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Abstract

This thesis investigates the behavior of battery resistance and overpotential for
the purpose of modeling power capability prognostics and battery aging behavior. For
a lead-acid battery, the traditional linear circuit model is inadequate to capture the
battery electrode overpotential behavior described by the nonlinear Butler-Volmer
equation. A discrete model that incorporates the Butler-Volmer nonlinear behavior is
introduced, and its recursive form is developed for online battery monitoring in a
Corbin Sparrow electric vehicle. For battery power capability prognostics, the
commonly defined State-of-Power has been found to have a high variability within the
context of recursive estimation. An equivalent State-of-Function metric, suitable even
for nonlinear battery model forms, is proposed with the confidence interval provided by
Kalman filter estimation. For lithium batteries, it has been found that, while the Butler-
Volmer nonlinear behavior is approximately linear at room temperature, the nonlinear
behavior manifests itself at lower temperatures. A discrete battery model with
temperature explicitly built into it has been proposed. This discrete battery model with
temperature as an input has been adopted in recursive form for online battery power
prognostics and State-of-Charge estimation. In addition, an investigation has been
conducted into the aging caused by superimposing an AC current signal onto the
discharge current waveform, using measured resistance as the battery aging metric. It
has been found that, by increasing the RMS value of the discharge waveform, the

superimposed AC signal causes statistically significant aging acceleration.



11

Acknowledgement

This thesis is the outcome of more than seven years of work that began in the
summer of 2007. This has been a great educational experience for me, both in and out
of the technical field. However, without the assistance of many people, I would not
have been able to accomplish the work. This thesis is, therefore, dedicated to all those
who have helped me along the way.

I am indebted to my parents and my brother for their constant support. My
advisers, Prof. Jahns and Lorenz, have guided me through the graduate program with
firm and consistent hands and provided me with many invaluable advices, both
technical and beyond. The Wisconsin Electric Machines and Power Electronics
Consortium (WEMPEC) program has supported me financially, as well as Johnson
Controls Inc. My two summer internships in the Ford Motor Company were
instrumental in shaping my battery related work. I am thankful to my supervisors there,
Dyche Anderson and James Swoish.

Many lifelong friends were made in the WEMPEC program. I am especially
indebted to the colleagues I worked with in the battery related field. The foremost is
Phillip Kollmeyer, who is a first-rate hands-on engineer and whose practical outlook on
electric vehicle (EV) related issues always keeps me focusing on the important aspects.
Without Phil’s help, it is doubtful I could accomplish much of the works presented in
this document. Other colleagues whose contributions I should not neglect include
Adam Anders, Ruxiu Zhao, Kevin Frankforter, and Prof. Dawei Gao from Beijing

Tsinghua University. Micah Erickson, who is always quick to seize any engineering



111
problem, shared many discussions with me on the battery technology. Other faculty
members in the university have been generous to share with me their time and
expertise, including Prof. Bill Sethares of the electrical & computer engineering
department and Prof. Peter Zhenghao Qian of the statistics department.

Other friends in the WEMPEC program provided me with valuable discussions
in technical areas outside the battery field. Among these friends are Wei Xu, Chen-yen
Yu, Di Pan, Shih-Chin Yang, Yang Wang, Wenying Jiang, Chi-Ming Wang, James
McFarland, Philip Hart, Yichao Zhang, Adam Shea, and Sheng-Chun Lee. The fond
memories of technical discussions in the engineering hall student lounge flavored with
sodas priced at 50 cent will always remain with me.

I have also made many friends outside of my technical field whose support was
essential in helping me complete the thesis. Their friendships enhanced the experience
in graduate school and are great resources at times of stress. I am thankful to Ting-Lan
Ma and her family, Yu-Lien Chu and her family, Weija Cui, Li-Lin Cheng and Hiro

Kobayashi, Hsun-Yu Chan, and Sheng-Yuan Cheng.

Madison, WI

Fall, 2014



v

Table of Contents

ADSTIACT ettt et e 1
ACKNOWIEAZEMENT ...........cooiiiiiiiiiie ettt e e e e e saee e snaeeenaeeens i
Table 0f COMEENLS ...........coooiiiiiiiii ettt v
LSt Of FUGUIES.......oooiiiiiiiieee et e ettt e e et e e et e e e s e seaeeeenes X
List 0f TabIes .......cc.oooiiiii e e xxii
NOMIENCIATULE ...ttt ettt et e e e XX1V
Chapter 1
INIPOAUCTION coconaanannnnannennonnnnnnrinsnnnniisssnsnicssssssrecssssssssssssssisssssssssssssssssssssssssssssssssssssnass 1
0 B B - Ted ¢4 (0] 1 Lo USRS 1
1.2 Problem DeSCIIPLION ......c.eeeeviiiiiieeeiieeciee ettt eeeste e e svee e e eeaeesnseeeenree s 1
1.3 Proposed Technical Approach ...........cccccueeeeiieiiiieeiiiecie e 3
1.4 Document OrganiZation ..........cccueeerueeerreeesieeeieeesieeessieeesseeesseeessseesssseessseeesssees 4
Chapter 2
The State-0f-the-Art REVIEW ....uccoeveeevsveressercssnissssrisssssssssasssssssssssssssssssssssssssssssssssssssses 7
2.1 Historical Overview on Battery .........cccooiieriiieiiieeiie e 7
2.2 Battery BasiC StrUCIUIE ........ccueeiiiiieeiiieciie ettt et e e snaee e 10
2.3 Battery CREMISIIICS. .. ceeieuiieeiieeeiieeeiieeeieeeeteeesaeeerteeesereeesreeesneessseeesnseeensneeens 11
2.3.1 Lead-Acid Batteries ........ccoouiiiiiiiiiiiienieiiieeicceeree et 11
2.3.2  Nickel-Cadmium Batteries........c.cceerieriiriiiniiiiienieeiienieeeeeeiee e 12
2.3.3 Nickel-Metal Hydride Batteries..........ccceervieeriieeiiieeieecieeceeeeee e 13

2.3.4  Lithium-100 BatterieS coouummneeeeeeeeeeeeeeeeee et e e e eeeeeee e 13



24

2.5

2.6

2.7

2.8

2.9

Electrochemical Processes in @ Battery .........cccveeviieeiiieeciiecieeceeeeeeeeee e 14
2.4.1 Thermodynamics and the Nernst Equation...........cccceeeveeveiieniiiencieeenee, 14
2.4.2  Kinetics of Electrodes..........cooiiiiiiiiiiiiiiiiiiiieceee e 16
2.43 Mass Transfer of Ions ........coovieiiiiiiiiiiiee e 18
Battery Modeling APProaches ..........eecveeeeiieeiiieeiiie et e e 22

2.5.1 Electrical Equivalent Circuit Models and Various Parameter Estimation

IMEEEROMS. ..ottt ettt et e 22
2.5.2 Curve-Fitted Behavioral Models...........ccooceeniiiiiiniiniiiiiieiceeeee 32
2.5.3 Physics-Based ModelS .......c..coouiieiiiiiiiiieiieeeeceeeee e 34
State-of-Charge EStimation............ccccueeeiiieeiiieiiiieeiie et 44
2.6.1  Coulomb COUNLING......cccueieriiieeiieeiieeeiee ettt eere e eeeaee s 45
2.6.2 Voltage-based methods.........cocoviieriiiiiiiiiiieeeeceeeeeee e 46
2.6.3 Impedance-based methods..........ccccvveeriiiiiiieeiiiiceecceeee e 48
2.6.4 Empirical data driven methods ...........ccceeeviiieiiiieniieceeeeeeeee e 50

Battery Aging Processes, Methods for Aging Prediction, and State-of-Health

EStIMAtION ..ottt 51
2.7.1 Battery AgING PrOCESSES ...cuvvieeiiieriieeiiieeieeetee et e etreeseeeeereeeevee e 51
2.7.2 Methods for Aging Prediction ...........ccceeeviieeiieeeeiieeiee e 53
2.7.3 State-of-Health EStimation............cccceeriiiiiiniiiiiiniiiecnicceeieeeceee 57
2.7.4 Lithium-Ion Cell Aging with a Superimposed AC waveform................ 60
State-of-Power and State-of-Function for Short-Term Power Estimation ......... 61
Statistical Concepts and Methods ..........cceeeiiiieiiiiiiiiinie e 66

2.9.1 Important Concepts i StAtISTICS ..ecuveeerurierriieeiiieeieeeree e 67



vi

2.9.2  Design of EXPEriments.......c.cccccvveeriieeriieeniieecieeeeieeeieeesreeesveeeeveeesenes 77
2.9.3 Recursive Estimation and Kalman Filter............ccoccoiiniiiiinnininn, 80
2.9.4 Karl Pearson and Ronald A. Fisher........c.cccocoiiiiiiinie, 82
2,10 SUIMIMATY ...iiiiieeeiieee ettt e et ee e e ettt e e e ettt e e e e sabaeeeeestteeeeansseeeeannsseeesennsseeesnnnsneeenn 83
Chapter 3
Butler-Volmer Equation Based Battery System IdentifiCation ............ueeeeesueeeeeesnnnns 86
3.1 Linear Electric circuit and Butler-Volmer Battery Models ..........ccccccevveenennnee. 86
3.1.1 Introduction of linear-circuit and Butler-Volmer Battery Models.......... 86

3.1.2  Inverse Hyperbolic Sine Approximation for Butler-Volmer Equation and
the Lumped-Electrode ASSUMPLION ........ccccvveeriiieeriieeieeeiee e 89
3.1.3 Derivations of Discrete Form for Linear-Circuit and Butler-Volmer
Based MOAEIS....c...ooiiiiiiiiie e 93
3.2 Recursive Estimation and Associated Parameter Estimation for Time Constant
and Exchange CUurrent...........cccuveviiieiiieiieeee et 95
3.2.1 Recursive Estimation with Kalman Filter..........c.cccoccoiiinnnnnnn 95

3.2.2 Offline Parameter Estimation for Exchange Current and Time Constant99

3.2.3 Discussion on Model Assumptions and Limitations ............ccccccveeeneee. 105
3.3 Experimental Results for Comparison between the Two Models .................... 106
3.4 SUIMIMATY .oeeiviieiiieeeite et ee et e et e eteeeteeesteeessseeessseeesssaeesseeassseeesssessnseeesseeens 115
Chapter 4
Battery POWeEr PrOZROSTICS c.ueceeseeosssssssssrsssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssns 116
4.1 State-of-Function and State-0f-POWET ...........ccoceriiiiiiiiiiniiicee 116

Q1.1 DEIINITIONS ctttttteee ettt e e e e e et eeeeeeeeeeaeneaaeseeeeeenannnas 116



vil

4.1.2 State-of-Power VOolatility .......cccceeveiiiiiiiiiiieeieeeeeeeeeee e 118

4.1.3 State-of-Function with Confidence Interval ...........cc.cccoooiniiiiinin. 121
4.2 Lithium-Iron-Phosphate Battery Estimation under UDDS Drive Cycle .......... 124
4.3 Lithium-Iron-Phosphate Battery Estimation Results Comparison between

Recursive Estimation under UDDS and HPPC Analysis ........cccccevveevciveenneenns 128

4.3.1 HPPC Test for the Lithium-Iron-Phosphate Battery.............cccoeeunee. 128

4.3.2 Discussion on the Battery Time Constant Selection............cccceeeeuveennee 131
N 01401 1 0 1 AU 136
Chapter 5

Lithium-Ion and Lead-Acid Battery Temperature Dependent Modeling, Power

Prognostics, and SOC ESTIMALION ....uueeeeessreroseerossssiossssssssssssssssssssssssssssssssssssssassses 138

5.1

5.2

53

5.4

5.5

5.6

Theory of Battery Resistance and Overpotential Behavior as a Function of

TEMPETALTUIE ....eeeeiiiiieeeiieee ettt e e et e e e st e e e ettt e e e enaeeeeeenneees 139
5.1.1 Battery Resistance in Arrhenius FOrm.........cccooveieiiiieniiienieeceee 139
5.1.2  Butler-Volmer Equation Exchange Current in Arrhenius Form........... 140
HPPC and EIS Tests with Temperature as a Factor .........ccccoeevveeveieencieenneenns 142

Parameter Fitting of Linear Electric Circuit Model and Butler-Volmer Model at
Various Temperatures Using Short Term Drive Cycle........ccccoveeveveevcieennnnns 146
Offline Parameter Fitting of a Generic Battery Model with Resistance and
Overpotential Dependence on Temperature ..........cceecveeevveeerieeerieenieeeereeeee 153
Adaptive Estimation Using Generic Cell Model ..........c.cccceevvieniinciienieniennen. 158

Generic Cell Model for Offline SImulation ..........ooeveeeiiiiiiiiiiiieee 162



viii
5.7 Lithium Battery State-of-Charge Estimation Based on Vo, with Temperature,
Aging, and Drive Cycle Dynamics Taken into Account ............ccceeeveuveenneennns 169
5.8 Generic Cell Model Applied to Lead-Acid Battery.........cccceeevvieecviencieenieen, 179

5.9 Investigation of Lithium and Lead-Acid Battery Resistance and Overpotential

Behavior under Various Temperatures Using Electrochemical Impedance

S P CIIOSCOPY nvtteeeeiiiiieeeeittee e et ee e ettt e e et e e e et eeeesnateeeeesseeeeesssaeeesssseeeannns 185
S.10 SUIMIMATY ...eviiieiiiieeecee ettt e e s e e e ettt e e s e tteeeesnbaeeesesseeeesnnseeeeas 197
Chapter 6

Design of Experiment for Superimposed AC Waveform’s Influence on Battery

Aging Based on ReSiStANCE GFOWLH ......uueeeoeneeevsarensseresserossnrsssssssssssssssssssssssssssassses 199
6.1 The Interest in Superimposed AC Waveform’s Influence on Aging................ 199
6.2 Experimental Details for the First Experiment .........cc.ccoceeiiiiiiiniiniinnicnnen. 201
6.3 Analyses and Results for the First Experiment............ccccooevvviiiiiiiiieniieeninns 205
6.4 Experimental Details and Results for the Second Experiment......................... 211
6.5 Analysis for Quantification of RMS Effect on Battery Aging ...........ccceeuveee. 217

6.6 Planned Aging Experiment for the New Wisconsin Energy Institute Battery Test

EQUIPIMENT....oiiiiiiiiiiieceee ettt e e snee e 222
0.7 SUIMIMATY ..eevvieeiiiieeiiieeeteeesteeesteeeseteeeteeessaeeasseeessseeesssaeansseeasseeessseesseeessseeenns 228
Chapter 7
Contributions ANAd FUTUFE WOFK.....ueeecoseeesssavisssaresssenssssssssssssssssssssssssssssssssssssssnns 229
7.1 CONIIDULIONS. ...ttt ettt ettt et e e st e st e e seeesbeenees 230
7.1.1 Butler-Volmer Equation Based Battery System Identification............. 230

7.1.2  Battery POwer PrognostiCs.........cccuieriiiieriieeniieeiie e 233



X

7.1.3 Lithium-lon Battery Resistance and Overpotential Behavior under
Various TemMPETAtUIES .......ccuuieiiuieeiiieeciieeeieeeeteeerreeeveeeieeeeaeeesaeeesaeeesareeens 235

7.1.4 Design of Experiment for Superimposed AC Waveform’s Influence on

Battery Aging Based on Resistance Growth............cccccveevviieciieniiecccieecieeens 241
7.2 FUUIE WOTK ..ottt 243
L3 0] 0T ed 0821 1] 1 247
Appendix A
COFDIN SPAFTOW cavavnnnvrevsreressrersssssisssssssssassssssssssssssssssssssssssssssssssssssssssssssssssssasssssassssses 257
Appendix B

Battery TeSt EQUIPHIERL o...uueeeoneeesssaressssrsssssrssssssssssssssssssssssssssssssssssssssssssssssssssassssses 260



List of Figures

Figure 2.1 The Volta pile-first modern battery [6] ........ccccoueeeeieeriiieeiieeeie e, 7
Figure 2.2 Daniell battery schematic [4].......ccccuveeiiiieiiieeieeeie e 8
Figure 2.3 Leclanche battery illustration [7].......ccccuveeeieeeiiieeiieeeeeeeee e 9
Figure 2.4 A Lithium-ion battery schematic [8].......ccccovevviieriiiieiiieee e 11
Figure 2.5 Example Diffusion Profile..........ccccovveviiieiiiiiiiieceeeeee e 20
Figure 2.6 Example of a Battery Equivalent Circuit Model [21] .......ccceeeevvieeiieeninennee. 23
Figure 2.7 Example HPPC Pulsed Current Profile [1] .....cccccocovviviiiiniiiiieeee e, 24
Figure 2.8 HPPC Test Procedure (Starting Sequence) [1]......cccceeeeerciieeeciieeeieeeeieeenee, 25

Figure 2.9 Low current charge and discharge curves for obtaining OCV vs. SOC
INFOrMAtION [23] ..eeieiiiiiie ettt e et e e et e e e e et e e e e eata e e e e ennes 26
Figure 2.10 An example of a lithium ion battery impedance spectroscopy plot. The
particular plot shows the agreement of the data obtained from two separate testing
EQUIPINENT [26] ..eiiirieiiiieeiiie et e ettt e eite e et e e eteeesteeestaeeessaeeessaeeesseeesssseessseeessseeessseeenssens 27
Figure 2.11 Example of equivalent circuit to be fitted by EIS data [27]....................... 28
Figure 2.12 The interchange between CPE and ladder RC networks for battery
1000016 (<] T Tl 0 PR TSR 29

Figure 2.13 The ideal impedance plot of one RC, five RC’s, and the circuit using CPE

Figure 2.14 Voltage vs. extracted Ah for various constant current discharges for an

Optima D34M lead-acid Dattery ........ccceeeciiieiiieeiiiecciee et e 32



x1

Figure 2.15 Voltage vs. extracted Ah for two constant current discharges for a lithium-
TOM CRIL [ S ittt e et e e e et e e e e e e ta e e e e eeateaeeeennes 34

Figure 2.16 An one dimensional lithium/polymer cell sandwich in Newman model [55]

Figure 2.20 Changes at anode/electrolyte interface for a lithium ion battery [103]...... 52

Figure 2.21 Average relative resistance at 50% SOC vs. time [2]. .....ccoooeevienieeneennee. 54
Figure 2.22 Overtime comparison between cycling and calendar conditions [90]........ 55
Figure 2.23 Aging data and fitted model [110]......ccccoeiiiiiniiiiiiiiiieeee, 56

Figure 2.24 OCV curves over aging for cells stored at S00C and 50% SOC. Plot a

shows the OCV curves vs. nominal DOD (depth-of-discharge) while plot b shows the

OCYV curves vs. actual DOD [90] ...ocooeiiiiieeeee e e 59
Figure 2.25 Particle Filter Probability Density for Predicting End of Use [100] .......... 60
Figure 2.26 Particle Filter Probability Density for Predicting End of Use [101] .......... 60
Figure 2.27 Equivalent circuit model used in [39] .....cooieiiiiiiiiiiiiieeee, 65

Figure 2.28 Current dependency of the cell total resistance for different temperatures

Figure 2.29 A normal distribution PDF with zero mean and standard deviation at one 70

Figure 2.30 A X2(4) distribution PDF ..o, 71



xii
Figure 2.31 The PDF’s of t-distribution with different degrees of freedom. The
distribution asymptotically approaches the zero mean, unit variance normal distribution

with greater degrees of freedom .........ocviiiiiiiiiiiice e 72

Figure 2.32 The PDF for t-distribution with 8 degrees of freedom and cut-off lines at t

Figure 3.1 Nonlinear battery model incorporating Butler-Volmer electrode equation . 87
Figure 3.2 Conventional linear circuit-based battery model.............ccceevcrveiicierennennnne. 87
Figure 3.3 An EIS graph of a lithium iron phosphate battery.............cccceeevrercveennennne. 88
Figure 3.4 Butler-Volmer relationship with set parameters and the corresponding least
SQUATE €TTOT IINEAT f1l.....iiiiiieiiiieeiiie et e e e e sereeenneas 90
Figure 3.5 Simulated electrode voltage responses (individual and summed) and the

fitted combined voltage response using a single BV hyperbolic sine equation for n = 20

Figure 3.7 Block diagram of Kalman filter structure for both Butler-Volmer and linear-
CITCUIE TNOAECIS ...ttt sttt s nees 97
Figure 3.8 Pulsed current test sequence for estimating exchange current and time
CONSTANT PATAINETET ...euvvieiiiiieeiieeeiiee ettt ettt et e et e et ee ettt eetbeesbteesabeeesabeeesabeeennseesnnne 100
Figure 3.9 Sample measured response of Optima™ lead-acid battery terminal voltage to
40-second discharge current pulse with amplitude 82.5 A.....ccoocviiiiiiiiiiiiiieeieee, 101
Figure 3.10 Measured electrode voltage drop vs. step current amplitude, with spread of

data points at each current amplitude showing the effect of SOC.............ccccevinienie. 102



Xiii

Figure 3.11 Estimated values of time constant parameter a; vs. pulse current amplitude
for 7 successive cycles of 5 increasing current step amplitudes...........oceeveeenieennnnnne. 104
Figure 3.12 Sample measured response of CALB lithium iron phosphate battery
terminal voltage to 40-second discharge current pulse with amplitude 180 A............ 105
Figure 3.13 Butler-Volmer-based filter results for a lead-acid battery during an EV
drive cycle, comparing measured and model-estimated voltages. The estimated OCV
and predicted min. battery voltage for max. current are included ..........c.ccccevveneenen. 108
Figure 3.14 Linear circuit-based filter results for a lead-acid battery during an EV drive
cycle, providing the same set of waveforms as in Figure 3.13 ........cccocoviiiininnnnn. 108
Figure 3.15 Butler-Volmer and linear circuit-based model terminal voltage predictions
using 50 sec forecast results, including comparison with measured voltage............... 111
Figure 3.16 Residuals histogram for the two models from Figure 3.15, excluding data
POINES WHETE 1 <55 Aottt 112
Figure 3.17 Calculated residual autocorrelation for the Butler-Volmer-based model at
the FITSt 10 LaZS . .cueieiiieiieeie ettt ettt ettt et e et e e e s 114
Figure 3.18 Calculated residual autocorrelation for the linear circuit-based model at the
FITST 10 LaES. 1 entieiie ettt ettt ettt ettt et saeeenne 114
Figure 4.1 Conventional linear circuit-based battery model suitable for lithium batteries
At TOOIM LEIMPETALUTE .....eeeieiieeiiee ettt ettt ettt e ettt e et e et e e st e e sabbeesabeeesabeeesabeeenaneeennne 118
Figure 4.2 UDDS drive cycle current profile. The drive cycle repeats until battery is

fully diSCRATZEA. .......eeiiieieee e 125



Xiv

Figure 4.3 Kalman filter predictions of the open-circuit voltage QM and terminal

voltage compared to the measured terminal voltage for the UDDS cycle current profile

Figure 4.4 Estimated SOP and Q@ metrics compared with required power calculated
for the F150 truck [138] using the UDDS drive cycle........ooceeiiiiiiiiieiiiieiiee, 127
Figure 4.5 View of experimental HPPC test current pulses applied to the CALB
OOAHA DALETY ..ottt ettt ettt et et e st e e b e e neeeneesneeenne 130
Figure 4.6 Estimated SOP curves provided by the recursive estimator using the UDDS
drive cycle current profile for two battery temperatures (25°C and 0°C) compared with
HPPC predicted power capability (25°C). 7=1.74 SEC ....ccceererveeriiniriinieeriereeenn 132

Figure 4.7 Comparison of Qﬂ for the proposed recursive estimator using the UDDS

cycle current profile and the HPPC test. 7= 1.74 SEC....cccceevirriiirieniieieeieeeee 133
Figure 4.8 Comparison of j_‘_\g +. i‘_\l_ provided by the HPPC test results and the proposed

recursive estimator using the UDDS drive cycle current profile with two time constant
Values (T=1.74 SEC aANA 5 SEC) c.vvriiiiieiiie ettt ettt e re e e v e esaseeens 134
Figure 4.9 UDDS drive cycle current profile with injected 12-second current pulses of
250 Amps. The drive cycle repeats until battery is fully discharged.............c.ccccc.... 135

Figure 4.10 Kalman filter predictions for the current profile in Figure 4.9................. 136

) RT ) .
Figure 5.1 Simulated electrode voltage responses with the same oF but different i(. 140

Figure 5.2 CALB LiFePOy4 battery rated at 60 Ah..........cccveeveiiieiiiiiniieciieeeeeeiee 143

Figure 5.3 EIS data for 0°C/273.15%K w..mimeeeeeeeeeeeeeeeeeeeeeeeeeeeee e, 143



XV

Figure 5.4 Pure resistance r( and its fitted function of temperature using (5.1.2) at 90%

Figure 5.5 HPPC resistances at different SOC test conditions for different pulsed
currents at 0°C/273. 15K w..oovueveeeeeeeeeeeeeeeee e 145
Figure 5.6 HPPC resistances at different SOC test conditions for different pulsed
currents at 20°C/293. 15K ....uuurvuummiriiemecreeeseeeeissseesesssesesssssee s 145
Figure 5.7 Drive cycle test data and Butler-Volmer model simulation with fitted
parameters at ambient 20°C/293. 15 K .........oo.vvivveeeeeeeeeeeeeeeeeeeeee e 149
Figure 5.8 Drive cycle test data and linear circuit model simulation with fitted
parameters at ambient 20°C/293. 15 K .........oo.vvivveeeeeeeeeeeeeeeeeeeeee e 149
Figure 5.9 Drive cycle test data and Butler-Volmer model simulation with fitted
parameters at ambient 2200C/253. 15K e 150
Figure 5.10 Drive cycle test data and linear circuit model simulation with fitted
parameters at ambient -20°C/253.15 K ...........ovvivmieeeeeeeeeeeeeeeeeeeee e 150
Figure 5.11 Drive cycle test data and both models’ predictions using a different part of
the drive cycle for evaluation at ambient -20°C/253.15%K ........oovververresreeeesresrnnnd 151
Figure 5.12 Prediction error histogram for the two models under the drive cycle in
FIGUIE 5.1 ottt ettt st s 152
Figure 5.13 The predicted steady-state voltage drop based on fitted parameters at
ambient -20°C/253.15%K and 20°C/293.15"K ......uuurvvueurmneereeeemmsneeeeeeenssseeseesessssenee 153
Figure 5.14 Steady-state voltage drop for the generic cell model at different

EEIMIPETATULIES ...ttt ettt ettt ettt ettt e ettt e ettt e et e e st e e e sabeeesabeeesabeeesabeeenabeesanneeens 155



xvi

Figure 5.15 Drive cycle test data and generic cell and linear circuit predictions using a
different part of the drive cycle for evaluation at ambient -20°C/253.15'K................ 156
Figure 5.16 Comparsion of prediction performance for generic cell and linear circuit
models based on Table 5.1 ......cooiiiiii e 157
Figure 5.17 Comparison of Kalman filter vy, estimates for linear-circuit model and
generic cell model for data at ambient 253.15°K/-20°C ..o, 159
Figure 5.18 Comparison of Kalman filter v, estimates for linear-circuit model and
generic cell model for data at ambient 293.15°K/20°C.........c.oveemeerereeeeeeeeeeeeeeene. 160

Figure 5.19 Temperature progression during UDDS drive cycle at ambient temperature

Figure 5.25 Simulated cell voltage and Kalman filtering results at 25°C ambient...... 166
Figure 5.26 Temperature progression during UDDS drive cycle at ambient temperature

25%C £Or SIMULALEA CE1L... v, 167



xvii

Figure 5.27 Estimated R progression during UDDS drive cycle at ambient temperature
25%C £Or SIMUIAEA CElL.......vovoveeeeeeeeeeee e 167

