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Abstract

This dissertation furthers a systematic study of the complexity classification of counting prob-

lems. A central goal of this study is to prove complexity classification theorems which state that

every problem in some large class is either polynomial-time computable (tractable) or #P-hard.

Such classification results are important as they tend to give a unified explanation for the tractability

of certain counting problems and a reasonable basis for the conjecture that the remaining problems

are inherently intractable. In this dissertation, we focus on the framework of Holant problems on

Boolean variables, as well as other frameworks that are expressible as Holant problems, such as

counting constraint satisfaction problems and counting Eulerian orientation problems.

First, we prove a complexity dichotomy for Holant problems on the Boolean domain with

arbitrary sets of real-valued constraint functions. It is proved that for every set F of real-valued

constraint functions, Holant(F) is either tractable or #P-hard. The classification has an explicit

criterion. This is a culmination of much research on this decade-long study, and it uses many

previous results and techniques. On the other hand, to achieve the present result, many new tools

were developed, and a novel connection with quantum information theory was built. In particular,

two functions exhibiting intriguing and extraordinary closure properties are related to Bell states

in quantum information theory. Dealing with these functions plays an important role in the proof.

Then, we consider the complexity of Holant problems with respect to planar graphs, where

physicists had discovered some remarkable algorithms, such as the FKT algorithm for counting

planar perfecting matchings in polynomial time. For a basic case of Holant problems, called six-

vertex models, we discover a new tractable class over planar graphs beyond the reach of the FKT

algorithm. After carving out this new planar tractable class which had not been discovered for six-

vertex models in the past six decades, we prove that everything else is #P-hard, even for the planar

case. This leads to a complete complexity classification for planar six-vertex models. This result is

the first substantive advance towards a planar Holant classification with asymmetric constraints.

We hope this work can help us better understand a fundamental question in theoretical com-

puter science: What does it mean for a computational counting problem to be easy or to be hard?
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A Affine signatures (Definition 2.7) p.8

L Local affine signatures (Definition 2.13) p.10
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Chapter 1

Introduction

Counting problems arise in many different fields, e.g., statistical physics, economics and ma-

chine learning. In order to study the complexity of counting problems, several natural frameworks

have been proposed. Two well studied frameworks are counting constraint satisfaction problems

(#CSP) and counting graph homomorphisms (#GH). #GH is a special case of #CSP. These

frameworks are expressive enough so that they can express many natural counting problems, e.g.,

counting satifiability, hard-core models, Ising models and spin systems [67, 46, 5, 47, 43, 55], but

also specific enough so that complete complexity classifications can be established.

Such complexity classification results are usually stated as dichotomy results: For a large

family of problems in a certain framework, each of them is either in FP or #P-hard. The #P class

[67, 68] is the quantitative version of the NP class. A #P problem corresponds to its NP-version by

changing the question from asking the existence of a solution to asking the number of solutions. FP

is the class of #P problems that are polynomial-time computable (tractable). By a straightforward

adoption of Ladder’s theorem [52], complexity dichotomy does not hold for the #P class in general

assuming FP 6=#P, and concrete artificial #P-intermediate (properly between FP and #P-hard)

problems can be designed. However, so far there is no natural counting problem that is proved to be

#P-intermediate. Furthermore, many natural problems, such as problems expressible as #CSP and

#GH, are indeed either in FP or #P-hard. Full complexity dichotomies have been established for

#CSP and #GH problems defined by arbitrary complex-valued constraint functions over general

domain [11, 38, 12, 17, 15, 37, 13, 42, 16]. These dichotomy results are important in theory as they

tend to give a unified explanation for the tractability of certain problems and a reasonable basis for

the conjecture that the remaining problems are intractable. They are also important in practice as

they lead to novel efficient algorithms for many types of natural problems.

Despite the significance and wide application of #CSP and #GH, they are not known to be able
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to encompass some pivotal counting problems, such as counting perfect matchings (#PM). In fact,

it is proved that #PM cannot be expressed by #GH with arbitrary complex weights [41, 34, 63, 27].

Inspired by holographic transformations [71, 72], a more expressive framework, the Holant problem

was introduced by Cai, Lu and Xia [30]. It is a broad class of sum-of-products computation

that generalizes #CSP and #GH, and naturally expresses #PM and counting matchings. Other

problems expressible as Holant problems include counting weighted Eulerian orientations (#EO

problems) [58, 23], computing the partition functions of six-vertex models [61, 25] and eight-vertex

models [6, 19], and a host of other, if not almost all, vertex models from statistical physics [7].

Unlike #CSP and #GH, the understanding of Holant problems, even restricted to the Boolean

domain, is still limited. In this dissertation, we focus on the complexity classification of Holant

problems on the Boolean domain. A Boolean Holant problem Holant(F) is parameterized by a set

F of constraint functions (also called signatures) on the Boolean domain. A signature f ∈ F of

arity n > 0 on the Boolean domain is a map Zn2 → C.

Built on the dichotomy for #CSP on the Boolean domain [31], progress has been made in

the complexity classification of Boolean Holant problems. When all signatures are restricted to be

symmetric (the function value depends only on the Hamming weight of the input), a dichotomy for

complex-valued Holant problems was established [28].

For asymmetric signatures, the first result is a dichotomy for a restricted class called Holant∗

problems where all unary signatures are assumed to be available [28]. Later, it was generalized to

(first real-valued [32] and then complex-valued [3, 4]) Holantc problems where two pinning unary

signatures are available. In addition, based on the dichotomy for Holant∗ problems, a dichotomy for

non-negative Holant problems was proved [57] without assuming any auxiliary signatures. Simulta-

neously, progress has been made for Holant problems parameterized by complex-valued signatures

of even arities. The base case is a single 4-ary signature which includes six-vertex models and eight-

vertex models. (The case that all signatures are binary is known to be tractable.) A dichotomy

is proved for complex-valued six-vertex models [25] and later it was generalized to complex-valued

eight-vertex models [19].

In the first part of this dissertation, we establish the first Holant dichotomy on the Boolean

domain with arbitrary real-valued constraint functions. These constraint functions need not be

symmetric nor do we assume any auxiliary functions.



3

Theorem 1.1. Let F be a set of real-valued signatures. If F satisfies the tractability condition (T)

stated in Theorem 2.33, then Holant(F) is polynomial-time computable; otherwise, it is #P-hard.

This theorem is the culmination of a large part of previous research on dichotomy theorems of

Holant problems. However, the journey to this theorem is arduous.

First, as a special case of Holant problems, we introduce the framework of counting Eulerian

orientation problems (#EO problems). This framework generalizes six-vertex models from arity 4

to general arities. However, quite surprisingly, #EO problems also encompass all #CSP problems

on Boolean variables. In Chapter 2, we define the frameworks of #CSP, #EO problems, and Holant

problems, and show their connections. In Chapter 3, we introduce some common polynomial-time

reductions. In Chapter 4, we prove a dichotomy for #EO problems with complex-valued constraint

functions under a symmetry assumption, called arrow reversal symmetry (ars). Under a suitable

holographic transformation, these #EO problems with ars correspond to precisely a class of real

valued Holant problems. The dichotomy of #EO problems with ars will serve as a building block

for the dichotomy of real-valued Holant problems.

Then, we start proving the real Holant dichotomy (Theorem 1.1). We first consider the case

that F contains a nonzero signature of odd-arity in Chapter 5. For the case that F consists of

signatures of even arities. We prove the dichotomy by induction on arities of signatures in F . We

consider the base cases that F contains a binary or 4-ary signature in Chapter 6. Then, we give

two particularly intriguing signatures of arity 6 and 8 with some extraordinary closure properties

related to Bell states [9] in quantum information theory. Their existence presented a formidable

obstacle to the induction proof. We deal with them in Chapters 7 and 8 respectively. Finally, in

the last two sections of Chapter 8, we give the induction proof for signatures of arity at least 10,

and finish the proof of Theorem 1.1. Results in Chapters 4 to 8 are joint work with Jin-Yi Cai and

Zhiguo Fu [23, 24, 64].

Theorem 1.1 delineates all real Holant problems that are polynomial-time computable over

general graphs. However, a more interesting question is what happens on planar structures, where

physicists had discovered some remarkable algorithms, such as the FKT algorithm [66, 49, 48].

By the FKT algorithm, #PM which is #P-hard in general, is polynomial-time computable when

restricted to planar graphs. This algorithm was viewed as a great triumph in statistical physics for

a long line of research on exactly solved models [60, 73, 74, 54, 56, 8].
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To extend the reach of the FKT algorithm, Valiant introduced matchgates [69, 70] and holo-

graphic transformations to the FKT algorithm [71, 72], and discovered a number of counting

problems that are tractable over planar graphs, but #P-hard in general. After several develop-

ments on the theory of matchgates [18, 29, 26], Cai and Fu proved that for a large class of counting

problems, such as all #CSP problems on Boolean variables, holographic transformations to the

FKT algorithm is a universal technique to solve all problems that are tractable over planar graphs

but #P-hard in general [20]. Taking into account of the planar restriction, a complexity trichotomy

was established for #CSP on the Boolean domain: every problem in this framework is either (1)

tractable for every graph, or (2) #P-hard for general graphs but tractable for planar graphs, or (3)

#P-hard even for planar graphs.

However, when it comes to Holant problems, there are new planar tractable problems that are

not solvable by a holographic transformation to the FKT algorithm. After carving out this new

planar tractable class, a complete complexity classification was proved for planar Boolean Holant

problems where all signatures are symmetric [21].

In the second part of this dissertation, we make the first substantive advance towards a clas-

sification of planar Holant problems with asymmetric signatures. We consider the complexity

classification of planar six-vertex models without assuming ars. Previously, without being able to

account for tractability on planar graphs, a complexity dichotomy was proved in [25]. Due to the

presence of nontrivial algorithms, a complete complexity classification in the planar case is much

more difficult to achieve. Not only are reductions to FKT expected to give planar tractable cases

that are #P-hard in general, but also a more substantial obstacle awaits us. It turns out that there

is another planar tractable case that had not been discovered for the six-vertex model in all these

decades, until our result. We give this new planar tractable case and prove a complete complexity

classification of planar six-vertex models in Chapter 9. This result is joint work with Jin-Yi Cai

and Zhiguo Fu [22].

We give the following Figure 1 as a partial map of the complexity classification program for

Holant problems on the Boolean domain. The ultimate goal is definitely a complete complexity

classification for all complex-valued Holant problems. First, without considering the planar restric-

tion, to achieve a classification for complex-valued Holant problems over general graphs, we think

a classification for complex-valued #EO problems without assuming ars may serve as a building
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block. We may also need to generalize the dichotomy for real-valued Holant problems with an

odd-ary signature to complex-valued. Secondly, if we take account of the planar restriction, there

is still a long way to go. We think a complexity classification of planar eight-vertex models and

a complexity classification of planar Holant∗ problems are the two potential points where one can

further explore.

Complex
#CSP [31]

Planar ... [20]

xxrrr
rrr

rrr
r

%%KK
KKK

KKK
KKK

Complex
Symmetric Holant [28]

Planar ... [21]
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(Chapter 9)
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Chapter 2

Frameworks of Counting Problems

In this chapter, we define three frameworks of Boolean counting problems that will be studied

in this dissertation. They are counting constraint satisfaction problems (#CSP), counting Eulerian

orientation problems (#EO problems) and Holant problems. We give some families of signatures

that are known to be tractable in these frameworks.

2.1 Counting Constraint Satisfaction Problems (#CSP)

2.1.1 Definition and Examples

Recall that a constraint function (also called a signature) is a map f : Zn2 → C for some n > 0.

A (Boolean) counting constraint satisfaction problem #CSP(F) is parameterized by a set F of

signatures, and it is defined as follows.

Definition 2.1 (#CSP). Let F be any fixed set of signatures. An instance I of #CSP(F) is a

finite set of variables V = {x1, x2, . . . , xn}, and a finite set C of clauses. Each clause is a constraint

f ∈ F of some arity m depending on f together with a sequence of m (not necessarily distinct)

variables xi1 , . . . xim ∈ V . The output is the partition function

Z(I) =
∑

(x1,...,xn)∈Zn2

∏
(f,xi1 ,...xim )∈C

f(xi1 , . . . xim).

When {f} is a singleton set, we write #CSP({f}) as #CSP(f) and #CSP({f}∪F) as #CSP(f,F).

Many natural combinatorial problems can be expressed by #CSP.

Example 2.2 (Counting Boolean Satisfiability). The counting Boolean satisfiability problem (#SAT)

counts the number of satisfying assignments to a given Boolean formula. It can be expressed as
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#CSP(F) where F = {Ork | k ⩾ 1} ∪ {6=2}, Ork is the Or function of arity k and 6=2 is the

binary Disequality signature with truth table (0, 1, 1, 0).

Example 2.3 (Counting Independent Sets). The counting independent set problem (#IS) counts

the number of independent sets of a given graph G = (V,E). By viewing each vertex v ∈ V as

a Boolean variable (i.e., v = 0 or 1 depending on whether it is selected in an independent set),

and each edge e ∈ E as a binary constraint fIS where fIS(0, 0) = fIS(0, 1) = fIS(1, 0) = 1 and

fIS(1, 1) = 0, #IS can be expressed as #CSP(fIS).

The #IS problem is also a basic case of counting graph homomorphisms. Consider the graph

H = (V,E) where V = {v0, v1} and E = {(v0, v0), (v0, v1)}. Then, the number of independent sets

of a graph G is equal to the number of graph homomorphisms from G to H. In statistical physics,

The #IS problem corresponds to the hard-core model, which is a special case of the more general

2-state spin (2-spin) systems. Spin systems are some of the most fundamental statistical physics

systems. They model interactions between neighbors on graphs. A 2-spin system is specified by

two edge interaction parameters β and γ, and a uniform external field λ, where β, γ, λ ∈ C. It can

be expressed by a #CSP problem with a binary signature and a unary signature.

Example 2.4 (2-Spin systems). Let f be a binary signature with f(0, 0) = β, f(1, 1) = γ and

f(0, 1) = f(1, 0) = 1, and g be a unary signature with g(0) = 0 and g(1) = λ. Then, the problem

#CSP(f, g) computes the partition function of the 2-spin system specified by (β, γ, λ).

2.1.2 Existing Dichotomies for #CSP

For a fixed signature set F , the complexity of #CSP(F) is measured in terms of the input

size of the instance I. When F is a finite set, this input size is equivalent to n (the number of

variables). We may also allow F to be infinite. In this case, the input size includes the description of

the constraints used in the input. A complexity dichotomy was proved for #CSP(F) if each f ∈ F

takes values 0 or 1 [33]. Later, it was generalized to non-negative signature sets [35]. Finally, a full

complexity dichotomy was proved for any complex-valued signature sets [31]. Such a dichotomy

has an explicit criterion. We introduce the following two families of signatures that define tractable

#CSP problems. They are product-type signatures and affine signatures. We use =2 to denote the

binary Equality signature with truth table (1, 0, 0, 1).
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Definition 2.5 (Product-type signatures). A signature on a set of variables X is of product type

if it can be expressed as a product of unary functions, binary Equality functions =2, and binary

Disequality functions 6=2, each on one or two variables of X. We use P to denote the set of

product-type functions.

Note that the product in Definition 2.5 are ordinary products of functions (not tensor products);

in particular they may be applied on overlapping sets of variables. We give an alternative definition

of product-type signatures using tensor products.

Let α ∈ Zn2 be an input of a signature f of arity n. We may use fα to denote f(α). The

support of a signature f is S (f) = {α ∈ Z2n
2 | fα 6= 0} i.e., the set of inputs on which f is not

zero. We say f has support of size k if |S (f)| = k. If S (f) = ∅, i.e., f is identically 0, we say f is

a zero signature and denote it by f ≡ 0. Otherwise, f is a nonzero signature. If S (f) consists of

two antipodal points (i.e., S (f) = {α, ᾱ}), then we say f is an antipodal signature.

Lemma 2.6 ([20]). A signature is of product-type iff it is a zero signature or it is a tensor product

of unary signatures and antipodal signatures.

Let i =
√
−1. We define affine signatures.

Definition 2.7 (Affine signatures). A signature f(x1, . . . , xn) of arity n is affine if it has the form

λ · χAX=0 · iQ(X),

where λ ∈ C, X = (x1, x2, . . . , xn, 1), A is a matrix over Z2, Q(x1, x2, . . . , xn) ∈ Z4[x1, x2, . . . , xn]

is a multilinear polynomial with total degree d(Q) ⩽ 2 and the additional requirement that the

coefficients of all cross terms are even, i.e., Q has the form

Q(x1, x2, . . . , xn) = a0 +
n∑
k=1

akxk +
∑

1≤i<j≤n
2bijxixj ,

and χ is a 0-1 indicator function such that χAX=0 is 1 iff AX = 0. We use A to denote the set of

all affine signatures.

The following two lemmas follow directly from the definition.
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Lemma 2.8. Let g be a complex-valued binary signature with support of size 4. Then, g ∈ A iff g

has the signature matrix M(g) = λ
[
ia ib

ic id

]
, for some nonzero λ ∈ C, a, b, c, d ∈ N and a+b+c+d ≡ 0

(mod 2).

Lemma 2.9. Let h be a complex-valued unary signature with support of size 2. Then, h ∈ A iff h

has the form M(h) = λ
[
ia ib

]
, for some nonzero λ ∈ C, and a, b ∈ N.

We say a signature f has affine support if S (f) is an affine linear subspace. Clearly, any affine

signature has affine support. Moreover, by Lemma 2.6, we have

Lemma 2.10. Any signature of product type has affine support.

证明. Please see Definition 2.22 in Section 2.5 of [20] for a proof.

When S (f) is an affine linear space, we can pick a set of free variables such that in S (f),

every variable is an affine linear combination of free variables. Real-valued affine functions satisfy

the following congruity or semi-congruity.

Lemma 2.11 ([14]). Let f(x1, . . . , xn) = (−1)Q(x1,...,xn) ∈ A , and y = xn + L(x1, . . . , Ln−1) be a

linear combination of variables x1, . . . , xn that involves xn. Define

g(x1, . . . , xn−1) =
fy=0(x1, . . . , xn−1, y + L)

fy=1(x1, . . . , xn−1, y + L)
= (−1)Q(x1,...,xn−1,L)+Q(x1,...,xn−1,L+1).

Then, g satisfies the following property.

• (Congruity) g ≡ 1 or g ≡ −1, or

• (Semi-congruity) g(x1, . . . , xn−1) = (−1)L(x1,...,xn−1) where L(x1, . . . , xn−1) ∈ Z2[x1, . . . , xn−1]

is an affine linear polynomial (degree d(L) = 1).

In particular, if d(Q) = 1, then g has congruity.

Problems defined by P are tractable by a propagation algorithm, and problems defined by A

are tractable essentially by algebraic cancellation. Together, they exhaust all tractable #CSP [31].

Theorem 2.12. Let F be any set of complex-valued signatures. Then #CSP(F) is #P-hard unless

F ⊆ A or F ⊆ P, in which cases the problem is tractable.
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We use #CSPk(F) to denote the special case of #CSP(F) where every variable appears a mul-

tiple of k times. In particular, #CSP1(F) = #CSP(F). We use ⩽T (and ≡T ) to denote polynomial-

time Turing reductions (and equivalences, respectively). Clearly, #CSPk(F) ⩽T #CSP(F). When

k = 2, a complexity dichotomy was proved for complex-valued #CSP2(F) [32]. Beyond product-

type and affine signatures, a new family of tractable signatures was identified. They are local affine

signatures.

For an invertible 2-by-2 matrix T ∈ GL2(C) and a signature f of arity n, written as a column

vector (covariant tensor) f ∈ C2n by listing its truth table, we denote by Tf = T⊗nf . For a

signature set F , define TF = {Tf | f ∈ F} the set of transformed signatures. Let Tαs = [ 1 0
0 αs ]

where α = e
iπ
4 = 1+i√

2
and s is an integer.

Definition 2.13 (Local affine signatures). A signature f (written as a column vector) is local-affine

if for each σ = s1s2 . . . sn ∈ Zn2 in the support of f , (Tαs1 ⊗ Tαs2 ⊗ · · · ⊗ Tαsn )f ∈ A . We use L

to denote the set of local-affine signatures.

Theorem 2.14 ([32]). Let F be any set of complex-valued signatures. Then #CSP2(F) is #P-hard

unless F ⊆ A , F ⊆ P, F ⊆ L or TαF ⊆ A , in which cases the problem is tractable.

2.2 Counting Eulerian Orientation Problems (#EO Problems)

2.2.1 Definition and Examples

Let G be an undirected Eulerian graph, i.e., every vertex has even degree. An Eulerian

orientation of G is an orientation of its edges such that at each vertex the number of incoming edges

is equal to the number of outgoing edges. Mihail and Winkler showed that counting the number of

Eulerian orientations of an undirected Eulerian graph is #P-complete [58]. We consider counting

weighted Eulerian orientation problems (#EO problems), formulated as a partition function defined

by constraint functions placed at each vertex that represent weightings of various local Eulerian

configurations.

We use wt(α) to denote the Hamming weight of α ∈ Z2n
2 . Let H2n = {α ∈ Z2n

2 | wt(α) = n}. A

signature f of arity 2n is an Eulerian orientation (EO) signature if S (f) ⊆ H2n. A #EO problem

is parameterized by a set F of EO signatures. An instance of #EO(F) is an EO-signature grid
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Ω = (G, π), where G = (V,E) is an Eulerian graph without isolated vertex (i.e., every vertex has

positive even degree), π labels each v ∈ V with an EO signature fv ∈ F of arity deg(v), and labels

the incident edges E(v) at v with input variables of fv. For any Eulerian graph G, let EO(G) be the

set of all Eulerian orientations of G. We view each edge as having two ends, and an orientation of

the edge is denoted by assigning 0 to the head and 1 to the tail. An Eulerian orientation corresponds

to an assignment to the ends of each edge where the numbers of 0’s and 1’s at each v are equal.

Then a vertex v contributes a weight by the local constraint function fv evaluated according to

the local assignment. Since the support of fv is on half weighted inputs, only Eulerian orientations

contribute nonzero values. Each σ ∈ EO(G) gives an evaluation
∏
v∈V fv(σ|E(v)), where σ|E(v)

assigns 0 to an incoming edge and 1 to an outgoing edge.

Definition 2.15 (#EO problems). Let F be any fixed set of EO signatures. The input of #EO(F)

is an EO-signature grid Ω = (G, π) over F ; the output is the partition function of Ω,

#EOΩ =
∑

σ∈EO(G)

∏
v∈V

fv(σ|E(v)
).

When {f} is a singleton set, we write #EO({f}) as #EO(f) and #EO({f} ∪ F) as #EO(f,F).

Example 2.16 (Unweighted #EO problem). Let FEO = {f2, f4, . . . f2n, . . .}, where fα2n = 1 when

wt(α) = n and fα2n = 0 otherwise. Then #EO(FEO) counts the number of Eulerian orientations.

There are a host of problems in statistical physics that can be formulated as #EO problems.

One of the most studied models is the six-vertex model. It was introduced by Pauling in 1935 to

account for the residual entropy of water ice [61]. Mathematically, it is an #EO problem defined

on 4-regular graphs. For more background in physics, please see Chapter 9.

Example 2.17 (Six-vertex models). Let fsix be an EO signature of arity 4, where f0011six = a,

f1100six = x, f0101six = b, f1010six = y, f0110six = c, f1001six = z. Then #EO(fsix) is the six-vertex model.

2.2.2 #EO Problems Encompass #CSP

The #EO problems have an intrinsic significance in the classification program for counting

problems. At first glance, the #EO framework may appear to be specialized as it requires all
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constraint functions to be supported on half weighted inputs. However, surprisingly, it encompasses

all Boolean #CSP.

Definition 2.18 (Pairwise opposite). Let S ⊆ Z2n
2 be an affine linear subspace. We say S is

pairwise opposite if we can partition the 2n variables into n pairs such that on S , two variables of

each pair always take opposite values. If S is pairwise opposite, we fix a pairing. Then each pair

under this paring is called an opposite pair.

Let g be an arbitrary signature of arity n > 0 (with no assumption to be EO). We associate g

with an EO signature g̃ of arity 2n in the following way. We define

g̃(x1, . . . , xn, xn+1, . . . , x2n) =


g(x1, . . . xn) if xi 6= xi+n (i ∈ [n]),

0 otherwise.

Clearly, g̃ is an EO signature. Moreover, its support is pairwise opposite, i.e., xi and xn+i form an

opposite pair. We say xi is in the first half of the inputs of g̃, while xn+i is in the second half. We

define G̃ = {g̃ | g ∈ G} for an arbitrary signature set G. We show that #CSP is expressible in the

#EO framework by the following theorem.

Theorem 2.19. For every signature set G and the EO signature set G̃ defined above, we have

#CSP(G) ≡T #EO(G̃).

Remark 2.20. Before we give the proof, we remark that this theorem is not merely stating that

for an arbitrary #CSP(G) problem, one can reduce every instance of #CSP(G) to an instance

of a suitable #EO(G̃) problem. Theorem 2.19 is stronger and categorical: For every signature

set G in the #CSP framework, there is a (uniformly constructible) EO signature set G̃ such that

#CSP(G) is the same as the #EO problem #EO(G̃). In particular, a complexity dichotomy for

#EO problems would generalize the complexity dichotomy for #CSP problems on Boolean variables

(which is already known).

证明. We first show that every instance of #CSP(G) is expressible canonically as an instance of

#EO(G̃), thus, #CSP(G) ⩽T #EO(G̃). Let G = (U, V,E) be a bipartite graph representing an



13

instance I of #CSP(G), where each u ∈ U is a variable and each v ∈ V is labeled by a constraint

function g ∈ G. We will modify the instance I to an instance Ĩ of #EO(G̃) that evaluates to the

same value, as follows.

1. For every u ∈ U , we create k = degG(u) vertices denoted by ui (1 ⩽ i ⩽ k). (For example,

in Figure 2, vertices u1, u2 and u3 are decomposed into 3, 2 and 1 vertices respectively.)

Then we connect the k edges originally incident to u to these k new vertices, so that each

new vertex is incident to exactly one edge. (To be specific we assume the edges at u in I are

ordered from 1 to k, and we connect the i-th edge to ui. These are edges drawn by solid lines

in Figure 2(b).) We denote this graph by G′. Each ui in G′ has degree 1 and the degree of

each v ∈ V does not change.

2. For each edge ei = (ui, v) in the graph G′, we add an edge ēi = (ui+1, v) to G′ and we call

them a pair. (Here if degG(u) = k then we use uk+1 to denote u1; we will add a multiple edge

if ei+1 = (ui+1, v) is already in G′. These edges ēi are drawn by dashed lines in Figure 2(b).)

This defines a graph G̃. Each ui in G̃ has degree 2 and we label it by 6=2. If degG(v) = n

and is labeled by the constraint function g ∈ G, then v in G̃ has degree 2n and we label it

by the corresponding g̃ ∈ G̃. We place the signature g̃ in a way such that every pair of edges

ei = (ui, v) and ei = (ui+1, v) incident to the same v appears as an opposite pair in the inputs

of the function g̃, and ei appears in the first half of the inputs of g̃ while ei appears in the

second half. Recall that g̃ is defined to be pairwise opposite such that its j-th variable in the

first half is paired with its (n + j)-th variable in the second half. This defines an instance Ĩ

of #EO(G̃).

We show that #EO
Ĩ
has the same value as the instance I for #CSP(G). Consider each variable

u ∈ U . Suppose it has degG(u) = k in the instance I. It corresponds to k vertices u1, . . . , uk and 2k

edges e1, e1, . . . , ei, ei, . . . , ek and ek. These 2k edges form a circuit Cu. For example, in Figure 2,

u11, v1, u
2
1, v1, u

3
1, v2 back to u11 is such a circuit where the edges are successively e11, e11, e21, e21, e31, e31

(edges drawn by solid lines and dashed lines alternate). Note that, for every pair of edges ei and

ei, we placed the signature g̃ such that ei and ei appear as an opposite pair. Thus, we may assume

ei and ei take opposite values in the evaluation of #EO
Ĩ
. Also, since each ui is labeled by 6=2, we

may also assume ei and ei+1 take opposite values in the evaluation. (This is really a consequence
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图 2: The reduction from #CSP to #EO

of the definition of #EO problems.) Thus, for any (possible) nonzero term in the sum #EO
Ĩ
, as a

consequence of the support of signatures in G̃ and 6=2, we know on each circuit Cu all edges must

take values (0, 1, 0, 1, · · · , 0, 1) or (1, 0, 1, 0, · · · , 1, 0), i.e., the values of 0, 1 alternate. Therefore,

on the circuit Cu, we have e1, e2, . . . , ek all take the same 0-1 value, which corresponds to the 0-1

assignment on the variable u in the #CSP instance I. Recall in the definition of g̃, its value can

be determined by the first half of its inputs. By the placement of g̃, the first half of its inputs are

edges in the graph G′ (drawn by solid lines). Therefore, the contribution of g̃ to #EO
Ĩ
is exactly

the same as the contribution of g in the #CSP instance I. Thus, these two instances have the same

value.

For the other direction, we first note that #CSP(G ∪ {6=2}) ⩽T #CSP(G). If #CSP(G) is

#P-hard, the reduction holds trivially since every #CSP problem can be reduced in P-time to a

#P-hard problem. Otherwise, by Theorem 2.12, #CSP(G) is tractable and G ⊆ A or P. Since

(6=2) ∈ A ∩ P, we have G ∪ {6=2} ⊆ A or P. Thus, #CSP(G ∪ {6=2}) is tractable. Then, again

the reduction holds trivially. Then, we will show that #EO(G̃) ⩽T #CSP(G ∪ {6=2}).

Consider an arbitrary instance I ′ of #EO(G̃). Because every signature in G̃ has the pairing

structure among its variables, we can decompose the graph of I ′ into edge disjoint circuits, by always

following the paired variables at each constraint vertex. For each edge disjoint circuit, we choose

an arbitrary default orientation. The circuit visits constraint vertices in some order according to

the default orientation. The visit follows successive pairs of edges. Recall that as a consequence

of the support of constraint functions, on each circuit, all these pairs of edges in the successive
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order must take the same ordered pair of values (x, x̄), where x ∈ {0, 1}. Thus, we can define a

Boolean variable x from the edges on each such circuit. From this a corresponding instance I for

#CSP(G ∪ {6=2}) can be obtained that has the same value as I ′ in #EO(G̃).

More specifically, suppose g(x1, . . . , xn) ∈ G and let g′(x1, . . . , xn) = g(xϵ11 , . . . , x
ϵn
n ), where

each xϵii is either xi or xi. To discuss the complexity of #CSP(G ∪ {6=2}), using ( 6=2) we may

assume every function obtained by flipping any number of variables in a function g ∈ G is also in

G.

Now, consider the default orientation of each circuit. At constraint vertices, the default orien-

tation visits successive pairs of edges corresponding to paired inputs of constraint functions, say,

{xj , xn+j}. If the default orientation always visits in the order xj followed by xn+j , then this is

exactly how the canonical construction given above and we can recover an instance I for #CSP(G)

with the same value. If at some constraint g̃ of arity 2n the default orientation happens to visit in

the order xn+j followed by xj , we can use one copy of 6=2 to modify the original function g to get

another constraint g′, so that the corresponding g̃′ is just g̃ with a flip between its variables xn+j
and xj . Then according to the default orientation the visit is in the order xj followed by xn+j .

2.3 Holant Problems

2.3.1 Definition and Examples

Both #CSP and #EO problems can be viewed as special cases of Holant problems. Let F

be a set of arbitrary (not necessarily EO) signatures. A (general) signature grid Ω = (G, π) over

F is a tuple, where G = (V,E) is a graph without isolated vertices, π labels each v ∈ V with a

signature fv ∈ F of arity deg(v), and labels the incident edges E(v) at v with input variables of

fv. We consider all 0-1 edge assignments σ, and each gives an evaluation
∏
v∈V fv(σ|E(v)), where

σ|E(v) denotes the restriction of σ to E(v).

Definition 2.21 (Holant problems). The input to the problem Holant(F) is a signature grid

Ω = (G, π) over F . The output is the partition function

Holant(Ω) =
∑

σ:E(G)→{0,1}

∏
v∈V (G)

fv(σ|E(v)
).
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Bipartite Holant problems Holant(F | G) are Holant problems over bipartite graphs H = (U, V,E),

where each vertex in U or V is labeled by a signature in F or G respectively. When {f} is a

singleton set, we write Holant({f}) as Holant(f) and Holant({f} ∪ F) as Holant(f,F).

We use =n to denote the Equality signature of arity n, which takes value 1 on the all-0 or all-1

inputs, and 0 elsewhere. (We denote the n-bits all-0 and all-1 strings by 0⃗n and 1⃗n respectively. We

may omit the superscript n when it is clear from the context.) Let EQk = {=k,=2k, . . . ,=nk, . . .}

denotes the set of Equality signatures whose arities are multiples of k. In particular, EQ = EQ1 =

{=1,=2, . . . ,=n, . . .} denotes the set of all Equality signatures.

Lemma 2.22 ([14]). #CSPk(F) ≡T Holant(EQk | F). When k = 1 or 2, Holant(EQk | F) ≡T

Holant(EQk ∪ F).

The following two reductions are also known [14]. One states that we can realize all =k∈ EQ

once we have =3. The other states that we can realize all =2k∈ EQ2 once we have =4.

Lemma 2.23. #CSP(F) ⩽T Holant(=3,F).

Lemma 2.24. #CSP2(F) ⩽T Holant(=4,F).

Recall that 6=2 denotes the binary Disequality signature (0, 1, 1, 0).We generalize this notion

to signatures of higher arities. A signature f of arity 2n is called a Disequality signature of arity

2n, denoted by 6=2n, if f = 1 when (x1 6= x2)∧ . . .∧ (x2n−1 6= x2n), and 0 otherwise. By permuting

its variables the Disequality signature of arity 2n also defines (2n − 1)(2n − 3) · · · 1 functions

which we also call Disequality signatures. These signatures are equivalent for the complexity of

Holant problems; once we have one we have them all. Let DEQ = {6=2, 6=4, . . . , 6=2n, . . .} denote

the set of all Disequality signatures.

Now, we show EO problems can be expressed by Holant problems.

Lemma 2.25. Let F be a set of EO signatures. Then, #EO(F) ≡T Holant( 6=2| F).

证明. If Ω = (G, π) is an instance of #EO(F), we add a middle vertex on each edge of G and

label it by 6=2. This defines an instance Ω′ of Holant( 6=2| F) with a bipartite graph H (which

is the edge-vertex incidence graph of G), where every edge of G is broken into two. There is a

1-1 correspondence of the terms in the partition functions #EOΩ and HolantΩ′ . The process is

obviously reversable.
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Since #CSP and #EO problems are special cases of Holant problems, problems that can be

expressed as #CSP or #EO problems can also be expressed as Holant problems. Other problems

that can be expressed as Holant problems include counting matchings and perfecting matchings

and eight-vertex models.

Example 2.26 (Counting perfect matchings). Let F = {f1, f2, . . . , fn, . . .} where fn(α) = 1 if

wt(α) = 1 and fn(α) = 0 otherwise. Then, Holant(F) counts the number of perfect matching.

Example 2.27 (Eight-vertex models). Let feight be a signature of arity 4, where f0011eight = a, f1100eight =

a, f0101six = f1010six = b, f0110six = f1001six = c, (where a, b, c ∈ R+). Then #EO(fsix) is the classical

six-vertex model satisfying ars with real parameters (a, b, c).

Note that #CSP(F) ≡T Holant(EQ ∪ F). Then, clearly Holant(). Thus, both product-type

signatures and affine signatures define tractable Holant problems. However, beyond them, there

are extra family of signatures.

Definition 2.28 (Unary and binary signatures). Let T denote the set of tensor products of unary

and binary signatures.

Theorem 2.29 ([32, 4]). Let F be a set of complex valued signatures. Then Holant(F) is tractable

if F ⊆ T , F ⊆ P, F ⊆ A , or F ⊆ L .

Notice that (6=2) ∈ T , (6=2) ∈ P and (6=2) ∈ A .

Theorem 2.30. Let F be a set of complex-valued signatures. Then Holant( 6=2| F) is tractable if

F ⊆ T , F ⊆ P or F ⊆ A .

2.3.2 Holographic Transformation

To introduce the idea of holographic transformation, it is convenient to consider bipartite

graphs. For a general graph, we can always transform it into a bipartite graph while preserving the

Holant value, as follows. For each edge in the graph, we replace it by a path of length two. (This

operation is called the 2-stretch of the graph and yields the edge-vertex incidence graph.) Each new

vertex is assigned the binary Equality signature =2. Thus, we have Holant(=2| F) ≡T Holant(F).

For an invertible 2-by-2 matrix T ∈ GL2(C) and a signature f of arity n, written as a column

vector (covariant tensor) f ∈ C2n , we denote by Tf = T⊗nf the transformed signature. For a
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signature set F , define TF = {Tf | f ∈ F} the set of transformed signatures. For signatures

written as row vectors (contravariant tensors) we define fT−1 and FT−1 similarly. Whenever we

write Tf or TF , we view the signatures as column vectors; similarly for fT−1 or FT−1 as row

vectors.

Let T ∈ GL2(C). The holographic transformation defined by T is the following operation:

given a signature grid Ω = (H,π) of Holant(F | G), for the same bipartite graph H, we get a new

signature grid Ω′ = (H,π′) of Holant(FT−1 | TG) by replacing each signature in F or G with the

corresponding signature in FT−1 or TG.

Theorem 2.31 ([72]). For every T ∈ GL2(C), Holant(F | G) ≡T Holant(FT−1 | TG).

Therefore, a holographic transformation does not change the complexity of the Holant problem

in the bipartite setting. In particular, if there exists a T ∈ GL2(C) such that Holant((=2)T
−1 | TF)

is tractable, then Holant(=2| F) is also tractable.

Definition 2.32. We say a signature set F is C -transformable if there exists a T ∈ GL2(C) such

that (=2)T
−1 ∈ C and TF ⊆ C .

Theorem 2.33. Let F be a set of complex valued signatures. Then Holant(F) is tractable if

F ⊆ T , F is P-transformable, F is A -transformable, or F is L -transformable. (T)

Notice that (=2) ∈ P ∩ A ∩ L . Clearly, If F ∈ P,A or L , then F is P,A or L -

transformable respectively. Also, notice that (=2)T
−1
α = (1, 0, 0, i) ∈ A . If TαF ∈ A , then F is

A -transformable. Thus, if F does not satisfy condition, then If F /∈ P,F /∈ A , F /∈ L , and

TαF 6∈ A . By dichotomies of #CSP and #CSP2, we have the following #P-hardness result.

Theorem 2.34. Let F be a set of complex-valued signatures. If F does not satisfy condition (T),

then #CSP(F) and #CSP2(F) are #P-hard.

Now, we introduce two particular holographic transformations that will be commonly used in

this dissertation. One is the transformation defined by real orthogonal matrix. Let O2(R) ⊆ R2×2

be the set of all 2-by-2 real orthogonal matrices. We denote O2(R) by O2. For all Q ∈ O2, since

(=2)Q
−1 = (=2), Holant(=2| F) ≡T Holant(=2| QF). The other is the transformation defined
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by Z−1 = 1√
2

[
1 −i
1 i

]
. Note that (=2)Z = ( 6=2) where Z = 1√

2

[
1 1
i −i

]
. Thus, Holant(=2| F) ≡T

Holant(6=2| Z−1F). We denote Z−1F by F̂ and Z−1f by f̂ .

Definition 2.35 (Arrow reversal symmetry). A (complex-valued) signature f satisfies arrow rever-

sal symmetry (ars) if f(α) = f(α) for all α where f(α) denotes the complex conjugation of f(α)

and α denotes the bit-wise complement of α. For real-valued signatures, this is f(α) = f(α).

Arrow reversal symmetry is usually assumed in statistical physics∗. In complexity theory,

there is a more intrinsic reason for considering the arrow reversal symmetry. Under the holographic

transformation by Z−1 = 1√
2

[
1 −i
1 i

]
, real-valued signatures translate precisely to complex-valued

signatures with the ars restriction.

Lemma 2.36. A (complex-valued) signature f is a real-valued signature iff f̂ satisfies ars.

证明. We first prove that if f̂ satisfies ars then f is real.

We have 2n/2f =
[
1 1
i −i

]⊗n
f̂ , and thus for all (a1, . . . , an) ∈ {0, 1}n,

2n/2fa1...an =
∑

(b1,...,bn)∈{0,1}n
f̂ b1,...,bn

∏
1⩽j⩽n

{
(−1)ajbj iaj

}
.

Then,

2n/2fa1...an =
∑

(b1,...,bn)∈{0,1}n
f̂ b1...bn

∏
1⩽j⩽n

{
(−1)ajbj (−i)aj

}
=

∑
(c1,...,cn)∈{0,1}n

f̂ c1...cn
∏

1⩽j⩽n

{
(−1)aj(1−cj)(−i)aj

}
= 2n/2fa1...an .

Hence, f is real.

Now in the opposite direction, suppose f is real. We have 2n/2f̂ =
[
1 −i
1 i

]⊗n
f , and thus for all

(a1, . . . , an) ∈ {0, 1}n,

2n/2f̂a1...an =
∑

(b1,...,bn)∈{0,1}n
f b1,...,bn

∏
1⩽j⩽n

{
(−1)ajbj (−i)bj

}
.

∗On a square lattice, when there is no external electric field, physical considerations imply that the model is
unchanged by reversing all arrows [8]. This ‘zero field’model includes the ice [61], KDP [65] and F [62] models as
special cases.
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So

2n/2f̂a1...an =
∑

(b1,...,bn)∈{0,1}n
f b1,...,bn

∏
1⩽j⩽n

{
(−1)(1−aj)bj (−i)bj

}
.

Then,

2n/2fa1...an =
∑

(b1,...,bn)∈{0,1}n
f b1...bn

∏
1⩽j⩽n

{
(−1)ajbj ibj

}
=

∑
(b1,...,bn)∈{0,1}n

f̂ b1...bn
∏

1⩽j⩽n

{
(−1)ajbj ibj

}
= 2n/2f̂a1...an .

Hence, f̂ satisfies ars.

For every Q ∈ O2, let Q̂ = Z−1QZ. Remember that we define F̂ = Z−1F . Then, we have

Q̂F̂ = (Z−1QZ)(Z−1F) = Z−1(QF) = Q̂F . (2.1)

Thus,

Holant( 6=2| F̂) ≡T Holant(=2| F) ≡T Holant(=2| QF) ≡T Holant(6=2| Q̂F̂).

Let Ô2 = {Q̂ = Z−1QZ | Q ∈ O2}. One can check that Ô2 = {[ α 0
0 ᾱ ] , [

0 α
ᾱ 0 ] | α ∈ C, |α| = 1}.

The following result is easy to check.

Lemma 2.37. Let F be a set of real-valued signatures. If F does not satisfy condition (T), then

for every Q ∈ O2, QF also does not satisfy condition (T). Moreover, F̂ 6⊆ P and F̂ 6⊆ A .

2.4 Sample Problems

We give some sample problems to illustrate the general theorems to be achieved.

Problem 1 : Counting independent sets #CSP(fIS) (Example 2.3).

Recall that fIS = (1, 1, 1, 0). By the dichotomy of #CSP (Theorem 2.12), this problem is #P-

complete since fIS /∈ P and fIS /∈ A . The problem #CSP(fIS) is equivalent to Holant(EQ, fIS).

Our Holant dichotomy (Theorem 1.1) confirms the #P-completeness.
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Problem 2 : The 2-spin system parameterized by β = 1, γ = −1, and λ = 1 (Example 2.4).

This problem can be expressed as #CSP(f, g) where f = (1, 1, 1,−1) and g = (1, 1). By the

dichotomy of #CSP (Theorem 2.12), it is tractable since f, g ∈ A . The problem #CSP(f, g) is

equivalent to Holant(EQ, f, g). Our Holant dichotomy (Theorem 1.1) confirms the tractability.

Problem 3 : Counting unweighted Eulerian orientations #EO(FEO) (Example 2.16).

Recall that FEO = {f2, f4, . . . f2n, . . .} where fα2n = 1 when wt(α) = n and fα2n = 0 otherwise.

Mihail and Winkler proved that this problem is #P-complete [58]. The problem #EO(FEO) is

equivalent to Holant(6=2| FEO). Notice that FEO satisfies ars, FEO 6⊆ P and FEO 6⊆ A . Our

#EO dichotomy (Theorem 4.1) and our Holant dichotomy (Theorem 1.1) both confirm the #P-

completeness.

When restricted to 4-regular graphs, the above problem is a special case of six-vertex models

with parameters a = x = b = y = c = z = 1 (Example 2.17). Huang and Lu proved that this

problem is #P-complete [45]. Our #EO dichotomy (Theorem 4.1) and our trichotomy for six-vertex

models (Theorem 9.21) both confirm the tractablity.

We use Pl-Holant(F) to denote the problem Holant(F) with respect to planar graphs. Com-

pared to the six-vertex model over general graphs, the planar version has new tractable problems

due to the FKT algorithm (see Chapter 9) under holographic transformations. This tractable class

can give highly nontrivial problems. For example, we consider the following problem.

Problem 4 : SmallPell Pl-Holant(f), where f has the signature matrix

M(f) =

[
317830805723707970 −283823304736008960i 283823304736008960i 317830805723707968

−283823304736008960i −253454564065438270 253454564065438272 −283823304736008960i
283823304736008960i 253454564065438272 −253454564065438270 283823304736008960i
317830805723707968 −283823304736008960i 283823304736008960i 317830805723707970

]
.

After the holographic transformation by Z−1, we have

Pl-Holant(f) ≡T Pl-Holant( 6=2 |f̂),

where

M(f̂) =

[
0 0 0 1
0 569465989630582080 32188120829134849 0
0 32188120829134849 1819380158564160 0
1 0 0 0

]
.
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Since (32188120829134849, 1819380158564160) is a solution of Pell’s equation x2 − 313y2 = 1, we

can show that f̂ is a matchgate signature by Matchgate Identities (Lemma 9.7). Our trichotomy for

six-vertex models (Theorem 9.21) shows that Pl-Holant(f) can be computed in polynomial time.

In addition to matchgates and matchgates-transformable signatures, Theorem 9.21 gives a new

class of tractable problems on planar graphs. They are provably not contained in any previously

known tractable classes. For example, we consider the following problem.

Problem 5 : Pl-Holant(6=2 |f), where f has the signature matrix M(f) =

[ 0 0 0 1

0 e
iπ
4 0 0

0 0 e
i7π
4 0

1 0 0 0

]
.

By Theorem 9.21 (condition 4 (ii)), Pl-Holant(6=2 |f) can be computed in polynomial time.

Note that f satisfies ars. Our #EO dichotomy and Holant dichotomy show that Holant(6=2 |f) is

#P-hard without the planar restriction. It can be shown that f is neither a matchgate signature

nor a matchgate transformable signature. Therefore, the tractability is not derivable from the FKT

algorithm or a holographic transformation to it.
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Chapter 3

Polynomial-Time Reductions

In this chapter, we introduce three kinds of polynomial-time Turing reductions that will be

used in this dissertation. They are signature factorization, gadget construction and polynomial

interpolation.

3.1 Signature Factorization

Recall that we define all signatures have positive arity and they are complex-valued without

other specification. A nonzero signature g divides f , denoted by g | f , if there is a signature h such

that f = g⊗h (with possibly a permutation of variables) or there is a constant λ such that f = λ ·g.

In the latter case, if λ 6= 0, then we also have f | g since g = 1
λ · f . For nonzero signatures, if both

g | f and f | g, then they are nonzero constant multiples of each other, and we say g is an associate

of f , denoted by g ∼ f . In terms of this division relation, we can define irreducible signatures

and prime signatures. We will show that they are equivalent, and this gives us the unique prime

factorization of signatures ∗.

Definition 3.1 (Irreducible signatures). A nonzero signature f is irreducible if g | f implies that

g ∼ f . We say a signature is reducible if it is not irreducible or it is a zero signature. By definition,

if a signature f of arity greater than 1 is reducible, then there is a factorization f = g⊗h, for some

signatures g and h (of positive arities).

Definition 3.2 (Prime signatures). A nonzero signature f is a prime signature, if for any nonzero

signatures g and h, f | g ⊗ h implies that f | g or f | h.

Lemma 3.3. The notions of irreducible signatures and prime signatures are equivalent.
∗The factorization of signatures is synonymous with the decomposition of multipartite quantum states in quantum

information theory. There, the uniqueness of decomposition is usually assumed as a common knowledge. To our best
knowledge, we are not aware of any formal proof.
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证明. Suppose f is a prime signature. If f is not irreducible, then there is a nonzero signature g

such that g | f but not g ∼ f . So there is a signature h (of arity ⩾ 1) such that f = g ⊗ h, up to a

permutation of variables (h 6≡ 0 due to f 6≡ 0). Then f | g ⊗ h and by being a prime, either f | g

or f | h. This is impossible because both g and h have lower arity than f .

Now, suppose f is irreducible and let f | g⊗ h, where g and h are nonzero signatures (of arity

⩾ 1). If f ∼ g⊗h, then f = (λg)⊗h for some constant λ 6= 0. This contradicts f being irreducible.

Thus, there is a nonzero signature e (of arity ⩾ 1) such that, up to a permutation of variables,

e⊗ f = g ⊗ h. (3.1)

Consider the scope of f , i.e., its set of variables. Suppose it intersects with the scopes of both g

and h. Since e 6≡ 0, we can pick an input β of e such that eβ = λ1 6= 0. By setting the variables in

the scope of e to β on both sides of (3.1), we have

λ1 · f = g′ ⊗ h′,

where g′ and h′ denote the resulting signatures from g and h respectively, both of which have a

non-empty scope, i.e., having arity ⩾ 1. This is a contradiction to f being irreducible.

Hence the scope of f is a subset of the scope of either g or h. Suppose it is g, then the scope

of h is a subset of the scope of e. Since h 6≡ 0, we can pick an input α of h such that hα = λ2 6= 0.

By setting the variables in the scope of h to α on both sides of (3.1), we have

e′ ⊗ f = λ2 · g,

where e′ denotes the resulting signature by setting α in e. Thus, we have f | g. Similarly, if the

scope of f is a subset of the scope of h, then we have f | h.

A prime factorization of a signature f is f = g1⊗. . .⊗gk up to a permutation of variables, where

each gi is a prime signature (irreducible). Start with any nonzero signature, if we keep factoring

reducible signatures and induct on arity, any nonzero f has a factorization into irreducible (prime)

signatures. The following important lemma says that the prime factorization of a nonzero signature
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is unique up to the order of the tensor factors and constant scaling factors. It can be proved using

Lemma 3.3 and a standard argument, which we omit.

Lemma 3.4 (Unique prime factorization). Every nonzero signature f has a prime factorization.

If f has prime factorizations f = g1 ⊗ . . .⊗ gk and f = h1 ⊗ . . .⊗ hℓ, both up to a permutation of

variables, then k = ℓ and after reordering the factors we have gi ∼ hi for all i.

The following lemma shows that a real reducible signature has a real factorization, and equiv-

alently a reducible signature satisfying ars has a factorization in which all factors satisfy ars.

Lemma 3.5. 1. Let f be a nonzero real-valued reducible signature, then there exists a factor-

ization f = g ⊗ h such that g and h are both real-valued signatures.

2. Equivalently, let f̂ be a nonzero reducible signature satisfying ars, then there exists a factor-

ization f̂ = ĝ ⊗ ĥ such that ĝ and ĥ both satisfy ars.

证明. We only prove the second part of this lemma. Then, the first part holds by Lemma 2.36. For

brevity of notations, we rewrite f̂ , ĝ and ĥ as f, g and h. Suppose f = g ⊗ h. Since f 6≡ 0, there is

α ◦ β such that fα◦β = gα · hβ 6= 0. Since f satisfy ars, we have

gα · hβ = fα◦β = f ᾱ◦β̄ = gᾱ · hβ̄ 6= 0,

and also

gα · hβ̄ = fα◦β̄ = f ᾱ◦β = gᾱ · hβ 6= 0.

Multiply these two equalities, and cancel a nonzero common factor, we have

|gα|2 = |gᾱ|2.

Since gα and gᾱ have the same norm, we can pick a scalar λ = 1/(gαgᾱ)1/2 such that λgα = λgᾱ.

We have f = (λg) ⊗ ( 1λh) and we will show λg and 1
λh satisfy the ars condition. We rename λg

and 1
λh by g and h, and now we can assume there is an α such that gα = gᾱ 6= 0. For any input β

of h, we have

gα · hβ = fα◦β = f ᾱ◦β̄ = gᾱ · hβ̄ = gα · hβ̄,
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and hence, hβ = hβ̄. Hence h 6≡ 0 satisfies the ars condition. We can pick a particular β such

that hβ = hβ̄ 6= 0. Then, for any input α′ of g, since f satisfies the ars condition, we have

gα′ · hβ = gα
′ · hβ = gα

′ · hβ, and hence gα′ = gα
′ . That is, g also satisfies ars.

In the following, when we say that a real-valued reducible signature f has a factorization g⊗h,

we always assume that g and h are real-valued. Equivalently, when we say a signature f̂ satisfying

ars has a factorization ĝ ⊗ ĥ, we always assume that ĝ and ĥ satisfy ars.

If a vertex v in a signature grid is labeled by a reducible signature f = g ⊗ h, we can replace

the vertex v by two vertices v1 and v2 and label v1 with g and v2 with h, respectively. The incident

edges of v become incident edges of v1 and v2 respectively according to the partition of variables of

f in the tensor product of g and h. This does not change the Holant value. On the other hand, Lin

and Wang proved that, from a real-valued reducible signature f = g ⊗ h 6≡ 0 we can freely replace

f by g and h while preserving the complexity of a Holant problem.

Lemma 3.6 ([57]). If a nonzero real-valued signature f has a real factorization g ⊗ h, then

Holant(g, h,F) ≡T Holant(f,F) and Holant( 6=2| ĝ, ĥ, F̂ ) ≡T Holant(6=2| f̂ , F̂)

for any signature set F (F̂). We say g (ĝ) and h (ĥ) are realizable from f (f̂) by factorization.

For a signature set F , we use F⊗k (k ⩾ 1) to denote the set {λ
⊗k

i=1 fi | λ ∈ R\{0}, fi ∈ F}.

Here, λ denotes a normalization scalar. In this paper, we only dissertation the normalization by

nonzero real constants. Note that F⊗1 contains all signatures obtained from F by normalization.

We use F⊗ to denote
⋃∞
k=1F⊗k.

3.2 Gadget Construction

One basic tool used throughout the dissertation is gadget construction. An F-gate is similar

to a signature grid (G, π) for Holant(F) except that G = (V,E,D) is a graph with internal edges

E and dangling edges D. The dangling edges D define input variables for the F-gate. We denote

the regular edges in E by 1, 2, . . . ,m and the dangling edges in D by m+ 1, . . . ,m+ n. Then the
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F-gate defines a function f

f(y1, . . . , yn) =
∑

σ:E→{0,1}

∏
v∈V

fv(σ̂ |E(v))

where (y1, . . . , yn) ∈ {0, 1}n is an assignment on the dangling edges, σ̂ is the extension of σ on E by

the assignment (y1, . . . , ym), and fv is the signature assigned at each vertex v ∈ V . This function

f is called the signature of the F-gate. There may be no internal edges in an F-gate at all. In

this case, f is simply a tensor product of these signatures fv, i.e., f =
⊗

v∈V fv (with possibly a

permutation of variables). We say a signature f is realizable from a signature set F by gadget

construction if f is the signature of an F-gate. If f is realizable from a set F , then we can freely

add f into F while preserving the complexity (Lemma 1.3 in [14]).

Lemma 3.7 ([14]). If f is realizable from a set F , then Holant(f,F) ≡T Holant(F).

Recall that we use =2 to denote the binary Equality signature with truth table (1, 0, 0, 1),

and 6=2 to the binary Disequality signature with truth table (0, 1, 1, 0). If we view Holant(=2| F)

as the edge-vertex incidence graph form of Holant(F), then it is equivalent to label every edge

by =2; similarly in the setting of Holant( 6=2| F̂), every edge is labeled by 6=2. The property of

real-value and ARS are closed under gadget constructions using =2 and 6=2 respectively.

Lemma 3.8. If f is realizable from a real-valued signature set F (in the setting of Holant(=2| F)),

then f is also real-valued. Equivalently, if f̂ is realizable from a signature set F̂ satisfying ars (in

the setting of Holant( 6=2| F̂)), then f̂ also satisfies ars.

We may also write =2 as =+
2 and 6=2 as 6=+

2 . We use =−
2 to denote the binary signature

(1, 0, 0,−1) and 6=−
2 to denote the binary signature (0, 1,−1, 0). Let B = {=+

2 ,=
−
2 , 6=

+
2 , 6=

−
2 }. We

call them Bell signatures∗. Let B̂ = Z−1B. One can check that

B̂ =
{
=̂+

2 , =̂
−
2 ,
̂6=+
2 ,
̂6=−
2

}
= {6=2,=2, (−i)· =−

2 , i· 6=
−
2 }.

We introduce the following four gadgets that will commonly used in this dissertation.
∗These signatures correspond to Bell states |Φ+⟩ = |00⟩ + |11⟩, |Φ−⟩ = |00⟩ − |11⟩, |Ψ+⟩ = |01⟩ + |10⟩ and

|Ψ−⟩ = |01⟩ − |10⟩ in quantum information science [9].
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3.2.1 Merging Gadget

A basic gadget construction is merging. In the setting of Holant(=2| F), given a signature

f ∈ F of arity n, we can connect two variables xi and xj of f using =2, and this operation gives a

signature of arity n− 2. We use ∂ijf or ∂+ijf to denote this signature and ∂ijf = f00ij + f11ij , where

fabij denotes the signature obtained by setting (xi, xj) = (a, b) ∈ {0, 1}2. While in the setting of

Holant(6=2| F̂), the above merging gadget is equivalent to connecting two variables xi and xj of f̂

using 6=2. We denote the resulting signature by ∂̂ij f̂ or ∂̂+ij f̂ , and we have ∂̂ijf = ∂̂ij f̂ = f̂01ij + f̂10ij .

If 6=2 is available (i.e., it either belongs to or can be realized from F) in Holant(=2| F), we can also

connect two variables xi and xj of f using 6=2. We denote the resulting signature by ∂+̂ijf . The

merging gadget ∂̂+ij is the same as ∂+̂ij , we use different notations to distinguish whether this gadget

is used in the setting of Holant(=2| F) or Holant( 6=| F̂).

Also, if =−
2 and 6=−

2 are available in Holant(=2| F), then we can construct ∂−ijf and ∂−̂ijf by

connecting xi and xj using =−
2 and 6=−

2 respectively. We also call ∂−ij and ∂−̂ij merging gadgets.

Without other specification, by default a merging gadget refers to ∂ij in the setting of Holant(=2|

F). Similarly by default a merging gadget refers to ∂̂ij in the setting of Holant(6=2| F̂).

The following lemma gives a relation between a signature f and signatures ∂̂ijf realized by

merging using 6=2.

Lemma 3.9. Let f be a signature of arity n ⩾ 3. If fα 6= 0 for some α ∈ Zn2 with wt(α) 6= 0, n,

then there exists a pair of indices {i, j} and some β ∈ Zn−2
2 with wt(β) = wt(α) − 1 such that

(∂̂ijf)
β 6= 0. In particular, if for all pairs of indices {i, j}, ∂̂ijf ≡ 0, then fα = 0 for all α with

wt(α) 6= 0 and n; furthermore if f is an EO signature, then f ≡ 0.

证明. Suppose there exists some α with wt(α) 6= 0, n such that fα 6= 0. Clearly, α is not all-0

nor all-1. Since f has arity n ⩾ 3, α has length at least 3. Thus, we can find three bits in some

order such that on these three bits, α takes value 001 or 110. Without loss of generality, we assume

they are the first three bits of α and we denote α by 001δ or 110δ (δ maybe empty). We first

consider the case that α = 001δ. Consider another two strings β = 010δ and γ = 100δ. Note

that if we merge variables x1 and x2 of f using 6=2, we get ∂12f , its entry (∂12f)
0δ on the input 0δ

(for bit positions 3 to n) is the sum of f010δ and f100δ. Clearly, wt(0δ) = wt(δ) = wt(α) − 1. If
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(∂12f)
0δ = f010δ + f100δ 6= 0, then we are done. Thus, we may assume that

(∂12f)
0δ = f010δ + f100δ = 0.

Similarly, by merging variables x1 and x3 using 6=2, we may assume that

(∂13f)
0δ = f001δ + f100δ = 0,

and by merging variables x2 and x3 using 6=2, we may assume that

(∂23f)
0δ = f001δ + f010δ = 0.

These three equations have only a trivial solution, f001δ = f010δ = f100δ = 0. A contradiction with

fα = f001δ 6= 0. Thus, among (∂12f)
0δ, (∂13f)0δ and (∂23f)

0δ, at least on is nonzero.

If α = 110δ, the proof is symmetric.

Merging gadget constructions on disjoint pairs of variables commute. Consider the signature

∂ijf realized by merging variables xi and xj of f using =2. We may further merge variables xu and

xv of ∂ijf for any {u, v} disjoint with {i, j}, and we use ∂(uv)(ij)f = ∂uv(∂ijf) to denote the realized

signature. Note that these two merging operations commute, ∂(uv)(ij)f = ∂(ij)(uv)f . (Equivalently,

for the merging gadget construction using 6=2 on f̂ , we have ∂̂(uv)(ij)f̂ = ∂̂(ij)(uv)f̂ .) We illustrate

the commutativity in the following commutative diagram.

f ∂(ij)f

∂(uv)f ∂(uv)(ij)f = ∂(ij)(uv)f

∂(uv)

∂(ij)

∂(uv)

∂(ij)

Remark 3.10. We adopt the notation ∂ for the similarity of the merging operation with taking

partial derivatives. They both reduce the number of variables, they both are linear, and under mild

smoothness conditions we know ∂2f
∂x∂y = ∂2f

∂y∂x .
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3.2.2 Extending Gadget

Another gadget construction that connects a nonzero binary signature b with a signature f is

called extending. An extending gadget connects one variable of f with one variable of b using =2

in the setting of Holant(=2| F), and connects one variable of f̂ with one variable of b̂ using 6=2 in

the setting of Holant( 6=2| F̂). By extending an irreducible signature using =2 or 6=2, we still get an

irreducible signature.

A particular extending gadget is to extend f with binary signatures in B⊗1 using =2 in the

setting of Holant(F). We use {f}B=2
to denote the set of signatures realizable by extending some

variables of f with binary signatures in B⊗1 using =2 (recall that B⊗1 allows all nonzero real

normalization scalars). Equivalently, this gadget is to extend f̂ with binary signatures in B̂ using

6=2 in the setting of Holant(6=2| F̂). We use {f̂}B̸̂=2
to denote the set of signatures realizable by

extending some variables of f̂ with binary signatures in B̂⊗1 using 6=2. If ĝ ∈ {f̂}B̸̂=2
, then we can

say that the extending gadget by B̂ defines a relation between ĝ and f̂ . Clearly, by extending

variables of f̂ with 6=2∈ B̂ (using 6=2), we still get f̂ . Thus, f̂ ∈ {f̂}B̸̂=2
. So this relation is reflexive.

The following lemma shows that this relation is symmetric and transitive, thus it is an equivalence

relation.

Lemma 3.11. 1. ĝ ∈ {f̂}B̸̂=2
iff f̂ ∈ {ĝ}B̸̂=2

. 2. If ĥ ∈ {ĝ}B̸̂=2
and ĝ ∈ {f̂}B̸̂=2

, then ĥ ∈ {f̂}B̸̂=2
.

证明. Note that for any b̂ ∈ B̂⊗1, if we connect any variable of b̂ with another arbitrary variable of

a copy of the same b̂ using 6=2, then we get 6=2 after normalization. Also, by extending a variable

of f̂ with 6=2 (using 6=2), we still get f̂ . Suppose that ĝ ∈ {f̂}B̸̂=2
, and it is realized by extending

certain variables xi of f̂ with certain bi ∈ B̂. Then, by extending each of these variables xi of ĝ with

exactly the same bi ∈ B̂, we will get f̂ after normalization. Thus, f̂ ∈ {ĝ}B̸̂=2
. The other direction

is proved by exchanging f̂ and ĝ. Thus, ĝ ∈ {f̂}B̸̂=2
iff f̂ ∈ {ĝ}B̸̂=2

.

Also, note that for any b̂1, b̂2 ∈ B̂⊗1, by connecting an arbitrary variable of b̂1 with an arbitrary

variable of b̂2 using 6=2, we still get a signature in B̂⊗1. Suppose that ĥ is realized by extending

some variables xi of ĝ with some b1i ∈ B̂⊗1. We may assume every variable xi of ĝ has been so

connected as 6=2∈ B̂⊗1. Similarly we can assume ĝ is realized by extending every variable xi of f̂

with some b2i ∈ B̂⊗1. Let bi be the signature realized by connecting b1i and b2i (using 6=2). Then, ĥ

can be realized by extending each variable xi of f̂ with bi ∈ B̂⊗1. Thus, ĥ ∈ {f̂}B̸̂=2
.
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Remark 3.12. As a corollary, if ĝ ∈ {f̂}B̸̂=2
, then {ĝ}B̸̂=2

= {f̂}B̸̂=2
.

3.2.3 Mating Gadget

We first give the matrix representation of signatures. A signature f of arity n ⩾ 2 can be

expressed as a 2k×2n−k matrixMSk(f) where Sk is a set of k many variables among all n variables

of f . The matrix MSk(f) lists all 2n many entries of f with the assignments of variables in Sk
∗

listed in lexicographic order (from 0⃗k to 1⃗k) as row index and the assignments of the other n − k

many variables in lexicographic order as column index. In particular, f can be expressed as a

2 × 2n−1 matrix Mi(f) which lists the 2n entries of f with the assignments of variable xi as row

index (from xi = 0 to xi = 1) and the assignments of the other n − 1 variables in lexicographic

order as column index. Then,

Mi(f) =

f0,00...0 f0,00...1 . . . f0,11...1

f1,00...0 f1,00...1 . . . f1,11...1

 =

f0i
f1i

 ,
where fai denotes the row vector indexed by xi = a in Mi(f). Similarly, f can also be expressed as

a 4× 2n−2 matrix with the assignments of two variables xi and xj as row index. Then,

Mij(f) =


f00,00...0 f00,00...1 . . . f00,11...1

f01,00...0 f01,00...1 . . . f01,11...1

f10,00...0 f10,00...1 . . . f10,11...1

f11,00...0 f11,00...1 . . . f11,11...1

 =


f00ij
f01ij
f10ij
f11ij

 ,

where fabij denotes the row vector indexed by (xi, xj) = (a, b) in Mij(f). For =2, it has the 2-by-2

signature matrix M(=2) = I2 = [ 1 0
0 1 ]. For 6=2, M( 6=2) = N2 = [ 0 1

1 0 ] .

We can also represent Tf as the matrix MSk(Tf) with the assignments of variables in Sk

as row index and the assignments of the other n − k variables as column index. Then, we have

MSk(Tf) = T⊗kMSk(f)(T
T)⊗n−k. Similarly, MSk(fT

−1) = (T−1T
)⊗kMSk(f)(T

−1)⊗n−k.

Now, we introduce the mating gadget. Given a real-valued signature f of arity n ⩾ 2, we
∗Given a set of variables, without other specification, we always list them in the cardinal order i.e., from variables

with the smallest index to the largest index.
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connect two copies of f in the following manner: Fix a set S of n − m variables among all n

variables of f . For each xk ∈ S, connect xk of one copy of f with xk of the other copy using =2.

The variables that are not in S are called dangling variables. In this paper, we only consider the

case that m = 1 or 2. For m = 1, there is one dangling variable xi. Then, the mating construction

realizes a signature of arity 2, denoted by mif . It can be represented by matrix multiplication. We

have

M(mif) =Mi(f)I
⊗(n−1)
2 MT

i (f) =

f0i
f1i

[f0i T f1i
T
]
=

 |f0i |2 〈f0i , f1i 〉

〈f0i , f1i 〉 |f1i |2,

 (3.2)

where 〈·, ·〉 denotes the inner product and | · | denotes the norm defined by this inner product. (We

will use the same notation 〈·, ·〉 to denote the complex inner product (with conjugation) below.

The notation is consistent.) Note that |〈f0i , f1i 〉|2 ⩽ |f0i |2|f1i |2 by the Cauchy-Schwarz inequality.

Similarly, in the setting of Holant(6=2| F̂), the above mating operation is equivalent to connecting

variables in S using 6=2. We denote the resulting signature by m̂if̂ , which is the same as m̂if , and

we have

M(m̂if̂) =Mi(f̂)N
⊗n−1
2 MT

i (f̂) =

̂f0i
f̂1i

0 1

1 0

⊗(n−1) [
f̂0i

T
f̂1i

T]
.

Note that (in general complex-valued) f̂ satisfies the ars since f is real, we have

N
⊗(n−1)
2 f̂0i

T
= (f̂0,11...1, f̂0,11...0, . . . , f̂0,00...0)T = (f̂1,00...0, f̂1,00...1, . . . , f̂1,11...1) = f̂1i

T
.

Thus, we have

M(m̂if̂) =

̂f0i
f̂1i

0 1

1 0

⊗(n−1) [
f̂0i

T
f̂1i

T]
=

̂f0i
f̂1i

 [̂f1i T
f̂0i

T]
=

〈̂f0i , f̂1i 〉 |̂f0i |2

|̂f1i |2 〈̂f1i , f̂0i 〉

 . (3.3)

If there are two dangling variables xi and xj , we use mijf and m̂ij f̂ to denote the signatures realized

by mating f using =2 and mating f̂ using 6=2 respectively.

With respect to mating gadgets, we introduce the following orthogonality conditions.

Definition 3.13 (First order orthogonality). Let f be a complex-valued signature of arity n ⩾ 2.

It satisfies the first order orthogonality (1st-Orth) if there exists some µ 6= 0 such that for all
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indices i ∈ [n], the entries of f satisfy the following equations

|f0i |2 = |f1i |2 = µ, and 〈f0i , f1i 〉 = 0.

Remark 3.14. When f is a real-valued signature, the inner product is just the ordinary dot product

which can be represented by mating using =2. Thus, f satisfies 1st-Orth iff there is some real

µ 6= 0 such that for all indices i, M(mif) = µI2. On the other hand, when f̂ is a signature with

ars, by (3.3), the complex inner product can be represented by mating using 6=2. Thus, f̂ satisfies

1st-Orth iff there is some real µ 6= 0 such that for all i, M(m̂if̂) = µN2. Moreover, f satisfies

1st-Orth iff f̂ satisfies it.

Lemma 3.15. Let f be a real-valued signature of arity n. If for all indices i ∈ [n], M(mif) = µiI2

for some real µi 6= 0, then f satisfies 1st-Orth (i.e., all µi have the same value). Equivalently, if

for all indices i ∈ [n], M(m̂if̂) = µiN2 for some real µi 6= 0, then f̂ satisfies 1st-Orth.

证明. We prove this lemma in the setting of Holant(=2| F). For every M(mif) = µi [ 1 0
0 1 ], if we

further connect the two dangling variables xi of mif , which totally connects the corresponding pairs

of variables in two copies of f , we get a value 2µi. This value does not depend on the particular

index i. Thus, all µi have the same value for i ∈ [n]. We denote this value by µ.

Definition 3.16 (Binary orthogonal signature). A real-valued binary signature f(x1, x2) is orthog-

onal if M1(f)M
T
1 (f) = λI2 for some real λ > 0.

Remark 3.17. Since M2(f) = MT
1 (f), M1(f)M

T
1 (f) = λI2 iff M2(f)M

T
2 (f) = λI2. Thus, a

real-valued binary signature f is orthogonal iff f satisfies 1st-Orth.

Let En = {α ∈ Zn2 | wt(α) is even}, and On = {α ∈ Zn2 | wt(α) is odd}. A signature f of arity

n has even or odd parity if its support S (f) ⊆ En or S (f) ⊆ On respectively. In both cases, we

say that f has parity.

Lemma 3.18. A binary signature f is orthogonal or a zero signature iff f̂ has parity and ars.

证明. Consider M1(f) and M1(f̂) = M1(Z
−1f) = Z−1M1(f)(Z

−1)T. Then, M1(f) =
[
a b
−b a

]
iff

M1(f̂) =
[

0 a+bi
a−bi 0

]
, and M1(f) =

[
a b
b −a

]
iff M1(f̂) =

[
a−bi 0
0 a+bi

]
. Also, f ≡ 0 iff f̂ ≡ 0 which also

has parity.
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Let O denote the set of all binary orthogonal signatures and the binary zero signature. Then,

Ô = Z−1O is the set of all binary signatures with ars and parity (including the binary zero

signature). Note that B ⊆ O and B̂ ⊆ Ô. For signatures in Ô, we have the following lemma.

Lemma 3.19. Let b̂1(x1, x2), b̂2(y1, y2) ∈ Ô. If by connecting the variable x1 of b̂1 and the variable

y1 of b̂2 using 6=2, we get λ· 6=2 (x2, y2) for some λ ∈ R\{0}, then b̂1 ∼ b̂2. Moreover, by connecting

the variable x2 of b̂1 and the variable y2 of b̂2, we will get λ· 6=2 (x1, y1).

证明. We prove this lemma in the setting of Holant(F) after the transformation Z back. Now,

b1 = Zb̂1 ∈ O and b2 = Zb̂2 ∈ O.

Consider matrices M1(b1) =MT
2 (b1) and M1(b2) =MT

2 (b2). Since b1, b2 ∈ O, both M1(b1) and

M1(b2) are real multiples of real orthogonal matrices, of which there are two types, either rotations

or reflections. For such matrices X,Y , to get XTY = λI2 for some λ ∈ R\{0}, X and Y must

be either both reflections, or both rotations of the same angle, up to nonzero real multiples. First

suppose M1(b1) =
[
a b
b −a

]
, reflection. Then by connecting x1 of b1 and y1 of b2 using =2 we get

λ· =2 (x2, y2), i.e., MT
1 (b1)M1(b2) = λI2. This implies that b2 is the same reflection up to a nonzero

scalar, i.e., b2 ∼ b1. Similarly, for a rotation M1(b1) =
[
a b
−b a

]
, MT

1 (b1)M1(b2) = λI2 implies that b2
is also a rotation of the same angle as b1 up to a nonzero scalar, thus b2 ∼ b1. In either case, by

connecting the variable x2 of b1 and the variable y2 of b2, we will get

MT
2 (b1)M2(b2) =M1(b1)M

T
1 (b2) = λI2.

This means that we get the signature λ· =2 (x1, y1). The statement of the lemma follows from this

after a Z−1 transformation.

Definition 3.20 (Second order orthogonality). Let f be a complex-valued signature of arity n ⩾ 4.

It satisfies the second order orthogonality (2nd-Orth) if there exists some λ 6= 0 such that for all

pairs of indices {i, j} ⊆ [n], the entries of f satisfy

|f00ij |2 = |f01ij |2 = |f10ij |2 = |f11ij |2 = λ, and 〈fabij , fcdij 〉 = 0 for all (a, b) 6= (c, d).

Remark 3.21. Similar to the remark of first order orthogonality, f satisfies 2nd-Orth iff there

is some λ 6= 0 such that for all (i, j), M(mijf) = λI4 = λI⊗2
2 , and f̂ satisfies 2nd-Orth iff there
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is some λ 6= 0 such that for all (i, j), M(m̂ij f̂) = λN4 = λN⊗2
2 . Moreover, f satisfies 2nd-Orth

iff f̂ satisfies it. Clearly, 2nd-Orth implies 1st-Orth.

Lemma 3.22. Let f be a real-valued signature of arity n. If for all indices {i, j} ⊆ [n], M(mijf) =

λijI4 for some real λij 6= 0, then f satisfies 2rd-Orth (i.e., all λij have the same value). Equiv-

alently, if for all indices {i, j} ⊆ [n], M(m̂ij f̂) = λijN4 for some real λij 6= 0, then f̂ satisfies

2rd-Orth.

证明. We prove this lemma in the setting of Holant(=2| F). For every M(mijf) = λijI4, if we

connect further the two respective pairs of variables of mijf , which totally connects two copies of

f , we get a value 4λij . This value clearly does not depend on the particular indices {i, j}. We

denote the value λij by λ.

3.2.4 Pinning Gadget

If the unary signature ∆0 = (1, 0) is available, there is another basic gadget construction called

pining. Given a signature f of arity n and the unary signature ∆0, we can connect the variable xi
of f with ∆0 = (1, 0), and we get a signature of arity n− 1, denoted by f0i . Clearly, f0i is realized

by setting the variable xi of f to 0. If by pinning any variable of f , we can only realize the zero

signature, then f itself is also “almost” a zero signature.

Lemma 3.23. Let f be a signature of arity n ⩾ 2. If for any index i, by pinning the variable xi of

f to 0, we have f0i ≡ 0, then fα = 0 for any wt(α) 6= n. If, furthermore, there is a pair of indices

{j, k} such that ∂jkf ≡ 0, then f ≡ 0.

证明. For any wt(α) 6= n, there is an index i such that αi = 0. By pinning xi to 0, we get the

signature f0i . We know fα is an entry in f0i , and then fα = 0 since f0i ≡ 0.

Suppose there is a pair of indices {j, k} such that ∂jkf ≡ 0. Let β denote the string of n

bits where βj = βk = 0 and βℓ = 1 elsewhere, and γ denote the string of n bits 1s. Consider

the signature ∂jkf . We know fβ + fγ is an entry in ∂jkf (when ∂jkf is a constant, we have

fβ + fγ = ∂jkf). We know fβ + fγ = 0 since ∂jkf ≡ 0. Clearly, wt(β) 6= n and we have fβ = 0.

Thus, we have fγ = 0. Thus, we have f ≡ 0.
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Pinning gadget constructions on different variables also commute. Suppose i 6= j. Then, f00ij =

(f0i )
0
j = (f0j )

0
i = f00ji . Also, the pinning gadget construction and the merging gadget construction

on distinct variables commute. Suppose i, j, k are distinct. Then, (∂jkf)0i = ∂jk(f
0
i ) 6≡ 0. The

commutativity of merging and pinning gadgets (as well as other gadgets) is a key property in our

proof.

We use the following Table 1 to compare notations in Holant(=2| F) and Holant( 6=2| F̂). In

the left column, we list notations in Holant(=2| F) where F is a set of real-valued signatures, and

in the right column, we list corresponding notations in Holant( 6=2| F̂) where F̂ = Z−1F is the set

of complex-valued signatures with ars. Note that although EO also satisfies ars, we will only use

it in Holant(=2| F). Similarly, we will only use DEQ in Holant( 6=2| F̂) although it is real-valued.

Holant(=2| F) where F is real-valued Holant( 6=2| F̂) where F̂ satisfies ars

EQ = {=1,=2, . . . ,=n, . . .} N/A

N/A DEQ = {6=2, 6=4, . . . , 6=2n, . . .}, D = {6=2}

O = {binary orthogonal and zero signatures} Ô = {binary signatures with ars and parity}

B = {=2,=
−
2 , 6=2, 6=−

2 } B̂ = {6=2,=2, (−i)· =−
2 , i· 6=

−
2 }

a holographic transformation QF by Q ∈ O2 a holographic transformation Q̂F̂ by Q̂ ∈ Ô2

a merging gadget ∂ijf = f00ij + f11ij a merging gadget ∂̂ij f̂ = f̂01ij + f̂10ij

extending gadgets {f}B=2
with B extending gadgets {f̂}B̸̂=2

with B̂

a mating gadget mijf =Mij(f)I
⊗n−1
2 MT

ij(f) a mating gadget m̂ij f̂ =Mij(f̂)N
⊗n−1
2 MT

ij(f̂)

表 1: Comparisons of notations in Holant(=2| F) and Holant(6=2| F̂)

Recall that F⊗ denotes the set {λ
⊗k

i=1 fi | λ ∈ R\{0}, k ⩾ 1, fi ∈ F} for any signature set

F . We remark that both O⊗ and Ô⊗ contain all zero signatures of even arity since the binary zero

signature is in O and Ô. However, B⊗ and B̂⊗ do not contain any zero signatures.

3.3 Polynomial Interpolation

Polynomial interpolation is a powerful technique to prove #P-hardness for counting problems.

We give the following lemmas. For more on polynomial interpolation, please see Section 9.2.3.
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Lemma 3.24. Let g0 and g be two nonzero binary signatures with M(g0) = P−1 [ 0 0
0 1 ]P and

M(g) = P−1
[
λ1 0
0 λ2

]
P for some invertible matrix P . If λ1λ2 6= 0 and |λ1λ2 | 6= 1, then

Holant(g0,F) ⩽T Holant(g,F)

for any signature set F .

Lemma 3.25. Let g be a nonzero binary signature with M(g) = P−1
[
λ1 0
0 λ2

]
P for some invertible

matrix P , and h be a nonzero unary signature. If λ1λ2 6= 0, |λ1λ2 | 6= 1, and h (as a column vector)

is not an eigenvector of M(g), then

Holant(h′, g,F) ⩽T Holant(h, g,F)

for any unary signature h′ and any signature set F .
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Chapter 4

Dichotomy for #EO Problems with

Arrow Reversal Symmetry

In this chapter, we prove a complexity dichotomy for #EO problems with arrow reversal

symmetry (ars). Recall that ars requires f(α) = f(α) for all α, where f(α) denotes the complex

conjugation of f(α), and α denotes the bit-wise complement of α.

Theorem 4.1. Let F be a set of EO signatures satisfying ars. Then, #EO(F) is #P-hard unless

F ⊆ A or F ⊆ P, in which cases it is tractable.

In this chapter, without other specification we use f to denote a complex-valued EO signature

(whose support is on half-weighted inputs) satisfying ars, and F to denote a set of such signatures.

4.1 Factorization and Gadget Construction of EO Signatures

In Chapter 3, we introduced certain polynomial-time reductions for general Holant problems.

To apply them to #EO problems we need to take care of one subtlety, namely any signature

signature realizable from EO signatures (by factorization or gadget construction) is still an EO

signature, and hence is suitable for #EO problems.

Lemma 4.2. Let f be a nonzero reducible EO signature satisfying ars. Then, for any factorization

f = g ⊗ h, g and h are both EO signatures.

证明. Since f 6≡ 0, we know g 6≡ 0 and h 6≡ 0 for any factorization f = g ⊗ h. For a contradiction,

suppose there is a factorization f = g ⊗ h such that g is not an EO signature. Then, there is an

input α of g such that gα 6= 0, and wt(α) 6= wt(ᾱ). (This is true no matter whether g has even or

odd arity.) Since h 6≡ 0, there is an input β of h such that hβ 6= 0. Note that α ◦ β is an input of f
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and we have

fα◦β = gα · hβ 6= 0.

Moreover, since f satisfies ars, we have

0 6= f ᾱ◦β̄ = gᾱ · hβ̄.

Then, we know gᾱ 6= 0, and hence

f ᾱ◦β = gᾱ · hβ 6= 0.

However, notice that wt(α ◦ β) = wt(α) + wt(β) 6= wt(ᾱ) + wt(β) = wt(ᾱ ◦ β). This implies that

S (f) 6⊆ Harity(f), contradicting f being an EO signature. Thus, for any f = g ⊗ h, f and g are

both EO signatures.

Remark 4.3. This lemma does not hold without assuming ars. For example, f = (0, 0, 1, 0) =

(0, 1)⊗ (1, 0), where (0, 0, 1, 0) is an EO signature but (0, 1) and (1, 0) are not. Also, by Lemma 3.5,

if an EO signature satisfying ars is reducible, then it can be factorized as a tensor product of EO

signatures satisfying ars.

In the following, when we say that a nonzero EO signature f satisfying ars has a factorization

g ⊗ h, we always assume g and h are EO signatures satisfying ars. By Lemma 3.6, we have the

following reduction.

Lemma 4.4. If a nonzero EO signature f satisfying ars has a factorization g ⊗ h, then

#EO({g, h} ∪ F) ≡T #EO({f} ∪ F)

for any EO signature set F . In this case, we also say g and h are realizable from f .

Then, we consider gadget constructions of EO signatures. Note that in the framework of #EO

problems, edges are labelled by 6=2.

Lemma 4.5. Any signature realizable from a set F of EO signatures satisfying ars is also an EO

signature satisfying ars.
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证明. By definition ∂̂ijf = f01ij + f10ij . Hence for any EO signature satisfying ars, after merging

any two variables, the realized signature is still an EO signature satisfying ars. Then, suppose f is

realized by a graph G with dangling edges and n vertices labeled by signatures f1, f2, . . . , fn ∈ F .

We first cut all internal edges in G and get the signature f ′ = f1 ⊗ f2 ⊗ · · · ⊗ fn. Clearly f ′ is an

EO signature satisfying ars since all fi are. Then, f can be realized by merging (with 6=2) all cut

edges of f ′ in a sequence. After each merging operation, the realized signature is an EO signature

satisfying ars, and hence f is an EO signature satisfying ars.

Having established Lemma 4.5, we have the following reduction.

Lemma 4.6. If f is realizable from a set F of EO signatures, then #EO({f} ∪ F) ≡T #EO(F).

4.2 Reduction from Six-Vertex Models to #EO problems

The six-vertex model can be expressed by the problem #EO(f) where f is an EO signature of

arity 4. The complexity classification of this problem is known even when f does not satisfy ars

(see [25] or Chapter 9 for more details). Here, we restate this result for the setting of signatures

with ars.

Theorem 4.7. Let f be an EO signature of arity 4 satisfying ars. Then #EO(f) is #P-hard

unless f ∈ P.

For nonzero 4-ary signatures satisfying ars, we characterize product-type signatures by the

following two lemmas.

Lemma 4.8. Let f be an EO signature of arity 4 satisfying ars. If f has support size 2, then

f ∈ P.

证明. This lemma directly follows the alternative definition of P (Lemma 2.6).

Lemma 4.9. Let f be an EO signature of arity 4 satisfying ars with support size 4, say fα, fβ,

fα and fβ 6= 0 where α 6= β, β. Then f ∈ P if and only if |fα| = |fβ|.

证明. Suppose f ∈ P. Then by Lemma 2.10 it has affine support. Being an EO signature with

support size 4, we can show that, after renaming its 4 variables we may assume the support is defined
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by (x1 6= x2) ∧ (x3 6= x4). No binary equality is used in its definition for being in P, and exactly

these two binary disequalities are used. Then f takes values ac, ad, bc, bd on 0101, 0110, 1001, 1010

for some a, b, c, d 6= 0. By ars, we have bd = ac and ad = bc. It follows that |a| = |b|. Similarly

|c| = |d|. Therefore all nonzero values of f have the same norm. Hence |fα| = |fβ|.

Conversely, suppose fα = reiφ and fβ = reiψ, for some r > 0 and φ, ψ. By renaming variables

we may assume α = 0101, β = 0110. Let a = rei
φ+ψ
2 , c = ei

φ−ψ
2 , Then the unary functions (a, ā)

on x1 and (c, c̄) on x3, times (x1 6= x2) ∧ (x3 6= x4) defines f ∈ P.

Now, we wish to leverage the complexity classification of six-vertex models and realize arity

4 signatures from a given set of signatures, to which we can apply the known tractability criteria.

We will use the mating gadget to realize signatures of arity 4, then apply the Cauchy-Schwarz

inequality. Consider a nonzero signature f ∈ F . We may assume that f is irreducible. Otherwise

we can replace f by its irreducible factors without changing the complexity due to Lemma 4.4. We

have the following lemma.

Lemma 4.10. Let f ∈ F be an irreducible EO signature of arity n ⩾ 4. Then one of the following

alternatives holds:

• #EO(F) is #P-hard, or

• #EO({6=4} ∪ F) ⩽T #EO(F), or

• f satisfies second order orthogonality (2rd-Orth), i.e., there exists a nonzero constant λ,

such that for all pairs of indices {i, j} ⊆ [n], M(m̂ijf) = λN4, where N4 =

[
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

]
.

证明. Since f is irreducible, f 6≡ 0. We consider the signature m̂ijf realized by mating two copies

of f for all pairs of distinct indices {i, j} ⊆ [n]. If #EO(m̂ijf) is already #P-hard, then #EO(F)

is also #P-hard since #EO(m̂ijf) ⩽T #EO(F). Since we already have a complexity dichotomy for

arity 4 signatures, we may assume that m̂ijf satisfies the tractability condition and that #EO(m̂ijf)
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is computable in polynomial time for every pair {i, j}. Notice that

M(m̂ijf) =Mij(f)N
⊗(n−2)
2 MT

ij(f) =


0 0 0 |f00ij |2

0 〈f01ij , f10ij 〉 |f01ij |2 0

0 |f10ij |2 〈f10ij , f01ij 〉 0

|f11ij |2 0 0 0

 .
(4.1)

If there exists some {i, j}, such that m̂ijf ≡ 0, then f00ij = f01ij = f10ij = f11ij ≡ 0, which implies f ≡ 0.

A contradiction. So we have m̂ijf 6≡ 0, for all pairs {i, j}. Then by Theorem 4.7, #EO(m̂ijf) is

tractable if and only if m̂ijf ∈ P. By Lemma 2.10, we know m̂ijf has affine support, and being

nonzero it has support size either 2 or 4 (by the form in (4.1), the support size is not 1). There are

two cases depending on the support size of m̂ijf for all pairs {i, j}.

1. There exists some pair {i, j} such that m̂ijf has support size 2. Then,

• Either M(m̂ijf) has the form λij

[
0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

]
where λij = |f00ij |2 = |f11ij |2 6= 0,

• or M(m̂ijf) has the form λij

[
0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

]
where λij = |f01ij |2 = |f10ij |2 6= 0.

The form that 〈f01ij , f10ij 〉 6= 0 while |f01ij |2 = 0 cannot occur since |〈f01ij , f10ij 〉| ⩽ |f01ij ||f10ij |. In both

forms, 6=4 is realizable since λij 6= 0. Thus, #EO({6=4} ∪ F) ⩽T #EO(F).

2. For all pairs {i, j}, m̂ijf has support size 4. By Lemma 4.9,

• EitherM(m̂ijf) has the form λij

[
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

]
where λij = |f00ij |2 = |f11ij |2 = |f01ij |2 = |f10ij |2 6= 0,

• or M(m̂ijf) has the form
[ 0 0 0 0

0 ⟨f01ij ,f10ij ⟩ |f01ij |2 0

0 |f10ij |2 ⟨f10ij ,f01ij ⟩ 0

0 0 0 0

]
, where |〈f01ij , f10ij 〉|2 = |f01ij |2|f10ij |2 6= 0.

Again, the form that 〈f01ij , f10ij 〉 6= 0 while |f01ij |2 = 0 cannot occur. In the first form, four

vectors form a set of mutually orthogonal vectors of nonzero equal norm. In the second form,

by Cauchy-Schwarz, it means that f01ij = cf10ij for some c ∈ C. In addition, we know |c| = 1

due to |f01ij | = |f10ij | by ars. Since |f00ij |2 = |f11ij |2 = 0, we have f00ij = f11ij = 0, the all-zero vector.

