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abstract

Machine learning (ML) has revolutionized a wide range of fields with its
capacity to learn from data and make informed decisions. Recognizing the
critical role of well-curated data in the advancement of modern ML, the data-
centric ML community emphasizes the importance of careful data preparation
and strategic selection to ensure both data quality and their relevance to
target tasks. However, the prevailing approach for data validation and
selection employed in practice remains largely manual or ad-hoc, while
automated methods often fall short in either effectiveness or efficiency, thus
limiting their practical application. In this dissertation, we revisit the
current methodologies for automated data validation and selection, aiming
to propose new techniques with improved performance and practicality.

In the first part of this dissertation, we study the verification and discov-
ery of denial constraints, a general formalism that can express a wide range
of quality rules for tabular data. Verification entails detecting whether a
given denial constraint holds on a specific dataset, while discovery focuses
on the automated mining of valid constraints. The current state-of-the-art
methods for denial constraint verification and discovery are inefficient on
large-scale datasets due to their quadratic complexity relative to the dataset
size. In addition, existing works on denial constraint discovery rely on a time-
consuming blocking phase of building intermediate data structures, further
limiting their practicality. To address the limitations of prior works, we make
a dual contribution. First, we introduce a novel verification algorithm that
demonstrates near-linear complexity relative to dataset size by connecting
denial constraint verification to orthogonal range search, showing a theoreti-
cal improvement over prior works. Second, we present an anytime algorithm
for denial constraint discovery by combining our verification algorithm with
lattice searches, eliminating the need for the blocking structure-building
phase in existing solutions. Our verification algorithm achieves up to 84×
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faster compared to state-of-the-art approaches. In addition, our discovery
algorithm is able to start providing valid constraints within the initial 10
minutes of execution, while existing methods are blocked for over 48 hours.

In the second part, we focus on defending against data corruption in ML
pipelines. Data corruption is an impediment to modern ML applications as
they can severely bias the learned model and also lead to invalid inferences.
Data corruption in practice can be highly diverse, ranging from random
noise, systematic errors to adversarial attacks, which are often beyond the
scope of standard error detection methods. We present a simple framework
to safeguard against data corruption during both training and deployment
of ML models over tabular data. In the training stage, our framework
identifies and removes corrupted data points from the training data to avoid
obtaining a biased model. In the deployment stage, our framework flags, in
an online manner, corrupted query points to a trained ML model that due
to noise will result in incorrect predictions. To detect corrupted data, we
develop a self-supervised deep learning model for mixed-type tabular data.
To minimize the burden of deployment, learning the model does not require
any human-labeled data. Our framework is designed as a plugin that can
increase the robustness of any ML pipeline. We show that our framework
consistently safeguards against corrupted data during both training and
deployment of various models ranging from SVMs to neural networks, beating
a diverse array of competing methods that span from data quality validation
models to robust outlier-detection models. In addition, to promote the
understanding of the worst-case effects that data corruption can have on
learning performance, we present an information-theoretic analysis of robust
mean estimation under coordinate-level corruption. Our analysis shows that
leveraging the dependencies between features is the key to accurate mean
estimation for corrupted data.

In the last part, our attention turns to task-specific data selection. The
goal is to select training data for specific tasks from a massive and het-
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erogeneous pool of candidate data, guided by a small set of representative
examples from the target task. We highlight two critical properties for the
selected data: distribution alignment and diversity, which are not adequately
satisfied by previous works. Aligning the distribution of the training data
with query data expected during service time ensures that the model is
customized for the intended usage. On the other hand, sufficient diversity
allows the model to learn more knowledge and avoid overfitting. We present
a framework that formulates task-specific data selection as an optimization
problem based on optimal transport, a notion that captures the distance
between two distributions. We add a regularization term to the optimal
transport formulation to provide a smooth tradeoff between distribution
alignment and diversity. In addition, we incorporate kernel density estima-
tion into the regularizer to reduce the negative effects of near-duplicates
in the candidate pool. Finally. we connect our optimization problem to
nearest neighbor search and design efficient algorithms to compute the op-
timal solution based on approximate nearest neighbor search techniques.
Our approach achieves an improvement of up to 5 points in F1 scores for
targeted instruction tuning compared to the state-of-the-art method and
demonstrates robustness against near-duplicates.
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1 introduction

1.1 Motivation

Machine learning (ML) has achieved remarkable success across a range
of fields, including computer vision (Dosovitskiy et al., 2021; He et al.,
2016), natural language processing (Vaswani et al., 2017; OpenAI, 2023),
recommender systems (Covington et al., 2016; Zhou et al., 2018), scientific
discovery (Jumper et al., 2021), and so forth. The profound advancements
of ML are attributed not only to innovative model designs but also to
well-curated data. As the prominent role of data in ML becomes widely
recognized, the concept of data-centric ML (Zha et al., 2023) has emerged,
underscoring the importance of meticulous data preparation and the right
choice of data to feed the models.

There are several key characteristics of well-curated data that are critical
for the performance of ML models. First, well-curated data should be
clean, without data quality issues that could mislead the model. Previous
research (Breck et al., 2019; Koh et al., 2018; Li et al., 2023) has demonstrated
that systematic errors or maliciously injected noise in the training data can
lead to models with low accuracy or models that make systematic mistakes.
Furthermore, near-duplicates in the training set can impair training efficiency
and introduce bias into the model (Hernandez et al., 2022; Lee et al., 2022;
Tirumala et al., 2023). For example, as shown by Lee et al. (2022), language
models trained on datasets with near-duplicates are more likely to generate
sequences that are copies of examples in the training set. Second, data fed
to a model should have a distribution that matches the data of the intended
application, as highlighted by Murphy (2012) and Gururangan et al. (2020).
In other words, the patterns or characteristics that the model learns from
the training data should closely mirror those it will encounter at service time.
We show an example of distribution matching in Figure 1.1. As real-world
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data tend to be messy and heterogeneous, it is essential to conduct data
validation to ensure data quality and data selection to choose data that
aligns with the desired distribution.

Training Data
Query Data 

Figure 1.1: An illustration of distribution matching for 2-dimensional points.
The training data in the left figure have better distribution alignment with
the query examples at service time compared to the ones in the right figure.

In Figure 1.2, we show a simplified data pipeline in typical ML workflows.
The raw data are cleaned before being forwarded to the validation module.
If the data do not meet the validation criteria, they are returned for further
cleaning. Once the data pass the validation, they will be selected and
resampled to form the training dataset. In this dissertation, we focus on
data validation and selection.

Cleaning ValidationRaw Data Selection Training Data

Figure 1.2: A simplified data pipeline in ML workflows.

Data validation is the process of assessing data quality with predefined
standards. The problem of data validation has been extensively studied in
the database community, where integrity constraints (Calì et al., 2002; Chu
et al., 2013) such as key constraints, functional dependencies, and order
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dependencies are widely used to detect errors in tabular data. Additionally,
ML platforms such as TFX (Polyzotis et al., 2019) and Deequ (Schelter
et al., 2018) rely on assertions on feature statistics such as histograms, cor-
relation, and mutual information to detect anomalies. Similarly, the natural
language processing community (Laurençon et al., 2022; Rae et al., 2022)
filters datasets based on text statistics such as word count, ratio of alpha-
betical characters, etc. Recently, researchers have proposed learning-based
methods for data validation, using generative models to learn distributions
of high-quality data (Eduardo et al., 2020; Wenzek et al., 2020) or discrim-
inative models to distinguish between data from high-quality and noisy
resources (Brown et al., 2020; Du et al., 2022).

Data selection aims to determine which data points to include in the
training set to maximize a predefined utility that is often related to model
performance. A common setting is that given a pool of candidate data points
and a collection of sample queries that the model is expected to encounter
at service time, select data from the candidates to form a training set. One
line of data selection methods (Feng et al., 2022; Xie et al., 2023) stems
from the one proposed by Moore and Lewis (2010), which evaluates the
utility of a data point by taking the difference in probability scores given by
two models: one trained on the data from the target task, and the other on
general-purpose data. More recent approaches (Engstrom et al., 2024; Xia
et al., 2024) select data points that have a high influence on the performance
of the model for the target task.

Data validation and selection in real-world ML development rely heavily
on human expertise and efforts, while automated methods have limitations
that restrict their practical utility. Data validation processes in industrial
ML platforms (Polyzotis et al., 2019; Schelter et al., 2018) require user-
specified rule-based or schema-based quality assertions, where extensive data
inspection by human experts is needed. Methods that discover constraints
from data automatically (Zhang et al., 2020b; Bleifuß et al., 2017; Pena et al.,
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2019) are either limited to specific types of constraints or computationally
expensive. Learning-based quality filters (Wenzek et al., 2020; Brown et al.,
2020; Du et al., 2022) make decisions automatically but require manual
annotations on a set of data indicating whether the data come from a clean
source or not when training the filters. Previous works on data selection
relying on heuristics such as simple similarity search (Moore and Lewis,
2010; Xia et al., 2024) do not ensure that the selected data are distributed
like the data from the target task. DSIR (Xie et al., 2023) introduces the
concept of distribution matching but the focus on n-gram features of texts
limits its application to other types of data and applications that require
high-level semantics. Therefore, there is a need for principled and practical
solutions for data validation and selection, which motivates this dissertation.

1.2 Dissertation Goal

This dissertation takes steps to improve the practicality of automated data
validation and selection. Specifically, the goal is to develop efficient, princi-
pled, and holistic frameworks for automated data validation and selection.
We move towards the goal by tackling the following problems.

First, can we improve the efficiency of denial constraint discovery and
verification to handle large-scale datasets in real-world applications? Denial
constraints (Chu et al., 2013) are a well-established formalism that captures
a wide range of integrity constraints commonly encountered on tabular data,
including candidate keys, functional dependencies, and ordering constraints,
among others. Prior work exhibits notable limitations when confronted
with large-scale datasets. The current state-of-the-art denial constraint
verification algorithm (Pena et al., 2021) demonstrates a quadratic (worst-
case) time complexity relative to the dataset’s number of rows. In the
context of denial constraint discovery, existing methodologies (Bleifuß et al.,
2017; Pena et al., 2019) rely on a two-step algorithm that commences with an
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expensive data structure-building phase, often requiring hours to complete
even for datasets containing only a few million rows. Consequently, users
are left without any insights into the constraints on their dataset until the
lengthy building phase concludes. Therefore, more efficient and flexible
algorithms for denial constraint discovery and verification are desired for
large-scale datasets in ML applications.

Second, can we develop a data validation framework to guard against
various types of data corruption on mixed-type tabular data while requiring
minimal human efforts? Data corruption in practical ML applications can be
highly diverse, ranging from random noise, systematic mistakes to adversarial
attacks (Koh et al., 2018; Li et al., 2023), which are often beyond the scope
of constraint-based error detection (Pena et al., 2021) or simple statistical
assertions (Polyzotis et al., 2019; Schelter et al., 2018). On the other hand,
the mixed-type nature of tabular data renders adversarial attack detection
methods (Steinhardt et al., 2017a) from the ML literature inapplicable, as
these methods are primarily designed for real-valued data. In addition, as
labeling data as clean or corrupted is excessively labor-intensive for the
user, an effective data validation framework should avoid relying on such
annotations. Therefore, there is a critical need to develop an innovative
data validation framework that can effectively handle the complexity of
mixed-type tabular data and diverse data corruption without the demand
for manual labeling.

Third, can we design a principled and generic framework to select target-
specific data for ML training or finetuning? The goal is to select training
sets from a massive candidate pool automatically for a target task, using
representative examples as a guide. Such a setting is common in the
context of large language model pretraining or finetuning, where a massive
and heterogeneous corpus crawled from the web is readily accessible, but
task-specific data are needed to tailor a foundation model to the target
distribution. As existing works (Moore and Lewis, 2010; Brown et al., 2020;
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Gururangan et al., 2020) rely on simple heuristics or ad-hoc algorithms,
their effectiveness across different settings is unclear. In addition, the lack
of theoretical foundation casts doubts on the reliability of those methods.
Instead, we seek a framework with solid theoretical foundations and the
flexibility to be applied in different settings.

1.3 Contributions

In addressing the problems stated in the dissertation goal above, we make
the following contributions.
Denial constraint discovery and verification. We present a general
framework for efficient denial constraint discovery and verification. Our
proposed algorithms for discovery and verification achieve Õ(N) time and
space complexity where N is the size of the dataset, a significant improve-
ment over prior works (Pena et al., 2021; Bleifuß et al., 2017; Pena et al.,
2019) whose complexity is O(N2). First, we introduce a near-optimal al-
gorithm for validating any given denial constraint on the input dataset by
making a connection between orthogonal range search and denial constraint
verification. Second, we introduce the problem of anytime denial constraint
discovery and propose an algorithm that leverages our novel verification
algorithm to gradually output discovered constraints to users, eliminating
the time-intensive blocking phase of intermediate data structure building
that is employed in prior works (Bleifuß et al., 2017; Pena et al., 2019).
Safeguard against data corruption in ML pipelines We present a
framework for safeguarding against corrupted data in ML pipelines. Our
framework detects corrupted examples using a novel deep-learning model that
captures the distribution of mixed-type tabular data, consistently achieving
an AUROC score of above 80 points for corruption detection across different
types of noise. Specifically, we design a new transformer-based model to
capture the distribution of tabular data containing mixtures of numerical,
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categorical, and text-based entries. We employ a robust self-supervised
training approach that operates directly on potentially corrupted data to
train our model, without imposing any extra labeling burden on the user.
We build an error detection mechanism based on the reconstruction loss from
our model, which can be used to identify corruption in training data and
validate inference queries. Furthermore, we conduct a theoretical analysis
of mean estimation errors in the presence of coordinate-level corruption,
providing insights into the worst-case effects that data corruption could
impose on the learning process. Our analysis shows that one must exploit
the structure of the data (i.e., dependencies between features) to achieve
information-theoretically optimal errors for mean estimation.
Task-specific data selection We present a framework to select data for
task-specific training or finetuning. Our framework samples task-specific
data through regularized optimal transport for distribution alignment and
diversity, achieving an improvement of up to 5 points in the F1 score over
the state-of-the-art selection method (Xia et al., 2024) in instruction tuning
for large language models on targeted tasks. Specifically, we formulate
task-specific data selection as an optimization problem based on optimal
transport, which is closely related to generalization error (Gálvez et al., 2021).
The optimization problem allows a smooth trade-off between distribution
alignment and diversity. We make our framework robust to near-duplicates
in the candidate pool by incorporating kernel density estimation into the
regularization term. We show the connection between the optimal solution
to the optimization problem and nearest neighbor search. This connection
allows us to develop efficient algorithms employing approximate nearest-
neighbor search techniques (Douze et al., 2024).
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1.4 Organization

In Chapter 2, we provide background on data validation and selection
with related notations and terminology. In Chapter 3, we introduce our
framework for denial constraint discovery and verification. In Chapter 4, we
present our framework for safeguarding corruption in ML pipelines, along
with a theoretical analysis of the worst-case effects of data corruption on
mean estimation. In Chapter 5, we introduce our task-specific data selection
framework. Chapter 6 concludes this dissertation, and discusses potential
directions for future exploration.
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2 background

In this chapter, we provide the necessary background for data validation and
task-specific data selection. We first introduce notations and terminology
that will be used throughout this dissertation. Then we introduce the
concept of data validation and selection, along with methods that have been
proposed in the literature. Finally, we present works that are related to this
dissertation in a broader sense.

2.1 Notations

We use R≥0 to represent the set of non-negative real numbers, and R>0 to
represent the set of positive real numbers. Let N be a positive integer and
we use [N ] to denote the set of integers from 1 to N . We use bold letters to
denote matrices and the corresponding plain letters with subscripts to denote
the entries in the matrix. For example, γ ∈ RM×N is an M × N matrix,
and γij or γi,j is the entry in the ith row and the jth column (1-indexed).
Dataset. A dataset D = {x1, . . . , xN} is a multiset of examples. Depend-
ing on the context, an example x ∈ D can be a vector, a chunk of text,
or a tuple in a relation database. We use the multiset semantic to allow
the existence of duplicates, as duplicates or near-duplicates are common
in web-crawled data (Fröbe et al., 2021) used for the pretraining of foun-
dation models. Depending on the context, each example may contain its
corresponding label. We use |D| to denote the cardinality of D.
Tabular Data. For tabular data, a dataset D is a relation R with a finite
set of attributes (i.e., columns in the table). We use vars(R) to denote the
set of attributes in the relation, and x.A to denote the value of attribute A
on example x.
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Table 2.1: A table of demographic information. Erroneous entries are marked
in red colors.

Zip State Age

x1 53705 WI 36
x2 53705 CA 25
x3 90011 CA 34
x4 90011 CA 1996-11-4

2.2 Data Validation

Data validation is the process of assessing data with predefined quality
checks before using them. Data validation takes a dataset as input and
outputs true or false indicating whether the input passes the validation. In
practice, additional information such as examples or values that fail the
validation is provided by the data validation process to help the user debug
and make improvements.

Example 2.1. Table 2.1 is a relation containing demographic information
with the following errors:

• x4.Age fails the check that the Age column of every example should
contain an integer value.

• x1 and x2 fail the check that Zip determines State, i.e., two examples
with the same Zip should also have the same State.

Therefore, the data validation process will output false for Table 2.1, along
with the information that x4.Age fails the data type check and x1, x2 violate
the rule that Zip determines State.

In the rest of this section, we introduce common types of quality checks
for data validation in more detail.
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Table 2.2: Tax rates for people in different states in the USA.
SSN Zip Salary FedTaxRate State StateCode

x1 100 10108 3000 20% New York 01
x2 101 53703 5000 15% Wisconsin 02
x3 102 53703 6000 20% Wisconsin 02
x4 103 53703 4000 22% Wisconsin 02

2.2.1 Denial Constraint

Denial constraints (Chu et al., 2013) are a highly expressive formalism of
integrity constraints for tabular data. Denial constraints generalize several
other types of integrity constraints, including unique column combinations,
functional dependencies, and order dependencies.

A denial constraint states a rule that denies the existence of conflicting
combinations of column values, which are determined by the predicate
conjunctions in the denial constraint. Formally, a denial constraint φ on
relation R is a conjunction of predicates in the following form:

∀x, x′ ∈ R, x ̸= x′ : ¬(p1 ∧ · · · ∧ pm)

p1, . . . , pm are predicates in the form of x.A op x′.B where op ∈ {=, ̸=,≥
, >,≤, <} is one of the six operators, and A, B ∈ vars(R) are two (possibly
the same) attributes. A pair of examples (x, x′) is said to be a violation
if all the predicates in φ evaluate to true. In the rest of this dissertation,
we omit the universal quantification (∀x, x′ ∈ R, x ̸= x′) when presenting
denial constraints for conciseness.

We use Table 2.2 containing tax information to show some examples of
denial constraints.

Example 2.2. We consider the following denial constraints:

• φ1 : ¬(x.SSN = x′.SSN). SSN is a candidate key, i.e., every example
should have a unique SSN.
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• φ2 : ¬(x.Zip = x′.Zip ∧ x.State ̸= x′.State). Zip determines State,
i.e., two examples sharing the same Zip should share the same State.

• φ3 : ¬(x.State = x′.State∧x.Salary ≤ x′.Salary∧x.FedTaxRate >

x′.FedTaxRate). In the same State, examples with higher Salary
should also have higher FedTaxRate.

φ1 and φ2 have no violation on Table 2.2. There are four example pairs
violating φ4: (x2, x4), (x3, x4), (x4, x2), (x4, x3).

Data validation based on denial constraints operates as follows: for the
input dataset D and a collection of denial constraints Φ, output true if
for any φ ∈ Φ, the number of violations does not exceed a pre-specified
threshold, and output false otherwise. The threshold decides how much
inconsistency we allow for the dataset. When the threshold is set to 0, the
constraints need to be fully satisfied.

2.2.2 Statistical Assertions

Assertions on data statistics are employed by ML platforms in the indus-
try (Polyzotis et al., 2019; Schelter et al., 2018) and some works on large
language model pretraining (Raffel et al., 2020; Rae et al., 2022; Chen et al.,
2021; Laurençon et al., 2022) to validate data quality. For the input dataset
D, an assertion is a rule in one of the following forms: (1) T (D) ∈ R and
(2) ∀x ∈ D, τ(x) ∈ R, where T computes a statistic on a dataset, and τ

computes a statistic on a single example. R is the range that a statistic
should lie in. Data validation based on such assertions outputs true if all
the assertions hold on the input dataset, and outputs false otherwise.

In TFX (Polyzotis et al., 2019), an ML platform from Google, single-
attribute statistics (e.g., minimum, maximum, mean, or median for numerical
attributes, number of unique values, the most frequent value for categor-
ical attributes) and cross-attribute statistics (e.g., correlations between
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attributes, mutual information of an attribute with the label) on the dataset
level are supported for tabular data. In the natural language processing
literature, assertions are made on statistics of individual examples, including
word count (Raffel et al., 2020), the maximum number of consecutive repeti-
tions of the same word (Laurençon et al., 2022), symbol-to-word ratio (Rae
et al., 2022) and maximum line length (Chen et al., 2021), etc.

Example 2.3. Xie et al. (2023) introduce a series of quality checks for
their text dataset. To pass their quality checks, each example must satisfy
the following assertions:

1. The minimum length of a word is at least 40.

2. The maximum length of a word is at most 500.

3. The repeat ratio is between 0.02 and 0.2, where the repeated ratio is
defined as the maximum number of occurrences of the same word in
an example divided by the word length of that example.

4. The informativeness ratio is between 0.3 and 0.7, where the informa-
tiveness ratio is the number of non-stop and non-punctuation words in
an example divided by the word length of that example.

5. The numeric ratio is less than 0.2, where the numeric ratio is the
number of numerical words in an example divided by the word length
of that example.

The words are tokens based on the NLTK word tokenizer (Bird et al., 2009).

2.2.3 Learning-Based Data Validation

Learning-based data validation methods rely on generative models to capture
the distribution of high-quality data, or discriminative models to distinguish
between high-quality and low-quality data.



14

The first line of works (Wenzek et al., 2020) assume access to a high-
quality dataset Dhigh and use a generative model to learn the distribution of
high-quality data from Dhigh. The second line of works (Brown et al., 2020;
Du et al., 2022; Gao et al., 2020) require a high-quality dataset Dhigh and a
low-quality dataset Dlow to train a classifier that distinguish between the
two distributions. In the data validation process, the trained model assigns
a confidence score to each example in the candidate dataset indicating how
likely the example comes from the high-quality distribution. In Figure 2.1,
we show the workflow of learning-based data validation. In stage 1, either a
generative or binary classifier is trained, which will be used to assign scores
to the candidate examples to be validated in stage 2. For a dataset to pass
the validation, all the examples should have a confidence score above some
threshold. Whenever a dataset fails the validation, a simple filtering of the
examples with low confidence scores is often applied.

Low-Quality Data

High-Quality Data

Binary Classfier

TrainingHigh-Quality Data Training Generative Model

Stage 1: Train a Model for Quality Accessment (Left: Generative Model, Right: Discrimitive Model)  

Stage 2: Assign a Confidence Score to Each Candidate 

Candidate Example Generative Model

3.25

Confidence Score

Binary Classifier

OR

Figure 2.1: Workflow of learning-based data validation.

There are also outlier detection methods (Chen et al., 2001; Liu et al.,
2008; Eduardo et al., 2020) in the statistic literature that do not need access
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to Dhigh and Dlow. Instead, they learn the distribution of high-quality data
directly from the dataset to be validated, which is possibly clean or noisy.

2.3 Task-Specific Data Selection

Task-specific data selection aims at selecting proper training data for a target
task from a candidate data pool. This dissertation focuses on automated
selection, where a small set of samples from the target task is provided to
guide the selection. We show an illustration of the setting in Figure 2.2.
Formally, task-specific data selection takes a set of representatives Q =
{qi}M

i=1 from the target task and a candidate pool D = {xj}N
j=1 as inputs, and

outputs a subset or a resample of D. Such a setting is common in practice,
especially in the context of large language model finetuning. For example,
recently there has been a trend in the industry to build customized chatbots
for specific tasks (Conover et al., 2023) such as question-answering on user
data and domain-specific information retrieval. To build such chatbots, a
practitioner may manually craft a set of examples to showcase the desired
data and use them to guide the selection of relevant data from a massive
web-crawled corpus or an internal data lake.

Task-Specific 
Selection

Task-Specific 
Training Data

Candidate Pool

Representative 
Use Cases

Figure 2.2: Target-specific data selection.
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Task-specific data selection methods can be model-agnostic or model-
specific, depending on whether the selection process considers downstream
training. In the rest of this section, we will introduce model-agnostic and
model-specific methods proposed by previous works.

2.3.1 Model-Agnostic Selection

Model-agnostic data selection is decoupled from the downstream training
process. Similarity-based methods (Ruder and Plank, 2017a; Gururangan
et al., 2020; Aharoni and Goldberg, 2020; Yao et al., 2022) retrieves the
top examples from the candidate pool, ranked by their similarity to the
representative from the target task. The features used for similarity compu-
tation can be embeddings or ngrams for texts. Another line of works (Moore
and Lewis, 2010; Xie et al., 2023) use two generative models where one of
them learns the distribution of the data from the target task and the other
learns the distribution of general-purpose data. Moore and Lewis (2010)
rank the candidate examples by the differences in log probability given by
the two models. Xie et al. (2023) perform importance resampling to match
the distribution of the resampled candidate pool and the target distribution.

2.3.2 Model-Specific Selection

Model-specific data selection methods (Engstrom et al., 2024; Xia et al.,
2024) choose data to maximize the model performance on the target task.
Given the high cost of actually training a model and evaluating it on
the target task, these methods often estimate the model performance by
approximation. Engstrom et al. (2024) approximate the model performance
using datamodels (Ilyas et al., 2022), a function that maps the training
data membership (the information of whether each candidate is included in
the training set or not) to the model performance. Formally, let S ⊆ D be
a selected training set and 1S ∈ {0, 1}N be a binary vector where the jth
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element is 1 if and only if xj ∈ S. Datamodels predicate the loss on query
example qi as θT

i 1S when the model is trained on S, where θi ∈ RN is the
parameters learned from randomly selected subsets and the corresponding
evaluation loss on qi. Engstrom et al. (2024) select xj’s with the top-lowest
influences on the loss of the query examples, i.e., ∑M

i=1(θi)j. Xia et al.
(2024) employ the influence function (Koh and Liang, 2017) to approximate
the marginal gain on the model performance when including a candidate
into the training set. Specifically, they first train a model on a random
subset of the candidate pool and then approximate the change of loss on
the query examples (i.e., the influence) when including a new candidate into
the training set by performing a single Newton step. Candidates with the
top-lowest influences will be selected.

Note that these model-specific methods can be made model-agnostic
if we use a surrogate model in the selection process. A surrogate model
is a simpler model used to approximate the behavior of the actual model.
Surrogate models are particularly useful in predicting the change in model
performance in response to changes in training data or hyperparameters.
When we use a fixed surrogate model to replace the actual model in the
data selection process, any model-specific selection method is decoupled
from the actual model.

2.4 Related Works

Denial Constraint Verification. Denial constraint verification is the
problem of verifying whether a constraint holds on a given input or not.
Facet (Pena et al., 2021) is the state-of-the-art algorithm for denial constraint
verification. Facet follows the design of VioFinder (Pena et al., 2020) which
processes the predicates in a denial constraint one by one to rule out potential
violations. Previous works on data cleaning (Rekatsinas et al., 2017; Geerts
et al., 2020; Fan et al., 2021) rely on relational database management systems
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(DBMS) to detect denial constraint violations, where denial constraints are
translated into SQL queries. Those DBMS-based methods often fall short
when the given denial constraint contains inequalities, and they are slower
than denial constraint-specific methods by orders of magnitude as shown in
previous works (Pena et al., 2020, 2021).
Denial Constraint Discovery. Denial constraint discovery is the
problem of identifying denial constraints holding on a given dataset. Previous
works (Bleifuß et al., 2017; Pena et al., 2019, 2022; Xiao et al., 2022) on denial
constraint discovery operate in a two-step framework originally proposed
by Chu et al. (2013), where an intermediate data structure called the
evidence set is built before denial constraint enumeration. In particular,
Hydra (Bleifuß et al., 2017) first builds an approximate evidence set on a
small sample of the input data, and then refines it on the full dataset. Hydra
only enumerates exact constraints that have no violations on the dataset.
DCFinder (Pena et al., 2019) employs a different enumeration algorithm that
supports approximate denial constraint discovery, which allows a specified
number of violations. Subsequent works (Pena et al., 2022; Xiao et al., 2022)
further accelerate the discovery process by parallel computation and data
structure compression, but they still follow the two-step framework. The
building phase of the intermediate data structure is often the bottleneck of
the methods following this framework, which have quadratic time complexity
with respect to the number of examples in the input dataset.
Relation between Data Quality and ML Performance. Li et al.
(2019) study the effects of data cleaning on the performance of ML models.
Their findings suggest that data cleaning tends to have positive or insignif-
icant effects on ML performance, and the impact varies across different
datasets. Karlaš et al. (2020) present an algorithm to decide whether the
prediction for a given query is affected by the missing values in the training
set for nearest neighbor classifiers. Bian et al. (2023) propose an algorithm
that identifies data points for which cleaning has no effect on the learning
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results with a setting limited to Naïve Bayes classifiers and missing values.
ActiveClean (Krishnan et al., 2016) treats data cleaning for ML as an active
learning problem, suggesting a subset for cleaning in each iteration. They
achieve provable convergence for convex models. However, modeling the
connection between data cleaning and ML performance is challenging in
more general settings.
Adversarial Attacks and Defenses. Adversarial attacks inject mali-
cious noisy to mislead ML models. Training time attacks (Koh et al., 2018;
Muñoz-González et al., 2017; Biggio et al., 2012) add poisoned samples to
corrupt the target model. Filtering-based defenses (Steinhardt et al., 2017b;
Diakonikolas et al., 2019b) remove suspicious samples during training based
on training statistics. Inference time attacks (Madry et al., 2018a; Carlini
and Wagner, 2017; Moosavi-Dezfooli et al., 2016; Gao et al., 2022a) add
small perturbations to test samples to fool the classifier. Efforts have been
made to improve the robustness of the model by training data augmenta-
tion (Goodfellow et al., 2014; Madry et al., 2018b; Gao et al., 2022b; Zhang
et al., 2020a) or making modifications to the model (Xiao et al., 2019; Pang
et al., 2020, 2019; Zhang et al., 2021). Those works focus on robustness from
the model perspective without assessment of data quality. Another group of
defenses tries to detect adversarial samples at inference time. Roth et al.
(2019) and Hu et al. (2019) add random noise to input samples and detect
suspicious ones based on the changes in the logit values. Grosse et al. (2017)
assume that adversarial samples have different distributions from benign
samples and add another class to the classifier to detect them.
Data Deduplication Data deduplication removes duplicates or near-
duplicates from a dataset. The problem of data deduplication has been
studied for decades (Christen, 2012), while we focus on deduplication in
the context of data preparation for ML training. Exact duplicates can be
detected using hash functions (Elazar et al., 2024; Wenzek et al., 2020),
while the detection of near-duplicates is more challenging. Rae et al. (2022)
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and Gao et al. (2020) identify near-duplicates utilizing locality-sensitive
hashing (Gionis et al., 1999). Lee et al. (2022) and Chowdhery et al. (2024)
compute edit distances between examples to find near-duplicates. Another
line of works (Abbas et al., 2023; Tirumala et al., 2023) relies on learned
embeddings of the examples to detect near-duplicates.
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3 efficient verification and discovery of
denial constraints

3.1 Introduction

Integrity constraints play a pivotal role in a wide range of data analysis tasks
such as data exploration (Abedjan et al., 2016; Fariha et al., 2021), data
cleaning and repair (Rekatsinas et al., 2017; Giannakopoulou et al., 2020),
data synthesis (Ge et al., 2021), and query optimization (Kossmann et al.,
2022). By enforcing integrity constraints, users can ensure the reliability,
consistency, and accuracy of their data, enabling them to make informed
decisions, derive meaningful insights, and extract maximum value from their
datasets. One class of constraints that is of particular interest is known
as Denial Constraints (DCs) (Chu et al., 2013). DCs are appealing since
they are expressive enough to capture many integrity constraints that are
useful in practice such as functional dependencies, ordering constraints, and
unique column combinations among others.

In this chapter, we study the problem of efficient DC verification and
its application in DC discovery. DC verification involves deciding whether
a given DC is satisfied on a specific dataset and is particularly valuable
during data exploration, where analysts aim to ascertain the presence or
absence of specific patterns within the dataset. Additionally, it serves as
a valuable tool in assessing dataset quality, enabling the identification of
noisy or inconsistent data instances (Fariha et al., 2021). DC discovery
involves the automatic discovery of DCs from a given dataset, which holds
significant appeal due to the inherent challenges associated with the manual
identification of DCs. The manual approach not only requires expertise and

The work described in this chapter is done while interning at Microsoft.



22

significant time investment but also suffers from a higher likelihood of errors,
given the intricate and ever-evolving nature of datasets.

In recent years, substantial advancements happened in the field of DC
verification and discovery (Pena et al., 2019; Bleifuß et al., 2017; Pena
et al., 2020, 2021, 2022). However, existing methods expose noteworthy
limitations on real-world production datasets in practical use. First, in
the context of DC verification, the best-known algorithm, Facet (Pena
et al., 2021), has a worst-case time and space complexity Ω(|R|2) on a given
relation R with cardinality |R| (number of rows). In the context of DC
discovery, prior works (Chu et al., 2013; Bleifuß et al., 2017; Pena et al.,
2019, 2022; Xiao et al., 2022) follow a two-step process: (1) building an
intermediate data structure called evidence set from the input, which is the
most computationally demanding aspect of the DC discovery process (Pena
et al., 2022), and (2) mining the DCs from the evidence set using various
set-covering algorithms, which could also be costly depending on the number
of DCs and the size of the evidence set. The time required to construct
the evidence set is often prohibitive. Even for medium-sized datasets (e.g.,
5 million rows and 30 columns), evidence set construction can take up to
several hours. In addition, the two-phase approach employed by previous
works has a fundamental limitation that can lead to poor user experience.
In particular, the approach is “all or none”, i.e., to produce any DC, it needs
to complete the full evidence set construction (which is time-consuming),
at the end of which it reports all DCs. An alternative method for DC
discovery is to conduct a lattice search (Huhtala et al., 1999), enumerating
and verifying DCs from simple to more complex ones. This method provides
the flexibility of terminating the discovery process prematurely, allowing
the user to interrupt the execution at any time when they are satisfied with
the set of DCs already mined (i.e., the anytime property). However, the
substantial expense associated with existing solutions for DC verification
largely limits the efficiency of lattice-search-based DC discovery.
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In this chapter, we propose an efficient algorithm for DC verification
with near-linear time and space complexity relative to dataset size. We make
a connection between the problem of DC verification and orthogonal range
search (Bentley and Friedman, 1979; Bentley and Saxe, 1980), a celebrated
line of work in computational geometry, which studies the problem of
determining which k-dimensional objects in a set intersect with a given
query object. We show that it is possible to design a near-optimal algorithm
for verifying a given DC over a specific dataset by leveraging techniques
employed for orthogonal range search. Our proposed algorithm has a time
complexity of O(|R| logf(φ) |R|), where f(φ) is a parameter that is dependent
only on the characteristics of the DC φ and not on the input dataset R.
This represents a theoretical improvement over prior work and translates
into an order of magnitude better performance in practice.

In addition, we show that integrating our DC verification algorithm with
a lattice search results in an efficient anytime (Zilberstein, 1996) algorithm
for DC discovery, allowing for progressive constraint discovery and early
termination. At a high level, we perform a lattice-based traversal of the
space of candidate DCs and invoke our novel DC verification algorithm
to confirm whether a given constraint holds. Valid DCs are outputted
immediately upon verification.
Our contributions Our key contribution is a framework, Rapidash, that
relies on a novel approach for DC verification leveraging the connection to
orthogonal range search. Specifically, we make the following contributions:

1. A novel DC verification algorithm. We present a near-optimal
algorithm for verifying a given DC on a dataset R. We prove that our
proposed algorithm can achieve a near-linear time and space complexity
relative to dataset size. This represents a significant improvement over
the best-known verification algorithm (Pena et al., 2021), which has a
worst-case quadratic complexity both in time and space. Further, we
show that in certain scenarios, our algorithm can run in only linear
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space while still achieving provably sub-quadratic running time.

2. Efficient DC discovery. We plug our novel DC verification algorithm
into lattice-search-based DC discovery, resulting in an efficient DC
discovery method that satisfies the anytime property. We also present
several pruning criteria to further reduce the cost of lattice searches.

3. Experimental evaluation. We conduct an extensive empirical
evaluation over both open-source and real-world production datasets,
notably the latter being an order of magnitude larger than the datasets
employed in prior studies. We show that Rapidash achieves up to 84×
speedup over the state-of-the-art (Pena et al., 2021) for DC verification.
For DC discovery, our anytime algorithm can produce all single-column
DCs (e.g., single-column candidate keys, columns with identical values,
etc.) within the first 10 minutes, while prior work (Bleifuß et al., 2017;
Pena et al., 2019) fails to produce any output within the first 48 hours.

3.2 Preliminaries and Problem Statement

In this section, we introduce the formulation of DCs and the concept of
search space for DC discovery. Then we make our problem statement.

3.2.1 Definition and Classification of DCs

A DC φ on a relation R is a conjunction of predicates in the following form:

∀x, x′ ∈ R, x ̸= x′ : ¬(p1 ∧ · · · ∧ pm)

p1, . . . , pm are predicates in the form of x.A op x′.B where op ∈ {=, ̸=,≥
, >,≤, <} is one of the six operators, and A, B ∈ vars(R) are two (possibly
the same) attributes in the relation. We will refer to ̸= as disequality and
≥, >,≤, < as inequalities. All operators except equality will be collectively
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referred to as non-equality operators. A pair of examples (x, x′) is said to
be a violation to φ if all the predicates in φ evaluate to true. We will say
that a φ holds on R if there are no violations, i.e., the DC is exact. An
exact DC is said to be minimal if no proper subset of its predicates forms
another exact DC.

A predicate is said to be homogeneous if it is of the form x.A op x′.A,
i.e. it is defined over a single column, and heterogeneous if it is of the form
x.A op x′.B where A ̸= B. We use the term homogeneous DC to refer to
a DC that contains only homogeneous predicates. A heterogeneous DC
can contain both types of predicates. Without loss of generality, we will
assume that each column of R participates in at most one predicate of a
homogeneous DC. We will use varsop(φ) to denote the set of columns in a
homogeneous DC that appear in some predicate with the operator op.

3.2.2 Predicate Space

The space of DCs is governed by the predicate space, the set of all predicates
that are allowed on R. As noted in Bleifuß et al. (2017); Pena et al. (2019),
a predicate is meaningful when a proper comparison operator is applied to
a pair of comparable attributes. Specifically, all the six operators can be
used on numerical attributes (i.e. they are continuous), e.g., age and salary,
but only = and ̸= can be used on categorical attributes such as name and
address. Two attributes are said to be comparable if: (i) they have the same
type; (ii) the active domain overlap is at least 30% Bleifuß et al. (2017);
Pena et al. (2019). For example, in Table 2.2, column Salary and State
are not comparable since they have different types, and SSN and Zip are not
comparable since the values do not have any overlap.
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3.2.3 Problem Statement

We use the term DC verification for the process of determining whether a
DC holds on a relation R and DC discovery to refer to the process of finding
(some or all) minimal DCs over R. In the rest of this chapter, we focus on
the following two problems.

1. (DC verification) Given a relation R and a DC φ, determine whether
φ holds on R and enumerate the tuple pairs that violate the DC if
there are any.

2. (DC discovery) Given a relation R and a predicate space, design an
efficient, anytime DC discovery algorithm to find DCs that have no
violations.

An anytime algorithm is required to produce an increasing number of valid
DCs as time progresses in a way that we have some DCs even if the algorithm
is interrupted before it terminates.

3.3 Rapidash for Denial Constraint
Verification

In this section, we describe the general ideas underlying Rapidash followed
by specific improvements and optimizations. Our algorithm builds appro-
priate data structures to store the input data (leveraging existing work on
orthogonal range search), and issues appropriate queries to detect violations
of a given DC on the data. For ease of exposition and aiding readability,
we will focus on the problem of DC verification that decides whether the
given DC holds and outputs a boolean answer. At the end of the section,
we point out how our main algorithm can be readily modified in a minimal
way to also support violation enumeration.
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3.3.1 Foundation

Before we delve into the details of our proposed algorithm and its relationship
to orthogonal range search, we will provide some intuition behind the design
of the algorithm taking as an example the simplest scenario: homogeneous
constraints with equality predicates only. The constraint φ1 : ¬(x.SSN =
x′.SSN) presented in the previous section is a qualifying constraint. The
verification algorithm should return True over a relation R, when SSN is a
candidate key. If at least one pair of tuples in R shares the same SSN value,
then the algorithm should return False.

To evaluate whether such a tuple exists, we can incrementally populate
a hash table tuple-by-tuple. The intuition is that if two tuples fall in the
same hash partition then they have the same SSN value, and thus, we have
identified a violation. The steps are presented in Algorithm 1. For each
new tuple, we extract the SSN value 3 and check whether it already exists in
the hash table. If not, then we create a new entry with an associated count
of 1. If there is already an entry then we increase the count by 1. If the
count becomes greater than 1, we have identified two tuples with the same
SSN value, and we return False. For example, in Table 2.2, the algorithm
would create 4 hash table entries (one per SSN value), each with count 1, and
thus, the constraint would evaluate to True. The algorithm works similarly
with constraints having more than one equality predicate. This algorithm is
straightforward and easy to understand, yet it grows more complex with the
inclusion of non-equality predicates. It is at this juncture that orthogonal
range search becomes relevant. Before we dive deeper into these scenarios,
we will first provide some background on orthogonal range search.

3.3.2 Orthogonal Range Search

In this subsection, we present some background on orthogonal range search (Bent-
ley and Friedman, 1979; Bentley and Saxe, 1980). Given a totally ordered
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Algorithm 1: DC verification for homogeneous constraints with
equality predicates

Input : Relation R, Homogeneous DC φ with only equality predicates.
Output : True/False

1 H ← empty hash table
2 foreach x ∈ R do

/* Project tuple x on the columns participating in
equality predicates */

3 v ← πvars=(φ)(x)
4 if v ̸∈ H then
5 H[v]← 0
6 H[v]← H[v] + 1
7 if H[v] > 1 then

/* Hash collision -- violation detected */
8 return False
9 return True

domain N, let A ⊆ Nk, for some k ≥ 1, be a set of size N . Let L = (l1, . . . , lk)
and U = (u1, . . . , uk) be such that L, U ∈ Nk and li ≤ ui for all i ∈ [k].

Definition 3.1. An orthogonal range search query is denoted by (L, U),
and its evaluation over A consists of enumerating the set

Q(A) = {a ∈ A |
∧

i∈[k]
li op1 ai op2 ui}

where op1, op2 ∈ {=, <,≤}.

In other words, L and U form an axis-aligned hypercube in k dimen-
sions, and Q(A) reports all points in A that lie on/within the hypercube.
The Boolean version of the orthogonal range search problem consists of
determining if Q(A) is empty or not.

Example 3.2. Consider Table 2.2. Let A be the set of two-dimensional
points obtained by projecting the table on Salary and FedTaxRate. Let
L = (3500, 5) and U = (4500, 25). Then, the orthogonal range query (L, U)
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is asking for all points such that the Salary is between 3500 and 4500, and
the FedTaxRate is between 5 and 25. In Table 2.2, only x4 satisfies the
criteria (its values of Salary and FedTaxRate are 4000 and 22 respectively).
Thus, the result of the orthogonal range search query (L, U) is {(4000, 22)}.

The two most celebrated data structures for orthogonal range search are
range trees and kd-trees (Bentley and Friedman, 1979). We will review their
complexity and trade-offs when analyzing the complexity of our algorithms.

3.3.3 Verification Algorithm

In this subsection, we present our verification algorithm that leverages prior
work on orthogonal range search. The algorithm builds on top of the ideas
behind Algorithm 1 but extends them to cover homogeneous constraints
that contain both equalities and inequalities. Without loss of generality, we
will assume that none of the predicates contain disequality. This assumption
will be removed later. Finally, we assume that the categorical columns in
R have been dictionary-encoded to integers, a standard assumption in line
with prior work Pena et al. (2019, 2021).

The algorithm preserves the core concepts of Algorithm 1, namely the
use of a hash table and early termination in case of violations. The primary
modification involves incorporating orthogonal range search indexes to
identify violations stemming from inequality predicates. The algorithm is
presented in Algorithm 2.

For a DC to be false, all predicates must be true for some tuple pair. As
soon as we have identified such a tuple pair, we can safely terminate and
return False to the user.

We first compute the number k of columns in inequality predicates (we
assume k > 0 as Algorithm 1 covers the case where k = 0). We then
proceed similarly as before: project each tuple on the columns participating
in equality predicates (v on line 4) and evaluate whether the resulting tuple
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Algorithm 2: DC verification for homogeneous constraints with
inequality predicates

Input : Relation R, Homogeneous DC φ with inequalities.
Output : True/False

1 k ← #number of columns appearing in inequality predicates
2 H ← empty hash table
3 foreach x ∈ R do

/* Project tuple x on the columns participating in
equality predicates */

4 v ← πvars=(φ)(x)
5 if v ̸∈ H then
6 H[v]← new OrthogonalRangeSearchTree(k)

/* Project tuple x on the columns participating in
inequality predicates */

7 z ← πvars(φ)\vars=(φ)(x)
8 if ¬H[v].isEmpty() then

/* Evaluate violations through two range search
queries */

9 L, U, L′, U′ ← CreateRangeSearchQueries(z, φ)
10 if H[v].booleanRangeSearch(L, U) ∨

H[v].booleanRangeSearch(L′, U′) then
/* Violation detected */

11 return False
/* Insert z into the range tree */

12 H[v].insert(z)
13 return True
14 procedure CreateRangeSearchQueries(z, φ)

/* L and U are indexed by the non-equality predicates pi.
Both are of size k */

15 L← (−∞, . . . ,−∞), U← (∞, . . . ,∞)
/* Create range search query (L, U) */

16 foreach inequality predicate pi ∈ φ do
17 if pi.op is < or ≤ then
18 Ui ← πpi.col(z)
19 if pi.op is > or ≥ then
20 Li ← πpi.col(z)

/* Create inverted range search query (L′, U′) */
21 U′ ← L, L′ ← U
22 flip −∞ to ∞ and ∞ to −∞ in U′ and L′ respectively
23 return L, U, L′, U′
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has been seen before (line 5). If not, we create a new hash table entry whose
value now, instead of being an integer counter, is a range search tree of k

dimensions (line 6). This tree will be used to index the k-dimensional tuples
containing the columns participating in inequality predicates and identify
violations. Before we further delve into the pseudo-code, we explain the
main intuition through an example.
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Figure 3: Salary and FedTaxRate for each tuple in Tax. The
grey (upper left quadrant centered at C2) and blue shaded
areas (lower right quadrant centered at C2) show the regions
where the tuples that could form a violation with C2 lie.

and FedTaxRate are 4000 and 22 respectively). Thus, the result of
the orthogonal range search query (L,U) is {(4000, 22)}.

The two most celebrated data structures for orthogonal range
search are range trees and kd-trees [10]. We will review their com-
plexity and trade-o�s when analyzing the complexity of our speci�c
algorithm.

4.3 Veri�cation Algorithm
In this section, we present our veri�cation algorithm that leverages
prior work on orthogonal range search. The algorithm builds on
top of the ideas behind Algorithm 1 but extends them to cover for
homogeneous constraints that contain both equalities and inequal-
ities. Without loss of generality, we will assume that none of the
predicates contain disequality. This assumption will be removed
later. Finally, we assume that the categorical columns in R have
been dictionary-encoded to integers, a standard assumption in line
with prior work [34, 36].

The algorithm preserves the core concepts of Algorithm 1, namely
the use of a hash table and early termination in case of violations.
The primary modi�cation involves incorporating orthogonal range
search indexes to identify violations stemming from inequality
predicates. The algorithm is presented in Algorithm 2.

We �rst compute the number : of columns in inequality pred-
icates (we assume : > 0 as Algorithm 1 covers the case where
: = 0). We then proceed similarly as before: project each tuple on
the columns participating in equality predicates (E on line 4) and
evaluate whether the resulting tuple has been seen before (line 5).
If not, we create a new hash table entry whose value now, instead
of being an integer counter, is a range search tree of : dimensions
(line 6). This tree will be used to index the k-dimensional tuples
containing the columns participating in inequality predicates and
identify violations. Before we further delve into the pseudocode,
we explain the main intuition through an example.

Example 6. Consider the relation Tax from Example 1 and the DC
q3 : ¬(s.State = t.State^s.Salary  t.Salary^s.FedTaxRate >
t.FedTaxRate), which contains one equality and two inequality pred-
icates (: = 2). For simplicity, we will omit the details of how range
search works in this example but instead present it later. Algorithm 2
will �rst start with the equality predicate, and place t1 in a hash
partition by hashing t1 .State = New York and initiatialize a 2-
dimensional range search tree for that partition (line 6). Since this tree

Table 2: Data structure parameter on input of size = [32]. : is
the number of dimensions of the points inserted in the tree.

DS Insertion � (=) Answering) (=) Space ( (=)

Range tree $ (log: =) $ (log: =) $ (= · log:�1 =)
kd-tree $ (log=) $ (=1�

1
: ) $ (=)

is empty, we do not perform any violation detection (line 8) and we
insert (t1 .Salary, t1 .FedTaxRate) = (3000, 20) in the tree (line 12).

Next, we process t2, which is placed in a di�erent hash partition
since t2 .State = Wisconsin and we initialize a new range tree for
this partition. As in the previous step, we then insert (t1 .Salary,
t1 .FedTaxRate) = (5000, 15) in the tree (call this step A�). When t3
is processed, it is placed in the same partition as t2 since they have
the same State value.

At this point, we have two tuples in the same hash partition, and
thus we need to consider the inequality predicates in the DC to estab-
lish whether there is a DC violation. This is where the orthogonal
range search tree is leveraged. Such a violation would occur in two sce-
narios: (1) if any tuple in the tree (C2 in this case) has Salary less than
t3 .Salary = 6000 but FedTaxRate more than t3 .FedTaxRate = 20,
or (2) if any tuple in the tree has Salary more than t3 .Salary but
FedTaxRate less than t3 .FedTaxRate.

To identify whether any of the two scenarios above is true, we
perform two orthogonal range search queries using the values of
C3 to probe the index. More speci�cally, we perform a search with
L = (�1, 20) and U = (6000,1) (scenario 1). Then, we also search
in the inverted range L0 = (6000,�1) and U0 = (1, 20) (scenario 2).
Since t2 does not lie in the desired range, both range searches return
false. Figure 3 visualizes this result. Since there is no violation, we
insert C3 (6000, 20) in the tree (call this step B�)

Finally, t4 (highlighted in red in Figure 3) is processed and placed in
the same partition as t2 and t3 because of same value in State column.
We again initiate two range search queries based on C4 Salary = 4000
and FedTaxRate = 22. The queries would be L = (�1, 22),U =
(4000,1) and L0 = (4000,�1),U0 = (1, 22). Then, t2 and t3 form a
violation wrt. t4 since both the points represent a higher salary than
4000 but a lower tax rate than 22, and Line 11 returns False.

Algorithm 2 formalizes the process described in the example
above. When it comes to evaluating inequality predicates, we gen-
erate two appropriate range queries based on the values of the
current tuple and the operator type in the inequality predicates
(line 9) and then search the range tree (line 10). If any of the range
search queries returns True, a DC violation is detected and the
algorithm terminates (line 11). Otherwise, the tuple is inserted in
the tree (line 12), and the algorithm continues with the next tuple
in the relation.

Seminal work by Overmars [32] showed that using range trees
and kd-trees, one can design an algorithm with the parameters as
shown in Table 2. We now demonstrate an example of how range
trees are used by Algorithm 2 when performing step A� and step
B� in Example 6.

Example 7. In Figure 4, we illustrate insertion and search in a range
tree. The tree is two-dimensional and stores (Salary, FedTaxRate)
points. We show the process of inserting t2, t3 (i.e. performing step A�

5

Figure 3.1: Salary and FedTaxRate for each tuple in Tax. The grey (upper
left quadrant centered at x2) and blue shaded areas (lower right quadrant
centered at x2) show the regions where the tuples that could form a violation
with x2 lies.

Example 3.3. Consider the relation Tax from in Table 2.2 and the DC
φ3 : ¬(x.State = x′.State ∧ x.Salary ≤ x′.Salary ∧ x.FedTaxRate >

x′.FedTaxRate), which contains one equality and two inequality predicates
(k = 2). For simplicity, we omit the details of how range search works in
this example but present it later. Algorithm 2 will first start with the equality
predicate, and place x1 in a hash partition by hashing x1.State = New York
and initialize a 2-dimensional range search tree for that partition (line 6).
Since this tree is empty, we do not perform any violation detection (line 8)
and we insert (x1.Salary, x1.FedTaxRate) = (3000, 20) in the tree (line 12).
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step B�
<latexit sha1_base64="t8h7yI/v1nztA5+41eEuvug1RG0="></latexit>

B�
<latexit sha1_base64="t8h7yI/v1nztA5+41eEuvug1RG0="></latexit>

 step A�
<latexit sha1_base64="HUOxMhJgkj2MoKn7VSx7+7HP2RI="></latexit>

A�
<latexit sha1_base64="HUOxMhJgkj2MoKn7VSx7+7HP2RI="></latexit>

Boolean Range Query:
L = (4000,�1),U = (1, 22)

<latexit sha1_base64="Rvbvu/Q1OHL3PYItulxKu9wL50A="></latexit>

L = (4000,�1),U = (1, 22)
<latexit sha1_base64="Rvbvu/Q1OHL3PYItulxKu9wL50A=">AAACPXicdVBPSyMxHM34Z1errl3Fk5dgFRTGkknVuoeFghcPHhS2KnSGkkkzNTSTGZKMUIZ+AT+DH2PvC3tdv4AfwJuIN69mpiuo6A9CHu+95PF7YSq4NgjdOhOTU9Nfvs7MVubmF74tVr8vneokU5S1aSISdR4SzQSXrG24Eew8VYzEoWBn4eCg0M8umdI8kb/MMGVBTPqSR5wSY6ludc+PibkIo/xoBH/CzR2EkAu3fS4jM9xyX8R2KY5ZF2K81a3WUP3H/h7exRDVEWrihlcA3NzBDehZpphaa2Vw5d/9Xj/uVh/9XkKzmElDBdG646HUBDlRhlPBRhU/0ywldED6rGOhJDHTQV7uN/LLq6P6YZCXqW4Z6ZZ5I7hh/T0YJcoeaWBpfv1fTmKth3FoncU6+r1WkB9pncxE+0HOZZoZJuk4KMoENAksqoQ9rhg1YmgBoYrbTSC9IIpQYwuv2IpeeoCfg1Nc9xp1fOLVWrtgPDNgFayBTeCBJmiBQ3AM2oCCa/AX/AM3zh/nzrl3HsbWCef/m2XwZpynZywDrK4=</latexit>

Boolean Range Query:
L = (�1, 20),U = (7000,1)

<latexit sha1_base64="vdMxMgaqZOfe2qN2ue52parKg/A="></latexit>

L = (�1, 20),U = (7000,1)
<latexit sha1_base64="vdMxMgaqZOfe2qN2ue52parKg/A="></latexit>

i

ii iii

Figure 3.2: An illustration of insertion and search in a 2D range tree that
stores (Salary, FedTaxRate). The primary tree with rectangle nodes stores
Salary, and the secondary trees with circle nodes store FedTaxRate. The
Roman numbers denote the visiting order during the search.

Next, we process x2, which is placed in a different hash partition since
x2.State = Wisconsin and we initialize a new range tree for this parti-
tion. As in the previous step, we then insert (x1.Salary, x1.FedTaxRate) =
(5000, 15) in the tree (call this step A⃝). When x3 is processed, it is placed
in the same partition as x2 since they have the same State value.

At this point, we have two tuples in the same hash partition, and thus we
need to consider the inequality predicates in the DC to establish whether there
is a DC violation. This is where the orthogonal range search tree is leveraged.
Such a violation would occur in two scenarios: (1) if any tuple in the tree
(x2 in this case) has Salary less than x3.Salary = 6000 but FedTaxRate
more than x3.FedTaxRate = 20, or (2) if any tuple in the tree has Salary
more than x3.Salary but FedTaxRate less than x3.FedTaxRate.

To identify whether any of the two scenarios above is true, we perform
two orthogonal range search queries using the values of x3 to probe the index.
More specifically, we perform a search with L = (−∞, 20) and U = (6000,∞)
(scenario 1). Then, we also search in the inverted range L′ = (6000,−∞)
and U′ = (∞, 20) (scenario 2). Since x2 does not lie in the desired range,
both range searches return false. Figure 3.1 visualizes this result. Since there
is no violation, we insert (6000, 20) in the tree (call this step B⃝)

Finally, x4 (highlighted in red in Figure 3.1) is processed and placed in
the same partition as x2 and x3 because of the same value in State column.
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We again initiate two range search queries based on x4 Salary = 4000 and
FedTaxRate = 22. The queries would be L = (−∞, 22), U = (4000,∞) and
L′ = (4000,−∞), U′ = (∞, 22). Then, x2 and x3 form a violation wrt. x4

since both the points represent a higher salary than 4000 but a lower tax rate
than 22, and Line 11 returns False.

Algorithm 2 formalizes the process described in the example above.
When it comes to evaluating inequality predicates, we generate two range
queries based on the values of the current tuple and the operator type in the
inequality predicates (line 9) and then search the range tree (line 10). If any
of the range search queries return True, a DC violation is detected and the
algorithm terminates (line 11). Otherwise, the tuple is inserted in the tree
(line 12), and the algorithm continues with the next tuple in the relation.

Table 3.1: Data structure parameter on input of size n (Overmars, 1983). k
is the number of dimensions of the points inserted in the tree.

DS Insertion I(n) Answering T (n) Space S(n)

Range tree O(logk n) O(logk n) O(n · logk−1 n)
kd-tree O(log n) O(n1− 1

k ) O(n)

Seminal work by Overmars (1983) showed that using range trees and
kd-trees, one can design an algorithm with the parameters as shown in
Table 3.1. We now demonstrate an example of how range trees are used by
Algorithm 2 when performing step A⃝ and step B⃝ in Example 3.3.

Example 3.4. In Figure 3.2, we illustrate insertion and search in a range
tree. The tree is two-dimensional and stores (Salary, FedTaxRate) points.
We show the process of inserting x2, x3 (i.e. performing step A⃝ and step B⃝
from Example 3.3) and a range search for points whose Salary ≥ 4000 and
FedTaxRate < 22. In the range tree, both the primary tree (which stores
Salary) and the secondary tree (which stores FedTaxRate) are binary search
trees. Leaf nodes store the inserted data, and each internal node stores the
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smallest value in its right subtree. Each node in the primary tree is linked to
a secondary tree, which stores the FedTaxRate value of all the points present
in the subtree rooted at this node. When we insert each point, we find the
insert position in the primary tree, create a leaf node to store the inserted
value, and an internal node to connect the new leaf node and the leaf node at
the insert position. We also update all the secondary trees for nodes in the
path from the root to the insert position. When we perform the range search,
we look for nodes whose values lie in the range by preorder traversal. For
instance, the search L = (4000,−∞), U = (∞, 22) is performed by going
from root node i to the left child node ii. Since the Salary value stored in
node ii is in the range, we go to the secondary tree linked to it. Finally, we
find node iii whose FedTaxRate value is less than 22 and return true.

As another example, suppose we also insert x4 in the tree and search for
a point where Salary ≤ 7000 and FedTaxRate > 20. At node II, we go to
its secondary tree instead of traversing its descendants since all the points
stored in the subtree rooted at node II have Salary ≤ 5000, which are within
the search range for Salary. At node III, we return true since the minimum
FedTaxRate stored in its right subtree is 22, which is greater than 20.

3.3.4 Correctness and Complexity

Correctness Next, we show the correctness of Algorithm 2, as stated by
the following lemma.

Lemma 3.5. Algorithm 2 correctly determines whether a homogeneous DC
φ is satisfied.

Proof. We first show that Algorithm 2 is correct when φ only contains
equality predicates. In this case, it is sufficient to determine whether there
exist two distinct tuples x1 and x2 such that πvars=(φ)(x1) = πvars=(φ)(x2). The
hash table H stores a counter for each distinct πvars=(φ)(x) and increments
it for each tuple x ∈ R (Line 6). Thus, the algorithm will correctly return
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false as soon as some counter becomes greater than one and return true
only if no such x1, x2 exists. Next, we consider the case when there exists at
least one predicate with inequality. We show the proof for the case when all
inequality predicate operators are <, i.e., all predicates in the DC are of the
form (x.A = x′.A) or (x.A < x′.A). The proof for other operators is similar.
We first state the following claim.

Claim 3.6. Let w be the set of attributes that appear in the predicates with
inequalities. Two tuples x1 and x2 in the same partition can form a violation
iff x1(w) ≺ x2(w) or x2(w) ≺ x1(w), where the notation x(w) denotes the
projection, πw(x), of tuple x on attributes w.

Here, ≺ is the standard coordinate-wise strict dominance checking op-
erator. Claim 3.6 follows directly from the semantics of the operator
under consideration and the definition of a violation. Suppose x is the
tuple being inserted in the tree. Line 10 will query the range tree with
L = (−∞, . . . ,−∞), U = (x(v1), . . . , x(vk)) and L′ = (x(v1), . . . , x(vk)),
U′ = (∞, . . . ,∞). In other words, the algorithm searches for a point in
the tree such that x is strictly smaller or larger for all k coordinates. The
existence of such a point implies there exists a pair that forms a violation.

If the orthogonal range search finds no point, Claim 3.6 tells us that
x cannot form a violation with any tuple x′ already present in the range
tree. In each iteration of the loop, we insert one tuple into the range tree.
Therefore, if x1 and x2 form a violation, it will be discovered when one of
them (say x2) is already inserted in the range tree and x1 is being processed
in the loop. This completes the proof.

Time and Space Complexity We next establish the running time of the
algorithm. First, observe that if k = 0, then the algorithm takes O(|R|) time
since the for loop only performs a constant number of hash table operations.
If k ≥ 1, the algorithm performs one insertion and two Boolean orthogonal
range search queries in each iteration of the for loop. Suppose the insertion
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time complexity, denoted by I(n), is of the form1 logα n and search time
complexity is T (n) when the data structure has n points in it. The running
time can be bounded as:

|R|∑
i=1

(
logα i︸ ︷︷ ︸

insertion time

+ 2 · T (i)︸ ︷︷ ︸
query time

)
<

∫ |R|+1

1
logα i di +

∫ |R|+1

1
2 · T (i) di

= O(|R| · logα |R|) +
∫ |R|+1

1
2 · T (i) di

The integral in the second term in the equation above can be bounded
by setting T (i) = logk i or T (i) = i1−1/k. In both cases, the second term
evaluates to O(|R| · T (|R|)). For space usage, note that the hash table takes
a linear amount of space in the worst case. Thus, the space requirement of
the tree data structure determines the space complexity. The main result
can be stated as follows.

Theorem 3.7. Algorithm 2 runs in time O(|R| · (I(|R|) + T (|R|))) and
uses space S(|R|) when using range tree or kd-tree with parameters as shown
in Table 3.1.

With range trees, the running time is O(|R| · logk |R|) and space usage
is O(|R| logk−1 |R|); for kd-trees, the running time is O(|R|2− 1

k ) and space
requirement is O(|R|).

3.3.5 Heterogeneous Predicates

In this subsection, we present adjustments to Algorithm 2 to handle hetero-
geneous predicates.

Example 3.8. Continuing our study of Tax from Table 2.2, consider the
following constraint: φ4 : ¬(x.Salary < x′.FedTaxRate) which says that all
values of the Salary column must be greater than or equal to any value of
FedTaxRate column.

1We use logk N to mean (log N)k and not iterated logarithms.
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This is an example of a heterogeneous predicate that cannot be handled
by Algorithm 2 (notice that both x and x′ are referenced and the columns are
different). Along the same lines, heterogeneous comparison constraints over
date-related columns have also been found to be useful in our production
settings. For example, over the TPC-H schema, Pena et al. (2022) identify the
heterogeneous constraint ¬(x.Receiptdate ≥ x′.Shipdate ∧ x.Shipdate ≤
x′.Receiptdate) which represents the business logic that a new order is
shipped only after all the previously shipped orders are received, i.e., the
[Shipdate, Receiptdate] intervals of the orders never overlap. These real-
world scenarios underscore the need for going beyond simple homogeneous
constraints considered in the previous section.

We now discuss how our algorithm can be extended to handle het-
erogeneous predicates of the form x.A op x′.B, where op is =, <,≤, >

or ≥. We note that equality predicate x.A = x′.B is equivalent to
x.A ≤ x′.B ∧ x.A ≥ x′.B and by supporting inequalities, we can support
heterogeneous equality predicates as well.

Now, let’s look at how to handle heterogeneous inequality predicates.
Suppose that φ has a predicate x.C op x′.D. If C = D, then the predicate is
homogeneous, and building a 1-dimensional range search data structure is
enough. However, when C ̸= D, we need to index in 2 dimensions (C and D).
Additionally, we need to adjust our procedure for computing the two search
range queries (L, U), (L′, U′) to consider the different attributes present in
the predicate. Let us look at an example.

