
 

GENETIC ANALYSIS OF NOVEL TRAITS IN HOLSTEIN DAIRY CATTLE 

 

by 

Larissa Carolina Novo 

 

A dissertation submitted in partial fulfillment of  

the requirements for the degree of  

 

 

Doctor of Philosophy  

(Animal and Dairy Sciences) 

 

 

at the 

UNIVERSITY OF WISCONSIN-MADISON 

2023 

 

 

Date of final oral examination: 08/14/2023 

The dissertation is approved by the following members of the Final Examination Committee:  

Francisco Peñagaricano, Assistant Professor, Animal and Dairy Sciences  
Kent A. Weigel, Professor, Animal and Dairy Sciences 
Guilherme J. M. Rosa, Professor, Animal and Dairy Sciences 

Brian W. Kirkpatrick, Professor, Animal and Dairy Sciences 
Brian Parks, Assistant Professor, Nutritional Sciences  



  

 

 

© Copyright by Larissa Novo 2023 

ALL RIGHTS RESERVED 



 i 

DEDICATION 

 

This dissertation is dedicated to my mother, my aunt and uncle, and my 

husband. Always by my side, they were my rock that sustained me and the 

wave that carried me further, beyond the storms. My dream became theirs as 

has this achievement. For you, and to you. 



 ii 
 

ACKNOWLEDGMENTS 

I would like to acknowledge my lab group and their uncountable scripts shared with me 

and thoughtful suggestions. Our coffee breaks on the fourth floor, conference travels and 

barbecues are certainly a large part of this amazing experience. You made it easier every day. 

I would also like to acknowledge the valuable contributions of my committee members to 

this dissertation. It was a pleasure to share my research with you and to receive input from great 

researchers that are references in human and animal genetics. 

I would like to thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior 

(CAPES), along with Fulbright Brazil for believing in me and for providing the funding 

necessary to obtain a PhD in a renowned institution like the University of Wisconsin -Madison. 

Finally, I would like to express my immense gratitude to my advisor, Dr Francisco 

Peñagaricano. You did more than instruct. You were a mentor, a friend, and a model. You 

provided the tools and guided me through all the unknowns that starting a PhD in a new country 

and in a new research area could have. Thank you for your patience and for pushing me to 

become a better student, a better researcher, and a better person.



 

 

 

iii 
 

ABSTRACT 

The availability of new technologies, as well as a greater attention to the needs of 

consumers and society, has promoted the development of selection strategies for novel traits in 

dairy cattle. However, several steps must be followed from the proposal until the implementation 

of novel traits into breeding programs. This process requires efforts from the definition of the 

new trait, exploration of the genetic basis of the trait, the development of proper analysis 

methods, and finally the implementation of a genetic evaluation. This thesis addresses different 

aspects of the development and implementation of novel traits, including definition of the 

phenotype, better understanding of the biological processes affecting the trait, identification of 

putative causal variants and genes, and finally a feasibility study of a national genetic evaluation. 

Specifically, this thesis evaluated different body temperature phenotypes as potential indicators 

of feed efficiency traits, investigated visceral fat deposition and its relationship with metabolic 

disorders, uncovered putative causal variants for periparturient hypocalcemia, and explored the 

implementation of a national genetic evaluation for Johne’s disease. The first study showed that 

body temperature can be used as an indicator of feed efficiency and energy-related traits. The 

second study revealed that visceral fat accumulation is associated with inflammation, insulin 

resistance, and immune response, and is genetically linked to displaced abomasum. The third 

study identified genetic variants and individual genes affecting postpartum blood calcium 

concentration. The last study showed that a national genetic evaluation for Johne’s Disease in 

Holsteins is feasible. Overall, this work has performed a comprehensive investigation of the 

different steps required for the development and implementation of novel traits in dairy cattle. 
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CHAPTER ONE: INTRODUCTION 

 

The selection of dairy cattle has evolved from empirical and visual selection to the use of 

pedigree and more recently, genomic information. The productivity of dairy cows has increased 

dramatically in the last six decades. Animal welfare, animal health, feed efficiency, and 

environmental traits are receiving more and more attention and are expected to be under the 

spotlight of research and governmental policies for many years to come (Chesnais et al., 2016). 

The exploration of novel traits starts with the need for a specific phenotype that has not 

been explored yet, or the adoption of a new technology for existing traits. From the identification 

to the implementation of the novel trait, several steps are involved, including  exploratory 

phenotypic studies followed by validation of the results, genetic and genomic analysis of the new 

trait, establishment of reference populations, and finally the implementation of  national genetic 

evaluations (Brito et al., 2020b). Selection for feed efficiency of dairy cows is an example of a 

successful implementation of a novel trait in the U.S. dairy industry. Both residual feed intake 

and feed saved were implemented in December 2020 by the Council on Dairy Cattle Breeding 

(VanRaden et al., 2021). 

The emphasis on health traits changed with the advent of genomics, given that genomics 

specially benefits traits that are difficult and expensive to measure, as well as traits with low 

heritability (Martin et al., 2018). The large-scale genotyping of dairy cattle in the United States 

and more accessible research tools, such as next generation sequencing, have promoted further 

biological investigations of well-known health traits such as metritis and ketosis. 

On the other hand, new computational technologies, image analysis, machine-learning 

algorithms, and the development of precision-farming devices have created a massive demand 
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for the study of recently proposed phenotypes (Bell and Tzimiropoulos, 2018). New monitoring 

systems have been guiding the development of new traits, such as automated body condition 

score, feeding behavior, activity, and enteric methane emissions, among others, that may be 

combined with genomic information to select cattle (Egger-Danner et al., 2014). 

The aim of this work was to investigate the development and implementation of novel 

traits, from the development of new phenotypes and unravel the genetic and biological basis to 

the adoption of a national genetic evaluation. Chapter three evaluates three body temperature 

traits as indirect measures for feed efficiency traits, chapter four explores the biological basis of 

visceral fat in dairy cows using genomic information and both additive and non-additive models, 

chapter five investigates causal variants and individual genes for periparturient hypocalcemia, a 

metabolic disorder that affects dairy cows around parturition, and finally chapter six evaluates 

the feasibility of a national genetic evaluation for Johne’s Disease for U.S. Holstein dairy cattle. 
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CHAPTER TWO: LITERATURE REVIEW 

 

Novel traits are added to the genetic selection standards every few years, according to the 

industry needs. The criteria for the inclusion of novel traits into selection indexes depend on 

different factors including the ability of collection of the new phenotype, quality of the data 

collected, relationship with other important traits, heritability, and other aspects. 

With the development of new technologies, the possibilities for the collection of 

information once unknown are considered and a new phenotype is added to the selection 

processes. The assessment of the quality of a phenotype itself, however, is not a guarantee of a 

good candidate for selection and a comprehensive exploratory approach is needed. The decision 

of a trait starts with the design to the data to be collected according to the information needed 

and technology available, for example, behavior information based on devices capable to read 

the movement of the head. 

 

Definition of phenotype 

Studies on economic traits in dairy cattle cover various subjects and the research has led 

to increased specificity and detailed research, yet a considerable part of biological responses 

underlying important traits are not fully understood. More technological alternatives are 

available, but the development of novel traits passes through intricate study design to determine 

the data to be collected. The hypothesis-based research process, in most cases, depend on 

descriptive studies for formulation that represent an essential part of selection for novel traits. 

The decision of the data to be collected must meet not only the scientific standards of 

reproducibility by other research groups for example, but also meet realistic expectations for the 
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future. Traits such as methane emission for instance, have been limited for a long time to 

research settings, even though the studies have been developed as early as the decade of 1940 

(Moe and Tyrrell, 1979). The necessity of respiration chambers for the data collection largely 

prevented the expansion of the research being developed for the trait, but easier-to-measure 

methods such as milk spectra or handheld devices are expected to be the key factor for the 

expansion for large scale data (Bell and Tzimiropoulos, 2018). 

The amount of information needed for an accurate representation of the trait is also taken 

into consideration as it can impact considerably its use in research given limited funding sources.  

For instance, several traits follow a circadian pattern that can bias the data if measured daily but 

a data collection as frequent as hourly is a labor-intensive task that most of commercial farms 

cannot fulfill. Cases such as behavioral traits and body temperature are examples of monitoring 

demanding phenotypes that can be assisted by wearable devices that can automatically collect 

information throughout the day (Bell and Tzimiropoulos, 2018).  

Descriptive studies also allow for determination of the adequate number of animals once 

the quality of measurements has been assessed. Traits with known low heritability or diseases 

with low incidence (e.g., lameness) demand greater study population to provide enough 

information for prediction (Mottram, 2016). For rectal temperature of Holstein cows for 

example, with heritability of 0.17, approximately 20,000 would be needed to achieve a genomic 

reliability of 0.4 (Cheruiyot et al., 2022). In such cases, descriptive studies describing the 

distribution, behavior and influential factors on the data were central to the development of 

algorithms and new devices for data collection. Once a good indicator is established, validation 

studies are performed to verify the behavior of the methods used on other populations.  
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Reference populations 

Most of the phenotyping methods currently being developed under precision farming 

perspective rely on technological gadgets and infrastructure not available to many commercial 

farms, limiting the development of the novel trait. As alternative, effort has been placed by 

research stations to collect the data and information of a specific and reduced population to be 

used as reference for the formulation of predictive models for target populations (Egger-Danner 

et al., 2014). Examples of reference populations undergoing expansion are for residual feed 

intake, enteric methane emission, behavior, temperament and milkability, and heat tolerance. 

 

Genomic studies  

In a genetic selection standpoint, the relationship of the phenotype with other 

economically important traits is another essential part of novel trait investigation. While a new 

phenotype might have been stablished as a management tool in commercial farms for example, 

its use on selection is not advisable while the possible long-term effects have not been 

determined. A novel trait in this case may be limited to herd supervision instead of included in a 

selection index. A very high genetic correlation with a traditional trait can be used to rule out its 

inclusion or decrease its weight on a genetic evaluation as it would bring redundancy to the 

models. 

The biology underlying the trait is essential for the understanding of the phenotype as a 

management tool, and the perspectives for future genetic selection. One of the main tools for 

basic biological investigation are genome-wide association studies (GWAS) for the scanning and 

identification of the candidate genes affecting the phenotype. With more than 6.5 million 
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genotyped dairy cattle reported in 2022, studies using genomic information are becoming more 

frequent (Wiggans and Carrillo, 2022).  

GWAS can not only indicate the candidate genes for a specific phenotype, but their use 

can be extended to pathway analysis and link the trait under study to important traits not yet well 

understood or with difficult phenotyping such as metabolic diseases. Significant SNPs and 

genomic regions identified through GWAS may be included to SNP panels, but its application is 

population dependent. For instance, Luo et al. (2021) used GWAS to identify 5 candidate genes 

for heat stress measured as rectal temperature in dairy cows and after biological validation 

indicated its inclusion in SNP panels or prediction models. Although genomic analysis had been 

performed to investigate heat stress previously, the replication of these in a population of 

Chinese Holstein cows identified different candidate genes.  

 

Genomic prediction of novel traits 

For a novel trait, the accuracy of phenotype prediction may be lower due to insufficient 

phenotyped population (Chesnais et al., 2016). The incorporation of biological information, 

specifically candidate causal variants, can improve accuracies of genomic prediction based on 

low-density SNP panel (Cheruiyot et al., 2022). With respect to prediction methods, the genomic 

best linear unbiased prediction (GBLUP) assumes that all variants have small effects with the 

same distribution, which is unlikely for traits that are influenced by a major SNP, while methods 

such as weighted GBLUP assign different weights for SNPs, according to prior information 

(Wang et al., 2012). The inclusion of prior biological information in prediction models is 

particularly beneficial to small populations such as the reference populations for novel traits but 

can be irrelevant with larger populations or highly polygenic traits. In a scenario with 2,000 
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animals, an effective population size of 20 and 10 quantitative trait loci (QTL), Lourenco et al 

(2017) reported an increase of  0.15 in the accuracy of prediction when SNP weight were added 

but the improvement was almost nil when the population increased to 25,000 or with 500 QTL.  

On the other hand, Van Binsbergen et al (2015) reported that biological information is 

decisive to the positive outcomes of including whole-genome sequence information in 

comparison to high-density SNP panels. Furthermore, by focusing on markers closer to causal 

variants or the variants themselves, it is possible to aggregate data from distantly related breeds 

to balance the small size of the studied population and increase the reliability of predictions 

(Lund et al., 2016). The emphasis on causal variants can also help predictions across populations 

as it bypasses the different linkage disequilibrium (LD) between the marker and actual variant 

seen in diverse populations, as long as the density of markers is sufficient to provide a consistent 

LD (Lund et al., 2016). 

Another tool available to increase accuracy of prediction in smaller reference populations 

is the semi-supervised learning that combine methods that predict future phenotypes based on a 

prior and known one, and unsupervised models that does not rely on previous phenotypes for 

model training. Yao et al. (2016) reported that semi-supervised learning was able to improve the 

accuracy of genomic prediction and achieve values comparable to larger and fully-phenotyped 

populations.  

 

Implementation of national genetic evaluations 

Ideally, the outcome for the development of novel measurement tools is not only to be 

applied on management decisions, but also on genetic selection. Once the impact of the trait on 

other important selection criteria is determined and a desirable reliability is achieved the 
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feasibility of a national genetic evaluation can be assessed. In  recent years, RFI and clinical 

mastitis have been incorporated to the net merit (NM$) index used by the Council on Dairy 

Cattle Breeding to rank dairy animals based on their genetic merit (VanRaden et al., 2021). Their 

proposal as selection trait, however, started several decades ago and has only advanced with the 

establishment of reference populations, indicator traits and automation of data collection. RFI for 

instance was proposed in 1963 by Koch et al, but it was not until the introduction of genomics 

that its use was truly considered in breeding programs due to limited phenotypic records, 

unstandardized measurements, lack of breeding goal and biological information that could help 

to increase accuracies (Brito et al., 2020c). The inclusion of both traits are examples of long, yet 

successful, implementation of novel traits. 

The efforts in enteric methane emission tend to focus on phenotyping and the use of 

genomic selection as mitigation tool (Lassen and Difford, 2020). Biology investigation through 

GWAS on genes and variants, establishment of reference populations, association of 

microbiome, and definition and standardization of phenotypes are currently undergoing research 

and may turn methane into a candidate for inclusion in selection indexes in the near future 

(Garnsworthy et al., 2019; Pszczola et al., 2019). Fortunately, the correlations between different 

methods for methane emission determinations suggest that data can be combined to provide 

larger reference population for genetic selection which can accelerate its inclusion in breeding 

programs (Garnsworthy et al., 2019).  

Dairy cattle breeding programs rely on predicted transmitting abilities (PTA) to provide 

the ranking of animals based on the selection index. The decision of inclusion or not of a novel 

trait into the program can consider factors such as impact on overall selection (e.g., reranking of 
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animals), the number of phenotyped individuals, reliability of PTA predictions, heritability and 

repeatability of the trait, and economic impact (Brito et al., 2020b; VanRaden et al., 2021). 

 

Ongoing research on novel traits 

There are several novel traits being currently considered for research in different fronts to 

meet industry’s and government’s requirements. Although some are still under the development 

of a phenotype, other are closer to implementation in breeding programs (Egger-Danner et al., 

2014). Functional traits are an important point of focus of funding and research efforts. 

Phenotypes related to udder health, for example, aim to reduce the incidence of mastitis and 

other infectious diseases affecting mammary gland function (Egger-Danner et al., 2014).  

Clinical mastitis has been included along with other direct health traits in the genetic 

evaluation of dairy cows in the United States, but the standardization of data recorded remains as 

one limiting factor to unifying data from multiple sources across US (Parker Gaddis et al., 2020). 

Martin et al. (2018) described indirect measures of mastitis such as somatic cell count (SCC) and 

its variants such as average SCC and standard deviation of SCC, and udder depth and indicated 

them as strong candidates for inclusion in evaluations. However, the authors also highlighted the 

opportunity for research on other proxy traits and a solid reference population for an accurate 

selection. Currently even though health traits are part of US national genetic evaluation, efforts 

are still being placed on the biological understanding of the disease for a prevention point, but 

the results can also contribute to better prediction in the future (McConnel et al., 2020; Bisutti et 

al., 2023). 

