains in AMG proteins  

 Validating AMG protein sequences ensures that their identification on mVC genomes 

represents accurate annotations (i.e., predicted biological function). We used in silico approaches 

for protein validation by aligning AMG protein sequences with biochemically validated reference 

sequences from isolate bacteria or phages and assessed the presence or absence of functional 

domains and conserved amino acid residues. We highlighted cofactor coordination/active sites, 

cytochrome c motifs, substrate binding motifs, siroheme binding sites, cysteine motifs, and other 



 61 
 

strictly conserved residues (collectively termed residues). Finally, we assessed if phage AMGs are 

under selection pressures to be retained.  

 Conserved residues identified on AMG protein sequences include: DsrA: substrate binding 

(R, KxKxK, R, HeR) and siroheme binding (CxgxxxC, CxxdC) (Supplementary Fig. 1); DsrC: 

strictly conserved cysteine motifs (CxxxgxpxpxxC) (Supplementary Fig. 2); SoxYZ: substrate 

binding cysteine (ggCs) and variable cysteine motif (CC) (Supplementary Fig. 3); SoxC: cofactor 

coordination/active sites (XxH, D, R, XxK) (Supplementary Fig. 4); SoxD: cytochrome c motifs 

(CxxCHG, CMxxC) (Supplementary Fig. 5). The identification of these residues on the majority 

of AMG protein sequences suggests they are as a whole functional. However, there are several 

instances of AMGs potentially encoding non-functional or distinctively different genes. For 

example, only 23 DsrC AMG protein sequences contained both of the strictly conserved cysteine 

motifs, 112 contained only the second cysteine motif, 1 contained only the first cysteine motif, and 

another 5 contained neither. The lack of strictly conserved cysteine motifs in phage DsrC has been 

hypothesized to represent AMGs with alternate functions during infection140, but this hypothesis 

has yet to be validated. Likely, most DsrC AMG protein sequences lacking one or more cysteine 

residues functionally serve as TusE, a related sulfur transfer protein for tRNA thiol 

modifications243. Indeed, several mVCs originating from the human oral microbiome encode tusE-

like AMGs that flank additional tus genes (Supplementary Fig. 2 and Supplementary Data 2). 

Further examples of missing residues include two mVCs encoding soxD in which one is missing 

the first cytochrome c motif, and both are missing the second cytochrome c motif (Supplementary 

Fig. 5). This initially suggests the presence of non-functional SoxD, but this notion is contested by 

the presence of conserved residues in SoxC. Functional SoxC, encoded adjacent to soxD in one of 

the mVCs, suggests that both likely retain function. It has been shown that phage proteins divergent 
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from respective bacterial homologs can retain their original anticipated activity or provide 

additional functions244. Overall, with the notable exception of 118 tusE-like AMGs, in silico 

analyses of AMG protein sequences suggests mVCs encode functional metabolic proteins.  

 To understand selective pressures on AMGs, we calculated the ratio of non-synonymous 

to synonymous nucleotide differences (dN/dS) in phage AMGs and their bacterial homologs to 

assess if phage genes are under purifying (stabilizing) selection. A calculated dN/dS ratio below 1 

indicates a gene, or genome as a whole, is under selective pressures to remove deleterious 

mutations. Therefore, dN/dS calculation of mVC AMGs resulting in values below 1 would indicate 

that the viruses selectively retain the AMG’s function by eliminating deleterious mutations in favor 

of those that provide function. Calculation of dN/dS for mVC dsrA, dsrC and soxYZ AMGs resulted 

in values below 1, suggesting AMGs are under purifying selection (Supplementary Fig. 6).  

 

DSM AMGs likely manipulate key steps in sulfur oxidation pathways to redistribute energy 

 As previously stated, DSM AMGs encoded by the mVCs likely function specifically for 

the manipulation of sulfur transformations in the host cell during infection. To better understand 

the implications of this manipulation, we constructed conceptual diagrams of both sulfur (i.e., dsr 

AMGs) oxidation and thiosulfate (i.e., sox AMGs) oxidation/disproportionation in both uninfected 

and infected hosts (Fig. 2).  

 To understand the potential advantages of carrying dsrC and dsrA AMGs specifically, each 

step in the sulfide oxidation pathway needs consideration. During host-only sulfide oxidation245, 

sulfide diffusing into the cell is converted into elemental sulfur by a sulfide:quinone 

oxidoreductase (e.g., sqr) and in some cases the pathway can begin directly with the import of 

elemental sulfur. The elemental sulfur can be stored in localized sulfur globules until it is 
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metabolized through the sulfide oxidation pathway246. During sulfide oxidation, elemental sulfur 

Fig. 2 Conceptual diagrams of viral DsrA, DsrC, SoxC, SoxD and SoxYZ auxiliary 
metabolism. a Microbial dissimilatory oxidation of hydrogen sulfide and stored inorganic 
sulfur. The resulting production of ATP utilized for cellular processes and growth and the 
pathway’s rate limiting step is indicated with an asterisk (left). Viral infection and manipulation 
of sulfur oxidation by encoded DsrA or DsrC to augment the pathway’s rate limiting step and 
increase energy yield towards viral replication (right). b Microbial dissimilatory oxidation of 
thiosulfate or storage of inorganic sulfur in the periplasm. The resulting production of ATP is 
utilized for cellular processes and the pathway’s key energy yielding reaction indicated with 
an asterisk (left). Viral infection and manipulation of thiosulfate oxidation by encoded SoxC, 
SoxD or SoxYZ to augment the entire pathway and the key energy yielding step to increase 
energy yield towards viral replication (right). For a and b cellular processes are shown in red, 
sulfur oxidation pathway is shown in black, energy flow is shown in blue, and viral processes 
are shown in orange (a) or purple (b). For all pathway steps shown, microbial enzymes and 
sulfur carriers are functional in tandem with viral augmentation. APS, adenosine 5’-
phosphosulfate. 
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carried by the sulfur carrier protein DsrC is oxidized into sulfite by the enzyme complex DsrAB. 

This step is estimated to be the rate limiting step in the complete pathway and yields the most 

electrons (six electrons) for ATP generation. Rate limitation is caused by either the saturation of 

the DsrAB enzyme complex or the DsrC carrier247,248. The final steps in sulfide/sulfur oxidation 

involve further oxidation of sulfite into adenosine 5-phosphosulfate (APS) and then sulfate by an 

APS reductase (e.g., aprAB) and sulfate adenylyltransferase, respectively (e.g., sat) which yields 

two electrons245. The obtained ATP can then be utilized for cellular processes. In contrast, during 

phage infection involving the modulation of sulfide oxidation, the rate limiting step (i.e., co-

activity of DsrC and DsrA) can be supplemented by phage DsrC and/or DsrA to potentially 

increase the rate and ATP yield of the reaction as well as utilize any stored elemental sulfur82. This 

influx of ATP could then be effectively utilized for phage propagation (e.g., phage protein 

production, genome replication or genome encapsidation) (Fig. 2a).  

 Likewise, the normal state of thiosulfate oxidation/disproportionation may be augmented 

by phages encoding soxYZ, soxC and soxD. During host-only thiosulfate oxidation249, thiosulfate 

is transported into the cell where the two thiol groups, transported by SoxYZ, undergo a series of 

oxidation reactions. A portion of the carried sulfur, after yielding two electrons, will be transported 

out of the cell as sulfate. The remaining carried sulfur may either be stored in elemental sulfur 

globules or proceed to the key energy yielding step. The key energy yielding step bypasses the 

storage of elemental sulfur and utilizes the SoxCD enzyme complex to produce six electrons for 

ATP yield245,250. During phage infection involving the modulation of thiosulfate 

oxidation/disproportionation, the entire pathway can be supported by both host and phage SoxYZ 

sulfur carriers in order to continuously drive elemental sulfur storage, which could then be oxidized 

by the Dsr complex. However, there is no evidence that phages benefit from coupling the sox and 
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Fig. 3 Phylogenetic tree of AMG proteins and distribution of phage genomes (on a world map). 
a, b Phylogenetic trees of phage DsrA and DsrC c, d, e SoxC, SoxD, SoxYZ. Ultrafast bootstrap 
(UFBoot) support values (> 50%) are labelled on the nodes. c, d Phage gene encoded protein 
sequences are labeled with stars and their environmental origin information is labeled 
accordingly. The ecosystem type (inner ring) and ecosystem category (outside ring) are provided 
for phage genomes in the phylogenetic trees in a, b, e; different colors represent different 
ecosystem type and ecosystem category in the legends, blank places in each ring are for microbial 
reference. f World map showing distribution of phage genomes that contain the sulfur-related 
AMGs. Studies on human systems are excluded from the map. Different ecosystem types are 
represented by different symbols and colors in the legend.  
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Fig. 4 Taxonomic assignment of mVCs and protein network clustering with reference phages. 
In the protein network each dot represents a single mVC (circles with outlines) or reference 
phage (circles without outlines), and dots are connected by lines respective to shared protein 
content. Genomes (i.e., dots) having more similarities will be visualized by closer proximity 
and more connections. Cluster annotations depicted by dotted lines were approximated 
manually. mVC taxonomy was colored according to predictions by a custom reference 
database and script, shown by bar chart insert. 
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dsr pathways since no mVCs were found to encode both a sox and dsr AMG simultaneously. 

Finally, phage SoxCD may be utilized to drive the pathway to the key energy yielding step. As 

with the dsr pathway, the resulting ATP would be utilized for phage propagation (Fig. 2b).  

 

Sulfur phages are widely distributed in the environment 

Next, we studied the ecological and distribution patterns of mVCs encoding DSM AMGs. 

We characterized their diverse ecology and distribution patterns in various environments by 

building phylogenetic trees using the identified AMG and reference microbial proteins, and 

parsing environmental information of mVC metadata from the IMG/VR database. We identified 

mVCs encoding dsrA mainly in a few ocean environments, while more widely distributed mVCs 

encoding dsrC were found in in ocean, saline, oil seep-associated, terrestrial, engineered, and 

symbiotic environments (Fig. 3a, b). For soxC and soxD, we only identified mVCs encoding these 

AMGs in two metagenome datasets, one from Santa Barbara Channel oil seeps (mVC encoding 

both soxC and soxD) and another from freshwater sediment from Lake Washington (Fig. 3c, d). 

The mVCs encoding soxYZ were discovered in aquatic environments, consisting of different 

ocean, saline and freshwater ecosystem types (Fig. 3e). In addition to mVC distribution amongst 

diverse ecosystem types we identified wide biogeographic distribution across the globe (Fig. 3f). 

Collectively, these DSM AMGs are ecologically and biogeographically ubiquitous, and potentially 

assist host functions in many different environment types and nutrient conditions (including both 

natural and engineered environments).  

 

Sulfur phages are taxonomically diverse within the order Caudovirales 
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 We applied two approaches to taxonomically classify and cluster the identified mVCs. 

First, we used a reference database similarity search to assign each mVC to one of 25 different 

prokaryote-infecting viral families (see Methods). The majority of mVCs were assigned to 

Myoviridae (132 mVCs; 69%), Siphoviridae (43 mVCs; 22%) and Podoviridae (9 mVCs; 5%). 

These three families represent dsDNA phages belonging to the order Caudovirales. The remaining 

seven mVCs were identified as ambiguous Caudovirales (3 mVCs; 1.5%) and unknown at both 

the order and family levels (4 mVCs; 2%). However, based on the data presented here and previous 

classifications35,82,140, the seven unclassified mVCs likely belong to one of the three major 

Caudovirales families (Fig. 4).  

In accordance with these results we constructed a protein sharing network of the mVCs 

with reference viruses from the NCBI GenBank database (Fig. 4). The mVCs arranged into four 

main clusters with reference Myoviridae, Siphoviridae and Podoviridae, and four individual mVCs 

were arranged outside of main clusters. Of the seven mVCs with ambiguous/unknown predictions, 

six clustered with Myoviridae and Siphoviridae mVCs and reference phages, further suggesting 

their affiliation with major Caudovirales families. Overall, the network diagram validated the 

reference-based taxonomic assignment results (i.e., mVCs predicted to be podoviruses clustered 

with reference podoviruses, as with myoviruses and siphoviruses). On the basis of these findings, 

we hypothesize that the function(s) of DSM AMGs during infection is most likely constrained by 

specific host sulfur metabolisms rather than viral taxonomy. The broad distribution of DSM AMGs 

across Caudovirales further suggests that this modulatory mechanism is established across 

multiple taxonomic clades of phages, either arising independently or acquired via gene transfer. 

Most mVCs clustered with reference phage genomes of varying taxonomy and host ranges, though 

there was not significant enough protein similarity between the mVCs and these reference phages 
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Fig. 5 mVC protein grouping and genome alignments. a mVC hierarchical protein grouping 
where each row represents a single protein group (887 total) and each column represents a 
single mVC (94 total). Metadata for encoded AMGs, estimated taxonomy, source environment 
and number of protein groups per mVC is shown. Clades respective of b, c and d are depicted 
by colored dotted lines. Genome alignments of b seven divergent Myoviridae mVCs encoding 
dsrC from diverse environments, c four divergent Myoviridae mVCs encoding soxYZ from 
diverse environments, and d four divergent Siphoviridae mVCs encoding dsrA and dsrC from 
hydrothermal environments. For the genome alignments, each black line represents a single 
genome and arrows represent predicted proteins which are colored according to VIBRANT 
annotations; genomes are connected by lines representing tBLASTx similarity. e Map of 
geographic distribution of 15 mVCs depicted in b, c and d, annotated with respective clade, 
source environment and taxonomic family. 
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to suggest similarity at the genus level. It is likely that host range stems beyond these indicated 

taxa, suggested by the inclusion of a SUP05-infecting mVC82 within the Pelagibacter cluster. In 

the present state of the reference databases, this type of protein sharing network cannot be used to 

reliably predict the host range of these uncultivated mVCs, but rather is indicative of shared 

taxonomy (e.g., mVC podoviruses clustering with reference podoviruses, and likewise for 

myoviruses and siphoviruses). Based on phylogeny and AMG protein similarity, the mVC host 

range appears to be primarily Gammaproteobacteria from the SUP05/Thioglobus clades, with the 

possibility of extended host range to Methylophilaceae in the Betaproteobacteria (Fig. 3). Using 

CRISPR analysis against 7,178 spacers from 25 metagenomes we were unable to validate any 

mVC link to a putative host.  

 

Sulfur phages display diversification across environments and genetic mosaicism 

 To further assess the diversity of the identified mVCs and their evolutionary history, we 

analyzed shared protein groups as well as gene arrangements between individual mVCs. All 

predicted proteins from 94 of the mVCs, excluding mVCs encoding only tusE-like AMGs, were 

clustered into protein groups. Our protein clustering method for featuring the diversity of the 

mVCs, despite representing partial genome sequences, was assessed and verified using 

Caudovirales phages from NCBI RefSeq (see Methods). A total of 794 protein groups representing 

3677 proteins were generated, roughly corresponding to individual protein families. Only a few 

protein groups were globally shared amongst the mVCs, including common phage proteins (e.g., 

phoH, nifU, iscA, nucleases, helicases, lysins, RNA/DNA polymerase subunits, ssDNA binding 

proteins and morphology-specific structural proteins) (Fig. 5a). A lack of shared protein groups 

between the mVCs may be anticipated due to missing genes on the partial mVC scaffolds. 
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However, distinct phage lineages share few protein groups regardless of genome completeness. 

Overall, the results of the protein grouping are consistent with that of taxonomic clustering, further 

highlighting the diversity of phage genomes that encode DSM AMGs. A lack of universally shared 

protein groups likewise suggests the DSM AMGs function independently of other host metabolic 

pathways and likely strictly serve to supplement host DSM pathways.  

 To identify if the shared protein groups are relevant to the DSM AMGs and further 

highlight mVC diversity we generated a second set of protein clusters corresponding to five 

proteins before and five proteins after the DSM AMG, including the AMG. Since the true 

completeness of the entire mVC cannot be determined, this subset of 11 proteins adjacent to the 

DSM AMGs was utilized to best represent potential shared features regardless of completion. This 

second set included 70 mVCs (we excluded 24 mVCs for which the encoded DSM AMG was 

within five genes of a scaffold end). In total, 116 protein clusters were generated (Supplemental 

Figure 7). Interestingly, nearly identical proteins were common, namely PhoH, NifU, IscA, GrxD, 

TusA, NrdAB, RNA/DNA polymerase subunits, ssDNA binding proteins and morphology-

specific structural proteins. However, the shared groups represented only a small subset of all 

groups. Therefore, in addition to the common functions such as iron-sulfur cluster formation (e.g., 

NifU, IscA, GrxD and TusA), the mVCs encode dissimilar proteins, likely resulting from varied 

evolutionary backgrounds. 

Most mVCs that formed clades according to whole mVC shared protein groups could be 

explained by shared taxonomy and/or source environment. This observation further validates that 

despite the mVCs representing partial scaffolds, they encoded sufficient information to be 

accurately grouped into clades. That is, similar mVCs by genome alignment, as with taxonomy 

and source environment, were found to group into the same clade. For example, 16 Myoviridae 
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mVCs encoding soxYZ from oceanic environments clustered together, only differing according to 

their total number of representative protein groups (Fig. 5a). There were exceptions, such as seven 

dsrC-encoding mVCs which displayed variable pairwise protein similarity (at a 50% identity 

cutoff) and variation in the location of their dsrC gene within their genome, despite a clearly shared 

and distinctive synteny of other genes (Fig. 5b). The seven mVCs originated from three different 

marine environment types (coastal, oceanic and intertidal) and were all predicted to be myoviruses 

(Fig. 5b). This diversity is likely explained by the retention of the dsrC gene over time despite 

components of the genome undergoing genetic exchange, recombination events or mutation 

accumulation. Phages are well known to display genetic mosaicism, or the exchange and 

diversification of genes and gene regions242,251. The same conclusion can be made with myoviruses 

encoding soxYZ from different marine environments (intertidal, saline and neritic) (Fig. 5c) as well 

as siphoviruses encoding both dsrC and dsrA from hydrothermal environments (Fig. 5d). In 

addition to distribution amongst diverse environmental categories these genetically mosaic mVCs, 

per protein sharing clade, are geographically dispersed (Fig. 5e). Additionally, one mVC 

(Ga0066606_10000719) encoding soxYZ also encodes the assimilatory sulfur metabolism AMG 

cysC (Fig. 5b). This presents an interesting discontinuity suggesting that this particular mVC, as 

well as three others encoding cysC (Ga0052187_10001, Ga0052187_10007 and 

JGI24004J15324_10000009), target both dissimilatory and assimilatory sulfur metabolism 

simultaneously to more generally affect sulfur metabolism in the host.  

 

Estimations of sulfur phage contributions to sulfur oxidation based on omics-data analyses 

We utilized metagenomic datasets containing the mVCs to calculate the ratio of phage:total 

genes for each AMG. The phage:total gene ratios within a community and for each predicted 



 73 
 

phage-host pair can be used to estimate phage contributions to sulfur and thiosulfate 

oxidation/disproportionation. This relies on the assumption that gene ratios can proportionally 

reflect real metabolic activities, and that host cells in a virocell state retain the same level of 

environmental fitness as compared to uninfected microorganisms. By mapping metagenomic reads 

to AMGs and putative bacterial hosts within the metagenome, we obtained the mVC AMG to total 

gene ratios, which represents the relative contribution of AMG functions to the representative 

metabolism such as sulfur oxidation (Supplementary Data 3, 4, Supplementary Fig. 8). We 

calculated mVC dsrA (Fig. 6a) and soxYZ (Fig. 6b) gene coverage ratios in hydrothermal, 

freshwater lake, and Tara Ocean metagenomic datasets. We identified phage-host gene pairs 

which contained mVC AMGs and their corresponding host genes from the phylogenetic tree of 

DsrA and SoxYZ (Supplementary Figs. 9, 10). Our results show that phage dsrA contributions in 

hydrothermal environments arise primarily from the SUP05 Gammaproteobacteria Clade 2; and 

those of phage soxYZ are niche-specific, with Lake Croche, Lake Fryxell, and Tara Ocean samples 

Fig. 6 Phage to total dsrA and soxYZ gene coverage ratios. a Phage dsrA to total (phage and 
bacterial dsrA gene together) gene coverage ratios. The contribution of phage dsrA genes from 
different SUP05 Gammaproteobacteria clades is shown in different colors. The average phage 
dsrA:total ratio was calculated from 12 samples. b Phage soxYZ to total gene coverage ratios. 
The contribution of phage soxYZ genes from three different clades is shown in different colors. 
Genes from freshwater lake and Tara Ocean samples were compared separately, and the 
average phage soxYZ:total ratios were calculated and compared separately as for freshwater 
lake and Tara Ocean samples. Tara Ocean sample IDs were labeled and the corresponding 
metagenome IDs were listed in Supplementary Data 4. LBTu, Lau Basin Tui Malila; LBMa, 
Lau Basin Mariner; LBTa, Lau Basin Tahi Moana; LBKM, Lau Basin Kilo Moana; LBAb, Lau 
Basin Abe. 
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mainly represented by the Betaproteobacteria Clade, Methylophilales-like Clade, and 

Gammaproteobacteria Clade, respectively. This indicates the specificity of AMGs being 

distributed and potentially functioning in each environment. The average phage:total gene 

coverage ratios also differ in individual groups, with phage soxYZ:total ratio in Tara Ocean 

samples being the highest (34%), followed by phage dsrA:total ratio in hydrothermal samples (7%) 

and phage soxYZ:total ratio in freshwater lakes (3%). Phage soxYZ, the sulfur carrier gene, in the 

oceans have higher phage:total gene coverage ratio compared to dsrA, a component of the catalytic 

core of Dsr complex, in the other two environments. Tara Ocean samples used here are all from 

epipelagic zones characterized as oxygenated layers with low concentrations of sulfur252, while 

plume samples (Lau Basin) are from deep-ocean hydrothermal ecosystems with high 

concentrations of sulfur253. Nevertheless, along with observations associated with phage dsrC, our 

results suggest that AMGs encoding sulfur carriers rather than catalytic subunits appear to be more 

favored by phages. These findings were unexpected since we expected epipelagic environments to 

have lower sulfur oxidation activity in comparison to hydrothermal plumes. While the limited 

environment types, conditions and sulfur AMGs studied here do not provide sufficient statistical 

confidence to generalize these results, especially when comparing different genes from separate 

environments, higher abundance of sulfur carrier genes in phage nevertheless could still be a 

common phenomenon. Additionally, although gene abundance ratios do not necessarily represent 

function contributions, this scenario still provides a reasonable estimation to suggest considerable 

sulfur-oxidizing contributions of phage sulfur AMGs in virocells.  

Subsequently, the phage:host AMG coverage ratios for individual phage-host pairs were 

calculated to estimate the potential functional contribution within each environmental sample 

(Figs. 7a, b, Supplementary Data 3, 4, Supplementary Figs. 11, 12). By taking average ratios of 
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groups of dsrA phage-host pairs in SUP05 Clade 1 and SUP05 Clade 2, and soxYZ phage-host pair 

in freshwater lake and Tara Ocean samples, we found that within each pair the phage:total gene 

coverage ratios were generally higher than ~50%. These within-pair phage:total gene coverage 

ratios are much higher than the above phage:total ratios in the whole community. Tara Ocean 

samples also have the highest average phage:total gene coverage ratios of phage-host pairs among 

these three environments, as with the pattern of ratios in the whole community. To estimate the 

percentage of virocells in the community, we use average values of 16% and 15% for marine 

(range of 3-31% or 3-26% in free-living and particulate-associated marine bacteria)37,254 and 

freshwater lake (range of 1 to 17%+/-12%)255 bacteria . The estimated phage:total gene coverage 

ratio within the whole community should be the virocell percentage multiplied by the average 

phage:total gene coverage ratio within phage-host pairs (as the phage gene coverage), and then 

divided by total gene coverage. We found that estimated ratios are not consistent with the observed 

ratios (Tara Ocean: estimated ratio 68% versus the observed ratio of 34%; hydrothermal 

environment: estimated ratio of 15-38% versus observed ratio of 12-20%; freshwater lake: 

estimated ratio of 27% versus observed ratio of 3.1%). This could result from an unknown fraction 

of the host cells being infected by phages that do not contain DSM AMGs as these virocells do not 

contribute phage genes to sulfur metabolism and/or the percentages of cells in a virocell state being 

below the average levels. 

The above analyses suggest that DSM AMGs likely contribute significantly to function of 

host-driven metabolisms on the scale of both community level and individual phage-host pairs, 

while the ratio of contribution varies greatly for each environment and each niche-specific AMG. 

Importantly, phage-encoded soxYZ have a high gene coverage contribution to pelagic ocean 

microbial communities, which highlights the functional significance of phage-driven sulfur 
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cycling metabolisms, and that of thiosulfate oxidation/disproportionation as a whole in this 

environment, which remains critically under-studied62,140.  

  

Rapid alteration of sulfur phage dsrA activity across geochemical gradients 

Since DSM AMGs are associated with critical energy generating metabolism in 

microorganisms, we wanted to study the ability of sulfur phages to respond to changing 

geochemistry, involving virocell-driven biogeochemical cycling. In hydrothermal ecosystems, 

Fig. 7 Phage to host dsrA and SoxYZ gene coverage ratios and dsrA gene expression comparison 
between phage and host pairs. a Phage dsrA to total gene coverage ratios of each phage-host pair. 
Average phage dsrA:total ratios of phage-host pairs in SUP05 Clade 1 and Clade 2 were calculated 
by 5 and 11 pairs of genes, respectively. b Phage soxYZ to total gene coverage ratios of each 
phage-host pair. The contribution of phage soxYZ genes from three different clades is shown in 
different colors. Average phage dsrA:total ratios of phage-host pairs in freshwater lakes and Tara 
Ocean were calculated separately. Tara Ocean sample IDs were labeled and the corresponding 
metagenome IDs were listed in Supplementary Data 4. c Phage to host dsrA gene expression 
comparison in Guaymas Basin metatranscriptomes. The same database was used for mapping both 
hydrothermal and background metatranscriptomic datasets d Phage to host dsrA gene expression 
comparison in Chesapeake Bay metatranscriptomes. The same database was used for mapping all 
Chesapeake Bay metatranscriptomic datasets. Gene expression levels are shown in RPKM 
normalized by gene sequence depth and gene length. LBTu, Lau Basin Tui Malila; LBMa, Lau 
Basin Mariner; LBTa, Lau Basin Tahi Moana; LBKM, Lau Basin Kilo Moana; LBAb, Lau Basin 
Abe; RPKM, reads per kilobase per million mapped reads. 
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reduced chemical substrates such as H2S, S0, CH4, and H2 display sharp chemical gradients as they 

are released from high-temperature vents and dilute rapidly upon mixing with cold seawater. 

Microorganisms in deep-sea environments respond to such elevated concentrations of reduced 

sulfur compounds by upregulating their metabolic activity in hydrothermal environments253,256. 

These characteristics make hydrothermal and background deep-sea environments a contrasting 

pair of ecological niches to investigate alteration of AMG expression. We used transcriptomic 

profiling to study gene expression in phage:host pairs recovered from hydrothermal vents in 

Guaymas Basin and background deep-sea samples in the Gulf of California (Supplementary Data 

3, Supplementary Figs. 11, 12). Sulfur phage dsrA expression measured in reads per kilobase of 

transcript (RPKM) varied from 0.03-3 in the background deep-sea to 0.40-39 in hydrothermal 

environments (Supplementary Data 3). Average phage dsrA expression ratio of hydrothermal to 

background was 15 (Supplementary Data 3). Limited by coding gene repertoire and their biology, 

phages themselves do not have the ability to independently sense and react to sulfur compounds. 

However, our results suggest that sulfur phage activities, occurring within a virocell, are closely 

coupled to changing geochemistry with higher observed activity in environments with greater 

concentration of reduced sulfur compounds.  

 In Guaymas Basin hydrothermal environments, as reflected by two pairs of SUP05 Clade 

1 phage and host dsrA genes, phage to host dsrA transcript ratios varied from 0 to 0.11 (Fig. 7c). 

In contrast, in Chesapeake Bay, as reflected by two pairs of phage and host dsrA transcripts 

(Chesapeake Bay dsrA clade), phage to host dsrA transcript ratios varied from 1.9 to infinity (host 

transcript abundance is zero). The low abundance of phage dsrA in hydrothermal 

metatranscriptomes is in sharp contrast to the high abundance of phage dsrA in hydrothermal 

metagenomes (observed at Guaymas Basin and Lau Basin) (Fig. 7a, c). One explanation for this 
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observation is that this scenario could be an accident but not representative of real phage gene 

expression patterns in hydrothermal systems, possibly occurring in a situation when phage activity 

was very high just prior to sampling. In this scenario, the majority of hosts/virocells might have 

lysed post viral infection.  

 

Discussion 

 Since the first descriptions of viral metabolic reprogramming using AMGs73 there has been 

interest in the extent and overall impact of viral auxiliary metabolism on global energy flows and 

ecosystem nutrient availability257. Through metagenomic surveys and investigation, we have 

expanded the current understanding of viral auxiliary metabolism impacting dissimilatory sulfur 

oxidation processes. Specifically, we have shown that diverse lineages of phages are involved in 

these processes, investigated their biogeography, ecology, and evolutionary history, and estimated 

their potential effects on microbiomes. From this, several hypotheses and questions regarding viral 

auxiliary metabolism and sulfur cycling can be addressed.  

 First, our findings support previous hypotheses that viral metabolism targets key or 

bottleneck steps in host metabolic pathways. DsrA, DsrC, SoxYZ, SoxC, and SoxD all alleviate 

bottlenecks in sulfur and thiosulfate oxidation/disproportionation82,258. We did not identify other 

genes in sulfur oxidation pathways such as sulfide:quinone oxidoreductase, flavocytochrome c 

cytochrome/flavoprotein subunits, APS reductase subunits, sulfate adenylyltransferase, dsrB, or 

soxAB for other necessary steps of sulfur oxidation. However, this poses the additional question 

of why DsrB, the dimer pair to DsrA, has yet to be identified as an AMG. Furthermore, sulfur 

carriers, rather than enzymes, appear to be more favored by phages. In total, 174 mVCs in this 

study encoded at least one sulfur carrier (dsrC, tusE-like, soxYZ) with only the remaining 17 
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encoding catalytic subunits of enzymes (dsrA, soxC, soxD). Phage sulfur carriers were observed 

to be more abundant in the phage community than catalytic subunits such as dsrA. This may be 

due to the greater need for sulfur carriers (e.g., dsrC) to drive dissimilatory sulfur transformations. 

