

Architecture and Circuit Cross-Cutting Approaches for Power-Efficient

Multi-Core Processors

By

Hamid Reza Ghasemi

A dissertation submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the

UNIVERSITY OF WISCONSIN-MADISON

2015

Date of final oral examination: 03/26/2015.

The dissertation is approved by the following members of the Final Oral Committee:
Nam Sung Kim, Associate Professor, Electrical and Computer Engineering and Computer Sciences

Mark D. Hill, Professor, Computer Sciences

Mikko H. Lipasti, Professor, Electrical and Computer Engineering

Karu Sankaralingam, Associate Professor, Computer Sciences

David A. Wood, Professor, Computer Sciences

© Copyright by Hamid Reza Ghasemi 2015

All Rights Reserved

i

Abstract

With technology scaling, which allows manufacturers to integrate more cores per chip, the per-

formance of multi-core processors has been increased for the past decade. However, such a trend can-

not be sustained because the power reduction per core has slowed down, while the maximum power

consumption allowed per chip has not increased. This limits the maximum number of cores per chip.

Therefore, improving the power efficiency of the existing and future multi-core processors becomes

crucial for higher performance.

Traditionally, dynamic voltage and frequency scaling (DVFS) has been the most powerful

technique to enable power-efficient multi-core processing. However, with aggressive technology scal-

ing, the efficiency of DVFS has been continuously decreased due to the shrinking voltage scaling win-

dow. Prior efforts to improve the efficiency of DVFS often have not been (cost) effective. Besides,

most of these solutions may be sub-optimal since they investigate only one abstraction layer: circuit or

micro-architecture. Although solutions focusing on one abstraction layer reduce the complexity of the

design process, they may increase inefficiencies in design by not exploiting the shared goals, limita-

tions, and requirements across multiple design layers.

This dissertation discusses existing challenges to improve the power efficiency of multi-core

processors, and proposes circuit and architecture cross-cutting techniques to further improve power

efficiency of future multi-core processors. This dissertation identifies various challenges involved in

the efficiency of DVFS and proposes solutions to overcome these challenges. In addition, it proposes

ii

power efficiency techniques that are independent from and/or orthogonal to DVFS. In this dissertation,

I make four main contributions:

First, I demonstrate a cost-effective power delivery technique to support per-core voltage do-

mains for power-constrained multi-core processors. I exploit a very low-cost voltage regulator (VR)

that uses the existing on-chip per-core power-gating (PCPG) devices available in most commercial

processors and optimize a DVFS algorithm to efficiently work with this special VR. This technique

considerably reduces the cost of VRs while it provides highly power-efficient per-core DVFS.

Second, I propose a last-level cache (LLC) architecture comprised of heterogeneous cell sizes

to deliver both high-performance and low minimum operating voltage (VDDMIN). For low-power oper-

ation, the proposed LLC exclusively uses large cells that exhibit low failure rates at low voltages, ena-

bling it to operate at low VDDMIN. For high-performance operation, it operates at a high enough volt-

age at which the failure rate of even small cells of the LLC is sufficiently low, providing the needed

large LLC capacity.

Third, I propose a new technique to dynamically scale the number of cores and the amount of

resources of processors for increasing power efficiency when DVFS technique becomes not a viable

option for future processors. This technique is a DVFS alternative that can trade performance with

power consumption through micro-architectural resource scaling mechanism (instead of volt-

age/frequency) to maximize performance under a power constraint. It also proposes a runtime policy

that can effectively manage and leverage the proposed architectural mechanism to maximize perfor-

mance under a power constraint.

iii

Finally, I present a technique to dynamically adjust voltage regulators (VRs) to improve power

efficiency. The VRs are the most critical component of processor power delivery sub-system and dis-

sipates high power that is directly proportional to the power consumed by the processor. Traditionally,

when a processor is in active state, all phases of VR will be active regardless of power consumption of

processor. This leads to poor VR efficiency. This technique scales up and down the number of VR’s

active phases, by predicting the load current of processors, to increase the VR efficiency and reduce

the VR’s dissipated power.

With these mechanisms and analysis, this dissertation demonstrates multiple architecture/circuit

techniques to improve power efficiency of multi-core processors when traditional DVFS technique is

not efficient or not a viable solution.

iv

Acknowledgements

During the graduate school, I have received support from many people. When I started writing

the acknowledgement, I found it difficult to name all these people. I would like to apologize in ad-

vance if I leave out any deserving individuals.

First, I give thanks to Professor Nam Sung Kim. He contributed in all aspects of this disserta-

tion. He spent many hours providing valuable feedback and discussions to clarify ideas, and ensuring

our progress in each step of these research projects. He contributed highly in projects presented in this

dissertation. I also would like to thank my dissertation committee members, Professor Mark D. Hill,

Professor Mikko Lipasti, Professor Karu Sankaralingam, and Professor David A. Wood for their in-

sights and guidance. In addition, I wish to thank Dr. Michel Schulte, Dr. Ken Vu, Dr. Srini Ramani,

Dr. Alaa Alameldin, Professor Stark Draper, and Professor Ulya Karpuzcu for their valuable contribu-

tions and feedbacks.

I would like to thank my former and current colleagues at UW-Madison, including Jungseob

Lee, Abhishek Sinkar, Arsalan Zulfigar, Syed Gilani, David Palfrom, Paula Aguilera, Philip Garcia,

Daniel Chang, Mike Marty, Marc De Kruijf, Jayaram Boba, Dan Gibson, Yasko Eckhert, Arka Basu,

Srinath Sridhara, Rathijit Sen, Gagan Gupta, Mohammad Shoaib Bin Altaf, Nilay Vaish, Tony

Nowotski, Jayneel Gandhi, Newsha Ardalani, Jason Power, Marc Orr, Lina Olson, Joel Hestness, and

Chris Feilbach. They have provided valuable feedback and discussions during graduate school. I also

wish to thank my colleagues at AMD for their support.

mailto:crf@cs.wisc.edu

v

Last but not least, none of these was possible without tremendous support and love from my

family. I express my gratitude to my wife, Somayeh Sardashti. Her unconditional love and constant

support helped me to be strong and positive. I also give my thanks to my parents. They have always

supported and encouraged me in achieving my goals. Their love motivated me to stay focus and move

forward. I also would like to thank my parents-in-law for their encouragements and support during the

graduate school. In addition, I wish to thank my brothers, my brothers-in-laws, and my sister-in-laws

for their encouragements.

I would also like to thank those who provided the financial support for my graduate studies. I

have been supported by generous grants from AMD, IBM, the Wisconsin Alumni Research Founda-

tion, and the National Science Foundation NSF (CCF-0953603, CCF-1016262, and CCF-095360).

Finally, this dissertation, for what it is worth, is dedicated to my wife, Somayeh Sardashti, and

my parents, Amir Ghasemi and Kobra Ghaseminia.

vi

Table of Contents

Abstract ... i

Acknowledgements .. iv

Chapter 1 Introduction ... 1

1.1 Power Management Techniques .. 1

1.2 Dissertation Contributions ... 5

1.2.1 Cost-Effective Power Delivery Technique to Support Per-Core Voltage Domain .. 6

1.2.2 Low-Voltage On-Chip Cache Architecture using Heterogeneous Cell Sizes .. 7

1.2.3 DRCS: Dynamic Resource and Core Scaling .. 9

1.2.4 VR-Scale: Runtime Dynamic Phase Scaling of Processor Voltage Regulators ... 9

1.3 Dissertation Organization ...10

Chapter 2 Power Management Techniques: Background and Related Work ..12

2.1 DVFS ...12

2.1.1 DVFS and Per-Core Voltage Domain ..16

2.1.2 Coping with Minimum Operating Voltage ...18

2.2 DVFS Alternatives ...20

Chapter 3 Supporting Low-Cost Per-Core DVFS ...24

3.1 Benefits of Per-core Voltage Domains ...25

3.2 Challenges to Support Per-Core Voltage Domains...27

3.3 C2C Voltage Variations ...29

3.4 PCPG-Based LDO VRs ..30

3.4.1 Efficiency Comparison: LDO versus Switching VRs ...32

3.5 Evaluation ..36

3.5.1 DVFS Algorithms for Efficiency Comparison ...36

3.5.2 Architectural Simulation Environment ...38

3.5.3 Core Frequency and Power Models ..39

3.5.4 MIPS3/W Comparison ..42

3.6 Chapter Summary ...48

Chapter 4 Low-Voltage On-Chip Cache Architecture using Heterogeneous Cell Sizes ...50

4.1 Impact of LLC Size on Performance versus Processor Frequency ...53

4.2 SRAM Cell Failure Probability and VDDMIN versus Cell Size ...56

4.2.1 Impact of Transistor’s Size on RDF and LER ..56

4.2.2 Impact of Cell Size on Cell and Cache Failure Probabilities ..56

4.3 LLC Architecture using Heterogeneous Cell Sizes ..57

4.3.1 LLC Implementation using Heterogeneous Cell Sizes to Support Low VDDMIN ...58

4.3.2 Micro-Architectural Techniques for LLC Way Shutdown ...63

4.3.3 Performance and Power Impacts of Heterogeneous LLC Architectures ...65

vii

4.4 Evaluation ..68

4.4.1 Simulation Environment ...68

4.4.2 Simulation Results ..71

4.5 Chapter Summary ...77

Chapter 5 DRCS: Dynamic Resource and Core Scaling ...78

5.1 Simulation Methodology ..79

5.2 DRCS under Power Constraint ...80

5.3 Impact of RCS on Power Consumption ..85

5.4 Runtime System ...89

5.4.1 Performance Comparison at Each Interval ...89

5.4.2 Best Configuration Predictor ..90

5.4.3 Necessary Support and Runtime Overhead ..96

5.5 sRCS ...100

5.6 Chapter Summary ...105

Chapter 6 VR-Scale: Runtime Dynamic Phase Scaling of Processor Voltage Regulators ..107

6.1 Circuit- and Architecture-Level Techniques for VR Phase Scaling ...111

6.2 Background ..112

6.2.1 Processor Power and Performance States ...112

6.2.2 Platform Voltage Regulators ..113

6.2.3 Processor-VR Interface...115

6.3 Efficiency Improvement Opportunity in Multi-Phase VRs ..116

6.3.1 Efficiency versus Load Current and Output Voltage ..116

6.3.2 Impact on Overall Power Efficiency ..118

6.3.3 Impact of Runtime Phase Scaling on Performance and Reliability ..119

6.4 Experimental Methodology ..120

6.5 Runtime Processor Current Consumption ..123

6.6 VR-Scale ..126

6.6.1 Temporal Load Current Change Pattern ...127

6.6.2 Architectural Support and Power Efficiency Evaluation ..129

6.6.3 Processor Supported by On-Chip VRs ...134

6.6.4 Impact of Measurement Time Interval ...136

6.7 Chapter Summary ...139

Chapter 7 Summary and Future Work ..141

7.1 Directions for Future Work ..144

7.1.1 Hierarchical LDO VR ...144

7.1.2 Memory Hierarchy at Low VDD ..146

7.1.3 Dynamic Resource and Core Scaling Expansion ..146

7.1.4 VR-Scale Expansion ...147

References ..148

1

Chapter 1

Introduction

For the past several decades, the technology scaling has enabled manufacturers to integrate

more cores per chip and increase the performance of multi-core processors. However, this trend cannot

be sustained because the power reduction per core has slowed down while the maximum power con-

sumption per chip has not increased. This limits the maximum number of cores per chip. Therefore,

improving the power efficiency of existing and future multi-core processors is crucial to further in-

crease their performance.

1.1 Power Management Techniques

Several power management techniques to improve the power efficiency of processors have

been proposed. In general, the prerequisite of implementing these techniques is to have some level of

scalability in a processor and then dynamically adapt the processor configuration to execute different

phases of applications more efficiently. Therefore, processors require operating under different

amounts of power envelopes (e.g., by adjusting voltage/frequency level) as well as different amounts

of active cores and core resources (e.g., by adjusting the size of caches, the number of execution units,

the issue width, and the size of the instruction queue and re-order buffer). I categorize the existing

techniques into two general classes: techniques based on dynamic voltage and frequency scaling

(DVFS) and DVFS alternatives (or non-DVFS techniques), as summarized in Table 1-1.

2

DVFS has been the most powerful technique to improve the power efficiency of processors.

DVFS can improve power efficiency for various purposes: maximizing performance under a power

constraint, minimizing power consumption under a performance constraint, or reducing the amount of

heat generated by a chip. DVFS can achieve these goals by increasing or decreasing the volt-

age/frequency level of processors. However, the efficiency of DVFS has decreased in each technology

generation as the voltage scaling window has reduced. As depicted in Figure 1-1(a), the nominal

voltage of transistors has decreased with technology scaling. On the other hand, process variability, one

of the main sources preventing on-chip caches comprised of static random access memory (SRAM)

cells (and thus cores) from operating at low voltage, has considerably increased with technology

scaling, as shown in Figure 1-1(b). At lower voltages and in the presence of process variation, the fail-

ure probability of individual memory cells in large-scale structures, such as caches, increases. This

leads to more defective memory cells that fail to maintain their correct states. Several techniques have

been proposed to deal with the reliability issues of SRAM cells and large-scale memory structures to

Figure 1-1: (a) Nominal voltage scaling and (b) process variation of the threshold voltage (Vth) and effective
channel length (Leff) of the minimum size device with technology scaling. The standard deviation of the Vth
values is the average of the NMOS and PMOS devices.

(a) (b)

3

enable operation at low voltages. However, most of these techniques will considerably increase the

chip area or significantly diminish the power reduction benefit of DVFS.

The efficiency of DVFS can be varied depending on power delivery sub-system, volt-

age/frequency (V/F) scaling range, and runtime V/F assignment algorithm, as shown in Table 1-1.

In multi-core processors that power delivery sub-system supports one voltage domain for cores (i.e.,

chip-wide DVFS), the efficiency of DVFS can be limited because the chip-wide DVFS cannot exploit

the different levels of power/performance trade-offs between cores that run different threads or pro-

grams. On the other hand, providing multiple voltage domains (i.e., per-core DVFS) requires multiple

voltage regulators (VRs). A VR is required to efficiently deliver stable voltage and large current for a

processor for efficient processor power management. Having multiple voltage domains and delivering

power using multiple off-chip (or on-chip) VRs incurs a high cost for the platform and package designs

or increases the chip area. In addition, the V/F scaling range affects the benefits of DVFS because it

provides limited power window for executing applications. Therefore, the techniques that help to oper-

ate processors at lower voltages can increase this V/F range and improve the efficiency of DVFS. Fur-

Power
management
techniques

and
their efficiency

factors

DVFS

Power Delivery Sub-system VR-Scale (chapter 6), LDO (chapter 3)

Scaling Knob:
V/F

Last-level cache with heterogeneous cell size (chapter 4)

V/F Assignment Policy LDO (chapter 3)

DVFS alter-
natives

Power Delivery Sub-system VR-Scale (chapter 6)

Scaling Knob:
processor resources

DRCS (chapter 5)

Scaling Policy VR-Scale (chapter 6), DRCS (chapter 5)

Table 1-1: Taxonomy of power management mechanisms and my contributions

4

thermore, the DVFS policy or algorithm, which determines the V/F state at runtime, affects the effi-

ciency of DVFS because it can find one sub-optimal V/F state for executing applications on the pro-

cessor for each interval. For example, in a system with a single chip-wide voltage domain for cores, the

algorithm will select one voltage for all the cores but the cores may run different threads or applica-

tions and they need different level of voltage and frequency to improve the power efficiency.

DVFS will not be a viable option or will be too expensive to support in the near future in spite

of the efforts to improve the efficiency of DVFS. Technology scaling will practically stop the further

reduction of the minimum operating voltage after a certain technology generation. Consequently, the

voltage scaling window may vanish. Architects must pursue other research directions to offer alterna-

tive techniques to DVFS.

To implement the DVFS alternative techniques, I formulate the requirements and impacts into

three attributes power delivery sub-system, scaling knobs, and scaling policy, as summarized in Ta-

ble 1-1. Improving the efficiency of a power delivery sub-system can also improve the power efficien-

cy of the entire system, even in the absence of DVFS techniques. One of the most critical components

to deliver system power is off-chip VRs. These VRs supply the necessary power for various platform

components, such as processors, chipsets, dynamic random access memory (DRAM) modules and

storage devices, and they consume a large fraction of the total platform power. In addition, similar to a

V/F knob in DVFS techniques, scaling knobs in DVFS alternative power efficiency techniques (e.g.,

core and resource scaling) may affect the benefits of processor power efficiency because they can pro-

vide diverse processor configurations, each with different power/performance trade-offs. Most DVFS

alternatives provide micro-architectural mechanisms to achieve higher power efficiency. These micro-

5

architectural mechanisms may increase the design complexity. In addition, they may have a very high

overhead for switching from one processor configuration to another. Furthermore, the scaling policy,

which dynamically identifies the optimal processor configuration at runtime, may affect the power

efficiency by failing to find the optimal processor configuration, having a very large search space, or

having very limited search space.

1.2 Dissertation Contributions

In this dissertation, I discuss existing challenges to improving the power efficiency of multi-

core processors and propose circuit and architecture cross-cutting techniques to further improve the

power efficiency of future multi-core processors.

The traditional methodology for designing processors can potentially incur power efficiency of

processors. A processor design is comprised of several abstraction layers (e.g., architecture, micro-

architecture, circuit, and device). Each abstraction layer has its own goals, limits, and requirements and

is often designed and implemented independently. Although employing such abstractions reduce the

complexity of the design process, it may increase inefficiencies in design because we cannot fully ex-

ploit the potential benefits of recognizing the shared goals, limitations, and requirements across several

design layers. Thus, jointly considering architecture, circuit, and technology challenges for future mul-

ti-core processors can provide more opportunities to make a processor more power-efficient. I pursue

various techniques that cut across architecture and circuit designs to maximize the power efficiency of

multi-core processors.

6

Table 1-1 summarizes the contributions of this dissertation. I make contributions to both DVFS

techniques and DVFS alternatives for power management. I propose two techniques to improve the

efficiency of DVFS: a last-level cache with heterogeneous SRAM cell sizes [1] and a cost-effective

per-core DVFS [2]. I also propose an alternative to DVFS: dynamic resource and core scaling (DRCS)

[3]. DRCS dynamically scales the number of active cores and processor resources during various phas-

es of applications to improve processor power efficiency. Finally, I explore different techniques to

scale VRs and increase their efficiency, resulting in higher processor power efficiency.

1.2.1 Cost-Effective Power Delivery Technique to Support Per-Core Voltage Domain

This research improves processor power efficiency by providing a cost-effective power deliv-

ery technique to support per-core voltage domains for power-constrained multi-core processors. Most

commercial processors only have one chip-wide voltage domain for DVFS because splitting the volt-

age domain into per-core voltage domains and powering them with multiple off-chip voltage regulators

incur a high cost for the platform and package designs. Although using on-chip switching VRs can be

an alternative solution, integrating high-quality inductors and cores on the same chip has been a critical

technical challenge. However, through architectural simulation studies, I observe that core-to-core

voltage variations are relatively small for most DVFS intervals when the V/F of the cores executing a

multi-thread workload are optimized to maximize the performance under a power constraint. Moreo-

ver, per-core power-gating (PCPG) devices augmented with some extra circuits can serve as low-cost

VRs that can provide high efficiency when the core-to-core voltage variations are small.

In this research, I exploit a very low-cost VR that uses the existing on-chip PCPG devices

available in most commercial processors and optimize a DVFS algorithm to efficiently work with this

7

special VR. The proposed technique considerably reduces the cost of VRs because the VR shares its

most expensive component with the PCPG device while providing power efficiency as high as the

state-of-the-art on-chip switching VRs. Furthermore, I propose a DVFS algorithm that is optimized for

the proposed VRs by choosing core voltage levels to maximize their efficiency. The proposed DVFS

algorithm considers the limited voltage difference between output voltage values (VO) and the input

voltage values (VI) of the VRs to support highly efficient power delivery. In order to minimize the

potential negative impact of the limited voltage range of the VRs in the proposal, the DVFS algorithm

leverages (i) within-die (WID) and core-to-core (C2C) process variations that can lead to various fre-

quency and power consumption trade-offs between cores even at the same operating voltages and (ii)

thread migration at runtime to satisfy the performance requirement of the running threads.

1.2.2 Low-Voltage On-Chip Cache Architecture using Heterogeneous Cell Sizes

This technique explores multi-core processor architecture to provide the low minimum operat-

ing voltage cost-effectively. Although DVFS has been one of the most successful power reduction

techniques, it is limited to some minimum operating voltage (i.e., VDDMIN). Therefore, reducing the

VDDMIN will help to provide a larger voltage scaling window for DVFS, which can improve power

efficiency. A large memory structure, such as last-level cache (LLC), in processors often determines

the VDDMIN of the processor due to the impact of process variation on the reliability of SRAM cells at

low voltages. Larger SRAM cells, which are less sensitive to process variability, support lower

VDDMIN. However, large memory structures cannot afford to use such large SRAM cells due to the die

cost. I made two main observations based on the simulations. First, the high-performance processor

still spends a substantial fraction of its runtime in high voltage/frequency (V/F) states when the load

8

level of the processor is high. Second, the negative performance impact of having a smaller LLC ca-

pacity is reduced when processors are running at lower V/F states.

Motivated by these two observations, I propose an LLC architecture comprised of heterogeneous

cell sizes designed for high-performance multi-core processors. This exploits (i) the DVFS characteris-

tics of workloads running on high-performance processors, (ii) the trade-off between SRAM cell size

and VDDMIN, and (iii) the fact that the latency between off-chip memory and on-chip core at lower V/F

states is reduced. I exploit these characteristics to deliver both high-performance and low VDDMIN by

architecting an LLC consisting of a spectrum of cell sizes. For low power operation, the proposed LLC

exclusively uses large cells that exhibit low failure rates at low voltages so the LLC can operate at a

low VDDMIN. On the other hand, for high-performance operation, it operates at a high enough voltage

that the failure rate of even small cells of the LLC is sufficiently low for their use, providing the need-

ed LLC capacity. At lower operating voltages, I disable subsets (e.g., ways in a set-associative LLC) of

cells in order of size, starting with the smallest. Because at lower voltages a processor must run at low-

er frequencies, the frequency gap between on-chip cores and off-chip memory decreases. The result is

that the performance penalty of having a smaller LLC in low V/F states is much smaller than it would

be in high V/F states.In this way, my proposal provides low VDDMIN at small area, while a convention-

al LLC needs to use large cells across the entire cache to provide the same low VDDMIN. Using large

cells will either require a larger die area for the same LLC capacity or result in a smaller LLC capacity

for the same die area.

9

1.2.3 DRCS: Dynamic Resource and Core Scaling

In this dissertation, I also explore architectural mechanisms to maximize performance under a

power constraint. By analyzing a wide range of workloads, I make two main observations that moti-

vate my proposal. First, at a fixed frequency, each application (and each phase of application) exhibits

a unique optimal processor configuration (i.e., the amount of resources, such as the size of on-chip

memory and the number of execution units, per core and the number of operating cores). For example,

for an application with high thread-level parallelism (TLP) but low instruction-level parallelism (ILP),

using more cores with less resources per core can lead to higher performance than using fewer cores

with more resources per core and vice versa. Second, the tradeoff between performance and power for

each resource in cores is different.

Inspired by these observations, I propose a dynamic resource and core scaling (DRCS) tech-

nique that dynamically trades the performance with power consumption by jointly scaling the re-

sources of cores and the number of operating cores. DRCS provides different processor configurations

by trading the amount of resources per core with the number of operating cores. In order to dynamical-

ly find the optimal configuration for each application, I also propose an algorithm that monitors appli-

cations’ runtime behavior and determines the best resource and core scaling configuration to maximize

performance under a power constraint.

1.2.4 VR-Scale: Runtime Dynamic Phase Scaling of Processor Voltage Regulators

A voltage regulator (VR) is the backbone of power delivery sub-system. A VR dissipates high

power that is directly proportional to the power consumed by the processor. A VR supplies current at a

stable voltage (i.e., within an allowed margin) in the presence of rapid changes in current demand. It

10

also support fast, accurate and fine-grained voltage changes for efficient processor power management.

These requirements become more stringent as technology scaling decreases processors’ operating volt-

age, making it costlier to manufacture an efficient VR. Therefore, manufacturers have offered some

knobs so that a processor can adapt a VR’s operating parameters to cost-effectively satisfy the re-

quirements with high efficiency.

In this study, I demonstrate that: (i) VR efficiency heavily depends on load current (i.e., current

delivered to a processor) and a VR operating parameter (e.g., the number of active phases) at a given

voltage; (ii) a processor running a parallel application mostly consumes small current due to aggressive

power management; and (iii) when the processor is in an active state, all the VR components are al-

ways activated in the platform. (ii) and (iii) in turn lead to poor VR efficiency during most runtime.

Second, I present VR-Scale, which dynamically scales the number of active phases based on the pre-

dicted load current for the next interval. My evaluations based on two Intel® processors running

emerging parallel applications show that VR-Scale can reduce the total power consumed by both a

processor and its VR with negligible performance impact.

1.3 Dissertation Organization

The rest of this dissertation is organized as follows. Chapter 2 discusses the background of

power management techniques and related work. The next four chapters discuss this dissertation’s con-

tributions in detail. Chapter 3 explains a cost-effective per-core power delivery and optimized DVFS

algorithm to support per-core DVFS. Chapter 4 describes the LLC design using heterogeneous SRAM

cell sizes that provides low power operating voltage while supporting high-performance. Chapter 5

11

explains the DRCS technique as an alternative to DVFS. Chapter 6 explains the VR-Scale technique.

Finally, Chapter 7 concludes the dissertation.

12

Chapter 2

Power Management Techniques:

Background and Related Work

Under contemporary technology scaling, the efficiency of dynamic voltage and frequency scaling

(DVFS) to enable power-efficient computing is decreasing due to the diminishing dynamic voltage (V)

and frequency (F) range. Several proposals have been introduced to mimic or increase DVFS’s utility

for sustainable power efficiency and several architecture and micro-architectural techniques have been

put forth as alternatives to DVFS. In the following chapter, I give an overview of power management

techniques. I discuss most of these techniques, and explain how they affect processor power efficiency.

I begin by revisiting the DVFS technique and its relevant background. I then discuss the proposals that

improve the efficiency of DVFS. Finally, I discuss background and prior work related to DVFS alter-

native techniques.

2.1 DVFS

DVFS has been a widely used power management technique that changes supply voltage and clock

frequency to improve processor power efficiency. DVFS has been exploited by diverse commercial

processors across all computing segments, from the embedded and mobile market up to the server

market. DVFS lowers supply voltage and clock frequency when the processor does not need high-

13

performance. In this way, it can improve processor power efficiency by reducing both dynamic and

static power.

The dynamic power consumption of a processor is determined by FVCPdynamic  2 , where

V is the supply voltage, F is the clock frequency, α is the switching activity level, and C is the capaci-

tance of the processor circuit. The DVFS technique allows a processor to reduce both the V and F dur-

ing processor execution, which leads to lower dynamic power. Dynamic power consumption is propor-

tional to
3F because clock frequency (F) is roughly proportional to supply voltage (V). Thus, as DVFS

mechanism decreases the processor V/F level, it reduces dynamic power consumption cubically. In

addition to lowering dynamic power, DVFS can reduce static power consumption. Static power, in-

cluding gate leakage power and subthreshold leakage power, is affected by V. Therefore, reducing V

affects both subthreshold and gate leakage. DVFS influences both dynamic and static power, which

explains why DVFS has been very popular for power efficiency.

Several prior studies have investigated the benefits of DVFS for multi-core processors and have

proposed techniques to advance its efficiency. In this dissertation, my focus is on improving the effi-

ciency of DVFS by providing cost-effective per-core DVFS and lowering the minimum operating volt-

age using heterogeneous static random access memory (SRAM) cell sizes. I therefore present work

related to these topics in detail. I classify attributes that affect the efficiency of DVFS into three cate-

gories: power delivery sub-system, V/F range, and V/F assignment algorithm, as shown in Table

2-1. For each discussed related work, I explain how it improves the efficiency of DVFS and which

factors it enhances.

14

2.1.1 Voltage Regulator: Basic Block for DVFS

In a processor platform, one of the most critical components is voltage regulators (VRs). VRs

supply necessary power for various platform components such as processors, chipsets, dynamic

random access memory (DRAM) modules and storage devices. The key role of a VR is to convert high

voltage level (e.g. 5V) to lower voltage levels that is operational (e.g. 1.2V ~ 0.6V) for processors.

VRs are responsible to deliver large current while providing a constant voltage level.

A VR uses a feedback control loop to provide a stable output voltage. DVFS algorithm assigns a

required voltage level as reference voltage (Vref) to VR. It compares the actual output voltage (Vo) to

the Vref. Any difference between Vo and Vref is amplified and used to control the regulation element to

decrease the voltage error. This forms a negative feedback control loop to fix the output voltage.

Whenever the load current of the processor changes, the output voltage of VR (i.e., the input voltage of

processor) may have a voltage droop. It creates an error in the VR feedback. So, the voltage regulator

will use the negative feedback to reduce the error to zero and fix the output voltage again.

Multi-phase VR: one of the technique to improve the efficiency of VR is to use multi-phase VR

design. Today’s VR are designed with 6~8 VR phases. For example, a VR with six phases comprises of

six identical circuits working together to supply the required power of the CPU. However, these phases

are not working at the same time. Whenever one VR phase is “ON”, all other phases are resting. In

this way, each phase of VR will be “ON” 1/6 of the time in a VR with 6 phases. Having multiple

phases in VR helps the VR to provide more stable output voltage, which lowers the voltage noise

levels. Another benefit of having multiple phases is that each phase will have more time to rest

resulting in lower operating temperature and higher life-span of VR.

15

Linear drop-out (LDO) VR: An LDO regulator is a linear VR that can provide output voltages

(i.e., the input voltage to the processors) even very close to the supply voltage level. Figure 2-1 shows

the simple diagram of the LDO VR. The main components of LDO VR are a power field-effect

transistor (FET) and a differential amplifier (error amplifier). One input of the differential amplifier

monitors the fraction of the output determined by the resistor ratio of R1 and R2. The second input to

the differential amplifier is from a stable voltage reference (Vref). If the output voltage rises too high

relative to the reference voltage, the drive to the power FET changes to maintain a constant output

voltage. The output voltage is calculated by
refout V

R
R

V )1(
2

1 .

Figure 2-1: a simple diagram for LDO Linear drop-out VR.

16

2.1.2 DVFS and Per-Core Voltage Domain

Although a diverse range of commercial processors support DVFS, most of them have only a

single chip-wide voltage domain due to the high cost of supporting multiple voltage domains. As more

cores share the chip-wide voltage domain, the performance/power benefit of DVFS diminishes. This is

because a single voltage domain cannot effectively exploit runtime performance (i.e., IPC) variations

across cores running multiple threads or different applications. For example, cores running memory-

intensive threads can operate at a lower V/F level without impacting the performance. While cores

executing compute-intensive threads must operate at a higher V/F level to maximize performance.