Thus, f is factorizable as a tensor product f = b(xi, xj) ⊗ g, for some g and some binary

signature b(xi, xj) = (0, a, a, 0), a contradiction because f is irreducible.



43

Thus, in this case, M(m̂ijf) = λijN4 for all pairs {i, j}. By Lemma 3.22, f satisfies 2nd-

Orth.

We are done with the proof.

By Lemma 4.10, we have two main cases depending on whether 6=4 can be realized by m̂ijf

from F . We give a proof outline to show how they will be handled. We use E to denote the set

of binary EO signatures satisfying ars. Then, E⊗ =
⋃∞
k=1{λ

⊗k
i=1 fi | λ ∈ R\{0}, fi ∈ E} is the

set of tensor products of binary EO signatures satisfying ars. Note that E includes the binary

zero signature, and hence E⊗ includes all zero signatures of even arity. We use E ̸≡0 to denote

{f ∈ E | f 6≡ 0}, and then E⊗
̸≡0 = {f ∈ E⊗ | f 6≡ 0}. By Lemma 2.6, we have E⊗ ⊆ P.

1. The signature 6=4 cannot be realized by m̂ijf from F . That is, every irreducible signature (or

factor of signatures) in F satisfies 2nd-Orth.

We show that this case happens only if F ⊆ E⊗ (Theorem 4.22). We want to prove this by

induction. The general strategy is to start with any signature f ∈ F of arity 2n that is not

in E⊗, we realize a signature g of arity 2n− 2 that is also not in E⊗, i.e. #EO({g} ∪ F) ⩽T

#EO(F) (Lemma 4.20). If we can reduce the arity down to 4 (this is by a sequence of

reductions that is constant in length independent of the problem instance size of the graph),

then we can show it is impossible for such a signature to satisfy 2nd-Orth. Thus, we can

use it to realize 6=4 or a #P-hard signature by Lemma 4.10. However, our induction proof

only works when the arity 2n ⩾ 10 (there is an intrinsic reason for this.) Therefore we must

establish the base cases at arity 4, 6 and 8. Fortunately, using 2nd-Orth, we can prove our

theorem for signatures of arity 4, 6 and 8 separately (Lemma 4.21).

For the induction proof, we realize signatures of lower arity by merging (using 6=2) to. It

naturally reduces the arity by two. Given a signature f /∈ E⊗ of arity 2n ⩾ 10, if ∂̂ijf /∈ E⊗

for some {i, j}, then we are done. So we may assume for every {i, j}, ∂̂ijf ∈ E⊗. we further

inquire whether for every {i, j}, ∂̂ijf 6≡ 0. If for some {i, j}, ∂̂ijf ≡ 0, then it turns out to be

relatively easy to handle (Lemma 4.11). So we may assume for every {i, j}, ∂̂ijf 6≡ 0. We aim

to show that there is a binary signature b(xu, xv) such that b(xu, xv) | f . If so, the “quotient”

gives us a signature not in E⊗, but of arity 2n− 2, by Lemma 4.4. In some cases we have to

replace f by another f ′ to accomplish that.
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Assuming ∂̂ijf ∈ E⊗ for all {i, j}, we prove there is a b(xu, xv) such that b(xu, xv) | f or

b(xu, xv) | f ′ in the following steps:

(a) If there is a binary signature b(xu, xv) such that b(xu, xv) | ∂̂ijf for every {i, j} disjoint

with {u, v}, then b(xu, xv) | f (Lemma 4.12).

(b) We have assumed ∂̂ijf ∈ E⊗ for all {i, j}. Suppose there is one ∂̂uvf ≡ 0. We show that

the binary signature bi(xu, xv) = (0, i,−i, 0) divides ∂̂ijf for every {i, j} disjoint with

{u, v} (Lemma 4.13).

(c) Now, we further assume ∂̂ijf 6≡ 0 for all {i, j}. We want to show that if a binary

signature b(xu, xv) divides a “triangle”, i.e. b(xu, xv) | ∂̂rsf, ∂̂stf, ∂̂rtf (we say f satisfies

the ∆-property), it divides ∂̂ijf for every {i, j} disjoint with {u, v} (Lemma 4.15). To

prove this, we need the following delicate lemma.

(d) If a binary signature b(xu, xv) divides “two pairs”, i.e. b(xu, xv) | ∂̂stf, ∂̂s′t′f , where {s, t}

and {s′, t′} are distinct but not necessarily disjoint, then it divides ∂̂ijf for any {i, j}

which is disjoint with {u, v}∪{s, t}∪{s′, t′} that satisfies ∂̂(st)(ij)f 6≡ 0 and ∂̂(s′t′)(ij)f 6≡ 0

(Lemma 4.14).

(e) Finally, we show that either (i) f satisfies the∆-property, or (ii) we can realize a signature

f ′, where f ′ 6∈ E⊗ has the same arity as f , such that either ∂̂ijf 6∈ E⊗ for some {i, j}, or

f ′ satisfies the ∆-property. (Lemma 4.17).

These steps will accomplish the arity reduction inductive step.

This case is handled in Section 4.3. We will see that the unique prime factorization plays an

important role in the proof.

2. Otherwise, we have #EO({6=4} ∪ F) ⩽T #EO(F).

The signature 6=4 can be used to realize any (6=2k) ∈ DEQ (Lemma 4.23), and then the

problem #EO(DEQ ∪ F) can be expressed as Holant(DEQ | F) (Lemma 4.24). The next

idea is to simulate #CSP(G) ≡T Holant(EQ | G) using Holant(DEQ | F) for some G closely

related to F , and we can apply the dichotomy of #CSP (Theorem 2.12) to get hardness

results. The challenge is to simulate EQ using DEQ and F . After some reflection one can
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observe that it is impossible to realize EQ by direct gadget constructions. Since signatures

in DEQ and F are EO signatures satisfying ars, by Lemma 4.5 any gadget realizable from

them is also an EO signature. But clearly, any (=k) ∈ EQ is not an EO signature. However

we found an alternative way to simulate EQ globally, and this is achieved depending crucially

on some special properties of F , as follows:

(a) First, using ars we show that #CSP(|F|2) ⩽T Holant(DEQ | F) (Lemma 4.26), where

|F|2 denotes the set of signatures by taking norm squares of signatures in F , namely

|F|2 = {|f |2 | f ∈ F}. This directly implies that Holant(DEQ | F) is #P-hard unless

every signature in F has affine support (Corollary 4.27).

(b) Then, consider an EO signature with affine support. We show its support has a special

structure called pairwise opposite (Definition 4.28 and Lemma 4.30).

(c) Finally, given the support of every signature f ∈ F is pairwise opposite, we show

#CSP(F) ⩽T Holant(DEQ | F) (Lemma 4.31) by a global simulation, and hence the

problem Holant(DEQ | F) is #P-hard unless F ⊆ A or F ⊆ P (Corollary 4.32).

It follows that, in this case, we have #EO({6=4} ∪ F) is #P-hard unless F ⊆ A or F ⊆ P

(Theorem 4.33). This case is handled in Section 4.4. We will introduce the pairwise opposite

structure and show the global reductions from #CSP to #EO problems.

As observed earlier E⊗ ⊆ P. If F ⊆ E⊗, then by Lemma 2.25 and Theorem 2.30 #EO(F)

is tractable. In Section 4.3, we show that if F 6⊆ E⊗ then either #EO(F) is #P-hard, or we have

#EO({6=4} ∪ F) ⩽T #EO(F). In Section 4.4, we show that #EO({6=4} ∪ F) is #P-hard unless

F ⊆ A , or F ⊆ P. This completes the proof of Theorem 4.1.

4.3 Interplay of Unique Prime Factorization and Merging Gadgets

In this section, we show that if F 6⊆ E⊗ then either #EO(F) is #P-hard or we can realize

6=4, i.e., #EO({6=4} ∪ F) ⩽T #EO(F), and then the results from Section 4.4 take over. Suppose

F 6⊆ E⊗, then it contains some signature f /∈ E⊗, and we prove the statement by induction on the

arity of f . The general strategy is that we start with any signature f of arity 2n ⩾ 10 that is not

in E⊗, and realize a signature g of arity 2n− 2 that is also not in E⊗. However, this induction only
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works for arity 2n ⩾ 10. We prove the base cases of the induction separately, when f has arity 4,

6 or 8.

For the inductive step, we consider ∂̂ijf for all {i, j}. If there exists {i, j} such that ∂̂ijf /∈ E⊗,

then we can realize g = ∂̂ijf which has arity 2n− 2, and we are done. Thus, we assume ∂̂ijf ∈ E⊗

for all {i, j}. We denote this property by f ∈
∫̂
E⊗. Under the assumption that f ∈

∫̂
E⊗, our goal

is to show that there is a binary signature b(xu, xv) such that either b(xu, xv) | f or there exists

another f ′ 6∈ E⊗ realizable from f , such that f ′ has the same arity as f , and b(xu, xv) | f ′. In the

second case we may again assume f ′ ∈
∫̂
E⊗, for otherwise we may take ∂̂ijf ′ for some {i, j}. Now

we may replace f by f ′ in the second case. From the factorization f = b(xu, xv)⊗ g, it follows from

the definition of E⊗ that g /∈ E⊗ since f /∈ E⊗. From the factorization of f , we can realize g from

f by Lemma 4.4, and we are done. We carry out our induction proof in the next six lemmas.

For convenience, we use the following notations.

• E⊗ = {tensor products of one or more binary EO signatures satisfying ars}.

• f ∈
∫̂
E⊗ denotes the property that ∂̂ijf ∈ E⊗ for all {i, j}.

• f ∈
∫̂
E⊗
̸≡0 denotes the property that ∂̂ijf ∈ B and ∂̂ijf 6≡ 0 for all {i, j}.

• We say f satisfies the ∆-property, if there exist three distinct indices {r, s, t} and a binary

signature b(xu, xv) such that {u, v} ∩ {r, s, t} = ∅, and b(xu, xv) | ∂̂rsf, ∂̂stf, ∂̂rtf .

Lemma 4.11. Suppose f ∈ E⊗. Then ∂̂ijf ≡ 0 iff the signature bi(xi, xj) = (0, i,−i, 0) divides f .

证明. If bi(xi, xj)|f , then f = bi(xi, xj)⊗ g, where g is a constant or a signature on variables other

than xi, xj . We have ∂̂ijf = (i− i) · g ≡ 0.

Now, suppose ∂̂ijf ≡ 0. If f ≡ 0, then it is trivial. Otherwise, f 6≡ 0. Consider the unique

prime factorization of f . If xi and xj appear in one binary signature b(xi, xj) = (0, a, ā, 0), then

a 6= 0, and f = b(xi, xj)⊗ g, where g is a constant or a signature on variables other than xi, xj and

g 6≡ 0 due to f 6≡ 0. Then, we have ∂̂ijf = (a + ā)g ≡ 0, which means a + ā = 0. That is, a = λi

for some λ ∈ R. So, we have bi(xi, xj)|f .

Otherwise, xi and xj appear in separate binary signatures b1(xi, xi′) = (0, a, ā, 0) and b2(xj , xj′) =

(0, b, b̄, 0) in the unique prime factorization of f . That is, f = b1(xi, xi′)⊗b2(xj , xj′)⊗g, where g is a
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constant or a signature on variables other than xi, xi′ , xj , xj′ and g 6≡ 0. Then ∂̂ijf = b′(xi′ , xj′)⊗g

where b′(xi′ , xj′) = (0, āb, ab̄, 0) 6≡ 0. Hence, ∂̂ijf 6≡ 0. A contradiction.

Lemma 4.12. Let f ∈
∫̂
E⊗ be a signature of arity 2n ⩾ 6. If there exists a binary signature

b(xu, xv) such that b(xu, xv) | ∂̂ijf for all {i, j} disjoint with {u, v}, then b(xu, xv) | f .

证明. Recall that f bcuv denotes the signature obtained by setting variables (xu, xv) of f to (b, c) ∈

{0, 1}2. These are called the pinning operations on {u, v}. Clearly, for any {i, j} disjoint with

{u, v}, the pinning operations on {u, v} commute with the merging operation ∂̂ij , and so we have

(∂̂ijf)
bc
uv = ∂̂ij(f

bc
uv).

We may assume the binary signature has the form b(xu, xv) = (0, a, ā, 0), where a 6= 0. Consider

the signature f ′ := āf01uv − af10uv . It is a signature on variables of f other than xu and xv. For any

{i, j} disjoint with {u, v}, by merging variables xi and xj of f ′, and recalling that ∂̂ij is a linear

operator, we have

∂̂ijf
′ = ∂̂ij(āf

01
uv − af10uv) = ā∂̂ij(f

01
uv)− a∂̂ij(f

10
uv) = ā(∂̂ijf)

01
uv − a(∂̂ijf)

10
uv.

By assumption, ∂̂ijf = b(xu, xv) ⊗ g, where g is a signature on variables other than xu, xv, xi, xj .

(Since ∂̂ijf has arity at least 4, g is not a constant.) Then we have

∂̂ijf
′ = ā(∂̂ijf)

01
uv − a(∂̂ijf)

10
uv = ā(ag)− a(āg) ≡ 0.

Note that f ′ is also an EO signature. By Lemma 3.9, we have f ′ ≡ 0, and hence āf01uv ≡ af10uv .

Moreover, by the factorization of ∂̂ijf , we have ∂̂ij(f00uv) = (∂̂ijf)
00
uv ≡ 0 and ∂̂ij(f11uv) = (∂̂ijf)

11
uv ≡ 0

for any {i, j} disjoint with {u, v}. Also, since 2n ⩾ 6, f00uv(α) = f11uv(α) = 0 when wt(α) = 0 or 2n−2.

By Lemma 3.9 again, we have f00uv = f11uv ≡ 0. Hence, f = (f00uv , f
01
uv , f

10
uv , f

11
uv) = (0, a, ā, 0)⊗ ( 1af

01
uv),

and we have b(xu, xv) | f .

Notice that for arity 2n ⩾ 6, if b(xu, xv) | f and thus f = b(xu, xv)⊗ g, then by the definition

of E⊗, from f /∈ E⊗ we obtain g /∈ E⊗, which has arity 2n− 2, completing the induction step using

Lemma 4.4. Therefore, to apply Lemma 4.12 we want to show that there is a binary signature

b(xu, xv) such that b(xu, xv) | ∂̂ijf for every {i, j} disjoint with {u, v}. We first consider the case

that ∂̂uvf ≡ 0 for some {u, v}.
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Lemma 4.13. Suppose f has arity ⩾ 4 and f ∈
∫̂
E⊗. If ∂̂uvf ≡ 0 for some {u, v}, then the binary

signature bi(xu, xv) = (0, i,−i, 0) satisfies bi(xu, xv) | ∂̂ijf for all {i, j} disjoint with {u, v}.

证明. For any {i, j} disjoint with {u, v}, the operations ∂̂ij and ∂̂uv commute. Since ∂̂uvf ≡ 0, we

have

∂̂uv(∂̂ijf) = ∂̂ij(∂̂uvf) ≡ 0.

Since ∂̂ijf ∈ E⊗, by Lemma 4.11, we have bi(xu, xv) | ∂̂ijf .

In the following, for convenience we denote ∂̂ij(∂̂uvf) by ∂̂(ij)(uv)f .

Now, we assume ∂̂ijf ∈ B and ∂̂ijf 6≡ 0 for all {i, j}. We denote this property by f ∈
∫̂
E⊗
̸≡0.

Each ∂̂ijf has a unique prime factorization. We will show that once we can find some binary

signature b(xu, xv) that divides a “triangle”, i.e. b(xu, xv)|∂̂rsf, ∂̂stf, ∂̂rtf for three distinct {r, s, t}

disjoint with {u, v}, then it divides ∂̂ijf for all {i, j} disjoint with {u, v}. We first consider the case

that b(xu, xv) divides “two pairs”. The statement of the following lemma is delicate.

Lemma 4.14. Let f be a signature of arity 2n ⩾ 8 and f ∈
∫̂
E⊗
̸≡0. Suppose there exist two pairs

of indices {s, t} and {s′, t′} that are distinct but not necessarily disjoint, and a binary signature

b(xu, xv), where {u, v} ∩ ({s, t} ∪ {s′, t′}) = ∅, such that b(xu, xv) | ∂̂stf, ∂̂s′t′f . Then for any {i, j}

disjoint with {u, v} ∪ {s, t} ∪ {s′, t′}, if ∂̂(st)(ij)f 6≡ 0 and ∂̂(s′t′)(ij)f 6≡ 0, then b(xu, xv) | ∂̂ijf .

证明. By hypothesis f ∈
∫̂
E⊗
̸≡0, so for any {i, j}, we have ∂̂ijf ∈ E⊗ and is nonzero, and thus it has

a unique factorization with binary prime factors. Let {i, j} be disjoint with {u, v}∪{s, t}∪{s′, t′}.

Suppose it satisfies the condition ∂̂(st)(ij)f 6≡ 0 and ∂̂(s′t′)(ij)f 6≡ 0. We first prove that xu and xv
must appear in one single binary prime factor b′(xu, xv) in the factorization of ∂̂ijf . That is,

∂̂ijf = b′(xu, xv)⊗ g, (4.2)

where g 6≡ 0 is a signature on variables other than xu, xv, xi, xj . For a contradiction, suppose

variables xu and xv appear in two distinct binary prime factors b1(xu, xu′) and b2(xv, xv′) in the

prime factorization of ∂̂ijf . Then,

∂̂ijf = b1(xu, xu′)⊗ b2(xv, xv′)⊗ g′, (4.3)
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where g′ 6≡ 0 is a signature on variables other than xu, xu′ , xv, xv′ , xi, xj . By hypothesis, b(xu, xv) |

∂̂stf , thus ∂̂stf = b(xu, xv) ⊗ h for some h on variables other than xu, xv, xs, xt, which certainly

include xi, xj . Thus ∂̂(ij)(st)f = b(xu, xv) ⊗ ∂̂ijh, and we have b(xu, xv)|∂̂(ij)(st)f = ∂̂(st)(ij)f . By

hypothesis for this {i, j} we have ∂̂(st)(ij)f 6≡ 0. This implies that after merging variables xs and xt
of ∂̂ijf , xu and xv form a nonzero binary signature. By the form (4.3) of ∂̂ijf , the only way xu and

xv can form a nonzero binary signature in ∂̂(st)(ij)f is that the merge operation is actually merging

xu′ and xv′ . We conclude that {s, t} = {u′, v′}. We can repeat the same proof replacing {s′, t′} for

{s, t}, and since b(xu, xv) | ∂̂(s′t′)(ij)f and ∂̂(s′t′)(ij)f 6≡ 0, we have {s′, t′} = {u′, v′}. Hence, we have

{s, t} = {s′, t′}. This is a contradiction, and (4.3) does not hold.

Thus (4.2) holds. Since {s, t} is disjoint with {u, v, i, j}, by the form (4.2) of ∂̂ijf , when

merging variables xs and xt of ∂̂ijf , we actually merge variables xs and xt of g and the binary

signature b′(xu, xv) is not affected. Thus,

∂̂(st)(ij)f = b′(xu, xv)⊗ ∂̂stg.

That is, b′(xu, xv) | ∂̂(st)(ij)f. By hypothesis we also have b(xu, xv) | ∂̂stf . By the fact that {i, j}

is disjoint with {u, v, s, t}, we have b(xu, xv) | ∂̂(ij)(st)f = ∂̂(st)(ij)f. Thus b(xu, xv) and b′(xu, xv)

both divide ∂̂(st)(ij)f 6≡ 0. By the unique factorization lemma (Lemma 3.4), we have b(xu, xv) =

λb′(xu, xv) for some λ 6= 0. In particular, by (4.2), b(xu, xv) | ∂̂ijf .

Now we come to the pivotal “triangle” lemma. Recall that the ∆-property was defined just

before Lemma 4.12. Suppose f satisfies the ∆-property, i.e., there is a binary b(xu, xv) that divides

a “triangle”, b(xu, xv) | ∂̂rsf, ∂̂stf, ∂̂rtf . A key step in the proof of Lemma 4.15 is to show that for

any {i, j} disjoint with {u, v, r, s, t}, among the three iterated “derivatives” ∂̂(rs)(ij)f, ∂̂(st)(ij)f and

∂̂(rt)(ij)f , at most one of them can be identically zero. Then Lemma 4.14 applies.

Lemma 4.15. Let f ∈
∫̂
E⊗
̸≡0 have arity 2n ⩾ 10. Suppose f satisfies the ∆-property. Then there

is a binary signature b(xu, xv) such that for any {i, j} disjoint with {u, v}, we have b(xu, xv) | ∂̂ijf .

证明. By the ∆-property, there is a binary signature b(xu, xv) and {r, s, t} disjoint with {u, v} such

that b(xu, xv) | ∂̂rsf, ∂̂stf, ∂̂rtf . For any {i, j} disjoint with {u, v}, we first consider the case that

{i, j} is also disjoint with {r, s, t}. Our idea is to show that among ∂̂(rs)(ij)f, ∂̂(st)(ij)f and ∂̂(rt)(ij)f ,
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at most one of them can be a zero signature. This implies that there are two among these that are

not identically zero. Then by Lemma 4.14, we have b(xu, xv) | ∂̂ijf .

By Lemma 4.11, ∂̂(rs)(ij)f ≡ 0 iff the binary signature bi(xr, xs) = (0, i,−i, 0) divides ∂̂ijf .

Similarly, ∂̂(st)(ij)f ≡ 0 iff bi(xs, xt) | ∂̂ijf , and ∂̂(rt)(ij)f ≡ 0 iff bi(xr, xt) | ∂̂ijf . By hypothesis,

f ∈
∫̂
E⊗
̸≡0, so ∂̂ijf 6≡ 0. The signature ∂̂ijf ∈ E⊗ has a unique prime factorization. By Lemma

3.4, since the three signatures bi(xr, xs), bi(xs, xt) and bi(xr, xt) are on pairwise overlapping sets of

variables, at most one of them can be a tensor factor of ∂̂ijf . Thus, among ∂̂(rs)(ij)f, ∂̂(st)(ij)f and

∂̂(rt)(ij)f , at most one of them can be a zero signature, which implies b(xu, xv) | ∂̂ijf , by Lemma

4.14, for all {i, j} disjoint with {u, v, r, s, t}.

Now suppose {i, j} is disjoint with {u, v}, but not disjoint with {r, s, t}. In the union {i, j} ∪

{r, s, t} ∪ {u, v}, there are at most 6 distinct indices. Since the arity of f is at least 10, there are

three indices {r′, s′, t′} such that {r′, s′, t′} is disjoint with {i, j} ∪ {r, s, t} ∪ {u, v}. Since {r′, s′}

is disjoint with {u, v, r, s, t}, we can replace {i, j} by {r′, s′} in the proof above for the case when

{i, j} is disjoint with {u, v, r, s, t}, and derive b(xu, xv) | ∂̂(r′s′)f . By the same reason, we also

have b(xu, xv) | ∂̂s′t′f , and b(xu, xv) | ∂̂(r′t′)f . In other words we found a new “triangle”, that is,

f satisfies the ∆-property with the binary signature b(xu, xv) and the triple {r′, s′, t′} replacing

{r, s, t}. Note that now {i, j} is disjoint with {r′, s′, t′}. So, we can apply the proof above with

{r, s, t} now replaced by {r′, s′, t′}, and we conclude that b(xu, xv) | ∂̂ijf .

Remark 4.16. This is the first place we require the arity of f to be at least 10.

We go for the kill in the next lemma.

Lemma 4.17. Let f ∈ F be a signature of arity 2n ⩾ 10, f /∈ E⊗ and f ∈
∫̂
E⊗
̸≡0. Then

• either f satisfies the ∆-property;

• or there is a signature f ′ 6∈ E⊗ that has the same arity as f , such that #EO(f ′ ∪ F) ⩽T

#EO(F), and the following hold: either (1) f ′ 6∈
∫̂
E⊗ or (2) f ′ satisfies the ∆-property.

证明. Consider ∂̂(12)f . Since ∂̂(12)f ∈ E⊗ and ∂̂(12)f 6≡ 0, without loss of generality, we may assume

in the unique prime factorization of ∂̂(12)f , variables x3 and x4 appear in one binary prime factor,
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x5 and x6 appear in one binary prime factor, and so on. That is,

∂̂(12)f = b1(x3, x4)⊗ b2(x5, x6)⊗ b3(x7, x8)⊗ b4(x9, x10)⊗ . . .⊗ bn−1(x2n−1, x2n). (4.4)

Case 1. For all 1 ⩽ k ⩽ n− 1, bk(x2k+1, x2k+2) 6= a scalar multiple of (0, i,−i, 0).

Then by Lemma 4.11, ∂̂(34)(12)f 6≡ 0, and clearly, bk(x2k+1, x2k+2)|∂̂(34)(12)f for k ⩾ 2. In

particular, we have

b2(x5, x6), b3(x7, x8), b4(x9, x10)|∂̂(34)(12)f,

since f has arity at least 10.

Now consider ∂̂(34)f . We have ∂̂(34)f ∈ E⊗, ∂̂(34)f 6≡ 0, and ∂̂(12)(34)f = ∂̂(34)(12)f 6≡ 0.

• If x1 and x2 appear in one binary prime factor b′1(x1, x2) in the unique prime factorization

of ∂̂(34)f , then after merging variables x1 and x2, the binary signature b′1(x1, x2) becomes

a nonzero constant, but all other binary prime factors of ∂̂(34)f are unchanged and appear

in the prime factorization of ∂̂(12)(34)f . By commutativity ∂̂(12)(34)f = ∂̂(34)(12)f , and by

(4.4) the prime factors of ∂̂(12)(34)f are precisely bk(x2k+1, x2k+2), for 2 ⩽ k ⩽ n− 1, we

conclude that the unique prime factorization of ∂̂(34)f has the following form (up to a

nonzero constant)

∂̂(34)f = b′1(x1, x2)⊗ b2(x5, x6)⊗ b3(x7, x8)⊗ b4(x9, x10)⊗ . . .⊗ bn−1(x2n−1, x2n).

• If x1 and x2 appear in two distinct binary prime factors b′′1(x1, xi) and b′′2(x2, xj) in the

unique prime factorization of ∂̂(34)f , then after merging variables x1 and x2, from (4.4)

we have

∂̂(12)(34)f = ∂̂(34)(12)f = c · b2(x5, x6)⊗ b3(x7, x8)⊗ b4(x9, x10)⊗ . . .⊗ bn−1(x2n−1, x2n)

for some nonzero constant c. On the other hand, from the form of ∂̂(34)f , the two

variables xi and xj form a new nonzero binary b′′(xi, xj). Thus the pair {i, j} is either

{5, 6}, or {7, 8}, etc. and we may assume (i, j) = (5, 6) by renaming the variables. Thus,
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we have

∂̂(34)f = b′′1(x1, x5)⊗ b′′2(x2, x6)⊗ b3(x7, x8)⊗ b4(x9, x10)⊗ . . .⊗ bn−1(x2n−1, x2n).

(In the following proof we can use any bj , for 4 ⩽ j ⩽ n − 1; for definiteness we set j = 4,

and since n ⩾ 5 this choice b4 is permissible.) In both cases above, we have b4(x9, x10)|∂̂(34)f ,

and ∂̂(78)(34)f 6≡ 0 since b3(x7, x8) 6= (0, i,−i, 0) by assumption. Moreover, note that in both

cases, x6 and x7 do not appear as the two variables of a single binary signature tensor factor

of ∂̂(34)f . The same is true for x6 and x8. This implies that ∂̂(67)(34)f 6≡ 0 and ∂̂(68)(34)f 6≡ 0.

So we have derived

b4(x9, x10) | ∂̂(34)f, ∂̂(78)(34)f 6≡ 0, ∂̂(67)(34)f 6≡ 0, and ∂̂(68)(34)f 6≡ 0.

Clearly, by (4.4), we also have

b4(x9, x10) | ∂̂(12)f, ∂̂(78)(12)f 6≡ 0, ∂̂(67)(12)f 6≡ 0, and ∂̂(68)(12)f 6≡ 0.

Apply Lemma 4.14 three times (with {u, v} = {9, 10}, {s, t} = {1, 2}, {s′, t′} = {3, 4}, and

taking {i, j} = {6, 7}, {7, 8}, {6, 8} separately), we have

b4(x9, x10) | ∂̂(67)f, ∂̂(78)f, ∂̂(68)f.

Thus f satisfies the ∆-property ({u, v} = {9, 10} and {r, s, t} = {6, 7, 8}) and we are done.

Case 2. There is a binary signature bk−1(x2k−1, x2k) in the factorization of ∂̂(12)f such that

bk−1(x2k−1, x2k) = a scalar multiple of (0, i,−i, 0). Then by Lemma 4.4, we have the reduc-

tion #EO((0, i,−i, 0), f) ⩽T#EO(f). Connecting the variable x2k−1 of f with (0, i,−i, 0), we

can realize a signature f ′. Consider ∂̂(12)f ′. Again the operations commute: it is the same as

connecting the variable x2k−1 of ∂̂(12)f with (0, i,−i, 0). Since ∂̂(12)f is a tensor product of bi-

nary signatures, connecting the variable x2k−1 of ∂̂(12)f with (0, i,−i, 0) is just connecting the

variable x2k−1 of the binary bk−1(x2k−1, x2k) with (0, i,−i, 0), which gives a binary (0, 1, 1, 0).

That is, ∂̂(12)f ′ is still a tensor product of the same binary signatures as in ∂̂(12)f except that
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bk−1(x2k−1, x2k) = (0, i,−i, 0) is replaced by b′k−1(x2k−1, x2k) = (0, 1, 1, 0). Similarly, for any

binary signature bℓ−1(x2ℓ−1, x2ℓ) = (0, i,−i, 0) in ∂̂(12)f , we modify it in this way (together all

at once). Thus, we can realize a signature f ′ by connecting some variables with (0, i,−i, 0)

such that

∂̂(12)f
′ = b′1(x3, x4)⊗ b′2(x5, x6)⊗ b′3(x7, x8)⊗ b′4(x9, x10)⊗ . . .⊗ b′n−1(x2n−1, x2n),

where b′k(x2k+1, x2k+2) 6= a scalar multiple of (0, i,−i, 0) for any 1 ⩽ k ⩽ n− 1. Moreover, we

know f ′ /∈ E⊗ since f /∈ E⊗; this follows from the closure property of E⊗ under the operation

of connecting a variable by (0, i,−i, 0) via 6=2, and the fact that if we connect three times

(0, i,−i, 0) via 6=2 in a chain from f ′, we get f back:
(
N
[

0 i
−i 0

])4
= I.

If f ′ /∈
∫̂
E⊗, we are done. Otherwise, f ′ ∈

∫̂
E⊗. If there is {u, v} such that ∂̂uvf ′ ≡ 0,

then by Lemma 4.13, we have bi(xu, xv) | ∂̂ijf ′ for any {i, j} disjoint with {u, v} where

bi(xu, xv) = (0, i,−i, 0). Then clearly f ′ satisfies the ∆-property. Otherwise, f ′ ∈
∫̂
E⊗

̸≡0. As

we just proved in Case 1, now replacing f by f ′, we have b′4(x9, x10) | ∂̂(67)f ′, ∂̂(78)f ′, ∂̂(68)f ′.

This completes the proof.

Remark 4.18. This proof also requires the arity of f to be at least 10.

Let D = {6=2}. Then D⊗ = {λ · (6=2)
⊗k | λ ∈ R\{0}, k ⩾ 1} is the set of tensor products of 6=2

up to nonzero real scalars. If f satisfies the property that f ∈
∫̂
D⊗ (i.e., ∂̂ijf ∈ D⊗) for any pairs

of indices {i, j}, then we can prove the following stronger result.

Lemma 4.19. Let f̂ be a 2n-ary EO signature satisfying ars.

• When 2n = 8, if for all pairs of indices {i, j}, ∂̂ij f̂ ∈ D⊗, and there exists some 6=2 (xi, xj) and

two pairs of indices {u, v} and {s, t} where {u, v}∩{s, t} 6= ∅ such that 6=2 (xi, xj) | ∂̂uvf̂ , ∂̂stf̂ ,

then f̂ ∈ D⊗ and 6=2 (xi, xj) | f̂ .

• When 2n ⩾ 10, if for all pairs of indices {i, j}, ∂̂ij f̂ ∈ D⊗, then f̂ ∈ D⊗.

Lemma 4.20 (Induction). If F contains a signature f /∈ E⊗ of arity 2n ⩾ 10, then there is a

signature g /∈ E⊗ of arity 2n− 2 such that #EO({g} ∪ F) ⩽T #EO(F).
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证明. If f 6∈
∫̂
E⊗, then there exists {i, j} such that ∂̂ijf /∈ E⊗, and we are done by choosing

g = ∂̂ijf . Thus, we assume f ∈
∫̂
E⊗. If ∂̂uvf ≡ 0 for some indices {u, v}, then by Lemmas

4.13 and 4.12, the binary signature bi(xu, xv) = (0, i,−i, 0) divides f . That is, f = bi(xu, xv) ⊗ g

where g is a signature of arity 2n − 2, and g /∈ E⊗ since f /∈ E⊗. By Lemma 4.4, we have

#EO({g} ∪ F) ⩽T #EO(F). So we may assume f ∈
∫̂
E⊗
̸≡0. Now we apply Lemma 4.17. If the

first alternative of Lemma 4.17 holds, then f satisfies the ∆-property. Then by Lemmas 4.15 and

4.12, there is a binary signature b(xu, xv) such that b(xu, xv) | f . This divisibility of f produces a

signature not in E⊗ of arity 2n − 2 similar to what we have just proved, and we are done. If the

second alternative of Lemma 4.17 holds, then we have a signature f ′ 6∈ E⊗ having the same arity as

f . We have #EO({f ′}∪F) ⩽T #EO(F). If f ′ 6∈
∫̂
E⊗, then there exists {i, j} such that ∂̂ijf ′ /∈ E⊗,

and we can take ∂̂ijf ′ as g, and so we are done. Otherwise, by the conclusion of Lemma 4.17, f ′

satisfies the ∆-property. Similar to the proof above for f , there is a binary signature b(xu, xv) such

that b(xu, xv) | f ′. This divisibility of f ′ produces a signature not in E⊗ of arity 2n − 2. This

completes the inductive step.

Now, we use the orthogonality property to prove the base cases.

Lemma 4.21 (Base cases). If F contains a signature f /∈ E⊗ of arity 4, 6 or 8, then either #EO(F)

is #P-hard or #EO({6=4} ∪ F) ⩽T #EO(F).

证明. Again by Lemma 4.4, we may assume f is irreducible. Otherwise, we just need to analyze

each irreducible factor of f . More specifically, if f /∈ E⊗ and f is reducible, then there exists an

irreducible factor g of f such that g /∈ E⊗, and g has arity 4 or 6. If we can use g to realize a

#P-hard signature or 6=4, we can also use f to do so.

By Lemma 4.10, we may assume that f satisfies the orthogonality. Otherwise, we are done.

Therefore, we have

|fabij |2 = λ

for any (a, b) ∈ {0, 1}2, and any pair {i, j}. This readily leads to a contradiction for signatures of

arity 4 as follows. Suppose f is an irreducible signature on four variables x1, x2, x3, x4. Let (i, j, k, ℓ)

be an arbitrary permutation of {1, 2, 3, 4}. Consider the vector f00ij . It has only one possible nonzero
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entry f0011ijkℓ since the support of f is on half weight. Thus,

|f00ij |2 = |f0011ijkℓ |2 = λ

for any (xi, xj , xk, xℓ) = (0, 0, 1, 1). Since (i, j, k, ℓ) is an arbitrary permutation of {1, 2, 3, 4}, f0011ijkℓ

is an arbitrary entry of f at half weight, and since f is nonzero, every weight two entry of f has

the same nonzero norm
√
λ. However, Consider the vector f01ij , it has two nonzero entries f0101ijkℓ and

f0110ijkℓ . Hence,

λ = |f01ij |2 = |f0101ijkℓ |2 + |f0110ijkℓ |2 = 2λ,

which means λ = 0. This is a contradiction.

Before we go into the technical details of the proof for signatures of arity 6 and 8, we first give

some intuitions. By considering the norm-squares of entries in f as unknowns, the orthogonality

property of f actually gives a linear system. Our proof is to show that when f has small arity 4, 6, 8,

the solution region of such a system only has the trivial zero point. We illustrate this perspective

by the arity 4 case. Suppose f has arity 4. It has
(
4
2

)
= 6 possible nonzero entries. These entries

satisfy the orthogonality condition. We have

|f00ij |2 − λ = 0, |f01ij |2 − λ = 0, |f10ij |2 − λ = 0, |f11ij |2 − λ = 0

for any {i, j} ⊂ {1, 2, 3, 4}. There are
(
4
2

)
× 4 = 24 many equations in total. If we view these norm-

squares of entries |f0011|2, |f0101|2, |f0110|2, |f1001|2, |f1010|2, |f1100|2 (we omit subscripts here) and

the value λ as variables, those equations are linear equations on these variables. By ars, we have

|f0011|2 = |f1100|2, |f0101|2 = |f1010|2, and |f0110|2 = |f1001|2. So there are only four variables. Our

idea is to show that the matrix of this linear system which has 24 many rows but only 4 columns

has full rank. We only need 4 rows to prove this. In our proof for arity 4, we picked the following
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4 rows and showed that the induced linear system has full rank:


1 0 0 −1

0 1 0 −1

0 0 1 −1

0 1 1 −1




|f0011|2

|f0101|2

|f0110|2

λ

 =


0

0

0

0

 .

For the arity 6 case, we will basically show the same thing (i.e., the linear system has only the

trivial zero solution) with some carefully chosen rows. For arity 8 case, we will use the fact that

the variables take nonnegative values and we show the linear system has no nonnegative solution

except the zero solution.

An intuitive reason why this proof could succeed for signatures of small arity is that in these

cases, we have more equations than variables, which leads to an over-determined linear system. For

the general case of arity n, there are 4
(
n
2

)
many equations but

(
n
n/2

)
/2 + 1 many variables. Since

4
(
n
2

)
�
(
n
n/2

)
/2 + 1 when n is large, this method will not work for large n. This is why we cannot

hope to apply this proof to signatures of large arity.

Now, we give the formal proof for signatures of arity 6 and 8. In what follows we assume f

has arity ⩾ 6. Given a vector fabij , we can pick a third variable xk and separate fabij into two vectors

fab0ijk and fab1ijk according to xk = 0 or 1. By setting (a, b) = (0, 0), we have

|f00ij |2 = |f000ijk |2 + |f001ijk |2 = λ. (4.5)

Similarly, we consider the vector f00ik and separate it according to xj = 0 or 1. We have

|f00ik |2 = |f000ijk |2 + |f010ijk |2 = λ. (4.6)

Comparing equations (4.5) and (4.6), we have |f001ijk |2 = |f010ijk |2. Moreover, by ars, we have |f010ijk |2 =

|f101ijk |2. Thus, we have |f001ijk |2 = |f101ijk |2. Note that the vector f01jk can be separated into two vectors

f001ijk and f101ijk according to xi = 0 or 1. Therefore,

|f01jk|2 = |f001ijk |2 + |f101ijk |2 = λ.
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Thus, we have |f001ijk |2 = |f101ijk |2 = λ/2. Then, by equation (4.5), we have |f000ijk |2 = λ/2, and again

by ars, we also have |f111ijk |2 = |f000ijk |2 = λ/2. Note that the indices i, j, k can be arbitrary three

distinct indices, by symmetry we have

|fabcijk |2 = λ/2 (4.7)

for f of arity ⩾ 6, and for all (xi, xj , xk) = (a, b, c) ∈ {0, 1}3.

This leads to a contradiction for signatures of arity 6. Suppose f is an irreducible signature

on 6 variables x1, x2, . . . , x6. Let (i, j, k, i′, j′, k′) be an arbitrary permutation of {1, 2, . . . , 6}. Note

that the vector f000ijk has only one possible nonzero entry f000111ijki′j′k′ . Thus, by (4.7) we have

|f000ijk |2 = |f000111ijki′j′k′ |2 = λ/2

for any (xi, xj , xk, xi′ , xj′ , xk′) = (0, 0, 0, 1, 1, 1). That is, any entry of f at half weight has the same

nonzero norm
√
λ/2. However, the vector f001ijk has

(
3
2

)
= 3 nonzero entries. But,

λ/2 = |f001ijk |2 = |f001011ijki′j′k′ |2 + |f001101ijki′j′k′ |2 + |f001110ijki′j′k′ |2 = 3λ/2,

which means λ = 0. This is a contradiction.

For signatures of arity 8, we need to go further and use the fact that the norm-square is

nonnegative. Given a vector fabcijk , we can continue to pick a fourth variable xℓ and separate fabcijk into

two vectors fabc0ijkℓ and fabc1ijkℓ according to xℓ = 0 or 1. By setting (a, b, c) = (0, 0, 0), we have from

(4.7)

|f000ijk |2 = |f0000ijkℓ |2 + |f0001ijkℓ |2 = λ/2. (4.8)

Similarly, we consider the vector f001ijℓ and separate it according to xk = 0 or 1. We have

|f001ijℓ |2 = |f0001ijkℓ |2 + |f0011ijkℓ |2 = λ/2. (4.9)

Comparing equations (4.8) and (4.9), we have |f0000ijkℓ |2 = |f0011ijkℓ |2. This leads to a contradiction for

signatures of arity 8.

Suppose f is an irreducible signature on 8 variables x1, x2, . . . , x8. Let (i, j, k, ℓ, i′, j′, k′, ℓ′)

be an arbitrary permutation of {1, 2, . . . , 8}. The vector f0000ijkℓ has only one possible nonzero entry
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f00001111ijkℓi′j′k′ℓ′ . Thus,

|f0000ijkℓ |2 = |f00001111ijkℓi′j′k′ℓ′ |2. (4.10)

The vector f0011ijkℓ has
(
4
2

)
= 6 possible nonzero entries including f00110011ijkℓi′j′k′ℓ′ . Thus,

|f0011ijkℓ |2 = |f00110011ijkℓi′j′k′ℓ′ |2 +∆, (4.11)

where ∆ denotes the sum of norm-squares of the other 5 entries in f0011ijkℓ and we know ∆ ⩾ 0. Since

the left-hand sides of equations (4.10) and (4.11) are equal, we have

|f00001111ijkℓi′j′k′ℓ′ |2 = |f00110011ijkℓi′j′k′ℓ′ |2 +∆. (4.12)

Similarly, consider vectors f0000iji′j′ and f0011iji′j′ . We have |f0000iji′j′ |2 = |f0011iji′j′ |2. The vector f0000iji′j′ has only

one possible nonzero entry. Thus,

|f0000iji′j′ |2 = |f00110011ijkℓi′j′k′ℓ′ |2.

The vector f0011iji′j′ has 6 possible nonzero entries. Thus,

|f0011iji′j′ |2 = |f00001111ijkℓi′j′k′ℓ′ |2 +∆′,

where ∆′ denotes the sum of norm-squares of the other 5 entries in f0011iji′j′ and we know ∆′ ⩾ 0.

Thus, we have

|f00110011ijkℓi′j′k′ℓ′ |2 = |f00001111ijkℓi′j′k′ℓ′ |2 +∆′ (4.13)

Comparing equations (4.12) and (4.13), we have ∆ = −∆′, which means ∆ = ∆′ = 0 due to ∆ ⩾ 0

and ∆′ ⩾ 0. Since ∆ is the sum of 5 norm-squares, each of which is nonnegative, ∆ = 0 means

each norm-square in the sum ∆ is 0. In particular, |f00111100ijkℓi′j′k′ℓ′ |2 is a term in the sum ∆. We have

|f00111100ijkℓi′j′k′ℓ′ |2 = 0. Since the order of indices is picked arbitrarily, all entries of f are zero. Thus, f

is a zero signature. A contradiction.

Theorem 4.22. If F 6⊆ E⊗, then either #EO(F) is #P-hard or #EO({6=4} ∪ F) ⩽T #EO(F).

证明. The base case is Lemma 4.21 and the inductive step is Lemma 4.20. Done by induction.
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4.4 Reduction from #CSP to #EO Problems

In this section, we will show #EO({6=4} ∪ F) is #P-hard unless F ⊆ A , or F ⊆ P. The first

steps are simple; the availability of 6=4 allows us to realize any ( 6=2k) and therefore all of DEQ.

Lemma 4.23. #EO(DEQ ∪ F) ⩽T #EO({6=4} ∪ F).

证明. Connecting 6=2k (k ⩾ 2) and 6=4 using 6=2 we get 6=2k+2. Every occurrence of signatures in

DEQ can be realized by a linear size gadget. Then we have #EO(DEQ∪F) ⩽T #EO({6=4}∪F).

Recall that #EO(DEQ∪F) is just Holant(6=2| DEQ∪F) expressed in the Holant framework.

We show that after we get DEQ on the right hand side (RHS) in the above Holant problem, we

can also realize DEQ on the left-hand side (LHS).

Lemma 4.24. Holant(DEQ | F) ⩽T Holant( 6=2| DEQ∪F), which is equivalent to #EO(DEQ∪F).

证明. In Holant(6=2| DEQ ∪ F) we take 2k copies of 6=2 on the LHS and connect one variable of

each copy of 6=2 to all 2k variables of one copy of 6=2k on the RHS. This gives us the constraint

function 6=2k on the LHS.

Combining Lemmas 4.23 and 4.24, we have the following reduction for genaral Holant problems.

Lemma 4.25. For any G, Holant(DEQ | G) ⩽T Holant(6=2| DEQ,G) ⩽T Holant(6=2|6=4,G).

Now, consider an arbitrary instance of Holant(DEQ | F); it is given by a bipartite graph.

Similar to how we express #CSP(F) using Holant(EQ | F), in Holant(DEQ | F) we can view

vertices on the LHS (labeled by (6=2k) ∈ DEQ) as variables, and vertices on the RHS (labeled by

f ∈ F) as constraints. However, the difference here is that in this setting, both a variable itself and

its negation appear as input variables of constraints, and they always appear the same number of

times. More specifically, for a variable vertex x labeled by 6=2k, the entire set of 2k edges incident

to x can be divided into two subsets, each of which consisting of k edges. In each subset, every

edge takes the same value, while two edges in different sets always take opposite values. Then, we

can view the k edges in one subset as the variable x appearing k times, while another k edges in

the other subset as its negation x appearing k times.

Recall that signatures f ∈ F satisfy ars. Suppose f ∈ F has arity 2n. Then, consider the

function f(x1, x2, . . . , x2n). That is, we replace the input variables by their negations. Then we
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have f(x1, x2, . . . , x2n) = f(x1, x2, . . . , x2n) by ars. Define the norm square function |f |2, which

takes value |f(x1, . . . , x2n)|2 on input (x1, . . . , x2n). Then, we have

|f |2(x1, . . . , x2n) = f(x1, . . . , x2n)f(x1, . . . , x2n) = f(x1, . . . , x2n)f(x1, . . . , x2n),

and this gives the following reduction.

Lemma 4.26. Let |F|2 = {|f |2 | f ∈ F}. Then #CSP(|F|2) ⩽T Holant(DEQ | F).

证明. Given an instance I of #CSP(|F|2) over m variables. Suppose it contains ℓ occurrences of

constraints |fi|2 ∈ |F|2 (i ∈ [ℓ]) of arity 2ni, and fi is applied to the variables xi1 , . . . , xi2ni . Then

#CSP(I) =
∑

x1,...,xm∈Z2

ℓ∏
i=1

|fi|2(xi1 , . . . , xi2ni ) =
∑

x1,...,xm∈Z2

ℓ∏
i=1

fi(xi1 , . . . , xi2ni )fi(xi1 , . . . , xi2ni ).

(4.14)

Notice that in the final form of (4.14), for each variable x ∈ {x1, . . . , xm}, both itself and its

negation appear as input variables to various constraints fi ∈ F . Moreover, there is a one-to-one

correspondence between each occurrence of x and that of x̄. Thus, x and x̄ appear the same number

of times. Thus the partition function #CSP(I) for the #CSP(|F|2) problem can be expressed as

the partition function of an instance of Holant(DEQ | F) of polynomially bounded size.

Directly by this reduction, we have the following hardness result. Corollary 4.27 follows from

Theorem 2.12.

Corollary 4.27. Holant(DEQ | F) is #P-hard if there is some f ∈ F such that S (f) is not affine.

证明. By the definition of |f |2, we know S (|f |2) = S (f). Thus, there is some |f |2 ∈ |F|2 such

that S (|f |2) is not affine. This implies that |F|2 6⊆ A . Moreover, by Lemma 2.10, we also have

|F|2 6⊆ P. By Theorem 2.12, #CSP(|F|2) is #P-hard and hence, by Lemma 4.26, Holant(DEQ | F)

is #P-hard.

Now, we may assume every signature f ∈ F has affine support. Quite amazingly, if an EO

signature has affine support, then its support must have a special structure, called pairwise opposite.

We repeat the definition of pairwise opposite here.
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Definition 4.28 (Pairwise opposite). Let S ⊆ Z2n
2 be an affine linear subspace. We say S is

pairwise opposite if we can partition the 2n variables into n pairs such that on S , two variables of

each pair always take opposite values. If S is pairwise opposite, we fix a pairing. Then each pair

under this paring is called an opposite pair.

Example 4.29. Let S = {(x1, x2, . . . , x2n) | x1, . . . , x2n ∈ Z2, xi = xn+i (i ∈ [n])}. Then S is

pairwise opposite. Moreover, any affine linear subspace of S is pairwise opposite.

For instance, let C be the Hamming (7, 4)-code. We consider its dual Hamming code C⊥. C⊥

is a linear subspace of Z7
2 of dimension 3. Let

SC = {α ◦ α ∈ Z14
2 | α ∈ C⊥}.

Then SC is pairwise opposite. This SC is introduced in [32] related to a certain tractable family

of signatures for a class of Holant problems.

Note that if an affine linear subspace S ⊆ Z2n
2 is pairwise opposite, then S ⊆ H2n. Now, we

show the other direction is also true. This result should be of independent interest.

Lemma 4.30. Let S ⊆ Z2n
2 be an affine linear subspace. If S ⊆ H2n, then S is pairwise opposite.

证明. The lemma is trivially true if |S | = 0, 1. Suppose dim(S ) = k ⩾ 1. We can pick a set of

free variables F = {x1, . . . , xk}, then on S , every variable x is expressible as a unique affine linear

combination over Z2 of these free variables, x = λ1x1+ . . .+λkxk+λk+1, where λ1, . . . , λk+1 ∈ Z2.

(If x takes a constant value on S , it is still an affine linear combination of these free variables.)

We separate out all 2n variables into two types, those with λk+1 = 0 (linear form) and those

with λk+1 = 1 (affine, but not linear form). If we set all free variables x1, . . . , xk to 0, we get a

vector α ∈ S with wt(α) = n. Each x of the first type contributes zero and each x of the second

type contributes one. Hence among all 2n variables, there are exactly n variables of each type,

and the chosen free variables are among the first type. Without loss of generality, we may assume

variables of the first and second type are U = {x1, . . . , xn} and V = {xn+1, . . . , x2n}.

For any variable x = λ1x1 + . . . + λkxk + λk+1, with respect to this unique affine linear

expression, let Λ(x) = {i ∈ [k] | λi = 1}, the set of free variables that do appear in the expression
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of x. We have,

x =
∑
i∈Λ(x)

xi if x ∈ U, and x = 1 +
∑
i∈Λ(x)

xi if x ∈ V.

Clearly, for i ∈ [k], Λ(xi) = {i}. For any subset I ⊆ [k], we let

U⊆(I) = {x ∈ U | I ⊆ Λ(x)}, and U=(I) = {x ∈ U | Λ(x) = I}.

Define V ⊆(I) and V =(I) analogously, with V in place of U . For any subset I ⊆ [k], let αI ∈ S be

the vector determined by setting free variables xi = 1 for i ∈ I and xi = 0 for i ∈ [k]− I. Within

the 2n bit positions in the vector αI , for any variable x ∈ U ,

x = 1 if |I ∩ Λ(x)| is odd, and x = 0 otherwise.

Symmetrically for any variable x ∈ V , we have

x = 0 if |I ∩ Λ(x)| is odd, and x = 1 otherwise.

Let Uodd(I) = {x ∈ U | |I ∩ Λ(x)| is odd} and V odd(I) = {x ∈ V | |I ∩ Λ(x)| is odd}. Since

n = wt(αI) = |Uodd(I)|+ (n− |V odd(I)|),

we have |Uodd(I)| = |V odd(I)|, for all I ⊆ [k].

Claim 1. For all I ⊆ [k],

|Uodd(I)| =
∑

J⊆I:J ̸=∅

(−2)|J |−1|U⊆(J)|.

To prove this Claim, we count the contributions of every x ∈ U to both sides of the equation.

For x ∈ U , let m(x) = |I ∩Λ(x)|. This x contributes one or zero to the LHS, according to whether

m(x) is odd or even respectively. On the RHS, its contribution is

m(x)∑
j=1

(−2)j−1
∑

J⊆I∩Λ(x):|J |=j

1 =

m(x)∑
j=1

(−2)j−1

(
m(x)

j

)
= (−2)−1

[
(1− 2)m(x) − 1

]
,
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which is also precisely one or zero according to whether m(x) is odd or even respectively.

The same statement is true for V odd(I) replacing U by V , with the same proof.

Claim 2. For all I ⊆ [k],

|V odd(I)| =
∑

J⊆I:J ̸=∅

(−2)|J |−1|V ⊆(J)|.

We show next that |U⊆(I)| = |V ⊆(I)| for all I ⊆ [k]. If I = ∅, then U⊆(I) = U and V ⊆(I) = V ,

and so they have the same cardinality, both being n. Inductively, for any I ⊆ [k], suppose we already

know that |U⊆(J)| = |V ⊆(J)|, for all proper subsets J ⊂ I, then since |Uodd(I)| = |V odd(I)|, by

the two Claims we have |U⊆(I)| = |V ⊆(I)| as well, since the coefficient (−2)|I|−1 6= 0.

Then, by definition

|U⊆(I)| =
∑

I⊆J⊆[k]

|U=(J)|.

By the Möbius inversion formula, we have

|U=(I)| =
∑

I⊆J⊆[k]

(−1)|J |−|I||U⊆(J)|.

Indeed, ∑
I⊆J⊆[k]

(−1)|J |−|I|
∑

J⊆J ′⊆[k]

|U=(J ′)| =
∑

I⊆J ′⊆[k]

∑
I⊆J⊆J ′

(−1)|J |−|I||U=(J ′)|,

and for a proper containment I ⊂ J ′ the coefficient of |U=(J ′)| is (1− 1)|J
′|−|I| = 0, and it is 1 for

I = J ′.

The same statement is true for V . Thus, we have |U=(I)| = |V =(I)| for all I ⊆ [k].

This allows us to set up a pairing between U and V such that for each pair of paired variables

(x, y) ∈ U × V , we have Λ(x) = I(y). For any I ⊆ [k], we arbitrarily pick a pairing between

U=(I) and V =(I). This is achievable because they have the same cardinality. Since the following

decompositions for both U and V are disjoint unions

U =
⋃
I⊆[k]

U=(I) and V =
⋃
I⊆[k]

V =(I),

we get a global pairing between U and V , such that for each pair of paired variables (x, y) ∈ U ×V ,
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we have Λ(x) = I(y). Recall that on S , since x ∈ U , we have x =
∑

i∈Λ(x) xi; meanwhile since

y ∈ V we have y = 1 +
∑

i∈I(y) xi. It follows that x = y on S .

Now, we are going to simulate #CSP(F) using Holant(DEQ | F) when F consists of signatures

with affine support. Suppose f(x1, . . . , x2n) ∈ F has affine support, by Lemma 4.30, we know S (f)

is pairwise opposite. By permuting variables, we may assume for i ∈ [n], (xi, xn+i) is paired as an

opposite pair. Then, we have the following reduction.

Lemma 4.31. Suppose F is a set of EO signatures. If every signature f ∈ F has affine support,

then #CSP(F) ⩽T Holant(DEQ | F).

证明. Given an instance I of #CSP(F) over m variables V = {x1, . . . , xm}. Suppose it contains

ℓ constraints fi (i ∈ [ℓ]) of arity 2ni, and fi is applied to the variables xi1 , . . . , xi2ni . We define a

graph G = (V,E), where V is the variable set and (x, y) ∈ E if variables x, y appear as an opposite

pair in some S (fi). Consider all connected components of G. We get a partition of V . Pick a

representative variable in each connected component and define V r to be the set of representative

variables. Without loss of generality, we assume V r = {x1, . . . , xmr}. For each variable x ∈ V ,

we use xr ∈ V r to denote its representative variable. By the definition of opposite pairs, for any

assignment with a nonzero contribution, we have x = xr if there is a path of odd length from x

to xr and x = xr if there is a path of even length from x to xr (if xr is x itself, we say there is

a path of length 0 from xr to x). If for some x, we have both x = xr and x = xr, (that is, the

connected component containing x is not a bipartite graph), then we know #CSP(I) ≡ 0 since

x = x̄ is impossible. Otherwise, for each variable x ∈ V we have either x = xr or x = xr, but not

both.

Then, for any nonzero term in the sum

#CSP(I) =
∑

x1,...,xm∈Z2

ℓ∏
i=1

fi(xi1 , . . . , xi2n),

the assignment of all variables in V can be uniquely extended from its restriction on representative

variables V r. Moreover, since S (fi) is pairwise opposite, for each opposite pair (xis , xin+s), we

know exactly one variable is equal to xr
is

while the other one is equal to xr
is
. Thus each pair
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(xis , xin+s) is either (xr
is
, xr

is
) or (xr

is
, xr

is
). We will write this as (x̂r

is
, x̂r

is
). Then, we have

#CSP(I) =
∑

x1,...,xmr∈Z2

ℓ∏
i=1

fi(xi1 , . . . , xi2ni ) =
∑

x1,...,xmr∈Z2

ℓ∏
i=1

fi(x̂r
i1
, . . . , x̂r

ini
, x̂r

i1
, . . . , x̂r

ini
). (4.15)

The final form of (4.15) is an instance of Holant(DEQ | F).

By this reduction, we have the following hardness result.

Corollary 4.32. If every signature f ∈ F has affine support, then Holant(DEQ | F) is #P-hard

unless F ⊆ A , or F ⊆ P.

Theorem 4.33. #EO({6=4} ∪ F) is #P-hard unless F ⊆ A , or F ⊆ P.

证明. It follows from Lemmas 4.23, 4.24, Corollaries 4.27 and 4.32.

4.5 Putting Things Together

Combining Theorems 2.30, 4.22 and 4.33, we can finish the proof of the Theorem 4.1.

证明. (of Theorem 4.1) If F ⊆ A or F ⊆ P, then by Theorem 2.30, #EO(F) is tractable. Suppose

F 6⊆ A and F 6⊆ P, then certainly F 6⊆ E⊗ as E⊗ ⊂ P. Then Theorems 4.22 and 4.33 complete

the proof.
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Chapter 5

Dichotomy for Real Holant Problems

with an Odd-ary Signature

From this chapter to Chapter 8, we will prove the complexity dichotomy for real-valued Holant

problems. In these chapters, without other specification, we use f to denote a real-valued signature

and F to denote a set of real-valued signatures. We use f̂ = Z−1f to denote a signature satisfying

ars and F̂ = Z−1F to denote a set of signatures satisfying ars. We use Q to denote a matrix

in O2, and Q̂ to denote a matrix in Ô2. Clearly, if F is real-valued, then QF is also real-valued.

Equivalently, if F̂ satisfies ars, then Q̂F̂ = Q̂F also satisfies ars.

By Theorem 2.33, if F satisfies condition (T), then Holant(F) is P-time computable. So, we

only need to prove that Holant(F) or equivalently Holant( 6=2| F̂) is #P-hard when F does not

satisfy condition (T). In this chapter, we consider the case that F contains a nonzero signature of

odd arity.

5.1 Realization of Pinning or Equality Signatures

The problem Holantc(F) is defined as Holant(∆0,∆1F). A complexity dichotomy of Holantc

problems was first proved for real-valued signatures. Later, it was generalized to complex-valued

signatures. Here, we state the dichotomy of Holantc problems for real-valued signatures. Recall

that we define H = 1√
2

[
1 1
1 −1

]
be the 2-by-2 Hadamard matrix and Tαs = [ 1 0

0 αs ] where α = 1+i√
2
.

Theorem 5.1. Let F be a set of real valued signatures. Then, Holantc(F) is #P-hard unless

F ⊆ T , A , P, L , HF ⊆ P, F̂ ⊆ P or TαF ⊆ A , in which cases Holantc(F) is tractable.

Remark 5.2. Note that the above tractability condition implies that F satisfies condition (T).

Thus, if a real-valued F does not satisfy condition (T), then Holantc(F) is #P-hard.
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We want to realize the unary signatures ∆0 and ∆1 so that we can invoke the dichotomy of

Holantc problems. We first show that under some holographic transformations, either one can use

a signature of odd arity to realize the unary signature ∆0 = (1, 0), or one can realize some equality

signature (=k) (k ⩾ 3).

Lemma 5.3. Let F be a set of real-valued signatures containing a signature f of odd arity. Then,

there exists some real orthogonal matrix Q ∈ O2 such that

• Holant(∆0, QF) ⩽T Holant(F) or

• Holant( 6=2|=2k+1, Q̂F) ⩽T Holant(F), for some k ⩾ 1.

证明. Suppose f has arity n. We prove our lemma by induction on n.

If n = 1, then f = (a, b) where a, b ∈ R are not both zero. Let Q1 = 1√
a2+b2

[
a b
−b a

]
∈ O2.

Note that Holant(F) is just Holant(=2| F), and =2 is invariant under an orthogonal holographic

transformation (=2)(Q
−1
1 )⊗2 = (=2), and Q1(a, b)

T =
√
a2 + b2(1, 0)T. Thus,

Holant(=2| ∆0, Q1F) ≡ Holant(=2| (a, b),F).

The base case is proved.

We assume our claim is true for n = 2k − 1. Now, we consider n = 2k + 1 ⩾ 3. If there is a

pair of indices {i, j} such that ∂ijf 6≡ 0, then we can realize a signature of arity 2k− 1 from f . By

induction hypothesis, we have

Holant(∆0, QF) ⩽T Holant(∂ijf,F) ⩽T Holant(F).

Otherwise, ∂ijf ≡ 0 for all pairs of indices {i, j}. Thus, we also have ∂̂ij f̂ ≡ 0 for all {i, j}. Then,

by Lemma 3.9, we have f̂ = a(1, 0)⊗n + ā(0, 1)⊗n for some a 6= 0. We may normalize the norm |a|

to 1. Suppose that a = eiθ. Let Q̂2 =
[
e−iθ/n 0

0 eiθ/n

]
∈ Ô2. We have Q̂2

⊗n
f̂ = (1, 0)⊗n + (0, 1)⊗n.

Thus, a holographic transformation by Q̂2 and Z−1 yields

Holant(F) ≡T Holant(=2| f,F) ≡T Holant( 6=2| f̂ , F̂) ≡T Holant(6=2|=2k+1, Q̂2F̂).

By equation (2.1), Q̂2F̂ = Q̂2F . Thus, Holant(6=2|=2k+1, Q̂2F) ⩽T Holant(F) where k ⩾ 1.
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Now, we want to show that both Holant(∆0, QF) and Holant(6=2|=k, Q̂F) where k ⩾ 3 are

#P-hard for all Q ∈ O2 and all real-valued F that does not satisfy condition (T). Recall that for

all Q ∈ O2 and all real-valued F , QF is also real-valued that does not satisfy condition (T), QF is

also a real-valued signature set that does not satisfy condition (T). Thus, it suffices for us to show

that Holant(∆0,F) and Holant(6=2|=k, F̂) where k ⩾ 3 are #P-hard for all real-valued F that does

not satisfy condition (T). We will prove these #P-hardness results in the following two sections.

5.2 #P-Hardness of Holant(6=2|=k, F̂)

Recall that EQk denotes the set of equality signatures of arity nk for all n ⩾ 1, i.e., EQk =

{=k,=2k, . . . ,=nk, . . .}. The problem #CSPk(6=2,G) is defined as Holant(EQk |6=2,G). First, we

prove the following reduction.

Lemma 5.4. If k ⩾ 3, then #CSPk(6=2,G) ≡T Holant(EQk |6=2,G) ⩽T Holant( 6=2|=k,G) for any

complex-valued signature set G.

证明. The first equivalence is by definition. For the second reduction, we show that =nk can be

realized on the LHS by induction on n. First, we connect one variable of each of k copies of 6=2 on

the LHS with the k variables of =k on the RHS (Figure 3a). This gadget realizes =k on the LHS.

Then, suppose that =nk is realizable on the LHS. We take one copy of =nk and two copies of

=k on the LHS, and one copy of =k on the RHS. Remember that k ⩾ 3. We connect two variables

of =k on the RHS with one variable of each of the two copies of =k on the LHS, and connect the

other k − 2 variables of =k on the RHS with k − 2 variables of =nk on the LHS (Figure 3b). This

gadget realizes =(n+1)k on the LHS.

Also, connecting k− 1 variables of one copy of =k on the RHS with k− 1 variables of another

copy of =k on the RHS using 6=2 on the LHS realizes 6=2 on the RHS.

Then, we give a dichotomy of #CSPk( 6=2,G) for any set G of complex-valued signatures. Let

ρ = e
iπ
2k be a 4k-th primitive root of unity, Tk =

[
1 0
0 ρ

]
, and A d

k = T dkA for some d ∈ [k].

Theorem 5.5. Let G be a set of complex-valued signatures. #CSPk(G, 6=2) is #P-hard unless

• G ⊆ P, or
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LHS RHS LHS RHS

(a) (b)

图 3: Gadgets realizing =k and =(n+1)k on the LHS

• there exists d ∈ [k] such that G ⊆ A d
k ,

in which cases the problem is tractable.

Before we prove this theorem, we first show that how it gives the #P-hardness of Holant( 6=2|=k

, F̂) when F does not satisfy condition (T).

Corollary 5.6. Let F be a set of real-valued signatures. If F does not satisfy condition (T), then

Holant(6=2|=k, F̂) is #P-hard for any k ⩾ 3.

证明. We first prove F̂ 6⊆ P and F̂ 6⊆ A d
k for any d ∈ [k] by contraction. If F̂ ⊆ P, then since

6=2∈ P, F is P-transformation. Thus, F satisfies condition (T). A contradiction. Also, if F̂ ⊆ A d
k

for some d ∈ [k], then since (T dk )
−1( 6=2) = ( 6=2) ∈ A , F is A -transformation. Still a contradiction.

By Lemma 5.4, #CSPk(6=2, F̂) ⩽T Holant( 6=2|=k, F̂). By Theorem 5.5, #CSPk(6=2, F̂) is #P-

hard. Thus, Holant( 6=2|=k, F̂) is #P-hard.

Now, we prove Theorem 5.5. For k = 1 or 2, Theorem 5.5 follows from Theorems 2.12 and

2.14 (note that (6=2) /∈ L ). We only need to consider the case that k ⩾ 3. Let α = e
iπ
4 and

β = e
iπ
8 . Below without other specification, we use ρ to denote a primitive root of unity. Also, we

use [x, 0, · · · , 0, y]r to denote a general equality signature f of arity r where f (⃗0r) = a, f (⃗1r) = b

and f equals 0 otherwise.

Note that

#CSPk(6=2,G) ≡T Holant(EQk| 6=2,G).
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Moreover, by the following two gadgets, we have ( 6=2), EQk on both sides in Holant(EQk| 6=2,G),

i.e.,

#CSPk( 6=2,G) ≡ Holant(EQk, 6=2 |EQk, 6=2,G). (5.1)

■

■

■

• ...

(a) Realizing (=nk) on RHS

• •■

■

■

...

(b) Realizing ( ̸=2) on LHS

图 4: The squares and circles are labeled by (6=2) and (=nk) respectively.

The following two lemmas show that in #CSPk(6=2,G) the pinning signatures [1, 0] and [0, 1]

are freely available. The first lemma is from [45]. It shows that we have [1, 0]⊗k, [0, 1]⊗k freely in

#CSPk(G).

Lemma 5.7. Let G be a signature set, then we have

#CSPk(G, [1, 0]⊗k, [0, 1]⊗k) ≤T #CSPk(G).

The second lemma is from [57]. It shows that we can remove the tensor power of [1, 0]⊗k, [0, 1]⊗k

in Lemma 5.7.

Lemma 5.8. Let G be a signature set, then we have

#CSPk(G, [1, 0], [0, 1]) ≤T #CSPk(G, [1, 0]⊗k, [0, 1]⊗k).

We will prove Theorem 5.5 by induction. If there exists a general equality signature of arity r

with r - k in G, then a convenient strategy for induction is allowed as the following lemma shows.

Another strategy for induction is presented in Lemma 5.11.

Lemma 5.9. Let f = [1, 0, · · · , 0, a]r with r - k and a 6= 0, and G be a signature set. Then

#CSPk(G, 6=2, f) is #P-hard except for the following cases

• G ⊆ P;



71

• {G, f} ⊆ A d
k for some d ∈ [k],

which can be computed in polynomial time.

证明. Note that the lemma has been proved for the cases k = 1, 2 by Theorem 2.12 and Theo-

rem 2.14. We will prove the lemma by induction on k in the following. If r > k, we can assume

that r = nk + r′ with 0 < r′ < k. By connecting (=nk) to f , we get [1, 0, · · · , 0, a]r′ . Thus we can

assume that r < k in the following.

Let k = tr+ r1 with 0 < r1 ≤ r. Note that k > r, so t ≥ 1. In Holant(EQk, 6=2 |EQk, 6=2, f,G),

connecting ℓt copies of [1, 0, · · · , 0, a]r to (=ℓk) we get [1, 0, · · · , 0, aℓt]ℓr1 on LHS for ℓ = 1, 2, · · · ,

i.e.,

Holant(EQa
r1 , 6=2 |EQk, 6=2, f,G) ≤T Holant(EQk, 6=2 |EQk, 6=2, f,G),

where EQa
r1 = {[1, 0, · · · , 0, at]r1 , [1, 0, · · · , 0, a2t]2r1 , · · · , [1, 0, · · · , 0, aℓt]ℓr1 , · · · }. Let T =

[
1 0

0 a
t
r1

]
,

then T−1(EQa
r1) = EQr1 . Thus after the holographic transformation using T , we have

Holant(EQr1 |TEQk, 6=2, T
⊗rf, TG) ≤T Holant(EQk, 6=2 |EQk, 6=2, f,G),

i.e.,

#CSPr1(TEQk, 6=2, T
⊗rf, TG) ≤T #CSPk( 6=2, f,G).

By induction, if {TEQk, T
⊗rf, TG} * P and {TEQk, T

⊗rf, TG} * A d′
r1 for any d′ ∈ [r1], then

#CSPr1(TEQk, 6=2, T
⊗rf, TG) is #P-hard. Thus #CSPk(6=2, f,G) is #P-hard.

Otherwise, if {TEQk, T
⊗rf, TG} ⊆ P, then G ⊆ P since T is a diagonal matrix. Moreover, if

{TEQk, T
⊗rf, TG} ⊆ A d′

r1 for some d′ ∈ [r1], let T ′ =
[
1 0

0 γd
′

]
, where γ is a 4r1-th primitive root of

unity, i.e., γ4r1 = 1, then

• T ′⊗kT⊗k(=k) ∈ A ,

• T ′⊗rT⊗rf ∈ A ,

• T ′TG ⊆ A .

Firstly, by T ′⊗kT⊗k(=k) ∈ A , we have (γd
′ka

kt
r1 )4 = 1. This implies that γd′a

t
r1 is a 4k-th root

of unity, i.e., there exists d ∈ [k] such that γd′a
t
r1 = ρd, then T ′T =

[
1 0
0 ρd

]
. Thus G ⊆ A d

k and

f ∈ A d
k . This finishes the proof.
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Definition 5.10. Let f = (fi1i2···in), g = (gi1i2···in) be two n-ary signatures, then fg is an n-

ary signature and (fg)i1i2···in = fi1i2···ingi1i2···in for any i1i2 · · · in ∈ {0, 1}n. In particular, fk =

(fki1i2···in), and for a signature set G, Gk = {fk|f ∈ G}.

The operation in Definition 5.10 is the main tool to do the induction in the proof of Theo-

rem 5.5. More precisely, the following lemma shows that if f = f1f2 · · · fk′ for some k′|k, then we can

simulate #CSP k
k′
(6=2, f) by #CSPk(6=2, f1, f2, · · · , fk′). If f /∈ P and f /∈ A d′

k
k′

for any d′ ∈ [ kk′ ],

then by induction, #CSP k
k′
(6=2, f) is #P-hard. Thus #CSPk( 6=2, f1, f2, · · · , fk′) is #P-hard.

Lemma 5.11. Let G be a signature set. Signatures f1, f2, · · · , fk′ have the same arity and f =

f1f2 · · · fk′, where k′|k, then

#CSP k
k′
(f,Gk′) ≤T #CSPk(f1, f2, · · · , fk′ ,G).

证明. In an instance of #CSP k
k′
(f,Gk′), by expanding each variable x to k′ copies of x, at the same

time replacing each hk′ ∈ Gk′ by k′ copies of h, and replacing f by f1, f2, · · · , fk′ , we get an instance

of #CSPk(f1, f2, · · · , fk′ ,G) and its value is same as the value of the instance of #CSP k
k′
(f,Gk′).

This finishes the proof.

By Lemma 5.11, we have

#CSP(fk) ≤T #CSPk(f).

If fk /∈ A and fk /∈ P, by Theorem 2.12, #CSP(fk) is #P-hard. Thus #CSPk(f) is #P-hard

and we finish the proof of Theorem 5.5. So in the following, we assume that

fk ∈ A or fk ∈ P for each f ∈ G.

In particular, the support of f is affine (fk has the same support as f).

Now we give some definitions for a signature f with affine support.

Definition 5.12. If f has affine support of rank r, and X = {xj1 , xj2 , · · · , xjr} is a set of

free variables, then fX is the compressed signature of f for X such that fX(xj1 , xj2 , · · · , xjr) =

f(x1, x2, · · · , xn), where (x1x2 · · ·xn) is in the support of f . When it is clear from the context, we

omit X and use f to denote fX .
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Note that if f has affine support, then f ∈ A iff f ∈ A .

Definition 5.13. Suppose f has affine support of rank r with {x1, x2, · · · , xr} as a set of free

variables. We use all non-empty combinations
∑r

j=1 ajxj(aj ∈ Z2, not all zero) of x1, x2, · · · , xr as

the names of bundles of f . The type of each bundle is a possibly empty multiset of ‘‘+ ” and ‘‘− ”,

and is defined as follows: For every input variable xk(1 ≤ k ≤ n) of f there is a unique bundle

named
∑r

j=1 ajxj such that on the support of f , xk is either always equal to
∑r

j=1 ajxj (mod 2)

or always equal to
∑r

j=1 ajxj + 1 (mod 2). In the former case we add a ‘‘ + ”, and in the latter

case we add a ‘‘ − ” to the bundle type for the bundle named
∑r

j=1 ajxj, and we say the variable

xk belong to this bundle. All input variables are partitioned into bundles.

If there exists a set of free variables, without loss of generality, assume that it is {x1, x2, · · · , xr},

such that all the bundles have type “+”, i.e.,

f(x1(+ + · · ·+︸ ︷︷ ︸
n1

)x2(+ + · · ·+︸ ︷︷ ︸
n2

) · · · (x1 + x2 + · · ·+ xr)(+ + · · ·+︸ ︷︷ ︸
n12···r

)),

where n1 + n2 + · · ·+ n12···r = n, then we say f is monotone and denote its support by

(x1)n1(x2)n2 · · · (xr)nr(x1 + x2)n12 · · · (x1 + x2 + · · ·+ xr)n12···r .

If the number of variables in each bundle is a multiple of ℓ for some integer ℓ, then we say f has

the ℓ-type support.

Definition 5.14. , Connecting one variable xi of a signature to (=k) using (6=2), is equivalent to

replace xi by (k − 1) copies of x̄i. We call this operation to be (k − 1)-multiple.

If the variables in the same bundle is greater than k, by connecting k variables in this bundle

to (=k), we make these k variables disappear and keep the compressed signature of f unchanged.

We call this operation to be collation.

Lemma 5.15. Let f be a signature of affine support. By doing the operation (k − 1)-multiple or

collation to f we get a new signature g, then f ∈ P iff g ∈ P; f ∈ A d
k iff g ∈ A d

k for any d ∈ [k].

证明. We prove the lemma for (k − 1)-multiple operation to f ∈ A d
k for some d ∈ [k]. Other cases

are similar and we omit them here. Note that (6=2) ∈ A d
k and (=k) ∈ A d

k for each d ∈ [k]. Thus
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•■▲ x x̄

x̄

x̄

x̄

......

图 5: Transforming the variable x to k−1 copies of x̄ by connecting (=k) using (6=2). The triangle,
square and bullet are labeled by f , ( 6=2) and (=k) respectively.

if f ∈ A d
k for some d, then g ∈ A d

k by the closure of A . Conversely, note that the variable x of f

which is connected to (=k) using ( 6=2) is flipped into (k − 1) copies of x̄ in g. By connecting these

(k−1) copies of x̄ to (=k) using (k−1) copies of ( 6=2), we get f ′ that is same as f . Thus if g ∈ A d
k ,

then f ′ ∈ A d
k and so does f .

By Lemma 5.15, we can flip the variable x̄ to x in the support of f and keep whether f is in

the tractable class or not. So in the following we can assume that all the signatures are monotone.

To use Lemma 5.11, we need to construct non-product signature and non-affine signature which

is the product f1f2 · · · fk′ . Firstly we do this for the non-product case.

By the definition of P, every signature f ∈ P has a decomposition as a product of signatures

over disjoint of variables, where each factor has support contained in a pair of antipodal points:

There exists a partition X = {x1, x2, · · · , xn} =
⋃ℓ
j=1Xj , and a signature fj on Xj such that

f(X) =
∏ℓ
j=1 fj(Xj), and for all 1 ≤ j ≤ ℓ, the support of fj is contained in {αj , ᾱj} for some

αj ∈ {0, 1}|Xj |.

The proof of the following lemma totally follows the the proof of Lemma 4.8 and Lemma 4.9

of [32]. We just generalize it from k = 2 to general k.

Lemma 5.16. For any k′ | k, if there exists f ∈ G such that f /∈ P but fk′ ∈ P, then we can

construct h1, h2, · · · , hk′ in #CSPk(G), such that h = h1h2 · · ·hk′ /∈ P.

证明. Since [1, 0] and [0, 1] are freely available in #CSPk(G) by Lemma 5.8 and Lemma 5.7, just

replacing 2 by k in the proof of Lemma 4.8 and Lemma 4.9 of [32], we can construct a rank-2

signature g from f in #CSPk(G) such that g has the support (x1)k1(x2)k2 and g = (1, a, b,−ab)

up to a nonzero scalar, where ab 6= 0. By pinning all the x2 = 0, we get a signature u1 which has

the support (x1)k1 and u1 = (1, a), and by pinning all the x1 = 0, we get a signature u2 which
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has the support (x2)k2 and u2 = (1, b). Let u = u1 ⊗ u2 and h1 = g, h2 = · · · = hk′ = u, then

h = h1h2 · · ·hk′ has the compressed signature (1, ak
′
, bk

′
,−ak′bk′) that is not in P.

Let k′ = k in Lemma 5.11. If G * P, by Lemma 5.11 and Lemma 5.16, we have

#CSP(h, 6=2,Gk) ≤ #CSPk(6=2,G),

where h /∈ P. If Gk * A , then #CSP(h, 6=2,Gk) is #P-hard by Theorem 2.12. This implies that

#CSPk( 6=2,G) is #P-hard. So in the following, we assume that Gk ⊆ A . Thus we can assume

that the compressed signature

f(x1, x2, · · · , xr) = ρ
∑r
i=1 aixi+2

∑
1≤j<k≤r ajkxjxk+4H(x1,x2,··· ,xr),

where {x1, x2, · · · , xr} is a set of free variables and all the monomials in H(x1, x2, · · · , xr) have

degree at least 3.

In the following, we will construct non-affine signature which is the product f1f2 · · · fk′ in

#CSPk(6=2,G) if G * A d
k for any d ∈ [k]. The main idea is to simplify the form of signatures in G

and keep it not contained by A d
k for any d ∈ [k]. The following lemma is to reduce the rank of the

signatures to at most 3.

Lemma 5.17. Let G be a signature set and f ∈ G is not in A d
k for some d ∈ [k], then we can

construct g in #CSPk(6=2,G) such that g /∈ A d
k and g has rank at most 3, i.e.,

#CSPk(6=2, g,G) ≤T #CSPk(6=2 G).

证明. Note that [1, 0], [0, 1] are freely available. Without loss of generality, assume that {x1, x2, · · · , xr}

is a set of free variables of f . We can assume that the compressed signature

f(x1, x2, · · · , xr) = ρQ(x1,x2,··· ,xr)

up to a nonzero scalar by fk ∈ A , where Q(x1, x2, · · · , xr) is a multilinear polynomial. By the
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holographic transformation using T dk =
[
1 0
0 ρd

]
, we have

Holant(Edk | 6=2, f̂ , Ĝ, [1, 0], [0, 1]) ≡T #CSPk( 6=2, f,G, [1, 0], [0, 1]),

where f̂ = (T dk )
⊗arity(f)f , Ĝ = T dk G, and Edk = EQk(T dk )−1. Since f /∈ A d

k , we have f̂ /∈ A .

Note that f̂ has the same support as f . The ratio of f(x1, x2, · · · , xn) and f̂(x1, x2, · · · , xn) is a

power of ρ for any (x1x2 · · ·xn) in the support of f . Thus there exists a multilinear polynomial

Q̂(x1, x2, · · · , xr) such that the compressed signature f̂(x1, x2, · · · , xr) = ρQ̂(x1,x2,··· ,xr). Assume

that

Q̂(x1, x2, · · · , xr) =
∑

1≤i≤r
âixi +

∑
1≤j<ℓ≤r

âjℓxjxℓ + P (x1, x2, · · · , xr), (5.2)

where P (x1, x2, · · · , xr) is a polynomial and all the terms have power at least 3. In (5.2),

• If there exists âi 6≡ 0 (mod k), we pin all free variables to 0 by [1, 0] except xi, then we get a

rank-1 signature that is not in A .

• If there exists âjℓ 6≡ 0 (mod 2k), we pin all free variables to 0 by [1, 0] except xj , xℓ, then we

get a rank-2 signature that is not in A .

• Finally, if P (x1, x2, · · · , xr) 6≡ 0 (mod 4k), suppose the monomialM has the minimum degree,

among all monomials in P whose coefficient that is nonzero modulo 4k. We pin all free

variables which are not in M to 0 by [1, 0] and pin the variables in M to 1 by [0, 1] except 3

of them, then we get a rank-3 signature that is not in A .

If âi ≡ 0 (mod k), âjℓ ≡ 0 (mod 2k) for all âi and âjℓ, and P (x1, x2, · · · , xr) ≡ 0 (mod 4k), then

f̂ ∈ A . This is a contradiction. In total, we always can get a non-affine signature of degree at most

3 in Holant(Edk | 6=2, f̂ , Ĝ, [1, 0], [0, 1]). This implies that we can get a signature g /∈ A d
k of degree at

most 3 in #CSPk(6=2, f,G, [1, 0], [0, 1]). This finishes the proof.

By Lemma 5.17, we just need to focus on the signatures with arity less than 4.

Lemma 5.18. If f has k-type support and f /∈ A d0
k for some d0 ∈ [k], then f /∈ A d

k for any d ∈ [k].

证明. Let {x1, x2, · · · , xr} be a set of free variables. We can assume that f has the support

(x1)ℓ1k(x2)ℓ2k · · · (xn)ℓnk since f has k-type support, and xi =
∑r

j=1 aijxj for 1 ≤ i ≤ n. Let
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f̂ =
[
1 0
0 ρd0

]arity(f)
f, then

f̂ = ρd0k
∑n
i=1 ℓixif = id0

∑n
i=1 ℓixif.

In the power of i, by z ≡ 0 (mod 2) (respectively 1 mod 2) iff z2 ≡ 0 mod 4 (respectively 1

mod 4), we can substitute xi by (
∑r

j=1 aijxj)
2, i.e.,

f̂ = id0
∑n
i=1 ℓi(

∑r
j=1 aijxj)

2

f.

Note that (
∑r

j=1 aijxj)
2 is a quadratic polynomial and the coefficients of the cross terms are even.

By f̂ /∈ A , we have f /∈ A . Then for any d ∈ [k], let f̂ ′ =
[
1 0
0 ρd

]⊗arity(f)
f, we have

f̂ ′ = ρdk
∑n
i=1 ℓixif = id

∑n
i=1 ℓi(

∑r
j=1 aijxj)

2

f,

which is not in A .

Assume that f has the k-type support. Note that if f /∈ A , then f /∈ A d
k for d = k. Then by

Lemma 5.18, f /∈ A d
k for any d ∈ [k].

Lemma 5.19. Let G be a signature set. If G * P and contains a signature f /∈ A k
d for some

d ∈ [k] which has k-type support, then #CSPk(G) is #P-hard.

证明. Since G * P, there exist some signature in G which is not in P. Then by Lemma 5.16,

we can construct h1, h2, · · · , hk such that h = h1h2 · · ·hk /∈ P. Moreover, since f /∈ A k
d for some

d ∈ [k], by Lemma 5.18, we have f /∈ A . Assume that f has the support (x1)d1k(x2)d2k · · · (x1 +

x2 + · · ·+ xr)d12···rk. Let u = (=d1k)⊗ (=d2k)⊗ · · · ⊗ (=d12···rk) and f ′ = uu · · ·u︸ ︷︷ ︸
k−1

f . Note that f ′ is

identical to f . Thus f ′ /∈ A . By Lemma 5.11, we have

#CSP(h, f ′) ≤T #CSPk(G).

Since {h, f ′} * A ,P, by Theorem 2.12, #CSP(h, f ′) is #P-hard. Thus #CSPk(G) is #P-

hard.

The following lemma shows that if G contains a rank-2 signature f , then its support and

compressed signature has to be of some special form. This is a key point in the proof of Lemma 5.24.
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Lemma 5.20. Let G be a signature set which contains a rank-2 signature f /∈ A d
k for some d ∈ [k],

then we have

• G ⊆ P,

• or G ⊆ A d
k for some d ∈ [k],

• or #CSPk(6=2,G) is #P-hard;

otherwise f has the support (x1) k
2
(x2) k

2
(x1 + x2) k

2
after collation and the compressed signature is

f(x1, x2) = ib1x1+b2x2+b12x1x2 .

证明. Since f has rank 2, we can assume that f has the support (x1)k1(x2)k2(x1 + x2)k12 . By

pinning x1 = 0, we have a rank-1 signature f1 which has the support (x2)k2+k12 , i.e., f1 =

[f1(0, 0, · · · , 0), 0, · · · , 0, f1(1, 1, · · · , 1)], where f1(0, 0, · · · , 0) = f(0, 0) and f1(1, 1, · · · , 1) = f(0, 1)

are both nonzero. Thus up to a scalar, we can assume that f1 = [1, 0, · · · , 0, x] with x 6= 0. If

k2 + k12 6≡ 0 (mod k), then we are done by Lemma 5.9. Thus we have

k2 + k12 ≡ 0 (mod k). (5.3)

Then by pinning x2 = 0, x1 + x2 = 0 respectively and by the similar argument, we have

k1 + k12 ≡ 0 (mod k),

k1 + k2 ≡ 0 (mod k).
(5.4)

By (5.3) and the first equation of (5.4), we have k1 ≡ k2 (mod k). Then by the second equation of

(5.4), we have 2k1 ≡ 0 (mod k). This implies that k1 ≡ 0 (mod k) or k1 ≡ k
2 (mod k). So we have

k1 ≡ k2 ≡ k12 ≡ 0 (mod k), or k1 ≡ k2 ≡ k12 ≡
k

2
(mod k).

If k1 ≡ k2 ≡ k12 ≡ 0 (mod k), then G ⊆ P or #CSP( 6=2,G) is #P-hard by Lemma 5.19.

Now we can assume that f has the support (x1) k
2
(x2) k

2
(x1+x2) k

2
after collation. Assume that

f(x1, x2) = ρb
′
1x1+b

′
2x2+b

′
12x1x2
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up to a scalar. By pinning x2 = 0 to f , we get the signature [1, 0, · · · , 0, ρb′1 ]k. If b′1 6≡ 0 (mod k),

then [1, 0, · · · , 0, ρb′1 ] /∈ A . Note that [1, 0, · · · , 0, ρb′1 ]k has the k-type support. Again we have

G ⊆ P or #CSP(6=2,G) is #P-hard by Lemma 5.19. Otherwise, we have b′1 ≡ 0 (mod k). Moreover,

by pinning x2 = 0, x1 + x2 = 0 and using the same argument, we have b′2 ≡ 0 (mod k) and b′12 ≡ 0

(mod k) respectively. So we have

f(x1, x2) = ib1x1+b2x2+b12x1x2 ,

where b1, b2 and b12 are integers.

The following lemma shows that if G contains a rank-3 signature, then it has special support.

This can simplify the proof of Lemma 5.24 greatly.

Lemma 5.21. Let G be a signature set which contains a rank-3 signature f , then

• G ⊆ P,

• or G ⊆ A k
d for some d ∈ [k],

• or #CSPk(6=2,G) is #P-hard;

otherwise f has one of the following support after collation:

(x1)ϵ1k(x2)ϵ2k(x3)ϵ3k(x1 + x2)ϵ12k(x1 + x3)ϵ13k(x2 + x3)ϵ23k(x1 + x2 + x3)ϵ123k, (5.5)

(x1) k
2
(x2) k

2
(x3) k

2
(x1 + x2) k

2
(x1 + x3) k

2
(x2 + x3) k

2
(x1 + x2 + x3) k

2
, (5.6)

(x1) k
2
(x2) k

2
(x3) k

2
(x1 + x2)ϵ12k(x1 + x3)ϵ13k(x2 + x3)ϵ23k(x1 + x2 + x3) k

2
, (5.7)

(x1)ϵ1k(x2)ϵ2k(x3)ϵ3k(x1 + x2) k
2
(x1 + x3) k

2
(x2 + x3) k

2
(x1 + x2 + x3)ϵ123k, (5.8)

(x1) k
4
(x2) k

4
(x3) k

4
(x1 + x2) k

4
(x1 + x3) k

4
(x2 + x3) k

4
(x1 + x2 + x3) k

4
, (5.9)

(x1) k
4
(x2) k

4
(x3) k

4
(x1 + x2) 3k

4
(x1 + x3) 3k

4
(x2 + x3) 3k

4
(x1 + x2 + x3) k

4
, (5.10)

(x1) 3k
4
(x2) 3k

4
(x3) 3k

4
(x1 + x2) k

4
(x1 + x3) k

4
(x2 + x3) k

4
(x1 + x2 + x3) 3k

4
, (5.11)

(x1) 3k
4
(x2) 3k

4
(x3) 3k

4
(x1 + x2) 3k

4
(x1 + x3) 3k

4
(x2 + x3) 3k

4
(x1 + x2 + x3) 3k

4
, (5.12)
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where ϵi = 0 or 1. In (5.8), at least one of {ϵ1, ϵ2, ϵ3, ϵ123} is nonzero. Without loss of generality,

we assume that ϵ1 6= 0 or ϵ123 6= 0 in (5.8).

