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Abstract

This dissertation furthers a systematic study of the complexity classification of counting prob-
lems. A central goal of this study is to prove complexity classification theorems which state that
every problem in some large class is either polynomial-time computable (tractable) or #P-hard.
Such classification results are important as they tend to give a unified explanation for the tractability
of certain counting problems and a reasonable basis for the conjecture that the remaining problems
are inherently intractable. In this dissertation, we focus on the framework of Holant problems on
Boolean variables, as well as other frameworks that are expressible as Holant problems, such as
counting constraint satisfaction problems and counting Eulerian orientation problems.

First, we prove a complexity dichotomy for Holant problems on the Boolean domain with
arbitrary sets of real-valued constraint functions. It is proved that for every set F of real-valued
constraint functions, Holant(F) is either tractable or #P-hard. The classification has an explicit
criterion. This is a culmination of much research on this decade-long study, and it uses many
previous results and techniques. On the other hand, to achieve the present result, many new tools
were developed, and a novel connection with quantum information theory was built. In particular,
two functions exhibiting intriguing and extraordinary closure properties are related to Bell states
in quantum information theory. Dealing with these functions plays an important role in the proof.

Then, we consider the complexity of Holant problems with respect to planar graphs, where
physicists had discovered some remarkable algorithms, such as the FKT algorithm for counting
planar perfecting matchings in polynomial time. For a basic case of Holant problems, called six-
vertex models, we discover a new tractable class over planar graphs beyond the reach of the FKT
algorithm. After carving out this new planar tractable class which had not been discovered for six-
vertex models in the past six decades, we prove that everything else is #P-hard, even for the planar
case. This leads to a complete complexity classification for planar six-vertex models. This result is
the first substantive advance towards a planar Holant classification with asymmetric constraints.

We hope this work can help us better understand a fundamental question in theoretical com-

puter science: What does it mean for a computational counting problem to be easy or to be hard?
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Chapter 1

Introduction

Counting problems arise in many different fields, e.g., statistical physics, economics and ma-
chine learning. In order to study the complexity of counting problems, several natural frameworks
have been proposed. Two well studied frameworks are counting constraint satisfaction problems
(#CSP) and counting graph homomorphisms (#GH). #GH is a special case of #CSP. These
frameworks are expressive enough so that they can express many natural counting problems, e.g.,
counting satifiability, hard-core models, Ising models and spin systems [67, 46, 5, 47, 43, 55], but
also specific enough so that complete complexity classifications can be established.

Such complexity classification results are usually stated as dichotomy results: For a large
family of problems in a certain framework, each of them is either in FP or #P-hard. The #P class
[67, 68] is the quantitative version of the NP class. A #P problem corresponds to its NP-version by
changing the question from asking the existence of a solution to asking the number of solutions. FP
is the class of #P problems that are polynomial-time computable (tractable). By a straightforward
adoption of Ladder’s theorem [52], complexity dichotomy does not hold for the #P class in general
assuming FP##P, and concrete artificial #P-intermediate (properly between FP and #P-hard)
problems can be designed. However, so far there is no natural counting problem that is proved to be
#P-intermediate. Furthermore, many natural problems, such as problems expressible as #CSP and
#GH, are indeed either in FP or #P-hard. Full complexity dichotomies have been established for
#CSP and #GH problems defined by arbitrary complex-valued constraint functions over general
domain [11, 38, 12, 17, 15, 37, 13, 42, 16]. These dichotomy results are important in theory as they
tend to give a unified explanation for the tractability of certain problems and a reasonable basis for
the conjecture that the remaining problems are intractable. They are also important in practice as
they lead to novel efficient algorithms for many types of natural problems.

Despite the significance and wide application of #CSP and #GH, they are not known to be able



to encompass some pivotal counting problems, such as counting perfect matchings (#PM). In fact,
it is proved that #PM cannot be expressed by #GH with arbitrary complex weights [41, 34, 63, 27].
Inspired by holographic transformations [71, 72|, a more expressive framework, the Holant problem
was introduced by Cai, Lu and Xia [30]. It is a broad class of sum-of-products computation
that generalizes #CSP and #GH, and naturally expresses #PM and counting matchings. Other
problems expressible as Holant problems include counting weighted Eulerian orientations (#EO
problems) [58, 23], computing the partition functions of six-vertex models [61, 25] and eight-vertex
models [6, 19], and a host of other, if not almost all, vertex models from statistical physics [7].

Unlike #CSP and #GH, the understanding of Holant problems, even restricted to the Boolean
domain, is still limited. In this dissertation, we focus on the complexity classification of Holant
problems on the Boolean domain. A Boolean Holant problem Holant(F) is parameterized by a set
F of constraint functions (also called signatures) on the Boolean domain. A signature f € F of
arity n > 0 on the Boolean domain is a map Z4§ — C.

Built on the dichotomy for #CSP on the Boolean domain [31], progress has been made in
the complexity classification of Boolean Holant problems. When all signatures are restricted to be
symmetric (the function value depends only on the Hamming weight of the input), a dichotomy for
complex-valued Holant problems was established [28].

For asymmetric signatures, the first result is a dichotomy for a restricted class called Holant*
problems where all unary signatures are assumed to be available [28]. Later, it was generalized to
(first real-valued [32] and then complex-valued [3, 4]) Holant® problems where two pinning unary
signatures are available. In addition, based on the dichotomy for Holant™ problems, a dichotomy for
non-negative Holant problems was proved [57] without assuming any auxiliary signatures. Simulta-
neously, progress has been made for Holant problems parameterized by complex-valued signatures
of even arities. The base case is a single 4-ary signature which includes six-vertex models and eight-
vertex models. (The case that all signatures are binary is known to be tractable.) A dichotomy
is proved for complex-valued six-vertex models [25] and later it was generalized to complex-valued
eight-vertex models [19].

In the first part of this dissertation, we establish the first Holant dichotomy on the Boolean
domain with arbitrary real-valued constraint functions. These constraint functions need not be

symmetric nor do we assume any auxiliary functions.



Theorem 1.1. Let F be a set of real-valued signatures. If F satisfies the tractability condition (T)

stated in Theorem 2.33, then Holant(F) is polynomial-time computable; otherwise, it is #P-hard.

This theorem is the culmination of a large part of previous research on dichotomy theorems of
Holant problems. However, the journey to this theorem is arduous.

First, as a special case of Holant problems, we introduce the framework of counting Eulerian
orientation problems (#EO problems). This framework generalizes six-vertex models from arity 4
to general arities. However, quite surprisingly, #EO problems also encompass all #CSP problems
on Boolean variables. In Chapter 2, we define the frameworks of #CSP, #EO problems, and Holant
problems, and show their connections. In Chapter 3, we introduce some common polynomial-time
reductions. In Chapter 4, we prove a dichotomy for #EO problems with complex-valued constraint
functions under a symmetry assumption, called arrow reversal symmetry (ARS). Under a suitable
holographic transformation, these #EQO problems with ARS correspond to precisely a class of real
valued Holant problems. The dichotomy of #EQO problems with ARS will serve as a building block
for the dichotomy of real-valued Holant problems.

Then, we start proving the real Holant dichotomy (Theorem 1.1). We first consider the case
that F contains a nonzero signature of odd-arity in Chapter 5. For the case that F consists of
signatures of even arities. We prove the dichotomy by induction on arities of signatures in F. We
consider the base cases that F contains a binary or 4-ary signature in Chapter 6. Then, we give
two particularly intriguing signatures of arity 6 and 8 with some extraordinary closure properties
related to Bell states [9] in quantum information theory. Their existence presented a formidable
obstacle to the induction proof. We deal with them in Chapters 7 and 8 respectively. Finally, in
the last two sections of Chapter 8, we give the induction proof for signatures of arity at least 10,
and finish the proof of Theorem 1.1. Results in Chapters 4 to 8 are joint work with Jin-Yi Cai and
Zhiguo Fu [23, 24, 64].

Theorem 1.1 delineates all real Holant problems that are polynomial-time computable over
general graphs. However, a more interesting question is what happens on planar structures, where
physicists had discovered some remarkable algorithms, such as the FKT algorithm [66, 49, 48].
By the FKT algorithm, #PM which is #P-hard in general, is polynomial-time computable when
restricted to planar graphs. This algorithm was viewed as a great triumph in statistical physics for

a long line of research on exactly solved models [60, 73, 74, 54, 56, 8].



To extend the reach of the FKT algorithm, Valiant introduced matchgates [69, 70] and holo-
graphic transformations to the FKT algorithm [71, 72], and discovered a number of counting
problems that are tractable over planar graphs, but #P-hard in general. After several develop-
ments on the theory of matchgates [18, 29, 26], Cai and Fu proved that for a large class of counting
problems, such as all #CSP problems on Boolean variables, holographic transformations to the
FKT algorithm is a universal technique to solve all problems that are tractable over planar graphs
but #P-hard in general [20]. Taking into account of the planar restriction, a complexity trichotomy
was established for #CSP on the Boolean domain: every problem in this framework is either (1)
tractable for every graph, or (2) #P-hard for general graphs but tractable for planar graphs, or (3)
#P-hard even for planar graphs.

However, when it comes to Holant problems, there are new planar tractable problems that are
not solvable by a holographic transformation to the FKT algorithm. After carving out this new
planar tractable class, a complete complexity classification was proved for planar Boolean Holant
problems where all signatures are symmetric [21].

In the second part of this dissertation, we make the first substantive advance towards a clas-
sification of planar Holant problems with asymmetric signatures. We consider the complexity
classification of planar six-vertex models without assuming ARS. Previously, without being able to
account for tractability on planar graphs, a complexity dichotomy was proved in [25]. Due to the
presence of nontrivial algorithms, a complete complexity classification in the planar case is much
more difficult to achieve. Not only are reductions to FKT expected to give planar tractable cases
that are #P-hard in general, but also a more substantial obstacle awaits us. It turns out that there
is another planar tractable case that had not been discovered for the six-vertex model in all these
decades, until our result. We give this new planar tractable case and prove a complete complexity
classification of planar six-vertex models in Chapter 9. This result is joint work with Jin-Yi Cai
and Zhiguo Fu [22].

We give the following Figure 1 as a partial map of the complexity classification program for
Holant problems on the Boolean domain. The ultimate goal is definitely a complete complexity
classification for all complex-valued Holant problems. First, without considering the planar restric-
tion, to achieve a classification for complex-valued Holant problems over general graphs, we think

a classification for complex-valued #EO problems without assuming ARS may serve as a building



block. We may also need to generalize the dichotomy for real-valued Holant problems with an
odd-ary signature to complex-valued. Secondly, if we take account of the planar restriction, there
is still a long way to go. We think a complexity classification of planar eight-vertex models and

a complexity classification of planar Holant* problems are the two potential points where one can

further explore.
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Chapter 2

Frameworks of Counting Problems

In this chapter, we define three frameworks of Boolean counting problems that will be studied
in this dissertation. They are counting constraint satisfaction problems (#CSP), counting Eulerian
orientation problems (#EO problems) and Holant problems. We give some families of signatures

that are known to be tractable in these frameworks.

2.1 Counting Constraint Satisfaction Problems (#CSP)

2.1.1 Definition and Examples

Recall that a constraint function (also called a signature) is a map f : Z§ — C for some n > 0.
A (Boolean) counting constraint satisfaction problem #CSP(F) is parameterized by a set F of

signatures, and it is defined as follows.

Definition 2.1 (#CSP). Let F be any fized set of signatures. An instance I of #CSP(F) is a
finite set of variables V- = {x1,xa,...,2,}, and a finite set C of clauses. Fach clause is a constraint
f € F of some arity m depending on f together with a sequence of m (not necessarily distinct)

variables x;,,...x;,, € V. The output is the partition function

Z(n= Y I @ 2.

(15030 EZY (f,iq 5o iy, )EC
When {f} is a singleton set, we write #CSP({f}) as #CSP(f) and #CSP({f}UF) as #CSP(f, F).
Many natural combinatorial problems can be expressed by #CSP.

Example 2.2 (Counting Boolean Satisfiability). The counting Boolean satisfiability problem (#SAT)

counts the number of satisfying assignments to a given Boolean formula. It can be expressed as



#CSP(F) where F = {ORry, | k > 1} U {#2}, ORy is the OR function of arity k and #2 is the

binary DISEQUALITY signature with truth table (0,1,1,0).

Example 2.3 (Counting Independent Sets). The counting independent set problem (#1S) counts
the number of independent sets of a given graph G = (V, E). By viewing each vertex v € V as
a Boolean variable (i.e., v = 0 or 1 depending on whether it is selected in an independent set),
and each edge e € E as a binary constraint fis where fis(0,0) = fis(0,1) = fis(1,0) = 1 and
fis(1,1) =0, #IS can be expressed as #CSP( fig).

The #IS problem is also a basic case of counting graph homomorphisms. Consider the graph
H = (V,E) where V = {vg,v1} and E = {(vg,v0), (vo,v1)}. Then, the number of independent sets
of a graph G is equal to the number of graph homomorphisms from G to H. In statistical physics,
The #IS problem corresponds to the hard-core model, which is a special case of the more general
2-state spin (2-spin) systems. Spin systems are some of the most fundamental statistical physics
systems. They model interactions between neighbors on graphs. A 2-spin system is specified by
two edge interaction parameters 8 and «, and a uniform external field A, where 3,v, A € C. It can

be expressed by a #CSP problem with a binary signature and a unary signature.

Example 2.4 (2-Spin systems). Let f be a binary signature with f(0,0) = 3, f(1,1) = v and
f(0,1) = f(1,0) = 1, and g be a unary signature with g(0) = 0 and g(1) = X\. Then, the problem

#CSP(f,g) computes the partition function of the 2-spin system specified by (3,7, ).

2.1.2 Existing Dichotomies for #CSP

For a fixed signature set F, the complexity of #CSP(F) is measured in terms of the input
size of the instance I. When F is a finite set, this input size is equivalent to n (the number of
variables). We may also allow F to be infinite. In this case, the input size includes the description of
the constraints used in the input. A complexity dichotomy was proved for #CSP(F) if each f € F
takes values 0 or 1 [33]. Later, it was generalized to non-negative signature sets [35]. Finally, a full
complexity dichotomy was proved for any complex-valued signature sets [31]. Such a dichotomy
has an explicit criterion. We introduce the following two families of signatures that define tractable
#CSP problems. They are product-type signatures and affine signatures. We use =, to denote the

binary EQUALITY signature with truth table (1,0,0,1).



Definition 2.5 (Product-type signatures). A signature on a set of variables X is of product type
if it can be expressed as a product of unary functions, binary EQUALITY functions =2, and binary
DISEQUALITY functions #4, each on one or two variables of X. We use & to denote the set of

product-type functions.

Note that the product in Definition 2.5 are ordinary products of functions (not tensor products);
in particular they may be applied on overlapping sets of variables. We give an alternative definition
of product-type signatures using tensor products.

Let oo € Z% be an input of a signature f of arity n. We may use f* to denote f(«). The
support of a signature f is .Z(f) = {« € Z3" | f* # 0} i.e., the set of inputs on which f is not
zero. We say f has support of size k if |2 (f)| = k. If Z(f) =0, i.e., f is identically 0, we say f is
a zero signature and denote it by f = 0. Otherwise, f is a nonzero signature. If .#(f) consists of

two antipodal points (i.e., Z(f) = {a,a}), then we say f is an antipodal signature.

Lemma 2.6 ([20]). A signature is of product-type iff it is a zero signature or it is a tensor product

of unary signatures and antipodal signatures.
Let i = «/—1. We define affine signatures.

Definition 2.7 (Affine signatures). A signature f(x1,...,x,) of arity n is affine if it has the form

where A € C, X = (x1,22,...,%n,1), A is a matriz over Lo, Q(x1,22,...,%n) € Lo[r1,22, ..., Ty]
is a multilinear polynomial with total degree d(Q) < 2 and the additional requirement that the

coefficients of all cross terms are even, i.e., QQ has the form

n
Q(I‘l,l'g,...,xn) = ao—i—Zakxk—i— Z 2bz-ja?ia:j,
k=1

1<i<j<n

and x is a 0-1 indicator function such that x ax—o s 1 iff AX =0. We use & to denote the set of

all affine signatures.

The following two lemmas follow directly from the definition.



Lemma 2.8. Let g be a complez-valued binary signature with support of size 4. Then, g € & iff g
has the signature matriz M(g) = A [i EZ], for some nonzero A € C, a,b,c,d € N and a+b+c+d =0
(mod 2).

Lemma 2.9. Let h be a complex-valued unary signature with support of size 2. Then, h € < iff h
has the form M(h) = A [ia ib} , for some nonzero A € C, and a,b € N.

We say a signature f has affine support if .(f) is an affine linear subspace. Clearly, any affine

signature has affine support. Moreover, by Lemma 2.6, we have
Lemma 2.10. Any signature of product type has affine support.
1ERf]. Please see Definition 2.22 in Section 2.5 of [20] for a proof. O

When Z(f) is an affine linear space, we can pick a set of free variables such that in .7(f),
every variable is an affine linear combination of free variables. Real-valued affine functions satisfy

the following congruity or semi-congruity.

Lemma 2.11 ([14]). Let f(x1,...,2p) = (=1)@0) € o7 and y = x,, + L(x1,..., Ln_1) be a

linear combination of variables x1, ..., xy, that involves x,. Define

_ fy:()(xlv c Tp—1,Y + L) _ (_1)Q(x1,...,xn,1,L)—‘,—Q(a:l,...,xn,l,L-i-l)‘
fyzl(xlv e 7mn—17y + L)

g(x1, ..., Tp-1)

Then, g satisfies the following property.
e (Congruity) g=1org=—1, or

e (Semi-congruity) g(x1,...,Tp_1) = (—I)L(m""’x”—l) where L(x1,...,Tpn-1) € Zo[x1,. .., Tn_1]

is an affine linear polynomial (degree d(L) =1).
In particular, if d(Q) = 1, then g has congruity.

Problems defined by & are tractable by a propagation algorithm, and problems defined by .o/
are tractable essentially by algebraic cancellation. Together, they exhaust all tractable #CSP [31].

Theorem 2.12. Let F be any set of complez-valued signatures. Then #CSP(F) is #P-hard unless
FCof or FC P, in which cases the problem is tractable.
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We use #CSP,(F) to denote the special case of #CSP(F) where every variable appears a mul-
tiple of k£ times. In particular, #CSP, (F) = #CSP(F). We use <7 (and =) to denote polynomial-
time Turing reductions (and equivalences, respectively). Clearly, #CSP(F) <p #CSP(F). When
k = 2, a complexity dichotomy was proved for complex-valued #CSP,(F) [32]. Beyond product-
type and affine signatures, a new family of tractable signatures was identified. They are local affine
signatures.

For an invertible 2-by-2 matrix 7' € GL2(C) and a signature f of arity n, written as a column
vector (covariant tensor) f € C2" by listing its truth table, we denote by T'f = T%"f. For a
signature set F, define TF = {Tf | f € F} the set of transformed signatures. Let Tos = [§ %]

a
1+i

V2

i . .
where a =e1 = and s is an integer.

Definition 2.13 (Local affine signatures). A signature f (written as a column vector) is local-affine
if for each 0 = s1s2...5, € Z5 in the support of f, (Tos1 @ Tose @ -+ @ Tosn ) f € /. We use L

to denote the set of local-affine signatures.

Theorem 2.14 ([32]). Let F be any set of complex-valued signatures. Then #CSPy(F) is #P-hard
unless FC ot , FC P, FC L orToF C o, in which cases the problem is tractable.

2.2 Counting Eulerian Orientation Problems (#EO Problems)

2.2.1 Definition and Examples

Let G be an undirected Eulerian graph, i.e., every vertex has even degree. An FEulerian
orientation of G is an orientation of its edges such that at each vertex the number of incoming edges
is equal to the number of outgoing edges. Mihail and Winkler showed that counting the number of
Eulerian orientations of an undirected Eulerian graph is #P-complete [58]. We consider counting
weighted Eulerian orientation problems (#EO problems), formulated as a partition function defined
by constraint functions placed at each vertex that represent weightings of various local Eulerian
configurations.

We use wt(a) to denote the Hamming weight of o € Z3". Let /4, = {a € Z3" | wt(a) = n}. A
signature f of arity 2n is an Eulerian orientation (EO) signature if .7 (f) C %,. A #EO problem

is parameterized by a set F of EO signatures. An instance of #EO(F) is an EO-signature grid
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Q= (G, ), where G = (V, E) is an Eulerian graph without isolated vertex (i.e., every vertex has
positive even degree), 7 labels each v € V' with an EO signature f, € F of arity deg(v), and labels
the incident edges F(v) at v with input variables of f,. For any Eulerian graph G, let EO(G) be the
set of all Eulerian orientations of G. We view each edge as having two ends, and an orientation of
the edge is denoted by assigning 0 to the head and 1 to the tail. An Eulerian orientation corresponds
to an assignment to the ends of each edge where the numbers of 0’s and 1’s at each v are equal.
Then a vertex v contributes a weight by the local constraint function f, evaluated according to
the local assignment. Since the support of f, is on half weighted inputs, only Eulerian orientations
contribute nonzero values. Each o € EO(G) gives an evaluation [], ¢y fo(o|g@w)), Where g,

assigns 0 to an incoming edge and 1 to an outgoing edge.

Definition 2.15 (#EO problems). Let F be any fized set of EO signatures. The input of #EO(F)

is an EO-signature grid Q = (G, m) over F; the output is the partition function of Q,

#EOq = Z va(‘7|E(u))-

0c€EO(G) veV
When {f} is a singleton set, we write #EO({f}) as #EO(f) and #EO({f} UF) as #EO(f, F).

Example 2.16 (Unweighted #EO problem). Let Fro = {f2, fa, .- fon, ...}, where & =1 when

wt(a) =n and f§, =0 otherwise. Then #EO(Fgo) counts the number of Eulerian orientations.

There are a host of problems in statistical physics that can be formulated as #EO problems.
One of the most studied models is the siz-vertexr model. It was introduced by Pauling in 1935 to
account for the residual entropy of water ice [61]. Mathematically, it is an #EO problem defined

on 4-regular graphs. For more background in physics, please see Chapter 9.
0011
S1X

1100 _ 0101 _ 1010 _ 0110 _ 1001 _ : :
i =2, fgn =0, fax ' =Y, fax | = fan =2. Then #EO(fsix) is the siz-vertex model.

Example 2.17 (Six-vertex models). Let fqx be an EO signature of arity 4, where = a,

2.2.2 #EO Problems Encompass #CSP

The #EO problems have an intrinsic significance in the classification program for counting

problems. At first glance, the #EO framework may appear to be specialized as it requires all
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constraint functions to be supported on half weighted inputs. However, surprisingly, it encompasses

all Boolean #CSP.

Definition 2.18 (Pairwise opposite). Let .# C Z3" be an affine linear subspace. We say .7 is
pairwise opposite if we can partition the 2n variables into n pairs such that on 7, two variables of
each pair always take opposite values. If . is pairwise opposite, we fix a pairing. Then each pair

under this paring is called an opposite pair.

Let g be an arbitrary signature of arity n > 0 (with no assumption to be EO). We associate g

with an EO signature g of arity 2n in the following way. We define

_ g(x,...xn) i x; #xipn (i € [n]),
g(xly' "axnal‘n+17"',x2n) -
0 otherwise.

Clearly, g is an EO signature. Moreover, its support is pairwise opposite, i.e., x; and x,4; form an
opposite pair. We say x; is in the first half of the inputs of g, while x,, is in the second half. We
define G = {g | g € G} for an arbitrary signature set G. We show that #CSP is expressible in the
#EQO framework by the following theorem.

Theorem 2.19. For every signature set G and the EO signature set G defined above, we have

#CSP(G) =r #EO(G).

Remark 2.20. Before we give the proof, we remark that this theorem is not merely stating that
for an arbitrary #CSP(G) problem, one can reduce every instance of #CSP(G) to an instance
of a suitable #EO(&) problem. Theorem 2.19 is stronger and categorical: For every signature
set G in the #CSP framework, there is a (uniformly constructible) EO signature set G such that
#CSP(G) is the same as the #FEO problem #EO(@) In particular, a complexity dichotomy for
#EO problems would generalize the complexity dichotomy for #CSP problems on Boolean variables

(which is already known,).

1E7]. We first show that every instance of #CSP(G) is expressible canonically as an instance of

#EO(G), thus, #CSP(G) <p #EO(G). Let G = (U,V, E) be a bipartite graph representing an
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instance I of #CSP(G), where each u € U is a variable and each v € V is labeled by a constraint
function g € G. We will modify the instance I to an instance I of #EO(GV) that evaluates to the

same value, as follows.

1. For every u € U, we create k = deg,(u) vertices denoted by v’ (1 < i < k). (For example,
in Figure 2, vertices uj, ug and ug are decomposed into 3, 2 and 1 vertices respectively.)
Then we connect the k edges originally incident to u to these k new vertices, so that each
new vertex is incident to exactly one edge. (To be specific we assume the edges at v in I are
ordered from 1 to k, and we connect the i-th edge to u’. These are edges drawn by solid lines
in Figure 2(b).) We denote this graph by G’. Each u’ in G’ has degree 1 and the degree of

each v € V does not change.

2. For each edge ¢’ = (u’,v) in the graph G’, we add an edge & = (u'*!,v) to G’ and we call

k+1

them a pair. (Here if deg,(u) = k then we use u*! to denote u'; we will add a multiple edge

if el = (u'™! v) is already in G’. These edges & are drawn by dashed lines in Figure 2(b).)
This defines a graph G. Each ' in G has degree 2 and we label it by #o. If degs(v) = n
and is labeled by the constraint function g € G, then v in G has degree 2n and we label it
by the corresponding g € G. We place the signature g in a way such that every pair of edges
e! = (u',v) and € = (u'T! v) incident to the same v appears as an opposite pair in the inputs
of the function g, and e’ appears in the first half of the inputs of § while & appears in the
second half. Recall that g is defined to be pairwise opposite such that its j-th variable in the

first half is paired with its (n 4 j)-th variable in the second half. This defines an instance I

of #EO(G).

We show that #EO7 has the same value as the instance I for #CSP(G). Consider each variable

u € U. Suppose it has degg(u) = k in the instance I. It corresponds to k vertices u',.. ., u* and 2k

1 51 1 i

edges el,e!,... e €, ..., eF and €. These 2k edges form a circuit C,,. For example, in Figure 2,

u%,vl,u%,vl,ui’,vg back to u} is such a circuit where the edges are successively e%,é%, e%,é%, e‘%,éi’

(edges drawn by solid lines and dashed lines alternate). Note that, for every pair of edges ¢! and

el

, we placed the signature g such that e’ and & appear as an opposite pair. Thus, we may assume
e’ and € take opposite values in the evaluation of #EO7. Also, since each u® is labeled by #9, we

may also assume €' and e!*! take opposite values in the evaluation. (This is really a consequence
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V1 V2

U Ug %3

(b): Instance T

(a): Instance I

K| 2: The reduction from #CSP to #EO

of the definition of #EO problems.) Thus, for any (possible) nonzero term in the sum #EOy, as a
consequence of the support of signatures in G and %5, we know on each circuit C,, all edges must
take values (0,1,0,1,---,0,1) or (1,0,1,0,---,1,0), i.e., the values of 0,1 alternate. Therefore,
on the circuit Cy, we have e!,e?, ..., " all take the same 0-1 value, which corresponds to the 0-1
assignment on the variable u in the #CSP instance I. Recall in the definition of g, its value can
be determined by the first half of its inputs. By the placement of g, the first half of its inputs are
edges in the graph G’ (drawn by solid lines). Therefore, the contribution of g to #EO7 is exactly
the same as the contribution of g in the #CSP instance I. Thus, these two instances have the same
value.

For the other direction, we first note that #CSP(G U {#2}) <r #CSP(G). If #CSP(G) is
#P-hard, the reduction holds trivially since every #CSP problem can be reduced in P-time to a
#P-hard problem. Otherwise, by Theorem 2.12, #CSP(G) is tractable and G C &/ or &. Since
(#2) € & NP, we have G U {#2} C & or &. Thus, #CSP(G U {#2}) is tractable. Then, again
the reduction holds trivially. Then, we will show that #EO(G) <7 #CSP(G U {#3}).

Consider an arbitrary instance I’ of #EO(@). Because every signature in G has the pairing
structure among its variables, we can decompose the graph of I’ into edge disjoint circuits, by always
following the paired variables at each constraint vertex. For each edge disjoint circuit, we choose
an arbitrary default orientation. The circuit visits constraint vertices in some order according to

the default orientation. The visit follows successive pairs of edges. Recall that as a consequence

of the support of constraint functions, on each circuit, all these pairs of edges in the successive
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order must take the same ordered pair of values (z,Z), where x € {0,1}. Thus, we can define a
Boolean variable z from the edges on each such circuit. From this a corresponding instance I for
#CSP(G U {#2}) can be obtained that has the same value as I’ in #EO(G).

More specifically, suppose g(z1,...,2,) € G and let ¢'(z1,...,2,) = g(z{',...,x5), where
each z7' is either x; or 7;. To discuss the complexity of #CSP(G U {#2}), using (#2) we may
assume every function obtained by flipping any number of variables in a function g € G is also in
g.

Now, consider the default orientation of each circuit. At constraint vertices, the default orien-
tation visits successive pairs of edges corresponding to paired inputs of constraint functions, say,
{zj,xn+;}. If the default orientation always visits in the order x; followed by x4, then this is
exactly how the canonical construction given above and we can recover an instance I for #CSP(G)
with the same value. If at some constraint g of arity 2n the default orientation happens to visit in
the order z,.; followed by z;, we can use one copy of #2 to modify the original function g to get

another constraint ¢/, so that the corresponding gN’ is just g with a flip between its variables 4 ;

and z;. Then according to the default orientation the visit is in the order z; followed by x, ;. [

2.3 Holant Problems

2.3.1 Definition and Examples

Both #CSP and #EO problems can be viewed as special cases of Holant problems. Let F
be a set of arbitrary (not necessarily EO) signatures. A (general) signature grid 2 = (G, m) over
F is a tuple, where G = (V, E) is a graph without isolated vertices, 7 labels each v € V with a
signature f, € F of arity deg(v), and labels the incident edges F(v) at v with input variables of
fv- We consider all 0-1 edge assignments o, and each gives an evaluation [],cy fu(o|g(v)), where

o|g(v) denotes the restriction of o to E(v).

Definition 2.21 (Holant problems). The input to the problem Holant(F) is a signature grid
Q = (G, 7) over F. The output is the partition function

Holant(Q) = Z H fv(U‘E(U))'

0:E(G)—{0,1} veV(G)
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Bipartite Holant problems Holant(F | G) are Holant problems over bipartite graphs H = (U,V, E),
where each vertex in U or V is labeled by a signature in F or G respectively. When {f} is a

singleton set, we write Holant({ f}) as Holant(f) and Holant({f} U F) as Holant(f, F).

We use =, to denote the EQUALITY signature of arity n, which takes value 1 on the all-0 or all-1
inputs, and 0 elsewhere. (We denote the n-bits all-0 and all-1 strings by 0" and 1" respectively. We
may omit the superscript n when it is clear from the context.) Let EQr = {=k, =2k, .-, =nk,---}
denotes the set of EQUALITY signatures whose arities are multiples of k. In particular, £Q = £Q; =

{=1,=2,...,=n,...} denotes the set of all EQUALITY signatures.

Lemma 2.22 ([14]). #CSP,(F) =r Holant(£Qy | F). When k = 1 or 2, Holant(£Qy, | F) =r
Holant(£Qy U F).

The following two reductions are also known [14]. One states that we can realize all =€ £Q

once we have =3. The other states that we can realize all =9,€ £Q9 once we have =4.
Lemma 2.23. #CSP(F) <7 Holant(=3, F).
Lemma 2.24. #CSP,(F) <r Holant(=4, F).

Recall that #9 denotes the binary DISEQUALITY signature (0,1, 1,0). We generalize this notion
to signatures of higher arities. A signature f of arity 2n is called a DISEQUALITY signature of arity
2n, denoted by #ap, if f =1 when (z1 # x2) A... A (T2p—1 # T2y), and 0 otherwise. By permuting
its variables the DISEQUALITY signature of arity 2n also defines (2n — 1)(2n — 3)---1 functions
which we also call DISEQUALITY signatures. These signatures are equivalent for the complexity of
Holant problems; once we have one we have them all. Let DEQ = {#a,#4,...,F#2n,...} denote
the set of all DISEQUALITY signatures.

Now, we show EO problems can be expressed by Holant problems.
Lemma 2.25. Let F be a set of EO signatures. Then, #EO(F) =r Holant(#2| F).

B, If Q = (G, ) is an instance of #EO(F), we add a middle vertex on each edge of G and
label it by #2. This defines an instance €' of Holant(#2| F) with a bipartite graph H (which
is the edge-vertex incidence graph of ), where every edge of G is broken into two. There is a
1-1 correspondence of the terms in the partition functions #EOq and Holantg,. The process is

obviously reversable. O
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Since #CSP and #EO problems are special cases of Holant problems, problems that can be
expressed as #CSP or #EO problems can also be expressed as Holant problems. Other problems
that can be expressed as Holant problems include counting matchings and perfecting matchings

and eight-vertex models.

Example 2.26 (Counting perfect matchings). Let F = {f1, fa,..., fn,...} where f,(a) = 1 if

wt(a) =1 and f,(a) = 0 otherwise. Then, Holant(F) counts the number of perfect matching.

Example 2.27 (Eight-vertex models). Let feignt be a signature of arity 4, where gigilt =a, ;ilg%(t) =
a, fOI01 = 1010 — g (0110 — £100L — o (yhere a,b,c € RT). Then #EO(fsx) 4s the classical

siz-vertex model satisfying ARS with real parameters (a,b,c).

Note that #CSP(F) =p Holant(£Q U F). Then, clearly Holant(). Thus, both product-type
signatures and affine signatures define tractable Holant problems. However, beyond them, there

are extra family of signatures.

Definition 2.28 (Unary and binary signatures). Let .7 denote the set of tensor products of unary

and binary signatures.

Theorem 2.29 ([32, 4]). Let F be a set of complex valued signatures. Then Holant(F) is tractable
WFCT, FCP, FCd, orFCZL.

Notice that (#2) € .7, (#2) € & and (#2) € .

Theorem 2.30. Let F be a set of complex-valued signatures. Then Holant(#a| F) is tractable if
FCT, FCPorFCA.

2.3.2 Holographic Transformation

To introduce the idea of holographic transformation, it is convenient to consider bipartite
graphs. For a general graph, we can always transform it into a bipartite graph while preserving the
Holant value, as follows. For each edge in the graph, we replace it by a path of length two. (This
operation is called the 2-stretch of the graph and yields the edge-vertex incidence graph.) Each new
vertex is assigned the binary EQUALITY signature =5. Thus, we have Holant(=2| F) =7 Holant(F).

For an invertible 2-by-2 matrix T' € GL2(C) and a signature f of arity n, written as a column

vector (covariant tensor) f € C2", we denote by Tf = T®"f the transformed signature. For a
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signature set F, define TF = {T'f | f € F} the set of transformed signatures. For signatures
written as row vectors (contravariant tensors) we define fT~! and FT~! similarly. Whenever we
write T'f or TF, we view the signatures as column vectors; similarly for f7'~! or FT~! as row
vectors.

Let T € GL2(C). The holographic transformation defined by T is the following operation:
given a signature grid Q = (H, ) of Holant(F | G), for the same bipartite graph H, we get a new
signature grid Q' = (H, ') of Holant(FT~! | TG) by replacing each signature in F or G with the

corresponding signature in FT~! or TG.
Theorem 2.31 ([72]). For every T € GLo(C), Holant(F | G) =r Holant(FT~ | TG).

Therefore, a holographic transformation does not change the complexity of the Holant problem
in the bipartite setting. In particular, if there exists a T € GLa(C) such that Holant((=2)T~! | T.F)

is tractable, then Holant(=2| F) is also tractable.

Definition 2.32. We say a signature set F is € -transformable if there exists a T € GLa(C) such
that (=2)T~t €€ and TF C¥.

Theorem 2.33. Let F be a set of complexr valued signatures. Then Holant(F) is tractable if

FC T, Fis P-transformable, F is o -transformable, or F is L -transformable. (T)

Notice that (=2) € N NL. Clearly, If F € £, or £, then F is P, o or L-
transformable respectively. Also, notice that (=2)7; ' = (1,0,0,i) € «. If T,F € &/, then F is
of -transformable. Thus, if F does not satisfy condition, then If F ¢ 2, F ¢ &/, F ¢ £, and
T, F ¢ /. By dichotomies of #CSP and #CSP3, we have the following #P-hardness result.

Theorem 2.34. Let F be a set of complez-valued signatures. If F does not satisfy condition (T),
then #CSP(F) and #CSP,(F) are #P-hard.

Now, we introduce two particular holographic transformations that will be commonly used in
this dissertation. One is the transformation defined by real orthogonal matrix. Let Oo(R) C R2x?
be the set of all 2-by-2 real orthogonal matrices. We denote O2(R) by Os. For all @ € Oa, since
(=2)Q~! = (=2), Holant(=2| F) =r Holant(=2| QF). The other is the transformation defined
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by Z71 = % [175']- Note that (=2)Z = (#2) where Z = % [1 %4]. Thus, Holant(=5| F) =r

Holant(s£5| Z~1F). We denote Z~'F by F and Z~1f by 7.

Definition 2.35 (Arrow reversal symmetry). A (complex-valued) signature f satisfies arrow rever-

sal symmetry (ARS) if f(a) = f(@) for all « where f(«) denotes the complex conjugation of f(a)

and @ denotes the bit-wise complement of c. For real-valued signatures, this is f(a) = f(«).

Arrow reversal symmetry is usually assumed in statistical physics®. In complexity theory,
there is a more intrinsic reason for considering the arrow reversal symmetry. Under the holographic

1

transformation by Z—! = 7 [1 _i], real-valued signatures translate precisely to complex-valued

11

signatures with the ARS restriction.
Lemma 2.36. A (complex-valued) signature f is a real-valued signature Zﬁf satisfies ARS.

1E8]. We first prove that if fsatisﬁes ARS then f is real.
We have 27/2f = [} _11]®n‘)/"\, and thus for all (ay,...,a,) € {0,1}",

on/2 par-an Z forenbn H {(_1)%%‘1%}.

Then,

e = 3 e [T {net-in )

(b1,-..,bn)€{0,1} 1<j<n
- Z feren H {(—1)%’(1—%)(*1)%}
(c1,..,cn)€{0,1}" 1<j<n
— 2n/2fa1...an.

Hence, f is real.
Now in the opposite direction, suppose f is real. We have on/ 2.]?: [1 fi] o f, and thus for all

1 i
(a1,...,an) €{0,1}",

on/2 far..an _ 3 et ] {(_1)ajbj(_i)bj}'

(b1yebn) 40,1} 1<j<n

*On a square lattice, when there is no external electric field, physical considerations imply that the model is
unchanged by reversing all arrows [8]. This ‘zero field’ model includes the ice [61], KDP [65] and F [62] models as
special cases.
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So
2n/2]%...a7: Z fOL5ebn H {(_1)(1—%)6;'(_1)%}.
(b1,....bn)€{0,1}" 1<j<n
Then,
oM/ 2 faran = Z fbibn H {(fl)ajbjibj}
(bt rorsbr) E{0,1}7 1<j<n
_ Z fbl---bn H {(_1)ajbjibj}
(b1,....bn)€{0,1}" 1<j<n
Hence, f satisfies ARS. O]

For every @ € Oo, let @ = Z71QZ. Remember that we define F=271F. Then, we have
QF = (27'Q2)(Z7'F) = Z7Y(QF) = QF. (2.1)

Thus,
Holant (5| F) =7 Holant(=3| F) = Holant(=2| QF) =r Holant (2| QF).

Let Oy = {Q=27"'QZ | Q € O3}. One can check that 0, = {[¢9],[2¢]|aeC,|a| =1}

The following result is easy to check.

Lemma 2.37. Let F be a set of real-valued signatures. If F does not satisfy condition (T), then
for every @ € Og9, QF also does not satisfy condition (T). Moreover, F Z & and F Z of .

2.4 Sample Problems

We give some sample problems to illustrate the general theorems to be achieved.

Problem 1 : Counting independent sets #CSP( fig) (Example 2.3).

Recall that fis = (1,1,1,0). By the dichotomy of #CSP (Theorem 2.12), this problem is #P-
complete since figs ¢ & and fis ¢ «/. The problem #CSP(fig) is equivalent to Holant(£Q, fis).

Our Holant dichotomy (Theorem 1.1) confirms the #P-completeness.
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Problem 2 : The 2-spin system parameterized by f =1, v = —1, and A = 1 (Example 2.4).

This problem can be expressed as #CSP(f, g) where f = (1,1,1,—1) and g = (1,1). By the
dichotomy of #CSP (Theorem 2.12), it is tractable since f,g € /. The problem #CSP(f,g) is
equivalent to Holant(£Q, f, ¢). Our Holant dichotomy (Theorem 1.1) confirms the tractability.

Problem 3 : Counting unweighted Eulerian orientations #EO(Fgo) (Example 2.16).

Recall that Fro = {f2, fa,... fon, ...} where f§, =1 when wt(a) = n and f§, = 0 otherwise.
Mihail and Winkler proved that this problem is #P-complete [58]. The problem #EO(Fgo) is
equivalent to Holant(#2| Fro). Notice that Fgo satisfies ARS, Fpo € & and Fpo € «/. Our
#EO dichotomy (Theorem 4.1) and our Holant dichotomy (Theorem 1.1) both confirm the #P-
completeness.

When restricted to 4-regular graphs, the above problem is a special case of six-vertex models
with parameters a = x = b =y = ¢ = z = 1 (Example 2.17). Huang and Lu proved that this
problem is #P-complete [45]. Our #EO dichotomy (Theorem 4.1) and our trichotomy for six-vertex
models (Theorem 9.21) both confirm the tractablity.

We use Pl-Holant(F) to denote the problem Holant(F) with respect to planar graphs. Com-
pared to the six-vertex model over general graphs, the planar version has new tractable problems
due to the FKT algorithm (see Chapter 9) under holographic transformations. This tractable class

can give highly nontrivial problems. For example, we consider the following problem.

Problem 4 : SMALLPELL Pl-Holant(f), where f has the signature matrix

317830805723707970 —283823304736008960i 283823304736008960i 317830805723707968
M(f) — | —283823304736008960i —253454564065438270 253454564065438272 —283823304736008960i
2838233047360089601  253454564065438272 —253454564065438270 2838233047360089601
317830805723707968 —283823304736008960i 283823304736008960i 317830805723707970

After the holographic transformation by Z~!, we have

~

Pl-Holant(f) =7 Pl-Holant (£ |f),

where

~

0 0 0 1
M(f) — | 0 569465989630582080 32188120829134849 0
(1) 32188120829134849 18193801058564160 8 :
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Since (32188120829134849, 1819380158564160) is a solution of Pell’s equation 2% — 313y% = 1, we
can show that fis a matchgate signature by Matchgate Identities (Lemma 9.7). Our trichotomy for

six-vertex models (Theorem 9.21) shows that Pl-Holant(f) can be computed in polynomial time.

In addition to matchgates and matchgates-transformable signatures, Theorem 9.21 gives a new
class of tractable problems on planar graphs. They are provably not contained in any previously

known tractable classes. For example, we consider the following problem.

o

Problem 5 : Pl-Holant(#2 |f), where f has the signature matrix M (f) = [

—O O O

0 0 1

et 0 0

S 9.

g <3 3]

By Theorem 9.21 (condition 4 (ii)), Pl-Holant(#5 |f) can be computed in polynomial time.
Note that f satisfies ARS. Our #EO dichotomy and Holant dichotomy show that Holant(#2 |f) is
#P-hard without the planar restriction. It can be shown that f is neither a matchgate signature

nor a matchgate transformable signature. Therefore, the tractability is not derivable from the FKT

algorithm or a holographic transformation to it.
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Chapter 3

Polynomial-Time Reductions

In this chapter, we introduce three kinds of polynomial-time Turing reductions that will be
used in this dissertation. They are signature factorization, gadget construction and polynomial

interpolation.

3.1 Signature Factorization

Recall that we define all signatures have positive arity and they are complex-valued without
other specification. A nonzero signature g divides f, denoted by g | f, if there is a signature h such
that f = g®h (with possibly a permutation of variables) or there is a constant A such that f = A-g.
In the latter case, if A # 0, then we also have f | g since g = % - f. For nonzero signatures, if both
g | fand f | g, then they are nonzero constant multiples of each other, and we say g is an associate
of f, denoted by g ~ f. In terms of this division relation, we can define irreducible signatures
and prime signatures. We will show that they are equivalent, and this gives us the unique prime

factorization of signatures *.

Definition 3.1 (Irreducible signatures). A nonzero signature f is irreducible if g | f implies that
g~ f. We say a signature is reducible if it is not irreducible or it is a zero signature. By definition,
if a signature [ of arity greater than 1 is reducible, then there is a factorization f = g®h, for some

signatures g and h (of positive arities).

Definition 3.2 (Prime signatures). A nonzero signature f is a prime signature, if for any nonzero

signatures g and h, f | g® h implies that f | g or f | h.

Lemma 3.3. The notions of irreducible signatures and prime signatures are equivalent.

*The factorization of signatures is synonymous with the decomposition of multipartite quantum states in quantum
information theory. There, the uniqueness of decomposition is usually assumed as a common knowledge. To our best
knowledge, we are not aware of any formal proof.
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1L Bf. Suppose f is a prime signature. If f is not irreducible, then there is a nonzero signature g
such that g | f but not g ~ f. So there is a signature h (of arity > 1) such that f = g® h, up to a
permutation of variables (h #Z 0 due to f #Z 0). Then f | g ® h and by being a prime, either f | g
or f | h. This is impossible because both g and h have lower arity than f.

Now, suppose f is irreducible and let f | g ® h, where g and h are nonzero signatures (of arity
>1). If f~g®h,then f = (A\g)®h for some constant A # 0. This contradicts f being irreducible.

Thus, there is a nonzero signature e (of arity > 1) such that, up to a permutation of variables,

ex®f=g®h. (3.1)

Consider the scope of f, i.e., its set of variables. Suppose it intersects with the scopes of both g
and h. Since e # 0, we can pick an input § of e such that e® = A\; # 0. By setting the variables in
the scope of e to 5 on both sides of (3.1), we have

A1’f:g/(g)h/7

where ¢’ and h' denote the resulting signatures from g and h respectively, both of which have a
non-empty scope, i.e., having arity > 1. This is a contradiction to f being irreducible.

Hence the scope of f is a subset of the scope of either g or h. Suppose it is g, then the scope
of h is a subset of the scope of e. Since h # 0, we can pick an input « of h such that A% = Ay # 0.
By setting the variables in the scope of h to « on both sides of (3.1), we have

e/®f:)‘2'gv

where €’ denotes the resulting signature by setting « in e. Thus, we have f | g. Similarly, if the

scope of f is a subset of the scope of h, then we have f | h. O

A prime factorization of a signature f is f = g1 ®...®gx up to a permutation of variables, where
each g; is a prime signature (irreducible). Start with any nonzero signature, if we keep factoring
reducible signatures and induct on arity, any nonzero f has a factorization into irreducible (prime)

signatures. The following important lemma says that the prime factorization of a nonzero signature
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is unique up to the order of the tensor factors and constant scaling factors. It can be proved using

Lemma 3.3 and a standard argument, which we omit.

Lemma 3.4 (Unique prime factorization). Every nonzero signature f has a prime factorization.
If f has prime factorizations f = g1 ® ... ®gr and f = h1 ® ... & hy, both up to a permutation of

variables, then k = £ and after reordering the factors we have g; ~ h; for all i.

The following lemma shows that a real reducible signature has a real factorization, and equiv-

alently a reducible signature satisfying ARS has a factorization in which all factors satisfy ARS.

Lemma 3.5. 1. Let f be a nonzero real-valued reducible signature, then there exists a factor-

ization f = g ® h such that g and h are both real-valued signatures.

2. FEquivalently, let f be a monzero reducible signature satisfying ARS, then there exists a factor-

ization f: J® h such that g and h both satisfy ARS.

1E8]. We only prove the second part of this lemma. Then, the first part holds by Lemma 2.36. For
brevity of notations, we rewrite ]?, g and h as f,g and h. Suppose f = g ® h. Since f # 0, there is
a o f3 such that f*°# = g . h# £ 0. Since f satisfy ARS, we have

g WP = faoB = [P = g% 0 £ 0,

and also

g - 1P = [P = faB = g% 1P # 0.

Multiply these two equalities, and cancel a nonzero common factor, we have
l9°% = 19°[>.

Since ¢® and ¢ have the same norm, we can pick a scalar A = 1/(¢g%¢g®)"/? such that Ag® = Ag®.
We have f = (A\g) ® (1h) and we will show Ag and }h satisfy the ARS condition. We rename \g
and %h by g and h, and now we can assume there is an « such that ¢® = g% # 0. For any input /3

of h, we have
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and hence, h8 = hB. Hence h # 0 satisfies the ARS condition. We can pick a particular 5 such

that h? = B # 0. Then, for any input o of g, since f satisfies the ARS condition, we have

g 1P =g¥ 1P =g% 1P, and hence g = ¢g*. That is, g also satisfies ARS. O

In the following, when we say that a real-valued reducible signature f has a factorization g ® h,
we always assume that g and h are real-valued. Equivalently, when we say a signature fsatisfying
ARS has a factorization g ® ﬁ, we always assume that g and h satisfy ARS.

If a vertex v in a signature grid is labeled by a reducible signature f = g ® h, we can replace
the vertex v by two vertices v; and vy and label v, with g and v9 with h, respectively. The incident
edges of v become incident edges of v; and vy respectively according to the partition of variables of
f in the tensor product of g and h. This does not change the Holant value. On the other hand, Lin
and Wang proved that, from a real-valued reducible signature f = g ® h £ 0 we can freely replace

f by g and h while preserving the complexity of a Holant problem.

Lemma 3.6 ([57]). If a nonzero real-valued signature f has a real factorization g ® h, then

Holant(g, h, F) =7 Holant(f, F) and Holant (2| §,h, F)) =p Holant(#s| f, F)

~ ~ ~

for any signature set F (F). We say g (g) and h (h) are realizable from f (f) by factorization.

For a signature set F, we use F=¥ (k > 1) to denote the set {\ ®f:1 fi | A e R\{0}, f; € F}.
Here, A denotes a normalization scalar. In this paper, we only dissertation the normalization by

nonzero real constants. Note that F®! contains all signatures obtained from F by normalization.

We use F® to denote | 7o, F&F.

3.2 Gadget Construction

One basic tool used throughout the dissertation is gadget construction. An F-gate is similar
to a signature grid (G, ) for Holant(F) except that G = (V, E, D) is a graph with internal edges
E and dangling edges D. The dangling edges D define input variables for the F-gate. We denote
the regular edges in F by 1,2,...,m and the dangling edges in D by m+ 1,...,m + n. Then the
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F-gate defines a function f

Fiy) = > T 6 lsw)
o:E—{0,1} veV
where (y1,...,yn) € {0,1}" is an assignment on the dangling edges, ¢ is the extension of o on E by
the assignment (yi,...,¥m), and f, is the signature assigned at each vertex v € V. This function
f is called the signature of the F-gate. There may be no internal edges in an F-gate at all. In
this case, f is simply a tensor product of these signatures f,, i.e., f = @, ey fo (With possibly a
permutation of variables). We say a signature f is realizable from a signature set F by gadget
construction if f is the signature of an F-gate. If f is realizable from a set F, then we can freely

add f into F while preserving the complexity (Lemma 1.3 in [14]).
Lemma 3.7 ([14]). If f is realizable from a set F, then Holant(f, F) =r Holant(F).

Recall that we use =9 to denote the binary EQUALITY signature with truth table (1,0,0,1),
and #3 to the binary DISEQUALITY signature with truth table (0, 1,1,0). If we view Holant(=2| F)
as the edge-vertex incidence graph form of Holant(F), then it is equivalent to label every edge
by =»; similarly in the setting of Holant(#z| F ), every edge is labeled by #92. The property of

real-value and ARS are closed under gadget constructions using =9 and #, respectively.

Lemma 3.8. If f is realizable from a real-valued signature set F (in the setting of Holant(=2| F)),
then f is also real-valued. Equivalently, if f is realizable from a signature set F satisfying ARS (in

the setting of Holant(s£s| F) ), then f also satisfies ARS.

We may also write =3 as :2+ and #o as 75; We use =, to denote the binary signature

(1,0,0,—1) and #, to denote the binary signature (0,1,—1,0). Let B = {=5,=5,#5,7#, }. We
call them Bell signatures®. Let B = Z~1B. One can check that

o~~~ —

B={=f,=1.#1.#1 } = (o= () =5, A )

We introduce the following four gadgets that will commonly used in this dissertation.

*These signatures correspond to Bell states |®*) = [00) + |11), [®~) = |00) — |11}, |¥*) = |01) + |10) and
|[¥~) =|01) — |10) in quantum information science [9].
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3.2.1 Merging Gadget

A basic gadget construction is merging. In the setting of Holant(=2| F), given a signature
f € F of arity n, we can connect two variables z; and z; of f using =2, and this operation gives a
signature of arity n — 2. We use 0;; f or 8:5]‘ to denote this signature and 0;; f = Z-Ojo + Z-ljl, where
fl-‘}b denotes the signature obtained by setting (z;,z;) = (a,b) € {0,1}%. While in the setting of
Holant (#| F ), the above merging gadget is equivalent to connecting two variables z; and z; of f
using #5. We denote the resulting signature by é\ijfor 51?]?, and we have /Z;f = @jf: j?é-l + :-1]-0.
If #9 is available (i.e., it either belongs to or can be realized from F) in Holant(=3| F), we can also
connect two variables x; and x; of f using #2. We denote the resulting signature by 8£ f- The

merging gadget 5:; is the same as 9, we use different notations to distinguish whether this gadget

ij
is used in the setting of Holant(=2| F) or Holant(#| j-:)

Also, if =) and #, are available in Holant(=2| F), then we can construct 9, f and 8; f by
connecting x; and x; using =, and #, respectively. We also call 61-; and 85 merging gadgets.
Without other specification, by default a merging gadget refers to d;; in the setting of Holant(=2|
F). Similarly by default a merging gadget refers to @j in the setting of Holant(#2| F ).

The following lemma gives a relation between a signature f and signatures éA?ij f realized by

merging using #o.

Lemma 3.9. Let f be a signature of arity n > 3. If f* # 0 for some a € Z5 with wt(a) # 0,n,
then there exists a pair of indices {i,j} and some B € Zh~? with wt(8) = wt(a) — 1 such that
(@jf)ﬁ # 0. In particular, if for all pairs of indices {i,7}, @jf =0, then f* =0 for all o with
wt(a) # 0 and n; furthermore if f is an EO signature, then f = 0.

1EA. Suppose there exists some « with wt(a) # 0,n such that f¢ # 0. Clearly, « is not all-0
nor all-1. Since f has arity n > 3, « has length at least 3. Thus, we can find three bits in some
order such that on these three bits, « takes value 001 or 110. Without loss of generality, we assume
they are the first three bits of o and we denote o by 0016 or 1106 (§ maybe empty). We first
consider the case that a« = 001§. Consider another two strings 8 = 010§ and v = 1005. Note
that if we merge variables 21 and x5 of f using #9, we get d1of, its entry (912.f)% on the input 05

(for bit positions 3 to n) is the sum of 019 and f109  Clearly, wt(08) = wt(d) = wt(a) — 1. If
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((912f)06 = f0100 4 #1000 £ () then we are done. Thus, we may assume that
(812.]0)06 — f0105 + f1005 —0.
Similarly, by merging variables x1 and x3 using #9, we may assume that
(al3f)06 _ f001(5 + f1005 =0,
and by merging variables x2 and x3 using #2, we may assume that
(823f)05 _ f0015 + f0105 = 0.

f0106 — 1005 — (- A contradiction with

These three equations have only a trivial solution, f001% =
fo = f919 £ (. Thus, among (d12f)%, (913f)% and (da3f)%, at least on is nonzero.

If &« = 1104, the proof is symmetric. O

Merging gadget constructions on disjoint pairs of variables commute. Consider the signature
0;; f realized by merging variables x; and x; of f using =2. We may further merge variables x,, and
xy of 9 f for any {u, v} disjoint with {4, j}, and we use Ogyu) (i) f = Ouv(0ij f) to denote the realized
signature. Note that these two merging operations commute, 0(y)(ij)f = O(ij)uv)f- (Equivalently,
for the merging gadget construction using #» on f, we have 5(1“,)(”-)]?: 5(Z-j)(uv)f) We illustrate
the commutativity in the following commutative diagram.

Aij)

f————0upf
uv) A uv)

) f Y N uv) (i) | = Oigy(uo) f
(i)

Remark 3.10. We adopt the notation O for the similarity of the merging operation with taking

partial derivatives. They both reduce the number of variables, they both are linear, and under mild

. 0%f _ O%*f
smoothness conditions we know = .
0xdy oyox
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3.2.2 Extending Gadget

Another gadget construction that connects a nonzero binary signature b with a signature f is
called extending. An extending gadget connects one variable of f with one variable of b using =9
in the setting of Holant(=2| F), and connects one variable of fwith one variable of b using #o in
the setting of Holant (3] F ). By extending an irreducible signature using =, or #9, we still get an
irreducible signature.

A particular extending gadget is to extend f with binary signatures in B®! using =, in the
setting of Holant(F). We use {f }EQ to denote the set of signatures realizable by extending some
variables of f with binary signatures in B®! using =5 (recall that B®! allows all nonzero real
normalization scalars). Equivalently, this gadget is to extend ]?With binary signatures in B using
#9 in the setting of Holant(#s] a ). We use {f}i to denote the set of signatures realizable by
extending some variables of f with binary signatures in B®! using #9. If § € {f}i, then we can
say that the extending gadget by B defines a relation between g and f Clearly, by extending
variables of f with 4. B (using #9), we still get f. Thus, f € {f}i So this relation is reflexive.
The following lemma shows that this relation is symmetric and transitive, thus it is an equivalence

relation.
Lemma 3.11. 1. e {f}5, if fe {9)8,. 2 Ifhe {G)E, andge {F}E,, thenh e {f}5,.

1E8]. Note that for any be l§®1, if we connect any variable of b with another arbitrary variable of
a copy of the same b using #o, then we get #9 after normalization. Also, by extending a variable
of f with #9 (using #3), we still get f. Suppose that § € {f}i, and it is realized by extending
certain variables z; of .]/C\With certain b; € B. Then, by extending each of these variables x; of g with
exactly the same b; € g, we will get fafter normalization. Thus, f S {ﬁ}i The other direction
is proved by exchanging f and g. Thus, § € {f}i iff f e {ﬁ}i}

Also, note that for any I;i, b2 € E®1, by connecting an arbitrary variable of bl with an arbitrary
variable of b2 using #9, we still get a signature in 2 Suppose that 1 is realized by extending
some variables x; of § with some b} € B®. We may assume every variable x; of g has been so
connected as F#o€ Be1. Similarly we can assume g is realized by extending every variable z; of f
with some b? € B®!. Let b; be the signature realized by connecting b} and b? (using #2). Then, h

can be realized by extending each variable z; of f with b; € B®!. Thus, h € {f}l§ - O
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Remark 3.12. As a corollary, if g € {]?}EQ, then {/g\}l;2 = {f}li.

3.2.3 Mating Gadget

We first give the matrix representation of signatures. A signature f of arity n > 2 can be
expressed as a 2% x 2" 7F matrix Ms, (f) where Sy is a set of k many variables among all n variables
of f. The matrix Mg, (f) lists all 2" many entries of f with the assignments of variables in Sj*
listed in lexicographic order (from 0% to fk) as row index and the assignments of the other n — k
many variables in lexicographic order as column index. In particular, f can be expressed as a
2 x 2"~ matrix M;(f) which lists the 2" entries of f with the assignments of variable x; as row
index (from z; = 0 to x; = 1) and the assignments of the other n — 1 variables in lexicographic

order as column index. Then,

F0.00.0 (0,001 40111 {0
Mi(f) = 1,00..0  £1,00...1 | Z1 ’
i £ L f!

where f denotes the row vector indexed by x; = a in M;(f). Similarly, f can also be expressed as

a 4 x 2"~2 matrix with the assignments of two variables z; and x; as row index. Then,

[ £00,00..0  £00,00...1 00,11...1 0
f f o f )
FOL00.0 (01001 fOL11..1 f?jl
M (f) = 10,00..0  £10,00...1 w111 |0l
f ,00... f ,00.... f A1, fz’j
11,00..0  £11,00...1 11,11...1 11
_f f oo f | _fij_

where f;.ljb denotes the row vector indexed by (z;,z;) = (a,b) in M;;(f). For =, it has the 2-by-2
signature matrix M(=2) = Iy = [} 9]. For #9, M(#2) = N = [{}].

We can also represent T'f as the matrix Mg, (T'f) with the assignments of variables in Sy
as row index and the assignments of the other n — k variables as column index. Then, we have
Mg, (Tf) = T Mg, (f)(T7)*"=F. Similarly, Ms, (fT71) = (T71)% M, (f)(T~1)=n*.

Now, we introduce the mating gadget. Given a real-valued signature f of arity n > 2, we

*Given a set of variables, without other specification, we always list them in the cardinal order i.e., from variables
with the smallest index to the largest index.
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connect two copies of f in the following manner: Fix a set S of n — m variables among all n
variables of f. For each z; € S, connect x; of one copy of f with z; of the other copy using =s.
The variables that are not in .S are called dangling variables. In this paper, we only consider the
case that m = 1 or 2. For m = 1, there is one dangling variable x;. Then, the mating construction

realizes a signature of arity 2, denoted by m; f. It can be represented by matrix multiplication. We

have
] f 02 @8
M(mif) = My(HIZ" M) = || |97 g7 =] i 3.2
(mif) = My( )5 D= o 8] oo e (3.2)

where (-, -) denotes the inner product and |- | denotes the norm defined by this inner product. (We
will use the same notation (-,-) to denote the complex inner product (with conjugation) below.

The notation is consistent.) Note that [(f2,f})|? < [f]?|f}|?> by the Cauchy-Schwarz inequality.

177

Similarly, in the setting of Holant (2] F ), the above mating operation is equivalent to connecting
variables in S using #,. We denote the resulting signature by t/ﬁzf, which is the same as I'(/IJ , and

we have
®(n—1)
~ A A Ar@n—117 7T/ P ®] 101 57 ST
M) = NG MR = L o .

7
-~

SR

Note that (in general complex-valued) J?satisﬁes the ARS since f is real, we have

~T = = = ,TT
Nég)(n_l)f? _ (.]’0\0,11...1’ fO,ll 0, o f0,00...O)T _ (fL()[).__[)’ f1700“_1’ o f1711“_1> _ fz‘l .
Thus, we have
®(n—1) o~
o ®] o 1 e (G STk
M(mif) = | [f‘g f! } = | [f} 9 ] =1 _ . (3.3)
] o f g2 (8

If there are two dangling variables z; and z;, we use m;; f and I?lijfto denote the signatures realized
by mating f using =2 and mating fusing %9 respectively.

With respect to mating gadgets, we introduce the following orthogonality conditions.

Definition 3.13 (First order orthogonality). Let f be a complex-valued signature of arity n > 2.

It satisfies the first order orthogonality (1ST-ORTH) if there exists some p # 0 such that for all
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indices i € [n], the entries of f satisfy the following equations
1> = £}]> = p, and (), £]) = 0.

Remark 3.14. When f is a real-valued signature, the inner product is just the ordinary dot product
which can be represented by mating using =5. Thus, [ satisfies 1ST-ORTH iff there is some real
w # 0 such that for all indices i, M (m;f) = pla. On the other hand, when ]? s a signature with
ARS, by (3.3), the complex inner product can be represented by mating using #2. Thus, f satisfies

1sT-ORTH iff there is some real p # 0 such that for all i, M(m;f) = uNa. Moreover, f satisfies
1sT-ORTH iff ]? satisfies it.

Lemma 3.15. Let f be a real-valued signature of arity n. If for all indices i € [n], M (m;f) = u;I2
for some real p; # 0, then f satisfies 1ST-ORTH (i.e., all p; have the same value). Equivalently, if

for all indices i € [n], M(ﬁzf) = u; Ny for some real pu; # 0, then f satisfies 1ST-ORTH.

iLA. We prove this lemma in the setting of Holant(=2| F). For every M(m;f) = u; [{ ], if we
further connect the two dangling variables x; of m; f, which totally connects the corresponding pairs
of variables in two copies of f, we get a value 2u;. This value does not depend on the particular

index ¢. Thus, all p; have the same value for i € [n]. We denote this value by u. O

Definition 3.16 (Binary orthogonal signature). A real-valued binary signature f(x1,x2) is orthog-

onal if My(f)MT(f) = My for some real A > 0.

Remark 3.17. Since Ms(f) = M{(f), My(f)MI(f) = M iff Ma(f)M3(f) = M. Thus, a

real-valued binary signature f is orthogonal iff f satisfies 1ST-ORTH.

Let &, = {a € Z3 | wt(«) is even}, and 0, = {a € Z] | wt(«) is odd}. A signature f of arity
n has even or odd parity if its support .7(f) C &, or L (f) C O, respectively. In both cases, we
say that f has parity.

Lemma 3.18. A binary signature [ is orthogonal or a zero signature iff f has parity and ARS.

3E8]. Consider My (f) and Mi(f) = My(Z71f) = Z7*My(f)(Z~1)T. Then, Mi(f) = [ 0] iff
My(f) = [, 2% “5% ], and Mi(f) = [§ 2] iff My(f) =[5 %] - Also, f =0 iff f = 0 which also

has parity. O
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Let O denote the set of all binary orthogonal signatures and the binary zero signature. Then,
O = Z7'O is the set of all binary signatures with ARS and parity (including the binary zero

signature). Note that B C O and B C O. For signatures in (5, we have the following lemma.

Lemma 3.19. Let 61(1,‘1,562), bAg(yhyz) € O. If by connecting the variable x1 ofli and the variable
Y1 of by using £, we get A+ o (x2,y2) for some A € R\{0}, then by ~ by. Moreover, by connecting
the variable xo ofl;\l and the variable yo of bAg, we will get A+ #9 (x1,y1)-

1E7]. We prove this lemma in the setting of Holant(F) after the transformation Z back. Now,
b1 = Zby € O and by = Zby € O.

Consider matrices Mj(by) = M3 (by) and M (ba) = MJ(ba). Since by,bs € O, both M (by) and
M (b9) are real multiples of real orthogonal matrices, of which there are two types, either rotations
or reflections. For such matrices X,Y, to get XY = Al for some A € R\{0}, X and Y must
be either both reflections, or both rotations of the same angle, up to nonzero real multiples. First

suppose M (b1) = [% —ba

], reflection. Then by connecting x; of b1 and y; of by using =5 we get
A =9 (z2,12), i.e., M](b1)Mi(b2) = . This implies that by is the same reflection up to a nonzero
scalar, i.e., by ~ b;. Similarly, for a rotation M;(b;) = [fb 2], M7 (b1) M (by) = Al implies that by
is also a rotation of the same angle as b; up to a nonzero scalar, thus bs ~ b;. In either case, by

connecting the variable z2 of b; and the variable ys of by, we will get
M3 (by) Mo (ba) = My(by) M (b) = M.
This means that we get the signature A\- =9 (x1,y1). The statement of the lemma follows from this

after a Z~1 transformation. O

Definition 3.20 (Second order orthogonality). Let f be a complez-valued signature of arity n > 4.
It satisfies the second order orthogonality (2ND-ORTH) if there exists some X\ # 0 such that for all
pairs of indices {i,7} C [n], the entries of f satisfy

712 =181 =16> ==X, and (£ £ =0 for all (a,b) # (¢, d).

ij J (Y RAY]

Remark 3.21. Similar to the remark of first order orthogonality, f satisfies 2ND-ORTH iff there
is some X\ # 0 such that for all (i,7), M(m;f) = A4 = )\1582, and f satisfies 2ND-ORTH iff there
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is some X\ # 0 such that for all (i,7), M(fﬁwf) = ANy = AN$2. Moreover, f satisfies 2ND-ORTH

iff f satisfies it. Clearly, 2ND-ORTH implies 1ST-ORTH.

Lemma 3.22. Let f be a real-valued signature of arity n. If for all indices {i,j} C [n], M(my;f) =
Xijly for some real \jj # 0, then f satisfies 2RD-ORTH (i.e., all \jj have the same value). Equiv-
alently, if for all indices {i,j} C [n], M(fﬁwf) = \ijNs for some real \j; # 0, then f satisfies

2RD-ORTH.

7. We prove this lemma in the setting of Holant(=2| F). For every M(my;f) = Aijla, if we
connect further the two respective pairs of variables of m;; f, which totally connects two copies of
f, we get a value 4);;. This value clearly does not depend on the particular indices {7,j}. We

denote the value \;; by A. O

3.2.4 Pinning Gadget

If the unary signature Ay = (1, 0) is available, there is another basic gadget construction called
pining. Given a signature f of arity n and the unary signature Ag, we can connect the variable x;
of f with Ay = (1,0), and we get a signature of arity n — 1, denoted by fio. Clearly, fl-0 is realized
by setting the variable x; of f to 0. If by pinning any variable of f, we can only realize the zero

signature, then f itself is also “almost” a zero signature.

Lemma 3.23. Let f be a signature of arity n > 2. If for any index i, by pinning the variable x; of
f to 0, we have flo =0, then f* =0 for any wt(a) # n. If, furthermore, there is a pair of indices
{4, k} such that 0;,f =0, then f =0.

iER]. For any wt(a) # n, there is an index ¢ such that «; = 0. By pinning x; to 0, we get the
signature f2. We know f© is an entry in f0, and then f® = 0 since f = 0.

Suppose there is a pair of indices {j, k} such that 0;,f = 0. Let 8 denote the string of n
bits where 8; = B = 0 and ; = 1 elsewhere, and 7 denote the string of n bits 1s. Consider
the signature 0j;f. We know 8 4+ f7 is an entry in Ojrf (when 0;,f is a constant, we have
B4 = Ojrf). We know 2 4+ f7 = 0 since Ojrf = 0. Clearly, wt() # n and we have B =o.
Thus, we have f7 = 0. Thus, we have f = 0. O



36

00 _
ij

Pinning gadget constructions on different variables also commute. Suppose i # j. Then,
( fl-o)?- = ( fJQ)? = f%o. Also, the pinning gadget construction and the merging gadget construction
on distinct variables commute. Suppose i, j, k are distinct. Then, (9;xf)} = 9x(f?) # 0. The
commutativity of merging and pinning gadgets (as well as other gadgets) is a key property in our
proof.

We use the following Table 1 to compare notations in Holant(=5| F) and Holant(#;| ). In
the left column, we list notations in Holant(=3| F) where F is a set of real-valued signatures, and
in the right column, we list corresponding notations in Holant(#2| F) where F = Z~1F is the set

of complex-valued signatures with ARS. Note that although £O also satisfies ARS, we will only use

it in Holant(=5| F). Similarly, we will only use DEQ in Holant(#,| F) although it is real-valued.

Holant(=2| F) where F is real-valued Holant (5| F) where F satisfies ARS
EQ={=1,=2,...,=n,...} N/A
N/A DEQ = {#2,#4, .., #2n,- - -}, D= {#2}
O = {binary orthogonal and zero signatures} O = {binary signatures with ARS and parity}
B={=,=.#27} B={#=, (i) =51 4}

a holographic transformation QF by Q) € Oy | a holographic transformation @J? by @ € (/)\2
a merging gadget 0;; f = Z_ojo + Z-ljl a merging gadget @jf: E}l + :1]-0
extending gadgets {f }EQ with B extending gadgets {f}i with B

~

a mating gadget m;; f = Mz-j(f)Iégm_lMiTj(f) a mating gadget ﬁ\lijf: Mij(f)NgM_lej( )

2 1: Comparisons of notations in Holant(=5| F) and Holant (5| F)

Recall that F® denotes the set {\ ®f:1 fi | A e R\{0},k > 1, fi € F} for any signature set
F. We remark that both O and O® contain all zero signatures of even arity since the binary zero

signature is in O and O. However, B® and B® do not contain any zero signatures.

3.3 Polynomial Interpolation

Polynomial interpolation is a powerful technique to prove #P-hardness for counting problems.

We give the following lemmas. For more on polynomial interpolation, please see Section 9.2.3.



37

Lemma 3.24. Let gy and g be two nonzero binary signatures with M(go) = P~} (891 P and

M(g)=P! [)61 /\02] P for some invertible matriz P. If A1\o # 0 and |§—;\ # 1, then
Holant(go, F) <t Holant(g, F)

for any signature set F.

Lemma 3.25. Let g be a nonzero binary signature with M(g) = P! [/\01 )? } P for some invertible

matriz P, and h be a nonzero unary signature. If AyAo # 0, ]:\\—;\ # 1, and h (as a column vector)

is not an eigenvector of M(g), then

Holant(k', g, F) <7 Holant(h, g, F)

for any unary signature b’ and any signature set F.
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Chapter 4

Dichotomy for #2EO Problems with

Arrow Reversal Symmetry

In this chapter, we prove a complexity dichotomy for #EO problems with arrow reversal

symmetry (ARS). Recall that ARS requires f(@) = f(«) for all a, where f(«) denotes the complex

conjugation of f(«), and @ denotes the bit-wise complement of a.

Theorem 4.1. Let F be a set of EO signatures satisfying ARS. Then, #EO(F) is #P-hard unless

F C o or FC P, in which cases it is tractable.

In this chapter, without other specification we use f to denote a complex-valued EO signature

(whose support is on half-weighted inputs) satisfying ARS, and F to denote a set of such signatures.

4.1 Factorization and Gadget Construction of EO Signatures

In Chapter 3, we introduced certain polynomial-time reductions for general Holant problems.
To apply them to #EO problems we need to take care of one subtlety, namely any signature
signature realizable from EO signatures (by factorization or gadget construction) is still an EO

signature, and hence is suitable for #EO problems.

Lemma 4.2. Let f be a nonzero reducible EO signature satisfying ARS. Then, for any factorization

f=9g®h, g and h are both EO signatures.

1EB]. Since f # 0, we know g #Z 0 and h # 0 for any factorization f = g ® h. For a contradiction,
suppose there is a factorization f = g ® h such that g is not an EO signature. Then, there is an
input « of g such that g® # 0, and wt(«) # wt(a). (This is true no matter whether ¢ has even or
odd arity.) Since h # 0, there is an input 8 of h such that h® # 0. Note that oo (8 is an input of f
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and we have

fool =g P £0.
Moreover, since f satisfies ARS, we have

0# 30 = g% . 1P,
Then, we know ¢g® # 0, and hence

foP = g% 1P £ 0.

However, notice that wt(a o 8) = wt(a) + wt(5) # wt(@) + wt(8) = wt(a o 8). This implies that
F(f) € Hvity(s), contradicting f being an EO signature. Thus, for any f = g ® h, f and g are
both EO signatures. O

Remark 4.3. This lemma does not hold without assuming ARS. For example, f = (0,0,1,0) =
(0,1)®(1,0), where (0,0,1,0) is an EO signature but (0,1) and (1,0) are not. Also, by Lemma 3.5,
if an EO signature satisfying ARS is reducible, then it can be factorized as a tensor product of EO

signatures satisfying ARS.

In the following, when we say that a nonzero EO signature f satisfying ARS has a factorization
g ® h, we always assume g and h are EO signatures satisfying ARS. By Lemma 3.6, we have the

following reduction.

Lemma 4.4. If a nonzero EO signature f satisfying ARS has a factorization g ® h, then

#EO({g, h} UF) =r #EO({f} U F)

for any EO signature set F. In this case, we also say g and h are realizable from f.

Then, we consider gadget constructions of EO signatures. Note that in the framework of #EO

problems, edges are labelled by #,.

Lemma 4.5. Any signature realizable from a set F of EO signatures satisfying ARS is also an EO

signature satisfying ARS.
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1LBf. By definition @j f= 3-1 + filjo. Hence for any EO signature satisfying ARS, after merging
any two variables, the realized signature is still an EO signature satisfying ARS. Then, suppose f is
realized by a graph G with dangling edges and n vertices labeled by signatures fi, fo,..., fn € F.
We first cut all internal edges in G and get the signature f' = f1 ® fo ® -+ ® f,. Clearly f’ is an
EO signature satisfying ARS since all f; are. Then, f can be realized by merging (with #5) all cut
edges of f’ in a sequence. After each merging operation, the realized signature is an EO signature

satisfying ARS, and hence f is an EO signature satisfying ARS. O
Having established Lemma 4.5, we have the following reduction.

Lemma 4.6. If f is realizable from a set F of EO signatures, then #EO({f} U F) =r #EO(F).

4.2 Reduction from Six-Vertex Models to #EQO problems

The six-vertex model can be expressed by the problem #EO(f) where f is an EO signature of
arity 4. The complexity classification of this problem is known even when f does not satisfy ARS
(see [25] or Chapter 9 for more details). Here, we restate this result for the setting of signatures

with ARS.

Theorem 4.7. Let f be an EO signature of arity 4 satisfying ARS. Then #EO(f) is #P-hard
unless f € 2.

For nonzero 4-ary signatures satisfying ARS, we characterize product-type signatures by the

following two lemmas.

Lemma 4.8. Let f be an EO signature of arity 4 satisfying ARS. If f has support size 2, then
feZ.

#EB]. This lemma directly follows the alternative definition of &2 (Lemma 2.6). O

Lemma 4.9. Let f be an EO signature of arity 4 satisfying ARS with support size 4, say f®, 5,
e and foéO where o # 3, 3. Then f € 2 if and only if | f| = | f?|.

