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abstract

Proteins are the key biological actors within cells, driving many biological pro-

cesses integral for both healthy and diseased states. Understanding the depth of

complexity represented within the proteome is crucial to our scientific understanding

of cellular biology and to provide disease specific insights for clinical applications.

Mass spectrometry-based proteomics is the premier method for proteome analysis,

with the ability to both identify and quantify proteins. Although proteomics contin-

ues to grow as a robust field of bioanalytical chemistry, advances are still necessary to

enable a more comprehensive view of the proteome. In this thesis, several new tools

for the improvement of proteome characterization are described, seeking to not only

increase the depth of proteome characterization, but also the precision of the results

obtained. In Chapter 1, an overview of mass spectrometry-based proteomics is pro-

vided including specific background information for the different areas of proteomic

analysis addressed in the chapters of this thesis. Chapter 2 introduces multi-protease

protein inference and illustrates advantages of utilizing peptides from multiple prote-

olytic digests for protein inference. Chapter 3 describes an in silico digestion software

tool called ProteaseGuru, designed to aid in the consideration of alternative proteases

for bottom-up experiments. Chapter 4 establishes a software pipeline for the genera-

tion of sample-specific databases from PacBio long-read sequencing data. Chapter

5 describes the discovery and validation of dehydroamino acid residues within the

HIV-1 virus. These uncommon post-translational modifications (PTMs) were initially

discovered using global PTM discovery (GPTMD), and then subsequently validated

using a chemical labeling strategy. All the works described throughout this thesis are

summarized and future directions for the improvement of proteome characterization

are outlined in Chapter 6.
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1 introduction
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1.1 Overview of Mass Spectrometry-Based Proteomics

Proteins are central to nearly all major biological processes within the cell, acting

as a bridge between genotype and phenotype.1 Comprehensive characterization of

the proteome would deepen our understanding of diseases and complex biological

processes, and is an ongoing goal of mass spectrometry-based proteomics. However,

this is not trivial, as the proteome is not only highly complex but also dynamic in

nature. Therefore, proteomic analysis must not only seek to identify which proteins

are present, but also their abundance and modification status.

Initially, it was thought that a single gene was transcribed to a single RNA tran-

script, which was then translated into a single protein. However, this single gene to

single protein hypothesis has since been abandoned. Instead, it is now understood

that the proteome is incredibly diverse, with numerous protein products, or pro-

teoforms, coming from a single gene (see Figure 1.1). A proteoform is defined as

the distinct molecular form of a protein, with a specific amino acid sequence and

set of post-translational modifications.2 The depth of proteoform complexity within

the proteome is not yet fully understood, but this immense diversity can stem from

numerous sources such as mutations at the gene-level, variants or alternative splicing

at the transcript-level, and post-translational modifications or cleavage events at the

protein-level.2–6 This depth of complexity further supports the importance of char-

acterizing the proteome, because analysis of the genome and transcriptome alone

cannot fully account for the complex phenotypes observed in healthy and disease

states.

Mass spectrometry-based proteomics has quickly become the most high-throughput,

reliable, and sensitive method for the characterization of the proteome.7–10 The princi-

ple of applying tandem mass spectrometry to the study of proteins is quite simple. In
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Figure 1.1: Sources of proteome complexity. Proteoforms provide a depth of complex-
ity to the proteome which would not be possible if a gene only led to the production of
a single protein product. Instead, mutations at the gene-level, variants or alternative
splicing at the transcript-level, and post-translational modifications or cleavage events
at the protein-level contribute to a still undefined number of proteoforms, which are
the functional units of the proteome.

the initial MS1 spectra, the intact mass of a peptide or proteoform analyte is deter-

mined by measuring its mass-to-charge (m/z) ratio and using the observed charge

state (z). In the subsequent MS2 scan, the intact peptide or proteoform is fragmented,

generating product ions whose m/z values enable amino acid sequence determination

leading to identifications. Beyond identification, mass spectrometry-based proteomics

can also facilitate the quantification of peptide or proteoform analytes.

Mass spectrometry-based proteomics can be divided into two different approaches,
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bottom-up and top-down. The key difference between these two approaches is the

analyte, which is either a peptide or a proteoform, respectively (see Figure 1.2).

The vast majority of proteomics experiments utilize the bottom-up approach. In

bottom-up, or shotgun proteomics, proteins are digested into peptides which are then

analyzed via LC-MS/MS.11 Peptides are ideal analytes for mass spectrometry-based

proteomics because they are easy to solubilize, separate and ionize. Since peptides

are the observed unit in bottom-up proteomics, but protein-level information is still

the desired outcome, peptides must act as proxies for their proteins or proteoforms

of origin. All information regarding the presence and abundance of proteins in the

sample are inferred from the peptides identified. The assumption that peptides

are ideal proxies for the proteins or proteoforms in the sample is somewhat faulty.

When proteoforms are digested into peptides, they lose their connectivity to their

proteoforms of origin, which not only complicates the process of protein identification

(see Section 1.2) but also prevents the determination of which proteoforms are

present in the sample. When reconstructing proteins from peptides, it is impossible

to completely reconstruct the complexity of the proteome at the proteoform-level.

In top-down proteomics, intact proteins/proteoforms are analyzed via tandem

mass spectrometry.12–17 Here intact proteoforms are directly being observed, and

the relationship between the base amino acid sequence and the post-translational

modifications on the proteoform are preserved. Therefore, no proxies are required in

top-down proteomics. However, top-down analysis is very complicated and there

are many challenges that must be overcome including but not limited to the low

abundance of many proteoforms, the low signal-to-noise ratio of large molecular

weight proteoforms, and low solubility of intact proteoforms.18–20 Currently, the

sensitivity of top-down proteomics is quite restricted compared to that of bottom-up

proteomics. Top-down proteomics is limited to those proteins with high abundance
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Figure 1.2: Experimental workflows for bottom-up and top-down proteomic ap-
proaches.

and low molecular weight, with sensitivity diminishing drastically for proteins with

a mass above 30 kDa.18

This dissertation will focus on the development of tools to improve bottom-up

proteomic characterization of the proteome. Although bottom-up proteomics is quite

robust, there are many places within the conventional workflow where improvements

can be made to enhance the characterization of the proteome. Here we will discuss

four areas in which the development of new tools and methods can further improve

proteome characterization via mass spectrometry-based proteomics: 1) the process

of protein inference, 2) the use of alternative proteases, 3) the use of sample-specific

databases and 4) the discovery and validation of post-translational modifications.
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1.2 The Process of Protein Inference

In bottom-up proteomics, as discussed in the previous section, peptides are the

analyte. Proteins within a sample are digested into peptides, which are then analyzed

via tandem mass spectrometry. Although peptides are directly observed, more

often than not, protein-level identifications and abundance measures are desired.21

Therefore, the observed peptides serve as an intermediate to the desired protein-

level results, making it necessary to reconstruct the original proteins in the sample.

This reconstruction process is called protein inference and is often quite complicated

and imperfect. The process of protein inference is convoluted by the existence of

“shared peptides”, which are peptide sequences that could result from the digestion

of multiple proteins present in the sequence database.21,22 The identification of these

peptides generates ambiguity in the protein-level results, because it is impossible to

distinguish the peptide’s protein of origin. Conversely, there are “unique peptides”,

which are peptides distinct to a single protein within the sequence database, and the

identification of such a peptide can confidently identify a single protein.21,22 The more

shared peptides identified, the more complicated the process of protein inference

becomes. Shared peptides are increasingly prevalent in higher order eukaryotic

organisms where there is a greater degree of sequence homology resulting from

related protein families, paralogous genes and complex alternative splicing.21,23,24

Various models exist to address the protein inference problem, most of which differ

from each other in their approach to handling the complications arising from shared

peptides.

Algorithms for protein inference can be broadly grouped into three categories: 1)

optimistic, 2) statistical and 3) parsimonious. In optimistic algorithms, all possible

proteins which could exist, based on the peptides identified, are considered detected.
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The underlying assumption made when utilizing this approach, is that the sample

contains a large number of homologous proteins.21 Optimistic algorithms tend to

be the simplest approach to protein inference, since there is no effort to reduce the

ambiguity conferred by shared peptides. This also makes these algorithms the easiest

to follow and comprehend for the end user. However, the increased ambiguity present

in these algorithms is also why this model for protein inference is not widely utilized.

Instead, statistical and parsimonious approaches have been and continue to be heavily

favored. One example of optimistic inference is the original algorithm employed in

DTASelect.25

Statistical approaches assemble evidence from the peptide identifications to es-

timate the probability a given protein is present in the sample. Typically, these

algorithms utilize peptide posterior error probability (PEP) values, or other pep-

tide scoring metrics to calculate protein-level probabilities.10,21,22 Statistical protein

inference algorithms can be further sub-classified into non-parametric or parametric

models. Non-parametric, or distribution free methods, make few to no assump-

tions regarding the probability distributions of the data being assessed.21 Due to

this, these methods are easier to use and are generally more robust. One of the

most well-known and utilized non-parametric statistical protein inference algorithms

is ProteinProphet.26 Conversely, parametric models assume that the data used to

generate the model comes from a probability distribution, and also makes assump-

tions regarding the parameters of said distribution.21 Due to the increased number

of assumptions made in parametric models, they tend to produce more accurate

protein probability estimates than non-parametric models, when the assumptions

made are accurate. A major limitation to statistical approaches to protein inference is

the inaccessibility of the logic underlying the algorithm. It can be unclear to the end

user why certain proteins are weighted more heavily than others.
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Parsimonious approaches to protein inference seek to apply the principle of Oc-

cam’s razor, which states the simplest answer is most likely the correct answer, to

handle the problem of shared peptides.21 The goal of these approaches is to establish

the minimum set of proteins which can explain all the identified peptides. The com-

plexity of parsimony is equivalent to the computationally prohibitive NP-hard set

cover problem.21 Therefore, to be able to “solve” what the minimum set of proteins

are in the sample, heuristics and assumptions must be established, enforcing the

simplest answer is likely to be the correct answer. Several statistical approaches have

principles of parsimonious algorithms at their core.10,27 The discarding of putative

proteins when alternative protein identifications have more support is a major limita-

tion of parsimonious approaches, because these removed proteins could be present

in the sample.22 Additionally, the heuristics and assumptions that are central to the

algorithm may not be clear to the end user, making it difficult to understand the end

protein list, and why some proteins are absent.27

The problem of protein inference and how to handle shared peptides is not yet

solved, and new algorithms are still being developed.27 One method for improving

the quality of protein inference results, outside of continued algorithm development,

is the curation of peptide identifications used as input for the inference algorithm.

All assumptions regarding the presence or absence of a protein are based on the

peptides used within the inference process. Increasing the depth and quality of the

peptide identifications will in turn also increase the depth and quality of the inferred

protein identifications. One approach to increasing the quality of inferred proteins

is to increase the stringency of applied peptide filters.28 If false positive peptide

identifications are incorporated for inference, they can lead to identifications that are

not reflective of the sample’s proteome. However, being overly conservative can result

in the loss of valuable true positives.28 In the process of protein inference, the more
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quality peptide identifications utilized, the better. Towards this end, several studies

have shown protein inference results can be improved through the aggregation of

peptide identifications across multiple search engines prior to inference.29 Another

approach to improve protein inference, that will be expanded upon in Chapter 2,

is the use of peptide identifications from multiple orthogonal proteolytic digests.30

Leveraging these peptide identifications from alternate proteases increases sequence

coverage of the proteome, and the number of unique peptides identified, both of

which have a positive impact on the accuracy of protein inference results.30

1.3 The Value of Alternative Proteases

For bottom-up proteomics, the serine protease trypsin is used almost exclusively.

Trypsin is robust, reliable, and affordable.31–33 Cleaving after lysine or arginine

residues, trypsin generates small peptides with a charged residue at the C-terminal

position, ideal for collision-induced dissociation (CID) fragmentation.31–33 However,

the near ubiquitous utilization of trypsin provides a tunnel-like view of the pro-

teome.31,34 Trypsin alone is incapable of producing peptide identifications sufficient

for the comprehensive characterization of the proteome. One factor contributing to

this lack of comprehension is the mismatch of the peptide length distribution between

those produced by tryptic digest and those identified via mass spectrometry (see

Figure 1.3). Most peptides identified by mass spectrometry are between 7-35 amino

acids in length. Nearly one-third of the peptides theoretically produced by tryptic

digestion of the human proteome are under 6 amino acids in length and are too

small for MS/MS based identification. This can lead to regions of proteins which

are intractable to tryptic peptides. There are also entire classes of proteins and post-

translational modifications (PTMs) which are difficult to characterize with tryptic
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digests.34 One such class of proteins are membrane proteins, whose transmembrane

domains are composed mainly of hydrophobic amino acids, with very few lysine or

arginine residues. Digestion of these transmembrane proteins generate very long

and very hydrophobic peptides which are difficult to solubilize and ionize for mass

spectrometry-based proteomics.

Figure 1.3: Comparison of the theoretical and experimental length distribution of
tryptic peptides. The length distribution of in silico digested tryptic peptides (grey),
as determined by ProteaseGuru, is compared to the length distribution of peptides
experimentally identified from MetaMorpheus analysis of the tryptic data from
Chapter 2 (green).30 Most experimentally identified peptides are between 7-35 amino
acids in length, whereas the theoretical tryptic digest favors the generation of shorter
peptides.

Additionally, tryptic digestion may elicit an inherit bias in the proteomic results

obtained. Examples of this are 1) phosphoproteome analysis, 2) the identification

of splice junction peptides and 3) quantitative proteomic experiments. In phospho-
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proteome analysis, when negatively charged phosphorylated serine or threonine

residues are adjacent to arginine or lysine residues, cleavage with trypsin can be

inhibited. This results in longer peptides, with higher charge states that are not as

amenable to identification with CID or higher-energy C-trap dissociation (HCD)

fragmentation.31,33 This can result in biased phosphoproteome results, missing key

phosphorylation sites, and lacking coverage in some of the most important regulatory

regions throughout the proteome.34,35 For the identification of splice junction pep-

tides, trypsin can also provide incomplete and therefore biased results. Surrounding

exon boundaries, there are evolutionary preferred nucleotides which increase the

occurrence of lysine and arginine coding triplets.36 Due to this, most identifiable

tryptic peptides flank splice junctions, and the peptides crossing the junction are too

small to be identified. This is problematic for the characterization of proteome-wide

alternative splicing, where identifying splice junction peptides are critical. The use

of trypsin alone can also introduce bias in protein quantification results. Studies

have shown that protein quantification values differ based on the protease used for

analysis, and that the pooling of data from multiple proteases can provide the best

estimate for accurate protein abundance values.37,38

To overcome these pitfalls of trypsin, alternative proteases can be considered. The

use of an alternative protease or multiple proteases has been shown to increase protein

sequence coverage, the number of post-translational modifications identified, and

the number of splice junctions covered.30–32,34,36,37,39 Different proteases have various

strengths which may make them ideal for different proteomic applications.

Chymotrypsin, Glu-C and Lys-C , like trypsin, are all serine proteases and can

be utilized for high-throughput proteomic analysis.31 Chymotrypsin cleaves after

tyrosine, phenylalanine and tryptophan residues, and is favored for proteins with

long stretches of hydrophobic amino acids. As an alternative protease, chymotrypsin
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produces peptides which are generally considered to be the most orthogonal to those

obtained by tryptic digests.31 Lys-C has strict specificity, cleaving only after lysine

residues, and can produce longer peptides than trypsin.31 Lys-C is often paired with

trypsin to improve the efficiency of cleavage after lysine residues. Glu-C which cleaves

after glutamic acid, and also after aspartic acid when in phosphate buffers, is ideal for

the digestion of heavily glycosylated proteins.31 Since the side chains of both glutamic

and aspartic acid cannot be glycosylated, the modification will not inhibit cleavage of

the proteins to peptides. Glu-C has also been heavily utilized for plasma proteomic

applications.31,40

There are also proteases which cleave N-terminally, or before their triggering

amino acids. Asp-N cleaves before aspartic acid residues. One distinct advantage

of Asp-N is its compatibility with detergents during the digestion process. Asp-N

has been noted as an especially valuable alternative protease for sensitive targeted

proteomic applications such as selected reaction monitoring (SRM) analyses.31,33,37

Lys-N, which cleaves before lysine residues, has high resistance to both denaturants

and temperatures up to 70 °C.31 Peptide products of Lys-N digestion, when paired

with electron transfer dissociation (ETD) fragmentation, can provide exceptional

product ion coverage which in many cases could even enable facile de novo sequencing

of the peptides.31

Arg-C, which cleaves after arginine residues, is another valuable alternative pro-

tease. Unlike with trypsin, the presence of a proline residue adjacent to an arginine

residue does not prevent cleavage when using Arg-C.31 Arg-C, like Lys-C, produces

longer peptides than what is achieved with trypsin. Arg-C is typically utilized along-

side other proteases in a multi-protease approach to help characterize and map

post-translational modifications as well as increase protein sequence coverage.

Protease discovery and optimization is an on-going area of research and interest.
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One of the newer proteases is Proalanase, which cleaves after proline and alanine

residues in highly acidic conditions.41 Proalanase enables the digestion of proline-rich

proteins, such as collagen, and enables phospho-site profiling. It has been shown

to be heavily orthogonal to tryptic digestion, providing valuable complementary

coverage of the proteome.41

The use of multiple proteases, or alternative proteases, is crucial for the compre-

hensive characterization of the proteome. There are barriers that exist preventing

widespread adoption of multiple, or alternative proteases. One such hurdle is the

determination of which proteases are most beneficial to specific applications. This

hurdle can be addressed using an in silico digestion tool to aid in experimental plan-

ning (see Chapter 3). Tools like this can be utilized to determine which proteases

provide adequate or unique sequence coverage of target proteins, or sufficient PTM

coverage. Another, more critical hurdle, is the increased time and sample require-

ments needed for multi-protease approaches. Towards addressing this concern, the

Swaney group at University of California- San Francisco has developed a method

which enables the pooling of peptides from multiple proteolytic digestions prior to

data independent acquisition (DIA) analysis.42 Advances such as this are key to the

future of comprehensive bottom-up proteomics leveraging multiple proteases.

1.4 The Importance of Sample-Specific Protein

Databases

Protein sequence databases are critical for high-throughput proteomic data analy-

sis. Within search programs for bottom-up proteomics, protein sequence databases

are digested in silico to generate a pool of candidate theoretical peptides. For each

theoretical peptide, theoretical fragment ion m/z values are generated. These theoret-
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ical peaks are then compared to those experimentally observed in the MS2 spectra

to determine peptide identifications. Without protein databases, peptide identifi-

cations would necessitate the use of de novo sequencing, or more recently spectral

library searching. De novo search approaches take significantly longer than database

searching methods, and generally tend to have higher false positive rates.

Typically, for many model organisms, there are reference protein databases (UniProt,

Ensembl, RefSeq) which can be utilized for proteomic analysis.43,44 These reference

protein databases seek to broadly represent all proteins present. While these reference

databases are useful starting points, it is known that even within the same species,

protein sequences can vary between individuals, tissues, and cell lines. Therefore,

reference databases may be incomplete and fail to represent each individual sample.

If the protein database used for proteomic analysis is not concordant with the sample

being analyzed, the accuracy of the proteomic results is detrimentally impacted, and

the biological conclusions drawn from the results may be inaccurate. In many cases,

the reference database may not only lack sequence variants, but may lack entire pro-

tein isoform sequences for a given gene. When the reference database is incomplete

in this manner, peptides containing these variants, or that are unique to missing iso-

forms cannot be identified. Peptides shared between the missing isoforms and those

present in the sequence database will be incorrectly parsed resulting in inaccurate

protein inference results. It is also possible the sample may express a subset of the

protein isoforms present in the reference database. In this case, protein-level results

can have false positive identifications, or an inflated level of protein ambiguity.

One approach to dealing with this database-sample discordance is the generation

of sample-specific databases. This idea spawns from the sub-field of proteomics called

proteogenomics, which seeks to integrate transcriptomic and proteomic data.45,46 For

the specific application of sample-specific database generation, RNA-sequencing data
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can be translated in silico to construct a protein sequence database. Since this database

is based on the RNA transcripts which function as protein precursors, the generated

database is likely more accurate to the proteins and protein isoforms present in the

sample than the reference. However, these constructed sample-specific databases

still are subject to several limitations such as the sensitivity and specificity of the

RNA-sequencing technologies utilized. Also, not all transcripts carry equivalent

coding potential, and select protein isoforms, although translated, may not be stable.

Initially utilizing proteogenomics, reference databases were supplemented with

peptide sequences containing variants or alternative splice junctions, as identified

from short-read RNA-sequencing technology.47–52 These augmented databases repre-

sented the first attempts to generate a sample-specific search space. However these

databases could become rather large, containing many sequences within reference

proteins that were not relevant to the actual sample.46,53 To address this, tools such as

Spritz were created to generate entire sample-specific protein databases by reconstruct-

ing full transcripts from short-read RNA-sequencing followed by in silico translation.54

Short-read RNA-sequencing has many parallels to bottom-up proteomics, in that the

transcripts within the samples are fragmented to form short RNA oligonucleotides.

These RNA fragments are then sequenced and mapped back to a reference genome to

reconstruct RNA transcripts, much in the way that peptides are mapped to proteins

through the protein inference process. Just like protein inference is imperfect, the

process of reconstructing full transcripts from short-read RNA-sequencing is also

imperfect. Short-read RNA-sequencing excels at the identification of sequence vari-

ants but can fall short in the reconstruction of alternatively spliced transcripts, just as

bottom-up proteomics cannot reliably identify proteoforms (see Figure 1.4).

To overcome complications arising from the inaccurate parsing of RNA fragments

into full-length transcripts, long-read RNA-sequencing technologies can be utilized.
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Figure 1.4: Comparison of short- and long-read sequencing for the reconstruction
of transcript isoforms. In short-read RNA-sequencing approaches, RNA fragments
are generated from which full-length transcripts must be reconstructed. Depending
on the coverage of alternative splice junctions, incorrect transcript inference can be
achieved. In this example, based on the fragments identified, a single transcript is
reconstructed. Therefore, the two additional transcript isoforms are missed. In long-
read RNA-sequencing, full-length transcripts are sequenced, and no reconstruction is
required. Therefore, in the provided example, all three transcript isoforms expressed
in the sample are identified.
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In recent years, technology platforms from Pacific Biosciences and Oxford Nanopore,

have become more prevalent in the transcriptomic community due to their ability

to sequence full-length RNA transcripts with increasing accuracy.55–58 Specifically,

for PacBio, technology has been developed to provide greater than 99% accuracy for

the sequencing of single RNA transcripts.59 Sequencing of intact, full-length RNA

transcripts eliminates the read parsing issues of short-read sequencing approaches

and enables a more comprehensive view of the transcript isoform landscape of the

sample (see Figure 1.4). This can provide an even more precise sample-specific

database than those constructed using short-read RNA-sequencing data, especially

for protein isoforms. The use of PacBio long-read sequencing for sample-specific

database generation, and its strengths will be discussed further in Chapter 4.

1.5 The Analysis and Discovery of Post-Translational

Modifications

As powerful as proteogenomic approaches are for the generation of sample-

specific databases, no transcriptional information can inform on the presence of

post-translational modifications (PTMs). Post-translational modifications represent

a critical layer of proteome diversity and are central to many important biological

processes. The presence or absence of PTMs impact the function of proteoforms,

contribute to signaling cascades and regulate diverse cellular functions.60–66 Mass

spectrometry-based proteomics has quickly become the premier tool for the proteome-

wide analysis of post-translational modifications. Using mass spectrometry-based

proteomics for PTM mapping provides high sensitivity and throughput, as well as the

ability to localize PTMs to a single amino acid residue. Unlike other PTM mapping

approaches, such as antibody-based methods, proteomic analysis of PTMs is flexible
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in terms of the PTMs being analyzed and is not limited to a single modification at a

time.9

As the field of proteomics has evolved, the ability to characterize PTMs reliably

and accurately has grown in its importance. Ignoring modified peptides or proteins

leads to a vast under sampling of the proteome. Some modification sites are very well

established and may be included as annotated modifications in the reference database

(UniProt XML). However, these annotations are nowhere near complete, and proteins

with unannotated PTMs are a large contributor to the dark proteome.67–71

Methods for the discovery of PTMs not present in the protein database have

evolved over time, giving greater PTM coverage. Initially, an approach called variable

modification searching was applied.72 In this strategy, a selected PTM is allowed to

occur on any amino acid residue fitting the modification motif in the search space. For

example, for phosphorylation, theoretical peptides with phosphorylation at all serine,

threonine or tyrosine residues are generated, as well as the unmodified theoretical

peptides. This approach greatly expands the search space, increases search time,

and introduces bias in the peptide-level false discovery rate (FDR) calculations.71

The bias in FDR calculations leads to a dramatic increase in the false positive rate

for modified peptides. This approach is most valid when the variable modification

being considered is widespread or enriched in the sample.71 Variable modification

searching should only be applied for a small number of modifications at a time, as

the negative repercussions of inflated false positive rates and increased database

size compound with increasing numbers of modifications.71 These limitations make

variable modification searching incompatible with reliable proteome-wide PTM dis-

covery. To overcome many of the limitations of variable modification searching, Chick

et. al. proposed a flexible method for PTM discovery and coined it “open search”

or “open mass search”.69 In open searching, a large precursor mass tolerance is per-
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mitted. Therefore, the precursor mass of the experimental peptide can vary from

the unmodified theoretical mass of the peptide and still be considered a match. The

difference in mass observed can be accounted for by the mass(es) of unannotated

PTMs. For the purpose of the Chick et. al foundational study, a mass difference up to

500 Da between the experimental and theoretical peptides was permitted.69 In the

open search approach, the product mass tolerance applied for the search remains

narrow, requiring high-mass accuracy for fragment ion matches.69 Therefore, a quality

sequence tag can be utilized to identify the peptide’s amino acid sequence in question,

and the difference between the experimental precursor and theoretical peptide mass

could be used to identify a PTM, or combination of PTMs. This process eliminates

the database size issues of variable modification searching and maintains an accurate

FDR rate for modified peptides. However, there are still several limitations with the

open search approach, first of which is the high computational and time requirements

necessary to complete this kind of search.67,68,71 Second, the difference in mass be-

tween the experimental and theoretical peptide may not always be easily identifiable

as a PTM or combination of PTMs, leaving confusion and ambiguity. Third, this

method fails to permit the identification of fragment ions containing the modified

amino acid residue.69 This becomes problematic if many of the potentially identifiable

product ions contain the modified residue, making the modified peptide intractable

to identification.

To further build on the open search approach, and address its downfalls, the

Smith group invented global post-translational modification discovery (GPTMD),

a multi-notch search approach for global discovery of PTMs.67,68 GPTMD searches

for putative modifications found with an initial search using a multi-notch approach.

This PTM discovery approach enables the identification of a large variety of PTMs

while maintaining high confidence. The process of GPTMD has two main steps: 1)
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a multi-notch initial search to augment the protein database with putative PTMs

and 2) a narrow precursor mass search using the augmented database to confidently

identify PTM modified peptides.68 The multi-notch search is an extension of a narrow-

precursor mass search enabling the inclusion of a variety of specific mass differences,

or notches, between the precursor and theoretical masses. This approach improves

upon the advantages of the open search approach, enabling the discovery of PTMs,

without generating identifications with incomprehensible mass shifts.68 GPTMD also

reduces the search time and increases the accuracy of modified peptide identifications

relative to open search approaches.68 Using GPTMD, users define the mass notches

they are willing to accept by selecting a list of modifications they are interested in

discovering. A notch is generated for each mass shift associated with a PTM. Then,

for each theoretical peptide, only experimental spectra with precursor masses that

correspond to the unmodified peptide, or that differ by one of the defined notches are

considered. These candidate spectra are then investigated for fragment ions matching

the theoretical peptide. If a spectrum could correspond to a modified peptide, the

corresponding PTM for the given notch is added to the augmented database. Once

this augmented GPTMD database containing putative PTMs is generated, a final

narrow-precursor mass search is completed to generate high confidence peptide

identifications for both modified and unmodified peptides.68 This approach can

be used to consistently identify PTM modified peptides which are not present in

the sequence database.68 The application of GPTMD to the discovery of previously

unknown PTMs in HIV-1 virions will be further discussed in Chapter 5.



21

1.6 References

(1) Aebersold, R.; Mann, M. Mass spectrometry-based proteomics. Nature 2003,

422, Type: Journal Article, 198–207.

(2) Smith, L. M.; Kelleher, N. L.; Consortium for Top Down, P. Proteoform: a single

term describing protein complexity. Nat Methods 2013, 10, Type: Journal Article,

186–7.

(3) Aebersold, R. et al. How many human proteoforms are there? Nat Chem Biol

2018, 14, Type: Journal Article, 206–214.

(4) Smith, L. M.; Kelleher, N. L. Proteoforms as the next proteomics currency.

Science 2018, 359, Type: Journal Article, 1106–1107.

(5) Uhlen, M. et al. Proteomics. Tissue-based map of the human proteome. Science

2015, 347, Type: Journal Article, 1260419.

(6) Gaudet, P. et al. The neXtProt knowledgebase on human proteins: 2017 update.

Nucleic Acids Res 2017, 45, Type: Journal Article, D177–D182.

(7) Han, X.; Aslanian, A.; Yates J. R., 3. Mass spectrometry for proteomics. Curr

Opin Chem Biol 2008, 12, Type: Journal Article, 483–90.

(8) Catherman, A. D.; Skinner, O. S.; Kelleher, N. L. Top Down proteomics: facts

and perspectives. Biochem Biophys Res Commun 2014, 445, Type: Journal Article,

683–93.

(9) Zhang, Y.; Fonslow, B. R.; Shan, B.; Baek, M. C.; Yates J. R., 3. Protein analysis

by shotgun/bottom-up proteomics. Chem Rev 2013, 113, Type: Journal Article,

2343–94.



22

(10) Serang, O.; Noble, W. A review of statistical methods for protein identification

using tandem mass spectrometry. Stat Interface 2012, 5, Type: Journal Article,

3–20.

(11) Link, A. J.; Eng, J.; Schieltz, D. M.; Carmack, E.; Mize, G. J.; Morris, D. R.;

Garvik, B. M.; Yates J. R., 3. Direct analysis of protein complexes using mass

spectrometry. Nat Biotechnol 1999, 17, Type: Journal Article, 676–82.

(12) Siuti, N.; Kelleher, N. L. Decoding protein modifications using top-down mass

spectrometry. Nat Methods 2007, 4, Type: Journal Article, 817–21.

(13) Chen, B.; Brown, K. A.; Lin, Z.; Ge, Y. Top-Down Proteomics: Ready for Prime

Time? Anal Chem 2018, 90, Type: Journal Article, 110–127.

(14) Cai, W.; Tucholski, T. M.; Gregorich, Z. R.; Ge, Y. Top-down Proteomics: Technol-

ogy Advancements and Applications to Heart Diseases. Expert Rev Proteomics

2016, 13, Type: Journal Article, 717–30.

(15) Toby, T. K.; Fornelli, L.; Kelleher, N. L. Progress in Top-Down Proteomics and

the Analysis of Proteoforms. Annu Rev Anal Chem (Palo Alto Calif) 2016, 9, Type:

Journal Article, 499–519.

(16) Armirotti, A.; Damonte, G. Achievements and perspectives of top-down pro-

teomics. Proteomics 2010, 10, Type: Journal Article, 3566–76.

(17) Gregorich, Z. R.; Ge, Y. Top-down proteomics in health and disease: challenges

and opportunities. Proteomics 2014, 14, Type: Journal Article, 1195–210.

(18) Compton, P. D.; Zamdborg, L.; Thomas, P. M.; Kelleher, N. L. On the scalability

and requirements of whole protein mass spectrometry. Anal Chem 2011, 83,

Type: Journal Article, 6868–74.



23

(19) Moore, S. M.; Hess, S. M.; Jorgenson, J. W. Extraction, Enrichment, Solubiliza-

tion, and Digestion Techniques for Membrane Proteomics. J Proteome Res 2016,

15, Type: Journal Article, 1243–52.

(20) Schaffer, L. V. et al. Identification and Quantification of Proteoforms by Mass

Spectrometry. Proteomics 2019, 19, Type: Journal Article, e1800361.

(21) Huang, T.; Wang, J.; Yu, W.; He, Z. Protein inference: a review. Brief Bioinform

2012, 13, Type: Journal Article, 586–614.

(22) Nesvizhskii, A. I.; Aebersold, R. Interpretation of shotgun proteomic data: the

protein inference problem. Mol Cell Proteomics 2005, 4, Type: Journal Article,

1419–40.

(23) Rappsilber, J.; Mann, M. What does it mean to identify a protein in proteomics?

Trends Biochem Sci 2002, 27, Type: Journal Article, 74–8.

(24) Black, D. L. Protein diversity from alternative splicing: a challenge for bioin-

formatics and post-genome biology. Cell 2000, 103, Type: Journal Article, 367–

70.

(25) Tabb, D. L.; McDonald, W. H.; Yates J. R., 3. DTASelect and Contrast: tools for

assembling and comparing protein identifications from shotgun proteomics. J

Proteome Res 2002, 1, Type: Journal Article, 21–6.

(26) Nesvizhskii, A. I.; Keller, A.; Kolker, E.; Aebersold, R. A statistical model for

identifying proteins by tandem mass spectrometry. Anal Chem 2003, 75, Type:

Journal Article, 4646–58.

(27) Pfeuffer, J.; Sachsenberg, T.; Dijkstra, T. M. H.; Serang, O.; Reinert, K.; Kohlbacher,

O. EPIFANY: A Method for Efficient High-Confidence Protein Inference. J Pro-

teome Res 2020, 19, Type: Journal Article, 1060–1072.



24

(28) Claassen, M.; Reiter, L.; Hengartner, M. O.; Buhmann, J. M.; Aebersold, R.

Generic comparison of protein inference engines. Mol Cell Proteomics 2012, 11,

Type: Journal Article, O110 007088.