Evidence for this hypothesis is provided by observations that sulfur carriers are often constitutively 

expressed in host cells in comparison to respective catalytic components (e.g., dsrA)248,259. By 

providing transcripts and proteins of these important pathway components during infection, phages 

encoding DSM AMGs may benefit more from obtaining greater energy and self-catalyzing 

substrates within a virocell.   

The data presented by mVC protein clustering and genome alignments (Fig. 5) supports 

the hypothesis that the DSM AMGs are retained on fast evolving phage genomes, pointing 

specifically to a role of the AMG in increasing phage replication abilities and fitness. Although 

the mechanism of dispersion is unknown for most of the mVCs it is likely that a single AMG 

transfer event occurred within each clade based on retention of similar gene arrangements at AMG 

locations in the respective genomes. This suggests that the AMG were retained despite niche (i.e., 

geographic and environmental) differentiation of individual mVC populations. It has been 

postulated that AMGs, like other phage genes, must provide a significant fitness advantage in order 

to be retained over time on an evolving phage genome74.  

Taken together, these observations support the conclusion that viral auxiliary metabolism 

targets key steps in host metabolic pathways for finely tuned, host-dependent manipulation of 

energy production or nutrient acquisition. Although the fitness effects of DSM AMGs have not 

been quantified in a model system, the geographical distribution of identified mVCs and retention 

of AMGs by phages despite constrained coding capacity strongly suggests a significant fitness 

benefit of encoding DSM AMGs. The exact fitness benefit achieved from encoding DSM AMGs 
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remains elusive without cultured representatives of phage-host pairs and subsequent genetic 

manipulation abilities. Furthermore, a model system would be beneficial for elucidating the 

functionality of the AMGs, beyond the evidence from protein domain analyses presented here. 

Although most AMGs encoded conserved functional domains and residues the identification of 

divergent sequences, such as tusE-like AMGs encoding a single cysteine residue or soxD AMGs 

that appear to lack a cytochrome c motif, necessitates further biochemical evaluation of AMG-

encoded proteins. For example, a divergent PebA encoded by a cyanophage was found to short-

circuit the original host pathway by excluding the necessity of the subsequent host enzyme 

PebB244. It is possible sulfur AMG-encoded proteins likewise short-circuit or increase the rate of 

host sulfur oxidation pathways using divergent AMGs.  

Since DSM AMGs have been identified on phages from all three major Caudovirales 

families it is likely that the fitness benefits deal specifically with sulfur oxidation and electron 

yield from bolstering the speed or efficiency of the pathway, rather than phage taxonomy-

dependent reasons. Based on evidence from systems with cyanophages encoding photosystem 

AMGs, a potential utility of sulfur AMGs in bolstering the speed or efficiency of the pathway 

would be to increase the yield rate of dNTPs for genome replication75. Further evidence would 

suggest the AMGs could also function to upregulate the expression of important metabolic genes 

that encode for unstable protein products260. In such cases the host cell is adapted for such 

metabolic constraints but the replication rate of the phage is directly dependent on the translation 

rate of the given AMG protein product260. Therefore, the phage, rather than the host, benefits from 

an additional copy of the metabolic gene leading to recombination and retention of the AMG on 

the phage genome. It is most likely that the phages benefit primarily in the short term and during 

active lytic infection due to the abundance of DSM AMGs on lytic phage genomes. Yet, the 
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presence of assimilatory sulfate reduction genes (i.e., cysC) in conjunction with DSM genes 

provides an example of a possible exception with a more general sulfur manipulation, highlighting 

the necessity of further investigations into viral auxiliary metabolism.  

The abundance of phage DSM AMGs in metagenomes and metatranscriptomes as 

measured by phage:total gene coverage ratios suggest that phage-mediated reduced sulfur 

transformations can contribute significantly to fluxes and budgets of sulfur within the community 

(Fig. 8, Supplementary Figs. 8, 13). Within each phage-host pair, phage genes contribute to over 

half of gene coverage associated with the sulfur and thiosulfate oxidation pathways, which 

highlights the underappreciated role of phages encoding DSM AMGs in remodeling sulfur cycling, 

especially for the oxidation of reduced sulfur. Reduced sulfur compounds such as H2S, S0, and 

S2O32- are abundant in hydrothermal systems with hydrothermal fluids at Guaymas Basin 

containing aqueous H2S concentrations of up to ~6 mmol/kg (endmember measurement), while 

that of background seawater is negligible256,261. Previously reported estimates of energy budgets 

for sulfur oxidizing bacteria in the Guaymas Basin hydrothermal system suggest that up to ~3900 

J/kg is available for microbial metabolism, of which up to 83% may derive from sulfur 

oxidation256. Sulfur phage dsrA expression levels (arising from virocells) were elevated in 

hydrothermal systems in comparison to the background deep-sea, hinting at significant 

contributions of virocells mediating phage-driven sulfur oxidation to the overall energy 

budget.  Assuming that in Guaymas Basin the phage:total dsrA gene coverage ratio is 10% (the 

average level in Lau Basin hydrothermal environments), it may be estimated that ~320 J/kg of 

energy for microbial metabolism from hydrothermal vent fluids may in fact be transformed by 

sulfur AMGs. Although the majority of host manipulation and lysis by phages likely occurs in the 

absence of AMGs, we show that phages encoding sulfur AMGs can be a direct component of the 
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sulfur biogeochemical 

cycle with the ability to 

manipulate microbial 

metabolism associated 

with multiple reduced 

sulfur compounds. This 

direct manipulation may 

impact sulfur budgets at 

ecosystem scales. It is 

therefore essential that 

future assessments of 

biogeochemical cycling 

incorporate the role of 

phages and their impacts 

on sulfur pools. Limited 

by the resolution of 

omics-based approach in 

this study, finer scale 

phage-host interactions 

and activities could not 

be achieved, which 

justifies the necessity to 

Fig. 8 Conceptual figure indicating the ecology and function of 
AMGs in sulfur metabolisms. a DSM AMG effect on the budget of 
reduced sulfur transformation. b Diagram of virus-mediated 
metabolism short circuiting the microbial sulfur loop in nutrient 
cycling. DOM, dissolved organic matter; POM, particulate organic 
matter. 
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reinforce fine-scale phage AMG activity research within host cells in future.  

Across diverse environments on the Earth, the reduced sulfur pool includes sources of deep 

ocean or subsurface deposited iron sulfides, and reduced sulfur species from dissimilatory sulfate 

reduction and organic sulfur mineralization (Fig. 8a). Sulfur phage AMG-assisted metabolism 

contributes to the redistribution of sulfur-generated energy and can alter its budgets, which have 

so far only been attributed to microbial processes (Fig. 8a). Within virocells, phage mediated sulfur 

oxidation will take advantage of gene components of sulfur-metabolizing pathways, express 

transcripts, and produce enzymes to re-direct energy for the use of phage replication (Fig. 8a). 

Globally distributed sulfur phages are widely distributed across various environments and impose 

significant impacts on the sulfur pools, as well as nutrient and energy cycling (Fig. 8a). At the 

same time, phage AMG mediated sulfur oxidation can short-circuit the microbial sulfur loop from 

reduced sulfur pools to dissolved and particulate organic matter (DOM/POM) (Fig. 8b). Without 

viral infection, energy generated by reduced sulfur pools would typically be used for primary 

production to fuel microbial cell growth, and then transferred higher up the food chain to grazers. 

Through cell excretion effects, cell death and nutrient release, DOM/POM produced from sulfur-

based primary production would be released to the environment. However, during infection by 

sulfur phages, energy generated in virocells by reduced sulfur pools could be used towards phage 

reproduction and propagation. After virion production and packaging, lytic phages would lyse the 

host cell, and release DOMs into the environment. This DSM AMG mediated approach thereby 

short-circuits the microbial sulfur loop. Additionally, POM generated by reduced sulfur oxidizing 

processes could also be sequestered into the carbon pool deposited in the deep subsurface. It is not 

clear how and to what extent phage would change carbon cycling landscape between sequestrated 

carbon and bioavailable carbon, while it is certain that the change caused by phage AMG 
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metabolism should be explicitly addressed in the future in the context of global biogeochemical 

cycle and climate change. 

In conclusion, we have described the distribution, diversity and ecology of phage auxiliary 

metabolism associated with sulfur and demonstrated the abundance and activity of sulfur phages 

in the environment. Yet, many questions remain unanswered. Future research will involve 

unraveling mechanisms of sulfur phage and host interaction, remodeling of sulfur metabolism at 

the scale of individual virocells, microbial communities and ecosystems, and constraining sulfur 

budgets impacted by sulfur phages. 

 

Methods 

mVC acquisition and validation 

The Integrated Microbial Genomes and Virome (IMG/VR) database141,262 (v2.1, October 

2018) was queried for dissimilatory sulfur metabolism genes using trusted cutoffs of custom built 

HMM profiles132. A total of 192 unique mVCs greater than 5kb in length were identified that 

encoded dsr or sox gene(s). For consistency between these mVCs, open reading frames were 

predicted using Prodigal (-p meta, v2.6.3)98. Each of the 192 mVCs were validated as phage using 

VIBRANT117 (v1.2.1, virome mode), VirSorter115 (v1.0.3, virome decontamination mode, virome 

database) and manual validation of viral hallmark annotations (Supplementary Data 5). To identify 

lysogenic mVCs, annotations were queried for the key terms “integrase”, “recombination”, 

“repressor” and “prophage”. Annotations of validated mVCs are provided in Supplementary Data 

2. Five mVCs not identified by either program were manually verified as phage according to 

VIBRANT annotations (i.e., KEGG, Pfam and VOG databases) by searching for viral hallmark 

genes, greater ratio of VOG to KEGG annotations and a high proportion of unannotated proteins. 
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Note, not all 192 mVCs were predicted as phage by VIBRANT, but all mVCs were given full 

annotation profiles. One scaffold was determined to be non-viral and remove based on the presence 

of many bacterial-like annotations and few viral-like annotations. Validation (including software-

guided and manually inspected procedures) produced a total of 191 mVCs encoding 227 DSM 

AMGs. It is of note that the DSM AMGs carried by three mVCs (Ga0121608_100029, 

Draft_10000217 and Ga0070741_10000875) could not be definitely ruled out as encoded within 

microbial contamination. This was determined based on the high density of non-phage annotations 

surrounding the AMGs in conjunction with the presence of an integrase annotation, suggesting the 

possibility of phage integration near the AMG.  

 

Taxonomy of mVCs 

Taxonomic assignment of mVCs was conducted using a custom reference database and 

script. To construct the reference database, NCBI GenBank210 and RefSeq207 (release July 2019) 

were queried for “prokaryotic virus”. A total of 15,238 sequences greater than 3kb were acquired. 

Sequences were dereplicated using Mash263 (v2.0) and Nucmer264 (v3.1) at 95% sequence identity 

and 90% coverage. Dereplication resulted in 7,575 sequences. Open reading frames were predicted 

using Prodigal (-p meta, v2.6.3) for a total of 458,172 proteins. Taxonomy of each protein was 

labeled according to NCBI taxonomic assignment of the respective sequence. DIAMOND265 

(v0.9.14.115) was used to construct a protein database. Taxonomy is assigned by DIAMOND 

BLASTp101 matches of proteins from an unknown phage sequence to the constructed database at 

the classifications of Order, Family and Sub-family. Assignment consists of reference protein 

taxonomy matching to each classification at the individual and all protein levels to hierarchically 

select the most likely taxonomic match rather than the most common (i.e., not recruitment of most 
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common match). Taxonomic assignments are available for 25 Families and 29 Sub-families for 

both bacterial and archaeal viruses. The database, script and associated files used to assign 

taxonomy are provided. To construct the protein network diagram vConTACT2266 (v0.9.5, default 

parameters) was used to cluster mVCs with reference viruses from NCBI from the families 

Ackermannviridae, Herelleviridae, Inoviridae, Microviridae, Myoviridae, Podoviridae and 

Siphoviridae as well as several archaea-infecting families. The network was visualized using 

Cytoscape267 (v3.7.2) and colored according to family affiliation.  

 

Host prediction and CRISPR spacer analysis 

 A total of 25 representative metagenomes containing putative host sequences were 

downloaded from IMG (3300001676, 3300001678, 3300001679, 3300001680, 3300001681, 

3300001683, 3300007516, 3300007722, 3300009154, 3300009182, 3300010157, 3300010296, 

3300010297, 3300010299, 3300010300, 3300010318, 3300010354, 3300010370, 3300020258, 

3300020264, 3300020266, 3300020314, 3300020325, 3300020365, 3300020454). Metagenome 

sequences were limited to a length of 10kb (149,986 total sequences). CRISPR Recognition Tool 

(CRT, v1.2, default settings)268 was used to identify 7,178 CRISPR spacers from the 149,986 

putative host sequences. Blastn (v2.2.31) was used to search the 191 mVC genome sequences for 

alignment to the spacers. A spacer hit was considered positive with 100% coverage to the spacer 

and 0-2 mismatches. To validate that the method worked properly, the 7,178 spacers were used to 

query the entire IMG/VR database (v2.1, October 2018). 

 

World map distribution of mVCs 
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IMG/VR Taxon Object ID numbers respective of each mVCs were used to identify global 

coordinates of studies according to IMG documentation. Coordinates were mapped using 

Matplotlib (v3.0.0) Basemap228 (v1.2.0). Human studies were excluded from coordinate maps.  

 

Sequence alignments and conserved residues 

Protein alignments were performed using MAFFT214 (v7.388, default parameters). 

Visualization of alignments was done using Geneious Prime 2019.0.3. N- and C-terminal ends of 

protein alignments were manually removed, and aligned columns with 90% (SoxD and SoxYZ) or 

98% (DsrA and DsrC/TusE) gaps were stripped (masked) for clarity. Amino acid residues were 

highlighted by pairwise identity of 90% (SoxC and SoxYZ) or 95% (DsrA, DsrC/TusE and SoxD). 

An identity graph, generated by Geneious, was fitted to the alignment to visualize pairwise identity 

of 100% (green), 99-30% (yellow) and 29-0% (red). Conservation of domains and amino acid 

residues was assessed according to annotations by The Protein Data Bank . 

To calculate dN/dS ratios between mVC AMG pairs, dRep219 (v2.6.2) was used to compare 

AMG sequences of dsrA (n = 39), dsrC (n = 141) and soxYZ (n = 44) separately (dRep compare -

-SkipMash --S_algorithm goANI). A custom auxiliary script (dnds_from_drep.py269) was used to 

calculate dN/dS ratios from the dRep output between various AMG pairs. Resulting dN/dS values 

were plotted using Seaborn270 (v0.8.1) and Matplotlib. Phage AMG pairs and respective dN/dS 

values can be found in Supplementary Data 6. 

 

mVC protein grouping 

 All protein sequences of 94 mVCs, excluding those with non-validated DsrC (i.e., 

potentially TusE-like) AMGs according to the conserved CxxxxxxxxxxC motif, were grouped 
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using mmseqs2271 (--min-seq-id 0.3 -c 0.6 -s 7.5 -e 0.001). For the AMG neighbor protein 

grouping, a total of 70 mVCs were used that encoded at least five proteins before and five proteins 

after the AMG. Groups containing at least two different representative mVCs were retained (887 

groups total). A presence/absence heatmap was made using the R package “ComplexHeatmap”272 

and hierarchically grouped according to the ward.D method. Metadata for AMG, taxonomy and 

source environment were laid over the grouped columns. Two mVCs, Ga0066448_1000315 and 

JGI24724J26744_10000298, were not represented by any of the 887 retained clusters. mVC 

alignments were done using EasyFig227 (v2.2.2). 

 To validate that our grouping method accurately depicts whole genome diversity of the 

mVCs, Caudovirales phages from the NCBI RefSeq database were used as a comparison. All 

Caudovirales phages were downloaded and dereplicated by 97% identity and 90% coverage using 

Mash and Nucmer. The dereplicated set consisted of 4413 RefSeq phages. A total of 94 RefSeq 

phages were randomly selected. Proteins were predicted using Prodigal and all proteins were 

grouped as before (mmseqs2 --min-seq-id 0.3 -c 0.6 -s 7.5 -e 0.001, minimum group size of 2 

members). Random phage selection and protein grouping was performed 100 independent times 

(iterations). Over the 100 iterations the 94 randomly selected phages encoded 6821 to 10123 

proteins (average 8357) and generated 727 to 1289 protein groups (average 989). The number of 

clusters per protein ranged from 0.088 to 0.149 (average 0.119). These statistics were similar to 

those seen from the mVCs, which generated 794 clusters from 6015 encoded proteins. The number 

of clusters per protein was 0.132. Therefore, despite encoding fewer proteins on average compared 

to RefSeq Caudovirales, the mVCs generated a comparable number of clusters per protein 

(Supplementary Data 7). 
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mVC genome structure and organization 

mVCs representative of each AMG family were selected. Annotations were performed 

using VIBRANT and the best scoring annotation was used. Genomes were visualized using 

Geneious Prime and manually colored according to function. 

 

AMG protein phylogenetic tree reconstruction   

DSM protein sequences from reference prokaryotes were downloaded from NCBI nr 

database (accessed May 2019). The results were manually filtered for accurate annotations. The 

curated results were clustered by 70% sequence similarity using CD-HIT216 (v4.7). These 

representative sequences from individual clusters were aligned with the corresponding mVC AMG 

protein sequences using MAFFT (default settings). Alignments were subjected to phylogenetic 

tree reconstruction using IQ-TREE273 (v1.6.9) with the following settings: -m MFP -bb 100 -s -

redo -mset WAG,LG,JTT,Dayhoff -mrate E,I,G,I+G -mfreq FU -wbtl (“LG+G4” was chosen as 

the best-fit tree reconstruction model). The environmental origin information of each mVC AMG 

was used to generate the stripe ring within the phylogenetic tree in the operation frame of iTOL274 

online server. 

 

Metagenomic mapping and gene coverage ratio calculation 

The metagenomic reads were first dereplicated by a custom Perl script and trimmed by 

Sickle275 (v1.33, default settings). The QC-passed metagenomic reads were used to map against 

the collection of genes of investigated metagenomic assemblies by Bowtie2225 (v2.3.4.1). The gene 

coverage for each gene was calculated by “jgi_summarize_bam_contig_depths” command within 

metaWRAP96 (v1.0.2). The phage:total gene coverage ratio was calculated by adding up all the 
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phage and bacterial gene coverage values and using it to divide the summed phage gene coverage 

values.  

We identified the phage-host gene pairs in the phylogenetic tree containing AMG and their 

bacterial counterpart gene encoding proteins. We assigned the phage-host gene pairs according to 

the following two criteria: 1) The phage and host gene encoding proteins are phylogenetically 

close in the tree; the branches containing them should be neighboring branches. 2) They should be 

from the same metagenomic dataset, which means that AMGs and bacterial host genes are from 

the same environment sample. The identified phage-host gene pairs were labelled accordingly in 

the phylogenetic tree.  

For the gene coverage ratio calculation of phage genes and bacterial genes within a phage-

host pair, we first calculated the phage:total gene coverage ratio and bacterial:total gene coverage 

ratio using the same method as described above; and then, in order to avoid the influence of 

numbers of phage or bacterial genes, we normalized the above two ratio values by the number of 

phage and bacterial genes, respectively. Finally, the normalized phage:host gene coverage ratio of 

this phage-host pair was calculated by comparing these two ratio values, accordingly.  

Additionally, reads mapping performance was re-checked by comparing original mapping 

results (using Bowtie 2 “-very-sensitive” option) to the mapping results that only include reads 

with one mismatch (Supplementary Fig. 8). Checking results have justified the reliability of our 

original mapping performance and our gene coverage ratio calculation. 

 

Metatranscriptomic mapping 

The metatranscriptomic reads were first dereplicated by a custom Perl script and trimmed 

by Sickle (default settings), and then subjected to rRNA-filtering using SortMeRNA276 (v2.0) with 
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the 8 default rRNA databases (including prokaryotic 16S rRNA, 23S rRNA; eukaryotic 18S rRNA, 

28S rRNA; and Rfam 5S rRNA and 5.8S rRNA). QC-passed metagenomic reads were mapped 

against the collection of AMGs using Bowtie2 (--very-sensitive). The gene expression level in 

Reads Per Kilobase per Million mapped reads (RPKM) was calculated by normalizing the 

sequence depth (per million reads) and the length of the gene (in kilobases).  

 

Data Availability 

All IMG/VR sequences are available at https://img.jgi.doe.gov/cgi-bin/vr/main.cgi and 

https://genome.jgi.doe.gov/portal/pages/dynamicOrganismDownload.jsf?organism=IMG_VR. 

Sequences from identified mVCs are available publicly and described in Supplementary Data 1 

and 2. Any other relevant data are available from the authors upon request. All sequences and 

custom analysis scripts used in this study are also available at 

https://github.com/AnantharamanLab/Kieft_and_Zhou_et_al._2020. 
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Abstract 

Background 

Viruses are central to microbial community structure in all environments. The ability to generate 

large metagenomic assemblies of mixed microbial and viral sequences provides the opportunity to 

tease apart complex microbiome dynamics, but these analyses are currently limited by the tools 

available for analyses of viral genomes and assessing their metabolic impacts on microbiomes.  

Design 

Here we present VIBRANT, the first method to utilize a hybrid machine learning and protein 

similarity approach that is not reliant on sequence features for automated recovery and annotation 

of viruses, determination of genome quality and completeness, and characterization of viral 

community function from metagenomic assemblies. VIBRANT uses neural networks of protein 

signatures and a newly developed v-score metric that circumvents traditional boundaries to 

maximize identification of lytic viral genomes and integrated proviruses, including highly diverse 

viruses. VIBRANT highlights viral auxiliary metabolic genes and metabolic pathways, thereby 

serving as a user-friendly platform for evaluating viral community function. VIBRANT was 

trained and validated on reference virus datasets as well as microbiome and virome data.  

Results 

VIBRANT showed superior performance in recovering higher quality viruses and concurrently 

reduced the false identification of non-viral genome fragments in comparison to other virus 

identification programs, specifically VirSorter, VirFinder and MARVEL. When applied to 

120,834 metagenomically derived viral sequences representing several human and natural 

environments, VIBRANT recovered an average of 94% of the viruses, whereas VirFinder, 

VirSorter and MARVEL achieved less powerful performance, averaging 48%, 87% and 71%, 
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respectively. Similarly, VIBRANT identified more total viral sequence and proteins when applied 

to real metagenomes. When compared to PHASTER, Prophage Hunter and VirSorter for the ability 

to extract integrated provirus regions from host scaffolds, VIBRANT performed comparably and 

even identified proviruses that the other programs did not. To demonstrate applications of 

VIBRANT, we studied viromes associated with Crohn’s Disease to show that specific viral groups, 

namely Enterobacteriales-like viruses, as well as putative dysbiosis associated viral proteins are 

more abundant compared to healthy individuals, providing a possible viral link to maintenance of 

diseased states. 

Conclusions 

The ability to accurately recover viruses and explore viral impacts on microbial community 

metabolism will greatly advance our understanding of microbiomes, host-microbe interactions and 

ecosystem dynamics. 

 

Background 

 Viruses that infect bacteria and archaea are globally abundant, and outnumber their hosts 

in most environments 277–279. Viruses are obligate intracellular pathogenic genetic elements 

capable of reprogramming host cellular metabolic states during infection and can cause the lysis 

of 20-40% of microorganisms in diverse environments every day 37,57. Due to their abundance and 

widespread activity, viruses are key facets in microbial communities as they contribute to cycling 

of essential nutrients such as carbon, nitrogen, phosphorus and sulfur 5,48,136,137,280. In human 

systems, viruses have been implicated in contributing to dysbiosis that can lead to various diseases, 

such as inflammatory bowel diseases, or even have a symbiotic role with the immune system 

21,147,281.  
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 Viruses harbor vast potential for diverse genetic content, arrangement and encoded 

functions 2,40,41,45. Recognizing their genetic diversity, there has been substantial interest in 

“mining” these viral sequences for novel anti-microbial drug candidates, enzymes for 

biotechnological applications, and for bioremediation 32,33,282–284. Recently, it has been appreciated 

that viruses may directly link biogeochemical cycling of nutrients by specifically driving metabolic 

processes 73,74,82,84,85. For example, during infection viruses can acquire 40-90% of their required 

nutrients from the surrounding environment by taking over and subsequently directing host 

metabolism 66,68,69. To manipulate host metabolic frameworks, some viruses selectively “steal” 

metabolic genes from their host. These host derived genes, collectively termed auxiliary metabolic 

genes (AMGs), can be actively expressed during infection to provide viruses with fitness 

advantages 38,44,75,140. Due to the need to study the role of viruses in microbiomes and integrate 

viruses into models of ecosystem function, it has become of great interest to determine which 

sequences within whole microbial communities are derived from viruses. These sequences can 

include free virions, active intracellular infections (which may be the case for as many as 30% of 

all bacteria at any given time 285), particle or host-attached virions 286, and host-integrated or 

episomal viral genomes (i.e., proviruses). 

 Multiple tools exist for the identification of viruses from mixed metagenomic assemblies. 

For several years VirSorter 115, which succeeded tools such as VIROME 287 and Metavir 288, has 

been the most widely used for its ability to identify viral metagenomic fragments (scaffolds) from 

large metagenomic assemblies. VirSorter predominantly relies on database searches of predicted 

proteins, using both reference homology as well as probabilistic similarity, to compile metrics of 

enrichment of virus-like proteins and simultaneous depletion of other proteins. To do this it uses a 

virus-specific curated database as well as Pfam 289 for non-virus annotations, though it does not 
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fully differentiate viral from non-viral Pfam annotations. It also incorporates sequence signatures 

of viral genomes, such as encoding short genes or having low levels of strand switching between 

genes. VirSorter is also unique in its ability to use these annotation and sequence metrics to identify 

and extract integrated provirus regions from host scaffolds.  

 More recent tools have been developed as alternatives or supplements of VirSorter. 

VirFinder 113 was the first tool to implement machine learning and be completely independent of 

annotation databases for predicting viruses, which was a platform later implemented in PPR-Meta 

290. VirFinder was built with the consideration that viruses tend to display distinctive patterns of 

8-nucleotide frequencies (otherwise known as 8-mers), which was proposed despite the knowledge 

that viruses can share remarkably similar nucleotide patterns with their host 291. These 8-mer 

patterns are used to quickly classify sequences as short as 500 bp and generate model-derived 

scores, though it is up to the user to define the score cutoffs. VirFinder was shown to greatly 

improve the ability to recover viruses compared to VirSorter, but it also demonstrated substantial 

host and source environment biases in predicting diverse viruses, likely due to reference database-

associated biases while training the machine learning model 113. Moreover, under-recovery of 

viruses from certain environments was identified 292.  

 Additional recent tools have been developed that utilize slightly different methods for 

identifying viruses. MARVEL 293, for example, leverages annotation, sequence signatures and 

machine learning to identify viruses from metagenomic bins. MARVEL differs from VirSorter in 

that it only utilizes a single virus-specific database for annotation. However, MARVEL provides 

no consideration for integrated proviruses and is only suitable for identifying bacterial dsDNA 

viruses from the order Caudovirales which substantially limits its ability to discover novel viruses. 

Another recently developed tool, VirMiner 294, is unique in that it functions to use metagenomic 
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reads and associated assembly data to identify viruses and performs best for highly abundant 

viruses. VirMiner is a web-based server that utilizes a hybrid approach of employing both 

homology-based searches to a virus-specific database as well as machine learning. VirMiner was 

found to have improved ability to recover viruses compared to both VirSorter and VirFinder but 

was concurrently much less accurate.  

 Thus far, VirSorter remains the most efficient tool for identifying integrated proviruses 

within metagenomic assemblies. Other tools, predominantly PHASTER 295 and Prophage Hunter 

296, are specialized in identifying integrated proviruses from whole genomes rather than scaffolds 

generated by metagenomic assemblies. Similar to VirSorter, these two provirus predictors rely on 

reference homology and viral sequence signatures with sliding windows to identify regions of a 

host genome that belong to a virus. Although they are useful for whole genomes, they lack the 

capability of identifying scaffolds belonging to lytic (i.e., non-integrated) viruses and perform 

slower for large datasets. In addition, both PHASTER and Prophage Hunter are exclusively 

available as web-based servers and offer no stand-alone command line tools.  

 Here we developed VIBRANT (Virus Identification By iteRative ANnoTation), a tool for 

automated recovery, annotation, and curation of both free and integrated viruses from 

metagenomic assemblies and genome sequences. VIBRANT is capable of identifying diverse 

dsDNA, ssDNA and RNA viruses infecting both bacteria and archaea, and to our knowledge has 

no evident environmental biases. VIBRANT uses neural networks of protein annotation signatures 

from non-reference-based similarity searches with Hidden Markov Models (HMMs) as well as a 

unique ‘v-score’ metric to maximize identification of diverse and novel viruses. After identifying 

viruses VIBRANT implements curation steps to validate predictions. VIBRANT additionally 

characterizes viral community function by highlighting AMGs and assesses the metabolic 
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pathways present in viral communities. All viral genomes, proteins, annotations and metabolic 

profiles are compiled into formats for user-friendly downstream analyses and visualization. When 

applied to reference viruses, non-reference virus datasets and various assembled metagenomes, 

VIBRANT outperformed VirFinder, VirSorter and MARVEL in the ability to maximize virus 

recovery and minimize false discovery. When compared to PHASTER, Prophage Hunter and 

VirSorter for the ability to extract integrated provirus regions from host scaffolds, VIBRANT 

performed comparably. VIBRANT was also used to identify differences in metabolic capabilities 

between viruses originating from various environments. When applied to three separate cohorts of 

individuals with Crohn’s Disease, VIBRANT was able to identify both differentially abundant 

viral groups compared to healthy controls as well as virally encoded genes putatively influencing 

a diseased state. VIBRANT is freely available for download at 

https://github.com/AnantharamanLab/VIBRANT. VIBRANT is also available as a user-friendly, 

web-based application through the CyVerse Discovery Environment at https://de.cyverse.org/de 

297. 

 

Methods 

Dataset for generation and comparison of metrics  

 To generate training and testing datasets, sequences representing bacteria, archaea, 

plasmids and viruses were downloaded from the National Center for Biotechnology Information 

(NCBI) RefSeq and Genbank databases (accessed July 2019) (Additional File 1: Table S1). For 

bacteria/archaea, 181 genomes were chosen by selecting from diverse phylogenetic groups. 