Figure 5.28 Est. vocy comparison with different values of the var(vgey) gain........... 168
Figure 5.29 Est. vocy comparison with different values of the var(vgcy) gain, zoomed

N FTOM FIGUIE 5.28 oottt et e e snae e e snaeeenens 168
Figure 5.30 Information flow chart for SOC estimation scheme..............ccccccevveennennn. 171

Figure 5.31 Fitted line resistance Rq relationship with temperature for CALB 60 Ah

COLL ettt 172
Figure 5.32 UDDS current profile ..........cccceeierierinienieieiiesieeeescecee e 173
Figure 5.33 US06 current profile.........ccceeveriiriiiiiiiniieieiieseeees et 173
Figure 5.34 HWFET current profile ...........cocoviiiiiiiniiieiiiiieccececeesescea 173
Figure 5.35 EUDC current profile ..........cocceeieriiiiriinieieiiesieeesiteeeescee s 173
Figure 5.36 CALB battery temperature response at 20°C for UDDS...........c...c......... 173
Figure 5.37 CALB battery temperature response at 20°C for US06..............ccco........ 173
Figure 5.38 CALB battery temperature response at 20°C for HWFET..................... 174
Figure 5.39 CALB battery temperature response at 20°C for EUDC......................... 174

Figure 5.40 The vigw estimations for UDDS drive cycle under various ambient

temperatures and illustration of cut-off Ah determination ...........cccccecveveiiieeiciieennennn. 175

Figure 5.41 The vjgw estimations for US06 drive cycle under various ambient

LEIMIPETATUTES ..cvteeeitee ettt e etee ettt et e et ee ettt e ettt e e bt eeesabeeeabteesabeeesabeeesaseeesnseesnnseesnnseeens 175

Figure 5.42 The vjgw estimations for HWFET drive cycle under various ambient

191000 0 1C) 1111 (RSP 175



XViii

Figure 5.43 The v]gy estimations for EUDC drive cycle under various ambient

LRIMIPETATUTES ..ttt ettt te ettt et e ettt e et e ettt e et eeeaabeesabteesabeeesabeeesaseeenaseesnnseesnnseeens 175

Figure 5.44 The v|yw estimations for different drive cycles at ambient temperature

20°C ettt 176
Figure 5.45 The cut-off Ah’s as a function of temperature and the quadratic fit........ 177
Figure 5.46 The v]qy estimation comparison for cell 35 in WEMPEC truck............. 178

Figure 5.47 The temperature measurement comparison for cell 35 in WEMPEC truck

...................................................................................................................................... 178
Figure 5.48 The v,y estimation comparison for cell 17 in WEMPEC truck............. 178
Figure 5.49 The v]qoy estimation comparison for cell 26 in WEMPEC truck............. 178
Figure 5.50 The v,y estimation comparison for cell 46 in WEMPEC truck............. 179
Figure 5.51 The v}y estimation comparison for cell 66 in WEMPEC truck............. 179

Figure 5.52 Lead-acid OPTIMA D34M battery’s voltage response to a step charging
CUITENT At 82.5 A Lot 180
Figure 5.53 Drive cycle test data and generic cell predictions at ambient temperature
20°C/293. 15 K .o 181
Figure 5.54 Drive cycle test data and generic cell predictions at ambient temperature -
20°C/253. 15 K 1o eeeesses s 182
Figure 5.55 Optima D34M battery voltage under UDDS cycle and generic cell based

Kalman filtering with its estimated voey and v]oyw at ambient temperature 30°C ..... 183

Figure 5.56 The current profile corresponding to Figure 5.55 ......cccoeviiiviiinieniienen. 183
Figure 5.57 Optima D34M battery voltage under UDDS cycle and generic cell based

Kalman filtering with its estimated vo¢y and v]gy at ambient temperature 0°C ....... 184



X1X

Figure 5.58 The current profile corresponding to Figure 5.57 .....ccccecvvvvviviecciieennennn. 184
Figure 5.59 Battery linear equivalent circuit model ............ccccveeveiiiniiiiniieeciee e, 186
Figure 5.60 EIS results with identification of the key frequency regions ................... 186
Figure 5.61 Measured Optima lead-acid battery EIS results, -10° to 25°C ................ 188

Figure 5.62 Measured CALB LiFePO, 60 Ah battery EIS results, -10°C to 25°C..... 189

Figure 5.63 Measured CALB LiFePO4 series resistances R() at different temperatures

and fitted with the Arrhenius equation using (5.9.1) ..cccoevieriiriiiiiiiiieeee e, 190

Figure 5.64 Measured CALB LiFePOy cell EIS results for 7 dc bias currents at 25°C

Figure 5.65 Measured CALB LiFePOy, cell EIS results for 7 dc bias currents at 0°C 191
Figure 5.66 Measured Optima D34M lead-acid battery EIS results for 3 dc bias
CUITENES AL 25 C ..ot 192
Figure 5.67 Measured Optima D34M lead-acid battery EIS results for 3 dc bias
CUITENES AL 0°C ..o 193
Figure 5.68 CALB LiFePO, charge transfer resistance R for 0°C and 25°C and their
respective fitted curves With (5.9.4). ..o 194
Figure 5.69 Optima lead-acid D34M charge transfer resistance R for 0°C and 25°C and
fitted curves using solid lines based on (5.9.4) ......occieviiiiiiiiiniiiee e 194
Figure 5.70 Measured CALB LiFePO4 EIS results with and without a wait period

between frequency data points for no dc bias current and 1 C dc bias current conditions



XX

Figure 5.71 Measured Optima lead-acid D34M EIS results with and without a wait

period between frequency data points for no dc bias current and 1 C dc bias current

[670) 0T U5 (0] s OO O PO OSSO U RO RRRRTRRPO 196
Figure 6.1 Test stand system level diagram [26] ........cccceeeveeviieeriiieniie e 202
Figure 6.2 EIS results for one cell at 100% SOC and 0% SOC conditions................. 204
Figure 6.3 Test sequence schedule...........cccoviiiiiiiiiiiiiieceece e 205
Figure 6.4 R value progression for cells in the first experiment at 0% SOC............... 206
Figure 6.5 R value progression for cells in the first experiment at 100% SOC........... 206

Figure 6.6 Corrected R value progression for every cell and group averaged fitted
model at 0% SOC 1n the first eXPeriment ...........cooveeerieeeiieeriieeeiie e eeieeeeree e 210
Figure 6.7 Corrected R value progression for every cell and group averaged fitted
model at 100% SOC in the first €Xperiment ..........cceeevveeeeieeriieeniieeriie e eeiee e 210
Figure 6.8 Frequency groups’ corrected R value progression and averaged fitted models
at 0% SOC for the second EXPErimMeNt.........cccveeruieerieeeiieeeiieeeiiee e e ereeeeaeeeseaee e 214
Figure 6.9 Frequency groups’ corrected R value progression and averaged fitted models
at 100% SOC for the second eXperiment...........cccueeerveeerieeerieeeiiee e eeiee e e eeeee e 214
Figure 6.10 S-807, DC-800, S-703’s corrected R value progression and averaged fitted
MOdElS at 0% SOC ...ttt ettt e 216
Figure 6.11 S-807, DC-800, S-703’s corrected R value progression and averaged fitted
models at 100% SOC .....cc.iiiiie ettt sttt 217

Figure 6.12 dR data and fitted model (6.5.3) with the 95% prediction interval for 0%



xx1

Figure 6.13 dR data and fitted model (6.5.3) with the 95% prediction interval for 100%

Figure 6.14 The Diagtron Cyclers in WEIL.........cccoiiiiiiiiiiiiiieceeee e 223

Figure 6.15 The proposed driving profiles for experiments aiming at understanding

regenerative braking on a@INg.........ccceecveeeiiieeiieeeiieereeeseeeeveeeseveeeveeeereeesreeesareeens 225
Figure A 1 WEMPEC Corbin Sparrow with Phillip Kollmeyer [138].........ccccceuee.. 257
Figure A 2 WEMPEC Corbin Sparrow system diagram [138].........ccccevviiiieniiieennennn. 258
Figure A 3 Corbin Sparrow voltage-sensing configuration [21] ........ccceeeevvvvriiieennennne 259
Figure B 1 High accuracy, high bandwidth lab test system..............ccocceniiiinninncn. 261

Figure B 2 Lab test system filtering configuration [21] ......ccceeiiiiiiiiiniiiiiinicieens 262



xxii

List of Tables

Table 2.1 List of symbols, subscripts, and superscripts in [55]......ccceeeevieeriienieenieennnn. 35
Table 2.2 Residual Chlorine Readings, Sewage Experiment [133]........ccccoceviiiennenne. 73
Table 2.3 An example of Fisher’s tea tasting experiment ...........cc.ccoeeeevieerieenieenneennee. 77
Table 3.1 Calculated SSE as a function of scaling factor K...........ccoceveevinininncnnene. 92
Table 4.1 CALB 60AHA Li-iron-phosphate battery specifications..........c.ccecuevueeueee 119

Table 5.1 The prediction average squared errors for the three modeling approaches. 156
Table 6.1 Treatments summary for the first experiment..............ccccoeveiieiiiniiiniennenne 203
Table 6.2 Average estimated slope of each group for the 0% SOC condition in the first
(54013111 1<1 | SO O TU R SR PP SRTRR 209
Table 6.3 Average estimated slope of each group for the 100% SOC condition in the
RIS A q 0153 01110 =) 1 SRR 209
Table 6.4 t-statistics and p-values for the 0% SOC condition in the first experiment. 209

Table 6.5 t-statistics and p-values for the 100% SOC condition in the first experiment

Table 6.6 Treatments summary for the second experiment..............cccoeeevvverrieenneennne. 212
Table 6.7 Average estimated slopes of two frequency groups for the 0% SOC condition
1N the SECONd EXPETIMENL .....cccuvieeiiieeiieeciee ettt et e e e rr e e ereeesbeeessreeesaseeenens 213
Table 6.8 Average estimated slopes of two frequency groups for the 100% SOC
condition in the second eXPerimMeNt ............ceccuieeriiieerieeeiiee e e e e e ereeesaeeesaaee e 213
Table 6.9 t-statistic and p-value for the frequency groups’ comparison at 0% SOC

condition in the second EXPerimMent ............ccccuveeriieeiieeeriee e e eiee e eree e e e seree e 213



XXiil
Table 6.10 t-statistic and p-value for the frequency groups’ comparison at 100% SOC
condition in the second eXPEriMENt .........c..cevvuieeriiieeriieeiieeecieeeieeeereeeeree e e e seaee e 214
Table 6.11 Average estimated slopes of S-807, DC-800, S-703 for the 0% SOC
COMAITION .ttt ettt et e st ab e ea et e bt e s abe et e e sabeeabeesaeeenbeesnbeenseesaneenne 215
Table 6.12 Average estimated slopes of S-807, DC-800, S-703 for the 100% SOC
COMAITION .ttt ettt et e st ab e ea et e bt e s abe et e e sabeeabeesaeeenbeesnbeenseesaneenne 215
Table 6.13 t-statistics and p-values for S-807, DC-800, S-703 comparisons at the 0%
SOC CONAIION ...ttt ettt be e sttt e st e e beesaees 215

Table 6.14 t-statistics and p-values for S-807, DC-800, S-703 comparisons at the 100%

SOC CONAIION. ...ttt ettt et e e st e b e saeeebeesaees 215
Table 6.15 Regression summary table for (6.5.2) with 0% SOC data......................... 218
Table 6.16 Regression summary table for (6.5.2) with 100% SOC data..................... 218
Table 6.17 Regression summary table for equation (6.5.3) with 0% SOC data.......... 219
Table 6.18 Regression summary table for equation (6.5.3) with 100% SOC data...... 219

Table 6.19 The proposed driving profiles for experiments aiming at understanding

regenerative braking On a@INg.........c.ceevveeeiieeriieeiiiie e eriee et e eireeeaeeeereeesaeeesaneeens 224
Table 6.20 Summary for the proposed driving profiles in Table 6.19......................... 224
Table A 1 Corbin Sparrow Test System Specifications [21]........cccceeevieeriieeniieeennennns 259
Table B 1 Specifications for the lab test equipment ............ccccceeveiieriiieniieeniieeeiee 261

Table B 1 Specifications for the lab test equipment ............ccccceeeveiiieriiieniieeniieeiee 261



XX1V

Nomenclature
Abbreviations and Acronym
AC Alternating Current
AGM Absorbed Glass Mat
Ah Amp-Hours
BMS Battery Management System
CPE Constant Phase Element
DC Direct Current
EIS Electrochemical Impedance Spectroscopy
HPPC Hybrid Pulse Power Characterization
LPF Low-Pass Filter
ocv Open Circuit Voltage
RV Random Variable
SEI Solid-Electrolyte Interphase
SOC State-of-Charge
SOF State-of-Function
SOH State-of-Health
SOP State-of-Power
Symbols
-1
A Area of Electrode 5
L C1N~ |
Cy Double Layer Capacitance [F]
ol
G Concentration of Species i rn_03
L CI- |
m 7
D; Diffusion Coefficient %
Eg Electrode Standard Potential [V]
, C ]
F Faraday’s Constant 96485.3 [ mol
) Joule |
AG Gibbs Free Energy[ mol |
1o Exchange Current [A]

Ireq Battery Current at Required Power [A]



Vlimit
Vimin

Vocv

XXV

. .| _mol
Flux of Species i [—s szJ
Stoichiometric Number of Electrons [/]
Application Required Power [W]
Ohmic Resistance [Ohms]

Linearized Electrode Resistance [Ohms]

Entropy Change [%}

Temperature [K

Battery Operating Voltage Limit [V
Battery Minimum Voltage under Load [V
Open Circuit Voltage [V

Charge Transfer Coefficient [/]
Overpotential [V]

]
]
]
]






Chapter 1

Introduction

1.1 Background

The integration of electrochemical energy storage into an electrical system has
been a field of rapid growth in recent years. The interest in sustainable, carbon-friendly
mobility technology, in particular, has led to the commercialization of electric hybrid
vehicles (HEV) and the push toward purely electric vehicles (EV). The most popular
choice for the electrochemical energy storage components in these vehicles has been
batteries due to their energy density advantages over ultracapacitors and their aging
property advantages over fuel cells. As a result, battery modeling and monitoring have
become important research topics. Additionally, the battery pack is, at present, one of
the most limiting components in an EV in terms of aging. Factors influencing the

battery aging properties have also become relevant research topics.

1.2  Problem Description

The use of electrochemical energy storage in new vehicular systems requires a
multidisciplinary approach that combines understanding of the electrochemical devices
themselves and the electric drive system. This thesis aims at broadening our
understanding of the battery from the perspective of the electrical engineers who design
the vehicles and the management systems that work with the battery packs. Typically,

the battery management system (BMS) in a battery-powered vehicle is designed to



improve the perfomance of the batteries in several ways. The following is a list of the
important tasks for the BMS:

1) Protection of battery cells against short-term catastrophic events such as
thermal run-aways.

2) Protection of battery cells against undesirable conditions that could
accelerate long-term aging, e.g., voltage unbalance between cells, thermal
stress, over-charging, and over-discharging.

3) Monitoring the amount of charge stored.

4) Monitoring the battery power capability.

5) Monitoring the battery health.

In addition to the active management that a BMS provides, the electrical
engineer also needs to take into account the battery properties and the intended
application requirements during the design process for passive components, such as the
sizing of the battery pack. The FreedomCAR consortium report provides a good
example of battery pack sizing [1]. There is also evidence in the literature that the
sizing of the DC-link capacitor in parallel with the battery pack can have an influence
on battery aging [2].

To achieve the above-mentioned active and passive management features for
vehicle battery packs, electrical engineers need to understand the battery’s fundamental
characteristics. These important characteristics include the basic information on battery
operating voltage, current, and temperature range, as well as the battery capacity rating
in amp-hours (Ah). This information is typically available in a battery datasheet and is

sufficient for the basic protection functions for a BMS. More advanced knowledge is



required for other tasks such as estimating battery power capability, battery health, and
the sizing of DC-link capacitors with respect to battery aging.

This thesis focuses on modeling of the battery voltage drop caused by current,
1.e., resistive voltage drop and overpotential. The models are intended to facilitate
online monitoring of battery power capability. Additionally, using battery resistance as
an indicator for aging, this thesis includes an investigation of the aging impact of
superimposed AC waveforms on the discharge current. Using statistical design of
experiments and analyses, factors associated with superimposed AC waveforms, such
as root-mean-square (RMS) values and frequency, are studied for their impacts on
aging. The results of this study can provide guidelines for the system engineer to size

the DC-link capacitor as a battery pack filter.

1.3  Proposed Technical Approach

With respect to the online monitoring of batteries, this thesis adopts the popular
method of recursive estimation that has been adopted in many works in the literature
such as [20], [23], and [45]. One innovation claimed in this thesis is the consideration
of the model structure. Instead of applying the linear circuit model to all types of cells
under all conditions, this thesis demonstrates that some types of cells, such as the lead-
acid cell, exhibit behavior that warrants the inclusion of the non-linear Butler-Volmer
relationship. Other chemistries, such as the lithium-based cell types, may still require
the inclusion of Butler-Volmer relationship in the model under low temperature
conditions.

With appropriate model structures, work has been done to implement online

battery power capability prediction to provide power monitoring. Additionally, a



generic battery model that includes the temperature’s influence on resistance and
overpotential has been proposed in this thesis.

To answer the question of whether an additional AC component superimposed
on the DC discharging current will cause accelerated aging, this thesis conducts a study
that designed and analyzed an experiment based on statistical principles. A notable
feature of the aging study in this thesis is its experiment design that facilitates
inferential reasoning on a sound basis. The contribution is not only the particular
results obtained during this study, but also the demonstration of the general

methodology applied to the field of battery aging research.

1.4 Document Organization

As noted in the preceding section, electrical engineers need to have an
understanding of the battery’s fundamental electrochemical processes in order to
converge quickly to practical designs related to battery pack management. These
electrochemical processes are introduced in Chapter Two, the state-of-the-art review, as
the background knowledge that is required. This state-of-the-art review chapter also
presents information on the major BMS techniques discussed in the literature for the
purpose of battery charge estimation, battery power estimation, and battery health
monitoring. To provide the necessary background for the battery aging experiments
presented in Chapter Six, basic principles of statistics, particularly for the design of
experiments, is summarized in Chapter Two.

The rest of the thesis is organized as follows: Chapter Three introduces the
mathematical model that incorporates the Butler-Volmer nonlinear behavior. The

parameter identification methods are also introduced. Lead-acid battery data obtained



from test bench and actual EV drives have been used to illustrate the benefits of the
nonlinear model over its linear counterpart. A recursive version of the Butler-Volmer
relationship-based model is then introduced. This recursive version of the Butler-
Volmer model is used in conjunction with real road data from the Corbin Sparrow
electric vehicle, which performs significantly better compared with its linear model
recursive estimator counterpart.

Chapter Four discusses the issues of state-of-function (SOF) and state-of-power
(SOP). Specifically, it is pointed out that, using the recursive estimation scheme, the
popular SOP suffers from volatility inherent in its definition. SOF with the purpose of
determining whether battery power is above a set threshold is also introduced, along
with the implementation of a confidence interval based on the Kalman filter used for
the recursive estimation. Lithium-iron-phosphate battery data are then used to
demonstrate the SOF and SOP prediction. The data are also used to compare
FreedomCAR hybrid pulsed power characterization (HPPC) test results with the
recursive estimator results, specifically their resistance and open-circuit voltage
estimates that are important for power prediction.

Chapter Five provides a summary of all of the battery estimation work in this
thesis. It focuses on the battery resistance and overpotential modeling at various
temperatures. HPPC, electrochemical impedance spectroscopy (EIS), and drive cycle
data are used to demonstrate the need for special consideration of modeling resistance
and overpotential for lithium-based batteries at lower temperatures.

A generic cell model that includes the temperature influence on resistance and

overpotential is also introduced. An adaptation of this generic cell model is proposed



for recursive estimation, and its outputs have been used for both power prognostics and
remaining charge estimation. The generic cell model approach has been found to be
suitable for a lithium-based batteries, but it is suitable for lead-acid batteries only
without regenerative braking.

Chapter Six documents a study that addresses the question of whether a
superimposed AC waveform causes accelerated aging in a lithium-ion battery. The
motivation for the study, the adopted experimental method, and the subsequent data
analysis are discussed. A second experiment designed to clarify questions after the first
experiment was also performed, and its analysis method along with its conclusions are
included in the chapter.

Chapter Seven presents the new contributions made in this PhD research
program, as well as some suggestions for future research. The appendices at the end of
the thesis contain documentation for the experimental equipment used in this thesis, the

Corbin Sparrow electric vehicle, and the laboratory test bench.



Chapter 2

The State-of-the-Art
Review

2.1 Historical Overview on Battery

The reference Battery Management Systems by Bergveld, et al has a good historic
note on the development history of the electrochemical battery [3]. Based on the
references [3-12], some important events of battery development are described here. The
Italian scientist Alessandro Volta is credited with the invention of the first modern
battery. The famous Volta pile consisted of alternating silver and zinc plates interleaved
with paper and cloth, which had been soaked with an electrolyte. This structure was
patented in 1800, while the derivation of electrochemical laws connecting chemistry and
electricity is attributed to Michael Faraday, who published his results in 1834. A

schematic of the Volta pile is shown in Figure 2.1.
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Figure 2.1 The Volta pile-first modern battery [6]
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In the early days of battery development, gas formation, a parasitic reaction, at the
electrodes plagued the devices’ efficiency. The energy used to form gas could not be
recovered [3]. The hydrogen bubble observed in these early cells could also cause a
voltage drop and an increase in internal resistance [4]. Improving upon Volta’s work, the
British chemist John Frederic Daniell invented a new type of battery to address the

hydrogen bubble problem in the Volta pile [4]. His battery is illustrated in Figure 2.2.
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Figure 2.2 Daniell battery schematic [4]

The Daniell battery, like its predecessor the Volta pile, utilizes zinc and copper as
electrode materials. The main improvement of the new battery is in the use of
earthenware to physically separate the zinc sulfuric acid (ZnSQO4) and copper sulfuric acid
(CuSOy). The earthenware is however porous and allows the movement of ions during
the electrochemical reaction. Instead of releasing hydrogen, the electrons from zinc are
combined with copper ions in the CuSOj4 solution, plating copper in the glass jar wall or
the earthenware. Before the advent of the Leclanche battery in the 1860’s, the Daniell
battery played an important role in the telegraphy industry.

Georges Leclanche patented his new battery in 1866 [5]. The new battery still

employed zinc as the anode material but had a mixture of manganese dioxide (MnO;) and



carbon as the cathode, packaged in earthenware. In addition, a carbon rod served as the
current collector. The zinc rod electrode and the cathode package are then submerged in
a glass jar filled with an ammonium chloride solution. The Leclanche batteries were
widely used in the telegraphy and early telephone industries. Carl Gassner is credited for
the zinc-carbon battery that, replacing the Leclanche battery’s ammonium chloride
solution electrolyte with a paste, became the world’s first dry cell [5]. Figure 2.3

illustrates a Leclanche battery [7].
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Figure 2.3 Leclanche battery illustration [7]

The above mentioned battery types were all primary batteries, which means they
are only capable of converting chemical energy into electricity but not the other way
around. To Gaston Plante the world’s first rechargeable, or secondary, battery is
attributed. In 1859, Plante presented a design that had a sandwich of thin layers of lead,

separated by sheets of cloth in diluted sulphuric acid. The device is charged with a
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voltage between the two lead electrodes and could then discharge the stored energy [3].
A discussion on the lead-acid battery electrochemical reaction is presented in 2.3.1.

The next important milestone in the development of battery technology is the
invention of nickel-cadmium battery by the Swede Waldmar Jungner in 1899. Thomas
Edison in the U.S., searching an alternative for the heavy lead-acid battery for electric
vehicles, developed the nickel-iron alkaline battery [3].

The lithium-ion batteries were introduced in the 1970’s and 1980’s. In 1979, John
Goodenough presented a lithium battery with a lithium cobalt oxide (LiCoO;) cathode
and a lithium metal anode. Rachid Yazami developed a system with graphite as the
anode material in 1980. The lithium/graphite system is still the most used today. Since
SONY’s introduction of commercialization of lithium-ion batteries in 1991, lithium-ion
battery has seen a rapid growth in market and is considered as a primary candidate for

commercial electric vehicles energy storage [3].

2.2 Battery Basic Structure

An electrochemical cell most likely contains the following basic components:
anode, cathode, electrolyte, and separator [3]. In electrochemical processes, an anode is
the electrode where the oxidation reaction occurs, meaning that it releases electrons to the
external circuit. A cathode is correspondingly the location where the reduction occurs,
collecting the electrons from the anode through the external circuit. For a battery cell, the
positive electrode is a cathode during discharge and an anode during charge, while the
negative electrode is an anode during discharge and a cathode during charge. In the
common literature, however, the convention is to adopt the terminal name designations

that are appropriate during discharge operation. The electrolyte is the medium that
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conducts the ions between the cathode and anode of a cell. The separator is a non-
conductive layer that is permeable to ions, yet capable of preventing a galvanic short

circuit between the cathode and anode terminals.

e e
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5 ™
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Figure 2.4 A Lithium-ion battery schematic [8]

2.3 Battery Chemistries

2.3.1 Lead-Acid Batteries
The lead-acid batteries’ electrochemical reactions are the following (left to right
for discharging) [9]:
Cathode: PbO, +HSO4 +3H" + ¢ € PbSO, +2 H,0
Anode:  Pb+HSO, €= PbSO4+H" +2¢”
Lead-acid batteries are based on a relatively old technology invented in the 19" century

by the French physicist Gaston Plante [3]. The flooded, or wet, cells are very common
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for industrial use. Since the flooded type of lead-acid batteries are usually not sealed, the
user can replenish the electrolyte that is depleted during charging through venting [10].

In addition to the flooded type, two common variants exist for the sealed lead-acid
batteries. Gel cells immobilize the electrolyte with a thickening agent such as fumed
silica. The absorbed glass mat (AGM) batteries use a fiberglass-like separator to hold the
electrolyte in place. The advantage of sealing is that the cells are more impact resistance
and can function even when the container has been damaged. But the inability to
replenish electrolyte means that overcharging can cause permanent damage to the cells.
The lead-acid battery technology generally suffers little or no memory effect [3].
Memory effect refers to the restricted capacity that some batteries exhibit when they have
been subjected to a particular limited range of capacity use. The lack of memory effect
makes this technology a strong candidate for back-up power applications. Lead-acid
batteries, however, suffer from a relatively low energy density and irreversible capacity

loss during deep discharge [3].

2.3.2  Nickel-Cadmium Batteries

One version of the NiCd batteries’ electrochemical reactions is the following (left
to right for discharge) [11]:
Cathode: NiOOH + H,0 + ¢'" €= Ni(OH), + OH"
Anode:  Cd+20H" €= Cd(OH), + 2¢"
The NiCd battery has a reputation for being robust and low cost. Due to its robustness,
NiCd batteries can be charged at a higher rate and thus in a shorter time. However, NiCd

batteries suffer from the memory effect. With a few complete charge/discharge cycles,
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the memory effect can be overcome. Another drawback to NiCd batteries is that they

have relatively low energy density [3].

2.3.3 Nickel-Metal Hydride Batteries

The electrochemical reaction can be the following (left to right for discharge)
[11]:
Cathode: NiOOH + H,O + e~ €= Ni(OH), + OH"
Anode:  Alloy[H] + OH" &> Alloy + H,O + e
NiMH batteries represent an improvement over NiCd batteries in terms of energy density.
They still suffer the memory effect despite the fact that some manufacturers claim
otherwise. A drawback of the NiMH batteries is that it has a greater self-discharge rate
compared with NiCd batteries. Also, since NiCd batteries absorb heat during charging
while NiMH batteries generate heat during charging, NiMH batteries need to be more

carefully regulated thermally during rapid charging [3].