(29) Audain, E.; Uszkoreit, J.; Sachsenberg, T.; Pfeuffer, J.; Liang, X.; Hermjakob, H.;

Sanchez, A.; Eisenacher, M.; Reinert, K.; Tabb, D. L.; Kohlbacher, O.; Perez-

Riverol, Y. In-depth analysis of protein inference algorithms using multiple

search engines and well-defined metrics. J Proteomics 2017, 150, Type: Journal

Article, 170–182.

(30) Miller, R. M.; Millikin, R. J.; Hoffmann, C. V.; Solntsev, S. K.; Sheynkman,

G. M.; Shortreed, M. R.; Smith, L. M. Improved Protein Inference from Multiple

Protease Bottom-Up Mass Spectrometry Data. J Proteome Res 2019, 18, Type:

Journal Article, 3429–3438.

(31) Tsiatsiani, L.; Heck, A. J. Proteomics beyond trypsin. FEBS J 2015, 282, Type:

Journal Article, 2612–26.

(32) Swaney, D. L.; Wenger, C. D.; Coon, J. J. Value of using multiple proteases for

large-scale mass spectrometry-based proteomics. J Proteome Res 2010, 9, Type:

Journal Article, 1323–9.

(33) Vandermarliere, E.; Mueller, M.; Martens, L. Getting intimate with trypsin,

the leading protease in proteomics. Mass Spectrom Rev 2013, 32, Type: Journal

Article, 453–65.

(34) Giansanti, P.; Tsiatsiani, L.; Low, T. Y.; Heck, A. J. Six alternative proteases for

mass spectrometry-based proteomics beyond trypsin. Nat Protoc 2016, 11, Type:

Journal Article, 993–1006.



25

(35) Schlosser, A.; Vanselow, J. T.; Kramer, A. Mapping of phosphorylation sites

by a multi-protease approach with specific phosphopeptide enrichment and

NanoLC-MS/MS analysis. Anal Chem 2005, 77, Type: Journal Article, 5243–50.

(36) Wang, D. et al. A deep proteome and transcriptome abundance atlas of 29

healthy human tissues. Mol Syst Biol 2019, 15, Type: Journal Article, e8503.

(37) Guo, X.; Trudgian, D. C.; Lemoff, A.; Yadavalli, S.; Mirzaei, H. Confetti: a

multiprotease map of the HeLa proteome for comprehensive proteomics. Mol

Cell Proteomics 2014, 13, Type: Journal Article, 1573–84.

(38) Peng, M.; Taouatas, N.; Cappadona, S.; van Breukelen, B.; Mohammed, S.;

Scholten, A.; Heck, A. J. Protease bias in absolute protein quantitation. Nat

Methods 2012, 9, Type: Journal Article, 524–5.

(39) Lanigan, L. T.; Mackie, M.; Feine, S.; Hublin, J. J.; Schmitz, R. W.; Wilcke, A.;

Collins, M. J.; Cappellini, E.; Olsen, J. V.; Taurozzi, A. J.; Welker, F. Multi-

protease analysis of Pleistocene bone proteomes. J Proteomics 2020, 228, Type:

Journal Article, 103889.

(40) Fossati, A.; Richards, A. L.; Chen, K. H.; Jaganath, D.; Cattamanchi, A.; Ernst,

J. D.; Swaney, D. L. Toward Comprehensive Plasma Proteomics by Orthogonal

Protease Digestion. J Proteome Res 2021, 20, Type: Journal Article, 4031–4040.

(41) Samodova, D.; Hosfield, C. M.; Cramer, C. N.; Giuli, M. V.; Cappellini, E.;

Franciosa, G.; Rosenblatt, M. M.; Kelstrup, C. D.; Olsen, J. V. ProAlanase is

an Effective Alternative to Trypsin for Proteomics Applications and Disulfide

Bond Mapping. Mol Cell Proteomics 2020, 19, Type: Journal Article, 2139–2157.

(42) Richards, A. L.; Chen, K. H.; Wilburn, D. B.; Stevenson, E.; Polacco, B. J.; Searle,

B. C.; Swaney, D. L. Data-Independent Acquisition Protease-Multiplexing En-



26

ables Increased Proteome Sequence Coverage Across Multiple Fragmentation

Modes. J Proteome Res 2022, 21, Type: Journal Article, 1124–1136.

(43) The UniProt, C. UniProt: the universal protein knowledgebase. Nucleic Acids

Res 2017, 45, Type: Journal Article, D158–D169.

(44) Aken, B. L. et al. Ensembl 2017. Nucleic Acids Res 2017, 45, Type: Journal Article,

D635–D642.

(45) Nesvizhskii, A. I. Proteogenomics: concepts, applications and computational

strategies. Nat Methods 2014, 11, Type: Journal Article, 1114–25.

(46) Wang, X.; Liu, Q.; Zhang, B. Leveraging the complementary nature of RNA-

Seq and shotgun proteomics data. Proteomics 2014, 14, Type: Journal Article,

2676–87.

(47) Sheynkman, G. M.; Shortreed, M. R.; Frey, B. L.; Smith, L. M. Discovery and

mass spectrometric analysis of novel splice-junction peptides using RNA-Seq.

Mol Cell Proteomics 2013, 12, Type: Journal Article, 2341–53.

(48) Sheynkman, G. M.; Shortreed, M. R.; Frey, B. L.; Scalf, M.; Smith, L. M. Large-

scale mass spectrometric detection of variant peptides resulting from nonsyn-

onymous nucleotide differences. J Proteome Res 2014, 13, Type: Journal Article,

228–40.

(49) Sheynkman, G. M.; Johnson, J. E.; Jagtap, P. D.; Shortreed, M. R.; Onsongo, G.;

Frey, B. L.; Griffin, T. J.; Smith, L. M. Using Galaxy-P to leverage RNA-Seq for

the discovery of novel protein variations. BMC Genomics 2014, 15, Type: Journal

Article, 703.

(50) Low, T. Y.; van Heesch, S.; van den Toorn, H.; Giansanti, P.; Cristobal, A.; Toonen,

P.; Schafer, S.; Hubner, N.; van Breukelen, B.; Mohammed, S.; Cuppen, E.; Heck,

A. J.; Guryev, V. Quantitative and qualitative proteome characteristics extracted



27

from in-depth integrated genomics and proteomics analysis. Cell Rep 2013, 5,

Type: Journal Article, 1469–78.

(51) Ning, K.; Nesvizhskii, A. I. The utility of mass spectrometry-based proteomic

data for validation of novel alternative splice forms reconstructed from RNA-

Seq data: a preliminary assessment. BMC Bioinformatics 2010, 11 Suppl 11, Type:

Journal Article, S14.

(52) Evans, V. C.; Barker, G.; Heesom, K. J.; Fan, J.; Bessant, C.; Matthews, D. A. De

novo derivation of proteomes from transcriptomes for transcript and protein

identification. Nat Methods 2012, 9, Type: Journal Article, 1207–11.

(53) Jeong, K.; Kim, S.; Bandeira, N. False discovery rates in spectral identification.

BMC Bioinformatics 2012, 13 Suppl 16, Type: Journal Article, S2.

(54) Cesnik, A. J.; Miller, R. M.; Ibrahim, K.; Lu, L.; Millikin, R. J.; Shortreed, M. R.;

Frey, B. L.; Smith, L. M. Spritz: A Proteogenomic Database Engine. J Proteome

Res 2021, 20, Type: Journal Article, 1826–1834.

(55) Kasianowicz, J. J.; Brandin, E.; Branton, D.; Deamer, D. W. Characterization

of individual polynucleotide molecules using a membrane channel. Proc Natl

Acad Sci U S A 1996, 93, Type: Journal Article, 13770–3.

(56) Jain, M. et al. Nanopore sequencing and assembly of a human genome with

ultra-long reads. Nat Biotechnol 2018, 36, Type: Journal Article, 338–345.

(57) Van Dijk, E.; Jaszczyszyn, Y.; Naquin, D.; Thermes, C. The Third Revolution in

Sequencing Technology. Trends in Genetics 2018, 34, Type: Journal Article, 15.

(58) Sharon, D.; Tilgner, H.; Grubert, F.; Snyder, M. A single-molecule long-read

survey of the human transcriptome. Nat Biotechnol 2013, 31, Type: Journal

Article, 1009–14.



28

(59) Wenger, A. M. et al. Accurate circular consensus long-read sequencing improves

variant detection and assembly of a human genome. Nat Biotechnol 2019, 37,

Type: Journal Article, 1155–1162.

(60) Doerr, A. Making PTMs a priority. Nat Methods 2012, 9, Type: Journal Article,

862–3.

(61) Deribe, Y. L.; Pawson, T.; Dikic, I. Post-translational modifications in signal

integration. Nat Struct Mol Biol 2010, 17, Type: Journal Article, 666–72.

(62) Sirover, M. A. Subcellular dynamics of multifunctional protein regulation:

mechanisms of GAPDH intracellular translocation. J Cell Biochem 2012, 113,

Type: Journal Article, 2193–200.

(63) Gould, N.; Doulias, P. T.; Tenopoulou, M.; Raju, K.; Ischiropoulos, H. Regulation

of protein function and signaling by reversible cysteine S-nitrosylation. J Biol

Chem 2013, 288, Type: Journal Article, 26473–9.

(64) Cousin, C.; Derouiche, A.; Shi, L.; Pagot, Y.; Poncet, S.; Mijakovic, I. Protein-

serine/threonine/tyrosine kinases in bacterial signaling and regulation. FEMS

Microbiol Lett 2013, 346, Type: Journal Article, 11–9.

(65) Doll, S.; Burlingame, A. L. Mass spectrometry-based detection and assignment

of protein posttranslational modifications. ACS Chem Biol 2015, 10, Type: Journal

Article, 63–71.

(66) Olsen, J. V.; Mann, M. Status of large-scale analysis of post-translational mod-

ifications by mass spectrometry. Mol Cell Proteomics 2013, 12, Type: Journal

Article, 3444–52.

(67) Li, Q.; Shortreed, M. R.; Wenger, C. D.; Frey, B. L.; Schaffer, L. V.; Scalf, M.;

Smith, L. M. Global Post-Translational Modification Discovery. J Proteome Res

2017, 16, Type: Journal Article, 1383–1390.



29

(68) Solntsev, S. K.; Shortreed, M. R.; Frey, B. L.; Smith, L. M. Enhanced Global

Post-translational Modification Discovery with MetaMorpheus. J Proteome Res

2018, 17, Type: Journal Article, 1844–1851.

(69) Chick, J. M.; Kolippakkam, D.; Nusinow, D. P.; Zhai, B.; Rad, R.; Huttlin, E. L.;

Gygi, S. P. A mass-tolerant database search identifies a large proportion of

unassigned spectra in shotgun proteomics as modified peptides. Nat Biotechnol

2015, 33, Type: Journal Article, 743–9.

(70) Skinner, O. S.; Kelleher, N. L. Illuminating the dark matter of shotgun pro-

teomics. Nat Biotechnol 2015, 33, Type: Journal Article, 717–8.

(71) Shortreed, M. R.; Wenger, C. D.; Frey, B. L.; Sheynkman, G. M.; Scalf, M.; Keller,

M. P.; Attie, A. D.; Smith, L. M. Global Identification of Protein Post-translational

Modifications in a Single-Pass Database Search. J Proteome Res 2015, 14, Type:

Journal Article, 4714–20.

(72) Eng, J. K.; McCormack, A. L.; Yates, J. R. An approach to correlate tandem mass

spectral data of peptides with amino acid sequences in a protein database. J

Am Soc Mass Spectrom 1994, 5, Type: Journal Article, 976–89.



30

2 improved protein inference from multiple protease

bottom-up mass spectrometry data

This chapter has been published and is reproduced with permission from:

Miller, R.M.; Millikin, R.J.; Hoffman, C.V.; Solntsev, S.K.; Sheynkman, G.M.; Short-
reed, M. R.; Smith, L. M. Improved Protein Inference from Multiple Protease Bottom-
Up Mass Spectrometry Data. Journal of Proteome Research 2019, 18(9), 3429–3438.
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2.1 Abstract

Peptides detected by tandem mass spectrometry (MS/MS) in bottom-up pro-

teomics serve as proxies for the proteins expressed in the sample. Protein inference

is a process routinely applied to these peptides to generate a plausible list of can-

didate protein identifications. The use of multiple proteases for parallel protein

digestions expands sequence coverage, provides additional peptide identifications,

and increases the probability of identifying peptides that are unique to a single protein,

which are all valuable for protein inference. We have developed and implemented a

multi-protease protein inference algorithm in MetaMorpheus, a bottom-up search

software program, which incorporates the calculation of protease-specific q-values

and preserves the association of peptide sequences and their protease of origin. This

integrated multi-protease protein inference algorithm provides more accurate re-

sults than either the aggregation of results from the separate analysis of the peptide

identifications produced by each protease (separate approach) in MetaMorpheus, or

results that are obtained using Fido, ProteinProphet, or DTASelect2. MetaMorpheus’

integrated multi-protease data analysis decreases the ambiguity of the protein group

list, reduces the frequency of erroneous identifications, and increases the number of

post-translational modifications identified, while combining multi-protease search

and protein inference into a single software program.

2.2 Introduction

A frequent goal of proteomic studies is to accurately identify, characterize, and

quantify all proteins expressed in a biological sample. The most prevalent strategy is

referred to as “bottom-up” proteomics, wherein proteins present in the sample are

digested into peptides and identified with liquid chromatography–mass spectrometry
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(LC–MS/MS). These peptides serve as surrogate markers for the proteins from which

they are derived. Peptides that can only result from the digestion of a single protein

are referred to as “unique”, while peptides that can result from multiple different

proteins are called “shared” and do not enable unambiguous identification of their

protein of origin. This issue is addressed using a process referred to as “protein

inference”, whereby the proteins most likely to be present in the sample are inferred

from the observed peptides. When protein identifications are ambiguous, protein

inference yields “protein groups”. Protein groups are collections of proteins that may

be present in the sample and cannot be distinguished from one another on the basis

of the peptides identified. Many different approaches have been described for protein

inference,1–3 but it remains a far from perfect process.

Combining the peptide identifications from orthogonal search programs or pool-

ing peptide identifications from multiple replicates can expand proteome coverage,

increase the number of confident peptide identifications used for protein inference,

and enhance the quality of protein group identifications.4–9 The use of multiple prote-

olytic digestions in parallel has been shown to dramatically expand both the protein

sequence coverage and the number of peptides identified from a given sample,10,11

indicating that combining multi-protease data for protein inference could have a

strong positive impact on protein inference results.

We present here a multi-protease protein inference algorithm implemented in

MetaMorpheus, a bottom-up search software program developed and maintained

by our lab. MetaMorpheus allows for the parallel analysis of spectra files from

multiple proteolytic digestions through the use of file-specific search settings. This

advance facilitates the complete analysis of multi-protease data, from search to protein

inference, in a single instance of MetaMorpheus without the need for any additional

post-processing software programs. The multi-protease protein inference algorithm
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also contains features which facilitate improved multi-protease protein inference.

Specifically, protease-specific peptide false discovery rates (FDR) are calculated and

employed in an attempt to maximize the number of high-quality peptides used for

protein inference, and peptide identifications remain associated with their digesting

protease to ensure proper determination of potential proteins of origin (further

explanation of these improvements can be found in Appendix I: Section 7.3).

The performance of MetaMorpheus’ integrated multi-protease protein inference

algorithm was evaluated by comparing its results to those obtained by the manual

aggregation of protein inference results from separate analysis of each protease’s

spectra files (“separate” approach) and to those obtained by analyzing only the files

from a single protease (trypsin) digest. We also benchmarked the performance of

the algorithm by comparing its results to those obtained by analyzing the data with

three different protein inference software programs (Fido3, ProteinProphet12, and

DTASelect29). An entrapment strategy, in which spectra files were searched against a

concatenated human (Homo sapiens) and Arabidopsis thaliana protein database, was

employed to facilitate intra- and intersoftware comparisons of protein inference results

and assess their accuracy.13 Multi-protease data used for these studies was obtained

via the analysis of highly fractionated aliquots of Jurkat cell lysate that were digested

with one of six proteolytic enzymes (Arg-C, Asp-N, chymotrypsin, Glu-C, Lys-C, or

trypsin).

We provide data below demonstrating that MetaMorpheus’ multi-protease protein

inference algorithm outperforms the separate, Fido, ProteinProphet, and DTASelect2

approaches. MetaMorpheus’ multi-protease protein inference algorithm decreases

the ambiguity of the protein group list and reduces the frequency of erroneous

identifications. The MetaMorpheus implementation of the multi-protease protein

inference algorithm is robust, user-friendly, and readily available to the community
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as an open-source software program (https://github.com/smith-chem-wisc/Meta

Morpheus).

2.3 Methods

The experimental procedures for the generation of the multi-protease data set

were adapted from those reported in previous studies14,15 (see Appendix I: Section

7.1). A brief synopsis is as follows: six aliquots, one per protease (Arg-C, Asp-N,

chymotrypsin, Glu-C, Lys-C, or trypsin), of approximately 107 Jurkat cells were lysed,

and 150 µg of lysate was utilized for filter-aided sample preparation.16 Following

digestion, peptides were fractionated off-line by high-pH reverse-phase liquid chro-

matography. Fractions were dried down and reconstituted in 5% acetonitrile and

1% formic acid prior to the LC–MS/MS analysis on a nanoACQUITY LC system

(Waters, Milford, MA) interfaced with a Thermo Scientific LTQ Orbitrap Velos mass

spectrometer. All mass spectrometry raw files are freely available on the MassIVE

platform (https://massive.ucsd.edu;ID:MSV000083304).

Databases Used for Searches

The Swiss-Prot human FASTA (canonical and isoform) database containing 42,419

protein entries (downloaded from UniProt 3/22/19) was used for the comparison of

protein inference results from the integrated and separate approaches with MetaMor-

pheus. All entrapment studies described used a concatenated human and A. thaliana

FASTA database (canonical and isoforms, downloaded on 3/24/19) containing 60,391

protein entries. For the DTASelect2 analysis, a database containing both target (for-

ward) and decoy (reverse) sequences was generated from the concatenated human

and A. thaliana database.

https://github.com/smith-chem-wisc/MetaMorpheus
https://github.com/smith-chem-wisc/MetaMorpheus
https://massive.ucsd.edu; ID: MSV000083304
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Comparison of Integrated and Separate Protein Inference Methods

Using MetaMorpheus

Spectra files for the six proteolytic digestions were calibrated, subjected to GPTMD

(a post-translational modification (PTM)-discovery algorithm),17,18 and searched with

MetaMorpheus (version 0.0.299). The final search was performed using either an

integrated or separate approach to protein inference. In the integrated approach

(Figure 2.1A), the “file-specific parameters” feature of MetaMorpheus was used

to assign a protease to each spectra file. When using this setting, MetaMorpheus

first identifies peptides via spectral matching, using the specified protease for each

spectra file to generate the search space of theoretical peptides. After all searches have

completed, peptide-spectral matches (PSMs) are grouped by their protease and the

false discovery rate (FDR) is computed separately for each group. After FDRs have

been calculated, PSMs from each protease are combined and filtered to an estimated

1% FDR prior to proteins being inferred.

In contrast to the integrated protein inference approach, the separate approach

(Figure 2.1B) treats each set of spectra files for each protease as a separate analysis

(i.e., all trypsin files are searched together, and a list of inferred proteins is output for

that search). The resulting sets of protein lists were manually aggregated together

into a single list while minimizing redundancy and ambiguity of the protein groups.

For both the integrated and separate approaches, a 1% protein FDR threshold is

estimated using q-values calculated from the standard target-decoy approach.

A video tutorial of how to use MetaMorpheus for the multi-protease analysis is

available at https://youtu.be/sk64xp5nfyI, and a vignette containing the data used

in the tutorial can be accessed at https://uwmadison.box.com/s/dm6ezjbeyeahfe0xlc

9hw9a5cl0i4j01. Search settings and PTMs selected for discovery with GPTMD can

https://youtu.be/sk64xp5nfyI
https://uwmadison.box.com/s/dm6ezjbeyeahfe0xlc9hw9a5cl0i4j01
https://uwmadison.box.com/s/dm6ezjbeyeahfe0xlc9hw9a5cl0i4j01
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Figure 2.1: Workflows for protein inference comparisons. Workflows employed
to compare results between (A) integrated multi-protease protein inference with
MetaMorpheus, (B) separate multi-protease protein inference with MetaMorpheus,
(C) multi-protease protein inference with Fido in Percolator, (D) multi-protease
protein inference using ProteinProphet within trans-proteomic pipeline (TPP), and
(E) multi-protease protein inference with DTASelect2.
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be found in Appendix I: Tables 7.2 and 7.3, respectively.

Comparison of MetaMorpheus’ Integrated Protein Inference to

Percolator-Fido

Fido, a protein inference algorithm, is currently housed within Percolator (v.3-02),

a software program whose purpose is to improve the number of confident peptide

identifications through a semisupervised machine learning algorithm. MetaMor-

pheus writes search results that are compatible with Percolator’s input requirements.

We used MetaMorpheus’ multi-protease search results as input to Percolator and

used Fido for protein inference, comparing the results to MetaMorpheus’ integrated

protein inference approach (Figure 2.1C).

Comparison of MetaMorpheus’ Integrated Protein Inference to

ProteinProphet

ProteinProphet is housed within the trans-proteomic pipeline (TPP, v5.2.0). Pro-

teinProphet can calculate protein-level probabilities but requires peptide-level prob-

abilities as input, which MetaMorpheus does not calculate. This makes evaluating

ProteinProphet’s protein inference algorithm directly with MetaMorpheus’ peptide-

level search results infeasible. To compare MetaMorpheus’ protein inference results

to ProteinProphet’s, all spectra files (grouped by protease) were searched by Comet19

(version 2018.01 rev.4) from within the trans-proteomic pipeline (search parame-

ters can be found in Appendix I: Table 7.4). Search results for each protease were

then input to PeptideProphet,20 where the peptide-level probabilities necessary for

ProteinProphet’s algorithm were calculated (parameters for the ProteinProphet anal-

ysis can be found in Appendix I: Table 7.5). Peptide identifications that were not
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present in the MetaMorpheus search results were removed (a comparison of the

peptide identifications from MetaMorpheus and Comet-PeptideProphet can be found

in Appendix I: Table 7.10). The trimmed PeptideProphet result files were loaded

into ProteinProphet for protein inference (Figure 2.1D). The MetaMorpheus source

code was altered to contain an exclusion list of all of the peptides whose sequences

were not identified by Comet. Only peptide sequences that were not on this exclusion

list were used for protein inference. This eliminated the effect of different peptide

identifications on protein inference results.

Comparison of MetaMorpheus’ Integrated Protein Inference to

DTASelect2

To compare MetaMorpheus’ protein inference results to DTASelect2’s, all spectra

files (grouped by protease) were searched by ProLuCID21 (version 1.3.5) (search

parameters can be found in Appendix I: Table 7.6). Peptide identifications that

were not present in the MetaMorpheus search results were removed (a comparison

of the peptide identifications from MetaMorpheus and ProLuCID can be found in

Appendix I: Table 7.11). The trimmed search results for each protease were then

input to DTASelect2 (version 2.1.3) using “no enzyme” specificity to accommodate the

multi-protease data (parameters can be found in Appendix I: Table 7.7) (Figure 2.1E).

As with the ProteinProphet analysis, only peptide sequences that were identified

using both search programs (ProLuCID and MetaMorpheus) were used for protein

inference (Appendix I: Table 7.11).
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2.4 Results and Discussion

Separate Versus Integrated Multi-Protease Analysis

The goal of protein inference is to, based on the peptides identified, generate a list

of proteins that are in the sample and exclude those that are not. One approach to

achieving this goal is to use Occam’s razor, a “parsimonious” principle that seeks to

generate the simplest set of proteins that can explain all identified peptides. We apply

this principle via three key metrics that can be used to evaluate protein inference

results of the integrated and separate multi-protease approaches: (a) minimize the

number of protein groups identified, (b) maximize the percent of protein groups that

contain a single protein accession, and (c) minimize the average number of protein

accessions per group. Table 2.1 gives these values for the separate and integrated

multi-protease approaches and shows the improvement obtained in protein inference

for each of the three metrics. The reduction in protein group ambiguity afforded by

the integrated multi-protease approach is also illustrated in Figure 2.2. The reduction

of protein group ambiguity indicates that the integrated multi-protease approach

provides a simpler answer as to which proteins are projected to exist in the sample,

indicating that it is more successful in achieving the goal of parsimonious protein

inference. While the percent changes shown are modest in size, they are nonetheless

notable improvements given the widespread importance of protein inference for

protein studies.

The Venn diagram shown in Figure 2.3 compares the protein group identifications

obtained from the two protein inference approaches. While there is substantial overlap

in the identifications (7,122 protein groups), there were 367 protein groups that were

identified by only the integrated multi-protease approach (yellow region) and 864

protein groups by only the separate multi-protease approach (blue region). While a
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Table 2.1: Comparison of Results from the Separate and Integrated Multi-Protease
Approaches

separate
multi-
protease
approach

integrated
multi-
protease
approach

percent
change (%)

total number of protein
groups

7,986 7,489 -6.2

percent of protein groups con-
taining a single protein acces-
sion

66% 71% +7.6

average number of protein ac-
cessions per protein group

1.58 1.48 -6.3

Figure 2.2: Comparison of protein group sizes between the separate or integrated
multi-protease protein inference approaches. Plot of the percent of all protein groups
produced by either the separate or integrated multi-protease protein inference ap-
proaches that contain between 1 and 4+ protein accessions. Reduction in the ambi-
guity of protein group identifications can be observed by comparing the integrated
multi-protease protein inference results to those of the separate multi-protease ap-
proach.



41

smaller list of proteins may not at first seem like an improved result, in the case of

parsimonious protein inference, a smaller protein list is actually preferred, given the

same list of peptides as input (i.e., it is a simpler answer to explain the same data).

Figure 2.3: Comparison of protein groups identified between the separate or inte-
grated multi-protease protein inference approaches. Venn diagram comparing protein
groups identified at 1% FDR using the separate and integrated multi-protease protein
inference approaches.

While the above results show a simpler answer, they are not necessarily more cor-

rect. To investigate if the results provided by the integrated protein inference method

are not only simpler but also more accurate, the protein group differences between

the two approaches were manually investigated. A majority of the protein groups

unique to the separate multi-protease approach (519 of the 864) have their peptide

identifications assigned to a protein group with reduced ambiguity in the integrated

multi-protease approach: 349 became one or more protein groups containing only a

single protein and 170 became a protein group with fewer protein members in the

integrated multi-protease approach’s results (Appendix I: Figure 7.3). This reduction

in ambiguity further supports the claim that the integrated multi-protease approach

provides improved protein inference results over the separate approach.

Further validation of the accuracy of the integrated multi-protease approach was

provided by performing an entrapment study in which the spectra were searched
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against a concatenated human and A. thaliana UniProt database, using either the

separate or integrated approaches to protein inference. Since the spectra analyzed

are from a human cell lysate, there should be only human proteins identified. If a

protein group is identified as A. thaliana, it is necessarily a false positive. The accuracy

of the protein inference algorithms can thus be evaluated by the number of A. thaliana

protein groups identified and the corresponding false positive rate of the protein

group results. The more accurate the algorithm, the lower the number of A. thaliana

protein groups and the lower the corresponding false positive rate. The results of

this analysis are summarized in Table 2.2. The number of A. thaliana protein groups

identified and the corresponding false positive rate of protein group identifications

decrease from the separate to integrated multi-protease approach, indicating that the

integrated multi-protease strategy provides a more accurate list of protein groups.

See the Appendix I: Section 7.4 for additional analysis of the data.

Table 2.2: Comparison of Entrapment Results from the Separate and Integrated Multi-
Protease Approaches

separate
multi-
protease
approach

integrated
multi-
protease
approach

percent
change (%)

number of human protein
groups

7,400 7,255 -2.0

number of A. thaliana protein
groups

316 217 -31.3

false positive rate 4.1% 2.9% -29.3
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MetaMorpheus Comparison: Tryptic Digest Versus Integrated

Multi-Protease Analysis

The robust and reliable nature of tryptic digestions has made trypsin the primary

proteolytic enzyme employed for bottom-up analyses. However, tryptic digests are far

from perfect, as the majority of peptides produced are too short for MS-based sequence

determination (56% of theoretical tryptic digestion products are six amino acids or

less in length).10,22 The use of multiple proteolytic enzymes in parallel provides

access to regions of the proteome that are not accessible when only using trypsin,

resulting in more protein identifications, as well as improved protein inference. Table

2.3 summarizes the protein inference results obtained for the tryptic digest and

the integrated multi-protease approach. The reduction in protein group ambiguity

afforded by the integrated multi-protease approach is also illustrated in Figure 2.4.

The increase in the total number of protein groups for the integrated multi-protease

approach compared to that for the tryptic digest does not violate Occam’s razor

because the number of peptide identifications used for protein inference differs

between the two approaches.

Table 2.3: Comparison of Results from the Tryptic Digest and Integrated Multi-
Protease Approach

tryptic digest integrated
multi-
protease
approach

percent
change (%)

total number of protein
groups

5,173 7,489 +44.8

percent of protein groups con-
taining a single protein acces-
sion

58% 71% +22.4

average number of protein ac-
cessions per protein group

1.74% 1.48% -14.9



44

Figure 2.4: Comparison of protein group sizes between the tryptic digest or inte-
grated multi-protease protein inference approaches. Plot of the percent of all protein
groups produced by either the tryptic digest or integrated multi-protease protein
inference approaches that contain between 1 and 4+ protein accessions. Reduction
in the ambiguity of protein group identifications can be observed by comparing the
integrated multi-protease protein inference results to those of the tryptic digest alone.

The Venn diagram shown in Figure 2.5 compares the protein group identifications

obtained from the two protein inference approaches. The large number of protein

groups unique to the integrated multi-protease approach (3,518, yellow region) was

expected based on the substantial increase in the total number of protein groups

identified with the multi-protease data. There are 1,202 protein groups identified by

the tryptic digest alone (red region). Further investigation of these protein groups

showed that almost all of them (1,166 of the 1,202) have their peptide identifications

assigned to a protein group with reduced ambiguity in the integrated multi-protease

approach: reduction to one or more protein groups, each containing a single protein

member (854 of the 1,166); reduction to a protein group with fewer protein members

(288 of the 1,166); or reduction to one or more single protein groups and a protein

group with fewer protein members (24 of the 1,166) (Appendix I: Figure 7.4). The

majority (89%) of the protein groups that were disambiguated to a protein group

containing a single protein member gained at least four additional peptide identifica-

tions from the other five proteolytic digestions (Arg-C, Asp-N, chymotrypsin, Glu-C,
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and Lys-C). This indicates that the disambiguation of protein groups by a random

peptide hit is highly unlikely.

Figure 2.5: Comparison of protein groups identified between the tryptic digest or
integrated multi-protease protein inference approaches. Venn diagram comparing the
protein groups identified at 1% FDR from the tryptic digest and from the integrated
multi-protease protein inference approach.

Intersoftware Comparisons: MetaMorpheus Integrated

Multi-Protease Inference Compared to ProteinProphet, Fido, and

DTASelect2

For all comparisons between software programs, entrapment studies were per-

formed. Spectra were searched against the concatenated human and A. thaliana

UniProt database. Protein groups that were identified as human were true positives,

whereas protein groups that were identified as A. thaliana were false positives. The

lists of proteins were ranked by either q-value or probability, depending on the soft-

ware’s output. Curves plotting false positives (x-axis) versus true positives (y-axis)

were then used to evaluate each protein inference algorithm. Perfect protein inference

would produce a vertical line that passes through the upper-left corner of the graph

(only true positives identified). The closer the curve is to the upper-left corner of
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the graph, the higher the overall accuracy of the protein inference algorithm. In

addition to these curves, the number of A. thaliana protein groups identified and

the corresponding false positive rate are also used to assess the performance of the

algorithms.

For the Fido vs MetaMorpheus comparison, MetaMorpheus peptide identifi-

cations were directly imported into Percolator/Fido. The results for the Fido and

MetaMorpheus comparison are summarized in Table 2.4 and Figure 2.6a. The curve

representing MetaMorpheus’ protein inference results is closer to the upper left-hand

corner than the curve representing Fido’s results, indicating that MetaMorpheus’

integrated multi-protease protein inference is more accurate in differentiating true

and false positives. MetaMorpheus reports fewer total proteins than Fido, given the

same peptide input; according to Occam’s razor, this simpler result is more likely

to be correct. Indeed, MetaMorpheus’ integrated multi-protease protein inference

algorithm showed 38.3% fewer false positive protein group identifications (162 to

100) and a 39.1% decrease in the false positive rate (2.3% to 1.4%) compared to Fido’s

results.