证明. Assume that f has the support

(x1)k1(x2)k2(x3)k3(x1 + x2)k12(x1 + x3)k13(x2 + x3)k23(x1 + x2 + x3)k123 .

By pinning x1 = 0, x2 = 0, x3 = 0 to f , we get three signatures which have the support

(x2)k2+k12(x3)k3+k13(x2 + x3)k23+k123 ,

(x1)k1+k12(x3)k3+k23(x1 + x3)k13+k123 ,

(x1)k1+k13(x2)k2+k23(x1 + x2)k12+k123

respectively. By (5.3) and (5.4) in the proof of Lemma 5.20, if we have a rank-2 signature whose

support is not k
2 -type, then we can construct a rank-1 signature whose support is not k-type, and

we can finish the proof by Lemma 5.9. Otherwise we have

k2 + k12 ≡ k3 + k13 ≡ k23 + k123 ≡ 0 (mod k

2
),

k1 + k12 ≡ k3 + k23 ≡ k13 + k123 ≡ 0 (mod k

2
),

k1 + k13 ≡ k2 + k23 ≡ k12 + k123 ≡ 0 (mod k

2
).

(5.13)

By (5.13) we have

k1 ≡ k2 ≡ k3 ≡ k123 ≡ −k12 ≡ −k13 ≡ −k23 (mod k

2
). (5.14)

Moreover, by pinning x1 + x2 = 0, we get the signature which has the support

(x1)k1+k2(x3)k3+k123(x1 + x3)k13+k23

and we have

k1 + k2 ≡ k3 + k123 ≡ k13 + k23 ≡ 0 (mod k

2
). (5.15)
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Combining (5.14) and (5.15), we have

2k1 ≡ 2k12 ≡ 0 (mod k

2
).

This implies that k1, k12 ≡ 0, k2 ,
k
4 or 3k

4 (mod k). So after collation, by (5.14),

• if k1 ≡ k12 ≡ 0 (mod k), then f has the support (5.5);

• if k1 ≡ k12 ≡ k
2 (mod k), then f has the support (5.6);

• if k1 ≡ k
2 (mod k), k12 ≡ 0 (mod k), then f has the support (5.7);

• if k1 ≡ 0 (mod k), k12 ≡ k
2 (mod k), then f has the support (5.8);

• if k1 ≡ k12 ≡ k
4 (mod k), then f has the support (5.9);

• if k1 ≡ k
4 (mod k), k12 ≡ 3k

4 (mod k), then f has the support (5.10);

• if k1 ≡ 3k
4 (mod k), k12 ≡ k

4 (mod k), then f has the support (5.11);

• if k1 ≡ k12 ≡ 3k
4 (mod k), then f has the support (5.12).

In (5.8), if all of {ϵ1, ϵ2, ϵ3, ϵ123} are zero, then f is rank-2. This is a contradiction. Thus we can

assume that ϵ1 6= 0 or ϵ123 6= 0 without loss of generality.

Let f, g be two signatures and there are s and t variables in the bundle (x) of f and (y) of g

respectively, where s + t < 2k. In the following, we often connected the two bundle by (=2k) and

produces a variable bundle with 2k − s − t variables in the constructed signature as Fig 3 shows.

We call the operation to be merging variable bundle (x) and (y) by (=2k).

■... x

x

▲...
y

y

• ......
...

Fig. 3 The square, triangle and bullet is labeled by f , g and (=2k) respectively.
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For example, if f has the support

(x1) k
2
(x2) k

2
(x3) k

2
(x1 + x2) k

2
(x1 + x3) k

2
(x2 + x3) k

2
(x1 + x2 + x3) k

2

and g has the support

(y1) k
2
(y2) k

2
(y1 + y2) k

2
.

Merging the variable bundle (x1) and (y1), (x2+x3) and (y2) using (=2k) respectively, produces two

new bundle (x′1) and (x′2 + x′3) which contain k variables respectively in the constructed signature

f ′. Moreover, this operation forces x1 + x2 + x3 = y1 + y2. Thus the two bundles (x1 + x2 + x3),

(y1 + y2) are merged automatically. So f ′ has the support

(x′1)k(x
′
2) k

2
(x′3) k

2
(x′1 + x′2) k

2
(x′1 + x′3) k

2
(x′2 + x′3)k(x

′
1 + x′2 + x′3)k,

and the compressed signature

f ′(x′1, x
′
2, x

′
3) = g(x′1, x

′
2 + x′3)f(x

′
1, x

′
2, x

′
3). (5.16)

For the variables xi, xj , xk ∈ {0, 1}, note that the variable (xi+xj) 6= xi+xj and (xi+xj+xk) 6=

xi + xj + xk if the computation is not in modulo 2. Thus we use the following two identities

(xi + xj) = xi + xj − 2xixj (5.17)

and

(xi + xj + xk) = xi + xj + xk − 2xixj − 2xixk − 2xjxk + 4xixjxk (5.18)

when we carry out computation not in modulo 2. For example, in the above example, if f and g

have the compressed signatures

f(x1, x2, x3) = ia1x1+a2x2+a3x3+2a12x1x2+2a13x1x3+2a23x2x3+2a123x1x2x3 . (5.19)

and

g(y1, y2) = ib1y1+b2y2+b12y1y2 (5.20)
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respectively, then f ′ has the compressed signature

f ′(x′1, x
′
2, x

′
3) = ia1x

′
1+a2x

′
2+a3x

′
3+2a12x′1x

′
2+2a13x′1x

′
3+2a23x′2x

′
3+2a123x′1x

′
2x

′
3+b1x

′
1+b2[x

′
2+x

′
3]+b12x

′
1[x

′
2+x

′
3].

In the power of i, the computation is modulo 4. So the variable [x′2 + x′3] 6= x′2 + x′3 and we use

(5.17), i.e.,

f ′ = ia1x
′
1+a2x

′
2+a3x

′
3+2a12x′1x

′
2+2a13x′1x

′
3+2a23x′2x

′
3+2a123x′1x

′
2x

′
3+b1x

′
1+b2(x

′
2+x

′
3−2x′2x

′
3)+b12x

′
1(x

′
2+x

′
3−2x′2x

′
3).

We will use the following result repeatedly in the following proof.

Lemma 5.22. Let g be a rank-2 signature and f be a rank-3 signature. g has the support

(x1) k
2
(x2) k

2
(x1 + x2) k

2
,

and the compressed signature

g(x1, x2) = ib1x1+b2x2+b12x1x2 .

f has the support

(x1) k
2
(x2) k

2
(x3) k

2
(x1 + x2) k

2
(x1 + x3) k

2
(x2 + x3) k

2
(x1 + x2 + x3) k

2
,

and the compressed signature

f(x1, x2, x3) = ia1x1+a2x2+a3x3+2a12x1x2+2a13x1x3+2a23x2x3+2a123x1x2x3 .

Then

• if b12 is even, then g ∈ A d
k for any even d ∈ [k] and g /∈ A d

k for any odd d ∈ [k];

• if b12 is odd, then g ∈ A d
k for any odd d ∈ [k] and g /∈ A d

k for any even d ∈ [k].

And

• if a123 is even, then f ∈ A d
k for any even d ∈ [k] and f /∈ A d

k for any odd d ∈ [k];
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• if a123 is odd, then f ∈ A d
k for any odd d ∈ [k] and f /∈ A d

k for any even d ∈ [k].

证明. We prove the lemma for the rank-3 case. The rank-2 case is similar and we omit it here. Let

f̂ =
[
1 0
0 ρd

]⊗arity(f)
f , then

f̂(x1, x2, x3) = ρ
dk
2
(x1+x2+x3+[x1+x2]+[x1+x3]+[x2+x3]+[x1+x2+x3])f(x1, x2, x3),

where [·] denotes the corresponding variable. By (5.17), (5.18), we have

f̂(x1, x2, x3) = ρ
dk
2
(4x1+4x2+4x3−4x1x2−4x1x3−4x2x3+4x1x2x3)f(x1, x2, x3),

i.e.,

f̂(x1, x2, x3) = i(2d+a1)x1+(2d+a2)x2+(2d+a3)x3+2(a12−d)x1x2+2(a13−d)x1x3+2(a23−d)x2x3+2(a123+d)x1x2x3 .

Note that f̂ ∈ A iff d+ a123 is even. This proves the lemma.

In Lemma 5.22, if b12 in g and a123 in f have different parity, then {g, f} * A d
k for any

d ∈ [k]. Note that g, f /∈ P. The following lemma shows that #CSPk(f, g) is #P-hard. This is

an important base case in the proof of Lemma 5.24.

Lemma 5.23. Let f be a rank-3 signature which has the support

(x1) k
2
(x2) k

2
(x3) k

2
(x1 + x2) k

2
(x1 + x3) k

2
(x2 + x3) k

2
(x1 + x2 + x3) k

2
,

and the compressed signature

f(x1, x2, x3) = ia1x1+a2x2+a3x3+2a12x1x2+2a13x1x3+2a23x2x3+2a123x1x2x3 ,

and g be a rank-2 signature which has the support

(y1) k
2
(y2) k

2
(y1 + y2) k

2
,
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and the compressed signature

g(y1, y2) = ib1y1+b2y2+b12y1y2 ,

where a123 + b12 ≡ 1 (mod 2). Then #CSPk(f, g) is #P-hard.

证明. We take one copy of f((x1) k
2
(x2) k

2
(x3) k

2
(x1 + x2) k

2
(x1 + x3) k

2
(x2 + x3) k

2
(x1 + x2 + x3) k

2
) and

one copy of g((u1) k
2
(u2) k

2
(u1 + u2) k

2
). Merging the variable bundle (x1) and (u1), (x2 + x3) and

(u2) by (=2k), we get the signature f ′ which has the support

(x1)k(x2) k
2
(x3) k

2
(x1 + x2) k

2
(x1 + x3) k

2
(x2 + x3)k(x1 + x2 + x3)k

and the compressed signature

f ′ = ia1x1+a2x2+a3x3+2a12x1x2+2a13x1x3+2a23x2x3+2a123x1x2x3+b1x1+b2(x2+x3−2x2x3)+b12x1(x2+x3−2x2x3).

Note that the coefficient of x1x2x3 is 2(a123 − b12) which is 2 modulo 4.

Similarly, we take another two copies of g: g1((v1) k
2
(v2) k

2
(v1 + v2) k

2
), g2((w1) k

2
(w2) k

2
(w1 +

w2) k
2
), and merge the variable bundles (x2), (x1 + x3), (x3), (x1 + x2) of f ′ to the variable bundles

(v1), (v2), (w1), (w2) of the these two copies of g by (=2k) respectively, Then we get a signature f ′′

which has the support

(x1)k(x2)k(x3)k(x1 + x2)k(x1 + x3)k(x2 + x3)k(x1 + x2 + x3)2k,

and

f ′′(x1, x2, x3) = ic1x1+c2x2+c3x3+2c12x1x2+2c13x1x3+2c23x2x3+2c123x1x2x3

where c123 = 2(a123 − 3b12) ≡ 2 (mod 4). Thus f ′′ is not in A . Let

h = (=k)⊗ (=k)⊗ (=k)⊗ (=k)⊗ (=k)⊗ (=k)⊗ (=2k)

and f ′′′ = f ′′ hh · · ·h︸ ︷︷ ︸
k−1

. Then f ′′′ is identical to f ′, and by Lemma 5.11, we have

#CSP(f ′′′) ≤T #CSPk(f ′′).
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Since f ′′′is not in P ∪ A , #CSP(f ′′′) is #P-hard by Theorem 2.12. Thus #CSPk(f, g) is #P-

hard.

As we have explained, to use Lemma 5.11, we have to construct signatures which is a product

of some same-arity signatures and is not in some tractable class. We have done this for non-product

signature in Lemma 5.16. The following Lemma is for the non-affine case. Although we prepare

a lot from Lemma 5.17 to Lemma 5.23 for it, the proof is still twisted. In the proof, firstly we

consider three special signatures which can not produce rank-2 signature by pinning. Afterward,

we can assume that there is a rank-2 signature g in hand. With the help of g and Lemma 5.23, we

can handle the remaining cases.

Lemma 5.24. Let G be a signature set. Each signature in G has arity less than 4 and is not in

A d0
k for some d0 ∈ [k]. If G * A d

k for any d ∈ [k], then we have

• G ⊆ P,

• or #CSPk( 6=2,G) is #P-hard,

• or in #CSPk( 6=2,G) we can construct f1, f2, · · · , fk′ which have the same arity for some

k′ > 1 and k′|k, such that h = f1f2 · · · fk′ is not in A d′
k
k′

for any d′ ∈ [ kk′ ].

证明. Firstly, we deal with three special cases.

• Case 1: There exists a rank-3 signature f ∈ G which has the support (5.5) and f /∈ A d0
k for

some d0 ∈ [k], then we are done by Lemma 5.19.

• Case 2: There exists a rank-1 signature f ∈ G and f /∈ A d
k for some d ∈ [k]. If the arity of f

is a multiple of k, then we are done by Lemma 5.19. Otherwise, we are done by Lemma 5.9.

• Case 3: All the signatures in G have the support (5.6). If there exists f ∈ G and f2 /∈ A ,

then we let h = f2. Note that h has the k
2 -type support and h /∈ A . Thus h /∈ A d′

k
2

for any

d′ ∈ [k2 ] by Lemma 5.18 and we are done. Otherwise, For any f ∈ G, we have f2 ∈ A and we

can assume that

f(x1, x2, x3) = αa1x1+a2x2+a3x3+2a12x1x2+2a13x1x3+2a23x2x3+4a123x1x2x3 .
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By pinning x1 = 0, we have a rank-2 signature g1 with the support (x2)k(x3)k(x2 + x3)k and

g1(x2, x3) = αa2x2+a3x3+2a23x2x3 .

If g1 /∈ A , then we are done by Lemma 5.19. since g1 has k-type support. Thus we are done

by letting h = g1. Otherwise, we have a2 ≡ a3 ≡ a23 ≡ 0 (mod 2). Moreover, by pinning

x2 = 0, x3 = 0, we have a1 ≡ a2 ≡ a3 ≡ a12 ≡ a13 ≡ a23 ≡ 0 (mod 2). This implies that

f(x1, x2, x3) = i
a1
2
x1+

a2
2
x2+

a3
2
x3+a12x1x2+a13x1x3+a23x2x3+2a123x1x2x3 .

By Lemma 5.22, since G * A d
k for any d ∈ [k], there at least two signatures f1, f2 ∈ G and

f
i
(x1, x2, x3) = ia

(i)
1 x1+a

(i)
2 x2+a

(i)
3 x3+2a

(i)
12 x1x2+2a

(i)
13 x1x3+2a

(i)
23 x2x3+2a

(i)
123x1x2x3

for i = 1, 2, where a(1)123 is odd and a(2)123 is even. Let h = f1f2, then h has the k
2 -type support

and

h(x1, x2, x3) = i
∑3
i=1(

∑2
u=1 a

(u)
i )xi+2

∑
1≤j<k≤3(

∑2
u=1 a

(u)
jk )xjxk+2(a

(1)
123+a

(2)
123)x1x2x3 .

Since a(1)123 + a
(2)
123 is odd, we have h /∈ A . Thus h /∈ A d′

k
2

for any d′ ∈ [k2 ] by Lemma 5.18 and

we are done.

Other than these three cases, G contains at least one rank-2 signature or one rank-3 signature

of the support (5.7), (5.8), (5.9), (5.10), (5.11) or (5.12), which is not in A d
k for some d ∈ [k].

• If G contains a rank-3 signature of the support (5.8) with ϵ123 6= 0, we pin x1 + x2 + x3 = 0

and get a rank-2 signature which has the support (x1) k
2
(x2) k

2
(x1 + x2) k

2
after collation.

• If G contains a rank-3 signature of the support (5.8) with ϵ1 6= 0, (5.7), (5.9), (5.10), (5.11) or

(5.12), by pinning x1 = 0 we get a rank-2 signature which has the support (x1) k
2
(x2) k

2
(x1 +

x2) k
2
after collation.

In total, in the following we can construct a rank-2 signature g which has the support (x1) k
2
(x2) k

2
(x1+
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x2) k
2
in #CSPk( 6=2,G). By Lemma 5.20, we can assume that g has the compressed signature

g(x1, x2) = ib1x1+b2x2+b12x1x2 .

By Lemma 5.22,

• if b12 is even, then g ∈ A d
k for any even d ∈ [k] and g /∈ A d

k for any odd d ∈ [k];

• if b12 is odd, then g ∈ A d
k for any odd d ∈ [k] and g /∈ A d

k for any even d ∈ [k].

We assume that b12 is even in the following. After the holographic transformation using
[
1 0
0 ρ

]
, the

following proof can work for the case that b12 is odd and we omit it here.

With g in G, since G * A d
k for any d ∈ [k], there exists f ∈ G such that f /∈ A d

k for each even

d ∈ [k]. Let

Geven
= {f ∈ G|f /∈ A d

k for some even d ∈ [k]}.

We prove the lemma for the following separate cases:

• Case (A): there exists one rank-2 signature in Geven,

• Case (B): there exists one rank-3 signature in Geven, which has the support (5.6), (5.7) or

(5.8).

• Case (C): all the signatures in Geven have the support (5.9), (5.10), (5.11) or (5.12).

For Case (A), there exists another rank-2 signature g′ ∈ Geven. By Lemma 5.20, we can assume

that g′ has k
2 -type support and has the compressed signature

g′ = ib
′
1x1+b

′
2x2+b

′
12x1x2 ,

By Lemma 5.22, b′12 is odd since g′ /∈ A d
k for some even d ∈ [k]. Let h = gg′, then the compressed

signature

h = i(b1+b
′
1)x1+(b2+b′2)x2+(b12+b′12)x1x2 .

We have h /∈ A since b12 + b′12 is odd. Moreover, by Lemma 5.18 h /∈ A d′
k
2

for any d′ ∈ [k2 ] since h

has k
2 -type support, and we are done.
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For Case (B),

• if there exists a rank-3 signature f ∈ Geven of the type (5.6), as we have done in the proof of

Case 2, we can assume that f has the compressed signature

f(x1, x2, x3) = ia1x1+a2x2+a3x3+2a12x1x2+2a13x1x3+2a23x2x3+2a123x1x2x3 .

Thus #CSPk(g, f) is #P-hard by Lemma 5.22 and Lemma 5.23, and #CSPk( 6=2,G) is #P-

hard;

• assume that there is a signature f ∈ Geven which has the support (5.7). If f2 /∈ A , then we

are done by letting h = f2 since f has k
2 -type support. Otherwise, we can assume that

f(x1, x2, x3) = αc1x1+c2x2+c3x3+2c12x1x2+2c13x1x3+2c23x2x3+4c123x1x2x3 .

By pinning x1 = 0, we get a rank-2 signature g2 which has the support

(x2) k
2
(x3) k

2
(x2 + x3) k

2

after collation and the compressed signature

g2(x2, x3) = αc2x2+c3x3+2c23x2x3 .

If g2 /∈ A , then h = gg2 /∈ A d′
k
2

for any d′ ∈ [k2 ] by Lemma 5.18 and we are done. Otherwise,

we have c2 ≡ c3 ≡ c23 ≡ 0 (mod 2). Similarly, by pinning x2 = 0, x3 = 0, we have c1 ≡ c2 ≡

c3 ≡ c12 ≡ c13 ≡ c23 ≡ 0 (mod 2). This implies that

f(x1, x2, x3) = i
c1
2
x1+

c2
2
x2+

c3
2
x3+c12x1x2+c13x1x3+c23x2x3+2c123x1x2x3 .

Let f̂ =
[
1 0
0 ρd

]⊗arity(f)
f . Then

f̂ = ρd(
k
2
x1+

k
2
x2+

k
2
x3+ϵ12k[x1+x2]+ϵ13k[x1+x3]+ϵ23[x2+x3]+

k
2
[x1+x2+x3])f,
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where [·] denotes the corresponding variable. By (5.17) and (5.18), we have

f̂ = ic
′
1x1+c

′
2x2+c

′
3x3+c

′
12x1x2+c

′
13x1x3+c

′
23x2x3+c

′
123x1x2x3 ,

where c′1 = d(1 + ϵ12 + ϵ13) +
c1
2 , c

′
2 = d(1 + ϵ12 + ϵ23) +

c2
2 , c

′
3 = d(1 + ϵ13 + ϵ23) +

c3
2 ,

c′12 = d(1 + 2ϵ12) + c12, c
′
13 = d(1 + 2ϵ13) + c13, c

′
23 = d(1 + 2ϵ23) + c23, c

′
123 = 2d+ 2c123. Note

that f /∈ A d
k for some even d. Thus a123 is odd.

Then we take three copies of g and merge the variable bundles (y1), (y2), (y1 + y2) of first

copy of g to the variable bundles (x1), (x2), (x1 + x2) of f using (=2k) respectively, we get a
k
2 -type signature f ′ which has the support

(x1)k(x2)k(x3) k
2
(x1 + x2) k

2
(x1 + x3)ϵ13k(x2 + x3)ϵ23k(x1 + x2 + x3) k

2

after collation and

f ′ = i(
c1
2
+b1)x1+(

c2
2
+b2)x2+

c3
2
x3+(c12+b12)x1x2+c13x1x3+c23x2x3+2c123x1x2x3 ;

secondly, we merge the variable bundles (y1), (y2), (y1 + y2) of the second copy of g to the

variable bundles (x1), (x3), (x1 + x3) of f ′ using (=2k) respectively to construct the signature

f ′′; and then we merge the variable bundles (y1), (y2), (y1+y2) of the third copy to the variable

bundles (x2), (x3), (x2+x3) of f ′′ by (=2k) respectively. Finally, we get a signature f ′′′ which

has the support (5.6) and the compressed signature

f ′′′ = i(
c1
2
+2b1)x1+(

c2
2
+b2+b1)x2+(

c3
2
+2b2)x3+(c12+b12)x1x2+(c13+b12)x1x3+(c23+b12)x2x3+2c123x1x2x3 .

Note that c123 is odd. So #CSPk(g, f ′′′) is #P-hard by Lemma 5.23 and #CSPk(6=2,G) is

#P-hard.

• assume that there is a signature f ∈ Geven which has the support (5.8) with ϵ1 6= 0.

By the same argument as the case (5.7), we can assume that

f(x1, x2, x3) = αd1x1+d2x2+d3x3+2d12x1x2+2d13x1x3+2d23x2x3+4d123x1x2x3 .
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Moreover, by pinning x1 = 0 and the same argument as the case (5.7), we have

d2 ≡ d3 ≡ d23 ≡ 0 (mod 2). (5.21)

But we can not pin x2 = 0, x3 = 0 as the case (5.7) since the bundle (x2), (x3) may be empty.

Alternatively, we pin x1 + x2 = 0, then we get a rank-2 signature g12 which has the support

(x1)(ϵ1+ϵ2)k(x3)(ϵ3+ϵ123)k(x1 + x3)(ϵ13+ϵ23)k

and the compressed signature

g
12

= α(d1+d2+2d12)x1+d3x3+2(d13+d23+2d123)x1x3 .

Note that g12 has k-type support. If g12 /∈ A , then we are done by Lemma 5.19. Otherwise,

we have

d1 + d2 + 2d12 ≡ d3 ≡ d13 + d23 + 2d123 ≡ 0 (mod 2).

Combining with (5.21), we have

d1 ≡ d13 ≡ 0 (mod 2).

Moreover, by pinning x1 + x3 = 0 and the same argument, we have d12 ≡ 0 (mod 2). This

implies that

f(x1, x2, x3) = i
d1
2
x1+

d2
2
x2+

d3
2
x3+d12x1x2+d13x1x3+d23x2x3+2d123x1x2x3 . (5.22)

Then by considering the holographic transformation using f̂ =
[
1 0
0 ρd

]⊗arity(f)
f and the same

argument as (5.7), we can assume that d123 is odd.

Then we take one copy of g(y1, y2, y1+y2) and merge the variable bundles (y1), (y2), (y1+y2)

to the variable bundles (x1 + x2), (x1 + x3), (x2 + x3) of f using (=2k) respectively, we get a
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k-type signature f (4) which has the support

(x1)ϵ1k(x2)ϵ2k(x3)ϵ3k(x1 + x2)k(x1 + x3)k(x2 + x3)k(x1 + x2 + x3)ϵ123k

and

f (4)(x1, x2, x3) = g(x1 + x2, x1 + x3, x2 + x3)f(x1, x2, x3);

i.e.,

f (4) = i(
d1
2
+b1+b2+b12)x1+(

d2
2
+b1)x2+(

d3
2
+b2)x3+(d12−2b1−b12)x1x2+(d13−2b2)x1x3+d23x2x3+2d123x1x2x3 .

Note that f (4) has the k-type support. Moreover, f (4) /∈ A since d123 is odd. Thus we are

done by Lemma 5.19.

• assume that there is a signature f ∈ Geven which has the support (5.8) with ϵ123 6= 0. By

pinning x1 + x2 + x3 = 0, x1 + x2 = 0, x1 + x3 = 0 and the same argument as the case ϵ1 6= 0,

we can assume that f has the compressed signature as (5.22). The remaining proof is totally

same as the case ϵ1 6= 0 and we omit it here.

For Case (C), all the signatures in Geven have the k
4 -type support. For f ∈ Geven, if f4 /∈ A ,

then h = f4 /∈ A d′
k
4

for any d′ ∈ [k4 ] by Lemma 5.18 and we are done. Otherwise, we can assume

that

f(x1, x2, x3) = βs1x1+s2x2+s3x3+2s12x1x2+2s13x1x3+2s23x1x2x3+4s123x1x2x3 .

Moreover, by pinning x1 = 0, we get a rank-2 signature g3 which has the support

(x2) k
2
(x3) k

2
(x2 + x3) k

2

and the compressed signature

g3 = βs2x2+s3x3+2s23x2x3 .

Let h = gg3. Note that h has the k
2 -type support. If one of {s2, s3, s23} is nonzero modulo 4,

then h /∈ A . Thus h /∈ A d
k
2

for any d ∈ [k2 ] by Lemma 5.18 and we are done. Otherwise, we have

s2 ≡ s3 ≡ s23 ≡ 0 (mod 4). Moreover, by pinning x2 = 0, x3 = 0, we have s1 ≡ s2 ≡ s3 ≡ s12 ≡



93

s13 ≡ s23 ≡ 0 (mod 4) similarly. So we have

f(x1, x2, x3) = i
s1
4
x1+

s2
4
x2+

s3
4
x3+

s12
2
x1x2+

s13
2
x1x3+

s23
2
x2x3+s123x1x2x3 .

If s123 is odd, by pinning x3 = 1, we get a rank-2 signature g4 whose support is

(x1) k
2
(x2) k

2
(x1 + x2) k

2

after collation and the compressed signature is

g4 = i(
s1
4
+
s13
2

)x1+(
s2
4
+
s23
2

)x2+(
s12
2

+s123)x1x2

up to the scalar i
s3
4 . Let h = gg4, then h has k

2 -type support and

h = i(
s1
4
+
s13
2

+b1)x1+(
s2
4
+
s23
2

+b2)x2+(
s12
2

+s123+b12)x1x2 .

Note that s12
2 , b12 are even and s123 is odd. Thus s12

2 + s123 + b12 is odd. This implies that h /∈ A .

Thus h /∈ A d
k
2

for any d ∈ [k2 ] by Lemma 5.18 and we are done.

Now we can assume that s123 is even. By the same proof as Lemma 5.22, we have the following

claim:

• if s123 ≡ 0 (mod 4), then f /∈ A d
k for d ≡ 2 (mod 4) and f ∈ A d

k for d ≡ 0 (mod 4);

• if s123 ≡ 2 (mod 4), then f /∈ A d
k for d ≡ 0 (mod 4) and f ∈ A d

k for d ≡ 2 (mod 4).

Since Geven * A d
k for any even d ∈ [k], there at least two signatures f1, f2 ∈ G and

f
i
(x

(i)
1 , x

(i)
2 , x

(i)
3 ) = is

(i)
1 x

(i)
1 +s

(i)
2 x

(i)
2 sa

(i)
3 x

(i)
3 +2s

(i)
12 x

(i)
1 x

(i)
2 +2s

(i)
13 x

(i)
1 x

(i)
3 +2s

(i)
23 x

(i)
2 x

(i)
3 +s

(i)
123x

(i)
1 x

(i)
2 x

(i)
3

for i = 1, 2, where one of {s(1)123, s
(2)
123} is 0 modulo 4 and another is 2 modulo 4.

If f1 has the support (5.10) or (5.11), for each bundle of {(x(1)1 ), (x
(1)
2 ), (x

(1)
3 ), (x

(1)
1 +x

(1)
2 +x

(1)
3 )},

we connect the variables in it to (=k) by 6=2 (Note that we can not connect (=k) to the variable

bundle directly by the bipartite restriction), then we get a signature f ′1 which has the support (5.9)
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or (5.12) and

f
1
(x

(1)
1 , x

(1)
2 , x

(1)
3 ) = f ′

1
(x

(1)
1 + 1, x

(1)
2 + 1, x

(1)
3 + 1).

Thus f1 ∈ A d
k for some d ∈ [k] iff f ′1 ∈ A d

k for some d ∈ [k]. This implies that we can assume that

f1 has the support (5.9) or (5.12). Similarly, we can assume that f2 has the support (5.9) or (5.12).

By merging the variable bundle (a1x(1)1 +a2x
(1)
2 +a3x

(1)
3 ) of f1 to the variable bundle (a1x(2)1 +

a2x
(2)
2 + a3x

(2)
3 ) of f2 for any a1, a2, a3 ∈ {0, 1} by (=2k) respectively, we get the signature h which

has the compressed signature

h(x1, x2, x3) = i
∑3
i=1(

∑2
u=1 s

(u)
i )xi+2

∑
1≤j<k≤3(

∑2
u=1 s

(u)
jk )xjxk+(s

(1)
123+s

(2)
123)x1x2x3 .

Since s(1)123 + s
(2)
123 is 2 modulo 4, we have h /∈ A .

• If f1, f2 has the same support, then h has the support (5.6) after collation. Then we are done

by Lemma 5.23.

• If one of {f1, f2} has the supports (5.9), and another has the support (5.12), then h has the

k-type support and we are done by Lemma 5.19.

Now we are ready to prove Theorem 5.5.

证明. We will prove the theorem by induction on k. Note that the theorem has been proved for

the cases k = 1, 2 by Theorem 2.12 and Theorem 2.14. In the following we assume that k ≥ 3.

If G ⊆ P or G ⊆ A d
k for some d ∈ [k], the tractability is obvious. Then we assume that G * P

and G * A d
k for any d ∈ [k].

Since G * A d
k for any d ∈ [k], by Lemma 5.17 and Lemma 5.24, #CSPk(6=2,G) is #P-hard, or

for some k′|k we can construct f1, f2, · · · , fk′ , which have the same arity, in #CSPk( 6=2,G), such

that h = f1f2 · · · fk′ is not in A d′
k
k′

for any d′ ∈ [ kk′ ].

Moreover, by Lemma 5.16 and G * P, in #CSPk( 6=2,G) we can construct signatures g1, g2, · · · , gk′ ,

such that g = g1g2 · · · gk′ and g /∈ P.
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Then by Lemma 5.11 we have

#CSP k
k′
( 6=2, g, h) ≤T #CSPk( 6=2,G),

where g /∈ P and h /∈ A d′
k
k′

for any d′ ∈ [ kk′ ]. By induction, #CSP k
k′
(6=2, f, g) is #P-hard. Thus

#CSPk( 6=2,G) is #P-hard.

5.3 #P-Hardness of Holant(∆0,F)

In the following two sections, we will show that Holant(∆0,F) is #P-hard if F does not satisfy

condition (T). Since F does not satisfy condition (T), F 6⊆ T . Thus, there is a signature f ∈ F of

arity n ⩾ 3 that is not in T . We will prove our claim by induction on the arity n.

By using ∆0, we first give two conditions that ∆1 can be easily realized from a signature of

arbitrary arity by pinning (Lemma 5.25) or interpolation (Lemma 5.26). If ∆1 is realizable, then

we have Holantc(F) ⩽T Holant(∆0,F). Since Holantc(F) is #P-hard when F does not satisfy

condition (T), Holant(∆0,F) is also #P-hard.

Lemma 5.25. Let f ∈ F be a nonzero signature and f 0⃗ = 0. Then Holantc(F) ⩽T Holant(∆0,F).

证明. We prove this by induction on the arity n of f .

If n = 1, we have f = (0, λ) for some λ 6= 0 since f 6≡ 0. Clearly, ∆1 is realizable from f .

Assuming our claim is true when n = k, we consider the case that n = k + 1. For all indices

i ∈ [n], consider signatures f0i realized from f by pinning variable xi to 0. We know f0i is signature

of arity k and f0i (⃗0k) = f (⃗0k+1) = 0.

• If there is an index i such that f0i 6≡ 0, then by induction hypothesis, we have Holantc(F) ⩽T

Holant(∆0, f
0
i ,F) ⩽T Holant(∆0,F).

• Otherwise, f0i ≡ 0 for all indices i. Then, by Lemma 3.23, we have f = λ(0, 1)⊗n for some

λ 6= 0 since f 6≡ 0. Thus, ∆1 is realizable from f by factorization (Lemma 3.6).

Thus, we have Holantc(F) ⩽T Holant(∆0,F).

Now for all indices i, we consider signatures mif realized from f by mating. We give a condition

by which ∆1 can be realized from mif by interpolation. We show that either Holantc(F) ⩽T



96

Holant(∆0,F), or every irreducible f ∈ F satisfies 1st-Orth (i.e., there exists some µ 6= 0 such

that for all indices i, M(mif) = µI2).

Lemma 5.26. Let f ∈ F be a nonzero real-valued signature of arity n ⩾ 2. If f does not satisfy

1st-Orth, then

• there is an unary signature a(xi) on variable xi such a(xi) | f , or

• Holantc(F) ⩽T Holant(∆0,F).

证明. Since f does not satisfy 1st-Orth, there is an index i such thatM(mif) (as a 2-by-2 matrix)

is not the identity matrix up to a scalar (M(mif) 6= µiI2). We denote

M(mif) =

 |f0i |2 〈f0i , f1i 〉

〈f0i , f1i 〉 |f1i |2

 by

a b

b c

 .
Since f is real, M(mif) is real symmetric, and thus diagonalizable with real eigenvalues. We first

consider the case that M(mif) is degenerate. Then, we have |〈f0i , f1i 〉|2 = |f0i |2|f1i |2, so f0i and f1i
are linearly dependent by Cauchy-Schwarz. Since f 6≡ 0, either f0i and f1i is nonzero. Assume f0i is

nonzero (the other case is similar). Then, we have f1i = c · f0i for some constant c. It follows that

f = a(xi)⊗ f0i , for a unary signature a(xi) = (1, c).

Now we assume M(mif) has rank 2, then we have a, c > 0. We consider the value of b.

• If b = 0, then M(mif) = [ a 0
0 c ]. Clearly, a 6= c since M(mif) is not I2 up to a scalar. Given

a 6= c and a
c > 0, we have |ac | 6= 1. By Lemma 3.24, we can realize (0, 0, 0, 1) = (0, 1)⊗2 from

mif by interpolation. Then, by Lemma 3.6, we can realize ∆1 = (0, 1) by factorization.

• Otherwise, b 6= 0. Clearly, we know (1, 0)T is not an eigenvector of M(mif). Suppose

M(mif) = P−1
[
λ1 0
0 λ2

]
P , where λ1 and λ2 are two real eigenvalues ofM(mif). SinceM(mif)

has rank 2 and M(mif) is not I2 up to a scalar, we have λ1λ2 6= 0 and λ1 6= λ2. Also, by the

trace formula, λ1 + λ2 = a+ c > 0. Thus λ1
λ2

6= −1. Then we have |λ1λ2 | 6= 1. By Lemma 3.25,

we can realize ∆1 = (0, 1) by interpolation.

Thus, we have Holantc(F) ⩽T Holant(∆0,F).



97

Corollary 5.27. Let f ∈ F be an irreducible signature of arity n ⩾ 2. If f does not satisfy

1st-Orth, then Holantc(F) ⩽T Holant(∆0,F).

We derive some consequences from 1st-Orth. Consider the vector f0i . We can pick a second

variable xj and separate f0i into two vectors f00ij and f01ij according to xj = 0 or 1. Then

|f0i |2 = |f00ij |2 + |f01ij |2 = µ.

Similarly, we have

|f1j |2 = |f01ij |2 + |f11ij |2 = µ.

Comparing the above two equations, we have

|f00ij |2 = |f11ij |2. (5.23)

This is ture for all pairs of indices {i, j}. Similarly, by considering

|f0j |2 = |f00ij |2 + |f10ij |2 = µ,

we have

|f01ij |2 = |f10ij |2, (5.24)

for all pairs {i, j}. Also, by definition, for all i,

〈f0i , f1i 〉 = 0, (5.25)

Now, we are ready to prove that Holant(∆0,F) is #P-hard when F does not satisfy condition

(T) for the base case that F contains an irreducible signature f arity 3. We show that an irreducible

ternary signature satisfying 1st-Orth has some special forms, from which one can realize =3 or

=4 after some holographic transformations. Then, we can reduce the problem from #CSP(F), or

#CSP2(F), or Holant( 6=2|=3, F̂), to Holant(∆0,F). This allows us to finish the proof by invoking

existing dichotomy results for #CSP(F), or #CSP2(F), or the #P-hardness result we showed

above for Holant( 6=2|=k, F̂) where k ⩾ 3.



98

Recall that a binary real-valued signature satisfies 1st-Orth iff it is an orthogonal signature

(whose 2-by-2 signature matrix is orthogonal up to a real nonzero scalar). Now we consider the

base case that F contains a ternary signature.

Lemma 5.28 (Base case n = 3). Let F be a set of real-valued signatures containing a ternary

signature f /∈ T . Then, Holant(∆0,F) is #P-hard unless F satisfies conditions (T).

证明. Since f is a ternary signature and f /∈ T , we know f is irreducible. If f000 = 0 or f does not

satisfy 1st-Orth, then by Lemma 5.25 or Lemma 5.27, we have Holantc(F) ⩽T Holant(∆0,F).

By Theorem 5.1 and it remark, Holantc(F) is #P-hard when F does not satisfy condition (T), and

hence Holant(∆0,F) is #P-hard. Therefore, we may assume f000 = 1 after normalization, and f

satisfies 1st-Orth and specially equations (5.23), (5.24), and (5.25).

We consider binary signatures f01 , f02 and f03 realized by pinning. If there is an index i such

that the binary signature f0i is irreducible and not orthogonal, then by Corollary 5.27 we are done.

Otherwise, f01 , f02 and f03 are all either reducible or orthogonal. Let N be the number of orthogonal

signatures among f01 , f02 and f03 . According to N = 0, 1, 2 or 3, there are four cases.

• N = 0. Then f01 , f02 and f03 are all reducible. So, f01 is of the form (1, a, b, ab), and so are f02
and f03 . Thus f has the following matrix

M1,23(f) =

1 a b ab

c ac bc d

 .
By the equation |f0112|2 = |f1012|2 from (5.24), we have

b2 + a2b2 = c2 + a2c2.

Then, (1 + a2)(b2 − c2) = 0. Being real, we have 1 + a2 > 0, and thus b2 = c2. Similarly by

symmetry, we have a2 = b2 = c2. By the equation |f0012|2 = |f1112|2 from (5.23), we have

1 + a2 = b2c2 + d2.
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Then, d2 = 1 + a2 − a4. By the equation 〈f01, f11〉 = 0 from (5.25), we have

c+ a2c+ b2c+ abd = 0.

Then, c(1 + 2a2) = −abd. Taking squares of both sides, we have

a2(1 + 4a2 + 4a4) = a4d2.

Plug in d2 = 1 + a2 − a4, and we have

a2(1 + 4a2 + 4a4 − a2 − a4 + a6) = a2(1 + a2)3 = 0.

Since 1 + a2 > 0, we have a2 = 0, and hence b2 = c2 = 0 and d2 = 1.

– If d = 1, then f has the signature matrix [ 1 0 0 0
0 0 0 1 ], which is (=3). Then, by Lemma 2.23,

we can realize all equality signatures (=k). Thus, we have

#CSP(F) ⩽T Holant(=3,F) ⩽T Holant(∆0,F).

By Theorem 2.34, we know #CSP(F) is #P-hard when F does not satisfy condition

(T), and hence Holant(∆0,F) is #P-hard.

– Otherwise, d = −1. We perform a holographic transformation by the orthogonal matrix

Q1 =
[
1 0
0 −1

]
. Note that

(=2)(Q
−1
1 )⊗2 = (=2) and Q⊗3

1 f = (=3).

Thus, the holographic transformation by Q1 yields

Holant(=2| f,F) ≡T Holant(=2|=3, Q1F).

Again by Lemma 2.23, we have #CSP(Q1F) ⩽T Holant(∆0,F). By Theorem 2.34, we

know that #CSP(Q1F) is #P-hard when F does not satisfy condition (T), and hence

Holant(∆0,F) is #P-hard.
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• N = 1. Without loss of generality, we may assume f01 is orthogonal and f02 and f03 are

reducible. Then f01 has the form (1, a, ϵa,−ϵ), f02 has the form (1, a, b, ab) and f03 has the

form (1, ϵa, b, ϵab), for some ϵ = ±1. Therefore, for some value x, f has the signature matrix,

M(f) =

1 a ϵa −ϵ

b ab ϵab x

 .
By the equation |f0112|2 = |f1012|2 from (5.24), we have

(ϵa)2 + (−ϵ)2 = b2 + (ab)2.

Thus (1 + a2)(1− b2) = 0. So b2 = 1. By the equation |f0012|2 = |f1112|2 from (5.23), we have

1 + a2 = (ϵab)2 + x2 = a2 + x2.

Then, x2 = 1. By the equation 〈f01, f11〉 = 0 from (5.25), we have

b+ a2b+ ϵ2a2b− ϵx = 0. (5.26)

Then, ϵx = b(1 + 2a2). Taking squares of both sides, we have 1 = (1 + 2a2)2, which implies

that a = 0. So by (5.26), we have b − ϵx = 0, and thus x = b
ϵ = ϵb. It follows that

M(f) =
[
1 0 0 −ϵ
b 0 0 ϵb

]
, with b2 = ϵ2 = 1.

Mating variable x1 of one copy of f with variable x1 of another copy of f (with x2 and x3 as

dangling variables), we get a 4-ary signature m23f with the signature matrix

M(m23f) =Mx2x3,x1(f)Mx1,x2x3(f) =


1 b

0 0

0 0

−ϵ ϵb


1 0 0 −ϵ

b 0 0 ϵb

 =


2 0 0 0

0 0 0 0

0 0 0 0

0 0 0 2

 = 2M(=4).

Therefore, we can realize (=4), and then by Lemma 2.24 we can realize all equality signatures
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(=2k) of even arity. Thus,

#CSP2(F) ⩽T Holant(=4,F) ⩽T Holant(∆0,F).

By Theorem 2.34, we know #CSP2(F) is #P-hard when F does not satisfy condition (T),

and hence Holant(∆0,F) is #P-hard.

• N = 2. Without loss of generality, we may assume f02 and f03 are orthogonal, and f01 is

reducible. Then, f02 has the form (1, ϵ1a, a,−ϵ1) where ϵ1 = ±1, f03 has the form (1, ϵ2a, a,−ϵ2)

where ϵ2 = ±1, and f01 has the form (1, ϵ1a, ϵ2a, ϵ1ϵ2a
2). Then for some x, f has the form

M(f) =

1 ϵ1a ϵ2a ϵ1ϵ2a
2

a −ϵ1 −ϵ2 x

 .
By the equation |f0112|2 = |f1012|2, we have

(ϵ2a)
2 + (ϵ1ϵ2a

2)2 = a2 + (−ϵ1)2.

So we get a4 = 1. Since a is real, we have a = ±1. By the equation 〈f01, f11〉 = 0, we have

a− ϵ21a− ϵ22a+ ϵ1ϵ2x = −a+ ϵ1ϵ2x = 0.

Then, x = a
ϵ1ϵ2

= ϵ1ϵ2a. By mating we get m23f , and we have

M(m23f) =


1 a

ϵ1a −ϵ1

ϵ2a −ϵ2

ϵ1ϵ2 ϵ1ϵ2a


1 ϵ1a ϵ2a ϵ1ϵ2

a −ϵ1 −ϵ2 ϵ1ϵ2a

 = 2


1 0 0 ϵ1ϵ2

0 1 ϵ1ϵ2 0

0 ϵ1ϵ2 1 0

ϵ1ϵ2 0 0 1

 .

– If ϵ1ϵ2 = 1, then m23f is 2 times the Is-Even signature, which takes value 1 on all inputs

of even weight, and 0 otherwise. Note that, for H = 1√
2

[
1 1
−1 1

]
we have

(=2)(H
−1)⊗2 = (=2) and H⊗4(m23f) = (=4).
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Thus, a holographic transformation by H yields

Holant(=2| m23f,F) ≡T Holant(=2|=4,HF).

By Lemma 2.24, we have

#CSP2(HF) ⩽T Holant(=2|=4,HF) ⩽T Holant(∆0,F).

By Theorem 2.34, #CSP2(HF) is #P-hard when F does not satisfy condition (T), and

hence Holant(∆0,F) is #P-hard.

– Otherwise, ϵ1ϵ2 = −1. Then g(y1, y2, y3, y4) = m23f can be normalized as
[ 1 0 0 −1

0 1 −1 0
0 −1 1 0
−1 0 0 1

]
,

where the row index is y1y2 and column index is y3y4 ∈ {0, 1}2, both listed lexicograph-

ically. After a permutation of variables, we have My1y3,y2y4(m23f) =

[
1 0 0 1
0 −1 −1 0
0 −1 −1 0
1 0 0 1

]
. Con-

necting variables y2, y4 of a copy of m23f with variables y1, y3 of another copy of m23f

respectively, we get a signature with the signature matrix

My1y3,y2y4(m23f)My1y3,y2y4(m23f) =

[
1 0 0 1
0 −1 −1 0
0 −1 −1 0
1 0 0 1

] [
1 0 0 1
0 −1 −1 0
0 −1 −1 0
1 0 0 1

]
= 2

[
1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1

]
.

Now perform a holographic transformation by H, and we get (=4), which implies that

Holant(∆0,F) is #P-hard when F does not satisfy condition (T).

• N = 3. Then for some values a, x and ϵ1, ϵ2 = ±1, the signature f has the signature matrix

M(f) =

1 ϵ1a ϵ2a −ϵ1ϵ2

a −ϵ1 −ϵ2 x

 .
By the equation 〈f01, f11〉 = 0, we have

a− ϵ21a− ϵ22a− ϵ1ϵ2x = −a− ϵ1ϵ2x = 0.

Hence, x = −ϵ1ϵ2a. A holographic transformation by Z−1 yields

Holant(=2| f,∆0,F) ≡T Holant(6=2| f̂ , ∆̂0, F̂).
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Note that ∆̂0 = Z−1(1, 0)T = (1, 1)T, and a simple calculation shows

M(f̂) = Z−1M(f)((Z−1)T)⊗2 =
[
1−ai 0
0 1+ai

] [ (1+ϵ1)(1+ϵ2) (1−ϵ1)(1+ϵ2) (1+ϵ1)(1−ϵ2) (1−ϵ1)(1−ϵ2)
(1−ϵ1)(1−ϵ2) (1+ϵ1)(1−ϵ2) (1−ϵ1)(1+ϵ2) (1+ϵ1)(1+ϵ2)

]
.

– If ϵ1 = ϵ2 = 1, then up to a constant, M(f̂) =
[
1−ai 0 0 0
0 0 0 1+ai

]
. Let Q̂2 =

[
3√1+ai 0

0 3√1−ai

]
.

Then (Q̂2)
⊗3f̂ has the signature matrix (1 + a2) [ 1 0 0 0

0 0 0 1 ]. Thus, a holographic transfor-

mation by Q̂2 yields

Holant(6=2| f̂ , ∆̂0, F̂) ≡T Holant( 6=2|=3, Q̂2∆̂0, Q̂2F̂).

Thus, we have

Holant( 6=2|=3, Q̂2∆̂0, Q̂2F̂) ⩽T Holant(∆0,F).

By Corollary 5.6, we know Holant(6=2|=3, Q̂2∆̂0, Q̂2) is #P-hard when F does not satisfy

condition (T), and hence Holant(∆0,F) is #P-hard.

– Otherwise, M(f̂) has the signature matrix
[

0 0 0 1−ai
1+ai 0 0 0

]
up to a permutation of vari-

ables. Connecting f̂ with ∆̂0 = (1, 1) using 6=2, we get a binary signature ĝ with matrix

M(ĝ) = [1, 1]

0 1

1 0

 0 0 0 1− ai

1 + ai 0 0 0

 = (1 + ai, 0, 0, 1− ai).

Connecting one variable of f̂ with one variable of ĝ using 6=2, we get a signature ĥ with

the signature matrix

M(ĥ) =

1 + ai 0

0 1− ai

0 1

1 0

 0 0 0 1− ai

1 + ai 0 0 0

 =

(1 + ai)2 0 0 0

0 0 0 (1− ai)2

 .

Then, a holographic transformation by Q̂3 =

[
3
√

(1−ai)2 0

0 3
√

(1+ai)2

]
yields

Holant(6=2| ĥ, ∆̂0, F̂) ≡T Holant(6=2|=3, Q̂3∆̂0, Q̂3F̂).

Then similarly by Corollary 5.6, we have Holant(∆0,F) is #P-hard.
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Thus, Holant(∆0,F) is #P-hard unless F satisfies condition (T).

Now, we consider the inductive step. The general strategy is that we start with a signature

f ∈ F of arity n ⩾ 4 that is not in T , and realize a signature g of arity n−1 or n−2 by pinning or

merging (using =2) that is also not in T . By a sequence of reductions (that is constant in length

independent of the problem instance size), we can realize a signature h of arity 3 that is not in T

(the base case). Then we are done.

For all indices i and all pairs of indices {j, k}, consider f0i and ∂jkf . If there exists i or {j, k}

such that f0i or ∂jkf /∈ T , then we can realize g = f0i or ∂jkf which has arity n − 1 or n − 2,

and we are done. Otherwise, f0i and ∂jkf ∈ T for all i and all {j, k}. We denote this property

by f ∈
∫
12 T . Under the assumption that f ∈

∫
12 T , our goal is to show that we can realize ∆1

and hence we are done by the hardness of Holantc(F), or there is an unary signature a(xu) or

binary signature b(xv, xw) such that a(xu) | f or b(xv, xw) | f. Then, we have f = a(xu) ⊗ g or

f = b(xv, xw)⊗ g for some g of arity n− 1 or n− 2. By the definition of T , we know g /∈ T since

f /∈ T . By Lemma 3.6, we can realize g by factorization, and we are done. When n ⩾ 5, the above

induction proof can be achieved by the interplay of the unique factorization, and the commutivity

of f0i (pinning) and ∂jkf (merging) operations on disjoint indices (Lemmas 5.30 and 5.31). For

n = 4, the proof requires more work (Lemma 5.33); we need to combine the induction proof and

1st-Orth to handle it.

We use T1 to denote the set of tensor products of unary signatures. We denote the property

that f0i ∈ T1 for all i by
∫
1 T1. We carry out our induction proof by the following lemmas.

Lemma 5.29. Let f be a signature of arity n ⩾ 3. If there exists a nonzero signature g, the scope

of which is a subset of the scope of f , such that g | f0i for all indices i disjoint with the scope of g

and furthermore, g | ∂jkf for some pair of indices {j, k} disjoint with the scope of g, then g | f .

(Note that if ∂jkf ≡ 0 then g | ∂jkf is satisfied.)

证明. We may assume f is nonzero, for otherwise the conclusion trivially holds. We now prove

this for a unary signature g = (a, b). We assume g is on the variable xu. Consider the signature

f ′ = bf0u − af1u . Clearly, xj and xk are in the scope of f ′. Thus, f ′ has arity at least 2. For every
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i 6= u, we have f0i = (a, b)⊗ h for some h. Then, (f0i )0u = a · h, (f0i )1u = b · h, and hence

(f ′)0i = (bf0u − af1u)
0
i = bf00ui − af10ui = b(f0i )

0
u − a(f0i )

1
u = ba · h− ab · h ≡ 0.

Moreover, there are indices j, k 6= u such that g(xu) | ∂jkf . Then, ∂jkf = (a, b) ⊗ h′, for some h′.

Then, we have (∂jkf)
0
u = a · h′, (∂jkf)1u = b · h′, and hence

∂jk(f
′) = ∂jk(bf

0
u − af1u) = b(∂jkf)

0
u − a(∂jkf)

1
u = ba · h′ − ab · h′ ≡ 0.

By Lemma 3.23, we have f ′ ≡ 0. Thus, we have f0u : f1u = a : b, and hence g(xu) | f .

For a signature g of arity ⩾ n− 2, the proof is essentially the same, which we omit here.

Lemma 5.30. Let f be a signature of arity n ⩾ 5, f /∈ T , f ∈
∫
12 T and f ∈

∫
1 T1. Then there

is a unary signature a(xu) such that a(xu) | f , or ∆1 is realizable from f .

证明. Since f /∈ T , f is nonzero. We may further assume f0i 6≡ 0 for all indices i. Otherwise,

we have f 0⃗ = 0. Then, by Lemma 5.25, we can realize ∆1. By the same reason, we may further

assume f00ij 6≡ 0 for all pairs of indices {i, j}.

For some arbitrary index r, we consider f0r . Since f0r ∈ T1, there exists some unary signature

a(xu) such that a(xu) | f0r . We show a(xu) | f . Consider f0i for all indices i 6= u, r. Since f0i ∈ T1,

there is a unary signature a′(xu) such that a′(xu) | f0i , and hence we have a′(xu) | (f0i )0r . On the

other hand, since a(xu) | f0r , we also have a(xu) | (f0r )0i . Note that the pinning operations on

different variables commute. Thus, we have (f0r )
0
i = (f0i )

0
r , and we know it is a nonzero signature.

Then, by UPF (Lemma 3.4), we have a(xu) ∼ a′(xu). Thus, a(xu) | f0i for all indices i 6= u.

Then, we show a(xu) | ∂jkf for some arbitrary pair of indices j, k 6= u. If ∂jkf ≡ 0, then we

have a(xu) | ∂jkf and hence a(xu) | f by Lemma 5.29. Next, we assume ∂jkf 6≡ 0. Similarly, if for

some index i 6= j, k, we have (∂jkf)
0
i ≡ 0, then we have ∂jkf (⃗0) = 0 and hence by Lemma 5.26,

we can realize ∆1. Otherwise, (∂jkf)0i 6≡ 0 for all i /∈ {j, k}. Recall that ∂jkf ∈ T . We show the

variable xu must appear in a unary signature in the UPF of ∂jkf ∈ T .

• For a contradiction, suppose there is an irreducible binary signature b(xu, xv) such that

b(xu, xv) | ∂jkf . Since f has arity n ⩾ 5, we can pick some index i /∈ {u, v, j, k} such

that b(xu, xv) | (∂jkf)0i . Note that (∂jkf)
0
i = ∂jk(f

0
i ) 6≡ 0 by the commutativity of pinning
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and merging. Thus, ∂jk(f0i ) has an irreducible binary tensor divisor b(xu, xv). However,

f0i ∈ T1 and so is ∂jk(f0i ). By UPF, we get a contradiction.

• Thus, there is a unary signature a′′(xu) such that a′′(xu) | ∂jkf . Pick some index i /∈ {u, j, k},

and we have a′′(xu) | (∂jkf)0i . We also have a(xu) | ∂jk(f0i ) since a(xu) | f0i . Again, (∂jkf)0i =

∂jk(f
0
i ) 6≡ 0 by commutativity. Then by UPF, we have a′′(xu) ∼ a(xu). Thus, a(xu) | f by

Lemma 5.29 and we are done.

Lemma 5.31. Let f be a signature of arity n ⩾ 5, f /∈ T , f ∈
∫

T and f /∈
∫
1 T1. Then, there is

an irreducible binary signature b(xv, xw) such that b(xv, xw) | f , or ∆1 is realizable from f .

证明. Since f /∈
∫
1 T1, but f ∈

∫
T , there is some index r such that f0r is nonzero and has an

irreducible binary signature factor b(xv, xw). We will show this b(xv, xw) divides f . Again, we may

assume f0i 6≡ 0 and f00ij 6≡ 0 for all i and all {i, j}. Otherwise, we can realize ∆1 by Lemma 5.25.

Consider f0i for all indices i /∈ {v, w, r}. Since f0i ∈ T and f0i 6≡ 0, there is either a unary

signature a(xv) or an irreducible binary signature b′(xv, xw′) such that a(xv) | f0i or b′(xv, xw′) | f0i .

We also have b(xv, xw) | (f0r )0i since b(xv, xw) | f0r . Again, we have (f0r )
0
i = (f0i )

0
r 6≡ 0. Then by

UPF, we know that the unary signature a(xv) does not exist, and it must be b′(xv, xw′) | f0i and

b(xv, xw) = b′(xv, xw′). Thus, we have b(xv, xw) | f0i for all i /∈ {v, w}.

Then, for an arbitrary pair of indices {j, k} disjoint with {v, w}, we show b(xv, xw) | ∂jkf .

Again, we may assume ∂jkf 6≡ 0 (for otherwise b(xv, xw) | ∂jkf is proved) and furthermore (∂jkf)0i 6≡

0 for all i disjoint with {j, k}, for otherwise, we can realize ∆1. Since f has arity n ⩾ 5, we can

pick some index i /∈ {u, v, j, k} such that b(xv, xw) | ∂jk(f0i ) due to b(xv, xw) | f0i . Recall that

∂jkf ∈ T , we consider the UPF of ∂jkf . Using a similar argument as in the previous paragraph,

we have b(xv, xw) | ∂jkf by UPF.

Combining the above two lemmas, we have the following result.

Lemma 5.32 (Inductive step for n ⩾ 5). If f ∈ F is a signature of arity n ⩾ 5 and f /∈ T , then

• Holantc(F) ⩽T Holant(∆0,F) or

• there is a signature g /∈ T of arity n−1 or n−2 such that Holant(∆0, g,F) ⩽T Holant(∆0,F).
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Now, the only case left for the induction proof is when f is a signature of arity 4. We deal

with it by using the 1st-Orth condition.

Lemma 5.33 (Inductive step n = 4). Let f ∈ F be a signature of arity 4 and f /∈ T . Then

• Holantc(F) ⩽T Holant(=2| ∆0,F), or

• #CSP2(F) ⩽T Holant(=2|=4,F) ⩽T Holant(=2| ∆0,F), or

• there is a signature g /∈ T of arity 3 such that Holant(∆0, g,F) ⩽T Holant(∆0,F).

证明. First, we may assume f is irreducible. Otherwise, we consider its irreducible factors. Since

f /∈ T , it has an irreducible factor g of arity 3 such that g /∈ T . By Lemma 3.6, g is realizable from

f by factorization, and the lemma is proved. Also we may assume f0000 = 1 after normalization

and f satisfies 1st-Orth; otherwise, by Lemma 5.25 and Corollary 5.27, we are done. We consider

signatures f0i realized by pinning xi to 0 in f , for all i. If there is i such that the ternary signature

f0i /∈ T , then we are done, since f0i has arity 3. Also, since f has arity 4, ∂ijf is a binary signature

for any pair of indices {i, j}. Hence ∂ijf ∈ T . Thus, we may assume f ∈
∫

T .

• If f ∈
∫
1 T1, then there are three unary signatures such that f01 = a1(x2)⊗a2(x3)⊗a3(x4). By

the same proof in Lemma 5.30, we have a2(x3) | f02 and a3(x4) | f02 . Thus, a2(x3)⊗a3(x4) | f02 .

• Otherwise, there is an index i such that f0i has an irreducible binary factor. Without loss of

generality, we assume that f01 = a1(x2) ⊗ b1(x3, x4) where b1(x3, x4) is irreducible. By the

same proof as in Lemma 5.31, we have b1(x3, x4) | f02 .

Therefore, in both cases, there is a binary signature b(x3, x4), which may be reducible, i.e.,

b(x3, x4) = a2(x3)⊗ a3(x4), such that b(x3, x4) | f01 and b(x3, x4) | f02 . Thus, we have

f01 = a1(x2)⊗ b(x3, x4) and f02 = a′1(x1)⊗ b(x3, x4).

By a normalization we may let b(x3, x4) = (1, a, b, c), a1(x2) = (1, x) and a′1(x1) = (1, y). Then, f
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has the signature matrix, for some z, z1, z2, z3

M12,34(f) =


1 a b c

x ax bx cx

y ay by cy

z z1 z2 z3

 .

Then, we consider the signature f03 . It has the signature matrix

M12,4(f
0
3 ) =


1 a

x ax

y ay

z z1

 .

We have f03 ∈ T , and nonzero. In its unique factorization, if x2 and x4 belong to an irreducible

binary signature, then (f03 )
0
1, which has the signature matrix M2,4(f

00
13 ) = [ 1 a

x ax ], would have been

an irreducible binary signature, a contradiction. Similarly x1 and x4 do not belong to an irreducible

binary signature in the unique factorization of f03 . Therefore x4 appears in a unary signature in

the factorization of f03 . It follows that z1 = az. Similarly from f04 ∈ T , we can prove z2 = bz. We

also write z3 as cz + w. Thus, we have

M12,34(f) = (1, x, y, z)T ⊗ (1, a, b, c) + w((0, 1)T)⊗2⊗(0, 1)⊗2.

We know w 6= 0 since f /∈ T . By pinning any 3 of the 4 variables to 0, we can realize four unary

signatures (1, a), (1, b), (1, x) and (1, y). For example, (1, x) can be realized from f by pinning

variables x1, x3 and x4 to 0.

• Suppose a, b, x, y are not all zero, say x 6= 0. We connect the unary (1, x) with the variable

x2 of f , and we get a signature g with the signature matrix

M1,34(g) =

1 + x2 a(1 + x2) b(1 + x2) c(1 + x2)

y + xz a(y + xz) b(y + xz) c(y + xz) + xw

 .
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Clearly, 1 + x2 6= 0. By normalization, we have

M1,34(g) =

 1 a b c

x′ ax′ bx′ cx′ + w′

 ,
where x′ = y+xz

1+x2
and w′ = xw

1+x2
, and w′ 6= 0 since xw 6= 0. Thus

g = (1, x′)x1 ⊗ (1, a, b, c)x3,x4 + w′(0, 1)⊗3. (5.27)

We claim that g /∈ T . Otherwise consider the unique factorization of g in T . By the same

proof above for f03 ∈ T , we can see that x1 of g cannot appear in an irreducible binary

signature, either with x3 or with x4, as a tensor factor in the unique prime factorization of

g. Hence x1 must appear in a unary signature in this factorization. This would imply that

w′ = 0, by the form of M1,34(g), a contradiction.

It follows that g /∈ T , and we are done.

• Otherwise, a = b = x = y = 0. Then, we know

M12,34(f) =


1 0 0 c

0 0 0 0

0 0 0 0

z 0 0 z3

 .

Here, we write z3 as cz+w. By equation (5.23), we have 1+c2 = z2+z23 and 1+z2 = c2+z23 .

Thus, we have c2 = z2 and z23 = 1. By pinning variables x1 and x2 to 0, we can realize the

binary signature (1, 0, 0, c). If it is not reducible or orthogonal, then by Lemma 5.26 we can

realize ∆1. Otherwise, we have c = 0 or c = ±1. Similarly, we have z = 0 or z = ±1. As

we already have c2 = z2, we get c = z = 0 or c2 = z2 = 1. We consider the signature m34f
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realized by mating variables x3, x4 of f . We have

M(m34f) =M12,34(f)(M12,34(f))
T =


1 + c2 0 0 z + cz3

0 0 0 0

0 0 0 0

z + cz3 0 0 z2 + z23

 .

If c = z = 0, then we have M(m34f) =

[
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

]
= M(=4). Otherwise, c2 = z2 = 1. Also,

we know z3 6= cz since f /∈ T . Note that z23 = 1 and (cz)2 = 1. This implies that z3 = −cz.

Then, we have z+ cz3 = z− c2z = z−z = 0. Thus, we haveM(m34f) =

[
2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 2

]
= 2M(=4).

Therefore, we can realize (=4) from f , and then by Lemma 2.24 we can realize all equality

signatures =2k of even arity. Thus, we have

#CSP2(F) ⩽T Holant(=4,F) ⩽T Holant(∆0,F).

This completes the proof of the lemma.

Theorem 5.34. Holant(∆0,F) is #P-hard unless F satisfies the tractable condition (T).

证明. Assume F does not satisfy condition (T). Then F 6⊆ T . There is a signature f ∈ F of arity

n ⩾ 3 that is not in T . If n = 3, then by Lemma 5.28, we are done.

Suppose our statement is true for 3 ⩽ n ⩽ k. Consider n = k + 1 ⩾ 4. By Lemmas 5.32

and 5.33, we have Holantc(F), or #CSP2(F), or Holant(=2| ∆0, g,F) ⩽T Holant(=2| ∆0,F) for

some g /∈ T of arity k − 1 or k at least 3. By Theorem 2.34 and the induction hypothesis, we

know Holantc(F), #CSP2(F) and Holant(=2| ∆0, g,F) are all #P-hard when F does not satisfy

condition (T), and hence Holant(=2| ∆0,F) is #P-hard.

5.4 Putting Things Together

Theorem 5.35. Let F be a set of real-valued signatures containing a nonzero signature of odd arity.

If F satisfies condition (T), then Holant(F) is polynomial-time computable; otherwise, Holant(F)
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is #P-hard.

证明. The tractability is known by Theorem 2.33.

We prove #P-hardness when F does not satisfy condition (T). By Lemma 5.3, There ex-

ists some real orthogonal matrix Q ∈ O2 such that Holant(=2| ∆0, QF) ⩽T Holant(=2| F)

or Holant(6=2|=2k+1, Q̂F) ⩽T Holant(=2| F). Since F does not satisfy condition (T), QF also

does not satisfy it. Then by Theorem 5.34 and Corollary 5.6, we have Holant(=2| ∆0, QF) and

Holant(6=2|=2k+1, Q̂F̂) are both #P-hard. Hence, Holant(=2| F) is #P-hard.
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Chapter 6

Building Blocks of Even Arity:

Binary and 4-ary Signatures

Since now, we consider the complexity of Holant(F) for F consisting of signatures of even arity.

Suppose that F does not satisfy (T). Then, F 6⊆ T . Recall that O⊗ denotes the set of tensor

products of binary orthogonal signatures and the binary zero signature. Clearly, since O⊗ ⊆ T ,

F 6⊆ O⊗. Thus, F contains a signature f /∈ O⊗. We will prove that Holant(F) is #P-hard when

F does not satisfy (T) by induction on the arity of f . In this chapter, we deal with the base cases

that F contains a binary or 4-ary nonzero signature that is not in O⊗.

6.1 First and Second Order Orthogonality

Recall that a real-valued signature f of arity n satisfies 1st-Orth iff there exists µ 6= 0 such

that for all indices i ∈ [n], M(mif) = µI2. Suppose that F does not satisfy condition (T). We first

show that every nonzero f ∈ F (of arity not necessarily 2 or 4) satisfies 1st-Orth, or otherwise

we get the #P-hardness of Holant(F) by realizing a unary signature.

Lemma 6.1. Suppose that F is a set of real-valued signatures and F does not satisfy condition

(T). If F contains a signature f that does not satisfy 1st-Orth, then Holant(F) is #P-hard.

证明. Consider mif for all indices i. Clearly, M(mif) = Mi(f)M
T
i (f) is a real symmetric positive

semi-definite matrix, which is diagonalizable with two non-negative real eigenvalues λi ⩾ µi ⩾ 0.

These two eigenvalues are not both zero since f is real valued and f 6≡ 0, and so M(mif) 6= 0.

Thus, λi 6= 0. Then, |µiλi | = 1 iff λi = µi. In other words, |µiλi | = 1 iff M(mif) = µiI2 for some real

µi 6= 0.

Since f does not satisfy 1st-Orth, by Lemma 3.15, there is an index i such thatM(mif) 6= µiI2
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for any real µi 6= 0. Thus, M(mif) has two eigenvalues with different norms. By Lemma 3.24, we

can realize a nonzero binary signature g such that M(g) is degenerate. This implies that g can be

factorized as a tensor product of two nonzero unary signatures. By Lemma 3.6, we can realize a

nonzero unary signature and hence by Theorem 5.35, Holant(F) is #P-hard.

For real-valued F that does not satisfy condition (T), assuming that every f ∈ F satisfies 1st-

Orth, we further show that every irreducible f ∈ F of arity at least 4 satisfies 2nd-Orth, or other-

wise Holant(F) is #P-hard. The proof is based on dichotomies of #CSP problems, #EO problems

and eight-vertex models. The eight-vertex model can be expressed by the problem Holant( 6=2| f)

where f is a 4-ary signature with even parity. The complexity classification of this problem is

known even when f does not satisfy ars [19]. Here, we restate this result for signatures with ars.

Theorem 6.2. Let f̂ be a complex-valued signature with matrix form M(f̂) =

[ c 0 0 a
0 d b 0
0 b d 0
a 0 0 c

]
. Then,

Holant(6=2| f̂) is #P-hard if

• f̂ has support 6, or

• f̂ has support 4 and the nonzero entries of M(f̂) do not have the same norm, or

• f̂ has support 8, all nonzero entries of M(f̂) are positive real numbers and are not all equal.

Otherwise, Holant( 6=2| f̂) is tractable.

Since #EO problems and eight-vertex models are defined as special cases of the problem

Holant(6=2| F̂), for convenience, we will consider the problem Holant(6=2| F̂) which is equivalent to

Holant(F). Recall that F̂ = Z−1F satisfies ars, and a signature f̂ with ars satisfies 2nd-Orth

iff there exists λ 6= 0 such that for all pairs of indices {i, j} ⊆ [n], M(m̂ij f̂) = λN4.

We first consider that case that DEQ is available, where DEQ = {6=2, . . . , 6=2k, . . .} is the set

of all disequality signatures.

Lemma 6.3. Suppose that F is a set of real-valued signatures of even arity and F does not satisfy

condition (T). Let F̂ = Z−1F . Then, Holant(DEQ | F̂) is #P-hard.

证明. Since F does not satisfy condition (T), by Lemma 2.37, F̂ 6⊆ P and F̂ 6⊆ A . If F̂ is a set

of EO signatures, then EO(F̂) ≡T Holant(6=2| F̂) ⩽T Holant(DEQ | F). By Theorem 4.1, when
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F̂ 6⊆ P and F̂ 6⊆ A , EO(F̂) is #P-hard, and hence Holant(DEQ | F̂) is #P-hard. Thus, we may

assume that there is a signature f̂ ∈ F̂ whose support is not half-weighted. Suppose that f̂ has

arity 2n. Since S (f̂) 6⊆ H2n, by ars, there is an α ∈ Z2n
2 with wt(α) = k < n such that f̂(α) 6= 0.

We first show that we can realize a signature ĝ of arity 2n−2k such that ĝ(⃗0) 6= 0. If wt(α) = k = 0,

then we are done. Otherwise, we have n > k ⩾ 1. Thus, 2n ⩾ 4 and α has length at least 4. By

Lemma 3.9, there is a pair of indices {i, j} such that ∂̂ij f̂(β) 6= 0 for some wt(β) = k − 1. Clearly,

∂̂ij f̂ has arity 2n − 2. Since 0 ⩽ k − 1 < (2n − 2)/2, ∂̂ij f̂ is not an EO signature. Now we can

continue this process, and by a chain of merging gadgets using 6=2, we can realize a signature ĝ of

arity 2m = 2n− 2k such that ĝ(⃗0) 6= 0. Denote by a = ĝ(⃗0).

Then, we connect all 2m variables of ĝ with 2m variables of 6=4m that always take the same

value in S ( 6=4m) using 6=2. We get a signature ĥ of arity 2m where ĥ(⃗0) = a, ĥ(⃗1) = ā by ars,

and ĥ(γ) = 0 elsewhere. Then, consider the holographic transformation by Q̂ =
[

2m√ā 0
0 2m√a

]
∈ Ô2.

It transforms ĥ to 6=2m, but does not change DEQ. Thus,

Holant(DEQ | ĥ, F̂) ≡T Holant(DEQ |=2m, Q̂F̂).

If 2m = 2, then we can show that

#CSP2(6=2, Q̂F̂) ≡T Holant(EQ2 |6=2, Q̂F̂) ⩽T Holant(DEQ |=2, Q̂F̂).

If 2m > 2, then by Lemma 5.4, we have

#CSP2m( 6=2, Q̂F̂) ⩽T Holant(6=2|=2m, Q̂F̂) ⩽T Holant(DEQ |=2m, Q̂F̂).

Thus, for all 2m ⩾ 2, #CSP2m( 6=2, Q̂F̂) ⩽T Holant(DEQ |=2m, Q̂F̂). Recall that Q̂F̂ = Q̂F . Since

F does not satisfy condition (T), QF also does not satisfy it. By Theorem 5.5, #CSP2m(6=2, Q̂F)

is #P-hard when QF does not satisfy condition (T). Thus, Holant(DEQ |=2m, Q̂F̂) is #P-hard,

and then Holant(DEQ | F̂) is #P-hard.

Then, we consider 4-ary signatures m̂ij f̂ realized by mating using 6=2. We show that they have

even parity. Then, we can invoke the existing dichotomy of eight-vertex models.
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Lemma 6.4. Suppose that F is a set of real-valued signatures of even arity and F does not satisfy

condition (T). If F̂ = Z−1F contains a signature f̂ of arity 2n ⩾ 4, then

• Holant( 6=2| F̂) is #P-hard, or

• for all pairs of indices {i, j}, there exists a nonzero binary signature b̂ij ∈ Ô such that

b̂ij(xi, xj) | f̂ or M(m̂ij f̂) = λijN4 for some real λij 6= 0.

证明. If f̂ ≡ 0, then the lemma holds trivially since for all {i, j} and any b̂ij 6= 0, b̂ij(xi, xj) | f̂ .

Thus, we may assume that f 6≡ 0.

If f̂ does not satisfy 1st-Orth, then f does not satisfy it. By Lemma 6.1, Holant(6=2| F̂) ≡T

Holant(=2| F) is #P-hard. Thus, we may assume that f̂ satisfies 1st-Orth. Then, for all indices

i, we have

M(m̂if̂) =

〈̂f0i , f̂1i 〉 |̂f0i |2

|̂f1i |2 〈̂f1i , f̂0i 〉

 = µ

0 1

1 0

 .
For any variable xi, we may take another variable xj (j 6= i) and partition the sum in the inner

product 〈̂f0i , f̂1i 〉 = 0 into two sums depending on whether xj = 0 or 1. Also, by ars we have

〈̂f0i , f̂1i 〉 = 〈̂f00ij , f̂10ij 〉+ 〈̂f01ij , f̂11ij 〉 = 〈̂f00ij , f̂10ij 〉+ 〈̂f10ij , f̂00ij 〉 = 2〈̂f00ij , f̂10ij 〉 = 0.

Thus, for all pairs of indices {i, j}, 〈̂f00ij , f̂10ij 〉 = 0 and 〈̂f01ij , f̂11ij 〉 = 0. (Note that by exchanging i and

j we also have 〈̂f00ij , f̂01ij 〉 = 0 and 〈̂f10ij , f̂11ij 〉 = 0.) Also by ars, we have |̂f00ij |2 = |̂f11ij |2 = |̂f11ij |2 and

|̂f01ij |2 = |̂f10ij |2 = |̂f10ij |2.

Now, consider m̂ij f̂ for all pairs of indices {i, j}.

M(m̂ij f̂) =


f̂00ij
f̂01ij
f̂10ij
f̂11ij


[̂
f11ij

T
f̂10ij

T
f̂01ij

T
f̂00ij

T]
=


〈̂f00ij , f̂11ij 〉 0 0 |̂f00ij |2

0 〈̂f01ij , f̂10ij 〉 |̂f01ij |2 0

0 |̂f10ij |2 〈̂f10ij , f̂01ij 〉 0

|̂f11ij |2 0 0 〈̂f11ij , f̂00ij 〉

 .

Note that |〈̂f00ij , f̂11ij 〉| ⩽ |̂f00ij | · |̂f11ij | by Cauchy-Schwarz inequality. Clearly, m̂ij f̂ has even parity, and

thus it represents a signature of the eight-vertex model. If there exists a pair of indices {i, j} such

that Holant(6=2| m̂ij f̂) is #P-hard, then we are done since Holant(6=2| m̂ij f̂) ⩽T Holant(6=2| F̂).
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Thus, we may assume all m̂ij f̂ belong to the tractable family for eight-vertex models. Clearly,

by observing its antidiagonal entries of the matrix M(m̂ij f̂), we have m̂ij f̂ 6≡ 0 since f̂ 6≡ 0. By

Theorem 6.2, there are three possible cases.

• There exists a pair {i, j} such that m̂ij f̂ has support of size 2. By Cauchy-Schwarz inequality,

M(m̂ij f̂) is either of the form λij

[
0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

]
where λij = |̂f00ij |2 = |̂f11ij |2 6= 0 or λij

[
0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

]
where λij = |̂f01ij | = |̂f10ij | 6= 0. In both cases, 6=4 is realizable since λij 6= 0. The form that

〈̂f01ij , f̂10ij 〉 6= 0 while |̂f01ij |2 = |̂f10ij |2 = 0 cannot occur since |〈̂f01ij , f̂10ij 〉| ⩽ |̂f01ij ||̂f10ij |. Also, the form

that 〈̂f00ij , f̂11ij 〉 6= 0 while |̂f00ij |2 = |̂f11ij |2 = 0 cannot occur. Since 6=4 is available, by Lemma 4.25,

Holant(DEQ | F̂) ⩽T Holant(=2| F̂). By Lemma 6.3, Holant(=2| F̂) is #P-hard.

• There exists a pair {i, j} such that m̂ij f̂ has support of size 8. We can rename the four

variables of m̂ij f̂ in a cyclic permutation. We use ĝ to denote this signature. Then M(ĝ) =

M12(ĝ) =

[
c 0 0 d
0 a b 0
0 b a 0
d̄ 0 0 c̄

]
where a and b are positive real numbers and c and d are nonzero complex

numbers. Consider the signature m̂12ĝ realized by mating ĝ. We denote it by ĥ. Then,

M(ĥ) =M(ĝ)N4M
T(ĝ) =


2cd 0 0 |c|2 + |d|2

0 2ab a2 + b2 0

0 a2 + b2 2ab 0

|c|2 + |d|2 0 0 2c̄d̄

 =


c′ 0 0 d′

0 a′ b′ 0

0 b′ a′ 0

d′ 0 0 c̄′

 ,

where a′, b′, and d′ are positive real numbers and c′ is a nonzero complex number. Suppose

that the argument of c′ is θ, i.e., c′ = |c′|eiθ.

Consider the holographic transformation by Q̂ =
[
e−iθ/4 0

0 eiθ/4

]
∈ Ô2. Then,

Holant( 6=2| ĥ, F̂) ≡T Holant(6=2| Q̂ĥ, Q̂F̂).

Note that M(Q̂ĥ) =

[ |c′| 0 0 d′

0 a′ b′ 0
0 b′ a′ 0
d′ 0 0 |c′|

]
where all entries are positive real numbers. Notice that

all weight 2 entries of ĥ are unchanged in Q̂ĥ. By Theorem 6.2, Holant( 6=2| Q̂ĥ) is #P-hard

unless a′ = b′ = |c′| = d′. Thus, we may assume thatM(Q̂ĥ) =

[
1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1

]
up to normalization.

Notice that M(Z(Q̂ĥ)) = Z⊗2M(Q̂ĥ)(ZT)⊗2 =

[
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

]
, which is the arity-4 equality (=4).
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Consider the holographic transformation by Z which transfers 6=2 back to =2. Remember

that Q̂ = Z−1QZ. Then, Z(Q̂F̂) = Z(Z−1QZ)(Z−1F) = QF . Since Q̂ ∈ Ô2, we have

Q ∈ O2. Thus,

Holant(6=2| Q̂ĥ, Q̂F̂) ≡T Holant(=2|=4, QF).

By Lemma 2.24, #CSP2(QF) ⩽T Holant(=2|=4, QF). Since F does not satisfy condition

(T) and Q ∈ O2, QF also does not satisfy condition (T). By Theorem 2.34, #CSP2(QF) is

#P-hard. Thus, Holant( 6=2| F̂) is #P-hard.

• For all {i, j}, m̂ij f̂ has support of size 4. By Cauchy-Schwarz inequality, M(m̂ij f̂) is of the

form
[
b 0 0 a
0 0 0 0
0 0 0 0
a 0 0 b̄

]
or
[
0 0 0 0
0 b a 0
0 a b̄ 0
0 0 0 0

]
where a2 − |b|2 = 0, or the form λij

[
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

]
where λij = |̂f00ij |2 =

|̂f01ij | 6= 0. If M(mij f̂) = λijN4, then we are done. Otherwise, M(m̂ij f̂) has rank one. Hence,

Mij(f̂) also has rank one. Then, by observing the form of M(m̂ij f̂) especially the all zero

rows, f̂ can be factorized as b̂ij(xi, xj) ⊗ ĝ where b̂ij ∈ Ô and ĝ is a signature on the other

n− 2 variables. Thus, we are done.

The lemma is proved.

Remark 6.5. We give a restatement of Lemma 6.4 in the setting of Holant(F). Suppose that F

is a set of real-valued signatures of even arity and F does not satisfy condition (T). Let f ∈ F be

a signature of arity 2n ⩾ 4. Then, Holant(F) is #P-hard, or for all pairs of indices {i, j}, there

exists a nonzero binary signature bij ∈ O such that bij(xi, xj) | f or M(mijf) = λijI4 for some real

λij 6= 0.

Now for an irreducible signature f̂ of arity 2n ⩾ 4, we show that it satisfies 2nd-Orth or we

get #P-hardness.

Lemma 6.6. Suppose that F is a set of real-valued signatures of even arity, F does not satisfy

condition (T). Let f̂ ∈ F̂ = Z−1F be an irreducible signature of arity 2n ⩾ 4. If f̂ does not satisfy

2nd-Orth, then Holant( 6=| F̂) is #P-hard.

证明. Since f̂ is irreducible, by Lemma 6.4, M(m̂ij f̂) = λijN4 for all {i, j}. Now, we show all λij
have the same value. If we connect further the two respective pairs of variables of mijf , which totally
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connects two copies of f , we get a value 4λij . This value clearly does not depend on the particular

indices {i, j}. We denote the value λij by λ. This value is nonzero because f̂ is irreducible.

We derive some consequences from the condition 2nd-Orth for signatures with ars. Suppose

that f̂ satisfies 2nd-Orth. First, by definition we have |̂fabij |2 = λ for any (xi, xj) = (a, b) ∈ {0, 1}2.

Given a vector f̂abij , we can pick a third variable xk and partition f̂abij into two vectors f̂ab0ijk and f̂ab1ijk

according to xk = 0 or 1. By setting (a, b) = (0, 0), we have

|̂f00ij |2 = |̂f000ijk |2 + |̂f001ijk |2 = λ. (6.1)

Similarly, we consider the vector f̂00ik and partition it according to xj = 0 or 1. We have

|̂f00ik |2 = |̂f000ijk |2 + |̂f010ijk |2 = λ. (6.2)

Comparing equations (6.1) and (6.2), we have |̂f001ijk |2 = |̂f010ijk |2. Moreover, by ars, we have |̂f010ijk |2 =

|̂f101ijk |2. Thus, we have |̂f001ijk |2 = |̂f101ijk |2. Note that the vector f̂01jk is partitioned into two vectors f̂001ijk

and f̂101ijk according to xi = 0 or 1. That is

|̂f01jk|2 = |̂f001ijk |2 + |̂f101ijk |2 = λ.

Thus, we have |̂f001ijk |2 = |̂f101ijk |2 = λ/2. Then, by equation (6.1), we have |̂f000ijk |2 = λ/2, and again

by ars, we also have |̂f111ijk |2 = |̂f000ijk |2 = λ/2. Note that indices i, j, k are picked arbitrarily, by

symmetry, we have

|̂fabcijk |2 = λ/2 (6.3)

for all (xi, xj , xk) = (a, b, c) ∈ {0, 1}3.

Given a vector f̂abcijk , we can continue to pick a fourth variable xℓ and partition f̂abcijk into two

vectors f̂abc0ijkℓ and f̂abc1ijkℓ according to xℓ = 0 or 1. By setting (a, b, c) = (0, 0, 0), we have from (6.3)

|̂f000ijk |2 = |̂f0000ijkℓ |2 + |̂f0001ijkℓ |2 = λ/2. (6.4)
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Similarly, we consider the vector f̂001ijℓ and partition it according to xk = 0 or 1. We have

|̂f001ijℓ |2 = |̂f0001ijkℓ |2 + |̂f0011ijkℓ |2 = λ/2. (6.5)

Comparing equations (6.4) and (6.5), and also by ars, we have

|̂f0000ijkℓ |2 = |̂f0011ijkℓ |2 = |̂f1100ijkℓ |2 = |̂f1111ijkℓ |2 (6.6)

for all indices {i, j, k, ℓ}. Similarly, we can get

|̂f0001ijkℓ |2 = |̂f0010ijkℓ |2 = |̂f1101ijkℓ |2 = |̂f1110ijkℓ |2. (6.7)

By the definition of second order orthogonality, we also have

〈̂fabij , f̂cdij 〉 = 0 (6.8)

for all variables xi, xj and (a, b) 6= (c, d).

Equations (6.6), (6.7) and (6.8) will be used frequently in the analysis of signatures satisfying

ars and 2nd-Orth. This is also a reason why we consider the problem in the setting under

the Z−1 transformation, Holant( 6=2| F̂), where we can express these consequences of 2nd-Orth

elegantly, instead of Holant(F) which is logically equivalent. By combining 2nd-Orth and ars of

the signature f̂ , we get these simply expressed, thus easily applicable, conditions in terms of norms

and inner products.

6.2 The Induction Proof: Base Cases 2n ⩽ 4

In this section, we introduce the induction framework and handle the base cases (Lemmas 6.7

and 6.8). Recall that Ô denotes the set of binary signatures with ars and parity (including the

binary zero signature), and Ô⊗ denotes the set of tensor products of signatures in Ô. Since F

does not satisfy condition (T), F̂ 6⊆ T . Also, since Ô⊗ ⊆ T , F̂ 6⊆ Ô⊗. Thus, there is a nonzero

signature f̂ ∈ F̂ of arity 2n such that f̂ /∈ Ô⊗. We want to achieve a proof of #P-hardness by

induction on 2n. We first consider the base that 2n = 2. Notice that a nonzero binary signature
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f̂ satisfies 1st-Orth iff its matrix form (as a 2-by-2 matrix) is orthogonal. Thus, f̂ /∈ Ô implies

that it does not satisfy 1st-Orth. Then, we have the following result.

Lemma 6.7. Suppose that F is a set of real-valued signatures of even arity and F does not

satisfy condition (T). If F contains a binary signature f /∈ O⊗, then Holant(F) is #P-hard.

Let F̂ = Z−1F . Equivalently, if F̂ contains a binary signature f̂ /∈ Ô⊗, then Holant(6=2| F̂) is

#P-hard.

证明. We prove this lemma in the setting of Holant(F). Since O⊗ contains the binary zero signa-

ture, f /∈ O⊗ implies that f 6≡ 0. If f is reducible, then it is a tensor product of two nonzero unary

signatures. By Lemma 3.6, we can realize a nonzero unary signature by factorization, and we are

done by Theorem 5.35. Otherwise, f is irreducible. Since f /∈ O⊗, f does not satisfy 1st-Orth.

By Lemma 6.1, Holant(F) is #P-hard.

Then, the general induction framework is that we start with a signature f̂ of arity 2n ⩾ 4 that

is not in Ô⊗, and realize a signature ĝ of arity 2k ⩽ 2n− 2 that is also not in Ô⊗, or otherwise we

can directly show Holant(6=2| F̂) is #P-hard. If we can reduce the arity down to 2 (by a sequence

of reductions of length independent of the problem instance size), then we have a binary signature

b̂ /∈ Ô. By Lemma 6.7, we are done.

For the inductive step, we first consider the case that f̂ is reducible. Suppose that f̂ = f̂1⊗ f̂2.

If f̂1 or f̂2 have odd arity, then we can realize a signature of odd arity by factorization and we are

done. Otherwise, f̂1 and f̂2 have even arity. Since f̂ /∈ Ô⊗, we know f̂1 and f̂2 cannot both be

in Ô⊗. Then, we can realize a signature of lower arity that is not in Ô⊗ by factorization. We are

done. Thus, in the following we may assume that f̂ is irreducible. Then, we may further assume

that f̂ satisfies 2nd-Orth. Otherwise, we get #P-hardness by Lemma 6.6. We use merging with

6=2 to realize signatures of arity 2n− 2 from f̂ . Consider ∂̂ij f̂ for all pairs of indices {i, j}. If there

exists a pair {i, j} such that ∂̂ij f̂ /∈ Ô⊗, then we can realize ĝ = ∂̂ij f̂ which has arity 2n− 2, and

we are done. Thus, we may assume ∂̂ij f̂ ∈ Ô⊗ for all {i, j}. We denote this property by f̂ ∈
∫̂
Ô⊗.

We want to achieve our induction proof based on these two properties: 2nd-Orth and f̂ ∈
∫̂
Ô⊗.

We consider the case that 2n = 4.

Lemma 6.8. Suppose that F is a set of real-valued signatures of even arity and F does not satisfy
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condition (T). Let F̂ = Z−1F . If F̂ contains a 4-ary signature f̂ /∈ Ô⊗, then Holant(6=2| F̂) is

#P-hard.

证明. Since f̂ /∈ Ô⊗, f 6≡ 0. First, we may assume that f̂ is irreducible. Otherwise, we can realize

a nonzero unary signature or a binary signature that is not in Ô. Then, by Theorem 5.35 and

Lemma 6.7, we have #P-hardness. Since f̂ is irreducible, we may further assume that f̂ satisfies

2nd-Orth. Otherwise, by Lemma 6.6, we get #P-hardness.

We consider binary signatures ∂̂ij f̂ realized from f̂ by merging using 6=2. Under the assumption

that f̂ satisfies 2nd-Orth, we will show that there exits a pair {i, j} such that ∂̂ij f̂ /∈ Ô. Then

by Lemma 6.7, we are done. For a contradiction, suppose that f̂ ∈
∫̂
Ô i.e., ∂̂ij f̂ ∈ Ô for all pairs

{i, j}. Since f̂ satisfies 2nd-Orth, by equations (6.6) and (6.7), we have |̂f0000ijkℓ | = |̂f0011ijkℓ | = |̂f1111ijkℓ |

and |̂f0001ijkℓ | = |̂f1110ijkℓ | respectively for any permutation (i, j, k, ℓ) of (1, 2, 3, 4). Thus all entries of f̂

on inputs of even weight {0, 2, 4} have the same norm, and all entries of f̂ on inputs of odd weight

{1, 3} have the same norm. We denote by ν0 and ν1 the norm squares of entries on inputs of even

weight and odd weight, respectively.