Workability traits combine phenotypes such as milking speed, average flow rate, milking 

frequency, handling time and others and aim to describe the facility of handling and milking. 
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Workability has been included in the Norwegian dairy breeding program since 1970 but is yet to 

be implemented in the US. Although the difficulties fall mainly on the larger herd sizes, the use 

of automated milking systems is potentially a favorable direction into phenotyping while a task 

force assigned by the Council on Dairy Cattle Breeding studies the feasibility of national genetic 

evaluation for the traits (Miles et al., 2022). Genomic-based heritability for daily milkability 

traits in North America were estimated to be from 0.02 and 0.56 (values for milking failure and 

milking efficiency, respectively), and indicated a potential for genetic selection based on 

genomic information (Pedrosa et al., 2023). Additionally, a study using whole-genome sequence 

was performed and provided the  discovery of eight candidate mutations for milking 

temperament that could be used as an improved tool for predictions for the trait in future 

evaluations (Chen et al., 2020a). While maximizing the use of current records for workability 

traits may assist with estimations, the combining of traditional and automated milking system 

data should be taken into consideration as they are highly genetically correlated, yet can yield 

different heritabilities (Wethal et al., 2020). 

Sustainability is also currently under the spotlight as consumers and governments push 

for higher regulations of production systems. The enteric methane emission is a trait under 

consideration for genetic evaluation considering that installation of data recording devices in 

commercial farms is unlikely. However, the reference population is not yet sufficient to provide 

reliable predictions and more data is needed over the next years (de Haas et al., 2021). Different 

measures of methane emission are being used and combining methods is a possibility to increase 

the dataset available to established a good reference population (Garnsworthy et al., 2019). The 

heritabilities of methane emission vary from 0.05 to 0.27, with higher estimates for 

measurements using sniffers, and the genetic correlation with production and health traits 
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indicate that selection for reduced methane emission on its own would lead to lower milk 

production, lower dry matter intake, and smaller animals (Pszczola et al., 2019; Lassen and 

Difford, 2020). These results point out the need to investigate the genetic selection of methane 

emission in a selection index context. 

Research efforts and large-scale phenotyping groups similar to the ones created for feed 

efficiency can promote standardized measurements for novel traits by sharing data and generate 

a reference population with phenotypic and genetic variability. Projects such as METHAGENE 

(www.methagene.eu), Ruminomics (https://cordis.europa.eu/project/rcn/101163/en), Efficient 

Dairy Genome Project (https://genomedairy.ualberta.ca), and The Resilient Dairy Genome 

Project (http://www.resilientdairy.ca/ ) will lead to phenotyping efforts for novel traits definition 

and implementation.  

The introduction of automated phenotyping based on accelerometer, imaging analysis 

and computer vision, wheatear data as temperature and humidity and others under the umbrella 

of precision livestock generates a load of data for research use. However, such information 

originating from automation and sensor data still faces several challenges. Aside from large size 

and high-dimensionality of the data, using the so-called “big-data” requires substantial computer 

processing, well-trained and validated models and run into issues with large diversity, high 

variability, data consolidation and integration, and data ownership issues (Gengler, 2019).  The 

use of precision livestock farming to provide large-scale phenotyping for genomic selection 

programs is possible but the variables measured over time depend on complex methods to deal 

with factors such as missing errors, redundancy of information (Brito et al., 2020a; Rosa, 2021).   

In this context, current breeding programs would need to change to accommodate automated 

phenotyping as the current genetic evaluations are continually revised and the weekly updates 

http://www.methagene.eu/
https://cordis.europa.eu/project/rcn/101163/en
https://genomedairy.ualberta.ca/
http://www.resilientdairy.ca/
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cannot support the time needed for data processing and for inclusion, some calculations would 

need to be processed on-farm to be included in a timely manner (Gengler, 2019). 
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Abstract 

 

Heat load and body temperature can impact the performance of dairy cows and are 

influenced by several external and internal (individual) factors. The aim of this study was to 

investigate the associations between three body temperature traits, namely average body 

temperature, consistency of body temperature, and change in body temperature after the largest 

meal of the day, with four feed efficiency traits, namely dry matter intake (DMI), metabolic 

body weight (MBW), milk energy (MilkE), and residual feed intake (RFI) in lactating Holstein 

cows. Data were collected on 304 mid-lactation Holstein cows enrolled in 11 different feed 

efficiency trials from 2020 to 2023 at the University of Wisconsin-Madison. Temperature 

records were obtained using an automatic temperature logger placed vaginally during 2 weeks. 

Body temperature was recorded every five minutes with a resolution of 0.0625 ºC. Average body 

temperature was calculated as the individual mean during the trial, consistency of body 

temperature was calculated as the log transformed variance of the deviations of individual 

records from the cow’s mean, and change in body temperature was calculated as the difference in 

the temperature before and after the largest meal of the day. Data for DMI, MBW, MilkE and 

RFI were collected from the same cows in the same feeding trials for 6-7 weeks. The 
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associations between body temperature traits and feed efficiency traits were assessed using linear 

regression models including body temperature and cohort (trial-treatment) as independent 

variables. Average body temperature was positively associated with RFI (slope = 2.14; p < 0.05) 

indicating that cows with higher body temperature are less feed efficient. Dairy cows with higher 

MilkE showed less consistent body temperature (slope = 1.42; p < 0.05) and had greater decrease 

of body temperature after the largest meal of the day (slope = -14.61; p < 0.001). Larger changes 

in body temperature after meal were also associated with greater DMI (slope = -10.26; p < 

0.001). Overall, our results suggest that body temperature can be used as an indicator of feed 

efficiency in lactating dairy cows and that more variations in body temperature are associated 

with higher MilkE and DMI.  
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Introduction 

 

Thermoregulation is an important aspect of the metabolism of a dairy cow and interferes 

with the prioritization of blood flow, metabolites requirements, and energy partitioning (Lees et 

al., 2019). In a challenging environment, dairy cows try to balance feed and water intake to 

reduce the heat increment of digestion, spend more time standing for better heat dissipation, 

increase the passage rate of digesta, and prefer carbohydrate over lipid utilization (Wheelock et 

al., 2010; Allen et al., 2015). 

The change in energy partitioning promoted by heat load directly impacts milk yield, fat 

and protein content and exacerbates the importance of thermoregulation at expense of production  

(Aharoni et al., 2005). Variation in rumen and body temperature are not only associated with less 

efficiency in energy utilization but also with lower feed efficiency (DiGiacomo et al., 2014; 

Fischer et al., 2018). 

Although the relationship between feed efficiency and body temperature is an active 

research topic, data are usually limited to a small number of animals, with one or a few records 

per animal, collected during one or a few days. Rectal temperature records depend on manual 

collection, restraining and moving the animal, and can interfere with an individual’s temperature. 

Vaginal measurements provide similar results in comparison to rectal temperature and allow the 

use of data loggers for longer periods (Vickers et al., 2010). Note that the automatic 

measurement of body  temperature provides more frequent records and consequently, more 

accurate daily average (Tresoldi et al., 2020). Despite its benefits, the relationship between high-

frequency body temperature records with feed efficiency in lactating cows is not well stablished 

in the literature. 
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The objective of this study was to investigate the associations between body temperature 

measured as average body temperature, consistency of body temperature, and change in body 

temperature after meal, with dry matter intake, metabolic body weight, milk energy, and residual 

feed intake in mid-lactation Holstein cows. We hypothesized that (1) body temperature is 

associated with feed efficiency, (2) more consistent cows are more efficient, and (3) the variation 

in body temperature after meal is related with feed efficiency. 
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Material and methods 

Animals 

Animal handling and sampling procedures were approved by the University of 

Wisconsin-Madison College of Agricultural and Life Sciences Animal Care and Use Committee. 

Data were collected from mid-lactation Holstein cows (n = 304) in 11 feeding trials performed 

between 2020 and 2023 at the University of Wisconsin-Madison, as part of the national dairy 

cow feed efficiency project (Tempelman et al., 2015; Li et al., 2019). Cows were housed in a 

sand-bedded freestall facility at the Emmons Blaine Dairy Cattle Research Center (Arlington, 

WI) or at Marshfield Agricultural Research Station (Stratford, WI). Cows were provided ad 

libitum access to feed and water, with diets formulated to meet or exceed nutrient requirements.  

 

Internal temperature records 

Cows enrolled in feed efficiency trials were selected to monitor body temperature based 

on their reproductive status. Cows in early stages of pregnancy or cows enroll in insemination 

protocols were not included for temperature collection. Body temperature was collected with 

a Thermochron iButtons device (Embedded Data Systems, Lawrenceburg, KY), placed in an 

intravaginal device (CIDR, Zoetis US, New York, NY) lacking progesterone supplement. To 

avoid malfunction and record failure, the CIDR with the device was assembled following an 

internal protocol consisting of filling the gaps between device and CIDR and covering it with 

shrinking tube and electrical tape to ensure it was securely waterproof. Each eligible cow 

received one device and had temperature recorded every five minutes for 14 days, with a 

precision of 0.0625 C. Animals with signs of severe discomfort or lesions were removed from 

the study. Cows with less than nine days of records were excluded. In addition, individual 
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temperature records outside three standard deviations from the cow’s mean were not considered. 

The final dataset consisted of 304 primiparous and multiparous lactating cows with a total of 

1,183,204 body temperature records, with an average of 6,899 records per cow. 

 

Feed efficiency traits 

Daily feed intakes records were measured for 6-7 weeks via a roughage intake control 

system (Hokofarm Group) or Calan Broadbent Feeding System (American Calan). Milk weights 

were obtained daily, milk samples were obtained 4 times a week for determination of milk 

composition, and BW were obtained on 3 consecutive days at the beginning, middle, and end of 

the experimental period. Milk energy was calculated weekly using the following equation: 

𝑀𝑖𝑙𝑘𝐸 = (0.0929 × 𝑓𝑎𝑡 % + 0.0563 × 𝑝𝑟𝑜𝑡𝑒𝑖𝑛 %+ 0.0395 ×  𝑙𝑎𝑐𝑡𝑜𝑠𝑒 %) ×  𝑚𝑖𝑙𝑘 𝑦𝑖𝑒𝑙𝑑 

The RFI for each cow was calculated according to the following equation: 

𝐷𝑀𝐼 = 𝐷𝐼𝑀 +  𝑝𝑎𝑟𝑡𝑖𝑡𝑦 + 𝛽1𝑀𝑖𝑙𝑘𝐸+ 𝛽2𝑀𝐵𝑊 +𝛽3Δ𝐵𝑊+ 𝑐𝑜ℎ𝑜𝑟𝑡+𝑤𝑒𝑒𝑘 + 𝜀, 

where DIM represents the effect of days in milk with 9 levels (grouped by 16 d), parity 

represents the effect of parity (lactation number) with 3 levels (1, 2, and 3), MilkE is secreted 

milk energy with partial regression coefficient 𝛽1, 𝑀𝐵𝑊 is metabolic body weight with partial 

regression coefficient 𝛽2, Δ𝐵𝑊 is the change in body weight with partial regression coefficient 

𝛽3, 𝑐𝑜ℎ𝑜𝑟𝑡 represents the random effect of trial-treatment, 𝑤𝑒𝑒𝑘 represents the random effect of 

week of experiment, and 𝜀 is the random residual of the model, representing RFI. 

 

Body temperature traits 

Three body temperature phenotypes were considered in this study: average body 

temperature, consistency of body temperature, and change in body temperature after the largest 

meal of the day. All these phenotypes were averaged for the trial period. Consistency of body 
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temperature was calculated as the log transformed variance of the deviations of individual 

records from the mean. Change in body temperature after the largest meal was calculated as the 

difference in body temperature between 15 minutes before the meal and 30 minutes after the end 

of the meal. The largest meal of the day consisted of the meal with the most feed consumed 

based on the work of Cavani et al., (2022).  

 

Statistical Analysis 

The associations between body temperature traits and feed efficiency traits were assessed 

using linear regression models containing the temperature phenotype and the cohort (trial-

treatment) as independent variables. Pearson’s correlations between body temperature traits and 

feed efficiency traits were also calculated.   
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Results 

 

Table 1 shows the descriptive statistics for the three body temperature traits. As expected, 

no considerable differences in the mean and standard deviations of body temperature were 

observed across trials and seasons. Notably, an important between-animal variation was 

observed for the three body temperature phenotypes. The change in body temperature after meal 

was consistently negative, showing that during the period following food ingestion, the body 

temperature decreased on average -0.24 ºC  0.09. Interestingly, the high-frequency body 

temperature collected made it possible to observe daily temperature peak patterns between 1400 

and 2000, and lowest temperatures between 0300 and 0500, across trials. Table 2 shows the 

Pearson’s correlations calculated between body temperature traits and feed efficiency traits. 

Figure 1 shows the associations between average body temperature and RFI, DMI, 

MBW, and MilkE. Interesting, body temperature was positively associated with RFI (P-value < 

0.05) indicating that animals with higher body temperature also have higher RFI, and hence, are 

less feed efficient. The other traits evaluated, DMI, MBW and MilkE, did not show significant 

associations with average body temperature. 

Figure 2 shows the associations between consistency of body temperature and RFI, DMI, 

MBW, and MilkE. Note that consistency of body temperature is presented as a log transformed 

variance, and thus the least variable cows, a.k.a. the most consistent cows, present the most 

negative values. Only MilkE showed a significant association with consistency of body 

temperature with animals with high variability in body temperature (values close to zero) tend to 

allocate more energy towards milk production. Interestingly, this association cannot be attributed 
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to higher DMI as DMI was not associated with consistency of body temperature (P-value > 

0.05). 

Figure 3 shows the associations between change in body temperature after meal and RFI, 

MBW, MilkE, and DMI. Most cows decreased their body temperature after the largest meal of 

the day. Larger variations in body temperature were positively associated with milk energy and 

also dry matter intake (P-value < 0.05). No significant associations were observed between 

change in body temperature and RFI nor MBW.   
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Discussion 

 

Body temperature is a known factor involved in the efficiency of energy utilized by 

animals (Lees et al., 2019). Heat load and the capacity of an individual to adapt to environmental 

challenges interfere in organism’s priorities and shift energy normally allocated to production. 

Adaptative processes in dairy cows may include decreased feed intake, lower feeding time, lower 

milk yield and quality, behavioral changes, among others (Tao et al., 2020). Negative 

relationships between body temperature and feed efficiency traits have been described for beef 

cattle (Martello et al., 2016), dairy calves (Leão et al., 2018), grower pigs (Cook et al., 2020), 

among others. In a scenario of global warming where thermotolerance should be prioritized, a 

better understanding of the relationship between body temperature and production efficiency is 

of paramount importance for the dairy industry. 

Different measures of body temperature have been used, such as infrared, skin, rectal and 

vaginal temperature, with their respective advantages and weaknesses. While easier to obtain, 

external measurements like skin and infrared temperatures might be a better indicator of heat 

dissipation than increment per se (DiGiacomo et al., 2014). Internal measures, on the other hand, 

provide more frequent core body temperature but have implementation challenges (Suthar et al., 

2013). To the best of our knowledge, this study describes the largest dataset of high-frequency 

body temperature records collected on lactating dairy cows. The data collected consisted of 20 

records per hour for 14 days totaling 1,183,204 temperature records for 304 lactating Holstein 

cows.  

The three phenotypes herein presented aimed to explore the individual variations in body 

temperature and the possible associations with DMI, MBW, MilkE, and RFI. It was 
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hypothesized that the ability of animals to maintain their temperature throughout the day and 

their ability to limit the heat increment after feeding is related to feed efficiency. The fact that 

RFI was found to be significantly associated only with average body temperature is an indicator 

that feed efficiency might be a product of overall body temperature and not necessarily its 

variability. The positive and significant association between RFI and average body temperature 

suggests that higher body temperature is an indicator of poor efficiency, and hence body 

temperature could be used as an indicator trait of feed efficiency. Note that feed efficiency is 

based on feed intake records, and these measurements are typically performed only in research 

farms. 

Previous studies have suggested that high body temperature negatively affects feed 

efficiency. In fact, under challenging conditions, animals allocate energy towards metabolic 

adaptations and blood flow from gastrointestinal tract and digestion to peripheral tissues for heat 

dissipation (Ríus, 2019). Some authors argue that the reduction in milk yield is mainly caused by 

the decrease in DMI as a protective measure to avoid heat increment of feed, but data indicate 

that DMI accounts for only 51.4% of the variation in milk loss and that metabolic adaptations 

might explain the remaining (Wheelock et al., 2010; Tao et al., 2020). Note that cows used in 

this study were not exposed to heat stress conditions, and hence, the association between body 

temperature with RFI but not with DMI, MilkE and MBW indicates that individual differences 

are possibly due to metabolic adaptations not triggered by heat stress conditions.  

The second phenotype of interest was the variability of body temperature and it was 

calculated as the log transformed variance of the deviations from the animal’s average 

temperature for the whole trial period. Only MilkE was significantly associated with consistency 

of body temperature, indicating that animals capable of maintaining their temperature constant 
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over the trial have a slightly lower amount of energy allocated to milk production. This agrees 

with the theory that the energy devoted to thermoregulation is determined at the expense of 

production, even under a thermoneutral environment. Interestingly, most variable cows had 

lower consistency not only across days but also within a day. 