Name Power Delivery Sub-system Scaling Knob Scaling Policy

Li et al. [142] Off-chip VR V/F + Core -

Kim et al. [4] On-chip Switching VR Per core V/F -

Eyerman et al. [8] On-chip Switching VR Per core V/F
Fine-grained micro-
architecture driven

Teodorescu et al. [5] -
V/F +

WID process variation
Linear programing: trading
performance versus power

Rangan et al. [11]
Fixed VR output but different

voltage level
Per-core V/F Thread migration

6-transistor (6T) SRAM
cell [12] [73] [14]

- Increasing V/F range -

Separate voltage do-
main [25]

Separate voltage domain for
caches

Increasing V/F range -

8T, 10T or ST SRAM
cell [15] [16] [18] [19]

- Increasing V/F range -

Logic technique for
SRAM cells [20] [14]

- Increasing V/F range -

Architecture technique
[21] [22] [23] [24]

- Increasing V/F range -

Table 2-1: Taxonomy of power management mechanisms and DVFS related work

17

Consequently, many researchers have investigated various DVFS algorithms to exploit multiple

voltage domains effectively [4, 5].

Table 2-1 categorizes several important DVFS techniques. Li et al. [6] analyze the performance of

DVFS combined with dynamic core scaling for multi-core processors for parallel workloads. They

exploit the observation that parallel workloads with a limited problem size do use all cores efficiently.

Thus, they jointly adjust the number of active cores along with performing DVFS to maximize perfor-

mance under a power constraint. Kim et al. [7] demonstrate the potential benefit of per-core DVFS

using on-chip switching VRs for embedded processors and provide detailed background on switching

VRs using air-core inductors. S. Eyerman et al. [8] also evaluate the benefits of fine-grained applica-

tions of DVFS and propose a fine-grained micro-architecture-driven DVFS mechanism.

Many researchers have also studied the impact of within-die (WID) process variations in multi-

core processors. WID variations can lead to core-to-core (C2C) frequency and power variations [9, 5,

10]. They propose a DVFS algorithm that exploits the C2C frequency and power variations. Teodores-

cu et al. investigate a DVFS algorithm based on linear programming to maximize the performance of

multi-core processors under a power constraint [5]. Their DVFS algorithm also exploits WID C2C

frequency and power variations for workload scheduling and power management.

Rangan et al. propose a thread migration technique to minimize the cost of the transition time for

the VR output voltage [11]. They introduce voltage domains in which each core operates at a fixed but

different voltage level. If threads require different V/F levels for power-efficient operations, they mi-

grate to the cores that can provide an appropriate performance level instead of changing the V/F of the

cores.

18

2.1.3 Coping with Minimum Operating Voltage

The ever-increasing process variability in nanoscale technology, such as random dopant fluctuation

(RDF) and line edge roughness (LER), limits voltage scaling of on-chip memory elements to some

minimum operating voltage, VDDMIN. At lower voltages, multi-core processors cannot operate reliably

due to defective memory cells that fail to maintain their correct states. As a result, the failure probabil-

ity of individual memory cells in large-scale structures such as last-level caches (LLCs) often deter-

mines the VDDMIN for the processor.

The simplest approach for lowering the VDDMIN for a target yield is to increase the size of the tran-

sistors in the SRAM cells. This makes the transistors less sensitive to mismatches induced by process

variations, which are the cause of the higher cell failure rates at low voltages. However, in current

state-of-the-art multi-core processors, LLCs already occupy more than 50% of total die area. Further-

more, the capacity of such LLCs needs to be increased as more cores are integrated into a single die.

This makes it impractical to substantially increase the size of individual SRAM cells.

Table 2-1 also categorizes several important techniques for coping with minimum operating volt-

ages. Many circuit-level techniques have been proposed to deliver robust conventional 6-transistor

SRAM cells at low voltage for large on-chip caches [12] [13] [14]. These techniques use special cir-

cuits and often modulate supply, body, word-line, and bit-line voltages applied to SRAM cells to make

the SRAM cells more robust at a low voltage. Such techniques often incur an additional cost for the

specialized circuits, which influences design, validation, and testing complexity, although they can

reduce the failure probability of SRAM cells by an order of magnitude. Alternatively, other SRAM

circuit designs, such as 8T, 10T, and ST SRAM cells, have been adopted to lower the VDDMIN [15]

19

[16] [17] [18] [19], though at the cost of substantial increases in SRAM cell area (e.g., 100% increase

for the ST cells).

In another approach to making on-chip caches more defect-tolerant at low voltages, several logic-

level techniques, such as redundancy and error-correction code (ECC), have been adopted [14] [20].

These techniques were originally introduced to improve the manufacturing yields of dynamic random

access memory (DRAM) and SRAM arrays. A small number of redundant columns and/or rows of

SRAM cells are made available to replace a column or row that contains a cell (or cells) with manufac-

turing defects such as stuck-at-faults. After a manufacturing test, SRAM arrays containing defective

cells are reconfigured such that redundant columns/rows replace ones containing bad cells. Meanwhile,

ECC was adopted to protect DRAM and SRAM arrays from particle-induced soft errors. However,

because RDF and LER arise at low operating voltages, ECC is now also used to correct SRAM cell

failures at low voltages.

In separate approaches, micro-architectural techniques have been proposed to cope with the

VDDMIN challenge [21] [22] [23] [24]. In effect, to lower the VDDMIN, these approaches identify defec-

tive cells and disable the entire lines of the cache that contains those cells [21] [22]. However, they do

not provide the available cache capacity deterministically because each die will exhibit a different

number of failing cells at each voltage level. In addition, they often require a large number of post-

manufacturing programming bits to identify cache lines that must be disabled. Although it is claimed

that on-line testing schemes can be adopted to verify the integrity of each cell, it would be very chal-

lenging to test millions of cells repeatedly at different voltage levels and specific temperatures every

time you turn on your processors; temperature also influences SRAM failure at low voltages. Thus, as

the voltage is lowered, these approaches implement incrementally stronger ECC at the expense of a

20

reduced cache capacity. Up to half of the total cache capacity can be diverted to storing check bits [24].

To avoid the VDDMIN problem, these techniques use different voltage domains for processor cores and

on-chip caches [25]. L1 caches are connected to a high supply voltage while processor cores can oper-

ate at a very low voltage. To reduce power consumption of the L1 caches connected to a high voltage,

these techniques introduce a filter cache that operates at a very low voltage between L1 caches and

processor cores, thereby connecting them to three separate voltage domains. As a result, other chal-

lenges associated with multiple voltage domains arise, e.g., design, verification, and testing complexity

due to domain crossing and a higher cost of voltage regulators.

2.2 DVFS Alternatives

Although DVFS has been the most powerful technique for trading performance with the power

consumption of processors, its efficiency has been reduced because the range of V/F scaling for

commercial processors has been continuously decreased. Researchers have proposed several

alternative technique for DVFS that mostly scale processor resources, using micro-architectural

mechanisms, to the needs of running applications.

These micro-architectural mechansims exploit different power delivery sub-systems, scaling

knobs, and scaling policies, as shown in Table 2-2. Each technique requires different power delivery

sub-system support, such as the need to turn on/shut down specific resources in processors. Also, each

technique uses different scaling knobs (such as cache resizing or ALU scaling). These micro-

architectural mechanisms provide different processor configurations, which increases the design

complexity. Furthermore, to select the optimum processor configuration, the system needs an algorithm

or scaling policy to decide the best processor configuration in runtime.

21

Several prior studies have investigated the benefits of adaptive resource scaling for reducing power

consumption [26, 27, 28, 29]. These efforts focus on uniprocessors and do not capture the effects of

spreading threads over more or fewer cores and scaling shared resources, such as LLC, on

performance. Iyer et al. observe that the utilization of architectural components considerably changes

over long runtime periods and explore an adaptive resource scaling technique to minimize average

power consumption [26]. Albonesi et al. explore various hardware/software techniques to adapt

resources of a uniprocessor for higher power efficiency [27]. Lee et al. examine a wide range of

uniprocessor design spaces to analyze performance and power efficiency trends and the limits of

adaptively reconfiguring the resources of uniprocessors [28]. Kontorinis et al. propose a table-driven

adaptive resource scaling technique with a runtime algorithm, which reduces a considerable amount of

Name Power Delivery Sub-system Scaling Knob Scaling Policy

Petrica et al. [34] Shut down each lane separately
Four de-configurable lanes in

each processor pipeline
Online sampling & training

Heuristic online search

Watanabe et al. [31] Shut down unused resources
Instruction engine

Execution unit
-

Iyer et al. [26] Shut down partial CAM and RAM
Effective pipeline width

The size of RUU
Runtime profiling of 12

configurations

Albonesi et al. [27] Shut down partial CAM and RAM
ROB, F-, I-REG, D-, I-cache,

 IIQ, FIQ, LSQ
Per-unit monitoring and

reconfiguring

Lee et al. [28]
Shutdown all resources of any

size

Pipeline depth & width, D-, I-,
L2-cache, memory latency, BP,

LSQ, Reg

Spatial sampling, providing
regression model, genetic
algorithm to find optimal

configuration

Kontorinis et al. [29]
Shut down each segment of the

resources
D-, I-, L1-cache, ROB, IIQ, FIQ,
IREG, FREG, LSQ, FPU, ALU

Threshold-based mecha-
nism for the number of

conflicts per cycle for each
configuration

Homayoun et al. [30] -
Sharing ROB, PRF, IQ, LSQ, in

3D cores

When a resource is full, a
thread asks for a new

partition of the resource.

Khubaib et al. [33] Shut down unused resources
Transform between OoO to

multiple in-order

If processor runs more
than two threads, it

switches to in-order core
mode

Table 2-2: Taxonomy of power management mechanisms and DVFS alternatives

22

peak power consumption with little performance loss [29]. After determining the best configuration,

the processor will run for a long period of time to amortize the reconfiguration overhead.

Homayoun et al. propose a configurable heterogeneous processor architecture exploiting 3D

stacking technology [30]. The resources of different layers are shared at a fine granularity between

vertically stacked cores. As a result, each core can borrow/lend the resources from/to other cores as

needed by the thread running on a core. Watanabe et al. propose a flexible in-order uniprocessor

architecture to cope with a shrinking range of V/F scaling [31]. The number of instruction engines

(IEs) and execution units (EUs) is scaled up/down independently to maximize the performance of

single-thread applications. However, they do not explore any runtime algorithm for dynamically

provisioning shared resources, such as LLCs, and the number of operating cores. Gibson et al propose

an architecture that can scale up (or down) its execution units and instruction window to improve

single thread (or multi-thread) performance [32]. This architecture, called Forwardflow, dynamically

extracts the data flow graph of instrcution sequence and uses this flow to guide processor frontend.

Forwardflow organizes processor backend with separate units that can be (de-)allocated.

Khubaib et al. propose a micro-architecture that can transform its Out-of-Order (OoO) core into an

in-order core by totally disabling resources required for OoO execution, but they do not propose or

evaluate any runtime system to determine when to reconfigure it [33]. Petrica et al. propose an adap-

tive approach to fill the gap between fine-grained adaptive micro-architecture and a core-level power-

gating technique [34]. They do not jointly scale the number of operating cores or shared resources such

as LLC. Suleman et al. propose a feedback-driven approach to maximize performance by dynamically

varying the number of threads at runtime [35]. They use fixed number of cores in their study, and a

23

special mechanism to dynamically change the number of operating cores at runtime. Moore and Chil-

ders also propose a dynamic approach that can choose the optimal number of threads based on offline-

profiling and online-configuring methods [36]. Finally, some prior studies have investigated adaptive

approaches based on machine learning, control theory, etc. for dynamic resource, core, and/or V/F scal-

ing techniques for power and/or thermal management or performance improvement under a power

constraint [35] [36] [37] [38] [39].

24

Chapter 3

Supporting Low-Cost Per-Core DVFS

A wide range of commercial processors, from smartphones to servers, have exploited dynamic

voltage and frequency scaling (DVFS). Due to the high overheads of voltage regulators, current

designs mostly support a single chip-wide voltage domain. However, increasing the number of cores

that share a single chip-wide voltage domain would diminish the efficiency of DVFS. A single shared

voltage domain does not allow the processor to effectively leverage the runtime performance

differences across different cores. Thus, many researchers have investigated various techniqes to make

use of multi-domain DVFS and improve the efficiency of DVFS .

The efficiency of DVFS depends on multiple factors including: power delivery sub-system and

DVFS algorithm. Power delivery sub-system is responsible for supplying the power required to operate

a processor and its components. The required power/performance level of each core can be different

during runtime. To support per-core DVFS and improve the power efficiency of a processor, we need

power delivery sub-systems that supply different levels of power envelopes for each core separately.

Furthermore, a DVFS algorithm, which determines the optimum voltage/frequency (V/F) for each

core, plays a critical role in improving the efficiency of DVFS.

My goal is to provide a solution to improve the efficiency of DVFS with minimum overhead. Thus,

in this chapter, I propose a power delievery technique to support per-core voltage domains with very

low overhead along with an algorithm optimized for this specific approach. The rest of the chapter is as

25

follows. Section 3.1 demonstrates the benefits of a per-core voltage domain. I show that high-

performance multi-core processors using per-core DVFS can deliver considerably higher performance

than using chip-wide DVFS under a power constraint. Section 3.2 discusses the challenges associated

with supporting per-core voltage domains. Section 3.3 demonstrates that core-to-core (C2C) voltage

variations are relatively small, even when the core voltages are optimized to maximize the performance

of a power-constrained processor at each DVFS interval. In section 3.4, I propose a low-cost power

delivery technique using a low-dropout (LDO) voltage regulator (VR) that exploits (i) small C2C

voltage variations and (ii) on-chip per-core power-gating (PCPG) devices. Section 3.5 demonstratess

that a processor using this proposed technique is as effective as a processor using on-chip per-core

switching VRs with significantly lower area overhead. Finally, Section 3.6 summarizes the chapter.

3.1 Benefits of Per-Core Voltage Domains

To show the importance of supporting per-core DVFS, Figure 3-1 compares the efficiency of

different DVFS techniques in an 8-core multi-core processor. Because this study targets server-class

multi-core processors under a power constraint, I use MIPS3/W (Million instructions per second cubed

per Watt) to emphasize the performance aspect of the processors more than MIPS/W (Million

instructions per second per Watt) would [40]. For each application, I measure MIPS3/W when

supporting a chip-wide V/F domain (chip-wide VR), per-core V/F domains (per-core VR), and per-

core V/F domains exploiting within-die process variations (per-core VR + WID PV). All the results

shown in Figure 3-1 are normalized to the 8-core processor with a chip-wide V/F domain without

considering the power overhead of VRs. I use different classes of applications, including commercial

26

workloads, SPEC-OMP benchmarks and PARSEC benchmarks (see Section 3.5.2 for details on the

applications).

For these experiments, I use an ideal DVFS algorithm. This algorithm determines DVFS state per

execution interval. There are various methods to predict the optimum V/F state of each interval based

on the execution history. To provide a fair and accurate comparison between the different DVFS

techniques, independent of the algorithm in use, I assume that the optimum V/F state at every interval

is known in advance. I employ oracular greedy optimization to extract the optimum V/F state per

execution interval. To find the configuration of maximum power efficiency, the algortihm is optimized

to consider MIPS3/W as the metric. See Section 3.5.2 for the details of the DVFS algorithm, the

processor configurations, and the methodology of modeling C2C frequency and power variations due

to WID process variations.

Per-core DVFS (Per-core V/F) increases MIPS3/W by an average of 8%. By exploiting the C2C

variations, Per-Core V/F + WID PV can further improve MIPS3/W by an average of 22% over chip-

Figure 3-1: MIPS3/W comparison of 8-core processors supporting a per-chip V/F domain, per-core V/F domains,
and per-core V/F domains exploiting WID process variations. I apply an oracular approach similar to the one
shown in [7] for each runtime DVFS interval. Each interval is comprised of 10 million executed instructions,
which is equivalent to a few hundred microseconds, depending on IPC values. A total of 1 billion instructions is
executed after 100 million instructions are executed for warming up the on-chip caches.

N
o
rm

al
iz
e
d

27

wide DVFS. Furthermore, as I increase the number of cores per processor, I observe that per-core

DVFS achieves even more of an improvement in MIPS3/W than chip-wide DVFS. For example, the

MIPS3/W improvements of 12- and 16-core processors using per-core DVFS over chip-wide DVFS are

nearly 3× and 4× higher than that of a 8-core processor, respectively. The increase becomes even larger

when the C2C process variations are exploited. This signifies the growing importance of supporting

per-core DVFS to maximize performance and power efficiency under a power constraint.

3.2 Challenges to Support Per-Core Voltage Domains

Supporting per-core voltage domains can allow multi-core processors to exploit C2C frequency

and power variations, and hence significantly increase performance and power efficiency. However,

most commercial processors have only one chip-wide V/F domain. This is because splitting the voltage

domain and providing multiple off-chip VRs incurs a high cost for the platform and package designs.

Figure 3-2 illustrates the impact of splitting the voltage domain to provide per-core DVFS on the

overall VR capacity required. Assume that the maximum power consumption of the processor is

limited to 120W and there are four cores. When all four cores are running, each core can consume up

to 30W; thus, it seems that each per-core VR only needs to support up to 30W. However, for example,

when only two out of four cores are active due to limited parallelism, the two active cores can run at

higher V/F (e.g., Intel® Turbo Boost TechnologyTM [41]) without violating their thermal and

maximum supply voltage constraints for reliability. If the two active cores consume 40W at such an

operating V/F, the capacity of each VR needs to be increased to 40W and the total combined capacity

of all the VRs becomes 160W.

28

When the voltage domain is shared, however, a 120W VR is still sufficient for such a case; the total

power consumption of two cores running at the turbo mode is a total of 80W, which is below the

maximum capacity of the VR. Although it is feasible for only a subset of cores to run in turbo mode,

we cannot increase the VR capacity for only a subset of the cores. This is because cores are put into

turbo mode in a round-robin fashion to prevent excessive aging of a specific core or subset of cores,

requiring us to provide the capacity for turbo mode for all the cores. Finally, increasing WID process

variations leads to substantial C2C frequency and (leakage) power variations [42]. Thus, the per-core

VR capacity is determined by such cores, increasing the overall VR capacity even further.

 The increased total power capacity requires larger components for VRs and more package pins for

power delivery. Note that form-factor is critical even for server platforms to maintain high integration

density in data centers. VRs are the second largest components next to dynamic random access

memory (DRAM) modules. VRs occupy 63% more platform area than the CPU, the third largest

components [43]. Furthermore, many commercial chips are heavily constrained by the available pins.

Nearly a half of all pins are already dedicated for power delivery, and increasing VR capacity would

Figure 3-2: Impact of splitting the voltage domain on the overall VR capacity of to provide per-core voltage
domains. All cores are active and consume a total of 120W in (a) and only two cores are active in (b).

 (a) (b)

29

require even more pins. Although on-chip switching VRs can lower the platform and package costs

associated with multiple off-chip VRs [44], integrating cores and high-quality inductors for VRs on the

same chip has been also a major technical challenge for manufacturers, potentially impacting both the

efficiency of the VRs and the yield of dies [45].

3.3 C2C Voltage Variations

Although the per-core DVFS algorithm is fully flexible to assign very wide range of voltage levels

for each individual core, I observe that the voltage range exploited by DVFS algorithm per interval is

in fact not very wide. This trend can be observed from collected data statistics of V/F assignment for

each core per interval along with the experiment for Figure 3-1. In fact, I found that at each DVFS

interval the maximum voltage difference between cores in a processor supported by per-core voltage

domains is usually small. Figure 3-3 shows that the maximum voltage difference between cores for the

Per-Core V/F is less than or equal to 100mV for at least 90% of the execution intervals in most

applications. I also observe similar statistics for the Per-Core V/F + WID PV.

Figure 3-3: Fraction of intervals exhibiting various maximum voltage differences between cores for the “Per-Core
V/F” case presented in Figure 3-1.

30

This observation makes a special type of voltage regulators a good candidate to be exploited as per-

core VRs. This type of VRs is called low-dropout (LDO) and is derived from PCPG component in

processors. LDO VRs can operate efficiently under some voltage conditions, which I will briefly

discuss in the next section. Furthermore, an LDO VR can be implemented very cost-effectively since it

does not require inductors or capacitors [46] and it can share its largest component (i.e., the output

device) with a PCPG device.

3.4 PCPG-Based LDO VRs

PCPG devices are typically provided for commercial multi-core processors to reduce standby

leakage power of idle cores [47]. In active state, a PCPG device incurs a slight voltage drop between

the supply voltage and the actual voltage applied to the core. The voltage drop is inversely proportional

to the size (i.e., total transistor width) of the PCPG device for a given amount of total current (dynamic

+ leakage) drawn by the core. In fact, the voltage applied to the core can be modulated by controlling

the effective width (i.e., resistance) of the PCPG device [48].

As illustrated in Figure 3-4(a), a PCPG device has many parallel transistors and on/off signal

buffers.It is similar to the largest component (i.e., the pass device between VI and VO) of a typical LDO

VR. In other words, an LDO VR can be implemented by augmenting a PCPG device with a feedback

control circuitry which is comprised of an error amplifier, an analog-to-digital converter, and a

reference voltage generator. Hazucha et al. [46] reported that the output device and its buffers, both of

which can be shared with a PCPG device, accounted for 83% of the total LDO VR area. Since a PCPG

device consumes 5%-10% of a core’s area [49], I estimate that the extra overhead due to the feedback

31

control circuitry to implement LDO VR is 0.85%-1.7% of the core’s area. By contrast, on-chip

switching VRs require large inductors and capacitors. As a result, a switching VR has nearly four times

larger chip area than a comparable LDO VR [50]. Furthermore, LDO VRs can provide faster transient

responses than switching VRs [51]. Unlike switching VRs, LDO VRs do not inject switching noise in

the substrate, which is desirable for the operation of highly sensitive mixed signal circuits.

Figure 3-4(b) shows two different approaches to distribute supply voltages to an 8-core processor

with per-core V/F domains. Both approaches use a first stage off-chip VR to convert 5V to an

intermediate voltage level, VI of on-chip per-core VRs; we cannot supply 5V for on-chip switching

VRs directly considering the oxide-reliability of nanoscale transistors implementing both VRs and

cores. This voltage is further down converted using on-chip per-core VRs to the voltage (VO[i])

required by core i. The arrangement on the left uses LDO VRs (i.e., PCPG devices augmented with the

control and reference circuitry to implement LDO VRs).

Figure 3-4: (a) A typical LDO VR architecture; the cartoon is reproduced from [46]. (b) An example of VI and VO
ranges of LDO VRs in the left and switching VRs denoted by SVRs in the right for supporting per-core voltage
domains; I ignore the default voltage drop of the LDO VRs due to the small resistance of the fully turned-on
PCPG devices for the illustration purpose in the cartoon. “C[i]” in (b) denotes core i.

 (a) (b)

32

The efficiency of a LDO VR is a function of its VO/VI ratio. When the voltages demanded by

individual cores are restricted to a limited range (e.g., within 100mV of one another as shown in Figure

3-3), a high VO/VI ratio can be achieved for all the cores by adjusting the VO of the first stage (i.e., VI

of the second stage) such that it is sufficient to provide the highest VO demanded by any of cores. Thus,

a processor adopting per-core LDO VRs can be tuned to achieve high efficiency by jointly optimizing

both their VI and VO. The arrangement on the right uses per-core on-chip switching VRs to provide the

necessary core voltage. A switching VR uses two active devices, inductors and capacitors to provide

high voltage conversion efficiency across a wide range of VO. This efficiency is primarily determined

by the switching losses in the active devices and their conduction losses. The VI value for switching

VRs is fixed to 1.05V in this example.

In summary, an LDO VR can be implemented very cost-effectively since (i) it does not require

inductors or capacitors [46] and (ii) it can share its largest component (i.e., the output device) with a

PCPG device. Furthermore, its efficiency can be very high when cores running multiple threads or

applications demand similar voltage values.

3.4.1 Efficiency Comparison: LDO versus Switching VRs

Figure 3-5 compares the efficiency of a switching VR with that of a LDO VR (the on-chip second

stage only in (a) and both the off- and on-chip stages in (b), respectively). The efficiency of LDO VRs

is higher than switching VRs when VI − VO is small (or VO/ VI is high). If VI − VO is more than

33

100mV, the efficiency of LDO VRs is usually lower than that of switching VRs as shown in Figure

3-5(a). I model the efficiencies of both switching and LDO VRs assuming each core consumes the

maximum allowed current for each operating voltage. To measure the maximum efficiency of the

switching VR at each operating point (i.e., voltage/current), I search for and activate the optimal

number of phases out of eight available phases for a given voltage/current. Table 3-1 summarizes the

key design parameters of various VR stages described in this study.

Off-chip switching VR designs, which are built with off-the-shelf components, typically have very

high efficiencies (> 90%) due to low loss inductors and capacitors. The efficiency of off-chip switching

VR is computed using approach presented by Klein et al [52] with VI fixed to 5V. Their efficiency

reaches a maximum for a certain load current and then drops with further increase in current due to an

increase in conduction losses. Consequently, as the VO of off-chip regulator for LDO VRs decreases,

the efficiency degrades, and thus the overall efficiency of LDO VRs becomes slightly lower than that

of switching VRs, as plotted in Figure 3-5 (b).

 Off-chip Switching VR On-Chip Switching VR On-chip LDO VR

VI/VO 5V/1.05V to 5V/0.85V 1.05V/0.95V to 1.05/0.7V
0.95V/0.7V to

0.7V/0.95V

Technology N/A 32nm 32nm

fsw 300KHz 100MHz N/A

L/phase 360nH (rL = 0.5mΩ) 63.5nH (Q= 20 @100MHz) N/A

No. of Phases 6 8 N/A

Table 3-1: Summary of VR design parameters.

34

 LDO LDO

 (a) (b)
Figure 3-5: Efficiency comparison between switching and LDO VRs. The efficiency of (a) the on-chip (the
second stage) only and (b) both the off- and on-chip (the first and second stages) are considered.

 The efficiency of an LDO can be calculated as:

  QbiasOOIOO

OO
LDO

IVIVVIV

IV
η




 (3-1)

where IQ is the quiescent current of the LDO and Vbias is the biasing voltage for the reference and

feedback control circuitry. A steady analog Vbias = 0.9V generated on chip from the variable VI is

assumed in this work. The current efficiency of a typical LDO VR is defined by [53]:

QO

O
I

II

I
η




 (3-2)

35

ηI is a measure of the power loss in the control and biasing circuitry of the LDO. On-chip LDO

designs with current efficiencies in the range of 95% to 99% have been reported. The LDO efficiency

is computed assuming a current efficiency of 97% [46] at IO corresponding to 120W/0.9V.

Lee et al [54] modeled the efficiency of switching VRs with integrated inductors for different

CMOS technology generations. The efficiency is mainly a function of the inductor Q factor. Inductors

in CMOS processes are made from the available metal layers and attain low Q values for realistic

dimensions due to the substrate losses and frequency dependent conduction losses. Lee et al [54]

showed that a fully monolithic switching VR achieves ~62% efficiency with on-die inductors in 90nm

CMOS. This low efficiency is not acceptable considering the performance benefit that can be brought

by per-core voltage domains under a power constraint. The efficiency can be improved by using

alternate inductor technologies with high Q. This may include inductors with magnetic materials

compatible with a CMOS process or inductors mounted externally on the package while only the

active devices are integrated on die [44]. Hazucha et al [44] demonstarted a switching VR with 80%-

87% efficiency with integrated active devices and on-package inductors (Q = 20).

My efficiency analysis assumes a 32nm CMOS process with inductors (Q= 20 @ 100MHz) similar

to [44]. The design is optimized to achieve a conversion ratio of 1.05V/0.9V at a load current of

16.67A per core (corresponding to total 120W for 8 cores at 0.9V) with an efficiency of 88%. An 8-

phase topology is used with 63.5nH inductance per phase. As VO and load current are reduced, the

efficiency of switching VRs decreases monotonically. This is because the switching loss constitutes a

higher percentage of the output power as the VO value reduces. The efficiency is strongly dependent on

the operating point at which the switching VR design is optimized. For a design optimized for a higher

36

VO, the efficiency at low output voltage drops more rapidly compared to a design optimized for a lower

VO [54]. In Figure 3-5 (a) the on-chip switching VRs are optimally designed for VO = 0.8V.

3.5 Evaluation

3.5.1 DVFS Algorithms for Efficiency Comparison

In this section, I evaluate the effectiveness of the LDO VRs derived from PCPG devices. To do so,

we can use various per-core DVFS algorithms optimized for high-performance multi-core processors

including the algorithms exploiting C2C frequency and power variations along with thread migrations

(TMs) [5]. For the evaluation, I adopt an integer linear programming (ILP) method for the DVFS

algorithms. The ILP formulation is similar to the one used Kim et al [4], which attempts to minimize

the power consumption of a multi-core processor for a given performance constraint. I modify the

formulation such that it searches for the optimal VO for each core to maximize MIPS3/W under a

power constraint at each DVFS interval as follows:

Objective:














 

  

N

i

N

i

M

j

ijijii xFIPCMIPSimize
1 1 1

××max (3-3)

Constraints:

37


  


N

i

M

j

ij

N

i

tot

M

j

ijij NxPxP
1 11

max

1

 and × (3-4)

where N is the number of cores; M is the number of VO steps supported by the DVFS algorithm; MIPSi

and IPCi are the MIPS and IPC of core i; Fij is the frequency of core i at voltage level j; xij corresponds

to one bit of an M-bit binary variable for core i that is guaranteed to assign core i to only one of M

possible V/F states (i.e., 1x :i
M

1j
ij 



); Pij is the power consumption of core i, which is a function of

VO[i]; Ptotmax is the allowed total power consumption of the processor; and Eq. (3-3) is the constraint,

respectively. In Eq. (3-4), the second constraint is to enforce one VO selection for each core. The VI for

all LDO VRs is determined by taking the maximum value among VO[1] to VO[N].

Teodorescu et al [5]’s algorithm requires manufacturers to store per-core frequency and power

values at each voltage level for DVFS algorithms to exploit C2C frequency and power variations.

These values can be characterized by the manufacturer and stored, along with many other processor

tuning parameters, in a non-volatile memory of the processor. Like other DVFS algorithms, I also need

Table 3-2: Summary of DVFS algorithms explored in this study. “Sh,” “Se,” “PV,” and “TM” indicate “Shared,”
“Separate,” “Process Variation,” and “Thread Migration,” respectively.