Table 2.4: Comparison of Entrapment Results from Fido and MetaMorpheus

Fido MetaMorpheus percent
change
(%)

number of human protein
groups

6,994 6,832 -2.3

number of A. thaliana pro-
tein groups

162 100 -38.3

false positive rate 2.3% 1.4% -39.1

For the ProteinProphet and MetaMorpheus comparison, additional steps were

required to normalize peptide identifications used for protein inference because Meta-

Morpheus’ peptide output is not compatible with ProteinProphet. Consequently, the
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Figure 2.6: Comparison of multi-protease protein inference algorithms for false posi-
tive identifications. Curves comparing the ability of multi-protease protein inference
algorithms to distinguish between human protein groups (true positives) and A.
thaliana protein groups (false positives) for (A) protein group identifications from
the MetaMorpheus and Fido comparison, (B) protein group identifications generated
from the MetaMorpheus and ProteinProphet comparison, and (C) protein group
identifications from the MetaMorpheus and DTASelect2 comparison. In all of the
comparisons, MetaMorpheus produces a curve that is closer to the upper-left corner
of the graph, indicating that the integrated multi-protease approach is more accurate.
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Comet search engine within the trans-proteomic pipeline (TPP) was used for pep-

tide identification. Although many proteomic software programs employ the same

general strategy for peptide identification, the details of each algorithm are distinct

and therefore they provide different results.7–9 Many of the high-confidence peptide

identifications are found by multiple different algorithms, but others are unique. The

peptide identifications unique to one search program can have a large impact on

protein inference results (Appendix I: Figure 7.5). To provide a fair comparison of

protein inference results, only peptides that were identified by both Comet and Meta-

Morpheus were used in the protein inference process. Additionally, ProteinProphet

does not provide q-values for FDR threshold estimation. Therefore, to determine

which ProteinProphet protein groups fall within the 1% protein FDR threshold, pro-

tein posterior error probabilities were summed and divided by the number of protein

groups at or above the rank to calculate that protein group’s q-value.23 The results

for the ProteinProphet and MetaMorpheus comparison are summarized in Table 2.5

and Figure 2.6b. Overall, the curve representing MetaMorpheus’ protein inference

results is closer to the upper left-hand corner than the curve representing Protein-

Prophet’s results, indicating that MetaMorpheus’ integrated multi-protease protein

inference is more accurate in differentiating true and false positives. MetaMorpheus’

integrated multi-protease protein inference algorithm provides 5.7% more protein

group identifications (5,877 to 6,214), an 80.5% decrease in the percent of A. thaliana

protein group identifications (159 to 31) and an 80.8% decrease in the false positive

rate (2.6% to 0.5%) as compared to ProteinProphet. ProteinProphet reports fewer

total protein groups, making it appear to be the simpler answer, but MetaMorpheus

has fewer A. thaliana identifications and a lower false positive rate, indicating that

its multi-protease protein inference results are more accurate. To investigate the

results further, the percent of protein groups containing a single protein and the
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average number of proteins per group were determined for each protein inference

algorithm (results are summarized in Table 2.6). Multi-protease protein inference

with MetaMorpheus results in an 8.6% increase in the percent of protein groups that

contain a single protein (58.3% to 63.3%) and a 10.5% decrease in the average number

of proteins per group (1.81 to 1.62). This data further supports the premise that

MetaMorpheus provides more accurate and less ambiguous multi-protease protein

inference results compared to ProteinProphet.

Table 2.5: Comparison of Entrapment Results from ProteinProphet and MetaMor-
pheus

ProteinProphet MetaMorpheus percent
change
(%)

number of human protein
groups

5,877 6,214 +5.7

number of A. thaliana pro-
tein groups

159 31 -80.5

false positive rate 2.6% 0.5% -80.8

Table 2.6: Comparison of Protein Group Ambiguity between ProteinProphet and
MetaMorpheus

ProteinProphet MetaMorpheus percent
change
(%)

percent of protein groups
containing a single protein
accession

58.3% 63.3% +8.6

average number of protein
accessions per protein

1.81 1.62 -10.5

For the DTASelect2 and MetaMorpheus comparison, the ProLuCID search engine

was used for peptide identification, due to its compatibility with DTASelect2. To

provide a fair comparison of MetaMorpheus’ and DTASelect2’s protein inference

algorithms, only peptides that were identified by both ProLuCID and MetaMorpheus
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were used in each protein inference process. The effect of this peptide filtering on

the protein inference results can be observed in Appendix I: Figure 7.6. The results

for the DTASelect2 and MetaMorpheus comparisons are summarized in Tables

2.7, 2.8 and Figure 2.6c. DTASelect2’s protein group output had a protein false

discovery rate of 0.4%. MetaMorpheus protein group results at this same FDR were

compared to those of DTASelect2. Overall, DTASelect2 provided a simpler result

than MetaMorpheus. MetaMorpheus’ integrated multi-protease results provide

43.6% more human protein group identifications (4,479 to 6,435), a 29.2% decrease in

the percent of protein groups that contain a single protein (93.3% to 66.1%) and a

41.1% increase in the average number of proteins per group (1.12 to 1.58). This data

indicates that DTASelect2 results not only have fewer protein group identifications

but that the protein groups identified also have lower ambiguity. When evaluating

the accuracy of the protein inference approaches, MetaMorpheus, despite having the

more complex answer, outperforms DTASelect2. In Figure 2.6c, the curve representing

MetaMorpheus’ protein inference results is closer to the upper left-hand corner

than the curve representing DTASelect2’s results, indicating that MetaMorpheus

more accurately differentiates true and false positives. Additionally, MetaMorpheus’

integrated multi-protease protein inference algorithm provides a 12.0% decrease in the

false positive rate (0.83% to 0.73%) as compared to DTASelect2. These results indicate

that MetaMorpheus provides more accurate protein inference results compared to

DTASelect2, despite violating Occam’s razor.
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Table 2.7: Comparison of Entrapment Results from DTASelect2 and MetaMorpheus

DTASelect2 MetaMorpheus percent
change
(%)

number of human protein
groups

4,479 6,435 +43.6

number of A. thaliana pro-
tein groups

37 47 +27.0

false positive rate 0.83% 0.73% -12.0

Table 2.8: Comparison of Protein Group Ambiguity between DTASelect2 and Meta-
Morpheus

DTASelect2 MetaMorpheus percent
change
(%)

percent of protein groups
containing a single protein
accession

93.3% 66.1% -29.2

average number of protein
accessions per protein

1.12 1.58 +41.1

Post-Translational Modification (PTM) and Localization with

Multi-Protease Protein Inference

The GPTMD strategy within MetaMorpheus was used to discover 8,488 localized

PTMs of biological origin (see Appendix I: Table 7.3 for a list of PTMs) in the multi-

protease data. Approximately 77% of the modifications identified (6,515 of the 8,488)

were unique to a single protease (Figure 2.7A). The use of only one protease yielded

3- to 16-fold fewer biologically relevant PTMs, depending on the protease (Figure

2.7B), demonstrating the orthogonality of each protease’s ability to identify PTMs.

Figure 2.8 shows the PTMs considered as common biological modifications that were

observed in the six different proteolytic digestions.
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Figure 2.7: Benefits of utilizing multiple proteases for the identification post-
translational modifications. Bar graphs detailing PTM results for the integrated
multi-protease approach and the single proteolytic digests. (A) Number of PTMs
identified in the integrated multi-protease search observed in just one to all six of the
proteolytic digestions. (B) Number of PTMs of biological origin (Appendix I: Table
7.3) identified from the integrated multi-protease approach compared to the number
of modifications identified by each of the six individual proteases.
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Figure 2.8: Breakdown of GPTMD identified post-translational modifications by
protease. Pie charts for each common biological modification searched for with
GPTMD showing the number of modifications identified with each protease.
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2.5 Conclusion

Protein inference from bottom-up peptide identifications is an intriguing challenge.

Protein group identifications that result from protein inference are used to draw

biological and chemical conclusions, and therefore their proper identification is of

the utmost importance. We present here a novel multi-protease protein inference

algorithm implemented in the open-source bottom-up database search software

MetaMorpheus.

We show that this integrated multi-protease protein inference algorithm provides

simpler and more accurate protein inference results than the separate approach. The

increase in simplicity and reduction in the ambiguity of the integrated approach can

be seen from the 6.2% decrease in the number of protein group identifications (7,986

to 7,489), a 7.6% increase in the percent of single protein identifications (66% to 71%)

and a 6.3% decrease in the average number of proteins per group (1.58 to 1.48). An

entrapment study performed to evaluate the accuracy of the integrated approach

showed a 31.3% decrease in the number of false positive A. thaliana protein group

identifications (316 to 217), as well as a 29.3% decrease in the corresponding false

positive rate (4.1% to 2.9%) compared to that of the separate approach. A decrease in

the ambiguity of protein inference results was also observed when comparing the

integrated multi-protease results to those obtained from the widely used trypsin-only

digestion strategy. The number of single protein identifications increased 22.4% (58%

to 71%), and the average number of proteins per group decreased 4.9% (1.74 to 1.48).

Entrapment studies were employed to benchmark the accuracy of the Meta-

Morpheus’ integrated multi-protease approach against three well-known and well-

regarded protein inference tools: Fido, ProteinProphet, and DTASelect2. MetaMor-

pheus’ integrated multi-protease approach reduced false positive A. thaliana protein
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identifications by 38.3% (162 to 100), and the corresponding false positive rate of the

results decreased 39.1% (2.3% to 1.4%) compared to Fido. An increase in accuracy was

also observed in MetaMorpheus’ comparison with ProteinProphet, which showed

an 80.5% decrease in the number of A. thaliana protein identifications (159 to 31)

and an 80.8% decrease in the corresponding false positive rate (2.6% to 0.5%) of the

protein inference results. Compared to DTASelect2, the MetaMorpheus’ integrated

multi-protease approach reduced the false positive rate of A. thaliana protein identifi-

cations by 12.0% (0.83% to 0.73%), indicating an increased accuracy. The integrated

multi-protease approach in MetaMorpheus thus reduces the percent of erroneous

protein group identifications, compared to Fido, ProteinProphet, and DTASelect2

while providing search and protein inference all in one software program.

An additional advantage conferred by the multi-protease digestion compared to

conventional single protease digestion was the 3- to 16-fold increase in the identifi-

cation of PTMs (depending on the single protease selected). The MetaMorpheus

implementation of this multi-protease protein inference algorithm facilitates the abil-

ity to perform multi-protease search and protein inference all within a single software

program, making it more user-friendly than those currently available that require the

transfer of results from a search software to a distinct protein inference software.
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3 proteaseguru: a tool for protease selection in

bottom-up proteomics

This chapter has been published and is reproduced with permission from:

Miller, R.M.; Ibrahim, K.; Smith, L. M. ProteaseGuru: A Tool for Protease Selec-
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3.1 Abstract

Bottom-up proteomics is currently the dominant strategy for proteome analysis. It

relies critically upon the use of a protease to digest proteins into peptides, which are

then identified by liquid chromatography–mass spectrometry (LC-MS). The choice

of protease(s) has a substantial impact upon the utility of the bottom-up results

obtained. Protease selection determines the nature of the peptides produced, which

in turn affects the ability to infer the presence and quantity of the parent proteins

and post-translational modifications in the sample. We present here the software tool

ProteaseGuru, which provides in silico digestions by candidate proteases, allowing

evaluation of their utility for bottom-up proteomic experiments. This information is

useful for both studies focused on a single or small number of proteins, and for anal-

ysis of entire complex proteomes. ProteaseGuru provides a convenient user interface,

valuable peptide information, and data visualizations enabling the comparison of

digestion results of different proteases. The information provided includes data tables

of theoretical peptide sequences and their biophysical properties, results summaries

outlining the numbers of shared and unique peptides per protease, histograms facili-

tating the comparison of proteome-wide proteolytic data, protein-specific summaries,

and sequence coverage maps. Examples are provided of its use to inform analysis of

variant-containing proteins in the human proteome, as well as for studies requiring

the use of multiple proteomic databases such as a human:mouse xenograft model,

and microbiome metaproteomics.

3.2 Introduction

Bottom-up proteomics is the principal approach employed for the analysis of

complex proteomes. In bottom-up proteomics, proteins are digested into peptides
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prior to chromatographic separation and tandem mass spectrometric analysis.1 Their

identification and quantification aids in inference of the proteins present in the sample

and provides valuable information on their abundances.1 Bottom-up proteomics has

evolved into a widespread and high-throughput approach providing sensitive and

in-depth characterization of thousands of proteins in complex proteomes.2

This peptide-centric approach is entirely reliant on proteases, and their ability to

generate predictable proteolytic peptides that span the proteome and are detectable

by the mass spectrometer. Often, a single protease, trypsin, is used for digestion.

Trypsin is robust, reproducible, and its cleavage motif at the carboxyl side of the

amino acids lysine or arginine generates peptides that ionize well.3,4 In some cases,

a protease other than trypsin can yield improved results identifying more critical

peptides for the identification of select proteins, PTMs, or sequence variations of

interest.3,5 Furthermore, we and others have shown that the use of multiple proteases

in parallel produces superior results, increasing the number of proteins and post-

translational modifications identified through increased proteome coverage.6–9

However, it is often not straightforward to determine which protease or com-

bination of proteases is best suited for a given experiment. Due to cost, time, and

sample limitations, it is frequently infeasible to employ a trial and error approach,

digesting samples with all commonly used proteases to determine which worked

the best. Selection of a protease or combination of proteases for sample digestion

relies on the ability to determine which proteolytic digestions will produce peptides

that are the most likely to be observed via mass spectrometry (based on their bio-

physical properties such as length and hydrophobicity), provide adequate protein

sequence coverage, and generate sufficient numbers of unique peptides to identify

specific proteins, or a large portion of the proteome. The ability to identify unique

peptides is always important in bottom-up proteomics, but becomes even more critical
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when samples include proteins from multiple species, as is the case for xenograft

or microbiome samples.10–12 Peptides can not only be ambiguous between proteins

within a species, but also between proteins from different species, compromising

the ability to draw biological conclusions from the proteomic results. This creates a

need for experimental planning, in which theoretical peptides produced by potential

proteolytic digests are generated and the proteases can be compared for their efficacy

prior to initiating laboratory work.

We have developed a free and open-source software tool, ProteaseGuru, to en-

able the comparison of candidate proteases through in silico digestion of protein

databases. We designed ProteaseGuru with the goal of making it the easiest to use

and most versatile in silico digestion tool to date. Users can select as many proteases

as desired to digest the elements of one or more protein databases generating a pool

of theoretical peptide sequences. After in silico digestion, ProteaseGuru determines

several biophysical characteristics of the theoretical peptide sequences which can help

to assess their uniqueness and utility for bottom-up proteomic analysis. Digestion

result summaries are provided for each in silico digested database, giving the number

of shared and unique peptides. When more than one database is utilized, as for the

xenograft and microbiome applications mentioned above, an additional analysis is

performed to determine which peptides are unique to a single protein and which

are distinct to a single species. Such peptides are valuable for the identification and

quantification of select proteins in complex proteomic backgrounds. ProteaseGuru

provides graphical visualizations, such as histograms and protein sequence coverage

maps, that aid the user in evaluation of candidate proteolytic digestions of either select

proteins or on a whole proteome level. Specific examples demonstrating Protease-

Guru’s utility are shown for different experiment types, including proteogenomics,

xenograft analysis, and microbiome metaproteomics.
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3.3 Methods

The Tool

ProteaseGuru is a windows GUI application written in C# for the in silico digestion

of protein databases. ProteaseGuru includes both MzLib (v1.0.485), a mass spec-

trometry code library (https://github.com/smith-chem-wisc/mzLib), and OxyPlot

(v2.0.0), for data visualization, as Nuget packages. The application and its source

code are available for download on GitHub (https://github.com/smith-chem-wis

c/ProteaseGuru). The prediction of both a peptide sequence’s hydrophobicity and

electrophoretic mobility are incorporated into ProteaseGuru. The hydrophobicity of

unmodified peptide sequences is predicted using the SSRCalc algorithm described by

Krokhin et al.13 and electrophoretic mobility of peptide sequences, including PTMs,

is calculated based on a modified Cifuentes’s model14 as described in Chen et al.15

ProteaseGuru accepts, as input, UniProt formatted XML and FASTA databases.

Post-translational modifications annotated in the UniProt XML database are loaded

into ProteaseGuru, displayed within protein sequence coverage maps, annotated in

the full sequence of theoretical peptides, and contribute toward the total molecular

weight of the theoretical peptide. Additionally, users can choose, as part of the diges-

tion parameters, to include carbamidomethylation of cysteine as a fixed modification

and oxidation of methionine as a variable modification.

Data Analysis

The utility of ProteaseGuru was evaluated for three different applications: (1)

human:mouse xenografts, (2) identification of sequence variant-containing proteins,

and (3) a subset of the human skin microbiome. Analysis was performed using

ProteaseGuru version 0.0.22 with the following digestion conditions: proteases =

https://github.com/smith-chem-wisc/mzLib
https://github.com/smith-chem-wisc/ProteaseGuru
https://github.com/smith-chem-wisc/ProteaseGuru
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[Arg-C, Asp-N, chymotrypsin (do not cleave before proline), Glu-C (with asp), Lys-

C (do not cleave before proline), and trypsin (do not cleave before proline)]; max

number of missed cleavages = 2; min peptide length = 7; and max peptide length =

50; and treat modified peptides as different = False.

For the xenograft application, human and mouse reference databases were down-

loaded from UniProt in .xml format. Only reviewed Swiss-Prot entries were included

in the databases.

For the variant analysis, a proteogenomic database generated by Spritz16 (version

0.1.3) was utilized. The RNA-Seq data used as input for Spritz is publicly available

and can be downloaded from the GEO Sequence Read Archives with the following

identifier GSE45428.

For the skin microbiome analysis, a subset of the entire microbiome was analyzed.

In a review by Byrd et al. concerning the human skin microbiome, a table was

provided outlining the top 10 most abundant bacterial, eukaryotic, and viral species

present in four different physiological sites (dry skin, moist skin, sebaceous skin,

and foot skin).17 With duplicate species removed, a total of 59 remained. Of those

59 species, 57 are present on UniProt and the corresponding protein databases in

.fasta format were downloaded (see Appendix II: Table 8.1 for the specific species

included, and download information).

3.4 Results and Discussion

The utility of ProteaseGuru as an experimental planning and protease comparison

tool will be demonstrated through three different case studies, representative of three

distinct bottom-up proteomic applications: (1) proteomics on xenograft samples, (2)

variant proteomics, and (3) microbiome analyses. We will also evaluate the relative
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ease of use and versatility of ProteaseGuru by benchmarking its features against those

of existing tools.

Analysis of Patient-Derived Xenografts

Proteomic samples are sometimes more complex than a single species’ proteome.

Patient-derived xenografts (PDXs) are human tumor samples that have been trans-

planted into an immune-compromised, or humanized mouse. PDXs are a widely

used model system for the study of cancer.18–21 ProteaseGuru is applied here for PDX

proteomics, performing in silico digestion and analysis of both the human and mouse

UniProt databases to guide experimental design.

As part of its postdigestion processing, ProteaseGuru determines a peptide’s

“uniqueness” for three different categories: (1) “Unique in database”, a peptide is

unique if it is the proteolytic product of a single protein within a database; (2) “Unique

in all databases”, a peptide is unique if it is the digestion product of a single protein

within all of the databases analyzed; and (3) “Exclusive to this database”, a peptide’s

sequence (regardless of its shared or unique peptide status) is only found in one

protein database. This categorization enables the identification of theoretical peptide

sequences that can distinguish proteins and species in complex mixtures. For all

uniqueness categorizations, isoleucine and leucine are treated as distinct amino acids.

All three “uniqueness” values are displayed in the ProteaseGuru peptide output files,

and are included in result summaries, histograms, and sequence coverage maps. This

feature of ProteaseGuru is critical for the combined analysis of the human and mouse

databases since their proteomes have high sequence homology. Once the proteomes

are digested, it can be difficult to determine which peptides belong to the human

tumor, and which belong to the mouse. The ability to distinguish human and mouse

proteins is critical to the success of many PDX studies, and their ability to inform
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future functional or clinical research.

The extent to which homology between the two species complicates proteomic

analysis was evaluated using the count of shared and unique peptides for the com-

bined and individual database analyses provided in the ProteaseGuru summary file

(Figure 3.1). The average percent unique peptide sequences for all of the in silico

digestions is 97.6% for human and 98.5% for mouse (category 1). If there was no

sequence homology between the two species, all peptides that were unique in the

separate human and mouse analyses would remain unique peptides when the two

proteomes are analyzed together, yielding a percent unique peptide value of approxi-

mately 98.01%. However, it is well documented that there is homology between the

human and mouse proteomes with the average degree of protein sequence conser-

vation for orthologous human and mouse genes being approximately 85%.22 When

comparing the combined theoretical peptides from the human and mouse proteomes,

the percent unique peptide sequences (category 2) observed was 81.5%, indicating

the high homology of the human and mouse proteomes has a strong impact on the

ability to identify peptides unique to a single protein.

Analysis of Sequence Variant-Containing Proteins

Proteomic experiments can be focused on the entire proteome, or can be fo-

cused on capturing a particular class of proteins, a specific protein, or a specific

post-translational modification. ProteaseGuru allows selection of the protease or

combination of proteases that will be most effective in achieving the goal of such

proteomic experiments. Here we demonstrate this functionality by applying Protease-

Guru to a proteogenomic database generated by the software tool Spritz.16 Spritz

utilizes RNA-sequencing data and a reference genome to generate a protein XML

database containing sequence variations present in the sample’s transcriptome.
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Figure 3.1: Comparison of percent unique peptide sequences for mouse and human
databases. Box plot generated from the percent unique peptide sequences for all 6
proteolytic digests (Arg-C, Asp-N, Chym, Glu-C, Lys-C, and Tryp) when the human
and mouse databases are analyzed either separately (category 1) or together (category
2). The high sequence homology between the human and mouse proteomes creates a
significant decrease in the percent of unique peptides, and a corresponding increase
in the percent of shared peptides.

Proteins translated from variant transcripts may have zero, minor or very substan-

tive amino acid sequence differences, depending on the nature of the nucleic acid

variation(s) present. A proteogenomic database, generated from these transcripts,

will include greater proteomic complexity than the standard UniProt database because

the translation products derived from both alleles are represented. These homol-

ogous alleles, producing related transcripts, will give rise to translation products

which also have high homology, and accordingly a greater prevalence of peptides

are shared between those homologous proteins (Figure 3.2). The average increase in

the percent of shared peptide sequences across proteases is 61.8% when comparing

Spritz and UniProt database results. The dramatic increase in the percent of shared

peptide sequences underscores the importance of identifying protease(s) capable

of producing unique peptides for the confident identification of variant-containing

proteins, as well as the importance of utilizing proteogenomic databases in general.

Using the peptide output files from ProteaseGuru, the following information



68

Figure 3.2: Comparison of the percent of shared peptide sequences for each protease
between the Spritz proteogenomic database and the reference UniProt database.

is readily determined for each proteolytic digestion of the Spritz database: (a) the

number of unique peptides for variant proteins (category 1), (b) the number of

variant proteins which have unique peptide evidence, and (c) the number of variant

proteins that can only be confidently identified by theoretical peptides from this digest

(see Table 3.1). On the basis of these results, it is clear certain proteolytic digests

have the capability of producing more variant protein identifications (e.g., Trypsin,

Chymotrypsin and Glu-C), and in order to maximize the number of variant proteins

identified, a combination of proteases must be used. The maximum number of variant

proteins (5,355) can only be achieved when all proteolytic digests are performed since

there are variant protein identifications unique to each digest. However, it is not

always feasible to perform that many parallel digests, and it is prudent to determine,

based on the number of digestions to be performed, the combination of proteases

that captures the largest population of variant proteins. In Figure 3.3, the number of

variant proteins that can be identified via a unique peptide sequence are determined

for all individual proteases and all combinations of proteases.

ProteaseGuru also enables the investigation of individual proteins through the

generation of protein-specific digestion result summaries and protein sequence cover-

age maps. Sequence coverage maps enable the visualization of theoretical peptide
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Figure 3.3: Number of variant proteins that can be identified by unique peptides.
Plot for each protease and combination of proteases showing the number of variant
proteins that can be confidently identified by unique peptides. This shows which
protease or combination of proteases provides the best coverage of variant proteins
within the proteome. (Arg-C: AC, Asp-N: AN, Chym: C, Glu-C: G, Lys-C: L, and
Tryp: T).
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Table 3.1: Variant Protein Results
protease number of unique

peptides for vari-
ant proteins (per-
cent of total unique
peptides)

number of vari-
ant protein with
unique peptides

number of variant
proteins with
unique peptides
exclusive to a
protease

Arg-C 52,453 (9.5%) 4,346 46
Asp-N 39,981 (9.9%) 3,934 58
Chymotrypsin 127,011 (9.7%) 4,660 84
Glu-C 101,760 (10.3%) 4,639 38
Lys-C 45,753 (10.0%) 3,840 25
Trypsin 95,781 (9.9%) 4,733 15

coverage, for all proteolytic digests, for a given protein, and for its database-annotated

PTMs and variants. This feature is valuable for more focused experiments because

it allows the user to visualize which protease provides optimal coverage of proteins

of interest, and which protease(s) can produce peptides that cross PTMs or variant

sites. The sequence coverage map of UniProt protein H3BQZ5, with a single amino

acid variant at residue 25 from cysteine to arginine, is shown in Figure 3.4. This cov-

erage map highlights that only one of the six proteases evaluated, Arg-C, produces

theoretical peptide sequences unique to this protein, and only one of those sequences

crosses the variant site. This variant-crossing peptide is particularly valuable in that

it confirms the presence of the variant.

Analysis of Skin Microbiome

Metaproteomics encompasses the study of incredibly complex and diverse mul-

tispecies proteomes such as those for microbial communities and microbiomes.23

ProteaseGuru is able to perform in silico digestions on more than 2 proteomes at once,

a functionality absent from existing in silico digestion tools. It is important to note the

computational requirements for these analyses scales with the number and size of
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Figure 3.4: Sequence coverage map of variant containing protein (H3BQZ5_C25R)
exported from ProteaseGuru. Theoretical peptide sequences are mapped to the
protein highlighting its coverage by shared and unique peptides for all proteolytic
digests. Unique peptide sequences are bold colored, where shared peptide sequences
are translucent. Peptides are ordered by their starting residue. Since peptides with up
to two missed cleavages are allowed, multiple peptides from the same protease can
overlap but will either start or end at different residues. Multiple amino acid gaps
between peptide lines correspond to regions of the proteome that are not covered
by any peptide sequence due to the constraints placed on acceptable peptide length,
and number of missed cleavages. For peptides that span more than one row, the line
extends beyond the margin before wrapping around to the next row down. Peptide
sequences unique to this specific variant protein were only obtained in the Arg-C
digest, and only a single theoretical unique Arg-C peptide crosses the variant site
(the upper of the two bold lines).



72

the proteomes being analyzed. Shown here is the use of ProteaseGuru on 57 protein

databases which compose a subset of the human skin microbiome, as described in

Section 3.3.

ProteaseGuru generates various histograms within the graphical user interface

(GUI) to enable the comparison of proteolytic digests. These histograms and the data

tables used to generate the histograms can be exported. Figure 3.5 shows a “Percent

Protein Sequence Coverage” histogram generated by Excel for the microbiome anal-

ysis using the exported data table from ProteaseGuru. Often, peptides with fewer

than seven amino acids are difficult to confidently identify via mass spectrometry.3,7

Therefore, setting a minimum peptide length of seven for in silico digestion enables

the generation of theoretical peptides that, based on length, are likely to be identi-

fied. Specifying peptide length digestion criteria will result in regions of proteins

without theoretical peptide sequence coverage, approximating a lack in identifiable

coverage in actual digestion results. It is desirable to select proteases that provide

the greatest proteome coverage overall, and on a protein by protein basis. As may be

seen in Figure 3.5, the ProteaseGuru results show in silico digestion with Trypsin,

Chymotrypsin and Glu-C produce peptide sequences that would provide the most

comprehensive coverage of the proteome, whereas Lys-C digestion would provide

the least proteome coverage.

Comparison of ProteaseGuru to Existing Tools

ProteaseGuru includes numerous features providing versatility for a wide-range of

bottom-up proteomic experiments. A comparison of features between ProteaseGuru

and other existing in silico digestion tools is provided in Table 3.2. iHDPM24 is a

great tool, with many wonderful visualization features, but lacks customizability.

iHDPM is limited to analysis of the human proteome, with a predetermined set of
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Figure 3.5: Histogram comparing the distribution of percent protein sequence cover-
age for the skin microbiome based on the protease used for in silico digestion.

proteolytic digests. In contrast, ProteaseGuru allows the user to supply as many of

their own protein databases as necessary, providing the user with more control over

their analysis. ProteaseGuru is one of two tools that permits the analysis of more

than one database at a time, and is the only tool which allows for the analysis of

more than two databases. ProteaseGuru also does not limit the user to digestion

with the default proteases provided, only two other in silico digestion tools offer

that same level of flexibility. ProteaseGuru makes the process of custom protease

generation easy by allowing the user to add a custom protease within the GUI—simply

requiring a protease name and cleavage motif. ProteaseGuru is also one of three

tools that provides result visualizations. In silico digestion results can be visualized

as histograms and protein sequence coverage maps. Both histograms and sequence

coverage maps can be exported for publication. An additional feature unique to

ProteaseGuru is the ability to export the data tables underlying each histogram which

facilitates easy recreation of the plots in the user’s software of choice. ProteaseGuru

provides a combination of features and a level of user-friendliness that provides an

increased degree of versatility compared to existing in silico digestion tools.
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3.5 Conclusion

ProteaseGuru is a software tool designed to aid in the selection of proteases for

bottom-up proteomic experiments. The in silico digestion and subsequent analyses

performed within ProteaseGuru provide result files and data visualizations that

empower users to make informed choices on which proteases to select for bottom-

up proteomic experiments. This eliminates the need for a trial and error approach,

which is costly with respect to time, samples, and money. ProteaseGuru is the most

broadly applicable in silico digestion software to date, enabling its use for proteomics

experiments focused on PTM or variant identification, as well as for proteome-wide

experiments analyzing samples composed of one or more species. ProteaseGuru

provides not only the peptide sequences that result from in silico digestions, but also

a wide variety of information about each peptide to enable customized analyses based

on the users’ needs, such as peptide’s modification status, length, protein of origin,

position within the protein of origin, hydrophobicity, electrophoretic mobility, and

uniqueness. ProteaseGuru also generates several histograms to aid in the comparison

of proteolytic digests, as well as providing the ability to investigate the in silico

digestion of specific proteins. ProteaseGuru provides numerous features, along with

a user-friendly experience to facilitate experimental planning for a wide-variety of

bottom-up proteomic experiments.
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4.1 Abstract

Background

The detection of physiologically relevant protein isoforms encoded by the human

genome is critical to biomedicine. Mass spectrometry (MS)-based proteomics is the

preeminent method for protein detection, but isoform-resolved proteomic analysis

relies on accurate reference databases that match the sample; neither a subset nor

a superset database is ideal. Long-read RNA sequencing (e.g., PacBio or Oxford

Nanopore) provides full-length transcripts which can be used to predict full-length

protein isoforms.

Results

We describe here a long-read proteogenomics approach for integrating sample-

matched long-read RNA-seq and MS-based proteomics data to enhance isoform

characterization. We introduce a classification scheme for protein isoforms, discover

novel protein isoforms, and present the first protein inference algorithm for the direct

incorporation of long-read transcriptome data to enable detection of protein isoforms

previously intractable to MS-based detection. We have released an open-source

Nextflow pipeline that integrates long-read sequencing in a proteomic workflow for

isoform-resolved analysis.

Conclusions

Our work suggests that the incorporation of long-read sequencing and proteomic

data can facilitate improved characterization of human protein isoform diversity. Our

first-generation pipeline provides a strong foundation for future development of
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long-read proteogenomics and its adoption for both basic and translational research.

4.2 Background

A comprehensive understanding of the proteome in healthy and diseased states

is vital for nearly every area of biomedical research.1 Multiple protein isoforms,

containing distinct amino acid (AA) sequences, can arise from the same gene through

mechanisms such as alternative promoter usage or splicing2 and can exhibit different

stabilities, molecular binding capabilities, and functional effects3,4. Many protein

isoforms have been implicated in diseases from neurodegeneration to cancer.5 It

has been estimated, through transcriptome measurements, that over 300,000 human

protein isoforms may exist.6 However, few experimental approaches readily detect

proteins at isoform resolution, leaving open the question of the extent to which

transcript isoform complexity propagates to the proteome.7,8

Mass spectrometry (MS)-based proteomics has become the preeminent method

for the comprehensive and sensitive characterization of the proteome.1 Typically,

the proteome is proteolytically digested into peptides that are analyzed via liquid

chromatography (LC) and MS. The mass spectra are compared to theoretical peptides,

generated from a protein database, to obtain peptide identifications. These peptide

identifications are mapped back to their potential proteins of origin to obtain protein

identifications (i.e., protein inference).9 Protein inference is complicated by shared

peptides, which are peptides that map to two or more protein isoforms in the database.

The presence of shared peptides can result in ambiguous protein identifications

wherein multiple proteins are indistinguishable based on the peptide evidence. In

these cases, a “protein group” (Figure 4.1a) is formed, signifying either all or some

subset of proteins in the group may be present in the sample.
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The peptide identification and protein inference processes are heavily reliant on

the composition of the protein database used for analysis. Reference protein databases

broadly represent an organism’s proteome, but may fail to capture the proteomic

variation across tissues, developmental and disease states, and individuals.10 Discor-

dances between a database and a sample can have a direct impact on proteomic search

results. Ideally, the protein isoform sequences annotated in the reference for a gene

would exactly match those expressed in a sample (“Match,” Figure 4.1b). In practice,

however, perfect matches are rare. The protein isoforms from a sample could differ

from those in the reference by either lacking isoforms (“Subset,” Figure 4.1c) and/or

possessing a surplus of isoforms (“Superset,” “Distinct,” “Partial Overlap,” Figure

4.1d–f). Overall, reference-sample discordances lead to (1) ambiguity in identifying

protein isoforms; (2) incorrectly identified protein isoforms; or (3) failure to identify

known or novel relevant protein isoforms (such as those associated to disease and

treatment).

