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Abstract 

Accurate prognostics is crucial for improving the reliability and functionality of modern 

engineering systems. To develop accurate and reliable prognostic models, it is essential to gather 

and analyze sensor signal information. Fortunately, recent advances in sensor and integrated circuit 

technology have made it easier than ever to install, collect, and process vast amounts of sensor 

data. These technological advancements have brought novel developments in degradation 

modeling and prognostics of many smart and connected systems. However, despite these 

advancements, there remain four major challenges that must be addressed to ensure reliable 

performance in many complex real-life scenarios:  

• Alignment with prior domain knowledge: how to guarantee that the prognostic model aligns 

with prior domain knowledge of the degradation process. 

• Accurate and reliable prognostics with uncertainty quantification: how to obtain remaining 

useful life (RUL) predictions that are both accurate and reliable. Specifically, how to assess 

the “confidence” of the RUL predictions.  

• Explainable prognostics: instead of a black-box model, how to obtain explainable insights 

into the underlying system’s status and degradation dynamics. For instance, one might be 

interested on how to identify the most “informative” sensors that significantly affect the 

degradation process.  

• Handling multi-type data: how to draw prognostic insights from different data types like 

longitudinal sensor data and discrete event data.  

This dissertation focuses on explainable prognostics and data-driven modeling of complex data. 

Specifically, it investigates various statistical and machine learning techniques for deriving critical 

insights of the degradation status and RUL prediction of smart and connected systems. The novel 
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methodologies discussed in this work allow: (i) precise alignment of data-driven, prognostic 

models with prior domain knowledge; (ii) accurate and reliable RUL predictions with uncertainty 

quantifications; (iii) explainable insights into complex systems with high-dimensional multivariate 

sensor data by identifying the informative sensors; (iv) prognostic insights from both continuous 

sensor signal data and discrete event log data; (v) fusion of multivariate sensor signal to track the 

underlying degradation status.  

The first chapter discusses the background and current challenges with degradation modeling 

and prognostics in smart and connected systems, while also outlining the key objectives of this 

dissertation. Chapter 2 then focuses on the challenge of aligning prior domain knowledge with 

data-driven degradation models. Specifically, this chapter focuses on modeling a nuclear 

engineering-specific degradation process called void swelling. To effectively integrate prior 

domain knowledge on void swelling with prognostics, this chapter proposes a Bayesian 

hierarchical piecewise linear model that encodes prior knowledge of void swelling. Specifically, 

the piecewise structure effectively captures the two-stage nature of void swelling processes, while 

the hierarchical Bayesian component allows one to easily incorporate domain knowledge via the 

prior distribution. Chapter 3 discusses the challenge of obtaining high quality uncertainty 

quantifications when analyzing longitudinal signal data alongside time-to-event data. Due to the 

complex data types, it is difficult to capture the modeling uncertainties of both data types into the 

final RUL predictions. To overcome this challenge, this chapter proposes an integrated uncertainty 

quantification (IUQ) model that accurately propagates and quantifies the uncertainties from both 

data types. The obtained uncertainties can then be used to assess the reliability of the RUL 

predictions. Chapter 4 then introduces a Bayesian spike-and-slab sensor selection approach for 

high-dimensional prognostics. Many existing sensor selection methods struggle to select 
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informative sensors in high-dimensional scenarios, where there are more sensors relative to the 

number of training units. On the contrary, the proposed method boasts superior sensor selection 

performance in high-dimensional scenarios. The main motivation of this work is based on a 

Bayesian spike-and-slab prior imposed on the sensor fusion coefficients. Imposing this prior 

allows the model to produce sparse solutions that prioritize information from informative sensors. 

The informative sensors are then simultaneously fused into a 1-D health index to better 

characterize the degradation process. Chapter 5 presents an uncertainty-informed neural network-

based prognostic model for multi-type data. The main contribution of this proposed method is that 

it extracts prognostic insights from both continuous signal data and discrete event data. The 

proposed model has sub-models designed for each data type, which are then jointly trained to 

minimize any bias in RUL prediction. One challenge with joint training is that the model can easily 

fall into a local extremum due to the complex data types and model structures. To overcome this 

challenge, the proposed method leverages task-specific uncertainty information to automatically 

weigh the loss functions. This allows the network to automatically balance the loss function and 

prevent the model from over/underfitting. Finally, Chapter 6 includes a summary of the main 

contributions as well as future research directions.  

In summary, the following dissertation focuses on developing reliable and explainable 

degradation modeling and prognostic analysis methodologies for smart and connected systems. 

The proposed works offer substantial potential for improving efficiency, reliability, and 

functionality in many applications including manufacturing, energy systems, healthcare and 

general Internet of Things (IoT) systems. 
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Chapter 1 Introduction 

1.1 Motivation and Overview 

All systems eventually degrade over time and experience failure. Knowing the failure time, 

typically defined as the time when the degradation status reaches a predefined threshold or cannot 

perform its normal operations, is critical for improving the reliability and functionality of the 

system. For instance, one can predict the remaining useful life (RUL) of the system and conduct 

preventative maintenance decisions when the unit is close to the end of its life. Practitioners can 

ensure reliable operations and avoid unnecessary downtime caused by reactionary maintenance. 

However, one fundamental challenge is that the underlying degradation status is unobservable and 

needs to be inferred. To infer the unobserved underlying degradation status, a common approach 

is to monitor and analyze the sensor signals. For instance, as the fan of an aircraft turbofan engine 

degrades, the physical speed of the fan tends to decrease over time. Therefore, modeling and 

monitoring the fan’s physical speed allows one to predict the failure time of the turbofan engine.  

In recent years, there has been a plethora of literature on leveraging sensor signals for 

degradation modeling and RUL prediction. These approaches typically assume that the underlying 

degradation status can be characterized using a univariate sensor signal [1] or multivariate sensor 

signals [2]. Many popular models have been developed under this assumption, including statistical 

models, machine learning models, and deep learning models. A comprehensive review of existing 

degradation modeling approaches will be provided in Chapter 2.1.1.   

One major paradigm shift in modern engineering systems has been driven by innovations in 

modern sensing and integrated circuit technology. These innovations have enabled Internet of 

Things (IoT) systems to autonomously gather degradation (i.e., sensor) signals, process 



2 

 

information at the edge, and make informed decisions in remote environments. This revolution has 

spurred the rapid integration of IoT systems across various sectors like manufacturing, healthcare, 

and energy systems. While this revolution provides new opportunities for both researchers and 

practitioners, it also introduces new challenges for effective and reliable degradation modeling and 

prognostics.  

The first challenge in modern data-driven degradation models is ensuring that they are properly 

aligned with prior domain knowledge. Direct application of purely data-driven, black-box models 

like neural networks without considering the underlying degradation dynamics can result in 

erroneous predictions that contradict physical laws or known process behaviors. For instance, 

degradation processes typically exhibit monotonic behavior, as degradation is an irreversible 

process without any maintenance [3]. Failing to account for this property can lead to incorrect 

implications about the degradation trends and inaccurate RUL predictions. To fully harness the 

power of data-driven models, it is essential to carefully incorporate domain knowledge in the 

model design stage.  

Second, it is crucial to assess not only the accuracy of RUL predictions, but also their 

reliability/uncertainty. Degradation processes are stochastic by nature due to the multiple sources 

of uncertainty stemming from measurement errors and unit-to-unit variability. Therefore, it is 

crucial to provide accurate uncertainty quantifications alongside the RUL predictions. These 

uncertainty quantifications can then be used for subsequent maintenance decisions and risk 

analysis. However, obtaining accurate uncertainty quantifications is nontrivial as modern 

engineering systems collect diverse data types ranging from time-to-event data and continuous 

sensor signal data. Therefore, there is a strong need for a systematic procedure for obtaining 
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accurate and reliable uncertainty estimates that effectively capture the modeling uncertainty from 

each data type and integrate them into the final RUL predictions. 

Third, recent developments in sensor technology have led to the widespread use of sensors to 

monitor and analyze system status. These sensors capture different facets of the system and the 

underlying degradation process. A unique and longstanding challenge of analyzing such 

multivariate sensor signals is that each sensor has varying degrees of relevance to the underlying 

degradation process. It is possible that some sensors are “informative” and provide strong insights 

on the degradation status, while some sensors are “uninformative” and do not provide such insights 

[4]. This sensor selection challenge has become increasingly difficult in modern engineering 

systems, where technological advances have made it practical to adopt numerous sensors. As a 

result, sensor signals collected from these modern systems are frequently high-dimensional, with 

the number of sensors being similar or much larger than the number of available training units [5]. 

Therefore, how to effectively identify informative sensors in modern, high-dimensional systems 

is highly desirable, as the informative sensors can provide interpretable insights of the degradation 

process.  

Fourth, a critical limitation of existing methods is that they struggle to simultaneously extract 

prognostic insights from multi-type data, specifically discrete event data and continuous signal 

data. One way to address this challenge is to use deep learning models, as they can effectively 

handle multimodal, multi-type data with relative ease. However, a key challenge is designing an 

effective model architecture and joint training strategies that ensure reliable prognostic 

performance. Since each data type captures have distinct temporal dynamics and correlations with 

the underlying degradation process, naïve training strategies can easily lead the model to fall in a 

local extremum and have suboptimal performance [6]. Therefore, it is crucial to develop effective 
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training strategies and loss functions that automatically evaluate the importance of each data type 

and associated task (i.e., classification, regression).  

This dissertation aims to address the above challenges by exploring advanced statistical and 

machine learning methodologies for complex, multi-type data. 

1.2 Objectives 

The objectives of this research are:  

(i) developing a novel data-driven approach for modeling a nuclear specific degradation 

process known as “void swelling”. The data-driven approach seamlessly incorporates 

prior nuclear engineering knowledge to model and predict the degree of void swelling. 

(ii) proposing an integrated uncertainty quantification model for joint models with time-

to-event data and longitudinal signal data. This approach propagates modeling 

uncertainties from both data types and integrates them to the final RUL predictions. 

(iii) developing a Bayesian spike-and-slab prior sensor selection approach for systems with 

high-dimensional sensor signals with varying levels of correlation.  

(iv) establishing a deep learning-based prognostic model for extracting prognostic insights 

from continuous signal data and discrete event data. This approach avoids 

over/underfitting issues by leveraging task-specific uncertainty to weigh the joint loss 

function.  

1.3 Outline of the Dissertation 

The remainder of the dissertation is organized as follows. Chapter 2 proposes a data-driven 

approach for modeling the progression of void swelling. This is the first approach to integrate 

nuclear-specific domain knowledge with statistical modeling techniques to achieve more accurate 
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predictions of the future degree of void swelling. Our innovative idea is to encode domain-specific 

information into a Bayesian hierarchical design, which allows the model to satisfy the shape 

constraints of void swelling processes. Also, the information on the changepoint (i.e., when the 

void swelling process transitions from the transient regime to the steady-state regime) is encoded 

into the model design via the parameter prior distributions.  

Chapter 3 focuses on obtaining accurate uncertainty quantifications when jointly modeling two 

different data types: time-to-event data and longitudinal signal data. Accurately tracking the 

uncertainty in joint models is challenging as each data type and its sub-model captures different 

modeling uncertainties. To overcome this challenge, we propose an integrated uncertainty 

quantification (IUQ) model that propagates the modeling uncertainties of both data types, which 

are then eventually integrated into the resulting RUL predictions. Evaluation results show that the 

IUQ model provides more accurate uncertainty quantifications than existing approaches, providing 

practitioners with a more effective way to assess the reliability of RUL predictions.   

Chapter 4 delves into a sensor selection approach for high-dimensional systems. Here, high-

dimensional refers to systems in which the number of sensors 𝑝 is similar or higher than the 

number of available training units 𝑁 (i.e., 𝑁 ≈ 𝑝 or 𝑁 < 𝑝). Sensor selection in high-dimensional 

systems is difficult due to the low signal-to-noise ratio and curse of dimensionality. Drawing 

inspiration from Bayesian spike-and-slab priors, we propose a novel Bayesian sensor selection 

approach that selects informative sensors and then fuses them into an informative 1-D health index 

(HI) for further prognostic analysis. Evaluation results on many high-dimensional scenarios 

demonstrate the method’s superior prognostic performance and ability to discern informative 

sensors from uninformative ones.  

Chapter 5 focuses on a deep learning approach for simultaneously obtaining prognostic insights 
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from discrete event data and continuous signal data. The proposed network contains three 

predictors, one for the event data, one for the signal data, and the final predictor to obtain the RUL 

predictors. Since the proposed network contains three predictors with their own loss functions, it 

is difficult to jointly train the network without encountering fitting issues. To overcome this 

difficulty, the network leverages task-specific uncertainty information as weights for the loss 

function. The uncertainty information is treated as a learnable parameter and is automatically 

adjusted to reflect the significance of each task/data type in the joint training process. Results show 

that the proposed method exhibits superior prognostic performance compared to models that 

leverage only a single data type. In addition, detailed analysis shows that the uncertainty 

information leads to better prognostic performance and faster model convergence.  

Finally, Chapter 6 summarizes the contributions of this dissertation. 
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Chapter 2 Degradation Modeling using Bayesian 

Hierarchical Piecewise Linear Models: A Case Study 

to Predict Void Swelling in Irradiated Materials 

2.1 Motivation 

2.1.1 Degradation Modeling 

Engineering systems are prone to degradation and unexpected failures. Conventionally, 

maintenance was performed in a reactive manner, resulting in high operation costs, longer machine 

downtime, and lower functionality of the engineering system. Recent advances in degradation 

modeling and prognostics allow practitioners to predict system failures in advance and conduct 

preventative maintenance operations based on the remaining useful life (RUL) [7]. This results in 

higher profitability, reliability, and functionality of various systems.  

Existing approaches to degradation modeling can be largely divided into physics-based models 

and data-driven models. Physics-based degradation models attempt to incorporate the physics of 

the failure mechanism and quantify the characteristics of the degradation process [8]. For instance, 

Oppenheimer and Loparo [9] developed a physics-based model that uses machine condition 

information in conjunction with a life model based on material crack growth laws to estimate the 

RUL of a shaft cracking in a rotor. These approaches tend to be component/system specific and 

struggle to describe the joint effect of multiple input variables (e.g., environmental conditions), 

especially when the number of input variables is very large. On the contrary, data-driven 

approaches overcome these difficulties by estimating the degradation status directly from the 
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available data (e.g., degradation signals) [1], [10]. For instance, Zheng et al. [11] employed a long 

short-term memory (LSTM) network to estimate the RUL of lithium-ion battery, while Zhong et 

al. [12] used an isolation forest to detect anomalies in gas paths.  

The main motivation of this case study is to explore a novel application of data-driven 

degradation models to a nuclear-specific material degradation mechanism called void swelling. In 

the following subsection, we will further explain the details of void swelling, the related existing 

literature, and its similarities and dissimilarities to conventional degradation modeling applications. 

2.1.2 Void Swelling 

Void swelling is defined as a material degradation process caused by high-energy neutron 

irradiation under intermediate temperatures (i.e., ranging roughly between 30% and 50% of the 

metal’s melting temperature). As materials are bombarded by high-energy neutrons, atoms are 

displaced from the lattice sites, which increases the material’s volume. Figure 2.1 illustrates 

swelling observed in unfueled 20% cold-worked AISI 316 (i.e., stainless, austenitic Cr-Ni-Mo 

steels) open cladding tube in an EBR-II fast reactor [13]. From the figure, we observe that the 

cladding tube’s volume increases, i.e., swells, after being exposed to irradiation. Excess void 

swelling can cause dimensional instability and even severe embrittlement of internal materials, 

leading to a critical impact on the functionality, economic operation, and safety of nuclear power 

plants [14]. As a result, accurate modeling, prediction, and early identification of void swelling in 

irradiated structural components are crucial for reliable NPP maintenance and management 

operations [15].  
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Traditional approaches for understanding void swelling have been mainly based on trial-and-

error, in which experiments are repeated multiple times under different settings. Hereafter, we 

refer to these experimental settings/factors such as alloy composition, material structure, and 

irradiation conditions as covariates. One critical limitation of such empirical approaches is that 

these experiments are very time-consuming and expensive as they require careful preparations, 

safety precautions, post-irradiation examination, and other technical considerations [16]. Another 

noteworthy limitation of empirical approaches is that they generally focus on how the swelling 

process varies with respect to a single covariate. Various works have examined the effects of a 

single covariate such as displacement rate [17], irradiation temperature [18], cold-work percentage 

[19], and irradiation type [20]. For example, Figure 2.2  shows the influence of temperature, 

Chromium, and Nickel content on the swelling of Fe-Cr-Ni ternary alloys in the EBR-II fast reactor 

[21]. However, there is still a lack of studies that analyze the joint effect of multiple covariates on 

the swelling process since empirical methods are too resource-intensive to repeat void swelling 

experiments under every possible covariate combination.  

 

Figure 2.1 Illustration of void swelling in unfueled 20% cold-worked AISI 316 open 

cladding tube (Left: Before irradiation, Right: After irradiation) 
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Aside from empirical methods, there are general degradation models that can be applied to 

model void swelling. For physics-based approaches, Li et al. [22] used a Phase-field model to 

capture the effect of thermodynamic and kinetic properties on void nucleation and growth in 

irradiated materials. However, most of these methods are also covariate-specific and cannot 

describe the joint effect of multiple covariates on void swelling.  

For data-driven degradation models, the first work that adopted a data-driven approach in the 

context of void swelling was by Jin, Cao, and Short [16], who applied various machine learning 

techniques to predict the onset of void swelling by estimating the incubation dose values (i.e., 

intercept values of the steady state swelling rate). However, this paper only estimated the 

incubation dose and not the full swelling process, and thus it only provides a restricted view of the 

swelling process. 

 

(a)                                                                          (b) 

Figure 2.2 (a) Influence of temperature and chromium on swelling of Fe-Cr-Ni ternary alloys 

irradiated in EBR-II (b) Influence of Nickel content on swelling of Fe-Cr-Ni ternary alloys in 

EBR-II at 427°C 
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Unlike the previous approaches, the goal of this case study is to explicitly model and predict 

void swelling measurements. To the best of our knowledge, this is the first paper to directly model 

void swelling processes using a data-driven approach. To achieve this goal, four significant 

research challenges need to be addressed. First, void swelling is a function of multiple covariates 

with complex effects, so it is very difficult to accurately model how different covariates jointly 

affect the swelling process. Second, the predicted swelling trajectories must be in line with prior 

domain knowledge. Specifically, the trajectory of void swelling with respect to irradiation dose is 

divided into transient and steady state regimes as shown in Figure 2.3. The transient regime, also 

called the incubation state, is when either no or very small levels of swelling happen. In the 

subsequent steady state regime, swelling occurs at a relatively faster constant rate [21]. The 

predicted swelling trends must satisfy these shape constraints and clearly identify both states. 

Furthermore, similar to existing degradation models, void swelling is an irreversible process. 

Hence, the predicted void swelling trajectories should also be monotonic (i.e., nondecreasing) with 

respect to irradiation dose. Third, void swelling datasets are often very sparse with only one or a 

few measurements under a specific experimental condition (a fixed set of covariates). For example, 

in our case study, we have 291 unique sets of covariates with at least 1 measurement. Among the 

291 covariate sets, more than 90% (i.e., 279 sets) of them have only 1 available measurement. The 

 

Figure 2.3 Void Swelling versus dose for Fe-Ni-Cr alloys 
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inherent sparsity of the dataset often significantly compromises the accuracy of traditional data-

driven approaches, which typically require a large amount of data.  

Another challenge triggered by this sparsity is imbalanced data between the transient and 

steady-state regimes. Specifically, practical challenges during data collection often result in 

incomplete units that do not contain full records of the two regimes shown Figure 2.3, and instead 

only contain measurements of the steady-state regime or vice versa. The incomplete units can 

introduce unwanted bias during parameter estimation since they do not display a clear changepoint.  

From these challenges, it is evident that one cannot immediately apply existing data-driven 

degradation models for void swelling. To address these difficulties, this article will employ various 

statistical techniques in Bayesian modeling and hierarchical models. In particular, we demonstrate 

the power of leveraging domain knowledge to design informative prior distributions used to 

overcome the unique challenges in void swelling modeling. With this proposed method, we hope 

to lay a foundation for future data-driven degradation models to better understand the latent 

dynamics of void swelling and similar engineering problems. 

The rest of the paper is organized as follows. Section 2.2 provides a detailed problem 

description and research objective of this case study. Then, Section 2.2 provides a closer look at 

the void swelling dataset. Details of the proposed method including the hierarchical model, 

parameter estimation, and prediction will be discussed in Section 2.4. Then, Section 2.5 will 

present the numerical results, in which the effectiveness and the accuracy of the proposed method 

will be compared to existing benchmark methods. Next, Section 2.6 summarizes the findings and 

unique contributions of this case study. Finally, Section 2.7 contains the supplementary materials 

such as parameter settings, model adequacy checking, and recommendations for choosing the prior 

distributions.   
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2.2 Problem Description 

In this study, a unit is defined as a collection of varying dose and swelling measurements under 

a specific experimental condition (a fixed set of covariates). For instance, from the tabular data in 

Figure 2.4, each unit has its own fixed set of covariates (e.g., unit 6 has % weight B: 0.430, % 

weight C: 0.6091, % weight N: 1.000, while unit 4 has % weight B: 0.48, % weight C: 0.5454, % 

weight N: 0.000). In addition to the covariates, each unit has one or more measurements of varying 

irradiation dose and corresponding void swelling %. The respective swelling curves are plotted on 

the right of Figure 2.4. As we can see from the plotted curves, each unit has a distinct trajectory 

based on its covariate values while sharing a common increasing trend. An effective model should 

be able to capture this unit-to-unit variability while ensuring that all predicted swelling trajectories 

obey the shape constraints of void swelling processes. Using this definition, our goal is to 

accurately predict the swelling process of a unit of interest, i.e., given its set of covariates.  

 

Figure 2.4 Definition of a void swelling unit. 
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2.3 Data Collection and Preparation 

The dataset in this study is collected from publicly available literature on void swelling. There 

is already a tremendous number of experimental results on void swelling available through 

significant reviews, providing us with sufficient data. In particular, we collect measurements of 

dimension changes caused by void swelling (i.e., void swelling %), the associated irradiation doses 

(measured by displacements per atom), and the corresponding covariates (i.e., experimental 

parameters). Overall, we have made efforts to collect 753 measurements from 20 research papers. 

The datasets have been verified by the domain experts for this case study and will be made publicly 

available for other interested researchers in the field. To ensure that the model can accommodate 

swelling trends across a wide range of materials, 93 different types of steels with varying initial 

conditions are considered. For each measurement, we have 15 covariates ranging from irradiation 

temperature to alloy composition. Details of the 15 covariates can be found in Table 2.1. During 

data preparation, one practical difficulty is that each unit involves a different set of covariates, 

Table 2.1 Data summary of covariates 

Name Mean Standard Deviation Units 

Irradiation temperature 520.2 134.23 K 

Irradiation type 

Categorical Variable (5 Types): 

Ni6+ ion, Fe2+ ion, Neutron,  

Proton, Electron 

% weight Carbon 0.0492 0.0223 % 

% weight Nitrogen 0.0113 0.0301 % 

% weight Aluminum  0.0259 0.1559 % 

% weight Silicon  0.4797 0.2465 % 

% weight Phosphorus 0.0212 0.0259 % 

% weight Sulfur 0.0025 0.0058 % 

% weight Titanium 0.1376 0.1897 % 

% weight Chromium 15.96 1.4582 % 

% weight Manganese 1.246 0.7567 % 

% weight Iron  51.00 24.581 % 

% weight Copper  0.0053 0.0468 % 

% weight Nickel 17.55 6.3192 % 

% weight Molybdenum 2.050 0.9516 % 
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making it difficult to extract a common set of covariates across all units. To overcome this 

difficulty, we consider covariate-specific imputation strategies to fill in missing values. In 

particular, covariates regarding alloy composition (e.g., % weight Nitrogen) are imputed to 0 since 

it means that there are negligible levels of that element. However, the remaining covariates like 

irradiation type and irradiation temperature in Table 2.1 cannot be easily imputed (e.g., using mean, 

median) due to their unique physical properties, so they are discarded from the analysis. Next, 

except for irradiation type, the other covariates and the irradiation dose values are normalized to 

have a minimum value of 0 and a maximum value of 1. The measurements are then split into units 

based on the covariate values, where each unit contains at least 1 observation. Eventually, we 

arrive at 291 units with 395 measurements. Figure 2.5 shows the plotted swelling measurements 

of 12 units with more than three measurements, with the normalized irradiation dose (dpa) on the 

𝑥-axis and void swelling (%) on the 𝑦-axis.   

 

Figure 2.5 Plotted void swelling processes. 
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2.4 Methodology 

This section contains four parts. Section 2.4.1 is a brief introduction to hierarchical regression 

models. In Section 2.4.2, we discuss the details of the proposed model. Next, Section 2.4.3 

describes the Bayesian parameter estimation procedure. Finally, Section 2.4.4 investigates how the 

proposed model makes predictions on swelling evolutions. 

2.4.1 Introduction to hierarchical regression models 

Hierarchical regression models are one of the most widely used approaches to accommodate 

datasets with a nested/hierarchical structure [23]. Recently, hierarchical models have received 

more attention for their use in statistical process monitoring and predictive monitoring. For 

instance, Huberts, Schoonhoven and Does [24] used a Bayesian hierarchical model to develop a 

framework to monitor student performance and provide early warnings for under/overperforming 

students. Compared to existing linear regression-based multivariate approaches, hierarchical 

models can improve the estimation of process variability, make accurate predictions under limited 

data availability, and easily incorporate prior beliefs into the prediction stage.  

A typical 2-level hierarchical regression model is formulated as follows: where equation (2.1) 

denotes the level 1 regression equation and equation (2.2) represents the level 2 regression 

equations. 

𝑌𝑖𝑗 = 𝛽0𝑖 + 𝛽1𝑖𝑥𝑖𝑗 + 𝜀𝑖𝑗,  (2.1)  

𝛽0𝑖 = 𝛾00 + 𝛾01𝑍𝑖 + 𝑢0𝑖, 

𝛽1𝑖 = 𝛾10 + 𝛾11𝑍𝑖 + 𝑢1𝑖. 

(2.2) 

In the level 1 regression in equation (2.1), 𝑌𝑖𝑗 is the 𝑗th observation from unit 𝑖; 𝛽0𝑖 and 𝛽1𝑖 are the 

intercept and slope values for unit 𝑖, respectively; 𝑥𝑖𝑗 is the corresponding level 1 predictor; and 
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𝜀𝑖𝑗  are level 1 random errors. For the level 2 regression in equation (2.2), 𝛾00 and 𝛾10 are the 

overall means of the intercept and slope across all units; 𝑍𝑖 is the level 2 predictor for unit 𝑖; 𝛾01 

and 𝛾11  are the corresponding level 2 regression coefficients; and 𝑢0𝑖  and 𝑢1𝑖  are the level 2 

random errors for 𝛽0𝑖 and 𝛽1𝑖, respectively. Note that the subscript 𝑖 in 𝛽0𝑖 and 𝛽1𝑖 indicates that 

the model characterizes the unit-to-unit variability by assigning varying intercept and slope values 

for each unit’s trajectory. In summary, the level 2 predictor 𝑍𝑖 affects the intercept 𝛽0𝑖 and slope 

𝛽1𝑖 . Combining these coefficients with the level 1 predictor, 𝑥𝑖𝑗 , we effectively model the 

observation 𝑌𝑖𝑗. Note that the model is not restricted to piecewise linear trends and can be extended 

to accommodate other trends such as linear-quadratic and quadratic-quadratic.  

In the case in which a unit also has categorical covariates such as irradiation type, we use 

dummy variable encoding. Suppose that unit 𝑖 has a categorical covariate 𝐶𝑖 with 𝑐 ≥ 1 categories. 

Then, we use 𝑐 − 1 dummy variables to transform 𝐶𝑖  into a (𝑐 − 1)-dimensional vector 𝑪̃𝑖 =

[𝐶𝑖
(1)

, … , 𝐶𝑖
(𝑐−1)

]
𝑇

∈ ℝ(𝑐−1)×1 such that 𝑪̃𝑖 = 𝟎 if unit 𝑖 belongs to the 𝑐th category and otherwise, 

all entries are zeros except the one corresponding to the category of unit 𝑖. 

In the following subsections, we will address how the Bayesian hierarchical approach can 

overcome the unique challenges in void swelling processes. 

2.4.2 Proposed Model 

Figure 2.6 illustrates the overall framework of the proposed model. The key intuition of the 

proposed model is that variations in the swelling curves can be attributed to the variability in the 

covariates. To effectively capture this nested relationship, we consider a Bayesian hierarchical 

regression model in which the regression coefficients are uniquely determined by the covariates. 

Here, we choose to use a piecewise linear trend for the level 1 equation to capture the void swelling 
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trends based on the following reasons. First, the piecewise structure effectively incorporates the 

two-stage nature (i.e., the transient and steady states) of void swelling units. Second, the linear 

swelling trend in the steady state regime is in line with its definition in Section 2.1.2. Third, 

preliminary evaluations showed that the piecewise linear model yields smaller WAIC (Widely 

Available Information Criterion) [25] and prediction error than the quadratic-linear model, 

indicating a better fit. Hence, the level 1 equation adopts a piecewise linear model. 

Suppose there are void swelling measurements from a total of 𝐼 training units, each with 𝑃 

covariates. As our dataset contains one categorical covariate “irradiation type” with 5 levels and 

14 continuous covariates, using 4 dummy variables introduced in Section 2.4.1 yields 𝑃 = 14 +

4 = 18  covariates for each unit. Following the notation in Section 2.4.1, the 𝑗 th swelling 

measurement from unit 𝑖 is denoted as 𝑌𝑖𝑗 and the corresponding irradiation dose level is denoted 

as 𝑥𝑖𝑗. The level 2 predictor of unit 𝑖 is its covariates 𝒁𝑖 = [1, 𝑍1𝑖, … , 𝑍𝑃𝑖]
𝑇 ∈ ℝ(𝑃+1)×1, with the 

first scalar term added for notational convenience. 

𝑌𝑖𝑗 = 𝛽0𝑖 + 𝛽1𝑖(𝑥𝑖𝑗 − 𝛽𝐶𝑃𝑖)𝕀{𝑥𝑖𝑗 < 𝛽𝐶𝑃𝑖} + 𝛽2𝑖(𝑥𝑖𝑗 − 𝛽𝐶𝑃𝑖)𝕀{𝑥𝑖𝑗 ≥ 𝛽𝐶𝑃𝑖} + 𝜀𝑖𝑗 , (2.3) 

𝛽𝑎𝑖 =  𝛾0𝑎 + ∑ 𝛾𝑝𝑎𝑍𝑝𝑖 + 𝑢𝑎𝑖

𝑃

𝑝=1
= 𝜸𝑎

𝑇𝒁𝑖 + 𝑢0𝑖, 𝑎 ∈ {0,1,2}, 
(2.4) 

 

Figure 2.6 Overview of the proposed hierarchical regression framework. 
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𝛼𝐶𝑃𝑖 =  𝛾03 + ∑ 𝛾𝑝3𝑍𝑝𝑖 + 𝑢3𝑖

𝑃

𝑝=1
= 𝜸3

𝑇𝒁𝑖 + 𝑢3𝑖 , 

𝛽𝐶𝑃𝑖 = 𝐼𝑛𝑣 𝐿𝑜𝑔𝑖𝑡(𝛼𝐶𝑃𝑖).  

Here, 𝛽𝐶𝑃𝑖 represents the changepoint of unit 𝑖, the dose value where the process shifts from the 

transient state to the steady state. 𝛽0𝑖 is the swelling value at the changepoint 𝛽𝐶𝑃𝑖, while 𝛽1𝑖 and 

𝛽2𝑖 are the slopes corresponding to the transient and steady states of the piecewise linear model, 

and 𝕀 is an indicator function denoting which state the process is currently at. In order to restrict 

the changepoint parameter 𝛽𝐶𝑃𝑖 to be between 0 and 1, the parameter 𝛼𝐶𝑃𝑖 undergoes an inverse 

logit transformation denoted by 𝐼𝑛𝑣 𝑙𝑜𝑔𝑖𝑡 in equation (2.4), where 𝐼𝑛𝑣 𝑙𝑜𝑔𝑖𝑡(𝑥) = exp (𝑥)/[1 +

exp (𝑥)]. 𝜀𝑖𝑗 represents the level 1 random errors that are assumed to be normally distributed with 

mean 0 and variance 𝜎2 (i.e., 𝜀𝑖𝑗~𝑁(0, 𝜎2)). As shown in equation (2.3), we use a piecewise linear 

trend to capture the two regimes in void swelling. In particular, if 𝑥𝑖𝑗 < 𝛽𝐶𝑃𝑖 (i.e., the process is in 

the transient state), then equation (2.3) will be 𝑌𝑖𝑗 =  𝛽0𝑖 + 𝛽1𝑖(𝑥𝑖𝑗 − 𝛽𝐶𝑃𝑖) + 𝜀𝑖𝑗, and if 𝑥𝑖𝑗 ≥ 𝛽𝐶𝑃𝑖 

(i.e., the process is in the steady state),  then 𝑌𝑖𝑗 = 𝛽0𝑖 + 𝛽2𝑖(𝑥𝑖𝑗 − 𝛽𝐶𝑃𝑖) + 𝜀𝑖𝑗.  

The level 2 equations in equation (2.4) denote the relationship between the level 1 regression 

coefficients 𝜷𝑖 = [𝛽0𝑖, 𝛽1𝑖, 𝛽2𝑖, 𝛽𝐶𝑃𝑖]  and the covariates (i.e., level 2 predictors) 𝒁𝑖 . Here, 

𝜸0, … , 𝜸3 = [𝛾03, … , 𝛾𝑃3]
𝑇 ∈ ℝ(𝑃+1)×1  are the concatenated vectors of level 2 regression 

coefficients. Finally, 𝑢0𝑖 , … , 𝑢3𝑖 are the level 2 random errors of 𝛽0𝑖, … , 𝛼𝐶𝑃𝑖. The level 2 random 

errors are assumed to follow a multivariate normal distribution with mean 𝟎 and an unknown 

covariance matrix 𝚺 ∈ ℝ4×4  as shown in equation (2.5). 

[𝑢0𝑖𝑢1𝑖 , 𝑢2𝑖 , 𝑢3𝑖] ~ 𝑀𝑉𝑁(𝟎, 𝚺), (2.5) 

The proposed model allows unit-level variability in swelling trends through the following 

regression parameters: The changepoint (𝛽𝐶𝑃𝑖), 𝑦-intercept at the changepoint (𝛽0𝑖), transient 
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slope (𝛽1𝑖), and steady state slope (𝛽2𝑖). Furthermore, we impose an inequality constraint 𝛽1𝑖 <

 𝛽2𝑖, and nonnegative constraints on 𝛽0𝑖, 𝛽1𝑖, 𝛽2𝑖 ≥ 0 for all 𝑖 to allow a faster trend during the 

steady state regime than the transient regime and a nondecreasing trend with positive swelling 

values at the changepoint, resulting in an interpretable model that is also consistent with the 

existing domain knowledge. 

2.4.3 Bayesian Parameter Estimation 

The most widely used methods for parameter estimation in hierarchical models are maximum 

likelihood (ML) and restricted maximum likelihood (REML) estimation [26]. These likelihood-

based methods are considerably faster than Bayesian methods, but their performance suffers in 

terms of bias and coverage [27]. Indeed, Bayesian methods provide several advantages over 

likelihood-based methods at the cost of higher computation requirements. First, they quantify the 

uncertainties of the model parameters, which can then be used to evaluate the reliability of the 

parameter estimates. Second, studies have shown that estimates made by Bayesian methods are 

more stable and robust in small datasets than likelihood-based methods by considering the 

distribution of parameters rather than a single fixed parameter value [23]. Since void swelling 

datasets are sparse, a Bayesian approach is a more suitable choice.  

The first step of the Bayesian parameter estimation is to specify the prior distribution of the 

parameters, where the model parameters are represented by 𝜽 = [𝜸0, 𝜸1, 𝜸2, 𝜸3, 𝜎
2, 𝚺]. Here, we 

use informative prior distributions [28] inspired by domain knowledge to overcome the 

imbalanced data challenge mentioned in Section 2.1.2. Ideally, given an incomplete unit in the 

transient regime, the proposed model should estimate the changepoint 𝛽𝐶𝑃𝑖  to be located 

somewhere at the right of the measurements (high dpa values), and the opposite for incomplete 

units in the steady state regime.  
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The key insight in identifying the regime lies in the swelling rate. The definition of the regimes 

in Section 2.1.2 hints that the steady state swelling rate is in general significantly higher than the 

transient swelling rate. Hence, priors on 𝜸2 should have a larger mean than priors on 𝜸1 such that 

𝛽2𝑖 > 𝛽1𝑖. Furthermore, the prior on 𝜸2 is set to have a larger variance term than the prior on 𝜸1 

to encourage 𝛽2𝑖 capture more drastic swelling trends in the steady state regime. Accordingly, we 

set the priors 𝜸0, 𝜸1~𝑁(0,50), and 𝜸2~𝑁(20,75). Finally, the prior on 𝜸3 should guide 𝛼𝐶𝑃𝑖 to 

stay in the range [-4,4] to prevent the inverse logit function from saturating to 0 or 1. Section 2.5.3 

later investigates the proposed model’s sensitivity to different prior distributions.  