Likewise, a total of 1,452 bacterial plasmids were chosen. For viruses, NCBI taxids associated 

with viruses that infect bacteria or archaea were used to download reference virus genomes, which 
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were then limited to only sequences above 3kb. This included viruses with both DNA and RNA 

genomes, though RNA genomes must first be converted to complementary DNA. Sequences not 

associated with genomes, such as partial genomic regions, were identified according to sequence 

headers and removed. This resulted in 15,238 total viral partial and complete genomes. To be 

consistent between all sequences acquired from NCBI, proteins and genes were predicted using 

Prodigal (-p meta, v2.6.3) 98. All sequences were split into non-overlapping, non-redundant 

fragments between 3kb and 15kb to simulate metagenome assembled scaffolds. These simulated 

scaffolds are hereafter called fragments and were used throughout training and testing VIBRANT. 

For RNA virus detection 33 viral (bacteriophage) genomes from NCBI RefSeq and 37 from 

Krishnamurthy et. al. were used 43, and for archaeal virus detection all genomes were acquired 

from NCBI RefSeq. The RNA and archaeal viral genomes were represented in both the training 

and testing datasets as genomic fragments and recall evaluation was performed on whole genomes. 

These were the only datasets in which training and evaluation datasets were semi-redundant. See 

Supplemental Methods (Additional File 16) for additional datasets and sequences used. 

 Integrated viruses are common in both bacteria and archaea. To address this for generating 

a dataset devoid of viruses, PHASTER (accessed July 2019) was used to predict putative integrated 

viruses in the 181 bacteria/archaea genomes. Using BLASTn 101, any fragments that had significant 

similarity (at least 95% identity, at least 3kb coverage and e-value < 1e-10) to the PHASTER 

predictions were removed as contaminant virus sequence. The new bacteria/archaea dataset was 

considered depleted of proviruses, but not entirely devoid of contamination. Next, the datasets for 

bacteria/archaea and plasmids were annotated with KEGG, Pfam and VOG HMMs (hmmsearch 

(v3.1), e-value < 1e-5) 102 to further remove contaminant virus sequence (see next section for 

details of HMMs). Plasmids were included because it was noted that the dataset appeared to 
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contain virus sequences, possibly due to misclassification of episomal proviruses as plasmids. 

Using manual inspection of the KEGG, Pfam and VOG annotations any sequence that clearly 

belonged to a virus was removed. Manual inspection was guided first by the number of KEGG, 

Pfam and VOG annotations, and then by the annotations themselves. For example, sequences with 

more VOG than KEGG or Pfam annotations were inspected and removed if multiple viral hallmark 

genes were found or if the majority of annotations represented viral-like genes. The final datasets 

consisted of 400,291 fragments for bacteria/archaea, 14,739 for plasmids, and 111,963 for viruses. 

Total number of fragments for all datasets used can be found in Additional File 2: Table S2. 

 

Databases used by VIBRANT 

 VIBRANT uses HMM profiles from three different databases: Kyoto Encyclopedia of 

Genes and Genomes (KEGG) KoFam (March 2019 release) 212,298, Pfam (v32) 289 and Virus 

Orthologous Groups (VOG) (release 94, vogdb.org). For Pfam all HMM profiles were used. To 

increase speed, KEGG and VOG HMM databases were reduced in size to contain only profiles 

likely to annotate the viruses of interest. For KEGG this was done by only retaining profiles 

considered to be relevant to “prokaryotes” as determined by KEGG documentation. For VOG this 

was done by only retaining profiles that had at least one significant hit to any of the 15,238 NCBI-

acquired viruses using BLASTp. The resulting databases consisted of 10,033 HMM profiles for 

KEGG, 17,929 for Pfam, and 19,182 for VOG (Additional File 3: Table S3).   

 

V-score generation 

 Predicted proteins from reference viral genomes from NCBI and VOG database viral 

proteins were combined to generate v-scores, which resulted in a total of 633,194 proteins. 
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Redundancy was removed from the viral protein dataset using CD-HIT (v4.6) 216 with a identify 

cutoff of 95%, which resulted in a total of 240,728 viral proteins. This was the final dataset used 

to generate v-scores. All KEGG HMM profiles were used to annotate the viral proteins. A v-score 

for each KEGG HMM profile was determined by the number of significant (e-value < 1e-5) hits 

by hmmsearch, divided by 100, and a maximum value was set at 10 after division. The same v-

score generation was done for Pfam and VOG databases. Any HMM profile with no significant 

hits to the virus dataset was given a v-score of zero. For KEGG and Pfam databases, any annotation 

that was given a v-score above zero and contained the keyword “phage” was given a minimum v-

score of 1. To highlight viral hallmark genes, any annotation within all three databases with the 

keyword portal, terminase, spike, capsid, sheath, tail, coat, virion, lysin, holin, base plate, 

lysozyme, head or structural was given a minimum v-score of 1. Non-prokaryotic virus annotations 

(e.g., reovirus core-spike protein) were not considered. Each HMM is assigned a v-score and 

represents a metric of virus association (i.e., do not take into account virus specificity, or 

association with non-viruses) and are manually tuned to put greater weight on viral hallmark genes 

(Additional File 4: Table S4). Overall, annotations that are likely non-viral will have a low v-score 

whereas annotations that are commonly associated with viruses will have a high v-score. Raw 

HMM table outputs for v-score generation can be found in Additional Files 5, 6 and 7 for KEGG, 

Pfam and VOG, respectively (Additional File 5: Table S5, Additional File 6: Table S6 and 

Additional File 7: Table S7). 

 

Training and testing VIBRANT 

 The bacteria/archaea genomic, plasmid and virus datasets described above were used to 

train and test the machine learning model. Scikit-Learn (v0.21.3) 299 libraries were used to assess 
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various machine learning strategies to identify the best performing algorithm. Among support 

vector machines, neural networks and random forests, we found that neural networks lead to the 

most accurate and comprehensive identification of viruses. Therefore, Scikit-Learn’s supervised 

neural network multi-layer perceptron classifier (hereafter called neural network) was used. The 

portion of VIBRANT’s workflow up until the neural network classifier (i.e., KEGG, Pfam and 

VOG annotation) was used to compile the 27 annotation metrics for each scaffold. To account for 

differences in scaffold sizes all metrics are normalized (i.e., divided by) to the total number of 

proteins encoded by the scaffold. The first metric, for total proteins, was normalized to log base 

10 of itself. Each metric was weighted equally, though it is worth noting that the removal of several 

metrics did not significantly impact the accuracy of model’s prediction. The normalized results 

were randomized, and non-redundant portions of these results were taken for training or testing 

the neural network. In total, 93,913 fragments were used for training and 9,000 different fragments 

were used for testing the neural network specifically (Additional File 8: Table S8 and Additional 

File 9: Table S9).  

 To test the performance of VIBRANT in its entirety, a new testing dataset was generated 

consisting of fragments from the neural network testing set as well as additional fragments non-

redundant to the previous training dataset (hereafter called comprehensive test dataset). This new 

comprehensive test dataset was comprised of 256,713 genomic fragments from bacteria/archaea, 

29,926 from viruses and 8,968 from plasmids. Each met the minimum protein number requirement 

of VIBRANT: at least four open reading frames. 

 

Calculation of evaluation metrics and benchmarking of VIBRANT 
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 For comparison of VIBRANT (v1.2.0) to VirFinder (v1.1), VirSorter (v1.0.3) and 

MARVEL (v0.2), the comprehensive test dataset was used. Two intervals for VirFinder and 

VirSorter were used for comparison. For VirSorter, the intervals selected were (1) category 1 and 

2 predictions, and (2) category 1 and 2 predictions using the virome decontamination mode. 

Categories 1 and 2 are generally considered trustworthy, but category 3 predictions are more likely 

to contain false identifications. VirSorter was ran using the “Virome” database. For VirFinder, the 

intervals were (1) scores greater than or equal to 0.90 (approximately equivalent to a p-value of 

0.013), and (2) scores greater than or equal to 0.75 (approximately equivalent to a p-value of 

0.037). Since MARVEL was built for the identification of viral bins, each scaffold was evaluated 

separately as a single “bin”. To ensure proper identification by MARVEL and VIBRANT, 

different versions of Scikit-Learn were used for each (v0.19.1 and v0.21.3, respectively).  

 Several metrics were used to compare performance of all four programs: recall, precision, 

accuracy, specificity, Mathews Correlation Coefficient (MCC) and F1 score. When calculating 

metrics, the larger bacteria/archaea and plasmid dataset was normalized to the size of the smaller 

viral dataset in order to make accurate calculations. All equations used can be found in Additional 

File 10: Table S10 and the results of each calculation can be found in Additional File 11: Table 

S11. Comparison metrics were visualized using R (v3.5.2) package “ggplot2”. 

 It is worth noting that although VIBRANT was tested using sequences that were not used 

for training, biases may still be associated with reported metrics due to the reliance of KEGG, 

Pfam and VOG HMMs on NCBI databases. That is, NCBI databases in part were used to construct 

the HMMs and therefore are well suited at annotating NCBI-derived sequences. This same type of 

bias will be seen in the evaluation of VirSorter and MARVEL, both of which rely on NCBI-reliant 

databases. Although VirFinder does not use annotation databases, the machine learning algorithm 
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it employs was trained on NCBI-derived sequences. Similarly, biases with comparisons to 

VirFinder, VirSorter and MARVEL will arise when using NCBI databases. Sequences from NCBI 

were used for training each of the three programs and therefore will likely contain redundancy to 

VIBRANT’s comprehensive test dataset. This redundancy will cause artificially enhanced 

performance. To address these biases, we further compared all four programs to non-NCBI 

datasets (see below).  

   

AMG identification 

 KEGG annotations were used to classify potential AMGs (Additional File 12: Table S12). 

KEGG annotations falling under the “metabolic pathways” category as well as “sulfur relay 

system” were considered. Manual inspection was used to remove non-AMG annotations, such as 

nrdAB and thyAX. Other annotations not considered were associated with direct nucleotide to 

nucleotide conversions. All AMGs were associated with a KEGG metabolic pathway map.  

 

Completeness estimation 

 Scaffold completeness is determined based on four metrics: circularization of scaffold 

sequence, VOG annotations, total VOG nucleotide replication proteins and total VOG viral 

hallmark proteins (Additional File 13: Table S13). In order to be considered a complete genome a 

sequence must be identified as likely circular. A kmer-based approach is used to do this. 

Specifically, the first 20 nucleotides are compared to 20-mer sliding windows within the last 900bp 

of the sequence. If a complete match is identified the sequence is considered a circular template. 

Scaffolds can also be considered a low, medium or high-quality draft. To benchmark 

completeness, 2466 NCBI RefSeq viruses identified as Caudovirales, limited to 10 kb in length, 
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were used to estimate completeness by stepwise removing 10% viral sequence at a time. 

VIBRANT was found to identify 2465 of the 2466 viruses. This set of viruses was additionally 

used to assess the error rate of cutting provirus regions. Viral genome diagrams to depict genome 

quality and completeness, provirus predictions and novel virus identification, were made using 

Geneious Prime 2019.0.3. 

 

Analysis of Crohn’s Disease metagenomes 

 Metagenomic reads from He et al. 300 were assembled by Pasolli et al. 160 and used for 

analysis. VIBRANT (-l 5000) was used to predict viruses from 49 metagenomes originating from 

individuals with Crohn’s Disease and 53 from healthy individuals (102 total samples). A total of 

14,121 viruses were identified. Viral sequences were dereplicated using Mash 263 and Nucmer 301 

to 95% nucleotide identity and 70% sequence coverage. The longest sequence was kept as the 

representative for a total of 8,822 dereplicated viruses. A total of 96 read sets were used (59 

Crohn’s Disease and 37 healthy), trimmed using Sickle and aligned to the dereplicated viruses 

using Bowtie2 (-N 1, v2.3.4.1) 225 and the resulting coverages were normalized to total reads. The 

normalized relative coverage of each virus for all 96 samples were compared using DESeq2 302 

(Additional File 14: Table S14). Viruses that displayed significantly different abundance between 

Crohn’s Disease and control samples were determined by a p-value cutoff of 0.05. iRep (default 

parameters) 156 was used to estimate replication activity of two highly abundant Crohn’s-associated 

viruses. EasyFig (v2.2.2) 227 was used to generate genome alignments of Escherichia phage 

Lambda (NCBI accession number NC_001416.1) and three Crohn’s-associated viruses. 

vConTACT2 (v0.9.8) was run using default parameters on the CyVerse Discovery Environment 

platform. Putative hosts of Crohn’s-associated and healthy-associated was estimated using 
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proximity of vConTACT2 protein clustering and BLASTp identity (NCBI non-redundant protein 

database, assessed October 2019). Two additional read sets from Gevers et al. 303 and Ijaz et al. 304 

were likewise assembled by Pasolli et al.. VIBRANT (-l 5000 -o 10) was used to predict viruses 

from 43 metagenomes originating from individuals with Crohn’s Disease and 21 from healthy 

individuals (64 total samples). In contrast to the discovery dataset viral genomes were not 

dereplicated and differential abundance was not determined. Instead viruses from each group were 

directly clustered using vConTACT2. Abundances of dysbiosis associated genes in the validation 

set were normalized to total viruses. Validation of dysbiosis associated genes’ presence on viral 

genomes, rather than microbial contamination, was done by identifying viral hallmark genes on 

the viral scaffold (Additional File 15: Table S15). Protein networks were visualized using 

Cytoscape (v3.7.2) 267. 

 

Results 

 VIBRANT was built to extract and analyze bacterial and archaeal viruses from assembled 

metagenomic and genome sequences, as well as provide a platform for characterizing metabolic 

proteins and functions in a comprehensive manner. The concept behind VIBRANT’s mechanism 

of virus identification stems from the understanding that arduous manual inspection of annotated 

genomic sequences produces the most dependable results. As such, the primary metrics used to 

inform validated curation standards and to train VIBRANT’s machine learning based neural 

network to identify viruses reflects human-guided intuition, though in a high-throughput 

automated fashion.  

 

Determination of v-score 



 108 
 

 We developed a unique ‘v-score’ metric as an approach for providing quantitative 

information to VIBRANT’s algorithm in order to assess the qualitative nature of annotation 

information. A v-score is a value assigned to each possible protein annotation that scores its 

association to known viral genomes (see Methods). V-score differs from the previously used “virus 

quotient” metric 305,306 in that it does not take into account the annotation’s relatedness to bacteria 

or archaea. Not including significant similarity to non-viral genomes in the calculation of v-scores 

has important implications for this metric’s utility. Foremost is that annotations shared between 

viruses and their hosts, such as ribonucleotide reductases, will be assigned a v-score reflecting its 

association to viruses, not necessarily virus-specificity. Many genes are commonly associated with 

viruses and host organisms, but when encoded on viral genomes can be central to virus replication 

efficiency (e.g., ribonucleotide reductases 307). Therefore, a metric representing virus-association 

rather than virus-specificity would be more appropriate in identifying if an unknown scaffold is 

viral or not. Secondly, this approach takes into account widespread horizontal gene transfer of host 

genes by viruses as well as the presence of AMGs.  

 

VIBRANT workflow 

 VIBRANT utilizes several annotation metrics in order to guide removal of non-viral 

scaffolds before curation of reliable viral scaffolds. The annotation metrics used are derived from 

HMM-based probabilistic searches of protein families from the KEGG, Pfam and VOG databases. 

VIBRANT is not reliant on reference-based similarity and therefore accounts for the large diversity 

of viruses on Earth and their respective proteins. Consequently, widespread horizontal gene 

transfer, rapid mutation and the vast amount of novel sequences do not hinder VIBRANT’s ability 

to identify known and novel viruses. VIBRANT does not rely on non-annotation features, such as 



 109 
 

rates of open reading frame strand switching, because these features were not as well conserved in 

genomic scaffolds in contrast to whole genomes. 

 VIBRANT’s workflow consists of four main steps (Figure 1A). Briefly, proteins (predicted 

or user input) are used by VIBRANT to first eliminate non-viral sequences by assessing non-viral 

annotation signatures derived from KEGG and Pfam HMM annotations. At this step potential host 

scaffolds are fragmented using sliding windows of KEGG annotation v-scores in order to extract 

integrated provirus sequences. Following the elimination of most non-viral scaffolds and rough 

excision of provirus regions, proteins are annotated by VOG HMMs. Before analysis by the neural 

network machine learning model, any extracted putative provirus is trimmed to exclude any 

remaining non-viral sequences. Annotations from KEGG, Pfam and VOG are used to compile 27 

metrics that are utilized by the neural network to predict viral sequences (Additional File 16: 

Supplemental Methods). These 27 metrics were found to be adequate for the separation of viral 

and non-viral scaffolds (Figure 1B).  

 After prediction by the neural network a set of curation steps are used to filter the results. 

Curation is an automated mechanism of verifying and/or altering the neural network predictions 

in order to improve accuracy and recovery of viruses. This concept, as previously stated, originates 

from experiences with manual inspection of viral genomes that cannot be captured even within 

machine learning algorithms. For example, these curation steps can: (1) more accurately separate 

plasmid sequences by discerning viral-like and plasmid-like integrase annotations, (2) remove 

scaffolds that encode a high density of bacterial-like (i.e., v-score of zero) proteins, or (3) increase 

true positive identifications by retaining otherwise missed scaffolds that are unique (e.g., encode 

few but highly virus-related proteins).  
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 Once viruses are identified 

VIBRANT automates the analysis of 

viral community function by 

highlighting AMGs and assigning 

them to KEGG metabolic pathways. 

The genome quality (i.e., proxy of 

completeness) of identified viruses is 

estimated using a subset of the 

annotation metrics and viral 

sequences are used to identify 

circular templates (i.e., likely 

complete circular viruses). These 

quality analyses were determined to 

best reflect established completeness 

metrics for both bacteria and viruses 

308,309. Finally, VIBRANT compiles 

all results into a user-friendly format 

for visualization and downstream 

analysis. For a detailed description of 

VIBRANT’s workflow see Methods. 

  

Comparison of VIBRANT to other 

programs 
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Figure 1. Representation of VIBRANT’s method 
for virus identification and virome functional 
characterization. (A) Workflow of virome analysis. 
Annotations from KEGG, Pfam and VOG databases 
are used to construct signatures of viral and non-viral 
annotation signatures that are read into a neural 
network machine learning model. (B) Visual 
representation (PCA plot) of the metrics used by the 
neural network to identify viruses, depicting viral, 
plasmid and bacterial/archaeal genomic sequences.  
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 VirSorter, VirFinder and MARVEL, three commonly used programs for identifying 

bacterial and archaeal viruses from metagenomes, were selected to compare against VIBRANT 

for the ability to accurately identify viruses. We evaluated all four programs’ performance on the 

same viral, bacterial and archaeal genomic, and plasmid datasets. Given that both VirSorter and 

VirFinder produce various confidence ranges of virus identification, we selected certain 

parameters for each program for comparison. For VirSorter, the parameters selected were (1) 

category 1 and 2 predictions, and (2) category 1 and 2 predictions using the virome 

decontamination mode. For VirFinder, the intervals were (1) scores greater than or equal to 0.90 

(approximately equivalent to a p-value of 0.013), and (2) scores greater than or equal to 0.75 

(approximately equivalent to a p-value of 0.037). Hereafter, we provide two statistics for each 

VirSorter and VirFinder run that reflect results according to the two set confidence intervals, 

respectively. Both VIBRANT and MARVEL have set output predictions and therefore will be 

reported with a single statistic.  

  VIBRANT yields a single output of confident predictions and therefore does not provide 

multiple output options. Since VIBRANT is only partially reliant on its neural network machine 

learning model for making predictions, all comparisons are focused on VIBRANT’s full workflow 

performance. VIBRANT does not consider scaffolds shorter than 1000 bp or those that encode 

less than four predicted open reading frames in order to maintain a low false positive rate (FPR) 

and have sufficient annotation information for identifying viruses. Therefore, in comparison of 

performance metrics only scaffolds meeting VIBRANT’s minimum requirements were analyzed. 

Inclusion of fragments encoding less than four open reading frames in analyses, which are 

frequently generated by metagenomic assemblies, are discussed below. We used the following 
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statistics to compare performance: recall, precision, accuracy, specificity, MCC and F1 score 

(Figure 2).  

 First, we evaluated the true positive rate (TPR, or recall) of viral genomic fragments as 

well as whole viral genomes. Viral genomes were acquired from the NCBI RefSeq and GenBank 

databases and split into various non-redundant fragments between 3 and 15 kb to simulate genomic 

scaffolds (see Methods). VIBRANT correctly identified 98.43% of the 29,926 viral fragments, 

which was greater than VirSorter (40.03% and 96.53%), VirFinder (76.23% and 89.03%) and 

MARVEL (93.79%) at all scoring intervals. For VirSorter it was essential to set virome 

decontamination mode for datasets consisting of mainly viruses, without which the TPR was 

substantially inhibited. 
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Figure 2. Performance comparison of VIBRANT, VirFinder, VirSorter and MARVEL on 
artificial scaffolds 3kb-15kb. Performance was evaluated using datasets of reference viruses, 
bacterial plasmids, and bacterial/archaeal genomes. For VirFinder and VirSorter two different 
confidence cutoffs were used (VirFinder: score of at least 0.90, and score of at least 0.75. 
VirSorter: categories 1 and 2 predictions, and categories 1 and 2 predictions using virome 
decontamination mode). All four programs were compared using the following statistical 
metrics: F1 score, MCC, recall, precision, accuracy and specificity. To ensure equal comparison 
all scaffolds tested encoded at least four open reading frames.  
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 Similar to TPR, we calculated FPR (or specificity) using two different datasets: genomic 

fragments of bacteria and archaea (hereafter called genomic), and bacterial plasmids (plasmid). 

Plasmids were evaluated separately because they often encode for genes similar to those on viral 

genomes, such as those for genome replication and mobilization. Genomic and plasmid sequences 

were acquired from NCBI RefSeq and GenBank databases and split into various non-redundant 

fragments between 3 and 15 kb and putative proviruses were depleted from the datasets (see 

Methods). VIBRANT had high specificity against both genomic (99.90%) and plasmid fragments 

(98.90%). VirSorter had similar specificity against both genomic (99.84% and 99.59%) and 

plasmid (99.33% and 97.55%) datasets, but only VirFinder set to a score cutoff of 0.90 was fully 

comparable (genomic: 99.10%, plasmid: 98.39%). VirFinder at a score cutoff of 0.75 (genomic: 

97.19%, plasmid: 94.93%) along with MARVEL (genomic: 92.92%, plasmid: 85.54%) were 

slightly less specific. Although VirFinder (set to a score cutoff of 0.90) and VIBRANT had a 

similar overall specificity, VirFinder identified 9.3 times more genomic scaffolds as viruses (false 

discoveries) compared to VIBRANT (2,311 and 249, respectively). MARVEL was even more 

pronounced, identifying 72.9 times more genomic scaffolds as viruses (18,164 total) compared to 

VIBRANT. 

 We used the results from TPR of viral fragments and FPR of non-viral genomic or plasmid 

fragments to calculate precision (i.e., proportion of true virus identifications out of all virus 

identifications) and accuracy (i.e., proportion of correct predictions out of all predictions). 

VIBRANT outperformed each other program at both precision (VIBRANT: 99.87%, VirFinder: 

98.80% and 96.85%, VirSorter: 99.57% and 99.50%, and MARVEL: 92.73%) and accuracy 

(VIBRANT: 99.15%, VirFinder: 87.67% and 93.08%, VirSorter: 69.97% and 98.03%, and 

MARVEL: 93.23%). F1 and MCC are additional metrics (maximum values of 1) accounting for 
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both TPR and FPR, and therefore acts as a comprehensive evaluation of overall performance. Our 

calculation of F1 indicates that VIBRANT (0.991) is able to better identify viruses while 

subsequently reducing false identifications compared to VirFinder (0.861 and 0.928), VirSorter 

(0.571 and 0.980) or MARVEL (0.933). MCC likewise indicated that VIBRANT (0.983) was 

better suited at maximizing the ratio of viruses to non-viruses compared to VirSorter (0.498 and 

0.961), VirFinder (0.774 and 0.864) and MARVEL (0.865).  

 Although VIBRANT exhibits improved performance with scaffolds at least 3kb in length, 

it is worth noting that performance drops considerably at the set minimum length of 1kb. To 

display this, the TPR and FPR of both 1k and 3kb scaffolds were assessed (Additional File 16: 

Figure S1A). For this analysis, VirSorter was evaluated using virome decontamination mode and 

VirFinder was set to a score cutoff of 0.90. MARVEL’s minimum length requirement is 2kb and 

therefore was not compared with 1kb scaffolds. For 1kb viral scaffolds, VIBRANT (1.95%) and 

VirSorter (1.12%) recovered far fewer scaffolds compared to VirFinder (22.56%). However, at a 

length of 3kb VIBRANT (43.54%) recovered more viral fragments than VirSorter (25.43%), 

VirFinder (34.42%) and MARVEL (37.82%). Even at the low resolution of short scaffolds 

VIBRANT’s FPR is not impacted. For 1kb genomic and 1kb plasmid scaffolds VIBRANT 

(<0.00% and 0.07%) and VirSorter (<0.00% and 0.10%) had fewer false positive discoveries than 

VirFinder (2.61% and 3.70%). Similarly, for 3kb genomic and 3kb plasmid scaffolds VIBRANT 

(0.10% and 2.69%) and VirSorter (0.11% and 2.41%) falsely identified fewer sequences than 

VirFinder (2.26% and 5.54%) or MARVEL (6.08% and 16.30%). Overall, this suggests that 

VirFinder is uniquely able to accurately recover short (e.g., 1kb) viral scaffolds while maintaining 

a relatively low FPR, but this ability is not maintained with longer scaffolds. Moreover, our current 

abilities to sequence and assemble scaffolds of lengths over 3kb will likely lead to a greater focus 
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on longer viral sequences that are more amenable to downstream analysis, such as taxonomic 

classification and functional analyses.  

 Next, we assessed the ability of VIBRANT to filter out eukaryotic contamination rather 

than falsely identify these sequences as viral since eukaryotes were not represented in the training 

or testing datasets. However, these contaminants should be sparse because the majority of 

eukaryotic KEGG and VOG HMMs were removed from the annotation databases (see Methods). 

Likewise, eukaryotic-like annotations should receive a low v-score. A total of 8,672 eukaryotic 

sequences ranging from 1kb to 15kb were assessed. VIBRANT (0.62%), VirSorter (0.05% and 

0.05%) and MARVEL (0.44%) performed well with recovering few sequences, whereas VirFinder 

(4.92% and 15.44%) recovered contamination at a greater rate (Additional File 16: Figure S1B).   

 Finally, viruses with RNA genomes as well as those that infect archaea are rare in current 

culture systems and sequence databases compared to bacterial dsDNA viruses. However, the true 

abundance of RNA and archaeal viruses has yet to be explored mainly due to biases towards 

dsDNA in genome extracting and sequencing methods 310 and the low abundance of archaea in 

most environments. VIBRANT was built to identify all prokaryotic viruses in order to expand our 

knowledge of understudied groups. A total of 70 RNA viral genomes and 93 archaeal viral 

genomes were used to evaluate recall. VIBRANT was able to recover 47% of RNA viruses, or 

84% of the those that encoded at least four predicted open reading frames. In comparison, 

VirSorter (7% and 70%), VirFinder (33% and 57%) and MARVEL (68%) ranged from lower to 

higher recovery (Additional File 16: Figure S1C). The high recovery of RNA viruses by MARVEL 

is intriguing since the software was trained exclusively on dsDNA Caudovirales, but may be 

explained by the greater rate of false positive discovery. For archaeal viruses, VIBRANT (96.77%) 

identified significantly more viruses than VirSorter (70.97% and 93.55%), VirFinder (46.24% and 
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Figure 3. Effect of source environment on predictive abilities of VIBRANT, VirFinder, 
VirSorter and MARVEL. Viral scaffolds from IMG/VR and HGV database were used to test 
if VIBRANT displays biases associated with specific environments. (A) The recall (or 
recovery) of viral scaffolds from 12 environment groups was compared between VIBRANT 
and two confidence cutoffs for both VirFinder and VirSorter. Marine environments were 
classified into two groups: marine A (coastal, gulf, inlet, intertidal, neritic, oceanic, pelagic and 
strait) and marine B (hydrothermal vent, volcanic and oil). (B) Comparison of the overlap in 
the scaffolds identified as viruses by all three programs. Cutoffs for VirFinder (scores greater 
than or equal to 0.75) and VirSorter (categories 1 and 2 using virome decontamination mode) 
were set to display each program’s ability to recover diverse viruses. 
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74.19%), and MARVEL (80.65%) (Additional File 16: Figure S1D). Taken together, VIBRANT 

has the potential to identify RNA and archaeal viruses, though the significance of this difference 

is hard to distinguish due to the current dearth of reference genomes with which to validate.  

 

Identification of viruses in diverse environments 

 We next tested VIBRANT’s ability to successfully identify viruses from a diversity of 

environments. Using 120,834 viruses from the IMG/VR database, in which the source environment 

of viruses is categorized, we identified that VIBRANT is more robust in identifying viruses from 

all tested environments compared to VirFinder, VirSorter and MARVEL (Figure 3A). The 12 

environments were: animal-associated, aquatic sediment, city, marine A (coastal, gulf, inlet, 

intertidal, neritic, oceanic, pelagic and strait), marine B (hydrothermal vent, volcanic and oil), deep 

subsurface, freshwater, human-associated, plant-associated, soil, wastewater and wetlands. 

VIBRANT averaged 94.59% recall, substantially greater than VirFinder (29.19% and 48.13%), 

VirSorter (54.37% and 87.49%) and MARVEL (71.23%). Between the 12 environments 

VIBRANT recovered between 89.55% and 97.87% (total range of 8.33%) of the viruses. 

Conversely, VirFinder (score cutoff of 0.75) had a range of 53.65%, VirSorter (categories 1 and 

2, virome decontamination) had a range of 27.48% and MARVEL had a range of 42.75%. These 

results suggest that in comparison to other software, VIBRANT has no evident environmental 

biases and is fully capable of identifying viruses from a broad range of source environments. We 

also used a dataset of 13,203 viruses from the Human Gut Virome database for additional 

comparison. The vast majority of viruses (~96%) in this dataset were assumed to infect bacteria. 