Algorithms
Voltage
Domain

Frequency
Domain

Process
Variation

Aware

Thread
Migration

Off-Chip
VR VO

On-Chip
VR

Constraint

ShV/F Shared Shared No No Varying N/A VO1 = VO2 =…= VON

SeV/F

Separate Separate

No No

Fixed SVR

SeV/F(PV) Yes No

SeV/F(PV/TM) Yes Yes

LDOSeV/F

Virtually
Separate

Separate

No No

Varying LDO VR VI-VOi ≤ 100mV
LDOSeV/F(PV) Yes No

LDOSeV/F(PV/TM) Yes Yes

38

to predict workload characteristics like the IPC of each thread to assign a proper V/F to each core for

the next DVFS interval. Although I can use various methods to predict the IPC of the next interval

based on the current IPC, I assume that the IPC value of each thread at every interval is known in

advance (as an oracle method). This is to isolate the impact of the IPC prediction from the MIPS3/W

results so that I can fairly compare the efficacy of the two different VR schemes. Finally, I adopt a

simple thread migration (TM) scheme, and assign threads to cores based on IPC and frequency values.

For example, the thread with the highest IPC is assigned to the core with the highest frequency at a

given voltage (i.e., the fastest core considering C2C frequency variations). Table 3-2 summarizes the

DVFS algorithms explored in this study and their constraints. In this study, I assume a baseline

processor with a single, chip-wide V/F domain using an off-chip VR (i.e., ShV/F).

3.5.2 Architectural Simulation Environment

I evaluate different DVFS algorithms using a full-system cycle-accurate simulator, GEMS [55]. I

modify GEMS to support per-core frequency domains and TM, which requires L1 cache flushing. Ta-

ble 3-3 summarizes the simulation paramters. The processor configuration contains eight cores. Each

core is four wide with 32KB private L1 caches and a shared 512KB L2 cache. The cores are connected

to each other using crossbar switches. I evaluate different DVFS algorithms using a full-system cycle-

accurate simulator, GEMS [55], after I modify GEMS to support per-core frequency domains and TM

requiring L1 cache flushing. In addition to four commercial workloads (Apache, JBB, OLTP, and Zeus,

six SPEC OMP V3.2 benchmarks (ammp, applu, art, equake, mgrid, and swim), and four PARSEC

benchmarks (Swaptions, X264, Fluid, and Black Scholes) [56], I use five mixes of compute- and

memory-bound SPEC2006 benchmarks (eight copies of Bzip2, six copies of Bzip2 and two copies of

39

Libquantum, four copies of Bzip2 and four copies of Libquantum, two copies of Bzip2 and six copies

of Libquantum, and eight copies of Libquantum denoted by 8B0L, 6B2L, 4B4L, 2B6L, and 0B8L,

respectively).

3.5.3 Core Frequency and Power Models

Typically, an operating system (OS) determines V/F of cores based on a given power management

algorithm, but both the OS and VRs cannot track and respond to instantaneous changes of power

consumption. Thus, the OS must conservatively assume the power consumption of cores at each given

operating V/F and guaranteed that the entire chip does not exceed its maximum power consumption, if

it aims to optimize performance without violating a power constraint at any given moment.

To model the maximum power consumption of cores, I assume that (i) the total maximum power

consumption of eight cores is 120W and (ii) 30% of the total power is active leakage [57] at 0.9V. Each

core has its own partition of shared L2 cache that shares the V/F domain with the core. Thus, I assume

that the L2 power scales with the core power consumption. The power consumption of I/O and other

peripheral components including on-chip interconnects, which are tied to other separate fixed V/F

domains, is not included in my analysis since it can be regarded as a fixed power cost for all the cases I

explore in this study; I/O and on-chip interconnects are responsible for ~15% of the total power in

Niagara 2 [58].

40

Due to WID C2C frequency and leakage power variations, the power consumption of each core

differs. To analyze the impact of WID process variations on the frequency and leakage power

consumption of each core, I first generate 100 variation maps for threshold voltage (Vth) and effective

channel length (Leff) of transistors in a die and characterize frequency and power consumption by

following the methodology presented in [42]: WID correlation distance coefficient ϕ = 0.5 and WID

Vth and Leff variations σsys = 6.4% and 3.2% of the nominal Vth and Leff values, respectively. I apply

the Vth and Leff values of each grid point to a FO4 inverter chain and a dummy circuit, which is

comprised of 50% inverters, 30% NAND gates, and 20% NOR gates, to obtain the frequency and

leakage power scaling factors of each grid, respectively; NAND and NOR gates in a dummy circuit

can have up to 4 inputs and their inputs are assigned randomly with either 1 or 0.

Second, I measure the frequency and leakage scaling factors of each grid point at 0.95V to 0.7V

using a 32nm technology model and SPICE. I assume that the frequency of each core is determined by

the slowest grid point in the core [42] and the frequency of the slowest core is 3.2GHz at 0.9V. Then,

each core’s maximum dynamic power consumption at 0.9V is   0.7120W/
1

 

N

j ji FF where Fi and

Fj are the frequency of core i and j, and N is the number of cores. With the known frequency, voltage,

and dynamic power values, we can calculate the maximum core switching capacitance (i.e., Cdyn). This

Table 3-3: Summary of processor simulation parameters.

Fetch/Issue/Retire 4/4/4 # of Cores 8

IL1
32KB/4-way/64B

3 cycles
Branch Predictor/BTB/RAS YAGS/1K/32

L2
512KB/8-way/64B

 10 cycles
DL1 32KB/4-Way/64B 3cycles

Cache Coherency Protocol Directory-based MESI
Main Memory

(size/block/page/latency)
DDR3-1.6GHz

4GB/64B/4KB/7-7-7-20ns

of MSHRs 8 Write-buffer entries 16

41

allows us to calculate the dynamic power at any given voltage. The leakage power of each grid point is

scaled such that the sum of the leakage power from all grid points in a die is equal to 30% of 120W at

0.9V. The sum of the scaled leakage power from all the grid points belonging to a particular core

becomes the core’s leakage power.

Finally, I allow some cores to run at V/F higher than 0.9V/3.2GHz as long as the total power

constraint is satisfied; this is possible when other cores run at V/F lower than 0.9V/3.2GHz. Since all

cores in the baseline processor of this study, which uses a per-chip single VR, run at the same

frequency, the dynamic power consumption of the processor is lower than when other processors use

per-core V/F domains. Thus, I increase the V/F of the processor until 120W is fully used (i.e., 0.9125V

and 3.3GHz).

Note that C2C frequency and power variations change across different dies. However, for this

analyses, a typical die map has been picked from the 100 generated maps because a large amount of

simulation time is required to repeat the same experiment for hundreds of die maps. Thus, the

MIPS3/W results, which exploit C2C frequency and leakage power variations, represent the value close

to the median value of the 100 die maps. Table 3-4 tabulates the frequency and power consumption of

Table 3-4: summary of frequency and power consumption of each core as a function of VO[i]. For each core, the
frequency (GHz) and power (Watts) are given in the left and right columns, respectively.

VO[i] Core 1 Core 2 Core 3 Core 4 Core 5 Core 6 Core 7 Core 8

0.95V 3.6

15.9 3.8 17.9 4.4 18.2 3.9 16.9 3.8 17.2 4.1 19.3 4.4 29.1 4.1 19.7

0.90V 3.2 12.5 3.4 14.0 4.0 14.5 3.5 13.3 3.4 13.5 3.7 15.1 4.0 22.0 3.7 15.3

0.85V 2.8 9.6 3.0 10.8 3.5 11.3 3.0 10.2 3.0 10.4 3.3 11.7 3.5 16.6 3.3 11.8

0.80V 2.4 7.2 2.5 8.1 3.1 8.6 2.6 7.7 2.4 7.8 2.8 8.8 3.1 12.3 2.8 8.9

0.75V 2.0 5.3 2.1 6.0 2.6 6.4 2.2 5.7 2.1 5.7 2.3 6.5 2.6 9.0 2.4 6.6

0.70V 1.6 3.7 1.7 4.2 2.1 4.6 1.7 4.0 1.7 4.1 1.9 4.6 2.1 6.4 1.9 4.7

42

each core as function of VO[i]. For each core the frequency (GHz) and power (Watts) are given in the

left and right columns, respectively.

3.5.4 MIPS3/W Comparison

Impact of Limiting VI − VO range on MIPS3/W: Figure 3-6 compares MIPS3/W of 8-core

processors using LDO and switching VRs. The DVFS algorithms with “LDOSeV/F” use LDO VRs

while ones with “SeV/F” use switching VRs; see Table 3-2 for the description of the DVFS algorithms.

Without exploiting WID C2C process variations and the TM technique, the MIPS3/W difference

between LDOSeV/F and SeV/F is around 2% (3% versus 5% improvement over ShV/F) on average

(i.e., geometric mean). However, when WID C2C process variations are exploited, the MIPS3/W

difference between the processors using LDO and switching VRs becomes 1% (14% versus 15%

improvement over ShV/F) on average. Finally, the MIPS3/W difference between the two schemes leads

to a 3% difference (22% versus 25% improvement over ShV/F) on average when both the TM

technique is applied and WID C2C process variations are incorporated with the DVFS algorithms.

Thus, exploiting C2C frequency/power variations and TMs can mitigate the potential limitation of

LDO VRs and its relative benefit is higher for processors using LDO VRs.

43

 Impact of VR efficiency on MIPS3/W: In Figure 3-6, I did not include the power consumption

(i.e., power loss) incurred by both on- and off-chip VRs to isolate to the impact of constraining the VO

range for LDO VRs. As explained earlier, the MIPS3/W difference between processors using LDO and

switching VRs is very small. However, since C2C voltage differences are limited to 100mV at each

DVFS interval, the differences between the VI value and the VO values must be small. In other words,

LDO VRs often exhibit higher efficiency than switching VRs for most DVFS intervals, as shown in

Figure 3-5 (b). Consequently, as the efficiencies of both on- and off-chip VRs are considered, a

processor using LDO VRs can provide higher MIPS3/W than a processor using switching VRs as

shown in Figure 3-9.

Figure 3-6: MIPS3/W comparison of 8-core processors supported by LDO (algorithms beginning with the
LDOSeV/F prefix) and switching VRs (algorithms beginning with SeV/F). All results are normalized to a
processor with ShV/F and do not include the power loss by the off-chip VR. Each interval is comprised of 10-
million executed instructions.

N
o
rm

al
iz
ed

44

First, the processors using LDOSeV/F and SeV/F, which do not exploit WID process variations,

result in worse MIPS3/W than the processor using ShV/F, which uses only an off-chip VR. This is

because the power loss by the on-chip VRs completely negates the benefit of supporting per-core V/F

domains for multi-thread applications. Second, when WID process variations are exploited,

VSeV/F(PV) and SeV/F(PV) can provide 6% and 4% higher MIPS3/W than ShV/F on average. I

observe that the processor using LDO VRs exhibits higher MIPS3/W than the one using switching VR.

This is the opposite of the trend shown in Figure 3-6, where the power loss by VRs was not considered

in computing MIPS3/W and the MIPS3/W of the processor using LDO VRs was lower than one using

switching VRs. This is mainly due to small C2C voltage variations in multi-thread applications, which

allows LDO VRs to provide voltages with higher efficiency than switching VRs as shown in Figure

3-5(b). Finally, when the TM technique is also applied, LDOSeV/F(PV/TM) and SeV/F(PV/TM) can

provide 13% and 12% higher MIPS3/W than ShV/F on average.

Impact of DVFS interval on MIPS3/W: The interval period for applying DVFS algorithms also

impacts the benefit of DVFS. I conservatively assumed the overhead of V/F switching will be the same

Figure 3-7: MIPS3/W comparison of 8-core processors supported by LDO (algorithms beginning with the LDOSeV/F
prefix) and switching VRs (algorithms beginning with SeV/F) including the power loss by both on- and off-chip VRs.
All results are normalized to a processor with ShV/F and include the power loss by the off-chip VR. Each interval is
comprised of 10-million executed instructions.

N
o
rm

al
iz
ed

45

for all DVFS algorithms. Thus, we can factor it out. In theory, shorter DVFS intervals can capture

more C2C IPC variations and thus lead to higher performance and power efficiency. Thus, I reduce the

DVFS interval to every 5-million instructions while keeping the TM interval at 10-million instructions.

As expected, MIPS3/W for both LDOSeV/F(PV/TM) and SeV/F(PV/TM) increases, but the relative

difference between them remains almost the same. Note that the DVFS interval is often determined by

considering both (i) the computational overhead of the DVFS algorithm and (ii) the VR efficiency

degradation during VO changing periods [7]. The latter prohibits a very short interval for a simple

threshold-based DVFS algorithm even though the current state-of-the-art off-chip switching VRs can

support much faster voltages changes. For example, Microsoft Windows Vista uses 20ms for the

default value while it could support a more aggressive interval value (e.g., 1ms) for DVFS [59].

Multi-program environment: A processor executing multiple applications can exhibit more

substantial C2C IPC variations than when it is running multi-threaded applications, depending on the

mix and characteristics of applications. Consequently, supporting a wider range of VO values using

switching VRs may lead to higher MIPS3/W than using LDO VRs under a specified power constraint.

Figure 3-8 shows the MIPS3/W comparison between two processors using switching and LDO VRs

when running five mixes of memory- and compute-bound applications.

First, when the power loss by VRs is not considered, a processor with per-core voltage domains

using either switching or LDO VRs has much higher MIPS3/W than the one using a single chip-wide

voltage domain for 6B2L, 4B4L, and 2B6L in Figure 3-8(a). This is due to these applications mixes

having much higher C2C IPC variations than the multi-threaded applications. For example,

LDOSeV/F(PV/TM) and SeV/F(PV/TM) can provide 34% and 55% higher MIPS3/W than ShV/F on

46

average. The processor using LDO VRs provides substantially higher MIPS3/W than the one using a

single chip-wide VR, but 16% lower MIPS3/W than the one using switching VRs.

 Second, when the power loss by the VRs is considered, as shown in Figure 3-8(b),

LDOSeV/F(PV/TM) and SeV/F(PV/TM) can yield 24% and 39% higher MIPS3/W than ShV/F on

average. Unlike the multi-threaded applications, LDOSeV/F(PV/TM) results in lower MIPS3/W than

SeV/F(PV/TM), yet the difference between LDOSeV/F(PV/TM) and SeV/F(PV/TM) is reduced to

12%. This is because the power loss by LDO VRs is still lower than switching VRs in many DVFS

intervals.

In the previous experiments, I have limited the difference between VI − VO to 100mV. This is

because the efficiency of LDO VRs becomes lower than switching VRs once the voltage difference

becomes larger than 100mV. On the other hand, I found out that forcing such a constraint misses

potential power reduction opportunities that can be achieved by operating cores at lower V/F. In other

words, the benefit of reducing V/F of cores more can outweigh lower power efficiency of LDO VRs

 (a) (b) (c)

Figure 3-8. MIPS3/W comparison of 8-core processors supported by LDO (algorithms beginning with the
LDOSeV/F prefix) and switching VRs (algorithms beginning with SeV/F). The power loss by VRs is not included
in (a) and is included in (b). The VI − VO constraint is removed in (c) for LDO VRs. Each interval is comprised of
10-million executed instructions.

N
o
rm

al
iz
ed

47

operating at VI − VO larger than 100mV. Thus, to evaluate the impact of such a constraint, I remove the

VI − VO constraint for LDO VRs in Figure 3-8(c). When VI − VO is larger than 100mV, the power loss

by LDO VRs is higher than that of switching VR. However, the power loss by LDO VRs becomes

lower than that of switching VRs for the DVFS intervals exhibiting VI − VO less than 100mV.

Consequently, as long as I have more DVFS intervals with VI − VO less than 100mV, the processor

using LDO VRs can lead to higher MIPS3/W than the one using switching VRs. Figure 3-8(c) shows

that LDOSeV/F(PV/TM) has 4% higher MIPS3/W than SeV/F(PV/TM). To validate this result, I

analyzed the fraction of DVFS intervals exhibiting VI − VO more than 100mV. For B4L4, I measured

the fraction of DVFS intervals in which LDO VRs have lower efficiency than switching VRs after the

V/F and core power consumption profiles obtained from SeV/F(PV/TM) are applied to both efficiency

functions of LDO and switching VRs. This reveals that LDO VRs show higher efficiency than

switching VRs for close to 60% of the total DVFS intervals that are experienced by individual cores.

Impact of Removing VI − VO range constraint on MIPS3/W of Multi-threaded Workloads:

Figure 3-9 compares MIPS3/W of 8-core processors using LDO and switching VRs after the voltage

range constraint is removed. Although WID C2C process variations are not exploited and the TM

Figure 3-9: MIPS3/W comparison of 8-core processors supported by LDO (algorithms beginning with the
LDOSeV/F prefix) and switching VRs (algorithms beginning with SeV/F) including the power loss from both on-
and off-chip VRs. All results are normalized to a processor with ShV/F and include the power loss by the off-chip
VR. Each interval is comprised of 10-million executed instructions.

N
o
rm

al
iz
ed

48

technique is not applied, LDOSeV/F provides 4% higher MIPS3/W than SeV/F on average. When both

WID C2C process variations and TM are exploited, LDOSeV/F and SeV/F provide 16% and 12%

higher MIPS3/W than ShV/F on average; LDOSeV/F leads to 4% higher MIPS3/W than SeV/F whether

or not WID C2C process variations and/or TM are exploited. This is because LDO VRs exhibit higher

efficiency than switching VRs for most DVFS intervals. This is mainly due to small C2C voltage

variations in multi-threaded applications, which allows LDO VRs to provide voltages with higher

efficiency than switching VRs, as shown in Figure 3-5.

3.6 Chapter Summary

In this chapter, I propose a cost-effective technique to support per-core voltage domains for high-

performance server-class processors. I demonstrate that PCPG devices augmented with small circuitry

can operate as low-cost LDO VRs. Unlike on-chip switching VRs, LDO VRs do not require on-chip

inductors, which are expensive and a major technical challenge for practical use of on-chip switching

VRs, but their efficiency becomes poor as their output voltage applied to cores drops (i.e., large

difference between input and output voltage of the LDO VRs). Consequently, per-core DVFS using

LDO VRs may lead to lower performance and power efficiency than using switching VRs. However,

my experiments show that C2C voltages variations are relatively small when the voltages are

optimized to maximize performance under a power constraint. By modeling the power efficiency of

both LDO and switching VRs at 32nm technology, I show that the MIPS3/W of an 8-core processor

using LDO VRs is slightly higher than that of a processor using switching VRs. This is due to the

higher efficiency of LDO VRs compared to switching VRs for small C2C voltage variations.

49

50

Chapter 4

Low-Voltage On-Chip Cache Architecture

using Heterogeneous Cell Sizes

Although dynamic voltage and frequency scaling (DVFS) has been a very effective power man-

agement technique to minimize the power consumption of multi-core processors, its efficiency has

been continuously decreased due to the shrinking voltage scaling window. The ever-increasing process

variability in nanoscale technology such as random dopant fluctuation (RDF) and line edge roughness

(LER) limits the voltage scaling of on-chip memory elements to some minimum operating voltage,

VDDMIN [60]. At lower voltages, multi-core processors cannot operate reliably due to defective

memory cells that fail to maintain their correct states. As a result, the failure probability of individual

memory cells in large-scale structures such as last-level caches (LLCs) often determines the VDDMIN

for the processor.

The simplest approach to lower the VDDMIN for a target yield is to increase the size of the transis-

tors in the static random access memory (SRAM) cells. This makes the transistors less sensitive to

mismatches induced by process variations, which is the cause of the higher cell failure rates at low

voltages. However, in current state-of-the-art multi-core processors, LLCs already occupy more than

50% of the total die area. Furthermore, the capacity of such LLCs needs to be increased as more cores

are integrated into a single die. This makes it impractical to substantially increase the size of individual

SRAM cells.

51

In this chapter, I develop an LLC architecture that exploits a more detailed understanding of the

operating characteristics of processors using DVFS. To develop such an understanding, I run experi-

ments using a commercial computing system with an AMD® high-performance 4-core processor and a

benchmark suite that mimics the typical usage of server applications (i.e., SPECPower Sever Side Java

(SSJ) 2008 [61]). The experimental results reveal that the processor spends a substantial fraction of its

runtime in high frequency/voltage states when the load level is higher than 50%. For example, if the

load level is higher than 50%, then more than 40% of the run-time is spent in the highest volt-

age/frequency state.

I exploit these characteristics to deliver both high-performance and low VDDMIN by architecting an

LLC consisting of a spectrum of cell sizes. For low-power operation, I exclusively use large cells that

exhibit low failure rates at low voltages; therefore, the LLC can operate at a low VDDMIN. On the other

hand, for high-performance operation, I operate at a high enough voltage that the failure rate of even

the small cells in the LLC is sufficiently low for their use, providing the needed LLC capacity. As op-

erating voltage decreases, subsets (e.g., ways in a set-associative LLC) of cells are disabled in order of

size, starting with the smallest. Because a processor must run at lower frequencies at lower voltages,

the frequency gap between on-chip cores and off-chip memory decreases. As a result, the performance

penalty of having a smaller effective LLC capacity in low voltage/frequency states is much smaller

than it would be in high voltage/frequency states. Note that a conventional architecture needs to use

large cells across the entire LLC to provide the same low VDDMIN as my proposed architecture. This

will either require a larger die area for the LLC capacity or result in a smaller LLC capacity for the

same die area.

52

Unlike the prior techniques that disable only defective cache lines [21] [22], my proposed tech-

nique does not require expensive on-chip fuses [62] to record the locations of the defective cache lines

identified during a manufacturing test. Although on-line LLC testing mechanisms based on error-

correction coding (ECC) can be adopted to avoid the use of fuses [63], their capability is limited by the

strength of the ECC. Furthermore, the prior techniques can result in significant performance variations

across processor chips. Since defective lines may have different performance impact due to their loca-

tions [64]. In contrast, my technique provides deterministic performance behavior because each volt-

age/frequency operating state leads to a deterministic LLC size for all the processors from different

dies. Finally, my technique can be transparently combined with other existing techniques using repair-

ing schemes [22] [62] and ECCs [65] that are used to support a low VDDMIN.

The specific contributions of this study are as follows. First, I architect cost-effective LLCs consist-

ing of heterogeneous cell sizes to provide both high-performance and a low VDDMIN. Second, I ana-

lyze the impact of the LLC architectures on the area, performance, and power consumption of a pro-

cessor that adjusts voltage and frequency periodically due to a changing workload demand. Third, I

provide a micro-architectural technique that reduces the performance impact of writing back dirty lines

when disabling subsets of the LLC due to voltage/frequency changes.

The remainder of this chapter is organized as follows. Section 4.1 analyzes the impact of LLC ca-

pacity on performance at different processor frequencies. Section 4.2 demonstrates the trade-off be-

tween cell size, voltage, and failure probability. Section 4.3 describes my proposed LLC architectures

and the micro-architectural techniques used to maximize their performance. Section 4.4 details the

experimental methodology and results. Section 4.5 summarizes this chapter.

53

4.1 Impact of LLC Size on Performance versus Processor Frequency

One of the major reasons for using a large LLC is to minimize the number of accesses to off-

chip memory. Retrieving off-chip data incurs large latency penalties due to the large frequency gap

between fast on-chip cores and slow off-chip memory. Therefore, a large on-chip cache capacity is

essential to achieving high-performance. However, at lower voltage and frequency of the processor are

decreased, such as through DVFS, the frequency gap between on-chip cores and off-chip memory de-

creases. This reduces the importance of having a large LLC.

Figure 4-1 plots the data of relative runtime versus core frequency for different L3 cache capaci-

ties. I used 4 commercial workloads [66] running on the GEMS multi-core simulator [55]: (a) Apache,

(b) JBB, (c) OLTP, and (d) Zeus; see Table 4-2 in Section 4.4.1 for the simulation parameters. I first

warmed up the caches with 100 million instructions and ran one billion instructions. Next, I measured

the total execution time of each workload with the default LLC cache capacity at each frequency state,

i.e., 2.4 GHz, 1.6 GHz, 1.2 GHz, and 0.8 GHz. Finally, I decreased the L3 cache capacity gradually as I

decreased the supply voltage (and thus operating frequency) to obtain the total execution time for the

different LLC capacities. While the runtime degradation is notable (3% - 6%) for small on-chip cache

capacity at high frequency (e.g., 25% of 8 MB at 2.4 GHz), it becomes negligible (~1% or less) at low

frequency (0.8 GHz-1.2 GHz). This implies that I can use a smaller LLC capacity at lower voltage and

frequency operating states without causing a noticeable increase in runtime.

The runtime degradation shown in Figure 4-1 is the average for executing 1 billion instructions.

The “average” runtime degradation (~6%) for smaller L3 capacities might appear to be a small perfor-

54

mance impact. However, average runtime degradation in high-performance mode (i.e., highest volt-

age/frequency) can be misleading. For example, 21% (Apache), 23% (OLTP), and 13% (Zeus) of total

execution intervals shows 10% (or more) runtime degradation when the L3 capacity was reduced to 4

MB; I measured runtime for every 10 million instructions for the different L3 sizes. This relatively

high-performance degradation in certain execution intervals may not be acceptable for many quality-

of-service critical applications, emphasizing the need for a large LLC capacity in high-performance

mode.

My LLC architecture, which consists of heterogeneous cell sizes, is specifically designed to take

advantage of this effect. I use only the largest cells at voltages close to the VDDMIN (effectively operat-

ing an LLC of smaller capacity) and all cells at the highest, high-performance, voltage settings. At the

lower voltages, the decreased frequency gap between on-chip cores and off-chip memory means that

the negative performance impact of the decreased effective capacity of the LLC is negligible, while the

use of smaller cells at higher voltages yields significant savings in die area. In contrast, conventional

LLCs are designed to operate the whole LLC reliably at all allowable operating voltages/frequencies.

55

(a) Apache (b) JBB

Figure 4-1Apache (b) JBB

 (c) OLTP (d) Zeus
Figure 4-1: Relative runtime versus core frequency for different L3 cache capacities (100%, 75%,
50%, and 25% of an 8 MB L3 cache). The runtime values are normalized to the runtime with 100% L3
cache capacity at each core frequency after executing 1 billion instructions.

Figure 4-1Apache (b) JBB

56

4.2 SRAM Cell Failure Probability and VDDMIN versus Cell Size

4.2.1 Impact of Transistor’s Size on RDF and LER

 The main source of SRAM cell failures at low voltages is due to RDF and LER [60]. These result

in device mismatches in SRAM cells that employ symmetric, crosscoupled circuit topology, making

such cells unstable at low voltage. The degree of device mismatches, i.e., the standard deviations of

each transistor’s threshold voltage (VTH) and channel length (L) are inversely proportional to device

size as described in [67]: ” 𝜎𝑉𝑇𝐻 ∝ 1/√𝑊 × 𝐿 “ and “ 𝜎𝐿 ∝ 1/√𝑎 + 𝑊 “ where a is a technology-

dependent constant, W is transistor channel width, and L is transistor channel length, respectively. As a

result, typical SRAM cells that use minimum geometry transistors to improve integration density also

exhibit a large amount of device mismatch, which increases the failure probability of SRAMs at low

voltage. Thus, to achieve a low VDDMIN for a target yield, on-chip caches must use larger transistors

that exhibit less variation and/or special circuit and logic techniques, e.g., read/write assist,

redundancy, ECC, etc. [68] [13] [14] that mitigate the negative impact of process variation on SRAM

failures.

4.2.2 Impact of Cell Size on Cell and Cache Failure Probabilities

Zhou et al [69] design and optimize six different 6-transistor SRAM cells (i.e., C1~C6 cells). They

analyzed the failure probabilities of the cells due to process variations at 32nm. These analyses

demonstrated that increasing a cell’s size can reduce its failure probability by orders of magnitude. For

this study, I take the failure probabilities of their presented cells [69]. I then scale them to provide

VDDMIN = 0.7V for an 8MB LLC using C6 cells. In Table 4-1, I show the optimized area for each cell

57

(relative to the area of the C1 cell), as well as cell size versus the failure the probability of a given cell

(PFAILCELL) at different operating voltages.

Note that PFAILCELL decreases by orders of magnitude at the same voltage as cell size increases; the

PFAILCELL for the largest two cells (C5 and C6) are very close to the Intel®’s data at 45nm technology

[22]. The cache is said to fail when it contains at least one bad cell. Given a PFAILCELL value for a cell

size and one voltage, the failure probability of the cache, PFAILCACHE can be calculated as:

𝑃𝐹𝐴𝐼𝐿𝐶𝐴𝐶𝐻𝐸 = 1 − (1 − 𝑃𝐹𝐴𝐼𝐿𝐶𝐸𝐿𝐿)𝑛 (4-1)

 where n is the number of cells in the cache. As the number of cells (i.e., cache size) increases, the

overall PFAILCELL increases as well. This limits the scaling of SRAM cell size since larger LLCs are

increasingly required for high-performance multi-core processors.

4.3 LLC Architecture using Heterogeneous Cell Sizes

 An LLC consists of hundreds or thousands of SRAM sub-arrays. My approach uses multiple cell

Table 4-1: Cell size and VDD versus PFAILCELL at different operating voltages.

 C1 C2 C3 C4 C5 C6

Relative Cell Size 1.00 1.12 1.23 1.35 1.46 1.58

PFAILCELL @ 0.90V 3.207x10-7 2.532x10-9 6.980x10-11 4.517x10-12 5.054x10-13 1.217x10-13

PFAILCELL @ 0.85V 5.413x10-7 1.033x10-8 3.113x10-10 1.550x10-11 3.846x10-12 1. 021x10-12

PFAILCELL @ 0.80V 1.015x10-6 3.028x10-8 1.513x10-9 7.602x10-11 2.902x10-11 8.952x10-12

PFAILCELL @ 0.75V 2.017x10-6 8.136x10-8 7.429x10-9 4.095x10-10 2.176x10-10 7.888x10-11

PFAILCELL @ 0.70V 4.144x10-6 2.121x10-7 3.724x10-8 2.247x10-9 1.630x10-9 6.995x10-10

58

sizes in a single LLC. When high-performance is demanded, the processor runs at high

voltage/frequency states where even small cells can operate reliably. As supply voltage is lowered, the

failure rate of small cells increases exponentially (cf. Table 4-1) and I disable ways or sets one after

another beginning with those consisting of the smallest SRAM cells. Since, as discussed in Section 4.1,

at lower voltage/frequency states the frequency gap between on-chip cores and off-chip memory is also

smaller, not using the smallest cells has little impact on performance. Meanwhile, ways or sets that are

implemented with large cells remain active (and reliable) at lower supply voltage, providing the needed

LLC capacity. In this section, I first present my LLC architectures with heterogeneous cell sizes along

with the analysis of the probability of LLC failure as a function of the specific LLC design. Second, I

discuss the micro-architectural implications and performance impacts of disabling a part of the LLC,

and propose various micro-architectural mitigation techniques.

4.3.1 LLC Implementation using Heterogeneous Cell Sizes to Support Low VDDMIN

Figure 4-2 (a) shows an example of implementing a subarray of a four-way set-associative LLC

with heterogeneous cell sizes. Each column maintains the same height but becomes wider to

accommodate larger cells since the cell size increases in the horizontal direction [69]. Each group of

four columns shares one sense-amplifier (i.e., one output bit). Each column in the group represents a

way in the four-way set-associative LLC. Note that this type of set-associative LLC implementation

has been used in commercial processors since it can protect a cache set against a particle strike flipping

multiple neighboring bits [70]. Figure 4-2 (b) illustrates another example of building a four-way set

associative LLC, where each group of subarrays is associated with each way (and each cell size). In

this illustration, the total number of sub-arrays will be divided into four groups where each group

59

represents a particular way with a particular cell size. In Figure 4-2 (b), the sub-arrays with larger cells

become taller since I assume that the sub-arrays are rotated by 90 degrees for the sake of presentation.