Transcript sequencing can be used to generate a sample-specific candidate protein

database, which is more reflective of the isoform diversity in the sample than the

reference database, but still has limitations due to the sensitivity and specificity of

sequencing technologies. Presently, such efforts to generate sample-specific databases

have been dominated by using short-read RNA-seq11–20 which suffers from the in-

ability to sequence full-length transcripts and can only deliver partial protein mod-

els21,22 (Figure 4.1g). Long-read sequencing technologies, such as those from Pacific

Biosciences (PacBio) and Oxford Nanopore Technologies (ONT), can delineate full-

length transcriptomes with high fidelity.23 These technologies can readily reveal

thousands of novel isoforms based on full-length transcript reads.24 Such develop-

ments present an opportunity to leverage transcript expression—a prerequisite and

correlate of protein expression25—to enhance isoform-resolved proteomics.
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Here, we present a workflow for long-read proteogenomics that achieves enhanced

characterization of protein isoform diversity through paired long-read RNA-seq and

MS-based proteomics of the same sample. This approach is enabled by a computa-

tional pipeline that generates full-length protein databases constructed de novo from

long-read RNA-seq data. Using this database, we demonstrate MS-based discovery

of novel protein isoforms arising from mechanisms such as retained introns and

skipped exons. With full-length protein predictions, we introduce a new classification

system, SQANTI Protein, to characterize novel protein isoforms. Finally, we introduce

a new heuristic-based protein inference algorithm, called “Rescue & Resolve,” that

incorporates long-read transcript abundance into the protein inference process, which

enables detection of protein isoforms typically discarded during parsimonious pro-

tein inference due to insufficient peptide support. The entire pipeline and workflow

is freely available as an open-source and extensible computational resource, using

the community-based workflow language, Nextflow. This first-generation long-read

proteogenomics pipeline provides a strong foundation for the integration of long-

read sequencing into proteomic workflows, advancing the characterization of human

protein isoform diversity.

4.3 Results

We developed a long-read proteogenomics pipeline for protein isoform detection

through integrated analysis of sample-matched long-read RNA-seq and MS-based

proteomics data. A Nextflow pipeline processes PacBio data, converts full-length

transcripts into a protein database, and performs proteomics database searching

(Figure 4.2, Appendix III: Figure 9.1). We demonstrate the utility of our pipeline

using transcriptomic and proteomic data from the same cell line, Jurkat T-lymphocyte.
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Below we describe the following: (1) analysis of PacBio sequencing to reveal high-

quality full-length transcript sequences; (2) open reading frame (ORF) prediction; (3)

a novel protein isoform classification system called SQANTI Protein; (4) generation

of a sample-specific, full-length protein database using both PacBio and GENCODE

reference isoform models; and (5) creation of a novel protein inference algorithm

that increases the number of protein isoform identifications through the direct incor-

poration of PacBio transcript abundance values.

Long-read RNA-seq reveals widespread isoform diversity that

differs from the GENCODE reference set

We characterized the landscape of full-length transcripts in a human cell line

through long-read RNA sequencing on the PacBio platform (see Appendix III: Sec-

tion 9.2). Transcript isoforms were compared to GENCODE26 reference transcripts

(v35), and their novelty status classified using SQANTI3 (Structural and Quality

Annotation of Novel Transcript Isoforms)27. Among the transcript isoforms identi-

fied, 43,865 contained an exact match to GENCODE (“full splice matches,” FSMs)

and 75,491 were novel. Of the novel cases, 43,075 transcripts contained novel com-

binations of known splice sites and/or junctions (“novel in catalog,” NICs), and

32,416 transcripts contained an entirely new splice site or exon (“novel not in catalog,”

NNCs). On average, novel transcripts exhibit lower abundances than their known

counterparts, despite exhibiting a broad range of abundances overall (Appendix

III: Figure 9.2a). In 13.93% (1,274) of genes, the most abundant transcript isoform

is novel. To determine the sampling sensitivity of the transcriptome, we generated

saturation-discovery curves and confirmed that the number of unique genes and iso-

forms detected reaches a plateau (Appendix III: Figure 9.2b). Overall, these results
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Figure 4.2: Long-read proteogenomic approach for enhanced sample-specific protein
identification. Schematic of the long-read proteogenomics pipeline for improved
protein isoform characterization. The pipeline includes approaches for ORF calling
from long transcript reads, automated protein isoform classification (SQANTI Pro-
tein), novel protein isoform detection, and a long-read-informed protein inference
algorithm. CPM - full-length read counts per million.
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illustrate the widespread nature of alternative splicing and the need for empirically

driven methods to characterize isoform diversity in human samples.

Note that for this study, transcript nucleotide sequences were derived from the ref-

erence genome (genome-corrected mode in SQANTI3); therefore, genetic variations

are not captured in the current version of our pipeline (see Section 4.4).

A sample-specific, full-length protein isoform database derived

from long-read RNA-seq data

ORF prediction from long-read RNA-seq data

We created a workflow to discern the most biologically plausible open reading

frame (ORF) for each full-length transcript isoform. We considered multiple candi-

date ORFs for each transcript as defined by the Coding-Potential Assessment Tool

(CPAT).28 For most of the transcripts (91%), one ORF stands out as the most plausi-

ble protein-coding product based on its coding score; however, a sizable number of

transcripts (12,787 or 9% of all transcripts) have two or more relatively high scoring

ORFs (CPAT coding score above 0.9), in which the best ORF is unclear (Appendix III:

Figure 9.2c). Therefore, for all ORFs, we incorporated additional metrics in the ORF

ranking process, such as the GENCODE annotation status of the ATG start codon and

the start codon's position relative to the 5'end of the transcript (see “ORF calling” in

Section 4.6 and see Appendix III: Section 9.3). After determining the ORF prediction

for each transcript, we clustered transcripts containing identical ORF predictions

(Figure 4.3a. Transcripts that differed only in their noncoding regions were assigned

to the same protein entry in the database.
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SQANTI Protein: new classification scheme for full-length protein isoforms

We derived protein isoform models from long-read RNA sequencing data for each

gene and found that many genes may concurrently express multiple protein isoforms

(Appendix III: Figure 9.2d). To systematically characterize these full-length protein

isoforms, we created a new protein isoform classification scheme, SQANTI Protein, to

describe the relationship between the predicted protein isoforms and those annotated

in GENCODE. SQANTI Protein extends SQANTI3 transcript-centric classifications to

the protein isoform level, considering how three key protein sequence elements—the

N-terminus, the identified splice junctions, and the C-terminus—compare to reference

protein isoforms (Figure 4.3b). SQANTI Protein considers the full-length predicted

protein sequence, detectable only by long-read RNA-seq, which differentiates it from

previously proposed protein isoform classification schemas that have focused on

“local” events, such as splice junctions or novel exons detected by microarrays or

short-read RNA-seq.29,30

We loosely follow the nomenclature first developed for transcript isoform classifi-

cation in SQANTI. Major isoform categories for SQANTI Protein include pFSM, pNIC,

pNNC, and pISM (Figure 4.3b). A “protein full splice match” (pFSM) represents

a protein isoform where all elements exactly match at least one protein isoform in

the reference. For a “novel in catalog” (pNIC) protein isoform, all protein sequence

elements—such as the N-terminus, splice junctions, or C-terminus—are known (i.e.,

annotated in the reference), but the combination of elements is novel. A “novel not

in catalog” (pNNC) protein isoform contains at least one novel element, such as a

novel N-terminus or splice junction. Protein isoforms classified as an “incomplete

splice match” (pISM) are cases in which the predicted protein isoform is a suspected

artifact. For example, the originating transcript isoform could be degraded at the

5'end, resulting in a translation product missing the true ATG start codon. More
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detailed protein isoform sub-classifications are provided in the “sqanti_protein” and

“protein_classification” modules of the Nextflow pipeline.

Among the ORFs predicted from the long-read data, 16,331 (24%) have an exact

GENCODE match and are deemed pFSMs (Figure 4.3c). We found 28,737 (41%)

potentially novel protein isoforms, with 7,642 (11%) pNICs and 21,095 (30%) pNNCs.

A more detailed breakdown of categorizations can be found in Appendix III: Table

9.1. The remaining sequences were classified as pISM or were putative translation

products of transcripts unlikely to be protein coding, such as intergenic transcripts.

It is notable that transcript-level classification does not always translate directly to

the protein-level classification (Appendix III: Table 9.2). For example, 371 transcript-

level ISMs (ISMs) are actually protein-level FSMs (pFSMs). This occurs when part of

the 5'untranslated region (UTR) of a reference transcript is missing, but the ATG start

codon is preserved. As another example, for 4,086 known protein isoforms (pFSMs,

25% of total pFSMs), the originating transcript was novel (NIC or NNC) with novel

splicing events exclusively occurring in the UTRs.

Predicted protein isoforms that are novel make up a substantial part of the database.

For the majority of genes (75%), at least one pNIC or pNNC protein isoform was

uncovered (Appendix III: Figure 9.2e). Furthermore, for a third of all genes with

observed transcripts, the most abundant protein isoform by transcript abundance

did not correspond to the “reference” isoform (i.e., GENCODE APPRIS principal

reference isoform31, Appendix III: Figure 9.2f), and 42.5% (1215) of those isoforms

were entirely novel.

After annotation with SQANTI Protein, 45,068 protein isoforms (pFSM, pNIC, and

pNNC protein isoforms) from 10,348 genes were considered for database generation.
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Defining a high-confidence PacBio-derived protein database

We generated a high-quality database for proteomic analysis with the following fil-

tering criteria. Within our PacBio dataset, we found that genes producing transcripts

with extreme lengths (e.g., less than 1 kb, longer than 4 kb), low abundance (e.g.,

below ∼ 3 CPM, or full-length read counts per million), or without 3'polyadenylation

were not fully covered due to technical limitations (Appendix III: Section 9.4). There-

fore, we used these criteria to select genes in which we were confident in the sampling

of protein-coding transcripts. By extension, we are confident that the protein isoform

models for these genes are reasonably complete. A total of 6,653 genes meet our

filtering criteria and are within the “high-confidence” space (HC space). For all

other genes, we populated the protein database with GENCODE entries, generating

a hybrid database to maintain integrity of downstream proteomic analysis. This

hybrid database of PacBio-derived and GENCODE entries, called PacBio-Hybrid,

is composed of 35,119 PacBio-derived protein entries from 6,653 genes, and 48,413

GENCODE protein entries for the remaining 13,276 protein-coding genes (Appendix

III: Figure 9.3a).

PacBio-derived protein isoform models for most genes differ from the reference

As described in the Section 4.2, differences between what is expressed in the

sample and the reference database (see Figure 4.1b–f; Match, Subset, Superset, Partial

Overlap, Distinct) can have striking consequences on the protein isoforms inferred

by MS analysis. Within the HC space, we found less than 5% of genes have PacBio-

derived isoform models that exactly match the reference database (Figure 4.3d). The

most frequent database-sample discordance observed at a rate of 69% is “Partial

Overlap,” in which the PacBio-derived database contains one or more reference-

matched isoforms, but also contains additional novel isoforms. A total of 19,838
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novel isoforms belong to genes in the “Partial Overlap” category. The other database-

sample discordance categories which contain novel PacBio isoforms, “Superset” and

“Distinct,” account for 8.9% and 3.1% of the genes in the database, respectively. Overall,

the number of predicted protein isoforms for a given gene can diverge greatly between

the sample-specific and reference database (Figure 4.3e).

MS-based proteomics analysis with a PacBio-derived protein database

The PacBio-derived proteome differs substantially from the reference proteome.

Since the database used for proteomic analysis serves not only as a model for identifi-

cation but also for protein inference, its isoform composition directly impacts protein

identifications. To assess such impacts, MS data from the Jurkat cell line was ob-

tained and used for proteomic analysis with either the PacBio-Hybrid or GENCODE

database. The MS spectra for analysis was generated via liquid chromatography-

MS (LC-MS)/MS data-dependent analysis (DDA) of 28 fractions from high-pH

reverse-phase liquid chromatography (RPLC) of a Jurkat tryptic digest. Acquired

spectra were searched using the software tool MetaMorpheus16 to obtain peptide-

and protein-level identifications at a 1% false discovery rate (FDR) (Appendix III:

Table 9.3, Additional file 6: Table S4).

PacBio-derived protein database recovers peptides identified with the reference

database

Notably, the proteomic results using the PacBio-Hybrid database recovered 99% of

peptide and 99% of gene identifications found in the GENCODE reference database

search results (1% FDR cut-off, Figure 4.4a,b). Similar trends of results were observed

when considering data from only the HC space, as well as when comparing PacBio-

Hybrid results to search results obtained when using the UniProt reference database
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(Appendix III: Figure 9.3b-g). Additionally, the overlap between identified peptides

and genes for the PacBio-Hybrid and reference database search results is comparable

with the overlap found between the search results of the two reference databases

(GENCODE vs. UniProt, Appendix III: Figure 9.3h-i) demonstrating that the PacBio-

derived database is appropriately covering the protein space in the sample.

PacBio-derived isoform models lead to dramatically different

protein isoform identification and can resolve ambiguities

MS-based identification of protein isoforms is challenging due to the uncertainty

in assigning shared (multi-mapping) peptides to their isoform(s) of origin. The

protein database utilized for analysis should represent the protein isoforms in the

sample, but differences between isoforms in the database versus the sample can

impact the accuracy and precision of the inferred protein groups (see Figure 4.1).9

We found that although the peptide and gene-level identifications between the

PacBio-Hybrid and GENCODE MS search results were nearly 100% concordant

(Figure 4.4a,b), indicating that the peptide set for protein inference is nearly identical,

there were major differences in the protein isoform identifications obtained (Figure

4.4c). Only 41% (4,503) of the protein isoform groups from both PacBio-Hybrid and

GENCODE results were identical. Similar results were observed for comparisons of

protein groups in the HC space, against the protein groups from the UniProt reference

database search, and between the protein groups obtained from the two reference

database searches (Appendix III: Figure 9.3j-m). This low overlap of protein infer-

ence results, across all comparisons, indicate that differences in protein identifications

are primarily caused by differences in protein isoform composition of the databases.

The PacBio-derived database provides transcript-backed evidence of protein iso-
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Figure 4.4: Customized long-read-derived protein database for protein isoform detec-
tion. a-c, Overlap of peptide (a), gene (b), and protein isoform group (c) identifi-
cations from GENCODE versus PacBio database searches. d, Example of a “Subset”
case in which the sample is inferred to express fewer isoforms, based on the sample-
specific PacBio-Hybrid database, than those inferred from the reference (GENCODE)
database search. Based on the peptide evidence, the protein isoform expressed is am-
biguous when relying on reference models, but precise (PB.2555.5 identified) when
using the long-read database. e, Example of a “Partial Overlap” case in which the
sample expresses fewer isoforms than the reference but, at the same time, expresses
additional novel isoforms not accounted for in the reference model. f, Example of
a “Distinct” case in which the sample expresses isoforms that are entirely distinct
from those isoform models in the reference. Though the peptide maps to isoforms
in the reference and sample, it is most likely arising from the novel protein isoform
annotated from the long-read data.
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form expression that, when combined with peptide evidence, can lead to enhanced

protein isoform identification. We found 3,199 PacBio-Hybrid protein groups that

are different from those protein groups inferred through the GENCODE reference

search. Of these protein group differences, 673 cases (21%) result in increased speci-

ficity of protein isoform identification when using the sample-derived PacBio-Hybrid

database. An illustration of this can be found in Figure 4.4d. Based purely on MS

peptide evidence, there is ambiguity in terms of whether the isoform LNPK-201

or LNPK-212 is expressed, but the PacBio transcript evidence indicates LNPK-201

is the main isoform likely to be expressed in the cell line. Another common sce-

nario, accounting for 873 cases (27%), is that of partially overlapping protein isoform

groups between the PacBio-Hybrid and reference results, as illustrated by isoforms

of MECP2 (Figure 4.4e). Using the GENCODE database as reference, MECP2-205

and MECP2-201 form a single protein isoform group and are indistinguishable based

on the peptide evidence. However, when using the PacBio-Hybrid database, there

was no transcriptional support for MECP2-201. Instead, MECP2-205 forms a protein

isoform group with the novel PacBio-derived isoform PB.16836.37. A third scenario,

accounting for 382 cases (12%), occurs when all of the protein isoforms for a protein

group in the PacBio-Hybrid analysis are absent from any protein groups within the

GENCODE reference database analysis. This results in a protein group that is entirely

distinct to the PacBio-Hybrid protein inference results. An example of this can be

found in Figure 4.4f, where the PacBio-derived database lists a single isoform which is

not found in the reference database, representing a case of an entirely distinct isoform

model.

For many of these cases, peptides were not detected in the isoform-specific regions,

leading to a high dependence of protein isoform inference on the isoforms represented

in the database. The isoform composition of a database has an outsize impact on
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the protein inference results obtained, and we believe that sample-specific databases

improve the accuracy of protein isoform detection.

Characterization novel RUNX1 isoforms relevant to thymocyte

biology

Within our data, we uncovered an excellent example of biologically relevant

protein isoforms from RUNX1 using full-length PacBio sequencing. RUNX1 ex-

presses a key transcription factor that regulates early thymocyte development.32,33

Rearrangements or mutations of RUNX1 are associated with multiple hematopoietic

neoplasms.34,35 Interestingly, recent evidence indicates germline mutations in RUNX1

are associated with an increased risk of acute lymphoblastic leukemia (ALL) and that

these mutations result in the generation of dominant negative isoforms of RUNX1.36

The Jurkat cell line, analyzed here, is derived from a 14-year-old male patient with

ALL.37 Therefore, understanding the isoform landscape of RUNX1 in our sample is

highly relevant. Overall, we predicted 11 novel full-length protein isoforms of RUNX1

(Appendix III: Figure 9.4). Eight of these predicted protein isoforms contain the

complete DNA binding Runt homology domain (RHD) sequence expressed in-frame

with novel downstream sequences (PB.15792.9, PB.15792.10, PB.15792.15, PB.15792.17,

PB.15792.18, PB.15792.32, PB.15792.33, PB.15792.40). Additionally, five of these pre-

dicted isoforms (PB.15792.17, PB.15792.18, PB.15792.32, PB.15792.33, PB.15792.40)

lack the transactivation domain (TAD) found in the longer RUNX1 protein isoforms.

The TAD recruits multiple cofactors (P300, CREBBP, TLE1) to RUNX1-binding sites,

and thus each novel protein isoform has the potential to represent a functional domi-

nant negative isoform capable of binding RUNX1 sites but unable to recruit relevant

cofactors that mediate gene activation or repression.35,38 Since full-length RUNX1 is
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known to generally activate T-cell differentiation genes and suppress multipotent

hematopoietic genes33, expression of these newly predicted dominant negative iso-

forms is consistent with supporting leukemogenic potential in Jurkat T-ALL. Peptide

identifications provide support for the presence of three protein isoforms in two dis-

tinct protein groups. The two isoforms PB.15792.10 and PB.15792.15, containing both

the RHD and TAD, are inferred as an indistinguishable protein group. Interestingly,

PB.15792.40, one of the predicted dominant negative isoforms, is identified with a

uniquely mapping peptide.

Long-read, sample-specific database leads to discovery of novel

protein isoforms

The MS search with the PacBio-Hybrid database revealed novel peptide sequences

which were absent from both the GENCODE and UniProt reference databases. Strin-

gent validation criteria were applied for novel peptide identifications and are de-

scribed in more depth in Appendix III: Section 9.5. We manually examined candidate

mass spectra and confidently identified 14 novel peptides, each corresponding to

a distinct event (Additional file 6: Table S4). Such events arose from a diversity

of mechanisms, including upstream ATG start site usage, translation of a retained

intronic region, and novel exons (Figure 4.5a–c).

Notably, 6 of the 14 novel detected peptides each map to a single isoform and

therefore provide direct evidence for expression of the corresponding full-length

protein isoform. Such a direct link from peptide to full-length protein is only available

with knowledge of full-length transcripts expressed in the sample.39 An example

of this is illustrated for the peptide, abbreviated as ESD, which confirms the novel

terminal exon in RABGAP1L, but also unambiguously maps to the full-length PacBio-
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derived protein isoform PB.1248.6 (Figure 4.5c). Only a small fraction of all potential

novel protein isoforms are identified directly by a novel peptide. This is unsurprising

based on previous reports regarding the detectability of isoform-specific tryptic

peptides. The low peptide coverage of alternative isoforms could be technical in

origin40,41, and the debate is ongoing regarding the extent to which novel transcript

isoforms are translated into proteins7,8.

Long-read RNA-seq-informed protein isoform identification

In order to infer the presence of protein isoforms, most protein inference algorithms

employ a probabilistic or parsimonious approach. Probabilistic protein inference

algorithms seek to estimate the probability that a given protein isoform is in the

sample on the basis of the peptides observed.42–45 Parsimonious protein inference

algorithms are more heuristically driven and follow Occam’s razor, which attempts

to define the smallest number of protein isoforms that “covers” the set of identified

peptides.9,45–49

Parsimonious algorithms are commonly used in the MS proteomics field as part

of search software platforms like Andromeda/MaxQuant and MetaMorpheus. How-

ever, this approach can lead to elimination of bona fide protein isoforms that lack

sufficient peptide support relative to other isoforms (Figure 4.6a).50 Alternative iso-

forms are particularly susceptible, because their isoform-specific regions comprise a

small fraction of the proteome and suffer from a negative detection bias in traditional

MS-based proteomics workflows using tryptic digestion.51

In our tryptic dataset, the peptides observed at 1% FDR could be the digestion prod-

ucts of up to 26,931 different PacBio-derived protein isoforms in the high-confidence

space. When traditional, parsimonious protein inference is applied to this peptide set,

the number of PacBio-derived protein isoforms present in inferred protein groups
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drops to 11,231, eliminating 15,700 potential protein isoforms due to lack of sufficient

peptide support. We hypothesize that a fraction of these eliminated protein isoforms

may actually exist in the sample, and their elimination reduces the precision and

accuracy of the protein inference results obtained.

Rescue & Resolve: direct incorporation of long-read data into protein inference

To overcome limitations of incomplete peptide coverage for protein isoform detec-

tion, we reasoned that the incorporation of long-read transcript isoform data directly

in the protein inference process could help inform on the presence of a protein iso-

form. For this purpose, we developed a heuristic-based protein inference algorithm

called “Rescue & Resolve” (R&R), which is implemented within a custom version of

MetaMorpheus (see Section 4.6). To our knowledge, this is the first protein inference

algorithm that incorporates long-read transcriptional abundance as an orthogonal

data source. As previously mentioned, the parsimonious protein inference process

makes decisions throughout the algorithm to discard, or eliminate, protein isoforms

from consideration for identification, because they lack the same level of peptide

evidence that competing isoforms possess. During this process, protein isoforms that

are actually present in the sample could be eliminated, generating false negatives.

The “rescue” portion of our “R&R” algorithm defines two cases in which a protein

isoform could be “rescued” from elimination (Figure 4.6a). The first case occurs

when a protein isoform’s mapped peptides are a subset of the peptides mapped to

another protein isoform (Case 1, Figure 4.6a). In this scenario, the parsimonious

algorithm would determine that the protein isoform which accounts for the most

peptides is the simplest answer, and therefore more likely to be correct by the prin-

ciple of Occam’s razor. The protein isoform that accounts only for a subset of the

peptides observed is eliminated from consideration for identification. The second
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case occurs when a protein isoform’s mapped peptides are subsumable to (i.e., can be

explained by) two or more protein isoforms which have additional peptide evidence

(Case 2, Figure 4.6a). In this scenario, there is a protein isoform for which all of its

peptide evidence can be explained by the existence of multiple protein isoforms that

all have more peptide identifications supporting their existence. Again, as in Case 1,

the parsimonious approach dictates that it is simpler, and therefore more likely, that

the protein isoforms with additional peptide support are the sole contributors to the

peptides being identified. The subsumable protein isoform is then eliminated from

consideration for identification. In the “rescue” portion of our R&R algorithm, during

the parsimonious process, protein isoforms that were eliminated due to scenarios

such as Case 1 and Case 2, are identified, and set aside as potential false negatives

that can be “rescued” from elimination. To determine whether or not a protein iso-

form should be “rescued” or eliminated, the long-read transcriptional abundance

information obtained for each isoform is leveraged as an additional source of data.

Since RNA abundance is at least moderately correlated with protein expression25,52

(R-squared = 0.65, Appendix III: Figure 9.5a), a high abundance transcript would

have a higher probability, than a low abundance transcript, of generating the corre-

sponding protein which was observed in our dataset (Appendix III: Figure 9.5b).

In the R&R algorithm, protein isoforms are only rescued from elimination if their

transcriptional abundance is greater than a user-specified abundance threshold. We

selected a conservative transcript abundance threshold of 25 CPM (see Appendix III:

Section 9.6 for parameter optimization details). The impact of the “rescue” portion

of the “Rescue & Resolve” algorithm on the protein inference results obtained were

compared to those obtained with the traditional parsimonious protein inference algo-

rithm within MetaMorpheus (details regarding MetaMorpheus’s inference algorithm

can be found at https://github.com/smith-chem-wisc/MetaMorpheus/wiki/Protei

https://github.com/smith-chem-wisc/MetaMorpheus/wiki/Protein-Parsimony-&-Grouping-(Protein-Inference)
https://github.com/smith-chem-wisc/MetaMorpheus/wiki/Protein-Parsimony-&-Grouping-(Protein-Inference)
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n-Parsimony-&-Grouping-(Protein-Inference)).

We rescued 355 protein groups, of which 343 (96.6%) are Case 1 and 12 (3.4%)

are Case 2 (Figure 4.6b). A common example, Case 1, is shown in Figure 4.6c for

isoforms of IFI16, in which the dominant isoforms (PB.1137.5 and PB.1137.24) are not

the isoform that contains the longest sequence (PB.1137.2). Notably, these isoforms

are entirely novel, as compared to isoforms found in GENCODE. Collectively, the

“rescued” protein isoforms represented a 6.5% increase in the number of PacBio-

derived protein isoforms identified at 1% FDR, compared to what is obtained without

the “R&R” algorithm, using MetaMorpheus’ traditional parsimonious approach.

Validation of protein inference approaches is exceedingly difficult, in that we do not

know the true composition of the sample, and standard protein mixtures lack the

complexity necessary to model the human proteome. This is especially true in the case

of modeling human isoform diversity where the “Rescue & Resolve” algorithm is most

beneficial. To validate the accuracy of the “rescued” protein isoform identifications,

we used an independent multi-protease MS dataset to generate a “ground truth” of

protein isoform presence, enabling us to calculate the rate of validation of the “rescued”

protein isoforms within the high coverage multi-protease dataset, as compared to the

validation rate of a random control (see Appendix III: Section 9.7). We observed

that 12.2% of protein groups that were “rescued” were confirmed to be expressed in

the multi-protease data, which is much greater than the average fraction of “rescued”

protein isoforms validated from the distribution of the randomized control at 1.4%

(N = 1,000 permutations, p-value < 0.0001, Figure 4.6d). Details on the construction

of the randomized control permutations can be found in Appendix III: Section 9.7.

Therefore, these results indicate that many true protein isoforms are rescued based

on the incorporation of long-read sequencing knowledge.

The “resolve” portion of the R&R algorithm addresses a third scenario which

https://github.com/smith-chem-wisc/MetaMorpheus/wiki/Protein-Parsimony-&-Grouping-(Protein-Inference)
https://github.com/smith-chem-wisc/MetaMorpheus/wiki/Protein-Parsimony-&-Grouping-(Protein-Inference)
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can arise during protein inference (Case 3, Figure 4.6a), where the parsimonious

process generates ambiguity through a protein group which contains two or more

indistinguishable protein isoforms (based on equivalent peptide evidence). Ambigu-

ous protein groups can be composed of three different classes of isoforms categorized

by their relative transcriptional abundance: (1) dominant (a “resolved” isoform),

(2) minor, or (3) co-expressed. The “resolve” portion of the algorithm provides

the opportunity to “resolve” these ambiguous protein groups to a single, dominant

isoform, or provides support for the co-expression of multiple protein isoforms based

on relative transcriptional abundance of each isoform within the group. For instances

of Case 3, the relative transcriptional abundances underlying the predicted protein

isoforms could indicate likelihood of expression.

We found 2,600 cases (Case 3, Figure 4.6a) of indistinguishable protein isoform

groups in the high-confidence space, in which one or more protein isoforms are

indistinguishable by peptide evidence alone. Our algorithm provides the relative

transcript abundance measures for protein isoforms within a group, enabling the

opportunity to resolve isoform identifications based on underlying transcript support,

which is fully at the discretion of the user (Appendix III: Figure 9.5c). We found that

in 1,434 cases, one isoform comprises more than 90% of the transcript abundance,

suggesting that a single dominant isoform could comprise the group. For these

dominant isoform-containing protein groups, the ambiguity of which protein isoform

is present within the sample was resolved, and a single protein isoform was considered

to be identified, increasing the precision of the protein inference results obtained.

Notably, not all protein groups can or should be resolved to a single isoform. There are

cases where multiple protein isoforms are co-expressed and the peptide evidence is

not comprehensive enough to be able to sufficiently distinguish them. It is important

to maintain protein group ambiguity when necessary and valid. We discovered 295
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protein isoform groups in which multiple protein isoforms may be co-expressed at

appreciable levels (2+ isoforms with relative abundance > 30%), indicating that

a single representative isoform cannot be assumed for these cases. We validated

the accuracy of the “resolved” protein isoform identifications by applying the same

multi-protease validation strategy used for “rescued” protein isoforms (see Appendix

III: Section 9.7). We observed that 21.2% of the “resolved” protein isoforms were

confirmed to be expressed in the multi-protease data, which is much greater than

the average fraction of “resolved” proteins validated from the distribution of the

randomized control, 10.0% (N = 1,000 permutations, p-value < 0.0001, Figure 4.6e).

Details on the construction of the randomized control permutations can be found

in Appendix III: Section 9.7. We also investigated the validation rate of the protein

isoforms that were removed from the protein groups, to determine if their removal

was justified. We observed that only 0.7% of the removed isoforms were confirmed to

be expressed in the multi-protease data. This is much less than the average fraction

of “resolved” proteins validated from the distribution of the randomized control

and the validation rate of the experimentally “resolved” protein isoforms (Figure

4.6e). Although the majority of the “resolved” protein isoforms (73%) are incapable

of producing a detectable unique peptide (7 to 50 amino acids) in any of the six

protease digests (Arg-C, Asp-N, Chym, Glu-C, Tryp, and Lys-C), 86 of the 387 (22%)

“resolved” isoforms capable of producing a theoretical unique peptide were confirmed

by the identification of a unique peptide identified in the multi-protease dataset. All

“rescued” and “resolved” groups may be found in Additional file 7: Table S5.

These results indicate that the incorporation of long-read transcriptional abun-

dance values into the protein inference process reveals protein isoforms that were

difficult to identify solely with MS peptide data.
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4.4 Discussion

The comprehensive characterization of the cellular proteome is a major goal in

proteomics to understand the molecular underpinnings of normal and disease states.

One factor impeding progress towards this goal is the lack of experimental approaches

that can easily identify proteins at isoform resolution. Current efforts employ short-

read RNA-seq approaches which cannot characterize full-length isoforms.22 Long-

read sequencing provides the ability to obtain full-length transcript reads23, allowing

the delineation of transcript isoforms and, therefore, potential full-length protein

isoforms for MS analysis39,53,54.

To our knowledge, this is the first long-read based proteogenomics pipeline that

integrates full-length transcripts with MS data for full-length protein isoform charac-

terization. We show that the availability of long-read-derived, sample-specific protein

isoform models is critical to enhance protein isoform detection. Our pipeline produces

sample-specific, full-length protein isoform databases which enables novel peptide

discovery, and outputs genome browser tracks for visualization of reference- and

sample-derived isoforms as well as peptide identifications. The pipeline also includes

the first protein inference algorithm to directly incorporate long-read sequencing data

to detect protein isoforms heretofore intractable to MS analysis (“Rescue & Resolve”).

Integrating long-read sequencing and proteomic data presented new challenges,

which we addressed through the development of new components in the pipeline.

We defined for each full-length transcript the most likely canonical ORF based on a

modified output of CPAT. Further, we created a new protein isoform classification

system, SQANTI Protein, based on the transcript isoform classification tool SQANTI3.

Finally, the “Rescue & Resolve” algorithm, through incorporation of long-read tran-

script isoform expression data into the protein inference process, enables the “rescue”
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of protein isoforms that have significant transcriptional support but are nonetheless

difficult to identify in MS due to high sequence overlap. The algorithm also enables

the user to “resolve” ambiguous protein isoforms that are indistinguishable based on

peptide evidence alone, by leveraging the relative transcriptional abundance for such

isoforms.

Our workflow identified 45,068 distinct candidate protein isoforms from a human

cell line (Jurkat cells), 22,807 of which were novel. These long-read sequencing-

derived protein isoforms were filtered, and a sample-specific PacBio-Hybrid database

containing 35,119 PacBio-derived protein isoform entries was generated. Proteomic

analysis of this database revealed 14 novel peptide identifications and 5,100 protein

isoform groups within the high-confidence space identifications at 1% FDR. Notably,

one of the novel peptides confirmed the translation of a transcript with a retained

intron, which highlights the utility of an empirical approach to uncover the translation

of transcripts not commonly thought to be translated. The implementation of the

heuristic-based Rescue & Resolve protein inference algorithm increased the number

of PacBio-derived protein isoform groups identified by 355, and resolved 1434 am-

biguous protein isoform groups to a single protein isoform identification. The resolve

approach also highlighted the existence of 295 protein isoform groups in which mul-

tiple protein isoforms appeared to be co-expressed at appreciable levels (2+ isoforms

with relative abundance > 30%), demonstrating it is not always appropriate to as-

sume a single isoform is expressed.14 Although the Rescue & Resolve algorithm was

developed for use with long-read sequencing information, the algorithm could also

be applied to proteogenomic databases and transcriptional abundance information

derived from short-read sequencing approaches.

The results and concepts described here provide a foundation for future develop-

ment of long-read proteogenomics. The pipeline’s flexible and modular nature lends



109

itself to adaptation. For example, the proteomic analysis portion of the pipeline could

be expanded to include a semisupervised learning post-search program such as per-

colator55 or mokapot56. In the future, we plan to expand the custom ORF prediction

algorithm to include the discovery of noncanonical ORFs, such as those with cognate

start sites (e.g., CTG) or short upstream ORFs commonly found in the 5'UTR.57–59

Another improvement to the pipeline will be an evolution of the heuristically driven

“Rescue & Resolve” approach. We plan to develop a probabilistic protein inference

algorithm in which transcriptional abundance values are incorporated into a rigorous

statistical framework for the inference of protein isoforms.43,60 The applications of

our computational pipeline could also include the analysis of novel genes or genetic

variations that are detectable in long-read data or separately available from previous

genotyping, use of ONT (i.e., nanopore) cDNA or direct RNA sequencing data54, the

analysis of single-cell RNA-seq, use of targeted long-read datasets61, or the use of

top-down proteomics data for the analysis of proteoform diversity62.