We impose uninformative prior distributions for the remaining parameters. For the unknown 

level 2 covariance matrix 𝚺, the popular Lewandowski-Kurowicka-Joe (LKJ) prior [29] with 

parameter 𝜂 = 1 (i.e., 𝐿𝐾𝐽(𝜂)) is imposed. The LKJ prior is a widely used prior distribution for 

correlation and covariance matrices, with the shape parameter 𝜂  controlling the amount of 

correlation among the level 2 random errors [30]. Here, the LKJ prior essentially acts as a uniform 

prior over the correlation matrix. For the standard deviation of the level 1 random errors, 𝜎, a half 

Student’s t distribution prior with 3 degrees of freedom is used. 

The second step in Bayesian parameter estimation is identifying the likelihood function. The 

likelihood function for the level 2 equation, 𝑝(𝜷𝑖|𝒁𝑖 , 𝜸0, 𝜸1, 𝜸2, 𝜸3, 𝚺), follows a multivariate 

normal distribution with mean 𝚪𝑖 = [𝜸0
𝑇𝒁𝑖 , 𝜸1

𝑇𝒁𝑖 , 𝜸2
𝑇𝒁𝑖 , 𝐼𝑛𝑣 𝑙𝑜𝑔𝑖𝑡(𝜸3

𝑇𝒁𝑖)]
𝑇 ∈ ℝ4×1  and 

covariance matrix 𝚺. For the level 1 equation, the likelihood function for a single observation 𝑌𝑖𝑗, 

𝑝(𝑌𝑖𝑗|𝑥𝑖𝑗 , 𝜷𝑖, 𝜎
2), also follows a normal distribution with mean 𝜇𝑖𝑗 and variance 𝜎2, where  𝜇𝑖𝑗 =

 𝛽0𝑖 + 𝛽1𝑖(𝑥𝑖𝑗 − 𝛽𝐶𝑃𝑖)𝕀{𝑥𝑖𝑗 < 𝛽𝐶𝑃𝑖} + 𝛽2𝑖(𝑥𝑖𝑗 − 𝛽𝐶𝑃𝑖)𝕀{𝑥𝑖𝑗 ≥ 𝛽𝐶𝑃𝑖}.  
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The third step is deriving the posterior distribution using Bayes’ rule. The posterior distribution of 

the parameters is shown in equation (2.6), where the conditioning on 𝒁𝑖  and 𝒙𝑖  is omitted for 

brevity. 

𝑝(𝜽|𝒀) ∝ 𝑝(𝒀|𝜽)𝑝(𝜽) = ∫𝑝(𝒀|𝜽, 𝜷𝑖)𝑝(𝜷𝑖|𝜽)𝑑𝜷𝑖𝑝(𝜽), (2.6) 

Stage 1: 𝑝(𝒀|𝜷𝑖, 𝜽) ∝ ∏∏
1

√𝜎2
exp {−

(𝑌𝑖𝑗 − 𝜇𝑖𝑗)
2

2𝜎2
}

𝑛𝑖

𝑗=1

,

𝐼

𝑖=1

  

Stage 2: 𝑝(𝜷𝑖|𝜽) ∝ det(𝚺)−
1
2 exp {−

1

2
(𝜷𝑖 − 𝚪𝑖)

𝑇𝚺−1(𝜷𝑖 − 𝚪𝑖)},  

Here, the 𝑝(𝜽) denotes the joint prior distribution of the model parameters 𝜽. The posterior 

distribution in equation (2.6) is computationally intractable, and thus we use the No-U-Turn-

Sampler (NUTS) [31], an extension of the conventional MCMC. Compared to traditional MCMC, 

NUTS uses gradient information to guide the algorithm and generates higher-quality samples with 

less autocorrelation much more quickly. The NUTS algorithm is implemented in the software Stan 

[30]. 

2.4.4 Prediction 

Recall that our goal is to predict the unobserved swelling measurement 𝑌𝑖
∗  of unit 𝑖  with 

covariates 𝒁𝑖  at the new irradiation dose level 𝑥𝑖
∗ , i.e., to compute the posterior predictive 

distribution 𝑝(𝑌𝑖
∗|𝒀, 𝒁, 𝑥𝑖

∗) . Note that 𝒀𝑖 = [𝑌𝑖,1; … ; 𝑌𝑖,𝑛𝑖
] ∈ ℝ𝑛𝑖×1  is the vector of historical 

measurements for unit 𝑖, where 𝑛𝑖 is the total number of collected measurements for unit 𝑖, 𝒀 =

[𝒀1; … ; 𝒀𝐼] ∈ ℝ(∑𝑛𝑖)×1  is the vector of historical measurements from all units, and 𝒁 =

[𝒁1, . , , , 𝒁𝐼] ∈ ℝ(𝑃+1)×𝐼. Then, 𝑝(𝑌𝑖
∗|𝒀) can be expanded into the following form:  
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𝑝(𝑌𝑖
∗|𝒀) = ∬𝑝(𝑌𝑖

∗|𝜷𝑖, 𝜽)𝑝(𝜷𝑖|𝜽)𝑝(𝜽|𝒀)𝑑𝜷𝑖𝑑𝜽, (2.7) 

where the conditioning over 𝒁, 𝒁𝒊  and 𝒙𝒊
∗  is omitted for brevity. The posterior predictive 

distribution is approximated numerically by using the Monte Carlo Integration: 

𝑝(𝑌𝑖
∗|𝒀) ≈

1

𝑊
∑ 𝑝(𝑌𝑖

∗|𝜷𝑤,𝑖, 𝜽𝑤), 𝜽𝑤~𝑝(𝜽|𝒀),

𝑊

𝑤=1

𝜷𝑤,𝑖~𝑝(𝜷𝑖|𝜽𝑤), (2.8) 

in which 𝜽𝑤 = [𝜸𝑤,0, 𝜸𝑤,1, 𝜸𝑤,2, 𝜸𝑤,3, 𝜎𝑤
2 , 𝚺𝑤] is the 𝑤 th Monte Carlo sample drawn from the 

posterior distribution in Section 2.4.3 and 𝑊 represents the total number of posterior samples, i.e., 

𝑤 ∈ {1,… ,𝑊} . Furthermore, 𝜷𝑤,𝑖 = [𝛽𝑤,0𝑖, 𝛽𝑤,1𝑖, 𝛽𝑤,2𝑖, 𝛽𝑤,𝐶𝑃𝑖]
𝑇

 represents the 𝜷𝑖  values 

obtained based on equation (2.4) using 𝜽𝑤. This way, 𝑌𝑖
∗|𝜷𝑤.𝑖, 𝜽𝑤 can be easily obtained as it 

follows a normal distribution with mean 𝛽𝑤,0𝑖 + 𝛽𝑤,1𝑖(𝑥𝑖
∗ − 𝛽𝑤,𝐶𝑃𝑖)𝕀{𝑥𝑖

∗ < 𝛽𝑤,𝐶𝑃𝑖} + 𝛽𝑤,2𝑖(𝑥𝑖
∗ −

𝛽𝑤,𝐶𝑃𝑖)𝕀{𝑥𝑖
∗ ≥ 𝛽𝑤,𝐶𝑃𝑖} and variance 𝜎𝑤

2 . 

One special case is the cold start case where the new unit 𝑖′ of interest has not collected any 

swelling measurements, i.e., 𝒀𝑖′ = ∅ and 𝒁𝑖′ ∉ {𝒁1, … , 𝒁𝐼}. Here, the distribution of interest is 

𝑝(𝑌𝑖′
∗|𝒀, 𝒁, 𝒁𝑖′ , 𝑥𝑖′

∗ ) , in which 𝑌𝑖′
∗  is an unobserved swelling measurement from unit 𝑖′  at the 

irradiation dose value of 𝑥𝑖′
∗ . The cold start posterior predictive distribution 𝑝(𝑌𝑖′

∗|𝒀, 𝒁, 𝒁𝑖′ , 𝑥𝑖′
∗ ) is 

numerically approximated similarly as in equation (2.8), where the posterior draws of the 

parameters are made from 𝐼 historical units: 

𝑝(𝑌𝑖′
∗|𝒀) ≈

1

𝑊
∑ 𝑝(𝑌𝑖′

∗|𝜷𝑤,𝑖′ , 𝜽𝑤), 𝜽𝑤~𝑝(𝜽|𝒀), 𝜷𝑤,𝑖′~𝑝(𝜷𝑖′|𝜽𝑤).

𝑊

𝑤=1

 (2.9) 

Similar to equation (2.7) and equation (2.8), the conditioning over 𝒁, 𝒁𝑖′  and 𝑥𝑖′
∗  are omitted for 

brevity. In equation (2.9), 𝜷𝑤,𝑖′  is calculated by using the posterior estimates of 𝜽𝑤  and the 

covariates of the cold start unit 𝒁𝑖′  in equation (2.4). For instance, 𝛽0𝑖′ = 𝜸𝑤,0
𝑇 𝒁𝑖′ + 𝑢0𝑖′  in which 



24 

 

𝜸𝑤,0 is obtained using 𝜽𝑤  and 𝑢0𝑖′  is randomly chosen from the pool of {𝑢01, … , 𝑢0𝐼} for each 

sample. 

2.5 Numerical Studies 

In this section, we evaluate the proposed model on a real-life void swelling dataset. In Section 

2.5.1, we introduce five benchmark methods. Section 2.5.2 then discusses the model validation 

approaches used in this study. Then, Sections 2.5.3 and 2.5.4 contain the results of our numerical 

analysis.  

2.5.1 Benchmark Methods 

We briefly discuss the five benchmark methods that will be used in the model evaluations. First, 

we consider a linear regression model with an L2 regularization term. For a fair comparison, the 

coefficients of the linear regression are constrained to be positive in order to enforce the monotonic 

relationship of void swelling. Here, the predictors are the irradiation dose and covariates, while the 

response variable is the void swelling %.  

For the second approach, we consider a set of ensemble methods. The main idea behind 

ensemble learning is to combine the prediction of several base estimators to obtain better 

performance than using a single estimator [32]. Generally, ensemble methods are divided into 

averaging methods and boosting methods. Here, we consider one model from each category as a 

benchmark: a Random Forest (RF) [33] for averaging methods and a Gradient Boosted Trees (GBT) 

[34] for boosting methods.  

The next benchmark is the ANN model [35]. ANN has received much attention in the past years 

due to its strong predictive performance and flexibility. ANN is a network of neurons (i.e., nodes) 

with input, hidden, and output layers. Contrary to models that can only capture linear relationships, 
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ANN can capture complex and nonlinear relationships by employing nonlinear activation 

functions. Furthermore, we constrain the weights and biases of the ANN to have a monotonic 

relationship between the irradiation dose and void swelling %.  

The last benchmark is the Multioutput Gaussian Process (MGP) regression [36]. A GP is a 

collection of random variables where any finite number of which has a multivariate Gaussian 

distribution. Although GPs are very flexible and effective at modeling arbitrary functions, they 

exhibit poor performance in extrapolation tasks. To address this limitation, we adopt a MGP with 

a separable covariance structure proposed by Bonilla, Chai, and Williams [36], which can transfer 

information across different units to improve extrapolation performance.  

For all benchmark methods, the input is the concatenated vector of the irradiation dose value 

and covariates. In other words, the input for the 𝑗 th measurement of unit 𝑖  is the vector 

[𝑥𝑖𝑗, 𝑍1𝑖, … , 𝑍𝑃𝑖]
𝑇

∈ ℝ(𝑃+1)×1 and the output is 𝑌𝑖𝑗. The obtained predictions 𝑌̂𝑖𝑗 are then evaluated 

on three metrics: Mean Absolute Error (MAE), Mean Squared Error (MSE), and Mean Absolute 

Percentage Error (MAPE). Equation (2.10) lists the exact formulas for each metric in detail: 

𝑀𝐴𝐸 =
∑ ∑ |𝑌𝑖𝑗 − 𝑌̂𝑖𝑗|

𝑈𝑖
𝑗=1

𝐼𝑡𝑒𝑠𝑡
𝑖=1

∑ 𝑈𝑖
𝐼𝑡𝑒𝑠𝑡

𝑖=1

, 𝑀𝑆𝐸 =
∑ ∑ (𝑌𝑖𝑗 − 𝑌̂𝑖𝑗)

2𝑈𝑖
𝑗=1

𝐼𝑡𝑒𝑠𝑡
𝑖=1

∑ 𝑈𝑖
𝐼𝑡𝑒𝑠𝑡

𝑖=1

 

𝑀𝐴𝑃𝐸 =
∑ ∑ |(𝑌𝑖𝑗 − 𝑌̂𝑖𝑗)/𝑌𝑖𝑗|

𝑈𝑖
𝑗=1

𝐼𝑡𝑒𝑠𝑡
𝑖=1

∑ 𝑈𝑖
𝐼𝑡𝑒𝑠𝑡

𝑖=1

 

(2.10) 

where 𝑈𝑖  is the number of unobserved swelling measurements for unit 𝑖, and 𝐼𝑡𝑒𝑠𝑡  is the total 

number of test units. All benchmark methods are implemented in Python, while the proposed 

Bayesian hierarchical piecewise linear regression model is implemented in the R package brms 

[37] with a Stan backend [30]. The detailed parameter settings used in the evaluations can be found 

in the supplementary materials.  
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2.5.2 Model Validation Methods 

In this subsection, we discuss the methods used for checking the proposed Bayesian model.  

First, we check the validity of the Bayesian approach by comparing the prediction results with 

maximum likelihood estimation. Then, we check the adequacy of the prior distribution of the mean 

of the changepoint parameter 𝜸3, which is essential in correctly identifying the regime information. 

Finally, we examine the Bayesian model fitting results by checking the posterior predictive 

distribution and computing the LOO-PIT (leave one out probability integral transform) values.  

As mentioned in Section 2.4.3, the prior distribution on the changepoint parameter 𝜸3 affects 

the estimation of the changepoint between the transient and the steady state regimes. To assess the 

influence of the prior distribution, we first determine the true regime information by examining 

the relevant literature. For example, it is known that the 316 stainless steels treated with Carbon 

and Nitrogen solutions have a steady state that begins after 0.02 dpa with normalization  [38]. 

Similarly, the dpa value at which voids are first observed can be used as the changepoint. After 

obtaining the true regime information of the test units, we assess the regime prediction accuracy 

in two ways. For the incomplete units, the predictions are evaluated by the percentage of correctly 

predicted regions. For the complete units, the predictions are evaluated by MAE between  𝛽̂𝐶𝑃𝑖 

and 𝛽𝐶𝑃𝑖.  

Finally, we check the adequacy of the model fit by examining the posterior predictive 

distribution. Posterior predictive checking essentially compares the distribution of the true void 

swelling values 𝑌𝑖𝑗 and the simulated void swelling values 𝑌𝑖𝑗
𝑟𝑒𝑝

 from the HMC algorithm. The 

LOO-PIT method calculates the probability distribution for each marginal prediction separately, 

and then compares these separate distributions to the existing data distribution to check model 

calibration or find outliers. 
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2.5.3 Evaluation Results: Scenario 1 (Partially Observed Units) 

In this subsection, we compare the performance of the proposed model to the benchmark 

methods. Specifically, we assume that the training units have access to all measurements, while 

the test units have partial access to the first few measurements. Based on the available 

measurements, our task is to predict the unobserved (hidden) void swelling % of the test units. To 

begin, the units are first split into training and test units. In particular, the 12 units that have clear 

observable swelling trends with more than 3 observations are divided into train/test sets based on 

4-fold cross-validation. The remaining 279 units with 3 or fewer observations are always regarded 

as training units. As a result, each evaluation iteration has 279+9=288 training units and 3 testing 

units.  For all evaluations, the NUTS ran with 4 chains and 6000 iterations, in which the first 3000 

iterations were used as the warm-up stage. Also, the evaluations are repeated 50 times. Note that 

the accuracy of the NUTS sampler and its integration process are evaluated via posterior predictive 

checking and LOO-PIT values. The detailed results are provided in the supplementary materials.  

Table 2.2 Evaluation results for scenario 1, measured by Mean Absolute Error (MAE), 

Mean Squared Error (MSE), and Mean Absolute Percentage Error (MAPE) (Boldface: 

Lowest error, Paranthesis: Error standard deviation). 

 1 observation/unit 3 observations/unit 

Model MAE MSE MAPE MAE MSE MAPE 

Proposed Model 
1.4362 

(0.1390) 

11.476 

(0.4092) 

0.4418 

(0.0148) 

1.3948 

(0.0549) 

9.1789 

(0.4938) 

0.2526 

(0.0214) 

Linear 

Regression (LR)  
1.9212 13.781 1.0529 1.8614 15.593 0.4474 

Random Forest 

(RF) 

2.2086 

(0.0644) 

10.379 

(0.4623) 

0.8326 

(0.0191) 

2.4851 

(0.0663) 

11.811 

(0.6560) 

0.6204 

(0.0181) 

Gradient Boosted 

Trees (GBT) 

2.0691 

(0.0825) 

8.5278 

(0.6611) 

0.5646 

(0.0140) 

1.9421 

(0.0707) 

7.3637 

(0.3912) 

0.4128 

(0.0221) 

Artificial Neural 

Network (ANN) 

1.6988 

(0.1189) 

12.242 

(0.9687) 

0.8360 

(0.1256) 

1.7593 

(0.3072) 

14.648 

(1.4157) 

0.4330 

(0.0684) 

Multivariate 

Gaussian Process 

(MGP) 

2.9163 

(0.2141) 

22.665 

(3.3855) 

0.6407 

(0.0612) 

2.5847 

(0.4289) 

19.983 

(5.1449) 

0.3524 

(0.0489) 
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The results of the “partially observed” scenario are organized in Table 2.2, in which the term 

“observation/unit” denotes the number of initially observed measurements from the test units. For 

instance, “1 observation/unit” indicates that the first measurement of the test units is observed and 

then we predict the remaining future measurements of the test unit. For visual clarity, the lowest 

errors (i.e., best-performing model) in each category are boldfaced. The standard deviations of the 

errors are shown in parenthesis. In addition, the error distribution in terms of MAPE for each 

method is shown in Figure 2.7.  

In addition to the error metrics, the predicted swelling trends must be monotonically 

nondecreasing (i.e., there is no decrease in swelling except for small measurement errors) with a 

clear identification of the changepoint when applicable. Figure 2.8 and Figure 2.9 show the 

predicted swelling curves for two sample units with normalized dpa values. The first unit (id = 2) 

shows an incomplete unit with only one identifiable regime, while the second unit (id = 7) shows 

a complete unit with two identifiable regimes. 

 

(a) 

 

(b) 

 

 
Figure 2.7 Box plot of MAPE results for scenario 1 

 (a) 1 observation/unit (b) 3 observations/unit 
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The results from Table 2.2 highlight the superior performance of the proposed model over 

existing benchmark methods in terms of MAE and MAPE. For other benchmark methods, the 

ANN and LR methods’ accuracy suffers due to their positive constraints, while the RF, GBT, and 

MGP methods frequently result in erroneous predictions. For instance, the GBT, MGP, and RF 

predictions for Figure 2.8 in unit 2 all return locally decreasing swelling trends. On the contrary, 

the proposed method returns predictions that are accurate and coherent with the properties of void 

swelling (i.e., nondecreasing and clearly identifies two trends when applicable). The proposed 

model performs slightly less than the GBT in terms of MSE. However, it is important to highlight 

that MSE is a less stable metric than MAE or MAPE as it tends to exaggerate the errors made by 

outliers due to the squared term. In addition, the GBT had higher percentage errors in earlier 

transient regimes, resulting in higher MAPE values. Also, we confirm from the swelling 

trajectories of unit 2 and unit 7 that the model predictions improve as more measurements are 

available. For instance, unit 7’s predictions in Figure 2.8 with 1 observation/unit identify the 

 

Figure 2.8 Benchmark method plots from unit 2 and unit 7 (1 observation/unit) 
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changepoint to be located around 0.5 dpa. However, in Figure 2.9 with 3 observations/unit, the 

model predicts that the changepoint is around 0.8 dpa, which is coherent with the true changepoint 

value.   

We first compare the Bayesian predictions from the MLE predictions. Figure 2.10 illustrates 

the predicted swelling curves with the posterior predictive distribution of a randomly selected test 

unit assuming different levels of data availability. Note that the posterior samples outside the 2.5th 

and 97.5th quantiles are neglected to remove the effect of extreme outliers. The figure shows that 

the predictions from the ML approach suffer from high bias. On the contrary, the predictions from 

the Bayesian approach accurately capture the uncertainties in its predictions with the prediction 

intervals covering the true swelling values, and the mean predictions are much closer to the true 

values. The prediction errors of each parameter estimation method are shown in Table 2.3, 

representing the mean and standard deviation values derived from 50 repetitions. The results 

 

Figure 2.9 Benchmark method plots from unit 2 and unit 7 (3 observation/unit) 
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demonstrate the superior performance of the Bayesian approach over the maximum likelihood 

approach. The lowest errors are boldfaced for visual clarity. 

Finally, we examine how the proposed model identifies the regimes via informative prior 

distributions. Out of the 12 test units with more than 3 observations, 10 units are incomplete with 

only one regime information, and 2 units are complete with both regimes. All 10 incomplete units 

are determined to be in the steady state regime.  

 

Figure 2.10 Proposed model’s predictions vs. MLE predictions for a sample unit (id = 3) 

(Black: True, Blue: Proposed Model, Red: Prediction intervals (Proposed Model), Jade: 

ML) 

 

 

Table 2.3 Evaluation results for Bayesian parameter estimation vs. maximum likelihood, 

measured by MAE, MSE, and MAPE. (Boldface: Lowest error, Paranthesis: Error standard 

deviation). 

 1 observation/unit 3 observations/unit 

Model MAE MSE MAPE MAE MSE MAPE 

Proposed Model 
1.4362 

(0.1390) 

11.476 

(0.4092) 

0.4418 

(0.0148) 

1.3948 

(0.0549) 

9.1789 

(0.4938) 

0.2526 

(0.0214) 

Maximum 

Likelihood (ML)  
2.3068 15.472 0.6947 2.2297 13.503 0.5644 
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The regime prediction results are shown in Table 2.4, where the evaluations are repeated 50 

times, and the standard deviations are reported in parenthesis. Note that the Uniform(-4,4) prior 

represents an uninformative prior, while Normal(0,2) is a more informative prior with tailored 

variance parameters to control the values of 𝛽̂𝐶𝑃𝑖. Results of Table 2.4 indicate that the proposed 

model is sensitive to the choice of the prior distribution on 𝜸3, highlighting the importance of 

incorporating domain knowledge by choosing informative priors.  

2.5.4 Evaluation Results: Scenario 2 (Cold Start Units) 

The second scenario is the “cold start” unit that was introduced at the end of Section 2.4.4. 

Recall that the cold start unit only has access to the covariate information. Since there are no past 

measurements to estimate the void swelling trajectory, it is much more difficult for traditional 

data-driven methods to accurately estimate the trend of a cold start unit.  

Analyzing cold start units holds great potential for practitioners. For example, suppose that a 

researcher is interested in investigating the effect of irradiation temperature on the swelling of a 

new type of austenitic steel. Instead of manually conducting expensive experiments, researchers 

can simply plug in the cold start unit’s covariates into the proposed model and examine the 

predicted void swelling trends. 

Table 2.4 Accuracy of the proposed method in determining regimes with (un-)informative 

priors on 𝜸3 

Metric\Prior Uniform(-4,4) 

(Uninformative) 

Normal(0,2) 

(Informative) 

% Correct 

(incomplete) 

34.20% 

(4.9857) 

80.80% 

(8.533) 

MAE 

(complete) 

0.2948 

(0.0218) 

0.1286 

(0.0312) 
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Since this demonstration is a proof-of-concept, the predictions are evaluated on whether the 

predicted swelling curves follow the same trend as the true swelling curves. To combat the limited 

data availability of the cold start setting, numerical experiments are conducted under a leave-one-

out cross-validation setting. In other words, in each cross-validation iteration, we have one test 

unit (with no available measurements) and the remaining 11+279 = 290 units as training units 

(with all measurements available). To clearly observe the swelling trends, we plot the predictions 

for 4 units (2 incomplete and complete units each) alongside the posterior predictive distribution 

in Figure 2.11. From the figure, although the range of the posterior predictive distribution is wider 

than that of scenario 1, most of the probability mass is located near the true swelling values. The 

 

Figure 2.11 Scenario 2 predictions (cold start) 

(Black: True, Blue: Proposed Model, Red: Prediction intervals (Proposed Model)) 
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results show that the covariate information alone can provide valuable guidance for the proposed 

model to accurately estimate the general swelling trends. 

2.6  Discussion & Conclusion 

In this case study, we have considered a novel data-driven Bayesian piecewise hierarchical 

linear regression to directly model and predict the degradation status of materials subject to void 

swelling. The proposed method has the following contributions. First, it incorporates domain 

knowledge of void swelling by imposing specific shape constraints. Second, the joint effect of 

multiple covariates is naturally represented through the hierarchical structure of the model. Finally, 

the proposed model overcomes the limited availability of the swelling dataset by leveraging the 

advantages of a Bayesian approach. In particular, the uncertainty quantifications of the predicted 

swelling values to assess the reliability of predictions. 

Numerical studies on a real-life void swelling dataset showed that the proposed model 

outperforms traditional data-driven models such as LR, ensemble methods, MGP, and ANN in 

predicting the swelling values. In addition, the estimated 95% credible intervals included the true 

swelling values for all units. Even for cold start units, the proposed model still managed to provide 

reasonable estimates of the swelling trends. Overall, the proposed method has demonstrated the 

effectiveness of a data-driven method tailored for void swelling and the potential to be used as a 

reference for practitioners. Furthermore, the predicted degradation status can be used to construct 

early warning indicator systems that can greatly aid NPP maintenance and prevent unexpected 

failures and catastrophic accidents.  

The proposed Bayesian hierarchical model is not just limited to void swelling and industrial 

applications and can also be used in a wide range of systems with nested/hierarchical data 

structures. Here, although we choose the level 1 regression shape to be a piecewise linear trend, 
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the model can be easily modified to accommodate various trends. In addition, prior knowledge of 

the engineering system can be incorporated into the model by imposing constraints on the 

regression parameters. In summary, we hope that this case study will catalyze future research that 

uses Bayesian hierarchical models to perform predictive maintenance and degradation modeling 

in both traditional and nontraditional applications.  

Future studies will focus on the following topics. One potential topic is optimal covariate design 

to extend the swelling period of a unit to its maximum extent. This is also known as informed alloy 

design, in which we can employ optimization techniques to identify optimal covariates that 

elongate the lifetime of a unit as much as possible. Extending the lifetime of a unit can result in 

better experimental design and aging management in nuclear facilities. Second, we can consider 

active learning techniques to adaptively obtain experimental measurements. For example, using 

the entropy criterion, we can collect subsequent swelling measurements at the irradiation dose 

level with the highest entropy (i.e., largest predictive uncertainty). As we make informed sampling 

decisions guided by active learning, we can achieve more accurate estimations of swelling 

processes with a given number of measurements. 
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2.7 Supplementary Materials 

2.7.1 Parameter Settings for Benchmark Methods 

This section lists the parameter settings for the benchmark methods used in the evaluations in 

Section 2.5. The model parameters in Table 2.5 were optimized via K-fold cross validation with 

K = 4 except for the monotonic ANN and MGP. 

2.7.2 Model Adequacy Checking 

The adequacy of the proposed model is evaluated using the posterior predictive checking and 

LOO-PIT (leave one out probability integral transform). Posterior predictive checking overlays 

the simulated densities of 𝑌𝑖𝑗
𝑟𝑒𝑝

 with the true density of 𝑌𝑖𝑗. Here, 𝑌𝑖𝑗 represents the 𝑗th swelling 

measurement of unit 𝑖. Figure 2.12 and Figure 2.13 show the posterior predictive checking plots 

from the 4-fold cross-validation. The results demonstrate that the simulated densities overlap with 

the true densities, suggesting that the proposed model has a good fit.  

Table 2.5 Optimized model hyperparameters. 

Model Parameters 

Sklearn.linear_model.Ridge 

(Monotonic Linear Regression) 

Alpha = 0.1 

Positive = True 

Monotonic ANN 

Activation: ReLU 

Early Stopping: disabled 

Optimizer: Adam 

Epochs = 100 

Learning Rate: 0.001 

Batch Size = 32 

Layer Size = [40,40] 

Sklearn.ensemble.RandomForestRegressor 

(Random Forest) 

N_estimators = 80 

Max_depth = 7 

Sklearn.ensemble.GradientBoostingRegressor 

(Gradient Boosted Trees) 

N_estimators = 50  

Max_depth = 8 

Multioutput Gaussian Process Covariance = Rational Quadratic 
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The second method for model adequacy checking is the LOO-PIT values. The LOO-PIT 

method calculates the probability distribution for each marginal prediction separately, and then 

compares these separate distributions to the existing data distribution to check model calibration 

or detect outliers. A model with good fit typically shows no major deviations with asymptotically 

symmetric trends in the LOO-PIT plots. Again, we observe from Figure 2.14 and Figure 2.15 that 

there are no significant outliers from the calculated LOO-PIT plots, further showing that the model 

has a good fit.  

 

 

Figure 2.12 Posterior predictive checking (Red dashed: 𝑌𝑖𝑗, Jade solid: 𝑌𝑖𝑗
𝑟𝑒𝑝

) 

1 observations/unit 
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Figure 2.13 Posterior predictive checking (Red dashed: 𝑌𝑖𝑗, Jade solid: 𝑌𝑖𝑗
𝑟𝑒𝑝

) 

3 observations/unit 

 

 

 

 

Figure 2.14 LOO-PIT curves, 1 observation/unit 
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2.7.3  Recommendations for Choosing the Prior Distributions 

Here, we provide guidelines on how to choose the appropriate prior distributions for the model 

parameters. First, one must decide between noninformative and informative prior distributions. 

Generally, it is recommended to use informative priors when there is strong prior belief about the 

parameters. If there is no empirical studies or expert knowledge to draw insights from, then a 

noninformative prior distribution is recommended. Second, we select the probability distribution 

based on the nature of the parameters, such as bounded versus unbounded distributions, or positive 

constraints on the parameter values. Finally, after specifying the appropriate prior distributions, 

we then perform sensitivity analysis by trying different priors. 

  

 

Figure 2.15 LOO-PIT curves, 3 observations/unit 
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Chapter 3 An Integrated Uncertainty Quantification 

Model for Longitudinal and Time-to-event Data 

3.1 Introduction 

Recent advances in sensor technologies have led to the widespread use of multiple sensors to 

simultaneously monitor the various aspects of the condition of an engineering system and obtain 

an accurate diagnosis and prognosis of a system [7], which have significantly improved system 

profitability and reliability by preventing unexpected failures.  

To accurately characterize the health of a system and predict the remaining useful life (RUL), 

existing approaches generally extract prognostic insights from either longitudinal sensor data or 

time-to-event/failure data. An example of such longitudinal data is multisensor signals (e.g., 

vibration, temperature, pressure) from manufacturing systems. Meanwhile, event data of the same 

system are typically available in the form of machine failure/maintenance logs. Each data type 

offers distinct perspectives on the health of a system. While longitudinal data contains information 

on signal evolution and temporal patterns [39], time-to-event data provides insights into censoring 

and the occurrence of failure events [40]. However, most current approaches do not take full 

advantage of the insights in both data types and instead opt to analyze one data type separately. 

Specifically, approaches based solely on longitudinal data typically define failure as an event when 

the degradation signal (or a function of degradation signals) reaches a fixed, pre-determined failure 

threshold (i.e., soft failure) [41]. Once a soft failure occurs, the system’s performance is no longer 

considered to meet the required standards. A disadvantage of this assumption is that it can be 

difficult to define an exact failure threshold value in practice due to unit-to-unit variability and 
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multiple failure mechanisms. On the other hand, approaches based only on time-to-event data 

define failure in terms of risk (i.e., hazard) of failure (i.e., hard failure) [42]. 

To harvest the benefits of both longitudinal and time-to-event data, many researchers have 

explored joint models to simultaneously analyze both types of data. Joint models simultaneously 

incorporate both data types by first modeling the degradation signals via a mixed-effects model 

and then uses the fitted signals as time-varying covariates of the Cox PH model. Joint models do 

not require a pre-determined failure threshold as it naturally describes the failure probability via 

the hazard function of the Cox PH model. In addition, joint models provide unit-level modeling of 

the failure times and RUL while continuously tracking the evolution of the degradation signals. 

For instance, Liao et al. [43], first used the linear Cox model with logistic regression to predict 

the lifespan of a bearing. Later, Zhou et al. [40] proposed a joint model with Bayesian updating to 

predict the RUL of automotive lead-acid batteries.  

Unfortunately, a key drawback of existing joint models is their heavy reliance on restrictive 

parametric assumptions. The mixed-effects model requires one to predefine the functional form of 

the longitudinal data. As a result, it is susceptible to model misspecification errors and struggles 

to capture complex degradation trends. In addition, the linear Cox model is also limited by its 

strong parametric assumption. In particular, its linear-risk assumption restricts the model to only 

capture linear interactions between the log-hazard function and the covariates.  

To relax the parametric assumptions, recent efforts have replaced the mixed-effects model with 

nonparametric methods. For instance, Yue and Kontar [44] proposed to model the longitudinal 

data by a multivariate Gaussian convolutional process (MGCP). While the flexibility of the MGCP 

has shown great potential in capturing the unit-to-unit variability in the signal trajectories similar 

to the proposed method, it suffers from drastically increased computational and storage costs. 
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Hence, it is less appealing for online RUL estimation especially based on large datasets.   Zhou et 

al. [45]  used a functional principal component analysis (FPCA)-based approach to model the 

signal trajectories. Although this nonparametric method is faster than the MGCP, it still ignores 

the degradation information embedded in the time-to-event data.  

On the other hand, to overcome the linear-risk assumption in the linear Cox model, researchers 

have proposed other survival models with different structures. For instance, survival trees adopt a 

nonparametric, tree-based approach to model the interactions between the covariates and the log-

risk function [46]. Other examples include accelerated failure time (AFT) models, which assume 

a linear relationship between the covariates and the log-transformed failure time [47]. Despite the 

relaxed modeling assumptions, both models directly use the longitudinal signals as time-varying 

covariates, which is known to result in biased and error-sensitive estimations.  

Another approach to overcome the linear-risk assumption is to use a neural network (NN) to 

allow the modeling of nonlinear covariate interactions. Since NN can easily model arbitrary 

functions, NN-extended Cox models have received more attention in recent years and have 

outperformed traditional survival models in a variety of clinical applications, e.g., DeepSurv [48], 

PyCox [49], and SurvivalNet [50].  

Despite their increased flexibility and predictive performance, directly using the predictions 

from NN-extended Cox models can result in detrimental errors for prognostics. First, a major 

limitation of these approaches is that they rely on a fixed, deterministic NN without uncertainty 

quantification to model the covariate interactions. This can be problematic for degradation 

applications, as limited data availability and the inherently stochastic nature of degradation 

processes make it impractical to only provide point RUL estimates with absolute certainty [10]. 

Moreover, deterministic NNs are prone to overfitting, especially when the amount of training data 
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is limited [51]. To ensure that the NN-extended Cox models provide accurate and reliable 

modeling of the degradation process, it is critical to quantify the uncertainties involved in the RUL 

predictions. Indeed, practitioners can leverage the RUL uncertainty quantifications to assess the 

quality of the predictions and detect abnormal model behavior. In addition, uncertainty 

quantifications can help stakeholders make better informed decisions [52]. For instance, a 

prognostic model with uncertainty quantification may predict that there is a 90% probability that 

the RUL lies between 800 and 1200 hours. If the cost of unexpected failure is high (e.g., nuclear 

power plant), we may choose to conduct maintenance activities early (e.g., around 800 hours). On 

the other hand, if the corrective maintenance cost is low while the preventive maintenance cost is 

high, we may plan maintenance activities later (e.g., around 1200 hours) to avoid unnecessary 

expenses. Hence, it is highly desirable to have RUL predictions with accurate uncertainty 

quantifications.  