Then, we consider the equation 〈̂f0112, f̂1012〉 = 0 from (6.8) by taking (i, j) = (1, 2). We have

〈̂f0112, f̂1012〉 = f̂0100f̂1000 + f0101f̂1001 + f̂0110f̂1010 + f̂0111f̂1011 = 0.

(Here for clarity, we omitted the subscript 1234 of f̂abcd1234.) By ars, we have f̂0111f̂1011 = f̂1000f̂0100

and f̂0110f̂1010 = f̂1001f̂0101. Thus, we have

f̂0100f̂1000 + f̂0101f̂1001 = 0. (6.9)

Note that by taking norm, |f̂0100f̂1000| = ν1 and |f̂0101f̂1001| = ν0. Then, it follows that ν0 = ν1.

Thus, all entries of f̂ have the same norm. We normalize the norm to be 1 since f̂ 6≡ 0.

Consider ∂̂12f̂ . We have

∂̂12f̂ = (f̂0100 + f̂1000, f̂0101 + f̂1001, f̂0110 + f̂1010, f̂0111 + f̂1011),

and by assumption ∂̂12f̂ ∈ Ô. Thus, at least one of the two entries f̂0100 + f̂1000 and f̂0101 + f̂1001
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is equal to zero. If f̂0100 + f̂1000 = 0, then we have

f̂0100f̂1000 = (−f̂1000)f̂1000 = −|f̂1000|2 = −1.

Then, by equation (6.9), we have f̂0101f̂1001 = 1. Otherwise, f̂0101 + f̂1001 = 0. Then, we have

f̂0101f̂1001 = −1 while f̂0100f̂1000 = 1. Thus, among these two products f̂0100f̂1000 and f̂0101f̂1001,

exactly one is equal to 1, while the other is −1. Then, we have

f̂0100f̂1000f̂0101f̂1001 = −1.

Similarly, by considering ∂̂23f̂ and ∂̂31f̂ respectively, we have

f̂0010f̂0100f̂0011f̂0101 = −1, and f̂1000f̂0010f̂1001f̂0011 = −1.

Multiply these three products, we have

|f̂0100|2|f̂0010|2|f̂1000|2|f̂0101|2|f̂0011|2|f̂1001|2 = (−1)3 = −1.

A contradiction!

Remark 6.9. In this proof, we showed that there is no irreducible 4-ary signature f̂ that satisfies

both 2nd-Orth and f̂ ∈
∫̂
Ô⊗.

If Lemma 6.8 were to hold for signatures of arity 2n ⩾ 6, i.e., there is no irreducible signature

f̂ of 2n ⩾ 6 such that f̂ satisfies both 2nd-Orth and f̂ ∈
∫̂
Ô⊗, then the induction proof holds

and we are done. We show that this is true for signatures of arity 2n ⩾ 10 in Section 8.3. However,

there are extraordinary signatures of arity 6 and 8 with special closure properties (Bell properties)

such that they satisfy both 2nd-Orth and f̂ ∈
∫̂
Ô⊗.
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Chapter 7

First Major Obstacle: 6-ary

Signatures with the Bell Property

In this chapter, we consider the case that F̂ contains a 6-ary signature that is not in Ô⊗. We

give a signature f̂6 with extraordinary closure properties called the Bell property. The existence

of f̂6 presented a formidable obstacle to the induction proof. In order to handle the signature f̂6,

we introduce Holantb problems where the four binary Bell signatures are available. We prove a

#P-hardness result for Holantb(f6,F).

7.1 The Discovery of f̂6

We consider the following 6-ary signature f̂6. Let f̂6 = χS · (−1)x1x2+x2x3+x1x3+x1x4+x2x5+x3x6 ,

where χS is the indicator function on the set S = S (f̂6) = E6 = {α ∈ Z6
2 | wt(α) ≡ 0 mod 2}.

One can check that f̂6 is irreducible, and f̂6 satisfies both 2nd-Orth and f̂ ∈
∫̂
Ô⊗. f̂6 has the

following matrix form

M123,456(f̂6) =



1 0 0 1 0 1 1 0

0 −1 1 0 1 0 0 −1

0 1 −1 0 1 0 0 −1

−1 0 0 −1 0 1 1 0

0 1 1 0 −1 0 0 −1

−1 0 0 1 0 −1 1 0

−1 0 0 1 0 1 −1 0

0 1 1 0 1 0 0 1



. (7.1)
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We use Figure 6 to visualize this matrix. A block with orange color denotes an entry +1 and

a block with blue color denotes an entry −1. Other blank blocks are zeros.

000

001

010

011

100

101

110

111

000 001 010 011 100 101 110 111

图 6: A visualization of f̂6

In this subsection, we show how this extraordinary signature f̂6 was discovered. We prove that

if F̂ contains a 6-ary signature f̂ where f̂ /∈ Ô⊗, then Holant( 6=2| F̂) is #P-hard or f̂6 is realizable

from f̂ after a holographic transformation by some Q̂ ∈ Ô2 (Theorem 7.5). The general strategy

of this proof is to show that we can realize signatures with special properties from f̂ step by step

(Lemmas 7.1, 7.2, 7.3 and 7.4), and finally we can realize f̂6, or else we can realize signatures that

lead to #P-hardness. So this f̂6 emerges as essentially the unique (and true) obstacle to our proof

of #P-hardness in this setting.

Lemma 7.1. Suppose that F is a set of real-valued signatures of even arity and F does not satisfy

condition (T). Let F̂ = Z−1F . If F̂ contains a 6-ary signature f̂ /∈ Ô⊗, then Holant( 6=2| F̂) is

#P-hard, or an irreducible 6-ary signature f̂ ′ is realizable from f̂ , where f̂ ′(α) = 0 for all α with

wt(α) = 2 or 4. Moreover, f̂ ′ is realizable by extending variables of f̂ with nonzero binary signatures

in Ô that are realizable by factorization from ∂̂12f̂ .

证明. Since f̂ /∈ Ô⊗, f̂ 6≡ 0. Again, we may assume that f̂ is irreducible. Otherwise, by factoriza-

tion, we can realize a nonzero signature of odd arity, or a signature of arity 2 or 4 that is not in Ô⊗.

Then by Theorem 5.35, or Lemmas 6.7 or 6.8, we get #P-hardness. Under the assumption that

f̂ is irreducible, we may further assume that f̂ satisfies 2nd-Orth by Lemma 6.6. Also, we may

assume that f̂ ∈
∫
Ô⊗. Otherwise, there is a pair of indices {i, j} such that the 4-ary signature

∂̂ij f̂ /∈ Ô⊗. Then by Lemma 6.8, Holant( 6=2| F̂) is #P-hard.
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If for all pairs of indices {i, j}, ∂̂ij f̂ ≡ 0, then by Lemma 3.9, we have f̂(α) = 0 for all α with

wt(α) 6= 0 and 6. Since f 6≡ 0, clearly such a signature does not satisfy 2nd-Orth. Contradiction.

Otherwise, there is a pair of indices {i, j} such that ∂̂ij f̂ 6≡ 0. By renaming variables, without loss of

generality, we assume that ∂̂12f̂ 6≡ 0. Since ∂̂12f̂ ∈ Ô⊗, in the UPF of ∂̂12f̂ , by renaming variables

we assume that variables x3 and x4 appear in one nonzero binary signature b̂1(x3, x4) ∈ Ô⊗, and

variables x5 and x6 appear in the other nonzero binary signature b̂2(x5, x6) ∈ Ô⊗. Thus, we have

∂̂12f̂ = b̂1(x3, x4)⊗ b̂2(x5, x6) 6≡ 0.

By Lemma 3.6, we know that these two binary signatures b̂1 and b̂2 are realizable by factoriza-

tion. Note that for a nonzero binary signature b̂i(x2i+1, x2i+2) ∈ Ô (i ∈ {1, 2}), if we connect the

variable x2i+1 of two copies of b̂i(x2i+1, x2i+2) using 6=2 (mating two binary signatures), then we

get 6=2 up to a nonzero scalar. We consider the following gadget construction G1 on f̂ . Recall that

in the setting of Holant(6=| F̂), variables are connected using 6=2. For i ∈ {1, 2}, by a slight abuse

of variable names, we connect the variable x2i+1 of f̂ with the variable x2i+1 of b̂i(x2i+1, x2i+2).

We get a signature f̂ ′ of arity 6. Such a gadget construction does not change the irreducibility

of f . Thus, f̂ ′ is irreducible. Again, we may assume that f̂ ′ ∈
∫̂
Ô⊗ and f̂ ′ satisfies 2nd-Orth.

Otherwise, we are done.

Consider ∂̂12f̂ ′. Since the above gadget construction G1 does not touch variables x1 and x2

of f , the operation of forming G1 commutes with the merging operation ∂̂12. Thus, ∂̂12f̂ ′ can be

realized by performing the gadget construction G1 on ∂̂12f̂ , which connects each binary signature

b̂i (i ∈ {1, 2}) of ∂̂12f̂ with another copy of itself using 6=2 (in the mating fashion). Then, each b̂i
in ∂̂12f̂ is changed to 6=2 up to a nonzero real scalar. After normalization and renaming variables,

we have

∂̂12f̂ ′ = ( 6=2)(x3, x4)⊗ ( 6=2)(x5, x6).

Since ∂̂12f̂ ′ ∈ D⊗, for any {i, j} disjoint with {1, 2} we have ∂̂(ij)(12)f̂ ′ ∈ D⊗, and hence ∂̂ij f̂ ′ 6≡ 0.

Now, we show that for all pairs of indices {i, j}, ∂̂ij f̂ ′ has even parity. We first consider the case

that {i, j} is disjoint with {1, 2}. Connect variables xi and xj of ∂̂12f̂ ′ using 6=2. Since ∂̂12f̂ ′ has

even parity, a merging gadget using 6=2 will change the parity from even to odd. Thus, ∂̂(ij)(12)f̂ ′

has odd parity. Consider ∂̂ij f̂ ′. Remember that ∂̂ij f̂ ′ 6≡ 0 since ∂̂(ij)(12)f̂ ′ 6≡ 0. Since f̂ ′ ∈
∫̂
Ô⊗,
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We have ∂̂ij f̂ ′ ∈ O⊗. Thus, ∂̂ij f̂ ′ has (either odd or even) parity. For a contradiction, suppose

that it has odd parity. Then, ∂̂(12)(ij)f̂ ′ has even parity since it is realized by merging using 6=2. A

signature that has both even parity and odd parity is identically zero. Thus ∂̂(12)(ij)f̂ ′ is the zero

signature. However, since ∂̂(ij)(12)f̂ ′ ∈ D⊗, it is not the zero signature. Contradiction. Therefore,

∂̂ij f̂ ′ has even parity for all {i, j} disjoint with {1, 2}.

Then, consider ∂̂ij f̂ ′ for {i, j}∩{1, 2} 6= ∅. If {1, 2} = {i, j}, then clearly, ∂̂12f̂ ′ has even parity.

Otherwise, without loss of generality, we may assume that i = 1 and j 6= 2. Consider ∂̂1j f̂ ′ for

3 ⩽ j ⩽ 6. If it is a zero signature, then it has even parity. Otherwise, ∂̂1j f̂ ′ 6≡ 0. Since ∂̂1j f̂ ′ ∈ Ô⊗,

we assume that it has the following UPF

∂̂1j f̂ ′ = b̂′1(x2, xu)⊗ b̂′2(xv, xw).

By connecting variables xu and xv of ∂̂1j f̂ ′ using 6=2, we get ∂̂(uv)(1j)f̂ ′. Since the merging gadget

connects two nonzero binary signatures in Ô, the resulting signature is a nonzero binary signature.

Thus, ∂̂(uv)(1j)f̂ ′ 6≡ 0. Notice that {u, v} is disjoint with {1, 2}. As showed above, ∂̂uvf̂ ′ has even

parity. Then, ∂̂(1j)(uv)f̂ ′ has odd parity. For a contradiction, suppose that ∂̂1j f̂ ′ has odd parity.

Then ∂̂(uv)(1j)f̂ ′ has even parity. But a nonzero signature ∂̂(uv)(1j)f̂ ′ cannot have both even parity

and odd parity. Contradiction. Thus, ∂̂1j f̂ ′ has even parity.

We have proved that ∂̂ij f̂ ′ has even parity for all pairs of indices {i, j}. In other words, for

all pairs of indices {i, j} and all β ∈ Z4
2 with wt(β) = 1 or 3, we have (∂̂ij f̂ ′)(β) = 0. Then, by

Lemma 3.9, f̂ ′(α) = 0 for all α with wt(α) = 2 or 4. Clearly, f̂ ′ is realized by extending f̂ with

nonzero binary signatures in Ô that are realized by factorization from ∂̂12f̂ .

Lemma 7.2. Suppose that F is a set of real-valued signatures of even arity and F does not satisfy

condition (T). Let F̂ = Z−1F . If F̂ contains an irreducible 6-ary signature f̂ ′ where f̂ ′(α) = 0

for all α with wt(α) = 2 or 4, then Holant( 6=2| F̂) is #P-hard, or S (f̂ ′) = O6 = {α ∈ Z6
2 |

wt(α) is odd} and all nonzero entries of f̂ ′ have the same norm.

证明. Since f̂ ′ is irreducible, again we may assume that f̂ ′ satisfies 2nd-Orth and f̂ ′ ∈
∫̂
Ô⊗. Let

{i, j, k, ℓ} be an arbitrarily chosen subset of indices from {1, . . . , 6}, and {m,n} be the other two
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indices. Then by equation (6.7), and the condition that f̂ ′ vanishes at weight 2 and 4, we have

|f̂′0001ijkℓ |2 = |f̂ ′
000100

ijkℓmn|2 + |f̂ ′
000111

ijkℓmn|2 = |f̂ ′
001000

ijkℓmn|2 + |f̂ ′
001011

ijkℓmn|2 = |f̂′0010ijkℓ |2. (7.2)

Also, by considering indices {k, ℓ,m, n}, we have

|f̂′0100kℓmn|2 = |f̂ ′
000100

ijkℓmn|2 + |f̂ ′
110100

ijkℓmn|2 = |f̂ ′
001000

ijkℓmn|2 + |f̂ ′
111000

ijkℓmn|2 = |f̂′1000kℓmn|2. (7.3)

By ars, we have

|f̂ ′
000111

ijkℓmn|2 = |f̂ ′
111000

ijkℓmn|2, (7.4)

and

|f̂ ′
001011

ijkℓmn|2 = |f̂ ′
110100

ijkℓmn|2. (7.5)

By calculating (7.2) + (7.3) − (7.4) − (7.5), we have

|f̂ ′
000100

ijkℓmn|2 = |f̂ ′
001000

ijkℓmn|2. (7.6)

By (7.2) − (7.6), we have

|f̂ ′
000111

ijkℓmn|2 = |f̂ ′
001011

ijkℓmn|2. (7.7)

From (7.6), since the indices (i, j, k, ℓ,m, n) can be an arbitrary permutation of (1, 2, 3, 4, 5, 6), for

all α, β ∈ Z6
2 with wt(α) = wt(β) = 1, we have |f̂ ′(α)| = |f̂ ′(β)|. The same statement holds for

wt(α) = wt(β) = 3, by (7.7).

Let a = |f̂ ′(⃗06)|; by ars, a = |f̂ ′(⃗16)| as well. It is the norm of entries of f̂ ′ on input of

Hamming weight 0 and 6. We use b to denote the norm of entries of f̂ ′ on inputs of Hamming

weight 1. By ars, b is also the norm of entries of f̂ ′ on inputs of Hamming weight 5. We use c to

denote the norm of entries of f̂ ′ on inputs of Hamming weight 3. Remember that by assumption,

|f̂ ′(α)| = 0 if wt(α) = 2 or 4.

By equation (6.6), we have

|f̂′00001234|2 = a2 + 2b2 = |f̂′00111234|2 = 2c2.
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Clearly, we have 0 ⩽ a, b ⩽ c. If c = 0, then a = b = 0 which implies that f̂ ′ is a zero signature.

This is a contradiction since f̂ ′ is irreducible. Therefore c 6= 0. We normalize c to 1. Then

a2 + 2b2 = 2.

We will show that b = 1 and a = 0. This will finish the proof of the lemma. For a contradiction,

suppose that b < 1, then we also have a > 0.

Consider signatures f̂ ′0112, f̂ ′
10

12 and ∂̂12f̂ ′ = f̂ ′
01

12 + f̂ ′
10

12. Since f̂ ′(α) = 0 for all α with wt(α) =

2 or 4, f̂ ′0112(β) = 0 and f̂ ′1012(β) = 0 for all β with wt(β) = 1 or 3. Thus, f̂ ′0112 and f̂ ′1012 have even

parity. We also consider the complex inner product 〈f̂′0112, f̂′
10

12〉. First we build the following table.

f̂ ′
01

12 f̂ ′
010000

f̂ ′
010011

f̂ ′
010101

f̂ ′
010110

f̂ ′
011001

f̂ ′
011010

f̂ ′
011100

f̂ ′
011111

f̂ ′
10

12 f̂ ′
100000

f̂ ′
100011

f̂ ′
100101

f̂ ′
100110

f̂ ′
101001

f̂ ′
101010

f̂ ′
101100

f̂ ′
101111

∂̂12f̂ ′ s1 s2 s3 s4 s4 s3 s2 s1

〈f̂′0112, f̂′
10

12〉 p1 p2 p3 p4 p4 p3 p2 p1

表 2: Entries of f̂ ′0112, f̂ ′
10

12, ∂̂12f̂ ′ and pairwise product terms in 〈f̂′0112, f̂′
10

12〉 on even-weighed inputs

In Table 2, we call these four rows by Row 1, 2, 3 and 4 respectively and these nine columns

by Column 0, 1, …and 8 respectively. We use Ti,j to denote the cell in Row i and Column j. Table

2 is built as follows.

• In Row 1 and Row 2, we list the entries of signatures f̂ ′0112 and f̂ ′1012 that are on even-weighted

inputs (excluding the first two bits that are pinned) respectively. Note that, those that did

not appear are 0 entries on odd-weighted inputs (excluding the first two bits that are pinned)

of the signatures f̂ ′0112 and f̂ ′1012, since f̂ ′
01

12 and f̂ ′1012 have even parity.

• In Row 3, we list the corresponding entries of the signature ∂̂12f̂ ′ = f̂ ′
01

12 + f̂ ′
10

12, i.e., T3,j =

T1,j + T2,j for 1 ⩽ j ⩽ 8.

• In Row 4, we list the corresponding items in the complex inner product 〈f̂′0112, f̂′
10

12〉, i.e., T4,j =

T1,j · T2,j for 1 ⩽ j ⩽ 8.
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For 1 ⩽ j ⩽ 8, we consider the entry in T1,j and the entry in T2,9−j . By ars, we have T1,j = T2,9−j

because their corresponding inputs are complement of each other. Thus,

T3,j = T1,j + T2,j = T2,9−j + T1,9−j = T3,9−j ,

and

T4,j = T1,j · T2,j = T2,9−j · T2,9−j = T4,9−j .

We use s1, . . . , s4 to denote the values in T3,1, . . . , T3,4 and p1, . . . , p4 to denote the values in

T4,1, . . . , T4,4. Correspondingly, the values in T3,5, . . . , T3,8 are s4, . . . , s1 and the values in T4,5, . . . , T4,8
are p4, . . . , p1. We also use xj and yj (1 ⩽ j ⩽ 8) to denote the entries in T1,j and T2,j respectively.

By 2nd-Orth, we have 〈f̂′0112, f̂′
10

12〉 = 2(p1 + p2 + p3 + p4) = 0. Also we have |p1| = b2 and

|p2| = |p3| = |p4| = 1. Notice the fact that if xi+ yi = 0, then xi · yi = xi · −xi = −|xi|2 = −|xi · yi|.

Thus, if s1 = 0 then p1 = −|p1| = −b2 and for any i = 2, 3, 4, if si = 0 then pi = −1. Note that

∂̂12f̂ ′(β) = f̂ ′
01

12(β) + f̂ ′
10

12(β) = 0 for all β with wt(β) = 1 or 3. Among all 16 entries of ∂̂12f̂ ′,

s1, . . . , s4, s4, . . . , s1 are those that are possibly nonzero. Since ∂̂12f̂ ′ ∈ Ô⊗, it has support of size

either 4 or 0. Thus, among s1, s2, s3 and s4, either exactly two of them are zero or they are all zero.

There are three possible cases.

• s1 = s2 = s3 = s4 = 0. Then p1 + p2 + p3 + p4 = −b2 − 3 ⩽ −3 6= 0. Contradiction.

• s1 6= 0 and two of s2, s3 and s4 are zero. Without loss of generality, we may assume that

s2 = s3 = 0. Then p2 = p3 = −1. Since p1+p2+p3+p4 = 0, we have p1+p4 = −p2−p3 = 2.

Then, 2 = |p1 + p4| ⩽ |p1|+ |p4| = b2 + 1 < 2. Contradiction.

• s1 = 0 and one of s2, s3 and s4 is zero. Without loss of generality, we may assume that s2 = 0.

Then p1 = −b2 and p2 = −1. Thus, p3 + p4 = −p1 − p2 = 1 + b2 < 2. Let θ = arccos 1+b2

2 .

We know that 0 < θ < π
2 . Recall that |p3| = |p4| = 1. Thus, p3 = e±iθ and p4 = e∓iθ (and

p3 = p4).

Let P = {−1, eiθ, e−iθ}. Thus, p2, p3, p4 ∈ P . Otherwise, we get a contradiction.

Now, we consider signatures ∂̂ij f̂ ′ for all pairs of indices {i, j}. By symmetry, the same con-

clusion holds. In other words, let {i, j} be an arbitrarily chosen pair of indices from {1, . . . , 6} and
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{k, ℓ,m, n} be the other four indices, and let β ∈ Z4
2 be an assignment on variables (xk, xℓ, xm, xn)

with wt(β) = 2. Then, we have f̂ ′01βijkℓmn · f̂ ′
10β

ijkℓmn ∈ P. Since the indices (i, j, k, ℓ,m, n) can be an

arbitrary permutation of (1, 2, 3, 4, 5, 6), we have f̂ ′(α) · f̂ ′(α′) ∈ P for any two assignments α and

α′ on the six variables where wt(α) = wt(α′) = 3 and wt(α ⊕ α′) = 2, because for any such two

strings α and α′, there exist two bit positions on which α and α′ take values 01 and 10 respectively.

We consider the following three inputs α1 = 100011, α2 = 010011 and α3 = 001011 of f̂ ′. We

have f̂ ′(α1) · f̂ ′(α2) = q12 ∈ P , f̂ ′(α2) · f̂ ′(α3) = q23 ∈ P and f̂ ′(α1) · f̂ ′(α3) = q13 ∈ P. Recall that

|f̂ ′(α2)| = 1 since wt(α2) = 3. Then,

q12 · q23 = f̂ ′(α1) · f̂ ′(α2) · f̂ ′(α2) · f̂ ′(α3) = |f̂ ′(α2)|2 · f̂ ′(α1) · f̂ ′(α3) = q13 ∈ P.

However, since 0 < θ < π
2 , it is easy to check that for any two (not necessarily distinct) elements in

P , their product is not in P . Thus, we get a contradiction. This proves that b = c = 1 and a = 0.

Therefore we have proved that, S (f̂ ′) = O6, and all its nonzero entries have the same norm

that is normalized to 1.

Lemma 7.3. Suppose that F is a set of real-valued signatures of even arity and F does not

satisfy condition (T). Let F̂ = Z−1F . If F̂ contains an irreducible 6-ary signature f̂ ′ where

S (f̂ ′) = O6 and |f̂ ′(α)| = 1 for all α ∈ S (f̂ ′), then Holant( 6=2| F̂) is #P-hard, or after a

holographic transformation by some Q̂ =
[
ρ 0
0 ρ

]
∈ Ô2 where ρ = eiδ and 0 ⩽ δ < π/2, an irreducible

6-ary signature f̂ ′′ and =2 are realizable from f̂ ′ where S (f̂ ′′) = O6 and there exists λ = 1 or i

such that for all α ∈ S (f̂ ′′), f̂ ′′(α) = ±λ, i.e., Holant(6=2|=2, f̂ ′′, Q̂F̂) ⩽T Holant( 6=2| F̂) where

f̂ ′′ = Q̂f̂ ′. Moreover, the nonzero binary signature (ρ2, 0, 0, ρ2) ∈ Ô is realizable from ∂̂ij f̂ ′ for

some {i, j}.

证明. Again, we may assume that f̂ ′ satisfies 2nd-Orth and f̂ ′ ∈
∫̂
Ô⊗. We first show that there

exists λ = 1 or i such that for all α ∈ S (f̂ ′) with wt(α) = 3, f̂ ′′(α) = ±λ, or else we get

#P-hardness.

Let’s revisit Table 2. Now we have |p1| = |p2| = |p3| = |p4| = 1. Recall that for 1 ⩽ i ⩽ 4,

si = 0 implies that pi = −1. Since ∂̂12f̂ ′ ∈ Ô⊗2, it has support of size 4 or 0. Thus, among s1, s2, s3
and s4, either exactly two of them are zero or they are all zero. If they are all zero, then we have

p1 + p2 + p3 + p4 = −4 6= 0. This is a contradiction to our assumption that f̂ ′ satisfies 2nd-Orth.
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Thus, exactly two of s1, s2, s3 and s4 are zeros. Suppose that they are si and sj . Recall that we

use xi and yi (1 ⩽ i ⩽ 8) to denote the entries in Row 1 and Row 2 of Table 2. Thus |xi| = |yi| = 1,

for 1 ⩽ i ⩽ 8. Since si = xi + yi = 0 and sj = xj + yj = 0, we have xi = −yi, and xj = −yj . Also,

since si = sj = 0, we have pi = pj = −1. Let {ℓ, k} = {1, 2, 3, 4}\{i, j}. Then, by 2nd-Orth, we

have pℓ + pk = −pi − pj = 2. Since |pℓ| = |pk| = 1, we have pℓ = pk = 1. Note that pℓ = xℓ · yℓ = 1

and also 1 = |yℓ| = yℓ · yℓ. Thus, we have xℓ = yℓ. Similarly, xk = yk. Thus, for all 1 ⩽ i ⩽ 8,

xi = ±yi. Consider ∂̂ij f̂ ′ for all pairs of indices {i, j}. By symmetry, the same conclusion holds.

Thus, f̂(α) = ±f̂(α′) for any two inputs α and α′ on the six variables where wt(α) = wt(α′) = 3

and wt(α⊕ α′) = 2. In particular, we have

f̂ ′
000111

= ε1f̂ ′
001011

= ε2f̂ ′
011001

= ε3f̂ ′
111000

,

where ε1, ε2, ε3 = ±1 independently. By ars, we have f̂ ′000111 = f̂ ′
111000

.

• If f̂ ′000111 = f̂ ′
111000

= f̂ ′
111000

, then f̂ ′111000 = ±1.

• If f̂ ′000111 = −f̂ ′
111000

= f̂ ′
111000

, then f̂ ′111000 = ±i.

Thus, there exists λ = 1 or i such that f̂ ′000111 = ±λ and f̂ ′111000 = ±λ. Consider any α ∈ Z6
2 with

wt(α) = 3. If α ∈ {000111, 111000}, then clearly, f̂ ′(α) = ±λ. Otherwise, either wt(α⊕000111) = 2

or wt(α ⊕ 111000) = 2. Then, f̂ ′(α) = ±λ. Thus, there exists λ = 1 or i such that for all α ∈ Z6
2

with wt(α) = 3, f̂ ′(α) = ±λ.

Since f̂ ′(α) 6= 0 for all α with wt(α) = 1, by Lemma 3.9, there exists a pair of indices {i, j}

such that (∂̂ij f̂ ′)0000 6= 0. Since ∂̂ij f̂ ′ ∈ O⊗, it is of the form (a, 0, 0, ā)⊗ (b, 0, 0, b̄), where ab 6= 0,

since no other factorization form in O⊗ has a nonzero value at 0000. By Lemma 3.6, we can

realize the signature ĝ = (a, 0, 0, ā). Here, we can normalize a to eiθ where 0 ⩽ θ < π. Then, let

ρ = eiθ/2. Clearly, 0 ⩽ θ/2 < π/2. Consider a holographic transformation by Q̂ =
[
ρ 0
0 ρ

]
. Note that

(6=2)(Q̂
−1)⊗2 = ( 6=2) and Q̂⊗2ĝ = (1, 0, 0, 1). The holographic transformation by Q̂ does not change

6=2, but transfers ĝ = (a, 0, 0, ā) to (=2) = (1, 0, 0, 1). Thus, we have

Holant(6=2| ĝ, f̂ ′, F̂) ≡T Holant( 6=2|=2, Q̂f̂ ′, Q̂F̂).

We denote Q̂f̂ ′ by f̂ ′′. Note that Q̂ does not change those entries of f̂ ′ that are on half-weighted
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inputs. Thus, for all α with wt(α) = 3, we have f̂ ′′(α) = ±λ for some λ = 1 or i. Also, Q̂ does not

change the parity and irreducibility of f̂ ′. Thus f̂ ′′ has odd parity and f̂ ′′ is irreducible. Again, we

may assume that f̂ ′′ satisfies 2nd-Orth and f̂ ′′ ∈
∫̂
Ô⊗. Otherwise, we are done.

In the problem Holant(6=2|=2, f̂ ′′, Q̂F̂), we can connect two 6=2 on the LHS using =2 on the

RHS, and then we can realize =2 on the LHS. Thus, we can use =2 to merge variables of f̂ ′′.

Therefore, we may further assume f̂ ′′ ∈
∫
Ô⊗, i.e., ∂ij f̂ ′′ ∈ Ô⊗ for all pairs of indices {i, j};

otherwise, there exist two variables of f̂ ′′ such that by merging these two variables using =2, we

can realize a 4-ary signature that is not in Ô⊗, and then by Lemma 6.8 we are done.

Consider the signature ∂12f̂ ′′ = f̂ ′′
00

12+ f̂
′′11
12 and the inner product 〈f̂′′0012, f̂′′

11

12〉. Same as Table 2,

we build the following Table 3.

f̂ ′′
00

12 f̂ ′′
000001

f̂ ′′
000010

f̂ ′′
000100

f̂ ′′
000111

f̂ ′′
001000

f̂ ′′
001011

f̂ ′′
001101

f̂ ′′
001110

f̂ ′′
11

12 f̂ ′′
110001

f̂ ′′
110010

f̂ ′′
110100

f̂ ′′
110111

f̂ ′′
111000

f̂ ′′
111011

f̂ ′′
111101

f̂ ′′
111110

∂12f̂ ′′ t1 t2 t3 t4 t4 t3 t2 t1

〈f̂′′0012, f̂′′
11

12〉 q1 q2 q3 q4 q4 q3 q2 q1

表 3: Entries of f̂ ′′
00

12, f̂ ′′
11

12, ∂12f̂ ′′ and pair-wise product terms in 〈f̂′′0012, f̂′′
11

12〉 on odd-weighed inputs

Same as the proof of xi = ±yi for Table 2, we have f̂ ′′
000001

= ±f̂ ′′
110001

. Since f̂ ′′
110001

= ±λ,

f̂ ′′
000001

= ±λ, (here ± can be either ± or ∓). Consider ∂ij f̂ ′′ for all pairs of indices {i, j}. By

symmetry, the same conclusion holds. Thus, for every α ∈ Z6
2 with wt(α) = 1, f̂ ′′(α) = ±λ.

Therefore, using ars, there exists λ = 1 or i such that for all α ∈ S (f̂ ′′), f̂ ′′(α) = ±λ, and we have

the reduction

Holant(6=2|=2, f̂ ′′, Q̂F̂) ⩽T Holant( 6=2| F̂)

for some Q̂ ∈ Ô2. Clearly, f̂ ′′ = Q̂f̂ ′ where Q̂ =
[
ρ 0
0 ρ

]
∈ Ô2, and the nonzero binary signature

(ρ2, 0, 0, ρ2) ∈ Ô is realizable from ∂̂ij f̂ ′ for some {i, j}.

Finally, we go for the kill in the next lemma. Recall the signature f̂6 defined in (7.1). This

Lord of Intransigence at arity 6 makes its appearance in Lemma 7.4.
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Lemma 7.4. Suppose that F is a set of real-valued signatures of even arity and F does not satisfy

condition (T). Let F̂ = Z−1F . If F̂ contains an irreducible 6-ary signature f̂ ′′ where S (f̂ ′′) = O6,

and there exists λ = 1 or i such that for all α ∈ S (f̂ ′′), f̂ ′′(α) = ±λ, then Holant( 6=2|=2, F̂) is #P-

hard, or f̂6 is realizable from f̂ ′′ and =2, i.e., Holant(6=2| f̂6, F̂) ⩽T Holant( 6=2|=2, F̂). Moreover,

f̂6 is realizable by extending variables of f̂ ′′ with binary signatures in B̂, i.e., f̂6 ∈ {f̂ ′′}B̸̂=2
.

证明. Again, we may assume that f̂ ′′ satisfies 2nd-Orth and f̂ ′′ ∈
∫̂
Ô⊗. Since =2 is available on

the RHS, given any signature f̂ ∈ F̂ , we can extend any variable xi of f̂ with =2∈ B̂ using 6=2.

This gives a signature ĝ where ĝ0i = f̂1i and ĝ1i = f̂0i . We call this extending gadget construction

the flipping operation on variable xi. Clearly, it does not change the reducibility or irreducibility

of f̂ . But it changes the parity of f̂ if f̂ has parity. Once a signature f̂ is realizable, we can modify

it by flipping some of its variables.

We first show that we can realize a signature f̂∗ from f̂ ′′ having support S (f̂∗) = E6 = {α ∈

Z6
2 | wt(α) ≡ 0 mod 2}, and f̂∗(α) = ±1 for all α ∈ S (f̂∗). Remember that =2 is available. If we

connect =2 with an arbitrary variable of f̂ ′′ using 6=2, we will change the parity of f̂ ′′ from odd to

even. If f̂ ′′(α) = ±1 for all α ∈ S (f̂ ′′), then f̂∗ can be realized by flipping an arbitrary variable of

f̂ ′′. Otherwise, f̂ ′′(α) = ±i for all α ∈ S (f̂ ′′). Consider ∂̂12f̂ ′′. Look at Table 3. We use xi and yi
(1 ⩽ i ⩽ 8) to denote entries in Row 1 and 2. As we have showed, xi = ±yi. Thus, ti = ±2i or 0

for 1 ⩽ i ⩽ 4. Remember that if ti = 0 (i.e., xi = −yi), then qi = xi · yi = −xi · xi = −|xi|2 = −1.

If ti = 0 for all 1 ⩽ i ⩽ 4, then

〈f̂′′0012, f̂′′
11

12〉 = 2(q1 + q2 + q3 + q4) = −4 6= 0.

This contradicts with our assumption that f̂ ′′ satisfies 2nd-Orth. Thus, ti (1 ⩽ i ⩽ 4) are not all

zeros. Then (∂̂12f̂ ′′) 6≡ 0. Thus, S (∂̂12f̂ ′′) 6= ∅ and (∂̂12f̂ ′′)(α) = ±2i for all α ∈ S (∂̂12f̂ ′′).

Since ∂̂12f̂ ′′ ∈ Ô⊗ and it has even parity, ∂̂12f̂ ′′ is of the form 2 · (a, 0, 0, ā) ⊗ (b, 0, 0, b̄) or

2 · (0, a, ā, 0)⊗ (0, b, b̄, 0), where the norms of a and b are normalized to 1. In both cases, we have

ab, āb, ab̄, āb̄ ∈ {i,−i}. Thus, ab · āb = (aā)b2 = b2 = ±1. Then, b = ±1 or ±i. If b = ±1, then

a = ab̄ · b = ±i. Similarly, if b = ±i, then a = ab̄ · b = ±1. Thus, among a and b, exactly one is

±i. Thus, by factorization we can realize the binary signature ĝ = (i, 0, 0,−i) or (0, i,−i, 0) up to a

scalar −1. Connecting an arbitrary variable of f̂ with a variable of ĝ, we can get a signature which
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has parity and all its nonzero entries have value ±1. If the resulting signature has even parity, then

we get the desired f̂∗. If it has odd parity, then we can flip one of its variables to change the parity.

Thus, we can realize a signature f̂∗ by extending variables of f̂ ′′ with binary signatures in B̂⊗ such

that S (f̂∗) = E6, and f̂∗(α) = ±1 for all α ∈ S (f̂∗).

Consider the following 16 entries of f̂∗. In Table 4, we list 16 entries of f̂∗ with x1x2x3 =

000, 011, 101, 110 as the row index and x4x5x6 = 000, 011, 101, 110 as the column index. We also

view these 16 entries in Table 4 as a 4-by-4 matrix denoted byMr(f̂∗), and we call it the representa-

tive matrix of f̂∗. Note that for any α ∈ S (f̂∗) such that the entry f̂∗(α) does not appear inMr(f̂∗),

f̂∗(α) appears in Mr(f̂∗). Since f̂∗(α) = ±1 ∈ R, f̂∗(α) = f̂∗(α). By ars, f̂∗(α) = f̂∗(α) = f̂∗(α).

Thus, the 16 entries of the matrix Mr(f̂∗) listed in Table 4 gives a complete account for all the 32

nonzero entries of f̂∗.

x1x2x3
x4x5x6 000 (Col 1) 011 (Col 2) 101 (Col 3) 110 (Col 4)

000 (Row 1) f̂∗
000000

f̂∗
000011

f̂∗
000101

f̂∗
000110

011 (Row 2) f̂∗
011000

f̂∗
011011

f̂∗
011101

f̂∗
011110

101 (Row 3) f̂∗
101000

f̂∗
101011

f̂∗
101101

f̂∗
101110

110 (Row 4) f̂∗
110000

f̂∗
110011

f̂∗
110101

f̂∗
110110

表 4: Representative entries of f̂∗

We use (mij)
4
i,j=1 to denote the 16 entries ofMr(f̂∗). We claim that any two rows ofMr(f̂∗) are

orthogonal; this follows from the fact that f̂∗ satisfies 2nd-Orth and ars. For example, consider

the first two rows of Mr(f̂∗). By 2nd-Orth, the inner product 〈f̂∗0023, f̂∗
11

23〉 for the real-valued f̂∗ is

∑
(x1,x4,x5,x6)∈Z4

2

f̂∗
x100x4x5x6

f̂∗
x111x4x5x6

= 0,

where the sum has 8 nonzero product terms. The first 4 terms given by x1 = 0 are the pairwise

products m1jm2j , for 1 ⩽ j ⩽ 4. The second 4 terms are, by ars, the pairwise products m2jm1j

in the reversal order of 1 ⩽ j ⩽ 4, where we exchange row 1 with row 2 on the account of flipping

the summation index x1 from 0 to 1, and simultaneously flipping both x2 and x3. This shows that
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∑4
j=1m1jm2j = 0. Similarly any two columns of Mr(f̂∗) are orthogonal.

Also, we consider the inner product 〈f̂∗0014, f̂∗
11

14〉 = 0. It is computed using the following 16

entries in Mr(f̂∗), listed in Table 5.

f̂∗
000000

f̂∗
000011

f̂∗
010010

f̂∗
010001

f̂∗
001010

f̂∗
001001

f̂∗
011000

f̂∗
011011

= m11 = m12 = m33 = m34 = m43 = m44 = m21 = m22

f̂∗
100100

f̂∗
100111

f̂∗
110110

f̂∗
110101

f̂∗
101110

f̂∗
101101

f̂∗
111100

f̂∗
111111

= m22 = m21 = m44 = m43 = m34 = m33 = m12 = m11

表 5: Pair-wise product terms in 〈f̂∗0014, f̂∗
11

14〉 on even-weighed inputs

Let Mr(f̂∗)[1,2] be the 2-by-2 submatrix of Mr(f̂∗) by picking the first two rows and the first

two columns, and Mr(f̂∗)[3,4] be the 2-by-2 submatrix of Mr(f̂∗) by picking the last two rows and

the last two columns. Indeed,

〈f̂∗0014, f̂∗
11

14〉 = 2(perm(Mr(f̂∗)[1,2]) + perm(Mr(f̂∗)[3,4]))

= 2(m11m22 +m12m21 +m33m44 +m34m43) = 0.

Then, we show that by renaming or flipping variables of f̂∗, we may modify f̂∗ to realize a

signature whose representative matrix is obtained by performing row permutation, column permu-

tation, or matrix transpose on Mr(f̂∗). First, if we exchange the names of variables (x1, x2, x3)

with variables (x4, x5, x6), then the representative matrix Mr(f̂∗) will be transposed. Next, con-

sider the group G of permutations on the rows {1, 2, 3, 4} effected by any sequence of operations

of renaming and flipping variables in {x1, x2, x3}. By renaming variables in {x1, x2, x3}, we can

switch any two rows among Row 2, 3 and 4. Thus S3 on {2, 3, 4} is contained in G. Also, if

we flip both variables x2 and x3 of f̂∗, then for the realized signature, its representative matrix

can be obtained by switching both the pair Row 1 and Row 2, and the pair Row 3 and Row 4

of Mr(f̂∗). Thus, the permutation (12)(34) ∈ G. It follows that G = S4. Thus, by renaming or

flipping variables of f̂∗, we can permute any two rows or any two columns of Mr(f̂∗), or transpose

Mr(f̂∗). For the resulting signature, we may assume that its representative matrix A also satisfy

perm(A[1,2]) + perm(A[3,4]) = 0, and any two rows of A are orthogonal and any two columns of A

are orthogonal. Otherwise, we get #P-hardness. In the following, without loss of generality, we
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may modify Mr(f̂∗) by permuting any two rows or any two columns, or taking transpose. We show

that it will give Mr(f̂6), after a normalization by ±1. In other words, f̂6 is realizable from f̂∗ by

renaming or flipping variables, up to a normalization by ±1.

Consider any two rows, Row i and Row j, of Mr(f̂∗). Recall that every entry of Mr(f̂∗) is ±1.

We say that Row i and Row j differ in Column k if mik 6= mjk, which implies that mik = −mjk;

otherwise, they are equal mik = mjk. In the former case, mik ·mjk = −1, and in the latter case

mik ·mjk = 1. Since Row i and Row j are orthogonal, they differ in exactly two columns and are

equal in the other two columns. Similarly, for any two columns of Mr(f̂∗), they differ in exactly

two rows and are equal in the other two rows. Depending on the number of −1 entries in each row

and column of Mr(f̂∗), we consider the following two cases.

• Every row and column of Mr(f̂∗) has an odd number of −1 entries.

Consider Row 1. It has either exactly three −1 entries or exactly one −1 entry. If it has three

−1 entries, then we modify Mr(f̂∗) by multiplying the matrix with −1. This does not change

the parity of the number of −1 entries in each row and each column. By such a modification,

Row 1 has exactly one −1 entry. By permuting columns, we may assume that Row 1 is

(−1, 1, 1, 1). Consider the number of −1 entries in Rows 2, 3 and 4.

– If they all have exactly one −1 entry, by orthogonality, the unique column locations of

the −1 entry in each row must be pairwise distinct. Then, by possibly permuting rows

2, 3 and 4 we may assume that the matrix Mr(f̂∗) has the following form

Mr(f̂∗) =


−1 1 1 1

1 −1 1 1

1 1 −1 1

1 1 1 −1

 .

Then, perm(Mr(f̂∗)[1,2]) + perm(Mr(f̂∗)[3,4]) = 2 + 2 = 4 6= 0. Contradiction.

– Otherwise, among Rows 2, 3 and 4, there is one that has three −1 entries. By per-

muting rows, we may assume that Row 2 has three −1 entries. Since Row 2 and Row

1 differ in two columns, the only +1 entry in Row 2 is not in Column 1. By possibly
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permuting Columns 2, 3 and 4, without loss of generality, we may assume that Row 2

is (−1, 1,−1,−1). Then, we consider Column 3 and Column 4. Since every column has

an odd number of −1 entries and m13 = 1 and m23 = −1, we have m33 = m43, both

+1 or −1. Similarly, m34 = m44. Also, since Column 3 and Column 4 differ in exactly

two rows, and m13 = m14 and m23 = m24, we have m33 = −m34 and m43 = −m44.

Thus, Mr(f̂∗)[3,4] = ±
[
1 −1
1 −1

]
. In both cases, we have perm(Mr(f̂∗)[1,2]) = −2. No-

tice that Mr(f̂∗)[1,2] =
[−1 1
−1 1

]
. Thus, perm(Mr(f̂∗)[1,2]) + perm(Mr(f̂∗)[3,4]) = −4 6= 0.

Contradiction.

• There is a row or a column of Mr(f̂∗) such that it has an even number of −1 entries. By

transposing Mr(f̂∗), we may assume that it is a row, say Row i. For any other Row j, it

differs with Row i in exactly two columns. Thus, Row j also has an even number of −1

entries. If all four rows of Mr(f̂∗) have exactly two −1 entries, then one can check that there

are two rows such that one row is a scalar (±1) multiple of the other, thus not orthogonal;

this is a contradiction. Thus, there exists a row in which the number of −1 entries is 0 or 4.

By permuting rows, we may assume that it is Row 1. Also, by possibly multiplying Mr(f̂∗)

with −1, we may assume that all entries of Row 1 are +1. Thus, Row 1 is (1, 1, 1, 1).

By orthogonality, all other rows have exactly two −1 entries. By permuting columns (which

does not change Row 1), we may assume that Row 2 is (−1,−1, 1, 1). Then, consider Row

3. It also has exactly two −1 entries. Moreover, since Row 2 and Row 3 differ in 2 columns,

among m31 and m32, exactly one is −1. By permuting Column 1 and Column 2 (which does

not change Row 1 and Row 2), we may assume that m31 = −1. Also, among m33 and m34,

exactly one is −1. By permuting Column 3 and Column 4 (still this will not change Row 1

and Row 2), we may assume that m33 = −1. Thus, Row 3 is (−1, 1,−1, 1). Finally, consider

Row 4. It also has two −1 entries. One can easily check that Row 4 has two possible forms,
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(−1, 1, 1,−1) or (1,−1,−1, 1). If Row 4 is (1,−1,−1, 1), then,

Mr(f̂∗) =


1 1 1 1

−1 −1 1 1

−1 1 −1 1

1 −1 −1 1

 .

Thus, perm(Mr(f̂∗)[12]) + perm(Mr(f̂∗)[34]) = −4 6= 0. Contradiction.

Thus, Row 4 is (−1, 1, 1,−1). Then

Mr(f̂∗) =


1 1 1 1

−1 −1 1 1

−1 1 −1 1

−1 1 1 −1

 .

This gives the desired Mr(f̂6).

Therefore, f̂6 is realizable from f̂∗.

Since f̂6 is realized from f̂∗ by flipping (and permuting) variables, i.e., extending some variables

of f̂∗ with =2 (using 6=2), we have f̂6 ∈ {f̂∗}B̸̂=2
. Since f̂∗ is realized from f̂ ′′ by extending some

variables of f̂ ′′ with signatures in B̂, we have f̂∗ ∈ {f̂ ′′}B̸̂=2
. By Lemma 3.11, we have f̂6 ∈ {f̂ ′′}B̸̂=2

.

Theorem 7.5. Suppose that F is a set of real-valued signatures of even arity and F does not

satisfy condition (T). Let F̂ = Z−1F If F̂ contains a 6-ary signature f̂ /∈ Ô⊗, then

• Holant( 6=2| F̂) is #P-hard, or

• there exists some Q̂ ∈ Ô2 such that Holant(6=2| f̂6, Q̂F̂) ⩽T Holant(6=2| F̂).

证明. By Lemmas 7.1, 7.2 and 7.3, Holant( 6=2| F̂) is #P-hard, or Holant( 6=2|=2, f̂ ′′, Q̂F̂) ⩽T

Holant(6=2| F̂) for some Q̂ where Q ∈ Ô2, and some irreducible 6-ary signature f̂ ′′ where S (f̂ ′′) =

E6 and there exists λ = 1 or i such that for all α ∈ S (f̂ ′′), f̂ ′′(α) = ±λ. Remember that

Q̂F̂ = Q̂F where Q = ZQ̂Z−1 ∈ O2. Clearly, QF is a set of real-valued signatures of even arity.

Since F does not satisfy condition (T), by Lemma 2.37, QF also does not satisfy it. Then, by
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Lemma 7.4, Holant( 6=2|=2, f̂ ′′, Q̂F̂) is #P-hard, or Holant( 6=2| f̂6, Q̂F̂) ⩽T Holant(6=2|=2, f̂ ′′, Q̂F̂).

Thus, Holant( 6=2| F̂) is #P-hard, or Holant( 6=2| f̂6, Q̂F̂) ⩽T Holant(6=2| F̂).

Remark 7.6. Theorem 7.5 can be more succinctly stated as simply that a reduction

Holant( 6=2| f̂6, Q̂F̂) ⩽T Holant(6=2| F̂)

exists, because when Holant( 6=2| F̂) is #P-hard, the reduction exists trivially. However in keeping

with the cadence of the other lemmas and theorems in this subsection, we list them as two cases.

Now, we want to show that Holant( 6=2| f̂6, Q̂F̂) is #P-hard for all Q̂ ∈ Ô2 and all F̂ where

F = ZF̂ is a real-valued signature set that does not satisfy condition (T). If so, then we are done.

Recall that for all Q̂ ∈ Ô2, Q̂F̂ = Q̂F for some Q ∈ O2. Moreover, for all Q ∈ O2, and all

real-valued F that does not satisfy condition (T), QF is also a real-valued signature set that does

not satisfy condition (T). Thus, it suffices for us to show that Holant(6=2| f̂6, F̂) is #P-hard for all

real-valued F that does not satisfy condition (T).

7.2 #P-Hardness Conditions and Two Properties of f̂6

In this section, we give three conditions (Lemmas 7.7, 7.9 and 7.10) which can quite straight-

forwardly lead to the #P-hardness of Holant( 6=2| f̂6, F̂). We will extract two properties from f̂6,

the non-B̂ hardness (Definition 7.8) and the realizability of B̂ (Lemma 7.13). Later, we will prove

the #P-hardness of Holant(6=2| f̂6, F̂) based on these two properties.

Lemma 7.7. Suppose that F is a set of real-valued signatures of even arity and F does not

satisfy condition (T). Let F̂ = Z−1F . If F̂ contains a nonzero binary signature b̂ /∈ B̂⊗, then

Holant(6=2| f̂6, F̂) is #P-hard.

证明. If b̂ /∈ Ô⊗, then by Lemma 6.7, we are done. Otherwise, b̂ ∈ Ô⊗. Thus, b̂ = (a, 0, 0, ā) or

b̂ = (0, a, ā, 0). Since b̂ 6≡ 0, a 6= 0. We normalize the norm of a to 1. Since b̂ /∈ B̂⊗, a 6= ±1 or ±i.

We first consider the case that b̂(y1, y2) = (0, a, ā, 0). Connecting variables x1 and x2 of f̂6 with

variables y2 and y1 of b̂ using 6=2, we get a 4-ary signature ĝ. We list the truth table of ĝ indexed
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by the assignments of variables (x3, x4, x5, x6) from 0000 to 1111.

ĝ = (0, a+ ā,−a+ ā, 0, a− ā, 0, 0,−a− ā,−a− ā, 0, 0,−a+ ā, 0, a− ā, a+ ā, 0).

Since a has norm 1, and a 6= ±1 or ±i, |a± ā| 6= 0. Thus, |S (ĝ)| = 8. Clearly, every 4-ary signature

that is in Ô⊗ has support of size 0 or 4. Thus, ĝ /∈ Ô⊗. By Lemma 6.8, Holant( 6=2| f̂6, F̂) is #P-

hard. We prove the case b̂(y1, y2) = (a, 0, 0, ā) similarly. By connecting variables x1 and x2 of f̂6
with variables y1 and y2 of b̂ using 6=2, we also get a 4-ary signature that is not in Ô⊗. The lemma

is proved.

Definition 7.8. We say a signature set F̂ is non-B̂ hard, if for any nonzero binary signature

b̂ /∈ B̂⊗, the problem Holant( 6=2| b̂, F̂) is #P-hard. Correspondingly, we say that a signature set F

is non-B hard, if for any nonzero binary signature b /∈ B⊗, the problem Holant(b,F) is #P-hard.

Clearly, Lemma 7.7 says that {f̂6} ∪ F̂ is non-B̂ hard for any F̂ (where F = ZF̂ is a real-

valued signature set that does not satisfy condition (T)). Before we give the other two #P-hardness

conditions, we first explain why we introduce the notion of non-B̂ hardness. We will extract two

properties from f̂6 to prove the #P-hardness of Holant( 6=2| f̂6, F̂). These are the non-B̂ hardness

and the realizability of B̂. From Lemma 7.13∗ we get the redutcion Holant(6=2| f̂6, B̂ ∪ F̂) ⩽

Holant(6=2| f̂6, F̂). We will show that for any non-B̂ hard set F̂ where F does not satisfy condition

(T), Holant(6=2| B̂ ∪ F̂) is #P-hard (Theorem 7.38). This directly implies that Holant( 6=2| f̂6, F̂) is

#P-hard when F does not satisfy condition (T). This slightly more general Theorem 7.38 will also

be used when dealing with signatures of arity 8. Now, let us continue to give two more #P-hardness

conditions without assuming the availability of B (Lemma 7.9 and 7.10).

Lemma 7.9. Suppose that F is a set of real-valued signatures of even arity and F does not satisfy

condition (T). Let F̂ = Z−1F . If F̂ is non-B̂ hard and F̂ contains a nonzero 4-ary signature

f̂ /∈ B̂⊗, then Holant( 6=2| F̂) is #P-hard.

证明. If f̂ /∈ Ô⊗, then by Lemma 6.8, we are done. Otherwise, f̂ = b̂1 ⊗ b̂2, where the binary

signatures b̂1, b̂2 ∈ Ô⊗. Since f̂ /∈ B̂⊗, b̂1 and b̂2 are not both in B̂⊗. Then, we can realize a binary

signature that is not in B̂⊗ by factorization. Since F̂ is non-B̂ hard, we are done.
∗This lemma and the following Theorem 7.38 are stated and proved in the setting of Holant(F).
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Let H = 1√
2

[
1 1
−1 1

]
. Then Ĥ = Z−1HZ =

[
(1+i)√

2
0

0
(1−i)√

2

]
=
[
eiπ/4 0
0 e−iπ/4

]
. Let f̂H6 = Ĥf̂6. Let

F̂6 = {f̂6}B̸̂=2
be the set of signature realizable by extending variables of f̂6 with binary signatures

in B̂ using 6=2, and F̂H
6 = {f̂H6 }B̸̂=2

be the set of signature realizable by extending variables of f̂H6
with binary signatures in B̂ using 6=2. One can check that F̂H

6 = ĤF̂6 6= F̂6.

Lemma 7.10. Suppose that F is a set of real-valued signatures of even arity and F does not

satisfy condition (T). Let F̂ = Z−1F . If F̂ is non-B̂ hard and F̂ contains a nonzero 6-ary

signature f̂ /∈ B̂⊗ ∪ F̂6 ∪ F̂H
6 , then Holant(6=2| F̂) is #P-hard.

证明. If f̂ is reducible, since f̂ /∈ B̂⊗, then by factorization, we can realize a nonzero signature of

odd arity or a nonzero signature of arity 2 or 4 that is not in B̂⊗. If we have a nonzero signature

of odd arity, then we are done by Theorem 5.35. If we have a nonzero signature of 2, then we

are done because F̂ is non-B̂ hard. If we have a nonzero signature of 4, then we are done by

Lemma 7.9. Now we assume that f̂ is irreducible. In particular, being irreducible, f̂ 6∈ Ô⊗. For a

contradiction, suppose that Holant( 6=2| F̂) is not #P-hard. Then, by Theorem 7.5, f̂6 is realizable

from f̂ . Remember that we realize f̂6 from f̂ by realizing f̂ ′, f̂ ′′ and f̂∗ (Lemmas 7.1, 7.3 and 7.4).

We will trace back this process and show that they are all in F̂6 ∪ F̂H
6 , which contradicts with the

condition that f̂ /∈ F̂6 ∪ F̂H
6 .

1. First, by Lemma 7.4, f̂6 ∈ {f̂ ′′}B̸̂=2
. Then, by Lemma 3.11, f̂ ′′ ∈ {f̂6}B̸̂=2

= F̂6.

2. Then, by Lemma 7.3, f̂ ′′ = Q̂f̂ ′ for some Q̂ =
[
e−iδ 0
0 eiδ

]
∈ Ô2 where 0 ⩽ δ < π/2, and the

binary signature b̂ = (ei2δ, 0, 0, e−i2δ) is realizable from f̂ ′ where f̂ ′ is realizable from f̂ . Thus,

b̂ is realizable from F̂ . If ei2δ 6= ±1 or ±i, then b̂ /∈ B̂⊗. Since F̂ is non-B̂ hard, we get

#P-harness. Contradiction. Otherwise, since 0 ⩽ δ < π/2, ei2δ = 1 or i and then, δ = 0 or

π/4. If δ = 0, then eiδ = e−iδ = 1 and f̂ ′′ = Q̂f̂ ′ = f̂ ′. Thus, f̂ ′ ∈ F̂6. If δ = π/4, then

f̂ ′ = Q̂−1f̂ ′′ where Q̂−1 =
[
eiπ/4 0
0 e−iπ/4

]
= Ĥ. Since f̂ ′′ ∈ F̂6, f̂ ′ = Ĥf̂ ′′ ∈ ĤF̂6 = F̂H

6 .

3. Finally, by Lemma 7.1, f̂ ′ is realized by extending variables of f̂ with nonzero binary signa-

tures realized from ∂̂12f̂ . If we can realize a nonzero binary signature that is not in B̂⊗1 from

∂̂12f̂ by factorization, then since F̂ is non-B̂ hard, we get #P-hardness. Contradiction. Thus,

we may assume that all nonzero binary signatures realizable from ∂̂12f̂ are in B̂⊗1. Then, f̂ ′ is
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realized by extending variables of f̂ with nonzero binary signatures in B̂⊗1. Thus, f̂ ′ ∈ {f̂}B̸̂=2
.

By Lemma 3.11, f̂ ∈ {f̂ ′}B̸̂=2
. Since f̂ ′ ∈ F̂6 or F̂H

6 , f̂ ∈ F̂6 or F̂H
6 . Contradiction.

Thus, Holant( 6=2| F̂) is #P-hard if F̂ contains a nonzero 6-ary signature f̂ /∈ B̂⊗ ∪ F̂6 ∪ F̂H
6 .

We go back to real-valued Holant problems under the Z-transformation. Consider the problem

Holant(f6,F) where

f6 = Zf̂6 = χS · (−1)x1+x2+x3+x1x2+x2x3+x1x3+x1x4+x2x5+x3x6

and S = S (f6) = E6. The signature f6 has a quite similar matrix form to f̂6.

M123,456(f6) =



1 0 0 1 0 1 1 0

0 1 −1 0 −1 0 0 1

0 −1 1 0 −1 0 0 1

−1 0 0 −1 0 1 1 0

0 −1 −1 0 1 0 0 1

−1 0 0 1 0 −1 1 0

−1 0 0 1 0 1 −1 0

0 −1 −1 0 −1 0 0 −1



.

Since f̂H6 = Ĥf̂6 = Ĥf6, fH6 = Zf̂H6 = Hf6. Also, since F̂6 = {f̂6}B̸̂=2
, F6 = ZF̂6 = {f6}B=2

is the set of signatures realizable by extending variables of f6 with binary signatures in B using

=2. Similarly, since F̂H
6 = {f̂H6 }B̸̂=2

, FH
6 = ZF̂H

6 = {f6}B=2
is the set of signatures realizable by

extending variables of fH6 with binary signatures in B using =2. Notice that f6 ∈ A and B ⊆ A .

Thus, F6 ⊆ A . Also, the binary signature (1, 1,−1, 1) with a signature matrix H is in A . Thus,

fH6 ∈ A and then FH
6 ⊆ A . Also, S (f6) = E6 and one can check that S (fH6 ) = O6. Thus, for

every f ∈ F6 ∪ FH
6 , S (f) = E6 or O6. Since f6 and fH6 satisfy 2nd-Orth, one can easily check

that every f ∈ F6 ∪ FH
6 satisfies 2nd-Orth.

We want to show that Holant(f6,F) ≡T Holant(6=2| f̂6, F̂) is #P-hard for all real-valued F

that does not satisfy condition (T). By Lemma 7.7, {f6}∪F is non-B hard. We restate Lemmas 7.9

and 7.10 in the setting of Holant(F) for non-B hard F .
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Corollary 7.11. Suppose that F is a set of real-valued signatures of even arity, F does not satisfy

condition (T), and F is non-B hard. Then, Holant(F) is #P-hard if F contains a nonzero signature

f of arity at most 6 where f /∈ B⊗ ∪ F6 ∪ FH
6 .

Remark 7.12. Notice that B⊗ ∪ F6 ∪ FH
6 ⊆ A . Thus, for any non-B hard set F , Holant(F) is

#P-hard if F contains a nonzero signature f of arity at most 6 where f /∈ A .

Now, we show that all four binary signatures in B are realizable from f6.

Lemma 7.13. Holant(B, f6,F) ⩽ Holant(f6,F).

证明. Consider ∂12f6. Notice that

f6
00
12

f6
11
12

 =

 1 0 0 1 0 1 1 0 0 1 −1 0 −1 0 0 1

−1 0 0 1 0 1 −1 0 0 −1 −1 0 −1 0 0 −1

 .
Thus, ∂12f6(x3, x4, x5, x6) = f6

00
12+f6

11
12 has the truth table (0, 0, 0, 1, 0, 1, 0, 0, 0, 0,−1, 0,−1, 0, 0, 0).

In other words, ∂12f6(0011) = 1, ∂12f6(0101) = 1, ∂12f6(1010) = −1, ∂12f6(1100) = −1, and

∂12f6 = 0 elsewhere. Then,

S (∂12f6) = {(x3, x4, x5, x6) ∈ Z4
2 | x3 6= x6 ∧ x4 6= x5},

and

∂12f6(x3, x4, x5, x6) = ( 6=−
2 )(x3, x6)⊗ (6=2)(x4, x5).

Thus, by factorization we can realize 6=−
2 and 6=2. Then connecting a variable of 6=−

2 with a variable

of 6=2 (using =2), we will get =−
2 . Thus, B is realizable from f6.

We define the problem Holantb(F) to be Holant(B∪F). For all {i, j} and every b ∈ B, consider

signatures ∂bijf6 (i.e., ∂+ijf6, ∂
+̂
ijf6, ∂

−
ijf6 and ∂−̂ijf6) realized by merging variables xi and xj of f6

using the binary signature b. If there were one that is not in B⊗2, then by Corollary 7.11, we would

be done. However, f6 satisfies the following Bell property.

Definition 7.14 (Bell property). An irreducible signature f satisfies the Bell property if for all

pairs of indices {i, j} and every b ∈ B, ∂bijf ∈ B⊗. (Here, ∂bij denotes the merging gadget using b.)
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It can be directly checked that

Lemma 7.15. Every signature in F6 ∪ FH
6 satisfies the Bell property.

Now consider all possible gadget constructions. If we could realize a signature of arity at most

6 that is not in B⊗ ∪F6 ∪FH
6 from B and f6 by any possible gadget, then by Corollary 7.11 there

would be a somewhat more straightforward proof to our dichotomy theorem for the case of arity 6.

However, after many failed attempts, we believe there is a more intrinsic reason why this approach

cannot work. The following conjecture formulates this difficulty. This truly makes f6 the Lord of

Intransigence at arity 6.

Conjecture 7.16. All nonzero signatures of arity at most 6 realizable from B∪{f6} are in B⊗∪F6.

Also, all signatures of arity at most 6 realizable from B ∪ {fH6 } are in B⊗ ∪ FH
6 .

So to prove the #P-hardness of Holantb(f6,F), we have to make additional use of F . In

particular, we need to use a non-affine signature in F .

7.3 #P-Hardness of Holantb(F)

In this section, we prove that for all real-valued non-B hard set F that does not satisfy condition

(T), Holantb(F) is #P-hard (Theorem 7.38). For any real-valued set F that does not satisfy

condition (T), the set {f6} ∪ F is non-B hard, and since B is realizable from f6, Holant(f6,F) is

#P-hard by Theorem 7.38. Combining with Theorem 7.5, we show that Holant(6=6| F̂) is #P-hard

if F̂ contains a 6-ary signature that is not in Ô⊗ (Lemma 7.40).

Since F does not satisfy condition (T), F 6⊆ A . Thus, it contains a signature f of arity 2n

that is not in A . In the following, we will prove the #P-hardness of Holantb(F) where F is non-B

hard by induction on 2n ⩾ 2. For the base cases 2n ⩽ 6, by Corollary 7.11 and the Remark after

that, Holantb(F) is #P-hard. Then, starting with a signature of arity 2n ⩾ 8 that is not in A ,

we want to realize a signature of lower arity 2k ⩽ 2n − 2 that is also not in A , or else we get

#P-hardness directly. If we can reduce the arity down to at most 6, then we are done.

Let f /∈ A be a nonzero signature of arity 2n ⩾ 8. We first show that if f does not have

parity, then we get #P-hardness (Lemma 7.17). Then, suppose that f has parity. If f is reducible,

since f has even arity (as we assumed so starting from Chapter 6), it is a tensor product of two
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signatures of odd arity, or a tensor product of two signatures of even arity which are not both in

A since f /∈ A . Thus, by factorization, we can realize a nonzero signature of odd arity and we

get #P-hardness by Theorem 5.35, or we can realize a signature of lower even arity that is not

in A . Thus, we may assume that f is irreducible. Then by Lemma 6.6 and the Remark after

Definition 3.20 we may assume f satisfies 2nd-Orth.

Consider signatures ∂bijf (i.e., ∂+ijf , ∂
−
ijf , ∂

+̂
ijf and ∂−̂ijf) realized by merging variables xi and

xj of f using b ∈ B for all pairs of indices {i, j} and every b ∈ B. If there is one signature

that is not in A , then we have realized a signature of arity 2n − 2 that is not in A . Otherwise,

∂bijf ∈ A for all {i, j} and every b ∈ B. We denote this property by f ∈
∫
B A . Now, assuming

that f has parity, f satisfies 2nd-Orth and f ∈
∫
B A , we would like to reach a contradiction by

showing that this would force f itself to belong to A . However, quite amazingly, there do exist

non-affine signatures that satisfy these stringent conditions. We will show how they are discovered

and handled (Lemmas 7.27, 7.35 and 7.37).

In this section, all signatures are real-valued. When we say an entry of a signature has norm

a, we mean it takes value ±a. Since B is available in Holantb(F), if a signature f is realizable in

Holantb(F), then we can realize all signatures in {f}B=2
that are realizable by extending f with

B⊗1 (using =2). If we extend the variable xi of f with 6=2, then we will get a signature g where

g0i = f1i and g1i = f0i . This is a flipping operation on the variable xi. If we extend the variable xi
of f with =−

2 , then we will get a signature g where g0i = f0i and g1i = −f1i . We call this a negating

operation on the variable xi. In the following, once f is realizable in Holantb(F), we may modify

it by flipping or negating. This will not change the complexity of the problem.

7.3.1 Parity Condition

We first show that if F contains a signature that does not have parity, then we can get #P-

hardness.

Lemma 7.17. Suppose that F is a set of real-valued signatures of even arity, F does not satisfy

condition (T), F is non-B hard and F contains a signature f of arity 2n. If f does not have parity,

then Holantb(F) is #P-hard.

证明. We prove this lemma by induction on 2n. We first consider the base case that 2n = 2. Since
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f has no parity, f /∈ B. Since F is non-B hard, Holantb(F) is #P-hard.

Now, suppose that Holantb(F) is #P-hard when 2n = 2k ⩾ 2. Consider the case that 2n =

2k + 2 ⩾ 4. We will show that we can realize a signature g of arity 2k with no parity from f , i.e.,

Holantb(g,F) ⩽T Holantb(F). Then by the induction hypothesis, we have Holantb(F) is #P-hard

when 2n = 2k + 2.

Since f has no parity, f 6≡ 0. It has at least a nonzero entry. By flipping variables of f , we

may assume that f (⃗02n) = x 6= 0. We denote 0⃗2n by α = 000δ where δ = 0⃗2n−3. Since f has no

parity and f (⃗02n) 6= 0, there exists an input α′ with wt(α′) ≡ 1 (mod 2) such that f(α′) = x′ 6= 0.

Since 2n ⩾ 4, we can find three bits of α′ such that on these three bits, the values of α′ are the

same. By renaming variables of f which gives a permutation of α′, without loss of generality, we

may assume that these are the first three bits, i.e, α′
1 = α′

2 = α′
3.

We first consider the case that α′
1α

′
2α

′
3 = 000. Then, α′ = 000δ′ for some δ′ ∈ Z2n−3

2 where

wt(δ′) = wt(000δ′) = wt(α′) ≡ 1 (mod 2). We consider the following six entries of f .

x = f(000δ), x′ = f(000δ′), y = f(011δ), y′ = f(011δ′), z = f(101δ), z′ = f(101δ′).

Consider signatures ∂+23f and ∂−23f realized by connecting variables x2 and x3 of f using =+
2

and =−
2 respectively. Clearly, ∂+23f and ∂−23f have arity 2n− 2. If one of them has no parity, then

we are done. Thus, we may assume that ∂+23f and ∂−23f both have parity. Note that x + y and

x′ + y′ are entries of the signature ∂+23f on inputs 0δ and 0δ′ respectively. Clearly, wt(0δ) = 0 and

wt(0δ′) ≡ 1 (mod 2). Since ∂+23f has parity, at least one of x+ y and x′ + y′ is zero. Thus, we have

(x + y)(x′ + y′) = 0. Also, note that x − y and x′ − y′ are entries of the signature ∂−23f on inputs

0δ and 0δ′ respectively. Then, since ∂−23f has parity, similarly we have (x− y)(x′ − y′) = 0. Thus,

(x+ y)(x′ + y′) + (x− y)(x′ − y′) = 2(xx′ + yy′) = 0. (7.8)

Consider signatures ∂+13f and ∂−13f realized by connecting variables x1 and x3 of f using =2

and =−
2 respectively. Again if one of them has no parity, then we are done. Suppose that ∂+13f and

∂−13f both have parity. Then, (x + z)(x′ + z′) = 0 since x + z and x′ + z′ are entries of ∂+13f on



147

inputs 0δ and 0δ′ respectively. Similarly, (x− z)(x′ − z′) = 0. Thus,

(x+ z)(x′ + z′) + (x− z)(x′ − z′) = 2(xx′ + zz′) = 0. (7.9)

Consider signatures ∂+̂12f and ∂−̂12f realized by connecting variables x1 and x2 of f using 6=2

and 6=−
2 respectively. Again if one of them has no parity, then we are done. Suppose that ∂+̂12f and

∂−̂12f both have parity. Then, (y+z)(y′+z′) = 0 since y+z and y′+z′ are entries of ∂+̂12f on inputs

1δ and 1δ′ respectively, and wt(1δ) = 1 and wt(1δ′) ≡ 0(mod2). Similarly, (y − z)(y′ − z′) = 0.

Thus,

(y + z)(y′ + z′) + (y − z)(y′ − z′) = 2(yy′ + zz′) = 0. (7.10)

Then, consider (7.8) + (7.9) − (7.10). We have xx′ = 0. However, since x = f (⃗02n) 6= 0 and

x′ = f(α′) 6= 0, xx′ 6= 0. Contradiction.

For the case that α′
1α

′
2α

′
3 = 111, we have α′ = 111δ′ for some δ′ ∈ Z2n−3

2 where wt(δ′) =

wt(111δ′)− 3 = wt(α′)− 3 ≡ 0 (mod 2). We consider the following six entries of f .

x = f(000δ), x′ = f(111δ′), y = f(011δ), y′ = f(100δ′), z = f(101δ), z′ = f(010δ′).

We still consider signatures ∂+23f , ∂−23f , ∂+13f , ∂−13f , ∂+̂12f and ∂−̂12f and suppose that they all have

parity. Then, similar to the above proof of the case α′
1α

′
2α

′
3 = 000, we can show that xx′ = 0.

Contradiction.

Thus, among ∂+23f , ∂−23f , ∂+13f , ∂−13f , ∂+̂12f and ∂−̂12f , at least one does not have parity. Thus,

we realized a 2k-ary signature with no parity. By our induction hypothesis, we are done.

7.3.2 Norm Condition

Under the assumptions that f has parity, f satisfies 2nd-Orth and f ∈
∫
B A , we consider

whether all nonzero entries of f have the same norm. In Lemma 7.27, we will show that the answer

is yes, but only for signatures of arity 2n ⩾ 10 (this lemma does not require F to be non-B hard).

For a signature f of arity 2n = 8, we show that either all nonzero entries of f have the same

norm, or one of the following signatures g8 or g′8 is realizable. These two signatures are defined by
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g8 = χS − 4 · f8 and g′8 = q8 − 4 · f8, where

S = S (q8) = E8, q8 = χS(−1)
∑

1⩽i<j⩽8 xixj and

f8 = χT with T = S (f8) = {(x1, x2, . . . , x8) ∈ Z8
2 | x1 + x2 + x3 + x4 = 0, x5 + x6 + x7 + x8 = 0,

x1 + x2 + x5 + x6 = 0, x1 + x3 + x5 + x7 = 0}.
(7.11)

It is here the function f8 makes its first appearance, we dub it the Queen of the Night. Clearly,

g8, g
′
8 /∈ A since their nonzero entries have two different norms 1 and 3. One can check that g8 and

g′8 have parity, g8 and g′8 satisfy 2nd-Orth and g8, g′8 ∈
∫
B A . Thus, one cannot get a non-affine

signature by connecting two variables of g8 or g′8 using signatures in B. However, fortunately by

merging two arbitrary variables of g8 using =2 and two arbitrary variables of g′8 using =−
2 , we can

get 6-ary irreducible signatures that do not satisfy 2nd-Orth. Thus, we get #P-hardness.

The following Lemma 7.21 regarding the independence number of a family of special graphs is

at the heart of the discovery of the signature g8. It should be of independent interest.

Definition 7.18. Define the graphs G2n and H2n as follows. The vertex set V (G2n) is the set E2n

of all even weighted points in Z2n
2 . The vertex set V (H2n) is the set O2n of all odd weighted points

in Z2n
2 . Two points u, v ∈ E2n (or O2n) are connected by an edge iff wt(u⊕ v) = 2.

Let α(G2n) be the independence number of G2n i.e, the size of a maximum independent set of

G2n, and α(H2n) be the independence number of H2n. Let S ⊆ [2n]. We define φS be a mapping

that flips the values on bits in S for all u ∈ E2n. In other words, suppose that u′ = φS(u). Then,

u′i = ui if i ∈ S and u′i = ui if i /∈ S where u′i and ui are values of u and u on bit i respectively.

For all S, clearly wt(u ⊕ v) = 2 iff wt(φS(u) ⊕ φS(v)) = 2. When |S| is odd, φS(E2n) = O2n.

One can easily check that φS gives an isomorphism between G2n and H2n. When |S| is even,

φS(E2n) = E2n. Then, φS gives an automorphism of G2n. Also, by permuting these 2n bits, we

can get an automorphism of G2n. In fact, the automorphism group of G2n is generated by these

operations.

Lemma 7.19. Let 2n ⩾ 6. Every automorphism ψ of G2n is a product φS◦π for some automorphism

π induced by a permutation of 2n bits, and an automorphism φS given by flipping the values on

some bits in a set S of even cardinality.
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证明. Let ψ be an arbitrary automorphism of G2n. Suppose ψ(⃗02n) = u. Let S ⊆ [2n] be the

index set where ui = 1. Then |S| = wt(u) is even, and ψ′ = φS ◦ ψ fixes 0⃗2n. Consider ψ′(v) for

all v ∈ E2n of wt(v) = 2. Since ψ′ is an automorphism fixing 0⃗2n, ψ′(v) has weight 2. We denote

by eij the 2n-bit string with wt(eij) = 2 having 1’s on bits i and j, for 1 ⩽ i < j ⩽ 2n. Then,

e12 = 11⃗02n−2. By a suitable permutation π of the variables, we have π ◦ ψ′(e12) = e12, while still

fixing 0⃗2n. We will show that π ◦ ψ′ = π ◦ φS ◦ ψ is the identity mapping, i.e., π ◦ φS ◦ ψ = 1G2n .

Then, ψ = φ−1
S ◦ π−1. We are done.

For simplicity of notations, we reuse ψ to denote π ◦ ψ′ in the following and we show that

ψ = 1G2n . Consider e1i, for 3 ⩽ i ⩽ 2n. Note that ψ(e1i) is some est and must have Hamming

distance 2 to e12. It is easy to see that the only possibilities are s ∈ {1, 2} and t > 2, i.e., from e12

we flip exactly one bit in {1, 2} and another bit in {3, . . . , 2n}. Suppose there are i 6= i′ (i, i′ ⩾ 3)

such that ψ(e1i) = e1t and ψ(e1i′) = e2t′ . Since wt(e1i ⊕ e1i′) = 2, we must have t = t′. Since

2n ⩾ 6, we can pick another i′′ ⩾ 3 such that i′′ 6= i and i′. Then, this leads to a contradiction since

e1i′′ must either be mapped to e1t if ψ(e1i′′) = e1t′′ , or be mapped to e2t if ψ(e1i′′) = e2t′′ ; neither

is possible. Thus either ψ(e1i) is some e1t for all 3 ⩽ i ⩾ 2n, or is some e2t for all 3 ⩽ i ⩾ 2n. By

a permutation of {1, 2} (which maintains the property that ψ fixes 0⃗2n and e12) we may assume it

is the former. Then the mapping i 7→ t given by ψ(e1i) = e1t for 3 ⩽ i ⩾ 2n defines a permutation

of the variables for 3 ⩽ i ⩾ 2n (which again maintains the property that ψ fixes 0⃗2n and e12)

and, after a permutation of the variables we may now assume that ψ fixes 0⃗2n and all e1i. For

any 1 ⩽ i < j ⩽ 2n, we have wt(ψ(eij)) = 2 and ψ(eij) has distance 2 from both ψ(e1i) = e1i

and ψ(e1j) = e1j . Then ψ(eij) must be obtained from e1i by flipping exactly one bit in {1, i} and

another bit out of {1, i}. However, it cannot flip bit i which would result in some e1t for some

t > 2, because ψ already fixed e1t. Thus, it flips bit 1 but not bit i. Similarly in view of e1j , we

must flip bit 1 but not bit j. Hence ψ(eij) = eij , and therefore ψ fixes all v with Hamming weight

wt(v) ⩽ 2.

Inductively assume ψ fixes all v of wt(v) ⩽ 2k, for some k ⩾ 1. If k < n we prove that ψ

also fixes all v of wt(v) = 2k + 2. For notational simplicity we may assume v = 1⃗2k+20⃗2n−2k−2. As

2k + 2 ⩾ 4, we can choose u = 1⃗2k00⃗02n−2k−2 and w = 00⃗12k0⃗2n−2k−2, and the two 00 in u and w

among the first 2k+ 2 bits are in disjoint bit positions. Clearly wt(ψ(v)) ⩾ 2k+ 2 since all strings

of wt ⩽ 2k are fixed. Also since ψ(v) has Hamming distance 2 from ψ(u) = u and ψ(w) = w, it has
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weight exactly 2k+ 2, and is obtained from u by flipping two bits from 00 to 11 in positions > 2k,

as well as obtained from w by flipping two bits from 00 to 11 in positions in {1, 2}∪{t | t > 2k+2}.

In particular, it is 1 in positions 1 to 2k (in view of u), and it is also 1 in positions 3 to 2k+2. But

together these positions cover all bits 1 to 2k + 2. Thus ψ(v) = v. This completes the induction,

and proves the lemma for all 2n ⩾ 6.

Remark 7.20. The condition 2n ⩾ 6 in Lemma 7.19 is necessary. Here is a counter example

for 2n = 4: ψ fixes 0000 and 1111, and it maps α to α for all α ∈ {0, 1}4 with wt(α) = 2.

If ψ were to be expressible as φS ◦ π, then since ψ(0000) = 0000, we have S = ∅. Then by

ψ(0011) = 1100 and ψ(0101) = 1010, the permutation π must map variable x1 to x4. However this

violates ψ(1001) = 0110.

Lemma 7.21. Let {G2n} be the sequence of graphs defined above.

• If 2n = 8, then α(G8) =
1
8 |E8| = 24, and the maximum independent set I8 of G8 is unique up

to an automorphism, where

I8 ={00000000, 00001111, 00110011, 00111100, 01010101, 01011010, 01100110, 01101001,

10010110, 10011001, 10100101, 10101010, 11000011, 11001100, 11110000, 11111111}.

• If 2n ⩾ 10, then α(G2n) <
1
8 |E2n| = 22n−4.

证明. We first consider the case 2n = 6. One can check that the following set

I6 = {000000, 001111, 110011, 111100}

is an independent set of G6. Thus, α(G6) ⩾ 4. Next, we show that α(G6) = 4 and I6 is the unique

maximum independent set of α(G6) up to an automorphism.

Let J6 be an maximum independent set of G6. Clearly, |J6| ⩾ 4. After an automorphism of

G6 by flipping some bits, we may assume that 0⃗6 ∈ J6. Then for any u ∈ E6 with wt(u) = 2,

u /∈ J6. If 1⃗6 ∈ J6, then for any u ∈ E6 with wt(u) = 4, u /∈ J6. Thus, J6 is maximal with

|J6| = 2 < 4, a contradiction. Thus, we have 1⃗6 /∈ J6. Then all vertices in J6, except 0⃗6 have

hamming weight 4. After an automorphism by permuting bits (this will not change 0⃗6), we may
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assume that u = 001111 ∈ J6. Consider some other v ∈ J6 with wt(v) = 4. If v1v2 = 01 or 10,

then wt(v3v4v5v6) = 3. Thus, wt(u ⊕ v) = wt(00 ⊕ v1v2) + wt(1111 ⊕ v3v4v5v6) = 1 + 1 = 2.

Contradiction. The only v ∈ J6 with wt(v) = 4, and v1v2 = 00 is v = 001111 = u. Thus, v1v2 = 11,

i.e., both bits of v are 1 where u is 00. After an automorphism by permuting bits in {3, 4, 5, 6}

(this will not change 0⃗6 and u), we may assume that v = 110011 ∈ J6. For any other w ∈ J6 with

wt(w) = 4, we must have w1w2 = 11 (by the same proof for the pair (u, v) applied to (u,w)), and

also w3w4 = 11 (by the same proof for the pair (u, v) applied to (v, w)). Thus, w = 111100. Then,

J6 = {⃗06, u, v, w} = I6 is maximal. Thus, α(G6) = 4 and I6 is the unique maximum independent

set of α(G6) up to an automorphism.

Consider 2n = 8. One can check that I8 is an independent set of G8. Thus, α(G8) ⩾ 16. We

use Gab8 to denote the subgraph of G8 induced by vertices {u ∈ E8 | u1u2 = ab} for (a, b) ∈ Z2
2.

Clearly, G00
8 and G11

8 are isomorphic to G6, and G01
8 and G10

8 are isomorphic to H6. Since H6 is

isomorphic to G6, G01
8 and G10

8 are also isomorphic to G6. Let J8 be a maximum independent set

of G8. Clearly, |J8| ⩾ |I8| = 16. Also, we use Jab8 to denote the subset {u ∈ J8 | u1u2 = ab}

for (a, b) ∈ Z2
2. Similarly, we can define Iab8 . Since J8 is an independent set of G8, clearly, for

every (a, b) ∈ Z2
2, Jab8 is an independent set of Gab8 . Since Gab8 is isomorphic to G6 and α(G6) = 4,

thus |Jab8 | ⩽ 4. Then |J8| ⩽ 16. Thus, |J8| = 16, and |Jab8 | = 4 for every (a, b) ∈ Z2
2. Since the

maximum independent set of G6 is unique up to an automorphism of G6, which can be extended

to an automorphism of G8 by fixing the first two bits, we may assume that

J00
8 = I008 = {00000000, 00001111, 00110011, 00111100}

after an automorphism of G8.

Then, consider J01
8 . We show that for any u ∈ J01

8 , u3 6= u4, u5 6= u6 and u7 6= u8. Otherwise,

by switching the pair of bits {3, 4} with {5, 6} or {7, 8} (this will not change J00
8 ), we may assume

that u3 = u4. Then wt(u1u2u3u4) is odd. Since wt(u) is even, wt(u5u6u7u8) is odd. Thus, either

u5 = u6 or u7 = u8. Still by switching the pair {5, 6} with {7, 8} (again this will not change

J00
8 ), we may assume that u5 = u6. Then since wt(u5u6u7u8) is odd, we have u7 6= u8. Then,

one can check that there exists some v ∈ J00
8 such that v3v4v5v6 = u3u4u5u6. Since v1 = v2 and

u1 6= u2, wt(u1u2 ⊕ v1v2) = 1. Also since v7 = v8 and u7 6= u8, wt(u7u8 ⊕ v7v8) = 1. Thus,
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wt(u ⊕ v) = wt(u1u2 ⊕ v1v2) + wt(u7u8 ⊕ v7v8) = 2. This means that the vertices u and v are

connected in the graph G8, a contradiction. Thus, for any u ∈ J01
8 , u3 6= u4, u5 6= u6 and u7 6= u8.

By permuting bit 3 with bit 4, bit 5 with bit 6, and bit 7 with bit 8 (this will not change J00
8 ),

we may assume that 01010101 ∈ J01
8 . Consider some other w ∈ J01

8 . Since w2i+1 6= w2i+2 for any

i = 1, 2 or 3, the pair w2i+1w2i+2 = 01 or 10. Among these three pairs, let k denote the number of

pairs that are 01. If k = 3, then w = 01010101. Contraction. If k = 2, then wt(01010101⊕w) = 2.

Contradiction. If k = 0, then w = 01101010. One can check that {01010101, 01101010} is already

a maximal independent set of G01
8 and it has size 2 < 4. Contradiction. Thus, k = 1. Then, w can

take
(
3
1

)
possible values. Thus,

J01
8 ⊆ I018 = {01010101, 01011010, 01100110, 01101001}.

Since, |J01
8 | = 4, J01

8 = I018 .

Consider some u ∈ J10
8 . Similar to the proof of J01

8 , we can show that u3 6= u4, u5 6= u6 and

u7 6= u8. Thus, u can take 23 possible values. Moreover, for any 01u′ ∈ J01
8 , 10u′ /∈ J10

8 . Thus,

there are only four remaining values that u can take. Then,

J10
8 ⊆ I108 = {10010110, 10011001, 10100101, 10101010}.

Since |J10
8 | = 4, J10

8 = I108 .

Finally, consider J11
8 . We show that for any u ∈ J11

8 , u3 = u4, u5 = u6 and u7 = u8. Otherwise,

by permuting the pair of bits {3, 4} with {5, 6} or {7, 8} (one can check that this will not change

J01
8 and J10

8 ), we may assume that u3 6= u4. Since wt(u) is even, between wt(u5u6) and wt(u7u8),

exactly one is even and the other is odd. By permuting the pair of bits {5, 6} with {7, 8}, we may

further assume that u5 6= u6 and u7 = u8. Then, one can check that there exists some v ∈ J01
8 such

that u3u4u5u6 = v3v4v5v6. Since u1 = u2 and v1 6= v2, wt(u1u2 ⊕ v1v2) = 1. Also since u7 = u8

and v7 6= v8, wt(u7u8 ⊕ v7v8) = 1. Thus, wt(u ⊕ v) = wt(u1u2 ⊕ v1v2) + wt(u7u8 ⊕ v7v8) = 2.

Contradiction. Thus, for any u ∈ J11
8 , it can take 23 possible values. Moreover, for any 00u′ ∈ J00

8 ,

we have 11u′ /∈ J11
8 . Thus, there are only four remaining values that u can take. Then,

J11
8 ⊆ I118 = {11000011, 11001100, 11110000, 11111111}.
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Thus, after an automorphism, J8 = I8. In other words, I8 is the unique maximum independent set

of G8 up to an automorphism.

Now, we consider the case 2n ⩾ 10. For every (a, b) ∈ Z2
2, we define Gab2n to be the subgraph of

G2n induced by {u ∈ G2n | u1u2 = ab}, and it is isomorphic to G2n−2. Thus,

α(G2n) ⩽ α(G00
2n) + α(G01

2n) + α(G10
2n) + α(G11

2n) = 4α(G2n−2).

Then, α(G2n−2) < 2(2n−2)−4 will imply that α(G2n) < 22n−4. Thus, in order to prove α(G2n) <

22n−4 for all 2n ⩾ 10, it suffices to prove that α(G10) < 210−4. For a contradiction, suppose

that α(G10) ⩾ 210−4. Let I be a maximum independent set of G10. Then, |I| ⩾ 26. We define

Iab = {u ∈ I | u1u2 = ab} for every (a, b) ∈ Z2. Since Gab10 is isomorphic to G8 and α(G8) = 24,

|Iab| ⩽ 24 for every (a, b) ∈ Z2
2. Then, |I| ⩽ 4 · 24. Thus, |I| = 26 and |Iab| = 24 for every

(a, b) ∈ Z2
2. Since the maximum independent set of G8 is unique up to an automorphism of G8

which can be extended to an automorphism of G10 by fixing the first two bits, we may assume that

I00 = {00u | u ∈ I8}.

Consider I01. Since |I01| 6= 0, there exists some 01v ∈ I01. Since wt(v) is odd, among wt(v3v4),

wt(v5v6), wt(v7v8) and wt(v9v10), there is an odd number (either one or three) of pairs such that

wt(v2i+1v2i+2) (1 ⩽ i ⩽ 4) is odd, i.e., v2i+1 6= v2i+2. In other words, there are exactly three pairs

among v3v4, v5v6, v7v8 and v9v10 such that the values inside each pair are all equal with each other

or all distinct with each other. By permuting these pairs of bits {3, 4}, {5, 6}, {7, 8} and {9, 10}

(this will not change I00), we may assume that either v3 = v4, v5 = v6, v7 = v8 and v9 6= v10,

or v3 6= v4, v5 6= v6, v7 6= v8 and v9 = v10. In both cases, one can check that there exists some

00u ∈ I00 such that ui = vi for i ∈ {3, . . . , 8}. Moreover, u9 = u10 if v9 6= v10, and u9 6= u10 if

v9 = v10. Then, wt(00u ⊕ 01v) = wt(00 ⊕ 01) + wt(u9u10 ⊕ v9v10) = 2. This contradiction proves

that α(G10) < 210−4, and the lemma is proved.

Remark 7.22. We remark that I8 = S (f8). Later, we will see that the signature f8, this Queen

of the Night, and its support S (f8) have even more extraordinary properties.