Example 3.9. Consider the DC φ4 from Example 3.8 that checks that
all the Salary values must be greater than any FedTaxRate value. We
will create one 2-dimensional range search data structure in which we will
store values of (Salary, FedTaxRate). Suppose we are processing tuple
x2 with Salary = 5000 and FedTaxRate = 15. We first do a range search
to check if there is a tuple with Salary that is less than x2.FedTaxRate
denoted as L = (−∞,−∞), U = (15,∞). Additionally, we check whether
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there is a tuple with FedTaxRate that is larger than x2.Salary denoted as
L′ = (−∞, 5000), U′ = (∞,∞). If any of the two range search queries
return True, we have found a violation.

Given this example, it becomes clear that we can easily extend Algo-
rithm 2 to account for heterogeneous predicates by simply adjusting the
procedure to create the two range search queries that are used to detect
violations. Algorithm 3 shows the updated query generation procedure. The
main idea is that if φ has a predicate x.C op x′.D, then when we process a
new tuple r, the upper-bound for attribute C is set to r.D in the forward
check, and the lower-bound for attribute D is set to r.C in the inverted
check (because we are comparing attribute C of x with attribute D of x′

in the predicate). It is worth noting that this algorithm can be applied for
homogeneous constraints as well. Note that, when C = D, we recover our
original procedure presented in Algorithm 2. Thus, we can safely handle both
types of constraints by simply replacing the CreateRangeSearchQueries
function in Algorithm 2 with the one presented here. Finally, we also note
that the new generalization also extends our algorithm to handle the case
when attributes occur in more than one predicate.

3.3.6 Supporting Predicates with Disequalities

So far, we have discussed how to support homogeneous and heterogeneous
predicates with equalities or inequalities. In this subsection, we show
that it is possible to apply orthogonal range search techniques to support
disequalities as well. This type of operator is quite important as it is required
for specifying functional dependencies. We demonstrate that with the below
example.

Example 3.10. Consider the DC: φ5 : ¬(x.Zip = x′.Zip ∧ x.StateCode ≠
x′.StateCode) that represents the functional dependency Zip→StateCode.
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Algorithm 3: Generalized range search query generation that
covers both homogeneous and heterogeneous predicates with in-
equalities.

Input : A tuple r from relation R, DC φ
Output : Two range search queries (normal and inverted)

1 procedure CreateRangeSearchQueries(r, φ)
2 L, L′ ← (−∞, . . . ,−∞), U, U′ ← (∞, . . . ,∞) /* L, U, L′, U′ are

indexed by attributes of R that appear in inequality
predicates */

3 foreach inequality predicate x.C op x′.D in φ do
4 if op is < or ≤ then
5 U.C← r.D
6 L′.D← r.C
7 if op is > or ≥ then
8 L.C← r.D
9 U′.D← r.C

10 return L, U, L′, U′

The constraint contains a disequality predicate that cannot be handled by any
of our previous algorithms.

We now discuss how we can support the verification of such predicates.
Any predicate x.A ̸= x′.B can be written as a union of two predicates:
(x.A < x′.B)∨ (x.A > x′.B). Therefore, a DC containing l predicates with
op as ̸= can be equivalently written as a conjunction of 2l DCs containing
no disequality operator.

If the original homogeneous DC contains no inequality predicate, then
it is possible to reduce the number of equivalent DCs from 2l to 2l−1 (as is
shown by Proposition 1). The idea is that a violation (x, x′) is symmetric (i.e.
(x′, x) is also a violation) if the DC contains only equality and disequality
predicates. Therefore, when converting a DC to an equivalent one that only
have inequalities, it suffices to expand (x.A ̸= x′.A) to just (x.A < x′.A)
for one last disequality predicate instead of (x.A < x′.A) ∨ (x.A > x′.A).
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Proposition 1. Given a homogeneous DC φ with only equality and l dise-
quality predicates, there exists an equivalent conjunction of 2l−1 DCs that
contain only equality and inequality predicates.

Proof. Consider the constraint φ : ¬(ϕ ∧ x.A ̸= x′.A), where ϕ is a
conjunction of homogeneous equality and disequality predicates. Let (q, r)
be a violation to φ. Without loss of generality, we assume that q.A < r.A, and
then (q, r) is also a violation to φ′ : ¬(ϕ∧x.A < x′.A). Since ϕ only contains
equality and disequality predicates, (r, q) also satisfies ϕ by symmetricity,
and therefore (r, q) is a violation to φ and φ′′ : ¬(ϕ ∧ x.A > x′.A). In fact,
for any violation (r, q) to φ, one of (r, q) and (q, r) must violate φ′ while
the other violates φ′′. Thus, we only need to check φ′ for violations, which
contains l − 1 disequality predicates and can be written as a conjunction of
2l−1 DCs containing no disequality predicates by logical equivalence.

3.3.7 Optimization for Single-Inequality Constraints

If a DC has homogeneous equality predicates and at most one predicate (ho-
mogeneous or heterogeneous) containing an inequality, then the verification
can be done in linear time. The key idea is that for predicate containing
inequality x.A op x′.B, it is enough to keep track of the running minimum
and maximum values for values seen in columns A and B respectively as we
process the relation. To illustrate the idea, we use an example.

Example 3.11. Consider the functional dependency φ4 from Example 3.10
and the Tax table. Based on proposition 1, we can convert the disequality
predicate into inequality to get the DC ¬(x.Zip = x′.Zip ∧ x.StateCode <

x′.StateCode). Since both columns in the inequality predicate are the
same (StateCode), we have A = B. Let us focus on rows of Tax with
Zipcode=53703. We will keep track of the min and max value of StateCode
for each of these rows. When x2 is processed, we set min = max =
x2.Zipcode = 02. For x3, we observe that since x3 also has StateCode=02,
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the predicate x2.StateCode < x3.StateCode is false and thus no violation
is found. The values of min and max remain unchanged. Finally, for x4,
we also do not find a violation since x4.StateCode = 02. However, if there
was a different row x′

4 such that x′
4.Zip = 53703 and x′

4.StateCode = 03,
x2.StateCode < x′

4.StateCode would become true and thus, we would have
found a violation since all predicates are true for a tuple pair.

Algorithm 4 shows the algorithm. Like the previous algorithms, we begin
by partitioning the input into a hash table based on the equality predicates.
Let the inequality predicate be x.A op x′.B. The main idea is to maintain the
running minimum and maximum values for the Columns A and B for each
partition of the input. Since the comparison is one-dimensional, it is sufficient
to compare against the minimum (or maximum) value. The algorithm makes
only one pass over the entire dataset and the overall time complexity is
O(|R|). While this optimization is simple, it has important implications. In
particular, popular constraints such as functional dependencies (FD) are
DCs that contain exactly one inequality predicate. Algorithm 4 recovers the
standard linear time algorithm to verify FDs (Ibaraki et al., 1999).

3.3.8 Enumerating Violations

In this subsection, we discuss violation enumeration in our problem state-
ment). To enumerate violations, we can simply replace the boolean range
searches in Algorithm 2 with a function that outputs all points in the range.
In addition, we describe an optimization that improves the time and space
complexity of enumerating the DC violations. The observation is that,
unlike verification, enumeration usually requires examining every tuple of
the relation. Therefore, we can make use of sort-based optimizations. We
demonstrate with an example.

Example 3.12. Consider φ3 : ¬(xState = x′State∧xSalary ≤ x′Salary∧
xFedTaxRate > x′FedTaxRate) for Table 2.2 with State=Wisconsin. The
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Algorithm 4: DC verification for DCs with row-homogeneous
equality and one inequality predicate

Input : Relation R, DC φ containing equality predicates of form
x.C = x′.C (for some C) and one inequality predicate p of form
x.A op x′.B

Output : True/False
1 H ← empty hash table
2 foreach x ∈ R do
3 v ← πvars=(φ)(x)
4 if v /∈ H then
5 H[v]← (+∞, +∞,−∞,−∞) /* four-tuple represents

(minA, minB, maxA, maxB) for v */
6 if (p.op ∈ {<,≤} ∧H[v].minA op x.B) ∨ (p.op ∈ {>,≥}

∧H[v].maxA op x.B) then
7 return False
8 if (p.op ∈ {<,≤} ∧ x.A op H[v].maxB) ∨ (p.op ∈ {>,≥}

∧ x.A op H[v].minB) then
9 return False

10 H[v].minA ← min{H[v].minA, x[A]} /* modify minA */
11 H[v].minB ← min{H[v].minB, x[B]} /* modify minB */
12 H[v].maxA ← max{H[v].maxA, x[A]} /* modify maxA */
13 H[v].maxB ← max{H[v].maxB, x[B]} /* modify maxB */
14 return True

first step is to sort the three rows in increasing order of Salary, which creates
the ordering x4, x2, x3. The key observation here is that once sorting has been
performed, it is guaranteed that any tuple can only form a violation (wrt. the
Salary predicate) with a tuple that appears after it in the sort order. At this
point, the Salary attribute can be completely removed from consideration
as the corresponding predicate will always be satisfied. We can now resume
our usual processing by constructing a one-dimensional binary search tree
on FedTaxRate attribute. We first insert x4.FedTaxRate = 22 into the tree.
For the next tuple in the order x2, which has x2.FedTaxRate = 15, we ask
the tree to enumerate all tuples that have a value greater than 15, a standard
operation on a binary search tree. We find the x4 is such a tuple and thus
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report (x4, x2) as a violation to the user. Then, we insert x2.FedTaxRate in
the tree. Finally, x3 is processed and we search for all values in the tree that
with FedTaxRate greater than 20 and report (x4, x3) as a violation.

Algorithm 5 shows the detailed steps for enumerating violations for
a homogeneous DC. We begin by sorting the relation on a column that
participates in some predicate that has an inequality operator (line 2). We
can safely assume that the operator is either < or > since ≤,≥ operator
can be decomposed into two constraints: one containing only = as the
operator for the predicate and the other containing < or >. The algorithm
iterates over the dataset and uses the hash table H or range search data
structure similarly to Algorithm 2. There are two important differences to
note. First, we can omit the inverted range search. This is because the sort
order guarantees that for any tuple x, a violation can be formed only with
tuples that appear before x in the sort order. Second, since the dataset has
already been sorted on one of the columns with inequality predicates, the
number of dimensions of the point inserted in the range search data structure
is reduced by one compared to Algorithm 2. The same idea can also be
applied to any DC containing at least one homogeneous predicate and using
the column referenced in the predicate for sorting. For DCs containing only
heterogeneous predicates, we use a sort-merge style approach. We also have
the following complexity result with this optimization.

Theorem 3.13. Let k be the number of columns that occur in predicates
containing an inequality. Then, our enumeration algorithm runs in time
O(|R| · (I(|R|) + T (|R|) + log |R|) + K) to enumerate K violations and uses
space S(|R|) when using range tree or kd-tree with parameters as shown
in Table 3.1 with the number of dimensions as k − 1.
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Algorithm 5: Violation enumeration for DCs.
Input : Relation R, Homogeneous DC φ containing at least one row

homogeneous inequality predicate
Output : DC violations

1 H ← empty hash table
2 sort R on a column (say C) that participates in an inequality predicate in

ascending order if the predicate operator is < (and descending for >)
3 ℓ← |vars(φ) \ {C ∪ vars=(φ)}|
4 Temp← ∅
5 foreach xi ∈ R do
6 v ← πvars=(φ)(xi)
7 if v ̸∈ H then
8 if ℓ ̸= 0 then
9 H[v]← new OrthogonalRangeSearch()

10 else
11 H[v]← ∅
12 if ℓ ̸= 0 then

/* Two rows can only form a violation if they satisfy
the predicate containing C. Therefore, no
violation can be formed for tuples that have the
same value for attribute C. */

13 if xi.C = xi+1.C then
14 Temp← Temp ∪ xi

15 else
16 if Temp ̸= ∅ then
17 foreach r ∈ Temp do
18 H[v].insert(πvars(φ)\{C∪vars=(φ)}(r))
19 Temp← ∅
20 H[v].insert(πvars(φ)\{C∪vars=(φ)}(xi))
21 L, U← SeachRange(xi) /* From Algorithm 2 */
22 L ← H[v].enumerate(L, U)
23 output (x, xi) for each x ∈ L
24 else
25 output (x, xi) for each x ∈ H[v]
26 H[v]← H[v] ∪ xi
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3.4 Denial Constraint Discovery Based on
Rapidash

Algorithm 6: DC discovery
Input : Relation R
Output : List of exact, minimal DCs

1 L ← new list() /* stores exact, minimal DCs */
2 k ← 0
3 while k ≤ |vars(R)| do
4 k ← k + 1
5 foreach candidate φ formed using size k subset of vars(R) do

/* Minimal borrowed from Chu et al. (2013) */
6 if Minimal(L, φ) and NotPruned(L, φ) and Verify(R, φ)

then
7 output φ
8 L.append(φ)
9 return processed L using implication test from Chu et al. (2013)

procedure NotPruned(L, φ)
10 foreach φ′ ∈ L do
11 p1, . . . , pm ← predicates in φ′

12 foreach j ∈ [m] do
13 if φ contains {pi}i ̸=j and ¬pj then
14 return False
15 return True

In this section, we introduce our DC discovery method, a combination
of our algorithm for DC verification and lattice searches. To find all exact,
minimal DCs, we use a lattice-based approach where we generate candidate
DCs and leverage the verification algorithm to verify whether the DC holds.

Similar to prior works on functional dependency discovery (Huhtala et al.,
1999), we start with singleton sets of attributes and traverse larger sets in
a level-by-level fashion. For each set of attributes, we generate candidate
DCs by generating all possible predicates. Then, we apply the verification
algorithm to check whether the DC holds over the input. If the DC is true,



46

(Zip, =)
<latexit sha1_base64="DUEagfY6LPPX8MRPxs6GZPf6rXw=">AAAB+3icbVDLSgNBEOyNrxhfMZ7Ey2IiRJCwGw/qQQh48RjBPDBZwuxkNhky+2CmVwxLwC/x4kERr/6IN//G2SQHjRYMFFXddE25keAKLevLyCwtr6yuZddzG5tb2zv53UJThbGkrEFDEcq2SxQTPGAN5ChYO5KM+K5gLXd0lfqteyYVD4NbHEfM8ckg4B6nBLXUyxdK5a5PcIiY3PFocnJ5XOrli1bFmsL8S+w5Kdb2HyFFvZf/7PZDGvssQCqIUh3bitBJiEROBZvkurFiEaEjMmAdTQPiM+Uk0+wT80grfdMLpX4BmlP150ZCfKXGvqsn05xq0UvF/7xOjN65k/AgipEFdHbIi4WJoZkWYfa5ZBTFWBNCJddZTTokklDUdeV0Cfbil/+SZrVin1aqN3axdgEzZOEADqEMNpxBDa6hDg2g8ABP8AKvxsR4Nt6M99loxpjv7MEvGB/ft5iUSw==</latexit>

(Zip, =)
<latexit sha1_base64="DUEagfY6LPPX8MRPxs6GZPf6rXw=">AAAB+3icbVDLSgNBEOyNrxhfMZ7Ey2IiRJCwGw/qQQh48RjBPDBZwuxkNhky+2CmVwxLwC/x4kERr/6IN//G2SQHjRYMFFXddE25keAKLevLyCwtr6yuZddzG5tb2zv53UJThbGkrEFDEcq2SxQTPGAN5ChYO5KM+K5gLXd0lfqteyYVD4NbHEfM8ckg4B6nBLXUyxdK5a5PcIiY3PFocnJ5XOrli1bFmsL8S+w5Kdb2HyFFvZf/7PZDGvssQCqIUh3bitBJiEROBZvkurFiEaEjMmAdTQPiM+Uk0+wT80grfdMLpX4BmlP150ZCfKXGvqsn05xq0UvF/7xOjN65k/AgipEFdHbIi4WJoZkWYfa5ZBTFWBNCJddZTTokklDUdeV0Cfbil/+SZrVin1aqN3axdgEzZOEADqEMNpxBDa6hDg2g8ABP8AKvxsR4Nt6M99loxpjv7MEvGB/ft5iUSw==</latexit>

(SSN, 6=)
<latexit sha1_base64="c+Yaj2l201kRSzqXsh1TmG1vPiU=">AAAB/3icbVBNSwMxFHxbv2r9qgqCeAlWoYKUXT2ot4IXT1Kp1UJbSjZNNZjNrslboawF/StePCji1b/hzX9jtu1BrQOBYeY93mT8SAqDrvvlZCYmp6ZnsrO5ufmFxaX88sqFCWPNeI2FMtR1nxouheI1FCh5PdKcBr7kl/7Ncepf3nFtRKjOsRfxVkCvlOgKRtFK7fzaVrEZULxGTKrV0/4uaSp+u7PVzhfckjsAGSfeiBTK6w+QotLOfzY7IYsDrpBJakzDcyNsJVSjYJL3c83Y8IiyG3rFG5YqGnDTSgb5+2TbKh3SDbV9CslA/bmR0MCYXuDbyTSr+eul4n9eI8buYSsRKoqRKzY81I0lwZCkZZCO0Jyh7FlCmRY2K2HXVFOGtrKcLcH7++VxcrFX8vZLe2deoXwEQ2RhAzahCB4cQBlOoAI1YHAPT/ACr86j8+y8Oe/D0Ywz2lmFX3A+vgFROZW3</latexit>

(SSN, 6=)
<latexit sha1_base64="c+Yaj2l201kRSzqXsh1TmG1vPiU=">AAAB/3icbVBNSwMxFHxbv2r9qgqCeAlWoYKUXT2ot4IXT1Kp1UJbSjZNNZjNrslboawF/StePCji1b/hzX9jtu1BrQOBYeY93mT8SAqDrvvlZCYmp6ZnsrO5ufmFxaX88sqFCWPNeI2FMtR1nxouheI1FCh5PdKcBr7kl/7Ncepf3nFtRKjOsRfxVkCvlOgKRtFK7fzaVrEZULxGTKrV0/4uaSp+u7PVzhfckjsAGSfeiBTK6w+QotLOfzY7IYsDrpBJakzDcyNsJVSjYJL3c83Y8IiyG3rFG5YqGnDTSgb5+2TbKh3SDbV9CslA/bmR0MCYXuDbyTSr+eul4n9eI8buYSsRKoqRKzY81I0lwZCkZZCO0Jyh7FlCmRY2K2HXVFOGtrKcLcH7++VxcrFX8vZLe2deoXwEQ2RhAzahCB4cQBlOoAI1YHAPT/ACr86j8+y8Oe/D0Ywz2lmFX3A+vgFROZW3</latexit>

(SSN, =)
<latexit sha1_base64="DuJ5oIEOqKet5ng2x9OVL+5YNdQ=">AAAB+3icbVDLSgNBEOyNrxhfazyJl8VEiCBhNx7UgxDw4kkiMQ9IQpidTJIhsw9mesWwBPwSLx4U8eqPePNvnE1y0GjBQFHVTdeUGwqu0La/jNTS8srqWno9s7G5tb1j7mbrKogkZTUaiEA2XaKY4D6rIUfBmqFkxHMFa7ijq8Rv3DOpeODf4ThkHY8MfN7nlKCWumY2X2h7BIeIcbV6Mzm5PM53zZxdtKew/hJnTnLl/UdIUOman+1eQCOP+UgFUarl2CF2YiKRU8EmmXakWEjoiAxYS1OfeEx14mn2iXWklZ7VD6R+PlpT9edGTDylxp6rJ5OcatFLxP+8VoT9807M/TBC5tPZoX4kLAyspAirxyWjKMaaECq5zmrRIZGEoq4ro0twFr/8l9RLRee0WLp1cuULmCENB3AIBXDgDMpwDRWoAYUHeIIXeDUmxrPxZrzPRlPGfGcPfsH4+AZWvZQM</latexit>

(SSN, =)
<latexit sha1_base64="DuJ5oIEOqKet5ng2x9OVL+5YNdQ=">AAAB+3icbVDLSgNBEOyNrxhfazyJl8VEiCBhNx7UgxDw4kkiMQ9IQpidTJIhsw9mesWwBPwSLx4U8eqPePNvnE1y0GjBQFHVTdeUGwqu0La/jNTS8srqWno9s7G5tb1j7mbrKogkZTUaiEA2XaKY4D6rIUfBmqFkxHMFa7ijq8Rv3DOpeODf4ThkHY8MfN7nlKCWumY2X2h7BIeIcbV6Mzm5PM53zZxdtKew/hJnTnLl/UdIUOman+1eQCOP+UgFUarl2CF2YiKRU8EmmXakWEjoiAxYS1OfeEx14mn2iXWklZ7VD6R+PlpT9edGTDylxp6rJ5OcatFLxP+8VoT9807M/TBC5tPZoX4kLAyspAirxyWjKMaaECq5zmrRIZGEoq4ro0twFr/8l9RLRee0WLp1cuULmCENB3AIBXDgDMpwDRWoAYUHeIIXeDUmxrPxZrzPRlPGfGcPfsH4+AZWvZQM</latexit>

(Zip, 6=)
<latexit sha1_base64="3dA8BAhDbeL4cycri4VujPiaseA=">AAAB/nicbVDLSgNBEOz1GeMrKh7Ey2IiRJCwGw/qLeDFYwTzwCSE2ckkGTI7u870CmEJ5Fe8eFDEq9/hzb9xNslBEwsGiqpuuqa8UHCNjvNtLS2vrK6tpzbSm1vbO7uZvf2qDiJFWYUGIlB1j2gmuGQV5ChYPVSM+J5gNW9wk/i1J6Y0D+Q9DkPW8klP8i6nBI3Uzhzm8k2fYB8xfuDh6Lwp2eNZrp3JOgVnAnuRuDOSLR2NIUG5nflqdgIa+UwiFUTrhuuE2IqJQk4FG6WbkWYhoQPSYw1DJfGZbsWT+CP71Cgduxso8yTaE/X3Rkx8rYe+ZyaTqHreS8T/vEaE3atWzGUYIZN0eqgbCRsDO+nC7nDFKIqhIYQqbrLatE8UoWgaS5sS3PkvL5JqseBeFIp3brZ0DVOk4BhOIA8uXEIJbqEMFaAQwzO8wps1tl6sd+tjOrpkzXYO4A+szx9XFJXM</latexit>

(Zip, 6=)
<latexit sha1_base64="3dA8BAhDbeL4cycri4VujPiaseA=">AAAB/nicbVDLSgNBEOz1GeMrKh7Ey2IiRJCwGw/qLeDFYwTzwCSE2ckkGTI7u870CmEJ5Fe8eFDEq9/hzb9xNslBEwsGiqpuuqa8UHCNjvNtLS2vrK6tpzbSm1vbO7uZvf2qDiJFWYUGIlB1j2gmuGQV5ChYPVSM+J5gNW9wk/i1J6Y0D+Q9DkPW8klP8i6nBI3Uzhzm8k2fYB8xfuDh6Lwp2eNZrp3JOgVnAnuRuDOSLR2NIUG5nflqdgIa+UwiFUTrhuuE2IqJQk4FG6WbkWYhoQPSYw1DJfGZbsWT+CP71Cgduxso8yTaE/X3Rkx8rYe+ZyaTqHreS8T/vEaE3atWzGUYIZN0eqgbCRsDO+nC7nDFKIqhIYQqbrLatE8UoWgaS5sS3PkvL5JqseBeFIp3brZ0DVOk4BhOIA8uXEIJbqEMFaAQwzO8wps1tl6sd+tjOrpkzXYO4A+szx9XFJXM</latexit>

(State, =)
<latexit sha1_base64="djCO0XfSQ3X+gPvBfFyClwv8RF8=">AAAB/XicbVDJSgNBFHwTtxi3cbmIl8FEiCBhJh7UgxDw4jGiWSAJoafTSZr0LHS/EeIQ9FO8eFDEq//hzb+xJ8lBEwsaiqr3eNXlhoIrtO1vI7WwuLS8kl7NrK1vbG6Z2ztVFUSSsgoNRCDrLlFMcJ9VkKNg9VAy4rmC1dzBVeLX7plUPPDvcBiylkd6Pu9ySlBLbXMvl296BPuI8S0SZKOTy+Nc28zaBXsMa544U5It7T9BgnLb/Gp2Ahp5zEcqiFINxw6xFROJnAo2yjQjxUJCB6THGpr6xGOqFY/Tj6wjrXSsbiD189Eaq783YuIpNfRcPZkkVbNeIv7nNSLsnrdi7ocRMp9ODnUjYWFgJVVYHS4ZRTHUhFDJdVaL9okkFHVhGV2CM/vleVItFpzTQvHGyZYuYII0HMAh5MGBMyjBNZShAhQe4Ble4c14NF6Md+NjMpoypju78AfG5w9Ia5Ut</latexit>

(State, =)
<latexit sha1_base64="djCO0XfSQ3X+gPvBfFyClwv8RF8=">AAAB/XicbVDJSgNBFHwTtxi3cbmIl8FEiCBhJh7UgxDw4jGiWSAJoafTSZr0LHS/EeIQ9FO8eFDEq//hzb+xJ8lBEwsaiqr3eNXlhoIrtO1vI7WwuLS8kl7NrK1vbG6Z2ztVFUSSsgoNRCDrLlFMcJ9VkKNg9VAy4rmC1dzBVeLX7plUPPDvcBiylkd6Pu9ySlBLbXMvl296BPuI8S0SZKOTy+Nc28zaBXsMa544U5It7T9BgnLb/Gp2Ahp5zEcqiFINxw6xFROJnAo2yjQjxUJCB6THGpr6xGOqFY/Tj6wjrXSsbiD189Eaq783YuIpNfRcPZkkVbNeIv7nNSLsnrdi7ocRMp9ODnUjYWFgJVVYHS4ZRTHUhFDJdVaL9okkFHVhGV2CM/vleVItFpzTQvHGyZYuYII0HMAh5MGBMyjBNZShAhQe4Ble4c14NF6Md+NjMpoypju78AfG5w9Ia5Ut</latexit>

(State, 6=)
<latexit sha1_base64="bdDkym01j8xHIt2ojX+Wne3QndY=">AAACAHicbVA9SwNBEJ3zM8avqIWIzWEUIki400LtAjaWEY0RkhD2NhNd3Ns7d+eEcATEv2JjoYitP8POf+NekkKjDwYe780wMy+IpTDkeV/OxOTU9Mxsbi4/v7C4tFxYWb00UaI51ngkI30VMINSKKyRIIlXsUYWBhLrwe1J5tfvURsRqQvqxdgK2bUSXcEZWaldWN8uNUNGN0TpOTHC/l5T4d3udrtQ9MreAO5f4o9IsbLxABmq7cJnsxPxJERFXDJjGr4XUytlmgSX2M83E4Mx47fsGhuWKhaiaaWDB/rujlU6bjfSthS5A/XnRMpCY3phYDuzY824l4n/eY2EuketVKg4IVR8uKibSJciN0vD7QiNnGTPEsa1sLe6/IZpxslmlrch+OMv/yWX+2X/oLx/5hcrxzBEDjZhC0rgwyFU4BSqUAMOfXiCF3h1Hp1n5815H7ZOOKOZNfgF5+Mb6k6Wrg==</latexit>

(State, 6=)
<latexit sha1_base64="bdDkym01j8xHIt2ojX+Wne3QndY=">AAACAHicbVA9SwNBEJ3zM8avqIWIzWEUIki400LtAjaWEY0RkhD2NhNd3Ns7d+eEcATEv2JjoYitP8POf+NekkKjDwYe780wMy+IpTDkeV/OxOTU9Mxsbi4/v7C4tFxYWb00UaI51ngkI30VMINSKKyRIIlXsUYWBhLrwe1J5tfvURsRqQvqxdgK2bUSXcEZWaldWN8uNUNGN0TpOTHC/l5T4d3udrtQ9MreAO5f4o9IsbLxABmq7cJnsxPxJERFXDJjGr4XUytlmgSX2M83E4Mx47fsGhuWKhaiaaWDB/rujlU6bjfSthS5A/XnRMpCY3phYDuzY824l4n/eY2EuketVKg4IVR8uKibSJciN0vD7QiNnGTPEsa1sLe6/IZpxslmlrch+OMv/yWX+2X/oLx/5hcrxzBEDjZhC0rgwyFU4BSqUAMOfXiCF3h1Hp1n5815H7ZOOKOZNfgF5+Mb6k6Wrg==</latexit>

Root

(Zip, =), (State, =)
<latexit sha1_base64="zfc9a3fKM4Y+s3HhFZPkcjOCCk4=">AAACD3icbZA9SwNBEIbn4leMX6dWYrOYKBEk3GmhFkLAxjKiUTE5wt5mYxb3PtidE8IR8AfY+FdsLBSxtbXz37iXiGj0hYWXZ2bYmdePpdDoOB9Wbmx8YnIqP12YmZ2bX7AXl850lCjG6yySkbrwqeZShLyOAiW/iBWngS/5uX99mNXPb7jSIgpPsRdzL6BXoegIRtGglr1RKjcDil3E9FLE/a2DzS3yTU6QIs9YqWUXnYozEPlr3C9TrK7cQqZay35vtiOWBDxEJqnWDdeJ0UupQsEk7xeaieYxZdf0ijeMDWnAtZcO7umTdUPapBMp80IkA/pzIqWB1r3AN53Zpnq0lsH/ao0EO3teKsI4QR6y4UedRBKMSBYOaQvFGcqeMZQpYXYlrEsVZWgiLJgQ3NGT/5qz7Yq7U9k+dovVfRgqD6uwBmVwYReqcAQ1qAODO3iAJ3i27q1H68V6HbbmrK+ZZfgl6+0T3l2cAA==</latexit>

(Zip, =), (State, =)
<latexit sha1_base64="zfc9a3fKM4Y+s3HhFZPkcjOCCk4=">AAACD3icbZA9SwNBEIbn4leMX6dWYrOYKBEk3GmhFkLAxjKiUTE5wt5mYxb3PtidE8IR8AfY+FdsLBSxtbXz37iXiGj0hYWXZ2bYmdePpdDoOB9Wbmx8YnIqP12YmZ2bX7AXl850lCjG6yySkbrwqeZShLyOAiW/iBWngS/5uX99mNXPb7jSIgpPsRdzL6BXoegIRtGglr1RKjcDil3E9FLE/a2DzS3yTU6QIs9YqWUXnYozEPlr3C9TrK7cQqZay35vtiOWBDxEJqnWDdeJ0UupQsEk7xeaieYxZdf0ijeMDWnAtZcO7umTdUPapBMp80IkA/pzIqWB1r3AN53Zpnq0lsH/ao0EO3teKsI4QR6y4UedRBKMSBYOaQvFGcqeMZQpYXYlrEsVZWgiLJgQ3NGT/5qz7Yq7U9k+dovVfRgqD6uwBmVwYReqcAQ1qAODO3iAJ3i27q1H68V6HbbmrK+ZZfgl6+0T3l2cAA==</latexit>

(Zip, =), (State, 6=)
<latexit sha1_base64="253pP0F3uMSKXYFHg86sIOIz4E8=">AAACEnicbVBNSyNBEK1R14+460Y9iZfGuGAghBk9qAch4MWjolExCaGnU9HGnp7Z7hohDAH/gRf/ihcPinj15M1/Y08i4teDgsd7VVTVCxMlLfn+izcyOvZrfGJyqjD9+8/M3+Ls3KGNUyOwLmIVm+OQW1RSY50kKTxODPIoVHgUnm/n/tEFGitjfUC9BFsRP9WyKwUnJ7WL5eWVZsTpjCg7kUm/slWusHdlnzhhv9LU+L+83C6W/Ko/APtOgjdSqi1cQo7ddvG52YlFGqEmobi1jcBPqJVxQ1Io7BeaqcWEi3N+ig1HNY/QtrLBS332zykd1o2NK01soH6cyHhkbS8KXWd+rP3q5eJPXiOl7kYrkzpJCbUYLuqmilHM8nxYRxoUpHqOcGGku5WJM264IJdiwYUQfH35OzlcrQZr1dW9oFTbhCEmYRGWYAUCWIca7MAu1EHAFdzAHdx7196t9+A9DltHvLeZefgE7+kVkxidgQ==</latexit>

(Zip, =), (State, 6=)
<latexit sha1_base64="253pP0F3uMSKXYFHg86sIOIz4E8=">AAACEnicbVBNSyNBEK1R14+460Y9iZfGuGAghBk9qAch4MWjolExCaGnU9HGnp7Z7hohDAH/gRf/ihcPinj15M1/Y08i4teDgsd7VVTVCxMlLfn+izcyOvZrfGJyqjD9+8/M3+Ls3KGNUyOwLmIVm+OQW1RSY50kKTxODPIoVHgUnm/n/tEFGitjfUC9BFsRP9WyKwUnJ7WL5eWVZsTpjCg7kUm/slWusHdlnzhhv9LU+L+83C6W/Ko/APtOgjdSqi1cQo7ddvG52YlFGqEmobi1jcBPqJVxQ1Io7BeaqcWEi3N+ig1HNY/QtrLBS332zykd1o2NK01soH6cyHhkbS8KXWd+rP3q5eJPXiOl7kYrkzpJCbUYLuqmilHM8nxYRxoUpHqOcGGku5WJM264IJdiwYUQfH35OzlcrQZr1dW9oFTbhCEmYRGWYAUCWIca7MAu1EHAFdzAHdx7196t9+A9DltHvLeZefgE7+kVkxidgQ==</latexit>

(Zip, 6=), (State, 6=)
<latexit sha1_base64="cgL8cQ9vHEMA5TLHNKgckoE2UA4=">AAACFXicbZDLSitBEIZrvBtvOboSN41RUAhhRhfnuAu4caloVExC6OlUtLGnZ+yuORCGgM/gxldx40IRt4I738aeJIi3Hxp+vqqiq/4wUdKS7795I6Nj4xOTU9OFmdm5+YXin8VjG6dGYE3EKjanIbeopMYaSVJ4mhjkUajwJLzczesn/9FYGesj6ibYjPi5lh0pODnUKpbXNhoRpwui7EwmvXJD49VmmX3AQ+KEQ7zWKpb8it8X+2mCoSlVl68h136r+NpoxyKNUJNQ3Np64CfUzLghKRT2Co3UYsLFJT/HurOaR2ibWf+qHlt3pM06sXFPE+vTzxMZj6ztRqHrzJe132s5/K1WT6nzr5lJnaSEWgw+6qSKUczyiFhbGhSkus5wYaTblYkLbrggF2TBhRB8P/mnOd6qBNuVrYOgVN2BgaZgBVZhAwL4C1XYg32ogYAbuIMHePRuvXvvyXsetI54w5kl+CLv5R1TA58C</latexit>

(Zip, 6=), (State, 6=)
<latexit sha1_base64="cgL8cQ9vHEMA5TLHNKgckoE2UA4=">AAACFXicbZDLSitBEIZrvBtvOboSN41RUAhhRhfnuAu4caloVExC6OlUtLGnZ+yuORCGgM/gxldx40IRt4I738aeJIi3Hxp+vqqiq/4wUdKS7795I6Nj4xOTU9OFmdm5+YXin8VjG6dGYE3EKjanIbeopMYaSVJ4mhjkUajwJLzczesn/9FYGesj6ibYjPi5lh0pODnUKpbXNhoRpwui7EwmvXJD49VmmX3AQ+KEQ7zWKpb8it8X+2mCoSlVl68h136r+NpoxyKNUJNQ3Np64CfUzLghKRT2Co3UYsLFJT/HurOaR2ibWf+qHlt3pM06sXFPE+vTzxMZj6ztRqHrzJe132s5/K1WT6nzr5lJnaSEWgw+6qSKUczyiFhbGhSkus5wYaTblYkLbrggF2TBhRB8P/mnOd6qBNuVrYOgVN2BgaZgBVZhAwL4C1XYg32ogYAbuIMHePRuvXvvyXsetI54w5kl+CLv5R1TA58C</latexit>

(Zip, 6=), (State, =)
<latexit sha1_base64="RKRi5bXVAVwgjMLjVpi4nXf6t2w=">AAACEnicbVBNSyNBEK1R14+460Y9iZfGuGAghBk9qAch4MWjolExCaGnU9HGnp7Z7hohDAH/gRf/ihcPinj15M1/Y08i4teDgsd7VVTVCxMlLfn+izcyOvZrfGJyqjD9+8/M3+Ls3KGNUyOwLmIVm+OQW1RSY50kKTxODPIoVHgUnm/n/tEFGitjfUC9BFsRP9WyKwUnJ7WL5eWVZsTpjCg7kUm/0tT4v1xh7+I+ccJ+Zau83C6W/Ko/APtOgjdSqi1cQo7ddvG52YlFGqEmobi1jcBPqJVxQ1Io7BeaqcWEi3N+ig1HNY/QtrLBS332zykd1o2NK01soH6cyHhkbS8KXWd+qf3q5eJPXiOl7kYrkzpJCbUYLuqmilHM8nxYRxoUpHqOcGGku5WJM264IJdiwYUQfH35OzlcrQZr1dW9oFTbhCEmYRGWYAUCWIca7MAu1EHAFdzAHdx7196t9+A9DltHvLeZefgE7+kVmg2dgQ==</latexit>

(Zip, 6=), (State, =)
<latexit sha1_base64="RKRi5bXVAVwgjMLjVpi4nXf6t2w=">AAACEnicbVBNSyNBEK1R14+460Y9iZfGuGAghBk9qAch4MWjolExCaGnU9HGnp7Z7hohDAH/gRf/ihcPinj15M1/Y08i4teDgsd7VVTVCxMlLfn+izcyOvZrfGJyqjD9+8/M3+Ls3KGNUyOwLmIVm+OQW1RSY50kKTxODPIoVHgUnm/n/tEFGitjfUC9BFsRP9WyKwUnJ7WL5eWVZsTpjCg7kUm/0tT4v1xh7+I+ccJ+Zau83C6W/Ko/APtOgjdSqi1cQo7ddvG52YlFGqEmobi1jcBPqJVxQ1Io7BeaqcWEi3N+ig1HNY/QtrLBS332zykd1o2NK01soH6cyHhkbS8KXWd+qf3q5eJPXiOl7kYrkzpJCbUYLuqmilHM8nxYRxoUpHqOcGGku5WJM264IJdiwYUQfH35OzlcrQZr1dW9oFTbhCEmYRGWYAUCWIca7MAu1EHAFdzAHdx7196t9+A9DltHvLeZefgE7+kVmg2dgQ==</latexit>
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Figure 3.3: The search space of homogeneous DC discovery on Table 2.2 when
we only consider SSN, Zip, State and limit the number of predicates to two.
To save space, we only show (attribute, operator) of the predicates in the DCs.
For example, (SSN, =) represents ¬(x.SSN = x′.SSN) and (Zip, =), (State, ̸=)
represents ¬(x.Zip = x′.Zip∧x.State = x′.State). DCs marked as “Holds”
have been verified to be true and DCs marked as “Pruned” are candidates
implied by DCs that are true.

we output the DC to the user and store it in a list L, which is used to check
the minimality of a candidate DC. We also prune candidate DCs whose
validity is implied by others. When ¬(∧

i∈[m] pi) is verified, for any j ∈ [m],
we remove all DCs containing {pi}i ̸=j ∪ {¬pj} from the search space.

Example 3.14. Figure 3.3 shows an example search sub-space showing
the first two levels of the lattice. Level one (with incoming arrows from
the Root) contains all DCs over a single column and level two contains
candidates generated from predicates in level one. Consider the DC φ1 :
¬(x.SSN = x′.SSN) and suppose that it holds. Once this DC is verified, it
is added to L and does not contribute any new candidates in the search
space. The next candidate φ′

1 : ¬(x.SSN = x′.SSN) is superfluous as it
is guaranteed to be false due to logical implication. We also remove all
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descendants of φ′
1 because they will be equivalent to other DCs. For instance,

¬(x.SSN ≠ x′.SSN ∧ x.Zip = x′.Zip) is equivalent to ¬(x.Zip = x′.Zip), and
the latter has already been checked on level one. On level two, the first
candidate ¬(x.Zip = x′.Zip ∧ x.State ̸= x′.State) holds and added to L,
which helps us prune the two other candidates in the second level which are
marked in the figure.

3.5 Experimental Evaluation

In this section, we report the results of our experimental evaluation. In
particular, we seek to answer the following questions:

1. What is the performance improvement (time and space) of the Rapi-
dash verification and enumeration algorithm compared to Facet on
open-source datasets used in prior work (Pena et al., 2021)?

2. What is the performance and scalability of Rapidash and Facet over
large-scale real-world production datasets with complex constraints?

3. How does the performance and scalability of Rapidash-based DC
discovery compare to existing solutions?

Table 3.2: Size of the datasets.

Dataset Number of Rows Number of Columns

Tax 1M 12
TPC-H 1M 12
D1 50M 28
D2 25M 28
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Table 3.3: List of denial constraints used in experiments for each dataset.

Denial Constraint

Tax c1: ¬(x.AreaCode = x′.AreaCode ∧ x.Phone = x′.Phone)
Tax c2: ¬(x.ZipCode = x′.ZipCode ∧ x.City ̸= x′.City)
Tax c3: ¬(x.State = x′.State ∧ x.HasChild = x′.HasChild ∧ x.ChildExemp ̸= x′.ChildExemp)
Tax c4: ¬(x.State = x′.State ∧ x.Salary > x′.Salary ∧ x.Rate < x′.Rate)

TPC-Hc5: ¬(x.Customer = x′.Supplier ∧ x.Supplier = x′.Customer)
TPC-Hc6: ¬(x.Receiptdate ≥ x′.Shipdate ∧ x.Shipdate ≤ x′.Receiptdate)
TPC-Hc7: ¬(x.ExtPrice > x′.ExtPrice ∧ x.Discount < x′.Discount)
TPC-Hc8: ¬(x.Qty = x′.Qty ∧ x.Tax = x′.Tax ∧ x.ExtPrice > x′.ExtPrice ∧ x.Discount < x′.Discount)

D1 φ1,1:¬(x.A = x′.A ∧ x.B = x′.B ∧ x.C ̸= x′.C ∧ x.D ̸= x′.D)
D1 φ1,2:¬(x.C = x′.C ∧ x.E = x′.E ∧ x.F = x′.F ∧ x.G ̸= x′.G ∧ x.H ̸= x′.H)
D1 φ1,3:¬(x.B = x′.B ∧ x.I = x′.I ∧ x.J = x′.J ∧ x.K ̸= x′.K ∧ x.L ̸= x′.L)
D1 φ1,4:¬(x.A = x′.A ∧ x.I = x′.I ∧ x.M > x′.M ∧ x.N ̸= x′.N)

D2 φ2,1:¬(x.A = x′.A ∧ x.B = x′.B ∧ x.C ≥ x′.C ∧ x.D ≤ x′.D ∧ x.E ≤ x′.E ∧ x.F ≥ x′.F ∧ x.G > x′.G)
D2 φ2,2:¬(x.A ̸= x′.A ∧ x.B = x′.B ∧ x.H ≤ x′.H ∧ x.F ≥ x′.F ∧ x.G ≥ x′.G)
D2 φ2,3:¬(x.A = x′.A ∧ x.I ̸= x′.I ∧ x.D ≤ x′.D ∧ x.G ≥ x′.G ∧ x.J = x′.J)
D2 φ2,4:¬(x.C ≤ x′.C ∧ x.D ≤ x′.D ∧ x.K = x′.K)

3.5.1 Experimental Setting

Datasets, DCs, and Hardware. We perform experiments on both open-
source datasets and production datasets. For open-source datasets, we
use the Tax, TPC-H with a total of 8 DCs that were identified by prior
works (Bleifuß et al., 2017; Pena et al., 2019, 2021) to be representative
of what is usually seen in production settings (as defined by experts or
discovered from data). We also use two production datasets (related to
banking records and document shipping) from Microsoft customers interested
in applying DC verification and discovery on their data. Each dataset
contains a mix of categorical, numeric, and datetime columns. For both
production datasets, we pick 3 DCs by taking a 10% sample of each dataset
and discover DCs that are true over the sample. The fourth DC (denoted
by φi,4 for dataset Di) holds over the full dataset. Table 3.2 shows the size
of the datasets and Table 3.3 lists a total of 16 DCs over all datasets that
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we use in our experiments2. Note that constraints c5, c6 are examples of
heterogeneous constraints. We ran all experiments on an Intel(R) Xeon(R)
W-2255 CPU @ 3.70GHz machine with 128GB RAM running Windows 10
Enterprise (version 22H2). All of our experiments are executed over a single
core and in the main memory setting.
Evaluation Metrics. We perform experiments for both DC verification
and enumeration using Rapidash and Facet and report the end-to-end
running time and space consumption. For enumeration performance, we
report the total time to count and return the number of all the violations
(same approach as Facet (Pena et al., 2021)) to avoid output materialization
cost and focus on understanding the intrinsic hardness. For DC discovery,
we compare against Hydra (Bleifuß et al., 2017) and DCFinder (Pena
et al., 2019) in runtime. We use the same predicate space as defined by
Pena et al. (2019). All reported running times are the trimmed mean of five
independent executions after the dataset has been loaded in memory.
Implementation. Similar to prior work, Rapidash is implemented in
Java. We use a standard implementation of orthogonal range trees (referred
to as Rapidash(⊥)) and kd-trees (referred to as Rapidash(kd)). Since we
were unable to obtain the original Facet source code from Pena et al. (2021),
we implemented Facet ourselves in Java using the Metanome infrastructure
from Bleifuß et al. (2017) and Pena et al. (2019), with all optimizations
enabled as described in the Facet paper (Pena et al., 2021). We manually
verified that the performance of our implementation is in line with the
numbers reported by Pena et al. (2021) accounting for hardware differences3.
Further, to ensure a fair comparison, for DC verification, we ensure that
Facet execution terminates as soon as the first violation is found.

2The column names in the DCs have been omitted due to security and privacy
concerns.

3There is some deviation to be expected since the Tax dataset used by Pena et al.
(2021) has not been publicly released. We could only obtain a different version of the
dataset (available at met (2023)) generated for a different publication.
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3.5.2 DC Verification on Open-Source Datasets

In this subsection, we compare against Facet on open-source datasets
for DC verification. Figure 3.4 shows the running time for Facet and
Rapidash. Let us fix our attention to Figure 3.4a. Our first observation is
that for c1 and c5 DCs (which contain only equality and thus, both Facet
and Rapidash take a provably linear amount of time in theory), Rapidash
is faster by 2× for verification. This is because Facet requires cardinality
estimation for all columns involved in the predicates, followed by creating
the refinements which require iterating over the dataset again. Rapidash
requires no statistics and iterates over the dataset only once. Constraints
c6, c7, and c8 all have a large number of violations (on the order of several
hundred million). For these constraints, both versions of Rapidash are
up to 84× faster than Facet since Rapidash can find a violation after
only looking at a few tuples in the dataset while Facet requires expensive
computation. In fact, for c6 and c7, we observed that the size of all ordered
pairs4 after just the first refinement (which are inequality predicates) is 1.2B
and 3.6B respectively.

The speedup improvement obtained by Rapidash also extends to the
violation enumeration problem (Figure 3.4b). Although there is no early
termination possible for counting, Rapidash still performs up to an order
of magnitude better due to our improved algorithms. Facet performance,
on the other hand, degrades further since the last refinement cannot be
stopped early as Facet requires all refinements to be complete in order
to begin counting. Note that both Rapidash(⊥) and Rapidash(kd) have
the same performance numbers since all constraints contain at most two
inequality predicates and thus, both range trees and kd-trees degenerate
into a simple binary search tree.

Figure 3.5 shows the space usage for both verification and violation
enumeration. For Facet, space usage is calculated using the cardinality

4Given an ordered pair (tids1, tids2), its size is defined as |tids1|+ |tids2|
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Figure 3.4: Running time for DC verification on open-source datasets.
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Figure 3.5: Space usage for DC verification on open-source datasets.

(in millions) of cluster pairs constructed and we use the number of nodes
in the tree constructed for Rapidash(⊥) and Rapidash(kd). For every
DC, Rapidash uses significantly lower space compared to Facet. The
high space usage of Facet is directly attributed to the size of ordered pairs
generated after refining predicates. The largest gap is observed for c6, c7,

and c8, which is expected since the DCs have a lot of violations, making
refinement computation and storage expensive. On the other hand, for each
constraint, Rapidash(kd) requires only (provably) linear amount of memory
and this behavior can be directly observed in practice as well.
Scalability Figure 3.6 shows the behavior of the algorithms on TPC-H
with varying the cardinality. Let us take constraint c8 as an example. As
the cardinality increases, the speedup obtained by Rapidash compared to
Facet increases from 7.5× for 1M to 13.86× when the dataset size is 4M.
This suggests that the running time of Facet grows at a non-constant rate
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Figure 3.6: Running time (in milliseconds) for violation enumeration on the
TPC-H dataset with varying cardinality.
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Figure 3.7: Running time (in seconds) for DC verification on production
datasets.

compared to Rapidash which grows in line with expectation.

3.5.3 DC Verification on Production Datasets

In this subsection, we evaluate on production datasets for DC verification.
Figure 3.7 shows the running time (in log scale) of Rapidash for all
production datasets and DCs. The speedup obtained by our algorithm
is close to an order of magnitude and up to 40×. Compared to Facet,
both algorithms perform significantly better on all DCs. Rapidash(⊥)
performs better than Rapidash(kd) on all DCs. This is not surprising since
using kd-trees for orthogonal range search is more expensive as shown by
complexity analysis. However, we can see that Rapidash(kd) is still faster
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Figure 3.8: Space requirement of different algorithms for DC verification on
production datasets
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Figure 3.9: Running time (in seconds) for violation enumeration on produc-
tion datasets. Red (solid) bars for φ2,1 and φ2,2 denote an out-of-memory
error.

than Facet by up to 20×.
The speedup obtained by Rapidash can be attributed to two reasons.

First, Rapidash can terminate as soon as a violation is discovered, as
opposed to Facet, which cannot do early termination in general. The second
reason is that Rapidash does not require any expensive materialization
as opposed to the ordered pair generation that is done by Facet. We
also measure the space usage of all the systems (as is shown in Figure 3.8).
For all DCs, Facet requires 1.4− 8× more space than Rapidash(⊥). In
addition, Rapidash(kd) was a further order of magnitude lower in its space
requirement compared to Rapidash(⊥).

Figure 3.9 shows the running time for violation enumeration. For most
constraints, we observe a similar trend in the running time as we saw for
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verification. The most interesting observation is that for constraints φ2,1

and φ2,2, both Facet and Rapidash(⊥) fail to complete due to Java out-
of-memory error, as both constraints contain a large number of inequality
predicates. However, Rapidash(kd) can finish the computation in about 10
minutes, thanks to its linear memory use guarantee.

3.5.4 DC Discovery

Performance We evaluate the performance of our DC discovery algorithm
(Rapidash(disc)) in comparison to Hydra and DCFinder using the
production datasets. We’d like to note that our datasets are much larger
than those used in prior work (Hydra and DCFinder were evaluated on
datasets consisting of up to 1M rows). We run the experiments with a time
limit of 48 hours. For all datasets, both Hydra and DCFinder could not
finish the computation of the evidence set within the time limit for any
dataset. This is not surprising since the evidence-set can be super linear in
the size of the dataset and has an exponential dependency on the number of
columns. Therefore, even after spending a lot of computing resources, the
user does not get any information at all about whether there even exists a
DC or not. In contrast, Rapidash(disc) was able to discover all constraints
over a single attribute (i.e. k = 1) within 10 minutes for all datasets.
Constraints over single attributes are already interesting since it includes
single-column primary keys, finding whether columns that are empty, or
sorted in a particular order. All constraints are generated over pairs of
attributes (k = 2) within one hour of starting the discovery process. Further,
since Rapidash(disc) continuously outputs DCs, the user can still get useful
information even if the algorithm isn’t allowed to run to completion.
Scalability micro-benchmark To understand the scaling behavior, we
create a micro-benchmark where we vary the number of rows and columns
in dataset D1 and run DCFinder5 to generate all constraints over at most

5We omit a microbenchmark with Hydra since DCFinder is known to be faster Pena
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three columns. We intentionally keep the dataset size small to ensure that
DCFinder can actually terminate. Figure 3.10 shows the scalability wrt.
to varying the cardinality of D1. DCFinder is faster than our solution
when the dataset size is 105 rows but its running time grows very quickly
as the dataset size increases, demonstrating the super-linear running time
empirically. This growth is entirely due to the evidence-set computation step.
Rapidash(disc) on the other hand has a much slower growth in running time.
The same behavior was also observed when varying the number of columns
but keeping the cardinality as 5× 105, as shown in Figure 3.11. Even for
only 25 columns in a small dataset, the evidence set computation becomes a
blocker. Note that the jump in DCFinder running time when going from
10 to 15 columns is larger than when going from 15 to 20 columns. This is
because the evidence set computation is sensitive to column cardinality and
whether it is numeric or categorical. Recall that categorical columns only
admit =, ̸= as operators but numerical columns can have any operator in the
predicate. When numerical columns are added, not only do they generate 6
row-level homogeneous predicates but also column-level and heterogenous
predicates. This leads to a blowup in predicate space which in-turn makes
the evidence set larger.

3.6 Conclusion and Future Work

In this chapter, we studied the problem of DC verification and discovery.
We presented Rapidash, a DC verification algorithm with near-linear
time complexity with respect to the dataset size that leverages prior work
on orthogonal range search. We also developed an anytime DC discovery
algorithm that does lattice search based on our verification algorithm. Unlike
previous works, our discovery algorithm eliminates the reliance on the
et al. (2019)
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Figure 3.10: Running time of DCFinder vs. Rapidash(disc) for varying
cardinality of D1 with 15 columns.
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Figure 3.11: Running time of DCFinder vs. Rapidash(disc) for varying
number of columns with |D1| = 5 · 105. Criss-cross hashed bar means
experiment could not complete in 24 hours.

construction of evidence sets, which can be computationally expensive.
Through empirical evaluation, we demonstrated that our DC verification
algorithm is faster than the state of the art by an order of magnitude on
large-scale production datasets. Our DC discovery algorithm is able to
output valid DCs incrementally whereas existing methods fail to provide
any useful information.
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4 guarding against corrupted data in
tabular data during learning and
inference

4.1 Introduction

Data quality assessment is critical in all phases of the machine learning (ML)
life cycle. Both in the training and deployment (inference) stages of ML
models, erroneous data can have devastating effects. In the training stage,
errors in the data can lead to biased ML models (Koh et al., 2018; Schelter
et al., 2018; Breck et al.; Polyzotis et al., 2019), i.e., models that learn
wrong decision boundaries. In the deployment stage, errors in the inference
queries can result in wrong predictions, which in turn can be harmful for
critical decision making systems (Breck et al.; Steinhardt et al., 2017b). ML
pipelines need reliable data quality assessment during both training and
inference to be robust to data errors.

We focus on tabular data and seek to develop a simple, plug-and-play
approach to guard against corrupted data (including adversarially corrupted
data) during both training and inference in ML pipelines. During training,
our goal is to identify and filter corrupted examples from the data used
to train a model, while during deployment, our goal is to flag erroneous
query points to a pre-trained ML model, i.e., points that due to noise will
result in incorrect predictions of the ML model. This chapter introduces a
unified solution to guard against corrupted data for both the training and
deployment stages of ML models.

Guarding against corrupted data in ML pipelines exhibits many chal-
lenges. First, detecting corrupted examples in the training data can be a hard
exercise that requires developing methods that go beyond standard outlier
detection mechanisms (Xue et al., 2010). Data poisoning techniques (Stein-
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hardt et al., 2017b; Koh et al., 2018; Muñoz-González et al., 2017; Biggio
et al., 2012) attack models by adding a small fraction of adversarially crafted
poisoned data to the training set. Any reliable mechanism that filters cor-
ruptions from a training data set should not only remove easy to detect
outliers but also hard to detect poisoned data.

Second, online-detection of inference queries that yield a model mispre-
diction due to corruption requires not only knowledge of the data quality,
but also knowledge of the tolerance of the trained ML model to corruptions.
The reason is that not all corruptions will flip the prediction of a trained
ML model and different models exhibit different degrees of robustness to
corruption. Moreover, adversarial noise may target specific subsets of the
data or classes in the ML pipeline (Koh et al., 2018). For this reason,
online-filtering of corrupted inference queries requires a method that takes
both the downstream model and data quality into account.

The above challenges require rethinking the current solutions for iden-
tifying errors in data. The majority of outlier detection methods in the
statistical literature (Xue et al., 2010; Liu et al., 2008; Chen et al., 2001)
and error detection methods in the database literature (Heidari et al., 2019;
Mahdavi et al., 2019) are not effective against adversarial corruptions (Koh
et al., 2018). More advanced methods are required to defend against adver-
sarial corruptions (Steinhardt et al., 2017b). However, current methods are
typically limited to real-valued data (Diakonikolas et al., 2017) and focus
either on training (Diakonikolas et al., 2019b) or inference (Roth et al.,
2019; Grosse et al., 2017) but not both. Finally, recent techniques for data
validation in ML pipelines that are deployed in industrial settings (Schelter
et al., 2018; Breck et al.) rely on user-specified rule- or schema-based quality
assertions evaluated over batches of data and it is unclear if they can support
on-the-fly, single point validation, which is required during inference.

We present Picket, a framework for safeguarding against corrupted data
during both the training and deployment stages of ML pipelines. Picket
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can be used in an offline manner to validate data that will be used for training
but can also be used in an online manner to safeguard against corruptions
for on-the-fly queries at inference time. We empirically demonstrate that
Picket outperforms both state-of-the-art outlier detection mechanisms
such as Robust Variational Autoencoders (Eduardo et al., 2020), and state-
of-the-art methods for detection of adversarial corruption attacks during
inference (Roth et al., 2019; Grosse et al., 2017). Our work makes the
following technical contributions:
Self-Attention for Tabular Data Picket is built around PicketNet,
a new deep learning-based encoder for mixed-type tabular data. PicketNet
can model mixtures over numerical, categorical, and even text-based entries
of limited length (e.g., descriptions). The goal of PicketNet is to learn the
characteristics of the distribution governing the non-corrupted data on which
the ML pipeline operates and it is used in Picket to distinguish between
clean data points and corrupted ones. The architecture of PicketNet
builds upon the general family of Transformer networks (Vaswani et al.,
2017) and introduces a new multi-head self-attention module (Vaswani et al.,
2017) over tabular data. This module follows a stream-based architecture
that is able to capture not only the dependencies between attributes at the
schema-level but also the statistical relations between cell values—it follows
a schema stream and value stream architecture. We find that compared to
schema-only models, PicketNet’s two-stream architecture is critical for
obtaining accurate predictions across diverse data sets.
Robust Training over Arbitrary Corruptions We show how to learn a
PicketNet model without imposing any extra labeling burden to the user
and by operating directly on potentially corrupted data (i.e., we do not not
require access to clean data to learn the non-corrupted data distribution).
We achieve that by using a robust self-supervised training approach that
is robust to corrupted data points (including adversarial points). As with
standard self-supervision, the context captured in the data is used as the
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supervision signal. The training procedure for PicketNet monitors the
reconstruction loss of tuples in the input data over early training iterations
and uses related statistics to identify suspicious data points. These points
are then excluded from subsequent iterations during training.
A Plugin to ML Pipelines We demonstrate how Picket can serve as
a “plugin” that safeguards against corrupted data in different ML pipelines
during both training and inference. We evaluate Picket over multiple
data sets with different distributional characteristics and consider different
types and magnitudes of corruption, ranging from simple random noise to
adversarial attacks that explicitly aim to harm the performance of down-
stream ML models. We find that Picket provides a reliable mechanism for
detecting data corruptions in ML pipelines: Picket consistently achieves
an area under the receiver operating characteristic curve (AUROC) score
of above or close to 80 points for detecting corrupted data across different
types of noise and ML models.

In addition, we analyze the effects of data corruption on mean estimation
theoretically to promote the understanding of the relationship between
data corruption and learning. We consider robust mean estimation under
coordinate-level corruptions (either missing entries or value replacements).
We assume an adversarial corruption model for which a given data set
generated from an unknown distribution can have up to α-fraction of its
coordinates corrupted adversarially, i.e., the adversary can strategically
hide or modify individual coordinates of samples. The goal is to find an
estimate µ̂ of the true mean µ of the data set that is accurate even in
the worst case. We present an information-theoretic analysis of corruption
under coordinate-level adversaries. Our results show that one must exploit
the structure of the data (i.e., dependencies between features) to achieve
information-theoretically optimal error for mean estimation.
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4.2 Preliminaries

Data Corruption Models We consider data corruption due to random,
systematic, and adversarial noise.
1. Random noise is drawn from some unknown distribution that does
not depend on the data. Random noise is not predictable and cannot be
replicated in a repeatable manner. While many ML models are robust to
purely random noise during training, high-magnitude random noise can still
lead to false predictions, and hence is of interest to our study.
2. Systematic noise depends on values in the data and leads to repeated
errors in data samples. This type of noise biases the distribution of the
data. Systematic noise can skew the distribution of the data, and this bias
can potentially harm the performance of an ML model depending on the
importance of the corrupted features to the downstream prediction task.
3. Adversarial noise contaminates the data to explicitly mislead ML models
and harm their performance. At training time, adversarial noise corrupts
the training points to force a model to learn a bad decision boundary; at
test time, adversarial noise corrupts the input queries in a manner that will
lead to a false prediction by the model. It usually depends on the data and
the target model, although some types of adversarial noise may work well
across different models.
Dealing with Corrupted Data in ML The most common approach to
deal with corrupted data during training is to identify corrupted samples and
remove them from the training set. This process is referred to as filtering.
Given a training data set D, filtering identifies a set of clean data points
C ⊆ D to be used for training. Common filtering mechanisms rely on outlier
detection methods (Liu et al., 2008; Chen et al., 2001; Eduardo et al., 2020).
In addition, recent filtering methods focus on adversarial corruptions over
real-valued data (Steinhardt et al., 2017b; Diakonikolas et al., 2017). Finally,
there are data validation modules for ML platforms (Polyzotis et al., 2019;
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Schelter et al., 2018; Breck et al.) that rely on user-defined rules and simple
statistics to check the quality of data batches. The statistical tests used
by these methods are subsumed by outlier detection methods and user-
defined quality rules are out of the scope of this work. For inference, apart
from outlier detection methods, there are methods that accept or reject
inference queries by using statistical tests that compare the query to clean
data (Grosse et al., 2017) or by considering variations in a model’s internal
data representation (Roth et al., 2019). We also consider the online detection
of inference queries that result in wrong predictions due to corruption.
Self-Supervision In self-supervised learning systems (Devlin et al., 2018;
Su et al., 2020), the learning objective is to predict part of the input from
the rest of it. A typical approach to self-supervision is to mask a portion of
the input, and then let the model reconstruct the masked portion based on
the unmasked parts. Through self-supervised learning, a model learns to
capture dependencies between different parts of the data. Self-supervised
learning is a subset of unsupervised learning in a broad sense since it does
not need human supervision.
Multi-Head Self-Attention Models with multi-head self-attention
mechanism learn representations for structured inputs e.g., a tuple or a
text sequence, by capturing the dependencies between different parts of the
inputs (Vaswani et al., 2017). One part can pay different levels of attention
to other parts of the same structured input. For example, consider the
text sequence “the dog wears a white hat”, the token “wears” pays more
attention to “hat” than “white” although “white” is closer in the sequence.
The attention mechanism can also be applied to tuples that consist of
different attributes (Wu et al., 2020). Multi-head self-attention takes an
ensemble of different attention functions, with each head learning one.

We provide a brief review of the multi-head self-attention model (Vaswani
et al., 2017). Let x(1), x(2), . . . , x(T ) be the embedding of a structured input
with T tokens. Each token x(i) is transformed into a query-key-value triplet
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(qi = WQx(i), ki = WKx(i), vi = WV x(i)) by three learnable matrices
WQ, WK and WV . The query qi, key ki, and value vi are real-valued
vectors with the same dimension d. The output of a single head for the
ith token is ∑T

j=1 wijvj, a weighted sum of all the values in the sequence,
where wij = softmax((qT

i k1, qT
i k2, . . . , qT

i kT )/
√

d)j. The attention x(i) pays
to x(j) is determined by the inner product between qi and kj . Multiple heads
share the same mechanism but have different transformation matrices. The
outputs of all the heads are concatenated and transformed into the final
output by an output matrix WO, which is also learnable.

4.3 Overview of Picket

We review Picket’s functionalities during the training and inference phases
of a ML pipeline. An overview diagram of Picket’s core components and
functionalities is shown in Figure 4.1. The corresponding pseudo-code is
shown in Algorithm 7.
Guarding against Corrupted Data in Training
We consider a tabular data set D with N training examples. Let x be a
sample (tuple) in D with T attributes. These attributes correspond to the
features that are used by the downstream model. For each x we denote x∗

its clean version; if x is not corrupted then x = x∗.
We assume that D contains clean and corrupted samples and that the

fraction of corrupted samples is always less than half. The goal of Picket
is to filter out the corrupted samples in D and construct a clean set of
examples C ⊆ D to be used for training a downstream model. Without loss
of generality, we assume that Picket performs filtering over D once. This
process can be repeated for data batches over time. We next describe how
we construct C in Picket.