2.3.4 Lithium-ion Batteries

One possibility for the Li-ion battery reaction, depending on the electrodes, is the
following using cobalt oxide as the cathode material [12]:
Cathode: Li;xCo0, +xLi" +xe'” €= LiCoO,
Anode: Li,C €~ xLi" +xe" + C
A common anode material for Li-ion batteries is graphite, while the cathode material has
many options of Li-based oxide. The electrolyte used in Li-ion batteries is an organic
solvent, commonly ethlyene carbon (EC). The EC reduction with Li" forms a protective
layer on the graphite anode surface that regulates the intercalaction of Li" and graphite

during charging and increases the battery life [13]. One advantage of the Li-ion batteries
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is that they have a considerably higher energy density than the preceding battery types.
However, overcharging Li-ion batteries may lead in some cases to high dangerous
conditions including explosions. As a result, careful control of the battery operating

conditions must be implemented by the battery monitoring system [3].
2.4 Electrochemical Processes in a Battery

2.4.1 Thermodynamics and the Nernst Equation

Thermodynamics, strictly speaking, encompass only systems at equilibrium [14].
As such, the reversibility of a system is an important prerequisite. A thermodynamically
reversible system is one such that an infinitesimal reversal in a driving force causes it to
reverse direction. Of course, the concept of infinitesimal change in a driving force is
ideal and the system needs to be in equilibrium to experience such a small force. A
chemically reversible system is one that when the polarity of DC current changes, the
reaction merely reverses its direction. A chemically irreversible system cannot be
thermodynamically reversible, while a chemically reversible one may or may not be
thermodynamically reversible [14].

For a thermodynamically reversible system, the linkage between electrode
potential E and the concentrations of participants in the electrode process is usually

described by the Nernst equation:

_ o, RT Co (2.4.1)
E=E +nF lnCR

In (2.4.1), E is the electrode potential in [V], E” is the standard potential of the electrode

in [V], R is the universal gas constant 8.314 in [m], T is temperature in [K], n is the
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stoichiometric number of electrons involved in the reaction, F is the Faraday constant

96485.337 in [L}, Co is the concentration of the oxidant in m_o_l , and Cy is the
mol cm3

. .| mol .
concentration of the reductant in [cm—J The electrode process for the Nernst equation in

(2.4.1) is the following, where O is the oxidant and R the reductant.

O+ne <> R (2.4.2)

The energy released in an electrochemical reaction can be separated into the

external part, Qg, and the internal part, Q¢ [14]. The external part is what dissipates in

the external circuit, e.g. a resistor or a light bulb, while the internal part is always
thermal. One way to visualize the thermodynamically reversible process for the electrode

is to assume the external resistance approach infinity. In such a limiting condition, Q is
the same as the heat traversing a reversible path, Q..,. The Gibbs free energy, AG, is

defined as the maximum net work obtainable from the reaction, which occurs at the

limiting condition Q¢ = Q. If the total work is defined as AH then the Gibbs free

energy is:

AG = AH - Qpe, = AH - TAS (2.4.3)

J
In (2.4.3), AS is the entropy change in [E] At unit activity (2.4.3) is rewritten as:

AGO = AHO — TASO (2.4.4)
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The Gibbs free energy connects thermodynamics and electrostatics via the following

relationship:

RT In K = -AGO = nFE0 (2.4.5)

Now that the electrode potential as a function of temperature has been described by
(2.4.5), the potential of a general cell, i.e. with two electrodes and electrolyte in between,

is simply:

Ecell = Ecathode — Eanode (2.4.6)

2.4.2 Kinetics of Electrodes

The reaction rate in an electrode is strongly dependent on the potential [14]. At
some voltage the current does not flow while the current flows at various degrees at other
voltage region. A potential dependent law is necessary for the description of the charge-
transfer phenomenon.

The theory of interfacial dynamics for electrodes concerns itself with the case
where the mass transport is not a limiting factor. This means the current rate is relatively
low and the electrolyte is well stirred. In 1905, Tafel shows that the current is related
exponentially with the potential. The famed Tafel equation has the following form:

n=atblogi (2.4.7)

A more advanced form of the kinetics was named after John Alfred Valentine
Butler and Max Volmer [15] [16]. The Butler-Volmer equation, in its simplest form that

assumes the dominance of charge transfer, is the following.
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1= io[exp(-a%j - exp((l-a)%)] (2.4.8)

In (2.4.8), 19 1s called the exchange current. It is the limiting current to which the
oxidation and reduction approaches at equilibrium. m is the overpotential driving the
current. The symbol a is the charge transfer coefficient. The charge transfer coefficient
is a measure of the symmetry of the energy barrier against which oxidation and reduction
take place. When a = 0.5, the reactions are symmetrical.

At small value of n, (2.4.8) can be simplified with first order Taylor series

expansion. The voltage-current relationship becomes linear.

i= —10% (2.4.9)

For a large value of 1, one of the bracketed term in (2.4.8) can be neglected due to the

F F
exponential function. If exp(— 0,%) >> exp((l—a)%), (2.4.8) becomes:

1= io[exp(-a%)} (2.4.10)
Or
n= %log 10— %logl (2.4.11)

It is clear that the empirically obtained Tafel relationship (2.4.7) can be derived
from (2.4.8) using the large current assumption in (2.4.11). By assuming the symmetry
of oxidation and reduction, o assumes the value of 0.5 and (2.4.8) can also be rewritten

using the identity of hyperbolic sine function [17].
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_RT (L
N="oF sinh 21, (2.4.12)

From the electrical engineering point of view, (2.4.8) presents a challenge when utilizing
it for prediction. The engineer usually seeks to use battery current to predict voltage
behavior because voltage across the electrode is not measurable while the terminal
current is, whereas (2.4.8) has a form of using voltage to predict current. By making an
assumption on symmetry, (2.4.12) provides an easier to use alternative.

It is noted here that all the discussion in 2.4.2 so far has been on the steady-state
behavior of the electrode. In addition to the steady state Faradaic response, the voltage
across an electrode is also governed by the transient response of the double-layer
capacitance. A charge separation occurs at the electrode/electrolyte interface with
electrode surface attracting ions of opposite charge sign in the electrolyte. This
phenomenon is referred to as double-layer capacitance [3]. Such a response is

responsible for a large portion of the transient response of the battery.

2.4.3 Mass Transfer of lons
Mass transfer is the movement of material from one location in solution to

another. Three modes of movement are commonly considered [14].

1. Migration. The movement of charged body caused by electric potential fields.

2. Diffusion. The movement of a species under influence of a gradient of

chemical potential (concentration gradient).
3. Convection. Stirring of hydrodynamic transport.
The one dimensional version Nernst-Planck equation for mass transfer in an electrode

is the following:
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Cix) zF  dp(x)
1 ox _RTDiCi ox

Jix)=-D + Cyv(x) (2.4.13)

1
In (2.4.13), J;(x) is the flux of species i in Lrgglz} at distance x from the surface, D; is the

27 0Ci(x) 0
o . . |cm ) ) ) X) .
diffusion coefficient in [T}, 81x is the concentration gradient at X, —(gix—l is the

. . . ) mol
electric potential gradient, and z; and C; are the charge [/] and concentration [E] of

. . . . |cm . .
species. Finally, v(x) is the velocity [T} at which an element moves. It is noted that the

three terms in (2.4.13) represent diffusion, migration, and convection, respectively.

If the electrolyte is plentiful and stirring at the electrode ineffective, (2.4.13) is
reduced to only the diffusion term. The rate of mass transfer is then proportional to the
diffusion term. Suppose further that at x = ) and beyond, the concentration of species is

the same as the bulk solution C;*. For the case of a linear concentration gradient, the

diffusion profile looks similar to Figure 2.5.
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C*i

Ci

X
Figure 2.5 Example Diffusion Profile
In the linear gradient case, the current due to the diffusion profile is related as:
i
ﬁ = mi( Ci* — Ci(X = 0)) (2414)

. | . ... |cm
, where A is the area of electrode in [EJ and my; is the mass transfer coefficient in [T}

) . 1 .| mol C . .
It is pointed out here that TFA has the unit [ 2}, which is the unit of reaction rate. The

s cm
maximum rate of mass transfer of species i occurs when Cj(x = 0) = 0. The value of the

current under this condition is:

il = nFAmiCi* (2415)
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When current is at the rate of limited value, 1}, the reaction is occurring at the highest

possible rate since the ions are being consumed completely at the electrode/electrolyte

interface. Using (2.4.14) and (2.4.15), the ratio between C;* and C;(x = 0) can be found

as:

Ci(x=0) i
Now consider a more realistic version of (2.4.8) where the Butler-Volmer

equation takes into account the species concentration at the electrode/electrolyte

interfaces of cathode and anode.

Co(x=0 Cr(x=0
1= io[%exp(-a%j - %exp((l-a)%ﬂ (2.4.17)

The subscripts O and R represent oxidation and reduction, respectively. By first order

Taylor series approximation, (2.4.17) can be written as:

i Co(x=0) Cr(x=0) nF

ig = C*  ~ Cg* ~RT (2.4.18)
By substituting with (2.4.16), (2.4.18) can be rewritten as:
_RT(1 11

, where subscripts Ic and la mean the limiting value for cathodic and anodic reactions,

respectively. Cathodic limiting current occurs when Cy(x = 0) =0 and anodic limiting

current occurs when Cr(x =0) = 0. The linear relationship between voltage and current
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in (2.4.19) is noted here. Such an approximation is the basis for modeling steady-state

charge-transfer and ion distribution in electrolyte with resistors in battery models.

2.5 Battery Modeling Approaches

This section discusses the various types of battery models seen in the literature.
In general the complexity of the model is constrained by the application. Specifically, if
the battery model is intended for online, vehicular application, the model is required to be
computationally manageable for the onboard computing unit. On the other hand, certain
simulation works are for the development of battery materials, manufacturing process,
etc. These would require more complex models that illuminate the various physical
aspects concerning the battery’s performance.

Three general categories of battery modeling approaches are:

1. Electrical equivalent circuit models. This genre of models usually captures the
relationship between terminal voltage and current by the means of electrical
circuit network.

2. Curve-fitted behavioral models. This school of approach relates the interested
quantity, e.g. available Ah, with other measured quantities in non-physics based
rules.

3. Physics based models. This set of models attempts to recreate the physical

processes in a battery using first principle laws.

2.5.1 Electrical Equivalent Circuit Models and Various Parameter Estimation Methods
As discussed in 2.4.2 and 2.4.3, various processes relating voltage and current in a
battery can be approximated as linear under certain assumptions. These linear

approximations can be realized using resistors in the equivalent circuit models. In
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addition, capacitors in equivalent circuit models offer a convenient means to mimic the
transient behavior of the battery.

The electrical equivalent circuit approach has been applied to various battery
chemistries, including lead-acid, NiMH, and lithium-ion [18], [19], [20]. An example of

the equivalent circuit model is shown in Figure 2.6.

Ry
SATLE
A VAVAY e
Diffusion Voltage ||
Var(Ahr, Time) G4 mTerminal
Voltage

lpatt Vbatt

+

Effective
Sourcel
Vst
Open Circuit Voltage

- T Vbeu(SOC) -

Figure 2.6 Example of a Battery Equivalent Circuit Model [21]

When the equivalent circuit model is to be used offline in a simulation
environment, the parameters to the elements, i.e. resistors and capacitors, need to be
identified using results from a standardized experiment. A common experimental
procedure for such a purpose is the FreedomCAR consortium’s hybrid pulsed power

characterization (HPPC) test [1].

2.5.1.1 The FreedomCAR HPPC Method for Parameter Estimation

The HPPC test applies step currents both charging and discharging to the battery
at various state-of-charge (SOC) levels. The difficulty in defining SOC on a practical
basis is discussed in section 2.6. For now, SOC is considered as the ratio between the
cell’s available coulomb charge vs. maximum charge. Figure 2.7 shows the pulsed

current profile used in the HPPC test.
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Figure 2.7 Example HPPC Pulsed Current Profile [1]

The complete HPPC test procedure consists of a repetition of a constant current to
move the SOC by 10% decrement, one hour rest, and the HPPC test profile. The test will
be performed from 90% to 10% SOC. Before the HPPC procedure begins, a complete
discharge and a consequent recharge is also recommended to keep the test battery status

consistent.
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Figure 2.8 HPPC Test Procedure (Starting Sequence) [1]

Figure 2.8 shows the testing procedure for HPPC with the discharge/charge cycle
that resets the battery status, a rest period before test that allows the temperature control
to be effective, and the sequence of moving SOC, rest, and pulsed current profile. With
the step current input and voltage response data, the battery’s electric circuit model
parameters can then be extracted. See for example [22].

In addition to the electrical element parameters, a simulation equivalent circuit
model also requires the information relating SOC and the open-circuit voltage (OCV).
Based on the thermodynamics discussed in 2.4.1, it is clear that OCV is a function of the
concentrations of the ionic species in the electrolyte, thus the SOC. For a fixed
temperature, this OCV vs. SOC relationship can be empirically obtained with a slow

current discharge and recharge procedure. See for example [23].
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Figure 2.9 Low current charge and discharge curves for obtaining OCV vs. SOC
information [23]
It is noted here that because of the thermodynamics involved the OCV vs. SOC
relationship also depends on temperature. This caveat presents a challenge to the
modeling effort. Figure 2.9 presents an illustration of the low current discharging and

charging data for the estimation of OCV vs. SOC relationship for a Lithium-ion polymer

battery [23].

2.5.1.2 The Electrochemical Impedance Spectroscopy (EIS) Method for Parameter
Estimation
Another method for populating the equivalent circuit parameters is the
electrochemical impedance spectroscopy (EIS). EIS is an established experimental
technique in electrochemistry, usually used to differentiate material properties. For a
comprehensive discussion on the EIS technique, the interested reader is referred to [24]

and [25]. Here the basic principles for the technique are outlined.
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By definition, an impedance of a system for a particular frequency is the division
of its voltage phasor by its current phasor. To perform EIS on a battery, a small
excitation signal, current or voltage, at a fixed frequency is injected to the test subject,
and the resultant response, voltage or current respectively, is measured to find the
impedance of the battery at the fixed frequency. The procedure is repeated for multiple
frequencies and the impedance results are usually presented with the format in Figure

2.10.

-0.0120

—&— Solatron —®— Li-lon Cycler
-0.0100
-0.0080 /
-0.0040 //' \\\
/
/

Imaginary Impedance (ohms)

-0.0020

0.0000 #
0.0500 0.0550 0.0600 0.0650 0.0700 0.0750 0.0800 0.0850

Real Impedance (ohms)

Figure 2.10 An example of a lithium ion battery impedance spectroscopy plot. The
particular plot shows the agreement of the data obtained from two separate testing
equipment [26]

In Figure 2.10, the y-axis is the impedance while the x-axis is the real impedance.
Each data point represents the impedance for one single frequency. The choice of
reversing the sign for imaginary impedance on the y-axis is due to the fact that most of
the electrochemical systems display a capacitive behavior, i.e. negative imaginary

impedance, at lower frequency range. The semicircle is thus more conveniently viewed

with the reversing the imaginary impedance on the y-axis. The impedance data can also
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be fitted to an equivalent circuit model. The choice of the model is somewhat arbitrary,
but they usually involve RC structures for the lower frequency region. In order to take
into account the positive imaginary behavior, a series inductance can also be added to the
model. It is also pointed out here that the lower frequency data is generally on the right

side of the figure.

E electrods

ey AW

Figure 2.11 Example of equivalent circuit to be fitted by EIS data [27]

In Figure 2.11, an equivalent circuit to be fitted by EIS is shown. Notice the lack
of OCV in the model; this is explained by the use of AC signals in EIS and the signals’

inability to identify DC quantities. The Zjectr0de term represents a part with a constant

phase element (CPE). This somewhat unusual model element aims to represent the
diffusive response in the battery. The detailed derivation of CPE and its justification
used in modeling can be found in [24]. Here it is briefly mentioned that the diffusion
phenomenon observed in the electrolyte would in reality require an infinite number of
elements to model, as the elements are distributed in space instead of being lumped
within a local point. The diffusion behavior, in fact, is not unlike a transmission line,
which can be modeled with an infinite series of RC circuits. Thus, battery equivalent
circuit model can be represented in a ladder of RC circuits or utilizing the CPE. The

main benefit of using the CPE vs. the RC ladder is the saving on model parameter terms.
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As there are a finite number of data points in EIS, the saving of terms is important from

the perspective of statistics.

‘1
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Figure 2.13 The ideal impedance plot of one RC, five RC’s, and the circuit using CPE
[29]

Figure 2.12 shows an example for interchanging five sets of RC circuits in series
with a CPE parallel with a resistor. Figure 2.13 is their corresponding impedance plot,
which shows the close agreement between the five RC’s and the circuit utilizing a CPE.
In reference [29], a methodology for converting the circuit with CPE to a series of RC’s
is mentioned.

The drawback of CPE is its unusual requirement for a fractional order (non-
integer) derivative and is thus inconvenient for mathematical transform between

frequency domain and time domain. The realization of CPE behavior in the time domain
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would require the use of fractional calculus and its unique feature of using infinite
memory. See [30] for the related mathematical treatment of fractional order system in
time domain. For the readers who are interested in an example for system identification
applied to a fractional order model in the application of an electrochemical system, they
are referred to [31].

For the applications such as SOC, SOH prognostics, EIS has been applied to
batteries under many different operating conditions. For a lithium nickel-cobalt-
aluminum (NCA) battery, the effect of SOC on EIS results has been studied in [28],
which shows that the lower frequency segment of the impedance trajectory is dependent
on the SOC. EIS has also been used for studying the effect of temperature on a battery
[80] [126]. For lithium NCA [28] and lithium iron-phosphate (LiFePO4) batteries (in this
thesis), it has been shown that lower temperature has the effect of enlarging the
capacitive semi-circles and increasing the series resistance Ro.

For a lead-acid battery, researchers have shown that the EIS impedance plots vary
as a function of the battery dc bias current [141]. For a lithium-based battery, EIS was
performed at a single non-zero value of dc-bias current in [142], but no published
literature appears to have investigated the effects of a range of dc bias current values on
the impedance spectrum of lithium batteries in conjunction with temperature variation.
This is important because the ability to accurately model battery performance under a
wide range of operating currents and temperatures has a major impact on the accuracy of
battery condition estimators that depend on these models.

In the literature, batteries have often been modeled using linear equivalent circuits

[20[28, [32[33[45]. While nonlinear capacitors in the form of CPE and multiple RC
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circuits have been used to model the complex shapes of battery impedance spectra, it is
important to note that these complex equivalent circuit models retain a linear relationship
between the steady-state electrode voltage and current. This is a key point to
understanding the contribution of this thesis, particularly for the contents in chapter three

and chapter five.

2.5.1.3 The Recursive System Identification Method for Parameter Estimation

The third method by which an equivalent circuit model’s parameters can be
populated is using recursive system identification with the excitation from the load. This
method assumes that there exists sufficient excitation during the use of the battery such
that the battery parameters can be recursively updated. To the author’s best knowledge,
Wiegman was the first researcher to recognize the opportunity to apply recursive system
identification for battery under load [20]. In 1999, Wiegman demonstrated a system by
which he could track the varying parameters of the equivalent circuit model under
dynamic load conditions, achieving online monitoring which the HPPC and EIS methods
could not. Unfortunately, Wiegman’s contribution has been largely overlooked; out of
the large literature devoted to the same approach, only a few quoted Wiegman’s original
work, including [21] and [41].

Instead of quoting Wiegman’s work, most of the authors in the field seem to agree
that the work by Plett in [23] [32] [33] is the beginning of the recursive system
identification approach for obtaining equivalent circuit parameters online. In a series of
three papers published in 2004 [23] [32] [33], Plett introduced his methodology in good
details, including a tutorial on the recursive system identification using the Kalman filter,

battery model derivations, and experimental results. The result of Plett’s work was an
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explosion of the application of the recursive system identification approach in the field,
including [34] and [46]. In this thesis, the basics for recursive system identification will

be covered in 2.9.3.

2.5.2 Curve-Fitted Behavioral Models

In addition to the equivalent circuit model, a different approach has been offered
in the literature, namely the curve-fitted behavioral model. The purpose of these models
is usually to provide the user a prediction on a quantity of interest, e.g. SOC, based on a
data driven approach. The origin of this methodology in the area of electrochemical
modeling is perhaps Peukert’s work in 1897. What Peukert discovered was that different

magnitudes of discharging current led to different coulombs available for consumption at

the load.
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Figure 2.14 Voltage vs. extracted Ah for various constant current discharges for an
Optima D34M lead-acid battery

Figure 2.14 shows experiment data for battery voltage against the extracted Ah

for various constant current discharges for an Optima D34M lead-acid battery. As seen



33

in Figure 2.14, the battery’s voltage collapses earlier under a higher current value,
causing the extracted Ah considerably smaller then it would otherwise be.

This behavior is not explained by thermodynamics which assumes the equilibrium
condition, i.e. an infinitesimal discharging current. However, when considering the
necessarily present battery parasitic resistance and the Butler-Volmer relationship on the
electrodes, the phenomenon is at least partially explained. Additionally, higher current
can lead to an earlier depletion of ions in the electrolyte region close to the electrodes,
causing a premature drop in voltage. Regardless of the underlying physical causes, the

famous Peukert’s law attempted to model such a phenomenon with the following [20]:

K I"'=const., n > 1 (2.5.1)

, where K is the available battery capacity in [Ah]. In (2.5.1), K is now a function of
discharge current. A law such as this provides the user a more realistic expectation for
the Ah available for extraction based on the discharge current value. However, the
literature has shown that lithium-ion cells do not exhibit the same Peukert relationship as
lead-acid batteries, as seen in Figure 2.15 [51]. This could be due to the different

diffusion relationship lithium cells have.
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Figure 2.15 Voltage vs. extracted Ah for two constant current discharges for a lithium-ion
cell [51]

Further advances were made using Peukert’s discovery for the implementation of
online battery SOC estimation on electric vehicles and other applications. Fuzzy logic or
other sophisticated algorithms were used to formulize the relationship between available
charge and other measurable quantities such as current magnitude [48] [52]. Other works
adapt Peukert’s discovery in their SOC estimation with more straightforward
formulations; these normalize the Ah rating of their battery with respect to current
magnitude and sometimes with temperature [53] [54]. When calibrated well for the

intended application, these methods can demonstrate good results.

2.5.3 Physics-Based Models
This genre of models has attracted much research activity in the recent years due
to its ability to relate theoretical electrochemical phenomena, such as diffusion and

charge transfer, with measurable terminal characteristics, voltage and current. One of the
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first papers published and frequently cited by subsequent literature is the 1993 Doyle,

Fuller, and Newman paper [55]. In the following, the derivation of the Newman model is

summarized using the original notations.

2.5.3.1 A Summary for the Physics-Based Model Proposed by Fuller et al

The Newman model considers the galvanostatic charging/discharging behavior of

the cell structure in Figure 2.16.

lithium foil composite
anode cathode
polymer
electrolyte
ds Oc |
-
x=0

Figure 2.16 An one dimensional lithium/polymer cell sandwich in Newman model [55]

The following table lists the symbols, subscripts, and superscripts from the paper by

Doyle et al [55].

Table 2.1 List of symbols, subscripts, and superscripts in [55]

Symbol Interpretation Unit
a specific interfacial area m?2
m3
c concentration of electrolyte mol
3
m




o concentration of polymer solvent mol
m3
c; concentration of species i mol
m3
Ct maximum concentration in solid mol
m3
Cg concentration in solid mol
m3
Cax maximum concentration in polymer mol
m3
c0 initial concentration in polymer mol
m3
D, Dy diffusion coefficient of electrolyte in the polymer and of lithium in the solid m?
s
matrix
f activity coefficient /
F Faraday’s constant = 96487 C
eq
i current density A
m2
iy exchange current density A
m2
I superficial current density A
m2
n pore wall flux of lithium ions mol
s m2
k, reaction rate constant at cathode/polymer interface m*
mol s
Ky anodic reaction rate constant m3
s
k. cathodic reaction rate constant m3
s
K, frictional coefficient Js
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n number of electrons transferred in electrode reaction /
N; molar flux in x direction of species i “mol
s m?
r distance normal to surface of cathode material M
R universal gas constant = 8.3143 J
mol K
R radius of cathode material M
s; stochiometric coefficient of species i in electrode reaction /
t time S
tiO transference number (fraction of total electric current that anions and cations carry /
in passing through an electrolytic solution) of species 1
T temperature K
u utilization of intercalation material /
U open-circuit potential \Y%
v; velocity of species i m
s
X distance from the anode m
z; charge number of species i /
a transfer coefficient between 0 to 1, as in the Butler-Volmer equation /
§ activity coefficient correction /
) dimensionless current density /
d thickness of separator m
d, thickness of composite cathode m
€ porosity of electrode /
¢ activity coefficient correction s
n surface potential A"
®p site concentration in polymer /
(C) site concentration in solid matrix /
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K conductivity of electrolyte S
m
v dimensionless exchange current density /
Vi, V. number of cations and anions into which a mole of electrolyte dissociates /
c conductivity of solid matrix S
m
T dimensionless time /
v; electrochemical potential of species i J
mol
(0] electrical potential A"
Subscript Interpretation
c cathode
r reference state
s solid state
T maximum concentration in intercalation material
1 solid matrix
2 solution phase
Superscript Interpretation
0 solvent, or initial condition
0 standard cell potential

It is noted in [55] that the presented model does not include the second order

mechanisms such as film formation and volume change. As a result, this version of the

model cannot be used for studying aging properties. The separator consists of a polymer

material that serves as the solvent for a lithium salt. Using the polymer as the reference

material and assume its velocity as zero, the mass transfer equation (2.5.2) is rewritten as

(2.5.3).
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iV Hi = Zizg Ky~ V) 252)
itio
N+=—V+DVc+Z+—F (2.5.3)
itio
N.=—vDVc+ ~F

The material balance for the salt in the separator is enforced with:

ac d(In Co)) j i, Vt,9(c)

ot V'(D(C) (1 ~dno) ) V)T ZvF (2.54)

The current in the solution phase, iy, is related to both the potential gradient and the

electrochemical gradient and is given as:

0
iy =0V, - XERL (1 Sl (S—H L (C)jvm c 25.5)

F Olnc/\nv,  z,v,

At the lithium anode, x is set to be 0. The charge-transfer reaction that occurs at the
electrode following the Butler-Volmer equation is given as:

=i [ex (aaanslj_eX (achnslj}
01] XPURT PURT (2.5.6)

N1 =P -0 -0y
ig; = F(kal)acl(kcl)aal(c — Cmax)acl (C)aal

The current model used here, the reaction stoichiometry, is intended for the
polymer electrolyte. For the liquid electrolyte, the model can be further reduced as a
simple charge-transfer process. The potential of the solid lithium phase is set to zero as
the boundary condition at x = 0. The other boundary condition is equating the net

transfer of current at the interface.
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N+=Fatx= 0 (2.5.7)

The flux and concentration of each species and the potential are assumed to be

continuous at the other boundary, x = 8. Because the composite cathode consists of both

the solid active particles and the polymer/salt electrolyte, the model assumes the volume
fraction of each component is known. The two phases are treated as superimposed

continua, and the material balance on the lithium in the cathode gives:

oc L Vt,00c) aju(l -t,9
g5 =V (eD(c) V) - Zv.F Ve

(2.5.8)

The extra term j,, compared with (2.5.4) is the pore wall flux of lithium ions across the

interface.

ajn == Vi (2.5.9)

Furthermore, the model takes into account of the composite nature of the cathode and the
consequent lengthening of the ions’ traveling path. The coefficients for the modification

are also assumed known.

