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Abstract

Accurate prognostics is crucial for improving the reliability and functionality of modern
engineering systems. To develop accurate and reliable prognostic models, it is essential to gather
and analyze sensor signal information. Fortunately, recent advances in sensor and integrated circuit
technology have made it easier than ever to install, collect, and process vast amounts of sensor
data. These technological advancements have brought novel developments in degradation
modeling and prognostics of many smart and connected systems. However, despite these
advancements, there remain four major challenges that must be addressed to ensure reliable
performance in many complex real-life scenarios:

e Alignment with prior domain knowledge: how to guarantee that the prognostic model aligns

with prior domain knowledge of the degradation process.

e Accurate and reliable prognostics with uncertainty quantification: how to obtain remaining
useful life (RUL) predictions that are both accurate and reliable. Specifically, how to assess
the “confidence” of the RUL predictions.

e Explainable prognostics: instead of a black-box model, how to obtain explainable insights
into the underlying system’s status and degradation dynamics. For instance, one might be
interested on how to identify the most “informative” sensors that significantly affect the
degradation process.

e Handling multi-type data: how to draw prognostic insights from different data types like
longitudinal sensor data and discrete event data.

This dissertation focuses on explainable prognostics and data-driven modeling of complex data.

Specifically, it investigates various statistical and machine learning techniques for deriving critical

insights of the degradation status and RUL prediction of smart and connected systems. The novel
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methodologies discussed in this work allow: (i) precise alignment of data-driven, prognostic
models with prior domain knowledge; (ii) accurate and reliable RUL predictions with uncertainty
quantifications; (iii) explainable insights into complex systems with high-dimensional multivariate
sensor data by identifying the informative sensors; (iv) prognostic insights from both continuous
sensor signal data and discrete event log data; (v) fusion of multivariate sensor signal to track the
underlying degradation status.

The first chapter discusses the background and current challenges with degradation modeling
and prognostics in smart and connected systems, while also outlining the key objectives of this
dissertation. Chapter 2 then focuses on the challenge of aligning prior domain knowledge with
data-driven degradation models. Specifically, this chapter focuses on modeling a nuclear
engineering-specific degradation process called void swelling. To effectively integrate prior
domain knowledge on void swelling with prognostics, this chapter proposes a Bayesian
hierarchical piecewise linear model that encodes prior knowledge of void swelling. Specifically,
the piecewise structure effectively captures the two-stage nature of void swelling processes, while
the hierarchical Bayesian component allows one to easily incorporate domain knowledge via the
prior distribution. Chapter 3 discusses the challenge of obtaining high quality uncertainty
quantifications when analyzing longitudinal signal data alongside time-to-event data. Due to the
complex data types, it is difficult to capture the modeling uncertainties of both data types into the
final RUL predictions. To overcome this challenge, this chapter proposes an integrated uncertainty
quantification (IUQ) model that accurately propagates and quantifies the uncertainties from both
data types. The obtained uncertainties can then be used to assess the reliability of the RUL
predictions. Chapter 4 then introduces a Bayesian spike-and-slab sensor selection approach for

high-dimensional prognostics. Many existing sensor selection methods struggle to select
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informative sensors in high-dimensional scenarios, where there are more sensors relative to the
number of training units. On the contrary, the proposed method boasts superior sensor selection
performance in high-dimensional scenarios. The main motivation of this work is based on a
Bayesian spike-and-slab prior imposed on the sensor fusion coefficients. Imposing this prior
allows the model to produce sparse solutions that prioritize information from informative sensors.
The informative sensors are then simultaneously fused into a 1-D health index to better
characterize the degradation process. Chapter 5 presents an uncertainty-informed neural network-
based prognostic model for multi-type data. The main contribution of this proposed method is that
it extracts prognostic insights from both continuous signal data and discrete event data. The
proposed model has sub-models designed for each data type, which are then jointly trained to
minimize any bias in RUL prediction. One challenge with joint training is that the model can easily
fall into a local extremum due to the complex data types and model structures. To overcome this
challenge, the proposed method leverages task-specific uncertainty information to automatically
weigh the loss functions. This allows the network to automatically balance the loss function and
prevent the model from over/underfitting. Finally, Chapter 6 includes a summary of the main
contributions as well as future research directions.

In summary, the following dissertation focuses on developing reliable and explainable
degradation modeling and prognostic analysis methodologies for smart and connected systems.
The proposed works offer substantial potential for improving efficiency, reliability, and
functionality in many applications including manufacturing, energy systems, healthcare and

general Internet of Things (IoT) systems.



Chapter 1  Introduction

1.1 Motivation and Overview

All systems eventually degrade over time and experience failure. Knowing the failure time,
typically defined as the time when the degradation status reaches a predefined threshold or cannot
perform its normal operations, is critical for improving the reliability and functionality of the
system. For instance, one can predict the remaining useful life (RUL) of the system and conduct
preventative maintenance decisions when the unit is close to the end of its life. Practitioners can
ensure reliable operations and avoid unnecessary downtime caused by reactionary maintenance.
However, one fundamental challenge is that the underlying degradation status is unobservable and
needs to be inferred. To infer the unobserved underlying degradation status, a common approach
is to monitor and analyze the sensor signals. For instance, as the fan of an aircraft turbofan engine
degrades, the physical speed of the fan tends to decrease over time. Therefore, modeling and
monitoring the fan’s physical speed allows one to predict the failure time of the turbofan engine.

In recent years, there has been a plethora of literature on leveraging sensor signals for
degradation modeling and RUL prediction. These approaches typically assume that the underlying
degradation status can be characterized using a univariate sensor signal [1] or multivariate sensor
signals [2]. Many popular models have been developed under this assumption, including statistical
models, machine learning models, and deep learning models. A comprehensive review of existing
degradation modeling approaches will be provided in Chapter 2.1.1.

One major paradigm shift in modern engineering systems has been driven by innovations in
modern sensing and integrated circuit technology. These innovations have enabled Internet of

Things (IoT) systems to autonomously gather degradation (i.e., sensor) signals, process



information at the edge, and make informed decisions in remote environments. This revolution has
spurred the rapid integration of IoT systems across various sectors like manufacturing, healthcare,
and energy systems. While this revolution provides new opportunities for both researchers and
practitioners, it also introduces new challenges for effective and reliable degradation modeling and
prognostics.

The first challenge in modern data-driven degradation models is ensuring that they are properly
aligned with prior domain knowledge. Direct application of purely data-driven, black-box models
like neural networks without considering the underlying degradation dynamics can result in
erroneous predictions that contradict physical laws or known process behaviors. For instance,
degradation processes typically exhibit monotonic behavior, as degradation is an irreversible
process without any maintenance [3]. Failing to account for this property can lead to incorrect
implications about the degradation trends and inaccurate RUL predictions. To fully harness the
power of data-driven models, it is essential to carefully incorporate domain knowledge in the
model design stage.

Second, it is crucial to assess not only the accuracy of RUL predictions, but also their
reliability/uncertainty. Degradation processes are stochastic by nature due to the multiple sources
of uncertainty stemming from measurement errors and unit-to-unit variability. Therefore, it is
crucial to provide accurate uncertainty quantifications alongside the RUL predictions. These
uncertainty quantifications can then be used for subsequent maintenance decisions and risk
analysis. However, obtaining accurate uncertainty quantifications is nontrivial as modern
engineering systems collect diverse data types ranging from time-to-event data and continuous

sensor signal data. Therefore, there is a strong need for a systematic procedure for obtaining



accurate and reliable uncertainty estimates that effectively capture the modeling uncertainty from
each data type and integrate them into the final RUL predictions.

Third, recent developments in sensor technology have led to the widespread use of sensors to
monitor and analyze system status. These sensors capture different facets of the system and the
underlying degradation process. A unique and longstanding challenge of analyzing such
multivariate sensor signals is that each sensor has varying degrees of relevance to the underlying
degradation process. It is possible that some sensors are “informative” and provide strong insights
on the degradation status, while some sensors are “uninformative” and do not provide such insights
[4]. This sensor selection challenge has become increasingly difficult in modern engineering
systems, where technological advances have made it practical to adopt numerous sensors. As a
result, sensor signals collected from these modern systems are frequently high-dimensional, with
the number of sensors being similar or much larger than the number of available training units [5].
Therefore, how to effectively identify informative sensors in modern, high-dimensional systems
is highly desirable, as the informative sensors can provide interpretable insights of the degradation
process.

Fourth, a critical limitation of existing methods is that they struggle to simultaneously extract
prognostic insights from multi-type data, specifically discrete event data and continuous signal
data. One way to address this challenge is to use deep learning models, as they can effectively
handle multimodal, multi-type data with relative ease. However, a key challenge is designing an
effective model architecture and joint training strategies that ensure reliable prognostic
performance. Since each data type captures have distinct temporal dynamics and correlations with
the underlying degradation process, naive training strategies can easily lead the model to fall in a

local extremum and have suboptimal performance [6]. Therefore, it is crucial to develop effective



training strategies and loss functions that automatically evaluate the importance of each data type
and associated task (i.e., classification, regression).
This dissertation aims to address the above challenges by exploring advanced statistical and

machine learning methodologies for complex, multi-type data.

1.2 Objectives

The objectives of this research are:

(1) developing a novel data-driven approach for modeling a nuclear specific degradation
process known as “void swelling”. The data-driven approach seamlessly incorporates
prior nuclear engineering knowledge to model and predict the degree of void swelling.

(i)  proposing an integrated uncertainty quantification model for joint models with time-
to-event data and longitudinal signal data. This approach propagates modeling
uncertainties from both data types and integrates them to the final RUL predictions.

(111)  developing a Bayesian spike-and-slab prior sensor selection approach for systems with
high-dimensional sensor signals with varying levels of correlation.

(iv)  establishing a deep learning-based prognostic model for extracting prognostic insights
from continuous signal data and discrete event data. This approach avoids
over/underfitting issues by leveraging task-specific uncertainty to weigh the joint loss

function.

1.3 Outline of the Dissertation

The remainder of the dissertation is organized as follows. Chapter 2 proposes a data-driven
approach for modeling the progression of void swelling. This is the first approach to integrate

nuclear-specific domain knowledge with statistical modeling techniques to achieve more accurate



predictions of the future degree of void swelling. Our innovative idea is to encode domain-specific
information into a Bayesian hierarchical design, which allows the model to satisfy the shape
constraints of void swelling processes. Also, the information on the changepoint (i.e., when the
void swelling process transitions from the transient regime to the steady-state regime) is encoded
into the model design via the parameter prior distributions.

Chapter 3 focuses on obtaining accurate uncertainty quantifications when jointly modeling two
different data types: time-to-event data and longitudinal signal data. Accurately tracking the
uncertainty in joint models is challenging as each data type and its sub-model captures different
modeling uncertainties. To overcome this challenge, we propose an integrated uncertainty
quantification (IUQ) model that propagates the modeling uncertainties of both data types, which
are then eventually integrated into the resulting RUL predictions. Evaluation results show that the
IUQ model provides more accurate uncertainty quantifications than existing approaches, providing
practitioners with a more effective way to assess the reliability of RUL predictions.

Chapter 4 delves into a sensor selection approach for high-dimensional systems. Here, high-
dimensional refers to systems in which the number of sensors p is similar or higher than the
number of available training units N (i.e., N = p or N < p). Sensor selection in high-dimensional
systems 1is difficult due to the low signal-to-noise ratio and curse of dimensionality. Drawing
inspiration from Bayesian spike-and-slab priors, we propose a novel Bayesian sensor selection
approach that selects informative sensors and then fuses them into an informative 1-D health index
(HI) for further prognostic analysis. Evaluation results on many high-dimensional scenarios
demonstrate the method’s superior prognostic performance and ability to discern informative
sensors from uninformative ones.

Chapter 5 focuses on a deep learning approach for simultaneously obtaining prognostic insights



from discrete event data and continuous signal data. The proposed network contains three
predictors, one for the event data, one for the signal data, and the final predictor to obtain the RUL
predictors. Since the proposed network contains three predictors with their own loss functions, it
is difficult to jointly train the network without encountering fitting issues. To overcome this
difficulty, the network leverages task-specific uncertainty information as weights for the loss
function. The uncertainty information is treated as a learnable parameter and is automatically
adjusted to reflect the significance of each task/data type in the joint training process. Results show
that the proposed method exhibits superior prognostic performance compared to models that
leverage only a single data type. In addition, detailed analysis shows that the uncertainty
information leads to better prognostic performance and faster model convergence.

Finally, Chapter 6 summarizes the contributions of this dissertation.



Chapter 2 Degradation Modeling using Bayesian
Hierarchical Piecewise Linear Models: A Case Study

to Predict Void Swelling in Irradiated Materials

2.1 Motivation

2.1.1 Degradation Modeling

Engineering systems are prone to degradation and unexpected failures. Conventionally,
maintenance was performed in a reactive manner, resulting in high operation costs, longer machine
downtime, and lower functionality of the engineering system. Recent advances in degradation
modeling and prognostics allow practitioners to predict system failures in advance and conduct
preventative maintenance operations based on the remaining useful life (RUL) [7]. This results in
higher profitability, reliability, and functionality of various systems.

Existing approaches to degradation modeling can be largely divided into physics-based models
and data-driven models. Physics-based degradation models attempt to incorporate the physics of
the failure mechanism and quantify the characteristics of the degradation process [8]. For instance,
Oppenheimer and Loparo [9] developed a physics-based model that uses machine condition
information in conjunction with a life model based on material crack growth laws to estimate the
RUL of a shaft cracking in a rotor. These approaches tend to be component/system specific and
struggle to describe the joint effect of multiple input variables (e.g., environmental conditions),
especially when the number of input variables is very large. On the contrary, data-driven

approaches overcome these difficulties by estimating the degradation status directly from the



available data (e.g., degradation signals) [1], [10]. For instance, Zheng et al. [11] employed a long
short-term memory (LSTM) network to estimate the RUL of lithium-ion battery, while Zhong et
al. [12] used an isolation forest to detect anomalies in gas paths.

The main motivation of this case study is to explore a novel application of data-driven
degradation models to a nuclear-specific material degradation mechanism called void swelling. In
the following subsection, we will further explain the details of void swelling, the related existing

literature, and its similarities and dissimilarities to conventional degradation modeling applications.

2.1.2 Void Swelling

Void swelling is defined as a material degradation process caused by high-energy neutron
irradiation under intermediate temperatures (i.e., ranging roughly between 30% and 50% of the
metal’s melting temperature). As materials are bombarded by high-energy neutrons, atoms are
displaced from the lattice sites, which increases the material’s volume. Figure 2.1 illustrates
swelling observed in unfueled 20% cold-worked AISI 316 (i.e., stainless, austenitic Cr-Ni-Mo
steels) open cladding tube in an EBR-II fast reactor [13]. From the figure, we observe that the
cladding tube’s volume increases, i.e., swells, after being exposed to irradiation. Excess void
swelling can cause dimensional instability and even severe embrittlement of internal materials,
leading to a critical impact on the functionality, economic operation, and safety of nuclear power
plants [14]. As a result, accurate modeling, prediction, and early identification of void swelling in
irradiated structural components are crucial for reliable NPP maintenance and management

operations [15].
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Figure 2.1 Illustration of void swelling in unfueled 20% cold-worked AISI 316 open
cladding tube (Left: Before irradiation, Right: After irradiation)

Traditional approaches for understanding void swelling have been mainly based on trial-and-
error, in which experiments are repeated multiple times under different settings. Hereafter, we
refer to these experimental settings/factors such as alloy composition, material structure, and
irradiation conditions as covariates. One critical limitation of such empirical approaches is that
these experiments are very time-consuming and expensive as they require careful preparations,
safety precautions, post-irradiation examination, and other technical considerations [16]. Another
noteworthy limitation of empirical approaches is that they generally focus on how the swelling
process varies with respect to a single covariate. Various works have examined the effects of a
single covariate such as displacement rate [17], irradiation temperature [ 18], cold-work percentage
[19], and irradiation type [20]. For example, Figure 2.2 shows the influence of temperature,
Chromium, and Nickel content on the swelling of Fe-Cr-Ni ternary alloys in the EBR-II fast reactor
[21]. However, there is still a lack of studies that analyze the joint effect of multiple covariates on
the swelling process since empirical methods are too resource-intensive to repeat void swelling

experiments under every possible covariate combination.
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Figure 2.2 (a) Influence of temperature and chromium on swelling of Fe-Cr-Ni ternary alloys

irradiated in EBR-II (b) Influence of Nickel content on swelling of Fe-Cr-Ni ternary alloys in

EBR-II at 427°C

Aside from empirical methods, there are general degradation models that can be applied to
model void swelling. For physics-based approaches, Li et al. [22] used a Phase-field model to
capture the effect of thermodynamic and kinetic properties on void nucleation and growth in
irradiated materials. However, most of these methods are also covariate-specific and cannot
describe the joint effect of multiple covariates on void swelling.

For data-driven degradation models, the first work that adopted a data-driven approach in the
context of void swelling was by Jin, Cao, and Short [16], who applied various machine learning
techniques to predict the onset of void swelling by estimating the incubation dose values (i.e.,
intercept values of the steady state swelling rate). However, this paper only estimated the
incubation dose and not the full swelling process, and thus it only provides a restricted view of the

swelling process.
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Figure 2.3 Void Swelling versus dose for Fe-Ni-Cr alloys

Unlike the previous approaches, the goal of this case study is to explicitly model and predict
void swelling measurements. To the best of our knowledge, this is the first paper to directly model
void swelling processes using a data-driven approach. To achieve this goal, four significant
research challenges need to be addressed. First, void swelling is a function of multiple covariates
with complex effects, so it is very difficult to accurately model how different covariates jointly
affect the swelling process. Second, the predicted swelling trajectories must be in line with prior
domain knowledge. Specifically, the trajectory of void swelling with respect to irradiation dose is
divided into transient and steady state regimes as shown in Figure 2.3. The transient regime, also
called the incubation state, is when either no or very small levels of swelling happen. In the
subsequent steady state regime, swelling occurs at a relatively faster constant rate [21]. The
predicted swelling trends must satisfy these shape constraints and clearly identify both states.
Furthermore, similar to existing degradation models, void swelling is an irreversible process.
Hence, the predicted void swelling trajectories should also be monotonic (i.e., nondecreasing) with
respect to irradiation dose. Third, void swelling datasets are often very sparse with only one or a
few measurements under a specific experimental condition (a fixed set of covariates). For example,
in our case study, we have 291 unique sets of covariates with at least 1 measurement. Among the

291 covariate sets, more than 90% (i.e., 279 sets) of them have only 1 available measurement. The
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inherent sparsity of the dataset often significantly compromises the accuracy of traditional data-
driven approaches, which typically require a large amount of data.

Another challenge triggered by this sparsity is imbalanced data between the transient and
steady-state regimes. Specifically, practical challenges during data collection often result in
incomplete units that do not contain full records of the two regimes shown Figure 2.3, and instead
only contain measurements of the steady-state regime or vice versa. The incomplete units can
introduce unwanted bias during parameter estimation since they do not display a clear changepoint.

From these challenges, it is evident that one cannot immediately apply existing data-driven
degradation models for void swelling. To address these difficulties, this article will employ various
statistical techniques in Bayesian modeling and hierarchical models. In particular, we demonstrate
the power of leveraging domain knowledge to design informative prior distributions used to
overcome the unique challenges in void swelling modeling. With this proposed method, we hope
to lay a foundation for future data-driven degradation models to better understand the latent
dynamics of void swelling and similar engineering problems.

The rest of the paper is organized as follows. Section 2.2 provides a detailed problem
description and research objective of this case study. Then, Section 2.2 provides a closer look at
the void swelling dataset. Details of the proposed method including the hierarchical model,
parameter estimation, and prediction will be discussed in Section 2.4. Then, Section 2.5 will
present the numerical results, in which the effectiveness and the accuracy of the proposed method
will be compared to existing benchmark methods. Next, Section 2.6 summarizes the findings and
unique contributions of this case study. Finally, Section 2.7 contains the supplementary materials
such as parameter settings, model adequacy checking, and recommendations for choosing the prior

distributions.
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2.2 Problem Description

In this study, a unit is defined as a collection of varying dose and swelling measurements under
a specific experimental condition (a fixed set of covariates). For instance, from the tabular data in
Figure 2.4, each unit has its own fixed set of covariates (e.g., unit 6 has % weight B: 0.430, %
weight C: 0.6091, % weight N: 1.000, while unit 4 has % weight B: 0.48, % weight C: 0.5454, %
weight N: 0.000). In addition to the covariates, each unit has one or more measurements of varying
irradiation dose and corresponding void swelling %. The respective swelling curves are plotted on
the right of Figure 2.4. As we can see from the plotted curves, each unit has a distinct trajectory
based on its covariate values while sharing a common increasing trend. An effective model should
be able to capture this unit-to-unit variability while ensuring that all predicted swelling trajectories
obey the shape constraints of void swelling processes. Using this definition, our goal is to

accurately predict the swelling process of a unit of interest, i.e., given its set of covariates.

Unit 6
40-
Total Void
Steel.Name Damage Swelling B.wt... Cowt... N.wt...
(dpa) (%)
316 55 02527381 0.668 0 0000911602 0.000828729 30-
316 SS 0.5000000 6.958 0 0.000911602 0.000828729
316 SS 0.7473057 6.536 0 0.000911602 0.000828729 a\i
316 SS 0.9640761 38.237 0 0.000911602 0.000828729 g
3 20
. 3
=
Unit 4 3
Total Void 'g
Steel.Name Damage Swelling B..wt... C.wt... N..wt... >
dpa) %,
(dpa) %) 161
PNC 1520 03793792 0.005014 428e-05 0.000883978 0
PNC 1520 04188991 0184919  wee 428e-05 0.000883978 0
PNC 1520 04648033 0.427605 428e-05 0.000883978 0 H__.__‘__._...
R
PNC 1520 0.5309384 0786193 428e-05 0.000883978 0 0 ‘ ‘ |
PNC 1520 05866556 1133430 428e-05 0000883978 0 04 086 08
dpa
PNC 1520 0.6521905 1.585230 428e-05 0.000883978 0 P

Figure 2.4 Definition of a void swelling unit.
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2.3 Data Collection and Preparation

The dataset in this study is collected from publicly available literature on void swelling. There
is already a tremendous number of experimental results on void swelling available through
significant reviews, providing us with sufficient data. In particular, we collect measurements of
dimension changes caused by void swelling (i.e., void swelling %), the associated irradiation doses
(measured by displacements per atom), and the corresponding covariates (i.e., experimental
parameters). Overall, we have made efforts to collect 753 measurements from 20 research papers.
The datasets have been verified by the domain experts for this case study and will be made publicly
available for other interested researchers in the field. To ensure that the model can accommodate
swelling trends across a wide range of materials, 93 different types of steels with varying initial
conditions are considered. For each measurement, we have 15 covariates ranging from irradiation
temperature to alloy composition. Details of the 15 covariates can be found in Table 2.1. During

data preparation, one practical difficulty is that each unit involves a different set of covariates,

Table 2.1 Data summary of covariates

Name Mean Standard Deviation | Units
Irradiation temperature 520.2 134.23 K
Categorical Variable (5 Types):
Irradiation type Ni6+ ion, Fe2+ ion, Neutron,
Proton, Electron

% weight Carbon 0.0492 0.0223 %
% weight Nitrogen 0.0113 0.0301 %
% weight Aluminum 0.0259 0.1559 %
% weight Silicon 0.4797 0.2465 %
% weight Phosphorus 0.0212 0.0259 %
% weight Sulfur 0.0025 0.0058 %
% weight Titanium 0.1376 0.1897 %
% weight Chromium 15.96 1.4582 %
% weight Manganese 1.246 0.7567 %
% weight Iron 51.00 24.581 %
% weight Copper 0.0053 0.0468 %
% weight Nickel 17.55 6.3192 %
% weight Molybdenum 2.050 0.9516 %
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making it difficult to extract a common set of covariates across all units. To overcome this
difficulty, we consider covariate-specific imputation strategies to fill in missing values. In
particular, covariates regarding alloy composition (e.g., % weight Nitrogen) are imputed to 0 since
it means that there are negligible levels of that element. However, the remaining covariates like
irradiation type and irradiation temperature in Table 2.1 cannot be easily imputed (e.g., using mean,
median) due to their unique physical properties, so they are discarded from the analysis. Next,
except for irradiation type, the other covariates and the irradiation dose values are normalized to
have a minimum value of 0 and a maximum value of 1. The measurements are then split into units
based on the covariate values, where each unit contains at least 1 observation. Eventually, we
arrive at 291 units with 395 measurements. Figure 2.5 shows the plotted swelling measurements
of 12 units with more than three measurements, with the normalized irradiation dose (dpa) on the

x-axis and void swelling (%) on the y-axis.
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Figure 2.5 Plotted void swelling processes.
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2.4 Methodology

This section contains four parts. Section 2.4.1 is a brief introduction to hierarchical regression
models. In Section 2.4.2, we discuss the details of the proposed model. Next, Section 2.4.3
describes the Bayesian parameter estimation procedure. Finally, Section 2.4.4 investigates how the

proposed model makes predictions on swelling evolutions.

2.4.1 Introduction to hierarchical regression models

Hierarchical regression models are one of the most widely used approaches to accommodate
datasets with a nested/hierarchical structure [23]. Recently, hierarchical models have received
more attention for their use in statistical process monitoring and predictive monitoring. For
instance, Huberts, Schoonhoven and Does [24] used a Bayesian hierarchical model to develop a
framework to monitor student performance and provide early warnings for under/overperforming
students. Compared to existing linear regression-based multivariate approaches, hierarchical
models can improve the estimation of process variability, make accurate predictions under limited
data availability, and easily incorporate prior beliefs into the prediction stage.

A typical 2-level hierarchical regression model is formulated as follows: where equation (2.1)
denotes the level 1 regression equation and equation (2.2) represents the level 2 regression

equations.
Yij = Boi + Buixij + €ijy 2.1)

Boi = Yoo + Yo1Zi + Ug;, (2.2)
P1i = Y10 + Y11Z; + uy;.

In the level 1 regression in equation (2.1), Y;; is the jth observation from unit i; fy; and f;; are the

intercept and slope values for unit i, respectively; x;; is the corresponding level 1 predictor; and
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g;j are level 1 random errors. For the level 2 regression in equation (2.2), yoo and y;, are the
overall means of the intercept and slope across all units; Z; is the level 2 predictor for unit i; y4q
and y,, are the corresponding level 2 regression coefficients; and u,; and uy; are the level 2
random errors for ,; and [3;;, respectively. Note that the subscript i in §; and [;; indicates that
the model characterizes the unit-to-unit variability by assigning varying intercept and slope values
for each unit’s trajectory. In summary, the level 2 predictor Z; affects the intercept fy; and slope
B1i. Combining these coefficients with the level 1 predictor, x;;, we effectively model the
observation Y;;. Note that the model is not restricted to piecewise linear trends and can be extended
to accommodate other trends such as linear-quadratic and quadratic-quadratic.

In the case in which a unit also has categorical covariates such as irradiation type, we use
dummy variable encoding. Suppose that unit i has a categorical covariate C; with ¢ = 1 categories.

Then, we use ¢ — 1 dummy variables to transform C; into a (¢ — 1)-dimensional vector C; =

T o~
[Ci(l), . Ci(c_l)] € R(€=D*1 gych that C; = 0 if unit i belongs to the cth category and otherwise,

all entries are zeros except the one corresponding to the category of unit i.
In the following subsections, we will address how the Bayesian hierarchical approach can

overcome the unique challenges in void swelling processes.

2.4.2 Proposed Model

Figure 2.6 illustrates the overall framework of the proposed model. The key intuition of the
proposed model is that variations in the swelling curves can be attributed to the variability in the
covariates. To effectively capture this nested relationship, we consider a Bayesian hierarchical
regression model in which the regression coefficients are uniquely determined by the covariates.