However, uncertainty quantification in joint models is challenging due to the complex model 

structure. Indeed, joint models contain two sub-models for each type of data, and propagating 

uncertainties across these sub-models with varying model parameters is no trivial task. Currently, 

existing methods only offer incomplete uncertainty quantifications by considering the 

uncertainties from only either the longitudinal sub-model [40], [44], [45], [53] or the time-to-event 

sub-model [54]. For instance, Wen et al. [53] recently proposed an advanced joint model (referred 

as “NN-Joint”) in which the longitudinal data is modeled via a mixed-effects model, and the time-

to-event data is modeled by a NN-extended Cox model. Although the NN-Joint model achieved 

satisfactory results by relaxing the linear-risk assumption, its predictions neglect the uncertainties 

in the time-to-event sub-model. Thus, there is still a lingering demand for a more comprehensive 

framework that can deliver integrated uncertainty quantifications for both data types.   
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To fill this research gap, we present a flexible, integrated uncertainty quantification model 

(referred as “IUQ” hereafter) for the joint analysis of longitudinal and time-to-event data. The 

proposed IUQ model has two parts: a nonparametric FPCA-based model for the longitudinal data, 

and a Bayesian Neural Network-based Cox model (i.e., BNN-Cox) model for the time-to-event 

data. The major advantages of the proposed IUQ model are as follows. First, the proposed IUQ 

model provides well-quantified, integrated uncertainty estimates by integrating uncertainties 

across the two sub-models. To the best of our knowledge, this is the only model in the literature 

that systematically integrates the uncertainties involved in jointly modeling both longitudinal and 

time-to-event data. Second, the IUQ model allows more flexibility in modeling both types of data 

since FPCA and BNN do not impose strong parametric assumptions. As a result, the IUQ model 

can well characterize a variety of degradation signal trajectories and covariate interactions. Third, 

the proposed model allows online updating of the RUL distribution. Similar to existing joint 

models [3], [16] the proposed IUQ model can continuously update the RUL distribution and make 

 

Figure 3.1 Overview of proposed joint modeling approach 
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highly individualized, real-time RUL predictions of an in-service unit based on its new 

observations. Finally, the proposed model provides reliable RUL estimates across varying levels 

of data availability.  

 Figure 3.1 illustrates the overall framework of the proposed joint modeling approach. In the 

offline stage, the FPCA-fitted degradation signals are fed into the BNN-Cox sub-model as time-

varying covariates along with time-to-event data to estimate the model parameters. For the online 

stage, the newly collected measurements from the in-service unit are used to update the FPCA 

parameters via a Bayesian scheme. The calculated posterior FPCA parameters are then used to 

predict future degradation signals. In particular, the uncertainties in the FPCA parameters are 

integrated with the uncertainties in the BNN-Cox parameters to provide accurate survival and 

subsequent RUL estimates of the in-service unit in real time.  

The remainder of the paper is organized as follows. In Section 3.2, we provide the details of the 

proposed joint modeling framework, offline parameter estimation, online updating procedures, and 

model prediction with uncertainty quantification. In Section 3.3, we conduct evaluations on both 

synthetic and real-life data. Finally, Section 3.4 summarizes the proposed method with its 

contributions and discusses future work. 

3.2 Methodology 

In this section, we will introduce the proposed IUQ model in detail. Sections 3.2.1 and 3.2.2 

each describe the FPCA sub-model for longitudinal data and BNN-Cox sub-model for time-to-

event data. Section 3.2.3 then elaborates on the offline training and parameter estimation. Finally, 

Section 3.2.4 discusses online RUL prediction with the uncertainty integration approach. 
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3.2.1 Sub-model 1: FPCA-based Degradation Modeling for Longitudinal 

Data 

Here, we discuss the formulation of the FPCA-based degradation sub-model for longitudinal 

data. FPCA is one of the most popular dimensionality reduction methods for analyzing 

functional/longitudinal data. Specifically, FPCA assumes that the longitudinal data can be 

decomposed into a linear combination of orthonormal basis functions (i.e., eigenfunctions) and 

coefficients (i.e., FPC scores). Here, the eigenfunctions are chosen to explain the dominant modes 

of variation within the observed longitudinal data. 

While several nonparametric approaches such as the Gaussian processes (GP) or splines can be 

employed to model longitudinal data, we choose to use FPCA due to its several practical benefits. 

First, performing FPCA is computationally less demanding than GP-based methods as it does not 

require the inversion of a large covariance matrix. Second, FPCA is effective at handling sparse 

and irregularly observed data [55], which is common in many degradation applications. Third, we 

can quantify the uncertainties in the longitudinal signals during online prediction by deriving the 

posterior distribution of the FPC scores.  

Suppose that longitudinal data are collected over a compact time domain 𝒯 ∈ [0, 𝑇𝑚𝑎𝑥], where 

𝑇𝑚𝑎𝑥  is the maximum possible event or failure time. The longitudinal data are assumed to be 

generated from a square-integrable stochastic process 𝑌(𝑡)  with mean function 𝜇(𝑡)  and 

covariance function Σ(𝑡, 𝑡′) = 𝐶𝑜𝑣(𝑌(𝑡), 𝑌(𝑡′)), (𝑡 ≠ 𝑡′) . Mercer’s theorem implies that the 

covariance Σ(𝑡, 𝑡′) can be expanded into an infinite sum of eigenfunctions 𝜙𝑘(𝑡) and eigenvalues 

𝜆𝑘  for 𝑘 = 1,2, …  under the linear Hilbert-Schmidt operator 𝐺: 𝐿2(𝒯) → 𝐿2(𝒯) , 𝐺(𝑓) =

 ∫ Σ(𝑡, 𝑡′)𝑓(𝑡)𝑑𝑡
𝒯

. Specifically, 
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Σ(𝑡, 𝑡′) = 𝐶𝑜𝑣(𝑌(𝑡), 𝑌(𝑡′)) = ∑ 𝜆𝑘𝜙𝑘(𝑡)𝜙𝑘(𝑡
′), (𝑡, 𝑡′ ∈ 𝒯).

∞

𝑘=1

 (3.1) 

Note that the eigenvalues are in a decreasing order such that 𝜆1 ≥ 𝜆2 ≥ ⋯0 , and the 

eigenfunctions 𝜙𝑘(𝑡) serve as orthonormal basis functions in the 𝐿2(𝒯) Hilbert space. Based on 

equation (3.1), the Karhunen-Loève decomposition of the centered stochastic process 𝑌(𝑡) − 𝜇(𝑡) 

can be expressed as: 

𝑌(𝑡) − 𝜇(𝑡) = ∑ 𝜉𝑘𝜙𝑘(𝑡) + 𝜀(𝑡),

∞

𝑘=1

 (3.2) 

where 𝜉𝑘 = ∫ (𝑌(𝑡) − 𝜇(𝑡))𝜙𝑘(𝑡)𝑑𝑡
𝒯

 is the 𝑘th FPC score associated with the 𝑘th eigenvalue 𝜆𝑘 

and 𝜀(𝑡) is the additive Gaussian noise. The FPC scores are uncorrelated (i.e., 𝐶𝑜𝑣(𝜉𝑘, 𝜉𝑘′) =

0, 𝑘 ≠ 𝑘′) with expectation 𝔼[𝜉𝑘] = 0 and variance 𝑉𝑎𝑟[𝜉𝑘] = 𝜆𝑘. In practice, the top few FPC 

scores explain most of the variability in the observed curves, so one can use the approximate 

decomposition based on the first 𝑄 FPC scores: 

𝑌(𝑡) ≈ 𝜇(𝑡) + ∑ 𝜉𝑘𝜙𝑘(𝑡) + 𝜀(𝑡),

𝑄

𝑘=1

 (3.3) 

where 𝑄 is chosen based on a statistical criterion such as the modified Akaike criterion, Bayesian 

information criterion, or proportion of explained variance [55]. Next, we elaborate in detail on how 

to employ FPCA to model the degradation signals (i.e., longitudinal data) without making 

restrictive parametric assumptions on the degradation trend. 

Suppose that there are training data collected from 𝑁 units, with ℐ = {1,2, … ,𝑁} denoting the 

set of training units. Each unit 𝑖 ∈ ℐ has an associated dataset 𝑫𝑖 = [𝛿𝑖, 𝐾𝑖, 𝒀𝑖,:], in which 𝛿𝑖 =

𝐼(𝐹𝑖 ≤ 𝐶𝑖) , 𝐼(∙)  is an indicator function, and 𝐾𝑖 = min{𝐹𝑖 , 𝐶𝑖}  with its failure time 𝐹𝑖  and 

censoring time 𝐶𝑖. Here, an observation is censored if we do not observe the exact failure time and 
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we only have observations up to a specific time. Each unit collects degradation signals from 𝐽 

sensors simultaneously and its observed degradation signals are denoted by 𝒀𝑖,:: 

𝒀𝑖,: = (𝒀𝑖,1,⋯ , 𝒀𝑖,𝐽) = (

𝑌𝑖,1(𝑡𝑖,1) ⋯ 𝑌𝑖,𝐽(𝑡𝑖,1)

⋮ ⋱ ⋮
𝑌𝑖,1(𝑡𝑖,𝑛𝑖

) ⋯ 𝑌𝑖,𝐽(𝑡𝑖,𝑛𝑖
)
) ∈ ℝ𝑛𝑖×𝐽, (3.4) 

where 𝑌𝑖,𝑗(𝑡)  is the measurement of sensor 𝑗  in unit 𝑖  at time 𝑡  such that  𝒀𝑖,𝑗 =

[𝑌𝑖,𝑗(𝑡𝑖,1), … , 𝑌𝑖,𝑗(𝑡𝑖,𝑛𝑖
)]

𝑇
, 𝑛𝑖 represents the number of observations for unit 𝑖, and 𝑡𝑖,𝑛𝑖

 is the 𝑛𝑖th 

signal observation time of unit 𝑖. The degradation signals are also assumed to be observed within 

a compact time domain 𝒯 = [0, 𝑇𝑚𝑎𝑥], where 𝑇𝑚𝑎𝑥 can be learned based on domain knowledge or 

historical degradation signals. For each sensor 𝑗 ∈ {1,… , 𝐽}, we apply the FPCA decomposition as 

follows: 

𝑌𝑖,𝑗(𝑡) = 𝜇𝑗(𝑡) + 𝑋𝑖,𝑗(𝑡) + 𝜀𝑖,𝑗(𝑡) ≈ 𝜇𝑗(𝑡) + ∑ 𝜉𝑖,𝑗,𝑘

𝑄𝑗

𝑘=1

𝜙𝑗,𝑘(𝑡) + 𝜀𝑖,𝑗(𝑡). (3.5) 

Here, 𝜇𝑗(𝑡) is the mean function of sensor 𝑗 evaluated at time 𝑡, 𝑋𝑖,𝑗(𝑡) represents the stochastic 

random deviation from the underlying degradation trajectory,  𝜉𝑖,𝑗,𝑘 is the 𝑘th FPC score of sensor 

𝑗 of unit 𝑖, 𝜙𝑗,𝑘(𝑡) is the 𝑘th eigenfunction of sensor 𝑗 at time 𝑡, 𝜀𝑖,𝑗(𝑡)~𝑁(0, 𝜎𝑗
2) is the additive 

Gaussian noise for each sensor 𝑗, and 𝑄𝑗 is the number of top FPC scores used to estimate sensor 

𝑗’s signals. Under this FPCA decomposition, the degradation signal 𝑌𝑖,𝑗(𝑡) follows a stochastic 

process with mean function 𝜇𝑗(𝑡) and stochastic deviations 𝑋𝑖,𝑗(𝑡) with mean zero and covariance 

Σ(𝑡, 𝑡′).  
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3.2.2 Sub-model 2: Bayesian Neural Network-Cox (BNN-Cox) for 

Time-to-event Data 

In this subsection, we introduce the BNN-Cox sub-model for time-to-event data. As illustrated 

in Figure 3.1, the fitted degradation signals obtained from the FPCA sub-model will be 

incorporated into the Cox model as time-varying covariates. As a result, throughout this paper, we 

will use the terms “time-varying covariates” and “degradation signals” interchangeably.  

Let 𝒀̂𝑖,:(𝑡) = [𝑌̂𝑖,1(𝑡), … , 𝑌̂𝑖,𝐽(𝑡)]
𝑇

∈ ℝ𝐽×1 , where 𝑌̂𝑖,𝑗(𝑡) = 𝑋̂𝑖,𝑗(𝑡) + 𝜇̂𝑗(𝑡), denote the FPCA-

fitted multisensor degradation signals. In traditional joint models [56], the log hazard function is 

assumed to be a linear combination of the fitted signals (i.e., covariates 𝒀̂𝑖,:(𝑡)). In particular, 

𝒀̂𝑖,:(𝑡) are plugged into the linear Cox formula such that: 

ℎ𝑖 (𝑡|𝒀̂𝑖,:(𝑡)) = ℎ0(𝑡) exp[𝝎𝑇𝒀̂𝑖,:(𝑡)], (3.6) 

where 𝝎𝑇 = [𝜔1, … , 𝜔𝐽] ∈ ℝ1×𝐽 represents the Cox regression coefficients of 𝒀̂𝑖,:(𝑡), ℎ0(𝑡) is the 

baseline hazard function, and ℎ𝑖 (𝑡|𝒀̂𝑖,:(𝑡)) is the overall hazard function of unit 𝑖. Nevertheless, 

in practice, the log hazard function frequently has nonlinear relationships with the degradation 

signals (i.e., covariates). 

As reviewed in Section 3.1, several methods have been proposed to relax this linear-risk 

assumption by using 𝒀̂𝑖,:(𝑡) as inputs of a deterministic NN [48], [49], [53].  In particular, the NN 

output, denoted as 𝑔𝑖(𝑡), replaces the linear combination 𝝎𝑇𝒀̂𝑖,:(𝑡) in equation (3.6) (i.e., 𝑔𝑖(𝑡) =

𝑔 (𝒀̂𝑖,:(𝑡))), resulting in the following hazard ℎ𝑖(𝑡) and survival 𝑆𝑖(𝑡) functions: 

ℎ𝑖 (𝑡|𝒀̂𝑖,:(𝑡)) = ℎ0(𝑡) exp[𝑔𝑖(𝑡)], (3.7) 
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𝑆𝑖 (𝑡|𝒀̂𝑖,:(𝑡)) = exp(−∫ ℎ𝑖(𝑠)𝑑𝑠
𝑡

0

) = exp(−∫ ℎ0(𝑠) exp(𝑔𝑖(𝑠)) 𝑑𝑠
𝑡

0

). (3.8) 

However, a critical disadvantage of modeling the function 𝑔 using a deterministic NN is that its 

output 𝑔𝑖(𝑡) is a fixed-point estimate that does not consider the uncertainties in the NN parameters. 

To overcome this limitation, we propose to leverage a BNN that allows uncertainty 

quantification of the NN parameters and predictions. Compared to conventional deterministic NNs, 

a BNN provides prevention against overfitting, increased modeling flexibility, and better small 

sample properties [57]. Specifically, a BNN places a prior distribution over its weight parameters 

𝛀𝐵𝑁𝑁  and uses Bayes’ theorem to compute the posterior predictive distribution. While 

theoretically sound, the main challenge of using a BNN is that the posterior distribution of 𝛀𝐵𝑁𝑁 

is generally intractable. To tackle this issue, we perform variational inference by introducing a 

tractable approximate variational distribution 𝑞, and then minimizing the Kullback-Leibler (KL) 

divergence between 𝑞(𝛀𝐵𝑁𝑁)  and the posterior distribution of 𝛀𝐵𝑁𝑁 . In practice, variational 

inference in a BNN is done by using the popular Monte Carlo dropout (MC dropout) [58]. Dropout 

is a technique normally used to prevent overfitting in training NNs by randomly dropping nodes 

and their connections during training [59]. Unlike regular dropout where the “dropping” only 

happens during model training, MC dropout randomly drops nodes and their connections in both 

training and testing. In other words, based on the trained NN, we randomly drop some of its nodes 

and connections during testing as well and perform a (stochastic) forward pass. Studies [58], [60] 

have shown that conducting this forward pass with MC dropout is equivalent to performing 

variational inference in a BNN. 

To better understand how a BNN quantifies uncertainty via MC dropout, we defer the details 

of BNN training to Section 3.2.3, and suppose that we now have a trained BNN 𝑔 and a new test 
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unit 𝑟 with predicted degradation signals 𝒀̂𝑟,:(𝑡) = [𝑌̂𝑟,1(𝑡), … , 𝑌̂𝑟,𝐽(𝑡)]
𝑇

∈ ℝ𝐽×1  from the FPCA 

sub-model .   The approximate predictive distribution can then be calculated by  

𝑞 (𝑔𝑟(𝑡)|𝒀̂𝑟,:(𝑡)) = ∫ 𝑝(𝑔𝑟(𝑡)|𝒀̂𝑟,:(𝑡), 𝛀𝐵𝑁𝑁)𝑞(𝛀𝐵𝑁𝑁)𝑑𝛀𝐵𝑁𝑁 . In practice, we empirically 

estimate the mean and the variance by plugging in 𝒀̂𝑟,:(𝑡) as inputs to the trained BNN and 

repeating 𝑉  stochastic forward passes through the network to obtain 𝑉  Monte Carlo samples 

𝑔𝑟
(1)(𝑡), … , 𝑔𝑟

(𝑣)(𝑡), … , 𝑔𝑟
(𝑉)(𝑡) . Each 𝑔𝑟

(𝑣)(𝑡) ∈ ℝ, (𝑣 = 1,… , 𝑉)  comes from the distribution 

𝑝(𝑔𝑟(𝑡)|𝒀̂𝑟,:(𝑡), 𝛀̂𝐵𝑁𝑁
(𝑣)

) , where 𝛀̂𝐵𝑁𝑁
(𝑣)

 is drawn from the approximate variational distribution 

𝑞(𝛀𝐵𝑁𝑁).  Finally, we use moment-matching as shown in equation (3.9) and equation (3.10) to 

estimate the mean and variance of 𝑞 (𝑔𝑟(𝑡)|𝒀̂𝑟,:(𝑡))  [58]. In practice, we recommend setting the 

dropout rate as 0.1 or 0.2 based on the comments from the original authors. 

𝔼
𝑞(𝑔𝑟(𝑡)|𝒀̂𝑟,:(𝑡))

(𝑔𝑟(𝑡)) ≈
1

𝑉
∑ 𝑔𝑟

(𝑣)(𝑡)

𝑉

𝑣=1

, (3.9) 

𝑉𝑎𝑟
𝑞(𝑔𝑟(𝑡)|𝒀̂𝑟,:(𝑡))

(𝑔𝑟(𝑡)) ≈
1

𝑉
∑ (𝑔𝑟

(𝑣)(𝑡))
2

𝑉

𝑣=1

− (
1

𝑉
∑ 𝑔𝑟

(𝑣)(𝑡)

𝑉

𝑣=1

 )

2

. (3.10) 

3.2.3 Offline Parameter Estimation 

After defining the two sub-models, we discuss how to estimate the model parameters in an 

offline setting. Let 𝛀 = {𝝁(𝑡), 𝝈2, 𝝓(𝑡), 𝝀, 𝛀𝐵𝑁𝑁, ℎ0(𝑡)} denote the unknown parameters of the 

proposed IUQ model, in which 𝝁(𝑡) = [𝜇1(𝑡), … , 𝜇𝐽(𝑡)]
𝑇
 is the set of mean functions for each 

sensor, 𝝈2 = [𝜎1
2, … , 𝜎𝐽

2]
𝑇

∈ ℝ𝐽×1  are the additive Gaussian error terms for each sensor, 𝝀 =

[𝝀1; … ; 𝝀𝐽] ∈ ℝ(∑ 𝑄𝑗
𝐽
𝑗=1 )×1 is the set of eigenvalues such that 𝝀𝑗 = [𝜆𝑗,1, … , 𝜆𝑗,𝑄𝑗

]
𝑇

∈ ℝ𝑄𝑗×1, and 
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𝝓(𝑡) = [𝝓1(𝑡),… ,𝝓𝐽(𝑡)]
𝑇

 is the corresponding set of eigenfunctions such that 𝝓𝑗(𝑡) =

[𝝓𝑗,1(𝑡), … ,𝝓𝑗,𝑄𝑗
(𝑡)]. To estimate the model parameters 𝛀, a natural approach is to maximize the 

joint likelihood function. In particular, the joint likelihood function ℒ(𝑫;𝛀) can be written as 

follows: 

ℒ(𝑫;𝛀) = 𝑝(𝑲, 𝜹, 𝒀;𝛀) = ∫𝑝(𝑲, 𝜹, 𝒀|𝝃; 𝛀)𝑝(𝝃;𝛀)𝑑𝝃 

= ∫𝑝(𝑲, 𝜹|𝝃; 𝛀)𝑝(𝒀|𝝃; 𝛀)𝑝(𝝃;𝛀)𝑑𝝃  

= ∫∏𝑝(𝐾𝑖, 𝛿𝑖|𝝃𝑖; 𝛀)𝑝(𝒀𝑖,:|𝝃𝑖; 𝛀)𝑝(𝝃𝑖; 𝛀)𝑑𝝃𝑖,

𝑁

𝑖=1

 

(3.11) 

where 𝑲 = [𝐾1, … , 𝐾𝑁]𝑇 ∈ ℝ𝑁×1, 𝜹 = [𝛿1, … , 𝛿𝑁]𝑇 ∈ ℝ𝑁×1, and 𝝃𝑖 = [𝝃𝑖,1; … ; 𝝃𝑖,𝐽] ∈ ℝ𝐽𝑄×1.  

The joint likelihood function in equation (3.11) consists of three parts, where each component 

corresponds to the BNN-Cox sub-model (𝑝(𝐾𝑖, 𝛿𝑖|𝝃𝑖; 𝛀)), the FPCA sub-model (𝑝(𝒀𝑖,:|𝝃𝑖; 𝛀)), 

and the prior distribution of the FPC scores (𝑝(𝝃𝑖; 𝛀)). Specifically, the exact form of each 

component can be written as follows: 

𝑝(𝐾𝑖, 𝛿𝑖|𝝃𝑖; 𝛀) = ℎ𝑖(𝐾𝑖)
𝛿𝑖𝑆𝑖(𝐾𝑖) 

= {ℎ0(𝐾𝑖) exp[𝑔𝑖(𝐾𝑖)]}
𝛿𝑖 exp {−∫ ℎ0(𝑠) exp[𝑔𝑖(𝑠)] 𝑑𝑠

𝐾𝑖

0

} , 

(3.12) 

𝑝(𝒀𝑖,:|𝝃𝑖; 𝛀) = ∏𝑝(𝒀𝑖,𝑗|𝝃𝑖,𝑗; 𝛀)

𝐽

𝑗=1

= ∏(2𝜋𝜎𝑗
2)

−
𝑛𝑖
2 exp {−

‖𝑌𝑖,𝑗 − 𝑌̂𝑖,𝑗‖
2

2𝜎𝑗
2 }

𝐽

𝑗=1

, 
(3.13) 

𝑝(𝝃𝑖; 𝛀)~𝒟, 
(3.14) 

where 𝒟 represents a general distribution that is selected based on the modeling assumptions. 

Directly optimizing the joint likelihood in equation (3.11), e.g., via the Expectation-

Maximization algorithm with numerical integration [61] may lead to heavy computational loads 

and even numerical instability issues due to the high-dimensional integration. To alleviate this 
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issue, we adopt the “two-stage” approach to sequentially estimate the IUQ model’s parameters 

[62]. Here, we first optimize the FPCA parameters and then sequentially estimate the BNN-Cox 

parameters. Many existing studies have demonstrated that such a two-stage approach can yield 

competitive results with negligible bias as directly estimating the joint model [14], [23].  

For the FPCA sub-model, we follow the popular approach by [63] where the mean function 

𝜇̂(𝑡) and the covariance function Σ̂𝑗(𝑡, 𝑡
′) are estimated by smoothing methods like local linear 

smoothing or spline smoothing, and 𝜎𝑗
2  is estimated by smoothing 𝑌𝑖,𝑗(𝑡) − 𝜇̂𝑗(𝑡)

2 − Σ̂𝑗(𝑡, 𝑡) 

against 𝑡 using a local linear smoother. One point of caution is that local linear smoothers can 

introduce unwanted bias during the estimation of the mean and covariance functions, especially 

under signal truncation. In this situation, we can replace the local linear smoothers with penalized 

splines [64] to mitigate the estimation bias. Also, note that since we assume a random signal 

truncation scenario based on hard failures, the degree of bias is negligible compared to the soft 

failure assumption [40].   

Finally, the eigen-components are derived by solving the eigen-equations: 

∫ Σ̂𝑗(𝑡, 𝑡
′)

𝒯

𝜙̂𝑗,𝑘(𝑡)𝑑𝑡 = 𝜆̂𝑗,𝑘𝜙̂𝑗,𝑘(𝑡), (3.15) 

where the eigenfunctions are constrained to satisfy ∫ 𝜙̂𝑗,𝑘(𝑡)
2

𝒯
𝑑𝑡 = 1 and ∫ 𝜙̂𝑗,𝑘(𝑡) ⋅

𝒯

𝜙̂𝑗,𝑘′ (𝑡) = 0  for 𝑘 < 𝑘′ . In practice, deriving the FPC scores based on their definition 𝜉𝑘 =

∫ (𝑌(𝑡) − 𝜇(𝑡))𝜙𝑘𝑑𝑡
𝒯

 can be challenging when the observed longitudinal data is highly sparse. 

To overcome this challenge, a widely used approach [63] is to assume that 𝜉𝑖,𝑗,𝑘 follows a Gaussian 

distribution and then estimate the FPC scores for unit 𝑖 through the conditional expectation such 

that 𝜉𝑖,𝑗,𝑘 = 𝔼[𝜉𝑖,𝑗,𝑘|𝒀𝑖,𝑗] = 𝜆̂𝑗,𝑘 𝝓̂𝑗,𝑘
𝑇  𝚺̂𝒀𝑖,𝑗

−1 (𝒀𝑖,𝑗 − 𝝁̂𝑖,𝑗)  where 𝝓̂𝑗,𝑘 = [𝜙̂𝑗,𝑘(𝑡𝑖,1), … , 𝜙̂𝑗,𝑘(𝑡𝑖,𝑛𝑖
)]

𝑇
,
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𝝁̂𝑖,𝑗 = [𝜇̂𝑖,𝑗(𝑡𝑖,1),… , 𝜇̂𝑖,𝑗(𝑡𝑖,𝑛𝑖
)]

𝑇
, and  𝚺̂𝒀𝑖,𝑗

 is the matrix with (𝑎, 𝑏)th entry as  Σ̂𝑗(𝑡𝑖,𝑎, 𝑡𝑖,𝑏) for 

1 ≤ 𝑎, 𝑏, ≤ 𝑛𝑖. 

For the BNN sub-model, we use the following loss function to train the model: 

ℓ𝐵𝑁𝑁 = − ∑ { ∑ 𝑔𝑖′(𝜏𝑚; 𝛀𝐵𝑁𝑁)

𝑖′∈𝑯(𝜏𝑚)

𝑀

𝑚=1

− ∑( ∑ exp(𝑔𝑖(𝜏𝑚; 𝛀𝐵𝑁𝑁))

𝑖∈𝚯(𝜏𝑚)

 

𝑑𝑚

𝑙=1

−
𝑙 − 1

𝑑𝑚
∑ exp(𝑔𝑖′(𝜏𝑚; 𝛀𝐵𝑁𝑁))

𝑖′∈𝑯(𝜏𝑚)

) − χ ∑ |𝑔𝑖(𝜏𝑚; 𝛀𝐵𝑁𝑁)|

𝑖∈𝚯(𝜏𝑚)

} . 

(3.16) 

Here, the BNN-Cox loss ℓ𝐵𝑁𝑁 in equation (3.16) is based on Efron’s approximation [65] of the log 

Cox partial likelihood equation with modifications to support tied event times. In particular, let 

𝜏1, … , 𝜏𝑀 be the unique ordered 𝑀 failure times such that (𝜏1 < 𝜏2 < ⋯ < 𝜏𝑀), 𝚯(𝜏𝑖) = {𝑗|𝐾𝑗 ≥

𝜏𝑖} be the risk set (i.e., units subject to failure at failure time 𝜏𝑖), 𝑯(𝜏𝑚) be the set of units that 

failed at time 𝜏𝑚, and 𝑑𝑚 be the number of failures at time 𝜏𝑚. Specifically, the first and second 

terms in equation (3.16) each represent the log-transformed numerator and the denominator of 

Efron’s approximation, and the last term ∑ |𝑔𝑖(𝜏𝑚)|𝑖∈𝚯(𝜏𝑚)  acts as the regularization term to 

prevent the BNN-Cox from overfitting with χ as the tuning parameter.  

The BNN loss ℓ𝐵𝑁𝑁 can be optimized using gradient-based methods, and here we use the Adam 

optimizer with a fixed learning rate to optimize the loss function. Finally, the baseline hazard 

function ℎ0(𝑡) is estimated using Breslow’s approximation [66] shown below: 

ℎ̂0(𝜏𝑚) =
𝑑𝑚

∑ exp(𝑔𝑖(𝐾𝑖))𝑖∈𝚯(𝜏𝑚)

. (3.17) 

Since the baseline hazard estimates ℎ̂0(𝜏𝑚) are random due to the BNN-Cox term 𝑔𝑖(𝐾𝑖), we use 
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the mean value 𝔼[ℎ̂0(𝜏𝑚)] calculated by averaging MC samples from the BNN-Cox. The averaged 

baseline hazard function 𝔼[ℎ̂0(𝜏𝑚)] is then smoothed using a polynomial spline. Smoothing the 

baseline hazard function is a common practice in survival analysis to 1) improve prediction 

accuracy; 2) obtain a smooth, continuous estimate rather than some piecewise constant estimate of 

the baseline hazard; and 3) mitigate the effect of large measurement errors (i.e., “spikes”) in the 

baseline hazard [67]. 

3.2.4 Online Updating and Prediction with Uncertainty Quantification 

This subsection considers an online setting in which new degradation signals 𝒀𝑟,:(𝒕𝑟) =

[𝑌𝑟,1(𝒕𝑟),… , 𝑌𝑟,𝐽(𝒕𝑟)]
𝑇

∈ ℝ𝑛𝑟×𝐽 are observed in times 𝒕𝑟 = [𝑡𝑟,1, … , 𝑡𝑟,𝑛𝑟
]
𝑇
 from an in-service unit 

𝑟, and then we need to update and predict the RUL for this unit with uncertainty quantification. 

Recall that the in-service unit 𝑟 is a new unit that does not belong in the training set (i.e., 𝑟 ∉ ℐ). 

Based on the newly observed degradation signals, we first update the FPCA parameters 𝝃𝑟.  

Similar to [63], we utilize a Bayesian approach to calculate the posterior distribution of the in-

service unit’s FPC scores 𝝃𝑟,𝑗
∗ = [𝜉𝑟,𝑗,1, … , 𝜉𝑟,𝑗,𝑄𝑗

]
𝑇

 based on the newly observed signals 𝒀𝑟,:(𝒕𝑟) 

and the prior distribution of the FPC scores. Given the decomposition 𝑌𝑟,𝑗(𝑡) = 𝜇𝑗(𝑡) +

∑ 𝜉𝑟,𝑗,𝑘𝜙𝑗,𝑘(𝑡) + 𝜀𝑗(𝑡)
𝑄𝑗

𝑘=1  with prior distribution 𝜉𝑟,𝑗,𝑘~𝑁(0, 𝜆𝑗,𝑘), 𝑘 = 1,… , 𝑄𝑗  and 

𝜀𝑗(𝑡)~𝑁(0, 𝜎𝑗
2), the posterior distribution of the FPC scores 𝜉𝑟,𝑗,𝑘

∗ = 𝑃 (𝜉𝑟,𝑗,𝑘|𝒀𝑟,:(𝒕𝑟)) can be 

derived as: 

[𝜉𝑟,𝑗,1
∗ , … , 𝜉𝑟,𝑗,𝑄𝑗

∗ ]
𝑇

~𝑀𝑉𝑁(𝝃𝑟,𝑗
∗ , 𝚺𝑗

∗), 𝝃𝑟,𝑗
∗ = 𝚺𝑗

∗ (
1

𝜎𝑗
2 Φ𝑗(𝒕𝑟)

𝑇 (𝒀𝑟,:(𝒕𝑟) − 𝜇̂𝑗(𝒕𝑟))), (3.18) 
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𝚺𝑗
∗ = (

1

𝜎𝑗
2 Φ𝑗(𝒕𝑟)

𝑇Φ𝑗(𝒕𝑟) + 𝚲𝑗
−1)

−1

, Φ𝑗(𝒕𝑟) =  (

𝜙̂1,𝑗(𝑡𝑟,1) ⋯ 𝜙̂𝑄𝑗,𝑗
(𝑡𝑟,1)

⋮ ⋱ ⋮
𝜙̂1,𝑗(𝑡𝑟,𝑛𝑟

) ⋯ 𝜙̂𝑄𝑗,𝑗
(𝑡𝑟,𝑛𝑟

)

), 

𝚲𝑗 = 𝑑𝑖𝑎𝑔 (𝜆̂𝑗,1, … , 𝜆̂𝑗,𝑄𝑗
) , 𝜇̂𝑗(𝒕𝑟) = [𝜇̂𝑗(𝑡𝑟,1), … , 𝜇̂𝑗(𝑡𝑟,𝑛𝑟

)]
𝑇
 . 

Given the updated posterior FPC scores of the in-service unit 𝑟, the predicted signal at time 𝑡 ∈

(𝑡∗, 𝑇𝑚𝑎𝑥] can be expressed using the posterior mean as: 

𝑌̂𝑟,𝑗(𝑡) = 𝜇̂𝑗(𝑡) + ∑ 𝜉𝑟,𝑗,𝑘
∗ 𝜙̂𝑗,𝑘(𝑡),

𝑄𝑗

𝑘=1

 (3.19) 

where 𝑡∗ denotes the prediction time. Note that the mean function 𝜇̂𝑗(𝑡) and the eigenfunctions 

𝜙̂𝑗,𝑘(𝑡) are obtained from the training data. 

Next, we calculate the conditional survival function using the predicted signals. In particular, 

the conditional survival function is defined as the probability of survival conditional on the fact 

that the unit survives at least up to time 𝑡∗ ≤ 𝑡. In other words, the degradation trajectory of the 

signals from prediction time 𝑡∗ to the desired time 𝑡 is used as a predictor. 

𝑆(𝑡|𝑡∗, 𝝃𝑟
∗ ; 𝛀̂) =

𝑆(𝑡|𝝃𝑟
∗ ; 𝛀̂)

𝑆(𝑡∗|𝝃𝑟
∗ ; 𝛀̂)

= exp {−∫ ℎ̂0(𝑠) exp [𝑔 (𝒀𝑟,:(𝑠))]
𝑡

𝑡∗

𝑑𝑠}. (3.20) 

The conditional survival function in equation (3.20) can be marginalized by integrating the 

estimated FPC scores 𝝃𝑟
∗  out: 

𝑆(𝑡|𝑡∗; 𝛀̂) = ∫𝑆(𝑡|𝑡∗, 𝝃𝑟
∗ ; 𝛀̂)𝑝(𝝃𝑟

∗ ; 𝛀̂)𝑑𝝃𝑟
∗ . (3.21) 

Equation (3.21) is then approximated through a Monte Carlo integration approach: 

𝑆̂(𝑡|𝑡∗; 𝛀̂) =
1

𝑀
∑ 𝑆 (𝑡|𝑡∗, 𝝃̂𝑟

∗(𝑚)
; 𝛀̂) ,

𝑀

𝑚=1

 𝝃̂𝑟
∗(𝑚)

~𝑀𝑉𝑁(𝝃𝑟,𝑗
∗ , 𝚺𝑗

∗). 
(3.22) 

A key challenge in the marginalization procedure in equation (3.21) is that in addition to the 

uncertainties in the FPC scores 𝝃𝑟
∗ , there are uncertainties in the NN parameters which are reflected 



57 

by the randomness in the BNN-Cox outputs 𝑔 (𝒀𝑟,:(𝑠)). To overcome this challenge, we first 

generate 𝑚 = 1,… ,𝑀  posterior samples of the FPC scores 𝝃̂𝑟
∗(𝑚)

. Then, we reorganize the 

𝑆 (𝑡|𝑡∗, 𝝃̂𝑟
∗(𝑚)

 ; 𝛀̂) term in equation (3.22) by leveraging the BNN formulation via MC dropout in 

equation (3.9). 