Different factors can be source of temperature variation during a period of 24h such as 

diet, feeding behavior, feed delivery and milking time. Fischer et al. (2018) reported that more 

variable rumen temperatures were associated with fewer bunk visits and larger meal size and that 

the higher the rumen temperatures, the lower the time spent eating. The same authors also 

detected that dairy cows with higher residual energy intake have more variable rumen 

temperatures. The fact that approximately 65.5% of the net energy intake variability among 

animals is attributed to milk energy allocation  and that milk fat and protein can likely explain 

heat production, the association of MilkE with consistency of temperature seen in this work is 

expected (Fischer et al., 2018; Morris et al., 2021). 

Body temperature may rise from 1 to 3 hours after feeding, following an increase in 

metabolism and consequently a heat load due to digestion functions and rumination and is 

considered an additional source of body temperature variation during a day (Purwanto et al., 

1990; de Melo Costa et al., 2018). In this study, except during milking time, cows had 

unrestricted access to feed throughout the day and therefore, a more distributed feeding behavior 

pattern was expected. To investigate change in body temperature after feeding, the largest meal 

of the day was used. Opposed to what was expected and to what has been shown in the literature, 

the body temperature of the animals decreased on average 0.24 ºC 30 minutes after the meal. 

This result could be explained by the redirection of blood flow from the extremities to the 

gastrointestinal tract expected under the thermoneutral conditions to which the cows were 
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exposed. The shift in the blood flow after food ingestion occurs to prioritize digestion and 

nutrient absorption and to supply metabolites necessary to complete metabolic pathways 

(Sangsritavong et al., 2002). 

As previously reported, although a good indicator of core body temperature, the 

temperature loggers placed in the vagina might not be able to detect, for example, changes in 

rumen temperature (AlZahal et al., 2011). Interestingly, larger changes in body temperature were 

significantly associated with MilkE and DMI indicating that animals with greater temperature 

decrease after feeding ingested more food and allocated more energy towards milk production. 

These results agree with the hypothesis that, under thermoneutral conditions, the metabolism 

would prioritize digestion and nutrients absorption, differing from the response of individuals 

observed under heat stress that may lead to production decline. 
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Conclusion 

 

Overall, the results presented in this work suggest that average body temperature is 

associated with feed efficiency in mid-lactation dairy cows. Our results revealed that cows with 

higher body temperature tend to be less feed efficient. We also observed that cows with less 

consistent temperature throughout the day tend to direct more energy towards milk production. 

Cows with larger changes in body temperature after feeding tend to eat more and produce more 

milk energy. 
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Table 1. Descriptive statistics for average body temperature, consistency of body 

temperature and change of temperature after meal per feeding trial 

   
Average 
temperature 

Consistency of 
temperature 

Change of 
temperature 

Trial Cows Season Mean  SD Mean  SD Mean  SD 

1 17 Fall 38.69  0.08 -3.20  0.50 -0.20  0.05 

2 20 Summer 38.69  0.11 -2.74  0.34 -0.35 0.10 

3 24 Summer 38.73  0.09 -2.72  0.43 -0.29  0.09 

4 41 Winter 38.74  0.10 -3.26  0.49 -0.19  0.07 

5 27 Spring 38.71  0.10 -3.12  0.49 -0.26  0.07 

6 29 Summer 38.75  0.12 -2.37  0.64 -0.23  0.09 

7 37 Fall 38.73  0.10 -3.03  0.33 -0.25  0.09 

8 23 Spring 38.74  0.12 -3.10  0.30 - 

9 39 Winter 38.74  0.09 -3.38  0.28 -0.21  0.08 

10 21 Winter 38.73  0.12 -3.29  0.32 -0.23  0.05 

11 26 Spring 38.75  0.12 -3.13  0.42 - 

Total 304 - 38.74  0.11 -2.89  0.59 -0.24  0.09 
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Figure 1. Associations between average body temperature with residual feed intake (RFI), 

metabolic body weight (MBW), milk energy (MilkE) and dry matter intake (DMI). The average 

body temperature was calculated as the average temperature during 2 weeks of the feeding trial. 

The slopes and P-values correspond to the effect of average body temperature adjusted by cohort.  
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Figure 2. Associations between consistency of body temperature with residual feed intake (RFI), 

metabolic body weight (MBW), milk energy (MilkE) and dry matter intake (DMI). Consistency of 

body temperature was obtained as the log transformed variance of the deviations from the mean. 

The slopes and P-values correspond to the effect of average body temperature adjusted by cohort.  
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Figure 3. Associations between change in body temperature with residual feed intake (RFI), 

metabolic body weight (MBW), milk energy (MilkE) and dry matter intake (DMI).  Change in body 

temperature was obtained as the diference in temperature before and after the largest meal of the 

day. The slopes and P-values correspond to the effect of average body temperature adjusted by 

cohort. 
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Figure 4. Pearson correlations between body temperature measures and residual feed intake, 

metabolic body weight, milk energy, and dry matter intake. 
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Abstract  

 

Visceral fat is related to important metabolic processes, including insulin sensitivity and lipid 

mobilization. The goal of this study was to identify individual genes, pathways, and molecular 

processes implicated in visceral fat deposition in dairy cows. Data from 172 genotyped Holstein 

cows classified at slaughterhouse as having low (n = 77; omental fold < 5 mm in thickness and 

minimum fat deposition in omentum) or high (n = 95; omental fold ≥ 20 mm in thickness and 

marked fat deposition in omentum) omental fat were analyzed. The identification of regions with 

significant additive and non-additive genetic effects was performed using a two-step mixed 

model-based approach. Genomic scans were followed by gene-set analyses in order to reveal the 

genetic mechanisms controlling abdominal obesity. The association mapping revealed four 

regions located on BTA19, BTA20 and BTA24 with significant additive effects. These regions 

harbor genes, such as SMAD7, ANKRD55, and the HOXB family, that are implicated in 

lipolysis and insulin tolerance. Three regions located on BTA1, BTA13, and BTA24 showed 
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marked non-additive effects. These regions harbor genes MRAP, MIS18A, PRNP and TSHZ1, 

that are directly implicated in adipocyte differentiation, lipid metabolism, and insulin sensitivity. 

The gene-set analysis revealed functional terms related to cell arrangement, cell metabolism, cell 

proliferation, cell signaling, immune response, lipid metabolism, and membrane permeability, 

among other functions. We further evaluated the genetic link between visceral fat and two 

metabolic disorders, ketosis, and displaced abomasum. For this, we analyzed 28k records of 

incidence of metabolic disorders from 14k cows across lactations using a single-step genomic 

BLUP approach. Notably, the region on BTA20 significantly associated with visceral fat 

deposition was also associated with the incidence of displaced abomasum. Overall, our findings 

suggest that visceral fat deposition in dairy cows is controlled by both additive and non-additive 

effects. We detected at least one region with marked pleiotropic effects affecting both visceral fat 

accumulation and displaced abomasum.  
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Introduction 

 

Fat deposition occurs essentially in three regions, namely intramuscular, subcutaneous, 

and around visceral organs. These fat depots differ in structural organization, cellular size, 

biological function, and metabolic characteristics. Historically, visceral fat was considered to 

protect and insulate the internal organs; however, its critical role as a form of energy storage and 

endocrinological signaling has been recently recognized (Booth et al., 2016). Indeed, visceral 

adipose tissue carries out relevant functions, including lipogenesis to store surplus energy as 

triglycerides during periods of overnutrition, lipolysis to release energy as free fatty acids during 

periods of undernutrition, and secretion of a broad spectrum of active molecules, such as 

proinflammatory cytokines (Item and Konrad, 2012). Visceral adiposity has been linked to 

several metabolic disorders, including impaired glucose and lipid metabolism, and insulin 

resistance (Konrad and Wueest, 2014). 

Dairy cows typically experience a state of negative energy balance around parturition and 

early lactation when the energy demand for maintenance and milk production exceeds that of 

dietary energy intake (Pascottini et al., 2020). This negative energy balance leads to fat 

mobilization, and consequently, an increase in plasma concentrations of free fatty acids, which 

are used as a fuel source by peripheral tissues and the mammary gland for milk fat synthesis. 

Visceral adipocytes in dairy cows are more metabolically active and sensitive to lipolysis than 

subcutaneous adipocytes, and hence, visceral adipose tissue is a key player in metabolic health 

during the transition period (Ji et al., 2014b). Note that extreme lipid mobilization is associated 

with different metabolic disorders, including displacement of the abomasum, ketosis, and fatty 

liver (Hostens et al., 2012; Contreras et al., 2015). 
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There is growing evidence that body fat distribution is influenced by genetic factors. For 

instance, in humans, waist-hip ratio, a measure of body fat distribution independent of overall 

adiposity, is a heritable trait controlled by multiple significant loci (Heid et al., 2010). In dairy 

cows, Melendez et al. (2018) reported that visceral fat accumulation is also a heritable trait, and 

hence, genetic selection to reduce the prevalence of excessive visceral fat is possible.  

The first objective of this study was to reanalyze the data from Melendez et al (2018) 

using alternative methods for gene mapping and the application of novel gene-set tools. Given 

that visceral fat accumulation is associated with metabolic health, the second objective of this 

study was to identify genomic regions with pleotropic effects on visceral adiposity and incidence 

of ketosis or displaced abomasum.   
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Material and Methods 

 

Visceral Fat Accumulation 

Data were collected at a slaughterhouse located in Green Bay, WI, USA (Melendez et al., 

2018). Briefly, adult Holstein cows were evaluated from the processing line. After the carcass 

was eviscerated, the amount of omental fat at the level of the insertion of the lesser omentum 

over the pylorus area was evaluated. Low visceral fat accumulation was defined as an omental 

fold < 5 mm in thickness and minimum fat deposition observed throughout the entire omentum. 

High visceral fat accumulation was defined as an omental fold ≥ 20 mm in thickness and marked 

fat deposition observed throughout the entire omentum. Only cows with body condition score 

between 2.75 and 3.25 were considered. As mentioned by Melendez et al. (2018), the goal of this 

sampling protocol was to obtain two groups of Holstein cows with extreme differences in 

visceral fat accumulation but with very similar subcutaneous fat deposition. A total of 172 cows 

were finally selected for this study, 77 with low and 95 with high visceral fat accumulation. It is 

important to note that an important drawback of the sampling approach used in this work was the 

lack of management information of animals before arriving at the slaughterhouse. The absence of 

information such as nutritional strategy, pregnancy status and origin of the animals may 

influence on the results of the genomic scan and the significant signals observed can be partially 

explained by a factor not accounted in the model. 

These 172 cows were genotyped using the Illumina BovineHD Beadchip with over 777k 

single nucleotide polymorphism (SNP) probes. After removing monomorphic markers and those 

located in the X chromosome, a total of 584,557 SNPs remained for the genomic analyses. 
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Genomic Scans 

The importance of additive and non-additive effects on visceral fat accumulation was 

evaluated using a two-step mixed-model-based approach (Aulchenko et al., 2007).  

In the first step, the following model was fitted:  

y =  Xb + Zu +  e 

where y is the vector of visceral fat accumulation scores (low = 0 or high = 1), b is the vector of 

fixed effects, u is the vector of random animal effects, and e is the vector of random residual 

effects. The incidence matrices X and Z relate visceral fat accumulation scores to fixed and 

animal effects, respectively. The random effects were assumed to follow a multivariate normal 

distribution with u ∼ 𝑁(0, G𝜎𝑢
2) and e ∼ 𝑁(0, I𝜎𝑒

2), where 𝜎𝑢
2 and 𝜎𝑒

2 are the animal additive 

genetic and residual variances respectively, G is the genomic relationship matrix, and I an 

identity matrix.  The variance-covariance matrix for this first model was estimated as V0 =

 ZGZ′𝜎𝑢
2 + I𝜎𝑒

2. 

In the second step, the following model was fitted for every SNP:  

y =  Xβ +  𝑋𝑆𝑁𝑃𝛽𝑆𝑁𝑃  +  𝜖 
  

where 𝑋𝑆𝑁𝑃 is the design matrix for the marker under consideration and  𝛽𝑆𝑁𝑃 is the regression 

coefficient, also known as SNP effect. Every SNP genotype was coded using single numeric 

variables as (0, 1, 2), (0, 1, 1), (0, 0, 1) and (0, 1, 0) for testing additive, dominance, recessive 

and overdominance effects, respectively. This model assumes that 𝜖 ∼ 𝑁(0,V0𝜎𝑒
2). The 

significance of each SNP effect was evaluated using the following test statistic: 

z =  
X′𝑆𝑁𝑃V0

−1(y − Xβ̂)

√X′𝑆𝑁𝑃𝑉0
−1X𝑆𝑁𝑃
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which approximates the Wald test, and hence, is asymptotically standard normal. These analyses 

were performed using the R package MixABEL (Aulchenko et al., 2007). The possible inflation 

of the test statistics was evaluated using quantile-quantile (Q-Q) plots. (Zare et al., 2014) 

 

Overrepresentation Analysis 

The overrepresentation analysis, also known as gene-set analysis, was performed in three 

steps as described by Han and Peñagaricano (2016). The first step was the assignment of SNP 

markers to annotated genes. The latest bovine reference annotation (ARS-UCD1.2) was used to 

retrieve the exact location of each annotated bovine gene in the genome. SNP markers were 

assigned to annotated genes if they were located within the genomic sequence of the gene or at 

most 10 kb upstream or downstream the gene. Significant genes were defined as those genes 

containing at least one SNP with a significant additive effect (P-value ≤ 0.01). The second step 

was the assignment of annotated genes to gene-sets. Six different gene-set databases were 

explored: GO, KEGG, MeSH, InterPro, MSigDB, and Reactome. Finally, in the third step, the 

enrichment or overrepresentation of significant genes in each gene-set was tested using a 

Fisher’s exact test. All these analyses were performed using the R package EnrichKit 

(https://github.com/liulihe954/EnrichKit), developed by our group. 

 

Genomic Analysis of Metabolic Disorders 

Data consisted of 27.4k producer-recorded lactation incidence records of displaced 

abomasum and ketosis from 13.4k Holstein cows that calved between January 2010 and 

December 2015 in one large commercial dairy herd in the State of Florida, USA. Metabolic 

disorders were recorded as binary, i.e., Y = 1 if the cow had clinical symptoms, and Y = 0 

https://github.com/liulihe954/EnrichKit
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otherwise. Genotype data for 60,671 single nucleotide polymorphism (SNP) markers were 

available for 5.9k cows with health records and 1.4k sires in the pedigree. Markers that mapped 

to the sex chromosomes, or were monomorphic, or had minor allele frequency less than 1% were 

removed from the SNP dataset. After data editing, a total of 54,043 SNPs were retained for 

subsequent analyses. 

The incidence of metabolic disorders was analyzed using a threshold model (Gianola, 

1982). This model, also known as probit model, describes the observable response variable (0 or 

1) using an underlying linear model, z = η + ε, where η is a vector of linear predictors and ε is a 

vector of independent and identically distributed standard normal random variables. Here, the 

liner predictor η had the following form: 

η =  Xβ +  Z1hys +  Z2u +  Wpe 

where β is a vector of fixed effects in the model, hys is a vector of random heard-year-season 

effects, u is a vector of random additive genetic effects, and pe is a vector of random permanent 

environmental effects. The vector β includes the intercept and the lactation number as a class 

variable with 5 levels (1, 2, 3, 4, and 5+). The matrices X, Z1, Z2, and W are the incidence 

matrices relating health records to fixed, hear-year-season, animal, and permanent environmental 

effects, respectively. The random effects were assumed to follow a multivariate normal 

distribution with hys ∼ 𝑁(0, I𝜎ℎ𝑦𝑠
2 ), u ∼ 𝑁(0,H𝜎𝑢

2), and pe ∼ 𝑁(0, I𝜎𝑝𝑒
2 ), where 𝜎ℎ𝑦𝑠

2 , 𝜎𝑢
2 and 

𝜎𝑝𝑒
2  are the hear-year-season, animal additive genetic, and permanent environmental variances 

respectively, H is a relationship matrix, and I an identity matrix. The matrix H combines pedigree 

and genotypic information (Aguilar et al., 2010). 