We consider a particular gadget construction that will be used in our proof. Let h4 be a 4-ary

signature with signature matrixM12,34(h4) = H4 =

[
1 0 0 1
0 1 1 0
0 1 −1 0
1 0 0 −1

]
. Notice that H4H

T
4 = H4H4 = 2I4,
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and h4 is an affine signature. The following is called an H4 gadget construction on f , denoted by
H4
ij f . This is the signature obtained by connecting variables x3 and x4 of h4 with variables xi and

xj of f using =2, respectively. Note that H4
ij f is not necessarily realizable from f since h4 may

not be available. However, we will analyze the structure of f by analyzing H4
ij f . For convenience,

we consider (i, j) = (1, 2) and we use f̃ to denote H4
12 f . The following results (Lemmas 7.23 and

7.24) about f̃ = H4
12 f hold for all H4

ij f by replacing {1, 2} with {i, j}. Note that f̃ has the following

signature matrix

M12(f̃) =


f̃0012
f̃0112
f̃1012
f̃1112

 = H4M12(f) =


f0012 + f1112
f0112 + f1012
f0112 − f1012
f0012 − f1112

 =


∂+12f

∂+̂12f

∂−̂12f

∂−12f

 .

We give the following relations between f and f̃ .

Lemma 7.23. 1. If f has even parity then f̃ also has even parity.

2. If f ∈ A , then f̃ ∈ A .

3. If M(m12f) = λI4 for some real λ 6= 0, then M(m12f̃) = 2λI4.

4. If ∂+12f, ∂−12f, ∂+̂12f, ∂−̂12f ∈ A , then f̃0012 , f̃0112 , f̃1012 , f̃1112 ∈ A .

5. For {u, v} disjoint with {1, 2} and b ∈ B, if ∂buvf ∈ A , then ∂buvf̃ ∈ A .

证明. Since h4 has even parity and h4 ∈ A , the first and second propositions hold.

If M(m12f) = λI4, then M(m12f̃) = M12(f̃)M
T
12(f̃) = H4M12(f)M

T
12(f)H

T
4 = λH4I4H

T
4 =

2λI4. The third proposition holds.

By the matrix form M12(f̃), the fourth proposition holds.

Since the H4 gadget construction only touches variables x1 and x2 of f , it commutes with

merging gadgets on variables other than x1 and x2. Thus ∂bij f̃ = ∂̃bijf . For all b ∈ B and all {i, j}

disjoint with {1, 2}, if ∂bijf ∈ A where ∂bijf are signatures realized by connecting variables xi and

xj of f using b, then ∂bij f̃ = ∂̃bijf ∈ A . The last proposition holds.

Clearly, if f ∈
∫
B A , then f̃0012 , f̃0112 , f̃1012 , f̃1112 ∈ A . Thus, for every (a, b) ∈ Z2

2, if f̃ab12 6≡ 0,

then its nonzero entries have the same norm, denoted by nab. Let nab = 0 if f̃ab12 ≡ 0. We have the
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following results regarding these norms nab.

Lemma 7.24. Let f be an irreducible signature of arity 2n ⩾ 6. Suppose that f has even parity,

f satisfies 2nd-Orth and f ∈
∫
B A .

1. For any (a, b), (c, d) ∈ Z2
2, there exists some k ∈ Z such that nab =

√
2
k
ncd 6= 0, and nab = ncd

iff |S (f̃ab12 )| = |S (f̃ cd12)|.

2. Furthermore, if f̃0012 (⃗02n−2) 6= 0 and n00 > n11, then S (f̃1112 ) = E2n−2
∗ and nab = n11 or

2n11 for every (a, b) ∈ Z2
2; in particular, n00 = 2n11. Symmetrically, if f̃1112 (⃗02n−2) 6= 0 and

n00 < n11, then S (f̃0012 ) = E2n−2 and nab = n00 or 2n00 for every (a, b) ∈ Z2
2, and n11 = 2n00.

证明. Since f satisfies 2nd-Orth, M(m12f) = λI4 for some real λ 6= 0. Then, by Lemma 7.23,

M(m12f̃) = 2λI4 6= 0. Thus, |f̃ab12 |2 = 2λ 6= 0 for every (a, b) ∈ Z2
2. Also, since f ∈

∫
B A , by

Lemma 7.23, for every (a, b) ∈ Z2
2, f̃ab12 ∈ A . Thus, S (f̃ab12 ) is affine and |S (f̃ab12 )| = 2kab for some

integer kab ⩾ 0. Note that

|f̃ab12 |2 = n2ab · |S (f̃ab12 )| = n2ab · 2kab 6= 0.

Thus, for any (a, b), (c, d) ∈ Z2
2, n2ab · 2kab = n2cd · 2kcd 6= 0. Then, nab =

√
2
k
ncd 6= 0 where

k = kcd − kab ∈ Z. Clearly, k = 0 iff |S (f̃ab12 )| = 2kab = 2kcd = |S (f̃ cd12)|.

Now we prove the second part of this lemma. We give the proof for the case that f̃0012 (⃗02n−2) 6= 0

and n00 > n11. The proof of the case that f̃1112 (⃗02n−2) 6= 0 and n00 < n11 is symmetric. We first

show that S (f̃1112 ) = E2n−2. For a contradiction, suppose that S (f̃1112 ) 6= E2n−2. Since f has even

parity, by Lemma 7.23, f̃ has even parity. Then, f̃1112 also has even parity. Thus, S (f̃1112 ) ( E2n−2.

There exists θ ∈ E2n−2 such that θ /∈ S (f̃1112 ). Also, since n11 6= 0, f̃1112 6≡ 0. Then, S (f̃1112 ) 6= ∅

and there exists δ ∈ E2n−2 such that δ ∈ S (f̃1112 ). Then, we can find a pair α, β ∈ E2n−2 where

wt(α⊕ β) = 2 such that one is in S (f̃1112 ) and the other one is not in S (f̃1112 ).

• If wt(α) 6= wt(β), then clearly the difference between their Hamming weights is 2 since

wt(α⊕β) = 2. Thus, α and β differ in two bits i, j on which one takes value 00 and the other

takes value 11.
∗Here, E2n−2 = {(x3, . . . , x8) ∈ Z6

2 | x3 + · · ·+ x8 = 0}. When context is clear, we do not specify the variables of
E2n−2 and also O2n−2.



156

• If wt(α) = wt(β), then they differ in two bits i, j on which one takes value 01 and the other

takes value 10. Without loss of generality, we assume that αiαj = 01 and βiβj = 10. They

take the same value on other bits. Since α, β ∈ E2n−2 and 2n ⩾ 6, they have even Hamming

weight and length at least 4. Thus, there is another bit k such that on this bit, αk = βk = 1.

Consider γ ∈ E2n−2 where γiγjγk = 000 and γ takes the same value as α and β on other bits.

Clearly, wt(γ) + 2 = wt(α) = wt(β). If γ ∈ S (f̃1112 ), then between α and β, we pick the one

that is not in S (f̃1112 ). Otherwise, we pick the one that is in S (f̃1112 ). In both cases, we can

get a pair of inputs in E2n−2 such that one is in S (f̃1112 ) and the other is not in S (f̃1112 ), and

they have Hamming distance 2 as well as different Hamming weights.

Thus, we can always find a pair α, β ∈ E2n−2 where wt(α ⊕ β) = 2 and α, β differ in two bits

i, j on which one takes value 00 and the other takes value 11, such that one is in S (f̃1112 ) and the

other is not in S (f̃1112 ). Clearly, {i, j} is disjoint with {1, 2}.

Consider signatures ∂+ij f̃ and ∂−ij f̃ . Then, f̃(11α) + f̃(11β) is an entry of ∂+ij f̃ , and f̃(11α) −

f̃(11β) is an entry of ∂−ij f̃ . Since between f̃(11α) and f̃(11β), exactly one is nonzero and it has

norm n11, we have

|f̃(11α) + f̃(11β)| = |f̃(11α)− f̃(11β)| = n11.

Thus, both ∂+ij f̃ and ∂−ij f̃ have an entry with norm n11. Let δ ∈ E2n where δiδj = 11 and δ takes

value 0 on other bits. Then, clearly, f̃ (⃗02n)+ f̃(δ) is an entry of ∂+ij f̃ , and f̃ (⃗02n)− f̃(δ) is an entry

of ∂−ij f̃ .

• If f̃(δ) 6= 0, then |f̃(δ)| = n00 since δ1δ2 = 00. Since f̃ (⃗02n) 6= 0, |f̃ (⃗02n)| = n00. Thus,

between f̃ (⃗02n)+ f̃(δ) and f̃ (⃗02n)− f̃(δ), one has norm 2n00 and the other is zero. Therefore,

between ∂+ij f̃ and ∂−ij f̃ , one signature has an entry with norm 2n00. Remember that both

∂+ij f̃ and ∂−ij f̃ have an entry with norm n11. Clearly, 2n00 > n11. Thus, between ∂+ij f̃ and

∂−ij f̃ , there is a signature that has two entries with different norms. Clearly, such a signature

is not in A . However, since f ∈
∫
B A , by Lemma 7.23, ∂+ij f̃ , ∂

−
ij f̃ ∈ A . Contradiction.

• If f̃(δ) = 0, then |f̃ (⃗02n) + f̃(δ)| = |f̃ (⃗02n)| = n00 > n11. Thus, ∂+ij f̃ has two nonzero entries

with different norms n00 and n11. Then, ∂+ij f̃ /∈ A . Contradiction.

Thus, S (f̃1112 ) = E2n−2.



157

Then, we show that nab = n11 or 2n11 for any (a, b) ∈ Z2
2. Clearly, we may assume that (a, b) 6=

(1, 1). For a contradiction, suppose that nab 6= n11 and 2n11. First, we show that |S (f̃ab12 )| < 22n−3

and nab > n11. Since f has parity, f̃ab12 also has parity (either even or odd depending on whether

wt(ab) = 0 or 1). Thus |S (f̃ab12 )| ⩽ |E2n−2| = |O2n−2| = 22n−3. If the equality holds, then nab = n11

since n2ab|S (f̃ab12 )| = n211|S (f̃1112 )| and |S (f̃1112 )| = 22n−3. Contradiction. Thus, |S (f̃ab12 )| < 22n−3

and also nab > n11.

Depending on whether fab12 has even parity or odd parity, we can pick a pair of inputs α, β

with wt(α ⊕ β) = 2 from E2n−2 or O2n−2 such that exactly one is in S (fab12 ) and the other is not

in S (fab12 ). Suppose that α and β differ in bits i, j. Depending on whether αi = αj or αi 6= αj , we

can connect variables xi and xj of f̃ using =+
2 and =−

2 , or 6=+
2 and 6=−

2 . We will get two signatures

∂+ij f̃ and ∂−ij f̃ , or ∂
+̂
ij f̃ and ∂−̂ij f̃ . We consider the case that αi = αj . For the case that αi 6= αj , the

analysis is the same by replacing ∂+ij f̃ and ∂−ij f̃ with ∂+̂ij f̃ and ∂−̂ij f̃ respectively.

Consider signatures ∂+ij f̃ and ∂−ij f̃ . Then, f̃(abα) + f̃(abβ) is an entry of ∂+ij f̃ , and f̃(abα) −

f̃(abβ) is an entry of ∂−ij f̃ . Since between α and β, exactly one is in S (fab12 ), between f̃(abα) and

f̃(abβ), exactly one is nonzero and it has norm nab. Thus,

|f̃(abα) + f̃(abβ)| = |f̃(abα)− f̃(abβ)| = nab.

Both ∂+ij f̃ and ∂−ij f̃ have an entry with norm nab.

Let α′, β′ ∈ E2n−2 where α′
iα

′
j = αiαj , α′

k = α′
i ⊕ α′

j for some k 6= i, j∗ and α′ takes value

0 on other bits, and β′iβ
′
j = βiβj , β′k = β′i ⊕ β′j for the same k 6= i, j and β′ takes value 0 on

other bits. Clearly, α′ and β′ differ in bits i and j and they differ in the same way as α and

β. Then, f̃(11α′) + f̃(11β′) is an entry of ∂+ij f̃ , and f̃(11α′) − f̃(11β′) is an entry of ∂−ij f̃ . Since

S (f̃1112 ) = E2n−2, both f̃(11α′) and f̃(11β′) are nonzero and they have norm n11. Thus, between

f̃(11α′) + f̃(11β′) and f̃(11α′) − f̃(11β′), exactly one is zero and the other has norm 2n11. Thus,

between signatures ∂ij f̃ and ∂−ij f̃ , there is a signature that has two entries with different norms 2n11
and nab. Such a signature is not in A . However, since f ∈

∫
B A , by Lemma 7.23, ∂ij f̃ , ∂−ij f̃ ∈ A .

Contradiction. Thus, nab = n11 or 2n11 for any (a, b) ∈ Z2
2.

∗Since 2n − 2 ⩾ 4, such a k exists. Here, α′
k = 0 since αi = αj in this case under discussion. For the case that

αi ̸= αj , we have α′
k = 1.



158

We also give the following results about multilinear polynomials F (x1, . . . , xn) ∈ Z2[x1, . . . , xn].

We use d(F ) to denote the total degree of F . For {i, j} ⊆ {1, . . . , n} = [n], we use F abij ∈

Z2[{x1, . . . , xn}\{xi, xj}] to denote the polynomial obtained by setting (xi, xj) = (a, b) in F .

Definition 7.25. Let F (x1, . . . , xn) ∈ Z2[x1, . . . , xn] be a multilinear polynomial. We say F is a

complete quadratic polynomial if d(F ) = 2 and for all {i, j} ⊆ [n], the quadratic term xixj appears

in F . We say F is a complete cubic polynomial if d(F ) = 3 and for all {i, j, k} ⊆ [n], the cubic

term xixjxk appears in F .

Lemma 7.26. Let F (x1, . . . , xn) ∈ Z2[x1, . . . , xn] be a multilinear polynomial.

1. If for all {i, j} ⊆ [n], F 00
ij +F 11

ij ≡ 0 or 1, and F 01
ij +F 10

ij ≡ 0 or 1, then d(F ) ⩽ 2. Moreover,

if d(F ) = 2, then F is a complete quadratic polynomial.

2. If for all {i, j} ⊆ [n], d(F 00
ij + F 11

ij ) ⩽ 1, and d(F 01
ij + F 10

ij ) ⩽ 1, then d(F ) ⩽ 3. Moreover, if

d(F ) = 3, then F is a complete cubic polynomial.

证明. We prove the first part. The proof for the second part is similar which we omit here.

For all {i, j} ⊆ [n], we write F ∈ Z2[x1, . . . , xn] as a polynomial of variables xi and xj .

F = Xijxixj + Yijxi + Zijxj +Wij

where Xij , Yij , Zij ,Wij ∈ Z2[{x3, . . . , xn}\{xi, xj}]. Then,

F 00
ij =Wij and F 11

ij = Xij + Yij + Zij +Wij .

Thus, Xij + Yij + Zij = F 00
ij + F 11

ij ≡ 0 or 1. Also,

F 01
ij = Zij +Wij and F 10

ij = Yij +Wij .

Thus, Yij + Zij = F 01
ij + F 10

ij ≡ 0 or 1. Then, Xij ≡ 0 or 1 for all {i, j}. Thus, d(F ) ⩽ 2.

Suppose that d(F ) = 2. then F has at least a quadratic term xuxv (u 6= v). Without loss of

generality, we assume that the term x1x2 appears in F . We first show that for all 2 ⩽ j ⩽ n, the

quadratic term x1xj appears in F . Since x1x2 is already in F , we may assume that 3 ⩽ j. We
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write F as a polynomial of variables x2 and xj .

F = X2jx2xj + Y2jx2 + Z2jxj +W2j ,

where X2j , Y2j , Z2j ,W2j do not involve x2 and xj . Since x1x2 appears in F , x1 appears in Y2j . As

we have proved above, Y2j + Z2j ≡ 0 or 1. Thus, x1 also appears in Z2j , which means that x1xj
appears in F . Then, for all 2 ⩽ j ⩽ n, x1xj appears in F .

Then, for all 2 ⩽ i < j ⩽ n, we write F as a polynomial of variables x1 and xi.

F = X1ix1xi + Y1ix1 + Z1ixi +W1i,

where X1i, Y1i, Z1i,W1i do not involve x1 and xi. Since x1xj appears in F , xj appears in Y1i. Since

Y1i + Z1i ≡ 0 or 1, xj also appears in Z1i. Thus, xixj appears in F . Then, for all 2 ⩽ i < j ⩽ n,

the quadratic term xixj appears in F . Thus, for all {i, j} ⊆ [n], xixj appears in F .

Now, we are ready to take a major step towards Theorem 7.38.

Lemma 7.27. Suppose that F is a set of real-valued signatures of even arity and F does not satisfy

condition (T). If F contains an irreducible 2n-ary signature f with parity where 2n ⩾ 8, then

• Holantb(F) is #P-hard, or

• there is a signature g /∈ A of arity 2k < 2n that is realizable from f and B, or

• after normalization, f(α) = ±1 for all α ∈ S (f).

证明. Since f is irreducible, we may assume that it satisfies 2nd-Orth. Otherwise, we get #P-

hardness by Lemma 6.6. Also, we may assume that f ∈
∫
B A . Otherwise, we can realize a signature

of arity 2n− 2 that is not in A by merging f using some b ∈ B.

For any four entries x, y, z, w of f on inputs α, β, γ, δ ∈ Z2n
2 written in the form of a 2-by-2

matrix [ x y
z w ] =

[
f(α) f(β)
f(γ) f(δ)

]
, we say that such a matrix is a distance-2 square if there exist four bits

i, j, k, ℓ such that αiαj = βiβj = γiγj = δiδj , αkαℓ = γkγℓ = βkβℓ = δkδℓ and α, β, γ and δ take the

same values on other bits. An equivalent description is that

δ = α⊕ β ⊕ γ, wt(α⊕ β) = 2, wt(α⊕ γ) = 2 and wt(α⊕ δ) = 4. (7.12)
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Indeed (7.12) is clearly satisfied by any distance-2 square. Conversely, suppose (7.12) holds. If we

flip any bit i in all α, β, γ and δ, both (7.12) and the bitwise description are invariant, and thus we

may assume α = 0⃗2n. By wt(α⊕ γ) = 2, there exist two bits i, j such that γiγj = 11, and γ takes

0 on other bits. By wt(α⊕ β) = 2, there exits two bits k, ℓ such that βkβℓ = 11, and β takes 0 on

other bits. Since δ = α⊕ β⊕ γ, wt(β⊕ γ) = wt(α⊕ δ) = 4. Thus, the bits i, j, k, ℓ are distinct four

bits. Then, δiδjδkδℓ = 1111 and δ takes 0 on other bits. Thus, α, β, γ and δ satisfy the bitwise

description of distance-2 squares.

We give an example of such a distance-2 square. Let

x y

z w

 =

f(α) f(β)

f(γ) f(δ)

 =

f(0001θ) f(0010θ)

f(1101θ) f(1110θ)


where θ ∈ Z2n−4

2 is an arbitrary binary string of length 2n− 4. In this example, (i, j) = (1, 2) and

(k, ℓ) = (3, 4). We show next that such a distance-2 square [ x y
z w ] has the property described in

(7.13) ∼ (7.16).

By connecting variables x1 and x2 of f using =+
2 and =−

2 respectively, we get signatures ∂+12f

and ∂−12f . By our assumption, ∂+12f and ∂−12f are affine signatures. Note that, x+ z and y +w are

entries of ∂+12f on inputs 01θ and 10θ ∈ Z2n−2
2 . Since ∂+12f ∈ A , if x+z and y+w are both nonzero,

then they have the same norm. Thus, we have (x+ z)(y+w) = 0 or (x+ z)2 = (y+w)2. Similarly,

x− z and y−w are entries of ∂−12f ∈ A . Thus, we have (x− z)(y−w) = 0 or (x− z)2 = (y−w)2.

Also, by connecting variables x3 and x4 of f using 6=2 and 6=−
2 respectively, we get signatures

∂+̂34f and ∂−̂34f that are affine signatures. Note that, x+ y and z + w are entries of ∂+̂34f on inputs

00θ and 11θ. Since ∂+̂34f ∈ A , we have (x+ y)(z + w) = 0 or (x+ y)2 = (z + w)2. Similarly, x− y

and z − w are entries of ∂̂−34f . Then, we have (x− y)(z − w) = 0 or (x− y)2 = (z − w)2.

Now, consider an arbitrary distance-2 square [ x y
z w ] =

[
f(α) f(β)
f(γ) f(δ)

]
. Depending on whether

αi = αj or αi 6= αj , we can use =+
2 and =−

2 , or 6=+
2 and 6=−

2 respectively, to connect variables xi
and xj of f to produce two signatures ∂+ijf and ∂−ijf , or ∂

+̂
ijf and ∂−̂ijf in either case, such that

x± z and y±w are both entries of the resulting two signatures. Since the two resulting signatures

are in affine, we have

(x+ z)(y + w) = 0 or (x+ z)2 = (y + w)2, (7.13)
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and

(x− z)(y − w) = 0 or (x− z)2 = (y − w)2. (7.14)

Similarly, by connecting variables xk and xℓ of f using either =±
2 or 6=±

2 , we have

(x+ y)(z + w) = 0 or (x+ y)2 = (z + w)2 (7.15)

and

(x− y)(z − w) = 0 or (x− y)2 = (z − w)2. (7.16)

Now, we show that by solving equations (7.13) ∼ (7.16), every distance-2 square has one of

the following forms (after normalization, row or column permutation, multiplying a −1 scalar of

one row or one column, and taking transpose)

0 0

0 0

 ,
1 0

0 0

 ,
1 1

0 0

 ,
1 0

0 1

 ,
1 1

1 1

 ,
1 1

1 −1

 ,
︸ ︷︷ ︸

type I

1 a

a 1

 (a > 1),

︸ ︷︷ ︸
type II

or

1 1

3 −1


︸ ︷︷ ︸

type III

.

We say that the first six forms are type I, and the other two are type II and type III respectively.

These forms listed above are canonical forms of each type.

Let [ x y
z w ] be a distance-2 square. Consider

p = (x+ y)(z + w)(x+ z)(y + w)(x− y)(z − w)(x− z)(y − w).

• If p = 0, then among its eight factors (four sums and four differences), at least one factor is

zero. By taking transpose and row permutation, we may assume that x+ y = 0 or x− y = 0.

If x + y = 0, then by multiplying the column [ yw ] with −1, we can modify this distance-2

square to get x− y = 0. Thus, we may assume that x− y = 0. If x = y = 0, then by (7.13),

we have z = 0 or w = 0, or z = ±w. Thus, after normalizing operations of row and column

permutation and multiplication by −1, we reach the following canonical forms [ 0 0
0 0 ], [ 1 0

0 0 ] or

[ 1 1
0 0 ] . Otherwise, x = y 6= 0. Consider q = (x+ z)(y + w)(x− z)(y − w).

– If q = 0, then among its four factors (two sums and two differences), at least one is zero.
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By column permutation on the matrix [ x y
z w ] and multiplying the row (z, w) with −1

(which does not change the values of x and y), we may assume that x − z = 0. Thus,

x = y = z 6= 0. We normalize their values to 1. Then by (7.13), 1+w = 0 or 1+w = ±2.

Thus, w = −1, 1 or −3. If w = ±1, then [ x y
z w ] has the canonical form [ 1 1

1 1 ] or
[
1 1
1 −1

]
. If

w = −3, then [ x y
z w ] =

[
1 1
1 −3

]
which has the canonical form

[
1 1
3 −1

]
(Type III).

– If q 6= 0, then (x + z)(y + w) 6= 0 and (x − z)(y − w) 6= 0. By equations (7.13) and

(7.14), (x + z)2 = (y + w)2 and (x − z)2 = (y − w)2. Thus, xz = yw. Since x = y 6= 0,

z = w. If z = w = 0, then this gives the canonical form [ 1 1
0 0 ]. Otherwise, z = w 6= 0.

Then z + w 6= 0 and hence by (7.15), z + w = ±(x+ y). Since z = w and x = y, we get

z = ±x. Thus, x+ z = 0 or x− z = 0. Contradiction.

• If p 6= 0, then all its eight factors are nonzero. Thus by (7.13) ∼ (7.16), (x+ z)2 = (y + w)2,

(x− z)2 = (y−w)2, (x+ y)2 = (z+w)2 and (x− y)2 = (z−w)2. By solving these equations,

we have x2 = w2, y2 = z2, and xy = zw. If x = y = z = w = 0, then it gives the canonical

form [ 0 0
0 0 ]. Otherwise, by permuting rows and columns, we may assume that x 6= 0 and |x|

is the smallest among the norms of nonzero entries in [ x y
z w ]. We normalize x to 1. Since

x2 = w2, we get w = ±1. By multiplying the row (z, w) with −1 (which does not change

xy = zw), we may assume that w = 1. Then, xy = zw implies that y = z. If y = z = 0,

then [ x y
z w ] has the canonical form [ 1 0

0 1 ]. Otherwise, since |x| = 1 is the smallest norm among

nonzero entries, y = z = ±a where a ⩾ 1. If a = 1 (i.e., y = z = ±1), then [ x y
z w ] has the

canonical form [ 1 1
1 1 ]. If a > 1, then [ x y

z w ] has the canonical form of Type II.

Thus, every distance-2 square has a canonical form of Type I, II or III.

Note that given a particular distance-2 square of f , by normalization, and renaming or flipping

or negating variables of f , we can always modify this distance-2 square to get its canonical form.

Clearly, for signatures of arity at least 4, distance-2 squares exist. We consider the following two

cases according to which types of distance-2 squares appear in f .

Case 1. All distance-2 squares in f are of type I.

We show that (after normalization) f(α) = ±1 for all α ∈ S (f). Since f 6≡ 0, it has at least

one nonzero entry. By normalization, we may assume that 1 is the smallest norm of all nonzero
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entries of f . Then by flipping variables of f , we may assume that f (⃗02n) = 1. For a contradiction,

suppose that there is some β ∈ S (f) such that f(β) 6= ±1. Then by our assumption that 1 is

the smallest norm and |f(β)| 6= 1, we have |f(β)| > 1. Also, since f has parity and 0⃗2n ∈ S (f),

f has even parity. Thus, wt(β) ≡ 0 (mod 2). By renaming variables of f , we may assume that

β = 1⃗2m0⃗2n−2m, for some m ⩾ 1. (This does not affect the normalization f (⃗02n) = 1). Then, we

show that for all α = δ0⃗2n−2m where δ ∈ Z2m
2 , f(α) = ±1. We prove this by induction on wt(δ).

This will lead to a contradiction when wt(δ) = 2m, since |f(β)| = |f (⃗12m0⃗2n−2m)| 6= 1.

Since f (⃗02n) = 1, we may assume wt(δ) ⩾ 2. We first consider the base case that wt(δ) = 2.

By renaming the first 2m variables, without loss of generality, we may assume that δ = 11⃗02m−2

and then α = 11⃗02n−2 = 1100⃗02n−4. This renaming will not change β. Consider the following

distance-2 square x y

z w

 =

f(0000⃗02n−4) f(1100⃗02n−4)

f(0011⃗02n−4) f(1111⃗02n−4)

 .
Recall our assumption that every distance-2 square is of type I. Here x = f (⃗02n), and y = f(α).

Since x = 1, [ x y
z w ] being of type I implies that y = 0 or ±1 (the normalization steps include possibly

multiplying a row or a column by −1). We want to show that |y| = 1; for a contradiction, suppose

that y = 0. We consider the following two extra entries of f , where δ = 00⃗12m−2.

x′ = f(δ0⃗2n−2m) = f(00⃗12m−20⃗2n−2m) and y′ = f(β) = f(11⃗12m−20⃗2n−2m).

By connecting variables x1 and x2 of f using =2 and =−
2 , we get signatures ∂12f and ∂−12f re-

spectively. Note that both x + y and x′ + y′ are entries of ∂12f . Since ∂12f ∈ A , we have

(x+ y)(x′ + y′) = 0 or (x+ y)2 = (x′ + y′)2. We can also consider ∂−12f and get (x− y)(x′ − y′) = 0

or (x− y)2 = (x′ − y′)2. Since x = 1 and y = 0, we have

[
x′ + y′ = 0 or (x′ + y′)2 = 1

]
and

[
x′ − y′ = 0 or (x′ − y′)2 = 1

]
.

Recall that |y′| = |f(β)| > 1. Clearly x′ + y′ = 0 and x′ − y′ = 0 cannot be both true, otherwise

y′ = 0. Suppose one of them is true, then x′ = ±y′. And at least one of (x′+y′)2 = 1 or (x′−y′)2 = 1

holds. So either |x′ + y′| = 1 or |x′ − y′| = 1. Substituting x′ = ±y′ we reach a contradiction to
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|y′| > 1. So neither x′ + y′ = 0 nor x′ − y′ = 0 holds. Then (x′ + y′)2 = 1 and (x′ − y′)2 = 1.

Subtracting them, we get x′y′ = 0, and since y′ 6= 0, we get x′ = 0. But then this contradicts

|y′| > 1 and (x′ + y′)2 = 1. Therefore, y 6= 0. Then, y = ±1. Thus, y = f(δ0⃗2n−2m) = ±1 for all δ

with wt(δ) = 2.

If 2m = 2, then the induction is finished. Otherwise, 2m > 2. Inductively for some 2k ⩾ 2,

we assume that f(θ0⃗2n−2m) = ±1 for all θ ∈ Z2m
2 with wt(θ) ⩽ 2k < 2m. Let δ be such that

wt(δ) = 2k + 2 ⩽ 2m and we show that f(δ0⃗2n−2m) = ±1. Since wt(δ) = 2k + 2 ⩾ 4, we can

find four bits of δ such that the values of δ are 1 on these four bits. Without loss of generality, we

assume that they are the first four bits, i.e. δ = 1111δ′ where δ′ ∈ Z2m−4
2 . Consider the following

distance-2 square x y

z w

 =

f(0000δ′0⃗2n−2m) f(0011δ′0⃗2n−2m)

f(1100δ′0⃗2n−2m) f(1111δ′0⃗2n−2m)

 .
Clearly, three entries in this distance-2 square have input strings of weight at most 2k, namely

wt(0000δ′0⃗2n−2m) = 2k − 2, and wt(0011δ′0⃗2n−2m) = wt(1100δ′0⃗2n−2m) = 2k. By our induction

hypothesis, x, y, z ∈ {1,−1}. Then, since the distance-2 square [ x y
z w ] is of type I, we have w =

f(δ0⃗2n−2m) = ±1. The induction is complete. This finishes the proof of Case 1.

Case 2. There is a type II or type III distance-2 square in f .

This is the case where signatures g8 and g′8 appear. We handle this case in two steps.

Step 1. We show that after flipping variables of f , S (f) = E2n, and after normalization

f(α) = ±1 or ±3 for all α ∈ S (f). Let S3(f) = {α ∈ S (f) | f(α) = ±3}. We also show that

|S3(f)| = 22n−4 = 1
8 |S (f)|, and for any distinct α, β ∈ S3(f), wt(α⊕ β) ⩾ 4.

We first consider the case that there is a Type II distance-2 square in f . We show that the

only possible Type II distance-2 square in f has the canonical form [ 1 3
3 1 ]. Suppose that a distance-2

square of Type II appears in f . By flipping and negating variables, we modify f such that this

distance-2 square is in its canonical form [ 1 aa 1 ] (a > 1). Also, by flipping variables and renaming

variables, we may assume that this distance-2 square appears on inputs α, β, γ and δ where

f(α) f(β)

f(γ) f(δ)

 =

f(0000⃗02n−4) f(0011⃗02n−4)

f(1100⃗02n−4) f(1111⃗02n−4)

 =

1 a

a 1

 .
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Then, we consider the entries of f̃ on inputs α, β, γ and δ. We have

f̃(α) f̃(β)

f̃(γ) f̃(δ)

 =

f(α) + f(γ) f(β) + f(δ)

f(α)− f(γ) f(β)− f(δ)

 =

1 + a 1 + a

1− a a− 1

 .
Since a > 1, clearly 1 + a 6= 0, 1− a 6= 0 and |1 + a| > |1− a|. Since f has parity and f (⃗02n) = 1,

f has even parity. By Lemma 7.24(2), S (f̃1112 ) = E2n−2 and |1 + a| = 2|1 − a|. Since a > 1, we

have 1+ a = 2(a− 1). Then, a = 3. Thus, the only possible Type II distance-2 square in f has the

canonical form [ 1 3
3 1 ].

Under the assumption that a Type II distance-2 square appears in f and
[
f(α) f(β)
f(γ) f(δ)

]
= [ 1 3

3 1 ], we

have
[
f̃(α) f̃(β)

f̃(γ) f̃(δ)

]
=
[

4 4
−2 2

]
. As showed above, by Lemma 7.24(2), S (f̃1112 ) = E2n−2 and n01, n10 = 2

or 4. We first prove

Claim 1. S (f0012 ) = S (f1112 ) = E2n−2, f0012 (θ), f1112 (θ) = ±3 or ±1 for all θ ∈ E2n−2, and

|S3(f
00
12 )|+ |S3(f

11
12 )| = 22n−5.

Remember that f̃0012 , f̃1112 ∈ A . For any of them, its nonzero entries have the same norm. Since

f̃(α) = f̃(00⃗02n−2) = 1 + 3 = 4 and S (f̃0012 ) ⊆ E2n−2, for every θ ∈ E2n−2, f̃(00θ) = ±4 or 0. Also,

since f̃(γ) = f̃(11⃗02n−2) = 1 − 3 = −2, and S (f̃1112 ) = E2n−2, for every θ ∈ E2n−2, f̃(11θ) = ±2.

Then,

f(00θ) =
f̃(00θ) + f̃(11θ)

2
=

(±4) + (±2)

2
or 0 + (±2)

2
.

Thus, f(00θ) = ±3 or ±1 for every θ ∈ E2n−2. Also,

f(11θ) =
f̃(00θ)− f̃(11θ)

2
=

(±4)− (±2)

2
or 0− (±2)

2
.

Thus, f(11θ) = ±3 or ±1 for every θ ∈ E2n−2. Additionally note that, for any θ ∈ E2n−2 if

f̃(00θ) = ±4, then of the two values f(00θ) and f(11θ), exactly one is ±3 and the other one is ±1;

if f̃(00θ) = 0, then f(00θ) = ±1 and f(11θ) = ±1. Since

|f̃0012 |2 = 42 · |S (f̃0012 )| = |f̃1112 |2 = 22 · |S (f̃1112 )| = 22 · |E2n−2|,

we have |S (f̃0012 )| = |E2n−2|/4 = 22n−5. Thus, there are exactly 22n−5 entries of f̃0012 having value



166

±4, which give arise to exactly 22n−5 many entries of value ±3 among all entries of f0012 and f1112 .

Claim 1 has been proved.

Next, we prove

Claim 2. S (f0112 ) = S (f1012 ) = O2n−2, f0112 (θ), f1012 (θ) = ±3 or ±1 for all θ ∈ O2n−2,

and |S3(f
01
12 )|+ |S3(f

10
12 )| = 22n−5.

We have f̃ (⃗02n) = 4. We have n00 = 4 and n11 = 2. Also recall that we have showed that

n01, n10 = 2 or 4, by Lemma 7.24(2). There are three cases.

• n01 = n10 = 2. Since n11 = n01 = 2 and

|f̃1112 |2 = n211 · |S (f̃1112 )| = n201 · |S (f̃0112 )| = |f̃0112 |2,

we have

|S (f̃0112 )| = |S (f̃1112 )| = |E2n−2| = 22n−3.

Since f̃ has even parity, S (f̃0112 ) ⊆ O2n−2. As |O2n−2| = 22n−3, we get S (f̃0112 ) = O2n−2.

Similarly, we can show that S (f̃1012 ) = O2n−2. Let ζ = 0110⃗02n−4 and η = 1010⃗02n−4. Then,

f̃(ζ) = ±2 and f̃(η) = ±2. Note that

f(ζ) =
f̃(ζ) + f̃(η)

2
and f(η) =

f̃(ζ)− f̃(η)

2
.

If f̃(ζ) = f̃(η), then f(ζ) = ±2 and f(η) = 0. If f̃(ζ) = −f̃(η), then f(ζ) = 0 and f(η) = ±2.

We first consider the case that f(ζ) = ±2. Let ξ = 1001⃗02n−4. Consider the following

distance-2 square.

f(α) f(ζ)

f(ξ) f(δ)

 =

f(0000⃗02n−4) f(0110⃗02n−4)

f(1001⃗02n−4) f(1111⃗02n−4)

 =

1 ±2

∗ 1

 .
Clearly, it is not of type I nor type III. Also, it is not of type II with the canonical form [ 1 3

3 1 ].

Contradiction. If f(η) = ±2, then similarly by considering the distance-2 square
[
f(α) f(η)
f(τ) f(δ)

]
where τ = 0101⃗02n−4, we get a contradiction.
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• n01 = n10 = 4. We still consider

f(ζ) =
f̃(ζ) + f̃(η)

2
and f(η) =

f̃(ζ)− f̃(η)

2
, where ζ = 0110⃗02n−4 and η = 1010⃗02n−4.

Then, as ζ has leading bits 01 and η has leading bits 10,

f(ζ) =
(±4) + (±4)

2
,
(±4) + 0

2
or 0 + 0

2
and f(η) =

(±4)− (±4)

2
,±(±4)− 0

2
or 0− 0

2
.

Thus, f(ζ), f(η) = ±4,±2 or 0. If f(ζ) or f(η) = ±4,±2 , then by considering the distance-2

square
[
f(α) f(ζ)
f(ξ) f(δ)

]
or
[
f(α) f(η)
f(τ) f(δ)

]
, we still get a contradiction. Thus we have f(ζ) = f(η) = 0.

Then, consider the signature H4
23 f , denoted by f̃ ′. Since f has even parity, f satisfies 2nd-

Orth and f ∈
∫
B A , f̃ ′ has even parity, f̃ ′0023, f̃ ′

01

23, f̃
′10
23, f̃

′11
23 ∈ A . Let n′00, n′01, n′10 and n′11

denote the norms of nonzero entries in f̃ ′0023, f̃ ′
01

23, f̃
′10
23, and f̃ ′

11

23 respectively. Notice that

f̃ ′(α) = f̃ ′(⃗02n) = f(0000⃗02n−4) + f(0110⃗02n−4) = f(α) + f(ζ) = 1 + 0 = 1.

Thus, n′00 = 1. Also, notice that

f̃ ′(γ) = f̃ ′(1100⃗02n−4) = f(1010⃗02n−4)− f(1100⃗02n−4) = f(η)− f(γ) = 0− 3 = −3.

Thus, n′10 = 3. But by Lemma 7.24(1), n′00 =
√
2
k
n′10 for some k ∈ Z. However, clearly,

3 6=
√
2
k for any k ∈ Z. Contradiction.

• Therefore exactly one of n01 and n10 is 2 and the other is 4. Let (a, b) = (0, 1) or (1, 0) be

such that nab = 2. Since n11 = 2 and |S (f̃1112 )| = |E2n−2|=22n−3, we have |S (f̃ab12 )| = 22n−3.

Since f̃ has even parity, f̃ab12 has odd parity, thus S (f̃ab12 ) = O2n−2. Then, similar to the proof

of f0012 and f1112 , we can show that for every θ ∈ O2n−2, f0112 (θ), f1012 (θ) = ±3 or ±1. Also,

among f0112 and f1012 , exactly 22n−5 many entries are ±3.

This completes the proof of Claim 2.

Thus, combining Claim 1 and Claim 2, S (f) = E2n, f(α) = ±1 or ±3 for all α ∈ S (f), and

|S3(f)| = 22n−4 = 1
8 |S (f)|. Also remember that by our assumption, f (⃗02n) = 1.

Now, we show that for any distinct α, β ∈ S3(f), wt(α⊕ β) ⩾ 4. For a contradiction, suppose
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that α, β ∈ S3(f) and wt(α ⊕ β) = 2, and they differ at bits i and j. By renaming variables,

without loss of generality, we may assume that {i, j} = {1, 2}. This renaming does not change

the value of f (⃗02n) = 1. Since f(11⃗02n−2) = ±1 or ±3, of the values f(00⃗02n−2) + f(11⃗02n−2)

and f(00⃗02n−2) − f(11⃗02n−2), which are respectively an entry of f̃0012 and an entry of f̃1112 , at least

one has norm 2. Thus, among n00 and n11, at least one is 2. Since f(α) = ±3 and f(β) = ±3,

among f(α) + f(β) and f(α) − f(β), exactly one has norm 6 and the other has norm 0. Clearly,

f(α)+ f(β) and f(α)− f(β) are entries of f̃ since α and β differ at bits 1 and 2. Thus, among n00,

n01, n10 and n11, one has norm 6. By Lemma 7.24(1), 2 =
√
2
k · 6 for some k ∈ N. Contradiction.

This proves that for any distinct α, β ∈ S3(f), wt(α⊕ β) ⩾ 4.

We have established the goal laid out in Step 1 of Case 2 under the assumption that there is

a Type II distance-2 square in f .

Finally, within Step 1 of Case 2, we consider the case that a type III distance-2 square appears

in f . By flipping and negating variables, we modify f such that this distance-2 square is in its

canonical form
[
1 3
1 −1

]
. Also, by flipping variables and renaming variables, still we may assume that

this distance-2 square appears on inputs α, β, γ and δ where

f(α) f(β)

f(γ) f(δ)

 =

f(0000⃗02n−4) f(0011⃗02n−4)

f(1100⃗02n−4) f(1111⃗02n−4)

 =

1 1

3 −1

 .
Then, we consider the entries of f̃ on inputs α, β, γ and δ. We have

f̃(α) f̃(β)

f̃(γ) f̃(δ)

 =

f(α) + f(γ) f(β) + f(δ)

f(α)− f(γ) f(β)− f(δ)

 =

 4 0

−2 2

 .
Then exactly in the same way as the above proof when

[
f̃(α) f̃(β)

f̃(γ) f̃(δ)

]
=
[

4 4
−2 2

]
, we can show that

the same result holds. Thus, S (f) = E2n, f(α) = ±1 or ±3 for all α ∈ S (f), |S3(f)| = 22n−4 =

1
8 |S (f)|, and for any distinct α, β ∈ S (f) with wt(α⊕ β) = 2, α and β cannot be both in S3(f).

This finishes the proof of Step 1 of Case 2.

Step 2. Now we show that either g8 or g′8 is realizable from f . We will show that they are

both irreducible and do not satisfy 2nd-Orth, which gives #P-hardness.
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We define a graph G2n with vertex set E2n, and there is an edge between α and β if wt(α⊕β) =

2. I.e., we view every α ∈ E2n as a vertex, and the edges are distance 2 neighbors in Hamming

distance. Then, S3(f) is an independent set ofG2n. Remember that 2n ⩾ 8 by the hypothesis of the

lemma. If 2n ⩾ 10, then by Lemma 7.21, |S3(f)| < 1
8 |S (f)|. Contradiction. Thus, 2n = 8. After

renaming and flipping variables, we may assume that S3(f) = I8 = S (f8). For brevity of notation,

let S = E8 and T = S (f8). We can pick (x1, . . . , x7) as a set of free variables of S = E8. Then,

there exists a multilinear polynomial F (x1, . . . , x7) ∈ Z2[x1, . . . , x7], and a multilinear polynomial

G(x1, . . . , x8) ∈ Z2[x1, . . . , x8] that is viewed as a representative for its image in the quotient algebra

Z2[x1, . . . , x8]/(P1, P2, P3, P4) where P1, P2, P3, P4 are the four linear polynomials in (7.11) such that

T is decided by P1 = P2 = P3 = P4 = 0, such that

f = χS(−1)F (x1,...,x7) + 4χT (−1)G(x1,...,x8).

We note that such multilinear polynomials F (x1, . . . , x7) and G(x1, . . . , x8) exist: For any point

in S \ T we can choose a unique value s ∈ Z2 which represents the ±1 value of f as (−1)s, and

for any point in T ⊆ S we can choose unique values t ∈ Z2 and s′ ∈ Z2 such that (−1)s
′
+ 4(−1)t

represents the ±3 value of f .

For {i, j} ⊆ [7] = {1, . . . , 7}, remember that F abij ∈ Z2[{x1, . . . , x7}\{xi, xj}] is the function

obtained by setting (xi, xj) = (a, b) in F . Similarly, we can define Gabij with respect to P1 = P2 =

P3 = P4 = 0 (any assignment of (xi, xj) = (a, b) is consistent with P1 = P2 = P3 = P4 = 0 which

defines T ). We make the following claim about F abij .

Claim 3. For all {i, j} ⊆ [7], F 00
ij + F 11

ij ≡ 0 or 1, and also F 01
ij + F 10

ij ≡ 0 or 1.

We first show how this claim will let us realize g8 or g′8, and lead to #P-hardness. Then, we

give a proof of Claim 3. By Claim 3 and Lemma 7.26, the degree d(F ) ⩽ 2.

• If d(F ) ⩽ 1, then F is an affine linear combination of variables x1, . . . , x7, i.e., F = λ0 +∑7
i=1 λixi where λi ∈ Z2 for 0 ⩽ i ⩽ 7. Notice that if we negate the variable xi of f , we

will get a signature f ′(x1, . . . , x8) = (−1)xif(x1, . . . , x8). For every xi appearing in F (i.e.,

λi = 1), we negate the variable xi of f . Also, if λ0 = 1, then we normalize f by a scalar −1.
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Then, we get a signature

f ′ = χS · 1 + 4χT (−1)G
′(x1,...,x8).

This will not change the support of f and also norms of entries of f . Thus, f ′(α) = ±3 or ±1

for all α ∈ S (f ′) = E8. Then, for every α ∈ T , f ′(α) = 1 + 4(−1)G
′(α) = ±3, which implies

that (−1)G
′(α) = −1 and f ′(α) = −3, because 1 + 4 = 5 cannot be an entry of f ′. Therefore,

f ′ = χS − 4χT = g8. Thus, g8 is realizable from f .

By merging variables x1 and x5 of g8 using =2, we can get a 6-ary signature h. We rename

variables x2, x3, x4 to x1, x2, x3 and variables x6, x7, x8 to x4, x5, x6 (The choice of merging

x1 and x5 is just for a simple renaming of variables). Then after normalization by a scalar

1/2, h has the following signature matrix

M123,456(h) = A =



−1 0 0 1 0 1 1 0

0 −1 1 0 1 0 0 1

0 1 −1 0 1 0 0 1

1 0 0 −1 0 1 1 0

0 1 1 0 −1 0 0 1

1 0 0 1 0 −1 1 0

1 0 0 1 0 1 −1 0

0 1 1 0 1 0 0 −1



.

Consider the inner product 〈h00
14,h11

14〉. One can check that

〈h00
14,h11

14〉 =
∑

1⩽i,j⩽4

Ai,j ·Ai+4,j+4 = 8 6= 0.

(This is the sum of pairwise products of every entry in the upper left 4 × 4 submatrix of A

with the corresponding entry of the lower right 4 × 4 submatrix of A.) In fact, notice that

h(α) = h(α) = h(α). By considering the representative matrix Mr(h) of h (see Table 4), we
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have

Mr(h) =


−1 1 1 1

1 −1 1 1

1 1 −1 1

1 1 1 −1

 .

Then,

〈h00
14,h11

14〉 = 2(perm(Mr(h)[1,2]) + perm(Mr(h)[3,4])) = 2(2 + 2) = 8 6= 0.

Also, since S (h) = E6, it is easy to see that h is irreducible. Since h does not satisfy

2nd-Orth, we get #P-hardness.

• If d(F ) = 2, then by Lemma 7.26, for all {i, j} ⊆ [7], xixj appears in F . Then, F =∑
1⩽i<j⩽7 xixj + L where L is an affine linear combination of variables x1, . . . , x7. Since on

the support S (f) = E8, x1 + · · ·+ x8 = 0, and on Boolean inputs x28 = x8, we can substitute

F by F ′ = F +x8(x1+ · · ·+x8)− (x28−x8) =
∑

1⩽i<j⩽8 xixj +L+x8 (all arithmetic mod 2).

This will not change the signature f . Then, by negating variables of f that appear as linear

terms in F ′ and normalization with a scalar ±1, we get a signature

f ′ = χS(−1)
∑

1⩽i<j⩽8 xixj + 4χT (−1)G
′(x1,...,x8) = q8 + 4χT (−1)G

′(x1,...,x8).

where q8 = χS(−1)
∑

1⩽i<j⩽8 xixj (see form (7.11)). For every α ∈ T , since wt(α) = 0, 4 or 8,

it is easy to see that q8(α) = (−1)(
wt(α)

2 ) = 1. Thus, (−1)G
′(α) must be −1 in order to get

1 − 4 = −3, of norm 3 for f ′. The other choice would give 1 + 4 = 5 to be an entry of f ′, a

contradiction. Therefore, f ′(α) = q8 − 4χT = g′8. Thus, g′8 is realizable from f .

By merging variables x1 and x5 of g′8 using =−
2 , we can get a 6-ary signature h′. After
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renaming variables (same as we did for h) and normalization by a scalar −1/2, we have

M123,456(h
′) = B =



1 0 0 1 0 1 1 0

0 −1 1 0 1 0 0 −1

0 1 −1 0 1 0 0 −1

1 0 0 1 0 −1 −1 0

0 1 1 0 −1 0 0 −1

1 0 0 −1 0 1 −1 0

1 0 0 −1 0 −1 1 0

0 −1 −1 0 −1 0 0 −1



.

Consider the inner product 〈h′00
14,h′11

14〉. One can check that

〈h′00
14,h′11

14〉 =
∑

1⩽i,j⩽4

Bi,j ·Bi+4,j+4 = −8 6= 0.

Also, since S (h′) = E6, it is easy to see that h′ is irreducible. Since h′ does not satisfy

2nd-Orth, we get #P-hardness.

This completes the proof of Step 2, and the proof of the lemma, modulo Claim 3.

Now, we prove Claim 3 that for all {i, j} ⊆ [7], F 00
ij +F 11

ij ≡ 0 or 1 and F 01
ij +F 10

ij ≡ 0 or 1. For

simplicity of notation, we prove this for {i, j} = {1, 2}. The proof for arbitrary {i, j} is the same

by replacing {1, 2} by {i, j}. Since f ∈
∫
B A , f̃0012 , f̃0112 , f̃1012 , f̃1112 ∈ A . Remember all nonzero entries

in f̃ab12 have the same norm, denoted by nab. We first show that between f̃0012 and f̃1112 , exactly one

has support E2n−2 and its nonzero entries have norm 2 and the other has nonzero entries of norm

4, and between f̃0112 and f̃1012 , exactly one has support O2n−2 and its nonzero entries have norm 2

and the other has nonzero entries of norm 4. (This is not what we have proved in Step 1 where

{1, 2} is a pair of particularly chosen indices. Here {1, 2} means an arbitrary pair {i, j}.)

Consider f0012 (⃗06) and f1112 (⃗0
6). By Step 1 of Case 2 and Lemma 7.21, we may assume that

S3(f) = S (f8) (after flipping and renaming variables). We have 00⃗06 ∈ S3(f) and 11⃗06 /∈ S3(f).

Thus, f0012 (⃗06) = ±3 and f1112 (⃗06) = ±1. (This is true when replacing {1, 2} by an arbitrary pair of
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indices {i, j}.) Thus, between

f̃0012 (⃗0
6) = f0012 (⃗0

6) + f1112 (⃗0
6) and f̃1112 (⃗0

6) = f0012 (⃗0
6)− f1112 (⃗0

6),

one has norm 2 and the other has norm 4. They are both nonzero. Then, between n00 and n11,

one is 2 and the other is 4. By Lemma 7.24(2), between f̃0012 and f̃1112 , the one whose nonzero entries

have norm 2 has support E6, and moreover n01 and n10 = 2 or 4. Since there exists (a, b) = (0, 0)

or (1, 1) such that

|f̃ab12 |2 = n2ab · |S (f̃ab12 )| = 22 · |E6|,

for f̃ cd12 where (c, d) = (0, 1) or (1, 0), if ncd = 2, then |S (f̃ cd12)| = |E6| = |O6|. Since f̃ cd12 has odd

parity, S (f̃ cd12) ⊆ O6. Thus, |S (f̃ cd12)| = 22n−3 implies that S (f̃ cd12) = O6.

• If n01 = n10 = 2, then S (f̃0112 ) = S (f̃1012 ) = O6. For an arbitrary θ ∈ O6,

f(01θ) =
f̃(01θ) + f̃(10θ)

2
=

(±2) + (±2)

2
and f(10θ) =

f̃(01θ)− f̃(10θ)

2
=

(±2)− (±2)

2
.

Thus, between f(01θ) and f(10θ), exactly one has norm 2 and the other has norm 0. This

gives a contradiction since every nonzero entry of f has norm 1 or 3.

• If n01 = n10 = 4, then still consider f(01θ) and f(10θ) for an arbitrary θ ∈ O6. We know

that f(01θ), f(10θ) = ±4,±2 or 0. The case that f(01θ) = 0 or f(10θ) = 0 cannot occur

since S (f) = E2n and clearly, 01θ, 10θ ∈ E2n. Thus, f(01θ), f(10θ) = ±4,±2. Still, we get a

contradiction since every nonzero entry of f has norm 1 or 3.

• Thus, between n01 and n10, one is 2 and the other is 4.

Then, between f̃0112 and f̃1012 , exactly one has support O6 and its nonzero entries have norm 2, and

the other has nonzero entries of norm 4.

Now, we show that F 00
12 + F 11

12 ≡ 0 or 1. We first consider the case that between f̃0012 and

f̃1112 , f̃1112 = f0012 − f1112 is the signature whose support is E6 and nonzero entries have norm 2; the

case where it is f̃0012 will be addressed shortly. Let S0 be the subspace in Z6
2 obtained by setting

x1 = x2 = 0 in S = S (f) = E8, and S1 be the subspace in Z6
2 obtained by setting x1 = x2 = 1.

Similarly, we can define T0 and T1, replacing S in the definition by T = S3(f) = I8. Clearly,
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S0 = S1 = {(x3, . . . , x8) ∈ Z6
2 | x3 + · · ·x8 = 0} = E6. Also, one can check that T0 is disjoint with

T1. Then

f0012 = χS0(−1)F
00
12 (x3,...,x7) + 4χT0(−1)G

00
12(x3,...,x8),

and

f1112 = χS1(−1)F
11
12 (x3,...,x7) + 4χT1(−1)G

11
12(x3,...,x8).

Thus,

f̃1112 = χE6((−1)F
00
12 (x3,...,x7) − (−1)F

11
12 (x3,...,x7)) + 4χT0(−1)G

00
12(x3,...,x8) − 4χT1(−1)G

11
12(x3,...,x8).

Since S (f̃1112 ) = E6 and n11 = 2, f̃1112 (θ) = ±2 for every θ ∈ E6. If θ /∈ T0 ∪ T1, then

f̃1112 (θ) = (−1)F
00
12 (θ) − (−1)F

11
12 (θ) = ±2.

If θ ∈ T0 ∪ T1, then it belongs to exactly one of T0 or T1,

f̃1112 (θ) = (−1)F
00
12 (θ) − (−1)F

11
12 (θ) + 4a = ±2,

where a = ±1. In this case, the sum of the first two terms is still (−1)F
00
12 (θ) − (−1)F

11
12 (θ) = ±2,

because the only other possible value for (±1) − (±1) is 0 and then we would have 4a = ±2, a

contradiction. Thus, for every (x3, . . . , x7) ∈ Z5
2 which decides every (x3, . . . , x8) ∈ E6 by x8 =

x3 + · · ·+ x7,

(−1)F
00
12 (x3,...,x7) − (−1)F

11
12 (x3,...,x7) = ±2.

This implies that

(−1)F
00
12 (x3,...,x7) = −(−1)F

11
12 (x3,...,x7).

Thus,

(−1)F
00
12 (x3,...,x7)+F

11
12 (x3,...,x7) = −1.

Then, F 00
12 + F 11

12 ≡ 1.

Now we address the case that (between f̃0012 and f̃1112 ) it is f̃0012 = f0012 + f1112 the signature whose
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support is E6 and nonzero entries have norm 2. Then similarly for every (x3, . . . , x7) ∈ Z5
2, which

determines every (x3, . . . , x8) ∈ E6,

(−1)F
00
12 (x3,...,x7) + (−1)F

11
12 (x3,...,x7) = ±2.

This implies that

(−1)F
00
12 (x3,...,x7) = (−1)F

11
12 (x3,...,x7).

Thus,

(−1)F
00
12 (x3,...,x7)+F

11
12 (x3,...,x7) = 1

Then, F 00
12 + F 11

12 ≡ 0.

We have proved that, F 00
12 + F 11

12 ≡ 0 or 1.

Also, consider f̃0112 and f̃1012 . One of them is a signature whose support is O2n−2 and nonzero

entries have norm 2. Then similarly, for every (x3, . . . , x7) ∈ Z5 which decides every (x3, . . . , x8) ∈

O6 by x8 = 1 + x3 + · · ·+ x7,

(−1)F
01
12 (x3,...,x7) + (−1)F

10
12 (x3,...,x7) = ±2,

or

(−1)F
01
12 (x3,...,x7) − (−1)F

10
12 (x3,...,x7) = ±2.

Then, F 01
12 + F 10

12 ≡ 0 or F 01
12 + F 10

12 ≡ 1. The above proof holds for all {i, j} ⊆ [7]. Thus, for all

{i, j} ⊆ [7], F 00
ij + F 11

ij ≡ 0 or 1, and F 01
ij + F 10

ij ≡ 0 or 1.

Remark 7.28. The above proof does not require F to be non-B hard.

7.3.3 Support Condition

Then, by further assuming that nonzero entries of f have the same norm, we show that f has

affine support or we can get the #P-hardness for non-B hard set F (Lemma 7.35). Here, we do

require F to be non-B hard.

We first give one more result about f̃ . Remember that if f ∈
∫
B A , then f̃0012 , f̃0112 , f̃1012 ,
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f̃1112 ∈ A , and nab denotes the norm of nonzero entries of f̃ab12 . Let B̃ =
{
=̃+

2 , =̃
−
2 ,
˜6=+
2 ,
˜6=−
2

}
where

=̃+
2 = (2, 0, 0, 0), =̃−

2 = (0, 0, 0, 2), ˜6=+
2 = (0, 2, 0, 0) and ˜6=−

2 = (0, 0, 2, 0). Signatures in B̃ are

obtained by performing the H4 gadget construction on binary signatures in B.

Lemma 7.29. Let f be an irreducible signature of arity 2n ⩾ 6 with the following properties.

1. f has even parity, f satisfies 2nd-Orth, and f ∈
∫
B A ;

2. for all {i, j} disjoint with {1, 2} and every b ∈ B, either M(m12(∂
b
ijf)) = λbijI4 for some real

λbij 6= 0, or there exists a nonzero binary signature gbij ∈ B such that gbij(x1, x2) | ∂bijf .

If S (f̃0112 ) = S (f̃1012 ), n00 > n01 > 0, then S (f̃0112 ) = O2n−2.

证明. We first analyze the second property of f , i.e., the property about ∂bijf .

• IfM(m12(∂
b
ijf)) = λbijI4, by Lemma 7.23, thenM(m12(∂̃bijf)) = 2λbijI4. Since {i, j} is disjoint

with {1, 2}, the H4 gadget on variables x1 and x2 commutes with the merging gadget on

variables xi and xj . Thus, ∂̃bijf = ∂bij f̃ . Let (∂bij f̃)
ab
12 be the signature obtained by setting

variables x1 and x2 of ∂bij f̃ to a and b, and ∂bij(f̃
ab
12 ) be the signature obtained by merging

variables xi and xj of f̃ab12 . Again, since {1, 2} and {i, j} are disjoint, (∂bij f̃)ab12 = ∂bij(f̃
ab
12 ). We

denote them by ∂bij f̃ab12 . Then, since M(m12(∂̃bijf)) =M(m12(∂
b
ij f̃)) = 2λbijI4,

|∂bij f̃0012|2 = |∂bij f̃0112|2 = |∂bij f̃1012|2 = |∂bij f̃1112|2 = 2λbij 6= 0.

• If gbij(x1, x2) | ∂bijf , i.e, ∂bijf = gbij(x1, x2) ⊗ h, then ∂̃bijf = ∂bij f̃ = g̃bij(x1, x2) ⊗ h. Since

gbij ∈ B, g̃bij ∈ B̃. By the form of signatures in B̃, among ∂bij f̃0012 , ∂bij f̃0112 , ∂bij f̃1012 and ∂bij f̃1112 , at

most one is a nonzero signature.

Combining the above two cases we have that, among ∂bij f̃0012 , ∂bij f̃0112 , ∂bij f̃1012 and ∂bij f̃
11
12 , if at

least two of them are nonzero signatures then they are all nonzero signatures.

Now, we show that S (f̃0112 ) = O2n−2. Since f has even parity, f̃ also has even parity. Then, f̃0112
has odd parity, i.e., S (f̃0112 ) ⊆ O2n−2. For a contradiction, suppose that S (f̃0112 ) ( O2n−2. Since

n01 > 0, S (f̃0112 ) 6= ∅. Then, we can pick a pair of inputs α, β ∈ O2n−2 with wt(α ⊕ β) = 2 such

that α ∈ S (f̃0112 ) and β /∈ S (f̃0112 ). Also, since S (f̃0112 ) = S (f̃1012 ), α ∈ S (f̃1012 ) and β /∈ S (f̃1012 ).
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Thus, |f̃0112 (α)| = n01 and |f̃0112 (β)| = 0, and |f̃1012 (α)| = n10 and |f̃1012 (β)| = 0. Suppose that α and β

differ in bits i and j. Clearly, {i, j} is disjoint with {1, 2}. Depending whether αi = αj or αi 6= αj ,

we connect variables xi and xj of f̃ using =+
2 or 6=+

2 . We get signatures ∂+ij f̃ or ∂+̂ij f̃ respectively.

We consider the case that αi = αj ; in this case {αiαj , βiβj} = {00, 11}. For the case that αi 6= αj ,

the analysis is the same by replacing ∂+ij f̃ with ∂+̂ij f̃ .

Consider ∂+ij f̃ . Then, because {αiαj , βiβj} = {00, 11}, f̃0112 (α)+ f̃0112 (β) and f̃1012 (α)+ f̃1012 (β) are

entries of ∂+ij f̃ ; more precisely, they are entries of ∂+ij f̃0112 and ∂+ij f̃1012 respectively. Since f̃0112 (β) =

f̃1012 (β) = 0, we have

|f̃0112 (α) + f̃0112 (β)| = |f̃0112 (α)| = n01 6= 0, and |f̃1012 (α) + f̃1012 (β)| = |f̃1012 (α)| = n10 6= 0.

Thus, ∂+ij f̃0112 has a nonzero entry with norm n01, and then ∂+ij f̃0112 6≡ 0. Also, we have ∂+ij f̃1012 6≡ 0.

Thus at least two among ∂+ij f̃0012 , ∂
+
ij f̃

01
12 , ∂+ij f̃1012 and ∂+ij f̃1012 are nonzero, it follows that all of them

are nonzero signatures.

Then ∂+ij f̃
00
12 6≡ 0. Let ∂+ij f̃0012 (γ) be a nonzero entry of ∂+ij f̃0012 . Then, ∂+ij f̃0012 (γ) = f̃000012ij (γ) +

f̃001112ij (γ) 6= 0.∗ Clearly, f̃000012ij (γ) and f̃001112ij (γ) are entries of f̃0012 , and they have norm n00 or 0.

Thus, ∂+ij f̃0012 (γ) has norm 2n00 or n00. Also, ∂+ij f̃0012 (γ) is an entry of ∂+ij f̃ on the input 00γ. Thus,

∂+ij f̃ has a nonzero entry with norm 2n00 or n00. Since n00 > n01, both 2n00 and n00 are not equal

to n01. Thus, ∂+ij f̃ has two nonzero entries with different norms. Such a signature is not in A .

However, since f ∈
∫
B A , by Lemma 7.23, ∂+ij f̃ ∈ A . Contradiction. Thus, S (f̃0112 ) = O2n−2.

We also give a result about the edge partition of complete graphs into two complete tripartite

subgraphs. This result should also be of independent interest. We say a graph G = (V,E) is

tripartite if V = V1tV2tV3 and every e ∈ E is between distinct Vi and Vj . Here t denotes disjoint

union. The parts Vi are allowed to be empty. It is a complete tripartite graph if every pair between

distinct Vi and Vj is an edge.

Definition 7.30. Let Kn be the complete graph on n vertices. We say Kn has a tripartite 2-

partition if there exist complete tripartite subgraphs T1 and T2 such that {E(T1), E(T2)} is a

partition of E(Kn), i.e., E(Kn) = E(T1) t E(T2). We say T1 and T2 are witnesses of a tripartite
∗For the case that αi ̸= αj , ∂+

ij f̃
00
12 (γ) = f̃0000

12ij (γ) + f̃0011
12ij (γ) will be replced by ∂+̂

ij f̃
00
12 (γ) = f̃0001

12ij (γ) + f̃0010
12ij (γ).
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2-partition of Kn.

Lemma 7.31. Kn has a tripartite 2-partition iff n ⩽ 5. For n = 5, up to an automorphism of K5,

there is a unique tripartite 2-partition where T1 is a triangle on {v1, v2, v3} and T2 is the complete

tripartite graph with parts {v1, v2, v3}, {v4} and {v5}.

证明. Let T be a complete tripartite graph. Let G2,1 be the union of K2 and an isolated vertex.

We first prove the following two claims.

Claim 1. G2,1 is not an induced subgraph of T .

For a contradiction, suppose G2,1 = (V,E) is an induced subgraph of T , where V = {v1, v2, v3},

and E = {(v1, v2)}. Then, v1 and v2 belong to distinct parts of T . Since (v1, v3), (v2, v3) /∈ E(T ),

v1 and v3 belong to the same part of T , and so are v2 and v3. Thus, v1 and v2 belong to the same

part of T . This contradiction proves Claim 1.

Claim 2. K4 is not an induced subgraph of T .

For a contradiction, suppose K4 on V = {v1, v2, v3, v4} is an induced subgraph of T . Then, for

any two distinct vertices vi, vj ∈ V , the edge (vi, vj) ∈ K4 shows that vi and vj belong to distinct

parts in T . But T has at most three distinct nonempty parts. This contradiction proves Claim 2.

Now, we prove this lemma. The cases n = 1, 2, 3 are trivial. When n = 4, we have the following

two tripartite 2-partitions of K4, with V (T1) = {v1}t{v2}t{v3} and V (T2) = {v1, v2, v3}t{v4}t∅,

or alternatively with V (T ′
1) = {v1} t {v2} t ∅ and V (T ′

2) = {v1, v2} t {v3} t {x4}.

We consider n ⩾ 5. Suppose Kn has a tripartite 2-partition with complete tripartite subgraphs

T1 = (V1, E1) and T2 = (V2, E2). We write (Ai, Bi, Ci) for the three parts of Ti, i = 1, 2.

Clearly V = V1∪V2, as all vertices of V must appear in either T1 or T2, for otherwise any edge

incident to v ∈ V \ (V1 ∪ V2) is not in E1 ∪ E2. If all parts of both T1 and T2 have size at most 1,

then |E1 t E2| ⩽ 6 < |K5| ⩽ |Kn|, a contradiction. So at least one part, say A1, has size |A1| ⩾ 2,

and we let a, a′ ∈ A1. Then, (a, a′) /∈ E1. Thus, (a, a′) ∈ E2 and a, a′ ∈ V2.

We show that (V1 \A1)∩ (V2 \A1) = ∅. Otherwise, there exists v ∈ (V1 \A1)∩ (V2 \A1). Then,

edges (v, a), (v, a′) ∈ E1. Thus, among edges (v, a), (v, a′) and (a, a′) of Kn, (a, a′) is the only one

in T2. Since v, a, a′ ∈ V2, G2,1 is an induced subgraph of T2. A violation of Claim 1.
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If both V1 \ A1 and V2 \ A1 are nonempty, then an edge in Kn between u ∈ V1 \ A1 and

v ∈ V2 \A1 is in neither E1 nor E2, since u 6∈ V2 and v 6∈ V1. This is a contradiction. If V1 \A1 = ∅,

then E1 = ∅, and then all edges of Kn belong to T2, which violates Claim 2. So V2 \A1 = ∅. Since

V = V1 ∪ V2, V2 \A1 = ∅ implies that V = V1.

Clearly V1 \ A1 = B1 t C1. If |B1| ⩾ 2, then there exists some {u, v} ⊆ B1 ⊆ V1 \ A1, which

is disjoint from V2. Thus {u, v} 6∈ E1 t E2, a contradiction. Hence |B1| ⩽ 1. Similarly |C1| ⩽ 1.

Finally, if |A1| ⩾ 4, then there is a K4 inside A1 which must be an induced subgraph of T2, a

violation of Claim 2. Thus |A1| ⩽ 3. It follows that n ⩽ 5 since V = V1 = A1 tB1 t C1. If n = 5,

then |A1| = 3 and |B1| = |C1| = 1. After relabeling vertices, we may assume that A1 = {v1, v2, v3},

B1 = {v4} and C1 = {v5}. Then, we have A2 = {v1}, B2 = {v2} and C2 = {v3}. This gives the

unique tripartite 2-partition of K5.

We will apply Lemma 7.31 to multilinear Z2-polynomials. Remember that we take the reduc-

tion of polynomials in Z2[x1, . . . , xn] modulo the ideal generated by {x2i − xi | i ∈ [n]} replacing

any F by its unique multilinear representative.

Definition 7.32. Let F (x1, . . . , xn) ∈ Z2[x1, . . . , xn] be a complete quadratic polynomial. We say

F has a twice-linear 2-partition if there exist L1, L2, L3, L4 ∈ Z2[x1, . . . , xn] where d(L1) = d(L2) =

d(L3) = d(L4) ⩽ 1 such that F = L1 · L2 + L3 · L4.

Lemma 7.31 gives the following result about multilinear Z2-polynomials.

Lemma 7.33. Let F (x1, . . . , xn) ∈ Z2[x1, . . . , xn] be a complete quadratic polynomial. For n ⩾ 6,

F does not have a twice-linear 2-partition. For n = 5, F has a twice-linear 2-partition F =

L1 · L2 + L3 · L4 iff (after renaming variables) the cross terms of L1 · L2 and L3 · L4 correspond

to the unique tripartite 2-partition of K5, and we have L1 · L2 = (x1 + x2 + a)(x2 + x3 + b) and

L3 · L4 = (x1 + x2 + x3 + x4 + c)(x1 + x2 + x3 + x5 + d) for some a, b, c, d ∈ Z2.

证明. We first analyze the quadratic terms that appear in a product of two linear polynomials. We

use xi ∈ L to denote that a linear term xi appears in a linear polynomial L. Let L1 and L2 be two

linear polynomials.

Let U1 = {xi | xi ∈ L1, xi /∈ L2}, U2 = {xi | xi ∈ L1, xi ∈ L2}, and U3 = {xi | xi /∈ L1, xi ∈
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L2}. Then,

L1 =
∑
xi∈U1

xi +
∑
xj∈U2

xj + a, and L2 =
∑
xj∈U2

xj +
∑
xk∈U3

xk + b

for some a, b ∈ Z2
2. The quadratic terms in L1 · L2 are from

(
∑
xi∈U1

xi +
∑
xj∈U2

xj) · (
∑
xj∈U2

xj +
∑
xk∈U3

xk)

which are enumerated in

∑
xi∈U1,xj∈U2

xixj +
∑

xi∈U1,xk∈U3

xixk +
∑

xj∈U2,xk∈U3

xjxk.

Note that each term x2i for i ∈ U2 is replaced by xi (thus no longer counted as a quadratic term)

as we calculate modulo the ideal generated by {x2i − xi | i ∈ [n]}, and every pairwise cross product

term xixj for i, j ∈ U2 and i 6= j disappears since it appears exactly twice.

If we view variables x1, . . . , xn as n vertices and each quadratic term xixj as an edge between

vertices xi and xj , then the quadratic terms in L1 ·L2 are the edges of a complete tripartite subgraph

T of Kn (the parts of a tripartite graph could be empty) and V (T ) = U1 t U2 t U3. Therefore,

L1 · L2 is one of the two terms of a twice-linear 2-partition of a complete quadratic polynomial

over n variables iff T is one tripartite complete graph in a tripartite 2-partition of the complete

graph Kn. By Lemma 7.31, a tripartite 2-partition does not exist for Kn when n ⩾ 6. Thus, F

does not have twice-linear partition when n ⩾ 6. When n = 5, the tripartite 2-partition of K5 is

unique up to relabeling. One tripartite complete graph of this tripartite 2-partition is a triangle,

and we may assume it is on {x1, x2, x3}. Then, we take L1 · L2 = (x1 + x2 + a)(x2 + x3 + b) for

some a, b ∈ Z2
2, and L3 · L4 = (x1 + x2 + x3 + x4 + c)(x1 + x2 + x3 + x5 + d) for some c, d ∈ Z2

2.

Thus, a complete quadratic polynomial F (x1, . . . , x5) over 5 variables has a twice-linear 2-partition

iff (after renaming variables) F = L1 · L2 + L3 · L4.

Now, we are ready to make a further major step towards Theorem 7.38. We first give a

preliminary result.

Lemma 7.34. Let f be a 2n-ary signature, where 2n ⩾ 4. If f ∈
∫
B A and |f(α)| = 1 for

all α ∈ S (f), then for all {i, j} ⊆ [2n], S (f00ij ) = S (f11ij ) or S (f00ij ) ∩ S (f11ij ) = ∅, and



181

S (f01ij ) = S (f10ij ) or S (f01ij ) ∩ S (f10ij ) = ∅.

证明. We first prove that for all {i, j} ⊆ [2n], S (f00ij ) = S (f11ij ) or S (f00ij ) ∩ S (f11ij ) = ∅. For

a contradiction, suppose that there exist α, β ∈ Z2n−2
2 such that α ∈ S (f00ij ) ∩ S (f11ij ) and β ∈

S (f00ij )∆S (f11ij ), where ∆ denotes the symmetric difference between two sets. Consider signatures

∂+ijf and ∂−ijf . Then, f00ij (α) + f11ij (α) and f00ij (β) + f11ij (β) are entries of ∂+ijf , and f00ij (α)− f11ij (α)

and f00ij (β)−f11ij (β) are entries of ∂−ijf . Since α ∈ S (f00ij )∩S (f11ij ), f00ij (α) = ±1 and f11ij (α) = ±1.

Then between f00ij (α) + f11ij (α) and f00ij (α) − f11ij (α), exactly one has norm 2 and the other is 0.

However, since β ∈ S (f00ij )∆S (f11ij ), between f00ij (β) and f11ij (β), exactly one is 0 and the other

has norm 1. Thus, |f00ij (β) + f11ij (β)| = |f00ij (β)− f11ij (β)| = 1. Then, between ∂+ijf and ∂−ijf , there

is a signature that has an entry of norm 1 and an entry of norm 2. Clearly, such a signature is not

in A . However, since f ∈
∫
B A , we have ∂+ijf , ∂

−
ijf ∈ A . Contradiction.

By considering signatures ∂+̂ijf and ∂−̂ijf , similarly we can show that S (f01ij ) = S (f10ij ) or

S (f01ij ) ∩ S (f10ij ) = ∅.

The next lemma is a major step.

Lemma 7.35. Suppose that F is a set of real-valued signatures of even arity, F does not satisfy

condition (T), and F is non-B hard. If F contains an irreducible 2n-ary signature f with parity

where 2n ⩾ 8, then

• Holantb(F) is #P-hard, or

• there is a signature g /∈ A of arity 2k < 2n that is realizable from f and B, or

• f has affine support.

证明. Again, we may assume that f satisfies 2nd-Orth and f ∈
∫
B A . Also, by Lemma 7.27, we

may assume that f(α) = ±1 for all α ∈ S (f) after normalization.

For any four distinct binary strings α, β, γ, δ ∈ Z2n
2 with α ⊕ β ⊕ γ = δ, we define a score

T (α, β, γ, δ) = (t1, t2, t3) which are the values of wt(α⊕ β) = wt(γ ⊕ δ),wt(α⊕ γ) = wt(β ⊕ δ) and

wt(α⊕δ) = wt(β⊕γ) ordered from the smallest to the largest. We order the scores lexicographically,

i.e., we say T = (t1, t2, t3) < T ′ = (t′1, t
′
2, t

′
3) if t1 < t′1, or t2 < t′2 when t1 = t′1, or t3 < t′3 when

t1 = t′1 and t2 = t′2. Note that since α, β, γ, δ are distinct, the smallest value of the score T is
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(2, 2, 2). We say that (α, β, γ, δ) where α⊕β⊕γ = δ forms a non-affine quadrilateral of f if exactly

three of them are in S (f) and the fourth is not.

For a contradiction, suppose that S (f) is not affine. Then, f has at least a non-affine quadri-

lateral. Among all non-affine quadrilaterals of f , we pick the one (α, β, γ, δ) with the minimum

score Tmin = T (α, β, γ, δ) = (t1, t2, t3). Without loss of generality, we may assume that among

α, β, γ and δ, δ is the one that is not in S (f).

We first consider the case that (2, 2, 2) < Tmin. We prove that we can realize a non-affine

signature from f by merging. Depending on the values of Tmin, there are three cases.

• t1 ⩾ 4. Without loss of generality, we may assume that t1 = wt(α ⊕ β). (Note that even

though we have named δ as the one not belonging to S (f), since α⊕ β ⊕ γ ⊕ δ = 0, we can

name them so that t1 = wt(α ⊕ β).) Then, there are at least four bits on which α and β

differ. Among these four bits, there are at least two bits on which γ is identical to α or β.

Without loss of generality, we assume that these are the first two bits and γ1γ2 = α1α2. We

have β1β2 = α1α2, and as δ = α ⊕ β ⊕ γ, we have δ1δ2 = α1α2. Also by flipping variables,

we may assume that α = 0⃗2n = 00⃗02n−2. Then, β = 11β∗, γ = 00γ∗ and δ = 11δ∗ where

β∗, γ∗, δ∗ ∈ Z2n−2
2 and δ∗ = β∗ ⊕ γ∗. We consider the following eight inputs of f .

α = 00α∗ α′ = 11α∗ β′ = 00β∗ β = 11β∗

γ = 00γ∗ γ′ = 11γ∗ δ′ = 00δ∗ δ = 11δ∗

Note that γ′ = α⊕ α′ ⊕ γ, and wt(α⊕ α′) = 2 < t1. Then,

T (α, α′, γ, γ′) < T (α, β, γ, δ).

By our assumption that T (α, β, γ, δ) is the minimum score among all non-affine quadrilaterals

of f , (α, α′, γ, γ′) is not a non-affine quadrilateral of f . Since α, γ ∈ S (f), α′ and γ′ are

either both in S (f) or both not in S (f). Also, note that γ′ = α′ ⊕ β ⊕ δ, and wt(α′ ⊕ β) =

wt(α⊕ β)− 2 = t1 − 2 < t1. Then,

T (α′, β, γ′, δ) < T (α, β, γ, δ).
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Again since T (α, β, γ, δ) is the minimum score among all non-affine quadrilaterals of f ,

(α′, β, γ′, δ) is not a non-affine quadrilateral. Since β ∈ S (f) and δ /∈ S (f), α′ and γ′

are not both in S (f). Thus, α′, γ′ /∈ S (f). Similarly, (β′, β, δ′, δ) and (α, β′, γ, δ′) are not

non-affine quadrilaterals of f , since their scores are less than T (α, β, γ, δ). Since β ∈ S (f)

and δ /∈ S (f), we cannot have both β′, δ′ ∈ S (f) from considering (β′, β, δ′, δ), and then

from (α, β′, γ, δ′), we cannot have exactly one of β′, δ′ is in S (f). Thus, both β′, δ′ /∈ S (f).

In other words, we have f(α′) = f(β′) = f(γ′) = f(δ′) = 0.

Consider the signature ∂12f . Then, f(α) + f(α′), f(β) + f(β′), f(γ) + f(γ′) and f(δ) + f(δ′)

are entries of ∂12f on inputs α∗, β∗, γ∗ and δ∗ respectively. Since f(α) + f(α′) = f(α) 6= 0,

f(β) + f(β′) = f(β) 6= 0 and f(γ) + f(γ′) = f(γ) 6= 0, α∗, β∗, γ∗ ∈ S (∂12f). Meanwhile

we have f(δ) + f(δ′) = 0 + 0 = 0, thus δ∗ /∈ S (∂12f). Thus, (α∗, β∗, γ∗, δ∗) is a non-affine

quadrilateral of ∂12f . Then, ∂12f is a non-affine signature of arity 2n− 2. Contradiction.

• t1 = 2 and t2 ⩾ 4. Without loss of generality, we assume that wt(α⊕γ) = 2 and wt(α⊕β) =

t2 ⩾ 4. (Again, using α⊕β⊕γ⊕δ = 0, a moment reflection shows that this is indeed without

loss of generality, even though we have named δ 6∈ S (f).) Again by flipping variables, we

may assume that α = 0⃗2n. Then, wt(γ) = 2 and wt(β) ⩾ 4. Take four bits where βi = 1, for

at most two of these we can have γi = 1, thus there exist two other bits of these four bits

(we may assume that they are the first two bits) such that γ1γ2 = 00 and β1β2 = 11. Then,

α = 00α∗, β = 11β∗, γ = 00γ∗, and δ = 11δ∗ by δ = α ⊕ β ⊕ γ, where β∗, γ∗, δ∗ ∈ Z2n−2
2 ,

wt(β∗) ⩾ 2, wt(γ∗) = 2 and δ∗ = β∗ ⊕ γ∗. Still, we consider the following eight inputs of f .

α = 00α∗ α′ = 11α∗ β′ = 00β∗ β = 11β∗

γ = 00γ∗ γ′ = 11γ∗ δ′ = 00δ∗ δ = 11δ∗

Note that wt(α⊕ γ) = 2 and wt(α⊕ α′) = 2 < t2. Then,

T (α, α′, γ, γ′) < T (α, β, γ, δ).

Then similarly since T (α, β, γ, δ) is the minimum, (α, α′, γ, γ′) is not a non-affine quadrilateral.

Since α, γ ∈ S (f), α′ and γ′ are either both in S (f) or both not in it. Also, note that
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wt(α′ ⊕ γ′) = 2 and wt(α′ ⊕ β) = wt(α⊕ β)− 2 = t2 − 2 < t2. Then,

T (α′, β, γ′, δ) < T (α, β, γ, δ).

Thus, (α′, β, γ′, δ) is not a non-affine quadrilateral. Since β ∈ S (f) and δ /∈ S (f), α′ and

γ′ are not both in S (f). Thus, α′, γ′ /∈ S (f). Similarly, by considering (β′, β, δ′, δ) and

(α, β′, γ, δ′), we know that they are not non-affine quadrilaterals. Thus, β′, δ′ /∈ S (f). In

other words, we have f(α′) = f(β′) = f(γ′) = f(δ′) = 0. Still consider the signature ∂12f .

We have ∂12f /∈ A . Contradiction.

• t1 = 2, t2 = 2 and t3 = 4. In this case, by the definition of distance-2 squares (equation

(7.12)),
[
f(α) f(β)
f(γ) f(δ)

]
forms a distance-2 square. Clearly, it is not of type I, II or III since

exactly one entry of this square is zero. As proved in Lemma 7.27, since f has a distance-2

square that is not type I, II or III, then we can realize a non-affine signature by merging.

Contradiction.

Now, we consider the case that Tmin = (2, 2, 2).

Then, we show that |S (f)| = 22n−2. We consider the non-affine quadrilateral (α, β, γ, δ) with

score T = (2, 2, 2). By renaming and flipping variables, without loss of generality, we may assume

that α β

γ δ

 =

000⃗02n−3 011⃗02n−3

110⃗02n−3 101⃗02n−3

 ,
and δ is the only one among four that is not in S (f). By normalization, we may assume that

f(α) = 1. If f(γ) = −1, then we negate the variable x1 of f . This keeps f01 unchanged but

changes f11 to −f11 , so this does not change the value of f(α), but changes the value of f(γ) to

1. Thus, without loss of generality, we may assume that f(α) = f(γ) = 1. Clearly, f has even

parity. Consider the signature f̃ by the H4 gadget applied on variables x1 and x2 of f . We have

f̃0012 (⃗0
2n−2) = f(α) + f(γ) = 2 and f̃0112 (1⃗02n−3) = f(β) + f(δ) = f(β) since f(δ) = 0. Remember

that since f ∈
∫
B A , by Lemma 7.23, for all (a, b) ∈ Z2

2, f̃ab12 ∈ A and we use nab to denote the

norm of its nonzero entries. Thus, n00 = 2 and n01 = 1. Also, we have f(β) 6= 0 which is the

same as 1⃗02n−3 ∈ S (f0112 ), and f(δ) = 0 which is the same as 1⃗02n−3 /∈ S (f1012 ). By Lemma 7.34,
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S (f0112 ) ∩ S (f1012 ) = ∅. Remember that f̃0112 = f0112 + f1012 and f̃1012 = f0112 − f1012 . Then,

S (f̃0112 ) = S (f0112 ) ∪ S (f1012 ) = S (f̃1012 ).

Consider signatures ∂bijf for all {i, j} disjoint with {1, 2} and every b ∈ B. By Lemma 6.4 and

its remark, we may assume that either M(m12(∂
b
ijf)) = λbijI4 for some real λbij 6= 0, or there exists

a nonzero binary signature gbij ∈ O such that gbij(x1, x2) | ∂bijf . Otherwise, we get #P-hardness.

Consider the case that gbij(x1, x2) | ∂bijf . If ∂bijf ≡ 0, then we can let gbij ∈ B since a zero

signature can be divided by any nonzero binary signature. If ∂bijf 6≡ 0, we can realize gbij by

factorization. If gbij /∈ B⊗1, then we get #P-hardness since F is non-B hard. Thus, we may assume

that gbij ∈ B after normalization. Therefore, for all {i, j} disjoint with {1, 2} and every b ∈ B,

we may assume that either M(m12(∂
b
ijf)) = λbijI4 for some real λbij 6= 0, or there exists a nonzero

binary signature gbij ∈ B such that gbij(x1, x2) | ∂bijf . Then, by Lemma 7.29, S (f̃0112 ) = O2n−2.

Thus, |S (f̃0112 )| = 22n−3.

Now consider again the signature f . Since f satisfies 2nd-Orth, and all its nonzero entries

have norm 1, for any (a, b) ∈ Z2
2, |fab12|2 = |S (fab12 )|. Then,

|S (f0012 )| = |S (f0112 )| = |S (f1012 )| = |S (f1112 )|.

Remember that S (f0112 )∩S (f1012 ) = ∅, and S (f̃0112 ) = S (f0112 )∪S (f1012 ). Then, S (f0012 ) and S (f0112 )

form an equal size partition of S (f̃0112 ). Thus, |S (f0112 )| = |S (f1012 )| = 1
2 |S (f̃0112 )| = 22n−4. Also,

|S (f0012 )| = |S (f1112 )| = 22n−4. Therefore,

|S (f)| = |S (f0012 )|+ |S (f0112 )|+ |S (f1012 )|+ |S (f1112 )| = 4 · 22n−4 = 22n−2.

Since all nonzero entries of f have norm 1, |f|2 = |S (f)| = 22n−2. Also, since f satisfies 2nd-Orth,

for all {i, j} ∈ [2n] and all (a, b) ∈ Z2
2, |fabij | = 1

4 |f|2 = 22n−4.

We denote S (f) by S. Since f has even parity, for every (x1, . . . , x2n) ∈ S, x1+ · · ·+x2n = 0,
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i.e., S ⊆ E2n. Let F (x1, . . . , x2n−1) ∈ Z2[x1, . . . , x2n−1] be the multilinear polynomial such that

F (x1, . . . , x2n−1) =


1, (x1, . . . , x2n−1, x2n) ∈ S

0, (x1, . . . , x2n−1, x2n) /∈ S
where x2n =

2n−1∑
i=1

xi.

Then, S = {(x1, . . . , x2n) ∈ E2n | F (x1, . . . , x2n−1) = 1}.

Now, we show that for all {i, j} ⊆ [2n− 1], F 00
ij + F 11

ij ≡ 0 or 1, and also F 01
ij + F 10

ij ≡ 0 or 1.

For simplicity of notations, we prove this for {i, j} = {1, 2}. The proof for arbitrary {i, j} is the

same by replacing {1, 2} by {i, j}. Consider

S0 = S (f0012 ) = {(x3, . . . , x2n) ∈ E2n−2 | F 00
12 (x3, . . . , x2n−1) = 1},

and

S1 = S (f1112 ) = {(x3, . . . , x2n) ∈ E2n−2 | F 11
12 (x3, . . . , x2n−1) = 1}.

Then,

S0 ∩ S1 = {(x3, . . . , x2n) ∈ E2n−2 | F 00
12 · F 11

12 = 1},

and

S0 ∪ S1 = {(x3, . . . , x2n) ∈ E2n−2 | F 00
12 + F 11

12 + F 00
12 · F 11

12 = 1}.

By Lemma 7.34, S0 = S1 or S0 ∩ S1 = 0.

• If S0 = S1, then for every (x3, . . . , x2n−1) ∈ Z2n−3
2 which decides every (x3, . . . , x2n) ∈ E2n−2

by x2n = x3 + · · ·+ x2n−1,

F 00
12 (x3, . . . , x2n−1) = F 11

12 (x3, . . . , x2n−1).

Thus, F 00
12 + F 11

12 ≡ 0.

• If S0 ∩ S1 = ∅, then since |S0| = |S1| = 22n−4 (which is still true when replacing {1, 2} by an

arbitrary {i, j}), |S0 ∪ S1| = |S0|+ |S1| = 22n−3. Since S0 ∪ S1 ⊆ E2n−2 and |E2n−2| = 22n−3,

S0 ∪S1 = E2n−2. Thus, for every (x3, . . . , x2n−1) ∈ Z2n−3
2 which decides every (x3, . . . , x2n) ∈
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E2n−2 by x2n = x3 + · · ·+ x2n−1,

F 00
12 (x3, . . . , x2n−1) · F 11

12 (x3, . . . , x2n−1) = 0,

and

F 00
12 (x3, . . . , x2n−1) + F 11

12 (x3, . . . , x2n−1) + F 00
12 · F 11

12 (x3, . . . , x2n−1) = 1.

Thus, F 00
12 + F 11

12 ≡ 1.

Similarly, we can show that F 01
12 + F 10

12 ≡ 0 or 1. Therefore, for all {i, j} ⊆ [2n− 1], F 00
ij + F 11

ij ≡ 0

or 1 and F 01
ij + F 10

ij ≡ 0 or 1. By Lemma 7.26, d(F ) ⩽ 2.

If d(F ) ⩽ 1, then clearly, S = {(x1, . . . , x2n) ∈ E2n | F (x1, . . . , x2n−1) = 1} is an affine linear

space. Thus, f has affine support. Otherwise, d(F ) = 2. By Lemma 7.26, F is a complete quadratic

polynomial. Consider signatures f0012 and f1112 . Remember that f(000⃗02n−3) = f(110⃗02n−3) = 1.

Thus, 0⃗2n−2 ∈ S0 ∩ S1 6= ∅. Then, S0 = S1. Let

S+ = {α ∈ S0 | f0012 (α) = f1112 (α)} and S− = {α ∈ S0 | f0012 (α) = −f1112 (α)}.

Then, as f takes ±1 values on its support, S+ = S (∂+12f) and S− = S (∂−12f). Since ∂+12f, ∂−12f ∈ A ,

S+ and S− are affine linear subspaces of E2n−2. Also, by 2nd-Orth, 〈f0012, f1112〉 = |S+| − |S−| = 0.