𝑆̂(𝑡|𝑡∗; 𝛀̂) =
1

𝑀
∑ 𝑆 (𝑡|𝑡∗, 𝝃̂𝑟

∗(𝑚)
 ; 𝛀̂)

𝑀

𝑚=1

=
1

𝑀
∑ exp{−∫ ℎ̂0(𝑠) exp [𝔼

𝑞(𝑔𝑟(𝑠)|𝒀𝑟,:(𝑠))
(𝑔𝑟(𝑠))]

𝑡

𝑡∗

𝑑𝑠} ,

𝑀

𝑚=1

 

𝔼
𝑞(𝑔𝑟(𝑠)|𝒀𝑟,:(𝑠))

(𝑔𝑟(𝑠)) =
1

𝑉
∑ 𝑔(

𝑉

𝑣=1

𝒀̂𝑟,:
∗ (𝑚)

(𝑠);𝛀𝐵𝑁𝑁,1
(𝑣)

, … , 𝛀𝐵𝑁𝑁,𝐿
(𝑣)

), 

(3.23) 

in which 𝐿 represents the number of layers in the BNN. In equation (3.23), the marginal survival 

function 𝑆̂(𝑡|𝑡∗; 𝛀̂) from the proposed IUQ model provides a more comprehensive quantification 

of the uncertainties from both sub-models in an integrative fashion. In particular, the uncertainties 

in the longitudinal sub-model are accommodated by integrating over 𝝃𝑟
∗ , while the uncertainties in 

the BNN are accounted for by summing over the BNN weight parameters in each layer 

𝛀𝐵𝑁𝑁,1
(𝑣)

, … , 𝛀𝐵𝑁𝑁,𝐿
(𝑣)

.  As a result, the IUQ model provides more reliable predictions with complete 

characterizations of the involved modeling uncertainty. 

Finally, the expected RUL can be calculated using the estimated marginal survival function 

𝑆̂(𝑡|𝑡∗; 𝛀̂): 

𝑅𝑈𝐿̂(𝑡∗) = ∫ 𝑆̂(𝑡|𝑡∗; 𝛀̂)𝑑𝑡.
∞

𝑡∗

 
(3.24) 

The integration in equation (3.24) is numerically evaluated using the Gauss-Legendre quadrature 

method [40]. 
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3.3 Evaluation 

The proposed IUQ model is evaluated using both simulated and real-life data. Details of the 

evaluation procedures and benchmark methods are provided below. 

3.3.1 Benchmark Methods 

The IUQ model is evaluated against the state-of-the-art survival models. Table 3.1 summarizes 

the benchmark methods based on their ability to incorporate time-varying covariates, to 

nonparametrically capture complex longitudinal trends, to capture nonlinear relationships between 

the log hazard and the covariates, and to provide uncertainty quantification of the longitudinal and 

time-to-event sub-models. First, the simplest linear Cox model [68] is added as a baseline. The 

next benchmark is the DeepSurv [48] model, which is arguably the most popular NN extension of 

the Cox model. DeepSurv relaxes the linear-risk assumption between the log hazard function and 

the covariates by using a feedforward NN. Another benchmark is the PyCox model [49] where the 

authors improve the computational efficiency of the DeepSurv model by utilizing case-control 

sampling. Although both DeepSurv and PyCox are more flexible, they do not accommodate time-

varying covariates in the modeling and only rely on the latest observation to make RUL predictions. 

Furthermore, they are incapable of providing modeling uncertainties. Finally, the last benchmark 

is the recent NN-Joint model [53]. This is the first joint modeling approach that uses an NN-

extended Cox model and a mixed-effects model. Unlike DeepSurv and PyCox, the NN-Joint model 

does include time-varying covariates in the modeling procedure and uncertainty quantification for 

modeling longitudinal data. However, it suffers from 1) limited modeling flexibility due to the 

parametric mixed-effects model; and 2) imperfect uncertainty estimates by ignoring the 

uncertainties from modeling time-to-event data. 
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3.3.2 Simulation Study 

The performance of the IUQ model is evaluated under comprehensive simulation studies. We 

generate synthetic degradation signals for two sensors (𝐽 = 2) with the following form: 

𝑌𝑖,𝑗(𝑡) = 𝒁𝑗
𝑇(𝑡)𝑩𝑖,𝑗 + 𝜖𝑗(𝑡), 

(3.25) 

where 𝒁𝑗
𝑇 are the basis functions for sensor 𝑗, 𝑩𝑖,𝑗 are the corresponding coefficients for unit 𝑖, and 

𝜖𝑗(𝑡)~𝑁(0, 𝜎𝑗
2) is an additive Gaussian error term. 

The detailed simulation procedure is organized into the following steps:  

Step 1: Generate 𝑁 = 350  samples of 𝑩𝑖,1~𝑀𝑉𝑁(𝝁1, 𝚺1)  and 𝑩𝑖,2~𝑀𝑉𝑁(𝝁2, 𝚺2)  using the 

parameters from Table 3.2.  

Step 2: Define the true hazard function according to equation (3.27) alongside the baseline hazard 

function in equation (3.26). 

Step 3: Generate failure times 𝐹𝑖 for each unit by sampling from its distribution 𝑓𝑖(𝑡) = ℎ𝑖(𝑡)𝑆𝑖(𝑡) 

via rejection sampling.  

Step 4: Randomly choose 5% of the 𝑁 units to be censored, in which the censoring time 𝐶𝑖 is 

sampled from a 𝑈𝑛𝑖𝑓(1, 𝐹𝑖) distribution.  

Table 3.1 Summary of Benchmark Methods and Their Properties 

Model 
Time-varying 

Covariates 

Nonparametric 

(Longitudinal) 
Nonlinear Risk 

Uncertainty 

Quantification 

(Longitudinal) 

Uncertainty 

Quantification 

(Time-to-event) 

Linear Cox O X X O X 

DeepSurv X X O X X 

PyCox X X O X X 

NN-Joint O X O O X 

IUQ 

(Proposed) 
O O O O O 

 



60 

 

Step 5: Generate noisy degradation signals by equation (3.25) using 𝑩𝑖,1 and 𝑩𝑖,2 from step 1, with 

an additional Gaussian noise term 𝜖𝑗(𝑡) for 𝑗 = 1,2. 

Step 6: Split simulated units into 300 training units and 50 test units. Observations from the test 

units are truncated up to a pre-specified prediction time 𝑡∗. 

Here, we impose different basis functions for sensor 1 and sensor 2 since degradation signals 

can have varying trends ranging from cubic, cyclical, piecewise, etc. In particular, we let 𝒁1
𝑇(𝑡) =

[1, 𝑡, 𝑡2] be the polynomial basis function for sensor 1 and let 𝒁2
𝑇(𝑡) = [1, 𝑡0.7 sin 𝑡 , 𝑡2] be the 

custom basis function for sensor 2. 𝑩𝑖,𝑗 are the random effect coefficients assumed to follow a 

multivariate normal distribution, i.e., 𝑩𝑖,𝑗~𝑀𝑉𝑁(𝝁𝑗, 𝚺𝑗) The mean of the random effect 

coefficients is chosen as 𝝁1 = [2.4, 0.1, 0.001] and 𝝁2 = [1.7, 0.1, 0.001]  to impose 

monotonically increasing degradation trends. Since 𝑩𝑖,𝑗  follows a Gaussian distribution, it is 

possible to generate a sample that violates the monotonicity with a very marginal probability. In 

such cases, we discard the sample and generate a new one to ensure that the underlying degradation 

process is monotonic. Next, the baseline hazard function is specified according to the Weibull 

distribution: 

ℎ0(𝑡) = 𝜆𝛼𝑡𝛼−1, 
(3.26) 

where 𝛼 = 1.05 is the shape parameter and 𝜆 = 0.0001 is the scale parameter. The true hazard 

function of unit 𝑖 is then defined as: 

Table 3.2 Simulation Study Parameter Settings 

Parameters Sensor 1 Sensor 2 

𝜎𝑗 0.3 0.3 

𝝁𝑗 [2.4, 0.1, 0.001] [1.7, 0.1, 0.001] 

𝚺𝑗 (
0.2 −4𝑒 − 4 6𝑒 − 5

−4𝑒 − 4 2𝑒 − 7 3𝑒 − 7
6𝑒 − 5 3𝑒 − 7 3𝑒 − 6

) (
0.1 3𝑒 − 5 4𝑒 − 5

3𝑒 − 5 2𝑒 − 5 1𝑒 − 7
4𝑒 − 5 1𝑒 − 7 3𝑒 − 6

) 

𝐙𝑗
𝑇(𝑡) [1, 𝑡, 𝑡2] [1, 𝑡0.7 sin 𝑡 , 𝑡2] 
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ℎ𝑖(𝑡) = 10−4 × 1.05 × 𝑡1.05−1 × 

exp [(0.06(𝒁1
𝑇(𝑡)𝑩𝑖,1)

2
+ 0.05(𝒁2

𝑇(𝑡)𝑩𝑖,2)
2
)
0.5

] 
(3.27) 

Notice that the true hazard function in equation (3.27) has nonlinear dependencies with the 

covariates 𝒁1
𝑇(𝑡)𝑩𝑖,1  and 𝒁2

𝑇(𝑡)𝑩𝑖,2 . The training units have access to all measurements until 

failure or censoring. For the test units, we assume that the measurements are available up to a 

prespecified prediction time 𝑡∗, which is smaller than the minimum failure time of the test units. 

The simulated degradation signals for each sensor are plotted in Figure 3.2. We set 𝑄𝑗 = 3 for 𝑗 =

1,2. 

To better understand the model behavior, we select a random test unit (id: 310) with 𝑩𝑖,1 =

[2.4436, 0.1030, 0.0131]  and 𝑩𝑖,2 = [1.6542,0.1013,0.0094]  and examine its conditional 

survival curve and RUL estimates at different prediction times 𝑡∗. For instance, 𝑡∗ = 5 implies 

that the test observations up to time 5 are assumed to be available for online updating, and the 

survival function is predicted for times greater than 𝑡∗ = 5. 

First, we examine the uncertainty quantifications from the proposed IUQ model and the NN-

Joint model. Note that the NN-Joint model is selected as the main benchmark as it is the most 

 

(a)                                                                        (b) 

 Figure 3.2 Example of simulated degradation trends of (a) Sensor 1 and (b) Sensor 2 of 

randomly generated 50 units 
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recent model that utilizes an NN-extended Cox model with the best state-of-the-art performance. 

To remove the effect of basis functions, we let NN-Joint (ideal) model know the ideal basis 

functions (i.e., [1, 𝑡, 𝑡2] for sensor 1 and [1, 𝑡0.7 sin 𝑡 , 𝑡2] for sensor 2. However, this comparison 

is a little unfair to our IUQ model as IUQ does not know this underlying basis function and it is 

challenging for the NN-Joint model to know the exact basic functions, or the degradation signals 

 

 
 

Figure 3.4 Predicted conditional survival curves for 𝑡∗ = [5,20] in a randomly selected test 

unit (Green solid: Ground Truth, Blue dashed: IUQ, Red long dashed: NN-Joint (ideal), Purple 

dotted: NN-Joint (misspec), Black solid vertical line: 𝑡∗) 

Figure 3.3 Predicted conditional survival curves for 𝑡∗ = [5,20] in a randomly selected test 

unit (Green solid: Ground Truth, Blue dashed: ±3 standard deviations from IUQ mean 

predictions, Red dash dotted: ±3 standard deviations from NN-Joint (ideal) mean predictions, 

Black solid vertical line: 𝑡∗) 
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may not even come from such a parametric form in equation (3.25). Figure 3.3 and Figure 3.4 

shows the predicted conditional survival curves and their prediction intervals (with ±3 standard 

deviations) from both IUQ model and the NN-Joint model. We observe from Figure 3.3 that the 

IUQ model’s prediction intervals cover the true survival curve, whereas the prediction intervals 

from the NN-Joint model are overconfident with very narrow intervals that do not cover the true 

survival curve. The overconfidence of the NN-Joint model is likely due to its failure to incorporate 

the uncertainties of the NN-extended Cox model. Hence, the IUQ model accurately quantifies all 

sources of modeling uncertainty, while the NN-Joint model fails to do so.  Furthermore, the NN-

Joint’s prediction intervals become more overconfident (i.e., more narrow intervals) at later 

prediction times (𝑡∗ = 20) than earlier prediction times (𝑡∗ = 5). This can be problematic in 

practice since it is desirable to have more accurate prediction intervals as the unit approaches 

failure. On the contrary, the IUQ model provides accurate prediction intervals that cover the true 

survival curve at both early and late prediction times. 

Second, we investigate the flexibility of the IUQ model. The functional form of the degradation 

signals is rarely known in practice, hence parametric models are susceptible to misspecification 

errors. The IUQ model overcomes this challenge by using a flexible, nonparametric FPCA-based 

model to infer the functional form of the degradation signals. To highlight the benefits of this 

added flexibility, we consider two scenarios. The first scenario is the misspecification scenario 

(NN-Joint (misspec)), where we assume that sensor 1 and sensor 2 both follow a quadratic trend 

(i.e., [1, 𝑡, 𝑡2] for sensors 1 and 2) based on visual inspection. The second scenario (NN-Joint 

(Ideal)) is the ideal scenario, which assumes that the true functional form of both degradation 

signals is known. Results from Figure 3.4 show that the NN-Joint model is very sensitive to the 

choice of basis functions, while the IUQ model is free from this phenomenon due to its 
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nonparametric approach. Throughout all prediction times, we observe that the misspecified 

survival curve in purple is drastically different from the true survival curve. On the contrary, the 

IUQ model’s predicted mean survival curves are nearly identical to that of the NN-Joint model 

with ideal basis functions, suggesting that the IUQ model can accurately capture complex 

degradation trajectories without relying on prior domain knowledge. Moreover, it is worth noting 

that despite the similarity in the mean survival predictions, the uncertainty estimates of the IUQ 

model are significantly more accurate than that of the NN-Joint model. This further underscores 

the significance of obtaining accurate predictions and uncertainty estimates simultaneously. 

Next, we thoroughly evaluate the model across multiple test units. The same evaluation 

procedure is conducted across 50 simulated test units. The metrics used for the evaluations are 

defined as: 

𝑅𝑀𝑆𝐸 = √
∑ (𝑅𝑈𝐿̂𝑖 − 𝑅𝑈𝐿𝑖)

2𝑁𝑡𝑒𝑠𝑡

𝑖=1

𝑁𝑡𝑒𝑠𝑡
, 𝑀𝐴𝐸 =

1

𝑁𝑡𝑒𝑠𝑡
∑ [𝑅𝑈𝐿̂𝑖 − 𝑅𝑈𝐿𝑖|

𝑁𝑡𝑒𝑠𝑡

𝑖=1

, 
(3.28) 

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝑎𝑡𝑖𝑜𝑖 = 𝐼{𝐿𝑜𝑤𝑒𝑟 ≤ 𝑆𝑖(𝑡
∗ + Δ𝑡|𝑡∗) ≤ 𝑈𝑝𝑝𝑒𝑟}, 

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝑎𝑡𝑖𝑜 =
1

𝑁𝑡𝑒𝑠𝑡
∑ 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝑎𝑡𝑖𝑜𝑖,

𝑁𝑡𝑒𝑠𝑡

𝑖=1

 

(3.29) 

where 𝑁𝑡𝑒𝑠𝑡 = 50  refers to the number of test units, and 𝑅𝑈𝐿̂𝑖  and 𝑅𝑈𝐿𝑖  each refers to the 

predicted and true RUL estimates of unit 𝑖 . The root mean squared error (RMSE) and mean 

absolute error (MAE) is computed at different prediction times 𝑡∗ = [5,10,15,20]. The coverage 

ratio defined in equation (3.29) is used to measure the quality of the prediction intervals. Here, 

𝐿𝑜𝑤𝑒𝑟  and 𝑈𝑝𝑝𝑒𝑟  each represent the lower and upper prediction intervals with  ±3 standard 

deviations, and Δ𝑡  denotes the number of time steps into the future that we wish to make 

predictions. For instance, if Δ𝑡 = 20 and 𝑡∗ = 5, we predict the conditional survival curve for the 

next 20 time steps into the future starting from prediction time 5. For the following evaluations, 

we set Δ𝑡 = 20,30 to evaluate the model’s performance at later stages in time close to failure. To 
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have an accurate comparison, the evaluations are repeated 50 times. 

Table 3.3 shows the RUL prediction results, while Figure 3.5 shows the boxplots of the absolute 

errors measured across repeated evaluations. The proposed model again maintains competitive 

Table 3.3 RUL Prediction Results for Simulation Study 

Metric 𝑡∗ PyCox DeepSurv 

Linear 

Cox 

(Misspec) 

Linear 

Cox 

(Ideal) 

NN-Joint 

(Misspec) 

NN-Joint 

(Ideal) 

IUQ 

(Proposed) 

MAE 

5 11.718 7.533 6.581 4.446 5.450 1.709 1.749 

10 11.492 7.529 5.392 4.240 4.742 1.696 1.683 

15 10.704 7.340 4.812 3.689 4.097 1.636 1.635 

20 9.284 6.825 4.281 3.610 2.797 1.591 1.587 

RMSE 

5 11.899 7.817 6.899 4.906 5.832 2.213 2.206 

10 11.676 7.818 5.769 4.691 5.166 2.163 2.178 

15 10.899 7.627 5.220 4.195 4.557 2.114 2.128 

20 9.514 7.140 4.750 4.105 3.335 2.083 2.127 
 

 

Figure 3.5 RUL prediction accuracy at different prediction times (“NN-Joint-I” refers to 

the NN-Joint model under ideal basis functions, while “NN-Joint-M” refers to the NN-Joint 

model under misspecified basis functions. Similarly, “LinearCox-I” means the linear Cox 

model under ideal basis functions and “LinearCox-M” means the linear Cox model under 

misspecified basis functions.) 
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prediction results compared to the state-of-the-art NN-Joint model with ideal basis functions. 

Similar to the previous analysis, the proposed model makes accurate predictions even in earlier 

prediction times (i.e., 𝑡∗ = 5 in Table 3.3) and that its predictions are more reliable (i.e., narrower 

boxplots) compared to other benchmarks. Both DeepSurv and PyCox models perform the worst 

across all scenarios. This is expected since these approaches do not consider time-varying 

covariates, so they can only rely on the latest observation to make RUL predictions. Furthermore, 

these methods do not allow real-time updating, so the prediction accuracy does not necessarily 

improve with more observations. The linear Cox model performs next to the NN-Joint model 

across all categories, with the main limitation being its inability to capture nonlinear relationships 

present in equation (3.27). As shown in the linear Cox and NN-Joint model errors in Table 3.3, 

misspecified basis functions can incur significant prediction errors.  

The coverage ratios of the proposed IUQ model are then compared to that of the NN-Joint 

model and linear Cox model with ideal basis functions. Note that results for the DeepSurv and 

PyCox models are not available as both models do not consider uncertainty quantification. The 

results in Table 3.4 and Table 3.5 show that the proposed IUQ model drastically outperforms all 

other benchmarks in terms of coverage ratio. Note that the boldfaced entries represent the best 

Table 3.4 Coverage Ratios for Simulation Study (Δ𝑡 = 20) 

𝑡∗ 
IUQ  

(Proposed) 

NN-Joint 

(Ideal) 

Linear Cox  

(Ideal) 

5 0.8560 0.3587 0.0024 

10 0.9467 0.4160 0.0027 

15 0.9200 0.3747 0.0212 

20 0.9347 0.4387 0.0600 
 

Table 3.5 Coverage Ratios for Simulation Study (Δ𝑡 = 30) 

𝑡∗ 
IUQ  

(Proposed) 

NN-Joint 

(Ideal) 

Linear Cox  

(Ideal) 

5 0.9267 0.3933 0.1453 

10 0.9773 0.5160 0.1173 

15 0.9573 0.4830 0.1253 

20 0.9627 0.5547 0.1773 
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coverage ratios across different prediction times. 

Again, the IUQ model achieves drastically higher coverage ratios than other benchmark 

methods. In other words, the IUQ model leads to much more informative and accurate uncertainty 

quantifications. On the contrary, both NN-Joint and linear Cox models only consider uncertainties 

in the longitudinal sub-model, resulting in overconfident prediction intervals that fail to cover the 

true survival curve. 

Finally, we discuss hyperparameter optimization and computation time for the simulation study. 

All the computations are conducted with a 2.50GHz Quad-Core Intel®  i5-10300H CPU with 16GB 

of RAM. For the hyperparameters, the FPCA sub-model does not require much hyperparameter 

optimization due to its nonparametric nature. For the BNN sub-model, we use cross-validation to 

determine the optimal structure. Here, “optimal” is defined as the model structure that results in 

the highest predictive accuracy in terms of mean RUL based on cross-valuation results. The 

obtained optimal hyperparameter settings are listed in Table 3.10 in Section 3.5. 

The computation time for model training and real-time prediction is listed in Table 3.6. The 

prediction time is the time needed to obtain the RUL estimate for 1 unit. It is worth noting that 

training times for both NN-Joint and IUQ are almost identical. During the prediction stage, we 

found that naïve implementation of the IUQ model will lead to longer computational times (3.1923 

seconds) as one needs to perform numerical integration 𝑀𝑉 times. In circumstances where fast 

online prediction is critical, computational time can be reduced by limiting the times we perform 

numerical integration. It should be noted that obtaining samples from the posterior FPCA 

Table 3.6 Average Computational Time for All Methods (In Seconds) 

Model Linear Cox DeepSurv PyCox NN-Joint 
IUQ 

(Proposed) 

Training 0.0740 3.3749 3.2712 10.322 10.607 

Prediction 

(1 unit) 
0.2567 0.0893 0.0708 0.4025 0.8474 
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distribution in equation (3.22) is relatively straightforward due to the closed-form expression. 

Similarly, the sampling process using MC dropout is also computationally efficient as it is easily 

parallelizable across multiple processors. In particular, we initially follow the same process 

described in Section 3.2.4 and retrieve 𝑀𝑉 MC dropout samples of the log-hazard function (i.e., 

𝑔(𝒀̂𝑟,:
∗ (𝑚)

(𝑠);𝛀𝐵𝑁𝑁,1
(𝑣)

, … , 𝛀𝐵𝑁𝑁,𝐿
(𝑣)

) in equation (3.23)). Then, instead of performing integration on 

all 𝑀𝑉 samples, we first calculate the mean and 3 standard deviation limits of the log-hazard 

samples and then integrate them. This approach is viable since the variations in the MC dropout 

samples fully characterize the variations in the survival estimates (i.e., ℎ̂0(𝑠)  is fixed). This 

approach significantly reduces the computational time during online prediction (0.8474 seconds) 

by minimizing the number of numerical integration steps. 

Another important hyperparameter that greatly affects the computation time and accuracy of 

the IUQ model is the number of MC dropout samples 𝑉 and the number of posterior samples from 

the FPCA sub-model denoted by 𝑀. Both hyperparameters control the uncertainty integration 

approach in equation (3.23), which is a critical component of the IUQ model. Since increasing the 

number of samples lead to longer computation times, we perform additional studies to determine 

values for 𝑉 and 𝑀 that will lead to accurate predictions with reasonably fast computation time. 

For the number of MC dropout samples 𝑉, relevant literature recommends between 𝑉 = 10 to 𝑉 =

100 to estimate the uncertainty [58]. Here, we choose 𝑉 = 30 after preliminary inspection. For 

the number of posterior FPCA samples 𝑀, we measure the predictive performance on the same 50 

test units with varying 𝑀 = 20,50,100. The results in Table 3.7 and Table 3.8 show that increasing 

𝑀 does lead to better predictive performance. However, the performance gain from higher 𝑀 is 

Table 3.7 Average Computational Time with Varying 𝑀 (In Seconds) 

 𝑀 = 20 𝑀 = 50 𝑀 = 100 

Prediction 

(1 unit) 
0.8474 2.7869 5.0401 
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marginal despite the substantially longer computation time. Hence, we used 𝑀 = 20  for all 

evaluations in the simulation study. 

3.3.3 Case Study 

In this section, we use a real dataset from a study on automotive lead acid battery aging test 

[69]. The dataset is collected from an accelerated aging test according to the aging cycles defined 

by the standards in SAE J2801 [70]. The resistance of the batteries (in milliohms) is tracked until 

the failure event, which is defined as when the battery fails to start the engine of the automobile. 

The resistance information of each battery is recorded in weekly intervals. A plot of the resistance 

trajectories of 14 units is shown in Figure 3.6. 

There is no known physical relationship between the resistance path of a lead acid battery with 

respect to time. Following the previous literature [40], both the benchmark methods, the linear 

Cox model and the Joint-NN model that require predefined basis functions assume that the 

resistance follows a quadratic degradation trend. 

Since the true conditional survival probabilities are unknown, we only evaluate the mean 

residual life (MRL) based on equation (3.24) and compare it with the true time-to-failure. Similar 

to the synthetic data, we impose different prediction times with 𝑡∗ = [6,9]. Note that week 6 and 

week 9 each correspond to roughly 50% and 75% percentiles of the time horizon of this study. The 

number of MC dropout samples is 𝑉 = 30, and the number of posterior draws from the FPCA sub-

model is still set as 𝑀 = 20, and 𝑄 = 3.Unlike the simulation study, the coverage ratios cannot be 

Table 3.8 RUL Prediction Results with Varying 𝑀 

 MAE RMSE 

𝑡∗ 𝑀=20 𝑀=50 𝑀=100 𝑀=20 𝑀=50 𝑀=100 

5 1.749 1.748 1.748 2.206 2.205 2.204 

10 1.683 1.675 1.675 2.178 2.169 2.169 

15 1.635 1.636 1.634 2.128 2.130 2.128 

20 1.587 1.588 1.587 2.127 2.130 2.127 
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computed since the true survival function is unavailable. Instead, we track the RUL prediction 

errors of the IUQ model with three variants: 1) IUQ (both) which considers both types of 

uncertainties; 2) IUQ (longitudinal) which considers uncertainties in the longitudinal sub-model 

only; and 3) IUQ (time-to-event) which considers uncertainties in the time-to-event sub-model 

only. We select one battery at random as the test unit and the remaining 13 batteries are used as 

the training units. To accurately assess model performance, the evaluations are repeated 50 times. 

The results of the evaluations are summarized in Figure 3.7 and Table 3.9, with the box plot 

representing the average prediction errors for each unit across the 50 evaluations. 

From the case study, we can draw similar conclusions to those of the simulation study. First, 

the proposed model provides reliable results across varying prediction times. Results show that the 

proposed model consistently outperforms the existing benchmark methods. Second, the evaluation 

results from Table 3.9 illustrate the benefits of considering both types of uncertainties in the joint 

model. Here, the best-performing setup is boldfaced for visual clarity. We observe that 

incorporating both types of uncertainty results in the most accurate predictions. In addition, the 

 

Figure 3.6 Visualization of the Resistance Trajectories of 14 Automotive Lead Acid 

Batteries 
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standard deviation of the errors (shown in parenthesis) is smallest across all scenarios, suggesting 

that the IUQ model with both types of uncertainties provides the most reliable predictions. Third, 

the proposed model provides more accurate results as the unit approaches failure (i.e., 𝑡∗ increases 

or more data are collected from the testing unit). In particular, we observe that the prediction gap 

between the proposed IUQ model and the leading benchmark NN-Joint is more significant at 

higher prediction times (i.e., 𝑡∗ = 9). While the NN-Joint model barely improves with the newly 

available measurements, the IUQ’s estimates rapidly improve and uncertainty greatly reduces as 

more test measurements become available for updating. Fourth, our proposed model provides 

competitive results without any parametric assumptions. The nonparametric modeling approach 

of the IUQ model effectively captures the complex trends of the degradation signals. 

For the linear Cox model, the strong model assumptions (e.g., linear-risk assumption and 

 
(a)                                                            (b) 

Table 3.9 RUL Prediction Performance for Case Study (MAE) 

𝑡∗ 
IUQ 

(Both) 

IUQ 

(Longitudinal) 

IUQ 

(Time-to-event) 

6 
0.4242 

(0.2553) 

0.5013 

(0.3884) 

0.5762 

(0.3117) 

9 
0.0312 

(0.0245) 

0.0389 

(0.0366) 

0.0454 

(0.0294) 

 

Figure 3.7 Evaluation Results on Lead Acid Battery Data at (a) 𝑡∗ = 6 (b) 𝑡∗ = 9 
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misspecified basis functions) again limit the expressiveness of the model. PyCox and DeepSurv 

models again fall short compared to NN-Joint and the proposed model due to their inability to 

incorporate covariate history via time-varying covariates and quantify the uncertainties involved. 

3.4 Conclusion 

This study presented a flexible, accurate, and robust prognostic framework for the joint analysis 

of longitudinal data and time-to-event data. In particular, an FPCA-based sub-model is used for 

the longitudinal data, while the BNN-Cox sub-model is employed for the time-to-event data. This 

study proposes a two-stage inference method to ensure computational efficiency and a Bayesian 

updating approach to allow real-time RUL prediction of the in-service unit. A major obstacle of 

existing joint models is that they simply ignore the uncertainties from either sub-model or both 

entirely. As a result, existing approaches do not provide a comprehensive uncertainty 

quantification of the survival and RUL estimates. The proposed IUQ model overcomes this 

challenge by providing an integrated approach for uncertainty quantification. In particular, the IUQ 

model integrates uncertainties from the longitudinal sub-model (i.e., FPCA) to the time-to-event 

sub-model (i.e., BNN-Cox), resulting in a more comprehensive characterization of the modeling 

uncertainty. Second, the flexibility of FPCA and BNN-Cox allows the proposed model to capture 

complex degradation signal trajectories and covariate interactions. Finally, the proposed method 

performs well under limited data availability (i.e., censoring). This trait is very useful in practice 

considering that degradation signals are often truncated or censored due to long development 

times. Extensive evaluations on synthetic data and real-life battery data demonstrate that the 

proposed model achieves outstanding and reliable prediction results with accurate prediction 

intervals.  

There are some areas for possible future work. For example, the proposed method assumes that 
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the degradation signals are collected under a single operational condition and failure mode. In 

practice, an engineering system can operate across multiple operational conditions with several 

possible failure modes. To overcome this limitation, we can formulate a competing risks scenario 

with failure mode-specific hazard function and use operational condition parameters as covariates 

in the Cox model. Furthermore, the proposed model assumes that the degradation signals are 

stationary, but the model can be further extended to handle non-stationary signals that exhibit 

changing behavior over time. One possibility is to reflect the changes in the signals on the FPC 

scores by repeating the Bayesian updating procedure (introduced in Section 3.2.4) for the first sub-

model with FPCA. This updating procedure can be further optimized by incorporating online 

changepoint detection methods [71] to automatically detect any shifts in the degradation signals. 

Once a changepoint is detected, it could be used as an indicator to perform the aforementioned 

Bayesian updating procedure. 



74 

 

3.5 Appendix: Hyperparameter Settings 

 

 

 

  

Table 3.10 Hyperparameter Settings 

Model SIMULATION STUDY CASE STUDY 

Linear Cox None None 

DeepSurv 

& PyCox 

Hidden layers: 2 

Hidden nodes: [32,16] 

Learning rate: 0.0001 

Dropout probability: 0.1 

Activation: ReLU 

Epochs: 100 

Batch size: 32 

Hidden layers: 2 

Hidden nodes: [16,8] 

Learning rate: 0.0001 

Dropout probability: 0.1 

Activation: ReLU 

Epochs: 50 

Batch size: 32 

NN-Joint 

Hidden layers: 2 

Hidden nodes: [40,20] 

Learning rate: 0.0001 

Dropout probability: 0.1 

Activation: ReLU 

Epochs: 100 

Batch size: 16 

Regularization parameter 

χ: 0.01 

Hidden layers: 2 

Hidden nodes: [10,10] 

Learning rate: 0.0001 

Dropout probability: 0.1 

Activation: ReLU 

Epochs: 100 

Batch size: 8 

Regularization parameter 

χ: 0.01 

IUQ 

(Proposed) 

Hidden layers: 2 

Hidden nodes: [32,16] 

Learning rate: 0.0001 

Dropout probability: 0.1 

Activation: ReLU 

Epochs: 100 

Batch size: 16 

Regularization parameter 

χ: 0.01 

Hidden layers: 2 

Hidden nodes: [10,10] 

Learning rate: 0.0001 

Dropout probability: 0.1 

Activation: ReLU 

Epochs: 100 

Batch size: 8 

Regularization parameter 

χ: 0.01 
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Chapter 4 A Bayesian Spike-and-Slab Sensor Selection 

Approach for High-dimensional Prognostics 

4.1 Introduction 

Degradation modeling and prognostics have become increasingly important for improving the 

economic viability, reliability, and functionality of complex engineering systems. Initial work in 

this field focused on analyzing a single sensor signal [1] to assess system performance. The 

underlying assumption of these works is that a single sensor signal is sufficient for characterizing 

the overall degradation process. However, this assumption is hard to satisfy in modern systems, in 

which multiple sensors are used to simultaneously monitor various aspects of the system. 

Researchers have proposed several data-driven methods to extract prognostic insights from 

multisensor signals, recognizing that a single sensor is insufficient for fully characterizing the 

degradation process. These methods include traditional statistical approaches like state-space 

based models [72], [73], data fusion approaches including health index models [4], [74], [75], and 

machine learning and deep learning inspired models that leverage the predictive power of neural 

networks [10], [76], [77]. These methods generally take the multisensor signals as model inputs to 

predict the remaining useful life (RUL).  

One unique and longstanding challenge of analyzing multisensor systems is that each sensor 

may have varying degrees of relevance to the underlying degradation process [75]. In other words, 

it is possible that some sensors provide strong insights on the underlying degradation process (i.e., 

“informative” sensors), while some sensors do not provide insights and just act as noise (i.e., 

“uninformative” sensors). These uninformative sensors can significantly damage the system’s 
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overall reliability by compromising the accuracy of RUL predictions. For instance, sensors in 

wearable devices are commonly used to collect symptom measurements to assess and monitor 

patient health and progression. However, prior research has shown that the accuracy of monitoring 

methods is highly reliant on effectively separating the informative sensors from the pool of 

multisensor measurements [78]. Improper sensor selection may lead to misleading, biased, and 

non-reproducible results that can potentially harm patient health and prediction [79]. 

Indeed, the sensor selection challenge is complicated by the widespread use of multiple sensors 

in various engineering systems. Advances in modern sensor technology have made it practical to 

adopt numerous sensors to monitor various aspects of the system. For instance, a modern car has 

on average around 60 to 100 sensors that monitor engine performance, safety features, driver 

assistance, and other comfort features [80]. As a result, the sensor signals collected from these 

modern systems are often high-dimensional, meaning that the number of sensors being monitored 

is much larger than that of traditional systems. Since there are more sensors to select from, the 

sensor selection challenge becomes more difficult and computationally intensive [81]. 

Furthermore, in some cases, monitoring all signals is not always viable due to the limited 

bandwidth or processing capacity. Thus, it is essential to select and only monitor the informative 

sensors for further prognostic analysis. 

Existing methods that tackle the sensor selection challenge in the context of prognostics can be 

mainly classified into three categories. The first type of approach is heuristic methods, which rely 

on heuristic rules and visual inspection to identify informative sensors. For instance, Liu et al. [75] 

removed sensors without consistent monotonic (i.e., decreasing/increasing) trends. This approach 

is subjective in nature and can vary greatly from one user to another. In addition, this approach 

does not scale well with the number of sensors, especially in high-dimensional settings. 
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The second type of approaches is statistics-based approaches. These methods generally involve 

penalizing the likelihood function by a regularization term to induce sparse solutions. Some 

examples include the popular least absolute shrinkage and selection operator (LASSO) [82], 

adaptive LASSO [83], smoothly clipped absolute deviation (SCAD) [84], minmax concave penalty 

(MCP) [85], and variational inference methods. These methods have already seen success in a 

wide range of applications, including medical, finance, natural sciences, and healthcare 

applications. Indeed, researchers have also tried to replicate the success of such methods in 

prognostics by applying them to address the sensor selection challenge. For instance, Fang et al. 

[86] first extracted useful features using functional principal components analysis (FPCA) and 

then applied penalized regression to select informative sensors. Kim et al. [4] employed an 

adaptive LASSO algorithm with a scaled version of sensor fusion coefficients as the penalty 

weights. Although these methods are relatively easy to implement, they are known to suffer from 

estimation bias and provide poor selection results in high-dimensional settings [87].  

The last type are deep-learning approaches, which utilize the predictive power of neural 

networks to automatically identify informative sensors or useful features. For instance, Yu et al. 

[88] proposed using convolutional gated recurrent units to learn the features of the process data 

and then used an attention module to preserve the effective features. Another work by Kim et al. 

[89] proposed a Rectified Linear Unit [90] (ReLU)-based sensor selection network that can be 

used in conjunction with different neural network-based prognostic models. Although this method 

showed promising results, it overly limits the flexibility of the neural network in pursuit of 

interpretability. Furthermore, training this network is unreliable as it frequently falls into local 

extrema. In addition, none of the above approaches thoroughly investigate sensor selection 

performance in high-dimensional scenarios with potentially correlated sensors, indicating a 
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significant gap that requires further study.  

To fill the literature gap, this paper investigates the sensor selection challenge to enhance 

prognostics in high-dimensional settings on the basis of HI-based methods. The main idea of HI-

based methods is to construct a 1-D HI by directly combining multiple sensor signals. The 

constructed 1-D HI can then be used to better characterize the underlying degradation process. 

Compared to other prognostic methods, HI-based methods provide the following unique benefits. 

First, the constructed HI provides a real-time visualization and characterization of the underlying 

degradation evolution, which is much more interpretable than black-box models such as neural 

networks. This feature is highly sought after in practice by maintenance operators. Second, 

analyzing a HI has been shown to be more effective in RUL prediction than analyzing the 

progression of a single sensor [75]. Furthermore, the constructed HI can be regarded as an 

additional sensor signal that provides a better characterization about the degradation process. 