Here, we choose to use a piecewise linear trend for the level 1 equation to capture the void swelling
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trends based on the following reasons. First, the piecewise structure effectively incorporates the
two-stage nature (i.e., the transient and steady states) of void swelling units. Second, the linear
swelling trend in the steady state regime is in line with its definition in Section 2.1.2. Third,
preliminary evaluations showed that the piecewise linear model yields smaller WAIC (Widely
Available Information Criterion) [25] and prediction error than the quadratic-linear model,

indicating a better fit. Hence, the level 1 equation adopts a piecewise linear model.

Unit 1 ' i
X.wt.B Xwt..C Xwt.N 4
0.00e+00  0.000552486 0.000000000 Level 2 Level 1 &
0.00e+00 0.000552486 0.000000000 =
g
0.00e+00  0.000552486 0.000000000 ®
‘ 301' ﬁlll ﬁer BCPI s,
Unit 2 S
X.wt..B X.wt..C X.wt.N g

6.77e-05 0.000826729  0.000000000
6.77e-05 | 0.00C 0.000000000 ‘ ﬁoz,ﬁlz, ﬁzz, ﬁcpz

6.77e-05 0.000828729 0.000000000

Different Covariate Varying Coefficients 0 L .,f";‘d.mn Dase -
Information Varying Swelling
Curves

Figure 2.6 Overview of the proposed hierarchical regression framework.

Suppose there are void swelling measurements from a total of I training units, each with P
covariates. As our dataset contains one categorical covariate “irradiation type” with 5 levels and
14 continuous covariates, using 4 dummy variables introduced in Section 2.4.1 yields P = 14 +
4 = 18 covariates for each unit. Following the notation in Section 2.4.1, the jth swelling
measurement from unit i is denoted as Y;; and the corresponding irradiation dose level is denoted
as x;;. The level 2 predictor of unit i is its covariates Z; = [1, Zy;, ..., Zp;]T € RETVX1 with the

first scalar term added for notational convenience.
Yij = Boi + Bri(xij — Bepi)Hxij < Bepi} + Bai(xij — Bepi)H{xij = Beri} + €3 (2.3)

P r (2.4)
Bai = Yoa + Z 1VpaZpi +Ugi = VaZ; +ugi,a € {0,1,2},
p:
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P
Acpi = Yo3 + Z 1Vp3Zpi +uz = V3Z; + uz,
p:

Bepi = Inv Logit(acp;).

Here, B.p; represents the changepoint of unit i, the dose value where the process shifts from the
transient state to the steady state. fy; is the swelling value at the changepoint B.p;, while f;; and
B, are the slopes corresponding to the transient and steady states of the piecewise linear model,
and I is an indicator function denoting which state the process is currently at. In order to restrict
the changepoint parameter B.p; to be between 0 and 1, the parameter a.p; undergoes an inverse
logit transformation denoted by Inv logit in equation (2.4), where Inv logit(x) = exp (x)/[1 +
exp (x)]. &;j represents the level 1 random errors that are assumed to be normally distributed with
mean 0 and variance a2 (i.e., g; i~N(0, 02)). As shown in equation (2.3), we use a piecewise linear
trend to capture the two regimes in void swelling. In particular, if x;; < B¢p; (i.€., the process is in
the transient state), then equation (2.3) willbe Y;; = B; + ,Bli(xij — ﬁcpl-) + &, and if x;; = Bep;
(i.e., the process is in the steady state), then Y;; = Bo; + ﬁzt(xij - ﬁcpi) + &5

The level 2 equations in equation (2.4) denote the relationship between the level 1 regression
coefficients B; = [Boi, f1i» B2i» Bcpi] and the covariates (i.e., level 2 predictors) Z; . Here,
Yor s V3 = [Vo3, -r ¥p3lT € RETDXL are the concatenated vectors of level 2 regression
coefficients. Finally, u;, ..., uz; are the level 2 random errors of fy;, ..., @cp;- The level 2 random
errors are assumed to follow a multivariate normal distribution with mean 0 and an unknown

covariance matrix £ € R*** as shown in equation (2.5).
[woius;, uzi, uzi] ~ MVN(O, Z), (2.5)

The proposed model allows unit-level variability in swelling trends through the following

regression parameters: The changepoint (Bcp;), y-intercept at the changepoint (fy;), transient
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slope (B1;), and steady state slope (f5;). Furthermore, we impose an inequality constraint §;; <
pi, and nonnegative constraints on fy;, f1;, f2i = 0 for all i to allow a faster trend during the
steady state regime than the transient regime and a nondecreasing trend with positive swelling
values at the changepoint, resulting in an interpretable model that is also consistent with the

existing domain knowledge.

2.4.3 Bayesian Parameter Estimation

The most widely used methods for parameter estimation in hierarchical models are maximum
likelihood (ML) and restricted maximum likelihood (REML) estimation [26]. These likelihood-
based methods are considerably faster than Bayesian methods, but their performance suffers in
terms of bias and coverage [27]. Indeed, Bayesian methods provide several advantages over
likelihood-based methods at the cost of higher computation requirements. First, they quantify the
uncertainties of the model parameters, which can then be used to evaluate the reliability of the
parameter estimates. Second, studies have shown that estimates made by Bayesian methods are
more stable and robust in small datasets than likelihood-based methods by considering the
distribution of parameters rather than a single fixed parameter value [23]. Since void swelling
datasets are sparse, a Bayesian approach is a more suitable choice.

The first step of the Bayesian parameter estimation is to specify the prior distribution of the
parameters, where the model parameters are represented by 8 = [y, Y1, V2, V3, 02, Z]. Here, we
use informative prior distributions [28] inspired by domain knowledge to overcome the
imbalanced data challenge mentioned in Section 2.1.2. Ideally, given an incomplete unit in the
transient regime, the proposed model should estimate the changepoint f.p; to be located
somewhere at the right of the measurements (high dpa values), and the opposite for incomplete

units in the steady state regime.
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The key insight in identifying the regime lies in the swelling rate. The definition of the regimes
in Section 2.1.2 hints that the steady state swelling rate is in general significantly higher than the
transient swelling rate. Hence, priors on ¥, should have a larger mean than priors on y; such that
B2i > B1;. Furthermore, the prior on Yy, is set to have a larger variance term than the prior on y;
to encourage f3,; capture more drastic swelling trends in the steady state regime. Accordingly, we
set the priors ¥, ¥1~N(0,50), and y,~N(20,75). Finally, the prior on Y3 should guide a.p; to
stay in the range [-4,4] to prevent the inverse logit function from saturating to 0 or 1. Section 2.5.3
later investigates the proposed model’s sensitivity to different prior distributions.

We impose uninformative prior distributions for the remaining parameters. For the unknown
level 2 covariance matrix X, the popular Lewandowski-Kurowicka-Joe (LKJ) prior [29] with
parameter n = 1 (i.e., LKJ(n7)) is imposed. The LKJ prior is a widely used prior distribution for
correlation and covariance matrices, with the shape parameter n controlling the amount of
correlation among the level 2 random errors [30]. Here, the LKJ prior essentially acts as a uniform
prior over the correlation matrix. For the standard deviation of the level 1 random errors, o, a half
Student’s t distribution prior with 3 degrees of freedom is used.

The second step in Bayesian parameter estimation is identifying the likelihood function. The
likelihood function for the level 2 equation, p(B;|Z;, Yo, Y1, V2 V3 ), follows a multivariate
normal distribution with mean T; = [ylZ,, ¥ Z,, ¥y Z; Invlogit(y3Z)]" € R**! and
covariance matrix X. For the level 1 equation, the likelihood function for a single observation Y;;,

p(Yijlxij, Bi, d?), also follows a normal distribution with mean y; ;j and variance a2, where y; i =

Boi + Bri(xij — Bepi) Uxij < Bepi} + Bai(xij — Bepi)U{xij = Bepi)-
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The third step is deriving the posterior distribution using Bayes’ rule. The posterior distribution of

the parameters is shown in equation (2.6), where the conditioning on Z; and x; is omitted for

brevity.
p(BIY) < p(¥|0)p(6) = f p(Y16, B)p(B:16)dBip(6), (2.6)
Stage 1:p(Y|B;, 0) < ﬁ ﬁiexp {_ (YU - llij)z}
i=1 j=1 \/? 20%

Stage 2: p(8116)  det(2) Zexp{~5 (8, ~ )TE B, - 1)),

Here, the p(@) denotes the joint prior distribution of the model parameters 8. The posterior
distribution in equation (2.6) is computationally intractable, and thus we use the No-U-Turn-
Sampler (NUTS) [31], an extension of the conventional MCMC. Compared to traditional MCMC,
NUTS uses gradient information to guide the algorithm and generates higher-quality samples with

less autocorrelation much more quickly. The NUTS algorithm is implemented in the software Stan

[30].

2.4.4 Prediction

Recall that our goal is to predict the unobserved swelling measurement Y;* of unit i with
covariates Z; at the new irradiation dose level x;, i.e., to compute the posterior predictive
distribution p(Y;"|Y,Z,x;). Note that ¥; = [Yi,l; e Yi,ni] € R™*! is the vector of historical
measurements for unit i, where n; is the total number of collected measurements for unit i, ¥ =
[Yy;...;Y;] € RE™X1 j5 the vector of historical measurements from all units, and Z =

[Z,,.,,,Z;] € R®+DXI Then, p(¥;*|Y) can be expanded into the following form:
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p(Y7 1Y) = ff p (¥ 1B, 0)p(B:10)p(BIV)dB,do, @.7)

where the conditioning over Z,Z; and x; is omitted for brevity. The posterior predictive

distribution is approximated numerically by using the Monte Carlo Integration:

w

* 1 *
POV =+ ) p(Y,

w=1

ﬁw,if ew)'0w~p(ely)r ﬂw,iNP(ﬂilew)r (28)

in which 8y, = [Vi.0, Vw1, Yw,2 Yw.3 O, Zi] is the wth Monte Carlo sample drawn from the
posterior distribution in Section 2.4.3 and W represents the total number of posterior samples, i.e.,
w € {1,..,W} . Furthermore, B, ; = [ﬁW,Oiiﬁw,lilﬁW,ZilﬁW,CPi]T represents the B; values
obtained based on equation (2.4) using 8,,. This way, Y;*|B,,:, 0\, can be easily obtained as it
follows a normal distribution with mean B, o; + B 1i (%] = Bw,cri)I{xi < Bw.cpi} + Bwa2i(x; —
Buw,cpi)I{x; = Bu,cpi} and variance o2.

One special case is the cold start case where the new unit i’ of interest has not collected any

swelling measurements, i.e., Y;» = @ and Z;s € {Z,, ..., Z,}. Here, the distribution of interest is

Y, Z, Zir,x;,), in which YL.T is an unobserved swelling measurement from unit i’ at the

p(¥y
irradiation dose value of x;7. The cold start posterior predictive distribution p(Y;/|¥,Z, Z;, x}) is

numerically approximated similarly as in equation (2.8), where the posterior draws of the

parameters are made from [ historical units:

w

1
SRR

w=1

p(Y; By, 0y),0,~p(01Y), B, 1~p(B:]6,). (2.9)

Similar to equation (2.7) and equation (2.8), the conditioning over Z, Z;s and x;; are omitted for
brevity. In equation (2.9), B,, ; is calculated by using the posterior estimates of 6,, and the

covariates of the cold start unit Z;/ in equation (2.4). For instance, By = V%, 0Z;7 + Ugy in which
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Ywo is obtained using 8, and u,;s is randomly chosen from the pool of {ugq, ..., ug;} for each

sample.

2.5 Numerical Studies

In this section, we evaluate the proposed model on a real-life void swelling dataset. In Section
2.5.1, we introduce five benchmark methods. Section 2.5.2 then discusses the model validation
approaches used in this study. Then, Sections 2.5.3 and 2.5.4 contain the results of our numerical

analysis.

2.5.1 Benchmark Methods

We briefly discuss the five benchmark methods that will be used in the model evaluations. First,
we consider a linear regression model with an L2 regularization term. For a fair comparison, the
coefficients of the linear regression are constrained to be positive in order to enforce the monotonic
relationship of void swelling. Here, the predictors are the irradiation dose and covariates, while the
response variable is the void swelling %.

For the second approach, we consider a set of ensemble methods. The main idea behind
ensemble learning is to combine the prediction of several base estimators to obtain better
performance than using a single estimator [32]. Generally, ensemble methods are divided into
averaging methods and boosting methods. Here, we consider one model from each category as a
benchmark: a Random Forest (RF) [33] for averaging methods and a Gradient Boosted Trees (GBT)
[34] for boosting methods.

The next benchmark is the ANN model [35]. ANN has received much attention in the past years
due to its strong predictive performance and flexibility. ANN is a network of neurons (i.e., nodes)

with input, hidden, and output layers. Contrary to models that can only capture linear relationships,
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ANN can capture complex and nonlinear relationships by employing nonlinear activation
functions. Furthermore, we constrain the weights and biases of the ANN to have a monotonic
relationship between the irradiation dose and void swelling %.

The last benchmark is the Multioutput Gaussian Process (MGP) regression [36]. A GP is a
collection of random variables where any finite number of which has a multivariate Gaussian
distribution. Although GPs are very flexible and effective at modeling arbitrary functions, they
exhibit poor performance in extrapolation tasks. To address this limitation, we adopt a MGP with
a separable covariance structure proposed by Bonilla, Chai, and Williams [36], which can transfer
information across different units to improve extrapolation performance.

For all benchmark methods, the input is the concatenated vector of the irradiation dose value

and covariates. In other words, the input for the jth measurement of unit i is the vector

T . . s
[xij, Z1i, o, Zpi] € RPHD*L and the output is ¥;. The obtained predictions ¥;; are then evaluated

on three metrics: Mean Absolute Error (MAE), Mean Squared Error (MSE), and Mean Absolute

Percentage Error (MAPE). Equation (2.10) lists the exact formulas for each metric in detail:

. ~ . ~ \2
Shest Ui |y — 7, | YieseyUi (v - 7))
=1 aj=1lty T i _ 4i=1 4aj=a Uy T
MAE = Shest 1 ,MSE = ST )
A 4

i=1 i=1

) (2.10)
Ites i {
ZiifzjleYij — ¥/

MAPE = Trot
Zizl Ui

where U; is the number of unobserved swelling measurements for unit i, and I, is the total
number of test units. All benchmark methods are implemented in Python, while the proposed
Bayesian hierarchical piecewise linear regression model is implemented in the R package brms
[37] with a Stan backend [30]. The detailed parameter settings used in the evaluations can be found

in the supplementary materials.
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2.5.2 Model Validation Methods

In this subsection, we discuss the methods used for checking the proposed Bayesian model.
First, we check the validity of the Bayesian approach by comparing the prediction results with
maximum likelihood estimation. Then, we check the adequacy of the prior distribution of the mean
of the changepoint parameter y3, which is essential in correctly identifying the regime information.
Finally, we examine the Bayesian model fitting results by checking the posterior predictive
distribution and computing the LOO-PIT (leave one out probability integral transform) values.

As mentioned in Section 2.4.3, the prior distribution on the changepoint parameter y 5 affects
the estimation of the changepoint between the transient and the steady state regimes. To assess the
influence of the prior distribution, we first determine the true regime information by examining
the relevant literature. For example, it is known that the 316 stainless steels treated with Carbon
and Nitrogen solutions have a steady state that begins after 0.02 dpa with normalization [38].
Similarly, the dpa value at which voids are first observed can be used as the changepoint. After
obtaining the true regime information of the test units, we assess the regime prediction accuracy
in two ways. For the incomplete units, the predictions are evaluated by the percentage of correctly
predicted regions. For the complete units, the predictions are evaluated by MAE between fp;
and Bcp;.

Finally, we check the adequacy of the model fit by examining the posterior predictive
distribution. Posterior predictive checking essentially compares the distribution of the true void
swelling values Y;; and the simulated void swelling values Yl;ep from the HMC algorithm. The
LOO-PIT method calculates the probability distribution for each marginal prediction separately,
and then compares these separate distributions to the existing data distribution to check model

calibration or find outliers.



27

2.5.3 Evaluation Results: Scenario 1 (Partially Observed Units)

In this subsection, we compare the performance of the proposed model to the benchmark
methods. Specifically, we assume that the training units have access to all measurements, while
the test units have partial access to the first few measurements. Based on the available
measurements, our task is to predict the unobserved (hidden) void swelling % of the test units. To
begin, the units are first split into training and test units. In particular, the 12 units that have clear
observable swelling trends with more than 3 observations are divided into train/test sets based on
4-fold cross-validation. The remaining 279 units with 3 or fewer observations are always regarded
as training units. As a result, each evaluation iteration has 279+9=288 training units and 3 testing
units. For all evaluations, the NUTS ran with 4 chains and 6000 iterations, in which the first 3000
iterations were used as the warm-up stage. Also, the evaluations are repeated 50 times. Note that
the accuracy of the NUTS sampler and its integration process are evaluated via posterior predictive

checking and LOO-PIT values. The detailed results are provided in the supplementary materials.

Table 2.2 Evaluation results for scenario 1, measured by Mean Absolute Error (MAE),
Mean Squared Error (MSE), and Mean Absolute Percentage Error (MAPE) (Boldface:

Lowest error, Paranthesis: Error standard deviation).

1 observation/unit 3 observations/unit

Model MAE MSE MAPE MAE MSE MAPE
Proposed Model | 14362 11.476 0.4418 1.3948 9.1789 0.2526
(0.1390) | (0.4092) | (0.0148) | (0.0549) | (0.4938) | (0.0214)

Linear
Regrossion (LR) | 9212 13.781 1.0529 1.8614 15.593 0.4474
Random Forest | 2.2086 10.379 0.8326 2.4851 11.811 0.6204
(RF) (0.0644) | (0.4623) | (0.0191) | (0.0663) | (0.6560) | (0.0181)
Gradient Boosted | 2.0691 8.5278 0.5646 1.9421 7.3637 0.4128
Trees (GBT) (0.0825) | (0.6611) | (0.0140) | (0.0707) | (0.3912) | (0.0221)
Artificial Neural | 1.6988 12.242 0.8360 1.7593 14.648 0.4330
Network (ANN) | (0.1189) | (0.9687) | (0.1256) | (0.3072) | (1.4157) | (0.0684)
Gall\fs‘;ligfg;ztceess 2.9163 22.665 0.6407 2.5847 19.983 0.3524
(MGP) (0.2141) | (3.3855) | (0.0612) | (0.4289) | (5.1449) | (0.0489)
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Figure 2.7 Box plot of MAPE results for scenario 1
(a) 1 observation/unit (b) 3 observations/unit

The results of the “partially observed” scenario are organized in Table 2.2, in which the term
“observation/unit” denotes the number of initially observed measurements from the test units. For
instance, “1 observation/unit” indicates that the first measurement of the test units is observed and
then we predict the remaining future measurements of the test unit. For visual clarity, the lowest
errors (i.e., best-performing model) in each category are boldfaced. The standard deviations of the
errors are shown in parenthesis. In addition, the error distribution in terms of MAPE for each
method is shown in Figure 2.7.

In addition to the error metrics, the predicted swelling trends must be monotonically
nondecreasing (i.e., there is no decrease in swelling except for small measurement errors) with a
clear identification of the changepoint when applicable. Figure 2.8 and Figure 2.9 show the
predicted swelling curves for two sample units with normalized dpa values. The first unit (id = 2)
shows an incomplete unit with only one identifiable regime, while the second unit (id = 7) shows

a complete unit with two identifiable regimes.
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Figure 2.8 Benchmark method plots from unit 2 and unit 7 (1 observation/unit)

The results from Table 2.2 highlight the superior performance of the proposed model over
existing benchmark methods in terms of MAE and MAPE. For other benchmark methods, the
ANN and LR methods’ accuracy suffers due to their positive constraints, while the RF, GBT, and
MGP methods frequently result in erroneous predictions. For instance, the GBT, MGP, and RF
predictions for Figure 2.8 in unit 2 all return locally decreasing swelling trends. On the contrary,
the proposed method returns predictions that are accurate and coherent with the properties of void
swelling (i.e., nondecreasing and clearly identifies two trends when applicable). The proposed
model performs slightly less than the GBT in terms of MSE. However, it is important to highlight
that MSE is a less stable metric than MAE or MAPE as it tends to exaggerate the errors made by
outliers due to the squared term. In addition, the GBT had higher percentage errors in earlier
transient regimes, resulting in higher MAPE values. Also, we confirm from the swelling
trajectories of unit 2 and unit 7 that the model predictions improve as more measurements are

available. For instance, unit 7’s predictions in Figure 2.8 with 1 observation/unit identify the
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changepoint to be located around 0.5 dpa. However, in Figure 2.9 with 3 observations/unit, the

model predicts that the changepoint is around 0.8 dpa, which is coherent with the true changepoint

value.

Unit 2 (incomplete) Unit 7 (complete)
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N
o

-
o

0.4 0.6 0.8 0.4 0.6 0.8 1.0
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ANN +4 LR > Proposed @ True (observed)
© GBT =« MGP RF O True (unobserved)

Figure 2.9 Benchmark method plots from unit 2 and unit 7 (3 observation/unit)
We first compare the Bayesian predictions from the MLE predictions. Figure 2.10 illustrates

the predicted swelling curves with the posterior predictive distribution of a randomly selected test
unit assuming different levels of data availability. Note that the posterior samples outside the 2.5%
and 97.5™ quantiles are neglected to remove the effect of extreme outliers. The figure shows that
the predictions from the ML approach suffer from high bias. On the contrary, the predictions from
the Bayesian approach accurately capture the uncertainties in its predictions with the prediction
intervals covering the true swelling values, and the mean predictions are much closer to the true
values. The prediction errors of each parameter estimation method are shown in Table 2.3,

representing the mean and standard deviation values derived from 50 repetitions. The results
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demonstrate the superior performance of the Bayesian approach over the maximum likelihood

approach. The lowest errors are boldfaced for visual clarity.

1 observation/unit 3 observations/unit
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Figure 2.10 Proposed model’s predictions vs. MLE predictions for a sample unit (id = 3)
(Black: True, Blue: Proposed Model, Red: Prediction intervals (Proposed Model), Jade:
ML)
Table 2.3 Evaluation results for Bayesian parameter estimation vs. maximum likelihood,

measured by MAE, MSE, and MAPE. (Boldface: Lowest error, Paranthesis: Error standard

deviation).
1 observation/unit 3 observations/unit
Model MAE MSE MAPE MAE MSE MAPE
Proposed Model 1.4362 11.476 0.4418 1.3948 9.1789 0.2526
p (0.1390) (0.4092) (0.0148) (0.0549) (0.4938) (0.0214)
Maximum
Likelihood (ML) 2.3068 15.472 0.6947 2.2297 13.503 0.5644

Finally, we examine how the proposed model identifies the regimes via informative prior
distributions. Out of the 12 test units with more than 3 observations, 10 units are incomplete with
only one regime information, and 2 units are complete with both regimes. All 10 incomplete units

are determined to be in the steady state regime.



priors on Y3

Metric\Prior Uniform(-4,4) Normal(0,2)
(Uninformative) (Informative)
% Correct 34.20% 80.80%
(incomplete) (4.9857) (8.533)
MAE 0.2948 0.1286
(complete) (0.0218) (0.0312)
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Table 2.4 Accuracy of the proposed method in determining regimes with (un-)informative

The regime prediction results are shown in Table 2.4, where the evaluations are repeated 50
times, and the standard deviations are reported in parenthesis. Note that the Uniform(-4,4) prior
represents an uninformative prior, while Normal(0,2) is a more informative prior with tailored
variance parameters to control the values of Bcp;. Results of Table 2.4 indicate that the proposed
model is sensitive to the choice of the prior distribution on y3, highlighting the importance of

incorporating domain knowledge by choosing informative priors.

2.5.4 Evaluation Results: Scenario 2 (Cold Start Units)

The second scenario is the “cold start” unit that was introduced at the end of Section 2.4.4.
Recall that the cold start unit only has access to the covariate information. Since there are no past
measurements to estimate the void swelling trajectory, it is much more difficult for traditional
data-driven methods to accurately estimate the trend of a cold start unit.

Analyzing cold start units holds great potential for practitioners. For example, suppose that a
researcher is interested in investigating the effect of irradiation temperature on the swelling of a
new type of austenitic steel. Instead of manually conducting expensive experiments, researchers
can simply plug in the cold start unit’s covariates into the proposed model and examine the

predicted void swelling trends.
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Since this demonstration is a proof-of-concept, the predictions are evaluated on whether the
predicted swelling curves follow the same trend as the true swelling curves. To combat the limited

data availability of the cold start setting, numerical experiments are conducted under a leave-one-
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Figure 2.11 Scenario 2 predictions (cold start)
(Black: True, Blue: Proposed Model, Red: Prediction intervals (Proposed Model))

out cross-validation setting. In other words, in each cross-validation iteration, we have one test
unit (with no available measurements) and the remaining 11+279 = 290 units as training units
(with all measurements available). To clearly observe the swelling trends, we plot the predictions
for 4 units (2 incomplete and complete units each) alongside the posterior predictive distribution
in Figure 2.11. From the figure, although the range of the posterior predictive distribution is wider

than that of scenario 1, most of the probability mass is located near the true swelling values. The
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results show that the covariate information alone can provide valuable guidance for the proposed

model to accurately estimate the general swelling trends.

2.6 Discussion & Conclusion

In this case study, we have considered a novel data-driven Bayesian piecewise hierarchical
linear regression to directly model and predict the degradation status of materials subject to void
swelling. The proposed method has the following contributions. First, it incorporates domain
knowledge of void swelling by imposing specific shape constraints. Second, the joint effect of
multiple covariates is naturally represented through the hierarchical structure of the model. Finally,
the proposed model overcomes the limited availability of the swelling dataset by leveraging the
advantages of a Bayesian approach. In particular, the uncertainty quantifications of the predicted
swelling values to assess the reliability of predictions.

Numerical studies on a real-life void swelling dataset showed that the proposed model
outperforms traditional data-driven models such as LR, ensemble methods, MGP, and ANN in
predicting the swelling values. In addition, the estimated 95% credible intervals included the true
swelling values for all units. Even for cold start units, the proposed model still managed to provide
reasonable estimates of the swelling trends. Overall, the proposed method has demonstrated the
effectiveness of a data-driven method tailored for void swelling and the potential to be used as a
reference for practitioners. Furthermore, the predicted degradation status can be used to construct
early warning indicator systems that can greatly aid NPP maintenance and prevent unexpected
failures and catastrophic accidents.

The proposed Bayesian hierarchical model is not just limited to void swelling and industrial
applications and can also be used in a wide range of systems with nested/hierarchical data

structures. Here, although we choose the level 1 regression shape to be a piecewise linear trend,
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the model can be easily modified to accommodate various trends. In addition, prior knowledge of
the engineering system can be incorporated into the model by imposing constraints on the
regression parameters. In summary, we hope that this case study will catalyze future research that
uses Bayesian hierarchical models to perform predictive maintenance and degradation modeling
in both traditional and nontraditional applications.

Future studies will focus on the following topics. One potential topic is optimal covariate design
to extend the swelling period of a unit to its maximum extent. This is also known as informed alloy
design, in which we can employ optimization techniques to identify optimal covariates that
elongate the lifetime of a unit as much as possible. Extending the lifetime of a unit can result in
better experimental design and aging management in nuclear facilities. Second, we can consider
active learning techniques to adaptively obtain experimental measurements. For example, using
the entropy criterion, we can collect subsequent swelling measurements at the irradiation dose
level with the highest entropy (i.e., largest predictive uncertainty). As we make informed sampling
decisions guided by active learning, we can achieve more accurate estimations of swelling

processes with a given number of measurements.



2.7 Supplementary Materials

2.7.1 Parameter Settings for Benchmark Methods

This section lists the parameter settings for the benchmark methods used in the evaluations in

Section 2.5. The model parameters in Table 2.5 were optimized via K-fold cross validation with

K =4 except for the monotonic ANN and MGP.

Table 2.5 Optimized model hyperparameters.