Candidate genomic regions associated with metabolic disorders were identified based on 

the amount of genetic variance explained by 2.0 Mb window of adjacent SNPs. The SNP effects 
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were estimated as ŝ = DM′[MDM′]−1âg, where ŝ is the vector of SNP marker effects, D is a 

diagonal matrix of weights of SNPs, M is a matrix relating genotypes of each SNP marker to 

observations, and âg is the vector of genomic estimated breeding values for genotyped animals 

(Wang et al., 2012). The percentage of genetic variance explained by a 2.0 Mb region was 

calculated as, 

𝑉𝑎𝑟(𝑢𝑖)

𝜎𝑢
2

× 100 =
𝑉𝑎𝑟(∑ 𝑀𝑗𝑠𝑗

𝑁
𝑗=1 )

𝜎𝑢
2

× 100 

where 𝑢𝑖 is the genetic value of the 𝑖 𝑡ℎ genomic region under consideration, 𝑁 is the total 

number of adjacent SNPs within the 2.0 Mb region, and 𝑠𝑗 is the marker effect of the 𝑗𝑡ℎ SNP 

within the 𝑖 𝑡ℎ region. These analyses were performed using the program POSTGSF90 (Aguilar 

et al., 2014). 
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Results 

 

Genomic Scans for Visceral Fat Accumulation 

Figure 1 shows the results of the whole-genome single marker scans for testing both 

additive and non-additive (recessive) genetic effects on visceral fat accumulation in Holstein 

cows. Six different genomic regions, distributed on chromosomes BTA13, BTA19, BTA20 and 

BTA24, showed the most significant additive effects. The two significant regions in BTA19 

(10.32-10.62 Mb and 37.89-38.19Mb) harbor candidate genes DHX40, YPEL2, CLTC, SKAP1, 

and HOXB1-6 family. These genes are implicated in different functions, including cell 

proliferation, cell differentiation and immunity. Moreover, the significant region detected in 

BTA20 (22.88-23.18 Mb) harbors the gene ANKRD55, which is related to adipocyte 

proliferation and lipolysis. Finally, the significant region in BTA24 (48.46-48.76 Mb) harbors 

the gene SMAD7, which is associated with glucose uptake and obesity. 

Of particular interest, three genomic regions located in BTA1, BTA13 and BTA24 

showed purely non-additive (recessive) effects (Figure 1). The region in BTA1 (3.14-3.44 Mb) 

harbors the candidate genes MRAP and MIS18A that are implicated in insulin sensitivity and 

obesity. The region in BTA13 (46.92-47.22 Mb) harbors the gene PRNP which is directly 

involved in visceral fat adipose tissue deposition. The significant region in BTA24 (3.48-3.78 

Mb) harbors the gene TSHZ1 that is associated with adipocyte differentiation and lipid 

metabolism.  

 

Overrepresentation Analysis 
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The overrepresentation analysis, namely the search for gene-sets or gene pathways that 

show an overrepresentation of significant genes, was performed using a Fisher’s exact test, a test 

of proportions based on the cumulative hypergeometric distribution. Figure 2 shows a set of 

terms that were significantly enriched with genes associated with visceral fat accumulation. 

These functional terms are related to calcium signaling, cell arrangement, cell metabolism, cell 

proliferation, cell signaling, immune response, lipid metabolism, membrane permeability, and 

nervous signaling, among other functions.  

 

Genomic Analysis of Metabolic Disorders 

The identification of genomic regions affecting displaced abomasum or ketosis was 

performed using the single-step genomic BLUP. This method combines all the available 

phenotypic, genotypic, and pedigree information, and fits all the SNP simultaneously. Candidate 

regions were identified based on the amount of genetic variance explained by 2.0 Mb SNP-

windows. Figure 3 shows the gene mapping results for displaced abomasum. Notably, the 

prominent peak in BTA20, which harbors gene ANKRD55, was also significantly associated with 

visceral fat accumulation, suggesting a pleiotropic action. On the other hand, there were not 

common regions between ketosis and visceral fat accumulation (data not shown). 
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Discussion 

 

Visceral fat is a highly active tissue involved in complex metabolic processes, such as 

inflammation and insulin sensitivity. Dairy cows with excessive visceral fat are more susceptible 

to metabolic disorders (Drackley et al., 2014; Ji et al., 2014a; Singh et al., 2014). Although it has 

importance for health and production traits, very few studies have investigated the genetic basis 

of visceral fat accumulation in dairy cattle. As such, this study was specially conducted to 

identify individual genes, functional gene-sets and biological pathways associated with visceral 

fat accretion in Holstein cows. We also investigated the genetic link between visceral fat 

accumulation and the incidence of metabolic disorders, namely ketosis and displaced abomasum. 

As a preparation process for the negative energy balance experienced by dairy cows 

during lactation, the organism undergoes several adaptations during late pregnancy, including 

energy storage accompanied by hypertrophy and active remodeling of internal adipose tissue 

(Kenéz et al., 2015). Several pathways reveled in this work coincide with cell rearrangement of 

adipose tissue identified in other species in obesity studies. In fact, our gene-set analysis detected 

biological pathways directly involved in the visceral fat expansion, such as cell arrangement, cell 

proliferation and cytoskeleton regulation. Additionally, some of the most significant genes 

detected in our whole-genome scans are directly implicated in lipid accumulation and tissue 

rearrangement. For instance, gene PRNP encodes the cellular prion protein known to regulate 

visceral fat volume, body fat weight, adipocyte cell size, and body weight gain in mice (Jeong et 

al., 2019). Similarly, the significant gene ZADH2, also known as PTGR-3, negatively modulates 

adipocyte differentiation through regulation of PPARγ, a major regulator of adipogenesis (Yu et 

al., 2013). Concerning rearrangement, the significant gene YPEL2 is known to be involved in the 
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cell division (Hosono et al., 2004) and the HOXB family to encode for transcription factors for 

genes involved in the anatomical structure of omental fat (Ahn et al., 2019). Genes implicated in 

the cascade signaling due to the active release of free fatty acids on liver were also detected. 

Notably, gene SMAD7, one of the most significant genes revealed in the association mapping, is 

associated with higher levels of circulating free fatty acids, lower expression of lipolytic genes, 

and more proinflammatory proteins in obese mice (Seong et al., 2018). While the action of 

SMAD7 occurs by downregulating the TGF-β pathway, the significant gene CLTC stimulates this 

pathway while downregulating NADPH oxidase to protect against the negative effects of highly 

active free fatty acids oxidation (Han, 2016; Caballero-Díaz et al., 2020). Additionally, our 

overrepresentation analysis detected pathways related to fibroblast growth factor receptors 

(FGFR), calcium signaling, protein kinases and glutamate signaling. The FGFR1 signaling 

pathway is related to lipid droplet dynamics, phospholipid homeostasis, protection against 

oxidative stress and to hypertrophy in obese individuals (Ye et al., 2016). The FGFR2 signaling 

pathway, inhibited by the significant gene SMAD7, indirectly promotes lipid biosynthesis by 

reducing cAMP pool and protein kinase A (PKA) activity (Ornitz and Itoh, 2015; Huang et al., 

2018). Interestingly, both cAMP and PKA are affected by the gene MRAP, a significant gene 

detected in the non-additive scan. In an interesting way, this gene is associated with 

mitochondrial fatty acid oxidation and is indispensable for the lipolytic response to 

adrenocorticoid hormone, and consequently, insulin sensitivity (Zhang et al., 2018). 

Research has shown that inflammation is directly impacted by higher availability of 

glucose and free fatty acids (Patel and Abate, 2013). Interestingly, our study revealed many 

genes and gene-sets associated with inflammation. For instance, the gene NOX4, the main source 

of reactive oxygen species (ROS) is highly expressed in adipocytes and is controlled by the gene 
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CLTC detected in this work (Den Hartigh et al., 2017). Curiously, the insulin resistance 

mentioned before as an effect of the gene MRAP has ROS as one of the major causes (Han, 

2016). Our enrichment analysis detected calcium transport terms that are known to be affected 

by ROS in the form of impaired calcium homeostasis that can lead to cell death (Dejos et al., 

2020). Other adipose-related inflammation response is also represented is this work. The 

significant gene SLC23A2 codes for SVCT1, a transporter of vitamin C, a well-known 

antioxidant that is able to inhibit adipocyte differentiation and lipid accumulation (Rahman et al., 

2014). Significant functional terms such as protein kinase C, dendritic spine, and 

metalloproteinases may indicate the response to local inflammation via proliferation, activation 

and communication of T-cells, respectively (Black and Black, 2012; Khokha et al., 2013; 

Sundara Rajan and Longhi, 2016). Interestingly, the gene SKAP1 identified in the genomic scan 

is an immune cell adaptor responsible for regulating multiple functions of T-cells (Raab et al., 

2019). Enriched terms such as metalloproteases and bacterial humoral defense can also be related 

to systemic inflammation as the threshold between the beneficial acute inflammation and 

damaging effect of chronic inflammation is controlled by metalloproteinases via macrophage 

activity (Khokha et al., 2013).  

There is growing evidence that excessive visceral fat may lead to metabolic disorders. In 

fact, the significant genes and pathways identified in this study suggest a differential 

inflammatory response among cows with different levels of visceral fat. It is known that cows 

with displaced abomasum have preferable mobilization of visceral over subcutaneous fat and 

present higher macrophage infiltration in the omental adipose tissue compared to healthy 

individuals (Hostens et al., 2012; Contreras et al., 2015). Interestingly, our work revealed one 

region in chromosome 20 that has significant effects on both visceral fat accumulation and 
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susceptibility to displaced abomasum. Notably, this region harbors the gene ANKRD55, which 

encodes a scaffold protein related to proliferation of pre-adipocytes, insulin sensitivity, and even 

more important, higher visceral fat accumulation in human subjects (Harder et al., 2013; Ji et al., 

2019; Chen et al., 2020b). Gene ANKRD55 is highly active in immune diseases, which 

corresponds to the state of the clinically diagnosed displaced abomasum cows used in this study, 

as studies have shown that cows with displaced abomasum are under active lipolysis, negative 

energy balance, and under higher infiltration of macrophages in adipose tissues (Hostens et al., 

2012; Contreras et al., 2015). The whole-body insulin resistance possibly promoted by 

ANKRD55 would endorse the insulin resistance stimulated by cytokines release from visceral fat 

and the impaired glucose-stimulated insulin secretion in pancreatic 𝛽 cells mediated by the 

significant gene TSHZ1 (Raum et al., 2015). Changes in insulin concentration and blood calcium 

levels, two mechanisms identified in our gene-set analysis, are notably one of the causes for 

displaced abomasum in cows (Van Winden et al., 2003). This common peak in BTA20 for 

visceral fat accumulation and displaced abomasum suggests a genetic link between visceral fat 

levels and the incidence of metabolic diseases that deserves further investigation. 
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Conclusions 

 

In this study, we performed an integrative genomic analysis to understand the genetic and 

biological basis of visceral fat accumulation in Holstein dairy cattle. Our analysis revealed 

significantly associated regions located on BTA19, BTA20 and BTA24 for additive model and 

unique regions on BTA1, BTA13 and BTA24 with purely non-additive (recessive) effects. These 

regions harbor genes such as SMAD7, SKAP1, ANKRD55, MRAP and MIS18A that are directly 

associated with adipocyte differentiation, immune response, lipid metabolism and insulin 

tolerance. The gen-set analysis also revealed pathways related to tyrosine-kinase receptors, cell 

signaling, calcium channels and several related to metabolism, including negative regulation of 

fibroblast growth factor receptor 1 and 2. We also performed an analysis to investigate the link 

between visceral fat and metabolic diseases. One common region was identified for displaced 

abomasum in BTA20 harboring the gene ANKRD55, an autoimmune risk protein linked to 

adipocyte differentiation and insulin resistance. Our study suggests that visceral fat deposition in 

dairy cows is controlled by both additive and non-additive effects, and a genetic link between 

visceral fat accumulation and metabolic diseases that may be better investigated in further 

studies. 
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Tables 

Table 1. Genetic markers and candidate genes associated with visceral fat accumulation in 

Holstein cows 

Chromosome Position Gene Function p-value 

Additive effects 

BTA19  10.32-10.62 YIPEL2 Cell cycle 5.047331e-07 

BTA19  37.89-38.19 CLTC Embryonic development and 
cell apoptosis 

4.928219e-06 

HOXB1-6 Characterization of omental 
adipose tissue 

4.928219e-06 

SKAP1 Immune cell adaptor 4.928219e-06 

BTA20 22.88-23.18 ANKRD55 Pre-adipocyte proliferation 
and/or differentiation 

4.032977e-06 

BTA24  48.46-48.76 SMAD7 Adipocyte differentiation and 
apoptosis 

5.358331e-06 

Recessive effects 

BTA1  3.14-3.39 MRAP Adrenocorticotropic hormone-

induced lipolysis and insulin 
sensitivity 

2.418982e-05 

 MIS18A Cell cycle and cell 
proliferation 

2.418982e-05 

BTA13 

 

46.92-47.22 PRNP Adipocyte differentiation via 

autophagic flux 

8.937391e-06 

SLC23A2  Vitamin C transport 8.937391e-06 

BTA24 

 

3.48-3.78 TSHZ1 Part of b-cell transcriptional 
network 

6.281956e-07 

  ZADH2 

(PTGR3) 

Adipocyte differentiation via 

PPARy 

6.281956e-07 
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Figures 

 

Figure 1. Manhattan plots and quantile-quantile plots showing the significance of additive and recessive effects on visceral fat 

accumulation across the entire bovine genome. Genes directly implicated in adipocyte differentiation, lipid metabolism, and insulin 

sensitivity are highlighted in the Manhattan plots. 
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Figure 2. Functional terms significantly enriched with genes associated with visceral fat 

accumulation. Six gene-set databases were analyzed: GO, KEGG, MeSH, InterPro, MSigDB, and 

Reactome. The y-axis displays the name while the x-axis displays the percentage of significant genes 

in each functional enriched term. 
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Figure 3. Whole-genome scan for incidence of displaced abomasum: percentage of additive genetic variance explained by 2.0 Mb 

SNP-windows across the entire bovine genome. Candidate gene ANKRD55 is implicated in both visceral fact accumulation and displaced 

abomasum. 
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Abstract 

 

Periparturient hypocalcemia is a complex metabolic disorder that occurs at the onset of 

lactation because of a sudden irreversible loss of Ca incorporated into colostrum and milk. Some 

cows are unable to quickly adapt to this demand and succumb to clinical hypocalcemia, 

commonly known as milk fever, whereas a larger proportion of cows develop subclinical 

hypocalcemia. The main goal of this study was to identify putative causative mutations and 

candidate genes affecting postpartum blood calcium concentration in Holstein cows. Data 

consisted of blood calcium concentration measured in 2,513 Holstein cows on the first three days 

after parturition. All cows had genotypic information for 79k SNP markers. Two consecutive 

rounds of imputation were performed: first, the 2,513 Holstein cows were imputed from 79k to 

312k SNP markers. This imputation was performed using a reference set of 17,131 proven 

Holstein bulls with 312k SNP markers. Then, the 2,513 Holstein cows were imputed from 312k 

markers to whole-genome sequence data. This second round of imputation used 179 Holstein 
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animals from the 1000 Bulls Genome Project as a reference set. Three alternative phenotypes 

were evaluated: (i) total calcium concentration in the first 24 h postpartum, (ii) total calcium 

concentration in the first 72 h postpartum calculated as the area under the curve; and (iii) the 

recovery of total calcium concentration calculated as the difference in total calcium 

concentration between 72 and 24 h. The identification of genetic variants associated with these 

traits was performed using a two-step mixed model-based approach implemented in the R 

package MixABEL. The most significant variants were located within or near genes involved in 

calcium homeostasis and vitamin D transport (GC), calcium and potassium channels (JPH3 and 

KCNK13), energy and lipid metabolism (CA5A, PRORP, and SREBP1), and immune response 

(IL12RB2 and CXCL8), among other functions. This work provides the foundation for the 

development of novel breeding and management tools for reducing the incidence of 

periparturient hypocalcemia in dairy cattle. 

Keywords: calcium homeostasis, causal mutation, genomic scan 
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Introduction 

 

Periparturient hypocalcemia is a complex metabolic disorder that occurs at the onset of 

lactation because of a sudden irreversible loss of calcium incorporated into colostrum and milk. 

Some cows are unable to quickly adapt to this demand and succumb to clinical hypocalcemia, 

commonly known as milk fever. A larger proportion of cows develop subclinical hypocalcemia 

which increases the risk of the cow to develop other peripartum diseases, such as retained 

placenta, uterine prolapse, endometritis, displaced abomasum, ketosis, and mastitis. The 

economic losses due to periparturient hypocalcemia are substantial due to reduced milk 

production, extended days open, and early culling, among others (Liang et al., 2017). 

Periparturient hypocalcemia is a heritable trait with heritability estimates between 0.01 to 

0.35 depending on the breed and the methodology (Pryce et al., 2016). The magnitude of these 

heritability estimates suggests that genetic selection can be effective to reduce the incidence of 

periparturient hypocalcemia in dairy cattle. Little is known, however, about the genes underlying 

cow’s susceptibility to periparturient hypocalcemia. Previous genomic studies identified genes 

implicated in calcium and potassium homeostasis, such as GC, LRRC38, KCNK9, and CYP27A, 

as associated with milk fever and postpartum blood calcium concentration in Holstein cows 

(Pacheco et al., 2018; Cavani et al., 2022b). In addition, Sasaki et al. (Sasaki et al., 2014), 

evaluating gene expression of peripheral blood mononuclear cells, reported genes PKIB, DDIT4, 

PER1, and NUAK1, as potential biomarkers for milk fever predisposition.  