Finally, the HI lays a foundation for further prescriptive analysis, which help practitioners make 

well-informed maintenance decisions. Many works have proposed methods to construct 

informative HI [4], [75], [91], [92]; however, none of them have addressed the challenges of HI 

construction and sensor selection in high-dimensional scenarios, which are increasingly common 

in various industrial applications.  

This paper proposes a novel Bayesian spike-and-slab approach for sensor selection and data 

fusion in high-dimensional settings. In this context, the high-dimensional settings of interest can 

arise from two scenarios: 1) a low number of training units; and 2) a high number of sensors. In 

particular, the proposed method simultaneously selects informative sensors and fuses them into a 

1-D health index (HI) for further prognostic analysis and RUL prediction. The new contributions 

of this work are as follows. First, the proposed spike-and-slab sensor selection approach boasts 
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superior sensor selection performance in high-dimensional scenarios. Second, the proposed 

approach achieves consistent sensor selection results in the presence of sensor correlation. Third, 

the proposed approach has desirable theoretical properties such as weak and strong selection 

consistency. Finally, the proposed method leads to higher RUL prediction accuracy across a wide 

range of simulation and case studies.  

The rest of this paper is organized as follows. Section 4.2 describes how the proposed method 

selects informative sensors, fuses them into a 1-D HI, and uses the constructed HI to predict RUL. 

Theoretical properties of the proposed method are also investigated to ensure the sensor selection 

consistency. Section 4.3 shows the simulation study results to demonstrate the effectiveness of the 

proposed sensor selection method under varying levels of correlation. Section 4.4 further evaluates 

the proposed method in a data set of aircraft gas turbine engines and compares it with existing 

benchmark methods. Finally, Section 4.5 summarizes the key findings and discusses future 

potential research directions. 

4.2 Methodology 

In this section, we introduce the proposed Bayesian sensor selection and data fusion method in 

detail. In Section 4.2.1, we first describe the problem formulation. In Section 4.2.2, we delve into 

the details of the proposed spike-and-slab priors for sensor selection and elaborate on how to 

estimate the model parameters. Section 4.2.3 further investigates the theoretical properties of the 

proposed Bayesian sensor selection approach. Finally, Section 4.2.4 describes how the proposed 

method predicts the RUL using the constructed HI. 
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4.2.1 Problem Formulation 

Following the recent line of work on health index-based approaches [4], we first define the 

underlying degradation status and the failure mechanism. Let 𝜂𝑖(𝑡)  represent the underlying 

degradation status of unit 𝑖  at time 𝑡. Then, the failure time 𝑇𝑖  of unit 𝑖  is the time when the 

underlying degradation status 𝜂𝑖(𝑡) first reaches the failure threshold 𝑙: 

𝑇𝑖 = argmin
𝑡

𝜂𝑖(𝑡) ≥ 𝑙 . (4.1) 

Note that unlike previous approaches [4], [74], [75], here we consider a more general setting and 

do not define the specific form of 𝜂𝑖(𝑡) . Let 𝑳𝑖(𝑡) = [𝐿𝑖,1(𝑡),… , 𝐿𝑖,𝑠(𝑡)] ∈ ℝ1×𝑠  denote the 

measurements of 𝑠 sensors of unit 𝑖 at time 𝑡. Then, the corresponding HI of unit 𝑖 at time 𝑡, 

denoted by ℎ𝑖(𝑡), is defined as such: 

ℎ𝑖(𝑡) = 𝑧(𝑳𝑖(𝑡)) = 𝜂𝑖(𝑡) + 𝜀𝑖(𝑡), (4.2) 

in which 𝑧(⋅) is a data fusion function used to recover the underlying degradation status of a unit 

with the contamination of a Gaussian noise 𝜀𝑖(𝑡)~𝒩(0, 𝜎2). Without loss of generality, we set 

𝑧(⋅) to be a linear fusion function such that: 

𝑧(𝑳𝑖(𝑡)) = 𝑳𝑖(𝑡)𝒘, (4.3) 

where 𝒘 = [𝑤1, … , 𝑤𝑠]
𝑇 ∈ ℝ𝑠×1  is the weight vector (i.e., fusion coefficients) to fuse the 

multisensor signals 𝑳𝑖(𝑡). Note that if one wishes to use a nonlinear fusion function to characterize 

the degradation process, a linear approximation with 𝐾 basis functions can be employed such that 

𝑧(𝑳𝑖(𝑡)) ≈ ∑ 𝐵𝑘(𝑳𝑖(𝑡))𝑤𝑘
𝐾
𝑘=1 . Here, 𝐵𝑘  denotes the basis function for 𝑘 = 1, … , 𝐾 , and 

𝐵𝑘(𝑳𝑖(𝑡)) represents the transformed multisensor signals. 



81 

In summary, the relationship between the HI ℎ𝑖(𝑡) , the sensor signals 𝑳𝑖(𝑡) , the fusion 

coefficients 𝒘, and the underlying degradation status is 

ℎ𝑖(𝑡) = 𝑳𝑖(𝑡)𝒘 = 𝜂𝑖(𝑡) + 𝜀𝑖(𝑡).  (4.4) 

For each unit 𝑖 , the expression above can be rewritten into a matrix form such that 𝑳𝑖 =

[𝑳𝑖(𝑡𝑖,1), … , 𝑳𝑖(𝑡𝑖,𝑛𝑖
)]

𝑇
∈ ℝ𝑛𝑖×𝑠 , 𝜺𝑖 = [𝜀𝑖(𝑡𝑖,1), … , 𝜀𝑖(𝑡𝑖,𝑛𝑖

)]
𝑇

∈ ℝ𝑛𝑖×1 , 𝒉𝑖 =

[ℎ𝑖(𝑡𝑖,1),… , ℎ𝑖(𝑡𝑖,𝑛𝑖
)]

𝑇
∈ ℝ𝑛𝑖×1 is the HI vector for unit 𝑖, 𝜼𝑖 = [𝜂𝑖(𝑡𝑖,1), … , 𝜂𝑖(𝑡𝑖,𝑛𝑖

)]
𝑇

∈ ℝ𝑛𝑖×1 

is the vector of underlying degradation status for unit 𝑖 , and 𝑛𝑖  is the number of sensor 

measurements from unit 𝑖. Hence, we can rewrite equation (4.4) in the following matrix form: 

𝒉𝑖 = 𝑳𝑖𝒘 = 𝜼𝑖 + 𝜺𝑖.  (4.5) 

Our objective is to estimate the fusion coefficients 𝒘 from the multisensor data of 𝑁 historical 

units while only selecting the informative sensors. To distinguish between the informative and 

uninformative sensors, we first define a set of latent binary indicator variables 𝜸 = [𝛾1, … , 𝛾𝑠] ∈

ℝ1×𝑠 for the fusion coefficients 𝒘 such that 𝛾𝑗 = 1 if sensor 𝑗 is included in the HI construction, 

and 𝛾𝑗 = 0 if sensor 𝑗 is excluded from the HI construction. The binary indicators 𝜸 are additional 

parameters that need to be estimated alongside the fusion coefficients 𝒘 . In the following 

subsection, we will discuss how to estimate the parameters of the proposed HI approach. 

4.2.2 Bayesian Parameter Estimation 

The main parameters that need to be estimated are the fusion coefficients 𝒘, the latent binary 

indicators 𝜸, and the noise variance parameter 𝜎2. One possible approach is to use the maximum 

likelihood-based techniques, but these methods are known to suffer from high bias under high 

dimensions [87]. Instead, we adopt a Bayesian parameter estimation approach by first imposing 
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carefully designed prior distributions and then obtaining the posterior distribution of the 

parameters via Bayes’ rule. 

In particular, we impose the spike-and-slab Gaussian priors that are specifically designed for 

variable selection in high-dimensional scenarios. Based on equation (4.5), we concatenate the 

observations from 𝑁  historical units such that 𝒉 = [𝒉1; 𝒉2; … ; 𝒉𝑁] ∈ ℝ∑ 𝑛𝑖
𝑁
𝑖=1 ×1, 𝑳 =

[𝑳1; 𝑳2; … ; 𝑳𝑁] ∈ ℝ∑ 𝑛𝑖
𝑁
𝑖=1 ×𝑠, 𝜼 = [𝜼1; 𝜼2; … ; 𝜼𝑁] ∈ ℝ∑ 𝑛𝑖

𝑁
𝑖=1 ×1, 𝜺 = [𝜺1; 𝜺2; … ; 𝜺𝑁] ∈ ℝ∑ 𝑛𝑖

𝑁
𝑖=1 ×1 

and rewrite the sensor signals from all 𝑁 historical units as: 

𝒉 = 𝑳𝒘 = 𝜼 + 𝜺,  

In this context, we design the prior distributions as follows: 

𝜼|𝑳,𝒘, 𝜎2~𝑀𝑉𝑁(𝑳𝒘, 𝜎2𝑰), 

𝑤𝑗|𝜎
2, 𝛾𝑗 = 0~𝒩(0, 𝜎2𝜅0

2), 

𝑤𝑗|𝜎
2, 𝛾𝑗 = 1~𝒩(0, 𝜎2𝜅1

2), 

𝛾𝑗~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑞), 𝑃(𝛾𝑗 = 1) = 1 − 𝑃(𝛾𝑗 = 0) = 𝑞 

𝜎2~𝐼𝐺(𝛼1, 𝛼2) 

(4.6) 

 

Figure 4.1 Illustration of the Spike and Slab Prior Distribution (Red Dashed Line: Spike, 

Blue Dotted Line: Slab, Black Solid Line: Spike and Slab) 
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where 0 < 𝜅0
2 < 𝜅1

2 < ∞. Here, 𝑀𝑉𝑁  stands for the multivariate normal distribution, 𝑰 is the 

identity matrix, and  𝐼𝐺(𝛼1, 𝛼2) is the inverse gamma distribution with shape 𝛼1 and scale 𝛼2. The 

spike-and-slab prior on the fusion coefficients 𝒘 is a mixture of two distributions: named the 

“spike” and the “slab” distributions. An illustration of both distributions is shown in Figure 4.1, 

with the red dashed line representing the spike distribution and the blue dotted line representing 

the slab distribution. The 𝑥-axis represents the fusion coefficient values and the 𝑦-axis represents 

their probability density. The spike distribution follows a normal distribution that focuses most of 

its probability density around zero with very small variance 𝜅0
2, which encourages most of the 

fusion coefficients 𝑤𝑗 to be uninformative. The slab distribution on the other hand, is a diffuse 

prior with large variance 𝜅1
2 to encourage exploration of different values for 𝑤𝑗. Then, the spike 

and slab prior (shown in black solid) is a mixture of the two distributions, allowing the model to 

obtain sparse solutions while sufficiently exploring the parameter space. Here, the latent binary 

indicators are used to denote which distribution 𝑤𝑗 is sampled from. If 𝛾𝑗 = 1, then 𝑤𝑗 is sampled 

from the slab distribution, while 𝛾𝑗 = 0 means that 𝑤𝑗 is sampled from the spike distribution. For 

these latent binary indicators, we impose a Bernoulli prior on each 𝛾𝑗 such that 𝛾𝑗~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑞). 

Note that 𝑞 is a hyperparameter that is either pre-specified or sampled based on a hyperprior 

distribution. In particular, we follow existing recommendations [93] and set 𝑞  such that 

𝑃(∑ 𝕀(𝛾𝑗 = 1)𝑠
𝑗=1 > max(10,𝑁)) = 0.1with 𝕀 as the indicator function. In general, this condition 

encourages the model to return sparse solutions by controlling the probability of the number of 

informative sensors. One can relax or strengthen the sparsity of the solutions by 

increasing/decreasing 10 in the max(10,𝑁). Finally, for the variance noise 𝜎2 , we impose an 

inverse Gamma prior. The inverse Gamma prior not only allows computationally efficient 

sampling by being a conjugate prior to the normal distribution, but also allows the proposed model 
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to have nice theoretical properties which will be covered in detail in Section 4.2.3. For the 

simulation and case studies, we set (𝛼1, 𝛼2) = (1,1) to let the inverse Gamma distribution act like 

an uninformative prior distribution. Additional experiments found that the values (𝛼1, 𝛼2) have 

negligible effects on the parameter estimation. 

After defining the prior distributions for the parameters, the next step is to derive the joint 

posterior distribution. Bayes’ rule tells us that the joint posterior distribution is proportional to the 

prior distribution times the likelihood, i.e., 

𝑃(𝒘, 𝜎2, 𝜸|𝜼) ∝ 𝑃(𝜼|𝒘, 𝜎2, 𝜸)𝑃(𝒘, 𝜎2, 𝜸).  

Here, the exact expression of the prior distribution 𝑃(𝒘, 𝜎2, 𝜸) is: 

𝑃(𝒘, 𝜎2, 𝜸) ∝ 𝑃(𝜎2)𝑃(𝜸)𝑃(𝒘|𝜸, 𝜎2) 

= 𝑃(𝜎2) {∏[((1 − 𝑞)𝜙(𝑤𝑗 , 0, 𝜅0
2𝜎2))

1−𝛾𝑗

+ (𝑞𝜙(𝑤𝑗, 0,  𝜅1
2𝜎2))

𝛾𝑗

]

𝑠

𝑗=1

}. 
 

where 𝜙(𝑤𝑗, 0, 𝜅0
2𝜎2) is the probability density function of the normal distribution with mean 0 

and variance 𝜅0
2𝜎2 evaluated at 𝑤𝑗. Also, we follow existing works [94] and assume that the priors 

for 𝜸 and 𝜎2 are independent. 

The likelihood distribution 𝑃(𝜼|𝒘, 𝜎2, 𝜸) follows a multivariate normal distribution with mean 

𝑳𝒘 and variance 𝜎2𝑰. Thus, the posterior distribution 𝑃(𝒘, 𝜎2, 𝜸|𝜼) does not have a closed form 

expression, so we have to resort to numerical methods for sampling. In particular, we use Gibbs 

sampling since the conditional distribution for each parameter has a closed form expression. Gibbs 

sampling, also known as alternating conditional sampling, is a computationally efficient approach 

to drawing samples from the posterior distribution [95]. Generally, given a parameter vector 𝜽 =

(𝜃1, … , 𝜃𝑑) with 𝑑  dimensions, the Gibbs sampler cycles through the subvectors of 𝜽 at each 
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iteration 𝑡  and draws each subset conditional on the values of all the others (i.e., 

𝜃𝑗~𝑃(𝜃𝑗|𝜽−𝑗
𝑡−1,ℋ)) , where 𝜽−𝑗

𝑡−1 = (𝜃1
𝑡, … , 𝜃𝑗−1

𝑡 , 𝜃𝑗+1
𝑡−1, … , 𝜃𝑑

𝑡−1), 𝑗 ∈ {1,… , 𝑑}  and ℋ  represents 

some observed data. 

The conditional distributions of all the parameters have closed forms due to the careful choice 

of prior distributions. The analytical expressions for the conditional distributions are listed below: 

𝒘|𝜸, 𝜎2, 𝜼, 𝑳~𝑀𝑉𝑁(𝑽𝑳𝑇𝜼, 𝜎2𝑽), 

𝑽 = (𝑳𝑇𝑳 + 𝑫𝛾)
−1

, 𝑫𝛾 = Diag(𝜸𝜅1
−2 + (𝟏 − 𝜸)𝜅0

−2); 

𝑃(𝛾𝑗 = 1|𝒘, 𝜼, 𝜎2, 𝑳) =
𝑞𝜙(𝑤𝑗, 0, 𝜎2𝜅1

2)

𝑞𝜙(𝑤𝑗, 0, 𝜎2𝜅1
2) + (1 − 𝑞)𝜙(𝑤𝑗 , 0, 𝜎2𝜅0

2)
; 

𝑃(𝜎2|𝒘, 𝜼, 𝜸, 𝑳) ∝ 𝐼𝐺(𝛼1
′ , 𝛼2

′  ), 

𝛼1
′ = 𝛼1 +

∑ 𝑛𝑖
𝑁
𝑖=1

2
+

𝑠

2
, 

 𝛼2
′ = 𝛼2 +

𝒘𝑇𝑫𝛾𝒘

2
+

(𝜼 − 𝑳𝒘)𝑇(𝜼 − 𝑳𝒘)

2
. 

 

One challenge here is that the underlying degradation status 𝜼 is unobservable, hence we cannot 

directly sample from the distributions above. To overcome this challenge, we utilize the definition 

on equation (4.1) that the underlying degradation status at the failure time is equal to the failure 

threshold (i.e., 𝜂𝑖(𝑇𝑖) = 𝑙 ). Letting 𝜏𝑖  denote the observed failure time of unit 𝑖 , we can 

approximate the degradation status 𝜂𝑖(𝜏𝑖) = 𝑙  for all units 𝑖 . Specifically, we can rewrite the 

conditional distributions above by replacing 𝜼 with 𝜼(𝝉) = [𝜂1(𝜏1),… , 𝜂𝑁(𝜏𝑁)]𝑇 = 𝑙𝟏𝑁 ∈ ℝ𝑁×1 

and 𝑳 with 𝑳(𝝉) = [𝑳1(𝜏1),… , 𝑳𝑁(𝜏𝑁)]𝑇 ∈ ℝ𝑁×𝑠 . In other words, we replace the top equation 

𝜼|𝑳,𝒘, 𝜎2~𝑀𝑉𝑁(𝑳𝒘, 𝜎2𝑰) in equation (4.6) with 

𝑙𝟏𝑁 ≈ 𝜼(𝝉)|𝑳(𝝉),𝒘, 𝜎2~𝑀𝑉𝑁(𝑳(𝝉)𝒘, 𝜎2𝑰). (4.7) 
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Our studies show that the failure threshold 𝑙 acts as a scaling factor. Therefore, we can set 𝑙 to any 

arbitrary positive number and finally normalize 𝒘 if the value of 𝑙 is not known. This will not 

affect our sensor selection nor prognostic results. The final conditional distributions used in the 

Gibbs sampler are illustrated below: 

𝒘|𝜸, 𝜎2, 𝑳(𝝉)~𝑀𝑉𝑁(𝑽𝑳(𝝉)𝑇𝑙𝟏𝑁 , 𝜎2𝑽), 

𝑽 = (𝑳(𝝉)𝑇𝑳(𝝉) + 𝑫𝛾)
−1

, 𝑫𝛾 = Diag(𝜸𝜅1
−2 + (𝟏 − 𝜸)𝜅0

−2); 

𝑃 (𝛾𝑗 = 1|𝒘, 𝜼(𝝉), 𝜎2, 𝑳(𝝉)) =
𝑞𝜙(𝑤𝑗, 0, 𝜎2𝜅1

2)

𝑞𝜙(𝑤𝑗 , 0, 𝜎2𝜅1
2) + (1 − 𝑞)𝜙(𝑤𝑗, 0, 𝜎2𝜅0

2)
; 

𝑃(𝜎2|𝒘, 𝜼(𝝉), 𝜸, 𝑳(𝝉)) ∝ 𝐼𝐺(𝛼1
′ , 𝛼2

′ ), 

𝛼1
′ = 𝛼1 +

𝑁

2
+

𝑠

2
, 

 𝛼2
′ = 𝛼2 +

𝒘𝑇𝑫𝛾𝒘

2
+

(𝑙𝟏𝑁 − 𝑳(𝝉)𝒘)𝑇(𝑙𝟏𝑁 − 𝑳(𝝉)𝒘)

2
. 

 

The main computational bottleneck of this approach is sampling from the multivariate normal 

distribution in 𝒘|𝜸, 𝜎2, 𝑳(𝝉) . The computational complexity of the proposed method is 

𝒪(𝑠2 ∗ (𝑠 ∨ 𝑁)), which can be demanding when the number of sensors 𝑠 is extremely large. To 

mitigate this challenge, researchers have proposed workarounds such as using a block updating 

procedure [94] or a “skinny” Gibbs sampler [96], which reduces the complexity to 

𝒪(𝑁 ∗ (𝑠 ∨ |𝒜|2)) albeit at the cost of running more Gibbs sampling iterations. Note that |𝒜| 

represents the size of informative sensors. For our evaluations, we used the regular Gibbs sampling 

algorithm as it was sufficiently fast for offline training. Even in the most computationally 

demanding experimental setup with 1000 training units and 200 sensors, the Gibbs sampler on 

average took less than 5 minutes to run with 2000 warm-up iterations and 2000 sampling iterations. 
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Next, we discuss how to select the informative sensors based on the estimated joint posterior 

distribution. In particular, we determine that a sensor is informative when the marginal posterior 

probability 𝑃(𝛾𝑗 = 1|𝒘, 𝜎2) > 0.5 such that: 

𝛾𝑗 = {
1, 𝑖𝑓 𝑃 (𝛾𝑗 = 1|𝒘, 𝜼(𝝉), 𝜎2, 𝑳(𝝉)) ≥ 0.5

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
. (4.8) 

Barbieri et al. [97] showed that choosing 0.5 as the threshold value is predictively optimal (i.e., 

the model predictions achieve the minimum expected loss over the posterior distribution of the 

parameters). Hence, we also use the threshold of 0.5 in our context here. 

4.2.3 Theoretical Properties 

In this subsection, we investigate the important theoretical properties of the proposed Bayesian 

sensor selection approach. One important property during sensor selection is selection consistency, 

which investigates the conditions in which the selection algorithm can correctly select or fail to 

select the true informative sensors as the training sample size 𝑁 increases. Please note that our 

discussion of selection consistency is concentrated on linear regression models with general spike 

and slab priors, as we will subsequently establish that the proposed model belongs to this class of 

models. Consider a conventional linear regression model 𝒀 = 𝑿𝜷 + 𝒆 with general spike and slab 

priors as such: 

𝒀|𝑿, 𝜷, 𝜎2~𝑀𝑉𝑁(𝑿𝜷, 𝜎2𝑰), 

𝛽𝑗|𝜎
2, 𝛾𝑗 = 0~𝒟0 =

1

𝜅0
𝑓 (

𝑥

𝜅0
),  

𝛽𝑗|𝜎
2, 𝛾𝑗 = 1~𝒟1 =

1

𝜅1
𝑓 (

𝑥

𝜅1
), 

𝑃(𝛾𝑗 = 1) = 1 − 𝑃(𝛾𝑗 = 0) = 𝑞, 

𝜎2~𝐼𝐺(𝛼1, 𝛼2). 

(4.9) 

Here, 𝒀 ∈ ℝ𝑁×1 is the vector of response variables, 𝑿 ∈ ℝ𝑁×𝑠 is the design matrix, 𝜷 ∈ ℝ𝑠×1 
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are the regression coefficients, and 𝒆 = [𝑒1, … , 𝑒𝑁] ∈ ℝ𝑁×1 is the vector of independent Gaussian 

error terms such that 𝑒𝑖~𝒩(0, 𝜎2) for 𝑖 ∈ {1,… ,𝑁}. 𝒟0 and 𝒟1 denote the general spike and slab 

prior distributions for a base density 𝑓(𝑥), which is assumed to be unimodal, symmetric, and 

continuous. We observe that the proposed model is a special case of this general formulation by 

replacing 𝒀  with 𝑙𝟏𝑁 ,  𝜷  with the fusion coefficients 𝒘 , 𝑿  with 𝑳(𝝉) , 𝒆  with 𝜺(𝝉) =

[𝜀1(𝜏1), … , 𝜀𝑁(𝜏𝑁)]𝑇  and 𝑓(𝑥) with 
1

√2𝜋
exp(−

𝑥2

2
) in equation (4.6) and equation (4.7).  

Under this general formulation, there are two versions of selection consistency: weak selection 

consistency (WSC) and strong selection consistency (SSC). WSC requires the posterior 

probabilities of the binary indicators 𝛾𝑗 to uniformly converge to the true values: 

min
𝑗=1,…,𝑠

𝑃(𝛾𝑗 = 𝓉𝑗|𝑳)
p
→1. (4.10) 

Each 𝓉𝑗  represents the true value of each sensor (i.e., whether the sensor is informative 𝓉𝑗 = 1 or 

uninformative 𝓉𝑗 = 0 ), and 
p
→  denotes convergence in probability. On the other hand, SSC 

requires the posterior probabilities on the true model to converge to 1, such that: 

𝑃(𝜸 = 𝓽|𝑳)
p
→1, (4.11) 

where 𝓽 = [𝓉1, … , 𝓉𝑠] indicates the set of ground truth values. The difference between the two 

types of selection consistency is that WSC focuses on the convergence of the individual 𝛾𝑗 to the 

true values 𝓉𝑗 , but does not guarantee that the overall identified model is equal to the true model. 

Since SSC is a statement on the joint convergence of all 𝜸 to the true model 𝓽, it is a more stringent 

condition than WSC.  

Next, we discuss the conditions needed to achieve either WSC or SSC. In particular, the two 

conditions are listed below: 
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𝑂𝑁 → 0;𝑈𝑁 → ∞, (4.12) 

𝑠𝑂𝑁 → 0;
𝑈𝑁

|𝓽|
→ ∞, (4.13) 

where the terms 𝑂𝑁 and 𝑈𝑁 are defined as such: 

𝑂𝑁 ∶= sup
|𝑎|≤𝑅𝑁,|𝑏|≤𝑅𝑁

𝑞𝒟1(𝑎)

(1 − 𝑞)𝒟0(𝑏)
,  

𝑈𝑁 ∶= inf
𝑚𝑁≤|𝑎|,𝑚𝑁≤|𝑏|,|𝑎−𝑏|≤𝜖𝑁

𝑞𝒟1(𝑎)

(1 − 𝑞)𝒟0(𝑏)
.  

Here, we introduce the minimal signal strength 𝑚𝑁, which is defined as: 

min
𝑗

|𝛽𝑗| ≥ 𝑚𝑁 ∶= √
𝐶𝜎2 log 𝑠

𝑁
,  

for some large enough constant 𝐶 > 0. Intuitively, the minimal signal strength 𝑚𝑁 ensures that 

the signals from the truly informative sensors are strong enough to be distinguished from noise. If 

the true coefficients 𝛽𝑗  are not sufficiently large (i.e., smaller than 𝑚𝑁), then it is difficult to 

identify the informative sensors from the pool of sensors. Finally, 𝜖𝑁 ensures that the point in the 

slab prior 𝑎 and the point in the spike prior 𝑏 is located reasonably close to each other such that 

1

√𝑁
≤ 𝜖𝑁 → 0. The quantity 𝑂𝑁 represents the magnitude of the slab prior relative to the spike prior 

in the neighborhood of the origin with radius 𝑅𝑁, while the quantity 𝑈𝑁 indicates the same relative 

magnitude but instead around the distribution tails. Ideally, we want 𝑂𝑁 going to zero and 𝑈𝑁 

going to infinity as 𝑁 increases (i.e., concentrated spike mass near the origin to induce sparse 

solutions, while flatter tails of the slab prior to encourage exploration). 

Based on existing works [87], the 1st condition in equation (4.12) guarantees WSC for the entire 

general spike and slab prior setting in equation (4.9), which includes the proposed model. In 

addition, if the 2nd condition in equation (4.13) holds, we have SSC. It can be seen that SSC 
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requires a stronger condition since 𝑂𝑁 needs to go to zero more quickly and 𝑈𝑁 needs to go to 

infinity more quickly.  

To satisfy both conditions and achieve SSC, [93] suggested to set the prior variances 𝜅0
2 and 𝜅1

2 

depend on the sample size 𝑁. Therefore, inspired by [93], we impose the following sufficient 

conditions to satisfy SSC: 

𝜅0
2 → 0,𝑁𝜅1

2 ≈ (𝑁 + 𝑠2+𝜔), (4.14) 

Here, the notation ≈ denotes that the two quantities on both sides of the equation have the same 

order, and 𝜔 > 0 denotes an arbitrary fixed positive number. To see how these conditions in 

equation (4.14) assist in satisfying conditions in equation (4.12) and equation (4.13), without loss 

of generalization, we first define analogous quantities of 𝑂𝑁 and 𝑈𝑁 based on a radius of 𝑅𝑁 =

√
(2+𝜔) log 𝑠

𝑁
, while setting 𝜎2 = 1: 

𝑂𝑁
′ =

𝑞𝜅0𝑓(0)

(1 − 𝑞)𝜅1𝑓 (
𝑅𝑁

𝜅0
)
, 

 𝑈𝑁
′ =

𝑞𝜅0𝑓(
𝑚𝑁

𝜅1
)

(1 − 𝑞)𝜅1 (𝑓 (
𝑚𝑁

2𝜅0
) + 𝜅0 exp (−

𝑁𝑚𝑁
2

2
))

. 

 

Based on the definition of the minimum signal strength 𝑚𝑁 above, we can deduce that 𝑅𝑁 is a 

slightly larger radius than the minimum signal strength 𝑚𝑁 when we set 𝐶 = 2. Here, we can see 

that 𝑂𝑁
′  is equivalent to 𝑂𝑁 since it represents the same ratio of the spike distribution and the slab 

distribution at the origin with radius 𝑅𝑁. Similarly, 𝑈𝑁
′  is equivalent to 𝑈𝑁 since it denotes the 

same ratio of the spike distribution and the slab distribution near the tails (i.e., outside the minimal 

signal strength 𝑚𝑁).  
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Next, to satisfy SSC, we need to verify that the analogous quantities 𝑂𝑁
′  and 𝑈𝑁

′  satisfy equation 

(4.13), i.e., 

𝑠𝑂𝑁
′ → 0;

𝑈𝑁
′

|𝓽|
→ ∞.  

Since the first condition in equation (4.14) states that 𝜅0
2 → 0, we start by plugging in 𝜅0 =

1

√𝑁
 and 

analyzing the behavior of 𝜅1. By setting 𝑓(𝑥) = exp(−
𝑥2

2
), we have the following results for 𝑂𝑁

′  

and 𝑈𝑁
′ : 

𝑂𝑁
′ =

𝑞

(1 − 𝑞)√𝑁𝜙 (√−
(2 + 𝜔) log 𝑠

2  )

×
1

𝜅1
=

𝑞

(1 − 𝑞)
×

𝑠𝜁

(𝑁𝜅1
2)

1
2

 
(4.15) 

𝑈𝑁
′ =

𝑞

√𝑁
(1 − 𝑞)

×
𝑠

−
𝜆

𝑁𝜅1
2

𝜅1
×

1

𝑠−
𝜆
4 + 𝑠−𝜆

≥
𝑞

(1 − 𝑞)
×

𝑠
𝜆(1−

1

𝑁𝜅1
2)

(𝑁𝜅1
2)

1
2

 (4.16) 

where 𝜁 is a positive constant such that 𝜁 =
2+𝜔

2
, and 𝜆 is a constant that depends on the minimal 

signal strength via 

𝜆 =
𝑁𝑚𝑁

2

2 log 𝑠
.  

Then, imposing the second condition 𝑁𝜅1
2 ≈ (𝑁 + 𝑠2+𝜔) on equations (4.15) and (4.16) unveils 

two key observations. The first observation is that the 𝑁𝜅1
2 term in the denominator of equation 

(4.15) will drive 𝑠𝑂𝑁
′ → 0, achieving WSC. The second observation is that the exponential term 

𝑠𝜆 in equation (4.16) will dominate the numerator as 𝑁 → ∞, resulting in 𝑈𝑁
′ → ∞. Since |𝓽| ≤ 𝑠,  

𝑈𝑁
′

|𝓽|
→ ∞ as well. In this way, 𝑂𝑁

′  and 𝑈𝑁
′  satisfy equation (4.13) and thus we achieve SSC. In the 

numerical evaluations, we use the following values for the prior variances. 
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𝜅0
2 =

1

10𝑁
, 𝜅1

2 = max(
𝑠2.1

𝑁
, log𝑁)  (4.17) 

Note that the settings in equation (4.17) satisfy the properties in equation (4.14). This means that 

letting the prior variances for the spike and slab prior (i.e., 𝜅0
2  and 𝜅1

2) depend on 𝑁 is a key 

component to achieve SSC. 

4.2.4 Remaining Useful Life Prediction 

Once the Gibbs sampler returns the estimated fusion coefficients 𝒘̂ and the binary sensor 

indicators 𝜸̂ , we can easily construct the HI for a given historical unit 𝑖 . Recall that the 

uninformative sensor’s indicators will be zeroed out based on the sensor selection procedure 

described in Section 4.2.3. Thus, unit 𝑖’s HI is defined as 𝒉𝑖 = 𝑳𝑖Diag(𝜸̂)𝒘̂. The same procedure 

can be done for an in-service unit 𝑟, where its HI is represented as 𝒉𝑟 = 𝑳𝑟Diag(𝜸̂)𝒘̂. Since we 

do not make any assumptions on the underlying degradation process 𝜂(𝑡), we can estimate the 

RUL of the in-service unit 𝑟 using a wide range of degradation models. Here, we use a general 

path model to estimate the RUL such that ℎ𝑖(𝑡) = 𝜂𝑖(𝑡) + 𝜀𝑖(𝑡) = 𝝍(𝑡)𝚪𝑖 + 𝜀𝑖(𝑡), where 𝝍(𝑡) =

[1, 𝑡, … , 𝑡𝑀−1] is the (𝑀 − 1)-order polynomial basis function and 𝚪𝑖 = [Γ𝑖,1, … , Γ𝑖,𝑀]
𝑇

∈ ℝ𝑀×1 

are the corresponding random-effect coefficients. Note that to increase the model flexibility, we 

can also use any generic basis functions, such as B-splines depending on the model fit.  

The random effect parameter is assumed to follow a prior distribution such that 𝚪𝑖~𝐺(⋅), where 

𝐺(⋅) is typically estimated from the historical units. For the in-service unit 𝑟, we can estimate the 

posterior distribution of 𝚪𝑟  via the Bayes’ rule such that 𝑃(𝚪𝑟|𝒉𝑟) ∝ 𝑃(𝚪𝑟)𝑃(𝒉𝑟|𝚪𝑟) . If the 

posterior distribution does not have an analytical solution, we can use numerical methods like 

Hamiltonian Monte Carlo [98] to sample from the posterior distribution. The cumulative 

distribution function (CDF) of the failure time 𝑇𝑟 of the in-service unit 𝑟 can then be expressed as 
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𝐹𝑇𝑟
(𝑡|𝒉𝑟) = 𝑃(𝑇𝑟 ≤ 𝑡|𝒉𝑟) = 𝑃(𝝍(𝑡)𝚪𝑟 ≥ 𝑙|𝒉𝑟) based on the definition in equation (4.1). 

Given that the in-service unit 𝑟 has not yet failed, the failure time CDF can be further updated 

using the last observed measurement time 𝑡𝑟,𝑛𝑟
 as such: 

𝐹𝑇𝑟
(𝑡|𝒉𝑟 , 𝑇𝑟 > 𝑡𝑟,𝑛𝑟

) =
𝑃(𝝍(𝑡)𝚪𝑟 ≥ 𝑙|𝒉𝑟) − 𝑃(𝝍(𝑡𝑟,𝑛𝑟

)𝚪𝑟 ≥ 𝑙|𝒉𝑟)

1 − 𝑃(𝝍(𝑡𝑟,𝑛𝑟
)𝚪𝑟 ≥ 𝑙|𝒉𝑟)

.  

If we assume that 𝐺(⋅) follows a multivariate normal distribution (i.e., 𝚪𝑟~𝑀𝑉𝑁(𝝁, 𝚺)), then the 

posterior distribution 𝚪𝑟|𝒉𝑟  also follows a multivariate normal distribution with a closed form 

expression such that 𝚪𝑟|𝒉𝑟~𝑀𝑉𝑁(𝝁𝑟, 𝚺𝑟), where 

𝚺𝑟 = (
𝚿𝑟

𝑇𝚿𝑟

𝜎2
+ 𝚺−1)

−1

, 𝝁𝑟 = (𝚺𝑟)
−1 (

𝚿𝑟
𝑇𝒉𝑟

𝜎2
+ 𝚺−1𝝁).  

The conditional CDF can then be rewritten as such: 

𝐹𝑇𝑟
(𝑡|𝒉𝑟 , 𝑇𝑟 > 𝑡𝑟,𝑛𝑟

) =
Φ(𝑔(𝑡)) − Φ(𝑔(𝑡𝑟,𝑛𝑟

))

1 − Φ (𝑔(𝑡𝑟,𝑛𝑟
))

. (4.18) 

where Φ(⋅)  is the standard normal distribution CDF, and 𝑔(𝑡) = (𝝍(𝑡)𝝁𝑟 − 𝑙)/

(𝝍(𝑡)𝚺𝑟𝝍(𝑡)𝑇)0.5. Following existing studies [4], we can use the median of 𝐹𝑇𝑟
(𝑡|𝒉𝑟 , 𝑇𝑟 > 𝑡𝑟,𝑛𝑟

) 

(i.e., 𝐹𝑇𝑟
(𝑇̂𝑟|𝒉𝑟 , 𝑇𝑟 > 𝑡𝑟,𝑛𝑟

) = 0.5) to account for the skewness in the truncated CDF. Hence, the 

estimated RUL is 𝑇̂𝑟 − 𝑡𝑟,𝑛𝑟
. 
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A comprehensive summary of the proposed method, including the prior specification, 

parameter estimation, sensor selection, and RUL prediction is provided in the flowchart in Figure 

4.2. 