Model

Parameters

Sklearn.linear model.Ridge
(Monotonic Linear Regression)

Alpha=0.1
Positive = True

Monotonic ANN

Activation: ReLU

Early Stopping: disabled
Optimizer: Adam
Epochs = 100

Learning Rate: 0.001
Batch Size =32

Layer Size = [40,40]

Sklearn.ensemble.RandomForestRegressor

N_estimators = 80

(Random Forest) Max depth =7
Sklearn.ensemble.GradientBoostingRegressor N_estimators = 50
(Gradient Boosted Trees) Max_depth =8

Multioutput Gaussian Process

Covariance = Rational Quadratic

2.7.2 Model Adequacy Checking

The adequacy of the proposed model is evaluated using the posterior predictive checking and
LOO-PIT (leave one out probability integral transform). Posterior predictive checking overlays

the simulated densities of ¥;;” with the true density of ¥;;. Here, Y;; represents the jth swelling

measurement of unit i. Figure 2.12 and Figure 2.13 show the posterior predictive checking plots

from the 4-fold cross-validation. The results demonstrate that the simulated densities overlap with

the true densities, suggesting that the proposed model has a good fit.
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The second method for model adequacy checking is the LOO-PIT values. The LOO-PIT
method calculates the probability distribution for each marginal prediction separately, and then
compares these separate distributions to the existing data distribution to check model calibration
or detect outliers. A model with good fit typically shows no major deviations with asymptotically
symmetric trends in the LOO-PIT plots. Again, we observe from Figure 2.14 and Figure 2.15 that
there are no significant outliers from the calculated LOO-PIT plots, further showing that the model

has a good fit.
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Figure 2.15 LOO-PIT curves, 3 observations/unit

2.7.3 Recommendations for Choosing the Prior Distributions

Here, we provide guidelines on how to choose the appropriate prior distributions for the model
parameters. First, one must decide between noninformative and informative prior distributions.
Generally, it is recommended to use informative priors when there is strong prior belief about the
parameters. If there is no empirical studies or expert knowledge to draw insights from, then a
noninformative prior distribution is recommended. Second, we select the probability distribution
based on the nature of the parameters, such as bounded versus unbounded distributions, or positive
constraints on the parameter values. Finally, after specifying the appropriate prior distributions,

we then perform sensitivity analysis by trying different priors.
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Chapter 3  An Integrated Uncertainty Quantification

Model for Longitudinal and Time-to-event Data

3.1 Introduction

Recent advances in sensor technologies have led to the widespread use of multiple sensors to
simultaneously monitor the various aspects of the condition of an engineering system and obtain
an accurate diagnosis and prognosis of a system [7], which have significantly improved system
profitability and reliability by preventing unexpected failures.

To accurately characterize the health of a system and predict the remaining useful life (RUL),
existing approaches generally extract prognostic insights from either longitudinal sensor data or
time-to-event/failure data. An example of such longitudinal data is multisensor signals (e.g.,
vibration, temperature, pressure) from manufacturing systems. Meanwhile, event data of the same
system are typically available in the form of machine failure/maintenance logs. Each data type
offers distinct perspectives on the health of a system. While longitudinal data contains information
on signal evolution and temporal patterns [39], time-to-event data provides insights into censoring
and the occurrence of failure events [40]. However, most current approaches do not take full
advantage of the insights in both data types and instead opt to analyze one data type separately.
Specifically, approaches based solely on longitudinal data typically define failure as an event when
the degradation signal (or a function of degradation signals) reaches a fixed, pre-determined failure
threshold (i.e., soft failure) [41]. Once a soft failure occurs, the system’s performance is no longer
considered to meet the required standards. A disadvantage of this assumption is that it can be

difficult to define an exact failure threshold value in practice due to unit-to-unit variability and
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multiple failure mechanisms. On the other hand, approaches based only on time-to-event data
define failure in terms of risk (i.e., hazard) of failure (i.e., hard failure) [42].

To harvest the benefits of both longitudinal and time-to-event data, many researchers have
explored joint models to simultaneously analyze both types of data. Joint models simultaneously
incorporate both data types by first modeling the degradation signals via a mixed-effects model
and then uses the fitted signals as time-varying covariates of the Cox PH model. Joint models do
not require a pre-determined failure threshold as it naturally describes the failure probability via
the hazard function of the Cox PH model. In addition, joint models provide unit-level modeling of
the failure times and RUL while continuously tracking the evolution of the degradation signals.

For instance, Liao et al. [43], first used the linear Cox model with logistic regression to predict
the lifespan of a bearing. Later, Zhou et al. [40] proposed a joint model with Bayesian updating to
predict the RUL of automotive lead-acid batteries.

Unfortunately, a key drawback of existing joint models is their heavy reliance on restrictive
parametric assumptions. The mixed-effects model requires one to predefine the functional form of
the longitudinal data. As a result, it is susceptible to model misspecification errors and struggles
to capture complex degradation trends. In addition, the linear Cox model is also limited by its
strong parametric assumption. In particular, its linear-risk assumption restricts the model to only
capture linear interactions between the log-hazard function and the covariates.

To relax the parametric assumptions, recent efforts have replaced the mixed-effects model with
nonparametric methods. For instance, Yue and Kontar [44] proposed to model the longitudinal
data by a multivariate Gaussian convolutional process (MGCP). While the flexibility of the MGCP
has shown great potential in capturing the unit-to-unit variability in the signal trajectories similar

to the proposed method, it suffers from drastically increased computational and storage costs.
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Hence, it is less appealing for online RUL estimation especially based on large datasets. Zhou et
al. [45] used a functional principal component analysis (FPCA)-based approach to model the
signal trajectories. Although this nonparametric method is faster than the MGCP, it still ignores
the degradation information embedded in the time-to-event data.

On the other hand, to overcome the linear-risk assumption in the linear Cox model, researchers
have proposed other survival models with different structures. For instance, survival trees adopt a
nonparametric, tree-based approach to model the interactions between the covariates and the log-
risk function [46]. Other examples include accelerated failure time (AFT) models, which assume
a linear relationship between the covariates and the log-transformed failure time [47]. Despite the
relaxed modeling assumptions, both models directly use the longitudinal signals as time-varying
covariates, which is known to result in biased and error-sensitive estimations.

Another approach to overcome the linear-risk assumption is to use a neural network (NN) to
allow the modeling of nonlinear covariate interactions. Since NN can easily model arbitrary
functions, NN-extended Cox models have received more attention in recent years and have
outperformed traditional survival models in a variety of clinical applications, e.g., DeepSurv [48],
PyCox [49], and SurvivalNet [50].

Despite their increased flexibility and predictive performance, directly using the predictions
from NN-extended Cox models can result in detrimental errors for prognostics. First, a major
limitation of these approaches is that they rely on a fixed, deterministic NN without uncertainty
quantification to model the covariate interactions. This can be problematic for degradation
applications, as limited data availability and the inherently stochastic nature of degradation
processes make it impractical to only provide point RUL estimates with absolute certainty [10].

Moreover, deterministic NNs are prone to overfitting, especially when the amount of training data
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is limited [51]. To ensure that the NN-extended Cox models provide accurate and reliable
modeling of the degradation process, it is critical to quantify the uncertainties involved in the RUL
predictions. Indeed, practitioners can leverage the RUL uncertainty quantifications to assess the
quality of the predictions and detect abnormal model behavior. In addition, uncertainty
quantifications can help stakeholders make better informed decisions [52]. For instance, a
prognostic model with uncertainty quantification may predict that there is a 90% probability that
the RUL lies between 800 and 1200 hours. If the cost of unexpected failure is high (e.g., nuclear
power plant), we may choose to conduct maintenance activities early (e.g., around 800 hours). On
the other hand, if the corrective maintenance cost is low while the preventive maintenance cost is
high, we may plan maintenance activities later (e.g., around 1200 hours) to avoid unnecessary
expenses. Hence, it is highly desirable to have RUL predictions with accurate uncertainty
quantifications.

However, uncertainty quantification in joint models is challenging due to the complex model
structure. Indeed, joint models contain two sub-models for each type of data, and propagating
uncertainties across these sub-models with varying model parameters is no trivial task. Currently,
existing methods only offer incomplete uncertainty quantifications by considering the
uncertainties from only either the longitudinal sub-model [40], [44], [45], [53] or the time-to-event
sub-model [54]. For instance, Wen et al. [53] recently proposed an advanced joint model (referred
as “NN-Joint”) in which the longitudinal data is modeled via a mixed-effects model, and the time-
to-event data is modeled by a NN-extended Cox model. Although the NN-Joint model achieved
satisfactory results by relaxing the linear-risk assumption, its predictions neglect the uncertainties
in the time-to-event sub-model. Thus, there is still a lingering demand for a more comprehensive

framework that can deliver integrated uncertainty quantifications for both data types.
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To fill this research gap, we present a flexible, integrated uncertainty quantification model
(referred as “IUQ” hereafter) for the joint analysis of longitudinal and time-to-event data. The
proposed IUQ model has two parts: a nonparametric FPCA-based model for the longitudinal data,
and a Bayesian Neural Network-based Cox model (i.e., BNN-Cox) model for the time-to-event
data. The major advantages of the proposed IUQ model are as follows. First, the proposed IUQ
model provides well-quantified, integrated uncertainty estimates by integrating uncertainties
across the two sub-models. To the best of our knowledge, this is the only model in the literature
that systematically integrates the uncertainties involved in jointly modeling both longitudinal and
time-to-event data. Second, the IUQ model allows more flexibility in modeling both types of data
since FPCA and BNN do not impose strong parametric assumptions. As a result, the [UQ model
can well characterize a variety of degradation signal trajectories and covariate interactions. Third,
the proposed model allows online updating of the RUL distribution. Similar to existing joint

models [3], [16] the proposed IUQ model can continuously update the RUL distribution and make
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Figure 3.1 Overview of proposed joint modeling approach
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highly individualized, real-time RUL predictions of an in-service unit based on its new
observations. Finally, the proposed model provides reliable RUL estimates across varying levels
of data availability.

Figure 3.1 illustrates the overall framework of the proposed joint modeling approach. In the
offline stage, the FPCA-fitted degradation signals are fed into the BNN-Cox sub-model as time-
varying covariates along with time-to-event data to estimate the model parameters. For the online
stage, the newly collected measurements from the in-service unit are used to update the FPCA
parameters via a Bayesian scheme. The calculated posterior FPCA parameters are then used to
predict future degradation signals. In particular, the uncertainties in the FPCA parameters are
integrated with the uncertainties in the BNN-Cox parameters to provide accurate survival and
subsequent RUL estimates of the in-service unit in real time.

The remainder of the paper is organized as follows. In Section 3.2, we provide the details of the
proposed joint modeling framework, offline parameter estimation, online updating procedures, and
model prediction with uncertainty quantification. In Section 3.3, we conduct evaluations on both
synthetic and real-life data. Finally, Section 3.4 summarizes the proposed method with its

contributions and discusses future work.

3.2 Methodology

In this section, we will introduce the proposed IUQ model in detail. Sections 3.2.1 and 3.2.2
each describe the FPCA sub-model for longitudinal data and BNN-Cox sub-model for time-to-
event data. Section 3.2.3 then elaborates on the offline training and parameter estimation. Finally,

Section 3.2.4 discusses online RUL prediction with the uncertainty integration approach.
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3.2.1 Sub-model 1: FPCA-based Degradation Modeling for Longitudinal
Data

Here, we discuss the formulation of the FPCA-based degradation sub-model for longitudinal
data. FPCA is one of the most popular dimensionality reduction methods for analyzing
functional/longitudinal data. Specifically, FPCA assumes that the longitudinal data can be
decomposed into a linear combination of orthonormal basis functions (i.e., eigenfunctions) and
coefficients (i.e., FPC scores). Here, the eigenfunctions are chosen to explain the dominant modes
of variation within the observed longitudinal data.

While several nonparametric approaches such as the Gaussian processes (GP) or splines can be
employed to model longitudinal data, we choose to use FPCA due to its several practical benefits.
First, performing FPCA is computationally less demanding than GP-based methods as it does not
require the inversion of a large covariance matrix. Second, FPCA is effective at handling sparse
and irregularly observed data [55], which is common in many degradation applications. Third, we
can quantify the uncertainties in the longitudinal signals during online prediction by deriving the
posterior distribution of the FPC scores.

Suppose that longitudinal data are collected over a compact time domain 7" € [0, T}y, 4], Where
Tmax 1s the maximum possible event or failure time. The longitudinal data are assumed to be
generated from a square-integrable stochastic process Y(t) with mean function u(t) and
covariance function X(t, t') = Cov(Y(t),Y(t’)), (t #t'). Mercer’s theorem implies that the

covariance X(t,t") can be expanded into an infinite sum of eigenfunctions ¢ (t) and eigenvalues

Ay for k=1,2,.. under the linear Hilbert-Schmidt operator G:L*(T) - L*(T), G(f) =

J Z(t,t")f (t)dt. Specifically,
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I(t,t) = Cov(Y(D),Y(t)) = lekqbk(t)qbk(t’), (t,t' €T). (3.1
k=1

Note that the eigenvalues are in a decreasing order such that 4; =1, > ---0, and the
eigenfunctions ¢ (t) serve as orthonormal basis functions in the L?(7") Hilbert space. Based on
equation (3.1), the Karhunen-Loé¢ve decomposition of the centered stochastic process Y (t) — u(t)

can be expressed as:
V(O 1) = ) Epi®) +2(0) (32)
k=1

where &, = f:r (Y(t) — ,u(t))qbk (t)dt is the kth FPC score associated with the kth eigenvalue 1;,

and &(t) is the additive Gaussian noise. The FPC scores are uncorrelated (i.e., Cov(&y, &) =
0,k # k') with expectation E[&,] = 0 and variance Var[é,] = A;. In practice, the top few FPC
scores explain most of the variability in the observed curves, so one can use the approximate

decomposition based on the first Q FPC scores:

Q
V() % u(©) + ) S+ £(0), (33)
k=1

where Q is chosen based on a statistical criterion such as the modified Akaike criterion, Bayesian
information criterion, or proportion of explained variance [55]. Next, we elaborate in detail on how
to employ FPCA to model the degradation signals (i.e., longitudinal data) without making
restrictive parametric assumptions on the degradation trend.

Suppose that there are training data collected from N units, with 7 = {1,2, ..., N} denoting the
set of training units. Each unit i € 7 has an associated dataset D; = [§;, K;,Y;.], in which §; =
I(F; < Cy), I(-) is an indicator function, and K; = min{F;, C;} with its failure time F; and

censoring time C;. Here, an observation is censored if we do not observe the exact failure time and
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we only have observations up to a specific time. Each unit collects degradation signals from J

sensors simultaneously and its observed degradation signals are denoted by Y .:
Via(tin) - Yiy(tin)

Yi.= (YY) = : " :
Via(tin) = Yiy(ting)

€ R™Y, (3.4)

where Y;;(t) is the measurement of sensor j in unit i at time t such that ¥;; =

[Yi, j(ti,l)r e Y j(ti,ni)]T, n; represents the number of observations for unit i, and t; ,, is the n;th
signal observation time of unit i. The degradation signals are also assumed to be observed within
a compact time domain T = [0, Ty, 4], Where T4, can be learned based on domain knowledge or
historical degradation signals. For each sensor j € {1, ..., ]}, we apply the FPCA decomposition as
follows:
Qj
Yij(®) = () + X j(8) + &;() = p;(0) + z $ijk Pj () + & ;(0). (3.5)
k=1
Here, u j(t) is the mean function of sensor j evaluated at time ¢, X; ; (t) represents the stochastic
random deviation from the underlying degradation trajectory, &; ; is the kth FPC score of sensor
j of unit i, ¢; , (t) is the kth eigenfunction of sensor j at time t, &; ;(t)~N (0, ajz) is the additive
Gaussian noise for each sensor j, and Q; is the number of top FPC scores used to estimate sensor
Jj’s signals. Under this FPCA decomposition, the degradation signal Y; ;(t) follows a stochastic
process with mean function p;(t) and stochastic deviations X; ;(t) with mean zero and covariance

X(t, t").
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3.2.2 Sub-model 2: Bayesian Neural Network-Cox (BNN-Cox) for
Time-to-event Data

In this subsection, we introduce the BNN-Cox sub-model for time-to-event data. As illustrated
in Figure 3.1, the fitted degradation signals obtained from the FPCA sub-model will be
incorporated into the Cox model as time-varying covariates. As a result, throughout this paper, we

will use the terms “time-varying covariates” and “degradation signals” interchangeably.

Let ¥;,(6) = [01(6), .., B, ()] € RI¥T, where %, ;(t) = X, ;(£) + fi;(©), denote the FPCA-
fitted multisensor degradation signals. In traditional joint models [56], the log hazard function is
assumed to be a linear combination of the fitted signals (i.e., covariates ?i,:(t)). In particular,

?i':(t) are plugged into the linear Cox formula such that:

Ry (£17:,(8)) = ho(2) exp[@™7;,(8)], (3.6)
where @ = [w;, ..., w;| € R/ represents the Cox regression coefficients of ¥; (), ho(t) is the
baseline hazard function, and h; (t|?i_:(t)) is the overall hazard function of unit i. Nevertheless,

in practice, the log hazard function frequently has nonlinear relationships with the degradation
signals (i.e., covariates).
As reviewed in Section 3.1, several methods have been proposed to relax this linear-risk

assumption by using ?i,:(t) as inputs of a deterministic NN [48], [49], [53]. In particular, the NN

output, denoted as g;(t), replaces the linear combination w”¥;.(t) in equation (3.6) (i.e., g;(t) =

g (?i,:(t))), resulting in the following hazard h;(t) and survival S;(t) functions:

by (£17:,(6)) = ho(t) explg; (®)], (37
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5:(07,@) = exp - [ m(o)ds ) =exp (- [ o ewtaonas).  69)
0 0

However, a critical disadvantage of modeling the function g using a deterministic NN is that its
output g;(t) is a fixed-point estimate that does not consider the uncertainties in the NN parameters.

To overcome this limitation, we propose to leverage a BNN that allows uncertainty
quantification of the NN parameters and predictions. Compared to conventional deterministic NN,
a BNN provides prevention against overfitting, increased modeling flexibility, and better small
sample properties [57]. Specifically, a BNN places a prior distribution over its weight parameters
Qpyy and uses Bayes’ theorem to compute the posterior predictive distribution. While
theoretically sound, the main challenge of using a BNN is that the posterior distribution of Qgyy
is generally intractable. To tackle this issue, we perform variational inference by introducing a
tractable approximate variational distribution q, and then minimizing the Kullback-Leibler (KL)
divergence between q(Qpyy) and the posterior distribution of Qgyy. In practice, variational
inference in a BNN is done by using the popular Monte Carlo dropout (MC dropout) [58]. Dropout
is a technique normally used to prevent overfitting in training NNs by randomly dropping nodes
and their connections during training [59]. Unlike regular dropout where the “dropping” only
happens during model training, MC dropout randomly drops nodes and their connections in both
training and testing. In other words, based on the trained NN, we randomly drop some of its nodes
and connections during testing as well and perform a (stochastic) forward pass. Studies [58], [60]
have shown that conducting this forward pass with MC dropout is equivalent to performing
variational inference in a BNN.

To better understand how a BNN quantifies uncertainty via MC dropout, we defer the details

of BNN training to Section 3.2.3, and suppose that we now have a trained BNN g and a new test
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unit 7 with predicted degradation signals ¥,..(¢t) = [V;.1(2), ..., ¥, (t)]T € R/*! from the FPCA

sub-model . The approximate predictive distribution can then be calculated by

q(g:

estimate the mean and the variance by plugging in ?r‘:(t) as inputs to the trained BNN and

)=fp(gr(t)r?r,:(t),QBNN)q(QBNN)dQBNN . In practice, we empirically

repeating V stochastic forward passes through the network to obtain V Monte Carlo samples

gﬁl)(t), s gﬁv)(t), . grv) (t). Each g(v)(t) ER,(v=1,..,V) comes from the distribution

p(gr

q(Qpyn)- Finally, we use moment-matching as shown in equation (3.9) and equation (3.10) to

I(B,UA),N), where QéNN is drawn from the approximate variational distribution

) [58]. In practice, we recommend setting the

estimate the mean and variance of g ( gr

dropout rate as 0.1 or 0.2 based on the comments from the original authors.

14
1
J(or () = WL O] (39)
v=1

[Eq<gr
Vv

>(gr(t))zéz IO ( Zg“”(t)) (3.10)
v=1

3.2.3 Offline Parameter Estimation

After defining the two sub-models, we discuss how to estimate the model parameters in an

offline setting. Let Q = {u(t), 62, ¢(t), A, Qgyn, ho(t)} denote the unknown parameters of the
proposed TUQ model, in which u(t) = [,ul(t), o | ](t)]T is the set of mean functions for each

T .. .
sensor, 0% = [012, ...,ajz] € R/*1 are the additive Gaussian error terms for each sensor, A =

J T
[/11; ---:11] e R&j=120%1 i the set of eigenvalues such that 4; = [Ajjl, ...,lj,Qj] € RY*1, and
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o) = [¢1(t), e @y (t)]T is the corresponding set of eigenfunctions such that ¢;(t) =
[;1(D),.... j.Q; (t)]. To estimate the model parameters £, a natural approach is to maximize the

joint likelihood function. In particular, the joint likelihood function £(D; Q) can be written as

follows:

L(D;Q) =p(K,8,Y;Q) = fp(K, 8,Y|E Dp(EQ)d§

_ fp(K,slf; Dp(YIE V(& Q)dE 3.11)

N
= f HP(Ki; 8:1&; Qp(Y:.|&; Q)p(E; DdE,,
i=1

where K = [Ky, ..., Ky]" € RN, § = [6y, ..., 0y]T € RV and §; = [§;4;...; &;;] € RIO<L

The joint likelihood function in equation (3.11) consists of three parts, where each component
corresponds to the BNN-Cox sub-model (p(K;, §;|§;; Q)), the FPCA sub-model (p(Yl-':lfi ; Q)),
and the prior distribution of the FPC scores (p(&;; Q)). Specifically, the exact form of each
component can be written as follows:

p(K;, 8;1§:; Q) = hi(K;)%S;(K))

K; (3.12)
= {ho(K;) exp[g;(K)1}% exp {— ho(s) exp[g;(s)] ds},
] a 3 1 = 7l (3.13)
p Yi,: fi;ﬂ = 1% Yi,' Ei,';ﬂ = 27'[0-.2 _?exp{_ L L] }, .
<|>g(,|,)g(,) 7
p(&; Q)~D, (3.14)

where D represents a general distribution that is selected based on the modeling assumptions.
Directly optimizing the joint likelthood in equation (3.11), e.g., via the Expectation-
Maximization algorithm with numerical integration [61] may lead to heavy computational loads

and even numerical instability issues due to the high-dimensional integration. To alleviate this
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issue, we adopt the “two-stage” approach to sequentially estimate the IUQ model’s parameters
[62]. Here, we first optimize the FPCA parameters and then sequentially estimate the BNN-Cox
parameters. Many existing studies have demonstrated that such a two-stage approach can yield
competitive results with negligible bias as directly estimating the joint model [14], [23].

For the FPCA sub-model, we follow the popular approach by [63] where the mean function
f(t) and the covariance function fj (t,t") are estimated by smoothing methods like local linear
smoothing or spline smoothing, and ajz is estimated by smoothing Y; ;(t) — f1;(£)? — £;(t, t)
against t using a local linear smoother. One point of caution is that local linear smoothers can
introduce unwanted bias during the estimation of the mean and covariance functions, especially
under signal truncation. In this situation, we can replace the local linear smoothers with penalized
splines [64] to mitigate the estimation bias. Also, note that since we assume a random signal
truncation scenario based on hard failures, the degree of bias is negligible compared to the soft
failure assumption [40].

Finally, the eigen-components are derived by solving the eigen-equations:
L 2J' (&t ‘ﬁj.k(t)dt = )ij,k(ﬁj,k (t), (3.15)

where the eigenfunctions are constrained to satisfy [ @;(t)*dt =1 and [, $;x(t)-
qu,k’ (t) =0 for k < k'. In practice, deriving the FPC scores based on their definition &, =
fT (Y(t) — u(t))prdt can be challenging when the observed longitudinal data is highly sparse.

To overcome this challenge, a widely used approach [63] is to assume that &; ; , follows a Gaussian

distribution and then estimate the FPC scores for unit i through the conditional expectation such

that & jx = E[Sijx|Vij] = Ak @i By (Vi — Bij) where @), = [ (tin), ---,fﬁj,k(ti,n,-)]T»
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Hij= [ﬁi,j(ti,l); ...,ﬁi'j(ti'ni)]T, and Eyi‘j is the matrix with (a, b)th entry as fj(ti’a, tip) for
1<ab <n.
For the BNN sub-model, we use the following loss function to train the model:
M
fenn = — Z Z gir (Tm; Qpyn)

m=1 \i'eH(ty,)

dm

- z Z exp(gi(Tm; QBNN)) (3.16)

1=1 \i€0(pm)

el Y AT R} BV S PRCRT ]S
i'eH(ty) i€0(tm)

Here, the BNN-Cox loss gy in equation (3.16) is based on Efron’s approximation [65] of the log
Cox partial likelihood equation with modifications to support tied event times. In particular, let
Ty, ..., Tyy be the unique ordered M failure times such that (1, < 7, < - < Ty), O(7;) = {j|K; =
7;} be the risk set (i.e., units subject to failure at failure time 7;), H(t,,) be the set of units that
failed at time t,,, and d,,, be the number of failures at time 7,,. Specifically, the first and second
terms in equation (3.16) each represent the log-transformed numerator and the denominator of
Efron’s approximation, and the last term };cq(r,)|gi(Tm)| acts as the regularization term to
prevent the BNN-Cox from overfitting with x as the tuning parameter.

The BNN loss €5y can be optimized using gradient-based methods, and here we use the Adam

optimizer with a fixed learning rate to optimize the loss function. Finally, the baseline hazard

function hy(t) is estimated using Breslow’s approximation [66] shown below:

dm
Yieo(r,,) exp(g:(K))

ho(tp) = (3.17)

Since the baseline hazard estimates hy(7,,) are random due to the BNN-Cox term g;(K;), we use
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the mean value E [flo (Tm)] calculated by averaging MC samples from the BNN-Cox. The averaged
baseline hazard function ]E[flo (Tm)] is then smoothed using a polynomial spline. Smoothing the

baseline hazard function is a common practice in survival analysis to 1) improve prediction
accuracy; 2) obtain a smooth, continuous estimate rather than some piecewise constant estimate of
the baseline hazard; and 3) mitigate the effect of large measurement errors (i.e., “spikes”) in the

baseline hazard [67].

3.2.4 Online Updating and Prediction with Uncertainty Quantification
This subsection considers an online setting in which new degradation signals Y, .(t,) =
[Yr,l(tr)J e Yy ](tr)]T € R™J are observed in times t, = [tm, s tr_nr]T from an in-service unit
r, and then we need to update and predict the RUL for this unit with uncertainty quantification.
Recall that the in-service unit r is a new unit that does not belong in the training set (i.e., r & 7).

Based on the newly observed degradation signals, we first update the FPCA parameters §,..

Similar to [63], we utilize a Bayesian approach to calculate the posterior distribution of the in-

T
service unit’s FPC scores §;. ; = [fr_ i S, j,QJ.] based on the newly observed signals Y. .(t,)
and the prior distribution of the FPC scores. Given the decomposition Y, ;(t) = u;(t) +
zfi (& ik®ie(®) + () with  prior  distribution &, ~N(0,4;;),k =1,..,Q; and

g (t)~N (0, ajz), the posterior distribution of the FPC scores & ;, = P (fr, 1k

Y,. (tr)) can be

derived as:

* * T * * * * 1 A
(650 &) ~MYN(E 5, 57), 805 = 57 | 5 @) (Vr8) —(2)) |, (B18)
]
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¢A’1,j(tr,1) (ISQ,-,j(tm)
(ﬁl,j(tr,nr) (ﬁQj,j(tr,nr)

)

-1

1

5 = (Zoere e 1ar) o) -
J

, - N . . . T
A] = dlag (Aj,lﬂ ’Aj;Qj) ,,Ll](tr) = [,uj(tr,l)' . ,Llj(tr‘nr)] .
Given the updated posterior FPC scores of the in-service unit r, the predicted signal at time t €

t*, Trnax] can be expressed using the posterior mean as:
p g p
Qj

Py (0 = B0 + ) & ubia(®), (3.19)
k=1
where t* denotes the prediction time. Note that the mean function fi;(t) and the eigenfunctions

) ;i x (t) are obtained from the training data.