Picket follows the next steps: First, Picket learns a self-supervised
PicketNet model that captures how data features are distributed for
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Training Time Diagnostics

Inference Time Diagnostics

Offline Phase

Online Phase

Figure 4.1: The key components of a typical machine learning pipeline with
Picket.

the clean samples. Picket does not require human-labeled examples of
corrupted or clean data. During training, Picket records the reconstruction
loss across training epochs for all points in D. After training of PicketNet,
we analyze the reconstruction loss progression over the first few training
epochs to identify points in D that are corrupted. Set C is constructed by
removing these corrupted points from D. We also proceed with training
PicketNet on C. The the pre-trained PicketNet model is used to detect
corruptions during inference.
Guarding against Corrupted Data in Inference
We consider a trained model F that serves inference queries over data points
with the same T attributes as in the training phase of the ML pipeline. We
define a victim sample to be a point x such that F(x∗) = y but F(x) ̸= y,
i.e., the input sample is corrupted and it gets misclassified due to corruption.
We show an example that illustrates the difference between non-victim and
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Algorithm 7: Picket in a typical ML pipeline
1 Training Time:
2 Input: dataset D, downstream model type and configuration Iconfig;
3 Output: filtered dataset C, trained downstream model F ;
4 C = PicketNetTrainingAndEarlyFiltering(D);
5 F = DownstreamModelTraining(C, Iconfig);
6

7 Inference Time (Offline Phase):
8 Input: filtered dataset C, trained downstream model F ;
9 Output: trained PicketNet M, victim sample detectors G;

10 M = PicketNetTraining(C);
11 augmented dataset A = DataAugmentation(M,F);
12 G = VictimSampleDetectorTraining(A);
13

14 Inference Time (Online Phase):
15 Input: data stream Dstream, trained downstream model F , trained

PicketNet M, victim sample detectors G;
16 Output: final prediction yprediction;
17 raw prediction yraw = DownstreamPrediction(Dstream,F);
18 yprediction = PicketVictimDetection(Dstream, yraw,M,G)

victim samples according to our definition in Figure 4.2. The goal of Picket
is to solve the following problem: Given an already-trained classifier F , for
each sample x that comes on the fly, we want to tell if it is a good sample
or it is a victim sample and will be misclassified due to corruption, i.e., we
want to detect if F(x) ̸= F(x∗). We assume access to data set C and model
M output by Picket for safeguarding during the training phase of the ML
pipeline in hand. We then adopt a two-phase approach, offline and online
phase, to solve the aforementioned problem.

We now focus on the offline phase. Given the trained model F , data set
C, and model M, we learn a victim-sample detector for each class in the
prediction task in hand. Each victim-sample detector is a binary classifier
that detects if an input sample x will be misclassified by F due to corruption.
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A

B

(a) Before Corruption

C

D

(b) After Corruption

Figure 4.2: An example of non-victim and victim samples. The grey line is
the decision boundary of a binary classifier that separates the red circles
and the blue stars in the two-dimensional space. (a) Before corruption,
some samples (e.g. point A and B) get misclassified, but they are not
victim samples because they are clean, and the misclassification is due to
the limitation of the model. Those samples should be handled by model
analytics, and are out of the scope of our framework. (b) After corruption,
two samples are shifted by the noise (point C and D). C is not a victim
sample since the noise injected does not affect the correctness of classification.
D is a victim sample because it gets misclassified due to noise.

The victim-sample detectors operate on an extended feature set: Beyond
the original T features of the inference query x we add T additional features
corresponding to the reconstruction loss obtained by masking each feature
in turn and applying modelM to predict it back.

During the online phase, we use modelM and the victim-sample detec-
tors over a stream of incoming inference queries to identify victim samples.
Picket performs the following: for each incoming point x, Picket eval-
uates classifier F on x to obtain an initial prediction F(x). Picket also
uses M to compute the reconstruction-loss vector for the features of x.
The extended feature vector containing the original features of x and the
reconstruction loss features are given as input to the victim sample detector
for the class that corresponds to the prediction F(x). Using this input, the
detector identifies if point x corresponds to a victim sample. If the point
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is not marked as suspicious the final prediction is revealed downstream,
otherwise the inference query is flagged.

4.4 The PicketNet Model

Picket uses a new two-stream multi-head self-attention model to learn
the distribution of tabular data. We refer to this model as PicketNet.
The term stream refers to a path in a neural network that focuses on a
specific view of the input data. For example, standard attention mechanism
is one stream that learns value-based dependencies between the parts of
the input data (see Section 4.2). Combining multiple streams, where each
stream focuses on learning a different view of the data, has been shown to
achieve state-of-the-art results in natural language processing tasks (Yang
et al., 2019) and computer vision tasks (Simonyan and Zisserman, 2014)
but has not been applied on tabular data. PicketNet introduces a new
two-stream model for tabular data and proposes a robust, self-supervised
training procedure for learning this model.

4.4.1 Model Architecture

PicketNet contains two streams: a schema stream and a value stream.
The schema stream captures schema-level dependencies between attributes
of the data, while the value stream captures dependencies between specific
data values. A design overview of PicketNet is shown in Figure 4.3 with
details of the two streams. The input to the network is a mixed-type data
tuple x with T attributes x(1), x(2), . . . , x(T ).

The first level of Picket obtains a numerical representation of tuple x.
To capture the schema- and value-level information for x, we consider two
numerical representations for each attribute i: (1) a real-valued vector that
encodes the information in value x(i), denoted by I

(0)
i , and (2) a real-valued

vector that encodes schema-level information of attribute i, denoted by P
(0)
i .
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For example, a tuple with two attributes is represented as I
(0)
1 P

(0)
1 I

(0)
2 P

(0)
2 .

To convert x(i) to I
(0)
i , PicketNet uses the following process: The encoding

for each attribute value x(i) is computed independently. We consider (1)
categorical, (2) numerical, and (3) textual (short-text) attributes. For
categorical attributes, we use a learnable lookup table to get the embedding
for each value in the domain. This lookup table is learned jointly with all
other components of PicketNet. For numerical attributes, we keep the
raw value as one dimension and pad the other dimensions with zeros. For
text attributes, we use fastText (Bojanowski et al., 2017) encoding and
apply SIF (Arora et al., 2017) to aggregate the embedding of the words in a
cell. The initial embedding vectors I

(0)
i are inputs to the value-level stream.

Each vector P
(0)
i serves as a positional encoding of the attribute associated

with index i. Positional encodings are used to capture high-level dependencies
between attributes. P

(0)
i is consistent for attribute i in all examples, i.e., it

does not change as the values in different examples vary. Hence, it captures
common dependencies at the schema level. Each P

(0)
i corresponds to a

trainable vector that is initialized randomly and is fed as input to the
schema stream in every self-attention layer.

We now describe subsequent layers of our model. These layers consider
the two attention streams and form a stack of n self-attention layers. The
output of the previous layer serves as the input to the next layer. Self-
attention layer l takes the value vector I

(l)
i and positional encoding P

(l)
i to

learn a further representation for attribute i and its value x(i). After each
attention layer, the outputs of the two streams are aggregated and fed as
input to the value-level stream of the next layer, while the schema stream
still takes as input the positional encoding. The output of the value stream
H

(l)
i and that of the schema stream G

(l)
i are computed as:

H
(l)
i = MHS(Q = LQ(I(l)

i ), K = LK(I(l)
j=1,...,T ), V = LV (I(l)

j=1,...,T ))
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G
(l)
i = MHS(Q = LQ(P (l)

i ), K = LK(P (l)
j=1,...,T ), V = LV (I(l)

j=1,...,T ))

where MHS represents the multi-head attention function followed by a feed-
forward network and LQ, LK , LV are linear transformations that transform
the input into query, key, or value vectors by the corresponding weight
matrices for Q, K, and V . Finally, Q, K, V are matrices formed by
packing the query, key and value vectors from their inputs.

The difference between the two streams is that the query in the schema
stream corresponds to the positional encoding, therefore it learns higher-level
dependencies. For the value stream the input to the next level is the sum
of the outputs from the two streams: I

(l+1)
i = H

(l)
i + G

(l)
i ; for the schema

stream the input to the next level P
(l+1)
i corresponds to a new positional

encoding that does not depend on the previous layers. If layer l is the last
layer, Oi = I

(l+1)
i is the final representation for attribute value x(i).

4.4.2 Training Process

We learn PicketNet using the noisy data set D without any human-labeled
examples of corrupted or clean data. The training of PicketNet follows a
self-supervised learning objective.
Self-Supervised Training For each point in D, we mask one of the
attributes and then try to reconstruct it based on the values of the other
attributes in the same tuple. Other attributes may still contain noisy data
or missing values. The attributes are masked in turn following an arbitrary
order. The training is also multi-task since the reconstruction of each
attribute forms one learning task.

We use different types of losses for the three types of attributes to quantify
the quality of reconstruction. Consider a sample x whose original value of
attribute i is x(i). If x(i) is numerical, its a one-dimensional value, and hence,
the reconstruction of the input value is a regression task: We apply a simple
neural network on the output Oi to get an one-dimensional reconstruction x̂(i),
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<latexit sha1_base64="FYCYeHAvx2Km0shV1e7MfcUv30c=">AAAB8HicbZC7SgNBFIbPxluMt6hgYzMYhNiE3RXRMmCjXQRzkWQNs5PZZMjM7jIzK4QlT2FjoYid+BxWdtr5Nk4uhSb+MPDx/+cw5xw/5kxp2/62MguLS8sr2dXc2vrG5lZ+e6emokQSWiURj2TDx4pyFtKqZprTRiwpFj6ndb9/Psrrd1QqFoXXehBTT+BuyAJGsDbWzWXbvU2L/GjYzhfskj0WmgdnCoXy3ue7+1F/rbTzX61ORBJBQ004Vqrp2LH2Uiw1I5wOc61E0RiTPu7SpsEQC6q8dDzwEB0ap4OCSJoXajR2f3ekWCg1EL6pFFj31Gw2Mv/LmokOzryUhXGiaUgmHwUJRzpCo+1Rh0lKNB8YwEQyMysiPSwx0eZGOXMEZ3bleai5Jee45F45hfIJTJSFfTiAIjhwCmW4gApUgYCAe3iEJ0taD9az9TIpzVjTnl34I+vtBwyPk5s=</latexit>

P
(l)
2

<latexit sha1_base64="Yd56MEaPqSXt1cgg0CdsQDo9jTM=">AAAB8HicbZDLSgMxFIbPeK31VhXcuAkWoW7KzIjosuDGZQV7kXYsmTRtQ5PMkGSEMvQp3LhQxJ34HK7c6c63Mb0stPWHwMf/n0POOWHMmTau++0sLC4tr6xm1rLrG5tb27md3aqOEkVohUQ8UvUQa8qZpBXDDKf1WFEsQk5rYf9ilNfuqNIsktdmENNA4K5kHUawsdZNueXfpgV+PGzl8m7RHQvNgzeFfGn/893/qL2WW7mvZjsiiaDSEI61bnhubIIUK8MIp8NsM9E0xqSPu7RhUWJBdZCOBx6iI+u0USdS9kmDxu7vjhQLrQcitJUCm56ezUbmf1kjMZ3zIGUyTgyVZPJRJ+HIRGi0PWozRYnhAwuYKGZnRaSHFSbG3ihrj+DNrjwPVb/onRT9Ky9fOoWJMnAAh1AAD86gBJdQhgoQEHAPj/DkKOfBeXZeJqULzrRnD/7IefsBF2OTog==</latexit>

P
(l)
2

<latexit sha1_base64="Yd56MEaPqSXt1cgg0CdsQDo9jTM=">AAAB8HicbZDLSgMxFIbPeK31VhXcuAkWoW7KzIjosuDGZQV7kXYsmTRtQ5PMkGSEMvQp3LhQxJ34HK7c6c63Mb0stPWHwMf/n0POOWHMmTau++0sLC4tr6xm1rLrG5tb27md3aqOEkVohUQ8UvUQa8qZpBXDDKf1WFEsQk5rYf9ilNfuqNIsktdmENNA4K5kHUawsdZNueXfpgV+PGzl8m7RHQvNgzeFfGn/893/qL2WW7mvZjsiiaDSEI61bnhubIIUK8MIp8NsM9E0xqSPu7RhUWJBdZCOBx6iI+u0USdS9kmDxu7vjhQLrQcitJUCm56ezUbmf1kjMZ3zIGUyTgyVZPJRJ+HIRGi0PWozRYnhAwuYKGZnRaSHFSbG3ihrj+DNrjwPVb/onRT9Ky9fOoWJMnAAh1AAD86gBJdQhgoQEHAPj/DkKOfBeXZeJqULzrRnD/7IefsBF2OTog==</latexit>

I
(l)
3

<latexit sha1_base64="NO+Ite7QeQphL6OXELdu+rSQyJk=">AAAB8HicbZDLSgMxFIbPeK31VhXcuAkWoW7KTIvosuBGdxXsRdpaMmmmDU0yQ5IRytCncONCEXfic7hypzvfxvSy0NYfAh//fw455/gRZ9q47rezsLi0vLKaWkuvb2xubWd2dqs6jBWhFRLyUNV9rClnklYMM5zWI0Wx8Dmt+f3zUV67o0qzUF6bQURbAnclCxjBxlo3l+3ibZLjx8N2Juvm3bHQPHhTyJb2P98LH7XXcjvz1eyEJBZUGsKx1g3PjUwrwcowwukw3Yw1jTDp4y5tWJRYUN1KxgMP0ZF1OigIlX3SoLH7uyPBQuuB8G2lwKanZ7OR+V/WiE1w1kqYjGJDJZl8FMQcmRCNtkcdpigxfGABE8XsrIj0sMLE2Bul7RG82ZXnoVrIe8V84crLlk5gohQcwCHkwINTKMEFlKECBATcwyM8Ocp5cJ6dl0npgjPt2YM/ct5+AA4Zk5w=</latexit>

I
(l)
3

<latexit sha1_base64="NO+Ite7QeQphL6OXELdu+rSQyJk=">AAAB8HicbZDLSgMxFIbPeK31VhXcuAkWoW7KTIvosuBGdxXsRdpaMmmmDU0yQ5IRytCncONCEXfic7hypzvfxvSy0NYfAh//fw455/gRZ9q47rezsLi0vLKaWkuvb2xubWd2dqs6jBWhFRLyUNV9rClnklYMM5zWI0Wx8Dmt+f3zUV67o0qzUF6bQURbAnclCxjBxlo3l+3ibZLjx8N2Juvm3bHQPHhTyJb2P98LH7XXcjvz1eyEJBZUGsKx1g3PjUwrwcowwukw3Yw1jTDp4y5tWJRYUN1KxgMP0ZF1OigIlX3SoLH7uyPBQuuB8G2lwKanZ7OR+V/WiE1w1kqYjGJDJZl8FMQcmRCNtkcdpigxfGABE8XsrIj0sMLE2Bul7RG82ZXnoVrIe8V84crLlk5gohQcwCHkwINTKMEFlKECBATcwyM8Ocp5cJ6dl0npgjPt2YM/ct5+AA4Zk5w=</latexit>

P
(l)
3

<latexit sha1_base64="sxDsK/heBbEJvmQ1qDtfWEetxBU=">AAAB8HicbZDLSgMxFIbP1Futt6rgxk2wCHVTZlpElwU3LivYi7RjyaRpG5pkhiQjlKFP4caFIu7E53DlTne+jelloa0/BD7+/xxyzgkizrRx3W8ntbS8srqWXs9sbG5t72R392o6jBWhVRLyUDUCrClnklYNM5w2IkWxCDitB4OLcV6/o0qzUF6bYUR9gXuSdRnBxlo3lXbpNsnzk1E7m3ML7kRoEbwZ5MoHn+/Fj/prpZ39anVCEgsqDeFY66bnRsZPsDKMcDrKtGJNI0wGuEebFiUWVPvJZOAROrZOB3VDZZ80aOL+7kiw0HooAlspsOnr+Wxs/pc1Y9M99xMmo9hQSaYfdWOOTIjG26MOU5QYPrSAiWJ2VkT6WGFi7I0y9gje/MqLUCsWvFKheOXlyqcwVRoO4Qjy4MEZlOESKlAFAgLu4RGeHOU8OM/Oy7Q05cx69uGPnLcfGO2Tow==</latexit>

P
(l)
3

<latexit sha1_base64="sxDsK/heBbEJvmQ1qDtfWEetxBU=">AAAB8HicbZDLSgMxFIbP1Futt6rgxk2wCHVTZlpElwU3LivYi7RjyaRpG5pkhiQjlKFP4caFIu7E53DlTne+jelloa0/BD7+/xxyzgkizrRx3W8ntbS8srqWXs9sbG5t72R392o6jBWhVRLyUDUCrClnklYNM5w2IkWxCDitB4OLcV6/o0qzUF6bYUR9gXuSdRnBxlo3lXbpNsnzk1E7m3ML7kRoEbwZ5MoHn+/Fj/prpZ39anVCEgsqDeFY66bnRsZPsDKMcDrKtGJNI0wGuEebFiUWVPvJZOAROrZOB3VDZZ80aOL+7kiw0HooAlspsOnr+Wxs/pc1Y9M99xMmo9hQSaYfdWOOTIjG26MOU5QYPrSAiWJ2VkT6WGFi7I0y9gje/MqLUCsWvFKheOXlyqcwVRoO4Qjy4MEZlOESKlAFAgLu4RGeHOU8OM/Oy7Q05cx69uGPnLcfGO2Tow==</latexit>

Multi-Head Self-Attention
Q

<latexit sha1_base64="3zqSZn7HMOkTJ7eBb5qkysqJptc=">AAAB6HicbZDJSgNBEIZr4hbjNurRS2MQPIWZiMRjwIvHBMwCkyH0dCpJm56F7h4hDHkCLx4i4tUn8Rm85W3sLAdN/KHh4/+r6KoKEsGVdpyZldva3tndy+8XDg6Pjk/s07OmilPJsMFiEct2QBUKHmFDcy2wnUikYSCwFYzu53nrGaXicfSoxwn6IR1EvM8Z1caq17t20Sk5C5FNcFdQrNpfs6knKrWu/d3pxSwNMdJMUKU810m0n1GpORM4KXRShQllIzpAz2BEQ1R+thh0Qq6M0yP9WJoXabJwf3dkNFRqHAamMqR6qNazuflf5qW6f+dnPEpSjRFbftRPBdExmW9Nelwi02JsgDLJzayEDamkTJvbFMwR3PWVN6FZLrk3pXLdLVZvYak8XMAlXIMLFajCA9SgAQwQXmAKb9aT9Wq9Wx/L0py16jmHP7I+fwBW1pBE</latexit>

Q
<latexit sha1_base64="3zqSZn7HMOkTJ7eBb5qkysqJptc=">AAAB6HicbZDJSgNBEIZr4hbjNurRS2MQPIWZiMRjwIvHBMwCkyH0dCpJm56F7h4hDHkCLx4i4tUn8Rm85W3sLAdN/KHh4/+r6KoKEsGVdpyZldva3tndy+8XDg6Pjk/s07OmilPJsMFiEct2QBUKHmFDcy2wnUikYSCwFYzu53nrGaXicfSoxwn6IR1EvM8Z1caq17t20Sk5C5FNcFdQrNpfs6knKrWu/d3pxSwNMdJMUKU810m0n1GpORM4KXRShQllIzpAz2BEQ1R+thh0Qq6M0yP9WJoXabJwf3dkNFRqHAamMqR6qNazuflf5qW6f+dnPEpSjRFbftRPBdExmW9Nelwi02JsgDLJzayEDamkTJvbFMwR3PWVN6FZLrk3pXLdLVZvYak8XMAlXIMLFajCA9SgAQwQXmAKb9aT9Wq9Wx/L0py16jmHP7I+fwBW1pBE</latexit>

K
<latexit sha1_base64="LBpnmo7uukPpHRHeaMQdT7SxeHM=">AAAB6HicbZDJSgNBEIZrXGPc4nLzMhgET2EmInoz4EHBSwJmgWQIPZ2apE1Pz9DdI8SQJ/DiQRGvPoAP4GN485g3sbMcNPGHho//r6Kryo85U9pxvq2FxaXlldXUWnp9Y3NrO7OzW1FRIimWacQjWfOJQs4EljXTHGuxRBL6HKt+93KUV+9RKhaJW92L0QtJW7CAUaKNVbppZrJOzhnLngd3CtmLz+HVx/7DsNjMfDVaEU1CFJpyolTddWLt9YnUjHIcpBuJwpjQLmlj3aAgISqvPx50YB8Zp2UHkTRPaHvs/u7ok1CpXuibypDojprNRuZ/WT3RwbnXZyJONAo6+ShIuK0je7S13WISqeY9A4RKZma1aYdIQrW5TdocwZ1deR4q+Zx7ksuX3GzhFCZKwQEcwjG4cAYFuIYilIECwiM8w4t1Zz1Zr9bbpHTBmvbswR9Z7z9TrJEB</latexit>

K
<latexit sha1_base64="LBpnmo7uukPpHRHeaMQdT7SxeHM=">AAAB6HicbZDJSgNBEIZrXGPc4nLzMhgET2EmInoz4EHBSwJmgWQIPZ2apE1Pz9DdI8SQJ/DiQRGvPoAP4GN485g3sbMcNPGHho//r6Kryo85U9pxvq2FxaXlldXUWnp9Y3NrO7OzW1FRIimWacQjWfOJQs4EljXTHGuxRBL6HKt+93KUV+9RKhaJW92L0QtJW7CAUaKNVbppZrJOzhnLngd3CtmLz+HVx/7DsNjMfDVaEU1CFJpyolTddWLt9YnUjHIcpBuJwpjQLmlj3aAgISqvPx50YB8Zp2UHkTRPaHvs/u7ok1CpXuibypDojprNRuZ/WT3RwbnXZyJONAo6+ShIuK0je7S13WISqeY9A4RKZma1aYdIQrW5TdocwZ1deR4q+Zx7ksuX3GzhFCZKwQEcwjG4cAYFuIYilIECwiM8w4t1Zz1Zr9bbpHTBmvbswR9Z7z9TrJEB</latexit>

V
<latexit sha1_base64="J620Lz/uCDG/qRsCKG0u6tM40kM=">AAAB6HicbZDJSgNBEIZr4hbjFpebl8EgeAozEdGbAQ96TMAskAyhp1OTtOnpGbp7hBjyBF48KOLVB/ABfAxvHvMmdpaDJv7Q8PH/VXRV+TFnSjvOt5VaWl5ZXUuvZzY2t7Z3srt7VRUlkmKFRjySdZ8o5ExgRTPNsR5LJKHPseb3rsZ57R6lYpG41f0YvZB0BAsYJdpY5Worm3PyzkT2IrgzyF1+jq4/Dh5GpVb2q9mOaBKi0JQTpRquE2tvQKRmlOMw00wUxoT2SAcbBgUJUXmDyaBD+9g4bTuIpHlC2xP3d8eAhEr1Q99UhkR31Xw2Nv/LGokOLrwBE3GiUdDpR0HCbR3Z463tNpNINe8bIFQyM6tNu0QSqs1tMuYI7vzKi1At5N3TfKHs5opnMFUaDuEITsCFcyjCDZSgAhQQHuEZXqw768l6td6mpSlr1rMPf2S9/wBkWJEM</latexit>

V
<latexit sha1_base64="J620Lz/uCDG/qRsCKG0u6tM40kM=">AAAB6HicbZDJSgNBEIZr4hbjFpebl8EgeAozEdGbAQ96TMAskAyhp1OTtOnpGbp7hBjyBF48KOLVB/ABfAxvHvMmdpaDJv7Q8PH/VXRV+TFnSjvOt5VaWl5ZXUuvZzY2t7Z3srt7VRUlkmKFRjySdZ8o5ExgRTPNsR5LJKHPseb3rsZ57R6lYpG41f0YvZB0BAsYJdpY5Worm3PyzkT2IrgzyF1+jq4/Dh5GpVb2q9mOaBKi0JQTpRquE2tvQKRmlOMw00wUxoT2SAcbBgUJUXmDyaBD+9g4bTuIpHlC2xP3d8eAhEr1Q99UhkR31Xw2Nv/LGokOLrwBE3GiUdDpR0HCbR3Z463tNpNINe8bIFQyM6tNu0QSqs1tMuYI7vzKi1At5N3TfKHs5opnMFUaDuEITsCFcyjCDZSgAhQQHuEZXqw768l6td6mpSlr1rMPf2S9/wBkWJEM</latexit>

Feedforward Network

G
(l)
1

<latexit sha1_base64="7vctcNUUP5sGcisGxF8mg6YfJ54=">AAAB8HicbZDLSgMxFIbP1Futt6rgxk2wCHVTZiqiy4ILXVawF2lryaSZNjTJDElGKEOfwo0LRdyJz+HKne58G9PLQlt/CHz8/znknONHnGnjut9OamFxaXklvZpZW9/Y3Mpu71R1GCtCKyTkoar7WFPOJK0YZjitR4pi4XNa8/vno7x2R5Vmobw2g4i2BO5KFjCCjbVuLtrebZLnR8N2NucW3LHQPHhTyJX2Pt+LH7XXcjv71eyEJBZUGsKx1g3PjUwrwcowwukw04w1jTDp4y5tWJRYUN1KxgMP0aF1OigIlX3SoLH7uyPBQuuB8G2lwKanZ7OR+V/WiE1w1kqYjGJDJZl8FMQcmRCNtkcdpigxfGABE8XsrIj0sMLE2Btl7BG82ZXnoVoseMeF4pWXK53ARGnYhwPIgwenUIJLKEMFCAi4h0d4cpTz4Dw7L5PSlDPt2YU/ct5+AAftk5g=</latexit>

G
(l)
1

<latexit sha1_base64="7vctcNUUP5sGcisGxF8mg6YfJ54=">AAAB8HicbZDLSgMxFIbP1Futt6rgxk2wCHVTZiqiy4ILXVawF2lryaSZNjTJDElGKEOfwo0LRdyJz+HKne58G9PLQlt/CHz8/znknONHnGnjut9OamFxaXklvZpZW9/Y3Mpu71R1GCtCKyTkoar7WFPOJK0YZjitR4pi4XNa8/vno7x2R5Vmobw2g4i2BO5KFjCCjbVuLtrebZLnR8N2NucW3LHQPHhTyJX2Pt+LH7XXcjv71eyEJBZUGsKx1g3PjUwrwcowwukw04w1jTDp4y5tWJRYUN1KxgMP0aF1OigIlX3SoLH7uyPBQuuB8G2lwKanZ7OR+V/WiE1w1kqYjGJDJZl8FMQcmRCNtkcdpigxfGABE8XsrIj0sMLE2Btl7BG82ZXnoVoseMeF4pWXK53ARGnYhwPIgwenUIJLKEMFCAi4h0d4cpTz4Dw7L5PSlDPt2YU/ct5+AAftk5g=</latexit>

(a) Network Overview

(b) Schema Stream

(c) Value Stream

I
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1

<latexit sha1_base64="xmqHynmQpnPOGk3kyp6zBG/msgo=">AAAB8HicbZDLSgMxFIbP1Futt6rgxk2wCHVTZiqiy4Ib3VWwF2lryaSZNjTJDElGKEOfwo0LRdyJz+HKne58G9PLQlt/CHz8/znknONHnGnjut9OamFxaXklvZpZW9/Y3Mpu71R1GCtCKyTkoar7WFPOJK0YZjitR4pi4XNa8/vno7x2R5Vmobw2g4i2BO5KFjCCjbVuLtvebZL3jobtbM4tuGOhefCmkCvtfb4XP2qv5Xb2q9kJSSyoNIRjrRueG5lWgpVhhNNhphlrGmHSx13asCixoLqVjAceokPrdFAQKvukQWP3d0eChdYD4dtKgU1Pz2Yj87+sEZvgrJUwGcWGSjL5KIg5MiEabY86TFFi+MACJorZWRHpYYWJsTfK2CN4syvPQ7VY8I4LxSsvVzqBidKwDweQBw9OoQQXUIYKEBBwD4/w5CjnwXl2XialKWfaswt/5Lz9ALEUk18=</latexit>

I
(1)
1

<latexit sha1_base64="xmqHynmQpnPOGk3kyp6zBG/msgo=">AAAB8HicbZDLSgMxFIbP1Futt6rgxk2wCHVTZiqiy4Ib3VWwF2lryaSZNjTJDElGKEOfwo0LRdyJz+HKne58G9PLQlt/CHz8/znknONHnGnjut9OamFxaXklvZpZW9/Y3Mpu71R1GCtCKyTkoar7WFPOJK0YZjitR4pi4XNa8/vno7x2R5Vmobw2g4i2BO5KFjCCjbVuLtvebZL3jobtbM4tuGOhefCmkCvtfb4XP2qv5Xb2q9kJSSyoNIRjrRueG5lWgpVhhNNhphlrGmHSx13asCixoLqVjAceokPrdFAQKvukQWP3d0eChdYD4dtKgU1Pz2Yj87+sEZvgrJUwGcWGSjL5KIg5MiEabY86TFFi+MACJorZWRHpYYWJsTfK2CN4syvPQ7VY8I4LxSsvVzqBidKwDweQBw9OoQQXUIYKEBBwD4/w5CjnwXl2XialKWfaswt/5Lz9ALEUk18=</latexit>

P
(1)
1

<latexit sha1_base64="l0bvn91Oiedz6KtVef9zAbc27SY=">AAAB8HicbZDLSgMxFIbPeK31VhXcuAkWoW7KpCK6LLhxWcFepB1LJs20ocnMkGSEMvQp3LhQxJ34HK7c6c63Mb0stPWHwMf/n0POOX4suDau++0sLC4tr6xm1rLrG5tb27md3ZqOEkVZlUYiUg2faCZ4yKqGG8EasWJE+oLV/f7FKK/fMaV5FF6bQcw8SbohDzglxlo3lTa+TQv4eNjO5d2iOxaaBzyFfHn/8730UX+ttHNfrU5EE8lCQwXRuond2HgpUYZTwYbZVqJZTGifdFnTYkgk0146HniIjqzTQUGk7AsNGru/O1IitR5I31ZKYnp6NhuZ/2XNxATnXsrDODEspJOPgkQgE6HR9qjDFaNGDCwQqridFdEeUYQae6OsPQKeXXkeaqUiPimWrnC+fAoTZeAADqEAGM6gDJdQgSpQkHAPj/DkKOfBeXZeJqULzrRnD/7IefsBu+iTZg==</latexit>

P
(1)
1

<latexit sha1_base64="l0bvn91Oiedz6KtVef9zAbc27SY=">AAAB8HicbZDLSgMxFIbPeK31VhXcuAkWoW7KpCK6LLhxWcFepB1LJs20ocnMkGSEMvQp3LhQxJ34HK7c6c63Mb0stPWHwMf/n0POOX4suDau++0sLC4tr6xm1rLrG5tb27md3ZqOEkVZlUYiUg2faCZ4yKqGG8EasWJE+oLV/f7FKK/fMaV5FF6bQcw8SbohDzglxlo3lTa+TQv4eNjO5d2iOxaaBzyFfHn/8730UX+ttHNfrU5EE8lCQwXRuond2HgpUYZTwYbZVqJZTGifdFnTYkgk0146HniIjqzTQUGk7AsNGru/O1IitR5I31ZKYnp6NhuZ/2XNxATnXsrDODEspJOPgkQgE6HR9qjDFaNGDCwQqridFdEeUYQae6OsPQKeXXkeaqUiPimWrnC+fAoTZeAADqEAGM6gDJdQgSpQkHAPj/DkKOfBeXZeJqULzrRnD/7IefsBu+iTZg==</latexit>

H
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1

<latexit sha1_base64="QI83MUQ1CH8WMRU/X8/jBsFqxl4=">AAAB8HicbZDLSgMxFIbP1Futt6rgxk2wCHVTZiqiy4KbLivYi7RjyaRpG5pkhiQjlKFP4caFIu7E53DlTne+jelloa0/BD7+/xxyzgkizrRx3W8ntbS8srqWXs9sbG5t72R392o6jBWhVRLyUDUCrClnklYNM5w2IkWxCDitB4PLcV6/o0qzUF6bYUR9gXuSdRnBxlo35bZ3m+Tdk1E7m3ML7kRoEbwZ5EoHn+/Fj/prpZ39anVCEgsqDeFY66bnRsZPsDKMcDrKtGJNI0wGuEebFiUWVPvJZOAROrZOB3VDZZ80aOL+7kiw0HooAlspsOnr+Wxs/pc1Y9O98BMmo9hQSaYfdWOOTIjG26MOU5QYPrSAiWJ2VkT6WGFi7I0y9gje/MqLUCsWvNNC8crLlc5gqjQcwhHkwYNzKEEZKlAFAgLu4RGeHOU8OM/Oy7Q05cx69uGPnLcfrgKTXQ==</latexit>

H
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1

<latexit sha1_base64="QI83MUQ1CH8WMRU/X8/jBsFqxl4=">AAAB8HicbZDLSgMxFIbP1Futt6rgxk2wCHVTZiqiy4KbLivYi7RjyaRpG5pkhiQjlKFP4caFIu7E53DlTne+jelloa0/BD7+/xxyzgkizrRx3W8ntbS8srqWXs9sbG5t72R392o6jBWhVRLyUDUCrClnklYNM5w2IkWxCDitB4PLcV6/o0qzUF6bYUR9gXuSdRnBxlo35bZ3m+Tdk1E7m3ML7kRoEbwZ5EoHn+/Fj/prpZ39anVCEgsqDeFY66bnRsZPsDKMcDrKtGJNI0wGuEebFiUWVPvJZOAROrZOB3VDZZ80aOL+7kiw0HooAlspsOnr+Wxs/pc1Y9O98BMmo9hQSaYfdWOOTIjG26MOU5QYPrSAiWJ2VkT6WGFi7I0y9gje/MqLUCsWvNNC8crLlc5gqjQcwhHkwYNzKEEZKlAFAgLu4RGeHOU8OM/Oy7Q05cx69uGPnLcfrgKTXQ==</latexit>

G
(0)
1

<latexit sha1_base64="M9xENk07V8mSvlV1hJE6CFTjJfo=">AAAB8HicbZDLSgMxFIbP1Futt6rgxk2wCHVTZiqiy4ILXVawF2lryaSZNjTJDElGKEOfwo0LRdyJz+HKne58G9PLQlt/CHz8/znknONHnGnjut9OamFxaXklvZpZW9/Y3Mpu71R1GCtCKyTkoar7WFPOJK0YZjitR4pi4XNa8/vno7x2R5Vmobw2g4i2BO5KFjCCjbVuLtrebZJ3j4btbM4tuGOhefCmkCvtfb4XP2qv5Xb2q9kJSSyoNIRjrRueG5lWgpVhhNNhphlrGmHSx13asCixoLqVjAceokPrdFAQKvukQWP3d0eChdYD4dtKgU1Pz2Yj87+sEZvgrJUwGcWGSjL5KIg5MiEabY86TFFi+MACJorZWRHpYYWJsTfK2CN4syvPQ7VY8I4LxSsvVzqBidKwDweQBw9OoQSXUIYKEBBwD4/w5CjnwXl2XialKWfaswt/5Lz9AKx2k1w=</latexit>

G
(0)
1

<latexit sha1_base64="M9xENk07V8mSvlV1hJE6CFTjJfo=">AAAB8HicbZDLSgMxFIbP1Futt6rgxk2wCHVTZiqiy4ILXVawF2lryaSZNjTJDElGKEOfwo0LRdyJz+HKne58G9PLQlt/CHz8/znknONHnGnjut9OamFxaXklvZpZW9/Y3Mpu71R1GCtCKyTkoar7WFPOJK0YZjitR4pi4XNa8/vno7x2R5Vmobw2g4i2BO5KFjCCjbVuLtrebZJ3j4btbM4tuGOhefCmkCvtfb4XP2qv5Xb2q9kJSSyoNIRjrRueG5lWgpVhhNNhphlrGmHSx13asCixoLqVjAceokPrdFAQKvukQWP3d0eChdYD4dtKgU1Pz2Yj87+sEZvgrJUwGcWGSjL5KIg5MiEabY86TFFi+MACJorZWRHpYYWJsTfK2CN4syvPQ7VY8I4LxSsvVzqBidKwDweQBw9OoQSXUIYKEBBwD4/w5CjnwXl2XialKWfaswt/5Lz9AKx2k1w=</latexit>

I
(l)
1

<latexit sha1_base64="4Z6L8p4ZAzixGBE+kOMag1dAjsk=">AAAB8HicbZDLSgMxFIbP1Futt6rgxk2wCHVTZiqiy4Ib3VWwF2lryaSZNjTJDElGKEOfwo0LRdyJz+HKne58G9PLQlt/CHz8/znknONHnGnjut9OamFxaXklvZpZW9/Y3Mpu71R1GCtCKyTkoar7WFPOJK0YZjitR4pi4XNa8/vno7x2R5Vmobw2g4i2BO5KFjCCjbVuLtvebZLnR8N2NucW3LHQPHhTyJX2Pt+LH7XXcjv71eyEJBZUGsKx1g3PjUwrwcowwukw04w1jTDp4y5tWJRYUN1KxgMP0aF1OigIlX3SoLH7uyPBQuuB8G2lwKanZ7OR+V/WiE1w1kqYjGJDJZl8FMQcmRCNtkcdpigxfGABE8XsrIj0sMLE2Btl7BG82ZXnoVoseMeF4pWXK53ARGnYhwPIgwenUIILKEMFCAi4h0d4cpTz4Dw7L5PSlDPt2YU/ct5+AAsFk5o=</latexit>

I
(l)
1

<latexit sha1_base64="4Z6L8p4ZAzixGBE+kOMag1dAjsk=">AAAB8HicbZDLSgMxFIbP1Futt6rgxk2wCHVTZiqiy4Ib3VWwF2lryaSZNjTJDElGKEOfwo0LRdyJz+HKne58G9PLQlt/CHz8/znknONHnGnjut9OamFxaXklvZpZW9/Y3Mpu71R1GCtCKyTkoar7WFPOJK0YZjitR4pi4XNa8/vno7x2R5Vmobw2g4i2BO5KFjCCjbVuLtvebZLnR8N2NucW3LHQPHhTyJX2Pt+LH7XXcjv71eyEJBZUGsKx1g3PjUwrwcowwukw04w1jTDp4y5tWJRYUN1KxgMP0aF1OigIlX3SoLH7uyPBQuuB8G2lwKanZ7OR+V/WiE1w1kqYjGJDJZl8FMQcmRCNtkcdpigxfGABE8XsrIj0sMLE2Btl7BG82ZXnoVoseMeF4pWXK53ARGnYhwPIgwenUIILKEMFCAi4h0d4cpTz4Dw7L5PSlDPt2YU/ct5+AAsFk5o=</latexit>

P
(l)
1

<latexit sha1_base64="WjyRK2OLQfLha6fP1vXjQhto/VA=">AAAB8HicbZDLSgMxFIbPeK31VhXcuAkWoW7KTEV0WXDjsoK9SDuWTJppQ5PMkGSEMvQp3LhQxJ34HK7c6c63Mb0stPWHwMf/n0POOUHMmTau++0sLC4tr6xm1rLrG5tb27md3ZqOEkVolUQ8Uo0Aa8qZpFXDDKeNWFEsAk7rQf9ilNfvqNIsktdmEFNf4K5kISPYWOum0vZu0wI/HrZzebfojoXmwZtCvrz/+V76qL9W2rmvViciiaDSEI61bnpubPwUK8MIp8NsK9E0xqSPu7RpUWJBtZ+OBx6iI+t0UBgp+6RBY/d3R4qF1gMR2EqBTU/PZiPzv6yZmPDcT5mME0MlmXwUJhyZCI22Rx2mKDF8YAETxeysiPSwwsTYG2XtEbzZleehVip6J8XSlZcvn8JEGTiAQyiAB2dQhkuoQBUICLiHR3hylPPgPDsvk9IFZ9qzB3/kvP0AFdmToQ==</latexit>

P
(l)
1

<latexit sha1_base64="WjyRK2OLQfLha6fP1vXjQhto/VA=">AAAB8HicbZDLSgMxFIbPeK31VhXcuAkWoW7KTEV0WXDjsoK9SDuWTJppQ5PMkGSEMvQp3LhQxJ34HK7c6c63Mb0stPWHwMf/n0POOUHMmTau++0sLC4tr6xm1rLrG5tb27md3ZqOEkVolUQ8Uo0Aa8qZpFXDDKeNWFEsAk7rQf9ilNfvqNIsktdmEFNf4K5kISPYWOum0vZu0wI/HrZzebfojoXmwZtCvrz/+V76qL9W2rmvViciiaDSEI61bnpubPwUK8MIp8NsK9E0xqSPu7RpUWJBtZ+OBx6iI+t0UBgp+6RBY/d3R4qF1gMR2EqBTU/PZiPzv6yZmPDcT5mME0MlmXwUJhyZCI22Rx2mKDF8YAETxeysiPSwwsTYG2XtEbzZleehVip6J8XSlZcvn8JEGTiAQyiAB2dQhkuoQBUICLiHR3hylPPgPDsvk9IFZ9qzB3/kvP0AFdmToQ==</latexit>

I
(l)
2

<latexit sha1_base64="FYCYeHAvx2Km0shV1e7MfcUv30c=">AAAB8HicbZC7SgNBFIbPxluMt6hgYzMYhNiE3RXRMmCjXQRzkWQNs5PZZMjM7jIzK4QlT2FjoYid+BxWdtr5Nk4uhSb+MPDx/+cw5xw/5kxp2/62MguLS8sr2dXc2vrG5lZ+e6emokQSWiURj2TDx4pyFtKqZprTRiwpFj6ndb9/Psrrd1QqFoXXehBTT+BuyAJGsDbWzWXbvU2L/GjYzhfskj0WmgdnCoXy3ue7+1F/rbTzX61ORBJBQ004Vqrp2LH2Uiw1I5wOc61E0RiTPu7SpsEQC6q8dDzwEB0ap4OCSJoXajR2f3ekWCg1EL6pFFj31Gw2Mv/LmokOzryUhXGiaUgmHwUJRzpCo+1Rh0lKNB8YwEQyMysiPSwx0eZGOXMEZ3bleai5Jee45F45hfIJTJSFfTiAIjhwCmW4gApUgYCAe3iEJ0taD9az9TIpzVjTnl34I+vtBwyPk5s=</latexit>

I
(l)
2

<latexit sha1_base64="FYCYeHAvx2Km0shV1e7MfcUv30c=">AAAB8HicbZC7SgNBFIbPxluMt6hgYzMYhNiE3RXRMmCjXQRzkWQNs5PZZMjM7jIzK4QlT2FjoYid+BxWdtr5Nk4uhSb+MPDx/+cw5xw/5kxp2/62MguLS8sr2dXc2vrG5lZ+e6emokQSWiURj2TDx4pyFtKqZprTRiwpFj6ndb9/Psrrd1QqFoXXehBTT+BuyAJGsDbWzWXbvU2L/GjYzhfskj0WmgdnCoXy3ue7+1F/rbTzX61ORBJBQ004Vqrp2LH2Uiw1I5wOc61E0RiTPu7SpsEQC6q8dDzwEB0ap4OCSJoXajR2f3ekWCg1EL6pFFj31Gw2Mv/LmokOzryUhXGiaUgmHwUJRzpCo+1Rh0lKNB8YwEQyMysiPSwx0eZGOXMEZ3bleai5Jee45F45hfIJTJSFfTiAIjhwCmW4gApUgYCAe3iEJ0taD9az9TIpzVjTnl34I+vtBwyPk5s=</latexit>

P
(l)
2

<latexit sha1_base64="Yd56MEaPqSXt1cgg0CdsQDo9jTM=">AAAB8HicbZDLSgMxFIbPeK31VhXcuAkWoW7KzIjosuDGZQV7kXYsmTRtQ5PMkGSEMvQp3LhQxJ34HK7c6c63Mb0stPWHwMf/n0POOWHMmTau++0sLC4tr6xm1rLrG5tb27md3aqOEkVohUQ8UvUQa8qZpBXDDKf1WFEsQk5rYf9ilNfuqNIsktdmENNA4K5kHUawsdZNueXfpgV+PGzl8m7RHQvNgzeFfGn/893/qL2WW7mvZjsiiaDSEI61bnhubIIUK8MIp8NsM9E0xqSPu7RhUWJBdZCOBx6iI+u0USdS9kmDxu7vjhQLrQcitJUCm56ezUbmf1kjMZ3zIGUyTgyVZPJRJ+HIRGi0PWozRYnhAwuYKGZnRaSHFSbG3ihrj+DNrjwPVb/onRT9Ky9fOoWJMnAAh1AAD86gBJdQhgoQEHAPj/DkKOfBeXZeJqULzrRnD/7IefsBF2OTog==</latexit>

P
(l)
2

<latexit sha1_base64="Yd56MEaPqSXt1cgg0CdsQDo9jTM=">AAAB8HicbZDLSgMxFIbPeK31VhXcuAkWoW7KzIjosuDGZQV7kXYsmTRtQ5PMkGSEMvQp3LhQxJ34HK7c6c63Mb0stPWHwMf/n0POOWHMmTau++0sLC4tr6xm1rLrG5tb27md3aqOEkVohUQ8UvUQa8qZpBXDDKf1WFEsQk5rYf9ilNfuqNIsktdmENNA4K5kHUawsdZNueXfpgV+PGzl8m7RHQvNgzeFfGn/893/qL2WW7mvZjsiiaDSEI61bnhubIIUK8MIp8NsM9E0xqSPu7RhUWJBdZCOBx6iI+u0USdS9kmDxu7vjhQLrQcitJUCm56ezUbmf1kjMZ3zIGUyTgyVZPJRJ+HIRGi0PWozRYnhAwuYKGZnRaSHFSbG3ihrj+DNrjwPVb/onRT9Ky9fOoWJMnAAh1AAD86gBJdQhgoQEHAPj/DkKOfBeXZeJqULzrRnD/7IefsBF2OTog==</latexit>

I
(l)
3

<latexit sha1_base64="NO+Ite7QeQphL6OXELdu+rSQyJk=">AAAB8HicbZDLSgMxFIbPeK31VhXcuAkWoW7KTIvosuBGdxXsRdpaMmmmDU0yQ5IRytCncONCEXfic7hypzvfxvSy0NYfAh//fw455/gRZ9q47rezsLi0vLKaWkuvb2xubWd2dqs6jBWhFRLyUNV9rClnklYMM5zWI0Wx8Dmt+f3zUV67o0qzUF6bQURbAnclCxjBxlo3l+3ibZLjx8N2Juvm3bHQPHhTyJb2P98LH7XXcjvz1eyEJBZUGsKx1g3PjUwrwcowwukw3Yw1jTDp4y5tWJRYUN1KxgMP0ZF1OigIlX3SoLH7uyPBQuuB8G2lwKanZ7OR+V/WiE1w1kqYjGJDJZl8FMQcmRCNtkcdpigxfGABE8XsrIj0sMLE2Bul7RG82ZXnoVrIe8V84crLlk5gohQcwCHkwINTKMEFlKECBATcwyM8Ocp5cJ6dl0npgjPt2YM/ct5+AA4Zk5w=</latexit>

I
(l)
3

<latexit sha1_base64="NO+Ite7QeQphL6OXELdu+rSQyJk=">AAAB8HicbZDLSgMxFIbPeK31VhXcuAkWoW7KTIvosuBGdxXsRdpaMmmmDU0yQ5IRytCncONCEXfic7hypzvfxvSy0NYfAh//fw455/gRZ9q47rezsLi0vLKaWkuvb2xubWd2dqs6jBWhFRLyUNV9rClnklYMM5zWI0Wx8Dmt+f3zUV67o0qzUF6bQURbAnclCxjBxlo3l+3ibZLjx8N2Juvm3bHQPHhTyJb2P98LH7XXcjvz1eyEJBZUGsKx1g3PjUwrwcowwukw3Yw1jTDp4y5tWJRYUN1KxgMP0ZF1OigIlX3SoLH7uyPBQuuB8G2lwKanZ7OR+V/WiE1w1kqYjGJDJZl8FMQcmRCNtkcdpigxfGABE8XsrIj0sMLE2Bul7RG82ZXnoVrIe8V84crLlk5gohQcwCHkwINTKMEFlKECBATcwyM8Ocp5cJ6dl0npgjPt2YM/ct5+AA4Zk5w=</latexit>

P
(l)
3

<latexit sha1_base64="sxDsK/heBbEJvmQ1qDtfWEetxBU=">AAAB8HicbZDLSgMxFIbP1Futt6rgxk2wCHVTZlpElwU3LivYi7RjyaRpG5pkhiQjlKFP4caFIu7E53DlTne+jelloa0/BD7+/xxyzgkizrRx3W8ntbS8srqWXs9sbG5t72R392o6jBWhVRLyUDUCrClnklYNM5w2IkWxCDitB4OLcV6/o0qzUF6bYUR9gXuSdRnBxlo3lXbpNsnzk1E7m3ML7kRoEbwZ5MoHn+/Fj/prpZ39anVCEgsqDeFY66bnRsZPsDKMcDrKtGJNI0wGuEebFiUWVPvJZOAROrZOB3VDZZ80aOL+7kiw0HooAlspsOnr+Wxs/pc1Y9M99xMmo9hQSaYfdWOOTIjG26MOU5QYPrSAiWJ2VkT6WGFi7I0y9gje/MqLUCsWvFKheOXlyqcwVRoO4Qjy4MEZlOESKlAFAgLu4RGeHOU8OM/Oy7Q05cx69uGPnLcfGO2Tow==</latexit>

P
(l)
3

<latexit sha1_base64="sxDsK/heBbEJvmQ1qDtfWEetxBU=">AAAB8HicbZDLSgMxFIbP1Futt6rgxk2wCHVTZlpElwU3LivYi7RjyaRpG5pkhiQjlKFP4caFIu7E53DlTne+jelloa0/BD7+/xxyzgkizrRx3W8ntbS8srqWXs9sbG5t72R392o6jBWhVRLyUDUCrClnklYNM5w2IkWxCDitB4OLcV6/o0qzUF6bYUR9gXuSdRnBxlo3lXbpNsnzk1E7m3ML7kRoEbwZ5MoHn+/Fj/prpZ39anVCEgsqDeFY66bnRsZPsDKMcDrKtGJNI0wGuEebFiUWVPvJZOAROrZOB3VDZZ80aOL+7kiw0HooAlspsOnr+Wxs/pc1Y9M99xMmo9hQSaYfdWOOTIjG26MOU5QYPrSAiWJ2VkT6WGFi7I0y9gje/MqLUCsWvFKheOXlyqcwVRoO4Qjy4MEZlOESKlAFAgLu4RGeHOU8OM/Oy7Q05cx69uGPnLcfGO2Tow==</latexit>

Multi-Head Self-Attention
Q

<latexit sha1_base64="3zqSZn7HMOkTJ7eBb5qkysqJptc=">AAAB6HicbZDJSgNBEIZr4hbjNurRS2MQPIWZiMRjwIvHBMwCkyH0dCpJm56F7h4hDHkCLx4i4tUn8Rm85W3sLAdN/KHh4/+r6KoKEsGVdpyZldva3tndy+8XDg6Pjk/s07OmilPJsMFiEct2QBUKHmFDcy2wnUikYSCwFYzu53nrGaXicfSoxwn6IR1EvM8Z1caq17t20Sk5C5FNcFdQrNpfs6knKrWu/d3pxSwNMdJMUKU810m0n1GpORM4KXRShQllIzpAz2BEQ1R+thh0Qq6M0yP9WJoXabJwf3dkNFRqHAamMqR6qNazuflf5qW6f+dnPEpSjRFbftRPBdExmW9Nelwi02JsgDLJzayEDamkTJvbFMwR3PWVN6FZLrk3pXLdLVZvYak8XMAlXIMLFajCA9SgAQwQXmAKb9aT9Wq9Wx/L0py16jmHP7I+fwBW1pBE</latexit>

Q
<latexit sha1_base64="3zqSZn7HMOkTJ7eBb5qkysqJptc=">AAAB6HicbZDJSgNBEIZr4hbjNurRS2MQPIWZiMRjwIvHBMwCkyH0dCpJm56F7h4hDHkCLx4i4tUn8Rm85W3sLAdN/KHh4/+r6KoKEsGVdpyZldva3tndy+8XDg6Pjk/s07OmilPJsMFiEct2QBUKHmFDcy2wnUikYSCwFYzu53nrGaXicfSoxwn6IR1EvM8Z1caq17t20Sk5C5FNcFdQrNpfs6knKrWu/d3pxSwNMdJMUKU810m0n1GpORM4KXRShQllIzpAz2BEQ1R+thh0Qq6M0yP9WJoXabJwf3dkNFRqHAamMqR6qNazuflf5qW6f+dnPEpSjRFbftRPBdExmW9Nelwi02JsgDLJzayEDamkTJvbFMwR3PWVN6FZLrk3pXLdLVZvYak8XMAlXIMLFajCA9SgAQwQXmAKb9aT9Wq9Wx/L0py16jmHP7I+fwBW1pBE</latexit>

K
<latexit sha1_base64="LBpnmo7uukPpHRHeaMQdT7SxeHM=">AAAB6HicbZDJSgNBEIZrXGPc4nLzMhgET2EmInoz4EHBSwJmgWQIPZ2apE1Pz9DdI8SQJ/DiQRGvPoAP4GN485g3sbMcNPGHho//r6Kryo85U9pxvq2FxaXlldXUWnp9Y3NrO7OzW1FRIimWacQjWfOJQs4EljXTHGuxRBL6HKt+93KUV+9RKhaJW92L0QtJW7CAUaKNVbppZrJOzhnLngd3CtmLz+HVx/7DsNjMfDVaEU1CFJpyolTddWLt9YnUjHIcpBuJwpjQLmlj3aAgISqvPx50YB8Zp2UHkTRPaHvs/u7ok1CpXuibypDojprNRuZ/WT3RwbnXZyJONAo6+ShIuK0je7S13WISqeY9A4RKZma1aYdIQrW5TdocwZ1deR4q+Zx7ksuX3GzhFCZKwQEcwjG4cAYFuIYilIECwiM8w4t1Zz1Zr9bbpHTBmvbswR9Z7z9TrJEB</latexit>

K
<latexit sha1_base64="LBpnmo7uukPpHRHeaMQdT7SxeHM=">AAAB6HicbZDJSgNBEIZrXGPc4nLzMhgET2EmInoz4EHBSwJmgWQIPZ2apE1Pz9DdI8SQJ/DiQRGvPoAP4GN485g3sbMcNPGHho//r6Kryo85U9pxvq2FxaXlldXUWnp9Y3NrO7OzW1FRIimWacQjWfOJQs4EljXTHGuxRBL6HKt+93KUV+9RKhaJW92L0QtJW7CAUaKNVbppZrJOzhnLngd3CtmLz+HVx/7DsNjMfDVaEU1CFJpyolTddWLt9YnUjHIcpBuJwpjQLmlj3aAgISqvPx50YB8Zp2UHkTRPaHvs/u7ok1CpXuibypDojprNRuZ/WT3RwbnXZyJONAo6+ShIuK0je7S13WISqeY9A4RKZma1aYdIQrW5TdocwZ1deR4q+Zx7ksuX3GzhFCZKwQEcwjG4cAYFuIYilIECwiM8w4t1Zz1Zr9bbpHTBmvbswR9Z7z9TrJEB</latexit>

V
<latexit sha1_base64="J620Lz/uCDG/qRsCKG0u6tM40kM=">AAAB6HicbZDJSgNBEIZr4hbjFpebl8EgeAozEdGbAQ96TMAskAyhp1OTtOnpGbp7hBjyBF48KOLVB/ABfAxvHvMmdpaDJv7Q8PH/VXRV+TFnSjvOt5VaWl5ZXUuvZzY2t7Z3srt7VRUlkmKFRjySdZ8o5ExgRTPNsR5LJKHPseb3rsZ57R6lYpG41f0YvZB0BAsYJdpY5Worm3PyzkT2IrgzyF1+jq4/Dh5GpVb2q9mOaBKi0JQTpRquE2tvQKRmlOMw00wUxoT2SAcbBgUJUXmDyaBD+9g4bTuIpHlC2xP3d8eAhEr1Q99UhkR31Xw2Nv/LGokOLrwBE3GiUdDpR0HCbR3Z463tNpNINe8bIFQyM6tNu0QSqs1tMuYI7vzKi1At5N3TfKHs5opnMFUaDuEITsCFcyjCDZSgAhQQHuEZXqw768l6td6mpSlr1rMPf2S9/wBkWJEM</latexit>

V
<latexit sha1_base64="J620Lz/uCDG/qRsCKG0u6tM40kM=">AAAB6HicbZDJSgNBEIZr4hbjFpebl8EgeAozEdGbAQ96TMAskAyhp1OTtOnpGbp7hBjyBF48KOLVB/ABfAxvHvMmdpaDJv7Q8PH/VXRV+TFnSjvOt5VaWl5ZXUuvZzY2t7Z3srt7VRUlkmKFRjySdZ8o5ExgRTPNsR5LJKHPseb3rsZ57R6lYpG41f0YvZB0BAsYJdpY5Worm3PyzkT2IrgzyF1+jq4/Dh5GpVb2q9mOaBKi0JQTpRquE2tvQKRmlOMw00wUxoT2SAcbBgUJUXmDyaBD+9g4bTuIpHlC2xP3d8eAhEr1Q99UhkR31Xw2Nv/LGokOLrwBE3GiUdDpR0HCbR3Z463tNpNINe8bIFQyM6tNu0QSqs1tMuYI7vzKi1At5N3TfKHs5opnMFUaDuEITsCFcyjCDZSgAhQQHuEZXqw768l6td6mpSlr1rMPf2S9/wBkWJEM</latexit>

Feedforward Network

H
(l)
1

<latexit sha1_base64="Pg+Gra0a1WFTk8Qprn5cDHHUcPw=">AAAB8HicbZDLSgMxFIbP1Futt6rgxk2wCHVTZiqiy4KbLivYi7RjyaRpG5pkhiQjlKFP4caFIu7E53DlTne+jelloa0/BD7+/xxyzgkizrRx3W8ntbS8srqWXs9sbG5t72R392o6jBWhVRLyUDUCrClnklYNM5w2IkWxCDitB4PLcV6/o0qzUF6bYUR9gXuSdRnBxlo35bZ3m+T5yaidzbkFdyK0CN4McqWDz/fiR/210s5+tTohiQWVhnCsddNzI+MnWBlGOB1lWrGmESYD3KNNixILqv1kMvAIHVung7qhsk8aNHF/dyRYaD0Uga0U2PT1fDY2/8uasele+AmTUWyoJNOPujFHJkTj7VGHKUoMH1rARDE7KyJ9rDAx9kYZewRvfuVFqBUL3mmheOXlSmcwVRoO4Qjy4ME5lKAMFagCAQH38AhPjnIenGfnZVqacmY9+/BHztsPCXmTmQ==</latexit>

H
(l)
1

<latexit sha1_base64="Pg+Gra0a1WFTk8Qprn5cDHHUcPw=">AAAB8HicbZDLSgMxFIbP1Futt6rgxk2wCHVTZiqiy4KbLivYi7RjyaRpG5pkhiQjlKFP4caFIu7E53DlTne+jelloa0/BD7+/xxyzgkizrRx3W8ntbS8srqWXs9sbG5t72R392o6jBWhVRLyUDUCrClnklYNM5w2IkWxCDitB4PLcV6/o0qzUF6bYUR9gXuSdRnBxlo35bZ3m+T5yaidzbkFdyK0CN4McqWDz/fiR/210s5+tTohiQWVhnCsddNzI+MnWBlGOB1lWrGmESYD3KNNixILqv1kMvAIHVung7qhsk8aNHF/dyRYaD0Uga0U2PT1fDY2/8uasele+AmTUWyoJNOPujFHJkTj7VGHKUoMH1rARDE7KyJ9rDAx9kYZewRvfuVFqBUL3mmheOXlSmcwVRoO4Qjy4ME5lKAMFagCAQH38AhPjnIenGfnZVqacmY9+/BHztsPCXmTmQ==</latexit>

I
(0)
2

<latexit sha1_base64="i2AuS7fTRzISPCvrFio8aBvNBg0=">AAAB8HicbZC7SgNBFIbPxluMt6hgYzMYhNiE3RXRMmCjXQRzkWQNs5PZZMjM7jIzK4QlT2FjoYid+BxWdtr5Nk4uhSb+MPDx/+cw5xw/5kxp2/62MguLS8sr2dXc2vrG5lZ+e6emokQSWiURj2TDx4pyFtKqZprTRiwpFj6ndb9/Psrrd1QqFoXXehBTT+BuyAJGsDbWzWXbvU2L9tGwnS/YJXssNA/OFArlvc9396P+Wmnnv1qdiCSChppwrFTTsWPtpVhqRjgd5lqJojEmfdylTYMhFlR56XjgITo0TgcFkTQv1Gjs/u5IsVBqIHxTKbDuqdlsZP6XNRMdnHkpC+NE05BMPgoSjnSERtujDpOUaD4wgIlkZlZEelhios2NcuYIzuzK81BzS85xyb1yCuUTmCgL+3AARXDgFMpwARWoAgEB9/AIT5a0Hqxn62VSmrGmPbvwR9bbD7EYk18=</latexit>

I
(0)
2

<latexit sha1_base64="i2AuS7fTRzISPCvrFio8aBvNBg0=">AAAB8HicbZC7SgNBFIbPxluMt6hgYzMYhNiE3RXRMmCjXQRzkWQNs5PZZMjM7jIzK4QlT2FjoYid+BxWdtr5Nk4uhSb+MPDx/+cw5xw/5kxp2/62MguLS8sr2dXc2vrG5lZ+e6emokQSWiURj2TDx4pyFtKqZprTRiwpFj6ndb9/Psrrd1QqFoXXehBTT+BuyAJGsDbWzWXbvU2L9tGwnS/YJXssNA/OFArlvc9396P+Wmnnv1qdiCSChppwrFTTsWPtpVhqRjgd5lqJojEmfdylTYMhFlR56XjgITo0TgcFkTQv1Gjs/u5IsVBqIHxTKbDuqdlsZP6XNRMdnHkpC+NE05BMPgoSjnSERtujDpOUaD4wgIlkZlZEelhios2NcuYIzuzK81BzS85xyb1yCuUTmCgL+3AARXDgFMpwARWoAgEB9/AIT5a0Hqxn62VSmrGmPbvwR9bbD7EYk18=</latexit>

P
(0)
2

<latexit sha1_base64="nfmXu2oHNl8da2HBhwk+9/CAB8c=">AAAB8HicbZDLSgMxFIbPeK31VhXcuAkWoW7KzIjosuDGZQV7kXYsmTRtQ5PMkGSEMvQp3LhQxJ34HK7c6c63Mb0stPWHwMf/n0POOWHMmTau++0sLC4tr6xm1rLrG5tb27md3aqOEkVohUQ8UvUQa8qZpBXDDKf1WFEsQk5rYf9ilNfuqNIsktdmENNA4K5kHUawsdZNueXfpgX3eNjK5d2iOxaaB28K+dL+57v/UXstt3JfzXZEEkGlIRxr3fDc2AQpVoYRTofZZqJpjEkfd2nDosSC6iAdDzxER9Zpo06k7JMGjd3fHSkWWg9EaCsFNj09m43M/7JGYjrnQcpknBgqyeSjTsKRidBoe9RmihLDBxYwUczOikgPK0yMvVHWHsGbXXkeqn7ROyn6V16+dAoTZeAADqEAHpxBCS6hDBUgIOAeHuHJUc6D8+y8TEoXnGnPHvyR8/YDu+yTZg==</latexit>

P
(0)
2

<latexit sha1_base64="nfmXu2oHNl8da2HBhwk+9/CAB8c=">AAAB8HicbZDLSgMxFIbPeK31VhXcuAkWoW7KzIjosuDGZQV7kXYsmTRtQ5PMkGSEMvQp3LhQxJ34HK7c6c63Mb0stPWHwMf/n0POOWHMmTau++0sLC4tr6xm1rLrG5tb27md3aqOEkVohUQ8UvUQa8qZpBXDDKf1WFEsQk5rYf9ilNfuqNIsktdmENNA4K5kHUawsdZNueXfpgX3eNjK5d2iOxaaB28K+dL+57v/UXstt3JfzXZEEkGlIRxr3fDc2AQpVoYRTofZZqJpjEkfd2nDosSC6iAdDzxER9Zpo06k7JMGjd3fHSkWWg9EaCsFNj09m43M/7JGYjrnQcpknBgqyeSjTsKRidBoe9RmihLDBxYwUczOikgPK0yMvVHWHsGbXXkeqn7ROyn6V16+dAoTZeAADqEAHpxBCS6hDBUgIOAeHuHJUc6D8+y8TEoXnGnPHvyR8/YDu+yTZg==</latexit>

Attribute 2

Input Embedding

I
(0)
1

<latexit sha1_base64="GlZBvcmPD+YQK29kLgI0Q+qQ9kQ=">AAAB8HicbZDLSgMxFIbP1Futt6rgxk2wCHVTZiqiy4Ib3VWwF2lryaSZNjTJDElGKEOfwo0LRdyJz+HKne58G9PLQlt/CHz8/znknONHnGnjut9OamFxaXklvZpZW9/Y3Mpu71R1GCtCKyTkoar7WFPOJK0YZjitR4pi4XNa8/vno7x2R5Vmobw2g4i2BO5KFjCCjbVuLtvebZJ3j4btbM4tuGOhefCmkCvtfb4XP2qv5Xb2q9kJSSyoNIRjrRueG5lWgpVhhNNhphlrGmHSx13asCixoLqVjAceokPrdFAQKvukQWP3d0eChdYD4dtKgU1Pz2Yj87+sEZvgrJUwGcWGSjL5KIg5MiEabY86TFFi+MACJorZWRHpYYWJsTfK2CN4syvPQ7VY8I4LxSsvVzqBidKwDweQBw9OoQQXUIYKEBBwD4/w5CjnwXl2XialKWfaswt/5Lz9AK+Ok14=</latexit>