4.3 Simulation Studies 

In this section, we conduct a series of simulation studies to evaluate the performance of the 

proposed method. Section 4.3.1 first discusses how we generate the sensor signals. Then, Section 

4.3.2 introduces the benchmark methods and evaluation metrics. Then, we investigate the sensor 

selection performance under two different scenarios. Section 4.3.3 investigates the proposed 

model’s sensor selection capabilities under varying number of sensors and training units. Section 

4.3.4 then repeats the same study while considering the effect of various types of correlation. 

 

Figure 4.2 Flowchart of the Proposed Model 
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4.3.1 Data Generation Settings 

For the simulation study, the underlying degradation path 𝜂𝑖(𝑡)  is defined via a linear 

degradation process such that 𝜂𝑖(𝑡) = Γ𝑖,0 + Γ𝑖,1𝑡  and the random-effect parameter follows a 

multivariate normal distribution (i.e., 𝚪𝑖~𝑀𝑉𝑁 ((
−1
3

) , (
100 1
1 0.5

))). If the sampled Γ𝑖,1 ≤ 0 

due to the multivariate normal distribution, then we discard the sample and sample a new one to 

guarantee monotonicity. In addition, the true failure threshold is set to 𝑙 = 100. The true observed 

failure times of unit 𝑖 are recorded using the definition in equation (4.1), while the true HI is 

created by adding a random Gaussian noise ℎ𝑖(𝑡) = 𝜂𝑖(𝑡) + 𝜀𝑖(𝑡),  𝜀𝑖(𝑡)~𝒩(0,102).  

The units have both informative and uninformative sensors. Specifically, there are three 

informative sensors, while the remaining sensors are uninformative. Naturally, only the first three 

true fusion coefficients are nonzero, while the remaining true fusion coefficients are set to zero 

(i.e., 𝒘 = [1.5, 2.0, 2.5, 0, … , 0] ∈ ℝ𝑠×1). The three informative sensors are generated as: 

𝐿𝑖,1(𝑡) = 𝛿𝑖,1
(1)

√𝑡 − 𝛿𝑖,1
(2)

sin(0.05𝑡) + 𝜀𝑖,1(𝑡), 

𝐿𝑖,2(𝑡) = 𝛿𝑖,2
(1)

𝑡 − 𝛿𝑖,2
(2)

sin(0.1𝑡) + 𝜀𝑖,2(𝑡), 

𝐿𝑖,3(𝑡) =
ℎ𝑖(𝑡) − 𝑤1𝐿𝑖,1(𝑡) − 𝑤2𝐿𝑖,2(𝑡)

𝑤3
, 

(4.19) 

where 𝛿𝑖,1
(1)

, 𝛿𝑖,1
(2)

, 𝛿𝑖,2
(1)

~Uniform(10,20), 𝛿𝑖,2
(2)

~Uniform(0,2) , and 𝜀𝑖,1(𝑡), 𝜀𝑖,2(𝑡) ~ 𝒩(0,102) . 

The uninformative sensors are then generated as: 

𝐿𝑖, 𝒰1
(𝑡) = [∑ 𝛿𝑖,𝒰1

(1)
(𝑡𝑖,𝑗)] + 𝛿𝑖,𝒰1

(2)
+ 𝜀𝑖,𝒰1

(𝑡)
𝑛𝑖

𝑗=1
,  

𝐿𝑖,𝒰2
(𝑡) = 𝛿𝑖,𝒰2

(1)
𝑡 + 𝛿𝑖,𝒰2

(2)
+ 𝜀𝑖,𝒰2

(𝑡), 

(4.20) 

where 𝛿𝑖,𝒰1

(1)
~𝒩(0,0.52), 𝛿𝑖,𝒰1

(2)
~Uniform(10,30),  𝛿𝑖,𝒰2

(1)
~Uniform(0,30) , 𝛿𝑖,𝒰2

(2)
~Uniform(0,2) , 

and 𝜀𝑖,𝒰1
(𝑡), 𝜀𝑖,𝒰2

(𝑡)~𝒩(0,102). 
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Notice that the set of informative sensors are denoted by ℐ. Among the set of uninformative 

sensors 𝒰 , there are two types of uninformative sensors, each denoted by  𝒰1  and 𝒰2. 

Uninformative sensors belonging to 𝒰1 represent “random” sensors that act as noise since it is a 

stochastic process made up by summing random Gaussian terms. On the other hand, uninformative 

sensors belonging to 𝒰2 represent “consistent” sensors. These sensors have consistent increasing 

trends due to the linear relationship with time but are not related to the underlying degradation 

process. Note that these sensors can be mislabeled as informative sensors based on the heuristic 

approach [4], [74], [75] due to their increasing trends. For all simulations, we generate an 

approximately equal number of uninformative sensors from each category. For instance, if we set 

the total number of sensors as 𝑠 = 15, then we will have 3 informative sensors, and 
15−3

2
= 6 

sensors of each “random” and “consistent” uninformative sensors. In addition, we assume that all 

signals are recorded at uniformly spaced time intervals. Figure 4.3 shows the trajectory of the 3 

informative sensors and the true HI, while Figure 4.4 shows the trajectories of two types of 

uninformative sensors from a randomly selected unit. 
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4.3.2 Benchmark Methods 

In this subsection, we review the benchmark methods and the evaluation metrics used in the 

simulation studies. In particular, we evaluate the proposed model’s sensor selection performance 

against other popular sensor selection algorithms. The first class of competing models are 

likelihood penalization methods, which attach a penalty term to the likelihood function to promote 

sparse solutions. Specifically, we consider the adaptive LASSO [83], SCAD [84], and MCP [99] 

methods. Adaptive LASSO uses the L1 norm of the fusion coefficients as a penalty, in which larger 

penalty weights are imposed on less important sensors. SCAD imposes the same penalty as the 

adaptive LASSO for small fusion coefficients but imposes a relatively more relaxed constant 

 

 

 Figure 4.3 Plot of the Three Informative Sensors and the True HI of Three Randomly 

Generated Units 
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penalization rate for larger fusion coefficients, resulting in lower bias in the fusion coefficient 

estimation. MCP is also similar to SCAD, but it relaxes the penalization rate more quickly for 

larger fusion coefficients. Furthermore, we also include a different Bayesian variable selection 

approach named variational Bayes (VB). The VB approach showed promising variable selection 

performance in high dimensions based on a case study using genomic data [100]. 

For the proposed method, we need to specify the failure threshold 𝑙 to estimate the fusion 

coefficients 𝒘. According to Section 4.2.2, 𝒘|𝜸, 𝜎2, 𝑳(𝝉)~𝑀𝑉𝑁(𝑽𝑳(𝝉)𝑇𝑙𝟏𝑁 , 𝜎2𝑽). Thus, the 

failure threshold 𝑙 only acts as a scaling factor for the mean of the Gibbs updating distribution for 

𝒘 and does not affect RUL prediction. Here, we simply use 𝑙 = 100 when estimating the fusion 

coefficients for simplicity. 

We use the following settings for all of the simulation studies. For the adaptive LASSO, we use 

the “glmnet” library [101] in R with 5-fold cross validation to find the optimal shrinkage parameter. 

In addition, we follow the recommendations of [4] and use 1/|𝒘𝑂𝐿𝑆| as the penalty weights for 

the fusion coefficients. Note that 𝒘𝑂𝐿𝑆 is the ordinary least squares (OLS) estimate of 𝒘. For the 

SCAD and MCP model, we use the “ncvreg” library [99] in R with max iterations set to 3000. For 

 

Figure 4.4 Plot of the Two Types of Uninformative Sensors in a Randomly Generated Unit 
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the VB model, we use the “varbvs” library [100] with a Gaussian family. For the proposed method, 

we use a Gibbs sampler with 2000 warm-up iterations and 2000 sampling iterations. Similar to 

existing works [74], we use the polynomial basis functions 𝝍(𝑡) = [1, 𝑡, 𝑡2] for all methods. 

We assess the model’s ability to maximize true positives (i.e., selecting the informative sensors) 

while minimizing false positives (i.e., selecting the uninformative sensors). Note that minimizing 

false positives corresponds to reducing sensor misclassification costs. Hence, we consider the 

informative sensors as positive labels and uninformative sensors as negative labels and apply 

widely used classification metrics for selection performance evaluation. In particular, we consider 

three metrics: precision, recall, and F1. Precision measures the proportion of sensors identified by 

the model as informative that are indeed informative, while recall measures the proportion of actual 

informative sensors that were retrieved by the model. F1 balances out both precision and recall by 

taking the harmonic mean. Detailed definitions are listed below: 

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
, F1 =

2 × Precision × Recall

Precision + Recall
, 

 

where TP stands for true positive, FP is false positive, and FN is false negative. With these metrics, 

we aim to provide a holistic evaluation of the competing methods. 

4.3.3 Sensor Selection Performance without Correlation 

In this subsection, we investigate the sensor selection performance of the proposed model with 

varying number of sensors and training units without the effect of correlation. Note that there are 

two types of correlation: intra-correlation, and inter-correlation. Intra-correlation refers to the 

correlation within each group of informative and uninformative sensors, while inter-correlation 

refers to the correlation between the groups of informative and uninformative sensors. We will 

discuss how to impose each type of correlation and investigate its effect on sensor selection in the 
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following Section 4.3.4. Here, we consider neither type of correlation.  

Recall that the two main factors that characterize the high-dimensional scenarios are: 1) a low 

number of training units 𝑁; and 2) a high number of sensors 𝑠. Therefore, we conduct two different 

simulations that reflect these two conditions. First, we fix the number of sensors at 𝑠 = 45 (i.e., 3 

informative and 42 uninformative) and vary the number of training units 𝑁  from 25 to 100. 

Second, we fix the number of training units to 50 and vary the number of sensors 𝑠 from 15 to 75. 

Note that the number of informative sensors is fixed at 3 for all different configurations of 𝑠. 

Generally, we expect that a low 𝑁 and a high 𝑠 scenario will be the most challenging for sensor 

selection. Results of the evaluation are shown in Figure 4.5. Note that we display the mean results 

obtained from 100 repeated iterations.  

From the results in Figure 4.5, the proposed method drastically outperforms existing methods 

in terms of the F1 score across all scenarios. In particular, the proposed method shows near to 

perfect performance even in challenging circumstances with small 𝑁  and large 𝑠 . However, 

likelihood penalization methods like adaptive LASSO, MCP, and SCAD suffer from many false 

 

Figure 4.5 Sensor Selection Performance Regarding F1 Score with respect to Varying 𝑁 and 

𝑠. 
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positives and generally perform worse in terms of F1 score as 𝑁 decreases and 𝑠 increases. The 

VB method generally outperforms other penalized likelihood methods, but still falls short relative 

to the proposed method. 

In addition to the sensor selection results, we examine the fusion coefficient estimation results 

as well under the same simulation settings. In particular, we repeat the fusion coefficient estimation 

100 times and compare the estimates with the fusion coefficients estimated by adaptive LASSO. 

Kim et al. [4] have shown that adaptive LASSO is a simple yet one of the best sensor selection 

 

Figure 4.6 Plot of the Estimated Fusion Coefficients Between the Proposed Method (Blue) 

and Adaptive LASSO (pink) with varying 𝑁. 

 

 

 

Figure 4.7 Plot of the Estimated Fusion Coefficients Between the Proposed Method (Blue) 

and Adaptive LASSO (pink) with varying 𝑠. 
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approaches for HI construction, so we use it as a benchmark. Figure 4.6 shows the estimation 

results with varying 𝑁 from 25 to 100 (fixed 𝑠 = 45) , while Figure 4.7 shows the estimation 

results with varying 𝑠 from 15 to 75 (fixed 𝑁 = 50). The true coefficient values are shown in the 

red dashed line on the top, while the proposed model’s fusion coefficients are shown in blue violin 

plots and the adaptive LASSO’s coefficients are shown in pink violin plots. The average 

coefficient estimates of each setting are marked by the blue triangle (proposed) and black dots 

(adaptive LASSO). From the figures, we observe that the proposed model has drastically more 

accurate fusion coefficient estimates than the adaptive LASSO. Even in very high-dimensional 

settings (i.e., 𝑁 = 25 in Figure 4.6 or 𝑠 = 75 in Figure 4.7), the proposed method is able to obtain 

accurate and stable fusion coefficient estimates. On the contrary, the adaptive LASSO’s 

coefficients are both inaccurate and unstable (i.e., high variance in the violin plots). 

We also conducted additional experiments by fixing the number of sensors to 𝑠 = 50 and 

varying the number of informative sensors from 3 to 30. The results showed that the model 

performs best when the true model is sparse, with much fewer informative sensors than the 

uninformative sensors. 

4.3.4 Sensor Selection Performance with Correlation 

In this subsection, we further investigate the sensor selection performance with correlation. 

Specifically, we introduce intra-correlation within each group of informative and uninformative 

sensors via correlated errors. The correlation between the informative sensors is imposed as 

𝚺ℐ = 𝐶𝑜𝑟 (𝜀𝑖,1(𝑡), 𝜀𝑖,2(𝑡)) = (
1 𝜌𝑖𝑛𝑓

𝜌𝑖𝑛𝑓 1
) ∈ ℝ2×2,  

where 𝚺ℐ represents the corresponding correlation matrix, and −1 < 𝜌𝑖𝑛𝑓 < 1 controls the level 

of correlation. According to equation (4.19), all 𝐿𝑖,1(𝑡), 𝐿𝑖,2(𝑡), 𝐿𝑖,3(𝑡) are now correlated since 
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𝐿𝑖,1(𝑡) and 𝐿𝑖,2(𝑡)  have correlated errors, and 𝐿𝑖,3(𝑡)  is a function of the remaining two 

informative sensors. Similarly, the intra-correlation between the uninformative sensors is imposed 

as: 

𝚺𝒰 = 𝐶𝑜𝑟 (𝜀𝑖,4(𝑡), 𝜀𝑖,5(𝑡), … , 𝜀𝑖,𝑠(𝑡)) == (

1 ⋯ 𝜌𝑢𝑛𝑖𝑛𝑓

⋮ ⋱ ⋮
𝜌𝑢𝑛𝑖𝑛𝑓 ⋯ 1

) ∈ ℝ(𝑠−3)×(𝑠−3),  

where −1 < 𝜌𝑢𝑛𝑖𝑛𝑓 < 1 controls the level of correlation, and {𝜀𝑖,4(𝑡), 𝜀𝑖,5(𝑡), … , 𝜀
𝑖,⌊

𝑠−3

2
⌋
(𝑡)} ∈ 𝒰1 

and {𝜀
𝑖,⌊

𝑠−3

2
⌋+1

(𝑡), … , 𝜀𝑖,𝑠(𝑡)} ∈ 𝒰2. Next, we also consider inter-correlation between informative 

and uninformative sensors. This is expected to be the most damaging type of correlation as it can 

significantly interfere with the sensor selection procedure. To simulate this inter-correlation, we 

adopt a block-covariance setting as such: 

𝚺𝑡𝑜𝑡𝑎𝑙 = (
𝚺ℐ 𝚺ℐ𝒰

𝑇

𝚺ℐ𝒰 𝚺𝒰
) ∈ ℝ(𝑠−1)×(𝑠−1), 𝚺ℐ𝒰 = 𝜌𝑖𝑛𝑡𝑒𝑟𝟏(𝑠−3)×2,  

in which −1 < 𝜌𝑖𝑛𝑡𝑒𝑟 < 1  controls the level of inter-correlation. Finally, we use this block 

covariance matrix to sample the correlated errors as such: 

[𝜀𝑖,1(𝑡), 𝜀𝑖,2(𝑡), 𝜀𝑖,4(𝑡), … , 𝜀𝑖,𝑠(𝑡)]~𝑀𝑉𝑁(𝟎, 𝚺𝑡𝑜𝑡𝑎𝑙).  

Under this simulation setting, we demonstrate the effectiveness of the proposed method under 

weak and strong levels of correlation. In the first setting, we impose weak intra-correlation and 

inter-correlation of 0.25 (i.e., 𝜌𝑖𝑛𝑓 = 𝜌𝑢𝑛𝑖𝑛𝑓 = 𝜌𝑖𝑛𝑡𝑒𝑟 = 0.25). In the next setting, we impose a 

much stronger level of intra and inter-correlation by setting 𝜌𝑖𝑛𝑓 = 0.25, 𝜌𝑢𝑛𝑖𝑛𝑓 = 0.90, 𝜌𝑖𝑛𝑡𝑒𝑟 =

0.75. For the number of sensors and training units, we fix them to 𝑠 = 45,  𝑁 = 50 for both 

scenarios. The simulation results averaged across 100 iterations are shown in Table 4.2 and Table 

4.1.  
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Results in Table 4.2 and Table 4.1 demonstrate the superior sensor selection performance of 

the proposed model. Indeed, except for the precision score in the strong correlation scenario, the 

proposed method drastically outperforms competing methods. Other competing methods 

noticeably produce numerous false positives in the presence of strong intercorrelation, with the 

adaptive LASSO even reaching an average F1 score below 0.4. The variational inference method 

excels at minimizing false positives with a higher precision score but produces too many false 

negatives, leading to a poor average F1 score of 0.555. On the other hand, the proposed method 

achieves a good balance between reducing false positives and false negatives. As a result, the 

Table 4.2 Simulation Results Under Weak Correlation (standard deviations shown in 

parenthesis, 𝜌𝑖𝑛𝑓 = 𝜌𝑢𝑛𝑖𝑛𝑓 = 𝜌𝑖𝑛𝑡𝑒𝑟 = 0.25) 

Models Precision Recall F1 

Adaptive 

LASSO 

0.446 

(0.215) 

0.367 

(0.101) 

0.381 

(0.089) 

MCP 
0.751 

(0.259) 

0.500 

(0.168) 

0.548 

(0.133) 

SCAD 
0.826 

(0.294) 

0.373 

(0.109) 

0.475 

(0.098) 

VB 
0.970 

(1.120) 

0.400 

(0.135) 

0.564 

(0.127) 

Proposed 
0.995 

(0.035) 

1.000 

(0.000) 

0.997 

(0.020) 

 

Table 4.1 Simulation Results Under Strong Correlation (standard deviations shown in 

parenthesis, 𝜌𝑖𝑛𝑓 = 0.25, 𝜌𝑢𝑛𝑖𝑛𝑓 = 0.90, 𝜌𝑖𝑛𝑡𝑒𝑟 = 0.75) 

Models Precision Recall F1 

Adaptive 

LASSO 

0.389 

(0.131) 

0.371 

(0.107) 

0.370 

(0.088) 

MCP 
0.591 

(0.222) 

0.629 

(0.107) 

0.573 

(0.109) 

SCAD 
0.701 

(0.302) 

0.395 

(0.131) 

0.464 

(0.103) 

VB 
0.981 

(0.092) 

0.400 

(0.134) 

0.555 

(0.121) 

Proposed 
0.945 

(0.120) 
1.000 

(0.000) 
0.967 

(0.072) 
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proposed method achieves a much higher average F1 score of 0.967 than any other competing 

methods. 

4.4 Case Studies 

In this section, we further evaluate the proposed method on a dataset of aircraft gas turbine 

engines. The results are also compared with the state-of-the-art benchmark approach: a generic HI 

model by Kim et al. [4] with 4 different approaches for sensor selection: Adaptive LASSO, MCP, 

SCAD, and VB. In particular, we first introduce the dataset in Section 4.4.1. Then, in Section 4.4.2, 

we compare the RUL prediction performance of the proposed model with the benchmarks. In 

Section 4.4.3, we consider a high-dimensional scenario by randomly reducing the number of 

training units. Finally, Section 4.4.4 further evaluates a high-dimensional scenario by augmenting 

the dataset with additional uninformative sensors. 

4.4.1 Dataset Description 

We use the turbofan engine dataset generated by C-MAPSS, a widely used simulation software 

developed by NASA. C-MAPSS has been widely used for studying the degradation process of 

large commercial turbofan engines [102]. The C-MAPSS dataset contains a total of four different 

sub-datasets with different failure modes and operating conditions. Here, we focus on the 1st sub-

dataset (i.e., FD001) as it has a single failure mode with respect to the High-Pressure Compressor 

(HPC) and one operating condition. In addition, the simulated engines start with varying degrees 

of manufacturing variation and initial wear and tear to better mimic real-life degradation scenarios. 

Each unit 𝑖 in the dataset consists of 21 condition monitoring sensor signals measured at each 

cycle time 𝑡 = 1,2, … , 𝑛𝑖. Details of the 21 sensors are provided in Table 4.3. The training set 

contains 20631 observations from 100 historical units, while the test set contains 13096 



106 

 

observations from 100 in-service units. Note that historical units in the training set contain 

measurements from start to failure, while the in-service units in the test set contain measurements 

from start-up to a random truncation time point prior to failure. The true RUL labels are provided 

for both the historical units and the in-service units. In addition, all sensors are first log-

transformed, and then standardized as the existing literature (e.g., [91]). 

Previous works eliminated sensors that did not exhibit a consistent monotonic trend or if their 

variance is less than 10−4 [4], [74]. However, the simulation results in Section 4.3 showed that the 

monotonic assumption is not a clear indicator of the sensor’s relevance to the underlying 

degradation status. Therefore, we only remove sensors with variance less than 10−4. As a result, 

14 sensors are preselected from a total of 21 sensors. The preselected sensors are: T24, T30, T50, 

P30, Nf, Nc, Ps30, Phi, Nrf, Nrc, BPR, htBleed, W31, W32. 

Table 4.3 C-MAPSS Sensor Information 

Symbol Description Units 

T2 Total temperature at fan inlet °R 

T24 Total temperature at LPC outlet °R 

T30 Total temperature at HPC outlet °R 

T50 Total temperature at LPT outlet °R 

P2 Pressure at fan inlet psia 

P15 Total pressure in bypass-duct psia 

P30 Total pressure at HPC outlet psia 

Nf Physical fan speed rpm rpm 

Nc Physical core speed rpm rpm 

Epr Engine pressure ratio (P50/P2) - 

Ps30 Static pressure at HPC outlet psia 

Phi Ratio of fuel flow to Ps30 pps/psi 

Nrf Corrected fan speed rpm 

Nrc Corrected core speed rpm 

BPR Bypass Ratio - 

farB Burner fuel-air ratio - 

htBleed Bleed Enthalpy - 

Nf_dmd Demanded fan speed rpm 

PCNfR_dmd Demanded correct4ed fan speed rpm 

W31 HPT coolant bleed lbm/s 

W32 LPT coolant bleed lbm/s 
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4.4.2 RUL Prediction Results 

First, we report the sensor selection results. Our proposed sensor selection method indicates 

that 12 out of the 14 sensors (excluding sensors Nc and Nrc) are informative. The first observation 

from the sensor selection results is that all sensors associated with the HPC (i.e., T30, P30, Ps30, 

phi) have all been labeled as informative. This aligns with our prior understanding as the FD001 

dataset used in the case study only contains failures associated with the HPC. The second 

observation is that the remaining 8 informative sensors (i.e., T24, T50, Nf, Nrf, BPR, htBleed, 

W31, and W32) have also been labeled as important sensors in multiple past research.  Although 

the relationship of the 8 informative sensors to the HPC is not as clear as the previous 4 sensors, 

these sensors all influence the key control modules (e.g., Low-Pressure Compressor, High-

Pressure Turbine, Low-Pressure Turbine) that are closely correlated to the wear and tear of the 

HPC. Finally, the last observation is that the 2 uninformative sensors (i.e., Nrc and Nc) measure 

the speed of the core, which is the rotational speed of the central components within the engine. 

This result also aligns with previous research [4], [74], [75], potentially suggesting that these 

sensors do not offer critical insights for predicting HPC failures. 

Next, we compare the RUL prediction accuracy across the 100 in-service units. Since the in-

service units are truncated at random time points, we compare the RUL prediction errors at 

different levels of actual RUL in Figure 4.9. For instance, “20” on the x-axis represents the in-

service units with actual RUL levels equal to or less than 20. The y-axis contains the relative RUL 

prediction error, which is defined as such: 

Prediction error =
|𝑅𝑈𝐿̂ − 𝑅𝑈𝐿|

Actual Failure Time
.  
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Here, 𝑅𝑈𝐿̂ refers to the predicted RUL, while RUL represents the true RUL of the in-service 

unit. Note that in Figure 4.8, the solid points represent the average prediction errors across each 

RUL level, and the error bars represent a single standard deviation of the errors. Results in the 

leftmost plot show that the proposed spike-and-slab approach yields the lowest prediction error 

across all levels of actual RUL. Please note that even though the original C-MAPSS dataset is not 

very high dimensional, the proposed method still manages to outperform benchmark approaches. 

The constructed HI using the proposed method and the 12 informative sensor signals are shown in 

Figure 4.9. 

4.4.3 Results Under High-dimensional Scenarios (small 𝑁) 

In this subsection, we mimic a high-dimensional scenario by randomly reducing the number of 

 

  

 

Figure 4.8 (Left) Averaged RUL prediction error results on the C-MAPSS dataset by training 

on the full 100 training units. (Center) Averaged RUL prediction error on a high-dimensional 

scenario by training on 15 randomly sampled training units. Number of sensors is untouched. 

(Right) Averaged RUL prediction error on another high-dimensional scenario by adding 86 

randomly generated sensors. Number of training units is untouched. The performance of the 

proposed method and 4 other benchmark methods are shown. The VB (orange) model for the 

center plot is omitted due to its significantly poor performance. 
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training units. Specifically, a fixed proportion of the 100 training units are sampled. The sampled 

training units are then used to retrieve the fusion coefficients. Then, similar to Section 4.4.2, we 

evaluate the RUL prediction accuracy on the 100 in-service units. To properly simulate a high-

dimensional scenario, we sampled 15 units out of the 100 training units. Note that the number of 

training units (i.e., 15) is close to the number of sensors (i.e., 14). The RUL prediction results of 

this scenario are shown in the center plot of Figure 4.8, which are averaged across 200 iterations 

to eliminate the effect of random subsampling.  

The evaluation results show that the proposed method returns the most accurate RUL 

predictions. In addition, while other sensor selection methods return higher prediction errors due 

to the lower number of training units, the proposed method maintains a similar level of 

performance to the full dataset with 100 training units. Note that the sensor selection results using 

our proposed method remain the same as in Section 4.4.2. 

 

Figure 4.9 Sensor plots of the 12 informative sensors and the constructed HI by the 

proposed method for a randomly selected in-service unit. 
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4.4.4 Results Under High-dimensional Scenarios (large 𝑠) 

Finally, we impose a different high-dimensional scenario with a very small portion of 

informative sensors. In particular, we keep the number of training units intact at 100 but introduce 

additional randomly generated uninformative sensors to further complicate the sensor selection 

process and RUL prediction. The uninformative sensors are generated using a polynomial mixed 

effects model with 𝑀 = 3 such that 𝝍(𝑡) = [1, 𝑡, 𝑡2] ∈ ℝ3×1 . The main difference is that the 

uninformative sensors are assumed to have higher noise levels with more variation. Recall that the 

set of informative sensors is denoted by ℐ and the set of uninformative sensors is denoted by 𝒰. 

The cardinality of each set is noted by | ⋅ | such that 𝑠 = |ℐ| + |𝒰|. The detailed uninformative 

sensor generation process is listed below: 

1. Fit a polynomial regression for each informative sensor 𝑗 ∈ ℐ in the training set and obtain 

the degradation coefficients  𝚪̂𝑗.  

2. Using the residuals of the polynomial regression, obtain the estimated standard deviation 𝜎̂𝑗
2 

for all informative sensors 𝑗 ∈ ℐ . Then, calculate the average noise value via 𝜇𝜎2 =

1

|ℐ|
∑ 𝜎̂𝑗

2|ℐ|
𝑗=1  

3. If the informative sensor 𝑗 is decreasing, then we multiply −1 to the coefficients such that 

𝚪̂𝑗
∗ = −1 × 𝚪̂𝑗. If the informative sensor 𝑗 is increasing, we leave it be 𝚪̂𝑗

∗ = 𝚪̂𝑗. 

4. Calculate the mean and variance of the degradation coefficients 𝚪̂𝑗
∗  such that 𝝁Γ =

1

|ℐ|
∑ 𝚪̂𝑗

∗ ∈ ℝ3×1|ℐ|
𝑗=1 , 𝚺Γ =

1

|ℐ|−1
∑ (𝚪̂𝑗

∗ − 𝝁Γ)(𝚪̂𝑗
∗ − 𝝁Γ)

𝑇|ℐ|
𝑗=1 ∈ ℝ3×3. 

5. Sample 𝚪𝑗′~𝑀𝑉𝑁(2𝝁Γ, 𝚺Γ) for all uninformative sensors 𝑗′ ∈ 𝒰. 

6. Then, we generate the uninformative signals 𝑗′ ∈ 𝒰 such that 𝐿𝑖,𝑗′(𝑡) = 𝝍(𝑡)𝚪𝑗′ + 𝜀𝑖,𝑗′(𝑡) 

for all training units 𝑖 = 1,… ,𝑁, where 𝜀𝑖,𝑗′(𝑡)~𝒩(0, 2𝜇𝜎2), 𝑡 = 𝑡𝑖,1, … , 𝑡𝑖,𝑛𝑖
, and 𝝍(𝑡) =
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[1, 𝑡, 𝑡2] ∈ ℝ3×1. 

7. Finally, we simulate both increasing/decreasing uninformative sensors by sampling 

𝜉𝑗′~Unif(0,1), where {
𝐿𝑖,𝑗′(𝑡) = 𝐿𝑖,𝑗′(𝑡) if 𝜉𝑗′ ≥ 0.5

𝐿𝑖,𝑗′(𝑡) = −𝐿𝑖,𝑗′(𝑡) if 𝜉𝑗′ < 0.5
 for all 𝑗′ ∈ 𝒰. 

8. Repeat step 6 for the testing units. Ensure that uninformative sensors of the testing units are 

generated with the same degradation coefficients 𝚪𝑗′  and trend values 𝜉𝑗′ . 

The generated uninformative sensors have more variation due the average noise term 𝜇𝜎2 and 

the mean of the degradation coefficients 𝝁Γ are multiplied by 2 (i.e., 2𝜇𝜎2 in step 6 and 2𝝁Γ in 

step 5). Note that both informative and uninformative signals still display monotonic behavior, so 

it is not possible to apply heuristic methods to screen out informative sensors. A sample plot of the 

simulated uninformative sensor with comparison to sensor T24 is shown in Figure 4.10. For the 

evaluations, we generate 86 uninformative sensors, resulting in 100 total sensors. We repeat the 

iterations 200 times and record the RUL prediction results in the rightmost plot of Figure 4.8.  

 

Figure 4.10 Degradation signal plots for the T24 sensor (blue) versus a simulated 

uninformative sensor (red) for a random training unit 
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The results again show that the proposed model maintains the best RUL prediction performance 

even under the contamination of uninformative sensors. Furthermore, the sensor selection results 

remain unchanged as in Section 4.4.2, demonstrating the robustness of the proposed sensor 

selection approach. During the evaluations, we also discovered that the proposed model properly 

concluded that the 86 simulated sensors are uninformative for 198 out of the 200 iterations. Hence, 

the proposed model still retains effective prognostic results.  

4.5 Conclusion 

In this paper, we proposed a novel data-fusion method tailored to high-dimensional sensor 

scenarios for better prognostics. Specifically, the proposed method uses a spike-and-slab prior 

distribution on the fusion coefficients that automatically selects the informative sensors, which are 

then fused into a 1-D HI for RUL prediction. The proposed method has the following unique 

advantages. First, the proposed spike-and-slab sensor selection approach significantly outperforms 

existing sensor selection methods, especially under high-dimensional scenarios with many sensors 

relative to the number of training units. Second, the proposed method also boasts superior sensor 

selection performance even under the influence of sensor correlation. Third, the proposed methods 

have nice theoretical properties like weak and strong selection consistency. Finally, the proposed 

method demonstrates high RUL prediction accuracy relative to existing benchmark methods. 

The prognostic performance under different scenarios was meticulously investigated through 

the simulation and case studies. The simulations in Section 4.3 investigated the sensor selection 

performance with and without correlation, with results showing reliable sensor selection 

performance even under high cross-correlation. For the case study, evaluations on the C-MAPSS 

dataset demonstrated the superior RUL prediction performance of the proposed method. Even 

under high-dimensional scenarios such as lower number of training units and contamination of 
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uninformative sensors, the proposed method still showed the lowest prediction errors relative to 

existing benchmark methods.  

There are several interesting topics for future research. First, we assumed a single failure mode 

and operating condition. In future studies, we aim to propose a more generic sensor selection 

approach for multiple failure modes and operating conditions under the high-dimensional settings. 

For instance, we can extend the current method by introducing a latent variable for each failure 

mode and then treat this latent variable as an additional parameter with its own distribution and 

integrate it to the Bayesian parameter estimation. Second, we implicitly assume that the set of 

informative sensors does not change with respect to time. However, it is possible for the set of 

informative sensors to change/evolve as the system degrades, especially when there are multiple 

failure modes and operation conditions. In the future, we aim to extend this work into an adaptive 

sensor selection framework so that the model can select a different set of sensors with respect to 

the current degradation status. 

4.6 Appendix 

In this appendix, we compare the proposed method with a deep learning-based sensor selection 

approach by Kim et al. [89]. The sensor selection results were recorded across three scenarios of 

the case study (i.e., Original, small 𝑁, and large 𝑠) in Table 4.4 of Section 4.4. Results show that 

the deep learning approach [89] is highly sensitive to the different high-dimensional conditions 

Table 4.4 Sensor selection performance of a deep learning-based approach by Kim et al. [88] 

on the C-MAPSS FD001 dataset  

Scenarios Selected Informative Sensors 

Original T24, T50, P30, Nf, Ps30, phi, Nrf, htBleed, W32 (9 sensors) 

Small 𝑁 T24, T50, P30, Ps30, htBleed, W32 (6 sensors) 

Large 𝑠 T50, P30, Ps30, htBleed, W32 (5 sensors) 
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and selects an inconsistent number of informative sensors (9,6,5) for each scenario. On the contrary, 

our proposed method has maintained stable sensor selection results (i.e., 12 informative sensors) 

across all three scenarios. 
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Chapter 5 An uncertainty-informed neural network-

based (UINN) prognostic model for multi-type data 

5.1 Introduction 

Recent advances in sensor technology have sparked the widespread use of multiple sensors to 

monitor the system’s condition. These sensors collect key operational parameters, which are then 

used for various analytics tasks such as anomaly detection, remaining useful life (RUL) prediction, 

and scheduling appropriate maintenance actions. The data collected from these sensors can be 

broadly divided into two categories: continuous sensor signals and discrete event sequences. Each 

data type provides unique insights into the unit’s health status. Discrete event data typically 

captures sudden changes such as anomalies or maintenance actions, whereas continuous signal 

data highlights the gradual changes and temporal trends within the system. For instance, a typical 

manufacturing equipment has a group of sensors recording the various events (e.g., maintenance, 

operational condition changes) in the system, and another group of sensors recording changes in 

mechanical parameters of the system (e.g., vibration, temperature, pressure).  

For accurate prognostics, it would be ideal to draw prognostic insights from both data types and 

integrate them into the final RUL predictions. However, existing works tend to focus on analyzing 

a single data type. There has been a plethora of research on predicting the RUL by only analyzing 

continuous sensor signals [10], [39], or discrete event data [42], [103], but very few works have 

tried to simultaneously incorporate both data types into the final RUL predictions. A few works in 

reliability and statistics literature have investigated joint modeling of both data types [104], but 

their assumptions on the events are very restrictive as the events are generally failure/terminal 
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univariate events. Such restrictive assumptions greatly limit the applicability of these joint 

modeling approaches, as the unit can repeatedly experience a wide range of non-terminal events 

that affect its health condition. 

One possible approach for processing both data types is to manually extract features from both 

data types and then use them for RUL prediction. However, this process is labor-intensive and 

requires a deep understanding of the intricate relationship between events, sensor signals, 

underlying degradation status, and RUL. Due to this complex structure, it can be extremely 

difficult to formulate a generalizable feature extraction procedure across many applications. 

Another possible approach is to formulate a parametric statistical model for each data type and its 

relationship with the RUL. But this approach is neither practical nor scalable, as the model 

structure can become exponentially complex with assumptions on the event type (i.e., recurrent, 

multi-type) and the relationship between the degradation status and the event/signal data.  