Next, we calculate the conditional survival function using the predicted signals. In particular,
the conditional survival function is defined as the probability of survival conditional on the fact
that the unit survives at least up to time t* < t. In other words, the degradation trajectory of the

signals from prediction time t* to the desired time t is used as a predictor.

t, &5 Q) = M = exp {— tflo (s) exp [g (Yr,:(s))] ds}. (3.20)

S(t =
( S(e|&5 Q) .

The conditional survival function in equation (3.20) can be marginalized by integrating the
estimated FPC scores §;. out:

t5Q) = jS(t

S(¢

t*, &5 Q)p(§; Q)ds;. (3.21)

Equation (3.21) is then approximated through a Monte Carlo integration approach:

M

\ 1
S(e t"*“):MZ S(t

m=1
A key challenge in the marginalization procedure in equation (3.21) is that in addition to the

(3.22)

.5 750), T ~MuN(E ).

uncertainties in the FPC scores £, there are uncertainties in the NN parameters which are reflected
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by the randomness in the BNN-Cox outputs g (Yr,:(s)). To overcome this challenge, we first

generate m = 1, ..., M posterior samples of the FPC scores Ei(m). Then, we reorganize the

s(t

equation (3.9).

t*, & m ; ﬁ) term in equation (3.22) by leveraging the BNN formulation via MC dropout in

t
exp {— jt * ho(s) exp l[Eq( 9. 5)|yr,:(s))(gr(5))l ds}, (3.23)

%4
_1 g+ (M) ) )
Eq(gr(s)|yr,:(5)) (gr(S)) B V; 9(¥r (s); ﬂBNN.l' Ly ‘QBNN,L)l

in which L represents the number of layers in the BNN. In equation (3.23), the marginal survival

function S (t

ts; ﬁ) from the proposed IUQ model provides a more comprehensive quantification
of the uncertainties from both sub-models in an integrative fashion. In particular, the uncertainties
in the longitudinal sub-model are accommodated by integrating over §;., while the uncertainties in
the BNN are accounted for by summing over the BNN weight parameters in each layer
91(31;\)/1\/,1' s 91(31;\)/1\/, .- As aresult, the IUQ model provides more reliable predictions with complete
characterizations of the involved modeling uncertainty.

Finally, the expected RUL can be calculated using the estimated marginal survival function

S(¢

t*;ﬁ):

(3.24)

t*; Q)dt.

*

RUL(t*) = f S(t
The integration in equation (3.24) is numerically evaluated using the Gauss-Legendre quadrature

method [40].
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3.3 Evaluation

The proposed ITUQ model is evaluated using both simulated and real-life data. Details of the

evaluation procedures and benchmark methods are provided below.

3.3.1 Benchmark Methods

The TUQ model is evaluated against the state-of-the-art survival models. Table 3.1 summarizes
the benchmark methods based on their ability to incorporate time-varying covariates, to
nonparametrically capture complex longitudinal trends, to capture nonlinear relationships between
the log hazard and the covariates, and to provide uncertainty quantification of the longitudinal and
time-to-event sub-models. First, the simplest linear Cox model [68] is added as a baseline. The
next benchmark is the DeepSurv [48] model, which is arguably the most popular NN extension of
the Cox model. DeepSurv relaxes the linear-risk assumption between the log hazard function and
the covariates by using a feedforward NN. Another benchmark is the PyCox model [49] where the
authors improve the computational efficiency of the DeepSurv model by utilizing case-control
sampling. Although both DeepSurv and PyCox are more flexible, they do not accommodate time-
varying covariates in the modeling and only rely on the latest observation to make RUL predictions.
Furthermore, they are incapable of providing modeling uncertainties. Finally, the last benchmark
is the recent NN-Joint model [53]. This is the first joint modeling approach that uses an NN-
extended Cox model and a mixed-effects model. Unlike DeepSurv and PyCox, the NN-Joint model
does include time-varying covariates in the modeling procedure and uncertainty quantification for
modeling longitudinal data. However, it suffers from 1) limited modeling flexibility due to the
parametric mixed-effects model; and 2) imperfect uncertainty estimates by ignoring the

uncertainties from modeling time-to-event data.
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Table 3.1 Summary of Benchmark Methods and Their Properties

Time-varying| Nonparametric . . Unce.rtain‘Fy Unce.rtaint'y

Model Coverizs || (Longinim) Nonlinear Risk | Quantification | Quantification

(Longitudinal) |(Time-to-event)
Linear Cox 0] X X 0) X
DeepSurv X X 0) X X
PyCox X X 0 X X
NN-Joint 0 X 0 0 X

uQ

(Proposed) © 0 © © ©

3.3.2 Simulation Study

The performance of the IUQ model is evaluated under comprehensive simulation studies. We

generate synthetic degradation signals for two sensors (J = 2) with the following form:

Yi,j (t) = Zf(t)Bi,j + Ej (t), (3-25)

where Z]-T are the basis functions for sensor j, B; ; are the corresponding coefficients for unit i, and
€;(t)~N (0, ajz) is an additive Gaussian error term.

The detailed simulation procedure is organized into the following steps:

Step 1: Generate N = 350 samples of B;;~MVN(u,,Z;) and B;,~MVN(u,,X,) using the
parameters from Table 3.2.

Step 2: Define the true hazard function according to equation (3.27) alongside the baseline hazard
function in equation (3.26).

Step 3: Generate failure times F; for each unit by sampling from its distribution f; (t) = h;(t)S;(t)
via rejection sampling.

Step 4: Randomly choose 5% of the N units to be censored, in which the censoring time C; is

sampled from a Unif (1, F;) distribution.
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Step 5: Generate noisy degradation signals by equation (3.25) using B; ; and B; , from step 1, with
an additional Gaussian noise term €; (t) forj =1,2.

Step 6: Split simulated units into 300 training units and 50 test units. Observations from the test

units are truncated up to a pre-specified prediction time t*.

Table 3.2 Simulation Study Parameter Settings

Parameters Sensor 1 Sensor 2
|15 [2.4,0.1,0.001] [1.7,0.1,0.001]
0.2 —4e—4 6e—5 0.1 3e—5 4e-5
L —4e—4 2e—7 3e—7 3e—5 2e—-5 le—7
6e—5 3e—7 3e—6 4e—-5 1le—7 3e—6
Z] () [1,t,t2] [1,t%7 sint,t?]

Here, we impose different basis functions for sensor 1 and sensor 2 since degradation signals
can have varying trends ranging from cubic, cyclical, piecewise, etc. In particular, we let ZT (t) =
[1, ¢, t?] be the polynomial basis function for sensor 1 and let ZZ(t) = [1,t%7 sint, t?] be the
custom basis function for sensor 2. B; ; are the random effect coefficients assumed to follow a
multivariate normal distribution, i.e., B;j~MVN(u;,%;) The mean of the random effect
coefficients is chosen as p, =[2.4,0.1,0.001] and u, =[1.7,0.1,0.001] to impose
monotonically increasing degradation trends. Since B;; follows a Gaussian distribution, it is
possible to generate a sample that violates the monotonicity with a very marginal probability. In
such cases, we discard the sample and generate a new one to ensure that the underlying degradation
process is monotonic. Next, the baseline hazard function is specified according to the Weibull

distribution:

ho(t) = Adat®™ 1, (3.26)

where a = 1.05 is the shape parameter and A = 0.0001 is the scale parameter. The true hazard

function of unit i is then defined as:



61

h;(t) = 107%* x 1.05 x 1051 x
T 2 T 20
exp [(o.oe(z1 ()B;1)” +0.05(Z5()B;,) ) ]

Notice that the true hazard function in equation (3.27) has nonlinear dependencies with the

(3.27)

covariates Z1 (t)B;; and Z3(t)B;,. The training units have access to all measurements until
failure or censoring. For the test units, we assume that the measurements are available up to a
prespecified prediction time t*, which is smaller than the minimum failure time of the test units.

The simulated degradation signals for each sensor are plotted in Figure 3.2. We set Q; = 3 for j =

Sensor 1 Sensor 2

25

20 A

15 1

10 A1

Figure 3.2 Example of simulated degradation trends of (a) Sensor 1 and (b) Sensor 2 of

randomly generated 50 units

1,2.

To better understand the model behavior, we select a random test unit (id: 310) with B; ; =
[2.4436,0.1030,0.0131] and B;, = [1.6542,0.1013,0.0094] and examine its conditional
survival curve and RUL estimates at different prediction times t*. For instance, t* = 5 implies
that the test observations up to time 5 are assumed to be available for online updating, and the
survival function is predicted for times greater than t* = 5.

First, we examine the uncertainty quantifications from the proposed IUQ model and the NN-

Joint model. Note that the NN-Joint model is selected as the main benchmark as it is the most
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S(t|tx=5,id = 310) S(t|t*=20,id = 310)
1.0 1.0 T
— True
== 1UQ Interval
0.8 1 0.8 1 =++= NN-Joint (ideal) Interval
0.6 0.6
0.4 0.44
0.2 1 — True 0.21
—=1UQ Interval LA\
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Figure 3.3 Predicted conditional survival curves for t* = [5,20] in a randomly selected test
unit (Green solid: Ground Truth, Blue dashed: +3 standard deviations from [UQ mean
predictions, Red dash dotted: +3 standard deviations from NN-Joint (ideal) mean predictions,
Black solid vertical line: t™)

recent model that utilizes an NN-extended Cox model with the best state-of-the-art performance.
To remove the effect of basis functions, we let NN-Joint (ideal) model know the ideal basis
functions (i.e., [1, t, t?] for sensor 1 and [1,t%7 sint, t?] for sensor 2. However, this comparison
is a little unfair to our IUQ model as IUQ does not know this underlying basis function and it is

challenging for the NN-Joint model to know the exact basic functions, or the degradation signals

S(t|t*=5,id = 310) S(t]|t*=20,id = 310)
1.0 1.0
i — True
- UQ
0.8 0.8 4 = = NN-Joint (ideal)
= NN-Joint (misspec)
0.6 1 0.6 4
0.4 0.4
— True
0.2 == UQ 0.2 1
= = NN-Joint (ideal)
= NN-Joint {(misspec) 3
0.0 = T T T T 0.0 = r
0 10 20 30 40 50 0 10 20

Figure 3.4 Predicted conditional survival curves for t* = [5,20] in a randomly selected test
unit (Green solid: Ground Truth, Blue dashed: IUQ, Red long dashed: NN-Joint (ideal), Purple
dotted: NN-Joint (misspec), Black solid vertical line: t*)
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may not even come from such a parametric form in equation (3.25). Figure 3.3 and Figure 3.4
shows the predicted conditional survival curves and their prediction intervals (with +3 standard
deviations) from both IUQ model and the NN-Joint model. We observe from Figure 3.3 that the
IUQ model’s prediction intervals cover the true survival curve, whereas the prediction intervals
from the NN-Joint model are overconfident with very narrow intervals that do not cover the true
survival curve. The overconfidence of the NN-Joint model is likely due to its failure to incorporate
the uncertainties of the NN-extended Cox model. Hence, the IUQ model accurately quantifies all
sources of modeling uncertainty, while the NN-Joint model fails to do so. Furthermore, the NN-
Joint’s prediction intervals become more overconfident (i.e., more narrow intervals) at later
prediction times (t* = 20) than earlier prediction times (t* = 5). This can be problematic in
practice since it is desirable to have more accurate prediction intervals as the unit approaches
failure. On the contrary, the [UQ model provides accurate prediction intervals that cover the true
survival curve at both early and late prediction times.

Second, we investigate the flexibility of the [UQ model. The functional form of the degradation
signals 1s rarely known in practice, hence parametric models are susceptible to misspecification
errors. The IUQ model overcomes this challenge by using a flexible, nonparametric FPCA-based
model to infer the functional form of the degradation signals. To highlight the benefits of this
added flexibility, we consider two scenarios. The first scenario is the misspecification scenario
(NN-Joint (misspec)), where we assume that sensor 1 and sensor 2 both follow a quadratic trend
(i.e., [1,¢,t%] for sensors 1 and 2) based on visual inspection. The second scenario (NN-Joint
(Ideal)) is the ideal scenario, which assumes that the true functional form of both degradation
signals is known. Results from Figure 3.4 show that the NN-Joint model is very sensitive to the

choice of basis functions, while the IUQ model is free from this phenomenon due to its
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nonparametric approach. Throughout all prediction times, we observe that the misspecified
survival curve in purple is drastically different from the true survival curve. On the contrary, the
IUQ model’s predicted mean survival curves are nearly identical to that of the NN-Joint model
with ideal basis functions, suggesting that the IUQ model can accurately capture complex
degradation trajectories without relying on prior domain knowledge. Moreover, it is worth noting
that despite the similarity in the mean survival predictions, the uncertainty estimates of the IUQ
model are significantly more accurate than that of the NN-Joint model. This further underscores
the significance of obtaining accurate predictions and uncertainty estimates simultaneously.
Next, we thoroughly evaluate the model across multiple test units. The same evaluation

procedure is conducted across 50 simulated test units. The metrics used for the evaluations are

defined as:
yNest(RUL; — RUL;) 1 & (3.28)
RMSE = |2i=1 : ~—,MAE = z [RUL; — RUL,|,
Ntest Ntest im1
Coverage Ratio; = I{Lower < S;(t* + At|t*) < Upper},
1 Ntest (329)
Coverage Ratio = Z Coverage Ratio;,
Ntest =1

where Ny, = 50 refers to the number of test units, and RUL; and RUL; each refers to the
predicted and true RUL estimates of unit i. The root mean squared error (RMSE) and mean
absolute error (MAE) is computed at different prediction times t* = [5,10,15,20]. The coverage
ratio defined in equation (3.29) is used to measure the quality of the prediction intervals. Here,
Lower and Upper each represent the lower and upper prediction intervals with +3 standard
deviations, and At denotes the number of time steps into the future that we wish to make
predictions. For instance, if At = 20 and t* = 5, we predict the conditional survival curve for the
next 20 time steps into the future starting from prediction time 5. For the following evaluations,

we set At = 20,30 to evaluate the model’s performance at later stages in time close to failure. To
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have an accurate comparison, the evaluations are repeated 50 times.
Table 3.3 RUL Prediction Results for Simulation Study

Linear Linear . .
Metric | t* | PyCox | DeepSurv Cox Cox gggig;t; N(I;I(iggll)n t (Pr(I)I};]one d)
(Misspec) (Ideal)
5 11.718 7.533 6.581 4.446 5.450 1.709 1.749
MAE 10 11.492 7.529 5.392 4.240 4.742 1.696 1.683
15 10.704 7.340 4.812 3.689 4.097 1.636 1.635
20 9.284 6.825 4.281 3.610 2.797 1.591 1.587
5 11.899 7.817 6.899 4.906 5.832 2.213 2.206
RMSE 10 11.676 7.818 5.769 4.691 5.166 2.163 2.178
15 10.899 7.627 5.220 4.195 4.557 2.114 2.128
20 9.514 7.140 4.750 4.105 3.335 2.083 2.127
t*=5 t* =10
15- 15
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Figure 3.5 RUL prediction accuracy at different prediction times (“NN-Joint-I" refers to
the NN-Joint model under ideal basis functions, while “NN-Joint-M” refers to the NN-Joint
model under misspecified basis functions. Similarly, “LinearCox-I"” means the linear Cox
model under ideal basis functions and “LinearCox-M” means the linear Cox model under

misspecified basis functions.)

Table 3.3 shows the RUL prediction results, while Figure 3.5 shows the boxplots of the absolute

errors measured across repeated evaluations. The proposed model again maintains competitive
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prediction results compared to the state-of-the-art NN-Joint model with ideal basis functions.
Similar to the previous analysis, the proposed model makes accurate predictions even in earlier
prediction times (i.e., t* = 5 in Table 3.3) and that its predictions are more reliable (i.e., narrower
boxplots) compared to other benchmarks. Both DeepSurv and PyCox models perform the worst
across all scenarios. This is expected since these approaches do not consider time-varying
covariates, so they can only rely on the latest observation to make RUL predictions. Furthermore,
these methods do not allow real-time updating, so the prediction accuracy does not necessarily
improve with more observations. The linear Cox model performs next to the NN-Joint model
across all categories, with the main limitation being its inability to capture nonlinear relationships
present in equation (3.27). As shown in the linear Cox and NN-Joint model errors in Table 3.3,

misspecified basis functions can incur significant prediction errors.

Table 3.4 Coverage Ratios for Simulation Study (At = 20)

£ 1uQ NN-Joint Linear Cox
(Proposed) (Ideal) (Ideal)
5 0.8560 0.3587 0.0024
10 | 0.9467 0.4160 0.0027
15| 0.9200 0.3747 0.0212
20 | 0.9347 0.4387 0.0600

The coverage ratios of the proposed ITUQ model are then compared to that of the NN-Joint
model and linear Cox model with ideal basis functions. Note that results for the DeepSurv and
PyCox models are not available as both models do not consider uncertainty quantification. The
results in Table 3.4 and Table 3.5 show that the proposed IUQ model drastically outperforms all

other benchmarks in terms of coverage ratio. Note that the boldfaced entries represent the best

Table 3.5 Coverage Ratios for Simulation Study (At = 30)

. 1uQ NN-Joint Linear Cox
(Proposed) (Ideal) (Ideal)
5 0.9267 0.3933 0.1453
10| 0.9773 0.5160 0.1173
15 0.9573 0.4830 0.1253
20| 0.9627 0.5547 0.1773
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coverage ratios across different prediction times.

Again, the TUQ model achieves drastically higher coverage ratios than other benchmark
methods. In other words, the IUQ model leads to much more informative and accurate uncertainty
quantifications. On the contrary, both NN-Joint and linear Cox models only consider uncertainties
in the longitudinal sub-model, resulting in overconfident prediction intervals that fail to cover the
true survival curve.

Table 3.6 Average Computational Time for All Methods (In Seconds)

. . 1UQ
Model Linear Cox DeepSurv PyCox NN-Joint (Proposed)
Training 0.0740 3.3749 3.2712 10.322 10.607

Prediction 0.2567 0.0893 0.0708 0.4025 0.8474
(1 unit)

Finally, we discuss hyperparameter optimization and computation time for the simulation study.
All the computations are conducted with a 2.50GHz Quad-Core Intel® i5-10300H CPU with 16GB
of RAM. For the hyperparameters, the FPCA sub-model does not require much hyperparameter
optimization due to its nonparametric nature. For the BNN sub-model, we use cross-validation to
determine the optimal structure. Here, “optimal” is defined as the model structure that results in
the highest predictive accuracy in terms of mean RUL based on cross-valuation results. The
obtained optimal hyperparameter settings are listed in Table 3.10 in Section 3.5.

The computation time for model training and real-time prediction is listed in Table 3.6. The
prediction time is the time needed to obtain the RUL estimate for 1 unit. It is worth noting that
training times for both NN-Joint and IUQ are almost identical. During the prediction stage, we
found that naive implementation of the IUQ model will lead to longer computational times (3.1923
seconds) as one needs to perform numerical integration MV times. In circumstances where fast
online prediction is critical, computational time can be reduced by limiting the times we perform

numerical integration. It should be noted that obtaining samples from the posterior FPCA
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distribution in equation (3.22) is relatively straightforward due to the closed-form expression.
Similarly, the sampling process using MC dropout is also computationally efficient as it is easily
parallelizable across multiple processors. In particular, we initially follow the same process

described in Section 3.2.4 and retrieve MV MC dropout samples of the log-hazard function (i.e.,
g(?;':(m) (s); Qg\)nv,v s Qg;\),N’L) in equation (3.23)). Then, instead of performing integration on
all MV samples, we first calculate the mean and 3 standard deviation limits of the log-hazard
samples and then integrate them. This approach is viable since the variations in the MC dropout
samples fully characterize the variations in the survival estimates (i.e., hy(s) is fixed). This

approach significantly reduces the computational time during online prediction (0.8474 seconds)

by minimizing the number of numerical integration steps.
Table 3.7 Average Computational Time with Varying M (In Seconds)

M =20 M =50 M =100

0.8474 2.7869 5.0401

Prediction
(1 unit)

Another important hyperparameter that greatly affects the computation time and accuracy of
the ITUQ model is the number of MC dropout samples V and the number of posterior samples from
the FPCA sub-model denoted by M. Both hyperparameters control the uncertainty integration
approach in equation (3.23), which is a critical component of the IUQ model. Since increasing the
number of samples lead to longer computation times, we perform additional studies to determine
values for I/ and M that will lead to accurate predictions with reasonably fast computation time.
For the number of MC dropout samples V, relevant literature recommends between V = 10 to V =
100 to estimate the uncertainty [58]. Here, we choose V = 30 after preliminary inspection. For
the number of posterior FPCA samples M, we measure the predictive performance on the same 50
test units with varying M = 20,50,100. The results in Table 3.7 and Table 3.8 show that increasing

M does lead to better predictive performance. However, the performance gain from higher M is
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marginal despite the substantially longer computation time. Hence, we used M = 20 for all

evaluations in the simulation study.

Table 3.8 RUL Prediction Results with Varying M

MAE RMSE
t* M=20 M=50 M=100 M=20 M=50 M=100
5 1.749 1.748 1.748 2.206 2.205 2.204
10 1.683 1.675 1.675 2.178 2.169 2.169
15 1.635 1.636 1.634 2.128 2.130 2.128
20 1.587 1.588 1.587 2.127 2.130 2.127

3.3.3 Case Study

In this section, we use a real dataset from a study on automotive lead acid battery aging test
[69]. The dataset is collected from an accelerated aging test according to the aging cycles defined
by the standards in SAE J2801 [70]. The resistance of the batteries (in milliohms) is tracked until
the failure event, which is defined as when the battery fails to start the engine of the automobile.
The resistance information of each battery is recorded in weekly intervals. A plot of the resistance
trajectories of 14 units is shown in Figure 3.6.

There is no known physical relationship between the resistance path of a lead acid battery with
respect to time. Following the previous literature [40], both the benchmark methods, the linear
Cox model and the Joint-NN model that require predefined basis functions assume that the
resistance follows a quadratic degradation trend.

Since the true conditional survival probabilities are unknown, we only evaluate the mean
residual life (MRL) based on equation (3.24) and compare it with the true time-to-failure. Similar
to the synthetic data, we impose different prediction times with t* = [6,9]. Note that week 6 and
week 9 each correspond to roughly 50% and 75% percentiles of the time horizon of this study. The
number of MC dropout samples is V' = 30, and the number of posterior draws from the FPCA sub-

model is still set as M = 20, and Q = 3.Unlike the simulation study, the coverage ratios cannot be
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Figure 3.6 Visualization of the Resistance Trajectories of 14 Automotive Lead Acid
Batteries

computed since the true survival function is unavailable. Instead, we track the RUL prediction
errors of the TUQ model with three variants: 1) ITUQ (both) which considers both types of
uncertainties; 2) IUQ (longitudinal) which considers uncertainties in the longitudinal sub-model
only; and 3) IUQ (time-to-event) which considers uncertainties in the time-to-event sub-model
only. We select one battery at random as the test unit and the remaining 13 batteries are used as
the training units. To accurately assess model performance, the evaluations are repeated 50 times.
The results of the evaluations are summarized in Figure 3.7 and Table 3.9, with the box plot
representing the average prediction errors for each unit across the 50 evaluations.

From the case study, we can draw similar conclusions to those of the simulation study. First,
the proposed model provides reliable results across varying prediction times. Results show that the
proposed model consistently outperforms the existing benchmark methods. Second, the evaluation
results from Table 3.9 illustrate the benefits of considering both types of uncertainties in the joint
model. Here, the best-performing setup is boldfaced for visual clarity. We observe that

incorporating both types of uncertainty results in the most accurate predictions. In addition, the
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standard deviation of the errors (shown in parenthesis) is smallest across all scenarios, suggesting
that the [UQ model with both types of uncertainties provides the most reliable predictions. Third,

the proposed model provides more accurate results as the unit approaches failure (i.e., t* increases
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Figure 3.7 Evaluation Results on Lead Acid Battery Data at (a) t* = 6 (b) t* =9

Table 3.9 RUL Prediction Performance for Case Study (MAE)

. IUQ IUQ IUQ
(Both) (Longitudinal) (Time-to-event)
6 0.4242 0.5013 0.5762
(0.2553) (0.3884) (0.3117)
9 0.0312 0.0389 0.0454
(0.0245) (0.0366) (0.0294)

or more data are collected from the testing unit). In particular, we observe that the prediction gap
between the proposed IUQ model and the leading benchmark NN-Joint is more significant at
higher prediction times (i.e., t* = 9). While the NN-Joint model barely improves with the newly
available measurements, the [lUQ’s estimates rapidly improve and uncertainty greatly reduces as
more test measurements become available for updating. Fourth, our proposed model provides
competitive results without any parametric assumptions. The nonparametric modeling approach
of the [UQ model effectively captures the complex trends of the degradation signals.

For the linear Cox model, the strong model assumptions (e.g., linear-risk assumption and
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misspecified basis functions) again limit the expressiveness of the model. PyCox and DeepSurv
models again fall short compared to NN-Joint and the proposed model due to their inability to

incorporate covariate history via time-varying covariates and quantify the uncertainties involved.

3.4 Conclusion

This study presented a flexible, accurate, and robust prognostic framework for the joint analysis
of longitudinal data and time-to-event data. In particular, an FPCA-based sub-model is used for
the longitudinal data, while the BNN-Cox sub-model is employed for the time-to-event data. This
study proposes a two-stage inference method to ensure computational efficiency and a Bayesian
updating approach to allow real-time RUL prediction of the in-service unit. A major obstacle of
existing joint models is that they simply ignore the uncertainties from either sub-model or both
entirely. As a result, existing approaches do not provide a comprehensive uncertainty
quantification of the survival and RUL estimates. The proposed IUQ model overcomes this
challenge by providing an integrated approach for uncertainty quantification. In particular, the ITUQ
model integrates uncertainties from the longitudinal sub-model (i.e., FPCA) to the time-to-event
sub-model (i.e., BNN-Cox), resulting in a more comprehensive characterization of the modeling
uncertainty. Second, the flexibility of FPCA and BNN-Cox allows the proposed model to capture
complex degradation signal trajectories and covariate interactions. Finally, the proposed method
performs well under limited data availability (i.e., censoring). This trait is very useful in practice
considering that degradation signals are often truncated or censored due to long development
times. Extensive evaluations on synthetic data and real-life battery data demonstrate that the
proposed model achieves outstanding and reliable prediction results with accurate prediction
intervals.

There are some areas for possible future work. For example, the proposed method assumes that
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the degradation signals are collected under a single operational condition and failure mode. In
practice, an engineering system can operate across multiple operational conditions with several
possible failure modes. To overcome this limitation, we can formulate a competing risks scenario
with failure mode-specific hazard function and use operational condition parameters as covariates
in the Cox model. Furthermore, the proposed model assumes that the degradation signals are
stationary, but the model can be further extended to handle non-stationary signals that exhibit
changing behavior over time. One possibility is to reflect the changes in the signals on the FPC
scores by repeating the Bayesian updating procedure (introduced in Section 3.2.4) for the first sub-
model with FPCA. This updating procedure can be further optimized by incorporating online
changepoint detection methods [71] to automatically detect any shifts in the degradation signals.
Once a changepoint is detected, it could be used as an indicator to perform the aforementioned

Bayesian updating procedure.