I
(0)
1

<latexit sha1_base64="GlZBvcmPD+YQK29kLgI0Q+qQ9kQ=">AAAB8HicbZDLSgMxFIbP1Futt6rgxk2wCHVTZiqiy4Ib3VWwF2lryaSZNjTJDElGKEOfwo0LRdyJz+HKne58G9PLQlt/CHz8/znknONHnGnjut9OamFxaXklvZpZW9/Y3Mpu71R1GCtCKyTkoar7WFPOJK0YZjitR4pi4XNa8/vno7x2R5Vmobw2g4i2BO5KFjCCjbVuLtvebZJ3j4btbM4tuGOhefCmkCvtfb4XP2qv5Xb2q9kJSSyoNIRjrRueG5lWgpVhhNNhphlrGmHSx13asCixoLqVjAceokPrdFAQKvukQWP3d0eChdYD4dtKgU1Pz2Yj87+sEZvgrJUwGcWGSjL5KIg5MiEabY86TFFi+MACJorZWRHpYYWJsTfK2CN4syvPQ7VY8I4LxSsvVzqBidKwDweQBw9OoQQXUIYKEBBwD4/w5CjnwXl2XialKWfaswt/5Lz9AK+Ok14=</latexit>

P
(0)
1

<latexit sha1_base64="10I52lARtLKxhrtSHv+Ik+HH8VU=">AAAB8HicbZDLSgMxFIbPeK31VhXcuAkWoW7KTEV0WXDjsoK9SDuWTJppQ5PMkGSEMvQp3LhQxJ34HK7c6c63Mb0stPWHwMf/n0POOUHMmTau++0sLC4tr6xm1rLrG5tb27md3ZqOEkVolUQ8Uo0Aa8qZpFXDDKeNWFEsAk7rQf9ilNfvqNIsktdmEFNf4K5kISPYWOum0vZu04J7PGzn8m7RHQvNgzeFfHn/8730UX+ttHNfrU5EEkGlIRxr3fTc2PgpVoYRTofZVqJpjEkfd2nTosSCaj8dDzxER9bpoDBS9kmDxu7vjhQLrQcisJUCm56ezUbmf1kzMeG5nzIZJ4ZKMvkoTDgyERptjzpMUWL4wAImitlZEelhhYmxN8raI3izK89DrVT0ToqlKy9fPoWJMnAAh1AAD86gDJdQgSoQEHAPj/DkKOfBeXZeJqULzrRnD/7IefsBumKTZQ==</latexit>

P
(0)
1

<latexit sha1_base64="10I52lARtLKxhrtSHv+Ik+HH8VU=">AAAB8HicbZDLSgMxFIbPeK31VhXcuAkWoW7KTEV0WXDjsoK9SDuWTJppQ5PMkGSEMvQp3LhQxJ34HK7c6c63Mb0stPWHwMf/n0POOUHMmTau++0sLC4tr6xm1rLrG5tb27md3ZqOEkVolUQ8Uo0Aa8qZpFXDDKeNWFEsAk7rQf9ilNfvqNIsktdmEFNf4K5kISPYWOum0vZu04J7PGzn8m7RHQvNgzeFfHn/8730UX+ttHNfrU5EEkGlIRxr3fTc2PgpVoYRTofZVqJpjEkfd2nTosSCaj8dDzxER9bpoDBS9kmDxu7vjhQLrQcisJUCm56ezUbmf1kzMeG5nzIZJ4ZKMvkoTDgyERptjzpMUWL4wAImitlZEelhhYmxN8raI3izK89DrVT0ToqlKy9fPoWJMnAAh1AAD86gDJdQgSoQEHAPj/DkKOfBeXZeJqULzrRnD/7IefsBumKTZQ==</latexit>

Attribute 1

Input Embedding

I
(1)
2

<latexit sha1_base64="vCjD0W+rqqnBIfeS62sHcnIG3NE=">AAAB8HicbZC7SgNBFIbPxluMt6hgYzMYhNiE3RXRMmCjXQRzkWQNs5PZZMjM7jIzK4QlT2FjoYid+BxWdtr5Nk4uhSb+MPDx/+cw5xw/5kxp2/62MguLS8sr2dXc2vrG5lZ+e6emokQSWiURj2TDx4pyFtKqZprTRiwpFj6ndb9/Psrrd1QqFoXXehBTT+BuyAJGsDbWzWXbvU2LztGwnS/YJXssNA/OFArlvc9396P+Wmnnv1qdiCSChppwrFTTsWPtpVhqRjgd5lqJojEmfdylTYMhFlR56XjgITo0TgcFkTQv1Gjs/u5IsVBqIHxTKbDuqdlsZP6XNRMdnHkpC+NE05BMPgoSjnSERtujDpOUaD4wgIlkZlZEelhios2NcuYIzuzK81BzS85xyb1yCuUTmCgL+3AARXDgFMpwARWoAgEB9/AIT5a0Hqxn62VSmrGmPbvwR9bbD7Kek2A=</latexit>

I
(1)
2

<latexit sha1_base64="vCjD0W+rqqnBIfeS62sHcnIG3NE=">AAAB8HicbZC7SgNBFIbPxluMt6hgYzMYhNiE3RXRMmCjXQRzkWQNs5PZZMjM7jIzK4QlT2FjoYid+BxWdtr5Nk4uhSb+MPDx/+cw5xw/5kxp2/62MguLS8sr2dXc2vrG5lZ+e6emokQSWiURj2TDx4pyFtKqZprTRiwpFj6ndb9/Psrrd1QqFoXXehBTT+BuyAJGsDbWzWXbvU2LztGwnS/YJXssNA/OFArlvc9396P+Wmnnv1qdiCSChppwrFTTsWPtpVhqRjgd5lqJojEmfdylTYMhFlR56XjgITo0TgcFkTQv1Gjs/u5IsVBqIHxTKbDuqdlsZP6XNRMdnHkpC+NE05BMPgoSjnSERtujDpOUaD4wgIlkZlZEelhios2NcuYIzuzK81BzS85xyb1yCuUTmCgL+3AARXDgFMpwARWoAgEB9/AIT5a0Hqxn62VSmrGmPbvwR9bbD7Kek2A=</latexit>

P
(1)
2

<latexit sha1_base64="4IhhjZEwLNQfbn4iTjp5jwueYfw=">AAAB8HicbZDLSgMxFIbPeK31VhXcuAkWoW7KzIjosuDGZQV7kXYsmTRtQ5PMkGSEMvQp3LhQxJ34HK7c6c63Mb0stPWHwMf/n0POOWHMmTau++0sLC4tr6xm1rLrG5tb27md3aqOEkVohUQ8UvUQa8qZpBXDDKf1WFEsQk5rYf9ilNfuqNIsktdmENNA4K5kHUawsdZNueXfpgXveNjK5d2iOxaaB28K+dL+57v/UXstt3JfzXZEEkGlIRxr3fDc2AQpVoYRTofZZqJpjEkfd2nDosSC6iAdDzxER9Zpo06k7JMGjd3fHSkWWg9EaCsFNj09m43M/7JGYjrnQcpknBgqyeSjTsKRidBoe9RmihLDBxYwUczOikgPK0yMvVHWHsGbXXkeqn7ROyn6V16+dAoTZeAADqEAHpxBCS6hDBUgIOAeHuHJUc6D8+y8TEoXnGnPHvyR8/YDvXKTZw==</latexit>

P
(1)
2

<latexit sha1_base64="4IhhjZEwLNQfbn4iTjp5jwueYfw=">AAAB8HicbZDLSgMxFIbPeK31VhXcuAkWoW7KzIjosuDGZQV7kXYsmTRtQ5PMkGSEMvQp3LhQxJ34HK7c6c63Mb0stPWHwMf/n0POOWHMmTau++0sLC4tr6xm1rLrG5tb27md3aqOEkVohUQ8UvUQa8qZpBXDDKf1WFEsQk5rYf9ilNfuqNIsktdmENNA4K5kHUawsdZNueXfpgXveNjK5d2iOxaaB28K+dL+57v/UXstt3JfzXZEEkGlIRxr3fDc2AQpVoYRTofZZqJpjEkfd2nDosSC6iAdDzxER9Zpo06k7JMGjd3fHSkWWg9EaCsFNj09m43M/7JGYjrnQcpknBgqyeSjTsKRidBoe9RmihLDBxYwUczOikgPK0yMvVHWHsGbXXkeqn7ROyn6V16+dAoTZeAADqEAHpxBCS6hDBUgIOAeHuHJUc6D8+y8TEoXnGnPHvyR8/YDvXKTZw==</latexit>

H
(0)
2

<latexit sha1_base64="vw0ZMFhOfmsvqpEojrKep2YrDeI=">AAAB8HicbZC7SgNBFIbPxluMt6hgYzMYhNiE3RXRMmCTMoK5SLKG2clsMmRmd5mZFcKSp7CxUMROfA4rO+18GyeXQhN/GPj4/3OYc44fc6a0bX9bmaXlldW17HpuY3Nreye/u1dXUSIJrZGIR7LpY0U5C2lNM81pM5YUC5/Thj+4HOeNOyoVi8JrPYypJ3AvZAEjWBvrptJxb9OifTLq5At2yZ4ILYIzg0L54PPd/Wi8Vjv5r3Y3IomgoSYcK9Vy7Fh7KZaaEU5HuXaiaIzJAPdoy2CIBVVeOhl4hI6N00VBJM0LNZq4vztSLJQaCt9UCqz7aj4bm/9lrUQHF17KwjjRNCTTj4KEIx2h8faoyyQlmg8NYCKZmRWRPpaYaHOjnDmCM7/yItTdknNacq+cQvkMpsrCIRxBERw4hzJUoAo1ICDgHh7hyZLWg/VsvUxLM9asZx/+yHr7Aa+Mk14=</latexit>

H
(0)
2

<latexit sha1_base64="vw0ZMFhOfmsvqpEojrKep2YrDeI=">AAAB8HicbZC7SgNBFIbPxluMt6hgYzMYhNiE3RXRMmCTMoK5SLKG2clsMmRmd5mZFcKSp7CxUMROfA4rO+18GyeXQhN/GPj4/3OYc44fc6a0bX9bmaXlldW17HpuY3Nreye/u1dXUSIJrZGIR7LpY0U5C2lNM81pM5YUC5/Thj+4HOeNOyoVi8JrPYypJ3AvZAEjWBvrptJxb9OifTLq5At2yZ4ILYIzg0L54PPd/Wi8Vjv5r3Y3IomgoSYcK9Vy7Fh7KZaaEU5HuXaiaIzJAPdoy2CIBVVeOhl4hI6N00VBJM0LNZq4vztSLJQaCt9UCqz7aj4bm/9lrUQHF17KwjjRNCTTj4KEIx2h8faoyyQlmg8NYCKZmRWRPpaYaHOjnDmCM7/yItTdknNacq+cQvkMpsrCIRxBERw4hzJUoAo1ICDgHh7hyZLWg/VsvUxLM9asZx/+yHr7Aa+Mk14=</latexit>

G
(0)
2

<latexit sha1_base64="9aN9HU3aDWRLH1jjdjo5ULAbgXc=">AAAB8HicbZC7SgNBFIbPxluMt6hgYzMYhNiE3RXRMmChZQRzkWQNs5PZZMjM7jIzK4QlT2FjoYid+BxWdtr5Nk4uhSb+MPDx/+cw5xw/5kxp2/62MguLS8sr2dXc2vrG5lZ+e6emokQSWiURj2TDx4pyFtKqZprTRiwpFj6ndb9/Psrrd1QqFoXXehBTT+BuyAJGsDbWzUXbvU2L9tGwnS/YJXssNA/OFArlvc9396P+Wmnnv1qdiCSChppwrFTTsWPtpVhqRjgd5lqJojEmfdylTYMhFlR56XjgITo0TgcFkTQv1Gjs/u5IsVBqIHxTKbDuqdlsZP6XNRMdnHkpC+NE05BMPgoSjnSERtujDpOUaD4wgIlkZlZEelhios2NcuYIzuzK81BzS85xyb1yCuUTmCgL+3AARXDgFMpwCRWoAgEB9/AIT5a0Hqxn62VSmrGmPbvwR9bbD64Ak10=</latexit>

G
(0)
2

<latexit sha1_base64="9aN9HU3aDWRLH1jjdjo5ULAbgXc=">AAAB8HicbZC7SgNBFIbPxluMt6hgYzMYhNiE3RXRMmChZQRzkWQNs5PZZMjM7jIzK4QlT2FjoYid+BxWdtr5Nk4uhSb+MPDx/+cw5xw/5kxp2/62MguLS8sr2dXc2vrG5lZ+e6emokQSWiURj2TDx4pyFtKqZprTRiwpFj6ndb9/Psrrd1QqFoXXehBTT+BuyAJGsDbWzUXbvU2L9tGwnS/YJXssNA/OFArlvc9396P+Wmnnv1qdiCSChppwrFTTsWPtpVhqRjgd5lqJojEmfdylTYMhFlR56XjgITo0TgcFkTQv1Gjs/u5IsVBqIHxTKbDuqdlsZP6XNRMdnHkpC+NE05BMPgoSjnSERtujDpOUaD4wgIlkZlZEelhios2NcuYIzuzK81BzS85xyb1yCuUTmCgL+3AARXDgFMpwCRWoAgEB9/AIT5a0Hqxn62VSmrGmPbvwR9bbD64Ak10=</latexit>

I
(1)
3

<latexit sha1_base64="wH4aAoIimQ1zizLgZLAyW4Usxlg=">AAAB8HicbZDLSgMxFIbPeK31VhXcuAkWoW7KTIvosuBGdxXsRdpaMmmmDU0yQ5IRytCncONCEXfic7hypzvfxvSy0NYfAh//fw455/gRZ9q47rezsLi0vLKaWkuvb2xubWd2dqs6jBWhFRLyUNV9rClnklYMM5zWI0Wx8Dmt+f3zUV67o0qzUF6bQURbAnclCxjBxlo3l+3ibZLzjoftTNbNu2OhefCmkC3tf74XPmqv5Xbmq9kJSSyoNIRjrRueG5lWgpVhhNNhuhlrGmHSx13asCixoLqVjAceoiPrdFAQKvukQWP3d0eChdYD4dtKgU1Pz2Yj87+sEZvgrJUwGcWGSjL5KIg5MiEabY86TFFi+MACJorZWRHpYYWJsTdK2yN4syvPQ7WQ94r5wpWXLZ3ARCk4gEPIgQenUIILKEMFCAi4h0d4cpTz4Dw7L5PSBWfaswd/5Lz9ALQok2E=</latexit>

I
(1)
3

<latexit sha1_base64="wH4aAoIimQ1zizLgZLAyW4Usxlg=">AAAB8HicbZDLSgMxFIbPeK31VhXcuAkWoW7KTIvosuBGdxXsRdpaMmmmDU0yQ5IRytCncONCEXfic7hypzvfxvSy0NYfAh//fw455/gRZ9q47rezsLi0vLKaWkuvb2xubWd2dqs6jBWhFRLyUNV9rClnklYMM5zWI0Wx8Dmt+f3zUV67o0qzUF6bQURbAnclCxjBxlo3l+3ibZLzjoftTNbNu2OhefCmkC3tf74XPmqv5Xbmq9kJSSyoNIRjrRueG5lWgpVhhNNhuhlrGmHSx13asCixoLqVjAceoiPrdFAQKvukQWP3d0eChdYD4dtKgU1Pz2Yj87+sEZvgrJUwGcWGSjL5KIg5MiEabY86TFFi+MACJorZWRHpYYWJsTdK2yN4syvPQ7WQ94r5wpWXLZ3ARCk4gEPIgQenUIILKEMFCAi4h0d4cpTz4Dw7L5PSBWfaswd/5Lz9ALQok2E=</latexit>

P
(1)
3

<latexit sha1_base64="SOQzCigFL9/SAc4DihK40R9z2JA=">AAAB8HicbZDLSgMxFIbP1Futt6rgxk2wCHVTZlpElwU3LivYi7RjyaRpG5pkhiQjlKFP4caFIu7E53DlTne+jelloa0/BD7+/xxyzgkizrRx3W8ntbS8srqWXs9sbG5t72R392o6jBWhVRLyUDUCrClnklYNM5w2IkWxCDitB4OLcV6/o0qzUF6bYUR9gXuSdRnBxlo3lXbpNsl7J6N2NucW3InQIngzyJUPPt+LH/XXSjv71eqEJBZUGsKx1k3PjYyfYGUY4XSUacWaRpgMcI82LUosqPaTycAjdGydDuqGyj5p0MT93ZFgofVQBLZSYNPX89nY/C9rxqZ77idMRrGhkkw/6sYcmRCNt0cdpigxfGgBE8XsrIj0scLE2Btl7BG8+ZUXoVYseKVC8crLlU9hqjQcwhHkwYMzKMMlVKAKBATcwyM8Ocp5cJ6dl2lpypn17MMfOW8/vvyTaA==</latexit>

P
(1)
3

<latexit sha1_base64="SOQzCigFL9/SAc4DihK40R9z2JA=">AAAB8HicbZDLSgMxFIbP1Futt6rgxk2wCHVTZlpElwU3LivYi7RjyaRpG5pkhiQjlKFP4caFIu7E53DlTne+jelloa0/BD7+/xxyzgkizrRx3W8ntbS8srqWXs9sbG5t72R392o6jBWhVRLyUDUCrClnklYNM5w2IkWxCDitB4OLcV6/o0qzUF6bYUR9gXuSdRnBxlo3lXbpNsl7J6N2NucW3InQIngzyJUPPt+LH/XXSjv71eqEJBZUGsKx1k3PjYyfYGUY4XSUacWaRpgMcI82LUosqPaTycAjdGydDuqGyj5p0MT93ZFgofVQBLZSYNPX89nY/C9rxqZ77idMRrGhkkw/6sYcmRCNt0cdpigxfGgBE8XsrIj0scLE2Btl7BG8+ZUXoVYseKVC8crLlU9hqjQcwhHkwYMzKMMlVKAKBATcwyM8Ocp5cJ6dl2lpypn17MMfOW8/vvyTaA==</latexit>

H
(0)
3

<latexit sha1_base64="fbCabH5NRpjdbSByC82E7RIi17U=">AAAB8HicbZDLSgMxFIbPeK31VhXcuAkWoW7KTIvosuCmywr2Iu1YMmnahiaZIckIZehTuHGhiDvxOVy5051vY3pZaOsPgY//P4ecc4KIM21c99tZWl5ZXVtPbaQ3t7Z3djN7+zUdxorQKgl5qBoB1pQzSauGGU4bkaJYBJzWg8HlOK/fUaVZKK/NMKK+wD3JuoxgY62bcrt4m+Tc01E7k3Xz7kRoEbwZZEuHn++Fj/prpZ35anVCEgsqDeFY66bnRsZPsDKMcDpKt2JNI0wGuEebFiUWVPvJZOAROrFOB3VDZZ80aOL+7kiw0HooAlspsOnr+Wxs/pc1Y9O98BMmo9hQSaYfdWOOTIjG26MOU5QYPrSAiWJ2VkT6WGFi7I3S9gje/MqLUCvkvWK+cOVlS2cwVQqO4Bhy4ME5lKAMFagCAQH38AhPjnIenGfnZVq65Mx6DuCPnLcfsRaTXw==</latexit>

H
(0)
3

<latexit sha1_base64="fbCabH5NRpjdbSByC82E7RIi17U=">AAAB8HicbZDLSgMxFIbPeK31VhXcuAkWoW7KTIvosuCmywr2Iu1YMmnahiaZIckIZehTuHGhiDvxOVy5051vY3pZaOsPgY//P4ecc4KIM21c99tZWl5ZXVtPbaQ3t7Z3djN7+zUdxorQKgl5qBoB1pQzSauGGU4bkaJYBJzWg8HlOK/fUaVZKK/NMKK+wD3JuoxgY62bcrt4m+Tc01E7k3Xz7kRoEbwZZEuHn++Fj/prpZ35anVCEgsqDeFY66bnRsZPsDKMcDpKt2JNI0wGuEebFiUWVPvJZOAROrFOB3VDZZ80aOL+7kiw0HooAlspsOnr+Wxs/pc1Y9O98BMmo9hQSaYfdWOOTIjG26MOU5QYPrSAiWJ2VkT6WGFi7I3S9gje/MqLUCvkvWK+cOVlS2cwVQqO4Bhy4ME5lKAMFagCAQH38AhPjnIenGfnZVq65Mx6DuCPnLcfsRaTXw==</latexit>

G
(0)
3

<latexit sha1_base64="KS756wT0YNF0oqGlKW+T3mFj+IE=">AAAB8HicbZDLSgMxFIbPeK31VhXcuAkWoW7KTIvosuBClxXsRdpaMmmmDU0yQ5IRytCncONCEXfic7hypzvfxvSy0NYfAh//fw455/gRZ9q47rezsLi0vLKaWkuvb2xubWd2dqs6jBWhFRLyUNV9rClnklYMM5zWI0Wx8Dmt+f3zUV67o0qzUF6bQURbAnclCxjBxlo3F+3ibZJzj4ftTNbNu2OhefCmkC3tf74XPmqv5Xbmq9kJSSyoNIRjrRueG5lWgpVhhNNhuhlrGmHSx13asCixoLqVjAceoiPrdFAQKvukQWP3d0eChdYD4dtKgU1Pz2Yj87+sEZvgrJUwGcWGSjL5KIg5MiEabY86TFFi+MACJorZWRHpYYWJsTdK2yN4syvPQ7WQ94r5wpWXLZ3ARCk4gEPIgQenUIJLKEMFCAi4h0d4cpTz4Dw7L5PSBWfaswd/5Lz9AK+Kk14=</latexit>

G
(0)
3

<latexit sha1_base64="KS756wT0YNF0oqGlKW+T3mFj+IE=">AAAB8HicbZDLSgMxFIbPeK31VhXcuAkWoW7KTIvosuBClxXsRdpaMmmmDU0yQ5IRytCncONCEXfic7hypzvfxvSy0NYfAh//fw455/gRZ9q47rezsLi0vLKaWkuvb2xubWd2dqs6jBWhFRLyUNV9rClnklYMM5zWI0Wx8Dmt+f3zUV67o0qzUF6bQURbAnclCxjBxlo3F+3ibZJzj4ftTNbNu2OhefCmkC3tf74XPmqv5Xbmq9kJSSyoNIRjrRueG5lWgpVhhNNhuhlrGmHSx13asCixoLqVjAceoiPrdFAQKvukQWP3d0eChdYD4dtKgU1Pz2Yj87+sEZvgrJUwGcWGSjL5KIg5MiEabY86TFFi+MACJorZWRHpYYWJsTdK2yN4syvPQ7WQ94r5wpWXLZ3ARCk4gEPIgQenUIJLKEMFCAi4h0d4cpTz4Dw7L5PSBWfaswd/5Lz9AK+Kk14=</latexit>

Two-Stream Multi-Head Self-Attention and Feedforward Network

Two-Stream Multi-Head Self-Attention and Feedforward Network

I
(2)
1

<latexit sha1_base64="CyjFZvDpZsKv26ojrGZ3FZy8xsw=">AAAB8HicbZC7SgNBFIbPxluMt6hgYzMYhNiE3RXRMmCjXQRzkWQNs5PZZMjM7jIzK4QlT2FjoYid+BxWdtr5Nk4uhSb+MPDx/+cw5xw/5kxp2/62MguLS8sr2dXc2vrG5lZ+e6emokQSWiURj2TDx4pyFtKqZprTRiwpFj6ndb9/Psrrd1QqFoXXehBTT+BuyAJGsDbWzWXbuU2L7tGwnS/YJXssNA/OFArlvc9396P+Wmnnv1qdiCSChppwrFTTsWPtpVhqRjgd5lqJojEmfdylTYMhFlR56XjgITo0TgcFkTQv1Gjs/u5IsVBqIHxTKbDuqdlsZP6XNRMdnHkpC+NE05BMPgoSjnSERtujDpOUaD4wgIlkZlZEelhios2NcuYIzuzK81BzS85xyb1yCuUTmCgL+3AARXDgFMpwARWoAgEB9/AIT5a0Hqxn62VSmrGmPbvwR9bbD7Kak2A=</latexit>

I
(2)
1

<latexit sha1_base64="CyjFZvDpZsKv26ojrGZ3FZy8xsw=">AAAB8HicbZC7SgNBFIbPxluMt6hgYzMYhNiE3RXRMmCjXQRzkWQNs5PZZMjM7jIzK4QlT2FjoYid+BxWdtr5Nk4uhSb+MPDx/+cw5xw/5kxp2/62MguLS8sr2dXc2vrG5lZ+e6emokQSWiURj2TDx4pyFtKqZprTRiwpFj6ndb9/Psrrd1QqFoXXehBTT+BuyAJGsDbWzWXbuU2L7tGwnS/YJXssNA/OFArlvc9396P+Wmnnv1qdiCSChppwrFTTsWPtpVhqRjgd5lqJojEmfdylTYMhFlR56XjgITo0TgcFkTQv1Gjs/u5IsVBqIHxTKbDuqdlsZP6XNRMdnHkpC+NE05BMPgoSjnSERtujDpOUaD4wgIlkZlZEelhios2NcuYIzuzK81BzS85xyb1yCuUTmCgL+3AARXDgFMpwARWoAgEB9/AIT5a0Hqxn62VSmrGmPbvwR9bbD7Kak2A=</latexit>

H
(1)
1

<latexit sha1_base64="qBxwp21ZbpAyLThaI0JdjxhZKOk=">AAAB8HicbZDLSgMxFIbP1Futt6rgxk2wCHVTZiqiy4KbLivYi7RjyaRpG5pkhiQjlKFP4caFIu7E53DlTne+jelloa0/BD7+/xxyzgkizrRx3W8ntbS8srqWXs9sbG5t72R392o6jBWhVRLyUDUCrClnklYNM5w2IkWxCDitB4PLcV6/o0qzUF6bYUR9gXuSdRnBxlo35bZ3m+S9k1E7m3ML7kRoEbwZ5EoHn+/Fj/prpZ39anVCEgsqDeFY66bnRsZPsDKMcDrKtGJNI0wGuEebFiUWVPvJZOAROrZOB3VDZZ80aOL+7kiw0HooAlspsOnr+Wxs/pc1Y9O98BMmo9hQSaYfdWOOTIjG26MOU5QYPrSAiWJ2VkT6WGFi7I0y9gje/MqLUCsWvNNC8crLlc5gqjQcwhHkwYNzKEEZKlAFAgLu4RGeHOU8OM/Oy7Q05cx69uGPnLcfr4iTXg==</latexit>

H
(1)
1

<latexit sha1_base64="qBxwp21ZbpAyLThaI0JdjxhZKOk=">AAAB8HicbZDLSgMxFIbP1Futt6rgxk2wCHVTZiqiy4KbLivYi7RjyaRpG5pkhiQjlKFP4caFIu7E53DlTne+jelloa0/BD7+/xxyzgkizrRx3W8ntbS8srqWXs9sbG5t72R392o6jBWhVRLyUDUCrClnklYNM5w2IkWxCDitB4PLcV6/o0qzUF6bYUR9gXuSdRnBxlo35bZ3m+S9k1E7m3ML7kRoEbwZ5EoHn+/Fj/prpZ39anVCEgsqDeFY66bnRsZPsDKMcDrKtGJNI0wGuEebFiUWVPvJZOAROrZOB3VDZZ80aOL+7kiw0HooAlspsOnr+Wxs/pc1Y9O98BMmo9hQSaYfdWOOTIjG26MOU5QYPrSAiWJ2VkT6WGFi7I0y9gje/MqLUCsWvNNC8crLlc5gqjQcwhHkwYNzKEEZKlAFAgLu4RGeHOU8OM/Oy7Q05cx69uGPnLcfr4iTXg==</latexit>

G
(1)
1

<latexit sha1_base64="IJMrtBBC6lFje2+8SZ12JrrBWYc=">AAAB8HicbZDLSgMxFIbP1Futt6rgxk2wCHVTZiqiy4ILXVawF2lryaSZNjTJDElGKEOfwo0LRdyJz+HKne58G9PLQlt/CHz8/znknONHnGnjut9OamFxaXklvZpZW9/Y3Mpu71R1GCtCKyTkoar7WFPOJK0YZjitR4pi4XNa8/vno7x2R5Vmobw2g4i2BO5KFjCCjbVuLtrebZL3jobtbM4tuGOhefCmkCvtfb4XP2qv5Xb2q9kJSSyoNIRjrRueG5lWgpVhhNNhphlrGmHSx13asCixoLqVjAceokPrdFAQKvukQWP3d0eChdYD4dtKgU1Pz2Yj87+sEZvgrJUwGcWGSjL5KIg5MiEabY86TFFi+MACJorZWRHpYYWJsTfK2CN4syvPQ7VY8I4LxSsvVzqBidKwDweQBw9OoQSXUIYKEBBwD4/w5CjnwXl2XialKWfaswt/5Lz9AK38k10=</latexit>

G
(1)
1

<latexit sha1_base64="IJMrtBBC6lFje2+8SZ12JrrBWYc=">AAAB8HicbZDLSgMxFIbP1Futt6rgxk2wCHVTZiqiy4ILXVawF2lryaSZNjTJDElGKEOfwo0LRdyJz+HKne58G9PLQlt/CHz8/znknONHnGnjut9OamFxaXklvZpZW9/Y3Mpu71R1GCtCKyTkoar7WFPOJK0YZjitR4pi4XNa8/vno7x2R5Vmobw2g4i2BO5KFjCCjbVuLtrebZL3jobtbM4tuGOhefCmkCvtfb4XP2qv5Xb2q9kJSSyoNIRjrRueG5lWgpVhhNNhphlrGmHSx13asCixoLqVjAceokPrdFAQKvukQWP3d0eChdYD4dtKgU1Pz2Yj87+sEZvgrJUwGcWGSjL5KIg5MiEabY86TFFi+MACJorZWRHpYYWJsTfK2CN4syvPQ7VY8I4LxSsvVzqBidKwDweQBw9OoQSXUIYKEBBwD4/w5CjnwXl2XialKWfaswt/5Lz9AK38k10=</latexit>

I
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2

<latexit sha1_base64="z/ceERnVl6RrqP19nTLqTEzIeX4=">AAAB8HicbZC7SgNBFIbPxluMt6hgY7MYhNiE3RXRMmCjXQRzkWQNs5PZZMjM7DIzK4QlT2FjoYid+BxWdtr5Nk4uhSb+MPDx/+cw55wgZlRpx/m2MguLS8sr2dXc2vrG5lZ+e6emokRiUsURi2QjQIowKkhVU81II5YE8YCRetA/H+X1OyIVjcS1HsTE56graEgx0sa6uWx7t2nROxq28wWn5Ixlz4M7hUJ57/Pd+6i/Vtr5r1YnwgknQmOGlGq6Tqz9FElNMSPDXCtRJEa4j7qkaVAgTpSfjgce2ofG6dhhJM0T2h67vztSxJUa8MBUcqR7ajYbmf9lzUSHZ35KRZxoIvDkozBhto7s0fZ2h0qCNRsYQFhSM6uNe0girM2NcuYI7uzK81DzSu5xybtyC+UTmCgL+3AARXDhFMpwARWoAgYO9/AIT5a0Hqxn62VSmrGmPbvwR9bbD7Qkk2E=</latexit>

I
(2)
2

<latexit sha1_base64="z/ceERnVl6RrqP19nTLqTEzIeX4=">AAAB8HicbZC7SgNBFIbPxluMt6hgY7MYhNiE3RXRMmCjXQRzkWQNs5PZZMjM7DIzK4QlT2FjoYid+BxWdtr5Nk4uhSb+MPDx/+cw55wgZlRpx/m2MguLS8sr2dXc2vrG5lZ+e6emokRiUsURi2QjQIowKkhVU81II5YE8YCRetA/H+X1OyIVjcS1HsTE56graEgx0sa6uWx7t2nROxq28wWn5Ixlz4M7hUJ57/Pd+6i/Vtr5r1YnwgknQmOGlGq6Tqz9FElNMSPDXCtRJEa4j7qkaVAgTpSfjgce2ofG6dhhJM0T2h67vztSxJUa8MBUcqR7ajYbmf9lzUSHZ35KRZxoIvDkozBhto7s0fZ2h0qCNRsYQFhSM6uNe0girM2NcuYI7uzK81DzSu5xybtyC+UTmCgL+3AARXDhFMpwARWoAgYO9/AIT5a0Hqxn62VSmrGmPbvwR9bbD7Qkk2E=</latexit>

H
(1)
2

<latexit sha1_base64="aSTTRnYzfRFQz/YTsENWeUR7hlM=">AAAB8HicbZC7SgNBFIbPxluMt6hgYzMYhNiE3RXRMmCTMoK5SLKG2clsMmRmd5mZFcKSp7CxUMROfA4rO+18GyeXQhN/GPj4/3OYc44fc6a0bX9bmaXlldW17HpuY3Nreye/u1dXUSIJrZGIR7LpY0U5C2lNM81pM5YUC5/Thj+4HOeNOyoVi8JrPYypJ3AvZAEjWBvrptJxb9OiczLq5At2yZ4ILYIzg0L54PPd/Wi8Vjv5r3Y3IomgoSYcK9Vy7Fh7KZaaEU5HuXaiaIzJAPdoy2CIBVVeOhl4hI6N00VBJM0LNZq4vztSLJQaCt9UCqz7aj4bm/9lrUQHF17KwjjRNCTTj4KEIx2h8faoyyQlmg8NYCKZmRWRPpaYaHOjnDmCM7/yItTdknNacq+cQvkMpsrCIRxBERw4hzJUoAo1ICDgHh7hyZLWg/VsvUxLM9asZx/+yHr7AbESk18=</latexit>

H
(1)
2

<latexit sha1_base64="aSTTRnYzfRFQz/YTsENWeUR7hlM=">AAAB8HicbZC7SgNBFIbPxluMt6hgYzMYhNiE3RXRMmCTMoK5SLKG2clsMmRmd5mZFcKSp7CxUMROfA4rO+18GyeXQhN/GPj4/3OYc44fc6a0bX9bmaXlldW17HpuY3Nreye/u1dXUSIJrZGIR7LpY0U5C2lNM81pM5YUC5/Thj+4HOeNOyoVi8JrPYypJ3AvZAEjWBvrptJxb9OiczLq5At2yZ4ILYIzg0L54PPd/Wi8Vjv5r3Y3IomgoSYcK9Vy7Fh7KZaaEU5HuXaiaIzJAPdoy2CIBVVeOhl4hI6N00VBJM0LNZq4vztSLJQaCt9UCqz7aj4bm/9lrUQHF17KwjjRNCTTj4KEIx2h8faoyyQlmg8NYCKZmRWRPpaYaHOjnDmCM7/yItTdknNacq+cQvkMpsrCIRxBERw4hzJUoAo1ICDgHh7hyZLWg/VsvUxLM9asZx/+yHr7AbESk18=</latexit>

G
(1)
2

<latexit sha1_base64="f6vVkeTcX6RK5qhU4B9Lz/ILOGs=">AAAB8HicbZC7SgNBFIbPxluMt6hgYzMYhNiE3RXRMmChZQRzkWQNs5PZZMjM7jIzK4QlT2FjoYid+BxWdtr5Nk4uhSb+MPDx/+cw5xw/5kxp2/62MguLS8sr2dXc2vrG5lZ+e6emokQSWiURj2TDx4pyFtKqZprTRiwpFj6ndb9/Psrrd1QqFoXXehBTT+BuyAJGsDbWzUXbvU2LztGwnS/YJXssNA/OFArlvc9396P+Wmnnv1qdiCSChppwrFTTsWPtpVhqRjgd5lqJojEmfdylTYMhFlR56XjgITo0TgcFkTQv1Gjs/u5IsVBqIHxTKbDuqdlsZP6XNRMdnHkpC+NE05BMPgoSjnSERtujDpOUaD4wgIlkZlZEelhios2NcuYIzuzK81BzS85xyb1yCuUTmCgL+3AARXDgFMpwCRWoAgEB9/AIT5a0Hqxn62VSmrGmPbvwR9bbD6+Gk14=</latexit>

G
(1)
2

<latexit sha1_base64="f6vVkeTcX6RK5qhU4B9Lz/ILOGs=">AAAB8HicbZC7SgNBFIbPxluMt6hgYzMYhNiE3RXRMmChZQRzkWQNs5PZZMjM7jIzK4QlT2FjoYid+BxWdtr5Nk4uhSb+MPDx/+cw5xw/5kxp2/62MguLS8sr2dXc2vrG5lZ+e6emokQSWiURj2TDx4pyFtKqZprTRiwpFj6ndb9/Psrrd1QqFoXXehBTT+BuyAJGsDbWzUXbvU2LztGwnS/YJXssNA/OFArlvc9396P+Wmnnv1qdiCSChppwrFTTsWPtpVhqRjgd5lqJojEmfdylTYMhFlR56XjgITo0TgcFkTQv1Gjs/u5IsVBqIHxTKbDuqdlsZP6XNRMdnHkpC+NE05BMPgoSjnSERtujDpOUaD4wgIlkZlZEelhios2NcuYIzuzK81BzS85xyb1yCuUTmCgL+3AARXDgFMpwCRWoAgEB9/AIT5a0Hqxn62VSmrGmPbvwR9bbD6+Gk14=</latexit>

I
(2)
3

<latexit sha1_base64="0BEhObLc2Hb2bgZYLaArSYDvTQU=">AAAB8HicbZC7SgNBFIbPeo3xFhVsbAaDEJuwu0G0DNhoF8FcJFnD7GQ2GTKzu8zMCmHJU9hYKGInPoeVnXa+jZNLoYk/DHz8/znMOcePOVPatr+thcWl5ZXVzFp2fWNzazu3s1tTUSIJrZKIR7LhY0U5C2lVM81pI5YUC5/Tut8/H+X1OyoVi8JrPYipJ3A3ZAEjWBvr5rJduk0L7vGwncvbRXssNA/OFPLl/c9396P+WmnnvlqdiCSChppwrFTTsWPtpVhqRjgdZluJojEmfdylTYMhFlR56XjgIToyTgcFkTQv1Gjs/u5IsVBqIHxTKbDuqdlsZP6XNRMdnHkpC+NE05BMPgoSjnSERtujDpOUaD4wgIlkZlZEelhios2NsuYIzuzK81Bzi06p6F45+fIJTJSBAziEAjhwCmW4gApUgYCAe3iEJ0taD9az9TIpXbCmPXvwR9bbD7Wuk2I=</latexit>

I
(2)
3

<latexit sha1_base64="0BEhObLc2Hb2bgZYLaArSYDvTQU=">AAAB8HicbZC7SgNBFIbPeo3xFhVsbAaDEJuwu0G0DNhoF8FcJFnD7GQ2GTKzu8zMCmHJU9hYKGInPoeVnXa+jZNLoYk/DHz8/znMOcePOVPatr+thcWl5ZXVzFp2fWNzazu3s1tTUSIJrZKIR7LhY0U5C2lVM81pI5YUC5/Tut8/H+X1OyoVi8JrPYipJ3A3ZAEjWBvr5rJduk0L7vGwncvbRXssNA/OFPLl/c9396P+WmnnvlqdiCSChppwrFTTsWPtpVhqRjgdZluJojEmfdylTYMhFlR56XjgIToyTgcFkTQv1Gjs/u5IsVBqIHxTKbDuqdlsZP6XNRMdnHkpC+NE05BMPgoSjnSERtujDpOUaD4wgIlkZlZEelhios2NsuYIzuzK81Bzi06p6F45+fIJTJSBAziEAjhwCmW4gApUgYCAe3iEJ0taD9az9TIpXbCmPXvwR9bbD7Wuk2I=</latexit>

H
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3
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Figure 4.3: (a) Overview of the two-stream multi-head self-attention network.
(b) An illustration of the schema stream for the first attribute.(c) An
illustration of the value stream for the first attribute.

and use the mean squared error (MSE) loss: MSE(x(i), x̂(i)) = (x(i) − x̂(i))2.
For categorical or text-based attributes we use the cross-entropy loss.

Consider a tuple x and its attribute i. For its attribute value x(i) let
I0

i (x(i)) be the base-embedding before passing through the attention layers
of PicketNet, and Oi(xmask) the contextual encoding of value x(i) after
pushing tuple xmask (with attribute i masked) through PicketNet. Given
tuple x, we randomly select a set of other values Zi from the domain of
attribute i. We consider the training loss associated with identifying x(i)

as the correct completion value from the set of possible values {x(i)} ∪ Zi.
To compute the training loss we use the cosine similarity between Oi(xmask)
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and the input encoding I0
i (r) for each r ∈ {x(i)} ∪ Zi, then we apply the

softmax function over the similarities and calculate the cross-entropy (CE)
loss:

CE(x, Zi; i, M) = − log( exp(sim(I(0)
i (x(i)), Oi(xmask)))∑

r∈{x(i)}∪Zi
exp(sim(I(0)

i (r), Oi(xmask)))
)

where sim(a, b) is the cosine similarity between a and b.
Loss-based Filtering to Ensure Robust Training The data used to
learn PicketNet can be corrupted, in which case self-supervised learning
might lead to a biased model due to the presence of noise. To make learning
robust to noisy input, we use a loss-based filtering mechanism to detect and
ignore corrupted data during training of a PicketNet model. The process
we use follows the next steps:

1. Warm-start PicketNet by training over D for E1 epochs.

2. Train PicketNet over D for E2 epochs and, for each sample in
x ∈ D, record the epoch-wise average loss Lossi(x) for each attribute
i, i = 1, 2, . . . , T .

3. For each sample, aggregate the losses attribute-wise by Loss(x) =∑T
i=1 Lossi(x)/MedianD(Lossi(·)) where MedianD computes the me-

dian over all points in D.

4. Put a sample into set D′ if its aggregated loss is less than δlow or
greater than δhigh, where δlow and δhigh are pre-specified thresholds; D′

is the set of samples to be removed.

5. Train PicketNet over C = D \ D′ until convergence.

The thresholds δlow and δhigh control the sensitivity of the detection. In
practice, we can set δlow and δhigh based on a relatively clean validation set.
A common strategy is setting their values based on the validation set so
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Figure 4.4: Distribution of the reconstruction loss (early in training) for
different types of clean and noisy samples.

that the false positive rate (FPR) is under some value (e.g. 5%). When
a relatively clean validation set is not available, the thresholds can be set
based on the histogram of the reconstruction loss. Filtering out abnormal
peaks and low density tails in the histogram is a natural strategy, and we
validate the effectiveness of it in Section 4.6.4.

When we do the attribute-wise aggregation, we normalize the loss of
each attribute by dividing with the median of it to bring different types of
losses to the same scale. The normalized loss characterizes how large the
loss is relative to the average level loss in that attribute. We use the median
since it is robust against extremely high or low values, while the mean can
be significantly shifted by them.

The filtering is two-sided because randomly or systematically corrupted
samples and adversarially crafted (poisoned) samples have different behaviors
during the early training stage. Outliers with random or systematic noise
are internally inconsistent and thus have high reconstruction loss in the early
training stage of PicketNet. However, poisoned samples tend to have
unusually low reconstruction loss. The reason is that poisoned data tend to
be concentrated on a few locations to be effective and appear normal, as is
pointed out by Koh et al. (Koh et al., 2018). Such concentration forces deep
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networks such as PicketNet to fit quickly and therefore the reconstruction
loss in the early stage is lower than that of the clean samples. We confirm
this hypothesis experimentally. Figure 4.4 shows the distribution of the
reconstruction loss for 1) clean, 2) randomly and systematically corrupted,
and 3)poisoned samples for a real-world dataset. The noise used in this
illustrative example follows the procedure described in Section 4.6.1. The
three distributions have notable statistical distances. Hence, we need to
remove samples with high loss to capture random or systematic corruptions,
and samples with abnormally low loss to defend against poisoning attacks.

4.5 Detecting Data Corruptions

The reconstruction loss of PicketNet is the key to training time and
inference time detection of corrupted examples. We now provide more
details on these functions of Picket.
Detecting Corrupted Training Data Detection of corrupted training
data follows directly from the training procedure of PicketNet described in
the previous section (Section 4.4.2). Given an ML pipeline that aims to learn
a model F for a downstream task, we 1) first train a PicketNet model over
the data considered for training and 2) only use the data points that are not
filtered during the training of PicketNet to train the downstream model F .
This approach allows us to apply Picket to any training pipeline regardless
of the downstream model. Effectively, the pre-trained PicketNet is used as
an encoder capable to detect outlier points. As we show in Section 4.6, our
approach is effective across different types of ML models. For adversarially
poisoned training data, we find that using Picket as a filter before training,
allows us to train downstream ML models that exhibit similar performance
to that of models trained on non-corrupted data.
Victim Sample Detection for Inference We now describe how we
construct the victim sample detectors to safeguard against corruptions
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during inference for a trained classifier F (see Section 4.3). For each class
y in the downstream classification task, we build a detector Gy to identify
victim samples, i.e., samples that F will misclassify due to corruption of the
feature values. The detectors are binary classifiers. In our experiments, we
use logistic regression models with regularization parameter 1.0 as detectors.

At inference time, the victim sample detectors are deployed along with the
downstream model F and a pre-trained PicketNet modelM. Whenever
a sample x comes, the downstream model gives the prediction f(x). The
corresponding detector Gf(x) takes into account x and the feature-wise
reconstruction loss (not aggregated) from M and decides if x should be
marked as suspicious.

We learn the victim-sample detectors by using a data set with artificially
corrupted data points. We describe this process below; notice that no
human-labeled data is required. We start from the filtered data C output by
Picket during the training phase of the ML pipeline. We first apply the
already-trained classifier F on all points in C and obtain a subset of points
for which F returns the correct prediction, i.e., f(x) = y. We denote this
subset Ccor. Moreover, we partition Ccor into sets Cy

cor, one for each class y of
the downstream prediction class. For each partition, we use the points in
Cy

cor to construct artificial victim samples and artificial noisy points for which
F returns the correct prediction despite the injection of noise. We discuss
the artificial noise we inject in detail in Section 4.6.1. Let V Sy and NSy

cor

be the set of artificial victim samples and the set of noisy but correctly
classified sample generated from Cy

cor respectively. To construct these two
data sets we select a random point x∗ from Cy

cor and inject artificial noise
to obtain a noisy version x; we then evaluate f(x) and if f(x) = f(x∗) = y

we assign the generated point x to NSy
cor otherwise we assign it to V Sy.

We iteratively perform the above process for randomly selected points in
Cy

cor until we populate sets V Sy and NSy
cor with enough points such that

|Cy
cor| = |NSy

cor| = 0.5× |V Sy|. Given these three sets, we construct a new
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augmented data set Ay = Cy
cor ∪NSy

cor ∪ V Sy. We extend the feature vector
for each point in x ∈ Ay by concatenating it with the reconstruction loss
vector obtained after passing each point through the trained PicketNet
M. We also assign to it a positive label (indicative that we will obtain a
correct prediction) if it originated from Cy

cor or NSy
cor and a negative label

(indicating that we will obtain a wrong prediction) if it originated from V Sy.
The output of this procedure is the training data for the victim sample
detector Gy. We repeat the above process for each class y.

Ideally, the artificial noise that we inject should have the same distribution
as that in the real-world case. However, it is impossible to know the exact
noise distribution in advance. A practical solution is injecting mixed-type
artificial noise to help the detectors learn an approximate boundary between
good and victim samples. As mentioned we discuss the artificial noise
we consider in Section 4.6.1. We validate the effectiveness of mixed-type
artificial noise in Section 4.6.4.

4.6 Experiments

We evaluate how effective Picket and a diverse array of competing methods
are on detecting different types of corruption in ML pipelines during the
training and inference phases. We also provide several micro-benchmarks
over different design choices in Picket. Finally, we report the runtime and
discuss the scalability.

4.6.1 Experimental Setup

Datasets We consider six datasets with different mixtures of numerical,
categorical, and text-based attributes. These datasets are obtained from the
UCI repository (Dua and Graff, 2017) and the CleanML benchmark (Li et al.,
2019). All datasets focus on binary classification tasks. The characteristics
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of these datasets are summarized in Table 4.1. A detailed description of the
datasets is as follows.

• Wine: The dataset consists of statistics about different types of wine
based on physicochemical tests. The task is to predict if the quality
of a type is beyond average or not. The features are purely numerical.

• Adult: The dataset contains a set of US Census records of adults.
The task is to predict if a person makes over $50,000 per year. The
features are a mixture of categorical and numerical attributes.

• Marketing: The dataset comes from a survey on household income
consisting of several demographic features. The task is to predict
whether the annual gross income of a household is less than $25,000.
The features are purely categorical.

• Restaurant: The dataset contains information of restaurants from
Yelp. The task is to predict if the price range of a restaurant is “one
dollar sign” on Yelp. The features are a mixture of categorical values
and textual descriptions.

• Titanic: The dataset contains personal and ticket information of
passengers. The task is to predict if a passenger survives or not. The
features are a mixture of numerical, categorical and textual attributes.

• HTRU2: The dataset contains statistics about a set of pulsar can-
didates collected in a universe survey. The task is to predict if a
candidate is a real pulsar or not. The features are purely numeric.

The last dataset, i.e., HTRU2, is purely numerical and we use it in the
context of adversarial noise. The datasets above are the ones we use for
most of our experiments. In addition, we use Food labeled by (Heidari et al.,
2019) for real noise and Alarm (Herskovits, 1992) for the study of scalability.
We consider downstream ML pipelines over these datasets that use 80% of
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each dataset as the training set, and the rest as test data. To reduce the
effect of class imbalance, we undersample the unbalanced datasets where
over 70% of the samples belong to one class. The numerical attributes are
normalized to zero mean and unit variance before noise injection.

Table 4.1: Properties of the datasets in our experiments.

Dataset Size Numerical
Attributes

Categorical
Attributes

Textual
Attributes

Wine 4898 11 0 0
Adult 32561 5 9 0
Marketing 8993 0 13 0
Restaurant 12007 0 3 7
Titanic 891 2 5 3
HTRU2 17898 8 0 0

Noise Models In our experiments, we consider different types of noise:
1) random, 2) systematic, 3) adversarial noise, and 4) common errors in
real-world datasets.

Random and systematic noise are model agnostic and only take into
account the dataset. For random and systematic noise, we corrupt β fraction
of the cells in the noisy samples. We now provide a detailed description of
the random and systematic noise generation process we consider.
Random Noise: For a categorical or textual attribute, the value of a corrupted
cell is flipped to another value in the domain of that attribute. For a
numerical attribute, we add Gaussian noise to the value of a corrupted cell,
with zero mean and standard deviation of σ1, where σ1 is a constant.
Systematic Noise: For categorical and textual data, we randomly generate a
predefined function ϕ which maps the value x∗(i) of the cell to be corrupted
to another value x(i) in the same domain. The mapping function depends on
both the original value in that attribute and that in another pre-specified
attribute, i.e., x(i) = ϕ(x∗(i), x∗(j)) where j ̸= i. For a numerical attribute,
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we add a fixed amount of noise with magnitude σ2 to the value of a corrupted
cell, where σ2 is a constant.

We consider three settings with varying fractions of corrupted cells
in the noisy examples (aw well as the magnitude of error in the case of
numerical values) for random and systematic noise, which we refer to as
High (β = 0.5, σ1 = σ2 = 5), Medium (β = 0.3, σ1 = σ2 = 3) and Low
(β = 0.2, σ1 = σ2 = 1).

For adversarial attacks, we use methods that take into account specific
ML models. Specifically, we use data poisoning techniques during training
and evasion attack methods at inference. For the part of our evaluation
that focuses on training time, we generate poisoned samples using the back-
gradient method (Muñoz-González et al., 2017). Since this type of poisoning
is specific to different downstream models we consider different dataset-model
combinations in our evaluation. For the part of our evaluation that focuses
on inference time, we use the projected gradient descent (PGD) attack
(Madry et al., 2018a), a popular and effective white-box evasion attack
method, to generate adversarial test samples. We use the implementation of
PGD attack from the Adversarial Robustness Toolbox (Nicolae et al., 2018).
The corruption injected by the PGD attack is bounded by an infinity norm
of 0.2. The step size is 0.1 and the number of iterations is 100.

For common errors in real-world datasets, we consider missing values
that cannot be detected during pre-processing (e.g. 99999 instead of NaN),
multiplicative scaling of attributes (e.g. due to accidental changes of units),
and typos in textual or categorical attributes. We synthesize this kind of
noise as follows:

1. If the corrupted cell is numerical, with a probability 1/3 it will be 10
times larger, and with the same probability, it will be 10 times smaller.
Otherwise, the cell will contain a missing value.

2. If the corrupted cell is categorical or textual, with probability 1/2 one
of the characters will be replaced by a random character. Otherwise,
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the cell will contain a missing value.

For this kind of noise, we set the fraction of corrupted cells in the noisy
samples as β = 0.3. We also include Food, a dataset that contains real-world
errors with manually labeled ground truth (Heidari et al., 2019). It has 3
numerical, 6 categorical and 5 textual attributes. Out of its 3000 samples,
30.3% are corrupted.

As discussed in Section 4.5, we use artificially generated noise to create
the training data for learning the victim-sample detectors. We now describe
the type of noise we consider. Recall that we consider access to the set
of clean sample C and we augment this set with artificially corrupted
data. We emphasize that the noise is always different than the noise
considered in the training data. Since we assume that the type of noise in
the test set is unknown in advance, the artificial noise contains a mixture
of different levels of random noise ((β = 0.4, σ1 = 4), (β = 0.25, σ1 = 2),
(β = 0.15, σ1 = 1.5)). We additionally augment C with samples corrupted by
random noise (β = 1, σ1 = 0.25) and adversarial samples generated by Fast
Gradient Sign Method (FGSM) (Goodfellow et al., 2015)(noise bounded by
an infinite norm of 0.1) to defend against adversarial noise. This corruption
is different from the PGD attack considered during inference to ensure that
we evaluate against a different noise distribution during online inference.
Downstream ML Models We consider the following downstream models:
1) A Logistic regression (LR) model with regularization parameter 1.0; 2)
A Support Vector Machine (SVM) with a linear kernel and regularization
parameter 1.0; 3) A fully-connected neural network (NN) with 2 hidden
layers of size 100. We use a small model with 1 hidden layer of size 10 when
we perform poisoning attacks due to the runtime complexity of the attack
algorithm. The downstream models we choose cover different optimization
objectives (logistic/hinge loss and convex/non-convex optimization objec-
tives) and exhibit different robustness. Numerical attributes are encoded as
their raw values for downstream models. Categorical and textual attributes
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are encoded in the same way as in Picket.
Training-Time Baselines We compare against three unsupervised outlier
detection methods as follows: 1) Isolation Forest (IF) (Liu et al., 2008),
an approach similar to Random Forests but targeting outlier detection, 2)
One-Class SVM (OCSVM) (Chen et al., 2001) with a radial basis function
kernel, and 3) Robust Variational Autoencoders (RVAE) (Eduardo et al.,
2020), a state-of-the-art generative model used for outlier detection on
mixed-type tabular data. For IF, we use 100 base estimators in the ensemble.
For RVAE, we use the default hyperparameter recommended by Eduardo
et al. (Eduardo et al., 2020), which has 972,537 parameters. Note that
the capacity of the RVAE model used in our experiments is larger than
PicketNet, which has 382,722 parameters.
Inference-Time Baselines We compare against the following baselines:
1) victim-sample detectors, 2) naïve confidence-based methods, and 3)
adversarial data detection methods.

Methods based on per-class victim sample detectors follow the same
strategy as Picket but use different features. We consider: 1) Raw Feature
(RF), the binary classifiers only use the raw features of the data; 2) RVAE,
the binary classifiers use only the cell-level probability of being outliers
provided by RVAE as features; 3) RVAE+, the classifiers use a combination
of the features from the two methods above.

We also consider the next naïve methods: 1) Calibrated Confidence Score
(CCS), which assumes that the predictions of the downstream model have
lower confidence for victim samples than clean samples. We calibrate the
confidence scores of the downstream models using temperature scaling (Guo
et al., 2017). 2) k-Nearest Neighbors (KNN), which assumes that a victim
sample has a different prediction from its neighbors. We use different dis-
tances for different types of attributes. For numerical attributes, the distance
is d/0.05 if d ≤ 0.05, where d is the difference between two normalized values;
the distance is 1 if d > 0.05. For categorical attributes, we use the Hamming
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distance and for text attributes the cosine distance. We set k to 10.
We consider two methods of adversarial sample detection: The Odds are

Odd (TOAO) (Roth et al., 2019), which detects adversarial samples based
on the change in the distribution of the prediction logit values after the
injection of random noise. It adds Gaussian, Bernoulli, and Uniform noise
of different magnitude and takes the majority vote of all noise sources. 2)
Model with Outlier Class (MWOC) (Grosse et al., 2017), which assumes
that the feature distribution of adversarial samples is different from that of
benign samples and adds a new outlier class to the downstream model to
characterize the distribution of adversarial samples.

For a fair evaluation, we also reveal the augmented version of C used
to learn the victim-sample detectors in Picket to competing methods so
that they fine-tune their models to noise (RF, RVAE, RVAE+, MWOC,
Picket), or use it to find a good threshold (CCS, KNN, TOAO).
Metrics For training-time outlier detection, we report the area under the
receiver operating characteristic curve (AUROC). We use AUROC since it
is an aggregate measure of performance across all possible threshold settings.
We also consider the test accuracy of downstream models. For victim sample
detection, we report the F1 scores of the classification between correctly
classified samples and victim samples.
Evaluation Protocol All experiments are repeated five times with
different random seeds that control train-test split and noise injection; the
mean is reported. We also perform one-sided paired t-tests when we compare
the examined methods. A method is considered significantly better than
another one if the p value is less than 0.05.
Hyper-parameters of PicketNet PicketNet is not sensitive to
hyper-parameters in most cases. The default hyper-parameters we use in
the experiments is shown in Table 4.2. For purely numerical datasets, we
reduce the dimension of I

(l)
i and P

(l)
i to 8, and for HTRU2, we reduce the

number of self-attention layers to 1. In the other datasets, we always use
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Table 4.2: Default hyper-parameters for PicketNet.

Hyper-Parameter Value

Number of Self-Attention Layers 6
Number of Attention Heads 2
Dimension of I

(l)
i and P

(l)
i 64

Number of Hidden Layers in Each Feedforward Network 1
Dimension of the Hidden Layers in Feedforward Networks 64
Dropout 0.1
Size of the Negative Sample Set Zi 4
Warm-up Epochs E1 for Loss-Based Filtering 50
Loss Recording Epochs E2 20
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Figure 4.5: AUROC of outlier detection for random noise. The error bars
represent the standard errors. Picket is significantly better (with p value
less than 0.05) than the others on Wine, Adult, Marketing and Restaurant.

the default hyperparameters. We use the Adam optimizer (Kingma and Ba,
2015) with β1 = 0.9, β2 = 0.98 and ϵ = 10−9 for training. The learning rate
lr = 0.5d−0.5 min(s−0.5, 300−1.5s), where d is the dimension of I

(l)
i and P

(l)
i ,

s is the index of the training step. lr increases in the first few steps and
then decreases. Typically, PicketNet takes 100 to 500 epochs to converge,
depending on the datasets.
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Figure 4.6: AUROC of outlier detection for systematic noise. The error bars
represent the standard errors. Picket is significantly better (with p value
less than 0.05) than the others on Wine, Adult, Restaurant and Titanic.

4.6.2 Training-Time Evaluation

We evaluate the performance of different methods on detecting erroneous
points in the training data. We then evaluate how these methods affect the
performance of downstream models.
Detecting Corrupted Training Examples Figure 4.5, 4.6, and 4.7
show the AUROC obtained by the methods for different types of noise, when
20% of the samples are corrupted. The results for random and systematic
noise correspond to Medium level noise. Results for Low and High levels are
reported in Section 4.7.4. For Figure 4.7, note that the poisoned samples
are model-specific and hence we report the dataset model combination on
the x-axis. Due to data poisoning being limited to numerical data, we only
evaluate on Wine and HTRU. As shown, Picket is the only approach that
consistently achieves an AUROC of close to or more than 0.8 for all datasets
and for all noise settings. Other methods achieve comparable performance
in some settings but they are not consistent across diverse settings. IF and
OCSVM perform poorly on datasets with textual attributes (Restaurant
and Titanic) due to their limited capacity to handle text-based attributes.
RVAE works quite well under random noise, but its performance drops a lot
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Figure 4.7: AUROC of outlier detection for poisoned samples. The error bars
represent the standard errors. Picket is significantly better (with p value
less than 0.05) than the others on all the combinations except Wine-SVM.

when it comes to systematic noise, which shows that it is not robust against
noise that introduces bias. In the presence of poisoned data, we find that
IF performs well on Wine but poorly on HTRU2, but OCSVM shows the
opposite. A possible reason is that the two datasets exhibit different types of
correlation between attributes, and the two methods are good at capturing
only one of them. RVAE shows poor performance for both datasets.

For common errors in the real world, the results are shown in Figure 4.8.
We add synthetic errors of this type to Titanic and Restaurant, where 20%
are corrupted. We choose these two because they contain textual attributes
for typos. We also report the results on Food with real-world noise. We
can see that on Restaurant and Titanic, Picket outperforms the others
by more than 6 points. On Food, all the methods perform poorly. This is
because the noise level in Food is very low, and therefore hard to detect. In
fact, the real noise contained in Food does not have a significant effect on
the downstream models (as is shown in Table 4.22).

We also study how the fraction of corrupted samples affects the perfor-
mance of detection (see Section 4.7.3). Picket keeps a relatively consistent
performance when the fraction of corrupted samples varies.
Effect on Downstream Models We also study the effect of different
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Figure 4.8: AUROC of outlier detection for common errors in the real world.
The error bars represent the standard errors. Picket is significantly better
(with p value less than 0.05) than the others on all the datasets.

filtering methods on the downstream models. For each method, we filter 20%
of the samples with highest outlier scores, and train different downstream
models on the resulting training set. For each dataset, the test set is fixed
and contains only clean data. As reference points, we also include the test
accuracy when 1) the training data is clean without corruption (CL), and
2) the training data is corrupted but no filtering (NF) is performed. Note
that in the CL and NF cases, the sample size is different from the rest since
there is no filtering in these two. As a side effect of filtering, the decrease
in sample size will also affect the performance of the downstream model.
We want to include such an effect in our comparison, so we use CL and NF
with no sample filtered out as baselines.

First, we consider the case of data poisoning since this type of corruption
has the most significant effect on the downstream models. We measure the
test accuracy of the downstream models when poisoned data are injected
into the training stage. The results are shown in Table 4.3. If we compare
CL with NF we see an average drop of six accuracy points if corruptions
are ignored and no filtering is applied. We find that all methods reduce
the negative impact of the poisoned data and bring up the test accuracy.
Nevertheless that Picket outperforms all competing baselines and yields
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Table 4.3: Test accuracy of downstream models under adversarial poisoning
attacks and different filtering methods. The numbers are made bold when
the corresponding method is significantly better (with p value less than 0.05)
than all the others.

Dataset DM* IF OCSVM RVAE Picket CL NF

Wine
LR 0.7261 0.6976 0.7051 0.7312 0.7349 0.6745

SVM 0.7286 0.6933 0.7082 0.7310 0.7386 0.6727
NN 0.7210 0.6894 0.7035 0.7320 0.7365 0.6722

HTRU2
LR 0.8884 0.9015 0.8811 0.9067 0.9396 0.8799

SVM 0.8884 0.8979 0.8887 0.9232 0.9424 0.8832
NN 0.8671 0.8707 0.8643 0.9000 0.9280 0.8646

*DM = Downstream Model.

test time accuracy improvements of more than three points in some cases.
We see that Picket is able to recover most of the accuracy loss for all
models in the Wine dataset and comes very close to CL for HRTU2. All
other methods exhibit smaller accuracy improvements and do not exhibit
consistent behavior across datasets.

We also consider the cases of random and systematic noise, as well as
common errors in the real world. These types of noise do not directly attack
the downstream model. Moreover, most ML models are somewhat robust
to these types of noise. As a result, we expect to see a small gap in the test
accuracy between CL and NF, and all methods to perform comparably. We
report the results in these setups in Section 4.7.5 for completeness.

4.6.3 Inference-Time Evaluation

We evaluate the different methods on victim sample detection under different
types of noise. The F1 scores under random (Medium level), systematic
(Medium level), adversarial noise and common errors in the real world are
reported in Table 4.4, 4.5, 4.6 and 4.7. Food with real-world noise is not
reported since we cannot find enough victim samples from it. We report
results for High and Low noise in Section 4.7.6.

From the tables, we can see that Picket has the best performance in most
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Table 4.4: F1 scores of victim sample detection at inference time under
random noise (Medium level). The numbers are made bold when the
corresponding method is significantly better (with p value less than 0.05)
than all the others.