1ER]. Suppose f € . Then by Lemma 2.10 it has affine support. Being an EO signature with

support size 4, we can show that, after renaming its 4 variables we may assume the support is defined
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by (1 # x2) A (z3 # x4). No binary equality is used in its definition for being in &, and exactly
these two binary disequalities are used. Then f takes values ac, ad, be, bd on 0101,0110, 1001, 1010
for some a,b,c,d # 0. By ARS, we have bd = ac and ad = bc. It follows that |a| = |b|. Similarly
lc| = |d|. Therefore all nonzero values of f have the same norm. Hence |f%| = |f#].
Conversely, suppose f® = re’? and f? = re', for some r > 0 and ¢, 1. By renaming variables
ety ;2

we may assume o = 0101, 3 = 0110. Let a =re" 2z ,c=¢e¢ %w’ Then the unary functions (a,a)

on z1 and (¢, ¢) on x3, times (1 # x2) A (x3 # 4) defines f € Z. O

Now, we wish to leverage the complexity classification of six-vertex models and realize arity
4 signatures from a given set of signatures, to which we can apply the known tractability criteria.
We will use the mating gadget to realize signatures of arity 4, then apply the Cauchy-Schwarz
inequality. Consider a nonzero signature f € F. We may assume that f is irreducible. Otherwise
we can replace f by its irreducible factors without changing the complexity due to Lemma 4.4. We

have the following lemma.

Lemma 4.10. Let f € F be an irreducible EO signature of arity n > 4. Then one of the following

alternatives holds:
e #EO(F) is #P-hard, or
o #EO({#4} U.F) <7 #EO(f), or

o [ satisfies second order orthogonality (2RD-ORTH), i.e., there exists a nonzero constant A,

0001
such that for all pairs of indices {i,7} C [n], M (m;;f) = AN, where Ny = [8 08 8} .
1000

1EA. Since f is irreducible, f # 0. We consider the signature m;; f realized by mating two copies
of f for all pairs of distinct indices {7,j} C [n]. If #EO(m;; f) is already #P-hard, then #EO(F)
is also #P-hard since #EO(m;; f) <7 #EO(F). Since we already have a complexity dichotomy for

arity 4 signatures, we may assume that m;; f satisfies the tractability condition and that #EO(m;; f)
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is computable in polynomial time for every pair {7, j}. Notice that

[0 o 0 [E9?]
. . 0 (L)) IR 0
M (i f) = Mij(f)NS" Q)MiTj(f) = j1ozj 10Jf01
0 £ (£, ;) 0
1112
e 0 0 0] (4.1)

If there exists some {4, j}, such that m;;f = 0, then fgjo = f?jl = f}jo = lejl = 0, which implies f = 0.
A contradiction. So we have m;;f # 0, for all pairs {4,5}. Then by Theorem 4.7, #EO(m;; f) is
tractable if and only if m;;f € &2. By Lemma 2.10, we know m;; f has affine support, and being
nonzero it has support size either 2 or 4 (by the form in (4.1), the support size is not 1). There are

two cases depending on the support size of m;; f for all pairs {7,5}.
1. There exists some pair {i, j} such that m;;f has support size 2. Then,
000 02 112
00 0] where Aj; = |f?] = |fij| # 0,
000
} where \;; = |f?j1 2 = |f}]0|2 £ 0.

0000
o or M(my;f) has the form \;; [8? d
0000

The form that (f?jl,f}f) # 0 while | ij1|2 = 0 cannot occur since \(f?jl, f}j0>| < \f%l| filjQ . In both

forms, #4 is realizable since \;; # 0. Thus, #EO({#4} UF) <7 #EO(F).

2. For all pairs {¢,j}, m;; f has support size 4. By Lemma 4.9,

e Kither M(I/I\I”f) has the form )\ij |: 7

(=l elen)

0
g } where iy = [£20]° = |f}[2 = [£2}” = [£9]2 # 0,

OOoO—O
[ejelen)og

0

0 10 10 12 0
0 <f?j 7fij> ‘f?j [ 0
0

0 I (e

e or M(my;f) has the form [
0 0 0’

]’ where [{19), £9)? = 1819 # 0.

Again, the form that (f%l,lej% # 0 while \f?jl\Q = 0 cannot occur. In the first form, four

vectors form a set of mutually orthogonal vectors of nonzero equal norm. In the second form,

by Cauchy-Schwarz, it means that f?jl = cf}]o for some ¢ € C. In addition, we know |c| =1
1| — |10 : 012 _ #1112 _ 0 _ ¢l _

due to \f?j | = |f;;| by ARs. Since \f?j |* = |f;;|* = 0, we have f?j = f;; = 0, the all-zero vector.

Thus, f is factorizable as a tensor product f = b(x;,z;) ® g, for some g and some binary

signature b(x;,z;) = (0, a,a,0), a contradiction because f is irreducible.
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Thus, in this case, M (m;;f) = A\;j N4 for all pairs {i,j}. By Lemma 3.22, f satisfies 2ND-

ORTH.

We are done with the proof. O

By Lemma 4.10, we have two main cases depending on whether #4 can be realized by m;; f
from F. We give a proof outline to show how they will be handled. We use £ to denote the set
of binary EO signatures satisfying ARS. Then, €% = (Jp—{\ ®f:1 fi | A € R\{0}, fi € £} is the
set of tensor products of binary EO signatures satisfying ARS. Note that £ includes the binary
zero signature, and hence £% includes all zero signatures of even arity. We use £z to denote

{f €&|f#£0}, and then Sgoz{f€€®|f§é0}. By Lemma 2.6, we have £© C .

1. The signature #4 cannot be realized by m;; f from F. That is, every irreducible signature (or

factor of signatures) in F satisfies 2ND-ORTH.

We show that this case happens only if 7 C £¥ (Theorem 4.22). We want to prove this by
induction. The general strategy is to start with any signature f € F of arity 2n that is not
in £¥, we realize a signature g of arity 2n — 2 that is also not in £%, i.e. #EO({g} UF) <
#EO(F) (Lemma 4.20). If we can reduce the arity down to 4 (this is by a sequence of
reductions that is constant in length independent of the problem instance size of the graph),
then we can show it is impossible for such a signature to satisfy 2ND-ORTH. Thus, we can
use it to realize #4 or a #P-hard signature by Lemma 4.10. However, our induction proof
only works when the arity 2n > 10 (there is an intrinsic reason for this.) Therefore we must
establish the base cases at arity 4,6 and 8. Fortunately, using 2ND-ORTH, we can prove our

theorem for signatures of arity 4,6 and 8 separately (Lemma 4.21).

For the induction proof, we realize signatures of lower arity by merging (using #2) to. It
naturally reduces the arity by two. Given a signature f ¢ £% of arity 2n > 10, if @j fgE®
for some {i,j}, then we are done. So we may assume for every {i,j}, (ijf € £%. we further
inquire whether for every {i,j}, a-jf # 0. If for some {3, 7}, @jf = 0, then it turns out to be
relatively easy to handle (Lemma 4.11). So we may assume for every {i,j}, @j f #£0. We aim
to show that there is a binary signature b(z,, x,) such that b(x,, z,) | f. If so, the “quotient”
gives us a signature not in £%, but of arity 2n — 2, by Lemma 4.4. In some cases we have to

replace f by another f’ to accomplish that.
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Assuming (ijf € &% for all {i,j}, we prove there is a b(zy,x,) such that b(zy,z,) | f or

b(xy, xy) | f'in the following steps:

(a) If there is a binary signature b(x,, x,) such that b(z,, ) | @jf for every {i,j} disjoint
with {u,v}, then b(zy,z,) | f (Lemma 4.12).

(b) We have assumed @jf € 9 for all {i, j}. Suppose there is one dy, f = 0. We show that
the binary signature b'(x,,z,) = (0,1, —i,0) divides @jf for every {i,j} disjoint with
{u,v} (Lemma 4.13).

(c) Now, we further assume 5,;j f # 0 for all {i,57}. We want to show that if a binary
signature b(x,, z,) divides a “triangle”, i.e. b(zy,xy) | 5rsf, (itf, (/9\th (we say f satisfies
the A-property), it divides @jf for every {i,j} disjoint with {u,v} (Lemma 4.15). To

prove this, we need the following delicate lemma.

(d) If a binary signature b(z, z,) divides “two pairs”, i.c. b(xy, y) | Ostf, Oyy f, Where {s,t}
and {s',t'} are distinct but not necessarily disjoint, then it divides 51-]' f for any {i,j}
which is disjoint with {u, v}U{s,t}U{s’,t'} that satisfies 5(St)(ij)f # 0 and 5(S/t/)(ij)f #0
(Lemma 4.14).

(e) Finally, we show that either (i) f satisfies the A-property, or (ii) we can realize a signature
f’, where f’ & £% has the same arity as f, such that either @jf ¢ E® for some {i,j}, or
/' satisfies the A-property. (Lemma 4.17).

These steps will accomplish the arity reduction inductive step.

This case is handled in Section 4.3. We will see that the unique prime factorization plays an

important role in the proof.

. Otherwise, we have #EO({#4} UF) <1 #EO(F).

The signature #4 can be used to realize any (#9r) € DEQ (Lemma 4.23), and then the
problem #EO(DEQ U F) can be expressed as Holant(DEQ | F) (Lemma 4.24). The next
idea is to simulate #CSP(G) =7 Holant(£Q | G) using Holant(DEQ | F) for some G closely
related to F, and we can apply the dichotomy of #CSP (Theorem 2.12) to get hardness

results. The challenge is to simulate £Q using DEQ and F. After some reflection one can



45

observe that it is impossible to realize £Q by direct gadget constructions. Since signatures
in DEQ and F are EO signatures satisfying ARS, by Lemma 4.5 any gadget realizable from
them is also an EO signature. But clearly, any (=) € £Q is not an EO signature. However
we found an alternative way to simulate £Q globally, and this is achieved depending crucially

on some special properties of F, as follows:

(a) First, using ARS we show that #CSP(|F|?) <7 Holant(DEQ | F) (Lemma 4.26), where
|F|? denotes the set of signatures by taking norm squares of signatures in F, namely
|F|12 = {|f|?| f € F}. This directly implies that Holant(DEQ | F) is #P-hard unless
every signature in F has affine support (Corollary 4.27).

(b) Then, consider an EO signature with affine support. We show its support has a special

structure called pairwise opposite (Definition 4.28 and Lemma 4.30).

(c) Finally, given the support of every signature f € JF is pairwise opposite, we show
#CSP(F) < Holant(DEQ | F) (Lemma 4.31) by a global simulation, and hence the
problem Holant(DEQ | F) is #P-hard unless F C &/ or F C & (Corollary 4.32).

It follows that, in this case, we have #EO({#4} U F) is #P-hard unless F C &« or F C &
(Theorem 4.33). This case is handled in Section 4.4. We will introduce the pairwise opposite
structure and show the global reductions from #CSP to #EO problems.

As observed earlier £ C 2. If F C £®, then by Lemma 2.25 and Theorem 2.30 #EO(F)
is tractable. In Section 4.3, we show that if F ¢ £% then either #EO(F) is #P-hard, or we have
#EO({#41} UF) <1 #EO(F). In Section 4.4, we show that #EO({#4} U F) is #P-hard unless
F C o, or F C Z. This completes the proof of Theorem 4.1.

4.3 Interplay of Unique Prime Factorization and Merging Gadgets

In this section, we show that if F € £% then either #EO(F) is #P-hard or we can realize
#4, 1.e., #EO({#4} U F) <p #EO(F), and then the results from Section 4.4 take over. Suppose
F & E?, then it contains some signature f ¢ €%, and we prove the statement by induction on the
arity of f. The general strategy is that we start with any signature f of arity 2n > 10 that is not

in £%, and realize a signature g of arity 2n — 2 that is also not in £¥. However, this induction only
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works for arity 2n > 10. We prove the base cases of the induction separately, when f has arity 4,
6 or 8.

For the inductive step, we consider ajf for all {7, j}. If there exists {7, j} such that @jf ¢ E®,
then we can realize g = E/?\ij f which has arity 2n — 2, and we are done. Thus, we assume @j fe&®
for all {4, j}. We denote this property by f € Té’@. Under the assumption that f € 78 ®. our goal
is to show that there is a binary signature b(z,,x,) such that either b(z,,x,) | f or there exists
another f' ¢ £% realizable from f, such that f’ has the same arity as f, and b(xy,x,) | f'. In the
second case we may again assume [’ € Té’@, for otherwise we may take 5@']' f for some {i,j}. Now
we may replace f by f’ in the second case. From the factorization f = b(xy,z,) ® g, it follows from
the definition of £¥ that g ¢ £® since f ¢ £¥. From the factorization of f, we can realize g from
f by Lemma 4.4, and we are done. We carry out our induction proof in the next six lemmas.

For convenience, we use the following notations.
o £% = {tensor products of one or more binary EO signatures satisfying ARS}.
e f€ TS@) denotes the property that ajf € &E% for all {i,j}.
e f€ ngo denotes the property that a;jf € B and gl-jf # 0 for all {7,7}.

o We say f satisfies the A-property, if there exist three distinct indices {r,s,t} and a binary
signature b(x,, x,) such that {u,v} N{r,s,t} =0, and b(xy,x,) | Ovsf,Ostf, Opif

Lemma 4.11. Suppose f € £. Then a]f = 0 iff the signature b'(z;, z;) = (0,1, —1,0) divides f.

JEB. If b (2, 2;)|f, then f = b(z;, ;) ® g, where g is a constant or a signature on variables other
than z;, ;. We have @jf =(@{i—-1i)-g=0.

Now, suppose é\ij f=0. If f =0, then it is trivial. Otherwise, f #Z 0. Consider the unique
prime factorization of f. If 2; and x; appear in one binary signature b(z;, z;) = (0, a,a,0), then
a#0,and f = b(x;,z;) ®g, where g is a constant or a signature on variables other than z;, z; and
g #Z 0 due to f # 0. Then, we have @jf = (a4 a)g = 0, which means a +a = 0. That is, a = i
for some A € R. So, we have b'(x;, z;)|f.

Otherwise, z; and x; appear in separate binary signatures by (z;, i) = (0, a,a,0) and by(xj, z;) =

(0,b,b,0) in the unique prime factorization of f. That is, f = by (2, xy) ®@bs(x;, ;) ®@g, where g is a
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constant or a signature on variables other than x;, zy,x;, x5 and g # 0. Then (ijf =V(zy,x5) Qg

where b/ (z;1,25/) = (0,ab, ab,0) # 0. Hence, @jf % 0. A contradiction. O

Lemma 4.12. Let f € 75® be a signature of arity 2n > 6. If there exists a binary signature
b(xy, xy) such that b(xy, zy) | c{/?;]f for all {i, 5} disjoint with {u,v}, then b(xy,xy) | f.

JER. Recall that f’ denotes the signature obtained by setting variables (zy,z,) of f to (b,c) €
{0,1}2. These are called the pinning operations on {u,v}. Clearly, for any {4,;} disjoint with
{u,v}, the pinning operations on {u,v} commute with the merging operation é\ij, and so we have
(9 )1, = Dy (£L2).

We may assume the binary signature has the form b(z,, x,) = (0, a, a,0), where a # 0. Consider
the signature f’ := af’! —afl9. It is a signature on variables of f other than z, and x,. For any
{i,j} disjoint with {u, v}, by merging variables x; and z; of f’, and recalling that @j is a linear

operator, we have
O f' = By afiy — afud) = ady(£3) — ady(fu) = a0 )% — alDis ).

By assumption, @jf = b(zy, xy) ® g, where g is a signature on variables other than z,, ., z;, z;.

(Since 527- f has arity at least 4, g is not a constant.) Then we have

i = a(@if)0% — (@i £)L = a(ag) — a(ag) = 0.

Note that f’ is also an EO signature. By Lemma 3.9, we have f' = 0, and hence af0! = afl0.

Moreover, by the factorization of &jf, we have &]( 0) = (82]]”)00 = 0 and 0;; G(fly = (&jf)ll =

for any {i, j} disjoint with {u,v}. Also, since 2n > 6, f2(a) = fLl(a) = 0 when wt(a) = 0 or 2n—2.
01 f10 f11) — (0,a,a,0) ® (101,

By Lemma 3.9 again, we have f20 = fll = 0. Hence, f = (%, fOl, fl0 w

uv —

and we have b(xy,x,) | f. O

Notice that for arity 2n > 6, if b(zy,x,) | f and thus f = b(xy, zy) ® g, then by the definition
of £2, from f ¢ £® we obtain g ¢ £, which has arity 2n — 2, completing the induction step using
Lemma 4.4. Therefore, to apply Lemma 4.12 we want to show that there is a binary signature
b(xy,x,) such that b(zy,x,) | gijf for every {i,j} disjoint with {u,v}. We first consider the case
that dy,f = 0 for some {u,v}.
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Lemma 4.13. Suppose f has arity > 4 and f € Té’@. If 5Mf = 0 for some {u,v}, then the binary
signature b'(xy, vy) = (0,1, —1,0) satisfies b'(zu,zy) | @jf for all {i,j} disjoint with {u,v}.

iER]. For any {i,j} disjoint with {u,v}, the operations (/9\15 and 5w commute. Since 5Wf =0, we
have

0un(Di3f) = 0ij(Dun ) = 0.
Since ajf € £9, by Lemma 4.11, we have b'(zy, z,) | @]f O

In the following, for convenience we denote 51']- (aw f) by 5@)(%) I

Now, we assume @jf € B and @jf # 0 for all {i,7}. We denote this property by f € ngo‘
Each é\ij f has a unique prime factorization. We will show that once we can find some binary
signature b(x,, x,) that divides a “triangle”, i.e. b(mu,wv)@mf, 5stf, antf for three distinct {r,s,t}
disjoint with {u, v}, then it divides 5,-]- f for all {7, j} disjoint with {u,v}. We first consider the case

that b(xy, z,) divides “two pairs”. The statement of the following lemma is delicate.

Lemma 4.14. Let f be a signature of arity 2n > 8 and f € 75520' Suppose there exist two pairs
of indices {s,t} and {s',t'} that are distinct but not necessarily disjoint, and a binary signature
b(2u, 20), where {u,v} N ({s,t} U{s t'}) =0, such that b(xy,zy) | Ostf, Oy f. Then for any {i,j}
disjoint with {u,v} U {s,t} U{s', '}, if 5(st)(ij)f Z0 and 5(S/t/)(ij)f £ 0, then b(xy,xy) | (i]f

1L8]. By hypothesis f € ]5;20, so for any {i,j}, we have (ijf € £% and is nonzero, and thus it has
a unique factorization with binary prime factors. Let {7, j} be disjoint with {u,v}U{s,t} U{s,t'}.
Suppose it satisfies the condition g(st)(z-j) f # 0 and 5(3%/)(1‘;') f # 0. We first prove that =, and x,

must appear in one single binary prime factor ¥'(x,,x,) in the factorization of 5@' f. That is,

~

where g # 0 is a signature on variables other than x,,x,,z;,2;. For a contradiction, suppose
variables z,, and x, appear in two distinct binary prime factors by(xy, z,/) and ba(zy, x,) in the

prime factorization of @j f- Then,

(i‘jf =b (xu, xu/) ® bg(xv, 1'”/) & g’, (43)
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where ¢’ # 0 is a signature on variables other than x,, 2./, Ty, Ty, i, ;. By hypothesis, b(xy, z,) |
agt f, thus 5515 f = b(zy,xy) @ h for some h on variables other than z,,x,, s, z¢, which certainly
include z;, z;. Thus 5(ij)(st)f = b(xy, Ty) ® @jh, and we have b(:cu,xv)|5(ij)(st)f = §(St)(ij)f. By
hypothesis for this {i,j} we have 5(St)(l-j) f # 0. This implies that after merging variables s and z;
of 51-]' f, &, and z,, form a nonzero binary signature. By the form (4.3) of (/9\@- f, the only way z,, and
Z, can form a nonzero binary signature in g(st)(z-j) f is that the merge operation is actually merging
xy and z,,. We conclude that {s,t} = {«/,v'}. We can repeat the same proof replacing {s’,t'} for
{s,t}, and since b(zy, xy) | 5(S/t/)(ij)f and g(s/t/)(ij)f # 0, we have {s/,t'} = {/,v'}. Hence, we have
{s,t} = {s',t'}. This is a contradiction, and (4.3) does not hold.

Thus (4.2) holds. Since {s,t} is disjoint with {u,v,,j}, by the form (4.2) of (@jf, when
merging variables xs and xz; of 51-]' f, we actually merge variables x; and z; of ¢ and the binary

signature b'(z,, x,) is not affected. Thus,
Oty (i) =V (Tus 20) ® Dutg.

That is, V' (2, xy) | (/3\(8t)(ij)f. By hypothesis we also have b(z,, z,) | dsf. By the fact that {i,j}
is disjoint with {u,v,s,t}, we have b(xy,z,) | 5(Z~j)(st)f = 5(St)(,-j)f. Thus b(zy,x,) and V' (xy, z,)
both divide E)\(st)(ij) f # 0. By the unique factorization lemma (Lemma 3.4), we have b(xy, z,) =
AV (24, ) for some X # 0. In particular, by (4.2), b(xy, xy) | a]f O

Now we come to the pivotal “triangle” lemma. Recall that the A-property was defined just
before Lemma 4.12. Suppose f satisfies the A-property, i.e., there is a binary b(z,, x,) that divides
a “triangle”, b(zy, x,) | 5T3f, 55tf, 5rtf. A key step in the proof of Lemma 4.15 is to show that for
any {i,7} disjoint with {u,v,r, s, t}, among the three iterated “derivatives” 5(rs)(ij)f, 5(St)(ij)f and

5(,,,5)(”») f, at most one of them can be identically zero. Then Lemma 4.14 applies.

Lemma 4.15. Let f € 75;?0 have arity 2n > 10. Suppose f satisfies the A-property. Then there

is a binary signature b(xy, x,) such that for any {i,j} disjoint with {u,v}, we have b(zy, x,) | ajf

1i£7]. By the A-property, there is a binary signature b(z,, x,) and {r, s, t} disjoint with {u, v} such
that b(xy,x,) | (;);sf, 5Stf, 5rtf. For any {i,7} disjoint with {u,v}, we first consider the case that

{i, 7} is also disjoint with {r, s,¢}. Our idea is to show that among 5(rs)(ij)f, g(st)(ij)f and (/9\(Tt)(ij)f,
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at most one of them can be a zero signature. This implies that there are two among these that are
not identically zero. Then by Lemma 4.14, we have b(xy, x,) | 52-]- f.

By Lemma 4.11, 5(Ts)(ij)f = 0 iff the binary signature b'(z,,zs) = (0,i, —i,0) divides @jf.
Similarly, 5(st)(z'j)f = 0 iff b'(xs, 2¢) | gijf, and 5(Tt)(ij)f = 0 iff b'(2,, 2¢) | (/ijf By hypothesis,
fe Tﬁgo, so é\ij f # 0. The signature 5ij f € €% has a unique prime factorization. By Lemma
3.4, since the three signatures b'(z,, z4), b'(zs, 2;) and b'(z,, ;) are on pairwise overlapping sets of
variables, at most one of them can be a tensor factor of @j f. Thus, among 5(7«3)(1'3') 1 5(st)(ij) f and
5(rt)(ij) f, at most one of them can be a zero signature, which implies b(z,, x,) | 51-]' f, by Lemma
4.14, for all {4, 7} disjoint with {u,v,r,s,t}.

Now suppose {i,j} is disjoint with {u,v}, but not disjoint with {r, s,¢}. In the union {i,j} U
{r,s,t} U{u,v}, there are at most 6 distinct indices. Since the arity of f is at least 10, there are
three indices {r’, s, ¢’} such that {7/, s’ '} is disjoint with {7,j} U {r,s,t} U {u,v}. Since {r',s'}
is disjoint with {u,v,r,s,t}, we can replace {i,j} by {r/,s'} in the proof above for the case when
{i,j} is disjoint with {u,v,r, s,t}, and derive b(xy,x,) | 5(T/s/)f. By the same reason, we also
have b(xy, zy) | Dyv f, and b(Zy, ) | 5(T/t/)f. In other words we found a new “triangle”, that is,
f satisfies the A-property with the binary signature b(z,,z,) and the triple {r’, s’ ¢’} replacing
{r,s,t}. Note that now {i,j} is disjoint with {r’,s’,#'}. So, we can apply the proof above with
{r, s,t} now replaced by {r’,s',#'}, and we conclude that b(xy, ) | gijf. O

Remark 4.16. This is the first place we require the arity of f to be at least 10.
We go for the kill in the next lemma.
Lemma 4.17. Let f € F be a signature of arity 2n > 10, f ¢ E% and f € T&'go. Then
o cither f satisfies the A-property;

e or there is a signature f' ¢ E® that has the same arity as f, such that #EO(f' U F) <
#EO(F), and the following hold: either (1) f' & Tg@ or (2) [ satisfies the A-property.

1E 7. Consider 5(12) f. Since 5(12) f€&®and 5(12) f # 0, without loss of generality, we may assume

in the unique prime factorization of 5(12) f, variables z3 and x4 appear in one binary prime factor,
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x5 and xg appear in one binary prime factor, and so on. That is,
Ona)f = bi(z3,24) ® ba(w5,76) @ b3(27, 28) ® ba(T9,710) ® ... @ by—1(T20—1, T2n). (4.4)

Case 1. For all 1 <k <n—1, bp(zokr1,Top+2) # a scalar multiple of (0,1, —i,0).

Then by Lemma 4.11, 5(34)(12)f # 0, and clearly, bk(xgk_,_l,x2k+2)]5(34)(12)f for k > 2. In

particular, we have

ba (x5, x6), b3(x7, 78), ba(w9, T10) !5(34)(12)f7

since f has arity at least 10.

Now consider 5(34)f We have 5(34)f S 6®, 5(34)f 7_é 0, and 5(12)(34)f = 5(34)(12)f 7_é 0.

o If 21 and x9 appear in one binary prime factor b} (21, z2) in the unique prime factorization
of 5(34) [, then after merging variables z1 and z, the binary signature b} (z1, x2) becomes
a nonzero constant, but all other binary prime factors of 5(34) f are unchanged and appear
in the prime factorization of 5(12)(34)f. By commutativity 5(12)(34)f = 5(34)(12)f, and by
(4.4) the prime factors of 5(12)(34)f are precisely bg(zok11, Togt2), for 2 <k <n—1, we

conclude that the unique prime factorization of 5(34) f has the following form (up to a

nonzero constant)
5(34)f = b (21, x2) @ ba(ws, 26) ® b3(27, 28) @ ba(wg, £10) @ ... ® by—1(Ton—1, T2n).

o If z; and x2 appear in two distinct binary prime factors b (z1,z;) and b (z2,z;) in the
unique prime factorization of 5(34) f, then after merging variables z; and x3, from (4.4)

we have

B9y .f = Oaayaz)f = - balws, 6) @ b(a7, 08) @ ba(29, 210) ® . .. @ b1 (2201, T20)

for some nonzero constant c¢. On the other hand, from the form of 5(34) f, the two
variables x; and z; form a new nonzero binary b”(z;,x;). Thus the pair {4, j} is either

{5,6}, or {7,8}, etc. and we may assume (i, j) = (5,6) by renaming the variables. Thus,
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we have
Bzayf = Vi (a1, 25) ® by (22, 26) @ b3 (w7, 28) @ ba(29,210) @ .. @ by—1(T2n—1, T2n).

(In the following proof we can use any bj, for 4 < j < n — 1; for definiteness we set j = 4,
and since n > 5 this choice by is permissible.) In both cases above, we have by(zg, x10)|5(34) f,
and 5(78)(34)]“ # 0 since bs(x7,x3) # (0,1, —i,0) by assumption. Moreover, note that in both
cases, rg and x7 do not appear as the two variables of a single binary signature tensor factor
of 5(34)f. The same is true for xg and xg. This implies that 5(67)(34)1" # 0 and 5(68)(34)f Z 0.

So we have derived

ba(29,210) | Oaayf, Orsyaaf Z0, Oenyaayf Z0, and Jggyaa)f # 0.

Clearly, by (4.4), we also have

ba(z9,210) | 5(12)f7 5(78)(12)f # 0, 5(67)(12)f #0, and 5(68)(12)f Z 0.

Apply Lemma 4.14 three times (with {u,v} = {9,10}, {s,t} = {1,2},{s,¢'} = {3,4}, and
taking {7,7} = {6,7},{7,8},{6,8} separately), we have

ba(xg, x10) | D7) . sy [ Oies) I-

Thus f satisfies the A-property ({u,v} ={9,10} and {r,s,t} = {6,7,8}) and we are done.

Case 2. There is a binary signature bg_q(zok—1,z2x) in the factorization of 5(12)f such that
br—1(xok—1, o) = a scalar multiple of (0,1, —1i,0). Then by Lemma 4.4, we have the reduc-
tion #EO((0,1, —1,0), f) <r#EO(f). Connecting the variable z9;_1 of f with (0,1, —i,0), we
can realize a signature f’. Consider 5(12) f'. Again the operations commute: it is the same as
connecting the variable xop_1 of 5(12)]" with (0,1, —i,0). Since 5(12)]’ is a tensor product of bi-
nary signatures, connecting the variable xo_1 of 5(12) f with (0,1, —i,0) is just connecting the
variable xoy_1 of the binary bg_1(zor_1, o) with (0,1, —i,0), which gives a binary (0, 1,1,0).

That is, 5(12) f! is still a tensor product of the same binary signatures as in 5(12) f except that
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bi—1(@2k—1,x2x) = (0,1, —i,0) is replaced by b}, (22x—1,x2t) = (0,1,1,0). Similarly, for any
binary signature by_1(z9s_1,x2¢) = (0,1, —i,0) in 5(12)]‘", we modify it in this way (together all
at once). Thus, we can realize a signature f’ by connecting some variables with (0,1, —i,0)

such that

~

Dz f" = by (23, 24) @ by(25, 26) @ bs(27, 28) @ by (29, T10) @ ... @ b, 1 (X201, T2m),

where 0} (zop+1, Tar42) # a scalar multiple of (0,1, —i,0) for any 1 < k < n— 1. Moreover, we
know f' ¢ £% since f ¢ £%; this follows from the closure property of £¥ under the operation
of connecting a variable by (0,1, —i,0) via #2, and the fact that if we connect three times
(0,1,—1,0) via #9 in a chain from f’, we get f back: (N [_Oi é])4 =1

If f/ ¢ Té’@, we are done. Otherwise, f/ € Té’@. If there is {u,v} such that O f' = 0,
then by Lemma 4.13, we have b'(z,,1,) | @jf’ for any {i,j} disjoint with {u,v} where
bi(zy, ) = (0,1, —i,0). Then clearly f’ satisfies the A-property. Otherwise, f’ € /f\(c/‘@?—é(). As
we just proved in Case 1, now replacing f by f’, we have b)(zg,x10) | 5(67)f’,5(78)f’,5(68)f’.

This completes the proof.
O

Remark 4.18. This proof also requires the arity of f to be at least 10.

Let D = {#5}. Then D® = {\- (#2)®" | A € R\{0},k > 1} is the set of tensor products of #o
up to nonzero real scalars. If f satisfies the property that f € TD® (i.e., (/3\1']- f € D®) for any pairs

of indices {i,j}, then we can prove the following stronger result.
Lemma 4.19. Let ]? be a 2n-ary EO signature satisfying ARS.

o When 2n = 8, if for all pairs of indices {3, j}, @jfe D®, and there exists some #9 (2, ;) and
two pairs of indices {u, v} and {s,t} where {u,v}N{s,t} # 0 such that #o (z;,x;) | Ouuf, Ostf
then f € D® and #; (i, x5) | 7.

o When 2n > 10, if for all pairs of indices {3, j}, ajfé D%, then f € DP.

Lemma 4.20 (Induction). If F contains a signature f ¢ E% of arity 2n > 10, then there is a
signature g ¢ £ of arity 2n — 2 such that #EO({g} U F) <1 #EO(F).
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JERR. If f & Té’@, then there exists {i,j} such that E;ijf ¢ %, and we are done by choosing
g = (/ijf Thus, we assume f € /f\é’@. If 5uvf = 0 for some indices {u,v}, then by Lemmas
4.13 and 4.12, the binary signature b'(z,,x,) = (0,1, —i,0) divides f. That is, f = b'(zy,2,) @ ¢
where ¢ is a signature of arity 2n — 2, and g ¢ €% since f ¢ £®. By Lemma 4.4, we have
#EO({g} UF) <p #EO(F). So we may assume [ € TS;_?O. Now we apply Lemma 4.17. If the
first alternative of Lemma 4.17 holds, then f satisfies the A-property. Then by Lemmas 4.15 and
4.12, there is a binary signature b(x,, x,) such that b(x,,z,) | f. This divisibility of f produces a
signature not in £% of arity 2n — 2 similar to what we have just proved, and we are done. If the
second alternative of Lemma 4.17 holds, then we have a signature f’ ¢ £% having the same arity as
f- We have #EO({ f'}UF) <1 #EO(F). If f' & Té@, then there exists {7, j} such that d;; f ¢ £%,
and we can take 52-]- /" as g, and so we are done. Otherwise, by the conclusion of Lemma 4.17, f’
satisfies the A-property. Similar to the proof above for f, there is a binary signature b(x,, z,) such
that b(xy,z,) | f/. This divisibility of f’ produces a signature not in €% of arity 2n — 2. This

completes the inductive step. ]
Now, we use the orthogonality property to prove the base cases.

Lemma 4.21 (Base cases). If F contains a signature f ¢ £ of arity 4, 6 or 8, then either #EO(F)
is #P-hard or #EO({#4} UF) <7 #EO(F).

1E8f. Again by Lemma 4.4, we may assume f is irreducible. Otherwise, we just need to analyze
each irreducible factor of f. More specifically, if f ¢ £° and f is reducible, then there exists an
irreducible factor g of f such that g ¢ £%, and g has arity 4 or 6. If we can use g to realize a
#P-hard signature or #4, we can also use f to do so.

By Lemma 4.10, we may assume that f satisfies the orthogonality. Otherwise, we are done.

Therefore, we have

for any (a,b) € {0,1}2, and any pair {i,j}. This readily leads to a contradiction for signatures of
arity 4 as follows. Suppose f is an irreducible signature on four variables x1, xo, x3, x4. Let (4, j, k,¢)

be an arbitrary permutation of {1,2,3,4}. Consider the vector f%o. It has only one possible nonzero
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entry %%1 since the support of f is on half weight. Thus,

9P = A = A

for any (z;,z;, zx, x¢) = (0,0,1,1). Since (4, j, k, £) is an arbitrary permutation of {1,2,3,4}, ?j%lel

is an arbitrary entry of f at half weight, and since f is nonzero, every weight two entry of f has

the same nonzero norm v/ A. However, Consider the vector fO!

; : 0101
07 7 it has two nonzero entries f; ki and

0110
fijke . Hence,

A= 81 = LA + 0P = 2

7

which means A = 0. This is a contradiction.

Before we go into the technical details of the proof for signatures of arity 6 and 8, we first give
some intuitions. By considering the norm-squares of entries in f as unknowns, the orthogonality
property of f actually gives a linear system. Our proof is to show that when f has small arity 4, 6, 8,
the solution region of such a system only has the trivial zero point. We illustrate this perspective
by the arity 4 case. Suppose f has arity 4. It has (3) = 6 possible nonzero entries. These entries
satisfy the orthogonality condition. We have

92 -a=0, [F-A=0, B -A=0, [fIF-A=0

v

for any {i,7} C {1,2,3,4}. There are (‘21) x 4 = 24 many equations in total. If we view these norm-

f0011|2, ’f0101|2, ‘f0110|23 ‘f1001|2’ |f1010|27 |f1100|2

squares of entries | (we omit subscripts here) and

the value X\ as variables, those equations are linear equations on these variables. By ARS, we have
| fOOLL]2 = | p1100)2 1) £0101)2 — | £1010)2 " q | fO110)2 = | £100112 Gg there are only four variables. Our
idea is to show that the matrix of this linear system which has 24 many rows but only 4 columns

has full rank. We only need 4 rows to prove this. In our proof for arity 4, we picked the following



56

4 rows and showed that the induced linear system has full rank:

100 -1 _\fOOHIQ_ 0
0 1 0 —1| ||fo0np 0
00 1 —1]| [[fom0p o
01 1 -1 A 0

For the arity 6 case, we will basically show the same thing (i.e., the linear system has only the
trivial zero solution) with some carefully chosen rows. For arity 8 case, we will use the fact that
the variables take nonnegative values and we show the linear system has no nonnegative solution
except the zero solution.

An intuitive reason why this proof could succeed for signatures of small arity is that in these
cases, we have more equations than variables, which leads to an over-determined linear system. For
the general case of arity n, there are 4(3) many equations but (n%) /2 + 1 many variables. Since
4(3) < (nT/LQ) /2 + 1 when n is large, this method will not work for large n. This is why we cannot
hope to apply this proof to signatures of large arity.

Now, we give the formal proof for signatures of arity 6 and 8. In what follows we assume f

has arity > 6. Given a vector f*

ij» we can pick a third variable zj and separate f‘;jb into two vectors

fjjblg and f%bkl according to xy = 0 or 1. By setting (a,b) = (0,0), we have

71 = 1605 7 + £ 12 = A (4.5)

02 00 012

012 = IE5R 17 + 15612 = A (4.6)
Comparing equations (4.5) and (4.6), we have |f0;),€1]2 \f010|2 Moreover, by ARS, we have |f010|2
|f11]0kl|2 Thus, we have |f001|2 |f101|2 Note that the vector fOl can be separated into two vectors

f?jk and fz-ljk according to z; = 0 or 1. Therefore,

|f(])11:‘2 - | ijk |2 + 1]0kl =
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Thus, we have |f?]0,3]2 = \fil](-]klP = A/2. Then, by equation (4.5), we have ]f%Q,? 2 = )\/2, and again
by ARS, we also have \f%jl,ﬂz = \f%o,g|2 = )A/2. Note that the indices i, j, k can be arbitrary three
distinct indices, by symmetry we have

5517 = A/2 (4.7)

for f of arity > 6, and for all (z;,z;,7%) = (a,b,c) € {0,1}3.

This leads to a contradiction for signatures of arity 6. Suppose f is an irreducible signature
on 6 variables x1,xa, ..., x¢. Let (i,7,k,4', 5/, k') be an arbitrary permutation of {1,2,...,6}. Note
that the vector f2% has only one possible nonzero entry %92,1].1,%{/. Thus, by (4.7) we have

ijk

002 000111 |2
|f{i)jk:‘ = | z’jki’j’k’| =A\/2
for any (x4, xj, ok, xyr, 2, 2p) = (0,0,0,1,1,1). That is, any entry of f at half weight has the same
nonzero norm 4/ A/2. However, the vector f?]olg has (g) = 3 nonzero entries. But,
012 001011 |2 001101 |2 001110 |2
A2 = |f?jk| = | ijki’j/k’| + | ijki/j’k" + | z'jlci’j’k/| =3)\/2,

which means A = 0. This is a contradiction.

For signatures of arity 8, we need to go further and use the fact that the norm-square is

nonnegative. Given a vector f‘;;’,ﬁ,

we can continue to pick a fourth variable x, and separate f‘g’g into
two vectors f%’gg and f%b]gl} according to xy = 0 or 1. By setting (a,b,c) = (0,0,0), we have from
(4.7)

5017 = 1500 1° + £k | = A/2. (4.8)

Similarly, we consider the vector f%oél and separate it according to x; = 0 or 1. We have

€050 17 = 1€05ee I° + €25 I = A/2. (4.9)

Comparing equations (4.8) and (4.9), we have |f?fl?? 2= |f%0kl£1 2. This leads to a contradiction for
signatures of arity 8.

Suppose f is an irreducible signature on 8 variables x1,xzo,...,zs. Let (4,7, k,¢,¢,5 K, ¢)

be an arbitrary permutation of {1,2,...,8}. The vector f?ﬁ&o has only one possible nonzero entry
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00001111
ikt e - Thus,

0002 00001111 |2
£ike | = | fijkeirjimre ™ (4.10)

011 4 _ : ‘g : 00110011
The vector f?jkf has (2) = 6 possible nonzero entries including f;7 /54, Thus,
0112 _ | £00110011 |2
fiike |” = [ fijroirjee|” + A, (4.11)

where A denotes the sum of norm-squares of the other 5 entries in f%olgzl and we know A > 0. Since

the left-hand sides of equations (4.10) and (4.11) are equal, we have

00001111 2 __ 00110011 |2
| fijkeirjire |~ = | fijreirjire |+ A (4.12)

Similarly, consider vectors f?jgig?/ and f%%}},. We have \f%oi(,)?/ 2= |f?]0;]1/|2 The vector f?fi(/)?/ has only

one possible nonzero entry. Thus,

1£0000,12 — | 00110011 |2
igi'y | = Vijkeij ke

The vector f%%}, has 6 possible nonzero entries. Thus,

011 (2 00001111 |2
|f(i)ji’j/| = | fijreirginel” + A

where A’ denotes the sum of norm-squares of the other 5 entries in f%oﬁjl, and we know A’ > 0.

Thus, we have
00110011 |2 _ | #00001111 (2 , A7
| fiskeir e |” = | fijrei e |” + A (4.13)

Comparing equations (4.12) and (4.13), we have A = —A’, which means A = A’ =0 due to A >0

and A’ > 0. Since A is the sum of 5 norm-squares, each of which is nonnegative, A = 0 means

00111100 |2

each norm-square in the sum A is 0. In particular, | iikeirj e | 1S & term in the sum A. We have

‘ 00111100 |2

kit ke |” = 0. Since the order of indices is picked arbitrarily, all entries of f are zero. Thus, f

is a zero signature. A contradiction. O
Theorem 4.22. If F € E®, then either #EO(F) is #P-hard or #EO({#4} U F) < #EO(F).

1E8]. The base case is Lemma 4.21 and the inductive step is Lemma 4.20. Done by induction. [
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4.4 Reduction from #CSP to #EQO Problems

In this section, we will show #EO({#4} UF) is #P-hard unless F C &7, or F C Z. The first

steps are simple; the availability of #4 allows us to realize any (#9;) and therefore all of DEQ.
Lemma 4.23. #EO(DEQ U F) <1 #EO({#4} U F).

1£8]. Connecting #or (k > 2) and #4 using #2 we get #9r12. Every occurrence of signatures in

DEQ can be realized by a linear size gadget. Then we have #EO(DEQUF) <1 #EO({#4}UF). O

Recall that #EO(DEQ U F) is just Holant(#2| DEQ U F) expressed in the Holant framework.
We show that after we get DEQ on the right hand side (RHS) in the above Holant problem, we
can also realize DEQ on the left-hand side (LHS).

Lemma 4.24. Holant(DEQ | F) < Holant(#2| DEQUF), which is equivalent to #EO(DEQUF).

iE8]. In Holant(#2] DEQ U F) we take 2k copies of #5 on the LHS and connect one variable of
each copy of #9 to all 2k variables of one copy of #9; on the RHS. This gives us the constraint
function #9; on the LHS. ]

Combining Lemmas 4.23 and 4.24, we have the following reduction for genaral Holant problems.
Lemma 4.25. For any G, Holant(DEQ | G) <r Holant(#2| DEQ, G) <r Holant(#2|#4,G).

Now, consider an arbitrary instance of Holant(DEQ | F); it is given by a bipartite graph.
Similar to how we express #CSP(F) using Holant(£Q | F), in Holant(DEQ | F) we can view
vertices on the LHS (labeled by (s#9;) € DEQ) as variables, and vertices on the RHS (labeled by
f € F) as constraints. However, the difference here is that in this setting, both a variable itself and
its negation appear as input variables of constraints, and they always appear the same number of
times. More specifically, for a variable vertex x labeled by #9g, the entire set of 2k edges incident
to x can be divided into two subsets, each of which consisting of k£ edges. In each subset, every
edge takes the same value, while two edges in different sets always take opposite values. Then, we
can view the k edges in one subset as the variable x appearing k times, while another k edges in
the other subset as its negation ¥ appearing k times.

Recall that signatures f € F satisfy ARS. Suppose f € F has arity 2n. Then, consider the

function f(Z1,@2,...,%T2,). That is, we replace the input variables by their negations. Then we
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have f(Z1,%3,...,%an) = f(x1,%2,...,22,) by ARS. Define the norm square function |f|?, which

takes value |f(z1,...,22,)|? on input (z1,...,22,). Then, we have

\f]z(xl, ey {EQn) = f(.’IJl, . ,xgn)f<l'1, - ,.%'Qn) = f(.j(}l, - 7x2n)f(g;717 - ,Tgn),

and this gives the following reduction.
Lemma 4.26. Let |F|?2 = {|f|* | f € F}. Then #CSP(|F|?) <1 Holant(DEQ | F).

iE#]. Given an instance I of #CSP(|F|?) over m variables. Suppose it contains £ occurrences of

constraints | f;|? € |F|? (i € [{]) of arity 2n;, and f; is applied to the variables z;,, . .. s iy, - Then

‘ ‘
#CSP(I): Z H|fi|2($i17'-‘7$i2ni): Z Hfz(xuv7$7,2nl)fz(x7117,$22n1)
T1yeeny T €242 1=1 L1y, EL2 1=1
(4.14)
Notice that in the final form of (4.14), for each variable x € {z1,...,z,}, both itself and its
negation appear as input variables to various constraints f; € F. Moreover, there is a one-to-one
correspondence between each occurrence of x and that of . Thus, z and Z appear the same number

of times. Thus the partition function #CSP(I) for the #CSP(|.F|?) problem can be expressed as

the partition function of an instance of Holant(DEQ | F) of polynomially bounded size. O

Directly by this reduction, we have the following hardness result. Corollary 4.27 follows from

Theorem 2.12.
Corollary 4.27. Holant(DEQ | F) is #P-hard if there is some f € F such that .7 (f) is not affine.

iE8]. By the definition of |f|?, we know .7(|f|?) = .#(f). Thus, there is some |f|? € |F|? such
that . (| f|?) is not affine. This implies that |F|*> € &/. Moreover, by Lemma 2.10, we also have
|F|2 € 2. By Theorem 2.12, #CSP(|.F|?) is #P-hard and hence, by Lemma 4.26, Holant(DEQ | F)
is #P-hard. ]

Now, we may assume every signature f € F has affine support. Quite amazingly, if an EO
signature has affine support, then its support must have a special structure, called pairwise opposite.

We repeat the definition of pairwise opposite here.
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Definition 4.28 (Pairwise opposite). Let . C Z3" be an affine linear subspace. We say . is
pairwise opposite if we can partition the 2n variables into n pairs such that on 7, two variables of
each pair always take opposite values. If 7 is pairwise opposite, we fix a pairing. Then each pair

under this paring is called an opposite pair.

Example 4.29. Let . = {(z1,22,...,%2,) | T1,...,%2n € Z2,T; = Tpyi (i € [n])}. Then 7 is
pairwise opposite. Moreover, any affine linear subspace of . is pairwise opposite.
For instance, let C be the Hamming (7,4)-code. We consider its dual Hamming code C+. C+

is a linear subspace of 75 of dimension 3. Let
So={acacZl|acCt}.

Then S¢ is pairwise opposite. This S¢ is introduced in [32] related to a certain tractable family

of signatures for a class of Holant problems.

Note that if an affine linear subspace .7 C Z2" is pairwise opposite, then . C #%,,. Now, we

show the other direction is also true. This result should be of independent interest.
Lemma 4.30. Let . C Z3" be an affine linear subspace. If % C sy, then .7 is pairwise opposite.

iER]. The lemma is trivially true if || = 0,1. Suppose dim(.¥) = k > 1. We can pick a set of
free variables F' = {z1,...,x}, then on .7, every variable x is expressible as a unique affine linear
combination over Zy of these free variables, x = A\jx1 + ...+ A\gZk + Agr1, Where A\j, ..., Apt1 € Zo.
(If « takes a constant value on .7, it is still an affine linear combination of these free variables.)

We separate out all 2n variables into two types, those with A\p11 = 0 (linear form) and those
with A\gy1 = 1 (affine, but not linear form). If we set all free variables x1,...,zx to 0, we get a
vector a € . with wt(a) = n. Each x of the first type contributes zero and each z of the second
type contributes one. Hence among all 2n variables, there are exactly n variables of each type,
and the chosen free variables are among the first type. Without loss of generality, we may assume
variables of the first and second type are U = {x1,...,z,} and V = {x, 41, ..., 22, }.

For any variable x = Ajz1 + ... + A\gZr + Agr1, with respect to this unique affine linear

expression, let A(x) = {i € [k] | \; = 1}, the set of free variables that do appear in the expression
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of . We have,

x:in if x € U, and le—i—Zmi ifxeV.
€A (x) 1€A(x)

Clearly, for ¢ € [k], A(x;) = {i}. For any subset I C [k], we let
Us(I)={z€U|ICA@)}, and U-(I)={zeU]|A(x)=1I}

Define V<(I) and V=(I) analogously, with V in place of U. For any subset I C [k], let o! € .7 be
the vector determined by setting free variables x; = 1 for ¢ € I and x; = 0 for ¢ € [k] — I. Within

the 2n bit positions in the vector o, for any variable z € U,
x=1 if [INA(x)]isodd, and 2 =0 otherwise.
Symmetrically for any variable z € V', we have
x=0 if[INA(z)]isodd, and =z =1 otherwise.
Let UY(]) = {zx € U | [IN A(x)] is odd} and V°44(I) = {x € V | |[I N A(z)| is odd}. Since
n=wt(a') = [UYD)] + (n — VD)),

we have |U°4(T)| = |Vedd(T)], for all T C [k].

Claim 1. For all I C [k],
e = Y (VEHUS)),

JCI:J#0
To prove this Claim, we count the contributions of every x € U to both sides of the equation.
For x € U, let m(x) = |I N A(x)|. This = contributes one or zero to the LHS, according to whether

m(x) is odd or even respectively. On the RHS, its contribution is

St > = (M) <o [a- g -],

j=1 JCINA(z):|J|=j Jj=1 J
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which is also precisely one or zero according to whether m(z) is odd or even respectively.

The same statement is true for V°% (1) replacing U by V, with the same proof.

Claim 2. For all I C [k],
vel(ni= Y (V).
JCI:J#£0

We show next that [US(I)| = |V<(I)| forall I C [k]. If I = (0, then US(I) = U and V<(I) =V,
and so they have the same cardinality, both being n. Inductively, for any I C [k], suppose we already
know that |[US(J)| = |VS(J)], for all proper subsets J C I, then since |U°(I)| = |[V°(1)|, by
the two Claims we have |[US(I)| = |[V<(I)| as well, since the coefficient (—2)/I=1 £ 0.

Then, by definition

usn)l= > =)l

ICIC[K]

By the Mobius inversion formula, we have

u=)= Y )EUE).

ICJICIK]

Indeed,

Soo=pEIE wE) = Y Y (—nEoE),

ICJICK] JCJI'ClK] ICJ/Cl] ICTCT!

and for a proper containment I C J’ the coefficient of |U=(J")| is (1 — 1)/”'I=!l = 0, and it is 1 for
I=J.

The same statement is true for V. Thus, we have |U=(I)| = |[V=(I)] for all I C [k].

This allows us to set up a pairing between U and V such that for each pair of paired variables
(x,y) € U xV, we have A(z) = I(y). For any I C [k], we arbitrarily pick a pairing between
U=(I) and V=(I). This is achievable because they have the same cardinality. Since the following

decompositions for both U and V are disjoint unions

U= |JU=(1) ad V=[]V,

ICIH] ICIH]

we get a global pairing between U and V, such that for each pair of paired variables (z,y) € U XV,
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we have A(z) = I(y). Recall that on .7, since z € U, we have x = } ;- (,) zi; meanwhile since

y €V wehave y =143 ./, @i It follows that 7 =y on .. O

Now, we are going to simulate #CSP(F) using Holant(DEQ | F) when F consists of signatures
with affine support. Suppose f(z1,...,z2,) € F has affine support, by Lemma 4.30, we know .7( f)
is pairwise opposite. By permuting variables, we may assume for i € [n], (z;, x,;) is paired as an

opposite pair. Then, we have the following reduction.

Lemma 4.31. Suppose F is a set of EO signatures. If every signature f € F has affine support,
then #CSP(F) <r Holant(DEQ | F).

1E7]. Given an instance I of #CSP(F) over m variables V' = {x1,...,2,,}. Suppose it contains
¢ constraints f; (i € [{]) of arity 2n;, and f; is applied to the variables z;,, ...z, . We define a
graph G = (V, E), where V is the variable set and (z,y) € F if variables x, y appear as an opposite
pair in some . (f;). Consider all connected components of G. We get a partition of V. Pick a
representative variable in each connected component and define V* to be the set of representative
variables. Without loss of generality, we assume V* = {x1,...,2,}. For each variable z € V,
we use ¥ € VT to denote its representative variable. By the definition of opposite pairs, for any
assignment with a nonzero contribution, we have z = z* if there is a path of odd length from x
to 27 and x = 2F if there is a path of even length from = to = (if ¥ is z itself, we say there is
a path of length 0 from z* to x). If for some x, we have both x = ¥ and z = %, (that is, the
connected component containing x is not a bipartite graph), then we know #CSP(I) = 0 since
x = T is impossible. Otherwise, for each variable x € V' we have either z = 2T or x = 2%, but not
both.

Then, for any nonzero term in the sum

l
#CSP(I) = > [ fi@is-wi),
L1,y E€L2 1=1
the assignment of all variables in V' can be uniquely extended from its restriction on representative
variables V*. Moreover, since .(f;) is pairwise opposite, for each opposite pair (z;,,;,,,), we

know exactly one variable is equal to zj while the other one is equal to fo& Thus each pair
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(zi,,2i,,,) is either (2 , 2% ) or (2T ,z} ). We will write this as (2% , 2% ). Then, we have

157 s 157 Vs is? Vs

£ 4 __
#CSP(I) = > [[fi@isesmi) = Y [LAG@E, ek af, . af ). (4.15)

T1yeeeyTypr €22 1=1 T1yeeeyTyr €22 1=1
The final form of (4.15) is an instance of Holant(DEQ | F). O
By this reduction, we have the following hardness result.

Corollary 4.32. If every signature f € F has affine support, then Holant(DEQ | F) is #P-hard
unless F C of , or F C P

Theorem 4.33. #EO({#4} U F) is #P-hard unless F C o, or F C 2.

1E8f. It follows from Lemmas 4.23, 4.24, Corollaries 4.27 and 4.32. O

4.5 Putting Things Together

Combining Theorems 2.30, 4.22 and 4.33, we can finish the proof of the Theorem 4.1.

1£8]. (of Theorem 4.1) If F C o/ or F C 2, then by Theorem 2.30, #EO(F) is tractable. Suppose
F & o and F € P, then certainly F € £% as £ C &. Then Theorems 4.22 and 4.33 complete
the proof. O
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Chapter 5

Dichotomy for Real Holant Problems
with an Odd-ary Signature

From this chapter to Chapter 8, we will prove the complexity dichotomy for real-valued Holant
problems. In these chapters, without other specification, we use f to denote a real-valued signature
and F to denote a set of real-valued signatures. We use f: Z~1f to denote a signature satisfying
ARS and F = Z~LF to denote a set of signatures satisfying ARS. We use @) to denote a matrix
in O9, and Cj to denote a matrix in 62 Clearly, if F is real-valued, then QF is also real-valued.
Equivalently, if F satisfies ARS, then @]? = C/Q.\F also satisfies ARS.

By Theorem 2.33, if F satisfies condition (T), then Holant(F) is P-time computable. So, we
only need to prove that Holant(F) or equivalently Holant(#s| F ) is #P-hard when F does not
satisfy condition (T). In this chapter, we consider the case that F contains a nonzero signature of

odd arity.

5.1 Realization of Pinning or Equality Signatures

The problem Holant®(F) is defined as Holant(Ag, A1 F). A complexity dichotomy of Holant®
problems was first proved for real-valued signatures. Later, it was generalized to complex-valued
signatures. Here, we state the dichotomy of Holant® problems for real-valued signatures. Recall

that we define H = % [1 ] be the 2-by-2 Hadamard matrix and Ts = [§ %] where o = %

Theorem 5.1. Let F be a set of real valued signatures. Then, Holant®(F) is #P-hard unless
FCI,4,2P, % HF C 2, F C P or ToF C o, in which cases Holant®(F) is tractable.

Remark 5.2. Note that the above tractability condition implies that F satisfies condition (T).
Thus, if a real-valued F does not satisfy condition (T), then Holant®(F) is #P-hard.
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We want to realize the unary signatures Ag and A; so that we can invoke the dichotomy of
Holant® problems. We first show that under some holographic transformations, either one can use
a signature of odd arity to realize the unary signature Ay = (1,0), or one can realize some equality

signature (=) (k > 3).

Lemma 5.3. Let F be a set of real-valued signatures containing a signature f of odd arity. Then,

there exists some real orthogonal matrix QQ € O2 such that
e Holant(Ag, QF) <t Holant(F) or
o Holant(#2|=2k+1, C/Q‘\F) <7 Holant(F), for some k > 1.

1ER]. Suppose f has arity n. We prove our lemma by induction on n.
If n =1, then f = (a,b) where a,b € R are not both zero. Let Q; = ﬁ [9 0] € 0,.
Note that Holant(F) is just Holant(=2| F), and =5 is invariant under an orthogonal holographic

transformation (=2)(Q;")®? = (=2), and Q1(a,b)’ = va? + b%(1,0)". Thus,
Holant(:2| AQ, Ql./—") = Holant(:2| (a, b),F)

The base case is proved.
We assume our claim is true for n = 2k — 1. Now, we consider n = 2k + 1 > 3. If there is a
pair of indices {7, j} such that 0;; f # 0, then we can realize a signature of arity 2k — 1 from f. By

induction hypothesis, we have
Holant(Ag, QF) <t Holant(9;; f, F) <7 Holant(F).

Otherwise, 0;; f = 0 for all pairs of indices {4, j}. Thus, we also have (i-jfz 0 for all {i,7}. Then,

by Lemma 3.9, we have f = a(1,0)®" + a(0,1)®" for some a # 0. We may normalize the norm |a|

~

to 1. Suppose that a = €. Let Qy = {e_w/n 0 ] € 0,. We have 6/2\2®nf = (1,0)®™ + (0,1)®".

0 eif/n

Thus, a holographic transformation by 6/2\2 and Z~! yields
Holant(F) =7 Holant(=2| f, F) =r Holant(#3| f,]?) =7 Holant(#2|=2k+1, 6/2\2.7?)

By equation (2.1), Q.F = 6727-" Thus, Holant(#2|=2%+1, Cﬁ) <7 Holant(F) where k > 1. O
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Now, we want to show that both Holant(Ag, QF) and Holant(7é2|:k,@.\7:) where k > 3 are
#P-hard for all @Q € O and all real-valued F that does not satisfy condition (T). Recall that for
all @ € Og9 and all real-valued F, QF is also real-valued that does not satisfy condition (T), QF is
also a real-valued signature set that does not satisfy condition (T). Thus, it suffices for us to show

that Holant(Ao, F) and Holant(#2|=g, F) where k > 3 are #P-hard for all real-valued F that does

not satisfy condition (T). We will prove these #P-hardness results in the following two sections.

5.2 #P-Hardness of Holant(s,|=;, F)

Recall that £Qj denotes the set of equality signatures of arity nk for all n > 1, ie., £EQp =
{=k,=2k,---s=nk,---}. The problem #CSP,(#2,G) is defined as Holant(£Qy |#2,G). First, we

prove the following reduction.

Lemma 5.4. If k > 3, then #CSP(#2,G) =r Holant(EQy |#2,G) < Holant(#2|=k,G) for any

complex-valued signature set G.

1E8]. The first equivalence is by definition. For the second reduction, we show that =, can be
realized on the LHS by induction on n. First, we connect one variable of each of k copies of #2 on
the LHS with the k variables of = on the RHS (Figure 3a). This gadget realizes = on the LHS.

Then, suppose that =, is realizable on the LHS. We take one copy of =, and two copies of
= on the LHS, and one copy of =; on the RHS. Remember that & > 3. We connect two variables
of =, on the RHS with one variable of each of the two copies of = on the LHS, and connect the
other k — 2 variables of =5 on the RHS with k — 2 variables of =, on the LHS (Figure 3b). This
gadget realizes =(,, 1) on the LHS.

Also, connecting k — 1 variables of one copy of =, on the RHS with k — 1 variables of another

copy of = on the RHS using #5 on the LHS realizes #2 on the RHS. O

Then, we give a dichotomy of #CSP.(#2,G) for any set G of complex-valued signatures. Let
p= % be a 4k-th primitive root of unity, T = [(1) g}, and ,kad = T,f,xzf for some d € [k].

Theorem 5.5. Let G be a set of complex-valued signatures. #CSP(G,#2) is # P-hard unless

e GC X, or
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TN ~
;2 : ~k
#2 \ ] =k §
% =
LHS LHS
722 B =nk

(@) (b)

Kl 3: Gadgets realizing = and =, 1), on the LHS

e there erists d € [k] such that G C &/,
in which cases the problem is tractable.

Before we prove this theorem, we first show that how it gives the #P-hardness of Holant(#2|=
F ) when F does not satisfy condition (T).

Corollary 5.6. Let F be a set of real-valued signatures. If F does not satisfy condition (T), then
Holant (#z|=y, F) is #P-hard for any k > 3.

JER. We first prove F ¢ 2 and F ¢ ¢ for any d € [k] by contraction. If F C 2, then since
4y€ P, F is P-transformation. Thus, F satisfies condition (T). A contradiction. Also, if F C A
for some d € [k], then since (T%) 71 (#£2) = (#2) € &, F is o/-transformation. Still a contradiction.

By Lemma 5.4, #CSP, (#2, F) <r Holant(#5|=¢, F). By Theorem 5.5, #CSPy (2, F) is #P-
hard. Thus, Holant(s2|=j, F) is #P-hard. O

Now, we prove Theorem 5.5. For k = 1 or 2, Theorem 5.5 follows from Theorems 2.12 and
2.14 (note that (#2) ¢ ). We only need to consider the case that k > 3. Let @ = et and
8= ¢ . Below without other specification, we use p to denote a primitive root of unity. Also, we
use [z,0,---,0,y], to denote a general equality signature f of arity r where f(0") = a, f(1") = b
and f equals 0 otherwise.

Note that

# CSPy(#2,G) =r Holant(EQy| #2,G).
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Moreover, by the following two gadgets, we have (#2),£Q), on both sides in Holant(£Q),| #2,G),

i.e.,
# CSP(#2,G) = Holant(EQy,, #2 |EQ, #2,G). (5.1)
a) Realizing (=nx) on RHS (b) Realizing (#2) on LHS

€ 4: The squares and circles are labeled by (#2) and (=) respectively.

The following two lemmas show that in # CSPj(#2,G) the pinning signatures [1,0] and [0, 1]

are freely available. The first lemma is from [45]. It shows that we have [1,0]%*, [0,1]®* freely in

# CSP(G).

Lemma 5.7. Let G be a signature set, then we have
# CSPL(G, [1,0]%%,[0,1]%%) <p # CSP4(G).

The second lemma is from [57]. It shows that we can remove the tensor power of [1,0]®¥, [0, 1]®*

in Lemma 5.7.

Lemma 5.8. Let G be a signature set, then we have
# CSP(G, [1,0],[0,1]) <7 # CSPk(G, [1,0]%%, [0, 1]%").

We will prove Theorem 5.5 by induction. If there exists a general equality signature of arity r
with 7 { k in G, then a convenient strategy for induction is allowed as the following lemma shows.

Another strategy for induction is presented in Lemma 5.11.

Lemma 5.9. Let f = [1,0,---,0,a], with r + k and a # 0, and G be a signature set. Then
#CSP.(G, #9, f) is # P-hard except for the following cases

e GC F;
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e {G,f} C 2 for some d € [K],
which can be computed in polynomial time.

1E8]. Note that the lemma has been proved for the cases k = 1,2 by Theorem 2.12 and Theo-
rem 2.14. We will prove the lemma by induction on k in the following. If » > k, we can assume
that r = nk + 7’ with 0 < 7’ < k. By connecting (=) to f, we get [1,0,---,0,al,». Thus we can
assume that r < k in the following.

Let k = tr +r with 0 < r; <r. Note that k > r, so t > 1. In Holant(E Qx, #2 |€Qk, #2, f,G),
connecting £t copies of [1,0,---,0,a], to (=) we get [1,0,---,0,a"]s, on LHS for £ =1,2,---,
ie.,

Holant(£QY, , #2 |€Qk, #2, f,G) <7 Holant(EQy, #2 |€Qp, #2, [, G),

where SQ% :{[1707"' 7O,at]r1,[1,0,~- a07a2t]2T17"' 7[170"" ao’agt]fﬁf"}' Let T' = |:1 | :|>

b
0Oa™l

then T~1(£Q% ) = £Qy,. Thus after the holographic transformation using 7', we have

Holant(é’Qh ’TSQ/ﬁ 752) T®Tf7 Tg) <7 HOlant(ng‘a 7é2 |5Qk‘7 7é27 /5 g)7

ie.,

#CSPT1 (TEka %27 T®Tf’ Tg) <r #CSPk(#Qv f7 g)

By induction, if {T€Qy, T® f, TG} ¢ & and {TEQy, T f, TG} ¢ %‘f/ for any d’ € [r1], then
#CSP, (TEQy, #2, T £, TG) is #P-hard. Thus #CSP, (%2, f,G) is #P-hard.
Otherwise, if {TEQ, T®" f, TG} C &, then G C & since T is a diagonal matrix. Moreover, if

{TEQ,,, T f, TG} C «Q/,,‘f/ for some d' € [r], let T" = [1 0

0 44 } , where + is a 4ri-th primitive root of

unity, i.e., ¥¥1 = 1, then
o TIORTOR(=;) € o
o TIOTTOTF C of
o T'TG C of.

/ kt , L
Firstly, by T"®kT®%(=;) € o/, we have (y**a™)* = 1. This implies that v¥a™ is a 4k-th root
"
of unity, i.e., there exists d € [k] such that ¥ a™ = p¢, then T'T = [(1) p()d] Thus G C #? and
fe gfkd. This finishes the proof. O
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Definition 5.10. Let f = (fijiyin)s 9 = (Giyig-i,) be two m-ary signatures, then fg is an n-
ary signature and (f)iyiy.i,, = [iriginGirig—i, fOr any iyiz---i, € {0,1}". In particular, f* =

(fFi,.i), and for a signature set G, G¥ = {f*|f € G}.

The operation in Definition 5.10 is the main tool to do the induction in the proof of Theo-
rem 5.5. More precisely, the following lemma shows that if f = f1 f - - - fiz for some ¥’|k, then we can

simulate # CSP & (#a, f) by # CSPr(#2, f1, fo, -, fw). U f ¢ & and f ¢ A% for any d' € [%],
K’ %
then by induction, # CSP & (#9, f) is #P-hard. Thus # CSPy(#2, f1, fo, -, fr) is #P-hard.
k/

Lemma 5.11. Let G be a signature set. Signatures fi, fo,---, fir have the same arity and f =

fife -+ fxr, where K'|k, then

#CSP L (f,G") < # CSPi(f1, o, fiw. ).

1£7]. In an instance of # CSP . (f, gk’/), by expanding each variable x to &’ copies of z, at the same
kl
time replacing each h* € GF by &’ copies of h, and replacing f by fi, fa,--- , fi, we get an instance
of # CSP(f1, fo, -+, fr, G) and its value is same as the value of the instance of # CSP & (f, gk/).
k/

This finishes the proof. O

By Lemma 5.11, we have

# CSP(f*) < # CSPL(f).

If k¢ o and f¥ ¢ 2, by Theorem 2.12, # CSP(f*) is #P-hard. Thus # CSP.(f) is #P-hard

and we finish the proof of Theorem 5.5. So in the following, we assume that
fk e or fFe P for each f €G.

In particular, the support of f is affine (f* has the same support as f).

Now we give some definitions for a signature f with affine support.

Definition 5.12. If f has affine support of rank r, and X = {xj,xj,, - ,x;.} is a set of
free variables, then fx is the compressed signature of f for X such that fx(xj,,xjy, - ,2;) =
flxy, 29, ,x,), where (x129---xy,) is in the support of f. When it is clear from the context, we

omit X and use i to denote fix
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Note that if f has affine support, then f € & iff f € &7.

Definition 5.13. Suppose f has affine support of rank r with {x1,z2, -+ ,z,} as a set of free
variables. We use all non-empty combinations Z§:1 a;jxj(a; € Ly, not all zero) of x1,x2, -+ , 2, as
the names of bundles of f. The type of each bundle is a possibly empty multiset of “+7 and *“ —7,
and is defined as follows: For every input variable x(1 < k < n) of f there is a unique bundle
named 22:1 a;xj such that on the support of f, xy is either always equal to 22:1 ajx; (mod 2)
or always equal to Z;Zl a;zj + 1 (mod 2). In the former case we add a ““+ 7, and in the latter
case we add a ‘“ — 7 to the bundle type for the bundle named Z;Zl ajrj, and we say the variable
xy, belong to this bundle. All input variables are partitioned into bundles.

If there exists a set of free variables, without loss of generality, assume that it is {x1,x2, -+ , 2},

such that all the bundles have type “+7, i.e.,

f($1(+++)$2(+++)(x1+172++.CU7~)(—|-—|——|—))7

ni no nig...r

where ny +ng + « -+ + N19... = n, then we say f is monotone and denote its support by

(1 )0y (T2)ny - (T )np (1 + T2y - (X1 + T2+ -+ Ty )pgg

If the number of variables in each bundle is a multiple of £ for some integer £, then we say f has

the (-type support.

Definition 5.14. , Connecting one variable z; of a signature to (=) using (#2), is equivalent to
replace x; by (k — 1) copies of T;. We call this operation to be (k — 1)-multiple.

If the variables in the same bundle is greater than k, by connecting k variables in this bundle
to (=), we make these k variables disappear and keep the compressed signature of f unchanged.

We call this operation to be collation.
Lemma 5.15. Let f be a signature of affine support. By doing the operation (k — 1)-multiple or

collation to f we get a new signature g, then f € &P iffge P; f € ;szd iff g € ﬁfkd for any d € [k].

JEB. We prove the lemma for (k — 1)-multiple operation to f € @2 for some d € [k]. Other cases

are similar and we omit them here. Note that (#2) € &7 and (=) € #7¢ for each d € [k]. Thus
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€ 5: Transforming the variable z to k — 1 copies of Z by connecting (=) using (#2). The triangle,
square and bullet are labeled by f, (#2) and (=) respectively.

if fe %d for some d, then g € JZ/kd by the closure of «/. Conversely, note that the variable x of f
which is connected to (=) using (#2) is flipped into (k — 1) copies of Z in g. By connecting these
(k—1) copies of Z to (=) using (k — 1) copies of (#2), we get f’ that is same as f. Thus if g € 272,
then f’ € &2 and so does f. O

By Lemma 5.15, we can flip the variable Z to x in the support of f and keep whether f is in
the tractable class or not. So in the following we can assume that all the signatures are monotone.

To use Lemma 5.11, we need to construct non-product signature and non-affine signature which
is the product fifo--- fir. Firstly we do this for the non-product case.

By the definition of &2, every signature f € & has a decomposition as a product of signatures
over disjoint of variables, where each factor has support contained in a pair of antipodal points:
There exists a partition X = {1,292, -+ ,x,} = U§=1 X, and a signature f; on X; such that
f(X) = H§:1 fj(X;), and for all 1 < j < £, the support of f; is contained in {«;,a;} for some
a; € {0, 13151,

The proof of the following lemma totally follows the the proof of Lemma 4.8 and Lemma 4.9
of [32]. We just generalize it from k = 2 to general k.

Lemma 5.16. For any k' | k, if there exists f € G such that f ¢ P but f¥ € P, then we can
construct hy, ho,- -+, hy in # CSPg(G), such that h = hihs---hy ¢ 2.

#EB. Since [1,0] and [0, 1] are freely available in #CSP,(G) by Lemma 5.8 and Lemma 5.7, just
replacing 2 by k in the proof of Lemma 4.8 and Lemma 4.9 of [32], we can construct a rank-2
signature g from f in # CSP(G) such that g has the support (1), (22)x, and g = (1,a,b, —ab)
up to a nonzero scalar, where ab # 0. By pinning all the zo = 0, we get a signature u; which has

the support (x1)g, and u; = (1,a), and by pinning all the 1 = 0, we get a signature up which
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has the support (z2)g, and ug = (1,b). Let v = w3 ® up and hy = g,hy = --- = hy = u, then
h = hihg - - - hy has the compressed signature (1, akl, bk,, —ak,bk/) that is not in &2. ]

Let ¥ = k in Lemma 5.11. If § ¢ &7, by Lemma 5.11 and Lemma 5.16, we have

# CSP(h, #2,G") < # CSPy(#2,9),

where h ¢ 2. If G ¢ of , then # CSP(h, #2, G¥) is #P-hard by Theorem 2.12. This implies that
# CSPy(#2,G) is #P-hard. So in the following, we assume that G¥ C 7. Thus we can assume

that the compressed signature

T
flar, o, @) = poimt WEF2 g chgr GpTiOrtAH (@102, 20),

where {x1,z9, -+ ,x,} is a set of free variables and all the monomials in H(x1,x2, - ,z,) have
degree at least 3.

In the following, we will construct non-affine signature which is the product fifs:-- fir in
#CSP(#£2,G) if G € /¢ for any d € [k]. The main idea is to simplify the form of signatures in G
and keep it not contained by sszd for any d € [k]. The following lemma is to reduce the rank of the

signatures to at most 3.

Lemma 5.17. Let G be a signature set and f € G is not in dkd for some d € [k], then we can
construct g in # CSPy(#2,G) such that g ¢ Jkad and g has rank at most 3, i.e.,

# CSPr(#2,9,G) <1 # CSPi(#2 ).

1£8]. Note that [1,0], [0, 1] are freely available. Without loss of generality, assume that {x1, 9, -+ ,x,}

is a set of free variables of f. We can assume that the compressed signature

fl@r,wa, - wy) = pRlenren)

up to a nonzero scalar by f* € o/, where Q(z1,x2, -+ ,x,) is a multilinear polynomial. By the
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holographic transformation using 7 = [(1) p%} , we have

HOlant(ElCcl‘ #Qa J/l\.a é? [17 0]7 [0? 1]) =T #CSP]C(#% fa gv [1?0]7 [07 1])7

where f = (T)@arity(f) f, G = TG, and E¢ = £QL(TH)~1. Since f ¢ /2, we have fé¢ o

Note that fhas the same support as f. The ratio of f(x1,29, - ,x,) and f(z1, 2z, ,zy,) is a

power of p for any (xjxg---z,) in the support of f. Thus there exists a multilinear polynomial

@(ml,xg, -+, xy) such that the compressed signature z(xl,mg, Cee L Ty) = p@(xl”m"”””’“). Assume
that
Q1,20+ ,2y) = Z a;x; + Z ajexjre + P(xy, 22, ,2r), (5.2)
1<i<r 1<j<l<r
where P(x1,x2, - ,x,) is a polynomial and all the terms have power at least 3. In (5.2),

o If there exists G; # 0 (mod k), we pin all free variables to 0 by [1, 0] except x;, then we get a

rank-1 signature that is not in 7.

o If there exists aj; # 0 (mod 2k), we pin all free variables to 0 by [1, 0] except z;, z¢, then we

get a rank-2 signature that is not in 7.

o Finally, if P(z1, 22, -+ ,2,) Z0 (mod 4k), suppose the monomial M has the minimum degree,
among all monomials in P whose coefficient that is nonzero modulo 4k. We pin all free
variables which are not in M to 0 by [1,0] and pin the variables in M to 1 by [0, 1] except 3

of them, then we get a rank-3 signature that is not in <.

If a; =0 (mod k), aje = 0 (mod 2k) for all a; and ajp, and P(z1,22, -+ ,2,) =0 (mod 4k), then
f € of. This is a contradiction. In total, we always can get a non-affine signature of degree at most
3 in Holant(E{| #o, .G, [1,0], [0, 1]). This implies that we can get a signature g ¢ 7 of degree at
most 3 in # CSP(#2, f,G,[1,0],[0,1]). This finishes the proof. O

By Lemma 5.17, we just need to focus on the signatures with arity less than 4.
Lemma 5.18. If f has k-type support and f ¢ ﬁ%kdo for some dy € k|, then f ¢ ,kad for any d € [k].

JEB]. Let {x1,2z2,---,2,} be a set of free variables. We can assume that f has the support

(@) ek (22) 0k -+ (Tn)e,k since f has k-type support, and x; = 370 ajjx; for 1 < i < n. Let
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n arity(f)
= {é pgo} f, then
J/c\: pdok > @imif — ido Sy lelf

In the power of i, by z = 0 (mod 2) (respectively 1 mod 2) iff 22 = 0 mod 4 (respectively 1

T

mod 4), we can substitute z; by (3.7, aijzi)?, ie.,

f=ido iz (i aijxj)zf,

Note that (Z;:1 aijz;)? is a quadratic polynomial and the coefficients of the cross terms are even.

~ ~ ®arity(f)
By f ¢ o, we have f ¢ «/. Then for any d € [k], let f' = [(1)121:| ! , we have

2 dk S bz AT (3T agg)?
ﬂzp DDy xi:1 iy (2371‘1]%) f’

which is not in &7. O

Assume that f has the k-type support. Note that if f ¢ o/, then f ¢ < for d = k. Then by
Lemma 5.18, f ¢ </2 for any d € [k].

Lemma 5.19. Let G be a signature set. If G € & and contains a signature f ¢ Md’“ for some
d € [k] which has k-type support, then #CSPy(G) is #P-hard.

1ERH. Since G ;(_ P, there exist some signature in G which is not in &?. Then by Lemma 5.16,
we can construct hy, hg, -+ , hy such that h = hihg---hy ¢ &2. Moreover, since f ¢ szfdk for some
d € [k], by Lemma 5.18, we have f ¢ /. Assume that f has the support (z1)4,x(2)dor - - (1 +

R I xr)d124.4rk- Let u = (:d1k) X (:ko) QR ® (:dlgu.rk) and f' =wuu---u f. Note that f’is
k—1
identical to f. Thus f' ¢ o/. By Lemma 5.11, we have

#CSP(h, f') <1 # CSPL(G).