The identification of causal mutations and individual genes affecting periparturient 

hypocalcemia could have multiple benefits, including better understanding of the molecular 

mechanisms underlying this complex metabolic disorder, promote the development of new 
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drugs, therapies, and prevention strategies, and contribute to the design of novel breeding 

strategies. As such, the aim of this study was to use whole-genome sequence data to identify 

genetic variants associated with three alternative periparturient hypocalcemia traits, namely (i) 

total calcium concentration in the first 24 h postpartum, (ii) total calcium concentration in the 

first 72 hrs. postpartum, and (iii) the difference in total calcium concentration between 72 and 24 

h postpartum. We also characterized the genes located near the most significant variants. 
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Materials and Methods  

 

Phenotypic and genotypic data 

The data consisted of 2,513 Holstein cows (938 primiparous and 1,575 multiparous) with 

blood calcium concentrations measured on the first, second, and third day after parturition. The 

samples were collected in five different experiments performed in 2 different dairy herds in the 

US from December 2015 to June 2020. Records with blood calcium concentration ≥ 3.0 mmol/L 

were excluded from the analysis based on distribution of data and because values above this 

threshold cannot be considered biologically feasible. After data editing, the mean (± SD) for 

blood calcium concentration was 2.126 (± 0.275) mmol/L, with a minimum and maximum of 

0.675 and 2.99, respectively. All cows with blood calcium records had genotypic information for 

79,060 SNP markers. 

 

Alternative postpartum hypocalcemia traits 

Three alternative postpartum blood calcium concentration traits were analyzed (Figure 1): 

(i) total calcium concentration in the first 24 h postpartum (mmol/L), (ii) total calcium 

concentration in the first 72 h postpartum calculated as the area under the curve (mmol/L/day) 

using the trapezoid function; and (iii) the recovery of calcium concentration calculated as the 

difference in calcium concentration between 72 and 24 h (mmol/L). Table 1 shows the 

descriptive statistics for these three alternative postpartum hypocalcemia phenotypes. 

  

Imputation process 
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The 2,513 Holstein cows with postpartum blood calcium records and 79,060 SNP 

genotypes were imputed to whole-genome sequence in order to identify causal mutations 

associated with periparturient hypocalcemia. The imputation was performed in two steps, first 

from 79k to 312k markers, and then from 312k markers to whole-genome sequence. 

From 79k to 312k markers.  

The first imputation step aimed to provide a bridge between a medium density SNP chip 

and whole-genome sequence. As such, the 79k SNP genotypes were imputed to 312,615 SNP 

genotypes using 17,131 Holstein bulls born between 1995 and 2008 as reference population. The 

imputation process was performed using FImpute3 (Sargolzaei et al., 2014) using the default 

parameters. 

From 312k markers to whole-genome sequence.  

After the first imputation step, the imputed 312k markers were used as a new target for 

the imputation to whole-genome sequence. A total of 179 US Holstein bulls born in United 

States and part of the 1000 Bulls Genome project were used as reference panel. The imputation 

was performed again using Fimpute3, and each chromosome was processed separately. 

  

Genomic scan 

Only autosomal markers with a call rate > 0.9 and a minor allele frequency  1% for SNP 

densities 79k and 312k, and  0.01% for whole-genome sequence were retained for this analysis. 

After quality control, a total of 76,389, 300,621 and 11.6 million markers were available for the 

alternative genomic scans. The three alternative periparturient hypocalcemia phenotypes were 

analyzed using a two-step mixed-model-based approach (Aulchenko et al., 2007).  

In the first step, the following model was fitted: 
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y =  Xb + Zu +  e 

 

where y is the vector of periparturient hypocalcemia records, b is the vector of fixed effects, u is 

the vector of random animal effects, and e is the vector of random residual effects. The incidence 

matrices X and Z relate phenotypic records to fixed and animal effects, respectively. The two 

random effects were assumed to follow a multivariate normal distribution with u ∼ 𝑁(0, G𝜎𝑢
2) 

and e ∼ 𝑁(0, I𝜎𝑒
2), where 𝜎𝑢

2 and 𝜎𝑒
2 are the animal additive genetic and residual variances 

respectively, G is the genomic relationship matrix, and I an identity matrix.  For the genomic 

scan using whole-genome sequence, matrix G was created using 50,196 SNPs randomly selected 

across the entire genome. The variance-covariance matrix for this first model was estimated as 

V0 =  ZGZ
′𝜎𝑢
2 + I𝜎𝑒

2. 

In the second step, the following model was fitted for every SNP:  

y =  Xβ +  𝑋𝑆𝑁𝑃𝛽𝑆𝑁𝑃  +  𝜖 
  

where 𝑋𝑆𝑁𝑃 is the design matrix for the marker under consideration and  𝛽𝑆𝑁𝑃 is the regression 

coefficient, also known as SNP effect. This model assumes that 𝜖 ∼ 𝑁(0,V0𝜎𝑒
2). The 

significance of each SNP effect was evaluated using the following test statistic: 

 

z =  
X′𝑆𝑁𝑃V0

−1(y − Xβ̂)

√X′𝑆𝑁𝑃𝑉0
−1X𝑆𝑁𝑃

 

 

which approximates the Wald test, and hence, is asymptotically standard normal. These analyses 

were performed using the R package MixABEL(Aulchenko et al., 2007). The P-values were 
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adjusted for multiple comparisons using the Benjamini-Hochberg procedure (Benjamini and 

Hochberg, 1995). Statistical significance was declared using an adjusted P-values smaller than 

0.05. 

The assignment of significant genetic variants to bovine genes was based on the latest 

bovine genome reference ARS-UCD 1.2 using Ensembl (Cunningham et al., 2022). Genetic 

variants located upstream, downstream, or within annotated genes were considered. 
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Results 

 

Total calcium concentration in the first 24 h postpartum 

Five different genomic regions located on BTA3, BTA6, BTA10, BTA12 and BTA21 

showed significant associations with calcium concentration in the first 24 h postpartum (Figure 

2, Table 2). The most significant variant on BTA3 is upstream to the gene SREBP1, a major gene 

implicated in lipid metabolism. The most significant variant on BTA6 is localized between the 

genes GC and NPFFR2, which are implicated in the vitamin D signaling pathway and regulation 

of MAPK cascade, respectively. This genomic region on BTA6 also harbors gene CXCL8, which 

encodes for a pro-inflammatory cytokine, and gene ADAMTS3, which encodes a protease 

involved in the biosynthesis of collagen. Interestingly, both peaks on BTA3 and BTA6 were 

detected even using 79k and 312k SNP chips. Moreover, the most significant variant on BTA10 

is located in an intron of gene KCNK13, a two-pore domain potassium channel that is regulated 

by extracellular calcium concentration. The most significant variant on BTA12 is located 

upstream of gene NDFIP2, which is involved in metal ion transport and positive regulation of 

protein ubiquitination. Finally, the most significant variant on BTA21 is located in an intron of 

gene PRORP, a member of the mitochondrial ribonuclease P complex involved in mitochondrial 

tRNA 5'-end processing. The major peaks detected on BTA10, BTA12, and BTA21 were 

detected only using whole-genome sequence data.  

 

Area under the curve of total calcium concentration in the first 72 h postpartum 

Six genomic regions located on BTA3, BTA6, BTA11, BTA12, BTA18, and BTA26 

showed significant associations with the area under the curve of total calcium concentration in 
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the first 72 h postpartum (Figure 3, Table 2). The major peaks on BTA3 and BTA6, which 

harbor genes SREBP1 and GC, respectively, were also identified as significantly associated with 

calcium concentration in the first 24 h postpartum. The most significant variant on BTA11 is 

located in an intron of gene DENND1A, a member of the connecdenn family, which is involved 

in endocytosis and protein transport. Two significant regions were detected on BTA12, one 

region harbors gene CAB39L, which encodes for a calcium-binding protein involved in energy 

stress, and the other region harbors gene FNDC3A, a transmembrane protein with RNA binding 

activity. The most significant region on BTA18 harbors several genes, including JPH3, IRX3, 

BANP and CA5A. The genes are implicated in calcium ion transport into cytosol, energy 

homeostasis, regulation of cell cycle, and one-carbon metabolism. 

 

Recovery of calcium concentration 

Three genomic regions located on BTA1, BTA9 and BTA12 showed significant 

associations with recovery of blood calcium concentration from first to third day postpartum 

(Figure 4, Table 2). The most significant variant on BTA1 is located in a copy number variant 

segment previously associated with the immune process. The most significant variant on BTA9 

is upstream genes SYNCRIP and SNX14. Gene SYNCRIP encodes a member of the 

heterogeneous nuclear ribonucleoprotein family, RNA binding proteins that regulate alternative 

splicing, polyadenylation, and other aspects of mRNA metabolism and transport. Gene SNX14 

encodes a member of the sorting nexin family which is implicated in intracellular trafficking. 

The significant region on BTA12 has no genes currently annotated.  
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Discussion 

 

We investigated the genetic basis of three interrelated postpartum blood calcium traits, 

namely calcium concentration in the first 24 h postpartum, area under the curve for total calcium 

concentration in the first 72 h postpartum, and the recovery of calcium concentration calculated 

as the difference in calcium concentration between 72 and 24 h. Periparturient hypocalcemia is a 

complex metabolic disorder, and the use of alternative phenotypes enables to capture different 

nuances in changes in postpartum blood calcium. In fact, Neves and collaborators have shown 

that the association of blood calcium concentration with cow performance varies depending on 

the timing of assessment during the early postpartum period (Neves et al., 2018a, 2018b). 

Some of the most significant variants are located near or within genes directly implicated 

in calcium homeostasis. Indeed, one of the regions highly associated with calcium concentration 

in the first 24 h and also the first 72 h harbors gene GC. This gene encodes the vitamin D binding 

protein, which is responsible for the transport of most vitamin D3 metabolites in the plasma 

(Bouillon et al., 2020). Among vitamin D3 metabolites, 25-hydroxyvitamin D3 is the main 

circulating form in the plasma, and is converted into 1,25-dihydroxyvitamin D3, the biologically 

active vitamin D metabolite, in the kidney. When there is a decrease of blood calcium 

concentration, the parathyroid gland responds with increased secretion of parathyroid hormone, 

which upregulates the production of 1,25-dihydroxyvitamin D3. The 1,25-dihydroxyvitamin D3 

stimulates renal reabsorption and gastrointestinal absorption of calcium and its effect is 

dependent on the blood ionized Ca concentration (Horst et al., 1994; Wilkens et al., 2020). 

The genomic scans identified genes that are involved in calcium and potassium channels. 

For instance, gene JPH3, associated with total calcium concentration in the first 72 h postpartum, 
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encodes a member of the junctophilin family which is implicated in the physical approximation 

of plasmalemmal and sarcoplasmic/endoplasmic reticulum membranes. Junctophilins, such as 

JPH3, facilitate signal transduction in excitable cells between plasmalemmal voltage-gated 

calcium channels and intracellular calcium release channels (Lehnart and Wehrens, 2022). Gene 

KCNK13, associated with calcium concentration in the first 24 h postpartum, encodes a 

potassium channel containing two pore-forming domains. This channel is regulated by different 

factors, including arachidonic acid, halothane, and high extracellular calcium 

concentration(Enyedi and Czirják, 2010). 

Genes implicated in energy metabolism were found to be associated with postpartum 

blood calcium concentration. For instance, gene CA5A, associated with area under the curve for 

total calcium concentration in the first 72 h postpartum, encodes a member of carbonic 

anhydrases, a large family of zinc metalloenzymes that catalyze the reversible hydration of 

carbon dioxide and participate in a variety of biological processes, including respiration, 

calcification, acid-base balance, and bone resorption. CA5A is localized in the mitochondria, it is 

expressed primarily in the liver, and it is involved in one-carbon metabolic process(Mani Urmila 

et al., 2022). Gene PRORP, also known as MRPP3, associated with calcium concentration in the 

first 24 h postpartum, encodes a mitochondrial RNA processing enzyme within the rNase P 

complex that is implicated in mitochondrial energy metabolism. Recent studies have shown that 

mutations on PRORP can reduce mitochondrial calcium, which in turn reduces insulin release 

from the pancreatic islet β cells, and reduced insulin secretion results in decreased insulin 

concentrations which contributes to imbalanced metabolism and insulin resistance (Rossetti et 

al., 2021). The region on BTA3 that showed significant associations with calcium concentration 

in the first 24 h and also 72 h postpartum harbors gene SREBP1. This gene encodes a 
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transcription factor that binds to the sterol regulatory element 1, a DNA motif that is found in the 

promoter of the low-density lipoprotein receptor gene and other genes involved in sterol 

biosynthesis. Note that there is a close link between negative energy balance and hypocalcemia 

in periparturient dairy cows. Indeed, negative energy balance has been demonstrated to decrease 

circulating calcium while the lack of intracellular calcium impairs carbohydrate metabolism, 

exacerbating the negative energy balance state (Chamberlin et al., 2013). 

Periparturient cows experience significant immune dysregulation, and because 

intracellular calcium signaling is important for immune cell activation, the development of 

periparturient hypocalcemia contributes to periparturient immune suppression (Kimura et al., 

2006). Interestingly, we found several genes associated with postpartum blood calcium that are 

directly implicated in the immune response. For instance, gene IL12RB2, associated with area 

under the curved for total calcium concentration in the first 72 h postpartum, encodes a subunit 

of the interleukin 12 receptor complex and plays an important role in Th1 cell differentiation 

(Prigione et al., 2016). Gene CXCL8, associated with calcium concentration in the first 24 h 

postpartum, encodes interleukin 8, a member of the CXC chemokine family and a major 

mediator of the inflammatory response. Interleukin 8 is secreted by mononuclear macrophages, 

neutrophils, eosinophils, and T lymphocytes, among others, and it functions as a chemotactic 

factor by guiding immune cells to the site of infection (Qazi et al., 2011). Gene CCDC186, 

associated with area under the curve for total calcium concentration in the first 72 h postpartum, 

is not yet well characterized but it appears it enables small GTPase binding, and it is involved in 

insulin secretion and response to bacterium.  

Of special interest, the most significant variants associated with postpartum blood 

calcium traits are all located in non-coding regions, either upstream or downstream of genes or 
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within intronic regions. Causative mutations in non-coding regions such as regulatory elements 

(enhancers, insulators, and promoters) and untranslated regions (5’UTR and 3’UTR) typically 

affect the level of gene expression, whereas mutations on introns could affect both level of gene 

expression but also the structure of the protein. Interestingly, The Encyclopedia of DNA 

Elements (ENCODE) project, launched as a follow-up to the Human Genome Project with the 

goal of identifying and annotating functional elements of the human genome, revealed that many 

DNA variants associated with diseases lie within non-coding elements (Ecker et al., 2012). 
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Conclusions 

 

We performed a comprehensive genomic analysis of three alternative postpartum blood 

calcium concentration traits in dairy cattle. The most significant variants were located within or 

near genes involved in calcium homeostasis and vitamin D transport, calcium and potassium 

channels, energy and lipid metabolism, and immune response, among other functions. These 

findings can contribute to the development of novel breeding and management strategies for 

reducing periparturient hypocalcemia in dairy cattle. 
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Table 1. Descriptive statistics for three alternative postpartum blood calcium profiles. 

Trait N Mean SD 

Total calcium concentration in the first 24 h postpartum, 

mmol/L 
2,513 2.03 0.29 

Total calcium concentration in the first 72 h postpartum, AUC1 2,513 4.56 1.08 

Recovery of calcium concentration2 2,513 0.21 0.30 

1 AUC = area under the curve in mmol/L/day from 24 to 72 h postpartum.  
2 Difference in blood calcium concentration (mmol/L) between 72 and 24 h postpartum.  
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Table 2. Most significant variants and candidate genes associated with three alternative 

postpartum blood calcium concentration traits. 