Dataset DM* RF RVAE RVAE+ CCS KNN TOAO MWOC Picket

Wine
LR 0.7690 0.7786 0.8172 0.6667 0.6686 0.6813 0.7150 0.8094

SVM 0.7812 0.7859 0.8254 0.6667 0.6750 0.6858 0.7622 0.8223
NN 0.7125 0.7470 0.7833 0.5896 0.6669 0.5107 0.6988 0.7631

Adult
LR 0.8352 0.7403 0.8489 0.6692 0.7866 0.2224 0.6725 0.8602

SVM 0.8434 0.7416 0.8553 0.6688 0.8060 0.4696 0.6215 0.8658
NN 0.8131 0.7127 0.8315 0.5117 0.6891 0.3216 0.7132 0.8411

Restaurant
LR 0.7726 –# – 0.7403 0.6456 0.6457 0.7459 0.8266

SVM 0.6854 – – 0.6796 0.6628 0.6596 0.5580 0.7618
NN 0.7605 – – 0.6994 0.6609 0.6110 0.7025 0.8203

Marketing
LR 0.8366 0.6623 0.8403 0.7567 0.7815 0.6666 0.7996 0.8549

SVM 0.8461 0.6689 0.8501 0.7527 0.7886 0.5133 0.8109 0.8607
NN 0.7931 0.6650 0.8029 0.6588 0.7050 0.6648 0.7265 0.8162

Titanic
LR 0.8257 – – 0.6990 0.6562 0.1409 0.7736 0.8424

SVM 0.8482 – – 0.6658 0.6436 0.4652 0.7932 0.8528
NN 0.8393 – – 0.6631 0.6387 0.2575 0.7566 0.8483

*DM = Downstream Model. #RVAE is not applicable to text attributes.

cases. By comparing RF and our method, we show that the reconstruction
loss features provided by PicketNet are good signals to help identify victim
samples. Such signals are better than those provided by RVAE since our
method outperforms RVAE+ most of the time. TOAO performs consistently
poorly since the assumption it relies on does not hold for the downstream
models and datasets we consider. It works for image classification with
complex convolutional neural networks under adversarial settings since
adding random noise to images could eliminate the effect of adversarial
noise. However, for tabular datasets and simple models, especially when the
noise is not adversarial, adding random noise does not make a big difference.
Another method from the adversarial learning literature (MWOC) works
well in some cases even if the noise is not adversarial.
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Table 4.5: F1 scores of victim sample detection at inference time under
systematic noise (Medium level). The numbers are made bold when the
corresponding method is significantly better (with p value less than 0.05)
than all the others.

Dataset DM* RF RVAE RVAE+ CCS KNN TOAO MWOC Picket

Wine
LR 0.6883 0.4987 0.6619 0.6667 0.6499 0.3152 0.7937 0.7046

SVM 0.6785 0.5056 0.6630 0.6667 0.6325 0.3399 0.7957 0.6973
NN 0.6760 0.6134 0.5689 0.6865 0.6659 0.3765 0.7190 0.6034

Adult
LR 0.8281 0.6960 0.8342 0.6695 0.7488 0.1864 0.7430 0.8501

SVM 0.8414 0.6729 0.8428 0.6694 0.7900 0.3617 0.6646 0.8643
NN 0.8108 0.6534 0.8245 0.5439 0.6808 0.2195 0.7850 0.8336

Restaurant
LR 0.7773 –# – 0.7419 0.6524 0.6496 0.7487 0.8255

SVM 0.7275 – – 0.7093 0.6475 0.6356 0.6125 0.7845
NN 0.7628 – – 0.7010 0.6579 0.6051 0.7003 0.8126

Marketing
LR 0.8358 0.6504 0.8403 0.7623 0.7770 0.6090 0.8068 0.8514

SVM 0.8501 0.6575 0.8552 0.7716 0.7817 0.6185 0.8208 0.8638
NN 0.8036 0.6355 0.8098 0.6649 0.7074 0.6635 0.7035 0.8118

Titanic
LR 0.8376 – – 0.7349 0.6493 0.4076 0.7901 0.8438

SVM 0.8224 – – 0.6674 0.6387 0.5592 0.7593 0.8412
NN 0.8112 – – 0.6660 0.6333 0.3139 0.7462 0.8159

*DM = Downstream Model. #RVAE is not applicable to text attributes.

Table 4.6: F1 scores of victim sample detection at inference time under
adversarial noise. The numbers are made bold when the corresponding
method is significantly better (with p value less than 0.05) than all the
others.

Dataset DM* RF RVAE RVAE+ CCS KNN TOAO MWOC Picket

Wine
LR 0.7899 0.6758 0.7905 0.8233 0.6660 0.5030 0.8287 0.8197

SVM 0.7951 0.6791 0.8004 0.8119 0.6660 0.5743 0.8324 0.8291
NN 0.7400 0.6922 0.7347 0.6815 0.6663 0.6620 0.3980 0.7442

HTRU2
LR 0.8727 0.0160 0.8699 0.6667 0.6654 0.5123 0.8389 0.8757

SVM 0.9409 0.3436 0.9399 0.6667 0.6623 0.6456 0.2211 0.9438
NN 0.9103 0.3007 0.9164 0.7258 0.6656 0.2873 0.7726 0.9201

*DM = Downstream Model.
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Table 4.7: F1 scores of victim sample detection at inference time under
common errors in the real world. The numbers are made bold when the
corresponding method is significantly better (with p value less than 0.05)
than all the others.

Dataset DM* RF RVAE RVAE+ CCS KNN TOAO MWOC Picket

Restaurant
LR 0.7335 –# – 0.7420 0.6527 0.5003 0.7330 0.7445

SVM 0.6948 – – 0.7168 0.6415 0.6104 0.6189 0.6928
NN 0.7716 – – 0.6818 0.6633 0.5470 0.6762 0.7713

Titanic
LR 0.5633 – – 0.3350 0.6792 0.5934 0.4740 0.8905

SVM 0.6304 – – 0.4412 0.6798 0.4374 0.5706 0.8651
NN 0.6100 – – 0.4140 0.6816 0.6855 0.8093 0.8205

*DM = Downstream Model. #RVAE is not applicable to text attributes.

4.6.4 Micro-Benchmarks

We perform a series of micro-benchmarks to evaluate different design deci-
sions related to Picket.
Effectiveness of the Two-Stream Self-Attention We perform an
ablation study to validate the effectiveness of the two-stream self-attention.
We evaluate the performance of outlier detection with only one stream and
with both. The results are depicted in Figure 4.9. In the case of one stream,
we simply let the output of self-attention layer l be either H

(l)
i for the value

stream, or G
(l)
i for the schema stream instead of H

(l)
i + G

(l)
i , where i is

the index of the attribute. For fair comparison, we expand the dimension
of all the vectors involved in the computation of multi-head self-attention
functions and feed-forward networks by a factor of

√
2 in the one-stream

cases, so that the network capacity (number of parameters) remains the
same after the pruning of one stream. We use three setups: Wine with
poisoning attack on NN, Adult with systematic noise (Medium level), and
Marketing with random noise (Medium level).

From Figure 4.9, we see that for Adult and Marketing, PicketNet
with two streams outperforms both one-stream options. For Wine, the value
stream itself works fine, but a combination of the two streams does not
impair the performance of the model. Neither of the two one-stream options
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Figure 4.9: Outlier detection under different stream settings. The error bars
represent the standard errors.

demonstrates obvious superiority over the other one, since there are cases
that the value stream performs better than the schema stream, and cases
that the opposite happens.
Effectiveness of Early Filtering We validate the effectiveness of early
filtering by comparing the performance of outlier detection at the early stage
of PicketNet’s training to that after convergence. The results are shown in
Figure 4.10. We use the setup from the previous micro-benchmark. Figure
4.10 shows that filtering at early stages consistently outperforms filtering
after convergence. The reason is that in the early stage of training, the
model is less likely to overfit to the input, and therefore the reconstruction
loss of the outliers differs from that of the clean samples more.
Histogram-Based Threshold Selection We validate the effectiveness of
the histogram-based threshold selection strategy mentioned in Section 4.4.2.
To better illustrate how it affects the downstream accuracy, we use Wine
and HTRU2 with poisoning attacks (20% of the samples are poisoned)
where corruption has a significant effect on the downstream models. For
each dataset and downstream model combination, we plot the histogram
of the Picket reconstruction loss in Figure 4.11, and select the thresholds
δlow and δhigh accordingly so that the abnormal peaks and low-density tails
are filtered out. We report the downstream accuracy after filtering with
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Figure 4.10: Early vs. after-convergence filtering. The error bars represent
the standard errors.
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Figure 4.11: Histograms of the reconstruction loss under different dataset-
model combinations and the thresholds δlow, δhigh.

this strategy (Picket-Hist) in Table 4.8. Same as Section 4.6.2, we also
report the downstream accuracy under CL and NF as reference points. The
results show that Picket-Hist gets very close to CL where the data is clean,
and much better than NF where no filtering is applied, which verifies the
effectiveness of this threshold-selection strategy.
Effectiveness of Per-Class Victim Sample Detectors We compare the
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Table 4.8: Test accuracy of downstream models after filtering based on the
histogram of reconstruction loss (Picket-Hist).

Dataset Downstream Model Picket-Hist CL NF

Wine
LR 0.7500 0.7551 0.6846

SVM 0.7459 0.7530 0.6836
NN 0.7133 0.7204 0.6561

HTRU2
LR 0.9344 0.9435 0.8810

SVM 0.9375 0.9435 0.8856
NN 0.9207 0.9207 0.8720

performance of our per-class detectors against a unified detector and a score-
based detector. The unified detector uses one single logistic regression
model over the same features to distinguish between good and victim
samples regardless of the downstream predictions. The score-based detector
follows the logic of the training time outlier detector, i.e., it aggregates the
reconstruction losses attribute-wise, and considers samples with high loss as
victims. We perform the comparison on three datasets with all of the three
downstream models: Wine with adversarial noise, Adult with systematic
noise (Medium level) and Marketing with random noise (Medium level).

The result is shown in Table 4.9. Per-class detectors outperform the
other two, which validates the effectiveness of having one detector per class.
The unified detector performs poorly because the victim samples in one class
differ from those in the other statistically, in which case one class may suffer
from corruption in one group of attributes, while the other class may suffer
from that in another group of attributes. The score-based detector does not
work well since it only has access to the noise level but does not consider
the connection between corruptions and the downstream prediction.
Effectiveness of Mixed Artificial Noise We validate the effectiveness of
our artificial noise setting (Mixed) by comparing it to the setting where the
artificial noise is generated in the same way as the test time noise (Exact).
The results are shown in Table 4.10. We use the same datasets and test time
noise as the previous micro-benchmark. We find that with mixed artificial
noise, the performance of Picket is comparable to the setting where the exact
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Table 4.9: A comparison between the per-class detectors, the unified detector,
and the score-based detector on inference time victim sample detection.

Dataset Downstream
Model

Per-Class
Detectors

Unified
Detector

Score-based
Detector

Wine
LR 0.8188 0.7023 0.6885

SVM 0.8287 0.7152 0.7261
NN 0.7444 0.4027 0.6594

Adult
LR 0.8489 0.6710 0.7197

SVM 0.8634 0.6983 0.7297
NN 0.8336 0.6785 0.7225

Marketing
LR 0.8553 0.7740 0.7343

SVM 0.8618 0.7774 0.7361
NN 0.8152 0.7370 0.7174

noise distribution is known under random (see Marketing) and systematic
noise (see Adult). Under adversarial noise (see Wine), Exact is better than
Mixed but the gap is not excessively large.

Table 4.10: F1 scores of Picket on victim sample detection under different
artificial noise settings.

Dataset Downstream
Model Mixed Exact

Wine
LR 0.8197 0.8646

SVM 0.8291 0.8812
NN 0.7442 0.7790

Adult
LR 0.8501 0.8372

SVM 0.8643 0.8562
NN 0.8336 0.8157

Marketing
LR 0.8549 0.8544

SVM 0.8607 0.8592
NN 0.8162 0.8120

4.6.5 Fairness of Outlier Detection

We compute the equality of opportunity between majority and minority
groups to check the fairness of outlier detection. Specifically, the opportunity
γG for each group G is defined as the fraction of clean examples in that group
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that are kept after filtering:

γG = Nkept
G /N clean

G

where N clean
G is the number of clean examples in group G, and Nkept

G is the
number of clean examples in G that are not filtered out. We report the
difference of opportunity ∆γ = γGm − γGM

, where GM is the majority group
and Gm is the minority. ∆γ closer to 0 indicates better fairness.

We choose two demographic datasets, Adult and Marketing, to verify
the fairness of the outlier detection methods. For each dataset, we pick one
sensitive attribute at a time, and divide its value domain into majority and
minority groups as follows:

1. Sort the values by their frequency in descending order.

2. Add values in order to the majority group until it covers more than
80% of the examples.

3. Add the rest of the values into the minority group.

We inject random and systematic noise of medium magnitude to 20% of
the examples, filter out 20%, and report the difference of opportunity for
each dataset-attribute combination in Table 4.11. We can see that for most
of the sensitive attributes, the difference of opportunity is less than 0.05
if the data are filtered by Picket. However, for certain attributes (e.g.
Marketing-Marital and Marketing-Language), the difference is quite large,
which shows potential risk of unfairness. The other models also show bias
towards the majority group for certain attributes. We defer the improvement
of fairness as a future direction to explore.

4.6.6 Runtime and Scalability

We report the training time of PicketNet for each dataset in Table 4.13.
The device we use is a single NVIDIA Tesla V100-PCIE GPU with 32GB



95

Table 4.11: Difference of opportunity when 20% of the examples are filtered
out.

Noise
Type Dataset-Attribute IF OCSVM RVAE Picket

Random
Marketing-Marital -0.0469 -0.0821 -0.0196 -0.1400

Marketing-Age 0.0720 -0.0071 0.0019 0.0216
Marketing-Education -0.0436 -0.0521 -0.0192 0.0174

Marketing-Live -0.1131 -0.1242 -0.0488 -0.0242
Marketing-Dual -0.0226 -0.0737 -0.0357 -0.0089

Marketing-Hometype -0.0865 -0.1581 -0.0634 -0.0458
Marketing-Ethnic -0.1762 -0.2258 -0.0760 -0.0610

Marketing-Language -0.5625 -0.4739 -0.0753 -0.3739
Adult-Workclass -0.1290 -0.0259 -0.0277 -0.0042

Adult-Marital-status -0.3111 -0.0676 -0.0013 -0.0706
Adult-Relationship -0.2545 0.0027 0.0081 -0.0188

Adult-Race -0.4452 -0.0326 -0.0259 -0.0515

Systematic
Marketing-Marital -0.0541 -0.1178 -0.0418 -0.2031

Marketing-Age 0.0902 -0.0051 0.0097 0.0270
Marketing-Education -0.0366 -0.0509 -0.0164 0.0142

Marketing-Live -0.0781 -0.1333 -0.0640 -0.0090
Marketing-Dual -0.0275 -0.0757 -0.0224 -0.0244

Marketing-Hometype -0.0995 -0.1892 -0.1182 -0.0528
Marketing-Ethnic -0.1919 -0.2465 -0.1388 -0.0777

Marketing-Language -0.5981 -0.5397 -0.1555 -0.4791
Adult-Workclass -0.1819 -0.0079 -0.0287 -0.0012

Adult-Marital-status -0.3158 -0.0690 0.0026 -0.2519
Adult-Relationship -0.2444 -0.0148 0.0067 -0.0635

Adult-Race -0.4124 -0.0560 -0.0088 -0.0719

memory. Note that the current runtime has not been fully optimized.
We also study the attribute-wise scalibilty of PicketNet using synthetic

datasets. The datasets have a different number of attributes ranging from
2 to 20 with a increase step of one, while the other settings are the same
(the dimension of I

(l)
i and P

(l)
i is fixed to 8). We report the training time

of 100 epochs in Figure 4.12. The growth of the runtime is roughly
quadratic as the number of attributes increases. This is expected since
the dependencies between one attribute and all the others yield quadratic
complexity. When the number of attributes is excessively large, we can apply
simple methods like computing the correlations between attributes to split
the attributes into groups, where only the attributes within the same group
exhibit correlations. Then, we can apply PicketNet to learn the structure
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for each of the groups. We evaluate the effectiveness of this strategy on
the Alarm dataset (Herskovits, 1992) which contains 36 attributes and 1000
records. The functional dependencies in Alarm is known. We split the
attributes into three groups based on the functional dependencies. Each
group contains 12 of them. We run Picket outlier detection on the three
groups independently, and then aggregate the reconstruction loss across
groups. We inject random and systematic noise of medium magnitude to
20% of the records, and report the AUROC of outlier detection in Table 4.12.
The results show that Picket provides high-quality outlier detection under
the aforementioned strategy.

Table 4.12: AUROC scores of outlier detection on the Alarm dataset. The
attributes are split into three groups for Picket.

Noise Type IF OCSVM RVAE Picket
Random 0.8848 0.8835 0.9357 0.9579

Systematic 0.7410 0.7283 0.7957 0.7967

We report the inference time overhead (runtime of PicketNet loss com-
puting and victim sample detectors) as long as the runtime of downstream
prediction of each dataset in Table 4.14, when the data come in batches of
100. We can see that the overhead of PicketNet loss computing dominates
the runtime, but it is still no more than a few seconds. As the downstream
model becomes more complex, the relative overhead introduced by Picket
would be reduced.

Table 4.13: Training time of PicketNet for each dataset.

Dataset Wine Adult Restaurant Marketing Titanic HTRU2

Training
Time (sec) 1953 8256 3794 4581 1693 189
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Figure 4.12: Attribute-wise scalibility of PicketNet

Table 4.14: Inference overhead of Picket and runtime of downstream predic-
tion.

Dataset Wine Adult Restaurant Marketing Titanic HTRU2

PicketNet Loss
Computing (sec) 0.1512 0.4303 0.3003 0.4048 0.2892 0.0316

Victim Sample
Detectors (sec) 0.0006 0.0009 0.0012 0.0009 0.0008 0.0004

Downstream
Prediction (LR) (sec) 0.0003 0.0010 0.0016 0.0011 0.0006 0.0003

Downstream
Prediction (SVM) (sec) 0.0003 0.0021 0.0012 0.0012 0.0006 0.0003

Downstream
Prediction (NN) (sec) 0.0004 0.0021 0.0030 0.0014 0.0005 0.0004
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4.7 Additional Experimental Results

4.7.1 Outlier Detection on Synthetic Data

We evaluate the performance of outlier detection on synthetic datasets to
understand the effects of several aspects of the data and noise, including the
strength of structure, data dimension, noise level, and magnitude of extreme
outliers. Here the term structure means dependencies between attributes.

We generate synthetic datasets as follows. Each synthetic data point
x = [x(1), x(2), . . . , x(T )]T is generated by x = Az, where z ∈ RR and A ∈
RT ×r. Each entry of z is sampled from the standard Gaussian distribution,
and each entry of A is sampled uniformly from −1 to 1. Unless otherwise
specified, we inject random noise with β = 0.2 and σ1 = 1 to 20% of the
samples by default.
Effect of Structure By performing outlier detection over synthetic
datasets that exhibit different strength of structure, we show that the
advantage of Picket over the other outlier detection methods is its ability
to capture the structure of the data. We fix T = 10 and vary r to change
the strength of structure. Smaller r indicates stronger structure and more
redundancy across attributes. The results are shown in Figure 4.13. Picket
performs better when the structure is strong, while the performance of the
other methods is not affected by the strength of structure, which indicates
that Picket is able to capture the structure of the data and benefit from it.
Effect of Data Dimension We vary the the data dimension T to study
how it affects the performance. The hidden dimension r is set to T so that
the attributes are independent. The results are shown in Figure 4.14. The
performance of all methods increases as the data dimension gets larger. The
reason is that there are more corrupted cells in corrupted samples when the
dimension increases, making them easier to be detected. Note that RVAE
performs quite well in this setting, which is not surprising since it is built
exactly on the assumption that the data come from Gaussian distributions.
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Effect of Noise Level We study the effect of noise level, including the
fraction of corrupted samples, the fraction of corrupted cells in corrupted
samples (β) and the magnitude of the random noise (σ1). Each time we
vary one of the factors and fix the others. The data dimension T is fixed
to 10, and r is fixed to 5. As is shown in Figure 4.15, when we vary the
fraction of corrupted samples, the performance of all methods keeps stable.
Figure 4.16 and 4.17 show that the performance of all methods increases
as we increase the fraction of corrupted cells in corrupted samples or the
magnitude of the random noise. These results show that the corruption
level of the corrupted samples have a more significant effect on the outlier
detection performance than the fraction of corrupted samples.
Effect of Extreme Outliers We study how the models behave under
extreme outliers with different magnitude. We corrupt 20% of the samples,
and among those samples 20% of the cells are multiplied by a scaling factor.
We vary the value of the scaling factor and report the detection performance
in Figure 4.18. As the scaling factor gets larger, the performance of all
methods increases. This is expected since more extreme values deviate more
from the normal distribution.
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Figure 4.13: Training time outlier detection over synthetic datasets that
exhibit different strength of structure.
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Figure 4.14: Training time outlier detection over synthetic datasets that
have different dimensions.
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Figure 4.15: Training time outlier detection over synthetic datasets under
different fractions of corrupted samples.

4.7.2 Outlier Detection with Cross-Validation

We evaluate the ability to detect outliers for unseen data during training
using cross-validation. We use 5 iterations of 2-fold cross-validation with a
modified t-test recommended by Dietterich and Thomas (Dietterich, 1998).
Specifically, in each iteration, we randomly split the dataset into two folds.
Then we use one fold to train the outlier detection models, and the other
to validate their performance. The results are reported in Table 4.15. The
results shows that Picket achieves the best performance among the examined
methods on all dataset-noise combinations for unseen data at training time.
In some cases, Picket is significantly better than all competing methods.
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Figure 4.16: Training time outlier detection over synthetic datasets under
different fractions of corrupted cells in corrupted samples.
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Figure 4.17: Training time outlier detection over synthetic datasets under
different noise magnitudes.

4.7.3 Training Time Outlier Detection under
Different Fraction of Corrupted Samples

We vary the fraction of corrupted samples, and report the corresponding
AUROC of training time outlier detection in Figure 4.19. The datasets we
use are Wine with poisoning attack on NN, Adult with systematic noise,
and Marketing with random noise. The random and systematic noise is in
the Medium level.

From the results we can see that the detection performance could either
increase or decrease as the fraction of corrupted samples grows, depending
on the type of noise and detection method. One one hand, the outliers
are easier to detect when they form a larger cluster; one the other hand,



102

IF OCSVM RVAE Picket

A
U

R
O

C

0.6

0.7

0.8

0.9

1.0

Scaling Factor

1 2 3 4 5 6 7 8 9 10 11

Figure 4.18: Training time outlier detection over synthetic datasets under
different levels of extreme values.

Table 4.15: AUROC of outlier detection from cross-validation. The numbers
are made bold when the corresponding method is significantly better (p
value less than 0.05) than all the others.

Dataset Noise Type IF OCSVM RVAE Picket

Wine

Random-Medium 0.8876 0.8886 0.9170 0.9252
Systematic-Medium 0.9537 0.8971 0.9123 0.9669

Poison-LR 0.9756 0.9054 0.9061 0.9781
Poison-SVM 0.9761 0.9047 0.9025 0.9787
Poison-NN 0.9877 0.8696 0.9356 0.9921

Adult Random-Medium 0.7800 0.8260 0.9019 0.9240
Systematic-Medium 0.8048 0.8217 0.8530 0.9180

Restaurant
Random-Medium 0.4814 0.4431 0.6985 0.9281

Systematic-Medium 0.4805 0.4449 0.6596 0.8778
Real* 0.5514 0.5116 0.4558 0.8978

Marketing Random-Medium 0.7539 0.7804 0.8688 0.8646
Systematic-Medium 0.6746 0.6632 0.7787 0.7810

Titanic
Random-Medium 0.6014 0.6933 0.5819 0.7709

Systematic-Medium 0.5811 0.7037 0.5557 0.7691
Real 0.5851 0.6472 0.5000 0.7314

Food Real 0.5094 0.5210 0.5180 0.5506
*Real is short for common errors in the real world.

more corrupted samples may mislead the learning of the clean distribution.
Nevertheless, Picket keeps a relatively consistent performance with either
large or small fraction of corrupted samples, while other methods may have
a large gap when the fraction varies.



103

IF OCSVM RVAE Picket

A
U

R
O

C

0.80

0.85

0.90

0.95

1.00

Fraction of Corrupted Samples (%)

5 10 15 20 25 30

(a)

IF OCSVM RVAE Picket

A
U

R
O

C

0.75

0.80

0.85

0.90

0.95

Fraction of Corrupted Samples (%)

5 10 15 20 25 30

(b)

IF OCSVM RVAE Picket

A
U

R
O

C

0.75

0.80

0.85

0.90

Fraction of Corrupted Samples (%)

5 10 15 20 25 30

(c)

Figure 4.19: AUROC of outlier detection under different fractions of cor-
rupted samples. (a) Wine under Poisoning Attack. (b) Adult under System-
atic Noise (Medium). (c) Marketing under Random Noise (Medium).

4.7.4 Training Time Outlier Detection under
Low/High Level Random/Systematic Noise

We depict the AUROC of training time outlier detection under low/high
level random/systematic noise in Figure 4.20, 4.21, 4.22, 4.23, when
20% of the samples are corrupted. The observation is quite similar to the
case of medium level noise. The performance of Picket is quite good and
consistent across different datasets and noise settings. RF and OCSVM
perform poorly on the datasets that contain textual attributes. RVAE is
competitive in some cases but fails in the others. Note that low level noise
is much harder to detect than high level noise. The reason is that samples
with high level noise tend to deviate a lot from the clean distribution, while
samples with low level noise look quite similar to the clean ones and may
not be detectable in some cases. However, low level noise will not affect the
downstream model as much as high level noise, unless it is adversarial.
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Figure 4.20: AUROC of outlier detection for random noise (Low level). The
error bars represent the standard errors.
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Figure 4.21: AUROC of outlier detection for random noise (High level). The
error bars represent the standard errors.

4.7.5 Accuracy of Downstream Models under
Random/Systematic Noise

We also study how the accuracy of the downstream models changes when
we apply different filtering methods under random and systematic noise.
We first focus on random noise. The results are shown in Tables 4.16,
4.17, 4.18. As expected, in the presence of random noise, the performance
of the downstream models drops in some cases and remains roughly the
same in the other cases if we look at CL and NF. In the cases when the
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Figure 4.22: AUROC of outlier detection for systematic noise (Low level).
The error bars represent the standard errors.
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Figure 4.23: AUROC of outlier detection for systematic noise (High level).
The error bars represent the standard errors.

downstream accuracy drops, we can see that filtering helps most of the time.
If we compare the performance of Picket and NF in Table 4.17 for Neural

Networks, we see that for Adult, Titanic, and Restaurant Picket exhibits
slightly worse test accuracy. These results are attributed to the selected
thresholds for filtering in Picket (see Section 4.5). In Figure 4.24, we show
the test accuracy of the downstream neural network for different levels of the
Picket threshold. We can see that for some datasets, random noise serves
as regularization and improves the performance of the downstream model.
Therefore, we need to tune the threshold to achieve the best performance.
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Table 4.16: Test accuracy of downstream models under random noise (Low
level) and different filtering methods.

Dataset DM* IF OCSVM RVAE Picket CL NF

Wine
LR 0.7429 0.7435 0.7427 0.7429 0.7457 0.7443

SVM 0.7447 0.7437 0.7486 0.7465 0.7465 0.7453
NN 0.7857 0.7800 0.7849 0.7941 0.8051 0.7922

Adult
LR 0.8207 0.8211 0.8127 0.8233 0.8240 0.8190

SVM 0.8181 0.8196 0.8075 0.8212 0.8238 0.8187
NN 0.7818 0.7800 0.7803 0.7816 0.7909 0.7836

Restaurant
LR 0.7318 0.7347 0.7361 0.7352 0.7375 0.7378

SVM 0.6922 0.7078 0.7123 0.6972 0.7116 0.7060
NN 0.7128 0.6982 0.7099 0.7135 0.7306 0.7182

Marketing
LR 0.7622 0.7661 0.7642 0.7663 0.7672 0.7691

SVM 0.7649 0.7668 0.7655 0.7678 0.7681 0.7708
NN 0.7362 0.7282 0.7302 0.7265 0.7261 0.7300

Titanic
LR 0.7810 0.7777 0.7832 0.7844 0.7877 0.7821

SVM 0.7799 0.7866 0.7788 0.7877 0.7888 0.7888
NN 0.7654 0.7542 0.7531 0.7654 0.7743 0.7709

*DM = Downstream Model.

Table 4.17: Test accuracy of downstream models under random noise
(Medium level) and different filtering methods.

Dataset DM* IF OCSVM RVAE Picket CL NF

Wine
LR 0.7410 0.7396 0.7410 0.7398 0.7457 0.7280

SVM 0.7441 0.7457 0.7443 0.7431 0.7467 0.7259
NN 0.7743 0.7776 0.7816 0.7776 0.7973 0.7761

Adult
LR 0.8140 0.8220 0.8233 0.8224 0.8240 0.8111

SVM 0.8109 0.8200 0.8219 0.8207 0.8238 0.8082
NN 0.7856 0.7795 0.7830 0.7850 0.7934 0.7883

Restaurant
LR 0.7342 0.7321 0.7313 0.7366 0.7375 0.7349

SVM 0.7111 0.7083 0.6898 0.6858 0.7185 0.6872
NN 0.7059 0.7064 0.7062 0.7157 0.7298 0.7210

Marketing
LR 0.7645 0.7624 0.7642 0.7656 0.7672 0.7665

SVM 0.7654 0.7639 0.7654 0.7665 0.7681 0.7669
NN 0.7267 0.7360 0.7301 0.7344 0.7311 0.7310

Titanic
LR 0.7799 0.7821 0.7777 0.7877 0.7877 0.7754

SVM 0.7810 0.7765 0.7788 0.7933 0.7888 0.7821
NN 0.7575 0.7665 0.7408 0.7765 0.7944 0.7844

*DM = Downstream Model.
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Table 4.18: Test accuracy of downstream models under random noise (High
level) and different filtering methods.

Dataset DM* IF OCSVM RVAE Picket CL NF

Wine
LR 0.7410 0.7406 0.7398 0.7418 0.7457 0.6861

SVM 0.7441 0.7414 0.7427 0.7453 0.7469 0.6806
NN 0.7865 0.7839 0.7896 0.7806 0.7941 0.7780

Adult
LR 0.8047 0.8196 0.8218 0.8224 0.8240 0.8002

SVM 0.8024 0.8196 0.8207 0.8205 0.8238 0.7971
NN 0.7853 0.7763 0.7867 0.7861 0.7982 0.7863

Restaurant
LR 0.7380 0.7369 0.7335 0.7327 0.7375 0.7416

SVM 0.7161 0.7060 0.7154 0.7126 0.7053 0.6872
NN 0.7147 0.7172 0.7155 0.7206 0.7251 0.7247

Marketing
LR 0.7653 0.7649 0.7641 0.7668 0.7672 0.7671

SVM 0.7660 0.7660 0.7659 0.7699 0.7681 0.7686
NN 0.7255 0.7265 0.7284 0.7271 0.7245 0.7295

Titanic
LR 0.7877 0.7777 0.7799 0.7799 0.7877 0.7877

SVM 0.7922 0.7810 0.7855 0.7799 0.7888 0.7844
NN 0.7609 0.7687 0.7709 0.7765 0.7866 0.7832

*DM = Downstream Model.
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Figure 4.24: Changes in test accuracy of a neural network when filtering
different fraction of the points; random noise (Medium level).
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We then turn our attention to systematic noise. The results are shown
in Table 4.19, 4.20, 4.21. Picket performs the best in most cases, but still
the numbers are quite close. Under common errors in the real world, CL
and NF are also quite close, and filtering does not help.

Table 4.19: Test accuracy of downstream models under systematic noise
(Low level) and different filtering methods.

Dataset DM* IF OCSVM RVAE Picket CL NF

Wine
LR 0.7418 0.7424 0.7478 0.7473 0.7457 0.7408

SVM 0.7422 0.7453 0.7498 0.7492 0.7473 0.7484
NN 0.7876 0.7890 0.7882 0.7976 0.8045 0.7939

Adult
LR 0.8224 0.8205 0.8209 0.8189 0.8240 0.8200

SVM 0.8203 0.8196 0.8165 0.8170 0.8238 0.8186
NN 0.7816 0.7746 0.7748 0.7779 0.7955 0.7815

Restaurant
LR 0.7336 0.7339 0.7359 0.7336 0.7375 0.7356

SVM 0.7063 0.6863 0.7035 0.7082 0.7108 0.7047
NN 0.7113 0.7072 0.7079 0.7160 0.7301 0.7201

Marketing
LR 0.7639 0.7630 0.7616 0.7644 0.7672 0.7668

SVM 0.7658 0.7634 0.7614 0.7683 0.7681 0.7676
NN 0.7316 0.7305 0.7329 0.7312 0.7324 0.7325

Titanic
LR 0.7866 0.7888 0.7799 0.7989 0.7877 0.7821

SVM 0.7899 0.7866 0.7754 0.8022 0.7888 0.7911
NN 0.7575 0.7520 0.7564 0.7598 0.7944 0.8011

*DM = Downstream Model.

4.7.6 Test Time Victim Sample Detection under
Low/High Level Random/Systematic Noise

In Table 4.23, 4.24, 4.25, 4.26, we show the F1 scores of victim sample
detection under low/high level random/systematic noise. The artificial noise
setting is the same as described in Section 4.6.3. We can see that Picket
outperforms all the other methods in most cases. MWOC performs quite
well for the Wine dataset, but it fails completely under high random noise
(the F1 score is 0.33). Similar to the case of medium noise, we observe that
the reconstruction loss from PicketNet provides signals that improve the
detection performance (see the comparison between RF and Picket).
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Table 4.20: Test accuracy of downstream models under systematic noise
(Medium level) and different filtering methods.

Dataset DM* IF OCSVM RVAE Picket CL NF

Wine
LR 0.7414 0.7388 0.7435 0.7445 0.7457 0.7316

SVM 0.7441 0.7384 0.7459 0.7463 0.7461 0.7316
NN 0.7959 0.7933 0.7918 0.7953 0.8000 0.7855

Adult
LR 0.8136 0.8156 0.8207 0.8171 0.8240 0.8098

SVM 0.8103 0.8142 0.8178 0.8159 0.8238 0.8080
NN 0.7822 0.7839 0.7843 0.7837 0.7931 0.7869

Restaurant
LR 0.7305 0.7315 0.7351 0.7383 0.7375 0.7372

SVM 0.7070 0.7008 0.7107 0.7077 0.7136 0.6964
NN 0.7198 0.7154 0.7175 0.7228 0.7346 0.7215

Marketing
LR 0.7642 0.7640 0.7660 0.7673 0.7672 0.7664

SVM 0.7670 0.7658 0.7655 0.7686 0.7681 0.7686
NN 0.7272 0.7311 0.7251 0.7281 0.7277 0.7295

Titanic
LR 0.7877 0.7821 0.7799 0.7866 0.7877 0.7877

SVM 0.7922 0.7777 0.7821 0.8022 0.7888 0.7911
NN 0.7464 0.7508 0.7464 0.7553 0.7866 0.7777

*DM = Downstream Model.

Table 4.21: Test accuracy of downstream models under systematic noise
(High level) and different filtering methods.

Dataset DM* IF OCSVM RVAE Picket CL NF

Wine
LR 0.7437 0.7359 0.7443 0.7447 0.7457 0.7100

SVM 0.7457 0.7365 0.7476 0.7455 0.7467 0.7041
NN 0.7961 0.7961 0.7990 0.8008 0.7992 0.8031

Adult
LR 0.8071 0.8055 0.8193 0.8079 0.8240 0.8011

SVM 0.8039 0.8038 0.8175 0.8060 0.8238 0.8002
NN 0.7843 0.7800 0.7834 0.7822 0.7961 0.7885

Restaurant
LR 0.7329 0.7332 0.7346 0.7371 0.7375 0.7361

SVM 0.7155 0.7051 0.7041 0.7187 0.6726 0.6925
NN 0.7100 0.7032 0.7132 0.7111 0.7232 0.7124

Marketing
LR 0.7653 0.7655 0.7638 0.7636 0.7672 0.7656

SVM 0.7656 0.7661 0.7646 0.7640 0.7681 0.7678
NN 0.7292 0.7304 0.7256 0.7258 0.7303 0.7294

Titanic
LR 0.7777 0.7788 0.7821 0.7799 0.7877 0.7877

SVM 0.7799 0.7855 0.7855 0.7799 0.7888 0.7866
NN 0.7553 0.7598 0.7654 0.7441 0.7855 0.7832

*DM = Downstream Model.
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Table 4.22: Test accuracy of downstream models under common errors in
the real world and different filtering methods.

Dataset DM* IF OCSVM RVAE Picket CL NF

Restaurant
LR 0.7388 0.7351 0.7328 0.7351 0.7404 0.7395

SVM 0.7028 0.6937 0.6922 0.7072 0.6959 0.7112
NN 0.7187 0.7176 0.7204 0.7137 0.7118 0.7215

Titanic
LR 0.7464 0.7497 0.7732 0.7475 0.7799 0.7609

SVM 0.7363 0.7363 0.7609 0.7520 0.7542 0.7598
NN 0.7274 0.7251 0.7285 0.7318 0.7095 0.7207

Food
LR 0.6628 0.6960 0.6917 0.6978 0.7163 0.6868

SVM 0.6529 0.6849 0.6720 0.6794 0.7095 0.7108
NN 0.6505 0.6443 0.6431 0.6560 0.6609 0.6597

*DM = Downstream Model.

Table 4.23: F1 scores of victim sample detection at inference time under
random noise (Low level).

Dataset DM* RF RVAE RVAE+ CCS KNN TOAO MWOC Picket

Wine
LR 0.7408 0.6910 0.7523 0.6667 0.6626 0.4971 0.8084 0.7824

SVM 0.7440 0.6918 0.7558 0.6667 0.6638 0.6016 0.8004 0.7828
NN 0.6882 0.6318 0.6456 0.6770 0.6656 0.5231 0.7202 0.6713

Adult
LR 0.8393 0.6563 0.8486 0.6696 0.7834 0.1968 0.7902 0.8685

SVM 0.8456 0.6743 0.8535 0.6691 0.8131 0.4602 0.7114 0.8714
NN 0.8017 0.5429 0.8052 0.6635 0.6806 0.1900 0.7965 0.8267

Restaurant
LR 0.7870 –# – 0.7586 0.6702 0.6441 0.7649 0.8328

SVM 0.6370 – – 0.6895 0.6351 0.6634 0.5538 0.7123
NN 0.7609 – – 0.7066 0.6643 0.6071 0.7075 0.8119

Marketing
LR 0.8503 0.6340 0.8565 0.7771 0.7913 0.6630 0.8227 0.8662

SVM 0.8590 0.6324 0.8635 0.7789 0.8034 0.6636 0.7748 0.8720
NN 0.7917 0.6197 0.7986 0.6809 0.7134 0.6665 0.7128 0.8125

Titanic
LR 0.8281 – – 0.7060 0.6487 0.4377 0.7917 0.8451

SVM 0.8547 – – 0.6750 0.6544 0.6489 0.7738 0.8731
NN 0.8343 – – 0.6678 0.6432 0.1717 0.7798 0.8544

*DM is short for Downstream Model. #RVAE is not applicable to textual attributes.
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Table 4.24: F1 scores of victim sample detection at inference time under
random noise (High level).

Dataset DM* RF RVAE RVAE+ CCS KNN TOAO MWOC Picket

Wine
LR 0.7525 0.7867 0.7950 0.6657 0.6727 0.5901 0.5860 0.8059

SVM 0.7496 0.7898 0.7984 0.6633 0.6815 0.7256 0.7295 0.8030
NN 0.6805 0.7697 0.7887 0.4560 0.6668 0.5752 0.3301 0.7803

Adult
LR 0.7969 0.7725 0.8149 0.6570 0.7593 0.2408 0.5033 0.8273

SVM 0.8035 0.7765 0.8201 0.6580 0.7700 0.4737 0.4909 0.8312
NN 0.7952 0.7781 0.8124 0.3089 0.6988 0.4284 0.4234 0.8214

Restaurant
LR 0.7457 –# – 0.7075 0.6506 0.6504 0.7111 0.8137

SVM 0.6948 – – 0.6704 0.6553 0.6567 0.5964 0.7824
NN 0.7437 – – 0.6788 0.6642 0.6119 0.6852 0.8135

Marketing
LR 0.8118 0.7044 0.8146 0.7052 0.7566 0.6645 0.7590 0.8244

SVM 0.8111 0.7022 0.8156 0.6994 0.7527 0.6652 0.7486 0.8247
NN 0.7934 0.7068 0.7999 0.6085 0.7042 0.6630 0.7042 0.8038

Titanic
LR 0.8134 – – 0.6437 0.6457 0.4383 0.7153 0.8227

SVM 0.8113 – – 0.6533 0.6354 0.6444 0.6815 0.8105
NN 0.7993 – – 0.6516 0.6328 0.2824 0.6505 0.8058

*DM is short for Downstream Model. #RVAE is not applicable to textual attributes.

Table 4.25: F1 scores of victim sample detection at inference time under
Systematic noise (Low level).

Dataset DM* RF RVAE RVAE+ CCS KNN TOAO MWOC Picket

Wine
LR 0.6826 0.5225 0.6632 0.6667 0.6474 0.4203 0.8063 0.7039

SVM 0.6658 0.5252 0.6566 0.6667 0.6328 0.4835 0.7933 0.6915
NN 0.6741 0.6010 0.5601 0.6856 0.6661 0.4980 0.6985 0.6058

Adult
LR 0.8146 0.6291 0.8176 0.6696 0.7463 0.1842 0.7412 0.8317

SVM 0.8360 0.6277 0.8418 0.6694 0.7952 0.3382 0.6374 0.8589
NN 0.8100 0.5607 0.8208 0.6026 0.6763 0.1878 0.7740 0.8262

Restaurant
LR 0.7951 –# – 0.7725 0.6274 0.6460 0.7770 0.8269

SVM 0.7080 – – 0.6524 0.6585 0.6488 0.5976 0.7321
NN 0.7633 – – 0.7143 0.6588 0.6080 0.7043 0.7897

Marketing
LR 0.8540 0.6090 0.8606 0.7855 0.7923 0.6615 0.8274 0.8724

SVM 0.8597 0.6214 0.8590 0.7939 0.7936 0.6629 0.7828 0.8676
NN 0.7892 0.5557 0.7899 0.6864 0.7142 0.6658 0.6819 0.7972

Titanic
LR 0.8064 – – 0.7235 0.6409 0.3751 0.7684 0.8300

SVM 0.8563 – – 0.6778 0.6361 0.6498 0.7867 0.8656
NN 0.8314 – – 0.6679 0.6462 0.1507 0.7667 0.8434

*DM is short for Downstream Model. #RVAE is not applicable to textual attributes.
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Table 4.26: F1 scores of victim sample detection at inference time under
Systematic noise (High level).

Dataset DM* RF RVAE RVAE+ CCS KNN TOAO MWOC Picket

Wine
LR 0.6866 0.3982 0.6697 0.6667 0.6440 0.3612 0.7826 0.6918

SVM 0.6784 0.4293 0.6712 0.6667 0.6175 0.4102 0.7688 0.6878
NN 0.6701 0.6127 0.5913 0.6876 0.6656 0.5009 0.7536 0.5967

Adult
LR 0.8100 0.7619 0.8120 0.6699 0.7234 0.1846 0.7431 0.8370

SVM 0.8156 0.7507 0.8174 0.6694 0.7463 0.3736 0.6833 0.8313
NN 0.8086 0.7341 0.8186 0.4264 0.6883 0.2859 0.7701 0.8285

Restaurant
LR 0.7552 –# – 0.7156 0.6475 0.6525 0.7221 0.8136

SVM 0.7017 – – 0.6693 0.6626 0.6594 0.5877 0.7705
NN 0.7523 – – 0.6853 0.6667 0.6123 0.7003 0.8149

Marketing
LR 0.8232 0.6981 0.8285 0.7423 0.7620 0.6634 0.7864 0.8406

SVM 0.8361 0.6703 0.8387 0.7138 0.7701 0.6653 0.7433 0.8483
NN 0.7896 0.6960 0.7991 0.6413 0.7066 0.6623 0.7176 0.8092

Titanic
LR 0.8255 – – 0.6843 0.6298 0.4501 0.7830 0.8270

SVM 0.7945 – – 0.6517 0.6120 0.6686 0.6815 0.7972
NN 0.8240 – – 0.6665 0.6349 0.2243 0.7519 0.8347

*DM is short for Downstream Model. #RVAE is not applicable to textual attributes.

4.8 Robust Mean Estimation under
Coordinate-Level Corruption

To understand the relationship between data corruption and learning per-
formance, we study robust mean estimation under fine-grained corruption
schemes. First, we introduce two new coordinate-level corruption adversaries
(models) and a new measure of distribution shift (dENTRY) that characterizes
the effect of those adversaries on the observed distribution. Second, we
present an information theoretic analysis of robust mean estimation and
prove information-theoretically optimal bounds for mean estimation over
Gaussians N (µ, Σ) under coordinate-level corruption with respect to Maha-
lanobis distance. The results hold for replacement-based corruptions as well
as missing values.
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4.8.1 Background

We review the problem of robust mean estimation and discuss models and
measures related to our study.
Robust Mean Estimation Robust mean estimation seeks to recover the
mean µ ∈ Rn of a n-dimensional distribution D from a list of i.i.d. samples
where an unknown number of arbitrary corruptions has been introduced in
the samples. Given access to a collection of N samples x1, x2, . . . , xN from D

on Rn when a fraction of them have been fully or partially corrupted, robust
mean estimation seeks to find a vector µ̂ such that ∥µ− µ̂∥ is as small as
possible. We consider two norms to measure the mean estimation error. The
first norm is the Euclidean (ℓ2) distance and the second is the scale-invariant
Mahalanobis distance defined as ∥µ− µ̂∥Σ = |(µ− µ̂)T Σ−1(µ− µ̂)|1/2, where
Σ is the covariance matrix. When the covariance matrix is the identity
matrix, the Mahalanobis distance reduces to the Euclidean distance.
Sample-level Corruption A typical model to describe worst-case corrup-
tions is that of a sample-level adversary, hereafter denoted Aϵ

1. Corruptions
introduce a shift of the distribution D, which we can measure using the total
variation distance (dTV). Total variation distance between two distributions
P and Q on Rn is defined as dTV(P, Q) = supE⊆Rn |P (E)−Q(E)| or equiv-
alently 1

2∥P −Q∥1. For two Gaussians D1 = N (µ1, Σ) and D2 = N (µ2, Σ)
with dTV(D1, D2) = ϵ < 1/2 it is that ∥µ1 − µ2∥Σ = Θ(ϵ), i.e., their total
variation distance and the Mahalanobis distance of their means are equiv-
alent up to constants. This result allows tight analyses of Gaussian mean
estimation for a bounded fraction of corruptions.

4.8.2 Coordinate-level Corruption Adversaries

We introduce two new adversaries and compare them to the sample-level
adversary Aϵ

1 from Section 4.8.1:
First, we consider an extension of Aϵ

1 to coordinates, and define a value-
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fraction adversary, denoted by Aρ
2. Given N samples from distribution D on

Rn, adversary Aρ
2 is allowed to corrupt up to a ρ-fraction of values in each

coordinate of the N samples. This adversary can corrupt a total of ρ ·N · n
values in the N samples; these values can be distributed strategically across
samples leading to cases where most of the samples are corrupted but still
the corruption per coordinate is bounded by ρN .

Second, we define the more powerful coordinate-fraction adversary Aα
3

that can corrupt all samples in the worst case. Aα
3 is allowed to corrupt up

to α-fraction of all values in the N samples, i.e., up to a total of α ·N · n
values. When α ≥ 1

n
, adversary Aα

3 can corrupt all N samples.
Adversary Comparison Aϵ

1 corresponds to the standard adversary
associated with the strong contamination model considered by Diakonikolas
and Kane (2019), which either corrupts a sample completely or leaves it
intact. Adversaries Aρ

2 and Aα
3 are more fine-grained since they can corrupt

only part of the entries of a sample. As a result, Aρ
2 and Aα

3 can corrupt
more samples than Aϵ

1 for similar budget-fractions ϵ, ρ, and α.
We formalize the comparison among Aϵ

1, A
ρ
2, and Aα

3 in the next propo-
sitions. We seek to understand when an adversary A can simulate another
A′, i.e., A can perform any corruption performed by A′.

Proposition 2. If α, ρ ≤ ϵ/n, then Aϵ
1 can simulate Aρ

2 and Aα
3 . If α ≤ ρ/n,

Aρ
2 can simulate Aα

3 .

Proposition 3. If α, ρ ≥ ϵ, then Aρ
2 and Aα

3 can simulate Aϵ
1. If α ≥ ρ,

Aα
3 can simulate Aρ

2.

These propositions show that the two adversary types (sample- and
coordinate-level) can simulate each other under different budget conditions,
thus, enabling reductions between the two types.

Proposition 2 implies that we can reduce coordinate-level corruption
to sample-level corruption by considering Aα

3 as Aϵ
1 with ϵ = αn. This

reduction guarantees that any algorithm for mean estimation with guarantees



115

for Aϵ
1 enjoys the same guarantees for coordinate-level corruption when

ϵ ≥ α · n. Similarly, Proposition 3 means that any lower-bound guarantee
on mean estimation for Aϵ

1 also holds for Aα
3 when ϵ = α. However, this

characterization is loose as the gap between α and αn is large, raising the
question: Are there distributions for which this gap is more tight and are
there data properties we can exploit to reduce the dimensional factor of n?
Next, we show that structure in data affects the power of coordinate-level
corruption and introduces information-theoretically tight bounds for mean
estimation under coordinate-level corruption.

4.8.3 Distribution Shift in Coordinate-level
Corruption

We propose a new type of distribution shift metric, referred to as dENTRY,
which can capture fine-grained coordinate-level corruption:

Definition 4.1 (dENTRY). Consider the coupling γ of two distributions P, Q,
i.e., a joint distribution of P and Q such that the marginal distributions
are P, Q. Let the set of all couplings of P, Q be Γ(P, Q), and define for
x, y ∈ Rn, I(x, y) = [1x1 ̸=y1 , . . . ,1xn ̸=yn ]⊤. For D1, D2 on Rn,

d1
ENTRY(D1, D2) = inf

γ∈Γ(D1,D2)

1
n
∥ E

(x,y)∼γ
[I(x, y)] ∥1

d∞
ENTRY(D1, D2) = inf

γ∈Γ(D1,D2)
∥ E

(x,y)∼γ
[I(x, y)] ∥∞

The following theorem shows the relation between d1
ENTRY and Aα

3 .

Theorem 4.2. Let D1, D2 be two distributions such that d1
ENTRY(D1, D2) =

α′. Aα
3 corrupts α fraction of N samples from D1. If α > 2α′, Aα

3 has a
way to make corruptions so that with probability at least 1− e−Ω(α2N) it is
indistinguishable whether the N samples come from D1 or D2. If α < α′/4,
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(a) Corruption of both coordinates
(B) Corruption of one coordinate

(b) Corruption of one coordinate

Figure 4.25: Comparing dTV and dENTRY: D1 is the original 2D uniform
distribution. D2 is obtained after corruptions from Aα

3 with α = 1/2, and
D3 after corruption from Aα

3 with α = 3/8.

no matter how Aα
3 makes corruptions, with probability at least 1− e−Ω(α2N),

we can tell that the N samples come from D1.

The relation in the above theorem also holds for d∞
ENTRY and Aρ

2. The
theorem shows that dENTRY gives a tight asymptotic bound on the power of
coordinate-level adversaries.

Intuitively d1
ENTRY(D1, D2) represents how many coordinates need to

be corrupted (out of n on average) for D1 and D2 to be indistinguishable.
Then, given the original distribution D and sufficiently large sample size,
{D′ : d1

ENTRY(D, D′) ≤ α} represents the set of distributions that Aα
3 can

show us after corruption, and thus d1
ENTRY allows us to capture all possible

actions of this adversary. Similarly, d∞
ENTRY captures all possible actions of

Aρ
2. We use dENTRY when both d1

ENTRY and d∞
ENTRY apply.

We compare d1
ENTRY and dTV in Figure 4.25. We consider a 2D uniform

distribution D1 and two corrupted versions D2 and D3. D2 is obtained
after an adversary corrupts both coordinates for samples from the upper-left
quadrant of D1 and one of the coordinates for samples in the lower-left and
upper-right quadrant of D1. D3 is obtained after an adversary corrupts the
horizontal coordinate for samples obtained from the left-most 3/4 of D1.
In both cases, dTV(D1, D2) = dTV(D1, D3) = 3/4 since 3/4 of the samples
from D1 are corrupted. dENTRY is different: From Definition 4.1, we have
d1

ENTRY(D1, D2) = 1/2 and d1
ENTRY(D1, D3) = 3/8, thus, we can distinguish
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Table 4.27: Our results for robust mean estimation (||µ̂− µ||Σ) under Aϵ
1

(sample-level adversary), Aρ
2, and Aα

3 (coordinate-level adversaries). The
results are for Gaussian distributions.

Structure Aϵ
1 Aρ

2 Aα
3

No Structure Θ(ϵ) Ω(ρ
√

n), O(ρn) Θ(αn)
Linear structure A Θ(ϵ) O(ρ n

mA
) Θ(α n

mA
)

the two due to the differences in the distances.

4.8.4 Information-theoretic Bounds for Gaussians

We analyze robust mean estimation under coordinate-level corruptions for
Gaussian distributions, the de facto choice in the robust mean estimation
literature. This choice enables us to draw comparisons to prior mean
estimation approaches. Our results are summarized in Table 4.27. We first
show an impossibility result for arbitrary Gaussian distributions: in the
general case, the information-theoretic analysis based on dTV and sample-
level adversaries (Tukey, 1975; Diakonikolas et al., 2019a) is tight even
for coordinate-level corruption adversaries. However, we show that this
result does not hold for distributions that exhibit structure, i.e., redundancy
across coordinates. We show that, for structured Gaussian distributions
and corruptions that lead to a dENTRY-bounded distribution shift, one must
exploit the structure to achieve information-theoretically optimal error.
Mean Estimation of Arbitrary Gaussians We consider a Gaussian
distribution N (µ, Σ) with full rank covariance matrix Σ. We assume that
observed samples are corrupted by a coordinate-level adversary. We first
present a common upper-bound on the mean estimation error for both Aρ

2

and Aα
3 , and then introduce the corresponding lower-bounds.

We obtain an upper-bound on ∥µ̂−µ∥Σ by using Proposition 2: A sample-
level adversary can simulate a coordinate-level adversary when ϵ = α ·n. But,
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for Adversary Aϵ
1 the Tukey median achieves optimal error ∥µ̂− µ∥Σ = Θ(ϵ)

when ϵ < 1/2. Thus, the Tukey median yields error O(αn) for the coordinate-
level adversaries Aρ

2 (when ρ = α) and Aα
3 , when α · n < 1/2. Note that the

condition α ·n < 1/2 is necessary for achieving such an upper bound. When
α · n ≥ 1/2, the coordinate-level adversary is able to corrupt more than half
of the samples in the worst case, leading to unbounded error, which shows
exactly the power of the coordinate-level adversary.

We now focus on lower-bounds for the mean estimation error. We first
consider adversary Aρ

2 who can corrupt at most ρ-fraction of each coordinate
in the samples. For this setting, the optimal estimation error depends on
the disc of the covariance matrix Σ, where disc is defined as:

Definition 4.3. (disc) For a positive semi-definite matrix M , define
s(M)ij = Mij/

√
MiiMjj and disc(M) = maxx∈[−1,1]

√
xT s(M )x.

Theorem 4.4. Let Σ ∈ Rn×n be full rank. Given a set of i.i.d. samples
from N (µ, Σ) where the set is corrupted by Aρ

2, any algorithm for estimating
µ̂ must satisfy ∥µ− µ̂∥Σ = Ω(ρ · disc(Σ−1)).

From this theorem, we obtain the next corollary for the mean estimation
error for Aρ

2:

Corollary 4.5. Given a set of i.i.d. samples from N (µ, Σ) where the set
is corrupted by Aρ

2, any algorithm that outputs a mean estimator µ̂ must
satisfy ∥µ− µ̂∥Σ = Ω(ρ

√
n).

We see that there is a gap between the lower and upper bound on the
mean estimation error for Aρ

2. However, we show that such a gap does not
hold for Aα

3 . For Aα
3 , the lower bound is the same as the upper bound

presented above. Specifically, for the coordinate-fraction adversary Aα
3 , it

is impossible to achieve a mean estimation error better than O(αn) in the
case of arbitrary Gaussian distributions:
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Theorem 4.6. Let Σ ∈ Rn×n be full rank. Given a set of i.i.d. samples
from N (µ, Σ) where the set is corrupted by Aα

3 , any algorithm that outputs
a mean estimator µ̂ must satisfy ∥µ̂− µ∥Σ = Ω(αn).

To gain some intuition, consider Aα
3 with α ≥ 1

n
. In this case, Aα

3 can
concentrate all corruption in the first coordinate of all samples, and hence,
we cannot estimate the mean for that coordinate. An immediate result
is that for worst-case coordinate-corruptions, i.e., corruptions introduced
by Aα

3 , over arbitrary Gaussian distributions the mean estimation error is
precisely ∥µ− µ̂∥Σ = Θ(αn).
Mean Estimation of Structured Gaussians The previous analysis for
Aα

3 shows that we cannot improve upon existing algorithms. However, real-
world data often exhibit structural relationships between features such that
one may be able to infer corrupted values via other visible values (Wu et al.,
2020). We show that in the presence of structure due to dependencies, one
must exploit the structure of the data to achieve information-theoretically
optimal error for mean estimation. To show that structure is key, we focus on
samples xi ∈ Rn that lie in a low-dimensional subspace such that xi = Azi,
where A ∈ Rn×r represents the structure. Such low-rank subspace-structure
is natural in many real-world scenarios and we assume linearity for the
convenience of analysis. In fact, linear structure can also encode more
complex structures (e.g., polynomials) if one considers an augmented set
of features. We assume zi comes from a non-degenerate Gaussian in Rr.
We consider a data sample x = Az before corruption and assume that
corruption is introduced in x.

In this setting, the coordinate-level adversary has limited effect in mean
estimation due to the redundancy that A introduces. We can measure
the strength of this redundancy with respect to coordinate-level corruption
by considering its row space. The coordinates of x = Az, and hence, the
corrupted data, exhibit high redundancy when many rows of A span a small
subspace. We define a quantity mA to derive information-theoretic bounds
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for structured Gaussians.

Definition 4.7 (mA). Given matrix A ∈ Rn×r, mA is the minimum number
of rows one needs to remove from A to reduce the dimension of its row space
by one.

When A = I is the identity matrix, it is mI = 1 and we can remove
any row to reduce its row space; we have low redundancy. But, for A =
[e1, . . . , e1]⊤ where e1 has 1 in its first coordinate and 0 in the others,
mA = n since we need to remove all e1’s to reduce A’s row space. It holds
that 1 ≤ mA ≤ n.

We next show that the higher the value that mA takes, the weaker a
coordinate-level adversary becomes due to the increased redundancy. Intu-
itively, the coordinate-level adversary has to spend more budget per sample
to introduce corruptions that will counteract the redundancy introduced
by matrix A. Theorem 4.8 shows that Aρ

2,Aα
3 cannot alter the original

distribution too far in dTV, leading to information-theoretically tight bounds
for mean estimation.

Theorem 4.8. Given two probability distributions D1, D2 on Rn with support
in the range of linear transformation A,

(mA/n) · dTV(D1, D2) ≤ dENTRY(D1, D2) ≤ dTV(D1, D2)

Here, D with support in the range of A means a distribution D that is
generated such that it lies on the subspace generated by A, i.e., there is
zero measure outside of this subspace. Since dTV between two Gaussians is
asymptotically equivalent to the Mahalanobis distance between them, we
get the following corollary using dENTRY.

Corollary 4.9. Let N (µ, Σ) be a Gaussian with support in the range of
linear transformation A. For µ̂ such that dENTRY(N (µ, Σ),N (µ̂, Σ)) ≤ α,
∥µ− µ̂∥Σ = O(α n

mA
).
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Note that the upper bound above is under the condition that α <

mA/(2n) when the corruption is limited to missing entries, and α < mA/(4n)
when replacement is allowed. Otherwise, more than half of the samples can
be corrupted and unrecoverable (the proof of Theorem 4.10 provides the
conditions for recovery, and the break points for mean estimation follow).
Corollary 4.9 shows that Aρ

2 (when ρ = α) and Aα
3 can only shift structured

distributions by O(α n
mA

). This result suggests that we can improve upon
the previous O(αn) mean estimation guarantees. Furthermore, the following
theorem proves that this upper bound is tight under Aα

3 .

Theorem 4.10. Let N (µ, Σ) be a Gaussian with support in the range of
linear transformation A and let Aα

3 adversarially corrupt the samples. Any
algorithm that outputs a mean estimator µ̂ must satisfy ∥µ− µ̂∥Σ = Ω(α n

mA
).

While our analysis focuses on Gaussian distributions, our analysis frame-
work generalizes to any class of distributions that admits an efficient ro-
bust mean estimator under sample-level corruption, e.g. distributions with
bounded covariance. This generality stems from our general reduction
scheme between coordinate-level and sample-level corruption.

4.8.5 Proofs

Proof of Proposition 2

Proof. Suppose that A3 affects at least one entry in a subset S of all samples.
As at least one coordinate per sample is corrupted, S must be at most an
α-fraction of all samples; since α ≤ ϵ/n the sample-level adversary can
corrupt the entirety of every sample partially corrupted by the coordinate-
level adversary, and thus, it is a stronger adversary given this condition.
The proof for A2 is similar.

Proof of Proposition 3
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Proof. If α, ρ ≥ ϵ, similarly to the proof of Proposition 2, A2 and A3 can
simulate A1 by placing all its corruptions on the ϵN coordinates corrupted
by A1. If α ≥ ρ, A3 can simulate A2 by corrupting the coordinates corrupted
by A2 since A2 can never corrupt more than ρ-fraction of coordinates in
expectation. On the other hand, if α ≤ ρ/n, A2 can corrupt whatever
coordinates A3 decides to corrupt since A3 cannot corrupt more than αn-
fraction of one coordinate. Thus, the three statements hold.

Proof of Theorem 4.2

Proof. We first show that when α > 2α′, Aα
3 has a way to make corruptions

so that with probability at least 1− e−Ω(α2N) it is indistinguishable whether
the N samples come from D1 or D2. From the definition of d1

ENTRY, if
we take the coupling γ that achieves the infimum, changing α′ fraction of
the entries per sample on average will make D1 indistinguishable from D2.
Therefore, if the adversary corrupts the entries of the N samples according
to the coupling γ, by Hoeffding’s inequality, the probability that more than
2α′ fraction of the entries need to be changed to make it impossible to tell
whether the samples come from D1 or D2 is less than e−Ω(α2N).

Then we show that when α < α′/4, no matter how Aα
3 makes corruptions,

with probability at least 1 − e−Ω(α2N), we can tell that the N samples
come from D1. Since d1

ENTRY(D1, D2) = α′, by Monge-Kantorovich duality
theorem (see e.g. Theorem 5.10 of this book (Villani, 2009)), there exists a
function u : (R∪{⊥})n → [0, 1], where ⊥ denotes a missing entry, such that
u(x)− u(y) ≤ 1

n
∥x− y∥0 and ED1 [u(x)]− ED2 [u(x)] = α′. This is because

the optimal coupling of D1, D2 for d1
ENTRY is represents the optimal to the

primal Kantorovich problem where c(x, y) = 1
n
∥I(x, y)∥1, while u represents

the optimal to the dual problem. We use u to distinguish whether the
corrupted samples come from D1 or D2 by checking whether the expectation
of u according to the empirical distribution D̂ that we observe is closer
to the expectation corresponding to D1 or D2. By Hoeffding’s inequality,
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the empirical distribution D̂1 of the N samples before corruption satisfies
|ED1 [u(x)]−ED̂1

[u(x)]| ≤ α′/4 with probability at least 1− e−Ω(α2N). After
corruption, we have that |ED̂[u(x)]− ED̂1

[u(x)]| ≤ α by the bound on the
number of corrupted entries and the Lipschitz property of u. Thus, with
probability at least 1− e−Ω(α2N), |ED1 [u(x)]− ED̂[u(x)]| ≤ α′/4 + α < α′/2
while |ED2 [u(x)]−ED̂[u(x)]| > α′/2, which allows us to distinguish between
D1 and D2.

In the case of the value-fraction adversary Aρ
2 that can corrupt ρ-fraction

of values in each coordinate, d∞
ENTRY can be bound similarly in Θ(ρ) by

applying Hoeffding’s inequality and Kantorovich duality theorem for each
coordinate such that ui(x) − ui(y) ≤ ∥xi − yi∥0 and then comparing the
mean for each coordinate. Therefore, for both Aρ

2 and Aα
3 , dENTRY is a tight

characterization of the coordinate-level adversary.

Proof of Theorem 4.4

Proof. Let disc(Σ−1) = maxx∈[−1,1]

√
xT s(Σ−1)x and let v be the vector with

entries (Σ−1
ii )−1/2. To complete the proof, we will show that d∞

ENTRY(N(µ, Σ),
N(µ + ρv, Σ)) ≤ ρ. To do this, we are going to use a hybrid argument
showing that by only hiding ρ fraction of the entries in the i-th coordinate,
N(µ, Σ) and N(µ + ρei/Σ−1/2

ii , Σ)) become indistinguishable where ei is
the vector that has 1 in its ith coordinate and 0 in the others. This is
because, dTV(N(µ, Σ), N(µ + ρei/Σ−1/2

ii , Σ))) ≤ ρ. By applying this ar-
gument sequentially for every coordinate, N(µ, Σ) and N(µ + ρv, Σ) are
indistinguishable under an A2 adversary. Since the total distance between
µ and µ + ρv is at least ρ · disc(Σ−1), the theorem follows.

Proof of Corollary 4.5

Proof. We prove the following lemma that implies Corollary 4.5 when com-
bined with Theorem 4.4.

Lemma 4.11. For any n× n PSD matrix M , disc(M) ∈ [
√

n, n]
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We have that s(M ) is a PSD matrix with diagonal elements equal to 1.
Consider a random x with uniformly random coordinates in {−1, 1}. Then,
E[xT s(M)x] = Trace(s(M)) = n. Thus, maxx∈[−1,1]

√
xT s(M)x ≥

√
n.