Since {h, f'} ¢ o/, P, by Theorem 2.12, # CSP(h, f’) is #P-hard. Thus # CSPy(G) is #P-
hard. O

The following lemma shows that if G contains a rank-2 signature f, then its support and

compressed signature has to be of some special form. This is a key point in the proof of Lemma 5.24.
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Lemma 5.20. Let G be a signature set which contains a rank-2 signature f ¢ ;szd for some d € [k],

then we have
e GC 2,
e or G C ¢ for some d € [k],
o or #CSPy(#2,G) is #P-hard;

otherwise f has the support (z1)x(z2)x(x1 + z2)r after collation and the compressed signature is
2 2 2

flzy, 39) = {11 th2matbiozizs
JERA. Since f has rank 2, we can assume that f has the support (z1)k, (z2)k, (21 + 22)ky,- By
pinning #1 = 0, we have a rank-1 signature fi; which has the support (z2)g,+kp, i€, f1 =
[£1(0,0,-++,0),0,--+,0, fi(1,1,--- ,1)], where £1(0,0,---,0) = £(0,0) and fi(1,1,---,1) = £(0,1)

are both nonzero. Thus up to a scalar, we can assume that f; = [1,0,---,0,z] with z # 0. If

ko + k12 Z 0 (mod k), then we are done by Lemma 5.9. Thus we have
ko+kia=0 (mod k‘) (5.3)

Then by pinning xo = 0, 1 + 22 = 0 respectively and by the similar argument, we have

ki+kia=0 (mod ]{3),
(5.4)
ki+ko=0 (mod ki)

By (5.3) and the first equation of (5.4), we have k1 = k2 (mod k). Then by the second equation of
(5.4), we have 2k; =0 (mod k). This implies that k1 =0 (mod k) or k1 = & (mod k). So we have

ki =ky=kiao=0 (mod k), or ki =ky=kp= (mod k).

N |

If k1 = ko = k12 =0 (mod k), then G C & or #CSP(+#29,G) is #P-hard by Lemma 5.19.

Now we can assume that f has the support (z1)x (z2)r (21 +22)x after collation. Assume that
2 2 2

b/1x1+b/2x2+b/12x13:2

f(z1,m2) =p
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up to a scalar. By pinning zo = 0 to f, we get the signature [1,0, - - ,O,pb/l]k. If by # 0 (mod k),
then [1,0,--- ,O,pbll] ¢ <. Note that [1,0,--- ,O,pbll]k has the k-type support. Again we have
G C & or #CSP(#2,G) is #P-hard by Lemma 5.19. Otherwise, we have b; = 0 (mod k). Moreover,
by pinning z2 = 0,21 + 2 = 0 and using the same argument, we have b, =0 (mod k) and b}, =0

(mod k) respectively. So we have

f(l'h :CQ) _ ib1131+b2132+b12501962,

where b1, by and b1o are integers. O

The following lemma shows that if G contains a rank-3 signature, then it has special support.

This can simplify the proof of Lemma 5.24 greatly.

Lemma 5.21. Let G be a signature set which contains a rank-3 signature f, then
e GC 2,
e or G C oF for some d € [k],
o or #CSPy(#2,G) is #P-hard;

otherwise f has one of the following support after collation:

(1) e, 1(72) exk (23) ek (T1 + 2) ok (T1 + 23) 131 (T2 + 23) sk (T1 + T2 + T3) 103k (5.5)

(@1) & (z2) 5 (w3) 5 (21 + w2) g (1 + 23) i (2 + 73) 5 (21 + 22 + 73) 1, (5.6)
(371)% ((172)% (acg)% (X1 4+ 22) 1ok (1 + 23) ek (T2 + T3)egek (X1 + T2 + 1‘3)%, (5.7)
(@1)erk (€2)ea (23)esh (21 + 22) i (21 + 23) & (22 + 23) & (21 + T2 + 23)erahs (5.8)

(m)g (x2)§ (.Ig)% (x1 + acg)% (x1 + l’g)% (x2 + $3)§ (x1 4+ 22+ 173)%, (5.9)

(.131)%(.272)%(1‘3)%(331 + 1‘2)%($1 + xg)%(azg + :Eg)%(xl +x9 + 333)2, (5.10)
(1) 3t (w2) 3t (w3) ae (21 + @2) & (w1 + w3) (w2 + 3) i (1 + 22 + 3) 2, (5.11)
(z1) 3t (22) 3k (3) 36 (21 + T2) sk (¥1 + 23) 36 (T2 + T3) 36 (T1 + T2 + 23) 38, (5.12)

4 4 4 4 4 4 4
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where ¢, =0 or 1. In (5.8), at least one of {€1, €2, €3, €123} is nonzero. Without loss of generality,

we assume that €1 # 0 or €123 # 0 in (5.8).

1E8]. Assume that f has the support

(@1) ke (22)k (¥3) ks (T1 + 22) s (T1 + 3) k15 (B2 + 23y (T1 + T2 + 23) o5
By pinning z; = 0,22 = 0,23 = 0 to f, we get three signatures which have the support

($2)k2+k12 ($3)k3+k13 (xQ + x3)k23+k123’
(xl)k1+k‘12 (m3)k‘3+k23 ($1 + $3)k13+/€123’

(wl)k‘l-‘rkl:s ($2)k2+1€23 ('7;1 + x2)k12+k’123

respectively. By (5.3) and (5.4) in the proof of Lemma 5.20, if we have a rank-2 signature whose
support is not %—type, then we can construct a rank-1 signature whose support is not k-type, and

we can finish the proof by Lemma 5.9. Otherwise we have

ko + k12 = k3 + k13 = kas + k123 =0 (mod g),
ki + k12 = kg + kos = kiz + k123 =0 (mod g), (5.13)
ki1 + ki3 = ko + kas = k12 + k123 =0 (mod g)
By (5.13) we have
k1 = ko = k3 = k193 = —k12 = —k13 = —ko3  (mod g) (5.14)

Moreover, by pinning x; + x3 = 0, we get the signature which has the support

($1)k1+k2 (x3)k3+k123 (wl + x3)k13+k23

and we have

k
ki+ko=ks+kiog=kis+kos=0 (mod 5) (5.15)
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Combining (5.14) and (5.15), we have

k
2k =2k12 =0 (mod 5)

This implies that ki, k12 = 0, %, % or % (mod k). So after collation, by (5.14),

o if k1 = k12 =0 (mod k), then f has the support (5.5);

o ifky =kio= % (mod k), then f has the support (5.6);

e if by =% (mod k), k12 =0 (mod k), then f has the support (5.7);

o if k1 =0 (mod k), ko = g (mod k), then f has the support (5.8);

o ifk; =kipo= % (mod k), then f has the support (5.9);

o if k= % (mod k), k12 = % (mod k), then f has the support (5.10);

o ifky = % (mod k), k12 = % (mod k), then f has the support (5.11);

o ifky =kio= % (mod k), then f has the support (5.12).

In (5.8), if all of {e1, €2, €3, €123} are zero, then f is rank-2. This is a contradiction. Thus we can

assume that e€; # 0 or €193 # 0 without loss of generality. O

Let f, g be two signatures and there are s and ¢ variables in the bundle (z) of f and (y) of g
respectively, where s + ¢ < 2k. In the following, we often connected the two bundle by (=2;) and
produces a variable bundle with 2k — s — t variables in the constructed signature as Fig 3 shows.

We call the operation to be merging variable bundle (z) and (y) by (=ax).

Fig. 3 The square, triangle and bullet is labeled by f, g and (=2) respectively.
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For example, if f has the support

(@1)x (22) 1 (23)k (21 + 22) k(21 + 23) & (22 + 23) & (21 + 22 + 23)

and ¢ has the support

(yl)g(yQ)%(yl —i—yz)%.

Merging the variable bundle (z1) and (y1), (x2+x3) and (y2) using (=21) respectively, produces two
new bundle (z]) and (x4 + x%) which contain k variables respectively in the constructed signature
f!. Moreover, this operation forces x1 + z2 + 23 = y1 + y2. Thus the two bundles (z1 + 23 + x3),

1 + y2) are merged automatically. So f’ has the support
(y1 +y2) g y pp

(@1)k(2) & (w3) £ (@) + 29) k(2] + 25) s (2 + 25)k(2) + 25 + 25)k,
and the compressed signature

I, @, w3) = g(@', w3 + a3) f (2, 25, 3). (5.16)

For the variables x;, z, z1, € {0, 1}, note that the variable (x;+x;) # x;+x; and (z;+z;+x)) #

x; + x5 + 3, if the computation is not in modulo 2. Thus we use the following two identities
(xz- + xj) =2 +x;— 2.%’.1‘3' (5.17)

and

(i + 5 + xp) = @ + x5 + o — 20525 — 20,2 — 2257y + daxjay (5.18)

when we carry out computation not in modulo 2. For example, in the above example, if f and g

have the compressed signatures

__ sa1r1+agxetazxrzt+2aiaxixre+2a13T1T3+2023223+201231 2T
f($1,$2,$3)— 1T1+a2r2+a3x3 12712 1371723 23223 123212223 (519)

and

(g1, o) = e (520)
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respectively, then f’ has the compressed signature

f/(x/17 .73/2, xé) _ a1y +azah+azxh+2a100] 220132 af +2a03xh x5 +2a1 232 ahah by ) +bo [x’2+z/3]+b121/1[x/2+xg]'

In the power of i, the computation is modulo 4. So the variable [z + z§] # x4 + 2% and we use

(5.17), i.e.,

f/ _iag z} +asxh+azri+2a122) xh+2a132] 25+ 2a032h ah +2a103x] whrl+by o) +-ba (xh+ah—2xhal ) +bioa] (xh+ah—2ahah)

We will use the following result repeatedly in the following proof.

Lemma 5.22. Let g be a rank-2 signature and f be a rank-3 signature. g has the support

(1) 5 (22) k(21 + 22) 8,

and the compressed signature

glx1,x9) = ihr1@1tbaz2 b1z
, .

f has the support

(xl)g(xg)g(xg)g(xl + $2)§(Z’1 + $3)§($2 + xg)g(xl + x99 + 1’3);,
and the compressed signature

__ sa1xr1+az2zretazrst2ai12riTro+2a13T103+2023T2T3+20123T1T2T3
f(xl7x27x3)_ .

Then
e if b1 is even, then g € Jafkd for any even d € [k] and g ¢ sszd for any odd d € [k|;
e if bio is odd, then g € ﬂfkd for any odd d € [k] and g ¢ m/kd for any even d € [k].
And

e if aio is even, then f € 7 for any even d € [k] and f ¢ /2 for any odd d € [k];



e if ai3 is odd, then f € ¢ for any odd d € [k] and f ¢ /2 for any even d € [k].
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1ER]. We prove the lemma for the rank-3 case. The rank-2 case is similar and we omit it here. Let

f, then

J/"\: |:(1)f2j:|®arity(f)

~

Flay, g, x3) = p%(x1+x2+x3+[m+xz]+[z1+x3]+[x2+x3]+[xl+x2+x3})f(

T1,T2, $3),

where [-] denotes the corresponding variable. By (5.17), (5.18), we have

-~ dk

_ L (dx+4zot+das—Azixo—4zi w3 —4xsxz+4a T2
i(JJl,CCQ,xg)_pQ( 1+4zy+dz3—Az zo — AT 23— 4T0T3 123)f(

T1,T2, ',r?))a
i.e.,

i($1,$2,l‘3) = 1(

Note that fe & iff d 4+ a123 is even. This proves the lemma.

2d+a1)z1+(2d+a2)z2+(2d+a3)r3+2(a12—d)z122+2(a13—d)z123+2(a23 —d)z2w3+2(a123+d)T1 0223 )

O]

In Lemma 5.22, if b1s in g and ajg3 in f have different parity, then {g, f} ¢ 2 for any
d € [k]. Note that g, f ¢ &. The following lemma shows that # CSPx(f,g) is #P-hard. This is

an important base case in the proof of Lemma 5.24.
Lemma 5.23. Let f be a rank-3 signature which has the support
(@1)x (22) 1 (23) & (21 + 22) k(21 + 23) & (22 + 23) & (21 + 22 + 23) 1,

and the compressed signature

f(«fUl, z2, 133) — ia1w1+a2x2+a39&3+2a12x1xz+2a13$1x3+2a23w29&3+2a1231’19€2$3’

and g be a rank-2 signature which has the support

(Y1) & (y2) £ (Y1 + y2) &,
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and the compressed signature

g(y17y2) =1 1Y1+b2y2+ 12y1y27

where a3 + bia =1 (mod 2). Then # CSPy(f,g) is #P-hard.

1ER. We take one copy of f((xl)g(m)%(xg)%(m + xg)g(xl + azg)g(xg +1‘3)§($1 +x9 + xg)g) and

one copy of g((u1)k(u2)k(u1 + u2)r). Merging the variable bundle (z1) and (u1), (x2 + x3) and
2 2 2
(uz) by (=ak), we get the signature f’ which has the support

($1)k($2)§($3)§($1 + xz)g(ﬂﬁ + $3)§(~’C2 + 3)k(z1 + 22 + 23)K

and the compressed signature

f/ _ ialxl+a2x2+a3x3+2a12w19&2+2a13x1x3+2a23x2£3+2a1239&1x2x3+b1x1+b2($2+x3—2$29&3)+b129&1(w2+x3—2x2$3)_
Note that the coefficient of x1z9x3 is 2(ajes — bi2) which is 2 modulo 4.
Similarly, we take another two copies of g: g1((vi)x(v2)r (vi + v2)r), g2((w1)x(w2)x (w1 +
2 2 2 2 2
wa) k), and merge the variable bundles (x2), (1 + x3), (z3), (1 + x2) of f’ to the variable bundles
2
(v1), (v2), (w1), (wa) of the these two copies of g by (=ax) respectively, Then we get a signature f”

which has the support

(1) (x2)k(@3)k (21 + 22)p (21 + 23) k(22 + T3) k(@1 + T2 + T3) 2k,

and

f//(ZUL z2, fUS) — {az1teametesrat2eiaz122+2c13%1 23 +223 0223 +2C123 %1 2223

where cq93 = 2(0,123 — 3b12) =2 (mod 4). Thus f// is not in «7. Let

and f” = f”"hh---h. Then f"” is identical to f’, and by Lemma 5.11, we have
k—1

# CSP(f") <r # CSPy(f").
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Since f"”is not in P U o7, # CSP(f") is #P-hard by Theorem 2.12. Thus # CSP(f,g) is #P-
hard. ]

As we have explained, to use Lemma 5.11, we have to construct signatures which is a product
of some same-arity signatures and is not in some tractable class. We have done this for non-product
signature in Lemma 5.16. The following Lemma is for the non-affine case. Although we prepare
a lot from Lemma 5.17 to Lemma 5.23 for it, the proof is still twisted. In the proof, firstly we
consider three special signatures which can not produce rank-2 signature by pinning. Afterward,
we can assume that there is a rank-2 signature g in hand. With the help of ¢ and Lemma 5.23, we

can handle the remaining cases.

Lemma 5.24. Let G be a signature set. Fach signature in G has arity less than 4 and is not in

dkdo for some do € [k]. If G & dkd for any d € [k], then we have
e GC Z,
o or #CSP,(#2,G) is #P-hard,

o or in #CSP(#2,G) we can construct fi, fo, -, frr which have the same arity for some

E' > 1 and K|k, such that h = fify--+ fir is not in szfg, for any d' € [%}
k’/
1E8]. Firstly, we deal with three special cases.

o Case 1: There exists a rank-3 signature f € G which has the support (5.5) and f ¢ Wkdo for

some dgy € [k], then we are done by Lemma 5.19.

o Case 2: There exists a rank-1 signature f € G and f ¢ /¢ for some d € [k]. If the arity of f

is a multiple of k, then we are done by Lemma 5.19. Otherwise, we are done by Lemma 5.9.

o Case 3: All the signatures in G have the support (5.6). If there exists f € G and f? ¢ 7,
then we let h = f2. Note that h has the %—type support and h ¢ /. Thus h ¢ szfg/ for any

2
d e [g] by Lemma 5.18 and we are done. Otherwise, For any f € G, we have f? € & and we

can assume that

f(xly T2, :Eg) — qMP1tazretazrs+2a122122+2a1321 23+ 20230223 +4a123201 2223
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By pinning x; = 0, we have a rank-2 signature g; with the support (z2)r(x3)i(z2 + x3)r and

91($2 xS) — q®2%2tasr3t2azszons
, .

If g1 ¢ o7, then we are done by Lemma 5.19. since g; has k-type support. Thus we are done
by letting h = g1. Otherwise, we have ay = a3 = a3 = 0 (mod 2). Moreover, by pinning
x9 = 0,23 = 0, we have a1 = ay = a3 = a12 = a13 = azz = 0 (mod 2). This implies that

ay ag ag
_ i T1t+t 5 T2+ 5 23+a122172+a013T1T3+a23T2T3+20123T1 223
f(x17x27x3)_12 2 2 N

By Lemma 5.22, since G ¢ dkd for any d € [k], there at least two signatures fi, fo € G and

(1) (%) (1) (4) (%) (%) (1)
ii(xl’ T, $3) — iall :L‘1+a21 x2+a3l :L‘3+2a122:c112+2a113 x1x3+2a213 x2x3+2a1223x1x2:1:3

for i = 1,2, where ag)?) is odd and a§22)3 is even. Let h = f1 f2, then h has the %—type support

and

u u 1 2
h(x1,z9,23) =i 2 3:1‘%( Nai+2 Zl§j<k§3(2i:1a§k>)xj$k+2(a§2)3+a(12)3)x1$2x3
pAS 9 bl *

Since a%)?) + ag22)3 is odd, we have h ¢ <7. Thus h ¢ o/ for any d’' € [4] by Lemma 5.18 and
2

we are done.

Other than these three cases, G contains at least one rank-2 signature or one rank-3 signature

of the support (5.7), (5.8), (5.9), (5.10), (5.11) or (5.12), which is not in % for some d € [k].

o If G contains a rank-3 signature of the support (5.8) with €123 # 0, we pin z1 + 2 + 3 = 0

and get a rank-2 signature which has the support (x1)x (z2)x (x1 + z2)r after collation.
2 2 2

o If G contains a rank-3 signature of the support (5.8) with €1 # 0, (5.7), (5.9), (5.10), (5.11) or
(5.12), by pinning x; = 0 we get a rank-2 signature which has the support (z1)x (z2)x (21 +
2 2

x9)r after collation.
2

In total, in the following we can construct a rank-2 signature g which has the support (z1) & (z2) & (z1+
2 2
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m); in #CSPg(#2,G). By Lemma 5.20, we can assume that g has the compressed signature

g(x1,m9) = j1z14b2x2+bi2z1 22
, .

By Lemma 5.22,
o if by2 is even, then g € &Z¢ for any even d € [k] and g ¢ #? for any odd d € [k];
o if byy is odd, then g € @/ for any odd d € [k] and g ¢ 7 for any even d € [k].

We assume that bys is even in the following. After the holographic transformation using [(1) 2} , the
following proof can work for the case that b1s is odd and we omit it here.

With g in G, since G ¢ <7¢ for any d € [k], there exists f € G such that f ¢ /¢ for each even
d € [k]. Let

G ={f €G|f ¢ ¢ for some even d € [k]}.

We prove the lemma for the following separate cases:
« Case (A): there exists one rank-2 signature in G°

« Case (B): there exists one rank-3 signature in G*, which has the support (5.6), (5.7) or
(5.8).

« Case (C): all the signatures in G° " have the support (5.9), (5.10), (5.11) or (5.12).

—=even

For Case (A), there exists another rank-2 signature ¢ € G~ . By Lemma 5.20, we can assume

that ¢’ has g—type support and has the compressed signature
g/ — ib’111+b’212+b'12x1x27

By Lemma 5.22, b}, is odd since ¢’ ¢ <7 for some even d € [k]. Let h = gg, then the compressed

signature

B = (10 z14(ba+by)wa+(bia+b,) s

We have h ¢ o since bis + b, is odd. Moreover, by Lemma 5.18 h ¢ <7 for any d’ € [£] since h
2

has %—type support, and we are done.
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For Case (B),

o if there exists a rank-3 signature f € G- of the type (5.6), as we have done in the proof of

Case 2, we can assume that f has the compressed signature

f(mh T2, 56'3) — ja1z1tazz2tazrst2a1221 02+ 20137183+ 2a23 0223 +2012301 2223

Thus #CSP(g, f) is #P-hard by Lemma 5.22 and Lemma 5.23, and #CSP(#2,G) is #P-
hard;

—»even

o assume that there is a signature f € G which has the support (5.7). If f2 ¢ o7, then we

are done by letting h = f? since f has %—type support. Otherwise, we can assume that

f($17 T2, 333) — qC1riteezetesrgt2ciarize+2c132123+ 20232223 HC1238 12223

By pinning 7 = 0, we get a rank-2 signature go which has the support

(z2)k (23) k(T2 +23) 8
2 2 2
after collation and the compressed signature

92(x2 $3) — oC2T2te3r3t2ca32213
, .

If go ¢ o7, then h = ggs ¢ szfﬁd, for any d’ € [%] by Lemma 5.18 and we are done. Otherwise,
2

we have cg = ¢3 = co3 = 0 (mod 2). Similarly, by pinning z9 = 0,23 = 0, we have ¢; = ¢y =

c3 = c12 = c13 = ¢23 = 0 (mod 2). This implies that

c1 c2 €3
_ 5 T1t5 T2+ 5 x3+Cc1201T2+C13T1T3+C23T2T3+2C123T1T2T3
f(x1, 20, 3) =121 T 27%27% :

®arity(f)
} . Then

Let f: [(1)/21

f _ pd(§$1+§$2+§$3+612k[$1+9§2]+613k[11+x3}+623[332+$3]+§[$1+ﬂ£2+$3})f
)
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where [-] denotes the corresponding variable. By (5.17) and (5.18), we have

J/c\: schr1chratchaztcl xizetc] gz 23+chmazstc] gz 223
where Cll = d(]_ + €12 + 613) + %,CIQ = d(l + €12 + 623) + %,Cé = d(l + €13 + 623) + 073,
0/12 = d(l + 2612) + c19, C/13 = d(l + 2613) + c13, 0/23 = d(l + 2623) + co3, C,123 =2d + 2c193. Note
that f ¢ 7 for some even d. Thus aj23 is odd.

Then we take three copies of g and merge the variable bundles (y1), (y2), (y1 + y2) of first
copy of g to the variable bundles (x1), (z2), (x1 + x2) of f using (=21) respectively, we get a

%—type signature f’ which has the support

(@1)k(x2)k(73) 5 (21 + @) £ (21 + T3)ersk (T2 + T3)eash(T1 + T2 + 23) &
after collation and

f/ _ i(%+b1)x1+(%2+b2)x2+%3963+(C12+b12)$1362+013931€E3+023I2x3+26123x1$2$3.
)

secondly, we merge the variable bundles (y1), (y2), (y1 + y2) of the second copy of g to the
variable bundles (x1), (z3), (1 + x3) of f’ using (=2x) respectively to construct the signature
f"; and then we merge the variable bundles (y1), (y2), (y1+y2) of the third copy to the variable
bundles (z2), (x3), (x2 +x3) of f” by (=2) respectively. Finally, we get a signature f” which

has the support (5.6) and the compressed signature

f/// — i(%1+2b1):El+(%2+b2+b1):132+(%3+2b2)903+(612+b12)961xz+(013+b12)961333+(023+b12)902333+20123x112$3.
Note that cjo3 is odd. So #CSPg(g, f""') is #P-hard by Lemma 5.23 and #CSPy(#2,G) is
#P-hard.

—_even

assume that there is a signature f € G which has the support (5.8) with €; # 0.

By the same argument as the case (5.7), we can assume that

_ diz1+daxetdsxs+2di2xire+2di3T1 x3+2d2sxax3+4di23 1 T2X
f(l’l,l'g,l’g)—all 2T2+d3x3 122122 132123 232213 123T1%2Z3
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Moreover, by pinning x; = 0 and the same argument as the case (5.7), we have
dg = d3 = d23 =0 (Il’lOd 2) (521)

But we can not pin x2 = 0,z3 = 0 as the case (5.7) since the bundle (x2), (z3) may be empty.

Alternatively, we pin x1 + x5 = 0, then we get a rank-2 signature g12 which has the support

(‘Tl)(61+62)k($3)(63+6123)k(x1 + $3)(613+€23)k’
and the compressed signature

— q(d1+da+2di2)z1+d3ws+2(di3+daz+2d123)T 173

99 :

Note that g2 has k-type support. If g12 ¢ 7, then we are done by Lemma 5.19. Otherwise,
we have

di + do + 2d12 = d3 = di3 + dag + 2d123 = 0 (rnod 2).

Combining with (5.21), we have

Moreover, by pinning 1 + x3 = 0 and the same argument, we have dja = 0 (mod 2). This
implies that

Ld1
f(l’l,l'g,ﬁg) =12

331+%2:82+d73$3+d12331$2+d13$1$3+d23$2$3+2d123$1$2$3 ) (5.22)

f and the same

10 ®arity(f)
0 pdi|

Then by considering the holographic transformation using f: [

argument as (5.7), we can assume that dja3 is odd.

Then we take one copy of g(y1,y2,y1 + y2) and merge the variable bundles (y1), (y2), (y1 + y2)

to the variable bundles (z1 + x2), (z1 + x3), (x2 + x3) of f using (=) respectively, we get a
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k-type signature f which has the support

(1) e1k(T2) exk (23)esk (1 + x2) (1 + 3)k (22 + 23) k(21 + T2 + 3) 105k

and

FO (21, 29, 23) = g1 + T, 1 + 3, T2 + 3) f (21, T2, T3);

i.e.,

f(4) — i(%1+b1+bz+512)11+(d72+b1)9E2+(d73+b2)273+(d12—2b1—b12)$1$2+(d13—252)331rs+d23$2$3+2d123w1$2z3 ]

Note that f(*) has the k-type support. Moreover, f) ¢ o since djog3 is odd. Thus we are

done by Lemma 5.19.

o assume that there is a signature f € G°

which has the support (5.8) with €123 # 0. By
pinning x1 + x2 +x3 = 0,21 + 22 = 0,21 + 3 = 0 and the same argument as the case ¢; # 0,
we can assume that f has the compressed signature as (5.22). The remaining proof is totally

same as the case €; # 0 and we omit it here.

For Case (C), all the signatures in G°  have the %—type support. For f € G, if f4 ¢ o,
then h = f4 ¢ Jz{g/ for any d' € [%] by Lemma 5.18 and we are done. Otherwise, we can assume
4

that

_ (81T1+82T2+83T3+251201T2+251313+2523T1 X273 +48123T1T2T3
f(x1,220,23) = B .

Moreover, by pinning z1 = 0, we get a rank-2 signature g3 which has the support

(sz)g(x?))g(xz + $3)g

and the compressed signature

g = 35272 +s3w3+2s23T223

g3

Let h = gg3. Note that h has the %—type support. If one of {s2,ss,s23} is nonzero modulo 4,

then h ¢ o/. Thus h ¢ o/ for any d € [%] by Lemma 5.18 and we are done. Otherwise, we have
2

S9 = 83 = S23 = 0 (mod 4). Moreover, by pinning x2 = 0,23 = 0, we have s; = s9 = $3 = 512 =
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s13 = 23 = 0 (mod 4) similarly. So we have

L2 52 53 512 513 523
f($1,$2,$3) =12 r1+ o+ F ezt 52 r1re+ 52 r103+ 5 x2x3+8123x1x2:p3'

If s123 is odd, by pinning xz3 = 1, we get a rank-2 signature g4 whose support is

(@1) & (w2) & (21 + 22)

after collation and the compressed signature is

(314 513
g4:1(4+2

)m-&-(%-&- 533 )502+(S%2+8123)I1$2

up to the scalar i%. Let h= gg4, then h has %—type support and

h = i(%Jr 234 b)) w1+ (24223 +bo) o+ (22 +s123+b12) m132 ]

Note that %52, b12 are even and s123 is odd. Thus *2 + s123 + b12 is odd. This implies that h ¢ <.
Thus h ¢ /¢ for any d € [4] by Lemma 5.18 and we are done.
2
Now we can assume that s193 is even. By the same proof as Lemma 5.22, we have the following

claim:
o if 5193 =0 (mod 4), then f ¢ /2 for d =2 (mod 4) and f € #? for d =0 (mod 4);
o if 5193 =2 (mod 4), then f ¢ /2 for d =0 (mod 4) and f € #? for d =2 (mod 4).

Since G ¢ Mkd for any even d € [k], there at least two signatures f1, fo € G and

£ (@0 o) = s D0 ) 2O 42 Do 2 )
ax)
for ¢ = 1,2, where one of {s%)g, 3522)3} is 0 modulo 4 and another is 2 modulo 4.

If f1 has the support (5.10) or (5.11), for each bundle of {(l‘gl)), (ZL‘gl)), (.Z‘:())l)), (:Ugl)—i—xgl)—l—mél))},
we connect the variables in it to (=) by #2 (Note that we can not connect (=) to the variable

bundle directly by the bipartite restriction), then we get a signature f] which has the support (5.9)
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or (5.12) and
50,0 ) = 74 141D 41,

Thus f1 € 2 for some d € [k] iff f] € &7 for some d € [k]. This implies that we can assume that
f1 has the support (5.9) or (5.12). Similarly, we can assume that fo has the support (5.9) or (5.12).

By merging the variable bundle (alxg )4 agzél) + agxél)) of fi to the variable bundle (alazgL )4

(2)
2

asxy’ + aga:éQ)) of fo for any ay,az,as € {0,1} by (=ax) respectively, we get the signature h which

has the compressed signature

3 2 1
h($17$2 x3) Zz (i 1Sz )xi+221§j<k§3(zu 1 §k>)Ijxk+(3§2)3+5123)11x2x3

Since 8&12)3 + 5322)3 is 2 modulo 4, we have h ¢ 7.

o If f1, fo has the same support, then h has the support (5.6) after collation. Then we are done

by Lemma 5.23.

o If one of {fi, fo} has the supports (5.9), and another has the support (5.12), then h has the

k-type support and we are done by Lemma 5.19.

Now we are ready to prove Theorem 5.5.

1E8]. We will prove the theorem by induction on k. Note that the theorem has been proved for
the cases k = 1,2 by Theorem 2.12 and Theorem 2.14. In the following we assume that k > 3.

IfGC & or G C o7 for some d € [k], the tractability is obvious. Then we assume that G ¢ &
and G ¢ <Z¢ for any d € [k].

Since G ¢ # for any d € [k], by Lemma 5.17 and Lemma 5.24, #CSP,(#2, G) is #P-hard, or
for some k'|k we can construct fi, fa,- -, frr, which have the same arity, in #CSP(#2,G), such
that h = fifa--- fir is not in ﬂg,’ for any d’ € [£].

Moreover, by Lemma 5.16 agd G ¢ 2, in #CSPy(#2,G) we can construct signatures g1, g2, - - , gi/,
such that g = g192- - g and g ¢ 2.
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Then by Lemma 5.11 we have

# CSP & (#2,9,h) <1 # CSPy(#2,0),

K/

where g ¢ 2 and h ¢ /¢ for any d’ € [%] By induction, # CSP i (#, f,g) is #P-hard. Thus
W K
# CSP(#2,G) is #P-hard. O

5.3 #P-Hardness of Holant(A, F)

In the following two sections, we will show that Holant(Ag, F) is #P-hard if F does not satisfy
condition (T). Since F does not satisfy condition (T), F ¢ 7. Thus, there is a signature f € F of
arity n > 3 that is not in .. We will prove our claim by induction on the arity n.

By using Ag, we first give two conditions that A; can be easily realized from a signature of
arbitrary arity by pinning (Lemma 5.25) or interpolation (Lemma 5.26). If A; is realizable, then
we have Holant®(F) <7 Holant(Ag, F). Since Holant®(F) is #P-hard when F does not satisfy
condition (T), Holant(Ap, F) is also #P-hard.

Lemma 5.25. Let f € F be a nonzero signature and fO = 0. Then Holant®(F) <p Holant(Ag, F).

1ER]. We prove this by induction on the arity n of f.
If n =1, we have f = (0, A) for some A # 0 since f # 0. Clearly, A; is realizable from f.
Assuming our claim is true when n = k, we consider the case that n = k + 1. For all indices
i € [n], consider signatures flO realized from f by pinning variable z; to 0. We know fi0 is signature
of arity k and f2(0y) = f(Opy1) = 0.
o If there is an index i such that f? # 0, then by induction hypothesis, we have Holant®(F) <r
Holant (Ao, 2, F) <r Holant(Ag, F).
o Otherwise, f) = 0 for all indices 7. Then, by Lemma 3.23, we have f = A(0,1)®" for some
A # 0 since f # 0. Thus, Ay is realizable from f by factorization (Lemma 3.6).

Thus, we have Holant®(F) <7 Holant(Ag, F). O

Now for all indices ¢, we consider signatures m; f realized from f by mating. We give a condition

by which A; can be realized from m;f by interpolation. We show that either Holant(F) <rp
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Holant(Ay, F), or every irreducible f € F satisfies 1ST-ORTH (i.e., there exists some u # 0 such

that for all indices i, M(m;f) = pls).

Lemma 5.26. Let f € F be a nonzero real-valued signature of arity n > 2. If f does not satisfy

1sT-ORTH, then
e there is an unary signature a(x;) on variable x; such a(x;) | f, or
e Holant’(F) <r Holant(Ag, F).

1EA]. Since f does not satisfy 1ST-ORTH, there is an index i such that M (m;f) (as a 2-by-2 matrix)
is not the identity matrix up to a scalar (M (m;f) # p;l2). We denote
1912 (0 £ b a b

M(m;f) = ’ v N
(£,£) I b ¢

(2 (2

Since f is real, M(m;f) is real symmetric, and thus diagonalizable with real eigenvalues. We first
consider the case that M (m;f) is degenerate. Then, we have |(f2, )2 = |f)|?|f}|?, so £ and £}
are linearly dependent by Cauchy-Schwarz. Since f # 0, either f and f! is nonzero. Assume ! is
nonzero (the other case is similar). Then, we have f} = ¢ - f for some constant c. It follows that

f=a(z;) ® ), for a unary signature a(x;) = (1, ¢).

Now we assume M (m; f) has rank 2, then we have a,c > 0. We consider the value of b.

o If b =0, then M(m;f) = [29]. Clearly, a # ¢ since M (m;[) is not I up to a scalar. Given
a#cand ¢ > 0, we have || # 1. By Lemma 3.24, we can realize (0,0,0,1) = (0,1)®? from

m; f by interpolation. Then, by Lemma 3.6, we can realize A; = (0,1) by factorization.

e Otherwise, b # 0. Clearly, we know (1,0)T is not an eigenvector of M (m;f). Suppose
M(m;f) = P! [’\01 )?2} P, where \; and A are two real eigenvalues of M (m;f). Since M (m;f)
has rank 2 and M (m;f) is not Is up to a scalar, we have \jA2 # 0 and \; # 2. Also, by the
trace formula, \; + A2 = a + ¢ > 0. Thus % # —1. Then we have \%| # 1. By Lemma 3.25,

we can realize A; = (0,1) by interpolation.

Thus, we have Holant®(F) <p Holant(Ay, F). O
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Corollary 5.27. Let f € F be an irreducible signature of arity n > 2. If f does not satisfy
1sT-ORTH, then Holant®(F) < Holant(Ag, F).

We derive some consequences from 1sT-ORTH. Consider the vector f. We can pick a second
variable x; and separate f? into two vectors f?]O and f?jl according to x; = 0 or 1. Then

£ = €9 + 1€ = .

) i i
Similarly, we have
£ = €1 + 1)1 = .

Comparing the above two equations, we have

71 = I£)1%. (5.23)

v

This is ture for all pairs of indices {7, j}. Similarly, by considering
9 = 1692 + 69 = .

we have

512 = 1651, (5.24)

for all pairs {7,j}. Also, by definition, for all i,
0. =0, (5.25)

Now, we are ready to prove that Holant(Ag, F) is #P-hard when F does not satisfy condition
(T) for the base case that F contains an irreducible signature f arity 3. We show that an irreducible
ternary signature satisfying 1sT-ORTH has some special forms, from which one can realize =3 or
=, after some holographic transformations. Then, we can reduce the problem from #CSP(F), or
#CSP,(F), or Holant(#s|=3, F), to Holant(Ag, F). This allows us to finish the proof by invoking
existing dichotomy results for #CSP(F), or #CSPy(F), or the #P-hardness result we showed

above for Holant(s£2|=,, F) where k > 3.
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Recall that a binary real-valued signature satisfies 1sST-ORTH iff it is an orthogonal signature
(whose 2-by-2 signature matrix is orthogonal up to a real nonzero scalar). Now we consider the

base case that F contains a ternary signature.

Lemma 5.28 (Base case n = 3). Let F be a set of real-valued signatures containing a ternary

signature f ¢ 7. Then, Holant(Ao, F) is #P-hard unless F satisfies conditions (T).

JERA. Since f is a ternary signature and f ¢ .7, we know f is irreducible. If f%°° =0 or f does not
satisfy 1sT-ORTH, then by Lemma 5.25 or Lemma 5.27, we have Holant®(F) <y Holant(Ag, F).
By Theorem 5.1 and it remark, Holant®(F) is #P-hard when F does not satisfy condition (T), and
hence Holant(Ag, F) is #P-hard. Therefore, we may assume fY = 1 after normalization, and f
satisfies 1ST-ORTH and specially equations (5.23), (5.24), and (5.25).

We consider binary signatures f, f9 and fg realized by pinning. If there is an index 7 such
that the binary signature fio is irreducible and not orthogonal, then by Corollary 5.27 we are done.
Otherwise, f, f2 and f3 are all either reducible or orthogonal. Let N be the number of orthogonal

signatures among fY, f9 and f:)?. According to N =0, 1,2 or 3, there are four cases.

e N =0. Then f{, f9 and f are all reducible. So, f{ is of the form (1,a,b,ab), and so are f9
and fJ. Thus f has the following matrix

1 a b ab
Mi3(f) =
¢ ac be d

By the equation [f3|2 = |f19|? from (5.24), we have

b + a?b? = 2 + a>2.

Then, (1 + a?)(b? — ¢?) = 0. Being real, we have 1 + a? > 0, and thus b* = ¢2. Similarly by

symmetry, we have a? = b? = c?. By the equation [f{9]? = |f1}|? from (5.23), we have

1+ a® =022 + d2.
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Then, d? = 1+ a? — a*. By the equation (f), f}) = 0 from (5.25), we have
c+ a’c+ b*c + abd = 0.
Then, ¢(1 + 2a?) = —abd. Taking squares of both sides, we have
a®(1 + 4a® + 4a*) = a*d®.
Plug in d? = 1 + a? — a*, and we have
a?(1+ 4a® 4+ 4a* — a®> — a* + a5 = a®*(1 +a*)% = 0.

Since 1 + a® > 0, we have a? = 0, and hence b?> = ¢ = 0 and d*> = 1.

— If d = 1, then f has the signature matrix [} 90 9], which is (=3). Then, by Lemma 2.23,

we can realize all equality signatures (=). Thus, we have
#CSP(F) <r Holant(=3, F) <7 Holant(Ag, F).

By Theorem 2.34, we know #CSP(F) is #P-hard when F does not satisfy condition
(T), and hence Holant(Ag, F) is #P-hard.

— Otherwise, d = —1. We perform a holographic transformation by the orthogonal matrix

Q1= [§1]. Note that
(=)@ =(=2) and  Q°f = (=)
Thus, the holographic transformation by @)1 yields
Holant(=2| f, F) =r Holant(=2|=3, Q1F).

Again by Lemma 2.23, we have #CSP(Q1F) <r Holant(Ao, F). By Theorem 2.34, we
know that #CSP(Q1F) is #P-hard when F does not satisfy condition (T), and hence
Holant(Ay, F) is #P-hard.
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o N = 1. Without loss of generality, we may assume f{ is orthogonal and f3 and fy are
reducible. Then f{ has the form (1,a,ea, —¢), f9 has the form (1,a,b,ab) and f) has the

form (1, ea, b, eab), for some € = +1. Therefore, for some value z, f has the signature matrix,

1 a ea —¢

b ab eab =z

M(f) =

By the equation [f03]2 = |£]9|? from (5.24), we have
(ea)® + (—€)* = b* + (ab)*.
Thus (14 a?)(1 —b%) = 0. So b* = 1. By the equation |f3|?> = |f}1|2 from (5.23), we have
1+ a? = (eab)? + 2 = a* + 2%
Then, 22 = 1. By the equation (f{,f}) = 0 from (5.25), we have
b+ a’b+ 2a®b — ex = 0. (5.26)

Then, ex = b(1 + 2a?). Taking squares of both sides, we have 1 = (1 + 2a?)2, which implies
that @ = 0. So by (5.26), we have b — ez = 0, and thus z = 2 = eb. It follows that
M(f) =300 ] with b? =€ =1.

Mating variable x1 of one copy of f with variable z1 of another copy of f (with 22 and x3 as

dangling variables), we get a 4-ary signature mosf with the signature matrix

(1 b 2 0 0 0]
0 O 1 0 0 —e 0 0 0 O
M(m23f) = M:chg,an (f)Mccl,xzivg (f) = = = 2M(:4)
0 O b 0 0 eb 0 0 0O
| —€ eb_ _0 00 2_

Therefore, we can realize (=4), and then by Lemma 2.24 we can realize all equality signatures
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(=2k) of even arity. Thus,
#CSP, (]:) <r Holant(:4, ]:) <r HOlaDt(Ao,J—").

By Theorem 2.34, we know #CSP,(F) is #P-hard when F does not satisfy condition (T),
and hence Holant(Ag, F) is #P-hard.

N = 2. Without loss of generality, we may assume f9 and f9 are orthogonal, and f) is
reducible. Then, f9 has the form (1, €1a, a, —€1) where ¢ = 1, f has the form (1, e2a, a, —€2)

where €5 = &1, and f{) has the form (1, €1a, €2a, elezag). Then for some z, f has the form

1 €a €ea €1ea?

By the equation |f03]2 = |f]9|2, we have
(62@)2 + (6162(12)2 = a2 + (—61)2.

So we get a* = 1. Since a is real, we have a = £1. By the equation (fJ, f}) = 0, we have

a— 6%0, — e%a + €160 = —a + €160 = 0.
Then, z = % = €162a. By mating we get masf, and we have
1 a 1 0 0 €169
€14 —€1 1 €a ea €16 0 1 €16 0
M(mggf) = =2
€04 —€9 a —€1 —€y €1€2a 0 €169 1 0
€1€2 €1€20 €1€9 0 0 1

— If €169 = 1, then mog f is 2 times the [S-EVEN signature, which takes value 1 on all inputs

of even weight, and 0 otherwise. Note that, for H = % [,11 H we have

(=2)(H ¥ =(=2) and H%(masf) = (=4).
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Thus, a holographic transformation by H yields

Holant(=2| mas f, F) =1 Holant(=2|=4, HF).

By Lemma 2.24, we have

#CSPQ(H]:) <T Holant(:2|:4, H]:) <T Holant(Ao, ]:)

By Theorem 2.34, #CSP,(HF) is #P-hard when F does not satisfy condition (T), and
hence Holant(Ag, F) is #P-hard.

— Otherwise, ;¢ = —1. Then ¢(y1, Y2, y3,y4) = mao3 f can be normalized as [ é E]l _(1)1 81] ,
where the row index is y172 and column index is y3y4 € {0, 1}2, both listed_llexoico(;;ralph—
ically. After a permutation of variables, we have My, y, vy, (M3 f) = {é :0} :0% é} . Con-
necting variables ys,y4 of a copy of mosf with variables y1,ys of amothlelr0 coopy1 of mos f

respectively, we get a signature with the signature matrix

10 1 1
0-1-10|10
My1y37y2y4(m23f)My1y3,y2y4(m23f) = [0 -1 -1 0} [0
10 01 1

Now perform a holographic transformation by H, and we get (=4), which implies that

Holant(Ay, F) is #P-hard when F does not satisfy condition (7T).

e N = 3. Then for some values a, x and €1, e = £1, the signature f has the signature matrix

1 €1a ea —€169
M(f) =
a —€1 —€9 x
By the equation (f{,f]) = 0, we have
2 2 _ _
a— €10 — €50 — €162 = —a — €16ax = 0.
Hence, © = —ejeza. A holographic transformation by Z~! yields

Holant(=s| f, Ao, F) =p Holant(#£s| f, Ao, F).
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Note that Ag = Z71(1,0)T = (1,1)7, and a simple calculation shows

A _ o1 -1 2 _[l-di 0 (+e1)(1+e2) (1—er)(1+e2) (1+er)(l—e2) (1—e1)(l—e2)
M(f)=2Z""M(f)(Z=)N)%* = 15" 1 Lai] [(1_61)(1_62) (e )(1—e) (1—e1)(1-4en) <1+$><1+£)]-

— If ¢ = €5 = 1, then up to a constant, M(f) = [17‘“ ] Let Qg [ Vita 0 }

0 Yi—ai]’

0
01+
?]. Thus, a holographic transfor-

0
0 0
Then (Q3)®3f has the signature matrix (1 + a2) (583

mation by @\2 yields

Holant(s£3| f, Ao, F) =7 Holant(2|=3, Q2Aq, Q2.F).

Thus, we have

Holant(;é2|—3, QQAQ, QQJ:) IT Holant(Ao, f)

By Corollary 5.6, we know Holant(#2|=3, Q21, @\2) is #P-hard when F does not satisfy
condition (T'), and hence Holant(Ag, F) is #P-hard.

— Otherwise, M (f) has the signature matrix [142(11 8 8 16‘“] up to a permutation of vari-

ables. Connecting f with Ao = (1,1) using #2, we get a binary signature g with matrix

R 01 0 00 1—ai
M(g) = [1,1] = (1+ai,0,0,1— ai).
1 0| |{14+ai 0 0 0

Connecting one variable of fwith one variable of g using #2, we get a signature % with

the signature matrix

~ 1+ai 0 0 1 0 0 0 1—ai (1+ai)> 0 0 0
M(h) = =
0 1—ai| |1 O] |1l4+a 0 0 0 0 0 0 (1-—ai)?
—~ 3/ _ i
Then, a holographic transformation by Q3 = (10 o)’ 3 (1(; AE yields
al

Holant(#5| h, A\o,]?) =7 Holant(#2|=3, Q3. @\3.7?)

Then similarly by Corollary 5.6, we have Holant(Ag, F) is #P-hard.
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Thus, Holant(Ay, F) is #P-hard unless F satisfies condition (T). O

Now, we consider the inductive step. The general strategy is that we start with a signature
f € F of arity n > 4 that is not in .7, and realize a signature g of arity n — 1 or n — 2 by pinning or
merging (using =2) that is also not in .7. By a sequence of reductions (that is constant in length
independent of the problem instance size), we can realize a signature h of arity 3 that is not in .7
(the base case). Then we are done.

For all indices i and all pairs of indices {j, k}, consider f? and ;i f. If there exists i or {j, k}
such that f? or 9;,.f ¢ 7, then we can realize g = f or 0, f which has arity n — 1 or n — 2,
and we are done. Otherwise, f° and d;5f € 7 for all i and all {j,k}. We denote this property
by f € f12 7. Under the assumption that f € fm 7, our goal is to show that we can realize Ay
and hence we are done by the hardness of Holant®(F), or there is an unary signature a(z,) or
binary signature b(x,,x,,) such that a(z,) | f or b(zy,xy) | f. Then, we have f = a(x,) ® g or
f =b(xy,xy) ® g for some g of arity n — 1 or n — 2. By the definition of .7, we know g ¢ .7 since
f ¢ 7. By Lemma 3.6, we can realize g by factorization, and we are done. When n > 5, the above
induction proof can be achieved by the interplay of the unique factorization, and the commutivity
of f? (pinning) and 9 f (merging) operations on disjoint indices (Lemmas 5.30 and 5.31). For
n = 4, the proof requires more work (Lemma 5.33); we need to combine the induction proof and
1sT-ORTH to handle it.

We use 7, to denote the set of tensor products of unary signatures. We denote the property

that f) € 7 for all i by fl J1. We carry out our induction proof by the following lemmas.

Lemma 5.29. Let f be a signature of arity n > 3. If there exists a nonzero signature g, the scope
of which is a subset of the scope of f, such that g | f? for all indices i disjoint with the scope of g
and furthermore, g | Oji.f for some pair of indices {j, k} disjoint with the scope of g, then g | f.
(Note that if O, f =0 then g | O f is satisfied.)

1E8]. We may assume f is nonzero, for otherwise the conclusion trivially holds. We now prove
this for a unary signature g = (a,b). We assume ¢ is on the variable x,. Consider the signature

f'=bf2—afl. Clearly, x; and xy are in the scope of f’. Thus, f’ has arity at least 2. For every
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i # u, we have f2 = (a,b) ® h for some h. Then, (f°)) =a-h, (f’)L =b-h, and hence
()= ®fi —af,)] =bfy —afy) =b(f)y —a(f))y =ba-h—ab-h=0.

Moreover, there are indices j, k # u such that g(z,) | Ojxf. Then, 0j;f = (a,b) ® b/, for some h'.
Then, we have (9, f)% = a -1, (9;,f)L = b- I, and hence

Oii(f) = Ok(bfy — afy) = b(Ojf)e — alOkf)y =ba-h' —ab- B =0.

By Lemma 3.23, we have f/ = 0. Thus, we have f0: f! =a: b, and hence g(z,) | f.

For a signature g of arity > n — 2, the proof is essentially the same, which we omit here. [

Lemma 5.30. Let f be a signature of arityn =25, f ¢ T, f € f12 T and f € fl T1. Then there

is a unary signature a(x,) such that a(xy,) | f, or Ay is realizable from f.

1EAA. Since f ¢ 7, f is nonzero. We may further assume flO # 0 for all indices i. Otherwise,
we have f6 = 0. Then, by Lemma 5.25, we can realize A;. By the same reason, we may further
assume inO # 0 for all pairs of indices {i,j}.

For some arbitrary index r, we consider f°. Since fO € 71, there exists some unary signature
a(x,) such that a(x,) | f0. We show a(x,) | f. Consider f? for all indices i # u,r. Since f° € 7,
there is a unary signature a’(x,) such that a/(z,) | f?, and hence we have a’(z,) | (f°)%. On the
other hand, since a(zy) | f°, we also have a(z,) | (f)?. Note that the pinning operations on
different variables commute. Thus, we have (f0)? = (f°)?, and we know it is a nonzero signature.
Then, by UPF (Lemma 3.4), we have a(z,) ~ a'(z,). Thus, a(z,) | f2 for all indices i # u.

Then, we show a(x,) | 01 f for some arbitrary pair of indices j, k # u. If 0;,f = 0, then we
have a(z,) | Ojf and hence a(z,) | f by Lemma 5.29. Next, we assume 0j; f # 0. Similarly, if for
some index i # j, k, we have (9;5f)? = 0, then we have Ojkf(ﬁ) = 0 and hence by Lemma 5.26,
we can realize Ay. Otherwise, (9j;f)Y # 0 for all i ¢ {j,k}. Recall that 0;5f € 7. We show the

variable z,, must appear in a unary signature in the UPF of 0;,.f € 7.

o For a contradiction, suppose there is an irreducible binary signature b(x,,z,) such that
b(zy,2y) | Ojxf. Since f has arity n > 5, we can pick some index ¢ ¢ {u,v,j, k} such

that b(zy,zy) | (9j1f)?. Note that (9j,f)? = 0jx(fY) # 0 by the commutativity of pinning
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and merging. Thus, 9;x(f?) has an irreducible binary tensor divisor b(zy,z,). However,

[ € 71 and so is 9j;(f?). By UPF, we get a contradiction.

o Thus, there is a unary signature a”(x,,) such that a”(x,,) | 9;,f. Pick some index i ¢ {u, j, k},
and we have a” () | (Ojxf)9. We also have a(xy,) | 9 (f°) since a(xy,) | f2. Again, (0 f)? =
ajk(fio) # 0 by commutativity. Then by UPF, we have a”(z,) ~ a(z,). Thus, a(z,) | f by

Lemma 5.29 and we are done.

O]

Lemma 5.31. Let f be a signature of arityn >5, f ¢ 7, fe [T and f & [| Z1. Then, there is

an irreducible binary signature b(xy, xy) such that b(xy, xy) | f, or Ay is realizable from f.

1EA]. Since f ¢ fl i, but f € [ .7, there is some index r such that 12 is nonzero and has an
irreducible binary signature factor b(z,, z,,). We will show this b(z,, x,,) divides f. Again, we may
assume f? # 0 and ZQjO # 0 for all ¢ and all {i,j}. Otherwise, we can realize A; by Lemma 5.25.

Consider f? for all indices i ¢ {v,w,r}. Since f? € 7 and f? # 0, there is either a unary
signature a(z,) or an irreducible binary signature b (z,, z,) such that a(z,) | f2 or V' (2, ) | 2.
We also have b(wy,2.) | (f0)) since b(zy, ) | 0. Again, we have (f°) = (f°) # 0. Then by
UPF, we know that the unary signature a(x,) does not exist, and it must be b'(x,, ) | f° and
b(@y, Toy) = b (2, Ty ). Thus, we have b(z,, 1) | P for all i ¢ {v, w}.

Then, for an arbitrary pair of indices {j,k} disjoint with {v,w}, we show b(zy,zw) | Ojif.
Again, we may assume 91 f Z 0 (for otherwise b(z.,, 2.) | 9;1f is proved) and furthermore (95 f)) #
0 for all ¢ disjoint with {j, k}, for otherwise, we can realize A;. Since f has arity n > 5, we can
pick some index i ¢ {u,v,j,k} such that b(zy,zy) | Ojx(fY) due to b(xy, ) | fP. Recall that
Ojrf € 7, we consider the UPF of 0;;,f. Using a similar argument as in the previous paragraph,

we have b(zy, zw) | Ojif by UPF. O
Combining the above two lemmas, we have the following result.
Lemma 5.32 (Inductive step for n > 5). If f € F is a signature of arity n > 5 and f ¢ 7, then
e Holant®(F) <r Holant(Ag, F) or

o there is a signature g ¢ 7 of arity n—1 orn—2 such that Holant(Ag, g, F) <p Holant(Ay, F).
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Now, the only case left for the induction proof is when f is a signature of arity 4. We deal
with it by using the 1sT-ORTH condition.
Lemma 5.33 (Inductive step n =4). Let f € F be a signature of arity 4 and f ¢ 7. Then
e Holant’(F) <p Holant(=2| Ao, F), or
e #CSP,(F) <7 Holant(=2|=4, F) <7 Holant(=2| Ay, F), or
e there is a signature g ¢ 7 of arity 3 such that Holant(Ag, g, F) <7 Holant(Ag, F).

1E8f. First, we may assume f is irreducible. Otherwise, we consider its irreducible factors. Since
f ¢ 7, it has an irreducible factor g of arity 3 such that g ¢ .7. By Lemma 3.6, g is realizable from
f by factorization, and the lemma is proved. Also we may assume f°%0 = 1 after normalization
and f satisfies 1ST-ORTH; otherwise, by Lemma 5.25 and Corollary 5.27, we are done. We consider
signatures fio realized by pinning x; to 0 in f, for all ¢. If there is ¢ such that the ternary signature
f2 ¢ 7, then we are done, since f has arity 3. Also, since f has arity 4, 9;; f is a binary signature

for any pair of indices {4, j}. Hence 8;;f € 7. Thus, we may assume f € [ 7.

« If f € [} 71, then there are three unary signatures such that f{ = a1(z2) ®az(z3)®as(z4). By

the same proof in Lemma 5.30, we have az(z3) | £ and as(z4) | £9. Thus, ag(x3)®asz(z4) | £9.

e Otherwise, there is an index ¢ such that fi0 has an irreducible binary factor. Without loss of
generality, we assume that f{ = a1(22) ® by(z3,74) where by (x3,24) is irreducible. By the

same proof as in Lemma 5.31, we have by (x3,24) | f3.

Therefore, in both cases, there is a binary signature b(zs,z4), which may be reducible, i.e.,

b(z3,74) = az(z3) @ az(z4), such that b(ws,z4) | fY and b(xs, x4) | f. Thus, we have
i =ai(@2) ©b(xz,z4)  and  fy = dj (1) ® bz, 24).

By a normalization we may let b(z3,x4) = (1,a,b,¢), ai(z2) = (1,2) and da(z1) = (1,y). Then, f
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has the signature matrix, for some z, 21, 29, 23

1 a b ¢

r axr bx cx
Mz 34(f) =
y ay by cy

z Z1 z9 Z3

Then, we consider the signature fg. It has the signature matrix

1 a

0 T azx
Mi2a(f3) =

Yy ay

VAR A |

We have fJ € 7, and nonzero. In its unique factorization, if 2 and x4 belong to an irreducible
binary signature, then (f9){, which has the signature matrix M 4(f{%) = [ 2], would have been
an irreducible binary signature, a contradiction. Similarly z; and x4 do not belong to an irreducible
binary signature in the unique factorization of fg. Therefore x4 appears in a unary signature in

the factorization of f. It follows that z; = az. Similarly from f{ € 7, we can prove z2 = bz. We

also write z3 as cz + w. Thus, we have
M12,34(f) = (17 z,Yy, Z)T ® (17 a, b? C) + ’U)((O, 1)T)®2®(O7 1>®2'

We know w # 0 since f ¢ 7. By pinning any 3 of the 4 variables to 0, we can realize four unary
signatures (1,a),(1,b),(1,2) and (1,y). For example, (1,z) can be realized from f by pinning

variables z1,z3 and x4 to 0.

o Suppose a,b, z,y are not all zero, say x # 0. We connect the unary (1, x) with the variable
9 of f, and we get a signature g with the signature matrix
1+22 a(l+2%) b1+ 2?) c(1+ z?)

My 34(g) =
y+az aly+azz) bly+azz) cly+zz)+aw
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Clearly, 1 4+ 22 # 0. By normalization, we have

1 a b c
Mi34(9) = )

2 ax’ bxr' cx’ +w

where 2/ = ?{izﬁ and w' = e, and w’ # 0 since xw # 0. Thus
g=(1,2")2; @ (1,a,b, ) gz, +w'(0,1)%3. (5.27)

We claim that g ¢ 7. Otherwise consider the unique factorization of g in 7. By the same
proof above for fJ € 7, we can see that x1 of g cannot appear in an irreducible binary
signature, either with x3 or with x4, as a tensor factor in the unique prime factorization of
g. Hence x1 must appear in a unary signature in this factorization. This would imply that

w' =0, by the form of M; 34(g), a contradiction.

It follows that g ¢ .7, and we are done.

Otherwise, a = b = x = y = 0. Then, we know

100 ¢]

00 0 O
Miasa(f) =

00 0 O

K 0 0 23 |

Here, we write 23 as cz+w. By equation (5.23), we have 1+ ¢% = 22423 and 1+ 22 = ¢? + 23.

2

Thus, we have ¢ = 22 and zg = 1. By pinning variables 1 and z2 to 0, we can realize the

binary signature (1,0,0,¢). If it is not reducible or orthogonal, then by Lemma 5.26 we can

realize A;. Otherwise, we have ¢ = 0 or ¢ = 1. Similarly, we have z = 0 or z = +1. As

2 2

we already have ¢? = 22, we get ¢ = z = 0 or ¢® = 22 = 1. We consider the signature msy f
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realized by mating variables z3, x4 of f. We have

[ 1+¢2 0 0 z+ 023_
T 0 0 0 0
M(maaf) = M12,34(f)(M12,34(f>) =
0 0 0 0
z4czm 0 0 22+ zg

1000

If ¢ = 2 = 0, then we have M(m34f) = [8888] = M(=4). Otherwise, ¢*> = 22 = 1. Also,
0001
1

we know 23 # cz since f ¢ 7. Note that 25 = 1 and (cz)? = 1. This implies that 23 = —cz.
2000

Then, we have z+c23 = 2 —c?2 = 2 —z = 0. Thus, we have M (m3a4f) = [8 99 8} = 2M (=y).
0002

Therefore, we can realize (=4) from f, and then by Lemma 2.24 we can realize all equality

signatures =g, of even arity. Thus, we have
#CSP,y(F) <7 Holant(=4, F) <7 Holant(Ag, F).

This completes the proof of the lemma.

Theorem 5.34. Holant(Ag, F) is # P-hard unless F satisfies the tractable condition (T).

1E7]. Assume F does not satisfy condition (T). Then F € 7. There is a signature f € F of arity
n > 3 that is not in 7. If n = 3, then by Lemma 5.28, we are done.

Suppose our statement is true for 3 < n < k. Consider n = k+ 1 > 4. By Lemmas 5.32
and 5.33, we have Holant®(F), or #CSP,(F), or Holant(=2| Ag, g, F) <p Holant(=2| Ag, F) for
some g ¢ 7 of arity k — 1 or k at least 3. By Theorem 2.34 and the induction hypothesis, we
know Holant®(F), #CSP,(F) and Holant(=2| Ay, g, F) are all #P-hard when F does not satisfy
condition (T), and hence Holant(=2| Ag, F) is #P-hard. O

5.4 Putting Things Together

Theorem 5.35. Let F be a set of real-valued signatures containing a nonzero signature of odd arity.

If F satisfies condition (T), then Holant(F) is polynomial-time computable; otherwise, Holant(F)
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is #P-hard.

1L8]. The tractability is known by Theorem 2.33.

We prove #P-hardness when F does not satisfy condition (T). By Lemma 5.3, There ex-
ists some real orthogonal matrix € Oz such that Holant(=2| A, QF) <7 Holant(=3| F)
or Holant(;&g\:%H,é.\F) <r Holant(=2| F). Since F does not satisfy condition (T), QF also
does not satisfy it. Then by Theorem 5.34 and Corollary 5.6, we have Holant(=2| A, QF) and
Holant (#2|=94+1, QF) are both #P-hard. Hence, Holant(=y| F) is #P-hard. O
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Chapter 6

Building Blocks of Even Arity:

Binary and 4-ary Signatures

Since now, we consider the complexity of Holant(F) for F consisting of signatures of even arity.
Suppose that F does not satisfy (T). Then, F € 7. Recall that O% denotes the set of tensor
products of binary orthogonal signatures and the binary zero signature. Clearly, since O%® C .7,
F ¢ O%. Thus, F contains a signature f ¢ O®. We will prove that Holant(F) is #P-hard when
F does not satisfy (T) by induction on the arity of f. In this chapter, we deal with the base cases

that JF contains a binary or 4-ary nonzero signature that is not in O®.

6.1 First and Second Order Orthogonality

Recall that a real-valued signature f of arity n satisfies 1sT-ORTH iff there exists pu # 0 such
that for all indices i € [n], M (m;f) = pla. Suppose that F does not satisfy condition (T). We first
show that every nonzero f € F (of arity not necessarily 2 or 4) satisfies 1sST-ORTH, or otherwise

we get the #P-hardness of Holant(F) by realizing a unary signature.

Lemma 6.1. Suppose that F is a set of real-valued signatures and F does not satisfy condition

(T). If F contains a signature f that does not satisfy 1ST-ORTH, then Holant(F) is #P-hard.

iEA. Consider m;f for all indices i. Clearly, M (m;f) = M;(f)MT(f) is a real symmetric positive
semi-definite matrix, which is diagonalizable with two non-negative real eigenvalues A; > u; > 0.
These two eigenvalues are not both zero since f is real valued and f # 0, and so M(m;f) # 0.
Thus, A; # 0. Then, [§*| = 1iff A\; = ;. In other words, [§*| = 1 iff M(m;f) = p;l> for some real
i # 0.

Since f does not satisfy 1sST-ORTH, by Lemma 3.15, there is an index i such that M (m; f) # u;Io
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for any real p; # 0. Thus, M (m;f) has two eigenvalues with different norms. By Lemma 3.24, we
can realize a nonzero binary signature g such that M(g) is degenerate. This implies that g can be
factorized as a tensor product of two nonzero unary signatures. By Lemma 3.6, we can realize a

nonzero unary signature and hence by Theorem 5.35, Holant(F) is #P-hard. O

For real-valued F that does not satisfy condition (T), assuming that every f € F satisfies 1ST-
ORTH, we further show that every irreducible f € F of arity at least 4 satisfies 2ND-ORTH, or other-
wise Holant(F) is #P-hard. The proof is based on dichotomies of #CSP problems, #EO problems
and eight-vertex models. The eight-vertex model can be expressed by the problem Holant(#3| f)
where f is a 4-ary signature with even parity. The complexity classification of this problem is

known even when f does not satisfy ARS [19]. Here, we restate this result for signatures with ARS.

R N c00
Theorem 6.2. Let f be a complez-valued signature with matriz form M(f) = [8‘;2
@00

oo o

] . Then,

~

Holant(#2| f) is #P-hard if
. f has support 6, or
. f has support 4 and the nonzero entries of M(]?) do not have the same norm, or

. f has support 8, all nonzero entries of M(f) are positive real numbers and are not all equal.

~

Otherwise, Holant(#2| f) is tractable.

Since #EO problems and eight-vertex models are defined as special cases of the problem
Holant (5| F), for convenience, we will consider the problem Holant(#s| F) which is equivalent to
Holant(F). Recall that F = Z71F satisfies ARS, and a signature f with ARS satisfies 2ND-ORTH
iff there exists A # 0 such that for all pairs of indices {i,j} C [n], M (ﬁz]f) = ANy.

We first consider that case that DEQ is available, where DEQ = {#3, ..., F#ok, ...} is the set

of all disequality signatures.

Lemma 6.3. Suppose that F is a set of real-valued signatures of even arity and F does not satisfy

condition (T). Let F = Z \F. Then, Holant(DEQ | F) is #P-hard.

1E8]. Since F does not satisfy condition (T), by Lemma 2.37, F Z & and F Z . If Fis a set
of EO signatures, then EO(F) =p Holant(,| F) <7 Holant(DEQ | F). By Theorem 4.1, when
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F Z & and F Z o, EO(]?) is #P-hard, and hence Holant(DEQ | ]?) is #P-hard. Thus, we may
assume that there is a signature f € F whose support is not half-weighted. Suppose that fhas
arity 2n. Since Y(f) ¢ s, by ARS, there is an o € Z3" with wt(a) = k < n such that f(a) # 0.
We first show that we can realize a signature g of arity 2n— 2k such that §(6) #0. If wt(a) =k =0,
then we are done. Otherwise, we have n > k > 1. Thus, 2n > 4 and « has length at least 4. By
Lemma 3.9, there is a pair of indices {i,j} such that a]f(ﬁ) # 0 for some wt(3) = k — 1. Clearly,
@jf has arity 2n — 2. Since 0 < k—1 < (2n —2)/2, @jfis not an EO signature. Now we can
continue this process, and by a chain of merging gadgets using #o, we can realize a signature g of
arity 2m = 2n — 2k such that §(0) # 0. Denote by a = §(0).

Then, we connect all 2m variables of § with 2m variables of #4,, that always take the same
value in . (#4m) using #2. We get a signature h of arity 2m where /ﬁ(ﬁ) = a, /ﬁ(f) = a by ARS,

a0 ]e(/)\g.

and ﬁ(v) = 0 elsewhere. Then, consider the holographic transformation by Q = [ 0 2mE

It transforms h to Zom, but does not change DEQ. Thus,
Holant(DEQ | h, F) =1 Holant(DEQ |=am, QF).
If 2m = 2, then we can show that
#CSP,(#2, QF) =1 Holant(EQy |#2, QF) <7 Holant(DEQ |=1, QF).
If 2m > 2, then by Lemma 5.4, we have
#CSPy,, (#2, QF) <7 Holant(#2|=0,, QF) <7 Holant(DEQ |=2n, QF).

Thus, for all 2m > 2, #CSP,,, (#2, QF) <7 Holant(DEQ |=2m, QF). Recall that QF = QF. Since
F does not satisfy condition (T), QF also does not satisfy it. By Theorem 5.5, #CSP,,, (#2, C/Q.\?)
is #P-hard when QF does not satisfy condition (T). Thus, Holant(DEQ |=2m, @.7/-: ) is #P-hard,
and then Holant(DEQ | F) is #P-hard. O

Then, we consider 4-ary signatures t/ﬁijfrealized by mating using #5. We show that they have

even parity. Then, we can invoke the existing dichotomy of eight-vertex models.
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Lemma 6.4. Suppose that F is a set of real-valued signatures of even arity and F does not satisfy

condition (T). Ifﬁ = Z~LF contains a signature f of arity 2n > 4, then
e Holant(#y| F) is #P-hard, or
e for all pairs of indices {i,j}, there exists a monzero binary signature Bij € O such that
/b\ij(xi, z;) | f or M(fﬁwf) = \ij N4 for some real \i; # 0.

SER. If f = 0, then the lemma holds trivially since for all {i,j} and any /b\ij # 0, gij (@i, xj) | 7.
Thus, we may assume that f # 0.
If ]?does not satisfy 1ST-ORTH, then f does not satisfy it. By Lemma 6.1, Holant(#s| .7?) =r

Holant(=5| F) is #P-hard. Thus, we may assume that f satisfies 1sT-ORTH. Then, for all indices

i, we have
PO N R 0 1
M@mf)=| _ . =p
2 ) 10

For any variable x;, we may take another variable z; (j # i) and partition the sum in the inner

product (/f?,/f\'ll) = 0 into two sums depending on whether z; = 0 or 1. Also, by ARS we have

Thus, for all pairs of indices {i,j}, (t?jo,?}](-)) =0 and &%1,?}]1) = 0. (Note that by exchanging ¢ and

7 we also have ?@07@1 = 0 and f«m,/f\'1~1 = 0.) Also by ARs, we have [f0? = EQ = [f112 and
ij 2 g ij 7 g i i i

)12 = [P = [P

Now, consider ﬁijffor all pairs of indices {i,j}.

LA ®E) 0 0 IBP
1 1 Flo 1012
M@ f = || e @t o | 0 W mE o
Y 210 ij ij ij ij 102 10 01
fz‘j 0 ’fz‘j <fij7 ij> 0
1] B0 0 (BB,

~

Note that ](f%o,?}jlﬂ < @]0’ . Ejl\ by Cauchy-Schwarz inequality. Clearly, ﬁ\iijfhas even parity, and

thus it represents a signature of the eight-vertex model. If there exists a pair of indices {7, j} such

that Holant(#| T/T\IUJ?) is #P-hard, then we are done since Holant(#s] ﬁ\'l”f) <7 Holant(#,| F).
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Thus, we may assume all ﬁijj? belong to the tractable family for eight-vertex models. Clearly,
by observing its antidiagonal entries of the matrix M (ﬁijf), we have ﬁijf =% 0 since ]? #% 0. By

Theorem 6.2, there are three possible cases.

o There exists a pair {7, j} such that m;; f has support of size 2. By Cauchy-Schwarz inequality,
0

. 0001 0000
M(m;; f) is either of the form \;; [8888] where \;; = @JOP = |f11|2 # 0 or A\ [0 1(1)8]
1000 0000

where \;; = @jl] = ]?10] # 0. In both cases, #4 is realizable since \;j; # 0. The form that

(/f?]l, fllj0> # 0 while |@1|2 |f10|2 = 0 cannot occur since |<E)j1, lejo)| < @}HEJQ . Also, the form

that (@]0 , f};} # 0 while |E)Q| = |fZ-1j1|2 = 0 cannot occur. Since #4 is available, by Lemma 4.25,

Holant(DEQ | F) <7 Holant(=3| F). By Lemma 6.3, Holant(=,| F) is #P-hard.

o There exists a pair {i,j} such that ﬁijf has support of size 8. We can rename the four

variables of ﬁijfin a cyclic permutation. We use g to denote this signature. Then M (g) =
c00d

Mi2(9) = {0 b o 0] where a and b are positive real numbers and ¢ and d are nonzero complex

ISH
[e=)
o
ol

numbers. Consider the signature mi2g realized by mating g. We denote it by h. Then,

2d 0 0 P+l [¢ 0 o0 &

~ R T 0 2ab  a*+b? 0 0 a v 0
M(h) = M(g)NsM"(g) = = ,
0 a?+b*>  2ab 0 0 v d 0

|c]* + |df? 0 0 2cd | |d 0 0 |

where a’,b’, and d’ are positive real numbers and ¢’ is a nonzero complex number. Suppose

that the argument of ¢ is 6, i.e., ¢/ = ||,

Consider the holographic transformation by @ = [6_:/4 eigﬂ] € (/)\2 Then,

Holant (2| /ﬁ,]f-:) =7 Holant(#:] Q\/ﬁa @j})

| 0 0 d
Note that M (Qh) = [ 0 o b/ 0 ] where all entries are positive real numbers. Notice that
d

all weight 2 entries of h are unchanged in Qh By Theorem 6.2, Holant(#2| Qh) is #P-hard
1001

unless o’ = ¥ = |¢/| = . Thus, we may assume that M (Qh) = {8 1 8} up to normalization.

1001

PO P 1000
Notice that M(Z(Qh)) = Z<2M(Qh)(Z7)®? = [8 98 8], which is the arity-4 equality (=4).
0001
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Consider the holographic transformation by Z which transfers #o back to =3. Remember
that Q = Z~1QZ. Then, Z(QF) = Z(Z7'QZ)(Z~\F) = QF. Since Q € Oy, we have
Q@ € Os. Thus,

Holant(#| Qh, QF) = Holant(=3|=4, Q.F).

By Lemma 2.24, #CSP,(QF) <r Holant(=2|=4, QF). Since F does not satisfy condition
(T) and @ € Og, QF also does not satisfy condition (T). By Theorem 2.34, #CSP,(QF) is
#P-hard. Thus, Holant(s,| ) is #P-hard.

o For all {i,j}, ﬁi]f has support of size 4. By Cauchy-Schwarz inequality, M (ﬁ”f) is of the
b00a 0000 0001
form [8 99 8] or [8 ba 8} where a? — |b|? = 0, or the form \;; [0 05 0] where \;; = @]0|2 =
N a00b 0000 1000
£} # 0. If M (m;;f) = Xij N4, then we are done. Otherwise, M (m;; f) has rank one. Hence

Mw(f) also has rank one. Then, by observing the form of M (ﬁijf) especially the all zero
rows, f can be factorized as gz-j(:ci, zj) ® g where /l;ij € O and g is a signature on the other

n — 2 variables. Thus, we are done.

The lemma is proved. O

Remark 6.5. We give a restatement of Lemma 6.4 in the setting of Holant(F). Suppose that F
is a set of real-valued signatures of even arity and F does not satisfy condition (T). Let f € F be
a signature of arity 2n > 4. Then, Holant(F) is #P-hard, or for all pairs of indices {i,j}, there
exists a nonzero binary signature bj € O such that bij(xs,x;) | f or M(my;f) = Xijls for some real

Aij 7 0.

Now for an irreducible signature f of arity 2n > 4, we show that it satisfies 2ND-ORTH or we

get #P-hardness.

Lemma 6.6. Suppose that F is a set of real-valued signatures of even arity, F does not satisfy
condition (T). Let f € F = Z71F be an irreducible stgnature of arity 2n > 4. Iff does not satisfy
OND-ORTH, then Holant(£| F) is #P-hard.

1LRf. Since fis irreducible, by Lemma 6.4, M(t?lijf) = \ij Ny for all {i,j}. Now, we show all \;;

have the same value. If we connect further the two respective pairs of variables of m;; f, which totally
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connects two copies of f, we get a value 4);;. This value clearly does not depend on the particular

indices {i,j}. We denote the value A;; by A. This value is nonzero because f is irreducible. O

We derive some consequences from the condition 2ND-ORTH for signatures with ARS. Suppose
that f satisfies 2ND-ORTH. First, by definition we have |/f\';;?|2 = A for any (z;,7;) = (a,b) € {0,1}>.

Given a vector f2, we can pick a third variable z; and partition f‘f;’ into two vectors f‘;flg and f?]b,i

17

according to xy = 0 or 1. By setting (a,b) = (0,0), we have

@mhzymp+WME:A. (6.1)

02 002 102
[E017 = (B0 + B2 = A (6.2)
Comparing equations (6.1) and (6.2), we have @%]2 \/t? Y12, Moreover, by ARS, we have \f?jllg =
}]0,3|2. Thus, we have | ik 12 = 3;),3]2 Note that the vector F])k is partitioned into two vectors 2]013
and flljokl according to x; = 0 or 1. That is

“1
(417 = 8517 + (£ =

ijk

Thus, we have | 12 = 21;3,3|2 = A/2. Then, by equation (6.1), we have @JQ,?F = \A/2, and again

by ARS, we also have \f};,gﬁ = ]f%o,g 2 = )\/2. Note that indices i, j, k are picked arbitrarily, by

symmetry, we have

120012 = ) /2 (6.3)

ij

for all (z;,z;,zx) = (a,b,c) € {0,1}3.
Given a vector f“]k, we can continue to pick a fourth variable x, and partition f‘lbkf into two
vectors /f\'%b,f? and T‘gjbg% according to z, = 0 or 1. By setting (a,b,c) = (0,0,0), we have from (6.3)

[£29012 = [£290012 + [£2904 2 = A /2. (6.4)

)
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Similarly, we consider the vector ?%Ogl and partition it according to xy = 0 or 1. We have

€012 = [E0904 2 + [E2942 = A /2. (6.5)

? 1,

Comparing equations (6.4) and (6.5), and also by ARS, we have

0002 0112 _ (p1100(2 _ [plll12
ke |- = [Eike |° = [fijke |1 = 1fijke | (6.6)
for all indices {1, j, k, £}. Similarly, we can get
0012 01012 __ (11012 _ [§l110|2
’ z’jkél‘ = ‘ z‘jkﬂ - ‘fijlkél’ - ‘fijlklf ’ . (6-7)

By the definition of second order orthogonality, we also have

{019 =0 (6.8)

Jo g

for all variables x;, z; and (a,b) # (¢, d).

Equations (6.6), (6.7) and (6.8) will be used frequently in the analysis of signatures satisfying
ARS and 2ND-ORTH. This is also a reason why we consider the problem in the setting under
the Z~! transformation, Holant(#,| F ), where we can express these consequences of 2ND-ORTH
elegantly, instead of Holant(F) which is logically equivalent. By combining 2ND-ORTH and ARS of
the signature f, we get these simply expressed, thus easily applicable, conditions in terms of norms

and inner products.