2.5.10
Defr = De05 ( )

The boundary condition at the solution phase is that the flux of each species is equal to

zero at the end of the cathode where the current collector is connected.

N;=0atx =35+ 3, (2.5.11)
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In addition, by assuming the active cathode particles are of spherical geometry

with diffusion being the mechanism of transport of the lithium, the material balance is

described by:
ocg 02cg  20cq
5= Ds{ 2 +T5 (2.5.12)

, where r is the direction normal to the spherical surface. The other boundary condition is
the relationship between pore wall flux across the interface and the rate of diffusion of

lithium ions into the surface of cathode active particle.

oc

jn=-Dy7 atr=Ry (2.5.13)

A general expression for the OCV of the insertion material is given as the

following:

RT cr—¢
U2=U29_Uref9+?(ln( Tcs stchSJr(;j (2.5.14)

, where B and  are empirical values fitted to give more accurate results. By taking into
account of the insertion process in the cathode, the kinetic expression for voltage and

current relationship is given as:

o, F

) a . ocF .

= P Cman — )55 ciexp o - U (e - cx)excl “pokn - U) |
RT

U'=Us0— U + F (Bcs + C)

n=o%- 0,0

(2.5.15)
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Finally, the currents in both solid and solution phases are required to add up to the total

current through the cathode:

[=1+1p (2.5.16)

The equations for simulating the physical phenomena in the example lithium anode,
polymer electrolyte, and composite cathode system are now complete for the simulation

of the system charging/discharging behavior.

2.5.3.2 Benefits and Disadvantages for the Physics based Modeling Approach

Since the publication of [55], many other works involving battery modeling has
adopted the same physics based approach that’s characterized by an emphasis in the
interaction of the electrochemical domain and the electric domain using tools such as
geometric assumptions, Fick’s diffusion laws, and the Butler-Volmer kinetics equation
[56] [70]. Additionally, finite element analysis software is now available for the physics
based approach; for example, see [69].

An obvious benefit of the physics based approach is the explicit nature of the
model. In fact, many researchers have proposed control schemes taking advantage of the
explicitness of the model to achieve management and/or monitoring of aging [58] [59]
[60] [61] [66]. In order for controls engineer to take advantage of the physics based
model while maintaining the ease of implementation, modifications are also frequently
made to the partial differential equations based physics models; see [60] and [61] for
example.

It is also pointed out here that the physics based models usually involve certain

assumptions that enable their derivation. [68], for example, compares the assumptions of
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one-dimension vs. two-dimension for the sandwich cell structure. Additionally,
“fudging” coefficients such as the effective traveling length in (2.5.10) is more likely
selected based on curve fitting performance than actual measurements. In general, the
physically meaningful parameters are not readily available except to the manufacturers of
the cells, who usually guard their trade secrets and patents rigorously. One practice is to
use values for parameters based on available literature, but the variety of cells and
materials available far exceeds the ones that have published data.

From an electrical engineering perspective, it would be desirable to estimate the
parameters of the physics based model based on the measurable terminal quantities, i.e.
voltage, current, and temperature. However, given the complexity of the model and the
sheer number of the parameters, it is unlikely that all the parameters of the model will be
found statistically significant. The concept of statistically significance will be covered in
2.9.1. It suffices to point out here that a parameter’s existence in the model is supported
by the data only if the estimated parameter value is statistically significant. [63] studied
the model structure proposed in [55] and found that many parameters are unidentifiable
or statistically insignificant. As pointed out in [63], while the physics based model’s
parameters can be numerically fitted and the model with the fitted parameters can achieve
good results in battery terminal response prediction, the internal states and insights are
unreliable as a result of the lack of information in Fisher’s sense. The interested reader is
also directed to another example for studying the identifiability of the physics-based
model in [64]. See 2.9.1 for an introduction of some concepts in statistics relevant to this

work, including the Fisher information matrix.
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2.6  State-of-Charge Estimation

One of the most studied metrics in a BMS is the SOC. The strong interest on the
SOC metric is due to the perceived utility of the SOC in predicting the remaining battery
use time/vehicle mileage until depletion. This perceived utility perhaps stems from the
common experience with the fuel gauge in a gasoline vehicle which correlates well with
the remaining mileage. A few difficulties exist for applying the same approach with
battery.

First is that a direct measurement of the SOC is usually not available. Except for
the flooded lead-acid batteries for which a hydrometer is available for monitoring the
lead-acid battery electrolyte density, thus the make up of the electrolyte and subsequently
the SOC [71], SOC usually cannot be measured directly.

The second difficulty is that the application’s requirement for power delivery is
not guaranteed to be met by the battery even if the stored charge has not been depleted.
One example of this dilemma is the Peukert’s law in (2.5.1), which shows the available
charge decreases when the required discharge rate increases, i.e. voltage drop too
significant for power delivery under high load. Another scenario in which stored charge
does not guaranteed the delivery of required power is at lower temperature. At lower
temperature, the reactions in a battery decrease their activity rates as described by the
empirical Arrenius relationship [14]:

Ea

k=A exp(—ﬁj (2.6.1)

, where k is a rate constant and E 5 has units of energy. A direct consequence of (2.6.1) is

that battery has a higher impedance value at lower temperature [28], reducing its power
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capability as a result. In addition from the discussion of thermodynamics in 2.4.1, the
OCV of a battery drops as the temperature decreases, further reducing the battery power
in the low temperature operating region.

Despite the difficulties, the SOC metric has remained an interest of the literature.
The remaining of the section is devoted to a review of the SOC estimation methods

proposed by researchers in the field.

2.6.1 Coulomb counting
The most straightforward method to estimate SOC is coulomb counting. The

method assumes a fixed amount of charge, Q.. 1s available after the battery is fully

charged. The SOC is then normalized as:

Qtotal - Qout

SOC =
Qtotal

x 100% (2.6.2)

As discussed in 2.5.2, different discharge current magnitudes would give the battery

different available charge, Q;yt,. Some works adapt the Peukert modification for Qg

to, such as [53], [54], and [72].

The coulomb counting method is susceptible to current measurement noise. Due
to the integration of current sensor error overtime, the coulomb counting method needs to
be reset to ensure reasonable performance. The SOC value is usually reset at 100% after
a full charge. This ensures the reliability of the coulomb counting method as long as the
charging algorithm is consistent. Another issue with coulomb counting method is that
not all the electrons are absorbed by the battery during charge, i.e. the coulomb efficiency

is not 100% [73]. As a result, the coulomb counting method needs to have information
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about the coulomb efficiency of the battery for estimation accuracy during regenerative

charging.

2.6.2 Voltage-based methods

Another method to determine the SOC is by its terminal voltage, either in open
circuit or connected to an external load. The open-circuit terminal voltage is correlated
with the SOC based on thermodynamics. However, the open-circuit terminal voltage
measurement needs to be taken after a rest period in order for the diffusion process inside
the battery to be completed. This rest period requirement greatly reduces the
opportunities for taking advantage of this correlation to accurately predict SOC in an
online battery monitoring application. The terminal voltage with an external load can be
measured online, but the voltage reading’s correlation to SOC is reduced due to voltage
fluctuations caused by load current variations and the diffusion process dynamics.

In order to overcome the lack of measurement for OCV during loaded condition,
researchers have proposed variants of observer and Kalman filter to estimate the OCV
and SOC. For this linear filter approach, the estimated states, usually including OCV
and/or SOC, are estimated recursively and updated at every sample time. In some earlier
versions, the battery electrical circuit model is assumed to have constant parameters and
OCYV or SOC is treated as a state to be estimated [42] [74]. Later versions of the filters
proposed in literature include the estimation of parameters such as the resistance, as
related in 2.5.1.3.

One difficulty in using estimated OCV for SOC estimation is that battery
manufacturers have strived to maintain OCV stability even as the battery charge is being

depleted. This characteristic of some lithium-ion cells makes the task of inferring SOC
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from OCV even more challenging. For lithium-iron phosphate cells, the OCV vs. SOC
curve is relatively flat, magnifying the error in SOC estimation due to error in OCV
estimation, see Figure 2.18 for an example. The lead-acid battery, on the other hand, has
a more pronounced drop of OCV as a function of decreasing SOC, as shown in Figure

2.17.
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In addition, the relationship between OCV vs. SOC is usually obtained offline via
procedures such as the HPPC test. When implemented to a recursive algorithm, the
empirically obtained data is usually fitted into an equation to estimate SOC. The fitting
process can also cause an error for the relationship of SOC as a function of OCV, which
cannot be corrected by the recursive estimation; for an analysis tackling this source of

inaccuracy, the interested reader is referred to [75].

2.6.3 Impedance-based methods

For various types of batteries, impedance-based methods have been proposed to
estimate SOC. The basic idea is to measure the impedance spectra at different SOCs in
an effort to correlate the measurements with the SOC values as determined by the

coulomb counting method. Several parameters are proposed as possible candidates for
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SOC indicators, including high frequency resistance, resonant frequency, and voltage
relaxation time constant [76] [77] [78] [79].

As discussed in 2.5.1.2, EIS is an established technique for electrochemical
system impedance measurement. For a review of using EIS and resistance measurement
for SOC estimation, the interested reader is referred to [80]. For a lead-acid battery, Huet
found that the series resistance value of the system is strongly dependent on SOC,

providing a means for SOC estimation [80]. However, a later study by the same author
) C C .
and others cycled a lead-acid battery at both 10 and Too Tates found the resistance
dependence on SOC is a function of the discharge rate, i.e. the dependency is found to be
C . . . . . .
less strong at 7o rate discharge cycling. Since the high-frequency resistance provides

information on the PbSO, layer structure, it depends on the history of the previous
cycling of the cell. For different discharge rates, different SOC values may correspond to
the same value of high-frequency resistance [76].

Additionally, some researchers have found that the resonant frequency, i.e. the
frequency at which the battery turns from capacitive to inductive, of a NiMH or NiCd
battery is dependent on SOC [78]. Other researchers have pointed out the change in
relaxation time constant as a function of SOC for lead-acid batteries [79]. The common
characteristic of all these methods is the establishment of an empirical relationship
between one measurable quantity and the SOC as determined by coulomb counting. This
empirical relationship is then proposed as the substitute measurement for SOC. Two
main drawbacks of this approach are briefly discussed here. The first is the required

measurement may not be readily available. To perform EIS, specialized equipment is
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needed, and the battery is required to be at no load condition. The second drawback is
the potential confounding of the SOC and other factors on the measured metric. For
example, the temperature effect on the value of battery impedance is a well established
fact. Aged batteries also have more impedance in general. The change in impedance
value is not easily attributed to either SOC or temperature or aging.

Finally, instead of relying on impedance of the whole frequency spectrum, some
researchers have proposed using a single frequency injection. Coleman et al reported a
SOC estimation scheme based on the high-frequency impedance (1 kHz) and the
estimation of open-circuit voltage. The impedance is measured with an injected carrier
frequency. The method essentially substitutes the EIS method with a single frequency to
achieve the speed required for application. Based on the high-frequency impedance, the
total impedance is inferred in a per unit fashion. The impedance information, along with
some observation laws, deduces the OCV obtained through the Kirchoff voltage law.
The claim is made that the internal resistance is not a reliable indicator of the SOC,

having only little change for SOC > 50% and this approach helps mitigate that limitation.

2.6.4 Empirical data driven methods

This genre of methods is basically those curve-fitted behavioral models discussed
in 2.5.2. The definition of SOC in these methods is usually more application focused.
Instead of using a correlation between a measured metric and coulomb counting SOC to
infer remaining charge, these methods set up data driven models that predict the end of
discharge for their applications. The models can be based on neural networks or other
types of data management techniques. The interested reader is referred to [49] and [50]

for examples of this approach.
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2.7 Battery Aging Processes, Methods for Aging Prediction, and

State-of-Health Estimation

2.7.1 Battery Aging Processes

Another important metric a BMS may be required to provide is the SOH metric.
SOH is a relative indicator for battery aging. Two important aging related metrics are
commonly used. One is the battery full capacity under constant current discharge, and
the other is the battery resistance. The two metrics are negatively correlated as aging
increases the resistance and decreases the capacity; see [96] for experimental validation.
Based on the discussion below, one of the main lithium-ion battery mechanisms involves
the electrolyte decomposition and the subsequent increase in the solid electrolyte
interhpase (SEI) layer. This provides a theoretical explanation to the correlation between

resistance and capacity.
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Figure 2.19 Battery resistance vs. capacity as aging progresses [96]
Different chemistries of battery have different physical mechanisms for aging.

For lead-acid battery, grid corrosion, sulfation, change in pore structure in the electrode,

and water loss have been cited for reasons leading to aging [84] [88]. For lithium-ion
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batteries, the common mechanisms cited for aging include electrolyte decomposition
leading to SEI layer buildup, solvent co-intercalation and subsequent cracking of
formation in electrode, change in electrode volume and surface area due to SEI layer
growth, and current collector corrosion [85] [86] [93] [95] [103] [104]. Figure 2.20
shows a schematic describing some aging mechanisms at the graphene layer/electrolyte

interface.
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Figure 2.20 Changes at anode/electrolyte interface for a lithium ion battery [103]

For lithium-ion batteries, the storage time, storage temperature, and SOC during
its storage are shown to be related to capacity loss [85] [93]. Additionally, temperature
during operation has been identified as a major aging accelerator for batteries due to the
facilitation of irreversible reactions [93]. Furthermore, the use history of the battery
influences the battery aging; factors such as charging terminal voltage, depth of
discharge, charging and discharging rates, have influence on battery’s aging performance

[90] [98].
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One additional challenge for understanding battery aging process is that two
modes of use, storage and cycling, can lead to different aging characteristics. The stored
cells sometimes are used as baseline for comparing with data from cycling cells; see [2],
[90], and [96] for example. Depending on cell chemistry, stored cells can sometimes

show more aging in resistance; see [90] for instance.

2.7.2  Methods for Aging Prediction

For aging performance prediction of a battery, a few genres of methods are
discussed in the literature. The first is to construct physics-based model that include
secondary reactions responsible for aging [60] [61] [68] [88] [99]. This approach relies
on detailed modeling effort discussed in 2.5.3; consequently, the disadvantages of the
physics-based approach are inherent to this method of aging prediction. Furthermore, the
aging mechanisms are usually secondary and smaller in their response magnitude
compared with the primary reactions. This could make ascertaining their effects with
experimental data more difficult. In addition, to implement these partial differential
equations based models in control applications, further simplifications to the models are
required. Works have been proposed to adapt complicated aging models into forms
suitable for control application [60] [61], and the authors pointed out the reliability of
their simplified models solely depends on the quality of the original work they adapted
from.

The second method focuses on the empirical fitting of aging metrics based aging
data. This approach usually involves the following steps [2] [85] [90] [91] [92] [95] [96]
[97]1[98] [105] [111][112][113].

(1) Placing batteries under specified test conditions. The test conditions are
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determined by the questions interested by the experimenter, e.g. influence of
temperature, SOC, etc on aging.

(2) Periodic measurement of battery characteristic metrics, i.e. capacity and
resistance. For resistance, both HPPC and EIS can be used.

(3) Empirical fitting of data to the selected models. The fitted models can be used to
guide expectation of battery performance in the field. Additionally, the effect of
the test conditions on aging can be numerically evaluated for quantification.
However, as pointed out in [98], many works present only experimental curves

on capacity and resistance without fitting of data to equations.

Hochgraf et al presented a study on cycling dynamics’ effect on lithium-ion cell
degradation [2]. At 40°C, six cells were prepared with two of the cells subjected to each
of the three drive conditions: baseline dynamics, modified (reduced) dynamics, and
storage (calendar). The results showed that the reduced dynamics drive cycle could have

a reduced aging characteristic compared with the baseline dynamics.
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Figure 2.21 Average relative resistance at 50% SOC vs. time [2].
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Broussely et al presented an experiment in which they subjected batteries under
different float charge voltage and under different temperatures [85]. The cells were
subjected to periodic capacity tests and the results were plotted against different test
conditions. The data were used to infer on possible degradation mechanisms of the cells,
such as the interactions of negative electrode with electrolyte.

Ecker et al presented a study where they considered both calendar and cycling
conditions for aging [90]. They concluded for their cells the storage condition is more
detrimental than the cycling condition, and they built a life prediction model based only
on the storage condition. The model involves both statistical reasoning and
electrochemical reasoning as presented in previous works. The change in impedance as a
function of aging is then combined with thermal analysis for a more comprehensive

lifetime modeling approach.
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Figure 2.22 Overtime comparison between cycling and calendar conditions [90]

Dubarry et al presented work where they initially characterize 10 cells and found
the consistency of the cells up to their satisfaction. Subsequently one of the cells was
chosen as representative and was subjected to 2 C discharging cycles to induce aging. At

fixed intervals, various magnitudes of current discharges were performed to characterize
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the cycling cell. They identified two distinct stages of degradation: first the loss of
lithium inventory and second the loss of active materials [91] [92].

Eom et al considered that the lifetime of cells under a set charge-discharge pattern
originated from a statistical distribution. Failure time data from 12 cells under the same
cycling condition were used to fit the distribution [97].

In [98], Li et al set up an experiment in which multiple stress factors on battery
were examined, i.e. temperature, discharge rate, end of discharge voltage, charge rate,
and end of charge voltage. Additional tests were done to examine the two-factor
interactions between these factors. The results are fitted in an empirical model that
predicts battery lifetime performance.

[110] by Thomas et al presented a method for accelerating aging the process with
a statistical model. Temperature is found to heavily influence the aging process for
stored cells. As a result, a statistical model is used to predict the cell’s aging performance
with both temperature and time as input variables. With the fitted model, the expected

value of the cell’s future resistance at room temperature can be determined.
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Wang et al presented experimental work that considers Ah throughput,
temperature, and discharge current rate as important aging factors [111]. They developed
separate life models for different discharge current rates with Ah throughput as the main
input. As some previous works, e.g. [90], they found aging is roughly a function of
square root of time/Ah throughput.

The quality of statistical analysis in these works varies greatly. Some works
could be improved by concepts such as design of experiment, statistical significance, and
model checking. Based on the Monte Carlo method, [113] provides guidelines on
building lifetime models with attention to prediction confidence interval. Additionally,
[113] discusses on the optimal design concept.

A third category of methods to predict lifetime performance of the battery is
based on the concept of accumulative stress/fatigue [106] [107]. The battery is assumed
to be able to sustain a certain amount of accumulative stress in its life, and various
operating conditions such as current magnitude and temperatures are assigned values for
stress. The model then predicts the end of use time based on the remaining unused stress
level. These methods rely heavily on the accurate assignment of stress value to different

operating conditions.

2.7.3 State-of-Health Estimation

From the discussion in 2.7.1, the two metrics for determining the age of a battery
cell are the capacity and the resistance. While in laboratory it is possible to perform a
standard discharge in order to discover the cell’s capacity, field application usually
requires a more readily available solution. On the other hand, an estimate of the battery

resistance is relatively quick to obtain on the measured voltage and current during drive
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cycle or applied excitation. The recursive modeling approach discussed in 2.5.1.3 is
particularly suitable for tracking the gradual change in resistance as battery ages, so long
as other factors such as SOC and temperature are taken into consideration. While the
convention for determining end of use for a rechargeable battery is when the battery can
deliver only 80% of the original charge under the same charge-discharge procedure
[115], tracking the change of battery resistance still informs the relative health of the
battery. Furthermore, when considering battery power capability, the increase of
resistance directly results in the power fade of the battery.

References that discuss the estimation or measurement of resistance as a means
for SOH estimation include: [33], [77], [80], [83], [87], [116], and [117]. Whereas [77],
[80], and [87] rely on impedance spectroscopy or random noise signal injection for
impedance estimation, [33], [83], [117], and all other estimators that include resistance as
a fitted variable rely on the drive cycle excitation. [116] implements specialized step
signals to determine battery health.

Plett presented an interesting approach in which two versions of SOC, e.g. Ah
counting and OCV inference, are compared to detect change battery health [118]. The
key to this approach is that empirical evidence suggests OCV vs. SOC as defined by
battery’s present capacity is consistent throughout the aging process while OCV vs.

discharged Ah varies. Figure 2.24 shows the empirical evidence on this claim.
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the OCV curves vs. nominal DOD (depth-of-discharge) while plot b shows the OCV
curves vs. actual DOD [90]

For the case that capacity information can be periodically obtained, researchers
have proposed methods on predicting when capacity will drop below a threshold value
[100] [101] [102]. So long as the decaying curvature of the capacity can be modeled, a

probabilistic estimate on the time when the threshold is reached is possible. See Figure

2.25 and Figure 2.26 for illustration.
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2.7.4 Lithium-Ion Cell Aging with a Superimposed AC waveform

In addition to prediction for battery aging performance, finding important factors
for aging influence is also an important topic. An interesting factor in battery aging is the
superimposed AC waveform. Bala et al demonstrated that with a superimposed AC
waveform at 120 Hz [128], the tested LiFePO, cell was noticeably warmer under load,
although the authors did not claim this warmer temperature necessarily leads to
significantly faster aging. Electric vehicle power electronics DC bus filter design is
another motivation for understanding whether a superimposed AC waveform leads to
faster aging rate. In an electric vehicle design, the sizing of the DC bus capacitor, which
filters the AC contents from the battery pack, requires engineering trade off. If
superimposed AC waveforms are irrelevant to aging, the sizing of the capacitor may be
reduced for cost benefits. If these AC waveforms were significant to aging, a quantitative
metric for balancing between the right amount of filtering and cost would be important.

Hochgraf et al conducted an aging experiment in which three sets of LiMn,0O4

cells were subjected to 1) normal drive cycles 2) reduced drive cycles mimicking the
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effect of an ultracapacitor bank on the DC bus 3) storage condition [2]. They found that
aging for the cells under reduced cycles is significantly less than that of those under
normal cycles. In their study for cell aging under vehicle-to-grid condition, Peterson et al
found that the amp-hours (Ah) throughput under drive condition causes significantly
greater aging than those under the DC, grid connected condition [105]. While these two
studies indicate the potential benefit for stronger filtering thus the aging impact of the
superimposed AC waveforms, they do not provide a general understanding of the issue
involved due to their use of arbitrary drive cycles. The experimental results of [2] are
only good for illustrating the benefits achieved by one set of DC bus filtering for the
particular drive cycle, while due to the focus on aging prediction Peterson et al merely
commented on the need for an adjustment factor between two modes of use in [105].
Instead of using arbitrary cycles, Anders designed experiments testing differences
in lithium-ion batteries’ aging characteristics due to different shapes of discharge
waveform, frequencies and temperatures [26]. The results were however only conclusive
with respect to the temperature factor. Additionally, Okazaki et al conducted an aging
experiment on lead-acid batteries to find out if superimposed AC waveform has an

accelerating aging effect [129]. Their conclusion was negative.

2.8 State-of-Power and State-of-Function for Short-Term Power

Estimation

The ability of a battery to fulfill its tasks involves more than having sufficient
stored charge. The power capability of a battery depends on not only the charge
remained in the battery but also temperature and its health. A key point is that the

presence of charge remaining in the battery does not mean that the energy is accessible to
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a particular application [20] [123]. Since battery manufacturers usually publish the
operating voltage upper and lower limits, the BMS needs to insure that these limits are
observed by preventing the sinking and sourcing of too much power during vehicle
operation.

Two metrics have been proposed for battery power capability: state-of-function
(SOF) and state-of-power (SOP). Since the introduction of the term in [123], various
definitions of SOF have appeared in literature [119] [123] [124]. They are all related to
the battery power capability. The work here follows the definition of SOF in [119] and
that of SOP in [39]. The SOF represents a digital yes/no answer to the question whether
battery is capable of fulfilling its task, while the SOP is a vernier signal indicating how

much power is available. The SOF and SOP are defined as in (2.8.1) and (2.8.2).

1if Vipin 2 Viimit
SOF = { . 2.8.1
0 if Vinin < Viimit @3.1)
SOP - Viimit(Voev ~ Viimit) (2.82)

R

Vmin 1S the minimum voltage reached during load and vy;; is the low voltage limit

specified by battery manufacturer. R is the steady state resistance of the battery,
assuming the linear circuit model. The definitions in (2.8.1) and (2.8.2) are for
discharging limit, whereas the charging version can be derived similarly.

The HPPC test proposed by the FreedomCAR consortium is perhaps the simplest
short-term power capability tool [1]. By observing the voltage drop during the fixed-time
current pulse at various SOC, the resistance and OCV for the associated condition can be

used to help predict power performance.
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Wiegman exercised his online-estimated models based on system identification
techniques to predict the short-term voltage behavior of the battery under test [20].
Various modeling complexities are compared for prediction performance in Wiegman’s
work.  Additionally, different current magnitudes are also used to check model
performance. The presented results showed the prediction errors could be reduced by an
increase in modeling complexity. The good performance of the model prediction allows
the use of the model for short term power checking based on terminal voltage limitations.

For lead-acid batteries, van Bree et al presented a similar methodology involving
a nonlinear equivalent circuit model [119]. The method to populate the equivalent
circuit, however, was offline; van Bree et al gathered a batch of current and voltage data,
and then perform an offline, nonlinear parameter estimation technique to populate the
equivalent circuit parameters. In addition, the nonlinear characteristics of the lead-acid
battery were modeled by including the Butler-Volmer equation in its original form
instead of linearizing it as a resistor. The need for the nonlinear modeling is corroborated
by the results in [121], where Buller et al used impedance spectroscopy to discover the
change of electrode resistance as a function of current value for a lead-acid battery. Van
Bree et al’s results were promising as the agreement of the model prediction and the
measurement data was strong. However, it should be noted that this method is only valid
for the special case where the battery remains at a constant SOC. The method could be
further improved if the identification process can be made recursive, thus allowing the
adaptive estimation needed when SOC changes.

The Japanese company Hitachi introduced a smart car battery named “CYBOX”

[120]. The idea is to measure, record, and compare terminal voltages during cold



64

cranking operation, while the open-circuit voltage is tracked for SOC indication. By pre-
setting the criteria for recharging and replacing the batteries, the user will receive a SOF
recommendation based on the performance of recent battery cold cranking events. A
main advantage of this product is that it requires no current measurement for the
algorithm. This simplification is based on the assumption that the power demand is
relatively repeatable for a given cranking application, e.g. vehicle starting. Essentially,
the impedance information is given by the transient response of the battery voltage during
cranking, which keeps track of SOH. The SOC developed from the terminal voltage
measurements is combined with the SOH information to provide an indicator of the SOF.

In [39], Wang et al presented a methodology in which the battery model is
assumed to be an equivalent circuit depicted in Figure 2.27. With the drive cycle
measured voltage and current, the model’s parameters are recursively fitted, not unlike
Wiegman’s and Plett’s works [20] [23]. After obtaining the model parameters, the
battery was subjected to a voltage clamp at either upper or lower voltage limits and the
resulting powers are measured. The model is also used to predict power based on the
clamping voltages. The predicted and measured powers are then compared. They found
that the two-second power prediction was more successful than 10-second prediction,
while discharging at voltage limit causes more prediction error than charging. Wang et al
concluded that the discrepancy is more due to the simplistic model structure than their
recursive estimation algorithm. Plett also presented a work on using his recursively

estimated model to predict battery power capability [124].
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Figure 2.27 Equivalent circuit model used in [39]

Saha et al presented a work on using particle filter to predict the end of use, i.e.
voltage collapse, for an unmanned aerial vehicle battery [122]. By assuming the flying
pattern is consistent between different flights, the methodology is similar to what Saha
proposed for battery life prognostics in [100]. The limitation of the method is obviously
on the assumption of consistent flying pattern.