Thus, |S+| = |S−| = 1
2 |S0| = 22n−5. Since |E2n−2| = 22n−3, S+ is a an affine linear subspaces of

E2n−2 decided by two affine linear constraints L+
1 = 1 and L+

2 = 1. (Here both L+
1 and L+

2 are

affine linear forms which may have nonzero constant terms, but we write the constraints as L+
1 = 1

and L+
2 = 1.) In other words,

S+ = {(x3, . . . , x2n) ∈ E2n−2 | L+
1 = 1 and L+

2 = 1} = {(x3, . . . , x2n) ∈ E2n−2 | L+
1 · L+

2 = 1}.

Since for every (x3, . . . , x2n) ∈ E2n−2, x3 + · · · + x2n = 0, we may substitute the appearance of

x2n in L+
1 and L+

2 by x3 + · + x2n−1. Thus, we may assume that L+
1 , L

+
2 ∈ Z2[x3, . . . , x2n−1], and

d(L+
1 ) = d(L+

2 ) = 1. Similarly, there exist L−
1 , L

−
2 ∈ Z2[x3, . . . , x2n−1] with d(L−

1 ) = d(L−
2 ) = 1
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such that

S− = {(x3, . . . , x2n) ∈ E2n−2 | L−
1 = 1 and L−

2 = 1} = {(x3, . . . , x2n) ∈ E2n−2 | L−
1 · L−

2 = 1}.

Clearly, S+ ∩ S− = ∅. Then

S+ ∪ S− = {(x3, . . . , x2n) ∈ E2n−2 | L+
1 · L+

2 + L−
1 · L−

2 = 1}.

Remember that

S0 = S+ ∪ S− = {(x3, . . . , x2n) ∈ E2n−2 | F 00
12 = 1}.

Thus, L+
1 ·L+

2 +L−
1 ·L−

2 = F 00
12 . Since for all 1 ⩽ i < j ⩽ 2n−1, the quadratic term xixj appears in

F , for all 3 ⩽ i < j ⩽ 2n−1, the quadratic term xixj appears in F 00
12 . Thus, F 00

12 ∈ Z2[x3, . . . , x2n−1]

is a complete quadratic polynomial over 2n−3 variables and it has a twice-linear 2-partition. Since

2n ⩾ 8, 2n− 3 ⩾ 5. By Lemma 7.33, we have 2n− 3 = 5, and after renaming variables,

F = (x3 + x4 + a)(x4 + x5 + b) + (x3 + x4 + x5 + x6 + c)(x3 + x4 + x5 + x7 + d)

where a, b, c, d ∈ Z2. Without loss of generality, we may assume that L+
1 ·L+

2 = (x3 + x4 + a)(x4 +

x5 + b). Then,

S+ = S (∂+12f) = {(x3, . . . , x8) ∈ E2n−2 | x3 = x4 + a and x4 = x5 + b},

for some a, b ∈ Z2.

Clearly ∂+12f is a 6-ary signature and |S (∂+12f)| = 25−2 = 23. We show that ∂+12f /∈ B⊗3∪F6∪

FH
6 . Then, by Corollary 7.11, we get #P-hardness. Since the support of a signature in F6 ∪ FH

6

is either E6 or O6 whose sizes are both 25. Thus, ∂+12f /∈ F6 ∪ FH
6 . For any 6-ary signature g in

B⊗3, its 6 variables can be divided into three independent pairs such that on the support S (g), the

values of variables inside each pair do not rely on the values of variables of other pairs. Thus, if we

pick any three variables in S (g), the degree of freedom of them is at least 2; more precisely, there

are at least 4 assignments on these three variables which can be extended to an input in S (g).

However, in S (∂+12f), the degree of freedom of variables x3, x4, x5 is only 1, namely there are only
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two assignments on x3, x4, x5 that can be extended to an input in S (∂+12f). Thus, ∂+12f /∈ B⊗3.

This completes the proof of Lemma 7.35.

7.3.4 Affine Signature Condition

Finally, by further assuming that f has affine support, we consider whether f itself is an affine

signature. We prove that this is true only for signature of arity 2n ⩾ 10. For signature f of arity

2n = 8, we show that either f ∈ A or the following signature is realizable.

h8 = χT · (−1)x1x2x3+x1x2x5+x1x3x5+x2x3x5 , where T = S (h8) = S (f8).

Note that in the support S (f8) (see its definition (7.11) for this Queen of the Night f8), by

taking x1, x2, x3, x5 as free variables, the remaining 4 variables are mod 2 sums of
(
4
3

)
subsets of

{x1, x2, x3, x5}. Clearly, h8 is not affine, but it has affine support and all its nonzero entries have

the same norm. One can check that h8 satisfies 2nd-Orth and h8 ∈
∫
B A . But fortunately, we

show that by merging h8, we can realize a 6-ary signature that is not in B⊗∪F6∪FH
6 . By Corollary

7.11, we are done.

After we give one more result about multilinear boolean polynomials, we make our final step

towards Theorem 7.38.

Lemma 7.36. Let F (x1, . . . , xn) ∈ Z2[x1, . . . , xn] be a complete cubic polynomial, L(x2, . . . , xn) ∈

Z2[x2, . . . , xn] and d(L) ⩽ 1. If we substitute x1 by xn+1+L(x2, . . . , xn) in F to get F ′, and suppose

F ′(x2, . . . , xn+1) = F (xn+1 + L, x2, . . . , xn) ∈ Z2[x2, . . . , xn+1] is also a complete cubic polynomial,

then

• If n ⩾ 5, then L must be a constant ϵ = 0 or 1.

• If n = 4, then L must be either ϵ, or of the form xi + xj + ϵ, for some ϵ = 0 or 1, for some

{i, j} ∈ {2, 3, 4}.

证明. Since F (x1, . . . , xn) is a complete cubic polynomial, we can write it as

F (x1, . . . , xn) = x1 ·
∑

2⩽i<j⩽n
xixj +

∑
2⩽i<j<k⩽n

xixjxk +G(x1, . . . , xn)
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where d(G) ⩽ 2. Then,

F ′(x2, . . . , xn, xn+1) = (xn+1 + L) ·
∑

2⩽i<j⩽n
xixj +

∑
2⩽i<j<k⩽n

xixjxk +G(xn+1 + L, . . . , xn).

Let G′(x2, . . . , xn, xn+1) = G(xn+1 + L, . . . , xn). Since d(L) ⩽ 1 and d(G) ⩽ 2, d(G′) ⩽ 2. Then,

there is no cubic term in G′(x2, . . . , xn, xn+1). Since F ′(x2, . . . , xn, xn+1) is a complete cubic poly-

nomial over variables (x2, . . . , xn, xn+1) and xn+1 ·
∑

2⩽i<j⩽n xixj+
∑

2⩽i<j<k⩽n xixjxk already gives

every cubic term over (x2, . . . , xn, xn+1) exactly once, there is no cubic term in L ·
∑

2⩽i<j⩽n xixj

(after taking module 2). If L ≡ 0 or 1, then we are done. Otherwise, there is a variable that

appears in L. Without loss of generality, we may assume that x2 ∈ L (i.e., x2 appears in L).

Let Q(x3, . . . , xn) =
∑

3⩽i<j⩽n xixj ∈ Z2[x3, . . . , xn]. Since n ⩾ 4, we have Q 6≡ 0. For every

xixj ∈ Q, since x2 ∈ L, the cubic term x2xixj will appear in L ·
∑

2⩽i<j⩽n xixj . To cancel it,

exactly one between xi · x2xj and xj · x2xi must also appear in L ·
∑

2⩽i<j⩽n xixj . Thus, exactly

one between xi and xj appears in L.

If n ⩾ 5, then x3x4, x4x5, x3x5 ∈ Q. Thus, exactly one between x3 and x4 is in L, exactly

one between x4 and x5 is in L, and exactly one between x3 and x5 is in L. Clearly, this is a

contradiction.

If n = 4, then Q = x3x4. Either x3 or x4 appears in L. Thus, L is a sum of two variables

among {x2, x3, x4} plus a constant 0 or 1.

Lemma 7.37. Suppose that F is a set of real-valued signatures of even arity, F does not satisfy

condition (T), and F is non-B hard. If F contains an irreducible 2n-ary signature f with parity

where 2n ⩾ 8, then

• Holantb(F) is #P-hard, or

• there is a signature g /∈ A of arity 2k < 2n that is realizable from f and B, or

• f ∈ A .

证明. Again, we may assume that f satisfies 2nd-Orth and f ∈
∫
B A . Also by Lemmas 7.27 and

7.35, we may assume that f(α) = ±1 for all α ∈ S (f) and S (f) is an affine linear space. Let

{x1, . . . , xm} be a set of free variables of S (f). Then, on the support S (f), every variable xi
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(1 ⩽ i ⩽ 2n) is expressible as a unique affine linear combination over Z2 of these free variables, i.e.,

xi = Li(x1, . . . , xm) = λ0i + λ1ix1 + . . . + λmi xm, where λ0i , . . . , λmi ∈ Z2. Clearly, for 1 ⩽ i ⩽ m,

L(xi) = xi. Then,

S (f) = {(x1, . . . , x2n) ∈ Z2n
2 | x1 = L1, . . . , x2n = L2n}

= {(x1, . . . , x2n) ∈ Z2n
2 | xm+1 = Lm+1, . . . , x2n = L2n}.

Also, let I(xi) = {1 ⩽ k ⩽ m | λki = 1}. Clearly, for 1 ⩽ i ⩽ m, I(xi) = {i}. Form+1 ⩽ i ⩽ 2n,

we show that |Ixi | ⩾ 2. For a contradiction, suppose that there exists m + 1 ⩽ i ⩽ 2n such that

|Ixi | = 0 or 1. If |Ixi | = 0, then xi takes a constant value in S . Then, among f0i and f1i , one is a

zero signature. Thus, f is reducible. Contradiction. If |Ixi | = 1, then xi = xk or xk + 1 for some

free variable xk. Then, among f00ik , f01ik , f10ik and f11ik , two are zero signatures. Thus, f does not

satisfy 2nd-Orth. Contradiction.

Since f(α) = ±1 for all α ∈ S (f) and each α ∈ S (f) can be uniquely decided by its value

on the first m free variables, there exists a unique multilinear boolean polynomial F (x1, . . . , xm) ∈

Z2[x1, . . . , xm] such that

f(x1, . . . , xm, . . . , x2n) = χS(−1)F (x1,...,xm)

where S = S (f). If d(F ) ⩽ 2, then clearly f ∈ A . We are done. Thus, we may assume that

d(F ) > 2 and hence m > 2. Remember that F abij denotes the polynomial obtained by setting

variables (xi, xj) of F to (a, b) ∈ Z2
2. Then, fabij = (−1)F

ab
ij on S (f). We will show that for all

i, j ∈ [m], d(F 00
ij + F 11

ij ) ⩽ 1 and d(F 01
ij + F 10

ij ) ⩽ 1. For brevity of notation, we prove this for

{i, j} = {1, 2}. The proof for arbitrary {i, j} is the same by replacing {1, 2} with {i, j}. We first

show that d(F 00
ij +F

11
ij ) ⩽ 1. We use S0 to denote S (f00ij ) and S1 to denote S (f11ij ). By Lemma 7.34,

there are two cases, S0 = S1 or S0 ∩ S1 = ∅.

• Suppose that S0 = S1. For convenience, we use L0
i to denote (Li)

00
12 and L1

i to denote (Li)
11
12.

Then,
S0 ={(x3, . . . , x2n) ∈ Z2n−2

2 | xm+1 = L0
m+1, . . . , x2n = L0

2n}

S1 ={(x3, . . . , x2n) ∈ Z2n−2
2 | xm+1 = L1

m+1, . . . , x2n = L1
2n}.
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So L0
i ≡ L1

i for all i ⩾ m+ 1. Thus, either {1, 2} ⊆ I(xi) or {1, 2} ∩ I(xi) = ∅ for i ⩾ m+ 1.

Let S+ = {α ∈ S0 | f00ij (α) = f11ij (α)} and S− = {α ∈ S0 | f00ij (α) = −f11ij (α)}. Then,

〈f00ij , f11ij 〉 = 1 · |S+| − 1 · |S−| = 0. Since S0 = S+ ∪ S−, |S+| = |S−| = 1
2 |S0|. Note that

S (∂12f) = S+ and S (∂−12f) = S−. By our assumption that f ∈
∫
B A , ∂12f, ∂−12f ∈ A .

Thus, both S+ and S− are affine linear subspaces of S0 = S1. Since |S+| = |S−| = |S0|/2,

there exists an (affine) linear polynomial L(x3, . . . , x2n) such that

S+ = {(x3, . . . , x2n) ∈ S0 | L(x3, . . . , x2n) = 0},

and

S− = {(x3, . . . , x2n) ∈ S0 | L(x3, . . . , x2n) = 1}.

For (x3, . . . , x2n) ∈ S0, and i ⩾ m + 1, we can substitute the variable xi that appears in

L(x3, . . . , x2n) with L0
i ≡ L1

i . Then, we get an (affine) linear polynomial L′(x3, . . . , xm) ∈

Z2[x1, . . . , xm] such that L′(x3, . . . , xm) = L(x3, . . . , xm, xm+1, . . . , x2n) for (x3, . . . , x2n) ∈ S0.

Thus,

S+ = {(x3, . . . , x2n) ∈ S0 | L′(x3, . . . , xm) = 0},

and

S− = {(x3, . . . , x2n) ∈ S0 | L′(x3, . . . , xm) = 1}.

Note that as |S+| = |S−| > 0, the affine linear polynomial L′ is non-constant, i.e., d(L′) = 1.

Then, for every (x3, . . . , xm) ∈ Zm−2
2 ,

(−1)F
00
12 (x3,...,xm) = (−1)F

11
12 (x3,...,xm) if L′(x3, . . . , xm) = 0

and

(−1)F
00
12 (x3,...,xm) = −(−1)F

11
12 (x3,...,xm) if L′(x3, . . . , xm) = 1.

Thus,

(−1)F
00
12 (x3,...,xm)+F 11

12 (x3,...,xm) = (−1)L
′(x3,...,xm).

Therefore, F 00
12 (x3, . . . , xm) + F 11

12 (x3, . . . , xm) ≡ L′(x3, . . . , xm). Then, d(F 00
12 + F 11

12 ) = 1.
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• Suppose that S0∩S1 = ∅. Then, there exists a variable xi where i ⩾ m+1 such that between

{1, 2}, exactly one index is in I(xi). Without loss of generality, we may assume that i = m+1,

1 ∈ I(xm+1) and 2 /∈ I(xm+1). Then, xm+1 = x1 +K(x3, . . . , xm) where K ∈ Z2[x3, . . . , xm]

is an (affine) linear polynomial. Consider S0.

S0 = {(x3, . . . , x2n) ∈ Z2n−2
2 | x1 = x2 = 0, xm+1 = x1 +K,xm+2 = Lm+2 . . . , x2n = L2n}.

Since x1 = x2 on S0, for every i ⩾ m+ 2, if x1 or x2 appear in Li, we substitute each one of

them with xm+1+K. We get a linear polynomial Ki ∈ Z2[x3, . . . , xm, xm+1]. Then, for every

(x3, . . . , x2n) ∈ S0, Li = Ki. Thus,

S0 = {(x3, . . . , x2n) ∈ Z2n−2
2 | xm+1 +K = 0, xm+2 = Km+2 . . . , x2n = K2n}.

Similarly, we have

S1 = {(x3, . . . , x2n) ∈ Z2n−2
2 | xm+1 +K = 1, xm+2 = Km+2 . . . , x2n = K2n}.

Let S∪ = S0 ∪ S1. Then,

S∪ = {(x3, . . . , x2n) ∈ Z2n−2
2 | xm+2 = Km+2 . . . , x2n = K2n}.

Thus, we can pick x3, . . . , xm, xm+1 as a set of free variables of S∪.

Consider g = ∂12f . Clearly, S (g) = S∪ since S0 ∩ S1 = ∅. Then, there exists a unique

multilinear boolean polynomial G(x3, . . . , xm+1) ∈ Z2[x3, . . . , xm+1] such that

g(x3, . . . , x2n) = χS∪ · (−1)G(x3,...,xm+1).

For every (x3, . . . , x2n) ∈ S0 that is uniquely decided by (0, 0, x3, . . . , xm) ∈ {(0, 0)} × Zm−2
2 ,

xm+1 = K(x3, . . . , xm) and f0012 (x3, . . . , x2n) = g(x3, . . . , x2n). Thus, for every (x3, . . . , xm) ∈

Zm−2
2 ,

(−1)F
00
12 (x3,...,xm) = (−1)G(x3,...,xm,K).
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Also, for every (x3, . . . , x2n) ∈ S1 that is uniquely decided by (1, 1, x3, . . . , xm) ∈ {(1, 1)} ×

Zm−2
2 , xm+1 = K(x3, . . . , xm) + 1, and f1112 (x3, . . . , x2n) = g(x3, . . . , x2n). Thus, for every

(x3, . . . , xm) ∈ Zm−2
2 ,

(−1)F
11
12 (x3,...,xm) = (−1)G(x3,...,xm,K+1).

Thus, F 00
12 (x3, . . . , xm) ≡ G(x3, . . . , xm,K) and F 11

12 (x3, . . . , xm) ≡ G(x3, . . . , xm,K + 1).

Since f ∈
∫
B A , g = ∂12f ∈ A . Thus,

g′(x3, . . . , xm, xm+1) = (−1)G(x3,...,xm,xm+1)

is also in ∈ A . Let y = xm+1 +K(x3, . . . , xm) ∈ Z[x3, . . . , xm+1] be an affine linear combi-

nation of variables x3, . . . , xm+1. Since g ∈ A , by Lemma 2.11,

d[G(x3, . . . , xm,K) +G(x3, . . . , xm,K + 1)] ⩽ 1.

Thus, d(F 00
12 + F 11

12 ) ⩽ 1. Also if d(G) = 1, then by Lemma 2.11

d(F 00
12 + F 11

12 ) = 0, i.e., F 00
12 + F 11

12 ≡ 0 or 1. (7.17)

Similarly, we can show that d(F 01
12 + F 10

12 ) ⩽ 1. Thus, for all i, j ∈ [m], d(F 00
ij + F 11

ij ) ⩽ 1 and

d(F 01
ij + F 10

ij ) ⩽ 1. By Lemma 7.26, d(F ) ⩽ 3.

If d(F ) ⩽ 2, then clearly f ∈ A . We are done. Otherwise, d(F ) = 3 and by Lemma 7.26, F is a

complete cubic multilinear polynomial overm variables. If we pick another set X ofm free variables

and substitute variables of F by variables in X, then we will get a cubic multilinear polynomial

F ′ over variables in X. Same as the analysis of F , F ′ is also a complete cubic polynomial. In

particular, consider the variable xm+1. Recall that |I(xm+1)| ⩾ 2. Without loss of generality, we

assume that 1 ∈ I(xm+1). Then, xm+1 = x1+L(x2, . . . , xm) where L(x2, . . . , xm) is an affine linear

combination of variables x2, . . . , xm. We substitute x1 in F by xm+1 + L, and we get a complete

cubic multilinear polynomial F ′(x2, . . . , xm+1) ∈ Z2[x2, . . . , xm+1]. By Lemma 7.36, if m ⩾ 5, then

xm+1 = x1 or xm+1 = x1. Thus, I(xm+1) = {1}. This contradicts with |I(xm=1)| ⩾ 2. Thus,

m ⩽ 4.



195

If m = 4, then by Lemma 7.36, x5 = x1 + ϵ, or x5 = x1 + xi + xj + ϵ, where ϵ = 0 or 1,

for some 2 ⩽ i < j ⩽ 4. Since |I(x5)| ⩾ 2, the case that x5 = x1 + ϵ is impossible. Similarly,

for i ⩾ m + 2, the variable xi is a sum of three variables in {x1, x2, x3, x4} plus a constant 0 or

1. If there exist xi and xj for 5 ⩽ i < j ⩽ 2n such that I(xi) = I(xj). Then, xi = xj or xj .

Thus, among f00ij , f01ij , f10ij and f11ij , two are zero signatures. Thus, f does not satisfy 2nd-Orth.

Contradiction. Thus, I(xi) 6= I(xj) for any 5 ⩽ i < j ⩽ 2n. There are only
(
4
3

)
= 4 ways to

pick three variables from {x1, x2, x3, x4}. Thus, 2n ⩽ 4 + 4 = 8. By the hypothesis 2n ⩾ 8 of

the lemma, we have 2n = 8. Clearly, |S (f)| = 24 = 16. Due to 2nd-Orth, for all {i, j} ∈ [8],

|S (f00ij )| = |S (f01ij )| = |S (f10ij )| = |S (f11ij )| = 4.

• If there exists {i, j} such that S (f00ij ) = S (f11ij ), then for any point α in S (f00ij ) = S (f11ij ),

regardless whether f00ij (α) = f11ij (α) or f00ij (α) = −f11ij (α), either α ∈ S (∂+ijf) or α ∈ S (∂−ijf).

Thus,

S (∂+ijf) ∪ S (∂−ijf) = S (f00ij ) = S (f11ij ).

Also, by 2nd-Orth,

〈f00ij , f11ij 〉 = |S (∂−ijf)| − |S (∂+ijf)| = 0.

Thus, |S (∂+ijf)| = |S (∂−ijf)| = 2. Note that every 6-ary signature in B⊗ has support of size

8, and every signature in F6 and FH
6 has support of size 32. Thus, ∂+ijf /∈ B ∪ F6 ∪ FH

6 .

Then, by Corollary 7.11, we get #P-hardness. Similarly, if there exists {i, j} such that

S (f01ij ) = S (f10ij ), then we have |S (∂+̂ijf)| = |S (∂−̂ijf)| = 2. Thus, ∂+̂ijf /∈ B⊗ ∪ F6 ∪ FH
6 .

Again, we get #P-hardness.

• Otherwise, for all {i, j} ∈ [8], S (f00ij ) ∩ S (f11ij ) = ∅ and S (f01ij ) ∩ S (f10ij ) = ∅. Then,

S (∂+ijf) = S (f00ij ) ∪ S (f11ij ). Thus, |S (∂+ijf)| = 8. Clearly, ∂+ijf /∈ F6 ∪ FH
6 . If ∂+ijf /∈ B⊗3,

then we get #P-hardness. For a contradiction, suppose that ∂+ijf ∈ B⊗3. Then,

∂+ijf = χS (∂+ijf)
(−1)G

+
ij where d(G+

ij) = 1.

As we proved above in equation (7.17), F 00
ij + F 11

ij ≡ 0 or 1. Similarly, suppose ∂+̂ijf ∈ B⊗3,

and we can show that F 01
ij + F 10

ij ≡ 0 or 1. Thus, for all {i, j} ⊆ [8], F 00
ij + F 11

ij ≡ 0 or 1 and

F 01
ij + F 10

ij ≡ 0 or 1. Then, by Lemma 7.26, d(F ) ⩽ 2. Contradiction.
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Suppose that m = 3. Remember that for 4 ⩽ i ⩽ 2n, |I(xi)| ⩾ 2. Thus, xi is a sum of at least

two variables in {x1, x2, x3} plus a constant 0 or 1. Again, if there exist xi and xj for 4 ⩽ i < j ⩽ 2n

such that I(xi) = I(xj), then among f00ij , f01ij , f10ij and f11ij , two are zero signatures. Contradiction.

Thus, I(xi) 6= I(xj) for any 4 ⩽ i < j ⩽ 2n. There are
(
3
2

)
+
(
3
3

)
= 4 different ways to pick at least

two variables from {x1, x2, x3}. Thus, 2n ⩽ 3 + 4 = 7. Contradiction.

Theorem 7.38. Suppose that F is a set of real-valued signatures of even arity, F does not satisfy

condition (T), and F is non-B hard. Then, Holantb(F) is #P-hard.

证明. Since F does not satisfy condition (T), F contains a signature f /∈ A . Suppose that f has

arity 2n. We prove this theorem by induction on 2n.

If 2n = 2, 4 or 6, then by Corollary 7.11 and its remark, Holantb(F) is #P-hard.

Inductively assume for some 2k ⩾ 6, Holantb(F) is #P-hard when 2n ⩽ 2k. We consider

the case that 2n = 2k + 2 ⩾ 8. First, suppose that f is reducible. If it is a tensor product of

two signatures of odd arity, then we can realize a signature of odd arity by factorization. We get

#P-hardness by Theorem 5.35. Otherwise, it is a tensor product of two signatures of even arity

that are not both in A since f /∈ A . Then, we can realize a non-affine signature of arity 2m ⩽ 2k

by factorization. By our induction hypothesis, we get #P-hardness. Thus, we may assume that

f is irreducible. If f has no parity, then we get #P-hardness by Lemma 7.17. Thus, we may

also assume that f has parity. Then by Lemma 7.37, Holantb(F) is #P-hard, or we can realize a

non-affine signature of arity 2m ⩽ 2k. By our induction hypothesis, we get #P-hardness.

Since B is realizable from f6 and {f6} ∪ F is non-B hard for any real-valued F that does not

satisfy condition (T), we have the following result.

Lemma 7.39. Suppose that F is a set of real-valued signatures of even arity and F does not satisfy

condition (T). Then, Holantb(f6,F) is #P-hard.

Combining Theorem 7.5 and Lemma 7.39, we have the following result. This concludes Chap-

ter 7, and we are done with the arity 6 case.

Lemma 7.40. Suppose that F is a set of real-valued signatures of even arity and F does not

satisfy condition (T). Let F̂ = Z−1F . If F̂ contains a signature f̂ of arity 6 and f̂ /∈ Ô⊗, then

Holant(6=2| F̂) is #P-hard.
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Chapter 8

Final Obstacle: An 8-ary Signature

with the Strong Bell Property

We have seen some extraordinary properties of the signature f8. Now, we formally analyze

it. The existence of f8 presented a more formidable obstacle to the induction proof. In order

to handle it, We introduce Holant problems with limited appearances and give a novel reduction

from Holantb(f8,F) to Holant(f8,F). We prove a #P-hardness result for Holant(f8,F). Finally,

we show that our induction proof works for signatures of arity 2n ⩾ 10. This finishes the proof of

the dichotomy for real-valued Holant problems.

8.1 The Discovery of f8

Remember that f8 = χT where

T =S (f8) = {(x1, x2, . . . , x8) ∈ Z8
2 | x1 + x2 + x3 + x4 = 0, x5 + x6 + x7 + x8 = 0,

x1 + x2 + x5 + x6 = 0, x1 + x3 + x5 + x7 = 0}.

={00000000, 00001111, 00110011, 00111100, 01010101, 01011010, 01100110, 01101001,

10010110, 10011001, 10100101, 10101010, 11000011, 11001100, 11110000, 11111111}.

(8.1)

One can see that S (f8) has the following structure: the sums of the first four variables, and

the last four variables are both even; the assignment of the first four variables are either identical

to, or complement of the assignment of the last four variables. Another interesting description of

S (f8) is as follows: One can take 4 variables, called them y1, y2, y3, y4. Then on the support the

remaining 4 variables are mod 2 sums of
(
4
3

)
subsets of {y1, y2, y3, y4}, and y1, y2, y3, y4 are free

variables. (However, the 4 variables (y1, y2, y3, y4) cannot be taken as (x1, x2, x3, x4) in the above
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description (8.1). But one can take (y1, y2, y3, y4) = (x1, x2, x3, x5). More specifically, one can take

any 3 variables xi, xj , xk from {x1, . . . , x8} first as free variables, which excludes one unique other

xℓ from the remainder set X ′ = {x1, . . . , x8} \ {xi, xj , xk}, and then one can take any one variable

xr ∈ X ′ as the 4th free variable. Then the remaining 4 variables are the mod 2 sums of
(
4
3

)
subsets

of the 4 free variables {xi, xj , xk, xr}, and in particular xℓ = xi + xj + xk, on S (f8).) We give the

following Figure 7 to visualize the signature matrix M1234(f8). A block with orange color denotes

an entry +1. Other blank blocks are zeros.

0000

0011

0101
0110

1001
1010

1100

1111

0000

0011

0101
0110

1001
1010

1100

1111

图 7: A visualization of f8, which happens to be the same as f̂8 = Z−1f8

One can check that f8 satisfies both 2nd-Orth and f8 ∈
∫
O⊗. Also, f8 is unchanged under the

holographic transformation by Z−1, i.e., f̂8 = Z−1f8 = f8. Now, we show how this extraordinary

signature f̂8 was discovered. We use the notation f̂8 since we consider the problem Holant( 6=2| F̂)

for complex-valued F̂ satisfying ars. We prove that if F̂ contains an 8-ary signature f̂ where

f̂ /∈ Ô⊗, then Holant( 6=2| F̂) is #P-hard or f̂8 is realizable from f̂ (Theorem 8.6).

Remember that D = {6=2}. Then D⊗ = {λ · (6=2)
⊗n | λ ∈ R\{0}, n ⩾ 1} is the set of tensor

products of binary disequalities 6=2 up to a nonzero real scalar. If for all pairs of indices {i, j},

∂̂ij f̂ ∈ D⊗, then we say f̂ ∈
∫̂
D⊗. Clearly, if f̂ ∈ D⊗ and f̂ has arity greater than 2, then f̂ ∈

∫̂
D⊗.

We first show the following result for signatures of arity at least 8.

Lemma 8.1. Let f̂ /∈ Ô⊗ be a signature of arity 2n ⩾ 8 in F̂ . Then,

• Holant( 6=2| F̂) is #P-hard, or
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• there is a signature ĝ /∈ Ô⊗ of arity 2k ⩽ 2n− 2 that is realizable from f̂ , or

• there is an irreducible signature f̂∗ ∈
∫̂
D⊗ of arity 2n that is realizable from f̂ .

证明. Since f̂ /∈ Ô⊗, f̂ 6≡ 0. Again, we may assume that f̂ is irreducible. Otherwise, by factoriza-

tion, we can realize a nonzero signature of odd arity and we get #P-hardness by Theorem 5.35, or we

can realize a signature of lower even arity that is not in Ô⊗ and we are done. Under the assumption

that f̂ is irreducible, we may further assume that f̂ satisfies 2nd-Orth by Lemma 6.6. Consider

signatures ∂̂ij f̂ for all pairs of indices {i, j}. If there exists a pair {i, j} such that ∂̂ij f̂ /∈ Ô⊗, then

let ĝ = ∂̂ij f̂ , and we are done. Thus, we may also assume that f̂ ∈
∫̂
Ô⊗.

If for all pairs of indices {i, j}, we have ∂̂ij f̂ ≡ 0. Then, by Lemma 3.9, f̂(α) = 0 for all α with

wt(α) 6= 0 or 2n. Since f 6≡ 0 and by ars, |f̂ (⃗02n)| = |f̂ (⃗12n)| 6= 0. Clearly, such a signature does

not satisfy 2nd-Orth. Contradiction. Thus, without loss of generality, we assume that ∂̂12f̂ 6≡ 0.

Since ∂̂12f̂ ∈ Ô⊗, without loss of generality, we may assume that in the UPF of ∂̂12f̂ , variables

x3 and x4 appear in one binary signature b1(x3, x4), x5 and x6 appear in one binary signature

b2(x5, x6) and so on. Thus, we have

∂̂12f̂ = b̂1(x3, x4)⊗ b̂2(x5, x6)⊗ b̂3(x7, x8)⊗ . . .⊗ b̂n−1(x2n−1, x2n).

By Lemma 3.6, all these binary signatures b̂1, b̂2, …, b̂n−1 are realizable from f by factorization.

Note that for nonzero binary signatures b̂i(x2i+1, x2i+2) (1 ⩽ i ⩽ n− 1), if we connect the variable

x2i+1 of two copies of b̂i(x2i+1, x2i+2) using 6=2 (mating two binary signatures), then we get 6=2

up to a scalar. We consider the following gadget construction on f̂ . Recall that in the setting of

Holant(6=| F̂), variables are connected using 6=2. For 1 ⩽ i ⩽ n − 1, by a slight abuse of names

of variables, we connect the variable x2i+1 of f̂ with the variable x2i+1 of b̂i(x2i+1, x2i+2) using

6=2. We get a signature f̂ ′ of arity 2n. (Note that, as a complexity reduction using factorization

(Lemma 3.6), we can only apply it a constant number of times. However, the arity 2n of f̂ is

considered a constant, as f̂ ∈ F̂ , which is independent of the input size of a signature grid to the

problem Holant(6=2| F̂).) We denote this gadget construction by G1 and we write f̂ ′ as G1 ◦ f̂ .

G1 is constructed by extending variables of f̂ using binary signatures realized from ∂̂12f̂ . It does

not change the irreducibility of f̂ . Thus, f̂ ′ is irreducible since f̂ is irreducible. Similarly, we may

assume that f̂ ′ ∈
∫̂
Ô⊗. Otherwise, we are done.
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Consider the signature ∂̂12f̂ ′. Since the above gadget construction G1 does not touch variables

x1 and x2 of f , G1 commutes with the merging gadget ∂̂12. (Succinctly, the commutativity can be

expressed as ∂̂12f̂ ′ = ∂̂12(G1 ◦ f̂) = G1 ◦ ∂̂12f̂ .) Thus, ∂̂12f̂ ′ can be realized by performing the gadget

construction G1 on ∂̂12f̂ , which connects each binary signature b̂i(x2i+1, x2i+2) in the UPF of ∂̂12f̂

with another copy of b̂i(x2i+1, x2i+2) (in the mating fashion). Thus, each binary signature b̂i in

∂̂12f̂ is changed to 6=2 up to a nonzero scalar after this gadget construction G1. After normalization

and renaming variables, we have

∂̂12f̂ ′ = ( 6=2)(x3, x4)⊗ (6=2)(x5, x6)⊗ (6=2)(x7, x8)⊗ . . .⊗ ( 6=2)(x2n−1, x2n). (8.2)

Thus, ∂̂12f̂ ′ ∈ D⊗. Moreover, for all pairs of indices {i, j} disjoint with {1, 2}, we have

∂̂(ij)(12)f̂ ′ ∈ D⊗, and hence ∂̂(ij)(12)f̂ ′ 6≡ 0. (8.3)

A fortiori, for all pairs of indices {i, j} disjoint with {1, 2}, ∂̂ij f̂ ′ 6≡ 0.

Now, we show that we can realize an irreducible signature f̂∗ of arity 2n from f̂ ′ such that

f̂∗ ∈
∫̂
D⊗. We first prove the following claim.

Claim. Let ĥ ∈
∫̂
Ô⊗ be a signature of arity 2n ⩾ 8. If ∂̂ij ĥ ∈ D⊗ for all {i, j} disjoint

with {1, 2}, then ĥ ∈
∫̂
D⊗.

Clearly, we only need to show that ∂̂1kĥ ∈ D⊗ for all 2 ⩽ k ⩽ 2n. Then, by symmetry we also

have ∂̂2kĥ ∈ D⊗ for k = 1 and all 3 ⩽ k ⩽ 2n. This will prove ĥ ∈
∫̂
D⊗. Consider ∂̂1kĥ for an

arbitrary 2 ⩽ k ⩽ 2n. Since for all {i, j} disjoint with {1, 2}, we have ∂̂ij ĥ ∈ D⊗, a fortiori for all

{i, j} disjoint with {1, 2} ∪ {k},

∂̂(1k)(ij)ĥ ∈ D⊗. (8.4)

Since ĥ has arity 2n ⩾ 8, we can pick a pair of indices {i, j} disjoint with {1, 2} ∪ {k}. Since

∂̂(1k)(ij)ĥ ∈ D⊗, which is nonzero, a fortiori we have ∂̂1kĥ 6≡ 0. So we may consider the UPF of

∂̂1kĥ, which is known to be in Ô⊗. For a contradiction, suppose that there is a binary signature b̂1
(as a factor of ∂̂1kĥ) such that b̂1 is not an associate of 6=2. Among the two variables in the scope

of b̂1, at least one is not x2. We pick such a variable xs where xs 6= x2. Then, we consider another

binary signature b̂2 in the UPF of ∂̂1kĥ.
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• If b̂2 = λ· 6=2, for some nonzero scalar λ, then we pick a variable xt in the scope of b̂2 that

is not x2. Consider ∂̂(st)(1k)ĥ. When merging variables xs and xt of ∂̂1kĥ, we connect the

variable xs of b̂1 with the variable xt of λ· 6=2, and the resulting binary signature is just λ · b̂1,

which is not an associate of 6=2. Thus, we have ∂̂(st)(1k)ĥ /∈ D⊗.

• Otherwise, b̂2 is not an associate of 6=2. Since ∂̂1kĥ has arity 2n− 2 ⩾ 6, we can find another

binary signature b̂3 in the UPF of ∂̂1kĥ. We pick a variable xt in the scope of b̂3 that is not

x2. Consider ∂̂(st)(1k)ĥ. Now, when merging variables xs and xt of ∂̂1kĥ, the binary signature

b̂2 is untouched. Thus, we have b̂2 | ∂̂(st)(1k)ĥ, which implies that ∂̂(st)(1k)ĥ /∈ D⊗.

Note that in both cases, {s, t} ∩ ({1, 2} ∪ {k}) = ∅. Therefore the two cases above both

contradict (8.4) by picking {i, j} = {s, t}. Thus, ∂̂1kĥ ∈ D⊗ for all 2 ⩽ k ⩽ 2n. Then similarly, we

can show that ∂̂2kĥ ∈ D⊗ for all 3 ⩽ k ⩽ 2n. This finishes the proof of our Claim.

Remember that ∂̂ij f̂ ′ 6≡ 0 for all {i, j} disjoint with {1, 2}. We consider the UPF of ∂̂ij f̂ ′. Since

f̂ ′ ∈
∫̂
Ô⊗, there are two cases depending on whether variables x1 and x2 appear in one binary

signature or two distinct binary signatures.

Case 1. For every {i, j} disjoint with {1, 2}, in the UPF of ∂̂ij f̂ ′, x1 and x2 appear in one nonzero

binary signature b̂ij(x1, x2) ∈ Ô. In other words, for every {i, j} disjoint with {1, 2},

∂̂ij f̂ ′ = b̂ij(x1, x2)⊗ ĝij , for some ĝij 6≡ 0.

(These factors b̂ij and ĝij are nonzero since ∂̂ij f̂ ′ 6≡ 0.) Then, ĝij ∼ ∂̂(12)(ij)f̂ ′, and by (8.3), we have

ĝij ∈ D⊗. Also for {k, ℓ} disjoint with both {i, j} and {1, 2}, ∂̂(kℓ)(ij)f̂ ′ 6≡ 0 since ∂̂(12)(kℓ)(ij)f̂ ′ =

∂̂(ij)(kℓ)(12)f̂ ′ 6≡ 0.

We first show that for any two pairs {i, j} 6= {k, ℓ} that are both disjoint with {1, 2},

b̂ij(x1, x2) ∼ b̂kℓ(x1, x2). If {i, j} is disjoint with {k, ℓ}, then b̂ij(x1, x2) | ∂̂(kℓ)(ij)f̂ ′ and b̂kℓ(x1, x2) |

∂̂(ij)(kℓ)f̂ ′. Since ∂̂(kℓ)(ij)f̂ ′ = ∂̂(ij)(kℓ)f̂ ′ 6≡ 0, by Lemma 3.4, we have b̂ij(x1, x2) ∼ b̂kℓ(x1, x2). Oth-

erwise, {i, j} and {k, ℓ} are not disjoint. Since f̂ ′ has arity ⩾ 8, we can find another pair of indices

{s, t} such that it is disjoint with {1, 2} ∪ {i, j} ∪ {k, ℓ}. Then, by the above argument, we have

b̂ij(x1, x2) ∼ b̂st(x1, x2), and b̂st(x1, x2) ∼ b̂kℓ(x1, x2). Thus, b̂ij(x1, x2) ∼ b̂kℓ(x1, x2). We can use

a binary signature b̂(x1, x2) to denote these binary signature b̂ij(x1, x2) for all {i, j} disjoint with
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{1, 2}. Then, b̂(x1, x2) | ∂̂ij f̂ ′ for all {i, j} disjoint with {1, 2}. Also, b̂(x1, x2) is realizable from f̂ ′

by merging and factorization.

Then, we consider the following gadget construction G2 on f̂ ′. By a slight abuse of variable

names, we connect the variable x1 of f̂ ′ with the variable x1 of b̂(x1, x2) and we get a signature

f̂∗. Clearly, G2 is constructed by extending variables of f̂ ′. It does not change the irreducibility

of f̂ ′. Thus, f̂∗ is irreducible. Again, we may assume that f̂∗ ∈
∫̂
Ô⊗. Consider ∂̂ij f̂∗ for all {i, j}

disjoint with {1, 2}. Since the above gadget construction G2 only touches the variable x1 of f ′, it

commutes with the merging operation ∂̂ij . Thus, ∂̂ij f̂∗ can be realized by performing the gadget

construction G2 on ∂̂ij f̂ ′, i.e., connecting the binary signature b̂(x1, x2) in the UPF of ∂̂ij f̂ ′ with

itself (in the mating fashion), which changes b̂(x1, x2) to 6=2 up to some nonzero scalar λij . Thus,

for all {i, j} disjoint with {1, 2}, after renaming variables, we have

∂̂ij f̂∗ = λij · (6=2)(x1, x2)⊗ ĝij ∈ D⊗.

Thus, ∂̂ij f̂∗ ∈ D⊗ for all {i, j} disjoint with {1, 2}. By our Claim, f̂∗ ∈
∫̂
D⊗. We are done with

Case 1.

Case 2. There is a pair of indices {i, j} disjoint with {1, 2} such that x1 and x2 appear in two

distinct nonzero binary signatures b̂′1(x1, xu) and b̂′2(x2, xv) in the UPF of ∂̂ij f̂ ′. In other words,

there exits {i, j} such that

∂̂ij f̂ ′ = b̂′1(x1, xu)⊗ b̂′2(x2, xv)⊗ ĥij , for some ĥij 6≡ 0. (8.5)

Since ĥij | ∂̂(12)(ij)f̂ ′ and ∂̂(12)(ij)f̂ ′ ∈ D⊗, we have ĥij ∈ D⊗. Also, after merging variables x1 and x2
(using 6=2) in ∂̂ij f̂ ′, variables xu and xv form a binary disequality up to a nonzero scalar (this binary

signature on xu and xv must be a binary disequality because we already know ∂̂(12)(ij)f̂ ′ ∈ D⊗).

In other words, by connecting the variable x1 of b̂′1(x1, xu) and the variable x2 of b̂′2(x2, xv) (using

6=2), we get λ· 6=2 (xu, xv) for some λ 6= 0. By Lemma 3.19, we have b̂′1 ∼ b̂′2. Also, connecting the

variable xu of b̂′1 and the variable xv of b̂′2 (using 6=2) will give the binary signature λ· 6=2 (x1, x2)

as well.

We consider the following gadget construction G3 on f̂ ′. By a slight abuse of variable names,
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we connect variables x1 and x2 of f̂ ′ with the variable x1 of b̂′1 and x2 of b̂′2 using 6=2 respectively.

We get a signature f̂∗. Again, f̂∗ is irreducible since the gadget construction G3 does not change

the irreducibility of f̂ ′. Also, we may assume that f̂∗ ∈
∫̂
Ô⊗. Otherwise, we are done. Consider

∂̂ij f̂∗. Similarly, by the commutitivity of the gadget construction G3 and the merging gadget ∂̂ij ,

∂̂ij f̂∗ can be realized by connecting variables x1 and x2 of ∂̂ij f̂ ′ with the variable x1 of b̂′1 and the

variable x2 of b̂′2 respectively. After renaming variables, we have

∂̂ij f̂∗ = λij · ( 6=2)(x1, xu)⊗ (6=2) (x2, xv)⊗ ĥij ∈ D⊗. (8.6)

We now show that ∂̂12f̂∗ ∈ D⊗. Note that it is realized in the following way; we first connect

variables x1 and x2 of f̂ ′ with the variable x1 of b̂′1(x1, xu) and the variable x2 of b̂′2(x2, xv) respec-

tively (using 6=2) to get f̂∗, and then after renaming variables xu and xv to x1 and x2 respectively,

we merge them using 6=2 (see Figure 8(a)). By associativity of gadget constructions, we can change

the order; we first connect the variable xu of b̂′1(x1, xu) with the variable xv of b̂′2(x2, xv) (using

6=2), and then we use the resulting binary signature to connect variables x1 and x2 of f̂ ′ (edges

are connected using 6=2). Note that connecting xu of b̂′1(x1, xu) with xv of b̂′2(x2, xv) gives λ· 6=2

up to a nonzero scalar λ, and λ· 6=2 is unchanged by extending both of its two variables with 6=2

(see Figure 8(b)). Thus, ∂̂12f̂∗ is actually realized by merging x1 and x2 of f̂ ′ (using 6=2) up to a

nonzero scalar. Thus, we have ∂̂12f̂∗ ∼ ∂̂12f̂ ′, and hence ∂̂12f̂∗ ∈ D⊗, by the form (8.2) of ∂̂12f̂ ′.

图 8: Gadget constructions of ∂̂12f̂∗ and ∂̂12f̂ ′

Then, we show that ∂̂stf̂∗ ∈ D⊗ for all pairs of indices {s, t} disjoint with {1, 2, i, j} and

{s, t} 6= {u, v} where u and v are named in (8.6). Clearly, ∂̂stf̂∗ 6≡ 0 since ∂̂(st)(12)f̂∗ ∈ D⊗. We
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first show that in the UPF of ∂̂stf̂∗, x1 and x2 appear in two distinct nonzero binary signatures.

Otherwise, for a contradiction, suppose that there is a nonzero binary signature b̂∗(x1, x2) such

that b̂∗(x1, x2) | ∂̂stf̂∗. Then, b̂∗(x1, x2) | ∂̂(ij)(st)f̂∗ = ∂̂(st)(ij)f̂∗ 6≡ 0. By the form (8.6) of ∂̂ij f̂∗,

the only way that x1 and x2 can form a nonzero binary signature in ∂̂(st)(ij)f̂∗ is that the merging

gadget is actually merging xu and xv. Thus, {s, t} = {u, v}. Contradiction. Therefore, for some i′

and j′, we have

∂̂stf̂∗ = b̂∗st1(x1, xi′)⊗ b̂∗st2(x2, xj′)⊗ ĥst, (8.7)

for some b̂∗st1(x1, xi′), b̂∗st2(x2, xj′), ĥst 6≡ 0 since ∂̂stf̂∗ 6≡ 0. Since ĥst | ∂̂(12)(st)f̂∗ and ∂̂(12)(st)f̂∗ ∈

D⊗, we have ĥst ∈ D⊗. Also, by Lemma 3.19, b̂∗st1 ∼ b̂∗st2. For a contradiction, suppose that

∂̂stf̂∗ /∈ D⊗, then b̂∗st1(x1, xi′) 6∼ (6=2), and b̂∗st2(x2, xj′) 6∼ ( 6=2). Consider the signature ∂̂(st)(ij)f̂∗.

Since {s, t} 6= {u, v}, by the form (8.6) of ∂̂ij f̂∗, x1 and x2 appear in two binary signatures in

the UPF of ∂̂(st)(ij)f̂∗. Remember that ∂̂(st)(ij)f̂∗ = ∂̂(ij)(st)f̂∗. By the form (8.7) of ∂̂stf̂∗, if

{i′, j′} = {i, j}, then, after merging xi and xj of ∂̂stf̂∗, x1 and x2 will form a new binary signature

in ∂̂(ij)(st)f̂∗. Contradiction. Thus, {i′, j′} 6= {i, j}. Then, when merging xi and xj of ∂̂stf̂∗, among

b̂∗st1(x1, xi′) and b̂∗st2(x2, xj′), at least one binary signature is untouched. Thus, ∂̂(ij)(st)f̂∗ has a

factor that is not an associate of 6=2. A contradiction with ∂̂(ij)(st)f̂∗ ∈ D⊗, which is a consequence

of (8.6). Thus, ∂̂stf̂∗ ∈ D⊗.

Then, we show that ∂̂uvf̂∗ ∈ D⊗. Recall the form (8.6) of ∂̂ij f̂∗. Clearly, {u, v} is disjoint with

{1, 2, i, j}. Also, ∂̂uvf̂∗ 6≡ 0 since ∂̂(ij)(uv)f̂∗ ∈ D⊗. Consider the UPF of ∂̂uvf̂∗.

• If x1 and x2 appear in one nonzero binary signature b̂∗uv(x1, x2), then

∂̂uvf̂∗ = b̂∗uv(x1, x2)⊗ ĝuv for some ĝuv 6≡ 0.

Then, we have ĝuv ∼ ∂̂(12)(uv)f̂∗ ∈ D⊗ since ∂̂12f̂∗ ∈ D⊗. Also, since b̂∗uv(x1, x2) | ∂̂(ij)(uv)f̂∗ ∈

D⊗, we have b̂∗uv(x1, x2) ∈ D⊗. Hence, ∂̂uvf̂∗ ∈ D⊗.

• If x1 and x2 appear in two distinct nonzero binary signatures b̂∗uv1(x1, xi′) and b̂∗uv2(x2, xj′),

then

∂̂uvf̂∗ = b̂∗uv1(x1, xi′)⊗ b̂∗uv2(x2, xj′)⊗ ĥuv for some ĥuv 6≡ 0.
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Then, we have ĥuv ∈ D⊗ since ∂̂(12)(uv)f̂∗ ∈ D⊗. By the form (8.6) of ∂̂ij f̂∗, after merging

variables xu and xv of ∂̂ij f̂∗, variables x1 and x2 form a binary 6=2 in ∂̂(uv)(ij)f̂∗ = ∂̂(ij)(uv)f̂∗.

On the other hand, by the form of ∂̂uvf̂∗, the only way that x1 and x2 form a binary after

merging two variables in ∂̂uvf̂∗ is to merge xi′ and xj′ . Thus, we have {i′, j′} = {i, j}. Since

f̂∗ has arity 2n ⩾ 8, we can find another pair of indices {s, t} disjoint with {1, 2, i, j, u, v}.

When merging variables xs and xt in ∂̂uvf̂∗, binary signatures b̂∗uv1(x1, xi′) and b̂∗uv2(x2, xj′)

are untouched. Thus, we have b̂∗uv1(x1, xi′) ⊗ b̂∗uv2(x2, xj′) | ∂̂(st)(uv)f̂∗. As showed above, we

have ∂̂stf̂∗ ∈ D⊗ and then ∂̂(st)(uv)f̂∗ ∈ D⊗. Thus, b̂∗uv1(x1, xi′)⊗ b̂∗uv2(x2, xj′) ∈ D⊗ and then

∂̂uvf̂∗ ∈ D⊗.

So far, we have shown that ∂̂12f̂∗ ∈ D⊗, ∂̂ij f̂∗ ∈ D⊗ and ∂̂stf̂∗ ∈ D⊗ for all {s, t} disjoint with

{1, 2, i, j}. If we can further show that ∂̂ikf̂∗ ∈ D⊗ for all k 6= 1, 2, i, j, and then symmetrically

∂̂jkf̂∗ ∈ D⊗ for all k 6= 1, 2, i, j, then ∂̂stf̂∗ ∈ D⊗ for all {s, t} disjoint with {1, 2}. Thus, by our

Claim, f̂∗ ∈
∫̂
D⊗. This will finish the proof of Case 2.

Now we prove ∂̂ikf̂∗ ∈ D⊗ for all k 6= 1, 2, i, j. Since ∂̂(ik)(12)f̂∗ ∈ D⊗, we have ∂̂ikf̂∗ 6≡ 0. So

we can consider the UPF of ∂̂ikf̂∗.

• If x1 and x2 appear in one nonzero binary signature, then

∂̂ikf̂∗ = b̂∗ik(x1, x2)⊗ ĝik for some ĝik ∈ D⊗.

Here, ĝik ∈ D⊗ since ∂̂(ik)(12)f̂∗ ∈ D⊗. Since f̂∗ has arity 2n ⩾ 8, we can pick a pair of indices

{s, t} disjoint with {1, 2, i, j, k}, and merge variables xs and xt of ∂̂ikf̂∗. Then, b̂∗ik(x1, x2) |

∂̂(st)(ik)f̂∗. Since ∂̂stf̂∗ ∈ D⊗, ∂̂(st)(ik)f̂∗ = ∂̂(ik)(st)f̂∗ ∈ D⊗. Thus, b̂∗ik(x1, x2) ∈ D⊗ and then

∂̂ikf̂∗ ∈ D⊗.

• If x1 and x2 appear in two nonzero distinct binary signatures, then

∂̂ikf̂∗ = b̂∗ik1(x1, xp)⊗ b̂∗ik2(x2, xq)⊗ ĥik for some ĥik ∈ D⊗.

Again, here ĥik ∈ D⊗ since ∂̂(ik)(12)f̂∗ ∈ D⊗. By connecting variables x1 and x2 of ∂̂ikf̂∗,

xp and xq will form a binary disequality up to a nonzero scalar (this binary signature is

disequality because we know that ∂̂(ik)(12)f̂∗ ∈ D⊗). By Lemma 3.19, as the type of binary
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signatures, b̂∗ik1 ∼ b̂∗ik2. Between xp and xq, at least one of them is not xj ; suppose that it is

xp. We pick a variable xr in the scope of ĥik that is also not xj (such a variable xr exists as

2n ⩾ 8). Then, by merging xp and xr of ∂̂ikf̂∗, the binary signature b̂∗ik2(x2, xq) is untouched.

Since {p, r} is disjoint with {1, 2, i, j}, we have b̂∗ik2(x2, xq) | ∂̂(ik)(pr)f̂∗ ∈ D⊗. Thus, we have

b̂∗ik2(x2, xq) ∈ D⊗ and so does b̂∗ik1(x1, xp), since we have shown that they are associates as

the type of binary signatures. Thus, ∂̂ikf̂∗ ∈ D⊗.

As remarked earlier, by symmetry, we also have ∂̂jkf̂∗ ∈ D⊗ for all k 6= 1, 2, i, j. Thus, we are

done with Case 2.

Thus, an irreducible signature f̂∗ ∈
∫̂
D⊗ of arity 2n is realized from f̂ .

Remark 8.2. Since f̂∗ is realized from f̂ by gadget construction, f̂∗ satisfies ars as f̂ does.

We first give a condition (Lemma 8.4) in which we can quite straightforwardly get the #P-

hardness of Holant( 6=| f̂ , F̂) by 2nd-Orth given f̂ ∈
∫̂
D⊗ is an irreducible 8-ary signature.

Lemma 8.3. Let f̂ = a(1, 0)⊗2n+ ā(0, 1)⊗2n+( 6=2)(xi, xj)⊗ ĝh be an irreducible 2n-ary signature,

where 2n ⩾ 4 and ĝh is a nonzero EO signature (i.e., with half-weighted support) of arity 2n − 2.

Then, f̂ does not satisfy 2nd-Orth.

证明. By renaming variables, without loss of generality, we may assume that {i, j} = {1, 2}.

For any input 00β 6= 0⃗2n of f̂ , we have f̂(00β) = ( 6=2)(0, 0) · ĝh(β) = 0. Thus,

|f̂0012 |2 =
∑

β∈Z2n−2
2

|f̂(00β)|2 = |f̂ (⃗02n)|2.

On the other hand, since both ( 6=2)(x1, x2) and ĝh are nonzero EO signatures, ( 6=2)(x1, x2) ⊗ ĝh

is a nonzero EO signature. Then, we can pick an input 01γ ∈ Z2n
2 with wt(01γ) = n such that

f̂(01γ) = ( 6=2)(0, 1) · ĝh(γ) 6= 0. Since γ ∈ Z2n−2
2 , and wt(γ) = n− 1 ⩾ 1, there exists a bit γi in γ

such that γi = 0. Without loss of generality, we may assume that 01γ = 010γ′. Then,

|f̂0013 |2 ⩾ |f̂ (⃗02n)|2 + |f̂(010γ′)|2 > |f̂ (⃗02n)|2 = |f̂0012 |2.

Note that the constant λ for the norm squares must be the same for all index pairs {i, j} ⊆ [2n] in

order to satisfy 2nd-Orth in Definition 3.20. Thus, f̂ does not satisfy 2nd-Orth.
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Lemma 8.4. Let f̂ ∈
∫̂
D⊗ be an irreducible 8-ary signature in F̂ . If there exists a binary

disequality (6=2)(xi, xj) and two pairs of indices {u, v} and {s, t} where {u, v}∩{s, t} 6= ∅ such that

(6=2)(xi, xj) | ∂̂uvf̂ and (6=2)(xi, xj) | ∂̂stf̂ , then Holant( 6=2| F̂) is #P-hard.

证明. For all pairs of indices {i, j}, since ∂̂ij f̂ ∈ D⊗, S (∂̂ij f̂) is on half-weight. By Lemma 3.9, we

have f̂(α) = 0 for all wt(α) 6= 0, 4, 8. Suppose that f̂ (⃗08) = a and by ars f̂ (⃗18) = ā. We can write

f̂ in the following form

f̂ = a(1, 0)⊗8 + ā(0, 1)⊗8 + f̂h,

where f̂h is an EO signature of arity 8.

Clearly, ∂̂ij f̂ = ∂̂ij f̂h for all {i, j}. Then, f̂h ∈
∫̂
D⊗ since f̂ ∈

∫̂
D⊗. In addition, since there

exists a binary disequality (6=2)(xi, xj) and two pairs of indices {u, v} and {s, t} where {u, v} ∩

{s, t} 6= ∅ such that ( 6=2)(xi, xj) | ∂̂uvf̂h, ∂̂stf̂h, by Lemma 4.19, f̂h ∈ D⊗ and ( 6=2)(xi, xj) | f̂h.

Thus,

f̂ = a(1, 0)⊗8 + ā(0, 1)⊗8 + ( 6=2)(xi, xj)⊗ ĝh,

where ĝh ∈ D⊗ is a nonzero EO signature or arity 6 since f̂h ∈ D⊗. By Lemma 8.3, f̂ does not

satisfy 2nd-Orth. Thus, Holant(6=2| F̂) is #P-hard by Lemma 6.6.

For signatures in D⊗, we give the following property. Now we adopt the following notation for

brevity. We use (i, j) to denote the binary disequality (6=2)(xi, xj) on variables xi and xj .

Lemma 8.5. Let f̂ ∈ D⊗ be a signature of arity at least 6. If there exist {u, v} 6= {s, t} such that

(i, j) | ∂̂uvf̂ and (i, j) | ∂̂stf̂ , then (i, j) | f̂ .

证明. For a contradiction, suppose that (i, j) - f̂ . Thus xi and xj appear in two separate disequal-

ities in the UPF of f̂ . Since f̂ ∈ D⊗, there exists {ℓ, k} such that (i, ℓ)⊗ (j, k) | f̂ . By merging two

variables of f̂ , the only way to make xi and xj to form a binary disequality is by merging xℓ and

xk. By the hypothesis of the lemma, {ℓ, k} = {u, v} = {s, t}. Contradiction.

Theorem 8.6. Let f̂ /∈ Ô⊗ be a signature of arity 8 in F̂ . Then

• Holant( 6=2| F̂) is #P-hard, or

• there exists some Q̂ ∈ Ô2 such that Holant(6=2| f̂8, Q̂F̂) ⩽T Holant(6=2| F̂).
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证明. By Lemma 8.1, we may assume that an irreducible signature f̂∗ of arity 8 where f̂∗ ∈
∫̂
D⊗ is

realizable from f̂ , and f̂∗ also satisfies ars. Otherwise, Holant(6=2| F̂) is #P-hard or we can realize

a signature ĝ /∈ Ô⊗ of arity 2, 4 or 6. Then, by Lemmas 6.7, 6.8 and 7.40, we get #P-hardness. We

will show that f̂8 is realizable from f̂∗, or otherwise we get #P-hardness. For brevity of notation, we

rename f̂∗ by f̂ . We first show that after renaming variables by applying a suitable permutation to

{1, 2, . . . , 8}, for all {i, j} ⊆ {1, 2, 3, 4}, (ℓ, k) | ∂̂ij f̂ where {ℓ, k} = {1, 2, 3, 4}\{i, j}. Furthermore,

we show that either Holant(6=2| F̂) is #P-hard, or

(5, 6) | ∂̂12f̂ , (5, 7) | ∂̂13f̂ , (6, 7) | ∂̂23f̂ , and (1, 2) | ∂̂56f̂ or (1, 3) | ∂̂56f̂ . (8.8)

Consider ∂̂12f̂ . Since f̂ ∈
∫̂
D⊗, ∂̂12f̂ ∈ D⊗. By renaming variables, without loss of generality,

we may assume that

∂̂12f̂ = λ12 · (3, 4)⊗ (5, 6)⊗ (7, 8), (8.9)

for some λ12 ∈ R \ {0}. Then, consider ∂̂34f̂ . ∂̂56f̂ , and ∂̂78f̂ . There are two cases.

• Case 1. (1, 2) | ∂̂34f̂ , ∂̂56f̂ and ∂̂78f̂ . Then we can write ∂̂56f̂ = (1, 2) ⊗ ĥ for some ĥ ∈ D⊗.

Clearly, ĥ ∼ ∂̂(12)(56)f̂ . By the form (8.9) and commutativity, ∂̂(12)(56)f̂ ∼ (3, 4)⊗(7, 8). Thus,

ĥ ∼ (3, 4)⊗ (7, 8). Then, for some λ56 ∈ R \ {0},

∂̂56f̂ = λ56 · (1, 2)⊗ (3, 4)⊗ (7, 8). (8.10)

Similarly, we have

∂̂78f̂ = λ78 · (1, 2)⊗ (3, 4)⊗ (5, 6),

and

∂̂34f̂ = λ34 · (1, 2)⊗ (5, 6)⊗ (7, 8),

for some λ78, λ34 ∈ R \ {0}.

Let ĝ = (1, 2) ⊗ (3, 4). Let {i, j} ⊆ {1, 2, 3, 4} and {ℓ, k} = {1, 2, 3, 4}\{i, j}. If we merge

variables xi and xj of ĝ, i.e., if we form ∂̂ij ĝ, then clearly variables xℓ and xk will form a

disequality. Thus, for all {i, j} ⊆ {1, 2, 3, 4}, (ℓ, k) | ∂̂ij ĝ. Then, (ℓ, k) | ∂̂ij ĝ⊗(7, 8) ∼ ∂̂(ij)(56)f̂

by (8.10), and similarly (ℓ, k) | ∂̂ij ĝ ⊗ (5, 6) ∼ ∂̂(ij)(78)f̂ . By Lemma 8.5, (ℓ, k) | ∂̂ij f̂ .
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• Case 2. Among ∂̂34f̂ , ∂̂56f̂ , and ∂̂78f̂ , there is at least one signature that is not divisible by

(1, 2). Without loss of generality, suppose that (1, 2) - ∂̂56f̂ . Since ∂̂56f̂ ∈ D⊗, there exists

{u, v} disjoint from {1, 2, 5, 6} such that (1, u)⊗ (2, v) | ∂̂56f̂ . Then, by merging variables x1
and x2 of ∂̂56f̂ , we have (u, v) | ∂̂(12)(56)f̂ ; comparing it to ∂̂(56)(12)f̂ using the form of (8.9)

and by unique factorization we get {u, v} = {3, 4} or {7, 8}. Without loss of generality (i.e.,

this is still within the freedom of our naming variables subject to the choices made so far),

we may assume that {u, v} = {3, 4} and furthermore, u = 3 and v = 4. Then, for some

λ′56 ∈ R \ {0},

∂̂56f̂ = λ′56 · (1, 3)⊗ (2, 4)⊗ (7, 8). (8.11)

Then, consider ∂̂78f̂ . We show that (5, 6) | ∂̂78f̂ . Otherwise, there exists {s, t} disjoint from

{5, 6, 7, 8} such that (5, s) ⊗ (6, t) | ∂̂78f̂ . By merging two variables of ∂̂78f̂ , the only way

to make x5 and x6 form a binary disequality is to merge xs and xt. By the form (8.9),

(5, 6) | ∂̂(12)(78)f̂ . Thus, {s, t} = {1, 2}. From (5, s)⊗ (6, t) | ∂̂78f̂ , and {s, t} = {1, 2} we know

that x1 and x2 will form a binary disequality in ∂̂(56)(78)f̂ . Thus, (1, 2) | ∂̂(56)(78)f̂ . However,

by (8.11) ∂̂(56)(78)f̂ ∼ (1, 3)⊗ (2, 4). This is a contradiction to UPF. Thus, ∂̂78f̂ = (5, 6)⊗ ĝ′

and ĝ′ ∼ ∂̂(56)(78)f̂ ∼ (1, 3)⊗ (2, 4). Then, for some λ′78 ∈ R \ {0},

∂̂78f̂ = λ′78 · (1, 3)⊗ (2, 4)⊗ (5, 6). (8.12)

Let {i, j} ⊆ {1, 2, 3, 4} and {ℓ, k} = {1, 2, 3, 4}\{i, j}. If we merge variables xi and xj of ĝ′,

which is an associate of (1, 3)⊗ (2, 4), then clearly variables xℓ and xk will form a disequality.

Thus, for all {i, j} ⊆ {1, 2, 3, 4}, (ℓ, k) ∼ ∂̂ij ĝ′. Then, (ℓ, k) | ∂̂ij ĝ′ ⊗ (7, 8) ∼ ∂̂(ij)(56)f̂ (by

(8.11)) and (ℓ, k) | ∂̂ij ĝ′ ⊗ (5, 6) ∼ ∂̂(ij)(78)f̂ (by (8.12)). By Lemma 8.5, (ℓ, k) | ∂̂ij f̂ .

Thus, in both cases, we have (ℓ, k) | ∂̂ij f̂ where {i, j} t {ℓ, k} = {1, 2, 3, 4} is an arbitrary

disjoint union of two pairs. Now, we show that in both cases, (with possibly switching the names

x7 and x8, which we are still free to do), we can have

(5, 6) | ∂̂12f̂ , (5, 7) | ∂13f̂ , (6, 7) | ∂̂23f̂ . (8.13)

Clearly, by the form (8.9), we have (5, 6) | ∂̂12f̂ . Consider ∂13f̂ . We already know that
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(2, 4) | ∂13f̂ (in both cases). If (5, 6) | ∂̂13f̂ , then since (5, 6) | ∂̂12f̂ and {1, 2} ∩ {1, 3} 6= ∅, by

Lemma 8.4, Holant(6=2| F̂) is #P-hard. Thus, (5, 7) | ∂̂13f̂ or (5, 8) | ∂̂13f̂ . By renaming variables

x7 and x8, we may assume that in both cases

∂̂13f̂ = (2, 4)⊗ (5, 7)⊗ (6, 8). (8.14)

This renaming will not change any of the above forms of ∂̂ij f̂ . Consider ∂̂23f̂ . We already have

(1, 4) | ∂̂23f̂ . We know ∂̂23f̂ ∈ D⊗, and so in its UPF, (6, r) | ∂̂23f̂ , for some r ∈ [8] \ {1, 2, 3, 4, 6}.

If (5, 6) | ∂̂23f̂ , then since (5, 6) | ∂̂12f̂ and {1, 2} ∩ {2, 3} 6= ∅, by Lemma 8.4, we get #P-hardness.

If (6, 8) | ∂̂23f̂ , then since (6, 8) | ∂̂13f̂ by (8.14) and {1, 3}∩{2, 3} 6= ∅, again by Lemma 8.4, we get

#P-hardness. Thus, we may assume that r = 7 and (6, 7) | ∂̂23f̂ . Therefore, we have established

(8.13) in both cases. Furthermore, in Case 1, we have (1, 2) | ∂̂56f̂ by form (8.10), and in Case 2,

we have (1, 3) | ∂̂56f̂ by form (8.11).

Now, we show that for any α ∈ Z4
2 with wt(α) = 1, f̂α1234 ≡ 0. Since (3, 4) | ∂̂12f̂ , (∂̂12f̂)0034 ≡ 0.

Since {1, 2} is disjoint with {3, 4},

(∂̂12f̂)
00
34 = ∂̂12(f̂

00
34 ) = f̂01001234 + f̂10001234 ≡ 0. (8.15)

Since (1, 4) | ∂̂23f̂ ,

(∂̂23f̂)
00
14 = ∂̂23(f̂

00
14 ) = f̂00101234 + f̂01001234 ≡ 0. (8.16)

Since (1, 3) | ∂̂24f̂ ,

(∂̂13f̂)
00
24 = ∂̂13(f̂

00
24 ) = f̂00101234 + f̂10001234 ≡ 0. (8.17)

Comparing (8.15), (8.16) and (8.17), we have

f̂10001234 = f̂01001234 = f̂00101234 ≡ 0.

Since (2, 3) | ∂̂14f̂ ,

(∂̂14f̂)
00
23 = ∂̂14(f̂

00
23 ) = f̂00011234 + f̂10001234 ≡ 0.

Plug in f̂10001234 ≡ 0, we have f̂00011234 ≡ 0. Thus for any α ∈ Z4
2 with wt(α) = 1, we have f̂α1234 ≡ 0.
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Also, for α ∈ Z4
2 with wt(α) = 3 and any β ∈ Z4

2, by ars we have,

f̂α1234(β) = f̂α1234(β) = 0

since wt(α) = 1. Thus, for any α ∈ Z4
2 with wt(α) = 3, we also have f̂α1234 ≡ 0.

Let α ∈ Z4
2 be an assignment of the first four variables of f , and β ∈ Z4

2 be an assignment of

the last four variables of f . Thus, for any α, β ∈ Z4
2, f̂(αβ) = 0 if wt(α) = 1 or 3. Also, since

f̂ ∈
∫̂
D⊗, by Lemma 3.9, f̂(αβ) = 0 if wt(α) + wt(β) 6= 0, 4 and 8. Then, we show that for any

αβ ∈ S (f̂),

|f̂(αβ)| = |f̂(αβ)| = |f̂(αβ)| = |f̂(αβ)|.

By ars, |f̂(αβ)| = |f̂(αβ)| and |f̂(αβ)| = |f̂(αβ)|. So, we only need to show that

|f̂(αβ)| = |f̂(αβ)|. (8.18)

Pick an arbitrary {i, j} ⊆ {1, 2, 3, 4} and an arbitrary {u, v} ⊆ {5, 6, 7, 8}. Let {ℓ, k} =

{1, 2, 3, 4}\{i, j} and {s, t} = {5, 6, 7, 8}\{u, v}. Since f̂ satisfies 2nd-Orth, by equation (6.6), we

have |̂f0000ijuv |2 = |̂f0011ijuv |2. Since f̂(αβ) = 0 if wt(α) = 1 or 3, or wt(α) + wt(β) 6= 0, 4 and 8, we get

the equation,

|f̂00000000ijℓkuvst |2 + |f̂00110011ijℓkuvst |2 = |f̂00111100ijℓkuvst |2 + |f̂00001111ijℓkuvst |2. (8.19)

Note that for |̂f0000ijuv |2, since we set xixj = 00, the only possible nonzero terms are for xℓxk = 00 or

11; furthermore, as we also set xuxv = 00, then xsxt = 00 if xℓxk = 00, and xsxt = 11 if xℓxk = 11.

The situation is similar for |̂f0011ijuv |2.

Also, by considering |̂f0000ijst |2 = |̂f0011ijst |2, we have

|f̂00000000ijℓkuvst |2 + |f̂00111100ijℓkuvst |2 = |f̂00110011ijℓkuvst |2 + |f̂00001111ijℓkuvst |2. (8.20)

Comparing equations (8.19) and (8.20), we have

|f̂00000000ijℓkuvst |2 = |f̂00001111ijℓkuvst |2, and |f̂00110011ijℓkuvst |2 = |f̂00111100ijℓkuvst |2.
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Also, by ars,

|f̂11111111ijℓkuvst |2 = |f̂11110000ijℓkuvst |2.

As (i, j, k, ℓ) is an arbitrary permutation of (1, 2, 3, 4) and (u, v, s, t) is an arbitrary permutation of

(5, 6, 7, 8), and f̂(αβ) vanishes if wt(α) +wt(β) 6= 0, 4 and 8, the above have established (8.18) for

any α, β ∈ Z4
2. Hence, for all α, β ∈ Z4

2,

|f̂(αβ)| = |f̂(αβ)| = |f̂(αβ)| = |f̂(αβ)|.

Note that f̂ has at most 4 +
(
4
2

)
·
(
4
2

)
= 40 many possibly non-zero entries. In terms of norms,

these 40 entries can be represented by f̂ 0⃗8 and the following 9 entries in Table 6. In other words,

for every αβ ∈ Z8
2 where wt(α) ≡ wt(β) ≡ 0 (mod 2) and wt(α) +wt(β) ≡ 0 (mod 4), exactly one

entry among f̂(αβ), f̂(αβ), f̂(αβ) and f̂(αβ) appears in Table 6. We also view these 9 entries in

Table 6 as a 3-by-3 matrix denoted by M = (mij)
3
i,j=1.

x1x2x3x4
x5x6x7x8 α1 = 0110 (Col 1) α2 = 1010 (Col 2) α3 = 1100 (Col 3)

α1 = 0110 (Row 1) m11 = f̂01100110 m12 = f̂01101010 m13 = f̂01101100

α2 = 1010 (Row 2) m21 = f̂10100110 m22 = f̂10101010 m23 = f̂10101100

α3 = 1100 (Row 3) m31 = f̂11000110 m32 = f̂11001010 m33 = f̂11001100

表 6: Representative entries of f̂ in terms of norms

Let f̂ 0⃗8 = a. First we show that

|mi,1|2 + |mi,2|2 + |mi,3|2 = |a|2, for i = 1, 2, 3. (8.21)

and

|m1,j |2 + |m2,j |2 + |m3,j |2 = |a|2, for j = 1, 2, 3. (8.22)

Let (i, j, k) be an arbitrary permutation of (1, 2, 3). Again, by equation (6.6), |̂f0110ijk8 |2 = |̂f0000ijk8 |2.

Then, we have

|f̂01100110ijk45678 |2 + |f̂01101010ijk45678 |2 + |f̂01101100ijk45678 |2 = |f̂00000000ijk45678 |2 = |a|2.
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By taking (i, j, k) = (1, 2, 3), (2, 1, 3) and (3, 1, 2), we get equations (8.21) for i = 1, 2, 3 respectively.

Similarly, by considering |̂f01104ijk |2 = |̂f00004ijk |2 where (i, j, k) is an arbitrary permutation of (5, 6, 7), we

get equations (8.22).

Also, since (5, 6) | ∂̂12f̂ , we have ∂̂12f̂(x3, . . . , x8) = 0 if x5 = x6. Notice that

m13 +m23 = f̂01101100 + f̂10101100

is an entry of ∂̂12f̂ on the input 101100. Thus, m13 +m23 = 0. Also, since (5, 7) | ∂̂13f̂ , we have

m12 +m32 = 0.

Since (6, 7) | ∂̂23f̂ , we have

m21 +m31 = 0.

Let x = |m13| = |m23|, y = |m12| = |m32|, and z = |m21| = |m31|. Plug x, y, z into equations (8.21)

and (8.22). We have
|m11|2 + y2 + x2 = |m11|2 + z2 + z2

=z2 + |m22|2 + x2 = y2 + |m22|2 + y2

=z2 + y2 + |m33|2 = x2 + x2 + |m33|2.

Thus, x = y = z and |m11| = |m22| = |m33|. Consider

m11 +m21 = f̂01100110 + f̂10100110 and m12 +m22 = f̂01101010 + f̂10101010.

They are entries of ∂̂12f̂ on inputs 100110 and 101010. By form (8.9) of ∂̂12f̂ , we have

m11 +m21 = m12 +m22 ∈ R\{0}.

Remember that we also have (1, 2) | ∂̂56f̂ or (1, 3) | ∂̂56f̂ .

We first consider the case that (1, 3) | ∂̂56f̂ . Then

m21 +m22 = f̂10100110 + f̂10101010 = 0.
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Thus,

m11 +m21 = m12 −m21 ∈ R\{0}.

Since |m12| = |m21|, |m22| = |m11| and m21 +m22 = 0,

|m12| = |m21| = |m22| = |m11|.

Thus, m11 = m21 and m12 = −m21. Let Re(x) the real part of a number x. Then,

Re(m11) +Re(m21) = 2Re(m21) = Re(m12)−Re(m21) = −2Re(m21).

Thus, Re(m21) = 0. Then, Re(m11) = Re(m21) = 0. Thus, m11 +m21 /∈ R\{0} since Re(m11 +

m21) = 0. Contradiction.

Now, we consider the case that (1, 2) | ∂̂56f̂ . Then

m31 +m32 = f̂11000110 + f̂11001010 = 0.

Since m12 +m32 = 0 and m21 +m31 = 0, we have m12 = −m21. Thus, we have

m11 +m21 = m12 +m22 = m22 −m21 ∈ R\{0}.

Taking the imaginary part, Im(m11) + Im(m21) = Im(m22) − Im(m21) = 0. Adding the two, we

get Im(m11) + Im(m22) = 0, and thus, m11 +m22 ∈ R. Since |m11| = |m22|, m11 = m22. Then,

Re(m11) = Re(m22). Also, since m11 +m21 = m22 −m21 ∈ R\{0},

Re(m11) +Re(m21) = Re(m22)−Re(m21) = Re(m11)−Re(m21) 6= 0.

Thus, Re(m21) = 0, and Re(m11) 6= 0. Suppose that m21 = di for some d ∈ R. Then there exists

c ∈ R\{0} such that m11 = c − di and then m22 = c + di. Remember that m21 +m31 = 0. Thus,

m31 = −di. Consider

m11 +m31 = f̂01100110 + f̂11000110 = c− 2di.

It is an entry of the signature ∂̂13f̂ . Since ∂̂13f̂ ∈ D⊗, c − 2di ∈ R. Thus, d = 0. Then, m21 = 0
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and m11 ∈ R. Thus,

x = |m13| = |m23| = y = |m12| = |m32| = z = |m21| = |m31| = 0,

and

|m11| = |m22| = |m33| = |a| = |f̂ (⃗0)|.

Since f̂ 6≡ 0, a 6= 0. Thus,

S (f̂) = {δδ, δδ, δδ, δδ ∈ Z8
2 | δ = 0000, α1, α2, α3},

where α1, α2, α3 are named in Table 6. It is easy to see that S (f̂) = S (f̂8). Since m11 ∈ R, and

|m11| = |a| 6= 0, we can normalize it to 1. Since, ∂̂12f̂ ∈ D⊗, we have

1 = f̂(α1α1) + f̂(α2α1) = f̂(α1α2) + f̂(α2α2) = f̂(α1α1) + f̂(α2α1) = f̂(α1α2) + f̂(α2α2).

Since, f̂(α2α1) = f̂(α1α2) = f̂(α2α1) = f̂(α1α2) = 0,

f̂(α1α1) = f̂(α2α2) = f̂(α1α1) = f̂(α2α2) = 1.

Similarly, since ∂̂13f̂ ∈ D⊗,

f̂(α1α1) = f̂(α3α3) = f̂(α1α1) = f̂(α3α3) = 1.

By ars, we have

1 = f̂(α1α1) = f̂(α1α1) = f̂(α1α1) = f̂(α2α2) = f̂(α2α2) = f̂(α3α3) = f̂(α3α3).

Also, since ∂̂15f̂ ∈ D⊗,

1 = f̂(α1α1) = f̂01101001 + f̂11100001 = f̂00001111 + f̂10000111 = f̂00001111.

Then, by ars, f̂11110000 = f̂00001111 = 1. Thus, f̂(γ) = 1 for any γ ∈ S (f̂) with wt(γ) = 4.
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Remember that f̂ (⃗08) = a where |a| = 1. Then, f̂ (⃗18) = a by ars. Suppose that a = eiθ. Let

Q̂ =
[
ρ 0
0 ρ

]
∈ Ô2 where ρ = e−iθ/8. Consider the holographic transformation by Q̂. Q̂ does not

change the entries of f̂ on half-weighed inputs, but change the values of f̂ (⃗08) and f̂ (⃗18) to 1. Thus,

Q̂f̂ = f̂8. Then, Holant( 6=2| f̂8, Q̂F̂) ⩽T Holant(6=2| F̂).

Now, we want to show that Holant( 6=2| f̂8, Q̂F̂) is #P-hard for all Q̂ ∈ Ô2 and all F̂ where

F = ZF̂ is a real-valued signature set that does not satisfy condition (T). If so, then we are done.

Recall that for all Q̂ ∈ Ô2, Q̂F̂ = Q̂F for some Q ∈ O2. Moreover, for all Q ∈ O2, and all

real-valued F that does not satisfy condition (T), QF is also a real-valued signature set that does

not satisfy condition (T). Thus, it suffices for us to show that Holant(6=2| f̂8, F̂) is #P-hard for all

real-valued F that does not satisfy condition (T).

The following Lemma shows that f̂8 gives non-B̂ hardness (Definition 7.8).

Lemma 8.7. Holant( 6=2| f̂8, F̂) is #P-hard if F̂ contains a nonzero binary signature b̂ /∈ B̂⊗.

Equivalently, Holant(f8,F) is #P-hard if F contains a nonzero binary signature b /∈ B⊗.

证明. We prove this lemma in the setting of Holant( 6=2| f̂8, F̂). If b̂ /∈ Ô⊗, then by Lemma 6.7, we

get #P-hardness. Thus, we may assume that b̂ ∈ Ô⊗. Then, b̂ has parity. We first consider the

case that b̂ has even parity, i.e., b̂ = (a, 0, 0, ā). Since b̂ 6≡ 0, a 6= 0. We can normalize a to eiθ where

0 ⩽ θ < π. Then ā = e−iθ. Since b̂ /∈ B̂, a 6= ±1 and a 6= ±i. Thus, θ 6= 0 and θ 6= π
2 .

We connect variables x1 and x5 of f̂8 with the two variables of b̂ (using 6=2), and we get a 6-ary

signature denoted by ĝ. We rename variables x2, x3, x4 of ĝ to x1, x2, x3 and variables x6, x7, x8 to

x4, x5, x6. Then, ĝ has the following signature matrix

M123,456(ĝ) =



e−iθ 0 0 0 0 0 0 0

0 eiθ 0 0 0 0 0 0

0 0 eiθ 0 0 0 0 0

0 0 0 e−iθ 0 0 0 0

0 0 0 0 eiθ 0 0 0

0 0 0 0 0 e−iθ 0 0

0 0 0 0 0 0 e−iθ 0

0 0 0 0 0 0 0 eiθ



.
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Now, we show that ĝ /∈ Ô⊗. For a contradiction, suppose that ĝ ∈ Ô⊗. Notice that S (ĝ) =

{(x1, . . . , x6) ∈ Z6
2 | x1 = x4, x2 = x5 and x3 = x6}. Then, we can write ĝ as

ĝ = b̂1(x1, x4)⊗ b̂2(x2, x5)⊗ b̂3(x3, x6),

where b̂1 = (eiθ1 , 0, 0, e−iθ1), b̂2 = (eiθ2 , 0, 0, e−iθ2) and b̂3 = (eiθ3 , 0, 0, e−iθ3). Then notice that

ĝ000000 = e−iθ = b̂1(0, 0) · b̂2(0, 0) · b̂3(0, 0) = ei(θ1+θ2+θ3),

and

ĝ011011 = e−iθ = b̂1(0, 0) · b̂2(1, 1) · b̂3(1, 1) = ei(θ1−θ2−θ3).

By multiplying the above two equations, we have

e−i2θ = ei(θ1+θ2+θ3) · ei(θ1−θ2−θ3) = ei2θ1 .

Also, notice that

ĝ001001 = eiθ = b̂1(0, 0) · b̂2(0, 0) · b̂3(1, 1) = ei(θ1+θ2−θ3),

and

ĝ010010 = eiθ = b̂1(0, 0) · b̂2(1, 1) · b̂3(0, 0) = ei(θ1−θ2+θ3).

By multiplying them, we have

ei2θ = ei(θ1+θ2−θ3) · ei(θ1−θ2+θ3) = ei2θ1 .

Thus, ei2θ = e−i2θ. Then, ei4θ = 1. Since, θ ∈ [0, π), θ = 0 or π
2 . Contradiction. Thus, ĝ /∈ Ô⊗. By

Lemma 7.40, we get #P-hardness.

Now, suppose that b̂ has odd parity, i.e., b̂(y1, y2) = (0, eiθ, e−iθ, 0) where θ ∈ [0, π) after

normalization. We still consider the 6-ary signature ĝ′ that is realized by connecting variables x1
and x5 of f̂8 with the two variables y1 and y2 of b̂ (using 6=2). Then, after renaming variables, ĝ′
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has the following signature matrix

M123,456(ĝ′) =



0 0 0 0 0 0 0 e−iθ

0 0 0 0 0 0 eiθ 0

0 0 0 0 0 eiθ 0 0

0 0 0 0 e−iθ 0 0 0

0 0 0 eiθ 0 0 0 0

0 0 e−iθ 0 0 0 0 0

0 e−iθ 0 0 0 0 0 0

eiθ 0 0 0 0 0 0 0



.

Similarly, we can show that ĝ′ /∈ Ô⊗. Thus, by Lemma 7.40, we get #P-hardness.

We go back to real-valued Holant problems under the Z-transformation. Consider the problem

Holant(f8,F). Remember that f8 = f̂8. We observe that, by Lemma 8.7 the set {f8} ∪F is non-B

hard, according to Definition 7.8. Then if we apply Theorem 7.38 to the set {f8} ∪ F we see that

Holantb(f8,F) is #P-hard. Now if we were able to show that B is realizable from f8 then we would

be done, since by Theorem 8.6, we either already have the #P-hardness for Holant(F), or we can

realize f8 from F , and thus the following reduction chain holds

Holantb(f8,F) ⩽T Holant(f8,F) ⩽T Holant(F).

Thus we get the #P-hardness of Holant(F) in either way.

However, since f8 has even parity and all its entries are non-negative, all gadgets realizable

from f8 have even parity and have non-negative entries. Thus, =−
2 , 6=2 and 6=−

2 cannot be realized

from f8 by gadget construction. In fact, f8 satisfies the following strong Bell property.

Definition 8.8. A signature f satisfies the strong Bell property if for all pairs of indices {i, j},

and every b ∈ B, the signature ∂bijf realized by merging xi and xj of f using b is in {b}⊗.
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8.2 Holant Problems with Limited Appearance

In this section, not using gadget construction but critically based on the strong Bell property of

f8, we prove that Holantb(f8,F) ⩽T Holant(f8,F) in a novel way. We define the following Holant

problems with limited appearance.

Definition 8.9. Let F be a signature set containing a signature f . The problem Holant(f⩽k,F)

contains all instances of Holant(F) where the signature f appears at most k times.

Lemma 8.10. For any b ∈ B, Holant(b, f8,F) ⩽T Holant(b⩽2, f8,F).

证明. Consider an instance Ω of Holant(b, f8,F). Suppose that b appears n times in Ω. If n ⩽ 2,

then Ω is already an instance of Holant(b⩽2, f8,F). Otherwise, n ⩾ 3. Consider the gadget ∂bijf8
realized by connecting two variables xi and xj of f8 using b. (This gadget uses b only once.) Since

f8 satisfies the strong Bell property, ∂bijf8 = b⊗3. Thus, by replacing three occurrences of b in Ω by

∂bijf8, we can reduce the number of occurrences of b by 2. We carry out this replacement a linear

number of times to obtain an equivalent instance of Holant(b⩽2, f8,F), of size linear in Ω.

Now, we are ready to prove the reduction Holantb(f8,F) ⩽T Holant(f8,F). Note that if

Holant(f8,F) is #P-hard, then the reduction holds trivially. For any b ∈ B, if we connect a

variable of b with a variable of another copy of b using =2, we get ±(=2). Also, for any b1, b2 ∈ B

where b1 6= b2 if we connect the two variables of b1 with the two variables of b2, we get a value 0.

Lemma 8.11. Holantb(f8,F) ⩽T Holant(f8,F).

证明. We prove this reduction in two steps.

Step 1. There exists a signature b1 ∈ B\{=2} such that Holant(b1, f8,F) ⩽T Holant(f8,F).

We consider all binary and 4-ary signatures realizable by gadget constructions from {f8}∪F . If

a binary signature g /∈ B is realizable from {f8}∪F , then by Lemma 8.7, Holant(f8,F) is #P-hard,

and we are done. If a binary signature g ∈ B\{=2} is realizable from {f8}∪F , then we are done by

choosing b1 = g. So we may assume that all binary signatures g realizable from {f8}∪F are =2 (up

to a scalar) or the zero binary signature, i.e., g = µ · (=2) for some µ ∈ R. Similarly, if a nonzero

4-ary signature h /∈ B⊗2 is realizable, then we have Holant(f8,F) is #P-hard, by Lemma 7.9, as

Lemma 8.7 says the set {f8} ∪ F is non-B hard. If a nonzero 4-ary signature h ∈ B⊗2\{=2}⊗2 is
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realizable, then we can realize a binary signature b1 ∈ B\{=2} by factorization, and we are done.

Thus, we may assume that all 4-ary signatures h realizable from {f8} ∪ F are (=2)
⊗2 or the 4-ary

zero signature, i.e., h = λ · (=2)
⊗2 for some λ ∈ R.

Now, let b1 be a signature in B\{=2}. We show that Holant(b⩽2
1 , f8,F) ⩽T Holant(f8,F).

Consider an instance Ω of Holant(b⩽2
1 , f8,F).

• If b1 does not appear in Ω, then Ω is already an instance of Holant(f8,F).

• If b1 appears exactly once in Ω (we may assume it does connect to itself), then we may

consider the rest of Ω that connects to b1 as a gadget realized from {f8} ∪ F , which must

have signature λ · (=2), for some λ ∈ R. Connecting the two variables of b1 by (=2) for every

b1 ∈ B\{=2} will always gives 0. Thus, Holant(Ω) = 0.

• Suppose b1 appears exactly twice in Ω. It is easy to handle when the two copies of b1 form a

gadget of arity 0 or 2 to the rest of Ω. We may assume they are connected to the rest of Ω in

such a way that the rest of Ω forms a 4-ary gadget h realized from {f8} ∪ F . We can name

the four dangling edges of h in any specific ordering as (x1, x2, x3, x4). Then

h(x1, x2, x3, x4) = λ · (=2)(x1, xj)⊗ (=2)(xk, xℓ)

for some partition {1, 2, 3, 4} = {1, j} t {k, ℓ}, and some λ ∈ R. (Note that while we

have named four specific dangling edges as (x1, x2, x3, x4), the specific partition {1, 2, 3, 4} =

{1, j} t {k, ℓ} and the value λ are unknown at this point.) We consider the following three

instances Ω12, Ω13, and Ω14, where Ω1s (s ∈ {2, 3, 4}) is the instance formed by merging

variables x1 and xs of h using =2, and merging the other two variables of h using =2 (see

Figure 9 where h1 = h2 = (=2) and h = λ·h1⊗h2). Since h is a gadget realized from {f8}∪F ,

Ω12, Ω13, and Ω14 are instances of Holant(f8,F). Note that Holant(Ω1s) = 4λ when s = j

and Holant(Ω1s) = 2λ otherwise. Thus, by computing Holant(Ω1s) for s ∈ {2, 3, 4}, we can

get λ, and if λ 6= 0 the partition {1, j} t {k, ℓ} of the four variables. Thus we can get the

exact structure of the 4-ary gadget h. In either case (whether λ = 0 or not), we can compute

the value of Holant(Ω).