Chr Pos P-value Gene Location Process 

Total calcium concentration in the first 24 h postpartum 

3 77.8 6.6e-10 SREBP1 Upstream lipogenesis 

6 87.2 1.5e-09 GC Upstream vitamin D transport 

6 87.2 1.5e-09 NPFFR2 Inside regulation MAPK cascade 

6 87.2 1.5e-09 ADAMTS3 Downstream biosynthesis of collagen 

6 88.8 6.6e-07 CXCL8 Upstream pro inflammatory cytokine 

10 101.7 8.2e-07 KCNK13 Inside potassium channel 

12 54.5 4.1e-11 NDFIP2 Upstream protein ubiquitination 

21 45.5 1.6e-08 PRORP Inside energy metabolism 

Area under the curve of total calcium concentration in the first 72 h postpartum 

3 77.9 8.8e-08 SREBP1 Upstream lipogenesis 

3 78.0 4.8e-08 IL12RB2 Inside interleukin 12 receptor 

6 87.2 1.0e-06 GC Upstream vitamin D transport 

11 94.8 1.0e-06 DENND1A Inside membrane trafficking 

12 18.9 1.6e-07 CAB39L Downstream calcium-binding protein 

12 18.8 1.3e-06 FNDC3A Inside RNA binding activity 

18 13.2 4.9e-08 JPH3 Inside calcium ion transport 

18 13.4 1.4e-06 CA5A Inside one-carbon metabolism 

18 13.4 1.4e-06 BANP Upstream regulation of cell cycle 

18 22.7 2.6-e06 IRX3 Upstream energy homeostasis 

26 34.8 5.9e-07 CCDC186 Inside response to bacterium 

Recovery of calcium concentration1 

9 63.6 4.6e-18 SYNCRIP Upstream mRNA metabolism 

9 63.6 4.6e-18 SNX14 Upstream intracellular trafficking 

1 Difference in blood calcium concentration between 72 and 24 h postpartum. 
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Figure 1. Three alternative traits phenotypes: total calcium concentration in the first 24 h 

postpartum, total calcium concentration in the first 72 h postpartum calculated as the area under 

the curve, and the recovery of calcium concentration calculated as the difference  in calcium 

concentration between 72 and 24 hrs. 
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Figure 2. Genomic scans for total blood calcium concentration measured in the first 24 h 

postpartum. The scans were performed using three different SNP densities, namely 79k SNP, 312k 

SNP, and whole-genome sequence (WGS). Genes directly implicated in calcium homeostasis, 

calcium and potassium channels, energy metabolism, and immune response, are highlighted in the 

Manhattan plots. 
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Figure 3. Genomic scans for total blood calcium concentration measure in the first 72 h 

postpartum. The scans were performed using three different SNP densities, namely 79k SNP, 312k 

SNP, and whole-genome sequence (WGS). Genes directly implicated in calcium homeostasis, 

calcium and potassium channels, energy metabolism, and immune response, are highlighted in the 

Manhattan plots. 
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Figure 4. Genomic scans for the recovery of blood calcium concentration calculated as the 

difference in calcium concentration between 72 and 24 hrs. The scans were performed using three 

different SNP densities, namely 79k SNP, 312k SNP, and whole-genome sequence (WGS). Genes 

implicated in mRNA metabolism, transport, and intracellular trafficking are highlighted in the 

Manhattan plots. 
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Abstract 

 

Johne’s disease (JD) is an infectious enteric disease in ruminants, causing substantial 

economic loss annually worldwide. This work aimed to investigate the feasibility of a national 

genetic evaluation for Johne’s Disease susceptibility in Holstein cattle in the United States 

(U.S.). The data were extracted from Johne’s disease data repository, maintained at the Council 

on Dairy Cattle Breeding (CDCB) and initially supplied by two dairy records processing centers. 

The data comprised 365,980 Holstein cows from 1,048 herds participating in the voluntary 

control program for JD. Two protocol kits, Idexx Paratuberculosis Screening Ab Test (IDX) and 

Parachek® 2 (PCK), were used to analyze milk samples with the Enzyme-Linked 

Immunosorbent Assay (ELISA) technique. Test results from the first five parities were 

considered. An animal was considered infected if it had at least one positive result; otherwise, it 

was uninfected. The overall average of JD incidence was 4.72% in these U.S. Hosltein cattle. 
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Genotypes of 78,964 SNP markers were extracted for 25,000 animals. Variance components and 

genetic parameters were estimated based on three models, namely, a pedigree-only threshold 

model (THR), a single-step threshold model (ssTHR), and a single-step linear model (ssLR). The 

posterior heritability estimates of JD susceptibility were low to moderate: 0.11 - 0.16 based on 

the two threshold models 0.05 - 0.09 based on the linear model. The average reliability of the 

estimated breeding values of JD susceptibility based on the three models varied from 0.18 (THR) 

to 0.22 (ssLR) for IDX and from 0.14 (THR) to 0.18 (ssTHR and ssLR) for PCK. Despite no 

prior direct genetic selection on JD, the estimated genetic trends of JD susceptibility were 

negative and highly significant (P-value < 0.01). Our results suggest that an official genetic 

evaluation of JD susceptibility is feasible in the U.S. Holstein cattle using ELISA-based tests, 

which can potentially reduce the JD incidence rate in the long term. 

Key words: infectious disease, heritability, genetic trend, reliabilities 
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Introduction 

 

Paratuberculosis, also known as Johne’s disease (JD), is a chronic infectious disease 

caused by Mycobacterium avium ssp. paratuberculosis (MAP) that affects cattle and other 

ruminants. After infection, the MAP resides in macrophages in the intestines and triggers a 

chronic immune response resulting in inflammation of host intestine walls and potentially 

leading to death. Like tuberculosis in humans, infected animals silently carry the mycobacteria 

and spread the disease among herds (Whittington et al., 2017). Though the true herd prevalence 

of JD is difficult to assess, studies have reported up to 75% of herds with at least one positive 

case in the United States (Garcia and Shalloo, 2015). JD is commonly associated with increased 

premature culling, diminished production and reproduction, reduced feed efficiency, and 

increased veterinary costs and penalty payments due to reduced milk quality (Garcia and 

Shalloo, 2015). The economic losses caused by JD in the United States were estimated to be 

around $198 million per year (Rasmussen et al., 2021). 

The epidemiology of JD is complex and depends on many factors such as herd 

management, age, infection dose, and disease prevalence. Clinically, this disease has a silent 

period lasting between 2 to 10 years, and test protocols have varying sensitivity levels, making 

JD-controlling programs arduous. Substantial research effort has been placed on vaccination for 

JD in the past decades, yet effects of vaccination are far from elucidated (e.g., Bannantine et al., 

2014), Hence, the control for this disease currently relies on a voluntary program implemented 

by the US dairy producers (Davis and Park, 2018). Although JD is a heritable trait, the genetics 
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underlying host resistance remains largely unknown. As a result, indicator traits are often used to 

assist genetic programs in reducing JD incidence (Brito et al., 2018). 

Throughout the last century, genetic evaluations in dairy cattle have heavily emphasized 

production over reproductive and health traits. Consequently, an antagonistic genetic relationship 

between production and health has become increasingly apparent (e.g., Pryce et al., 1998; Rauw 

et al., 1998). Meanwhile, the dairy industry has been shifting toward larger herd sizes and 

increasingly recognizing the importance of cows with strong resistance to diseases. Genetic 

improvement of disease resistance in dairy cattle has been an area of research for more than fifty 

years (reviewed by Parker Gaddis et al., 2020). Still, official genetic evaluations on large 

populations began considering health traits in the mid-1990s through indirect selection and 

indicator traits. In the U.S., for example, somatic cell score and productive life were combined 

with yield traits into a total net merit selection index (NM$; VanRaden and Wiggans, 1995); both 

representing indirect selection and indicator traits. Somatic cell score was a convenient indicator 

trait for clinical mastitis (VanRaden, 2017). Productive life provides an indirect indicator of 

overall health by estimating the length of time a cow remains in the milking herd, and hence a 

measurement related to the cow's health (VanRaden, 2017). However, direct recording and 

selecting health traits are more appealing because they can add value and make progress toward 

breeding healthier dairy cattle (Parker Gaddis et al., 2020). Over the past thirty years, there has 

been a shift in the selection index from yield traits to fertility, health, and fitness traits (Cole et 

al., 2020). Health traits such as hoof health (Cole et al., 2020) and stillbirth (e.g., Yao et al., 

2014; Sigdel et al., 2022) are being considered. In the past decade, genetic evaluation and 

prediction on JD susceptibility have also been a topic of great interest (e.g., Zare et al., 2014; 

Kirkpatrick et al., 2022).  
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In the past few decades, the search for genes involved in the genetic determination of JD 

susceptibility has continued through candidate gene studies (e.g., Pinedo et al., 2009a, 2009b; 

Pant et al., 2011), QTL mapping (e.g., Gonda et al., 2007; Minozzi et al., 2010), and genome-

wide association studies (GWAS; e.g., Settles et al., 2009; Kirkpatrick et al., 2011, 2022; van 

Hulzen et al., 2012; Zare et al., 2014; Kirkpatrick and Lett, 2018; Sanchez et al., 2022). These 

studies have linked JD with immune-mediated diseases, maturation of lymphocytes, 

mitochondrial health, and innate immune response that are also present in other infectious 

diseases in dairy cattle. However, genetic evaluations limited to significantly identified markers, 

linked to functional genes or QTL, are suboptimal in their prediction power. For example, Zare 

et al. (2014) reported an early study to predict JD in U.S. Jersey cattle using estimated SNP 

effects from genome-wide association studies in a dataset of approximately 5,000 mature cows. 

However, the accuracy measured by the receiver operating characteristic curve was low. 

Recently, Kirkpatrick et al. (2022) evaluated the efficacy of genomic prediction using a sire data 

set (897 sires with genotypes and daughters with phenotypes) in U.S. Holstein cattle. The 

average accuracy, assessed by the correlation of genomic-estimated breeding values (GEBV) for 

the testing tested sires and their daughter averages in 5-fold cross-validations, ranged between 

0.43 and 0.53. Kirkpatrick et al. (2022) thus suggest that genomic predictions using genome-

wide SNP markers for susceptibility to MAP infection could be used by producers in selecting 

AI service sires or replacement females as a means of producing a herd with lesser susceptibility 

to MAP infection. Still, the results were not representative of a full population genetic evaluation 

on JD resistance because genomic and proven sires tended to have higher prediction accuracies 

than other categories of animals (e.g., cows with/without genotypes and phenotypes or bulls 

without genotypes and daughters). Sanchez et al. (2022) reported genomic predictions with 
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relatively higher reliability for JD resistance (reliability = 0.55). These predictions were 

estimated from a reduced reference population that included about 75% of cows with phenotypes 

in a large Holstein population consisting of (161,253 animals which included 56,766 cows with 

Enzyme-Linked Immunosorbent Assay (ELISA) serological phenotypes and 12,431 animals with 

genotypes) raised in northwestern France.  

Genetic evaluation of JD susceptibility (or resistance) depends on two factors. Firstly, 

collecting phenotypic and genotypic data can take many years. Secondly, given the available JD 

phenotypic and genetic data, it remains crucial to determine how accurate or reliable the genetic 

evaluations will be. In the past two decades, the JD records collected in U.S. Holstein cattle have 

accumulated substantially, thus providing a dedicated opportunity to assess a genetic evaluation 

on JD.  As such, the primary objectives of this study were to characterize the available JD data 

repository in terms of incidence rate, variance compositions, and genetic parameters, and assess 

the reliability of estimated breeding values for JD susceptibilities in the U.S. Holstein cattle. The 

goal was to determine the feasibility of implementing an official genetic evaluation of JD 

susceptibility in Holstein cattle in the U.S.   
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Material And Methods 

The data were extracted from the Johne’s disease data repository maintained at the 

Council on Dairy Cattle Breeding, initially supplied by two dairy records processing centers. 

This data repository contained a total of 973,652 enzyme-linked immunosorbent assay (ELISA) 

scores. After removing redundant records, 713,395 ELISA scores were obtained representing 

413,255 unique animals from 17 pure breeds and crossbred animals. The majority (92.38%) of 

these records were collected from Holstein cattle, and approximately 3.90% of the ELISA scores 

were collected from crossbred cattle. The remaining records were collected from Jersey (2.94%), 

Brown Swiss (0.36%), and other purebred cattle breeds (0.42%). The JD tests used two ELISA 

kits, namely, Idexx Paratuberculosis Screening Ab Test (Idexx, Montpellier, France) (IDX) and 

Parachek® 2 (Prionics AG, Schlieren, Switzerland (PCK). Individual JD records were collected 

in the states of Wisconsin (50.28%), Michigan (29.6%), Minnesota (18.48%), and the other 15 

states (1.64%). 

Considering the epidemiological profile of the disease, we kept only test results from the 

first five parities. An animal was classified as infected if it had at least one positive result, while 

animals without any positive test results were deemed uninfected. For animals with multiple 

positive (or negative) tests, only the first positive or last negative result was retained. The data 

was further cleaned by removing animals with inconclusive or suspect JD results and herds with 

less than 15 animals. In total, ELISA scores for 365,980 animals from 1,048 herds participating 

in the voluntary control program for JD were retained, covering the period from 1992 to 2022 

with two protocol kits: IDX and PCK. The PCK milk analysis results represented 94,639 samples 

analyzed between 1992 and 2017, while IDX results represented 271,341 samples analyzed 

between 2002 and 2020. Genotypes of 78,964 SNP markers were extracted for 35,420 animals 
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with IDX and 170 animals with PCK test results. From the animals with IDX tests, only 25,000 

genotyped animals, which were randomly selected, were included in the present study due to a 

limitation of the free software version (Lourenco et al., 2020) used for variance component 

estimation. Although the programs used to calculate breeding values could handle a larger 

number of genotyped animals, for consistency, the same genotyped animals were used for all 

analyses in this study. The pedigree consisted of 834,853 animals traced up to five generations. 

The JD data were analyzed separately for the two JD diagnostic tests using the single-step 

approach implemented in the BLUPF90 suite of programs (Misztal et al., 2014) versions 3.16 

and 2.47 for GIBBSF90+ and BLUPF90+, respectively. The PREGSF90 (version 1.4) program 

was used to obtain genomic and pedigree relationship matrices and to perform quality control of 

the genotype file. The quality control removed monomorphic markers, markers with minor allele 

frequency of less than 0.05, animals and markers with a call rate of less than 0.90, and animals 

with parent-progeny conflicts. After the data quality control, the dataset included 75,313 markers 

on 24,927 animals in the IDX-test category and 164 animals in the PCK-test category. The 

phenotypes of JD test results were coded as a binary (1 = infected, 0 = uninfected) trait. 

 

Linear model 

The linear model is described as the following: 

𝑦 = Xβ + Z1ℎ + Z2𝑢 + 𝑒       

where 𝛽 is a vector of fixed effects for age within lactation (15 levels) and stage of 

lactation (3 levels), h and u are the vectors of random effects for herd-year-season of the tests 

(6,367 levels) and additive genetic, respectively, X, 𝑍1 and 𝑍2 are the corresponding incidence 

matrices, and 𝑒 is a vector of residuals. To correct the age discrepancies of tests for each 
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lactation within herds, the age categories equally divided the animals into three groups (younger, 

average, and older; 33% of total animals, each) for each lactation. The groups of lactation stages 

(s) were defined as early (s < 150d), peak (150d ≤ s < 300d), and late (s ≥ 300d) lactation when 

the tests were conducted. 

 

Threshold model  

The threshold model postulates a continuous and normally distributed variable, namely 

liability (𝜂𝑖), that delimits the observable binary trait (𝑦𝑖) according to a threshold 𝜅 (Gianola, 

1982). That is, 

 𝑦𝑖|𝜂𝑖 , 𝜅 = {
1   𝑖𝑓 𝜂𝑖 > 𝜅 
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

        

The threshold 𝜅 is fixed arbitrarily to center the distribution, hence not an unknown 

parameter in a binary threshold model. The liability variable is then modeled by the linear model 

as is shown in (1) but with the observable vector y replaced by the unobservable liability vector 

𝜼. The conditional probability of observing a realization vector of 𝜼, given a vector of 

observations (y) for a population of n animals, and the threshold 𝜅, is the following (Wu et al., 

2008): 

 𝑃𝑟(𝑦|𝜂, 𝜅) = ∏ {𝐼(𝜂𝑖 ≤ 𝜅)𝑃𝑟(𝑦𝑖 = 0) + 𝐼(𝜂𝑖 > 𝜅)𝑃𝑟(𝑦𝑖 = 1)}
𝑛
𝑖=1    

where I(A) is an indicator function, which takes the value one if condition A is true and a 

zero otherwise. The threshold model was analyzed by Bayesian analysis implemented via 

Markov chain Monte Carlo simulation (Korsgaard et al., 2003). 

  

Estimations of variance components 
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Variance components and genetic parameters (e.g., heritabilities) were estimated using 

three models: a pedigree-only threshold model (THR), a single-step threshold model (ssTHR), 

and a single-step linear model (ssLR). In single-step methodology, the pedigree relationship 

matrix (A) is replaced by the realized relationship matrix (H; Legarra et al., 2009; Misztal et al., 

2009). However, H is difficult to calculate. Therefore, Aguilar et al. (2010) proposed the direct 

construction of the inverse of the realized relationship matrix (H−1) as: 

 H−1 = A−1 + [
0 0
0 G−1 −A22

−1]       

where G-1 is the inverse of the genomic relationship matrix for genotyped animals, and A22
−1 is the 

inverse of the pedigree relationship matrix for genotyped animals. 