Alternatively, deep learning (DL) approaches have recently gained great popularity due to their 

strong performance in a wide range of applications in healthcare [48] and prognostics [105]. In 

addition to their outstanding predictive performance, another major advantage of DL approaches 

for prognostics is their ability to directly learn the intricate dynamics of complex engineering 

systems from the available data. As a result, DL approaches do not require extensive feature 

engineering efforts and can automatically extract relevant features from both continuous sensor 

signals and discrete event data. Despite the success of DL approaches, direct applications of 

existing DL models to prognostics may not yield satisfactory performance. First, the flexible 

architecture of DL models can sometimes lead to challenging modeling issues. When designing a 

DL model, one needs to choose multiple hyperparameters such as the number of hidden layers, 

optimizers, learning rates, and activation functions. Moreover, developing a DL model for 
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different data types necessitates specific model structures. For instance, while both event data and 

signal data exhibit temporal trends, categorical data like event types typically require additional 

embedding layers to convert them into vector representations. The design complexity increases 

further when integrating the insights from each data type into the final RUL predictions. Therefore, 

formulating a DL prognostic model for multi-type data requires careful model design choices. 

Second, even with a well-designed model architecture, training the model comes with its own set 

of challenges. To prevent unwanted bias, the standard approach involves jointly training separate 

predictors for each data type. However, joint training is difficult as the DL model can easily 

experience over/underfitting issues by failing to efficiently learn features from all data types at 

equal rates [6]. Without proper procedures, it is common for DL models to focus on learning one 

dominant data type, resulting in imbalanced learning and suboptimal performance.  

Based on these challenges, the objective of this paper is to formulate a data-driven, DL-based 

prognostic model that leverages insights from both discrete event data and continuous signal data. 

The proposed model is referred to as the uncertainty-informed neural network (UINN) model. The 

key contributions of this work are summarized as follows. First, to the best of our knowledge, the 

proposed UINN model is the first DL prognostic model that simultaneously captures the dynamics 

of discrete event data and continuous signal data. As a result, the proposed model can provide a 

holistic picture of the underlying degradation status compared to analyzing a single data type. 

Second, using a DL model avoids the need for restrictive parametric assumptions. Unlike statistical 

models, the proposed model can accommodate a wide range of event interactions, multi-type, and 

recurrent events. Third, to overcome the training challenges, the UINN model presents a joint 

training procedure to minimize estimation bias and achieve better prognostic performance. 

Specifically, the UINN model uses a joint loss function that is a weighted sum of the loss 
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components corresponding to each prediction task: event type, event time, signal, and RUL 

prediction. The weights of each loss component are determined by the uncertainty information of 

each prediction task, with higher weights given to tasks with lower uncertainty. Evaluation results 

on simulated data and real-life case study data show that the UINN model outperforms existing 

benchmarks. In particular, the case study includes a new battery discharge data using the PiSugar 

battery attached to a Raspberry Pi device. Details of the data collection and the hardware used are 

provided in Section 5.4.2.1. This new battery dataset will also serve as a valuable resource for 

various other prognostic studies related to multi-type data analysis and battery research.  

The rest of this paper is organized as follows. Section 5.2 provides a review of existing 

prognostic techniques for modeling discrete event data, analyzing multi-type data, as well as 

references for leveraging uncertainty information to alleviate training issues. Section 5.3 describes 

the details of the proposed UINN prognostic model, including the structure of each predictor and 

the joint training procedure. Then, Section 5.4 presents two numerical studies, including a 

simulation study with generated data and a case study using real-life data collected from PiSugar 

batteries. Finally, Section 5.5 presents an overall summary and conclusion of the work.  

5.2 Literature Review 

Literature on event modeling can be broadly categorized into two main branches: statistics-

based methods and DL methods. In both branches, events are typically assumed to be either 

terminal, where the system fails after the event occurrence, or non-terminal (i.e., recurrent), where 

the system is still functional after the event occurrence. In reliability literature, numerous statistical 

approaches have been developed to model the occurrence of terminal events. These models 

primarily rely on techniques from survival analysis, where the time to the terminal event is 

modeled using popular models such as the Cox proportional hazards (PH) model [42]. Typically, 
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these models assume a pre-specified parametric relationship between the hazard function (i.e., the 

instantaneous probability of a terminal event) with a group of covariates (also known as predictors). 

After the model parameters are estimated, one can plug in the covariates to obtain the mean time-

to-failure. Many extensions of the Cox PH models have been proposed, with the most prominent 

one being joint models. First proposed by [56], joint models draw prognostic insights from both 

continuous longitudinal data (i.e., degradation signals) and time-to-event data. Normally, the 

degradation signals are modeled by a mixed-effects model. Then, the fitted signals are plugged 

into the Cox PH model as covariates to compute the corresponding hazard and survival 

probabilities. These joint models have shown promising results in both medical and prognostic 

applications. Recent advancements have introduced joint models that use multivariate gaussian 

processes [44] for greater modeling flexibility and prediction accuracy.  

While these models offer strong predictive capabilities, their reliance on parametric 

relationships significantly limits their flexibility. A key limitation of the Cox model is the assumed 

linear relationship between the covariates and the log-hazard function. In practice, these quantities 

can have complex, nonlinear relationships that the Cox PH model cannot effectively capture. 

Another limitation arises from the direct use of longitudinal observations (e.g., degradation signals) 

as time-varying covariates, which introduces two major sources of bias in the estimation process. 

First, the parameter estimates are biased due to “Last-Observation-Carried-Forward” (LOCF) 

inference method [106], where the most recent observation is used instead of the true time-

dependent covariates. Second, measurement errors in the longitudinal observations introduce 

additional bias into the inference process [107]. Finally, these approaches are designed to only 

handle terminal events. In practice, the system can experience a wide range of non-terminal, multi-
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type, recurrent events that affect the underlying degradation status. As a result, these methods have 

limited applicability in real-world scenarios. 

Traditional statistics-based approaches for modeling recurrent events employed renewal 

processes [108]. These approaches typically assume that the system is fully restored to a ‘healthy’ 

state following maintenance actions. However, in practice, maintenance can have varying effects 

on the underlying system and does not always fully restore system health. To address this limitation, 

[109] proposed a class of imperfect maintenance models that apply a geometric reduction to the 

system’s age or event intensity. [110] proposed a multi-type recurrent event model for multi-

component systems with imperfect maintenance actions. In general, although there are many 

statistical approaches that accommodate multi-type recurrent events, they still impose strong 

parametric assumptions on the degradation trends of sub-systems by requiring the user to select 

the appropriate baseline process. In addition, these statistical approaches often struggle to scale 

with the number of event types.  

Another group of statistics-based approaches to model recurrent events are called temporal 

point processes (TPP), which are probabilistic generative models that capture the dynamics in 

event sequences [111]. TPPs do share some similar model structures with survival models for 

recurrent events, but the main difference is that survival models are interested in predicting the 

time to a terminal event, while TPPs focus on modeling the intensity of recurrent event occurrences 

over time. A general review of TPPs and their theoretical foundations can be found in [112]. 

However, a major limitation of classical TPPs is their parametric nature. Like survival models, 

they require the user to specify a baseline intensity and an intensity function, which can restrict 

the model’s ability to capture complex event dependencies.  
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In general, the main limitation of statistics-based approaches is their focus on parametricity, 

which restricts their ability to capture a wide range of complex interactions. To address this 

limitation, researchers have increasingly turned to DL approaches. By replacing the parametric 

functions with neural networks, these approaches offer much greater flexibility in modeling 

intricate functional relationships. For modeling the occurrence of terminal events, researchers have 

proposed to extend the Cox model using neural networks by replacing the linear covariate term 

with a generic neural network. Due to their flexibility, these models have outperformed traditional 

survival models in a variety of clinical and reliability applications, e.g., DeepSurv [48] and 

SurvivalNet [113].  

Neural network approaches have also been used to model the occurrence of non-terminal, 

recurrent actions, especially in the context of TPPs. Instead of specifying a parametric form of the 

event intensity, researchers have used a neural network to parameterize the intensity function. 

These NN-based extensions are commonly referred to as neural TPPs and have gained popularity 

in recent years due to their great predictive power and flexibility. The seminal work of [114] 

provided a general framework of neural TPPs, where each event is first represented as a feature 

vector. The sequence of feature vectors is then encoded into a fixed-dimensional history 

embedding vector, which is then used to derive the conditional distribution over the next event. 

Many variants have been proposed, including which information to include in the feature vector 

[115] and how to effectively encode the event history into a fixed-dimensional vector [116]. 

However, a common limitation of these approaches is the difficult training process due to their 

intricate model structures. In fact, empirical results have shown that neural TPPs are more 

susceptible to fitting issues and are highly sensitive to the choice of various model components 

[111]. Therefore, training a neural TPP often necessitates extensive efforts, including multiple 
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cross-validation steps, regularization strategies, and large-scale data collection to ensure adequate 

generalization performance.  

In summary, there are two main literature gaps that need to be addressed. First, there is a lack 

of data-driven methods that integrate insights from both discrete event data and continuous 

longitudinal data. Although there are some models (i.e., joint models) that capture the effect of 

both data types, they tend to be focused on terminal events and not on recurrent, non-terminal 

events. In practice, non-terminal events, such as maintenance actions, have a significant effect on 

the underlying degradation status. Therefore, the effect of non-terminal events must be accounted 

for in the model. Second, DL approaches are still difficult to train, with many of them frequently 

encountering model fitting issues. To avoid these common pitfalls and fully exploit the predictive 

power of neural networks, there is a need for an established, systematic training procedure for 

these models. In response, the proposed UINN model is a flexible, DL approach that: 1) accounts 

for the effect of multiple recurrent, non-terminal events as well as longitudinal signals; and 2) uses 

a systematic, joint training procedure based on uncertainty information to assist model training 

and accelerate the convergence of the loss function. The details of the UINN model are introduced 

in Section 5.3. 

 

Figure 5.1 Architecture of the proposed UINN model (Notation on unit 𝑖 is dropped for 

convenience). 
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5.3 Methodology 

This section describes the details of the proposed UINN model for multi-type data. An overview 

of the UINN model is shown in Figure 5.1 with three major components: the event predictor, the 

signal predictor, and the RUL predictor. As the name suggests, the event predictor processes the 

discrete event data and predicts the next event type and time, while the signal predictor takes the 

continuous multivariate signal data and predicts the subsequent set of signals. Then, the predicted 

event and signal data are fed into the RUL predictor for the final RUL prediction. Since each 

predictor has varying data types as inputs, each predictor has its own unique structure. Section 

5.3.1 first discusses the problem formulation. Section 5.3.2.1 describes the details of the event 

predictor, Section 5.3.2.2 illustrates the details of the signal predictor, and Section 5.3.2.3 describes 

the data alignment process used to prepare the predicted event and signal data as inputs for the 

RUL predictor. Finally, Section 5.3.3 describes the joint training procedure to fit the UINN model 

and explains how uncertainty information aids the training process by automatically weighing the 

loss components of each predictor. 

5.3.1 Problem Formulation 

Suppose that there are 𝑁𝑡𝑟𝑎𝑖𝑛 historical units that produce event sequence data and degradation 

signal data. In particular, a given unit 𝑖 ∈ {1,… ,𝑁𝑡𝑟𝑎𝑖𝑛} has associated event sequence data 𝑬𝑖 and 

degradation signal data 𝒀𝑖. The event data 𝑬𝑖 = {𝒆𝑖,𝑗, 𝑚𝑖,𝑗}𝑗=1

𝑛𝑖,𝑒𝑣𝑒𝑛𝑡
 has two main components: the 

event type 𝒆𝑖,𝑗, expressed as a one-hot encoded vector 𝒆𝑖,𝑗 = (𝑒𝑖,𝑗,1, … , 𝑒𝑖,𝑗,𝑍) ∈ ℝ1×𝑍, where the 

𝑧th position (for 𝑧 ∈ {1, … , 𝑍}) is 1 for the 𝑧th event type and all other positions are 0, and the 

associated event time (i.e., time of event occurrence) 𝑚𝑖,𝑗 for the 𝑗th event in the sequence. Note 

that 𝑛𝑖,𝑒𝑣𝑒𝑛𝑡 represents the total number of events in the event sequence for unit 𝑖. 
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The events considered in this study have three major characteristics: multivariate, recurrent, 

and non-terminal. First, multivariate means that there are 𝑍 ≥ 1 unique event types in the sequence. 

Second, recurrent implies that the units can experience the same event type multiple times during 

their lifetime. Third, the events are non-terminal (referred to as trigger events in some literature 

[42]), so the occurrence of these events can influence the underlying degradation status of the unit 

but does not indicate that the unit has failed. Examples of non-terminal events are periodic 

maintenance activities, incorrect machine setup or operation by an operator, early warning 

diagnostics, and minor faults or errors.  

The degradation signals of unit 𝑖 are represented as 𝒀𝑖 = {𝒀𝑖,1, … , 𝒀𝑖,𝑛𝑖,𝑠𝑖𝑔𝑛𝑎𝑙
 }. Each 𝒀𝑖,𝑗 ∈ ℝ𝑝 

term contains signal observations from 𝑝 sensors at the 𝑗th observation, where 𝑗 = {1,… , 𝑛𝑖,𝑠𝑖𝑔𝑛𝑎𝑙}. 

The respective observation times for the degradation signals are denoted as 𝑡𝑖,1, … , 𝑡𝑖,𝑛𝑖,𝑠𝑖𝑔𝑛𝑎𝑙
. Next, 

the corresponding RUL values of unit 𝑖 are denoted as 𝑹𝑼𝑳𝑖 = {𝑅𝑈𝐿𝑖,1, … , 𝑅𝑈𝐿𝑖,𝑛𝑖,𝑠𝑖𝑔𝑛𝑎𝑙
 }. Notice 

that due to the characteristics of physical sensors, the degradation signals and the RUL values are 

measured at the same time grids 𝑡𝑖,1, … , 𝑡𝑖,𝑛𝑖,𝑠𝑖𝑔𝑛𝑎𝑙
, which is different from the time grid of the 

events 𝒎𝑖 = {𝑚𝑖,1, … ,𝑚𝑖,𝑛𝑒𝑣𝑒𝑛𝑡
} . This is expected because events usually occur at irregular 

intervals, so the number of signal or RUL observations 𝑛𝑖,𝑠𝑖𝑔𝑛𝑎𝑙 is not equal to the number of event 

observations 𝑛𝑖,𝑒𝑣𝑒𝑛𝑡 (i.e., 𝑛𝑖,𝑠𝑖𝑔𝑛𝑎𝑙 ≠ 𝑛𝑖,𝑒𝑣𝑒𝑛𝑡). Since neural networks require inputs to be aligned 

on the same time grids, Section 5.3.2.3 introduces an input alignment procedure for the event, 

signal, and RUL values in the proposed UINN model. Once the events and signals are aligned on 

the same time grid, they are fed into the UINN model to predict the future event times, types, 

degradation signals, and RUL. 
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5.3.2 Proposed Network for Multi-type Data 

This subsection describes the structure of the proposed UINN model. As illustrated in Figure 

5.1, each data type requires a separate predictor to capture its unique characteristics. Details of 

each predictor (i.e., event predictor, signal predictor, and the RUL predictor with the input 

alignment step) are discussed below. 

5.3.2.1 Event Predictor 

The temporal dynamics of the event sequence  𝑬𝑖 = {(𝒆𝑖,𝑗, 𝑚𝑖,𝑗)}𝑗=1

𝑛𝑖,𝑒𝑣𝑒𝑛𝑡
 is captured via a 

variant of the Long Short-Term Memory (LSTM) model.  Before plugging the event sequence into 

the event predictor, it is preprocessed using a sliding window approach, where a fixed window 

width (i.e., number of events) 𝑇𝑊𝑒𝑣𝑒𝑛𝑡 is applied. Each input instance after the sliding window 

approach is denoted as 𝑬𝑖,𝑠 = {(𝒆𝑖,𝑗 , 𝑚𝑖,𝑗)}𝑗=𝑠−𝑇𝑊𝑒𝑣𝑒𝑛𝑡+1

𝑠
 for 𝑠 ∈ {𝑇𝑊𝑒𝑣𝑒𝑛𝑡, 𝑇𝑊𝑒𝑣𝑒𝑛𝑡 +

1,… , 𝑛𝑖,𝑒𝑣𝑒𝑛𝑡 − 1}. Then, the objective of the event predictor is to predict the next event type 𝒆𝑖,𝑠+1 

and event time 𝑚𝑖,𝑠+1. 

 

Figure 5.2 Detailed architecture of the event predictor. 
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The overall structure of the event predictor is illustrated in Figure 5.2 with the detailed input-

output procedure explained in the following:  

1. The 𝑍 -dimensional one-hot event type vector 𝒆𝑖,𝑗 ∈ ℝ1×𝑍  is first passed through an 

embedding matrix 𝑫 ∈ ℝ𝑍×𝑑𝑒𝑚𝑏 , where 𝑑𝑒𝑚𝑏 is the embedding dimension.  

2. The transformed event type vector 𝒆𝑖,𝑗𝑫 ∈ ℝ1×𝑑𝑒𝑚𝑏  is concatenated with the event time 

𝑚𝑖,𝑗 such that [𝒆𝑖,𝑗𝑫,𝑚𝑖,𝑗] ∈ ℝ1×(𝑑𝑒𝑚𝑏+1). 

3. This concatenated vector from Step 2 is fed into the LSTM layer, LSTM𝑒𝑣𝑒𝑛𝑡 , which 

produces a sequence of hidden states 𝑯𝑖,𝑠
𝑒𝑣𝑒𝑛𝑡 =

LSTM𝑒𝑣𝑒𝑛𝑡 ({𝒆𝑖,𝑗𝑫,𝑚𝑖,𝑗}𝑗=𝑠−𝑇𝑊𝑒𝑣𝑒𝑛𝑡+1

𝑠
, 𝑯𝑖,𝑠−1

𝑒𝑣𝑒𝑛𝑡, 𝒄𝑖,𝑠−1
𝑒𝑣𝑒𝑛𝑡) ∈ ℝ𝑇𝑊𝑒𝑣𝑒𝑛𝑡×𝑑ℎ𝑖𝑑𝑑𝑒𝑛 . Note that 

𝑑ℎ𝑖𝑑𝑑𝑒𝑛  is the dimension of the LSTM hidden states, 𝑯𝑖,𝑠−1
𝑒𝑣𝑒𝑛𝑡 ∈ ℝ𝑇𝑊𝑒𝑣𝑒𝑛𝑡×𝑑ℎ𝑖𝑑𝑑𝑒𝑛  is the 

hidden state of the event predictor at time 𝑚𝑖,𝑠−1, and 𝒄𝑖,𝑠−1
𝑒𝑣𝑒𝑛𝑡 ∈ ℝ𝑇𝑊𝑒𝑣𝑒𝑛𝑡×𝑑ℎ𝑖𝑑𝑑𝑒𝑛 is the cell 

state of the event predictor at time 𝑚𝑖,𝑠−1. The difference between the two states is that 

the cell state pays more attention to long-term dependencies, while the hidden state 

focuses on short-term dependencies.  

4. The hidden states 𝑯𝑖,𝑠
𝑒𝑣𝑒𝑛𝑡 are passed through a multi-head attention layer to improve the 

model’s ability to capture long-range dependencies in the event sequence. The resulting 

vector is represented as 𝑼𝑖,𝑠
𝑒𝑣𝑒𝑛𝑡 = MultiHeadAttention(𝑯𝑖,𝑠

𝑒𝑣𝑒𝑛𝑡) ∈ ℝ𝑇𝑊𝑒𝑣𝑒𝑛𝑡×𝑑ℎ𝑖𝑑𝑑𝑒𝑛. 

5. The latest observation of 𝑼𝑖,𝑠
𝑒𝑣𝑒𝑛𝑡, defined as 𝒖𝑖,𝑠

𝑒𝑣𝑒𝑛𝑡 = 𝑼𝑖,𝑠
𝑒𝑣𝑒𝑛𝑡[𝑇𝑊𝑒𝑣𝑒𝑛𝑡, : ] ∈ ℝ1×𝑑ℎ𝑖𝑑𝑑𝑒𝑛 , 

is processed through two separate dense layers to predict the next event type and event 

time, resulting in 𝑒̂𝑖,𝑠+1 = tanh(𝒖𝑖,𝑠
𝑒𝑣𝑒𝑛𝑡𝑾𝑡𝑦𝑝𝑒 + 𝑏𝑡𝑦𝑝𝑒)  and 𝑚̂𝑖,𝑠+1 =

tanh(𝒖𝑖,𝑠
𝑒𝑣𝑒𝑛𝑡𝑾𝑡𝑖𝑚𝑒 + 𝒃𝑡𝑖𝑚𝑒). Here, 𝑾𝑡𝑦𝑝𝑒 ,𝑾𝑡𝑖𝑚𝑒  ∈ ℝ𝑑ℎ𝑖𝑑𝑑𝑒𝑛×1 represent the weights of 

the event type and event time layers, and 𝑏𝑡𝑦𝑝𝑒 , 𝑏𝑡𝑖𝑚𝑒 ∈ ℝ1×1 are the corresponding bias 
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terms. Note that the event predictor returns a scalar prediction 𝑒̂𝑖,𝑠+1 instead of the one-

hot vector 𝒆̂𝑖,𝑠+1. 

The multi-head attention layer [117] used in step 4 is a mechanism that allows the model to 

better capture temporal dependencies across different segments in the input sequence. Past 

research has shown that adding attention layers to LSTMs improves their capability of capturing 

long-range dependencies in both event sequence and time series modeling [117]. Multi-head 

attention extends this concept by performing multiple attention functions in parallel and then 

averaging the results across the attention functions (i.e., heads), allowing the model to even better 

capture the temporal trends of the sequence.  

The next step is to define an appropriate loss function to train the event predictor. Since event 

type prediction is a classification task and event time prediction is a regression task, the network 

is trained on a weighted sum of the event time prediction loss and the event type prediction loss. 

The total loss function for the event predictor is shown below:  

𝐸𝑣𝑒𝑛𝑡 𝐿𝑜𝑠𝑠 = 𝓌𝑡𝑖𝑚𝑒ℒ𝑒𝑣𝑒𝑛𝑡
𝑡𝑖𝑚𝑒 + 𝓌𝑡𝑦𝑝𝑒ℒ𝑒𝑣𝑒𝑛𝑡

𝑡𝑦𝑝𝑒
, 

ℒ𝑒𝑣𝑒𝑛𝑡
𝑡𝑖𝑚𝑒 = ∑ ∑ (𝑚𝑖,𝑗 − 𝑚̂𝑖,𝑗)

2

𝑛𝑖,𝑒𝑣𝑒𝑛𝑡

𝑗=𝑇𝑊𝑒𝑣𝑒𝑛𝑡+1

,

𝑁𝑡𝑟𝑎𝑖𝑛

𝑖=1

 ℒ𝑒𝑣𝑒𝑛𝑡
𝑡𝑦𝑝𝑒

= ∑ ∑ CE(𝑒𝑖,𝑗, 𝑒̂𝑖,𝑗)

𝑛𝑖,𝑒𝑣𝑒𝑛𝑡

𝑗=𝑇𝑊𝑒𝑣𝑒𝑛𝑡+1

𝑁𝑡𝑟𝑎𝑖𝑛

𝑖=1

, 

CE(𝑒𝑖,𝑗, 𝑒̂𝑖,𝑗) = ∑𝑒𝑖,𝑗,𝑧 log(𝑒̂𝑖,𝑗,𝑧)

𝑍

𝑧=1

. (5.1) 

where 𝑒𝑖,𝑗,𝑧 is a binary indicator that is 1 if event 𝑧 is the true event for unit 𝑖’s 𝑗th event, 𝑒̂𝑖,𝑗,𝑧 is 

the predicted probability of the 𝑗th event being event 𝑧, and CE is the cross-entropy function. 

Details on how to configure the weights of each loss function 𝓌𝑡𝑦𝑝𝑒 and 𝓌𝑡𝑖𝑚𝑒 are explained in 

Section 5.3.3. 
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5.3.2.2 Signal Predictor 

The signal predictor is also based on the LSTM architecture due to the time-dependent 

characteristics of degradation signals. Given a window size 𝑇𝑊𝑠𝑖𝑔,  the degradation signals 

{𝒀𝑖,𝑗}𝑗=𝑡−𝑇𝑊𝑠𝑖𝑔+1

𝑡
 for 𝑡 ∈ {𝑇𝑊𝑠𝑖𝑔, … , 𝑛𝑖,𝑠𝑖𝑔𝑛𝑎𝑙} are passed into an LSTM model, which returns a 

vector of hidden states with 𝑯𝑖,𝑡
𝑠𝑖𝑔

∈ ℝ𝑇𝑊𝑠𝑖𝑔×𝑑ℎ𝑖𝑑𝑑𝑒𝑛2. Here, 𝑑ℎ𝑖𝑑𝑑𝑒𝑛2 represents the hidden layer 

size of the LSTM model. Then, the final hidden state 𝒉𝑖,𝑡
𝑠𝑖𝑔

= 𝑯𝑖,𝑡
𝑠𝑖𝑔

[𝑇𝑊𝑠𝑖𝑔 − 1, : ] ∈ ℝ1×𝑑ℎ𝑖𝑑𝑑𝑒𝑛2 is 

fed into a linear dense layer with a ReLU activation function. The resulting output is the predicted 

degradation signal at 𝑡 + 1 , such that 𝒀̂𝑖,𝑡+1 = ReLU(𝒉𝑖,𝑡
𝑠𝑖𝑔

𝑾𝑠𝑖𝑔 + 𝒃𝑠𝑖𝑔) , where 𝑾𝑠𝑖𝑔  ∈

ℝ𝑑ℎ𝑖𝑑𝑑𝑒𝑛2×𝑝 is the weight matrix and 𝒃𝑠𝑖𝑔 ∈ ℝ1×𝑝  is the bias term. Note that the signal predictor 

is trained using the Mean Squared Error (MSE) loss function shown below: 

ℒ𝑠𝑖𝑔 = ∑ ∑ (𝒀𝑖,𝑗 − 𝒀̂𝑖,𝑗)
2

𝑛𝑖,𝑠𝑖𝑔𝑛𝑎𝑙

𝑗=𝑇𝑊𝑠𝑖𝑔+1

𝑁𝑡𝑟𝑎𝑖𝑛

𝑖=1

. (5.2) 

5.3.2.3 RUL Predictor with Input Alignment Step 

The predicted event time, event time, and signal predictions serve as inputs for the RUL 

predictor. However, one challenge arises due to the different time intervals between the events and 

 

Figure 5.3 Example of misaligned event and time predictions 

 

 

 

 



129 

the degradation signals. As mentioned in Section 5.3.1, degradation signals typically occur at 

uniform time intervals, but events occur at irregular time intervals. This results in a misalignment 

between event predictions and signal predictions on the time grid. An example is illustrated in 

Figure 5.3. 

In Figure 5.3, there are signal predictions at each time interval 𝑡𝑖,1, 𝑡𝑖,2, … , 𝑡𝑖,7. On the contrary, 

there are three event predictions at irregular time intervals, with the first event occurred between 

𝑡𝑖,1 and 𝑡𝑖,2, the second occurred between 𝑡𝑖,3 and 𝑡𝑖,4, and so on. Since the RUL predictor is a 

neural network with a fixed input dimension, the predictions must be aligned on the same time 

grid. Inspired by discrete-time survival analysis models [118], we propose to address this challenge 

by first dividing the timeframe into disjoint intervals: (𝑡𝑖,1, 𝑡𝑖,2], (𝑡𝑖,2, 𝑡𝑖,3], … , (𝑡𝑖,6, 𝑡𝑖,7). The time 

intervals of the signal predictions serve as a reference for the discretization process, as they are 

often more granular and evenly distributed. A detailed description of the time discretization is 

shown in Figure 5.4. After discretizing the time grid, 𝑍 count variables 𝜉𝑖,𝑡1
1 , 𝜉𝑖,𝑡1

2 , … , 𝜉𝑖,𝑡1
𝑍 ≥ 0 are 

defined for each event type. The transformed new inputs are denoted as: 𝑿𝑖,2 ∈ ℝ𝑝+𝑍 =

Concatenate(𝒀̂𝑖,2, 𝜉𝑖,𝑡2
1 , … , 𝜉𝑖,𝑡2

𝑍 ), where 𝑿𝑖,2 is essentially a concatenated vector of the predicted 

 

Figure 5.4 Aligning the event and signal predictions using grid discretization 
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degradation signals and the event count variables. For instance, in Figure 5.4, the predicted 

occurrences of event type 1 are in intervals (𝑡𝑖,1, 𝑡𝑖,2) and (𝑡𝑖,5, 𝑡𝑖,6), so 𝜉𝑖,𝑡2
1 = 𝜉𝑖,𝑡6

1 = 1. Similarly, 

event type 2 happens in interval (𝑡𝑖,3, 𝑡𝑖,4), so 𝜉𝑖,𝑡4
2 = 1. 

 Now that the inputs 𝑿𝑖,1, 𝑿𝑖,2, … are aligned on the same timeframe with consistent input 

dimensions, and thus they can be fed into the final RUL predictor. This RUL predictor is a simple 

feedforward neural network consisting of multiple hidden layers with ReLU activation functions. 

In practice, the number of hidden layers is determined based on the data. Finally, the RUL predictor 

is trained using the MSE loss function defined as: 

ℒ𝑅𝑈𝐿 = ∑ ∑ (𝑅𝑈𝐿𝑖,𝑗 − 𝑅𝑈𝐿̂𝑖,𝑗)
2

𝑛𝑖,𝑠𝑖𝑔𝑛𝑎𝑙

𝑗=𝑇𝑊𝑠𝑖𝑔+1

𝑁𝑡𝑟𝑎𝑖𝑛

𝑖=1

. (5.3) 

5.3.3 Joint Training with Uncertainty-informed Loss Function 

The proposed UINN model has many predictors, each parameterized by different neural 

networks with their own loss functions. Specifically, there is the event predictor with event time 

loss ℒ𝑒𝑣𝑒𝑛𝑡
𝑡𝑖𝑚𝑒  and event type loss ℒ𝑒𝑣𝑒𝑛𝑡

𝑡𝑦𝑝𝑒
, the signal predictor with its loss function ℒ𝑠𝑖𝑔, and the RUL 

predictor with the RUL loss function ℒ𝑅𝑈𝐿. Due to this complex setup, training the UINN model 

is tricky and can easily fall into a local minimum with suboptimal performance. To simplify the 

training procedure, one possibility is to consider a sequential approach, which involves first 

training the event predictors and signal predictors separately, then using their predictions to train 

the RUL model in the final step. However, this two-stage approach is known to introduce unwanted 

bias in the model estimation, potentially leading to erroneous results. A more desirable alternative 

is joint training all models in a systematic manner to reduce modeling bias.  
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To jointly train the UINN model, one needs to find the loss weights (i.e., 𝓌𝑡𝑖𝑚𝑒 , 𝓌𝑡𝑦𝑝𝑒 , 

𝓌𝑠𝑖𝑔,𝓌𝑅𝑈𝐿 ≥ 0) for the four loss functions (i.e., components):  

ℒ𝑗𝑜𝑖𝑛𝑡 = 𝓌𝑡𝑖𝑚𝑒ℒ𝑒𝑣𝑒𝑛𝑡
𝑡𝑖𝑚𝑒 + 𝓌𝑡𝑦𝑝𝑒ℒ𝑒𝑣𝑒𝑛𝑡

𝑡𝑦𝑝𝑒
+ 𝓌𝑠𝑖𝑔ℒ𝑠𝑖𝑔 + 𝓌𝑅𝑈𝐿ℒ𝑅𝑈𝐿 . (5.4) 

The importance of each prediction task in the UINN model is reflected by the loss component 

weights, with larger weights signifying greater importance. Past approaches for weight calculation 

included naïve approaches like uniform weights or manual tuning by trial-and-error. However, 

manual tuning of the weights is computationally expensive and does not scale well with model 

complexity. Hence, a more systematic approach that can automatically learn the weights is 

preferred.  

Multi-task learning [119] provides a solution for this challenge. Specifically, multi-task 

learning aims to improve learning efficiency and prediction accuracy through the simultaneous 

optimization of multiple tasks (i.e., loss functions) instead of single tasks. To do so, task-dependent 

(i.e., homoscedastic) uncertainty information is used for weighing the individual loss components. 

Empirical results indicate that these uncertainty-informed weights can effectively balance multiple 

tasks and lead to superior performance than naïve counterparts [6]. In the proposed UINN model, 

each loss component is treated as an individual task and their task-dependent uncertainty is used 

as weights. Notably, task-dependent uncertainty measures the relative confidence of each task, and 

it has been frequently used in prior research [120] to weigh losses in a multi-task learning 

framework. 

To define the task uncertainty-informed loss functions, the likelihood functions for the 

regression tasks (i.e., RUL, event time, and signal prediction) and the classification task (i.e., for 

event type prediction) are first studied. For regression tasks, a Gaussian likelihood function is used, 

where the model output serves as its mean and the observation noise term has a variance 𝜎2. As 
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an example, for the RUL predictor, 𝑝(𝑅𝑈𝐿𝑡+1 |𝑓𝑅𝑈𝐿(𝑿𝑡))~𝒩(𝑓𝑅𝑈𝐿(𝑿𝑡), 𝜎𝑅𝑈𝐿
2 ), where 𝑓𝑅𝑈𝐿 is the 

RUL predictor and 𝜎𝑅𝑈𝐿
2  is the variance of the gaussian observation noise. Note that the subscript 

𝑖 on the units is dropped for notational simplicity. The negative log likelihood of the model can be 

written as  

− log (𝑝(𝑅𝑈𝐿𝑡+1|𝑓𝑅𝑈𝐿(𝑿𝑡))) ∝
1

2𝜎𝑅𝑈𝐿
2

‖𝑅𝑈𝐿𝑡+1 − 𝑓𝑅𝑈𝐿(𝑿𝑡)‖
2 + log 𝜎𝑅𝑈𝐿 . (5.5) 

Notice that the ‖𝑅𝑈𝐿𝑡+1 − 𝑓𝑅𝑈𝐿(𝑿𝑡)‖
2 term is identical to the MSE loss function of the RUL 

predictor ℒ𝑅𝑈𝐿 defined in (5.3). The difference is that the loss function is scaled by 
1

2𝜎𝑅𝑈𝐿
2 , which 

can be regarded as the loss component weight. Intuitively, this means that models with higher task-

dependent uncertainty receive lower weights, and vice versa. The additional log term, log 𝜎𝑅𝑈𝐿, 

acts as a regularizer that discourages the noise term from increasing too much. The same approach 

can be used for other regression tasks like event time prediction and signal prediction.  

For a classification task like event type prediction, the equation is similar, but the Gaussian 

likelihood is replaced by a Boltzmann distribution (i.e., scaled version of the model output passed 

through a Softmax function). For ease notation, we define the input instances of the event predictor 

as 𝒆𝑠 = {𝒆𝑗𝑫}
𝑗=𝑠−𝑇𝑊𝑒𝑣𝑒𝑛𝑡+1

𝑠
 and 𝒎𝑠 = {𝑚𝑗}𝑗=𝑠−𝑇𝑊𝑒𝑣𝑒𝑛𝑡+1

𝑠
 for 𝑠 ∈ {𝑇𝑊𝑒𝑣𝑒𝑛𝑡, 𝑇𝑊𝑒𝑣𝑒𝑛𝑡 +

1,… , 𝑛𝑖,𝑒𝑣𝑒𝑛𝑡 − 1}. Note that the subscript 𝑖 on the units is again dropped. The model likelihood 

can be written as: 

𝑝(𝑒𝑠+1 = 𝑧|𝑓𝑒𝑣𝑒𝑛𝑡(𝒎𝑠, 𝒆𝑠), 𝜎𝑡𝑦𝑝𝑒
2 ) = Softmax(

1

𝜎𝑡𝑦𝑝𝑒
2 𝑓𝑒𝑣𝑒𝑛𝑡(𝒎𝑠, 𝒆𝑠)). (5.6) 

where 𝑓𝑒𝑣𝑒𝑛𝑡(𝒎𝑠, 𝒆𝑠) represents the outputs (i.e., event type and time predictions) obtained from 

the event predictor 𝑓𝑒𝑣𝑒𝑛𝑡. Taking the negative log likelihood of this expression leads (5.6) to the 

following expression:  
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−log 𝑝(𝑒𝑠+1 = 𝑧|𝑓𝑒𝑣𝑒𝑛𝑡(𝒎𝑠, 𝒆𝑠), 𝜎𝑡𝑦𝑝𝑒
2 ) =

1

𝜎𝑡𝑦𝑝𝑒
2 (CE(𝑒𝑠+1, 𝑓𝑒𝑣𝑒𝑛𝑡(𝒎𝑠, 𝒆𝑠)) 

+ log

∑ exp (
1

𝜎𝑡𝑦𝑝𝑒
2 𝑓𝑒𝑣𝑒𝑛𝑡

𝑧′
(𝒎𝑠, 𝒆𝑠)) 𝑧′

(∑ exp (𝑓𝑒𝑣𝑒𝑛𝑡
𝑧′

(𝒎𝑠, 𝒆𝑠))𝑧′ )

1

𝜎𝑡𝑦𝑝𝑒
2

 

Here, 𝑓𝑒𝑣𝑒𝑛𝑡
𝑧 (𝒎𝑠, 𝒆𝑠) represents the 𝑧th element of the output produced by𝑓𝑒𝑣𝑒𝑛𝑡(𝒎𝑠, 𝒆𝑠). The 

following expression can be further reduced with the approximation: 

(∑ exp (𝑓𝑒𝑣𝑒𝑛𝑡
𝑧′

(𝒎𝑠, 𝒆𝑠))𝑧′ )

1

𝜎𝑡𝑦𝑝𝑒
2

≈
1

𝜎𝑡𝑦𝑝𝑒
∑ exp(

1

𝜎𝑡𝑦𝑝𝑒
2 𝑓𝑒𝑣𝑒𝑛𝑡

𝑧′
(𝒎𝑠, 𝒆𝑠))𝑧′ , where the equality holds 

as 𝜎𝑡𝑦𝑝𝑒
2  approaches 1. This simplification has been widely used in deep learning literature [6] and 

offers practical benefits by reducing computational complexity. It is particularly effective when 

the predicted logits are sharply peaked. After the simplification, the loss function can be written 

as:  

−log 𝑝(𝑒𝑠+1 = 𝑧|𝑓𝑒𝑣𝑒𝑛𝑡(𝒎𝑠, 𝒆𝑠), 𝜎𝑡𝑦𝑝𝑒
2 )

≈ log 𝜎𝑡𝑦𝑝𝑒 +
1

𝜎𝑡𝑦𝑝𝑒
2 (CE(𝑒𝑠+1, 𝑓𝑒𝑣𝑒𝑛𝑡(𝒎𝑠, 𝒆𝑠)). 