3.5 Appendix: Hyperparameter Settings

Table 3.10 Hyperparameter Settings

Model

SIMULATION STUDY

CASE STUDY

Linear Cox

None

None

DeepSurv
& PyCox

Hidden layers: 2
Hidden nodes: [32,16]
Learning rate: 0.0001
Dropout probability: 0.1
Activation: ReLU
Epochs: 100

Batch size: 32

Hidden layers: 2
Hidden nodes: [16,8]
Learning rate: 0.0001
Dropout probability: 0.1
Activation: ReLU
Epochs: 50

Batch size: 32

NN-Joint

Hidden layers: 2

Hidden nodes: [40,20]
Learning rate: 0.0001
Dropout probability: 0.1
Activation: ReLU
Epochs: 100

Batch size: 16
Regularization parameter
x: 0.01

Hidden layers: 2

Hidden nodes: [10,10]
Learning rate: 0.0001
Dropout probability: 0.1
Activation: ReLU
Epochs: 100

Batch size: 8
Regularization parameter
x: 0.01

IUQ
(Proposed)

Hidden layers: 2

Hidden nodes: [32,16]
Learning rate: 0.0001
Dropout probability: 0.1
Activation: ReLU
Epochs: 100

Batch size: 16
Regularization parameter
x: 0.01

Hidden layers: 2

Hidden nodes: [10,10]
Learning rate: 0.0001
Dropout probability: 0.1
Activation: ReLU
Epochs: 100

Batch size: 8
Regularization parameter
x: 0.01

74



75

Chapter 4 A Bayesian Spike-and-Slab Sensor Selection

Approach for High-dimensional Prognostics

4.1 Introduction

Degradation modeling and prognostics have become increasingly important for improving the
economic viability, reliability, and functionality of complex engineering systems. Initial work in
this field focused on analyzing a single sensor signal [1] to assess system performance. The
underlying assumption of these works is that a single sensor signal is sufficient for characterizing
the overall degradation process. However, this assumption is hard to satisfy in modern systems, in
which multiple sensors are used to simultaneously monitor various aspects of the system.

Researchers have proposed several data-driven methods to extract prognostic insights from
multisensor signals, recognizing that a single sensor is insufficient for fully characterizing the
degradation process. These methods include traditional statistical approaches like state-space
based models [72], [73], data fusion approaches including health index models [4], [74], [75], and
machine learning and deep learning inspired models that leverage the predictive power of neural
networks [10], [76], [77]. These methods generally take the multisensor signals as model inputs to
predict the remaining useful life (RUL).

One unique and longstanding challenge of analyzing multisensor systems is that each sensor
may have varying degrees of relevance to the underlying degradation process [75]. In other words,
it is possible that some sensors provide strong insights on the underlying degradation process (i.e.,
“informative” sensors), while some sensors do not provide insights and just act as noise (i.e.,

“uninformative” sensors). These uninformative sensors can significantly damage the system’s
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overall reliability by compromising the accuracy of RUL predictions. For instance, sensors in
wearable devices are commonly used to collect symptom measurements to assess and monitor
patient health and progression. However, prior research has shown that the accuracy of monitoring
methods is highly reliant on effectively separating the informative sensors from the pool of
multisensor measurements [78]. Improper sensor selection may lead to misleading, biased, and
non-reproducible results that can potentially harm patient health and prediction [79].

Indeed, the sensor selection challenge is complicated by the widespread use of multiple sensors
in various engineering systems. Advances in modern sensor technology have made it practical to
adopt numerous sensors to monitor various aspects of the system. For instance, a modern car has
on average around 60 to 100 sensors that monitor engine performance, safety features, driver
assistance, and other comfort features [80]. As a result, the sensor signals collected from these
modern systems are often high-dimensional, meaning that the number of sensors being monitored
is much larger than that of traditional systems. Since there are more sensors to select from, the
sensor selection challenge becomes more difficult and computationally intensive [81].
Furthermore, in some cases, monitoring all signals is not always viable due to the limited
bandwidth or processing capacity. Thus, it is essential to select and only monitor the informative
sensors for further prognostic analysis.

Existing methods that tackle the sensor selection challenge in the context of prognostics can be
mainly classified into three categories. The first type of approach is heuristic methods, which rely
on heuristic rules and visual inspection to identify informative sensors. For instance, Liu et al. [75]
removed sensors without consistent monotonic (i.e., decreasing/increasing) trends. This approach
is subjective in nature and can vary greatly from one user to another. In addition, this approach

does not scale well with the number of sensors, especially in high-dimensional settings.
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The second type of approaches is statistics-based approaches. These methods generally involve
penalizing the likelihood function by a regularization term to induce sparse solutions. Some
examples include the popular least absolute shrinkage and selection operator (LASSO) [82],
adaptive LASSO [83], smoothly clipped absolute deviation (SCAD) [84], minmax concave penalty
(MCP) [85], and variational inference methods. These methods have already seen success in a
wide range of applications, including medical, finance, natural sciences, and healthcare
applications. Indeed, researchers have also tried to replicate the success of such methods in
prognostics by applying them to address the sensor selection challenge. For instance, Fang et al.
[86] first extracted useful features using functional principal components analysis (FPCA) and
then applied penalized regression to select informative sensors. Kim et al. [4] employed an
adaptive LASSO algorithm with a scaled version of sensor fusion coefficients as the penalty
weights. Although these methods are relatively easy to implement, they are known to suffer from
estimation bias and provide poor selection results in high-dimensional settings [87].

The last type are deep-learning approaches, which utilize the predictive power of neural
networks to automatically identify informative sensors or useful features. For instance, Yu et al.
[88] proposed using convolutional gated recurrent units to learn the features of the process data
and then used an attention module to preserve the effective features. Another work by Kim et al.
[89] proposed a Rectified Linear Unit [90] (ReLU)-based sensor selection network that can be
used in conjunction with different neural network-based prognostic models. Although this method
showed promising results, it overly limits the flexibility of the neural network in pursuit of
interpretability. Furthermore, training this network is unreliable as it frequently falls into local
extrema. In addition, none of the above approaches thoroughly investigate sensor selection

performance in high-dimensional scenarios with potentially correlated sensors, indicating a



78

significant gap that requires further study.

To fill the literature gap, this paper investigates the sensor selection challenge to enhance
prognostics in high-dimensional settings on the basis of HI-based methods. The main idea of HI-
based methods is to construct a 1-D HI by directly combining multiple sensor signals. The
constructed 1-D HI can then be used to better characterize the underlying degradation process.
Compared to other prognostic methods, HI-based methods provide the following unique benefits.
First, the constructed HI provides a real-time visualization and characterization of the underlying
degradation evolution, which is much more interpretable than black-box models such as neural
networks. This feature is highly sought after in practice by maintenance operators. Second,
analyzing a HI has been shown to be more effective in RUL prediction than analyzing the
progression of a single sensor [75]. Furthermore, the constructed HI can be regarded as an
additional sensor signal that provides a better characterization about the degradation process.
Finally, the HI lays a foundation for further prescriptive analysis, which help practitioners make
well-informed maintenance decisions. Many works have proposed methods to construct
informative HI [4], [75], [91], [92]; however, none of them have addressed the challenges of HI
construction and sensor selection in high-dimensional scenarios, which are increasingly common
in various industrial applications.

This paper proposes a novel Bayesian spike-and-slab approach for sensor selection and data
fusion in high-dimensional settings. In this context, the high-dimensional settings of interest can
arise from two scenarios: 1) a low number of training units; and 2) a high number of sensors. In
particular, the proposed method simultaneously selects informative sensors and fuses them into a
1-D health index (HI) for further prognostic analysis and RUL prediction. The new contributions

of this work are as follows. First, the proposed spike-and-slab sensor selection approach boasts
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superior sensor selection performance in high-dimensional scenarios. Second, the proposed
approach achieves consistent sensor selection results in the presence of sensor correlation. Third,
the proposed approach has desirable theoretical properties such as weak and strong selection
consistency. Finally, the proposed method leads to higher RUL prediction accuracy across a wide
range of simulation and case studies.

The rest of this paper is organized as follows. Section 4.2 describes how the proposed method
selects informative sensors, fuses them into a 1-D HI, and uses the constructed HI to predict RUL.
Theoretical properties of the proposed method are also investigated to ensure the sensor selection
consistency. Section 4.3 shows the simulation study results to demonstrate the effectiveness of the
proposed sensor selection method under varying levels of correlation. Section 4.4 further evaluates
the proposed method in a data set of aircraft gas turbine engines and compares it with existing
benchmark methods. Finally, Section 4.5 summarizes the key findings and discusses future

potential research directions.

4.2 Methodology

In this section, we introduce the proposed Bayesian sensor selection and data fusion method in
detail. In Section 4.2.1, we first describe the problem formulation. In Section 4.2.2, we delve into
the details of the proposed spike-and-slab priors for sensor selection and elaborate on how to
estimate the model parameters. Section 4.2.3 further investigates the theoretical properties of the
proposed Bayesian sensor selection approach. Finally, Section 4.2.4 describes how the proposed

method predicts the RUL using the constructed HI.
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4.2.1 Problem Formulation

Following the recent line of work on health index-based approaches [4], we first define the
underlying degradation status and the failure mechanism. Let n;(t) represent the underlying
degradation status of unit i at time t. Then, the failure time T; of unit i is the time when the

underlying degradation status n; (t) first reaches the failure threshold [:
T; = arg mtin n;(t) = 1. 4.1

Note that unlike previous approaches [4], [74], [75], here we consider a more general setting and
do not define the specific form of n;(t). Let Li(t) = [L;1(t), ..., L;s(£)] € R™*S denote the
measurements of s sensors of unit i at time ¢t. Then, the corresponding HI of unit i at time ¢,

denoted by h;(t), is defined as such:

hi(8) = z(L;(®) = ;D) + &), (4.2)

in which z(-) is a data fusion function used to recover the underlying degradation status of a unit
with the contamination of a Gaussian noise &;(t)~N (0, 2). Without loss of generality, we set

z(+) to be a linear fusion function such that:

z(L;(®) = Ly(D)w, 4.3)

where w = [wy, ..., wg]T € RS*1 is the weight vector (i.e., fusion coefficients) to fuse the
multisensor signals L;(t). Note that if one wishes to use a nonlinear fusion function to characterize
the degradation process, a linear approximation with K basis functions can be employed such that
Z(Li(t)) ~ YK | Bk(Ll-(t))wk . Here, B) denotes the basis function for k =1,...,K, and

By (Ll-(t)) represents the transformed multisensor signals.



81

In summary, the relationship between the HI h;(t), the sensor signals L;(t), the fusion

coefficients w, and the underlying degradation status is

hi(t) = Ly()w = n;(t) + &(¢). (4.4)
For each unit i, the expression above can be rewritten into a matrix form such that L; =
[Li(t:1), ---:Li(ti,ni)]T € RWXS | g = [&(ti1), ...,ei(ti‘ni)]T € RW<t | h; =
[hi(ti1), ...,hi(ti,ni)]T € R™*1 is the HI vector for unit i, n; = [n;(t;1), ---’ni(ti,ni)]T € RM¥1

is the vector of underlying degradation status for unit i, and n; is the number of sensor

measurements from unit i. Hence, we can rewrite equation (4.4) in the following matrix form:
hi = LiW =n; +&;. (45)

Our objective is to estimate the fusion coefficients w from the multisensor data of N historical
units while only selecting the informative sensors. To distinguish between the informative and
uninformative sensors, we first define a set of latent binary indicator variables y = [y, ..., ¥s] €
R*S for the fusion coefficients w such that y; = 1 if sensor j is included in the HI construction,
and y; = 0 if sensor j is excluded from the HI construction. The binary indicators y are additional
parameters that need to be estimated alongside the fusion coefficients w. In the following

subsection, we will discuss how to estimate the parameters of the proposed HI approach.

4.2.2 Bayesian Parameter Estimation

The main parameters that need to be estimated are the fusion coefficients w, the latent binary
indicators ¥, and the noise variance parameter g2. One possible approach is to use the maximum
likelihood-based techniques, but these methods are known to suffer from high bias under high

dimensions [87]. Instead, we adopt a Bayesian parameter estimation approach by first imposing
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carefully designed prior distributions and then obtaining the posterior distribution of the

parameters via Bayes’ rule.

Spike and Slab Prior

4.0 ' ~ =~ spike
i wres clab

— spike + slab
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Figure 4.1 Illustration of the Spike and Slab Prior Distribution (Red Dashed Line: Spike,
Blue Dotted Line: Slab, Black Solid Line: Spike and Slab)

In particular, we impose the spike-and-slab Gaussian priors that are specifically designed for

variable selection in high-dimensional scenarios. Based on equation (4.5), we concatenate the
observations from N historical units such that h = [hy;h,;...;hy] € ]Rzlivﬂni“,L =
[Ly;L,;...;Ly] € RE=1 XS, n=1[n:;n...;nn] € REE1 X1 g = [€1; €25 .5 EN] € RZiz1 X1
and rewrite the sensor signals from all N historical units as:
h=Lw=n+g¢g,
In this context, we design the prior distributions as follows:

n|L,w,0%~MVN(Lw,c?I),

wjlo?,y; = 0~N (0, 02k{),

wjlo?,y; = 1~N(0,0%k1), (4.6)

yj~Bernoulli(q),P(yj = 1) =1- P(yj = 0) =q

0-2""16(“1, aZ)
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where 0 < k3 < k? < . Here, MVN stands for the multivariate normal distribution, I is the
identity matrix, and IG (a4, @) is the inverse gamma distribution with shape @, and scale a,. The
spike-and-slab prior on the fusion coefficients w is a mixture of two distributions: named the
“spike” and the “slab” distributions. An illustration of both distributions is shown in Figure 4.1,
with the red dashed line representing the spike distribution and the blue dotted line representing
the slab distribution. The x-axis represents the fusion coefficient values and the y-axis represents
their probability density. The spike distribution follows a normal distribution that focuses most of
its probability density around zero with very small variance k3, which encourages most of the
fusion coefficients w; to be uninformative. The slab distribution on the other hand, is a diffuse
prior with large variance x{ to encourage exploration of different values for w;. Then, the spike
and slab prior (shown in black solid) is a mixture of the two distributions, allowing the model to
obtain sparse solutions while sufficiently exploring the parameter space. Here, the latent binary
indicators are used to denote which distribution w; is sampled from. If y; = 1, then w; is sampled
from the slab distribution, while y; = 0 means that w; is sampled from the spike distribution. For
these latent binary indicators, we impose a Bernoulli prior on each y; such that y;~Bernoulli(q).
Note that g is a hyperparameter that is either pre-specified or sampled based on a hyperprior
distribution. In particular, we follow existing recommendations [93] and set q such that
P(Z§=1 I(y; = 1) > max(10, N)) = 0.1with I as the indicator function. In general, this condition
encourages the model to return sparse solutions by controlling the probability of the number of
informative sensors. One can relax or strengthen the sparsity of the solutions by
increasing/decreasing 10 in the max(10, N). Finally, for the variance noise g2, we impose an
inverse Gamma prior. The inverse Gamma prior not only allows computationally efficient

sampling by being a conjugate prior to the normal distribution, but also allows the proposed model
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to have nice theoretical properties which will be covered in detail in Section 4.2.3. For the
simulation and case studies, we set (a4, a,) = (1,1) to let the inverse Gamma distribution act like
an uninformative prior distribution. Additional experiments found that the values (a4, a,) have
negligible effects on the parameter estimation.

After defining the prior distributions for the parameters, the next step is to derive the joint
posterior distribution. Bayes’ rule tells us that the joint posterior distribution is proportional to the

prior distribution times the likelihood, i.e.,

P(w,a2,yIn) «< P(mlw, o, y)P(w,c?%,y).

Here, the exact expression of the prior distribution P(w, 62,¥) is:
P(w,a%,y) x P(a?)P(y)P(wly,o?)
= 1
~Yj Yj
= P(0?) [((1 - q)gb(wj,O, }cgaz)) + (qu(wj,O, Kfaz)) ] .
j=1
where ¢(Wj, 0, KSGZ) is the probability density function of the normal distribution with mean 0
and variance k20?2 evaluated at w;. Also, we follow existing works [94] and assume that the priors

for y and o2 are independent.

The likelihood distribution P(n|w, 62, ¥) follows a multivariate normal distribution with mean
Lw and variance o21. Thus, the posterior distribution P(w, 52, y|n) does not have a closed form
expression, so we have to resort to numerical methods for sampling. In particular, we use Gibbs
sampling since the conditional distribution for each parameter has a closed form expression. Gibbs
sampling, also known as alternating conditional sampling, is a computationally efficient approach
to drawing samples from the posterior distribution [95]. Generally, given a parameter vector 8 =

(64, ...,8;) with d dimensions, the Gibbs sampler cycles through the subvectors of 8 at each
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iteration t and draws each subset conditional on the values of all the others (i.e.,
6;~P(6;16;", H)), where 8" = (65, ...,60/_4,6/71,...,657 "), j € {1,...,d} and H represents
some observed data.

The conditional distributions of all the parameters have closed forms due to the careful choice

of prior distributions. The analytical expressions for the conditional distributions are listed below:

wly,a%,n,L~MVN(VL™y,c?V),
V=(L"L+D,)", D, = Diag(yxi? + (1 — Y)g?);

CI(,'b(Wj, 0,0’2}{%) .
qp(w;,0,0%k2) + (1 — q)p(w;,0,0%k2)’

P(yj=1|w,n,0% L) =

P(a?lw,n,y,L) x IG(aj, a}),

I §V=1n’l' S
a; = (X1+T+§,

wi'D,w (n—Lw)"(n—Lw)
2 + 2 '

!

a, =a, +

One challenge here is that the underlying degradation status n is unobservable, hence we cannot
directly sample from the distributions above. To overcome this challenge, we utilize the definition
on equation (4.1) that the underlying degradation status at the failure time is equal to the failure
threshold (i.e., n;(T;) = ). Letting 7; denote the observed failure time of unit i, we can
approximate the degradation status n;(t;) = [ for all units i. Specifically, we can rewrite the
conditional distributions above by replacing  with (z) = [n,(7), ..., ny ()T = 11y € RV*1
and L with L(t) = [L,(ty), ..., Ly (7y)]T € R¥*S. In other words, we replace the top equation

n|L,w,0%~MVN(Lw,c?I) in equation (4.6) with

11y = n(7)|L(T),w,a?~MVN(L(T)wW, c2I). 4.7)
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Our studies show that the failure threshold [ acts as a scaling factor. Therefore, we can set [ to any
arbitrary positive number and finally normalize w if the value of [ is not known. This will not
affect our sensor selection nor prognostic results. The final conditional distributions used in the
Gibbs sampler are illustrated below:

wly, a2, L(t)~MVNVL(t)TI1y,0%V),
V=_(L@TL()+ D),)_l,D), = Diag(yx;? + (1 — Y)Kry2);

qp(w;,0,0%k7)
qd)(wj, 0,02K2) + (1 - Q) (wj, 0,02K2)’

P (Vf = 1|W;77(T),02,L(t)) =

P(a?|w,n(1),v,L(7)) x IG(ay, a}),

, N s

a = aq + E + E,
w'D,w N (I11y — L(ow)"(11y — L(T)w)
2 2 '

!

a, =a, +

The main computational bottleneck of this approach is sampling from the multivariate normal
distribution in w|y,c?,L(t) . The computational complexity of the proposed method is
O(s? * (s V N)), which can be demanding when the number of sensors s is extremely large. To
mitigate this challenge, researchers have proposed workarounds such as using a block updating
procedure [94] or a “skinny” Gibbs sampler [96], which reduces the complexity to
O(N * (s V |A]?)) albeit at the cost of running more Gibbs sampling iterations. Note that |A|
represents the size of informative sensors. For our evaluations, we used the regular Gibbs sampling
algorithm as it was sufficiently fast for offline training. Even in the most computationally
demanding experimental setup with 1000 training units and 200 sensors, the Gibbs sampler on

average took less than 5 minutes to run with 2000 warm-up iterations and 2000 sampling iterations.
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Next, we discuss how to select the informative sensors based on the estimated joint posterior

distribution. In particular, we determine that a sensor is informative when the marginal posterior

probability P(y; = 1|w,a?) > 0.5 such that:

Y = {1, if P(v; = jw.n(2),0% L@) = 05 45
g 0, otherwise

Barbieri et al. [97] showed that choosing 0.5 as the threshold value is predictively optimal (i.e.,
the model predictions achieve the minimum expected loss over the posterior distribution of the

parameters). Hence, we also use the threshold of 0.5 in our context here.

4.2.3 Theoretical Properties

In this subsection, we investigate the important theoretical properties of the proposed Bayesian
sensor selection approach. One important property during sensor selection is selection consistency,
which investigates the conditions in which the selection algorithm can correctly select or fail to
select the true informative sensors as the training sample size N increases. Please note that our
discussion of selection consistency is concentrated on linear regression models with general spike
and slab priors, as we will subsequently establish that the proposed model belongs to this class of
models. Consider a conventional linear regression model ¥ = Xf8 + e with general spike and slab
priors as such:

Y|IX,B,0 ~MVN(XB a?l),
Bla%yy = 0~D0 = f (=),
Blo%y =1~ = —f (), (49)
P(rj=1)=1-P( —0) =q
02~1G(ay, ay).

Here, Y € R¥*! is the vector of response variables, X € RV*S is the design matrix, f € RS*!



88

are the regression coefficients, and e = [ey, ..., ey] € R¥*1 is the vector of independent Gaussian
error terms such that e;~N'(0,02) for i € {1, ..., N}. D, and D, denote the general spike and slab
prior distributions for a base density f(x), which is assumed to be unimodal, symmetric, and
continuous. We observe that the proposed model is a special case of this general formulation by

replacing Y with [1y, B with the fusion coefficients w, X with L(t), e with &(t) =

[e1(T1), ..., ey (Ta)]T and f(x) with \/% exp(— %) in equation (4.6) and equation (4.7).

Under this general formulation, there are two versions of selection consistency: weak selection
consistency (WSC) and strong selection consistency (SSC). WSC requires the posterior

probabilities of the binary indicators y; to uniformly converge to the true values:
. p
jr_nllnsP(yj = t]|L) - 1. (4.10)
Each #; represents the true value of each sensor (i.e., whether the sensor is informative £; = 1 or

uninformative ¢; = 0), and 5 denotes convergence in probability. On the other hand, SSC

requires the posterior probabilities on the true model to converge to 1, such that:

Py = ¢|L) 51, (4.11)
where £ = [14, ..., t5] indicates the set of ground truth values. The difference between the two
types of selection consistency is that WSC focuses on the convergence of the individual y; to the
true values £;, but does not guarantee that the overall identified model is equal to the true model.

Since SSC is a statement on the joint convergence of all y to the true model £, it is a more stringent
condition than WSC.
Next, we discuss the conditions needed to achieve either WSC or SSC. In particular, the two

conditions are listed below:
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Oy = 0; Uy — oo, (4.12)
Uy
sOy — 0;m — 00, (4.13)

where the terms Oy and Uy are defined as such:

0 1= sup qD;(a)
¥ \asrubisry (1 — QDo (b)’

qD;(a)

Uy := inf _—
N my<lalmyslblla-bley (1 — q)Do(b)

Here, we introduce the minimal signal strength my, which is defined as:

|| > Co?logs
min|S;| = my 1= |——,
j N N
for some large enough constant € > 0. Intuitively, the minimal signal strength my ensures that
the signals from the truly informative sensors are strong enough to be distinguished from noise. If
the true coefficients f; are not sufficiently large (i.e., smaller than my), then it is difficult to
identify the informative sensors from the pool of sensors. Finally, €y ensures that the point in the
slab prior a and the point in the spike prior b is located reasonably close to each other such that
L

N < ey — 0. The quantity Oy represents the magnitude of the slab prior relative to the spike prior

in the neighborhood of the origin with radius Ry, while the quantity Uy indicates the same relative
magnitude but instead around the distribution tails. Ideally, we want Oy going to zero and Uy
going to infinity as N increases (i.e., concentrated spike mass near the origin to induce sparse
solutions, while flatter tails of the slab prior to encourage exploration).

Based on existing works [87], the 1% condition in equation (4.12) guarantees WSC for the entire
general spike and slab prior setting in equation (4.9), which includes the proposed model. In

addition, if the 2™ condition in equation (4.13) holds, we have SSC. It can be seen that SSC
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requires a stronger condition since Oy needs to go to zero more quickly and Uy needs to go to
infinity more quickly.

To satisfy both conditions and achieve SSC, [93] suggested to set the prior variances k& and k%
depend on the sample size N. Therefore, inspired by [93], we impose the following sufficient

conditions to satisty SSC:
k2 = 0,Nk2 =~ (N + s2*®), (4.14)

Here, the notation =~ denotes that the two quantities on both sides of the equation have the same
order, and w > 0 denotes an arbitrary fixed positive number. To see how these conditions in
equation (4.14) assist in satisfying conditions in equation (4.12) and equation (4.13), without loss

of generalization, we first define analogous quantities of Oy and Uy based on a radius of Ry =

/%ﬂ, while setting 62 = 1:

0 = qrof (0)
N — R )
(1 - raf ()

_ arof ()
(1 =@y (f (31—,("(’)) + Ko exp (— ern’%’»

Based on the definition of the minimum signal strength my above, we can deduce that Ry is a

Uy

slightly larger radius than the minimum signal strength my when we set C = 2. Here, we can see
that Oy is equivalent to Oy since it represents the same ratio of the spike distribution and the slab
distribution at the origin with radius Ry. Similarly, Uy, is equivalent to Uy since it denotes the
same ratio of the spike distribution and the slab distribution near the tails (i.e., outside the minimal

signal strength my).
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Next, to satisfy SSC, we need to verify that the analogous quantities Oy and Uy, satisfy equation

4.13),i.c.,

Uy

sOy = 0;— =
e

00,

Since the first condition in equation (4.14) states that k5 — 0, we start by plugging in k, = \/iﬁ and

2
analyzing the behavior of k. By setting f (x) = exp(— x?), we have the following results for Oy

and Uy:
1 ¢
01,V= q XK_=(1qq)X S 1 (415)
(2+ w)logs 1 - (Nk2)2 .
(1- VN (J_f 2)
q _A A<1_L>
v NK? Nk?
up=- Nt T b o4 0 (4.16)
(1 - q) K1 sS4 4 52 (1 - CI) (NK%)E

. .\ 2 ) .
where ( is a positive constant such that { = %, and A is a constant that depends on the minimal

signal strength via

Nm%

~2 logs’
Then, imposing the second condition Nx? ~ (N + s2*®) on equations (4.15) and (4.16) unveils
two key observations. The first observation is that the Nk term in the denominator of equation

(4.15) will drive sOy — 0, achieving WSC. The second observation is that the exponential term

s” 1n equation (4. will dominate the numerator as N — oo, resulting 1in — 00, dInce <s,
% in equation (4.16) will domi h N lting in U}, Since |£] <
lIITAI’ — oo as well. In this way, Oy and Uy satisfy equation (4.13) and thus we achieve SSC. In the

numerical evaluations, we use the following values for the prior variances.
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1 SZ.l
K2 =M,Kf =max<T,logN> 4.17)
Note that the settings in equation (4.17) satisfy the properties in equation (4.14). This means that

letting the prior variances for the spike and slab prior (i.e., k3 and k%) depend on N is a key

component to achieve SSC.

4.2.4 Remaining Useful Life Prediction

Once the Gibbs sampler returns the estimated fusion coefficients W and the binary sensor
indicators ¥, we can easily construct the HI for a given historical unit i. Recall that the
uninformative sensor’s indicators will be zeroed out based on the sensor selection procedure
described in Section 4.2.3. Thus, unit i’s HI is defined as h; = L;Diag(¥)w. The same procedure
can be done for an in-service unit r, where its HI is represented as h,. = L,Diag()w. Since we
do not make any assumptions on the underlying degradation process n(t), we can estimate the
RUL of the in-service unit 7 using a wide range of degradation models. Here, we use a general
path model to estimate the RUL such that h;(t) = n;(t) + &;(t) = P(O)T; + €;(t), where P(t) =
[1,¢,...,tM ] is the (M — 1)-order polynomial basis function and I; = [I} 4, ..., FLM]T € RM*1
are the corresponding random-effect coefficients. Note that to increase the model flexibility, we
can also use any generic basis functions, such as B-splines depending on the model fit.