This lower bound is tight for M = I.
For the upper-bound, we notice that since s(M) is PSD, it holds that

|s(M)ij + s(M)ji| ≤ 2. To see this notice that xT s(M)x ≥ 0 for both
x = ei + ej and x = ei − ej.

Given this, we have that xT s(M)x ≤ 1
2

∑
ij |s(M)ij + s(M)ji| ≤ n2.

This gives the required upper-bound. Notice that the upper-bound is tight
for the matrix M consisting entirely of 1’s.

Proof of Theorem 4.6

Proof. With a budget of α, A3 can concentrate its corruption on one par-
ticular coordinate, say the first coordinate. If αn ≥ 1, we will lose all
information for the first coordinate, making mean estimation impossible.
Since α < 1/n, A3 can corrupt αn-fraction of first coordinates of all samples.
Since the marginal distribution with respect to the first dimension is a uni-
variate Gaussian, information-theoretically any mean estimator of the first
coordinate must be Ω(αn)-far from the true mean of the first coordinate.

Proof of Theorem 4.8

Proof. First, we show the case for d1
ENTRY.
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d1
ENTRY(D1, D2) ≤ dTV(D1, D2) follows from

d1
ENTRY(D1, D2) = inf

γ∈Γ(D1,D2)

∥E(x,y)∼γ [I(x, y)] ∥1

n

= inf
γ∈Γ(D1,D2)

E
(x,y)∼γ

[
||x− y||0

n

]
≤ inf

γ∈Γ(D1,D2)
Pr

(x,y)∼γ
[x ̸= y]

= dTV(D1, D2)

Then we show that d1
ENTRY(D1, D2) ≥ mA

n
dTV(D1, D2).

We first show that for any x ̸∈ ker(A), ||Ax||0 ≥ mA. Suppose by way
of contradiction that Πi Ax is nonzero for fewer than mA values of i. Call
the rows of A vT

0 , . . . , vT
n−1 and let S be the subspace of Rr spanned by the

vi’s. As x ̸∈ ker(A), Ax is nonzero. Hence, ⟨x, vi⟩ is nonzero for some i so
ΠS x is nonzero.

Now, let B be a basis for S containing ΠS x. Consider the subspace S ′ of
S spanned by {vi | ⟨x, vi⟩ = 0}. As ΠS′ x = 0, ΠS x cannot be an element
of S ′ and so B is not a basis for S ′. Thus, the dimension of S ′ is less than
that of S; as |{vi}| − |{vi | ⟨x, vi⟩ = 0}| < mA we have a contradiction of
the definition of mA. Thus, if x ≠ 0 ∈ Rr, Πi Ax must be nonzero for at
least mA values of i, and hence ||Ax||0 ≥ mA.

Now, suppose that (x, y) ∼ γ for some γ ∈ Γ(D1, D2). Then, x = Ax′

and y = Ay′ for some x′, y′ ∈ Rr. If x ̸= y, then Ax′ ≠ Ay′ so x′ − y′ ̸∈
ker(A). Thus

||A(x′ − y′)||0 ≥ mA

by the above, and so

E
(x,y)∼γ

[||x− y||0] ≥ mA Pr
(x,y)∼γ

[x ̸= y]
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Therefore, we have that

d1
ENTRY(D1, D2) = inf

γ∈Γ(D1,D2)

∥E(x,y)∼γ [I(x, y)] ∥1

n

= inf
γ∈Γ(D1,D2)

E
(x,y)∼γ

[
||x− y||0

n

]

≥ inf
γ∈Γ(D1,D2)

mA

n
Pr

(x,y)∼γ
[x ̸= y]

= mA

n
dTV(D1, D2)

In the case of d∞
ENTRY, the left hand side (d∞

ENTRY(D1, D2) ≥ mA

n
dTV(D1, D2))

follows from above by using the fact that ∥x∥1 ≤ n∥x∥∞ for x ∈ Rn. The
right hand side follows from

d∞
ENTRY(D1, D2) = inf

γ∈Γ(D1,D2)
∥ E

(x,y)∼γ
[I(x, y)] ∥∞

= inf
γ∈Γ(D1,D2)

max
i

Pr
(x,y)∼γ

[xi ̸= yi]

≤ inf
γ∈Γ(D1,D2)

Pr
(x,y)∼γ

[x ̸= y]

= dTV(D1, D2)

Therefore, the theorem holds for the dENTRY metric.

Proof of Corollary 4.9

Proof. We can obtain the given upper bound relating the distance to dTV.
Since dTV(N (0, 1),N (µ, 1)) = erf( µ

2
√

2), for small µ > 0, erf( µ

2
√

2) = Θ(µ).
Then

dTV(N (µ, Σ),N (µ′, Σ)) = dTV(N (0, I),N (Σ−1/2(µ′ − µ), I))

= dTV(N (0, 1),N (∥Σ−1/2(µ′ − µ)∥2, 1))

= dTV(N (0, 1),N (∥µ′ − µ∥Σ, 1)) = Θ(∥µ′ − µ∥Σ)
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Applying Theorem 4.8, we get that ∥µ− µ′∥Σ = O(α n
mA

).

Proof of Theorem 4.10

Proof. We prove the theorem for both missing values and replaced values.
In the case of missing values, for the lower bound, Aα

3 may corrupt at
most αn

mA
-fraction of the samples so that the coordinates are non-recoverable

and shift part of the original distribution to anywhere along the axes of
missing coordinates. Then the proof similarly follows the lower bound
proof for estimating the mean of a Gaussian corrupted by Aϵ

1. Hence, since
we cannot distinguish between two Gaussians that share 1 − αn

mA
of mass,

∥µ̂− µ∥Σ = Ω(α n
mA

).
For Aα

3 that replaces values, we prove the following lemma and the
theorem follows.

Lemma 4.12. The adversary corrupts δ coordinates of a sample. Let x̃ be
the corrupted sample and x∗ = Az∗ be the original. We can only information-
theoretically recover x∗ from x̃ if and only if δ < mA

2 . Furthermore, if δ < mA

2

then ∥x̃−Az∗∥0 < δ and ∥x̃−Az′∥0 ≥ mA − δ for any z′ ̸= z∗.

Assume that if δ < mA

2 then ∥x̃−Az∗∥0 < δ and ∥x̃−Az′∥0 ≥ mA − δ

for any z′ ̸= z∗. This implies that we can consider all possible subsets I ⊆ U
where |I| = n− mA

2 and solve the linear system of equations of x̃I = AIz

and output the solution z, which achieves smallest hamming distance to x̃,
as z∗. If δ ≥ mA

2 , it is information theoretically impossible to recover x∗ as
arg minz ∥x̃−Az∥0 may not be unique: since the corruptions are adversarial,
z∗ may not be part of the set of minimizers.

Assume δ < mA

2 . Without loss of generality, let A be full rank. If not,
the proof follows by replacing r with rank(A) and considering the kernel of
A. Let Ai denote the i-th row of matrix A and U = {Ai : i ∈ [n]}. Let ∆
denote the set of Ai’s that correspond to the corrupted coordinates of x̃ so
that |∆| = δ. Define S ⊇ ∆ to be the smallest subset of U such that row
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space dimension (rank) of AU\S is 1 less than that of A. By definition of
mA, |S| ≥ mA.

The entries corresponding to rows U \ S are uncorrupted, so if we solve
the linear system AU\Sz = x̃U\S , we will a get a 1-dimensional solution space
for z. Thus, any z in this line will give at least |U \ S| matching coordinates
when multipied to A with x∗. Now, we can generate |S| many solutions,
each corresponding to the solution to the linear system AU\S∪{s}z = x̃U\S∪{s}

for each s ∈ S.
For s that corresponds to an uncorrupted entry in x̃, the solution to the

linear system is the true solution z∗ since none of the values in the system
was corrupted. That gives us at least |S| − δ solutions out of |S| solutions
to be exactly z∗. Regardless of how the adversary corrupts the δ entries, if
δ < mA

2 , then the majority solution will always be z∗ since |S|− δ > mA

2 > δ.
Furthermore, for z′ ̸= z∗, z′ can match at most |U \ S|+ δ ≤ n−mA + δ

coordinates of x̃, i.e. ∥Az′ − x̃∥0 ≥ mA − δ. However, if δ ≥ mA

2 , then
there is no clear majority so it is impossible to distinguish between the
true solution and the other solution. In fact, when δ is strictly greater and
corruptions adversarially chosen, ∥Az∗ − x̃∥0 = δ and there exists some z′,
∥Az′ − x̃∥0 = mA − δ < ∥Az∗ − x̃∥0.

4.9 Conclusion

We introduced Picket, a first-of-its-kind system that safeguards against
data corruptions for machine learning pipelines over tabular data either
during training or deployment. To design Picket, we introduced Picket-
Net, a novel self-supervised deep learning model that corresponds to a
Transformer network for tabular data. Picket is designed as a plugin that
can increase the robustness of any machine learning pipeline.

In addition, we studied the problem of robust mean estimation under
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coordinate-level corruption. We proposed dENTRY, a new measure of dis-
tribution shift for coordinate-level corruptions and introduced adversary
models that capture more realistic corruptions than prior works. We pre-
sented an information-theoretic analysis of robust mean estimation for these
adversaries and showed that when the data exhibits redundancy one should
first fix corrupted samples before estimation.
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5 task-specific data selection for
finetuning machine learning models

5.1 Introduction

Finetuning foundation models (Bommasani et al., 2021) has become a
popular paradigm for building task-specific machine learning applications.
Foundation models such as BERT (Devlin et al., 2019) and LLaMA (Touvron
et al., 2023) are large-scale models pretrained on massive unlabeled data
across a wide range of domains. Those models can be specialized to specific
downstream tasks through supervised or unsupervised finetuning using task-
specific datasets. Supervised finetuning further trains a foundation model
on a dataset equipped with labels specific to the target task.

Example 5.1. A practitioner wants to build a model to extract chemical-
protein relations from biomedical paragraphs. The practitioner first collects
and annotates a set of 4000 paragraphs. Then instead of training a model
from scratch, the practitioner takes a pretrained BERT model and finetunes
its weights on the annotated paragraphs in a supervised way.

Unsupervised finetuning (also called continued pretraining) takes an
unlabeled dataset that is relevant to the target task and trains a foundation
model on it in an unsupervised way similar to pretraining. The goal of
continued pretraining is to tailor the model to a specific domain which is
the focus of the target task.

Example 5.2. Consider a practitioner with the same purpose as in Exam-
ple 5.1. This time the practitioner has an extra set of 2.7 million biomedical
papers crawled from the web but does not have enough budget to label them.
To fully utilize the unlabeled data, they continue pretraining the BERT model
on the unlabeled texts and then finetunes it on the annotated dataset.
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Continued pretraining and supervised finetuning can lead to significant
improvement in downstream tasks, but its effectiveness heavily relies on the
right choice of pretraining data. For example, as is shown by Gururangan
et al. (2020), continued pretraining of RoBERTa (Liu et al., 2019) on
2.7 million biomedical papers before finetuning improves its performance
on chemical-protein relation extraction by over 2 points in F1 score. On
the other hand, continued pretraining on the same amount of texts from
irrelevant domains leads to a drop of over 2 points. In practice, while
web-crawled cross-domain data pools such as Common Crawl1 and The
Pile (Gao et al., 2020)) are easily accessible, the vast majority of the data
are irrelevant to the target task. Given the volume of those candidate
pools (e.g., Common Crawl contains 250 billion pages), it is impractical to
manually select the data that is distributed like the use cases in the target
task. Therefore, automated task-specific data selection becomes critical.

In this chapter, we seek a framework to select task-specific data for ML
model finetuning. Given a small set of representative examples from a target
task, our goal is to select a pretraining set from a massive corpus.

Many works have focused on task-specific data selection but they fall
short in several key characteristics. Methods relying on heuristics such
as similarity search (Ruder and Plank, 2017b; Gururangan et al., 2020;
Aharoni and Goldberg, 2020; Yao et al., 2022; Xia et al., 2024) or binary
classification (Aharoni and Goldberg, 2020) do not ensure that the selected
data is distributed like the data in the target task. DSIR (Xie et al., 2023)
selects text data to match a target distribution in an n-gram feature space,
which cannot capture high-level semantics. Furthermore, existing methods
are not robust to near-duplicates in the candidate pool. They treat near-
duplicates as distinct examples, and hence examples with near-duplicates will
be overrepresented in the selected set. A principled and holistic framework
for task-specific data selection is missing. Such a framework should satisfy

1https://commoncrawl.org/

https://commoncrawl.org/


132

the following requirements.
(Distribution Alignment) First, the distribution of the selected data

should match the distribution of the target task. Distribution alignment
is essential for a model to learn the target distribution and enable sample-
efficient finetuning for the target task (Shachaf et al., 2021). The framework
should be generic to support distribution alignment in any feature space.

(Diversity) Second, the selected data should be diverse so that the
model can learn a wide range of domain knowledge rather than overfitting
specific examples. In practice, a candidate pool created by web crawling
and the integration of multiple sources may contain a large portion of near-
duplicates (Fröbe et al., 2021; Lee et al., 2022). For example, the study by
Fröbe et al. (2021) on several snapshots of ClueWeb2 and Common Crawl
shows that 14% to 52% of the documents are near-duplicates. Including
near-duplicates into the training set unconsciously can compromise diversity
and negatively impact model performance (Lee et al., 2022; Hernandez et al.,
2022). Therefore, a mechanism to deal with near-duplicates is essential.

(Scalability) Finally, the selection algorithm should be efficient, consid-
ering the increasing scale of modern data pool. For instance, OpenWeb-
Text2 (Gao et al., 2020) contains 69 million documents, and Common Crawl
contains 250 billion pages.

To this end, we present a framework to select task-specific data for
finetuning that meets the aforementioned requirements. Our framework
approaches data selection as an optimization problem that allows a smooth
trade-off between distribution alignment and diversity. The optimization
problem also admits efficient algorithms to compute the optimal solution.
Our technical contributions are as follows.

1. We formulate task-specific data selection as an optimization problem
based on optimal transport, assigning probabilities of being selected to
the candidate pool. The objective function consists of a distribution

2https://lemurproject.org/

https://lemurproject.org/
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alignment loss, and a regularization term to encourage diversity among
the selected data. The distribution alignment loss quantifies the
difference between the distribution assigned to the candidates and
the empirical distribution of the target-task representatives. We use
the probability transportation cost between the two distributions
as the distribution alignment loss, following the formula of optimal
transport, which is flexible to be defined in any metric space and
can effectively measure the difference between distributions with non-
overlapping supports. In addition, optimal transport is closely related
to generalization error (Rodríguez Gálvez et al., 2021).

2. We make our framework robust to near-duplicates in the corpus by
incorporating kernel density estimation (Parzen, 1962) into the regular-
ization term. By discounting the probability mass assigned to points
with near-duplicates, our framework maintains consistent performance
when the level of duplication varies.

3. We show the connection between the optimal solution to the optimiza-
tion problem and nearest neighbor search. This connection allows us to
develop efficient algorithms employing approximate nearest-neighbor
search techniques (Douze et al., 2024).

We conduct extensive experiments to validate the effectiveness of our
framework. We focus on natural language processing tasks where foundation
models have shown great advancements. For eight text classification tasks
from diverse domains, we continue pretraining transformer-based foundation
models on the selected data before finetuning them on the domain-specific
tasks. The results show that our method improves the average F1 score by
2.6 points compared to the base model, and outperforms all the competing
methods in 11 out of the 16 settings. We also show that when we duplicate
1% of the examples in the corpus for 1000 times, our method maintains
consistent performance, while the competing methods suffer a drop of at
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least 2.5 points in F1 scores on average across datasets. In addition, for
task-specific instruction tuning, our framework beats the state-of-the-art
method (Xia et al., 2024) by up to 5 points in F1 scores. Our method is
efficient, taking 28 hours to preprocess a corpus of 150M examples and less
than 1 hour for each task-specific selection. In summary, our framework
is effective in improving the performance of task-specific finetuning and is
practical in large-scale settings.

5.2 Preliminaries

We use δx to denote the Dirac measure centered at x. For a set A we have

δx(A) =

1, if x ∈ A

0, otherwise

Let (A, f) be a metric space where A is a set and f : A×A → R≥0 is a
distance function. Consider two discrete distributions µ on U ⊆ A and ν

on V ⊆ A, where both U and V are finite sets. Let ui be the ith example
in U and µ = ∑|U|

i=1 µiδui
where µi is the probability mass assigned to ui.

Similarly, let ν = ∑|V|
j=1 νjδvi

, where νj is the probability mass assigned to vj ,
the jth example in V. Let γ ∈ R|U|×|V|

≥0 be a transport of probability mass
between µ and ν, where γij is amount of probability mass transported from
ui to vj. Assume that the cost of transporting one unit of probability mass
from ui to vj is f(ui, vj), the distance between ui and vj. The Wasserstein
(a.k.a. optimal transport) distance between µ and ν is the minimal cost of
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transporting all the probability mass from U to V :

W (µ, ν) = min
γ∈R|U|×|V|

≥0

|U|∑
i=1

|V|∑
j=1

γijf(ui, vj)

subject to
|V|∑
j=1

γij = µi,∀i ∈ 1, 2, . . . , |U|

|U|∑
i=1

γij = νj,∀j ∈ 1, 2, . . . , |V|

5.3 Our Framework

We formally state the problem of task-specific data selection and provide an
overview of our framework.
Problem Statement We assume access to a set of M representatives
Q = {qi}M

i=1 from the target task, which we call query examples. Consider
a candidate pool D = {xj}N

j=1 containing N examples from a wide range
of domains. Note that Q and D are multisets that may contain duplicates.
We aim to select B task-specific examples from the candidate pool guided
by the query examples. The selected examples will be used to finetune a
model to tailor it to the target task.
Framework Overview Our framework selects task-specific examples by
probability sampling following a categorical distribution over the candidate
pool. The categorical distribution is determined by an optimization problem.
Specifically, our framework takes the candidate pool and the query examples
as inputs and outputs a set of task-specific examples. The workflow of our
framework is as follows.

• (Encoding) We first encode the query examples and the examples in the
candidate pool. The distances between the examples will be computed
based on the encodings.
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• (Probability Assignment) We determine the probability mass assigned
to each example in the candidate pool by solving an optimization prob-
lem. The optimization problem transports probability mass from the
query examples to the examples in the candidate pool. The optimiza-
tion objective is the transportation cost as in the Wasserstein distance,
plus a regularizer that encourages the diversity of transportation.

• (Sampling) We take a random sample with replacement from the can-
didate pool following a categorical distribution where the probability
is determined by the assignment in the previous step.

5.4 Optimization Problem

In this section, we introduce the proposed optimization problem for proba-
bility assignment that admits different instantiations of the regularization
term. We show the existence of closed-form solutions for two instantiations.
In addition, we propose a regularization term that addresses the problem of
near-duplicates in the candidate pool with a closed-form solution.

5.4.1 Optimization Objective

Consider the metric space (Z, f) where Z = Q∪D contains all the examples
and f : Z × Z → R is a distance function. Let d ∈ RM×N

≥0 be the distance
matrix, where dij = f(qi, xj) is the distance between the ith query example
and the jth example in the candidate pool.

Given d ∈ RM×N
≥0 , we consider the following optimization problem, which

we refer to as Problem 5.1.

min
γ∈RM×N

≥0

α

C

M∑
i=1

N∑
j=1

γijdij + (1− α)G(γ)

subject to
N∑

j=1
γij = 1

M
, ∀i ∈ [M ]

(5.1)
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where C > 0 is a scaling constant, α ∈ [0, 1] is a hyper-parameter, and G is
a function for regularization.

The first term in Problem 5.1 is the cost of probability transport from
the empirical distribution of Q and the categorical distribution we assign
to the candidate pool, which characterizes the alignment of the two distri-
butions. The second is a regularization term that encourages the diversity
of probability assignment. We will introduce several instantiations of the
regularization term later. The hyperparameter α allows smooth trade-off
between distribution alignment and diversity. We assign p∗

j = ∑M
i=1 γ∗

ij

probability to xj, where γ∗ is an optimal solution to Problem 5.1.
We propose the following instantiations of the regularizer to quantify the

diversity of probability assignment by comparing it to a uniform assignment.

• G∞(γ) = M maxi∈M,j∈N |γij − 1
MN
| captures the largest probability

gap between γ and the uniform distribution.

• GT V (γ) = 1
2

∑M
i=1

∑N
j=1 |γij − 1

MN
| is the total variation distance be-

tween γ and the uniform distribution.

5.4.2 Closed-Form Solutions

When G = G∞ or G = GT V , Problem 5.1 can be solved by standard
linear programming techniques, but they run in Ω((MN)2) time, which
is prohibitively expensive. Instead, we show the existence of closed-form
solutions that can be computed efficiently (see Section 5.5 for the algorithms).

When G = G∞, we get an optimal solution by transporting the probabil-
ity of each query example evenly to its K-nearest neighbors in the candidate
pool, where K is determined by the condition stated in the following theorem.

Theorem 5.3. Given d ∈ RM×N
≥0 where N > 1, consider Problem 5.1 with

G(γ) = G∞(γ) = M maxi∈M,j∈N |γij − 1
MN
|. For all i ∈ [M ], let ji

1, . . . , ji
N

be a reordering of [N ] such that diji
1
≤ · · · ≤ diji

N
. Consider γ∗ ∈ RM×N

≥0
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whose entries are

γ∗
ij =


1

KM
, if j ∈ {ji

1, . . . , ji
K}

0, otherwise

where K = max{k ∈ [N ]| α
C

∑M
i=1

∑k−1
l=1 (diji

k
− diji

l
) < (1 − α)M}. Assume

K ≤ N/2, and then γ∗ is a minimizer of Problem 5.1. γ∗ is the unique
minimizer if α

C

∑M
i=1

∑K
l=1(diji

K+1
− diji

l
) > (1− α)M and ∄i ∈ [M ] such that

diji
K+1

= diji
K
.

When G = GT V , for each query example, we transport 1
MN

probability
mass to any example in the candidate pool whose distance to the query
example is less than (1−α)C

2α
plus the distance between the query example

and its 1-nearest neighbor. Then we transport all the remaining probability
mass to the 1-nearest neighbor of each query example.

Theorem 5.4. Given d ∈ RM×N
≥0 where N > 1, consider Problem 5.1 with

G(γ) = GT V (γ) = 1
2

∑M
i=1

∑N
j=1 |γij − 1

MN
|. For all i ∈ [M ], let ji

1, . . . , ji
N be

a reordering of [N ] such that diji
1
≤ · · · ≤ diji

N
. Consider γ∗ ∈ RM×N

≥0 where
∀i ∈ [M ]

∀k ∈ {2, . . . , N}, γ∗
iji

k
=


1

MN
, if diji

k
− diji

1
< (1−α)C

α

0, otherwise

and
γ∗

iji
1

= 1
M
−

N∑
k=2

γ∗
iji

k

Then γ∗ is a minimizer of Problem 5.1. γ∗ is the unique minimizer if
∀i ∈ [M ]∀k ∈ [N ], diji

k
− diji

1
̸= (1−α)C

α
and diji

1
̸= diji

2
.
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5.4.3 Addressing Near-Duplicates via Kernel Density
Estimation

When there exists a large fraction of near-duplicates in the candidate pool,
G∞ and GT V fail to characterize the diversity of probability assignment
since they treat near-duplicates as distinct examples. Consequently, when
we use G∞ or GT V as the regularization function, the contents in the near-
duplicates will be over-sampled. For example, consider the case where
we assign probability mass to the candidate pool following the optimal
solution described in theorem 5.3. If 100 of the K∗-nearest neighbors of a
query example are duplicates and the others are distinct, the content in the
duplicates will receive 100 times as much probability mass as any others.

To address the near-duplicate problem, we propose a regularization
function incorporating kernel density estimation (KDE) (Parzen, 1962).
KDE is a non-parametric method to estimate the probability density function
from finite examples. We use the Epanechnikov kernel such that given the
candidate pool D, the density estimate at point x is ∑

x′∈D max(1− f(x,x′)2

h2 , 0),
where h > 0 is the kernel size and f is the distance function. The intuition is
that a concentration of points around a position indicates a high probability
density at that position and the potential existence of near-duplicates. For
example, assume a point x in the candidate pool whose distance to any
other point is larger than h, then the density estimate at x would be 1. If we
create two duplicates of x and add them to the candidate pool, the density
estimate at x will be increased to 3.

Our KDE-based regularization function is

GKDE(γ) = M max
i∈[M ],j∈[N ]

ρj|γij −
1/ρj

M
∑

j′∈[N ] 1/ρj′
|

where ρj = ∑
x′∈D(1 − f(xj ,x′)2

h2 ) is the density estimate at xj. GKDE(γ)
compares γ to the probability assignment that is proportional to the inverse



140

of the density estimate, and penalizes the largest gap weighted by the density
estimate. GKDE(γ) is a generalization of G∞ and it degenerates to G∞ when
ρj = 1 for all j ∈ [N ].

The optimal solution to Problem 5.1 when G = GKDE assigns probability
mass to the nearest neighbors of each query point, weighted by the inverse
of the density estimate, as is shown by the following theorem.

Theorem 5.5. Given d ∈ RM×N
≥0 and ρ1, . . . , ρN ∈ R>0, consider Prob-

lem 5.1 with G(γ) = GKDE(γ) = M maxi∈[M ],j∈[N ] ρj|γij − 1/ρj

M
∑

j′∈[N ] 1/ρj′
|.

For all i ∈ [M ], let ji
1, . . . , ji

N be a reordering of [N ] such that diji
1
≤ · · · ≤

diji
N
. Let si

k = ∑k
l=1 1/ρji

l
, and s be a discrete variable that takes value from

S = {si
k|i ∈ [M ], k ∈ [N ]} ∪ {0}. Let c(s) = ∑M

i=1 ci(s), where

ci(s) =


0, if s ≤ si

1

∑k−1
l=1

d
iji

k
−d

iji
l

ρ
ji
l

, if si
k−1 < s ≤ si

k(k ≥ 2)

Let s∗ = max{s ∈ S| α
C

c(s) < (1 − α)M}, and Ki = max{k ∈ {0, . . . , N −
1}|si

k ≤ s∗}. Assume s∗ ≤ 1
2

∑N
j=1 1/ρj, and then γ∗ is a minimizer of

Problem 5.1 where ∀i ∈ [M ], k ∈ [N ]

γ∗
iji

k
=


1/(Ms∗ · ρji

k
), if k ≤ Ki

1
M
−∑Kj

l=1 1/(Ms∗ · ρji
l
), if k = Ki + 1

0, otherwise

γ∗ is the unique minimizer if ∄s ∈ S such that α
C

c(s) = (1 − α)M and
∄i ∈ [M ] such that diji

Ki
= diji

Ki+1
or diji

Ki+1
= diji

Ki+2
.

Intuitively, we count xj in the candidate pool as 1/ρj examples. For each
query example, the optimal solution i the theorem above assigns probability
mass to the examples in its neighborhood proportional to their adjusted
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counts. The size of the neighborhood is determined by the limit s∗ on the
sum of the adjusted counts.

We show an example comparing the three instantiations in Figure 5.1,
where we transport probability mass from two query examples to eight
examples in the candidate pool following the optimal solutions given by
Theorem 5.3, 5.4 and 5.5. In case 5.1a where G = G∞, assume K = 4 in
Theorem 5.3 and each query example assigns its probability mass evenly to
the 4-nearest neighbors. Note that x3 receives probability mass from both
query examples since it is in the neighborhood of both. In case 5.1b where
G = GTV, assume that x1, x2, x3, x4 receives non-zero mass from q1, and
x3, x5, x6, x7 receives non-zero mass from q2. Each query example assigns

1
MN

= 1
16 probability mass to its neighbors, and any remaining mass to the

1-nearest neighbor. Therefore, the 1-nearest neighbor receives more mass
than the other neighbors. In case 5.1c where G = GKDE, assume s∗ = 4
in Theorem 5.5. In addition, assume that x5, x6, x7 form a cluster where
each of them has a kernel density estimate of 3

2 , and any other example has
a kernel density estimate of 1. Similar to case 5.1a, q1 assigns 1

8 mass to
its 4-nearest neighbors whose density estimate are 1. The neighborhood
size of q2 is based on the adjusted counts of the examples. Since x5, x6, x7

have a density estimate of 3
2 , each of them is discounted as 2

3 examples.
Therefore, for s∗ = 4, q2 include x3, x5, x6, x7, x8 in its neighborhood so that
the sum of the adjusted count is 4. Then the probability mass is assigned
to proportional to the adjusted counts. Compared to case 5.1a, the cluster
(x5, x6, x7) receives less mass due to their high similarity to each other.

5.5 Probability Assignment Algorithms

We propose efficient algorithms to assign probability mass to the candidate
pool according to the optimal solutions to Problem 5.1. For the three
instantiations of the regularization term G∞, GTV, GKDE, the corresponding
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<latexit sha1_base64="hcXm0QZNtETH2m8L3kK3kM5JSYc=">AAAB6nicbZC7SgNBFIbPeo3xFk1pMxgEq7AbC7UL2FhGNBdIQpidzCZDZmfXmbNCWPIINhaK2Fr4IFaWdj6Gb+DkUmjiDwMf/38Oc87xYykMuu6Xs7S8srq2ntnIbm5t7+zm9vZrJko041UWyUg3fGq4FIpXUaDkjVhzGvqS1/3BxTiv33FtRKRucBjzdkh7SgSCUbTW9W3H6+QKbtGdiCyCN4NCOf/9Xvqov1U6uc9WN2JJyBUySY1pem6M7ZRqFEzyUbaVGB5TNqA93rSoaMhNO52MOiJH1umSINL2KSQT93dHSkNjhqFvK0OKfTOfjc3/smaCwVk7FSpOkCs2/ShIJMGIjPcmXaE5Qzm0QJkWdlbC+lRThvY6WXsEb37lRaiVit5JsXTlFcrnMFUGDuAQjsGDUyjDJVSgCgx6cA+P8ORI58F5dl6mpUvOrCcPf+S8/gBjcZGU</latexit>

q1
<latexit sha1_base64="hcXm0QZNtETH2m8L3kK3kM5JSYc=">AAAB6nicbZC7SgNBFIbPeo3xFk1pMxgEq7AbC7UL2FhGNBdIQpidzCZDZmfXmbNCWPIINhaK2Fr4IFaWdj6Gb+DkUmjiDwMf/38Oc87xYykMuu6Xs7S8srq2ntnIbm5t7+zm9vZrJko041UWyUg3fGq4FIpXUaDkjVhzGvqS1/3BxTiv33FtRKRucBjzdkh7SgSCUbTW9W3H6+QKbtGdiCyCN4NCOf/9Xvqov1U6uc9WN2JJyBUySY1pem6M7ZRqFEzyUbaVGB5TNqA93rSoaMhNO52MOiJH1umSINL2KSQT93dHSkNjhqFvK0OKfTOfjc3/smaCwVk7FSpOkCs2/ShIJMGIjPcmXaE5Qzm0QJkWdlbC+lRThvY6WXsEb37lRaiVit5JsXTlFcrnMFUGDuAQjsGDUyjDJVSgCgx6cA+P8ORI58F5dl6mpUvOrCcPf+S8/gBjcZGU</latexit>

x3
<latexit sha1_base64="VOJ8U7c6pAAVeZ3Y0KhaHAC1xHs=">AAAB6nicbZC7SgNBFIbPxluMGuOlE2EwCFZhNynULmBjGdFcIFnC7GQ2GTI7u8zMimHJI9hYKGLry9ja2etz6GySQhN/GPj4/3OYc44Xcaa0bX9YmaXlldW17HpuY3Mrv13Y2W2oMJaE1knIQ9nysKKcCVrXTHPaiiTFgcdp0xtepHnzlkrFQnGjRxF1A9wXzGcEa2Nd33Ur3ULRLtkToUVwZlCs5r+/3g73P2vdwnunF5I4oEITjpVqO3ak3QRLzQin41wnVjTCZIj7tG1Q4IAqN5mMOkbHxukhP5TmCY0m7u+OBAdKjQLPVAZYD9R8lpr/Ze1Y+2duwkQUayrI9CM/5kiHKN0b9ZikRPORAUwkM7MiMsASE22ukzNHcOZXXoRGueRUSuUrp1g9h6mycABHcAIOnEIVLqEGdSDQh3t4hCeLWw/Ws/UyLc1Ys549+CPr9QeDSJGq</latexit>

x3
<latexit sha1_base64="VOJ8U7c6pAAVeZ3Y0KhaHAC1xHs=">AAAB6nicbZC7SgNBFIbPxluMGuOlE2EwCFZhNynULmBjGdFcIFnC7GQ2GTI7u8zMimHJI9hYKGLry9ja2etz6GySQhN/GPj4/3OYc44Xcaa0bX9YmaXlldW17HpuY3Mrv13Y2W2oMJaE1knIQ9nysKKcCVrXTHPaiiTFgcdp0xtepHnzlkrFQnGjRxF1A9wXzGcEa2Nd33Ur3ULRLtkToUVwZlCs5r+/3g73P2vdwnunF5I4oEITjpVqO3ak3QRLzQin41wnVjTCZIj7tG1Q4IAqN5mMOkbHxukhP5TmCY0m7u+OBAdKjQLPVAZYD9R8lpr/Ze1Y+2duwkQUayrI9CM/5kiHKN0b9ZikRPORAUwkM7MiMsASE22ukzNHcOZXXoRGueRUSuUrp1g9h6mycABHcAIOnEIVLqEGdSDQh3t4hCeLWw/Ws/UyLc1Ys549+CPr9QeDSJGq</latexit>

x1<latexit sha1_base64="gQX58dk/muxILyVGSxGfqj3+kok=">AAAB6nicbZDLSgMxFIZP6q3WW73sRAgWwVWZqQt1V3DjsqK9QDuUTJppQzOZIcmIZegjuHGhiFtfxq079/ocml4W2vpD4OP/zyHnHD8WXBvH+UCZhcWl5ZXsam5tfWNzK7+9U9NRoiir0khEquETzQSXrGq4EawRK0ZCX7C6378Y5fVbpjSP5I0ZxMwLSVfygFNirHV913bb+YJTdMbC8+BOoVDe/P56O9j7rLTz761ORJOQSUMF0brpOrHxUqIMp4INc61Es5jQPumypkVJQqa9dDzqEB9Zp4ODSNknDR67vztSEmo9CH1bGRLT07PZyPwvayYmOPNSLuPEMEknHwWJwCbCo71xhytGjRhYIFRxOyumPaIINfY6OXsEd3bleaiViu5JsXTlFsrnMFEW9uEQjsGFUyjDJVSgChS6cA+P8IQEekDP6GVSmkHTnl34I/T6A4BAkag=</latexit>

x1<latexit sha1_base64="gQX58dk/muxILyVGSxGfqj3+kok=">AAAB6nicbZDLSgMxFIZP6q3WW73sRAgWwVWZqQt1V3DjsqK9QDuUTJppQzOZIcmIZegjuHGhiFtfxq079/ocml4W2vpD4OP/zyHnHD8WXBvH+UCZhcWl5ZXsam5tfWNzK7+9U9NRoiir0khEquETzQSXrGq4EawRK0ZCX7C6378Y5fVbpjSP5I0ZxMwLSVfygFNirHV913bb+YJTdMbC8+BOoVDe/P56O9j7rLTz761ORJOQSUMF0brpOrHxUqIMp4INc61Es5jQPumypkVJQqa9dDzqEB9Zp4ODSNknDR67vztSEmo9CH1bGRLT07PZyPwvayYmOPNSLuPEMEknHwWJwCbCo71xhytGjRhYIFRxOyumPaIINfY6OXsEd3bleaiViu5JsXTlFsrnMFEW9uEQjsGFUyjDJVSgChS6cA+P8IQEekDP6GVSmkHTnl34I/T6A4BAkag=</latexit>

x2<latexit sha1_base64="R3HBfGu3IuNIQRxgtOOMzO+8pwg=">AAAB6nicbZDLSgMxFIbP1Futt3rZiRAsgqsyUxfqruDGZUV7gXYomTTThiaZIcmIZegjuHGhiFtfxq079/ocml4W2vpD4OP/zyHnnCDmTBvX/XAyC4tLyyvZ1dza+sbmVn57p6ajRBFaJRGPVCPAmnImadUww2kjVhSLgNN60L8Y5fVbqjSL5I0ZxNQXuCtZyAg21rq+a5fa+YJbdMdC8+BNoVDe/P56O9j7rLTz761ORBJBpSEca9303Nj4KVaGEU6HuVaiaYxJH3dp06LEgmo/HY86REfW6aAwUvZJg8bu744UC60HIrCVApuens1G5n9ZMzHhmZ8yGSeGSjL5KEw4MhEa7Y06TFFi+MACJorZWRHpYYWJsdfJ2SN4syvPQ61U9E6KpSuvUD6HibKwD4dwDB6cQhkuoQJVINCFe3iEJ4c7D86z8zIpzTjTnl34I+f1B4HEkak=</latexit>

x2<latexit sha1_base64="R3HBfGu3IuNIQRxgtOOMzO+8pwg=">AAAB6nicbZDLSgMxFIbP1Futt3rZiRAsgqsyUxfqruDGZUV7gXYomTTThiaZIcmIZegjuHGhiFtfxq079/ocml4W2vpD4OP/zyHnnCDmTBvX/XAyC4tLyyvZ1dza+sbmVn57p6ajRBFaJRGPVCPAmnImadUww2kjVhSLgNN60L8Y5fVbqjSL5I0ZxNQXuCtZyAg21rq+a5fa+YJbdMdC8+BNoVDe/P56O9j7rLTz761ORBJBpSEca9303Nj4KVaGEU6HuVaiaYxJH3dp06LEgmo/HY86REfW6aAwUvZJg8bu744UC60HIrCVApuens1G5n9ZMzHhmZ8yGSeGSjL5KEw4MhEa7Y06TFFi+MACJorZWRHpYYWJsdfJ2SN4syvPQ61U9E6KpSuvUD6HibKwD4dwDB6cQhkuoQJVINCFe3iEJ4c7D86z8zIpzTjTnl34I+f1B4HEkak=</latexit>

x6
<latexit sha1_base64="Xn63RMxBVhK3SzcQ15fFrEBdOf4=">AAAB6nicbZDLSgMxFIbP1FutWsfLToRgEVyVmQpedgU3LivaC7RDyaSZNjSTGZKMWIY+ghsXirj1Zdy6c6/Poelloa0/BD7+/xxyzvFjzpR2nA8rs7C4tLySXc2trW/kN+2t7ZqKEklolUQ8kg0fK8qZoFXNNKeNWFIc+pzW/f7FKK/fUqlYJG70IKZeiLuCBYxgbazru/ZJ2y44RWcsNA/uFArl/PfX2/7uZ6Vtv7c6EUlCKjThWKmm68TaS7HUjHA6zLUSRWNM+rhLmwYFDqny0vGoQ3RonA4KImme0Gjs/u5IcajUIPRNZYh1T81mI/O/rJno4MxLmYgTTQWZfBQkHOkIjfZGHSYp0XxgABPJzKyI9LDERJvr5MwR3NmV56FWKrrHxdKVWyifw0RZ2IMDOAIXTqEMl1CBKhDowj08wpPFrQfr2XqZlGasac8O/JH1+gOH1JGt</latexit>

x6
<latexit sha1_base64="Xn63RMxBVhK3SzcQ15fFrEBdOf4=">AAAB6nicbZDLSgMxFIbP1FutWsfLToRgEVyVmQpedgU3LivaC7RDyaSZNjSTGZKMWIY+ghsXirj1Zdy6c6/Poelloa0/BD7+/xxyzvFjzpR2nA8rs7C4tLySXc2trW/kN+2t7ZqKEklolUQ8kg0fK8qZoFXNNKeNWFIc+pzW/f7FKK/fUqlYJG70IKZeiLuCBYxgbazru/ZJ2y44RWcsNA/uFArl/PfX2/7uZ6Vtv7c6EUlCKjThWKmm68TaS7HUjHA6zLUSRWNM+rhLmwYFDqny0vGoQ3RonA4KImme0Gjs/u5IcajUIPRNZYh1T81mI/O/rJno4MxLmYgTTQWZfBQkHOkIjfZGHSYp0XxgABPJzKyI9LDERJvr5MwR3NmV56FWKrrHxdKVWyifw0RZ2IMDOAIXTqEMl1CBKhDowj08wpPFrQfr2XqZlGasac8O/JH1+gOH1JGt</latexit>

x7
<latexit sha1_base64="daRe1Q7HIR6zISdWY4aqKOb0qO4=">AAAB6nicbZC7SgNBFIbPxluMGuOlE2EwCFZhNxbRLmBjGdFcIFnC7GQ2GTI7u8zMimHJI9hYKGLry9ja2etz6GySQhN/GPj4/3OYc44Xcaa0bX9YmaXlldW17HpuY3Mrv13Y2W2oMJaE1knIQ9nysKKcCVrXTHPaiiTFgcdp0xtepHnzlkrFQnGjRxF1A9wXzGcEa2Nd33Ur3ULRLtkToUVwZlCs5r+/3g73P2vdwnunF5I4oEITjpVqO3ak3QRLzQin41wnVjTCZIj7tG1Q4IAqN5mMOkbHxukhP5TmCY0m7u+OBAdKjQLPVAZYD9R8lpr/Ze1Y+2duwkQUayrI9CM/5kiHKN0b9ZikRPORAUwkM7MiMsASE22ukzNHcOZXXoRGueSclspXTrF6DlNl4QCO4AQcqEAVLqEGdSDQh3t4hCeLWw/Ws/UyLc1Ys549+CPr9QeJWJGu</latexit>

x7
<latexit sha1_base64="daRe1Q7HIR6zISdWY4aqKOb0qO4=">AAAB6nicbZC7SgNBFIbPxluMGuOlE2EwCFZhNxbRLmBjGdFcIFnC7GQ2GTI7u8zMimHJI9hYKGLry9ja2etz6GySQhN/GPj4/3OYc44Xcaa0bX9YmaXlldW17HpuY3Mrv13Y2W2oMJaE1knIQ9nysKKcCVrXTHPaiiTFgcdp0xtepHnzlkrFQnGjRxF1A9wXzGcEa2Nd33Ur3ULRLtkToUVwZlCs5r+/3g73P2vdwnunF5I4oEITjpVqO3ak3QRLzQin41wnVjTCZIj7tG1Q4IAqN5mMOkbHxukhP5TmCY0m7u+OBAdKjQLPVAZYD9R8lpr/Ze1Y+2duwkQUayrI9CM/5kiHKN0b9ZikRPORAUwkM7MiMsASE22ukzNHcOZXXoRGueSclspXTrF6DlNl4QCO4AQcqEAVLqEGdSDQh3t4hCeLWw/Ws/UyLc1Ys549+CPr9QeJWJGu</latexit>

x5
<latexit sha1_base64="cTCgFb4c6qgD0A88aRAjSlTtgeQ=">AAAB6nicbZDLSgMxFIbP1FutWsfLToRgEVyVmYqou4IblxXtBdqhZNJMG5rJDElGLEMfwY0LRdz6Mm7dudfn0PSy0NYfAh//fw455/gxZ0o7zoeVWVhcWl7JrubW1jfym/bWdk1FiSS0SiIeyYaPFeVM0KpmmtNGLCkOfU7rfv9ilNdvqVQsEjd6EFMvxF3BAkawNtb1XfukbRecojMWmgd3CoVy/vvrbX/3s9K231udiCQhFZpwrFTTdWLtpVhqRjgd5lqJojEmfdylTYMCh1R56XjUITo0TgcFkTRPaDR2f3ekOFRqEPqmMsS6p2azkflf1kx0cOalTMSJpoJMPgoSjnSERnujDpOUaD4wgIlkZlZEelhios11cuYI7uzK81ArFd3jYunKLZTPYaIs7MEBHIELp1CGS6hAFQh04R4e4cni1oP1bL1MSjPWtGcH/sh6/QGGUJGs</latexit>

x5
<latexit sha1_base64="cTCgFb4c6qgD0A88aRAjSlTtgeQ=">AAAB6nicbZDLSgMxFIbP1FutWsfLToRgEVyVmYqou4IblxXtBdqhZNJMG5rJDElGLEMfwY0LRdz6Mm7dudfn0PSy0NYfAh//fw455/gxZ0o7zoeVWVhcWl7JrubW1jfym/bWdk1FiSS0SiIeyYaPFeVM0KpmmtNGLCkOfU7rfv9ilNdvqVQsEjd6EFMvxF3BAkawNtb1XfukbRecojMWmgd3CoVy/vvrbX/3s9K231udiCQhFZpwrFTTdWLtpVhqRjgd5lqJojEmfdylTYMCh1R56XjUITo0TgcFkTRPaDR2f3ekOFRqEPqmMsS6p2azkflf1kx0cOalTMSJpoJMPgoSjnSERnujDpOUaD4wgIlkZlZEelhios11cuYI7uzK81ArFd3jYunKLZTPYaIs7MEBHIELp1CGS6hAFQh04R4e4cni1oP1bL1MSjPWtGcH/sh6/QGGUJGs</latexit>

q2
<latexit sha1_base64="w+G1uLFRdvO0QgaIt9c5D2s0VMA=">AAAB6nicbZC7TsMwFIZPuJZyK3RksaiQmKokDMBWiYWxCHqR2qhyXKe1ajvBdpCqqI/AwgBCrAw8CBMjG4/BG+BeBmj5JUuf/v8c+ZwTJpxp47pfztLyyuraem4jv7m1vbNb2Nuv6zhVhNZIzGPVDLGmnElaM8xw2kwUxSLktBEOLsZ5444qzWJ5Y4YJDQTuSRYxgo21rm87fqdQcsvuRGgRvBmUKsXvd/+j8VbtFD7b3ZikgkpDONa65bmJCTKsDCOcjvLtVNMEkwHu0ZZFiQXVQTYZdYSOrNNFUazskwZN3N8dGRZaD0VoKwU2fT2fjc3/slZqorMgYzJJDZVk+lGUcmRiNN4bdZmixPChBUwUs7Mi0scKE2Ovk7dH8OZXXoS6X/ZOyv6VV6qcw1Q5OIBDOAYPTqECl1CFGhDowT08wpPDnQfn2XmZli45s54i/JHz+gNk9ZGV</latexit>

q2
<latexit sha1_base64="w+G1uLFRdvO0QgaIt9c5D2s0VMA=">AAAB6nicbZC7TsMwFIZPuJZyK3RksaiQmKokDMBWiYWxCHqR2qhyXKe1ajvBdpCqqI/AwgBCrAw8CBMjG4/BG+BeBmj5JUuf/v8c+ZwTJpxp47pfztLyyuraem4jv7m1vbNb2Nuv6zhVhNZIzGPVDLGmnElaM8xw2kwUxSLktBEOLsZ5444qzWJ5Y4YJDQTuSRYxgo21rm87fqdQcsvuRGgRvBmUKsXvd/+j8VbtFD7b3ZikgkpDONa65bmJCTKsDCOcjvLtVNMEkwHu0ZZFiQXVQTYZdYSOrNNFUazskwZN3N8dGRZaD0VoKwU2fT2fjc3/slZqorMgYzJJDZVk+lGUcmRiNN4bdZmixPChBUwUs7Mi0scKE2Ovk7dH8OZXXoS6X/ZOyv6VV6qcw1Q5OIBDOAYPTqECl1CFGhDowT08wpPDnQfn2XmZli45s54i/JHz+gNk9ZGV</latexit>

1
8

<latexit sha1_base64="3vLw1EhVwL3hER53bsz/JMz1a6g=">AAAB8nicbVC7TsNAEFzzDOEVoKQxREhUkR0KQheJhjIgnESyreh8OSennO+suzNSZPkzaChAiJavoeML+ANqLo8CEkZaaTSzq92dKGVUacf5tFZW19Y3Nktb5e2d3b39ysFhW4lMYuJhwYTsRkgRRjnxNNWMdFNJUBIx0olG1xO/80CkooLf63FKwgQNOI0pRtpIfhBLhHO3yBtFr1J1as4U9jJx56TaPCm+veDuq9WrfAR9gbOEcI0ZUsp3nVSHOZKaYkaKcpApkiI8QgPiG8pRQlSYT08u7DOj9O1YSFNc21P190SOEqXGSWQ6E6SHatGbiP95fqbjRphTnmaacDxbFGfM1sKe/G/3qSRYs7EhCEtqbrXxEJkUtEmpbEJwF19eJu16zb2o1W/davMKZijBMZzCObhwCU24gRZ4gEHAIzzDi6WtJ+vVepu1rljzmSP4A+v9B0dAlO8=</latexit>

1
8

<latexit sha1_base64="3vLw1EhVwL3hER53bsz/JMz1a6g=">AAAB8nicbVC7TsNAEFzzDOEVoKQxREhUkR0KQheJhjIgnESyreh8OSennO+suzNSZPkzaChAiJavoeML+ANqLo8CEkZaaTSzq92dKGVUacf5tFZW19Y3Nktb5e2d3b39ysFhW4lMYuJhwYTsRkgRRjnxNNWMdFNJUBIx0olG1xO/80CkooLf63FKwgQNOI0pRtpIfhBLhHO3yBtFr1J1as4U9jJx56TaPCm+veDuq9WrfAR9gbOEcI0ZUsp3nVSHOZKaYkaKcpApkiI8QgPiG8pRQlSYT08u7DOj9O1YSFNc21P190SOEqXGSWQ6E6SHatGbiP95fqbjRphTnmaacDxbFGfM1sKe/G/3qSRYs7EhCEtqbrXxEJkUtEmpbEJwF19eJu16zb2o1W/davMKZijBMZzCObhwCU24gRZ4gEHAIzzDi6WtJ+vVepu1rljzmSP4A+v9B0dAlO8=</latexit>

1
8

<latexit sha1_base64="3vLw1EhVwL3hER53bsz/JMz1a6g=">AAAB8nicbVC7TsNAEFzzDOEVoKQxREhUkR0KQheJhjIgnESyreh8OSennO+suzNSZPkzaChAiJavoeML+ANqLo8CEkZaaTSzq92dKGVUacf5tFZW19Y3Nktb5e2d3b39ysFhW4lMYuJhwYTsRkgRRjnxNNWMdFNJUBIx0olG1xO/80CkooLf63FKwgQNOI0pRtpIfhBLhHO3yBtFr1J1as4U9jJx56TaPCm+veDuq9WrfAR9gbOEcI0ZUsp3nVSHOZKaYkaKcpApkiI8QgPiG8pRQlSYT08u7DOj9O1YSFNc21P190SOEqXGSWQ6E6SHatGbiP95fqbjRphTnmaacDxbFGfM1sKe/G/3qSRYs7EhCEtqbrXxEJkUtEmpbEJwF19eJu16zb2o1W/davMKZijBMZzCObhwCU24gRZ4gEHAIzzDi6WtJ+vVepu1rljzmSP4A+v9B0dAlO8=</latexit>

1
8

<latexit sha1_base64="3vLw1EhVwL3hER53bsz/JMz1a6g=">AAAB8nicbVC7TsNAEFzzDOEVoKQxREhUkR0KQheJhjIgnESyreh8OSennO+suzNSZPkzaChAiJavoeML+ANqLo8CEkZaaTSzq92dKGVUacf5tFZW19Y3Nktb5e2d3b39ysFhW4lMYuJhwYTsRkgRRjnxNNWMdFNJUBIx0olG1xO/80CkooLf63FKwgQNOI0pRtpIfhBLhHO3yBtFr1J1as4U9jJx56TaPCm+veDuq9WrfAR9gbOEcI0ZUsp3nVSHOZKaYkaKcpApkiI8QgPiG8pRQlSYT08u7DOj9O1YSFNc21P190SOEqXGSWQ6E6SHatGbiP95fqbjRphTnmaacDxbFGfM1sKe/G/3qSRYs7EhCEtqbrXxEJkUtEmpbEJwF19eJu16zb2o1W/davMKZijBMZzCObhwCU24gRZ4gEHAIzzDi6WtJ+vVepu1rljzmSP4A+v9B0dAlO8=</latexit>

1
8

<latexit sha1_base64="3vLw1EhVwL3hER53bsz/JMz1a6g=">AAAB8nicbVC7TsNAEFzzDOEVoKQxREhUkR0KQheJhjIgnESyreh8OSennO+suzNSZPkzaChAiJavoeML+ANqLo8CEkZaaTSzq92dKGVUacf5tFZW19Y3Nktb5e2d3b39ysFhW4lMYuJhwYTsRkgRRjnxNNWMdFNJUBIx0olG1xO/80CkooLf63FKwgQNOI0pRtpIfhBLhHO3yBtFr1J1as4U9jJx56TaPCm+veDuq9WrfAR9gbOEcI0ZUsp3nVSHOZKaYkaKcpApkiI8QgPiG8pRQlSYT08u7DOj9O1YSFNc21P190SOEqXGSWQ6E6SHatGbiP95fqbjRphTnmaacDxbFGfM1sKe/G/3qSRYs7EhCEtqbrXxEJkUtEmpbEJwF19eJu16zb2o1W/davMKZijBMZzCObhwCU24gRZ4gEHAIzzDi6WtJ+vVepu1rljzmSP4A+v9B0dAlO8=</latexit>

1
8

<latexit sha1_base64="3vLw1EhVwL3hER53bsz/JMz1a6g=">AAAB8nicbVC7TsNAEFzzDOEVoKQxREhUkR0KQheJhjIgnESyreh8OSennO+suzNSZPkzaChAiJavoeML+ANqLo8CEkZaaTSzq92dKGVUacf5tFZW19Y3Nktb5e2d3b39ysFhW4lMYuJhwYTsRkgRRjnxNNWMdFNJUBIx0olG1xO/80CkooLf63FKwgQNOI0pRtpIfhBLhHO3yBtFr1J1as4U9jJx56TaPCm+veDuq9WrfAR9gbOEcI0ZUsp3nVSHOZKaYkaKcpApkiI8QgPiG8pRQlSYT08u7DOj9O1YSFNc21P190SOEqXGSWQ6E6SHatGbiP95fqbjRphTnmaacDxbFGfM1sKe/G/3qSRYs7EhCEtqbrXxEJkUtEmpbEJwF19eJu16zb2o1W/davMKZijBMZzCObhwCU24gRZ4gEHAIzzDi6WtJ+vVepu1rljzmSP4A+v9B0dAlO8=</latexit>

1
8

<latexit sha1_base64="3vLw1EhVwL3hER53bsz/JMz1a6g=">AAAB8nicbVC7TsNAEFzzDOEVoKQxREhUkR0KQheJhjIgnESyreh8OSennO+suzNSZPkzaChAiJavoeML+ANqLo8CEkZaaTSzq92dKGVUacf5tFZW19Y3Nktb5e2d3b39ysFhW4lMYuJhwYTsRkgRRjnxNNWMdFNJUBIx0olG1xO/80CkooLf63FKwgQNOI0pRtpIfhBLhHO3yBtFr1J1as4U9jJx56TaPCm+veDuq9WrfAR9gbOEcI0ZUsp3nVSHOZKaYkaKcpApkiI8QgPiG8pRQlSYT08u7DOj9O1YSFNc21P190SOEqXGSWQ6E6SHatGbiP95fqbjRphTnmaacDxbFGfM1sKe/G/3qSRYs7EhCEtqbrXxEJkUtEmpbEJwF19eJu16zb2o1W/davMKZijBMZzCObhwCU24gRZ4gEHAIzzDi6WtJ+vVepu1rljzmSP4A+v9B0dAlO8=</latexit>

1
8

<latexit sha1_base64="3vLw1EhVwL3hER53bsz/JMz1a6g=">AAAB8nicbVC7TsNAEFzzDOEVoKQxREhUkR0KQheJhjIgnESyreh8OSennO+suzNSZPkzaChAiJavoeML+ANqLo8CEkZaaTSzq92dKGVUacf5tFZW19Y3Nktb5e2d3b39ysFhW4lMYuJhwYTsRkgRRjnxNNWMdFNJUBIx0olG1xO/80CkooLf63FKwgQNOI0pRtpIfhBLhHO3yBtFr1J1as4U9jJx56TaPCm+veDuq9WrfAR9gbOEcI0ZUsp3nVSHOZKaYkaKcpApkiI8QgPiG8pRQlSYT08u7DOj9O1YSFNc21P190SOEqXGSWQ6E6SHatGbiP95fqbjRphTnmaacDxbFGfM1sKe/G/3qSRYs7EhCEtqbrXxEJkUtEmpbEJwF19eJu16zb2o1W/davMKZijBMZzCObhwCU24gRZ4gEHAIzzDi6WtJ+vVepu1rljzmSP4A+v9B0dAlO8=</latexit>

1
8

<latexit sha1_base64="3vLw1EhVwL3hER53bsz/JMz1a6g=">AAAB8nicbVC7TsNAEFzzDOEVoKQxREhUkR0KQheJhjIgnESyreh8OSennO+suzNSZPkzaChAiJavoeML+ANqLo8CEkZaaTSzq92dKGVUacf5tFZW19Y3Nktb5e2d3b39ysFhW4lMYuJhwYTsRkgRRjnxNNWMdFNJUBIx0olG1xO/80CkooLf63FKwgQNOI0pRtpIfhBLhHO3yBtFr1J1as4U9jJx56TaPCm+veDuq9WrfAR9gbOEcI0ZUsp3nVSHOZKaYkaKcpApkiI8QgPiG8pRQlSYT08u7DOj9O1YSFNc21P190SOEqXGSWQ6E6SHatGbiP95fqbjRphTnmaacDxbFGfM1sKe/G/3qSRYs7EhCEtqbrXxEJkUtEmpbEJwF19eJu16zb2o1W/davMKZijBMZzCObhwCU24gRZ4gEHAIzzDi6WtJ+vVepu1rljzmSP4A+v9B0dAlO8=</latexit>

1
8

<latexit sha1_base64="3vLw1EhVwL3hER53bsz/JMz1a6g=">AAAB8nicbVC7TsNAEFzzDOEVoKQxREhUkR0KQheJhjIgnESyreh8OSennO+suzNSZPkzaChAiJavoeML+ANqLo8CEkZaaTSzq92dKGVUacf5tFZW19Y3Nktb5e2d3b39ysFhW4lMYuJhwYTsRkgRRjnxNNWMdFNJUBIx0olG1xO/80CkooLf63FKwgQNOI0pRtpIfhBLhHO3yBtFr1J1as4U9jJx56TaPCm+veDuq9WrfAR9gbOEcI0ZUsp3nVSHOZKaYkaKcpApkiI8QgPiG8pRQlSYT08u7DOj9O1YSFNc21P190SOEqXGSWQ6E6SHatGbiP95fqbjRphTnmaacDxbFGfM1sKe/G/3qSRYs7EhCEtqbrXxEJkUtEmpbEJwF19eJu16zb2o1W/davMKZijBMZzCObhwCU24gRZ4gEHAIzzDi6WtJ+vVepu1rljzmSP4A+v9B0dAlO8=</latexit>1
8

<latexit sha1_base64="3vLw1EhVwL3hER53bsz/JMz1a6g=">AAAB8nicbVC7TsNAEFzzDOEVoKQxREhUkR0KQheJhjIgnESyreh8OSennO+suzNSZPkzaChAiJavoeML+ANqLo8CEkZaaTSzq92dKGVUacf5tFZW19Y3Nktb5e2d3b39ysFhW4lMYuJhwYTsRkgRRjnxNNWMdFNJUBIx0olG1xO/80CkooLf63FKwgQNOI0pRtpIfhBLhHO3yBtFr1J1as4U9jJx56TaPCm+veDuq9WrfAR9gbOEcI0ZUsp3nVSHOZKaYkaKcpApkiI8QgPiG8pRQlSYT08u7DOj9O1YSFNc21P190SOEqXGSWQ6E6SHatGbiP95fqbjRphTnmaacDxbFGfM1sKe/G/3qSRYs7EhCEtqbrXxEJkUtEmpbEJwF19eJu16zb2o1W/davMKZijBMZzCObhwCU24gRZ4gEHAIzzDi6WtJ+vVepu1rljzmSP4A+v9B0dAlO8=</latexit>

1
8

<latexit sha1_base64="3vLw1EhVwL3hER53bsz/JMz1a6g=">AAAB8nicbVC7TsNAEFzzDOEVoKQxREhUkR0KQheJhjIgnESyreh8OSennO+suzNSZPkzaChAiJavoeML+ANqLo8CEkZaaTSzq92dKGVUacf5tFZW19Y3Nktb5e2d3b39ysFhW4lMYuJhwYTsRkgRRjnxNNWMdFNJUBIx0olG1xO/80CkooLf63FKwgQNOI0pRtpIfhBLhHO3yBtFr1J1as4U9jJx56TaPCm+veDuq9WrfAR9gbOEcI0ZUsp3nVSHOZKaYkaKcpApkiI8QgPiG8pRQlSYT08u7DOj9O1YSFNc21P190SOEqXGSWQ6E6SHatGbiP95fqbjRphTnmaacDxbFGfM1sKe/G/3qSRYs7EhCEtqbrXxEJkUtEmpbEJwF19eJu16zb2o1W/davMKZijBMZzCObhwCU24gRZ4gEHAIzzDi6WtJ+vVepu1rljzmSP4A+v9B0dAlO8=</latexit>

1
8

<latexit sha1_base64="3vLw1EhVwL3hER53bsz/JMz1a6g=">AAAB8nicbVC7TsNAEFzzDOEVoKQxREhUkR0KQheJhjIgnESyreh8OSennO+suzNSZPkzaChAiJavoeML+ANqLo8CEkZaaTSzq92dKGVUacf5tFZW19Y3Nktb5e2d3b39ysFhW4lMYuJhwYTsRkgRRjnxNNWMdFNJUBIx0olG1xO/80CkooLf63FKwgQNOI0pRtpIfhBLhHO3yBtFr1J1as4U9jJx56TaPCm+veDuq9WrfAR9gbOEcI0ZUsp3nVSHOZKaYkaKcpApkiI8QgPiG8pRQlSYT08u7DOj9O1YSFNc21P190SOEqXGSWQ6E6SHatGbiP95fqbjRphTnmaacDxbFGfM1sKe/G/3qSRYs7EhCEtqbrXxEJkUtEmpbEJwF19eJu16zb2o1W/davMKZijBMZzCObhwCU24gRZ4gEHAIzzDi6WtJ+vVepu1rljzmSP4A+v9B0dAlO8=</latexit>

1
8

<latexit sha1_base64="3vLw1EhVwL3hER53bsz/JMz1a6g=">AAAB8nicbVC7TsNAEFzzDOEVoKQxREhUkR0KQheJhjIgnESyreh8OSennO+suzNSZPkzaChAiJavoeML+ANqLo8CEkZaaTSzq92dKGVUacf5tFZW19Y3Nktb5e2d3b39ysFhW4lMYuJhwYTsRkgRRjnxNNWMdFNJUBIx0olG1xO/80CkooLf63FKwgQNOI0pRtpIfhBLhHO3yBtFr1J1as4U9jJx56TaPCm+veDuq9WrfAR9gbOEcI0ZUsp3nVSHOZKaYkaKcpApkiI8QgPiG8pRQlSYT08u7DOj9O1YSFNc21P190SOEqXGSWQ6E6SHatGbiP95fqbjRphTnmaacDxbFGfM1sKe/G/3qSRYs7EhCEtqbrXxEJkUtEmpbEJwF19eJu16zb2o1W/davMKZijBMZzCObhwCU24gRZ4gEHAIzzDi6WtJ+vVepu1rljzmSP4A+v9B0dAlO8=</latexit>

x4<latexit sha1_base64="JiSVTy1HR4HUoHIcj3Cs+dUHCXw=">AAAB6nicbZDLSgMxFIbP1FutWsfLToRgEVyVmSqou4IblxXtBdqhZNJMG5rJDElGLEMfwY0LRdz6Mm7dudfn0PSy0NYfAh//fw455/gxZ0o7zoeVWVhcWl7JrubW1jfym/bWdk1FiSS0SiIeyYaPFeVM0KpmmtNGLCkOfU7rfv9ilNdvqVQsEjd6EFMvxF3BAkawNtb1XfukbRecojMWmgd3CoVy/vvrbX/3s9K231udiCQhFZpwrFTTdWLtpVhqRjgd5lqJojEmfdylTYMCh1R56XjUITo0TgcFkTRPaDR2f3ekOFRqEPqmMsS6p2azkflf1kx0cOalTMSJpoJMPgoSjnSERnujDpOUaD4wgIlkZlZEelhios11cuYI7uzK81ArFd3jYunKLZTPYaIs7MEBHIELp1CGS6hAFQh04R4e4cni1oP1bL1MSjPWtGcH/sh6/QGEzJGr</latexit>

x4<latexit sha1_base64="JiSVTy1HR4HUoHIcj3Cs+dUHCXw=">AAAB6nicbZDLSgMxFIbP1FutWsfLToRgEVyVmSqou4IblxXtBdqhZNJMG5rJDElGLEMfwY0LRdz6Mm7dudfn0PSy0NYfAh//fw455/gxZ0o7zoeVWVhcWl7JrubW1jfym/bWdk1FiSS0SiIeyYaPFeVM0KpmmtNGLCkOfU7rfv9ilNdvqVQsEjd6EFMvxF3BAkawNtb1XfukbRecojMWmgd3CoVy/vvrbX/3s9K231udiCQhFZpwrFTTdWLtpVhqRjgd5lqJojEmfdylTYMCh1R56XjUITo0TgcFkTRPaDR2f3ekOFRqEPqmMsS6p2azkflf1kx0cOalTMSJpoJMPgoSjnSERnujDpOUaD4wgIlkZlZEelhios11cuYI7uzK81ArFd3jYunKLZTPYaIs7MEBHIELp1CGS6hAFQh04R4e4cni1oP1bL1MSjPWtGcH/sh6/QGEzJGr</latexit>

x8
<latexit sha1_base64="D+/A72boJxT/CpNkEHWRSba4+0w=">AAAB6nicbZC7SgNBFIbPxluMGuOlE2EwCFZhNxbGLmBjGdFcIFnC7GQ2GTI7u8zMimHJI9hYKGLry9ja2etz6GySQhN/GPj4/3OYc44Xcaa0bX9YmaXlldW17HpuY3Mrv13Y2W2oMJaE1knIQ9nysKKcCVrXTHPaiiTFgcdp0xtepHnzlkrFQnGjRxF1A9wXzGcEa2Nd33Ur3ULRLtkToUVwZlCs5r+/3g73P2vdwnunF5I4oEITjpVqO3ak3QRLzQin41wnVjTCZIj7tG1Q4IAqN5mMOkbHxukhP5TmCY0m7u+OBAdKjQLPVAZYD9R8lpr/Ze1Y+xU3YSKKNRVk+pEfc6RDlO6NekxSovnIACaSmVkRGWCJiTbXyZkjOPMrL0KjXHJOS+Urp1g9h6mycABHcAIOnEEVLqEGdSDQh3t4hCeLWw/Ws/UyLc1Ys549+CPr9QeK3JGv</latexit>

x8
<latexit sha1_base64="D+/A72boJxT/CpNkEHWRSba4+0w=">AAAB6nicbZC7SgNBFIbPxluMGuOlE2EwCFZhNxbGLmBjGdFcIFnC7GQ2GTI7u8zMimHJI9hYKGLry9ja2etz6GySQhN/GPj4/3OYc44Xcaa0bX9YmaXlldW17HpuY3Mrv13Y2W2oMJaE1knIQ9nysKKcCVrXTHPaiiTFgcdp0xtepHnzlkrFQnGjRxF1A9wXzGcEa2Nd33Ur3ULRLtkToUVwZlCs5r+/3g73P2vdwnunF5I4oEITjpVqO3ak3QRLzQin41wnVjTCZIj7tG1Q4IAqN5mMOkbHxukhP5TmCY0m7u+OBAdKjQLPVAZYD9R8lpr/Ze1Y+xU3YSKKNRVk+pEfc6RDlO6NekxSovnIACaSmVkRGWCJiTbXyZkjOPMrL0KjXHJOS+Urp1g9h6mycABHcAIOnEEVLqEGdSDQh3t4hCeLWw/Ws/UyLc1Ys549+CPr9QeK3JGv</latexit>