6.2 The Induction Proof: Base Cases 2n < 4

In this section, we introduce the induction framework and handle the base cases (Lemmas 6.7
and 6.8). Recall that O denotes the set of binary signatures with ARS and parity (including the
binary zero signature), and O% denotes the set of tensor products of signatures in O. Since F
does not satisfy condition (T), F Z 7. Also, since o®Cc T , F Z 0%, Thus, there is a nonzero
signature f € F of arity 2n such that f ¢ O®. We want to achieve a proof of #P-hardness by

induction on 2n. We first consider the base that 2n = 2. Notice that a nonzero binary signature
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fsatisﬁes 1sT-ORTH iff its matrix form (as a 2-by-2 matrix) is orthogonal. Thus, fgﬁ O implies

that it does not satisfy 1ST-ORTH. Then, we have the following result.

Lemma 6.7. Suppose that F is a set of real-valued signatures of even arity and F does not
satisfy condition (T). If F contains a binary signature f ¢ OF, then Holant(F) is #P-hard.
Let F = Z7\F. Equivalently, zf]? contains a binary signature f ¢ (5®, then Holant (2| .7/-:) 18
#P-hard.

7£8. We prove this lemma in the setting of Holant(F). Since O® contains the binary zero signa-
ture, f ¢ O% implies that f # 0. If f is reducible, then it is a tensor product of two nonzero unary
signatures. By Lemma 3.6, we can realize a nonzero unary signature by factorization, and we are
done by Theorem 5.35. Otherwise, f is irreducible. Since f ¢ O%®, f does not satisfy 1ST-ORTH.
By Lemma 6.1, Holant(F) is #P-hard. O

Then, the general induction framework is that we start with a signature fof arity 2n > 4 that
is not in O%, and realize a signature § of arity 2k < 2n — 2 that is also not in O®, or otherwise we
can directly show Holant(#s] F ) is #P-hard. If we can reduce the arity down to 2 (by a sequence
of reductions of length independent of the problem instance size), then we have a binary signature
b ¢ O. By Lemma 6.7, we are done.

For the inductive step, we first consider the case that fis reducible. Suppose that f: ]?1 ® ]?2
If fl or }\'2 have odd arity, then we can realize a signature of odd arity by factorization and we are
done. Otherwise, fl and fg have even arity. Since f ¢ (/’)\@’, we know fl and fg cannot both be
in OF. Then, we can realize a signature of lower arity that is not in 0% by factorization. We are
done. Thus, in the following we may assume that f is irreducible. Then, we may further assume
that fsatisﬁes 2ND-ORTH. Otherwise, we get #P-hardness by Lemma 6.6. We use merging with
#9 to realize signatures of arity 2n — 2 from f Consider (%ffor all pairs of indices {4, j}. If there
exists a pair {7, j} such that a]fgﬁ O, then we can realize § = (79\”]? which has arity 2n — 2, and
we are done. Thus, we may assume @jfe O% for all {i,7}. We denote this property by fG ]@@’
We want to achieve our induction proof based on these two properties: 2ND-ORTH and fe 7(5@.

We consider the case that 2n = 4.

Lemma 6.8. Suppose that F is a set of real-valued signatures of even arity and F does not satisfy
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condition (T). Let F = Z~\F. If F contains a 4-ary signature f ¢ O, then Holant(#s| F) is
# P-hard.

1EBf. Since fejé @®, f # 0. First, we may assume that ]?is irreducible. Otherwise, we can realize
a nonzero unary signature or a binary signature that is not in 0. Then, by Theorem 5.35 and
Lemma 6.7, we have #P-hardness. Since f\is irreducible, we may further assume that J?satisﬁes
2ND-ORTH. Otherwise, by Lemma 6.6, we get #P-hardness.

We consider binary signatures aj frealized from fby merging using #o. Under the assumption
that f satisfies 2ND-ORTH, we will show that there exits a pair {i,j} such that ajf ¢ O. Then
by Lemma 6.7, we are done. For a contradiction, suppose that f € /f@ ie., 5Z'jf€ O for all pairs

000| _ (0011 _ ‘A1111

{i,j}. Since f satisfies 2ND-ORTH, by equations (6.6) and (6.7), we have |/f\0jk£ |f?jk£ ikl

)

and |f; JQ,?}] = @}kl?] respectively for any permutation (4,7, k, ¢) of (1,2,3,4). Thus all entries of 7

on inputs of even weight {0, 2,4} have the same norm, and all entries of ]/”\on inputs of odd weight
{1, 3} have the same norm. We denote by 1y and v; the norm squares of entries on inputs of even
weight and odd weight, respectively.

Then, we consider the equation G%,ES) =0 from (6.8) by taking (i,7) = (1,2). We have

A = o g0 O 4 o i —

~

(Here for clarity, we omitted the subscript 1234 of f{%$4.) By ARs, we have FOLLLF1011 — ¥1000 £0100

and J’cbnoj?mlo _ ]?1001]/&)101. Thus, we have
F0100 £1000 4 FO101 £1001 — (), (6.9)

Note that by taking norm, Uﬂ)100f1000| = 11 and |fb101f1001| = 1. Then, it follows that vy = v1.
Thus, all entries of fhave the same norm. We normalize the norm to be 1 since f;é 0.

Consider 5121?. We have

812f — (.]/0\0100 + .]?10007 J?OlOl + J/c\lOOl’ J/c\OllD + J/z-\ll)lo7 J?Olll + J/c\1011)7

and by assumption 512f€ 0. Thus, at least one of the two entries J?T)loo + ]?1000 and ]?0101 + J?1001
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is equal to zero. If fbloo + ]?\1000 = 0, then we have

J?OIOOJ’F;[()()O _ (_flOOO)fmoo _ —‘]ﬁ000|2 - 1

Then, by equation (6.9), we have FOI01£1001 — 1. Qtherwise, 0101 4+ 1901 — (. Then, we have
fO101 £1001 — 1 while f0100 £1000 — 1. Thus, among these two products f0100 1000 and f0101 £1001

exactly one is equal to 1, while the other is —1. Then, we have

70100 F1000 70101 71
£0100 £1000 0101 £1001 — 1

Similarly, by considering 523]? and gglfrespectively, we have

70010 70100 FO011 7 #1000 £0010 F1001 7t
F0010 £0100 FOOLL £0101 — | apd  FL000 £0010 F1001 70011 — 1,

Multiply these three products, we have

\]/”U100|2|f0010|2|F°00\2|f°101|2yf°°11|2|f1001|2 _ (_1)3 - 1

A contradiction! O

Remark 6.9. In this proof, we showed that there is no irreducible 4-ary signature f that satisfies

both 2ND-ORTH and f € 7(5@’.

If Lemma 6.8 were to hold for signatures of arity 2n > 6, i.e., there is no irreducible signature
fof 2n > 6 such that fsatisﬁes both 2ND-ORTH and f € T@X), then the induction proof holds
and we are done. We show that this is true for signatures of arity 2n > 10 in Section 8.3. However,
there are extraordinary signatures of arity 6 and 8 with special closure properties (Bell properties)

such that they satisfy both 2ND-ORTH and ]?E T@Q
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Chapter 7

First Major Obstacle: 6-ary

Signatures with the Bell Property

In this chapter, we consider the case that F contains a 6-ary signature that is not in O%. We
give a signature f6 with extraordinary closure properties called the Bell property. The existence
of .]?6 presented a formidable obstacle to the induction proof. In order to handle the signature fe,

we introduce Holant® problems where the four binary Bell signatures are available. We prove a

#P-hardness result for Holant®( fg, F).

7.1 The Discovery of ﬁ;

We consider the following 6-ary signature fg. Let fg = ys - (—1)*1%2HT203+ 21 T3+ 1T+ T2T5+T3T6
where yg is the indicator function on the set S = 5”(]?6) = & = {a € Z§ | wt(a) = 0 mod 2}.
One can check that ﬁ,- is irreducible, and f6 satisfies both 2ND-ORTH and f € T@Q ﬁ; has the

following matrix form

0 1 -1 0 1 -1
—~ -1 0 0O -1 0 1 1 0
Mi23 456(f6) = : (7.1)
0 1 1 0o -1 0 0 -1
-1 0 0 1 0 -1 1 0
-1 0 0 1 0 1 -1 0
0 1 1 0 1 0 O 1
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We use Figure 6 to visualize this matrix. A block with orange color denotes an entry +1 and

a block with blue color denotes an entry —1. Other blank blocks are zeros.

000 001 010 011 100 101 110 111

000r

001}

010¢

011r

100+

101

110

1M1

[ 6: A visualization of fg

In this subsection, we show how this extraordinary signature fg was discovered. We prove that
if 7 contains a 6-ary signature f where fgé O%, then Holant(#2| F ) is #P-hard or s is realizable
from fafter a holographic transformation by some @ € (/)\2 (Theorem 7.5). The general strategy
of this proof is to show that we can realize signatures with special properties from fstep by step
(Lemmas 7.1, 7.2, 7.3 and 7.4), and finally we can realize fg, or else we can realize signatures that
lead to #P-hardness. So this _}?5 emerges as essentially the unique (and true) obstacle to our proof

of #P-hardness in this setting.

Lemma 7.1. Suppose that F is a set of real-valued signatures of even arity and F does not satisfy
condition (T). Let F = Z7\F. If F contains a 6-ary signature fgé O, then Holant(#2| .7?) is
#P-hard, or an irreducible 6-ary signature ]?’ is realizable from f, where f’(a) =0 for all o with
wt(a) = 2 or4. Moreover, f’ is realizable by extending variables of fwith nonzero binary signatures

in O that are realizable by factorization from 512f.

1EBf. Since fgé (5®, f;é 0. Again, we may assume that fis irreducible. Otherwise, by factoriza-
tion, we can realize a nonzero signature of odd arity, or a signature of arity 2 or 4 that is not in 0%,
Then by Theorem 5.35, or Lemmas 6.7 or 6.8, we get #P-hardness. Under the assumption that
fis irreducible, we may further assume that fsatisﬁes 2ND-ORTH by Lemma 6.6. Also, we may
assume that ]? el 0P, Otherwise, there is a pair of indices {7, j} such that the 4-ary signature
8;jf ¢ OP. Then by Lemma 6.8, Holant(#9| F) is #P-hard.



125

If for all pairs of indices {i, j}, @jfz 0, then by Lemma 3.9, we have f(a) = 0 for all o with
wt(a) # 0 and 6. Since f # 0, clearly such a signature does not satisfy 2ND-ORTH. Contradiction.
Otherwise, there is a pair of indices {4, j} such that 51]]?;7_5 0. By renaming variables, without loss of
generality, we assume that 512]?5_'5 0. Since 512]?6 (5®, in the UPF of 512]?, by renaming variables
we assume that variables x3 and x4 appear in one nonzero binary signature bAl(xg, x4) € (5®, and

variables x5 and xg appear in the other nonzero binary signature bAg(xg,, x6) € 0%, Thus, we have

~ ~

Oraf = bi(x3,24) @ ba(ws, 26) Z 0.

By Lemma 3.6, we know that these two binary signatures I;\l and 5; are realizable by factoriza-
tion. Note that for a nonzero binary signature l;;($2i+1,$2i+2) cO (i € {1,2}), if we connect the
variable x9;11 of two copies of [/)\1;(.'1327;+17x2i+2) using #2 (mating two binary signatures), then we
get #9 up to a nonzero scalar. We consider the following gadget construction G; on f Recall that
in the setting of Holant(#]| F ), variables are connected using #9. For i € {1, 2}, by a slight abuse
of variable names, we connect the variable xo; 41 of ]?with the variable x9;41 of I;;(a:QiH,xQHg).
We get a signature ]/”\’ of arity 6. Such a gadget construction does not change the irreducibility
of f. Thus, f’ is irreducible. Again, we may assume that f’ € T@@) and f’ satisfies 2ND-ORTH.
Otherwise, we are done.

Consider 512]?’. Since the above gadget construction (7 does not touch variables x; and xo
of f, the operation of forming G; commutes with the merging operation 512. Thus, 512]?’ can be
realized by performing the gadget construction G on 512ﬁ which connects each binary signature
b; (i € {1,2}) of By2f with another copy of itself using #5 (in the mating fashion). Then, each b;
in 512]?is changed to #2 up to a nonzero real scalar. After normalization and renaming variables,

we have

Oraf! = (#2)(x3,24) @ (#2) (w5, T6)-

Since 1o f' € D®, for any {i,j} disjoint with {1,2} we have 5(ij)(12)f’ € D®, and hence @jf’ Z 0.

Now, we show that for all pairs of indices {3, j}, é\zj]?’ has even parity. We first consider the case
that {7,j} is disjoint with {1,2}. Connect variables x; and z; of 512f’ using #5. Since 512]?’ has
even parity, a merging gadget using #9 will change the parity from even to odd. Thus, 5(ij)(12)ﬁ
has odd parity. Consider (/9\1]]?’ Remember that 5@]]?’ % 0 since 5(1-]-)(12)]?’ % 0. Since ]?/ € 7(5@,
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We have f/)\ijf’ € O%. Thus, 5”]?’ has (either odd or even) parity. For a contradiction, suppose
that it has odd parity. Then, 5(12)(1‘3‘)]?' has even parity since it is realized by merging using #2. A
signature that has both even parity and odd parity is identically zero. Thus 5(12)(,-j)f’ is the zero
signature. However, since (‘/3\(27)(12)]/“\’ € D%, it is not the zero signature. Contradiction. Therefore,
C'A?,;jf’ has even parity for all {7, j} disjoint with {1,2}.

Then, consider 5@]]?’ for {4, j}N{1,2} # 0. If {1,2} = {i, j}, then clearly, d12f has even parity.
Otherwise, without loss of generality, we may assume that ¢ = 1 and j # 2. Consider 51jf’ for
3 < j < 6. If it is a zero signature, then it has even parity. Otherwise, é\ljj/”\’ # 0. Since 51jf’ € @®,

we assume that it has the following UPF

~ ~

/a\ljf/ = l;i(x%xu) o2y bé(xmxw)'

By connecting variables x,, and x, of 513-}\’ using #o, we get 5(%)(1]-)]?’. Since the merging gadget
connects two nonzero binary signatures in (5, the resulting signature is a nonzero binary signature.
Thus, 5@@)(1]')? # 0. Notice that {u,v} is disjoint with {1,2}. As showed above, 51“;]?’ has even
parity. Then, 5(1]-)(%)]/”\’ has odd parity. For a contradiction, suppose that 51jf’ has odd parity.
Then 5(7“])(1]-)]?’ has even parity. But a nonzero signature 5(7“,)(1]»)}\’ cannot have both even parity
and odd parity. Contradiction. Thus, 51]]?’ has even parity.

We have proved that (/3\”]?’ has even parity for all pairs of indices {7,j}. In other words, for
all pairs of indices {i,j} and all 3 € Z3 with wt(8) = 1 or 3, we have (51]]?’)(6) = 0. Then, by
Lemma 3.9, f’(a) = 0 for all « with wt(a) = 2 or 4. Clearly, f’ is realized by extending fwith

nonzero binary signatures in O that are realized by factorization from 512f. O

Lemma 7.2. Suppose that F is a set of real-valued signatures of even arity and F does not satisfy
condition (T). Let F=2z1F If}A" contains an irreducible 6-ary signature ]?’ where ]?’(04) =0
for all o with wt(e) = 2 or 4, then Holant(s£y| F) is #P-hard, or y(f’) =0 = {a € Z§ |

wt(a) is odd} and all nonzero entries of ]?/ have the same norm.

1L AR . Since f’ is irreducible, again we may assume that f’ satisfies 2ND-ORTH and f’ ef O%. Let

{i,j,k, ¢} be an arbitrarily chosen subset of indices from {1,...,6}, and {m,n} be the other two
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indices. Then by equation (6.7), and the condition that f’ vanishes at weight 2 and 4, we have

-~ 001011 -0010

~0001 ~000100 5 4000111 5 001000 o 9 9
\ 1= = [f"ijktmnl” + 1 ijiemn!” = T I

2
ke 17 = | ijkemnl” + 1 ijkemn

Also, by considering indices {k, ¢, m,n}, we have

<0100 o ~,000100 o 110100 o +,001000 o 111000 o +1000 o
|f/k€mn’ = ‘f/ijkﬁmn‘ + |f/ijkﬁmn| = |f/ijk€mn| + |f/ijkﬁmn| = |f/k€mn|
By ARs, we have
000111 o 111000 o
|f/z'jk€mn| = |f/ijk€mn| )

and

001011 o 110100 o
‘f/ijkﬁmn‘ = |f/ijkfmn|

By calculating (7.2) + (7.3) — (7.4) — (7.5), we have

000100 o +,001000 o
|f/ijk€mn| = |f/ijk€mn|

By (7.2) — (7.6), we have

~000111 o ~001011 o
|f/z'jk:€mn| = |f/ijk£mn|

(7.2)

(7.4)

(7.5)

(7.6)

(7.7)

From (7.6), since the indices (i, j, k, ¢, m,n) can be an arbitrary permutation of (1,2,3,4,5,6), for

all a, B € Z§ with wt(a) = wt(8) = 1, we have \f’(a)\ = |fA”(ﬁ)| The same statement holds for

wt(a) = wt(8) = 3, by (7.7).

Let a = |f/(66)|; by ARS, a = |f’(f6)| as well. It is the norm of entries of f/ on input of

Hamming weight 0 and 6. We use b to denote the norm of entries of f’ on inputs of Hamming

weight 1. By ARS, b is also the norm of entries of ]/"\’ on inputs of Hamming weight 5. We use ¢ to

denote the norm of entries of f/ on inputs of Hamming weight 3. Remember that by assumption,

|f/(04)| =0 if wt(a) =2 or 4.

By equation (6.6), we have

0000 0011
F934]% = a® + 20 = |F93,]° = 2¢%.
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Clearly, we have 0 < a,b < ¢. If ¢ = 0, then a = b = 0 which implies that ]?/ is a zero signature.

This is a contradiction since f/ is irreducible. Therefore ¢ # 0. We normalize ¢ to 1. Then
a® + 20 = 2.

We will show that b = 1 and a = 0. This will finish the proof of the lemma. For a contradiction,
suppose that b < 1, then we also have a > 0.

Consider signatures f’(l]é, f’ig and Dyo f! = f’(l); + f’ig Since jA”(a) = 0 for all a with wt(a) =
2 or 4, ]?/(1);(,8) = 0 and f’ig(ﬂ) = 0 for all § with wt(5) =1 or 3. Thus, f’?; and f’ig have even

~01 =10
parity. We also consider the complex inner product (f'|5,f5). First we build the following table.

J/c\/(;; }:/010000 }\,/010011 }\.,010101 }\/010110 J/g/OllOOl };/011010 }\,/011100 }\7011111

}:/1(2) }\,/100000 }\7100011 J/L:IIOOIOI }:/100110 }:/101001 }\.,101010 }\/101100 .]/07101111

Oraf’ 51 52 53 54 54 53 ED) 51
Py P1o) p1 P2 3 P4 P4 P3 P2 p1

~01 ~10 ~ - ~01 ~10

%% 2: Entries of f’15, f'19, O12f" and pairwise product terms in (f'|,,f5) on even-weighed inputs
In Table 2, we call these four rows by Row 1, 2, 3 and 4 respectively and these nine columns

by Column 0, 1, ..and 8 respectively. We use T; ; to denote the cell in Row ¢ and Column j. Table

2 is built as follows.

~01 ~10
e In Row 1 and Row 2, we list the entries of signatures f’;, and f’;5 that are on even-weighted
inputs (excluding the first two bits that are pinned) respectively. Note that, those that did
not appear are 0 entries on odd-weighted inputs (excluding the first two bits that are pinned)

. ~01 ~10 ~01 ~10 )
of the signatures f’;5 and f’5, since f’;5 and f’;5 have even parity.

A o~ A0l ~10
o In Row 3, we list the corresponding entries of the signature O12f’ = f'15 + f'19, i€, T3 ; =

Tl,j + TQJ‘ for 1 < j<8.

~01 =10
 In Row 4, we list the corresponding items in the complex inner product (f'5,f,), i.e., Ty ; =

Ty, -Tpjfor 1 < j<8.
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For 1 < j < 8, we consider the entry in 77 ; and the entry in T59_;. By ARS, we have T} ; = To9_;

because their corresponding inputs are complement of each other. Thus,

T35 ="T1j+ 125 =Ta9—j+T19-j =139,

and

Tyj =T Toj = Ta9-j To9-5 = Ta9—j.
We use s1,...,54 to denote the values in 734,...,754 and pi1,...,ps to denote the values in
Tyn,...,Ty4. Correspondingly, the valuesin T3 5,...,T3 g are 54, ...,51 and the valuesin Ty 5, ..., Ty 8
are pg,...,p1. We also use z; and y; (1 < j < 8) to denote the entries in T3 ; and T3 j respectively.

By 2ND-ORTH, we have @2;,?12) = 2(p1 + p2 + p3 + pa) = 0. Also we have |p;| = b? and
Ipa| = |p3| = |pa| = 1. Notice the fact that if z; +y; = 0, then x; - 75 = ;- —; = —|24|? = — |z - Til.
Thus, if 51 = 0 then p; = —|p1| = —b% and for any i = 2,3,4, if s; = 0 then p; = —1. Note that
Ao f'(B8) = ]?’(1);(5) + f’ig(ﬂ) = 0 for all B with wt(8) = 1 or 3. Among all 16 entries of dyaf’,
$1,...,84,84,...,51 are those that are possibly nonzero. Since 512]?’ € (5®, it has support of size
either 4 or 0. Thus, among s, s2, s3 and sy4, either exactly two of them are zero or they are all zero.

There are three possible cases.

e s1=8y=53=54=0. Thenp1 +pa2 +p3 +ps = —b>—3 < -3 = 0. Contradiction.

e s1 # 0 and two of so,s3 and s4 are zero. Without loss of generality, we may assume that
s9 = 83 = 0. Then ps = p3 = —1. Since p1 +p2+p3+ps = 0, we have p; +ps = —pa —p3 = 2.
Then, 2 = |p1 + pa| < |p1| + [pa] = b* + 1 < 2. Contradiction.

e s1 = 0 and one of s9, s3 and s4 is zero. Without loss of generality, we may assume that ss = 0.
Then p; = —b% and py = —1. Thus, p3 +ps = —p1 — p2 = 1 + b < 2. Let § = arccos #.
We know that 0 < 6 < Z. Recall that [ps| = |ps| = 1. Thus, p3 = e*' and ps = e™ (and

p3 = Da).

Let P = {—1,¢"%, e7%). Thus, po,p3,ps € P. Otherwise, we get a contradiction.
Now, we consider signatures ajf’ for all pairs of indices {i,j}. By symmetry, the same con-

clusion holds. In other words, let {7, j} be an arbitrarily chosen pair of indices from {1,...,6} and
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{k,€,m,n} be the other four indices, and let 3 € Z% be an assignment on variables (xg, Zg, Tm, Tp)

A/lOﬁ

~01
with wt(5) = 2. Then, we have f’ij,fgmn “ f'ijkemn € P. Since the indices (i, j, k,£,m,n) can be an

arbitrary permutation of (1,2,3,4,5,6), we have f'(c) - f/(o/) € P for any two assignments o and
o’ on the six variables where wt(a) = wt(a’) = 3 and wt(a & o) = 2, because for any such two
strings a and o/, there exist two bit positions on which o and o’ take values 01 and 10 respectively.

We consider the following three inputs oy = 100011, ag = 010011 and a3 = 001011 of f’ We
have f/(a1) - f'(a2) = qi2 € P, f'(a2) - f'(a3) = qo3 € P and f'(n1) - f'(as) = qu3 € P. Recall that
|/(or2)| = 1 since wt(avy) = 3. Then,

~ =~
/!

Q2 qo3 = f'(ar) - fllaz) - fllaz) - fllas) = [f(a2)* - Fllar) - f/(as) = qi3 € P.

However, since 0 < 6 < 7, it is easy to check that for any two (not necessarily distinct) elements in
P, their product is not in P. Thus, we get a contradiction. This proves that b =c =1 and a = 0.
Therefore we have proved that, .7 (f’) = 0Og, and all its nonzero entries have the same norm

that is normalized to 1. O

Lemma 7.3. Suppose that F is a set of real-valued signatures of even arity and F does not
satisfy condition (T). Let F=2Z1F If F contains an irreducible 6-ary signature ]?’ where
y(]?’) = O and |f’(0z)| =1 for all a € 5”(]?’), then Holant(#s| F) is #P-hard, or after a
holographic transformation by some @ = {g 2} € (/)\2 where p =€ and 0 < § < 7/2, an irreducible
6-ary signature ﬁ and =5 are realizable from ]/“\’ where Y(f”) = Og and there exists A =1 ori
such that for all o € 5”(?’\’), ﬁ(a) =+, ie., Holant(;é2|:2,?7/, QF) <r Holant(#s| F) where
ﬁ = @\f’ Moreover, the nonzero binary signature (pQ,O,O,E) € O is realizable from ('/9\”}’\’ for

some {i,j}.

iEAf. Again, we may assume that f’ satisfies 2ND-ORTH and f’ € T(/Q\@. We first show that there
exists A = 1 or i such that for all a € .Z(f') with wt(a) = 3, ﬁ(a) = £, or else we get
#P-hardness.

Let’s revisit Table 2. Now we have |p1| = |p2| = |p3| = |pa] = 1. Recall that for 1 < i < 4,
s; = 0 implies that p; = —1. Since 512}'\’ € (5®2, it has support of size 4 or 0. Thus, among s1, So, S3

and sy4, either exactly two of them are zero or they are all zero. If they are all zero, then we have

p1 + p2 + p3 + ps = —4 # 0. This is a contradiction to our assumption that f’ satisfies 2ND-ORTH.
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Thus, exactly two of s1, s2, s3 and s4 are zeros. Suppose that they are s; and s;. Recall that we
use x; and y; (1 <7 < 8) to denote the entries in Row 1 and Row 2 of Table 2. Thus |z;| = |y;| = 1,
for 1 <¢ < 8. Since s; = 2; +y; =0 and s; = z; +y; = 0, we have x; = —y;, and z; = —y;. Also,
since s; = s; = 0, we have p; = p; = —1. Let {¢,k} = {1,2,3,4}\{¢,j}. Then, by 2ND-ORTH, we
have p; + pr = —p; — pj = 2. Since |p¢| = |px| = 1, we have py = p;, = 1. Note that p; =z, -7 =1
and also 1 = |y¢| = y¢ - y¢. Thus, we have z; = yp. Similarly, xx = yr. Thus, for all 1 < i < 8§,
x; = ty,;. Consider 5”30\’ for all pairs of indices {i,j}. By symmetry, the same conclusion holds.
Thus, f(o) = £f(c/) for any two inputs o and o/ on the six variables where wt(a) = wt(a/) = 3

and wt(a @ o) = 2. In particular, we have

A000111 A001011 -~ 011001 -~ 111000

I =erf =eaf’ =e3f’ ;

~000111 = 111000
where €1,¢9,e3 = £1 independently. By ARS, we have f’ = f .

-~ 000111 -~ 111000 ~ 111000 -~ 111000

o If f’ = f! = f’ , then f’ = +1.
000111 ~111000 111000 ~ 111000
o If f/ =—f =f , then f’ = +i.
~ 000111 ~ 111000
Thus, there exists A = 1 or i such that f’ =4\ and f/ = 4. Consider any a € Z§ with

wt(a) = 3. If « € {000111, 111000}, then clearly, f'(c) = +A. Otherwise, either wt(a®000111) = 2
or wt(a @ 111000) = 2. Then, f’(a) = 4. Thus, there exists A = 1 or i such that for all o € Z§
with wt(a) = 3, f’(oz) =+

Since f'(ar) # 0 for all a with wt(a) = 1, by Lemma 3.9, there exists a pair of indices {i, j}
such that (@jf/)oooo # 0. Since 5”]?’ € 0%, it is of the form (a,0,0,a) ® (b,0,0,b), where ab # 0,
since no other factorization form in O® has a nonzero value at 0000. By Lemma 3.6, we can
realize the signature g = (a,0,0,a). Here, we can normalize a to e where 0 < 6 < m. Then, let
p = €?2 Clearly, 0 < 0 /2 < /2. Consider a holographic transformation by @ = [g 2} . Note that
(#2)(Q~1)®2 = (#5) and Q®2§ = (1,0,0, 1). The holographic transformation by Q does not change
#2, but transfers g = (a,0,0,a) to (=2) = (1,0,0,1). Thus, we have

o~

Holant (| §, ', F) =1 Holant(#2|=2, Qf", QF).

We denote @f’ by ﬁ Note that @ does not change those entries of f/ that are on half-weighted
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inputs. Thus, for all & with wt(a)) = 3, we have f;(a) = 4\ for some A =1 or i. Also, @ does not
change the parity and irreducibility of f’ Thus ﬁ has odd parity and ﬁ is irreducible. Again, we
may assume that ?ﬁ satisfies 2ND-ORTH and ﬁ € /f@@). Otherwise, we are done.

In the problem Holant(;é2|:2,ﬁ, Q\]?), we can connect two #o on the LHS using =5 on the
RHS, and then we can realize =5 on the LHS. Thus, we can use =2 to merge variables of ﬁ
Therefore, we may further assume f; e[ 0%, ie., &-jﬁ € O® for all pairs of indices {i,7};
otherwise, there exist two variables of ?ﬁ such that by merging these two variables using =5, we
can realize a 4-ary signature that is not in @®, and then by Lemma 6.8 we are done.

Consider the signature 812?; = ﬁ(fg +ﬁ£ and the inner product (f?’(l)g, f/"\’g> Same as Table 2,

we build the following Table 3.

—00 000001 | —-000010 | —000100 | —000111 | —~001000 | —=001011 | —~001101 | —001110
" " " 1 " " " 1 "

J"12 f f f f f f f f

—11 110001 | —110010 | —110100 | —110111 | —=111000 | —=111011 | —111101 | —111110

f'//]-2 f/l fl/ f// f// f/l fl/ fl/ f'//

Do f” t1 to t3 t4 ty t3 2 4
~00 ~11
<f"127 f"12> q1 q2 q3 q4 g4 q3 q2 q1

—00 —11 —~ ~00 ~11
Z¢ 3: Entries of 15, 15, O12f" and pair-wise product terms in (f/15, f/15) on odd-weighed inputs

—-000001 —-110001 —110001
Same as the proof of z; = ty; for Table 2, we have f” =+ f . Since f” =+,

—-000001 —
1 = £, (here & can be either + or F). Consider 0;; f” for all pairs of indices {i,j}. By
symmetry, the same conclusion holds. Thus, for every a € Z§ with wt(a) = 1, ﬁ(a) = A\
Therefore, using ARS, there exists A = 1 or i such that for all a € y(ﬁ), ﬁ(a) = 4, and we have

the reduction

Holant(#2|=2, ﬁ, @\.7?) <r Holant(#2| ]?)

for some @ € 6\2 Clearly, ﬁ = @\f’ where @ = [gﬂ € 6\2, and the nonzero binary signature

(p%,0,0,p2) € O is realizable from oi]]?’ for some {i,7}. O

Finally, we go for the kill in the next lemma. Recall the signature ]?6 defined in (7.1). This

Lord of Intransigence at arity 6 makes its appearance in Lemma, 7.4.
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Lemma 7.4. Suppose that F is a set of real-valued signatures of even arity and F does not satisfy
condition (T). Let F=2Z'F. If]? contains an irreducible 6-ary signature ﬁ where y(ﬁ) = Ug,
and there exists A =1 ori such that for all o € y(jf-ﬁ), ﬁ(a) — ), then Holant(#q|=2, F) is #P-
hard, or fg is realizable from ﬁ and =3, i.e., Holant(#s| fg,]?) <7 Holant(#g\:g,]?). Moreover,

]?6 is realizable by extending variables ofﬁ with binary signatures in B\) i.e., 1?6 € {ﬁ}i

1E8]. Again, we may assume that ?ﬁ satisfies 2ND-ORTH and ﬁ ef O%®. Since =, is available on
the RHS, given any signature f eF , we can extend any variable x; of fwith =€ B using #,.
fi

2

This gives a signature g where §? = and ’g\zl = E) We call this extending gadget construction
the flipping operation on variable x;. Clearly, it does not change the reducibility or irreducibility
of f But it changes the parity of fif fhas parity. Once a signature fis realizable, we can modify
it by flipping some of its variables.

We first show that we can realize a signature F from f; having support . (F) =& ={ac
7§ | wt(a) =0 mod 2}, and F(a) =+1 for all a € Y(F) Remember that =5 is available. If we
connect =9 with an arbitrary variable of ﬁ using #,, we will change the parity of ﬁ from odd to
even. If ﬁ(a) =+lforalla €. (ﬁ), then F can be realized by flipping an arbitrary variable of
}’7. Otherwise, ;‘T/(a) =Ziforalla € Y(?’\’) Consider 512?\’. Look at Table 3. We use x; and y;
(1 < i < 8) to denote entries in Row 1 and 2. As we have showed, x; = +y;. Thus, ¢t; = +2i or 0
for 1 < i < 4. Remember that if t; = 0 (i.e., 7, = —y;), then ¢; = z; -7 = —x; - T = —|m|> = —1.
If t; =0 for all 1 < ¢ < 4, then

00 ~11
(19,8 15) =2(q1 + @2 + @3+ qu) = —4 # 0.

This contradicts with our assumption that ﬁ satisfies 2ND-ORTH. Thus, ¢; (1 < i < 4) are not all
zeros. Then (59?) # 0. Thus, 5”(512?’\’) # () and (512?7’)(04) = +2i for all a € 5”(512?’\’)

Since 512?7 € O? and it has even parity, 512?7 is of the form 2 - (a,0,0,a) ® (b,0,0,b) or
2-(0,a,a,0) ® (0,b,b,0), where the norms of a and b are normalized to 1. In both cases, we have
ab,ab,ab,ab € {i,—i}. Thus, ab-ab = (aa)b®> = b*> = +1. Then, b = £1 or +i. If b = £1, then
a = ab-b = +i. Similarly, if b = +i, then a = ab-b = 1. Thus, among a and b, exactly one is
+i. Thus, by factorization we can realize the binary signature g = (i,0,0, —i) or (0,1, —i,0) up to a

scalar —1. Connecting an arbitrary variable of J?With a variable of g, we can get a signature which
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has parity and all its nonzero entries have value 1. If the resulting signature has even parity, then
we get the desired ;‘": If it has odd parity, then we can flip one of its variables to change the parity.
Thus, we can realize a signature F by extending variables of ﬁ with binary signatures in B® such
that Y(F) = &6, and F(a) ==+1forall o € Y(?:)

Consider the following 16 entries of F In Table 4, we list 16 entries of F with zi12023 =
000,011,101,110 as the row index and x4zs5x6 = 000,011,101,110 as the column index. We also
view these 16 entries in Table 4 as a 4-by-4 matrix denoted by M, (?:), and we call it the representa-
tive matrix of ?: Note that for any a € 5”(?:) such that the entry }:(a) does not appear in M, (F),
};(@) appears in MT(F) Since F(a) ==+1€eR, ?:(oz) = ﬁ(a). By ARs, F(a) = F(a) = F(a).

Thus, the 16 entries of the matrix M, (?:) listed in Table 4 gives a complete account for all the 32

nonzero entries of f*.

C1 T3 z4x526 | 000 (Col 1) | 011 (Col 2) | 101 (Col 3) | 110 (Col 4)
000 (Row 1) FOOOOOO }:000011 FOOOIOI Fooouo
011 (Row 2) FO“OOO FUHUH },:011101 Fonuo
101 (Row 3) F101000 Flomll F101101 anm
110 (Row 4) }\*110000 FHOOH ?:110101 Fnono

7 4: Representative entries of F

We use (mij);{jzl to denote the 16 entries of M, (F) We claim that any two rows of M, (F) are
orthogonal; this follows from the fact that ﬁ satisfies 2ND-ORTH and ARS. For example, consider

— ~00 ~11 =
the first two rows of M, (f*). By 2ND-ORTH, the inner product (f*y3, f*95) for the real-valued f* is

Z ?\*1100:1:4:%:1:6?;3:11114335:% _ 0’
(z1,24,25,76)ELS
where the sum has 8 nonzero product terms. The first 4 terms given by z; = 0 are the pairwise
products mq;ma;, for 1 < j < 4. The second 4 terms are, by ARS, the pairwise products maojma;

in the reversal order of 1 < j < 4, where we exchange row 1 with row 2 on the account of flipping

the summation index z; from 0 to 1, and simultaneously flipping both 2 and x3. This shows that



135

—

Zj’:l my;maj = 0. Similarly any two columns of M, (f*) are orthogonal.

~00 ~11
Also, we consider the inner product (f*,,,f*;,) = 0. It is computed using the following 16

—

entries in M, (f*), listed in Table 5.

FOOOOOO ?:000011 FOIOOIO FOIOOOI FOOIOIO ﬁOOlOOl FOHOOO FOIIOH

= mi1 = m12 = m33 = N34 = 143 = Myy = m2a1 = mM22

/:100100 FIOOIH ?;110110 ?;110101 }:101110 FIOHOI FHHOO /:111111

= ma2 = m21 = Myq = M43 = M34 = m33 = mi2 = mi1
~00 ~11

2 5: Pair-wise product terms in (f*;,, f*1,) on even-weighed inputs

Let Mr(ﬁ)[l’g] be the 2-by-2 submatrix of M, (F) by picking the first two rows and the first
two columns, and MT(F>[3,4} be the 2-by-2 submatrix of M, (F) by picking the last two rows and

the last two columns. Indeed,

~00 ~11 — —

(£14, F14) = 2(perm (M, (f*)p1,2)) + perm (M, (f*)(3.4)))

= 2(mi1maz + miama1 + m33maq + msamasz) = 0.

Then, we show that by renaming or flipping variables of ?:, we may modify F to realize a
signature whose representative matrix is obtained by performing row permutation, column permu-
tation, or matrix transpose on MT(F) First, if we exchange the names of variables (z1,z2,3)
with variables (x4, x5, %), then the representative matrix MT(F) will be transposed. Next, con-
sider the group & of permutations on the rows {1,2,3,4} effected by any sequence of operations
of renaming and flipping variables in {z1,z2,z3}. By renaming variables in {x1,z9,z3}, we can
switch any two rows among Row 2, 3 and 4. Thus S5 on {2,3,4} is contained in &. Also, if
we flip both variables zo and x3 of F, then for the realized signature, its representative matrix
can be obtained by switching both the pair Row 1 and Row 2, and the pair Row 3 and Row 4
of MT(?:) Thus, the permutation (12)(34) € &. It follows that & = S4. Thus, by renaming or
flipping variables of F, we can permute any two rows or any two columns of MT(F), or transpose
MT(F) For the resulting signature, we may assume that its representative matrix A also satisfy
perm(A(; ) + perm(Aj3 4) = 0, and any two rows of A are orthogonal and any two columns of A

are orthogonal. Otherwise, we get #P-hardness. In the following, without loss of generality, we
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may modify MT(F) by permuting any two rows or any two columns, or taking transpose. We show
that it will give Mr(fg), after a normalization by +1. In other words, f@ is realizable from F by
renaming or flipping variables, up to a normalization by +1.

Consider any two rows, Row ¢ and Row j, of M, (?:) Recall that every entry of MT(F) is +1.
We say that Row ¢ and Row j differ in Column k if m;, # mjj, which implies that m;, = —myj;
otherwise, they are equal m;; = mj. In the former case, m;; - mj, = —1, and in the latter case
m; - mjr = 1. Since Row ¢ and Row j are orthogonal, they differ in exactly two columns and are
equal in the other two columns. Similarly, for any two columns of MT(F), they differ in exactly
two rows and are equal in the other two rows. Depending on the number of —1 entries in each row

—

and column of M, (f*), we consider the following two cases.

o Every row and column of M, (F) has an odd number of —1 entries.

Consider Row 1. It has either exactly three —1 entries or exactly one —1 entry. If it has three
—1 entries, then we modify M, (F) by multiplying the matrix with —1. This does not change
the parity of the number of —1 entries in each row and each column. By such a modification,
Row 1 has exactly one —1 entry. By permuting columns, we may assume that Row 1 is

(—=1,1,1,1). Consider the number of —1 entries in Rows 2, 3 and 4.

— If they all have exactly one —1 entry, by orthogonality, the unique column locations of
the —1 entry in each row must be pairwise distinct. Then, by possibly permuting rows

2, 3 and 4 we may assume that the matrix MT(}’:) has the following form

Mr(f*) -

— —

Then, perm(M,(f*)1,2]) + perm(M;(f*)34) = 2+ 2 = 4 # 0. Contradiction.

— Otherwise, among Rows 2, 3 and 4, there is one that has three —1 entries. By per-
muting rows, we may assume that Row 2 has three —1 entries. Since Row 2 and Row

1 differ in two columns, the only +1 entry in Row 2 is not in Column 1. By possibly
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permuting Columns 2, 3 and 4, without loss of generality, we may assume that Row 2
is (—1,1,—1,—1). Then, we consider Column 3 and Column 4. Since every column has
an odd number of —1 entries and mq3 = 1 and mog = —1, we have mg3 = mys, both
+1 or —1. Similarly, ms34 = mgq. Also, since Column 3 and Column 4 differ in exactly
two rows, and mi3 = my4 and me3 = moy4, we have ms3 = —msg4 and my3 = —Mmyy.
Thus, MT(?\*)[3,4] = +[7Z1]. In both cases, we have perm(Mr(F)[LZ]) = —2. No-
tice that Mr(ﬁ)[m} = [Z71]. Thus, perm(MT(?:)[Lg]) + perm(Mr(?:)[gA]) =—4#0.
Contradiction.

e There is a row or a column of MT(F) such that it has an even number of —1 entries. By
transposing Mr(}"\*), we may assume that it is a row, say Row i. For any other Row j, it
differs with Row ¢ in exactly two columns. Thus, Row j also has an even number of —1
entries. If all four rows of M, (F) have exactly two —1 entries, then one can check that there
are two rows such that one row is a scalar (£1) multiple of the other, thus not orthogonal;
this is a contradiction. Thus, there exists a row in which the number of —1 entries is 0 or 4.

By permuting rows, we may assume that it is Row 1. Also, by possibly multiplying M, (f*)
with —1, we may assume that all entries of Row 1 are +1. Thus, Row 1is (1,1,1,1).

By orthogonality, all other rows have exactly two —1 entries. By permuting columns (which
does not change Row 1), we may assume that Row 2 is (—1,—1,1,1). Then, consider Row
3. It also has exactly two —1 entries. Moreover, since Row 2 and Row 3 differ in 2 columns,
among m3; and maz, exactly one is —1. By permuting Column 1 and Column 2 (which does
not change Row 1 and Row 2), we may assume that ms; = —1. Also, among ms3 and msy,
exactly one is —1. By permuting Column 3 and Column 4 (still this will not change Row 1
and Row 2), we may assume that mgz = —1. Thus, Row 3 is (—=1,1, —1,1). Finally, consider

Row 4. It also has two —1 entries. One can easily check that Row 4 has two possible forms,
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(-1,1,1,—-1) or (1,—1,—1,1). If Row 4 is (1,—1,—1,1), then,

1 1 1 1

— -1 -1 1 1
Mr(f*) =

-1 1 -1 1

1 -1 -1 1

—

Thus, perm (M, (f*)nz)) + perm(Mr(F)[M]) = —4 # 0. Contradiction.

Thus, Row 4 is (—1,1,1,—1). Then

(101 1 1)
R I
Mr(f*) =
101 -1 1
-1 11 -1

This gives the desired Mr(f@).

Therefore, ]?6 is realizable from F
Since fﬁ is realized from F by flipping (and permuting) variables, i.e., extending some variables
of ?: with =5 (using #3), we have ﬁ; € {?:}552 Since F is realized from jfw by extending some

variables of ﬁ with signatures in B, we have ?: € {ﬁ}i By Lemma 3.11, we have fg € {ﬁ 52. O

Theorem 7.5. Suppose that F is a set of real-valued signatures of even arity and F does not

satisfy condition (T). Let F=2z1F If]? contains a 6-ary signature fgé @®, then
e Holant(#o| F) is #P-hard, or
e there exists some Q € Oy such that Holant(#5| fo, QF) <7 Holant (| F).

3E8]. By Lemmas 7.1, 7.2 and 7.3, Holant(so| F) is #P-hard, or Holant(#glzg,ﬁ,@f) <7
Holant(#s| F ) for some @ where Q) € 6\2, and some irreducible 6-ary signature ﬁ where . (]?” ) =
&s and there exists A = 1 or i such that for all a € 5”(?;), ﬁ(a) = *+A. Remember that
@J? = é.\}" where Q = Z @Z —1 € 0,y. Clearly, QF is a set of real-valued signatures of even arity.
Since F does not satisfy condition (T), by Lemma 2.37, QF also does not satisfy it. Then, by
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Lemma 7.4, Holant(#2|=2, f;, Q\]/-:) is #P-hard, or Holant(#2| fg, Q\j-:) <7 Holant(#2|=2, }:ﬁ, @\‘7?)
Thus, Holant(#3] ]?) is #P-hard, or Holant(#2| Je, CAQJ?) <7 Holant(#| .7?) O

Remark 7.6. Theorem 7.5 can be more succinctly stated as simply that a reduction
Holant (3| f, QF) <7 Holant (5| F)

exists, because when Holant (4] F ) is #P-hard, the reduction exists trivially. However in keeping

with the cadence of the other lemmas and theorems in this subsection, we list them as two cases.

Now, we want to show that Holant(#s| fG, @\.7? ) is #P-hard for all @ € (/)\2 and all 7 where
F = ZF is a real-valued signature set that does not satisfy condition (T). If so, then we are done.
Recall that for all @ € (/)\2, @.7? = C/Q‘\F for some @Q € Osy. Moreover, for all ) € O,, and all
real-valued F that does not satisfy condition (T), QF is also a real-valued signature set that does
not satisfy condition (T). Thus, it suffices for us to show that Holant(#s| fs, F) is #P-hard for all

real-valued F that does not satisfy condition (T).

7.2 #P-Hardness Conditions and Two Properties of ]/‘”\6

In this section, we give three conditions (Lemmas 7.7, 7.9 and 7.10) which can quite straight-
forwardly lead to the #P-hardness of Holant(#3] J/%, F ). We will extract two properties from fﬁ,
the non-B hardness (Definition 7.8) and the realizability of B (Lemma 7.13). Later, we will prove

the #P-hardness of Holant(#s| ]?6, F ) based on these two properties.

Lemma 7.7. Suppose that F is a set of real-valued signatures of even arity and F does not
satisfy condition (T). Let F=2z1F. If]? contains a nonzero binary signature b ¢ l§®, then
Holant(#2| fg,f) is #P-hard.

JERR. IE D ¢ (’3®, then by Lemma 6.7, we are done. Otherwise, be 02, Thus, b= (a,0,0,a) or
b= (0,a,a,0). Since b # 0, a # 0. We normalize the norm of a to 1. Since b ¢ l§®, a # £1 or +i.
We first consider the case that /b\(yl,yg) = (0,a,a,0). Connecting variables x; and xy of J/C\G with

variables yo and y; of b using #9, we get a 4-ary signature g. We list the truth table of g indexed
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by the assignments of variables (z3, 24, x5, 26) from 0000 to 1111.
g=(0,a+a,-a+a,0,a-a0,0,—-a—a,—a—a,0,0,—a+a,0,a—a,a+a,o0).

Since a has norm 1, and a # +£1 or +i, |ata| # 0. Thus, |.7(g)| = 8. Clearly, every 4-ary signature
that is in O® has support of size 0 or 4. Thus, g ¢ 0%, By Lemma 6.8, Holant(#| fﬁ,]?) is #P-
hard. We prove the case ?)\(yl, y2) = (a,0,0,a) similarly. By connecting variables 21 and 2 of fg
with variables y; and ys of b using #,, we also get a 4-ary signature that is not in O%. The lemma

is proved. ]

Definition 7.8. We say a signature set F is non-B hard, if for any nonzero binary signature
b ¢ 1§®, the problem Holant(#s| E, ]?) is #P-hard. Correspondingly, we say that a signature set F

is non-B hard, if for any nonzero binary signature b ¢ B, the problem Holant(b, F) is #P-hard.

Clearly, Lemma 7.7 says that {fﬁ} U F is non-B hard for any F (where F = ZF is a real-
valued signature set that does not satisfy condition (T)). Before we give the other two #P-hardness
conditions, we first explain why we introduce the notion of non-B hardness. We will extract two
properties from f6 to prove the #P-hardness of Holant (%3] fﬁ, F ). These are the non-B hardness
and the realizability of B. From Lemma 7.13* we get the redutcion Holant(#;] ]?G,Z? U .7?) <
Holant(#| fo, F ). We will show that for any non-B hard set 7 where F does not satisfy condition
(T), Holant (5| BU F) is #P-hard (Theorem 7.38). This directly implies that Holant (o] fe, F)is
#P-hard when F does not satisfy condition (T). This slightly more general Theorem 7.38 will also
be used when dealing with signatures of arity 8. Now, let us continue to give two more #P-hardness

conditions without assuming the availability of B (Lemma 7.9 and 7.10).

Lemma 7.9. Suppose that F is a set of real-valued signatures of even arity and F does not satisfy
condition (T). Let F=ZF. If]? is mon-B hard and F contains a nonzero 4-ary signature
f ¢ B%, then Holant(s| F) is #P-hard.

JERR. If f ¢ @®, then by Lemma 6.8, we are done. Otherwise, f =5 ® bAg, where the binary
signatures Z;\l, by € OP. Since fgé [/3\®, by and by are not both in B%. Then, we can realize a binary

signature that is not in B® by factorization. Since F is non-B hard, we are done. 0

*This lemma and the following Theorem 7.38 are stated and proved in the setting of Holant(F).
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- (A+4i) 0 . o~ PN
Let H = L[4 1]. Then Al = 27'HZ = [ v (_)] - [e";/“ 6,3,/4}  Let fI = Hfs. Let
V2

j:\(s = {%}52 be the set of signature realizable by extending variables of fﬁ with binary signatures

in B using #2, and F = {f }52 be the set of signature realizable by extending variables of fH

with binary signatures in B using #9. One can check that }'éq = ﬁ[j:\(; #* -7:\6-

Lemma 7.10. Suppose that F is a set of real-valued signatures of even arity and F does not
satisfy condition (T). Let F=Zz1F If F is non-B hard and F contains a nonzero 6-ary
signature f ¢ B® U Fe UFH, then Holant(#s| F) is #P-hard.

JERR. If fis reducible, since fgé B\®, then by factorization, we can realize a nonzero signature of
odd arity or a nonzero signature of arity 2 or 4 that is not in B®. If we have a nonzero signature
of odd arity, then we are done by Theorem 5.35. If we have a nonzero signature of 2, then we
are done because F is non-B hard. If we have a nonzero signature of 4, then we are done by
Lemma 7.9. Now we assume that fis irreducible. In particular, being irreducible, fgé O®. For a
contradiction, suppose that Holant(#2| F ) is not #P-hard. Then, by Theorem 7.5, fﬁ is realizable
from ]? Remember that we realize ]?6 from fby realizing ]/C\’, ﬁ and F (Lemmas 7.1, 7.3 and 7.4).
We will trace back this process and show that they are all in .7:\6 U .7-'6? , which contradicts with the
condition that fgé FeU }GE.

1. First, by Lemma 7.4, fg € {ﬁ}i Then, by Lemma 3.11, ﬁ € {J?G}ljéz =T

2. Then, by Lemma 7.3, ﬁ = @f’ for some @ = [egé 595} € (/)\2 where 0 < § < 7/2, and the
binary signature b= (€1%2,0,0, e7'?9) is realizable from f/ where ]?’ is realizable from f Thus,
b is realizable from F. If €29 # 41 or +i, then b ¢ B®. Since F is non-B hard, we get
#P-harness. Contradiction. Otherwise, since 0 < § < 7/2, €2 = 1 or i and then, § = 0 or
7/4. If § = 0, then € = ¢ = 1 and ;‘7’ = @]?’ = f’ Thus, j/’\’ € j—'\ﬁ. If 6 = w/4, then

= Q71 f" where Q! = [emﬂ 0 } = H. Since f" € Fy, f' = Hf" € HFg = Fi.

0 e*'lﬂ'/4

3. Finally, by Lemma 7.1, f’ is realized by extending variables of fwith nonzero binary signa-
tures realized from 511]?. If we can realize a nonzero binary signature that is not in B®! from
512fby factorization, then since F is non-B hard, we get #P-hardness. Contradiction. Thus,

we may assume that all nonzero binary signatures realizable from 015 f are in B®!. Then, f’ is
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realized by extending variables of f with nonzero binary signatures in B%!. Thus, f' € {]?}l§ -

By Lemma 3.11, f € {f’}% Since f' € T or FH, fe T or FH. Contradiction.
Thus, Holant(#| F) is #P-hard if F contains a nonzero 6-ary signature fgé B® U FsU Fil. O

We go back to real-valued Holant problems under the Z-transformation. Consider the problem

Holant( fs, F) where

~

_ _ r1+xotx3ztxr1x0tror3+Tr13+T1T4+2205+20327
fG—ZfG—XS'(_l)l 2TX3 1222223 123 124 TX2X5TX3T6

and S = %(fs) = &. The signature fg has a quite similar matrix form to j/%.

0 1 -1 0 -1 0 0 1

0O -1 1 0O -1 0 0 1

-1 0 0O -1 0 1 1 0
Mi23.456(f6) =

0O -1 -1 0 1 0 0 1

o0 -1 -1 0 -1 0 0 -1

Since ]?6\ = Hfs = ]?76, i = ZJTG\ = Hfs. Also, since Fg = {fg}i, Fo = ZF = {f6}E,
is the set of signatures realizable by extending variables of fg with binary signatures in B using
=9. Similarly, since ]?g = {f/’é\{}i, Fil = Z;g\{ = {f6}B, is the set of signatures realizable by
extending variables of f# with binary signatures in B using =5. Notice that fs € o/ and B C /.
Thus, F¢ C «. Also, the binary signature (1,1, —1,1) with a signature matrix H is in /. Thus,
fi € o and then FlI C o/. Also, #(fs) = & and one can check that .7 (f#) = 0. Thus, for
every f € Fe UFH, Z(f) = & or Og. Since fg and f& satisfy 2ND-ORTH, one can easily check
that every f € FgU féq satisfies 2ND-ORTH.

We want to show that Holant(fs, F) =7 Holant(#2| fo, F ) is #P-hard for all real-valued F
that does not satisfy condition (T). By Lemma 7.7, { f¢} UF is non-B hard. We restate Lemmas 7.9
and 7.10 in the setting of Holant(F) for non-B hard F.
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Corollary 7.11. Suppose that F is a set of real-valued signatures of even arity, F does not satisfy
condition (T), and F is non-B hard. Then, Holant(F) is #P-hard if F contains a nonzero signature
[ of arity at most 6 where f ¢ B® U F U FL.

Remark 7.12. Notice that B U Fs U FH C o/. Thus, for any non-B hard set F, Holant(F) is

#P-hard if F contains a nonzero signature f of arity at most 6 where f ¢ <f .
Now, we show that all four binary signatures in B are realizable from fg.
Lemma 7.13. Holant(B, fs, F) < Holant(fs, F).

1£8f. Consider 012 fg. Notice that

£629 1 00101 1 00 1 —-10-100 1
fols 100101 -100-1-10 -100 -1

Thus, d12 fs(x3, T4, T5, T6) = fel9+ feis has the truth table (0,0,0,1,0,1,0,0,0,0,—1,0,—1,0,0,0).
In other WOI‘dS, 812f6(0011) = 1, 812f6(0101) == 1, 812f6(1010) == —1, 812f6(1100) = —1, and
012 f¢ = 0 elsewhere. Then,

S (Oafe) = { (w3, 74,75, 76) € Z3 | 73 # m6 A T4 # 75},

and

2 fe(x3, 24, 75, 76) = (F3 ) (73, T6) ® (F2)(4, T5).

Thus, by factorization we can realize #, and #,. Then connecting a variable of #, with a variable

of #9 (using =2), we will get =5 . Thus, B is realizable from f. O

We define the problem Holant?(F) to be Holant(BUF). For all {4, j} and every b € B, consider
signatures afj fe (ie., 8; fe, 8;5- fe, 0;; f6 and (9; fe) realized by merging variables z; and x; of fg
using the binary signature b. If there were one that is not in B%2, then by Corollary 7.11, we would

be done. However, fg satisfies the following Bell property.

Definition 7.14 (Bell property). An irreducible signature f satisfies the Bell property if for all
pairs of indices {i,7} and every b € B, Ql-’jf € B®. (Here, 0% denotes the merging gadget using b.)
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It can be directly checked that
Lemma 7.15. FEvery signature in Fg U Féq satisfies the Bell property.

Now consider all possible gadget constructions. If we could realize a signature of arity at most
6 that is not in B® U Fg U .Féq from B and fg by any possible gadget, then by Corollary 7.11 there
would be a somewhat more straightforward proof to our dichotomy theorem for the case of arity 6.
However, after many failed attempts, we believe there is a more intrinsic reason why this approach
cannot work. The following conjecture formulates this difficulty. This truly makes fg the Lord of

Intransigence at arity 6.

Conjecture 7.16. All nonzero signatures of arity at most 6 realizable from BU{ f} are in B®UFg.

Also, all signatures of arity at most 6 realizable from B U {féq} are in B U féq.

So to prove the #P-hardness of Holantb( fe,F), we have to make additional use of F. In

particular, we need to use a non-affine signature in F.

7.3 #P-Hardness of Holant’(F)

In this section, we prove that for all real-valued non-B hard set F that does not satisfy condition
(T), Holant’(F) is #P-hard (Theorem 7.38). For any real-valued set F that does not satisfy
condition (T), the set {fs} U F is non-B hard, and since B is realizable from fs, Holant(fs, F) is
#P-hard by Theorem 7.38. Combining with Theorem 7.5, we show that Holant(#¢] F ) is #P-hard
if 7 contains a 6-ary signature that is not in O® (Lemma 7.40).

Since F does not satisfy condition (T), F ¢ /. Thus, it contains a signature f of arity 2n
that is not in /. In the following, we will prove the #P-hardness of Holant?(F) where F is non-B
hard by induction on 2n > 2. For the base cases 2n < 6, by Corollary 7.11 and the Remark after
that, Holantb(}" ) is #P-hard. Then, starting with a signature of arity 2n > 8 that is not in <7,
we want to realize a signature of lower arity 2k < 2n — 2 that is also not in .7, or else we get
#P-hardness directly. If we can reduce the arity down to at most 6, then we are done.

Let f ¢ </ be a nonzero signature of arity 2n > 8. We first show that if f does not have
parity, then we get #P-hardness (Lemma 7.17). Then, suppose that f has parity. If f is reducible,

since f has even arity (as we assumed so starting from Chapter 6), it is a tensor product of two
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signatures of odd arity, or a tensor product of two signatures of even arity which are not both in
o since f ¢ «/. Thus, by factorization, we can realize a nonzero signature of odd arity and we
get #P-hardness by Theorem 5.35, or we can realize a signature of lower even arity that is not
in «/. Thus, we may assume that f is irreducible. Then by Lemma 6.6 and the Remark after
Definition 3.20 we may assume f satisfies 2ND-ORTH.

Consider signatures afj f (ie., 8;;- [y 051, 6;5. f and 8; f) realized by merging variables x; and
xzj of f using b € B for all pairs of indices {i,j} and every b € B. If there is one signature
that is not in &7, then we have realized a signature of arity 2n — 2 that is not in /. Otherwise,
afjf € o for all {i,j} and every b € B. We denote this property by f € fB &/. Now, assuming
that f has parity, f satisfies 2ND-ORTH and [ € fB o/, we would like to reach a contradiction by
showing that this would force f itself to belong to /. However, quite amazingly, there do exist
non-affine signatures that satisfy these stringent conditions. We will show how they are discovered
and handled (Lemmas 7.27, 7.35 and 7.37).

In this section, all signatures are real-valued. When we say an entry of a signature has norm
a, we mean it takes value +a. Since B is available in Holant®(F), if a signature f is realizable in
Holant®(F), then we can realize all signatures in {f }52 that are realizable by extending f with
B®! (using =5). If we extend the variable x; of f with #5, then we will get a signature g where
g? = fi1 and 91'1 = fi0 . This is a flipping operation on the variable z;. If we extend the variable x;
of f with =5, then we will get a signature g where g? = fi0 and gi1 =— fil. We call this a negating
operation on the variable z;. In the following, once f is realizable in Holantb(}" ), we may modify

it by flipping or negating. This will not change the complexity of the problem.

7.3.1 Parity Condition

We first show that if F contains a signature that does not have parity, then we can get #P-

hardness.

Lemma 7.17. Suppose that F is a set of real-valued signatures of even arity, F does not satisfy
condition ('T), F is non-B hard and F contains a signature f of arity 2n. If f does not have parity,
then Holant®(F) is #P-hard.

1E8]. We prove this lemma by induction on 2n. We first consider the base case that 2n = 2. Since
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f has no parity, f ¢ B. Since F is non-B hard, Holantb(}" ) is #P-hard.

Now, suppose that Holantb(}' ) is #P-hard when 2n = 2k > 2. Consider the case that 2n =
2k 4+ 2 > 4. We will show that we can realize a signature g of arity 2k with no parity from f, i.e.,
Holant®(g, ) <7 Holant’(F). Then by the induction hypothesis, we have Holant®(F) is #P-hard
when 2n = 2k + 2.

Since f has no parity, f Z 0. It has at least a nonzero entry. By flipping variables of f, we
may assume that f((_]?") = 2 # 0. We denote 02 by a = 0008 where § = 02*~3. Since f has no
parity and f(0%") # 0, there exists an input o/ with wt(a/) =1 (mod 2) such that f(a/) = 2’ # 0.
Since 2n > 4, we can find three bits of o’ such that on these three bits, the values of o’ are the
same. By renaming variables of f which gives a permutation of o, without loss of generality, we
may assume that these are the first three bits, i.e, o) = oy = of.

We first consider the case that ojahal = 000. Then, o/ = 000" for some & € Z3"~* where

wt(0’) = wt(0000") = wt(a) =1 (mod 2). We consider the following six entries of f.

x = f(0005),z" = £(0008"),y = f(0118),y" = f(0115"), 2z = f(1015), 2" = f(1015").

Consider signatures 8;3 f and 0,3 f realized by connecting variables xo and x3 of f using :;

and =5 respectively. Clearly, 055 f and 9,3 f have arity 2n — 2. If one of them has no parity, then
we are done. Thus, we may assume that 8;}) f and Oy f both have parity. Note that z 4y and
x' + 1/ are entries of the signature 8;3 f on inputs 06 and 00’ respectively. Clearly, wt(0) = 0 and
wt(06') = 1 (mod 2). Since 05 f has parity, at least one of z +y and 2’ + ¢/ is zero. Thus, we have
(x +y)(@ +vy') =0. Also, note that x — y and 2’ — ¢/ are entries of the signature d,3f on inputs

06 and 06" respectively. Then, since 0,3 f has parity, similarly we have (z — y)(2’ —y') = 0. Thus,
(@+y)@ +y) + (@ —y)(@ —y) =202’ +yy') = 0. (7.8)

Consider signatures 8f3 f and O3 f realized by connecting variables x; and x3 of f using =2
and =, respectively. Again if one of them has no parity, then we are done. Suppose that 8?}) f and

dy3f both have parity. Then, (z + z)(2’ + 2’) = 0 since z + z and 2/ + 2’ are entries of )5 f on
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inputs 0§ and 00’ respectively. Similarly, (x — z)(2’ — 2’) = 0. Thus,
(x+2) (@' + )+ (z—2)(2 —2') =2(x2’ + 22) = 0. (7.9)

Consider signatures 8;72 f and 81:2 f realized by connecting variables z1 and x9 of f using #o
and #, respectively. Again if one of them has no parity, then we are done. Suppose that 852 f and
81:2 f both have parity. Then, (y+2)(y'+2’) = 0 since y+ 2z and 3/ + 2’ are entries of 6% f on inputs
16 and 14" respectively, and wt(16) = 1 and wt(16’) = 0(mod2). Similarly, (y — 2)(y' — 2’) = 0.
Thus,

(+2)y +2)+(y—2) =) =2(yy +22) =0. (7.10)

Then, consider (7.8) + (7.9) — (7.10). We have za’ = 0. However, since z = f(0?") # 0 and
' = f(a) #0, z2’ # 0. Contradiction.
For the case that ofahal = 111, we have o/ = 1118’ for some & € Z3"* where wt(§') =

wt(1118") — 3 = wt(a/) =3 =0 (mod 2). We consider the following six entries of f.
z = £(0000),2' = f(1118'),y = F(0116), 4 = f(1008"), 2 = f(1015), 2" = f(0104").

We still consider signatures 8;3 [y 05 f, 8;% , 0131, 8;72 f and 81:2 f and suppose that they all have
parity. Then, similar to the above proof of the case ofabaly = 000, we can show that xzz’ = 0.
Contradiction.

Thus, among 8;3 [y 05 f, 81+3 , 0131, 8112 f and 81:2 f, at least one does not have parity. Thus,

we realized a 2k-ary signature with no parity. By our induction hypothesis, we are done. O

7.3.2 Norm Condition

Under the assumptions that f has parity, f satisfies 2ND-ORTH and f € fB &/, we consider
whether all nonzero entries of f have the same norm. In Lemma 7.27, we will show that the answer
is yes, but only for signatures of arity 2n > 10 (this lemma does not require F to be non-B hard).
For a signature f of arity 2n = 8, we show that either all nonzero entries of f have the same

norm, or one of the following signatures gg or g is realizable. These two signatures are defined by
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gs = Xxs —4- fs and gg = gs — 4 - fs, where

S = y(QS) = &3, qs = Xg(—1)21<i<j<8 ZiTj and

fs=Xxr WithT:y(fs):{(I1,5€27~-~,1178)623| 1 +x2+w3+24=0, 5 +26 +27 +28 =0,

1+ x2+ 25 +26 =0, $1+I3+$5+1‘7=O}.
(7.11)

It is here the function fg makes its first appearance, we dub it the Queen of the Night. Clearly,
gs, gs ¢ < since their nonzero entries have two different norms 1 and 3. One can check that gg and
gs have parity, gg and gg satisfy 2ND-ORTH and gg, g5 € [z 7. Thus, one cannot get a non-affine
signature by connecting two variables of gg or g using signatures in B. However, fortunately by
merging two arbitrary variables of gg using =2 and two arbitrary variables of ¢g§ using =5, we can
get 6-ary irreducible signatures that do not satisfy 2ND-ORTH. Thus, we get #P-hardness.

The following Lemma 7.21 regarding the independence number of a family of special graphs is

at the heart of the discovery of the signature gg. It should be of independent interest.

Definition 7.18. Define the graphs G, and Hay, as follows. The vertex set V(Gay,) is the set &y,
of all even weighted points in Z3". The vertex set V(Hay) is the set Oy, of all odd weighted points

in Z3". Two points u,v € &y, (or Oay,) are connected by an edge iff wt(u @ v) = 2.

Let a(Gay) be the independence number of Gy, i.e, the size of a maximum independent set of
Gon, and «a(Hy,) be the independence number of Hy,. Let S C [2n]. We define ¢ be a mapping
that flips the values on bits in S for all u € &,. In other words, suppose that v’ = ¢g(u). Then,
w, =1; if i € S and u, = u; if ¢ ¢ S where u; and wu; are values of v and u on bit ¢ respectively.
For all S, clearly wt(u @ v) = 2 iff wt(ps(u) ® ¢g(v)) = 2. When |S| is odd, ps(&a,) = Oap.
One can easily check that ¢g gives an isomorphism between Gs, and Hs,. When |S| is even,
vs(Ean) = . Then, pg gives an automorphism of Ga,. Also, by permuting these 2n bits, we
can get an automorphism of Go,. In fact, the automorphism group of Go, is generated by these

operations.

Lemma 7.19. Let2n > 6. Every automorphism 1y of Goy, is a product ggom for some automorphism
7w induced by a permutation of 2n bits, and an automorphism pg given by flipping the values on

some bits in a set S of even cardinality.
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FER. Let ¢ be an arbitrary automorphism of Ga,. Suppose 1/(02") = u. Let S C [2n] be the
index set where u; = 1. Then |S| = wt(u) is even, and ¢/ = pg o ¢ fixes 02*. Consider (v) for
all v € &, of wt(v) = 2. Since ¢/ is an automorphism fixing 02", ¢/(v) has weight 2. We denote
by e;; the 2n-bit string with wt(e;;) = 2 having 1’s on bits ¢ and j, for 1 < i < j < 2n. Then,
el = 110272, By a suitable permutation 7 of the variables, we have 7 o ¢)/(e12) = e12, while still
fixing 0%". We will show that 7 o ¢/ = 7 0 ¢g o 1 is the identity mapping, i.e., 7o ¢g 01 = 1, -
Then, ¢ = <p§1 o7 1. We are done.

For simplicity of notations, we reuse 1 to denote 7 o ¢’ in the following and we show that
Y = lg,,. Consider ey;, for 3 < ¢ < 2n. Note that 1(e1;) is some es and must have Hamming
distance 2 to ejo. It is easy to see that the only possibilities are s € {1,2} and ¢ > 2, i.e., from ej9
we flip exactly one bit in {1,2} and another bit in {3,...,2n}. Suppose there are i # i’ (i,i’ > 3)
such that ¢(e1;) = eyr and P(e1) = egp. Since wt(ey; @ e1) = 2, we must have t = /. Since
2n > 6, we can pick another ¢ > 3 such that i # i and 7. Then, this leads to a contradiction since
e1;» must either be mapped to ey, if ¥ (eq7) = ey, or be mapped to ey if 1 (ey;7) = egpr; neither
is possible. Thus either 1 (ey;) is some ey, for all 3 < i > 2n, or is some ey for all 3 <4 > 2n. By
a permutation of {1,2} (which maintains the property that 1 fixes 0> and e;3) we may assume it
is the former. Then the mapping i — ¢ given by 1 (ey;) = ey for 3 < i > 2n defines a permutation
of the variables for 3 < i > 2n (which again maintains the property that 1 fixes 02" and €12)
and, after a permutation of the variables we may now assume that 1 fixes 02" and all e;;. For
any 1 <14 < j < 2n, we have wt(¢(e;;)) = 2 and 9 (e;;) has distance 2 from both 1 (e1;) = eq;
and 1(e1;) = e1j. Then (e;;) must be obtained from ey; by flipping exactly one bit in {1,:} and
another bit out of {1,7}. However, it cannot flip bit ¢ which would result in some ej; for some
t > 2, because v already fixed eq;. Thus, it flips bit 1 but not bit ¢. Similarly in view of ey, we
must flip bit 1 but not bit j. Hence v(e;;) = e;;, and therefore v fixes all v with Hamming weight
wt(v) < 2.

Inductively assume v fixes all v of wt(v) < 2k, for some k > 1. If £ < n we prove that ¢
also fixes all v of wt(v) = 2k + 2. For notational simplicity we may assume v = 12k+2(2n—2k=2 Ag
2k + 2 > 4, we can choose u = 1280002"~2=2 and w = 0012%0?"~2k=2 and the two 00 in u and w
among the first 2k + 2 bits are in disjoint bit positions. Clearly wt(¢(v)) > 2k + 2 since all strings

of wt < 2k are fixed. Also since ¢ (v) has Hamming distance 2 from ¢ (u) = w and ¥ (w) = w, it has
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weight exactly 2k + 2, and is obtained from u by flipping two bits from 00 to 11 in positions > 2k,
as well as obtained from w by flipping two bits from 00 to 11 in positions in {1,2}U{t | t > 2k +2}.
In particular, it is 1 in positions 1 to 2k (in view of u), and it is also 1 in positions 3 to 2k + 2. But
together these positions cover all bits 1 to 2k + 2. Thus ¥ (v) = v. This completes the induction,

and proves the lemma for all 2n > 6. ]

Remark 7.20. The condition 2n > 6 in Lemma 7.19 is necessary. Here is a counter example
for 2n = 4: 4 fizes 0000 and 1111, and it maps o to @ for all a € {0,1}* with wt(a) = 2.
If ¢ were to be expressible as g o m, then since 1(0000) = 0000, we have S = 0. Then by
1(0011) = 1100 and 1»(0101) = 1010, the permutation T must map variable x1 to x4. However this
violates 1 (1001) = 0110.

Lemma 7.21. Let {Ga,} be the sequence of graphs defined above.

e If2n =238, then a(Gs) = %|é"8| = 2% and the mazimum independent set Ig of Gg is unique up

to an automorphism, where

Iy ={00000000,00001111,00110011,00111100, 01010101, 01011010, 01100110, 01101001,

10010110, 10011001, 10100101, 10101010, 11000011, 11001100, 11110000, 11111111}.

e If2n > 10, then a(Gay) < g|éan| = 2274

1L 8] . We first consider the case 2n = 6. One can check that the following set
Is = {000000,001111,110011,111100}

is an independent set of Gg. Thus, a(Gg) > 4. Next, we show that a(Gg) = 4 and I is the unique
maximum independent set of a(Gg) up to an automorphism.

Let Jg be an maximum independent set of Gg. Clearly, |Jg| > 4. After an automorphism of
Gg by flipping some bits, we may assume that 05 € Js. Then for any u € & with wt(u) = 2,
u ¢ Jg. If 18 € Jg, then for any u € & with wt(u) = 4, u ¢ Js. Thus, Jg is maximal with
|Js| = 2 < 4, a contradiction. Thus, we have 16 ¢ Jg. Then all vertices in Jg, except 0% have

hamming weight 4. After an automorphism by permuting bits (this will not change 0°), we may
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assume that u = 001111 € Js. Consider some other v € Jg with wt(v) = 4. If vjva = 01 or 10,
then wt(vzvgvsvg) = 3. Thus, wt(u & v) = wt(00 B vive) + wt(1111 B vzvgvsve) = 1+ 1 = 2.
Contradiction. The only v € Jg with wt(v) = 4, and v1ve = 00 is v = 001111 = w. Thus, vjve = 11,
i.e., both bits of v are 1 where w is 00. After an automorphism by permuting bits in {3,4,5,6}
(this will not change 0% and u), we may assume that v = 110011 € Js. For any other w € Jg with
wt(w) = 4, we must have wiwe = 11 (by the same proof for the pair (u,v) applied to (u,w)), and
also wzwg = 11 (by the same proof for the pair (u,v) applied to (v, w)). Thus, w = 111100. Then,
Je = {66,u,v,w} = I is maximal. Thus, a(Gg) = 4 and I is the unique maximum independent
set of a(Gg) up to an automorphism.

Consider 2n = 8. One can check that Ig is an independent set of Gs. Thus, a(Gg) > 16. We
use G2 to denote the subgraph of Gg induced by vertices {u € & | ujuz = ab} for (a,b) € Z3.
Clearly, Ggo and Gél are isomorphic to Gg, and Ggl and Géo are isomorphic to Hg. Since Hg is
isomorphic to G, Ggl and Géo are also isomorphic to Gg. Let Jg be a maximum independent set
of Gs. Clearly, |Js| > |Is| = 16. Also, we use J$ to denote the subset {u € Jg | ujus = ab}
for (a,b) € Z2. Similarly, we can define Igb. Since Jg is an independent set of Gg, clearly, for
every (a,b) € Z3, J& is an independent set of GZ°. Since G is isomorphic to Gg and a(Gg) = 4,
thus |J$°| < 4. Then |Jg| < 16. Thus, |Js| = 16, and |J®| = 4 for every (a,b) € Z3. Since the
maximum independent set of GGg is unique up to an automorphism of Gg, which can be extended

to an automorphism of Gg by fixing the first two bits, we may assume that
J20 = 19° = {00000000, 00001111, 00110011, 00111100}

after an automorphism of Gs.

Then, consider ng. We show that for any u € J9!, uz # ug, us # ug and uy # ug. Otherwise,
by switching the pair of bits {3,4} with {5,6} or {7,8} (this will not change J{°), we may assume
that ug = uy. Then wt(ujugusuy) is odd. Since wt(u) is even, wt(usugurug) is odd. Thus, either
us = ug or uy = ug. Still by switching the pair {5,6} with {7,8} (again this will not change
JP), we may assume that us = ug. Then since wt(usugurug) is odd, we have u; # ug. Then,
one can check that there exists some v € Jgo such that vsvavsvg = uszugusug. Since v1 = vy and

up # ug, wt(ujug @ vivy) = 1. Also since v; = vg and uy # ug, wt(uyug @ vyvg) = 1. Thus,
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wt(u @ v) = wt(ujug ® vive) + wt(uyug @ vrvg) = 2. This means that the vertices u and v are
connected in the graph G, a contradiction. Thus, for any u € J9', ug # ua, us # ug and uz # us.
By permuting bit 3 with bit 4, bit 5 with bit 6, and bit 7 with bit 8 (this will not change J{°),
we may assume that 01010101 € Jén. Consider some other w € ng. Since wa;41 # wa;4o for any
i =1,2 or 3, the pair wo;11w2;4+2 = 01 or 10. Among these three pairs, let & denote the number of
pairs that are 01. If £ = 3, then w = 01010101. Contraction. If k = 2, then wt(01010101 & w) = 2.
Contradiction. If £ = 0, then w = 01101010. One can check that {01010101,01101010} is already
a maximal independent set of GI! and it has size 2 < 4. Contradiction. Thus, k¥ = 1. Then, w can

take (i’) possible values. Thus,
JO € 19t = {01010101,01011010,01100110,01101001}.

Since, |JJY =4, Jt = I
Consider some u € J810. Similar to the proof of JJ', we can show that us # w4, us # ug and
uy # ug. Thus, u can take 23 possible values. Moreover, for any 01u’ € J9!, 10u’ ¢ J810. Thus,

there are only four remaining values that u can take. Then,
Ja0 C 13% = {10010110, 10011001, 10100101, 10101010} .

Since |J30 =4, J30 = 130

Finally, consider Jél. We show that for any u € Jél, ug = ug, U5 = ug and uy = ug. Otherwise,
by permuting the pair of bits {3,4} with {5,6} or {7,8} (one can check that this will not change
JQt and J3Y), we may assume that uz # uy. Since wt(u) is even, between wt(usug) and wt(urus),
exactly one is even and the other is odd. By permuting the pair of bits {5,6} with {7,8}, we may
further assume that us # ug and u; = ug. Then, one can check that there exists some v € ng such
that usuqusug = v3v4v5v6. Since u; = ug and vy # ve, Wt(ujug @ vive) = 1. Also since uy = ug
and vy # vg, wt(uyug ® vrvg) = 1. Thus, wt(u ® v) = wt(ujug ® vive) + wt(uzug ® v7vg) = 2.
Contradiction. Thus, for any u € JSH, it can take 23 possible values. Moreover, for any 00u’ € Jgo,

we have 11u/ ¢ Jél. Thus, there are only four remaining values that u can take. Then,

Jat € 13 = {11000011, 11001100, 11110000, 11111111}.