Although recall was diminished compared to IMG/VR datasets, VIBRANT (79.22%) nevertheless 
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outperformed or matched VirFinder (31.67% and 62.83%), VirSorter (41.93% and 79.97%) and 

MARVEL (66.49%) on this dataset.  

 Relatively few viruses from the IMG/VR dataset that were not identified by VIBRANT 

were identified by either VirFinder, VirSorter or MARVEL at even the most inclusive score cutoffs 

(Figure 3B). Furthermore, for most environments VIBRANT displayed the largest proportion of 

unique identifications, suggesting that VIBRANT has the propensity for discovery of viruses. The 

differences in the overlap of identified viruses was not too distinctive in environments for which 

many reference viruses are available, such as marine, though for more understudied environments, 

such as plants or wastewater, VIBRANT displayed near-complete overlap with VirFinder, 

VirSorter and MARVEL predictions. This suggests that database bias may not affect VIBRANT’s 

performance to a significant degree. Although VirFinder does not rely on an annotation database, 

it still has been trained on a dataset of reference viral genomes which can contribute to database 

dependency and recall bias.  

 

Identification of viruses in mixed metagenomes 

 Metagenomes assembled using short read technology contain many scaffolds that do not 

meet VIBRANT’s minimum length requirements and therefore are not considered during analysis. 

Despite this, VIBRANT’s predictions contain more annotation information and greater total viral 

sequence length than tools built to identify short sequences, such as scaffolds with less than four 

open reading frames. VIBRANT, VirFinder (score cutoff of 0.90) and VirSorter (categories 1 and 

2) were used to identify viruses from human gut, freshwater lake and thermophilic compost 

metagenome sequences (Table 1). In addition, alternate program settings—VIBRANT virome 

mode, VirFinder at a score cutoff of 0.75 and VirSorter virome decontamination mode—were used 
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to identify viruses from an estuary virome dataset. MARVEL was not considered in this analysis 

due to the inability to achieve comparable precision. Each metagenomic assembly was limited to 

sequences of at least 1000bp but no minimum open reading frame limit was set. For these  

metagenomes, 31% to 40% of the scaffolds were of sufficient length (at least four open reading  

frames) to be analyzed by VIBRANT; for the estuary virome 62% were of sufficient length. In 

comparison, 100% of scaffolds from each dataset were long enough to be analyzed by VirFinder. 

The ability of VirFinder to make a prediction with each scaffold is considered the major strength  

of the tool.   

 For all six assemblies VirFinder averaged approximately 1.16 times more virus 

identifications than VIBRANT, though for both thermophilic compost and the estuary virome 

VIBRANT identified a greater number. Despite VirFinder averaging more total virus 

identifications, VIBRANT averaged 2.33 times more total viral sequence length and 2.44 times 

more total viral proteins. This is the result of VIBRANT having the capability to identify more 

viruses of higher quality and longer sequence length. For example, among all six datasets 

VIBRANT identified 1,320 total viruses at least 10 kb in length in comparison to VirFinder’s 479.  

VIBRANT was also able to outperform VirSorter in all metrics, averaging 2.45 times more virus 

identifications, 1.76 times more total viral sequence length, and 1.86 times more encoded viral 

proteins. VIBRANT’s method of predicting viruses provides a unique opportunity in comparison 

to similar tools in that it yields sequences of higher quality which are more amenable for analyzing 

protein function from virome data. It is an important distinction that the total number of viruses 

identified may not be correlated with the total viruses identified or the total number of encoded 

proteins. Even if VIBRANT identified fewer total viruses compared to other tools in certain 

circumstances, more data of higher quality was generated as viral sequences of longer length were 
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Figure 4. Prediction of integrated proviruses by VIBRANT, and comparison to PHASTER, 
Prophage Hunter and VirSorter. (A) Schematic representing the method used by VIBRANT 
to identify and extract provirus regions from host scaffolds using annotations. Briefly, v-scores 
are used to cut scaffolds at host-specific sites and fragments are trimmed to the nearest viral 
annotation. (B) Comparison of proviral predictions within four complete bacterial genomes 
between VIBRANT, PHASTER, Prophage Hunter and VirSorter. For PHASTER, putative 
proviruses are colored according to “incomplete” (red), “questionable” (blue) and “intact” (green) 
predictions. Prophage Hunter is colored according to “active” (green) and “ambiguous” (blue) 
predictions. All VirSorter predictions for categories 1 and 2 are shown in green. (C) Manual 
validation of the Bacteroides vulgatus provirus prediction made by VIBRANT. The presence of 
viral hallmark protein, integrase and genome replication proteins strongly suggests this is an 
accurate prediction.  
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capsid
protein

D-Ala-D-Ala
carboxypeptidase

terminase
large
subunit

terminase
small
subunit

RNA polymerase
sigma-70 factor

C

Genome Region VIBRANT PHASTER Prophage Hunter VirSorter (cat. 1 & 2)
Putative provirus 1 35,516 - 55,047 28,459 - 56,369 34,907 - 49,863 10,280 - 95,312
Putative provirus 2 442,048 - 483,244 447,143 - 484,064 447,143 - 484,094 450,421 - 517,314
Putative provirus 3 492,452 - 531,873 502,338 - 520,485 - -
Putative provirus 4 1,033,815 - 1,070,779 1,033,815 - 1,079,173 1,018,719 - 1,075,596 1,029,339 - 1,080,357
Putative provirus 5 1,416,048 - 1,460,426 1,414,112 - 1,457,044 1,415,289 - 1,457,116 1,414,112 - 1,460,426
Putative provirus 6 - 1,997,699 - 2,028,023 2,011,247 - 2,025,756 2,011,426 - 2,025,635
Putative provirus 1 226,416 - 270,425 239,489 - 270,425 257,056 - 273,870 247,822 - 270,425
Putative provirus 2 1,204,238 - 1,245,361 1,202,025 - 1,218,337 - 1,204,238 - 1,247,136
Putative provirus 3 - 1,226,597 - 1,237,819 - -
Putative provirus 4 1,560,130 - 1,593,118 1,573,624 - 1,584,078 1,562,595 - 1,579,793 1,561,263 - 1,599,625
Putative provirus 5 - 1,783,411 - 1,820,727 - 1,766,095 - 1,823,781
Putative provirus 6 2,246,009 - 2,298,987 - 2,247,565 - 2,288,385
Putative provirus 7 2,715,796 - 2,730,860 - - 2,709,005 - 2,749,853
Putative provirus 8 2,799,591 - 2,834,336 2,803,529 - 2,834,336 - 2,799,591 - 2,834,336
Putative provirus 9 2,936,283 - 2,971,476 2,936,186 - 2,977,658 - 2,936,283 - 2,979,715
Putative provirus 1 1,245,539 - 1,251,661 1,242,808 - 1,251,661 1,240,995 - 1,253,838 -
Putative provirus 2 1,452,300 - 1,508,497 1,451,176 - 1,523,261 1,460,593 - 1,511,405 1,462,371 - 1,514,191
Putative provirus 3 - - 1,812,933 - 1,834,606 -
Putative provirus 4 1,923,883 - 1,968,119 1,907,832 - 1,966,929 1,910,863 - 1,977,294 1,922,968 - 1,966,929
Putative provirus 5 2,034,690 - 2,073,429 2,029,598 - 2,077,786 2,031,642 - 2,080,909 2,031,741 - 2,074,574

Bacteroides
vulgatus Putative provirus 1 3,580,013 - 3,632,769 - - 3,580,013 - 3,637,236

Lactococcus
lactis

Desulfovibrio
vulgaris

Staphylococcus
aureus
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identified as compared to many short fragments. This provides an important distinction that the 

metric of total viral predictions is not necessarily an accurate representation for the quality or 

quantity of the data generated.  

 

Integrated provirus prediction 

 In many environments, integrated proviruses can account for a substantial portion of the 

active viral community 311. Despite this, few tools exist that are capable of identifying both lytic 

viruses from metagenomic scaffolds as well as proviruses that are integrated into host genomes. 

To account for this important group of viruses, VIBRANT identifies provirus regions within 

metagenomic scaffolds or whole genomes. VIBRANT is unique from most provirus prediction 

tools in that it does not rely on sequence motifs, such as integration sites, and therefore is especially 

useful for partial metagenomic scaffolds in which neither the provirus nor host region is complete. 

In addition, this functionality of VIBRANT provides the ability to trim non-viral (i.e., host 

genome) ends from viral scaffolds. This results in a more correct interpretation of genes that are 

encoded by the virus and not those that are misidentified as being within the viral genome region. 

Briefly, VIBRANT identifies proviruses by first identifying and isolating scaffolds and genomes 

at regions spanning several annotations with low v-scores. These regions were found to be almost 

exclusive to host genomes. After cutting the original sequence at these regions, a refinement step 

trims the putative provirus fragment to the first instance of a virus-like annotation to remove 

leftover host sequence (Figure 4A). The final scaffold fragment is then analyzed by the neural 

network similar to non-excised scaffolds.  

 To assess VIBRANT’s ability to accurately extract provirus regions we compared its 

performance to PHASTER and Prophage Hunter, two programs explicitly built for this task, as 
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well as VirSorter. We compared the performance of these programs with VIBRANT on four 

complete bacterial genomes. VIBRANT and PHASTER predicted an equal number of proviruses, 

17, while Prophage Hunter and VirSorter identified slightly less with 13 and 16 identifications, 

respectively (Figure 4B). Only one putative provirus prediction (Lactococcus lactis putative 

provirus 6) was shared between all programs except VIBRANT. However, VIBRANT was able to 

identify two putative provirus regions (Desulfovibrio vulgaris putative provirus 7 and Bacteroides 

vulgatus putative provirus 1) that neither PHASTER nor Prophage Hunter identified, though 

VirSorter identified these likely due to the similar approach of extracting provirus regions. Manual 

inspection of the putative Bacteroides vulgatus provirus identified a number of virus hallmark and 

virus-like proteins suggesting that it is an accurate prediction (Figure 4C). Our results suggest 

VIBRANT has the ability to accurately identify proviruses and, in some cases, can outperform 

other tools in this task.  

 Both VIBRANT and VirSorter identify integrated proviruses from metagenomic 

assemblies by cutting host scaffolds at either end of a provirus region. By employing this method 

these programs generate a more comprehensive understanding of a virome, but errors in identified 

cut sites may occur due to the diversity of genomic arrangements in both virus and host. This will 

result in fragmented viral genomes that should have remained intact. We assessed the error rate of 

VIBRANT and VirSorter (using virome decontamination mode) for cutting viral genomes. A total 

of 2,466 Caudovirales complete genomes were acquired from the NCBI RefSeq database, 

including 74 megaphages with genomes greater than 200kb. In total, VIBRANT fragmented 5 

genomes whereas VirSorter fragmented 159 (categories 1 and 2) or 160 (categories 1, 2 and 3). 

Although relatively comparable, VirSorter incorrectly cut 6.2% more complete viral genomes 

compared to VIBRANT (6.4% versus 0.2%, respectively). 
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Evaluating quality and completeness of predicted viral sequences 

 Determination of quality, in relation to completeness, of a predicted viral sequence has 

been notoriously difficult due to the absence of universally conserved viral genes. To date the most 

reliable metric of completeness for metagenomically assembled viruses is to identify circular 

sequences (i.e., complete circular genomes). Therefore, the remaining alternatives rely on 

estimation based on encoded proteins that function in central viral processes: replication of 

genomes and assembly of new viral particles.  

 VIBRANT estimates the quality of predicted viral sequences, a relative proxy for 

completeness, and indicates sequences that are circular. To do this, VIBRANT uses annotation 

metrics of nucleotide replication and viral hallmark proteins. Hallmark proteins are those typically 

specific to viruses and those that are required for productive infection, such as structural (e.g., 

capsid, tail, baseplate), terminase or viral holin/lysin proteins. Nucleotide replication proteins are 

a variety of proteins associated with either replication or metabolism, such as nucleases, 

polymerases and DNA/RNA binding proteins. Viruses are categorized as low, medium or high-

quality draft as determined by VOG annotations (Figure 5A, Additional File 17: Table S16). High-

quality draft represents sequences that are likely to contain the majority of a virus’s complete 

genome and will contain annotations that are likely to aid in analysis of the virus, such as 

phylogenetic relationships and true positive verification. Medium draft quality represents the 

majority of a complete viral genome but is more likely to be a smaller portion in comparison to 

high quality. These sequences may contain annotations useful for analysis but are under less strict 

requirements compared to high quality. Finally, low draft quality constitutes sequences that were 

not found to be of high or medium quality. Many metagenomic scaffolds will likely be low quality 
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genome fragments, but this quality category may still contain the higher quality genomes of some 

highly divergent viruses.  

Figure 5. Estimation of genome quality of identified viral scaffolds. (A) Explanation of 
interpretation of quality categories: complete circular, high-quality draft, medium-quality draft 
and low-quality draft. Quality generally represents total proteins, viral annotations, viral 
hallmark protein and nucleotide replication proteins, which are common metrics used for 
manual verification of viral genomes. (B) Application of quality metrics to 2466 NCBI RefSeq 
Caudovirales viruses with decreasing genome completeness from 100% to 10% completeness, 
respective of total sequence length. All 2466 viruses are represented within each completeness 
group. (C) Examples of viral scaffolds representing low, medium and high-quality draft 
categories.  
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 We benchmarked VIBRANT’s viral genome quality estimation using a total of 2466 

Caudovirales genomes from NCBI RefSeq database. Genomes were evaluated either as complete 

sequences or by removing 10% of the sequence at a time stepwise between 100% and 10% 

completeness (Figure 5B). The results of VIBRANT’s quality analysis displayed a linear trend in 

indicating more complete genomes as high quality and less complete genomes as lower quality. 

The transition from categorizing genomes as high quality to medium quality ranged from 60% and 

70% completeness. Although we acknowledge that VIBRANT’s metrics are not perfect, we 

demonstrate the first benchmarked approach to quantify and characterize genome quality 

associated with completeness of viral sequences. Manual inspection and visual verification of viral 

genomes that were characterized into each of these genome quality categories showed that quality 

estimations matched annotations (Figure 5C). 

 

Identifying function in viral communities: metabolic analysis 

 Viruses are a dynamic and key facet in the metabolic networks of microbial communities 

and can reprogram the landscape of host and community metabolism during infection. This can 

often be achieved by modulating host metabolic networks through expression of AMGs encoded 

on viral genomes. Identifying these AMGs and their associated role in the function of communities 

is imperative for understanding complex microbiome dynamics, or in some cases can be used to 

predict virus-host relationships. VIBRANT is optimized for the evaluation of viral community 

function by identifying and classifying the metabolic capabilities encoded by a virome. To do this, 

VIBRANT identifies AMGs and assigns them into specific metabolic pathways and broader 

categories as designated by KEGG annotations. 
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 To highlight the utility of this feature we compared the metabolic function of IMG/VR 

viruses derived from several diverse environments: freshwater, marine, soil, human-associated and 

city (Additional File 16: Figure S2). We found natural environments (freshwater, marine and soil) 

to display a different pattern of metabolic capabilities compared to human environments (human-

associated and city). Viruses originating from natural environments tend to largely encode AMGs 

for amino acid and cofactor/vitamin metabolism with a more secondary focus on carbohydrate and 

glycan metabolism. On the other hand, AMGs from city and human environments are dominated 

by amino acid metabolism, and to some extent cofactor/vitamin and sulfur relay metabolism. In 

addition to this broad distinction, all five environments appear slightly different from each other. 

Despite freshwater and marine environments appearing similar in the ratio of AMGs by metabolic 

category, the overlap in specific AMGs is less extensive. The dissimilarity between natural and 

human environments is likewise corroborated by the relatively low overlap in individual AMGs.   

 A useful observation provided by VIBRANT’s metabolic analysis is that there appears to 

be globally conserved AMGs (i.e., present within at least 10 of the 12 environments tested). These 

14 genes—dcm, cysH, folE, phnP, ubiG, ubiE, waaF, moeB, ahbD, cobS, mec, queE, queD, 

queC—likely perform functions that are central to viral replication regardless of host or 

environment. Notably, folE, queD, queE and queC constitute the entire 7-cyano-7-deazaguanine 

(preQ0) biosynthesis pathway, but the remainder of queuosine biosynthesis are entirely absent with 

the exception of queF. Certain AMGs are unique in that they are the only common representatives 

of a pathway amongst all AMGs identified, such as phnP for methylphosphonate degradation. 

These AMGs may indicate an evolutionary advantage for manipulating a specific step of a 

pathway, such as overcoming a reaction bottleneck, as opposed to modulating an entire pathway 
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as seen with preQ0 biosynthesis. However, 

it should be noted that this list of 14 globally 

conserved AMGs may not be entirely 

inclusive of the core set of AMGs in a given 

environment.  

 VIBRANT was evaluated for its 

ability to provide new insights into viral 

community function by highlighting AMGs 

from mixed metagenomes. Using only data 

from VIBRANT’s direct outputs, we 

compared the viral metabolic profiles of 6 

hydrothermal vent and 15 human gut 

metagenomes (Figure 6). As anticipated, 

based on IMG/VR environment 

comparisons, the metabolic capabilities 

between the two environments were 

different even though the number of unique 

AMGs was relatively equal (138 for 

hydrothermal vents and 151 for human gut). 

The pattern displayed by metabolic 

categories for each metagenome was similar 

to that displayed by marine and human viromes. For hydrothermal vents the dominant AMGs were 

part of carbohydrate, amino acid and cofactor/vitamin metabolism, whereas human gut AMGs 

Figure 6. Comparison of AMG metabolic 
categories between hydrothermal vents and 
human gut. Venn diagram depicts the unique and 
shared non-redundant AMGs between 6 
hydrothermal vent and 15 human gut 
metagenomes. The graphs depict the differential 
abundance of KEGG metabolic categories of 
respective AMGs for hydrothermal vents (top) 
and human gut (bottom). 
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were mostly components of amino acid and, to some extent, cofactor/vitamin metabolism. 

Although the observed AMGs and metabolic pathways were overall different, about a third (50 

total AMGs) of all AMGs from each environment were shared; between these metagenomes alone 

all 14 globally conserved AMGs were present. 

 Observations of individual AMGs provided insights into how viruses interact within 

different environments. For example, tryptophan 7-halogenase (prnA) was identified in high 

abundance (45 total AMGs) within hydrothermal vent metagenomes but was absent from the 

human gut. Verification using GOV2 (Global Ocean Viromes 2.0) 312 and Human Gut Virome 

databases supported our finding that prnA appears to be constrained to aquatic environments, 

which is further supported by the gene’s presence on several marine cyanophages. PrnA catalyzes 

the initial reaction for the formation of pyrrolnitrin, a strong antifungal antibiotic. Identification of 

this AMG only within aquatic environments suggests a directed role in aquatic virus lifestyles. 

Similarly, cysteine desulfhydrase (iscS) was abundant (14 total AMGs) within the human gut 

metagenomes but not hydrothermal vents. 

 

Application of VIBRANT: Identification of viruses from individuals with Crohn’s Disease 

 We applied VIBRANT to identify viruses of at least 5kb in length from 102 human gut 

metagenomes (discovery dataset): 49 from individuals with Crohn’s Disease and 53 from healthy 

individuals 160,300. VIBRANT identified 14,121 viruses out of 511,977 total scaffolds. These viral 

sequences were dereplicated to 8,822 non-redundant viral sequences using a cutoff of 95% 

nucleotide identity over at least 70% of the sequence. We next used read coverage of each virus 

sequence from all 102 metagenomes to calculate relative differential abundance across Crohn’s 

Disease and healthy individuals. In total, we found 721 viral sequences to be more abundant in the 
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gut microbiomes associated with Crohn’s Disease (Crohn’s-associated) and 950 to be more 

abundant in healthy individuals (healthy-associated).  

 Using these viruses identified by VIBRANT we sought to identify taxonomic or host-

association relationships to differentiate the viral communities of individuals with Crohn’s 

Disease. We used vConTACT2 to cluster the 721 Crohn’s- or 950 healthy-associated virus 

sequences with reference genomes using protein similarity. The majority of virus sequences 

(95.5%) were not clustered with any reference genome at approximately the genus level suggesting 

VIBRANT may have identified a large pool of novel or unique viral genomes. Although fewer 

total viruses were associated with Crohn’s Disease, significantly more were clustered to at least 

one representative at the genus level (72 for Crohn’s and 4 for healthy). Interestingly, no 

differentially abundant viruses from healthy individuals clustered with Enterobacterales-infecting 

reference viruses (enteroviruses), yet the majority (60/76) of Crohn’s-associated viruses were 

clustered with known enteroviruses, such as Lambda- and Shigella-related viruses. The remaining 

16 viruses mainly clustered with Caudovirales infecting Lactococcus, Clostridium, Riemerella, 

Klebsiella and Salmonella species, though Microviridae and a likely complete crAssphage were 

also identified. A significant proportion of all Crohn’s-associated viruses (250/721), and the 

majority of genus-level clustered viruses (42/76), were found to be integrated sequences within a 

microbial genomic scaffold but were able to be identified due to VIBRANT’s ability to excise 

proviruses.  

 We also generated a protein sharing network containing all 721 Crohn’s and 950 healthy-

associated virus sequences, which corresponded to taxonomic and host relatedness (Figure 7A). 

This protein network identified two different clustering patterns: (1) overlapping Crohn’s and 

healthy-associated viral populations clustered with Firmicutes-like viruses which may be 
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Figure 7. Viral metabolic comparison between Crohn’s Disease and healthy individuals 
gut metagenomes. (A) Partial view of vConTACT2 protein network clustering of viruses 
identified by VIBRANT and reference viruses. Small clusters and clusters with no VIBRANT 
representatives are not shown. Each dot represents one genome and is colored according to host 
or dataset association. Relevant viral groups are indicated by dotted circles (circles enclose 
estimated boundaries). (B) tBLASTx similarity comparison between (1) Escherichia phage 
Lambda and (2) three Crohn’s-associated viruses identified by VIBRANT. Putative virulence 
genes are indicated: pagC, tonB, hokC and dicB.  
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indicative of a stable gut viral community; (2) Crohn’s-associated viruses clustered with 

Enterobacterales-like and Fusobacterium-like viruses which may be indicative of a state of 

dysbiosis. The presence of a greater diversity and abundance of Enterobacterales and Fusobacteria 

has previously been linked to Crohn’s Disease 313,314, and therefore the presence of viruses 

infecting these bacteria may provide similar information.  

VIBRANT provides annotation information for all of the identified viruses which can be 

used to infer functional characteristics in conjunction with host association. Comparison of 

Crohn’s-associated Lambda-like virus genomic content and arrangement suggested a possible role 

of virally encoded host-persistence and virulence genes that are absent in the healthy-associated 

virome (Figure 7B). Among all Crohn’s-associated viruses, 17 total genes (bor, dicB, dicC, hokC, 

kilR, pagC, ydaS, ydaT, yfdN, yfdP, yfdQ, yfdR, yfdS, yfdT, ymfL, ymfM and tonB) that have the 

potential to impact host survival or virulence were identified. Importantly, no healthy-associated 

viruses encoded such genes (Table 2). The presence of these putative dysbiosis-associated genes 

(DAGs) may contribute to the manifestation and/or persistence of disease, similar to what has been 

proposed for the bacterial microbiome 315–317. For example, pagC encodes an outer membrane 

virulence factor associated with enhanced survival of the host bacterium within the gut 318. The 

identification of dicB encoded on a putative Escherichia virus is unique in that it may represent a 

‘cryptic’ provirus that protects the host from lytic viral infection, thus likely to enhance the ability 

of the host to survive within the gut 319. Finally, hokC may indicate mechanisms of virally encoded 

virulence 320.  

 To characterize the distribution and association of DAGs with Crohn’s Disease, we 

calculated differential abundance for two highly abundant DAG-encoding viruses across all 

metagenome samples. The first virus encoded pagC and yfdN, and the second encoded dicB, dicC 
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and hokC. Comparison of Crohn’s Disease to healthy metagenomes indicates these viruses are 

present within the gut metagenomes of multiple individuals but more abundant in association with 

Crohn’s Disease (Additional File 16: Figure S3A). This suggests an association of disease with 

not only putative DAGs, but also specific, and potentially persistent, viral groups that encode them. 

In order to correlate increased abundance with biological activity we calculated the index of 

replication (iRep) for each of the two viruses 156. Briefly, iRep is a function of differential read 

coverage which is able to provide an estimate of active genome replication. Seven metagenomes 

containing the greatest abundance for each virus were selected for iRep analysis and indicated that 

each virus was likely active at the time of collection (Additional File 16: Figure S3B).   

 To validate these aforementioned findings, we applied VIBRANT to two additional 

metagenomic datasets from cohorts of individuals with Crohn’s disease and healthy individuals 

(validation dataset): 43 from individuals with Crohn’s Disease and 21 from healthy individuals 

303,304. VIBRANT identified 3,759 redundant viral genomes from Crohn’s-associated 

metagenomes and 1,444 from healthy-associated metagenomes. Determination of protein 

networks and visualization similarly identified clustering of Crohn’s-associated viruses with 

reference enteroviruses (Additional File 16: Figure S4). Likewise, we were able to identify 15 out 

of the 17 putative DAGs to be present in higher abundance in the Crohn’s Disease microbiome 

(Additional File 18: Table S17). This validates our findings of the presence of unique viruses and 

proteins associated with Crohn’s Disease, and suggests Enterobacterales-like viruses and putative 

DAGs may act as markers of Crohn’s Disease. Overall, our results suggest that VIBRANT 

provides a platform for characterizing these relationships. 

 

Discussion 
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 Viruses that infect bacteria and archaea are key components in the structure, dynamics, and 

interactions of microbial communities 5,63,136,278,312. Tools that are capable of efficient recovery of 

these viral genomes from mixed metagenomic samples are likely to be fundamental to the growing 

applications of metagenomic sequencing and analyses. Importantly, such tools would need to 

reduce bias associated with specific viral groups (e.g., Caudovirales) and highly represented 

environments (e.g., marine). Moreover, viruses that exist as integrated proviruses within host 

genomes should not be ignored as they can represent a substantial fraction of infections in certain 

conditions and also persistent infections within a community 311.  

 Here we have presented VIBRANT, a newly described method for the automated recovery 

of both free and integrated viral genomes from metagenomes that hybridizes neural network 

machine learning and protein signatures. VIBRANT utilizes metrics of non-reference based 

protein similarity annotation from KEGG, Pfam and VOG databases in conjunction with a unique 

‘v-score’ metric to recover viruses with little to no biases. VIBRANT was built with the 

consideration of the human guided intuition used to manually inspect metagenomic scaffolds for 

viral genomes and packages these ideas into an automated software. This platform originates from 

the notion that proteins generally considered as non-viral, such as ribosomal proteins 72, may be 

decidedly common amongst viruses and should be considered accordingly when viewing 

annotations. V-scores are meant to provide a quantitative metric for the level of virus-association 

for each annotation used by VIBRANT, especially for Pfam and KEGG HMMs. That is, v-scores 

provide a means for both highlighting common or hallmark viral proteins as well as differentiating 

viral from non-viral annotations. In addition, v-scores give a quantifiable value to viral hallmark 

genes instead of categorizing them in a binary fashion.  
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 VIBRANT was not only built for the recovery of viral genomes, but also to act as a platform 

for investigating the function of a viral community. VIBRANT supports the analysis of viromes 

by assembling useful annotation data and categorizing the metabolic pathways of viral AMGs. 

Using annotation signatures, VIBRANT furthermore is capable of estimating genome quality and 

distinguishing between lytic and lysogenic viruses. To our knowledge, VIBRANT is the first 

software that integrates virus identification, annotation and estimation of genome completeness 

into a stand-alone program.  

 Benchmarking and validation of VIBRANT indicated improved performance compared to 

VirSorter 115, VirFinder 113 and MARVEL 293, three commonly used programs for identifying 

viruses from metagenomes. This included a substantial increase in the relationship between true 

virus identifications (recall, true positive rate) and false non-virus identifications (specificity, false 

positive rate). That is, VIBRANT recovered more viruses with no discernable expense to false 

identifications. The result was that VIBRANT was able to recover an average of 2.3 and 1.7 more 

viral sequence from real metagenomes than VirFinder and VirSorter, respectively. When tested on 

metagenome-assembled viral genomes from IMG/VR 262 representing diverse environments 

VIBRANT was found to have no perceivable environment bias towards identifying viruses. In 

comparison to provirus prediction tools, specifically PHASTER 295, Prophage Hunter 296 and 

VirSorter, VIBRANT was shown to be proficient in identifying viral regions within bacterial 

genomes. This included the identification of a putative Bacteroides provirus that PHASTER and 

Prophage Hunter were unable to identify. The importance of integrated provirus prediction was 

underscored in the analysis of Crohn’s Disease metagenomes since it was found that a significant 

proportion of disease related viruses were temperate viruses existing as host-integrated genomes. 
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 VIBRANT’s method allows for the distinction between scaffold size and coding capacity 

in designating the minimum length of virus identifications. Traditionally, a cutoff of 5000 bp has 

been used to filter for scaffolds of a sufficient length for analysis. This is under the presumption 

that a longer sequence will be likely to encode more proteins. For example, this cutoff has been 

adopted by IMG/VR. However, we suggest a total protein cutoff of four open reading frames rather 

than sequence length cutoff to be more suitable for comprehensive characterization of the viral 

community. VIBRANT’s method works as a strict function of total encoded proteins and is 

completely agnostic to sequence length for analysis. Therefore, the boundary of minimum encoded 

proteins will support a more guided cutoff for quality control of virus identifications. For example, 

increasing the minimum sequence length to 5000 bp will have no effect on accuracy or ability to 

recall viruses since VIBRANT will only be considerate of the minimum total proteins, which is 

set to four. The result will be the loss of all 1000 bp to 4999 bp viruses that still encode at least 

four proteins. To visualize this distinction, we applied VIBRANT with various length cutoffs to 

the previously used estuary virome (see Table 1). Input sequences were stepwise limited from 

1000 bp to 10000 bp (1000 bp steps) or four open reading frames to 13 open reading frames (one 

open reading frame steps) in length. Limiting to open reading frames indicated a reduced drop-off 

in total virus identifications and total viral sequence compared to a minimum sequence length limit 

(Additional File 16: Figure S5).  