Though long-read proteogenomics and its application hold promise, limitations

remain. First, for the “Rescue and Resolve” approach, we assume at least a moderate

degree of RNA-protein correlation. Although isoforms from the same gene should

not greatly differ in their transcript-protein correlation, several studies have reported

isoform-specific mRNA translation63,64 suggesting that alternative splicing can gener-

ate transcripts with distinct cis-regulatory landscapes. Therefore, caution must be

taken for any given protein isoform, including follow-up confirmation of expression

in vivo. Second, as with any RNA-Seq-based dataset, even though a majority of the

isoform diversity detected from long-read RNA-seq approaches are likely due to co-

and post-transcriptional processing mechanisms, it is possible that genetic translo-

cations, deletions, or other mutations may give rise to what is ostensibly transcript

isoform variations that are actually genetic in origin. We used Jurkat cells as a model
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system, which is tetraploid, and may contain some isoform variations due to cancer-

related or natural genetic variants.65 Third, the pipeline results are dependent on the

quality of long-read RNA sequencing. Limitations in quality of the extracted RNA or

artifacts generated during the sample handling and library preparation process (e.g.,

PCR artifacts) can detrimentally impact accuracy of predicted protein models. The

sampling of full-length transcripts is known to be incomplete—ultra-long transcripts

or those transcripts lacking a polyA tail may be under sampled—and can impede the

ability to derive the entire proteome from transcript data alone. However, as both

ONT and PacBio sequencing improves in both coverage and sensitivity, an entire

long-read-derived proteome should be able to be generated de novo from sample-

specific transcriptomes. Furthermore, rigorous benchmarking studies, such as those

being conducted by The Long-read RNA-seq Genome Annotation Assessment Project

(LRGASP) Consortium, will reveal strength and limitations of these methods for the

community.66

Overall, the incorporation of long-read sequencing into proteogenomic workflows

represents a tremendous opportunity for isoform-resolved investigations in basic and

translational research. As long-read sequencing continues to evolve in throughput,

accuracy, and accessibility, long-read proteogenomics will be adopted by researchers

and clinicians and become a routine practice in the context of precision medicine.

4.5 Conclusion

We show that sample-specific protein isoform models derived from long-read

RNA-seq can lead to enhanced protein isoform detection. Our pipeline enables novel

peptide discovery and outputs genome browser tracks for visualization of reference-

and sample-derived isoforms as well as peptide identifications. We introduce the first
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protein inference algorithm that directly incorporates long-read sequencing data to

detect protein isoforms heretofore intractable to MS analysis (“Rescue & Resolve”).

This work represents a foundation for subsequent studies that integrate long-read

RNA-seq with proteomics for protein isoform characterization.

4.6 Methods

PacBio long-read RNA-seq

PacBio (Iso-Seq) data was collected on the Jurkat T-lymphocyte cell line. Jurkat

RNA was procured from Ambion (Thermo, PN AM7858). The RNA was analyzed

on a Thermo Nanodrop UV-Vis and an Agilent Bioanalyzer to confirm the nominal

concentration and ensure RNA integrity. We observed a RIN value of 9.9. From the

RNA, cDNA was synthesized using the NEB Single Cell/Low Input cDNA Synthesis

and Amplification Module (New England Biolabs).

Approximately 300 ng of Jurkat cDNA was converted into a SMRTbell library

using the Iso-Seq Express Kit SMRT Bell Express Template prep kit 2.0 (Pacific Bio-

sciences). This protocol employs bead-based size selection to remove low mass cDNA,

specifically using an 86:100 bead-to-sample ratio (Pronex Beads, Promega). Library

preparations were performed in technical duplicate. We sequenced each library on a

SMRT cell on the Sequel II system using polymerase v2.1 with a loading concentration

of 85pM. A 2-h extension and 30-h movie collection time was used for data collection.

The “ccs” command from the PacBio SMRTLink suite (SMRTLink version 9) was used

to convert Raw reads (∼ 6 million, over 349 Gbps) into Circular Consensus Sequence

(CCS) reads. CCS reads with a minimum of three full passes and a 99% minimum

predicted accuracy (QV20) were kept for further analysis.
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Jurkat RNA-Seq data download and analysis

Jurkat RNA-Seq data was previously collected on an Illumina HiSeq2000, generat-

ing ∼ 38.8 million paired-end 150 bp reads.67 The data was downloaded from GEO

(GSE45428).

To obtain estimated gene and isoform-level abundances, Kallisto (version 0.44.0)

was used, with raw reads and the GENCODE reference transcriptome (version 35,

GTF file of the comprehensive set, protein-coding genes only) as input.

Mass Spectrometry data collection

Bottom-up proteomic data was previously collected for the multi-protease and

trypsin-only data sets.48,67 Briefly, cells were cultured and processed with aliquots

of approximately 107 cells each (6 aliquots for multi-protease digest and 1 aliquot

for trypsin digest). Aliquots were lysed in SDT buffer (4% SDS, 500 mM Tris-

HCl (pH 7.4) and 180 mM DTT) and approximately 150 µg of lysate was used

for filter-aided sample preparation.68 Each aliquot for the multi-protease dataset

was digested with a different protease (Arg-C, Asp-N, chymotrypsin, Glu-C, Lys-

C, or trypsin), and the trypsin-only aliquot was digested using trypsin. Following

digestion, peptides were fractionated off-line by high-pH reverse-phase liquid chro-

matography (trypsin-only: 28 fractions, multi-protease: 11 fractions–10 fractions

for the second trypsin sample) and dried down. Fractions were then reconstituted

in 5% acetonitrile and 1% formic acid prior to LC-MS/MS analysis on a nanoAC-

QUITY LC system (Waters, Milford, MA) interfaced with a Thermo Scientific LTQ

Orbitrap Velos mass spectrometer. All mass spectrometry raw files are freely avail-

able online (multi-protease: https://massive.ucsd.edu/MSV000083304/; 28 fraction

trypsin: https://db.systemsbiology.net/sbeams/cgi/PeptideAtlas/PASS_View?da

https://massive.ucsd.edu/MSV000083304/
https://db.systemsbiology.net/sbeams/cgi/PeptideAtlas/PASS_View?datasetPassword=RE4343upo&identifier=PASS00215$
https://db.systemsbiology.net/sbeams/cgi/PeptideAtlas/PASS_View?datasetPassword=RE4343upo&identifier=PASS00215$
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tasetPassword=RE4343upo&identifier=PASS00215$ ).

PacBio Iso-Seq data analysis

Raw reads obtained from PacBio Sequel II sequencing were processed into high

fidelity (HiFi/CCS) reads using the ccs command in SMRTLink. Following CCS

read generation, the lima command was run to generate full-length reads contain-

ing both the 5 ′ and 3 ′ primer. The 5 ′ primer consists of the NEB cDNA sequence

(sequence: GCAATGAAGTCGCAGGGTTGGG). The 3 ′ primer consists of the Clon-

tech SMARTer cDNA primer (sequence: GTACTCTGCGTTGATACCACTGCTT).

Following isoseq3 refine processing, polyA tail sequences are removed. Then,

isoseq3 cluster is run in order to cluster full-length reads that correspond to the

same transcript isoform. This process allows for generation of full-length, non-

concatamer (FLNC) reads, which are subjected to further downstream processing, as

described below.

The high-quality, polished transcript sequences were mapped to hg38 using min-

imap69 (pbmm2, version 1.4.0) with the following parameters

--preset ISOSEQ -sort. Finally, isoseq3 collapse was run in order to combine

redundant reads which were not properly clustered in the isoseq3 cluster step.

We recovered the relative abundance of each of the final isoforms in each sample

by extracting the number of full-length reads supporting each polished isoform.

Full−length counts per million (CPM) were derived by dividing the number of full-

length non-chimeric reads aligning to a transcript isoform (i.e., the read became part

of the transcript during the isoform clustering step) by the total number of reads and

multiplying by a factor of 1,000,000. Only transcripts above one CPM were subjected

to further analysis in this study.

https://db.systemsbiology.net/sbeams/cgi/PeptideAtlas/PASS_View?datasetPassword=RE4343upo&identifier=PASS00215$
https://db.systemsbiology.net/sbeams/cgi/PeptideAtlas/PASS_View?datasetPassword=RE4343upo&identifier=PASS00215$
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Transcript isoform classification and filtering

SQANTI is a computational tool for classification and quality assessment of full-

length isoforms sequenced on long-read platforms.28 We used SQANTI3 version 1.3

to annotate the polished transcript isoforms obtained from the Iso-Seq analysis. We

used default parameters. Note that this includes the option to use genome-derived

sequences for the isoform output; therefore, transcriptional variations (alternative

N-termini, alternative splicing, etc.), but not genetic variations, will be captured in

the current version of our pipeline.

The inputs for SQANTI3 analysis include the GENCODE version 35 annotations

(i.e., GTF file) and the human reference genome (GRCh38, only canonical chromo-

somes chr1-22, X, Y). The SQANTI3 outputs —isoform and junction classification

files— were subjected to additional analysis using custom python scripts, which are

part of the Nextflow pipeline.

After running SQANTI3, we filtered out any transcript that was (1) classified as a

RT-template switching artifact by SQANTI3, (2) had 95% or higher Adenosine (i.e.,

polyA) content in 20 nt of the genome immediately downstream of the aligned 3 ′ end

of the transcript, indicating a possible dT intra-priming artifact, or (3) did not align

to a GENCODE-annotated protein-coding gene (while SQANTI3 does not exclude

transcripts based on coding potential, for the purpose of this study, we have excluded

them). Finally, we employed a modified version of Cupcake filter_away_subset.py

(https://github.com/Magdoll/cDNA_Cupcake) to remove 5 ′ transcript degradation

products.

https://github.com/Magdoll/cDNA_Cupcake
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Generation of a full-length protein isoform database from long-read

RNA-seq

ORF prediction

After deriving a high-confidence set of full-length transcript isoforms, we devel-

oped a pipeline for selection of the most biologically plausible canonical ORF for each

Iso-Seq transcript (orf_calling module in the Nextflow pipeline).

The Coding-Potential Assessment Tool (CPAT) was used to find all candidate

open reading frames (ORFs), allowing up to 50 candidate ORFs of 50 nt or longer. The

metrics in the CPAT result output (e.g., coding score, which incorporates a hexamer

score, ORF length and other metrics) were used for subsequent derivation of a final

score for each candidate ORF. Additional information on ATG start codon status

was used to generate this final score. For each candidate ORF, the ATG start codon

was determined and compared to the GENCODE-annotated ATG start codon. It is

difficult to predict the exact ATG start ab initio due to lack of a strong consensus

sequence for translational initiation sites genome-wide, but the identity of at least

some of these sites has been manually curated where literature evidence exists (e.g.,

HAVANA group, GENCODE). Therefore, any ORF containing an ATG start previously

annotated by GENCODE was selected in all cases. In the case that there are multiple

ORFs corresponding to two or more GENCODE proteins, we selected the upstream-

most ORF. Otherwise, the number of ATGs found upstream of the candidate ORF

start site was determined for incorporation into the final scoring metric. Note that

this final score employed heavy weighting for ORFs with ATG start sites closer to the

5 ′ end of the PacBio transcript.
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Protein database compilation

To generate a PacBio-derived protein database for MS searching, we grouped tran-

scripts that produce ORFs (i.e., proteins) of the same sequence (refine_orf_database

module in the Nextflow pipeline). Within each transcript grouping, a representa-

tive or base PacBio accession was chosen based on alphanumeric sorting. The total

transcript abundance for each grouping is the sum of all CPM values for member

transcripts.

A FASTA file was generated containing in the accession line the base Iso-Seq

accession and gene name. In addition to the FASTA file, a metadata table

(jurkat_orf_refined.tsv) was generated containing information on the base Iso-

Seq accession, all other accession(s) in the same protein sequence group, the gene to

which the isoform mapped, and the aggregated CPM.

GENCODE reference protein database

The GENCODE protein database used in this study was created by downloading

the protein-coding translation FASTA and grouping entries with the same protein se-

quence for each gene (see make_gencode_database module in the Nextflow pipeline).

There are many cases in which one or more GENCODE transcripts from the same

gene lead to the same protein sequence. We grouped such cases and defined a repre-

sentative protein accession as the first alphanumeric GENCODE protein accession,

by transcript name (e.g., GAPDH-201).

Cross-mapping of protein isoforms across databases

To compare protein isoform entries across the sample-specific (PacBio-derived)

and reference (GENCODE, UniProt) databases, we performed a standard sequence-
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alignment-based mapping (see accession_mapping module in the Nextflow pipeline).

Specifically, a pairwise alignment of all proteins between databases is conducted,

tolerating up to two AA mismatches. Up to two AA differences are tolerated since the

three databases originate from different sources of genomic or transcript nucleotide

sequence. For example, GENCODE protein sequences are derived from the human

reference genome, while many UniProt sequences were derived from cDNA sequences.

The mapping was done in an iterative manner, in which perfect alignments (i.e., end-

to-end match, no AA differences) were first sought and any remaining unmapped

entries were compared to the other databases allow for first a single AA and then (if

still unmapped) two AA mismatches. Any entries with differing protein lengths or

with more than two AA mismatches were considered distinct entries.

Mass spectrometry searching against the PacBio-derived and

GENCODE database

Standard proteomic analysis of the tryptic and multi-protease datasets was per-

formed using the free and open-source search software program MetaMorpheus.70 A

custom branch and docker image of MetaMorpheus was created (GitHub: https://gi

thub.com/smith-chem-wisc/MetaMorpheus/tree/LongReadProteogenomics, Docker:

https://hub.docker.com/r/smithchemwisc/metamorpheus/tags?page=1&ordering

=last_updated tag: lrproteogenomics) based on MetaMorpheus version 0.0.316 which

includes a novel protein inference algorithm termed "Rescue & Resolve". Analysis

was performed using either the sample-specific hybrid (PacBio+GENCODE, called

"PacBio-Hybrid") database (83,532 protein entries from 19,929 genes; in which the

subset of PacBio-derived entries are 35,119 protein entries from 6,653 genes), the

GENCODE human database (version 35; 87,729 protein entries from 19,929 genes),

https://github.com/smith-chem-wisc/MetaMorpheus/tree/LongReadProteogenomics
https://github.com/smith-chem-wisc/MetaMorpheus/tree/LongReadProteogenomics
https://hub.docker.com/r/smithchemwisc/metamorpheus/tags?page=1&ordering=last_updated
https://hub.docker.com/r/smithchemwisc/metamorpheus/tags?page=1&ordering=last_updated
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or the UniProt reviewed human database with isoforms (downloaded November 1st,

2020; 42,358 protein entries from 20,292 genes). All searches were conducted with

a contaminants database, included in MetaMorpheus, which contains 264 common

contaminant proteins frequently found in MS samples.

All RAW spectra files were first converted to MzML format with MSConvert

(centroid mode) prior to analysis with MetaMorpheus (see mass_spec_raw_convert

module in the Nextflow pipeline). For the MetaMorpheus MS search, the settings

used for all search tasks can be found in Appendix III: Table 9.4. MetaMorpheus

produces peptide spectral match (PSM), peptide and protein group result files, which

we analyzed in downstream custom modules. Peptide identifications constitute not

only the base amino acid sequence but also any post-translational modifications.

Two separate peptide identifications may be present for the same base sequence, but

exist as the modified and unmodified form. All peptide and protein results reported

employ a 1% false discovery rate (FDR) threshold after target-decoy searching.71

Computational pipeline with Nextflow

We implemented the long-read proteogenomic pipeline in Nextflow, a domain-

specific language allowing for the highly flexible development of bioinformatic

pipelines capable of being deployed on local machines, servers, or cloud environ-

ments.72 The ability to create distinct modules for different analyses through container-

ization (e.g., Docker) is a key benefit of this framework, enabling both the seamless

integration of long-read RNA-seq and mass spectrometry analysis workflows and the

flexibility to collaborate across research groups. These processes are automatically

parallelized for optimal efficiency of compute resources.

We developed a Nextflow pipeline to process PacBio data, convert resulting tran-

scripts into a protein database, and perform proteomics database searching. The
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workflow, including all source code, is publicly available on GitHub at https://github

.com/sheynkman-lab/Long-Read-Proteogenomics. All docker images may be found

in the Docker Hub (https://hub.docker.com/) under the repository gsheynkmanlab.

The analyses were performed on the Lifebit CloudOS platform (link: https://lifebi

t.ai/), and the analysis page is available with the shareable link https://cloudos.lifebit.

ai/public/jobs/60bcb29b303ee601a69d8c74. The pipeline structure, including details

for each module, is included in Appendix III: Figure 9.2. Modules can represent

a previously established program, a modified program, or a customized script for

either processing or analysis. The full details may be found on the Long-Read-

Proteogenomics GitHub Wiki page https://github.com/sheynkman-lab/Long-Rea

d-Proteogenomics/wiki.

Data anaysis and plot generation

All downstream data analyses were performed through custom Python and/or C#

scripts. Data analysis scripts used for figure generation may be found in the following

GitHub repository: https://github.com/sheynkman-lab/Long-Read-Proteogenomic

s-Analysis.

4.7 Availability of data and materials

All materials, including data used, workflows and analysis notebooks are available

in full accordance with the NIH Grants Policy Statement and the Principles and Guide-

lines for Recipients of NIH Research Grants and Contracts (https://grants.nih.gov/p

olicy/sharing.htm). Third-party datasets used in this manuscript include short-read

Jurkat RNA-seq data (Gene Expression Omnibus GSE45428) and bottom-up mass

spectrometry data for Jurkat cells (PeptideAtlas: PASS00215, ProteomeExchange:

https://github.com/sheynkman-lab/Long-Read-Proteogenomics
https://github.com/sheynkman-lab/Long-Read-Proteogenomics
https://hub.docker.com/
https://lifebit.ai/
https://lifebit.ai/
https://cloudos.lifebit.ai/public/jobs/60bcb29b303ee601a69d8c74
https://cloudos.lifebit.ai/public/jobs/60bcb29b303ee601a69d8c74
https://github.com/sheynkman-lab/Long-Read-Proteogenomics/wiki
https://github.com/sheynkman-lab/Long-Read-Proteogenomics/wiki
https://github.com/sheynkman-lab/Long-Read-Proteogenomics-Analysis
https://github.com/sheynkman-lab/Long-Read-Proteogenomics-Analysis
https://grants.nih.gov/policy/sharing.htm
https://grants.nih.gov/policy/sharing.htm
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PXD012272). Raw long-read RNA-seq data collected on the PacBio platform are avail-

able from the Sequence Read Archive (PRJNA783347, corresponding to accessions

SRX13222302 and SRX13222303).

Data generated by both mass spectrometry and long-read RNA sequencing used

in the execution of results for this work are available on Zenodo (10.5281/zen-

odo.5703754). The long-read proteogenomics workflow results generated using

the mass spectrometry and long-read RNA-sequencing data are available on Zenodo

(https://doi.org/10.5281/zenodo.5987905).

The open-source software produced in the making of this work is freely available

under the MIT license found in the GitHub repository (https://github.com/sheynkm

an-lab/Long-Read-Proteogenomics). The workflow language used in the generation

of the results was Nextflow (http://nextflow.io) and the long-read proteogenomics

workflow may be found in the repository (https://github.com/sheynkman-lab/Lon

g-Read-Proteogenomics/main.nf). A README (https://github.com/sheynkman-l

ab/Long-Read-Proteogenomics/blob/main/README.md) is located in the reposi-

tory, guiding the user to the Wiki (https://github.com/sheynkman-lab/Long-Rea

d-Proteogenomics/wiki) describing each of the pipeline processes (https://github

.com/sheynkman-lab/Long-Read-Proteogenomics/wiki/Pipeline-Processes) and

provides for pipeline vignette (https://github.com/sheynkman-lab/Long-Read-Pro

teogenomics/wiki/Pipeline-Vignette). Test data used in the pipeline vignette and

with the GitHub actions run to ensure workflow integrity through continuous testing

are available on Zenodo (10.5281/zenodo.5234651).

Code used to generate the main figures and tables in this manuscript can be found

in the GitHub repository (https://github.com/sheynkman-lab/Long-Read-Proteog

enomics-Analysis).

All containers used in the workflow are located in Dockerhub (https://hub.dock

https://doi.org/10.5281/zenodo.5987905
https://github.com/sheynkman-lab/Long-Read-Proteogenomics
https://github.com/sheynkman-lab/Long-Read-Proteogenomics
http://nextflow.io
https://github.com/sheynkman-lab/Long-Read-Proteogenomics/main.nf
https://github.com/sheynkman-lab/Long-Read-Proteogenomics/main.nf
https://github.com/sheynkman-lab/Long-Read-Proteogenomics/blob/main/README.md
https://github.com/sheynkman-lab/Long-Read-Proteogenomics/blob/main/README.md
https://github.com/sheynkman-lab/Long-Read-Proteogenomics/wiki
https://github.com/sheynkman-lab/Long-Read-Proteogenomics/wiki
https://github.com/sheynkman-lab/Long-Read-Proteogenomics/wiki/Pipeline-Processes
https://github.com/sheynkman-lab/Long-Read-Proteogenomics/wiki/Pipeline-Processes
https://github.com/sheynkman-lab/Long-Read-Proteogenomics/wiki/Pipeline-Vignette
https://github.com/sheynkman-lab/Long-Read-Proteogenomics/wiki/Pipeline-Vignette
10.5281/zenodo.5234651
https://github.com/sheynkman-lab/Long-Read-Proteogenomics-Analysis
https://github.com/sheynkman-lab/Long-Read-Proteogenomics-Analysis
https://hub.docker.com/r/sheynkmanlab/long-read-proteogenomics
https://hub.docker.com/r/sheynkmanlab/long-read-proteogenomics
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er.com/r/sheynkmanlab/long-read-proteogenomics).
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5.1 Abstract

Human immunodeficiency virus type 1 (HIV-1) remains a deadly infectious

disease despite existing antiretroviral therapies. A comprehensive understanding of

the specific mechanisms of viral infectivity remains elusive and currently limits the

development of new and effective therapies. Through in-depth proteomic analysis

of HIV-1 virions, we discovered the novel post-translational modification of highly

conserved residues within the viral matrix and capsid proteins to the dehydroamino

acids, dehydroalanine and dehydrobutyrine. We further confirmed their presence by

labeling the reactive alkene, characteristic of dehydroamino acids, with glutathione

via Michael addition. Dehydroamino acids are rare, understudied, and have been

observed mainly in select bacterial and fungal species. Until now, they have not

been observed in HIV proteins. We hypothesize that these residues are important

in viral particle maturation and could provide valuable insight into HIV infectivity

mechanisms.

5.2 Introduction

Human immunodeficiency virus type 1 (HIV-1) remains a contagious and deadly

infectious disease around the globe despite being heavily studied.1,2 Advances in

antiretroviral therapies have enabled the control of viremia, limiting disease pro-

gression and host transmission, but have been unable to completely eradicate latent

viral reservoirs.3 Research enhancing the understanding of the viral mechanisms

underlying HIV pathogenicity, latency, and persistence is critical for the development

of new and effective therapeutics.

Matrix and capsid proteins play critical roles in virion assembly, maturation, and

infectivity, making them important therapeutic targets. Immature HIV virions contain
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two copies of the HIV RNA genome surrounded by the structural viral polyproteins

Gag and Gag-Pol.1,4–6 Efficient maturation of viral particles, enabling infectivity, is

dependent on the cleavage of these polyproteins into their protein products, including

the matrix and capsid proteins.4,7 The matrix structural protein is critical to most stages

of the viral life cycle and is integral for targeting of the viral genome to the plasma

membrane.1,5,8 Most matrix protein molecules are associated with the membrane,

forming a protective and stabilizing shell, while others associate with the viral capsid

core.5,8 The capsid structural protein forms the viral core.4,9,10 Approximately 1,500

capsid structural protein monomers assemble into 240 hexameric and 12 pentameric

subunits, generating a fullerene cone that encapsulates the viral genome and other

associated proteins necessary for viral replication in the host.4,9–13 Proper assembly and

disassembly of the capsid core are vital for effective viral replication and infectivity.5,9

Characterization of matrix and capsid post-translational modifications (PTMs) is

critical to understanding viral mechanisms of action.

Dehydroamino acids are noncanonical amino acids installed in peptides and pro-

teins post-translationally, either enzymatically or nonenzymatically.14 Dehydroalanine

(DHA) and dehydrobutyrine (DHB) are the most frequently observed dehydroamino

acids and are most commonly generated via (a) the dehydration of serine or threonine,

(b) the loss of hydrogen sulfide from cysteine, or (c) the elimination of phosphate

from serine and threonine, or thiophosphate from cysteine (Figure 5.1A).14,15 Dehy-

droalanine can also be generated from the noncanonical amino acid selenocysteine via

the elimination of H2Se.16 Some research groups synthetically install dehydroamino

acids into peptides and proteins to leverage their chemical properties for further

derivatization.17–19 Dehydroamino acids are characterized by their α,β-unsaturated

carbonyl structure, which contains a highly reactive, electrophilic alkene capable

of undergoing numerous reactions such as Michael addition, hydrogenation, and
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cycloaddition.14,15,20,21 The conformational and chemical reactivity properties of dehy-

droamino acids can influence the bioactivity of the peptides or proteins in which they

are found.14 These residues can form irreversible inter- or intramolecular cross-links

with lysine, cysteine, or histidine, generating aggregates or cyclic peptides.14,20–23

Dehydroamino acids are most common in peptide natural products of bacteria or

fungal species14 but have also been observed in some human proteins such as human

serum albumin,24 thyroglobulin,17,25,26 and the lens proteins of the eye.20–22 Bacterial

enzymes such as phospholyases or dehydratases, such as Shigella type III effector

OspF, can lead to the generation of dehydroamino acids via an enzymatic pathway.18

However, in humans, there are no obvious orthologs to known phospholyases or

dehydratases.27 Because of this, within the human proteome, dehydroamino acids

are largely considered to be formed via nonenzymatic pathways. For example, the

lens proteins within the human eye are some of the most long-lived proteins in the

human body, and the formation of dehydroamino acid residues within these proteins

is suspected to occur via hydroxide ion-induced β-elimination reactions that can

occur under physiological conditions over time or may be induced by chemical stress

caused by UV-light exposure.20 Overall, the exact origin of many dehydroamino acids

in proteins is uncertain. Dehydroamino acid residues have not been widely observed

in viruses,28–30 are largely unstudied, and to the best of our knowledge, have not

previously been observed as modifications to HIV viral proteins.

Here, we report the discovery of DHA and DHB residues in the HIV-1 matrix

and capsid proteins, including validation of their presence by chemical derivatiza-

tion. We analyzed HIV-1 virions with mass spectrometry-based proteomics, both

with and without glutathione labeling. Glutathione reacts with DHA- or DHB-

containing peptides via Michael addition with the DHA or DHB alkene moieties. The

glutathione-labeling reaction yielded nine glutathione-modified residues: confirming
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the existence of two and three DHA residues within the matrix and capsid proteins,

respectively, and four DHB residues within the capsid protein. The sites of the DHA

and DHB modifications are highly conserved in various strains of HIV-1; therefore,

we hypothesize that their modification to DHA or DHB is important in viral particle

maturation and infectivity.

5.3 Methods

Plasmids and Cell Culture

Human embryonic kidney (HEK) 293T cells were obtained from American Type

Culture Collection (ATCC, Manassas, VA). Cell lines were cultured in Dulbecco’s

modified Eagle’s medium (DMEM) supplemented with 10% fetal bovine serum, 1%

l-glutamine, and 1% penicillin–streptomycin. All cells were maintained at 37 °C, 50%

humidity, and 5% CO2. The full-length HIV-1 proviral plasmid, wild type (WT), was

derived from the pNL4-3 molecular clone, where both env and vpr reading frames

contain inactivating point mutations in addition to the expression of a GFP reporter

from the nef reading frame.

Retroviral Assembly and Virion Preparation

HEK293T cells were plated as a monolayer into 10 cm tissue culture plates (Gene-

see Scientific, San Diego, CA) prior to transfection. For each plate, 10 µg of plasmid

DNA encoding the WT virus was transfected into cells using polyethylenimine ((PEI)

Polysciences Inc., Warrington, PA) and Gibco Opti-MEM (ThermoFisher Scientific,

Waltham, MA). Twenty-four hours post transfection, each well was supplemented

with fresh medium. Forty-eight hours post transfection, supernatants were harvested
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and passed through a 0.45 µm filter. Virions were concentrated and pelleted through

a 20% (wt/vol) sucrose cushion and subjected to centrifugation for 2 h at 21,130g and

at 4 °C. Pelleted virions were washed 3x with 10 mL phosphate-buffered saline (PBS),

followed by centrifugation for 10 min at 21,130g and at 4 °C. Pelleted virions were

flash-frozen in liquid nitrogen prior to downstream processing for mass spectrometry.

Proteomic Sample Preparation

Pelleted virions were lysed in 100 µL of lysis buffer (0.1% RapiGest SF and 8M

Urea) prior to sonication on ice for a total of 2 min, cycling between 30 s of sonication

and 30 s of rest. Samples were reduced by the addition of 5 µL of reducing buffer

(200 mM TCEP in 25 mM ammonium bicarbonate (ABC)) and incubated at room

temperature for 1 h. Alkylation of reduced cysteine residues was performed by the

addition of 10 µL of alkylation buffer (200 mM IAA in 25 mM ABC) to the sample

and incubation in the dark for 1 h. The lysate was diluted with 9 volumes (900 µL)

of 50 mM ABC (pH.8.5) to reduce urea concentration to a level compatible with

tryptic digestion. The sample was then divided into two 500 µL aliquots (glutathione

(GSH)-labeled and unlabeled). To the GSH-labeled sample, 100 µL of 600 mM GSH

in 50 mM ABC (pH 8.5) was added, making the final concentration of GSH 100

mM in solution. To the unlabeled sample, 100 µL of 50 mM ABC was added. Both

samples were allowed to incubate at 37 °C for 3 h prior to the addition of 1 µg trypsin.

Digestion was allowed to proceed overnight (17 h) at 37 °C.

Following digestion, both labeled and unlabeled samples were acidified with TFA

to reach a final concentration of 0.5% TFA and an approximate pH of 1 to facilitate

cleavage of the RapiGest SF detergent molecule into an insoluble fraction and MS-

compatible fraction. Acidified samples were heated at 37 °C for 30 min followed by

10 min of centrifugation at 13,000 rpm. The supernatant was transferred to a new
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microcentrifuge tube and dried using a SpeedVac concentrator. Samples were recon-

stituted in 100 µL of 95:5 H2O:ACN 0.1% TFA for desalting using a C18 solid-phase

extraction pipette tip (OMIX C18, 100 µL, Agilent Technologies). Desalted samples

were dried using the SpeedVac concentrator and reconstituted in 95:5 H2O:ACN 0.1%

TFA for mass spectrometric analysis.

Mass Spectrometry of Peptides

Samples were analyzed using a UPLC-MS/MS system consisting of an Easy-nLC

1200 ultra-high-pressure liquid chromatography system and an Orbitrap Fusion

Lumos mass spectrometer (ThermoFisher Scientific). Peptides were loaded in buffer

A (H2O, 0.2% formic acid) at a pressure of 300 Bar onto a 20 cm long fused silica

capillary nanocolumn packed with C18 beads (1.7 µm diameter, 130 Angstrom pore

size from Waters). Peptides eluted over 120 min at a flow rate of 350 nL/min with the

following gradient, where buffers consist of A (H20, 0.2% formic acid) and B (80%

acetonitrile, 0.2% formic acid): time 1 min, 5% buffer B; time 52 min, 30% buffer B;

time 80 min, 42% buffer B; time 90 min, 64% ACN; time 95–100 min, 85% buffer B;

time 101–120 min, equilibrate at 0% buffer B. The nanocolumn was held at 60 °C using

a column heater (in-house-constructed).

The nanospray source voltage was set to 2,200 V. Full-mass profile scans were

performed in the orbitrap between 375 and 1,500 m/z at a resolution of 120,000,

followed by MS/MS HCD scans in the orbitrap of the highest intensity parent ions in

a 3 second cycle time at a 30% relative collision energy and a 15,000 resolution, with a

2.5 m/z isolation window. Charge states 2–6 were included, and dynamic exclusion

was enabled with a repeat count of one over a duration of 30 s and a 10 ppm exclusion

width, both low and high. The AGC target was set to “standard”, the maximum inject

time was set to “auto”, and 1 microscan was collected for the MS/MS orbitrap HCD
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scans.

Spectra files for all four replicates, labeled and unlabeled, can be accessed on

MassIVE with the following identifier (MSV000088220).

Data Analysis

Spectral files were analyzed with the free and open-source search software pro-

gram MetaMorpheus (version 0.0.319, https://github.com/smith-chem-wisc/Meta

Morpheus). Labeled and unlabeled samples were searched separately but using the

same conditions. Since HIV virions contain both human and viral proteins, multiple

search databases were utilized. The Swiss-Prot human XML (canonical) database

containing 20,380 protein entries (downloaded from UniProt 4/12/2021) was utilized.

For HIV, the human immunodeficiency virus type 1 group M subtype B (isolate

HXB2) database was downloaded from UniProt and amino acid differences between

the HXB2 strain and the strain used for analysis were made manually. Additional

entries were generated for the protein cleavage products of Gag and Gal-pol. All viral

protein sequences can be found in Appendix IV: Table 10.4.