153

Thus, after an automorphism, Jg = Ig. In other words, Ig is the unique maximum independent set
of Gg up to an automorphism.
Now, we consider the case 2n > 10. For every (a,b) € Z3, we define G4 to be the subgraph of

Gay, induced by {u € Ga, | urug = ab}, and it is isomorphic to Ga,,—o. Thus,
a(Gan) < a(G3)) + a(GY)) + a(Gy)) + a(Gyy,) = 4a(Gan-2).-

Then, a(Ga,_2) < 227=2~4 will imply that a(Ga,) < 22*~%. Thus, in order to prove a(Ga,) <
22n=4 for all 2n > 10, it suffices to prove that a(Gig) < 2°7%. For a contradiction, suppose
that a(G1) > 2'97%. Let I be a maximum independent set of Gip. Then, |I| > 25. We define
1% = {u € I | ujuz = ab} for every (a,b) € Zs. Since G is isomorphic to Gs and a(Gg) = 2%,
|19%] < 2% for every (a,b) € Z2. Then, |I| < 4-2* Thus, |I| = 2% and [I?| = 2* for every
(a,b) € Z3. Since the maximum independent set of Gg is unique up to an automorphism of Gg
which can be extended to an automorphism of G1¢ by fixing the first two bits, we may assume that
1 = {00u | u € Ig}.

Consider I°!. Since [1!| # 0, there exists some 01v € I°!. Since wt(v) is odd, among wt(vsvy),
wt(vsvg), wt(vrvg) and wt(vguig), there is an odd number (either one or three) of pairs such that
wt(vei+1v2i42) (1 < i< 4)is odd, i.e., v9;+1 # v2i4+2. In other words, there are exactly three pairs
among vy, Usvg, v7vs and vguig such that the values inside each pair are all equal with each other
or all distinct with each other. By permuting these pairs of bits {3,4}, {5,6}, {7,8} and {9,10}
(this will not change I°°), we may assume that either v3 = vy, v5 = vg, v7 = vg and vy # v,
or v # v4, U5 # Vg, U7 # vg and vg = vy1g. In both cases, one can check that there exists some
00u € 1% such that u; = v; for i € {3,...,8}. Moreover, ug = uyg if vg # v10, and ug # uig if
vg = v19. Then, wt(00u & 01v) = wt(00 & 01) + wt(uguip ® vov1g) = 2. This contradiction proves

that a(G1p) < 21971, and the lemma is proved. O

Remark 7.22. We remark that Is = ./ (fs). Later, we will see that the signature fg, this Queen

of the Night, and its support .7 (fs) have even more extraordinary properties.

We consider a particular gadget construction that will be used in our proof. Let hy be a 4-ary
100 1

signature with signature matrix Mg 34(ha) = Hy = [8 Ty ] . Notice that HyH] = HyHy = 214,
100 —1
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and hy is an affine signature. The following is called an H4 gadget construction on f, denoted by
H4 f- This is the signature obtained by connecting variables x5 and x4 of hy with variables z; and
x; of f using =3, respectively. Note that ; Hy f is not necessarily realizable from f since hs may
not be available. However, we will analyze the structure of f by analyzing Z--“ f. For convenience,
we consider (i, j) = (1,2) and we use f to denote % 15 f- The following results (Lemmas 7.23 and
7.24) about f =15 H1 ¢ hold for all H4f by replacing {1,2} with {7, }. Note that f has the following

signature matrix

ES 199+ £5]  [or]
_ P 01 4 £10 orf
Mo (f) = ~1§ = HyMo(f) = 1? 1(2) = 1:2 :
f12 f(l)Q - f12 812f
1] 5 —fl3]  [9nf]

We give the following relations between f and f
Lemma 7.23. 1. If f has even parity then f also has even parity.
2. Iffe o, then f € o.
3. If M(myaf) = Ay for some real A # 0, then M(m12f~) =2)\I4.
4. If 0L, 12faa12 ) 12f € o, then f%, O3, fi9, fi3 € o
5. For {u,v} disjoint with {1,2} and b€ B, if O, f € o, then O, f € o7 .

1LAf. Since h4 has even parity and hy € o7, the first and second propositions hold.

If M(miaf) = My, then M(miaof) = Mio(/)M(f) = HiMo(f)MY(f)H] = NHJ L HY =
2A14. The third proposition holds.

By the matrix form Mlg(f), the fourth proposition holds.

Since the Hy gadget construction only touches variables x1 and xo of f, it commutes with
merging gadgets on variables other than x; and x. Thus ijf: 5?;./]“ . For all b € B and all {i,5}
disjoint with {1,2}, if E)Z-bj f € o/ where 8% f are signatures realized by connecting variables x; and

x; of f using b, then 8f’jf: (52-6}' € /. The last proposition holds. O

Clearly, if f € [; ./, then FO9 f01 fl0 - fl ¢ o/ Thus, for every (a,b) € Z2, if f& % 0,

then its nonzero entries have the same norm, denoted by ng,. Let ng, = 0 if f12 = 0. We have the
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following results regarding these norms ng.

Lemma 7.24. Let f be an irreducible signature of arity 2n > 6. Suppose that f has even parity,

f satisfies 2ND-ORTH and f € fB;zf

1. For any (a,b), (c,d) € Z3, there exists some k € Z such that ng = \/ikncd #£0, and ngp = Neg
iff |7 (fi5) = [ (Fi5)]-
2. Furthermore, if fOO(OQ” %) £ 0 and ngo > ni1, then V(Nf%) = &yp—o™ and ng, = N1 or

2n11 for every (a,b) € Z3; in particular, ngo = 2n11. Symmetrically, if ]?1121(62"*2) £ 0 and

ngo < ni1, then y(fm) = &2 and ng, = noo or 2ngp for every (a,b) € Z3, and n11 = 2ngo.

JER]. Since f satisfies 2ND-ORTH, M (mj2f) = Ay for some real A # 0. Then, by Lemma 7.23,
M(miaf) = 2MI4 # 0. Thus, [f%[2 = 2\ # 0 for every (a,b) € Z2. Also, since f € Iz, by
Lemma 7.23, for every (a,b) € Z2, ~f2b € /. Thus, .7( ab) is affine and |.7( fzb)| = 2kab for some
integer ky, > 0. Note that

FE31 = iy - |7 (i3)] = ngg, - 2o # 0.

Thus, for any (a,b),(c,d) € Z3, n?, - 2% = n?, . 2k £ 0. Then, ny = ﬁkncd # 0 where
k = keq — kap € Z. Clearly, k = 0 iff |.7( f2)| = 2kab = 2kea = |.7( f2)|

Now we prove the second part of this lemma. We give the proof for the case that ffg(ﬁ%”) #0
and ngy > ni11. The proof of the case that f11(62"_2) # 0 and ngp < m11 is symmetric. We first
show that .¥ (~1121) &5n—2. For a contradiction, suppose that . ( 1) # &ap_o. Since f has even
parity, by Lemma 7.23, f has even parity. Then, f12 also has even parity. Thus, .%( 12) C Eyp—o.
There exists § € &,_s such that 6 ¢ .(fi4). Also, since nyy # 0, fif # 0. Then, .Z(fL1) # 0
and there exists § € &, o such that § € 5”(1121) Then, we can find a pair «, 8 € &,_o where
wt(a @ ) = 2 such that one is in .#(f1}) and the other one is not in .%(f1).

o If wt(ar) # wt(8), then clearly the difference between their Hamming weights is 2 since
wt(a® () = 2. Thus, a and S differ in two bits 4, 7 on which one takes value 00 and the other

takes value 11.

*Here, &p—2 = {(3,...,28) € Z3 | x3 +--- + 25 = 0}. When context is clear, we do not specify the variables of
&on—o and also Oop_o.
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o If wt(a) = wt(5), then they differ in two bits 4, j on which one takes value 01 and the other
takes value 10. Without loss of generality, we assume that o;a; = 01 and 3;8; = 10. They
take the same value on other bits. Since o, 5 € &,—2 and 2n > 6, they have even Hamming
weight and length at least 4. Thus, there is another bit k& such that on this bit, ax = B = 1.
Consider v € &,_2 where 7;7;v; = 000 and v takes the same value as o and 3 on other bits.
Clearly, wt() + 2 = wt(a) = wt(8). If v € 5”(:121), then between o and 3, we pick the one
that is not in .%(f13). Otherwise, we pick the one that is in .%(f13). In both cases, we can
get a pair of inputs in &,_s such that one is in .%(f{1) and the other is not in .%(f14), and

they have Hamming distance 2 as well as different Hamming weights.

Thus, we can always find a pair «, 8 € &a,—2 where wt(a @ ) = 2 and «, 8 differ in two bits
1,7 on which one takes value 00 and the other takes value 11, such that one is in . (~1121) and the
other is not in y(Nllzl) Clearly, {i,j} is disjoint with {1,2}.

Consider signatures 8;;}7 and 8l;f Then, f(11a) + f(118) is an entry of 8;;]?, and f(11a) —
f(llﬁ) is an entry of J;; f. Since between f(lla) and f(llﬂ), exactly one is nonzero and it has

norm nii, we have

[f (1) + f(115)] = |f(11a) = fF(11B)] = n11.

Thus, both 8;§f and 8;? have an entry with norm nq;. Let 6 € &, where 6;0; = 11 and ¢ takes
value 0 on other bits. Then, clearly, f(@zn) + f(é) is an entry of 8;;- f, and f((_)?") - f~(5) is an entry
of J;; f

e« If f(8) # 0, then |f(8)] = ngo since 81, = 00. Since f(02") # 0, |f(0?")| = ngo. Thus,
between f(02")+ f(8) and f(02") — f(), one has norm 2ngo and the other is zero. Therefore,
between 8:;]? and B;f, one signature has an entry with norm 2ngy. Remember that both
8;; f and 85]7 have an entry with norm nj;. Clearly, 2ngg > n11. Thus, between (9;;]7 and
61-; ]?, there is a signature that has two entries with different norms. Clearly, such a signature

is not in /. However, since [ € fB o/, by Lemma 7.23, 8;;-]", ai;fe /. Contradiction.

e If f(6) =0, then |f(02") + f(8)| = |F(0*")] = ngo > n11. Thus, 8;;f~ has two nonzero entries

with different norms ngg and ny1. Then, 8{; feﬁ /. Contradiction.

Thus, . (f11) = &on_o.
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Then, we show that ng, = n11 or 2nq; for any (a,b) € Z3. Clearly, we may assume that (a, b) #
(1,1). For a contradiction, suppose that ng, # ni1 and 2nq;. First, we show that |.%( Nbe)| < 22n—3
and ngp > ny1. Since f has parity, f&b also has parity (either even or odd depending on whether
wt(ab) = 0 or 1). Thus |.7(f%)| < |n_a| = |Oan_a| = 2273, If the equality holds, then ngy = n11
since ngb\Y(}%’)\ = n2,|.Z(f)] and |.Z(fL)| = 2273, Contradiction. Thus, |.7(f%)| < 223
and also ng, > nq1.

Depending on whether ffzb has even parity or odd parity, we can pick a pair of inputs «, 3
with wt(a @ 3) = 2 from &,,_2 or Os, 5 such that exactly one is in .7 (f{%) and the other is not
in .7( be) Suppose that o and 8 differ in bits 4, j. Depending on whether a; = o or a; # a;, we
can connect variables x; and x; of fusing :; and =, , or ;é; and #, . We will get two signatures
8{; fand 8;}: or 85- fand 85]? We consider the case that o; = ;. For the case that o; # o, the
analysis is the same by replacing 8;;- ]7 and 3i;fwith 3;;7 f and O;frespectively.

Consider signatures 8{; f and 823]? Then, f(aba) + f(abﬂ) is an entry of 8;;- f, and f(aba) —
J?(abﬂ) is an entry of G;f Since between o and 3, exactly one is in .7 (f%), between f(aba) and

f(abp), exactly one is nonzero and it has norm ng,. Thus,

|f(aba) + f(abB)| = | f(aba) — f(abB)| = nap.

Both 8{; f and 0;; f have an entry with norm n4p.

Let o/, 8" € 62— where aja; = qjaj, o = aj @ o for some k # 4, j* and o' takes value

0 on other bits, and Bgﬁ; = Bifj, B, = B & B} for the same k # 4,7 and (' takes value 0 on
other bits. Clearly, o/ and 3’ differ in bits 7 and j and they differ in the same way as a and
B. Then, ]?(110/) + f(llﬁ’) is an entry of 8;5]7, and f(llo/) — f(llﬂ’) is an entry of 613]? Since

F(fIH) = &, both f(11a/) and f(118') are nonzero and they have norm ni;. Thus, between

f(11a/) + f(118) and f(11/) — f(115), exactly one is zero and the other has norm 2n;. Thus,
between signatures Bijfand 6;]?, there is a signature that has two entries with different norms 2n1;

o fed.

Y7

and ng. Such a signature is not in /. However, since f € fB </, by Lemma 7.23, 0;; f

Contradiction. Thus, ng, = n11 or 2nyy for any (a,b) € Z3. O

*Since 2n — 2 > 4, such a k exists. Here, aj, = 0 since «; = «; in this case under discussion. For the case that
a; # aj, we have aj, = 1.
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We also give the following results about multilinear polynomials F(x1,...,z,) € Zao[x1, ..., Ty)].
We use d(F') to denote the total degree of F. For {i,j} C {1,...,n} = [n], we use Fl-‘}b €

Zol{z1, ..., zn}\{zi,x;}] to denote the polynomial obtained by setting (x;,z;) = (a,b) in F.

Definition 7.25. Let F(x1,...,x,) € Za[z1,...,xy] be a multilinear polynomial. We say F is a
complete quadratic polynomial if d(F) =2 and for all {1, j} C [n], the quadratic term x;z; appears
in F. We say F is a complete cubic polynomial if d(F') = 3 and for all {i,j,k} C [n], the cubic

term x;xjx), appears in F.
Lemma 7.26. Let F(x1,...,x,) € Zo[x1,...,2,] be a multilinear polynomial.

1. If for all {i,j} C [n], Fig-o +Fi:5-1 =0orl, and Fi(;-l —|—Fi§0 =0 orl, then d(F) < 2. Moreover,

if d(F) =2, then F is a complete quadratic polynomial.

2. If for all {i,j} C [n], d(ﬂ%o + Fél) <1, and d(Fg-1 + F%-O) < 1, then d(F') < 3. Moreover, if
d(F) =3, then F is a complete cubic polynomial.

1L Bf. We prove the first part. The proof for the second part is similar which we omit here.

For all {i,j} C [n], we write F' € Zs[x1, ...,y as a polynomial of variables x; and z;.
F = Xxix; + Yijo; + Zijx; + Wi
where X;;,Yi;, Zij, Wij € Zo[{xs, ..., xn}\{2i,z;}]. Then,
FY =Wy and Fj' =X+ Yij + Zij + Wij.
Thus, Xj + Y + Zij = F{’ + Fj{* =0 or 1. Also,
FY'=Zi+ Wy and FY =Y +Wj;.
Thus, Y;; + Z;; = F;

jl + F%O =0 or 1. Then, X;; =0 or 1 for all {i,j}. Thus, d(F) < 2.

Suppose that d(F) = 2. then F has at least a quadratic term z,x, (u # v). Without loss of

generality, we assume that the term zixzo appears in F'. We first show that for all 2 < j < n, the

quadratic term xqx; appears in F. Since z1z2 is already in F', we may assume that 3 < j. We
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write F' as a polynomial of variables x5 and x;.
F = Xojxowj + Yojxo + Zojx; + Woj,

where Xoj,Ya;, Zo;, W, do not involve x5 and z;. Since x1x2 appears in F', x; appears in Ya;. As
we have proved above, Yo; + Zo; = 0 or 1. Thus, x1 also appears in Zy;, which means that zix;
appears in F'. Then, for all 2 < j < n, x12; appears in F.

Then, for all 2 < i < j < n, we write F' as a polynomial of variables x; and x;.
F = Xyzix + Yiixn + Zvixs + W,

where Xy;, Y15, Z1;, Wi; do not involve x1 and x;. Since x1x; appears in I, x; appears in Yj;. Since
Y1 + Z1; = 0 or 1, z; also appears in Z1;. Thus, x;x; appears in F. Then, for all 2 <i < j < n,

the quadratic term z;x; appears in F. Thus, for all {4, j} C [n], z;z; appears in F. O
Now, we are ready to take a major step towards Theorem 7.38.

Lemma 7.27. Suppose that F is a set of real-valued signatures of even arity and F does not satisfy

condition (T). If F contains an irreducible 2n-ary signature f with parity where 2n > 8, then
e Holant®(F) is #P-hard, or
o there is a signature g ¢ o/ of arity 2k < 2n that is realizable from f and B, or
e after normalization, f(a) = £1 for all « € L(f).

1ER. Since f is irreducible, we may assume that it satisfies 2ND-ORTH. Otherwise, we get #P-
hardness by Lemma 6.6. Also, we may assume that f € |, 5. Otherwise, we can realize a signature
of arity 2n — 2 that is not in & by merging f using some b € B.

For any four entries z,y, z,w of f on inputs «, 3,v,d € Z%n written in the form of a 2-by-2
matrix [T 4] = HE:; ]}((g)) }, we say that such a matrix is a distance-2 square if there exist four bits
i,7, k, £ such that oo = ;8 = 7i7y; = Téj, aroy = Viye = BeBe = 0x0p and a, 3, v and § take the

same values on other bits. An equivalent description is that

d=a® &y, wtladp)=2, wt(advy)=2 and wt(add) =4. (7.12)
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Indeed (7.12) is clearly satisfied by any distance-2 square. Conversely, suppose (7.12) holds. If we
flip any bit ¢ in all «, 3, and 4, both (7.12) and the bitwise description are invariant, and thus we
may assume a = 02". By wt(a @) = 2, there exist two bits 4, j such that viv; = 11, and ~ takes
0 on other bits. By wt(a @ ) = 2, there exits two bits k, ¢ such that S5, = 11, and 8 takes 0 on
other bits. Since d = a® D v, wt(SPBy) = wt(a® d) = 4. Thus, the bits i, j, k, £ are distinct four
bits. Then, 0;0;0,0, = 1111 and 0 takes 0 on other bits. Thus, a, 3, v and 0 satisfy the bitwise
description of distance-2 squares.

We give an example of such a distance-2 square. Let

v y| [r@ £®)]  [roo016) fo0100)
:ow|  [f) £6)]  |r(1019) f(1110)

where 0 € 23"74 is an arbitrary binary string of length 2n — 4. In this example, (i,j) = (1,2) and
(k,£) = (3,4). We show next that such a distance-2 square [% %] has the property described in
(7.13) ~ (7.16).

By connecting variables z; and xo of f using :2+ and =, respectively, we get signatures 8;5 f
and 07, f. By our assumption, 8?2 f and 0}, f are affine signatures. Note that, z + z and y +w are
entries of d)5 f on inputs 010 and 100 € Z3"2. Since )5 f € &, if 2+ 2z and y+w are both nonzero,
then they have the same norm. Thus, we have (z+ z)(y +w) = 0 or (z+ 2)? = (y +w)?. Similarly,
x —z and y — w are entries of O f € &/. Thus, we have (z — 2)(y —w) =0 or (z — 2)? = (y — w)>.

Also, by connecting variables x3 and x4 of f using #2 and #, respectively, we get signatures
aif and Qif that are affine signatures. Note that,  + y and z 4+ w are entries of @if on inputs
0060 and 116. Since ailf € o/, we have (z +y)(z + w) =0 or (z +y)? = (z + w)?. Similarly, z — y

and z — w are entries of 53;1f. Then, we have (z —y)(z —w) =0 or (x —y)? = (2 — w)?.

Now, consider an arbitrary distance-2 square [7 Y] = HE:; J;((g))} Depending on whether
;i = aj or a; # aj, we can use =4 and =, , or #5 and #, respectively, to connect variables z;
and z; of f to produce two signatures 8275- f and 81-; f, or 8;;7 f and 8; f in either case, such that
x £ z and y = w are both entries of the resulting two signatures. Since the two resulting signatures

are in affine, we have

(z+2)(y+w)=0 or (z+2)%=(y+w)? (7.13)
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and

(z—2)(y—w)=0 or (z—2)%=(y—w)? (7.14)

Similarly, by connecting variables z; and xy of f using either :3: or ;é;t, we have
(z+y)(z+w)=0 or (z+7)*=(z+w)? (7.15)

and

(z—y)(z—w)=0 or (z—1y)?=(z—w) (7.16)

Now, we show that by solving equations (7.13) ~ (7.16), every distance-2 square has one of
the following forms (after normalization, row or column permutation, multiplying a —1 scalar of

one row or one column, and taking transpose)

0 0 10 1 1 10 1 1 1 1 1 a 1 1
) ) ) ) ) 3 (CL > 1), or
0 0 0 0 0 0 01 11 1 -1 a 1 3 —1
type [ type 11 type 111

We say that the first six forms are type I, and the other two are type II and type III respectively.
These forms listed above are canonical forms of each type.

Let [Z Y] be a distance-2 square. Consider

p=(z+y)(z+w)(z+2)(y+w)(r—y)(z-w)l(r-2)(y-w)

o If p =0, then among its eight factors (four sums and four differences), at least one factor is
zero. By taking transpose and row permutation, we may assume that xt +y =0or z —y = 0.
If z +y = 0, then by multiplying the column [} ] with —1, we can modify this distance-2
square to get © —y = 0. Thus, we may assume that © —y = 0. If x = y = 0, then by (7.13),
we have z = 0 or w = 0, or z = +w. Thus, after normalizing operations of row and column

permutation and multiplication by —1, we reach the following canonical forms [ ], [§§] or

o

[§8]. Otherwise, z = y # 0. Consider ¢ = (z + 2)(y + w)(z — 2)(y — w).

— If ¢ = 0, then among its four factors (two sums and two differences), at least one is zero.
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By column permutation on the matrix [7 Y] and multiplying the row (z,w) with —1
(which does not change the values of x and y), we may assume that x — z = 0. Thus,
x =y =z # 0. We normalize their values to 1. Then by (7.13), 1+w =0 or 14w = £2.
Thus, w = —1,1 or —3. If w = +1, then [ %] has the canonical form [} }]or [{ 1] . If

w = —3, then [Z %] =[] 23] which has the canonical form [§ 1| (Type III).

— If ¢ # 0, then (z + 2)(y + w) # 0 and (z — 2)(y — w) # 0. By equations (7.13) and
(7.14), (z + 2)? = (y + w)? and (z — 2)? = (y — w)?. Thus, 2z = yw. Since x =y # 0,
z=w. If z = w = 0, then this gives the canonical form [} }]. Otherwise, z = w # 0.
Then z + w # 0 and hence by (7.15), z +w = £(x 4+ y). Since z = w and x = y, we get

z==x. Thus, x + 2 =0 or x — z = 0. Contradiction.

o If p# 0, then all its eight factors are nonzero. Thus by (7.13) ~ (7.16), (z + 2)? = (y + w)?,
(r—2)?=(y—w)?, (r+9)? = (z+w)? and (v —y)? = (2 — w)?. By solving these equations,

we have 2

=w?, y? =2 and 2y = zw. If x =y = z = w = 0, then it gives the canonical
form [J9]. Otherwise, by permuting rows and columns, we may assume that = # 0 and |z
is the smallest among the norms of nonzero entries in [7 ¥]. We normalize x to 1. Since
2? = w?, we get w = £1. By multiplying the row (z,w) with —1 (which does not change
xy = zw), we may assume that w = 1. Then, xy = zw implies that y = z. If y = 2z = 0,
then [% Y] has the canonical form [} ¢]. Otherwise, since |z| = 1 is the smallest norm among
nonzero entries, y = z = +a where a > 1. If a = 1 (i.e., y = z = £1), then [7 ¥ ] has the

canonical form [} }]. If a > 1, then [? ¥] has the canonical form of Type IL.

Thus, every distance-2 square has a canonical form of Type I, IT or III.

Note that given a particular distance-2 square of f, by normalization, and renaming or flipping
or negating variables of f, we can always modify this distance-2 square to get its canonical form.
Clearly, for signatures of arity at least 4, distance-2 squares exist. We consider the following two

cases according to which types of distance-2 squares appear in f.

Case 1. All distance-2 squares in f are of type I.

We show that (after normalization) f(«) = £1 for all a € #(f). Since f # 0, it has at least

one nonzero entry. By normalization, we may assume that 1 is the smallest norm of all nonzero
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entries of f. Then by flipping variables of f, we may assume that f (62") = 1. For a contradiction,
suppose that there is some 5 € #(f) such that f(8) # +1. Then by our assumption that 1 is
the smallest norm and |f(8)| # 1, we have |f(3)| > 1. Also, since f has parity and 0" € .7(f),
f has even parity. Thus, wt(5) = 0 (mod 2). By renaming variables of f, we may assume that
B = 12m(%"—2™_ for some m > 1. (This does not affect the normalization f(02*) = 1). Then, we
show that for all v = §0%"~2™ where 6 € Z3™, f(a) = £1. We prove this by induction on wt(J).
This will lead to a contradiction when wt(8) = 2m, since |f(8)| = |f(12™02"~2™)| # 1.

Since f(0%") = 1, we may assume wt(5) > 2. We first consider the base case that wt(5) = 2.
By renaming the first 2m variables, without loss of generality, we may assume that § = 110272
and then o = 1102"~2 = 110002"%. This renaming will not change 5. Consider the following

distance-2 square
Ty £(000002"=4)  £(110002—4)

z w £(00110%"=%)  f(11110%"%)

Recall our assumption that every distance-2 square is of type I. Here z = f(02"), and y = f(«).
Since z = 1, [ ¥ ] being of type I implies that y = 0 or 1 (the normalization steps include possibly
multiplying a row or a column by —1). We want to show that |y| = 1; for a contradiction, suppose

that y = 0. We consider the following two extra entries of f, where § = 00122,
a' = f(60%"72M) = £(0012™20%"2™) and 3 = f(B) = f(1112m 202" 2m),

By connecting variables x; and x3 of f using =5 and =, , we get signatures 012 f and 0p,f re-
spectively. Note that both z + y and 2’ + 3/ are entries of d1of. Since d12f € &, we have
(x+y)(@'+y)=0o0r (z+y)? = (2/+1')? We can also consider d;,f and get (x —y)(z' —y') =0

or (v —y)? = (2' —y')% Since z = 1 and y = 0, we have

[:U'+y':0 or (:B'—i—y')Q:l} and [:L"—y':() or (x’—y’)Qzl}.

Recall that || = |f(B8)| > 1. Clearly 2’ + ¢’ = 0 and 2/ — ¢/ = 0 cannot be both true, otherwise
y' = 0. Suppose one of them is true, then 2’ = +y/. And at least one of (2'4+3')? = 1or (2'—y')? = 1

holds. So either |2’ 4+ /| = 1 or |2’ — y/| = 1. Substituting =’ = 4y’ we reach a contradiction to
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|y/| > 1. So mneither 2’ + 3y = 0 nor 2/ — 3 = 0 holds. Then (2’ + /)% = 1 and (2/ — /)% = 1.
Subtracting them, we get 'y’ = 0, and since v’ # 0, we get ' = 0. But then this contradicts
ly'| > 1 and (2/ +¢/)? = 1. Therefore, y # 0. Then, y = £1. Thus, y = f(602*~2™) = +1 for all §
with wt(d) = 2.

If 2m = 2, then the induction is finished. Otherwise, 2m > 2. Inductively for some 2k > 2,
we assume that f(A02"~2™) = +1 for all € Z2" with wt(f) < 2k < 2m. Let & be such that
wt(8) = 2k + 2 < 2m and we show that f(60°"~2™) = +1. Since wt(d) = 2k + 2 > 4, we can
find four bits of § such that the values of ¢ are 1 on these four bits. Without loss of generality, we
assume that they are the first four bits, i.e. § = 1111’ where ¢’ € Z%m%. Consider the following

distance-2 square
Ty £(00008"02"=2m)  £(00118'02"—2m)

z w £(11006'0%7—2m)  f(11118'02—2™)

Clearly, three entries in this distance-2 square have input strings of weight at most 2k, namely
wt(00008'0%"2™) = 2k — 2, and wt(00116’0%"~2™) = wt(11008'02"2™) = 2k. By our induction
hypothesis, z,y,z € {1,—1}. Then, since the distance-2 square [7 ¥ ] is of type I, we have w =
f(60?"=2m) = +1. The induction is complete. This finishes the proof of Case 1.

Case 2. There is a type II or type III distance-2 square in f.
This is the case where signatures gg and g appear. We handle this case in two steps.

Step 1. We show that after flipping variables of f, .#(f) = &3,, and after normalization
fla) = £1 or £3 for all o € L(f). Let A(f) = {a € Z(f) | f(o) = £3}. We also show that
|.Z5(f)| = 2274 = 1|.7(f)|, and for any distinct o, B € .F5(f), wt(a & B) > 4.

We first consider the case that there is a Type II distance-2 square in f. We show that the
only possible Type II distance-2 square in f has the canonical form [4 3]. Suppose that a distance-2

square of Type II appears in f. By flipping and negating variables, we modify f such that this

distance-2 square is in its canonical form [l ¢](a > 1). Also, by flipping variables and renaming

variables, we may assume that this distance-2 square appears on inputs «, 3, v and § where

fla) f(B) £(000002"=4)  £(001102"—4) 1 a

f() @) [Faio0dty painge| a1
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Then, we consider the entries of fon inputs «, 5, v and §. We have

fla) f(B) fla)+ () f(B)+ £(0) l+a 1+4a

fo) () fla)=f(v) f(B) = £(0) l—a a-1

Since a > 1, clearly 14+ a # 0,1 —a # 0 and |1+ a| > |1 — a|. Since f has parity and f(0%") =1,
f has even parity. By Lemma 7.24(2), Y(?Ql) = &p—2 and |1 4+ a| = 2|1 — a|. Since a > 1, we
have 1+ a = 2(a—1). Then, a = 3. Thus, the only possible Type II distance-2 square in f has the

canonical form [13].

Under the assumption that a Type II distance-2 square appears in f and [f () (5 )} =[33

o 7oy | = 31 we

have []}((:)) JJ;(&)} = [f2 %] . As showed above, by Lemma 7.24(2), 5”(:121) = &p—9 and ng1,n1g = 2

or 4. We first prove

Claim 1. 7 (f%) = Z(f{) = &an—2, f2(0), fis(0) = £3 or £1 for all § € &ap—a, and
| 3(fi2)] + [A5 ()] = 22770

Remember that N{]S ) ~1121 € /. For any of them, its nonzero entries have the same norm. Since
fla) = f(0002""2) =1+ 3 =4 and f(?g) C Eon_y, for every 6 € Eyn_a, £(000) = £4 or 0. Also,
since f(7) = f(1102"2) =1 — 3 = =2, and . (f1}) = &u_a, for every 0 € Ern_s, F(116) = 2.
Then,

£(006) = f(008) ‘; f(116) _ (£4) —;— (£2) o ()—i—;i?)

Thus, f(000) = +3 or %1 for every 6 € &,,—2. Also,

f(m):f(OO@);f(lw) _ (14);(12) . ()—;:l:Q).

Thus, f(110) = +3 or +1 for every 6 € &5, 5. Additionally note that, for any 6 € &, if
F(008) = +4, then of the two values f(008) and f(116), exactly one is +3 and the other one is +1;

if f(000) = 0, then f(000) = +1 and f(116) = £1. Since
5P =47 |2 (fi)] = 1fis P = 2° |2 (F3)] = 2° - |Eanal,

we have |<7(~{)§)| = |&op_2|/4 = 22775, Thus, there are exactly 2275 entries of fv?g having value
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+4, which give arise to exactly 22"~° many entries of value £3 among all entries of f{9 and fiJ
Claim 1 has been proved.

Next, we prove

Claim 2. Z(f%) = L(fi9) = Oon—a, f23(0), fi3(0) = £3 or £1 for all 0 € Oap_a,
and |.Z3(fi9)| + |75(f19)| = 227,

We have f((?”) = 4. We have ngp = 4 and ny; = 2. Also recall that we have showed that

np1,n10 = 2 or 4, by Lemma 7.24(2). There are three cases.

e Np1 = Nig = 2. Since n1; = ng1 = 2 and

[Fi2 PP = nfy |7 (Fi2)l = gy - |7 (i) = |7 P

we have

L ()] = |L(fi3)] = |Gons| = 22775,

Since f has even parity, .7 (f%) C Oa,_o. As |On_o| = 2273, we get L (fO) = Oop_s.

Similarly, we can show that 5”(:18) = Ooy_o. Let ( = 011002"4 and n= 101052n—4. Then,
f(C) =42 and f(n) = 42. Note that

f(Q) = and  f(n) =

F(Q) + ()
2

If £(¢) = f(n), then f(¢) = +2 and f(n) = 0. If f(¢) = —f(n), then f(¢) = 0 and f(n) = £2.

We first consider the case that f(¢) = +2. Let ¢ = 10010"*. Consider the following

distance-2 square.

fla) £ £(000002"=4)  £(011002"—4) 1 +2

£ O] [fO00107) 110 [+ 1

Clearly, it is not of type I nor type IIL. Also, it is not of type II with the canonical form [} 3].

Contradiction. If f(n) = £2, then similarly by considering the distance-2 square HE(:)) }}Egg ]

where 7 = 010102"4, we get a contradiction.
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e ng1 = nig = 4. We still consider

O+ ()

f(Q) === and [(n)= 22 2P where ¢ = 01100%"* and 7 = 10100*" %,

Then, as ¢ has leading bits 01 and n has leading bits 10,

(£4) + (£4) (j:4)+00r0+0 and f(n):(j:4)—(j:4) j:(j:4)_00r0_0.

f(Q) = > — 5 5 : 5 5

Thus, f(¢), f(n) = £4,+2 or 0. If f(¢) or f(n) = £4,+2 , then by considering the distance-2
square H(((Z)) ;Egg] or HE%) ;Eg”, we still get a contradiction. Thus we have f(¢) = f(n) = 0.

Then, consider the signature %4 f, denoted by f’ . Since f has even parity, f satisfies 2ND-
~ . ~00 ~01 ~10 ~11
OrtH and f € [z 47, f' has even parity, f'a3, f'a3, /23, f'a3 € &7 Let nfyy, ng;, n and nyy

.. ~00 ~01 ~10 ~11 . .
denote the norms of nonzero entries in f’,3, f/93, f'93, and f’53 respectively. Notice that

F(@) = f1(0%™) = £(00000°" %) + £(01100°" %) = f(a)+ f() =1+0=1.
Thus, n{, = 1. Also, notice that
Fi(v) = F(11000°"*) = f(10100%"*) — £(11000*"~*) = f(n) — f(7) =0 —3 = —3.

Thus, njy, = 3. But by Lemma 7.24(1), ny, = ﬁkn’lo for some k € Z. However, clearly,
3 # \/§k for any k € Z. Contradiction.

o Therefore exactly one of ng; and njg is 2 and the other is 4. Let (a,b) = (0,1) or (1,0) be
such that ng, = 2. Since ni; = 2 and |.Z(f11)] = |&an_2|=22""3, we have |.7(f2)| = 2273,
Since fhas even parity, Nf‘zb has odd parity, thus .7( Nlazb) = Op_o. Then, similar to the proof
of f%9 and fli, we can show that for every 6 € Oy, o, fi3(0), fid(0) = £3 or +1. Also,

among f} and fiY, exactly 22"~% many entries are +3.

This completes the proof of Claim 2.
Thus, combining Claim 1 and Claim 2, .7 (f) = &a,, f(a) = £1 or £3 for all a € (f), and
|.73(f)] = 2204 = %|¢7(f)| Also remember that by our assumption, f(0%") = 1.

Now, we show that for any distinct a, 8 € #3(f), wt(a® ) > 4. For a contradiction, suppose
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that o, 5 € S3(f) and wt(a @ ) = 2, and they differ at bits ¢ and j. By renaming variables,
without loss of generality, we may assume that {i,7} = {1,2}. This renaming does not change
the value of f(0°") = 1. Since f(110°"2) = +1 or +3, of the values f(0002"~2) + f(1102"~2)
and f (0062”_2) —f (1162"_2), which are respectively an entry of f?g and an entry of ~1121, at least
one has norm 2. Thus, among ngp and nij, at least one is 2. Since f(a) = £3 and f(8) = +£3,
among f(a) + f(B) and f(a) — f(B), exactly one has norm 6 and the other has norm 0. Clearly,
f(a)+ f(B8) and f(a)— f(B) are entries of f since a and J differ at bits 1 and 2. Thus, among noo,
np1, n1o and nq1, one has norm 6. By Lemma 7.24(1), 2 = \/§k - 6 for some k € N. Contradiction.
This proves that for any distinct a, 8 € S5(f), wt(a ® 5) > 4.

We have established the goal laid out in Step 1 of Case 2 under the assumption that there is
a Type II distance-2 square in f.

Finally, within Step 1 of Case 2, we consider the case that a type III distance-2 square appears
in f. By flipping and negating variables, we modify f such that this distance-2 square is in its
canonical form H f’l] . Also, by flipping variables and renaming variables, still we may assume that

this distance-2 square appears on inputs «, 8, v and § where

fla) f(B)| | f(000002"~4)  f(00110%"~*) 11

f  f©) £(1100027=4)  f(11110%74) 3 -1

Then, we consider the entries of fvon inputs «, 5, v and §. We have

fla) F(B) fla)+ () f(B)+ £(0) 4 0

fov) () fla) = f(v) f(B) = £(0) -2 2

Then exactly in the same way as the above proof when [];Efg ];((’g)) } = [_42 %}, we can show that
the same result holds. Thus, 7 (f) = &, f(a) = £1 or £3 for all a € .Z(f), |#3(f)| = 22" =
1|7 (f)], and for any distinct «,, 8 € .7 (f) with wt(a & 8) = 2, a and 8 cannot be both in .73(f).

This finishes the proof of Step 1 of Case 2.

Step 2. Now we show that either gg or g is realizable from f. We will show that they are
both irreducible and do not satisfy 2ND-ORTH, which gives #P-hardness.
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We define a graph Ga, with vertex set &3, and there is an edge between « and § if wt(a® ) =
2. le., we view every a € &, as a vertex, and the edges are distance 2 neighbors in Hamming
distance. Then, .5(f) is an independent set of Ga,,. Remember that 2n > 8 by the hypothesis of the
lemma. If 2n > 10, then by Lemma 7.21, |#5(f)| < §[.#(f)|. Contradiction. Thus, 2n = 8. After
renaming and flipping variables, we may assume that .73(f) = Is = .(fs). For brevity of notation,
let S =65 and T = (fs). We can pick (x1,...,27) as a set of free variables of S = &3. Then,
there exists a multilinear polynomial F(z1,...,27) € Za[z1,...,x7], and a multilinear polynomial
G(z1,...,x8) € Zo[z1,. .., xs] that is viewed as a representative for its image in the quotient algebra
Zsolxy, . .., xz8])/(P1, Pa, P3, Py) where Py, Py, P3, Py are the four linear polynomials in (7.11) such that
T is decided by P, = P, = P3 = Py = 0, such that

f= XS(—l)F(ml’“"m) + 4XT(_1)G(m1,.A.,xS)‘

We note that such multilinear polynomials F'(x1,...,z7) and G(z1,...,zs) exist: For any point
in S\ T we can choose a unique value s € Zg which represents the +1 value of f as (—1)%, and
for any point in 7' C S we can choose unique values t € Zy and s' € Zy such that (—1)% 4 4(—1)!
represents the +3 value of f.

For {i,7} C [7] = {1,...,7}, remember that Fi‘;«b € Zyl{z1,...,x7}\{zi, x;}] is the function
obtained by setting (x;,z;) = (a,b) in F'. Similarly, we can define G?f’ with respect to P, = P, =
P3; = P, = 0 (any assignment of (z;,z;) = (a,b) is consistent with P = P, = P; = P, = 0 which

defines T"). We make the following claim about Fi‘;b.
Claim 3. For all {i,j} C [7], FY + Fj}' =0 or 1, and also F}}! + F}Y =0 or 1.

We first show how this claim will let us realize gg or gg, and lead to #P-hardness. Then, we

give a proof of Claim 3. By Claim 3 and Lemma 7.26, the degree d(F) < 2.

o If d(F) < 1, then F is an affine linear combination of variables x1,...,x7, i.e., FF = Ao +
21‘721 Aix; where \; € Zo for 0 < ¢ < 7. Notice that if we negate the variable x; of f, we
will get a signature f'(x1,...,28) = (—=1)* f(x1,...,xs). For every x; appearing in F (i.e.,

Ai = 1), we negate the variable x; of f. Also, if \g = 1, then we normalize f by a scalar —1.
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Then, we get a signature

f, frmd XS . 1 + 4XT(_1)G/(x17“.,x8)'

This will not change the support of f and also norms of entries of f. Thus, f/'(a) = £3 or 1
for all & € .7(f') = &. Then, for every o € T, f'(a) = 1+ 4(—1)9(® = 43, which implies
that (—1)%"(® = —1 and f'(a) = —3, because 1 +4 = 5 cannot be an entry of f’. Therefore,

"= xs — 4xr = gs. Thus, gs is realizable from f.

By merging variables x1 and x5 of gg using =5, we can get a 6-ary signature h. We rename
variables o, 3, x4 to x1, 2,3 and variables xg, x7, 23 to z4,x5,z¢ (The choice of merging
x1 and x5 is just for a simple renaming of variables). Then after normalization by a scalar

1/2, h has the following signature matrix

_—1 O 0 1 0 1 1 0 i
0 -1 1t 0 1 0 0 1
0 1 -1 0 1 0 0 1
Moz as6(h) = A = 1 0 0 -1 0 1 1 0
o 1 1 0 -1 0 0 1
1 0 0 1 0o -1 1 0
1 0 O 1 0 1 -1 0
o 1 1 0 1 0 0 -1

Consider the inner product (h{J, hl}). One can check that

(h3, hyg) = Z Aij-Aiyajra=8#0.

1<i,j<4
(This is the sum of pairwise products of every entry in the upper left 4 x 4 submatrix of A
with the corresponding entry of the lower right 4 x 4 submatrix of A.) In fact, notice that

h(a) = h(a) = h(«a). By considering the representative matrix M, (h) of h (see Table 4), we
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have ) )
-1 1 1 1
1 -1 1 1
Mr(h) =
1 1 -1 1
1 1 1 -1
Then,

(h1], hiy) = 2(perm(M;(h)p1,2) + perm(M;(h)[3 4))) = 2(2 +2) = 8 # 0.

Also, since .#(h) = &, it is easy to see that h is irreducible. Since h does not satisfy

2ND-ORTH, we get #P-hardness.

If d(F) = 2, then by Lemma 7.26, for all {i,j} C [7], xjz; appears in F'. Then, F' =
> <i<j<7 Tilj + L where L is an affine linear combination of variables x1,...,x7. Since on
the support .Z(f) = &3, ©1 + -+ +xg = 0, and on Boolean inputs x% = xg, we can substitute
Fby F' =F+as(xi+--+as) — (23 —ag) = > 1<icjcs i+ L+ xs (all arithmetic mod 2).
This will not change the signature f. Then, by negating variables of f that appear as linear

terms in F’ and normalization with a scalar 41, we get a signature
f/ _ XS(_1)21<2<3<8 TiTj +4XT(_1)G/(w1,...,azg) = gs +4XT(_1)G'(x1,...,ws)_

where gs = yg(—1)Z1<i<i<s %% (see form (7.11)). For every o € T, since wt(a) = 0,4 or 8,
wt(a) /

it is easy to see that gg(a) = (—1)( ) = 1. Thus, (—1)(®) must be —1 in order to get

1 —4 = -3, of norm 3 for f’. The other choice would give 1 +4 = 5 to be an entry of f’, a

contradiction. Therefore, f'(a)) = g5 — 4xr = g5. Thus, g} is realizable from f.

By merging variables x; and x5 of g using =,, we can get a 6G-ary signature h’. After
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renaming variables (same as we did for k) and normalization by a scalar —1/2, we have

o o
|

—_

—_

o o

—_

[es}

o
|

—_

Miaza56(h) = B =

0 -1 -1 0 -1 0 0 -1
Consider the inner product (h'%, h'}3). One can check that

00 /11
(h'yy, h'yy) = Z Bij- Bitaj+a = —8#0.
1<i,j<4
Also, since S (h') = &, it is easy to see that h' is irreducible. Since h’' does not satisfy

2ND-ORTH, we get #P-hardness.

This completes the proof of Step 2, and the proof of the lemma, modulo Claim 3.

Now, we prove Claim 3 that for all {4, 5} C [7], F%O —i—Fé.l =0or 1and Fz-gl —|—Fl-1j0 =0or 1. For
simplicity of notation, we prove this for {i,j} = {1,2}. The proof for arbitrary {i,j} is the same
by replacing {1,2} by {7, j}. Since f € [z, FO9. fo1 719 Ll e of. Remember all nonzero entries
in ]?fgb have the same norm, denoted by n,,. We first show that between ]??20 and ']?1121, exactly one
has support &5,_2 and its nonzero entries have norm 2 and the other has nonzero entries of norm
4, and between f1021 and Nfg, exactly one has support 0s,_» and its nonzero entries have norm 2
and the other has nonzero entries of norm 4. (This is not what we have proved in Step 1 where
{1,2} is a pair of particularly chosen indices. Here {1,2} means an arbitrary pair {7, j}.)

Consider f29(0%) and f13(0°). By Step 1 of Case 2 and Lemma 7.21, we may assume that
S(f) = L (fs) (after flipping and renaming variables). We have 000° € .#3(f) and 110° ¢ .#3(f).
Thus, f{¥ (05) = +3 and fis (08) = +1. (This is true when replacing {1,2} by an arbitrary pair of
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indices {7, 7}.) Thus, between
15(0°) = fi2(0°) + fi3(0°) and  fi5(0°) = f35(0°) — fiz(0%),

one has norm 2 and the other has norm 4. They are both nonzero. Then, between ngy and niy,
one is 2 and the other is 4. By Lemma 7.24(2), between f12 and f121, the one whose nonzero entries
have norm 2 has support &5, and moreover ng; and njg = 2 or 4. Since there exists (a,b) = (0,0)

or (1,1) such that
FBP =y |7 (FI8)] = 22 - |65,

for f&4 where (c,d) = (0,1) or (1,0), if neg = 2, then |.Z(f&)| = |&| = |Og|. Since f&d has odd
parity, .(f&d) C 0. Thus, |.7(f)| = 223 implies that .7(f4) = C.
o If ngy = nip = 2, then ,5”(?21) = 5”(:18) = 0. For an arbitrary 6 € 0,

F(010) — f(108)  (£2) — (£2)

f(010) = and f(100) = 5 - .

F(016) + F(100) _ (£2) + (+2)
2

Thus, between f(010) and f(100), exactly one has norm 2 and the other has norm 0. This

gives a contradiction since every nonzero entry of f has norm 1 or 3.

o If ng1 = nyp = 4, then still consider f(016) and f(100) for an arbitrary 6 € 0s. We know
that f(016), f(100) = £4,4+2 or 0. The case that f(010) = 0 or f(100) = 0 cannot occur
since . (f) = &3, and clearly, 016,100 € &,. Thus, f(016), f(100) = £4, £2. Still, we get a

contradiction since every nonzero entry of f has norm 1 or 3.
e Thus, between ng; and nig, one is 2 and the other is 4.

Then, between fl and f12, exactly one has support g and its nonzero entries have norm 2, and
the other has nonzero entries of norm 4.

Now, we show that F + Fl4 = 0 or 1. We first consider the case that between ]7{)20 and

1, f12 = %9 — filis the signature whose support is & and nonzero entries have norm 2; the

case where it is f12 will be addressed shortly. Let Sy be the subspace in Z$ obtained by setting

1 =29 =0in S = S(f) = &, and S; be the subspace in Zg obtained by setting z1 = x5 = 1.

Similarly, we can define Ty and Ti, replacing S in the definition by T' = #3(f) = Is. Clearly,
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So =51 = {(x3,...,78) €Z§ | 3+ --- x5 = 0} = &. Also, one can check that Ty is disjoint with
Ti. Then

{Jg _ XSO(*l)F?S(m’Mm) + 4XT0(*1)G(1)8(303"“’$8),

and

1121 _ Xsl(_l)Fllgl(acs,...,m) + 4XT1(_1)G%21’(13"“’$8).

Thus,
Tt = xan(~ 1)) (1)) gy (~1)8em) g (~1) OB
Since Y(fll%) = & and n1p = 2, ]?1121(0) = +2 for every 0 € &. If 0 ¢ Ty U Ty, then
i3 (6) = (-1 BO — (-)THEO = 12,
If 6 € Ty UTh, then it belongs to exactly one of Ty or 17,
fi3(0) = (~)FO - ()@ 40 = £2

where @ = +1. In this case, the sum of the first two terms is still (—1)F12(®) — (—1)F2(0) = 42,
because the only other possible value for (+1) — (£1) is 0 and then we would have 4a = %2, a
contradiction. Thus, for every (z3,...,27) € Z3 which decides every (z3,...,78) € & by zg =

T3+ -+,
(_1)F1020(903,-~:937) _ (_1)F1121(137~--,w7) — 49

This implies that

(_1)F1020(x3,.‘.,:1:7) — _(_1)F1121(x3,,:1:7) .

Thus,

(_1)F1020(x3,...,x7)+F1121(ocg,.,.,x7) - 1.

Then, F1020 =+ FllQ1 =1.

Now we address the case that (between f?g and ]?1121) it is f{)g = %9+ fis the signature whose
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support is & and nonzero entries have norm 2. Then similarly for every (zs,...,x7) € Zg, which

determines every (x3,...,x3) € &g,

(_1)FP20(1‘3,...,1‘7) + (_1)F1121(:z:3,,x7) — :|:2

This implies that

(_1)F1020(9037---,x7) - (_1)F1121 (@3,0-027)

Thus,

(_1)F{)20($3,7£E7)+F1121 ($3,...,$7) — 1

Then, F¥ + FlJ = 0.

We have proved that, F¥ + FL} =0 or 1.

Also, consider }?21 and f}g . One of them is a signature whose support is €,_» and nonzero
entries have norm 2. Then similarly, for every (xs,...,27) € Z5 which decides every (3, ...,25) €

Og by g =1+ x3+ -+ + 27,

(_1)Ff)2l($37---7w7) + (_1)F11§’($37---7967) =42,

or

(_1)FP21(333,...,$7) _ (_1)F1120(;B3,...,:C7) — 49,

Then, Fy + FlY =0 or Fy + FY = 1. The above proof holds for all {i,5} C [7]. Thus, for all
{i,j} 7, FY+Ft=0o0r1,and F}' + FY=0or 1. O

Remark 7.28. The above proof does not require F to be non-B hard.

7.3.3 Support Condition

Then, by further assuming that nonzero entries of f have the same norm, we show that f has
affine support or we can get the #P-hardness for non-B hard set F (Lemma 7.35). Here, we do
require F to be non-B hard.

We first give one more result about f. Remember that if f € Jz ', then f?g, ?21, Nfg,
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1 € o, and ng, denotes the norm of nonzero entries of flb Let B = { =5, =5 ,752  Fo } where

=5 = (2,0,0,0), =, = (0,0,0,2), 7&2 = (0,2,0,0) and 7&2_ = (0,0,2,0). Signatures in B are

obtained by performing the H4 gadget construction on binary signatures in B.
Lemma 7.29. Let f be an irreducible signature of arity 2n > 6 with the following properties.
1. f has even parity, f satisfies 2ND-ORTH, and f € stzf

2. for all {i,j} disjoint with {1,2} and every b € B, either M(mm(@fjf)) = )\ij4 for some real

)‘?j £ 0, or there exists a nonzero binary signature gfj € B such that 9%@17332) | ab
If Z(f%) = Z(f19), noo > nor > 0, then S (f3) = €
12 12 /)5 100 o1 ’ en 12 om—2-
1EAA. We first analyze the second property of f, i.e., the property about 821?]- f-

o TF M(mio(90f)) = NIy, by Lemma 7.23, then M (mo(90, f)) = 2)! I, Since {3, j} is disjoint
with {1,2}, the Hy gadget on variables z; and zo commutes with the merging gadget on
variables x; and z;. Thus, 8@ f=0 f Let (Gf’jf)‘fg be the signature obtained by setting
variables z1 and xo of 8b f to a and b, and af’j(?f) be the signature obtained by merging
variables z; and x; of f . Again, since {1,2} and {4, j} are disjoint, (8l-’~f) 8b (fab). We

—~—

denote them by 8b . Then, since M(mm(ab f) = M(mlg(ﬁfjf)) =2\ L4,
05,0317 = [0 317 = [0 31> = [0} E3]> = 27%; # 0.

o If g0i(aw1,22) | OUf, i, O f = glj(x1,22) ® h, then abf =0 f = ggj(xl,m) ® h. Since
gi?j € B, gfj € B. By the form of signatures in B, among Ob 0 8b 0 8b 9 and ab a

most one is a nonzero signature.

Combining the above two cases we have that, among 0 fg, o f and 8b 13 if at
least two of them are nonzero signatures then they are all nonzero agnatures.

Now, we show that .( ?21) = Osp_s. Since f has even parity, f also has even parity. Then, ]‘7{’21
has odd parity, i.e., 5”(~01) C O5p—s. For a contradiction, suppose that 5”(~01) C Oy,_9. Since
no1 > 0, Y( 1) # (). Then, we can pick a pair of inputs o, 8 € O,_o with wt(a @ 8) = 2 such
that a € .7( 12) and 8 ¢ Y( 1. Also, since 5’( N = 12), ae S( 12) and 8 ¢ .7( 12).
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Thus, | % (a)| = no1 and | f2L(8)] = 0, and |f19(a)| = nio and |fi9(8)| = 0. Suppose that o and 3
differ in bits ¢ and j. Clearly, {4, j} is disjoint with {1,2}. Depending whether o; = «j or o; # a;,
we connect variables x; and x; of fusing =5 or #5. We get signatures 8;5- f or 8% f respectively.
We consider the case that a; = ay; in this case {a;0, 5;8;} = {00, 11}. For the case that «; # a;,
the analysis is the same by replacing 8-+.]? with 8+

Consider 8+f Then, because {a;oj, 3;6;} = {00, 11}, FOL(a) + fO4(B) and f19(a) + f19(B) are
entries of 8;; f; more precisely, they are entries of 8{; f12 and 8;;}113 respectively. Since f&l (B) =

F9(3) = 0, we have
33 (@) + 3 (B)] = |fi3 (@)l = noy #0, and [fi5(a) + AZ(B)] = i3 (@) = nio # 0.

Thus, 8;; N?Ql has a nonzero entry with norm ng;, and then 8;;- N?QI # 0. Also, we have 0, f Z 0.
Thus at least two among 0 f12, 0 f and 8;;- ]?113 are nonzero, it follows that all of them
are nonzero signatures.

Then 8;f FO9 = 0. Let (9»+. f9(y) be a nonzero entry of 8+f10 Then, ;jﬁffg(v) f%)go( ) +
f?%ljl( ) # 0.° Clearly, f?ggo( ) and f{)glljl( ) are entries of f%9, and they have norm ngy or 0.
Thus, 8+ f () has norm 2ngg or ngg. Also, 8+ f 9(v) is an entry of 6; f on the input 00~y. Thus,
8ij f has a nonzero entry with norm 2ngg or ngg. Since ngg > ng1, both 2ngg and ngg are not equal
to no1. Thus, 627; f has two nonzero entries with different norms. Such a signature is not in &7.

However, since f € fB o/, by Lemma 7.23, 8+f € «/. Contradiction. Thus, ,7( N = Oypn. O

We also give a result about the edge partition of complete graphs into two complete tripartite
subgraphs. This result should also be of independent interest. We say a graph G = (V, E) is
tripartite if V' = ViU Vo U V3 and every e € E is between distinct V; and V;. Here U denotes disjoint
union. The parts V; are allowed to be empty. It is a complete tripartite graph if every pair between

distinct V; and Vj is an edge.

Definition 7.30. Let K, be the complete graph on n wvertices. We say K, has a tripartite 2-
partition if there exist complete tripartite subgraphs Ty and Ty such that {E(Ty), E(T2)} is a
partition of E(K,,), i.e., E(K,) = E(T\)U E(Ty). We say Th and Ty are witnesses of a tripartite

“For the case that a; # a;, 95 15 (7) = fi95° (v) + fi55 () will be repleed by 8 f19(7) = 2551 (7) + fL5i ().
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2-partition of K.

Lemma 7.31. K, has a tripartite 2-partition iff n < 5. Forn =5, up to an automorphism of Ks,
there is a unique tripartite 2-partition where Ty is a triangle on {vi,va,v3} and Ty is the complete

tripartite graph with parts {vi,va,vs3}, {v4} and {vs}.

1E8]. Let T be a complete tripartite graph. Let G2 1 be the union of K> and an isolated vertex.

We first prove the following two claims.
Claim 1. Ga1 is not an induced subgraph of T'.

For a contradiction, suppose Ga1 = (V, E) is an induced subgraph of T', where V' = {v1, v2, v3},
and E = {(v1,v2)}. Then, v; and vy belong to distinct parts of T'. Since (vi,vs), (va,v3) ¢ E(T),
v1 and v3 belong to the same part of T, and so are vo and v3. Thus, v1 and vy belong to the same

part of T'. This contradiction proves Claim 1.
Claim 2. Ky is not an induced subgraph of T'.

For a contradiction, suppose K4 on V' = {v1, v, v3,v4} is an induced subgraph of T'. Then, for
any two distinct vertices v;,v; € V, the edge (v;,v;) € K4 shows that v; and v; belong to distinct

parts in 7. But T has at most three distinct nonempty parts. This contradiction proves Claim 2.

Now, we prove this lemma. The casesn = 1,2, 3 are trivial. When n = 4, we have the following
two tripartite 2-partitions of Ky, with V(T1) = {v1}U{va }U{vs} and V(T3) = {v1, ve, v3}U{vs} LD,
or alternatively with V(T7) = {v1} U{va} U0 and V(T3) = {vi,va} U{vs} U {z4}.

We consider n > 5. Suppose K, has a tripartite 2-partition with complete tripartite subgraphs
Ty = (V4, E1) and Ty = (Va, E2). We write (4;, B;, C;) for the three parts of T;, i = 1, 2.

Clearly V = V3 U V4, as all vertices of V must appear in either 17 or T5, for otherwise any edge
incident to v € V'\ (V1 U V3) is not in Ey U Es. If all parts of both 77 and T5 have size at most 1,
then |Fy U Es| < 6 < |K5| < |K,|, a contradiction. So at least one part, say Aj, has size |A1| > 2,
and we let a,a’ € Ay. Then, (a,d’) ¢ Ei. Thus, (a,d’) € F2 and a,d’ € V4.

We show that (V1 \ A1) N (Va\ A1) = 0. Otherwise, there exists v € (V1 \ A1) N(Va\ A1). Then,
edges (v,a), (v,a’) € E1. Thus, among edges (v,a), (v,a’) and (a,a’) of Ky, (a,a’) is the only one

in T. Since v,a,a’ € Vo, G2, is an induced subgraph of T5. A violation of Claim 1.
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If both V3 \ A; and V5 \ A; are nonempty, then an edge in K, between u € Vi \ A; and
v € Vo \ A; is in neither Eq nor Es, since u & Vo and v € V4. This is a contradiction. If V1 \ A1 =0,
then Ey = (), and then all edges of K, belong to T, which violates Claim 2. So V5 \ A; = (). Since
V =11UV,, Vo \ A1 = 0 implies that V = V4.

Clearly Vi \ A1 = By UC. If |By| > 2, then there exists some {u,v} C By C V; \ Aj, which
is disjoint from V5. Thus {u,v} ¢ E; U E3, a contradiction. Hence |By| < 1. Similarly |C;] < 1.
Finally, if |A1| > 4, then there is a K, inside A; which must be an induced subgraph of Ty, a
violation of Claim 2. Thus |A;| < 3. It follows that n < 5 since V.=V, = A; UB UC,. If n =15,
then |A;| = 3 and |B;| = |C1]| = 1. After relabeling vertices, we may assume that A; = {v1, v, v3},
By = {vs4} and Cy = {vs}. Then, we have Ay = {v1}, By = {v2} and Cy = {v3}. This gives the

unique tripartite 2-partition of Kj. O

We will apply Lemma 7.31 to multilinear Zo-polynomials. Remember that we take the reduc-
tion of polynomials in Zs[z1,...,x,] modulo the ideal generated by {z? — x; | i € [n]} replacing

any F' by its unique multilinear representative.

Definition 7.32. Let F(x1,...,x,) € Za[z1,...,x,] be a complete quadratic polynomial. We say
F has a twice-linear 2-partition if there exist L1, Ly, L3, Ly € Zalx1,...,xy,| where d(Ly1) = d(Lg) =
d(Ls) = d(Lg) <1 such that F' = Ly - Lo+ L3 - Ly.

Lemma 7.31 gives the following result about multilinear Zo-polynomials.

Lemma 7.33. Let F(x1,...,xy) € Za[x1,...,2y,] be a complete quadratic polynomial. For n > 6,
F does not have o twice-linear 2-partition. For n = 5, F has a twice-linear 2-partition F =
Ly - Ly + L3 - Ly iff (after renaming variables) the cross terms of L1 - Ly and Ls - Ly correspond
to the unique tripartite 2-partition of Ky, and we have Ly - Ly = (x1 + x2 + a)(x2 + x3 + b) and
Ls-Ly= (x1 +x2+ 23+ x4+ ¢)(x1 + 22 + 23 + 5 + d) for some a,b,c,d € Zs.

1EFf]. We first analyze the quadratic terms that appear in a product of two linear polynomials. We
use x; € L to denote that a linear term x; appears in a linear polynomial L. Let L; and Ly be two
linear polynomials.

Let U1 = {l‘l | x; € Ll,l’i §é LQ}, U2 = {:L’l | x; € Ll,{L‘i € LQ}, and U3 = {I'Z ’ x; ¢ Ll,:L'Z' S
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Ls}. Then,

Ly = Z T; + Z zj+a, and Lo = Z xj + Z Tp+ b

x, €Uy l‘jEUQ $jEU2 z,€Us

for some a,b € Z%. The quadratic terms in Lq - Ly are from

(D> mit > @) (Y wi+ > )

z; €U :EjEUz :EjEUz zr€Us

which are enumerated in

Z TiTj + Z T; Tk + Z TjT.
z:€Uy,a;€Us z:€Uy 2, €Us 2, €Us,74EVs
Note that each term 9312 for i € Uy is replaced by x; (thus no longer counted as a quadratic term)
as we calculate modulo the ideal generated by {z? — z; | i € [n]}, and every pairwise cross product
term x;x; for i,j € Uz and ¢ # j disappears since it appears exactly twice.

If we view variables x1,...,x, as n vertices and each quadratic term z;x; as an edge between
vertices x; and x;, then the quadratic terms in L1 - Lo are the edges of a complete tripartite subgraph
T of K, (the parts of a tripartite graph could be empty) and V(T') = U; U Uy U Us. Therefore,
L1 - Lo is one of the two terms of a twice-linear 2-partition of a complete quadratic polynomial
over n variables iff T' is one tripartite complete graph in a tripartite 2-partition of the complete
graph K,,. By Lemma 7.31, a tripartite 2-partition does not exist for K,, when n > 6. Thus, F
does not have twice-linear partition when n > 6. When n = 5, the tripartite 2-partition of Kj is
unique up to relabeling. One tripartite complete graph of this tripartite 2-partition is a triangle,
and we may assume it is on {z1,z2,x3}. Then, we take Ly - Ly = (z1 + z2 + a)(x2 + 3 + b) for
some a,b € Z3, and L3 - Ly = (z1 + o2 + o3 + x4 + ¢)(21 + 22 + 23 + 25 + d) for some c¢,d € Z3.
Thus, a complete quadratic polynomial F'(x1,...,x5) over 5 variables has a twice-linear 2-partition

iff (after renaming variables) F' = Ly - Ly + L3 - Ly. O

Now, we are ready to make a further major step towards Theorem 7.38. We first give a

preliminary result.

Lemma 7.34. Let f be a 2n-ary signature, where 2n > 4. If f € de and |f(a)] = 1 for
all a € F(f), then for all {i,j} C [2n], L (f}) = L (f}) or L(FI)NL(f5) = 0, and

j j
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() = L (F10) or (fO1) N .F(f10) = 0.

i iJ
£, We first prove that for all {i,j} C [2n], S (fY) = L (f}}) or L(fP) N (f}) = 0. For
a contradiction, suppose that there exist o, 3 € Z%”_Q such that a € 7( inO) Nn.7( 11]1) and 8 €

L %O)AY ( Z-ljl), where A denotes the symmetric difference between two sets. Consider signatures

8{;f and 9;; f. Then, Z-Ojo(a) + iljl(oz) and %O(ﬁ) + iljl (B) are entries of 8;;-f, and iojo(a) — iljl(a)

and %O(ﬁ) — iljl(B) are entries of 0, f. Since a € .7( ?jo)ﬂY( iljl), %O(a) = +1 and ilj.l(a) = +1.
Then between f?jo(a) + iljl (o) and %O(oz) - filjl(a), exactly one has norm 2 and the other is 0.

However, since f € .7( %O)Ay ( gjl), between %O(B) and ,L-ljl (B), exactly one is 0 and the other

has norm 1. Thus, |f3(8) + f51(8) = [f3(8) — fL1(B)] = 1. Then, between 8;% f and 9, f, there
is a signature that has an entry of norm 1 and an entry of norm 2. Clearly, such a signature is not

in «/. However, since f € [, 4/, we have 8;;f, 0;;f € <. Contradiction.

10
ij

S NS (f19) = 0. O

By considering signatures 8{5 f and 8; f, similarly we can show that .( le) = S(f) or

The next lemma is a major step.

Lemma 7.35. Suppose that F is a set of real-valued signatures of even arity, F does not satisfy
condition (T), and F is non-B hard. If F contains an irreducible 2n-ary signature f with parity

where 2n > 8, then
e Holant’(F) is #P-hard, or
e there is a signature g ¢ &/ of arity 2k < 2n that is realizable from f and B, or
e f has affine support.

iEAf. Again, we may assume that f satisfies 2ND-ORTH and f € fB /. Also, by Lemma 7.27, we
may assume that f(a) = %1 for all o € .(f) after normalization.

For any four distinct binary strings «,3,7,0 € Z3" with a @ 3® v = §, we define a score
T(c,B,7,0) = (t1,t2,t3) which are the values of wt(a @ ) = wt(y @), wt(a®v) = wt(5 & ) and
wt(a®d) = wt(S@~y) ordered from the smallest to the largest. We order the scores lexicographically,
ie., wesay T = (t1,ta,t3) < T' = (t],th,t5) if t1 < 1}, or to < th, when t; = ¢}, or t3 < t4 when

t1 =t} and ta = t,. Note that since «, 3,7,0 are distinct, the smallest value of the score T is
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(2,2,2). We say that (a, 3,7,9) where a ® @~y = ¢ forms a non-affine quadrilateral of f if exactly
three of them are in .(f) and the fourth is not.

For a contradiction, suppose that . (f) is not affine. Then, f has at least a non-affine quadri-
lateral. Among all non-affine quadrilaterals of f, we pick the one (a, f3,7,d) with the minimum
score Tmin = T'(a, 8,7,9) = (t1,t2,t3). Without loss of generality, we may assume that among
a, 3,7 and ¢, § is the one that is not in Z(f).

We first consider the case that (2,2,2) < Tyin. We prove that we can realize a non-affine

signature from f by merging. Depending on the values of Tiyi,, there are three cases.

o t1 > 4. Without loss of generality, we may assume that t; = wt(a & ). (Note that even
though we have named § as the one not belonging to .(f), since a ® & v @® § = 0, we can
name them so that t; = wt(a @ $).) Then, there are at least four bits on which « and
differ. Among these four bits, there are at least two bits on which ~ is identical to « or .
Without loss of generality, we assume that these are the first two bits and vy1v2 = ajas. We
have 818y = a1az, and as § = a ® B @ v, we have 0100 = ajaz. Also by flipping variables,
we may assume that o = 02" = 0002"2. Then, 8 = 118*, v = 007* and § = 116* where

B*, v, 0% € Z%n_z and 0* = B* @ ~*. We consider the following eight inputs of f.

a=00a* o =1la* pB'=008* B=118*
v =00y* o' =11y* & =006 o =116*

Note that v/ = a @ o’ & v, and wt(a & ') =2 < t;. Then,
T(a,0',7,9) < T(ev, B,7,0).

By our assumption that T'(a, 3,7, d) is the minimum score among all non-affine quadrilaterals
of f, (a,d',7,7) is not a non-affine quadrilateral of f. Since a,vy € #(f), o' and 7' are
either both in .(f) or both not in .#(f). Also, note that v/ =o' ® 8@ J, and wt(a/ ® 3) =
wt(a® ) —2 =1t —2 < t1. Then,

T(alv /87 7,7 5) < T(Ck, 57 7, 5)
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Again since T'(«,3,7,0) is the minimum score among all non-affine quadrilaterals of f,
(o/,B,7,8) is not a non-affine quadrilateral. Since 8 € (f) and § ¢ Z(f), ' and +
are not both in .Z(f). Thus, o/, ¢ Z(f). Similarly, (5',8,d,d) and («, 5',7,0’) are not
non-affine quadrilaterals of f, since their scores are less than T'(«, 3,7,0). Since 5 € 7 (f)
and 0 ¢ .7 (f), we cannot have both 5,8 € (f) from considering (5, 3,0’,d), and then
from (a, f',7,0"), we cannot have exactly one of 3,4’ is in Z(f). Thus, both 8,8 ¢ Z(f).
In other words, we have f(a/) = f(8') = f(v) = f(¢') = 0.

Consider the signature dy2f. Then, f(a) + f(a), f(8)+ [(8), f(7)+ [(') and £(8) + /(&)
are entries of d12f on inputs o, 8*, v* and §* respectively. Since f(a) + f(o/) = f(a) # 0,
fB)+ f(B) = f(B) #0and f(v) + () = f(7) #0, ", 8",7" € F(d12f). Meanwhile
we have f(0) + f(0') = 0+ 0 = 0, thus 6* ¢ #(012f). Thus, (a*, *,v*, %) is a non-affine

quadrilateral of 912 f. Then, 012 f is a non-affine signature of arity 2n — 2. Contradiction.

t1 = 2 and t2 > 4. Without loss of generality, we assume that wt(a @) = 2 and wt(a @ ) =
to > 4. (Again, using a® @@ = 0, a moment reflection shows that this is indeed without
loss of generality, even though we have named ¢ ¢ .(f).) Again by flipping variables, we
may assume that o = 02, Then, wt(v) = 2 and wt(8) > 4. Take four bits where §; = 1, for
at most two of these we can have 7; = 1, thus there exist two other bits of these four bits
(we may assume that they are the first two bits) such that 372 = 00 and 8152 = 11. Then,
a = 00a*, B =118% v =00y*, and 6 = 116" by 6 = a ® 8 ® vy, where 5*,v*,0* € Z%”*Q,
wt(5*) = 2, wt(y*) = 2 and 6* = 8* @ ~+*. Still, we consider the following eight inputs of f.

a=00a* o =1la* B =008* B=115*
v =00y* o' =119* & =006* o =116*

Note that wt(a @ ) = 2 and wt(a ® o) = 2 < t3. Then,
T(r,0',7,7) < T(e, B,7,9).

Then similarly since T'(«, 3,7, d) is the minimum, (o, o’,7,~’) is not a non-affine quadrilateral.

Since a,y € Z(f), o and 4/ are either both in .#(f) or both not in it. Also, note that
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wt(a/ &+') =2 and wt(o/ @ ) = wt(a @ B) — 2 =ty — 2 < t5. Then,
T<a/7 IBJ ’}/7 6) < T(a7 ﬁ? 77 5)

Thus, (o/,3,',0) is not a non-affine quadrilateral. Since § € #(f) and § ¢ (f), o and
~' are not both in .#(f). Thus, o/, ¢ #(f). Similarly, by considering (3, 3,4’,d) and
(a, B',7,0"), we know that they are not non-affine quadrilaterals. Thus, 3,6 ¢ Z(f). In
other words, we have f(/) = f(8') = f(v/) = f(¢') = 0. Still consider the signature dia2f.
We have d12f ¢ o/. Contradiction.

o t1 = 2, ty = 2 and t3 = 4. In this case, by the definition of distance-2 squares (equation
(7.12)), H((f:)) J;(gﬂ forms a distance-2 square. Clearly, it is not of type I, IT or III since
exactly one entry of this square is zero. As proved in Lemma 7.27, since f has a distance-2
square that is not type I, II or III, then we can realize a non-affine signature by merging.

Contradiction.

Now, we consider the case that Ty, = (2,2,2).
Then, we show that |.7(f)| = 22"~2. We consider the non-affine quadrilateral (c, 3,7, §) with
score T' = (2,2,2). By renaming and flipping variables, without loss of generality, we may assume

that
a B 0000273 (0110273

) 1100273 101023

and 0 is the only one among four that is not in .(f). By normalization, we may assume that
f(a) = 1. If f(y) = —1, then we negate the variable x; of f. This keeps f unchanged but
changes f{ to —f{, so this does not change the value of f(a), but changes the value of f(v) to
1. Thus, without loss of generality, we may assume that f(a) = f(y) = 1. Clearly, f has even
parity. Consider the signature f by the H4 gadget applied on variables x1 and xo of f. We have
FR(0%"2) = f(a) + f(7) = 2 and fP3(102"2) = f(B) + f(0) = f(B) since f(5) = 0. Remember
that since f € fB o, by Lemma 7.23, for all (a,b) € Z3, Nbe € & and we use ngy, to denote the
norm of its nonzero entries. Thus, ngy = 2 and ng; = 1. Also, we have f(8) # 0 which is the

same as 10273 € .7 (f%), and f(§) = 0 which is the same as 102"~ ¢ .(f{9). By Lemma 7.34,
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(%) N (f2) = 0. Remember that 2 = f% + f1 and fI9 = f% — f19. Then,
L) =L (UL () = L (f).

Consider signatures 8% f for all {i, 7} disjoint with {1,2} and every b € B. By Lemma 6.4 and
its remark, we may assume that either M (m12(3f’j 1) = )\ij4 for some real )\i?j # 0, or there exists
a nonzero binary signature gfj € O such that gfj(xl, x2) | 8% f. Otherwise, we get #P-hardness.

Consider the case that gi?j(xl,:vg) | 8%]“. It afjf = 0, then we can let 9% € B since a zero
signature can be divided by any nonzero binary signature. If 8% f # 0, we can realize gf-’j by
factorization. If gg’j ¢ B®!, then we get #P-hardness since F is non-B hard. Thus, we may assume

that gﬁ’j € B after normalization. Therefore, for all {i,j} disjoint with {1,2} and every b € B,

b

i # 0, or there exists a nonzero

we may assume that either M (m12(3§’j f) = )\ij4 for some real A
binary signature gfj € B such that gfj(:rl,xg) | 8%]‘. Then, by Lemma 7.29, Y(?zl) = Oop_s.
Thus, |.7(f%)] = 2273,

Now consider again the signature f. Since f satisfies 2ND-ORTH, and all its nonzero entries

have norm 1, for any (a,b) € Z2, {52 = |.7(fX)|. Then,
17 ()] = 7 (fiz)] = |7 (fid)] = 1.7 (fiz)]-

Remember that (%3 N.7(f19) = 0, and (7)) = 7 (/1)U (£19). Then, () and .7 (78})
form an equal size partition of Y(?Ql) Thus, | (f3)| = | (i) = %‘y( ?21)‘ — 924 Algo,
(1) = |7 (f3)] = 2°*~*. Therefore,

D=L FDI+ 1L (D] + L7 ()] + |7 (fiz)] = 4- 2207 = 22072,

Since all nonzero entries of f have norm 1, |f|?> = |.7(f)| = 22"~2. Also, since f satisfies 2ND-ORTH,
for all {i,j} € [2n] and all (a,b) € Z3, |f?| = }|fi* = 22",

We denote .#(f) by S. Since f has even parity, for every (z1,...,T2,) €S, 1+ +x2, =0,
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ie, S C &y Let F(x1,...,29,-1) € Za[x1,...,T2,—1] be the multilinear polynomial such that
1, (ml,...,l‘zn_l,wgn) cs 2n—1
F(zy,...,zon-1) = where z9, = Z ;.
O7 (331,... ,Hfgn_l,xgn) ¢ S i=1

Then, S = {(.’Bl, R ,a:2n) S ggn ‘ F(l‘l, e ,xanl) = 1}

Now, we show that for all {7, 5} C [2n — 1], Fi(;-o + Filj1 =0 or 1, and also Fgl + F%O =0or 1.
For simplicity of notations, we prove this for {i,j} = {1,2}. The proof for arbitrary {i,j} is the
same by replacing {1,2} by {4,j}. Consider

S() = y( ?g) = {(xg, ... ,JZQn) S (ggn_g ‘ F1020(:L'3,. . .,xgn_l) = 1},

and
Sl = 5’( 1121) = {(I’g, .. ,.legn) S 69@2”_2 | F1121(£U3,. . .,.%'Qn_l) = 1}.
Then,
SoNS1 = {(:L‘g, ... ,:L‘Qn) € &9 | F1020 . F1121 = 1},
and

SOUSl = {(1‘37"'733277,) 66@27172 ’ F{]20+F1121+F{)20F1121 = 1}
By Lemma 7.34, Sy = S or So NSy =0.
o If Sy = 51, then for every (x3,...,22,-1) € Zg”fg which decides every (zs3,...,x2,) € &an—2
by xon = a3+ + Ton-1,

F1020(1,'37 L) .’E2n71) = F1121(-T3, N ,.Izn,l).