The discussion in this section so far have implicitly assumed that the battery is
either working under a fixed temperature range or the recursive estimator can adapt to the
change in model parameters due to temperature influence. To better model the battery
power performance, explicit relationship between temperature and impedance may be
important to consider. A few recent works have demonstrate that, for lithium ion
batteries, the change in temperature can lead to change in impedance as observed in
impedance spectroscopy data [125] [126]. In [127], Waag et al analyzed the impedance
of lithium cells with nickel manganese cobalt oxide (NMC) with EIS and HPPC. The
cells were under various conditions, including different temperatures. A set of

representative results are shown in Figure 2.28.
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Figure 2.28 Current dependency of the cell total resistance for different temperatures
[127]
The results shown in Figure 2.28 suggest that, for this particular type of cell, there may
be benefits in including the Butler-Volmer relationship in the model for low temperature
condition. Additionally, Waag et al have developed a nonlinear recursive estimation
that’s based on the Butler-Volmer equation overptential and robust under different
temperatures [139]. However, the approach adopted in [139] does not allow for offline

simulation since its adaptative scheme relies on data to adjust against temperatures.

2.9 Statistical Concepts and Methods

The work concerning electrical engineering applications for battery is statistical
by nature. This statistical nature of the work is evident in the extensive use of equivalent
circuits in the literature for modeling. While theoretical explanations exist for them,
phenomenal equations such as the Arrenius form and Butler-Volmer equation were first
derived from observations, hence statistical. Most of the works on battery lifetime have
an empirical basis, and are also statistical in essence. Of course, extensive theories exist
for deductively constructing battery models based on first principles such as diffusion;
the discussion on the Newman battery model in 2.5.3 is an example. On the other hand,

obtaining the parameters, e.g. diffusion coefficients, effective areas, etc, in the Newman
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model can be challenging. The values are either provided from various sources, or an
identification process is required. As discussed in 2.5.3, the interested reader is referred
to [63] for the Newman model parameter identification issues. Even when the values of
physical parameters are provided by prior knowledge, these were still obtained through
measurements and should have associated uncertainties.

This statistical nature means much of the relevant knowledge has to be derived
through a rigorous inductive process. The statistical concepts and methods are therefore

important to the understanding of the work presented in the thesis.

2.9.1 Important Concepts in Statistics

2.9.1.1 Statistics

The British statistician Ronald A. Fisher considered three aspects of the science of
statistics as important in his first book ‘“Statistical Methods and Scientific Inference”
[130]. These are 1) the study of populations 2) as the study of variation, and 3) as the
study of methods of the reduction of data.

As a study of populations, statistics aims at understanding the aggregate of
individuals. Some scientific theories such as kinetic theory of gases, theory of natural
selection, and theory of chemical mass are essentially statistical. Once the statistical
nature of these theories is lost, misinterpretation could arise [130]. The study of
variation, or the study of error, can be understood best in the context of measurement
uncertainty. Treating each measurement as an individual, the aim of statistics is to
discover the aggregate properties such as the mean and variance. It is important to note
that the objective of an experiment is rarely an individual result, but the population of

results under similar circumstances, i.e. repeatability and generality.
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The data reduction aspect of statistics is due to a practical necessity in the human
thinking process. Given a batch of data, it is seldom that one can draw conclusions
without the aid of models. The complexity of the models can vary from a simple mean
value to all kinds of nonlinear mathematical functions. However, it is important to
recognize the difference between models and “physical truth.” The model as an aid for
understanding can never truly represent a physical system in all of its details. As the
famed statistician, George Box put it: “Essentially, all models are wrong, but some are
useful” [131]. The recognition and treatment of modeling error are important for a data

analyst.

2.9.1.2 Probability

While the concept of mathematical probability is well defined with Kolmogorov’s
axioms, its meaning in practical life is a contested subject. Two versions of probability’s
meaning have been proposed: statistical probability and inductive probability [132].

A statistical probability is the limiting value of the relative frequency with which
some events happen. While it’s possible a fair coin shows heads five straight times, the
limiting value of the head’s relative frequency is still 50%. This definition relies on
important assumptions that the experiment is repeatable and can be repeated indefinitely.
These assumptions are of course hypothetical as no resources would allow indefinite
repetition of experiments and every experiment, despite the best controls, is unique.

The inductive probability is a gauge on individual personal belief regarding the
occurrence of events. The main difference between statistical and inductive probability is
that the former is empirical while the latter is logical. An example for inductive

probability is a jury determining the probability of guilt based on given evidence.
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Difficulties for inductive probability include quantification and its variation among

rational minds despite the same access to evidence.

2.9.1.3 Continuous Random Variables and Probability Density Functions

The term random variable (RV) is defined as a numerical variable that takes
different values with different probabilities [132]. In this work, we focus only on the
continuous random variables that take on any value within a certain range. The
probability density function (PDF) of a random variable is a mathematical function
whose integral between an interval defines the probability of the RV taking a value
within the integral. Let f(x) be the PDF, then the probability of an event occurring

between x; and x; is:

X2
Prob [x; < X <x,] = [f(x)dx (2.9.1)
X1

Many important PDFs have been proposed and utilized in applications. The most

important one is arguably the Normal distribution defined as:

1
2 (- (2.9.2)

1
f(X) = G‘\/EECXP (52

In (2.9.2), o is the standard deviation and p is the mean. The two parameters determine
the shape of the PDF. This PDF, with zero mean and standard deviation at one, is shown

below:
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Figure 2.29 A normal distribution PDF with zero mean and standard deviation at one

An important distribution derived from the Normal distribution is the 2
distribution. Let Z’s be independently and normally distributed with zero mean and unit
standard deviation. The RV, Y, with a y2 distribution with f degrees of freedom (y2(f))
is:

— 72472472
Y=Z2+2,2+232+..+7Z2 (2.9.3)

A ¥2(4) PDF is illustrated in Figure 2.30. The mean value of an RV Y with y2(f)

distribution is f and its variance is 2f [132].



71

0.2

8 10

X
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Another important PDF is the t-distribution. The RV, T, follows a t-distribution of f

degrees of freedom (t(f)):
Z
(2.9.4)

The statistic t for n samples of a normally distributed RV follows the t-distribution of n -1

degrees of freedom (u # 0, degrees of freedom =n if p = 0) and is given as:

P S
S/’\/I_l

Z(Xi - i)z
(2.9.5)

2 i=1
S n—1

n
2%
i=1
n

i:

, where s is the sample standard deviation and x is the sample mean.
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Figure 2.31 The PDF’s of t-distribution with different degrees of freedom. The
distribution asymptotically approaches the zero mean, unit variance normal distribution
with greater degrees of freedom

Lastly, let Y'; and Y, be independent y2 distributed RV’s with degrees of freedom
f] and f,. The RV, V, is said to have an F distribution of degrees of freedom f} and f,.

Y /f; (2.9.6)
VEY,5

The use of the F-distribution arises in the significance testing of null hypothesis.
In model checking, a null hypothesis is usually assumed and the data’s conformity to the
null hypothesis is checked with probability under the F-distribution, assuming the noise
in the system is normally distributed and variance is stable between data points. The
statistical technique is referred to as analysis of variance (ANOVA). The reader is

referred to statistics literature such as [130] and [131] for more information.
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2.9.1.4 Test of Significance

When an engineer or scientist attempts to describe a phenomenon with data, they
usually present the data with the aid of a model. The soundness of the model is therefore
of interest. For example, consider an experiment to compare two methods, denoted by
MSI and SIB, that determine chlorine content in sewage effluents [133].

Table 2.2 Residual Chlorine Readings, Sewage Experiment [133]

Sample MSI SIB d;
1 0.39 0.36 -0.03
2 0.84 1.35 0.51
3 1.76 2.56 0.80
4 3.35 3.92 0.57
5 4.69 5.35 0.66
6 7.70 8.33 0.63
7 10.52 10.70 0.18
8 10.92 10.91 -0.01

If there was no significant difference between the two methods, then it is expected

that sample difference, d;, between MSI and SIB methods should have an average of
zero. The t statistic for the d;’s based on (2.9.5) is calculated as 3.6454. The null
hypothesis, that there is no difference between two methods, calls for an average of d;’s,

thus the t statistic, to have a mean of zero. Assuming the null hypothesis, the probability

(p-value) of the t-statistic taking the magnitude for the calculated value or a more extreme
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one is 0.0082, less than 1 percent. The calculation of the probability can be visualized as

finding the area of f(t) beyond the cutoff lines in Figure 2.32.
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Figure 2.32 The PDF for t-distribution with 8 degrees of freedom and cut-off lines at t =
3.6454

While the interpretation of the test of significance is a contested subject, the
inventor of the tool, Fisher, seemed to regard the test of significance as a guideline in
reaching a conclusion based on the available evidence. When the p-value is somewhat
ambiguous, e.g. in the range of 5% to 20%, Fisher would discuss how to improve the
experiment to obtain better resolution. With a high p-value, Fisher would claim there’s
no statistical evidence to contradict the null-hypothesis, instead of accepting the null
hypothesis as “correct.” In the above example, the null-hypothesis is under strong
suspicion with the given evidence and can be rejected if the significance probability is

chosen as the customary 5%.

2.9.1.5 Covariance Matrix and Fisher Information
The covariance matrix arises when model parameters are estimated from data,

using least squared error method. Specifically, the estimated parameters are RV’s since
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they are functions of the data. As such, estimated parameters have corresponding
variances.

For the case of multiple linear regression, the generic model for N observations is
[133]:

¥i = Bo T B1xi1 T BoXjn * .- + BpXin T &

2.9.7
i=1,2,...,N ( )

where &, the noise, is assumed to be normally distributed with zero mean and variance 2.

It is possible to write (2.9.7) in a matrix form.

y=Xp+e
B = [BO: Bl’ BZ? SRR) Bn]T

1 X11 -+ X1k (298)
X=| : . . .

1 XN1 -+ XNk

By the pseudoinverse technique and least squares estimation, the estimated parameter
vector B is given as:

B = (XTX)IXTy (2.9.9)

A
The variance of B, i.e. the covariance matrix, is then derived as:

Var(B) = (XTX)-XTVar(y)((XTX)-1XT)T
Var(y) = 621 (2.9.10)
Var(B) = (XTX)-152
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Since each estimated parameter f3; is an RV, a test of significance can be applied with the
null hypothesis B; = 0. The purpose for the significance test is to ensure there is statistical

evidence to support the term corresponding to f3; in the model.

Fisher introduced his concept of information in part as a tool for selecting number
of samples in experiment design [130]. The issue at point is that given efficient statistical
methods, whatever improvement to the precision of parameter estimates depends
primarily on the data itself. When designing the experiment, it is worthwhile to
investigate how much information is needed given a desired precision level.
Additionally, Fisher would recommend the increase of precision by improvement of
experimental techniques. On the other hand, for a given data set and a selected model
structure, the information matrix can be obtained as the inverse of the covariance matrix,

i.e. information is inversely proportional to variance. Hence, when the variance of a

parameter estimate is so large relative to the estimate that the null hypothesis ;= 0

cannot be rejected, it is said that the data has not enough information/statistical evidence
to support the parameter’s existence.

The concept of Fisher information was later mathematically defined as the
expected value of the negative Hessian matrix of the log likelihood function f(X; 0) at the
true parameter value 0*, where X is the observable data and 0 is the parameter set. For a
detailed treatment of the Fisher information as defined mathematically, the interested

reader is referred to [134].
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2.9.2 Design of Experiments

In the introduction of his second book “The Design of Experiments,” Fisher
remarked that there are two general lines of attack on which a critic argues against
conclusions drawn from an experiment [130]. One is the deficiency of the
interpretation/analysis of the experiment data, and the other is the logical structure of the
experiment design. Fisher also argued that the two lines of criticism are two aspects of
the same whole; if the experiment was not logically sound, then any interpretation that
draws decisive conclusions is faulty. In these cases, the interpretation’s failure lies in
not recognizing the logical inability of the experiment to answer some/all of the questions
of interest. It is also important to note that data analytical techniques usually cannot
make up for the deficiency in the logical structure of the experiments.

Design of experiments thus seeks to maintain the logical integrity of the
experiment for the purpose of answering specific questions. The rest of the subsection
describes a tea tasting experiment used by Fisher in his book to illustrate some of the
important concepts in design of experiments.

Fisher’s tea tasting experiment aimed at determining whether a lady had the self-
claimed ability to taste a cup of tea made with milk and discriminate whether the tea or

milk was first added to the cup. Fisher’s experiment consists in mixing eight cups of tea,

four in one way and four in the other, and presenting them to the lady at a randomized

order.
Table 2.3 An example of Fisher’s tea tasting experiment
Order 1 2 3 4 5 6 7 8
Served Tea Milk Milk Tea Tea Tea Milk Milk
first
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The lady was told that two sets of four cups each was presented to her and she
was to make a judgment on each of the eight cups. There are a total of 70 ways to
separate eight cups into two groups of four; this is so because when choosing the first set
of four cups consecutively, there are 8x7x5x6, or 1680, ways, and once the first set of
four cups are selected the other set of four cups is also determined. However, that would
be to count every possible set and every possible order. For each set, there can be
4x3x2x1, or 24 orders. Therefore there are 1680/24 = 70 ways to group the cups.

The inductive basis is the following: if the lady was guessing in random, she had
an 1 in 70 chance of obtaining the completely correct grouping. The number 70 is
important since it relates to the chance of getting the complete answer without the
claimed ability. Notice the connection with the test of significance here: the null
hypothesis is that the lady had not the claimed ability, and if she was to obtain the correct
grouping under the null hypothesis, she’d be able to do so with an 1 in 70 chance.

The number of cups used thus determines the precision of the experiment. In this
case, the precision is only up to 1 in 70. If the null hypothesis was to be declared invalid
with a 1% probability, this experiment would never be able to achieve such a result. On
the other hand, even with a tight requirement for rejecting the null hypothesis, “one in a
million” could occur. Thus an isolated record itself is not sufficient for experimentally
demonstrating a natural phenomenon; what is needed is a well established procedure
that’s repeated and rarely fails to give a statistically significant result.

Randomization is also an important aspect in safeguarding the results. The above
inference reasoning is based on the assumption that absent of the claimed ability the

lady’s judgment is based on chance. This could easily not be the case; she could have
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been differentiating the quality of tea and milk or the differences in the cups themselves.
Perhaps the group that had milk added first also happened to have all their cups made by
the same manufacturer. Randomization seeks to avoid confounding between the non-
tested and tested hypotheses. Notice that it is not sufficient to claim that “all cups are
made the same except for their order of adding tea and milk.” This claim is simply
impossible to enforce; there will always be certain uncontrollable differences, such as the
temperature change during the serving of the teas. Only by randomization can the
inference basis be protected.

A few steps could be taken to increase the precision of the experiment. The first
one is to enlarge the number of cups involved in the experiment. This has the obvious
effect of decreasing chance of obtaining correct grouping based on chance. The other
two methods are 1) the reorganization of the experiment 2) the refinement of techniques.

With respect to the reorganization of the experiment, the experiment can increase
precision by removing the restriction of grouping, i.e. randomly determine the order of
adding milk and tea for each serving. In that case, the chance of obtaining the perfect
result for the eight cups is 1 in 28 = 256. The reorganization of the experiment can also
decrease the precision of the experiment; for example if the two groups of servings are
chosen to be 3 and 5 cups each, the chance of obtaining the perfect result under null
hypothesis is 1 in 56.

The refinement of techniques may not be able to increase the precision of this
particular test. But without certain precautions, the experiment may simply be

impossible. The careful use of similar cups, tea, and water is implicitly assumed in this
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tea tasting experiment. In other experiments, the refinement of techniques could involve

the improvement of measurement that should decrease the noise level of the data.

2.9.3 Recursive Estimation and Kalman Filter

The classical linear regression technique involves least square estimation of
parameters based on a given batch of data. The mathematical form for linear regression
is shown from (2.9.7) to (2.9.9). A natural question arises with regard to this method of
estimation: what should be done when data comes in sequentially? It is desired to
monitor battery pack when the EV is operated, not when the operation terminates.
Should the matrix operation from (2.9.7) to (2.9.9) be repeated as every new sample of
data comes in, or is there a recursive method to achieve the parameter estimation? The
least mean squares method (LMS) which allows for recursive estimation is described
below.

Similar to (2.9.8), a linear function at sample time k can be written as:

y(k)=X(&k)p + e
B=[Bos B1> Bas ---» BT (2.9.11)
X(k) =1, x1(k), x1(K),..., Xp(k)]

Thus the predicted value at sample time k, §/(k), and the corresponding error and squared

€rror arc:

¥ =X(B
e(k) = y() (k) (29.12)

e(k)2 = (y(k) - y(k))2

If the squared error function is to be minimized as a function of the parameters, the

partial derivative of the squared error function should be zero.
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5012 A
q%m:_z(y(k)_ SIDX(K) (2.9.13)

The gradient for achieving zero for squared error function is shown in (2.9.13). To

recursively estimate the parameter vector, [§, the previously obtained ﬁ(n-l) is updated

along the gradient for minimizing squared error function.

Bk = Bk — 1)+ XTM)[y(k) — y(K)] (2.9.14)

In (2.9.14), the value c is the gain of the update. The theoretical upper bound for ¢ is

o where A,y is the maximum eigenvalue of the autocorrelation matrix E[xTx]. For a

max
more complete treatment of LMS method, the interested reader is referred to [135].

The famed Kalman filter has a similar structure to the LMS method discussed
above. The main difference is that Kalman filter has an optimal gain that’s determined
based on the input and output variances. Specifically, the internal states/parameters in a
Kalman filter are considered random variables perturbed by noise of a known variance.
The perturbation and output prediction error provide the basis for estimating internal
states’ covariance matrix. Additionally, the output measurement also has noise of a
known variance. These two variances are weighted to obtain the optimal gain for the
update of states. For the application of system identification, the Kalman filter takes the
following mathematical form. (2.9.15) is the state equation while (2.9.16) describes the
recursive update of the terms. In (2.9.15), w and v are random noises with known

covariance matrices of Q and R, respectively. In (2.9.16) the term P is the estimated
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covariance matrix of the estimated parameters and K is the optimal gain based on the

weighting of P and R.

B(k) = p(k — D+ w(k)

y(k) = X(K)B(k) + v(k) (2.9.15)
P-(k) = P*(k-1) + Q

K (k) = P-(k)XT(k)(X(k)P-(k)XT(k) + R(k))-! = P+(k)XT(k)R(k)-!

B = Bk — 1) + Ko (y(k) - $(K))
P*(k) = (1 - K(K)X(K))P-(K)

(2.9.16)

2.9.4 Karl Pearson and Ronald A. Fisher

Statistical techniques have become pervasive in science. Fields such as biology,
agriculture, and psychology have integrated statistics as a part of their disciplines. This
development towards quantification in these previously qualitative fields is due to many
researchers. However, two British personalities, Karl Pearson and R. A. Fisher, deserve
to be recognized for their leading roles in introducing statistics into science. This
subsection is devoted to their short biographies.

Karl Pearson was born in 1857 as Carl Pearson [136]. He later changed his name
to Karl in tribute to Karl Marx. A man with keen interests in many fields, Pearson’s
studies included mathematics, political science, and linguistics. In the 1880’s Pearson
became involved with Francis Galton’s work to bring mathematical rigor into biology.
Galton’s concept of correlation was refined by Pearson. Pearson is also credited with the
discovery of skewed distributions and the chi-squared distribution. Aside from the useful
statistical tools he developed, Pearson was more importantly a philosopher in the field of
science. His book, the Grammar of Science (published in 1900), contains many
interesting topics such as the relativity of motion, physics as geometry, and scientific

laws as empirical formulations instead of rigid natural rules. Pearson was a writer with a
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popular audience in mind, and his book is accessible to those with minimal background.
Pearson’s book is still highly relevant in the field of mathematical modeling and is
recommended for anyone who is dissatisfied with the “clockwork™ version of science
taught in most secondary education curriculum [137].

Born in 1890, R. A. Fisher is noted not only for his contributions in statistics but
also in biology. In biology, Fisher was known for his contributions related to the theory
of natural selection. In statistics, his works were pioneering and included the analysis of
variance, maximum likelihood estimation, statistical inference, design of experiment, etc.
It would be no exaggeration to claim that Fisher has been the most influential character in
the development of statistics as a scientific discipline. His works were quite different in
many ways from his predecessors, including Pearson. As a result, a bitter controversy
developed between the two men, and Fisher was correct on most of the contested issues
with Pearson. Fisher was also a philosopher in the field of science. He devoted much
space in his three books discussing the need for rigorous process to infer from data to
conclusion, i.e. inferring from the particular to the general. These arguments require
more technical background to comprehend compared with Pearson’s Grammar of

Science, and they can be found in [130].

2.10 Summary

From the discussion in the state-of-the-art review, several research opportunities

can be identified. They are listed as follows:
1. A statistical study on the effectiveness of the popular linear circuit model for
different cell chemistries and different operating conditions, e.g. temperature.

The linear circuit model approximates the Butler-Volmer relationship as a



84

resistance. The need exists to investigate whether such an approximation is
appropriate for particular cell chemistries and operating conditions. In Chapter
three, a methodology is introduced to study the appropriateness of linear circuit
model for lead-acid batteries, while an investigation of lithium-ion batteries at
different temperatures is made for different temperatures in chapter five.

The adaptation of Butler-Volmer based model for recursive system identification.
By recognizing the need to include the nonlinear behavior of Butler-Volmer
relationship in the model, the need arises of adapting the new model for recursive
system identification. The linear circuit model has been used in conjunction with
system identification extensively in the literature. The recursive estimation
scheme allows for model adaptation for aging, SOC changes, etc. Chapter three
demonstrates a method by which the Butler-Volmer based model is adapted for
recursive estimation.

The incorporation of temperature as an explicit input that influences battery
resistance and overpotential model. The literature has illustrated that battery
resistance and overpotential are functions dependent on operating temperature.
Chapter five shows that for lithium-ion batteries, the overpotential resumes the
Butler-Volmer relationship at lower temperatures, even though the linear circuit
model appears adequate at room temperature. Additionally, the pure resistance of
a lithium cell increases rapidly as temperature drops. Chapter five demonstrates
these phenomena experimentally and offers a modeling approach that explicitly
includes temperature as an input for both resistance and overpotential. Such a

modeling approach can help better predict battery power performance.
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4. Better understanding of the use of recursive system identification for battery
power prediction. The recursive system identification allows for adaptive
observation of battery model parameters online. This feature leads to the use of
the adaptive model for power output prediction, SOP, in the literature. Chapter
four illustrates a fundamental limitation of SOP within the context of recursive
system identification. It then proceeds to propose an alternative approach, SOF,
and shows SOF’s theoretical probability limits for the prediction of battery power.
The recursively obtained SOP results are also compared with the HPPC results on
power prediction.

5. A statistical design of experiment to investigate whether a superimposed AC
waveform causes a different aging rate. If so, the quantification of such an effect
can lead to better design guidelines for capacitor filter design. The DC bus
capacitor filter design involves an engineering trade off. If the aging of battery is
not accelerated due to additional high frequency components, the DC bus
capacitor can be downsized for cost benefits. Chapter six designs an experiment
that first establishes the additional RMS value from superimposing an AC
waveform on the discharging current can cause accelerated aging. The
subsequent experiment then confirms RMS’s influence in determining aging rate
and demonstrates the statistically irrelevance of other factors such as frequency
and waveform shapes. A methodology for quantifying the RMS effect on aging

rate is also established in chapter six.
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Chapter 3

Butler-Volmer Equation
Based Battery System
Identification

In this chapter, an improved nonlinear model for the electrode voltage-current
relationship for online battery system identification is proposed. In contrast to the
traditional linear-circuit model, the new approach employs a more accurate model of the
battery electrode nonlinear steady-state voltage drop based on the Butler-Volmer
equation. The new form uses an inverse hyperbolic sine approximation for the Butler-
Volmer equation. Kalman filter-based system identification is proposed for determining
the model parameters based on the measured voltage and current. Both the Butler-
Volmer model and linear-circuit model have been implemented for lead-acid batteries
and exercised using test data from a Corbin Sparrow electric vehicle. A comparison of
predictions for the two models demonstrates the improvements that can be achieved using

the new nonlinear model.
3.1 Linear Electric circuit and Butler-Volmer Battery Models

3.1.1 Introduction of linear-circuit and Butler-Volmer Battery Models

Figure 3.1 and Figure 3.2 illustrate the two battery models that are investigated in
this work. The Butler-Volmer (BV) based model in Figure 3.1 is the proposed improved
model while Figure 3.2 depicts the widely-used linear model. While differences exist

among various battery modeling techniques found in the literature, linearization of the
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BV equation is a feature common to most of them, usually accomplished using a resistor
approximation, 1.
Other than the electrode model, the remaining features in the battery models are

shared in common: r( represents the ohmic voltage drops in the battery, the parallel ry, C;

circuit models the dynamic response of the electrode overpotential for the linear-circuit
model while the LPF in Figure 3.1 stands for “low-pass filtering” and provides dynamic

response modeling, and the v, voltage source provides the battery open-circuit voltage.

Vimp +

4+ fo gy LPF(ve(i))

V : — Vgt ——Voov

Figure 3.1 Nonlinear battery model incorporating
Butler-Volmer electrode equation

-+

— Vimp A |
4+ 1o " +
W - n*

\Y | | — Voov

Q

Figure 3.2 Conventional linear circuit-based battery model
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It is recognized that adopting a first-order dynamic response for the battery model
represents a significant simplification of the actual battery dynamics which are
complicated, i.e. multiple-poles and dependent on battery operating conditions, including
its SOC. The EIS results can be used to obtain a sense for the reduction in complexity.
In Figure 3.3, the EIS graph shows positive imaginary impedance at high frequency,
suggesting the presence of an inductive element. In addition, the RC circuit modeled in
Figure 3.2 could have resulted in one semi-circle in the EIS graph, but Figure 3.3
suggests the presence of at least two such circles. However, since the focus of this work
is on modeling the battery’s steady-state terminal characteristics, the first-order dynamic

model is satisfactory here.
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Figure 3.3 An EIS graph of a lithium iron phosphate battery
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The Butler-Volmer equation in (3.1.1) describes the steady-state relationship
between the charge transfer overpotential across an electrode, m, and the associated

battery current magnitude, 1 [14].

i= io[exp(-a%) —~ exp((l-oc)%ﬂ (3.1.1)

(3.1.1) shows the Butler-Volmer equation, where F is the Faraday’s constant 96485 [ﬁ}

, R is the universal gas constant 8.314[ }, T is the temperature in [K], i is the

K mol

e .| A :
equilibrium current density in ‘:EZ:', and a and 1 - a are electrode transfer coefficients for

reduction and oxidation, respectively.

3.1.2 Inverse Hyperbolic Sine Approximation for Butler-Volmer Equation and the

Lumped-FElectrode Assumption

As discussed in 2.4.2, the measurability of the battery current and the
impossibility to measure the model component voltages makes it natural to use current as
the predictor and battery terminal voltage as the output for modeling purpose. In (3.1.1),
the situation is exactly the opposite with current being the output and overpotential being
the input.

As in 2.4.2, the Butler-Volmer relationship can be simplified using the inverse

hyperbolic sine function by assuming a = 0.5, as in (3.1.2).