 The output data generated by VIBRANT—protein/gene annotation information, 

protein/gene sequences, HMM scores and e-values, viral sequences in FASTA and GenBank 

format, indication of AMGs, genome quality, etc.—provides a platform for easily replicated 

pipeline analyses. Application of VIBRANT to characterize the function of Crohn’s-associated 

viruses emphasizes this utility. VIBRANT was not only able to identify a substantial number of 
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viral genomes, but also provided meaningful information regarding putative DAGs, viral 

sequences for differential abundance calculation and genome alignment, viral proteins for 

clustering, and AMGs for metabolic comparisons.  

  

Conclusions 

 Our construction of the VIBRANT platform expands the current potential for virus 

identification and characterization from metagenomic and genomic sequences. When compared to 

two widely used software programs, VirFinder and VirSorter, we show that VIBRANT improves 

total viral sequence and protein recovery from diverse human and natural environments. As 

sequencing technologies improve and metagenomic datasets contain longer sequences VIBRANT 

will continue to outcompete programs built for short scaffolds (e.g., 500-3000 bp) by identifying 

more higher quality genomes. Our workflow, through the annotation of viral genomes, aids in the 

capacity to discover how viruses of bacteria and archaea may shape an environment, such as 

driving specific metabolism during infection or dysbiosis in the human gut. Furthermore, 

VIBRANT is the first virus identification software to incorporate annotation information into the 

curation of predictions, estimation of genome quality and infection mechanism (i.e., lytic vs 

lysogenic). We anticipate that the incorporation of VIBRANT into microbiome analyses will 

provide easy interpretation of viral data, enabled by VIBRANT’s comprehensive functional 

analysis platform and visualization of information. 
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Table 1. Virus recovery of VIBRANT, VirFinder and VirSorter from mixed metagenomes 
and a virome. Mixed community assembled metagenomes from human gut, thermophilic compost 
and freshwater, as well as an estuary virome, were used to compare virus prediction ability between 
the three programs. For each assembly the scaffolds were limited to a minimum length of 1000bp. 
Only a subset of each dataset contained scaffolds encoding at least four open reading frames. 
VIBRANT, VirFinder (score minimum of 0.90) and VirSorter (categories 1 and 2) were compared 
by total viral predictions, total combined length of predicted viruses, and total combined proteins 
of predicted viruses. Comparison columns, denoted “VIBRANT vs. VirFinder” and “VIBRANT 
vs. VirSorter”, display the comparison ratio of the given metric; bold indicates greater performance 
by VIBRANT. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Metagenome 
 

seqs.  
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(≥1kb) 

Seqs.  
≥ 4  

ORFs 
Metric VIBRANT VirFinder  

(score≥0.90) 

VIBRANT  
vs.  

VirFinder 

VirSorter  
(cat. 1 & 2) 

VIBRANT  
vs.  

VirSorter 

human gut:  
adenoma 34,883 11,360 

total putative viruses 527 604 0.87 284 1.86 
total virus length (bp) 5,234,242 1,696,118 3.09 3,982,292 1.31 

total virus proteins 7,661 2,134 3.59 5,484 1.40 

human gut:  
carcinoma 53,946 18,669 

total putative viruses 784 1,329 0.59 450 1.74 
total virus length (bp) 5,611,953 3,500,838 1.60 4,182,862 1.34 

total virus proteins 8,401 4,644 1.81 5,945 1.41 

human gut:  
healthy 42,739 17,079 

total putative viruses 565 672 0.84 309 1.83 
total virus length (bp) 5,623,082 2,411,049 2.33 4,512,571 1.25 

total virus proteins 8,202 3,230 2.54 6,127 1.34 

thermophilic  
compost 68,815 21,620 

total putative viruses 1,047 878 1.19 383 2.73 
total virus length (bp) 10,253,162 2,238,129 4.58 3,290,654 3.12 

total virus proteins 9,912 2,806 3.53 4,400 2.25 

freshwater  
lake (bog) 79,862 26,832 

total putative viruses 5,626 7,567 0.74 1,503 3.74 
total virus length (bp) 34,976,570 25,357,664 1.38 15,436,797 2.27 

total virus proteins 56,120 37,537 1.50 21,280 2.64 

* estuary  
virome 5,247 3,277 

total putative viruses 3,141 2,294 1.37 1,121 2.80 
total virus length (bp) 6,591,285 6,478,804 1.02 5,163,674 1.28 

total virus proteins 20,500 12,035 1.70 9,645 2.13 
* VIBRANT, VirFinder and VirSorter ran with alternate settings 
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Table 2. Identification of putative DAGs encoded by Crohn’s-associated viruses. The differential abundance 
between Crohn’s Disease and healthy metagenomes of 17 putative DAGs. Abundance of each gene represents non-
redundant annotations, or total gene copy number, from Crohn’s-associated and healthy-associated viruses.  
 

 

Data Availability 

 VIBRANT is implemented in Python and all scripts and associated files are freely available 

at https://github.com/AnantharamanLab/VIBRANT/. The datasets supporting the conclusions of 

this article are included within the article and its additional files (Additional File 1: Table S1 and 

Additional File 20: Table S19). VIBRANT is also freely available for use as an application through 

the CyVerse Discovery Environment; to use the application visit https://de.cyverse.org/de/. 

Additional details of relevant data are available from the corresponding author on request. 
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Abstract 

 Temperate phages (prophages) are ubiquitous in nature and persist as dormant components 

of host cells (lysogenic stage) before activating and lysing the host (lytic stage). Actively 

replicating prophages contribute to central community processes, such as enabling bacterial 

virulence, manipulating biogeochemical cycling, and driving microbial community 

diversification. Recent advances in sequencing technology have allowed for the identification and 

characterization of diverse phages, yet no approaches currently exist for identifying if a prophage 

has activated. Here, we present PropagAtE (Prophage Activity Estimator), an automated software 

tool for estimating if a prophage is in the lytic or lysogenic stage of infection. PropagAtE uses 

statistical analyses of prophage-to-host read coverage ratios to decipher actively replicating 

prophages, irrespective of whether prophages were induced or spontaneously activated. We 

demonstrate that PropagAtE is fast, accurate and sensitive, regardless of sequencing depth. 

Application of PropagAtE to prophages from 348 complex metagenomes from human gut, murine 

gut and soil environments identified distinct spatial and temporal prophage activation signatures, 

with the highest proportion of active prophages in murine gut samples. In infants treated with 

antibiotics or infants without treatment, we identified active prophage populations correlated to 

specific treatment groups. Within time series samples from the human gut, 11 prophage 

populations, some encoding the sulfur metabolism gene cysH or a rhuM-like virulence factor, were 

consistently present over time but not active. Overall, PropagAtE will facilitate accurate 

representations of viruses in microbiomes by associating prophages with their active roles in 

shaping microbial communities in nature.  

 

Importance 
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Viruses that infect bacteria are key components of microbiomes and ecosystems. They can 

kill and manipulate microorganisms, drive planetary-scale processes, biogeochemical cycling, and 

influence the structures of entire food networks. Prophages are viruses that can exist in a dormant 

state within the genome of their host (lysogenic stage) before activating in order to replicate and 

kill the host (lytic stage). Recent advances have allowed for the identification of diverse viruses in 

nature, but no approaches exist for characterizing prophages and their stages of infection (prophage 

activity). We develop and benchmark an automated approach, PropagAtE (Prophage Activity 

Estimator), to identify the stages of infection of prophages from genomic data. We provide 

evidence that active prophages vary in identity and abundance across multiple environments and 

scales. Our approach will enable accurate and unbiased analyses of viruses in microbiomes and 

ecosystems. 

 

Introduction 

Viruses that infect bacteria and archaea (bacteriophages or phages) are pervasive entities 

that are ubiquitous on Earth. Phages drive evolutionary adaptation and diversification of 

microorganisms, play critical roles in global nutrient cycles and can directly impact human health 

5,21,48,136,137,147,277,278. Phages can be organized into two categories according to how they infect a 

host cell: lytic and temperate. Temperate phages are those that have the ability to integrate their 

dsDNA genome into their bacterial host and can be identified in nearly half of all cultivated 

bacteria 321. These integrated prophage sequences can coexist with the host cell in a lysogenic stage 

in which virions are not produced. During host genome replication the prophage sequence is 

likewise replicated in a one-to-one ratio. Given host-dependent or environmental cues such as 

DNA damage or nutrient stressors, or spontaneous activation, the prophage can enter a lytic stage 
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to produce virions and lyse the host 112,322–326. On the other hand, lytic phages are those that directly 

enter the lytic stage upon infection with no mechanism for integration and dormancy. 

Prophages can affect their host and surrounding microbial communities in both the 

“dormant” lysogenic stage as well as in the “active” lytic stage. In the dormant stage, prophages 

can impose physiological changes on the host by altering gene expression patterns, inducing DNA 

transfer or recombination events, and providing virulence attributes 39,327–330. For example, the 

pathogenicity of some strains of Staphylococcus aureus is reliant on the presence of integrated 

prophage sequences 55. In the active stage, the result of phage lysis significantly impacts microbial 

communities by turning over essential nutrients, especially carbon, nitrogen and sulfur 

35,37,69,82,84,85. Lysis of bacterial populations likewise alters whole microbiomes by diversifying 

community structures and expanding niche opportunities 136,257. For example, the “Kill the 

Winner” model of virus population growth suggests that dominant bacterial populations are more 

susceptible to phage predation, which will facilitate expansions of less abundant taxa as the 

dominant populations are lysed 58,59,331. Despite the importance of phage lysis on microbial 

communities, the proportion of lysis by prophages entering the lytic cycle is unclear. As opposed 

to strictly lytic phages, it remains difficult to associate prophages with active lysis. This is because 

prophage genome abundance can fluctuate according to host genome replication in the absence of 

lysis, whereas lytic phages, with few exceptions, must lyse a host in order to increase the 

abundance of their genomes.  

 In addition to traditional approaches such as isolation of phages, advances in high 

throughput metagenomic sequencing have sped up the ability to identify a large diversity of lytic 

and lysogenic phage sequences. Recently developed software have allowed for accurate 

characterization of prophages in both isolate and metagenomic assembled genomes, namely 
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VIBRANT 117, VirSorter 115, PHASTER 295 and Prophage Hunter 296. Thus far these software have 

allowed us to begin to estimate the total diversity of prophages in nature. However, identifying the 

genome sequences of prophages does not provide context to their in situ state of being in the 

lysogenic or lytic stage of infection. This information is vital as it distinguishes which prophage 

or phage populations are actively impacting a microbial community through lysis events. 

Moreover, with the exception of Prophage Hunter, current software cannot distinguish prophage 

genomes that have become “cryptic”, or those that have lost functional abilities to enter the lytic 

stage 319,332,333. Yet, Prophage Hunter still cannot identify if a given prophage is active, only if it 

may have the ability to do so.  

Providing context to the infection stage of a prophage is imperative for accurate 

conclusions on its role in effecting its host and the microbial community. For example, identifying 

a prophage encoding a virulence factor or metabolic gene may have important implications for its 

role in manipulating its host’s pathogenic interactions, metabolic transformations, and impacts on 

nutrient and biogeochemical cycling. In order to place the prophage into context within the 

microbial community it would be necessary to first determine which stage the prophage is in, 

namely lytic or lysogenic. Assuming that all identified prophages are in a lytic stage could lead to 

misrepresentations or misinterpretations of the data if the prophage is actually dormant, or even 

cryptic.  

Here, we present the software PropagAtE (Prophage Activity Estimator). PropagAtE uses 

genomic coordinates of integrated prophage sequences and short sequencing reads to estimate if a 

given prophage was in the lysogenic (dormant) or lytic (active) stage of infection. PropagAtE was 

designed for use with metagenomic data but can also use other forms of genomic data (e.g., 

sequence data from isolated microorganisms). When tested on systems with known active 
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prophages PropagAtE was fully accurate in determining prophages that were active versus 

dormant, regardless of read coverage depth. No active prophages were identified in control systems 

encoding prophages that were known to be dormant. PropagAtE was also utilized to identify active 

prophages in several metagenomes, including the adult and infant human gut, murine gut, and 

three different peatland soil environments. We show that specific prophages can be identified 

within differing  antibiotic treatment and no treatment groups of individuals, and that activity of 

those prophages are correlated to particular treatment groups. Finally, we show that identifying the 

retention of a prophage over time does not necessarily indicate activity over time. PropagAtE is 

freely available at https://github.com/AnantharamanLab/PropagAtE.  

 

Results 

Conceptualization of PropagAtE 

Temperate phages that are integrated exist as a component of their host’s genome. When 

the host genome replicates, the prophage is also replicated likewise in a one-to-one ratio. As a 

result, when sequencing the host genome the prophage region and the flanking host region(s) are 

represented equally. Upon activation and entry into the lytic cycle, the prophage sequence is 

independently replicated for phage propagation and assembly into new virions. At this stage within 

the host cell there will be one host genome equivalent for multiple phage genomes regardless of 

whether lysis has occurred yet or not. Following lysis, virions containing phage genomes are 

released into the surrounding environment. These released genomes continue to represent the ratio 

of prophage to host genome copies if these prophage genomes are still included in the metagenome 

(Fig. 1A).  
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The specific ratio of phage to host genomes depends on many factors. One major factor is 

the burst size of a given phage, or the number of virions released from a lysed host. Phage burst 

sizes can range from fewer than ten in the case of crAssphage that infects Bacteroides intestinalis 

334, to many thousands in the case of phage MS2 that infects Escherichia coli 335. Another factor, 

Figure 1. Schematic conceptualization of PropagAtE mechanism. (A) Stages of integrated 
prophage infection from the lysogenic (dormant) to lytic (active) stages. Over the course of 
infection the prophage:host genome copy ratio increases. (B) Microbial community structure 
with an active prophage, from phage activation to lysis. The prophage:host genome copy ratio 
increases to greater than 1:1 through phage genome replication and host genome degradation. 
(C) Microbial community structure with a dormant prophage in which the prophage:host 
genome copy ratio is near 1:1. Here, one host is depicted as having cured the prophage from 
its genome. (D) Conceptual diagram of the read coverage for a prophage in a dormant (top) 
or active (bottom) stage of infection. Active prophages result in an increased read coverage 
above the baseline read coverage of the host. 
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utilized by many phages including those that infect marine cyanobacteria, is that the host genome 

is degraded during the lytic stage to supply nucleotides to the replicating phage genomes which 

will further increase the prophage to host genome copy ratio 336,337. Thus, during the lytic stage of 

phage propagation as well as post-lysis, the ratio of prophage to host genome copies will become 

skewed in favor of prophage genomes 338,339. This will lead to a prophage:host genome copy ratio 

significantly greater than 1:1 (Fig. 1B). If the prophage was in a dormant stage of infection, the 

prophage:host genome copy ratio would be approximately 1:1 (Fig. 1C). This is likewise 

dependent on various factors, such as the ability of some members of the host population to “cure” 

(i.e., remove) the prophage from its genome. Despite nuances in specific prophage:host genome 

copy ratios, active prophages will yield a ratio greater than 1:1 whereas dormant prophages will 

yield a ratio near 1:1.  

Whether or not the prophage:host genome copy ratio is skewed can be identified using 

statistical analyses of aligned sequencing read coverage after genome sequencing and read 

alignment. After sequencing and assembly of a system (e.g., isolated bacteria culture, complex 

microbiome, etc.), the integrated prophage sequence will assemble as a component of the host 

genome in a ~1:1 ratio, regardless of activity. However, if a prophage has activated then the 

resulting phage genome copies contained in virions are identical to the integrated prophage 

sequence. Therefore, read alignment to the assembly will recruit reads to the prophage and host 

regions in a ratio indicative of the stage of infection. During the lysogenic stage where the 

prophage is dormant, read recruitment will generate even coverage across the regions. Conversely, 

a prophage that has entered the lytic, active stage will generate an uneven read recruitment skewed 

towards greater coverage at the prophage region only (Fig. 1D). Read alignment will not determine 



 148 
 

the true prophage:host abundance, but it can quantify a relative ratio to accurately determine stage 

of infection.  

 

Overview of PropagAtE’s workflow 

Differentiating active prophages from those that are dormant is essential for accurate 

representation and evaluation of individual-cell and community-level systems. PropagAtE 

provides the first automated platform for the identification of active prophages that is scalable for 

isolate genomes or complex metagenomes. Since most prophages exist as an integrated (i.e., 

connected) element of a host genome, the read coverage from the prophage and host sections can 

be compared in a one-to-one manner to estimate a genome copy ratio. PropagAtE utilizes the ratio 

of prophage:host read coverage along with the ratio’s effect size (i.e., significance of the ratio) to 

designate if a given prophage was dormant or active. The PropagAtE workflow can be simplified 

Figure 2. Workflow and implementation of PropagAtE. (A) Workflow of PropagAtE 
including data input, read alignment processing and results output. Example of read coverage 
profiles for two active Bacillus licheniformis DSM13 prophages with all reads (B) or 5% 
subsampled reads (C) aligned, respective to the conceptual diagram in Figure 1D. For B and C, 
statistics for coverage, Cohen’s d effect size, and prophage:host coverage ratio are shown.  
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into four general steps: data input, read alignment and processing, coverage calculations, and 

statistical results output (Fig. 2A). Users are given two options for data input: (1) 

genomes/scaffolds of host sequences with raw short sequencing reads or (2) a pre-generated 

alignment file in SAM or BAM format. If given the former input, reads will be aligned using 

Bowtie2 225 to generate a SAM file. All SAM format files are converted to BAM format for more 

efficient processing 340.  

Using the BAM file, either generated or supplied by the user, aligned reads exceeding the 

percent alignment threshold are removed. Following filtering, coverage per nucleotide is extracted 

including all nucleotides with zero coverage. To eliminate noise, coverage values at the sequence 

ends are trimmed off to a length roughly equivalent to the input read length. Then, users are given 

two options for prophage coordinate data input: direct results from a VIBRANT (v1.2.1 or greater) 

analysis 117 or a manually generated coordinate file of a specified format. In cases for which 

multiple prophages are present on a single genome/scaffold, all prophage regions are considered 

independently. In addition, the host region is segmented to exclude all prophage regions, but each 

segment is considered as a single, cohesive host sequence. That is, if two or more prophages are 

present on a single host scaffold, neither prophage will interfere with the other in terms of coverage 

value calculations and each prophage is compared to an identical prophage-excluded host region.  

For each prophage and host pair, metrics for average coverages, median coverages, 

coverage standard deviations and prophage:host coverage ratio are calculated. Each prophage’s 

activity is estimated according to the prophage:host coverage ratio and Cohen’s d effect size of the 

coverage difference. Prophages exceeding the default or user-set thresholds for both metrics are 

considered as potentially active. Additionally, potentially active prophages must pass the minimum 

average coverage and minimum coverage breadth thresholds. If these latter coverage criteria are 



 150 
 

met the prophage is estimated to be active, otherwise the prophage is labeled as ambiguous (Fig. 

1A).  

 

Read alignment can visualize active prophages 

 Two activated prophages in the genome of Bacillus licheniformis DSM13 339 were used to 

visualize active prophage identification using PropagAtE using full and subsampled read sets 

(Figs. 2B,C). Visualization of the read coverage at each nucleotide in the genome clearly depicted 

coverage spikes exclusively at the prophage regions. The example prophages existed in close 

proximity to each other and had differing average coverages (60x and 169x). Both example 

prophages likewise met the minimum prophage:host coverage ratio (2.08 and 5.81) and Cohen’s 

d effect size (1.45 and 3.58) thresholds. These results are in line with the conceptualization of the 

workflow seen in Fig. 1D apart from notable spikes in coverage at prophage genome centers and 

host genome ends. The host genome end coverage spikes are commonly explained by the location 

of the host’s origin of replication 156,341. The coverage spike at the prophage genome center is likely 

the result of a similar occurrence of a prophage replication-related packaging site 339,342. 

 

Positive control tests for prophages from isolate genomes 

 Positive control tests were utilized in order to set threshold boundaries for PropagAtE to 

identify active prophages as well as assess the recall rate of PropagAtE. Positive control samples 

were considered as those for which DNA from both an active prophage and its host were extracted 

and sequenced in tandem. This method best represents metagenomic samples in which all DNA is 

extracted and sequenced together. In addition, extraction of both host and free phage DNA together 

is essential for positive tests because this method will best depict the most accurate prophage:host 
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coverage ratio. Three model systems for which sequencing data was publicly available were 

identified for use as positive controls. All experiments and sequencing were performed elsewhere 

339,343,344 (Supplemental Table S1). Each system, since they represent isolate bacteria, have a 

much higher read coverage compared to a typical metagenome assembled genome. To ensure 

validation of PropagAtE for both isolate and metagenomic samples, two tests per system were 

done. One was done with all available reads (“full reads”) and another was done with a random 

subset of 5% of the reads (“5% reads”). Furthermore, prophages were predicted from these systems 

using both VIBRANT and PHASTER to ensure accurate predictions despite variable prophage 

coordinate predictions. All PropagAtE results for positive control tests can be found in 

Supplemental Table S2.  

 The first system we tested was Bartonella krasnovii OE1-1 and its prophage 343. In 

triplicate, the bacteria were either induced for prophage using mitomycin C or uninduced as 

controls. For the induced prophages, the prophage:host coverage ratios were relatively even 

between the three samples for VIBRANT (1.82, 1.87 and 2.07) and PHASTER (1.22, 1.26 and 

1.21). Likewise, in the uninduced control samples the prophage:host coverage ratios depicted 

nearly equal coverage (VIBRANT: 1.06 and 1.13; PHASTER: 0.73, 0.98 and 1.03) except one 

sample from VIBRANT with a low ratio (0.46) (Figs. 3A, B). This suggests the method is reliable 

across multiple samples or time points for the same phage. The ratio effect size, using Cohen’s d 

metric, indicated that the prophage:host coverage ratios observed from the VIBRANT predictions 

were significant in their difference. For the induced prophages the effect sizes were greater than 

one (1.20, 1.19, 1.15) indicating a high dissimilarity between the prophage and host coverages. 

The uninduced controls’ effect sizes were low (0.33 and 0.59) except for the sample with the low 

ratio which had a higher effect size (1.62) corresponding to the host having a higher coverage (Fig. 
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3C). For PHASTER the same results were not observed. The effect sizes for both the induced 

prophages (0.45, 0.42 and 0.38) and uninduced controls (0.95, 0.07 and 0.15) were not significant 

(Fig. 3D). When 5% of the reads were randomly sampled for PropagAtE, the induced and 

uninduced results were essentially equivalent to that of the full read set for VIBRANT and 

PHASTER in terms of prophage:host coverage ratios (Supplemental Figs. 1A, B) and only 

marginally lower effect sizes (Supplemental Figs. 1C, D). This further indicates that high read 

coverage is not essential, nor significantly impacts, the outcome of analysis. However, this system 

suggests that the method in which prophages are predicted can determine the outcome and 

accuracy of PropagAtE activity estimation. Here, VIBRANT predictions yielded expected results 

whereas PHASTER predictions yielded dormant predictions where active was expected.  

Figure 3. Positive and negative control results using full read sets. Positive control results 
for (A-D) Bartonella krasnovii OE1-1, (E-H) Lactococcus lactis MG1363, and (I-L) Bacillus 
licheniformis DSM13. Samples are labeled as containing active or dormant prophages. (M-P) 
All negative control results with each value on the x-axis representing a single prophage. 
Prophage and host average read coverages (green and purple, respectively) as well as Cohen’s 
d effect sizes and prophage:host coverage ratios (blue and orange, respectively) are shown. 
Each positive and negative control set has prophage predictions generated by both VIBRANT 
and PHASTER (labeled vertically). 
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 The second system we tested was Lactococcus lactis MG1363 and its prophage 344. Similar 

to the previous system, in one sample the prophage was induced with mitomycin C and another 

was used as an uninduced control. The induction sample was sequenced 1- and 2-hours post-

induction for a total of two positive samples. For the induced samples the resulting prophage:host 

coverage ratios were high and increased over time (VIBRANT: 116 and 204; PHASTER: 117 and 

210). In the uninduced control the prophage:host coverage ratio was, as seen with the previous 

system, nearly equal (VIBRANT: 1.02; PHASTER: 1.01) (Figs. 3E, F). The effect size of the ratio 

for the induced samples were also high (VIBRANT: 5.98 and 5.91; PHASTER: 4.92 and 4.88) 

while the effect size of the control sample ratio was low (VIBRANT: 0.10; PHASTER: 0.05). The 

results from 5% subsampled reads yielded nearly identical equally determinant values for 

prophage:host coverage ratios (Supplemental Figs. 1E, F) and effect sizes (Supplemental Figs. 

1G, H).  

The third system we tested was Bacillus licheniformis DSM13 and its prophages 339. Here, 

two prophages were spontaneously activated at 26°C and no control was used for comparison. For 

VIBRANT, the prophage:host coverage ratios (2.08 and 5.81) as well as the corresponding effect 

sizes (1.55 and 3.58) were significant (Figs. 3I, K). For PHASTER, the prophage:host coverage 

ratios (1.74 and 1.28) as well as the corresponding effect sizes (0.93 and 0.40) were not significant 

(Figs. 3J, L). The same results for both prediction tools were observed when 5% subsampled reads 

were used (Supplemental Figs. 1I-L).  

Although the available control sample size of the three systems and four unique prophages 

could not designate a true discovery rate with statistical confidence, the controls tested with 

VIBRANT predictions yielded high accuracy and recall. Specifically, only the B. krasnovii 

prophage in two induced samples yielded a dormant prediction where active was expected. 
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However, these false-negative results are not entirely unexpected as the default prophage:host 

coverage ratio for PropagAtE is set very conservatively to 2.0 and can be reduced to 1.75 while 

maintaining high accuracy. With a ratio cutoff of 1.75, all controls with VIBRANT predictions 

would have yielded expected results. When PHASTER predictions were used, the false-negative 

rate for PropagAtE increased considerably indicating that accurate prophage coordinate 

predictions are essential.  

 

Negative control tests for prophages from isolate genomes 

 Negative control tests were utilized in order to set threshold boundaries for PropagAtE to 

identify dormant prophages as well as assess PropagAtE’s specificity. Several negative control 

samples were used for testing in addition to the control samples presented above. Negative controls 

were considered as those in which a bacterial genome encoding at least one prophage was 

sequenced in the absence of known prophage induction (i.e., isolate cultures without prophage 

induction). A total of 19 diverse bacterial genomes encoding 40 predicted prophages by VIBRANT 

and 37 predicted prophages by PHASTER were used. As before, each system was tested with a 

set of all reads as well as smaller dataset containing 5% randomly subsampled reads. All 

sequencing was performed elsewhere (Supplemental Table S1). All PropagAtE results for 

negative control tests can be found in Supplemental Table S2. 

 When using the complete reads sets, all prophages were found to be dormant. Average 

prophage (1512x to 0.04x) and host (982x to 0.06x) coverages ranged considerably (Figs. 3M, N). 

All prophage:host coverage ratios were below 1.75 (VIBRANT: max 1.55; PHASTER: max 1.54) 

with the exception of one prophage predicted by PHASTER with a prophage:host coverage ratio 

of 1.97. However, the effect size of the high prophage:host coverage ratio was only 0.11. All 
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coverage ratio effect sizes ranged from 2.65 to 0.01 (Figs. 3O, P). A total of three prophages 

predicted by VIBRANT and two prophages predicted by PHASTER had effect sizes greater than 

1.75, but the prophage:host coverage ratios were less than 1.55. For the 5% subsampled read 

results, the prophage:host coverages ranged from 1.55 to 0 and the coverage ratio effect sizes 

ranged from 2.14 to 0.01. One prophage from each of VIBRANT and PHASTER had an effect 

size greater than 1.75, but the prophage:host coverage ratio was again less than 1.55 

(Supplemental Figs. 1M-P). 

Given that all prophages were identified as dormant these results suggest that the two 

metrics, prophage:host coverage ratio and corresponding effect size, function adequately in a 

check and balance system with each other. Prophages with significantly high prophage:host 

coverage ratios had insignificant effect sizes, and vice versa. Likewise to the positive control tests, 

the observed false discovery rate was  

zero, though the true accuracy of PropagAtE is likely small but greater than zero. In addition, the 

negative and positive control tests suggest a prophage:host coverage ratio of 1.75, rather than the 

conservative default of 2.0, can yield accurate results.  

 

 Testing PropagAtE on mock metagenomes 

 Sequences assembled from complex metagenome samples typically have lower read 

coverage than those from isolate systems and read mapping is performed in the presence of 

multiple genomes. We next tested PropagAtE on a mock metagenome consisting of prophages 

predicted by VIBRANT from 21 unique bacteria from the positive and negative control tests. 

Lactococcus lactis SD96 from the negative controls was not included in favor of Lactococcus 

lactis MG1363 from the positive controls. A total of 21 corresponding read sets, one per host, were 
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selected and 300k, 100k or 20k paired reads were randomly subsampled per read set and combined 

to generate the mock metagenome. Thus, three mock metagenomes in total were generated 

representing 300k, 100k, and 20k subsampled reads per system (Supplemental Table S3). The 

resulting average read coverages of the prophages was 46x, 16x and 3x for the 300k, 100k and 20k 

subsampled mock metagenomes, respectively. The results from the 300k subsampled reads mock 

metagenome corresponded to the results from the positive and negative control tests, with 4 active 

and 36 dormant prophages. A total of 8 prophages with unconfirmed activity status from the 

positive control hosts were not considered. For the 100k and 20k subsampled reads mock 

metagenomes, the B. krasnovii active prophage was identified as dormant due to insufficient 

prophage:host coverage ratios (1.75 and 1.70, respectively), and all dormant prophages were 

accurately identified. This depicts that PropagAtE functions well with combined sequences and 

partial reads from multiple sources, suggesting the method can work suitably with metagenomes. 

 

Comparing PropagAtE and hafeZ 

 The software hafeZ 345 similarly utilizes read coverage to identify active prophages. 