Thus, F¥ + F}J = 0.

o If Sy Sy =0, then since |So| = |S1| = 22"~* (which is still true when replacing {1,2} by an
arbitrary {Z,j}), |So U S1| = |So‘ + ’Sl| = 2273 Since So U ST C &5,—9 and |ggn,2‘ = 22n—3,

SoUS] = &p—9. Thus, for every (z3,...,29,-1) € Z%n_?’ which decides every (z3,...,22,) €
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Eop_o by Toy = T3+ -+ + Ton_1,
F1020(.’E37 e )x2n—1) . F1121 («'E,?,, e ,I‘Qn_l) = 07

and

FPQO(CCP,, o ,xgn_l) + Fllzl(ajg, ... ,xgn_l) + F1020 . F1121(£C3, .. ,xgn_l) = 1.
Thus, F{¥ + F}} = 1.

Similarly, we can show that FY + FLY = 0 or 1. Therefore, for all {i,5} C [2n — 1], FZ-(}O + lejl =0
or 1 and Fig.l + F%-O =0 or 1. By Lemma 7.26, d(F') < 2.

If d(F) < 1, then clearly, S = {(z1,...,%2,) € & | F(21,...,22,—1) = 1} is an affine linear
space. Thus, f has affine support. Otherwise, d(F') = 2. By Lemma 7.26, F'is a complete quadratic
polynomial. Consider signatures f and f{4. Remember that f (00062”*3) = f(llO(_)'Z”*?’) = 1.
Thus, 02*~2 € Sy N Sy # 0. Then, Sy = S;. Let

Si={a €S| fis(a) = fiz (@)} and S_={a€ S| fi5(a)=—fiz(a)}.

Then, as f takes 41 values on its support, Sy = .7 (9}, f) and S_ = .7 (01, f). Since 9}, f, 0o f €
S; and S_ are affine linear subspaces of &,_3. Also, by 2ND-ORTH, (f29, f]3) = [S4| — |S_| = 0.
Thus, |S4| = [S—| = 3|So| = 22"75. Since |&a,—2| = 22773, S, is a an affine linear subspaces of
&on—o decided by two affine linear constraints Ly =1 and L; = 1. (Here both LIL and L; are
affine linear forms which may have nonzero constant terms, but we write the constraints as Lf =1

and L = 1.) In other words,
S+ = {($3, e ,iBQn) € Sop_o | L;r =1 and L; = 1} = {(l‘g, . ,ZL‘Qn) € Eop_o | LIL . L;r = 1}

Since for every (zs,...,Tan) € &ap—2, 3 + -+ + T2, = 0, we may substitute the appearance of
Ton in Lf and L;r by x3 + - + x9,_1. Thus, we may assume that Lf, L;r € Zo|xs, ..., x2n—1], and

d(L{) = d(Ly) = 1. Similarly, there exist L], Ly € Zs[zs,...,x2,—1] with d(L7) = d(Ly) = 1
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such that
S_={(x3,...,29n) € Eop—o | L] =1and L, =1} = {(x3,...,22,) € S2p—2 | L] - L; =1}
Clearly, S NS_ = (. Then
S US_ ={(w3,...,79,) € &apo | L] - Ly + L] - Ly =1}

Remember that

So =S4y US_ ={(23,...,2) € an— | Fi5 = 1}.

Thus, Lf . L;r +L] Ly = FY. Since for all 1 < i < j < 2n— 1, the quadratic term x;xj appears in
F, for all 3 <i < j < 2n—1, the quadratic term z;z; appears in FX. Thus, F{Y € Zs[xs, ..., 72,-1]
is a complete quadratic polynomial over 2n — 3 variables and it has a twice-linear 2-partition. Since

2n > 8, 2n — 3 > 5. By Lemma 7.33, we have 2n — 3 = 5, and after renaming variables,
F = (x3+x4+a)(x4—|—x5+b) + (3 + x4+ x5 + w6+ ¢) (23 + x4 + x5 + 27 + d)

where a, b, c,d € Zz. Without loss of generality, we may assume that L] - L3 = (23 + 24 +a)(z4 +

x5+ b). Then,
Sy = L(0hf) = {(x3,...,28) € Eapn_a | 73 = x4+ a and x4 = x5 + b},

for some a,b € Zs.

Clearly 07, f is a 6-ary signature and |7 (9], f)| = 2572 = 23. We show that 9}, f ¢ B3 U FsU
]:éq . Then, by Corollary 7.11, we get #P-hardness. Since the support of a signature in Fg U ]-"éq
is either & or O whose sizes are both 25. Thus, d;5f ¢ Fs U FH. For any 6-ary signature g in
B®3, its 6 variables can be divided into three independent pairs such that on the support .#(g), the
values of variables inside each pair do not rely on the values of variables of other pairs. Thus, if we
pick any three variables in .#(g), the degree of freedom of them is at least 2; more precisely, there
are at least 4 assignments on these three variables which can be extended to an input in .#(g).

However, in .% (OE ), the degree of freedom of variables z3, x4, x5 is only 1, namely there are only
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two assignments on x3, 4,25 that can be extended to an input in Y(@E ). Thus, afgf ¢ B3,

This completes the proof of Lemma 7.35. O

7.3.4 Affine Signature Condition

Finally, by further assuming that f has affine support, we consider whether f itself is an affine
signature. We prove that this is true only for signature of arity 2n > 10. For signature f of arity

2n = 8, we show that either f € o7 or the following signature is realizable.
hg = XT - (_1)I1$2$3+$1$2$5+x11315+w2$3$57 where T = y(hS) — y(fS)

Note that in the support .#(fs) (see its definition (7.11) for this Queen of the Night fs), by
taking x1,x9,x3, x5 as free variables, the remaining 4 variables are mod 2 sums of (g) subsets of
{z1,29,x3,25}. Clearly, hg is not affine, but it has affine support and all its nonzero entries have
the same norm. Omne can check that hg satisfies 2ND-ORTH and hg € fB &/ . But fortunately, we
show that by merging hg, we can realize a 6-ary signature that is not in B® U Fg Ufég . By Corollary
7.11, we are done.

After we give one more result about multilinear boolean polynomials, we make our final step

towards Theorem 7.38.

Lemma 7.36. Let F(x1,...,2,) € Za[z1,...,2,] be a complete cubic polynomial, L(xa, ..., x,) €
Zolxa, ..., xn) and d(L) < 1. If we substitute 1 by xpi1+ L(za, ..., 2y) in F to get F', and suppose
F'(za,...,xp41) = F(xpy1 + Ly za, ... xn) € Zalxa, ..., xnt1] 98 also a complete cubic polynomial,

then
e Ifn>5, then L must be a constant e =0 or 1.

e Ifn =4, then L must be either €, or of the form x; + xj + €, for some € = 0 or 1, for some

{i,j} €{2,3,4}.

JER]. Since F(x1,...,x,) is a complete cubic polynomial, we can write it as

F(z1,...,2p) =1 - Z ;T + Z vizjr, + G(1,...,Tp)

2<i<j<n 2<i<j<k<n
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where d(G) < 2. Then,

F'(z9,...,2Zn,Tnt1) = (xpe1 + L) - Z Tixj + Z zizjrg + G(Tne1 + L, ..., xp).

2<i<j<n 2<i<j<k<n

Let G'(x2,...,2p,Tnt1) = G(xps1 + L, ..., x,). Since d(L) < 1 and d(G) < 2, d(G') < 2. Then,

there is no cubic term in G'(z3,. .., Zn, Tpt1). Since F'(z2, ..., 2y, Tpt1) is a complete cubic poly-
nomial over variables (xa, ..., Zp, Tny1) and Tp11 'Z2<i<j<n xixj+22<i<j<k<n xjz;x), already gives
every cubic term over (z29,..., Ty, Tp+1) exactly once, there is no cubic term in L - E2<i<j<n T

(after taking module 2). If L = 0 or 1, then we are done. Otherwise, there is a variable that
appears in L. Without loss of generality, we may assume that xo € L (i.e., zo appears in L).

Let Q(x3,...,2p) = 23<i<j<n xix; € ZLolxs, ..., xy]. Since n > 4, we have  # 0. For every
x;xj € @, since o € L, the cubic term zoz;z; will appear in L - Z2<i<j<n zizj. To cancel it,
exactly one between z; - xox; and x; - xox; must also appear in L - Z2<i<j<n z;x;. Thus, exactly
one between x; and z; appears in L.

If n > 5, then x3zy4, z4x5, 305 € (). Thus, exactly one between z3 and x4 is in L, exactly
one between x4 and x5 is in L, and exactly one between x3 and x5 is in L. Clearly, this is a
contradiction.

If n = 4, then Q = x3z4. Either z3 or x4 appears in L. Thus, L is a sum of two variables

among {2, x3, x4} plus a constant 0 or 1. O

Lemma 7.37. Suppose that F is a set of real-valued signatures of even arity, F does not satisfy
condition (T), and F is non-B hard. If F contains an irreducible 2n-ary signature f with parity

where 2n > 8, then
e Holant®(F) is #P-hard, or
e there is a signature g ¢ </ of arity 2k < 2n that is realizable from f and B, or
o fed.

L. Again, we may assume that f satisfies 2ND-ORTH and f € |, 5. Also by Lemmas 7.27 and
7.35, we may assume that f(a) = £1 for all @ € (f) and .#(f) is an affine linear space. Let

{z1,...,2m} be a set of free variables of .(f). Then, on the support .7(f), every variable z;
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(1 <i < 2n) is expressible as a unique affine linear combination over Zg of these free variables, i.e.,
2 = Li(w1, ... 2m) = A + Moy + ...+ A2, where AV, ... A\ € Zy. Clearly, for 1 < i < m,

L(x;) = x;. Then,

y(f) = {(l‘l,...,xgn) EZ%n | 1 :Lla'--,$2n:L2n}

= {(xl, e ,xgn) S Z%n ’ Tm+1 = Lm+1a e, Top = Lgn}.

Also, let I(z;)) = {1 <k <m| )\f = 1}. Clearly, for 1 <i < m, I(z;) = {i}. Form+1 < i < 2n,
we show that |I,| > 2. For a contradiction, suppose that there exists m + 1 < i < 2n such that
|I;,] =0 or 1. If |I;,| = 0, then z; takes a constant value in .. Then, among f? and f!, one is a
zero signature. Thus, f is reducible. Contradiction. If |I;,| = 1, then z; = xj, or z; + 1 for some
free variable xj. Then, among %0, 33, ilko and filkl, two are zero signatures. Thus, f does not
satisfy 2ND-ORTH. Contradiction.

Since f(a) = %1 for all @ € Z(f) and each a € Z(f) can be uniquely decided by its value
on the first m free variables, there exists a unique multilinear boolean polynomial F(z1,...,zy) €

Zslx1,...,Ty] such that

flx1, . Ty ey o) = Xg(—l)F(ml"“’mm)

where S = .Z(f). If d(F) < 2, then clearly f € &/. We are done. Thus, we may assume that
d(F) > 2 and hence m > 2. Remember that Fi‘;-b denotes the polynomial obtained by setting
variables (x;,z;) of F to (a,b) € Z3. Then, fﬂjb = (—1)Fi€3b on .Z(f). We will show that for all
i,7 € [m], d(Fg-0 + Fél) < 1 and d(FZ%1 + Fibo) < 1. For brevity of notation, we prove this for
{i,7} = {1,2}. The proof for arbitrary {i,j} is the same by replacing {1,2} with {7, 5}. We first
show that d(F%O—i—F%l) < 1. We use S to denote .77 ( inO) and Sp to denote .7 ( lel) By Lemma 7.34,

there are two cases, Sg = S; or SpN Sy = 0.

o Suppose that Sy = S;. For convenience, we use L? to denote (L;){3 and L} to denote (L;)13.

Then,

So :{($3, - ,ZL‘Qn) € Zgn—Q ‘ Tm4+1 = L?n-i—l? ey, oy = Lgn}

Sl :{<LL‘3, R ,xQn) € Zgn_Q ‘ T4l = Lin—i—l? v, T2 = L%n}
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So LY = L} for all i > m + 1. Thus, either {1,2} C I(z;) or {1,2} N I(x;) =0 for i > m + 1.
Let Sy = {a € Sy | iojo(oz) = l-ljl(oz)} and S_ = {a € S | Z-Ojo(a) = — Z-ljl(a)}. Then,
(f?;],lej1> =184 —1-[9-| =0. Since Sy = Sy US_, [Sy| = [S_| = §[So|. Note that
S (O12f) = Sy and F(01,f) = S—. By our assumption that f € [, O1of,0,f € .
Thus, both Sy and S_ are affine linear subspaces of Sy = S1. Since |Sy| = |S_| = |So|/2,

there exists an (affine) linear polynomial L(xs, ..., x2,) such that

and

S_ = {(:B3, ceoyTop) €80 | L(xs, ..., x9n) = 1}'
For (z3,...,72,) € Sp, and @ > m + 1, we can substitute the variable z; that appears in
L(xs, ..., won) with LY = L. Then, we get an (affine) linear polynomial L'(zs, ... om) €
Zolwy, ..., xm] such that L'(zs, ..., @m) = L(23, ..., Tm, Ty 1, - - -, T2n) for (23, 220) € Sp.
Thus,

S+ = {(x3; .. 7x2n) S S() | L/(CU37 .. ,wm) = 0}7
and

S_ = {(-%'3,.. . ,$2n) S S() ‘ L/(xg,... ,I‘m) = 1},

Note that as [S4| = |S—| > 0, the affine linear polynomial L’ is non-constant, i.e., d(L') = 1.

Then, for every (3, ...,Tm) € Z5 2,
(1)) _ (1)@ n) i g, ) = 0

and

Thus,

(_1)F1020($377xm)+F1121($37733771) — (_]_)Ll(x:’)v"'vxm)‘

Therefore, F{(z3, ..., 2m) + Fi3 (23, ..., 2m) = L'(x3,..., 7). Then, d(FY + Fl3) = 1.
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o Suppose that SyNS; = (. Then, there exists a variable z; where i > m+1 such that between
{1, 2}, exactly one index is in I(z;). Without loss of generality, we may assume that i = m+1,
1 € I(zpmy1) and 2 ¢ I(zp41). Then, zp1 = 21 + K(x3,..., %) where K € Zo[zs, ..., Ty)

is an (affine) linear polynomial. Consider Sp.
SQ = {(333, - ,xgn) e Z%n_Q ‘ r1 = To = 0,1’m+1 =x1 + K, Tm+2 = Lm+2 ey Top = Lgn}.

Since x1 = x2 on Sy, for every i > m + 2, if x1 or xo appear in L;, we substitute each one of
them with x,,1 + K. We get a linear polynomial K; € Zs[zs, ..., ZTm, Tm+1]. Then, for every

(r3,...,T2,) € So, L; = K;. Thus,
So ={(z3,...,29,) € Zgn_Q | 1 + K =0, 242 = Ky ..., oy = Koy}
Similarly, we have
S1 =A{(z3,...,m2p) € 23"72 | Tmy1 + K =1L, xmqo = Kigo . .., won = Koy}
Let Sy = So U S7. Then,
Su={(x3,...,x2p) € Z%"‘z | Tryo = Kimta ..., Tan = Kop b

Thus, we can pick x3,...,Zm, Tm+1 as a set of free variables of Sy.

Consider g = 012f. Clearly, .#(g) = Sy since Sy NS} = (. Then, there exists a unique

multilinear boolean polynomial G(xs, ..., Zm+1) € Za[xs, ..., Tm+1] such that

9(@3,. ., w20) = x5, - (1) FLetma),

For every (z3,...,22,) € Sy that is uniquely decided by (0,0, 3, ...,2,) € {(0,0)} x Z7"2,

i1 = K(z3,...,2m) and fX(xs,...,22,) = g(x3,...,22,). Thus, for every (x3,...,7,) €
-2

732,

(_1)F1020(13,..,,a:m) _ (_1)G($3,...,xm,K)'
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Also, for every (xs,...,xa,) € S that is uniquely decided by (1,1,z3,...,2,) € {(1,1)} x
Z?_2, Tmi1 = K(23,...,0m) + 1, and fil(xs,...,22,) = g(x3,...,72,). Thus, for every

(X3y...,Tm) € Zg”fQ,

(_1>F1121(:1:3,...,xm) — (_1)G(13,...,mm,K+1).

Thus, FX(23,...,2m) = G(x3,...,7m, K) and Fi4(z3,...,2m) = G(23,.. ., Tm, K + 1).

Sincefefgﬂ,gzﬁufeszf. Thus,

g/(.ilﬁg, . 7$m7 xm+1) = (_1)G(I37---7xm7$m+1)
is also in € &7. Let y = xypt1 + K(23,...,2m) € Z[xs,...,Tmi1] be an affine linear combi-

nation of variables x3,...,Ty,11. Since g € &7, by Lemma 2.11,
dG(zs,...,m, K)+ G(z3,...,2m, K +1)] < 1.
Thus, d(FY + Fly) < 1. Also if d(G) = 1, then by Lemma 2.11

d(FY + Fl3) =0, ie., FY + Fy =0or 1. (7.17)

Similarly, we can show that d(F{y + F13) < 1. Thus, for all i,j € [m], d(F} + F};') <1 and
d(F{' + F’) < 1. By Lemma 7.26, d(F) < 3.

If d(F') < 2, then clearly f € o/. We are done. Otherwise, d(F') = 3 and by Lemma 7.26, F' is a
complete cubic multilinear polynomial over m variables. If we pick another set X of m free variables
and substitute variables of F' by variables in X, then we will get a cubic multilinear polynomial
F’ over variables in X. Same as the analysis of F', F’ is also a complete cubic polynomial. In
particular, consider the variable x,,+1. Recall that |I(zpy,41)] = 2. Without loss of generality, we
assume that 1 € I(zp4+1). Then, 41 = x1 + L(xo, ..., zy) where L(xg, ..., zy,) is an affine linear
combination of variables xo, ..., 2. We substitute ;1 in F' by ;41 + L, and we get a complete
cubic multilinear polynomial F'(xa, ..., Zm+1) € Za[xa, ..., Tmi1]. By Lemma 7.36, if m > 5, then
Tm41 = @1 OF Typg1 = Z1. Thus, I(zpyy1) = {1}. This contradicts with |I(x;,=1)] = 2. Thus,

m < 4.
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If m = 4, then by Lemma 7.36, x5 = 21 + €, or 5 = x1 +2; +; + €, where ¢ = 0 or 1,
for some 2 < i < j < 4. Since |I(z5)| > 2, the case that x5 = 1 + € is impossible. Similarly,
for i > m + 2, the variable z; is a sum of three variables in {z1, z2,z3, 24} plus a constant 0 or

1. If there exist z; and z; for 5 < i < j < 2n such that I(z;) = I(z;). Then, z; = z; or 7.

Thus, among iojo, iojl, Z-ljo and filjl, two are zero signatures. Thus, f does not satisfy 2ND-ORTH.
Contradiction. Thus, I(z;) # I(z;) for any 5 < i < j < 2n. There are only (g) = 4 ways to
pick three variables from {z1,x9,x3,24}. Thus, 2n < 4+ 4 = 8. By the hypothesis 2n > 8 of
the lemma, we have 2n = 8. Clearly, |.7(f)| = 2* = 16. Due to 2ND-ORTH, for all {4,5} € [§],

(D =12 (D] =1L (FD = |7 (F5)] = 4.

o If there exists {7, j} such that ./( %0) =.7( iljl), then for any point a in .&( l_ojo) =.7( Z-ljl),
regardless whether Z-Ojo(a) = z-ljl(a) or %0((1) =— Z.ljl(a), either a € y(@;;f) ora € (0 f).
Thus,

+ — £ _ 00y _ 11
L0 1) V(05 ) = (fij) =7 ([fij)-

ij ij

Also, by 2ND-ORTH,
W0, 81)) = 170 )| = 1705 )] = 0.

1] 7]

Thus, |<5”(8;§f)\ = |.#(;; )| = 2. Note that every 6-ary signature in B® has support of size

8, and every signature in JFg and féq has support of size 32. Thus, 827;- f ¢ BUFsU .Fé{ .

Then, by Corollary 7.11, we get #P-hardness. Similarly, if there exists {i,7} such that

01y _ 10 T =) - ¥ ® H

S (fij) = L (fi;'), then we have [.Z(9;; )| = [£(0;; )| = 2. Thus, 9] f & B U Fg U Fg'.
Again, we get #P-hardness.

« Otherwise, for all {i,7} € [8], Z(fi)) N L (fi) = 0 and Z(f}1) N.L(f)) = 0. Then,

y(@;;f) =.7( %0) uL( ,Lljl) Thus, \y(a;;f)y = 8. Clearly, 8;;.f ¢ Fo UFH. If 8;;]‘ ¢ B®3,

then we get #P-hardness. For a contradiction, suppose that 6;]“- f € B®3. Then,
O f =X it (—1)%’ where d(G}) =1
ij y(aijf) ij :

As we proved above in equation (7.17), F%O + Fél = 0 or 1. Similarly, suppose 8;5- f € B®3,
and we can show that Fj)! + F;’ = 0 or 1. Thus, for all {i,5} C [8], F} + F}' =0 or 1 and
Fz-g.l + }7’1-1]-0 =0 or 1. Then, by Lemma 7.26, d(F') < 2. Contradiction.
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Suppose that m = 3. Remember that for 4 < i < 2n, |I(z;)| = 2. Thus, z; is a sum of at least
two variables in {z1, 2, x3} plus a constant 0 or 1. Again, if there exist z; and z; for 4 <i < j < 2n
such that I(z;) = I(x;), then among Z] , Z-Ojl, 10 and f , two are zero signatures. Contradiction.
Thus, I(z;) # I(z;) for any 4 < i < j < 2n. There are (;’) + (g) = 4 different ways to pick at least

two variables from {xy,z2,23}. Thus, 2n < 3 +4 = 7. Contradiction. O

Theorem 7.38. Suppose that F is a set of real-valued signatures of even arity, F does not satisfy

condition (T), and F is non-B hard. Then, Holant®(F) is #P-hard.

1EA]. Since F does not satisfy condition (T), F contains a signature f ¢ </. Suppose that f has
arity 2n. We prove this theorem by induction on 2n.

If 2n = 2,4 or 6, then by Corollary 7.11 and its remark, Holant®(F) is #P-hard.

Inductively assume for some 2k > 6, Holant?(F) is #P-hard when 2n < 2k. We consider
the case that 2n = 2k 4+ 2 > 8. First, suppose that f is reducible. If it is a tensor product of
two signatures of odd arity, then we can realize a signature of odd arity by factorization. We get
#P-hardness by Theorem 5.35. Otherwise, it is a tensor product of two signatures of even arity
that are not both in &7 since f ¢ /. Then, we can realize a non-affine signature of arity 2m < 2k
by factorization. By our induction hypothesis, we get #P-hardness. Thus, we may assume that
f is irreducible. If f has no parity, then we get #P-hardness by Lemma 7.17. Thus, we may
also assume that f has parity. Then by Lemma 7.37, Holantb(}" ) is #P-hard, or we can realize a

non-affine signature of arity 2m < 2k. By our induction hypothesis, we get #P-hardness. ]

Since B is realizable from fs and {f} U F is non-B hard for any real-valued F that does not

satisfy condition (T), we have the following result.

Lemma 7.39. Suppose that F is a set of real-valued signatures of even arity and F does not satisfy

condition (T). Then, Holant®(fs, F) is #P-hard.

Combining Theorem 7.5 and Lemma 7.39, we have the following result. This concludes Chap-

ter 7, and we are done with the arity 6 case.

Lemma 7.40. Suppose that F is a set of real-valued signatures of even arity and F does not
satisfy condition (T). Let F=2z1F. If]? contains a signature f of arity 6 and f¢ @®, then
Holant(#s| F) is #P-hard.
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Chapter 8

Final Obstacle: An 8-ary Signature
with the Strong Bell Property

We have seen some extraordinary properties of the signature fs. Now, we formally analyze
it. The existence of fg presented a more formidable obstacle to the induction proof. In order
to handle it, We introduce Holant problems with limited appearances and give a novel reduction
from Holant®( fs, F) to Holant(fs, F). We prove a #P-hardness result for Holant(fg, F). Finally,
we show that our induction proof works for signatures of arity 2n > 10. This finishes the proof of

the dichotomy for real-valued Holant problems.

8.1 The Discovery of fs

Remember that fs = yr where

T =5(fs) = {(v1,29,...,28) € Z3 | 1+ a2 +235+24=0, 75+ 76 + a7 + 78 =0,
1'1—|—CL'2—|—$5—{—:E6:O, $1+$3+$5+$7=0}.

(8.1)
={00000000,00001111,00110011,00111100,01010101,01011010,01100110,01101001,

10010110,10011001, 10100101, 10101010, 11000011, 11001100, 11110000, 11111111}.

One can see that .#(fs) has the following structure: the sums of the first four variables, and
the last four variables are both even; the assignment of the first four variables are either identical
to, or complement of the assignment of the last four variables. Another interesting description of
7 (fs) is as follows: One can take 4 variables, called them yi,y2,y3,y4. Then on the support the
remaining 4 variables are mod 2 sums of (g) subsets of {y1,y2,y3,v4}, and y1,y2,ys3,ys4 are free

variables. (However, the 4 variables (y1,y2,¥s3,y4) cannot be taken as (x1,x2,x3,z4) in the above
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description (8.1). But one can take (y1,y2,y3,ys) = (21, z2, 23, x5). More specifically, one can take
any 3 variables x;, xj, ), from {x1,...,2g} first as free variables, which excludes one unique other
x¢ from the remainder set X’ = {z1,...,28} \ {xi, z;, 21}, and then one can take any one variable
x, € X' as the 4th free variable. Then the remaining 4 variables are the mod 2 sums of (é) subsets
of the 4 free variables {z;, z;, zy, x,}, and in particular zy = z; + x; + a2y, on (fg).) We give the
following Figure 7 to visualize the signature matrix Mja34(fs). A block with orange color denotes

an entry +1. Other blank blocks are zeros.

5] g8 23 25 = y
o = o = S = o O
o - = O - O o -
oooo -l [ |
0011+ B B
0101+
0110}
1001
1010
1100} [ | [ |
1111+ B

B 7: A visualization of fg, which happens to be the same as fg =711

One can check that fg satisfies both 2ND-ORTH and fg € [ O%. Also, fs is unchanged under the
holographic transformation by Z71, i.e., fg = Z7'fs = fs. Now, we show how this extraordinary
signature fg was discovered. We use the notation fg since we consider the problem Holant(#2| F )
for complex-valued F satisfying ARS. We prove that if F contains an 8-ary signature f where
fgé O, then Holant(#;| F) is #P-hard or Js is realizable from f (Theorem 8.6).

Remember that D = {#2}. Then D® = {\ - (#2)®" | A € R\{0},n > 1} is the set of tensor
products of binary disequalities #2 up to a nonzero real scalar. If for all pairs of indices {i,7},
(/9\@-]-}’\6 D?, then we say fe ]D@’. Clearly, if ]?G D® and fhas arity greater than 2, then fe TD®.

We first show the following result for signatures of arity at least 8.
Lemma 8.1. Let ]?gé O% be a signature of arity 2n > 8 in F. Then,

e Holant(#;5] ]?) is #P-hard, or
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e there is a signature g ¢ 0% of arity 2k < 2n — 2 that is realizable from ]?, or

e there is an irreducible signature }": € Tl)@ of arity 2n that is realizable from ]?

1EBA. Since f§é (5®, f;é 0. Again, we may assume that ]?is irreducible. Otherwise, by factoriza-
tion, we can realize a nonzero signature of odd arity and we get #P-hardness by Theorem 5.35, or we
can realize a signature of lower even arity that is not in O% and we are done. Under the assumption
that fis irreducible, we may further assume that fA‘satisﬁes 2ND-ORTH by Lemma 6.6. Consider
signatures (i-jffor all pairs of indices {7, j}. If there exists a pair {4, j} such that ajféj_f O, then
let g = é\wf, and we are done. Thus, we may also assume that ]?6 T@Q

If for all pairs of indices {7, j}, we have 51-]-]?5 0. Then, by Lemma 3.9, f(oz) = 0 for all a with
wt(a) # 0 or 2n. Since f # 0 and by ARs, |f(0%")| = |f(12")| # 0. Clearly, such a signature does
not satisfy 2ND-ORTH. Contradiction. Thus, without loss of generality, we assume that 5121?;_'5 0.
Since (/9\12f € @®, without loss of generality, we may assume that in the UPF of 512]/"\, variables
x3 and x4 appear in one binary signature by(x3,x4), x5 and xg appear in one binary signature

ba(z5,x6) and so on. Thus, we have

~ ~ ~ —

D1af = by (w3, 24) @ ba(ws, 26) @ b3(27,28) @ ... @ b1 (Tan_1, T2n).

By Lemma 3.6, all these binary signatures bAl, l;;, . b:l are realizable from f by factorization.
Note that for nonzero binary signatures 6;(.’1}27;4_1, x2i+2) (1 <i < n—1),if we connect the variable
X211 of two copies of @($2i+1,$2i+2) using #9 (mating two binary signatures), then we get #o
up to a scalar. We consider the following gadget construction on ]? Recall that in the setting of
Holant(#| F ), variables are connected using #3. For 1 < i < n — 1, by a slight abuse of names
of variables, we connect the variable xo;41 of f with the variable x9;41 of Z)Ai(xgiﬂ,xgHQ) using
#9. We get a signature f’ of arity 2n. (Note that, as a complexity reduction using factorization
(Lemma 3.6), we can only apply it a constant number of times. However, the arity 2n of ]? is
considered a constant, as fe F , which is independent of the input size of a signature grid to the
problem Holant(#2| F ).) We denote this gadget construction by G; and we write f/ as Gy o f
(G1 is constructed by extending variables of f using binary signatures realized from 512]?. It does
not change the irreducibility of f Thus, f/ is irreducible since fis irreducible. Similarly, we may

assume that jA” el 0. Otherwise, we are done.
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Consider the signature glgf’. Since the above gadget construction (G1 does not touch variables
x1 and xo of f, G1 commutes with the merging gadget 512. (Succinctly, the commutativity can be
expressed as 512}\’ = 512(G1 of) =Gy oglgf) Thus, 512f’ can be realized by performing the gadget
construction G on 512]?, which connects each binary signature bAZ-(a;giH, x9i+2) in the UPF of 512}'\
with another copy of I/);(x27;+1,x27;+2) (in the mating fashion). Thus, each binary signature l;; in
512fis changed to #2 up to a nonzero scalar after this gadget construction GG1. After normalization

and renaming variables, we have
Diaf! = (#2) (w3, 74) @ (F2) (w5, 26) ® (F2) (w7, 78) @ ... ® (F2)(¥20-1, T20). (8.2)
Thus, 512}:’ € D®. Moreover, for all pairs of indices {4, j} disjoint with {1,2}, we have
g(ij)(m)f’ € D®, and hence g(ij)(m)f/ £ 0. (8.3)

A fortiori, for all pairs of indices {7, j} disjoint with {1,2}, (/9\2]]?’ £ 0.
Now, we show that we can realize an irreducible signature ?; of arity 2n from f’ such that

1 e TD‘@. We first prove the following claim.

Claim. Let h € T@‘@ be a signature of arity 2n > 8. If aﬂz\ € D® for all {i,j} disjoint
with {1,2}, then h € :f\D®.

Clearly, we only need to show that 51kﬁ € D for all 2 < k < 2n. Then, by symmetry we also
have 52kﬁ € D® for k = 1 and all 3 < k < 2n. This will prove he TD& Consider 51143% for an
arbitrary 2 < k < 2n. Since for all {7, j} disjoint with {1,2}, we have ajﬁ € D®, a fortiori for all
{i,7} disjoint with {1,2} U {k},

Dy (ijh € D®. (8.4)

Since h has arity 2n > 8, we can pick a pair of indices {i,j} disjoint with {1,2} U {k}. Since
5(1;9)(”)% € D¥®, which is nonzero, a fortiori we have 51;.3% # 0. So we may consider the UPF of
51;;]{, which is known to be in O®. For a contradiction, suppose that there is a binary signature l;l
(as a factor of 51k/f;) such that by is not an associate of #3. Among the two variables in the scope
of bAl, at least one is not x9. We pick such a variable x5 where xs # x5. Then, we consider another

binary signature 6; in the UPF of 51kﬁ
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o If bAg = \- #9, for some nonzero scalar A\, then we pick a variable x; in the scope of 65 that
is not xa. Consider g(st)(lk)ﬁ. When merging variables zs and x; of 51]€/}\L, we connect the
variable x4 of bAl with the variable x; of A- #4, and the resulting binary signature is just - bAl,

which is not an associate of #5. Thus, we have 5(st)(1k)ﬁ ¢ D®.

e Otherwise, 6\2 is not an associate of #5. Since 51;ﬁ has arity 2n — 2 > 6, we can find another
binary signature l;), in the UPF of 51kﬁ We pick a variable x; in the scope of I;; that is not
xo. Consider g(st)(lk)ﬁ' Now, when merging variables x5 and x; of 51;;};, the binary signature

by is untouched. Thus, we have b | 5(st)(1k)ﬁ, which implies that (79\(8,5)(1;6)/}; ¢ D®.

Note that in both cases, {s,t} N ({1,2} U {k}) = 0. Therefore the two cases above both
contradict (8.4) by picking {i,j} = {s,t}. Thus, dixh € D? for all 2 < k < 2n. Then similarly, we

can show that 5%% € D? for all 3 < k < 2n. This finishes the proof of our Claim.

Remember that Z;,-jf’ # 0 for all {7, j} disjoint with {1,2}. We consider the UPF of 5”]?’ Since
.]/C\/ € 7(5@, there are two cases depending on whether variables x; and x2 appear in one binary

signature or two distinct binary signatures.

Case 1. For every {i,j} disjoint with {1, 2}, in the UPF of @jf,’ x1 and xg appear in one nonzero

binary signature l;i;(xl, x9) € O. In other words, for every {i,j} disjoint with {1,2},

~ o~ —

0ij f" = bij(x1,x2) ® gi5, for some g;; # 0.

(These factors b/z; and g;; are nonzero since (/3\”]?’ # 0.) Then, g;; ~ (/9\(12)(2-]-)?’, and by (8.3), we have
gij € D®. Also for {k,¢} disjoint with both {75} and {1,2}, 5(kg)(ij)f’ # 0 since 5(12)(kg)(ij)]?’ =
ijykeyaz J' £ 0.

We first show that for any two pairs {i,j} # {k,¢} that are both disjoint with {1,2},
l;;(xl, x9) ~ l;k\g(xl,xg). If {i,7} is disjoint with {k, ¢}, then l;;(xl,xg) | g(kg)(ij)f’ and l;\kg(arl, x9) |
5(Z»j)(kg)f’. Since 5(kg)(ij)f’ = 5(2-]-)@4)]?’ # 0, by Lemma 3.4, we have l;i\j(xl,:cg) ~ Ek\g(dil,ﬂfg). Oth-
erwise, {i,7} and {k, ¢} are not disjoint. Since f’ has arity > 8, we can find another pair of indices
{s,t} such that it is disjoint with {1,2} U {é,5} U {k,¢}. Then, by the above argument, we have
bij (21, ) ~ bey(x1,22), and by (z1,22) ~ bre(w1,22). Thus, by (21, 39) ~ be(x1,x2). We can use

a binary signature g(xl, x2) to denote these binary signature Z;z;(ajl, x9) for all {i,j} disjoint with



202

{1,2}. Then, b(z1,z2) | 5”?’ for all {i,} disjoint with {1,2}. Also, b(z1,x2) is realizable from f’
by merging and factorization.

Then, we consider the following gadget construction G on f’ By a slight abuse of variable
names, we connect the variable x; of f’ with the variable z1 of 3(1:1, x2) and we get a signature
F. Clearly, GGo is constructed by extending variables of f, . It does not change the irreducibility
of f’ Thus, F is irreducible. Again, we may assume that ﬁ € ](5@). Consider 5”?; for all {,7}
disjoint with {1,2}. Since the above gadget construction Gg only touches the variable x; of f’) it
commutes with the merging operation 5@] Thus, 5”?: can be realized by performing the gadget
construction G2 on ajf’, i.e., connecting the binary signature /b\(l’l,xg) in the UPF of 5”]?’ with
itself (in the mating fashion), which changes g(xl, Z2) to #2 up to some nonzero scalar A;j. Thus,

for all {4, 7} disjoint with {1,2}, after renaming variables, we have

—

Bij ¥ = Nij - (#2) (21, 22) @ 55 € D

Thus, (%F € D? for all {i,j} disjoint with {1,2}. By our Claim, 1+ e TDQ We are done with
Case 1.

Case 2. There is a pair of indices {7, j} disjoint with {1,2} such that z; and z appear in two
distinct nonzero binary signatures bA’l(xl,:):u) and I;;(xg,xv) in the UPF of é\w]?’ In other words,

there exits {4, 7} such that

o~ o~ ~

Oii ' = Z(a:l, Ty) @ by (z2, 2,) ® f/Li\j, for some l;; £ 0. (8.5)

Since f/Lz\] | 5(12)(1-3')2\’ and 5(12)(ij)f’ € D%, we have f;\] € D¥®. Also, after merging variables z1 and xo
(using #9) in @jf’, variables x,, and x, form a binary disequality up to a nonzero scalar (this binary
signature on z, and x, must be a binary disequality because we already know 5(12)(”)}:’ € D%).
In other words, by connecting the variable z; of bA’l(xl, x,,) and the variable xa of l;é(xg, xy) (using
#9), we get A\- #9 (x4, zy) for some A # 0. By Lemma 3.19, we have bA’1 ~ l;; Also, connecting the
variable z,, of bA’1 and the variable z,, of 572 (using #2) will give the binary signature \- #9 (x1,x2)
as well.

We consider the following gadget construction Gz on f’ By a slight abuse of variable names,
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we connect variables 1 and xo of f’ with the variable x1 of bA’1 and x9 of bA’2 using #o respectively.
We get a signature }: Again, f; is irreducible since the gadget construction G3 does not change
the irreducibility of f’ Also, we may assume that F € f@@). Otherwise, we are done. Consider
570?; Similarly, by the commutitivity of the gadget construction G5 and the merging gadget 57;]-,
(/9\1-]-?; can be realized by connecting variables x1 and x5 of (/9\”]?’ with the variable z1 of 571 and the

variable xo of bA’2 respectively. After renaming variables, we have
0™ = Nij - (F2)(@1,24) © (#2) (w2,0) © hyj € DT (8.6)

We now show that (/9\12?; € D®. Note that it is realized in the following way; we first connect
variables z; and x5 of f’ with the variable 1 of bA/l(xl, x,,) and the variable x5 of [;72((172, x,) respec-
tively (using #2) to get F, and then after renaming variables x, and z, to x1 and x5 respectively,
we merge them using #4 (see Figure 8(a)). By associativity of gadget constructions, we can change
the order; we first connect the variable x, of Z)A/l(:vl,xu) with the variable z, of 672(332,3:1}) (using
#2), and then we use the resulting binary signature to connect variables z; and xy of f’ (edges
are connected using #3). Note that connecting x,, of l;i(xl,:nu) with z, of 672(1'2,111}) gives \- %o
up to a nonzero scalar A, and A- #4 is unchanged by extending both of its two variables with #o
(see Figure 8(b)). Thus, /8\12?; is actually realized by merging 71 and x5 of f/ (using #2) up to a

nonzero scalar. Thus, we have 512F ~ 512}'\/, and hence 512?: € D®, by the form (8.2) of 512f/.

~

\¥ /

Kl 8: Gadget constructions of 512}:; and 512f’

X/

Then, we show that 53,53": € D® for all pairs of indices {s,t} disjoint with {1,2,4,j} and
{s,t} # {u,v} where u and v are named in (8.6). Clearly, 58,5?; # (0 since 5(515)(12)?; € D¥®. We
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first show that in the UPF of 53,5?;, x1 and xo appear in two distinct nonzero binary signatures.
Otherwise, for a contradiction, suppose that there is a nonzero binary signature 6;(.731,372) such
that 6;(1‘1,.%2) \ 53757;. Then, 6;(51}1,%2) ] 5(,-j)(st)7; = g(st)(ij)?: # 0. By the form (8.6) of 51-]'7;,
the only way that ;1 and z2 can form a nonzero binary signature in 5(st)(ij)F is that the merging
gadget is actually merging x,, and x,. Thus, {s,t} = {u,v}. Contradiction. Therefore, for some 7’
and j', we have

—

Do f* = bl (1, 2ir) © By (w2, 251) @ hige, (8.7)

for some b/’S‘Z(wl,xil),b/’s‘;(xg,xj/), f/Ls\t % 0 since é\st?; % 0. Since l/L;g | 5(12)(375)?; and 5(12)(5,5)}: €
D®, we have hy € D®. Also, by Lemma 3.19, b/:-; ~ @ For a contradiction, suppose that
5StF ¢ D%, then I)/Z;(xl, xy) # (#2), and b/:;(xg,a:j/) % (#2). Consider the signature 5(515)(1‘]‘)?;‘
Since {s,t} # {u,v}, by the form (8.6) of 52-]-?:, 21 and x9 appear in two binary signatures in
the UPF of 5(St)(ij)f;. Remember that 5(515)@)?; = 5@)(8”?;. By the form (8.7) of 53,53“:, if
{', 7'} = {4, 7}, then, after merging z; and z; of é\st}:, x1 and xo will form a new binary signature
in g(ij)(st)?:~ Contradiction. Thus, {7, j'} # {4, j}. Then, when merging z; and x; of 53157;, among
b/’s‘Z(ml,:ni/) and b/:;(ajz,xj/), at least one binary signature is untouched. Thus, (/9\(1-]-)(515)?; has a
factor that is not an associate of #5. A contradiction with 5(17-)(3@?: € D®, which is a consequence
of (8.6). Thus, Dy f* € D®.

Then, we show that 5%?: € D®. Recall the form (8.6) of @]F Clearly, {u,v} is disjoint with
{1,2,1,7}. Also, Do f* 2 0 since 5(Z-j)(uv)F € D®. Consider the UPF of d, f*.

o If 1 and x9 appear in one nonzero binary signature I;j\v(xl, x32), then
Ow f* =%, (21,22) ® Gup  for some Gy Z 0.

Then, we have g, ~ 5(12)(%)?; € D® since o f* € D2, Also, since b/j;)(:nl, x2) | 5@»)(%)?; €

D® we have b, (z1,z5) € D®. Hence, Oy f* € D2.

p—

e If z1 and z9 appear in two distinct nonzero binary signatures b*

o1 (X1, Ti) and Y, o (22, 251),

uv2

then

o~ —_

Oun f* = bl (X1, 240) @ b o (22, 1) @ hyy  for some Ay, # 0.
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Then, we have hy, € D? since 5(12)(1“,)?: € D®. By the form (8.6) of @jF, after merging
variables x, and x, of 5@‘?:7 variables z1 and x5 form a binary #4 in 5(w)(2-j)f: = 5(”-)(1“,)?;.
On the other hand, by the form of é\qu, the only way that 1 and zo form a binary after
merging two variables in 5qu is to merge z; and xj. Thus, we have {7/, '} = {4, j}. Since
f: has arity 2n > 8, we can find another pair of indices {s,t} disjoint with {1,2,4, j,u,v}.

—

When merging variables s and z; in 57“,?:, binary signatures b*

o1 (@1, ) and b o(wo,xjr)

uv2

are untouched. Thus, we have lfw\l(xl,a:i/) ® EZU\Q(Z‘Q,{L‘]'/) | g(st)(w)?;. As showed above, we

have dy f* € D and then 5(st)(uv)f: € D®. Thus, b/Z\m(fEl, zy) @Y o (22, 2j/) € D® and then

uv2
Ouwn [* € D®.

So far, we have shown that 512?; € D%, 51]?; € D® and é\st?: € D for all {s,t} disjoint with
{1,2,4,5}. If we can further show that ak}; € D® for all k # 1,2,4,4, and then symmetrically
@kﬁ € D® for all k # 1,2,4, j, then Jy.f* € D® for all {s,t} disjoint with {1,2}. Thus, by our
Claim, F € TD®. This will finish the proof of Case 2.

Now we prove Oy f* € D® for all k # 1,2,4, . Since 5(“9)(12)?: € D®, we have Jy,f* £ 0. So

we can consider the UPF of E/)\zk?:

e If z1 and z2 appear in one nonzero binary signature, then
O f* = bl (r1,22) ® g~ for some gy, € D%

Here, ;1 € D® since 5(%)(12)}: € D®. Since F has arity 2n > 8, we can pick a pair of indices
{s,t} disjoint with {1,2,4, 4, k}, and merge variables x5 and z; of @k?; Then, @(561,332) ]
5(&5)(%)?;- Since Jy f* € D%, 5(st)(ik:)?: = é\(ik‘)(st)?; € D®. Thus, I;;";(xl,xg) € D® and then
dinf* € D

e If z1 and z9 appear in two nonzero distinct binary signatures, then

—

é\ikﬁ = Eﬁ;(ml,xp) ® blo (22, 24) ® f;\k for some f;\k € D,

Again, here h; € D® since 5(%)(12)?: € D®. By connecting variables z; and zo of dy.f*,
xp and x4 will form a binary disequality up to a nonzero scalar (this binary signature is

disequality because we know that 5(ik)(12)ﬁ € D®). By Lemma 3.19, as the type of binary
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signatures, b/:; ~ b/:; Between z;,, and x4, at least one of them is not z;; suppose that it is
xp. We pick a variable x, in the scope of i;z\k that is also not x; (such a variable z, exists as
2n > 8). Then, by merging x, and ;. of 51167;, the binary signature b/;f‘;(:):g, xq) is untouched.
Since {p,r} is disjoint with {1,2,4,j}, we have b/:.‘;(xg, zq) | (/9\(%)(1”)}: € D®. Thus, we have
b/;‘,;(xg,a:q) € D?® and so does b/j; (x1,2p), since we have shown that they are associates as

the type of binary signatures. Thus, akf: € D%.

As remarked earlier, by symmetry, we also have @kﬁ € D® for all k # 1,2,4,j. Thus, we are
done with Case 2.

Thus, an irreducible signature F € ]D® of arity 2n is realized from f O

Remark 8.2. Since ?: is realized from ]? by gadget construction, F satisfies ARS as f does.

We first give a condition (Lemma 8.4) in which we can quite straightforwardly get the #P-
hardness of Holant(#| f, F ) by 2ND-ORTH given fe TD‘@ is an irreducible 8-ary signature.

Lemma 8.3. Let f = a(1,0)%2" 4+ a(0,1)%2" + (#5) (4, ;) ® gn be an irreducible 2n-ary signature,
where 2n > 4 and gy, is a nonzero EO signature (i.e., with half-weighted support) of arity 2n — 2.

Then, f does not satisfy 2ND-ORTH.

iER]. By renaming variables, without loss of generality, we may assume that {7, j} = {1, 2}.

For any input 003 # 02" of f, we have f(OOB) = (#2)(0,0) - gn(8) = 0. Thus,

FEE =D 1F008)P = |F(0*).
5623”72
On the other hand, since both (#2)(z1,22) and gn are nonzero EO signatures, (#2)(x1,22) ® gn
is a nonzero EO signature. Then, we can pick an input 01y € Z3" with wt(01y) = n such that
]?(Olfy) = (#2)(0,1) - gn(y) # 0. Since v € Z2" 2, and wt(y) = n — 1 > 1, there exists a bit ; in 7

such that v; = 0. Without loss of generality, we may assume that 01y = 0104’. Then,
FBIP = 17O + 1£(0107) > [F(@) = [ F5].

Note that the constant A for the norm squares must be the same for all index pairs {4, j} C [2n] in

order to satisfy 2ND-ORTH in Definition 3.20. Thus, fdoes not satisfy 2ND-ORTH. 0
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Lemma 8.4. Let ]? € TD® be an irreducible 8-ary signature in 7. If there exists a binary
disequality (#2)(xi, ;) and two pairs of indices {u,v} and {s,t} where {u,v}N{s,t} # 0 such that
(#2) (x4, 25) | Ounf and (#2) (x4, x5) | Dsef, then Holant (5| F) is #P-hard.

~

£ 8. For all pairs of indices {4, j}, since 51-]-]?6 De, y(@-jf) is on half-weight. By Lemma 3.9, we
have f(oz) = 0 for all wt(a) # 0,4, 8. Suppose that f((jS) = a and by ARS f(fs) = a. We can write
fin the following form

f=a(1,0)%% +a(0,1)®® + fp,

where fAh is an EO signature of arity 8.

Clearly, @jf: ajfh for all {4,7}. Then, fn € TD@’ since f € TD@’. In addition, since there
exists a binary disequality (#2)(z;,x;) and two pairs of indices {u,v} and {s,t} where {u,v} N
{s,t} # 0 such that (#2)(zs, ;) | guvﬁl,(itﬁl, by Lemma 4.19, fAh € D¥ and (#2)(wi, xj) | fAh
Thus,

f=a(1,0%% +a(0, )% + (#2) (1,27) © G,

where G € D® is a nonzero EO signature or arity 6 since f, € D®. By Lemma 8.3, f does not

satisfy 2ND-ORTH. Thus, Holant(#:] .7?) is #P-hard by Lemma 6.6. O

For signatures in D®, we give the following property. Now we adopt the following notation for

brevity. We use (4, j) to denote the binary disequality (#2)(z;, ;) on variables x; and x;.

Lemma 8.5. Let f € D® be a signature of arity at least 6. If there exist {u,v} # {s,t} such that
(i,7) | é\uvj? and (i, j) | é\sz‘/]?; then (i,j) | ]?

1£7]. For a contradiction, suppose that (i, 7)1 f Thus z; and x; appear in two separate disequal-
ities in the UPF of f. Since f € D®, there exists {{, k} such that (¢,¢) ® (j,k) | f. By merging two
variables of f, the only way to make x; and z; to form a binary disequality is by merging x, and

x. By the hypothesis of the lemma, {¢,k} = {u,v} = {s,t}. Contradiction. O
Theorem 8.6. Let fgé O® be a signature of arity 8 in F. Then
o Holant (9| F) is #P-hard, or

o there exists some Q € Oy such that Holant (| fs, QF) <r Holant (#| F).



208

iL£8]. By Lemma 8.1, we may assume that an irreducible signature ?z of arity 8 where F € TD® is
realizable from f, and f* also satisfies ARS. Otherwise, Holant (5| F) is #P-hard or we can realize
a signature g ¢ O® of arity 2,4 or 6. Then, by Lemmas 6.7, 6.8 and 7.40, we get #P-hardness. We
will show that ]?8 is realizable from F, or otherwise we get #P-hardness. For brevity of notation, we
rename F by ]? We first show that after renaming variables by applying a suitable permutation to
{1,2,...,8}, for all {i,j} C {1,2,3,4}, (,k) | 8;;f where {¢,k} = {1,2,3,4}\{4,j}. Furthermore,
we show that either Holant(#,| F) is #P-hard, or

(5,6) | Draf, (5,7) | Dwaf, (6,7) | Dogf, and (1,2) | dssf or (1,3) | Dssf. (8.8)

Consider 512]?. Since fe D%, 512]?6 D®. By renaming variables, without loss of generality,

we may assume that

Biaf = A2 - (3,4) ® (5,6) @ (7.8), (8.9)

for some A2 € R\ {0}. Then, consider 534]/‘\. 556]?, and 578?. There are two cases.

o Case 1. (1,2) | 534f, 556f and (/9\78]?. Then we can write 556f: (1,2) ® h for some h € D®.
Clearly, h ~ 5(12)(56)]?. By the form (8.9) and commutativity, 5(12)(56)]‘A‘~ (3,4)®(7,8). Thus,
h ~ (3,4) ® (7,8). Then, for some A5 € R\ {0},

Bs6f = Ass - (1,2) ® (3,4) ® (7, 8). (8.10)

Similarly, we have

Orsf = Mrs - (1,2) ® (3,4) ® (5,6),

and

Bsaf = Asa- (1,2) ® (5,6) @ (7,8),

for some A7g, Az4 € R\ {0}.

Let g = (1,2) ® (3,4). Let {3,j} C {1,2,3,4} and {¢,k} = {1,2,3,4}\{4,7}. If we merge
variables x; and x; of g, i.e., if we form gijfg\, then clearly variables xy and zp will form a
disequality. Thus, for all {4, j} C {1,2,3,4}, (¢, k) | ajﬁ Then, (¢,k) | 5@@@(7, 8) ~ 5(1‘3‘)(56)]?
by (8.10), and similarly (¢, k) | gij/g\® (5,6) ~ 5(1-]-)(78)]?. By Lemma 8.5, (4, k) | c{/)\wf
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e Case 2. Among 534]?, 55(5]?, and 578]?, there is at least one signature that is not divisible by
(1,2). Without loss of generality, suppose that (1,2) 1 556]/‘\. Since 556f € D, there exists
{u,v} disjoint from {1,2,5,6} such that (1,u) ® (2,v) | Bs6.f. Then, by merging variables z;
and z9 of 556}\, we have (u,v) | 5(12)(56)]?; comparing it to 5(56)(12)]? using the form of (8.9)
and by unique factorization we get {u,v} = {3,4} or {7,8}. Without loss of generality (i.e.,
this is still within the freedom of our naming variables subject to the choices made so far),
we may assume that {u,v} = {3,4} and furthermore, u = 3 and v = 4. Then, for some

56 € R\ {0},
Fso.f = Ny (1,3) © (2,4) @ (7, 8). (8.11)

Then, consider 57gf We show that (5,6) | 578]?. Otherwise, there exists {s,¢} disjoint from
{5,6,7,8} such that (5,s) ® (6,t) | 578f By merging two variables of 578]?, the only way
to make x5 and x¢ form a binary disequality is to merge x5 and z;. By the form (8.9),
(5,6) | dua)(rs)f- Thus, {s,¢} = {1,2}. From (5,5)® (6,%) | Irsf, and {s, ¢} = {1,2} we know
that x; and xo will form a binary disequality in 5(56)(78)]?. Thus, (1,2) | 5(56)(78)f. However,
by (8.11) 5(56)(78)f~ (1,3) ® (2,4). This is a contradiction to UPF. Thus, drsf = (5,6) ® ¢’
and ¢ ~ 5(56)(78)f~ (1,3) ® (2,4). Then, for some Mg € R\ {0},

dsf = Nog - (1,3) ® (2,4) @ (5,6). (8.12)

Let {i,5} € {1,2,3,4} and {{,k} = {1,2,3,4}\{i,j}. If we merge variables z; and z; of q,
which is an associate of (1,3) ® (2,4), then clearly variables 2y and ) will form a disequality.
Thus, for all {i,j} C {1,2,3,4}, (¢,k) ~ d;;¢'. Then, (£,k) | 89’ ® (7,8) ~ Jujys6)f (by
(8.11)) and (£, k) | 8i;g’ ® (5,6) ~ dpijyzs)f (by (8.12)). By Lemma 8.5, (£,k) | 9;; f.

Thus, in both cases, we have ({,k) | 5”]? where {i,j} U {¢,k} = {1,2,3,4} is an arbitrary
disjoint union of two pairs. Now, we show that in both cases, (with possibly switching the names

x7 and xg, which we are still free to do), we can have
(5,6) | Diaf, (5,7) | Daf, (6,7) | Buaf. (8.13)

Clearly, by the form (8.9), we have (5,6) | Oi2f. Consider d13f. We already know that
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(2,4) | d13f (in both cases). If (5,6) | Oisf, then since (5,6) | diof and {1,2} N {1,3} # 0, by
Lemma 8.4, Holant(#2| F) is #P-hard. Thus, (5,7) | D3 f or (5,8) | d13f. By renaming variables

x7 and xg, we may assume that in both cases

Oisf = (2,4) ® (5,7) ® (6,8). (8.14)

This renaming will not change any of the above forms of 551? Consider (/9\23fA. We already have
(1,4) | Do f. We know dos f € D?, and so in its UPF, (6,7) | Das f, for some r € 8]\ {1,2,3,4,6}.
If (5,6) | o3 f, then since (5,6) | Do f and {1,2} Nn{2,3} # 0, by Lemma 8.4, we get #P-hardness.
If (6,8) | a3f, then since (6,8) | Oy3f by (8.14) and {1,3}N{2,3} # 0, again by Lemma 8.4, we get
#P-hardness. Thus, we may assume that » = 7 and (6,7) | 523]?. Therefore, we have established
(8.13) in both cases. Furthermore, in Case 1, we have (1,2) | ds6.f by form (8.10), and in Case 2,
we have (1,3) | 956/ by form (8.11).

Now, we show that for any o € Zj with wt(a) = 1, fla234 = 0. Since (3,4) | diaf, (512]?)82 =0.
Since {1, 2} is disjoint with {3,4},

@12)3 = D1a(f39) = [0 + F1999 = 0. (8.15)
Since (1,4) | D3 f,

(D23F)09 = Doz (F9) = 2900 + Fa90 = 0. (8.16)
Since (1,3) | 5241?,

(D13F)%% = Di3(f39) = F2909 + F1o99 = 0. (8.17)

Comparing (8.15), (8.16) and (8.17), we have

£1000 _ £0100 _ #0010 _
1234 = J1234 = J1234 = Y-

Since (2, 3) | 5141?,

3 700 _ A 700 20001 |, 71000 _
(014f )23 = Oa(fa3) = fiasa + fizzs = 0.

Plug in Eggf = 0, we have /})20??41 = 0. Thus for any a € Z3 with wt(a) = 1, we have ff‘QM = 0.
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Also, for o € Z3 with wt(a) = 3 and any 3 € Z3, by ARS we have,
f1a234(5) = f15234(3) =0

since wt(a) = 1. Thus, for any « € Z3 with wt(a) = 3, we also have ﬁa234 =0.

Let a € Z3 be an assignment of the first four variables of f, and 8 € Z3 be an assignment of
the last four variables of f. Thus, for any o, 3 € Z3, f(aﬂ) = 0 if wt(a) = 1 or 3. Also, since
fe TD@’, by Lemma 3.9, f(aﬁ) = 0 if wt(a) + wt(8) # 0,4 and 8. Then, we show that for any

ap e Z(f),

~ ~ ~ -~ —

[f(aB)] = |f(@B)| = [f(aB)| = |f(@B)]

~ -~ ~ ~

By ARrs, |f(ap)| = |f(@B)| and |f(aB)| = |f(aB)|. So, we only need to show that

~ -~

[f(eB)] = [f(aB)]. (8.18)

Pick an arbitrary {i,j5} C {1,2,3,4} and an arbitrary {u,v} C {5,6,7,8}. Let {{,k} =
{1,2,3,4}\{¢,7} and {s,t} = {5,6,7,8}\{u,v}. Since f satisfies 2ND-ORTH, by equation (6.6), we
have @JQSS 2 = /f?ﬁ}le Since f(aﬁ) =0 if wt(a) = 1 or 3, or wt(a) + wt(5) # 0,4 and 8, we get
the equation,

70 70 70 70
| FoSpon000j2 4. | ootz _ | Fitnigope | oottt (3.19)

Note that for @]07?8]2, since we set z;x; = 00, the only possible nonzero terms are for xyx; = 00 or

11; furthermore, as we also set x,x, = 00, then zsx; = 00 if 2 = 00, and xsxy = 11 if xpxy = 11.

The situation is similar for @%&P
Also, by considering |E:)£§0 = @JQ;}]Q, we have
700000000 |2 2001111002 200110011 |2 2000011112
‘fijﬁkuvst ‘ + |fijékuvst | = |fijékuvst | + |f7jj€k:uvst | : (820)

Comparing equations (8.19) and (8.20), we have

7000000002 2000011112 7001100112 7001111002
’fijﬁkuvst ’ = ’fij@kuvst ‘ ) and |fij€kuvst | = |fij€kuvst | :
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Also, by ARS,

7111111112 /\11110000
‘fijékuvst ‘ _‘ ijlkuvst |

As (i,7,k,£) is an arbitrary permutation of (1,2, 3,4) and (u, v, s,t) is an arbitrary permutation of
(5,6,7,8), and f(aﬂ) vanishes if wt(a) + wt(8) # 0,4 and 8, the above have established (8.18) for
any «, 3 € Z3. Hence, for all a, 8 € Z3,

~ ~ ~

[f(aB)] = |f@B)| = |f(aB)| = | f(@B)l.

Note that fhas at most 4 + (;1) . (g) = 40 many possibly non-zero entries. In terms of norms,

these 40 entries can be represented by ﬁjg and the following 9 entries in Table 6. In other words,
for every a3 € Z§ where wt(a) = wt(8) =0 (mod 2) and wt(a) + wt(8) =0 (mod 4), exactly one
entry among f(aﬁ), ]?(@B), f(aﬁ) and ]?(EB) appears in Table 6. We also view these 9 entries in
Table 6 as a 3-by-3 matrix denoted by M = (mij)§,j:1’

- z5xer7ry | ap = 0110 (Col 1) | ag = 1010 (Col 2) | a3 = 1100 (Col 3)
a1 = 0110 (Row 1) myy = }bnoono Mg = ]ﬂ)uololo mis = Jﬂ)nonoo
as = 1010 (Row 2) Moy = Jﬂ0100110 Moy = J?10101010 Moz = J?10101100
a3 = 1100 (Row 3) may = fuooouo May = ]?11001010 Ma3 = J’moouoo

¢ 6: Representative entries of fin terms of norms

Let j/”ﬁs = a. First we show that
|m,~71|2 + |m,~72|2 + |mi’3|2 = |a]2, for 1 = 1,2,3. (8.21)

and

Ima;” + [maj|* + [ms;|* = |af®, for j=1,2,3. (8.22)

Let (i,7,k) be an arbitrary permutation of (1,2,3). Again, by equation (6.6), ]f%lklg .= @]O,Sé)

Then, we have

FOLLO0NI0|2 4 | 7011010102 | | 0110110012 _ | 7000000002 2
| fijkase7s >+ 1f ijkA5678 >+ 1f 1745678 P =1f ijkA5678 * = |al*.
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By taking (i, j, k) = (1,2,3),(2,1,3) and (3,1, 2), we get equations (8.21) for i = 1, 2, 3 respectively.

Similarly, by considering | 421]1,?|2 = | 4%0,9|2 where (7, j, k) is an arbitrary permutation of (5,6,7), we

get equations (8.22).

~

Also, since (5,6) | O12.f, we have diaf (a3, ..., as) = 0 if 25 = 2. Notice that

701101100 710101100
mig + mog = f +f

is an entry of 512fon the input 101100. Thus, m13 + mes = 0. Also, since (5,7) | 513]?, we have
mi2 + mgo = 0.

Since (6,7) | o3 f, we have

ma1 +mg; = 0.

Let x = |mys| = |mas|, y = |m12| = |ms2|, and z = |ma1| = |mas1|. Plug z, y, z into equations (8.21)

and (8.22). We have

mul?+y*+2* = |mp | + 2%+ 27
=22+ |maal +2° = ¥+ |maal* +4°
=2+ y’ +|masl’ = 27 + 27 + s’
Thus, © = y = z and |mq1| = |ma2| = |ms3|. Consider

201100110 710100110 701101010 710101010
f +f / + f :

mi1 + me1 = and  mi2 + ma =

They are entries of di2f on inputs 100110 and 101010. By form (8.9) of Ao f, we have
mi1 +ma1 = miz + ma € R\{0}.

Remember that we also have (1,2) | ds¢f or (1,3) | s6f-
We first consider the case that (1,3) | Os6.f. Then

Moy + Mag = .}-\10100110 + f10101010 =0.
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Thus,
mi1 +ma1 = miz — ma1 € R\{0}.
Since |mia| = |mail, |maz| = |m11| and ma1 + mae2 =0,
[maa| = [ma1| = |maa| = [mul.
Thus, mi; = Mg and miy = —ma1. Let Re(x) the real part of a number x. Then,

iRe(mH) + %e(mgl) = Q%Q(Tngl) = %e(mlg) — %B(mm) = *Q%Q(mgl).

Thus, Re(ma1) = 0. Then, Re(my1) = Re(ma1) = 0. Thus, mi1 + mor ¢ R\{0} since Re(mq1 +
ma1) = 0. Contradiction.

Now, we consider the case that (1,2) | s¢f. Then

ma1 + msg = f/-\11000110 + f11001010 =0.

Since mis + m3o = 0 and ms; + m3; = 0, we have mqs = —moy. Thus, we have
mi1 + ma1 = My + Moz = Moz — ma1 € R\{0}.

Taking the imaginary part, Jm(mi1) + Jm(ma1) = Jm(maz) — IJm(me1) = 0. Adding the two, we
get Jm(myy) + Im(maee) = 0, and thus, my; + mo2 € R. Since |mq1| = |maz|, m11 = maz. Then,

Re(my1) = Re(mag). Also, since my1 + ma; = maee — ma € R\{0},
Re(mi1) + Re(mar) = Re(maz) — Re(mar) = Re(ma1) — Re(ma) # 0.

Thus, Re(me1) = 0, and Re(mq1) # 0. Suppose that me; = di for some d € R. Then there exists
¢ € R\{0} such that mj;; = ¢ — di and then mgy = ¢ + di. Remember that mo; + ms; = 0. Thus,
mg1 = —di. Consider

miy + map = fonoono + J?11000110 — ¢ — 2di.

It is an entry of the signature 513f. Since 513f€ D®, ¢ —2di € R. Thus, d = 0. Then, mo; = 0
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and mq; € R. Thus,
z = |mig| = |mas| =y = |maz| = |ms2| = z = |mai1| = [ms1[ =0,
and

|mii| = \m22| = \m33\ = \a| = \f(ﬁ)\

Since ]?;%_ 0, a # 0. Thus,
F(f) = {86,65,86,66 € Z3 | § = 0000, a1, cvo, ov3 },

where a1, ag, a3 are named in Table 6. It is easy to see that 5”(]?) = Y(fg) Since m1; € R, and

|mi1| = |a|] # 0, we can normalize it to 1. Since, B1af € D?, we have

~ ~ ~ o~ ~ ~ ~ ~

1= floqar) + f(aear) = flarae) + f(aeaz) = flaian) + f(aar) = f(aiaz) + f(agas).

~ ~ o~ ~

Since, f(aza1) = f(araz) = f(aar) = f(araz) =0,

-~ ~

(a101) = f(azaz) = flarar) = flagam) = 1.

=)

Similarly, since 013 f € D,

~ ~ ~

Flaren) = Flazaz) = flarm) = fazaz) = 1.

By ARS, we have

—~ o~ ~ ~

1 = flaraq) = f(aaar) = f(aron) = f(aaaz)

)
)

I
g}
I
—
I
~

(2az) = f(azas) = f(azas).

Also, since O15f € D%,

— 201101001 711100001 £00001111 10000111 £00001111
1= flonar) = f +f =/ +f =/ :

~

Then, by ARS, ]/"\11110000 = fOOOOHH = 1. Thus, f(fy) = 1 for any v € Z(f) with wt(y) = 4.
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Remember that f(0%) = a where |a| = 1. Then, f(I8) = @ by ARsS. Suppose that a = €. Let
@ = [8%] € (/)\2 where p = e /8. Consider the holographic transformation by @ @ does not
change the entries of ]?on half-weighed inputs, but change the values of f(ﬁS) and f(fS) to 1. Thus,

Qf = fs. Then, Holant (#| J?&@]?) <r Holant(#2| ]?) =

Now, we want to show that Holant(#2| fg, @.7? ) is #P-hard for all @ € (/)\2 and all F where
F = ZF is a real-valued signature set that does not satisfy condition (T). If so, then we are done.
Recall that for all Q\ € (/)\2, Q\j-: = 6/2‘\7: for some @@ € Oy. Moreover, for all € O, and all
real-valued F that does not satisfy condition (T), QF is also a real-valued signature set that does
not satisfy condition (T). Thus, it suffices for us to show that Holant(#3] A a ) is #P-hard for all
real-valued F that does not satisfy condition (T).

The following Lemma shows that fg gives non-B hardness (Definition 7.8).

Lemma 8.7. Holant(#2| ﬁg,]?) is #P-hard if F contains a nonzero binary signature b ¢ B®.

FEquivalently, Holant(fs, F) is #P-hard if F contains a nonzero binary signature b ¢ B%.

1ER]. We prove this lemma in the setting of Holant(#2| fs. ]?) Ifb ¢ O%, then by Lemma 6.7, we
get #P-hardness. Thus, we may assume that be 0%, Then, b has parity. We first consider the
case that b has even parity, i.e., b= (a,0,0,a). Since b # 0, a # 0. We can normalize a to e where
0<60 <7 Thena=e ", Sinceggé Z§, a# £1 and a # +i. Thus, 0 # 0 and 0 # 3.

We connect variables 1 and x5 of ﬁ; with the two variables of b (using #2), and we get a 6-ary
signature denoted by g. We rename variables xo, x3, x4 of § to 1, x9, 3 and variables zg, x7, T8 to

T4, 5, T¢. Then, g has the following signature matrix

% 0 0 0 0 0 0 0]
0 ¢ 0o 0 0 0 0 0
0 0 € 0o 0 0 0 0
0 0 0 ¥ 0 0 0 0

Mi23.456(9) = .

0 0 0 0 € 0 0 0
0 0 0 0 0 % 0 o0
0 0 0 0 0 0 e 0
0O 0 0 0 0 0 0 €
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Now, we show that g ¢ O®. For a contradiction, suppose that g € O®. Notice that .7 (9) =

{(x1,...,26) € ZS | 21 = 74, 2 = 75 and x3 = 76}. Then, we can write g as

~ ~

g = bi(21,74) @ by(w2, w5) @ b (w3, w6),
where b, = (€91,0,0,e7101), by = (€92,0,0,e7%) and bA3 = (€1%3,0,0,e7'%). Then notice that
/g\OOOOOO _ efie _ 6\1(07 0) . 6\2(07 0) . 6:;(07 0) _ ei(91+02+93)’

and

§011011 _ 67i9 _ 6\1(070) . 6\2(17 1) . 65(17 1) _ ei(91792793)'
By multiplying the above two equations, we have

6—i29 — ei(91+92+93) . ei(91—92—93) — 61291‘

Also, notice that
5001001 _ 6i0 _ 61(0’0) . b;(0,0) . 5;)(1’ 1) _ ei(€1+6’2793)’

and

/’5010010 — ol — 61(0’0) . 6;(1, 1) . 6;5(0’0) _ 61(91792+03).
By multiplying them, we have

0120 _ Li(01402—63)  i(01—02+05) _ i201
Thus, €2 = ¢7120. Then, %% = 1. Since, 0 € [0,7), # = 0 or 5. Contradiction. Thus, g ¢ 0%, By
Lemma 7.40, we get #P-hardness.

Now, suppose that b has odd parity, i.e., E(yl,yg) = (0,¢¥,e7% 0) where 0 € [0,7) after
normalization. We still consider the 6-ary signature gA’ that is realized by connecting variables x;

and x5 of fg with the two variables y; and yo of b (using #2). Then, after renaming variables, ;’
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has the following signature matrix

[ o 0 0 0 0 0 0 ]
0 0 0 0 0 0 €9 0
O 0 0 0 0 € 0 o0
~ 0 0 0 0 % 0 0 0

M3 456(9") = .
0 0 0 € 0 0 0 0
0 0 e 0 0 0 0 0
0 e 0 0 0 0 0 0
¢ 0o 0 0 0 0 0 O
Similarly, we can show that g;’ ¢ O%. T hus, by Lemma 7.40, we get #P-hardness. 0

We go back to real-valued Holant problems under the Z-transformation. Consider the problem
Holant( fs, F). Remember that fs = ﬁ;. We observe that, by Lemma 8.7 the set {fs} UF is non-B
hard, according to Definition 7.8. Then if we apply Theorem 7.38 to the set {fs} U F we see that
Holant®(fg, F) is #P-hard. Now if we were able to show that B is realizable from fg then we would
be done, since by Theorem 8.6, we either already have the #P-hardness for Holant(F), or we can

realize fg from F, and thus the following reduction chain holds
Holant?(fs, F) <7 Holant(fs, F) <7 Holant(F).

Thus we get the #P-hardness of Holant(F) in either way.
However, since fg has even parity and all its entries are non-negative, all gadgets realizable
from fg have even parity and have non-negative entries. Thus, =, , #2 and #, cannot be realized

from fg by gadget construction. In fact, fs satisfies the following strong Bell property.

Definition 8.8. A signature f satisfies the strong Bell property if for all pairs of indices {i,j},

and every b € B, the signature 8%]‘ realized by merging x; and x; of f using b is in {b}®.
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8.2 Holant Problems with Limited Appearance

In this section, not using gadget construction but critically based on the strong Bell property of
fs, we prove that Holant’(fs, F) <7 Holant(fs, F) in a novel way. We define the following Holant

problems with limited appearance.

Definition 8.9. Let F be a signature set containing a signature f. The problem Holant(f<F, F)

contains all instances of Holant(F) where the signature f appears at most k times.
Lemma 8.10. For any b € B, Holant(b, fs, F) <7 Holant(b<?, fg, F).

1£8]. Consider an instance {2 of Holant(b, fs, F). Suppose that b appears n times in Q. If n < 2,
then ) is already an instance of Holant(b<2, fg, F). Otherwise, n > 3. Consider the gadget af?j fs
realized by connecting two variables x; and x; of fg using b. (This gadget uses b only once.) Since
fs satisfies the strong Bell property, é?l-bj fs = b®3. Thus, by replacing three occurrences of b in Q by
8% fs, we can reduce the number of occurrences of b by 2. We carry out this replacement a linear

number of times to obtain an equivalent instance of Holant(bS2, fg, F), of size linear in Q. O

Now, we are ready to prove the reduction Holant®(fs, F) <7 Holant(fs, F). Note that if
Holant(fg, F) is #P-hard, then the reduction holds trivially. For any b € B, if we connect a
variable of b with a variable of another copy of b using =5, we get +(=2). Also, for any by, by € B

where by # by if we connect the two variables of b; with the two variables of by, we get a value 0.
Lemma 8.11. Holant’(fs, ) <7 Holant(fs, F).

1ER]. We prove this reduction in two steps.
Step 1. There exists a signature by € B\{=2} such that Holant(b1, fs, F) <r Holant(fs, F).

We consider all binary and 4-ary signatures realizable by gadget constructions from { fs}UF. If
a binary signature g ¢ B is realizable from { fg} UF, then by Lemma 8.7, Holant( fs, F) is #P-hard,
and we are done. If a binary signature g € B\{=z} is realizable from { fg} UF, then we are done by
choosing b; = g. So we may assume that all binary signatures g realizable from { fg} UF are =2 (up
to a scalar) or the zero binary signature, i.e., g = - (=2) for some p € R. Similarly, if a nonzero
4-ary signature h ¢ B®? is realizable, then we have Holant(fs, F) is #P-hard, by Lemma 7.9, as

Lemma 8.7 says the set {fs} U F is non-B hard. If a nonzero 4-ary signature h € B®?\{=2}%? is
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realizable, then we can realize a binary signature b; € B\{=2} by factorization, and we are done.
Thus, we may assume that all 4-ary signatures h realizable from {fg} U F are (=2)®? or the 4-ary
zero signature, i.e., h = \ - (=2)®2 for some \ € R.

Now, let by be a signature in B\{=2}. We show that Holant(b?, fs, F) <7 Holant(fs,F).

Consider an instance Q of Holant(b$?, fg, F).
o If by does not appear in 2, then Q is already an instance of Holant( fs, F).

o If by appears exactly once in 2 (we may assume it does connect to itself), then we may
consider the rest of Q0 that connects to by as a gadget realized from {fs} U F, which must
have signature A - (=2), for some A € R. Connecting the two variables of b; by (=2) for every

by € B\{=2} will always gives 0. Thus, Holant(€2) = 0.

e Suppose by appears exactly twice in 2. It is easy to handle when the two copies of b form a
gadget of arity 0 or 2 to the rest of (2. We may assume they are connected to the rest of 2 in
such a way that the rest of Q forms a 4-ary gadget h realized from {fg} U F. We can name

the four dangling edges of h in any specific ordering as (x1, x2, 3, x4). Then
h(z1, 22,23, 24) = A - (=2)(21, %) @ (=2)(Tk, 2¢)

for some partition {1,2,3,4} = {1,5} U {k,¢}, and some A € R. (Note that while we
have named four specific dangling edges as (z1, x2, x3, z4), the specific partition {1,2,3,4} =
{1,7} b {k, ¢} and the value X are unknown at this point.) We consider the following three
instances Qj2, 13, and Q14, where Q5 (s € {2,3,4}) is the instance formed by merging
variables z1 and zs of h using =9, and merging the other two variables of h using =, (see
Figure 9 where hy = ha = (=2) and h = A-h; ®hg). Since h is a gadget realized from {fs}UF,
D2, 13, and Qq4 are instances of Holant(fs, ). Note that Holant(;5) = 4\ when s = j
and Holant(€25) = 2\ otherwise. Thus, by computing Holant(€;5) for s € {2,3,4}, we can
get A, and if A\ # 0 the partition {1,7} U {k, ¢} of the four variables. Thus we can get the
exact structure of the 4-ary gadget h. In either case (whether A = 0 or not), we can compute

the value of Holant(£2).

Thus, Holant(bf27f8,f) <7 Holant(fs, F). By Lemma 8.10, Holant (b1, fs, F) <7 Holant(fs, F).
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K 9: Instances £, 1y and €y

Step 2. For any by € B\{=2}, we have Holant’(fs, F) <7 Holant(by, fs, F).

We show that we can get another by € B\{=2, b1}, i.e., for some binary signature by € B\{=2
,b1} we have the reduction Holant(be, b1, fs, F) <p Holant(by, fs, F). Then, by connecting one
variable of b; and one variable of by using =2, we get the third signature in B\{b1,bs}. Then, the
lemma is proved. The proof is similar to the proof in Step 1. We consider all binary and 4-ary
gadgets realizable from {b;, fg} U F. Still, we may assume that all realizable binary signatures are
of the form j1- (=2) or p-by for some u € R, and all realizable 4-ary signatures are of form \-(=5)®2
A b?2 or A - (=2)®b; for some A € R. Otherwise, we can show that Holant (b, fs, F) is #P-hard
or we realize a signature by € B\{=2, b1} directly by gadget construction.

Then, let by be an arbitrary signature in B\{=2,b1}. We show that
Holant(b5?, by, fs, F) <7 Holant(b1, fs, F).