1
8

<latexit sha1_base64="3vLw1EhVwL3hER53bsz/JMz1a6g=">AAAB8nicbVC7TsNAEFzzDOEVoKQxREhUkR0KQheJhjIgnESyreh8OSennO+suzNSZPkzaChAiJavoeML+ANqLo8CEkZaaTSzq92dKGVUacf5tFZW19Y3Nktb5e2d3b39ysFhW4lMYuJhwYTsRkgRRjnxNNWMdFNJUBIx0olG1xO/80CkooLf63FKwgQNOI0pRtpIfhBLhHO3yBtFr1J1as4U9jJx56TaPCm+veDuq9WrfAR9gbOEcI0ZUsp3nVSHOZKaYkaKcpApkiI8QgPiG8pRQlSYT08u7DOj9O1YSFNc21P190SOEqXGSWQ6E6SHatGbiP95fqbjRphTnmaacDxbFGfM1sKe/G/3qSRYs7EhCEtqbrXxEJkUtEmpbEJwF19eJu16zb2o1W/davMKZijBMZzCObhwCU24gRZ4gEHAIzzDi6WtJ+vVepu1rljzmSP4A+v9B0dAlO8=</latexit>

1
8

<latexit sha1_base64="3vLw1EhVwL3hER53bsz/JMz1a6g=">AAAB8nicbVC7TsNAEFzzDOEVoKQxREhUkR0KQheJhjIgnESyreh8OSennO+suzNSZPkzaChAiJavoeML+ANqLo8CEkZaaTSzq92dKGVUacf5tFZW19Y3Nktb5e2d3b39ysFhW4lMYuJhwYTsRkgRRjnxNNWMdFNJUBIx0olG1xO/80CkooLf63FKwgQNOI0pRtpIfhBLhHO3yBtFr1J1as4U9jJx56TaPCm+veDuq9WrfAR9gbOEcI0ZUsp3nVSHOZKaYkaKcpApkiI8QgPiG8pRQlSYT08u7DOj9O1YSFNc21P190SOEqXGSWQ6E6SHatGbiP95fqbjRphTnmaacDxbFGfM1sKe/G/3qSRYs7EhCEtqbrXxEJkUtEmpbEJwF19eJu16zb2o1W/davMKZijBMZzCObhwCU24gRZ4gEHAIzzDi6WtJ+vVepu1rljzmSP4A+v9B0dAlO8=</latexit>

(a) G∞

q1
<latexit sha1_base64="hcXm0QZNtETH2m8L3kK3kM5JSYc=">AAAB6nicbZC7SgNBFIbPeo3xFk1pMxgEq7AbC7UL2FhGNBdIQpidzCZDZmfXmbNCWPIINhaK2Fr4IFaWdj6Gb+DkUmjiDwMf/38Oc87xYykMuu6Xs7S8srq2ntnIbm5t7+zm9vZrJko041UWyUg3fGq4FIpXUaDkjVhzGvqS1/3BxTiv33FtRKRucBjzdkh7SgSCUbTW9W3H6+QKbtGdiCyCN4NCOf/9Xvqov1U6uc9WN2JJyBUySY1pem6M7ZRqFEzyUbaVGB5TNqA93rSoaMhNO52MOiJH1umSINL2KSQT93dHSkNjhqFvK0OKfTOfjc3/smaCwVk7FSpOkCs2/ShIJMGIjPcmXaE5Qzm0QJkWdlbC+lRThvY6WXsEb37lRaiVit5JsXTlFcrnMFUGDuAQjsGDUyjDJVSgCgx6cA+P8ORI58F5dl6mpUvOrCcPf+S8/gBjcZGU</latexit>

q1
<latexit sha1_base64="hcXm0QZNtETH2m8L3kK3kM5JSYc=">AAAB6nicbZC7SgNBFIbPeo3xFk1pMxgEq7AbC7UL2FhGNBdIQpidzCZDZmfXmbNCWPIINhaK2Fr4IFaWdj6Gb+DkUmjiDwMf/38Oc87xYykMuu6Xs7S8srq2ntnIbm5t7+zm9vZrJko041UWyUg3fGq4FIpXUaDkjVhzGvqS1/3BxTiv33FtRKRucBjzdkh7SgSCUbTW9W3H6+QKbtGdiCyCN4NCOf/9Xvqov1U6uc9WN2JJyBUySY1pem6M7ZRqFEzyUbaVGB5TNqA93rSoaMhNO52MOiJH1umSINL2KSQT93dHSkNjhqFvK0OKfTOfjc3/smaCwVk7FSpOkCs2/ShIJMGIjPcmXaE5Qzm0QJkWdlbC+lRThvY6WXsEb37lRaiVit5JsXTlFcrnMFUGDuAQjsGDUyjDJVSgCgx6cA+P8ORI58F5dl6mpUvOrCcPf+S8/gBjcZGU</latexit>

x3
<latexit sha1_base64="VOJ8U7c6pAAVeZ3Y0KhaHAC1xHs=">AAAB6nicbZC7SgNBFIbPxluMGuOlE2EwCFZhNynULmBjGdFcIFnC7GQ2GTI7u8zMimHJI9hYKGLry9ja2etz6GySQhN/GPj4/3OYc44Xcaa0bX9YmaXlldW17HpuY3Mrv13Y2W2oMJaE1knIQ9nysKKcCVrXTHPaiiTFgcdp0xtepHnzlkrFQnGjRxF1A9wXzGcEa2Nd33Ur3ULRLtkToUVwZlCs5r+/3g73P2vdwnunF5I4oEITjpVqO3ak3QRLzQin41wnVjTCZIj7tG1Q4IAqN5mMOkbHxukhP5TmCY0m7u+OBAdKjQLPVAZYD9R8lpr/Ze1Y+2duwkQUayrI9CM/5kiHKN0b9ZikRPORAUwkM7MiMsASE22ukzNHcOZXXoRGueRUSuUrp1g9h6mycABHcAIOnEIVLqEGdSDQh3t4hCeLWw/Ws/UyLc1Ys549+CPr9QeDSJGq</latexit>

x3
<latexit sha1_base64="VOJ8U7c6pAAVeZ3Y0KhaHAC1xHs=">AAAB6nicbZC7SgNBFIbPxluMGuOlE2EwCFZhNynULmBjGdFcIFnC7GQ2GTI7u8zMimHJI9hYKGLry9ja2etz6GySQhN/GPj4/3OYc44Xcaa0bX9YmaXlldW17HpuY3Mrv13Y2W2oMJaE1knIQ9nysKKcCVrXTHPaiiTFgcdp0xtepHnzlkrFQnGjRxF1A9wXzGcEa2Nd33Ur3ULRLtkToUVwZlCs5r+/3g73P2vdwnunF5I4oEITjpVqO3ak3QRLzQin41wnVjTCZIj7tG1Q4IAqN5mMOkbHxukhP5TmCY0m7u+OBAdKjQLPVAZYD9R8lpr/Ze1Y+2duwkQUayrI9CM/5kiHKN0b9ZikRPORAUwkM7MiMsASE22ukzNHcOZXXoRGueRUSuUrp1g9h6mycABHcAIOnEIVLqEGdSDQh3t4hCeLWw/Ws/UyLc1Ys549+CPr9QeDSJGq</latexit>

x1<latexit sha1_base64="gQX58dk/muxILyVGSxGfqj3+kok=">AAAB6nicbZDLSgMxFIZP6q3WW73sRAgWwVWZqQt1V3DjsqK9QDuUTJppQzOZIcmIZegjuHGhiFtfxq079/ocml4W2vpD4OP/zyHnHD8WXBvH+UCZhcWl5ZXsam5tfWNzK7+9U9NRoiir0khEquETzQSXrGq4EawRK0ZCX7C6378Y5fVbpjSP5I0ZxMwLSVfygFNirHV913bb+YJTdMbC8+BOoVDe/P56O9j7rLTz761ORJOQSUMF0brpOrHxUqIMp4INc61Es5jQPumypkVJQqa9dDzqEB9Zp4ODSNknDR67vztSEmo9CH1bGRLT07PZyPwvayYmOPNSLuPEMEknHwWJwCbCo71xhytGjRhYIFRxOyumPaIINfY6OXsEd3bleaiViu5JsXTlFsrnMFEW9uEQjsGFUyjDJVSgChS6cA+P8IQEekDP6GVSmkHTnl34I/T6A4BAkag=</latexit>

x1<latexit sha1_base64="gQX58dk/muxILyVGSxGfqj3+kok=">AAAB6nicbZDLSgMxFIZP6q3WW73sRAgWwVWZqQt1V3DjsqK9QDuUTJppQzOZIcmIZegjuHGhiFtfxq079/ocml4W2vpD4OP/zyHnHD8WXBvH+UCZhcWl5ZXsam5tfWNzK7+9U9NRoiir0khEquETzQSXrGq4EawRK0ZCX7C6378Y5fVbpjSP5I0ZxMwLSVfygFNirHV913bb+YJTdMbC8+BOoVDe/P56O9j7rLTz761ORJOQSUMF0brpOrHxUqIMp4INc61Es5jQPumypkVJQqa9dDzqEB9Zp4ODSNknDR67vztSEmo9CH1bGRLT07PZyPwvayYmOPNSLuPEMEknHwWJwCbCo71xhytGjRhYIFRxOyumPaIINfY6OXsEd3bleaiViu5JsXTlFsrnMFEW9uEQjsGFUyjDJVSgChS6cA+P8IQEekDP6GVSmkHTnl34I/T6A4BAkag=</latexit>

x2<latexit sha1_base64="R3HBfGu3IuNIQRxgtOOMzO+8pwg=">AAAB6nicbZDLSgMxFIbP1Futt3rZiRAsgqsyUxfqruDGZUV7gXYomTTThiaZIcmIZegjuHGhiFtfxq079/ocml4W2vpD4OP/zyHnnCDmTBvX/XAyC4tLyyvZ1dza+sbmVn57p6ajRBFaJRGPVCPAmnImadUww2kjVhSLgNN60L8Y5fVbqjSL5I0ZxNQXuCtZyAg21rq+a5fa+YJbdMdC8+BNoVDe/P56O9j7rLTz761ORBJBpSEca9303Nj4KVaGEU6HuVaiaYxJH3dp06LEgmo/HY86REfW6aAwUvZJg8bu744UC60HIrCVApuens1G5n9ZMzHhmZ8yGSeGSjL5KEw4MhEa7Y06TFFi+MACJorZWRHpYYWJsdfJ2SN4syvPQ61U9E6KpSuvUD6HibKwD4dwDB6cQhkuoQJVINCFe3iEJ4c7D86z8zIpzTjTnl34I+f1B4HEkak=</latexit>

x2<latexit sha1_base64="R3HBfGu3IuNIQRxgtOOMzO+8pwg=">AAAB6nicbZDLSgMxFIbP1Futt3rZiRAsgqsyUxfqruDGZUV7gXYomTTThiaZIcmIZegjuHGhiFtfxq079/ocml4W2vpD4OP/zyHnnCDmTBvX/XAyC4tLyyvZ1dza+sbmVn57p6ajRBFaJRGPVCPAmnImadUww2kjVhSLgNN60L8Y5fVbqjSL5I0ZxNQXuCtZyAg21rq+a5fa+YJbdMdC8+BNoVDe/P56O9j7rLTz761ORBJBpSEca9303Nj4KVaGEU6HuVaiaYxJH3dp06LEgmo/HY86REfW6aAwUvZJg8bu744UC60HIrCVApuens1G5n9ZMzHhmZ8yGSeGSjL5KEw4MhEa7Y06TFFi+MACJorZWRHpYYWJsdfJ2SN4syvPQ61U9E6KpSuvUD6HibKwD4dwDB6cQhkuoQJVINCFe3iEJ4c7D86z8zIpzTjTnl34I+f1B4HEkak=</latexit>

x6
<latexit sha1_base64="Xn63RMxBVhK3SzcQ15fFrEBdOf4=">AAAB6nicbZDLSgMxFIbP1FutWsfLToRgEVyVmQpedgU3LivaC7RDyaSZNjSTGZKMWIY+ghsXirj1Zdy6c6/Poelloa0/BD7+/xxyzvFjzpR2nA8rs7C4tLySXc2trW/kN+2t7ZqKEklolUQ8kg0fK8qZoFXNNKeNWFIc+pzW/f7FKK/fUqlYJG70IKZeiLuCBYxgbazru/ZJ2y44RWcsNA/uFArl/PfX2/7uZ6Vtv7c6EUlCKjThWKmm68TaS7HUjHA6zLUSRWNM+rhLmwYFDqny0vGoQ3RonA4KImme0Gjs/u5IcajUIPRNZYh1T81mI/O/rJno4MxLmYgTTQWZfBQkHOkIjfZGHSYp0XxgABPJzKyI9LDERJvr5MwR3NmV56FWKrrHxdKVWyifw0RZ2IMDOAIXTqEMl1CBKhDowj08wpPFrQfr2XqZlGasac8O/JH1+gOH1JGt</latexit>

x6
<latexit sha1_base64="Xn63RMxBVhK3SzcQ15fFrEBdOf4=">AAAB6nicbZDLSgMxFIbP1FutWsfLToRgEVyVmQpedgU3LivaC7RDyaSZNjSTGZKMWIY+ghsXirj1Zdy6c6/Poelloa0/BD7+/xxyzvFjzpR2nA8rs7C4tLySXc2trW/kN+2t7ZqKEklolUQ8kg0fK8qZoFXNNKeNWFIc+pzW/f7FKK/fUqlYJG70IKZeiLuCBYxgbazru/ZJ2y44RWcsNA/uFArl/PfX2/7uZ6Vtv7c6EUlCKjThWKmm68TaS7HUjHA6zLUSRWNM+rhLmwYFDqny0vGoQ3RonA4KImme0Gjs/u5IcajUIPRNZYh1T81mI/O/rJno4MxLmYgTTQWZfBQkHOkIjfZGHSYp0XxgABPJzKyI9LDERJvr5MwR3NmV56FWKrrHxdKVWyifw0RZ2IMDOAIXTqEMl1CBKhDowj08wpPFrQfr2XqZlGasac8O/JH1+gOH1JGt</latexit>

x7
<latexit sha1_base64="daRe1Q7HIR6zISdWY4aqKOb0qO4=">AAAB6nicbZC7SgNBFIbPxluMGuOlE2EwCFZhNxbRLmBjGdFcIFnC7GQ2GTI7u8zMimHJI9hYKGLry9ja2etz6GySQhN/GPj4/3OYc44Xcaa0bX9YmaXlldW17HpuY3Mrv13Y2W2oMJaE1knIQ9nysKKcCVrXTHPaiiTFgcdp0xtepHnzlkrFQnGjRxF1A9wXzGcEa2Nd33Ur3ULRLtkToUVwZlCs5r+/3g73P2vdwnunF5I4oEITjpVqO3ak3QRLzQin41wnVjTCZIj7tG1Q4IAqN5mMOkbHxukhP5TmCY0m7u+OBAdKjQLPVAZYD9R8lpr/Ze1Y+2duwkQUayrI9CM/5kiHKN0b9ZikRPORAUwkM7MiMsASE22ukzNHcOZXXoRGueSclspXTrF6DlNl4QCO4AQcqEAVLqEGdSDQh3t4hCeLWw/Ws/UyLc1Ys549+CPr9QeJWJGu</latexit>

x7
<latexit sha1_base64="daRe1Q7HIR6zISdWY4aqKOb0qO4=">AAAB6nicbZC7SgNBFIbPxluMGuOlE2EwCFZhNxbRLmBjGdFcIFnC7GQ2GTI7u8zMimHJI9hYKGLry9ja2etz6GySQhN/GPj4/3OYc44Xcaa0bX9YmaXlldW17HpuY3Mrv13Y2W2oMJaE1knIQ9nysKKcCVrXTHPaiiTFgcdp0xtepHnzlkrFQnGjRxF1A9wXzGcEa2Nd33Ur3ULRLtkToUVwZlCs5r+/3g73P2vdwnunF5I4oEITjpVqO3ak3QRLzQin41wnVjTCZIj7tG1Q4IAqN5mMOkbHxukhP5TmCY0m7u+OBAdKjQLPVAZYD9R8lpr/Ze1Y+2duwkQUayrI9CM/5kiHKN0b9ZikRPORAUwkM7MiMsASE22ukzNHcOZXXoRGueSclspXTrF6DlNl4QCO4AQcqEAVLqEGdSDQh3t4hCeLWw/Ws/UyLc1Ys549+CPr9QeJWJGu</latexit>

x5
<latexit sha1_base64="cTCgFb4c6qgD0A88aRAjSlTtgeQ=">AAAB6nicbZDLSgMxFIbP1FutWsfLToRgEVyVmYqou4IblxXtBdqhZNJMG5rJDElGLEMfwY0LRdz6Mm7dudfn0PSy0NYfAh//fw455/gxZ0o7zoeVWVhcWl7JrubW1jfym/bWdk1FiSS0SiIeyYaPFeVM0KpmmtNGLCkOfU7rfv9ilNdvqVQsEjd6EFMvxF3BAkawNtb1XfukbRecojMWmgd3CoVy/vvrbX/3s9K231udiCQhFZpwrFTTdWLtpVhqRjgd5lqJojEmfdylTYMCh1R56XjUITo0TgcFkTRPaDR2f3ekOFRqEPqmMsS6p2azkflf1kx0cOalTMSJpoJMPgoSjnSERnujDpOUaD4wgIlkZlZEelhios11cuYI7uzK81ArFd3jYunKLZTPYaIs7MEBHIELp1CGS6hAFQh04R4e4cni1oP1bL1MSjPWtGcH/sh6/QGGUJGs</latexit>

x5
<latexit sha1_base64="cTCgFb4c6qgD0A88aRAjSlTtgeQ=">AAAB6nicbZDLSgMxFIbP1FutWsfLToRgEVyVmYqou4IblxXtBdqhZNJMG5rJDElGLEMfwY0LRdz6Mm7dudfn0PSy0NYfAh//fw455/gxZ0o7zoeVWVhcWl7JrubW1jfym/bWdk1FiSS0SiIeyYaPFeVM0KpmmtNGLCkOfU7rfv9ilNdvqVQsEjd6EFMvxF3BAkawNtb1XfukbRecojMWmgd3CoVy/vvrbX/3s9K231udiCQhFZpwrFTTdWLtpVhqRjgd5lqJojEmfdylTYMCh1R56XjUITo0TgcFkTRPaDR2f3ekOFRqEPqmMsS6p2azkflf1kx0cOalTMSJpoJMPgoSjnSERnujDpOUaD4wgIlkZlZEelhios11cuYI7uzK81ArFd3jYunKLZTPYaIs7MEBHIELp1CGS6hAFQh04R4e4cni1oP1bL1MSjPWtGcH/sh6/QGGUJGs</latexit>

q2
<latexit sha1_base64="w+G1uLFRdvO0QgaIt9c5D2s0VMA=">AAAB6nicbZC7TsMwFIZPuJZyK3RksaiQmKokDMBWiYWxCHqR2qhyXKe1ajvBdpCqqI/AwgBCrAw8CBMjG4/BG+BeBmj5JUuf/v8c+ZwTJpxp47pfztLyyuraem4jv7m1vbNb2Nuv6zhVhNZIzGPVDLGmnElaM8xw2kwUxSLktBEOLsZ5444qzWJ5Y4YJDQTuSRYxgo21rm87fqdQcsvuRGgRvBmUKsXvd/+j8VbtFD7b3ZikgkpDONa65bmJCTKsDCOcjvLtVNMEkwHu0ZZFiQXVQTYZdYSOrNNFUazskwZN3N8dGRZaD0VoKwU2fT2fjc3/slZqorMgYzJJDZVk+lGUcmRiNN4bdZmixPChBUwUs7Mi0scKE2Ovk7dH8OZXXoS6X/ZOyv6VV6qcw1Q5OIBDOAYPTqECl1CFGhDowT08wpPDnQfn2XmZli45s54i/JHz+gNk9ZGV</latexit>

q2
<latexit sha1_base64="w+G1uLFRdvO0QgaIt9c5D2s0VMA=">AAAB6nicbZC7TsMwFIZPuJZyK3RksaiQmKokDMBWiYWxCHqR2qhyXKe1ajvBdpCqqI/AwgBCrAw8CBMjG4/BG+BeBmj5JUuf/v8c+ZwTJpxp47pfztLyyuraem4jv7m1vbNb2Nuv6zhVhNZIzGPVDLGmnElaM8xw2kwUxSLktBEOLsZ5444qzWJ5Y4YJDQTuSRYxgo21rm87fqdQcsvuRGgRvBmUKsXvd/+j8VbtFD7b3ZikgkpDONa65bmJCTKsDCOcjvLtVNMEkwHu0ZZFiQXVQTYZdYSOrNNFUazskwZN3N8dGRZaD0VoKwU2fT2fjc3/slZqorMgYzJJDZVk+lGUcmRiNN4bdZmixPChBUwUs7Mi0scKE2Ovk7dH8OZXXoS6X/ZOyv6VV6qcw1Q5OIBDOAYPTqECl1CFGhDowT08wpPDnQfn2XmZli45s54i/JHz+gNk9ZGV</latexit>

1
16

<latexit sha1_base64="EiXfK7bWrVlDCzjXXkKQEUvDtSQ=">AAAB83icbVDLSgNBEOz1GeMr6tHLaBA8hZ0IPm4BLx6juEkgG8LsZDYZMju7zMwKYdnf8OJBEa/+jDe/wD/w7ORx0MSChqKqm+6uIBFcG9f9dJaWV1bX1gsbxc2t7Z3d0t5+Q8eposyjsYhVKyCaCS6ZZ7gRrJUoRqJAsGYwvB77zQemNI/lvRklrBORvuQhp8RYyfdDRWiG8wyf591S2a24E6BFgmekXDvKvz3/7qveLX34vZimEZOGCqJ1G7uJ6WREGU4Fy4t+qllC6JD0WdtSSSKmO9nk5hydWKWHwljZkgZN1N8TGYm0HkWB7YyIGeh5byz+57VTE152Mi6T1DBJp4vCVCATo3EAqMcVo0aMLCFUcXsrogNiYzA2pqINAc+/vEga1Qo+q1Rvcbl2BVMU4BCO4RQwXEANbqAOHlBI4BGe4cVJnSfn1Xmbti45s5kD+APn/Qe3cJUo</latexit>

1
16

<latexit sha1_base64="EiXfK7bWrVlDCzjXXkKQEUvDtSQ=">AAAB83icbVDLSgNBEOz1GeMr6tHLaBA8hZ0IPm4BLx6juEkgG8LsZDYZMju7zMwKYdnf8OJBEa/+jDe/wD/w7ORx0MSChqKqm+6uIBFcG9f9dJaWV1bX1gsbxc2t7Z3d0t5+Q8eposyjsYhVKyCaCS6ZZ7gRrJUoRqJAsGYwvB77zQemNI/lvRklrBORvuQhp8RYyfdDRWiG8wyf591S2a24E6BFgmekXDvKvz3/7qveLX34vZimEZOGCqJ1G7uJ6WREGU4Fy4t+qllC6JD0WdtSSSKmO9nk5hydWKWHwljZkgZN1N8TGYm0HkWB7YyIGeh5byz+57VTE152Mi6T1DBJp4vCVCATo3EAqMcVo0aMLCFUcXsrogNiYzA2pqINAc+/vEga1Qo+q1Rvcbl2BVMU4BCO4RQwXEANbqAOHlBI4BGe4cVJnSfn1Xmbti45s5kD+APn/Qe3cJUo</latexit>

1
16

<latexit sha1_base64="EiXfK7bWrVlDCzjXXkKQEUvDtSQ=">AAAB83icbVDLSgNBEOz1GeMr6tHLaBA8hZ0IPm4BLx6juEkgG8LsZDYZMju7zMwKYdnf8OJBEa/+jDe/wD/w7ORx0MSChqKqm+6uIBFcG9f9dJaWV1bX1gsbxc2t7Z3d0t5+Q8eposyjsYhVKyCaCS6ZZ7gRrJUoRqJAsGYwvB77zQemNI/lvRklrBORvuQhp8RYyfdDRWiG8wyf591S2a24E6BFgmekXDvKvz3/7qveLX34vZimEZOGCqJ1G7uJ6WREGU4Fy4t+qllC6JD0WdtSSSKmO9nk5hydWKWHwljZkgZN1N8TGYm0HkWB7YyIGeh5byz+57VTE152Mi6T1DBJp4vCVCATo3EAqMcVo0aMLCFUcXsrogNiYzA2pqINAc+/vEga1Qo+q1Rvcbl2BVMU4BCO4RQwXEANbqAOHlBI4BGe4cVJnSfn1Xmbti45s5kD+APn/Qe3cJUo</latexit>

1
16

<latexit sha1_base64="EiXfK7bWrVlDCzjXXkKQEUvDtSQ=">AAAB83icbVDLSgNBEOz1GeMr6tHLaBA8hZ0IPm4BLx6juEkgG8LsZDYZMju7zMwKYdnf8OJBEa/+jDe/wD/w7ORx0MSChqKqm+6uIBFcG9f9dJaWV1bX1gsbxc2t7Z3d0t5+Q8eposyjsYhVKyCaCS6ZZ7gRrJUoRqJAsGYwvB77zQemNI/lvRklrBORvuQhp8RYyfdDRWiG8wyf591S2a24E6BFgmekXDvKvz3/7qveLX34vZimEZOGCqJ1G7uJ6WREGU4Fy4t+qllC6JD0WdtSSSKmO9nk5hydWKWHwljZkgZN1N8TGYm0HkWB7YyIGeh5byz+57VTE152Mi6T1DBJp4vCVCATo3EAqMcVo0aMLCFUcXsrogNiYzA2pqINAc+/vEga1Qo+q1Rvcbl2BVMU4BCO4RQwXEANbqAOHlBI4BGe4cVJnSfn1Xmbti45s5kD+APn/Qe3cJUo</latexit>

1
16

<latexit sha1_base64="EiXfK7bWrVlDCzjXXkKQEUvDtSQ=">AAAB83icbVDLSgNBEOz1GeMr6tHLaBA8hZ0IPm4BLx6juEkgG8LsZDYZMju7zMwKYdnf8OJBEa/+jDe/wD/w7ORx0MSChqKqm+6uIBFcG9f9dJaWV1bX1gsbxc2t7Z3d0t5+Q8eposyjsYhVKyCaCS6ZZ7gRrJUoRqJAsGYwvB77zQemNI/lvRklrBORvuQhp8RYyfdDRWiG8wyf591S2a24E6BFgmekXDvKvz3/7qveLX34vZimEZOGCqJ1G7uJ6WREGU4Fy4t+qllC6JD0WdtSSSKmO9nk5hydWKWHwljZkgZN1N8TGYm0HkWB7YyIGeh5byz+57VTE152Mi6T1DBJp4vCVCATo3EAqMcVo0aMLCFUcXsrogNiYzA2pqINAc+/vEga1Qo+q1Rvcbl2BVMU4BCO4RQwXEANbqAOHlBI4BGe4cVJnSfn1Xmbti45s5kD+APn/Qe3cJUo</latexit>

1
16

<latexit sha1_base64="EiXfK7bWrVlDCzjXXkKQEUvDtSQ=">AAAB83icbVDLSgNBEOz1GeMr6tHLaBA8hZ0IPm4BLx6juEkgG8LsZDYZMju7zMwKYdnf8OJBEa/+jDe/wD/w7ORx0MSChqKqm+6uIBFcG9f9dJaWV1bX1gsbxc2t7Z3d0t5+Q8eposyjsYhVKyCaCS6ZZ7gRrJUoRqJAsGYwvB77zQemNI/lvRklrBORvuQhp8RYyfdDRWiG8wyf591S2a24E6BFgmekXDvKvz3/7qveLX34vZimEZOGCqJ1G7uJ6WREGU4Fy4t+qllC6JD0WdtSSSKmO9nk5hydWKWHwljZkgZN1N8TGYm0HkWB7YyIGeh5byz+57VTE152Mi6T1DBJp4vCVCATo3EAqMcVo0aMLCFUcXsrogNiYzA2pqINAc+/vEga1Qo+q1Rvcbl2BVMU4BCO4RQwXEANbqAOHlBI4BGe4cVJnSfn1Xmbti45s5kD+APn/Qe3cJUo</latexit>

1
16

<latexit sha1_base64="EiXfK7bWrVlDCzjXXkKQEUvDtSQ=">AAAB83icbVDLSgNBEOz1GeMr6tHLaBA8hZ0IPm4BLx6juEkgG8LsZDYZMju7zMwKYdnf8OJBEa/+jDe/wD/w7ORx0MSChqKqm+6uIBFcG9f9dJaWV1bX1gsbxc2t7Z3d0t5+Q8eposyjsYhVKyCaCS6ZZ7gRrJUoRqJAsGYwvB77zQemNI/lvRklrBORvuQhp8RYyfdDRWiG8wyf591S2a24E6BFgmekXDvKvz3/7qveLX34vZimEZOGCqJ1G7uJ6WREGU4Fy4t+qllC6JD0WdtSSSKmO9nk5hydWKWHwljZkgZN1N8TGYm0HkWB7YyIGeh5byz+57VTE152Mi6T1DBJp4vCVCATo3EAqMcVo0aMLCFUcXsrogNiYzA2pqINAc+/vEga1Qo+q1Rvcbl2BVMU4BCO4RQwXEANbqAOHlBI4BGe4cVJnSfn1Xmbti45s5kD+APn/Qe3cJUo</latexit>

1
16

<latexit sha1_base64="EiXfK7bWrVlDCzjXXkKQEUvDtSQ=">AAAB83icbVDLSgNBEOz1GeMr6tHLaBA8hZ0IPm4BLx6juEkgG8LsZDYZMju7zMwKYdnf8OJBEa/+jDe/wD/w7ORx0MSChqKqm+6uIBFcG9f9dJaWV1bX1gsbxc2t7Z3d0t5+Q8eposyjsYhVKyCaCS6ZZ7gRrJUoRqJAsGYwvB77zQemNI/lvRklrBORvuQhp8RYyfdDRWiG8wyf591S2a24E6BFgmekXDvKvz3/7qveLX34vZimEZOGCqJ1G7uJ6WREGU4Fy4t+qllC6JD0WdtSSSKmO9nk5hydWKWHwljZkgZN1N8TGYm0HkWB7YyIGeh5byz+57VTE152Mi6T1DBJp4vCVCATo3EAqMcVo0aMLCFUcXsrogNiYzA2pqINAc+/vEga1Qo+q1Rvcbl2BVMU4BCO4RQwXEANbqAOHlBI4BGe4cVJnSfn1Xmbti45s5kD+APn/Qe3cJUo</latexit>

1
16

<latexit sha1_base64="EiXfK7bWrVlDCzjXXkKQEUvDtSQ=">AAAB83icbVDLSgNBEOz1GeMr6tHLaBA8hZ0IPm4BLx6juEkgG8LsZDYZMju7zMwKYdnf8OJBEa/+jDe/wD/w7ORx0MSChqKqm+6uIBFcG9f9dJaWV1bX1gsbxc2t7Z3d0t5+Q8eposyjsYhVKyCaCS6ZZ7gRrJUoRqJAsGYwvB77zQemNI/lvRklrBORvuQhp8RYyfdDRWiG8wyf591S2a24E6BFgmekXDvKvz3/7qveLX34vZimEZOGCqJ1G7uJ6WREGU4Fy4t+qllC6JD0WdtSSSKmO9nk5hydWKWHwljZkgZN1N8TGYm0HkWB7YyIGeh5byz+57VTE152Mi6T1DBJp4vCVCATo3EAqMcVo0aMLCFUcXsrogNiYzA2pqINAc+/vEga1Qo+q1Rvcbl2BVMU4BCO4RQwXEANbqAOHlBI4BGe4cVJnSfn1Xmbti45s5kD+APn/Qe3cJUo</latexit>

1
16

<latexit sha1_base64="EiXfK7bWrVlDCzjXXkKQEUvDtSQ=">AAAB83icbVDLSgNBEOz1GeMr6tHLaBA8hZ0IPm4BLx6juEkgG8LsZDYZMju7zMwKYdnf8OJBEa/+jDe/wD/w7ORx0MSChqKqm+6uIBFcG9f9dJaWV1bX1gsbxc2t7Z3d0t5+Q8eposyjsYhVKyCaCS6ZZ7gRrJUoRqJAsGYwvB77zQemNI/lvRklrBORvuQhp8RYyfdDRWiG8wyf591S2a24E6BFgmekXDvKvz3/7qveLX34vZimEZOGCqJ1G7uJ6WREGU4Fy4t+qllC6JD0WdtSSSKmO9nk5hydWKWHwljZkgZN1N8TGYm0HkWB7YyIGeh5byz+57VTE152Mi6T1DBJp4vCVCATo3EAqMcVo0aMLCFUcXsrogNiYzA2pqINAc+/vEga1Qo+q1Rvcbl2BVMU4BCO4RQwXEANbqAOHlBI4BGe4cVJnSfn1Xmbti45s5kD+APn/Qe3cJUo</latexit>

1
16

<latexit sha1_base64="EiXfK7bWrVlDCzjXXkKQEUvDtSQ=">AAAB83icbVDLSgNBEOz1GeMr6tHLaBA8hZ0IPm4BLx6juEkgG8LsZDYZMju7zMwKYdnf8OJBEa/+jDe/wD/w7ORx0MSChqKqm+6uIBFcG9f9dJaWV1bX1gsbxc2t7Z3d0t5+Q8eposyjsYhVKyCaCS6ZZ7gRrJUoRqJAsGYwvB77zQemNI/lvRklrBORvuQhp8RYyfdDRWiG8wyf591S2a24E6BFgmekXDvKvz3/7qveLX34vZimEZOGCqJ1G7uJ6WREGU4Fy4t+qllC6JD0WdtSSSKmO9nk5hydWKWHwljZkgZN1N8TGYm0HkWB7YyIGeh5byz+57VTE152Mi6T1DBJp4vCVCATo3EAqMcVo0aMLCFUcXsrogNiYzA2pqINAc+/vEga1Qo+q1Rvcbl2BVMU4BCO4RQwXEANbqAOHlBI4BGe4cVJnSfn1Xmbti45s5kD+APn/Qe3cJUo</latexit>

1
16

<latexit sha1_base64="EiXfK7bWrVlDCzjXXkKQEUvDtSQ=">AAAB83icbVDLSgNBEOz1GeMr6tHLaBA8hZ0IPm4BLx6juEkgG8LsZDYZMju7zMwKYdnf8OJBEa/+jDe/wD/w7ORx0MSChqKqm+6uIBFcG9f9dJaWV1bX1gsbxc2t7Z3d0t5+Q8eposyjsYhVKyCaCS6ZZ7gRrJUoRqJAsGYwvB77zQemNI/lvRklrBORvuQhp8RYyfdDRWiG8wyf591S2a24E6BFgmekXDvKvz3/7qveLX34vZimEZOGCqJ1G7uJ6WREGU4Fy4t+qllC6JD0WdtSSSKmO9nk5hydWKWHwljZkgZN1N8TGYm0HkWB7YyIGeh5byz+57VTE152Mi6T1DBJp4vCVCATo3EAqMcVo0aMLCFUcXsrogNiYzA2pqINAc+/vEga1Qo+q1Rvcbl2BVMU4BCO4RQwXEANbqAOHlBI4BGe4cVJnSfn1Xmbti45s5kD+APn/Qe3cJUo</latexit>

5
16

<latexit sha1_base64="D2kZKbU4Q6+tCwOujty1j71nlPk=">AAAB83icbVDLSsNAFL2pr1pfVZduRovgqiQVX7uCG5dVTFtoQplMJ+3QySTMTIQS8htuXCji1p9x5xf4B66dPhbaeuDC4Zx7ufeeIOFMadv+tApLyyura8X10sbm1vZOeXevqeJUEuqSmMeyHWBFORPU1Uxz2k4kxVHAaSsYXo/91gOVisXiXo8S6ke4L1jICNZG8rxQYpKd5ZlznnfLFbtqT4AWiTMjlfph/u16d1+NbvnD68UkjajQhGOlOo6daD/DUjPCaV7yUkUTTIa4TzuGChxR5WeTm3N0bJQeCmNpSmg0UX9PZDhSahQFpjPCeqDmvbH4n9dJdXjpZ0wkqaaCTBeFKUc6RuMAUI9JSjQfGYKJZOZWRAbYxKBNTCUTgjP/8iJp1qrOabV261TqVzBFEQ7gCE7AgQuoww00wAUCCTzCM7xYqfVkvVpv09aCNZvZhz+w3n8AvZSVLA==</latexit>

5
16

<latexit sha1_base64="D2kZKbU4Q6+tCwOujty1j71nlPk=">AAAB83icbVDLSsNAFL2pr1pfVZduRovgqiQVX7uCG5dVTFtoQplMJ+3QySTMTIQS8htuXCji1p9x5xf4B66dPhbaeuDC4Zx7ufeeIOFMadv+tApLyyura8X10sbm1vZOeXevqeJUEuqSmMeyHWBFORPU1Uxz2k4kxVHAaSsYXo/91gOVisXiXo8S6ke4L1jICNZG8rxQYpKd5ZlznnfLFbtqT4AWiTMjlfph/u16d1+NbvnD68UkjajQhGOlOo6daD/DUjPCaV7yUkUTTIa4TzuGChxR5WeTm3N0bJQeCmNpSmg0UX9PZDhSahQFpjPCeqDmvbH4n9dJdXjpZ0wkqaaCTBeFKUc6RuMAUI9JSjQfGYKJZOZWRAbYxKBNTCUTgjP/8iJp1qrOabV261TqVzBFEQ7gCE7AgQuoww00wAUCCTzCM7xYqfVkvVpv09aCNZvZhz+w3n8AvZSVLA==</latexit>

x4<latexit sha1_base64="JiSVTy1HR4HUoHIcj3Cs+dUHCXw=">AAAB6nicbZDLSgMxFIbP1FutWsfLToRgEVyVmSqou4IblxXtBdqhZNJMG5rJDElGLEMfwY0LRdz6Mm7dudfn0PSy0NYfAh//fw455/gxZ0o7zoeVWVhcWl7JrubW1jfym/bWdk1FiSS0SiIeyYaPFeVM0KpmmtNGLCkOfU7rfv9ilNdvqVQsEjd6EFMvxF3BAkawNtb1XfukbRecojMWmgd3CoVy/vvrbX/3s9K231udiCQhFZpwrFTTdWLtpVhqRjgd5lqJojEmfdylTYMCh1R56XjUITo0TgcFkTRPaDR2f3ekOFRqEPqmMsS6p2azkflf1kx0cOalTMSJpoJMPgoSjnSERnujDpOUaD4wgIlkZlZEelhios11cuYI7uzK81ArFd3jYunKLZTPYaIs7MEBHIELp1CGS6hAFQh04R4e4cni1oP1bL1MSjPWtGcH/sh6/QGEzJGr</latexit>

x4<latexit sha1_base64="JiSVTy1HR4HUoHIcj3Cs+dUHCXw=">AAAB6nicbZDLSgMxFIbP1FutWsfLToRgEVyVmSqou4IblxXtBdqhZNJMG5rJDElGLEMfwY0LRdz6Mm7dudfn0PSy0NYfAh//fw455/gxZ0o7zoeVWVhcWl7JrubW1jfym/bWdk1FiSS0SiIeyYaPFeVM0KpmmtNGLCkOfU7rfv9ilNdvqVQsEjd6EFMvxF3BAkawNtb1XfukbRecojMWmgd3CoVy/vvrbX/3s9K231udiCQhFZpwrFTTdWLtpVhqRjgd5lqJojEmfdylTYMCh1R56XjUITo0TgcFkTRPaDR2f3ekOFRqEPqmMsS6p2azkflf1kx0cOalTMSJpoJMPgoSjnSERnujDpOUaD4wgIlkZlZEelhios11cuYI7uzK81ArFd3jYunKLZTPYaIs7MEBHIELp1CGS6hAFQh04R4e4cni1oP1bL1MSjPWtGcH/sh6/QGEzJGr</latexit>

x8
<latexit sha1_base64="D+/A72boJxT/CpNkEHWRSba4+0w=">AAAB6nicbZC7SgNBFIbPxluMGuOlE2EwCFZhNxbGLmBjGdFcIFnC7GQ2GTI7u8zMimHJI9hYKGLry9ja2etz6GySQhN/GPj4/3OYc44Xcaa0bX9YmaXlldW17HpuY3Mrv13Y2W2oMJaE1knIQ9nysKKcCVrXTHPaiiTFgcdp0xtepHnzlkrFQnGjRxF1A9wXzGcEa2Nd33Ur3ULRLtkToUVwZlCs5r+/3g73P2vdwnunF5I4oEITjpVqO3ak3QRLzQin41wnVjTCZIj7tG1Q4IAqN5mMOkbHxukhP5TmCY0m7u+OBAdKjQLPVAZYD9R8lpr/Ze1Y+xU3YSKKNRVk+pEfc6RDlO6NekxSovnIACaSmVkRGWCJiTbXyZkjOPMrL0KjXHJOS+Urp1g9h6mycABHcAIOnEEVLqEGdSDQh3t4hCeLWw/Ws/UyLc1Ys549+CPr9QeK3JGv</latexit>

x8
<latexit sha1_base64="D+/A72boJxT/CpNkEHWRSba4+0w=">AAAB6nicbZC7SgNBFIbPxluMGuOlE2EwCFZhNxbGLmBjGdFcIFnC7GQ2GTI7u8zMimHJI9hYKGLry9ja2etz6GySQhN/GPj4/3OYc44Xcaa0bX9YmaXlldW17HpuY3Mrv13Y2W2oMJaE1knIQ9nysKKcCVrXTHPaiiTFgcdp0xtepHnzlkrFQnGjRxF1A9wXzGcEa2Nd33Ur3ULRLtkToUVwZlCs5r+/3g73P2vdwnunF5I4oEITjpVqO3ak3QRLzQin41wnVjTCZIj7tG1Q4IAqN5mMOkbHxukhP5TmCY0m7u+OBAdKjQLPVAZYD9R8lpr/Ze1Y+xU3YSKKNRVk+pEfc6RDlO6NekxSovnIACaSmVkRGWCJiTbXyZkjOPMrL0KjXHJOS+Urp1g9h6mycABHcAIOnEEVLqEGdSDQh3t4hCeLWw/Ws/UyLc1Ys549+CPr9QeK3JGv</latexit>

5
16

<latexit sha1_base64="D2kZKbU4Q6+tCwOujty1j71nlPk=">AAAB83icbVDLSsNAFL2pr1pfVZduRovgqiQVX7uCG5dVTFtoQplMJ+3QySTMTIQS8htuXCji1p9x5xf4B66dPhbaeuDC4Zx7ufeeIOFMadv+tApLyyura8X10sbm1vZOeXevqeJUEuqSmMeyHWBFORPU1Uxz2k4kxVHAaSsYXo/91gOVisXiXo8S6ke4L1jICNZG8rxQYpKd5ZlznnfLFbtqT4AWiTMjlfph/u16d1+NbvnD68UkjajQhGOlOo6daD/DUjPCaV7yUkUTTIa4TzuGChxR5WeTm3N0bJQeCmNpSmg0UX9PZDhSahQFpjPCeqDmvbH4n9dJdXjpZ0wkqaaCTBeFKUc6RuMAUI9JSjQfGYKJZOZWRAbYxKBNTCUTgjP/8iJp1qrOabV261TqVzBFEQ7gCE7AgQuoww00wAUCCTzCM7xYqfVkvVpv09aCNZvZhz+w3n8AvZSVLA==</latexit>

5
16

<latexit sha1_base64="D2kZKbU4Q6+tCwOujty1j71nlPk=">AAAB83icbVDLSsNAFL2pr1pfVZduRovgqiQVX7uCG5dVTFtoQplMJ+3QySTMTIQS8htuXCji1p9x5xf4B66dPhbaeuDC4Zx7ufeeIOFMadv+tApLyyura8X10sbm1vZOeXevqeJUEuqSmMeyHWBFORPU1Uxz2k4kxVHAaSsYXo/91gOVisXiXo8S6ke4L1jICNZG8rxQYpKd5ZlznnfLFbtqT4AWiTMjlfph/u16d1+NbvnD68UkjajQhGOlOo6daD/DUjPCaV7yUkUTTIa4TzuGChxR5WeTm3N0bJQeCmNpSmg0UX9PZDhSahQFpjPCeqDmvbH4n9dJdXjpZ0wkqaaCTBeFKUc6RuMAUI9JSjQfGYKJZOZWRAbYxKBNTCUTgjP/8iJp1qrOabV261TqVzBFEQ7gCE7AgQuoww00wAUCCTzCM7xYqfVkvVpv09aCNZvZhz+w3n8AvZSVLA==</latexit>

(b) GTV

q1
<latexit sha1_base64="hcXm0QZNtETH2m8L3kK3kM5JSYc=">AAAB6nicbZC7SgNBFIbPeo3xFk1pMxgEq7AbC7UL2FhGNBdIQpidzCZDZmfXmbNCWPIINhaK2Fr4IFaWdj6Gb+DkUmjiDwMf/38Oc87xYykMuu6Xs7S8srq2ntnIbm5t7+zm9vZrJko041UWyUg3fGq4FIpXUaDkjVhzGvqS1/3BxTiv33FtRKRucBjzdkh7SgSCUbTW9W3H6+QKbtGdiCyCN4NCOf/9Xvqov1U6uc9WN2JJyBUySY1pem6M7ZRqFEzyUbaVGB5TNqA93rSoaMhNO52MOiJH1umSINL2KSQT93dHSkNjhqFvK0OKfTOfjc3/smaCwVk7FSpOkCs2/ShIJMGIjPcmXaE5Qzm0QJkWdlbC+lRThvY6WXsEb37lRaiVit5JsXTlFcrnMFUGDuAQjsGDUyjDJVSgCgx6cA+P8ORI58F5dl6mpUvOrCcPf+S8/gBjcZGU</latexit>

q1
<latexit sha1_base64="hcXm0QZNtETH2m8L3kK3kM5JSYc=">AAAB6nicbZC7SgNBFIbPeo3xFk1pMxgEq7AbC7UL2FhGNBdIQpidzCZDZmfXmbNCWPIINhaK2Fr4IFaWdj6Gb+DkUmjiDwMf/38Oc87xYykMuu6Xs7S8srq2ntnIbm5t7+zm9vZrJko041UWyUg3fGq4FIpXUaDkjVhzGvqS1/3BxTiv33FtRKRucBjzdkh7SgSCUbTW9W3H6+QKbtGdiCyCN4NCOf/9Xvqov1U6uc9WN2JJyBUySY1pem6M7ZRqFEzyUbaVGB5TNqA93rSoaMhNO52MOiJH1umSINL2KSQT93dHSkNjhqFvK0OKfTOfjc3/smaCwVk7FSpOkCs2/ShIJMGIjPcmXaE5Qzm0QJkWdlbC+lRThvY6WXsEb37lRaiVit5JsXTlFcrnMFUGDuAQjsGDUyjDJVSgCgx6cA+P8ORI58F5dl6mpUvOrCcPf+S8/gBjcZGU</latexit>

x3
<latexit sha1_base64="VOJ8U7c6pAAVeZ3Y0KhaHAC1xHs=">AAAB6nicbZC7SgNBFIbPxluMGuOlE2EwCFZhNynULmBjGdFcIFnC7GQ2GTI7u8zMimHJI9hYKGLry9ja2etz6GySQhN/GPj4/3OYc44Xcaa0bX9YmaXlldW17HpuY3Mrv13Y2W2oMJaE1knIQ9nysKKcCVrXTHPaiiTFgcdp0xtepHnzlkrFQnGjRxF1A9wXzGcEa2Nd33Ur3ULRLtkToUVwZlCs5r+/3g73P2vdwnunF5I4oEITjpVqO3ak3QRLzQin41wnVjTCZIj7tG1Q4IAqN5mMOkbHxukhP5TmCY0m7u+OBAdKjQLPVAZYD9R8lpr/Ze1Y+2duwkQUayrI9CM/5kiHKN0b9ZikRPORAUwkM7MiMsASE22ukzNHcOZXXoRGueRUSuUrp1g9h6mycABHcAIOnEIVLqEGdSDQh3t4hCeLWw/Ws/UyLc1Ys549+CPr9QeDSJGq</latexit>

x3
<latexit sha1_base64="VOJ8U7c6pAAVeZ3Y0KhaHAC1xHs=">AAAB6nicbZC7SgNBFIbPxluMGuOlE2EwCFZhNynULmBjGdFcIFnC7GQ2GTI7u8zMimHJI9hYKGLry9ja2etz6GySQhN/GPj4/3OYc44Xcaa0bX9YmaXlldW17HpuY3Mrv13Y2W2oMJaE1knIQ9nysKKcCVrXTHPaiiTFgcdp0xtepHnzlkrFQnGjRxF1A9wXzGcEa2Nd33Ur3ULRLtkToUVwZlCs5r+/3g73P2vdwnunF5I4oEITjpVqO3ak3QRLzQin41wnVjTCZIj7tG1Q4IAqN5mMOkbHxukhP5TmCY0m7u+OBAdKjQLPVAZYD9R8lpr/Ze1Y+2duwkQUayrI9CM/5kiHKN0b9ZikRPORAUwkM7MiMsASE22ukzNHcOZXXoRGueRUSuUrp1g9h6mycABHcAIOnEIVLqEGdSDQh3t4hCeLWw/Ws/UyLc1Ys549+CPr9QeDSJGq</latexit>

x1<latexit sha1_base64="gQX58dk/muxILyVGSxGfqj3+kok=">AAAB6nicbZDLSgMxFIZP6q3WW73sRAgWwVWZqQt1V3DjsqK9QDuUTJppQzOZIcmIZegjuHGhiFtfxq079/ocml4W2vpD4OP/zyHnHD8WXBvH+UCZhcWl5ZXsam5tfWNzK7+9U9NRoiir0khEquETzQSXrGq4EawRK0ZCX7C6378Y5fVbpjSP5I0ZxMwLSVfygFNirHV913bb+YJTdMbC8+BOoVDe/P56O9j7rLTz761ORJOQSUMF0brpOrHxUqIMp4INc61Es5jQPumypkVJQqa9dDzqEB9Zp4ODSNknDR67vztSEmo9CH1bGRLT07PZyPwvayYmOPNSLuPEMEknHwWJwCbCo71xhytGjRhYIFRxOyumPaIINfY6OXsEd3bleaiViu5JsXTlFsrnMFEW9uEQjsGFUyjDJVSgChS6cA+P8IQEekDP6GVSmkHTnl34I/T6A4BAkag=</latexit>

x1<latexit sha1_base64="gQX58dk/muxILyVGSxGfqj3+kok=">AAAB6nicbZDLSgMxFIZP6q3WW73sRAgWwVWZqQt1V3DjsqK9QDuUTJppQzOZIcmIZegjuHGhiFtfxq079/ocml4W2vpD4OP/zyHnHD8WXBvH+UCZhcWl5ZXsam5tfWNzK7+9U9NRoiir0khEquETzQSXrGq4EawRK0ZCX7C6378Y5fVbpjSP5I0ZxMwLSVfygFNirHV913bb+YJTdMbC8+BOoVDe/P56O9j7rLTz761ORJOQSUMF0brpOrHxUqIMp4INc61Es5jQPumypkVJQqa9dDzqEB9Zp4ODSNknDR67vztSEmo9CH1bGRLT07PZyPwvayYmOPNSLuPEMEknHwWJwCbCo71xhytGjRhYIFRxOyumPaIINfY6OXsEd3bleaiViu5JsXTlFsrnMFEW9uEQjsGFUyjDJVSgChS6cA+P8IQEekDP6GVSmkHTnl34I/T6A4BAkag=</latexit>

x2<latexit sha1_base64="R3HBfGu3IuNIQRxgtOOMzO+8pwg=">AAAB6nicbZDLSgMxFIbP1Futt3rZiRAsgqsyUxfqruDGZUV7gXYomTTThiaZIcmIZegjuHGhiFtfxq079/ocml4W2vpD4OP/zyHnnCDmTBvX/XAyC4tLyyvZ1dza+sbmVn57p6ajRBFaJRGPVCPAmnImadUww2kjVhSLgNN60L8Y5fVbqjSL5I0ZxNQXuCtZyAg21rq+a5fa+YJbdMdC8+BNoVDe/P56O9j7rLTz761ORBJBpSEca9303Nj4KVaGEU6HuVaiaYxJH3dp06LEgmo/HY86REfW6aAwUvZJg8bu744UC60HIrCVApuens1G5n9ZMzHhmZ8yGSeGSjL5KEw4MhEa7Y06TFFi+MACJorZWRHpYYWJsdfJ2SN4syvPQ61U9E6KpSuvUD6HibKwD4dwDB6cQhkuoQJVINCFe3iEJ4c7D86z8zIpzTjTnl34I+f1B4HEkak=</latexit>

x2<latexit sha1_base64="R3HBfGu3IuNIQRxgtOOMzO+8pwg=">AAAB6nicbZDLSgMxFIbP1Futt3rZiRAsgqsyUxfqruDGZUV7gXYomTTThiaZIcmIZegjuHGhiFtfxq079/ocml4W2vpD4OP/zyHnnCDmTBvX/XAyC4tLyyvZ1dza+sbmVn57p6ajRBFaJRGPVCPAmnImadUww2kjVhSLgNN60L8Y5fVbqjSL5I0ZxNQXuCtZyAg21rq+a5fa+YJbdMdC8+BNoVDe/P56O9j7rLTz761ORBJBpSEca9303Nj4KVaGEU6HuVaiaYxJH3dp06LEgmo/HY86REfW6aAwUvZJg8bu744UC60HIrCVApuens1G5n9ZMzHhmZ8yGSeGSjL5KEw4MhEa7Y06TFFi+MACJorZWRHpYYWJsdfJ2SN4syvPQ61U9E6KpSuvUD6HibKwD4dwDB6cQhkuoQJVINCFe3iEJ4c7D86z8zIpzTjTnl34I+f1B4HEkak=</latexit>

x6
<latexit sha1_base64="Xn63RMxBVhK3SzcQ15fFrEBdOf4=">AAAB6nicbZDLSgMxFIbP1FutWsfLToRgEVyVmQpedgU3LivaC7RDyaSZNjSTGZKMWIY+ghsXirj1Zdy6c6/Poelloa0/BD7+/xxyzvFjzpR2nA8rs7C4tLySXc2trW/kN+2t7ZqKEklolUQ8kg0fK8qZoFXNNKeNWFIc+pzW/f7FKK/fUqlYJG70IKZeiLuCBYxgbazru/ZJ2y44RWcsNA/uFArl/PfX2/7uZ6Vtv7c6EUlCKjThWKmm68TaS7HUjHA6zLUSRWNM+rhLmwYFDqny0vGoQ3RonA4KImme0Gjs/u5IcajUIPRNZYh1T81mI/O/rJno4MxLmYgTTQWZfBQkHOkIjfZGHSYp0XxgABPJzKyI9LDERJvr5MwR3NmV56FWKrrHxdKVWyifw0RZ2IMDOAIXTqEMl1CBKhDowj08wpPFrQfr2XqZlGasac8O/JH1+gOH1JGt</latexit>

x6
<latexit sha1_base64="Xn63RMxBVhK3SzcQ15fFrEBdOf4=">AAAB6nicbZDLSgMxFIbP1FutWsfLToRgEVyVmQpedgU3LivaC7RDyaSZNjSTGZKMWIY+ghsXirj1Zdy6c6/Poelloa0/BD7+/xxyzvFjzpR2nA8rs7C4tLySXc2trW/kN+2t7ZqKEklolUQ8kg0fK8qZoFXNNKeNWFIc+pzW/f7FKK/fUqlYJG70IKZeiLuCBYxgbazru/ZJ2y44RWcsNA/uFArl/PfX2/7uZ6Vtv7c6EUlCKjThWKmm68TaS7HUjHA6zLUSRWNM+rhLmwYFDqny0vGoQ3RonA4KImme0Gjs/u5IcajUIPRNZYh1T81mI/O/rJno4MxLmYgTTQWZfBQkHOkIjfZGHSYp0XxgABPJzKyI9LDERJvr5MwR3NmV56FWKrrHxdKVWyifw0RZ2IMDOAIXTqEMl1CBKhDowj08wpPFrQfr2XqZlGasac8O/JH1+gOH1JGt</latexit>

x7
<latexit sha1_base64="daRe1Q7HIR6zISdWY4aqKOb0qO4=">AAAB6nicbZC7SgNBFIbPxluMGuOlE2EwCFZhNxbRLmBjGdFcIFnC7GQ2GTI7u8zMimHJI9hYKGLry9ja2etz6GySQhN/GPj4/3OYc44Xcaa0bX9YmaXlldW17HpuY3Mrv13Y2W2oMJaE1knIQ9nysKKcCVrXTHPaiiTFgcdp0xtepHnzlkrFQnGjRxF1A9wXzGcEa2Nd33Ur3ULRLtkToUVwZlCs5r+/3g73P2vdwnunF5I4oEITjpVqO3ak3QRLzQin41wnVjTCZIj7tG1Q4IAqN5mMOkbHxukhP5TmCY0m7u+OBAdKjQLPVAZYD9R8lpr/Ze1Y+2duwkQUayrI9CM/5kiHKN0b9ZikRPORAUwkM7MiMsASE22ukzNHcOZXXoRGueSclspXTrF6DlNl4QCO4AQcqEAVLqEGdSDQh3t4hCeLWw/Ws/UyLc1Ys549+CPr9QeJWJGu</latexit>

x7
<latexit sha1_base64="daRe1Q7HIR6zISdWY4aqKOb0qO4=">AAAB6nicbZC7SgNBFIbPxluMGuOlE2EwCFZhNxbRLmBjGdFcIFnC7GQ2GTI7u8zMimHJI9hYKGLry9ja2etz6GySQhN/GPj4/3OYc44Xcaa0bX9YmaXlldW17HpuY3Mrv13Y2W2oMJaE1knIQ9nysKKcCVrXTHPaiiTFgcdp0xtepHnzlkrFQnGjRxF1A9wXzGcEa2Nd33Ur3ULRLtkToUVwZlCs5r+/3g73P2vdwnunF5I4oEITjpVqO3ak3QRLzQin41wnVjTCZIj7tG1Q4IAqN5mMOkbHxukhP5TmCY0m7u+OBAdKjQLPVAZYD9R8lpr/Ze1Y+2duwkQUayrI9CM/5kiHKN0b9ZikRPORAUwkM7MiMsASE22ukzNHcOZXXoRGueSclspXTrF6DlNl4QCO4AQcqEAVLqEGdSDQh3t4hCeLWw/Ws/UyLc1Ys549+CPr9QeJWJGu</latexit>

x5
<latexit sha1_base64="cTCgFb4c6qgD0A88aRAjSlTtgeQ=">AAAB6nicbZDLSgMxFIbP1FutWsfLToRgEVyVmYqou4IblxXtBdqhZNJMG5rJDElGLEMfwY0LRdz6Mm7dudfn0PSy0NYfAh//fw455/gxZ0o7zoeVWVhcWl7JrubW1jfym/bWdk1FiSS0SiIeyYaPFeVM0KpmmtNGLCkOfU7rfv9ilNdvqVQsEjd6EFMvxF3BAkawNtb1XfukbRecojMWmgd3CoVy/vvrbX/3s9K231udiCQhFZpwrFTTdWLtpVhqRjgd5lqJojEmfdylTYMCh1R56XjUITo0TgcFkTRPaDR2f3ekOFRqEPqmMsS6p2azkflf1kx0cOalTMSJpoJMPgoSjnSERnujDpOUaD4wgIlkZlZEelhios11cuYI7uzK81ArFd3jYunKLZTPYaIs7MEBHIELp1CGS6hAFQh04R4e4cni1oP1bL1MSjPWtGcH/sh6/QGGUJGs</latexit>

x5
<latexit sha1_base64="cTCgFb4c6qgD0A88aRAjSlTtgeQ=">AAAB6nicbZDLSgMxFIbP1FutWsfLToRgEVyVmYqou4IblxXtBdqhZNJMG5rJDElGLEMfwY0LRdz6Mm7dudfn0PSy0NYfAh//fw455/gxZ0o7zoeVWVhcWl7JrubW1jfym/bWdk1FiSS0SiIeyYaPFeVM0KpmmtNGLCkOfU7rfv9ilNdvqVQsEjd6EFMvxF3BAkawNtb1XfukbRecojMWmgd3CoVy/vvrbX/3s9K231udiCQhFZpwrFTTdWLtpVhqRjgd5lqJojEmfdylTYMCh1R56XjUITo0TgcFkTRPaDR2f3ekOFRqEPqmMsS6p2azkflf1kx0cOalTMSJpoJMPgoSjnSERnujDpOUaD4wgIlkZlZEelhios11cuYI7uzK81ArFd3jYunKLZTPYaIs7MEBHIELp1CGS6hAFQh04R4e4cni1oP1bL1MSjPWtGcH/sh6/QGGUJGs</latexit>

1
8

<latexit sha1_base64="3vLw1EhVwL3hER53bsz/JMz1a6g=">AAAB8nicbVC7TsNAEFzzDOEVoKQxREhUkR0KQheJhjIgnESyreh8OSennO+suzNSZPkzaChAiJavoeML+ANqLo8CEkZaaTSzq92dKGVUacf5tFZW19Y3Nktb5e2d3b39ysFhW4lMYuJhwYTsRkgRRjnxNNWMdFNJUBIx0olG1xO/80CkooLf63FKwgQNOI0pRtpIfhBLhHO3yBtFr1J1as4U9jJx56TaPCm+veDuq9WrfAR9gbOEcI0ZUsp3nVSHOZKaYkaKcpApkiI8QgPiG8pRQlSYT08u7DOj9O1YSFNc21P190SOEqXGSWQ6E6SHatGbiP95fqbjRphTnmaacDxbFGfM1sKe/G/3qSRYs7EhCEtqbrXxEJkUtEmpbEJwF19eJu16zb2o1W/davMKZijBMZzCObhwCU24gRZ4gEHAIzzDi6WtJ+vVepu1rljzmSP4A+v9B0dAlO8=</latexit>

1
8

<latexit sha1_base64="3vLw1EhVwL3hER53bsz/JMz1a6g=">AAAB8nicbVC7TsNAEFzzDOEVoKQxREhUkR0KQheJhjIgnESyreh8OSennO+suzNSZPkzaChAiJavoeML+ANqLo8CEkZaaTSzq92dKGVUacf5tFZW19Y3Nktb5e2d3b39ysFhW4lMYuJhwYTsRkgRRjnxNNWMdFNJUBIx0olG1xO/80CkooLf63FKwgQNOI0pRtpIfhBLhHO3yBtFr1J1as4U9jJx56TaPCm+veDuq9WrfAR9gbOEcI0ZUsp3nVSHOZKaYkaKcpApkiI8QgPiG8pRQlSYT08u7DOj9O1YSFNc21P190SOEqXGSWQ6E6SHatGbiP95fqbjRphTnmaacDxbFGfM1sKe/G/3qSRYs7EhCEtqbrXxEJkUtEmpbEJwF19eJu16zb2o1W/davMKZijBMZzCObhwCU24gRZ4gEHAIzzDi6WtJ+vVepu1rljzmSP4A+v9B0dAlO8=</latexit>