The random effect parameter is assumed to follow a prior distribution such that I';~G(-), where
G () is typically estimated from the historical units. For the in-service unit r, we can estimate the
posterior distribution of I, via the Bayes’ rule such that P(T,|h,) «< P(I.)P(h,|T},). If the
posterior distribution does not have an analytical solution, we can use numerical methods like
Hamiltonian Monte Carlo [98] to sample from the posterior distribution. The cumulative

distribution function (CDF) of the failure time T, of the in-service unit r can then be expressed as
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Fr (t|lh,) = P(T, < t|h,) = P(¥(t)I}. = l|h,) based on the definition in equation (4.1).
Given that the in-service unit r has not yet failed, the failure time CDF can be further updated

using the last observed measurement time ¢, , - as such:

P(O)T, = l|h,) — P(tyn, )Ty = I|R,)
1= P((trn, )T 2 U|h;) '

Fr (t|h, Ty > t0.) =

If we assume that G (-) follows a multivariate normal distribution (i.e., [,~MVN(u, X)), then the
posterior distribution I.|h, also follows a multivariate normal distribution with a closed form

expression such that I.|h,~MVN(u,, Z,), where

W/ h,
2

g

+ Z‘1>_ yHy = (zr)_l ( + 2_1”)

The conditional CDF can then be rewritten as such:

o D

where ®(-) is the standard normal distribution CDF, and g(t) = @®)u, -1/

(4.18)

WPOZ,P()T)°5. Following existing studies [4], we can use the median of Fr. (t|h,, T, > t,,.)
(i.e., Fr, (Tr|hr, T, > tr'nr) = 0.5) to account for the skewness in the truncated CDF. Hence, the

estimated RUL is T, — t,. ..
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A comprehensive summary of the proposed method, including the prior specification,

parameter estimation, sensor selection, and RUL prediction is provided in the flowchart in Figure

4.2.
Sensor Data F]';Slon Coefﬁmen‘;s 2 Noise Parameter Selection Indicator
L(7) wilo” ¥y = 1N (0,07 o2~1G(ay, a,) y;~Bernoulli(q)
wjla2,y; = 0~ (0, 02x%) 12 ]
Gibbs Sampler
Calculate Conditional distributions of W, ¥, a2

l

Select Informative Sensors and calculate HI for in-service unit r
- [l,ifp('yj = 1w, (2), 02, L(z) = 0.5
;=

0, otherwise

}

Use general path model h; = ¥ (t)I; + g/(t), Calculate conditional CDF and RUL

PO = Uhy)-2 (e, )Ty = Ilh”), RUL =T, —t.,
1-P(¥(trn, )T = 1|h,) M

Jhe = LrDiag(?)ﬁ'

Fr (t|hy, T > trp, ) =

Evaluate RUL prediction
|RUL — RUL|
Actual Failure Time

Evaluate Sensor Selection
Precision, Recall, F1 Prediction Error =

Figure 4.2 Flowchart of the Proposed Model

4.3 Simulation Studies

In this section, we conduct a series of simulation studies to evaluate the performance of the
proposed method. Section 4.3.1 first discusses how we generate the sensor signals. Then, Section
4.3.2 introduces the benchmark methods and evaluation metrics. Then, we investigate the sensor
selection performance under two different scenarios. Section 4.3.3 investigates the proposed
model’s sensor selection capabilities under varying number of sensors and training units. Section

4.3.4 then repeats the same study while considering the effect of various types of correlation.
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4.3.1 Data Generation Settings

For the simulation study, the underlying degradation path 7n;(t) is defined via a linear

degradation process such that n;(t) =T;, + I;;t and the random-effect parameter follows a

multivariate normal distribution (i.e., [;~MVN ((_31) , (120 015))). If the sampled I3 ; < 0

due to the multivariate normal distribution, then we discard the sample and sample a new one to
guarantee monotonicity. In addition, the true failure threshold is set to [ = 100. The true observed
failure times of unit i are recorded using the definition in equation (4.1), while the true HI is
created by adding a random Gaussian noise h;(t) = n;(t) + &(t), &(t)~N(0,102).

The units have both informative and uninformative sensors. Specifically, there are three
informative sensors, while the remaining sensors are uninformative. Naturally, only the first three
true fusion coefficients are nonzero, while the remaining true fusion coefficients are set to zero
(i.e., w =[1.5,2.0,2.5,0,...,0] € RS*1). The three informative sensors are generated as:

L1 (t) = 5EOVE — 62 sin(0.05¢) + &4 (8),
Lio(t) = 63t — 62 sin(0.1¢) + &;,(1),

(4.19)
Lis(O) = hi(t) —wyLi1(t) — WzLi,z(t)’
w3
where 87,82, 63 ~Uniform(10,20), 5.2 ~Uniform(0,2) , and &, (t), &(t) ~ N (0,10%) .

The uninformative sensors are then generated as:

n;
L0 = 1), 86 + 8, + e, (), 420)
Jj=

Lia, (8) = 83t + 82 + &2, (8),
where 61-('31~]\f(0,0.52), 61.(’,Z)1~Uniform(10,30), Si(,}u)Z~Unif0rm(0,30), 65,2u)2~Uniform(O,2),

and &;q;, (t), &1, (£)~N(0,102).
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Notice that the set of informative sensors are denoted by 7. Among the set of uninformative
sensors U, there are two types of uninformative sensors, each denoted by U; and U,.
Uninformative sensors belonging to U, represent “random” sensors that act as noise since it is a
stochastic process made up by summing random Gaussian terms. On the other hand, uninformative
sensors belonging to U, represent “consistent” sensors. These sensors have consistent increasing
trends due to the linear relationship with time but are not related to the underlying degradation
process. Note that these sensors can be mislabeled as informative sensors based on the heuristic
approach [4], [74], [75] due to their increasing trends. For all simulations, we generate an
approximately equal number of uninformative sensors from each category. For instance, if we set

) ) ) 15-3
the total number of sensors as s = 15, then we will have 3 informative sensors, and - = 6

sensors of each “random” and “consistent” uninformative sensors. In addition, we assume that all
signals are recorded at uniformly spaced time intervals. Figure 4.3 shows the trajectory of the 3
informative sensors and the true HI, while Figure 4.4 shows the trajectories of two types of

uninformative sensors from a randomly selected unit.
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4.3.2 Benchmark Methods

In this subsection, we review the benchmark methods and the evaluation metrics used in the
simulation studies. In particular, we evaluate the proposed model’s sensor selection performance
against other popular sensor selection algorithms. The first class of competing models are
likelihood penalization methods, which attach a penalty term to the likelihood function to promote
sparse solutions. Specifically, we consider the adaptive LASSO [83], SCAD [84], and MCP [99]
methods. Adaptive LASSO uses the L1 norm of the fusion coefficients as a penalty, in which larger
penalty weights are imposed on less important sensors. SCAD imposes the same penalty as the

adaptive LASSO for small fusion coefficients but imposes a relatively more relaxed constant
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penalization rate for larger fusion coefficients, resulting in lower bias in the fusion coefficient
estimation. MCP is also similar to SCAD, but it relaxes the penalization rate more quickly for
larger fusion coefficients. Furthermore, we also include a different Bayesian variable selection
approach named variational Bayes (VB). The VB approach showed promising variable selection

performance in high dimensions based on a case study using genomic data [100].

Uninformative type 1 Uninformative type 2

26- ]

20-

Sensor Measurement
-
-
-
-
Sensor Measurement

23-

0 5 10 15 20 0 5 10 15 20
Cycle Cycle

Figure 4.4 Plot of the Two Types of Uninformative Sensors in a Randomly Generated Unit

For the proposed method, we need to specify the failure threshold [ to estimate the fusion
coefficients w. According to Section 4.2.2, w|y,d?, L(t)~MVN(VL(t)TI1y,52V). Thus, the
failure threshold [ only acts as a scaling factor for the mean of the Gibbs updating distribution for
w and does not affect RUL prediction. Here, we simply use [ = 100 when estimating the fusion
coefficients for simplicity.

We use the following settings for all of the simulation studies. For the adaptive LASSO, we use
the “glmnet” library [101] in R with 5-fold cross validation to find the optimal shrinkage parameter.
In addition, we follow the recommendations of [4] and use 1/|w 5| as the penalty weights for
the fusion coefficients. Note that w; s is the ordinary least squares (OLS) estimate of w. For the

SCAD and MCP model, we use the “ncvreg” library [99] in R with max iterations set to 3000. For
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the VB model, we use the “varbvs” library [100] with a Gaussian family. For the proposed method,
we use a Gibbs sampler with 2000 warm-up iterations and 2000 sampling iterations. Similar to
existing works [74], we use the polynomial basis functions Y (t) = [1, t, t?] for all methods.

We assess the model’s ability to maximize true positives (i.e., selecting the informative sensors)
while minimizing false positives (i.e., selecting the uninformative sensors). Note that minimizing
false positives corresponds to reducing sensor misclassification costs. Hence, we consider the
informative sensors as positive labels and uninformative sensors as negative labels and apply
widely used classification metrics for selection performance evaluation. In particular, we consider
three metrics: precision, recall, and F1. Precision measures the proportion of sensors identified by
the model as informative that are indeed informative, while recall measures the proportion of actual
informative sensors that were retrieved by the model. F1 balances out both precision and recall by

taking the harmonic mean. Detailed definitions are listed below:

Recall = TP Fl 2 X Precision X Recall
TP+ FP’ " “TPF+FN’ ~ Precision + Recall
where TP stands for true positive, FP is false positive, and FN is false negative. With these metrics,

Precision =

we aim to provide a holistic evaluation of the competing methods.

4.3.3 Sensor Selection Performance without Correlation

In this subsection, we investigate the sensor selection performance of the proposed model with
varying number of sensors and training units without the effect of correlation. Note that there are
two types of correlation: intra-correlation, and inter-correlation. Intra-correlation refers to the
correlation within each group of informative and uninformative sensors, while inter-correlation
refers to the correlation between the groups of informative and uninformative sensors. We will

discuss how to impose each type of correlation and investigate its effect on sensor selection in the
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following Section 4.3.4. Here, we consider neither type of correlation.

Recall that the two main factors that characterize the high-dimensional scenarios are: 1) a low
number of training units N; and 2) a high number of sensors s. Therefore, we conduct two different
simulations that reflect these two conditions. First, we fix the number of sensors at s = 45 (i.e., 3
informative and 42 uninformative) and vary the number of training units N from 25 to 100.
Second, we fix the number of training units to 50 and vary the number of sensors s from 15 to 75.
Note that the number of informative sensors is fixed at 3 for all different configurations of s.
Generally, we expect that a low N and a high s scenario will be the most challenging for sensor
selection. Results of the evaluation are shown in Figure 4.5. Note that we display the mean results

obtained from 100 repeated iterations.

F1 Score with varying N F1 Score with varying s
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Figure 4.5 Sensor Selection Performance Regarding F1 Score with respect to Varying N and
s.

From the results in Figure 4.5, the proposed method drastically outperforms existing methods
in terms of the F1 score across all scenarios. In particular, the proposed method shows near to
perfect performance even in challenging circumstances with small N and large s. However,

likelihood penalization methods like adaptive LASSO, MCP, and SCAD suffer from many false
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positives and generally perform worse in terms of F1 score as N decreases and s increases. The

VB method generally outperforms other penalized likelihood methods, but still falls short relative
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[A] Proposed
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No. Units N No. Units N No. Units N

Figure 4.6 Plot of the Estimated Fusion Coefficients Between the Proposed Method (Blue)
and Adaptive LASSO (pink) with varying N.

to the proposed method.
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Figure 4.7 Plot of the Estimated Fusion Coefficients Between the Proposed Method (Blue)
and Adaptive LASSO (pink) with varying s.

In addition to the sensor selection results, we examine the fusion coefficient estimation results
as well under the same simulation settings. In particular, we repeat the fusion coefficient estimation
100 times and compare the estimates with the fusion coefficients estimated by adaptive LASSO.

Kim et al. [4] have shown that adaptive LASSO is a simple yet one of the best sensor selection
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approaches for HI construction, so we use it as a benchmark. Figure 4.6 shows the estimation
results with varying N from 25 to 100 (fixed s = 45) , while Figure 4.7 shows the estimation
results with varying s from 15 to 75 (fixed N = 50). The true coefficient values are shown in the
red dashed line on the top, while the proposed model’s fusion coefficients are shown in blue violin
plots and the adaptive LASSO’s coefficients are shown in pink violin plots. The average
coefficient estimates of each setting are marked by the blue triangle (proposed) and black dots
(adaptive LASSO). From the figures, we observe that the proposed model has drastically more
accurate fusion coefficient estimates than the adaptive LASSO. Even in very high-dimensional
settings (i.e., N = 25 in Figure 4.6 or s = 75 in Figure 4.7), the proposed method is able to obtain
accurate and stable fusion coefficient estimates. On the contrary, the adaptive LASSO’s
coefficients are both inaccurate and unstable (i.e., high variance in the violin plots).

We also conducted additional experiments by fixing the number of sensors to s = 50 and
varying the number of informative sensors from 3 to 30. The results showed that the model
performs best when the true model is sparse, with much fewer informative sensors than the

uninformative sensors.

4.3.4 Sensor Selection Performance with Correlation

In this subsection, we further investigate the sensor selection performance with correlation.
Specifically, we introduce intra-correlation within each group of informative and uninformative

sensors via correlated errors. The correlation between the informative sensors is imposed as

1 .
5 = Cor (22 (0,e20) =, "}7) € B,
mn

where X; represents the corresponding correlation matrix, and —1 < p;,r < 1 controls the level

of correlation. According to equation (4.19), all L; 1 (t), L; ,(t), L; 3(t) are now correlated since
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L;1(t) and L;,(t) have correlated errors, and L;3(t) is a function of the remaining two
informative sensors. Similarly, the intra-correlation between the uninformative sensors is imposed

as:

1 ' Puninf
Z'U = Cor (SiA,(t), ei,S (t)) HEp] gi,s(t)) == : - : € R(S_3)X(S_3);
Puninf " 1

where —1 < pynins < 1 controls the level of correlation, and {em(t), Ei5(t), ) =t (t)} €U,
2

and {ei =M L@, ...,ei,s(t)} € U,. Next, we also consider inter-correlation between informative
2

and uninformative sensors. This is expected to be the most damaging type of correlation as it can

significantly interfere with the sensor selection procedure. To simulate this inter-correlation, we

adopt a block-covariance setting as such:

Z; Iy

zw zu) € ]Ri(s—l)x(s—l),z:]'u = pinter1(5_3)x2,

Liotal = (

in which —1 < pjper < 1 controls the level of inter-correlation. Finally, we use this block

covariance matrix to sample the correlated errors as such:

[gi,l(t)t Si,Z (t)' gi,4(t)t ey gi,s(t)]NMVN(O' 2:totfal)'

Under this simulation setting, we demonstrate the effectiveness of the proposed method under
weak and strong levels of correlation. In the first setting, we impose weak intra-correlation and
inter-correlation of 0.25 (i.e., Pinf = Puninf = Pinter = 0.25). In the next setting, we impose a
much stronger level of intra and inter-correlation by setting p;nr = 0.25, pynins = 0.90, pinter =
0.75. For the number of sensors and training units, we fix them to s = 45, N = 50 for both

scenarios. The simulation results averaged across 100 iterations are shown in Table 4.2 and Table

4.1.



Table 4.2 Simulation Results Under Weak Correlation (standard deviations shown in

parenthesis, ping = Puning = Pinter = 0.25)

Models Precision Recall F1

Adaptive 0.446 0.367 0.381
LASSO (0.215) (0.101) (0.089)
0.751 0.500 0.548
MCP (0.259) (0.168) (0.133)
0.826 0373 0.475
SCAD (0.294) (0.109) (0.098)
vE 0.970 0.400 0.564
(1.120) (0.135) (0.127)

R 0.995 1.000 0.997
p (0.035) (0.000) (0.020)
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Results in Table 4.2 and Table 4.1 demonstrate the superior sensor selection performance of
the proposed model. Indeed, except for the precision score in the strong correlation scenario, the
proposed method drastically outperforms competing methods. Other competing methods
noticeably produce numerous false positives in the presence of strong intercorrelation, with the
adaptive LASSO even reaching an average F1 score below 0.4. The variational inference method
excels at minimizing false positives with a higher precision score but produces too many false
negatives, leading to a poor average F1 score of 0.555. On the other hand, the proposed method

achieves a good balance between reducing false positives and false negatives. As a result, the

Table 4.1 Simulation Results Under Strong Correlation (standard deviations shown in

parenthesis, P s = 0.25, pynins = 0.90, pinter = 0.75)

Models Precision Recall F1
Adaptive 0.389 0.371 0.370
LASSO (0.131) (0.107) (0.088)
0.591 0.629 0.573
MCP (0.222) (0.107) (0.109)
0.701 0.395 0.464
S (0.302) (0.131) (0.103)
VB 0.981 0.400 0.555
(0.092) (0.134) (0.121)
Proposed 0.945 1.000 0.967
P (0.120) (0.000) (0.072)
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proposed method achieves a much higher average F1 score of 0.967 than any other competing

methods.

4.4 Case Studies

In this section, we further evaluate the proposed method on a dataset of aircraft gas turbine
engines. The results are also compared with the state-of-the-art benchmark approach: a generic HI
model by Kim et al. [4] with 4 different approaches for sensor selection: Adaptive LASSO, MCP,
SCAD, and VB. In particular, we first introduce the dataset in Section 4.4.1. Then, in Section 4.4.2,
we compare the RUL prediction performance of the proposed model with the benchmarks. In
Section 4.4.3, we consider a high-dimensional scenario by randomly reducing the number of
training units. Finally, Section 4.4.4 further evaluates a high-dimensional scenario by augmenting

the dataset with additional uninformative sensors.

4.4.1 Dataset Description

We use the turbofan engine dataset generated by C-MAPSS, a widely used simulation software
developed by NASA. C-MAPSS has been widely used for studying the degradation process of
large commercial turbofan engines [102]. The C-MAPSS dataset contains a total of four different
sub-datasets with different failure modes and operating conditions. Here, we focus on the 1* sub-
dataset (i.e., FD0O1) as it has a single failure mode with respect to the High-Pressure Compressor
(HPC) and one operating condition. In addition, the simulated engines start with varying degrees
of manufacturing variation and initial wear and tear to better mimic real-life degradation scenarios.

Each unit i in the dataset consists of 21 condition monitoring sensor signals measured at each
cycle time t = 1,2, ...,n;. Details of the 21 sensors are provided in Table 4.3. The training set

contains 20631 observations from 100 historical units, while the test set contains 13096
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observations from 100 in-service units. Note that historical units in the training set contain
measurements from start to failure, while the in-service units in the test set contain measurements

from start-up to a random truncation time point prior to failure. The true RUL labels are provided

Table 4.3 C-MAPSS Sensor Information

Symbol Description Units
T2 Total temperature at fan inlet °R
T24 Total temperature at LPC outlet °R
T30 Total temperature at HPC outlet °R
T50 Total temperature at LPT outlet °R
P2 Pressure at fan inlet psia
P15 Total pressure in bypass-duct psia
P30 Total pressure at HPC outlet psia
Nf Physical fan speed rpm rpm
Nc Physical core speed rpm rpm
Epr Engine pressure ratio (P50/P2) -
Ps30 Static pressure at HPC outlet psia
Phi Ratio of fuel flow to Ps30 pps/psi
Nrf Corrected fan speed rpm
Nrc Corrected core speed rpm
BPR Bypass Ratio -
farB Burner fuel-air ratio -
htBleed Bleed Enthalpy -
Nf dmd Demanded fan speed rpm
PCNfR dmd | Demanded correctded fan speed rpm
W31 HPT coolant bleed Ibm/s
W32 LPT coolant bleed Ibm/s

for both the historical units and the in-service units. In addition, all sensors are first log-
transformed, and then standardized as the existing literature (e.g., [91]).

Previous works eliminated sensors that did not exhibit a consistent monotonic trend or if their
variance is less than 10™* [4], [74]. However, the simulation results in Section 4.3 showed that the
monotonic assumption is not a clear indicator of the sensor’s relevance to the underlying
degradation status. Therefore, we only remove sensors with variance less than 10™*. As a result,
14 sensors are preselected from a total of 21 sensors. The preselected sensors are: T24, T30, TS50,

P30, Nf, Nc, Ps30, Phi, Nrf, Nrc, BPR, htBleed, W31, W32.
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4.4.2 RUL Prediction Results

First, we report the sensor selection results. Our proposed sensor selection method indicates
that 12 out of the 14 sensors (excluding sensors Nc and Nrc) are informative. The first observation
from the sensor selection results is that all sensors associated with the HPC (i.e., T30, P30, Ps30,
phi) have all been labeled as informative. This aligns with our prior understanding as the FD001
dataset used in the case study only contains failures associated with the HPC. The second
observation is that the remaining 8 informative sensors (i.e., T24, T50, Nf, Nrf, BPR, htBleed,
W31, and W32) have also been labeled as important sensors in multiple past research. Although
the relationship of the 8 informative sensors to the HPC is not as clear as the previous 4 sensors,
these sensors all influence the key control modules (e.g., Low-Pressure Compressor, High-
Pressure Turbine, Low-Pressure Turbine) that are closely correlated to the wear and tear of the
HPC. Finally, the last observation is that the 2 uninformative sensors (i.e., Nrc and N¢) measure
the speed of the core, which is the rotational speed of the central components within the engine.
This result also aligns with previous research [4], [74], [75], potentially suggesting that these
sensors do not offer critical insights for predicting HPC failures.

Next, we compare the RUL prediction accuracy across the 100 in-service units. Since the in-
service units are truncated at random time points, we compare the RUL prediction errors at
different levels of actual RUL in Figure 4.9. For instance, “20” on the x-axis represents the in-
service units with actual RUL levels equal to or less than 20. The y-axis contains the relative RUL
prediction error, which is defined as such:

|RUL — RUL|
Actual Failure Time'

Prediction error =
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Figure 4.8 (Left) Averaged RUL prediction error results on the C-MAPSS dataset by training

on the full 100 training units. (Center) Averaged RUL prediction error on a high-dimensional

scenario by training on 15 randomly sampled training units. Number of sensors is untouched.

(Right) Averaged RUL prediction error on another high-dimensional scenario by adding 86

randomly generated sensors. Number of training units is untouched. The performance of the

proposed method and 4 other benchmark methods are shown. The VB (orange) model for the

center plot is omitted due to its significantly poor performance.

Here, RUL refers to the predicted RUL, while RUL represents the true RUL of the in-service

unit. Note that in Figure 4.8, the solid points represent the average prediction errors across each

RUL level, and the error bars represent a single standard deviation of the errors. Results in the

leftmost plot show that the proposed spike-and-slab approach yields the lowest prediction error

across all levels of actual RUL. Please note that even though the original C-MAPSS dataset is not

very high dimensional, the proposed method still manages to outperform benchmark approaches.

The constructed HI using the proposed method and the 12 informative sensor signals are shown in

Figure 4.9.

4.4.3 Results Under High-dimensional Scenarios (small N)

In this subsection, we mimic a high-dimensional scenario by randomly reducing the number of
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Figure 4.9 Sensor plots of the 12 informative sensors and the constructed HI by the
proposed method for a randomly selected in-service unit.

training units. Specifically, a fixed proportion of the 100 training units are sampled. The sampled
training units are then used to retrieve the fusion coefficients. Then, similar to Section 4.4.2, we
evaluate the RUL prediction accuracy on the 100 in-service units. To properly simulate a high-
dimensional scenario, we sampled 15 units out of the 100 training units. Note that the number of
training units (i.e., 15) is close to the number of sensors (i.e., 14). The RUL prediction results of
this scenario are shown in the center plot of Figure 4.8, which are averaged across 200 iterations
to eliminate the effect of random subsampling.

The evaluation results show that the proposed method returns the most accurate RUL
predictions. In addition, while other sensor selection methods return higher prediction errors due
to the lower number of training units, the proposed method maintains a similar level of
performance to the full dataset with 100 training units. Note that the sensor selection results using

our proposed method remain the same as in Section 4.4.2.
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4.4 .4 Results Under High-dimensional Scenarios (large s)

Finally, we impose a different high-dimensional scenario with a very small portion of

informative sensors. In particular, we keep the number of training units intact at 100 but introduce

additional randomly generated uninformative sensors to further complicate the sensor selection

process and RUL prediction. The uninformative sensors are generated using a polynomial mixed

effects model with M = 3 such that Y (t) = [1,t,t?] € R3*1. The main difference is that the

uninformative sensors are assumed to have higher noise levels with more variation. Recall that the

set of informative sensors is denoted by 7 and the set of uninformative sensors is denoted by U.

The cardinality of each set is noted by | - | such that s = |7| + |U|. The detailed uninformative

sensor generation process is listed below:

1.

Fit a polynomial regression for each informative sensor j € J in the training set and obtain
the degradation coefficients f']

Using the residuals of the polynomial regression, obtain the estimated standard deviation 6]-2

for all informative sensors j € 7. Then, calculate the average noise value via p,2 =

If the informative sensor j is decreasing, then we multiply —1 to the coefficients such that

I = —1 x I}. If the informative sensor j is increasing, we leave it be I} = T}.

Calculate the mean and variance of the degradation coefficients f}* such that ur =

1

EZ”' I e R¥ 2 = 3! (5 — wr) (T — MF)T € R¥.

j=1 7]-1 %=1
Sample [;;~MVN (2pr, Zr) for all uninformative sensors j' € U.

Then, we generate the uninformative signals j' € U such that L; ;1 (t) = Y ()L + &; j(£)

for all training units i = 1, ..., N, where ei,j/(t)~]\/“(0, 2Ug2), t =t;q, ., tin;» and P(t) =
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[1,t,t%] € R3*L,
7. Finally, we simulate both increasing/decreasing uninformative sensors by sampling

Li () = Ly () if §5r = 0.5

. forall j' € U.
Lij () =—Lyp(8)if &y < 0.5 J

s(j'~Ur1if(0,1), where {

8. Repeat step 6 for the testing units. Ensure that uninformative sensors of the testing units are

generated with the same degradation coefficients I and trend values & ;.

The generated uninformative sensors have more variation due the average noise term 2 and
the mean of the degradation coefficients ur are multiplied by 2 (i.e., 2y,2 in step 6 and Zur in
step 5). Note that both informative and uninformative signals still display monotonic behavior, so
it is not possible to apply heuristic methods to screen out informative sensors. A sample plot of the
simulated uninformative sensor with comparison to sensor T24 is shown in Figure 4.10. For the
evaluations, we generate 86 uninformative sensors, resulting in 100 total sensors. We repeat the
iterations 200 times and record the RUL prediction results in the rightmost plot of Figure 4.8.

T24 Uninf

Sensor

- T24
== Uninf

Sensor Measurement
o

0 50 100 150 2000 50 100 150 200
Cycles

Figure 4.10 Degradation signal plots for the T24 sensor (blue) versus a simulated

uninformative sensor (red) for a random training unit
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The results again show that the proposed model maintains the best RUL prediction performance
even under the contamination of uninformative sensors. Furthermore, the sensor selection results
remain unchanged as in Section 4.4.2, demonstrating the robustness of the proposed sensor
selection approach. During the evaluations, we also discovered that the proposed model properly
concluded that the 86 simulated sensors are uninformative for 198 out of the 200 iterations. Hence,

the proposed model still retains effective prognostic results.

4.5 Conclusion

In this paper, we proposed a novel data-fusion method tailored to high-dimensional sensor
scenarios for better prognostics. Specifically, the proposed method uses a spike-and-slab prior
distribution on the fusion coefficients that automatically selects the informative sensors, which are
then fused into a 1-D HI for RUL prediction. The proposed method has the following unique
advantages. First, the proposed spike-and-slab sensor selection approach significantly outperforms
existing sensor selection methods, especially under high-dimensional scenarios with many sensors
relative to the number of training units. Second, the proposed method also boasts superior sensor
selection performance even under the influence of sensor correlation. Third, the proposed methods
have nice theoretical properties like weak and strong selection consistency. Finally, the proposed

method demonstrates high RUL prediction accuracy relative to existing benchmark methods.