Consider an instance 2 of Holant(b?g,bl, fs, F). If by does not appear in €, then  is already
an instance of Holant(by, fs, F). If by appears exactly once in €, then it is connected with a
binary gadget g where g = u - (=2) or ¢ = p - by. In both cases, the evaluation is 0. Thus,
Holant(£2) = 0. Suppose by appears exactly twice in 2. Again it is easy to handle the case if
the rest of 2 forms a gadget of arity 0 or 2 to the two occurrences of by. So we may assume
the two occurrences of by are connected to a 4-ary gadget b = X\ - (=2)%2, X - b9 or A - (=2)®b;.
We denote the four variables of h by (x1,x2,x3,x4), by an arbitrary ordering of the four dangling
edges. Then h(z1,x2,x3,24) = X - hi(z1,2;) ® ho(xk, x¢) where hi, hy € {=2,b1}, for some X and

{j, k, ¢} ={2,3,4}. (Note that at the moment the values A and j, k, ¢ are unknown.) We consider
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the following three instances 12, Q13 and 14, where Q1 (s € {2,3,4}) is the instance formed by
connecting variables x1 and x5 of h using =o, and connecting the other two variables of h using
=9 (again see Figure 9). Clearly, Q9, 13 and €214 are instances of Holant(b;, fs, F). Consider the

evaluations of these instances. We have three cases.
o If hy = hy = (=2), then Holant(€;5) = 4\ when s = j and Holant(€;5) = 2\ when s # j.

o If hy = hg = by, then Holant(215) = 0 when s = j. If M(b;) is the 2 by 2 matrix form for the
binary signature b; where we list its first variable as row index and second variable as column
index, then we have Holant(21;) = A - tr(M (b1) M (b1)T), and Holant(Qy,) = X - tr(M(b1)?),
where tr denotes trace. For by = (=5 ) or (#5 ), the matrix M (b;) is symmetric, and the value
Holant(Q15) = 2\ in both cases s = k or s = £. For by = (#5), M(b1)T = —M(b1), and we
have Holant (1) = 2\, and Holant(1y) = —2A.

o If one of hy and hg is =2 and the other is by, then Holant(15) = 0 for all s € {j, k, ¢}.

Thus, if the values of Holant(€;,) for s € {2, 3,4} are not all zero, then A # 0 and the third case is
impossible, and we can tell whether A is in the form X - (=2)®2 or A - (b)®2. Moreover we can get
the exact structure of h, i.e., the value A and the decomposition form of A1 and hy. Otherwise, the
values of Holant(€,) for s € {2,3,4} are all zero. Then we can write h = \-(=2)(x1, x;) ®b1(zk, ¢)
or h = X-bi(z1,2;) ® (=2)(xk, x¢), including possibly A = 0, which means h = 0. (Note that if
A # 0, this uniquely identifies that we are in the third case; if A = 0 then this form is still formally
valid, even though we cannot say this uniquely identifies the third case. But when A\ = 0 all three
cases are the same, i.e., h = 0.) At this point we still do not know the exact value of A and the
decomposition form of h.

We further consider the following three instances €5, )5 and €, where Q) (s € {2,3,4}) is
the instance formed by connecting variables x1 and x5 of h using b1, and connecting the other two
variables of h using =,. (In other words, we replace the labeling =5 of the edge that is connected
to the variable x; in each instance illustrated in Figure 9 by b;.) It is easy to see that ©},, Q)5 and

), are instances of Holant(by, fg, F). Consider the evaluations of these instances.

o If hy = (=2)(x1,;), then Holant(Q};) = 0 when s = j. Also we have Holant(Q;) =
A - tr(M(b1)?), and Holant(Qq) = A - tr(M (b1)M (b1)T). For by = (=5) or #5, the matrix
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M (by) is symmetric, and the value Holant(€;5) = 2\ in both cases s = k or s = ¢. For
by = (#5), M(b1)" = —M (b1), and we have Holant(Q21;) = —2, and Holant(Qy,) = 2.
o If hy = bi(x1,2;), then Holant(£2},) = 4\ when s = j and Holant(£2},) = 2\ when s # j.

Thus, by further computing Holant(€2},) for s € {2, 3,4}, we can get the exact structure of h.
Therefore, by querying Holant(by, fs, F) at most 6 times, we can compute h exactly. Then, we
can compute Holant(2) easily. Thus, Holant(bQQ, b1, fs, F) <p Holant(b1, fs, F). By Lemma 8.10,
Holant(ba, b1, fs, F) <1 Holant(by, fs, F). The other signature in B\{=2, b1, b2} can be realized by
connecting by and by. Thus, Holant®(fs, F) <7 Holant(by, fg, F).
Therefore, Holant®( fs, F) <7 Holant(fg, F). O

Since Holant®(fg, F) <7 Holant(fs, F) and {fg} U F is non-B hard for any real-valued F that
does not satisfy condition (T), by Theorem 7.38, we have the following result.

Lemma 8.12. Holant(fg, F) is #P-hard.
Combining Theorem 8.6 and Lemma 8.12, we have the following result.

Lemma 8.13. If]? contains a signature f of arity 8 and f@é @®, then Holant(#s] .7?) is #P-hard.

8.3 The Induction Proof: 2n > 10

Now, we show that our induction framework works for signatures of arity 2n > 10.
Lemma 8.14. If]? contains a signature f of arity 2n > 10 and f¢ (5®, then,
e Holant(s| F) is #P-hard, or
e a signature g ¢ o® of arity 2k < 2n — 2 is realizable from f

1E£8]. By Lemma 8.1, we may assume that an irreducible signature F of arity 2n > 10 where
F € TD‘X’ is realizable, and F satisfies ARS. We show that F does not satisfy 2ND-ORTH, and
hence we get #P-hardness.

For all pairs of indices {i,7}, since é\UF € D%, 7 (aJF) is on half-weight. By Lemma 3.9,
we have F(oz) = 0 for all wt(a) # 0,n,2n. Suppose that F(GQ") =a and F(TZ”) = a by ARS. We



224
can write ﬁ in the following form
Tr 2 = 2 T
f*=a(1,00%*" +a(0,1)®*" + f;.

where E is an EO signature of arity 2n > 10.
Clearly, 8UF = @-j}ﬁ for all {i,7}. Then, E € TD@) since F € TD@). Since E is an EO
signature of arity at least 10 and ?h: € 7D®, by Lemma 4.19, we have E € D®. Recall that all

signatures in D® are nonzero by definition. Pick some {7, j} such that (#2)(x;, z;) | E Then,
£ = a0 +a(0, )" + b (a,27) @ g,

where gA}’i € D? is a nonzero EO signature since ?h; € D®. By Lemma 8.3, f* does not satisfy

2ND-ORTH. Thus, Holant(#;| F) is #P-hard by Lemma 6.6. O

Remark 8.15. Indeed, following from our proof, we can also show that there is no irreducible

stgnature f of arity 2n > 10 that satisfies both 2ND-ORTH and fe f@®.

8.4 Proof of the Real Holant Dichotomy

Finally, we give the proof of Theorem 1.1. We restate it here.

Theorem 8.16. Let F be a set of real-valued signatures. If F satisfies the tractability condition (T)

in Theorem 2.33, then Holant(F) is polynomial-time computable; otherwise, Holant(F) is #P-hard.

#EB]. By Theorem 2.33, if F satisfies condition (T), then Holant(F) is P-time computable. Suppose
that F does not satisfy condition (T). If F contains a nonzero signature of odd arity, then by
Theorem 5.35, Holant(F) is #P-hard. We show Holant (72| F ) =r Holant(F) is #P-hard when F
is a set of signatures of even arity. Since F does not satisfy condition (T), F Z 7. Since o0 C T ,
there is a signature ]? € F of arity 2n such that f§é 0%. We prove this theorem by induction on
2n.

When 2n < 8, by Lemmas 6.7, 6.8, 7.40, 8.13, Holant(#2| .7?) is #P-hard.

Inductively, suppose for some 2k > 8, if 2n < 2k, then Holant(#,] F ) is #P-hard. We consider
9n = 2k+2 > 10. By Lemma 8.14, Holant(#,| F) is #P-hard, or Holant(#| §, F) <7 Holant(#| F)
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for some g ¢ 0% of arity < 2k. By the induction hypothesis, Holant(#| g, F ) is #P-hard. Thus,
Holant(#5| F) is #P-hard. O



226

Chapter 9

Trichotomy for Planar Six-Vertex
Models

In this chapter, we consider the complexity of Holant problems over planar graphs. We give
a new family of six-vertex models that are #P-hard in general, but tractable over planar graphs.

We prove a complete complexity classification for planar six-vertex models.

9.1 Background

The six-vertex model has a long history in physics. Pauling in 1935 introduced the six-vertex
model to account for the residual entropy of water ice [61]. Consider a large number of oxygen
and hydrogen atoms in a 1 to 2 ratio. Each oxygen atom (O) is connected by a bond to four other
neighboring oxygen atoms (O), and each bond is occupied by one hydrogen atom (H). Physical
constraint requires that each (H) is closer to exactly one of the two neighboring (O). Pauling
argued [61] that, furthermore, the allowed configurations are such that at each oxygen (O) site,
exactly two hydrogen (H) are closer to it, and the other two are farther away. This can be naturally
represented by a 4-regular graph. The constraint on the placement of hydrogen atoms (H) can be
represented by an orientation of the edges of the graph, such that at every vertex (O), the in-degree
and out-degree are both 2. In other words, this is an Eulerian orientation [58, 23]. Since there

4

are (2) = 6 local valid configurations, this is called the six-vertex model. In addition to water ice,

potassium dihydrogen phosphate KHoPO,4 (KDP) also satisfies this model.

S A SR

K 10: Valid configurations of the six-vertex model
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The valid local configurations of the six-vertex model are illustrated in Figure 10. The energy
FE of the system is determined by six parameters €1, €s,. .., €5 associated with each type of local
configuration. If there are n; sites in local configurations of type i, then £ = nie; +noea+. .. +ngeg.
Then the partition function is Zgj, = > e E/ksT where the sum is over all valid configurations, kp
is Boltzmann’s constant, and T is the system’s temperature. This is a sum-of-product computation
where the sum is over all Eulerian orientations of the graph, and the product is over all vertices
where each contributes a factor ¢; = ¢ if it is in configuration 7 (1 < ¢ < 6) for some constant c.

Some choices of the parameters are well-studied. For modeling ice (¢; = ... = €5 = 0) on the
square N x N lattice graph, Lieb [56] famously showed that, the value of the “partition function per
vertex” W = ZV/N? approaches (%)3/2 ~ 1.5396007 ... (Lieb’s square ice constant). This matched
experimental data 1.540+0.001 so well that it is considered a triumph. Other well-known six-vertex
models include: the KDP model of a ferroelectric (e; = €2 = 0, and €3 = €4 = €5 = ¢ > 0), the
Rys F' model of an antiferroelectric (€7 = €3 = €3 = €4 > 0, and €5 = €5 = 0). Historically these
are widely considered among the most significant applications ever made of statistical mechanics
to real substances. In classical statistical mechanics the parameters are real numbers. However,
it’s meaningful to consider parameters over complex values. In quantum theory the parameters are
generally complex valued. Even in classical theory, for example, Baxter generalized the parameters
to complex values to develop the “commuting transfer matrix” for tackling the six-vertex model [7].
Some other models can be transformed to a six-vertex model with complex weights. There are books
with sections (e.g., see section 2.5.2 of [44]) that are dedicated to this, for example, the Hamiltonian
of a one dimensional spin chain is simply an extension of the Hamiltonian of a six-vertex model
with complex Boltzmann weights.

The six-vertex model has broad connections to combinatorics. The resolution of the famous
Alternating Sign Matriz conjecture is one example [50, 59, 75, 51, 10]. Also, the Tutte polynomial
on a planar graph at the point (3,3) is precisely 1/2 of Zgi, on its medial graph which is also a
planar graph with a specific weight assignment [53].

Although Pauling most likely did not think of it in such terms, the six-vertex model can be
expressed perfectly as a family of Holant problems with 6 parameters, expressed by signatures of

arity 4. Previously, without being able to account for the planar restriction, it has been proved [25]
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that there is a complexity dichotomy where the problem on general graphs is either in P or #P-
hard. However, the more interesting problem is what happens on planar structures where physicists
had discovered some remarkable algorithms, such as the FKT algorithm [66, 49, 48]. Due to the
presence of nontrivial algorithms, a complete complexity classification in the planar case is more
difficult to achieve. Not only are reductions to FKT expected to give planar P-time computable
cases that are #P-hard in general, but also a more substantial obstacle awaits us. It turns out that
there is another planar P-time computable case that had not been discovered for the six-vertex
model in all these decades, till now. (Since our algorithm and its proof that it runs in P-time is
valid for all planar graphs, this certainly also applies to the grid case, which is traditionally the
main concern for physicists.)

The main theorem in this chapter is a complexity trichotomy for the six-vertex model: Ac-
cording to the 6 parameters from C, the partition function Zg;y is either (1) computable in P-time,
or (2) #P-hard on general graphs but computable in P-time on planar graphs, or (3) remains #P-
hard on planar graphs. The classification has an explicit criterion. The planar tractable class (2)
includes those that depend on FKT, and a previously unknown family. Functions that are express-
ible as matchgates (denoted by .#) or those that are transformable to matchgates (denoted by ///l\)
do constitute a family of Zgi in class (2). This follows from the FKT and Valiant’s holographic
algorithms [72]." However, beyond these, we discover an additional family of P-time computable
Zsix on planar graphs. The P-time tractability is via a non-local reduction to P-time computable
#CSP, where the variables in #CSP correspond to carefully defined circuits in G. The fact that
this #CSP problem is in P depends crucially on the global topological constraint imposed by the
planarity of G (but the #CSP instances that this produces is not planar in general.) The new
tractable class provably cannot be subsumed by FKT (even with a holographic transformation).

After carving out this last tractable family, we prove that everything else is #P-hard, even for
the planar case. A powerful tool in hardness proofs is interpolation [67]. Typically an interpolation
proof can succeed when certain quantities (such as ratios of eigenvalues) are not roots of unity, lest
the iteration repeat after a bounded number of steps. A sufficient condition is that these quantities

have complex norm not equal to 1. However, for some constraint functions, we can show that

*It was known [40, 39] that on the grid graph the parameter settings that satisfy cz = ax + by (using notations in
Section 9.2) is P-time computable; in our theory this is in .#, and the proof is: It follows by Matchgate Identities [14].
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these constructions only produce such quantities of norm equal to 1. To overcome this difficulty
we introduce a new technique in hardness proofs: Mo6bius transformations.” We explore properties
of Mo6bius transformations that map unit circle to unit circle on C, and obtain a suitable Mobius

transformation that generates an infinite group. This allows our interpolation proof to succeed.

9.2 Preliminaries

9.2.1 Problem Definition

We use Pl-Holant(F) to denote the restriction of Holant(F) to planar signature grids. Similarly,
Pl-Holant (F | G) denotes the Holant problem over signature grids with a planar bipartite graph.
Also, we use PI-#CSP(F) to denote the restriction of #CSP(F) to planar signature grids. Still,
we have Pl-#CSP(F) =r Pl-Holant (£Q | F).

f1o00 f1o10 fro01 fio11
fi1o0 fi110 fiio1 fiiin
(We use f, to denote the entry f(«) in this chapter.) Notice the order reversal x4xs; this is for

foooo fooio fooor foo11
A signature f of arity 4 has the signature matrix M (f) = My, 2y 2425 (f) = [fmoo fouto fotor forir ]

the convenience of composing these signatures in a planar fashion. If (i, 7, k, £) is a permutation of
(1,2,3,4), then the 4 x 4 matrix Mg,z 2,0, (f) lists the 16 values with row index z;2; € {0,1}* and
column index zyzy € {0, 1}2 in lexicographic order.

000a
The planar six-vertex model is Pl-Holant(#2| f), where M(f) = [8 b Y 8] . The outer matriz
2000

of M(f) is the submatrix [%Efgl’l Mgfgl’ﬂ = [94], and is denoted by Moy (f). The inner matriz

of M(f) is Egzz %Ef)”} = [} ¢], and is denoted by M (f). A binary signature g has the
signature matrix M(g) = My, »,(g) = [599 91 ]. Switching the order, My, », (g) = [999 919]. Recall
that a signature is symmetric if its value depends only on the Hamming weight of its input. A

symmetric signature f of arity k can be expressed as [fo, f1, ..., fx], where f,, is the value of f on

inputs of Hamming weight w.

*Mobius transformations were previously used in the design of quantum algorithms for approximating the Potts
model [1]. Here we use Mobius transformations in a different way, which is for hardness proofs. These Mobius
transformations are maps on C; they are unrelated to Mobius inversions for partial orders, e.g., as used in [36].
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9.2.2 Planar Gadget Construction

Recall the definition of gadget construction in Section 3.2. We say a gadget construction is
planar if the underlying graph G is a planar graph, and the dangling edges, ordered counterclockwise
corresponding to the order of the input variables, are in the outer face in a planar embedding. A
planar gadget can be used in a planar signature grid as if it is just a single vertex with the particular
signature. Using planar gadget construction, we can reduce one planar Holant problem to another.
Suppose g is the signature of some planar F-gate. Then Pl-Holant(F, g) <p Pl-Holant(F).

In this chapter, we focus on planar graphs, and we assume the edges incident to a vertex are
ordered counterclockwise. When connecting two signatures, we need to keep the counterclockwise
order of the edges incident to each vertex. Given a signature f with signature matrix My, 4o 2,25 (f),
we can rotate it to obtain, for any cyclic permutations (4, j, k, £) of (1,2, 3,4), the signature f" with
signature matrix My, 2y 2405 (f') = Maya; 202, (f). There are four cyclic permutations of (1,2, 3,4), so

correspondingly, a signature f has four rotated forms, with 4 x 4 signature matrices My, 4o 2425 (f) =
000z 0

0be0 0ash 0yeb 0920
[0 zy 0]: Mx2x37x1r4(f) = [8 az 8]: stm,xle(f) = [0 Z b 0} , and qul,xsxz(f) = |0ca 0]‘

z000 _Lteoood a000 . y000
These are denoted as f, f2, f™ and f 2, respectively. Thus My zo 2425 (f2) = Masas 212, (f), ete.
Without other specification, M(f) denotes My, s 2424 (f). Once we get one form, all four rotation
forms can be freely used. In the proof, after one construction, we may use this property to get
a similar construction and conclude by quoting this rotational symmetry. Note that no matter in
which signature matrix, the pair (¢, z) (and only (¢, z)) is always in the inner matrix. We call (¢, z)
the inner pair, and (a, ), (b,y) the outer pairs.

We introduce three common planar gadgets we will use in this chapter. The first gadget con-
struction is as follows. Suppose f1 and f2 have signature matrices My, oz, (f1) and My 2, 2,2, (f2),
where (7,7,k,¢) and (s,t,u,v) are permutations of (1,2,3,4). By connecting z; with x,, =z
with x¢, both using DISEQUALITY (#2), we get a signature of arity 4 with the signature ma-
trix Mo wpay (f1) N2 Mz oy 2z, (f2) Dy matrix product with row index z;z; and column index x,z,,
(See Figure 11).

A binary signature g has the signature vector g(z1, 22) = (goo, 901, 910, 911)" , and also g(z2, z1) =
(900, 910, 901, g11)T . Without other specification, g denotes g(x1,z2). Let f be a signature of arity

4 with the signature matrix My, s, 2,2, (f) and (s,t) be a permutation of (1,2).
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Kl 11: Connect variables xy, xj of fi with variables zs, ; of fo both using (#2).

The second gadget construction is essentially a merging gadget defined as follows. By con-
necting xy with zs and zj with x4, both using DISEQUALITY (#2), we get a binary signature with
the signature matrix Mg,y 2,2, Ng(zs,7¢) as a matrix product with index z;z; (See Figure 12).

)T, and similarly,

If goo = g11, then N(goo, go1, 910, 911)7 = (911, 910, 901, 900)" = (900, 910, Go1, 911

& 12: Connect variables xy, xj of f with variables x4, z; of g both using (#2).

N (900, 910: 901, 911)" = (900, go1> 910, 911)7 . Therefore, My,o; 20, N9(s, 21) = My, wpan (01, ),
which means that connecting variables x,, x; of f with, respectively, variables zg, x; of g using N
is equivalent to connecting them directly without N. Hence, in the setting Pl-Holant(#2| f,g) we
can form Mg,z vy, (f)9(¢, 75), which is technically My, s, 2oz, Ng(¥s, 71), provided that goo = g11-
Note that for a binary signature g, we can rotate it by 180° without violating planarity, and so
both g(zs,x¢) and g(x¢, xs) can be freely used once we get one of them.

A signature f of arity 4 also has the 2 x 8 signature matrix

foooo fooro fooor foorr  foroo Sforio Sforor forin
Mx1,x21413 (f) =
fiooo  fioro fioor Sfiotn  fiwoo  fiio fiior fiin

Suppose the signature matrix of g is My, 4 (g9) and the signature matrix of f is My, 4 2y, (f)-



232

Our third gadget construction is essentially an extending gadget defined as follows. By connecting
x¢ with x; using DISEQUALITY (#2), we get a signature h of arity 4 with the signature matrix
M, w0 (9) M (#2) My, 2242, (f) by matrix product with row index z; and column index x;x,zy (See
Figure 13). We may change this form to a signature matrix with row index zx; and column index

(. R

Ts g Tt

J

K 13: Connect variable z; of g with variable z; of f using (#2).

zyzy. In particular, if My, 4,(g9) = [9§], then connecting yo with z; via (#2) gives

My1,962364903 (h) = Myl,yQ (Q)M(#2)Mx1,x2$4$3 (f)

0 1{ [0 1 |foooo Jfooio fooor foorr Jforoo JSforio Sforor foinn

[t 0] |1 0] [fioo0 Jioto Jfroor Sfioun fioo Siio o frior o fiinn

Joooo  fooro  fooor  foorr  foroo  forio  foror  Sfoinn

_tf1000 tfioro tfioor tfiotr tfiroo tfito tfiior tfiin
If we rename the variable y; by x1, then
foooo  fooro  fooor  foorr
foroo  forio  foror  foinn
Mx1z2,x4x3 (h) =
tfiooo tfioro tfioor tfionn
[tfiro0 tfiiio tfior tfinn

That is, the new signature has the matrix obtained from multiplying ¢ to the last two rows

of My, 2y w4as(f) corresponding to z; = 1. Similarly we can modify the last two columns of
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Moz zazs (f). Given g = (0,1,¢,0)T, we call the modification from My, sy 2424 (f) to

Joooo  fooro  fooor  foorr
Joroo  foro  foror  Sfoinn
tfi000 tfio10 tfioo1 tfi011
[tfi00 tfio tfior tfii

the operation of ¢ scaling on x; = 1. Similarly we call the modification from My, 2, z424(f) tO

foooo  fooio tfooor tfooir
foroo  forio tforor tfoinn
fio00  fioto tfioor tfioit

| fii00 fiii0 tfior tfia

the operation of ¢ scaling on x4 = 1.

9.2.3 More on Polynomial Interpolation

We use polynomial interpolation in a more involved way to prove the following reductions.

Lemma 9.1. Let f be a 4-ary signature with the signature matriz M(f) = [

—OOO

], where b # 0

|

OO

00
b0
0b
00
(

is not a root of unity. Let x1 be a 4-ary signature with the signature matriz M (x1) = {

—OOO
oo~ O
o—o0o
(elelelog

Then for any signature set F containing f, we have

Pl-Holant(#s| F U {x1}) <r Pl-Holant(#5| F).

K] 14: A chain of 2s + 1 many copies of f linked by double DISEQUALITY N
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Proof. We construct a series of gadgets fos+1 by a chain of 2s 4+ 1 many copies of f linked

by the double DISEQUALITY N (See Figure 14). Clearly fosy1 has the following signature matrix

o o o0 1]

0 b2s+l 0 0
M(f23+1) = M(f)(NZM(f))ZS =

0 0 p2stl

_1 0 0 O_

The matrix M (f2s+1) has a good form for polynomial interpolation. Suppose x; appears m times
in an instance  of Pl-Holant(#2| F U {x1}). We replace each appearance of x; by a copy of the
gadget fos+1 to get an instance Qg1 of Pl-Holant(#2| F U {f2s+1}), which is also an instance of
Pl-Holant(#2| F). We divide Q9541 into two parts. One part consists of m signatures fas+1 and
its signature is represented by (M (fas+1))®™. Here we rewrite (M (fas+1))®™ as a column vector.
The other part is the rest of (22511 and its signature is represented by A which is a tensor expressed
as a row vector. Then, the Holant value of Q1 is the dot product (A, (M (fas41))®™), which is
a summation over 4m bits. That is, a sum over all 0,1 values for the 4m edges connecting the two
parts. We can stratify all 0,1 assignments of these 4m bits having a nonzero evaluation of a term

in Pl-Holantg,, , into the following categories:
e There are ¢ many copies of fosy1 receiving inputs 0011 or 1100;
e There are j many copies of fos41 receiving inputs 0110 or 1001;

where i + 7 = m.

For any assignment in the category with parameter (i, 7), the evaluation of (M (fas+1))®™ is
clearly b(5t1i. Let a;; be the summation of values of the part A over all assignments in the
category (i, j). Note that a;; is independent from the value of s since we view the gadget fos41 as
a block. Since ¢ + j = m, we can denote a;; by aj. Then, we rewrite the dot product summation
and get

Pl-Holante,,,, = (A, (M(fas1))®™) = 3 a;b®+0i.

0<j<m
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Under this stratification, the Holant value of Pl-Holant (2, #2| F U {x1}) can be represented as

Pl-Holantq = (4, (M (x1)*™) = Y a;.

0<jsm

Since b # 0 is not a root of unity, the linear equation system has a nonsingular Vandermonde matrix

bO bl .. pm
(bS)O (b3)1 L. (b3)m
(b2m+1)0 (me-‘,—l)l . (me—i-l)m

By oracle querying the values of Pl-Holantq,, ,, we can solve the coefficients a; in polynomial time

and obtain the value of p(z) = Y. aja7 for any z. Let x = 1, we get Pl-Holantg. Therefore, we

0<jsm
have Pl-Holant(#2| F U{x1}) <r Pl-Holant(#2| F). O
0001
Corollary 9.2. Let f be a 4-ary signature with the signature matriz M(f) = [ 8 8 g 8] , where b # 0
-1000 0 001
is not a root of unity. Let xo be a 4-ary signature with the signature matriz M(x2) = [ 9 (1)(1)8}
-1000

Then for any signature set F containing f, we have

Pl-Holant(#2| F U {x2}) <r Pl-Holant(#2| F).

Proof. We still construct a series of gadgets fos4+1 by a chain of odd many copies of f linked

by the double DISEQUALITY N. Clearly fss11 has the following signature matrix

[0 0 0o 1]
0 b23+1 0 0
M(f25+1) = M(f)(NQM(f))QS =
0 0 utl
-1 0 0 0]

Suppose x2 appears m times in an instance €2 of Pl-Holant(#,| fUx2). We replace each appearance
of x2 by a copy of the gadget fas+1 to get an instance Qos11 of Pl-Holant(#9| F U { fos+1}). In the

same way as in the proof of Lemma 9.1, we divide 29511 into two parts. One part is represented by
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(M (fas+1))®™ and the other part is represented by A. Then, the Holant value of 9511 is the dot
product (A, (M(f2s+1))®™). We can stratify all 0, 1 assignments of these 4m bits having a nonzero

evaluation of a term in Pl-Holantg,, ,, into the following categories:
e There are ¢ many copies of fosy1 receiving inputs 0011;
e There are j many copies of fos41 receiving inputs 0110 or 1001;

e There are k many copies of fos11 receiving inputs 1100;

where i + j + k = m.

For any assignment in those categories with parameters (i,7j, k) where k& = 0 (mod 2), the
evaluation of (M (faey1))®™ is clearly (—1)Fp(2st1i = p(25t1)i  And for any assignment in those
categories with parameters (i, j, k) where k = 1 (mod 2), the evaluation of (M (fos11))®™ is clearly
(—=1)kp2s+1)7 = —p(2s+Di_ Since i + j + k = m, the index 4 is determined by j and k. Let ajo be
the summation of values of the part A over all assignments in those categories (i, j, k) where k =0
(mod 2), and aj; be the summation of values of the part A over all assignments in those categories
(4,7,k) where k = 1 (mod 2). Note that ajo and a;; are independent from the value of s. Let

a; = ajo — aj1. Then, we rewrite the dot product summation and get

Pl-Holantq,,,, = (A, (M(fae1)®™) = Y (ajob* T —aj b7y = 3~ q;p2+1i,

0j<m 0<j<m
Under this stratification, the Holant value of Pl-Holant (€2; #2| f U x2) can be represented as
Pl-Holantq = (A, (M (x2))®™) = Z (ajo —aj) = Z aj.
0<j<m 0jsm

Since b # 0 is not a root of unity, the Vandermonde coefficient matrix has full rank. Hence we

can solve for all the values a; in polynomial time and obtain the value ) a;, and so we get
0<jsm

Pl-Holantg. Therefore, we have Pl-Holant(#2| F U {x2}) <7 Pl-Holant(#2| F). O

Lemma 9.3. Let g = (0,1,£,0)7 be a binary signature, where t # 0 is not a root of unity. Then

for any binary signature g' of the form (0,1,',0)T and any signature set F containing g, we have

Pl-Holant (#2| F U {¢'}) <7 Pl-Holant (#;| F).
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Inductively, for any finite signature set B consisting of binary signatures of the form (0,1, 0)T

and any signature set F containing g, we have
Pl-Holant (#2| F U B) <7 Pl-Holant (2| F).

Proof. Note that M(g) = [?}]. Connecting the variable x5 of a copy of g with the variable

x1 of another copy of g using (#2), we get a signature go with the signature matrix

M(g2) = My, oy (9) M (F#2) Mz, 2,(9) = =

That is, g» = (0,1,t2,0)”. Recursively, we can construct g, = (0,1,¢%,0)T for s > 1. Here, g
denotes g. Given an instance Q' of Pl-Holant (#2| F U {¢'}), in the same way as in the proof of
Lemma 9.1, we can replace each appearance of ¢’ by ¢gs and get an instance Q4 of Pl-Holant (#£2| F).

Similarly, the Holant value of {25 can be represented as

Pl-Holantg, = Z a;(t°),

0<jsm

while the Holant value of ' can be represented as

Pl-Holantg = Z a; (t,)j.
0<j<m
Since t # 0 is not a root of unity, all t* are distinct, and so the Vandermonde coefficient matrix has
full rank. Hence, we can solve for all a;, and then compute Y. a;(#')7. So we get Pl-Holantqy.
0<jsm

Therefore, we have Pl-Holant(#2| F U {¢'}) <r Pl-Holant(#2| F). The second part of this lemma
follows directly by the first part. O

Remark 9.4. Note that the reason why the interpolation can succeed is that we can construct
polynomially many binary signatures gs of the form (0,1,ts,0)T, where all ty are distinct such
that the Vandermonde coefficient matriz has full rank. According to this, we have the following

corollary.

Corollary 9.5. Given a signature set F, if we can use F to construct polynomially many distinct
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binary signatures gs = (0,1, ts, O)T, then for any finite signature set B consisting of binary signatures

of the form (0,1,t,0)", we have
Pl-Holant (#2| F U B) <7 Pl-Holant (2| F).

In Lemma 9.37, we will show how to construct polynomially many distinct binary signatures
gs = (0,1,t5,0)7 using Mobius transformations [2]. A Mobius transformation of the extended

complex plane C=Cu {oc}, the complex plane plus a point at infinity, is a rational function of
a;+0b
c3+d
satisfying det [‘g Z] = ad — bc # 0. It is a bijective conformal map. In particular, a Mdbius
oif G+

14+ a3
denoted by M(a, €'?), where |a| # 1, or ¢(3) = €'?/3. When |a| < 1, it maps the interior of S! to

the form 3 —

of a complex variable 3, where the coeflicients a, b, ¢, d are complex numbers
transformation mapping the unit circle S' = {z | |z| = 1} to itself is of the form ¢(3) =

the interior, while when |a| > 1, it maps the interior of S! to the exterior. A Mébius transformation
is completely determined by its values on any 3 distinct points of C.
An interpolation proof based on a lattice structure will be given in Lemma 9.34, where the

following lemma is used.

Lemma 9.6. [25] Suppose ., 3 € C—{0}, and the lattice L = {(j, k) € Z* | o/ ¥ = 1} has the form
L = {(ns,nt) | n € Z}, where s,t € Z and (s,t) # (0,0). Let ¢ and ¢ be any numbers satisfying
oYt = 1. If we are given the values Ny = Zj,kzo, j+k§m(aj/3k)exj,k for £ = 1,2,...("2"2), then

we can compute Zj k>0, j+k<m (bjwkxj,k in polynomial time.

9.2.4 Matchgate Signatures

Matchgates were introduced by Valiant [70, 69] to give polynomial-time algorithms for a col-
lection of counting problems over planar graphs. As the name suggests, problems expressible by
matchgates can be reduced to computing a weighted sum of perfect matchings. The latter problem
is tractable over planar graphs by Kasteleyn’s algorithm [48], a.k.a. the FKT algorithm [66, 49].
These counting problems are naturally expressed in the Holant framework using matchgate signa-
tures. We use .# to denote the set of all matchgate signatures; thus Pl-Holant(.#) is tractable,
as well as Pl-Holant(#2| .#). For signatures of arity at most 4, the matchgate signatures are

characterized by the following lemma.
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Lemma 9.7 ([69, 14]). If f has arity < 3, then f € 4 iff [ satisfies the Parity Condition.
If f has arity 4 and f satisfies the even Parity Condition, i.e.,

foooo 0 0 foou
0 forio foro1r O

M$1I2,I4$3 (f) = )
0  fioro fioor O

| fii00 0 0 fiu

then f € A iff
det Moyt (f) = det M1, (f).

By this matchgate identity, we have the following corollary.

Corollary 9.8. Given a signature [ of arity 4, two 2-by-2 matrices D) = [(1) g] (A # 0) and
M(#5) = [98], if f € A, then Dxf and M(+2)f € M.

Proof. Since f € .#, by Lemma 9.7 we know f satisfies the Parity Condition. We only

consider that f satisfies even parity. The proof for f satisfying odd parity is similar and we

zy 0

d00 a
omitted it here. Suppose f has the signature matrix M (f) = [8 bed ] . Then, we have M (D, f) =
z 00w

0 Mz Xy 0
Xz 0 0 MNw
Moreover, we have

d 0 0 Xa w00z
[ 0 A% Me 0 ] and M (M (#2)f) = [8 A 8]. Clearly, D) f and M(#3)f also satisfy even parity.
a00d
det MOut(DAf) = /\4 det MOut(f)v det MIH(D/\f) = )‘4 det MIn(f)v

and

det MOut(M(#2)f) = det MOut(f)a det MIH(M(#2)f) = det Mln(f)

Since det Moy (f) = det My, (f), we have
det Mout(D,\f) = det MIH(D)\f), and det Mout(M(#Q)f) = det MIH(M(#Q)f)

That is, Dy f and M (#2)f € A . O

Holographic transformations extend the reach of the FKT algorithm further, as stated below.
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By Definition 2.32, a signature set F is .#-transformable if there exists a T' € GLy(C) such that
(=) (T H)®2 ¢ A4 and TF C .M.

Theorem 9.9. Let F be any set of complex-valued signatures in Boolean variables. If F is M -

transformable, then Pl-Holant(#2| F) is tractable.

Let 4 = Ht , where H = % [1 4] We will show that for the six-vertex model, .Z-

transformable signatures are exactly characterized by .# and M. We first give the following

simple lemma.

000a
Lemma 9.10. For any signature f with the signature matriz M(f) = [8 b Y 8], and a 2-by-2
z000

matriz Dy = [(1) g], where A #£ 0, we have f € .////\Zﬁc (Dy)®4f € M.

0 0 0 Ma
Proof. Note that M((Dy)®'f) = [ 0 NbAje 0 ] = A2M(f). That is, (Dy)®4f = A2f.

0 A2z X%y 0
. Mz 0 _0 0
Thus, f € .# is equivalent to (D\)®4f = \2f € 4. O
000a
Lemma 9.11. A signature f with the signature matriz M(f) = [8 b M 8] is M -transformable iff
2000

feu.
Proof. The reverse direction is obvious, since (#2)I%? € ., and (#2)H®? € ./ .

Suppose f is .#-transformable. By definition, there is T" € GLy(C) such that
(0,1,1,00T%%2 € .#/ and (T H)®fe ..
Let T = [;\H We have
(0,1,1,0)T%% = (2, AE + v, AE + v, 2ué) € M .

By Lemma 9.7, we have Av = u& = 0 or A( + uv = 0.

If \v = p€ =0, since T € GLy(C), we have p = v = 0 while A, # 0, or A = £ = 0 while
u,v#0. That is, T = [6\ 2} (MEA0),or T = [2 6‘] (1, v # 0). By normalization, we may assume
A=1or g =1. That is,

1 0 0 1 1 0 [0 1
T= (€#0), or T = = (v #0).
0 ¢ v 0 0 v| |1 0
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For any a # 0, we use D, to denote the matrix [} 2] and we know D! = Dy/q. Then, T'= D¢ or

T = D, M (#3). By Corollary 9.8, we know f € .# given T~1f € ..
Otherwise, A{ + pv = 0. Since T' € GL2(C), we know det T' = A\§ — uv # 0. Thus, Auv # 0.

By normalization, we may assume A\ = 1 and hence, £ = —uv. That is
1w 1 0] (1 1 1 0
T = = =D,HD,.
v —uv 0 v |1 =1 (0 u

Hence, we have T7! = %Dl/uHDl/,, and we know Dy, ,HD,,,f € .#. We have D, = M.
Hence HD,,, f € .. Thus, we have
Dl/yf S %f\

By Lemma 9.10, we have f € .////\given Di@ﬁf cM. O
For signatures of special forms, we give the following three characterizations of M. They follow

directly from the definition.

Lemma 9.12. A binary signature g with the signature matriz M (g) = [99 91 ] is in ////\iﬁgog = €g11

and go1 = €910, where € = £1.

0000 -
Lemma 9.13. A signature f with the signature matrix M (f) = [8 b Y 8] is in A iff b = ey and
0000

c = €z, where e = +1.

Lemma 9.14. If f has the signature matriz M(f) = [

8 ©OO
[e>Nenls el
o OO
o ooe

], where abry # 0, then f ¢ M.

9.2.5 Known Dichotomies and Hardness Results

Definition 9.15. A 4-ary signature is non-singular redundant iff in one of its four 4 X 4 signature
matrices, the middle two rows are identical and the middle two columns are identical, and the

determinant

foooo  footo  fooit
det | foro0 forio forr1| # O

fiioo  fiio fiin

Theorem 9.16. [28] If f is a non-singular redundant signature, then Pl-Holant(#4 |f) is # P-hard.
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Theorem 9.17. [53] Let G be a connected plane graph and EO(H) be the set of all Eulerian

orientations of the medial graph H = H(G) which is a 4-regular planar graph. Then

> 299 =97(G;3,3),
O€EO(H)

where T is the Tutte polynomial, and S(O) is the number of saddle vertices in the orientation O,

i.e., vertices in which the edges are oriented “in, out, in, out” in cyclic order.

Remark 9.18. Note that BO) can be expressed as Pl-Holant(#s| f) on H, where f
O€EO(H)

2
0
2
1
0

0001
has the signature matriz M(f) = [8% 8] . Therefore, Pl-Holant(#2| f) is #P-hard.
1000

Theorem 9.19. [20] Let F be any set of complez-valued signatures in Boolean variables. Then
P1-#CSP(F) is #P-hard unless F C o/, F C &, or F C % in which case the problem is
computable in polynomial time. If F C o or F C P, then #CSP(F) is computable in polynomial
time without planarity; otherwise #CSP(F) is #P-hard.

000a
Theorem 9.20. [25] Let f be a 4-ary signature with the signature matriz M(f) = [8 b y 8], then
2000

Holant(#2| f) is #P-hard except for the following cases:
o e,
e fed;
e there is a zero in each pair (a,z),(b,y), (¢, z);

in which cases Holant(#2| f) is computable in polynomial time.

9.3 Trichotomy Theorem, Proof Outline and Sample Problems

a

000
Theorem 9.21. Let f be a signature with the signature matriz M(f) = [8 2 Y 9|, wherea,b, c,z,y, 2 €
£000
C. Then Pl-Holant(#2| f) is polynomial time computable in the following cases, and #P-hard oth-
erwise:
1. feP orod;

2. There is a zero in each pair (a,x), (b,y), (¢, 2);
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3. fe//or/zz
4. c=2z=0 and

(i). (az)? = (by)?, or

(ii). x = ai* b= a\ﬂﬁ, and y = aVi', where a,B,v €N, and f =~ (mod 2);

If f satisfies condition 1 or 2, then Holant(#2| f) is computable in polynomial time without the
planarity restriction; otherwise (the non-planar) Holant(#2| f) is #P-hard.

Let N be the number of zeros among a, b, ¢, x, y, z. The following division of all cases into Cases
I, IT, IIT and IV may not appear to be the most obvious, but it is done to simplify the organization

of the proof. We define:
Case I: There is exactly one zero in each pair.
Case II: There is a zero pair.
Case III: N = 2 and having no zero pair, or N = 1 and the zero is in an outer pair.
Case IV: N =1 and the zero is in an inner pair, or N = 0.

Cases I, I, IIT and IV are clearly disjoint. To see that they cover all cases, note that if N > 3,
then either there is a zero pair (in Case II), or N = 3 and each pair has exactly one zero (in Case
I). If N = 2, then either it has a zero pair (in Case II), or it has no zero pair (in Case III). If N = 1,
then either the single zero is in an outer pair (in Case III), or the single zero is in an inner pair
(Case IV). If N =0 it is in Case IV.

Also note that if N = 2 and it has no zero pair, then the two zeros are in different pairs, which
implies that there is a zero in an outer pair. So in Case III, there is a zero in an outer pair regardless
N =1 or N = 2. In Case III an outer pair has exactly one zero, and the other two pairs together
have at most one zero.

In Case 11, depending on whether the zero pair is inner or outer we have two different connec-
tions to #CSP. A previously established connection to #CSP (see [25]) can be adapted in the planar
setting to handle the case with a zero outer pair. This connection is a local transformation, and we

observe that it preserves planarity. A significantly more involved non-local connection to #CSP is
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discovered in this paper when the inner pair is zero (and no outer pair is zero). We show that by the
support structure of the signature we can define a set of circuits, which forms a partition of the edge
set. There are exactly two valid configurations along each such circuit, corresponding to its two
cyclic orientations. These circuits may intersect in complicated ways, including self-intersections.
But we can define a #CSP problem, where the variables are these circuits, and their edge func-
tions exactly account for the intersections. We show that Pl-Holant(#3| f) is equivalent to these
#CSP problems, which are non-planar in general. However, crucially, because Pl-Holant(#3| f)
is planar, every two such circuits must intersect an even number of times. Due to the planarity
of Pl-Holant(#2| f) we can exactly carve out a new class of tractable problems via this non-local
#CSP connection, by the kind of constraint functions they produce in the #CSP problems.

For the proof of #P-hardness in this paper, one particularly difficult case is in Lemma 9.37.
This is where we introduce Mobius transformations to prove dichotomy theorems for counting
problems. In this case, all constructible binary signatures correspond to points on the unit circle
S1, and any iteration of the construction amounts to mapping this point by a Mébius transformation
which preserves S*.

The following is an outline on how Case I to Case IV are handled.

I. There is exactly one zero in each pair. In this case, Holant(#2| f) is tractable, proved in [25].
II. There is a zero pair:

1. An outer pair (a,z) or (b,y) is a zero pair. We prove that Pl-Holant(#2| f) is tractable
if feP o A or ,///l\, and is #P-hard otherwise.
In this Case II.1, we can rotate the signature f such that the matrix Moy (f) is the
zero matrix. Let M(fin) = M (f) [9}]. We reduce P-#CSP(f,) to Pl-Holant (| f)
via a local replacement (Lemma 9.23). We apply the dichotomy of PI-#CSP to get #P-
hardness (Theorem 9.24). Tractability of Pl-Holant (#2| f) follows from known tractable

signatures.

2. The inner pair (c,z) is a zero pair and no outer pair is a zero pair. We prove that
Pl-Holant(#2| f) is #P-hard unless f satisfies condition 4, in which case it is tractable.
This is the non-local reduction described above. The tractable condition 4 is previously

unknown. (Curiously, in Case I1.2, condition 4 subsumes f € .Z.)
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1. There are exactly two zeros and they are in different pairs;

2. There is exactly one zero and it is in an outer pair.
We prove that Pl-Holant(#2| f) is #P-hard unless f € ., in which case it is tractable.

In Case III, there exists an outer pair which contains a single zero. By connecting two copies
of the signature f, we can construct a 4-ary signature fi such that one outer pair is a zero
pair. When f ¢ .#, we can realize a signature M(g) = [% (i’) ((1; §] by interpolation using f;
(Lemma 9.32). This g can help us “extract” the inner matr?xo(?foM (f). By connecting f and

g, we can construct a signature that belongs to Case II. We then prove #P-hardness using

the result of Case II (Theorem 9.33).

1. There is exactly one zero and it is in the inner pair;

2. All values in {a,z,b,y, c, z} are nonzero.
We prove that Pl-Holant(#2| f) is #P-hard unless f € ., in which case it is tractable.

Assume f & 4. The main idea is to use Mobius transformations. However, there are some
settings where we cannot do so, either because we don’t have the initial signature to start the
process, or the matrix that would define the Mébius transformation is singular. So we first

treat the following two special cases.

e Ifa=c¢€x,b=eyandc= ez, where e = £1, by interpolation based on a lattice structure,
either we can realize a non-singular redundant signature or reduce from the evaluation

of the Tutte polynomial at (3,3), both of which are #P-hard (Lemma 9.34).

o If det [lz’ ;] = 0 or det[?Z] = 0, then either we can realize a non-singular redundant

signature or a signature that is #P-hard by Lemma 9.34 (Lemma 9.35).

If f does not belong to the above two cases, we want to realize binary signatures of the form
(0,1,t,0)7, for arbitrary values of ¢. If this can be done, by carefully choosing the values
of ¢, we can construct a signature that belongs to Case III and it is #P-hard when f ¢ .#
(Lemma 9.36). We realize binary signatures by connecting f with (#2). This corresponds
naturally to a Mébius transformation. By discussing the following different forms of binary
signatures we get, we can either realize arbitrary (0,1,t,0)7 or a signature belonging to Case

I1.2 that does not satisfy condition 4, therefore is #P-hard (Theorem 9.42).
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o If we can get a signature of the form g = (0,1,¢,0)” where ¢ # 0 is not a root of unity,
then by connecting a chain of g, we can get polynomially many distinct binary signatures
gi = (0,1,¢,0)T. Then, by interpolation, we can realize arbitrary binary signatures of

the form (0,1,#,0)%.

« Suppose we can get a signature of the form (0,1,¢,0)”, where ¢ # 0 is an n-th primitive
root of unity (n > 5). Now, we only have n many distinct signatures g; = (0,1,%,0)7.
But we can relate f to two Mébius transformations due to det [g ;] #0anddet[%Z] #0.
For each Mébius transformation ¢, we can realize the signatures g = (0, 1, ¢(t%),0)T. If
lo(t?)] # 0,1 or oo for some 7, then this is treated above, as this (t?) is nonzero and not
a root of unity. Otherwise, since ¢ is a bijection on the extended complex plane ((A:, it can
map at most two points of S* to 0 or co. Hence, |¢(t!)] = 1 for at least three distinct ¢.

But a Mobius transformation is determined by any three distinct points. This implies

93+ o i0
ore
but the latter form actually cannot occur in our context.) By exploiting its property we

that ¢ maps S! to itself. Such mappings ¢ have a known special form e

can construct a signature f’ such that its corresponding Mobius transformation ¢’ defines
an infinite group. This implies that ¢'*(¢) are all distinct. Then, we can get polynomially
many distinct binary signatures (0,1, ¢"*(t),0), and realize arbitrary binary signatures

of the form (0,1,#,0)” (Lemma 9.37).

« Suppose we can get a signature of the form (0, 1,¢,0)” where ¢ # 0 is an n-th primitive
root of unity (n = 3,4). Then we can either relate it to two Mobius transformations
mapping the unit circle to itself, or realize a double pinning (0, 1,0,0)” = (1,0)7®(0,1)"
(Corollary 9.39).

« Suppose we can get a signature of the form (0, 1,0,0)”. By connecting f with it, we can
get new signatures of the form (0,1,¢,0)7. Similarly, by analyzing the value of ¢, we can

either realize arbitrary binary signatures of the form (0,1,s,0)%, or realize a signature

that belongs to Case I1.2, which is #P-hard (Lemma 9.40).

o Suppose we can only get signatures of the form (0,1,41,0). That implies a = ex, b = ey

and ¢ = ez, where ¢ = £1. This has been treated before.

As Case I has already been proved tractable in [25], we only deal with Cases II, IIT and IV,
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and they are each dealt with in the next three sections. Before we start the proof, we first illustrate

the scope of Theorem 9.21 by several concrete problems.

Problem 1 : #EO on 4-Regular Planar Graphs.

Input : A 4-regular planar graph G.

Output : The number of Eulerian orientations of G, i.e., the number of orientations of G such
that at every vertex the in-degree and out-degree are equal.

T{lis problem can be expressed as Pl-Holant(#2 |f), where f has the signature matrix M(f) =

000
[8 H 8} . Huang and Lu proved this problem is #P-complete [45]. Theorem 9.21 confirms this.
1000

Problem 2 : P1-T(G; 3, 3).

Input : A planar graph G.

Output : The value of the Tutte polynomial T'(G; x,y) at (3,3).

Let G,, be the medial graph of G, then G,, is a 4-regular planar graph. By Theorem 9.17, we

have

> 229 =21(G;3,3),
0€EO(Cm)

where 5(0O) is the number of saddle vertices in the orientation O. Note that > 5ceo(c,n) 28(0) can

0001
be expressed as Pl-Holant(#2 |f), where f has the signature matrix M (f) = {8 12 8} Theorem
1000

9.21 confirms that this problem is #P-hard.

Compared to the six-vertex model over general graphs, the planar version has new tractable
problems due to the FKT algorithm under holographic transformations. This tractable class can

give highly nontrivial problems. For example, we consider the following problem.

Problem 3 : SMALLPELL

Input : A planar 4-regular graph G and a 4-ary signature f, where f has the signature matrix

317830805723707970 —283823304736008960i 283823304736008960i 317830805723707968
M(f) — | —283823304736008960i —253454564065438270 253454564065438272 —283823304736008960i
2838233047360089601  253454564065438272 —253454564065438270 283823304736008960i
317830805723707968 —2838233047360089601 283823304736008960i 317830805723707970

Output : The evaluation of Pl-Holant(f) on G.
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11

By the holographic transformation Z = % [1 %], we have

~

Pl-Holant(f) =7 Pl-Holant(#2 |f),

where

~

0 0 0 1
M(f) — | 0569465989630582080 32188120829134849 0
- (1) 32188120829134849 18193801058564160 8

Since (32188120829134849, 1819380158564160) is a solution of Pell’s equation 2% — 313y% = 1, we
have f € ./ by Matchgate Identities [69]. By Theorem 9.21, Pl-Holant(f) can be computed in

polynomial time.

In addition to matchgates and matchgates-transformable signatures, Theorem 9.21 gives a new
class of tractable problems on planar graphs. They are provably not contained in any previously

known tractable classes. For example, we consider the following problem.

Problem 4 : Pl-Holant(#2 |f), where f has the signature matrix M (f) = [

—o oo
co go
o$oo

SO O+
| IS

Input : An instance of Pl-Holant(#3 | f).
Output : The evaluation of this instance.

By Theorem 9.21 (condition 4 (ii)), Pl-Holant(#2 |f) can be computed in polynomial time.
Note that Holant(#9 |f) is #P-hard without the planar restriction. It can be shown that f is
neither in .# nor .#-transformable. By Lemma 9.7 we know f ¢ .4, and by Lemma 9.14 we know
fé M. By Lemma 9.11, this implies f is neither in .# nor .#-transformable.

Therefore, the tractability is not derivable from the Kasteleyn’s algorithm or a holographic
transformation to it. Hence, condition 4 of Theorem 9.21 defines a new component of planar
tractability complementing the Kasteleyn’s algorithm. Furthermore, it is an essential component

because with it the picture is complete.

9.4 Case II: One Zero Pair

If an outer pair is a zero pair, by rotational symmetry, we may assume (a, ) is a zero pair.
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Definition 9.22. Given a 4-ary signature f with the signature matrix

00 0O
0 b c¢c O
M(f) = ; (9.1)
0 2z y O
0 0 0]

we denote by ﬁn the binary signature with M(fln) =Mun(f)[{5] = [; IZ’] . Given a set F consisting
of signatures of the form (9.1), we define Fr, = {f;n | feF}.

Lemma 9.23. For any set F of signatures of the form (9.1),
Pl-#CSP(F1,) <7 Pl-Holant (#5| F).

Proof. We adapt a proof from [25], making sure that the reduction preserves planarity. This
need to preserve planarity necessitates the twist introduced in the definition of ﬁn and ]?In. We
prove this reduction in two steps. In each step, we begin with a signature grid and end with a new
signature grid such that the Holant values of both signature grids are the same.

For step one, let G = (U, V, E) be a planar bipartite graph representing an instance of
PL#CSP(F,) = Pl-Holant (59 | fln> ,

where each u € U is a variable, and each v € V' has degree two and is labeled by some ]?In € fln. We
define a cyclic order of the edges incident to each vertex u € U, and split u into k = deg(u) vertices.
Then we connect the k edges originally incident to w to these k new vertices so that each vertex
is incident to exactly one edge. We also connect these k new vertices in a cycle according to the
cyclic order (see Figure 15b). Thus, in effect we have replaced u by a cycle of length k& = deg(u).
(If k£ = 1 then there is a self-loop. If & = 2 then the cycle consists of two parallel edges.) Each
of k vertices has degree 3, and we label them by (=3). This defines a signature grid for a planar
holant problem, since the construction preserves planarity. Also clearly this does not change the
value of the partition function. The resulting graph has the following properties: (1) every vertex

has either degree 2 or degree 3; (2) each degree 2 vertex is connected to degree 3 vertices; (3) each
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(a) (b) (c)

] 15: The reduction from #P1-CSP(f1,) to Pl-Holant (5| f). The circle vertices are labeled by (=4), where
d is the degree of the corresponding vertex, the diamond vertices are labeled by f1, , the triangle vertices
are labeled by f, and the square vertices are labeled by (#2).

degree 3 vertex is connected to exactly one degree 2 vertex.

(a) finoo<> for01=¢ (b) fino1 4> fo110=b (C) fin104* f1001=Y (d) fin114> f1010=2

0000

€ 16: Assign input variables of f with M (f) = [8 b Y 8] . Suppose the binary signature g is applied
0000

to (the ordered pair) (u,u’). The variables u and u' have been replaced by cycles of length deg(u)

and deg(u’) respectively. For the cycle C, representing a variable u, we associate the value u = 0
with a clockwise orientation, and u = 1 with a counterclockwise orientation. Then by the support of
f, which is contained in (z1 # z2) A (x3 # x4), (71, z2) can only take assignment (0,1) or (1,0), and
similarly (z3,x4) can only take assignment (0,1) or (1,0). We associate (z1,z2) = (0,1) tou =0
(clockwise orientation), and (x1,x2) = (1,0) to u = 1 (counterclockwise orientation). Consistently,
(x3,24) = (0,1) when v =0, and (z3,24) = (1,0) when «’ = 1.

Now step two. For every v € V, v has degree 2 and is labeled by some fln € .7?111. We contract
the two edges incident to v to produce a new vertex v’. The resulting graph G’ = (V' E') is
4-regular and planar. We put a node on every edge of G’ (these are all edges of the cycles created

in step one) and label it by (#2) (see Figure 15¢). Next, we assign a copy of the corresponding
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f to every v € V’'. The input variables x1,zs,x3, x4 are carefully assigned at each copy of f
(as illustrated in Figure 16) such that there are exactly two configurations to each original cycle,
which correspond to cyclic orientations, due to the (#2) on it and the support set of f. These
cyclic orientations correspond to the {0, 1} assignments at the original variable v € U. Under this
one-to-one correspondence, the value of fln is perfectly mirrored by the value of f. Therefore, we

have Pl-#CSP(Fi,) <7 Pl-Holant (£5] F).

(a) ,)?Inoo < foror = ¢ (b) ,;Flnll > fio10 = 2

K 17: A self-loop on the cycle representing variable w is created for each constraint fln(w,w).
This creates a degree 4 vertex labeled by f, with four input variables (z1, z2,x3,z4) as described.
Note that the self-loop is created locally on the cycle such that it does not affect anything having
to do with other cycles. Base on the support of f, the values x; # x9 and z3 # z4. By the (#)
on the loop, we also have x; # z4. Hence (z1,22) = (23,24) = (0,1) or (1,0). It is clear that
the former corrresponds to w = 0 (clockwise orientation), and the latter corrresponds to w = 1
(counterclockwise orientation). This is consistent with the association in Figure 16.

There is also the possibility that the binary constraint ]?In is applied to a single variable, say w,
resulting in a unary constraint that takes value fln(O, 0) =cifw =0 and fln(l, 1)=zifw=1. To
reflect that, we simply introduce a self-loop on the cycle representing the variable w for every such
occurrence, as illustrated in Figure 17. It is clear that the values ¢ and z are perfectly mirrored
by the values that the local copy f takes under the two orientations for the cycle corresponding to

w =0 and 1. O

Theorem 9.24. Let f be a 4-ary signature of the form (9.1). Then Pl-Holant(#2| f) is #P-hard
unless f € P, fed, or f e /Z/\, in which cases the problem is tractable.

Proof. Tractability follows from Theorems 2.30 and 9.9. For any f of the form (9.1), note
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that the support of f is contained in (1 # x2) A (x3 # x4). We have

f(x1, 22,23, %4) = fin(®1,23) * Xa1£2s * Xas£eas

where y is the 0-1 indicator function. Thus, ]f"vln € & or & is equivalent to f € & or &/. In
addition, by Lemmas 9.12 and 9.13, ﬁn c M is equivalent to f € M. Therefore, if f ¢ &, .o/ or
///\, then j?In ¢ P o or M. By Theorem 9.19, Pl—#CSP(fIH) is #P-hard, and then by Lemma
9.23, Pl-Holant (#2| f) is #P-hard. O

Remark 9.25. One may observe that if f € 4, then Pl-Holant (#2| f) is also tractable as f
and (=2) are both realized by matchgates. However, Theorem 9.2/ already accounted for this case

because for signature f of the form (9.1), f € 4 implies f € .

Now, we consider the case that the inner pair is a zero pair and no outer pair is a zero pair.

Note that a signature in the form (9.2) has support contained in (z1 # x3) A (22 # x4).

Definition 9.26. Given a 4-ary signature f with the signature matriz

000 a
0b 00

M(f) = ; (9.2)
00y 0
2 0 0 0]

where (a,x) # (0,0) and (b,y) # (0,0), let Gy denote the set of all binary signatures g, of the form

ak1t+t yk‘z o phat+lapkatls  ghatlag ka+L1 pkatlo phi+E3

Y

M(g,) =
! qFatte ykl s phatlapks+bs ka+ils yk4 +La k141 pha+lo

satisfying k = £, where k = Y1 ki, 0 = Y20 £i and ky, ko, k3, ka, 01,09, €3, 4 € N. Let H; denote

the set of all unary signatures h, of the form
M(hf) = |@Miym2g M3 My MagIpm2 |

where m1, mo, m3z, my € N.
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Let k = ki = {1 = £ = 1, we get a specific signature g1, € Gy, with M(g1,) = [Z; f;g} Let

azx b?
y? az |°

k =k =1{3=1{=1, we get another specific signature g2, € Gy, with M(g2,) = [

Remark 9.27. Foranyi,j € {1,2,3,4}, letk = k; = {; = £ = 1, we can get 16 signatures in Gy that
have similar signature matrices to M(g1,) and M(ga,). For example, Choosingk = ks = {1 = { =1,
we get géf (x1,x2) with the signature matriz M(g’Qf) = [‘22“ gi} Indeed géf (z1,22) = g2, (w2, 71).

In fact, Gy is the closure by the Hadamard product (entry-wise product) of these 16 basic signature

matrices.

Lemma 9.28. Let f be a signature of the form (9.2). Then,

Pl-Holant(#2| f) <7 #CSP(Gf U Hy), (9.3)
Ifa> =22 #0, 0> =y%> # 0 and (%)8 # 1, then

#CSP(g1,,92,) <r Pl-Holant(#2| f). (9.4)

Proof. We divide the proof into two parts: We show the reduction (9.3) in Part I, and the
reduction (9.4) in Part II.

Part I: Suppose Q = (G, ) is a given instance of Pl-Holant(#3| f), where G = (U,V, E) is
a plane bipartite graph. Every vertex v € V has degree 4, and we list its incident four edges in
counterclockwise order. Two edges both incident to a vertex v € V are called adjacent if they are
adjacent in this cyclic order, and non-adjacent otherwise. Two edges in G are called 2-ary edge
twins if they are both incident to a vertex u € U (of degree 2), and 4-ary edge twins if they are
non-adjacent but both incident to a vertex v € V' (of degree 4). Both 2-ary edge twins and 4-ary
edge twins are called edge twins.

Each edge has a unique 2-ary edge twin at its endpoint in U of degree 2 and a unique 4-ary
edge twin at its endpoint in V of degree 4. The reflexive and transitive closure of the symmetric
binary relation edge twin forms a partition of E as an edge disjoint union of circuits: C1,Co, ..., Ck.
Note that C; may include repeated vertices called self-intersection vertices, but no repeated edges.

We arbitrarily pick an edge e; of C; to be the leader edge of C;. Given the leader edge e; = (u,v)
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of C;, with u € U and v € V, the direction from u to v defines an orientation of the circuit C;. *
For any edge twins {e, e’}, this orientation defines one edge, say €', as the successor of the other if
€’ comes right after e in the orientation. When we list the assignments of edges in a circuit, we list
successive values of successors, starting with the leader edge.

For any nonzero term in the sum

PlHolanto = Y [[ ful@ lEw):

0:E—{0,1} weUuV

the assignment of all edges o : E — {0,1} can be uniquely extended from its restriction on leader
edges o’ : {e1,e2,---ex} — {0,1}. This is because the support of f is contained in (z1 # x3) A(x2 #
x4). Thus, at each vertex v € V', f, (o | E(v)) # 0 only if each pair of edge twins in E(,) is assigned
value (0,1) or (1,0). The same is true for any vertex u € U of degree 2, which is labeled (#2).
Thus, if the leader edge e; in C; takes value 0 or 1 respectively, then all edges on C; must take
values (0,1,0,1,---,0,1) or (1,0,1,0,---,1,0) respectively on successive successor edges, starting
with e;. In particular, all pairs of 4-ary edge twins in C; take assignment (0,1) when e; = 0 and

(1,0) when e; = 1 (listing the value of the successor second). Then, we have

Pl-Holantg, = 3 I /o0 15):

U’:{el,--- ,ek}ﬁ{o,l} veV

where o/ denotes the unique extension of o’.
Forall 1 <i < j <k, letV;; =C;NC; denote the set of all intersection vertices between Cj
and Cj. Denote by UEei,ej) an assignment {e;,e;} — {0,1}. Define a binary function g; ; on e; and

e; as follows: For any b,b" € {0,1}, let

gla] b b/ H folo (el,ej ’E(v))

veEV; ;

where o/ | is the unique extension of ¢/ . on the union of edge sets of C; and C; as described
(3276]) (el’eJ) J

above, and O'E is the unique assignment on {e;, e;} such that e; — b and e; — b'. Since all

€i,€5)

edges incident to vertices in V; ; are either in C; or ()}, the assignment values of these edges are

*This default orientation should not be confused with the orientation in the proof of Lemma 9.23.
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determined by 02 Hence, g; ; is well-defined.

€,ej5)"

We show that g; ; € Gy by induction on the number n of self-intersection vertices in C;. Note
that in this proof, ¢ and j (with i < j) are not treated symmetrically.

For each vertex v € V;;, consider the two pairs of edge twins incident to it. We label the
edge twins in C; by the variables (z1,z3) such that xs is the successor of 1 in the orientation of
C;. Hence, for all v € V;j, these variables (z1,x3) take the same assignment (0,1) when e; = 0
and (1,0) when e; = 1. Then, label the edge twins in C; at v by (z2,24) so that the 4 edges at
v are ordered (x1, 9,3, z4) in counterclockwise order. This choice of (22, x4) is unique given the
labeling (1, z3).

As we traverse C; according to the orientation of Cj, locally there is a notion of the left side
of C;. At any vertex v € C; N C}, if we take the traversal of C; according to the orientation of

Cj, it either comes into or goes out of the left side of C;. We call v € C; N C; of the former kind

“entry-vertices”, and the latter kind “exit-vertices” (see Figure 18).

¥l 18: Intersection vertices between C; and C;

At any entry-vertex v € V;;, the variable x4 is the successor of xo, while at any exit-vertex
x9 is the successor of x4. Therefore, at entry-vertices, variables (x2,x4) take assignment (0,1)
when e; = 0 and (1,0) when e; = 1, while at exit-vertices they take assignment (1,0) and (0, 1)
respectively instead.

Table 7 summarizes the values of f and its rotated copies at intersection vertices V; ;. According
to the 4 different assignments of (e;, e;) as listed in column 1 of the table, column 2 and column 7

(indexed by (1, z2, 23, 24)) list the assignments of (x1, x2, 3, x4) at entry-vertices and exit-vertices
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entry-vertices exit-vertices
o) o o aman) | 4 [ JE 7 [ I5 | Guomasa) [ 115|715
(0,0) (0,0,1,1) al y | x b (0,1,1,0) b| a |y T
(0,1) (0,1,1,0) b| a |y x (0,0,1,1) al| y | x b
(1,1) (1,1,0,0) x| b | a Yy (1,0,0,1) y| x | b a
(1,0) (1,0,0,1) y | x b a (1,1,0,0) x| b | a Yy

¢ T: The values of f and its rotated copies at intersection vertices

separately. With respect to this local labeling of (z1,x2,x3,24), the signature f has four rotated

forms:

columns 3, 4, 5, 6 and columns 8, 9, 10, 11 list the corresponding values of the signature f in four
forms f, f%, f™ and f 5 respectively.

Suppose there are ki, ks, k3 and k4 many entry-vertices assigned f, f 3, f™, and f 37”, respec-
tively, and there are ¢1, (s, (5 and ¢, many exit-vertices assigned fz, f™, f % and f, respectively.
Then, according to the assignments of (e;, e;), the values of g;; are listed in Table 8, and its

signature matrix is given below:

aku +41

M(gi;) = / ’
qFatte yk'l Hls pkatlapkat+ls gkatils yk4 L4 k141 pha+lo

kotla pka+Llapkatls  ha+lag ka+Ln katlo phi+E3

™ 37 ™ 37\ p.
(eis €5) gijleiej) = R (f)R2(fmPs(f2 ) (f2)0 (fm)2(f2) s 1
(0,0) aFryz ks phaglog bz s pla

k1 ko, ks ka, b1 02103 44
(0,1) bR akzqks gphag b tapts o
(1,1) k12 gks yl~C4 xl1pt2ls y£4

k1 ko pks karbi o la, b3 6a
(1,0) Yy et a2y By

%% 8: The values of g; ;

Our proof that g;; € Gy is based on the assertion that the number of “entry-vertices” and

“exit-vertices” are equal, namely Z?Zl ki = Z?Zl l;.

o First, consider the base case n = 0. That is, C; is a simple cycle without self-intersection. By
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the Jordan Curve Theorem, C; divides the plane into two regions, an interior region and an
exterior region. In this case, as we traverse C; according to the orientation of C;, the left side
of the traversal is always the same region; we call it L; (which could be either the interior or
the exterior region, depending on the choice of the leader edge e;). If we traverse C; according
to the orientation of C, we enter and exit the region L; an equal number of times. Therefore
there is an equal number of “entry-vertices” and “exit-vertices”. Hence 2;4:1 ki = Zle 4. Tt

follows that g; ; € G by the definition of Gy.

Inductively, suppose g; ; € G holds for any circuit C; with at most n self-intersections. Let
C; have n + 1 self-intersections. We decompose C; into two edge-disjoint circuits, each of

which has at most n self-intersections (See Figure 19). Take any self-intersection vertex v*

D@0

Kl 19: Decompose C; into C} and C?.

of C;. There are two pairs of 4-ary edge twins {e, e’} and {€,€}, where €’ is the successor
of e and € is the successor of . Note that e and € are oriented toward v*, and ¢ and &
are oriented away from v*. By the definition of edge twins, {e,€} are adjacent, and {¢’, &'}
are adjacent. We can break C; into two oriented circuits C} and C?, by splitting v* into two
vertices, and let €’ follow € and let € follow e. Let the mapping « : [0,1] — R2, such that
~7(0) = ~(1/2) = v(1) = v*, represent the traversal of C;. Then we can define two mappings
1,42 [0,1] — R2, such that v () = v(¢/2) and v%(t) = v((t+1)/2). Then {y!,7?} represent
{C},C2?} respectively. Tt follows that C; is the edge disjoint union of C}! and C? and they
both inherit the same orientation from that of C;. Any vertex in V; ; is distinct from a self
intersection point of C; and thus V; ; is a disjoint union V1 U ij, where Vzlj = C!' N Cj and
VZ =CinC;.

Since C’Z-1 inherits the orientation from Cj, the orientation on CZ»1 is consistent with the orien-
tation starting by choosing a leader edge on C}. The same is true for the orientation on C?.

Thus, by induction, on each C’i1 NC; and CZ? NC} there are an equal number of “entry-vertices”
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and “exit-vertices”. Hence Z?Zl k; = 2?21 ¢;, and so g; ; € Gy, completing the induction.

Let V; be the set of all self-intersections of (. Let O-Eei) denote the restriction of o’ on {e;}.

Define a unary function h; on e; as follows: For any b € {0, 1}, let

—

h;i(b) = H fv(UEei)) |E(v))7

veV;

—_

where azei) is the unique extension of azei) on the edge set of C;, and O-ESZ') is the unique assignment
on {e;} such that e; — b. The assignment of those edges incident to vertices in V; can be uniquely
extended from the assignment Jéei). Hence, h; is well-defined. We show that h; € H;.

For each vertex in V;, since it is a self-intersection vertex, the two pairs of edge twins incident
to it are both in C;. We still first label each pair of edge twins by a pair of variables (z1, z3) obeying
the orientation of C;. That is, x3 is always the successor of 1. Now by the definition of 4-ary edge
twins, the two edges labeled x; are adjacent. Hence at each vertex in V;, starting from one z1, the
four incident edges are labeled by (z1,z1,23,23) in counterclockwise order. We pick the pair of
variables (z1,z3) that appear in the second and fourth positions in this listing and change them to
(z2,24), so that the four edges are now labeled by (x1, x2, 3, x4) in counterclockwise order. Clearly,
(z2,24) and (z1,z3) take the same assignment. That is, at each vertex in V;, the assignment of
(1,9, 23,24) is (0,0,1,1) when e; = 0, and (1,1,0,0) when e; = 1. Under this labeling, the

signature f still has four rotated forms. The values of these four forms are listed in Table 9.

e; (21,72, 73, 74) / f2 I I3
0 (0,0,1,1) a Yy x b
(1,1,0,0) T b a Y

7% 9: The values of f and its rotated forms at self-intersection vertices

™ 3
Suppose on V; there are mi, ms, ms and my4 many vertices assigned f, f2, f™ and f2 respec-
tively. Then, we have

M(h;) = [amlmemm3bm4 aM3yma g pm2].

It follows that h; € Hy.
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For any vertex v € V, it is either in some V; ; or some V;. Thus,

Pl-Holantg = Z < H fv(U,’E(v))>< H fv(U,|E(v))>

o'{e1,,ex}—{0,1} veV; j veV;
1<i<j<k 1<i<k

= > ( 11 gi,j(U/(ei)aU'(ej))>< 11 hi(ff/(ei))>a

o'{e1,,er}—{0,1} \1<i<j<k 1<i<k
where g; j € G¢ and h; € Hy. Therefore, Pl-Holant(#2| f) <r#CSP(Gr U Hy).

Here, we give an example for the reduction (9.3).
Example. The signature grid 2 = (G, ) for Pl-Holant (#2| f) in Figure 20 has two circuits

Cy (the SQUARE) and C5 (the HORIZONTAL EIGHT) in G. We have chosen (arbitrarily) a leader

<62)2 S z1(er)

Kl 20: An example for the reduction (9.3)

edge e; for each circuit C;. In Figure 20 they are near the top left corner. Given the leader, the
direction from its endpoint of degree 2 to the endpoint of degree 4 gives a default orientation of
the circuit. Given a nonzero term in the sum Pl-Holantg, as a consequence of the support of f, the
assignment of edges in each circuit is uniquely determined by the assignment of its leader. That is,
any assignment of the leaders o’ : {e1,e2} — {0,1} can be uniquely extended to an assignment of
all edges o : E — {0,1} such that on each circuit the values of 0,1 alternate.

Consider the signatures f,, fu,, fu; and f,, on the intersection vertices between C7 and C.
Assume C; does not have self-intersection (as is THE SQUARE); otherwise, we will decompose Cy
further and reason inductively. Without self-intersection, C has an interior and exterior region by
the Jordan Curve Theorem. For the chosen orientation of C', its left side happens to be the interior
region. With respect to C, the circuit Cy enters and exits the interior of C alternately. Thus,

we can divide the intersection vertices into an equal number of “entry-vertices” and “exit-vertices”.
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In this example, f,, and f,, are on “entry-vertices”, while f,, and f,, are on “exit-vertices”. By
analyzing the values of each f when e; and ey take assignment 0 or 1, we can view each f as a
binary constraint on (C7, C3). Depending on the 4 different rotation forms of f and whether f is on
“entry-vertices” or “exit-vertices”, the resulting binary constraint has 8 different forms (See Table
7). By multiplying these constraints, we get the binary constraint g; 2. This can be viewed as a
binary edge function on the circuits C1 and Caz. The property of g; 2 crucially depends on there

are an equal number of “entry-vertices” and “exit-vertices”. For any b, b’ € {0, 1},

912 (b, b/ H f”l (61 e2) ‘E('Uz))

1<i<4

—

where 0281782) uniquely extends to C and C3 the assignment 0'261762)(61) = b and o(el e €2 ) =10.
If the placement of f,, were to be rotated clockwise 7, then f,, will be changed to fv1 in the
above formula, where Mx1x27x4x3(fvgl) = Myyry wrzs(for)-
For the self-intersection vertex f,, the notions of “entry-vertex” and “exit-vertex” do not
apply. fys gives rise to a unary constraint H on e. Depending on the 4 different rotation forms of

f, H has 4 different forms (see Table 3). For any b € {0,1},

—

h2(b) = fvs (0662) |E(v5))7

—

where UE@) uniquely extends to Cy the assignment Jém)(eg) =b.

Therefore, we have

Pl-Holantg = Z H folo ‘E(u)

0:E—{0,1} veV(Q)

= Z < H fo, (o >fv5( /|E(v5))

o’:{e1,e2}—{0,1} \1<i<4

= Y gra(0’(e),0'(e2) H(0' (e2)).
o’{e1,e2}—{0,1}
Part II: Suppose [ is a given instance of #CSP(g1,,g2,). Each constraint g1, and go, is
applied on certain pairs of variables. It is possible that they are applied to a single variable,

resulting in two unary constraints. We will deal with such constraints later. We first consider the
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case that every constraint is applied on two distinct variables.

For any pair ¢ < j, consider all binary constraints on variables x; and z; (i < j). Note that
g1, is symmetric, that is, g1, (%, ;) = g1,(xj, ;). We assume all the constraints between x; and
T; are: s; ; many constraints g; f(a:i, a:j), t;; many constraints go f (x4, a:j) and t;j many constraints

92, (xj,2;). Let g; j(x;, ;) be the function product of these constraints. That is,

/

L ti s t .
9ig (@i x) = 977 (i, 25)95) (w0, 25) 95, (5, 25).

Then, we have

#CSP(I) = > I gislo(@), o).

o{z1,...,x }—{0,1} I<i<j<n

0001

We prove the reduction (9.4) in two steps. We first reduce #CSP(I) to both instances §;
0
9 ji8]. e
0 000

0001
(for i = 1,2) of Pl-Holant (#£2| f, xi) respectively, where y; = [8(1) 8] and s = [ 9
1000 —

1
instance €); is constructed as follows:

1. Draw a cycle Dy, i.e., a homeomorphic image of S*, on the plane. For 2 < j < k successively
draw cycles Dj, and for all 1 < i < j let D; intersect transversally with D; at least 2(s; ; +
ti 5+ t;’ j) many times. This can be done since we can let D, enter and exit the interiors of D;
successively. A concrete realization is as follows: Place k vertices D; on a semi-circle in the
order of i = 1,..., k. For 1 < ¢ < j < k, connect D; and D; by a straight line segment Lj;;.
Now thicken each vertex D; into a small disk, and deform the boundary circle of D; so that,
for every 1 < i < j, it reaches across to D; along the line segment L;;, and intersects the
boundary circle of D; exactly 2(s; j+t; ; +t;7 ;) many times. (There are also other intersections
between these cycles D;’s due to crossing intersections between those line segments. This is
why we say “at least” this many intersections in the overall description. We will deal with
those extra intersection vertices later.) We can draw these cycles to satisfy the following

conditions:

a. There is no self-intersection for each D;.

b. Every intersection point is between exactly two cycles. They intersect transversally.

Each intersection creates a vertex of degree 4.
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These intersecting cycles define a planar 4-regular graph G’, where intersection points are the

vertices.

. Replace each edge of G’ by a path of length two. We get a planar bipartite graph G = (V, E).
On one side, all vertices have degree 2, and on the other side, all vertices have degree 4. We
can still define edge twins as in Part I. Moreover, we still divide the graph into some circuits
Ci,...,Cp. In fact, C; is just the cycle D; after the replacement of each edge by a path of

length two.