Contrary to PropagAtE, hafeZ does not take in prophage coordinates as input, but rather predicts 

prophages from a host sequence based on read coverage signatures. Using the hafeZ example 

Flavonifractor plautii host genome and prophages predicted by VIBRANT, PropagAtE correctly 

identified the expected active prophage with a prophage:host coverage ratio of 3.38 and effect size 

of 5.98. Conversely, hafeZ was unable to identify any prophages in the positive control datasets 

presented here. Although, PropagAtE and hafeZ cannot be compared directly due to differing 

methods of identifying active prophages, these results suggest PropagAtE is better capable of 

identifying more active prophages than hafeZ.  
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 Applying PropagAtE to identify active prophages in metagenomes 

 PropagAtE was designed to rapidly assess the activity of prophages in metagenomes in a 

high-throughput manner. Additionally, PropagAtE can also identify active prophages in genomes 

of cultivated organisms, irrespective of the manner of prophage induction (i.e., spontaneously or 

experimentally induced). To validate the broad utility of PropagAtE, we demonstrate its 

application on 348 metagenomic samples from a variety of environments: adult and infant human 

gut, murine gut, and peatland soil 85,300,346–349 (Table 1, Supplemental Table 1). A total of 349 

semi-redundant prophages were identified as active across all samples. Per sample, the percent of 

prophages that were active ranged from 0% to 18% with a combined average of 1.1% (Fig. 4). The 

murine gut had the most active prophages per sample with an average of 8.9% whereas all human 

gut samples had a combined average of 1.1%. With a prophage:host coverage ratio of 1.75, the 

Figure 4. Percent of prophages by activity category in metagenomic samples. Five sets 
of metagenomic samples are compared with (A) all activity categories and (B) only the 
active prophage category. For (B), each dot represents a single sample. Identifier labels a-f 
on the x-axis correspond to the final column Label in Table 1. 
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number of active prophages increased to 402 with a combined average of 1.3%. These results show 

that for metagenomic samples most prophages identified as integrated into a host  

genome are dormant or activity is undetectable. All PropagAtE results for metagenomic samples 

can be found in Supplemental Table S4. 

 For metagenome datasets with various conditions (e.g., antibiotic dosage) no significant 

difference was observed in the total number of active prophages per condition (Supplemental Fig. 

S2, Supplemental Table S5). However, utilizing PropagAtE to identify which sets of prophages 

are active yielded interesting results. For example, hosts with active prophage populations were 

compared from the gut of infants given antibiotics compared to infants without antibiotics. A total 

of 62 host populations with a combined 192 active prophages were compared. Interestingly, a 

distinct pattern was observed wherein prophage activity was correlated with antibiotic treatment 

per host population. Generally, a host population had prophage activity in either antibiotic 

treatment or no treatment, with few host populations having prophage activity uncorrelated with a 

treatment (Fig. 5, Supplemental Table S6). This indicates that although a given prophage or host 

Figure 5. Active prophages identified in infant gut samples. Each host (x-axis) is labeled 
with two points, one for the total number of prophages identified in antibiotic treatment 
samples (blue) and one for the total number of prophages identified in no treatment samples 
(orange). Background highlighting depicts hosts with proportionally more active prophages 
in antibiotic treatment samples (blue), more active prophages in no treatment samples 
(orange), or equivalent active prophages in both treatment groups (green).  
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population may be found across multiple samples, they may be predominately active in specific 

treatments.  

 

Estimating prophage activity over time 

 To further explore the activity of specific prophage populations over time, a sixth set of 

metagenomic samples was used 304. This set included human gut fecal samples from three different 

children with Crohn’s Disease. For each individual, four time series samples were taken at 

approximately days 0, 16, 32 and 54. Among all three individuals, a total of 11 unique prophages 

were identified across all four time points. None of the 11 prophages were shared between two or 

more individuals. Therefore, these 11 prophages were found to be consistently present and retained 

stably over time. All prophage populations encoded hallmark phage proteins, nucleotide 

replication proteins and lysis proteins, indicating they likely have the ability to activate (i.e., not 

cryptic). For most populations, genes for integration were also identified (Supplemental Fig. S3A, 

Supplemental Table S7). Furthermore, one prophage population encoded the auxiliary metabolic 

gene cysH for assimilatory sulfate reduction, a metabolic process that can yield hydrogen sulfide, 

which has been implicated in exacerbating inflammatory bowel diseases such as Crohn’s Disease 

131,350. Another prophage population encoded a RhuM family virulence protein. Yet, PropagAtE 

identified none of these prophages to be active at any time point. This conclusion is important as 

it suggests that the prophages, in addition to the cysH and rhuM-like genes, were present but may 

not have been actively impacting the microbial community at the time of sample collection. 

Genome alignment of each prophage population yielded 99.8-100% identity with a maximum 

number of two nucleotide differences between members of a population (Supplemental Fig. S3B). 

The lack of sequence diversification likewise suggests the prophage populations were primarily 
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dormant over time since active phage genome replication typically results in nucleotide changes. 

However, the minor nucleotide differences may have resulted from alignment or sequencing error, 

or from prophage activity between the time points sampled. 

 

Sequencing depth does not correlate with total active prophages 

 As a final validation test, we examined if the total number of sequencing reads, as an 

estimation of sequencing depth, had an impact on the total number of active prophages identified. 

It may be assumed that since PropagAtE relies on read coverage, samples with a greater number 

of reads would identify disproportionately more active prophages. Using five of the metagenomic 

sample sets (Table 1) we correlated the total number of reads used by PropagAtE to the total 

number of active prophages identified. Four of the five sets of metagenomic samples yielded near 

linear, flat trends indicating no correlation between total reads and total active prophages. The fifth 

set, representing infant gut samples, depicted more of a trend towards a correlation between more 

reads and more active prophages. However, the trend was not significant (Supplemental Fig. S4, 

Supplemental Table S4). 

 

 PropagAtE run time 

 Efficiency and quick run speed are essential for large-scale metagenomic workflows. 

PropagAtE was designed to meet the needs of these analyses, such as those with many samples or 

large file sizes. PropagAtE is likewise scalable for smaller datasets. To show this we estimated the 

total run time for various isolate and metagenome samples. For isolate samples, run time for 

PropagAtE analysis was 10-90 seconds with an alignment format file (i.e., BAM format) as the 

input. For metagenomes, the run time was similar (5-45 seconds) (Supplemental Table S8). The 
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main factor affecting run time is read alignment performed by Bowtie2 which had run times of 1-

12 minutes depending on input reads and reference genome sizes. It is important to note that the 

run time for large read dataset inputs significantly improves when utilizing the multi-threading  

feature.  

 

Discussion 

 Phages are key contributors to microbiome dynamics in essentially all environments on 

Earth 5,9,12,35,37,84,122,351. With the availability of high-throughput sequencing and newly developed 

software tools we have the ability to identify and study these diverse phages 115,117,295,296. This 

includes both strictly lytic phages as well as integrated prophages. However, little emphasis has 

been placed on identifying which populations of identified prophages are actively replicating as 

opposed to existing in a dormant or cryptic stage of infection.  

Here we have presented the software tool PropagAtE for the estimation of activity of 

integrated prophages using statistical analyses of read coverage. Although the concept of using 

Dataset Description Samples Prophages Hosts Citation Label 
Human 
gut (fecal) 

Adult individuals with colorectal 
adenoma, carcinoma, or healthy 
controls ("CRC”) 

15 489 484 (57) a 

Human 
gut (fecal) 

Adult individuals with Crohn’s 
Disease or healthy controls 
("HeQ”) 

96 2938 2897 (54) b 

Human 
gut (fecal) 

Infant individuals given 
antibiotics or untreated controls 
("infant gut”) 

139 356 333 (55) c 

Peatland 
(soil) 

Peatland soil cores of bog, fen 
and palsa environments ("soil”) 

75 379 375 (22, 56) d 

Murine 
gut (fecal) 

Virome fraction samples from the 
murine gut (“murine gut”) 

23 1308 1292 (53) e 

Human 
gut (fecal) 

Time series of adult individuals 
with Crohn’s Disease (“IjazUZ”) 

12 155 153 (58) f 

Table 1. Summary of metagenomic sample datasets. The environment type, description of 
the dataset and total number of samples per metagenomic dataset are provided. The final column 
Label corresponds to labeling in Figure 4.  
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read coverage to predict prophage activity is not new 339, PropagAtE is the first benchmarked 

implementation of the method into an automated software for use with large datasets, such as 

metagenomes. PropagAtE functions by quantifying the relative genome copy ratio between a 

prophage region compared to a corresponding host region. Only prophages that have activated and 

begun propagation (e.g., genome replication and virion assembly) will yield prophage:host ratios 

sufficiently greater than 1:1. The prophage:host genome copy ratio, estimated by using read 

coverage ratios, as well as the ratio’s effect size are used to classify a prophage as active or 

dormant. We provide evidence to show that PropagAtE is fast, sensitive, and accurate in predicting 

prophages as active versus dormant and have applied the method to various metagenome samples.  

Identifying which prophage sequences are active versus dormant in a sample provides 

several benefits. Namely, assuming that all identified prophages are active is an overestimation 

and will lead to a misrepresentation of the in situ dynamics of a microbial community. For 

example, we show here that 11 unique prophages identified in human gut samples from the same 

individual over time may not necessarily be active when identified. The most accurate 

representation of the prophages is to conclude that their effect on the resident microbial 

communities likely occurred at a time point not sampled or that the prophages were consistently 

dormant. Another benefit includes making accurate conclusions on the role of host bacteria in a 

given sample. Foremost, prophages can be responsible for the virulence of multiple human 

pathogens, such as Clostridioides difficile, Clostridium botulinum, Staphylococcus aureus, and 

Corynebacterium diphtheria 34,352–356. Although some virulence effects are present during 

prophage dormancy and expression of specific genes, many require activation of the prophage. In 

addition to virulence, bacteria actively infected by a phage can have a modified metabolic 

landscape compared to bacteria uninfected or harboring a dormant prophage. Several examples 
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include the phage-directed regulation of sulfur, carbon, nitrogen and phosphorus metabolism in 

various cyanobacteria and enterobacteria 66,69,70,75. This distinction is vital when assessing the role 

of the microbial community in an environment. Related to this, activity can provide context to any 

auxiliary metabolic genes identified on the prophage genome, such as cysH for assimilatory sulfate 

reduction described here. In the human gut specifically, identifying phage-encoded genes for sulfur 

metabolism may have important implications for the health of the gastrointestinal tract and a 

phage’s role in the manifestation or perturbation of diseases 13,351. If a prophage encoding an 

auxiliary metabolic gene is identified, determining the stage of infection of the prophage can 

provide context to the effect of the auxiliary metabolic gene.  

 It is important to point out several unavoidable caveats to the implementation of 

PropagAtE. First, accurate prophage:host genome copy ratio estimations are inhibited if the sample 

is size fractionated before sequencing. For example, many aquatic samples are size fractionated 

by filtering onto a 0.2-micron filter. In these cases, only pre-lysis infections will be picked up by 

read coverage because the genomic content present in released virions will likely pass through the 

0.2-micron filter. Second, not all prophages exist as integrated sequences, such as those that are 

episomal. Prophages that are episomal do not have attached host sequence and therefore cannot 

have prophage:host read coverage compared in a one-to-one manner, and for metagenomes cannot 

have accurate host prediction. This also applies to prophages that do not assemble as integrated 

components of a host scaffold. However, it is worth noting that for integrated prophages 

PropagAtE functions whether the host region flanks the prophage on one or both sides. Third, 

though not verified, is that inactive prophages may be more likely to assemble with a host scaffold. 

Since active prophages lyse their host and potentially degrade their host’s genome, more activity 

of a prophage may lead to a lower probability of assembling as an integrated prophage. Fourth, 
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induction of prophages within a host population may occur asynchronously and lead to consistent 

activity with low prophage:host coverage ratios, causing activity to be missed. Fifth, some host 

populations may include some members that encode a prophage and some members that do not. 

In the latter example, the prophage:host ratio is initially skewed to less than one, making it more 

likely for PropagAtE to miss activity. Due to the caveats presented, PropagAtE is intended to be 

used for identifying active prophage sequences rather than assessing the total number or fraction 

of prophages that are active in a sample. In this context PropagAtE performs with little to no 

observed error. Finally, PropagAtE has been developed and tested using short read sequencing 

data and is not yet suitable for long read analyses. 

Overall, our results demonstrate that PropagAtE will facilitate the accurate characterization 

and study of viruses in microbiomes and nature. Examples of future applications of PropagAtE 

include the exploration of prophages in human health and disease, detection of environmental and 

chemical triggers for induction of prophages, phage therapy research (for disqualifying 

prophages), and in environmental systems research.  

 

Methods 

Datasets used for control tests 

 All datasets, genomes and reads, used for positive and negative control tests were acquired 

from publicly available datasets on NCBI databases 207,210. See Supplemental Table S1 for details 

of studies and accession numbers. VIBRANT (v1.2.1) 117 and PHASTER (accessed December 

2021) were used for identification and annotation of all prophages. Only VIBRANT was used for 

identification of prophages from metagenomes. For the mock metagenome, reads were randomly 

subsampled using seqtk (v1.3-r106, sample) (https://github.com/lh3/seqtk).  
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Dependencies and equations 

 Bowtie2 (v2.3.4.1) 225 was used for read alignment. Samtools (v1.11) 340 and PySam 

(https://github.com/pysam-developers/pysam) were used for manipulation, conversion, and 

reading of SAM and BAM alignment files. To calculate coverage, aligned reads are filtered 

according to the percent identity alignment, as calculated by subtracting number of gaps 𝑔 and the 

number of mismatches 𝑚 in the alignment from the length of the alignment 𝑙, and then dividing 

by 𝑙.  

 

percent	identity	alignment = 	
𝑙 − 	𝑔 − 𝑚

𝑙 ∙ 100% 

 

Cohen’s d metric is used to calculate the effect size of prophage:host coverage ratios. Cohen’s d 

357 is calculated using the following equation where 𝑋9!"#$ and 𝑋9%&"%!'() are the average read 

coverages of the host and prophage regions, and 𝑆!"#$ and 𝑆%&"%!'() are the standard deviations 

of the coverages: 

 

𝑑 =
𝑋9!"#$ −	𝑋9%&"%!'()

<𝑆!"#$
* +	𝑆%&"%!'()*

2 	

 

 

Metagenome assembly and analyses 

 Metagenomes for the murine gut microbial fraction samples were assembled in this study. 

Details of raw read sets from murine gut samples used for assembly can be found in Supplemental 
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Table S1. SPAdes (v3.12.0) 90 was used for genome assembly (--meta -k 21,33,55) and the 

resulting best scaffold assemblies were retained. The human infant gut and peatland soil 

metagenomes were assembled previously in their respective studies 85,347,348. Both human adult gut 

metagenomes were assembled by Pasolli et al. 160. 

 For the human gut time series samples integrated prophages were predicted using 

VIBRANT (v1.2.1). To check for integrated prophage sequences that were not assembled with a 

host scaffold, integrated prophages were compared to all identified phages using dRep (v2.6.2, 

dereplicate –ignoreGenomeQuality -sa 90 -pa 90) 219. Identical, non-integrated phage sequences 

were considered as a part of the same prophage population. Genome alignments were performed 

using progressive Mauve (v1.11, default settings) 358. 

 

Visualization 

 Geneious Prime 2020.1.2 was used for visualization of example read coverage values. R 

package ‘ggplot2’ and Python packages Matplotlib and Seaborn were used for visualization of 

graphs 228,270.  

 

Setting default thresholds for PropagAtE 

 PropagAtE has several, variable settings and thresholds that can be set by the user: percent 

identity of aligned reads, masking of coverage values at genome/scaffold ends, minimum 

prophage:host coverage ratio, minimum Cohen’s d effect size, minimum average coverage of the 

prophage, and minimum breadth of coverage of the prophage. In addition, PropagAtE requires that 

all prophage and host sequences must each be at least 1 kb in length. 
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Percent identity read alignment is used for more accurate read alignment processing. This 

setting is meant to be sensitive for accurate read alignment while allowing for minor errors 

(default: 97%). Another coverage metric is masking of coverage values at genome/scaffold ends. 

This setting is particularly important for metagenomic scaffolds that likely represent partial 

sequences. For this metric, a generalized length of 150 base pairs is used to mask (i.e., not consider 

for calculation) the respective number of coverage values from each scaffold end in order to 

account for lower coverage values at partial scaffold ends.  

The final four settings are used for determination of prophage activity and significance: 

The most important threshold is the prophage:host coverage ratio, which is set to 2.0 by default 

and can be reduced to 1.75 for increased sensitivity. The default was selected to be as close to the 

minimum requirement for designating true active prophages as active in control tests while 

maintaining a significant gap from true dormant prophages in order to reduce false positive 

identifications. Finally, Cohen’s d effect size setting is set to 0.70 which falls in the general range 

of “medium” significance 357. This threshold is useful for contextualizing prophage:host coverage 

ratios, especially for high-coverage genomes/scaffolds. Again, the default was selected according 

to control tests for reducing false positive identifications. The thresholds for minimum coverage 

(default: 1.0) and minimum breadth (default: 0.50) of prophage regions are used to ensure that 

only prophages that are likely to be present in the sample (i.e., sufficient coverage) are considered 

in analyses. 

 

Data Availability 

The PropagAtE software and associated files are freely available as a Python package at 

https://github.com/AnantharamanLab/PropagAtE. All isolate and metagenome genomic 
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sequences and reads used in this study are publicly available; see Supplemental Table S1 for 

details. Additional details of relevant data are available on request. 
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Abstract 

 Genome binning has been essential for characterization of bacteria, archaea, and even 

eukaryotes from metagenomes. Yet, few approaches exist for viruses. We developed vRhyme, a 

fast and precise software for construction of viral metagenome-assembled genomes (vMAGs). 

vRhyme utilizes single- or multi-sample coverage effect size comparisons between scaffolds and 

employs supervised machine learning to identify nucleotide feature similarities, which are 

compiled into iterations of weighted networks and refined bins. To refine bins, vRhyme utilizes 

unique features of viral genomes, namely a protein redundancy scoring mechanism based on the 

observation that viruses seldom encode redundant genes. Using simulated viromes, we displayed 

superior performance of vRhyme compared to available binning tools in constructing more 

complete and uncontaminated vMAGs. When applied to 10,601 viral scaffolds from human skin, 

vRhyme advanced our understanding of resident viruses, highlighted by identification of a 

Herelleviridae vMAG comprised of 22 scaffolds, and another vMAG encoding a nitrate reductase 

metabolic gene, representing near-complete genomes post-binning. vRhyme will enable a 

convention of binning uncultivated viral genomes and has the potential to transform metagenome-

based viral ecology. 

 

Introduction 

Viruses and bacteriophages (collectively termed viruses) are pervasive members of 

essentially all ecosystems. Viruses form a continuum of symbiotic interactions with their hosts, 

from lethal parasitism to essential mutualism281,359,360. These interactions are known to impact 

biogeochemical and nutrient cycling processes, human health, infrastructure and industries, and 

ecosystem community dynamics21,36,70,351. As a result of the rising interest in viromics, the 
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previously unknown members of the virosphere, the range in the encoded genetic potential of 

viruses, known viral diversity, and limits of viral genome sizes have been continuously 

expanding9,60,71,180,361.  

Metagenomic sequencing can be a mechanism to identify, recognize, understand, and even 

harness the information encoded on viral genomes. Most metagenomes will assemble into many 

short fragments (scaffolds or contigs) representing partial genome sequences. The process of 

binning is employed to group scaffolds into a putative genome, termed a metagenome-assembled 

genome (MAG). With the information encoded by a MAG, rather than individual scaffolds, 

stronger inferences of metabolic potential, phylogenies, taxonomy, and community interactions 

can be generated309.  

Conversely, viral scaffolds are typically not binned. Handling complex and often enigmatic 

viral scaffolds in metagenomes often poses computational challenges unique from microbes. One 

justification to not bin viruses is that their genomes are small relative to cellular organisms and the 

assumption that most scaffolds represent the majority, or the entirety, of an identifiable genome. 

For dsDNA viruses, the target of most viral metagenomes, genome sizes will have a general range 

of 20 kb – 200 kb, with the largest of viruses being 500 kb – 2000 kb. Since the majority of 

scaffolds in most assembled metagenomes are below 20 kb in length, it can be estimated that a 

single scaffold likely will not represent an entire viral genome. In fact, benchmarks have shown 

that viruses often do not assemble into a single scaffold144,362. Another difficulty with binning viral 

genomes is that viruses do not encode universal single copy or marker genes, making a 

standardized approach for all viruses difficult to create.  

Many software tools have been developed for binning bacterial, archaeal, and eukaryotic 

metagenomic scaffolds into MAGs92,93,95,96,363–368. These tools employ a wide range of 
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methodologies, mainly focusing on tetranucleotide frequencies and read coverage abundance 

variance comparisons between scaffolds. A significant portion of the tools tailored to bacteria and 

archaea also rely on identifying microbial single copy genes to inform the construction of bins 

along with completeness and contamination estimates. Some tools for binning microbes are 

suitable for binning viruses due to their independence from microbial single copy gene analysis, 

namely MetaBat2, VAMB, CONCOCT, and BinSanity. MetaBat2 uses a composite scoring 

system based on the geometric mean of tetranucleotide frequencies and coverage abundance of 

individual scaffolds to generate bins according to a weighted graph clustering algorithm92. VAMB 

implements unsupervised deep learning variational autoencoders based on individual scaffold 

tetranucleotide frequencies and coverage abundance to generate bins by iterative medoid 

clustering95,119. CONCOCT uses tetranucleotide frequencies and coverage abundance, reduced by 

multidimensional reduction, to cluster scaffolds into bins with Gaussian mixture models94. 

BinSanity uses affinity propagation clustering based on coverage abundances to bin scaffolds, 

followed by bin refinement using tetranucleotide frequencies and GC content367. Despite the 

abundance of tools for binning bacteria and archaea, there is a conspicuous dearth of tools available 

for binning viruses. Only one tool, CoCoNet118, has thus far been developed for binning viral 

genomes from metagenomes (viral MAGs, or vMAGs). CoCoNet implements an unsupervised 

deep learning neural network to identify shared tetranucleotide and coverage abundance patterns 

between scaffold pairs, followed by graph clustering of potential pairs into bins118.  

Here, we present vRhyme, a software tool that incorporates supervised machine learning 

based classification of diverse sequence feature compositions as well as read coverage abundance 

effect size comparisons to generate weighted networks of bins. vRhyme leverages unique features 

of viral genomes to optimize and refine the binning of vMAGs, including overcoming the lack of 
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single copy genes by scoring protein redundancy based on the observation that viruses seldom 

encode redundant genes. vRhyme is capable of binning viruses from diverse families, host and 

source environment affiliations, varying states of genome fragmentation, and wide ranges of 

genome lengths. In benchmarking vRhyme, we show that it is fast, inclusive, and accurate in 

binning viral scaffolds, with low computational demands, in synthetic and natural metagenomes 

compared to other binning software. When applied to human skin metagenomes, we show that 

vRhyme enabled a more comprehensive analysis of shared viruses and viral features across a 

cohort of individuals, and likely better recapitulated natural systems. vRhyme is implemented in 

Python and is freely available for download at https://github.com/AnantharamanLab/vRhyme.  

 

Methods 

Coverage processing 

The input for read coverage information is variable: paired or unpaired short reads, SAM 

alignment file, BAM alignment file, or a pre-calculated coverage table. For short reads input, reads 

will be aligned to input scaffolds using either Bowtie2104 or BWA103; Bowtie2 is run with the 

parameters --no-unal --no-discordant, the latter being for paired reads only, and BWA is run with 

the mem algorithm. All reads should be quality filtered before being used as input. The resulting 

SAM alignment file, or an input SAM alignment file, will be converted into BAM format using 

Samtools340. BAM alignment files, either generated by the vRhyme pipeline or as user input, will 

then be processed. As such, any input combinations of short reads, SAM or BAM alignment files 

are compatible. BAM alignment files, if not already provided as input, are sorted and indexed 

using Samtools.  
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The Python package Pysam (https://github.com/pysam-developers/pysam) is then used to 

fetch aligned records within sorted and indexed BAM alignment files for processing and coverage 

calculations. First, aligned reads are filtered according to the percent identity alignment, as 

calculated by the sum of the number of gaps 𝑔 and the number of mismatches 𝑚 in the alignment 

divided by the length of the alignment 𝑙. The default is a 97% identity alignment.  

 

percent	identity	alignment = 	
𝑙 − 𝑔 −𝑚

𝑙 ∙ 100 

 

Aligned reads passing the set threshold are used to calculate the total coverage of each 

nucleotide base per scaffold, inclusive of bases with a coverage of zero. Finally, the coverage 

values at the terminal ends of scaffolds are masked to increase coverage fidelity by considering 

erroneous read alignment at partial scaffold ends. The default is to ignore all coverage values 

within the first and last 150 bp of the scaffold. The average and standard deviation of coverage per 

scaffold is calculated according to respective, individual base coverages. All alignment filtering 

and coverage calculations are handled natively within vRhyme. This final step yields a coverage 

table comprised of the average and standard deviation of coverage per scaffold per input sample. 

This coverage table, or a user-generated table of the same format, can be used as input for vRhyme 

in place of reads or SAM/BAM alignment files.  

Next, scaffold coverages across all k samples are pairwise compared using the effect size 

of coverage differences. First, all average coverages are increased by a pseudo-count of 0.1 to 

avoid coverages of zero (pseudo-counts are excluded from coverage table). Effect size is calculated 

by the Cohen’s d effect size metric equation357. Cohen’s d is calculated as follows, where 𝑋9+ and 
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𝑋9, are average read coverages and 𝜎+ and 𝜎, are standard deviations of the coverages for a scaffold 

pair i and j: 

 

𝑑-,+,, =
𝑋9+ −	𝑋9,

<𝜎+
* +	𝜎,*
2 	

 

 

For each pairwise comparison, an effect size value 𝑑- is generated per sample k across all 

samples n. Values exceeding the effect size threshold, set by vRhyme presets, generate an additive 

penalty weight p. The average effect size across all samples 𝑋9/, with any added penalties, is 

normalized to the number of input samples, yielding a normalized effect size 𝑑0, which considers 

higher statistical power to more sample comparisons: 

 

𝑋9/,+,, =	
∑ 𝑑-,+,,1
-23

𝑛 +	𝑝+,, 

𝑑0+,, =
𝑋9/,+,,

log34(𝑛) + 1
 

 

The normalized and penalized 𝑑0 values are compared to a normalized preset effect size 

threshold and all pairwise comparisons passing the set criteria are considered as co-occurring by 

coverage. Any scaffold not found to co-occur with another is discarded. For computational 

efficiency, a pre-filter is applied where only the best (i.e., lowest 𝑑0) 𝑛 pairs per individual scaffold 

are retained, where 𝑛 is ‘--max_edges’ multiplied by 3.  
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Nucleotide processing 

 All co-occurring scaffolds by read coverage are compared by seven nucleotide content 

metrics. The pairwise distance calculations per metric are used as inputs to supervised machine 

learning models for classification. All nucleotide features and distances are calculated natively 

within vRhyme. 

 The first feature, codon usage (CU), is calculated from nucleotide open reading frames 

(i.e., genes). Predicted genes can be used as input, otherwise vRhyme will automate prediction 

using Prodigal98 (-m -p meta). In-frame trinucleotide counts 𝑐 for each of the 64 codons 𝑘 (step of 

3 bases) along a scaffold are divided by the total count of observed codons. The final codon, if 

representing a stop, is ignored. Counts are inclusive of zero counts but exclusive of ambiguous 

(e.g., N) bases. The following yields a CU frequency vector 𝐹+ for each codon 𝑘 in scaffold 𝑖. 

 

𝐹- =	
𝑐-

∑ 𝑐-56
-23

 

 

𝐹+ = (𝐹3, 𝐹*, 𝐹7…	𝐹-) 

 

The next three features (GC content, CpG content, and GC-skew) are calculated per 

scaffold from individual scaffold bases. GC content 𝑁(8 is calculated by the sum of all G and C 

bases, divided by the sum of all bases (A, T, C and G). CpG content 𝑁8%( is calculated by the sum 

of all CG di-nucleotides per scaffold (step of 1 base) divided by the sum of all bases. GC-skew 

𝑁#-)9 is calculated by subtracting the total of C bases from the total G bases, divided by the sum 

of G and C bases. 
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𝑁(8 =	
𝐶 + 𝐺

𝐶 + 𝐺 + 𝐴 + 𝑇 

 

𝑁8%( =	
𝐶𝐺

𝐶 + 𝐺 + 𝐴 + 𝑇 

 

𝑁#-)9 =	
𝐺 − 𝐶
𝐺 + 𝐶 

 

The last three features – relative tetranucleotide frequency (RTF), tetranucleotide usage 

deviation (TUD) and tetranucleotide zero’th order Markov method (ZOM) – are calculated from 

whole scaffold tetranucleotide frequencies (step of 1 base) of the forward and reverse strands369. 

A total of 136 possible tetranucleotides are considered after combining identical, reverse 

complement and palindromic sequences. Counts are inclusive of zero counts but exclusive of 

ambiguous (i.e., N) bases.  

For RTF, all counts 𝑡 for each of the 136 tetranucleotides 𝑘 along a scaffold are divided by 

the total count of observed tetranucleotides. The following yields a tetranucleotide frequency 

vector 𝑇+ for each tetranucleotide 𝑘 in scaffold 𝑖. 

 

𝑇- =	
𝑡-

∑ 𝑡-375
-23

 

 

𝑇+ = (𝑇3, 𝑇*, 𝑇7…	𝑇-) 
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For TUD, expected nucleotide frequencies 𝐸 are first calculated by dividing the count of 

each base 𝑏 by the sum of all bases in the scaffold. Next, observed counts per base 𝑂: per 

tetranucleotide 𝑘 are calculated by the sum of each base inclusive of zero counts. For each unique 

tetranucleotide, expected frequencies per base are raised to the power of observed frequencies 

multiplied by two to yield a deviation value 𝐷: per base. The deviation values for all four bases 

are multiplied the count of total observed tetranucleotides and the count of the given 

tetranucleotide to yield a TUD value per tetranucleotide. The following yields a TUD frequency 

vector 𝑇𝑈𝐷+ for each tetranucleotide 𝑘 in scaffold 𝑖. 

 

𝐸: =	
𝑏

𝐶 + 𝐺 + 𝐴 + 𝑇 		for	𝑏	 = 	A, T, C, G 

 

𝑂: =	∑ 𝑏6
-23    for 𝑏 = A, T, C, G 

 

𝐷: =	𝐸:
(*∙=!)   for 𝑏 = A, T, C, G 

 

𝑇𝑈𝐷- = 𝐷? ∙ 𝐷@ ∙ 𝐷A ∙ 𝐷B ∙ \ 𝑡-

375

-23

∙ 𝑡- 

 

𝑇𝑈𝐷+ = (𝑇𝑈𝐷3, 𝑇𝑈𝐷*, 𝑇𝑈𝐷7…	𝑇𝑈𝐷-) 

 

For ZOM, the same expected 𝐸:	nucleotide frequencies per base 𝑏 are used. For each 

tetranucleotide 𝑘, the count 𝑡 of the given tetranucleotide is divided by the product of each of the 
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present tetranucleotide’s bases’ expected frequencies to yield a ZOM frequency vector 𝑍𝑂𝑀+ for 

each tetranucleotide 𝑘 in scaffold 𝑖. 