Thus, Holant(b⩽2
1 , f8,F) ⩽T Holant(f8,F). By Lemma 8.10, Holant(b1, f8,F) ⩽T Holant(f8,F).
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图 9: Instances Ω1j , Ω1k and Ω1ℓ

Step 2. For any b1 ∈ B\{=2}, we have Holantb(f8,F) ⩽T Holant(b1, f8,F).

We show that we can get another b2 ∈ B\{=2, b1}, i.e., for some binary signature b2 ∈ B\{=2

, b1} we have the reduction Holant(b2, b1, f8,F) ⩽T Holant(b1, f8,F). Then, by connecting one

variable of b1 and one variable of b2 using =2, we get the third signature in B\{b1, b2}. Then, the

lemma is proved. The proof is similar to the proof in Step 1. We consider all binary and 4-ary

gadgets realizable from {b1, f8} ∪ F . Still, we may assume that all realizable binary signatures are

of the form µ ·(=2) or µ ·b1 for some µ ∈ R, and all realizable 4-ary signatures are of form λ ·(=2)
⊗2,

λ · b⊗2
1 or λ · (=2)⊗b1 for some λ ∈ R. Otherwise, we can show that Holant(b1, f8,F) is #P-hard

or we realize a signature b2 ∈ B\{=2, b1} directly by gadget construction.

Then, let b2 be an arbitrary signature in B\{=2, b1}. We show that

Holant(b⩽2
2 , b1, f8,F) ⩽T Holant(b1, f8,F).

Consider an instance Ω of Holant(b⩽2
2 , b1, f8,F). If b2 does not appear in Ω, then Ω is already

an instance of Holant(b1, f8,F). If b2 appears exactly once in Ω, then it is connected with a

binary gadget g where g = µ · (=2) or g = µ · b1. In both cases, the evaluation is 0. Thus,

Holant(Ω) = 0. Suppose b2 appears exactly twice in Ω. Again it is easy to handle the case if

the rest of Ω forms a gadget of arity 0 or 2 to the two occurrences of b2. So we may assume

the two occurrences of b2 are connected to a 4-ary gadget h = λ · (=2)
⊗2, λ · b⊗2

1 or λ · (=2)⊗b1.

We denote the four variables of h by (x1, x2, x3, x4), by an arbitrary ordering of the four dangling

edges. Then h(x1, x2, x3, x4) = λ · h1(x1, xj) ⊗ h2(xk, xℓ) where h1, h2 ∈ {=2, b1}, for some λ and

{j, k, ℓ} = {2, 3, 4}. (Note that at the moment the values λ and j, k, ℓ are unknown.) We consider
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the following three instances Ω12, Ω13 and Ω14, where Ω1s (s ∈ {2, 3, 4}) is the instance formed by

connecting variables x1 and xs of h using =2, and connecting the other two variables of h using

=2 (again see Figure 9). Clearly, Ω12, Ω13 and Ω14 are instances of Holant(b1, f8,F). Consider the

evaluations of these instances. We have three cases.

• If h1 = h2 = (=2), then Holant(Ω1s) = 4λ when s = j and Holant(Ω1s) = 2λ when s 6= j.

• If h1 = h2 = b1, then Holant(Ω1s) = 0 when s = j. If M(b1) is the 2 by 2 matrix form for the

binary signature b1 where we list its first variable as row index and second variable as column

index, then we have Holant(Ω1k) = λ · tr(M(b1)M(b1)
T), and Holant(Ω1ℓ) = λ · tr(M(b1)

2),

where tr denotes trace. For b1 = (=−
2 ) or (6=+

2 ), the matrixM(b1) is symmetric, and the value

Holant(Ω1s) = 2λ in both cases s = k or s = ℓ. For b1 = ( 6=−
2 ), M(b1)

T = −M(b1), and we

have Holant(Ω1k) = 2λ, and Holant(Ω1ℓ) = −2λ.

• If one of h1 and h2 is =2 and the other is b1, then Holant(Ω1s) = 0 for all s ∈ {j, k, ℓ}.

Thus, if the values of Holant(Ω1s) for s ∈ {2, 3, 4} are not all zero, then λ 6= 0 and the third case is

impossible, and we can tell whether h is in the form λ · (=2)
⊗2 or λ · (b1)⊗2. Moreover we can get

the exact structure of h, i.e., the value λ and the decomposition form of h1 and h2. Otherwise, the

values of Holant(Ω1s) for s ∈ {2, 3, 4} are all zero. Then we can write h = λ·(=2)(x1, xj)⊗b1(xk, xℓ)

or h = λ · b1(x1, xj) ⊗ (=2)(xk, xℓ), including possibly λ = 0, which means h ≡ 0. (Note that if

λ 6= 0, this uniquely identifies that we are in the third case; if λ = 0 then this form is still formally

valid, even though we cannot say this uniquely identifies the third case. But when λ = 0 all three

cases are the same, i.e., h ≡ 0.) At this point we still do not know the exact value of λ and the

decomposition form of h.

We further consider the following three instances Ω′
12, Ω′

13 and Ω′
14, where Ω′

1s (s ∈ {2, 3, 4}) is

the instance formed by connecting variables x1 and xs of h using b1, and connecting the other two

variables of h using =2. (In other words, we replace the labeling =2 of the edge that is connected

to the variable x1 in each instance illustrated in Figure 9 by b1.) It is easy to see that Ω′
12, Ω′

13 and

Ω′
14 are instances of Holant(b1, f8,F). Consider the evaluations of these instances.

• If h1 = (=2)(x1, xj), then Holant(Ω′
1s) = 0 when s = j. Also we have Holant(Ω1k) =

λ · tr(M(b1)
2), and Holant(Ω1ℓ) = λ · tr(M(b1)M(b1)

T). For b1 = (=−
2 ) or 6=+

2 , the matrix
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M(b1) is symmetric, and the value Holant(Ω1s) = 2λ in both cases s = k or s = ℓ. For

b1 = ( 6=−
2 ), M(b1)

T = −M(b1), and we have Holant(Ω1k) = −2λ, and Holant(Ω1ℓ) = 2λ.

• If h1 = b1(x1, xj), then Holant(Ω′
1s) = 4λ when s = j and Holant(Ω′

1s) = 2λ when s 6= j.

Thus, by further computing Holant(Ω′
1s) for s ∈ {2, 3, 4}, we can get the exact structure of h.

Therefore, by querying Holant(b1, f8,F) at most 6 times, we can compute h exactly. Then, we

can compute Holant(Ω) easily. Thus, Holant(b⩽2
2 , b1, f8,F) ⩽T Holant(b1, f8,F). By Lemma 8.10,

Holant(b2, b1, f8,F) ⩽T Holant(b1, f8,F). The other signature in B\{=2, b1, b2} can be realized by

connecting b1 and b2. Thus, Holantb(f8,F) ⩽T Holant(b1, f8,F).

Therefore, Holantb(f8,F) ⩽T Holant(f8,F).

Since Holantb(f8,F) ⩽T Holant(f8,F) and {f8} ∪ F is non-B hard for any real-valued F that

does not satisfy condition (T), by Theorem 7.38, we have the following result.

Lemma 8.12. Holant(f8,F) is #P-hard.

Combining Theorem 8.6 and Lemma 8.12, we have the following result.

Lemma 8.13. If F̂ contains a signature f̂ of arity 8 and f̂ /∈ Ô⊗, then Holant(6=2| F̂) is #P-hard.

8.3 The Induction Proof: 2n ⩾ 10

Now, we show that our induction framework works for signatures of arity 2n ⩾ 10.

Lemma 8.14. If F̂ contains a signature f̂ of arity 2n ⩾ 10 and f̂ /∈ Ô⊗, then,

• Holant( 6=2| F̂) is #P-hard, or

• a signature ĝ /∈ Ô⊗ of arity 2k ⩽ 2n− 2 is realizable from f̂ .

证明. By Lemma 8.1, we may assume that an irreducible signature f̂∗ of arity 2n ⩾ 10 where

f̂∗ ∈
∫̂
D⊗ is realizable, and f̂∗ satisfies ars. We show that f̂∗ does not satisfy 2nd-Orth, and

hence we get #P-hardness.

For all pairs of indices {i, j}, since ∂̂ij f̂∗ ∈ D⊗, S (∂̂ij f̂∗) is on half-weight. By Lemma 3.9,

we have f̂∗(α) = 0 for all wt(α) 6= 0, n, 2n. Suppose that f̂∗(⃗02n) = a and f̂∗(⃗12n) = ā by ars. We
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can write f̂∗ in the following form

f̂∗ = a(1, 0)⊗2n + ā(0, 1)⊗2n + f̂∗h .

where f̂∗h is an EO signature of arity 2n ⩾ 10.

Clearly, ∂ij f̂∗ = ∂ij f̂∗h for all {i, j}. Then, f̂∗h ∈
∫̂
D⊗ since f̂∗ ∈

∫̂
D⊗. Since f̂∗h is an EO

signature of arity at least 10 and f̂∗h ∈
∫̂
D⊗, by Lemma 4.19, we have f̂∗h ∈ D⊗. Recall that all

signatures in D⊗ are nonzero by definition. Pick some {i, j} such that ( 6=2)(xi, xj) | f̂∗h . Then,

f̂∗ = a(1, 0)⊗2n + ā(0, 1)⊗2n + b̂∗(xi, xj)⊗ ĝ∗h,

where ĝ∗h ∈ D⊗ is a nonzero EO signature since f̂∗h ∈ D⊗. By Lemma 8.3, f̂∗ does not satisfy

2nd-Orth. Thus, Holant(6=2| F̂) is #P-hard by Lemma 6.6.

Remark 8.15. Indeed, following from our proof, we can also show that there is no irreducible

signature f̂ of arity 2n ⩾ 10 that satisfies both 2nd-Orth and f̂ ∈
∫̂
Ô⊗.

8.4 Proof of the Real Holant Dichotomy

Finally, we give the proof of Theorem 1.1. We restate it here.

Theorem 8.16. Let F be a set of real-valued signatures. If F satisfies the tractability condition (T)

in Theorem 2.33, then Holant(F) is polynomial-time computable; otherwise, Holant(F) is #P-hard.

证明. By Theorem 2.33, if F satisfies condition (T), then Holant(F) is P-time computable. Suppose

that F does not satisfy condition (T). If F contains a nonzero signature of odd arity, then by

Theorem 5.35, Holant(F) is #P-hard. We show Holant( 6=2| F̂) ≡T Holant(F) is #P-hard when F

is a set of signatures of even arity. Since F does not satisfy condition (T), F̂ 6⊆ T . Since Ô⊗ ⊆ T ,

there is a signature f̂ ∈ F̂ of arity 2n such that f̂ /∈ Ô⊗. We prove this theorem by induction on

2n.

When 2n ⩽ 8, by Lemmas 6.7, 6.8, 7.40, 8.13, Holant( 6=2| F̂) is #P-hard.

Inductively, suppose for some 2k ⩾ 8, if 2n ⩽ 2k, then Holant(6=2| F̂) is #P-hard. We consider

2n = 2k+2 ⩾ 10. By Lemma 8.14, Holant(6=2| F̂) is #P-hard, or Holant( 6=| ĝ, F̂) ⩽T Holant(6=| F̂)
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for some ĝ /∈ Ô⊗ of arity ⩽ 2k. By the induction hypothesis, Holant(6=| ĝ, F̂) is #P-hard. Thus,

Holant(6=2| F̂) is #P-hard.
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Chapter 9

Trichotomy for Planar Six-Vertex

Models

In this chapter, we consider the complexity of Holant problems over planar graphs. We give

a new family of six-vertex models that are #P-hard in general, but tractable over planar graphs.

We prove a complete complexity classification for planar six-vertex models.

9.1 Background

The six-vertex model has a long history in physics. Pauling in 1935 introduced the six-vertex

model to account for the residual entropy of water ice [61]. Consider a large number of oxygen

and hydrogen atoms in a 1 to 2 ratio. Each oxygen atom (O) is connected by a bond to four other

neighboring oxygen atoms (O), and each bond is occupied by one hydrogen atom (H). Physical

constraint requires that each (H) is closer to exactly one of the two neighboring (O). Pauling

argued [61] that, furthermore, the allowed configurations are such that at each oxygen (O) site,

exactly two hydrogen (H) are closer to it, and the other two are farther away. This can be naturally

represented by a 4-regular graph. The constraint on the placement of hydrogen atoms (H) can be

represented by an orientation of the edges of the graph, such that at every vertex (O), the in-degree

and out-degree are both 2. In other words, this is an Eulerian orientation [58, 23]. Since there

are
(
4
2

)
= 6 local valid configurations, this is called the six-vertex model. In addition to water ice,

potassium dihydrogen phosphate KH2PO4 (KDP) also satisfies this model.

▶ ▶
▲
▲

◀ ◀
▼
▼

▶ ▶
▼
▼

◀ ◀
▲
▲

▶ ◀
▼
▲

◀ ▶
▲
▼

图 10: Valid configurations of the six-vertex model
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The valid local configurations of the six-vertex model are illustrated in Figure 10. The energy

E of the system is determined by six parameters ϵ1, ϵ2, . . . , ϵ6 associated with each type of local

configuration. If there are ni sites in local configurations of type i, then E = n1ϵ1+n2ϵ2+. . .+n6ϵ6.

Then the partition function is ZSix =
∑
e−E/kBT , where the sum is over all valid configurations, kB

is Boltzmann’s constant, and T is the system’s temperature. This is a sum-of-product computation

where the sum is over all Eulerian orientations of the graph, and the product is over all vertices

where each contributes a factor ci = cϵi if it is in configuration i (1 ≤ i ≤ 6) for some constant c.

Some choices of the parameters are well-studied. For modeling ice (ϵ1 = . . . = ϵ6 = 0) on the

square N×N lattice graph, Lieb [56] famously showed that, the value of the “partition function per

vertex” W = Z1/N2 approaches
(
4
3

)3/2 ≈ 1.5396007 . . . (Lieb’s square ice constant). This matched

experimental data 1.540±0.001 so well that it is considered a triumph. Other well-known six-vertex

models include: the KDP model of a ferroelectric (ϵ1 = ϵ2 = 0, and ϵ3 = ϵ4 = ϵ5 = ϵ6 > 0), the

Rys F model of an antiferroelectric (ϵ1 = ϵ2 = ϵ3 = ϵ4 > 0, and ϵ5 = ϵ6 = 0). Historically these

are widely considered among the most significant applications ever made of statistical mechanics

to real substances. In classical statistical mechanics the parameters are real numbers. However,

it’s meaningful to consider parameters over complex values. In quantum theory the parameters are

generally complex valued. Even in classical theory, for example, Baxter generalized the parameters

to complex values to develop the “commuting transfer matrix” for tackling the six-vertex model [7].

Some other models can be transformed to a six-vertex model with complex weights. There are books

with sections (e.g., see section 2.5.2 of [44]) that are dedicated to this, for example, the Hamiltonian

of a one dimensional spin chain is simply an extension of the Hamiltonian of a six-vertex model

with complex Boltzmann weights.

The six-vertex model has broad connections to combinatorics. The resolution of the famous

Alternating Sign Matrix conjecture is one example [50, 59, 75, 51, 10]. Also, the Tutte polynomial

on a planar graph at the point (3, 3) is precisely 1/2 of ZSix on its medial graph which is also a

planar graph with a specific weight assignment [53].

Although Pauling most likely did not think of it in such terms, the six-vertex model can be

expressed perfectly as a family of Holant problems with 6 parameters, expressed by signatures of

arity 4. Previously, without being able to account for the planar restriction, it has been proved [25]
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that there is a complexity dichotomy where the problem on general graphs is either in P or #P-

hard. However, the more interesting problem is what happens on planar structures where physicists

had discovered some remarkable algorithms, such as the FKT algorithm [66, 49, 48]. Due to the

presence of nontrivial algorithms, a complete complexity classification in the planar case is more

difficult to achieve. Not only are reductions to FKT expected to give planar P-time computable

cases that are #P-hard in general, but also a more substantial obstacle awaits us. It turns out that

there is another planar P-time computable case that had not been discovered for the six-vertex

model in all these decades, till now. (Since our algorithm and its proof that it runs in P-time is

valid for all planar graphs, this certainly also applies to the grid case, which is traditionally the

main concern for physicists.)

The main theorem in this chapter is a complexity trichotomy for the six-vertex model: Ac-

cording to the 6 parameters from C, the partition function ZSix is either (1) computable in P-time,

or (2) #P-hard on general graphs but computable in P-time on planar graphs, or (3) remains #P-

hard on planar graphs. The classification has an explicit criterion. The planar tractable class (2)

includes those that depend on FKT, and a previously unknown family. Functions that are express-

ible as matchgates (denoted by M ) or those that are transformable to matchgates (denoted by M̂ )

do constitute a family of ZSix in class (2). This follows from the FKT and Valiant’s holographic

algorithms [72].∗ However, beyond these, we discover an additional family of P-time computable

ZSix on planar graphs. The P-time tractability is via a non-local reduction to P-time computable

#CSP, where the variables in #CSP correspond to carefully defined circuits in G. The fact that

this #CSP problem is in P depends crucially on the global topological constraint imposed by the

planarity of G (but the #CSP instances that this produces is not planar in general.) The new

tractable class provably cannot be subsumed by FKT (even with a holographic transformation).

After carving out this last tractable family, we prove that everything else is #P-hard, even for

the planar case. A powerful tool in hardness proofs is interpolation [67]. Typically an interpolation

proof can succeed when certain quantities (such as ratios of eigenvalues) are not roots of unity, lest

the iteration repeat after a bounded number of steps. A sufficient condition is that these quantities

have complex norm not equal to 1. However, for some constraint functions, we can show that
∗It was known [40, 39] that on the grid graph the parameter settings that satisfy cz = ax+ by (using notations in

Section 9.2) is P-time computable; in our theory this is in M , and the proof is: It follows by Matchgate Identities [14].
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these constructions only produce such quantities of norm equal to 1. To overcome this difficulty

we introduce a new technique in hardness proofs: Möbius transformations.∗ We explore properties

of Möbius transformations that map unit circle to unit circle on C, and obtain a suitable Möbius

transformation that generates an infinite group. This allows our interpolation proof to succeed.

9.2 Preliminaries

9.2.1 Problem Definition

We use Pl-Holant(F) to denote the restriction of Holant(F) to planar signature grids. Similarly,

Pl-Holant (F | G) denotes the Holant problem over signature grids with a planar bipartite graph.

Also, we use Pl-#CSP(F) to denote the restriction of #CSP(F) to planar signature grids. Still,

we have Pl-#CSP(F) ≡T Pl-Holant (EQ | F).

A signature f of arity 4 has the signature matrixM(f) =Mx1x2,x4x3(f) =

[
f0000 f0010 f0001 f0011
f0100 f0110 f0101 f0111
f1000 f1010 f1001 f1011
f1100 f1110 f1101 f1111

]
.

(We use fα to denote the entry f(α) in this chapter.) Notice the order reversal x4x3; this is for

the convenience of composing these signatures in a planar fashion. If (i, j, k, ℓ) is a permutation of

(1, 2, 3, 4), then the 4× 4 matrix Mxixj ,xℓxk(f) lists the 16 values with row index xixj ∈ {0, 1}2 and

column index xℓxk ∈ {0, 1}2 in lexicographic order.

The planar six-vertex model is Pl-Holant( 6=2| f), where M(f) =

[
0 0 0 a
0 b c 0
0 z y 0
x 0 0 0

]
. The outer matrix

of M(f) is the submatrix
[
M(f)1,1 M(f)1,4
M(f)4,1 M(f)4,4

]
= [ 0 ax 0 ], and is denoted by MOut(f). The inner matrix

of M(f) is
[
M(f)2,2 M(f)2,3
M(f)3,2 M(f)3,3

]
=
[
b c
z y

]
, and is denoted by MIn(f). A binary signature g has the

signature matrix M(g) = Mx1,x2(g) = [ g00 g01g10 g11 ] . Switching the order, Mx2,x1(g) = [ g00 g10g01 g11 ] . Recall

that a signature is symmetric if its value depends only on the Hamming weight of its input. A

symmetric signature f of arity k can be expressed as [f0, f1, . . . , fk], where fw is the value of f on

inputs of Hamming weight w.
∗Möbius transformations were previously used in the design of quantum algorithms for approximating the Potts

model [1]. Here we use Möbius transformations in a different way, which is for hardness proofs. These Möbius
transformations are maps on C; they are unrelated to Möbius inversions for partial orders, e.g., as used in [36].
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9.2.2 Planar Gadget Construction

Recall the definition of gadget construction in Section 3.2. We say a gadget construction is

planar if the underlying graphG is a planar graph, and the dangling edges, ordered counterclockwise

corresponding to the order of the input variables, are in the outer face in a planar embedding. A

planar gadget can be used in a planar signature grid as if it is just a single vertex with the particular

signature. Using planar gadget construction, we can reduce one planar Holant problem to another.

Suppose g is the signature of some planar F-gate. Then Pl-Holant(F , g) ≤T Pl-Holant(F).

In this chapter, we focus on planar graphs, and we assume the edges incident to a vertex are

ordered counterclockwise. When connecting two signatures, we need to keep the counterclockwise

order of the edges incident to each vertex. Given a signature f with signature matrixMx1x2,x4x3(f),

we can rotate it to obtain, for any cyclic permutations (i, j, k, ℓ) of (1, 2, 3, 4), the signature f ′ with

signature matrixMx1x2,x4x3(f
′) =Mxixj ,xℓxk(f). There are four cyclic permutations of (1, 2, 3, 4), so

correspondingly, a signature f has four rotated forms, with 4×4 signature matricesMx1x2,x4x3(f) =[
0 0 0 a
0 b c 0
0 z y 0
x 0 0 0

]
, Mx2x3,x1x4(f) =

[
0 0 0 y
0 a z 0
0 c x 0
b 0 0 0

]
, Mx3x4,x2x1(f) =

[
0 0 0 x
0 y c 0
0 z b 0
a 0 0 0

]
, and Mx4x1,x3x2(f) =

[
0 0 0 b
0 x z 0
0 c a 0
y 0 0 0

]
.

These are denoted as f , f π2 , fπ and f 3π
2 , respectively. Thus Mx1x2,x4x3(f

π
2 ) = Mx2x3,x1x4(f), etc.

Without other specification, M(f) denotes Mx1x2,x4x3(f). Once we get one form, all four rotation

forms can be freely used. In the proof, after one construction, we may use this property to get

a similar construction and conclude by quoting this rotational symmetry. Note that no matter in

which signature matrix, the pair (c, z) (and only (c, z)) is always in the inner matrix. We call (c, z)

the inner pair, and (a, x), (b, y) the outer pairs.

We introduce three common planar gadgets we will use in this chapter. The first gadget con-

struction is as follows. Suppose f1 and f2 have signature matricesMxixj ,xℓxk(f1) andMxsxt,xvxu(f2),

where (i, j, k, ℓ) and (s, t, u, v) are permutations of (1, 2, 3, 4). By connecting xℓ with xs, xk
with xt, both using Disequality (6=2), we get a signature of arity 4 with the signature ma-

trixMxixj ,xℓxk(f1)N2Mxsxt,xvxu(f2) by matrix product with row index xixj and column index xvxu
(See Figure 11).

A binary signature g has the signature vector g(x1, x2) = (g00, g01, g10, g11)
T , and also g(x2, x1) =

(g00, g10, g01, g11)
T . Without other specification, g denotes g(x1, x2). Let f be a signature of arity

4 with the signature matrix Mxixj ,xℓxk(f) and (s, t) be a permutation of (1, 2).
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图 11: Connect variables xℓ, xk of f1 with variables xs, xt of f2 both using (6=2).

The second gadget construction is essentially a merging gadget defined as follows. By con-

necting xℓ with xs and xk with xt, both using Disequality (6=2), we get a binary signature with

the signature matrix Mxixj ,xkxℓNg(xs, xt) as a matrix product with index xixj (See Figure 12).

If g00 = g11, then N(g00, g01, g10, g11)
T = (g11, g10, g01, g00)

T = (g00, g10, g01, g11)
T , and similarly,

图 12: Connect variables xℓ, xk of f with variables xs, xt of g both using ( 6=2).

N(g00, g10, g01, g11)
T = (g00, g01, g10, g11)

T . Therefore, Mxixj ,xℓxkNg(xs, xt) = Mxixj ,xℓxkg(xt, xs),

which means that connecting variables xℓ, xk of f with, respectively, variables xs, xt of g using N

is equivalent to connecting them directly without N . Hence, in the setting Pl-Holant( 6=2| f, g) we

can form Mxixj ,xℓxk(f)g(xt, xs), which is technically Mxixj ,xℓxkNg(xs, xt), provided that g00 = g11.

Note that for a binary signature g, we can rotate it by 180◦ without violating planarity, and so

both g(xs, xt) and g(xt, xs) can be freely used once we get one of them.

A signature f of arity 4 also has the 2× 8 signature matrix

Mx1,x2x4x3(f) =

f0000 f0010 f0001 f0011 f0100 f0110 f0101 f0111

f1000 f1010 f1001 f1011 f1100 f1110 f1101 f1111

 .
Suppose the signature matrix of g is Mxs,xt(g) and the signature matrix of f is Mxi,xjxℓxk(f).
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Our third gadget construction is essentially an extending gadget defined as follows. By connecting

xt with xi using Disequality (6=2), we get a signature h of arity 4 with the signature matrix

Mxs,xt(g)M( 6=2)Mxi,xjxℓxk(f) by matrix product with row index xs and column index xjxℓxk (See

Figure 13). We may change this form to a signature matrix with row index xsxj and column index

图 13: Connect variable xt of g with variable xi of f using ( 6=2).

xℓxk. In particular, if My1,y2(g) = [ 0 1
t 0 ], then connecting y2 with x1 via ( 6=2) gives

My1,x2x4x3(h) =My1,y2(g)M(6=2)Mx1,x2x4x3(f)

=

0 1

t 0

0 1

1 0

f0000 f0010 f0001 f0011 f0100 f0110 f0101 f0111

f1000 f1010 f1001 f1011 f1100 f1110 f1101 f1111


=

 f0000 f0010 f0001 f0011 f0100 f0110 f0101 f0111

tf1000 tf1010 tf1001 tf1011 tf1100 tf1110 tf1101 tf1111

 .
If we rename the variable y1 by x1, then

Mx1x2,x4x3(h) =


f0000 f0010 f0001 f0011

f0100 f0110 f0101 f0111

tf1000 tf1010 tf1001 tf1011

tf1100 tf1110 tf1101 tf1111

 .

That is, the new signature has the matrix obtained from multiplying t to the last two rows

of Mx1x2,x4x3(f) corresponding to x1 = 1. Similarly we can modify the last two columns of
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Mx1x2,x4x3(f). Given g = (0, 1, t, 0)T , we call the modification from Mx1x2,x4x3(f) to
f0000 f0010 f0001 f0011

f0100 f0110 f0101 f0111

tf1000 tf1010 tf1001 tf1011

tf1100 tf1110 tf1101 tf1111


the operation of t scaling on x1 = 1. Similarly we call the modification from Mx1x2,x4x3(f) to

f0000 f0010 tf0001 tf0011

f0100 f0110 tf0101 tf0111

f1000 f1010 tf1001 tf1011

f1100 f1110 tf1101 tf1111


the operation of t scaling on x4 = 1.

9.2.3 More on Polynomial Interpolation

We use polynomial interpolation in a more involved way to prove the following reductions.

Lemma 9.1. Let f be a 4-ary signature with the signature matrix M(f) =

[
0 0 0 1
0 b 0 0
0 0 b 0
1 0 0 0

]
, where b 6= 0

is not a root of unity. Let χ1 be a 4-ary signature with the signature matrix M(χ1) =

[
0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

]
.

Then for any signature set F containing f , we have

Pl-Holant(6=2| F ∪ {χ1}) ⩽T Pl-Holant( 6=2| F).

图 14: A chain of 2s+ 1 many copies of f linked by double Disequality N
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Proof. We construct a series of gadgets f2s+1 by a chain of 2s + 1 many copies of f linked

by the double Disequality N (See Figure 14). Clearly f2s+1 has the following signature matrix

M(f2s+1) =M(f)(N2M(f))2s =


0 0 0 1

0 b2s+1 0 0

0 0 b2s+1 0

1 0 0 0

 .

The matrix M(f2s+1) has a good form for polynomial interpolation. Suppose χ1 appears m times

in an instance Ω of Pl-Holant( 6=2| F ∪ {χ1}). We replace each appearance of χ1 by a copy of the

gadget f2s+1 to get an instance Ω2s+1 of Pl-Holant(6=2| F ∪ {f2s+1}), which is also an instance of

Pl-Holant( 6=2| F). We divide Ω2s+1 into two parts. One part consists of m signatures f2s+1 and

its signature is represented by (M(f2s+1))
⊗m. Here we rewrite (M(f2s+1))

⊗m as a column vector.

The other part is the rest of Ω2s+1 and its signature is represented by A which is a tensor expressed

as a row vector. Then, the Holant value of Ω2s+1 is the dot product 〈A, (M(f2s+1))
⊗m〉, which is

a summation over 4m bits. That is, a sum over all 0, 1 values for the 4m edges connecting the two

parts. We can stratify all 0, 1 assignments of these 4m bits having a nonzero evaluation of a term

in Pl-HolantΩ2s+1 into the following categories:

• There are i many copies of f2s+1 receiving inputs 0011 or 1100;

• There are j many copies of f2s+1 receiving inputs 0110 or 1001;

where i+ j = m.

For any assignment in the category with parameter (i, j), the evaluation of (M(f2s+1))
⊗m is

clearly b(2s+1)j . Let aij be the summation of values of the part A over all assignments in the

category (i, j). Note that aij is independent from the value of s since we view the gadget f2s+1 as

a block. Since i + j = m, we can denote aij by aj . Then, we rewrite the dot product summation

and get

Pl-HolantΩ2s+1 = 〈A, (M(f2s+1))
⊗m〉 =

∑
0⩽j⩽m

ajb
(2s+1)j .
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Under this stratification, the Holant value of Pl-Holant(Ω, 6=2| F ∪ {χ1}) can be represented as

Pl-HolantΩ = 〈A, (M(χ1))
⊗m〉 =

∑
0⩽j⩽m

aj .

Since b 6= 0 is not a root of unity, the linear equation system has a nonsingular Vandermonde matrix


b0 b1 · · · bm

(b3)0 (b3)1 · · · (b3)m

...
...

...
...

(b2m+1)0 (b2m+1)1 · · · (b2m+1)m

 .

By oracle querying the values of Pl-HolantΩ2s+1 , we can solve the coefficients aj in polynomial time

and obtain the value of p(x) =
∑

0⩽j⩽m
ajx

j for any x. Let x = 1, we get Pl-HolantΩ. Therefore, we

have Pl-Holant(6=2| F ∪ {χ1}) ⩽T Pl-Holant( 6=2| F).

Corollary 9.2. Let f be a 4-ary signature with the signature matrix M(f) =

[
0 0 0 1
0 b 0 0
0 0 b 0
−1 0 0 0

]
, where b 6= 0

is not a root of unity. Let χ2 be a 4-ary signature with the signature matrix M(χ2) =

[
0 0 0 1
0 1 0 0
0 0 1 0
−1 0 0 0

]
.

Then for any signature set F containing f , we have

Pl-Holant(6=2| F ∪ {χ2}) ⩽T Pl-Holant( 6=2| F).

Proof. We still construct a series of gadgets f2s+1 by a chain of odd many copies of f linked

by the double Disequality N . Clearly f2s+1 has the following signature matrix

M(f2s+1) =M(f)(N2M(f))2s =


0 0 0 1

0 b2s+1 0 0

0 0 b2s+1 0

−1 0 0 0

 .

Suppose χ2 appearsm times in an instance Ω of Pl-Holant(6=2| f∪χ2). We replace each appearance

of χ2 by a copy of the gadget f2s+1 to get an instance Ω2s+1 of Pl-Holant(6=2| F ∪ {f2s+1}). In the

same way as in the proof of Lemma 9.1, we divide Ω2s+1 into two parts. One part is represented by
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(M(f2s+1))
⊗m and the other part is represented by A. Then, the Holant value of Ω2s+1 is the dot

product 〈A, (M(f2s+1))
⊗m〉. We can stratify all 0, 1 assignments of these 4m bits having a nonzero

evaluation of a term in Pl-HolantΩ2s+1 into the following categories:

• There are i many copies of f2s+1 receiving inputs 0011;

• There are j many copies of f2s+1 receiving inputs 0110 or 1001;

• There are k many copies of f2s+1 receiving inputs 1100;

where i+ j + k = m.

For any assignment in those categories with parameters (i, j, k) where k ≡ 0 (mod 2), the

evaluation of (M(f2s+1))
⊗m is clearly (−1)kb(2s+1)j = b(2s+1)j . And for any assignment in those

categories with parameters (i, j, k) where k ≡ 1 (mod 2), the evaluation of (M(f2s+1))
⊗m is clearly

(−1)kb(2s+1)j = −b(2s+1)j . Since i + j + k = m, the index i is determined by j and k. Let aj0 be

the summation of values of the part A over all assignments in those categories (i, j, k) where k ≡ 0

(mod 2), and aj1 be the summation of values of the part A over all assignments in those categories

(i, j, k) where k ≡ 1 (mod 2). Note that aj0 and aj1 are independent from the value of s. Let

aj = aj0 − aj1. Then, we rewrite the dot product summation and get

Pl-HolantΩ2s+1 = 〈A, (M(f2s+1))
⊗m〉 =

∑
0⩽j⩽m

(aj0b
(2s+1)j − aj1b

(2s+1)j) =
∑

0⩽j⩽m
ajb

(2s+1)j .

Under this stratification, the Holant value of Pl-Holant (Ω; 6=2| f ∪ χ2) can be represented as

Pl-HolantΩ = 〈A, (M(χ2))
⊗m〉 =

∑
0⩽j⩽m

(aj0 − aj1) =
∑

0⩽j⩽m
aj .

Since b 6= 0 is not a root of unity, the Vandermonde coefficient matrix has full rank. Hence we

can solve for all the values aj in polynomial time and obtain the value
∑

0⩽j⩽m
aj , and so we get

Pl-HolantΩ. Therefore, we have Pl-Holant(6=2| F ∪ {χ2}) ⩽T Pl-Holant(6=2| F).

Lemma 9.3. Let g = (0, 1, t, 0)T be a binary signature, where t 6= 0 is not a root of unity. Then

for any binary signature g′ of the form (0, 1, t′, 0)T and any signature set F containing g, we have

Pl-Holant
(
6=2| F ∪ {g′}

)
⩽T Pl-Holant (6=2| F) .
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Inductively, for any finite signature set B consisting of binary signatures of the form (0, 1, t′, 0)T

and any signature set F containing g, we have

Pl-Holant (6=2| F ∪ B) ⩽T Pl-Holant ( 6=2| F) .

Proof. Note that M(g) = [ 0 1
t 0 ]. Connecting the variable x2 of a copy of g with the variable

x1 of another copy of g using (6=2), we get a signature g2 with the signature matrix

M(g2) =Mx1,x2(g)M(6=2)Mx1,x2(g) =

0 1

t 0

0 1

1 0

0 1

t 0

 =

0 1

t2 0

 .
That is, g2 = (0, 1, t2, 0)T . Recursively, we can construct gs = (0, 1, ts, 0)T for s ≥ 1. Here, g1
denotes g. Given an instance Ω′ of Pl-Holant (6=2| F ∪ {g′}), in the same way as in the proof of

Lemma 9.1, we can replace each appearance of g′ by gs and get an instance Ωs of Pl-Holant (6=2| F).

Similarly, the Holant value of Ωs can be represented as

Pl-HolantΩs =
∑

0⩽j⩽m
aj(t

s)j ,

while the Holant value of Ω′ can be represented as

Pl-HolantΩ′ =
∑

0⩽j⩽m
aj(t

′)j .

Since t 6= 0 is not a root of unity, all ts are distinct, and so the Vandermonde coefficient matrix has

full rank. Hence, we can solve for all aj , and then compute
∑

0⩽j⩽m
aj(t

′)j . So we get Pl-HolantΩ′ .

Therefore, we have Pl-Holant( 6=2| F ∪ {g′}) ⩽T Pl-Holant( 6=2| F). The second part of this lemma

follows directly by the first part.

Remark 9.4. Note that the reason why the interpolation can succeed is that we can construct

polynomially many binary signatures gs of the form (0, 1, ts, 0)
T , where all ts are distinct such

that the Vandermonde coefficient matrix has full rank. According to this, we have the following

corollary.

Corollary 9.5. Given a signature set F , if we can use F to construct polynomially many distinct
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binary signatures gs = (0, 1, ts, 0)
T , then for any finite signature set B consisting of binary signatures

of the form (0, 1, t′, 0)T , we have

Pl-Holant (6=2| F ∪ B) ⩽T Pl-Holant ( 6=2| F) .

In Lemma 9.37, we will show how to construct polynomially many distinct binary signatures

gs = (0, 1, ts, 0)
T using Möbius transformations [2]. A Möbius transformation of the extended

complex plane Ĉ = C ∪ {∞}, the complex plane plus a point at infinity, is a rational function of

the form z 7→ az+ b

cz+ d
of a complex variable z, where the coefficients a, b, c, d are complex numbers

satisfying det
[
a b
c d

]
= ad − bc 6= 0. It is a bijective conformal map. In particular, a Möbius

transformation mapping the unit circle S1 = {z | |z| = 1} to itself is of the form φ(z) = eiθ
(z+ α)

1 + ᾱz
denoted by M(α, eiθ), where |α| 6= 1, or φ(z) = eiθ/z. When |α| < 1, it maps the interior of S1 to

the interior, while when |α| > 1, it maps the interior of S1 to the exterior. A Möbius transformation

is completely determined by its values on any 3 distinct points of Ĉ.

An interpolation proof based on a lattice structure will be given in Lemma 9.34, where the

following lemma is used.

Lemma 9.6. [25] Suppose α, β ∈ C−{0}, and the lattice L = {(j, k) ∈ Z2 | αjβk = 1} has the form

L = {(ns, nt) | n ∈ Z}, where s, t ∈ Z and (s, t) 6= (0, 0). Let ϕ and ψ be any numbers satisfying

ϕsψt = 1. If we are given the values Nℓ =
∑

j,k≥0, j+k≤m(α
jβk)ℓxj,k for ℓ = 1, 2, . . .

(
m+2
2

)
, then

we can compute
∑

j,k≥0, j+k≤m ϕ
jψkxj,k in polynomial time.

9.2.4 Matchgate Signatures

Matchgates were introduced by Valiant [70, 69] to give polynomial-time algorithms for a col-

lection of counting problems over planar graphs. As the name suggests, problems expressible by

matchgates can be reduced to computing a weighted sum of perfect matchings. The latter problem

is tractable over planar graphs by Kasteleyn’s algorithm [48], a.k.a. the FKT algorithm [66, 49].

These counting problems are naturally expressed in the Holant framework using matchgate signa-

tures. We use M to denote the set of all matchgate signatures; thus Pl-Holant(M ) is tractable,

as well as Pl-Holant(6=2| M ). For signatures of arity at most 4, the matchgate signatures are

characterized by the following lemma.
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Lemma 9.7 ([69, 14]). If f has arity ⩽ 3, then f ∈ M iff f satisfies the Parity Condition.

If f has arity 4 and f satisfies the even Parity Condition, i.e.,

Mx1x2,x4x3(f) =


f0000 0 0 f0011

0 f0110 f0101 0

0 f1010 f1001 0

f1100 0 0 f1111

 ,

then f ∈ M iff

detMOut(f) = detMIn(f).

By this matchgate identity, we have the following corollary.

Corollary 9.8. Given a signature f of arity 4, two 2-by-2 matrices Dλ =
[
1 0
0 λ

]
(λ 6= 0) and

M(6=2) = [ 0 1
1 0 ], if f ∈ M , then Dλf and M(6=2)f ∈ M .

Proof. Since f ∈ M , by Lemma 9.7 we know f satisfies the Parity Condition. We only

consider that f satisfies even parity. The proof for f satisfying odd parity is similar and we

omitted it here. Suppose f has the signature matrix M(f) =

[
d 0 0 a
0 b c 0
0 z y 0
x 0 0 w

]
. Then, we have M(Dλf) =[

d 0 0 λ2a
0 λ2b λ2c 0
0 λ2z λ2y 0
λ2x 0 0 λ4w

]
andM(M(6=2)f) =

[w 0 0 x
0 y z 0
0 c b 0
a 0 0 d

]
. Clearly, Dλf andM( 6=2)f also satisfy even parity.

Moreover, we have

detMOut(Dλf) = λ4 detMOut(f),detMIn(Dλf) = λ4 detMIn(f),

and

detMOut(M( 6=2)f) = detMOut(f),detMIn(M(6=2)f) = detMIn(f).

Since detMOut(f) = detMIn(f), we have

detMOut(Dλf) = detMIn(Dλf), and detMOut(M(6=2)f) = detMIn(M( 6=2)f).

That is, Dλf and M(6=2)f ∈ M .

Holographic transformations extend the reach of the FKT algorithm further, as stated below.
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By Definition 2.32, a signature set F is M -transformable if there exists a T ∈ GL2(C) such that

(=2)(T
−1)⊗2 ∈ M and TF ⊆ M .

Theorem 9.9. Let F be any set of complex-valued signatures in Boolean variables. If F is M -

transformable, then Pl-Holant(6=2| F) is tractable.

Let M̂ = HM , where H = 1√
2

[
1 1
1 −1

]
. We will show that for the six-vertex model, M -

transformable signatures are exactly characterized by M and M̂ . We first give the following

simple lemma.

Lemma 9.10. For any signature f with the signature matrix M(f) =

[
0 0 0 a
0 b c 0
0 z y 0
x 0 0 0

]
, and a 2-by-2

matrix Dλ =
[
1 0
0 λ

]
, where λ 6= 0, we have f ∈ M̂ iff (Dλ)

⊗4f ∈ M̂ .

Proof. Note that M((Dλ)
⊗4f) =

[
0 0 0 λ2a
0 λ2b λ2c 0
0 λ2z λ2y 0
λ2x 0 0 0

]
= λ2M(f). That is, (Dλ)

⊗4f = λ2f .

Thus, f ∈ M̂ is equivalent to (Dλ)
⊗4f = λ2f ∈ M̂ .

Lemma 9.11. A signature f with the signature matrix M(f) =

[
0 0 0 a
0 b c 0
0 z y 0
x 0 0 0

]
is M -transformable iff

f ∈ M̂ .

Proof. The reverse direction is obvious, since (6=2)I
⊗2 ∈ M , and (6=2)H

⊗2 ∈ M .

Suppose f is M -transformable. By definition, there is T ∈ GL2(C) such that

(0, 1, 1, 0)T⊗2 ∈ M and (T−1)⊗4f ∈ M .

Let T =
[
λ µ
ν ξ

]
. We have

(0, 1, 1, 0)T⊗2 = (2λν, λξ + µν, λξ + µν, 2µξ) ∈ M .

By Lemma 9.7, we have λν = µξ = 0 or λξ + µν = 0.

If λν = µξ = 0, since T ∈ GL2(C), we have µ = ν = 0 while λ, ξ 6= 0, or λ = ξ = 0 while

µ, ν 6= 0. That is, T =
[
λ 0
0 ξ

]
(λ, ξ 6= 0), or T =

[
0 µ
ν 0

]
(µ, ν 6= 0). By normalization, we may assume

λ = 1 or µ = 1. That is,

T =

1 0

0 ξ

 (ξ 6= 0), or T =

0 1

ν 0

 =

1 0

0 ν

0 1

1 0

 (ν 6= 0).
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For any α 6= 0, we use Dα to denote the matrix [ 1 0
0 α ] and we know D−1

α = D1/α. Then, T = Dξ or

T = DνM( 6=2). By Corollary 9.8, we know f ∈ M given T−1f ∈ M .

Otherwise, λξ + µν = 0. Since T ∈ GL2(C), we know detT = λξ − µν 6= 0. Thus, λξµν 6= 0.

By normalization, we may assume λ = 1 and hence, ξ = −µν. That is

T =

1 µ

ν −µν

 =

1 0

0 ν

1 1

1 −1

1 0

0 µ

 = DνHDµ.

Hence, we have T−1 = 1
2D1/µHD1/ν and we know D1/µHD1/νf ∈ M . We have DµM = M .

Hence HD1/νf ∈ M . Thus, we have

D1/νf ∈ M̂ .

By Lemma 9.10, we have f ∈ M̂ given D⊗4
1/νf ∈ M̂ .

For signatures of special forms, we give the following three characterizations of M̂ . They follow

directly from the definition.

Lemma 9.12. A binary signature g with the signature matrix M(g) = [ g00 g01g10 g11 ] is in M̂ iff g00 = ϵg11

and g01 = ϵg10, where ϵ = ±1.

Lemma 9.13. A signature f with the signature matrix M(f) =

[
0 0 0 0
0 b c 0
0 z y 0
0 0 0 0

]
is in M̂ iff b = ϵy and

c = ϵz, where ϵ = ±1.

Lemma 9.14. If f has the signature matrix M(f) =

[
0 0 0 a
0 b 0 0
0 0 y 0
x 0 0 0

]
, where abxy 6= 0, then f /∈ M̂ .

9.2.5 Known Dichotomies and Hardness Results

Definition 9.15. A 4-ary signature is non-singular redundant iff in one of its four 4× 4 signature

matrices, the middle two rows are identical and the middle two columns are identical, and the

determinant

det


f0000 f0010 f0011

f0100 f0110 f0111

f1100 f1110 f1111

 6= 0.

Theorem 9.16. [28] If f is a non-singular redundant signature, then Pl-Holant( 6=2 |f) is #P-hard.
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Theorem 9.17. [53] Let G be a connected plane graph and EO(H) be the set of all Eulerian

orientations of the medial graph H = H(G) which is a 4-regular planar graph. Then

∑
O∈EO(H)

2β(O) = 2T (G; 3, 3),

where T is the Tutte polynomial, and β(O) is the number of saddle vertices in the orientation O,

i.e., vertices in which the edges are oriented “in, out, in, out” in cyclic order.

Remark 9.18. Note that
∑

O∈EO(H) 2
β(O) can be expressed as Pl-Holant( 6=2| f) on H, where f

has the signature matrix M(f) =

[
0 0 0 1
0 1 2 0
0 2 1 0
1 0 0 0

]
. Therefore, Pl-Holant(6=2| f) is #P-hard.

Theorem 9.19. [20] Let F be any set of complex-valued signatures in Boolean variables. Then

Pl-#CSP(F) is #P-hard unless F ⊆ A , F ⊆ P, or F ⊆ M̂ , in which case the problem is

computable in polynomial time. If F ⊆ A or F ⊆ P, then #CSP(F) is computable in polynomial

time without planarity; otherwise #CSP(F) is #P-hard.

Theorem 9.20. [25] Let f be a 4-ary signature with the signature matrix M(f) =

[
0 0 0 a
0 b c 0
0 z y 0
x 0 0 0

]
, then

Holant(6=2| f) is #P-hard except for the following cases:

• f ∈ P;

• f ∈ A ;

• there is a zero in each pair (a, x), (b, y), (c, z);

in which cases Holant( 6=2| f) is computable in polynomial time.

9.3 Trichotomy Theorem, Proof Outline and Sample Problems

Theorem 9.21. Let f be a signature with the signature matrix M(f) =

[
0 0 0 a
0 b c 0
0 z y 0
x 0 0 0

]
, where a, b, c, x, y, z ∈

C. Then Pl-Holant(6=2| f) is polynomial time computable in the following cases, and #P-hard oth-

erwise:

1. f ∈ P or A ;

2. There is a zero in each pair (a, x), (b, y), (c, z);
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3. f ∈ M or M̂ ;

4. c = z = 0 and

(i). (ax)2 = (by)2, or

(ii). x = aiα, b = a
√
i
β, and y = a

√
i
γ, where α, β, γ ∈ N, and β ≡ γ (mod 2);

If f satisfies condition 1 or 2, then Holant(6=2| f) is computable in polynomial time without the

planarity restriction; otherwise (the non-planar) Holant( 6=2| f) is #P-hard.

Let N be the number of zeros among a, b, c, x, y, z. The following division of all cases into Cases

I, II, III and IV may not appear to be the most obvious, but it is done to simplify the organization

of the proof. We define:

Case I: There is exactly one zero in each pair.

Case II: There is a zero pair.

Case III: N = 2 and having no zero pair, or N = 1 and the zero is in an outer pair.

Case IV: N = 1 and the zero is in an inner pair, or N = 0.

Cases I, II, III and IV are clearly disjoint. To see that they cover all cases, note that if N ⩾ 3,

then either there is a zero pair (in Case II), or N = 3 and each pair has exactly one zero (in Case

I). If N = 2, then either it has a zero pair (in Case II), or it has no zero pair (in Case III). If N = 1,

then either the single zero is in an outer pair (in Case III), or the single zero is in an inner pair

(Case IV). If N = 0 it is in Case IV.

Also note that if N = 2 and it has no zero pair, then the two zeros are in different pairs, which

implies that there is a zero in an outer pair. So in Case III, there is a zero in an outer pair regardless

N = 1 or N = 2. In Case III an outer pair has exactly one zero, and the other two pairs together

have at most one zero.

In Case II, depending on whether the zero pair is inner or outer we have two different connec-

tions to #CSP. A previously established connection to #CSP (see [25]) can be adapted in the planar

setting to handle the case with a zero outer pair. This connection is a local transformation, and we

observe that it preserves planarity. A significantly more involved non-local connection to #CSP is
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discovered in this paper when the inner pair is zero (and no outer pair is zero). We show that by the

support structure of the signature we can define a set of circuits, which forms a partition of the edge

set. There are exactly two valid configurations along each such circuit, corresponding to its two

cyclic orientations. These circuits may intersect in complicated ways, including self-intersections.

But we can define a #CSP problem, where the variables are these circuits, and their edge func-

tions exactly account for the intersections. We show that Pl-Holant(6=2| f) is equivalent to these

#CSP problems, which are non-planar in general. However, crucially, because Pl-Holant( 6=2| f)

is planar, every two such circuits must intersect an even number of times. Due to the planarity

of Pl-Holant(6=2| f) we can exactly carve out a new class of tractable problems via this non-local

#CSP connection, by the kind of constraint functions they produce in the #CSP problems.

For the proof of #P-hardness in this paper, one particularly difficult case is in Lemma 9.37.

This is where we introduce Möbius transformations to prove dichotomy theorems for counting

problems. In this case, all constructible binary signatures correspond to points on the unit circle

S1, and any iteration of the construction amounts to mapping this point by a Möbius transformation

which preserves S1.

The following is an outline on how Case I to Case IV are handled.

I. There is exactly one zero in each pair. In this case, Holant( 6=2| f) is tractable, proved in [25].

II. There is a zero pair:

1. An outer pair (a, x) or (b, y) is a zero pair. We prove that Pl-Holant( 6=2| f) is tractable

if f ∈ P,A ,M or M̂ , and is #P-hard otherwise.

In this Case II.1, we can rotate the signature f such that the matrix MOut(f) is the

zero matrix. Let M(f̃In) = MIn(f) [ 0 1
1 0 ]. We reduce Pl-#CSP(f̃In) to Pl-Holant ( 6=2| f)

via a local replacement (Lemma 9.23). We apply the dichotomy of Pl-#CSP to get #P-

hardness (Theorem 9.24). Tractability of Pl-Holant ( 6=2| f) follows from known tractable

signatures.

2. The inner pair (c, z) is a zero pair and no outer pair is a zero pair. We prove that

Pl-Holant(6=2| f) is #P-hard unless f satisfies condition 4, in which case it is tractable.

This is the non-local reduction described above. The tractable condition 4 is previously

unknown. (Curiously, in Case II.2, condition 4 subsumes f ∈ M .)
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III. 1. There are exactly two zeros and they are in different pairs;

2. There is exactly one zero and it is in an outer pair.

We prove that Pl-Holant( 6=2| f) is #P-hard unless f ∈ M , in which case it is tractable.

In Case III, there exists an outer pair which contains a single zero. By connecting two copies

of the signature f , we can construct a 4-ary signature f1 such that one outer pair is a zero

pair. When f /∈ M , we can realize a signature M(g) =

[
0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

]
by interpolation using f1

(Lemma 9.32). This g can help us “extract” the inner matrix of M(f). By connecting f and

g, we can construct a signature that belongs to Case II. We then prove #P-hardness using

the result of Case II (Theorem 9.33).

IV. 1. There is exactly one zero and it is in the inner pair;

2. All values in {a, x, b, y, c, z} are nonzero.

We prove that Pl-Holant( 6=2| f) is #P-hard unless f ∈ M , in which case it is tractable.

Assume f 6∈ M . The main idea is to use Möbius transformations. However, there are some

settings where we cannot do so, either because we don’t have the initial signature to start the

process, or the matrix that would define the Möbius transformation is singular. So we first

treat the following two special cases.

• If a = ϵx, b = ϵy and c = ϵz, where ϵ = ±1, by interpolation based on a lattice structure,

either we can realize a non-singular redundant signature or reduce from the evaluation

of the Tutte polynomial at (3, 3), both of which are #P-hard (Lemma 9.34).

• If det
[
b c
z y

]
= 0 or det [ a zc x ] = 0, then either we can realize a non-singular redundant

signature or a signature that is #P-hard by Lemma 9.34 (Lemma 9.35).

If f does not belong to the above two cases, we want to realize binary signatures of the form

(0, 1, t, 0)T , for arbitrary values of t. If this can be done, by carefully choosing the values

of t, we can construct a signature that belongs to Case III and it is #P-hard when f /∈ M

(Lemma 9.36). We realize binary signatures by connecting f with (6=2). This corresponds

naturally to a Möbius transformation. By discussing the following different forms of binary

signatures we get, we can either realize arbitrary (0, 1, t, 0)T or a signature belonging to Case

II.2 that does not satisfy condition 4, therefore is #P-hard (Theorem 9.42).
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• If we can get a signature of the form g = (0, 1, t, 0)T where t 6= 0 is not a root of unity,

then by connecting a chain of g, we can get polynomially many distinct binary signatures

gi = (0, 1, ti, 0)T . Then, by interpolation, we can realize arbitrary binary signatures of

the form (0, 1, t′, 0)T .

• Suppose we can get a signature of the form (0, 1, t, 0)T , where t 6= 0 is an n-th primitive

root of unity (n ⩾ 5). Now, we only have n many distinct signatures gi = (0, 1, ti, 0)T .

But we can relate f to two Möbius transformations due to det
[
b c
z y

]
6= 0 and det [ a zc x ] 6= 0.

For each Möbius transformation φ, we can realize the signatures g = (0, 1, φ(ti), 0)T . If

|φ(ti)| 6= 0, 1 or ∞ for some i, then this is treated above, as this φ(ti) is nonzero and not

a root of unity. Otherwise, since φ is a bijection on the extended complex plane Ĉ, it can

map at most two points of S1 to 0 or ∞. Hence, |φ(ti)| = 1 for at least three distinct ti.

But a Möbius transformation is determined by any three distinct points. This implies

that φ maps S1 to itself. Such mappings φ have a known special form eiθ
z+ α

1 + ᾱz
(or eiθ/z,

but the latter form actually cannot occur in our context.) By exploiting its property we

can construct a signature f ′ such that its corresponding Möbius transformation φ′ defines

an infinite group. This implies that φ′k(t) are all distinct. Then, we can get polynomially

many distinct binary signatures (0, 1, φ′k(t), 0), and realize arbitrary binary signatures

of the form (0, 1, t′, 0)T (Lemma 9.37).

• Suppose we can get a signature of the form (0, 1, t, 0)T where t 6= 0 is an n-th primitive

root of unity (n = 3, 4). Then we can either relate it to two Möbius transformations

mapping the unit circle to itself, or realize a double pinning (0, 1, 0, 0)T = (1, 0)T⊗(0, 1)T

(Corollary 9.39).

• Suppose we can get a signature of the form (0, 1, 0, 0)T . By connecting f with it, we can

get new signatures of the form (0, 1, t, 0)T . Similarly, by analyzing the value of t, we can

either realize arbitrary binary signatures of the form (0, 1, s, 0)T , or realize a signature

that belongs to Case II.2, which is #P-hard (Lemma 9.40).

• Suppose we can only get signatures of the form (0, 1,±1, 0). That implies a = ϵx, b = ϵy

and c = ϵz, where ϵ = ±1. This has been treated before.

As Case I has already been proved tractable in [25], we only deal with Cases II, III and IV,
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and they are each dealt with in the next three sections. Before we start the proof, we first illustrate

the scope of Theorem 9.21 by several concrete problems.

Problem 1 : #EO on 4-Regular Planar Graphs.

Input : A 4-regular planar graph G.

Output : The number of Eulerian orientations of G, i.e., the number of orientations of G such

that at every vertex the in-degree and out-degree are equal.

This problem can be expressed as Pl-Holant( 6=2 |f), where f has the signature matrixM(f) =[
0 0 0 1
0 1 1 0
0 1 1 0
1 0 0 0

]
. Huang and Lu proved this problem is #P-complete [45]. Theorem 9.21 confirms this.

Problem 2 : Pl-T (G; 3, 3).

Input : A planar graph G.

Output : The value of the Tutte polynomial T (G;x, y) at (3, 3).

Let Gm be the medial graph of G, then Gm is a 4-regular planar graph. By Theorem 9.17, we

have ∑
O∈EO(Gm)

2β(O) = 2T (G; 3, 3),

where β(O) is the number of saddle vertices in the orientation O. Note that
∑

O∈EO(Gm) 2
β(O) can

be expressed as Pl-Holant(6=2 |f), where f has the signature matrix M(f) =

[
0 0 0 1
0 1 2 0
0 2 1 0
1 0 0 0

]
. Theorem

9.21 confirms that this problem is #P-hard.

Compared to the six-vertex model over general graphs, the planar version has new tractable

problems due to the FKT algorithm under holographic transformations. This tractable class can

give highly nontrivial problems. For example, we consider the following problem.

Problem 3 : SmallPell

Input : A planar 4-regular graph G and a 4-ary signature f , where f has the signature matrix

M(f) =

[
317830805723707970 −283823304736008960i 283823304736008960i 317830805723707968

−283823304736008960i −253454564065438270 253454564065438272 −283823304736008960i
283823304736008960i 253454564065438272 −253454564065438270 283823304736008960i
317830805723707968 −283823304736008960i 283823304736008960i 317830805723707970

]
.

Output : The evaluation of Pl-Holant(f) on G.
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By the holographic transformation Z = 1√
2

[
1 1
i −i

]
, we have

Pl-Holant(f) ≡T Pl-Holant( 6=2 |f̂),

where

M(f̂) =

[
0 0 0 1
0 569465989630582080 32188120829134849 0
0 32188120829134849 1819380158564160 0
1 0 0 0

]
.

Since (32188120829134849, 1819380158564160) is a solution of Pell’s equation x2 − 313y2 = 1, we

have f̂ ∈ M by Matchgate Identities [69]. By Theorem 9.21, Pl-Holant(f) can be computed in

polynomial time.

In addition to matchgates and matchgates-transformable signatures, Theorem 9.21 gives a new

class of tractable problems on planar graphs. They are provably not contained in any previously

known tractable classes. For example, we consider the following problem.

Problem 4 : Pl-Holant(6=2 |f), where f has the signature matrix M(f) =

[
0 0 0 1
0
√
i 0 0

0 0
√
i 0

1 0 0 0

]
.

Input : An instance of Pl-Holant(6=2 |f).

Output : The evaluation of this instance.

By Theorem 9.21 (condition 4 (ii)), Pl-Holant(6=2 |f) can be computed in polynomial time.

Note that Holant( 6=2 |f) is #P-hard without the planar restriction. It can be shown that f is

neither in M nor M -transformable. By Lemma 9.7 we know f 6∈ M , and by Lemma 9.14 we know

f 6∈ M̂ . By Lemma 9.11, this implies f is neither in M nor M -transformable.

Therefore, the tractability is not derivable from the Kasteleyn’s algorithm or a holographic

transformation to it. Hence, condition 4 of Theorem 9.21 defines a new component of planar

tractability complementing the Kasteleyn’s algorithm. Furthermore, it is an essential component

because with it the picture is complete.

9.4 Case II: One Zero Pair

If an outer pair is a zero pair, by rotational symmetry, we may assume (a, x) is a zero pair.
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Definition 9.22. Given a 4-ary signature f with the signature matrix

M(f) =


0 0 0 0

0 b c 0

0 z y 0

0 0 0 0

 , (9.1)

we denote by f̃In the binary signature with M(f̃In) =MIn(f) [ 0 1
1 0 ] =

[
c b
y z

]
. Given a set F consisting

of signatures of the form (9.1), we define F̃In = {f̃In | f ∈ F}.

Lemma 9.23. For any set F of signatures of the form (9.1),

Pl-#CSP(F̃In) ⩽T Pl-Holant (6=2| F) .

Proof. We adapt a proof from [25], making sure that the reduction preserves planarity. This

need to preserve planarity necessitates the twist introduced in the definition of f̃In and F̃In. We

prove this reduction in two steps. In each step, we begin with a signature grid and end with a new

signature grid such that the Holant values of both signature grids are the same.

For step one, let G = (U, V,E) be a planar bipartite graph representing an instance of

Pl-#CSP(F̃In) = Pl-Holant
(
EQ | F̃In

)
,

where each u ∈ U is a variable, and each v ∈ V has degree two and is labeled by some f̃In ∈ F̃In. We

define a cyclic order of the edges incident to each vertex u ∈ U , and split u into k = deg(u) vertices.

Then we connect the k edges originally incident to u to these k new vertices so that each vertex

is incident to exactly one edge. We also connect these k new vertices in a cycle according to the

cyclic order (see Figure 15b). Thus, in effect we have replaced u by a cycle of length k = deg(u).

(If k = 1 then there is a self-loop. If k = 2 then the cycle consists of two parallel edges.) Each

of k vertices has degree 3, and we label them by (=3). This defines a signature grid for a planar

holant problem, since the construction preserves planarity. Also clearly this does not change the

value of the partition function. The resulting graph has the following properties: (1) every vertex

has either degree 2 or degree 3; (2) each degree 2 vertex is connected to degree 3 vertices; (3) each
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u′

u

(a)

u

u′

(b) (c)

图 15: The reduction from #Pl-CSP(f̃In) to Pl-Holant( 6=2| f). The circle vertices are labeled by (=d), where
d is the degree of the corresponding vertex, the diamond vertices are labeled by f̃In , the triangle vertices
are labeled by f , and the square vertices are labeled by (6=2).

degree 3 vertex is connected to exactly one degree 2 vertex.

u′

u

x2 x1

x3 x4
f

(a) f̃In00↔f0101=c

u′

u

x2 x1

x3 x4
f

(b) f̃In01↔f0110=b

u′

u

x2 x1

x3 x4
f

(c) f̃In10↔f1001=y

u′

u

x2 x1

x3 x4
f

(d) f̃In11↔f1010=z

图 16: Assign input variables of f withM(f) =

[
0 0 0 0
0 b c 0
0 z y 0
0 0 0 0

]
. Suppose the binary signature g is applied

to (the ordered pair) (u, u′). The variables u and u′ have been replaced by cycles of length deg(u)
and deg(u′) respectively. For the cycle Cu representing a variable u, we associate the value u = 0
with a clockwise orientation, and u = 1 with a counterclockwise orientation. Then by the support of
f , which is contained in (x1 6= x2)∧(x3 6= x4), (x1, x2) can only take assignment (0, 1) or (1, 0), and
similarly (x3, x4) can only take assignment (0, 1) or (1, 0). We associate (x1, x2) = (0, 1) to u = 0
(clockwise orientation), and (x1, x2) = (1, 0) to u = 1 (counterclockwise orientation). Consistently,
(x3, x4) = (0, 1) when u′ = 0, and (x3, x4) = (1, 0) when u′ = 1.

Now step two. For every v ∈ V , v has degree 2 and is labeled by some f̃In ∈ F̃In. We contract

the two edges incident to v to produce a new vertex v′. The resulting graph G′ = (V ′, E′) is

4-regular and planar. We put a node on every edge of G′ (these are all edges of the cycles created

in step one) and label it by (6=2) (see Figure 15c). Next, we assign a copy of the corresponding
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f to every v′ ∈ V ′. The input variables x1, x2, x3, x4 are carefully assigned at each copy of f

(as illustrated in Figure 16) such that there are exactly two configurations to each original cycle,

which correspond to cyclic orientations, due to the ( 6=2) on it and the support set of f . These

cyclic orientations correspond to the {0, 1} assignments at the original variable u ∈ U . Under this

one-to-one correspondence, the value of f̃In is perfectly mirrored by the value of f . Therefore, we

have Pl-#CSP(F̃In) ⩽T Pl-Holant ( 6=2| F) .

图 17: A self-loop on the cycle representing variable w is created for each constraint f̃In(w,w).
This creates a degree 4 vertex labeled by f , with four input variables (x1, x2, x3, x4) as described.
Note that the self-loop is created locally on the cycle such that it does not affect anything having
to do with other cycles. Base on the support of f , the values x1 6= x2 and x3 6= x4. By the ( 6=)
on the loop, we also have x1 6= x4. Hence (x1, x2) = (x3, x4) = (0, 1) or (1, 0). It is clear that
the former corrresponds to w = 0 (clockwise orientation), and the latter corrresponds to w = 1
(counterclockwise orientation). This is consistent with the association in Figure 16.

There is also the possibility that the binary constraint f̃In is applied to a single variable, say w,

resulting in a unary constraint that takes value f̃In(0, 0) = c if w = 0 and f̃In(1, 1) = z if w = 1. To

reflect that, we simply introduce a self-loop on the cycle representing the variable w for every such

occurrence, as illustrated in Figure 17. It is clear that the values c and z are perfectly mirrored

by the values that the local copy f takes under the two orientations for the cycle corresponding to

w = 0 and 1.

Theorem 9.24. Let f be a 4-ary signature of the form (9.1). Then Pl-Holant(6=2| f) is #P-hard

unless f ∈ P, f ∈ A , or f ∈ M̂ , in which cases the problem is tractable.

Proof. Tractability follows from Theorems 2.30 and 9.9. For any f of the form (9.1), note
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that the support of f is contained in (x1 6= x2) ∧ (x3 6= x4). We have

f(x1, x2, x3, x4) = f̃In(x1, x3) · χx1 ̸=x2 · χx3 ̸=x4 ,

where χ is the 0-1 indicator function. Thus, f̃In ∈ P or A is equivalent to f ∈ P or A . In

addition, by Lemmas 9.12 and 9.13, f̃In ∈ M̂ is equivalent to f ∈ M̂ . Therefore, if f /∈ P,A or

M̂ , then f̃In /∈ P,A or M̂ . By Theorem 9.19, Pl-#CSP(f̃In) is #P-hard, and then by Lemma

9.23, Pl-Holant ( 6=2| f) is #P-hard.

Remark 9.25. One may observe that if f ∈ M , then Pl-Holant (6=2| f) is also tractable as f

and (=2) are both realized by matchgates. However, Theorem 9.24 already accounted for this case

because for signature f of the form (9.1), f ∈ M implies f ∈ P.

Now, we consider the case that the inner pair is a zero pair and no outer pair is a zero pair.

Note that a signature in the form (9.2) has support contained in (x1 6= x3) ∧ (x2 6= x4).

Definition 9.26. Given a 4-ary signature f with the signature matrix

M(f) =


0 0 0 a

0 b 0 0

0 0 y 0

x 0 0 0

 , (9.2)

where (a, x) 6= (0, 0) and (b, y) 6= (0, 0), let Gf denote the set of all binary signatures g
f

of the form

M(g
f
) =

ak1+ℓ1yk2+ℓ2xk3+ℓ3bk4+ℓ4 ak2+ℓ4yk3+ℓ1xk4+ℓ2bk1+ℓ3

ak4+ℓ2yk1+ℓ3xk2+ℓ4bk3+ℓ1 ak3+ℓ3yk4+ℓ4xk1+ℓ1bk2+ℓ2

 ,
satisfying k = ℓ, where k =

∑4
i=1 ki, ℓ =

∑4
i=1 ℓi and k1, k2, k3, k4, ℓ1, ℓ2, ℓ3, ℓ4 ∈ N. Let Hf denote

the set of all unary signatures h
f

of the form

M(h
f
) =

[
am1ym2xm3bm4 am3ym4xm1bm2

]
,

where m1,m2,m3,m4 ∈ N.
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Let k = k1 = ℓ1 = ℓ = 1, we get a specific signature g1f ∈ Gf , with M(g1f ) =
[
a2 by
by x2

]
. Let

k = k1 = ℓ3 = ℓ = 1, we get another specific signature g2f ∈ Gf , with M(g2f ) =
[
ax b2

y2 ax

]
.

Remark 9.27. For any i, j ∈ {1, 2, 3, 4}, let k = ki = ℓj = ℓ = 1, we can get 16 signatures in Gf that

have similar signature matrices to M(g1f ) and M(g2f ). For example, Choosing k = k3 = ℓ1 = ℓ = 1,

we get g′2f (x1, x2) with the signature matrix M(g′2f ) =
[
ax y2

b2 ax

]
. Indeed g′2f (x1, x2) = g2f (x2, x1).

In fact, Gf is the closure by the Hadamard product (entry-wise product) of these 16 basic signature

matrices.

Lemma 9.28. Let f be a signature of the form (9.2). Then,

Pl-Holant(6=2| f) ⩽T #CSP(Gf ∪Hf ), (9.3)

If a2 = x2 6= 0, b2 = y2 6= 0 and
(
b
a

)8 6= 1, then

#CSP(g1f , g2f ) ⩽T Pl-Holant(6=2| f). (9.4)

Proof. We divide the proof into two parts: We show the reduction (9.3) in Part I, and the

reduction (9.4) in Part II.

Part I: Suppose Ω = (G, π) is a given instance of Pl-Holant( 6=2| f), where G = (U, V,E) is

a plane bipartite graph. Every vertex v ∈ V has degree 4, and we list its incident four edges in

counterclockwise order. Two edges both incident to a vertex v ∈ V are called adjacent if they are

adjacent in this cyclic order, and non-adjacent otherwise. Two edges in G are called 2-ary edge

twins if they are both incident to a vertex u ∈ U (of degree 2), and 4-ary edge twins if they are

non-adjacent but both incident to a vertex v ∈ V (of degree 4). Both 2-ary edge twins and 4-ary

edge twins are called edge twins.

Each edge has a unique 2-ary edge twin at its endpoint in U of degree 2 and a unique 4-ary

edge twin at its endpoint in V of degree 4. The reflexive and transitive closure of the symmetric

binary relation edge twin forms a partition of E as an edge disjoint union of circuits: C1, C2, . . . , Ck.

Note that Ci may include repeated vertices called self-intersection vertices, but no repeated edges.

We arbitrarily pick an edge ei of Ci to be the leader edge of Ci. Given the leader edge ei = (u, v)
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of Ci, with u ∈ U and v ∈ V , the direction from u to v defines an orientation of the circuit Ci. ∗

For any edge twins {e, e′}, this orientation defines one edge, say e′, as the successor of the other if

e′ comes right after e in the orientation. When we list the assignments of edges in a circuit, we list

successive values of successors, starting with the leader edge.

For any nonzero term in the sum

Pl-HolantΩ =
∑

σ:E→{0,1}

∏
w∈U∪V

fw(σ |E(w)
),

the assignment of all edges σ : E → {0, 1} can be uniquely extended from its restriction on leader

edges σ′ : {e1, e2, · · · ek} → {0, 1}. This is because the support of f is contained in (x1 6= x3)∧(x2 6=

x4). Thus, at each vertex v ∈ V , fv(σ |E(v)
) 6= 0 only if each pair of edge twins in E(v) is assigned

value (0, 1) or (1, 0). The same is true for any vertex u ∈ U of degree 2, which is labeled ( 6=2).

Thus, if the leader edge ei in Ci takes value 0 or 1 respectively, then all edges on Ci must take

values (0, 1, 0, 1, · · · , 0, 1) or (1, 0, 1, 0, · · · , 1, 0) respectively on successive successor edges, starting

with ei. In particular, all pairs of 4-ary edge twins in Ci take assignment (0, 1) when ei = 0 and

(1, 0) when ei = 1 (listing the value of the successor second). Then, we have

Pl-HolantΩ =
∑

σ′:{e1,··· ,ek}→{0,1}

∏
v∈V

fv(σ̂′ |E(v)
),

where σ̂′ denotes the unique extension of σ′.

For all 1 ≤ i < j ≤ k, let Vi,j = Ci ∩ Cj denote the set of all intersection vertices between Ci
and Cj . Denote by σ′(ei,ej) an assignment {ei, ej} → {0, 1}. Define a binary function gi,j on ei and

ej as follows: For any b, b′ ∈ {0, 1}, let

gi,j(b, b
′) =

∏
v∈Vi,j

fv(σ̂′(ei,ej) |E(v)
),

where σ̂′(ei,ej) is the unique extension of σ′(ei,ej) on the union of edge sets of Ci and Cj as described

above, and σ′(ei,ej) is the unique assignment on {ei, ej} such that ei 7→ b and ej 7→ b′. Since all

edges incident to vertices in Vi,j are either in Ci or Cj , the assignment values of these edges are
∗This default orientation should not be confused with the orientation in the proof of Lemma 9.23.
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determined by σ′(ei,ej). Hence, gi,j is well-defined.

We show that gi,j ∈ Gf by induction on the number n of self-intersection vertices in Ci. Note

that in this proof, i and j (with i < j) are not treated symmetrically.

For each vertex v ∈ Vi,j , consider the two pairs of edge twins incident to it. We label the

edge twins in Ci by the variables (x1, x3) such that x3 is the successor of x1 in the orientation of

Ci. Hence, for all v ∈ Vi,j , these variables (x1, x3) take the same assignment (0, 1) when ei = 0

and (1, 0) when ei = 1. Then, label the edge twins in Cj at v by (x2, x4) so that the 4 edges at

v are ordered (x1, x2, x3, x4) in counterclockwise order. This choice of (x2, x4) is unique given the

labeling (x1, x3).

As we traverse Ci according to the orientation of Ci, locally there is a notion of the left side

of Ci. At any vertex v ∈ Ci ∩ Cj , if we take the traversal of Cj according to the orientation of

Cj , it either comes into or goes out of the left side of Ci. We call v ∈ Ci ∩ Cj of the former kind

“entry-vertices”, and the latter kind “exit-vertices” (see Figure 18).

图 18: Intersection vertices between Ci and Cj

At any entry-vertex v ∈ Vi,j , the variable x4 is the successor of x2, while at any exit-vertex

x2 is the successor of x4. Therefore, at entry-vertices, variables (x2, x4) take assignment (0, 1)

when ej = 0 and (1, 0) when ej = 1, while at exit-vertices they take assignment (1, 0) and (0, 1)

respectively instead.

Table 7 summarizes the values of f and its rotated copies at intersection vertices Vi,j . According

to the 4 different assignments of (ei, ej) as listed in column 1 of the table, column 2 and column 7

(indexed by (x1, x2, x3, x4)) list the assignments of (x1, x2, x3, x4) at entry-vertices and exit-vertices
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(ei, ej)
entry-vertices exit-vertices

(x1, x2, x3, x4) f f
π
2 fπ f

3π
2 (x1, x2, x3, x4) f f

π
2 fπ f

3π
2

(0, 0) (0, 0, 1, 1) a y x b (0, 1, 1, 0) b a y x

(0, 1) (0, 1, 1, 0) b a y x (0, 0, 1, 1) a y x b

(1, 1) (1, 1, 0, 0) x b a y (1, 0, 0, 1) y x b a

(1, 0) (1, 0, 0, 1) y x b a (1, 1, 0, 0) x b a y

表 7: The values of f and its rotated copies at intersection vertices

separately. With respect to this local labeling of (x1, x2, x3, x4), the signature f has four rotated

forms:

M(f) =

[
0 0 0 a
0 b 0 0
0 0 y 0
x 0 0 0

]
,M(f

π
2 ) =

[
0 0 0 y
0 a 0 0
0 0 x 0
b 0 0 0

]
,M(fπ) =

[
0 0 0 x
0 y 0 0
0 0 b 0
a 0 0 0

]
and M(f

3π
2 ) =

[
0 0 0 b
0 x 0 0
0 0 a 0
y 0 0 0

]
.

columns 3, 4, 5, 6 and columns 8, 9, 10, 11 list the corresponding values of the signature f in four

forms f , f π2 , fπ and f 3π
2 respectively.

Suppose there are k1, k2, k3 and k4 many entry-vertices assigned f , f π2 , fπ, and f 3π
2 , respec-

tively, and there are ℓ1, ℓ2, ℓ3 and ℓ4 many exit-vertices assigned f π2 , fπ, f 3π
2 and f , respectively.

Then, according to the assignments of (ei, ej), the values of gi,j are listed in Table 8, and its

signature matrix is given below:

M(gi,j) =

ak1+ℓ1yk2+ℓ2xk3+ℓ3bk4+ℓ4 ak2+ℓ4yk3+ℓ1xk4+ℓ2bk1+ℓ3

ak4+ℓ2yk1+ℓ3xk2+ℓ4bk3+ℓ1 ak3+ℓ3yk4+ℓ4xk1+ℓ1bk2+ℓ2

 .
(ei, ej) gi,j(ei, ej) = fk1(f

π
2 )k2(fπ)k3(f

3π
2 )k4(f

π
2 )ℓ1(fπ)ℓ2(f

3π
2 )ℓ3f ℓ4

(0, 0) ak1yk2xk3bk4aℓ1yℓ2xℓ3bℓ4

(0, 1) bk1ak2yk3xk4yℓ1xℓ2bℓ3aℓ4

(1, 1) xk1bk2ak3yk4xℓ1bℓ2aℓ3yℓ4

(1, 0) yk1xk2bk3ak4bℓ1aℓ2yℓ3xℓ4

表 8: The values of gi,j

Our proof that gi,j ∈ Gf is based on the assertion that the number of “entry-vertices” and

“exit-vertices” are equal, namely
∑4

i=1 ki =
∑4

i=1 ℓi.

• First, consider the base case n = 0. That is, Ci is a simple cycle without self-intersection. By
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the Jordan Curve Theorem, Ci divides the plane into two regions, an interior region and an

exterior region. In this case, as we traverse Ci according to the orientation of Ci, the left side

of the traversal is always the same region; we call it Li (which could be either the interior or

the exterior region, depending on the choice of the leader edge ei). If we traverse Cj according

to the orientation of Cj , we enter and exit the region Li an equal number of times. Therefore

there is an equal number of “entry-vertices” and “exit-vertices”. Hence
∑4

i=1 ki =
∑4

i=1 ℓi. It

follows that gi,j ∈ Gf by the definition of Gf .

• Inductively, suppose gi,j ∈ Gf holds for any circuit Ci with at most n self-intersections. Let

Ci have n + 1 self-intersections. We decompose Ci into two edge-disjoint circuits, each of

which has at most n self-intersections (See Figure 19). Take any self-intersection vertex v∗

图 19: Decompose Ci into C1
i and C2

i .

of Ci. There are two pairs of 4-ary edge twins {e, e′} and {e, e′}, where e′ is the successor

of e and e′ is the successor of e. Note that e and e are oriented toward v∗, and e′ and e′

are oriented away from v∗. By the definition of edge twins, {e, e} are adjacent, and {e′, e′}

are adjacent. We can break Ci into two oriented circuits C1
i and C2

i , by splitting v∗ into two

vertices, and let e′ follow e and let e′ follow e. Let the mapping γ : [0, 1] → R2, such that

γ(0) = γ(1/2) = γ(1) = v∗, represent the traversal of Ci. Then we can define two mappings

γ1, γ2 : [0, 1] → R2, such that γ1(t) = γ(t/2) and γ2(t) = γ((t+1)/2). Then {γ1, γ2} represent

{C1
i , C

2
i } respectively. It follows that Ci is the edge disjoint union of C1

i and C2
i and they

both inherit the same orientation from that of Ci. Any vertex in Vi,j is distinct from a self

intersection point of Ci and thus Vi,j is a disjoint union V 1
i,j ∪ V 2

i,j , where V 1
i,j = C1

i ∩ Cj and

V 2
i,j = C2

i ∩ Cj .

Since C1
i inherits the orientation from Ci, the orientation on C1

i is consistent with the orien-

tation starting by choosing a leader edge on C1
i . The same is true for the orientation on C2

i .

Thus, by induction, on each C1
i ∩Cj and C2

i ∩Cj there are an equal number of “entry-vertices”
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and “exit-vertices”. Hence
∑4

i=1 ki =
∑4

i=1 ℓi, and so gi,j ∈ Gf , completing the induction.

Let Vi be the set of all self-intersections of Ci. Let σ′(ei) denote the restriction of σ′ on {ei}.

Define a unary function hi on ei as follows: For any b ∈ {0, 1}, let

hi(b) =
∏
v∈Vi

fv(σ̂′(ei)) |E(v)
),

where σ̂′(ei) is the unique extension of σ′(ei) on the edge set of Ci, and σ′(ei) is the unique assignment

on {ei} such that ei 7→ b. The assignment of those edges incident to vertices in Vi can be uniquely

extended from the assignment σ′(ei). Hence, hi is well-defined. We show that hi ∈ Hf .

For each vertex in Vi, since it is a self-intersection vertex, the two pairs of edge twins incident

to it are both in Ci. We still first label each pair of edge twins by a pair of variables (x1, x3) obeying

the orientation of Ci. That is, x3 is always the successor of x1. Now by the definition of 4-ary edge

twins, the two edges labeled x1 are adjacent. Hence at each vertex in Vi, starting from one x1, the

four incident edges are labeled by (x1, x1, x3, x3) in counterclockwise order. We pick the pair of

variables (x1, x3) that appear in the second and fourth positions in this listing and change them to

(x2, x4), so that the four edges are now labeled by (x1, x2, x3, x4) in counterclockwise order. Clearly,

(x2, x4) and (x1, x3) take the same assignment. That is, at each vertex in Vi, the assignment of

(x1, x2, x3, x4) is (0, 0, 1, 1) when ei = 0, and (1, 1, 0, 0) when ei = 1. Under this labeling, the

signature f still has four rotated forms. The values of these four forms are listed in Table 9.

ei (x1, x2, x3, x4) f f
π
2 fπ f

3π
2

0 (0, 0, 1, 1) a y x b

1 (1, 1, 0, 0) x b a y

表 9: The values of f and its rotated forms at self-intersection vertices

Suppose on Vi there are m1,m2,m3 and m4 many vertices assigned f , f π2 , fπ and f 3π
2 respec-

tively. Then, we have

M(hi) = [am1ym2xm3bm4 am3ym4xm1bm2 ].

It follows that hi ∈ Hf .
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For any vertex v ∈ V , it is either in some Vi,j or some Vi. Thus,

Pl-HolantΩ =
∑

σ′:{e1,··· ,ek}→{0,1}

( ∏
v∈Vi,j

1⩽i<j⩽k

fv(σ
′|E(v))

)( ∏
v∈Vi
1⩽i⩽k

fv(σ
′|E(v))

)

=
∑

σ′:{e1,··· ,ek}→{0,1}

( ∏
1⩽i<j⩽k

gi,j(σ
′(ei), σ

′(ej))

)( ∏
1⩽i⩽k

hi(σ
′(ei))

)
,

where gi,j ∈ Gf and hi ∈ Hf . Therefore, Pl-Holant(6=2| f) ⩽T#CSP(Gf ∪Hf ).

Here, we give an example for the reduction (9.3).

Example. The signature grid Ω = (G, π) for Pl-Holant ( 6=2| f) in Figure 20 has two circuits

C1 (the Square) and C2 (the Horizontal Eight) in G. We have chosen (arbitrarily) a leader

图 20: An example for the reduction (9.3)

edge ei for each circuit Ci. In Figure 20 they are near the top left corner. Given the leader, the

direction from its endpoint of degree 2 to the endpoint of degree 4 gives a default orientation of

the circuit. Given a nonzero term in the sum Pl-HolantΩ, as a consequence of the support of f , the

assignment of edges in each circuit is uniquely determined by the assignment of its leader. That is,

any assignment of the leaders σ′ : {e1, e2} → {0, 1} can be uniquely extended to an assignment of

all edges σ : E → {0, 1} such that on each circuit the values of 0, 1 alternate.

Consider the signatures fv1 , fv2 , fv3 and fv4 on the intersection vertices between C1 and C2.

Assume C1 does not have self-intersection (as is The Square); otherwise, we will decompose C1

further and reason inductively. Without self-intersection, C1 has an interior and exterior region by

the Jordan Curve Theorem. For the chosen orientation of C1, its left side happens to be the interior

region. With respect to C1, the circuit C2 enters and exits the interior of C1 alternately. Thus,

we can divide the intersection vertices into an equal number of “entry-vertices” and “exit-vertices”.
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In this example, fv1 and fv4 are on “entry-vertices”, while fv2 and fv3 are on “exit-vertices”. By

analyzing the values of each f when e1 and e2 take assignment 0 or 1, we can view each f as a

binary constraint on (C1, C2). Depending on the 4 different rotation forms of f and whether f is on

“entry-vertices” or “exit-vertices”, the resulting binary constraint has 8 different forms (See Table

7). By multiplying these constraints, we get the binary constraint g1,2. This can be viewed as a

binary edge function on the circuits C1 and C2. The property of g1,2 crucially depends on there

are an equal number of “entry-vertices” and “exit-vertices”. For any b, b′ ∈ {0, 1},

g1,2(b, b
′) =

∏
1⩽i⩽4

fvi(σ̂
′
(e1,e2)

|E(vi)
),

where σ̂′(e1,e2) uniquely extends to C1 and C2 the assignment σ′(e1,e2)(e1) = b and σ′(e1,e2)(e2) = b′.

If the placement of fv1 were to be rotated clockwise π
2 , then fv1 will be changed to f

π
2
v1 in the

above formula, where Mx1x2,x4x3(f
π
2
v1) =Mx2x3,x1x4(fv1).

For the self-intersection vertex fv5 , the notions of “entry-vertex” and “exit-vertex” do not

apply. fv5 gives rise to a unary constraint H on e2. Depending on the 4 different rotation forms of

f , H has 4 different forms (see Table 3). For any b ∈ {0, 1},

h2(b) = fv5(σ̂
′
(e2)

|E(v5)
),

where σ̂′(e2) uniquely extends to C2 the assignment σ′(e2)(e2) = b.

Therefore, we have

Pl-HolantΩ =
∑

σ:E→{0,1}

∏
v∈V (G)

fv(σ |E(v)
)

=
∑

σ′:{e1,e2}→{0,1}

( ∏
1⩽i⩽4

fvi(σ
′|E(vi))

)
fv5(σ

′|E(v5))

=
∑

σ′:{e1,e2}→{0,1}

g1,2(σ
′(e1), σ

′(e2))H(σ′(e2)).

Part II: Suppose I is a given instance of #CSP(g1f , g2f ). Each constraint g1f and g2f is

applied on certain pairs of variables. It is possible that they are applied to a single variable,

resulting in two unary constraints. We will deal with such constraints later. We first consider the
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case that every constraint is applied on two distinct variables.

For any pair i < j, consider all binary constraints on variables xi and xj (i < j). Note that

g1f is symmetric, that is, g1f (xi, xj) = g1f (xj , xi). We assume all the constraints between xi and

xj are: si,j many constraints g1f (xi, xj), ti,j many constraints g2f (xi, xj) and t′i,j many constraints

g2f (xj , xi). Let gi,j(xi, xj) be the function product of these constraints. That is,

gi,j(xi, xj) = g
si,j
1f

(xi, xj)g
ti,j
2f

(xi, xj)g
t′i,j
2f

(xj , xi).

Then, we have

#CSP(I) =
∑

σ:{x1,...,xk}→{0,1}

∏
1⩽i<j⩽n

gi,j(σ(xi), σ(xj)).

We prove the reduction (9.4) in two steps. We first reduce #CSP(I) to both instances Ωi

(for i = 1, 2) of Pl-Holant ( 6=2| f, χi) respectively, where χ1 =

[
0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

]
and χ2 =

[
0 0 0 1
0 1 0 0
0 0 1 0
−1 0 0 0

]
. The

instance Ωi is constructed as follows:

1. Draw a cycle D1, i.e., a homeomorphic image of S1, on the plane. For 2 ⩽ j ⩽ k successively

draw cycles Dj , and for all 1 ⩽ i < j let Dj intersect transversally with Di at least 2(si,j +

ti,j + t
′
i,j) many times. This can be done since we can let Dj enter and exit the interiors of Di

successively. A concrete realization is as follows: Place k vertices Di on a semi-circle in the

order of i = 1, . . . , k. For 1 ⩽ i < j ⩽ k, connect Di and Dj by a straight line segment Lij .

Now thicken each vertex Di into a small disk, and deform the boundary circle of Dj so that,

for every 1 ⩽ i < j, it reaches across to Di along the line segment Lij , and intersects the

boundary circle of Di exactly 2(si,j+ti,j+t
′
i,j) many times. (There are also other intersections

between these cycles Di’s due to crossing intersections between those line segments. This is

why we say “at least” this many intersections in the overall description. We will deal with

those extra intersection vertices later.) We can draw these cycles to satisfy the following

conditions:

a. There is no self-intersection for each Di.

b. Every intersection point is between exactly two cycles. They intersect transversally.

Each intersection creates a vertex of degree 4.



262

These intersecting cycles define a planar 4-regular graph G′, where intersection points are the

vertices.

2. Replace each edge of G′ by a path of length two. We get a planar bipartite graph G = (V,E).

On one side, all vertices have degree 2, and on the other side, all vertices have degree 4. We

can still define edge twins as in Part I. Moreover, we still divide the graph into some circuits

C1, . . . , Ck. In fact, Ci is just the cycle Di after the replacement of each edge by a path of

length two.

Let Vi,j = Ci∩Cj (i < j) be the intersection vertices between Ci and Cj . Clearly, |Vi,j | is even

and at least 2(si,j+ ti,j+ t′i,j). Since there is no self-intersection, each circuit is a simple cycle.

As we did in Part I, we pick an edge ei as the leader edge of Ci and this gives an orientation

of Ci. We can define “entry-vertices” and “exit-vertices” as in Part I. Among Vi,j , half are

entry-vertices and the other half are exit-vertices. (This notion is defined in terms of Cj with

respect to Ci; the roles of i and j are not symmetric.) List the edges in Ci according to the

orientation of Ci starting with the leader edge ei. After we place copies of f on each vertex,

the support of f , which is contained in (x1 6= x3) ∧ (x2 6= x4), ensures that every 4-ary twins

can only take values (0, 1) or (1, 0), since the 4-ary twin edges are non-adjacent. Then all

edges in Ci can only take assignment (0, 1, 0, 1, · · · , 0, 1) when ei = 0 and (1, 0, 1, 0, · · · , 1, 0)

when ei = 1.