Let V; ; = C;NCj (i < j) be the intersection vertices between C; and C;. Clearly, |V; ;| is even
and at least 2(s; ; +1; ; +t;7 j). Since there is no self-intersection, each circuit is a simple cycle.
As we did in Part I, we pick an edge e; as the leader edge of C; and this gives an orientation
of C;. We can define “entry-vertices” and “exit-vertices” as in Part I. Among V; ;, half are
entry-vertices and the other half are exit-vertices. (This notion is defined in terms of C; with
respect to Cj; the roles of ¢ and j are not symmetric.) List the edges in C; according to the
orientation of C; starting with the leader edge e;. After we place copies of f on each vertex,
the support of f, which is contained in (x1 # x3) A (2 # x4), ensures that every 4-ary twins
can only take values (0,1) or (1,0), since the 4-ary twin edges are non-adjacent. Then all
edges in C; can only take assignment (0,1,0,1,---,0,1) when e; = 0 and (1,0,1,0,---,1,0)

when e; = 1.

. Label all vertices of degree 2 by (#2). For any vertex in V; ; (i < j), as we showed in Part I,
we can label the four edges incident to it by variables (z1, z2, 3, z4) in a way such that when
o' i (ej,e;) > (bb) € {0,1}%, we have (z1, 2, x3,24) = (b,V/,1—b,1—V') at any entry-vertex,
and (z1,x2,23,24) = (b,1 — b/, 1 — b, V') at any exit-vertex (See Table 7). Note that f has
four rotation forms under this labeling. We have (at least) s; ; +t; j + t;-’j many entry-vertices
and as many exit-vertices. Let V//; be the set of these 2(s; ;j +1;; +1] ;) vertices. For vertices
in Vz’ ;» we label s; j many entry-vertices by f and s; ; many exit-vertices by f 3, t; j many
entry-vertices by f and t; ; many exit-vertices by f 37#, and t;’j many entry-vertices by f™ and
t;}j many exit-vertices by f 2. Refer to Table 8, this choice amounts to taking

/ /
kl = Sivj + ti,j, kg — ti,j7 and7 E]_ — Si,j + ti,j’ 83 — tiJ,
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and all other k;, ¢;’s equal to 0. Recall that g1, (z1,x2) corresponds to choosing k1 = ¢; =1
and the others all 0, g2, (21, x2) corresponds to choosing k1 = ¢35 = 1 and the others all 0, and

92, (z2,21) corresponds to choosing k3 = ¢; = 1 and the others all 0, then we have

i,j ti," t,/i,,'
L1 700l e)) 1By = 917 (eire5) g5 (eis €595 (€55 €5) = gij(eire;).
VeV

For all vertices in %,j\‘/;;l,jv

—OoOOoO
oo~Oo
OoO—OO
SOoOOH

if we label them by an auxiliary signature x; = [ ] , then,

referring to Table 8 (Here a =2 = b=y = 1), we have

H Xl(gzeiﬁj) Bw) =1,
veVi i \Vj

for all assignments o’ on {e;,e;}. We can also label the vertices in V; ;\V/; by an auxiliary
0001

signature xo = [ 949 8] . By our (semi-circle) construction, in V; j\V/;,
-1000 ’

vertices is equal to the number of exit-vertices. We label all entry-vertices by xs and label all

the number of entry-

x 000 1

exit-vertices by its rotated form x5 = [8 59 8] . Refer to Table 8 (herea=b=y =1,z =
100 0

—1,and k = k1 = £; = ¢, and the crucial equation is g; j(1,1) = 2F1Th = (=1)2 = 1), we

have

H X2(Uzei:€j) |E(v)) = 1’
vEW,j\Vig

for all assignments o’ on {e;, e;}.

i) T3

Kl 21: Creating self-loop locally on cycle C,,

Then, consider the case that g1, and g2, are applied to the pair variables (w,w), in which
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case g1, and gy, effectively become unary constraints [a*,2?] and [az, ax] on the variable z;. The
latter is a constant multiple of [1,1] and can be ignored. The unary constraint [a,z], and hence
also [a?, 2%], can be easily realized by f in Pl-Holant(#2| f, x:), by creating a self-loop for the cycle
representing the variable w, denoted by C,, (See Figure 21). Note that the self-loop is created
locally on the cycle C, such that it does not affect other cycles. As we did in Part I, we label the
four edges incident to a self-intersection vertex by (z1,z2,z3,z4) such that x3 is the successor of
x1 and x4 is the successor of x2 depending on the default orientation of Cy,, and (z1, z2, z3,z4) are
labeled in counterclockwise order. Then, we have (z1,x3) = (22, 24) = (0,1) when w = 0 and (1,0)
when w = 1. That is, g1,(0,0) = a? = f2); and g17(1,1) = 22 = f00-

Now, we get an instance €5 (s = 1,2) for each problem Pl-Holant (#2| f, xs) respectively. Note
that x, has the support (z1 # x3) A (2 # x4) as f. As we have showed in Part I, for any nonzero

term in the sum Pl-Holantg,, the assignment of all edges o : E — {0, 1} can be uniquely extended

from the assignment of all leader edges o’ : {e1,es,...,ex} — {0,1}. Therefore, we have

#CSP(I) = > I 9.0 (e).0'(e)))

o’:{e1,er}—{0,1} 1<i<j<n

= Z < H fv(UI|E<v>))< H XSU(U,‘E('U))>

o'{e1,er}—{0,1} vEVicj vEVi,j\V;’,]-
1<i<y<n 1<i<j<n

= Pl-Holantg,

for s = 1,2. That is, #CSP(g1,, 92,) <r Pl-Holant (#2] f, xs), (s = 1,2).
From the hypothesis of the reduction (9.4), we have a = +x # 0,b = +y # 0, and (b/a)® # 1.

We show by interpolation

Pl-Holant(#2| f, x1) <7 Pl-Holant(#2| f)
when a = ex,b = ey, and

Pl-Holant(#2| f, x2) <7 Pl-Holant(#2| f)

when a = ex,b = —ey, where ¢ = +1.
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, since they are all nonzero, and (2)8 # 1, by normalization we may assume

b:
0001
M(f):[ 828],Whereb7é0and687é1.

If b is not a root of unity, by Lemma 9.1, we have Pl-Holant(#3| f, x1) <7 Pl-Holant(#3| f).

Otherwise, b is a root of unity. Construct a gadget fx as shown in Figure 22. Given an

—— >
xT1 Ty
i) T3

—— ~——

K 22: The SQUARE gadget

assignment (x1,x2,x3,24) to fw, and suppose fwx(z1,22,x3,24) # 0. Then because of the
support of f,,, fus and f,, we must have x; # x3. Similarly xo # x4. Also f,, receives the
same input as fg. Hence the support of fig is contained in (z; # x3)A(x2 # x4), i.e., contained
in {(0,0,1,1),(1,1,0,0),(0,1,1,0),(1,0,0,1)}. In particular, the edges on each DIAGONAL
LINE of this gadget can only take assignments (0, 1,0,1,0,1) or (1,0,1,0,1,0), otherwise the
we get zero. On the other hand, the SQUARE cycle in this gadget is a circuit itself, so that
the edges in it can only take two assignments (0,1,0,1,0,1,0,1) or (1,0,1,0,1,0,1,0). We
simplify the notation to (0,1) and (1,0) respectively. On (x1 # x3) A (x2 # x4), the value of

fx is the sum over these two terms.

For the signature f, if one pair of its edge twins flips its assignment between (0, 1) and (1,0),
then the value of f changes from 1 to b, or from b to 1. If both pairs of edge twins flip their
assignments, then the value of f does not change. According to this property, we give the
Table 10. Here, we place a suitably rotated copy of f at vertices v; to get f,, (for 1 <i <5)
so that the values of f,, are all 1 under the assignment (z1,x2,z3,z4) = (0,0,1,1) and the
SQUARE is assigned = (0,1) (row 2 of Table 10). When the assignment of SQUARE flips from
(0,1) to (1,0), one pair of edge twins of each vertex except vs flips its assignment. So the
values of f on these vertices except vs change from 1 to b (row 3). When (x1,x3) flips its

assignment, one pair of edge twins of vy, v3 and v flip their assignments. When (z9, z4) flips
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($1,$2,$3,$4) SQUARE fv1 fUQ fvg fv4 fv5 f@

(0,0,1,1) (0,1) 1 ! L L L 1464
T (1,0) b | b | b | b |1

(1,1,0,0) (0,1) b | b | b | b |1 _
T (1,0) 11|11 ]1
1 1| b 11|56 | 5b

(0,1,1,0) (0,1) 263
(1,0) b | 1| b | 1| 0b

(1,0,0,1) (0,1) b | 1| b |1 |0b o
T (1,0) L b |1 ]b ]| b

Z¢ 10: The values of gadget fw whena=x=1and b=y

its assignment, one pair of edge twins of ve,v4 and vs flip their assignments. Using this fact,

we get other rows correspondingly.

0 0 0 14+b*]

. . 3 .
Hence, fx has the signature matrix M(fx) = 8 28 223 8 . Since v® # 1, we have
1+v* 0 0 0

00 o0 1
200 g
1+b* # 0, by normalization we can write M (fg) = 144 o33 . Since |b| = 1 and b* # 1,
0 0 0
1404
10 0 ol
2p3

we have |1+ b%| < 2. Then |-22;| > [b?| = 1, which means is not a root of unity. By

1+b4 14+b%
Lemma 9.1, we have Pl-Holant(#2| f,x1) <r Pl-Holant(#2| f, fx). Since fx is constructed

by f, we have Pl-Holant(#2| f, x1) <7 Pl-Holant(#2| f).

0 a

9 8] . Connect the variable x4 with z3 of f using
00
ere

00

If a = —x and b = —y, then M(f) = [ 0 8
a0

(#2), and we get a binary signature ¢, wh

g = Mz 2425(0,1,1,0)7 = (0,0, —b,0)7.

Since b # 0, ¢’ can be normalized as (0,1, —1,0)”. Modifying z; = 1 of f by —1 scaling,
000a

we get a signature f/ with the signature matrix M(f) 8888} As we have proved
a000

above, Pl-Holant(#3| f, x1) <r Pl-Holant(#2| f, f'). Since f’ is constructed by f, we have

Pl-Holant(#2| f, x1) <7 Pl-Holant(#2| f).

Ifa=—-z,b=yora=2x b= —y, by normalization and rotational symmetry, we may
0001

assume M (f) = [ 9 5991, where b# 0 and b% # 1.
-1000
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If b is not a root of unity, by Corollary 9.2, we have Pl-Holant(#2| f, x2) <7 Pl-Holant(#2| f).
Otherwise, b is a root of unity. Construct the gadget fx in the same way as shown above.
Our discussion on the support of fx still holds: It is contained in (x; # x3) A (z2 # 24); on
(1,2, x3,x4) With (21 # x3) A (x2 # x4), fu, receives the same input, and the value of fg is

the sum over two assignments (0,1) and (1,0) for the SQUARE.

For the signature f, if one pair of its edge twins flips its assignment between (0,1) and (1,0),
then the value of f changes from +1 to b, or b to F1. If two pairs of edge twins both flip
their assignments, then the value of f does not change if the value is b, or changes its sign if

the value is £1. According to this property, we have the following Table 11. Here, we place

(IE1,$2,I3,$4) SQUARE fv1 fvz fU3 fv4 fv5 f@
0,1 1 1 1 1 1
(0,0,1,1) E ; ; . 1+
0,1 b b -1
w100 %Y (14 bh
(1,0) | =1 | —=1|—-1|-1] -1
1 1 b 1 b | b
(0,1,1,0) 0.1 203
(1,0) -1 11 0
1 b
(1,0,0,1) (0.1) 263
(1,0) | —=1| b | =1| b | b

7% 11: The values of gadget fw whena = -z =1and b=y

a suitably rotated copy of f at vertices v; to get f,, (for 1 < i < 5) so that the values of
fv; are all 1 under the assignment (z1,x2,z3,24) = (0,0,1,1) and the SQUARE is assigned
= (0,1) (row 2 of Table 11). When the assignment of SQUARE flips from (0,1) to (1,0), one
pair of edge twins at each vertex except vs flips its assignment. So the values of f at these
vertices except vs change from 1 to b (row 3). When (x1,z3) flips its assignment, one pair
of edge twins at vy, v3 and vy flips their assignments. When (z9, z4) flips its assignment, one
pair of edge twins at v, v4 and vs flips their assignments. Using this fact, we get other rows

correspondingly.

2% 0. 0 ] Since || = 1 and % # 1, we

0
. : 0

Hence, fix has the signature matrix [ 0 0 23 0
Jr



268

have b* # 41, therefore 0 < |1 + b* < 2, and so 24 is not a root of unity. By Corol-

lary 9.2, Pl-Holant(#2| f, x2) <r Pl-Holant(#3| f, fx), and hence Pl-Holant(#2| f, x2) <7
Pl-Holant(#2| f).

In summary, we have

Pl-Holant (#2| f, x1)

/ \
a=ex,b=ey (e==1)
\

#CSP(g1,, 92,) <r Pl-Holant (#2] f)

\ /
a=ex,b=—ey (e ==£1)
/

Pl-Holant (#2| f, x2)

Therefore, we have #CSP(g1,,92,) <r Pl-Holant (#3| f) when a® = 2% # 0, b* = y* # 0 and
(2)® #1. O

Remark 9.29. A crucial point in the reduction (9.3) is the fact that the given instance graph G
of Pl-Holant (#2| f) is planar so that ), k; = >, €;. Otherwise this does not hold in general; for
example the latitudinal and longitudinal closed cycles on a torus intersect at a single point. The

equation ), k; = Y, {; is crucial to obtain tractability in the following theorem.

Theorem 9.30. Let f be a 4-ary signature of the form (9.2), where (a,z) # (0,0) and (b,y) # (0,0).
Then Pl-Holant(#2| f) is #P-hard unless

(i) (az)* = (by)?, or
(ii)) x = ai®, b= a\ﬂ’B,y =aVi', where a,B,v €N, and f =+ (mod 2),
in which cases, the problem is tractable in polynomial time.

Proof of Tractability:

o In case (i), if ax = by = 0, then f has support of size at most 2. So we have f € Z,
and hence Pl-Holant(#2| f) is tractable by Theorem 2.30. Otherwise, (az)? = (by)? # 0.

For any signature g in Gy, we have goo - g11 = (ax)kiHitketls (py)katlothitle and g1 - g1 =
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(ax)ketletkatla(py)bithithstls - GQince (ky + € + ks +03) — (ko +lo + ks +0y) =k +£ =0

(mod 2), we have

(k142 +kg+L3)—(kotlotky+Ly)

900 - G11 (ax) (k1+L1+k3+L03)—(ko+Lla+ka+Ly) ( (ax)2) 3

go1 * 910 @ (by)2

That is, g € &2. Since any signature h in H; is unary, h € &?. Hence, we have Gy UH; C 2.
By Theorem 9.19, #CSP(Gf U Hy) is tractable. By reduction (9.3) of Lemma 9.28, we have
Pl-Holant(#2| f) is tractable.

In case (ii), for any signature g € G¢ defined in Definition 9.26, M(g) is of the form

\A/B(kﬁ-&;)+’y(k’2+£2)+20(k’3+53) \Aﬁ(lﬁ+43)+’\/(k3+f1)+204(k4+52) \/i??oo \/{pol
akJrﬁ _ ak+€

Y

\/iﬂ(k3+€1)+7(k1+43)+20¢(/€2+f4) \ﬁﬁ(k2+f2)+“/(/€4+€4)+20¢(/€1+€1) o \/{pm \/{1311

where poo, po1, pio and pi; denote the integer exponents of v/i in the respective entries of g.
Since 8 =« (mod 2), if they are both even, then poy = po1 = p10 = p11 = 0 (mod 2); if they
are both odd, then pog = p11 = ka+Vlo+ks+04 = k1 +01+ks+03 = po1 = p1o (mod 2). If these

exponents are all odd, we can take out a v/i. Hence, g is of the form a/(i%0, %1 j20 ja1)T

k+4

where @’ = a =L e

or a4/, and either gij = % for all ¢, j € {0,1} are integers, or ¢;; =

for all 4,5 € {0,1} are integers. Thus,

qoo + qo1 + qi0 + q11 = (poo + po1 + p1o +p11)/2  (mod 2).

Moreover, since poo +po1 +pio+p11 = (k+£)(B+~v+2a) =0 (mod 4), using the assumption
that 8 =+ (mod 2) and k = ¢ (mod 2), we conclude that goo + go1 + q10 + ¢11 = 0 (mod 2).
Therefore, g € &/ by Lemma 2.8.

In this case, for any signature h in Hy, M(h) is of the form
a

-Bmg+yma+2ams3 -Bma+yma+2amy
Vi Vi

Since 8 = v (mod 2), we have Smy + ymgo = Sma + ymy (mod 2). Hence, h is of the form

a"[i%i9], for some integers qo, q1, where a” = a™ or a™+v/i. That is, h € &/ by Lemma 2.9.
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Hence, Gy UH; C o/. By Theorem 9.19, #CSP(G; U Hy) is tractable. By reduction (9.3) of
Lemma 9.28, we have Pl-Holant(#3]| f) is tractable.

Proof of Hardness: We are given that f
000D
Mz, s, (f) = |:8 § % §:| and Mzows,2124 (f) = |:
y
signature f with variables xq, z3 of another copy of signature f both using (#2). We get a signature

oes not belong to case (i) or case (ii). Note that

Oy
Y 8] . Connect variables x3,x2 of a copy of the
00
n

f1 with the signature matrix

0 0 0 by
0 0 22 0
M(fl) = Mm4x1,x3x2 (f)N2M$2€E3,fE1x4 (f) =
0 a> 0 0
by 0 0 0]

Similarly, connect z3,x2 of a copy of signature f with x4,z of another copy of signature f both

using (#2). We get a signature fo with the signature matrix

0 O 0 b
0 0 axr O

M(f2) = MI4£1,1312(f)N2M964£D1,903:B2 (f) =
0 axr 0 O
v 0 0 0]

x 0000 . 0000 , )

: 2 0b 0 b
orce s () = | B8 anef) = [RS8, vt = [(52] st = [132]
00 0O 00 0O

Recall that M<f‘21n> = Mw(f?)[94]. We have 9i; = f#- That is, fi(z1,22,23,24) =

i (T2, 4) * Xay#24 * Xages- NOW, we analyze g1, and g, .

o If {g1,,92,} C &, then either (ax)? = (by)? if either signature is degenerate, or g1, and
g2, are each generalized EQUALITY or generalized DISEQUALITY respectively. In the latter
case, since (a,z) # (0,0) and (b,y) # (0,0), it forces that ax = by = 0. So we still have
(ax)? = (by)?. That is, {a,b, z,y} belongs to case (i). A contradiction.

o If {g1,,92,} C &, there are two subcases. Note that the support of a function in &/ has size

a power of 2.
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— If both g1, and g, have support of size at most 2, then we have ax = by = 0 due to

(a,z) # (0,0) and (b,y) # (0,0). This belongs to case (i). A contradiction.

— Otherwise, at least one of g1, or g2, has support of size 4. Then abzy # 0 and therefore
both g1, and ga, have support of size 4. Let 2’ = 7,0 = 2 and y' = £. By normalization,

we have

2
M(glf) - b/y/ 1”2

Since g1, € </, by Lemma 2.8, 2% and by’ are both powers of i, and the sum of all

exponents is even. It forces that 22 = i?® for some o € N. Then, we can choose « such

2’ =1i%. Also, we have

x/ b/2

y/2 x/

M(ga,) = a®

Since g2, € & and 2’ is already a power of i, y’? and b'? are both powers of i. That is,
b = \ﬂﬂ and v = V/i'. Also, since g1 ;e VY = \/iﬁ+v is a power of i, which means

B =~ (mod 2). That is, {a,b, xz,y} belongs to case (ii). A contradiction.

o If {91f792f} - ////\, then by Lemma 9.12, we have both a? = ex?, by = eby and ax = €'azx,y’> =
¢'b?, for some ¢€,¢ € {1,—1}. If e = —1 then by = 0, and then by the second set of equations

b=y = 0, contrary to assumption that (b,y) # (0,0). So e = 1. Similarly ¢ = 1. Hence
a> =a2* b= (9.5)

and it also follows that all 4 entries are nonzero.

Therefore, if {a,b,2,y} does not satisfy (9.5) then {g1,,92,} € &, or M. By Theorem
0.19, PL-#CSP(g1,, g2,) is #P-hard. Then by Lemma 9.23, Pl-Holant(#s| £, f£) is #P-hard,
and hence Pl-Holant(#2| f) is #P-hard.

Otherwise, the 4 nonzero entries {a, b, z,y} satisfy (9.5). If (%)8 =1 ie, b= a\ﬁﬂ for some
v € N, then x = +a = ai®, and y = +b = a\/i'BM(S for some «,d € N. It follows that {a,b, z,y}
satisfies (ii), a contradiction.

So (£)® # 1, and we can apply reduction (9.4) of Lemma 9.28. By the reduction (9.4), we have
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#CSP(g1,,92,) <r Pl-Holant(#2| f). Moreover, since {a,b, z,y} does not belong to case (i) or case
(ii), we have {g1,,92,} ¢ & or /. By Theorem 9.19, #CSP(g1,,92,) is #P-hard. Therefore, we
have Pl-Holant(#2| f) is #P-hard. O

Corollary 9.31. Let f be a 4-ary signature of the form (9.2), where (a,x) # (0,0) and (b,y) #
(0,0). If |az| # |by| then Pl-Holant(#2| f) is #P-hard.

9.5 Case III: N = 2 with No Zero Pair or N = 1 with Zero in an
Outer Pair

If there are exactly two zeros N = 2 with no zero pair, then the two zeros are in different
pairs, at least one of them must be in an outer pair. So in Case III there is a zero in an outer pair
regardless N = 1 or N = 2. By rotational symmetry, we may assume a = 0, and we prove this case

in Theorem 9.33. We first give the following lemma.

0000
Lemma 9.32. Let f be a 4-ary signature with the signature matriz M(f) = [82;8}, where
0000d o
det M (f) = by — cz # 0. Let g be a 4-ary signature with the signature matriz M(g) = {8 03 8}
0000

Then for any signature set F containing f, we have

Pl-Holant(#2| F U {g}) <r Pl-Holant(#2| F).

Proof. We construct a series of gadgets fs by a chain of s copies of f linked by double

DiSEQUALITY N. f, has the signature matrix

0 0 0
M(f,) = M(f)(NoaM(f)*™ = N(N2M(f))* =N | 0 b Y1 o
0 0 0 |

The inner matrix of NoM (f) is N M (f) = [} ¥]. Suppose its spectral decomposition is Q'AQ,

where A = [’\01 /(’“2] is the Jordan Canonical Form. Note that \jAe = det A = det(Np, M, (f)) # 0.
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We have M(fs) = NP 'A P, where

0 0 0
1 0 0 s
Alp
P=10 Q 0 and Ag=1]0 0
0 X
0 0 1
0 0 0 |
00 00
1. Suppose p = 0, and i—f is a root of unity, with (f\‘—f)” = 1. Then A, = [8)‘01 /\ogg] =
00 00

Ty 080
00 aro|> and M(fn) = | oo = AT [8 03 8] . After normalization, we can realize
00 00 00 00 0000

the signature ¢

2. Suppose u = 0, and i—f is not a root of unity. The matrix A; =

0
0
0 has a good form
0

o oo

0
0
0
0

o3 oo

for interpolation. Suppose g appears m times in an instance Q0 of Pl-Holant(#2| F U {g}).
Replace each appearance of g by a copy of the gadget fs to get an instance Q5 of Pl-Holant(#2|
F U {fs}), which is also an instance of Pl-Holant(#2| F). We can treat each of the m
appearances of f, as a new gadget composed of four functions in sequence N, P~!, A, and
P, and denote this new instance by .. We divide € into two parts. One part consists of m
signatures A®™. Here A®™ is expressed as a column vector. The other part is the rest of Q
and its signature is represented by A which is a tensor expressed as a row vector. Then the
Holant value of €2, is the dot product (A, A¥™), which is a summation over 4m bits. That
is, the value of the 4m edges connecting the two parts. We can stratify all 0,1 assignments
of these 4m bits having a nonzero evaluation of a term in Pl-Holantg, into the following

categories:

e There are ¢ many copies of A receiving inputs 0110;

e There are j many copies of Ag receiving inputs 1001;

where i + 7 = m.

For any assignment in the category with parameter (i,j), the evaluation of A®™ is clearly
- sj
AFINS = A§m (:\\—f) . Let a;; be the summation of values of the part A over all assignments in

the category (7, 7). Note that a;; is independent from the value of s since we view the gadget
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A as a block. Since i + j = m, we can denote a;; by a;. Then we rewrite the dot product

summation and get

Ao\ ¥
Pl-Holantg, = Pl-Holantg, = (A, A™) = Aj™ Z aj( 2) -
0<ysm

0000
Note that M(g) = NP~Y(NoM(g))P, where NoM(g) = [8 59 8} Similarly, divide © into
0000

two parts. Under this stratification, we have
Pl-Holantg = (A, (NaM (g))®™) = aj.
0<j<m

Since ﬁ—f is not a root of unity, the Vandermonde coefficient matrix

Pt P
pO pQ p2m
_pO pm+1 p(erl)m_

has full rank, where p = ﬁ—i Hence, by oracle querying the values of Pl-Holantq,, we can

solve for a;, and thus obtain the value of Pl-Holantg in polynomial time.

00 0 0
. Suppose ¢ = 1, and \; = Xy denoted by A\. Then Ay = [8 0 5’\;;1 8] . We use this form
00 0 0

to give a polynomial interpolation. As in the case above, we can stratify the assignments of
A®™ of these 4m bits having a nonzero evaluation of a term in Pl-Holantg, into the following

categories:

e There are i many copies of Ag receiving inputs 0110 or 1001;

e There are j many copies of A4 receiving inputs 0101;

where i + j = m.

For any assignment in the category with parameter (i,j), the evaluation of A®™ is clearly
A (sAST)T = Xs™(£)J. Let a;; be the summation of values of the part A over all assignments

in the category (7,7). a;; is independent from s. Since ¢ + j = m, we can denote a;; by a;.
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Then, we rewrite the dot product summation and get

Pl-Holantq, = Pl-Holantg, = (4, AS™) = X" Y~ q; (i)ﬂ,

for s > 1. We consider this as a linear system for 1 < s < m+ 1. Similarly, divide €2 into two

parts. Under this stratification, we have
Pl-Holantq = (A, (NoM(g))®™) = ag.

The Vandermonde coefficient matrix

et e Pl
Py py e Py
_ngJ P%+1 t Pm

has full rank, where p; = s/ are all distinct. Hence, we can solve ag in polynomial time and

it is the value of Pl-Holantgq.

Therefore, we have Pl-Holant(s#2| F U {g}) <r Pl-Holant(#2| F). O

Theorem 9.33 gives a classification for Case III.

Theorem 9.33. Let f be a 4-ary signature with the signature matrix

(0 0 0 0]
0 b ¢ O
M(f) = ,
0 z y O
Ké 0 O_

where x # 0 and there is at most one number in {b,c,y,z} that is 0. Then Pl-Holant(#2| f) is

#P-hard unless f € A, in which case the problem is tractable.

Proof. Tractability follows from Theorem 9.9.

0000

0 000y
Note that Mw1w2,w4x3 (f) = [8 2 gc; 8] ) Mwsm,mrl(f) - [8 z }
z000 00
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Connect variables x4, z3 of a copy of signature f with variables x3, z4 of another copy of signature

f both using (#2). We get a signature f; with the signature matrix

0O 0 0 O

0 b1 C1 0
M(fl) = Mmlxg,x4x3 (f)NQngcm,xQ:m (f) = )

0 21 Y1 0

0 0 0 0

where [% & ] =[5 ¢].[22] . This f; has the form in Lemma 9.32. Here, det [% ¢1] = —(by—cz)? #

21 Y1 zYy yc Z1 Y1

0. By Lemma 9.32, we have

Pl-Holant(#2| f,g) <7 Pl-Holant(#2| f, f1),

E

o If beyz # 0, connect variables x1, x4 of signature f with variables x1, z2 of signature g both

[eje]enlen]
OoO—OO
OOoO—O
[e]enlenlen]

where g has the signature matrix M(g) = [

using (#2). We get a signature fo with the signature matrix

0 0 0 0

00 =z O
M(fQ) = MIQIS,INM (f)NQmeQ,MJL“S (g) =

0 ¢c x O

_0 0 0 0_

e Otherwise, connect variables x4, x3 of signature f with variables x1, 2 of signature g both

using (#2). We get a signature fo with the signature matrix

0 0 0 0]
0 b ¢ O
M(fQ) = M$1$27$49€3 (f)N2M961$2,$4:E3 (9) = )
0 z vy O
_0 0 0_

and there is exactly one entry in {b, c,y, z} that is zero.

In both cases, the support of fo has size 3, which means fo ¢ &, or VA By Theorem 9.24,
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Pl-Holant(#2| f2) is #P-hard. Since

Pl-Holant(#2| f2) <r Pl-Holant(#2| f,g) <r Pl-Holant(#2| f, f1) <r Pl-Holant(#2| f),

we have Pl-Holant(#2| f) is #P-hard. O

9.6 Case IV: N =1 with Zero in the Inner Pair or N =0

By rotational symmetry, if there is one zero in the inner pair, we may assume it is ¢ = 0, and

abryz # 0. We first consider the case that x = ea,y = eb and z = ec, where € = +1.

Lemma 9.34. Let f be a 4-ary signature with the signature matrix

0 0 0 a
0 b ¢ 0
M(f) = , where € = 1 and abe # 0.
0 e e 0
jca 0 0 0O}

Then Pl-Holant(#2| f) is #P-hard if f ¢ 4 .

Proof. If e = —1 we first transform the case to € = 1 as follows. Connecting the variable x4

with z3 of f using (#2) we get a binary signature gy, where
91 = Mayaa s ()(0,1,1,0)7 = (0,0 + ¢, —(b +¢),0)".

Also connecting the variable x1 with xo of f using (#2) we get a binary signature gs, where
92 = ((0,1,1,0) Moy s ()" = (0,0 — ¢, =(b =€), 0)"

Since be # 0, b+ ¢ and b — ¢ cannot be both zero. Without loss of generality, suppose b + ¢ # 0.
)T Then, modifying x; = 1 of f with —1 scaling we get
0a
i 8} . Therefore, it suffices to show #P-hardness for the
00

case ¢ = 1.
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Since f ¢ .4, by Lemma 9.7, ¢ —b? # a®. We prove #P-hardness in the following three Cases
depending on the values of a,b and c.

Case 1: Either ¢ —b? # 0 and |c+ b| # |c — b|, or ¢ —a? # 0 and |c + a| # |c — a|. By
rotational symmetry, we may assume c¢? — b? # 0 and |c + b| # |c — b|. We may normalize a = 1
and assume M (f) = [8%%%], where ¢ — b2 # 0 or 1.

We construct a series of gadgets fs by a chain of s copies of f linked by double DISEQUALITY

N. fs has the signature matrix

1 0 0]
M(f2) = M(F)(NaM () = N(NoM(f)) =N | 0 b L
0 0 1

We diagonalize [g g]s using H = - H _11] (note that H~' = H), and get M (fs) = NPA4P, where

1 0 0 0
1 00
0 (c+0b)® 0 0
P=|10 H 0|, and A=
0 0 (c—Db)* 0
0 0 1
0 0 0 1

The signature matrix Ag has a good form for polynomial interpolation. In the following, we will
0001

reduce Pl-Holant(#s| f) to Pl-Holant(s£s| f), for suitably chosen M (f) = [8 2 g 8] , and use that
1000

to prove that Pl-Holant(#2| f) is #P-hard.

Suppose f appears m times in an instance  of Pl-Holant (#4] f ). We replace each appearance
of f by a copy of the gadget fs to get an instance Q4 of Pl-Holant(#3| f). We can treat each of the
m appearances of fs as a new gadget composed of four functions in sequence N, P, A; and P, and
denote this new instance by 2,. We divide Q2 into two parts. One part consists of m occurrences
of Ag, which is A®™ and is written as a column vector of dimension 24™. The other part is the
rest of €, and its signature is expressed by a tensor A, written as a row vector of dimension 24.

Then the Holant value of Q0 is the dot product (A, A®™), which is a summation over 4m bits, i.e.,

the values of the 4m edges connecting the two parts. We can stratify all 0,1 assignments of these
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4m bits having a nonzero evaluation of a term in Pl-Holantg, into the following categories:

e There are ¢ many copies of Ag receiving inputs 0000 or 1111;
e There are j many copies of Ag receiving inputs 0110;

e There are k many copies of Ay receiving inputs 1001;

where i + j + k =m.

For any assignment in the category with parameter (i, 7, k), the evaluation of A®™ is clearly
(c+ b)¥(c — b)**. Let aj) be the summation of values of the part A over all assignments in the
category (4,7,k). Note that a;;, is independent of the value of s. Since i + j + k = m, we can

denote a;;i by aji. Then we rewrite the dot product summation and get

Pl-Holantg, = Pl-Holantg, = (4, AY™) = Z ajr(c+b)*(c — b)**.

0<j+k<m

Under this stratification, correspondingly we can define () and A from Q. Then we have

Pl-Holantg, = Pl-Holantg, = (A, A®™) = Z a;p(é+b)7 (& —b)F,

0<j+k<sm
where the same set of values a;, appear. Let ¢ = é+band P =¢é— b. If we can obtain the value of
p(d,) = > aj¢/yF from oracle queries to Pl-Holantg, (for s > 1) in polynomial time, then

0<j+k<m
we will have proved

Pl-Holant(#£;| f) <p Pl-Holant(#s| f).

Let « =c+band f=c—b. Since 2 —b> # 0 or 1, we have o # 0, B # 0 and a8 # 1. Also,
by assumption |c + b| # |c¢ — b|, we have |a| # |3|. Define L = {(j, k) € Z? | o/ 8¥ = 1}. This is a

sublattice of Z2. Every lattice has a basis. There are 3 cases depending on the rank of L.

o L =1{(0,0)}. All /3" are distinct. It is an interpolation reduction in full power. That is,

we can interpolate p(¢, 1) for any ¢ and ¢ in polynomial time. Let ¢ = 4 and ¢ = 0, that
0

. . 001 .
is b =2 and ¢ = 2, and hence M(f) = [8 22 8} . That is, f is non-singular redundant. By
1000
Theorem 9.16, Pl-Holant(#2| f) is #P-hard, and hence Pl-Holant(#3| f) is #P-hard.
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o L contains two independent vectors (ji, k1) and (j2,k2) over Q. Then the nonzero vectors
J2(ir, k1) — j1(2, k2) = (0, jakr — jika) and ka(j1, k1) — k1(j2, k2) = (k2j1 — k1j2,0) are in L.

Hence, both a and f are roots of unity. This implies that |o| = || = 1, a contradiction.

e L = {(ns,nt) | n € Z}, where s,t € Z and (s,t) # (0,0). Without loss of generality, we
may assume ¢ > 0, and s > 0 when ¢t = 0. Also, we have s + ¢ # 0, otherwise |a| = |8], a
contradiction. By Lemma 9.6, for any numbers ¢ and 1) satisfying ¢*1) = 1, we can obtain

p(¢,1) in polynomial time. Since ¢ = ¢ + band ¢ = ¢ — b, we have b = % and ¢ = #

0 0 0 1
. N 0 =% otv¥ .
That is M(f) = 0 oty pow ol There are three cases depending on the values of s and t.
2 2
1 0 0 0

— s> 0and s+t > 2. Consider the function ¢(z) = (2 —z)%z" — 1. Since s > 0 and ¢t >
q(z) is a polynomial. Clearly, 1 is a root and 0 is not a root. If g(x) has no other roots,

then for some constant A\ # 0,
¢(z) = Mo — 1) = (=1)""A((2 - 2) - 1)

(In fact by comparing leading coefficients, A = (—1)%.) Notice that zt|q(x) + 1, while
2t Mz — 1)*Tt + 1 for t > 2. Also, notice that (2 — z)%|q(z) + 1, while (2 — x)* ¢

(—=1)5TX((2—x)—1)*** for s > 2. Hence, t = s = 1, which means a8 = 1. Contradiction.

Therefore, g(z) has a root xg, with 9 # 1 or 0. Let ¢ = x9 and ¢ = 2 — z9. Then
0 0 0 1 0 001w

¢*pt = Land M(f) = {8 R 0] Note that My, 212, (f) = { 9 119 ] Since
1 0 0 0 2000 0
1—20 # 0, f is non-singular redundant. By Theorem 9.16, Pl-Holant(#s| f) is #P-hard

and hence Pl-Holant (#5| f) is #P-hard.

— s < 0andt > 0. (Note that s < 0 implies ¢ > 0.) Consider the function ¢(z) =
—(2—x)7% Since t > 0 and —s > 0, it is a polynomial. Clearly, 1 is a root, but
neither 0 nor 2 is a root. Since ¢ + s # 0, the highest order term of ¢(z) is either z!
or —(—x)~*%, which means the coefficient of the highest order term is +1. While the
constant term of ¢(x) is —27% # +1. Hence, ¢(z) cannot be of the form A(z — 1)max(t:—s)
for some constant A # 0. Moreover, since t 4+ s # 0, max(t, —s) > 2, which means ¢(x)

—S

has a root xg, where z¢p # 0,1,2. Dividing by the nonzero term (2 — z)~* we have
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(2 — z0)%zh = 1. Now we let ¢ = zg and ¢ = 2 — zp, and we have Pl-Holant (#3| f) is

#P-hard by the same proof as above.
— s> 0and s+t = 1. In this case, we have (s,t) = (0,1) or (1,0) since t > 0.

= (1,0). Let ¢ = 1 and ¢ = 3. Then we have ¢'¢° = 1 and M(f) =

*
—
»

0001
] Let M(f") =AMy 2104(f) = [8 13 8] . Clearly, Pl-Holant(#s| f') <r
1000
nt (#9| f). For M(f’), correspondingly we define o/ =344 =7 and 8 =
= —1. Obviously, o # 0, f/ # 0, /3 # 1, and |&/| # |5/|. Let L' =

{(j,k) € 2% | @B = 1}. Then we have L' = {(ns',nt') | n € Z}, where s’ = 0

[=FNEFNMe)

momw»mo\”‘,
o O O

T
= o oo

o
=
Q

w
|
W

and t' = 2. Therefore, s’ > 0 and s’ +t' > 2. As we have showed above, we have

Pl-Holant (#2| f') is #P-hard, and hence Pl-Holant (#2| f) is #P-hard.

0
x (s,t) = (0,1). Let ¢ =3 and ¢ = 1. ThenwehaveqbowlflandM [8
1

#P-hard.

Case 2: If > —b? # 0 and |c+b| = |c —b], or ¢ —a? # 0 and |c + a| = |c — a|. By rotational

symmetry, we may assume ¢ — b? # 0 and |c + b| = |¢ — b|. Normalizing f by assuming ¢ = 1, we
000a

have M(f) = [8’1’%8}, where 12 — b? £ 0 and 1% — b* # a® due to f ¢ 4. Since |1 +b| = |1 — V],
a000

b is a pure imaginary number (as b # 0).
Connect variables z4, 3 of a copy of signature f with variables x1, x2 of another copy of

signature f both using (#2). We get a signature f; with the signature matrix

0
0 2 B+1 0
(fl) xlmg,mucg (f)NQMm:ch,m:pg (f) = 0

_a2 0 0 0 |
00 0 1
a. If ¢ —a? = 0, that is a® = 1, and then M(f;) = lgbfj;l b;glgl . Since b? < 0, we have
1 0 0 0

(b2 +1)2 — (2b)% = (b®> — 1)? > 1 = (a?)?, which means f; ¢ .#.
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00 01
o If b2 = —1, then M(fy) {8 iOQi iOQi 8]. By Corollary 9.31, Pl-Holant(#5| f1) is #P-
10 00
hard, and hence Pl-Holant(#2| f) is #P-hard.
0 0 0 1
o If b2 = —2, then M(f1) [8 ﬁ_‘l@ ﬂ_\}ig . Connect two copies of f1, and we have a
1 0 0 0

signature fo with the signature matrix

0 0 0 1]

0 F4V21 -7 0
M(fQ) = Mw1$27$4$3 (fl)N2M:v1$2,$4w3 (fl) =

0 =7 F4/2i 0

1 0 0 0]

It is easy to check that fo ¢ .#, by Lemma 9.7. Then, f; belongs to Case 1. Therefore,
Pl-Holant(#2| f2) is #P-hard, and hence Pl-Holant(#2| f) is #P-hard.

o If b> # —1 or —2, then b? 4+ 1 # +1 due to b # 0, hence 12 — (b2 +1)2 # 0. Also, since
b? + 1 is a real number and b + 1 # 0, we have |(b*> + 1) + 1| # |(b*> + 1) — 1|. Then

00 0 ap
0 bicp O
0c1 b1 O ?

ar 00 0
a? # 0 and

|c1 + a1] # |e1 — a1]. That is, fi belongs to Case 1. Therefore, Pl-Holant(#2| f1) is
#P-hard, and hence Pl-Holant(#2| f) is #P-hard.

f1, which is not in .# as shown above, has a signature matrix of the form

where a; = a®> = 1, by = 2b, and ¢; = b*> + 1, and a1bic; # 0, c% —

b. If > —a? # 0 and |c+a| = |c — al, i.e., |1 +a] = |1 — a, then a # 0 is also a pure imaginary
number. Connect variables x1, x4 of a copy of signature f with variables x2, x3 of another

copy of signature f. We get a signature f3 with the signature matrix

0
0

0

0

b2

2¢ a’*+1 0
M(f3) = szzs,xlu(f)NQMm?Cs,mm (f) =
0 a?2+1 2a 0

b? 0 0 0

Note that f3 € .# implies (a®> — 1)2 = (b?)2. Since f ¢ #, 1 — a® # b*. Hence, f3 € M
implies a? — 1 = b%. Similarly, f; € .# implies b> — 1 = a?. Clearly, f; and f3 cannot both

be in .#. Without loss of generality, we may assume f3 & .
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o If a®> # —1, then there are two subcases.

— (a®+1)? - (b*)? = 0. Since a is a pure imaginary number, |a? +1+2a| = |a +1]> =

az 0 0 0
where agbscs # 0, c2—b% = (a?—1)? # 0 since a is pure imaginary, |c3+bs| = |c3— b3

00 0 as
la — 1|2 = |a® + 1 — 2a|. Then f3 has the signature matrix of the form [ 8 gg b 8 ] ,

and ¢ — a3 = 0. That is, f3 belongs to Case 2.a. Therefore, Pl-Holant(#2| f3) is
#P-hard, and hence Pl-Holant(#2| f) is #P-hard.
— (a® +1)?2 — (b*)2 # 0. Since a® + 1 and b? are both nonzero real numbers due to a

and b are both pure imaginary numbers, we have |a? + 1+ b?| # |a® +1 — b?|. Then
0 0 0 a3

f3 has the signature matrix of the form [ 8 gg Z; 8 ] , where asbscs # 0, 3 —a3 #0
a3 0 0 0

and |c3+as| # |c3 —as|. That is, f3 belongs to Case 1. Therefore, Pl-Holant(#2| f3)

is #P-hard, and hence Pl-Holant(#2| f) is #P-hard.
0 0 0 b
e If a2 = —1 and b® # —2, then M(f3) = {8220“ 0 0|, where |2a] = 2 # [b?|. By
b 0 0 0
Corollary 9.31, Pl-Holant(#2| f3) is #P-hard, and hence Pl-Holant(#2| f) is #P-hard.
0 0 0o -1
2 _ 2 _ _ | 0 +2v2i -1 0
o Ifa*=—-1landb® = 2,thenM(f1)[01 _ i26/§i8

. Note that M,z 2144 (f1) =

8 j j 8 ] , which means f; is non-singular redundant. Therefore, we have

+2v21 0 0 0
Pl-Holant(#2| f1) is #P-hard, and hence Pl-Holant(#2| f) is #P-hard.

[0 0 0 +£2V2i

c. If 2 —a? #0 and |c+ a| # |c — a|. This is Case 1. Done.

Case 3: ¢> —b> =0and ¢ —a? =0. If c = b or ¢ = a, then f is non-singular redundant,

and hence Pl-Holant(#3| f) is #P-hard. Otherwise, a = b = —c. By normalization, we have
00 0 -1 00 01

M(f) = [ ot D }, and then M(f) = [8 22 8]. Notice that 22 —12 # 0 and |[2+1] # [2—1].
~10 0 0 10 00

That is, f1 belongs to Case 1. Therefore, Pl-Holant(#2| f1) is #P-hard, and hence Pl-Holant(#3]| f)
is #P-hard.

Case 1 to Case 3 cover all cases for (a,b,c): Suppose (a,b,c) does not satisfy Case 3. Then
either ¢ —b% # 0 or c2—a? # 0. If > —b% # 0, then either |c+b| # |[c—b| (Case 1) or |c+b| = |c—b]
(Case 2). Similarly if ¢ — a? # 0 it is either Case 1 or Case 2. This completes the proof of the

lemma. O

Lemma 9.35. Let f be a 4-ary signature with the signature matrix
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0 0 0 a
0 b c O
M(f) = ,  where abcxyz # 0.
0 2z y O
Kz 0 0 O_

If by — cz =0 or ax — cz = 0, then Pl-Holant(#2| f) is #P-hard.

Proof. By rotational symmetry, we assume by — cz = 0. By normalization, we assume b = 1,

000 a
and then y = cz. That is, My, 4y o4z (f) = [8 le 8].
2000

o If 1+ ¢ # 0. Connecting the variables x4 with z3 of f using (#2) we get a binary signature
g1, where

91 = My 25,0425 (f)(()? L1, O)T = (07 Lt+e (1+ C)Z, O)T'

Note that g;(x1,22) can be normalized as (0,z7%,1,0)%. That is g(xe,x1) = (0,1,27%0)7.

Mod1 ylng x1 = 1 of f with 27! scaling we get a signature f; with the signature matrix

0 a
[ c 8] Connecting the variable x1 with zo of f; using (#3) we get a binary signature

m/z O 0 0
g2, where

g2 = ((07 1,1, O)Mwlwz,wws (f))T = (O, 2, 2c, 0)T7

and go(x1,22) can be normalized to go(w2,21) = (0,1,¢71,0)T. Modifying x4 = 1 of fy
0 00a/c

with ¢! scaling we get a signature fo with the signature matrix [ o1t ] . It is non-
z/z00 0

singular redundant. By Lemma 9.16, we have Pl-Holant(#3| f2) is #P-hard, and hence

Pl-Holant(#2| f) is #P-hard.

If 1+ 2 # 0, then connecting the variable x; with zo of f using (#2) we get a binary signature
g1, where

= ((0,1,1,0) My 0y azs)” = (0,14 2, (1 + 2)c, 0)T.

g} (21, 22) can be normalized to (0,c™1,1,0)7. By the same analysis as in the case 1+ ¢ # 0,

we have Pl-Holant(#2| f) is #P-hard.

00 0a
Otherwise, 1 + ¢ =0 and 1+ z = 0, that is ¢ = 2 = —1. Then My, 2, 2425 (f) = [8 A 8],
00 0 a £ 0 00
and My, 202, (f) = [8 S 8} Connecting variables x4, x3 of a copy of signature f with
a0 00
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variables x3, x4 of another copy of signature f, we get a signature f3 with the signature matrix

M(f3) = Mz a2s,2425 (f)NZMwsm,wle (f) = )

Clearly, ax # 0 and so f3 ¢ .# by Lemma 9.7. By Lemma 9.34, Pl-Holant (#3]| f3) is #P-hard
and hence Pl-Holant (#3| f) is #P-hard. O

In the following Lemmas 9.36, 9.37, 9.40 and Corollaries 9.39, 9.41, let f be a 4-ary signature

with the signature matrix

(0 0 0 a
0 b ¢ O
M(f) = , (9.6)
0 z y O
2 0 0 0]

where abxyz # 0, det[lz’;] =by —cz # 0 and det[?Z] = ax — cz # 0. Moreover f ¢ A,
that is cz — by # ax. These lemmas handle “generic” cases of this section and will culminate in
Theorem 9.42, which is a classification for Case I'V. It is here we will use Mobius transformations to

handle interpolations where it is particularly difficult to get desired signatures of “infinite order”.

Lemma 9.36. Let g = (0,1,t,0)7 be a binary signature, where t # 0 is not a root of unity. Then
Pl-Holant(#2| f,g) is #P-hard.

Proof. Let B = {g1, 92,93} be a set of three binary signatures g; = (0, 1,¢;,0)7, for some
t; € C. By Lemma 9.3, we have Pl-Holant (#2| {f} U B) < Pl-Holant (#3] f, g) . We will show that
Pl-Holant (#2| {f} U B) is #P-hard and it follows that Pl-Holant (#2| f, g) is #P-hard.
Modifying x1 = 1 of f with ¢; (i = 1,2) scaling separately, we get two signatures f;, with the
signature matrices M (f,) = [ § t?z t?y §} Note that
tix 0 0 0

det Mln(fti) = t;det MIn(f) and det MOut(fti) = t; det MOut(f)‘

Connecting variables x4, x3 of f with variables x, x5 of f;; both using (#32), we get a signature f;



with the signature matrix

[0 0 0 a [ 0 0 0 o
0 b ¢ O 0 tibz+bc tiby+c® 0
M(f1) = = M(f)No2M(fr,) =
0 2z 11 O 0 tiz2+yb tiyz+yc 0
_951 0 0 0 ] _t11‘2 0 0 0_

We first show that there is a t; # 0 such that bjyici1z1 # 0 and (b12)(y1c) — (e1b)(z1y) # 0.

Consider the quadratic polynomial
p(t) = (tbz + be)(tyz + yc)cz — (thy + ) (2% + yb)by.

We have p(t1) = (b12)(y1¢) — (c1b)(z1y). Notice that the coefficient of the quadratic term in p(¢) is
byz?(cz —by). Tt is not equal to zero since byz? # 0 and cz — by # 0. That is, p(t) has degree 2, and
hence it has at most two roots. Also we have the following three implications by the definitions of

2
—g—y, and z1 =0 = t; = —Z—S. Therefore we

can choose such a t; that does not take these values 0, -2, —%

p(t). Then, we have t1 # 0, byyic1z1 # 0 and (b12)(y1c) — (c1b)(z1y) # 0.

bi,yi,c1,21: iyt = 0= t1 = =5, c1 =0 = t; =
and —Z—g, and ty is not a root of
Connecting variables x4, x3 of fi with variables z1, z3 of fi, both using (#2), we get a signature

fo with the signature matrix

[0 0 0 a [0 0 0 aa]
0 by ¢ O 0 tob1z +c1b tobiy +cic 0O
M(f2) = = M(f1)NaM(ft,) =
0 2 7 0 0  toziz+wyb teziy+yic 0O
_1‘2 0 0 0 _t2$11‘ 0 0 0 ]
—ab and ¢y % 0. Then by = tob1z + c1b = 0. Since

Since b1z # 0 and c1b # 0, we can let to = b
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(b12)(y1¢) — (e1b)(z1y) # 0, we have yo = toz1y + y1c # 0. Notice that

det MIn(fQ) = det MIn(fl) . (—1) - det MIn(ftg)

= det My, (f) - (—1) - det M, (fi,) - (=1) - det M (fr,)

= t1t2 det MIn(f)3
£ 0.
We have det M, (f2) = baya — caza = —cazo # 0. Similarly, we have det Moyt (f2) = —agxe =
00 0 az
tita det Moy (f)? # 0. Therefore, M(f>) is of the form 8 202 Zz 8 , where agrayacozs # 0. That
220 0 0

is, fo is a signature in Case IIL If fy ¢ .#, then Pl-Holant (#2| f2) is #P-hard by Theorem 9.33,
and hence Pl-Holant (#2| {f} U B) is #P-hard.

. . det My, (f2) det My, (f)? .
th hich ————> = 1. Thus ————%—= =1. S M
Otherwise, fo € .4, which means det Mow () us det Mo () ince f ¢ M,
det M1, (f) det M, (f)7

# 1, and hence = # 1. Similar to the construction of fi, we construct

det MOut(f) det MOut(f)
f3. First, modify 1 = 1 of f; with ¢3 scaling. We get a signature fi;, with the signature ma-

0 0 0 a
0 by ¢ O
0 t3z1 tzyr O
tzxy O 0 O

tz det Moyt(f1). Then connect variables x4, z3 of fi with variables 1, x2 of fi14, both using (#2).

trix M(fi,) = . Note that det M, (fit,) = tzdet My(f1) and det Moy (fits) =

We get a signature f3 with the signature matrix

0 0 0 ag 0 0 0 a®
0 b3 c3 O 0 tgbizi+bicr  tshiyi+cf 0
M(f3) = = M(f1)NoM (fu5) = ) !
0 23 yg O 0 321 +wmbi t3yiz1+yiaa O
23 0 0 0] | 307 0 0 0]

Since ¢; # 0 and 21 # 0, we can define t3 = —% and t3 # 0. Then bg = by(t321 + ¢1) = 0 and
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ys = y1(tsz1 + ¢1) = 0. Notice that

det MIn(fg) = det MIn(fl) . (—1) - det MIn(fltg)
= —det MIn(fl) - ta det MIn(fl)

= —tg[det M, (f) - (—1) - det M1, (f, )]2

= —t3t2 det My, (f)*
#+0
We have det M, (f3) = —c3z3 # 0 and similarly, det Moy (f3) = —azzs = —t3t? det Moy (f)* # 0.
00 0 as
That is, M(f3) is of the form [ 8 Z(; ' 8 ] where azrzczzz # 0.
z3 0 0 0

Connect variables x4, x3 of fo with variables x1, x2 of f3 both using (#2). We get a signature

f4 with the signature matrix

0O 0 0 ay 0 0 0 asas
0 by cg O 0 0 Cc2C3 0
M(fs) = = M(f2)NoM (f3) =
0 24 ya O 0 2923 wyocg O
_.%'4 0 0 O_ _.1‘21’3 0 0 0 ]

Clearly, f4 is a signature in Case III. Also, notice that

det Mln(f4) = det Mln(fg) . (—1) - det MIn(f3)
= {1ty det ]WIn(f)3 : t3t% det Mln(f)4

= t3tot? det My, (f).

and
det Moy (f1) = tatats det Mow(f)”.
We have

detMIn(f4) . detMIn(f)7 7&1
det Moy (f1)  det Mow (£)7 7 7

which means fy ¢ .#. By Theorem 9.33, Pl-Holant (#2| f4) is #P-hard, and hence Pl-Holant (#2| {f} U B)
is #P-hard. O
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Lemma 9.37. Let g = (0,1,¢,0)7 be a binary signature where t is an n-th primitive root of unity,

and n > 5. Then Pl-Holant(#3| f, g) is #P-hard.

Proof. Note that M, 4,(g) = [?}]. Connect the variable x5 of a copy of signature g with
the variable x; of another copy of signature g using (#2). We get a signature g, with the signature

matrix

0 1{]0 1] 1]0 1 0 1
M$1,$2(92): =
t 0| |1 0| |t O 2 0

That is, go = (0,1,¢2,0)7. Similarly, we can construct g; = (0,1,¢,0)” for 1 < i < 5. Here, g1
denotes g. Since the order n > 5, g; are distinct (1 <i < 5).
Connect variables x4, x3 of signature f with variables z1, z2 of g; for 1 < i < 5 respectively.

We get binary signatures h;, where

0 00 a 0 0
0 b c Of |1 b+ ct’
hi = Mmlxz,uws (f)gz = = .
0 z y O t’ z 4yt
E 0] \O 0
Let ¢(3) = zigj Since det [2 5] =by —cz #0, ¢(3) is a Mobius transformation of the extended

complex plane C. We rewrite h; in the form of (b4 ct')(0,1,(t'),0)7, with the understanding that
if b4 ct! = 0, then ¢(t') = 0o, and we define (b4 ct?)(0, 1, o(t%),0)T to be (0,1, z 4+ yt?,0)T. If there
is a t' such that ((t') is not a root of unity, and (t') # 0 and (t!) # oo, by Lemma 9.36, we have
Pl-Holant (#5] f, h;) is #P-hard, and hence Pl-Holant (#2| f,g1) is #P-hard. Otherwise, p(t) is
0, oo or a root of unity for 1 < i < 5. Since ¢(3) is a bijection of (@, there is at most one ¢* such
that (') = 0 and at most one t* such that (') = co. That means, there are at least three ¢’ such
that |p(¢!)| = 1. Since a Mobius transformation is determined by any 3 distinct points, mapping
3 distinct points from S! to S! implies that this ¢(3) maps S homeomorphically onto S* (so in
fact there is no(ti suc)h that (') = 0 or co). Such a Mébius transformation has a special form:
3t

M(a, e?) = 6191_1_7_, where |a| # 1. (It cannot be of the form e /3, since b # 0.)
a3

By normalization in signature f, we may assume b = 1. Compare the coefficients, we have
000y
] and

c=a,y=¢e’ and z = ae?. Here a # 0 due to z # 0. Also, since Myyry 210, (f) = [8 az0
5000
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det [¢ Z] = ax — cz # 0, we have another Mobius transformation 1(3) = ¢ ix; Plug in ¢ = @ and
a+z

0

z = ae'’, we have

By the same proof for ((3), we get Pl-Holant (#3| f, g) is #P-hard, unless 1(3) also maps S* to S*.

610’(5""?, where |B| # 1. (It is clearly not
3

Hence, we can assume 1(3) has the form M(8, %) = T

of the form ¢ /3.) Compare the coefficients, we have

e o =P
aja=¢?p.
z/a =¥

Solving these equations, we get a = ea/3 and © = @/f. Let v = a/f3, and we have a = 7€'’ and

x = 74, where || # || since |f| # 1 and v # 0 since x # 0. Then, we have signature matrices

0 0 0 e 00 0 8 00 g
_ 1 « _ v ' — e’ a
Mzmz,mzs (f) - gaeie eoiée 8 ) mes,ml% (f) - 872 aiy 8 ) MISMJCZII (f) - 0 ae? 10
50 0 10 0 0 7e? 0 00
00 01
0 5 ae? 0 . . . .
and Mo,z 0505 (f) = | & St o |- Connect variables x4, x3 of a copy of signature f with variables
e?0 0 0

o
o
o

)

Y
m«—

fes)

M(f1> = Mw1z2,z4$3 (f)N2M$3I47$2961 (f) -

[0 0 0 ]
- (a+ @)

0 1 (1(+a+)_e) 0

M(f1) = (14 a2)e ara
J 1 0
(a+ a)

T 0 0 0

L(a+ @) _
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1 2\ ,if 1 =2\ ,—i0 1 PAPRT
( to _)e an ( to )_e are conjugates. Let § = %
(at+a) (a+ @) (a+ @)
(1+a2)e 2 s (1+ad)(1+a?)

“ata) We have |0|* = §) = (ata)? # 1 due to det Mln({ﬁ) #0,and 0 # 0
due to |a| # 1. Consider the inner matrix of M (f1), we have My, (f1) = |19 |. Notice that the

51

19|
1+]9]

Note that , and then 5 =

two eigenvalues of My, (f1) are 1+ |0| and 1— ||, and obviously

’ # 1, which means there
ot

is no integer n > 0 and complex number C such that M} (f1) = CI. Note that ¢;(3) = 50
3

is a Mobius transformation of the form M(4, 1) mapping S! to S*.

Connect variables x4, x3 of signature f; with variables x1, x9 of signatures g;. We get binary

signatures g(; ,,), where
0 0 0 = 0 0 0
010 0f]1 1+ 6t uy 1
Y(ivp1) = Mayzo zazs (f1)gi = = ' (1+0t") '
06 1 of ¢ 5+t o)
+ 0 0 0] \o 0 0
Since ¢ is a Mobius transformation mapping S! to S! and [t!| = 1, we have |p1(t)] = 1,

which means 1 + 6t’ # 0. Hence, g(; ,,) can be normalized as (0,1, ¢1(t"),1)T. Successively

construct binary signatures g(; ,n) by connecting fi with I(ior - We have

(i) (fl) Mn(fl)gl - C(i,n)(ovlvw?(ti)ao)T7

where C; = I (1+ 5k (t1)). We know Cin) # 0, because for any k, 1+8M () # 0

0<k<n—1

|6 + 51 ()]
148y~ (#)]
Notice that the nonzero entries (1,7 (t%))T of Yipp) are completely decided by the inner

T

due to |k (t)]| = = 1. Hence, g(; ,n) can be normalized as (0, 1, o7 (t),0)T.

matrix M, (f1). That is

1
MIn fl Czn) .
w1 (1)
>

If for each i € {1,2, 3}, there is some n; > 1 such that (1, o} (#*))T = (1,#)T, then [0 (¢}) = ¢,
where ng = ningng for 1 < i < 3, i.e., the Mdbius transformation ¢° fixes three distinct

complex numbers ¢, t2,t3. So the Méobius transformation is the identity map, i.e., ©1°(G) =13
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for all 3 € C. This implies that M{°(f1) = C'[}{] for some constant C' # 0. This contradicts
the fact that the ratio of the eigenvalues of My, is not a root of unity. Therefore, there is an
i such that (1,¢7(¢"))T are all distinct for n € N. Then, we can realize polynomially many
distinct binary signatures of the form (0, 1, 7 (#%),1)T. By Lemma 9.5, we have Pl-Holant (#s|
f,g) is #P-hard.

Otherwise @ + @ = 0, which means « is a pure imaginary number. We already have o # 0
due to z # 0. Also |a| # 1 from the form of M(a,e?). Let a = ri, where r € R and |r| # 0
or 1. Connect variables x1, x4 of a copy of signature f with variables x4, 1 of another copy

of signature f, we get a signature fo with the signature matrix

M(fQ) = M962a33,061:v4 (f)NQMMwl,wsIz (f)

o o elfooo1lfo o o 1

0
|0 4e? i 000 1 0[|0 5 rie? 0
o i 5 01010 0|0 —ri v 0
1 0 0 O0][1 00O 0 0 0
0 0 0 e

0 (—y+y)rie? (2 —r%e?? 0
0 72 —r? (—y +7)rie?? 0
et 0 0 0

— If —y + 7 # 0, normalizing M (fo) by dividing the quantity (—y + 7)rie!?, we have

. (72 _ T2)€‘9
-y +y)n
Mln(f2) = (,72 - T2)€—19 ( R
1
(=y +)ri
2 2.0 ~2 .2\ .—if 2 2\, —if
Note that 9} ri)e’ an 9} " 26 — are conjugates. Let ( = w, and

(= +7)ri (—y +)ri (=y +)ri

then [(| # 1 due to det M,(f2) # 0, and ¢ # 0 due to |y| # |a] = |r| (as |5] # 1).
With the same analysis as for My, (f1) in the case o + @ # 0, the ratio of the two

eigenvalues of My, (f2) = {é g] is also not equal to 1, which means there is no integer
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C+3 .
= is

1+¢

also a Mobius transformation of the form M((, 1) mapping S* to S'. Similarly, we can

n and complex number C such that M (f2) = CI. Notice that ¢a(3') =

realize polynomially many distinct binary signatures, and hence Pl-Holant(#2| f,g) is

#P-hard.

— Otherwise, —y + 7 = 0, which means ~ is a real number. We have v € R, |y| # 0 or |r|.
Connect variables x4, x3 of a copy of signature f with variables z1, x5 of another copy

of signature f, we get a signature f’ with the signature matrix

M(f") = Mayzy wans (F) N2 Mo,y 24zs (f)
0 0 0 ~fooo 1]fo 0o 0 ~e?
0 1 —ri 0|00
0 rie € 0[]0 1

0
0 0 o0]ftoo

—_

Y | 11y O 0 0 |
K 0 0 26120

10 (e —1)ri ef — 2 0

0 el 20,2 (€20 — )i 0
7° 0 0 0|

. 000y _

% If €% = 1, then M(f) = [8 La 8]7 and M, (f) = [L ¢]. Since |a] # 1, same as the
5000

analysis of My, (f1), we can realize polynomially many binary signatures, and hence

Pl-Holant(#2| f,g) is #P-hard.

* Otherwise e? # 1, normalizing M (f') by dividing by (¢! — 1)ri, we have

- 2,0 :
e i0
0 0 0 — - €
. (el —1)ri ¢
0 1 o 0
e — 1)ri
M(f') = 1 — eify2 ( ' )
0 ‘ A 619 0
(elf — 1)ri
+
. 0 0 0
(el —1)ri i
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1 — eifp2 eld _ p2 72ei9 72
Note that ————— and —————— are conjugates, and — - and — -
(el — 1)ri (elf — 1)ri e (el — 1)ri (el — 1)ri
1 — if2 ~2el
are conjugates. Let / = ————— and ¥/ = —————. Then
e (elf — 1)ri 7 (elf — 1)ri

0 0 0 A

Notice that M(f’) and M(f) have the same form. Similar to the construction

of f2, we can construct a signature fj using f’ instead of f. Since —y' + 9/ =
2l 2 -2
—— - = —— # 0, by the analysis of f2, we can still realize
(el — 1)ri + (el —1)ri ri 7 Y Y f2

polynomially many binary signatures and hence Pl-Holant(#3| f, g) is #P-hard. O

Remark 9.38. The order n > 5 promises that there are at least three points mapped to points on
S1, since at most one point can be mapped to 0 and at most one can be mapped to co. When the
order n is 3 or 4, if no point is mapped to 0 or oo, then there are still at least three points mapped

to points on S'. So, we have the following corollary.

Corollary 9.39. Let g = (0,1,¢, O)T be a binary signature where t is an n-th primitive root of unity,
andn =3 or 4. Let g,, denote (0,1,t™ 0)T. For any cyclic permutation (i,j, k,€) of (1,2,3,4), if
there is no gy such that My, vyu, (f)gm = d1(0,1,0, 0)T" or dy(0,0,1,0)", where dy,ds € C , then
Pl-Holant(#2| f,g) is #P-hard.

We normalize f by setting b = 1 in Lemma 9.6.
Lemma 9.40. Let g = (0,1,0,0)7 be a binary signature. Then Pl-Holant(#z| f, g) is #P-hard.

Proof. Connecting variables x4, z3 of the signature f with variables x5 and z; of g both using

(#2) we get a binary signature g;, where
g1 = Mxlxg,x4z3 (f)(ov 17 07 O)T = (07 17 Z, O)T

g1(w1,72) can be normalized to (0,27%,1,0)T since z # 0. So we have g1 (w2, 71) = (0,1,271,0).
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Then, modifying 21 = 1 of f with 27! scaling, we get a signature f; with the signature matrix

8(1308 000 a
M(fi)=1 o 1y7zo . We denote it by [8 %;18],Where x1y1 # 0.
z/z0 0 0 £100 0

o If ¢ = 0, connecting variables x4, x3 of fi with variables x1, zo of g both using (#2) we get a

binary signature hi, where
_ T _ T
hy = M$1$2,$4273(f1)(0707170) =(0,1,91,0)".
Also, connecting the variable x4 with z3 of f1 using (#2) we get a binary signature H, where
— T _ T
H = Mx1x2,x4z3(f1)(0717170) = (0727?/170) .

H can be normalized to (0,1, %,0)7. Clearly, |y1| # |4 |, so they cannot both be roots of unity.
By Lemma 9.36, Pl-Holant (#2| f, h1, H) is #P-hard, and we conclude that Pl-Holant (#2| f, g)

is #P-hard.

o Otherwise ¢ # 0. Connecting variables za, 1 of g with variables x1, xo of f both using (#2)

we get a binary signature go, where

92 = ((Ov 1,0, O)Mﬂclxz,mfﬂs (fl))T = (07 Le, O)T-

which can be normalized to ga(x2,21) = (0,1,¢71,0)7. Then, modifying x4 = 1 of f; with

¢! scaling, we get a signature fy with the signature matrix M(fz) = which we

0 0 as
0 10
0 1y2 O
0
S

OOOS O OOonle

0
denote by [ 1 } Connect
0

T 0
variables x1, x4 of signature fo with variables xo, 1 of g both using (#2). We get a binary

»

0
}, where agxoy2 # 0. Notice that My,zy 212, (f2) = [8
1
2

signature hsz, where

hs = Mayyus o1a(£2)(0,1,0,0)7 = (0,a2,1,0)T.

hs can be normalized as (0,1, a—é,O)T. Also connect variables x1, x4 of signature fo with
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variables x1, x5 of g both using (#2). We get a binary signature hy, where
h4 = Mx2x3,x1x4 (fQ)(Oa 07 ]-7 O)T = (07 17 2, O)T

If |as| # 1 or |x2| # 1, then as or x9 is not a root of unity. By Lemma 9.36, Pl-Holant (#3| f, hs, ha)
is #P-hard, and hence Pl-Holant (#2| f, g) is #P-hard. Otherwise, |az| = |x2| = 1. Same as
the construction of h; and H, construct binary signatures h} and hf using fo instead of f.
We get

By = Moo eay (£2)(0,0,1,0)7 = (0,1,32,0)",

and

hl2 = M:v1$2,£64$3 (f2)<07 1,1, O)T = (07 2,14 ya, O)T'

Note that hf, can be normalized as (0, 1, 1+2y2 ,0)T.

— If y9 is not a root of unity, then by Lemma 9.36, Pl-Holant (#2| f, h}) is #P-hard, and
hence Pl-Holant (#2| f, g) is #P-hard.

— If ys is an n-th primitive root of unity and n > 5, then by Lemma 9.37, Pl-Holant (#2]| f, h})
is #P-hard, and hence Pl-Holant (#2| f,g) is #P-hard.

— Ifyp = %‘/3‘ or +i, then 0 < ]HTW\ < 1, which means it is not zero neither a root of
unity. By Lemma 9.36, Pl-Holant (#£2] f, h}) is #P-hard, and hence Pl-Holant (#3] f, g)
is #P-hard.

— If yo = 1, then f5 is non-singular redundant and hence Pl-Holant (#2| f, g) is #P-hard.

— If yo = —1. Connect two copies of fa, we get a signature f3 with the signature matrix
0 0 0 a3
0 2 0 O
M(f?:) = Mz 292425 (fQ)N2M901$2,$4x3 (f2) =
0 0 -2 0
_x% 0 0 0]

Since |ag| = |z2| = 1, |[a223| = 1 # 4. Therefore, applying Corollary 9.31 to {a3, 2, 23, —2},
we get Pl-Holant (#2| f3) is #P-hard, and hence Pl-Holant (#2| f, g) is #P-hard. O
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Combining Lemma 9.37, Corollary 9.39 and Lemma 9.40, we have the following corollary.

Corollary 9.41. Let g = (0,1,t,0)7 be a binary signature where t is an n-th primitive root of

unity, and n > 3. Then Pl-Holant(#2| f,g) is #P-hard.
Now, we are able to prove the following theorem for Case IV.

Theorem 9.42. Let f be a 4-ary signature with the signature matrix

0 0 0 a
0 b c O
M(f) = ;
0 2 y O
z 0 0 0

where abryz # 0. Pl-Holant(#3| f) is #P-hard unless f € ., in which case, Pl-Holant(#2| f) is

tractable.

Proof. Tractability follows by 9.9.
Now suppose f ¢ .#. Connect the variable x4 with x3 of f using (#2), and we get a binary
signature g1, where

91 = Mayas,2405(0,1,1,0)7 = (0,0 + ¢, 2 +3,0)".
Connect the variable z1 with x9 of f using (#2), and we get a binary signature go, where
92 = ((Oa L1, O)Mxlmmurs)T = (07 b+z,c+y, O)T'
o If one of g1 and gy is of the form (0,0,0,0)7, then by = (—c)(—2) = cz. That is by — cz = 0.
Here ¢ # 0 due to by # 0. By Lemma 9.35, Pl-Holant(#2| f) is #P-hard.

o Ifone of g; and g2 can be normalized as (0, 1,0,0) or (0,0, 1,0). By Lemma 9.40, Pl-Holant(#2|
f) is #P-hard.

o If one of g1 and go can be normalized as (0,1,t,0)T, where t # 0 is not a root of unity, then

by Lemma 9.36, Pl-Holant(#3| f) is #P-hard.

« If one of g; and g2 can be normalized as (0, 1,¢,0)”, where ¢ is an n-th primitive root of unity

and n > 3, then by Corollary 9.41, Pl-Holant(#5| f) is #P-hard.
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o Otherwise, g; and g2 do not belong to those cases above, which means both g; and go both
can be normalized as (0,1,€1,0) and (0,1,€2,0), where e = +1 and e = +1. That is,
b+c=e€(z+y)#0and b+ 2z =ea(c+y) #0.

Ifb+c=z4+yand b+ z=c+y, then b =y and ¢ = z. This case will be proved below.

—Ifb+c=—(z+y)andb+z=c+y,thenb+2z=c+y=0,5s0 g2 = (0,0,0,0)7, a

contradiction.

—Ifb+c=z+yandb+2z=—(c+y),thenb+c=2z2+y=0,s0 g1 = (0,0,0,0)7, a

contradiction.

—Ifo+c=—-(z+y)and b+2=—(c+y), wegetb+c+y+2z=0. Butb+c#0,
otherwise g1 = (0,0,0,0)7, a contradiction. So we can normalize g; to (0,1,—1,0)7.
Modify x1 = 1 of f with —1 scaling, and we get a signature f’ with the signature matrix
M(f") = [ § _lqz _gy §] . Connect the variable z1 with x2 of f’ using (#2), and we get
a binary sigirfatglreo gg = (0,b — z,c — y,0)T. Same as the analysis of g; and gy above,
we have Pl-Holant(#2| f’) is #P-hard unless ¢’ can be normalized as (0, 1, €3,0), where

e3 = +1. That is, b— z = e3(c — y) # 0, e3 = £1.

« If b— 2z = ¢ —y, combined with b+ ¢ = —(z+y), we have b = —y and ¢ = —z. This
case will be proved below.
x If b— 2= —(c—y), combined with b+c¢= —(z2+y), we have b+ c = z+y =0, and

so g1 = (0,0,0,0)”, a contradiction.

Therefore, Pl-Holant(#2| f’) is #P-hard and hence Pl-Holant(#3| f) is #P-hard.

To summarize, except for the cases b = ey and ¢ = €z, where ¢ = 41, we have proved that
Pl-Holant(#2| f) is #P-hard. We can connect the variable zo with z3 of f using (#2), and get a
binary signature gz = (0,a + ¢, z + x,0)7. Connect the variable z1 with 24 of f using (#2), and
we get a binary signature g4 = (0,a + z,¢ + 2,0)7. Same as the analysis of g; and gy, we have
Pl-Holant(#2| f) is #P-hard unless a = ¢’z and ¢ = €'z, where ¢ = 1. By both ¢ = ez and ¢ = €'z
and z # 0 we get € = €¢/. Therefore, Pl-Holant(#5| f) is #P-hard unless a = ez, b = ey and ¢ = ez,
where € = 1. In this case, since z # 0, we have abc # 0. By Lemma 9.34, Pl-Holant(#2| f) is
#P-hard, since we have assumed f ¢ .Z . O
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9.7 Proof of the Trichotomy Theorem

Now we are ready to prove the main theorem, Theorem 9.21.

Proof of Tractability:

o If f satisfies condition 1 or 2, then by Theorem 9.20, Holant(#2| f) is tractable without the

planarity restriction. Obviously, Pl-Holant(#2| f) is tractable.
o If f satisfies condition 3, then by Theorem 9.9, Pl-Holant(#2| f) is tractable.
o If f satisfies condition 4, then by Theorem 9.30, Pl-Holant(#3]| f) is tractable.

Proof of Hardness:
Since f does not satisfy condition 2, f does not belong to Case I. Therefore it belongs to Cases

II, III, or IV.
e Suppose f belongs to Case II.

— If an outer pair is a zero pair, since f does not satisfy condition 1 or condition 3, then

by Theorem 9.24, Pl-Holant(#2| f) is #P-hard.
— If the inner pair is a zero pair and no outer pair is zero, since f does not satisfy condition

4, then by Theorem 9.30, Pl-Holant(#5| f) is #P-hard.

e Suppose f belongs to Case III. Since f does not satisfy condition 3, then by Theorem 9.33,
Pl-Holant(#2| f) is #P-hard.

e Suppose f belongs to Case IV. Since f does not satisfy condition 3, then by Theorem 9.42,
Pl-Holant(#2| f) is #P-hard. O
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Chapter 10

Conclusion and Outlook

In this dissertation, we proved a complexity dichotomy for real-valued Holant problems with
arbitrary asymmetric signatures and a complexity trichotomy for planar six vertex models with
arbitrary complex values. The ultimate goal is definitely a complete complexity classification for
all complex-valued Holant problems.

One natural question is whether the tractability condition (T) in the real Holant dichotomy
covers all tractable cases for complex-valued Holant problems without considering the planar re-
striction. The answer is no. It is already known that there is a family of complex-valued signatures,
called vanishing signatures, that define tractable Holant problems [28]. For these signatures, it is
crucially the possibility to take complex values that makes them tractable. In fact, the evaluation
of problems defined by vanishing signatures is always zero, for the sake of which these signatures
are named after “vanishing”.

The complexity dichotomy for six-vertex models without considering the planar restriction
also captures a tractable case beyond the tractability condition (T). Based on this result, our
on-going work suggests that there is potentially a more general family of new tractable signatures.
This family may complete the picture for the complexity classification of complex-valued Holant
problems over general graphs. It seems to be more convenient to carve out this new tractable family
in the framework of Holant(#| F) without assuming ARS on F. As a special case of Holant(#2| F),
a complexity classification of #EO problems without assuming ARS will serve as a building block.

Taking account of the planar restriction, a very interesting question is whether there are more
planar tractable cases beyond the reach of the FKT algorithm. We believe the answer is yes. The
new tractable case for planar six-vertex models obtained by the non-local reduction to #CSP can
be generalized to planar #EO problems with signatures of higher arity. In this sense, a complexity

classification of planar #EO problems may extend the non-local reduction technique to a universal
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algorithm for planar tractable Holant problems.

However, a much more challenging question is whether there are other planar tractable cases
beyond both the FKT algorithm and the non-local reduction technique. If the answer is yes, then
we suspect that such cases may be revealed by exploring planar eight-vertex models. Overall, there
is still a long way to go to achieve a complete complexity classification for Holant problems with

asymmetric signatures over planar graphs.
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