Also, the processor and LLC are operating at 0.7V. Thus, the LLC sections corresponding to ways

three and four are disabled at 0.7V since they are comprised of small cells, many of which will fail at

such a voltage.

In order to estimate a required level of VDDMIN, I take an AMD® Opteron quad-core processor

(Model: 2378) supporting 2.4GHz, 1.6GHz, 1.2GHz, and 0.8GHz voltage/frequency states for DVFS.

According to the circuit-level analysis using a 32nm predictive technologies model (PTM) and FO4

(i.e., Fan Out of 4) inverter chains, the voltage values for 1.6GHz, 1.2GHz, and 0.8GHz are

respectively close to 0.8V, 0.75V, and 0.7V, if 0.9V (nominal voltage of the 32nm PTM [71]) can

(a) Sub-array with 4 different cell sizes (b) LLC with way 3 and 4 disabled at 0.7V

Figure 4-2: (a) Sub-array with 4 different cell sizes. (b) LLC architecture using 4 different cell sizes to support
an area-efficient low VDDMIN LLC where way 3 and 4 are disabled at 0.7V

60

provide 2.4GHz. Thus, for this study, a VDDMIN of 0.7V is assumed. I build a baseline 8MB LLC

consisting of only C6 cells (i.e., a homogeneous LLC consisting of only the largest cells).

The heterogeneous LLC designs I consider consist of m different types (sizes) of cells with n(i)

cells of each type, i=1, 2, ..., m. To compute PFAILCACHE at a particular voltage, Eq. (4-1) becomes:

𝑃𝐹𝐴𝐼𝐿𝐶𝐴𝐶𝐻𝐸 = 1 − ∏(1 − 𝑃𝐹𝐴𝐼𝐿𝐶𝐸𝐿𝐿(𝑖))

𝑚

𝑖=1

𝑛

 (4-2)

where PFAILCELL(i) is the PFAILCELL of cell size i at a given voltage. In Figure 4-3, I show the PFAILCELL

and effective LLC size (or capacity) versus voltage for two different LLC architectures with

heterogeneous cell sizes.

Figure 4-3 (a) shows PFAILCACHE of a LLC comprised of C5 and C3 cells (i.e., m=2) where each cell

size provides 4MB capacity (i.e., n(1) = n(2) = 4×8×220). In this particular architecture, I can reduce

the total cell area by 15%, i.e., total LLC area by 13% considering SRAM array efficiency equal to

85% [72]. When the voltage (frequency) is higher than 0.8V (1.6GHz), the processor will be able to

use the full 8MB LLC capacity, satisfying the yield target that requires PFAILCELL to be below 0.05. If

the voltage (frequency) is below 0.8V (1.6GHz), the 4MB section of the LLC consisting of the smaller

C3 cells will be disabled.

61

As a consequence, the overall PFAILCACHE will not satisfy the yield target as shown in the dotted-line

segment of the “+C3:4M” curve in Figure 4-3 (a). However, the 4MB section consisting of C5 cells

will operate reliably, meeting the yield target at the voltage range, i.e., [0.7V, 0.9V) as presented in the

“C5:4M” curve. Effectively, m=1 in (2) when voltage is below 0.8V and m=2 in Eq. ((4-2) when

voltage is above 0.8V. However, I can satisfy the similar PFAILCACHE using the smaller cell size, i.e., C5

since the total number of C5 cells are half of the baseline with C6 cells. To see this formally, I simplify

Eq. (4-2) as follows:

𝑃𝐹𝐴𝐼𝐿𝐶𝐸𝐿𝐿 = 1 − ∏ (1 − 𝑃𝐹𝐴𝐼𝐿𝐶𝐸𝐿𝐿(𝑖))𝑚
𝑖=1

𝑛(𝑖)
=

 1 − ∏ exp{𝑛(𝑖) × log(1 − 𝑃𝐹𝐴𝐼𝐿𝐶𝐸𝐿𝐿(𝑖))}𝑚
𝑖=1 =

 1 − exp {− ∑ 𝑛(𝑖) × (𝑃𝐹𝐴𝐼𝐿𝐶𝐸𝐿𝐿(𝑖))𝑚
𝑖=1 }

(4-3)

 (a) C5/C4 (4MB/4MB) LLC (b) C5/C4/C3/C2 (2MB/2MB/2MB/2MB) LLC

Figure 4-3: PFAILCACHE and LLC size versus voltage. (a) 4MB with C5 for 0.7~0.9V and 8MB with C5+C3 for
0.8~0.9V. (b) 2MB with C5 for 0.7~0.9V, 4MB with C5+C4 for 0.75~0.9V, 6MB with C5+C4+C3 for 0.8~0.9V,
and 8MB with C5+C4+C3+C2 for 0.9V.

62

where the approximation is the first term of a Taylor series, and is quite accurate for the small failure

probabilities of the cells considered herein. This approximation tells us that the overall LLC failure

probability is a function of a weighted average of the individual cell probabilities, weighted by the

number of cells of each size. Thus, an LLC consisting of 8×8×220 C6 cells, i.e., 8MB would have

approximately the same cache failure rate as an LLC consisting of 4×8×220 C5 cells if the failure

probability of an individual C5 cell were twice that of a C6 cell. Note that the baseline 8MB LLC is

designed with C6 to achieve the required PFAILCELL for a yield target at VDDMIN = 0.7V, although using

the smallest cell (i.e., C1) should be sufficient to satisfy the access time constraint. In other words,

meeting the PFAILCELL constraint at the target VDDMIN forces us to use a large cell (i.e., C6).

To minimize the LLC area further, I can design a more heterogeneous LLC. Figure 4-3 (b) provides

PFAILCELL of a LLC composed of C5, C4, C3, and C2 cells where each cell size gives 2MB of capacity

(for compactness of notation I refer to this as a 2MB/2MB/2MB/2MB C5/C4/C3/C2 LLC). As the

voltage is decreased from 0.9V to 0.8V, to 0.75V, and to 0.7V, the LLC capacity is reduced from 8MB

to 6MB, to 4MB, and to 2MB. In this architecture, PFAILCELL is close to 0.05 for the full 8MB capacity

at 0.9V. As the voltage decreases to 0.8V, 0.75V, and 0.7V, each 2MB section consisting of C2, C3, and

C4 cells will, respectively, be disabled in turn. Within their range of valid operating voltages the

resulting PFAILCACHE of each of the 6MB, 4MB, and 2MB sections of the LLC is less than 0.05,

satisfying the yield target. Using this architecture, I can reduce the total area dedicated to SRAM cells

by 18%, i.e., total LLC area by 16% if I assume 85% array efficiency. In this study, I also provide two

more LLC architectures: 1) a 4MB/2MB/2MB LLC consists of C2/C3/C4 cells, and 2) a

2MB/2MB/4MB consists of C1, C2, and C4 cells. These two additional LLC architectures satisfy the

yield target for the given voltage range, 0.7V-0.9V as long as the proper section of the LLC is

63

shutdown for each voltage downtransitions. See Figure 4-4 for the total LLC cell area and the

operating voltage rage of each section for four different LLC architectures relative to the baseline 8MB

one.

Finally, note that my proposed LLC architectures are based on 6-transistor SRAM cells. However,

they can be also applied to LLCs implemented with other types of SRAM cells (i.e., 8- or 10-transistor

SRAM cells). This is because these SRAM cells exhibit the same fundamental trade-off between cell

size and failure probability; 10-transistor SRAM cells show much lower failure probabilities but they

are larger than either 6- or 8-transistor SRAM cells.

4.3.2 Micro-Architectural Techniques for LLC Way Shutdown

In Figure 4-2, as supply voltage decreases, one LLC way after another will be disabled in

ascending order of cell size. Since all cells in a given column share a vertical VDD line in modern

SRAM cell designs, they can easily be turned off with an existing SRAM sleep mechanism [73] in

Figure 4-2 (a). When a voltage/frequency down-transition is triggered by DVFS, an LLC way that

cannot operate reliably at the new voltage is shut down. In such a case, the dirty LLC lines in that LLC

way must be written back to the main memory.

Figure 4-4: Total LLC cell area for different LLC configurations relative to the baseline. In each colored box
whose area is proportional to the total cell area for given cell size, X:Y:Z represents cell size, capacity, and
minimum operating voltage.

64

Note that the mechanism for shutting down a subset of LLC is already available in commercial

multi-core processors to reduce leakage power consumption [74]. Figure 4-5 illustrates the shutdown

process for an LLC way and how an LLC access request is handled during the process. Once the

DVFS controller decides to decrease the operating voltage/frequency of the processor, each local LLC

controller examines each line in the way that is being shut down. If the line is dirty, it is either (a)

written back to the memory controller queue (i.e., cache to memory (C2M)) or (b) moved to another

way after evicting a least recently used clean line in the same set (i.e., cache to cache (C2C)). The next

line is then examined after the status bit of the dirty line is set to the “invalid” state. This process is

repeated until all lines are examined in the way that needs to be shut down. Note that a way shutdown

process using option (a) may increase the traffic between on-chip cores and off-chip memory (and thus

power consumption).

The LLC can still service read/write requests to minimize the performance impact associated with

the shutdown operations. Say that a read or write operation is requested to the LLC. First, the flush

operation for the next line is interrupted after finishing the current one (cf. (1) in Figure 4-5). Second,

the set corresponding to the read or write address is accessed (cf. “(2) RD/WR REQ” in Figure 4-5)

where the line was already examined. Third, for “(3) RD/WR OP” in Figure 4-5, if the line was clean,

the read request returns the data to the lower-level cache, i.e., an LLC hit. However, if the line was

dirty (thus invalidated in the current LLC way), (a) always incurs a LLC miss but (b) may result in a

LLC hit since the previous dirty line could have been moved to another way. For a write operation, if

the line was clean, an LLC miss is forced since the line has been already examined and the modified

data line cannot be written back anymore. If it was dirty, and similar to the read access case, it can

incur an LLC miss or hit depending on a flushing scheme. Finally, the LLC controller resumes the

65

flush operation after completing the service for the request (cf. “(4) RESUME FLUSH” in Figure 4-5).

Note that a read or a write operation to a line that has not been examined can be serviced like accessing

a normal LLC line.

4.3.3 Performance and Power Impacts of Heterogeneous LLC Architectures

The heterogeneous LLC architectures may affect performance and power both positively and nega-

tively. First, the leakage power remains significant due to the large number of cells although the LLC

is implemented with low-leakage devices and its temperature is lower than the on-chip core area. The

heterogeneous LLC architectures can reduce a substantial amount of the LLC leakage power since 1)

some LLC ways are automatically disabled at low voltage/frequency operating states and 2) they are

implemented with smaller cells that consume less leakage power than larger ones. The heterogeneous

LLC architectures also require significantly less die area for the same capacity (Figure 4-4). This freed-

Figure 4-5: LLC way shutdown process and LLC access request handling during the shutdown process: (a)
writes back the dirty line to the memory queue and (b) moves the dirty line to another way after evicting a least

recently used clean line in the same set.

66

up die area can, in turn, be used to increase the LLC capacity, providing higher peak performance at

the highest voltage/frequency state.

On the downside, both the flushing operations required before reducing voltage/frequency and dis-

abling LLC ways and the reduced LLC capacity at low voltage, increase the number of accesses to the

LLC and off-chip memory. These effects reduce overall performance and increases memory system

power consumption. However, one should note first that workloads running on high-performance mul-

ti-core processors spend a substantial fraction of their run-time at high voltage/frequency states, and

second that the interval of voltage/frequency changes is often longer than 10ms in a commercial oper-

ating system (OS) such as Microsoft Windows [75] [76]. In addition, both the flushing operations and

the LLC capacity reductions occur only when voltage/frequency decreases (and not when volt-

age/frequency increases). Therefore, both the performance and power impacts should be quite small. A

detailed analysis of the impact of the flushing operations and reduced LLC capacity for each request to

change the voltage/frequency level per interval is provided in Section 4.4.2.

Comparing the two heterogeneous LLC architectures A and B of Figure 4-4, I observe a trade-off

between area and performance/power impact. Architecture B requires more area than A, but B shuts

down the LLC ways only when there is a voltage/frequency down-transition from 0.8V to 0.75V. On

the other hand, architecture A requires the shutdowns of the LLC ways whenever there is any volt-

age/frequency down transition. Thus, architecture B will result in fewer accesses to the LLC and off-

chip memory (with less LLC leakage reduction) than will A. Two other heterogeneous LLC architec-

tures (C and D in Figure 4-4) are positioned between A and B in terms of the area and perfor-

mance/power impact. Either can be preferred depending on which voltage/frequency state the proces-

sor spends more time in. Finally, since SRAM cell size affects the access time of SRAM arrays, it may

67

be argued that using small cells increases LLC latency (and thus decrease performance). However,

unlike L1 caches, providing a larger capacity with smaller die area has been a more critical design pri-

ority than a shorter latency for architecting LLCs. Furthermore, the overall impact of using small cells

on latency is very small because the long latency of LLCs (e.g., more than 30 processor cycles in In-

tel® i7) is mainly due to address and data distributions across the structures.

Thus, if there is no VDDMIN constraint, C1 cells would be most probably used for implementing

conventional LLCs. Finally, recall from Section 4.1 that the height of cells is fixed and only the width

is varied depending on the size of the transistors. Thus, the size of arrays with larger cells grows in the

word-line direction, resulting in reduced word-line delay. On the other hand, smaller cells often exhibit

more bit-line delay. Overall, since the increased bit-line delay of smaller SRAM arrays is countered by

the reduced word-line delay, the overall SRAM array access time remains nearly the same. According

to my simulation, an array with C3 cells showed less than a 5% increase in the total delay of the word-

line and bitline, relative to one consisting of C6 cells; other components of an SRAM array such as

pre-charger, row/column decoder, sense amplifier also significantly contribute to the access time of the

SRAM array. Hence, the impact on overall latency of small increases in the total delay of the word-line

and bit-line by using small cells should be negligible.

Table 4-2: Simulation parameters.

 Core Frequency/Voltage 2.4~0.8GHz/0.9~0.7V # of Cores 4

Fetch/Issue/Retire 4/4/4/ Branch Predictor/BTB/RAS YAGS/1K/32

Private IL1 32KB/4-way/32B (2 cycles) Private DL1 32KB/4-Way/32B (2 cycles)

Private L2 256KB/8-way/64B (10 cycles) Shared L3/core 8MB/16-way/64B (36 cycles)

Cache Coherency Protocol Directory-based MESI Main Memory

(size/block/page/latency)

DDR3-1.6GHz

4GB/64B/4KB/7-7-7-20ns

MSHR 8 Write-buffer 16

68

4.4 Evaluation

4.4.1 Simulation Environment

The configuration of my processor is similar to that of an Intel® i7 multi-core processor containing

four cores with a shared 8M L3 cache. Each core is four wide with a private L1/L2 cache hierarchy. I

evaluate my proposed LLC architecture using full-system cycle-accurate simulation using and GEMS

[55] after I augment a shared L3 cache in GEMS. I simulate four commercial workloads [66] and two

memory bounded SPEC2006 programs (i.e., sphinx and libquantum) [77] with the simulation

parameters presented in Table 4-2. In implementing a DVFS mechanism for the architectural

simulation, I assume that all cores share a single voltage domain and use a threshold-based algorithm

similar to the one appeared in [78] for 1ms, 5ms, 10ms, and 20ms intervals. I execute 1 billion

instructions after warming up the caches with 100 million instructions. Note that I adjust the DVFS

algorithm parameters (e.g., the threshold values for voltage/frequency changes) so that the processor

spends the same balance of time in each frequency/voltage state as in the DVFS profiles collected from

the commercial system. My intention in doing this was to analyze the performance impact of disabling

LLC ways implemented with small cells whenever the voltage/frequency is reduced. Also, after I

obtain the DVFS profile from the baseline system, I applied the same profile to the processor with my

proposed LLC architecture at each interval. This gives a fair basis for performance comparisons.

To evaluate the power or energy consumption impact of the proposed LLC architectures, I need to

estimate the LLC leakage power dissipation, the dynamic energy consumption of LLC and off-chip

memory per access, and the core power consumption. First, the leakage power of each cell type is

69

measured using HSPICE and 32nm PTM at 60°C. For the conservative estimation, I assume that all

live arrays are in sleep mode that retains their states and a subset of the arrays is woken up on demand

for every access [73]. This provides a significant reduction in the leakage power consumption of the

LLCs. Thus, the LLC leakage power consumption only in sleep mode is used to evaluate the leakage

power reduction of the proposed LLC architecture.

The measurement exhibits that C1~C6 cells dissipate 0.342W~0.347W in sleep mode, resulting in

~23W for the LLC leakage power consumption. Second, the dynamic energy consumption per LLC

access is estimated using CACTI 6.5 [79]. It estimates that 0.431nJ is consumed per access for the

following LLC design parameters: cache size = 8MB, block size = 64, associativity = 16, the number

of read/write ports = 1. Off-chip memory, i.e., DDR3 energy consumption per access is 48.4nJ

estimated using [80] assuming that the bus width between the processor and off-chip memory is 64

bytes. Note that the DDR3 power consists of three components: background, active power, and

read/writeterm power. In the estimation, I only account for the active and read/write power consumed

by extra read/write accesses since the background power is always consumed whether it is accessed or

not. The extra processor core power consumption due to longer runtime is estimated based on the

thermal design power for a commercial high-performance processor, 120W minus the LLC power

consumption at 0.9V/2.4GHz. Then, I scale the power consumption of the cores accordingly for

different voltage/frequency states. Note that the total energy consumption is obtained by multiplying

the power consumption with the corresponding runtime at each voltage/frequency state.

70

The processor power excluding the LLC leakage power is 100W, 53W, 46W, and 40W at

0.9V/2.4GHz, 0.8V/1.6GHz, 0.75V/1.2GHz, and 0.7V/0.8GHz, respectively. Note that the estimation

of the overall processor power is conservative. In fact, it is unfavorable to my proposed LLC

 (a) 1ms (b) 5 ms

Figure 4-16 (a) 1ms (b) 5 ms

 (c) 10ms (d) 20 ms

 Figure 4-6: Time spent at each frequency/voltage state versus DVFS interval time.

71

architectures. This is because I assume the highest core power consumption for each frequency/voltage

state, which increases total core power consumption most notably for the longer runtime of the

proposed architecture.

4.4.2 Simulation Results

Figure 4-6 shows the percentage of time the processor spends at each frequency state based on the

DVS algorithm for 1ms, 5ms, 10ms, and 20ms intervals for Apache (AP), JBB (JB), OLTP (OL), Zeus

(ZU), sphinx (SP), and libquantum (LQ). The corresponding voltages for 2.4GHz, 1.6GHz, 1.2GHz,

and 0.8GHz are 0.9V, 0.8V, 0.75V, and 0.7V, respectively. On average, the 6 workloads spend 35%

(44%), 29% (30%), 22% (18%), and 14% (8%) at 2.4GHz/0.9V, 1.6GHz/0.8V, 1.2GHz/0.75V,

and0.8GHz/0.7V states when the voltage/frequency change interval is 1ms (20ms). This runtime

distribution of the various voltage/frequency states allows the processor to shut down various LLC

ways, sufficiently exercising the proposed LLC architectures to determine their performance merit and

power impact.

Figure 4-7 and Figure 4-8 plot the runtimes for each of the four different LLC architectures using

heterogeneous cell sizes, relative to the conventional architecture at different voltage/frequency change

intervals. In this experiment, I observe that the proposed LLC architectures increase the runtime by

only 0.49%-1.55%, 0.31%-0.85%, 0.41%-1.13%, and 0.33%-0.94 when the C2M write-back technique

is adopted for LLC architectures A, B, C, and D. Note that the runtime of LQ increases as the

voltage/frequency change interval increases because the fraction of low voltage/frequency states

increases, unlike in other workloads. Further, the C2C write-back technique results in reduced

performance loss due to fewer LLC misses and off-chip memory accesses.

72

On average, the proposed LLC architectures with the C2C write-back technique incur only 0.33%-

0.79%, 0.20%-0.42%, 0.23%-0.73%, and 0.22%-0.72% for the LLC architectures A, B, C, and D. This

C2C technique shows 23%-49% lower runtime increase than the C2M one. Comparing different LLC

architectures, LLC architecture A experiences more frequent shutdowns of the LLC ways and has

Figure 4-7: Relative runtime versus DVFS interval for different LLC architectures and write-back tech-
niques.

 (a) A-C2M (b) B-C2M

 (c) C-C2M (d) D-C2M

73

smaller cells than B. Thus, LLC architecture A exhibits higher performance loss than architecture B.

Meanwhile, LLC architectures C and D, positioned between A and B in terms of the area, show

increases in runtime below A and above B. Finally, these experimental results confirm that the

performance loss becomes smaller as the voltage/frequency change interval increases. Note that a short

DVFS interval can induce more frequent shutdowns of LLC ways with small cells, generally resulting

in more LLC misses and off-chip memory accesses.

Figure 4-9 plots the energy consumption of the proposed LLC architectures, relative to the

conventional homogeneous architecture operating at various voltage/frequency change intervals. The

energy consumption in Figure 4-9 considers both LLC leakage energy consumption and extra dynamic

energy consumption due to the slightly longer runtimes of the processor and additional LLC and off-

chip memory accesses. Note that the proposed LLC architectures exhibit less LLC leakage energy

consumption both due to the use of smaller cells and to the shutdowns of LLC ways at lower

voltage/frequency states. Since the LLC stays in sleep mode at 0.65V during most of runtime and

wakes up its small subset briefly for an access, the leakage power does not scale with

voltage/frequency unlike the cores. Thus, the relative energy reduction by disabling some LLC ways at

low voltage/frequency states outweighs the energy increase due to slightly longer runtime plus

additional LLC and off-chip memory accesses. On average, the proposed LLC architecture A, B, C,

and D reduce the overall energy consumption by 7%-10%, 5%-7%, 5%-8%, and 6%-9%. For LQ and

74

JBB at 20ms, the energy reduction is very small since the processor runs mostly at the highest

voltage/frequency state. Note that architectures B and C exhibit less performance loss and, in general,

show less energy reduction since a half of the total LLC ways do not shutdown when the voltage is

Figure 4-8: Relative runtime versus DVFS interval for different LLC architectures and write-back techniques.

75

between 0.9V and 0.8V, thereby losing the leakage power reduction opportunity when the

voltage/frequency state is 0.8V/1.6GHz.

 (c) 10ms-C2C (d) 20ms-C2C
Figure 4-9: Relative energy consumption of the proposed LLC architectures: LLC leakage energy plus
extra dynamic energy due to the longer runtime of the processor, and the additional LLC and off-chip
memory accesses for different DVFS intervals.

 (a) 1ms-C2C (b) 5ms-C2C

 (a) 1ms-C2C (b) 5ms-C2C

76

Figure 4-10 presents the comparison of peak performance between the proposed heterogeneous and

conventional homogeneous LLC architectures for the same total LLC area. Since the proposed LLC

architectures are 15%-19% smaller than the conventional one, I reduce the capacity of the conventional

architecture by 12.75%, i.e., 14 ways instead of 16 ways. For the peak performance comparison, I

sample the IPC every 1ms for both LLC architectures setting the processor to run at 0.9V/2.4GHz, and

compare the IPC at each interval. Then I choose the values from the interval resulting in the maximum

difference. Note that my proposed LLC architectures do not lose any performance at the highest

voltage/frequency state since the full LLC capacity is provided. According to this experimental result,

the heterogeneous LLC architectures show average 15% higher peak performance than the

conventional homogeneous one at the same LLC die area. Finally, the average runtime of the proposed

heterogeneous LLC architectures are shorter than that of the conventional homogeneous one analyzing

the results shown in Figure 4-1 see the data points with the 75% of 8MB L3 capacity.

Figure 4-10: Peak IPC comparison between heterogeneous and homogeneous LLC architectures at the
same LLC die area.

77

4.5 Chapter Summary

In this chapter, I present a cost-effective LLC architecture that uses heterogeneous cell sizes to

support both high-performance and low VDDMIN. The proposed architecture exploits the DVFS

characteristics of workloads running on high-performance processors, the trade-off between SRAM

cell size and VDDMIN, and the lower performance impact of smaller LLC capacity at lower

voltage/frequency operating states.

A summary of my results is as follows. First, the proposed LLC architectures reduce the LLC total

cell area by 15-20% without impacting performance when in the highest voltage/frequency state.

Second, the performance impact of the proposed architectures is negligible when various

voltage/frequency states are explored by DVFS as a function of changing performance and power

demands. Third, the proposed LLC architectures reduce leakage power since some LLC ways are

disabled at low voltage/frequency states. Overall energy consumption is reduced by 5%-10% even

though extra energy consumption is required (and accounted for) to support the slightly longer

runtimes and more frequent accesses to the LLC and off-chip memory. My proposed LLC architectures

also show an average of 15% higher peak performance and shorter runtimes when compared to the

conventional homogeneous design for the same die area. These improvements are due to the increased

capacity per unit area.

78

Chapter 5

DRCS: Dynamic Resource and Core Scaling

Although dynamic voltage and frequency scaling (DVFS) has been widely used, the demand to

aggressively scale transistor technology and supply voltages will make DVFS window smaller.

Eventually, DVFS window may vanish. Thus, architects have been looking for new proposals to alter

DVFS technique. Dynamic micro-architecture adaptation techniqes have been a promising solution

that leverage power-gating techniques to trade performance and power. In these techniques, micro-

architecture resources are dynamically scaled up and down within each core to match application

requirements. In a system that dynamic power dominates, these micro-archtectural approaches can be

beneficial and simply implementable by gating clock signal of a portion of a resource. However, as

transistor technology scales and moves forward, micro-architecture adaptation becomes more

challenging due to leakage power increase. In order to address the leakage power increase, we must

implement multiple fine-grain voltage domains within each core’s resources. In addition, in a multi-

core processor with resource and core scaling capability, the scheduling algorithm (i.e., scaling policy)

play a critical role to determine the optimal processor configuration. The scaling algorithm can become

a complex task as the number of cores and number of scalable resources increases as it needs to

perform quickly.

In this chapter, I propose a dynamic resource and core scaling (DRCS) technique as an alternative

to DVFS. I envision a power-constrained multi-core processor in which the number of integrated cores

79

is more than that of operating cores when all the resources of cores are enabled. For such a multi-core

processor to maximize performance, I propose (i) joint scaling of the amount of core resources and the

number of operating cores (i.e., RCS) and (ii) a runtime system that predicts and adapts the processor

accordingly to the best RCS configuration for a given application at runtime.

The remainder of this chapter is organized as follows. Section 5.1 details the experimental method-

ology. Section 5.2 describes DRCS (Dynamic RCS) under power constraint. Section 5.3 discusses the

impact of power constraint. Section 5.4 discusses runtime system. Section 5.5 explains sDRCS (Selec-

tive DRCS). Section 5.6 summarizes this chapter.

5.1 Simulation Methodology

For evaluation, I use GEMS [55] full system simulator and McPAT [81] power modeling

framework. I configure GEMS similar to a Xeon Tulsa processor; take the corresponding configuration

from the McPAT package; and use the 32nm technology for power estimation; see Table 5-1 for the

detailed parameters when all the resources are enabled. The processor has 12 cores, but it can operate

only 8 cores with full resources enabled due to power constraint.

of cores 12 NoC topology crossbar switch

core fetch/issue/retire 4/4/4 core OoO

IL1/DL1 private 32KB/32KB ALU/Multiplier/FPU 4/2/4

ITLB/DTLB 32/32 entries LSQ 32/32 entries

BTB 2K integer reg. file/float reg.
file

128/128

branch predictor YAGS: 20-15-15 load replay penalty 10 cycles

branch mis-pred. penalty 11 cycle ROB/IQ 64/32 entries

L2/MSHR shared 8MB/16 entries technology 32nm

Cache Coherency Proto-
col

directory-based MESI V/F 0.9V /3.2GHz

Table 5-1: Key parameters of a 12-core processor with the full core resources.

80

I use 11 benchmarks: JBB, OLTP, APACHE, and ZEUS from commercial workloads [82];

WUPWISE, MGRID, APPLU, and EQUAKE from SPEC-OMP [83], and SWAPTIONS,

BODYTRACK, and BLACKSHOLES from PARSEC [84] (denoted by JBB, OLTP, APCH, ZEUS,

WPWS, MGRD, APLU, EQK, SWSP, BDTK, and BKSL). Depending on the degree of contentions

related to synchronizations, each thread often executes a different number of instructions [35]. Thus,

for fair and consistent comparisons across configurations and intervals, I ensure that each configuration

executes the same number of transactions instead of instructions; a transaction typically corresponds to

an iteration of a global loop in each executed thread. I run a benchmark for 40 intervals comprised of

2- to 4-billion instructions; each interval is equivalent to tens to hundreds of ms in real machine’s time.

Although the software threads are scheduled by the OS and executed with fewer cores (after scaling

the number of cores) in a time-multiplexed manner, negative performance impact of load imbalancing

is small (and reflected in ths simulation) since these applications have far more software threads than

12 cores [85, 86].

5.2 DRCS under Power Constraint

To exploit instruction-level parallelism (ILP) in applications, a processor core is designed to

execute multiple in-flight instructions in an out-of-order (OoO) fashion. The more resources (e.g.,

larger L1/L2 caches and more execution units (EUs)) a core has, the higher performance is for

applications with high ILP. Similarly, the more cores a processor has, the more threads it can

concurrently execute for applications with high thread-level parallelism (TLP), leading to higher

overall performance. However, due to a power constraint, we cannot increase both the amount of

resources per core and the number of operating cores at the same time. Consequently, we often have to

81

trade the amount of resources per core with the number of integrated cores at design time. Moreover, I

uniformly scale chosen resources of each core, coupled with the number of operating cores such that

the processor does not exceed the chip power constraint for the worst-case power consumption. Hence,

the number of feasible RCS configurations is limited to a small number (i.e., three in this study),

making it more tractable for implementing a runtime system.