RT . (1
n =" psinh" 2—10 (3.1.2)
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In Figure 3.4, a Butler-Volmer relationship is plotted with parameters i = 1.62,

RT

oF 0.0784, and a = 0.5, i.e. the condition for using the inverse hyperbolic sine

approximation. The corresponding linear fit, which would be linear-circuit model’s
response, is also plotted for comparison. Figure 3.4 demonstrates the nonlinear behavior
of the Butler-Volmer relationship and the potential issues for modeling battery with

linear-circuit when the Butler-Volmer relationship is present.
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9] /
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///
-0.3
-0.3
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Applied Steady-State Current [A]
Figure 3.4 Butler-Volmer relationship with set parameters and the corresponding least

square error linear fit
While (3.1.1) and (3.1.2) apply to both the battery cathode and anode individually, the
two electrodes are typically combined in the model due to the impracticality of
differentiating between the two electrodes on the basis of the battery voltage and current
measurements. The following is a study on the impact of using lumped BV equations for

the two electrodes in series.
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As discussed before, a unique Butler-Volmer equation exists for the cathode and
anode electrodes individually in a cell. Due to the series connection of the two
electrodes, the model could be formed by adding the voltage responses of the two
electrodes using two Butler-Volmer equations. Numerical simulations are carried out
here to investigate whether the battery can be well represented using only one combined
Butler-Volmer equation instead of two. Based on (3.1.2), the following equations were

used for simulating the individual battery electrode responses:

. i
Ncathode ~ klsmh_l(z_ioj (3.1.3)
) i
Nanode = klsmh'l(—zmoj (3.1.4)
Ntotal = Neathode ™ Nanode (3.1.5)

In (3.1.3), (3.1.4), and (3.1.5), the two electrodes’ responses differ in their
characteristic currents; i.e., the anode’s characteristic current varies from that of the
cathode by a factor of n. It is noted that if the two characteristic currents are identical (n
= 1), the combined electrode response 1y, 1S simply a scaled version of the individual
electrode responses, making it convenient to represent the combined electrode response
using a single Butler-Volmer expression.

In the simulations, a case with electrode characteristic current values that differ by
a factor of 20 (i.e. n = 20) has been investigated. The values k; and i in (3.1.3), (3.1.4),
and (3.1.5) were chosen to be 0.0392 and 1.6235, respectively. Currents from -300 to
300 A with an interval of 20 A were applied to (3.1.3), (3.1.4), and (3.1.5) to obtain the

data points for the terminal voltage ¢y, of the two electrodes connected in series. The

predicted ;4,1 has then been fitted with a single BV equation (3.1.2).
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Figure 3.5 Simulated electrode voltage responses (individual and summed) and the fitted
combined voltage response using a single BV hyperbolic sine equation for n =20

Figure 3.5 shows the simulation results for m¢y, and the corresponding fitted

curve using (3.1.2). These results show that the use of a single BV equation to represent

the two combined electrodes closely matches the summed voltages of the two series

electrodes despite the fact that the two electrode characteristic currents differ by more

than an order of magnitude (20:1).

Table 3.1 summarizes the calculated sum of squared errors (SSE) values for five

different cases of scaling factor n. These results indicate that the SSE value increases

monotonically as n grows, but the SSE values remain very low over the full range,

building confidence in the validity of the lumped response approach for the two

electrodes.

Table 3.1 Calculated SSE as a function of scaling factor k

n=1

n=>5

n=10

n=20

SSE

8.0 e-15

2.0e-7

2.0e-6

7.6 e-6
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3.1.3 Derivations of Discrete Form for Linear-Circuit and Butler-Volmer Based Models
In order to use the models in Figure 3.1 and Figure 3.2 in controls applications,
the Butler-Volmer and linear-circuit based models for relating battery current and battery

terminal voltage can be written in discrete form as in (3.1.6) and (3.1.7), respectively.

. 1 i(k)
v(k) = Voey —1oi(k) — 777 s -1(%) (3.1.6)
by+biq!
V(k) = Voey =7 Ty i(k) (3.1.7)

In (3.1.6) and (3.1.7), the term q represents a shift operation. For example, qi(k) = i(k +
1), and qli(k) = i(k — 1). These two models can be further manipulated into the
following forms by multiplying the term 1 + a;q-! and assuming v, does not change

during one sample.

v(k) = (1 +ap)voey —ayv(k—1)

— (i(k) + aji(k — 1)rg — sinh'lgi%bl (3.1.8)
v(k) = (1 +ap)vyey —ayvik—1) .

—i(k)bg + i(k — 1)by

A few remarks can be made based on (3.1.8) and (3.1.9). The first is the models

have the same structure with respect to v, assumed as a constant in both cases. This
assumption is of course contradictory to the general observation that v, is dependent on

SOC. However, when (3.1.8) and (3.1.9) are used either with short-term drive data or in

the context of recursive estimation, this lack of modeling effort on v, vs. SOC usually
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has very limited effects. Under the short-term drive condition, the v, may not change

by much especially for certain types of battery such as lithium iron phosphate.
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Figure 3.6 CALB lithium iron phosphate battery (rated at 60 Ah) 20 C discharge curve at
25°C

1
Figure 3.6 shows the 20 C discharge curve at 25 C for a CALB lithium iron

phosphate battery rated at 60 Ah. Since 2—10 C discharge rate causes a low voltage drop
due to resistance and overpotential, this particular curve can be seen as approximately the
Voey VS. SOC relationship for this battery. It can be observed that the derivative of the
Voey V8. SOC relationship here is fairly small until the voltage collapse at the lower SOC
region. In the context of recursive estimation, the constant modeling v, is naturally

updated recursively to reflect the change in SOC and the associated v, change.
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The second remark is that the term by, in (3.1.9) is essentially the same as the term
o in (3.1.8). This can be seen by the fact that both are multiplied by a —i(k) term in their
respective models. The time constant parameter a; is also present in both models and

represents the first order dynamic response assumed here. Thus both models are very

similar in structure for their dynamic response, resistive drop, and v,

b
The final remark here concerns the term qu_l in (3.1.6). The presence of the
1

operator q-! provides the first order dynamic response in the model. However, when

D . RT :
considering only the steady-state response, l+—lal in (3.1.6) corresponds to the oF term in

(3.1.2). This fact numerically connects (3.1.2) and (3.1.6).

3.2 Recursive Estimation and Associated Parameter Estimation for

Time Constant and Exchange Current

3.2.1 Recursive Estimation with Kalman Filter
To achieve recursive estimation with the two models in (3.1.8) and (3.1.9), these

two equations are further manipulated into the following forms respectively:

vk) tapvik—1)=(1 +a))vyey

- 3.2.1
— (i(k) + aji(k — 1))rg — sinh'l(%)bl G20
vk) tapvk—1)=(1 +a))vyey

. . (3.2.2)
—i(k)bg- i(k — )by
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If the assumptions can be made such that the values of i in (3.2.1) and a; in both (3.2.1)

and (3.2.2) are known, (3.2.1) and (3.2.2) can be considered as a linear expression in the
following forms.
z(k) =v(k) +a;v(k— 1) = o(k)0
where 0 = [V, Tg, by]T (3.2.3)
i(k
o) = (1 +ap), 00+ arite— 1), - sink (3 )

Z(k) = V(k) + alv(k - 1) = (p(k)e (324)
where 0 = [V, bg, b1]T
(k) = [(1 +ay), —i(k), —i(k — 1)]

In (3.2.3) and (3.2.4), the output z(k) is linearly related to the input ¢(k) with
gains, i.e. parameters, 0. Since both the output z(k) and input ¢(k) are directly obtained
through the measurements, our task in recursive estimation is to obtain the parameter 0.
A Kalman filter can be constructed for both battery models using (3.2.3) and (3.2.4). The
purpose of this Kalman filter is to continually update the model parameters in order to
minimize the error between the model estimates of the battery terminal voltages and their
measured values. Figure 3.7 provides a block diagram of the Kalman filters used for both

models’ parameter identification.
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z(k) = v(k) + aqv(k-1

+

+ 6ldz[cocv(k), %O(k), %1 (k)]T
K(k) >

o(K) ~ q"

Bic1=[Voe(k-1), Do(k-1), By(k-1)]"
BV Model ik
@(k)=[1+a4, -(i(K)+ai(k-1)), -sinhl(—j ]

Linear Circuit Model 0

@(k)=[1+ay, -i(k), -i(k-1)]

Figure 3.7 Block diagram of Kalman filter structure for both Butler-Volmer and linear-
circuit models

The state equation and the measurement equation for the Kalman filter are shown

in (3.2.5) and (3.2.6):

Ok +1)=06(k) +u (3.2.5)

z(k) = o(k)0(k) + w (3.2.6)

where 0(k) is the state/parameter vector, z(k) is a linear combination of the voltage

measurements v(k) + a;v(k — 1), o(k) is the regressor vector or input, and u and w are

zero-mean, uncorrelated white noise with covariance matrices Q and R, respectively. In
this case, Q is a 3x3 diagonal matrix and R is a scalar. It should be noted that the state
equation (3.2.5) assumes no systematic change in states/parameters 0(k) between time

samples. The change in 0(k) between samples is modeled by the fictitious noise u.
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(3.2.6) is simply a restatement of (3.2.3) and (3.2.4) with the addition of variable w to

model the measurement noise.

Since Kalman filter is a recursive scheme, it requires an initial value 6(0) and the
initial value for the covariance matrix. The initialization of the filter is done by selecting
the best value available. Practically speaking, the parameters can be from those
estimated in the last cycle, or those that have been observed for the same operating
conditions, e.g. in temperature and SOC. Mathematically, the initialization is done by

using the expected values.

6(0) = E[6(0)] (3.2.7)
P*(0) = E[(6(0) — 6(0))( 6(0) — 6(0))T] (3.2.8)

where P is the covariance matrix of the parameter estimates 6. As in the discussion in
2.9.3, the filter propagates at every time step according to the following expressions:
P-(k) = P*(k-1) + Q
K(k) = P-(k)o ) T(pk)P-(k)o(k)T+R)-1
Pr(k) = (I - K(K)o(k))P-(k) (3.2.9)

2(k) = p(k)B(k)
O(k) = B(k-1) + K(K)[z(k) - 2(k)]

where P- is the covariance matrix from the previous sample updated by Q, and K(k) is the
Kalman filter adaptive gain.

As indicated in (3.2.9) and Figure 3.7, the Kalman filter feeds back the
measurement z(k) to the model and adjusts the model parameters 6 to minimize the error

between the prediction (k) and measurement z(k). This feedback process guarantees the

filter’s tracking under most circumstances, similar to an observer. On the other hand, the
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adaptive gain K(k) is calculated from the assumed statistical properties of v and w while
an observer would have a fixed gain. The basis for the adaptive gain K(k) is that it

minimizes the covariance matrix P*(k) according to Q, R, P*(k-1) and ¢(k) to ensure that

the  is as close to the true parameters 0 as possible in the least squares sense. Moreover,
the addition of u in (3.2.6) has the effect of forcing the filter to rely on more recent data
rather than the older data. In (3.2.9), this is accomplished by increasing P-(k) from P*(k-
1) by Q, and the augmented P-(k) alters the updated gain K(k) in a manner that gives
greater influence to more recent inputs.

It should be noted that both models can be used to successfully predict the
terminal behavior of batteries, particularly when a Kalman filter or some other type of
estimator is used to continually adjust the model parameters to minimize the prediction
error. The Butler-Volmer model, however, incorporates nonlinear behavior that is
exhibited quite strongly by some types of batteries, including lead-acid. As a result, the
Butler-Volmer model is capable of predicting the terminal behavior of these types of
batteries more accurately without as much need for parameter adjustments to minimize

the prediction errors compared to a simpler linear-circuit model.

3.2.2 Offline Parameter Estimation for Exchange Current and Time Constant
As mentioned in 3.2.1, the derivation of the Kalman filter recursive estimation for
both models depends on the assumption that both the exchange current and time constant

terms are known, i.e. i and a;. Contrary to the methodology of offline parameter

estimation that will be introduced in 5.3, the method discussed here can use a less

sophisticated test stand that has a slower sampling rate and does not have the ability to
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run simulated drive cycle. Specifically this subsection discusses a methodology to
estimate these two parameters using only pulsed current response data.

In order to identify the two parameters i and a; in (3.2.1) and (3.2.2) that are not

recursively updated online, a test profile that consists of a repeating sequence of pulsed
discharge currents was applied to the 55 Ah Optima™ lead-acid battery that was being
investigated. As shown in Figure 3.8, the basic sequence consists of a series of five
discharge current pulses with amplitudes that decrease consecutively from 165 to 55
Amps in intervals of 27.5 Amps. Each current pulse is applied for 40 seconds and the
battery rests for 4 minutes between applied pulses. The basic sequence in Figure 3.8 is
repeated until the battery is fully discharged. Figure 3.9 shows the battery voltage

response to one discharge current pulse.
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Figure 3.8 Pulsed current test sequence for estimating exchange current and time constant
parameter
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As seen in Figure 3.9, the voltage response can be segregated into the ohmic voltage

response due to ry and the electrodes’ dynamic voltage response. The sampling rate is 10

Hz. The first three samples of the voltage response following the current pulse

application are assumed to be associated with the ry ohmic voltage drop and the rest with

the electrodes.
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Figure 3.9 Sample measured response of Optima™ lead-acid battery terminal voltage to
40-second discharge current pulse with amplitude 82.5 A

1§30 840 8

The electrode voltage response magnitude can then be separated and plotted

against the applied current magnitude, as shown in Figure 3.10. By fitting the data in Fig.
: RT . . .
6 to the BV equation (2), the values oF and 1ij can be estimated. The nonlinear curve-

fitting is accomplished using the Gauss-Newton method.
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Figure 3.10 Measured electrode voltage drop vs. step current amplitude, with spread of

data points at each current amplitude showing the effect of SOC

The spread of the data points at each current amplitude can be attributed to successive

rounds of the five current amplitudes, indicating a strong relationship between the

electrode voltage and the battery SOC. The recursive estimation scheme can compensate

for some of this SOC influence by tuning the battery parameter b; in (3.2.1).

In addition to 1y, the offline system identification needs to determine the time

constant of the electrodes’ voltage response. For each current pulse, the data from the

voltage response can be used to estimate the time constant parameter a;.

First, the

voltage transient associated with the electrodes’ charge transfer process and the double-

layer capacitor, m, can be isolated from the terminal voltage v using Kirchoff’s voltage

equation:

N(K) = voey — v(k) —rg istep

(3.2.10)
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where v(k) is the measured battery terminal voltage and voltages vy and ry istep are

assumed to be constant during each current pulse’s voltage response.
The discrete equation for the electrode voltage can be extracted from the Butler-

Volmer based model voltage (3.2.1) as:

b1 (istepj
k) = inh-1| >
n(k) ALy TS (3.2.11)

The electrode voltage approaches an asymptotic value Vagymptote at the end of the 40-
second current pulse that can be expressed as:
L S 2.12
Vasymptote ~ | + a sinh 2i (3.2.12)
Rearranging (3.2.11) and applying the expression for vagymptote i (3.2.12) leads to a new

expression for the electrode voltage:

i
n(k) +an(k-1) = blsinh'l(ﬁ‘l]

2i (3.2.13)
=(1+a)) Vasymptote
which can be rearranged as:
nk) - Vasymptote ~ al(Vasymptote -nk—-1)) (3.2.14)

(3.2.14) provides the basis for developing a linear least-squares estimate of aj using the

n(k) data from (3.2.10) and measurements of Vasympote-

a; = (XTX)1XTY

where

X = (Vasymptote ~ nk—1))
Y = (k) - Vasymptote)

(3.2.15)
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The mean of the 35 estimated 3, time constant parameter values is used in the

recursive estimator in the next section. Figure 3.11 shows all 35 of the time constant

parameter estimates plotted against the current pulse magnitude.
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Figure 3.11 Estimated values of time constant parameter a; vs. pulse current amplitude

for 7 successive cycles of 5 increasing current step amplitudes

The mean of these estimates is also plotted in Figure 3.11. As noted before, the time

constant in the Kalman filter is assumed fixed. For the linear-circuit model, the equations

for estimating a; are slightly different but the procedure is otherwise identical.

(1 = o), 1216
n 1"'31(]_1 step (3.2.16)
-(-by +bpay) .
Vasymptote = | + 4 : Istep (3.2.17)
k) +ain(k-1) = -(-by + bpa;)i
n(k) +ajn(k-1) = -(-by + bpa)istep 32.18)

=(1+ay) Vasymptote
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3.2.3 Discussion on Model Assumptions and Limitations
Some important assumptions made in this section and their implications will be

discussed in this subsection. The first is the assumption of a fixed exchanged current i

in the recursive estimator formulation in the Butler-Volmer based model (3.2.3). As will
be seen in 5.1.2, the exchanged current depends highly on temperature. From Figure 3.10
it can also be observed that the electrode voltage response, thus potentially i, depends
heavily on SOC. The recursive estimator may alleviate the modeling deficiency by

adapting the b term. A more comprehensive modeling effort that explicitly includes

temperature as an input to overpotential will be introduced in 5.4.
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Figure 3.12 Sample measured response of CALB lithium iron phosphate battery terminal

voltage to 40-second discharge current pulse with amplitude 180 A.
The methodology used in 3.2.2 to estimate both the time constant parameter and
exchange current depends on the observation of the asymptote voltage response,

Vasymptote- 1f the battery has a long time constant in its transient response, as many
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lithium batteries do, this methodology is unsuitable. Of course, by applying a longer

current step one can eventually observe vugymptote it theory; however, such a long current
step could violate the assumption of stable v, as the SOC changes. An example of

battery having a longer time constant can be seen in Figure 3.12.

The simplified assumption of a fixed time constant enables adoption of a linear
recursive estimator in the battery model described in (3.2.1) and (3.2.2) but it comes at
the expense of not tracking the change of battery dynamics in different conditions, e.g.
SOC. In addition, (3.2.10) ignores the drop in OCV resulting from decreases in SOC

during the current pulse discharges, introducing another factor that degrades the accuracy

of the 2, parameter estimates.

The aspect of modeling battery as a single time constant system while the real
system is more complex has been touched upon in 3.1.1. One other important
consideration is that from the least squares fitting perspective, the most suitable time
constant value depends on the excitation current. In EV application, the excitation is
typically below 5 Hz due to the limit of human response speed. This implies that if a
single time constant is to be chosen for a battery model for the EV application, this time
constant should be aligned with the dominant excitation frequency, i.e. around 1 Hz, for
good least squares performance, even though the actual system has poles outside the

excitation frequency range.

3.3 Experimental Results for Comparison between the Two Models

The performances of both the Butler-Volmer-based and linear circuit-based
models have been evaluated using actual road driving cycle data from a Corbin Sparrow

electric vehicle. The Sparrow EV used to gather the road data is powered by 13 Optima™
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D34M lead-acid batteries in series, each of which is rated at 12 V and 55 Ah. The EV is
not capable of regenerative braking, and the sample rate is 10 Hz. The maximum
discharge current recorded during the drive cycle used to illustrate the models’
performances is 235 A. Appendix A contains a thorough documentation of the Corbin
Sparrow EV and the monitoring system implemented in WEMPEC (Wisconsin Electric
Machines and Power Electronics Consortium).

Estimated battery voltage waveforms in Figure 3.13 and Figure 3.14 show the
Kalman filter output voltages for the two models, Butler-Volmer (3.2.3) and linear circuit
(3.2.4) respectively. Both models track the measured voltage quite well as seen in Figure
3.13 and Figure 3.14. Expanded time plots for short time periods are provided in the top
right corner of both figures, confirming the close tracking of the terminal voltage

waveforms.
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Figure 3.13 Butler-Volmer-based filter results for a lead-acid battery during an EV drive
cycle, comparing measured and model-estimated voltages. The estimated OCV and
predicted min. battery voltage for max. current are included
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Figure 3.14 Linear circuit-based filter results for a lead-acid battery during an EV drive
cycle, providing the same set of waveforms as in Figure 3.13

The estimated v, waveforms for the two models are included in Figure 3.13 and

Figure 3.14, exposing an offset voltage difference between the two estimates. Evaluation
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indicates that the estimated v, using the Butler-Volmer model in Figure 3.13 is more

accurate since the EV and its accessories are completely powered by the battery bank and
current is always being drawn from the battery bank even when the car is stationary.
This ever-present discharge current means that the battery terminal voltage can never

reach its v, during operation, which is consistent with Figure 3.13 but not Figure 3.14.
Estimated v,,,;, waveforms are also included in both figures, corresponding to the
estimated steady-state minimum battery voltage, i.e. v, subtracted by resistive and

overpotential voltage drop, if maximum EV current (235 A) is drawn from the battery
bank. The SOF is defined in (3.3.1) as a binary yes/no answer to whether the battery
steady-state voltage would drop below a preset minimum voltage limit under maximum
current load. A detailed treatment for SOF and SOP definition is given in 4.1. For now,

it suffices to point out the v,,;;, waveform can be derived the model structure and fitted
parameter value, and v;,, can be used to determine SOF.

1 if Vimin > Viimit

SOF = { (3.3.1)

0 if Vimin < Viimit

The v,,;, values are found by evaluating (3.1.6) and (3.1.7) with the recursively updated
parameters 0 using the maximum current value while ignoring the shift operator q. These
minimum battery voltage estimates can be treated as a SOF indicator because battery
operation is normally configured to shut down once a preset minimum voltage limit is
reached. The benefits of introducing the nonlinear electrode model is particularly

apparent by comparing the v,;, waveforms in Figure 3.13 and Figure 3.14, suggesting

that the nonlinear Butler-Volmer-based model will be a much better candidate than the
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linear circuit-based model for delivering meaningful SOF readings for battery types such

as lead-acid ones that exhibit large nonlinear electrode voltage drops.

The estimated voltage waveforms in Figure 3.14 indicate that the linear circuit-

based model has greater difficulty determining the estimated v,y;,. This can be attributed
to the fact that the model is adjusting its electrode resistor r| parameter value to linearly

approximate the electrode voltage drop that is a function of current as seen in (3.1.2), i.e.
the Butler-Volmer equation. The absence of an accurate nonlinear electrode model
requires the linear model to continuously adjust its parameters as the operating point

varies. As a result, the linear model estimates of v,,;,, in Figure 3.14 coincide with those

from the Butler-Volmer model for only a few points, most often when the terminal
voltage is low due to high current loads. In summary, the linear circuit-based model is
hindered by the fact that the approximation only performs well when operating in the

vicinity of the test conditions, i.e. current, that were used to set the model parameters.

The performance of the linear model in Figure 3.14 raises concerns about the
limitations of this model when combined with a Kalman filter. To further investigate this
issue, both models were run open-loop for 50 seconds with the feedback deactivated. The
model-estimated terminal voltages at the end of this interval are recorded for both
models. These modified voltage estimates are plotted for both models in Figure 3.15 with

the measured terminal voltages for comparison.
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Figure 3.15 Butler-Volmer and linear circuit-based model terminal voltage predictions
using 50 sec forecast results, including comparison with measured voltage

Figure 3.15 shows that the linear circuit-based model has difficulty forecasting the
battery voltage output under high-current conditions if the battery parameters 50 seconds
earlier were adapted for low-current conditions, while the Butler-Volmer-based model
performs much better for these conditions. Figure 3.16 provides a histogram of the
residuals for the two models from Figure 3.15, excluding data points for current values
lower than 55 [A] in order to focus the comparison of the two models in the high-current
region. The error histogram for the Butler-Volmer-based model in Figure 3.16 is
narrower than the linear-circuit based model, indicating that Butler-Volmer-based model

has better least squares prediction performance.
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It can be noted that the BV-based model error histogram in Figure 3.16 is biased
with a negative average value, indicating that the model has a tendency to under-forecast

the terminal voltage. This bias error can be attributed to the fact that v, has dropped

during the 50-second open-loop interval due to the change in SOC, but the forecast model

treats v,,., as a constant during this interval.

As a final step in this model evaluation, the autocorrelation of the residuals of the
two models in Figure 3.13 and Figure 3.14 has been analyzed. As discussed, the
feedback mechanism in the Kalman filter causes the sums of squares of the residuals for
both models to be small. However, the value of the autocorrelation of the residuals

should also be as close to zero as possible for a model to be high quality.
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For the residuals e, autocorrelation is defined as the correlation between e(k) and
its value e(k+j) separated by j intervals of time. Mathematically, the autocorrelation p at

lag j is defined as:

__E(e(0-8)(e(k)-0)]
VEl(e()-0)PEle(c)-2)2 332)

_ E[(e(k)-&)(e(kt))-¢)]
;)

where E is the expected value operator, @ is the mean value of the residuals, and ¢” is the
variance of e assuming stationarity. The residuals can be considered “whiter” with lower
autocorrelation, and whiter residuals indicate that there are fewer systematic components
in the actual battery that remain unmodeled. Figure 3.17 and Figure 3.18 show the
calculated autocorrelation for the first 10 lags for the Butler-Volmer-based model and the
linear circuit-based model residuals, respectively. The figures indicate that the
autocorrelation of the linear circuit-based model’s residuals is much greater than that of
the Butler-Volmer-based model. This observation further strengthens the case for
claiming that the Butler-Volmer-based model performs better than the linear circuit-based

model in predicting the battery performance.
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Figure 3.17 Calculated residual autocorrelation for the Butler-Volmer-based model at the
first 10 lags
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Figure 3.18 Calculated residual autocorrelation for the linear circuit-based model at the
first 10 lags
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3.4 Summary

This chapter presents a battery modeling technique that utilizes the Butler-Volmer
equation in a battery equivalent circuit suitable for recursive online parameter
identification. While incorporation of the Butler-Volmer equation into a battery model
for vehicle applications has been reported previously [119], a new contribution of this
work is the adoption of the hyperbolic sine approximation that is key to making the

integration of this model into a recursive estimator possible.

Performance comparisons with the conventional linear circuit battery model
indicate that the nonlinear model offers advantages for delivering meaningful SOF
readings for lead-acid batteries and other battery types that exhibit large nonlinear
electrode voltages. The proposed model has been verified for lead-acid batteries using

measured road data collected from an EV drive.
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Chapter 4

Battery Power Prognostics

A battery management system (BMS) for an EV is typically designed to provide,
among other functions, a power capability estimate. In recent years, the technical
literature has focused primarily on the estimation of battery SOC with the objective of
providing reliable estimates of remaining range for EV applications. The constraints on a
battery’s capability to fulfill its required tasks include not only its remaining charge
reflected in the SOC, but also the battery’s power delivery capability. However as
discussed in section 2.6, having enough SOC does not always mean the battery can fulfill
the application’s power requirement since power capability may be reduced by
temperature or other factors.

Since battery manufacturers usually publish the operating voltage upper and lower
limits, the BMS needs to insure that these limits are observed by preventing the sinking
and sourcing of too much power during vehicle operation. The focus of this chapter is

therefore on the battery power capability prognostics.
4.1 State-of-Function and State-of-Power

4.1.1 Definitions

Two metrics have been proposed for battery power capability: state-of-function
(SOF) and state-of-power (SOP). Multiple definitions of SOF have appeared in
literature, all of which related to the battery power capability. This paper will use

definitions similar to the SOF in [119] and the SOP in [39]. It is important to note that
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the SOF is a digital yes/no parameter stating whether the battery has sufficient power
capability to carry out a specified function (e.g., engine starting), while SOP is a vernier
signal indicating how much power is available. Both of these definitions use the battery
equivalent circuit to predict the maximum power the battery can deliver within the

specified voltage limits:

1 if Vinin > Viimit
po (1 4.1.1
SO {0 if Vmin < Viimit ( )
SOP = V]jmit(Vocv - Vlimit) (4.1.2)

I'0+I'1

where Vit 1S the minimum battery voltage allowed by manufacturer specifications, and
Vimin 18 the minimum voltage reached by the battery during the discharge profile. The
open-circuit voltage v, and two resistances r, and r; are found in the familiar Randle

battery equivalent circuit model provided in Figure 4.1. As discussed in chapter five, the
linear circuit-based model is suitable for lithium cells in the room temperature, and this
model will serve as the basis for the power capability prediction in this chapter. The SOP
variable in (4.1.2) is derived from this equivalent circuit and corresponds, for discharge
conditions, to the steady-state power delivered at the battery terminals when the battery

terminal voltage drops to vijpit-
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Figure 4.1 Conventional linear circuit-based battery model suitable for lithium batteries at
room temperature

The definitions in (4.1.1) and (4.1.2) focus on the battery’s discharge operation,
but corresponding definitions can be adopted for the charging case. In addition, SOP is
defined in (4.1.2) for steady-state operation as in [1], whereas [39] and [124] include
transient behavior in their analysis. Specifically, the SOP defined in [1] assumes a rested
start condition and captures the maximum power output within a fixed time period, while
the SOP defined in [39] and [124] incorporate the battery time constant and can solve for
any starting condition based on model assumptions. The simplified definition adopted
here is not critical to this chapter’s major focus and contribution. More will be provided

on the justification for the simplification.