 

𝑍𝑂𝑀- =
𝑡-

𝐸:" ∙ 𝐸:# ∙ 𝐸:$ ∙ 𝐸:%
 

 

𝑍𝑂𝑀+ = (𝑍𝑂𝑀3, 𝑍𝑂𝑀*, 𝑍𝑂𝑀7…	𝑍𝑂𝑀-) 

 

Pairwise distance calculations for GC, CpG and GC-skew are made by the absolute value 

difference in the respective metric’s content between two scaffolds. For example, the following is 

the pairwise distance 𝑃BA  in GC content between scaffolds 𝑖 and 𝑗. 

 

𝑃+,, = |𝐺𝐶+ − 𝐺𝐶,| 

 

Pairwise distance calculations for CU, RTF, TUD and ZOM are made by cosine distances. 

For each value 𝑣+ and 𝑣,, corresponding to the same tetranucleotide 𝑘, in frequency vectors of 

scaffolds 𝑖 and 𝑗, with vector averages of 𝑉9+ and 𝑉9,, cosine similarity 𝑆+,, is calculated. Cosine 

distances between two scaffolds are calculated for CU, RTF, TUD and ZOM individually.  

 

𝑆+,, =	
∑ (𝑣+& ∙ 𝑣,&)
1
-23

d(∑ (𝑣+& ∙ 𝑉9+))
1
-23

* ∙ (∑ (𝑣,& ∙ 𝑉9,))
1
-23

*
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The result of distance calculations is a vector 𝑀+,, of length seven for each pairwise 

comparison between scaffolds 𝑖 and 𝑗. 

 

𝑀+,, = (𝑁BA , 𝑁A%B , 𝑁#-)9 , 𝑆AC , 𝑆D@E , 𝑆@CF , 𝑆G=H) 

 

Machine learning model training and testing 

 NCBI databases (RefSeq207 and Genbank210, release July 2019) were queried for 

“prokaryotic virus” and genomes greater than 10 kb in length were retained. In addition, the 

IMG/VR database (release July 2018)141 was downloaded, and sequences were limited to a 

minimum length of 10 kb. For the IMG/VR dataset, VIBRANT117 (v1.2.1, -virome) and CheckV370 

(v0.6.0) were used to obtain circular and/or complete sequences. The resulting NCBI and IMG/VR 

datasets were dereplicated by 95% identity using the method described here (--derep_only --

derep_id 0.95 --frac 0.70 --method longest) and combined, resulting in a total of 11,881 putatively 

complete genomes. The sequences representing complete genomes in the combined dataset were 

split into non-overlapping fragments of 15 kb with a minimum length of 10 kb. A total of 39,105 

fragments were generated for training and testing machine learning models, with 38,732 

represented in the training and 30,618 represented in the testing datasets (Supplementary Figure 

1a).  

The machine learning models were generated based on the 𝑀+,, vectors described above 

using the generated 39,105 genome fragments. Filtering of pairwise comparisons before training 

and testing was made according to vRhyme default parameters (--max_gc 0.20 --min_kmer 0.60). 

The pairwise comparison matrix was split 75:25 for training and testing, respectively. Fragment 

pairs were labeled as “same” or “different” for supervised machine learning according to if the 
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paired fragments originated from the same or different source genomes. An equal number (69,632) 

of “same” and “different” pairs were used for training by randomly dropping excess “different” 

comparisons. For testing, a set of 38,685 “different” and 7,736 “same” pairs were used. There were 

no redundant pairs between the training and testing datasets. 

Scikit-Learn (v0.24.2)299 was used to generate machine learning models using a grid search 

approach to optimize parameters. Several models and algorithms were considered, including 

MLPClassifier, ExtraTrees, KNeighbors, SVC, Gradient Boost, Decision Tree and Random Forest 

classifiers. Iterative training and testing yielded MLPClassifier (alpha=0.001, beta_1=0.7, 

beta_2=0.8, hidden_layer_sizes=(5,25,50,75,100,100,75,50,25,5), learning_rate_init=0.0001, 

max_iter=1250, n_iter_no_change=15, tol=1e-08) and ExtraTreesClassifier (max_depth=10, 

max_features=7, n_estimators=1500) as the most robust. 

 

Machine learning and network processing 

 Each scaffold pair is classified by the two machine learning models separately to yield two 

probability values of “same”, one per model. The probability values are averaged to yield �̅�. Any 

pair with �̅� below the preset threshold is discarded.  Then, 𝑑0 calculated previously for the pair is 

divided by �̅� to yield a network edge weight 𝑤.  

𝑤 =	
𝑑0

�̅�  

 

Any pair with 𝑤 below the preset threshold is retained for network clustering. As before, 

for computational efficiency, only the best (i.e., lowest 𝑤) 𝑛 pairs per individual scaffold are 

retained, where 𝑛 is ‘--max_edges’. Weighted networks, representing unrefined bins, are created 

where each node is a scaffold and each edge is a weighted connection between paired scaffolds. 
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Networks are refined using MiniBatchKMeans implemented in Scikit-Learn with the following 

parameters: n_clusters=𝑠+1, batch_size=ℎ, max_iter=100, max_no_improvement=5, n_init=5. 

Batch size ℎ is 25% of the number of nodes with a minimum of 2 and maximum of 100. The 

number of clusters 𝑠 is defined by the number of nodes with a clustering coefficient value below 

the preset constant 0.36 but not 0. For each node 𝑖, the clustering coefficient 𝑈+ is calculated as 

follows, where 𝐿+ is the degree of the node and 𝑅+ is the number of edges between the neighbors 

of 𝑖: 

 

𝑈+ =	
2 ∙ 𝐿+

𝑅+ ∙ (𝑅+ − 1)
 

 

Refined networks are split into distinct, separate networks according to 𝑠. Here, each connected 

network represents a putative bin.  

 

Score processing 

 Each binning iteration is given a score 𝐼 according to protein redundancy, total bins, and 

the number of scaffolds binned. To calculate protein redundancy, all proteins within a bin are 

clustered using Mmseqs2271 (linclust --min-seq-id 0.5 -c 0.8 -e 0.01 --min-aln-len 50 --cluster-

mode 0 --seq-id-mode 0 --alignment-mode 3 --cov-mode 5 --kmer-per-seq 75). Any proteins 

clustered within a bin, excluding those along the same scaffold, are considered redundant. The 

iteration with the maximum score is selected as the final representative.  𝐼 is calculated as follows: 

 

𝐼& = \ 	
𝑝𝑟𝑜𝑡𝑒𝑖𝑛𝑠	𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑒𝑑:+1 − 𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠:+1

𝑡𝑜𝑡𝑎𝑙	𝑝𝑟𝑜𝑡𝑒𝑖𝑛𝑠:+1
	

1

:+123
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𝐼# =	
𝑠𝑐𝑎𝑓𝑓𝑜𝑙𝑑𝑠	𝑏𝑖𝑛𝑛𝑒𝑑
𝑖𝑛𝑝𝑢𝑡	𝑠𝑐𝑎𝑓𝑓𝑜𝑙𝑑𝑠  

 

𝐼: =	
𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑏𝑖𝑛𝑠
𝑠𝑐𝑎𝑓𝑓𝑜𝑙𝑑𝑠	𝑏𝑖𝑛𝑛𝑒𝑑 

 

𝐼 = 𝐼# −	𝐼:* − (3 ∙ s2 ∙ 𝐼& 	) 

 

Dereplication 

 vRhyme implements Nucmer264 and MASH263 for the dereplication of scaffolds. First, 

scaffolds are roughly grouped using MASH (sketch -k 31 -s 1000; dist) to reduce the pairwise 

comparison space. Next, all possible pairs of scaffolds within each resulting group are aligned 

using Nucmer (-c 1000 -b 1000 -g 1000). Regardless of the comparison method (‘--method’), any 

pair of scaffolds with 100% identity over 100% coverage are first reduced to the longest 

representative. For all percent coverage calculations in dereplication, coverage is of the shortest 

scaffold. For ‘--method longest’ the longest scaffold in pairs meeting the set percent identity (e.g., 

97%) and percent coverage (e.g., 60%) thresholds is taken as the representative. For ‘--method 

composite’, scaffold pairs meeting the percent identity and percent coverage thresholds are joined 

over the region of sequence overlap to yield artificially chimeric scaffolds. Any alignments 

exceeding the sensitivity values for merging over complex alignments, such as low identity 

scaffold ends without overlap, are not joined. After scaffold pairs are joined, identical cycles of 

MASH, Nucmer and composite joining are completed until no further alignments are detected. For 

all methods, reverse complement sequence alignments are considered and adjusted accordingly.  
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Performance validation datasets and metrics 

 Scaffolds used to benchmark performance were acquired from nine separate publicly 

available datasets derived from eight unique metagenomes (one metagenome was split into two 

separate datasets). The metagenomes were acquired from marine82,371, freshwater372–374, human 

gut300, and soil environments348,375. Details on the studies, scaffolds, reads, and accession numbers 

can be found in Supplementary Table 1 Each dataset was processed separately. First, VIBRANT 

(v1.2.1) was used to predict viruses. From these viruses, VIBRANT and CheckV were used to 

identify circular scaffolds representing complete genomes. Next, scaffolds were dereplicated by 

97% identity using the method described here (--derep_only --derep_id 0.97 --frac 0.70 --method 

longest). The non-redundant scaffolds were randomly fragmented into sequences ranging from 2 

kb to 20 kb in length. A total of 999 scaffolds (i.e., putatively complete genomes) were used to 

generate 4,324 fragments of at least 2 kb in length. Full benchmarking was performed on the 4,324 

fragments and validation of complete genome binning was performed on the 999 scaffolds 

representing complete genomes (Supplementary Figure 1b). Only 255 of the performance 

benchmarking fragments had significant sequence similarity to fragments used to train the machine 

learning models (Supplementary Figure 1c). 

Since the circular scaffolds (sources) were estimated to be complete genomes, any of the 

fragments originating from the same source were expected to create a single bin, bins containing 

fragments from multiple sources were considered as contaminated, fragments from the same 

source in different bins were considered as split genomes, and fragments representing an entire 

source (singletons) were not expected to bin. The following equations are for genome- (source) 

and bin-based performance metrics, where 𝐵) is the expected number of bins (i.e., sources with at 
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least two fragments), 𝐵( is the number of bins generated, 𝐺) is the expected number of binned 

fragments (i.e., fragments representing 𝐵) sources), 𝐵" is the total number of bins containing a 

single source, 𝐺$ is the total number of fragments binned, 𝐺: is the number of unique sources 

binned, 𝐺" is the number of sources contained in a single bin, 𝐺# is the total number of singletons, 

and 𝐺% the number of binned singletons. 

 

𝑏𝑖𝑛𝑛𝑒𝑑	𝑠𝑖𝑛𝑔𝑙𝑒𝑡𝑜𝑛𝑠 =
𝐺%
𝐺#
	 

 

𝑔𝑒𝑛𝑜𝑚𝑒	𝑟𝑒𝑐𝑎𝑙𝑙 = 	
𝐺$ −	𝐺#
𝐺)

 

 

𝑔𝑒𝑛𝑜𝑚𝑒	𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 	
𝐺" −	𝐺%
𝐺:

 

 

 

𝑔𝑒𝑛𝑜𝑚𝑒	𝑠𝑝𝑙𝑖𝑡𝑡𝑖𝑛𝑔 = 	
𝐺: − 𝐺"
𝐺:

 

 

𝑏𝑖𝑛	𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 	
𝐺"
𝐵(

 

 

𝑏𝑖𝑛	𝑐𝑜𝑛𝑡𝑎𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 = 	
𝐵( − 𝐵"
𝐵(
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𝑔𝑒𝑛𝑜𝑚𝑒𝑠	𝑡𝑜𝑡𝑎𝑙 = 	
𝐺:
𝐵)

 

 

𝑏𝑖𝑛𝑠	𝑡𝑜𝑡𝑎𝑙 = 	
𝐵(
𝐵)

 

 

𝑏𝑖𝑛𝑠: 𝑔𝑒𝑛𝑜𝑚𝑒𝑠 = 	
𝐵(

𝐺: − 𝐺#
 

 

𝑔𝑒𝑛𝑜𝑚𝑒𝑠: 𝑏𝑖𝑛𝑠 = 	
𝐺: − 𝐺#
𝐵(

 

 

𝑔𝑒𝑛𝑜𝑚𝑒𝑠	𝑠𝑐𝑜𝑟𝑒 = 	
2 ∙ (𝐺" −	𝐺%)

(2 ∙ (𝐺" −	𝐺%)) + 𝐺% + 𝐺: − 𝐺"
	 

 

𝑏𝑖𝑛𝑠	𝑠𝑐𝑜𝑟𝑒 = 	
2 ∙ 𝐺"

(2 ∙ 𝐺") + (𝐵( − 𝐵")
 

 

To validate binning further, each pairwise connection between fragments within a bin was 

evaluated according to each fragment’s nucleotide length. These standard performance metrics 

were evaluated per bin using true positive 𝑇𝑃, true negative 𝑇𝑁, false positive 𝐹𝑃, and false 

negative 𝐹𝑁 connections. The following equations are for pairwise nucleotide-based performance 

metrics: 

 

𝑟𝑒𝑐𝑎𝑙𝑙 = 	
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 
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𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 	
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 

 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 	
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁 

 

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 	
𝑇𝑁

𝑇𝑁 + 𝐹𝑃 

 

𝐹1 = 	
2 ∙ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙  

 

Performance benchmarking 

  The performance of vRhyme (v1.0.0) was compared to MetaBat292 (v2.12.1, -s 4000 -m 

2000), CONCOCT94 (v1.0.0, -l 2000), VAMB95 (v3.0.2, -i 2 -m 2000 -t 40), CoCoNet118 (v1.0.0, 

--min-ctg-len 1000 --min-prevalence 1), and BinSanity367 (v0.5.4, -x 2000). Additional binning 

tools, namely MaxBin293, MyCC363, SolidBin364 and DASTool366, perform microbial single copy 

gene analysis and were not applicable, or did not function, for viruses. For VAMB, the starting 

batch size had to be adjusted to accommodate the relatively small size of the input datasets, and 

all but three datasets failed to run. The coverage tables for each of the tools were generated from 

sorted BAM files using each tool’s respective method, except for VAMB for which the same 

coverage table as MetaBat2 was used. The sorted BAM files were generated using Samtools 

(v1.13) with reads quality filtered by Sickle275 (v1.33) aligned by Bowtie2 (v2.3.5.1, --no-unal --

no-discordant).  
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Metagenomic datasets and analyses 

Publicly available metagenomes from marine10, agricultural soil106, and human skin376 

environments were used. Details on the studies, reads used, and accession numbers can be found 

in Supplementary Table 1. Viruses were predicted from each metagenome using VIBRANT and 

only the identified virus scaffolds were binned using vRhyme. For the human skin datasets, 270 

metagenomes from a cohort of 34 individuals with eight body sites per individual were used 

(antecubital fossa (Af), alar crease (Al), back (Ba), nare (Na), occiput (Oc), toe-web space (Tw), 

umbilicus (Um), and volar forearm (Vf)). Reads were filtered for quality, adapters, and host-

contamination as described previously376 using fastp377 (v0.21.0, --detect_adapter_for_pe) and 

KneadData (v0.8.0). MegaHit378 (v1.2.9) was used to generate individual metagenomic assemblies 

for each sample, corresponding to the microbiome of a particular body site for a specific participant 

at a given timepoint. After predicting viruses, all viruses per body site were combined and 

dereplicated (--method longest) before binning. 

It is important to note that for bins, scaffolds had to be linked with Ns in order to run 

CheckV analysis since there is no mode to input bins. For all benchmarking using CheckV, the 

tool was modified to run Prodigal with the -m flag to accommodate linking vMAGs and not 

predicting open reading frames across the appended strings of Ns connecting scaffolds. For 

taxonomy of the validation dataset, a publicly available custom reference database of NCBI viruses 

was used as previously described122. In brief, DIAMOND265 (v0.9.14) BLASTp101 (v2.6.0) was 

used to identify the most likely taxonomic affiliation of a sequence.  

 

Additional datasets and benchmarking 
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 Additional publicly available datasets were used to assess the performance of vRhyme 

under different scenarios and conditions. To assess binning of related types of viruses within the 

same sample, a total of 101 publicly available crAssphage sequences147 were dereplicated using 

vRhyme (--derep_id 0.97 --frac 0.70 --method longest) to 86 non-redundant scaffolds. The non-

redundant scaffolds were randomly fragmented as described previously into 791 fragments. To 

assess binning of megaphages and eukaryotic viruses with large genomes, the 540 kb Prevotella 

phage Lak C1179 was randomly fragmented into 51 fragments, and four different eukaryotic 

viruses379,380 with genome lengths ranging from 154 kb to 201 kb were each randomly fragmented 

into 11 to 19 fragments. To assess binning of active and dormant prophages, VIBRANT was used 

to predict prophage regions for 10 active prophages from 3 different hosts and 24 dormant 

prophages from 5 different hosts. Activity or dormancy was determined according to respective 

studies described elsewhere339,343,344 and validated using PropagAtE381 (v1.1.0). Whole prophage 

scaffolds from the same host genome were binned together. Details on the studies, reads used, 

scaffolds, and accession numbers can be found in Supplementary Table 1. 

 To validate protein redundancy, NCBI databases (RefSeq and Genbank, release July 2019) 

were queried for “prokaryotic virus” as before and genomes greater than 3 kb in length were 

retained. Likewise, NCBI databases (RefSeq and Genbank, release September 2021) were queried 

for “eukaryotic virus” and genomes greater than 20 kb in length were retained. Proteins were 

predicted using Prodigal (-p meta) for 15,238 prokaryotic and 557 eukaryotic viruses. Protein 

redundancy was calculated per genome based on the method described for vRhyme, with the 

exception that proteins could be redundant if encoded along the same scaffold.  

 

Effect of number of samples 
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 The effect of the number of input samples on vRhyme performance was done by stepwise 

increasing the number of BAM files used to calculate coverage from one to the maximum number 

of samples for a given dataset. To do this, samples were arranged in descending order, starting at 

the sample with the greatest total coverage across all scaffolds and were stepwise combined, 

ending with the sample with the lowest coverage.  

 

Visualizations 

 All plots and visualizations were done using Matplotlib228 (v3.2.0) and Seaborn382 

(v0.11.0). Genome alignment visualizations were made using EasyFig227 (v2.2.2) and Geneious 

Prime 2019.0.3. Genome alignments to identify percent sequence identity were made using 

progressiveMauve358 (development snapshot 2015-02-25). vConTACT2266 (v0.9.19, --rel-mode 

Diamond --db 'None' --pcs-mode MCL --vcs-mode ClusterONE, ClusterONE383 v1.0) was used to 

construct protein clustering networks and visualized using Cytoscape267 (v3.7.2).  

 

Results 

vRhyme overview and workflow 

 The vRhyme workflow is done in five steps: read coverage processing, sequence feature 

extraction, supervised machine learning, iterative network clustering, and bin scoring (Figure 1). 

The base input to vRhyme are the assembled scaffolds or contigs to be binned (hereafter scaffolds) 

with a set minimum size of 2 kb. For optimal results, only virome scaffolds or predicted virus 

scaffolds should be used as input, though vRhyme can function with the input of an entire 

metagenome. An initial dereplication step to remove redundant input scaffolds is optional. Next, 

scaffolds are compared pairwise by read coverage composition per sample, which is a proxy for 
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Figure 1. Flowchart of vRhyme workflow and methodology. Scaffolds are compared 
pairwise by read coverage effect size differences using single or multiple samples (top-left), 
followed by sequence feature distance comparisons (top-right). Multiple iterations of network 
clustering of putative bins are generated with edge weights representing normalized coverage 
effect size and supervised machine learning probabilities of sequence feature similarity 
(center). The bins are refined by KMeans clustering, and the best set of bins from a single 
iteration are identified after identifying protein redundancy and scoring (bottom).  
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relative abundance. vRhyme performs optimally with an input of multiple samples (i.e., coverage 

files) for more robust coverage co-occurrence estimations, but it will function with a single sample 

input with a minor decrease in performance. Statistically dissimilar scaffolds by coverage 

composition are screened out and the remaining potential pairs are compared by nucleotide feature 

similarity. Seven total nucleotide and gene features are used to classify pairs as similar versus 

dissimilar using two supervised machine learning models (decision trees and neural network). 

Following this step, potential connections are made between scaffolds based on similarity in read 

coverage and nucleotide features. These connections are used to create weighted networks that are 

further refined into genome bins using KMeans clustering. The entire process of read coverage 

comparison, nucleotide feature machine learning and weighted network refinement is performed 

over several binning iterations in parallel. vRhyme has 15 built-in presets of thresholds for 

Cohen’s d, machine learning model probabilities, and network edge weights. The number of 

presets used is equivalent to the number of binning iterations completed. A list of all presets and 

their hierarchy can be found in Supplementary Table 2. Each bin within all binning iterations is 

scored according to protein redundancy, a proxy for contamination, and the best binning iteration 

by sequences binned, bins generated, and redundancy metrics is selected. The bins within this best 

binning iteration are reported along with relevant metadata, including number of members and 

total protein redundancy. Alternative binning iterations are likewise saved if manual inspection 

and selection of a different iteration is desired.  

 

Assessment of binning quality 

 To evaluate vRhyme, we first benchmarked vRhyme against reference datasets and 

compared the performance to several available binning tools, all of which are built for microbes. 
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Many binning tools and wrapper software were not suitable for viral binning due to reliance on 

microbial single copy genes. We were able to successfully compare vRhyme to MetaBat292, 

VAMB95, CoCoNet118, CONCOCT94, and BinSanity367 on nine datasets curated from 

metagenomic data (see Methods). The nine datasets were comprised of 999 non-redundant and 

putatively complete viral genomes that were split into 4,324 sequence fragments of varying lengths 

between 2 kb and 20 kb. Of these, 1,118 fragments were less than 5 kb, 1,361 were greater than 5 

kb and less than 10 kb, and the remaining 1,854 were greater than 10 kb. The average length was 

9.4 kb. Although these fragments were derived from datasets not represented in the machine 

learning training dataset, we first verified that the fragments were distinct and would not result in 

a bias associated with an overfitted machine learning model. Based on BLASTn similarity at 70% 

identity and 60% overlap, only 255 (~6%) of the 4,324 fragments were represented in the machine 

learning model training dataset, with all but two of the represented fragments being from the same 

human gut dataset.  

 A total of 17 different evaluation metrics were used, including five traditional metrics for 

recall, precision, accuracy, specificity, and F1 score (Figure 2). The five traditional metrics were 

calculated according to the true positive, true negative, false positive, and false negative rates of 

binning fragments together from the same or different source genomes (Supplementary Table 

3a). Note that the machine learning models were not benchmarked individually since performance 

is measured based on the entire pipeline. vRhyme yielded the highest F1 score, the harmonic 

average of precision and recall, with an average of 0.87 across all nine datasets. MetaBat2 and 

VAMB performed equally with F1 scores of 0.81 and 0.82, respectively, but importantly VAMB 

only successfully binned three of the nine datasets due to input size requirements. vRhyme likewise 

yielded the highest, or equal to highest, average precision (0.94), accuracy (0.90), and specificity 



 194 
 

Figure 2. Benchmarking performance metrics of vRhyme compared to MetaBat2, VAMB, 
CoCoNet, CONCOCT, and BinSanity. Each boxplot represents the results of 9 different 
datasets, except for VAMB in which three datasets are shown. In total, 999 non-redundant 
genomes artificially split into 4,324 sequence fragments are shown. For some plots, a dotted 
line is shown at 1.0 to indicate optimal performance. CONCOCT and BinSanity are partially 
shown on the Genome-to-Bin Ratio plot for better visualization; each yielded an average ratio 
greater than 2.0.  
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(0.96) compared to all benchmarked tools. Compared to MetaBat2, VAMB and CoCoNet, vRhyme 

likewise yielded the greatest average recall (0.80). CONCOCT and BinSanity yielded the greatest 

average recall values (0.96 and 0.91, respectively) but at the expense of precision (0.45 and 0.44, 

respectively). At least for viral genomes, CONCOCT and BinSanity were found to not be suitable 

binning options. VAMB had suitable performance on the three datasets with enough input 

sequences, but VAMB is likely not an option for many applications of binning viral genomes due 

to requiring many input sequences (e.g., tens of thousands95) for optimal performance. Based on 

these metrics, vRhyme performed exceptionally in binning viral genomes but did not considerably 

improve on the performance of MetaBat2.  

 The remaining 12 evaluation metrics were calculated according to complete genomes and 

individual bins. These included evaluating if genomes were placed into a single or separate bins, 

and if bins contained fragments from a single or multiple source genomes. These metrics were 

better able to show the distinct performance of vRhyme compared to the other tools 

(Supplementary Table 3b). Namely, vRhyme was better able to reduce the following: placement 

of genomes into separate bins, placement of fragments from multiple source genomes into a single 

bin, and binning circular scaffolds representing entire genomes. Importantly, this was not at the 

cost of reduced fragment recall by vRhyme. To combine these metrics, we created a genome score 

and bin score that considered recall and precision as a substitution for F1 score. For genome scores 

and bin scores, respectively, vRhyme (0.89 and 0.96) outperformed, or was equivalent to, 

MetaBat2 (0.77 and 0.93) and VAMB (0.90 and 0.93). Again, it is important to note that VAMB 

only successfully binned three of the nine datasets. For CoCoNet, CONCOCT, BinSanity, genome 

scores (0.66, 0.74 and 0.70, respectively) and bin scores (0.65, 0.48 and 0.18, respectively) 

reflected the propensity to “over bin” distinct genomes together into one bin. CoCoNet did not bin 
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any sequence in two of the datasets, and after removal of these zero-values, the average genome 

score and bin score for CoCoNet both increased to 0.84.  

 Furthermore, we evaluated how well vRhyme bins compare to the input, unfragmented 

genomes. First, using CheckV370 we show a distinct change in genome completeness estimation in 

the binned versus unbinned sequence fragments. vRhyme was able to recapitulate the 

Figure 3. Impact of binning with vRhyme on the benchmarking datasets. For a-c, the 
putatively complete unsplit input genomes, generated sequence fragments, binning sequence 
fragments, and vRhyme bins (vMAGs) are compared.  (a) Estimation of genome completeness 
using CheckV. (b) Sequence or vMAG nucleotide length. For a-b, each dot represents a single 
sequence or vMAG. (c) Estimation of taxonomy at the family level using a custom analysis 
script. “unassigned” represents a taxonomic classification to a group with an unassigned 
family, “ambiguous” represents equal assignment to multiple families (typically 
Caudoviricetes), and “unknown” represents the inability to make a prediction. (d) Evaluation 
of vRhyme, MetaBat2, VAMB, and CoCoNet for the binning of complete genomes. The 
expectation is that complete genomes should remain unbinned as uncultivated virus genomes 
(UViGs).  
 



 197 
 

completeness of the input genomes (Figure 3a). This is supported by a similar observation in the 

length of the input genomes versus the bins (Figure 3b). Moreover, we estimated the taxonomy 

of the input genomes, fragments, and binned vMAGs. We identified a distinct decrease in the 

ability to identify taxonomy of the fragments, which were rescued by binning (Figure 3c). The 

identifiable difference in the vMAGs is a lack of Microviridae. Yet, this is to be expected since 

the small genome size of Microviridae (<10 kb) typically results in near-complete scaffolds that 

appropriately remain unbinned. Finally, we evaluated whether vRhyme could distinguish the 

source scaffolds. To do this, each of the nine datasets were binned, but the scaffolds were not 

fragmented. The expected result is that none of the circular scaffolds should bin together. Although 

vRhyme did bin ~11% of the whole scaffolds, it was a marked improvement on VAMB and 

CoCoNet (Figure 3d).   

 

Benchmarking vRhyme on marine viromes 

 We next applied vRhyme to the Global Ocean Virome 2 (GOV2) database10 and compared 

the results to MetaBat2 and CoCoNet. For metagenomic datasets such as GOV2 the expected 

number of scaffolds to bin and the number of bins is unknown. First, all scaffolds from the GOV2 

database were limited to scaffolds at least 5 kb in length and dereplicated by 98% identity. Of the 

108,947 input scaffolds, vRhyme binned 56,642 scaffolds into 13,175 bins, MetaBat2 binned 

57,800 scaffolds into 11,826 bins, and CoCoNet binned 91,842 scaffolds into 9,914 bins. Despite 

the number of bins generated being relatively similar, the number of scaffolds binned was quite 

different. However, vRhyme yielded 15,106 redundant proteins whereas MetaBat2 (29,334) and 

CoCoNet (71,364) yielded more, indicating that vRhyme was likely more precise and generated 
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fewer contaminated bins (Figure 4a). In support of this, vRhyme generated 1,266 bins with 2 or 

more redundant proteins whereas MetaBat2 (1,648) and CoCoNet (2,743) generated more. When 

these likely contaminated bins were removed, vRhyme binned 48,251 scaffolds into 11,909 bins, 

MetaBat2 binned 33,351 scaffolds into 10,178 bins, and CoCoNet binned 35,380 scaffolds into 

7,171 bins (Figure 4b). Based on protein redundancy, vRhyme was capable of binning far more 

viral scaffolds and generating more bins of low contamination compared to MetaBat2 and 

CoCoNet. Note, we identified bins with “low contamination” to be 0-1 redundant proteins based 

Figure 4. Benchmark binning and genome completeness evaluation of GOV2. 
Comparison of vRhyme, MetaBat2, and CoCoNet (a) raw results and (b) low contamination 
filtering results by the number of scaffolds binned and identified redundancy. For vRhyme 
only, CheckV was used to identify (c) the estimated completeness values, (d) number of ‘NA’ 
completeness values, (e) number of ‘no viral genes’ scaffolds/vMAGs, and (f) number of 
‘longer than expected’ scaffolds/vMAGs for the low contamination results of individual 
binned scaffolds as well as vMAGs.  
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on a benchmark of prokaryotic and eukaryotic viral genomes from NCBI databases 

(Supplementary Figure 2). Contamination was not estimated using CheckV as that metric does 

not consider contamination of multiple viral genomes, but rather contamination of non-viral 

sequences.  