As the prior studies observed, many execution phases of applications often underutilize given core

resources due to various reasons (e.g., limited ILP and small memory footprint) [26, 27, 29, 28]. In

such a case, disabling some of core resources such as L1/L2 caches and/or EUs may not notably

impact single-thread performance, while it can considerably reduce the maximum power consumption

L2 $

Core 0

+ + + + * *

L1-I $

Register File

LSQTLBBTB IQ

ROB

L1-D $

decoder

IW

22.5 W

Core 0 Core 1 Core 2 Core 3

Core 1

+ + + + * *

L1-I $

Register File

LSQTLBBTB IQ

ROB

L1-D $

decoder

IW

Core 2

+ + + +

L1-I $

Register File

LSQTLBBTB IQ

ROB

L1-D $

decoder

IW

Core 3

+ + + +

L1-I $

Register File

LSQTLBBTB IQ

ROB

L1-D $

decoder

IW

30 W 30 W 30 W 0 W

Core 0 Core 1 Core 2 Core 3

Core 0

+ + + + * *

L1-I $

Register File

LSQTLBBTB IQ

ROB

L1-D $

decoder

IW

Core 1

+ + + + * *

L1-I $

Register File

LSQTLBBTB IQ

ROB

L1-D $

decoder

IW

Core 2

+ + + +

L1-I $

Register File

LSQTLBBTB IQ

ROB

L1-D $

decoder

IW

Core 3

+ + + + *

L1-I $

Register File

LSQTLBBTB IQ

ROB

L1-D $

decoder

IW

22.5 W22.5 W22.5 W

L2 $ L2 $L2 $

Figure 5-1: A hypothetical example of RCS under a power constraint (90W) for a quad-core processor: (a) all
four cores are active with a half of resources disabled (22.5W per core) (b) only three cores are active with full
resources enabled (30W per core). The disabled resources are represented with the gray color.

82

of each core. This in turn allows us to operate more cores (and thus increase the performance of

applications with high TLP) under the power constraint. In contrast, if the applications exhibit high ILP

but low TLP, disabling some cores but enabling more resources per operating core can lead to higher

performance.

Figure 5-1 illustrates a hypothetical example of RCS for a quad-core processor. Assume that the

maximum power consumption of the processor is limited to 90W; in this example, I only consider the

power consumption of cores after excluding the power consumption by shared components such as

memory controllers and network-on-chip (NoC) interconnect, etc. When all the resources of each core

are enabled, the maximum power consumption of each core operating at 3.2GHz/0.9V is 30W.

Therefore, only three cores can operate due to the power constraint. However, when the amount of

resources of some architectural components such as L2/L1 caches, instruction queue (IQ), load-store

queue (LSQ), and EUs is reduced by half, the maximum power consumption of each core can be

reduced from 30W to 22.5W at the same voltage/frequency (V/F). This in turn allows us to operate all

four cores.

Figure 5-2 shows the normalized execution time (ET) of three different RCS configurations that

Processor Configuration 8-core 10-core 12-core

L2(MB) 8 6 4

IL1(KB)/DL1(KB) 32/32 32/32 16/16

TLB 32 32 16

ALU/Complex ALU/FPU 4/2/4 2/1/2 1/1/1

LSQ 32/32 32/32 16/16

ROB/IQ 64/32 64/32 32/16

YAG Br. Predictor 20/15/15 20/15/15 10/8/8

Table 5-2: Key parameters of three RCS configurations consuming approximately the same maximum power.

83

simultaneously vary the amount of core resources and the number of operating cores such that all three

configurations consume approximately the same maximum power at 0.9V/3.2GHz. The ET of each

configuration is normalized to that of the 8-core configuration. The key parameters of three RCS

configurations are listed in Table 5-2. I will discuss how the maximum power consumption of each

architectural component scales as the amount of core resources scales in Section 5.3.

I determine these RCS configurations after performing many experiments to analyze the impact of

core resource scaling on performance and maximum power consumption of the processor. Then I

prioritize the architectural components for resource scalingnce based on (i) the changes of power

efficiency (i.e., performance divided by power) after scaling the resources and (ii) the complexity of

implementing resource scaling. I choose to apply the resource scaling only for the architectural

components that exhibit relatively large power reduction with small performance degradation. Table

5-7 in Section 5.5 presents the changes of power efficiency for major architectural components after

reducing the amount of resources by half to motivate my sRCS technique. For instance, I do not reduce

the size of physical register-file (PRF) in all three RCS configurations, because reducing the size of

PRF decreases considerably more performance than maximum power consumption. Similarly, I reduce

Figure 5-2: Execution time (ET) comparison of 8-, 10-, and 12-core configurations that consume approximately
the same maximum power. The ET of each application is normalized to that of the 8-core configuration.

84

the size of the TLB, LSQ, ROB/IQ, and branch predictor only for the 12-core configuration, as shown

in Table 5-2, because they can exhibit notable performance degradation compared to maximum power

reduction. Finally, I can vary the fetch width of cores as a category of resource scaling technique, but I

do not explore it in this study.

Figure 5-2 clearly demonstrates that the best RCS configuration, which offers the highest

performance, varies from benchmark to benchmark. For example, the 8-core configuration provides

the highest performance for APPLU, WUPWISE, and SWAPTIONS, while the 12-core configuration

gives the highest performance for APACHE, EQUAKE, and BLACKSHOLES; the 12-core

configuration offers 31% higher geo-mean performance than the 8-core configuration for these

benchmarks. In other words, the amount of resources per core is more critical for APPLU, WUPWISE,

and SWAPTIONS, which exhibit high ILP but low TLP and/or have large memory footprints, to

achieve the highest performance under the power constraint. On the other hand, the number of

operating cores is more critical for APACHE, EQUAKE, and BLACKSHOLES, which generally

exhibit high TLP but low ILP and/or small memory footprints, to achieve the highest performance. The

performance of the 10-core configuration is the highest for JBB, OLTP, ZEUS, MGRD, and BDTK,

indicating that the amount of resources per core and the number of operating core should be balanced

to achieve the highest performance. Overall, choosing the best RCS configurations for the benchmarks

that benefit from the 10- and 12-core configurations can provide 21% higher geo-mean performance

than the 8-core configuration.

85

5.3 Impact of RCS on Power Consumption

In Section 5.2, I demonstrated that the best RCS configuration leading to the highest performance

differs per application depending on the requirements of each application. In modern processors, key

architectural components such as on-chip caches, buffers, and queues are designed in a modular

fashion so that their size or width can be easily adapted for derivative architectures targeting various

market segments (i.e., mobile, desktop, and server). These on-chip memory structures are typically

comprised of multiple arrays and each array is equipped with a local power-gating device that can

turned it on/off independently [73]. The number of operating EUs can be varied by fine-grained power-

gating, which has been explored by the industry due to the growing need for supporting aggressive

power management techniques [87]. In general, I share the same (i) hardware mechanism to scale the

resource of each architectural component and (ii) associated overhead with [26, 27, 29]. In addition,

the number of operating cores is scaled up/down by turning on/off per-core power-gating devices,

which are supported by most commercial multi-core processors [88, 89].

Table 5-3 tabulates both the absolute and percentage power consumption of key architectural

components of all three RCS configurations. The power consumption of the 8-, 10-, and 12-core

Processor
Configuration

 L2 + Dir
IL1 + ITLB

+ BTB
DL1 + DTLB

+ LSQ
IQ + ROB INT FPU Others

Core
Total

8-core
Power 4.91W 0.43W 0.86W 0.87W 2.88W 2.12W 11.00W 23.07W

% in Core
Tot.

21.3% 1.8% 3.7% 3.8% 12.5% 9.2% 47.7% 100%

10-core
Total 3.22W 0.43W 0.86W 0.87W 1.44W 1.06W 10.59W 18.46W

% in Core
Tot.

17.4% 2.3% 4.7% 4.7% 7.8% 5.7% 57.4% 100%

12-core
Total 2.01W 0.31W 0.69W 0.69W 0.98W 0.53W 10.23W 15.44W

% in Core
Tot.

13.0% 2.0% 4.5% 4.5% 6.4% 3.4% 66.2% 100%

Table 5-3: Breakdown of peak power consumption of cores for different processor configurations.

86

configurations is approximately the same maximum power or thermal design power (TDP) = ~185W;

the TDP of an Intel’s dual-core Xeon processor manufactured with 65nm technology is 150W [90]and

an Intel’s 6-core processor manufactured with 32nm technology and operates at a similar frequency is

130W [91]. The power consumption of each core in 8-, 10-, and 12-core configurations is 23.07W,

18.46W, and 15.44W, respectively. The core power consumption number for each configuration

includes each core's share of the power consumption of architectural components shared by all the

cores, such as memory controllers, NoC, etc. The columns denoted by "L2 + Dir," "IL1+ITLB+BTB,"

"DL1+DTLB+LSQ," "INT," "FP," and “Others” show the maximum power consumption and

percentage values in maximum power consumption of L2 cache and coherent protocol directory; IL1

cache, ITLB, BTB, and branch predictor; DL1 cache, DTLB, and LSQ; integer ALUs, multipliers, and

dividers; floating-point adder, multipliers, and dividers; and all other components. In the following

section, I discuss how the maximum power consumption of architectural components is calculated

after resource scaling.

Set-associative memory components: The first group of memory components is set-associative

memories such as L2 (and its coherent protocol directory), IL1/DL1, and BTB; dynamic memory

resizing techniques have been widely used for commercial processors to reduce leakage power

consumption at runtime [74]. It is possible to shut down a subset of arrays that constitute either ways

or sets (depends on cache designs). Although disabling some arrays can reduce the leakage power

consumption of the memory components, the dynamic power consumption remains the same. This is

because it does not reduce the switching capacitance of accessed arrays; only a subset of arrays in large

memory components is accessed regardless of the number of arrays. For example, to shut down 2MB

of an 8MB 8-way cache I can shut down ¼ of arrays constituting all the available ways or sets without

87

impacting the number of parallel accesses to the cache. Scaling the size of L2 to 6MB and 4MB (and

the associated coherent protocol directories) reduces the maximum power consumption of the 10- and

12-core configurations by 16.97W ((4.91W − 3.22W) × 10) and 35.85W ((4.91W − 2.01W) × 12),

respectively, while scaling the size of IL1/DL1 to 16KB reduces the maximum power consumption of

the 12-core configuration by 1.68W ((0.94W − 0.80W) × 12).

Fully-associative memory components: The second group of memory components is fully-

associative memories such as ROB, DTLB, ITLB, IQ, and LSQ. These components usually are

designed using content-addressable memory (CAM) and some combinational circuits such as

comparators and multiplexers. Like set-associative memory, it is possible to shut down a subset of total

entries and the associated comparators to reduce their leakage power consumption without impacting

the critical path delay [92]. However, this does not reduce the capacitance of tag matching buses that

are connected to all the comparators including the disabled ones. Note that a large fully-associative

memory component can be designed with multiple CAM arrays that are connected in a hierarchical

way. In such a case, disabling a subset of CAM arrays can also reduce dynamic power consumption,

but I assume that disabling some entries in the fully-associative memory components only reduces

leakage power consumption for a conservative estimation in this study. For instance, disabling a half of

the total entries in ITLB, DTLB, BTB, LSQ, and ROB can reduce the maximum power consumption

of the 12-core configuration by 3.25W ((1.12W − 0.85W) × 12). In summary, scaling the size of

memory components for the 10- and 12-core configurations can reduce the maximum power

consumption of the processor by 16.97W and 40.38W, respectively; as indicated in Table 5-2, only L2

cache size is reduced in the 10-core configuration. This is in turn exploited to increase the number of

operating cores (with less on-chip memory resources).

88

EUs: The impact of scaling the number of ALUs, complex ALUs (multipliers and dividers), and

FPUs on power consumption is very straightforward. Disabling a subset of such units using fine-grain

power- and clock-gating techniques can reduce both dynamic and leakage power consumption.

However, this does not reduce the power consumption of the shared operand and result buses that are

connected to the inputs and outputs of these units. Scaling the number of EUs can reduce the maximum

power consumption of the processor by 24.97W ((4.99W − 2.50W) × 10) and 41.80W ((4.99W −

1.51W) × 12) for the 10- and 12-core configurations, respectively. This power reduction is substantial

enough to operate one or more cores under the power constraint. Note that the instruction issue

mechanism must be aware of disabled EUs and it should not issue instructions to the disabled EUs.

Others: In this study, I do not apply the resource scaling techniques for the remaining architectural

components, although it is possible to scale some of them, such as the number of memory controllers,

the width of fetch, decode, and issue stages, and the size of PRF.

Putting it together: McPAT can provide the breakdown of maximum dynamic and leakage power

consumption of each component in a processor. I begin with the estimation of the maximum power

consumption of a 12-core processor with the full resources per core to accurately consider the power

consumption of all the shared resources (e.g., on-chip interconnect, memory controllers, etc.) and

extract dynamic and leakage power consumption of each component including its subcomponents

(e.g., arrays, decoders, etc. in L1/L2). Then, I subtract the dynamic and/or leakage power consumption

of disabled subcomponents based on the methodology discussed in this section. Scaling the chosen

resources of each core reduces the maximum power consumption of each core by 4.61W and 7.63W

for the 10- and 12-core configurations, as summarized in Table 5-3. Such power reduction can provide

89

enough power headroom to operate two and four more cores for the 10- and 12-core configurations

than for the 8-core configuration since each core consumes approximately 18.5W and 15.5W,

respectively.

5.4 Runtime System

In this section, I propose a runtime system (i.e., a scaling policy) that can determine (i) the best

RCS configuration for a given application and (ii) adapt the processor accordingly. Then, I evaluate its

effectiveness and discuss its runtime overhead.

5.4.1 Performance Comparison at Each Interval

Figure 5-3 plots the ETs of 8-, 10-, and 12-core configurations that run BLACKSHOLES and

ZEUS, at each runtime interval. The ETs of the 10- and 12-core configurations are normalized to that

of the 8-core configuration at each interval. Each interval in a benchmark is comprised of the same

number of transactions to perform the same amount of work, typically corresponding to 60- to 150-

million instructions (i.e, tens to hundreds of ms) depending on a benchmark and its interval.

While a particular RCS configuration always outperforms two other RCS configurations across all

the intervals for APACHE, SWAPTIONS, EQUAKE, and BLACKSHOLES, the RCS configuration

leading to the highest performance changes over intervals for ZEUS, OLTP, JBB, MGRID, APPLU,

WUPWISE, and BODYTRACK. For instance, the 12-core configuration always shows higher

performance than the 8- and 10-core configurations across all the runtime intervals for

90

BLACKSHOLES. On the other hand, either the 8- or 10-core configuration can provide the highest

performance at some runtime intervals for ZEUS.

Assume that I can oracularly choose the best RCS configuration that can lead to the highest

performance at each interval (i.e., the best dynamic RCS) and compare its overall performance with the

best performance that can be achieved by applying only one of the RCS configurations across all the

intervals for each application (i.e., the best static RCS). Among the applications that benefit from the

dynamic RCS, as tabulated in Table 5-4, the dynamic RCS can provide notably higher performance

only for BODYTRACK and ZEUS than the best static RCS, while offering only negligibly higher

performance for JBB, OLTP, MGRID, and WUPWISE.

5.4.2 Best Configuration Predictor

Considering small performance improvements using the dynamic RCS over the best static RCS, I

focus on developing a predictor that can determine the best (static) RCS configuration at runtime.

Figure 5-3: ET versus runtime interval of the 8-, 10-, and 12-core configurations. The performance of each
application is normalized to that of the 8-core configuration at each runtime interval.

91

Need for using an ML approach: A simple performance sampling technique can be sufficient, if

we can repeat the execution of the same interval for all three configurations, which is non-trivial and

costly considering the duration of intervals. We cannot just compare performance of configuration A at

interval i with that of B at interval i+1 to determine the best configuration as the performance reference

points are different at interval i and i+1. Consequently, determining the best configuration at runtime

requires considering numerous performance counters, leading to a complex multi-dimensional

classification problem in which a machine learning (ML) approach can be very effective.

Predictor architecture: To determine the best RCS configuration, I take support vector machine

(SVM) that is a supervised learning model and widely used for classification and regression analysis.

An SVM takes a set of inputs (i.e., performance counter values) and predicts which of two possible

classes forms the output (i.e., the best RCS configuration) as a non-probabilistic binary linear classifier.

For example, an SVM predicts whether or not a particular RCS configuration (e.g., 12-core

configuration) is the best for given counter values. Hence, a simple predictor can be comprised of M

SVMs where M is the number of feasible RCS configurations (= 3 in my study).

 Figure 5-4 shows my proposed predictor architecture comprised of 3 sub-predictors (SVM8,

SVM10, and SVM12), each of which consists of 3 SVMs, and how it determines the best RCS

configuration. Each predictor only receives inputs from the associated RCS configuration. For

Applications JBB ZEUS OLTP MGRD WPWS BDTK

Performance Improvement (%) 0.8% 4% 0.5% 1.6% 0.1% 31%

Table 5-4: Performance improvement with dynamic over static configurations.

92

instance, SVM10 only receives inputs generated by the 10-core configuration and predicts whether or

not the best RCS configuration is the 8-, 10, or 12-core configuration; see "Predictor inputs" to justify

why I split the predictor into three sub-predictors.

The predictor explores all three feasible RCS configurations over 3 × n consecutive intervals,

starting with the 12-core configuration; see Section 5.4.3 for the justification of starting with the 12-

core configuration. At the end of each n consecutive intervals, the sub-predictor, which is associated

with the current RCS configuration, predicts the best RCS configuration based on the collected counter

values during the intervals. At the end of the third n consecutive intervals, the predictor first decides

the best RCS configuration based on the majority rule; in Figure 5-4 where n = 1, SVM8 and SVM12

predict that the 10-core configuration is the best while SVM10 predicts that the 12-core configuration is

the best. Thus, the predictor decides that the 10-core configuration is the best.

SVM12 SVM10 SVM8

Maj.

12-core
config

C1 C2 C3

i2 i3 i4i1

10-core
config

8-core
config

10-core
best

12-core
best

10-core
best

10-core
best

10-core
config

SVM10

C101

i101

SVM8

8-core
config

C102

i102

i1, i2, … = interval 1, 2,…

C1, C2, … = set of counters at i1, i2, …
Maj.

12-core
best

12-core
best

12-core
best

12-core
config

Figure 5-4: Proposed predictor architecture, comprised of 3 sub-predictors based on SVMs, to determine
the best RCS configuration for n = 1.

93

When all three sub-predictors disagrees, the predictor chooses the best configuration based on the

sub-predictor with the highest confidence (i.e., the longest distance to the SVM's hyper-plane). The

runtime system then takes necessary actions to apply the decided configuration to the processor; see

Section 5.4.3 for the necessary actions and their overhead to change the processor configuration.

Finally, it maintains the decided RCS configuration for a pre-determined period of time (e.g., 100

intervals) as illustrated in Figure 5-4 and/or until it detects a substantial change of given application's

execution phase (e.g., [93]).

Predictor inputs: Table 5-5 categorizes the counters, taken by the best-configuration predictor,

into three groups. The first "System Performance" group includes each core's IPC and ET to evaluate

the performance benefit of the current configuration. The second "Memory Resource" group consists

of access and miss rates of each core's on-chip caches and bandwidth utilization of each off-chip

DRAM channel. These counters indicate whether or not a given application is memory-intensive (i.e.,

the on-chip cache sizes and/or off-chip DRAM bandwidth is sufficient for a given application); for

some applications, increasing the number of threads does not improve performance due to limited off-

chip DRAM bandwidth [35]. The third "Core Resource" group encompasses utilization and stall rates

of ROB, IQ, FPU, and ALU as well as a rate of branch miss-prediction. These counters demonstrate

how much the core configuration is matched with the resource requirement of a given application. I

consider the utilization counters for SVM8 since all core resources are fully activated but they may not

be fully utilized. On the other hand, I take the stall counters for SVM12 because only a small amount of

core sources are activated and thus they may cause more stalls due to limited core resources. For

SVM10 I take both utilization and stall counters because the 10-core configuration is between those two

cases. Since I need to consider different counters depending on what is the current RCS configuration,

94

I split the predictor into 3 sub-predictors, each of which is customized for each RCS configuration,

leading to higher accuracy according to my preliminary evaluations.

Predictor training: I take an off-line training method in this study due to long cycle-level

simulation time for evaluations involving an on-line training approach. For an off-line training method,

I collect 40 sets of chosen counter values from 40 execution intervals of a benchmark running on a

particular RCS configuration; the number of sets per configuration per benchmark is limited by my

simulation time constraint but it can be far more with real hardware. I also obtain 2×40 sets by

moving-averaging counter values over 2 and 4 intervals, respectively. For three feasible RCS

configurations per benchmark, I have total 3×120 (=360) sets and they will be associated with and

trained to predict the best RCS configuration of the benchmark. Then L × 120 sets collected from L

benchmarks running on a particular RCS configuration are applied to sub-predictor associated with the

RCS configuration for the training. For example, I apply 10 × 120 sets from 10 benchmark executed on

the 8-core configuration to SVM8 that is comprised of 3 outputs (i.e., “8-core-best,” “10-core-best,”

and “12-core-best”). Among the 10 × 120 sets, the 3 × 120 sets from APACHE, EQUAKE, and

BLACKSHOLES and 3 × 120 sets from APPLU, WUPWISE, and SWAPTIONS will be trained to

predict “12-core-best” and “8-core-best,” respectively, during the training phase of SVM8. The

remaining sets from the rest of the benchmark will be trained to predict “10-core-best.” This process is

Category Counters

System Performance IPC and ET

Memory Resources access/miss rate of (L2, L1D, L1I) and bandwidth utilization of off-chip DRAM channel

Core Resources utilization/stall of (ROB, IQ, ALU, FPU, LSQ) and branch prediction accuracy

Table 5-5: Summary of inputs to SVMs.

95

repeated for SVM10 and SVM12. Finally, to evaluate the prediction accuracy for a given benchmark, I

exclude all the input sets from the benchmark being evaluated during the off-line training phase.

Predictor accuracy: Figure 5-5 shows the accuracy of the proposed predictor. The geo-mean of

the prediction accuracy is 84%, 93%, 99%, ~100% for n = 1, 2, 3, and 4, respectively. To calculate the

prediction accuracy for a benchmark, I try all possible combinations of randomly picking 1, 2, 3, and 4

consecutive intervals out of 40 available intervals from each RCS configuration. Most benchmarks

show close to 100% prediction accuracy when n is greater than 2. However, some benchmarks such as

BODYTRACK and EQUAKE exhibit relatively poor prediction accuracy because of a very wide

range of performance variance across intervals. Note that, EQUAKE shows very small performance

difference between configurations. Therefore, inaccurate prediction does not impact performance

notably. In summary, I can predict the best RCS configuration with well over 90% accuracy by

observing only 15% of total intervals, 2 intervals per configuration (= 6 intervals) out of 40 intervals in

this experiment.

This proposed predictor can provide very high prediction accuracy to determine the best RCS

configuration that can lead to the highest overall performance over a large number of intervals even for

Figure 5-5: Prediction accuracy for n = 1, 2, 3, and 4 intervals.

96

applications in which the best RCS configuration changes over intervals (e.g., ZEUS, OLTP, JBB,

MGRID, APPLU, WUPWISE); I can consider that these applications show phase behavior in a time

scale of seconds [93]. Considering the simulation time, I limit the number of intervals to 40, which

corresponds to a few seconds for most applications. However, some applications show the phase

behavior over time scale larger than a few seconds [93]. For such applications, I can periodically apply

the prediction technique and adjust the configuration according to capture a large time-scale phase

behavior. To this end, Isci et al. proposed a runtime technique to monitor and predict the runtime

phases of applications to increase power efficiency using DVFS [93]. Sherwood et al. propose

Simpoint to find a portion of program that is representative of the entire program's execution [94].

Later, Lau et al. propose an on-line technique to predict different phases of applications and resource

requirement at runtime [95]. Similar techniques can be adopted to determine whether or not I need to

update the best RCS configuration.

5.4.3 Necessary Support and Runtime Overhead

To decide the best RCS configuration, the predictor begins to collect counter values for n (= 2 in

this study) consecutive intervals for each configuration in the order of 12-, 10-, and 8-core

configurations. In other words, I change the RCS configuration at most three times. This gradually

 12-core best 10-core best 8-core best

 APCH EQK BKSL JBB OLTP ZEUS MGRD BDTK SWSP WPWS APLU

Oracle 60.0% 11.1% 25.0% 18.5% 13.2% 11.9% 18.3% 16.6% 0.0% 0.0% 0.0%

Runtime 54.4% 10.1% 22.6% 15.7% 11.8% 10.4% 16.7% 14.3% -1.4% -1.7% -1.1%

Runtime/Oracle 90.1% 91.2% 90.3% 84.9% 88.9% 87.0% 91.5% 86.1% 98.6% 98.7% 99.3%

Table 5-6: Performance improvement of oracular and runtime RCS with n = 2. The performance of the 10- and
12-core configurations is normalized to that of 8-core configuration.

97

turns on more core resources for fewer operating cores. Therefore, scaling down the core resources

(i.e., reducing the size of on-chip memory components and flushing core pipelines) occurs at most

once (i.e., from the 8-core configuration back to either 10- or 12-core configuration) during a

substantial period of runtime. Then I maintain the best RCS configuration determined by the predictor

until I observe a considerable phase change from a given application, which may occur every a few

seconds [93]. Thus, I expect that the overall overhead of runtime RCS should be very small; see Table

5-6 for runtime overhead. The key hardware mechanisms to support runtime RCS are already available

in the power control unit (PCU), a microprocessor, which monitors performance and power

consumption of each core; dynamically adjusts V/F state; manages the sequences of turning on/off

cores and a part or all of on-chip caches, etc., in a multi-core processor [74].

Changing the number of operating cores: Since applications typically have more software

threads than 12 cores [85, 86], these many threads are executed with fewer cores in a time-multiplexed

manner. Before changing the number of operating cores at runtime, the runtime RCS system notifies

the change to the thread scheduler so that it can dispatch an appropriate number of software threads to

the cores; I assume the same OS thread-scheduler as proposed by Suleman et al. [35] for changing the

number of active threads at runtime and it takes only few μs for switching of threads between cores

[96] while one interval in my evaluation is equivalent to tens of ms.

Reducing on-chip shared cache size: When the cache size should be reduced due to a change of

the configuration, the cache controller writes back all the dirty cache lines to the main memory and

then decreases the L2 cache size. This starts by walking through all the cache lines in the cache section

that is going to be shut down. To evict any cache line in “M” state, the cache controller sends the data

98

to the main memory and updates the directory to “I.” To evict any cache line in “E” state, the cache

controller just updates the directory to “I.” To evict any cache line in “S” the cache controller sends an

invalidation request for the cache line to the NoC and waits to get invalidation acknowledgements

from all the sharers. Then, the controller sends the data to the main memory and updates the directory

to “I.” After completing this process, the cache controller reduces the cache size. The performance

impact of changing the size of a large shared cache even every 1ms is reported to be less than 0.5% on

average [1].

Flushing core pipelines and order of downsizing: When the amount of core resources should be

scaled down, first the cores stop fetching new instructions and wait until outstanding misses are

serviced. Second, I allow all the previously fetched instructions in the IQs/ROBs to be executed and

retired and begin to flush L1 caches in parallel across cores to be disabled. The ROB has 64 entries, so

it takes at least 16 cycles for a 4-wide core to retire all the instructions when there is no outstanding

cache miss. Finally, while the L2 cache is flushed and downsized, the processor can shut down a

portion of the resources of the cores using a fine-grained power-gating technique and lets the

instructions be fetched in the new RCS configuration. I assume/model that I halt the core(s) and

flush/initialize the pipeline(s) and caches for the components impacted by power-gating on/off during

the reconfiguration; the sleep/wake-up latency of fine-grained power-gating just considering the

stabilization of power distribution network (PDN) of execution units is in the order of a couple of

cycles for ALUs [87] and tens of cycles for FPUs; in my modeling, I assume 10 and 100 cycles for

shutting down ALUs and FPUs, respectively.

99

Predictor computational overhead: The current predictor implementation is based on libsvm

containing redundant routines for development and debugging. I measure the computational overhead

of the predictor by running the binary in my simulator configured with the parameters shown in Table

5-1. I observe that it takes 0.47ms. 1.53ms, 1.58ms for SVM8, SVM10, and SVM12 to predict the best

configuration using a single core (out of 8, 10, 12 available cores). This overhead can be substantially

shortened and eliminated by developing optimized SVM code and run it on the PCU.

Overall overhead of runtime RCS: My runtime RCS significantly differs from typical fine-

grained dynamic power-gating techniques that turn on/off components based on activity changes of

architectural components during a relatively short period of runtime. Note that the sleep/wake-up

latency of power-gating just considering the stabilization of PDN is less than tens of ns [97]; most

performance penalty is incurred only when the size of on-chip caches is reduced. Furthermore, the

overhead of either completing or invalidating in-flight instructions is negligible (takes few hundred

cycles), because I need at most one configuration change that requires a shutdown of resources in a

long period.

Modeling and evaluating the overhead of runtime RCS, I observe that runtime RCS applied for 40

intervals can deliver 92% of the maximum performance improvement achieved by an oracular RCS

(i.e., using the best RCS configuration from the start of executions) on average; Table 5-6 compares the

performance improvement of the oracular and runtime RCS, and the performance of 10- and 12-core

configurations is normalized to that of 8-core configuration. 9% lower performance than the oracular

RCS is resulted by three factors: (i) execution of some intervals with the sub-optimal configurations;

(ii) the performance penalty of increasing/decreasing on-chip caches, flushing core pipeline, and

100

turning on/off cores; and (iii) execution of predictor code. Finally, I limit the number of intervals to 40

due to excessive simulation time, but I expect the runtime RCS to provide higher performance with

more intervals, amortizing the cost of (i) and (ii).

5.5 sRCS

Previously, I explored RCS that uniformly scales the chosen resources of each core. In this section,

I explore RCS that selectively scale the resources of each core (i.e., sRCS) to better exploit the unique

characteristics of memory- and compute-oriented applications.

Motivation and rationale: Table 5-7 shows the impact of scaling the resources of each component

on power efficiency (i.e., performance/Watt) of the 10-core configuration. I scale the amount of each

architectural component’s resource at a time and measure the relative change of performance and

maximum power consumption. Reducing the size of IL1, DL1, PRF, and IQ by half notably degrades

the power efficiency of all the examined applications. On the contrary, reducing the number of FPUs

by half improves power efficiency of all the examined applications. Scaling the L2 size and the number

of integer ALUs exhibits varying impacts on power efficiency depending on applications; see the

shaded columns in Table 5-7. For instance, the power efficiency of EQUAKE considerably improves

with a half of L2 cache size while that of APACHE, JBB and BODYTRACK notably degrades.

 Half L2s Half L1s Half TLBs Half ALUs Half FPUs Half PRF Half LSQ Half IQ

ZEUS 0.32% -2.59% 0.02% 6.53% 4.86% -5.02% 0.01% -5.77%

JBB -5.77% -2.74% 0.02% 6.13% 4.86% -6.71% 0.01% -8.48%

OLTP -1.44% -3.40% 0.02% 6.50% 4.86% -4.48% 0.01% -6.23%

APACHE -8.96% -2.07% 0.02% 3.87% 4.86% -8.16% 0.01% -9.46%

EQUAKE 10.70% -18.53% 0.02% 3.32% 4.33% -4.11% 0.01% -3.10%

BODYTRACK -5.39% -13.39% 0.02% -5.62% 4.75% -3.56% 0.01% -7.29%

Table 5-7: Impact of resource scaling of each component on power efficiency of the 10-core configuration.

101

Similarly, all applications except for BODYTRACK show improvement in power efficiency when the

number of ALUs is reduced by half. For JBB, I can hypothesize that increasing the L2 size while

decreasing the number of ALUs can further improve performance under a power constraint.