The prognostic performance under different scenarios was meticulously investigated through
the simulation and case studies. The simulations in Section 4.3 investigated the sensor selection
performance with and without correlation, with results showing reliable sensor selection
performance even under high cross-correlation. For the case study, evaluations on the C-MAPSS
dataset demonstrated the superior RUL prediction performance of the proposed method. Even

under high-dimensional scenarios such as lower number of training units and contamination of
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uninformative sensors, the proposed method still showed the lowest prediction errors relative to
existing benchmark methods.

There are several interesting topics for future research. First, we assumed a single failure mode
and operating condition. In future studies, we aim to propose a more generic sensor selection
approach for multiple failure modes and operating conditions under the high-dimensional settings.
For instance, we can extend the current method by introducing a latent variable for each failure
mode and then treat this latent variable as an additional parameter with its own distribution and
integrate it to the Bayesian parameter estimation. Second, we implicitly assume that the set of
informative sensors does not change with respect to time. However, it is possible for the set of
informative sensors to change/evolve as the system degrades, especially when there are multiple
failure modes and operation conditions. In the future, we aim to extend this work into an adaptive
sensor selection framework so that the model can select a different set of sensors with respect to

the current degradation status.

4.6 Appendix

In this appendix, we compare the proposed method with a deep learning-based sensor selection
approach by Kim et al. [89]. The sensor selection results were recorded across three scenarios of
the case study (i.e., Original, small N, and large s) in Table 4.4 of Section 4.4. Results show that

the deep learning approach [89] is highly sensitive to the different high-dimensional conditions

Table 4.4 Sensor selection performance of a deep learning-based approach by Kim et al. [88]

on the C-MAPSS FDO001 dataset

Scenarios Selected Informative Sensors
Original T24, T50, P30, Nf, Ps30, phi, Nrf, htBleed, W32 (9 sensors)
Small N T24, T50, P30, Ps30, htBleed, W32 (6 sensors)
Large s T50, P30, Ps30, htBleed, W32 (5 sensors)
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and selects an inconsistent number of informative sensors (9,6,5) for each scenario. On the contrary,
our proposed method has maintained stable sensor selection results (i.e., 12 informative sensors)

across all three scenarios.
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Chapter 5  An uncertainty-informed neural network-

based (UINN) prognostic model for multi-type data

5.1 Introduction

Recent advances in sensor technology have sparked the widespread use of multiple sensors to
monitor the system’s condition. These sensors collect key operational parameters, which are then
used for various analytics tasks such as anomaly detection, remaining useful life (RUL) prediction,
and scheduling appropriate maintenance actions. The data collected from these sensors can be
broadly divided into two categories: continuous sensor signals and discrete event sequences. Each
data type provides unique insights into the unit’s health status. Discrete event data typically
captures sudden changes such as anomalies or maintenance actions, whereas continuous signal
data highlights the gradual changes and temporal trends within the system. For instance, a typical
manufacturing equipment has a group of sensors recording the various events (e.g., maintenance,
operational condition changes) in the system, and another group of sensors recording changes in
mechanical parameters of the system (e.g., vibration, temperature, pressure).

For accurate prognostics, it would be ideal to draw prognostic insights from both data types and
integrate them into the final RUL predictions. However, existing works tend to focus on analyzing
a single data type. There has been a plethora of research on predicting the RUL by only analyzing
continuous sensor signals [10], [39], or discrete event data [42], [103], but very few works have
tried to simultaneously incorporate both data types into the final RUL predictions. A few works in
reliability and statistics literature have investigated joint modeling of both data types [104], but

their assumptions on the events are very restrictive as the events are generally failure/terminal
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univariate events. Such restrictive assumptions greatly limit the applicability of these joint
modeling approaches, as the unit can repeatedly experience a wide range of non-terminal events
that affect its health condition.

One possible approach for processing both data types is to manually extract features from both
data types and then use them for RUL prediction. However, this process is labor-intensive and
requires a deep understanding of the intricate relationship between events, sensor signals,
underlying degradation status, and RUL. Due to this complex structure, it can be extremely
difficult to formulate a generalizable feature extraction procedure across many applications.
Another possible approach is to formulate a parametric statistical model for each data type and its
relationship with the RUL. But this approach is neither practical nor scalable, as the model
structure can become exponentially complex with assumptions on the event type (i.e., recurrent,
multi-type) and the relationship between the degradation status and the event/signal data.

Alternatively, deep learning (DL) approaches have recently gained great popularity due to their
strong performance in a wide range of applications in healthcare [48] and prognostics [105]. In
addition to their outstanding predictive performance, another major advantage of DL approaches
for prognostics is their ability to directly learn the intricate dynamics of complex engineering
systems from the available data. As a result, DL approaches do not require extensive feature
engineering efforts and can automatically extract relevant features from both continuous sensor
signals and discrete event data. Despite the success of DL approaches, direct applications of
existing DL models to prognostics may not yield satisfactory performance. First, the flexible
architecture of DL models can sometimes lead to challenging modeling issues. When designing a
DL model, one needs to choose multiple hyperparameters such as the number of hidden layers,

optimizers, learning rates, and activation functions. Moreover, developing a DL model for
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different data types necessitates specific model structures. For instance, while both event data and
signal data exhibit temporal trends, categorical data like event types typically require additional
embedding layers to convert them into vector representations. The design complexity increases
further when integrating the insights from each data type into the final RUL predictions. Therefore,
formulating a DL prognostic model for multi-type data requires careful model design choices.
Second, even with a well-designed model architecture, training the model comes with its own set
of challenges. To prevent unwanted bias, the standard approach involves jointly training separate
predictors for each data type. However, joint training is difficult as the DL model can easily
experience over/underfitting issues by failing to efficiently learn features from all data types at
equal rates [6]. Without proper procedures, it is common for DL models to focus on learning one
dominant data type, resulting in imbalanced learning and suboptimal performance.

Based on these challenges, the objective of this paper is to formulate a data-driven, DL-based
prognostic model that leverages insights from both discrete event data and continuous signal data.
The proposed model is referred to as the uncertainty-informed neural network (UINN) model. The
key contributions of this work are summarized as follows. First, to the best of our knowledge, the
proposed UINN model is the first DL prognostic model that simultaneously captures the dynamics
of discrete event data and continuous signal data. As a result, the proposed model can provide a
holistic picture of the underlying degradation status compared to analyzing a single data type.
Second, using a DL model avoids the need for restrictive parametric assumptions. Unlike statistical
models, the proposed model can accommodate a wide range of event interactions, multi-type, and
recurrent events. Third, to overcome the training challenges, the UINN model presents a joint
training procedure to minimize estimation bias and achieve better prognostic performance.

Specifically, the UINN model uses a joint loss function that is a weighted sum of the loss
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components corresponding to each prediction task: event type, event time, signal, and RUL
prediction. The weights of each loss component are determined by the uncertainty information of
each prediction task, with higher weights given to tasks with lower uncertainty. Evaluation results
on simulated data and real-life case study data show that the UINN model outperforms existing
benchmarks. In particular, the case study includes a new battery discharge data using the PiSugar
battery attached to a Raspberry Pi device. Details of the data collection and the hardware used are
provided in Section 5.4.2.1. This new battery dataset will also serve as a valuable resource for
various other prognostic studies related to multi-type data analysis and battery research.

The rest of this paper is organized as follows. Section 5.2 provides a review of existing
prognostic techniques for modeling discrete event data, analyzing multi-type data, as well as
references for leveraging uncertainty information to alleviate training issues. Section 5.3 describes
the details of the proposed UINN prognostic model, including the structure of each predictor and
the joint training procedure. Then, Section 5.4 presents two numerical studies, including a
simulation study with generated data and a case study using real-life data collected from PiSugar

batteries. Finally, Section 5.5 presents an overall summary and conclusion of the work.

5.2 Literature Review

Literature on event modeling can be broadly categorized into two main branches: statistics-
based methods and DL methods. In both branches, events are typically assumed to be either
terminal, where the system fails after the event occurrence, or non-terminal (i.e., recurrent), where
the system is still functional after the event occurrence. In reliability literature, numerous statistical
approaches have been developed to model the occurrence of terminal events. These models
primarily rely on techniques from survival analysis, where the time to the terminal event is

modeled using popular models such as the Cox proportional hazards (PH) model [42]. Typically,



119

these models assume a pre-specified parametric relationship between the hazard function (i.e., the
instantaneous probability of a terminal event) with a group of covariates (also known as predictors).
After the model parameters are estimated, one can plug in the covariates to obtain the mean time-
to-failure. Many extensions of the Cox PH models have been proposed, with the most prominent
one being joint models. First proposed by [56], joint models draw prognostic insights from both
continuous longitudinal data (i.e., degradation signals) and time-to-event data. Normally, the
degradation signals are modeled by a mixed-effects model. Then, the fitted signals are plugged
into the Cox PH model as covariates to compute the corresponding hazard and survival
probabilities. These joint models have shown promising results in both medical and prognostic
applications. Recent advancements have introduced joint models that use multivariate gaussian
processes [44] for greater modeling flexibility and prediction accuracy.

While these models offer strong predictive capabilities, their reliance on parametric
relationships significantly limits their flexibility. A key limitation of the Cox model is the assumed
linear relationship between the covariates and the log-hazard function. In practice, these quantities
can have complex, nonlinear relationships that the Cox PH model cannot effectively capture.
Another limitation arises from the direct use of longitudinal observations (e.g., degradation signals)
as time-varying covariates, which introduces two major sources of bias in the estimation process.
First, the parameter estimates are biased due to “Last-Observation-Carried-Forward” (LOCF)
inference method [106], where the most recent observation is used instead of the true time-
dependent covariates. Second, measurement errors in the longitudinal observations introduce
additional bias into the inference process [107]. Finally, these approaches are designed to only

handle terminal events. In practice, the system can experience a wide range of non-terminal, multi-
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type, recurrent events that affect the underlying degradation status. As a result, these methods have
limited applicability in real-world scenarios.

Traditional statistics-based approaches for modeling recurrent events employed renewal
processes [108]. These approaches typically assume that the system is fully restored to a ‘healthy’
state following maintenance actions. However, in practice, maintenance can have varying effects
on the underlying system and does not always fully restore system health. To address this limitation,
[109] proposed a class of imperfect maintenance models that apply a geometric reduction to the
system’s age or event intensity. [110] proposed a multi-type recurrent event model for multi-
component systems with imperfect maintenance actions. In general, although there are many
statistical approaches that accommodate multi-type recurrent events, they still impose strong
parametric assumptions on the degradation trends of sub-systems by requiring the user to select
the appropriate baseline process. In addition, these statistical approaches often struggle to scale
with the number of event types.

Another group of statistics-based approaches to model recurrent events are called temporal
point processes (TPP), which are probabilistic generative models that capture the dynamics in
event sequences [111]. TPPs do share some similar model structures with survival models for
recurrent events, but the main difference is that survival models are interested in predicting the
time to a terminal event, while TPPs focus on modeling the intensity of recurrent event occurrences
over time. A general review of TPPs and their theoretical foundations can be found in [112].
However, a major limitation of classical TPPs is their parametric nature. Like survival models,
they require the user to specify a baseline intensity and an intensity function, which can restrict

the model’s ability to capture complex event dependencies.
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In general, the main limitation of statistics-based approaches is their focus on parametricity,
which restricts their ability to capture a wide range of complex interactions. To address this
limitation, researchers have increasingly turned to DL approaches. By replacing the parametric
functions with neural networks, these approaches offer much greater flexibility in modeling
intricate functional relationships. For modeling the occurrence of terminal events, researchers have
proposed to extend the Cox model using neural networks by replacing the linear covariate term
with a generic neural network. Due to their flexibility, these models have outperformed traditional
survival models in a variety of clinical and reliability applications, e.g., DeepSurv [48] and
SurvivalNet [113].

Neural network approaches have also been used to model the occurrence of non-terminal,
recurrent actions, especially in the context of TPPs. Instead of specifying a parametric form of the
event intensity, researchers have used a neural network to parameterize the intensity function.
These NN-based extensions are commonly referred to as neural TPPs and have gained popularity
in recent years due to their great predictive power and flexibility. The seminal work of [114]
provided a general framework of neural TPPs, where each event is first represented as a feature
vector. The sequence of feature vectors is then encoded into a fixed-dimensional history
embedding vector, which is then used to derive the conditional distribution over the next event.
Many variants have been proposed, including which information to include in the feature vector
[115] and how to effectively encode the event history into a fixed-dimensional vector [116].
However, a common limitation of these approaches is the difficult training process due to their
intricate model structures. In fact, empirical results have shown that neural TPPs are more
susceptible to fitting issues and are highly sensitive to the choice of various model components

[111]. Therefore, training a neural TPP often necessitates extensive efforts, including multiple
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cross-validation steps, regularization strategies, and large-scale data collection to ensure adequate
generalization performance.

In summary, there are two main literature gaps that need to be addressed. First, there is a lack
of data-driven methods that integrate insights from both discrete event data and continuous
longitudinal data. Although there are some models (i.e., joint models) that capture the effect of
both data types, they tend to be focused on terminal events and not on recurrent, non-terminal
events. In practice, non-terminal events, such as maintenance actions, have a significant effect on
the underlying degradation status. Therefore, the effect of non-terminal events must be accounted
for in the model. Second, DL approaches are still difficult to train, with many of them frequently
encountering model fitting issues. To avoid these common pitfalls and fully exploit the predictive
power of neural networks, there is a need for an established, systematic training procedure for
these models. In response, the proposed UINN model is a flexible, DL approach that: 1) accounts
for the effect of multiple recurrent, non-terminal events as well as longitudinal signals; and 2) uses
a systematic, joint training procedure based on uncertainty information to assist model training
and accelerate the convergence of the loss function. The details of the UINN model are introduced

in Section 5.3.
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Figure 5.1 Architecture of the proposed UINN model (Notation on unit i is dropped for

convenience).
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5.3 Methodology

This section describes the details of the proposed UINN model for multi-type data. An overview
of the UINN model is shown in Figure 5.1 with three major components: the event predictor, the
signal predictor, and the RUL predictor. As the name suggests, the event predictor processes the
discrete event data and predicts the next event type and time, while the signal predictor takes the
continuous multivariate signal data and predicts the subsequent set of signals. Then, the predicted
event and signal data are fed into the RUL predictor for the final RUL prediction. Since each
predictor has varying data types as inputs, each predictor has its own unique structure. Section
5.3.1 first discusses the problem formulation. Section 5.3.2.1 describes the details of the event
predictor, Section 5.3.2.2 illustrates the details of the signal predictor, and Section 5.3.2.3 describes
the data alignment process used to prepare the predicted event and signal data as inputs for the
RUL predictor. Finally, Section 5.3.3 describes the joint training procedure to fit the UINN model
and explains how uncertainty information aids the training process by automatically weighing the

loss components of each predictor.

5.3.1 Problem Formulation

Suppose that there are N;,.4;,, historical units that produce event sequence data and degradation

signal data. In particular, a given unit i € {1, ..., Ny.4in} has associated event sequence data E; and

Nievent

degradation signal data Y;. The event data E; = {el-, m, f}]=1

has two main components: the

event type e; ;, expressed as a one-hot encoded vector e; ; = (el-, i € j,Z) € R*Z, where the
zth position (for z € {1, ..., Z}) is 1 for the zth event type and all other positions are 0, and the
associated event time (i.e., time of event occurrence) m; ; for the jth event in the sequence. Note

that n; opene represents the total number of events in the event sequence for unit i.
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The events considered in this study have three major characteristics: multivariate, recurrent,
and non-terminal. First, multivariate means that there are Z > 1 unique event types in the sequence.
Second, recurrent implies that the units can experience the same event type multiple times during
their lifetime. Third, the events are non-terminal (referred to as trigger events in some literature
[42]), so the occurrence of these events can influence the underlying degradation status of the unit
but does not indicate that the unit has failed. Examples of non-terminal events are periodic
maintenance activities, incorrect machine setup or operation by an operator, early warning

diagnostics, and minor faults or errors.

. Each Yi,j € RP

The degradation signals of unit i are represented as ¥; = {Yi,l, s Yivnisignal }

term contains signal observations from p sensors at the jth observation, where j = {1, s ni,signal}.

The respective observation times for the degradation signals are denoted as t; 4, ..., t Next,

LNisignal’

the corresponding RUL values of unit i are denoted as RUL; = {R UL;q,...,RUL } Notice

LN signal
that due to the characteristics of physical sensors, the degradation signals and the RUL values are

measured at the same time grids ¢; 4, ..., t which is different from the time grid of the

LMisignal®
events m; = {mi,l, ...,mi,nmnt}. This is expected because events usually occur at irregular
intervals, so the number of signal or RUL observations n; 5 gnq; 1 not equal to the number of event
observations 1 gyent (1.€., N signal # Nievent)- Since neural networks require inputs to be aligned
on the same time grids, Section 5.3.2.3 introduces an input alignment procedure for the event,
signal, and RUL values in the proposed UINN model. Once the events and signals are aligned on
the same time grid, they are fed into the UINN model to predict the future event times, types,

degradation signals, and RUL.
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5.3.2 Proposed Network for Multi-type Data

This subsection describes the structure of the proposed UINN model. As illustrated in Figure
5.1, each data type requires a separate predictor to capture its unique characteristics. Details of
each predictor (i.e., event predictor, signal predictor, and the RUL predictor with the input

alignment step) are discussed below.

5.3.2.1 Event Predictor

Nievent

i1 is captured via a

The temporal dynamics of the event sequence E; = {(ei,j,mi,j)}

variant of the Long Short-Term Memory (LSTM) model. Before plugging the event sequence into
the event predictor, it is preprocessed using a sliding window approach, where a fixed window

width (i.e., number of events) TW,,., 1s applied. Each input instance after the sliding window

. S
approach is denoted as E;g :{(ei'j’mi’j)}j=s—TWe,,ent+1 for s € {TWepents TWepent +

Figure 5.2 Detailed architecture of the event predictor.

1, .M event — 1}. Then, the objective of the event predictor is to predict the next event type e; ¢ ¢

and event time m; ;4.
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The overall structure of the event predictor is illustrated in Figure 5.2 with the detailed input-

output procedure explained in the following:

1.

The Z -dimensional one-hot event type vector e;; € R1*Z is first passed through an

embedding matrix D € R?*4emb  where d,,,;, is the embedding dimension.

The transformed event type vector e; ;D € R1*demb ig concatenated with the event time
m;; such that [ei’jD, mi'j] € Rlx(demb+1).

This concatenated vector from Step 2 is fed into the LSTM layer, LSTM,yepn:, Which

produces a sequence of hidden states Hevent =
event event TW, Xdpi
LSTMepent ({eUD mlj}] =S TWopens+1’ His“7, Cis’y ) € R" Wevent*@hidden  Note that

dhiggen is the dimension of the LSTM hidden states, H{5%"t" € RTWevent*dhidden g the
hidden state of the event predictor at time m; ;_q, and c{sc;" € RTWeventXdnidden s the cell
state of the event predictor at time m; ;_;. The difference between the two states is that
the cell state pays more attention to long-term dependencies, while the hidden state
focuses on short-term dependencies.

The hidden states H{3°"™" are passed through a multi-head attention layer to improve the
model’s ability to capture long-range dependencies in the event sequence. The resulting
vector is represented as U¢Y™ = MultiHeadAttention(H{Y*™) € RTWevent*dnidden.
The latest observation of U™, defined as u{s™ = USY™ [TWopeny, : ] € R¥*%hidden,
is processed through two separate dense layers to predict the next event type and event
time,  resulting  in & ¢yq = tanh(USL W e + brype)  and  Mygpq =

tanh(ue”entwtime + bime ). Here, Wiypes Wiime € R¥nidden ! represent the weights of

the event type and event time layers, and bty pe, btime € R**1 are the corresponding bias
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terms. Note that the event predictor returns a scalar prediction é; ¢, instead of the one-
hot vector &; 5.

The multi-head attention layer [117] used in step 4 is a mechanism that allows the model to
better capture temporal dependencies across different segments in the input sequence. Past
research has shown that adding attention layers to LSTMs improves their capability of capturing
long-range dependencies in both event sequence and time series modeling [117]. Multi-head
attention extends this concept by performing multiple attention functions in parallel and then
averaging the results across the attention functions (i.e., heads), allowing the model to even better
capture the temporal trends of the sequence.

The next step is to define an appropriate loss function to train the event predictor. Since event
type prediction is a classification task and event time prediction is a regression task, the network
is trained on a weighted sum of the event time prediction loss and the event type prediction loss.

The total loss function for the event predictor is shown below:

. . .
Event Loss = wtmetime y yytyvep ybe

vent event’
N¢rain  Nievent Nirain  Mievent
Ligene = Z z (mij — ;)" LERG = Z Z CE(eyj. &),
i=1 j=TWepent+1 i=1 j=TWepent+1
Z
CE(ei,j, éi,j) = Z ei,j,z log(éi’jlz). (51)
z=1

where e; ; , is a binary indicator that is 1 if event z is the true event for unit i’s jth event, &; ; , is
the predicted probability of the jth event being event z, and CE is the cross-entropy function.

Details on how to configure the weights of each loss function *P¢ and wrt™¢ are explained in

Section 5.3.3.
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5.3.2.2 Signal Predictor

The signal predictor is also based on the LSTM architecture due to the time-dependent

characteristics of degradation signals. Given a window size TWs;,, the degradation signals

ig’

for t € {TW; s Nisignat} are passed into an LSTM model, which returns a

t
{Yi'j }j=t—TWSig+1 igr =

vector of hidden states with H fitg € RTWsig*dniaden2  Here, dj;gqenz Tepresents the hidden layer

size of the LSTM model. Then, the final hidden state h{"Y = H}[TWy, — 1,:] € R1*@hiddenz is
fed into a linear dense layer with a ReLU activation function. The resulting output is the predicted

degradation signal at t+ 1, such that }A’i,tﬂ = ReLU(hf,itg W + bsig) , where Wg;, €

sig
R%hiaden2*P ig the weight matrix and by, € R*P is the bias term. Note that the signal predictor

is trained using the Mean Squared Error (MSE) loss function shown below:

N¢rain Misignal

Loy = z Z (v, -7,)". (5.2)

i=1 j=TWgig+1

5.3.2.3 RUL Predictor with Input Alignment Step

The predicted event time, event time, and signal predictions serve as inputs for the RUL

predictor. However, one challenge arises due to the different time intervals between the events and

(éi,1, M 1) (812, 1M 2) (8i3 1M 3)
| - [« | |
ti1 ti2 ti3 tia tis tie ti7
YViq Vi Vi3 Vi Yis Yig Y
® Event 1 + Event 2

Figure 5.3 Example of misaligned event and time predictions
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the degradation signals. As mentioned in Section 5.3.1, degradation signals typically occur at
uniform time intervals, but events occur at irregular time intervals. This results in a misalignment
between event predictions and signal predictions on the time grid. An example is illustrated in
Figure 5.3.

In Figure 5.3, there are signal predictions at each time interval t; 4, t; 5, ..., t; 7. On the contrary,
there are three event predictions at irregular time intervals, with the first event occurred between
t;, and t; ,, the second occurred between t; 3 and t; 4, and so on. Since the RUL predictor is a
neural network with a fixed input dimension, the predictions must be aligned on the same time
grid. Inspired by discrete-time survival analysis models [118], we propose to address this challenge
by first dividing the timeframe into disjoint intervals: (ti,l, ti,z], (ti_z, ti_3], s (ti,6: ti,7). The time
intervals of the signal predictions serve as a reference for the discretization process, as they are
often more granular and evenly distributed. A detailed description of the time discretization is
shown in Figure 5.4. After discretizing the time grid, Z count variables Eil,tl' fftl, e fft 2 0 are

defined for each event type. The transformed new inputs are denoted as: X;, € RP* =

Concatenate(¥;,, &}, , ..., &7, ), where X, , is essentially a concatenated vector of the predicted

N ;:CV\; I];[:;lt Time ¢t Signals Y, | Event 1 filrt Event 2 Eft
Xiq (0, ti4] ?5,1 0 0
Xi) (tign tiz] Vi 1 0
X, — (ti2,ti3] Vi3 0 0
Xis (tiz3 tial Yia 0 1
Xis (tian tis] Yis 0 0
Xis (tis tie] Vi 1 0
X, (tier ti7] Y, 0 0

Figure 5.4 Aligning the event and signal predictions using grid discretization
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degradation signals and the event count variables. For instance, in Figure 5.4, the predicted
occurrences of event type 1 are in intervals (ti’l, ti’z) and (ti,S, ti,ﬁ), SO Eil’tz = Eil’% = 1. Similarly,
event type 2 happens in interval (t; 3, t;4), so &7, = 1.

Now that the inputs X; 1, X, ... are aligned on the same timeframe with consistent input
dimensions, and thus they can be fed into the final RUL predictor. This RUL predictor is a simple
feedforward neural network consisting of multiple hidden layers with ReLU activation functions.

In practice, the number of hidden layers is determined based on the data. Finally, the RUL predictor

is trained using the MSE loss function defined as:

Ntrain  Misignal

— 2
Loy = z z (RUL;; — RUL;)’. (5.3)

i=1 j=TWSig+1

5.3.3 Joint Training with Uncertainty-informed Loss Function

The proposed UINN model has many predictors, each parameterized by different neural

networks with their own loss functions. Specifically, there is the event predictor with event time

type
Lyp

loss LEU2E, and event type loss L), .,

the signal predictor with its loss function L; 4, and the RUL
predictor with the RUL loss function Lgy;;. Due to this complex setup, training the UINN model
is tricky and can easily fall into a local minimum with suboptimal performance. To simplify the
training procedure, one possibility is to consider a sequential approach, which involves first
training the event predictors and signal predictors separately, then using their predictions to train
the RUL model in the final step. However, this two-stage approach is known to introduce unwanted
bias in the model estimation, potentially leading to erroneous results. A more desirable alternative

is joint training all models in a systematic manner to reduce modeling bias.
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To jointly train the UINN model, one needs to find the loss weights (i.e., wrt™¢, wrtPe,
w9, 4rRUL > 0) for the four loss functions (i.e., components):

Ligine = wtimestime, 4 g type f008 4 S0 Lg 0+ wRV Ly, (5.4)

The importance of each prediction task in the UINN model is reflected by the loss component
weights, with larger weights signifying greater importance. Past approaches for weight calculation
included naive approaches like uniform weights or manual tuning by trial-and-error. However,
manual tuning of the weights is computationally expensive and does not scale well with model
complexity. Hence, a more systematic approach that can automatically learn the weights is
preferred.

Multi-task learning [119] provides a solution for this challenge. Specifically, multi-task
learning aims to improve learning efficiency and prediction accuracy through the simultaneous
optimization of multiple tasks (i.e., loss functions) instead of single tasks. To do so, task-dependent
(i.e., homoscedastic) uncertainty information is used for weighing the individual loss components.
Empirical results indicate that these uncertainty-informed weights can effectively balance multiple
tasks and lead to superior performance than naive counterparts [6]. In the proposed UINN model,
each loss component is treated as an individual task and their task-dependent uncertainty is used
as weights. Notably, task-dependent uncertainty measures the relative confidence of each task, and
it has been frequently used in prior research [120] to weigh losses in a multi-task learning
framework.

To define the task uncertainty-informed loss functions, the likelihood functions for the
regression tasks (i.e., RUL, event time, and signal prediction) and the classification task (i.e., for

event type prediction) are first studied. For regression tasks, a Gaussian likelihood function is used,

where the model output serves as its mean and the observation noise term has a variance 2. As
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an example, for the RUL predictor, p(R ULty |fRUL (Xt))~]\/‘ (frur (Xo), 0fyL), where fry, is the
RUL predictor and 63, is the variance of the gaussian observation noise. Note that the subscript
i on the units is dropped for notational simplicity. The negative log likelihood of the model can be

written as
1 2
—log (p(RULt+1|fRUL(Xt))) X F IRUL¢ 41 — fru (Xl + log ogyy. (5.5)
RUL
Notice that the ||[RUL 41 — fryr(X)]|? term is identical to the MSE loss function of the RUL

1
2

which

predictor Ly, defined in (5.3). The difference is that the loss function is scaled by -
RUL

can be regarded as the loss component weight. Intuitively, this means that models with higher task-
dependent uncertainty receive lower weights, and vice versa. The additional log term, log oy,
acts as a regularizer that discourages the noise term from increasing too much. The same approach
can be used for other regression tasks like event time prediction and signal prediction.