Global post-translational modification discovery (GPTMD), within MetaMor-

pheus, was used to identify post-translational modifications that are not annotated

in the reference database and may constitute novel PTM identifications. GPTMD

enables numerous modifications to be searched for concurrently, without the same

deleterious false discovery rate (FDR) implications that would occur if a variable

modification search strategy was employed.31,32 A custom class of modifications was

added to GPTMD to enable the identification of peptides containing glutathione-

labeled dehydroamino acids. Since the discovered dehydroamino acid residues are

not present in the reference database, the mass shift searched for by GPTMD for the la-

beled corresponds to the total mass shift that would occur, going from an unmodified

https://github.com/smith-chem-wisc/MetaMorpheus
https://github.com/smith-chem-wisc/MetaMorpheus
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serine, cysteine, or threonine residue to a glutathione-labeled dehydroalanine or de-

hydrobutyrine residue (+289.073, +273.096, and +289.073 Da, respectively). GPTMD

was performed separately for the HIV and human database (all modifications selected

for GPTMD can be found in Appendix IV: Table 10.5). Raw mass spectral files were

then searched against the GPTMD HIV and GPTMD human databases, as well as

the internal contaminant database included with MetaMorpheus. MetaMorpheus

combines the three databases and searches them together in a single search (search

task settings can be found in Appendix IV: Table 10.6), with carbamidomethylation

of cysteine as a fixed modification and oxidation of methionine as a variable modifi-

cation. All of the protein sequences from the searched databases were reversed to

form the decoy database used to calculate FDR. Search results can be accessed with

Zenodo (https://doi.org/10.5281/zenodo.5838422).

5.4 Results

Our lab has developed a proteomic search software program, MetaMorpheus,

which enables the highly confident identification of post-translational modifications

from bottom-up mass spectrometry (MS) data (https://github.com/smith-chem-w

isc/MetaMorpheus). Global post-translational modification discovery (GPTMD)

analysis, within MetaMorpheus, can reveal PTMs previously unannotated in the

search database by identifying peptide spectral matches (PSMs) whose precursor

mass differs from its most likely theoretical peptide match by that of a PTM.31,32 DHA

and DHB from serine and threonine would both have a mass shift of −18.01 Da, and

DHA from cysteine would have a mass shift of −33.987 Da. When these mass shifts,

corresponding to potential DHA and DHB modifications, are observed in an initial

search of a peptide mixture, the potentially modified candidate peptides are then

https://doi.org/10.5281/zenodo.5838422
https://github.com/smith-chem-wisc/MetaMorpheus
https://github.com/smith-chem-wisc/MetaMorpheus
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added to the search database, which is employed in a second and final search. The use

of this search tool for the analysis of the HIV-1 viral proteome revealed the presence of

possible dehydroamino acid residues within the capsid and matrix structural proteins,

which had not previously been identified in HIV viral proteins.

Bottom-up mass spectrometry-based proteomic analysis was performed on four

biological replicates of HIV-1 virions. These virions were isolated from HEK293T

cells transfected with a HIV-1 proviral plasmid derived from the pNL4-3 molecular

clone, rendered biosafe due to inactivating point mutations in both the env and

vpr reading frames. Proteomic data analysis, including GPTMD followed by basic

database search, was carried out using MetaMorpheus (see the Methods section for

details). Search results yielded 169,860 peptide spectral matches (PSMs) and 3,742

protein identifications from both the human host and HIV-1 viral proteomes at a 1%

false discovery rate (FDR) (see Appendix IV: Table 10.2). A total of 1,953 PSMs from

the host and viral proteomes were identified as containing possible dehydroalanine

or dehydrobutyrine residues; these PSMs were filtered to both a 1% FDR and a 1%

posterior error probability (PEP) q-value. The capsid and matrix viral structural

proteins accounted for 54% of all PSMs containing putative dehydroamino acids.

Additionally, the capsid and matrix proteins exhibited a greater relative abundance of

dehydroamino acid-containing PSMs compared to most host proteins, as determined

by dividing the number of dehydroamino acid-containing PSMs by the total number

of PSMs for that protein. Specifically, 4% of all capsid PSMs and 11% of all matrix

PSMs contained a putative dehydroamino acid residue, compared to an average of

1.8% for the 100 most abundant host proteins (by PSM count) containing putative

dehydroamino acid residues (see Appendix IV: Table 10.3). These results indicate

the enrichment of dehydroamino acids in the viral capsid and matrix proteins relative

to the rest of the human proteome, suggesting that these residues may constitute an
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important HIV-1 post-translational modification.

The reproducibility of the identification and localization of the putative dehy-

droamino acid residues within the capsid and matrix proteins is very important to the

confidence of their discovery. Four biological replicates of HIV virions were analyzed,

and a total of 1,058 dehydroamino acid-containing PSMs that map to either the capsid

or matrix protein were identified. These PSMs were attributed to 133 distinct peptide

identifications (peptides with no ambiguity and a unique combination of PTMs and

base amino acid sequence (1% FDR, 0% group FDR, and 1% PEP q-value)). Eighty-

one of these modified peptides were found in at least 2 biological replicates and are

therefore considered reproducible (see Appendix IV: Section 10.1). Although a

peptide may only be identified in two biological replicates, the dehydroamino acid

residue it identified can also be found in other peptides. These 81 peptides support

the putative existence of 29 dehydroamino acid residues (16 DHA and 13 DHB), with

28 of the 29 being identified in 3 or more biological replicates.

The existence of the candidate post-translationally installed dehydroamino acid

residues was confirmed by the derivatization of lysate aliquots, from each of the

four biological replicates, with glutathione. Accessible dehydroamino acids, con-

taining the characteristic electrophilic double bond of the α,β-unsaturated carbonyl,

will undergo Michael addition with glutathione, leading to labeled peptides with

a large distinctive mass shift of +307.32 Da from the dehydroamino acid (Figure

5.1B). Confirmation of the existence of the putative dehydroamino acid residues

was required for two main reasons. First, proteomic searches for infrequent PTMs

in complex samples are susceptible to false positive identifications. False positive

identifications are always a concern in proteomic data analysis, and their likelihood

increases when previously unannotated PTMs are investigated.32 Specific labeling

with glutathione of the reactive alkene present in dehydroamino acids would confirm
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Figure 5.1: Schemas for dehydroamino acid generation and labeling. (A) Most com-
mon routes to dehydroalanine (DHA) and dehydrobutyrine (DHB) formation. De-
hydroalanine (DHA) can be generated via the dehydration of serine, the elimination
of hydrogen sulfide from cysteine, or the elimination of phosphate/thiophosphate
from either phosphoserine or phosphocysteine. Dehydrobutyrine (DHB) can be
generated via either the dehydration of threonine or the elimination of phosphate
from phosphothreonine. (B) Schema of labeling DHA and DHB with glutathione
for a distinct mass shift of +307.32 Da from the dehydroamino acid. Labeling of
dehydroalanine from serine or dehydrobutyrine from threonine gives a net mass
shift of +289.07 Da relative to the originating serine or threonine residue. Labeling of
dehydroalanine from cysteine gives a net mass shift of +273.096 Da relative to the
originating cysteine residue.
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their identities. Second, the −18 Da mass shift indicative for DHA and DHB from ser-

ine and threonine, respectively, correlates generally to the loss of water, which could

arise from multiple sources such as other water losses on the peptide either already

present in the sample itself or induced during the preparation process. Labeling with

glutathione not only confirms that the characteristic alkene of dehydroamino acids

was present but also that the mass shift of −18 Da did not occur through an alternative

mechanism. MetaMorpheus search results of glutathione-treated samples identified

33 glutathione-labeled capsid and matrix peptides (1% FDR, 0% group FDR, and 1%

PEP q-value) with no ambiguity regarding their base amino acid sequence or the

localization of post-translational modifications, 18 of which were present in two or

more biological replicates. These 18 labeled peptides confirmed 9 dehydroamino acid

residues in total, 2 in the matrix protein and 7 in the capsid protein (see Table 5.1).

Representative annotated spectra for peptide identifications confirming the DHA

residue at cysteine 86 in the matrix protein are shown in Figure 5.2. Annotated spectra

for the PSM with the most matching fragment ions for the other dehydroamino acid

residues can be found in Appendix IV: Figures 10.1 to 10.8. Since the elimination of

phosphate from phosphorylated amino acids is one potential route to DHA/DHB for-

mation (see Figure 5.1A), it is interesting to note that for all seven of the DHA/DHB

residues confirmed in the capsid protein, the phosphorylated form of the precursor

amino acid at that position was also identified in at least two biological replicates

(Table 5.1). All nine confirmed dehydroamino acid modifications occur at highly con-

served serine, threonine, or cysteine residues across various HIV strains, indicating

their potential functional significance (Table 5.1).33

We believe the confirmed dehydroamino acid residues to be of biological origin,

not generated during the sample preparation process. During the entire sample

preparation process, conditions were avoided which could lead to the artifactual
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Figure 5.2: Annotated spectra for peptide identifications confirming the DHA and
glutathione-labeled DHA at residue 86 in the HIV matrix protein. (A) DHA and (B)
glutathione-labeled DHA, which is normally a cysteine in an unmodified peptide.
Identified y-ions are in red, b-ions are in blue, a-ions are in cyan, and internal ions
are in green. Water loss ions are annotated with a degree symbol, and ammonia
loss ions are annotated with a star. Within the annotated sequence, the site of DHA
modification is highlighted by the pink circle, and the site of the glutathione-labeled
DHA modification is highlighted by the purple circle. In panel A, y-ions 5–13 all
confirm the DHA modification and are shifted by−33.987 Da relative to the theoretical
m/z of the peaks of an unmodified peptide. In panel B, y-ions 5–10 all confirm the
glutathione-labeled DHA modification and are shifted by +273.096 Da relative to the
theoretical m/z of the peaks of an unmodified peptide and by +307.32 Da relative to
those of the DHA-modified peptide.
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generation of dehydroamino acids, such as heavily basic conditions (pH > 10) or

prolonged high heat. Post sample preparation, it is possible for dehydroamino acids

to be generated in the source of the mass spectrometer. We know this is not the case

for our confirmed dehydroamino acids for two reasons. First, if the dehydroamino

acid were generated in the source, labeling with glutathione would not have occurred.

Second, the normal and dehydroamino acid-modified peptides would have the same

retention time, which is not the case (the retention times for all DHA/DHB-modified

PSMs and their unmodified counterparts can be found in Supporting File Table S2).

The matrix and capsid proteins have been heavily studied due to their critical

importance to the HIV virus. We investigated the existing literature to determine

if the sites of any of the confirmed dehydroamino acid residues had been shown

to have an impact on virion production or viral infectivity. We found, for the nine

confirmed sites of dehydroamino acid modifications, studies examining the effects of

site-specific mutagenesis.6,34–41 For all but one of the modified residues, mutagenesis

had a detrimental effect on virion production or infectivity.

Both the HIV matrix and capsid proteins are composed of an N-terminal domain

(NTD) and a C-terminal domain (CTD). The HIV matrix protein includes five α-

helices, a 310 helical stretch, and a three-strand mixed β-sheet.42 The N-terminal

domain (NTD) of the matrix protein is composed of α-helices 1–4 and the 310 helix,

which are tightly packed together forming a globular structure.42 The C-terminal

domain (CTD) is composed of the final α-helix and the β-sheet, which protrudes out

from the NTD.42 The DHA residues present in the matrix protein at residues 56 and

86 are within the NTD in helices 3 and 4, respectively (Figure 5.3A).34 Site-specific

mutagenesis studies targeting these sites did show that the mutation of these cysteine

residues had an impact on HIV-1 infectivity.34,35 The mutation of cysteine 56 to serine

resulted in no virion production and no infectivity, likely creating a defect during
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either assembly or release of the virions.34,35 This mutated form of the matrix protein,

when purified, was shown to be completely unfolded, indicating the importance of

the cysteine 56 residue to the matrix protein tertiary structure.34 This phenomenon

is of particular interest, as dehydroalanine residues can provide structural integrity

through intramolecular cross-links. In contrast to the effect of mutating cysteine 56,

the mutation of cysteine 86 to serine does not have as significant of an impact on the

HIV life cycle and the mutated product supports normal virion production levels.

However, it does exhibit slowed viral replication and reduced infectivity.34,35

Figure 5.3: Tertiary structure of the HIV-1 matrix and capsid proteins. (A) Structure
of the matrix protein monomer (PDB: 1HIW). (B) Structure of the capsid protein
monomer (PDB: 3H47). N-terminal domains of both proteins are in light gray, and
C-terminal domains are in black. Residues with confirmed dehydroamino acid
modifications are highlighted in color, with DHA from serine and cysteine in green
and cyan, respectively, and dehydrobutyrine from threonine in pink.

The NTD of the capsid protein is composed of an N-terminal β-hairpin, seven α-

helices, and an extended loop.36 The NTD is connected to the CTD, which is composed

of four smaller α-helices, by a flexible linker region.36 The CTD of the HIV capsid
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protein is known to dimerize and further multimerize to drive the formation of

the capsid protein hexamer and pentamer structures that compose the fullerene

cone-shaped viral core.36 The first confirmed DHA site within the capsid protein

sequence is located at residue 16 on a loop between the β-hairpin and the first α-helix.

Phosphorylation of the originating serine residue is well established and is thought

to play a crucial role in the capsid core disassembly process through interaction

with the host peptidyl-prolyl isomerase, Pin1.37 Pin1 mediates the disassembly of

the capsid core through an unknown mechanism when phosphorylation of serine

16 is enabled and can interact with serine 16 and the neighboring proline residue.37

Since phosphorylation is a precursor to the formation of dehydroamino acids, it is

intriguing to speculate that the generation of DHA from the phosphoserine residue

may play a role in capsid core disassembly. The mutation of serine 16 to proline

results in nonviable virions, and mutation from serine to alanine results in decreased

infectivity relative to the wild-type virion.37,38

The DHB on residue 119 resides in helix 6 of the capsid protein, and previous

experiments mutating the originating threonine residue to alanine did not show

any drastic effects on infectivity or viral core formation.6,36 The other five confirmed

dehydroamino acids occur in the CTD of the capsid protein (Figure 5.3B). The

DHB at residue 188 is part of helix 9. The originating threonine residue is thought

to participate in capsid–capsid association, and its mutagenesis to alanine has a

significant impact on the dimerization of capsid proteins.39 It is interesting to consider

the possibility that these contacts are stabilized by intermolecular cross-links with

the DHB residue.

Capsid cysteine residues 198 (helix 10) and 218 (immediately after helix 11) each

have a confirmed DHA modification and influence the binding of host protein cy-

clophilin A (CypA). CypA is known to bind to the capsid core at the loop structure
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between helices 4 and 5 and to induce a large-scale conformational shift in the capsid

protein.40 The mutation of cysteine 198 to alanine prevents the CypA-mediated con-

formational shift from occurring and is associated with the inefficient disassembly of

the viral core.40 The mutation of the cysteine to alanine at residue 218 greatly reduces

CypA binding affinity and is associated with the inefficient assembly of the viral

core.40 Thus, both residues have been shown to play important roles in viral core for-

mation and stability. The DHB at residue 210 is located within a loop between helices

10 and 11, which appears to be an interaction point for the host protein lysyl-tRNA

synthetase (LysRS).41 The interaction of LysRS with the capsid protein is critical for

the specific packaging of tRNALys3, which serves as the primer for HIV-1 reverse

transcription.41 Mutation of threonine 210 to alanine drastically decreases the binding

affinity of LysRS to the capsid protein.41 The last confirmed DHB at residue 216 is part

of helix 11, and mutation of this threonine residue to alanine decreases the infectivity

of the virus and also severely impacts the spreading fitness of the virus relative to the

wild type38,41 (Table 5.2).

In summary, it is evident that the majority of the residues, where dehydroamino

acid modifications were confirmed in this study, play critical roles in the viral life

cycle. Future work will seek to determine possible mechanistic roles played by these

interesting protein modifications.

5.5 Conclusions

We have discovered the presence of multiple DHA and DHB residues in the

matrix and capsid HIV viral proteins and confirmed their presence by means of

chemical derivatization with glutathione and MS analysis. Many of the residues,

where DHA and DHB modifications are present, have been shown to play critical roles
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in the HIV viral life cycle and infectivity. In future work, we will seek to determine

if these modifications give rise to intra- or intermolecular cross-links and explore

their possible functional roles within the HIV-1 virion. Additionally, we plan to

investigate the mechanism of generation for these modifications within the matrix

and capsid proteins. We hope to explore whether they are enzymatically installed, via

a phospholyase-like enzyme, or nonenzymatically generated. Once the enzymatic or

nonenzymatic pathway generating these modifications has been determined, we will

seek to ascertain whether the proteins are modified in the host cell, in the immature

HIV-1 virion or in the mature HIV-1 virion.
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6.1 Summary

The focus of this thesis is the development of new tools and methods to improve

characterization of the proteome through the incorporation of additional data. To-

wards this goal, the projects described here highlight the expansion of bottom-up

proteomic experiments and data analysis workflows to include additional data from

either alternative proteases, long-read RNA-sequencing, or from post-translational

modification discovery.

Both Chapters 2 and 3 focus on the incorporation of alternative proteases to im-

prove proteome characterization. Orthogonal proteases can provide a great deal

of additional information by reaching into regions of the proteome considered in-

tractable to tryptic digestions, increasing sequence coverage and decreasing sampling

bias. In Chapter 2, we discuss our development and implementation of a novel

protein inference algorithm which leverages multi-protease data to provide more

precise and accurate results relative to what can be achieved with either trypsin

alone, or with other protein inference algorithms not optimized for multi-protease

data. The accuracy of protein inference results is of critical importance because the

protein or protein group identifications made are subsequently used downstream to

draw biological conclusions. Our approach helps maximize the benefits of collecting

multi-protease data for bottom-up proteomic experiments. In Chapter 3, we outline

the development and utility of our in silico digestion tool, ProteaseGuru, which seeks

to facilitate the evaluation of alternative proteases for specific experimental applica-

tions. ProteaseGuru provides theoretical peptides, their physiochemical properties,

information regarding uniqueness, as well as data visualization to empower users to

make informed decisions regarding the incorporation of alternative proteases into

their experimental workflows. ProteaseGuru is the most broadly applicable in silico
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digestion tool because it can help facilitate both very targeted experiments such as

those focused on discovering post-translational modifications or amino acid variants,

as well as experiments with a broader scope focused on profiling the entire proteome

of a single species, or a sample containing multiple species.

In Chapter 4 we highlight the importance of incorporating transcriptomic data

into proteomic analysis for the purpose of generating a sample-specific database.

More specifically, this project focused on the benefits of utilizing PacBio long-read se-

quencing data to create an isoform-centric protein database. We developed a software

pipeline which generates sample-specific databases from PacBio long-read sequencing

data, facilitates proteomic analysis and provides genome browser tracks for isoform

visualization. Utilizing this isoform-centric sample-specific database led to the iden-

tification of novel peptides and enhanced overall protein isoform characterization.

This work provides a foundation for future studies seeking to integrate long-read

transcriptomics with proteomic data for protein isoform identification.

The routine inclusion of post-translational modification discovery in proteomic

data analysis workflows is very important because PTMs are widely considered to be

one of the largest contributing factors to the dark proteome. Ignoring the presence of

PTMs not only limits the coverage and comprehensive nature of the results obtained,

but also their biological relevance as PTMs can be critical to understanding complex

biological processes. In Chapter 5, we describe a very intriguing application of global

post-translational modification discovery, which resulted in the identification of

multiple dehydroamino acids within the matrix and capsid proteins of HIV. Following

their initial discovery, we were able to further confirm their presence through the

development of a chemical labeling strategy in which glutathione covalently attaches

to the modified residue, creating a distinct and identifiable mass shift. The impact

of these modifications on the virus itself is not yet understood, but the residues on
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which they were found are known to be critical to the viral life cycle and to infectivity.

Without robust PTM discovery, or a validation schema, these interesting and rare

PTMs would still be part of the HIV dark proteome.

The new tools and approaches for the integration of additional data for enhanced

proteomic analysis described here are widely applicable and can serve as a founda-

tion for others seeking to maximize the information obtained from their bottom-up

proteomic experiments. In the remainder of this chapter, I will discuss future ideas

extending each one of the projects highlighted in this thesis.

6.2 Leveraging Multi-Protease Data for Proteoform

Inference

On the path to comprehensive characterization of the proteome, a shift towards

the identification of proteoforms over proteins and peptides alone is inevitable and

critical. However, top-down proteomics is not currently in a position to be able to

characterize the entire proteome due to its mass range and sensitivity limitations.1

Bottom-up proteomics, while unable to identify intact proteoforms directly, has the

depth of sensitivity required to characterize an entire proteome more comprehen-

sively. Integration of top-down and bottom-up data can help bridge the gap between

what is necessary for proteoform-level characterization of the proteome, and what is

achievable by top-down proteomics today.

There are many different manners in which top-down and bottom-up data can

be integrated to benefit characterization of the proteome. Schaffer et. al. outlined

several of these approaches including the use of bottom-up data to help localize

post-translational modifications within proteoforms and utilizing proteoform identi-

fications to help improve bottom-up protein inference.2 One area of bottom-up and
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top-down integration that I am particularly interested in extending from Schaffer

et. al. is the use of bottom-up peptide identifications to infer the presence of proteo-

forms.2 Inferring the presence of proteoforms from peptides of any single protease

would be incredibly difficult and likely inaccurate. However, due to the increased

sequence coverage and presence of overlapping peptides, multi-protease data can

feasibly be used to more accurately infer the presence of proteoforms. The process of

developing multi-protease proteoform inference would not be trivial, and many of

the same complications that plague protein inference would also be problematic for

proteoform inference. Due to the inherent uncertainty conferred by the inference of

proteoforms from peptide identifications, inferred proteoforms should be considered

more as putative proteoform identifications and not as confident as those obtained

directly from top-down or intact mass data. These putative identifications can be

utilized to generate a database of theoretical proteoforms present in the sample which

can help serve to inform future top-down proteomic experiments and could function

as a starting point for the generation of inclusion lists in targeted proteoform analyses.

Development of a multi-protease proteoform inference algorithm would further

extend work demonstrated in Chapter 2 of this thesis. As in Chapter 2, the developed

algorithm would maximize the utility of the multi-protease data for the inference

process. For example, overlapping peptides spanning multiple PTMs can indicate

the presence of particular proteoforms. Many different approaches could be taken

in the development of the algorithm, mirroring the approaches taken for bottom-up

protein inference such as optimistic, parsimonious or probabilistic. An optimistic

approach would be the most anti-conservative, in which peptide identifications

would be used to infer the maximal set of proteoforms possible. Conversely, the

parsimonious approach would be the most conservative, using the set of peptides to

infer the minimal set of proteoforms capable of explaining the identified peptides.
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Finally, probabilistic modeling would provide likelihood estimates for the existence of

different proteoforms given the peptide identifications. I would seek to first develop

a parsimonious approach, as it would inherit the most logic from our existing multi-

protease protein inference algorithm. Additionally, the use of a conservative approach

limits the number of false positive inferences. Once a parsimonious approach has been

established, I would then move towards development of a probabilistic model. Using

machine learning, a model for proteoform inference could be established through

training on current paired bottom-up and top-down data sets.

6.3 Expansion of ProteaseGuru to Include Peptide

Detectability Estimates

It is well understood that not all theoretical peptides for a given protein, or pro-

teome will end up being detected via mass spectrometry. There are a large number of

highly complex features that go into detection of a peptide, including but not limited

to the ionizability of the peptide and the stochastic nature of peptide selection by the

mass spectrometer. For a long time, the idea of determining a peptide’s detectability,

or probability that a peptide will be identified via an LC-MS/MS experiment, has

been of interest and highly desirable. A good deal of this interest has resulted from its

many potential applications in downstream data analysis processes such as protein

inference and protein quantification.3 I believe the inclusion of peptide detectability

estimates as part of the experimental planning process can be equally advantageous

and could serve as another factor to aid in the determination of which protease or

proteases should be utilized based on the sample and goal of the experiment. Expan-

sion of ProteaseGuru to include peptide detectability estimates would greatly expand

its functionality. With this expansion, users would not only be able to determine
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which proteases span a specific region or PTM of interest for a given protein, but also

the likelihood that the specific peptide would be detectable in a complex proteomic

mixture.

The determination of peptide detectability is very complex and has a long history.

Initially, standard protein mixtures were used to determine “standard” detectability

of a peptide. Although these algorithms were novel first steps, these approaches

failed to reliably model detectability for peptides outside of the standard mixtures

and fell short when applied to digests of complex lysates.3 What is widely desired

out of peptide detectability algorithms is an estimate of “effective” detectability.4

This means when analyzing a real-world complex mixture of proteins with varying

abundances, how likely is it that the peptide of interest will be identified. This is a

very difficult question to address due to the multitude of features that contribute

to the detectability of a peptide which expands beyond its basic physiochemical

properties. This question also takes into account the experimental protocol used, the

mass spectrometry platform, the abundance of the peptide and the software used

for peptide identification, amongst many other variables.3 It is near impossible to

generate an algorithm which can accurately account for all of these factors, but many

modern tools attempt to satisfy this by using machine learning on a great deal of

publicly available data from multiple organisms, platforms and preparation protocols

to generate a model for providing detectability estimates. Many of these tools, such as

DeepMSPeptide, have utilized this approach to achieve higher precision and accuracy

than what had been possible in the past.5

Ideally, we would like to implement an already existing open-source peptide

detectability algorithm such as DeepMSPeptide into ProteaseGuru. However, this

may not be entirely possible because almost all of the available tools have been

trained either exclusively on tryptic data, or have used data from publicly available
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repositories, of which the overwhelming majority would be tryptic.3,5 This means

that the algorithms are heavily biased towards tryptic peptides, and may fail to give

accurate peptide detectability values for non-tryptic peptides. This is problematic

because one of the critical features of ProteaseGuru is its emphasis on alternative

proteases. Having an algorithm which does not function reliably on peptides from

these alternative proteases would be entirely unacceptable. To address this, we would

first attempt to adapt the existing algorithm to accommodate peptides from alternative

proteases. This likely would require re-training the core model using data from

alternative proteases, with each protease as equally weighted as possible. Because of

the lack of publicly available multi-protease data, generation of additional quality

data sets would likely be required. If existing algorithms such as DeepMSPeptide

could not be sufficiently adapted, it would be necessary to generate our own peptide

detectability algorithm to suit our needs, likely inheriting components from existing

tools.

6.4 Integration of PacBio Long-Read Sequencing with

Top-Down Proteomics

The composition of the protein database used for analysis is just as important for

top-down proteomics as it is for bottom-up proteomics. In top-down proteomics,

with the measurable unit being intact proteoforms, there is very little room for error

regarding sample and database discrepancies. The entire sequence of the database

entry must exactly reflect that of the proteoform in the sample in order to be identified

by matching intact masses.

We have previously demonstrated the utility of sample-specific databases for

proteoform identifications in Cesnik et. al. in which short-read RNA-seq data was
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utilized to make a sample-specific database informed with sequence variants.6 We

were able to identify several proteoforms containing variants that were not represented

in the reference database, and therefore would have gone unidentified.6 However,

this approach did not consider protein isoforms. As discussed in Chapter 4, when

it comes to evaluating isoform diversity of a sample, the use of long-read RNA-

sequencing enables the identification of intact transcript isoforms eliminating the

need for transcript isoform reconstruction required with short-read RNA-sequencing.

It is clear that top-down proteomics and long-read RNA-sequencing are syner-

gistic technologies, both committed to the characterization of intact biomolecules.

Extension of our pipeline to include proteoform analysis using PacBio isoform-centric

databases is a clear next step in expanding its utility. This integration would enable

the identification of proteoforms translated from novel transcript isoforms. These

proteoforms would go unidentified when utilizing conventional reference databases,

and contribute to the dark proteome. Unfortunately, the limitations of top-down

proteomics might restrict the number of novel proteoforms we are able to identify

using a PacBio informed protein database. The molecular weight range limitations of

top-down proteomics will likely play a role in limiting the number of proteoforms

identified from novel spliced transcripts.1,7 For smaller proteins amenable for proteo-

form analysis, less than 30 kDa, alternative splicing is very well characterized.8 This

means it is likely there are fewer truly novel proteoforms that are identifiable relative

to those present in mass ranges not currently amenable to proteoform analysis of

complex mixtures. Additionally, the restricted sensitivity of top-down proteomics

would further complicate our ability to identify novel proteoforms.1 As mentioned

previously, top-down proteomics can only identify the most abundant proteoforms

present in complex mixtures. This is problematic because many of the novel transcript

isoforms discovered are not the major isoform for a given gene and are likely lower
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abundance on the protein-level.9 Although fractionation approaches could be uti-

lized to increase the depth of proteoform coverage, it is likely that many of the novel

proteoforms of interest would still be below the abundance threshold necessary for

identification. To address this, a more targeted approach to proteoform identifications

could be employed. Based on the isoform-centric database, an inclusion list of novel

proteoforms could be generated.

6.5 Functional Investigation of Dehydroamino Acids in

HIV

In Chapter 5 of this thesis we described the identification and confirmation of

nine dehydroamino acids within the HIV proteome, but their functional significance

remains unresolved. Here I will outline what I believe to be first steps towards

determining whether or not our discovered dehydroamino acids play an important

functional role in HIV.

As part of Chapter 5, we looked to previously existing literature surrounding site-

specific mutagenesis of our residues of interest, in order to get a sense of whether or

not they were believed to be important to the viral life cycle. The information that can

be extracted from a results section of a manuscript, written with a different scientific

hypothesis in mind, is limited relative to what can be gained from performing the

experiment first-hand. Towards this end, the first step on the journey to functional

characterization would be to perform our own site-specific mutagenesis experiments

with more targeted functional assays. Since four of the nine dehydroamino acids

originate from cysteine residues, it would be very important to try and distinguish

between any loss of function caused by the loss of the thiol group, and that caused

by the loss of the dehydroalanine residue. In an effort to try and parse out these
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functional implications, I propose a step-wise site-specific mutagenesis platform.

First, I would mutate the cysteine residues to serine residues, since serine is another

amino acid precursors for dehydroalanine. Ideally, if the source of dehydroamino

acid formation is adaptable to this alteration, the dehydroalanine site would remain

intact. We would perform proteomics experiments on the mutants to confirm the

retention of the dehydroalanine residues of interest. If the dehydroalanine residue

is conserved, we may be able to attribute any functional defect observed to the loss

of the thiol functional group. Subsequently, cysteine to alanine mutants would be

generated which would represent the loss of both the thiol functional group and the

loss of the dehydroamino acid modifications. By comparing the functional differences

of these two mutants, we should be able to extract out attributes unique to the loss

of the dehydroamino acid residues. In general, the results of our own site-specific

mutagenesis experiments would provide strong direction towards what experiments

should be pursued further to functionally characterize dehydroamino acids within

the HIV proteome.

Alongside our site-specific mutagenesis work, we could also perform a few very

targeted proteomic experiments to evaluate the viability of some of our current hy-

potheses surrounding the function of dehydroamino acids within the capsid and

matrix proteins. Based on their chemical properties and elevated reactivity, we believe

it is plausible that dehydroamino acids are forming inter or intra-molecular crosslinks

with nucleophilic amino acids residues to act as protein-protein interaction stabilizers,

and to facilitate structural rigidity of the capsid and matrix proteins. Both the capsid

and matrix proteins are known to have very interesting structural biology, but not as

much is known as to what drives these interesting formations. For example, capsid

protein monomers assemble into 240 hexamers and only 12 pentamers.10–14 The forma-

tion of the 12 pentamers is absolutely critical to enabling the closure of the viral core’s
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distinct fullerene cone shape. Without the pentamers, capsid monomers form open

tubes or small spheres as the viral core. However, it is not understood what drives

the formation of these pentamers relative to the much more common hexameric

structure. We hypothesize that at least some of the dehydroamino acids identified

within the capsid proteins could form intermolecular crosslinks with other capsid

protein monomers to generate the pentamers observed in the viral core. We also

believe it is feasible that intermolecular crosslinks facilitated by dehydroamino acids

could stabilize interactions between hexameric units and between hexameric and

pentameric units. We also have a similar hypothesis surrounding the dehydroamino

acids found in the matrix protein. Matrix protein monomers assemble into trimers

which then aggregate into a hexameric lattice structure.15 Here, the orientation of

the lattice structure is known to change during the maturation process of the virus,

moving from a very open structure with large pores, to a more closed structure with

small pores.15 We believe that the formation of intermolecular crosslinks between

matrix proteins during the viral maturation process could be the driving force al-

tering the orientation of the lattice. To evaluate whether these hypotheses have any

foundation, we can investigate proteomic data in attempts to identify crosslinked

peptide pairs that would result from the Michael addition of a nucleophilic amino

acid residue from one matrix or capsid protein across the electrophilic double bond of

a dehydroamino acid on another matrix or capsid protein, respectively. Identification

of crosslinked peptides would not confirm our hypothesis, but would represent a

strong first step that could be further investigated using structural biology techniques

such as cryoEM with EM-active probes designed to target the crosslinked peptides.
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7 appendix i: supporting information for "improved

protein inference from multiple protease bottom-up mass

spectrometry data"

This chapter has been published and is reproduced with permission from:

Miller, R.M.; Millikin, R.J.; Hoffman, C.V.; Solntsev, S.K.; Sheynkman, G.M.; Short-
reed, M. R.; Smith, L. M. Improved Protein Inference from Multiple Protease Bottom-
Up Mass Spectrometry Data. Journal of Proteome Research 2019, 18(9), 3429–3438.
https://doi.org/10.1021/acs.jproteome.9b00330.

Copyright © 2019 American Chemical Society.

https://doi.org/10.1021/acs.jproteome.9b00330


172

7.1 Supplementary Experimental Methods

Cell Culture

The Jurkat cell line (TIB-152) chosen for this study was obtained from the Ameri-

can Type Culture Collection (ATCC, Manassas, VA). Cells were cultured in 10% Fetal

Bovine Serum (FBS) and 90% RMPI medium at 37 °C and grown to a concentration

of approximately 1.3 x 106 cells/mL. Six cell aliquots of approximately 3.2 x 107 cells

each were centrifuged at 180 x g and 4 °C for 10 minutes. The cell pellets were washed

twice with ice-cold PBS buffer. The final cell pellets were flash frozen and stored at

-80 °C until needed.