Performance improvement: For sRCS, I provide four sub-configurations including the original

10-core configuration considered earlier. The number of operating cores is ten for all four sub-

configurations, but one sub-configuration (i.e., 10-core memory-oriented configuration) has the full

8MB L2 cache size like the 8-core configuration with fewer ALUs and FPUs like the 12-core

configuration. The two other sub-configurations (i.e., 10-core alu- and fpu-oriented configurations)

have 4MB L2 cache size like the 12-core configuration but with more ALUs or FPUs like the 8-core

configuration. Table 5-8 summarizes these four configurations and highlights the key differences

among the sub-configurations from the original 10-core configuration (i.e., 10-core balanced

configuration) are shown in the two shaded rows. All four sub-configurations consume approximately

the same maximum power (~185W). Note that I cannot provide sRCS for the 8- and 12-core

configurations in this study. This is because I only have three configurations; (i) the 8-core

configuration uses all the resources of each component while (ii) the 12-core configuration uses a bare

Processor Configuration memory oriented
balanced
(original)

alu
oriented

fpu-oriented

L2(MB) 8 6 4 4

IL1(KB)/DL1(KB) 32/32

TLB 32

ALU/Complex ALU/FPU 2/1/1 2/1/2 4/2/1 1/1/4

LSQ 32/32

ROB/IQ 64/32

YAG Br. Predictor 20/15/15

Table 5-8: Key parameters of cores for four 10-core sub-configurations consuming approximately the
same maximum power.

102

minimum amount of resources for ALUs and FPUs in each core. Therefore, there is no way to increase

(or decrease) the amount of resources of these two configurations. However, with more cores, I expect

that more configurations can support sRCS, but I leave it as future work.

Figure 5-6 compares the ETs of four 10-core sub-configurations. The ETs are normalized to the 10-

core balanced configuration. The three commercial workloads, JBB, OLTP, and ZEUS that benefit

from the 10-core original configuration show further improvement with the 10-core memory-oriented

configuration since they exhibit very low ALU and FPU utilization with high cache misses. On the

other hand, MGRID and BODYTRACK show further improvement with the 10-core alu- and fpu-

oriented configurations, respectively. On average, sRCS can provide 6% performance improvement

additional to 11% performance improvement for the applications that exhibit the highest performance

with the 10-core baseline original configuration.

Finally, let us consider all the applications that exhibit the highest performance with the 8- and 12-

core configurations (APACHE, EQUAKE, BLACKSHOLES, SWAPTIONS, WUPWISE, and

Figure 5-6: ET comparison of four 10-core sub-configurations with SRS. The ETs are normalized to the 10-
core balanced configuration.

103

APPLU). For these applications, I compare the highest performance with either the 8- or 12-core

configuration to that with the best 10-core sub-configuration. I observe that the performance of the best

10-core sub-configuration is never higher than that of the 8- or 12-core configurations for these

applications.

Best sub-configuration predictor: The determination of the best 10-core sub-configuration can be

performed in two steps. First, the predictor proposed in Section 5.4.2 determines the best configuration

out of the original 8-, 10-, and 12-core configurations. Second, if the chosen best RCS configuration

can support sRCS (i.e., the 10-core configuration in this study), I determine the best sub-

configurations.

Figure 5-7 shows the ALU utilization comparison of four 10-core sub-configurations at each

runtime interval for ZEUS and MGRID. First, all the five applications, which exhibit the highest

performance with the 10-core balanced configuration, consistently favor one particular 10-core sub-

configuration (e.g., the memory- and alu-oriented configurations for ZEUS and MGRID, respectively)

and the minimum ALU utilization of the best sub-configuration is almost always higher than the other

Figure 5-7: ALU utilization versus runtime interval of four 10-core sub-configurations with sRCS. The ALU
utilizations are normalized to the 10-core balanced configuration.

104

sub-configurations across all the intervals that I examine; I only show 10 intervals for each application

in Figure 5-7 and the analysis for the time period substantially longer than 40 intervals is left as future

work. In such a case, I can use the ALU utilization to determine the best sub-configuration. This gives

almost 100% prediction accuracy for sampling only one interval for each sub-configuration for all the

five applications.

Comparison with RCS + Limited V/F Scaling Range: Assuming a limited V/F scaling range can

be still available, I compare RCS + limited V/F scaling with sRCS. Table 5-9 tabulates the key

configuration parameters and operating points of three 10-core sub-configurations. I can afford larger

L2 cache and more EUs at 0.85V at the cost of lower operating frequency (i.e., low-V 10-core

configuration) while I can operate all the cores at higher frequency (3.6GHz instead of 3.2GHz) at the

expense of smaller L2 cache and fewer EUs at 0.95V (i.e., "high-V" 10-core configuration). Similar to

sRCS, I examine only the 10-core configuration because the 8- and 12-core configurations cannot

support low- and high-V configurations, respectively; although the 8- and 12-core configurations can

support high- and low-V configurations, respective, in this study, I limit my study to the 10-core

configuration to contrast this result to sRCS.

Figure 5-8 compares the normalized ET of the low-V and high-V 10-core configurations with the

best 10-core configuration using sRCS. I only evaluate the applications exhibiting the highest

Processor Configuration low-V
balanced
(original)

high-V

V/F 2.7GH/z0.85V 3.2GHz/0.9V 3.6GHz/0.95V

L2(MB) 8 6 4

ALU/Complex ALU/FPU 4/2/4 2/1/2 1/1/1

Table 5-9: Key parameters and operating points of three 10-core sub-configurations + limited V/F scaling
consuming approximately the same maximum power.

105

performance with the (balanced) 10-core configuration to contrast this result to sRCS. The low-V 10-

core configuration provides 6%-19% higher performance than the balanced 10-core configuration

while the high-V 10-core configuration offers 2.4% higher performance for OLTP; JBB shows the

highest performance with the balanced 10-core configuration. In comparison, ZEUS, JBB and OLTP

with the best 10-core sRCS configuration show 4%-10% higher performance while MGRD and BDTK

exhibit 8% and 15% lower performance than the best of the two 10-core configurations using limited

V/F scaling.

5.6 Chapter Summary

With technology scaling, supporting a sufficient V/F scaling range for effective power management

techniques becomes too expensive in terms of either chip area and/or power consumption. Facing such

a challenge, I exploit resource scaling as a mean to compensate for a lack of V/F scaling range and

propose RCS to improve performance of power-constrained multi-core processors in this chapter. My

Figure 5-8: ET comparison of 10-core configurations with a limited V/F scaling and the best sRCS. The ETs are
normalized to the 10-core balanced configuration. configurations with sRCS. The ETs are normalized to the 10-
core balanced configuration.

106

experimental results demonstrate that RCS can improve a geo-mean performance by 21% over the

baseline 8-core configuration. I also propose a runtime system that predicts the best RCS configuration

for a given application and adapts the processor accordingly at runtime. The predictor based on an ML

algorithm only needs to examine 15% of runtime intervals to achieve accuracy well over 90% and

runtime RCS can offer 92% of the maximum performance that can be achieved by the oracular RCS.

Furthermore, I propose sRCS that gives more optimized configurations than RCS for individual

applications. I demonstrate that sRCS can provide 6% higher geo-mean performance than RCS.

107

Chapter 6

VR-Scale: Runtime Voltage Regulator Phase

Scaling

Most modern commercial processors support two classes of power management mechanisms:

power and performance states denoted by C and P states to maximize power efficiency [98]. When a

processor core is in one of the C states, it stops operations and enters a sleep or off state to minimize

power consumption. The deeper the C state is, the lower power consumption is at the expense of higher

performance penalty due to longer latency to exit from the C state. Besides, a processor offers a trade-

off between performance and power consumption using various P states. The deeper the P state is, the

lower voltage/frequency of the processor core is, consuming lower power at the expense of lower

performance. Leveraging diverse C and P states available, the OS applies aggressive runtime power

management policies to considerably reduce power consumption of the processor without notably

impacting the performance and/or quality of service (QoS); appropriate C and P states are determined

based on (i) the performance demand and behavior of executed applications and (ii) the utilization of

the processor at a given time interval.

In a platform, one of the most critical components is voltage regulators (VRs). This is because VRs

supply necessary power for various platform components such as processors, chipsets, dynamic

random access memory (DRAM) modules and storage devices, while they consume a large fraction of

total platform power and area. Overall, the VRs consume 22% of total platform power [99] and they

108

are the second largest platform component next to the DRAM modules, occupying 63% more platform

area than the processor, the third largest component [43].

The key design objective of a VR for a processor is to maximize power conversion efficiency (or

simply VR efficiency), because the power dissipated by the VR is directly proportional to the power

consumed by the processor, the highest power consuming component in platforms, divided by VR

efficiency. For example, when supplying 100W for a processor, a VR with 80% efficiency dissipates

25W. At the same time, they must satisfy various operating requirements: delivering stable voltage and

large current while supporting fast, accurate, and fine-grained voltage changes for efficient processor

power management. To cost-effectively provide such VRs, multi-phase VRs were proposed [100]. A

multi-phase VR is comprised of multiple small VRs, each of which operates at a unique phase to share

a burden of delivering large current.

In this chapter, I first demonstrate that VR efficiency can significantly vary depending on the

amount of current that it delivers to a processor (i.e., load current), output voltage, and the number of

VR phases in use. For given load current and output voltage, VR efficiency can vary more than 20%

depending on how many VR phases are activated. Second, I exhibit that the load current may

significantly change over a long time period but it is also very predictable over a short time period, in

particular when a commercial processor runs a parallel application. Third, I show that the processor

consumes relatively small current for a notable fraction of runtime for running a parallel application,

because various P and C states are aggressively applied by the OS and the processor’s power

management unit. This in turn leads to very poor VR efficiency for the past platforms where all the VR

phases are typically activated unless all the cores in a processor enters low-power states [101, 102].

Finally, I present VR-Scale that dynamically scales the number of active VR phases based on the

109

predicted load current at runtime. For two Intel® processors executing an emerging parallel application

such as PARSEC [56] and DCBench [103], I demonstrate that VR-Scale can reduce the total power

consumed by the processor and its VR by 19% and 25%, respectively, without notably impacting the

performance.

Some technical briefs from Intel® and HP® indicate that some of their products dynamically scale

the number of active VR phases (e.g., [104, 105]). However, neither any further technical detail nor

benefit analysis is publically available. To my best knowledge, this is the first study that provides the

deep technical insights of processors dynamically scaling the number of active phases, analyzes its

benefit using two commercial platforms based on Intel® Ivy Bridge and Haswell processors, and

explores its possible implementation. Furthermore, the existing architectural technique only reduce the

number of phases when a processor is in idle or low-power states [101, 102], but I also demonstrate a

considerable opportunity to reduce the number of phases while an application is actively running.

Lastly, my study opens a door for the architecture community to explore dynamic control of other VR

knobs from the CPU side, enabling more cost-effective VRs than the VR side does as argued by [106].

Note that many commercial VRs such as the most recent Intel VR specification (i.e., VR12/IMVP7

[102]) support both circuit- and architecture-level phase scaling techniques (e.g, [107, 108]). The

circuit-level technique is also known as auto phase shedding and a VR autonomously changes the

number of phases while monitoring its load current. In contrast, the architecture-level technique is

directed by the power status indicator (PSI) pins and a VR simply follows a command from the

processor and sets the number of phases accordingly. Although these VRs support both techniques,

they should be configured to choose either a circuit- or architecture-level technique [107, 108]. Thus, I

investigated why the architectural knob to control the number of phases exists regardless of the circuit-

110

level autonomous phase shedding support, surveying many literatures and interviewing industry

experts.

Although we cannot discover any article explaining the reason for supporting both circuit- and

architecture-level phase scaling techniques in one VR, but we got some common responses from

industry experts and the following is the most detailed response [109]: "The main challenge with

autonomous phase shedding (the VR drops/adds phases on its own) is the load attack condition1.

Multiphase controllers that support autonomous phase shedding feature can have difficulties in

supporting very large load attacks with very fast slew rates if multiple phases are turned off when such

an event occurs. Without a PSI indicator that preemptively turns all the phases back on before that

large load attack we typically get a much larger output voltage droop as a result of that load attack. The

more phases are on, the faster the VR can ramp up its output current and the more support it can

provide to the power distribution network and prevent output capacitor discharge. There is additional

delay associated with the fact that the phases need to be turned back on before ramping up the current.

Recent controllers are faster and better, but we still get better regulation performance (i.e., lower

voltage droop) when disabling autonomous phase shedding and relying on PSI. Note that in some

extreme cases when the phases are not turned back on properly or fast enough we can see over current

and catastrophic failure on phase." This suggests that the architecture-level technique can be more

cost-effective (i.e., smaller on-chip and/or on-board decoupling capacitors) and more reliable, while

the circuit-level technique is useful (at the cost of larger decoupling capacitors) for processors without

any advanced phase control mechanism.

1 A sudden increase of current for a substantial amount of time.

111

The remainder of this chapter is organized as follows. Section 6.1 discusses the related work.

Section 6.2 describes some background on processor power management features, multi-phase VRs,

and processor-VR interfaces. Section 6.3 analyzes potential VR efficiency improvement by optimally

scaling the number of VR phases for given load current and output voltage. Section 6.4 describes my

experimental methodology. Section 6.5 analyzes runtime current consumption of the processor. Section

6.6 describes VR-Scale and analyzes power efficiency improvement for platforms based on two

different Intel® processors. Section 6.7 concludes this chapter.

6.1 Circuit- and Architecture-Level Techniques for VR Phase Scaling

Architecture-level techniques: A dynamic phase scaling technique was proposed in a patent [110],

where the number of phases is adjusted based on the current P state assuming that the current

consumption is proportional to the P state. However, my analysis shows that the processor power and

current consumption can be significantly low at even high voltage/frequency P states where all the

phases are used. In contrast, my study demonstrates that some phases even at high voltage/frequency P

states can be deactivated when the measured power and current consumption is low. Thus, a technique

leveraging the power measurement feature of processors is more effective than this invention.

Intel® Xeon® processors and their platforms support an automatic adjustment of the number of

active phases in particular when the processors consume low current [104]. HP® ProLiant servers also

scale the number of active phases for processors and dual in-line memory modules (DIMMs) based on

their power consumption at runtime [105]. While neither further technical details nor benefit analysis is

publically available, we could infer from VR phase controller datasheets (e.g., [111]) that the number

of active phases is reduced when the voltage identification (VID) value (i.e., the value control the

112

output voltage of the VR) from the processor is reduced, which is similar to what was proposed in

[110]. Furthermore, it was observed that the power consumed by the processor VR is responsible for

10% of the entire platform power consumption when the entire processor (i.e., all the cores in the

processor) enters a deep sleep state for a long time period [101]. Hence, the past Intel® Core micro-

architecture is implemented to turn off all the phases except one to maximize the VR efficiency for

such a case; in other words, all the phases are always activated unless all the cores enter a deep sleep

mode. In contrast, my study analyzes the power efficiency improvement of dynamic phase scaling

when a processor is in active mode (although some cores enter a sleep model for a short time period).

Powell et. al. [112] uses an architectural techniques to reduce high-frequency inductive noise. This

technique proposes pipeline muffling to reduce changes in the number of resources being utilized by

controlling instruction issue to control di/dt in space.

Circuit-level techniques: Most circuit-level techniques for dynamic phase scaling is focused on

controlling the VR circuit (e.g., [112]). This is to minimize any disruption of the VR output voltage

(e.g., the voltage supplied to the processor) and satisfy various output voltage requirements when the

number of phases is changed.

6.2 Background

6.2.1 Processor Power and Performance States

Modern commercial processors support C and P states to maximize power efficiency [98]. For

example, C0, C1, C3, and C6 states denote operating, halt, sleep, and off states. The deeper the C state

is, the lower the power consumption is at the expense of higher performance penalty due to longer

wake-up latency. The P0 state indicates the maximum sustainable performance (voltage/frequency)

113

state under the thermal design power (TDP) constraint. Similar to C states, the deeper the P state is, the

lower the power consumption is, at the expense of lower performance. Besides, as a part of P states, the

processors support turbo (or T) states where cores run faster than their P0 state if they operate below

power, current, and temperature specification. To support various P and T states, the VR connected to

the processor should be able to quickly vary supply voltage.

6.2.2 Platform Voltage Regulators

One of the most critical issues for VRs is to maximize their power conversion efficiency, which is

defined as the ratio of output power to input power. Preferably, a VR should convert the supplied input

voltage to the required output voltage without any power loss. However, the VR itself can dissipate a

notable amount of power during the voltage conversion steps, delivering less power than it receives.

Generally, a platform includes a power supply unit (PSU) that converts an AC voltage (e.g., 110V)

to various DC voltages (e.g., 12V, 5V, 3.3V, 1.8V, etc.) for platform components such as processor,

DRAM, chipset, and hard disk drive (HDD). Since the operating voltages of these components are very

diverse, the second-level voltage-down converters (or VRs) are also required on a platform as

illustrated in Figure 6-1 (left). Such a two-step voltage conversion technique is also commonly used for

high efficiency, because directly converting a high AC voltage to low DC voltages is very inefficient.

Furthermore, even with on-chip VRs in Intel® processors with Haswell micro-architecture [113], an

off-chip VR on the platform is still required, because on-chip VRs share the same manufacturing

technology with the processor and thus they cannot directly receive a high DC voltage from the PSU,

either [114, 115].

114

VRs are comprised of capacitors, inductors, and transistors as on-/off- switches, and they switch

on/off these transistors at certain frequency and duty cycle to regulate the output voltage to a desired

level. Such (switching) VRs desire higher switching frequency (denoted by fsw) for lower output

voltage fluctuation and faster responses to the changes of load current. However, simply increasing fsw

of a single VR circuit leads to higher power loss (i.e., lower efficiency). To provide high efficiency at

low switching frequency, the multi-phase switching VR, where multiple basic VR circuits are placed in

parallel between the input and load (i.e., processor) as illustrated in Figure 6-1 (right), was proposed

[116]. Each of N phases is turned on at equally spaced intervals over 1/ fsw, increasing the effective

switching frequency by N times without increasing associated switching losses.

The number of maximum VR phases depends on the maximum load current required by the

connected processor and varies from 3 to 8 phases, while typical VRs for high-performance processors

use as many as 6-8 phases [117, 118, 119]. Moreover, the number of phases and their efficiency is

primarily a function of output voltage, load current, and the number of phases used to deliver voltage

PSU
110V

AC

12V

DC
CPU

Chipset

DRAM

1.2-0.6V

VR

HDD

3.3V

VR

1.8V

VR

5V

VR

12V

VR

12V

Φ[2]

fsw

Φ[1]

fsw

Φ[4]

fsw

1.2-0.6V Φ[2]

fsw

VR w/ feff_sw = 4 fsw

Figure 6-1: (left) Platform power delivery architecture. (right) An example of a 4-phase VR, where each phase (Φ)
operates at fsw, with the effective fsw (feff_sw) = 4 fsw.

115

and current for the processor (or simply the number of active phases). More parallel phases decrease

conduction loss because they decrease VR’s effective resistance proportional to the number of parallel

phases. However, more parallel phases also increase switching loss because they increase VR’s

switching capacitance. Therefore, more active phases, which decrease conduction loss, offer higher

efficiency for higher load current. In contrast, fewer active phases, which decrease switching loss,

provide higher efficiency for lighter load current. To maximize efficiency for varying output voltage

and load current, most state-of-the-art multi-phase VRs allow us to adjust the number of active phases

[117].

6.2.3 Processor-VR Interface

A typical CPU requires at least 3 or 4 voltage domains (i.e., VRs); cores, I/O devices, and analog

components such as phase-locked loops (PLLs) and on-chip sensors need one domain each, and on-

chip caches may demand another domain when the voltage domain between the cores and on-chip

caches is split [73]. As more components such as GPUs and DSPs are integrated in a single chip [120],

more voltage domains and their independent controls are needed.

CPUs often require VRs that can deliver large current while demanding VRs to satisfy various

stringent requirements. These requirements include: (i) limited voltage overshoot/undershoot for large

transient current and/or large voltage change and (ii) fast and/or fine-grained voltage changes (e.g.,

6.25mV/µs) for dynamically changing P states at runtime and/or statically compensating process,

voltage, and temperature (PVT) variations at manufacturing time. For the state-of-the-art Intel®

processors, these requirements and the interfaces between the processor and the VRs are specified by

VR12/IMVP7 pulse width modulation (PWM) specification [102].

116

To achieve high VR efficiency while cost-effectively satisfying all these stringent requirements, the

power control unit (PCU) in a processor needs to closely interact with the connected VRs and control

various operating parameters of the VRs at runtime. With a growing number of such power domains

per processor, efficient and cost-effective interfaces and communication protocols between a processor

and VRs such as PMBus [121] have emerged.

6.3 Efficiency Improvement Opportunity in Multi-Phase VRs

As described in Section 6.2.2, platform VRs for processors use as many as 6-8 phases [117, 118,

119] and their efficiency primarily depends on output voltage, load current, and the number of active

phases (denoted by n) used to deliver voltage and current for the processor. To maximize efficiency for

varying output voltage and load current, most state-of-the-art multiphase VRs allow us to dynamically

adjust the number of active phases [117].

6.3.1 Efficiency versus Load Current and Output Voltage

Figure 6-2 (left) plots the efficiency of a 6-phase VR as a function of load current and the number

of active phases at 1.2V output voltage. This VR is optimized to deliver power for an Intel® Ivy Bridge

processor that can consume up to 77W at P0 state (i.e., voltage = 1.2V or maximum load current =

77W/1.2V = 65A). For each 3-tuple of load current (incrementing it up to 65A by 1A), voltage

(decrementing it from 1.6V to 0.7V by 10mV), and the number of phases (from 1 to 6), I measure the

efficiency of a VR and create an efficiency look-up table after running SPICE based on a model [54]

and the following key VR design parameters that impact efficiency: the switching frequency of each

phase (fsw = 300KHz), inductance (L = 360nH) per phase, and parasitic resistance of inductor (rL =

0.5mΩ) that are derived from a commercial 6-phase VR for an Intel® processor [122]; I validate the

117

efficiency for the range of output voltage and load current against a commercial switching VR used for

Intel® processors [122, 123]. As discussed in Section 6.2.2, more active phases offer higher efficiency

for higher load current. In contrast, fewer active phases provide higher efficiency for lighter load

current. For example, for 5A load current, using all 6 phases gives only 64% efficiency while using

only 1 phase provides 86% efficiency (i.e., 22% higher efficiency than using 6 phases).

Figure 6-2 (right) plots the number of active phases maximizing efficiency as a function of P state

(i.e., voltage) and load current, where the maximum load current at each P state decreases as the

voltage decreases. To obtain the maximum load current for each P state, I scale the maximum load

current value at P0 state based on scaling factors obtained by measuring power consumption of various

SPEC benchmarks at each P state (cf. Section 6.4 for the experimental methodology). Figure 6-2

Figure 6-2: Efficiency as a function of current consumed by a processor and n at P0 state = 1.2V (left). The
optimum number of active phases as a function of a P state and load current of a processor (right).

118

(right) is obtained by searching the number of phases providing the highest efficiency for each pair of

load current and P state in the efficiency look-up table constructed for Figure 6-2 (left). Figure 6-2

(right) clearly shows that the optimum number of active phases, which maximizes the VR efficiency,

depends on both output voltage and load current. Thus, when all the phases are always activated (or the

number of active phases is poorly chosen), I can observe more than 20% efficiency loss. Thus, it is

critical to dynamically scale the number of active phases at runtime, because output voltage and load

current of modern processors can significantly vary at runtime.

6.3.2 Impact on Overall Power Efficiency

While most studies consider the power consumption of only the processor, my study takes the

power supplied from the PSU to the VR as total power consumption (PTOT). When the processor

consumes PPROC (i.e., power delivered for the processor by the VR), PTOT can be represented as

follows:

 
 n

P
nP PROC

TOT




(6-1)

where n, η, nmax, and nopt denote the number of active phases, the VR efficiency (< 1), the maximum

number of phases, and the optimum number of active phases, respectively. Then the improvement of

total power efficiency is expressed by:

 
 

 
 opt

max

maxTOT

optTOT

n

n

nP

nP




 11

 (6-2)

119

For each pair of P state and load current, I search nopt and apply it to Eq. (2) to compute the

improvement. When the load current is less than 5A, optimally scaling n can improve total power

efficiency by 25%-63%. The smaller the load current and/or the lower voltage is, the higher the

improvement is. I observe that a processor running a single- or multi-threaded application often

consumes very small current for a large fraction of runtime. This is because many cores are often idle

and thus they often put into very deep P and/or C states; I will demonstrate this in Section 6.5. For such

applications, I can see that optimally scaling n can considerably improve total power efficiency.

6.3.3 Impact of Runtime Phase Scaling on Performance and Reliability

Note that modern multi-phase VRs began to allow the processor to choose n [106]. The processor

can send a command (i.e., command code 0x04 [106]) and then n to a VR through PMBus [121].

Considering that PMBus operates at 400KHz and use a serial interface such as I2C [124], it takes 60µs

to send the command and the parameter to the target VR; each adjustment requires the processor to

send an 8-bit (VR) address, an 8-bit (phase change) command, and an 8-bit parameter (i.e., n). After

the VR PWM controller (de)activates one or more phases, it takes several fsw cycles (< 30µs) to

stabilize the output current; the exact time depends on the L and C values of the VR design.

CPU Intel i7-3770K (8MB LLC) Intel i7-4770 (8MB LLC)

Microarchitecture Ivy Bridge (4 cores) Haswell (4 cores)

TDP

77W 88W

Technology 22nm

Frequency 3.9GHz~1.6GHz

Memory DDR3-1600/8GB

Table 6-1: System configuration.

120

Thus, a circuit-level autonomous phase scaling technique requires larger on-chip and/or on-board

decoupling capacitors to supply the current during the phase change, which increases the cost of the

platform but is useful when the processor has no phase control feature. In contrast, an architecture-

level phase scaling technique can briefly halt the process during the phase change, requiring smaller

decoupling capacitors. When the processor changes n with the voltage, it does not need to halt

according to the VR12/IMVP7 specification [102]. However, just changing the number of active

phases without changing the voltage requires the processor to halt for 3.3µs [102].

6.4 Experimental Methodology

For evaluations, I use commercial computer systems based on two Intel® processors with SMT

enabled. I run all the benchmarks on Linux Ubuntu 12.04 after tuning on the "on-demand" and "menu"

governors for the P- and C-state management policies [125]. Table 6-1 tabulates the detailed

P state Freq/Volt P state Freq/Volt

Turbo

3.9/1.52 P8 2.7/1.00

3.8/1/42 P9 2.6/0.97

3.7/1.32 P10 2.5/0.95

3.6/1.22 P11 2.4/0.92

P0 3.5/1.20 P12 2.3/0.90

P1 3.4/1.17 P13 2.2/0.87

P2 3.3/1.15 P14 2.1/0.85

P3 3.2/1.12 P15 2.0/0.82

P4 3.1/1.10 P16 1.9/0.80

P5 3.0/1.07 P17 1.8/0.77

P6 2.9/1.05 P18 1.7/0.75

P7 2.8/1.02 P19 1.6/0.72

Table 6-2: P state and corresponding frequency/voltage; the VID values are rounded to the second
decimal point.

121

configuration of the computer system used for my experiments. I use the performance and energy

counters in the processor [126] to measure processor power consumption as well as execution time

spent at various P and C states (i.e. P- and C-state residencies) every 1ms. Intel® Ivy Bridge and

Haswell processors measure the power consumption using a similar technique demonstrated in [127].

In measuring C-state residency, I consider C0 (i.e., non-sleep state including both active and idle

states), C1 (halt), C3 (sleep), and C6 (off) states. In C3 state, the power consumption of each core

significantly decreases since the clock generator (i.e., phase-locked-loop (PLL)) of the core is turned

off (i.e., no dynamic power) and the voltage is decreased to a bare minimum to retain the memory

states (i.e., low leakage power). It takes 60µs for an Intel® Ivy Bridge core to wake-up from C3 state.

The wake-up time is mostly spent for re-starting the PLL to provide stable frequency. When a core is in

C6 state, the power consumption is almost zero, because the power-gating device for the core is turned

off along with the PLL after on-chip caches are flushed. It takes 80µs for an Intel® Ivy Bridge core to

wake-up from C6 state. The wake-up time includes turning on the power-gating device, re-starting the

PLL, and restoring the architectural state of the core.

I measure the frequency of the processor each 1ms interval by reading a special register in the

processor and obtain the corresponding VR output voltage (VID) value by looking up Table 6-2; the

measured voltage and power are used to compute the load current (= power/voltage) and the

corresponding VR efficiency.

122

I take PARSEC, DCBench, and SPEC CPU2006 benchmark suites [56, 103, 128] for my

evaluation. For all the PARSEC benchmarks, I use the native input set with 8 hardware threads. For

SPEC CPU2006, I also evaluate 15 mixes of 2 and 4 co-running benchmarks. Table 6-3 summarizes

the composition of SPEC CPU2006 benchmarks for each mix where the benchmarks in gray-colored

cells are ones to create mixes of two benchmarks. The mixes of four SPEC CPU2006 benchmarks are

based on [129]. For each PARSEC or SPEC CPU2006 benchmark, I run it until completion for

multiple times. Finally, I repeatedly execute each mix of SPEC CPU2006 benchmarks such that the

execution of one benchmark is overlapped with various starting points of the other one or more co-

running benchmarks. Table 6-4 tabulates the abbreviation of each PARSEC and DCBench benchmark

used in various plots.

Notation Benchmarks

mix-00 xalancbmk.r mcf.r milc.s gcc.s

mix-01 sphinx3.a mcf.r hmmer.r soplex.r

mix-02 bzip2.c zeusmp.z lbm.l hmmer.r

mix-03 soplex.r xalancbmk.r h264ref.f astar.r

mix-04 libquantum.r milc.s soplex.p bzip2.c

mix-05 soplex.p sphinx3.a soplex.p bzip2.c

mix-06 zeusmp.z h264ref.f gcc.s soplex.p

mix-07 astar.r GemsFDTD.r hmmer.r gcc.s

mix-08 zeusmp.z xalancbmk.r sphinx3.a soplex.r

mix-09 mcf.r xalancbmk.r astar.r perlbench.d

mix-10 libquantum.r soplex.p perlbench.d hmmer.r

mix-11 soplex.p milc.s libquantum.r zeusmp.z

mix-12 lbm.l xalancbmk.r soplex.r milc.s

mix-13 zeusmp.z libquantum.r soplex.r milc.s

mix-14 gamess.c perlbench.d h264ref.f hmmer.r

Table 6-3: Mixes of two and four SPEC CPU2006 benchmarks. The benchmarks in gray-colored cells are
ones to create mixes of two benchmarks.

123

6.5 Runtime Processor Current Consumption

In this section, I demonstrate that a commercial processor running various benchmarks consumes

very low current for a substantial fraction of runtime and analyze the root-cause of consuming low

current using various measured statistics.