(5.7) 

As shown in (5.7), the simplification results in an objective function that is easier to optimize. 

With the loss functions for both regression and classification tasks defined, the uncertainty-

informed joint loss function can be formulated. The joint likelihood of the entire network ℒ𝑗𝑜𝑖𝑛𝑡 is 

expressed as follows:  

ℒ𝑗𝑜𝑖𝑛𝑡 = ∏ [ ∏ 𝑝(𝑒𝑠+1 = 𝑧|𝑓𝑒𝑣𝑒𝑛𝑡(𝒎𝑠, 𝒆𝑠), 𝜎𝑡𝑦𝑝𝑒
2 ) ⋅ 𝑝(𝑚𝑠+1|𝑓𝑒𝑣𝑒𝑛𝑡(𝒎𝑠, 𝒆𝑠), 𝜎𝑡𝑖𝑚𝑒

2 )

𝑛𝑖,𝑒𝑣𝑒𝑛𝑡−1

𝑠=𝑇𝑊𝑒𝑣𝑒𝑛𝑡

𝑁𝑡𝑟𝑎𝑖𝑛

𝑖=1

⋅ ∏ 𝑝(𝒀𝑡+1|𝑓𝑠𝑖𝑔(𝒀𝑡), 𝜎𝑠𝑖𝑔
2 ) ⋅

𝑛𝑖,𝑠𝑖𝑔𝑛𝑎𝑙−1

𝑡=𝑇𝑊𝑠𝑖𝑔

𝑝(𝑅𝑈𝐿𝑡+1|𝑓𝑅𝑈𝐿(𝑿𝑡), 𝜎𝑅𝑈𝐿
2 )]. 
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Taking the negative log likelihood of ℒ𝑗𝑜𝑖𝑛𝑡 results in the following expression: 

− log ℒ𝑗𝑜𝑖𝑛𝑡 ∝

∑

[
 
 
 
 
 
 

∑ (
1

2𝜎𝑡𝑖𝑚𝑒
2

(𝑚𝑠+1 − 𝑚̂𝑠+1)
2 +

1

𝜎𝑡𝑦𝑝𝑒
2 CE(𝑒𝑠+1, 𝑒̂𝑠+1) + log 𝜎𝑡𝑖𝑚𝑒 + log 𝜎𝑡𝑦𝑝𝑒) +

𝑛𝑖,𝑒𝑣𝑒𝑛𝑡−1

𝑠=𝑇𝑊𝑒𝑣𝑒𝑛𝑡

∑ (
1

2𝜎𝑠𝑖𝑔
2 (𝒀𝑡+1 − 𝒀̂𝑡+1)

2
+

1

2𝜎𝑅𝑈𝐿
2 (𝑅𝑈𝐿𝑡+1 − 𝑅𝑈𝐿̂𝑡+1)

2
) + log 𝜎𝑠𝑖𝑔 + log 𝜎𝑅𝑈𝐿)

𝑛𝑖,𝑠𝑖𝑔𝑛𝑎𝑙−1

𝑡=𝑇𝑊𝑠𝑖𝑔 ]
 
 
 
 
 
 

.

𝑁𝑡𝑟𝑎𝑖𝑛

𝑖=1

 
 

This is equivalent to (5.4) with 𝓌𝑡𝑖𝑚𝑒 =
1

2𝜎𝑡𝑖𝑚𝑒
2 , 𝓌𝑡𝑦𝑝𝑒 =

1

𝜎𝑡𝑦𝑝𝑒
2 , 𝓌𝑠𝑖𝑔 =

1

2𝜎𝑠𝑖𝑔
2 ,𝓌𝑅𝑈𝐿 =

1

2𝜎𝑅𝑈𝐿
2  

without the regularizer terms. Finally, the regularizer terms for each loss component is added to 

avoid extreme (i.e., too large) variances, resulting in the final joint loss shown below:  

− log ℒ𝑗𝑜𝑖𝑛𝑡 = 
1

2𝜎𝑡𝑖𝑚𝑒
2 ℒ𝑡𝑖𝑚𝑒 +

1

𝜎𝑡𝑦𝑝𝑒
2 ℒ𝑡𝑦𝑝𝑒 +

1

2𝜎𝑠𝑖𝑔
2 ℒ𝑠𝑖𝑔 +

1

2𝜎𝑅𝑈𝐿
2 ℒ𝑅𝑈𝐿 + log 𝜎𝑡𝑖𝑚𝑒 

+ log 𝜎𝑡𝑦𝑝𝑒 + log 𝜎𝑠𝑖𝑔 + log 𝜎𝑅𝑈𝐿 . (5.8) 

5.4 Numerical Study 

This section contains two numerical studies to evaluate the performance of the UINN model: 

one on simulated data in Section 5.4.1 and the other on real-life battery degradation data collected 

from the PiSugar battery for Raspberry Pi devices in Section 5.4.2. Specifically, Section 5.4.1.1 

discusses the details of the data generation process, while Section 5.4.1.2 introduces an overview 

of the benchmark methods and the evaluation metrics used in this study. Section 5.4.1.3 then 

presents the evaluation results on the simulated dataset. Next, Section 5.4.2.1 introduces the 

experimental setup used to collect the battery degradation data from the PiSugar battery. Finally, 

Section 5.4.2.2 discusses the performance of the UINN model on the real-life dataset. Details of 

the average computational time and hyperparameter optimization of the simulation study is 

discussed in the appendix at Section 5.6.  
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5.4.1 Simulation Study 

5.4.1.1 Overview of Data Generation 

Consider a unit that produces both discrete event data and continuous signal data. Since the 

events are non-terminal and only affects the degradation status, only “soft failure” scenarios are 

considered (i.e., unit 𝑖 is considered to have failed once the underlying degradation status 𝜂𝑖(𝑡) 

reaches a specific failure threshold 𝑙). Specifically, the failure time 𝑇𝑖  is defined as such: 𝑇𝑖 =

argmin
𝑡

𝜂𝑖(𝑡) ≥ 𝑙.  The underlying degradation status 𝜂𝑖(𝑡) is affected by two components: the 

continuous signals, and the cumulative counts of each event type. The exact relationship is 

specified as such:  

𝜂𝑖(𝑡) = 𝜶𝒀𝑖(𝑡) + 𝜷𝝓𝑖(𝑡).  (5.9) 

Here, 𝜶 = [𝛼1, … , 𝛼𝑝] ∈ ℝ1×𝑝  is the coefficient vector for the continuous signals, 𝜷 =

[𝛽1, … , 𝛽𝑍] ∈ ℝ1×𝑍  is the coefficient vector for the discrete events, and 𝝓𝑖(𝑡) =

[𝜙𝑖,1(𝑡), … , 𝜙𝑖,𝑍(𝑡)]
𝑇

∈ ℝ𝑍×1 is the cumulative counts for each event type. For instance, if event 

type 1 has occurred twice by a given time 𝑡, then 𝜙𝑖,1(𝑡) = 2. In this simulation study, we generate 

2 degradation signals and 4 event types such that 𝑝 = 2, 𝑍 = 4. The coefficients for the signals are 

set as 𝜶 = [0.5,0.3]𝑇, reflecting a moderate association with the underlying degradation status. 

For the events, the coefficients are set as 𝜷 = [5,7,1,0.1]𝑇. This implies that event types 1 and 2 

have strong associations with the underlying degradation status, event 3 has a moderate association, 

whereas event 4 has a negligible impact.  

The signals are generated using a mixed effects model with a polynomial basis function such 

that 𝑌𝑖,1(𝑡) = 𝝍(𝑡)𝚪𝑖,1 + 𝜀𝑖,1(𝑡) , with 𝝍(𝑡) = [1, 𝑡, 𝑡2] ∈ ℝ1×3  as the basis, and 𝚪𝑖,1 ∈ ℝ3×1  as 

the corresponding degradation coefficient. The degradation coefficients are sampled from a 
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multivariate normal distribution 𝚪𝑖,1~𝑀𝑉𝑁(𝝁1, 𝚺1), 𝚪𝑖,2~𝑀𝑉𝑁(𝝁2, 𝚺2)  with 𝝁1 =

[2.5,0.1,0.01]𝑇 , 𝝁2 = [1.5,0.1,0.01]𝑇 , 𝚺1 = (
0.2 −4𝑒 − 4 7𝑒 − 5

−4𝑒 − 4 3𝑒 − 6 1𝑒 − 7
7𝑒 − 5 1𝑒 − 7 3𝑒 − 6

) , 𝚺2 =

(
0.1 −2𝑒 − 4 4𝑒 − 6

−2𝑒 − 4 3𝑒 − 6 1𝑒 − 8
4𝑒 − 6 1𝑒 − 8 3𝑒 − 6

). Finally, 𝜀𝑖,1(𝑡), 𝜀𝑖,2(𝑡)~𝑁(0,12) are the added Gaussian noise 

terms.  

Simulating the events is more challenging as there are multiple event types with possible 

correlations among the events. One popular method for event sequence generation is the 

multivariate Hawkes Process, which is a self-exciting, 𝑍 −dimensional point process defined by 

its conditional intensity function 𝜆𝑧(𝑡) shown below:  

𝜆𝑧(𝑡) = 𝜇𝑧 + ∑ ∑ 𝜑𝑧𝑧′(𝑡 − 𝑡𝑘
𝑧′

)

𝑘:𝑡𝑘
𝑧′

<𝑡

𝑍

𝑧′=1

. 

The intensity function 𝜆𝑧(𝑡) indicates the infinitesimal probability of an event 𝑧 occurring during 

the time interval [𝑡, 𝑡 + 𝑑𝑡]. Notice that the intensity is affected by both the baseline intensity 𝜇𝑧 

and the past events (i.e., including other event types) that occurred before time 𝑡. The contribution 

of the past events 𝑧′ to the intensity of event 𝑧 is measured by the nonnegative triggering kernel  

𝜑𝑧𝑧′  (𝜑𝑧𝑧′(𝑡) ≥ 0, ∀𝑡 ≥ 0)  and the degree of time decay 𝑡 − 𝑡𝑘
𝑧′

, where 𝑡𝑘
𝑧′

 represent the 

timestamps of all events of event type 𝑧′ . For this simulation study, the exponential 

parameterization of the kernel is used such that 𝜑𝑧𝑧′(𝑡) = 𝜈𝑧𝑧′
𝜒𝑧𝑧′

exp(−𝜒𝑧𝑧′
𝑡) 𝕀𝑡>0 , where 

{𝜈𝑧𝑧′
}
𝑧,𝑧′∈𝑍

 represents the adjacency matrix (i.e., measures the effect from event 𝑧 and 𝑧′) and 

{𝜒𝑧𝑧′
}
𝑧,𝑧′∈𝑍

 represents the decay matrix (i.e., controls the degree of time decay), and 𝕀𝑡>0 is the 

identity function. Note that we fix the decay parameter 𝜒𝑧𝑧′
= 1 to simplify the simulation and 
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focus on the effect of the adjacency matrix and baseline intensity. For all four event types 𝑧 ∈

{1, . . ,4} , the baseline intensity 𝜇𝑧  is sampled from a uniform distribution such that 

𝜇𝑧~Unif(0.05,0.10). To simulate a wide range of event interactions, it is assumed that the first 

event type is influential to all other events, the second and third event types are moderately 

influential, and the fourth event type has negligible influence. As a result, the adjacency matrix 

{𝜈𝑧𝑧′
}
𝑧,𝑧′∈𝑍={1,2,3,4}

 is set such that the diagonal terms {𝜈𝑧𝑧′
}
𝑧=𝑧′ is set to a baseline level of 0.01. 

The non-diagonal terms are set to {𝜈𝑧𝑧′
}
𝑧≠𝑧′,𝑧=1

~Unif(0.05,0.06) , 

{𝜈𝑧𝑧′
}
𝑧≠𝑧′,𝑧=2,3

~Unif(0.01,0.02), {𝜈𝑧𝑧′
}
𝑧≠𝑧′,𝑧=4

= 0.  

Once all continuous signal data and discrete events are simulated, they are plugged into (5.9) 

to obtain the final underlying degradation status 𝜂𝑖(𝑡). Then, the failure times of each unit 𝑖 is 

recorded when 𝜂𝑖(𝑡) reaches a pre-specified failure threshold 𝑙, which is set to 100 in this case.  

Figure 5.5 shows an example of a sample training unit’s degradation status, with the event’s 

occurrence time marked in each color. The difference in the jumps of the underlying degradation 

status represents the varying levels of influence of each event on the unit’s degradation.   

Note that this simulation process can be easily extended to accommodate varying number of 

event types, degradation signals, and failure thresholds. All computations were done in Python 

3.9.10, with the Hawkes process simulated using the Python “tick” library [121].  
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5.4.1.2 Performance Evaluation & Benchmark Methods 

This study thoroughly evaluates various aspects of the UINN model:  

• First, the benefits of incorporating insights from both data types are assessed. The 

prognostic performance of the UINN model is compared with model variants that only 

consider information from a single data type. The three variants are the full UINN model 

that considers both signal and event data (i.e., “Full”), the UINN model that only considers 

event data (i.e., “Event only”), and the UINN model that only considers signal data (i.e., 

“Signal only”).  

• In addition, the event type/time prediction performance is compared with four popular deep 

learning and statistical benchmarks. These include: (i) the Hawkes process with a 

nonparametric kernel [122], (ii) the bi-directional LSTM and (iii) the GRU approach by 

Huang et al. [103], and (iv) the popular transformers architecture [117]. The first approach 

 

Figure 5.5 Underlying degradation status of a sample training unit. (Blue Long Dashed: Event 

1 occurrence time, Green Short Dashed: Event 2 occurrence time, Purple Dashdotted: Event 3 

occurrence time, Orange Dotted: Event 4 occurrence time, Black Solid: Underlying degradation 

status) 

 

 



139 

using Hawkes process is a statistical method that performs a nonparametric estimation of 

the unknown kernel function using the expectation maximization algorithm. The remaining 

three benchmarks are DL methods that leverage various architectures commonly used in 

event type/time prediction. Both LSTM and GRUs are based on a recurrent neural network 

architecture, while the more modern transformers use attention in place of the recurrent 

relations. 

• Finally, this study explores the benefits of considering uncertainty information in the joint 

training procedure. A naïve version of the UINN model without uncertainty information is 

compared with the UINN model with uncertainty information. The predictive performance 

and the training curves of the two models are further analyzed.  

The models are evaluated on three metrics. For RUL prediction, signal prediction, and event time 

prediction, the mean absolute error (MAE) metric is used:  

𝑀𝐴𝐸𝑅𝑈𝐿 =
∑ ∑ |𝑅𝑈𝐿𝑖,𝑗 − 𝑅𝑈𝐿̂𝑖,𝑗|

𝑛𝑖,𝑠𝑖𝑔𝑛𝑎𝑙

𝑗=𝑇𝑊𝑠𝑖𝑔+1
𝑁𝑡𝑒𝑠𝑡
𝑖=1

∑ (𝑛𝑖,𝑠𝑖𝑔𝑛𝑎𝑙 − 𝑇𝑊𝑠𝑖𝑔)
𝑁𝑡𝑒𝑠𝑡

𝑖=1

, 𝑀𝐴𝐸𝑌

∑ ∑ |𝑌𝑖,𝑗 − 𝑌̂𝑖,𝑗|
𝑛𝑖,𝑠𝑖𝑔𝑛𝑎𝑙

𝑗=𝑇𝑊𝑠𝑖𝑔+1
𝑁𝑡𝑒𝑠𝑡
𝑖=1

∑ (𝑛𝑖,𝑠𝑖𝑔𝑛𝑎𝑙 − 𝑇𝑊𝑠𝑖𝑔)
𝑁𝑡𝑒𝑠𝑡

𝑖=1

, 

𝑀𝐴𝐸𝑚 =
∑ ∑ |𝑚𝑖,𝑗 − 𝑚̂𝑖,𝑗|

𝑛𝑖,𝑒𝑣𝑒𝑛𝑡
𝑗=𝑇𝑊𝑒𝑣𝑒𝑛𝑡+1

𝑁𝑡𝑒𝑠𝑡
𝑖=1

∑ (𝑛𝑖,𝑠𝑖𝑔𝑛𝑎𝑙 − 𝑇𝑊𝑒𝑣𝑒𝑛𝑡)
𝑁𝑡𝑒𝑠𝑡

𝑖=1

. 

For event type prediction, the following micro F1 score and accuracy score are used:  

Accuracy =
∑ ∑ 𝕀{𝑒𝑖,𝑗 = 𝑒̂𝑖,𝑗}

𝑛𝑖,𝑒𝑣𝑒𝑛𝑡

𝑗=𝑇𝑊𝑒𝑣𝑒𝑛𝑡+1
𝑁𝑡𝑒𝑠𝑡
𝑖=1

∑ (𝑛𝑖,𝑠𝑖𝑔𝑛𝑎𝑙 − 𝑇𝑊𝑒𝑣𝑒𝑛𝑡)
𝑁𝑡𝑒𝑠𝑡

𝑖=1

, Micro F1

=
2 × 𝑀𝑖𝑐𝑟𝑜 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑀𝑖𝑐𝑟𝑜 𝑅𝑒𝑐𝑎𝑙𝑙

𝑀𝑖𝑐𝑟𝑜 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑀𝑖𝑐𝑟𝑜 𝑅𝑒𝑐𝑎𝑙𝑙
, 

Micro Precision =
∑ TPz

𝑍
𝑧=1

∑ (TPz
𝑍
𝑧=1 + FP𝑧)

,Micro Recall =
∑ TPz

𝑍
𝑧=1

∑ (TPz
𝑍
𝑧=1 + FN𝑧)

, 
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where TPz = ∑ ∑ 𝕀{𝑒𝑖,𝑗 = 𝑧 ∩ 𝑒̂𝑖,𝑗 = 𝑧}
𝑛𝑖,𝑒𝑣𝑒𝑛𝑡

𝑗=𝑇𝑊𝑒𝑣𝑒𝑛𝑡+1
𝑁𝑡𝑒𝑠𝑡
𝑖=1 , FPz = ∑ ∑ 𝕀{𝑒𝑖,𝑗 ≠ 𝑧 ∩

𝑛𝑖,𝑒𝑣𝑒𝑛𝑡

𝑗=𝑇𝑊𝑒𝑣𝑒𝑛𝑡+1
𝑁𝑡𝑒𝑠𝑡
𝑖=1

𝑒̂𝑖,𝑗 = 𝑧},  FNz = ∑ ∑ 𝕀{𝑒𝑖,𝑗 = 𝑧 ∩ 𝑒̂𝑖,𝑗 ≠ 𝑧}
𝑛𝑖,𝑒𝑣𝑒𝑛𝑡

𝑗=𝑇𝑊𝑒𝑣𝑒𝑛𝑡+1
𝑁𝑡𝑒𝑠𝑡
𝑖=1 , and 𝕀 is the indicator function. Since 

there are multiple event types, the micro-averaged F1 score is employed here instead of the 

conventional F1 score for binary event types. Accuracy directly measures the percent of the 

correctly predicted event types, while the F1 score is a more balanced score that takes the harmonic 

mean of precision and recall.  

5.4.1.3 Simulation Results 

First, the event type prediction, signal prediction, and final RUL prediction results of the three 

model variants are shown in Table 5.1 below. Note that the numerical results are obtained by 

averaging the prediction errors across 50 repeated evaluations, and the lowest errors of each 

prediction task is boldfaced for visual clarity. Results show that the full UINN model that considers 

both data types outperform the event/signal only counterparts. As expected, the models that only 

capture a single data type (i.e., signal/event only) shows poor performance in predicting the other 

data type as well as the final RUL values. Another interesting observation is that the full model 

has better predictive performance than individual models on their respective tasks (i.e., event type 

prediction and signal prediction). For instance, the full model has a marginally higher micro F1 

score (0.9098) than the event only model’s F1 score (0.9051), and a lower MAE (0.1274) than the 

Table 5.1 Evaluation results of the UINN model and the signal/event only counterparts with 

±1 standard deviation 

Model 
Event Type 

(Micro F1) 

Signal 

(MAE) 

RUL 

(MAE) 

UINN (Full) 0.9098±0.0275 0.1274±0.0365 7.7978±0.4410 

UINN (Event only) 0.9051±0.0290 20.474±0.0224 14.990±0.0580 

UINN (Signal only) 0.2156±0.0096 0.1732±0.0653 7.9394±0.6281 
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signal only model (0.1732). This further demonstrates that jointly modeling the dynamics of both 

data types and their associated prediction tasks improves the model’s representation capacity, 

leading to improved performance over individual prediction tasks. 

To further validate this result, Table 5.2 presents a detailed comparison of the event prediction 

performance of the UINN model against existing benchmark methods. Note that all benchmarks 

have been solely trained on the event data and have no access to the signal data. From the prediction 

results in Table 5.2, the UINN model outperforms all benchmarks in event type and time prediction. 

This again demonstrates the effectiveness of incorporating insights from both data types, as it 

results in superior prediction performance in individual tasks like event prediction. In particular, 

the methods by [103] perform similarly to the proposed model as they are based on a similar RNN 

architecture, but the proposed UINN model achieves a better performance in all categories. For 

the traditional Hawkes Process with a nonparametric kernel, it has overall much lower prediction 

performance due to its restrictive model structure and focus on parametricity. Modern methods 

like Transformers perform significantly worse than even the conventional statistical models. This 

is likely because these advanced models with attention often require a large amount of training 

data to effectively learn the underlying patterns. Additionally, these models tend to have many 

parameters that makes them prone to over/underfitting when data is limited.  

Table 5.2 Event prediction results of the UINN model against existing benchmark methods 

with ±1 standard deviation 

Model 
Event Type  

(Micro F1) 

Event Type 

(Accuracy) 

Event Time 

(MAE) 

Hawkes Process  

(nonparametric kernel) 
0.6875±0.1289 0.6759±0.1372 1.1326±0.2314 

LSTM [103] 0.8872±0.0344 0.8881±0.0305 0.6788±0.0881 

GRU [103] 0.8936±0.0127 0.8946±0.0109 0.7152±0.0512 

Transformers [117] 0.3487±0.0111 0.3474±0.0122 2.2829±0.0054 

UINN (Full) 0.9098±0.0275 0.9096±0.0279 0.6565±0.0465 
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Finally, this study investigates the contributions of the task-specific uncertainty information to 

the joint loss function. To demonstrate the benefits, this study first considers a naïve model with 

no uncertainty information, where the weights of each loss component are all equal such that 

𝓌𝑡𝑖𝑚𝑒 , 𝓌𝑡𝑦𝑝𝑒 , 𝓌𝑠𝑖𝑔 ,𝓌𝑅𝑈𝐿 = 1 . This naïve model’s training procedure and prognostic 

performance are compared to that of the proposed UINN model. Note that all models consider 

both event and signal data types, and the only difference is the inclusion of uncertainty in the loss 

function weights. Evaluation results in Table 5.3 show that the naïve model drastically 

underperforms the uncertainty-informed model in terms of event type, signal, and RUL prediction.  

 
 

Figure 5.6 Averaged training total loss curves of the Naïve model in red (left) and the 

proposed UINN model with uncertainty-informed weights in blue (right). 

 

Table 5.3 Evaluation results of the UINN model with/without uncertainty information with 

±1 standard deviation 

Model 
Event Type 

(Micro F1) 

Signal 

(MAE) 

RUL 

(MAE) 

UINN (With uncertainty) 0.9098±0.0275 0.1274±0.0365 7.7978±0.4410 

UINN (Naïve) 0.2609±0.1748 0.2279±0.3652 7.9431±2.4100 
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Figure 5.6 illustrates the averaged total training loss of the naïve model and the proposed UINN 

model with uncertainty-informed weights. Note that the reported training curves are averaged 

across 50 iterations with different initializations. Due to the different scales of the loss functions, 

this analysis focuses on the convergence trends of the loss functions rather than their absolute 

values. Results show that uncertainty-informed weights significantly accelerate the convergence 

rate of the network. The loss function of the UINN model in blue (right) stabilizes in around 25 

iterations, while the naïvely weighted model in red (left) requires more than 175 iterations. This 

phenomenon can be seen across all the different loss components, including the event type and 

event time loss as shown in Figure 5.7. From the figure, the proposed model with uncertainty 

converges much quicker, while the naïve versions suffer for around 100 initial iterations.  

These results further highlight the importance of leveraging uncertainty information in the loss 

function, as it results in faster model convergence and avoids potential fitting issues in the early 

 

Figure 5.7 Visualized event type loss and event time loss training curves with the Naïve 

model in red (left) and the proposed UINN model with uncertainty-informed weights in blue 

(right). 
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stages of training. Furthermore, using uncertainty information also leads to higher overall 

performance in event type, signal, and RUL prediction tasks. 

5.4.2 Case Study 

5.4.2.1 Experimental Setup & Data Collection 

This real case study will further evaluate the proposed method using the battery status 

information from a PiSugar battery connected to a Raspberry Pi device. The Raspberry Pi is a 

versatile, credit-card sized computer widely used for educational, research, and Internet of Things 

applications due to its affordability and ease of use. Typically, Raspberry Pi devices require a 15W 

USB-C cable power source to operate. Instead, one can attach a PiSugar portable battery on the 

Raspberry Pi, allowing it to operate in remote environments. For this case study, PiSugar 2 Lithium 

battery with a rated capacity of 5000mAh/18.5Wh and a rated voltage of 3.7V, and a Raspberry Pi 

4 Model B were used. A picture of the PiSugar battery attached to the Raspberry Pi device is shown 

in Figure 5.8. 

The PiSugar battery provides a battery level indicator that estimates and reports the remaining 

power level as a percentage. To emulate the different levels of initial wear and tear, each PiSugar 

battery starts with an initial power level between 95% and 100% and stops operation when the 

 

Figure 5.8 PiSugar 2 battery attached to a Raspberry Pi 4 Model B. 
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battery level drops to 40%. The battery level indicator is collected every second and is treated as 

the system’s continuous degradation signal. To introduce the effect of events, two types of artificial 

computational loads are imposed on the Raspberry Pi. The first event type (event 1) is a recursive 

Fibonacci computation task that brute-forces the Fibonacci numbers. This algorithm is very 

inefficient due to its exponential time complexity and puts a significant strain on the CPU resources. 

The second event type (event 2) is a sequential randomized matrix multiplication task, where the 

program successively generates large square matrices of dimension 2000 and continuously 

multiply them. Such large matrix multiplication tasks are known to consume significant CPU and 

memory resources. Initial experiments revealed that the recursive Fibonacci computation 

consumed on average 22% CPU and 15% memory, while the randomized matrix multiplication 

task consumed on average 44% CPU and 34% memory. 

Each event type is non-terminal and can occur multiple times throughout the unit’s lifespan. 

Also, each event has an active period 𝓉𝑎𝑐𝑡𝑖𝑣𝑒 and an inactive period 𝓉𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒. The first event type 

(i.e., recursive Fibonacci) has an active period of 𝓉𝑎𝑐𝑡𝑖𝑣𝑒~Unif(30,60) and an inactive period of 

 

Figure 5.9 PiSugar battery level of a sample unit for the first 1000 seconds. (Black solid: 

battery level, Blue dashed: start time of event type 1, Red dotted: start time of event type 2) 
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𝓉𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒~Unif(10,20), while the second event type (i.e., randomized matrix multiplication) has 

an active period of 𝓉𝑎𝑐𝑡𝑖𝑣𝑒~Unif(60,90) and an inactive period of 𝓉𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒~Unif(30,40). Note 

that both 𝓉𝑎𝑐𝑡𝑖𝑣𝑒 and 𝓉𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒 are in seconds.  

The battery level of a sample unit is plotted in Figure 5.9, with the battery level shown in the 

black line, the start time of event 1 in blue, and the start time of event 2 in red. One interesting 

phenomenon is that the battery level sometimes tends to suddenly increase. This may seem 

counterintuitive as the battery is not charged during the experiment. However, this is an expected 

behaviour of the battery as under load, the battery’s voltage drops due to internal resistance and 

increased current draw, leading the battery level indicators to show a lower charge. Once the load 

ends, the battery’s voltage recovers slightly as it “bounces back” to its resting voltage. This 

recovery can cause the battery level indicator to show a higher charge level [123]. Overall, the 

dataset contains records of 15 units with on average 6000 signal observations. 

5.4.2.2 Case Study Results 

 To demonstrate the benefits of considering both data types, the performance of the UINN 

model is evaluated against the event only model and the signal only model. The same evaluation 

metrics are used as the simulation study, with the micro F1 score for event type prediction, and the 

MAE for signal and RUL prediction. An 80/20 train/test split with 12 training units and 3 test units 

is repeated 10 times for a fair comparison. The evaluation results are available in Table 5.4, with 

the lowest average errors boldfaced for visual clarity. 

Table 5.4 Evaluation results of the UINN model on the case study dataset 

Model 
Event Type 

(Micro F1) 

Signal 

(MAE) 

RUL 

(MAE) 

UINN (Full) 0.9764±0.0869 1.3674±0.2490 963.979±77.25 

UINN (Event only) 0.9676±0.0892 69.321±0.1982 1428.58±55.73 

UINN (Signal only) 0.4403±0.0547 1.4690±0.2948 1333.94±66.54 
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Results from Table 5.4 align closely with the findings from the simulation study. First, the full 

UINN model demonstrates superior prediction performance by leveraging insights from both data 

types. Most importantly, it has a drastically better prognostic performance than its counterparts 

with a significantly lower RUL prediction error. Second, incorporating both data types also 

enhances the prediction performance of individual tasks such as event type prediction and signal 

prediction. For event type prediction, the full model has higher Micro F1 (0.9764) than the event 

predictor only model (0.9676). Similarly, the signal prediction error of the full model (1.3674) is 

lower than the signal predictor only model (1.4690). Hence, considering both data types and their 

associated tasks not only improves overall prognostic performance but also enhances the accuracy 

of individual prediction tasks. 

5.5 Conclusion 

This study proposed a novel uncertainty-informed neural network model for extracting 

prognostic insights from multi-type degradation-related data. Despite recent developments in 

prognostics, one key limitation of existing methods is the lack of a holistic prognostic model that 

can effectively accommodate both discrete event data and continuous signal data into the final 

RUL predictions. To overcome this issue, the proposed UINN model has two predictors that 

capture the unique dynamics of each data type and integrate them into the final RUL prediction. 

Then, all predictors in the UINN model are jointly trained to prevent introducing unwanted bias. 

One challenge of jointly training such a complex network with multiple predictors and data types 

is that it can easily encounter over/underfitting issues. This can result in sub-optimal model 

performance, as the model might not fully learn or capture the dynamics of a specific data type. 

To avoid such training issues, the UINN model leverages task-specific uncertainty as the weights 

for each loss component. These task-specific uncertainties are treated as learnable parameters, and 
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the model automatically assigns larger weights to tasks with lower uncertainties and smaller 

weights to tasks with higher uncertainties. The extensive numerical studies on simulated data as 

well as the case study data from PiSugar batteries demonstrate the superior performance of the 

UINN model relative to existing benchmark methods. Specifically, the UINN method not only 

achieved higher performance in prognostic tasks like RUL prediction, but also on next event type, 

time, and signal prediction. Furthermore, a close examination of the training curves showed that 

the uncertainty information avoided underfitting during model training.  

There are several promising directions for future work. First, the current UINN framework 

could be extended to incorporate additional data modalities. The UINN framework is designed for 

two primary data types: discrete event data and continuous signal data. However, modern 

manufacturing systems often generate other data types, such as text-based maintenance or 

operational logs. Integrating these different data modalities could further improve the accuracy of 

RUL predictions. Second, the UINN model provides point estimates of the RUL instead of interval 

estimates. In degradation applications, it is recommended to have interval estimates of the RUL 

due to its inherent stochastic nature. Therefore, one can explore how to integrate the task-specific 

uncertainty to provide accurate uncertainty quantifications of the final RUL predictions. 

5.6 Appendix 

5.6.1 Average training time and hyperparameter optimization for 

simulation study 

This section describes the hyperparameter optimization procedure for the simulation study of 

the proposed UINN model. Specifically, the hyperparameters were optimized using a two-stage 

approach. In the first stage, the event and signal predictors were individually optimized on their 

respective tasks (i.e., event type/time prediction and signal prediction) using a grid-based search. 
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This step ensures that each predictor accurately captures the dynamics of each data type. In the 

second stage, the hyperparameters of the signal and event predictors were fixed to their optimized 

values, and a separate grid-based search was conducted to fine-tune the hyperparameters of the 

final RUL predictor. The optimized hyperparameters for each signal, event, and RUL predictor is 

listed in Table 5.5 below. 

Under this configuration, the proposed UINN model was trained for a maximum of 250 epochs 

with early stopping. Over the course of 10 iterations, the UINN model took an average of 71.253 

minutes to finish training and took less than 250 epochs to converge. In contrast, the naïve variant 

(i.e., model trained without uncertainty information in the joint loss function shown in Table 5.3) 

exhausted the full 250 epochs and yielded poorer predictive performance. Hence, the proposed 

UINN model trains faster than the naïve model that do not leverage uncertainty information.  

Table 5.5 Optimized hyperparameters for the simulation study 

Model Optimized Hyperparameters 

Signal Predictor 

Hidden Layers: 3 

Hidden Nodes: [64,64,16] 

Embedding Dimension: 20 

Number of Attention Heads: 2 

Learning Rate: 0.0001 

Dropout Probability: 0.1 

Batch Size: 32 

Event Predictor 

Hidden Layers: 2 

Hidden Nodes: [64,64] 

Learning Rate: 0.0001 

Dropout Probability: 0.1 

Batch Size:50 

RUL Predictor 

Hidden Layers: 2 

Hidden Nodes: [50,50] 

Learning Rate: 0.0001 

Dropout Probability: 0.1 

Batch Size: 16 
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Chapter 6 Summary 

Prognostics and degradation modeling are essential to ensure reliable performance of smart and 

connected systems. This dissertation addresses key challenges in data-driven degradation 

modeling and prognostics, with concentrations on improving explainability and alignment with 

existing domain knowledge. The key contributions of this dissertation can be organized as such.  

Chapter 2 proposed a novel data-driven approach for modeling and predicting the progression 

of void swelling. The proposed model integrated nuclear engineering-specific domain knowledge 

such as shape constraints and the impact of covariates to accurately capture the behavior of void 

swelling processes. Due to the careful alignment with prior knowledge, the proposed model boasts 

superior predictive performance and produces nuclear physics-compliant results.  

Chapter 3 introduced an integration uncertainty quantification (IUQ) model to capture the 

uncertainties from jointly modeling time-to-event data and longitudinal data. The proposed model 

produced accurate uncertainty quantifications by propagating the uncertainties from both data 

types. As a result, the IUQ model provided more reliable and calibrated uncertainty estimates and 

RUL predictions than existing approaches.  

Chapter 4 then presented a Bayesian sensor selection algorithm for high-dimensional 

engineering systems. By leveraging a spike-and-slab prior on the sensors, the proposed method 

effectively identified informative sensors even under the presence of sensor correlation. The 

selected sensors can then be used by practitioners to gain more interpretable insights on the system 

dynamics.  

Chapter 5 presented a deep learning framework for jointly extracting prognostic insights from 

discrete event data and continuous sensor signals. Compared to traditional models that rely on 
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either data type to extract prognostic insights, the proposed framework can effectively leverage 

both data types and obtain more accurate RUL predictions.  
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