4.1.2 State-of-Power Volatility

As discussed before, one popular method for battery parameter estimation uses a
recursive algorithm, often in the form of a Kalman filter that uses the measured battery

voltage and current data as inputs. This recursive approach adapts the equivalent circuit
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parameter values to reflect the effects of gradual SOC changes and aging. The SOP can
then be estimated using the recursively-obtained parameters. An important benefit for
this approach is the estimated parameters are updated continuously to provide real-time

information.

Using the recursive estimation methodology introduced in chapter three, a CALB
lithium-iron-phosphate battery’s parameters are monitored online for a simulated drive
cycle. The CALB battery specifications are given in Table 4.1.

Table 4.1 CALB 60AHA Li-iron-phosphate battery specifications

Nominal Capacity 60 [Ah]
Nominal Cell Voltage 3.2[V]
1 kHz AC Impedance <1 [mOhms]
Cell Voltage Range 2.5~3.6[V]

The SOP metric as defined in (4.1.2) has been found in the literature in many
variants [39] [124]. Within the context of the recursive estimation algorithm defined in

Chapter 3, v, ., and the resistances are estimated using the same data, so their estimates

are correlated. That is, an error in one parameter leads to errors in others. This

correlation of the estimates, combined with the fact that v, is divided by the sum of the

resistances in the defining SOP equation in (4.1.2) mean that the SOP estimates generated
by the recursive estimator are susceptible to having large fluctuations. This error
sensitivity is aggravated by the fact that the resistances of lithium batteries are typically
in the range of milli-Ohms.

When performing recursive estimation of parameters based on the linear circuit

model in (3.2.4), the quality of the SOP estimate in (4.1.2) can be studied. Specifically,

. A AAA ,
let assumptions be made about the convergence of v ., and R=ry+ r| asin (4.1.3).
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A
R=r0+ I
AN

Voey T E[i(1)] ﬁ = E[Vgteady(t)] (4.1.3)
dR -1
X, E0]

. : : A A AA
In (4.1.3), it is assumed that the recursively estimated parameters v,., and R=1,+ 1}

have converged in a steady-state fashion and that this convergence is the strongest with

respect to the average (expected) value of battery current E[i(t)]. The derivative of R

. N .
with respect to v,y 1s thus a function of the average current.

L /a
APy - R+ (E[i(t)](vocv“’limit)j

= Viimit R2

A
dVoey

(4.1.4)

1 N )
A 1+ —(v RV
dﬁlimit Vocv A (E[l(t)] ﬁ( ocv 11m1t)
dao..p ~ Vocv A

Vocv! limit Voev~Vlimit

From (4.1.2) and (4.1.3), the derivative of f)\limit with respect to </\OCV is then found

. . e . A
in (4.1.4) and this leads to the sensitivity of lélimit with respect to v, defined as

AN
dﬁlimit Vocv ) . D . . .
ﬁ. A quick examination of the terms in this sensitivity expression reveals that it
dVocv limit

is expected to have a rather high numerical value for a typical lithium-ion battery. The

CALB battery in Table 4.1 with internal resistance of 1 [mOhms], rated capacity of 60

dPyimit ¥
Ah, and rated voltage of 3.6 [V] i1s adopted for an example. For small I/{\, — limit “ocy can

A
dVocvplimit
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A\
v
be approximated as o ~ If the average current is chosen as the C-rate, i.e. 60 [A],
E[i()]R
A\
Vocv

~ 1s then 60, a rather high value for sensitivity. Furthermore using the same set of
E[i(H]R

parameters, the derivative Ahmlt is found to be 40133, i.e. power is off by 40133 [W] for

Vocv

A
an error of 1 volt on vy

4.1.3 State-of-Function with Confidence Interval

The high variability of estimated SOP raises concerns about the SOP’s utility in
applications when used in conjunction with recursive parameter estimation. On the other
hand, it can be argued that an accurately estimated SOP is not really needed in some
applications such as EV propulsion. During much of its operation, a vehicle’s battery
pack has a power delivery capability that significantly exceeds the power rating of its
power conversion unit. However, low SOC, low temperature, and aging will reduce the
battery pack’s power capability below the electric drive’s power rating. Under these
conditions, the drive control strategy must adapt to the new constraint.

In many cases, the SOF metric can be as useful in EV applications as the SOP
since the control strategy does not need to know the specific amount of power available,
but only whether the battery power that is available exceeds a minimum threshold value
required for the propulsion unit to accomplish its mission. For this more limited
threshold comparison purpose, the battery SOF estimate can serve as a surrogate

information source in place of the more detailed SOP estimate.
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If the SOP estimate is available, one straightforward way to estimate the SOF is to

simply compare the estimated SOP with the minimum required power, Pq. To enhance

the robustness of the SOF estimate it is desired to take the variance of estimated SOP into

account when comparing it with Pp.q.

At this point, it is worth noting that the Kalman filter inherently provides a
probabilistic assessment of all its estimates, including each estimate’s variance. In
addition, any linear function of these estimates will also have a deterministic probability
distribution and variance if the assumption can be justifiably made that the noise
variables are of Gaussian distributions. Unfortunately, the form of SOP in (4.1.2) is not a
linear combination of estimated quantities and no analytical solution for its variance is

available. In its place, another power metric, P, is proposed for SOF estimation,

defined as follows:

9 Viimit
Piest = ireq(Vocv . (r0+rl)ireq) (4.1.5)
po—i 1% B0 + B1.

test — Ireq| Yocv = 1 + a lreq

The newly defined power metric Py can be interpreted, for discharge conditions,
as the power that the battery is delivering at its terminals when it is delivering current iyeq
. 1peg In turn, is the current that flows from the battery terminals when it is delivering the

required power P4 at its minimum voltage limit vjj,;;. Note that ireq is a fixed value

since both Py and vy, are determined values, so the estimate ptest qualifies as a linear
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function of the correlated estimated variables, if the assumption of a known a; is made as

in chapter three.

For purposes of evaluating the SOF, it can be shown that if SOP > P, then Pyeg
> Preq- The derivation begins with a repeat of the SOP definition from (4.1.2):
Viimit(Vocv ~ Viimit) ,
Let SOP = Iy + 14 > Preq = lreqVlimit
Therefore: (4.1.6)

=> (Voey — Viimit) ~ ireq(ro try)
=> (Vocy ~ Ireq (T0711)) > Viimit

=> Prest = ireq(Vocv - ireq (rgtr1)) > irqulimit =Preq

Conversely, a similar argument can be made that when SOP <P, then P <

req:

Peq and when SOP = Pyo, Piog = Preg.  As aresult, it can be argued that, for the purpose

of SOF estimation, P, can serve as effectively as SOP.

As a consequence of being a linear variable, the estimated P, has a probability

density and variance when the parameters are estimated using the Kalman filter. The

covariance matrix A for the Kalman filter is a 3x3 matrix populated by the variances and

covariances of [(/\ocv, I/D\O, 1/3\1], as shown in (4.1.7).

0= [Voer,bo.011T

ISO) cov(v 131)
A= cov(\?ocv,l;o) Var(l;O) cov(l;(),l;l)
51) cov(lgo,lsl) Var(lgl)

Var({;ocv ) COV(‘,}ocv H ocv

(4.1.7)

cov(v

ocv

Using these results, the expression P has a variance that can be expressed as:
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) 2 .2 2
~ 1 A 1 ~
var ])test ) = irzeq Var(‘;ocv) + (1 —:3‘1 j Var(bo ) + (1 ;:eq J Var(bl )

a a,

.2 .2
l A l A
—2i = lcov(®, . ,b,)=2i | —— |cov(P, b 4.1.8
req(l_i_ ] ( ocy O) req[l_i_alJ ( ocv 1) ( )

a

+a,

2oy ..
+2(1 ~ J cov(b,,b,)

With the expression of the variance for ptest and the inequality shown in (4.1.6), the SOF

estimate can now be associated with a probabilistic statement with known theoretical
confidence. This is a significant advantage for improving the quality of the SOF

estimate.

4.2 Lithium-Iron-Phosphate Battery Estimation under UDDS Drive
Cycle
The CALB 60AHA lithium-iron-phosphate battery with the characteristics
presented in Table 4.1 has been used for the experimental verification tests. In [138], the
authors described the details of an electric vehicle conversion project using a Ford F150

crew cab truck. In the conversion project, the battery pack uses the CALB 100AHA

cells, a higher-current version of the 60AHA model cells that was tested in this project.
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Figure 4.2 UDDS drive cycle current profile. The drive cycle repeats until battery is fully
discharged

P

Figure 4.2 shows the current drive cycle used to excite the test battery on an
experiment setup. The UDDS drive cycle current profile represents a conversion of the

UDDS speed vs. time profile into an equivalent current vs. time schedule.
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Figure 4.3 Kalman filter predictions of the open-circuit voltage V., and terminal voltage
compared to the measured terminal voltage for the UDDS cycle current profile

Based on the truck’s physical parameters, e.g. inertia, etc, several standard drive
cycles were scaled for single-cell, test bench experiments. The performance of the
estimators was very similar for the different drive cycles. The experimental results
presented here are for the UDDS (urban dynamometer driving schedule) cycle. More
information about the battery test bench configuration used for these experimental test
cycles can be found in Appendix B. Additionally, the minimum voltage per cell, i.e.

Viimit- Was set at 2.8 V in accordance with the specifications for the EV conversion
project. The measured cell voltage, overlaid with the Kalman filter estimates for the
battery terminal voltage and open-circuit voltage Q/OCV are shown in Figure 4.3. In the

expanded insert in the upper right corner of Figure 4.3, it can be observed that the

estimated battery terminal voltage tracks the measured voltage very well. This good
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agreement reflects the fact that the Kalman filter is designed to minimize the least-
squared error of its estimates.

It should be noted that the UDDS drive cycle includes both motoring and
regenerating modes, raising questions about the performance of the Kalman filter
estimates in both modes. However, the motoring mode dominates the operating
conditions for the EV drive cycles considered in this investigation. As a result, the model
used for the results presented here assumes that the charging and discharging modes

share the same model parameters.
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Figure 4.4 Estimated SOP and Py, metrics compared with required power calculated for
the F150 truck [138] using the UDDS drive cycle

In Figure 4.4, the estimated SOP derived from the UDDS drive cycle test data is
plotted for the full cycle duration. It can be observed that, consistent with expectations

discussed in 4.1.2, the SOP estimate exhibits substantial fluctuations that raise questions

about the quality of this battery condition metric. In contrast, the estimated ﬁtest, variable
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defined in (4.1.5) is much better behaved than SOP, with significantly smaller variations
during the cycle. As expected, the value of Py dips below the line designating the
minimum required power Pre, (= 860 W for the CALB cell) at exactly the same time
instants as the SOP power. The zoomed-in view in the upper right corner of Figure 4.4

shows the Py lower-bound value (2 standard deviations) drops below the required
power level during this interval while the P, estimate stays above this threshold value.

This suggests that the ptest lower-bound value could be used to serve as an early warning
for the SOF function, indicating the battery is approaching its lower limit.

One additional benchmark for the filtering results is the first lag autocorrelation of
the error that should ideally be zero. For the filter tuning used in these experiments, the
value of this autocorrelation was determined to be 0.34. This value is considered to be
good for purposes of this investigation, but it reflects some residual limitations of the

model since the autocorrelation coefficient should ideally be zero.

4.3 Lithium-Iron-Phosphate Battery Estimation Results Comparison

between Recursive Estimation under UDDS and HPPC Analysis

4.3.1 HPPC Test for the Lithium-Iron-Phosphate Battery

The accuracy of the SOP estimated during the drive cycle depends on the quality

of estimates for two primary parameter/variable components in the battery model, \AIOCV

AA . . . . : :
and ro+ ry. In this section, the predicted SOP obtained from the recursive estimator

o . . AA .
presented in this paper and its estimated components \A/OCV and r + r| are compared with
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the SOP estimates delivered by the standardized hybrid pulse power characterization
(HPPC) test. Performing two methods of estimation for the same physical system using
separate sets of data is a respected approach to check the validity of both estimation

methods.

The well-known HPPC test defined in [1] and applies a defined sequence of
paired discharge/charge current pulses to the subject battery after one-hour rest periods.
Each current pulse has the same fixed time duration, e.g., 12 seconds. The measured
battery voltage and current waveforms are used to develop estimates of the battery

equivalent resistance that is important for predicting the battery’s power capability.
The estimated V., at each tested SOC level is derived from the rested battery

voltage before the pair of current pulses is applied. A fixed resting interval is also applied
between the discharging and charging pulses (e.g., 40 sec) to give the battery some
recovery time between the two pulses. The HPPC test is typically applied to a battery at
a series of different SOC levels arranged at intervals of approx. 10% SOC. The
adjustment between SOC levels is typically accomplished using a constant-current
discharge. Figure 4.5 shows a portion of the HPPC test current profile applied to the

CALB 60AHA battery cell.
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Figure 4.5 View of experimental HPPC test current pulses applied to the CALB 60AHA
battery

When interpreting the results of the HPPC test, it is important to note that the
power capability estimates extracted from the data are dependent on the selected pulse
duration and initial conditions. That is, with the rested initial condition before each
current pulse, the maximum voltage drop due to the stepped discharge current excitation
occurs at the end of the current pulse. If the discharge current is allowed to extend
beyond the 12-second interval chosen for this HPPC test, the resulting power capability
estimate for the battery will decrease because of the dropping battery voltage during the
pulse. As pointed out, the chosen SOP definition in (4.1.2) is the battery power
capability at steady-state, which is different from the conditions associated with the
HPPC test. In general, batteries in the lithium-ion family exhibit time constants to reach

steady-state that are several tens of seconds. An example can be found in Figure 3.12.
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4.3.2 Discussion on the Battery Time Constant Selection

An exercise has been conducted to compare: 1) the predicted SOP from the
recursive estimator applied to the UDDS drive cycle test data; and 2) the estimated power
capability from the HPPC test that is performed offline. As a first step, the time constant
parameter a; is tuned according to the HPPC test procedure instead of using an offline
test to estimate the time constant of the battery. Specifically, the HPPC test and its
corresponding Thevenin circuit model assume that the battery is close to steady-state
(within 0.1%) at the end of the current pulse. Hence, the implicit time constant t
assumed by the HPPC test with 12-second pulses can be calculated as:

—12
0.001 = exp( . ) 4.3.1)
=> 1= 1.7372 seconds

The value of the corresponding discrete time constant parameter a; for a sampling

time of 0.1 seconds can then be evaluated for the time constant value in (4.3.1) as:

a1 = —€X (ﬂ)
177 4.32)
—> a; =-0.944
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Figure 4.6 Estimated SOP curves provided by the recursive estimator using the UDDS
drive cycle current profile for two battery temperatures (25°C and 0°C) compared with
HPPC predicted power capability (25°C). = 1.74 sec

This value of a; has been adopted for all analysis in this paper except when noted

otherwise.

Figure 4.6 shows two estimated SOP curves for different temperatures using the
recursive estimator applied to the UDDS driving cycle current profile, together with the
estimated discharge power capability curve derived from the HPPC test data. As
expected, the SOP curve for data gathered at 0°C shows a much lower power capability in
Figure 4.6 compared to the other two curves associated with operation at 25°C. This
illustrates the important point that a simple SOC/Remaining-Amp-hour metric that does
not consider temperature effects is insufficient to characterize the battery performance
characteristics, especially with respect to its power capability.

It can be observed in Figure 4.6 that the estimated SOP curve at 25°C is

approximately 10% lower than the predicted HPPC discharge power curve. The
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discrepancy can be traced back to differences between the estimated open-circuit voltage
Yooy delivered by the recursive estimator and the HPPC test, as shown in Figure 4.7.
Although both curves have almost identical shapes, the average difference between the
two \A;OCV values is approximately 50 mV for every value of discharge Amp-hours. This

difference is explained by the fact that HPPC test rests the battery for an hour such that

the voltage has reached its steady-state value at the end of rest, leading to an elevated
estimate for \AIOCV. In comparison, during a discharge-dominated load profile the

unmodeled longer time constant resulting from the battery’s complex electrode diffusion

phenomena gets reflected in the recursive estimator battery model as a lower value of

A
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3.6
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Figure 4.7 Comparison of ¥, for the proposed recursive estimator using the UDDS
cycle current profile and the HPPC test. 7= 1.74 sec
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For completeness, Figure 4.8 provides estimated values of the combined resistive
i AN o .
impedance r( + r| in the battery model for the two estimation methods. As discussed

earlier, the two estimators make similar assumptions about the battery system time

constant. As a result, the curves in Figure 4.8 show that the estimated combined
) AA . . .
resistance values r(y + r| track each other quite closely for the recursive estimator case

using the UDDS drive cycle data with t = 1.74 sec.

6 UDDS
AA
Io+r)
S " 7= 1.74 sec
7 4 | UDDS
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Figure 4.8 Comparison of r(y + r; provided by the HPPC test results and the proposed
recursive estimator using the UDDS drive cycle current profile with two time constant

values (= 1.74 sec and 5 sec)
As noted before, the adoption of a battery model with a single time constant is a
simplification of the real battery system for many battery types, including lithium-based
batteries. Recognizing that the single time constant model is an approximation, it can be

shown that choosing the same value for this time constant t is important in order to
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achieve consistency between the HPPC test and recursive estimator models. This is

demonstrated by showing the results of choosing a longer time constant T =5 sec in the
. . . R : AA
recursive estimator. The associated curve in Figure 4.8 shows that the estimated r + r

for the case with t =5 sec deviates significantly from the HPPC test results. The results
for the case with T =35 sec were achieved with the same filter tunings as the case with
t=1.74 sec.

Finally, the power prediction capability of the recursive estimator is evaluated by

adding 250 [Amps] current pulses of duration of 12 seconds in the UDDS drive cycle.

The modified current profile is in Figure 4.9.
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Figure 4.9 UDDS drive cycle current profile with injected 12-second current pulses of
250 Amps. The drive cycle repeats until battery is fully discharged

Current [Amps]

The resulted Kalman filter results are shown in Figure 4.10.
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Figure 4.10 Kalman filter predictions for the current profile in Figure 4.9
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From Figure 4.10, it can be seen that during the 12 second current pulse the voltage drops
to the value quite close to the estimated \A/min. This result further strengthens the

confidence in the power prediction by the recursive estimator. Thus when under electric
drive condition, the battery pack’s SOP can be obtained under the recursive estimation
scheme. Due to the equivalence of SOP and SOF and availability of confidence interval
for SOF, SOF can be implemented on an actual vehicle to provide power prognostics

with margin of safety.

4.4 Summary

This chapter presents a methodology for online, recursive estimation for battery
power capability. In contrast with conventional approaches, a method for calculating the
SOF with deterministic mathematical probability under the context of a Kalman filter is

introduced. The new statistic is equivalent to the traditional SOP in terms of SOF
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determination using estimated parameters, but allows for a probabilistic statement on the
SOF. This is considered to be a significant improvement in order to rigorously provide
power prognostics with a margin of safety.

A comparison between the proposed power capability estimation using the
recursive estimator and the results of the well-known standard HPPC test is also
presented. The results demonstrate that by matching the key assumptions of the two
model methods, the two estimators offer very similar power capability estimates, building
confidence in the validity and usefulness of the proposed recursive estimator technique.

Finally the power prediction capability of the recursive estimator is evaluated by adding

current pulses and compare the estimated V,,;, with the actual voltage drop.
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Chapter 5

Lithium-Ion and Lead-
Acid Battery Temperature
Dependent Modeling,

Power Prognostics, and
SOC Estimation

This chapter is a summary of all the battery monitoring work in this thesis. The
temperature-dependent behavior of the resistance and overpotential of a CALB LiFePOg4
battery is first explored. Offline experimental results from HPPC tests and EIS methods
for resistance and overpotential are explained using the Arrhenius equation. Using a
nonlinear regression technique, simulated drive cycle data are used to confirm the
experimental findings and construct a generic cell model that explicitly takes temperature
effects of the resistance and overpotential into account.

This generic cell model is also adopted for Kalman filtering for online battery
monitoring, i.e. SOF and SOC. In addition, a solution for SOC estimation that takes
temperature, aging, and current dynamics into account is proposed for the LiFePO4
battery. The same generic cell model is also applied to a lead-acid battery under
discharge-only cycles. Finally the EIS experiment with DC current bias is adopted to
verify the LiFePO4 and lead-acid batteries’ temperature-dependent behavior, in addition

to time domain-based approaches such as the HPPC test and drive cycle tests.
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5.1 Theory of Battery Resistance and Overpotential Behavior as a

Function of Temperature
In this section, the theoretical forms of battery resistance and overpotential as
functions of temperature are derived using the Arrhenius relationship that describes the

rate of reaction based on temperature.

5.1.1 Battery Resistance in Arrhenius Form
The well-known Arrhenius equation empirically relates a rate constant k of

chemical reactions to the temperature T in Kelvins.

k= Aexp(R—lf‘j (5.1.1)

In (5.1.1), A is a pre-exponential factor and E, has units of energy per mole. To find a
theoretical expression for pure ohmic resistance ry as a function of temperature, it is

assumed that the resistance is inversely proportional to a rate constant, K. The rate

constant is also assumed to follow the Arrhenius form, and r( is expressed as a function

of temperature in (5.1.2).
1 1 a
0=} = Kexp(ﬁ) (5.1.2)

It can be seen that (5.1.2) is simply the inverse of (5.1.1). The ohmic resistance (5.1.2)
rapidly increases as the temperature drops, consistent with observations in the literature,

e.g., [28].
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5.1.2 Butler-Volmer Equation Exchange Current in Arrhenius Form

The Butler-Volmer equation had an important role in Chapter 3 where it was
shown that lead-acid battery electrode overpotential has a significant Butler-Volmer
behavior and the modeling of such a battery needs to take the nonlinear behavior into

account. The Butler-Volmer equation is presented again in (5.1.3).

1= io[exp(-(l%) — exp((l-a)%ﬂ (5.1.3)

The inverse hyperbolic sine approximation is also repeated.

RT . (1
n =" psinh" 2—10 (5.1.4)

Notice that the value of the exchange current i, determines the shape of the

Butler-Volmer curve. This numerical phenomenon can be illustrated with an example.
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Figure 5.1 Simulated electrode voltage responses with the same oF but different 1
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RT
Figure 5.1 shows two simulated curves based on (5.1.4) and the same oF value.

The difference between the two curves is the value of i adopted, one being 100 times the
value of the other. It is observed that an increase in i\ results in the straightening of the
curve in the same current region. When dealing with a large i, value in (5.1.4), adopting

a linear circuit model, i.e., ignoring the Butler-Volmer nonlinear effect, is a legitimate
approach because the model complexity of the linear circuit model is lower and the two
models are likely to produce similar results.

On the other hand, the exchange current may be temperature dependent and cause
a more pronounced Butler-Volmer behavior in some temperature regions. Since the
exchange current determines the rate of electron exchange between oxidation and
reduction reactions in equilibrium, the exchange current may drop as the temperature
decreases, i.e., the Arrhenius relationship. Therefore, the exchange current can be

modeled as a function of temperature in the Arrhenius form.

g = Bexp(%) (5.1.5)

(5.1.4) and (5.1.5) together describe the overpotential as a function of
temperature. It is important to note that the change in overpotential as a function of
current cannot be captured by increasing the linear model complexity, i.e., adding more
RC terms. Nor can the temperature influence be accurately captured by using a table of
resistances for various temperatures. Recent publications show that the overpotential and
the associated charge-transfer resistance for lithium nickel-manganese-cobalt oxide
(NMC) cells become nonlinear functions of current at low temperatures, reflecting the

BV relationship [127], [139]. While [139] relies on recursive estimation to adapt the
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Butler-Volmer equation parameters with temperature, this chapter presents the derivation
of the Bulter-Volmer equation temperature dependence based on the Arrhenius equation.
This derivation is key to making it possible to develop an offline model that takes

temperature into account.

5.2 HPPC and EIS Tests with Temperature as a Factor

In this section, the resistance and overpotential dependence on temperature is
experimentally evaluated using HPPC and EIS tests. In this work, a CALB lithium iron
phosphate cell rated at 60 Ah and 3.6 V was used in the experiments. The cell underwent
HPPC tests at various temperatures as defined in [1]. The HPPC test employs 1 C
discharge currents (i.e., 60 A in this case) to move from one SOC test point to another
and the pulsed test currents are 0.5, 1, and 2 C. EIS was carried out during the rest
periods in the HPPC sequence before the pulses were applied to provide additional
information about the cell characteristics.

First, the CALB battery under test is shown in Figure 5.2. The temperature

measurement is made on one of the terminals.
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Figure 5.3 EIS data for 0°C/273.15°K
Figure 5.3 shows a typical measured EIS result at a fixed temperature, where each
data point is the impedance for one excitation frequency plotted with real impedance

along the x-axis and imaginary impedance along the y-axis. The ohmic resistance ry can

be approximated as the real impedance at the resonant frequency where the measured
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curve crosses the x-axis. This value is linearly extrapolated between the two nearest data
points straddling the x-axis for each data set. For the 90% SOC condition, the measured

ro 1s plotted as a function of temperature along with its fitted function using (5.1.2) in
Figure 5.4. This figure shows that the value of r; drops exponentially as the cell

temperature increases, and the match with the curve-fit waveform is excellent.
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Figure 5.4 Pure resistance r( and its fitted function of temperature using (5.1.2) at 90% SOC

For the HPPC test data, resistance value r;y for the battery model can be

approximated by dividing the voltage drop during the pulse by the pulse current

amplitude. This resistance is a combined effect of rjy and the overpotential 1, and due to

the time constant, the duration of the pulse will affect the value of the resistance.
Comparing Figure 5.5 and Figure 5.6, it can be seen that the HPPC-measured resistances
are approximately the same for different pulse current amplitudes at 20°C, but the

resistances become more current-sensitive as the temperature drops. More specifically,
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the HPPC resistance decreases for higher current at 0°C, consistent with the Butler-

Volmer relationship.

6

5
£
S 4
g
3
= 3
G —e— 0.5C Discharge
E 5 —e— (0.5C Charge
@) —— 1C Discharge
E —»— 1C Charge

1 —F&— 2C Discharge

B— 2C Charge
O T T
0 10 20 30 40 50

Discharged Amp-Hours [Ah]
Figure 5.5 HPPC resistances at different SOC test conditions for different pulsed currents
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Figure 5.6 HPPC resistances at different SOC test conditions for different pulsed currents
at 20°C/293.15°K
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The fact that the HPPC resistances do not exhibit the Butler-Volmer relationship as much
at 20°C corroborates the wide use of the linear circuit model in the literature for lithium
batteries when low temperatures are not encountered.

Qualitatively, the HPPC resistances show a more significant Butler-Volmer
behavior at lower temperature. This observation is consistent with the modeling
assumption made in (5.1.5) where a decrease in temperature causes a drop in the
exchange current causing a more significant Butler-Volmer response as discussed in

5.1.2.