PARSEC: Figure 6-3 plots the runtime breakdown by the amount of current consumed by an Intel®

Ivy Bridge processor running each workload. In each 1ms measurement interval, the current

consumption is obtained by measuring the power consumption every 1ms and dividing it by the

voltage associated with the P state of the interval; since a P state changes every 10ms, the voltage

during each 1ms measurement interval is constant. When the processor runs a PARSEC benchmark, it

consistently consumes substantially lower current than the maximum current for a large fraction of

PARSEC DCBench

Benchmark Name Abbreviation Benchmark Name Abbreviation

blacksholes black sort sort

bodytrack body wordcount word

canneal cannel grep grep

dedup dedup

naive bayes bayes

facesim face svm svm

ferret ferret k-mean kmeans

fluidanimate fluid fuzzy-k-mean fkmeans

freqmine freq item-based collab. filtering ibcf

raytrace ray frequent pattern growth fpg

streamcluster stream hidden markov model hmm

swaptions swap grep select grep-s

vips vips ranking select rank-s

x264 x264 user visit aggregation agreg

user visit ranking join rank-j

Table 6-4: Abbreviation of benchmark names.

124

runtime. On average, the processor running a PARSEC benchmark consumes less than 5A and 25A

(less than 8% and 40% of the maximum current) for almost 60% and 80% of its total runtime,

respectively.

Although all four cores are used to execute each parallel benchmark, the power management

mechanism aggressively applies deep P and/or C states to maximize power efficiency. For many

PARSEC benchmarks using futex as a synchronization mechanism, cores spend a considerable fraction

of runtime in idle states waiting for synchronizations [130] and they often enter deep C states as shown

in Figure 6-4. Similar to Figure 6-3, I measure the residency of each P or C state for each core and

obtain the average residency of all four cores every 1ms. For example, the cores running blackscholes,

bodytrack, ferret, and vips spend 60%, 70%, 74%, and 77% of their runtime in C6 state, respectively.

Furthermore, they spend 80%, 88%, 62%, and 95% of their runtime in very low voltage/frequency

(P16-P20) states, respectively. This leads to relatively low current consumption in most intervals for

the PARSEC benchmarks.

DCBench: The processor running a DCBench benchmark consumes somewhat higher current than

a PARSEC benchmark, but it still consumes low current for a significant fraction of runtime. I observe

Figure 6-3: Runtime breakdown by the amount of current consumed by the processor.

125

that the processor running a DCBench benchmark spends less time in C6 state and considerably more

time at high voltage/frequency (T0-T3) states. My hypothesis is as follow. Many PARSEC benchmarks

experience many synchronization events. Consequently, many cores spend a considerable amount of

runtime in idle state. Thus, the power management mechanism often puts these idle cores into deep P

and/or C states (e.g., P16-P20 and/or C3-C6). In contrast, many DCBench benchmarks are very data-

parallel applications and thus they do not experience many synchronization events. Yet they are often

I/O-bound and thus the processor running such a benchmark still spends a notable fraction of their

runtime in C6 states and consumes relatively low current. On average, the processor running a

DCBench benchmark consumes less than 5A and 25A for almost 30% and 85% of its total runtime,

respectively.

SPEC CPU2006: When the processor runs or co-runs one or two SPEC CPU2006 benchmarks at a

time, only one or two cores are heavily used while the remaining cores stay in C6 states in most

intervals, as depicted by Figure 6-4. Further, the current consumption of the cores is often limited by

the maximum operating voltage and/or thermal constraints. Therefore, the current consumption of the

processor is relatively low in most intervals. As shown in Figure 6-3, the processor consumes less than

15A (one SPEC CPU2006 benchmark) and 20A (two co-running SPEC CPU2006 benchmarks) for

more than 90% of its runtime on average. However, it is expected that the current consumption of the

processor co-running four SPEC CPU 2006 benchmarks at a time is fairly high although the

measurement is not shown in Figure 6-3. The processor running four SPEC CPU 2006 benchmarks

spends a significant fraction of runtime in C0 state while it also spends most of runtime in high

voltage/frequency (T0-T3) states if it is in C0 state. On average, the processor consumes less than 25A,

126

more than 25A but less than 30A, and more than 30A but less than 35A for 25%, 60%, and 16% of

their runtime, respectively.

In summary, such low current consumption of a multi-core processor running one multi-threaded

benchmark such as PARSEC and DCBench or one or two single-threaded SPEC CPU 2006

benchmarks will lead to very poor conversion efficiency for VRs whose operating parameters are

typically set for high current consumption.

6.6 VR-Scale

In this section, I first show how the load current changes over time for various benchmarks.

Second, based on this observation, I present VR-Scale, a simple technique that dynamically adjusts the

number of active phases considering the load current change over time and evaluate its effectiveness in

terms of overall power efficiency improvement and performance impact. Third, I analyze the

effectiveness of VR-Scale for improving power efficiency of another commercial processor supporting

per-core voltage/frequency scaling using on-chip VRs.

127

Finally, I analyze the impact of the limited time resolution of my current measurement (i.e., 1ms)

using a commercial processor on my power efficiency evaluation because the load current may change

significantly and fast while each measured current value is an average value over an 1ms period.

6.6.1 Temporal Load Current Change Pattern

One key observation made from this study is that the power consumption of a processor is mainly

dominated by the number of cores in C0 state and their P state. This is because fixed power

consumption components such as leakage and clocking power dominate the total power consumption

of a core in C0 state; I observe that benchmarks showing significant phase changes in performance do

Figure 6-4: Breakdown of processor C and P states (top and botton, respectively).

128

not exhibit as notable phase changes in power consumption in [131] and my experiment using some

microbenchmarks.

Figure 6-5 plots the load current, which is measured every 1ms, of bodytrack, swaptions, and

canneal over time. bodytrack exhibits a repetitive load current pattern because it repeats for the same

computations for each frame. The load current is very low for a while, because only one core is

running while the remaining cores are waiting for synchronizations; it was observed that the serial

phase of bodytrack dominates the execution time [132]. Then the load current considerably increases

for a short time period as the synchronizations are resolved and all the cores resume their execution.

facesim, ferret, vips, x264, and raytrace in PARSEC exhibit a similar temporal load current change

pattern. All DCBench benchmarks also show a similar temporal load current change pattern except for

hidden markov model (hmm), frequent pattern growth (fpg), and item-based collaborative filtering

(ibcf). canneal shows a few distinct phases of temporal load current change. blackscholes, dedup, and

streamcluster in PARSEC also show a similar temporal load current change pattern. For these

benchmarks, the number of running threads, which changes over time, dominantly determines current

consumption of the processor. swaptions show load current notably fluctuating atop a certain offset

over time. The fluctuation is incurred by varying execution phases of a thread while the offset is

induced by parallelism that always uses all the cores. Most SPEC CPU2006 benchmarks and their

mixes show such a temporal load current change pattern. In fact, SPEC CPU2006 benchmarks show

significant phase changes in performance, but they do not exhibit as notable phase changes in power

consumption [131] because the fixed power consumption components such as leakage and clocking

power dominates the total power consumption of a core in C0 state. This confirms my observation

based on the evaluation of SPEC CPU2006 benchmarks.

129

Analyzing the temporal load current change patterns of these three classes of benchmarks, I see

that the load current in ms time granularity is very predictable and stable although it can significantly

 change over a longer time period (e.g., hundreds ms). Furthermore, the VR-Scale’s prediction of load

current for the next interval does not need to be very accurate since VR-Scale attempts to predict the

optimum number of active phases (nopt) where a particular nopt value can offer the highest efficiency for

a wide range of load current (e.g., from 12A to 23A for nopt = 2), as depicted in Figure 6-2 (right).

6.6.2 Architectural Support and Power Efficiency Evaluation

In Section 6.6.1 I demonstrated that the load current change is not only very stable for a long

period but also predictable in each measured period. Thus, I present to use a very simple technique to

predict the load current for the next interval. As discussed in Section 6.2.3, the PCU, which also

periodically computes the power consumption of the processor at runtime, is responsible to control the

number of active phases. Figure 6-6 describes the pseudo code for the PCU to determine nopt based on

a look-up table (LUT) approach.

Figure 6-5: Load current change over time. The load current and P-state are measured every 1ms.

130

Runtime algorithm: The LUT is a 2-dimensional array indexed by the P-state value and the

number of active phases (n); each entry stores the maximum load current value at which a VR can

deliver the highest efficiency for a given P-state value and n. Re-examining Figure 6-2 (right), I see

that a range of P states often can share the same row in the LUT since the VR efficiency is a far more

strong function of load current than voltage.

 The number of entries is 16 for the VR used in this study and the LUT entry values can be stored

in the platform BIOS chip. Once the LUT is programmed for a given VR, the search algorithm takes at

most nmax look-ups to determine nopt (i.e., 6 in this study). For example, when a given P-state value is 2,

the first row of the LUT is accessed. Each entry in the first row is compared against given load current

in ascending order. When the load current value is 25A, the linear search ends at the third step, which

implies that nopt is 3. The computational overhead is small enough even for a simple PCU.

Figure 6-6: VR-Scale runtime algorithm pseudo code running on PCU to determine nopt.

//

// maximum current for a given number of phases to maximize //

// VR efficiency //

//

 lut[NUM_PSTATES][NUM_PHASES] = {

 {11, 23, 39, 53, 61, 64}, // p_state = 0-3

 {12, 24, 40, 53}, // p_state = 4-7

 {13, 25, 41, 43}, // p_state = 8-11

 {14, 27}}; // p_state = 12-16

//

// a function to extract the optimum number of active phases //

//

int determine_nopt(int p_state, int current){

 nopt = 0;

 while (lut[p_state/4][n++] <= current);

 return n;

}

131

Accuracy: Figure 6-7 (top) shows how accurately nopt can be determined by two techniques: VR-

Scale and the algorithm based on the current P state of the processor [110], compared to the oracle

method. In particular, VR-Scale correctly determines nopt for most SPEC CPU2006 benchmarks for

nearly 100% of intervals, because the current consumption is very stable throughout execution, as

discussed in Section 6.6.1. Although VR-Scale incorrectly determines nopt , the chosen n is very close

to nopt (e.g., picking n = 2 for nopt = 1); on average, the difference between n and nopt is less than 0.5

phase for all the benchmarks. In such a case, the negative impact on the power efficiency improvement

is very small; the VR efficiency disparity between two neighboring n values is small when the load

current slightly exceeds the upper limit for which a particular n value can provide the highest

efficiency. In contrast, the algorithm based on the P state often picks n highly deviating from nopt (e.g.,

picking n = 6 for nopt = 1) since many benchmarks consume low current although running at high

voltage/frequency P states (Figure 6-4); on average, the difference between nopt and n at each interval is

2.5, 3.5, and 4.8 phases for PARSEC, DCBench, and SPEC CPU2006, respectively. Consequently, the

algorithm based on the P state leads to notably worse power efficiency improvement than VR-Scale for

many applications (in particular for running SPEC CPU2006 benchmarks), as demonstrated in the next

paragraph.

Power efficiency improvement: Figure 6-7 (bottom) plots the total power efficiency improvement

using VR-Scale and the algorithm based on the P state, relative to a naive approach that always uses all

6 phases. I calculate the overall efficiency improvement of each benchmark as follows:

132

   

  








N

i
maxTOT

N

i
TOT

inP

iinP

1

11

(6-3)

where n[i] denotes n determined by VR-Scale, the algorithm based on the P state [110], or the oracle

algorithm at interval i; PTOT(n[i])[i] (= PPROC[i]/(η(n[i])) denotes the sum of processor and VR power

consumption (cf. Eq. (6-1) and (6-2) for given n[i] at interval i; PPROC[i] is the processor power

consumption measured at interval i; and N is the total number of 1ms intervals for a given benchmark.

I measure PPROC[i] and voltage every 1ms to calculate the corresponding load current at interval i.

Then I determine n[i] based on a given algorithm after looking up the efficiency look-up table for the

given pair of the load current and voltage. The oracle algorithm can determine nopt at each 1ms interval.

On average, VR-Scale can improve the power efficiency (defined by Eq. (3)) by 23% and 14% for

running two parallel benchmark suites, PARSEC and DCBench (i.e., average power reduction of

1.4~3.8W and 1.1~3.4W for average processor power consumption of 3~34W and 4~32W),

respectively. For running one and two SPEC CPU2006 benchmarks at a time, VR-Scales improves the

power efficiency by 12% and 7% (i.e., average power reduction of 1.9~2.9W and 1.6~1.8W for the

average processor consumption of 10-17W and 21~25W), respectively. Finally, I showed that the

processor co-running four SPEC CPU2006 benchmarks consumes very high current for a considerable

fraction of runtime, but VR-Scale can still improve the power efficiency by 4% on average although

not being plotted in Figure 6-7.

133

On the other hand, the algorithm based on the P state [110] provides notably lower power

efficiency improvement than VR-Scale; it improves the power efficiency by 16% and 8%, both of

which are about 4% lower than VR-Scale, for running PARSEC and DCBench, respectively. In

particular, the algorithm based on the P state practically does not improve power efficiency at all for

running one, two, and four SPEC CPU2006 benchmarks at a time while VR-Scale improves power

efficiency by 12%, 7%, and 4%, respectively. This is because all SPEC CPU2006 benchmarks mostly

run at the highest voltage/frequency P states while they do not consume maximum allowed current.

Performance overhead and reliability: The VR-Scale runtime algorithm is simple and runs on

the PCU. Hence, running this algorithm does not incur any CPU performance overhead. Furthermore,

while assuming that the processor stalls before changing the number of active phases, I see that the

negative performance impact of changing n at runtime is negligible because (i) the time interval is two

Figure 6-7: Average of nopt by the oracle method - n by current and p-state-based techniques at each interval
(top). Power efficiency improvement of current- and p-state-based techniques relative to the VR always
activating nmax phases (bottom).

134

orders of magnitude longer than the stall time for significantly changing n at runtime, (ii) such stall

events are very infrequent, and (iii) nopt in fact does not change frequently.

It was shown that sudden load-current changes in Figure 6-5 are induced by C-state changes of

individual cores and such changes are controlled and anticipated by the PCU. Hence, the PCU can

proactively handle such cases by halting the processor until the VR stabilizes before such significant

load-current changes (also see Section 6.3.3).

6.6.3 Processor Supported by On-Chip VRs

So far, I have performed my evaluation using an Intel® processor based on Ivy Bridge micro-

architecture where a single off-chip VR supplies the power for all four cores. Recently, Intel®

introduced a processor based on Haswell micro-architecture that can change each core’s

voltage/frequency independently using on-chip VRs. Furthermore, Haswell micro-architecture offers

more advanced and aggressive power management features than its predecessor such as deeper and

more intelligent C states with faster C-state exit latency [114]. Consequently, the average power

consumption of the processor based on Haswell micro-architecture is expected to be notably smaller

than its predecessor although both processors are manufactured with the same 22nm technology.

In a platform based on Haswell micro-architecutre, however, we still need an off-chip VR between

the on-chip VRs and the PSU shown in Figure 6-1; the on-chip VRs share the same manufacturing

technology with the processor and thus the on-chip VRs cannot directly accept 12V from the PSU. For

example, an off-chip VR receives 12V and supplies 1.8V to the on-chip VRs [114, 115]. Thus, I can

apply VR-Scale not only to on-chip VRs but also to the off-chip VR. However, I focus on only the off-

chip VR in this study because: (i) the technical details of the on-chip VRs for the Haswell-based

135

processor such as the number of phases, switching frequency, and inductance are not publically

available and (ii) it is likely that the benefit of VR-Scale is limited for on-chip VRs; the number of

available phases for each on-chip VR is likely much fewer than the off-chip VR because an on-chip

VR connected to a single core needs to deliver much smaller maximum load current than an off-chip

VR shared by all the cores.

Figure 6-8 plots the power efficiency improvement of the Ivy Bridge and Haswell processors, as

well as the average power consumption ratio between two processors that are manufactured with the

same 22nm technology. For this experiment, I use the Haswell processor (i7-4770) that has the same

LLC capacity (8MB) and maximum frequency (3.9GHz) as the Ivy Bridge processor (i7-3770K) and

similar TDP (84W versus 77W), and the same DDR3-1600 DIMM and storage device. To calculate the

VR efficiency for given current and voltage, I scale the measured current consumption with the TDP

ratio between two processors (i.e., 77W/88W) because the VR is designed and optimized for 77W

TDP. Finally, I re-optimize the off-chip VR such that its efficiency is maximized for fixed 1.8V output

voltage when all 6 phases are active for the maximum current.

Due to the aforementioned more advanced and aggressive power management features, the

Haswell processor consumes much lower average current than the Ivy Bridge processor. Consequently,

VR-Scale for the Haswell processor can improve power efficiency significantly more compared to that

for the Ivy Bridge processor. Figure 6-8 shows that VR-Scale for the Haswell processor can improve

power efficiency of PARSEC, DCBench, one SPEC CPU2006, and two co-running SPEC CPU2006

benchmarks by 29%, 24%, 22%, and 16%, respectively, which are 6%, 10%, 11%, and 9% higher than

VR-Scale for the Ivy Bridge processor, respectively. To explain such higher power efficiency

136

improvement, I compare the power consumption of two processors. I observe that the average power

consumption of the Haswell processor is approximately 40% of the Ivy Bridge processor; which is

close to what Intel® reported [114, 133]; the lower the average power is, the lighter the load current is.

Thus, VR-Scale for the Haswell processor can offer higher power efficiency than the Ivy Bridge

processor.

6.6.4 Impact of Measurement Time Interval

In Section 6.6.2, my evaluation is based on (average) current consumption of a processor over each

1ms interval that is the minimum measurement time interval of the Intel® processor. On the other hand,

the actual current consumed by the processor may notably vary in each 1ms interval. In such a case,

my evaluation of power efficiency improvement based on the current consumption values measured

every 1ms can be less accurate than every e.g., 1μs because VR efficiency depends on the load current.

Furthermore, in such a case, nopt determined by VR-Scale for an 1ms interval may not be optimal for

many sub 1ms intervals of the 1ms interval. Finally, the 1ms time resolution for measurement also

Figure 6-8: Comparison of power efficiency improvement of the Ivy Bridge and Haswell processors, and the
average power consumption ratio between two processors. I use 1ms interval for VR-Scale for both
microarchitecture.

137

limits how fast VR-Scale adapts nopt in my evaluation.

To quantify the impact of limited measurement and adjustment time interval, I take a simulation-

based sampling approach to capture the effect of faster current change than 1ms yet in a reasonable

evaluation time. I use gem5 [134] and McPAT [58] that are configured and calibrated to model the Ivy

Bridge processor for this evaluation. For each benchmark, I randomly pick 100 1ms intervals, estimate

an average current value every 10µs using gem5 and McPAT, and compute the power efficiency

improvement.

Table 6-5 summarizes the impact of limited current measurement and VR adjustment time intervals

on power efficiency improvement. It also shows the degree of load current variations relative to the

average current in lieu of σ/μ; each 1ms interval is comprised of 100 current values measured every

10μs and I evaluate the standard deviation (σ) and mean (μ) values of 100 load current values for each

1ms interval and show the average σ/μ values of 100 1ms intervals. For power efficiency evaluations, I

can consider three cases: the periods of power efficiency evaluation and nopt adaptation are (i) 1ms and

1ms (i.e., baseline), (ii) 10μs and 1ms, and (iii) 10μs and 10μs, respectively. (ii) and (iii) are to analyze

the impact of limited current measurement and VR adjustment time intervals on evaluation accuracy

and further power efficiency improvement. I see that using 1ms for measuring the current leads to less

than 1% evaluation error compared to using 10μs. Besides, using 10μs for measuring the current and

adjusting nopt can improve power efficiency by less than 1% compared to using 1ms. This is because

the current of the processor does not significantly fluctuate relative to the average current value

measured over 1ms time period, because the fixed power consumption components dominates the total

power consumption of a core, as discussed earlier. This argument is also supported by small load

current σ/μ values for the benchmarks depicted in Table 6-5; most intervals of SPEC CPU2006

138

benchmarks show at most 10% load current fluctuation relative to the mean load current on average. I

also observe a very similar trend for PARSEC benchmarks although I do not show the evaluation in

Table 6-5; I could not simulate DCBench benchmarks because many of them require the Ethernet

connections to multiple nodes, which cannot be simulated by gem5.

So far I assume that the current change incurred by a processor is instantaneously reflected to the

load current change experienced by the VR. However, such a current change by a processor is not

immediately and directly translated into a load current change that the VR has to cope with. This is

because the resistance (R), inductance (L), and capacitance (C) components of the package and

platform power delivery network (PDN) as discussed in [135] and average out the current fluctuations..

Benchmarks
Power Efficiency Improvement σ/μ

max/avg 1ms/1ms 10μs/1ms 10μs/10μs

bzip2.c 10.53% 10.46% 11.03% 0.14/0.11

gcc.s 11.11% 11.03% 11.80% 0.16/0.11

gobmk

10.69% 10.68% 11.15% 0.15/0.10

h264ref.f 10.17% 10.15% 10.57% 0.14/0.10

hmmer.r 10.34% 10.24% 10.83% 0.13/0.10

libquantum.r 9.68% 9.6% 10.76% 0.13/0.10

milc.s 11.39% 11.36% 11.97% 0.13/0.11

omnetpp

11.57% 11.57% 12.52% 0.14/0.11

perlbench.d 18.95% 17.72% 22.98% 0.24/0.14

sjeng

10.53% 10.51% 10.96% 0.14/0.11

AVG 11.19% 11.17% 12.64%

Table 6-5: Impact of limited time resolution of measurement on power efficiency improvement. σ/μ denotes the
standard deviation of load current over the average load current of a 1ms interval. “max σ/μ” and “avg σ/μ” are
the maximum and average σ/μ values of 100 1ms intervals, respectively.

139

Furthermore, I have already discussed that notably power change is primarily incurred by the

number of cores in C0 states and the P state of these cores in Section 6.6.1. Note that 1ms is the fast

time interval that the OS changes the P state [59] due to the overhead of changing the frequency of the

PLL is tens of μs [136]. Furthermore, it takes nearly 100μs to enter into and exit from C3 and C6

states. Hence, the current fluctuation is primarily incurred by cores in C0 state and their micro-

architectural activity changes, which cannot dramatically change the current consumption of a

processor in an 1ms interval.

6.7 Chapter Summary

In this chapter, I first demonstrate that: (i) VR efficiency heavily depends on load current (i.e.,

current consumed by a processor) and a VR operating parameter (e.g., the number of VR phases) at

given voltage; (ii) a processor running one or more applications may consume large current for some

periods but mostly consumes small current due to aggressive power management; and (iii) unless all

the cores in a processor are in sleep states, all VR phases are activated, leading to poor VR efficiency

for small load current. Second, I present VR-Scale, a low-cost architecture-level technique that

dynamically scales the number of active phases based on the predicted load current for the next

interval. VR-Scale only requires to run a simple runtime algorithm using the PCU in commercial

processors every 1ms.

My evaluations using two commercial platforms based on Intel® Ivy Bridge and Haswell

processors show that VR-Scale reduces the total power consumption of a processor and its VR by 19%

and 25%, respectively, with negligible performance impact for two classes of parallel applications.

Finally, I show that VR-Scale can offer high power efficiency improvement than the algorithm that

140

determines the optimum number of active phases based on the current P state of the processor; many

applications run at the highest voltage/frequency P state while consuming low current because not all

the cores are always running. Finally, my study opens a door for the architecture community to explore

dynamic controls of other VR knobs such as VR switching frequency and adaptive voltage positioning

from the CPU side, enabling more cost-effective VRs than the VR side does as argued by [106].

141

Chapter 7

Summary and Future Work

In this chapter, I first summarize my main contributions in this dissertation, and then discuss some

potential future research directions.

LDO (chapter 3): In this dissertation, I demonstrated a cost-effective power delivery technique to

support per-core voltage domains for power-constrained processors. Most commercial processors only

have one chip-wide voltage domain for dynamic voltage and frequency scaling (DVFS), because

splitting the voltage domain into per-core voltage domains and powering them with multiple off-chip

voltage regulators (VRs) incurs a high cost for the platform and package designs. Although using on-

chip switching VRs can be an alternative solution, integrating high-quality inductors and cores on the

same chip has been a critical technical challenge.

I proposed a very low-cost VR regulator that exploits existing on-chip per-core power-gating

(PCPG) devices available in most commercial processors. The proposed technique considerably

reduces the cost of VRs because VR shares its most expensive component with the PCPG device,

while providing power efficiency as high as the state-of-art onchip switching VRs. Furthermore, I

proposed a DVFS algorithm that is optimized for the proposed VRs. The proposed DVFS algorithm

considers the limited voltage difference between output voltage values (VO) and the input voltage

values (VI) of the VRs to support high efficient power delivery. In order to minimize the potential

negative impact of the limited voltage range of the VRs in the proposal, the DVFS algorithm leverages

142

(i) within-die core-to-core process variations that can lead to different frequency and power

consumption trade-offs between cores even at the same operating voltages (ii) thread migration at

runtime to satisfy the performance requirement of the running threads. Using these techniques, I

showed that the power efficiency of LDO is comparable to switching voltage regulator at much lower

area cost.

Low-Voltage On-Chip Cache Architecture using Heterogeneous Cell Sizes (chapter 4): In this

dissertation, I explored architectural techniques to provide low minimum operating voltage cost-

effectively. Although DVFS has been one of the most successful power-reduction techniques, it is

limited to some minimum operating voltage (i.e., VDDMIN). Thus, reducing the VDDMIN will help to

have larger voltage scaling window for DVFS which can improve the power efficiency. The large scale

memory structure in processors such as last-level cache (LLC) often determines the VDDMIN of the

processor due to impact of process variation on the reliability of static random access memory

(SRAM) at low voltages. Larger SRAM cells, that are less sensitive to process variability, allow the

use of lower VDDMIN, but at high area costs.

To provide low VDDMIN with low area overheads, I proposed an LLC architecture comprised of

heterogeneous cell sizes designed for high-performance multicore processors. This exploits (i) the

DVFS characteristics of workloads running on high-performance processors, (ii) the trade-off between

SRAM cell size and VDDMIN, and (iii) the fact that latency between off-chip memory and on-chip core

at lower voltage/frequency operating states is reduced. I exploited these characteristics to deliver both

high-performance and low VDDMIN by architecting an LLC consisting of a spectrum of cell sizes. For

low-power operation the proposed LLC exclusively uses large cells that exhibit low failure rates at low

143

voltages, and therefore the LLC can operate at low VDDMIN. On the other hand, for high-performance

operation it operates at a high enough voltage that the failure rate of even small cells of the LLC is

sufficiently low for their use, providing the needed LLC capacity. As operating voltage decreases,

subsets (e.g., ways in a set-associative LLC) of cells are disabled in order of size, starting with the

smallest. Since at lower voltages a processor must run at lower frequencies, the frequency gap between

on-chip cores and off-chip memory decreases. The result is that the performance penalty of having a

smaller LLC at low voltage/frequency states is much smaller than it would be at high

voltage/frequency states.

Unlike my proposed LLC, a conventional architecture needs to use large cells across the entire

LLC to provide the same low VDDMIN as the proposed architecture. This will either require larger die

area for the LLC capacity or result in smaller the LLC capacity for the same die area. My proposed

LLC architectures provide the same maximum performance and VDDMIN as the conventiona

architecture, while reducing the total LLC cell area by 15%-19% with negligible average runtime

increase.

DRCS (Chapter 5): With aggressive technology scaling, the nominal voltage of transistors has

decreased while process variability has considerably increased. Consequently, the range of voltage

scaling will vanish significantly diminishing the power reduction benefit of DVFS. Faced with such a

challenge, the third contribution of my research pursues an architectural power efficiency mechanism

as a DVFS alternative that trades performance with power consumption through jointly scaling the

resources of a core and the number of operating cores. In addition, I developed a runtime policy that

144

can effectively manage and leverage the proposed architectural mechanism to maximize performance

under a power constraint.

VR-Scale (chapter 6): A voltage regulator (VR), which is the main component of power de-

livery sub-system, plays a critical role in efficiently delivering stable voltage and large current for a

processor, as well as supporting efficient power management. A VR dissipates high power, which is

directly proportional to the power consumed by the processor. Today's VRs provide multiple knobs

that can be adjusted to increase the VR efficiency for different processor specifications.

 In this study, I demonstrated that VR efficiency heavily depends on load current (i.e., current

delivered to a processor) and a VR operating parameter (e.g., the number of active phases) at a given

voltage. I also found that a processor running a parallel application mostly consumes small current due

to aggressive power management. However, when the processor is in an active state, all the VR

components are always activated in the platform which leads to poor VR efficiency during most

runtime. Therefore, I presented VR-Scale that dynamically scales the number of active phases based on

the predicted load current for the next interval. My evaluations based on two Intel® processors running

emerging parallel applications showed that VR-Scale can reduce the total power consumed by both a

processor and its VR with negligible performance impact.

7.1 Directions for Future Work

7.1.1 Hierarchical LDO VR

As future processors will have more cores (i.e., many-core processors), they will potentially exhibit

higher core-to-core IPC variations by running mixes of single- and multi-threaded applications. This

145

will result in wider VI –VO range and thus worse power efficiency (MIPS3/W) when using LDO VRs,

due to their poor power conversion efficiency. On the other hand, in many-core processors, it will not

be practical to provide a large number of switching VRs as integrating high-quality on-chip inductor

becomes more challenging with technology scaling while integrating on-package inductors will not be

a scalable solution for a larger number of cores due to the physical constraint. In such a case, we can

use a hiearchical VR scheme where a switching VR provides a shared voltage domain for a subset (or a

cluster) of cores, and LDO VRs provide per-core voltage domains within each cluster, as illustrated in

Figure 7-1. This hiearchical power delivery architecture allows us to support cost-effective per-core

voltage domains, which can minimize both the number of switching VRs while maximizing the power

efficiency of individual LDO VRs.

Core
[1]

Core
[2]

Core
[8]

Vo[1] Vo[2] Vo[8]

LDO VRs

per-cluster global voltage domain

Core
[1]

Core
[2]

Core
[8]

Vo[1] Vo[2] Vo[8]

LDO VRs

per-cluster global voltage domain

per-core local voltage domain

Switching VR Switching VR

Platform Supply Voltage

3D-stacked die

Vi[1] Vi[2]

12V

Figure 7-1: Hierarchical VR scheme.

146

7.1.2 Memory Hierarchy at Low VDD

At low voltages where the trade-offs are different we need to rethink about processor components

in particular memory hierarchy. For example, leakage power becomes dominant portion of total power

at the low-voltage operating conditions. In addition, at lower voltages/frequencies, the latency gap

between memory and cores decreases. In these conditions, larger caches or traditional multiple layers

of cache hierarchy might not be beneficial any more. On the other hand, at high-performance mode,

there is a demand for larger caches. Therefore, to achive both high-performance and low-power, one

potential solution is to use a heterogeneous cell size cache hiearchy in the format of non-uniform cache

architecture (NUCA). In this design, we use larger cache cells for the banks near the processor and

smaller cache cells for those far from cores.