The GIBBSF90+ and BLUPF90+ programs  (Misztal et al., 2014) were used to 

implement the Bayesian threshold and linear models, respectively. Convergence was determined 

by visual inspection of the trace plots and by the Geweke convergence diagnostic value 

(Geweke, 1992). The Geweke method assesses a convergence diagnostic for Markov chains 

based on a test for equality of the means of the first and last part of a Markov chain (by default, 

the first 10% and the last 50%). The test assumes that if the samples are drawn from the 

stationary distribution of the chain, then the two means are equal, and Geweke's statistic has an 

asymptotically standard normal distribution. The test statistic is a standard Z-score, the 

difference between the means of the two samples divided by its estimated standard error. The 

standard error is calculated from the spectral density at zero and thus considers any 

autocorrelation. The Markov chain Monte Carlo simulation consisted of 80,000 iterations after 

discarding a burn-in period of 15,000 iterations and thinned for every 100th sample for posterior 

inferences.  
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Breeding values and reliabilities 

Breeding values, reliabilities, and genetic trends were obtained with univariate analysis 

for both JD tests and models using the BLUP90IOD2 and CBLUP90IOD2 programs (Tsuruta et 

al., 2001; Misztal et al., 2014). The THR model calculated traditionally estimated breeding 

values (EBV), whereas the ssTHR and ssLR calculated genomic estimated breeding values 

(GEBV) as these two methods include genomic information. The reliabilities were obtained from 

ACCF90GS as in: 

𝑅𝐸𝐿 = 1− (
𝑃𝐸𝑉

𝜎𝑢
2 )         

Here, 𝑃𝐸𝑉 = 𝑣𝑎𝑟(𝑢̂𝑖− 𝑢𝑖) = 𝑐
𝑖𝑖𝜎𝑒

2 is the prediction error variance of 𝑢̂𝑖, where 𝑐𝑖𝑖 is the 

diagonal elements in the subblock of the inversed matrix of the left-hand side of the mixed model 

equation (MME) corresponding to the random animal effect for individual i and 𝜎𝑒
2 is the 

residual variance, and 𝑣𝑎𝑟(𝑢𝑖) = 𝜎𝑢
2. Due to the large dataset, an additional analysis considering 

only the pedigree relationship was performed as a benchmark model for comparison.  

   

Estimation of genetic trends  

Genetic trends were estimated with the breeding values of the JD incidence by adjusting 

the two diagnostic test results to a common base, assuming that the differences in the JD 

incidence rate between the two JD tests were essentially non-genetic. Hence, we fitted a temporal 

linear regression on the estimated JD breeding values, assuming heterogenous intercepts and a 

common regression coefficient for the two tests. That is, 

𝑢̅𝑘𝑗 = 𝑎𝑘 +𝑏(𝑡𝑘𝑗 − 𝑡𝑘̅)+ 𝜖𝑘𝑗,       
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where 𝑢̅𝑘𝑗 is the mean of breeding values computed in year j for the kth test (i.e., 𝑘 = 1 

for PCK tests and 𝑘 = 2 for IDX tests), 𝑡𝑘𝑗 is the year of the test (i.e., 1992 – 2017 for PCK tests 

and 2002 – 2020 for IDX) with 𝑡̅𝑘 being the corresponding mean, 𝑎𝑘  is the heterogenous 

intercept, b is the common coefficient pertaining to the two tests, and 𝜖𝑘𝑗  is an error term. The 

model parameters were solved by least squares. In brief, the solutions of the model parameters 

are the following: 

 (

𝑎1
𝑎2
𝑏̂

) =

(

 

𝑛1 0 ∑ (𝑡1𝑗 − 𝑡̅1)
𝑛1
𝑗=1

0 𝑛2 ∑ (𝑡2𝑗 − 𝑡̅2)
𝑛2
𝑗=1

∑ (𝑡1𝑗 − 𝑡̅1)
𝑛1
𝑗=1

∑ (𝑡2𝑗 − 𝑡2̅)
𝑛2
𝑗=1

∑ (𝑡1𝑗 − 𝑡̅1)
2
+𝑛1

𝑗=1
∑ (𝑡2𝑗 − 𝑡̅2)

2𝑛2
𝑗=1 )

 

−1

 

   × (

∑ 𝑢̅1𝑗
𝑛1
𝑗=1

∑ 𝑢̅2𝑗
𝑛2
𝑗=1

∑ 𝑢̅1𝑗(𝑡1𝑗 − 𝑡̅1)
𝑛1
𝑗=1 +∑ 𝑢̅2𝑗(𝑡2𝑗 − 𝑡̅2)

𝑛2
𝑗=1

)    

where 𝑛1 and 𝑛2 are the numbers of years having IDX and PCK test results, respectively. 
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Results And Discussion 

 

Data summarization and characterization for Johne’s disease diagnostic tests  

A major limitation in the development of direct genetic measures for health traits over the 

past decades has been the lack of a centralized system to collect health data at a national level 

(Gaddis et al., 2020). Zwald et al. (2004) demonstrated that producer-recorded health event data 

were a viable source of phenotypes for genetic evaluation if collected into a national data set. In 

the U.S., the Animal Improvement Program Laboratory (now the Animal Genomics and 

Improvement Laboratory, AGIL; Beltsville, MD) has collaborated with industry partners and 

veterinary experts to develop a standardized health recording system since 2008 (Cole et al., 

2008) and advance the development of health evaluations.  On the other hand, the 

standardization of health traits may overlook the discrepancy between JD objective diagnosis and 

producer-reported occurrences of other traits such as ketosis, milk fever, and others. The CDCB 

JD data repository was established to collect phenotypes and genotypes that could be used for 

genetic evaluations on JD.  

The CDCB JD data repository represented the world’s largest one in Holstein cattle. 

After data quality control, ELISA records for 365,980 animals from 1,048 herds participating in 

the voluntary control program for JD tests were retained. Compared to the studies conducted a 

decade ago (e.g., Gonda et al., 2006), the JD data size has increased by over a hundred folds. The 

dataset used by Kirkpatrick et al. (2020) partially overlapped with the dataset used in this study, 

including only data collected up to 2016, which fell into three categories. The data in the first 

category represented the U.S. commercial dairy cattle population from 2010 to 2016 with farm 

records for MAP infections (i.e., milk ELISA test results for US Holstein cows) provided by the 
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Dairy Records Management System and AgSource Cooperative (Kirkpatrick and Lett, 2018). 

They retained JD records for 202,367 cows after the data editing. The other two categories 

included testing cows from commercial dairy herds developed as resource populations at the 

University of Minnesota and Michigan State University. In contrast, the dataset used in this study 

contained twice as many animals. Recently, Sanchez et al. (2022) merged two JD datasets to 

evaluate the genetic resistance to paratuberculosis in French Holstein cattle. The first dataset 

contained non-redundant MAP statuses (serum ELISA and fecal PCR results) for 4,100 cows, 

while the second dataset included non-redundant MAP statuses of 243,274 cows from 15,476 

herds, deduced from serological tests routinely recorded since 2015. After the data cleaning, the 

merged dataset comprised 161,253 animals, including 56,766 cows with ELISA serological 

phenotypes and 12,431 animals with genotypes. Approximately three-fourths of the serum 

samples were diagnosed with IDX, whereas around one-fourth were diagnosed with Idvet ID 

Screen ® Paratuberculosis Indirect (Idvet, Montpellier, France). 

The records in the CDCB JD repository are results from two diagnostic tests, IDX and 

PCK. Figure 1 shows the yearly distribution of the number of these two tests reported through 

the voluntary program. The number of IDX tests increased substantially after 2012 due to the 

rising use of IDX as the primary test and the USDA’s subsidies provided for testing. The overall 

JD positive rate was 2.06% with IDX tests and 6.7% with PCK tests, reflecting the differences 

between the two tests. Still, such a difference might also be confounded by the non-zero yearly 

phenotypic or genetic trends due to the switch of JD tests over the years. This question was 

addressed in the later section with estimated phenotypic and genetic trends. The averages age of 

cows with positive results did not change considerably between the two tests (53.6 ± 16.24 

months for IDX vs. 52.65 ± 16.31 months for PCK), excluding the age of cows at testing as an 
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influential factor for the different JD positive rates between the two tests. The JD positive rates 

varied substantially in lactations (Table 1). For the PCK tests, the average JD-positive rate 

increased steadily from 4.8% at lactation 1 to 9.1% at lactation 3 and then declined afterwards 

(6.3 – 7.9%). For the IDX tests, the average JD positive rate increased from 1.8% at lactation 1 

to 3.8% at lactation 4 and declined afterward (3.4 – 4.3%). Overall, the JD positive rate per 

lactation was higher with PCK compared to IDX. The weighted average of JD-positive rates 

between the two tests increased drastically from lactation 1 (1.8%) to 4 (5.0%) and did not 

change substantially for lactation five and beyond.  For either test, the overall positive rate at the 

fourth lactation was approximately twice as much as that at the first lactation. Also due to the 

temporal switch of JD tests, the number of genotyped animals with PCK tests was far less than 

that with IDX tests, because PCK kits were primarily used before 2010, when high-throughput 

genotyping was less popular. 

 

Variance components and heritability estimates 

Variance components and heritability estimates were obtained using three models: a 

pedigree-only threshold model (THR), a single-step threshold model (ssTHR), and a single-step 

linear model (ssLR), respectively (Table 2). With ssLR, we estimated the genetic variance to be 

between 0.001 and 0.005, the herd-year-season variance between 0.001 and 0.003, and the 

residual variance between 0.02 and 0.05, respectively, for both tests. The estimated heritability 

was 0.05 for IDX and 0.09 for PCK. The two threshold models postulated a liability variable 

underlying the binary JD test outcomes (positives vs. negatives) when fixing the residual 

variance to 1.0. These two threshold models estimated the genetic variances to be between 0.16 

and 0.25 and the herd-year-season variance between 0.18 and 0.25. The heritability estimates 
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were 0.13 and 0.17 for IDX and PCK, respectively. While ssLR had lower variance components 

than the two threshold models, they had proportionally higher residual variances. Hence, the 

estimated JD heritability with ssLR was lower than those obtained with the two threshold 

models. Overall, our heritability estimates for JD susceptibility (or liability to JD susceptibility) 

are within the range (from 0.04 to 0.18) of previous heritability estimates for serum ELISA 

phenotypes measured in various Holstein populations in the literature (e.g., Gonda et al., 2006; 

Hinger et al., 2008; Berry et al., 2010; Shook et al., 2012). Note that the previous studies mainly 

reported within-herd heritabilities, whereas ours were cross-herd heritability estimates. If the 

herd-year-season variance component is removed from the denominator of the heritability 

formula, the within-herd heritability estimates would be slightly higher (i.e., 0.05 - 0.20).  

The two threshold models gave similar heritability estimates, and adding genomic 

information did not significantly alter the posterior variance components. However, the 

estimated heritability for PCK test results was higher than that for IDX test results based on all 

three models. This difference could result from the intrinsic differences between the diagnostic 

tests that possibly captured genetic and environmental variations differently. Still, the impact of 

sampling sizes could also matter. In the present study, the number of animals with IDX tests was 

2.87 times as many as those with PCK tests. Statistically, a larger sample size leads to more 

precise estimates. Hence, the standard errors of heritability estimates for the IDX tests were 

significantly smaller than those for the PCK tests (Table 2). The heritability estimates obtained 

from the two threshold models were higher than the linear model for the reason explained before. 

Somewhat differently, Gonda et al. (2006) reported higher heritability estimates with linear 

models than with threshold models. This difference could arise from varied JD incidence rates 

between studies. The JD incidence rates in this study were 2.8% for IDX tests, 6.6% for PCK 
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tests, and 3.8% as a weighted average, respectively, which were considerably lower than the JD 

incidence rates (7.7%, ranging from 4.7% to 12.4%) in the Holstein cows used by Gonda et al. 

(2006). For a ratio variable, the variance depends on its mean (i.e., average incidence rate) such 

that the variance of a linear binary trait decreases substantially as the incidence rate drops. For 

example, let the phenotypic variance for a 50:50 (JD positives vs. negatives) incidence rate be 

100%. Then, a 20% positive incidence rate would retain 64% of the phenotypic variance. When 

the positive incidence rate dropped to 7.7%, it could retain 28.4% of the phenotypic variance. 

However, when the positive incidence rate fell further to 2.9%, it could only retain 11.3% of the 

phenotypic variance. The smaller the JD incidence rate, the more the JD phenotypes deviate from 

the normal distributions. Possibly, the linear model did not effectively capture the variation of 

the phenotypes. Instead, our results showed that a threshold model could perform better than a 

linear model to effectively capture the variance components particularly when the disease 

incidence rate was low. Hence, given the binary nature of these traits, a threshold model can be 

more appropriate when the incidence rate in the minor category is low (Lynch and Walsh, 1998). 

Kirkpatrick and Lett (2018) also reported higher heritability estimates with threshold 

models (0.157 - 0.186) than linear models (0.041 - 0.062) using a dataset that partially 

overlapped with the dataset in this study, which is consistent with our findings. They showed that 

heritability estimates increased as data were restricted to herds with presumed higher MAP 

exposure for the linear model. In another study, van Hulzen et al. (2011) analyzed log-

transformed ELISA test results (percentage S/P + 50) as the dependent variable in a linear 

mixed-effects model. They showed that the phenotypic variance increased concurrently with an 

increase in within-herd test prevalence. Additionally, they observed an increase in heritability 

due to increased genetic variance relative to phenotypic variance. Attalla et al. (2010) reported 
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higher heritability estimates for milk ELISA test results with the linear model (ℎ2 = 0.08) than 

the threshold model (ℎ2 = 0.065) when ignoring the maternal genetic effects. Still, they found 

lowered heritability estimates with the linear model (ℎ2 = 0.075) than with the threshold model 

(ℎ2 = 0.095) when the genetic variance included the maternal genetic variance. Based on these 

results, Attalla et al. (2010) stated that there was no solid evidence to recommend a linear model 

over a threshold model for genetic evaluation. Note that the linear trait in their analysis is not 

binary scores per se but the natural log of the optical density results obtained with a PCK 

diagnostic test. 

The herd-year-season variances are similar to the additive genetic variance for all models, 

but can vary substantially depending on actual model settings. Factors such as herd size and 

distribution may interfere with its variance. For JD, grouping the animals by their herd-year-

season combinations is conceptually different. The transmission of the disease is intrinsically 

linked to the environment and is known to be more active in larger herds (> 200 cows; Wolf et 

al., 2014; Corbett et al., 2018). While most studies do not report herd or herd-year-season sizes, 

and when present, the effect is included in the model as fixed, thus, direct comparisons between 

our study and previous ones may not be accurate. To the best of our knowledge, this is the largest 

data set to evaluate genetic parameters for JD. The total number of herds was larger than those 

reported in the literature, but the average herd size in this study was 349 (max = 19,351 animals).  

As larger herds tend to have more active transmission, we believe that the number of herds and 

herd size may display lower variance between groups. The fact that 97% of the animals 

originated from only three states with similar weather and management practices may contribute 

to less variable herd incidence. By adding year-season as a grouping factor, more variance is 

expected to be captured by the variable. For JD, however, changes in the prevalence of the 
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disease across time are not common, and once infected, the herd tends to continue to be positive 

(Corbett et al., 2018). 

 

Reliabilities of (genomic) estimated breeding values 

The reliabilities of (genomic) estimated breeding values for JD susceptibility based on the 

linear model (or liability to JD based on the threshold models) were generally low to moderate 

(Table 3). When considering all animals in the pedigree, the overall reliability means were 0.18 

(THR), 0.21 (ssTHR), and 0.22 (ssLR) for IDX, and 0.14 (THR), 0.18 (ssTHR), and 0.18 (ssLR) 

for PCK. The average reliabilities of JD susceptibility in the present study were comparable to 

previously reported reliabilities for metabolic diseases (14.6 – 33.7%) but slightly lower than the 

genomic reliabilities for mastitis (65.8 – 76.6%) (Parker Gaddis et al., 2020). Sanchez et al. 

(2022) reported high (0.55) genomic reliabilities for JD resistance in Franch Holstein cattle. 

However, their results are not directly comparable to ours because, conceptually, JD resistance is 

not precisely the same as JD susceptibility. When coded as a binary trait, for example, the 

phenotypic coding for JD susceptibility has “1” standing for a positive and “0” standing for a 

negative phenotype, whereas the phenotypic coding for JD resistance takes the opposite values (1 

= negative and 0 = positive). Hence, a low JD susceptibility indicates a high JD resistance. 

Besides that, Sanchez et al. (2022) used an approximation method to calculate reliabilities that 

differed from ours.  