We also estimated the completeness of the 11,909 low contamination vRhyme bins and the 

individual 48,251 scaffolds that generated those bins using CheckV. The binned scaffolds 

individually yielded 25,969 (53.8%) completeness values with an average of 14% complete, 79 

estimated to be 100% complete, 22,282 (46.2%) with ‘NA’ completeness, and 27,295 (56.6%) 

with ‘no viral genes detected’. The scaffolds within each bin, after being linked into vMAGs, 

yielded 8,393 (70.5%) completeness values with an average of 48% complete, 775 estimated to be 

100% complete, 3,516 (29.5%) with ‘NA’ completeness, and 4,039 (33.9%) with ‘no viral genes 

detected’ (Figure 4c-e). There was an increase in the number of vMAGs (195, 1.6%) versus 

individual scaffolds (16, 0.03%) that were estimated to be ‘longer than expected’, potentially due 

to a marginal rate of multiple genomes being binned into a single vMAG (Figure 4f). Overall, 

vRhyme generated vMAGs with greater average completeness to aid in downstream analyses and 

interpretations, even with high complexity or large datasets such as GOV2. 

 

Discovery of vMAGs in human skin metagenomes 

 To demonstrate the ability of vRhyme to aid metagenome analyses and discovery, we 

applied vRhyme to 270 human skin metagenomes376. Viruses were predicted from a cohort of 34 

individuals with eight body sites (Af, Al, Ba, Na, Oc, Tw, Um, and Vf) sampled per individual (see 

Methods). From all individuals, 10,601 viral scaffolds were identified and binned, across eight 

different body sites individually, into a total of 849 vMAGs representing 2,794 viral scaffolds. 
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Although bins with redundant proteins may in fact be a single genome or partially redundant copies 

of a single genome, we ignored all vMAGs with greater than one redundant protein for analysis to 

yield 762 vMAGs representing 2,413 viral scaffolds, leaving the remaining 8,188 as discrete viral 

scaffolds (Supplementary Table 4) (Figure 5a). The taxonomic classification of UViGs pre-

binning, UViGs and low redundancy vMAGs post-binning, and vMAGs-only displayed that most 

bins were constructed of genomes from the class Caudoviricetes, similar to the observed taxonomy 

pre-binning (Supplementary Figure 3). The bins were comprised of an average of 3.2 scaffolds 

each. In total we identified seven bins, representing separate body sites, that were present across 

at least 30 individuals (Figure 5b). In addition, two bins of unique characteristics were identified 

and examined in detail. 

The first such bin contained 22 members (Tw bin 8), more than what would be expected 

for a viral bin, and aligned to a reference Herelleviridae phage (Staphylococcus phage phiSA_BS2) 

(Figure 5c). Herelleviridae infecting abundant Staphylococcus on the skin are likely to be highly 

relevant to skin ecology and disease384. Before binning, each of the 22 members were identified 

by CheckV as low-quality genome fragments with individual completeness estimations ranging 

from 1.8% to 7.1%. The fragments averaged 5.2 kb in length and ranged from 2.6 kb to 10.0 kb. 

After binning, the final bin was 115 kb in length and identified as a high-quality genome with 

100% completeness by CheckV. The reference phage genome is 143 kb, suggesting the true 

completeness of the bin is likely 80% to 100%. All CheckV results for the skin metagenomes can 

be found in Supplementary Table 5. 
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Figure 5. Binning improves and expands the analysis of viruses from human skin. (a) 
Comparison of the number of original viral scaffolds identified across all individuals before 
and after binning. (b) Heatmap of coverage for the seven common bins per individual. (c) 
Genome visualization and alignment of Herelleviridae reference phiSA_BS2 (outer) and Tw 
bin 8 (inner).  Each arrow represents a predicted open reading frame and black bars are 
artificial connections between vMAG scaffolds. (d) Alignment of vRhyme Vf bin 113 to the 
closest reference virus Siphoviridae isolate ctiXA4 (BK057074.1). Each of the four scaffolds 
were independently aligned by tBLASTx similarity. The narG AMG is labeled in yellow and 
viral hallmark annotations are labeled in light blue. (e) Representative cluster from all input 
viral scaffolds generated by vConTACT2, with the four Vf bin 113 scaffolds labeled in green. 
There are no connections between any of the four green scaffolds. Each dot represents a single 
scaffold. (f) Partial network from all vRhyme binned and unbinned viral scaffolds generated 
by vConTACT2, with vMAG bins labeled in orange and Vf bin 113 in green. For e,f Complete 
network diagrams can be found in Supplementary Figures 4 and 5.  
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 The second bin of interest contained 4 members (Vf bin 113), with one encoding a nitrate 

reductase (narG) auxiliary metabolic gene (AMG) (Figure 5d). The narG was positioned as the 

last gene on a scaffold, and conventional approaches for AMG validation would suggest discarding 

the AMG as likely bacterial contamination. However, binning aided in the validation of the AMG 

as likely to be correct. The first line of evidence was the lack of any integrase or lysogenic viral 

signatures on any of the four binned scaffolds, suggesting the AMG is not from bacterial 

contamination resulting from host integration. Second, alignment of all four scaffolds to the nearest 

reference genome (Siphoviridae isolate ctiXA4) displayed that the AMG was situated at the 

intersection of two scaffolds within the genome rather than at a genome end. CheckV identified 

each member as low-quality with completeness values of 11.6% to 28.0% for the respective 7.4 

kb to 16.8 kb scaffolds. The bin was estimated to be of medium-quality with a completeness of 

74.9%, or 92% based on the length of the closest reference genome. Moreover, one of the four 

scaffolds lacked characteristic viral annotations to aid with manual inspection or analyses such as 

phylogeny, yet binning with the other scaffolds containing viral hallmark and nucleotide 

replication annotations was able to validate the scaffold as viral and place it in better genomic 

context for analysis. Therefore, binning was able to not only generate a more complete sequence, 

but also validate the presence of an understudied and ecologically important AMG. Using 

vConTACT2266, we clustered all of the individual, unprocessed viral scaffolds (Figure 5e) in 

addition to the bin with the complete binning results (low-contamination bins plus unbinned 

scaffolds) (Figure 5f). Clustering of the individual scaffolds placed all four scaffolds of the bin 

into a single cluster distinct from other groups, yet as anticipated none of the scaffolds of the bin 

were connected. Clustering of the binning results yielded more connections between scaffolds and 
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vMAGs and better placed the bin within evolutionary and community relationship contexts.  

Complete vConTACT2 networks can be found in Supplementary Figures 4 and 5.  

 

Discussion 

 Binning viral scaffolds into vMAGs is uncommon, with most or all remaining as discrete 

virus operational taxonomic units (vOTUs) or uncultivated virus genomes (UViGs)308. We believe 

adopting a more genome-centric approach for UViGs will enable innovative discoveries, such as 

the construction of large or highly heterogenous viral genomes that often assemble into dissimilar 

fragments. Here, we have presented vRhyme and demonstrate that the “one scaffold, one virus” 

convention can skew interpretations of a virosphere and the interactions of its viral community 

members. To address this, vRhyme enables the binning of viral genomes into vMAGs using a 

virus-centric approach, unique from existing binning software, in an easy to use and reproducible 

command line tool.  

In addition to performance benchmarks on artificial and real metagenomes, we evaluated 

the robustness of vRhyme by binning artificially fragmented NCLDV, megaphage, large 

eukaryotic virus, crAssphage, active and inactive integrated prophage, and microbial genomes 

(Supplementary Information, Supplementary Table 6). vRhyme was largely capable of 

precisely binning these unique and complex viral datasets. However, notable exceptions were 

difficulties with separating multiple inactive (non-replicating) prophages from the same host 

genome as well as binning non-viral genomes, though the latter was an anticipated limitation. 

Moreover, we displayed that vRhyme is efficient and likely precise in binning large and complex 

datasets using GOV2 and agricultural soil viromes106 (Supplementary Information, 

Supplementary Table 7). In total, we hope that with the availability of vRhyme as a reliable 
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binning tool, vMAG construction will become a common practice and adopted into existing 

frameworks of studying viral ecology, host associations, community interactions, evolution, and 

biogeochemical cycling.  

 To further evaluate the computational capabilities of vRhyme or potential restraints, we 

assessed the effect of the coverage calculation methods, the number of input coverage samples and 

the effect of user-modifiable parameters on performance, as well as the runtime, memory usage 

and reproducibility of binning (Supplementary Information). We found that vRhyme performs 

optimally with multiple input samples for more robust coverage variance comparisons, though the 

optimal value depends on how the dataset or metagenome was constructed (Supplementary Table 

8, Supplementary Figure 6). For example, a metagenome assembled from a single, standalone 

sample may perform suitably. As for modifying parameters, vRhyme likely will yield optimal 

results with the default settings due to the coverage calculation method employed and built-in 

binning iterations (Supplementary Table 9, Supplementary Figure 7). Furthermore, the runtime 

of vRhyme for average sized viral datasets was on the scale of seconds. The GOV2 dataset, the 

largest dataset evaluated, finished in 93 minutes with 2.3 GB of memory using 15 CPU threads 

(Supplementary Table 10, Supplementary Figure 8). Lastly, the methods employed by vRhyme 

allow it to be fully reproducible. Overall, we found the necessary requirements to be relatively low 

and even possible on personal laptop systems.  

 There are several important considerations in the binning of vMAGs that are unique from 

microbial MAGs. First, any viral scaffold not contained within a bin (vMAG) should be considered 

as a vOTU or UViG. This aligns with the “one scaffold, one virus” convention which is likely true 

for many viral genomes, especially circular and complete genomes. In the skin datasets presented 

here, ~23% of the viral scaffolds were binned into low contamination vMAGs and the remaining 
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~77% should still be utilized in analyses as discrete scaffolds. Second, an entire metagenome can 

be used as input to vRhyme, or viral binning in general, with the caveat that contamination of bins 

with non-viral sequences may be higher with the added advantage that fewer viral scaffolds may 

be missed. For example, many phage genomes are arranged in cassettes such that structural, 

nucleotide replication, lysis and auxiliary genes form distinct regions. If these regions were to 

assemble into separate scaffolds, virus identification may only identify a portion of the scaffolds, 

such as missing an auxiliary region, whereas binning may place them all together into a single 

vMAG. When applied to a synthetic dataset of predominately non-viral sequences, MetaBat2 

performed better than vRhyme (Supplementary Information, Supplementary Table 11). Third, 

accurate read coverage profiles are crucial for accurate binning. This is true for all binning software 

that depend on differential coverage and is especially true for distinguishing bins of integrated 

prophages from a single host population. vMAGs representing prophages generated by vRhyme 

will likely represent the greatest fraction of redundant, contaminated bins.  

 

Data Availability 

vRhyme and all auxiliary scripts are freely available as open-source Python code at 

https://github.com/AnantharamanLab/vRhyme. 
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Abstract 

Viruses are diverse biological entities that influence all life. Even with limited genome 

sizes, viruses can manipulate, drive, steal from, and kill their hosts. The field of virus genomics, 

using sequencing data to understand viral capabilities, has seen significant innovations in recent 

years. However, with advancements in metagenomic sequencing and related technologies, the 

bottleneck to discovering and employing the virosphere has become the analysis of genomes rather 

than generation. With metagenomics rapidly expanding available data, vital components of virus 

genomes and features are being overlooked, with the issue compounded by lagging databases and 

bioinformatics methods. Despite the field moving in a positive direction, there are noteworthy 

points to keep in mind, from how software-based virus genome predictions are interpreted to what 

information is overlooked by current standards. In this review, we discuss conventions and 

ideologies that likely need to be revised while continuing forward in the study of virus genomics.  

 

Introduction 

Genomics approaches for the study of viruses (infecting eukarya and archaea) and 

bacteriophages (phage; viruses infecting bacteria) has taken off in the last few years, much in part 

due to our ability to understand and interpret viral genomes from metagenomes. In fact, it is 

common to find a publication describing environmental virus genomics from the last few years 

that indicate viruses as the most abundant and diverse biological entities on the planet. As a 

scientific community, we are recognizing the extensive footprint viruses leave on all environments 

where life exists. For example, examining viral genomes has allowed us to discover metabolic 

genes encoded by viruses such as for photosynthesis and sulfur oxidation, and extrapolate the 

impacts of virus-directed metabolism on various biogeochemical processes 35,73,74,81,84,122,140,351. 
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Investigating viral genomes has also 

aided in the innovation of novel 

CRISPR-based genome editing 

technologies 22–24, further development 

of phage therapy applications 29,385, 

broader understanding of human gut 

dysbiosis 11–13, and more.  

Unseen to our daily lives, 

viruses and phages are constantly 

modifying the planet around us through 

manipulation and/or lysis of their hosts 

70. Unfortunately, only a small fraction 

of all viruses that are estimated to exist 

have been cultivated in the laboratory. 

This has led to great interest in utilizing 

next-generation sequencing and 

metagenomics specifically, to catalog, 

explore, describe, and understand the 

diversity of viral genomes 10,308,386,387. 

Through metagenomic methods and 

technologies, thousands of viral 

genomes can be acquired from a single 

mixed metagenome (mixed community) or virome (virus-specific) sample.  

Figure 1. Sample collection and metagenomic 
sequencing of viruses. Virus genomes can be identified 
by physical separation from cells (left) or by software 
tool prediction (right) preceding downstream analyses.  

cells 

mixed 
community 

Environment 

virome predicted 
viruses 

metagenomic 
sequencing 

viruses 

software 
tool 

sample 
collection 

Downstream 
Analyses 

microbial 
metagenome 

mixed 
metagenome 



 210 
 

There are two general methods by which to obtain genomic information to study viruses 

using metagenomics: extraction and sequencing of viromes, and virus prediction from mixed 

microbial metagenomes (Figure 1). A virome differs from a conventional mixed microbial 

metagenome in that it is the physical separation, collection, and sequencing of virus-like particles 

(VLPs) from a sample. Methodologies of VLP collection vary considerably and require 

modification depending on the source environment (e.g., soil, aquatic, human gut). Each method 

comes with its own use-case utilities, biases, and ease-of-use, and no one method is globally 

accepted in the field. A virome can be described as an in situ method of virus discovery. On the 

other hand, virus prediction is the in silico discovery of virus sequences from a metagenome, or 

even a virome; a software tool or manual sequence inspection is used to separate viral from non-

viral sequences within a mixed community. Notably, there are distinct differences between these 

two methods that impact the way in which the data is analyzed. For studies specifically focused 

on the viral fraction of an ecosystem, VLP sequencing of the virome can yield results best suited 

for studying viral communities 106. Virome samples are often better at capturing low abundance 

viruses but may exclude viral genomes that are in an intracellular state (e.g., non-replicating 

proviruses and virocells) 70. Conversely, predicting viral sequences from bulk metagenomes can 

provide context of the viruses and microbes together within the same sample, such as allowing for 

more accurate host predictions or identifying intracellular viral genomes 381,388.  

In the last few years there has been a rapid expansion in the knowledge of viruses on a 

global genomics level by using metagenomes. Here, we slow down and take a step back to ask 

what is being overlooked? Considering the current state of virus genomics, where should 

conventions be broken, and innovations be made? To do this, we will explore some of the methods 

available to extract viral sequences from metagenomes and describe best practices of how those 
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sequences can or should be analyzed. Here, we will focus on software-based virus prediction 

methods and their benefits, utilities, flaws, biases, and future directions. 

 

Sweeping contamination under the rug: balancing recovery and false discovery 

Virus prediction from mixed metagenomes is powerful in that it allows for an entire sample 

to have nucleotides extracted and sequenced while maintaining the integrity of the original 

microbial community comprised of organisms and viruses. A substantial number of software tools 

are currently available to predict viruses from nucleotides with varying methods, degrees of 

precision, and recovery capabilities 113,116,117,294–296,389–394. In all cases, it is vital to consider the 

reality of these predictions in that all computational methods have drawbacks (Figure 2a, Table 1).  

Virus prediction, for the vast majority of implementations, do not encompass all viruses in 

a sample due to loss in recovery, low sequencing depth of the viruses compared to microbes, or 

biases against certain viral families. Therefore, when using software to predict viral sequences, the 

recovered viruses will represent a subset of the true composition. These results can be influenced 

by the specific computational methods utilized by different tools or universal limitations in 

available methods 395. For example, all currently available tools are limited by known virus 

diversity and struggle to predict viruses with entirely novel sequences. Many tools are also biased 

toward dsDNA viruses and phages due to dsDNA-centric databases and sequencing methods. 

Likewise, viral genome sequences comprised mostly of genes or features common to both viruses 

and organisms are difficult to identify accurately. These biases have the potential to leave behind 

viruses with novelty to reference databases or regions of recent recombination without close 

inspection 179,361. In general, all software tools can only find viruses that appear similar to what we 

already know about due to reliance on reference-based prediction methods (see the reference-free 
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Figure 2. Conceptual summary diagram. A: comparison of general virus prediction strategies 
utilized by software tools, from variable recall and precision capabilities to a balanced 
approach. B: categorization of virus predictions as “not novel” or “novel” according to 
similarity to reference databases and datasets of uncultivated viral sequences. C: the reference-
free fallacy; visualization of how virus prediction software tools, whether protein annotation-
based (left) or nucleotide feature-based (right), are all inherently referenced-based. D: the fate 
of complete linear versus circular viral genomes in interpreting metagenomic data. E: 
illustration of a viral genome either binned into a vMAG (left) or analyzed as individual 
fragments (right); each sequence fragment is represented by puzzle pieces. 
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fallacy below). This limitation has been addressed by incorporating non-reference (e.g., 

metagenomic) sequences into software training algorithms, but with the caveat that contamination 

of virus predictions or virome extractions is not uncommon 9,116.  

Contamination, or false discovery, of non-viral sequences is a feature of all virus prediction 

software and should not be ignored. That is, not all recovered sequences predicted to be viruses 

should be included haphazardly into analyses 396. In most cases, the time, expertise, and/or 

computational resources are not available to manually validate all recovered viruses. However, the 

reality behind the precision of predictions should be made clear, such as providing details of how 

the prediction results may have been validated including software-specific cutoffs and 

identification of viral hallmark genes 397. This is especially relevant when considering the ratio of 

recovery to precision. For example, reporting numbers of high virus identifications (high recovery) 

at the expense of the validity of those identifications (low precision) yields seemingly valuable but 

fundamentally flawed data. Low precision can result from the poor performance of a software tool, 

incorrect usage of a software tool (e.g., wrong implementation or retaining low probability or 

scored predictions), inclusion of many short sequence fragments (e.g., less than 3 kb), and other 

factors. 

The following sections stem from the original biases and limitations of the current state of 

virus prediction. By exploring these topics, we aim to shed light on the potential advancements in 

computational methods or inconsistencies in interpretations for viral metagenomic data.  

 

Of reference and reality 

 Many of the gold standards (i.e., trusted reference sequences) for viral genomes are 

deposited in public repositories such as NCBI databases 207,210. These sequences are utilized by 
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various software tools beyond virus prediction, such as for prediction of hosts of viruses,  

prediction of virus taxonomy, functional annotation, genome quality assessment, and more 

266,370,398. However, this presents significant biases owing to the small and non-diverse composition 

of NCBI databases, relative to nature. The diversity of viruses by taxonomy and sequence 

composition within NCBI databases is estimated to be far less than what can be identified in nature 

and is primarily limited to viruses that have been cultivated on a limited number of hosts, mostly 

those of clinical significance or as a model research system 1. Considering virus prediction 

software tools are reliant on these reference databases, it is clear that there are pitfalls associated 

with assuming that reference sequences fully mimic natural reality.   

Similarly, the designation of viral genomes as “novel” according to a database search is 

not equivalent to true novelty. True novelty refers to if a given genome has yet to be identified by 

other sources and is not deposited in another database. For example, a search of NCBI databases 

excludes the majority of metagenome-derived viral sequences, many of which can be found 

throughout the literature and in curated databases 9,10,388,399. Therefore, a virus may be novel with 

regard to reference database sequences, but not actually represent a truly novel sequence. Another 

source of novelty can be if the given sequence contains features yet to be discovered or broader 

implications that have yet to be identified. For example, the identification of crAssphages as highly 

abundant in the human gut came after representative sequences were deposited into databases 180 

(Figure 2b, Table 1).  

 

The reference-free fallacy: no such thing as a reference-free virus prediction 

Many virus prediction software tools are based on bona fide genomes derived from NCBI 

RefSeq, which is mainly composed of isolated and cultivated viruses that serve as reference 
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systems. There are two broad categories of tools according to the methods used: nucleotide 

sequence features (e.g., VirFinder) and protein similarity (e.g., VIBRANT), or a hybrid of both 

(e.g., VirSorter2) 113,116,117. For either category, machine learning has become a powerful approach 

for identifying patterns to increase prediction reliability and specificity 400. However, this has led 

to some misconceptions to believe that “reference-free” refers to complete independence from 

reference databases, whereas “reference-based” refers to the use of protein annotation methods 

based on the annotations of reference viruses. Conversely, we advocate there is no tool completely 

reference-free and rather all tools are inherently reference-based in some manner (Figure 2c, Table 

1).  

For a tool that utilizes protein annotation, the reliance on reference sequences is in the form 

of prediction models built from a protein database 213,306,401, which is a clear reference-dependent 

method. Namely, only reference proteins are able to be annotated, queried, and subsequently 

analyzed. On the other hand, a tool that strictly uses sequence features (e.g., tetra-nucleotide 

frequency) does not necessarily need to rely on a database, but can rather rely on a machine 

learning model. This machine learning model can be perceived as reference-free, but similar to a 

protein database, the model too is dependent on the reference sequences used to train it. Therefore, 

for both categories of tools there is a direct reliance on reference sequences, making them both 

inherently reference based. A more accurate distinction would be “database-dependent” or 

“database-free” methods. Even manual verification of virus predictions is not reference-free as this 

method typically involves searching through protein annotations (e.g., phage structural hallmark 

proteins) and other reference-informed signatures (e.g., gene density and gene strand switch 

frequency) 402.  



 216 
 

Moreover, it is important to note that the reference sequences used to compare, train and 

test software tools and/or machine learning models typically all come from the same genetic pool 

(i.e., NCBI databases). This perpetuates biases: biases against rare virus groups and biases in 

accurate comparisons. First, it is estimated that the true diversity of viruses in nature has yet to be 

captured by the sequences available on NCBI databases 208,308,399. This results in a lack of 

representation of more rare viruses or simply those that have yet to be isolated/cultivated 

43,179,403,404. Since virus prediction tools are inherently reference-based, this leads to perpetual 

biases towards identifying viruses we already know about, with rare occasions of identifying a 

truly novel species 403. Second, the utilization of NCBI databases for assessing available software 

tools results in an inherent loss of fair comparisons. It is becoming increasingly difficult to generate 

a comparison dataset of gold standard viral sequences that does not, in some capacity, represent 

the sequences used to train existing tools. This is due to the limited size of NCBI databases. 

Especially for tools that utilize machine learning, evaluating a tool with a sequence that was used 

to train that tool results in inflated, positive performance. The common work around is to only 

include viral sequences submitted to NCBI databases after the dates of publication for tools to 

compare, but this also results in biases, such as the inclusion of viruses nearly identical to those 

submitted previously. This latter example can be addressed by removing any identical sequences 

via dereplication, though this is seldom employed. In attempts to solve this issue and generate 

comprehensive, fair datasets for future software tool development and comparison, more focus and 

better curation standards need to be placed on the construction of reference sequence datasets. 

 

Linear genomes can be complete: where did all the linear genomes go? 
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 Identifying complete viral genomes from sequencing data allows for more robust analyses 

compared to fragmented, partial genomes. Automated methods to predict complete viral genomes 

focus on circularization signatures, namely the identification of terminal nucleotide repeats (direct 

or inverted) of free viral sequences or insertion sites of viruses integrated into their host’s genome 

(proviruses) 116,117,295,296,370,392. For free (lytic cycle) viruses, the identification of circularization 

can typically indicate with confidence that the given genome is complete. However, this method 

discounts complete linear genomes, such as those without identifiable terminal repeats 405. 

 Thus far, no high-throughput informatics method exists for the identification of complete 

linear genomes in the absence of circularization signatures 370,406. This results in over-emphasizing 

circular genomes as the only gold standards in generating metagenomic-based reference genomes 

or the highest quality genomes in genomic datasets. Though these conclusions are not flawed on 

their own as correctly identified circular genomes are certainly of high quality, barring false 

positives 362, this overall bias against linear genomes has infiltrated the currently available 

literature (Figure 2d, Table 1). Speculatively, the ability to identify complete, linear virus genomes 

may allow for a more holistic view of a viral community or lead to novel discoveries of 

underappreciated viral groups. 

 

Metagenomes are puzzles: an unfinished puzzle is still just pieces 

 Metagenomic assemblies reconstruct thousands to millions of sequence fragments 

(contigs) representing partial genomes, and rarely complete genomes. A common practice in the 

study of bacterial and archaeal genomes is to reconstruct metagenome-assembled genomes 

(MAGs) 309,407. This is typically done through a method termed binning where anywhere from two 

to hundreds or even thousands of contigs may be grouped into a single, putative genome (bin). 
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When using short read (e.g., 75-300 bp) sequencing technology and assembly, many resulting 

contigs are less than 5 kb in length, with relatively few exceeding 20 kb. Consequently, bacterial 

and archaeal genomes that generally exceed 1,000 kb must be computationally binned into MAGs. 

Though long-read (e.g., 1-20 kb) technologies are advancing these boundaries, the construction of 

MAGs is typically still required. For bacteria and archaea, several software tools are available for 

binning and constructing MAGs 93,94,96,97,408,409. 

Viral genomes range from as small as 3 kb to greater than 2,000 kb. Many identified phages 

are members of the class Caudoviricetes (formerly Caudovirales) which range considerably in 

size, but most are approximately 30 kb to 200 kb 108. Interestingly, the convention accepted in 

descriptions of viruses derived from viromes or predicted from metagenomes is that a single contig 

represents an uncultivated viral genome (UViG) or virus population 308. To assume each sequence 

represents a separate genome likely far overestimates viral diversity within a sample given the 

expected fragmentation of viral genomes. This is especially true for viruses that are rarer and would 

likely result in high genome fragmentation after assembly. The construction of viral metagenome-

assembled genomes (vMAGs) would better represent the true composition of viruses within a 

sample. Importantly, UViGs still have utility in that any viral sequence left unbinned may represent 

an entire viral population, contrary to what is accepted for bacteria and archaea where unbinned 

sequences are typically discarded (Figure 2e, Table 1). This can be achieved by binning vMAGs 

using short- or long-read sequencing 410. Despite this, few studies bin vMAGs, and those that do 

bin typically focus on viruses with the largest genomes 81,82,120,411. This conspicuous discrepancy 

of binning bacteria and archaea, but not viruses, is a convention that likely hinders advancement 

in the field of viral metagenomics. Development of virus binning tools, such as vRhyme 124, will 

fuel this advancement.  
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Sweeping contamination under the rug: balancing recovery and false discovery 
All software tools that predict viruses from metagenomes can make mistakes 

1. Using multiple virus prediction tools and combining results can strengthen predictions by mitigating 
the biases and pitfall of each individual tool  

2. In published work, report all parameters and thresholds used for predicting viruses, including 
methods of manual curation 

3. Selecting low thresholds when running software or retaining low probability predictions will often 
generate “more data” at the expense of that data being low quality (i.e., contaminated) 

4. Read the tool’s publication (if available) in addition to the software documentation to best understand 
the tool’s utility, pitfalls, and performance benchmarks 

 
Of reference and reality 

The reliance of most software tools on reference databases is a source of bias 

1. Consider homology search to additional curated databases in addition to NCBI databases when 
reporting novel sequences or gene features 

 
The reference-free fallacy: no such thing as a reference-free virus prediction 

No current tool for predicting virus sequences is reference-free 

1. Repeated training tools on NCBI databases has led to overlap in training and testing datasets across 
tools, making benchmarks increasingly difficult to perform without bias. Including non-NCBI 
databases in training, testing, and curating databases can reduce bias 

2. Avoid falsely assuming database-independent machine learning models, whether trained on protein 
annotations or nucleotide features, overcome the necessity for reference-based searches 

 
Linear genomes can be complete: where did all the linear genomes go? 

Emphasis is placed on circular genomes as complete, excluding linear genomes 

1. Although complete, linear genomes may be identified as high quality or near complete, the lack of 
circularization signatures underemphasizes these genomes in databases or analyses 

2. A metagenomics-scale approach to identify complete viral genomes without terminal repeats may 
reduce the bias towards circular genomes. Until such a tool is available, it is necessary to keep in 
mind the possibility of underrepresenting linear genomes 

Metagenomes are puzzles: an unfinished puzzle is still just pieces 
Not all metagenomic viral scaffolds represent the whole genome 

1. The inclusion of binning in virus analysis pipelines and constructing viral metagenome-assembled 
genomes (vMAGs) will likely better represent true composition of viruses and viral diversity 

 

 

 

Table 1. Recommendations for the questions, biases, and pitfalls posed in each section. 
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Conclusions 

Virus genomics, specifically metagenomics, allows for the circumvention of conventional 

cultivation approaches to study viruses, their impacts on microbial communities, biogeochemistry, 

applications for biotechnology, human medicine, and more. After sequencing a sample, it has 

become just a few keystrokes and a click of a button to obtain a list of the viruses present. The 

outcome is that our knowledge of viral genomic diversity has increased at a near exponential rate 

over the last few years, opening new and exciting opportunities. However, this has been at the 

expense of biasing conclusions due to tools, methodologies, and conventions that lag data 

acquisition. 

We are led to several overarching questions. Are virus predictions capturing the true nature 

of a community of viruses? Are heavily reference-guided predictions making it easy to miss any 

undiscovered novelty without studious inspection? Are conventions in identifying high-quality and 

complete viral genomes ignoring entire viral groups with unique genome architecture? Is the field 

as a whole moving too fast to fully consider the scope of the genomes presented?  

There is no single set of answers to address all these questions easily. Rather, recognizing 

the limitations of the available methods will help to best work towards an optimized, efficient, and 

accurate approach to handle the rapid, near-constant flow of sequencing information. The goal is 

a fair, holistic representation of the global virosphere to best understand how viruses influence all 

life.  
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