7.1.3 Dynamic Resource and Core Scaling Expansion

In many-core systems, the oppurtunity to execute multiple applications will increase. Running

multiple independent applications can exhibit more substantial core-to-core performance variations

compared to multi-threaded applications. Consequently, applying uniform resource and core scaling

will not be a suitable solution. To expand the idea of resource and core scaling, one potential solution

is to partition cores into multiple groups, each running one (multi-threaded) application. Each group

then can borrow power from the other groups using resource scaling. Besides, a processor with more

cores provide an oppurtunity to explore a wider range of processor configurations to satisfy

performance requirements.

147

7.1.4 VR-Scale Expansion

Today's VRs provide multiple knobs that can be adjusted to increase the VR efficiency for different

processor specifications. These knobs can change the efficiency of VR. My research presented a

circuit/architecture solution to control one of these knobs (i.e., number of active phases). My research

opens a door for the architecture community to explore dynamic controls of other VR knobs such as

VR switching frequency and adaptive voltage positioning from the CPU side, enabling more cost-

effective VRs than the state-of-the-art VR.

148

References

[1] H. Ghasemi, S. Draper and N. Kim, "Low-voltage on-chip cache architecture using heterogeneous cell sizes for high-performance

processors," in IEEE/ACM Int. Symp. on High-Peformance Computer Architecture (HPCA), 2011.

[2] H. Ghasemi, A. Sinkar, M. Schulte and N. Kim, "Cost-effective Power Delivery to Support Per-core Voltage Domains for Power-

constrained Processors," in IEEE Design Automation Conf. (DAC), 2012.

[3] H. R. Ghasemi and N. S. Kim, "RCS: runtime resource and core scaling for power-constrained multi-core processors," in

International conference on Parallel architectures and compilation, Edmonton, 2014.

[4] W. Kim, M. Gupta, G.-Y. Wei and D. Brooks, "System level analysis of fast, per-core DVFS using on-chip switching regulators,"

in IEEE/ACM Int. Symp. on High-Perf. Comp. Arch. (HPCA), 2008.

[5] R. Teodorescu and J. Torrellas, "Variation-Aware Application Scheduling and Power Management for Chip Multiprocessors," in

IEEE/ACM Int. Symp. on Comp. Arch. (ISCA), 2008.

[6] J. Li and J. Martinez, "Dynamic power-performance adaptation of parallel computation on chip multiprocessors," in IEEE/ACM

Int. Symp. on High-Perf. Comp. Arch. (HPCA), 2006.

[7] W. Kim, M. Gupta, G.-Y. Wei and D. Brooks, "System level analysis of fast, per-core DVFS using on-chip switching regulators,"

in IEEE/ACM Int. Symp. on High-Perf. Comp. Arch. (HPCA), 2008.

[8] S. Eyerman and L. Eeckhout, "Fine-Grained DVFS Using On-Chip Regulators," ACM Trans. Archit. Code Optim. (TACO), vol. 8,

no. 1, pp. 1-24, Feb 2011.

[9] S. Herbert and D. Marculescu, "Variation-aware dynamic voltage/frequency scaling," in IEEE/ACM Int. Symp. on High

Performance Comp. Arch. (HPCA), 2009.

[10] S. Dighe, S. Vangal, P. Aseron, S. Kumar, T. Jacob, K. Bowman, J. Howard, J. Tschanz, V. Erraguntla, N. Borkar, V. De and S.

Borkar, "Within-Die Variation-Aware Dynamic-Voltage-Frequency-Scaling With Optimal Core Allocation and Thread Hopping

for the 80-Core TeraFLOPS Processor," IEEE J. of Solid-State Circuits (JSSC), vol. 46, no. 1, pp. 184-193, Jan 2011.

[11] K. Rangan, G.-Y. Wei and D. Brooks, "Thread motion: fine-grained power management for multi-core systems.," in IEEE/ACM

Int. Symp. on Comp. Arch. (ISCA), 2009.

[12] K. Zhang, "A 3-GHz 70-Mb SRAM in 65-nm CMOS technology with integrated column-based dynamic power supply," IEEE J. of

Solid-State Circuits, vol. 41, no. 1, pp. 146-151, 2006.

[13] K. M and e. al., "PVT-variations and supply-noise tolerant 45nm dense cache arrays with diffusion-notch free (DNF) 6T SRAM

cells and dynamic multi-Vcc circuits," in In Proc. of IEEE VLSI Circuit Symp., 2008.

[14] S. Schuster, "Multiple word/bit line redundancy for semiconductor memories," in IEEE J. of Solid-State Circuits, 1978.

[15] N. Verma and A. Chandrakasan, "A 65nm 8T sub-Vt SRAM employing sense-amplifier redundancy," in IEEE Int. Solid-State

Circuit Conf., 2007.

[16] R. Joshi, "6.6+ GHz low Vmin, read and half select disturb-free 1.2 Mb SRAM," in IEEE VLSI Circuit Symp., 2007.

[17] L. Chang, "A 5.3GHz 8T-SRAM with operation down to 0.41V in 65nm CMOS," in IEEE VLSI Circuit Symp, 2007.

[18] I. Chang, J. Kim and K. Roy, "A 32kb 10T subthreshold SRAM array with bit-interleaving and differential read scheme in 90nm

CMOS," in IEEE Int. Solid-State Circuit Conf, 2008.

[19] J. Kulkarni, "A 160mV robust Schmitt trigger based subthreshold SRAM.," IEEE J. of Solid-State Circuits, vol. 42, no. 10, pp.

2303-2313, 2007.

[20] T. May and M. Woods, "Alpha-particle-induced soft errors in dynamic memories," in IEEE T. on Electron Devices, 1979.

[21] D. Roberts and e. al., On-chip cache device scaling limits and effective fault repair techniques in future nanoscale technology, In

Proc. of IEEE Euro micro Conf. on Digital System Design, Architecture, Method, and Tools, 2007.

149

[22] C. Wilkerson and e. al., Trading off cache capacity for reliability to enable low-voltage operation, In Proc. of IEEE Int. Symp. on

Computer Architecture, 2008.

[23] J. Abella and e. al., "Low Vccmin fault-tolerant cache with highly predictable performance," in In Proc. of IEEE Int. Symp. on

Microarchitecture, 2009.

[24] Z. Chishti and e. al., "Improving cache lifetime reliability at ultra-low voltage," in In Proc. of IEEE Int. Symp. on

Microarchitecture, 2009.

[25] R. Dreslinski and e. al., "Reconfigurable energy-efficient near threshold cache architecture," in In Proc. of IEEE Int. Symp. on

Microarchitecture, 2008.

[26] A. Iyer and D. Marculescu, "Microarchitecture-level power management," IEEE T. Very Large Scale Integration System (TVLSI),

vol. 10, no. 3, pp. 230-239, Jun 2003.

[27] D. Albonesi, R. Balasubramonian, S. Dropsho, S. Dwarkadas, E. Friedman, M. Huang, V. Kursun, G. Magklis, M. Scott, G.

Semeraro and P. Bose, "Dynamically Tuning Processor Resources with Adaptive Processing," IEEE Computer, vol. 36, no. 12, pp.

49-58, Dec 2003.

[28] B. Lee and D. Brooks, "Efficiency trends and limits from comprehensive microarchitectural adaptivity," in ACM Int. Conf. on

Architectural Support for Programming Languages and Operating Systems (ASPLOS), 2008.

[29] V. Kontorinis, A. Shayan, D. Tullsen and R. Kumar, "Reducing peak power with a table-driven adaptive processor core," in

IEEE/ACM Int. Symp. on Microarchitecture (MICRO), 2009.

[30] H. Homayoun, V. Kontorinis, A. Shayan, T.-W. Lin and D. Tullsen, "Dynamically heterogeneous cores through 3D resource

pooling," in IEEE/ACM Int. Symp. on High-Peformance Computer Architecture (HPCA), 2012.

[31] Y. Watanabe, J. Davis and D. Wood, "WiDGET: Wisconsin decoupled grid execution tiles," in IEEE/ACM Int. Symp. on Computer

Architecture (ISCA), 2010.

[32] D. Gibson and W. David, "Forwardflow: A Scalable Core for Power-Constrained CMPs," in International Symposium on

Computer Architecture, Saint-Malo, 2010.

[33] K. Khubaib, M. Suleman, M. Hashemi, C. Wilkerson and Y. Patt, "MorphCore: An Energy-Efficient Microarchitecture forHigh

Performance ILP and High Throughput TLP," in IEEE/ACM Int. Symp. on Microarchitecture (MICRO), 2012.

[34] P. Petrica, A. Izraelevitz, D. Albonesi and C. Shoemaker, "Flicker: A Dynamically Adaptive Architecture for Power Limited

Multicore Systems," in IEEE/ACM Int. Symp. Computer Architecture (ISCA), 2013.

[35] M. Suleman, M. Qureshi and Y. Patt, "Feedback-driven threading: power-efficient and high-performance execution of multi-

threaded workloads on CMPs," in ACM Int. Conf. on Architectural Support for Programming Languages and Operating Systems

(ASPLOS), 2008.

[36] R. Moore and B. Childers, "Using utility prediction models to dynamically choose program thread counts," in IEEE Int. Symp.

Performance Analysis of Systems and Software (ISPASS), 2012.

[37] R. Bitirgen, E. Ipek and J. d Martinez, "Coordinated Management of Multiple Interacting Resources in Chip Multiprocessors: A

Machine Learning Approach," in IEEE/ACM Int. Symp. on Microarchitecture (MICRO), 2008.

[38] K. Meng, R. Joseph, R. Dick and L. Shang, "Multi-optimization Power Management for Chip Multiprocessors," in ACM Int. Conf.

on Parallel Architectures and Compilation Techniques (PACT), 2008.

[39] K. Ma, X. Li, M. Chen and X. Wang, "Scalable Power Control for Many-core Architectures Running Multi-threaded

Applications," in IEEE?ACM Int. Symp. on Computer Architecture (ISCA), 2011.

[40] D. Brooks, P. Bose, S. Schuster, H. Jacobson, P. Kudva, A. Buyuktosunoglu, J. Wellman, V. Zyuban, M. Gupta and P. Cook,

"Power-aware microarchitecture: design and modeling challenges for next-generation microprocessors," IEEE Micro, vol. 8, no. 6,

pp. 26-44, Nov/Dec 2000.

[41] Intel Corporation, "Intel® Turbo Boost Technology 2.0," [Online]. Available:

http://www.intel.com/technology/turboboost/index.htm.

[42] S. Sarangi, B. Greskamp, R. Teodorescu, J. Nakano, A. Tiwari and J. Torrellas, "VARIUS: A Model of Process Variation and

Resulting Timing Errors for Microarchitects," IEEE T. on Semiconductor Manufacturing, vol. 21, no. 1, pp. 3-13, Feb 2008.

[43] Intel Corporation, "Intel Workstation Board S975XBX2 Technical Product Specification," 2006.

150

[44] P. Hazucha, G. Schrom, J. Hahn, B. Bloechel, P. Hack, G. Dermer, S. Narendra, D. Gardner, T. Karnik, V. De and S. Borkar, "A

233-MHz 80%-87% efficient four-phase DC-DC converter utilizing air-core inductors on package," IEEE J. of Solid-State Circuits

(JSSC), vol. 40, no. 4, pp. 838-845, Apr 2005.

[45] L. E. Mosley, "Power Delivery Challenges for Multi-Core Microprocessors," in Capacitor and Resistor Technology Symp. USA

(CARTSUSA), 2008.

[46] P. Hazucha, S. Moon, S. G., F. Paillet, D. Gardner, S. Rajapandian and T. Karnik, "High Voltage Tolerant Linear Regulator with

Fast Digital Control for Biasing Integrated DC-DC Converters," IEEE J. of Solid-State Circuits, vol. 42, no. 1, pp. 66-73, Jan 2007.

[47] S. Rusu, S. Tam, H. Muljono, J. Stinson, D. Ayers and C. J., "A 45 nm 8-Core Enterprise Xeon® Processor," IEEE J. of Solid-

State Circuits (JSSC), vol. 45, no. 1, pp. 7-14, Jan 2010.

[48] N. Kim, J. Seomun, A. L. J. Sinkar, T. Han, K. Choi and Y. Shin, "Frequency and yield optimization using power gates in power-

constrained designs.," in IEEE/ACM Int. Symp. on Low Power Electronics and Design (ISLPED), 2009.

[49] Y. Hoskote, S. Vangal, A. Singh, N. Borkar and S. Borkar, "A 5-GHz Mesh Interconnect for a Teraflops Processor," IEEE Micro,

vol. 27, no. 5, pp. 51-61, Sep/Oct 2007.

[50] W. Fu and A. Fayed, "A feasibility study of high-frequency buck regulators in nanometer CMOS technologies," in IEEE Dallas

Circuits and Systems Workshop (DCAS), 2009.

[51] P. Hazucha, T. Karnik, B. Bloechel, C. Parsons, D. Finan and S. Borkar, "Area-Efficient Linear Regulator With Ultra-Fast Load

Regulation," IEEE J. of Solid State Circuits (JSSC), vol. 40, no. 4, pp. 933-940, Apr 2005.

[52] J. Klein, 2006. [Online]. Available: http://www.fairchildsemi.com/an/AN/AN-6005.pdf.

[53] J. Gjanci and M. H. Chowdhury, "A Hybrid Scheme for On-Chip Voltage Regulation in System-On-a-Chip (SOC)," IEEE T. on

Very Large Scale Integration (VLSI) Systems, no. 99, pp. 1 - 11, Oct 2010.

[54] J. Lee, G. Hatcher, L. Vandenberghe and C. K. Yang, "Evaluation of Fully-Integrated Switching Regulators for CMOS Process

Technologies," IEEE T. on Very Large Scale Integration (VLSI) Systems,, vol. 15, no. 9, pp. 1017-1027, Sep 2007.

[55] M. Martin, D. Sorin, B. Beckmann, M. Marty, M. Xu, A. Alameldeen, K. Moore, M. Hill and D. Wood, "Multifacet's general

execution-driven multiprocessor simulator (GEMS) toolset," SIGARCH Comput. Archit. News, vol. 33, no. 4, pp. 92-99, Nov 2005.

[56] Princeton University, [Online]. Available: http://parsec.cs.princeton.edu/.

[57] K. Aygun, M. Hill, K. Eilert, K. Radhakrishnan and A. Levin, "Power delivery for high-performance microprocessor," Intel

Technology J., vol. 9, no. 4, pp. 273-283, Nov 2005.

[58] [Online]. Available: http://www.hpl.hp.com/research/mcpat.

[59] Microsoft, [Online]. Available: http://msdn.microsoft.com/en-us/windows/hardware/gg463252.aspx.

[60] M. Clinton, "Variability and SRAM design," IEEE Int. Solid-State Circuit Conf. Microprocessor Forum, 2008.

[61] http://www.spec.org/power_ssj2008.

[62] A. Garg and P. Dubey, " Fuse area reduction based on quantitative yield analysis and effective chip cost," in In Proc. of IEEE Int.

Symp. on Defect and Fault Tolerance in VLSI Sys, 2006.

[63] W. J and e. al., "The asynchronous 24-MB on-chip level-3 cache for a dual-core Itanium® family processor," in In Proc. of IEEE

Int. Solid-State Circuit Conf, 2006.

[64] A. J and e. al., "Low Vccmin fault-tolerant cache with highly predictable performance," in In Proc. of IEEE Int. Symp. on

Microarchitecture, 2009.

[65] C. Z and e. al., "Improving cache lifetime reliability at ultra-low voltage," in In Proc. of IEEE Int. Symp. on Microarchitecture,

2009.

[66] A. Alameldeen, C. Mauer, M. Xu, P. Harper, M. Martin, D. Sorin, M. Hill and W. D.A., "Evaluating Non-Deterministic Multi-

Threaded Commercial Workloads," in Comp. Arch. Evaluation using Commercial Workloads (CAECW), 2002.

[67] C. J and e. al., "Physical modeling and prediction of the matching properties of MOSFETs," in In Proc. of IEEE European Solid-

State Device Research Conf., 2004.

[68] Z. K and e. al., "A 3-GHz 70-Mb SRAM in 65-nm CMOS technology with integrated column-based dynamic power supply," in

151

IEEE J. of Solid-State Circuits, 2006.

[69] S. Zhou and e. al., " Minimizing total area of low-voltage SRAM arrays through joint optimization of cell size, redundancy, and

ECC," in In Proc. of IEEE Int. Symp. on Computer Design, 2010.

[70] S. Rusu, H. Muljono and B. Cherkauer, "Itanium 2 Processor 6M: Higher Frequency and Larger L3 Cache," in IEEE Micro, 2004.

[71] "http://www.eas.asu.edu/~ptm".

[72] J. Wuu and e. al., "The asynchronous 24-MB on-chip level-3 cache for a dual-core Itanium® family processor," in In Proc. of

IEEE Int. Solid-State Circuit Conf, 2006.

[73] M. Khellah, N. Kim, J. Howard, G. Ruhl, Y. Ye, J. Tschanz, D. Somasekhar and N. Borkar, "A 4.2Ghz, 130Mb/cm2, Dual-Vcc

SRAM in 65nm CMOS Featuring Active Power Management with Autonomous Compensation of PVT Variation & Aging

Impacts," in IEEE Int. Symp. on Solid Circuit Conf. (ISSCC), 2006.

[74] Naveh, A., "Power and thermal management in the Intel Core Duo Processor," Intel Technology J., vol. 10, no. 2, pp. 109-122,

2006.

[75] "http://www.microsoft.com/whdc/system/pnppwr/powermgmt/".

[76] M. Weiser and e. al., "Scheduling for reduced CPU energy," in In Proc. of USENIX Conf. on Operating Systems Design and

Implementation, 1994.

[77] S. Zhuravlev, S. Blagodurov and A. Fedorova, "Addressing shared resource contention in multicore processors via scheduling," in

In Proc. of ACM Architectural Support for Programming Languages and Operating Systems, 2010.

[78] S. Herbert and e. al., "Analysis of dynamic voltage/frequency scaling in chip-multiprocessors," in In Proc. IEEE Intl. Symp. on

Low Power Electronics and Design, 2007.

[79] "http://www.hpl.hp.com/research/cacti".

[80] "http://download.micron.com/downloads/misc/ddr3_power_calc.xls".

[81] S. Li, J. Ahn, R. Strong, J. Brockman, D. Tullsen and N. Jouppi, "McPAT: an integrated power, area, and timing modeling

framework for multicore and manycore architectures," in IEEE/ACM Int. Symp. on Microarchitecture (MICRO), 2009.

[82] A. Alameldeen, C. Mauer, M. Xu, P. Harper, M. Martin, D. Sorin, M. Hill and W. D.A., "Evaluating Non-Deterministic Multi-

Threaded Commercial Workloads," in IEEE Computer Architecture Evaluation Using Commercial Workloads Workshop

(CAECW), 2002.

[83] Standard Performance Evaluation Corporation, [Online]. Available: http://www.spec.org/omp/.

[84] C. Bienia and K. Li, "PARSEC 2.0: A New Benchmark Suite for Chip-Multiprocessors," in Workshop on Modeling, Benchmarking

and Simulation (MoBS), 2009.

[85] N. Barrow-Williams, C. Fensch and S. Moore, "A communication characterisation of SPLASH-2 and PARSEC," in IEEE Int.

Symp. on Workload Characterization (IISWC), 2009.

[86] N. Fredrickson, A. Afsahi and Y. Qian, "Performance characteristics of openMP constructs, and application benchmarks on a large

symmetric multiprocessor," in ACM Int. Conf. on Supercomputing (ICS), 2003.

[87] J. Tschanz, S. Narendra, Y. Ye, B. Bloechel, S. Borkar and V. De, "Dynamic sleep transistor and body bias for active leakage

power control of microprocessors," IEEE J. of Solid-State Circuits (JSSC), vol. 38, no. 11, pp. 1838-1845, Nov 2003.

[88] D. Foley, M. Steinman, B. Branover, G. Smaus, A. Asaro, S. Punyamurtula and L. Bajic, "AMD’S Llano Fusion APU," in IEEE

HOTCHIPS, 2011.

[89] S. Damaraju, V. George, S. Jahagirdar, T. Khondker, R. Milstrey, S. Sarkar, S. Siers, I. Stolero and A. Subbiah, "A 22nm IA multi-

CPU and GPU System-on-Chip," in IEEE ISSCC, 2012.

[90] [Online]. Available: http://ark.intel.com/products/27287/Intel-Xeon-Processor-7140M-16M-Cache-3_40-GHz-800-MHz-FSB.

[91] 2011. [Online]. Available: http://ark.intel.com/products/63696.

[92] I. Park, C. L. Ooi and T. N. Vijaykumar, "Reducing Design Complexity of the Load/Store Queue," in IEEE/ACM Int. Symp. on

Microarchitecture (MICRO), 2003.

152

[93] C. Isci, A. Buyuktosunoglu and M. Martonosi, "Long-term workload phases: duration predictions and applications to DVFS,"

IEEE Micro, vol. 25, no. 5, pp. 39-51, Sep-Oct 2005.

[94] E. Perelman, G. Hamerly, M. Van Biesbrouck, T. Sherwood and B. Calder, "Using SimPoint for accurate and efficient simulation,"

in ACM SIGMETRICS, 2003.

[95] J. Lau, S. Schoenmackers and B. Calder, "Transition phase classification and prediction," in IEEE/ACM Int. Symp. on High-

Peformance Computer Architecture (HPCA), 2005.

[96] R. Strong, J. Mudigonda, J. Mogul, N. Binkert and D. Tullsen, "Fast switching of threads between cores," ACM Oper. Syst. Rev.,

vol. 43, no. 2, pp. 35-45, Apr 2009.

[97] D.-C. Juan, Y.-T. Chen, M. Lee and S.-C. Chang, "An Efficient Wake-Up Strategy Considering Spurious Glitches Phenomenon for

Power Gating Designs," IEEE T. Very Large Scale Integration System (TVLSI), vol. 18, no. 2, pp. 246 -255, Feb 2010.

[98] [Online]. Available: http://www.acpi.info/.

[99] S. Pawlowski, "Driving Towards Cloud 2015: A technology Vision to Meet the Demands of Cloud COmputing Tomorrow," 2011.

[100] X. Zhou, Z. X., J. Liu, P.-L. Wong, J. Chen, H.-P. Wu, L. Amoroso, F. Lee and D. Chen, "Investigation of candidate VRM

topologies for future microprocessors," in IEEE Applied Power Electronics Conf. and Expo. (APEC), 1998.

[101] J. Allarey, V. George and S. Jahagirdar, "Power Management Enhancements in the 45nm Intels," Intel Technology Journal, vol.

12, no. 3, pp. 169-178, Oct 2008.

[102] Intel Corporation, VR12/IMVP7 Pulse Width Modulation (PWM) Specification, 2009.

[103] Z. Jia, L. Wang, J. Z. L. Zhan and L. C., "Characterizing Data Analysis Workloads in Data Centers," in IEEE Int. Symp. on

Workload Characterization (IISWC), 2013.

[104] Intel Corporation, [Online]. Available: http://www.intel.com/content/www/us/en/servers/technologies/efficient-power.html.

[105] HP, Power efficiency and power management in HP ProLiant servers.

[106] D. Freeman, "Digital Power Control Improves Multiphase Performance," Power Electronics Technology, pp. 2-3, Dec 2007.

[107] Intersil, "ISL6367 Green Hybrid Digital Dual 6+1 Phase PWM Controller for VR12/IMVP7 Applications With

SMBus/PMBus/I2C and AUTO Phase," [Online]. Available: http://www.intersil.com/en/products/power-management/computing-

power-vrm-imvp/multiphase-controllers/ISL6367.html.

[108] ST, "PM6764, PM6766 VR12.5 digital multiphase controller with PMBus," [Online]. Available:

http://www.stmicroelectronics.com.cn/st-web-ui/static/active/cn/resource/technical/document/data_brief/DM00110477.pdf.

[109] J. Gentillet, Personal communication, Oracle.

[110] J. Jenne, "Dynamic CPU Voltage Regulator Phase Shedding". U.S.A. Patent US20110320838 A1, Dec 2011.

[111] "NCP5392Q 2/3/4--Phase Controller for CPU Applications".

[112] P. Zumel, C. Fernnndez, A. de Castro and O. Garcia, "Efficiency improvement in multiphase converter by changing dynamically

the number of phases," in Power Electronics Specialists Conference, 2006.

[113] Intel, "New Microarchitecture for 4th Gen Intel Core Processor Platforms".

[114] Intel, "Technology Insight: Intel Haswell Platform," 2014.

[115] ASUS, 2014. [Online]. Available: http://rog.asus.com/244672013/labels/featured/introduction-to-fully-integrated-voltage-

regulators-fivr-on-maximus-vi.

[116] X. Zhou, P. Xu and F. Lee, "A Novel Current-sharing Control Technique for Low-voltage High-current Voltage Regulator Module

Applications," IEEE T. on Power Electronics, vol. 15, no. 6, pp. 1153-1162, Nov 2000.

[117] ON Semiconductor, "Programmable Multi-Phase Synchronous Buck Converter," 2008. [Online]. Available:

http://www.onsemi.com/pub_link/Collateral/ADP4100-D.PDF.

[118] W. Qiu, C. Cheung, S. Xiao and G. Miller, "Power Loss Analyses for Dynamic Phase Number Control in Multiphase Voltage

Regulators," in IEEE Applied Power Electronics Conference and Exposition (APEC), 2009.

[119] [Online]. Available: http://www.techpowerup.com/reviews/MSI/Z97_GAMING_5/.

153

[120] A. Branover, D. Foley and M. Steinman, "AMD Fusion APU:Llano," IEEE Micro, vol. 32, no. 2, pp. 28-37, Mar-Apr 2012.

[121] [Online]. Available: https://pmbus.org.

[122] International Rectifier, [Online]. Available: http://www.irf.com/technical-info/whitepaper/pswus03vrmdesign.pdf.

[123] Texas Instrument, [Online]. Available: http://www.ti.com/product/TPS51631/technicaldocuments.

[124] [Online]. Available: www.i2c-bus.org.

[125] "CPU frequency and voltage scaling code in the Linux(TM) kernel," [Online]. Available:

https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt.

[126] Intel, Intel® 64 and IA-32 Architectures Software Developer’s Manual., 2011.

[127] W. Huang, C. Lefurgy, W. Kuk, A. Buyuktosunoglu, M. Floyd, K. Rajamani, M. Allen-Ware and B. Brock, "Accurate Fine-

Grained Processor Power Proxies," in IEEE/ACM Int. Symp. on Microarchitecture (MICRO), 2012.

[128] Standard Performance Evaluation Corporation, "SPEC CPU2006," 2006.

[129] A. Jaleel, W. Hasenplaugh, M. Qureshi, J. Sebot, J. S. Steely and J. Emer, "Adaptive Insertion Policies for Managing Shared

Caches," in ACM Int. Conf. on Parallel Architectures and Compilation Techniques (PACT), 2008.

[130] J. Demme and S. Sethumadhavan, "Rapid Identification of Architectural Bottlenecks via Precise Event Counting," in IEEE/ACM

Int. Symp. on Computer Architecture (ISCA), 2011.

[131] V. Spiliopoulos, A. Sembrant and S. Kaxiras, "Power-Sleuth: A Tool for Investigating your Program’s Power Behavior," in Int.

Symp. on Modeling, Analysis and Simulation of Computer and Telecommunication Systems (MASCOT), 2012.

[132] O. Itzhak, I. Keidar, A. Kolodny and U. Weiser, "Performance scalability and dynamic behavior of Parsec," in Workshop on

Systems for Future Multicore Architectures, 2014.

[133] S. Anthony, May 2013. [Online]. Available: http://www.extremetech.com/computing/156739-intel-haswell-will-draw-50-less-

power-than-ivy-bridge.

[134] N. Binkert, B. Beckmann, G. Black, S. Reinhardt, A. Saidi, A. Basu, J. Hestness, D. Hower, T. Krishna, S. Sardashti, R. Sen, K.

Sewell and M. Shoaib, "The gem5 simulator," SIGARCH Comput. Archit. News, vol. 39, no. 2, pp. 1-7, May 2011.

[135] J. Leng, T. Hetherington, A. El-Tantawy, S. Gilani, N. Kim, T. Aamodt and V. Reddi, "GPUWattch: Enabling Energy

Optimizations in GPGPUs," in IEEE/ACM Int. Symp. on Computer Architecture (ISCA), 2013.

[136] A. Bashir, L. J., K. Ivatury, N. Khan, N. Gala, N. Familia and Z. Mohammed, "Fast lock scheme for phase-locked loops," in

Custom Integrated Circuits Conf., 2009.

[137] S. Gilani, N. Kim and M. Schulte, "Scratchpad memory optimizations for digital signal processing applications.," in Design

Automation and Test in Europe (DATE), Grenoble, 2011.

[138] K. Aygun, M. Hill, K. Eilert, K. Radhakrishnan and A. Levin, "Power delivery for high-performance microprocessor," Intel

Technology J., vol. 9, no. 4, pp. 273-283, Nov 2005.

[139] S. Sarangi, B. Greskamp, R. Teodorescu, J. Nakano, A. Tiwari and J. Torrellas, "VARIUS: A Model of Process Variation and

Resulting Timing Errors for Microarchitects," IEEE T. on Semiconductor Manufacturing, vol. 21, no. 1, pp. 3-13, Feb 2008.

[140] C. Isci, A. Buyuktosunoglu, C.-Y. Cher, P. Bose and M. Martonosi, "An Analysis of Efficient Multi-Core Global Power

Management Policies: Maximizing Performance for a Given Power Budget," in IEEE/ACM Int. Symp. on Microarchitecture

(MICRO), 2006.

[141] J. Lee, V. Sathisha, M. Schulte, K. Compton and N. Kim, "Improving Throughput of Power-Constrained GPUs Using Dynamic

Voltage/Frequency and Core Scaling," in ACM Int. Conf. on Parallel Architectures and Compilation Techniques (PACT), 2011.

[142] J. Li and J. Martinez, "Dynamic power-performance adaptation of parallel computation on chip multiprocessors," in IEEE/ACM

Int. Symp. on High-Peformance Computer Architecture (HPCA), 2006.

[143] T. Lanier. [Online]. Available: http://www.arm.com/files/pdf/at-exploring_the_design_of_the_cortex-a15.pdf.

[144] J. Martinez and E. Ipek, "Dynamic Multicore Resource Management: A Machine Learning Approach," IEEE Micro, vol. 29, no. 5,

pp. 8-17, Sep/Oc 2009.

154

[145] R. Cochran, C. Hankendi, A. Coskun and S. Reda, "Pack & Cap: Adaptive DVFS and Thread Packing Under Power Caps," in

IEEE/ACM Int. Symp. on Microarchitecture (MICRO), 2011.

[146] X. Wang, K. Ma and Y. Wang, "Adaptive Power Control with Online Model Estimation for Chip Multiprocessors," IEEE T. on

Parallel and Distributed Systems (TPDS), vol. 22, no. 10, pp. 1681-1696, Oct 2011.