For a classification task like event type prediction, the equation is similar, but the Gaussian
likelihood is replaced by a Boltzmann distribution (i.e., scaled version of the model output passed

through a Softmax function). For ease notation, we define the input instances of the event predictor

as eg = {ejD}S and mg = {mj}s_ for s € {TWevent,TWevent +

J=5—TWepent+1 J=5=TWepent+1
1, ..., epent — 1}. Note that the subscript i on the units is again dropped. The model likelihood
can be written as:

1
p(es+1 = Z|fevent (ms» es)f Utrzype) = Softmax z_fevent (ms’ es) . (5-6)
type

where f,,.n: (Mg, €5) represents the outputs (i.e., event type and time predictions) obtained from
the event predictor f,,.n:. Taking the negative log likelihood of this expression leads (5.6) to the

following expression:
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1
—logp(es+1 = Zlfevent (msr es)r atzype) = O'Z_ (CE(es+lr fevent (mSI es))
type

1 ’
Zz’ exp (O‘Z— ervent (ms: es))

type
+log T

(52 050 (Rt ms, ) Bve

Here, fZ.n: (Mg, e;) represents the zth element of the output produced by f,,en: (Mg, €5). The

following  expression can  be  further reduced with the  approximation:

1

’ o2 1 1 / .
(Zz’ exp (fezvent (m, es))) pe = Dz €Xp <Ut2_ fevent (M, es)>> where the equality holds
Y

Otype pe
as O'tzype approaches 1. This simplification has been widely used in deep learning literature [6] and

offers practical benefits by reducing computational complexity. It is particularly effective when
the predicted logits are sharply peaked. After the simplification, the loss function can be written

as:

—log p(€5+1 = Zlfevent (ms' es): Utzype)
1 (5.7)
= log Otype + 2 (CE(es+lr fevent (ms' es))-
thpe
As shown in (5.7), the simplification results in an objective function that is easier to optimize.
With the loss functions for both regression and classification tasks defined, the uncertainty-

informed joint loss function can be formulated. The joint likelihood of the entire network L;,p; is

expressed as follows:

Nirain [ Mievent—1

Ljoint = 1—[ 1_[ p(es+1 = Zlfevent(ms' es)f Gtzype) : p(ms+1|fevent(ms' es): O-tzime)

i=1 5=TWevent

Nisignal—1

1_[ p(yt+1|fsig(yt)'o-szig) ‘D(RUL¢ 111 frur (Xe), UI%UL) .

t=TWsig
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Taking the negative log likelihood of £, results in the following expression:

- lOg Ljoint X

F Nievent—1 b
1 1
Nowo P (Mgy1 — Mgyq)? + > CE(est1,€541) +10g Opime + log Otype | T
train 20 o,
tlme type

s=TWevent
Njsignal—1

= Z <2 > (Yt+1 Yt+1) +

——— 2
(RULHl RULt+1) ) +logaogy + logaRUL>
UL

[ t=TWgg Isig R i
.. . . ; 1 1 ; 1 1
This is equivalent to (5.4) with wt™me = whPe = —— w59 = , whRUL =
202 0Zne’ 202 203
time type sig RUL

without the regularizer terms. Finally, the regularizer terms for each loss component is added to

avoid extreme (i.e., too large) variances, resulting in the final joint loss shown below:

1 1
—log Ljoint —Ltime + 55— Ltype + o= Lsig + _ZLRUL + 108 Gtime

2 tzzme thpe 20, Szlg 20pyy,
+log g1ype + 10g 0515 + l0g oy (5.9)

5.4 Numerical Study

This section contains two numerical studies to evaluate the performance of the UINN model:
one on simulated data in Section 5.4.1 and the other on real-life battery degradation data collected
from the PiSugar battery for Raspberry Pi devices in Section 5.4.2. Specifically, Section 5.4.1.1
discusses the details of the data generation process, while Section 5.4.1.2 introduces an overview
of the benchmark methods and the evaluation metrics used in this study. Section 5.4.1.3 then
presents the evaluation results on the simulated dataset. Next, Section 5.4.2.1 introduces the
experimental setup used to collect the battery degradation data from the PiSugar battery. Finally,
Section 5.4.2.2 discusses the performance of the UINN model on the real-life dataset. Details of
the average computational time and hyperparameter optimization of the simulation study is

discussed in the appendix at Section 5.6.
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5.4.1 Simulation Study
5.4.1.1 Overview of Data Generation

Consider a unit that produces both discrete event data and continuous signal data. Since the
events are non-terminal and only affects the degradation status, only “soft failure” scenarios are
considered (i.e., unit i is considered to have failed once the underlying degradation status 7n;(t)
reaches a specific failure threshold ). Specifically, the failure time T; is defined as such: T; =

arg mtin n;(t) = l. The underlying degradation status n;(t) is affected by two components: the

continuous signals, and the cumulative counts of each event type. The exact relationship is
specified as such:

ni(t) = a¥(t) + B (¢). (5.9)
Here, a = [al,...,ap] € R™P is the coefficient vector for the continuous signals, B =

[B1, ... Bz] € RY*Z2 is the coefficient vector for the discrete events, and ¢;(t) =

[pi1(0), ..., qbi,z(t)]T € R%*1 is the cumulative counts for each event type. For instance, if event
type 1 has occurred twice by a given time ¢, then ¢; ; (t) = 2. In this simulation study, we generate
2 degradation signals and 4 event types such that p = 2, Z = 4. The coefficients for the signals are
set as a = [0.5,0.3]7, reflecting a moderate association with the underlying degradation status.
For the events, the coefficients are set as f = [5,7,1,0.1]7. This implies that event types 1 and 2
have strong associations with the underlying degradation status, event 3 has a moderate association,
whereas event 4 has a negligible impact.

The signals are generated using a mixed effects model with a polynomial basis function such
that Y; 1 (¢) = Y ()T} 1 + & .1(t), with P(¢) = [1,¢,t*] € R™*3 as the basis, and T;; € R¥*? as

the corresponding degradation coefficient. The degradation coefficients are sampled from a
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multivariate  normal  distribution  T;;~MVN(puy,21),T;,~MVN(u,,2;)  with  py =
0.2 —4e—4 T7e—5
[2.5,0.1,0.01]7, u, = [1.5,0.1,0.01]",2;, = —4e—4 3e—-6 1le—7]|,Z,=
7e — 5 le—7 3e—6
0.1 —2e—4 4e—-6
—2e—4 3e—6 1le— 8| Finally, &(t),&,(t)~N(0,1%) are the added Gaussian noise
4e — 6 le—8 3e—6
terms.

Simulating the events is more challenging as there are multiple event types with possible
correlations among the events. One popular method for event sequence generation is the
multivariate Hawkes Process, which is a self-exciting, Z —dimensional point process defined by
its conditional intensity function 1,(t) shown below:

z
A,(t) = u, + Z Z (pzz'(t_ tx )
2'=1 ez <t
The intensity function A, (t) indicates the infinitesimal probability of an event z occurring during
the time interval [¢,t + dt]. Notice that the intensity is affected by both the baseline intensity u,

and the past events (i.e., including other event types) that occurred before time t. The contribution

of the past events z' to the intensity of event z is measured by the nonnegative triggering kernel

0, (@,,7(t) =0,Vt > 0) and the degree of time decay t — t,ﬁl , where t,ﬁr represent the

timestamps of all events of event type z' . For this simulation study, the exponential

ZZI

parameterization of the kernel is used such that ¢,,/(t) = yzz' X exp(—xzz’t) I{>o, Where

{VZZ,}ZZ’EZ represents the adjacency matrix (i.e., measures the effect from event z and z') and
{)(ZZ I}ZZ'EZ represents the decay matrix (i.e., controls the degree of time decay), and [~ is the

identity function. Note that we fix the decay parameter y?** "=1+to simplify the simulation and
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focus on the effect of the adjacency matrix and baseline intensity. For all four event types z €
{1,..,4} , the baseline intensity p, is sampled from a uniform distribution such that
U, ~Unif(0.05,0.10). To simulate a wide range of event interactions, it is assumed that the first
event type is influential to all other events, the second and third event types are moderately

influential, and the fourth event type has negligible influence. As a result, the adjacency matrix

zz' . . 27’ . .
{ }Z,Z'EZ= (1.23.4) is set such that the diagonal terms {v }z=z’ 1S set to a baseline level of 0.01.

The non-diagonal terms are set to {VZZ ,}z:tz' Z=1~Unif(0.05,0.06) ,

=0.

v}, ,~Unif(0.01,002), (v}, =

Once all continuous signal data and discrete events are simulated, they are plugged into (5.9)
to obtain the final underlying degradation status n;(t). Then, the failure times of each unit i is
recorded when n;(t) reaches a pre-specified failure threshold [, which is set to 100 in this case.
Figure 5.5 shows an example of a sample training unit’s degradation status, with the event’s
occurrence time marked in each color. The difference in the jumps of the underlying degradation
status represents the varying levels of influence of each event on the unit’s degradation.

Note that this simulation process can be easily extended to accommodate varying number of

event types, degradation signals, and failure thresholds. All computations were done in Python

3.9.10, with the Hawkes process simulated using the Python “tick” library [121].
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Figure 5.5 Underlying degradation status of a sample training unit. (Blue Long Dashed: Event

1 occurrence time, Green Short Dashed: Event 2 occurrence time, Purple Dashdotted: Event 3

occurrence time, Orange Dotted: Event 4 occurrence time, Black Solid: Underlying degradation

status)

5.4.1.2 Performance Evaluation & Benchmark Methods

This study thoroughly evaluates various aspects of the UINN model:

First, the benefits of incorporating insights from both data types are assessed. The
prognostic performance of the UINN model is compared with model variants that only
consider information from a single data type. The three variants are the full UINN model
that considers both signal and event data (i.e., “Full”), the UINN model that only considers
event data (i.e., “Event only”), and the UINN model that only considers signal data (i.e.,
“Signal only”).

In addition, the event type/time prediction performance is compared with four popular deep
learning and statistical benchmarks. These include: (i) the Hawkes process with a
nonparametric kernel [122], (i1) the bi-directional LSTM and (iii) the GRU approach by

Huang et al. [103], and (iv) the popular transformers architecture [117]. The first approach
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using Hawkes process is a statistical method that performs a nonparametric estimation of
the unknown kernel function using the expectation maximization algorithm. The remaining
three benchmarks are DL methods that leverage various architectures commonly used in
event type/time prediction. Both LSTM and GRUs are based on a recurrent neural network
architecture, while the more modern transformers use attention in place of the recurrent
relations.
¢ Finally, this study explores the benefits of considering uncertainty information in the joint
training procedure. A naive version of the UINN model without uncertainty information is
compared with the UINN model with uncertainty information. The predictive performance
and the training curves of the two models are further analyzed.
The models are evaluated on three metrics. For RUL prediction, signal prediction, and event time

prediction, the mean absolute error (MAE) metric is used:
ZNtest Z Lsignal |RUL RUL | ZNtest Z Lsignal |Y o ? |
JETWsig+1 Lj Lj jETWgg+1l 1) — T

MAERUL =
Nt t Nt t !
e (nl signal — TWsig) e (nl signal — TWsig)

,MAE,

Ntest N event
2 2] =TWeypent+1 ml’]

N
Z teSt(nl signal TWevent)

-
MAE,, = i

For event type prediction, the following micro F1 score and accuracy score are used:

Ntest Njevent
2isd ] =TWepene+1 {eu eu}

Accuracy = , Micro F1
NteSt(nl signal TWevent)
_ 2 X Micro Precision X Micro Recall
" Micro Precision + Micro Recall
Z__TP Z__ TP
Micro Precision = 2z=1 TP, , Micro Recall = 2z=1 TP,

7=1(TP, + FP,) 7=1(TP, + FN,)’
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N. n;
where TP, = Y155 3 vt

_ 5 _ 'Neest i event
J=TWepent +1 H{ei.j =zNe ;= z},FP, = 3,1

J=TWepent+1 H{ei’j #z0n

5. . — — V'Ntest v ievent
€ij = z}, FN, = 3,55 J=TWepene+1

H{ei, j=zZNé i+ Z}, and [ is the indicator function. Since
there are multiple event types, the micro-averaged F1 score is employed here instead of the
conventional F1 score for binary event types. Accuracy directly measures the percent of the

correctly predicted event types, while the F1 score is a more balanced score that takes the harmonic

mean of precision and recall.

5.4.1.3 Simulation Results

First, the event type prediction, signal prediction, and final RUL prediction results of the three
model variants are shown in Table 5.1 below. Note that the numerical results are obtained by
averaging the prediction errors across 50 repeated evaluations, and the lowest errors of each

prediction task is boldfaced for visual clarity. Results show that the full UINN model that considers

Table 5.1 Evaluation results of the UINN model and the signal/event only counterparts with

+1 standard deviation

Event Type Signal RUL
Model (Micro 1111)) (MgAE) (MAE)
UINN (Full) 0.9098:-0.0275 0.127440.0365 7.7978+0.4410
UINN (Event only) 0.905140.0290 20.474+0.0224 14.990+0.0580
UINN (Signal only) 0.2156+0.0096 0.173240.0653 7.9394+0.6281

both data types outperform the event/signal only counterparts. As expected, the models that only
capture a single data type (i.e., signal/event only) shows poor performance in predicting the other
data type as well as the final RUL values. Another interesting observation is that the full model
has better predictive performance than individual models on their respective tasks (i.e., event type
prediction and signal prediction). For instance, the full model has a marginally higher micro F1

score (0.9098) than the event only model’s F1 score (0.9051), and a lower MAE (0.1274) than the
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signal only model (0.1732). This further demonstrates that jointly modeling the dynamics of both

Table 5.2 Event prediction results of the UINN model against existing benchmark methods

with +1 standard deviation

Model

Event Type
(Micro F1)

Event Type
(Accuracy)

Event Time
(MAE)

Hawkes Process
(nonparametric kernel)

0.6875+0.1289

0.6759+0.1372

1.1326+0.2314

LSTM [103] 0.8872+0.0344 0.8881+0.0305 0.6788+0.0881
GRU [103] 0.8936+0.0127 0.8946+0.0109 0.715240.0512
Transformers [117] 0.348740.0111 0.347410.0122 2.282940.0054
UINN (Full) 0.9098+0.0275 0.9096+0.0279 0.6565+0.0465

data types and their associated prediction tasks improves the model’s representation capacity,
leading to improved performance over individual prediction tasks.

To further validate this result, Table 5.2 presents a detailed comparison of the event prediction
performance of the UINN model against existing benchmark methods. Note that all benchmarks
have been solely trained on the event data and have no access to the signal data. From the prediction
results in Table 5.2, the UINN model outperforms all benchmarks in event type and time prediction.
This again demonstrates the effectiveness of incorporating insights from both data types, as it
results in superior prediction performance in individual tasks like event prediction. In particular,
the methods by [103] perform similarly to the proposed model as they are based on a similar RNN
architecture, but the proposed UINN model achieves a better performance in all categories. For
the traditional Hawkes Process with a nonparametric kernel, it has overall much lower prediction
performance due to its restrictive model structure and focus on parametricity. Modern methods
like Transformers perform significantly worse than even the conventional statistical models. This
is likely because these advanced models with attention often require a large amount of training
data to effectively learn the underlying patterns. Additionally, these models tend to have many

parameters that makes them prone to over/underfitting when data is limited.
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Finally, this study investigates the contributions of the task-specific uncertainty information to
the joint loss function. To demonstrate the benefits, this study first considers a naive model with
no uncertainty information, where the weights of each loss component are all equal such that

time

w'ttme | qptpe 4S9 4RUL = 1 This naive model’s training procedure and prognostic

Table 5.3 Evaluation results of the UINN model with/without uncertainty information with

+1 standard deviation

Event Type Signal RUL
Model (Micro F1) (MAE) (MAE)
UINN (With uncertainty) | 0.9098+0.0275 0.1274+0.0365 7.7978+0.4410
UINN (Naive) 0.2609+0.1748 | 0.2279+0.3652 | 7.9431+2.4100

performance are compared to that of the proposed UINN model. Note that all models consider
both event and signal data types, and the only difference is the inclusion of uncertainty in the loss
function weights. Evaluation results in Table 5.3 show that the naive model drastically
underperforms the uncertainty-informed model in terms of event type, signal, and RUL prediction.

Total loss Comparison

Total loss (Naive) Total loss (Uncertainty)
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Figure 5.6 Averaged training total loss curves of the Naive model in red (left) and the

proposed UINN model with uncertainty-informed weights in blue (right).
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Figure 5.6 illustrates the averaged total training loss of the naive model and the proposed UINN
model with uncertainty-informed weights. Note that the reported training curves are averaged
across 50 iterations with different initializations. Due to the different scales of the loss functions,
this analysis focuses on the convergence trends of the loss functions rather than their absolute
values. Results show that uncertainty-informed weights significantly accelerate the convergence
rate of the network. The loss function of the UINN model in blue (right) stabilizes in around 25
iterations, while the naively weighted model in red (left) requires more than 175 iterations. This
phenomenon can be seen across all the different loss components, including the event type and
event time loss as shown in Figure 5.7. From the figure, the proposed model with uncertainty

converges much quicker, while the naive versions suffer for around 100 initial iterations.

Event Type loss Comparison
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Event Time loss Comparison
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Figure 5.7 Visualized event type loss and event time loss training curves with the Naive

model in red (left) and the proposed UINN model with uncertainty-informed weights in blue

(right).
These results further highlight the importance of leveraging uncertainty information in the loss

function, as it results in faster model convergence and avoids potential fitting issues in the early
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stages of training. Furthermore, using uncertainty information also leads to higher overall

performance in event type, signal, and RUL prediction tasks.

5.4.2 Case Study
5.4.2.1 Experimental Setup & Data Collection

This real case study will further evaluate the proposed method using the battery status

information from a PiSugar battery connected to a Raspberry Pi device. The Raspberry Pi is a

PiSugar Battery

Raspberry Pi Device

Figure 5.8 PiSugar 2 battery attached to a Raspberry Pi 4 Model B.

versatile, credit-card sized computer widely used for educational, research, and Internet of Things
applications due to its affordability and ease of use. Typically, Raspberry Pi devices require a 15W
USB-C cable power source to operate. Instead, one can attach a PiSugar portable battery on the
Raspberry P1, allowing it to operate in remote environments. For this case study, PiSugar 2 Lithium
battery with a rated capacity of 5000mAh/18.5Wh and a rated voltage of 3.7V, and a Raspberry Pi
4 Model B were used. A picture of the PiSugar battery attached to the Raspberry Pi device is shown
in Figure 5.8.

The PiSugar battery provides a battery level indicator that estimates and reports the remaining
power level as a percentage. To emulate the different levels of initial wear and tear, each PiSugar

battery starts with an initial power level between 95% and 100% and stops operation when the
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battery level drops to 40%. The battery level indicator is collected every second and is treated as
the system’s continuous degradation signal. To introduce the effect of events, two types of artificial
computational loads are imposed on the Raspberry Pi. The first event type (event 1) is a recursive
Fibonacci computation task that brute-forces the Fibonacci numbers. This algorithm is very
inefficient due to its exponential time complexity and puts a significant strain on the CPU resources.
The second event type (event 2) is a sequential randomized matrix multiplication task, where the
program successively generates large square matrices of dimension 2000 and continuously
multiply them. Such large matrix multiplication tasks are known to consume significant CPU and
memory resources. Initial experiments revealed that the recursive Fibonacci computation
consumed on average 22% CPU and 15% memory, while the randomized matrix multiplication

task consumed on average 44% CPU and 34% memory.

Battery Level with Event Indicators
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Figure 5.9 PiSugar battery level of a sample unit for the first 1000 seconds. (Black solid:
battery level, Blue dashed: start time of event type 1, Red dotted: start time of event type 2)

Each event type is non-terminal and can occur multiple times throughout the unit’s lifespan.
Also, each event has an active period £ ,.tiye and an inactive period Z£;,4ctive- Lhe first event type

(i.e., recursive Fibonacci) has an active period of £,.ti,e~Unif(30,60) and an inactive period of
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Linactive~Unif(10,20), while the second event type (i.e., randomized matrix multiplication) has
an active period of £t ~Unif(60,90) and an inactive period of %;,4ctive ~Unif(30,40). Note
that both £, tipe and £, 4ctive are in seconds.

The battery level of a sample unit is plotted in Figure 5.9, with the battery level shown in the
black line, the start time of event 1 in blue, and the start time of event 2 in red. One interesting
phenomenon is that the battery level sometimes tends to suddenly increase. This may seem
counterintuitive as the battery is not charged during the experiment. However, this is an expected
behaviour of the battery as under load, the battery’s voltage drops due to internal resistance and
increased current draw, leading the battery level indicators to show a lower charge. Once the load
ends, the battery’s voltage recovers slightly as it “bounces back™ to its resting voltage. This
recovery can cause the battery level indicator to show a higher charge level [123]. Overall, the

dataset contains records of 15 units with on average 6000 signal observations.

5.4.2.2 Case Study Results

To demonstrate the benefits of considering both data types, the performance of the UINN
model is evaluated against the event only model and the signal only model. The same evaluation
metrics are used as the simulation study, with the micro F1 score for event type prediction, and the
MAE for signal and RUL prediction. An 80/20 train/test split with 12 training units and 3 test units
is repeated 10 times for a fair comparison. The evaluation results are available in Table 5.4, with

the lowest average errors boldfaced for visual clarity.
Table 5.4 Evaluation results of the UINN model on the case study dataset

Event Type Signal RUL
Model (Micro 1?1)) (thE) (MAE)
UINN (Full) 0.9764+0.0869 1.3674+0.2490 963.979+77.25
UINN (Event only) 0.9676+0.0892 69.32140.1982 1428.58+55.73
UINN (Signal only) 0.4403+0.0547 1.4690+0.2948 1333.94+66.54




147

Results from Table 5.4 align closely with the findings from the simulation study. First, the full
UINN model demonstrates superior prediction performance by leveraging insights from both data
types. Most importantly, it has a drastically better prognostic performance than its counterparts
with a significantly lower RUL prediction error. Second, incorporating both data types also
enhances the prediction performance of individual tasks such as event type prediction and signal
prediction. For event type prediction, the full model has higher Micro F1 (0.9764) than the event
predictor only model (0.9676). Similarly, the signal prediction error of the full model (1.3674) is
lower than the signal predictor only model (1.4690). Hence, considering both data types and their
associated tasks not only improves overall prognostic performance but also enhances the accuracy

of individual prediction tasks.

5.5 Conclusion

This study proposed a novel uncertainty-informed neural network model for extracting
prognostic insights from multi-type degradation-related data. Despite recent developments in
prognostics, one key limitation of existing methods is the lack of a holistic prognostic model that
can effectively accommodate both discrete event data and continuous signal data into the final
RUL predictions. To overcome this issue, the proposed UINN model has two predictors that
capture the unique dynamics of each data type and integrate them into the final RUL prediction.
Then, all predictors in the UINN model are jointly trained to prevent introducing unwanted bias.
One challenge of jointly training such a complex network with multiple predictors and data types
is that it can easily encounter over/underfitting issues. This can result in sub-optimal model
performance, as the model might not fully learn or capture the dynamics of a specific data type.
To avoid such training issues, the UINN model leverages task-specific uncertainty as the weights

for each loss component. These task-specific uncertainties are treated as learnable parameters, and
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the model automatically assigns larger weights to tasks with lower uncertainties and smaller
weights to tasks with higher uncertainties. The extensive numerical studies on simulated data as
well as the case study data from PiSugar batteries demonstrate the superior performance of the
UINN model relative to existing benchmark methods. Specifically, the UINN method not only
achieved higher performance in prognostic tasks like RUL prediction, but also on next event type,
time, and signal prediction. Furthermore, a close examination of the training curves showed that
the uncertainty information avoided underfitting during model training.

There are several promising directions for future work. First, the current UINN framework
could be extended to incorporate additional data modalities. The UINN framework is designed for
two primary data types: discrete event data and continuous signal data. However, modern
manufacturing systems often generate other data types, such as text-based maintenance or
operational logs. Integrating these different data modalities could further improve the accuracy of
RUL predictions. Second, the UINN model provides point estimates of the RUL instead of interval
estimates. In degradation applications, it is recommended to have interval estimates of the RUL
due to its inherent stochastic nature. Therefore, one can explore how to integrate the task-specific

uncertainty to provide accurate uncertainty quantifications of the final RUL predictions.

5.6 Appendix

5.6.1 Average training time and hyperparameter optimization for
simulation study

This section describes the hyperparameter optimization procedure for the simulation study of
the proposed UINN model. Specifically, the hyperparameters were optimized using a two-stage
approach. In the first stage, the event and signal predictors were individually optimized on their

respective tasks (i.e., event type/time prediction and signal prediction) using a grid-based search.
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This step ensures that each predictor accurately captures the dynamics of each data type. In the
second stage, the hyperparameters of the signal and event predictors were fixed to their optimized
values, and a separate grid-based search was conducted to fine-tune the hyperparameters of the
final RUL predictor. The optimized hyperparameters for each signal, event, and RUL predictor is

listed in Table 5.5 below.

Table 5.5 Optimized hyperparameters for the simulation study

Model Optimized Hyperparameters

Hidden Layers: 3

Hidden Nodes: [64,64,16]
Embedding Dimension: 20
Signal Predictor | Number of Attention Heads: 2
Learning Rate: 0.0001
Dropout Probability: 0.1
Batch Size: 32

Hidden Layers: 2
Hidden Nodes: [64,64]
Event Predictor Learning Rate: 0.0001
Dropout Probability: 0.1
Batch Size:50

Hidden Layers: 2
Hidden Nodes: [50,50]
RUL Predictor Learning Rate: 0.0001
Dropout Probability: 0.1
Batch Size: 16

Under this configuration, the proposed UINN model was trained for a maximum of 250 epochs
with early stopping. Over the course of 10 iterations, the UINN model took an average of 71.253
minutes to finish training and took less than 250 epochs to converge. In contrast, the naive variant
(i.e., model trained without uncertainty information in the joint loss function shown in Table 5.3)
exhausted the full 250 epochs and yielded poorer predictive performance. Hence, the proposed

UINN model trains faster than the naive model that do not leverage uncertainty information.
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Chapter 6  Summary

Prognostics and degradation modeling are essential to ensure reliable performance of smart and
connected systems. This dissertation addresses key challenges in data-driven degradation
modeling and prognostics, with concentrations on improving explainability and alignment with
existing domain knowledge. The key contributions of this dissertation can be organized as such.

Chapter 2 proposed a novel data-driven approach for modeling and predicting the progression
of void swelling. The proposed model integrated nuclear engineering-specific domain knowledge
such as shape constraints and the impact of covariates to accurately capture the behavior of void
swelling processes. Due to the careful alignment with prior knowledge, the proposed model boasts
superior predictive performance and produces nuclear physics-compliant results.

Chapter 3 introduced an integration uncertainty quantification (IUQ) model to capture the
uncertainties from jointly modeling time-to-event data and longitudinal data. The proposed model
produced accurate uncertainty quantifications by propagating the uncertainties from both data
types. As a result, the IUQ model provided more reliable and calibrated uncertainty estimates and
RUL predictions than existing approaches.

Chapter 4 then presented a Bayesian sensor selection algorithm for high-dimensional
engineering systems. By leveraging a spike-and-slab prior on the sensors, the proposed method
effectively identified informative sensors even under the presence of sensor correlation. The
selected sensors can then be used by practitioners to gain more interpretable insights on the system
dynamics.

Chapter 5 presented a deep learning framework for jointly extracting prognostic insights from

discrete event data and continuous sensor signals. Compared to traditional models that rely on
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either data type to extract prognostic insights, the proposed framework can effectively leverage

both data types and obtain more accurate RUL predictions.
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