3. Label all vertices of degree 2 by ( 6=2). For any vertex in Vi,j (i < j), as we showed in Part I,

we can label the four edges incident to it by variables (x1, x2, x3, x4) in a way such that when

σ′ : (ei, ej) 7→ (b, b′) ∈ {0, 1}2, we have (x1, x2, x3, x4) = (b, b′, 1−b, 1−b′) at any entry-vertex,

and (x1, x2, x3, x4) = (b, 1 − b′, 1 − b, b′) at any exit-vertex (See Table 7). Note that f has

four rotation forms under this labeling. We have (at least) si,j+ ti,j+ t′i,j many entry-vertices

and as many exit-vertices. Let V ′
i,j be the set of these 2(si,j + ti,j + t′i,j) vertices. For vertices

in V ′
i,j , we label si,j many entry-vertices by f and si,j many exit-vertices by f π2 , ti,j many

entry-vertices by f and ti,j many exit-vertices by f 3π
2 , and t′i,j many entry-vertices by fπ and

t′i,j many exit-vertices by f π2 . Refer to Table 8, this choice amounts to taking

k1 = si,j + ti,j , k3 = t′i,j , and, ℓ1 = si,j + t′i,j , ℓ3 = ti,j ,
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and all other ki, ℓi’s equal to 0. Recall that g1f (x1, x2) corresponds to choosing k1 = ℓ1 = 1

and the others all 0, g2f (x1, x2) corresponds to choosing k1 = ℓ3 = 1 and the others all 0, and

g2f (x2, x1) corresponds to choosing k3 = ℓ1 = 1 and the others all 0, then we have

∏
v∈V ′

ij

fv(σ
′
(ei,ej)

|E(v)
) = g

si,j
1f

(ei, ej)g
ti,j
2f

(ei, ej)g
t′i,j
2f

(ej , ei) = gi,j(ei, ej).

For all vertices in Vi,j\V ′
i,j , if we label them by an auxiliary signature χ1 =

[
0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

]
, then,

referring to Table 8 (Here a = x = b = y = 1), we have

∏
v∈Vi,j\V ′

ij

χ1(σ
′
(ei,ej)

|E(v)
) = 1,

for all assignments σ′ on {ei, ej}. We can also label the vertices in Vi,j\V ′
i,j by an auxiliary

signature χ2 =

[
0 0 0 1
0 1 0 0
0 0 1 0
−1 0 0 0

]
. By our (semi-circle) construction, in Vi,j\V ′

i,j , the number of entry-

vertices is equal to the number of exit-vertices. We label all entry-vertices by χ2 and label all

exit-vertices by its rotated form χ
π
2
2 =

[
0 0 0 1
0 1 0 0
0 0 −1 0
1 0 0 0

]
. Refer to Table 8 (here a = b = y = 1, x =

−1, and k = k1 = ℓ1 = ℓ, and the crucial equation is gi,j(1, 1) = xk1+ℓ1 = (−1)2 = 1), we

have ∏
v∈Vi,j\V ′

ij

χ2(σ
′
(ei,ej)

|E(v)
) = 1,

for all assignments σ′ on {ei, ej}.

图 21: Creating self-loop locally on cycle Cw

Then, consider the case that g1f and g2f are applied to the pair variables (w,w), in which
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case g1f and g2f effectively become unary constraints [a2, x2] and [ax, ax] on the variable xi. The

latter is a constant multiple of [1, 1] and can be ignored. The unary constraint [a, x], and hence

also [a2, x2], can be easily realized by f in Pl-Holant(6=2| f, χi), by creating a self-loop for the cycle

representing the variable w, denoted by Cw (See Figure 21). Note that the self-loop is created

locally on the cycle Cw such that it does not affect other cycles. As we did in Part I, we label the

four edges incident to a self-intersection vertex by (x1, x2, x3, x4) such that x3 is the successor of

x1 and x4 is the successor of x2 depending on the default orientation of Cw, and (x1, x2, x3, x4) are

labeled in counterclockwise order. Then, we have (x1, x3) = (x2, x4) = (0, 1) when w = 0 and (1, 0)

when w = 1. That is, g1f (0, 0) = a2 = f20011 and g1f (1, 1) = x2 = f21100.

Now, we get an instance Ωs (s = 1, 2) for each problem Pl-Holant (6=2| f, χs) respectively. Note

that χs has the support (x1 6= x3) ∧ (x2 6= x4) as f . As we have showed in Part I, for any nonzero

term in the sum Pl-HolantΩs , the assignment of all edges σ : E → {0, 1} can be uniquely extended

from the assignment of all leader edges σ′ : {e1, e2, . . . , ek} → {0, 1}. Therefore, we have

#CSP(I) =
∑

σ′:{e1,··· ,ek}→{0,1}

∏
1⩽i<j⩽n

gi,j(σ
′(ei), σ

′(ej))

=
∑

σ′:{e1,··· ,ek}→{0,1}

( ∏
v∈V ′

i,j

1⩽i<j⩽n

fv(σ
′|E(v)

)

)( ∏
v∈Vi,j\V ′

i,j

1⩽i<j⩽n

χsv(σ
′|E(v)

)

)

= Pl-HolantΩs

for s = 1, 2. That is, #CSP(g1f , g2f ) ⩽T Pl-Holant ( 6=2| f, χs), (s = 1, 2).

From the hypothesis of the reduction (9.4), we have a = ±x 6= 0, b = ±y 6= 0, and (b/a)8 6= 1.

We show by interpolation

Pl-Holant(6=2| f, χ1) ⩽T Pl-Holant( 6=2| f)

when a = ϵx, b = ϵy, and

Pl-Holant( 6=2| f, χ2) ⩽T Pl-Holant(6=2| f)

when a = ϵx, b = −ϵy, where ϵ = ±1.
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• If a = x and b = y, since they are all nonzero, and ( ba)
8 6= 1, by normalization we may assume

M(f) =

[
0 0 0 1
0 b 0 0
0 0 b 0
1 0 0 0

]
, where b 6= 0 and b8 6= 1.

If b is not a root of unity, by Lemma 9.1, we have Pl-Holant(6=2| f, χ1) ⩽T Pl-Holant(6=2| f).

Otherwise, b is a root of unity. Construct a gadget f⊠ as shown in Figure 22. Given an

图 22: The Square gadget

assignment (x1, x2, x3, x4) to f⊠, and suppose f⊠(x1, x2, x3, x4) 6= 0. Then because of the

support of fv1 , fv5 and fv3 we must have x1 6= x3. Similarly x2 6= x4. Also fv5 receives the

same input as f⊠. Hence the support of f⊠ is contained in (x1 6= x3)∧(x2 6= x4), i.e., contained

in {(0, 0, 1, 1), (1, 1, 0, 0), (0, 1, 1, 0), (1, 0, 0, 1)}. In particular, the edges on each Diagonal

Line of this gadget can only take assignments (0, 1, 0, 1, 0, 1) or (1, 0, 1, 0, 1, 0), otherwise the

we get zero. On the other hand, the Square cycle in this gadget is a circuit itself, so that

the edges in it can only take two assignments (0, 1, 0, 1, 0, 1, 0, 1) or (1, 0, 1, 0, 1, 0, 1, 0). We

simplify the notation to (0, 1) and (1, 0) respectively. On (x1 6= x3) ∧ (x2 6= x4), the value of

f⊠ is the sum over these two terms.

For the signature f , if one pair of its edge twins flips its assignment between (0, 1) and (1, 0),

then the value of f changes from 1 to b, or from b to 1. If both pairs of edge twins flip their

assignments, then the value of f does not change. According to this property, we give the

Table 10. Here, we place a suitably rotated copy of f at vertices vi to get fvi (for 1 ≤ i ≤ 5)

so that the values of fvi are all 1 under the assignment (x1, x2, x3, x4) = (0, 0, 1, 1) and the

Square is assigned = (0, 1) (row 2 of Table 10). When the assignment of Square flips from

(0, 1) to (1, 0), one pair of edge twins of each vertex except v5 flips its assignment. So the

values of f on these vertices except v5 change from 1 to b (row 3). When (x1, x3) flips its

assignment, one pair of edge twins of v1, v3 and v5 flip their assignments. When (x2, x4) flips
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(x1, x2, x3, x4) Square fv1 fv2 fv3 fv4 fv5 f⊠

(0, 0, 1, 1)
(0, 1) 1 1 1 1 1

1 + b4
(1, 0) b b b b 1

(1, 1, 0, 0)
(0, 1) b b b b 1

1 + b4
(1, 0) 1 1 1 1 1

(0, 1, 1, 0)
(0, 1) 1 b 1 b b

2b3
(1, 0) b 1 b 1 b

(1, 0, 0, 1)
(0, 1) b 1 b 1 b

2b3
(1, 0) 1 b 1 b b

表 10: The values of gadget f⊠ when a = x = 1 and b = y

its assignment, one pair of edge twins of v2, v4 and v5 flip their assignments. Using this fact,

we get other rows correspondingly.

Hence, f⊠ has the signature matrix M(f⊠) =

[
0 0 0 1+b4

0 2b3 0 0
0 0 2b3 0

1+b4 0 0 0

]
. Since b8 6= 1, we have

1+b4 6= 0, by normalization we can writeM(f⊠) =


0 0 0 1

0 2b3

1+b4
0 0

0 0 2b3

1+b4
0

1 0 0 0

. Since |b| = 1 and b4 6= 1,

we have |1 + b4| < 2. Then | 2b3

1+b4
| > |b3| = 1, which means 2b3

1+b4
is not a root of unity. By

Lemma 9.1, we have Pl-Holant(6=2| f, χ1) ⩽T Pl-Holant( 6=2| f, f⊠). Since f⊠ is constructed

by f , we have Pl-Holant( 6=2| f, χ1) ⩽T Pl-Holant(6=2| f).

• If a = −x and b = −y, then M(f) =

[ 0 0 0 a
0 b 0 0
0 0 −b 0
−a 0 0 0

]
. Connect the variable x4 with x3 of f using

(6=2), and we get a binary signature g′, where

g′ =Mx1x2,x4x3(0, 1, 1, 0)
T = (0, b,−b, 0)T .

Since b 6= 0, g′ can be normalized as (0, 1,−1, 0)T . Modifying x1 = 1 of f by −1 scaling,

we get a signature f ′ with the signature matrix M(f ′) =

[
0 0 0 a
0 b 0 0
0 0 b 0
a 0 0 0

]
. As we have proved

above, Pl-Holant( 6=2| f, χ1) ⩽T Pl-Holant( 6=2| f, f ′). Since f ′ is constructed by f , we have

Pl-Holant(6=2| f, χ1) ⩽T Pl-Holant( 6=2| f).

• If a = −x, b = y or a = x, b = −y, by normalization and rotational symmetry, we may

assume M(f) =

[
0 0 0 1
0 b 0 0
0 0 b 0
−1 0 0 0

]
, where b 6= 0 and b8 6= 1.
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If b is not a root of unity, by Corollary 9.2, we have Pl-Holant( 6=2| f, χ2) ⩽T Pl-Holant(6=2| f).

Otherwise, b is a root of unity. Construct the gadget f⊠ in the same way as shown above.

Our discussion on the support of f⊠ still holds: It is contained in (x1 6= x3) ∧ (x2 6= x4); on

(x1, x2, x3, x4) with (x1 6= x3)∧ (x2 6= x4), fv5 receives the same input, and the value of f⊠ is

the sum over two assignments (0, 1) and (1, 0) for the Square.

For the signature f , if one pair of its edge twins flips its assignment between (0, 1) and (1, 0),

then the value of f changes from ±1 to b, or b to ∓1. If two pairs of edge twins both flip

their assignments, then the value of f does not change if the value is b, or changes its sign if

the value is ±1. According to this property, we have the following Table 11. Here, we place

(x1, x2, x3, x4) Square fv1 fv2 fv3 fv4 fv5 f⊠

(0, 0, 1, 1)
(0, 1) 1 1 1 1 1

1 + b4
(1, 0) b b b b 1

(1, 1, 0, 0)
(0, 1) b b b b −1

−(1 + b4)
(1, 0) −1 −1 −1 −1 −1

(0, 1, 1, 0)
(0, 1) 1 b 1 b b

2b3
(1, 0) b −1 b −1 b

(1, 0, 0, 1)
(0, 1) b 1 b 1 b

2b3
(1, 0) −1 b −1 b b

表 11: The values of gadget f⊠ when a = −x = 1 and b = y

a suitably rotated copy of f at vertices vi to get fvi (for 1 ≤ i ≤ 5) so that the values of

fvi are all 1 under the assignment (x1, x2, x3, x4) = (0, 0, 1, 1) and the Square is assigned

= (0, 1) (row 2 of Table 11). When the assignment of Square flips from (0, 1) to (1, 0), one

pair of edge twins at each vertex except v5 flips its assignment. So the values of f at these

vertices except v5 change from 1 to b (row 3). When (x1, x3) flips its assignment, one pair

of edge twins at v1, v3 and v5 flips their assignments. When (x2, x4) flips its assignment, one

pair of edge twins at v2, v4 and v5 flips their assignments. Using this fact, we get other rows

correspondingly.

Hence, f⊠ has the signature matrix
[

0 0 0 1+b4

0 2b3 0 0
0 0 2b3 0

−(1+b4) 0 0 0

]
. Since |b| = 1 and b8 6= 1, we
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have b4 6= ±1, therefore 0 < |1 + b4| < 2, and so 2b3

1+b4
is not a root of unity. By Corol-

lary 9.2, Pl-Holant( 6=2| f, χ2) ⩽T Pl-Holant( 6=2| f, f⊠), and hence Pl-Holant(6=2| f, χ2) ⩽T

Pl-Holant(6=2| f).

In summary, we have

Pl-Holant ( 6=2| f, χ1)

a = ϵx, b = ϵy (ϵ = ±1)
TTTT

TT

))TTT
TTT

#CSP(g1f , g2f )

55kkkkkkkkkkkkkkk

))TTT
TTTT

TTTT
TTT

⩽T ⩽T Pl-Holant (6=2| f)

Pl-Holant ( 6=2| f, χ2)

a = ϵx, b = −ϵy (ϵ = ±1)jjjjjj

55jjjjjj

Therefore, we have #CSP(g1f , g2f ) ⩽T Pl-Holant (6=2| f) when a2 = x2 6= 0, b2 = y2 6= 0 and

( ba)
8 6= 1.

Remark 9.29. A crucial point in the reduction (9.3) is the fact that the given instance graph G

of Pl-Holant (6=2| f) is planar so that
∑

i ki =
∑

i ℓi. Otherwise this does not hold in general; for

example the latitudinal and longitudinal closed cycles on a torus intersect at a single point. The

equation
∑

i ki =
∑

i ℓi is crucial to obtain tractability in the following theorem.

Theorem 9.30. Let f be a 4-ary signature of the form (9.2), where (a, x) 6= (0, 0) and (b, y) 6= (0, 0).

Then Pl-Holant( 6=2| f) is #P-hard unless

(i) (ax)2 = (by)2, or

(ii) x = aiα, b = a
√
i
β
, y = a

√
i
γ, where α, β, γ ∈ N, and β ≡ γ (mod 2),

in which cases, the problem is tractable in polynomial time.

Proof of Tractability:

• In case (i), if ax = by = 0, then f has support of size at most 2. So we have f ∈ P,

and hence Pl-Holant( 6=2| f) is tractable by Theorem 2.30. Otherwise, (ax)2 = (by)2 6= 0.

For any signature g in Gf , we have g00 · g11 = (ax)k1+ℓ1+k3+ℓ3(by)k2+ℓ2+k4+ℓ4 and g01 · g10 =
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(ax)k2+ℓ2+k4+ℓ4(by)k1+ℓ1+k3+ℓ3 . Since (k1 + ℓ1 + k3 + ℓ3) − (k2 + ℓ2 + k4 + ℓ4) ≡ k + ℓ ≡ 0

(mod 2), we have

g00 · g11
g01 · g10

=

(
ax

by

)(k1+ℓ1+k3+ℓ3)−(k2+ℓ2+k4+ℓ4)

=

(
(ax)2

(by)2

) (k1+ℓ1+k3+ℓ3)−(k2+ℓ2+k4+ℓ4)
2

= 1.

That is, g ∈ P. Since any signature h in Hf is unary, h ∈ P. Hence, we have Gf ∪Hf ⊆ P.

By Theorem 9.19, #CSP(Gf ∪ Hf ) is tractable. By reduction (9.3) of Lemma 9.28, we have

Pl-Holant(6=2| f) is tractable.

• In case (ii), for any signature g ∈ Gf defined in Definition 9.26, M(g) is of the form

ak+ℓ

√i
β(k4+ℓ4)+γ(k2+ℓ2)+2α(k3+ℓ3) √

i
β(k1+ℓ3)+γ(k3+ℓ1)+2α(k4+ℓ2)

√
i
β(k3+ℓ1)+γ(k1+ℓ3)+2α(k2+ℓ4) √

i
β(k2+ℓ2)+γ(k4+ℓ4)+2α(k1+ℓ1)

 = ak+ℓ

√i
p00 √

i
p01

√
i
p10 √

i
p11

 ,
where p00, p01, p10 and p11 denote the integer exponents of

√
i in the respective entries of g.

Since β ≡ γ (mod 2), if they are both even, then p00 ≡ p01 ≡ p10 ≡ p11 ≡ 0 (mod 2); if they

are both odd, then p00 ≡ p11 ≡ k2+ℓ2+k4+ℓ4 ≡ k1+ℓ1+k3+ℓ3 ≡ p01 ≡ p10 (mod 2). If these

exponents are all odd, we can take out a
√
i. Hence, g is of the form a′(iq00 , iq01 , iq10 , iq11)T ,

where a′ = ak+ℓ or ak+ℓ
√
i, and either qij = pij

2 for all i, j ∈ {0, 1} are integers, or qij = pij−1
2

for all i, j ∈ {0, 1} are integers. Thus,

q00 + q01 + q10 + q11 ≡ (p00 + p01 + p10 + p11)/2 (mod 2).

Moreover, since p00+p01+p10+p11 = (k+ ℓ)(β+γ+2α) ≡ 0 (mod 4), using the assumption

that β ≡ γ (mod 2) and k ≡ ℓ (mod 2), we conclude that q00 + q01 + q10 + q11 ≡ 0 (mod 2).

Therefore, g ∈ A by Lemma 2.8.

In this case, for any signature h in Hf , M(h) is of the form

am
[√

i
βm4+γm2+2αm3

√
i
βm2+γm4+2αm1

]
.

Since β ≡ γ (mod 2), we have βm4 + γm2 ≡ βm2 + γm4 (mod 2). Hence, h is of the form

a′′[iq0 , iq1 ], for some integers q0, q1, where a′′ = am or am
√
i. That is, h ∈ A by Lemma 2.9.
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Hence, Gf ∪Hf ⊆ A . By Theorem 9.19, #CSP(Gf ∪Hf ) is tractable. By reduction (9.3) of

Lemma 9.28, we have Pl-Holant( 6=2| f) is tractable.

Proof of Hardness: We are given that f does not belong to case (i) or case (ii). Note that

Mx4x1,x3x2(f) =

[
0 0 0 b
0 x 0 0
0 0 a 0
y 0 0 0

]
and Mx2x3,x1x4(f) =

[
0 0 0 y
0 a 0 0
0 0 x 0
b 0 0 0

]
. Connect variables x3, x2 of a copy of the

signature f with variables x2, x3 of another copy of signature f both using ( 6=2). We get a signature

f1 with the signature matrix

M(f1) =Mx4x1,x3x2(f)N2Mx2x3,x1x4(f) =


0 0 0 by

0 0 x2 0

0 a2 0 0

by 0 0 0

 .

Similarly, connect x3, x2 of a copy of signature f with x4, x1 of another copy of signature f both

using ( 6=2). We get a signature f2 with the signature matrix

M(f2) =Mx4x1,x3x2(f)N2Mx4x1,x3x2(f) =


0 0 0 b2

0 0 ax 0

0 ax 0 0

y2 0 0 0

 .

Notice that M(f
π
2
1 ) =

[
0 0 0 0
0 by a2 0
0 x2 by 0
0 0 0 0

]
, M(f

π
2
2 ) =

[
0 0 0 0
0 b2 ax 0
0 ax y2 0
0 0 0 0

]
, M(g1f ) =

[
a2 by
by x2

]
and M(g2f ) =

[
ax b2

y2 ax

]
.

Recall that M
(
f̃
π
2
i In

)
= MIn(f

π
2
i ) [ 0 1

1 0 ]. We have gif = f̃
π
2
i In. That is, fi(x1, x2, x3, x4) =

gif (x2, x4) · χx1 ̸=x4 · χx2 ̸=x3 . Now, we analyze g1f and g2f .

• If {g1f , g2f } ⊆ P, then either (ax)2 = (by)2 if either signature is degenerate, or g1f and

g2f are each generalized Equality or generalized Disequality respectively. In the latter

case, since (a, x) 6= (0, 0) and (b, y) 6= (0, 0), it forces that ax = by = 0. So we still have

(ax)2 = (by)2. That is, {a, b, x, y} belongs to case (i). A contradiction.

• If {g1f , g2f } ⊆ A , there are two subcases. Note that the support of a function in A has size

a power of 2.
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– If both g1f and g2f have support of size at most 2, then we have ax = by = 0 due to

(a, x) 6= (0, 0) and (b, y) 6= (0, 0). This belongs to case (i). A contradiction.

– Otherwise, at least one of g1f or g2f has support of size 4. Then abxy 6= 0 and therefore

both g1f and g2f have support of size 4. Let x′ = x
a , b

′ = b
a and y′ = y

a . By normalization,

we have

M(g1f ) = a2

 1 b′y′

b′y′ x′2

 .
Since g1f ∈ A , by Lemma 2.8, x′2 and b′y′ are both powers of i, and the sum of all

exponents is even. It forces that x′2 = i2α for some α ∈ N. Then, we can choose α such

x′ = iα. Also, we have

M(g2f ) = a2

x′ b′2

y′2 x′

 .
Since g2f ∈ A and x′ is already a power of i, y′2 and b′2 are both powers of i. That is,

b′ =
√
i
β and y′ =

√
i
γ . Also, since g1f ∈ A , b′y′ =

√
i
β+γ is a power of i, which means

β ≡ γ (mod 2). That is, {a, b, x, y} belongs to case (ii). A contradiction.

• If {g1f , g2f } ⊆ M̂ , then by Lemma 9.12, we have both a2 = ϵx2, by = ϵby and ax = ϵ′ax, y2 =

ϵ′b2, for some ϵ, ϵ′ ∈ {1,−1}. If ϵ = −1 then by = 0, and then by the second set of equations

b = y = 0, contrary to assumption that (b, y) 6= (0, 0). So ϵ = 1. Similarly ϵ′ = 1. Hence

a2 = x2 b2 = y2, (9.5)

and it also follows that all 4 entries are nonzero.

Therefore, if {a, b, x, y} does not satisfy (9.5) then {g1f , g2f } * P,A or M̂ . By Theorem

9.19, Pl-#CSP(g1f , g2f ) is #P-hard. Then by Lemma 9.23, Pl-Holant( 6=2| f
π
2
1 , f

π
2
2 ) is #P-hard,

and hence Pl-Holant(6=2| f) is #P-hard.

Otherwise, the 4 nonzero entries {a, b, x, y} satisfy (9.5). If ( ba)8 = 1, i.e., b = a
√
i
β for some

γ ∈ N, then x = ±a = aiα, and y = ±b = a
√
i
β+4δ for some α, δ ∈ N. It follows that {a, b, x, y}

satisfies (ii), a contradiction.

So ( ba)
8 6= 1, and we can apply reduction (9.4) of Lemma 9.28. By the reduction (9.4), we have
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#CSP(g1f , g2f ) ⩽T Pl-Holant( 6=2| f). Moreover, since {a, b, x, y} does not belong to case (i) or case

(ii), we have {g1f , g2f } * P or A . By Theorem 9.19, #CSP(g1f , g2f ) is #P-hard. Therefore, we

have Pl-Holant(6=2| f) is #P-hard.

Corollary 9.31. Let f be a 4-ary signature of the form (9.2), where (a, x) 6= (0, 0) and (b, y) 6=

(0, 0). If |ax| 6= |by| then Pl-Holant(6=2| f) is #P-hard.

9.5 Case III: N = 2 with No Zero Pair or N = 1 with Zero in an

Outer Pair

If there are exactly two zeros N = 2 with no zero pair, then the two zeros are in different

pairs, at least one of them must be in an outer pair. So in Case III there is a zero in an outer pair

regardless N = 1 or N = 2. By rotational symmetry, we may assume a = 0, and we prove this case

in Theorem 9.33. We first give the following lemma.

Lemma 9.32. Let f be a 4-ary signature with the signature matrix M(f) =

[
0 0 0 0
0 b c 0
0 z y 0
0 0 0 0

]
, where

detMIn(f) = by − cz 6= 0. Let g be a 4-ary signature with the signature matrix M(g) =

[
0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

]
.

Then for any signature set F containing f , we have

Pl-Holant(6=2| F ∪ {g}) ⩽T Pl-Holant(6=2| F).

Proof. We construct a series of gadgets fs by a chain of s copies of f linked by double

Disequality N . fs has the signature matrix

M(fs) =M(f)(N2M(f))s−1 = N(N2M(f))s = N


0 0 0

0

 z y

b c

s 0

0 0 0

 .

The inner matrix of N2M(f) is NInMIn(f) = [ z yb c ]. Suppose its spectral decomposition is Q−1ΛQ,

where Λ = [ λ1 µ
0 λ2

] is the Jordan Canonical Form. Note that λ1λ2 = detΛ = det(NInMIn(f)) 6= 0.
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We have M(fs) = NP−1ΛsP , where

P =


1 0 0

0 Q 0

0 0 1

 and Λs =


0 0 0

0

 λ1 µ

0 λ2

s 0

0 0 0

 .

1. Suppose µ = 0, and λ2
λ1

is a root of unity, with (λ2λ1 )
n = 1. Then Λn =

[
0 0 0 0
0 λn1 0 0
0 0 λn2 0
0 0 0 0

]
=[

0 0 0 0
0 λn1 0 0
0 0 λn1 0
0 0 0 0

]
, and M(fn) =

[
0 0 0 0
0 0 λn1 0
0 λn1 0 0
0 0 0 0

]
= λn1

[
0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

]
. After normalization, we can realize

the signature g.

2. Suppose µ = 0, and λ2
λ1

is not a root of unity. The matrix Λs =

[
0 0 0 0
0 λs1 0 0
0 0 λs2 0
0 0 0 0

]
has a good form

for interpolation. Suppose g appears m times in an instance Ω of Pl-Holant( 6=2| F ∪ {g}).

Replace each appearance of g by a copy of the gadget fs to get an instance Ωs of Pl-Holant(6=2|

F ∪ {fs}), which is also an instance of Pl-Holant(6=2| F). We can treat each of the m

appearances of fs as a new gadget composed of four functions in sequence N , P−1, Λs and

P , and denote this new instance by Ω′
s. We divide Ω′

s into two parts. One part consists of m

signatures Λ⊗m
s . Here Λ⊗m

s is expressed as a column vector. The other part is the rest of Ω′
s

and its signature is represented by A which is a tensor expressed as a row vector. Then the

Holant value of Ω′
s is the dot product 〈A,Λ⊗m

s 〉, which is a summation over 4m bits. That

is, the value of the 4m edges connecting the two parts. We can stratify all 0, 1 assignments

of these 4m bits having a nonzero evaluation of a term in Pl-HolantΩ′
s
into the following

categories:

• There are i many copies of Λs receiving inputs 0110;

• There are j many copies of Λs receiving inputs 1001;

where i+ j = m.

For any assignment in the category with parameter (i, j), the evaluation of Λ⊗m
s is clearly

λsi1 λ
sj
2 = λsm1

(
λ2
λ1

)sj
. Let aij be the summation of values of the part A over all assignments in

the category (i, j). Note that aij is independent from the value of s since we view the gadget
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Λs as a block. Since i + j = m, we can denote aij by aj . Then we rewrite the dot product

summation and get

Pl-HolantΩs = Pl-HolantΩ′
s
= 〈A,Λ⊗m

s 〉 = λsm1
∑

0⩽j⩽m
aj

(
λ2
λ1

)sj
.

Note that M(g) = NP−1(N2M(g))P , where N2M(g) =

[
0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

]
. Similarly, divide Ω into

two parts. Under this stratification, we have

Pl-HolantΩ = 〈A, (N2M(g))⊗m〉 =
∑

0⩽j⩽m
aj .

Since λ2
λ1

is not a root of unity, the Vandermonde coefficient matrix


ρ0 ρ1 · · · ρm

ρ0 ρ2 · · · ρ2m

...
...

...
...

ρ0 ρm+1 · · · ρ(m+1)m

 ,

has full rank, where ρ = λ2
λ1
. Hence, by oracle querying the values of Pl-HolantΩs , we can

solve for aj , and thus obtain the value of Pl-HolantΩ in polynomial time.

3. Suppose µ = 1, and λ1 = λ2 denoted by λ. Then Λs =

[
0 0 0 0
0 λs sλs−1 0
0 0 λs 0
0 0 0 0

]
. We use this form

to give a polynomial interpolation. As in the case above, we can stratify the assignments of

Λ⊗m
s of these 4m bits having a nonzero evaluation of a term in Pl-HolantΩ′

s
into the following

categories:

• There are i many copies of Λs receiving inputs 0110 or 1001;

• There are j many copies of Λs receiving inputs 0101;

where i+ j = m.

For any assignment in the category with parameter (i, j), the evaluation of Λ⊗m
s is clearly

λsi(sλs−1)j = λsm( sλ)
j . Let aij be the summation of values of the part A over all assignments

in the category (i, j). aij is independent from s. Since i + j = m, we can denote aij by aj .
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Then, we rewrite the dot product summation and get

Pl-HolantΩs = Pl-HolantΩ′
s
= 〈A,Λ⊗m

s 〉 = λsm
∑

0⩽j⩽m
aj

( s
λ

)j
,

for s ≥ 1. We consider this as a linear system for 1 ≤ s ≤ m+1. Similarly, divide Ω into two

parts. Under this stratification, we have

Pl-HolantΩ = 〈A, (N2M(g))⊗m〉 = a0.

The Vandermonde coefficient matrix
ρ01 ρ11 · · · ρm1

ρ02 ρ12 · · · ρm2
...

...
...

...

ρ0m+1 ρ1m+1 · · · ρm

 ,

has full rank, where ρs = s/λ are all distinct. Hence, we can solve a0 in polynomial time and

it is the value of Pl-HolantΩ.

Therefore, we have Pl-Holant(6=2| F ∪ {g}) ⩽T Pl-Holant(6=2| F).

Theorem 9.33 gives a classification for Case III.

Theorem 9.33. Let f be a 4-ary signature with the signature matrix

M(f) =


0 0 0 0

0 b c 0

0 z y 0

x 0 0 0

,

where x 6= 0 and there is at most one number in {b, c, y, z} that is 0. Then Pl-Holant(6=2| f) is

#P-hard unless f ∈ M , in which case the problem is tractable.

Proof. Tractability follows from Theorem 9.9.

Suppose f /∈ M . By Lemma 9.7, detMIn(f) 6= detMOut(f) = 0, that is det
[
b c
z y

]
= by−cz 6= 0.

Note that Mx1x2,x4x3(f) =

[
0 0 0 0
0 b c 0
0 z y 0
x 0 0 0

]
, Mx3x4,x2x1(f) =

[
0 0 0 x
0 y c 0
0 z b 0
0 0 0 0

]
, and Mx2x3,x1x4(f) =

[
0 0 0 y
0 0 z 0
0 c x 0
b 0 0 0

]
.
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Connect variables x4, x3 of a copy of signature f with variables x3, x4 of another copy of signature

f both using ( 6=2). We get a signature f1 with the signature matrix

M(f1) =Mx1x2,x4x3(f)N2Mx3x4,x2x1(f) =


0 0 0 0

0 b1 c1 0

0 z1 y1 0

0 0 0 0

 ,

where
[
b1 c1
z1 y1

]
=
[
b c
z y

]
·
[
z b
y c

]
. This f1 has the form in Lemma 9.32. Here, det

[
b1 c1
z1 y1

]
= −(by−cz)2 6=

0. By Lemma 9.32, we have

Pl-Holant(6=2| f, g) ⩽T Pl-Holant(6=2| f, f1),

where g has the signature matrix M(g) =

[
0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

]
.

• If bcyz 6= 0, connect variables x1, x4 of signature f with variables x1, x2 of signature g both

using (6=2). We get a signature f2 with the signature matrix

M(f2) =Mx2x3,x1x4(f)N2Mx1x2,x4x3(g) =


0 0 0 0

0 0 z 0

0 c x 0

0 0 0 0

 .

• Otherwise, connect variables x4, x3 of signature f with variables x1, x2 of signature g both

using (6=2). We get a signature f2 with the signature matrix

M(f2) =Mx1x2,x4x3(f)N2Mx1x2,x4x3(g) =


0 0 0 0

0 b c 0

0 z y 0

0 0 0 0

 ,

and there is exactly one entry in {b, c, y, z} that is zero.

In both cases, the support of f2 has size 3, which means f2 /∈ P,A or M̂ . By Theorem 9.24,
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Pl-Holant( 6=2| f2) is #P-hard. Since

Pl-Holant(6=2| f2) ⩽T Pl-Holant(6=2| f, g) ⩽T Pl-Holant(6=2| f, f1) ⩽T Pl-Holant( 6=2| f),

we have Pl-Holant( 6=2| f) is #P-hard.

9.6 Case IV: N = 1 with Zero in the Inner Pair or N = 0

By rotational symmetry, if there is one zero in the inner pair, we may assume it is c = 0, and

abxyz 6= 0. We first consider the case that x = ϵa, y = ϵb and z = ϵc, where ϵ = ±1.

Lemma 9.34. Let f be a 4-ary signature with the signature matrix

M(f) =


0 0 0 a

0 b c 0

0 ϵc ϵb 0

ϵa 0 0 0

 , where ϵ = ±1 and abc 6= 0.

Then Pl-Holant( 6=2| f) is #P-hard if f /∈ M .

Proof. If ϵ = −1 we first transform the case to ϵ = 1 as follows. Connecting the variable x4
with x3 of f using ( 6=2) we get a binary signature g1, where

g1 =Mx1x2,x4x3(f)(0, 1, 1, 0)
T = (0, b+ c,−(b+ c), 0)T .

Also connecting the variable x1 with x2 of f using (6=2) we get a binary signature g2, where

g2 = ((0, 1, 1, 0)Mx1x2,x4x3(f))
T = (0, b− c,−(b− c), 0)T .

Since bc 6= 0, b + c and b − c cannot be both zero. Without loss of generality, suppose b + c 6= 0.

By normalization, we have g1 = (0, 1,−1, 0)T . Then, modifying x1 = 1 of f with −1 scaling we get

a signature with the signature matrix
[
0 0 0 a
0 b c 0
0 c b 0
a 0 0 0

]
. Therefore, it suffices to show #P-hardness for the

case ϵ = 1.
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Since f /∈ M , by Lemma 9.7, c2− b2 6= a2. We prove #P-hardness in the following three Cases

depending on the values of a, b and c.

Case 1: Either c2 − b2 6= 0 and |c + b| 6= |c − b|, or c2 − a2 6= 0 and |c + a| 6= |c − a|. By

rotational symmetry, we may assume c2 − b2 6= 0 and |c + b| 6= |c − b|. We may normalize a = 1

and assume M(f) =

[
0 0 0 1
0 b c 0
0 c b 0
1 0 0 0

]
, where c2 − b2 6= 0 or 1.

We construct a series of gadgets fs by a chain of s copies of f linked by double Disequality

N . fs has the signature matrix

M(fs) =M(f)(N2M(f))s−1 = N(N2M(f))s = N


1 0 0

0

 c b

b c

s 0

0 0 1

 .

We diagonalize
[
c b
b c

]s using H = 1√
2

[
1 1
1 −1

]
(note that H−1 = H), and getM(fs) = NPΛsP , where

P =


1 0 0

0 H 0

0 0 1

 , and Λs =


1 0 0 0

0 (c+ b)s 0 0

0 0 (c− b)s 0

0 0 0 1

 .

The signature matrix Λs has a good form for polynomial interpolation. In the following, we will

reduce Pl-Holant( 6=2| f̂) to Pl-Holant( 6=2| f), for suitably chosen M(f̂) =

[
0 0 0 1
0 b̂ ĉ 0
0 ĉ b̂ 0
1 0 0 0

]
, and use that

to prove that Pl-Holant(6=2| f) is #P-hard.

Suppose f̂ appears m times in an instance Ω̂ of Pl-Holant( 6=2| f̂). We replace each appearance

of f̂ by a copy of the gadget fs to get an instance Ωs of Pl-Holant( 6=2| f). We can treat each of the

m appearances of fs as a new gadget composed of four functions in sequence N , P , Λs and P , and

denote this new instance by Ω′
s. We divide Ω′

s into two parts. One part consists of m occurrences

of Λs, which is Λ⊗m
s , and is written as a column vector of dimension 24m. The other part is the

rest of Ω′
s and its signature is expressed by a tensor A, written as a row vector of dimension 24m.

Then the Holant value of Ω′
s is the dot product 〈A,Λ⊗m

s 〉, which is a summation over 4m bits, i.e.,

the values of the 4m edges connecting the two parts. We can stratify all 0, 1 assignments of these
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4m bits having a nonzero evaluation of a term in Pl-HolantΩ′
s
into the following categories:

• There are i many copies of Λs receiving inputs 0000 or 1111;

• There are j many copies of Λs receiving inputs 0110;

• There are k many copies of Λs receiving inputs 1001;

where i+ j + k = m.

For any assignment in the category with parameter (i, j, k), the evaluation of Λ⊗m
s is clearly

(c + b)sj(c − b)sk. Let aijk be the summation of values of the part A over all assignments in the

category (i, j, k). Note that aijk is independent of the value of s. Since i + j + k = m, we can

denote aijk by ajk. Then we rewrite the dot product summation and get

Pl-HolantΩs = Pl-HolantΩ′
s
= 〈A,Λ⊗m

s 〉 =
∑

0⩽j+k⩽m
ajk(c+ b)sj(c− b)sk.

Under this stratification, correspondingly we can define Ω̂′ and Λ̂ from Ω̂. Then we have

Pl-HolantΩ̂ = Pl-HolantΩ̂′ = 〈A, Λ̂⊗m〉 =
∑

0⩽j+k⩽m
ajk(ĉ+ b̂)j(ĉ− b̂)k,

where the same set of values ajk appear. Let ϕ = ĉ+ b̂ and ψ = ĉ− b̂. If we can obtain the value of

p(ϕ, ψ) =
∑

0⩽j+k⩽m
ajkϕ

jψk from oracle queries to Pl-HolantΩs (for s ≥ 1) in polynomial time, then

we will have proved

Pl-Holant( 6=2| f̂) ⩽T Pl-Holant( 6=2| f).

Let α = c + b and β = c − b. Since c2 − b2 6= 0 or 1, we have α 6= 0, β 6= 0 and αβ 6= 1. Also,

by assumption |c + b| 6= |c − b|, we have |α| 6= |β|. Define L = {(j, k) ∈ Z2 | αjβk = 1}. This is a

sublattice of Z2. Every lattice has a basis. There are 3 cases depending on the rank of L.

• L = {(0, 0)}. All αjβk are distinct. It is an interpolation reduction in full power. That is,

we can interpolate p(ϕ, ψ) for any ϕ and ψ in polynomial time. Let ϕ = 4 and ψ = 0, that

is b̂ = 2 and ĉ = 2, and hence M(f̂) =

[
0 0 0 1
0 2 2 0
0 2 2 0
1 0 0 0

]
. That is, f̂ is non-singular redundant. By

Theorem 9.16, Pl-Holant( 6=2| f̂) is #P-hard, and hence Pl-Holant( 6=2| f) is #P-hard.
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• L contains two independent vectors (j1, k1) and (j2, k2) over Q. Then the nonzero vectors

j2(j1, k1)− j1(j2, k2) = (0, j2k1 − j1k2) and k2(j1, k1)− k1(j2, k2) = (k2j1 − k1j2, 0) are in L.

Hence, both α and β are roots of unity. This implies that |α| = |β| = 1, a contradiction.

• L = {(ns, nt) | n ∈ Z}, where s, t ∈ Z and (s, t) 6= (0, 0). Without loss of generality, we

may assume t ⩾ 0, and s > 0 when t = 0. Also, we have s + t 6= 0, otherwise |α| = |β|, a

contradiction. By Lemma 9.6, for any numbers ϕ and ψ satisfying ϕsψt = 1, we can obtain

p(ϕ, ψ) in polynomial time. Since ϕ = ĉ + b̂ and ψ = ĉ − b̂, we have b̂ = ϕ−ψ
2 and ĉ = ϕ+ψ

2 .

That is M(f̂) =

 0 0 0 1
0 ϕ−ψ

2
ϕ+ψ
2

0

0 ϕ+ψ
2

ϕ−ψ
2

0
1 0 0 0

 . There are three cases depending on the values of s and t.

– s ⩾ 0 and s+ t ⩾ 2. Consider the function q(x) = (2− x)sxt− 1. Since s ⩾ 0 and t ⩾ 0,

q(x) is a polynomial. Clearly, 1 is a root and 0 is not a root. If q(x) has no other roots,

then for some constant λ 6= 0,

q(x) = λ(x− 1)s+t = (−1)s+tλ((2− x)− 1)s+t.

(In fact by comparing leading coefficients, λ = (−1)s.) Notice that xt|q(x) + 1, while

xt - λ(x − 1)s+t + 1 for t ⩾ 2. Also, notice that (2 − x)s|q(x) + 1, while (2 − x)s -

(−1)s+tλ((2−x)−1)s+t for s ⩾ 2. Hence, t = s = 1, which means αβ = 1. Contradiction.

Therefore, q(x) has a root x0, with x0 6= 1 or 0. Let ψ = x0 and ϕ = 2 − x0. Then

ϕsψt = 1 andM(f̂) =

[
0 0 0 1
0 1−x0 1 0
0 1 1−x0 0
1 0 0 0

]
. Note thatMx2x3,x1x4(f̂) =

[
0 0 0 1−x0
0 1 1 0
0 1 1 0

1−x0 0 0 0

]
. Since

1−x0 6= 0, f̂ is non-singular redundant. By Theorem 9.16, Pl-Holant( 6=2| f̂) is #P-hard

and hence Pl-Holant (6=2| f) is #P-hard.

– s < 0 and t > 0. (Note that s < 0 implies t > 0.) Consider the function q(x) =

xt − (2 − x)−s. Since t > 0 and −s > 0, it is a polynomial. Clearly, 1 is a root, but

neither 0 nor 2 is a root. Since t + s 6= 0, the highest order term of q(x) is either xt

or −(−x)−s, which means the coefficient of the highest order term is ±1. While the

constant term of q(x) is −2−s 6= ±1. Hence, q(x) cannot be of the form λ(x−1)max(t,−s)

for some constant λ 6= 0. Moreover, since t + s 6= 0, max(t,−s) ⩾ 2, which means q(x)

has a root x0, where x0 6= 0, 1, 2. Dividing by the nonzero term (2 − x0)
−s we have
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(2 − x0)
sxt0 = 1. Now we let ψ = x0 and ϕ = 2 − x0, and we have Pl-Holant (6=2| f) is

#P-hard by the same proof as above.

– s ⩾ 0 and s+ t = 1. In this case, we have (s, t) = (0, 1) or (1, 0) since t ⩾ 0.

∗ (s, t) = (1, 0). Let ϕ = 1 and ψ = 1
2 . Then we have ϕ1ψ0 = 1 and M(f̂) =[ 0 0 0 1

0 1
4

3
4
0

0 3
4

1
4
0

1 0 0 0

]
. Let M(f ′) = 4Mx2x3,x1x4(f̂) =

[
0 0 0 1
0 4 3 0
0 3 4 0
1 0 0 0

]
. Clearly, Pl-Holant(6=2| f ′) ⩽T

Pl-Holant (6=2| f). For M(f ′), correspondingly we define α′ = 3 + 4 = 7 and β′ =

3 − 4 = −1. Obviously, α′ 6= 0, β′ 6= 0, α′β′ 6= 1, and |α′| 6= |β′|. Let L′ =

{(j, k) ∈ Z2 | α′jβ′k = 1}. Then we have L′ = {(ns′, nt′) | n ∈ Z}, where s′ = 0

and t′ = 2. Therefore, s′ ⩾ 0 and s′ + t′ ⩾ 2. As we have showed above, we have

Pl-Holant (6=2| f ′) is #P-hard, and hence Pl-Holant (6=2| f) is #P-hard.

∗ (s, t) = (0, 1). Let ϕ = 3 and ψ = 1. Then we have ϕ0ψ1 = 1 and M(f̂) =

[
0 0 0 1
0 1 2 0
0 2 1 0
1 0 0 0

]
.

By Theorem 9.17, Pl-Holant(6=2| f̂) is #P-hard, and hence Pl-Holant (6=2| f) is

#P-hard.

Case 2: If c2 − b2 6= 0 and |c+ b| = |c− b|, or c2 − a2 6= 0 and |c+ a| = |c− a|. By rotational

symmetry, we may assume c2 − b2 6= 0 and |c+ b| = |c− b|. Normalizing f by assuming c = 1, we

have M(f) =

[
0 0 0 a
0 b 1 0
0 1 b 0
a 0 0 0

]
, where 12 − b2 6= 0 and 12 − b2 6= a2 due to f /∈ M . Since |1 + b| = |1− b|,

b is a pure imaginary number (as b 6= 0).

Connect variables x4, x3 of a copy of signature f with variables x1, x2 of another copy of

signature f both using (6=2). We get a signature f1 with the signature matrix

M(f1) =Mx1x2,x4x3(f)N2Mx1x2,x4x3(f) =


0 0 0 a2

0 2b b2 + 1 0

0 b2 + 1 2b 0

a2 0 0 0

 .

a. If c2 − a2 = 0, that is a2 = 1, and then M(f1) =

[
0 0 0 1
0 2b b2+1 0
0 b2+1 2b 0
1 0 0 0

]
. Since b2 < 0, we have

(b2 + 1)2 − (2b)2 = (b2 − 1)2 > 1 = (a2)2, which means f1 /∈ M .
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• If b2 = −1, then M(f1) =

[ 0 0 0 1
0 ±2i 0 0
0 0 ±2i 0
1 0 0 0

]
. By Corollary 9.31, Pl-Holant(6=2| f1) is #P-

hard, and hence Pl-Holant(6=2| f) is #P-hard.

• If b2 = −2, then M(f1) =

[
0 0 0 1
0 ±2

√
2i −1 0

0 −1 ±2
√
2i 0

1 0 0 0

]
. Connect two copies of f1, and we have a

signature f2 with the signature matrix

M(f2) =Mx1x2,x4x3(f1)N2Mx1x2,x4x3(f1) =


0 0 0 1

0 ∓4
√
2i −7 0

0 −7 ∓4
√
2i 0

1 0 0 0

 .

It is easy to check that f2 /∈ M , by Lemma 9.7. Then, f2 belongs to Case 1. Therefore,

Pl-Holant(6=2| f2) is #P-hard, and hence Pl-Holant(6=2| f) is #P-hard.

• If b2 6= −1 or −2, then b2 + 1 6= ±1 due to b 6= 0, hence 12 − (b2 + 1)2 6= 0. Also, since

b2 + 1 is a real number and b2 + 1 6= 0, we have |(b2 + 1) + 1| 6= |(b2 + 1) − 1|. Then

f1, which is not in M as shown above, has a signature matrix of the form
[

0 0 0 a1
0 b1 c1 0
0 c1 b1 0
a1 0 0 0

]
,

where a1 = a2 = 1, b1 = 2b, and c1 = b2 + 1, and a1b1c1 6= 0, c21 − a21 6= 0 and

|c1 + a1| 6= |c1 − a1|. That is, f1 belongs to Case 1. Therefore, Pl-Holant(6=2| f1) is

#P-hard, and hence Pl-Holant(6=2| f) is #P-hard.

b. If c2 − a2 6= 0 and |c+ a| = |c− a|, i.e., |1 + a| = |1− a|, then a 6= 0 is also a pure imaginary

number. Connect variables x1, x4 of a copy of signature f with variables x2, x3 of another

copy of signature f . We get a signature f3 with the signature matrix

M(f3) =Mx2x3,x1x4(f)N2Mx2x3,x1x4(f) =


0 0 0 b2

0 2a a2 + 1 0

0 a2 + 1 2a 0

b2 0 0 0

 .

Note that f3 ∈ M implies (a2 − 1)2 = (b2)2. Since f /∈ M , 1 − a2 6= b2. Hence, f3 ∈ M

implies a2 − 1 = b2. Similarly, f1 ∈ M implies b2 − 1 = a2. Clearly, f1 and f3 cannot both

be in M . Without loss of generality, we may assume f3 /∈ M .
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• If a2 6= −1, then there are two subcases.

– (a2+1)2− (b2)2 = 0. Since a is a pure imaginary number, |a2+1+2a| = |a+1|2 =

|a− 1|2 = |a2 +1− 2a|. Then f3 has the signature matrix of the form
[

0 0 0 a3
0 b3 c3 0
0 c3 b3 0
a3 0 0 0

]
,

where a3b3c3 6= 0, c23−b23 = (a2−1)2 6= 0 since a is pure imaginary, |c3+b3| = |c3−b3|

and c23 − a23 = 0. That is, f3 belongs to Case 2.a. Therefore, Pl-Holant(6=2| f3) is

#P-hard, and hence Pl-Holant(6=2| f) is #P-hard.

– (a2 + 1)2 − (b2)2 6= 0. Since a2 + 1 and b2 are both nonzero real numbers due to a

and b are both pure imaginary numbers, we have |a2 +1+ b2| 6= |a2 +1− b2|. Then

f3 has the signature matrix of the form
[

0 0 0 a3
0 b3 c3 0
0 c3 b3 0
a3 0 0 0

]
, where a3b3c3 6= 0, c23 − a23 6= 0

and |c3+a3| 6= |c3−a3|. That is, f3 belongs to Case 1. Therefore, Pl-Holant( 6=2| f3)

is #P-hard, and hence Pl-Holant(6=2| f) is #P-hard.

• If a2 = −1 and b2 6= −2, then M(f3) =

[
0 0 0 b2
0 2a 0 0
0 0 2a 0
b2 0 0 0

]
, where |2a| = 2 6= |b2|. By

Corollary 9.31, Pl-Holant(6=2| f3) is #P-hard, and hence Pl-Holant( 6=2| f) is #P-hard.

• If a2 = −1 and b2 = −2, thenM(f1) =

[
0 0 0 −1
0 ±2

√
2i −1 0

0 −1 ±2
√
2i 0

−1 0 0 0

]
. Note thatMx2x3,x1x4(f1) =[

0 0 0 ±2
√
2i

0 −1 −1 0
0 −1 −1 0

±2
√
2i 0 0 0

]
, which means f1 is non-singular redundant. Therefore, we have

Pl-Holant(6=2| f1) is #P-hard, and hence Pl-Holant(6=2| f) is #P-hard.

c. If c2 − a2 6= 0 and |c+ a| 6= |c− a|. This is Case 1. Done.

Case 3: c2 − b2 = 0 and c2 − a2 = 0. If c = b or c = a, then f is non-singular redundant,

and hence Pl-Holant( 6=2| f) is #P-hard. Otherwise, a = b = −c. By normalization, we have

M(f) =

[ 0 0 0 −1
0 −1 1 0
0 1 −1 0
−1 0 0 0

]
, and thenM(f1) =

[
0 0 0 1
0 −2 2 0
0 2 −2 0
1 0 0 0

]
. Notice that 22−12 6= 0 and |2+1| 6= |2−1|.

That is, f1 belongs to Case 1. Therefore, Pl-Holant(6=2| f1) is #P-hard, and hence Pl-Holant( 6=2| f)

is #P-hard.

Case 1 to Case 3 cover all cases for (a, b, c): Suppose (a, b, c) does not satisfy Case 3. Then

either c2−b2 6= 0 or c2−a2 6= 0. If c2−b2 6= 0, then either |c+b| 6= |c−b| (Case 1) or |c+b| = |c−b|

(Case 2). Similarly if c2 − a2 6= 0 it is either Case 1 or Case 2. This completes the proof of the

lemma.

Lemma 9.35. Let f be a 4-ary signature with the signature matrix
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M(f) =


0 0 0 a

0 b c 0

0 z y 0

x 0 0 0

, where abcxyz 6= 0.

If by − cz = 0 or ax− cz = 0, then Pl-Holant(6=2| f) is #P-hard.

Proof. By rotational symmetry, we assume by − cz = 0. By normalization, we assume b = 1,

and then y = cz. That is, Mx1x2,x4x3(f) =

[
0 0 0 a
0 1 c 0
0 z cz 0
x 0 0 0

]
.

• If 1 + c 6= 0. Connecting the variables x4 with x3 of f using (6=2) we get a binary signature

g1, where

g1 =Mx1x2,x4x3(f)(0, 1, 1, 0)
T = (0, 1 + c, (1 + c)z, 0)T .

Note that g1(x1, x2) can be normalized as (0, z−1, 1, 0)T . That is g(x2, x1) = (0, 1, z−1, 0)T .

Modifying x1 = 1 of f with z−1 scaling we get a signature f1 with the signature matrix[ 0 0 0 a
0 1 c 0
0 1 c 0
x/z 0 0 0

]
. Connecting the variable x1 with x2 of f1 using ( 6=2) we get a binary signature

g2, where

g2 = ((0, 1, 1, 0)Mx1x2,x4x3(f))
T = (0, 2, 2c, 0)T ,

and g2(x1, x2) can be normalized to g2(x2, x1) = (0, 1, c−1, 0)T . Modifying x4 = 1 of f1

with c−1 scaling we get a signature f2 with the signature matrix
[

0 0 0 a/c
0 1 1 0
0 1 1 0
x/z 0 0 0

]
. It is non-

singular redundant. By Lemma 9.16, we have Pl-Holant( 6=2| f2) is #P-hard, and hence

Pl-Holant(6=2| f) is #P-hard.

• If 1+z 6= 0, then connecting the variable x1 with x2 of f using (6=2) we get a binary signature

g′1, where

g′1 = ((0, 1, 1, 0)Mx1x2,x4x3)
T = (0, 1 + z, (1 + z)c, 0)T .

g′1(x1, x2) can be normalized to (0, c−1, 1, 0)T . By the same analysis as in the case 1 + c 6= 0,

we have Pl-Holant(6=2| f) is #P-hard.

• Otherwise, 1 + c = 0 and 1 + z = 0, that is c = z = −1. Then Mx1x2,x4x3(f) =

[
0 0 0 a
0 1 −1 0
0 −1 1 0
x 0 0 0

]
,

and Mx3x4,x2x1(f) =

[
0 0 0 x
0 1 −1 0
0 −1 1 0
a 0 0 0

]
. Connecting variables x4, x3 of a copy of signature f with
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variables x3, x4 of another copy of signature f , we get a signature f3 with the signature matrix

M(f3) =Mx1x2,x4x3(f)N2Mx3x4,x2x1(f) =


0 0 0 ax

0 −2 2 0

0 2 −2 0

ax 0 0 0

 ,

Clearly, ax 6= 0 and so f3 /∈ M by Lemma 9.7. By Lemma 9.34, Pl-Holant (6=2| f3) is #P-hard

and hence Pl-Holant (6=2| f) is #P-hard.

In the following Lemmas 9.36, 9.37, 9.40 and Corollaries 9.39, 9.41, let f be a 4-ary signature

with the signature matrix

M(f) =


0 0 0 a

0 b c 0

0 z y 0

x 0 0 0

 , (9.6)

where abxyz 6= 0, det
[
b c
z y

]
= by − cz 6= 0 and det [ a zc x ] = ax − cz 6= 0. Moreover f /∈ M ,

that is cz − by 6= ax. These lemmas handle “generic” cases of this section and will culminate in

Theorem 9.42, which is a classification for Case IV. It is here we will use Möbius transformations to

handle interpolations where it is particularly difficult to get desired signatures of “infinite order”.

Lemma 9.36. Let g = (0, 1, t, 0)T be a binary signature, where t 6= 0 is not a root of unity. Then

Pl-Holant( 6=2| f, g) is #P-hard.

Proof. Let B = {g1, g2, g3} be a set of three binary signatures gi = (0, 1, ti, 0)
T , for some

ti ∈ C. By Lemma 9.3, we have Pl-Holant ( 6=2| {f} ∪ B) ⩽ Pl-Holant ( 6=2| f, g) . We will show that

Pl-Holant ( 6=2| {f} ∪ B) is #P-hard and it follows that Pl-Holant (6=2| f, g) is #P-hard.

Modifying x1 = 1 of f with ti (i = 1, 2) scaling separately, we get two signatures fti with the

signature matrices M(fti) =

[ 0 0 0 a
0 b c 0
0 tiz tiy 0
tix 0 0 0

]
. Note that

detMIn(fti) = ti detMIn(f) and detMOut(fti) = ti detMOut(f).

Connecting variables x4, x3 of f with variables x1, x2 of ft1 both using ( 6=2), we get a signature f1
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with the signature matrix

M(f1) =


0 0 0 a1

0 b1 c1 0

0 z1 y1 0

x1 0 0 0

 =M(f)N2M(ft1) =


0 0 0 a2

0 t1bz + bc t1by + c2 0

0 t1z
2 + yb t1yz + yc 0

t1x
2 0 0 0

 .

We first show that there is a t1 6= 0 such that b1y1c1z1 6= 0 and (b1z)(y1c) − (c1b)(z1y) 6= 0.

Consider the quadratic polynomial

p(t) = (tbz + bc)(tyz + yc)cz − (tby + c2)(tz2 + yb)by.

We have p(t1) = (b1z)(y1c)− (c1b)(z1y). Notice that the coefficient of the quadratic term in p(t) is

byz2(cz− by). It is not equal to zero since byz2 6= 0 and cz− by 6= 0. That is, p(t) has degree 2, and

hence it has at most two roots. Also we have the following three implications by the definitions of

b1, y1, c1, z1: b1y1 = 0 =⇒ t1 = − c
z , c1 = 0 =⇒ t1 = − c2

by , and z1 = 0 =⇒ t1 = − yb
z2
. Therefore we

can choose such a t1 that does not take these values 0,− c
z ,−

c2

by and − yb
z2
, and t1 is not a root of

p(t). Then, we have t1 6= 0, b1y1c1z1 6= 0 and (b1z)(y1c)− (c1b)(z1y) 6= 0.

Connecting variables x4, x3 of f1 with variables x1, x2 of ft2 both using (6=2), we get a signature

f2 with the signature matrix

M(f2) =


0 0 0 a2

0 b2 c2 0

0 z2 y2 0

x2 0 0 0

 =M(f1)N2M(ft2) =


0 0 0 a1a

0 t2b1z + c1b t2b1y + c1c 0

0 t2z1z + y1b t2z1y + y1c 0

t2x1x 0 0 0

 .

Since b1z 6= 0 and c1b 6= 0, we can let t2 = − c1b
b1z

and t2 6= 0. Then b2 = t2b1z + c1b = 0. Since
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(b1z)(y1c)− (c1b)(z1y) 6= 0, we have y2 = t2z1y + y1c 6= 0. Notice that

detMIn(f2) = detMIn(f1) · (−1) · detMIn(ft2)

= detMIn(f) · (−1) · detMIn(ft1) · (−1) · detMIn(ft2)

= t1t2 detMIn(f)
3

6= 0.

We have detMIn(f2) = b2y2 − c2z2 = −c2z2 6= 0. Similarly, we have detMOut(f2) = −a2x2 =

t1t2 detMOut(f)
3 6= 0. Therefore, M(f2) is of the form

[
0 0 0 a2
0 0 c2 0
0 z2 y2 0
x2 0 0 0

]
, where a2x2y2c2z2 6= 0. That

is, f2 is a signature in Case III. If f2 /∈ M , then Pl-Holant ( 6=2| f2) is #P-hard by Theorem 9.33,

and hence Pl-Holant ( 6=2| {f} ∪ B) is #P-hard.

Otherwise, f2 ∈ M , which means detMIn(f2)

detMOut(f2)
= 1. Thus detMIn(f)3

detMOut(f)3
= 1. Since f /∈ M ,

detMIn(f)

detMOut(f)
6= 1, and hence detMIn(f)7

detMOut(f)7
6= 1. Similar to the construction of f1, we construct

f3. First, modify x1 = 1 of f1 with t3 scaling. We get a signature f1t3 with the signature ma-

trix M(f1t3) =

[
0 0 0 a1
0 b1 c1 0
0 t3z1 t3y1 0

t3x1 0 0 0

]
. Note that detMIn(f1t3) = t3 detMIn(f1) and detMOut(f1t3) =

t3 detMOut(f1). Then connect variables x4, x3 of f1 with variables x1, x2 of f1t3 both using (6=2).

We get a signature f3 with the signature matrix

M(f3) =


0 0 0 a3

0 b3 c3 0

0 z3 y3 0

x3 0 0 0

 =M(f1)N2M(f1t3) =


0 0 0 a2

0 t3b1z1 + b1c1 t3b1y1 + c21 0

0 t3z
2
1 + y1b1 t3y1z1 + y1c1 0

t3x
2
1 0 0 0

 .

Since c1 6= 0 and z1 6= 0, we can define t3 = − c1
z1

and t3 6= 0. Then b3 = b1(t3z1 + c1) = 0 and
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y3 = y1(t3z1 + c1) = 0. Notice that

detMIn(f3) = detMIn(f1) · (−1) · detMIn(f1t3)

= −detMIn(f1) · t3 detMIn(f1)

= −t3 [detMIn(f) · (−1) · detMIn(ft1)]
2

= −t3t21 detMIn(f)
4

6= 0

We have detMIn(f3) = −c3z3 6= 0 and similarly, detMOut(f3) = −a3x3 = −t3t21 detMOut(f)
4 6= 0.

That is, M(f3) is of the form
[

0 0 0 a3
0 0 c3 0
0 z3 0 0
x3 0 0 0

]
where a3x3c3z3 6= 0.

Connect variables x4, x3 of f2 with variables x1, x2 of f3 both using (6=2). We get a signature

f4 with the signature matrix

M(f4) =


0 0 0 a4

0 b4 c4 0

0 z4 y4 0

x4 0 0 0

 =M(f2)N2M(f3) =


0 0 0 a2a3

0 0 c2c3 0

0 z2z3 y2c3 0

x2x3 0 0 0

 .

Clearly, f4 is a signature in Case III. Also, notice that

detMIn(f4) = detMIn(f2) · (−1) · detMIn(f3)

= t1t2 detMIn(f)
3 · t3t21 detMIn(f)

4

= t3t2t
3
1 detMIn(f)

7.

and

detMOut(f4) = t3t2t
3
1 detMOut(f)

7.

We have
detMIn(f4)

detMOut(f4)
=

detMIn(f)7

detMOut(f)7
6= 1,

which means f4 /∈ M . By Theorem 9.33, Pl-Holant (6=2| f4) is #P-hard, and hence Pl-Holant ( 6=2| {f} ∪ B)

is #P-hard.
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Lemma 9.37. Let g = (0, 1, t, 0)T be a binary signature where t is an n-th primitive root of unity,

and n ≥ 5. Then Pl-Holant(6=2| f, g) is #P-hard.

Proof. Note that Mx1,x2(g) = [ 0 1
t 0 ]. Connect the variable x2 of a copy of signature g with

the variable x1 of another copy of signature g using (6=2). We get a signature g2 with the signature

matrix

Mx1,x2(g2) =

0 1

t 0

0 1

1 0

0 1

t 0

 =

0 1

t2 0

 .
That is, g2 = (0, 1, t2, 0)T . Similarly, we can construct gi = (0, 1, ti, 0)T for 1 ⩽ i ⩽ 5. Here, g1
denotes g. Since the order n ⩾ 5, gi are distinct (1 ≤ i ≤ 5).

Connect variables x4, x3 of signature f with variables x1, x2 of gi for 1 ⩽ i ⩽ 5 respectively.

We get binary signatures hi, where

hi =Mx1x2,x4x3(f)gi =


0 0 0 a

0 b c 0

0 z y 0

x 0 0 0




0

1

ti

0

 =


0

b+ cti

z + yti

0

 .

Let φ(z) = z + yz

b+ cz
. Since det

[
b c
z y

]
= by − cz 6= 0, φ(z) is a Möbius transformation of the extended

complex plane Ĉ. We rewrite hi in the form of (b+ cti)(0, 1, φ(ti), 0)T , with the understanding that

if b+ cti = 0, then φ(ti) = ∞, and we define (b+ cti)(0, 1, φ(ti), 0)T to be (0, 1, z+ yti, 0)T . If there

is a ti such that φ(ti) is not a root of unity, and φ(ti) 6= 0 and φ(ti) 6= ∞, by Lemma 9.36, we have

Pl-Holant ( 6=2| f, hi) is #P-hard, and hence Pl-Holant ( 6=2| f, g1) is #P-hard. Otherwise, φ(ti) is

0, ∞ or a root of unity for 1 ⩽ i ⩽ 5. Since φ(z) is a bijection of Ĉ, there is at most one ti such

that φ(ti) = 0 and at most one ti such that φ(ti) = ∞. That means, there are at least three ti such

that |φ(ti)| = 1. Since a Möbius transformation is determined by any 3 distinct points, mapping

3 distinct points from S1 to S1 implies that this φ(z) maps S1 homeomorphically onto S1 (so in

fact there is no ti such that φ(ti) = 0 or ∞). Such a Möbius transformation has a special form:

M(α, eiθ) = eiθ
(z+ α)

1 + ᾱz
, where |α| 6= 1. (It cannot be of the form eiθ/z, since b 6= 0.)

By normalization in signature f , we may assume b = 1. Compare the coefficients, we have

c = ᾱ, y = eiθ and z = αeiθ. Here α 6= 0 due to z 6= 0. Also, since Mx2x3,x1x4(f) =

[
0 0 0 y
0 a z 0
0 c x 0
b 0 0 0

]
and
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det [ a zc x ] = ax− cz 6= 0, we have another Möbius transformation ψ(z) = c+ xz

a+ zz
. Plug in c = ᾱ and

z = αeiθ, we have

ψ(z) =
ᾱ+ xz

a+ αeiθz
=

ᾱ
a + x

a z

1 + αeiθ

a z
.

By the same proof for φ(z), we get Pl-Holant (6=2| f, g) is #P-hard, unless ψ(z) also maps S1 to S1.

Hence, we can assume ψ(z) has the form M(β, eiθ
′
) = eiθ

′ (z+ β)

1 + β̄z
, where |β| 6= 1. (It is clearly not

of the form eiθ
′
/z.) Compare the coefficients, we have


αeiθ/a = β̄

ᾱ/a = eiθ
′
β

x/a = eiθ
′

.

Solving these equations, we get a = eiθα/β̄ and x = ᾱ/β. Let γ = α/β̄, and we have a = γeiθ and

x = γ̄, where |γ| 6= |α| since |β| 6= 1 and γ 6= 0 since x 6= 0. Then, we have signature matrices

Mx1x2,x4x3(f) =

[
0 0 0 γeiθ

0 1 ᾱ 0
0 αeiθ eiθ 0
γ̄ 0 0 0

]
, Mx2x3,x1x4(f) =

[
0 0 0 eiθ

0 γeiθ αeiθ 0
0 ᾱ γ̄ 0
1 0 0 0

]
, Mx3x4,x2x1(f) =

[
0 0 0 γ̄

0 eiθ ᾱ 0
0 αeiθ 1 0
γeiθ 0 0 0

]

and Mx4x1,x3x2(f) =

[
0 0 0 1
0 γ̄ αeiθ 0

0 ᾱ γeiθ 0

eiθ 0 0 0

]
. Connect variables x4, x3 of a copy of signature f with variables

x3, x4 of another copy of signature f using (6=2). We get a signature f1 with the signature matrix

M(f1) =Mx1x2,x4x3(f)N2Mx3x4,x2x1(f) =


0 0 0 γγ̄eiθ

0 (α+ ᾱ)eiθ 1 + ᾱ2 0

0 (1 + α2)ei2θ (α+ ᾱ)eiθ 0

γγ̄eiθ 0 0 0

 .

• If α+ ᾱ 6= 0, normalizing Mx1x2,x4x3(f1) by dividing by (α+ ᾱ)eiθ, we have

M(f1) =



0 0 0
γγ̄

(α+ ᾱ)

0 1
(1 + ᾱ2)e−iθ

(α+ ᾱ)
0

0
(1 + α2)eiθ

(α+ ᾱ)
1 0

γγ̄

(α+ ᾱ)
0 0 0


.
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Note that (1 + α2)eiθ

(α+ ᾱ)
and (1 + ᾱ2)e−iθ

(α+ ᾱ)
are conjugates. Let δ =

(1 + α2)eiθ

(α+ ᾱ)
, and then δ̄ =

(1 + ᾱ2)e−iθ

(α+ ᾱ)
. We have |δ|2 = δδ̄ =

(1 + α2)(1 + ᾱ2)

(α+ ᾱ)2
6= 1 due to detMIn(f1) 6= 0, and δ 6= 0

due to |α| 6= 1. Consider the inner matrix ofM(f1), we haveMIn(f1) =
[
1 δ̄
δ 1

]
. Notice that the

two eigenvalues ofMIn(f1) are 1+ |δ| and 1−|δ|, and obviously
∣∣∣1−|δ|
1+|δ|

∣∣∣ 6= 1, which means there

is no integer n > 0 and complex number C such thatMn
In(f1) = CI. Note that φ1(z) =

δ + z

1 + δ̄z
is a Möbius transformation of the form M(δ, 1) mapping S1 to S1.

Connect variables x4, x3 of signature f1 with variables x1, x2 of signatures gi. We get binary

signatures g(i,φ1), where

g(i,φ1) =Mx1x2,x4x3(f1)gi =


0 0 0 ∗

0 1 δ̄ 0

0 δ 1 0

∗ 0 0 0




0

1

ti

0

 =


0

1 + δ̄ti

δ + ti

0

 = (1 + δ̄ti)


0

1

φ1(t
i)

0

 .

Since φ1 is a Möbius transformation mapping S1 to S1 and |ti| = 1, we have |φ1(t
i)| = 1,

which means 1 + δ̄ti 6= 0. Hence, g(i,φ1) can be normalized as (0, 1, φ1(t
i), 1)T . Successively

construct binary signatures g(i,φn1 ) by connecting f1 with g(i,φn−1
1 ). We have

g(i,φn1 ) =M(f1)g(i,φn−1
1 ) =Mn(f1)gi = C(i,n)(0, 1, φ

n
1 (t

i), 0)T ,

where C(i,n) =
∏

0⩽k⩽n−1

(
1 + δ̄φk1(t

i)
)
. We know C(i,n) 6= 0, because for any k, 1+δ̄φk−1

1 (ti) 6= 0

due to |φk1(ti)| =
|δ + φk−1

1 (ti)|
|1 + δ̄φk−1

1 (ti)|
= 1. Hence, g(i,φn1 ) can be normalized as (0, 1, φn1 (t

i), 0)T .

Notice that the nonzero entries (1, φn1 (t
i))T of g(i,φn1 ) are completely decided by the inner

matrix MIn(f1). That is

Mn
In(f1)

1

ti

 = C(i,n)

 1

φn1 (t
i)

 .

If for each i ∈ {1, 2, 3}, there is some ni ⩾ 1 such that (1, φni1 (ti))T = (1, ti)T , then φn0
1 (ti) = ti,

where n0 = n1n2n3 for 1 ⩽ i ⩽ 3, i.e., the Möbius transformation φn0
1 fixes three distinct

complex numbers t, t2, t3. So the Möbius transformation is the identity map, i.e., φn0
1 (z) = z
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for all z ∈ C. This implies that Mn0
In (f1) = C [ 1 0

0 1 ] for some constant C 6= 0. This contradicts

the fact that the ratio of the eigenvalues of MIn is not a root of unity. Therefore, there is an

i such that (1, φn1 (t
i))T are all distinct for n ∈ N. Then, we can realize polynomially many

distinct binary signatures of the form (0, 1, φn1 (t
i), 1)T . By Lemma 9.5, we have Pl-Holant( 6=2|

f, g) is #P-hard.

• Otherwise α + ᾱ = 0, which means α is a pure imaginary number. We already have α 6= 0

due to z 6= 0. Also |α| 6= 1 from the form of M(α, eiθ). Let α = ri, where r ∈ R and |r| 6= 0

or 1. Connect variables x1, x4 of a copy of signature f with variables x4, x1 of another copy

of signature f , we get a signature f2 with the signature matrix

M(f2) =Mx2x3,x1x4(f)N2Mx4x1,x3x2(f)

=


0 0 0 eiθ

0 γeiθ rieiθ 0

0 −ri γ̄ 0

1 0 0 0




0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0




0 0 0 1

0 γ̄ rieiθ 0

0 −ri γeiθ 0

eiθ 0 0 0



=


0 0 0 eiθ

0 (−γ + γ̄)rieiθ (γ2 − r2)ei2θ 0

0 γ̄2 − r2 (−γ + γ̄)rieiθ 0

eiθ 0 0 0

 .

– If −γ + γ̄ 6= 0, normalizing M(f2) by dividing the quantity (−γ + γ̄)rieiθ, we have

MIn(f2) =

 1
(γ2 − r2)eiθ

(−γ + γ̄)ri
(γ̄2 − r2)e−iθ

(−γ + γ̄)ri
1

 .

Note that (γ2 − r2)eiθ

(−γ + γ̄)ri
and (γ̄2 − r2)e−iθ

(−γ + γ̄)ri
are conjugates. Let ζ =

(γ̄2 − r2)e−iθ

(−γ + γ̄)ri
, and

then |ζ| 6= 1 due to detMIn(f2) 6= 0, and ζ 6= 0 due to |γ| 6= |α| = |r| (as |β| 6= 1).

With the same analysis as for MIn(f1) in the case α + ᾱ 6= 0, the ratio of the two

eigenvalues of MIn(f2) =
[
1 ζ̄
ζ 1

]
is also not equal to 1, which means there is no integer



293

n and complex number C such that Mn
In(f2) = CI. Notice that φ2(z

′) =
ζ + z′

1 + ζ̄z′
is

also a Möbius transformation of the form M(ζ, 1) mapping S1 to S1. Similarly, we can

realize polynomially many distinct binary signatures, and hence Pl-Holant( 6=2| f, g) is

#P-hard.

– Otherwise, −γ + γ̄ = 0, which means γ is a real number. We have γ ∈ R, |γ| 6= 0 or |r|.

Connect variables x4, x3 of a copy of signature f with variables x1, x2 of another copy

of signature f , we get a signature f ′ with the signature matrix

M(f ′) =Mx1x2,x4x3(f)N2Mx1x2,x4x3(f)

=


0 0 0 γeiθ

0 1 −ri 0

0 rieiθ eiθ 0

γ 0 0 0




0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0




0 0 0 γeiθ

0 1 −ri 0

0 rieiθ eiθ 0

γ 0 0 0



=


0 0 0 γ2ei2θ

0 (eiθ − 1)ri eiθ − r2 0

0 eiθ − ei2θr2 (ei2θ − eiθ)ri 0

γ2 0 0 0

 .

∗ If eiθ = 1, then M(f) =

[ 0 0 0 γ
0 1 ᾱ 0
0 α 1 0
γ̄ 0 0 0

]
, and MIn(f) = [ 1 ᾱα 1 ] . Since |α| 6= 1, same as the

analysis of MIn(f1), we can realize polynomially many binary signatures, and hence

Pl-Holant(6=2| f, g) is #P-hard.

∗ Otherwise eiθ 6= 1, normalizing M(f ′) by dividing by (eiθ − 1)ri, we have

M(f ′) =



0 0 0
γ2eiθ

(eiθ − 1)ri
· eiθ

0 1
eiθ − r2

(eiθ − 1)ri
0

0
1− eiθr2

(eiθ − 1)ri
· eiθ eiθ 0

γ2

(eiθ − 1)ri
0 0 0


.
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Note that 1− eiθr2

(eiθ − 1)ri
and eiθ − r2

(eiθ − 1)ri
are conjugates, and γ2eiθ

(eiθ − 1)ri
and γ2

(eiθ − 1)ri

are conjugates. Let α′ =
1− eiθr2

(eiθ − 1)ri
and γ′ = γ2eiθ

(eiθ − 1)ri
. Then

M(f ′) =


0 0 0 γ′eiθ

0 1 ᾱ′ 0

0 α′eiθ eiθ 0

γ̄′ 0 0 0

 .

Notice that M(f ′) and M(f) have the same form. Similar to the construction

of f2, we can construct a signature f ′2 using f ′ instead of f . Since −γ′ + γ̄′ =

− γ2eiθ

(eiθ − 1)ri
+

γ2

(eiθ − 1)ri
= −γ

2

ri
6= 0, by the analysis of f2, we can still realize

polynomially many binary signatures and hence Pl-Holant(6=2| f, g) is #P-hard.

Remark 9.38. The order n ⩾ 5 promises that there are at least three points mapped to points on

S1, since at most one point can be mapped to 0 and at most one can be mapped to ∞. When the

order n is 3 or 4, if no point is mapped to 0 or ∞, then there are still at least three points mapped

to points on S1. So, we have the following corollary.

Corollary 9.39. Let g = (0, 1, t, 0)T be a binary signature where t is an n-th primitive root of unity,

and n = 3 or 4. Let gm denote (0, 1, tm, 0)T . For any cyclic permutation (i, j, k, ℓ) of (1, 2, 3, 4), if

there is no gm such that Mxixj ,xℓxk(f)gm = d1(0, 1, 0, 0)
T or d2(0, 0, 1, 0)T , where d1, d2 ∈ C , then

Pl-Holant( 6=2| f, g) is #P-hard.

We normalize f by setting b = 1 in Lemma 9.6.

Lemma 9.40. Let g = (0, 1, 0, 0)T be a binary signature. Then Pl-Holant( 6=2| f, g) is #P-hard.

Proof. Connecting variables x4, x3 of the signature f with variables x2 and x1 of g both using

(6=2) we get a binary signature g1, where

g1 =Mx1x2,x4x3(f)(0, 1, 0, 0)
T = (0, 1, z, 0)T .

g1(x1, x2) can be normalized to (0, z−1, 1, 0)T since z 6= 0. So we have g1(x2, x1) = (0, 1, z−1, 0).
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Then, modifying x1 = 1 of f with z−1 scaling, we get a signature f1 with the signature matrix

M(f1) =

[
0 0 0 a
0 1 c 0
0 1 y/z 0
x/z 0 0 0

]
. We denote it by

[ 0 0 0 a
0 1 c 0
0 1 y1 0
x1 0 0 0

]
, where x1y1 6= 0.

• If c = 0, connecting variables x4, x3 of f1 with variables x1, x2 of g both using (6=2) we get a

binary signature h1, where

h1 =Mx1x2,x4x3(f1)(0, 0, 1, 0)
T = (0, 1, y1, 0)

T .

Also, connecting the variable x4 with x3 of f1 using ( 6=2) we get a binary signature H, where

H =Mx1x2,x4x3(f1)(0, 1, 1, 0)
T = (0, 2, y1, 0)

T .

H can be normalized to (0, 1, y12 , 0)T . Clearly, |y1| 6= |y12 |, so they cannot both be roots of unity.

By Lemma 9.36, Pl-Holant ( 6=2| f, h1,H) is #P-hard, and we conclude that Pl-Holant (6=2| f, g)

is #P-hard.

• Otherwise c 6= 0. Connecting variables x2, x1 of g with variables x1, x2 of f both using ( 6=2)

we get a binary signature g2, where

g2 = ((0, 1, 0, 0)Mx1x2,x4x3(f1))
T = (0, 1, c, 0)T .

which can be normalized to g2(x2, x1) = (0, 1, c−1, 0)T . Then, modifying x4 = 1 of f1 with

c−1 scaling, we get a signature f2 with the signature matrix M(f2) =

 0 0 0 a
c

0 1 1 0
0 1 y

zc
0

x
z

0 0 0

 which we

denote by
[ 0 0 0 a2

0 1 1 0
0 1 y2 0
x2 0 0 0

]
, where a2x2y2 6= 0. Notice thatMx2x3,x1x4(f2) =

[ 0 0 0 y2
0 a2 1 0
0 1 x2 0
1 0 0 0

]
. Connect

variables x1, x4 of signature f2 with variables x2, x1 of g both using (6=2). We get a binary

signature h3, where

h3 =Mx2x3,x1x4(f2)(0, 1, 0, 0)
T = (0, a2, 1, 0)

T .

h3 can be normalized as (0, 1, 1
a2
, 0)T . Also connect variables x1, x4 of signature f2 with
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variables x1, x2 of g both using ( 6=2). We get a binary signature h4, where

h4 =Mx2x3,x1x4(f2)(0, 0, 1, 0)
T = (0, 1, x2, 0)

T .

If |a2| 6= 1 or |x2| 6= 1, then a2 or x2 is not a root of unity. By Lemma 9.36, Pl-Holant (6=2| f, h3, h4)

is #P-hard, and hence Pl-Holant (6=2| f, g) is #P-hard. Otherwise, |a2| = |x2| = 1. Same as

the construction of h1 and H, construct binary signatures h′1 and h′2 using f2 instead of f1.

We get

h′1 =Mx1x2,x4x3(f2)(0, 0, 1, 0)
T = (0, 1, y2, 0)

T ,

and

h′2 =Mx1x2,x4x3(f2)(0, 1, 1, 0)
T = (0, 2, 1 + y2, 0)

T .

Note that h′2 can be normalized as (0, 1, 1+y22 , 0)T .

– If y2 is not a root of unity, then by Lemma 9.36, Pl-Holant (6=2| f, h′1) is #P-hard, and

hence Pl-Holant (6=2| f, g) is #P-hard.

– If y2 is an n-th primitive root of unity and n ⩾ 5, then by Lemma 9.37, Pl-Holant ( 6=2| f, h′1)

is #P-hard, and hence Pl-Holant (6=2| f, g) is #P-hard.

– If y2 = −1±
√
3i

2 or ±i, then 0 < |1+y22 | < 1, which means it is not zero neither a root of

unity. By Lemma 9.36, Pl-Holant (6=2| f, h′2) is #P-hard, and hence Pl-Holant ( 6=2| f, g)

is #P-hard.

– If y2 = 1, then f2 is non-singular redundant and hence Pl-Holant ( 6=2| f, g) is #P-hard.

– If y2 = −1. Connect two copies of f2, we get a signature f3 with the signature matrix

M(f3) =Mx1x2,x4x3(f2)N2Mx1x2,x4x3(f2) =


0 0 0 a22

0 2 0 0

0 0 −2 0

x22 0 0 0

 .

Since |a2| = |x2| = 1, |a22x22| = 1 6= 4. Therefore, applying Corollary 9.31 to {a22, 2, x22,−2},

we get Pl-Holant (6=2| f3) is #P-hard, and hence Pl-Holant (6=2| f, g) is #P-hard.
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Combining Lemma 9.37, Corollary 9.39 and Lemma 9.40, we have the following corollary.

Corollary 9.41. Let g = (0, 1, t, 0)T be a binary signature where t is an n-th primitive root of

unity, and n ⩾ 3. Then Pl-Holant( 6=2| f, g) is #P-hard.

Now, we are able to prove the following theorem for Case IV.

Theorem 9.42. Let f be a 4-ary signature with the signature matrix

M(f) =


0 0 0 a

0 b c 0

0 z y 0

x 0 0 0

,

where abxyz 6= 0. Pl-Holant(6=2| f) is #P-hard unless f ∈ M , in which case, Pl-Holant(6=2| f) is

tractable.

Proof. Tractability follows by 9.9.

Now suppose f /∈ M . Connect the variable x4 with x3 of f using (6=2), and we get a binary

signature g1, where

g1 =Mx1x2,x4x3(0, 1, 1, 0)
T = (0, b+ c, z + y, 0)T .

Connect the variable x1 with x2 of f using (6=2), and we get a binary signature g2, where

g2 = ((0, 1, 1, 0)Mx1x2,x4x3)
T = (0, b+ z, c+ y, 0)T .

• If one of g1 and g2 is of the form (0, 0, 0, 0)T , then by = (−c)(−z) = cz. That is by − cz = 0.

Here c 6= 0 due to by 6= 0. By Lemma 9.35, Pl-Holant(6=2| f) is #P-hard.

• If one of g1 and g2 can be normalized as (0, 1, 0, 0) or (0, 0, 1, 0). By Lemma 9.40, Pl-Holant( 6=2|

f) is #P-hard.

• If one of g1 and g2 can be normalized as (0, 1, t, 0)T , where t 6= 0 is not a root of unity, then

by Lemma 9.36, Pl-Holant( 6=2| f) is #P-hard.

• If one of g1 and g2 can be normalized as (0, 1, t, 0)T , where t is an n-th primitive root of unity

and n ⩾ 3, then by Corollary 9.41, Pl-Holant(6=2| f) is #P-hard.
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• Otherwise, g1 and g2 do not belong to those cases above, which means both g1 and g2 both

can be normalized as (0, 1, ϵ1, 0) and (0, 1, ϵ2, 0), where ϵ1 = ±1 and ϵ2 = ±1. That is,

b+ c = ϵ1(z + y) 6= 0 and b+ z = ϵ2(c+ y) 6= 0.

– If b+ c = z+ y and b+ z = c+ y, then b = y and c = z. This case will be proved below.

– If b + c = −(z + y) and b + z = c + y, then b + z = c + y = 0, so g2 = (0, 0, 0, 0)T , a

contradiction.

– If b + c = z + y and b + z = −(c + y), then b + c = z + y = 0, so g1 = (0, 0, 0, 0)T , a

contradiction.

– If b + c = −(z + y) and b + z = −(c + y), we get b + c + y + z = 0. But b + c 6= 0,

otherwise g1 = (0, 0, 0, 0)T , a contradiction. So we can normalize g1 to (0, 1,−1, 0)T .

Modify x1 = 1 of f with −1 scaling, and we get a signature f ′ with the signature matrix

M(f ′) =

[ 0 0 0 a
0 b c 0
0 −z −y 0
−x 0 0 0

]
. Connect the variable x1 with x2 of f ′ using (6=2), and we get

a binary signature g′ = (0, b − z, c − y, 0)T . Same as the analysis of g1 and g2 above,

we have Pl-Holant(6=2| f ′) is #P-hard unless g′ can be normalized as (0, 1, ϵ3, 0), where

ϵ3 = ±1. That is, b− z = ϵ3(c− y) 6= 0, ϵ3 = ±1.

∗ If b− z = c− y, combined with b+ c = −(z + y), we have b = −y and c = −z. This

case will be proved below.

∗ If b− z = −(c− y), combined with b+ c = −(z+ y), we have b+ c = z+ y = 0, and

so g1 = (0, 0, 0, 0)T , a contradiction.

Therefore, Pl-Holant(6=2| f ′) is #P-hard and hence Pl-Holant( 6=2| f) is #P-hard.

To summarize, except for the cases b = ϵy and c = ϵz, where ϵ = ±1, we have proved that

Pl-Holant( 6=2| f) is #P-hard. We can connect the variable x2 with x3 of f using (6=2), and get a

binary signature g3 = (0, a + c, z + x, 0)T . Connect the variable x1 with x4 of f using (6=2), and

we get a binary signature g4 = (0, a + z, c + x, 0)T . Same as the analysis of g1 and g2, we have

Pl-Holant( 6=2| f) is #P-hard unless a = ϵ′x and c = ϵ′z, where ϵ′ = ±1. By both c = ϵz and c = ϵ′z

and z 6= 0 we get ϵ = ϵ′. Therefore, Pl-Holant(6=2| f) is #P-hard unless a = ϵx, b = ϵy and c = ϵz,

where ϵ = ±1. In this case, since z 6= 0, we have abc 6= 0. By Lemma 9.34, Pl-Holant( 6=2| f) is

#P-hard, since we have assumed f /∈ M .
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9.7 Proof of the Trichotomy Theorem

Now we are ready to prove the main theorem, Theorem 9.21.

Proof of Tractability:

• If f satisfies condition 1 or 2, then by Theorem 9.20, Holant( 6=2| f) is tractable without the

planarity restriction. Obviously, Pl-Holant(6=2| f) is tractable.

• If f satisfies condition 3, then by Theorem 9.9, Pl-Holant(6=2| f) is tractable.

• If f satisfies condition 4, then by Theorem 9.30, Pl-Holant(6=2| f) is tractable.

Proof of Hardness:

Since f does not satisfy condition 2, f does not belong to Case I. Therefore it belongs to Cases

II, III, or IV.

• Suppose f belongs to Case II.

– If an outer pair is a zero pair, since f does not satisfy condition 1 or condition 3, then

by Theorem 9.24, Pl-Holant( 6=2| f) is #P-hard.

– If the inner pair is a zero pair and no outer pair is zero, since f does not satisfy condition

4, then by Theorem 9.30, Pl-Holant( 6=2| f) is #P-hard.

• Suppose f belongs to Case III. Since f does not satisfy condition 3, then by Theorem 9.33,

Pl-Holant(6=2| f) is #P-hard.

• Suppose f belongs to Case IV. Since f does not satisfy condition 3, then by Theorem 9.42,

Pl-Holant(6=2| f) is #P-hard.
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Chapter 10

Conclusion and Outlook

In this dissertation, we proved a complexity dichotomy for real-valued Holant problems with

arbitrary asymmetric signatures and a complexity trichotomy for planar six vertex models with

arbitrary complex values. The ultimate goal is definitely a complete complexity classification for

all complex-valued Holant problems.

One natural question is whether the tractability condition (T) in the real Holant dichotomy

covers all tractable cases for complex-valued Holant problems without considering the planar re-

striction. The answer is no. It is already known that there is a family of complex-valued signatures,

called vanishing signatures, that define tractable Holant problems [28]. For these signatures, it is

crucially the possibility to take complex values that makes them tractable. In fact, the evaluation

of problems defined by vanishing signatures is always zero, for the sake of which these signatures

are named after “vanishing”.

The complexity dichotomy for six-vertex models without considering the planar restriction

also captures a tractable case beyond the tractability condition (T). Based on this result, our

on-going work suggests that there is potentially a more general family of new tractable signatures.

This family may complete the picture for the complexity classification of complex-valued Holant

problems over general graphs. It seems to be more convenient to carve out this new tractable family

in the framework of Holant(6=2| F) without assuming ars on F . As a special case of Holant(6=2| F),

a complexity classification of #EO problems without assuming ars will serve as a building block.

Taking account of the planar restriction, a very interesting question is whether there are more

planar tractable cases beyond the reach of the FKT algorithm. We believe the answer is yes. The

new tractable case for planar six-vertex models obtained by the non-local reduction to #CSP can

be generalized to planar #EO problems with signatures of higher arity. In this sense, a complexity

classification of planar #EO problems may extend the non-local reduction technique to a universal
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algorithm for planar tractable Holant problems.

However, a much more challenging question is whether there are other planar tractable cases

beyond both the FKT algorithm and the non-local reduction technique. If the answer is yes, then

we suspect that such cases may be revealed by exploring planar eight-vertex models. Overall, there

is still a long way to go to achieve a complete complexity classification for Holant problems with

asymmetric signatures over planar graphs.
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