Protein Extraction

Flash frozen Jurkat cell pellets were thawed on ice. Cells were lysed by pipetting

the pellet repeatedly with SDT lysis buffer ([4% SDS, 500 mM Tris-HCl (pH 7.4)]

and180 mM dithiothreitol (DTT), added in a 5:1 volume ratio to that of the cell pellet)

followed by a 5-minute incubation at 95 °C. Lysate was probe sonicated on ice for 3 to

5 minutes, cycling between 30 seconds sonication and 30 seconds rest.

Filter-Aided Sample Preparation

Approximately 150 µg of protein from each aliquot of lysate was transferred to a

100K Amicon Ultra filter (Millipore, Billerica, MA). A modified FASP protocol was

utilized to accommodate differing protease digestion conditions. The original FASP

protocol was employed until the final wash with ammonium bicarbonate (pH 7.8)1;

then each filter was washed two additional times with the buffer system appropriate

for its specific protease. Protease aliquots were then added to their respective filters.
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Optimized digestion conditions for each protease are given in Table 7.1. Following

digestion, each filter was centrifuged at 14,000xg for 15 minutes to recover digested

peptides. The amount of peptide recovered was quantified via Pierce BCA assay

(ThermoFisher Scientific).

Table 7.1: Protease-Specific Digestion Condition

Protease Protein:Enzyme
Ratio

Buffer System Temperature
of Digest
(°C)

Length
of Digest
(hrs)

Arg-C 100:1 Incubation Buffer: 50
mM Tris-HCl (pH
7.6), 5 mM CaCl2,
and 2 mM EDTA
Activation Buffer: 50
mM Tris-HCl (pH
7.6), 50 mM DTT,
and 2 mM EDTA
Combined Incubation
and Activation buffer
in 9:1 ratio

37 16

Asp-N 100:1 50 mM sodium phos-
phate (pH 8.0)

25 16

Chymotrypsin 100:1 100 mM Tris-HCl (pH
8.0) and 10 mM CaCl2

25 12

Glu-C 100:1 25 mM Ammonium
Bicarbonate (pH 7.8)

25 16

Lys-C 100:1 25 mM Tris-HCl (pH
8.5), 1 mM EDTA, and
4M urea

37 16

Trypsin 50:1 50 mM Ammonium
Bicarbonate (pH 7.8)

37 16

Peptide Fractionation

At least 100 µg of each peptide digest was fractionated at high pH on a Shimadzu

HPLC using a Phenomenex C18 Gemini 3 µ, 110Å, 3.0 x 150 mm column. The buffers

used for separation were 20 mM ammonium formate (pH 10) in water (mobile phase
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A, MA), 20 mM ammonium formate (pH 10) in 70% acetonitrile (mobile phase B,

MB). The flow rate was 0.5 mL/min and the binary gradient was: 0% MB for 15

minutes, linear ramp to 100% MB over 45 minutes, hold at 100% MB for 5 minutes,

linear descent to 0% B over 2 minutes followed by equilibration at 0% MB for 20

minutes. Eleven 1 mL fractions of peptides were collected for all proteases with the

exception of the tryptic digest where only 10 fractions were obtained. Fractions were

lyophilized via SpeedVac and stored at -80 °C.

LC-MS/MS Analysis

Each lyophilized fraction was reconstituted in 5% acetonitrile and 1% formic acid,

followed by chromatography on a nanoACQUITY LC system (Waters, Milford, MA)

interfaced with a Thermo Scientific LTQ Orbitrap Velos mass spectrometer (Thermo

Fisher, Waltham, MA) using a 20 cm reverse-phase capillary column packed with 3

µm C18 beads. Buffers used were 0.2% formic acid in water (mobile phase A, MA)

and 0.2% formic acid in acetonitrile (mobile phase B, MB). Full scans from 300-1,500

m/z were collected at a resolution of 60,000. These MS1 scans were followed by top 10

precursor HCD fragmentation to produce spectra at a resolution of 7,500. Precursor

fragmentation repeat count was set to two, and dynamic exclusion was set to 60 s.
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7.2 Supplementary Parameter Tables

Table 7.2: MetaMorpheus Search Parameters

Global Search Parameters
Search Mode
Classic Search
In silico Digestion Parameters
Generate target proteins
Generate decoy proteins
Generate reversed decoy proteins
Max Missed Cleavages :2
Initiator Methionine: Variable
Max Modification Isoforms: 1024
Min Peptide Length: 7 (5 for ProteinProphet Comparison)
Max Peptide Length: none
Max mods per peptide: 2
Fragment Ion Search Parameters
Dissociation Type: HCD
Max Threads: 39
Max Fragment Mass (Da): 30000
N-Terminal Ions
C-Terminal Ions
Mass Difference Acceptors
1 Missed Monoisotopic Peak
Ambiguity Parameters
Report PSM ambiguity
Scoring Options
Minimum score allowed: 5
Post-Search Analysis
Apply protein parsimony and construct protein groups
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Table 7.3: Modifications for GPTMD
GPTMD Modifications
Common Biological
Acetylation on K HexNAc on T
Acetylation on X (Prot N-Term) Hydroxybutyrylation on K
ADP-ribosylation on S Hydroxylation on K
Butyrylation on K Hydroxylation on N
Carboxylation on D Hydroxylation on P
Carboxylation on E Malonylation on K
Carboxylation on K Methylation on K
Citrullination on R Methylation on R
Crotonylation on K Nitrosylation on C
Dimethylation on K Nitrosylation on Y
Dimethylation on R Phosphorylation on S
Formylation on K Phosphorylation on T
Glu to PyroGlu on Q (Prot N-Term) Pyridoxal phosphate on K
Glutarylation on K Succinylation on K
HexNAc on Nxs Sulfonation on Y
HexNAc on S Trimethylation on K
HexNAc on Nxt
Common Artifact
Ammonia loss on C (Pep N-Term) Carbamyl on R
Ammonia loss on N Carbamyl on X (Pep N-Term)
Carbamyl on C Deamidation on N
Carbamyl on K Deamidation on Q
Carbamyl on M Water Loss on E (Pep N-Term)
Metal
Calcium on D Magnesium on D
Calcium on E Magnesium on E
Cu[I] on D Potassium on D
Cu[I] on E Potassium on E
Fe[II] on D Sodium on D
Fe[II] on E Sodium on E
Fe[III] on D Zinc on D
Fe[III] on E Zinc on E
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Table 7.4: Comet Search Parameters
Search
Decoy search:1 Peff format:1 Num threads: -1
Masses
Peptide mass tolerance:
20.00

Mass type fragment: 1 Peptide mass units: 2

Precursor tolerance type:
1

Mass type parent: 1 Isotope error: 1

Search Enzyme
1- Trypsin, 3- Lys-C, 5- Arg-C, 6- Asp-N, 8- Glu-C & 10- Chymotrypsin
Num enzyme termini:2 2 Allowed missed cleavage: 2
Modifications
variable mod01: 15.9949
M 0 2 -1 0 0

max variable mods in pep-
tide: 5

Require variable mod: 0

Fragment Ions
Fragment bin tol: 0.4 Use C ions: 0 Fragment bin offset: 0.4
Theoretical fragment
ions: 1

Use X ions: 0 Use Y ions: 1

Use A ions: 0 Use Z ions: 0 Use B ions: 1
Use NL ions: 0
Misc. Parameters
Digest mass range: 600.0-
5000.0

Nucleotide reading frame:
0

Num results: 1000

Clip nterm methionine:
0

Skip researching: 1 Spectrum batch size: 0

Max fragment charge: 3 Decoy prefix: DECOY Max precursor charge: 6
Equals I and L: 1
Spectral Processing
Minimum peaks: 10 Remove precursor toler-

ance: 1.5
Minimum intensity: 0

Clear mz range: 0.0 0.0 Remove precursor peak: 0
Additional Modifications
Add Cterm peptide: 0.0 Add Q: 0.0000 Add Nterm peptide: 0.0
Add K: 0.0000 Add Cterm protein: 0.0 Add E: 0.0000
Add Nterm protein: 0.0 Add M: 0.0000 Add G: 0.0000
Add O: 0.0000 Add A: 0.0000 Add H: 0.0000
Add S: 0.0000 Add F: 0.0000 Add P: 0.0000
Add U: 0.0000 Add V: 0.0000 Add R: 0.0000
Add T: 0.0000 Add Y: 0.0000 Add C: 57.021464
Add W: 0.0000 Add L: 0.0000 Add N: 0.0000
Add I: 0.0000 Add D: 0.0000 Add B user AA: 0.0000
Add X user AA: 0.0000 Add J user AA: 0.0000 Add Z user AA: 0.0000
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Table 7.5: TPP-Protein Prophet Parameters

Input is from iProphet false
Import XPRESS protein ratios false
Import ASPARatio protein ratios and
pvalues

false

Import Libra protein ratios false
Do not include zero probability protein
entries in output

true

Do not report protein length false
Report(calculated) protein molecular
weight

false

Icat data false
N-glycosylation data false
Delude (do not look up ALL proteins
corresponding to shared peps)

false

Do not use Occam’s razor for shared
peps

false

Do not assemble protein groups false
Normalize NSP using protein length false
Use expected number of ion instance
to adjust the peptide probabilities prior
to NSP adjustment

false

Check peptide’s Protein Weight
against the threshold

false
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Table 7.6: ProLuCID Search Parameters
Search Mode
Primary score type 1-XCorr
Secondary score type 2-zScore
Locus type 0-accession
Charge disambiguation 0
Atomic enrichment 0-no labeling
Min match 5
Peak rank threshold 200
Candidate peptide threshold 500
Num output 5
Is decharged 0
Fragmentation method CID
Pre process 1-do XCorr like preprocessing
Isotopes
Precursor Mono
Fragment Mono
Num peaks 0
Tolerance
Precursor high 4500
Precursor low 4500
Precursor mass accuracy 5
Fragment ion mass accuracy 20
Precursor mass limits
Minimum 600
Maximum 1600
Peptide Length limits
Minimum 7
Num peak limits
Minimum 25
Maximum 5000
Max num diff mods 0
Modifications
Static Mods C & U mass shift: 57.02146
Diff Mods M mass shift: 15.9949146
Enzyme Info
Specificity 2-both ends
Man num internal mis cleavage 2
Name, type and residues Depends on protease
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Table 7.7: DTASelect2 Parameters
Enzyme number 0
Diff search options 16 M
Include peptides regardless of
cleavage status

-y0

Peptide FDR -fp 0.01
Protein FDR -pfp 0.01
Decoy identifier -decoy DECOY

7.3 Supplementary Methods for Data Analysis

The implementation of the “integrated” multi-protease protein inference algorithm

in MetaMorpheus required that peptide confidence (q-values) be calculated separately

for each protease, and that the peptide identification be associated with their protease

of origin. These two modifications to MetaMorpheus’ conventional protein inference

are explained below.

Peptide q-Values

MetaMorpheus uses q-values as an assessment of confidence in a given identifica-

tion, describing the minimum FDR threshold at which the peptide would exist within

the dataset. Peptide spectral match (PSM) q-values are calculated by ranking the

identifications by score, then calculating the ratio of cumulative decoy to targets iden-

tifications for each PSM. The length of the peptide is directly correlated to the number

of fragment matching opportunities a target or decoy spectra has to the theoretical

database, and each protease produces peptides with differing length distributions. In

MetaMorpheus, the number of fragment ion matches is used to determine the score of

the PSM, therefore target and decoy score distributions differ by protease (Figure7.1).

PSM scores are subsequently used for ranking prior to q-value calculation. High

scoring decoys from one protease should not penalize the q-value of target PSMs from
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another protease, hence the need to calculate peptide confidence levels separately for

each protease in order to maintain the integrity of the value.

Figure 7.1: Distribution of target and decoy PSM scores resulting from digestion. A)
Trypsin, B) Asp-N and C) Glu-C.

Associating Peptides with Their Protease of Origin

Ignoring the sequence-protease relationship can add unnecessary ambiguity to

multi-protease protein inference results. The integrated multi-protease protein in-

ference algorithm maintains this relationship, enabling accurate determination of
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whether a peptide should be classified as shared or unique, and which proteins

the peptide could have potentially originated. A sequence of amino acids could be

unique within the proteome for digestion with one protease but shared for another,

or be shared among different proteins based on its originating protease (Figure 7.2).

These situations arise for 5.3% and 12% of the 42,419 proteins present in the UniProt

Human Canonical and Isoform reviewed database, respectively. For example, if the

peptide “FHSMASR”, from Figure 7.2, is identified from spectra resulting from Lys-C

digestion, it could have resulted from the digestion of Q86UV7 or Q86UV6. If the

protease that resulted in the production of this peptide is unknown, then the number

of possible parent proteins increases from 2 to 5 (Q86T4 or Q86XT4-2 or Q86UV6 or

Q86UV6-2 or Q86UV7).

7.4 Supplementary Information for MetaMorpheus’

Separate and Integrated Multi-Protease Comparison

The total number of protein groups identified with the separate multi-protease

approach is greater than that of the integrated multi-protease approach at a 1%

protein FDR threshold (Table 2.2). To ensure that this difference in the total number

of protein groups does not bias the analysis of the accuracy of the multi-protease

protein inference approaches, the results were compared at the total number of protein

groups present at the 1% FDR threshold for both the integrated and separate multi-

protease approaches (7,472 protein groups and 7,716 protein groups, respectively).

The results of this analysis are summarized in Tables 7.8 and 7.9. A decrease in the

number of Arabidopsis thaliana identifications and the corresponding false positive

rate was observed for the integrated approach, further indicating that the integrated

approach provides more accurate protein group results than the separate approach.
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Figure 7.2: Depiction of how the peptide sequence “FHSMASR” can be attributed
to different protein groups based on which protease it originated from. Sections in
blue indicate that the peptide sequence is unique to a single protein accession for
the assigned protease whereas sections in green indicate the same peptide sequence
is shared for the assigned protease. This shows how the association of a peptide
sequence with its protease of origin can eliminate unnecessary protein group ambi-
guity.

Table 7.8: Comparison of Entrapment Results of the Top 7,472 Protein Groups from
the Separate and Integrated Multi-Protease Approaches.

Separate
Multi-
Protease
Approach

Integrated
Multi-
Protease
Approach

Percent
Change

Number of Human Pro-
tein Groups

7,253 7,255 +0.03%

Number of Arabidopsis
thaliana Protein Groups

219 217 -0.93%

False Positive Rate 2.93% 2.90% -1.02%
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Table 7.9: Comparison of Entrapment Results of the Top 7,716 Protein Groups from
the Separate and Integrated Multi-Protease Approaches.

Separate
Multi-
Protease
Approach

Integrated
Multi-
Protease
Approach

Percent
Change

Number of Human Pro-
tein Groups

7,400 7,407 +0.09%

Number of Arabidopsis
thaliana Protein Groups

316 309 -2.22%

False Positive Rate 4.10% 4.00% -2.44%

7.5 Supplementary Figures

Figure 7.3: Investigation of protein groups unique to the separate approach. A
majority of the protein groups unique to the separate approach (519 of 864) were
disambiguated into simpler protein groups in the results of the integrated multi-
protease approach and can be assigned to two distinct categories: disambiguation to
one or more protein groups with a single protein member, or disambiguation to a
protein group with fewer protein members. A pie chart representing the distribution
of the 519 protein groups into these categories is shown.
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Figure 7.4: Investigation of protein groups unique to the protein inference results
of the tryptic digest. Almost all of the protein groups unique to the tryptic digest
(1,166 of 1,202) were disambiguated into simpler protein groups in the results of the
integrated multi-protease approach could be assigned to three distinct categories:
disambiguation to one or more protein groups with a single protein member, dis-
ambiguation to a protein group with fewer protein members, or disambiguation to
both a protein groups containing a single member and a protein group containing
fewer protein members. A pie chart representing the distribution of the 1,166 protein
groups into these categories is shown.
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Figure 7.5: Comparison of MetaMorpheus’ and ProteinProphet’s protein inference
algorithms for false positive identifications. Curves comparing the ability of MetaMor-
pheus’ and ProteinProphet’s multi-protease protein inference algorithms to distin-
guish between human protein groups (true positives) and Arabidopsis thaliana protein
groups (false positives) based on the PSMs used for protein inference. Limiting the
PSMs used for protein inference to those that were identified in both MetaMorpheus
and Comet searches provided increased accuracy for both algorithms compared to
their un-filtered counterparts and provided a more unbiased comparison.
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Figure 7.6: Comparison of MetaMorpheus’ and DTASelect2’s protein inference algo-
rithms for false positive identifications. Curves comparing the ability of MetaMor-
pheus’ and DTASelect2’s multi-protease protein inference algorithms to distinguish
between human protein groups (true positives) and Arabidopsis thaliana protein
groups (false positives) based on the PSMs used for protein inference. Limiting the
PSMs used for protein inference to those that were identified in both MetaMorpheus
and ProLuCID searches provided increased accuracy for both algorithms compared
to their un-filtered counterparts and provided a more unbiased comparison.
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7.6 Supplementary Tables

Table 7.10: Comparison of Peptide Sequences Identified by MetaMorpheus and Comet
at 1% FDR.

Comet MetaMorpheus Overlap
Number of Arg-C Peptide
Identifications

11,148 17,270 10,109

Number of Asp-N Peptide
Identifications

17,326 12,065 9,565

Number of Chymotrypsin
Peptide Identifications

18,073 10,831 6,218

Number of Glu-C Peptide
Identifications

14,828 10,956 8,666

Number of Lys-C Peptide
Identifications

25,569 31,962 24,321

Number of Trypsin Peptide
Identifications

24,873 29,497 23,058

Table 7.11: Comparison of Peptide Sequences Identified by MetaMorpheus and Pro-
LuCID at 1% FDR.

ProLuCID MetaMorpheus Overlap
Number of Arg-C Peptide
Identifications

16,696 17,064 13,122

Number of Asp-N Peptide
Identifications

16,794 13,912 11,005

Number of Chymotrypsin
Peptide Identifications

3,203 12,157 3,072

Number of Glu-C Peptide
Identifications

9,629 13,423 8,316

Number of Lys-C Peptide
Identifications

38,156 37,125 28,649

Number of Trypsin Peptide
Identifications

26,440 41,935 26,137
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8 appendix ii: supporting information for "proteaseguru:

a tool for protease selection in bottom-up proteomics"

This chapter has been published and is reproduced with permission from:

Miller, R.M.; Ibrahim, K.; Smith, L. M. ProteaseGuru: A Tool for Protease Selec-
tion in Bottom-Up Proteomics. Journal of Proteome Research 2021, 20(4), 1936–1942.
https://doi.org/10.1021/acs.jproteome.0c00954.

Copyright © 2021 American Chemical Society.

https://doi.org/10.1021/acs.jproteome.0c00954
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8.1 Supplementary Table

Table 8.1: Species for the Skin Microbiome Subset

Begin Table 8.1

Species UniProt Taxonomy UniProt Proteome

Key

Protein

Count

Propionibacterium

acnes

Cutibacterium acnes

(strain DSM 16379 /

KPA171202)

UP000000603 2,294

Corynebacterium tu-

berculostearicum

Corynebacterium

tuberculostearicum

SK141

UP000004384 2,209

Streptococcus mitis Streptococcus mitis

SK597

UP000003316 1,870

Streptococcus oralis Streptococcus oralis

subsp. oralis

UP000033716 1,810

Streptococcus pseu-

dopneumoniae

Streptococcus pseu-

dopneumoniae 5247

UP000018724 2,016

Streptococcus san-

guinis

Streptococcus sangui-

nis (strain SK36)

UP000002148 2269
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Continuation of Table 8.1

Species UniProt Taxonomy UniProt Proteome

Key

Protein

Count

Micrococcus luteus Micrococcus luteus

(strain ATCC 4698

/ DSM 20030 / JCM

1464 / NBRC 3333 /

NCIMB 9278 / NCTC

2665 / VKM Ac-2230)

UP000000738 2,207

Staphylococcus epi-

dermidis

Staphylococcus

epidermidis (strain

ATCC 35984 / RP62A)

UP000000531 2,492

Staphylococcus capi-

tis

Staphylococcus capi-

tis subsp. capitis

UP000236440 2,232

Veillonella parvula Veillonella parvula

(strain ATCC 10790

/ DSM 2008 / JCM

12972 / Te3)

UP000007968 1,843

Staphylococcus

hominis

Staphylococcus homi-

nis

UP000315294 2,602

Corynebacterium

fastidiosum

NOT IN UNIPROT X X

Corynebacterium

afermentans

Corynebacterium

afermentans

UP000185547 2,165
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Continuation of Table 8.1

Species UniProt Taxonomy UniProt Proteome

Key

Protein

Count

Enhydrobacter

aerosaccus

Enhydrobacter

aerosaccus

UP000190092 6,507

Corynebacterium

simulans

Corynebacterium

simulans

UP000074804 2,519

Corynebacterium au-

rimucosum

Corynebacterium

aurimucosum (strain

ATCC 700975 / DSM

44827 / CN-1)

UP000002077 2,528

Corynebacterium

kroppenstedtii

Corynebacterium

kroppenstedtii (strain

DSM 44385 / JCM

11950 / CIP 105744 /

CCUG 35717)

UP000001473 2,018

Corynebacterium

amycolatum

Corynebacterium

amycolatum SK46

UP000003275 2,103

Staphylococcus

warneri

Staphylococcus

warneri

UP000292953 2,831

Staphylococcus

haemolyticus

Staphylococcus

haemolyticus (strain

JCSC1435)

UP000000543 2,640
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Continuation of Table 8.1

Species UniProt Taxonomy UniProt Proteome

Key

Protein

Count

Corynebacterium re-

sistens

Corynebacterium re-

sistens (strain DSM

45100 / JCM 12819 /

GTC 2026 / SICGH

158)

UP000000492 2,160

Malassezia restricta Malassezia restricta

CBS 7877

UP000269793 4096

Malassezia globosa Malassezia globosa

(strain ATCC MYA-

4612 / CBS 7966)

UP000008837 4,274

Aspergillus tubin-

gensis

Aspergillus tubingen-

sis (strain CBS 134.48)

UP000184304 12,319

Candida parapsilo-

sis

Candida parapsilosis

(strain CDC 317 /

ATCC MYA-4646)

UP000005221 5,777

Zymoseptoria tritici Zymoseptoria tritici

(strain CBS 115943 /

IPO323)

UP000008062 10,972

Malassezia sympodi-

alis

Malassezia sympo-

dialis (strain ATCC

42132)

UP000186303 4,501
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Continuation of Table 8.1

Species UniProt Taxonomy UniProt Proteome

Key

Protein

Count

Epidermophyton

floccosum

Epidermophyton floc-

cosum

N/A 79

Pyramimonas

parkeae

Pyramimonas

parkeae

N/A 239

Nannizzia nana Nannizzia nana N/A 33

Parachlorella kess-

leri

Parachlorella kess-

leri (Green alga)

(Chlorella kessleri)

N/A 147

Tilletia walkeri Tilletia walkeri UP000078113 7,968

Nephroselmis

olivacea

Nephroselmis oli-

vacea (Green alga)

N/A 179

Cyanophora para-

doxa

Cyanophora para-

doxa

N/A 475

Aureoumbra la-

gunensis

Aureoumbra lagunen-

sis

N/A 123

Pycnococcus prova-

solii

Pycnococcus prova-

solii

N/A 94

Gracilaria tenuistipi-

tata

Gracilaria tenuistipi-

tata var. liui (Red

alga)

N/A 251

Leucocytozoon ma-

joris

Leucocytozoon

majoris

N/A 21
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Continuation of Table 8.1

Species UniProt Taxonomy UniProt Proteome

Key

Protein

Count

Trichophyton

rubrum

Trichophyton rubrum

(strain ATCC MYA-

4607 / CBS 118892)

UP000008864 10,006

Trichophyton menta-

grophytes

Arthroderma ben-

hamiae (strain ATCC

MYA-4681 / CBS

112371)

UP000008866 7,976

Molluscum contagio-

sum virus

Molluscum contagio-

sum virus subtype 1

UP000000869 163

Propionibacterium

phage

Propionibacterium

phage PAS50

UP000008740 46

Merkel cell poly-

omavirus

Merkel cell poly-

omavirus

UP000154903 4

Polyomavirus

HPyV7

Human poly-

omavirus 7

N/A 68

Acheta domestica

densovirus

Acheta domestica

densovirus

UP000121107 5

Human papillo-

mavirus (β)

Human papillo-

mavirus type 5

UP000009252 9

Actinomyces phage Actinomyces phage

xhp1

UP000241342 54

Simian virus Simian virus 41 UP000108270 7
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Continuation of Table 8.1

Species UniProt Taxonomy UniProt Proteome

Key

Protein

Count

Streptococcus phage Streptococcus phage

SPQS1

UP000014703 104

Stenotrophomonas

phage

Stenotrophomonas

phage SMA7

UP000014423 10

Polyomavirus

HPyV6

Human poly-

omavirus 6

UP000119412 5

Human papillo-

mavirus (γ)

Human papillo-

mavirus type 103

UP000100457 6

Staphylococcus

phage

Staphylococcus phage

44AHJD

UP000007462 21

Gammapapillomavirus

HPV127

NOT IN UNIPROT X X

Enterobacteria

phage

Enterobacteria phage

MX1

UP000001832 4

Alphapapillomavirus Alphapapillomavirus

9

UP000136316 8

Human papillo-

mavirus (µ)

Human papillo-

mavirus type 16

UP000009251 9

Pseudomonas phage Pseudomonas phage

D3

UP000009085 98

RD114 retrovirus RD114 retrovirus UP000172387 2

End of Table 8.1
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9 appendix iii: supporting information for "enhanced

protein isoform characterization through long-read

proteogenomics"

This chapter has been published and is reproduced with permission from:

Miller, R.M.; Jordan, B.T.; Mehlferber, M.M.; Jeffery, E.D.; Chatzipantsiou, C.; Kaur, S.
Millikin, R.J.; Dai, Y.; Tiberi, S.; Castaldi, P.J.; Shortreed, M.R.; Luckey, C.J; Conesa,
A.; Smith, L.M.; Deslattes-Mays, A.; Sheynkman, G.M. Enhanced protein isoform
characterization through long-read proteogenomics. Genome Biology 2022, 23(69).
https://doi.org/10.1186/s13059-022-02624-y.

Copyright © 2022 Springer Nature.

https://doi.org/10.1186/s13059-022-02624-y
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9.1 Supplementary Figures

Figure 9.1: Detailed schematic of the Nextflow computational pipeline for long-read
proteogenomics. Computational pipeline for full-length protein database generation,
database searching, and downstream data analysis and visualization. Complete
details of the pipeline may be found at https://github.com/sheynkman-lab/Long-R
ead-Proteogenomics.

 https://github.com/sheynkman-lab/Long-Read-Proteogenomics
 https://github.com/sheynkman-lab/Long-Read-Proteogenomics
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Figure 9.3: Comparison of MS-based proteomic coverage when using different pro-
tein databases for MS searching. a, Schematic of the contents of the PacBio-Hybrid
database (not to scale). b-m Overlap of gene, peptide, and protein group identifi-
cations when comparing GENCODE versus PacBio-Hybrid in the high confidence
space (b, c, j), UniProt versus PacBio-Hybrid in the full gene space (d, e, k), UniProt
versus PacBio-Hybrid in the high confidence gene space (f, g, l), and GENCODE
versus UniProt in the full gene space (h, i, m).
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Figure 9.5: Relationship between RNA and protein estimated abundances. a, Correla-
tion between long-read transcriptional abundance and protein abundance. Results
are grouped by gene. b, Fraction of genes detected by MS as a function of transcript
abundance. c, Distribution of the fractional relative abundance of the most abundant
protein isoform in each indistinguishable protein group.

9.2 Supplementary Note 1: Long- read transcriptome

sequencing of a human cell line

We sequenced two cDNA libraries of the human Jurkat T-lymphocyte cell line

each with SMRT Cell 8M on the PacBio Sequel II system and obtained a total of 5

million HiFi (CCS) reads with an average read length of 2.1 kbp. Following a standard

Iso-Seq bioinformatics workflow (see Section 4.6, https://github.com/sheynkman-l

ab/Long-Read-Proteogenomics), we classified and filtered the full-length transcript

sequences, removing potential library artifacts.

Transcript isoform diversity is widespread in the sample. We identified 139,743

transcripts from 11,186 protein coding genes that exhibit a wide range of lengths

and abundances (Figure 9.6). Many genes express multiple isoforms, with some

genes co-expressing up to a dozen or more isoforms, and 84% (8,367) of the genes

exhibiting co-expression of more than two isoforms (Figure 9.7).

For genes expressing multiple isoforms, we classified the corresponding isoforms

https://github.com/sheynkman-lab/Long-Read-Proteogenomics
https://github.com/sheynkman-lab/Long-Read-Proteogenomics
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Figure 9.6: Long-read transcriptome length and abundance distributions. (Left)
Distribution of transcript isoform lengths. (Right) Distribution of transcript isoform
abundances. CPM, full-length read counts per million.

Figure 9.7: Co-expression of multiple isoforms from the same gene. (Left) Histogram
of the number of distinct transcript isoforms per gene. (Right) Frequency of genes
containing multiple isoforms, at different CPM abundance cut-offs. Only transcripts
greater than 1 CPM were used for the data in these plots. CPM, full-length read
counts per million.

as either major (i.e., most abundant isoform for a gene) or minor. Overall, minor

isoforms tend to have lower abundance, but certain minor isoforms can still have

robust expression and make up a large fraction of total gene expression (Figure

9.8). For a substantial fraction of genes expressing multiple isoforms (38%, 3,888),

the major isoform expressed in Jurkat cells was not the “reference” isoform (GEN-

CODE APPRIS principal isoform1, Figure 9.9). Collectively, these results illustrate

the widespread nature of alternative splicing and the need for empirically driven

methods to characterize isoform diversity.

Approximately 86% of the transcript isoforms were classified as “full-splice match”

(FSM) or a novel category NIC or NNC (see Chapter 4). The remaining 9,130 (14%)
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Figure 9.8: Abundance distribution of major versus minor transcript isoforms. (Left)
Distribution of transcriptional abundance for major transcript isoforms. (Middle)
Distribution of transcriptional abundance for minor transcript isoforms with a frac-
tional abundance of more than 0.2. (Right) Histogram of transcriptional abundance
for all minor transcript isoforms. Only transcripts greater than 1 CPM were used for
the data in these plots. CPM, full-length read counts per million.

Figure 9.9: Fraction of transcript isoforms in which the major isoform (highest isoform
expressed for a gene, based on CPM values) does not match the GENCODE principle
APPRIS transcript isoforms.

transcripts were classified as “incomplete splice match” (ISM) cases, which can result

from partially degraded transcripts generated during sample and library preparation

or, alternatively, represent bona fide novel alternative promoter or polyadenylation

sites. As expected, minor isoforms tend to be novel at a higher rate than major

isoforms (Figure 9.10).
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Figure 9.10: Breakdown of transcript isoforms by their novelty category. (Left)
Number of transcript isoforms in each novelty classification category. (Middle)
Breakdown of major (highest expressed for gene) transcript isoforms by novelty
category. (Right) Breakdown of minor transcript isoforms by novelty category. Only
transcripts greater than 1 CPM were used for the data in these plots.

9.3 Supplementary Note 2: ORF calling from long-read

transcripts

For calling of ORFs from full-length transcript isoforms, we used the CPAT al-

gorithm. Several ORF callers are available. We compared the identity of ORFs

called using CPAT versus TransDecoder2 and GMST3. To run TransDecoder (version

5.5.0), a minimum ORF size was set to 50 nucleotides to mimic the parameters we

used for CPAT. The single best ORF for each isoform was selected, per the ‘Transde-

coder.Predict‘ parameter. To run GMST the same parameters as used in the SQANTI

pipeline (GMST version 5.1) were used. We found that in a majority of cases, the

same ORF is predicted; however, there are some differences in ORFs called.

CPAT returns a coding score for each candidate ORF. Overall, the scores of the

candidate ORFs form a bimodal distribution, and there is a clear distinction between

high and low scoring ORFs, overall (Figure 9.12).

In some cases, there are two or more ORFs that have a high coding score (from the

CPAT algorithm). Generally speaking, the upstream-most ORF, containing an ATG

closer to the 5’, was deemed more credible given the ribosomal scanning model of
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Figure 9.11: Comparison of ORF callers in predicting ORFs from full-length transcripts
(PacBio).

Figure 9.12: Distribution of ORF scores from the CPAT algorithm.

translation4. Therefore, we use this model as an assumption for ORF calling, in which

higher weights are given to ORFs containing ATGs that are closer to the 5’ end of the

transcript (Figure 9.13). Implementation details about the ORF calling algorithm can

be found in the orf_calling module in the Nextflow pipeline.

In order to determine whether our ORF calling algorithm is able to recover ORFs

annotated in GENCODE, we compared the GENCODE reference ORFs (ENSPs, i.e.,

GENCODE proteins) versus the ab initio CPAT-predicted ORFs. We found that of the

58,860 GENCODE transcripts, the CPAT-predicted ORF matched the ORF annotated

by GENCODE in 55,324 or 94% of cases. For 3,536 or 6% of cases, the ORF was not an

exact match (Figure 9.14). A majority of the ORFs that differ from the reference differ
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Figure 9.13: Evaluation of ORF plausibility and weighting.(Left) Example of two
highly scoring ORFs from the same transcript called by CPAT for gene PITPNB. The
top isoform PB.15826.4 contains one clear best ORF. The second isoform PB.15826.7
contains an extension in the 4th exon, leading to a frameshift and premature termina-
tion codon. In such cases, the upstream-most ORF is the most plausible translated
region. (Right) ORF score weighting based on the number of upstream ATGs.

due to differences in the N-terminus, with 55% differing only in the ATG start location.