1
8

<latexit sha1_base64="3vLw1EhVwL3hER53bsz/JMz1a6g=">AAAB8nicbVC7TsNAEFzzDOEVoKQxREhUkR0KQheJhjIgnESyreh8OSennO+suzNSZPkzaChAiJavoeML+ANqLo8CEkZaaTSzq92dKGVUacf5tFZW19Y3Nktb5e2d3b39ysFhW4lMYuJhwYTsRkgRRjnxNNWMdFNJUBIx0olG1xO/80CkooLf63FKwgQNOI0pRtpIfhBLhHO3yBtFr1J1as4U9jJx56TaPCm+veDuq9WrfAR9gbOEcI0ZUsp3nVSHOZKaYkaKcpApkiI8QgPiG8pRQlSYT08u7DOj9O1YSFNc21P190SOEqXGSWQ6E6SHatGbiP95fqbjRphTnmaacDxbFGfM1sKe/G/3qSRYs7EhCEtqbrXxEJkUtEmpbEJwF19eJu16zb2o1W/davMKZijBMZzCObhwCU24gRZ4gEHAIzzDi6WtJ+vVepu1rljzmSP4A+v9B0dAlO8=</latexit>

1
8

<latexit sha1_base64="3vLw1EhVwL3hER53bsz/JMz1a6g=">AAAB8nicbVC7TsNAEFzzDOEVoKQxREhUkR0KQheJhjIgnESyreh8OSennO+suzNSZPkzaChAiJavoeML+ANqLo8CEkZaaTSzq92dKGVUacf5tFZW19Y3Nktb5e2d3b39ysFhW4lMYuJhwYTsRkgRRjnxNNWMdFNJUBIx0olG1xO/80CkooLf63FKwgQNOI0pRtpIfhBLhHO3yBtFr1J1as4U9jJx56TaPCm+veDuq9WrfAR9gbOEcI0ZUsp3nVSHOZKaYkaKcpApkiI8QgPiG8pRQlSYT08u7DOj9O1YSFNc21P190SOEqXGSWQ6E6SHatGbiP95fqbjRphTnmaacDxbFGfM1sKe/G/3qSRYs7EhCEtqbrXxEJkUtEmpbEJwF19eJu16zb2o1W/davMKZijBMZzCObhwCU24gRZ4gEHAIzzDi6WtJ+vVepu1rljzmSP4A+v9B0dAlO8=</latexit>

1
8

<latexit sha1_base64="3vLw1EhVwL3hER53bsz/JMz1a6g=">AAAB8nicbVC7TsNAEFzzDOEVoKQxREhUkR0KQheJhjIgnESyreh8OSennO+suzNSZPkzaChAiJavoeML+ANqLo8CEkZaaTSzq92dKGVUacf5tFZW19Y3Nktb5e2d3b39ysFhW4lMYuJhwYTsRkgRRjnxNNWMdFNJUBIx0olG1xO/80CkooLf63FKwgQNOI0pRtpIfhBLhHO3yBtFr1J1as4U9jJx56TaPCm+veDuq9WrfAR9gbOEcI0ZUsp3nVSHOZKaYkaKcpApkiI8QgPiG8pRQlSYT08u7DOj9O1YSFNc21P190SOEqXGSWQ6E6SHatGbiP95fqbjRphTnmaacDxbFGfM1sKe/G/3qSRYs7EhCEtqbrXxEJkUtEmpbEJwF19eJu16zb2o1W/davMKZijBMZzCObhwCU24gRZ4gEHAIzzDi6WtJ+vVepu1rljzmSP4A+v9B0dAlO8=</latexit>

1
8

<latexit sha1_base64="3vLw1EhVwL3hER53bsz/JMz1a6g=">AAAB8nicbVC7TsNAEFzzDOEVoKQxREhUkR0KQheJhjIgnESyreh8OSennO+suzNSZPkzaChAiJavoeML+ANqLo8CEkZaaTSzq92dKGVUacf5tFZW19Y3Nktb5e2d3b39ysFhW4lMYuJhwYTsRkgRRjnxNNWMdFNJUBIx0olG1xO/80CkooLf63FKwgQNOI0pRtpIfhBLhHO3yBtFr1J1as4U9jJx56TaPCm+veDuq9WrfAR9gbOEcI0ZUsp3nVSHOZKaYkaKcpApkiI8QgPiG8pRQlSYT08u7DOj9O1YSFNc21P190SOEqXGSWQ6E6SHatGbiP95fqbjRphTnmaacDxbFGfM1sKe/G/3qSRYs7EhCEtqbrXxEJkUtEmpbEJwF19eJu16zb2o1W/davMKZijBMZzCObhwCU24gRZ4gEHAIzzDi6WtJ+vVepu1rljzmSP4A+v9B0dAlO8=</latexit>

1
12

<latexit sha1_base64="u7wQYmb/MBkPuERmMNVkur4JEJs=">AAAB83icbVC7SgNBFL0bXzG+opY2o0GwCjuxULuAjWUUNwlkQ5idzCZDZmeXmVkhLPsbNhaK2Pozdn6Bf2Dt5FFo4oELh3Pu5d57gkRwbVz30ymsrK6tbxQ3S1vbO7t75f2Dpo5TRZlHYxGrdkA0E1wyz3AjWDtRjESBYK1gdD3xWw9MaR7LezNOWDciA8lDTomxku+HitAM5xmu5b1yxa26U6BlguekUj/Ovz3/7qvRK3/4/ZimEZOGCqJ1B7uJ6WZEGU4Fy0t+qllC6IgMWMdSSSKmu9n05hydWqWPwljZkgZN1d8TGYm0HkeB7YyIGepFbyL+53VSE152My6T1DBJZ4vCVCATo0kAqM8Vo0aMLSFUcXsrokNiYzA2ppINAS++vEyatSo+r9ZucaV+BTMU4QhO4AwwXEAdbqABHlBI4BGe4cVJnSfn1XmbtRac+cwh/IHz/gOxXJUk</latexit>

1
12

<latexit sha1_base64="u7wQYmb/MBkPuERmMNVkur4JEJs=">AAAB83icbVC7SgNBFL0bXzG+opY2o0GwCjuxULuAjWUUNwlkQ5idzCZDZmeXmVkhLPsbNhaK2Pozdn6Bf2Dt5FFo4oELh3Pu5d57gkRwbVz30ymsrK6tbxQ3S1vbO7t75f2Dpo5TRZlHYxGrdkA0E1wyz3AjWDtRjESBYK1gdD3xWw9MaR7LezNOWDciA8lDTomxku+HitAM5xmu5b1yxa26U6BlguekUj/Ovz3/7qvRK3/4/ZimEZOGCqJ1B7uJ6WZEGU4Fy0t+qllC6IgMWMdSSSKmu9n05hydWqWPwljZkgZN1d8TGYm0HkeB7YyIGepFbyL+53VSE152My6T1DBJZ4vCVCATo0kAqM8Vo0aMLSFUcXsrokNiYzA2ppINAS++vEyatSo+r9ZucaV+BTMU4QhO4AwwXEAdbqABHlBI4BGe4cVJnSfn1XmbtRac+cwh/IHz/gOxXJUk</latexit>1
8

<latexit sha1_base64="3vLw1EhVwL3hER53bsz/JMz1a6g=">AAAB8nicbVC7TsNAEFzzDOEVoKQxREhUkR0KQheJhjIgnESyreh8OSennO+suzNSZPkzaChAiJavoeML+ANqLo8CEkZaaTSzq92dKGVUacf5tFZW19Y3Nktb5e2d3b39ysFhW4lMYuJhwYTsRkgRRjnxNNWMdFNJUBIx0olG1xO/80CkooLf63FKwgQNOI0pRtpIfhBLhHO3yBtFr1J1as4U9jJx56TaPCm+veDuq9WrfAR9gbOEcI0ZUsp3nVSHOZKaYkaKcpApkiI8QgPiG8pRQlSYT08u7DOj9O1YSFNc21P190SOEqXGSWQ6E6SHatGbiP95fqbjRphTnmaacDxbFGfM1sKe/G/3qSRYs7EhCEtqbrXxEJkUtEmpbEJwF19eJu16zb2o1W/davMKZijBMZzCObhwCU24gRZ4gEHAIzzDi6WtJ+vVepu1rljzmSP4A+v9B0dAlO8=</latexit>

1
8

<latexit sha1_base64="3vLw1EhVwL3hER53bsz/JMz1a6g=">AAAB8nicbVC7TsNAEFzzDOEVoKQxREhUkR0KQheJhjIgnESyreh8OSennO+suzNSZPkzaChAiJavoeML+ANqLo8CEkZaaTSzq92dKGVUacf5tFZW19Y3Nktb5e2d3b39ysFhW4lMYuJhwYTsRkgRRjnxNNWMdFNJUBIx0olG1xO/80CkooLf63FKwgQNOI0pRtpIfhBLhHO3yBtFr1J1as4U9jJx56TaPCm+veDuq9WrfAR9gbOEcI0ZUsp3nVSHOZKaYkaKcpApkiI8QgPiG8pRQlSYT08u7DOj9O1YSFNc21P190SOEqXGSWQ6E6SHatGbiP95fqbjRphTnmaacDxbFGfM1sKe/G/3qSRYs7EhCEtqbrXxEJkUtEmpbEJwF19eJu16zb2o1W/davMKZijBMZzCObhwCU24gRZ4gEHAIzzDi6WtJ+vVepu1rljzmSP4A+v9B0dAlO8=</latexit>

1
12

<latexit sha1_base64="u7wQYmb/MBkPuERmMNVkur4JEJs=">AAAB83icbVC7SgNBFL0bXzG+opY2o0GwCjuxULuAjWUUNwlkQ5idzCZDZmeXmVkhLPsbNhaK2Pozdn6Bf2Dt5FFo4oELh3Pu5d57gkRwbVz30ymsrK6tbxQ3S1vbO7t75f2Dpo5TRZlHYxGrdkA0E1wyz3AjWDtRjESBYK1gdD3xWw9MaR7LezNOWDciA8lDTomxku+HitAM5xmu5b1yxa26U6BlguekUj/Ovz3/7qvRK3/4/ZimEZOGCqJ1B7uJ6WZEGU4Fy0t+qllC6IgMWMdSSSKmu9n05hydWqWPwljZkgZN1d8TGYm0HkeB7YyIGepFbyL+53VSE152My6T1DBJZ4vCVCATo0kAqM8Vo0aMLSFUcXsrokNiYzA2ppINAS++vEyatSo+r9ZucaV+BTMU4QhO4AwwXEAdbqABHlBI4BGe4cVJnSfn1XmbtRac+cwh/IHz/gOxXJUk</latexit>

1
12

<latexit sha1_base64="u7wQYmb/MBkPuERmMNVkur4JEJs=">AAAB83icbVC7SgNBFL0bXzG+opY2o0GwCjuxULuAjWUUNwlkQ5idzCZDZmeXmVkhLPsbNhaK2Pozdn6Bf2Dt5FFo4oELh3Pu5d57gkRwbVz30ymsrK6tbxQ3S1vbO7t75f2Dpo5TRZlHYxGrdkA0E1wyz3AjWDtRjESBYK1gdD3xWw9MaR7LezNOWDciA8lDTomxku+HitAM5xmu5b1yxa26U6BlguekUj/Ovz3/7qvRK3/4/ZimEZOGCqJ1B7uJ6WZEGU4Fy0t+qllC6IgMWMdSSSKmu9n05hydWqWPwljZkgZN1d8TGYm0HkeB7YyIGepFbyL+53VSE152My6T1DBJZ4vCVCATo0kAqM8Vo0aMLSFUcXsrokNiYzA2ppINAS++vEyatSo+r9ZucaV+BTMU4QhO4AwwXEAdbqABHlBI4BGe4cVJnSfn1XmbtRac+cwh/IHz/gOxXJUk</latexit>

x4<latexit sha1_base64="JiSVTy1HR4HUoHIcj3Cs+dUHCXw=">AAAB6nicbZDLSgMxFIbP1FutWsfLToRgEVyVmSqou4IblxXtBdqhZNJMG5rJDElGLEMfwY0LRdz6Mm7dudfn0PSy0NYfAh//fw455/gxZ0o7zoeVWVhcWl7JrubW1jfym/bWdk1FiSS0SiIeyYaPFeVM0KpmmtNGLCkOfU7rfv9ilNdvqVQsEjd6EFMvxF3BAkawNtb1XfukbRecojMWmgd3CoVy/vvrbX/3s9K231udiCQhFZpwrFTTdWLtpVhqRjgd5lqJojEmfdylTYMCh1R56XjUITo0TgcFkTRPaDR2f3ekOFRqEPqmMsS6p2azkflf1kx0cOalTMSJpoJMPgoSjnSERnujDpOUaD4wgIlkZlZEelhios11cuYI7uzK81ArFd3jYunKLZTPYaIs7MEBHIELp1CGS6hAFQh04R4e4cni1oP1bL1MSjPWtGcH/sh6/QGEzJGr</latexit>

x4<latexit sha1_base64="JiSVTy1HR4HUoHIcj3Cs+dUHCXw=">AAAB6nicbZDLSgMxFIbP1FutWsfLToRgEVyVmSqou4IblxXtBdqhZNJMG5rJDElGLEMfwY0LRdz6Mm7dudfn0PSy0NYfAh//fw455/gxZ0o7zoeVWVhcWl7JrubW1jfym/bWdk1FiSS0SiIeyYaPFeVM0KpmmtNGLCkOfU7rfv9ilNdvqVQsEjd6EFMvxF3BAkawNtb1XfukbRecojMWmgd3CoVy/vvrbX/3s9K231udiCQhFZpwrFTTdWLtpVhqRjgd5lqJojEmfdylTYMCh1R56XjUITo0TgcFkTRPaDR2f3ekOFRqEPqmMsS6p2azkflf1kx0cOalTMSJpoJMPgoSjnSERnujDpOUaD4wgIlkZlZEelhios11cuYI7uzK81ArFd3jYunKLZTPYaIs7MEBHIELp1CGS6hAFQh04R4e4cni1oP1bL1MSjPWtGcH/sh6/QGEzJGr</latexit>

x8
<latexit sha1_base64="D+/A72boJxT/CpNkEHWRSba4+0w=">AAAB6nicbZC7SgNBFIbPxluMGuOlE2EwCFZhNxbGLmBjGdFcIFnC7GQ2GTI7u8zMimHJI9hYKGLry9ja2etz6GySQhN/GPj4/3OYc44Xcaa0bX9YmaXlldW17HpuY3Mrv13Y2W2oMJaE1knIQ9nysKKcCVrXTHPaiiTFgcdp0xtepHnzlkrFQnGjRxF1A9wXzGcEa2Nd33Ur3ULRLtkToUVwZlCs5r+/3g73P2vdwnunF5I4oEITjpVqO3ak3QRLzQin41wnVjTCZIj7tG1Q4IAqN5mMOkbHxukhP5TmCY0m7u+OBAdKjQLPVAZYD9R8lpr/Ze1Y+xU3YSKKNRVk+pEfc6RDlO6NekxSovnIACaSmVkRGWCJiTbXyZkjOPMrL0KjXHJOS+Urp1g9h6mycABHcAIOnEEVLqEGdSDQh3t4hCeLWw/Ws/UyLc1Ys549+CPr9QeK3JGv</latexit>

x8
<latexit sha1_base64="D+/A72boJxT/CpNkEHWRSba4+0w=">AAAB6nicbZC7SgNBFIbPxluMGuOlE2EwCFZhNxbGLmBjGdFcIFnC7GQ2GTI7u8zMimHJI9hYKGLry9ja2etz6GySQhN/GPj4/3OYc44Xcaa0bX9YmaXlldW17HpuY3Mrv13Y2W2oMJaE1knIQ9nysKKcCVrXTHPaiiTFgcdp0xtepHnzlkrFQnGjRxF1A9wXzGcEa2Nd33Ur3ULRLtkToUVwZlCs5r+/3g73P2vdwnunF5I4oEITjpVqO3ak3QRLzQin41wnVjTCZIj7tG1Q4IAqN5mMOkbHxukhP5TmCY0m7u+OBAdKjQLPVAZYD9R8lpr/Ze1Y+xU3YSKKNRVk+pEfc6RDlO6NekxSovnIACaSmVkRGWCJiTbXyZkjOPMrL0KjXHJOS+Urp1g9h6mycABHcAIOnEEVLqEGdSDQh3t4hCeLWw/Ws/UyLc1Ys549+CPr9QeK3JGv</latexit>

1
8

<latexit sha1_base64="3vLw1EhVwL3hER53bsz/JMz1a6g=">AAAB8nicbVC7TsNAEFzzDOEVoKQxREhUkR0KQheJhjIgnESyreh8OSennO+suzNSZPkzaChAiJavoeML+ANqLo8CEkZaaTSzq92dKGVUacf5tFZW19Y3Nktb5e2d3b39ysFhW4lMYuJhwYTsRkgRRjnxNNWMdFNJUBIx0olG1xO/80CkooLf63FKwgQNOI0pRtpIfhBLhHO3yBtFr1J1as4U9jJx56TaPCm+veDuq9WrfAR9gbOEcI0ZUsp3nVSHOZKaYkaKcpApkiI8QgPiG8pRQlSYT08u7DOj9O1YSFNc21P190SOEqXGSWQ6E6SHatGbiP95fqbjRphTnmaacDxbFGfM1sKe/G/3qSRYs7EhCEtqbrXxEJkUtEmpbEJwF19eJu16zb2o1W/davMKZijBMZzCObhwCU24gRZ4gEHAIzzDi6WtJ+vVepu1rljzmSP4A+v9B0dAlO8=</latexit>

1
8

<latexit sha1_base64="3vLw1EhVwL3hER53bsz/JMz1a6g=">AAAB8nicbVC7TsNAEFzzDOEVoKQxREhUkR0KQheJhjIgnESyreh8OSennO+suzNSZPkzaChAiJavoeML+ANqLo8CEkZaaTSzq92dKGVUacf5tFZW19Y3Nktb5e2d3b39ysFhW4lMYuJhwYTsRkgRRjnxNNWMdFNJUBIx0olG1xO/80CkooLf63FKwgQNOI0pRtpIfhBLhHO3yBtFr1J1as4U9jJx56TaPCm+veDuq9WrfAR9gbOEcI0ZUsp3nVSHOZKaYkaKcpApkiI8QgPiG8pRQlSYT08u7DOj9O1YSFNc21P190SOEqXGSWQ6E6SHatGbiP95fqbjRphTnmaacDxbFGfM1sKe/G/3qSRYs7EhCEtqbrXxEJkUtEmpbEJwF19eJu16zb2o1W/davMKZijBMZzCObhwCU24gRZ4gEHAIzzDi6WtJ+vVepu1rljzmSP4A+v9B0dAlO8=</latexit>

1
12

<latexit sha1_base64="u7wQYmb/MBkPuERmMNVkur4JEJs=">AAAB83icbVC7SgNBFL0bXzG+opY2o0GwCjuxULuAjWUUNwlkQ5idzCZDZmeXmVkhLPsbNhaK2Pozdn6Bf2Dt5FFo4oELh3Pu5d57gkRwbVz30ymsrK6tbxQ3S1vbO7t75f2Dpo5TRZlHYxGrdkA0E1wyz3AjWDtRjESBYK1gdD3xWw9MaR7LezNOWDciA8lDTomxku+HitAM5xmu5b1yxa26U6BlguekUj/Ovz3/7qvRK3/4/ZimEZOGCqJ1B7uJ6WZEGU4Fy0t+qllC6IgMWMdSSSKmu9n05hydWqWPwljZkgZN1d8TGYm0HkeB7YyIGepFbyL+53VSE152My6T1DBJZ4vCVCATo0kAqM8Vo0aMLSFUcXsrokNiYzA2ppINAS++vEyatSo+r9ZucaV+BTMU4QhO4AwwXEAdbqABHlBI4BGe4cVJnSfn1XmbtRac+cwh/IHz/gOxXJUk</latexit>
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(c) GKDE

Figure 5.1: Examples of the optimal probability transportation under differ-
ent regularization terms. Assume two query examples (q1 and q2) and eight
candidate pool examples (x1, . . . , x8) embedded in a 2-dimensional space.

algorithms are KNN-Uniform (Algorithm 8), KNN-TV (Algorithm 9) and
KNN-KDE (Algorithm 10). Each algorithm takes the query examples and
the candidate pool as inputs and outputs the probability assigned to each
example in the candidate pool.

Algorithm 8: KNN-Uniform.
1 Input: a set of query examples Q = {qi}M

i=1 from the target domain,
a corpus D = {xj}N

j=1, number of nearest neighbors to prefetch L,
α ∈ [0, 1], C > 0;

2 Output: p1, . . . , pN ;
3 j, d← GetKNN(Q,D, L);
4 K ← 1;
5 while K < L and α

C

∑M
i=1

∑K
k=1[di,K+1 − dik] < (1− α)M do

6 K ← K + 1;
7 foreach j ∈ [N ] do
8 pj ← 0;
9 foreach i ∈ [M ] do

10 foreach k ∈ [K] do
11 pjik

← pjik
+ 1

KM
;

All three algorithms prefetch the nearest neighbors of the query examples
from the candidate pool as the first step, which can be performed efficiently
using approximate nearest neighbor search techniques. Specifically, for
each example in Q, GetKNN(Q,D, L) returns the indices of the L-nearest
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neighbors and the corresponding distances, where L is a user-specified
parameter. In practice, we set L to be large enough so that the algorithms
do not exceed the scope of the L-nearest neighbors. Retrieving the nearest
neighbors in a brute-force way requires computing the distance between
every query example and all the examples in the candidate pool, which is
inefficient when the candidate pool size N is in the order of millions and
billions. Therefore, we employ Faiss (Douze et al., 2024), an approximate
nearest neighbor search tool for efficiency. We first build a Faiss index for
the examples in the candidate pool, and then query the index with each
query example to retrieve its nearest neighbors.

Algorithm 9: KNN-TV.
1 Input: a set of query examples Q = {qi}M

i=1 from the target domain,
a corpus D = {xj}N

j=1, number of nearest neighbors to prefetch L,
α ∈ [0, 1], C > 0;

2 Output: p1, . . . , pN ;
3 j, d← GetKNN(Q,D, L);
4 for j ∈ [N ] do
5 pj ← 0;
6 for i ∈ [M ] do
7 pji1 ← pji1 + 1

M
;

8 k ← 2;
9 while k ≤ L and α

C
(dik − di1) < 1

2(1− α) do
10 pjik

← pjik
+ 1

MN
;

11 pji1 ← pji1 − 1
MN

;
12 k ← k + 1;

Then the algorithms assign probability mass to the nearest neighbors of
each example. KNN-Uniform finds the largest K that satisfies the condition
in Line 5 and then assigns the probability mass of each query example
evenly to its K-nearest neighbors. KNN-TV assigns 1

MN
unit of probability

mass to the nearest neighbors that satisfy the condition in Line 9 and
the rest to the 1-nearest neighbor. KNN-KDE assigns probability mass to
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the nearest neighbors proportional to the inverse of their kernel density
estimates (Line 21-24). The sizes of the neighborhoods are determined
by Line 21-24, where we increase the limit s on the sum of the inverse of
the density estimates over the neighborhood until the condition on Line 21
breaks. We use a priority queue to keep track of the possible values s can
take and retrieve the smallest one in each iteration.

Algorithm 10: KNN-KDE.
1 Input: a set of query examples Q = {qi}M

i=1 from the target domain,
a corpus D = {xj}N

j=1, number of nearest neighbors to prefetch
L > 1, α ∈ [0, 1], C > 0;

2 Output: p1, . . . , pN ;
3 j, d← GetKNN(Q,D, L);
4 ρ← ComputeKDE(j,D);
5 H ← EmptyPriorityQueue();
6 for i ∈ [M ] do
7 Ki ← 0;
8 ci ← 0;
9 H.push((1/ρi1, i));

10 while H is not empty do
11 s, i← H.pop();
12 Ki ← Ki + 1;
13 ci ←

∑Ki
k=1(di,Ki+1 − dik)/ρik;

14 if α
C

∑M
i=1 ci ≥ (1− α)M then

15 s∗ ← s;
16 break;
17 if Ki + 1 < L then
18 H.push((s + 1/ρi,Ki+1, i));
19 for j ∈ [N ] do
20 pj ← 0;
21 for i ∈ [M ] do
22 for k ∈ [Ki] do
23 pjik

← pjik
+ 1/(Ms∗ · ρik);

24 pji,Ki+1 ← pji,Ki+1 + 1
M
−∑Ki

k=1 1/(Ms∗ · ρik);
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Note that KNN-TV assigns almost all the probability mass to the 1-
nearest neighbor of each query example when the largest k satisfying the
condition in Line 9 is much less than N . Such probability assignment will
result in overfitting to the 1-nearest neighbors of the query examples, as we
can see in the experiment in Section 5.7.5.3.

In KDE-KNN, we also precompute the kernel density estimate for the
L-nearest neighbors of each query example. To estimate the kernel density
of each example, we need to compute the distance between it and all the
examples in the candidate pool. To reduce the computational cost, we make
the following adjustments. First, for each example, we use its I-nearest
neighbors among the prefetched examples as the set for KDE. Let D′ be
the set containing the L-nearest neighbors of all the query points and Nx

be the I-nearest neighbors of x in D′. We compute the KDE of example x

as ∑
x′∈Nx

1− f(x,x′)2

h2 . Second, we build a Faiss index on D′ and query the
index for the nearest neighbors and the distances.

Apart from GetKNN and ComputeKDE, KNN-Uniform and KNN-
TV run in O(ML) time, and KNN-KDE runs in O(ML log M) time.

5.6 Discussion

As large language models (LLMs) become increasingly powerful, it raises
the question of whether we can leverage models like GPT-4 (OpenAI, 2023)
to perform task-specific selection. We envision the following approaches of
utilizing LLMs in task-specific data selection and discuss their limitations
that require further exploration.

First, we can provide the query examples and the candidates directly
to an LLM and ask the models to select a subset of candidates that match
the distribution of the query examples with a certain degree of diversity.
However, the size of the candidate pool may contain millions or billions of
examples, making it impossible to include them in a single input sequence,
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given the limits on the input length of LLMs (for instance, GPT-4 has a
limit of 32,768 tokens). Though we can fit the candidates into the inputs by
breaking them into batches, it is not clear how we combine results across
batches to form the final training set.

Second, we may ask an LLM to score the candidates based on their
similarities to the query examples and select the candidates with the top
scores. This selection method is similar to LESS (Xia et al., 2024) which
ranks individual examples without considering the alignment of distribution
and diversity in the selected data.

Lastly, we may present the query examples to an LLM and instruct the
model to generate scripts for selecting task-specific training data from the
candidates. However, LLMs are prone to hullicinations (Liu et al., 2024),
which may result in code that might be unreliable or even non-executable.

5.7 Experiments

We evaluate instantiations of our framework against a diverse range of
competing methods on natural language understanding tasks from various
domains, where the selected are used for continued pretraining. We seek to
answer the following questions:

1. Whether our framework outperforms the competing methods by incor-
porating optimal transport for distribution alignment?

2. How robust is our framework to near-duplicates in the candidate pool
compared to the competing methods?

3. Is the runtime of our method reasonable for practical applications?

We also provide micro-benchmarks to study the effects of the hyperparame-
ters in our framework. Finally, we show the effectiveness of our framework in
improving the performance of instruction tuning for modern large language
models in task-specific question answering.
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5.7.1 Experimental Setup

Domain-Specific Tasks We consider six downstream datasets across
diverse domains. All the datasets focus on classification tasks. The datasets
are commonly used in the literature of domain-adaptive continued pretrain-
ing (Gururangan et al., 2020; Xie et al., 2023). The properties of the datasets
and tasks are provided in Table 5.1. We provide a detailed description of
each dataset below.

• ChemProt (Kringelum et al., 2016) is from the biomedical field,
containing descriptions of interactions between chemicals and proteins.
The task is to predict the relations between the chemicals and proteins.

• RCT (Dernoncourt and Lee, 2017) is from the biomedical field, con-
taining sentences from abstracts of biomedical papers. The task is to
predict the role of a given sentence in the abstract.

• IMDB (Maas et al., 2011) contains movie reviews and the task is
sentiment classification.

• Helpfulness (McAuley et al., 2015) collects reviews from the Amazon
web store and the task is sentiment classification.

• SCIERC (Luan et al., 2018) contains sentences from scientific ab-
stracts in AI conferences. The task is to predict the relation between
the scientific entities mentioned in a sentence.

• AGNews (Zhang et al., 2015) is a collection of news articles, and the
task is to predict the topic of each article.

Corpus (Candidate Pool) We select data for continued pertaining from
a corpus consisting of 150M sequences. The corpus is created as follows. We
first take a random 10% of the documents from The Pile (Gao et al., 2020).
Then following Xie et al. (2023), we segment the documents into chunks of
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Dataset Train Validation Test Classes
ChemProt 4,169 2,427 3,469 13

RCT 180,040 30,212 30,135 5
IMDB 20,000 5,000 25,000 2

Helpfulness 115,251 5,000 25,000 2
SCIERC 3,219 455 974 7
AGNews 114,947 4,999 7,596 4

Table 5.1: Training, validation, test sizes and the number of classes in the
datasets.

128 tokens according to whitespace tokenization and apply a quality filter
to discard sequences that are extremely short or contain too many special
tokens. We refer the reader to Xie et al. (2023) for the details.
Target-Task Data Accessibility To simulate different levels of access to
annotated data in the target task, we consider three settings with varying
sizes of annotated data (1K, 3K, and 10K). When the size is set to M and
the original training set for the target task is larger than M , we sub-sample
it by choosing M examples uniformly at random without replacement. The
validation set for the target task is sub-sampled in the same way.
Evaluation Protocol For each task, we provide the training set to the
selection methods as the query examples to guide the selection. Then we
perform continued pretraining on 1M examples selected by each method from
the corpus for one epoch, starting from the pretrained ALBERT (Lan et al.,
2019) model. Afterwards, we finetune the model on the task-specific training
set and evaluate it on the corresponding test set. To reduce the effect of
instability when finetuning on small sets (Mosbach et al., 2021), we finetune
five times with different random seeds and choose the model with the highest
F1 score on the validation set. Following standard practice (Devlin et al.,
2019; Lan et al., 2019), we use masked language modeling as the objective
for continued pretraining and add a feedforward layer to the final layer
[CLS] token for classification during finetuning. The hyperparameters for
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maximum token length 256
batch size 128
optimizer AdamW

weight decay 0.01
Adam β1 0.9
Adam β2 0.999
Adam ϵ 1e-6

warmup ratio 0.1
learning rate scheduler linear

learning rate 5e-4

Table 5.2: Hyperparameters for continued pretraining.

maximum token length 256
batch size 16

epochs 10
patience for early stopping 3 epochs

optimizer AdamW
weight decay 0.1

Adam β1 0.9
Adam β2 0.999
Adam ϵ 1e-6

warmup ratio 0.1
learning rate scheduler linear

learning rate 5e-5

Table 5.3: Hyperparameters for finetuning. We set patience for early stopping
to 3 epochs so that finetuning stops when the validation F1 score does not
increase for 3 epochs.

pretraining and finetuning are in Table 5.2 and Table 5.3. Following previous
works (Gururangan et al., 2020; Yao et al., 2021; Xie et al., 2023), we report
micro-F1 scores for ChemProt and RCT, and macro-F1 scores for the others.
All the experiments are repeated five times with different random seeds that
control data selection, continued pretraining, and finetuning. We take the
mean across five runs and also report the standard deviation.
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Instantiations of Our Framework We consider two instantiations of
our framework, KNN-Uniform and KNN-KDE with C = 5 and α = 0.6. For
KNN-KDE, we set the kernel size h to 0.1. We exclude KNN-TV from our
main evaluation but report its performance as a micro-benchmark.

We encode the examples in the corpus and the task-specific representa-
tives into R512 using the Universal Sentence Encoder (Cer et al., 2018) and
use l2 distance as the distance function.

GetKNN is implemented as two-stage retrieval. We first build a coarse
Faiss (Douze et al., 2024) index for the corpus D and use it to retrieve
the 2000 nearest neighbors of each query example. The retrieved examples
form a new set D′. Then we build a fine-grained index for D′ and use it to
retrieve and return the 2000 nearest neighbors of each query example. Com-
puteKDE in KNN-KDE computes the kernel density of each example in D′

by retrieving its 1000 nearest neighbors using the fine-grained index. The
coarse index is OPQ56_112,IVF65536_HNSW32,PQ7+56, and the fine-grained
index is IndexFlatL2. We refer the readers to the Faiss documentation3 for
the details of those indexes.
Baselines We consider the following competing methods. Top-Cosine and
Top-Logit are based on embeddings, for which we use the same embeddings
as our methods.

• Uniform selects examples from the corpus uniformly at random.

• Top-Cosine (Aharoni and Goldberg, 2020) takes the element-wise
mean of the embedded query examples and ranks the examples in
the corpus by the cosine similarity to the mean. Examples with top
similarities are retrieved.

• Top-Logit (Aharoni and Goldberg, 2020) trains a logistic regression
model to decide whether an example belongs to the target domain
and retrieves the examples with top logits. We train the model

3https://github.com/facebookresearch/faiss
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with the query examples and a set of negative examples of the same
size. Following Aharoni and Goldberg (2020), we sample the negative
examples by ranking the corpus using Top-Cosine and taking a random
sample from the bottom two-thirds.

• DSIR (Xie et al., 2023) selects examples by importance resampling
to match the unigram and bigram distribution of the query examples.
The importance weights are decided by two bag-of-ngrams generative
models trained on the target-task representatives and 1% of the corpus.

• IntellSelect (Moore and Lewis, 2010) ranks the examples by the
difference in cross-entropy of two 4-gram language models and retrieves
the top examples. The first model is trained on the query examples,
and the second is trained on 1% of the corpus.

5.7.2 End-to-End Comparisons

We compare the two instantiations of our framework against the competing
methods under various sizes of downstream annotated datasets.

We evaluate the performance of the selection methods provided with
different sizes (1K, 3K, and 10K) of annotated training data from the
target target. Note that the target-task training sets are used for guiding
the selection as well as finetuning the model. The test F1 scores of the
downstream classification tasks are reported in Table 5.4, 5.5 and 5.6. As a
reference point, we provide the performance of finetuning the model directly
without continued pretraining in the first row (Base) in each table.

The results show the effectiveness of our framework in selecting data
for task-specific continued pretraining. Notably, KNN-KDE consistently
outperforms Base and Uniform, and the gap is significant in most settings.
Additionally, KNN-KDE outperforms all the baseline methods in 11 out
of the 16 settings. Top-Cosine and Top-Logit perform comparably to our
methods (KNN-KDE and KNN-Uniform) when the size of the annotated
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Dataset ChemProt RCT IMDB Helpfulness SCIERC AGNews

Base 71.251.21 79.820.70 88.320.44 63.130.98 66.492.35 87.170.47
Uniform 73.100.98 80.440.56 87.560.57 63.061.70 65.583.93 87.000.34
DSIR 76.550.83 81.910.17 88.180.67 64.500.55 68.830.46 87.500.85

IntellSelect 63.282.28 74.191.00 81.820.87 60.981.01 55.872.34 83.900.59
Top-Cosine 78.070.43 82.220.51 89.190.35 62.362.01 74.010.78 87.470.62
Top-Logit 78.171.09 81.710.27 88.820.47 65.160.69 74.021.30 87.530.50

KNN-Uniform 77.440.81 81.550.31 89.350.25 63.921.81 71.894.57 87.350.21
KNN-KDE 78.251.21 81.930.27 89.940.17 63.921.24 74.323.73 87.370.31

Table 5.4: F1 scores of the downstream tasks with 1K annotated data from
the target domain. Standard deviations are shown in the subscripts.

target-task dataset is limited to 1K, but fall behind as the size increases. A
possible reason is that Top-Cosine and Top-Logit use aggregated statistics
of the query examples to retrieve pretraining data, losing more information
as the number of query examples grows. In contrast, our methods consider
each individual query example for distribution alignment. N-gram-based
methods such as DSIR perform less effectively on datasets such as IMDB
and SCIERC compared to the embedding-based methods, likely due to their
incapability of capturing high-level semantics. IntellSelect shows notably
poor performance possibly because the size of the query examples is not
sufficient to train the 4-gram language models.

KNN-Uniform shows comparable or only slightly worse performance
compared to KNN-KDE since the fraction of near-duplicates in the corpus
we use is small. Only 6.8% of the examples have near-duplicates with
distances less than 0.1, and among the 6.8% the average number of near-
duplicates per example is 11.53. In the next section, we manually inject
duplicates into the corpus to test the robustness to near-duplicates.
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Dataset ChemProt RCT IMDB Helpfulness SCIERC AGNews

Base 78.500.40 81.620.15 89.000.19 63.990.65 77.401.61 88.110.21
Uniform 78.880.64 82.320.17 88.710.20 65.190.63 78.551.21 88.490.31
DSIR 82.840.39 82.840.22 89.530.16 65.600.67 78.391.06 89.340.18

IntellSelect 72.260.90 78.500.30 85.790.31 62.880.73 68.312.32 86.100.36
Top-Cosine 83.860.66 83.020.28 89.990.21 66.300.76 80.051.31 89.030.34
Top-Logit 82.600.31 83.000.17 90.100.22 66.570.47 80.590.97 89.070.28

KNN-Uniform 82.320.56 83.520.14 90.540.25 64.810.59 80.181.34 89.320.30
KNN-KDE 83.050.75 83.330.10 90.770.17 65.530.69 80.750.92 89.650.12

Table 5.5: F1 scores of the downstream tasks with 3K annotated data from
the target domain. Standard deviations are shown in the subscripts.

Dataset RCT IMDB Helpfulness AGNews

Base 82.960.21 90.180.10 64.430.59 89.550.40
Uniform 83.610.15 90.390.13 66.400.77 90.180.22
DSIR 84.010.18 90.960.22 67.700.43 90.480.33

IntellSelect 81.060.17 88.070.17 65.800.28 88.580.21
Top-Cosine 84.240.23 91.300.08 67.660.14 90.410.23
Top-Logit 84.110.08 91.350.12 67.860.18 90.450.03

KNN-Uniform 84.360.17 91.730.23 68.300.51 90.740.17
KNN-KDE 84.260.23 91.750.19 68.220.57 90.780.13

Table 5.6: F1 scores of the downstream tasks with 10K annotated data from
the target domain. Standard deviations are shown in the subscripts.

5.7.3 Robustness to Near-Duplicates

We evaluate the robustness of the selection methods against near-duplicates
in the corpus. We inject duplicates into the corpus and follow the same
evaluation protocol described in Section 5.7.1. We set different levels of
duplication by varying the fraction of examples chosen for duplication and
the duplication factor (number of duplicates per example). The fraction
for duplication is set to 0.1% / 1%, and the duplication factor is set to 10
/ 100 / 1000. For example, if the fraction for duplication is 0.1% and the
duplication factor is 10, we randomly choose 0.1% of the examples from the
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corpus and duplicate each 10 times.
We use ChemProt (1K), AGNews (3K), and IMDB (10K) to perform

the analysis, where the numbers in the parentheses represent the sizes
of the annotated data. For a clearer illustration, we omit Uniform and
IntellSelect from our analysis in this experiment due to their consistently
poor performance in the end-to-end comparison shown by Section 5.7.2.

The results show that KNN-KDE is the only method that is robust to
all the duplication settings. We observe that under low duplication levels,
specifically when (fraction for duplication, duplication factor) is (0.1%, 10),
(0.1%, 100), or (1%, 10), all the methods perform similarly to the case
without duplication. Given that the injected duplicates constitute less than
10% of the corpus in those settings, it is not surprising that they do not have
much effect on the downstream performance. However, when the duplication
factor is increased to 1000 with the fraction for duplication set to 0.1%,
the performance of DSIR and Top-Cosine drops, whereas KNN-KDE and
KNN-Uniform retain their performance. Moreover, when the duplication
factor is increased to 100 and 1000 with the fraction set to 1%, all the
methods except KNN-KDE show a notable decline in their performance.

5.7.4 Runtime and Scalability

We report the runtime of the evaluated methods. Each method can be
split into a pre-processing stage and a selection stage. In the pre-processing
stage, each method makes transformations and collects statistics for the
corpus. Top-Cosine and Top-Logit embed the examples in the corpus, and
our method further builds indexes for the embeddings. DSIR computes the
n-gram distribution based on a sample from the corpus and computes the
n-gram representation for every example in the corpus. IntellSelect trains
a 4-gram language model on a sample from the corpus. The results from
this stage can be reused for different tasks. In the selection stage, each
method computes importance scores and selects task-specific examples. The
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Figure 5.2: F1 scores of the downstream tasks under different duplication
settings.
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Stage Pre-Processing Selection
DSIR 18.78 0.13

IntellSelect 4.23 2.44
Top-Cosine 6.78 0.10
Top-Logit 6.78 0.11

KNN-Uniform 28.38 0.11
KNN-KDE 28.38 0.70

Table 5.7: Runtime (in hours) of the selection methods.

runtime for both stages is shown in Table 5.7. For the selection stage, we
use IMDB (10K). We use a machine with an Intel(R) Xeon(R) Gold 5115
CPU @ 2.40GHz (40 cores) and 250GB RAM. The example embedding is
computed using an NVIDIA Tesla V100 GPU with 32GB memory, while the
other computations are on the CPU. For all the methods except IntellSelect,
the runtime is dominated by the pre-processing stage, while the selection
stage can be finished within 1 hour. While our method takes more time in
the pre-processing stage compared to Top-Cosine and Top-Logit due to the
cost of index building, the cost is one-time and the index can be reused for
a variety of tasks that require similarity search. In general, our methods are
not excessively more expensive than the others.

5.7.5 Micro-Benchmarks

In this section, we provide micro-benchmarks that study the effects of the
hyperparameters in our framework. In addition, we show the performance
of KNN-TV, an instantiation of our framework that is not covered in
Section 5.7.2. The datasets and sizes used in the micro-benchmarks are
ChemProt (1K), AGNews (3K), and IMDB (10K).
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Figure 5.3: Performance of KNN-KDE when α varies. The error bar shows
the standard deviation.

5.7.5.1 Tradeoff between Distribution Alignment and Diversity

We study the effects of α, the hyperparameter that controls the tradeoff
between distribution alignment and diversity in our framework. We vary the
value of α in KNN-Uniform and KNN-KDE and report the F1 scores of the
downstream tasks in Figure 5.3. In all three datasets, we observe a notable
drop in F1 scores when α = 0 or α = 1, and consistent performance when
the value of α is set to other values. Note that KNN-Uniform or KNN-KDE
is equivalent to Uniform when α = 0, and transports all the probability
mass of each query example to its 1-nearest-neighbor in the corpus when
α = 1. The former does not consider distribution alignment, while the latter
results in overfitting to the 1-nearest-neighbors. For the other values of α,
we report the corresponding neighborhood size (the final K in KNN-Uniform
and the average of the final Ki in KNN-KDE) in Table 5.10. The consistent
performance with α ∈ {0.2, 0.4, 0.6, 0.8} shows that our framework is not
sensitive to the choice of α.

5.7.5.2 Effects of Kernel Size in KNN-KDE

We vary the kernel size for the kernel density estimation in KNN-KDE. The
performance is shown in Table 5.8. The F1 scores of all three downstream
tasks are consistent across different choices of kernel size. The results show
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Kernel Size 0.1 0.3 0.5
ChemProt (1K) 78.251.21 78.480.92 77.750.92
AGNews (3K) 89.650.12 89.330.45 89.300.38
IMDB (10K) 91.750.19 91.590.12 91.800.12

Table 5.8: Performance of KNN-KDE when the kernel size varies. F1 scores
of the downstream tasks are reported with standard deviations shown in
the subscripts.

Dataset ChemProt (1K) AGNews (3K) IMDB (10K)
KNN-TV 67.850.60 88.470.23 91.190.22

KNN-KDE (α = 1) 67.841.26 88.300.48 91.130.24
KNN-KDE (α = 0.6) 78.251.20 89.640.12 91.740.19

Table 5.9: The performance of KNN-TV compared with KNN-KDE (α = 1)
and KNN-KDE (α = 0.6). F1 scores of the downstream tasks are reported
with standard deviations shown in the subscripts.

that the performance of KNN-KDE is not sensitive to the kernel size.

5.7.5.3 Performance of KNN-TV

We evaluate KNN-TV (C = 0.25, α = 0.6) and show the results in Table 5.9.
KNN-TV performs similarly to KNN-KDE (α = 1), and significantly worse
than KNN-KDE (α = 0.6). The reason is that KNN-TV assigns almost
all the probability mass (more than 99.99%) to the 1-nearest neighbor of
each query example and causes overfitting to them, a behavior similar to
KNN-KDE (α = 1) as expected.

5.7.6 Evaluation on Targeted Instruction Tuning

Targeted instruction tuning is the process of finetuning pretrained generative
language models on specific instructions with desired responses, tailoring
the model to the target tasks. In this subsection, we select data for targeted
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Dataset ChemProt (1K) AGNews (3K) IMDB (10K)
α = 0.2 959 / 993 813 / 830 918 / 928
α = 0.4 398 / 408 342 / 346 372 / 373
α = 0.6 189 / 191 165 / 164 177 / 174
α = 0.8 76 / 74 69 / 65 72 / 68

Table 5.10: The neighborhood size of KNN-Uniform / KNN-KDE for different
values of α. The numbers before the slashes are for KNN-Uniform and those
after are for KNN-KDE.

instruction tuning from a corpus given several examples of the use cases
from the target task. We follow the setting from Xia et al. (2024).
Target Tasks. We consider three tasks from standard benchmarks that
are widely used by previous works (Xia et al., 2024; Touvron et al., 2023;
Brown et al., 2020) for the evaluation of language models. The properties
of the datasets and the evaluation metrics are shown in Table 5.11. The
number of shots is the number of question-answering examples provided in
the prompt when we query the model.

• TydiQA (Clark et al., 2020) is a multilingual question-answering
dataset containing 11 languages. The task is to find the answer to the
given question from a chunk of text.

• MMLU (Hendrycks et al., 2021) consists of multiple-choice question
across 57 domains. The task is to choose the correct answer from the
given options.

• BBH (Suzgun et al., 2022) is a collection of questions and answers
focused on common sense reasoning. The task is to answer the ques-
tions, while the correct answers are not necessarily included in the
provided context or questions.

Corpus We use a combination of the following datasets as the corpus
for selection: Flan V2 (Longpre et al., 2023), CoT (Wei et al., 2022),
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Dataset # Test Instances # Query Examples # Shots Metric

TydiQA 1,713 9 1 F1 score
MMLU 18,721 285 5 Accuracy
BBH 920 81 3 Accuracy

Table 5.11: Information of the datasets and the corresponding evaluation
metrics.

Dolly (Conover et al., 2023), and Open Assistant (Köpf et al., 2023).
Those datasets contain human-crafted question-answering pairs and dia-
logues, with a total of 270K examples.
Model We evaluate the selection methods using two base models: Llama-
2-7b (Touvron et al., 2023) and Mistral-7B (Jiang et al., 2023). Both
models are generative language models that output texts for input prompts.
Encoding We encode the examples following Xia et al. (2024) using
rescaled and randomly projected gradients from a Llama-2-7b model
finetuned on a random 5% of the corpus. Specifically, we finetune the base
model on the randomly selected dataset for 4 epochs and use the gradients
from the checkpoint at the end of each epoch as the example encoding. The
dimension of the projected gradient from each epoch is 8,192. We refer the
readers to Xia et al. (2024) for more details.
Methods We consider the following methods.

• Rand selects a random subset from the corpus.

• LESS (Xia et al., 2024) is the state-of-the-art method for targeted
instruction tuning. LESS selects training data from the corpus based
on their gradient similarity to the query examples. Their formulation
is also closely related to the influence function (Koh and Liang, 2017).

• KNN-Uniform (denoted as “Ours” in Table 5.12) is an instantiation
of our framework. We choose α = 0.2 for MMLU and α = 0.075
for the other two datasets. The constant C is set to 5. For each
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example, we concatenate the gradients from the 4 checkpoints so that
each example is encoded as a 32,768-dimensional vector. We do exact
nearest neighbor search since the scale of the corpus is relatively small.

Evaluation Protocol We finetune the base model on the selected data
for 4 epochs. The dataset size is 0.5% / 1.0% / 5% of the corpus. Since our
method is based on probabilistic sampling, we do not select a fixed training
set. Instead, in each epoch we sample a new set from the corpus. The
hyperparameters for finetuning follows Xia et al. (2024). We repeat each
experiment for three runs and report the mean and standard deviation.

Table 5.12: Performance of instruction tuning with dataset selected by our
method compared with the baselines. The subscripts represent the standard
deviations.

Model Llama-2-7b Mistral-7B
Dataset TydiQA MMLU BBH TydiQA MMLU BBH

Base 14.1 45.7 38.0 20.9 62.4 56.4
Full 51.4 51.5 42.2 55.5 59.7 49.8

Ratio 0.5%
Rand 41.21.4 45.00.4 37.40.4 54.90.1 59.01.2 51.90.2
LESS 46.41.2 46.30.6 38.80.6 54.73.0 60.70.3 54.60.8
Ours 51.60.8 47.90.2 39.20.7 60.72.0 61.10.3 58.00.3

Ratio 1.0%
Rand 43.20.8 46.00.2 37.90.8 54.41.4 59.10.4 53.40.4
LESS 48.70.6 48.40.1 38.70.6 57.01.0 60.60.1 55.01.2
Ours 54.00.3 49.00.1 40.11.3 62.90.9 61.20.4 57.50.4

Ratio 5.0%
Rand 45.51.2 46.00.4 39.10.9 52.80.9 59.60.2 53.72.4
LESS 52.20.8 50.80.2 40.90.7 59.51.8 61.00.6 53.80.7
Ours 52.41.0 50.50.4 41.00.4 61.70.3 59.70.9 56.10.6

Results The results are shown in Table 5.12 where “Base” is the base
model without finetuning and “Full” is the model finetuned on the whole
corpus. We observe that our method consistently outperforms the
baselines with small selection ratios (0.5% and 1.0%), where the gap
can be quite large (over 2.5 points on TydiQA for both models and on
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BBH for Mistral-7B). Our method gets close to or even outperforms Full
on TydiQA for both models and on BBH for Mistral-7B with only 1%
selection ratio. When the selection ratio increases to 5%, our methods still
show comparable results to LESS. We observe a drop in the performance of
our method on TydiQA and BBH when the selection ratio increases from 1%
to 5%, which may be caused by overfitting. We can early stop the training
process to avoid such behavior. We also notice that finetuning Mistral-7B
on any selected set does not increase its accuracy on MMLU. The reason
could be that the based Mistral-7B model has already been well tuned
for multiple-choice questions.

5.8 Proofs

5.8.1 Proof of Theorem 5.4

Proof. Let L(γ) = α
C

∑M
i=1

∑N
j=1 γijdij + (1− α)GTV(γ) be the optimization

objective. We prove the theorem by showing that for any γ′ ∈ RM×N
≥0 that
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j=1 γ′

ij = 1
M

), L(γ′) ≥ L(γ∗).
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We show that L(γ′) ≥ L(γ′′).
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In both cases, L(γ′) > L(γ∗) and thus γ∗ is the unique solution.

5.8.2 Proof of Theorem 5.3 and Theorem 5.5

We show that Theorem 5.3 states a special case of Theorem 5.5. Then we
prove Theorem 5.5 and it follows that Theorem 5.3 holds as well.

We first show the connection between Theorem 5.3 and Theorem 5.5. In
Theorem 5.5, when ρj = 1 for all j ∈ [N ], si

k = k and s∗ is the same as the
K in Theorem 5.3. Then the optimal solution in Theorem 5.5 is also the
same as the one in Theorem 5.3 if we substitute s∗ by K and the ρj’s by 1.
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k = Ki +1 we have ρji
k
γ∗

(i,k) = 1
Ms∗ (s∗−si

Ki
)ρji

k
≤ 1

Ms∗ (si
Ki+1−si

Ki
)ρji

k
= 1

Ms∗ .
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Therefore, maxi∈[M ],k∈[N ] |ρji
k
γ∗

(i,k) − 1
Ms̄
| = 1

Ms∗ − 1
Ms̄

. Then we have

T2 =(1− α)M( max
i∈[M ],k∈[N ]

|ρji
k
γ′

(i,k) −
1

Ms̄
| − max

i∈[M ],k∈[N ]
|ρji

k
γ∗

(i,k) −
1

Ms̄
|)

≥(1− α)M(max
i∈[M ]

max
k∈[Ki]

|ρji
k
γ′

(i,k) −
1

Ms̄
| − ( 1

Ms∗ −
1

Ms̄
))

≥(1− α)M(|r′ − 1
Ms̄
| − ( 1

Ms∗ −
1

Ms̄
))

≥(1− α)M(r′ − 1
Ms∗ )

The last inequality follows the triangle inequality. Then it follows that
T1 + T2 ≥ 0 and L(γ′)− L(γ∗) ≥ 0.

In the second case when r′ > 1
Ms∗ , let K̂i = max{K ∈ [N ]∪{0}|∑K

k=1 r′/ρji
k
≤

1
M
}. When K > Ki,

∑K
k=1 r′/ρji

k
> s∗r′ > 1

M
. Therefore, K̂i ≤ Ki. Consider

another probability transport γ′′ ∈ RM×N
≥0 where

γ′′
(i,k) =


r′/ρji

k
, if k ≤ K̂i

1
M
−∑K̂i

k=1 r′/ρji
k
, if k = K̂i + 1

0, otherwise

Note that by the definition of K̂i we have γ′′
(i,k)ρji

k
< r′ for k = K̂i + 1.

Then we have

L(γ′)− L(γ′′)

= α

C

M∑
i=1

N∑
k=1

d(i,k)(γ′
(i,k) − γ′′

(i,k)) + (1− α)(GKDE(γ′)−GKDE(γ′′))

= α

C

M∑
i=1

[
K̂i∑

k=1
d(i,k)(γ′

(i,k) − γ′′
(i,k)) + d(i,K̂i+1)(γ′

(i,K̂i+1) − γ′′
(i,K̂i+1)) +

N∑
k=K̂i+2

d(i,k)γ
′
(i,k)]︸ ︷︷ ︸

T3

(1− α)(GKDE(γ′)−GKDE(γ′′))︸ ︷︷ ︸
T4
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Since ∀k ≥ K̂i+2, d(i,k) ≥ d(i,K̂i+1), and ∑N
k=K̂i+1 γ′

(i,k)−γ′′
(i,K̂i+1) = −∑K̂i

k=1(γ′
(i,k)−

γ′′
(i,k)), we have

T3 ≥
α

C

M∑
i=1

[
K̂i∑

k=1
d(i,k)(γ′

(i,k) − γ′′
(i,k)) + d(i,K̂i+1)(

N∑
k=K̂i+1

γ′
(i,k) − γ′′

(i,K̂i+1))]

= α

C

M∑
i=1

K̂i∑
k=1

d(i,K̂i+1) − d(i,k)

ρji
k

(ρji
k
γ′′

(i,k) − ρji
k
γ′

(i,k))

≥0

In addition, since r′ > 1
Ms∗ ≥ 2

Ms̄
and ρji

k
γ′′

(i,k) ≤ r′ for any i ∈ [M ] and k ∈
[N ], we have maxi∈[M ],k∈[N ] |ρji

k
γ′

(i,k) − 1
Ms̄
| ≥ maxi∈[M ] maxk∈[Ki] |ρji

k
γ′

(i,k) −
1

Ms̄
| = r′ − 1

Ms̄
and maxi∈[M ],k∈[N ] |ρji

k
γ′′

(i,k) − 1
Ms̄
| ≤ r′ − 1

Ms̄
. Therefore,

T4 =(1− α)M( max
i∈[M ],k∈[N ]

|ρji
k
γ′

(i,k) −
1

Ms̄
| − max

i∈[M ],k∈[N ]
|ρji

k
γ′′

(i,k) −
1

Ms̄
|)

≥0

Then it follows that L(γ′)− L(γ′′) ≥ 0
Let S ′ = {s ∈ S| 1

Mr′ < s ≤ s∗} and s(1), . . . , s(|S′|) be the elements in
S ′ in the ascending order. Let γ(0) = γ′′, s(0) = 1

Mr′ and K
(0)
i = K̂i. For

t ∈ [|S ′|], let K
(t)
i = max{k ∈ [N ]|si

k ≤ s(t)}. we consider the probability
transport γ(t) ∈ RM×N

≥0 where

γ
(t)
(i,k) =


1/ρji

k
· 1

Ms(t) , if k ≤ K
(t)
i

1
M
−∑K

(t)
i

k=1 1/ρji
k
· 1

Ms(t) , if k = K
(t)
i + 1

0, otherwise
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Then we have

L(γ(t−1))− L(γ(t))

= α

C

M∑
i=1

N∑
k=1

d(i,k)(γ(t−1)
(i,k) − γ

(t)
(i,k))︸ ︷︷ ︸

T5

+ (1− α)(GKDE(γ(t−1))−GKDE(γ(t)))︸ ︷︷ ︸
T6

By the definition of K
(t)
i and s(t), either K

(t)
i = K

(t−1)
i or K

(t)
i = K

(t−1)
i + 1.

For any i ∈ [M ] such that K
(t)
i = K

(t−1)
i , we have γ

(t)
(i,k) = 0 for k > K

(t−1)
i +1.

For any i ∈ [M ] such that K
(t)
i = K

(t−1)
i + 1, we have si

K
(t)
i

= s(t), in

which case we also have γ
(t)
(i,k) = 0 for k > K

(t−1)
i + 1. Therefore, we have

γ
(t−1)
(i,K(t−1)

i +1)
− γ

(t)
(i,K(t−1)

i +1)
= −∑K

(t−1)
i

k=1 (γ(t−1)
(i,k) − γ

(t)
(i,k)). Then it follows that

T5 = α

C

M∑
i=1

K
(t−1)
i∑
k=1

(d(i,k) − d(i,K(t−1)
i +1))(γ

(t−1)
(i,k) − γ

(t)
(i,k))

= α

C

M∑
i=1

K
(t−1)
i∑
k=1

(d(i,K(t−1)
i +1) − d(i,k))/ρji

k
· 1

M
· ( 1

s(t) −
1

s(t−1) )

Let ŝ(t) = mini∈[M ] si

K
(t−1)
i +1

, and then we have T5 = α
C
· 1

M
·( 1

s(t)− 1
s(t−1) )c(ŝ(t)).

Since ŝ(t) ≤ s∗ and c(s) is non-decreasing, we have α
C

c(ŝ(t)) ≤ α
C

c(s∗) <

(1− α)M and then it follows that T5 ≥ (1− α)( 1
s(t) − 1

s(t−1) ).
In addition, since s(t−1) < s(t) ≤ s∗, we have ρji

k
γ(t−1) > ρji

k
γ(t) ≥ 1

Ms∗ ≥
2

Ms̄
, and further

T6 =(1− α)M( max
i∈[M ],k∈[N ]

|ρji
k
γ

(t−1)
(i,k) −

1
Ms̄
| − max

i∈[M ],k∈[N ]
|ρji

k
γ

(t)
(i,k) −

1
Ms̄
|)

=(1− α)( 1
s(t−1) −

1
s(t) )

Therefore, we have L(γ(t−1)) − L(γ(t)) = T5 + T6 ≥ 0. Since γ′ ≥ γ′′ =
γ(1) ≥ · · · ≥ γ(|S′|) = γ∗, we have γ′ ≥ γ∗.
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If ∄s ∈ S such that α
C

c(s) = (1− α)M and ∄i ∈ [M ] such that d(i,Ki) =
d(i,Ki+1) or d(i,Ki+1) = d(i,Ki+2), we have T1 > (1−α)M( 1

Ms∗ −r′) and T3 > 0,
and therefore γ′ > γ∗, i.e., γ∗ is the unique solution.

5.9 Conclusion

In this chapter, we proposed a holistic framework for task-specific data
selection for ML model finetuning. We formulated target-specific data
selection as an optimization problem based on optimal transport, where we
transport probability mass from the representative example of the target
task to candidate examples in the candidate pool. This formulation ensures
the distribution alignment between the selected data and the target use
cases. In addition, we added a regularization term to the optimization
objective to encourage the diversity of selection. We incorporated kernel
density estimation into the regularization term to make the selection robust
to near-duplicates in the candidate pool. Experimentally we showed that
our method is effective in both domain-specific continued pretraining and
targeted instruction tuning.
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6 conclusion and future directions

We conclude this dissertation by summarizing the main results. In addition,
we discuss directions for future work.

6.1 Summary

The goal of this dissertation is to design efficient and effective methods
for data validation and task-specific data selection to promote both the
performance and robustness of ML applications. Toward this goal, we
proposed new algorithms and frameworks that are not only of theoretical
interest but also highly practical.

In the first part, we introduced new algorithms for denial constraint
verification and discovery that achieve near-linear complexity relative to
the dataset size, a theoretical improvement over prior works with quadratic
complexity. We made the connection between denial constraint verifica-
tion and orthogonal range search and utilized range-search data structures
to efficiently verify the validity of denial constraints and enumerate the
violations. Based on our verification algorithm, we further developed an
anytime algorithm for denial constraint discovery, eliminating the reliance
on the time-consuming blocking stage employed by previous works. Our
experimental evaluation demonstrated that our denial constraint verification
algorithm is faster than the current state-of-the-art method by an order of
magnitude. In addition, our denial constraint discovery algorithm is able to
output valid constraints in the early stage of execution, while the methods
in prior works are blocked for an unreasonable amount of time.

In the second part, we proposed a framework to guard against data cor-
ruption in ML pipelines at both training and inference time. Our framework
filters corrupted data at training time, and flags data whose prediction is
misled by corruption at inference time. The key component of our frame-
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work is a new deep-learning model that can capture the distribution of
mixed-type tabular data. The model is trained in a self-supervised way on
potentially corrupted data without the need for manual annotation. We
used the reconstruction loss from our model to identify corrupted training
data and queries whose prediction will be wrong with a high probability
due to corruption. In the experiments, we showed that our framework is
effective in guarding against data corruption for both training and inference
across different type of corruption, consistently outperforming the baselines.

In the last part, we presented a framework for task-specific data selection.
Our framework formulates task-specific data selection as an optimization
problem consisting of a probability transportation loss and a regulariza-
tion term, allowing a smooth tradeoff between distribution alignment and
diversity. In addition, we addressed the problem of near-duplicates by incor-
porating kernel density estimation into the regularization term. We proved
that the optimal solutions of our framework can be connected to nearest
neighbor search, and developed efficient algorithms to compute the solutions
utilizing approximate nearest neighbor search techniques. In the empirical
evaluation, we showed that our framework is effective in selecting data for
both domain-specific continued pretraining and targeted instruction tuning.

6.2 Future Work

We point out potential directions for future work.
Denial Constraint Discovery and Verification over Dynamic Data
The connection between denial constraint verification and orthogonal range
search opens up an avenue to explore denial constraint discovery and verifica-
tion in the setting of dynamic data, where the dataset is updated frequently.
Dynamic data impose extra challenges on denial constraint verification and
discovery since the validity of the constraints keeps changing as data gets
updated. Luckily, there is a rich history of dynamic algorithms for both



173

range trees and k-d trees, allowing the development of elegant algorithms
with provable guarantees.
Interpretability of Learning-Based Data Validation Unlike rule-
based data validation, learning-based data validation methods often output
a single confidence score, which does not provide much information regarding
why an example is considered low-quality. Revealing the cause of rejection
would help the user understand the flaw in the data and take action. In
addition, explainable data validation results are more trustworthy to humans.
Although interpretable ML (Rudin et al., 2021) has been studied for years,
it is unclear what kind of explanation is the most helpful to the user in the
context of data validation.
Model-Specific Data Validation The majority of the data validation
methods are model-agnostic, as they do not consider the downstream learning
process. However, some works (Bian et al., 2023; Krishnan et al., 2016;
Li et al., 2019) have shown that not all errors in the training data will
cause degradation in ML performance. Model-specific data validation should
identify data errors that a specific model is not robust to, which is critical to
save sub-sequential cleaning efforts and ensure the maximum utility of the
data. Existing works for model-specific data validation or cleaning (Bian
et al., 2023; Krishnan et al., 2016) are limited to simple models such as Naïve
Bayes classifiers and their results cannot be generalized to modern deep
learning settings. A potential direction would be utilizing influence-based
techniques (Ilyas et al., 2022; Koh and Liang, 2017) to approximate the
effects of data errors on the learning outcomes.
Quality Standards for Text Data For tabular data, there are well-
established formulations of constraints to ensure data quality. However,
there is no such standard for the quality of text data, and consequently,
researchers and practitioners rely on rules that are defined manually in an
ad-hoc manner (Brown et al., 2020; Xie et al., 2023; Chen et al., 2024).
As data quality is critical for modern language models, standard quality
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checks for text data are desired. To build such standards, the relationship
between different aspects of text data and the learning performance needs
to be carefully examined.
Theoretical Analysis on Task-Specific Selection and Finetuning
This dissertation empirically shows that distribution alignment and diversity
are essential for task-specific finetuning, but a theoretical analysis of the
relationship between the two factors and learning performance is missing in
the current literature. It would be interesting to explore how distribution
alignment and diversity contributes to the performance gain from finetuning,
and develop theoretical results to guide the tradeoff between the two.
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