Including genomic information led to higher overall average reliabilities (0.21 for IDX 

and 0.18 for PCK) with the single-step threshold, compared to the pedigree-based threshold 

model (0.18 for IDX and 0.14 for PCK). These reliabilities were obtained based on animal 

models, which may differ from a sire model or a sire-maternal-grandsire model. Sire models are 
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widely used in genetic evaluations. Still, they may underestimate or overestimate estimated 

breeding values (EBVs) because assumptions such as no genetic relationships between sire and 

dam, and random mating are usually not met in dairy cattle breeding. In contrast, an animal 

model can provide more stability (Sun et al., 2009).  

The distributions of reliabilities of JD with the IDX tests are shown in Figures 2 (IDX) 

and 3 (PCK). Based on the THR model, most animals had low to moderate (< 0.5) reliabilities, 

yet there were 0.5% of animals with 0.50 reliability or higher. With the ssTHR model, including 

genomic information led to a slightly larger percentage (4.1%) of animals with reliabilities 

higher than 0.50. The ssLR model had a similar pattern of reliability group distributions except 

fewer animals with reliabilities greater than 0.50. For the PCK tests, a considerable percentage 

(55%) of the animals had low (< 0.2) reliabilities. Again, including genomic information in the 

single-step models (ssTHR) led to more animals with reliabilities 0.20 or more compared to 

THR. Around 0.31% of the animals had reliabilities of 0.50 or higher with ssTHR, whereas the 

same category only accounted for 0.001% (THR) of the animals. 

Furthermore, the reliabilities were calculated by subgroups of animals, that is, cows with 

their own records, sires (dams) with records measured in their daughters, and sires of cows with 

no phenotype (Table 3). Overall, the EBV of the liabilities to JD for sires were higher on average 

than those for cows or dams. As expected, sires of cows with phenotypes had higher reliabilities 

than sires of cows with no phenotypes. Across models, sires of cows with no phenotypes for IDX 

seemed to be under the more significant impact ( 4% of the change in reliability), suggesting 

that the shift in overall reliability observed in Figure 2 may be linked with this category. For 

PCK, on the other hand, only dams of cows with phenotypes appeared not to be influenced by 

the change in models and a more stable category. In contrast, other categories, especially cows 
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with phenotypes, were sensitive to both different phenotype formats and the inclusion of 

genotypes in the evaluation. In other words, the shift of animals from 0.05 – 0.1 to 0 – 0.05 

category between THR and ssTHR models, for instance, could result from an impact on all 

subgroups collectively.  

The addition of genomic information in a genetic analysis aims to better estimate 

breeding values for animals that lack genotypes through an improved relationship matrix. 

Although for some categories (i.e. sires of cows with phenotype) there was a minor reduction in 

reliability with the addition of genomic information, sires of cows with no phenotype had, had 

considerably higher reliabilities. Conceptually, this category is the one to have more impact of 

the single-step approach. As sires of cows with no phenotypes have a more distant connection to 

the phenotypes per se and are connected to it only by the relationship matrix, the blending of 

genomic and pedigree information is a more substantial source change than for the other 

categories. 

Between the two JD tests, the reliabilities of JD breeding values were higher with the 

IDX tests than those with the PCK tests because the sample sizes (and the family sizes) with the 

IDX tests were larger than those with the PCK tests. By adding genomic information in the 

single-step model (ssTHR), an increase in the reliability for all categories was expected. Yet, the 

single-step approach did not significantly change reliability values when the trait has many 

phenotypes. These results coincided with the observations on feed intake by Harder et al. (2020). 

For the IDX and PCK tests, the evaluations on JD susceptibility did not vary substantially, 

whether using pedigree information or including genomic information. Regarding genomic 

prediction, Kizilkaya et al. (2014) showed that the accuracies for ordinal categorical scores 
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analyzed by the Bayes Cπ threshold model were 20% to 50% lower as much as the accuracies 

obtained using a linear model.  

Reliability corresponds to the correlation between the estimated and actual breeding 

values of the animals. Consequently, it would be expected that models with higher heritability 

values will also result in higher reliabilities. However, the results presented in this work partially 

contradict this assumption. Despite using the same dataset, the threshold models presented higher 

heritabilities while higher reliabilities were derived from the linear model. It is important to note 

that regarding these two types of models, direct comparisons should be considered carefully as 

they are in different scales (liability and linear). The effect of different scales on the comparing 

of reliabilities of the same animals has been reported with higher values for linear models as a 

consequence (Tsuruta et al., 2017). 

 

Genetic trends 

Annual averages of breeding values for JD susceptibility (ssLR) or liabilities to JD 

susceptibility (ssTHR) showed temporal decreasing trends. For example, with the IDX tests, the 

annual means of JD breeding values increased during 2002 and 2004, remained relatively stable 

from 2008 to 2009, and dropped after 2009 (Figure 4). Genetic trends of JD were estimated 

jointly for the two JD test results obtained from linear (ssLR) and threshold (ssTHR) single-step 

models, respectively (Table 4), assuming that the differences in observed JD incidences between 

the two JD tests were non-genetic. The genetic trends were relatively flat from 1994 to 2009 for 

PCK tests (Figure 6) and from 2002 to 2009 for IDX tests (Figure 5) and began to drop afterward 

(Figure 5). The extent of the decrease in genetic trend for IDX tests after 2009 was more 

significant with the single-step threshold model (ssTHR) than with the single-step linear model 
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(ssLR). In contrast, PCK test results did not show apparent changes in the genetic trend over the 

years. The visual fluctuations in the genetic trends between 2009 and 2017 were attributable to 

fewer data analyzed. There were between 5 and 124 PCK records per year for this period, which 

were insufficient to accurately estimate yearly means of JD incidence rate, thus leading to 

inaccurately estimated genetic trends.  

Although there is no official genetic evaluation and selection program implemented for 

Johne’s disease in the United States, this study observed significantly (P-value < 0.01) negative, 

favorable trends based on the EBV/GEBV obtained from the linear (ssLR) and the threshold 

(ssTHR) models, respectively. The estimated genetic trends from the EBV/GEBV obtained from 

both models are not comparable because they were not assessed on the same scales. The 

threshold model estimated (genomic) EBV on the unobserved liability scale, whereas the linear 

model estimated (genomic) EBV was on the observed binary scale. Still, the results from both 

models consistently suggested a negative, favorable trend on the IDX test results for JD, likely 

starting around 2004. Coincidentally, the genomic selection program in the U.S. Holstein cattle 

began in 2009 and accelerated after 2010 (Wiggans et al., 2017). The introduction of genomic 

selection in the U.S. dairy cattle improvement programs in 2008 has led to a significant increase 

in the rates of genetic gain, particularly for traits with low heritabilities, such as fertility, 

longevity, and udder health (García-Ruiz et al., 2016). Possibly, the negative, favorable trend can 

be attributed to indirect genetic gain from genomic selection of highly genetically correlated 

traits, such as milk yield, somatic cell score, and lifespan. For example, Neupane et al. (2021) 

showed that moderate correlation with productive life helped decrease replacement heifer cost 

resulting from the correlated response in heifer livability and assisted in genetic improvement 

programs through added selection intensity resulting from beneficial genetic correlations. It is 
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possible that the favorable, negative genetic trend was associated with net merit (NM) used in the 

U.S. cattle genetic evaluations. NM is a selection index used to identify animals that are expected 

to have the greatest genetic merit for a combination of economically important traits. It takes into 

account multiple traits, including milk yield, fat and protein yield, somatic cell score, productive 

life, and daughter pregnancy rate. The weights assigned to these traits in the calculation of NM 

are determined based on their relative economic importance to the dairy industry. Recently, 

Sanchez et al. (2022) reported a slightly favorable genetic trend in resistance to JD in Holstein 

cattle raised in northwestern France over the last two decades, also possibly resulting from the 

indirect selection because of a low positive genetic correlation (0.06) between resistance to JD 

and total merit index.  
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Conclusion 

 

Johne’s disease records have been collected in the U.S. since 2002, which consisted of 

test results with two kits, IDX and PCK. The records have accumulated substantially over the 

past two decades. The addition of genotypes has enabled the use of single-step genetic evaluation 

to assess JD susceptibility. The overall positive rate of JD in the U.S. Holstein cattle was 2.80% 

with the IDX tests and 6.64% with PCK tests. Estimated heritabilities were 0.05 to 0.09 for JD 

susceptibilities on the observed binary scale based on the single-step linear model, and 0.12 to 

0.17 for the liabilities to JD on the unobserved liability scale based on the two threshold models. 

Our results assert that Johne’s disease has a genetic component upon which selection could 

operate to achieve the expected genetic improvement. The reliabilities of (genomic) breeding 

values for JD susceptibility (or liability to JD) were low to moderate. There were approximately 

0.001 to 4.1% of the animals with > 0.5 reliabilities. Thus, implementing routine genetic 

evaluations of Johne’s disease in the U.S. Holstein dairy population is technically feasible in 

terms of data sufficiency and statistical model capability, and direct selection on JD will further 

reduce JD infection in the long run. The protocol used for diagnosing JD should be considered 

because varied protocols led to systematic biases in the estimated JD incidence rate. The health 

statuses of animals can be modeled linearly as a binary variable or described by the underlying 

continuous liability variable.  Adding genomic information resulted in elevated reliabilities of 

estimated genomic breeding values. The present study utilized animal models in three forms, 

allowing all relatives to contribute to the assessment of an animal, and permitt ing a cow to be 

evaluated based on its own phenotypes. Compared to a sire model or S-MGS model, an animal 

model is more computationally intensive but can offer greater accuracy and more flexibility. 
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Finally, this preliminary study aimed to leverage the current data repositories toward the official 

implementation of genetic evaluation of Johne’s disease in the Holstein dairy breed. Follow-up 

studies are expected as more JD phenotypes and genotypes become available. 
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Table 1.  Overall Johne’s disease incidence rate (positive % versus negative %) and positive 

rate (%) by lactation observed in the U.S. Holstein cattle1 

 

Diagnostic 
test 

N 
Overall Positive rate (%) by lactation 

Negative % Positive % 1 2 3 4 5+ 

PCK 94,639 93.35 6.64 4.83 7.56 9.11 7.91 6.30 

IDX 271,341 97.20 2.80 1.75 2.80 3.84 4.32 3.59 

Weighted 
average 

- 96.18 
 

3.82 1.76 3.17 4.48 5.04 5.17 

 1 PCK: Parachek tests; IDX: Idexx tests; Weighted average: average of results weighted by the number of 
records per diagnostic test. 
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Table 2. (Co)variance components, heritability estimates, and standard deviations for 

Johne's disease (JD) susceptibility (or liabilities to JD susceptibility) in U.S. Holstein dairy 

cattle diagnosed by two different test kits: Idexx and Parachek. 1,2 

 THR  ssTHR  ssLR 

 
IDX PCK  IDX PCK  IDX PCK 

h2 0.13 (0.01) 0.16 (0.12)  0.12 (0.003) 0.17 (0.01)  0.05 (0.003) 0.09 (0.008) 

 𝜎2g 0.17 (0.02) 0.23 (0.03)  0.16 (0.02) 0.25 (0.05)  0.001 (0.00-09) 0.005 (0.0002) 

𝜎2hys 0.18 (0.01) 0.24 (0.01)  0.18 (0.009) 0.25 (0.02)  0.001 (0.0004) 0.003 (0.0005) 

𝜎2e 1 (0.003) 1 (0.003)  1 (0.003) 1 (0.003)  0.02 (0.0009) 0.05 (0.0005) 

1 PCK: Parachek tests; IDX: Idexx tests; 
2 Variance and covariance components were estimated using three statistical models: a pedigree-

based threshold model (THR), a single-step threshold model (ssTHR), and a single-step linear 
model (ssLR). 
3 Numbers in parentheses are standard deviation. 
4 h2 = heritability; 𝜎2g = genetic variance; 𝜎2hys = herd-year-season variance; 𝜎2e = residual 
(error) variance. 



 

 

1
2
0

 
Table 3. Reliability estimates (standard errors) of genomic estimated breeding values for Johne's disease susceptibility in U.S. 

Holstein dairy cattle 1,2  

  N  THR ssTHR ssLR 

 IDX PCK IDX PCK  IDX PCK  IDX PCK 

Overall 638,316 247,031 0.18 (0.14) 0.14 (0.11)  0.21 (0.12) 0.18 (0.13)  0.22 (0.14) 0.18 (0.13) 

Cows with phenotype 271,341 94,639 0.31 (0.07) 0.30 (0.08)  0.31 (0.11) 0.27 (0.08)  0.30 (0.11) 0.25 (0.10) 

Sires of cows with 
phenotypes 

13,000 8,658 0.41 (0.17) 0.35 (0.15) 
 

0.38 (0.17) 0.32 (0.14) 
 

0.41 (0.15) 0.36 (0.13) 

Dams of cows with 
phenotypes 

196,846 60,212 0.24 (0.10) 0.21 (0.11) 
 

0.23 (0.11) 0.19 (0.11) 
 

0.25 (0.12) 0.20 (0.12) 

Sires of cows with no 
phenotype 

25,693 14,927 0.18 (0.13) 0.18 (0.15) 
 

0.20 (0.14) 0.17 (0.11) 
 

0.22 (0.14) 0.21 (0.18) 

1 Johne’s disease was diagnosed with two test kits: Parachek tests (PCK) and Idexx tests (IDX); 
2 Reliabilities were calculated for (genomic) estimated breeding values based on three statistical models: a pedigree-based threshold 

model (THR), a single-step threshold model (ssTHR), and a single-step linear model (ssLR) 
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Table 4. Estimated intercepts and slopes from linear regression of genetic trends for genomic 

breeding values of Johne's disease obtained from a threshold and a linear single-step models 
1,2 

 Heterogeneous intercept  Genetic trend (slope) 

Model IDX PCK  Estimate SE t-value Probability 

ssTHR -0.0918 (0.0190) -0.1440 (0.0163)  -0.0091 0.0018 -5.226 <0.001 

ssLR -0.005 (0.0016) -0.1149 (0.0014)  -0.0006 0.0001 -3.810 <0.001  

1 Johne’s disease was diagnosed with two test kits: PCK: Parachek and IDX: Idexx;  
2 Genetic trends were estimated for annual means obtained from two statistical models: a single -step 
threshold model (ssTHR) and a single-step linear model (ssLR). 
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Figure 4. Yearly distribution of two Enzyme-Linked Immunosorbent Assay (ELISA) kits, IDX 

(Idexx) and PCK (Parachek), testing for Johne’s Disease. 
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Figure 2. Overall reliabilities for IDX (Idexx) for Johne's Disease in U.S. Holstein dairy cattle under 

three models: pedigree-based threshold (THR), single-step threshold (ssTHR), and single-step 

linear (ssLR) models. 
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Figure 3. Overall reliabilities for PCK (Parachek), test for Johne's Disease in U.S. Holstein dairy 

cattle under three models: pedigree-based threshold (THR), single-step threshold (ssTHR), and 

single-step linear (ssLR) models. 
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Figure 4. Phenotypic trend as percentage of positive results relative to total tests with two test kits 

for Johne’s Disease: IDX (Idexx) and PCK (Parachek). 
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Figure 5. Genetic trend for IDX (Idexx) test for susceptibility for Johne's Disease in U.S. Holstein 

cows under single-step threshold (ssTHR) and single-step linear (ssLR) models. 

. 
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Figure 6. Genetic trend PCK (Parachek) test for susceptibility for Johne's Disease in U.S. Holstein 

cows under single-step threshold (ssTHR) and single-step linear (ssLR) models. 
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CHAPTER SEVEN: CONCLUSIONS 

This work addressed different aspects involved in the development and implementation 

of novel traits in dairy cattle breeding. The development of a new phenotype, such as body 

temperature, can be favored by automating the process but requires the handling and analysis of 

high-frequency data. The first research study of this thesis investigated novel body temperature 

phenotypes by using temperature loggers and found that body temperature can be used as an 

indicator for different feed efficiency traits, including milk energy and residual feed intake. The 

results indicated, for example, that less consistent body temperature is associated with more 

energy directed to milk production and higher body temperature is associated with less feed 

efficiency. The second research study provides a better understanding of the biological 

mechanisms underlying visceral fat accumulation, showing that inflammation, insulin resistance, 

and immune response are all related to abdominal obesity. This same study also revealed that 

visceral fat and displaced abomasum are genetically linked, and this genetic link deserves further 

investigation. The third research study identifies candidate variants and genes for postpartum 

blood calcium concentration using whole-genome sequence data. All the putative causal variants 

were located in non-coding regions of genes involved in vitamin D metabolism, calcium 

homeostasis, calcium and potassium channels, mitochondrial energy metabolism, and the 

immune response. The fourth and last study evaluated the implementation of a national genetic 

evaluation for Johne’s Disease, a potential novel health trait in U.S. Holsteins. Overall, this 

thesis has performed a comprehensive investigation of the different steps required for the 

development and implementation of novel traits in dairy cattle. 
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