Note that in our proteogenomics pipeline, as part of our ORF calling procedure, we

heavily weigh the presence of a GENCODE ATG; therefore, a majority of these cases

would be reverted to the GENCODE ORF within our pipeline. For 60 cases (0.1% of

the dataset), only the C-terminus did not match, and a majority of such cases could

be explained by selenocysteine re-coding events, in which the stop codon is re-coded

to selenocysteine, thereby extending the protein C-terminus.

Figure 9.14: Fraction of ORFs predicted from the GENCODE transcriptome using the
modified CPAT ORF calling pipeline. For predicted ORFs that did not exactly match
GENCODE annotated ORFs, a breakdown of the part of the protein that differs (e.g.,
N-terminus) is indicated.
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9.4 Supplementary Note 3: Determination of the high

confidence protein database space based on

long-read RNA-seq coverage of peptides

To determine factors underlying incomplete proteomic coverage using the PacBio

database, we examined the properties of genes in which there were fewer peptides

recovered when using the PacBio database than when using the GENCODE database.

When searching the PacBio database (PacBio only), we detected 70,761 peptides and

7,068 genes, which corresponds to 90.7% of peptides and 92% of genes detected using

the GENCODE database. Overall, lower peptide recovery was observed for genes

with extreme transcript lengths (e.g., less than 1 kb, longer than 4 kb) or very low

abundance (e.g., below 3 CPM) (Figure 9.15). The extremely short transcripts may

not be sampled because the PacBio library preparation included a bead clean-up

which removes short cDNAs. The longer transcripts are, in general, more difficult to

convert to cDNA and sample for sequencing, although newer sequencing platforms

may demonstrate less bias against lengths. Overall, as expected, the protein content

of lower abundance genes or genes with extremes in lengths are not fully sampled in

the long-read transcriptome dataset.

A majority of genes detected using the GENCODE database also returned 100%

peptide coverage when using the PacBio database, suggesting long-read datasets

are reaching a critical threshold of coverage capturing the full sequence content

of protein-coding mRNA. In other words, given reasonable constraints (length 1-4

kb, abundance 3 CPM+), we achieved nearly 99% coverage of the known peptide

sequence space (Figure 9.16). For this set of high confidence genes, it is likely that all

expressed protein isoforms are represented in the long-read data, including novel
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Figure 9.15: Characterizing the length and abundance biases that contribute to lower
proteomic coverage from PacBio-derived databases (Left) Distribution of transcript
lengths for genes with different extents of peptide coverage. (Right) Distribution of
transcript abundances for genes with different extents of peptide coverage.

isoforms not represented in the reference database, which is advantageous for protein

inference.

9.5 Supplementary Note 4: Criteria for Novel Peptide

Identification

The identification of novel peptides requires rigorous validation and stringent

filtering criteria to ensure that the spectrum does in fact represent the novel peptide

sequence. First, all novel peptide identifications must meet the basic filtering criteria

for all peptide identifications, having a minimum MetaMorpheus score of 5 and being

present at a global 1% FDR cutoff. The distribution of the FDR, or q-values, for the

novel peptide identifications was compared to the FDR, or q-value, distribution of

the canonical peptides (Figure 9.17). The median q-value for the novel peptides
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Figure 9.16: Evaluation of peptide identification recovery as a function of gene average
transcript length and abundance. Three-dimensional bar plot that displays the fraction
of genes in which all peptides are recovered in the PacBio database, as a function
of gene average transcript length and abundance. CPM, full-length read counts per
million.

was lower than the median q-value for the canonical peptides with values of 0 and

2.1x10e-5, respectively. Since the FDR, or q-value, is a global assessment of confidence

for the entire set of peptide identifications, not a confidence metric for the specific

peptide identification, the posterior error probability (PEP) of each novel peptide was

also considered. All novel peptides had a PEP value less than 0.005. The distribution

of novel peptide PEP values was compared to the distribution of PEP values for

all canonical peptide identifications (Figure 9.17). The median PEP value for the

novel peptides and canonical peptides were nearly identical, demonstrating the novel

peptide identifications are as confident as the canonical peptide identifications.

In addition to the preliminary filtering and confidence evaluations of the novel

peptide identifications, the Human Proteome Project MS data guidelines5 for manual

validation of data-dependent acquisition spectra were applied. These criteria include:
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Figure 9.17: Comparison of novel and canonical peptide distributions for (left) q-
values and (right) PEP values. The median value is represented by a dashed line.

1) high mass accuracy (5 ppm precursor ion and 20 ppm product ion mass error),

2) clearly annotated spectrum that was scrutinized for missed and extra peaks (we

used a rough threshold of 25% maximum of unassigned fragment ions above 10%

relative abundance) and 3) peptide length (minimum of 9 amino acids).

Additional manual validation criteria were applied to each novel peptide identifi-

cation. Mass errors of novel peptide hits were compared against the mass error of

other confident spectral assignments from the same raw file to check for consistency.

Extra weight was given for the presence of sequence-specific characteristics. For

example, the spectra assignment was considered more confident if a highly charged

peptide was longer, had a higher number of basic residues; or if y-ions ending in

proline were higher intensity than other fragment ions. Precursor co-isolation can

complicate spectral annotation by resulting in fragment ions from multiple peptide

origins. This complexity was taken into account by noting the percentage of MS2

total ion count (TIC) accounted for by annotated fragment ions. This percentage is

represented by the decimal digits of the MetaMorpheus score. TIC coverage of 20%

or more was used as a rough threshold but not a hard criterion.

We also investigated whether any peptide sequences from contaminant proteins,
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GENCODE reference isoforms, single amino acid variant containing proteins or post-

translationally modified proteins could provide better peptide assignments for the

novel peptide spectra. Identifications were evaluated based on MetaMorpheus score,

q-value and PEP. A contaminant protein database, included in MetaMorpheus, was

searched alongside the PacBio-Hybrid database. No contaminant peptides were a

match to the novel peptide spectra. In the search of the GENCODE reference database,

no peptide identifications for the spectra in question were a better match than the novel

peptides (Additional File 6: Table S4). To search for post-translationally modified

peptides, Global Post-Translational Modification Discovery (GPTMD), with default

settings, was performed with the GENCODE reference database.6 The subsequent

search found no modified peptides were a match for the novel peptide spectra. To

investigate if variant containing peptides could better account for the spectra support-

ing the novel peptide identifications, a proteogenomic database generated by Spritz

using Jurkat short-read RNA-seq data published by Cesnik et. al.7 was searched.

The results showed that no variant containing peptides were identified for the same

spectra as the novel peptide assignments. Based on this stringent evaluation of novel

peptide candidates, we are quite confident in the 14 novel peptide assignments that

passed all criteria.

9.6 Supplementary Note 5: Rescue & Resolve algorithm

abundance threshold optimization

The R&R algorithm requires selection of a transcript abundance threshold that is

the basis for recovering a formerly eliminated protein identification. If the transcript

abundance threshold is set too low, there is a higher probability of recovering protein

isoforms that are not expressed (false positives). If the threshold is too high, there is
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a higher probability of failing to rescue protein isoforms present in the sample (false

negatives).

We evaluated 10 different abundance threshold values (5, 10, 15, 20, 25, 30, 35, 40,

45 and 50 CPM) for the R&R algorithm. As expected, the lower the CPM abundance

threshold, the more protein groups are rescued (Figure 9.18), however these larger

values are not necessarily indicative of a higher true positive rate.

Figure 9.18: Abundance threshold evaluation for the Rescue & Resolve algorithm.
The orange curve represents the number of protein groups rescued at 1% FDR for
each CPM abundance evaluated. The grey curve represents the percent of rescued
protein groups whose identity was validated in an independent multi-protease MS
dataset.

Protein inference results obtained from searching a higher coverage MS dataset

(i.e., a multi-protease proteomics dataset) can be utilized as a validation group. We

can compare the rescued protein groups from the 28-fraction trypsin-only set to the

protein inference results derived from a high coverage multi-protease digest data set,

which serves as a “ground” truth set, to obtain a percent of rescued protein groups

validated (Section 9.7). We found that as the abundance threshold increases, the
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Figure 9.19: Relationship between transcriptional abundance and MS detectability.
Distribution of genes either detected or not detected by MS as a function of cumulative
transcriptional abundance.

percent of rescued groups validated in the multi-protease protein inference results

increase (Figure 9.18). Based on this analysis we decided to set a conservative

threshold to rescue transcripts with an abundance of 25 CPM or higher. Additionally,

based on observed relationships between transcript abundances for genes with and

without peptide evidence (Figure 9.19), with a CPM cutoff of 25 (log2 (CPM+1) =

4.6) only 9.7% of genes in the high confidence space have no peptide support.

9.7 Supplementary Note 6: Multi-protease validation

for Rescue & Resolve results

We hypothesize the R&R algorithm enables a more precise representation of

sample isoform diversity than can be achieved using a traditional protein inference

approach. However, the experimental validation of protein isoforms inferred from

MS data is an ongoing challenge.8,9 Existing analytical standards fail to appropri-

ately model the complexity of endogenous isoforms10,11, and the lack of knowledge

regarding protein isoforms present in a sample (i.e., ground truth) is a problem

in and of itself.12–14 In place of experimental validation, studies have established
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heuristic guidelines to compare protein inference results between different inference

algorithms.8,15 Here we have developed a computational strategy that leverages the

improved accuracy and precision of multi-protease protein inference to validate both

the “rescued” and “resolved” protein isoforms.

It is well established that the use of multiple proteases improves proteomic results

relative to those of a single protease (typically trypsin).16,17 Large portions of the

proteome are inaccessible to any single protease, and the combination of peptide

identifications from orthogonal proteolytic digests not only improves the number of

protein identifications but also the percent protein sequence coverage obtained.16,17

The MetaMorpheus MS search software contains a multi-protease protein inference

algorithm which enables all peptide identifications from several proteolytic digests to

be considered in combination, and provides more accurate protein inference results

than what is achieved by other protein inference algorithms, or by analysis of any

single proteases data alone.16

For validation of “rescued” and “resolved” protein isoforms, an independently

generated multi-protease dataset was used. Spectra from the analysis of six fraction-

ated proteolytic digests (see Section4.6) were searched against the PacBio-Hybrid

database using MetaMorpheus, and the multi-protease protein inference algorithm

was employed.16 The multi-protease protein inference results are considered to be

more comprehensive, and reflective of the sample’s proteome compared to what can

be achieved with trypsin alone. The use of orthogonal proteases provides higher, and

more distinctive coverage of protein isoforms. One product of this is the identification

of more unique peptides, which can confidently identify protein isoforms. Although

the multi-protease protein inference results are not a perfect model of the isoforms

expressed in the sample, for the purpose of our validation strategy, we will consider

the results as a “ground truth” dataset.
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For the purposes of validation, we determined if the protein isoforms that were

“rescued” or “resolved” by “Rescue & Resolve” algorithm were isoforms that were

identified in the multi-protease protein inference analysis. If a “rescued” or “resolved”

protein isoform was identified—in the multi-protease analysis—as a single protein

isoform, not as part of a multi-isoform protein group, the identification of the protein

isoform in question was considered to be confirmed, or “validated”. These validated

“rescued” or “resolved” isoforms, if identified in the multi-protease protein inference

results, had sufficient peptide level evidence, such as an isoform-specific peptide,

due to the identification of additional non-tryptic peptides derived from orthogonal

proteases to support their confident identification. The percent of “rescued” and

“resolved” protein isoforms whose presence were confirmed, or “validated”, in the

multi-protease protein inference results can be calculated. This percent validation

rate, when compared to expected rates, indicates how well the “rescue” and “resolve”

portions of the “R&R” algorithm do at increasing the number of true positive protein

isoform identifications.

Since the multi-protease protein inference results are still incomplete and subject

to error due to incomplete peptide coverage of the proteome, the percent validated

means very little on its own. To assess the significance of the percent of “rescued” or

“resolved” isoforms validated, the experimentally determined value can be compared

against the validation rates expected at random. Such values can be computed by

calculating the percent of protein isoforms validated for a pool of randomly “rescued”

or “resolved" protein isoforms.

For the evaluation of the “rescue” portion of the “Rescue & Resolve” algorithm

we compared the rate of validation between the “rescued” isoforms and randomly

selected isoforms (background null). We “rescued” 355 isoforms based on additional

transcriptional evidence, from a pool of 15,700 isoforms that represent all the protein
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isoforms that could possibly be “rescued”. The same number of protein isoforms that

were rescued in the experimental results (N=355), were randomly selected, agnostic

of transcriptional abundance, from the pool of 15,700 protein isoforms that were

discarded in the protein inference process. Once the randomly “rescued” isoforms

have been selected, we determined if such protein isoforms were identified in the

multi-protease protein inference results, and the percent of isoforms validated was

calculated just as was done for the experimental results. This process of randomly

selecting 355 protein isoforms to “rescue” and determining the validation rate was

repeated for a total of 1,000 permutations to generate a null distribution of validation

rates against which the experimentally obtained results were compared, and statistical

significance with a p-value <0.0001 was determined.

For the evaluation of the “rescue” portion of the “Rescue & Resolve” algorithm

we compared the rate of validation between the “rescued” isoforms and randomly

selected isoforms (background null). We “rescued” 355 isoforms based on additional

transcriptional evidence, from a pool of 15,700 isoforms that represent all the protein

isoforms that could possibly be “rescued”. The same number of protein isoforms that

were rescued in the experimental results (N=355), were randomly selected, agnostic

of transcriptional abundance, from the pool of 15,700 protein isoforms that were

discarded in the protein inference process. Once the randomly “rescued” isoforms

have been selected, we determined if such protein isoforms were identified in the

multi-protease protein inference results, and the percent of isoforms validated was

calculated just as was done for the experimental results. This process of randomly

selecting 355 protein isoforms to “rescue” and determining the validation rate was

repeated for a total of 1,000 permutations to generate a null distribution of validation

rates against which the experimentally obtained results were compared, and statistical

significance with a p-value <0.0001 was determined.
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9.8 Supplementary Tables

Table 9.1: Protein Classifications Based on SQANTI Protein

SQANTI
Protein
class

N-
terminus

Splicing C-
terminus

Note Number of
protein iso-
forms

pFSM Known Known Known - 15,549
pFSM Known - Known - 782
pNIC Known Known Known Novel combo of

N/C-term
1,603

pNIC Known Combo Known - 6,039
pNNC Known Combo Novel - 1,910
pNNC Known Known Novel - 7,732
pNNC Known Novel Known - 3,317
pNNC Known Novel Novel - 4,759
pNNC Novel Combo Known - 150
pNNC Novel Combo Novel - 51
pNNC Novel Known Known - 2,078
pNNC Novel Known Novel - 368
pNNC Novel Novel Known - 537
pNNC Novel Novel Novel - 193

Table 9.2: Number of Isoforms for Each Transcript and Protein Isoform Classifications
Between SQANTI and SQANTI Protein

SQANTI3 transcript iso-
form class

SQANTI Protein isoform
class

Number of isoforms

FSM pFSM 11,874
FSM pNIC 390
FSM pNNC 1,220
ISM pFSM 371
ISM pNIC 428
ISM pNNC 4,752
NIC pFSM 2,353
NIC pNIC 6,398
NIC pNNC 5,416
NNC pFSM 1,733
NNC pNIC 426
NNC pNNC 9,707
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Table 9.3: Summary of MetaMorpheus Search Results

Protein database Peptides Protein
Groups

Genes Gene space

GENCODE 76,255 7,717 7,666 All protein-coding
genes

UniProt 76,718 7,623 7,524 All protein-coding
genes

PacBio Hybrid 75,750 7,702 7,641 All protein-coding
genes

GENCODE 52,341 5,126 5,036 High confidence
space (HC space)

UniProt 52,494 5,055 4,960 High confidence
space (HC space)

PacBio Hybrid 51,754 5,100 5,000 High confidence
space (HC space)
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Table 9.4: Search Parameters for MetaMorpheus

Search Task Parameters
Search Parameters
Protease: trypsin Max Missed Cleavages: 2
Max Mods Per Peptide: 2 Min Peptide Length: 7
Max Peptide Length: None Precursor Mass Tolerance: 5 ppm
Product Mass Tolerance: 20 ppm Dissociation Type: HCD
Initiator Methionine : Variable Separation Type: HPLC
Modifications
Common Fixed: Carbamidomethyl on
C & U

Common Variable: Oxidation on M

Protein Parsimony
Apply protein parsimony and con-
struct protein groups
Quantification
LFQ: Quantify peptides/proteins Peakfinding tolerance: 5ppm
Output Options
Write .mzID Write Decoys
Write Contaminants Write Individual File Results
Minimum score allowed: 5
Advanced Options: File Loading Parameters
Use Provided Precursor Deconvolute Precursor
Deconvolution Max Assumed Charge
State: 12

Trim MS2 Peaks

Top N Peaks per m/z window:200 Minimum intensity ratio: 0.01
Advanced Options: Search Parameters
Search Mode: Classic Search Number of Database Partitions: 1
Generate Target Proteins Generate Decoy proteins
Generate Reversed Decoys Max Modification Isoforms: 1024
Min Read Depth for Variants: 1 Max Heterozygous Variants for Com-

binatorics: 4
N-Terminal Ions C-Terminal Ions
Max Fragment Mass (Da): 30000 Max Threads: 39
Mass Difference Acceptor Criterion: 1
Missed Monoisotopic Peak

Remove Contaminant

Report PSM ambiguity



221

9.9 References

(1) Rodriguez, J. M.; Maietta, P.; Ezkurdia, I.; Pietrelli, A.; Wesselink, J. J.; Lopez, G.;

Valencia, A.; Tress, M. L. APPRIS: annotation of principal and alternative splice

isoforms. Nucleic Acids Res 2013, 41, Type: Journal Article, D110–7.

(2) Haas, B. J. et al. De novo transcript sequence reconstruction from RNA-seq

using the Trinity platform for reference generation and analysis. Nat Protoc

2013, 8, Type: Journal Article, 1494–512.

(3) Tang, S.; Lomsadze, A.; Borodovsky, M. Identification of protein coding regions

in RNA transcripts. Nucleic Acids Res 2015, 43, Type: Journal Article, e78.

(4) Kozak, M. Initiation of translation in prokaryotes and eukaryotes. Gene 1999,

234, Type: Journal Article, 187–208.

(5) Deutsch, E. W.; Lane, L.; Overall, C. M.; Bandeira, N.; Baker, M. S.; Pineau, C.;

Moritz, R. L.; Corrales, F.; Orchard, S.; Van Eyk, J. E.; Paik, Y. K.; Weintraub, S. T.;

Vandenbrouck, Y.; Omenn, G. S. Human Proteome Project Mass Spectrometry

Data Interpretation Guidelines 3.0. J Proteome Res 2019, 18, Type: Journal Article,

4108–4116.

(6) Solntsev, S. K.; Shortreed, M. R.; Frey, B. L.; Smith, L. M. Enhanced Global

Post-translational Modification Discovery with MetaMorpheus. J Proteome Res

2018, 17, Type: Journal Article, 1844–1851.

(7) Cesnik, A. J.; Miller, R. M.; Ibrahim, K.; Lu, L.; Millikin, R. J.; Shortreed, M. R.;

Frey, B. L.; Smith, L. M. Spritz: A Proteogenomic Database Engine. J Proteome

Res 2021, 20, Type: Journal Article, 1826–1834.

(8) Audain, E.; Uszkoreit, J.; Sachsenberg, T.; Pfeuffer, J.; Liang, X.; Hermjakob, H.;

Sanchez, A.; Eisenacher, M.; Reinert, K.; Tabb, D. L.; Kohlbacher, O.; Perez-



222

Riverol, Y. In-depth analysis of protein inference algorithms using multiple

search engines and well-defined metrics. J Proteomics 2017, 150, Type: Journal

Article, 170–182.

(9) Claassen, M. Inference and validation of protein identifications. Mol Cell Pro-

teomics 2012, 11, Type: Journal Article, 1097–104.

(10) The, M.; Edfors, F.; Perez-Riverol, Y.; Payne, S. H.; Hoopmann, M. R.; Palmblad,

M.; Forsstrom, B.; Kall, L. A Protein Standard That Emulates Homology for

the Characterization of Protein Inference Algorithms. J Proteome Res 2018, 17,

Type: Journal Article, 1879–1886.

(11) Klimek, J.; Eddes, J. S.; Hohmann, L.; Jackson, J.; Peterson, A.; Letarte, S.;

Gafken, P. R.; Katz, J. E.; Mallick, P.; Lee, H.; Schmidt, A.; Ossola, R.; Eng, J. K.;

Aebersold, R.; Martin, D. B. The standard protein mix database: a diverse data

set to assist in the production of improved Peptide and protein identification

software tools. J Proteome Res 2008, 7, Type: Journal Article, 96–103.

(12) Ahrne, E.; Molzahn, L.; Glatter, T.; Schmidt, A. Critical assessment of proteome-

wide label-free absolute abundance estimation strategies. Proteomics 2013, 13,

Type: Journal Article, 2567–78.

(13) Choi, M.; Eren-Dogu, Z. F.; Colangelo, C.; Cottrell, J.; Hoopmann, M. R.; Kapp,

E. A.; Kim, S.; Lam, H.; Neubert, T. A.; Palmblad, M.; Phinney, B. S.; Weintraub,

S. T.; MacLean, B.; Vitek, O. ABRF Proteome Informatics Research Group

(iPRG) 2015 Study: Detection of Differentially Abundant Proteins in Label-Free

Quantitative LC-MS/MS Experiments. J Proteome Res 2017, 16, Type: Journal

Article, 945–957.

(14) Edfors, F.; Forsstrom, B.; Vunk, H.; Kotol, D.; Fredolini, C.; Maddalo, G.; Svens-

son, A. S.; Bostrom, T.; Tegel, H.; Nilsson, P.; Schwenk, J. M.; Uhlen, M. Screen-



223

ing a Resource of Recombinant Protein Fragments for Targeted Proteomics. J

Proteome Res 2019, 18, Type: Journal Article, 2706–2718.

(15) Claassen, M.; Reiter, L.; Hengartner, M. O.; Buhmann, J. M.; Aebersold, R.

Generic comparison of protein inference engines. Mol Cell Proteomics 2012, 11,

Type: Journal Article, O110 007088.

(16) Miller, R. M.; Millikin, R. J.; Hoffmann, C. V.; Solntsev, S. K.; Sheynkman,

G. M.; Shortreed, M. R.; Smith, L. M. Improved Protein Inference from Multiple

Protease Bottom-Up Mass Spectrometry Data. J Proteome Res 2019, 18, Type:

Journal Article, 3429–3438.

(17) Swaney, D. L.; Wenger, C. D.; Coon, J. J. Value of using multiple proteases for

large-scale mass spectrometry-based proteomics. J Proteome Res 2010, 9, Type:

Journal Article, 1323–9.



224

10 appendix iv: supporting information for "discovery of

dehydroamino acid residues in the capsid and matrix

structural proteins of hiv-1"

This chapter has been published and is reproduced with permission from:

Miller, R.M.; Knoener, R.A; Benner, B.E.; Frey, B.L.; Shortreed, M.R.; Sherer, N.M.;
Smith, L. M. Discovery of Dehydroamino Acid Residues in the Capsid and Ma-
trix Structural Proteins of HIV-1. Journal of Proteome Research 2022, 21(4), 993–1001.
https://doi.org/10.1021/acs.jproteome.1c00867.

Copyright © 2022 American Chemical Society.
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10.1 Supplementary Note 1: Determination of the

Reproducibility of Peptide Identifications

To determine the threshold at which a peptide would be considered reproducible

for this experiment, all peptide identifications were compared across the four bio-

logical replicates. In the unlabeled data, 43% of peptides were only identified in a

single biological replicate, and 57% were identified in 2+ biological replicates. A

similar trend was observed for the glutathione-labeled data, with 47% of all peptides

being identified in a single biological replicate, and 53% were identified in 2+ bio-

logical replicates. The exact breakdown of percent peptide overlap across biological

replicates can be found in Table 10.1. Based on this information, identification of a

peptide in 2+ biological replicates is sufficient to be considered reproducible.

Table 10.1: Percent of Peptides Identified in Multiple Biological Replicates

Number of Replicates a
Peptide is identified In

Percent of Peptides at
1% FDR in Unlabeled
Sample

Percent of Peptides at
1% FDR in Labeled
Sample

1 43% 47%
2 18% 15%
3 15% 13%
4 24% 25%

10.2 Supplementary Note 2: Evaluation of Virion

Sample Preparation

The efficacy of the virion isolation protocol at both removing contaminant proteins

present in the culture media, and enriching HIV proteins relative to human proteins.

The contaminant protein database, included with MetaMorpheus, contains proteins
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known to be present in fetal bovine serum (FBS). Inclusion of the contaminant

database enables the identification of PSMs which map to these FBS contaminant

proteins. Only 4% of all non-decoy PSMs at 1% FDR were identified to map to

these serum proteins in both the labeled and unlabeled searches (5,570 PSMs in

unlabeled, 7,210 PSMs in labeled). These values indicate the sample preparation

protocol was effective at removing media contamination, allowing human and HIV

PSMs to represent the vast majority of PSMs identified at 1% FDR. The enrichment

of viral proteins over human proteins in the sample was determined by comparing

estimated abundance values. The number of PSMs identified for a given protein

(PSM count) was used as an approximation of abundance, and the average PSM

count was determined for all identified viral and human proteins. In the unlabeled

sample, the average PSM count for human proteins is 46 while the average PSM count

for HIV protein is 3,276. The same trend is observed in the labeled sample with the

average PSM count of human proteins being 36 and the average PSM count for HIV

proteins is 3,172. These results demonstrate the enrichment of HIV viral proteins

over human proteins in the isolated HIV virions which is expected. All the results

reported demonstrate the virion isolation protocol effectively isolates the HIV virions

from the transfected host cells, as well as the culture media.

10.3 Supplementary Figures
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Figure 10.1: Annotated spectra for peptide identifications confirming the DHA and
glutathione-labeled DHA at residue 56 in the HIV matrix protein. A) DHA and B)
glutathione-labeled DHA, which is normally a cysteine in an unmodified peptide.
Identified y-ions are in red, b-ions in blue, a-ions in cyan and internal ions in green.
Water loss ions are annotated with a degree symbol, and ammonia loss ions are
annotated with a star. Within the annotated sequence, the site of DHA modification
is highlighted by the pink circle, and the site of the glutathione-labeled DHA modifi-
cation is highlighted by the purple circle. In panel A, y-ions 2-13 all confirm the DHA
modification, and are shifted by -33.987 Da relative to the theoretical m/z of the peaks
of an unmodified peptide. In panel B, y-ions 2-12 all confirm the glutathione-labeled
DHA modification and are shifted by +273.096 Da relative to the theoretical m/z of
the peaks of an unmodified peptide, and by +307.32 Da relative to those of the DHA
modified peptide.
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Figure 10.2: Annotated spectra for peptide identifications confirming the DHA and
glutathione-labeled DHA at residue 16 in the HIV capsid protein. A) DHA and
B) glutathione-labeled DHA, which is normally a serine in an unmodified peptide.
Identified y-ions are in red, b-ions in blue, a-ions in cyan and internal ions in green.
Water loss ions are annotated with a degree symbol, and ammonia loss ions are
annotated with a star. Within the annotated sequence, the site of DHA modification
is highlighted by the pink circle, and the site of the glutathione labeled DHA modi-
fication is highlighted by the purple circle. The orange circle indicates oxidation of
methionine. In panel A, the y6 ion confirms the DHA modification, and is shifted by
-18.01 Da relative to the theoretical m/z peak of an unmodified peptide. In panel B,
y-ions 3-15 all confirm the glutathione-labeled DHA modification and are shifted by
+289.07 Da relative to the theoretical m/z of the peaks of an unmodified peptide, and
by 307.32 Da relative to those of the DHA modified peptide.
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Figure 10.3: Annotated spectra for peptide identifications confirming the DHB and
glutathione-labeled DHB at residue 119 in the HIV capsid protein. A) DHB and B)
glutathione-labeled DHB, which is normally a threonine in an unmodified peptide.
Identified y-ions are in red, b-ions in blue, a-ions in cyan and internal ions in green.
Water loss ions are annotated with a degree symbol, and ammonia loss ions are
annotated with a star. Within the annotated sequence, the site of DHB modification
is highlighted by the pink circle, and the site of the glutathione-labeled DHB modifi-
cation is highlighted by the purple circle. The orange circle indicates deamidation in
panel A and hydroxylation in panel B. In panel A, the y-ions 19 and 21 confirm the
DHB modification, and are shifted by -18.01 Da relative to the theoretical m/z of the
peaks of an unmodified peptide. In panel B, y-ions 17, 20, 21, 24, and 27 all confirm
the glutathione-labeled DHB modification and are shifted by +289.07 Da relative to
the theoretical m/z of the peaks of an unmodified peptide, and by 307.32 Da relative
to those of the DHB modified peptide.
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Figure 10.4: Annotated spectra for peptide identifications confirming the DHB and
glutathione-labeled DHB at residue 188 in the HIV capsid protein. A) DHB and B)
glutathione labeled DHB, which is normally a threonine in an unmodified peptide.
Identified y-ions are in red, b-ions in blue, a-ions in cyan and internal ions in green.
Water loss ions are annotated with a degree symbol, and ammonia loss ions are
annotated with a star. Within the annotated sequence, the site of DHB modification is
highlighted by the pink circle, and the site of the glutathione-labeled DHB modifica-
tion is highlighted by the purple circle. The orange circle covering cysteines in panel
A and B indicate carbamidomethylation, the other orange circle in panel B indicates
hydroxylation. In panel A, the y-ions 12-15 confirm the DHB modification, and are
shifted by -18.01 Da relative to the theoretical m/z of the peaks of an unmodified
peptide.
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Figure 10.5: Annotated spectra for peptide identifications confirming the DHA and
glutathione-labeled DHA at residue 198 in the HIV capsid protein. A) DHA and B)
glutathione-labeled DHA, which is normally a cysteine in an unmodified peptide.
Identified y-ions are in red, b-ions in blue, a-ions in cyan and internal ions in green.
Water loss ions are annotated with a degree symbol, and ammonia loss ions are
annotated with a star. Within the annotated sequence, the site of DHA modification
is highlighted by the pink circle, and the site of the glutathione-labeled DHA modifi-
cation is highlighted by the purple circle. In panel A, y-ions 2-15 all confirm the DHA
modification, and are shifted by -33.987 Da relative to the theoretical m/z of the peaks
of an unmodified peptide. In panel B, y-ions 4-10 all confirm the glutathione-labeled
DHA modification and are shifted by +273.096 Da relative to the theoretical m/z of
the peaks of an unmodified peptide, and by +307.32 Da relative to those of the DHA
modified peptide.
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Figure 10.6: Annotated spectra for peptide identifications confirming the DHB and
glutathione-labeled DHB at residue 210 in the HIV capsid protein. A) DHB and B)
glutathione-labeled DHB, which is normally a threonine in an umodified peptide.
Identified y-ions are in red, b-ions in blue, a-ions in cyan and internal ions in green.
Water loss ions are annotated with a degree symbol, and ammonia loss ions are
annotated with a star. Within the annotated sequence, the site of DHB modification
is highlighted by the pink circle, and the site of the glutathione labeled DHB modifi-
cation is highlighted by the purple circle. Orange circles in the annotated sequence
for both panels, indicate carbamidomethylation. In panel b the second orange circle
indicates deamidation. In panel A, the y22 ion as well as the b-ions 7-14 all confirm
the DHB modification, and are shifted by -18.01 Da relative to the theoretical m/z of
the peaks of an unmodified peptide. In panel B, the y21 ion confirms the glutathione-
labeled DHB modification and is shifted by +289.07 Da relative to the theoretical
m/z peak of an unmodified peptide, and by +307.32 Da relative to that of the DHB
modified peptide.
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Figure 10.7: Annotated spectra for peptide identifications confirming the DHB and
glutathione-labeled DHB at residue 216 in the HIV capsid protein. A) DHB and B)
glutathione-labeled DHB, which is normally a threonine in an unmodified peptide.
Identified y-ions are in red, b-ions in blue, a-ions in cyan and internal ions in green.
Water loss ions are annotated with a degree symbol, and ammonia loss ions are
annotated with a star. Within the annotated sequence, the site of DHB modification is
highlighted by the pink circle, and the site of the glutathione-labeled DHB modifica-
tion is highlighted by the purple circle. Orange circles in the annotated sequence for
both panels, indicate carbamidomethylation and oxidation. In panel A, y-ions 13-18
and 21 as well as the b13 ion all confirm the DHB modification, and are shifted by
-18.01 Da relative to the theoretical m/z of the peaks of an unmodified peptide. In
panel B, y-ions 15 and 16 all confirm the glutathione-labeled DHB modification and
are shifted by +289.07 Da relative to the theoretical m/z of the peaks of an unmodified
peptide, and by +307.32 Da relative to those of the DHB modified peptide.
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Figure 10.8: Annotated spectra for peptide identifications confirming the DHA and
glutathione-labeled DHA at residue 218 in the HIV capsid protein. A) DHA and B)
glutathione-labeled DHA, which is normally a cysteine in an unmodified peptide.
Identified y-ions are in red, b-ions in blue, a-ions in cyan and internal ions in green.
Water loss ions are annotated with a degree symbol, and ammonia loss ions are
annotated with a star. Within the annotated sequence, the site of DHA modification
is highlighted by the pink circle, and the site of the glutathione-labeled DHA modi-
fication is highlighted by the purple circle. In panel A, y-ions 10-22 all confirm the
DHA modification, and are shifted by -33.987 Da relative to the theoretical m/z of the
peaks of an unmodified peptide. In panel B, y-ions 10-18 and 20-22 all confirm the
glutathione-labeled DHA modification and are shifted by +273.096 Da relative to the
theoretical m/z of the peaks of an unmodified peptide, and by +307.32 Da relative to
those of the DHB modified peptide.
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10.4 Supplementary Tables
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