5.3 Parameter Fitting of Linear Electric Circuit Model and Butler-
Volmer Model at Various Temperatures Using Short Term Drive
Cycle
In this section an offline parameter estimation methodology, different from the

one discussed in 3.2.2, is introduced. The methodology covered here requires battery

data under an arbitrary drive cycle, either during an actual EV drive or a cycle on a test
bench capable of the simulation. In order to further explore the features of the Butler-

Volmer relationship at low temperatures, the LiFePOy4 cell was subjected to a simulated

drive cycle at different temperatures in the lab, and the voltage, current, and temperatures

were logged at 10 Hz.

The Butler-Volmer and linear circuit discrete time models are repeated in (5.3.1)

and (5.3.2).
: by ik
V(K) = Vyey — Toi(k) — [T aq] smh'l(zio) (5.3.1)
bo+biq!
VK) = Voey —i(k) (5.3.2)



147

As before, these models can be rewritten in the time domain by multiplying both sides of
these equations by the term (1 + a;q!) and assuming v, does not change during one

sample.
v(k)=(1+a)veey —ayv(k —1)

it + st~ Dy~ sinir (3 o (533)

v(k) = (1 +a))vyey —apvk—1)

—i(k)bg +i(k — 1)by (5.3.4)

Notice that given a batch of voltage and current data for a short duration of a drive
cycle, (5.3.3) and (5.3.4)’s parameters can estimated. Specifically, in (5.3.3) the
unknown parameters are [V, a1, Ig, ig, b1]1 and they are [vygy, a1, T, by]T in (5.3.4).
The predictor terms in both (5.3.3) and (5.3.4) consist of current and voltage data that are
available in the drive data. The regression for (5.3.3) and (5.3.4), however, is nonlinear
and requires an iterative method like the Gauss-Newton method. The following briefly
introduces the Gauss-Newton method.

For the LiFePOy4 battery, the OCV vs. SOC curve is very flat and the drop in SOC
during the drive cycle used for regression is usually less than 5%. Therefore, it makes

sense to use a constant v, for regression purposes. For chemistries whose OCV vs.
SOC curves have a steeper slope, the v, can be modeled as a line that has a different

offset and slope when plotted against discharged Ah for each temperature.

Voey = Va T VpAD (5.3.5)
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Consider m functions r = (ry, 1y, ..., I;,) of n variables B = (B, By, ..., By)- Usually

r is interpreted as the residuals of the model, and B the parameters to be estimated. The

Gauss-Newton method seeks to minimize the sum of squared errors.

S(B)= D r%(B) (5.3.6)
i=1

Starting with an initial guess Y, the Gauss-Newton method iterates the following:

BEHD =) + (JT7) ~1JTr (5.3.7)

where J is the Jacobian matrix at the iteration step s, i.e., the partial derivatives of the

residuals with respect to the individual parameters.

6I'i
= a—Bj(m ) (5.3.8)

(5.3.7) can also be modified with a fraction gain k to control the numerical stability, i.e.,

B(s+1) = B(s) + k(JTJ) 1Ty (5.3.9)
Applying the Gauss-Newton method to both models in (5.3.3) and (5.3.4) with the
same drive cycle data at 20°C/293.15K, the results are shown in Figure 5.7 and Figure

5.8. The average squared errors are 9.25¢-5 and 7.01e-5 respectively.
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It can be seen that the predictions of both models are nearly the same so that the Butler-

Volmer model offers no particular advantage over the linear model.
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Figure 5.10 Drive cycle test data and linear circuit model simulation with fitted
parameters at ambient -20°C/253.15°K

In contrast, the improved match achieved using the Butler-Volmer model for battery

parameter data at -20°C/253.15K is shown in Figure 5.9 and Figure 5.10. The average
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error squares are 2.93e-4 and 7.32e-4, respectively. Notice in Figure 5.10 the dashed
green circle points out a part of the data where a high discharge current is applied. The
linear circuit model tends to overpredict the voltage drop at a high current, due to the lack
of saturation effect at the high current region.

Since Figure 5.7 and Figure 5.8, Figure 5.9, and Figure 5.10 use the same data for
estimation and simulation evaluation, it is desirable to see how the models fare when
evaluation is performed on data from a different part of the drive cycle. Notice that due
to the assumption of a fixed v, in both models and v, dependence on SOC, the data
set used for prediction evaluation cannot be too far away in time and discharged Amp-
hours from the data set used for parameter estimation. In this example, the second data
set from the drive cycle at -20°C/253.15°K was separated from the first by 600 seconds

and 1.7 Ah, counting both discharging and regenerating currents.
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Figure 5.11 Drive cycle test data and both models’ predictions using a different part of
the drive cycle for evaluation at ambient -20°C/253.15°K
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Figure 5.11, using average square errors, again demonstrates the advantages of the
Butler-Volmer model at lower temperature compared with the linear circuit model.
Figure 5.12 compares the prediction error histogram of the two models and visually

confirms that linear-circuit model has a larger error variance.
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Figure 5.12 Prediction error histogram for the two models under the drive cycle in Figure
5.11
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Figure 5.13 The predicted steady-state voltage drop based on fitted parameters at ambient
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Finally, to establish that Butler-Volmer behavior is indeed prominent at low

temperature and the corresponding modeling effort is necessary, the models’ predicted

steady-steady voltage drops (i*ry + n(i)) vs. current based on fitted parameters are shown

Figure 5.13. The effect of the Butler-Volmer relationship is clearly visible at the lower
temperature (-20°C), while at room temperature (20°C) the two models yield voltage drop
predictions that agree with each other quite closely. The linear circuit model is clearly
incapable of modeling the Butler-Volmer relationship that is present during low-

temperature conditions.

5.4 Offline Parameter Fitting of a Generic Battery Model with

Resistance and Overpotential Dependence on Temperature

In this section, a generic battery model with resistance and overpotential that are

dependent on the temperature is proposed. One benefit of this model is that it can adjust
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to different temperature conditions quickly without relying on gradual convergence. The
other benefit is that such an explicitly temperature-dependent form can lead to a recursive
estimator that specifically takes temperature as an input, thus achieving online monitoring
for vehicles expected to experience a large range of temperature.

Most importantly, the nonlinear feature of the Butler-Volmer equation is not
possible for the linear-circuit model to mimic. The generic cell model offers a method to
describe such a phenomenon at different temperature conditions. First the Butler-

Volmer-based battery model in discrete from is repeated.

. by (ik
V(K) = Vey — Toi(k) — W smh'l[z%olj (5.4.1)

As discussed earlier in this chapter, the resistance ry and the overpotential n are

modeled as functions of temperature in (5.4.2), (5.4.3), and (5.4.4).

1 1 (E,
0=}~ Kexp(RT) (5.4.2)
RT i b T i(k)
= T ___ 1 - = 1 _1
N="oF Smh_l(2i0) I +a sinh (2in (5.4.3)
) -G
1= Bexp(—RT) (5.4.4)

By substituting the appropriate terms in (5.4.1) with (5.4.2), (5.4.3), and (5.4.4), a

discrete battery model with temperature as an input can be formed.

1 (Ea) bT i(k)
V(K) = Voey _KeXp(ﬁjl(k) Trag] sinh-1 G (5.4.5)
1 2Bexp(ﬁj

In order to perform parameter estimation for (5.4.5), it is necessary to combine,

i.e. concatenate, the data from drive cycles under various temperatures. Without this
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concatenation of data under various temperatures, it would be impossible to estimate
parameters associated with temperature terms. The change of temperature within a cycle
cannot realistically be sufficient for the estimation of parameters. Rearranging (5.4.5)

and specifying the v, ; for the open circuit voltage of each drive cycle of different
temperatures to take into account the temperature effect on vy, (5.4.6) is shown as

follows:
V() = (1 +a))Voey 631 —1)—ajvyk—1)

Ea
(in(K) + ayig(k - 1>>%CXP(RTn(k)] -
- (5.4.6)

-G
2B exp(—RTn (k))

by T,(k)sinh™

where the subscript n stands for n™ cycle, i for i™ cycle, and & for the Kronecker delta

function.
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Figure 5.14 Steady-state voltage drop for the generic cell model at different temperatures
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Figure 5.14 shows the steady-state voltage drops for different temperatures

obtained from the generic cell model and visually displays the generic cell model’s

dependence on temperature.
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Figure 5.15 Drive cycle test data and generic cell and linear circuit predictions using a

different part of the drive cycle for evaluation at ambient -20°C/253.15°K

In order to compare performance of the generic cell and the linear circuit models,
the prediction methodology used in Figure 5.11 is repeated for the two models, i.e., using
adjacent but different data points for prediction performance evaluation. One particular

set of results, for -20°C, is shown in Figure 5.15.

Table 5.1 The prediction average squared errors for the three modeling approaches

-20°C -10°C -5°C 0°C 5°C
Generic Cell 5.52e-4 2.64e-4 4.84¢-4 3.11e-4 1.79¢-4
Butler-Volmer 3.65e-4 3.00e-4 5.23e-4 2.68e-4 1.28e-4
Linear Circuit 6.60e-4 2.96e-4 5.30e-4 2.35e-4 9.03e-5

For five temperature conditions, the same prediction evaluation has been performed for

the generic cell, simple Butler-Volmer that ignores temperature, and the linear circuit
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models. The average squared errors for this particular data group are recorded in Table

5.1.
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Figure 5.16 Comparsion of prediction performance for generic cell and linear circuit

models based on Table 5.1

Figure 5.16 plots the results from Table 5.1 comparing the generic cell and linear
circuit model. It can be seen that the generic cell model performs better in a comparative
sense at lower temperatures. This result is not surprising since the Butler-Volmer
phenomenon is more prominent at lower temperatures. Another point worth noting is
that the prediction performance in the least-squares sense is subject to the drive cycle
data. If the fitting and prediction data are drawn from the parts of the drive cycle that
have a higher current load, the generic cell model is more likely to perform better since
the Butler-Volmer behavior is more noticeable at higher current. For reference, the peak

current for the data used in this chapter is 120 Amps or 2 C.
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5.5 Adaptive Estimation Using Generic Cell Model

The generic cell model, with its explicit inclusion of temperature as an input, is
suitable for offline simulation of LiFePO, batteries. However, some applications require
online estimation and tracking of battery parameters, similar to those introduced in 3.2
and 4.2. Based on (5.4.6), this section introduces the process that adapts the generic cell

model for online recursive estimatio, leading to the following expressions:

1. : _Fa
V() +avik— 1) = Voey (1 +ap) - (i (k) +ayi (k= D)exp (R“k)j (55.1)
—b,T(k)sinh! J%
ZBexp(m)
v(k) +ajv(k — 1) =00(k) (2
— 1 +a, ]
(i () + ai (k— 1) ( 0 j
—(1 a1 - exXp RT(1)
- 1 N RT(k) (5.5.3)
—T(k)sinh! [J_%J
i 2Bexp(m)
— %, . (5.5.4)

Closer examination reveals that (5.5.1) is a rearranged version of (5.4.6) with v(k)
+ a,v(k — 1) as the output on the left side of the equation. (5.5.2) expresses the right side
of (5.5.1) as the product of the parameters to be fitted 0, and the regressor ¢(k). (5.5.3)
defines the regressor @(k), while (5.5.4) identifies the parameters to be estimated. This
estimator formulation for linear filtering is similar to the method introduced in 3.2, except
the equations now include the temperature terms. The linear-circuit model can also be

similarly set up for linear, recursive estimation, as presented in 3.2.
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Once the estimator formulation is complete, the regressor ¢(k), parameter vector

0, and output v(k) + a,v(k — 1) are processed with Kalman filtering. The interested reader

is referred to 3.2 for more details about the Kalman filtering. While (5.5.2) is formulated

. . o 1 .
to accomplish the recursive estimation of v, %, and b;, other parameters are obtained

via the offline estimation of the generic cell model introduced in the previous section.
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Figure 5.17 Comparison of Kalman filter vio, estimates for linear-circuit model and
generic cell model for data at ambient 253.1 59K/-20°C
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Figure 5.18 Comparison of Kalman filter v,y estimates for linear-circuit model and
generic cell model for data at ambient 293.15°K/20°C

In Figure 5.17, both the linear-circuit and generic cell model Kalman filter results
for the -20°C condition are shown. In order to demonstrate the generic cell model’s
advantages for power prognostics, the predicted lowest battery voltage vioy is plotted for
both models. As in 3.3 and 4.3, the derivation of vio, is simply the application of the
maximum discharge current to the model, with the time shift operator q removed. For

example, vioy for the linear-circuit model can be expressed as follows:

bo+ b . (5.5.5)

Viow = Vocv — 1+a; Imax

Based on (5.4.5), the viow for the generic cell model is expressed in (5.5.6):

_ 1 E : —blT inh-1 _lma
2Bexp RT
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Viow provides an estimate of the battery’s output voltage capability at a given time
instant for a predefined maximum current load. By comparing with the preset voltage
limit for discharging, this estimated voltage can be the key to predicting whether the
battery is capable of achieving a critical upcoming power delivery task, such as restarting
the engine in a stop-start vehicle configuration.

The viow waveforms that appear in Figure 5.17 indicate that the generic cell model
offers performance advantages for accurate power prognostics for low battery
temperature (-20°C) due to its built-in Butler-Volmer relationship. The corresponding
Viow Waveforms in Figure 5.18 for 20°C ambient temperature condition indicate that both
models deliver approximately the same estimated v, values as the battery temperature
increases.

In Figure 5.17 and Figure 5.18, it is observed that vj,, curves seem to have
periodic noise associated with the driving cycle itself. To better understand this

phenomenon, the measured temperature and the estimated Ry are plotted alongside each

other.
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Figure 5.19 Temperature progression Figure 5.20 Estimated R, progression
during UDDS drive cycle at ambient during UDDS drive cycle at ambient
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From Figure 5.19 and Figure 5.20, it is observed that the estimated Ry behavior is very
much correlated with the measured temperature. The general trend of the resistance is
decreasing as the battery heats up from the losses sustained during the drive cycle, even
near the end of discharge the estimated R, is decreasing even though it would have
increased due to the depleted charge had the temperature been constant. In addition, the
red circles in Figure 5.19 show a part of the drive cycle where the temperature is
dropping due to a lull in the current profile. Correspondingly Figure 5.20 shows an

increase in resistance in the same part of the driving cycle.
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Figure 5.21 Temperature progression Figure 5.22 Estimated R, progression
during UDDS drive cycle at ambient during UDDS drive cycle at ambient
temperature 20°C temperature 20°C

A similar response can be seen in Figure 5.21 and Figure 5.22 for the UDDS drive cycle.
It is noted that the range of resistance range for higher ambient temperature is smaller,
consistent with the higher sensivity of resistance on temperature as seen in Figure 5.4.

The temperature sensitivity of the estimated Ry partially explains the vioy curve “noise.”

5.6 Generic Cell Model for Offline Simulation

In [139], recursive estimation is implemented so that the value of iy in (5.4.3) can

be estimated using a nonlinear estimation technique, along with the other key battery



163

parameters. This approach is designed to provide robustness against temperature and
aging influences while maintaining the Butler-Volmer structure to provide an appropriate
nonlinear response when the conditions require it. This method is also designed to work

for both lead-acid and lithium chemistries.

On the other hand, this nonlinear recursive estimation approach proposed in [139]
needs to be guided by the data as it comes in during the driving cycle. One potential
drawback of this approach is that the recursive estimation algorithm, depending on the
observer tuning gains, may not be able to adjust against a quick change in battery
temperature; e.g., when the battery quickly heats up during initial start-up in cold

weather.

Another drawback for the method in [139] is its inability to provide offline
simulation modeling tools since its parameters are entirely dependent on drive cycle data
excitation. In these two respects, the explicit modeling approach that includes
temperature as an input as presented in this work seems to have an advantage. This
section is therefore dedicated to an implementation for the offline simulation set up based

on the generic cell model.

The equations for the temperature dependent model are repeated and augmented

here for the offline simulation model. Notice that the v, is modeled as a polynomial

function of both temperature and Ah count.

1 1 E,
=3 = Xexp(—RTj (5.6.1)
RT iy bT i(k)
— - = 1 _1
N="0F smh-l(zio) T +a sinh (2in (5.6.2)
G

ip= Bexp(ﬁ—T) (5.6.3)
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1 Ea). b T .
V(K) = Voo (A, T) — exp| g Jik) — T agl sinh-1 G (5.6.4)
14 2Bexp(—)

Voey(AD,T) = fo + f;Ah + f,Ah2 + f3Ah3 + f;Ah4 + fsAhS

5.6.5
+ f6Ah*T + f7T + f8T2 ( )

In (5.6.5) the first six terms gives the polynomial fit the ability to represent the

battery v, relationship with the Ah count. The seventh term, fgAh*T, provides fit for

the interaction between the two factors, T and Ah. This interactive term was important in

arriving a good fit. The rest is a second order fit for the temperature factor.

In order to fit to (5.6.5), the data from UDDS drive cycles under various ambient

temperatures were used. Specifically, the estimated v,,.,, measured temperature, and Ah

count were used to fit to (5.6.5). The results are shown in the surface plot in Figure 5.23.
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Figure 5.23 v, estimation polynomial surface plot
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The fitted polynomial function is used to check one drive cycle’s estimated v,.,. One

such a check case is shown in Figure 5.24. The comparison between surface polynomial

and the v, shows the fit is quite good.
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o Est.V__ atambient=0"C
ocv

3.5 — Fit from the surface polynomial
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Figure 5.24 v, estimation with UDDS drive cycle and polynomial fit at ambient = 0°C

In addition to the electrical/electrochemical equations from (5.6.1) to (5.6.5), the
simulated cell requires a thermal model for completion. The offline thermal model is a
simple first order system with the asymptote set at the ambient temperature. The thermal
model is shown in (5.6.6), where the temperature change is driven approximately by the
electrical losses within the battery. A further addition to the model could be a
modification of (5.6.6) based on the resistance of the simulated cell. However, this

feature is not added in the simulation study.

b .
T(K) = Tambient + 1+ flq-l i2(k) (5.6.6)
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With the equations from (5.6.1) to (5.6.6), the simulated cell is almost complete.

One additional feature implemented is the increase of resistance R at the end of

discharge. This feature is an attempt to imitate the behavior of the real life battery, which
exhibits an increase of resistance at the end of discharge. Further modifications are

possible such as an increase in R( for charging near full charge; these can be
implemented as needed but not included in the results in this section.

Figure 5.25 shows the voltage response of the simulated cell at ambient 25°C
under the UDDS cycle, where the “measured” voltage and current data were artificially
corrupted with time correlated random noise. The measured voltage has a noise with
standard deviation 0.1 mV, and the measured current has a noise with 0.1 mA. The

temperature and R, response have also been plotted in Figure 5.26 and Figure 5.27.
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Figure 5.25 Simulated cell voltage and Kalman filtering results at 25°C ambient
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In Figure 5.25, a few observations can be made. The estimated vy, shows a

periodic variation as a function of the current profile, consistent with the experimental
results. Such a phenomon, as explained in 5.5, is partly the results of the changing in
resistance due to temperature change. The simulation captures this effect quite well, as

seen in Figure 5.26 and Figure 5.27 where temperature and R change are clearly
inversely correlated.

Another benefit the simulated cell provides is to help the tuning of the Kalman
filter. As explained in 3.2, the Kalman filter relies on a Q matrix to represent the
assumed internal noise. Given that the variance of the measurement R is fixed, a higher
the corresponding value in Q leads to faster tracking of the system parameter change.
The estimated parameters in the generic cell recursive estimation set up are repeated in

(5.6.7), while (5.6.8) shows the corresponding Q matrix.

1
0= [Vocy 3> bi] (5.6.7)
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var(Voey) O 0
Q= 0 Var(%) 0 (5.6.8)
0 0 wvar(b))

In (5.6.8), a larger value for var(v,.,) leads to faster tracking of the v, during
the drive cycle. However, the trade off is the stability of the estimated v,.,. Empirical

experience indicates that one set of tuning is often good for a whole pack of cells at
various aging conditions. On the other hand, the selection of appropriate values in the Q
matrix is essential for balancing the stability of the estimated parameters and the tracking

performance. In Figure 5.28 and Figure 5.29 the difference in var(v,.,) gain tuning is
illustrated with the help of the true v, from the simulated cell. It can be clearly seen
that by increasing the var(v,,) gain, the convergence of est. v, towards the true v, is
accelerated but the noise on the est. v, is also increased. Such noise can influence the

results on the power prognostics estimation, specifically on v}y
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The simulated cell can thus be used for guiding the selection of tuning gains, which can
be difficult using the experimental data since the actual values to the parameters are not

known.

5.7 Lithium Battery State-of-Charge Estimation Based on V,,, with
Temperature, Aging, and Drive Cycle Dynamics Taken into

Account

In 5.5, it is demonstrated that the temperature dependent generic cell recursive

estimation scheme can provide a power prognostics metric vj,. This section discusses

an approach to provide a practical SOC estimation for lithium cells for the EV application

based on the power prognostics metric vjqy,-

From the discussion in 2.4.1, the Nernst equation describes the battery v, as a

function of both temperature and the ratio of oxidants and reductants, thus the SOC.
Additionally, the resistance and overpotential of a battery are functions of the

temperature and SOC, as seen in previous sections of this chapter.

RT . Co (5.7.1)

In addition to temperature and SOC, the drive cycle characteristics can also
influence the timing of the end-of-discharge, if defined by a strict cut-off voltage
measurement. For example, a large load current may result in a sudden voltage drop and

take the cell voltage below the cut-off limit. However, if the est. vy, is adopted as the

reference for determinging end-of-discharge, the influence of current dynamics can be

greatly reduced. For lead-acid battery, the diffusion voltage drop is also a function of the
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drive cycle average current. The Peukert’s law discussed in 2.5.2 describes the early cut-
off’s due to higher average discharge currents. On the other hand, the literature shows

lithum cells do not exhibit the same Peukert behavior as lead-acid batteries [51].

Therefore, this SOC estimation method proposes using the power prognostics

metric vj,,, to decouple the drive cycle dynamics. The main factors that influence vy,
estimation are temperature and SOC. It follows that v, should be very similar for

different drive cycles when temperature and SOC are taken into account. Meanwhile, it
is well known that a battery at the end-of-discharge, i.e. low SOC, exhibits both an

increased in resistance and rapid decrease in v,.,. This phenomon will result in a rapid
collapse in battery power capability as well as v|,,,. From a practical point of view, any

SOC estimation scheme should have the end-of-discharge to correspond roughly where
the rapid power collapse sets in. The failure to do so partially explains the defect of the
naive Coulomb counting approach. If both temperature and aging are relatively
controlled, the expectation is that the battery can provide about the same amount of Ah

before the power capability collapse, i.e. the end-of-discharge.

The summary of the proposed SOC estimation method is the following: it uses
Viow €stimate as the end-of-discharge reference to decouple the drive cycle dynamics.
During the driving cycle, the vy, estimate is constantly compared with a cut-off limit in
order to detect the power capability collapse. The Ah and temperature measured at the
power capability collapse are recorded and contribute to a polynomial curve that

describes the Ah count at which the end-of-discharge occurs as a function of temperature.

This polynomial curve is then used to provide a guide for the Ah expected to be extracted
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during any drive cycle. A flow chart depicting the information flows for the proposed

SOC estimation method is shown in Figure 5.30.
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Figure 5.30 Information flow chart for SOC estimation scheme

Before the vy, estimation can be applied for SOC estimation, a further

modification is needed for taking into account battery power loss due to resistance
increase at low temperatures. For the CALB 60Ah cell, Figure 5.31 shows the line

resistance R relationship with temperature using fit information from the generic cell

model.
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Figure 5.31 Fitted line resistance Ry relationship with temperature for CALB 60 Ah cell

As seen in Figure 5.31, the resistance rapidly increases as temperature drops. Due to a

higher resistive voltage drop vy, estimation may easily go below the cut-off before the
power collapose sets in without 1,,,, modification. In order to have consistent vj,
estimation, the maximum current, i,,,y, 1s now scaled as a function of temperature.

Specifically, using 25°C as the reference temperature Inax 1S NOW given as:

_ 0
1nax(T) = imaX(MT_Ticl) (5.7.2)

To examine different current dynamics’ influence on the vy, estimation, four

different driving cycles are applied to the CALB 60Ah cell at various temperatures. The

V]ow €stimation, repeated in (5.7.3), under these different conditions are analyzed below.

1 Eq). b T imax(T)
Viow = Vocv — Xexp(ﬁj Imax(T) — 1+—a1 sinh-1 LG (5.7.3)

2Bexp(£—T)



173

L 300 ‘
—_ 100 — 200 1
z \ | z ol
= 5 | N T | I 2 0 JW J ‘ MH
) 5] ‘ !
: rimu N il
=i ot | w = 1 m U
Q " V U! Y o 200 w
_500 500 1000 1500 2000 2500 3000 -3000 200 400 600
Time [Seconds] Time [Seconds]
Figure 5.32 UDDS current profile Figure 5.33 US06 current profile
150 /\
100 100
< solt Mwwm \ ﬁﬂﬂww ﬂva fM H }ﬂu ﬂh‘MMM < ol ‘ N /]
=, : = T J
= o A = 0 | mm \—‘WJ
: - : i
5 100 5 -50 v J
-150 -100 f
200, 200 400 600 800 1000 0 100 200 300 400 500
Time [Seconds] Time [Seconds]
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Figure 5.32 to Figure 5.35 show the four driving cycles used on CALB 60Ah in
the lab experiment. It can be observed that they vary in their average current and

dynamic components.
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Figure 5.36 CALB battery temperature Figure 5.37 CALB battery temperature

response at 20°C for UDDS response at 20°C for US06
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The US06 cycle in particular is the most aggressive among the four drive cycles, and
causes a significantly higher rise in temperature. The temperature response for the CALB
battery at 20°C ambient temperature for these four drive cycles can be seen from Figure
5.36 to Figure 5.39. Notice that at the same discharged Ah, the drive cycles have
different temperature responses due to their different RMS value. The US06 cycle causes
an almost 8°C rise in temperature by the end-of-discharge, while the UDDS cycle causes
a 2~3°C rise only.

Figure 5.40 illustrates the vy, estimations during UDDS drive cycle under
various ambient temperatures. Due to the noise on the v, estimation from Kalman
filtering, these vy, ’s have been filtered with a moving medium filter that finds the
medium value within 1 Ah of data. Thanks to the adjustment of i,y 1n (5.7.2) Vjow
estimations at different temperatures maintain the roughly the same level, although their
collapse point is still a function of temperature as seen in the early rapid power loss for
low temperature conditions.

In Figure 5.41, Figure 5.42, and Figure 5.43, the vy, estimations for other drive

cycles show similar results as the UDDS cycle.
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In order to verify that these vy, estimations are similar across different drive cycles, the

Viow €stimation for ambient temperature at 20°C is plotted together for comparison in

Figure 5.44. Notice that at room temperature the temperature discrepancy between drive

cycles is not as important as in low temperatures.
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Figure 5.44 The v),,, estimations for different drive cycles at ambient temperature 20°C

In Figure 5.44, the v, estimations for different drive cycles behave very similarly,
thanks to the consistency of both the CALB battery and the generic cell Kalman filtering
scheme. It can be noted that the v}, estimation for the US06 cycle is slightly higher

than the rest, consistent with the fact that the CALB battery is hotter during the US06

cycle.
The experimental results so far demonstrate the the v}, estimation’s consistency

for different current profiles. The next step is to record the cut-off Ah’s and the
corresponding temperatures and provide a polynomial fit that predict the available Ah per
drive cycle as a function of temperature. From all these different drive cycles at various
ambient temperatures, the cut-off Ah’s, the corresponding temperatures, and their

polynomial (quadratic) fit are shown in Figure 5.45.
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Figure 5.45 The cut-off Ah’s as a function of temperature and the quadratic fit

In Figure 5.45, the data and their quadratic fit show the consistency of the cut-off
Ah as a function of temperature. The fit has a standard error of 2.3 Ah, or roughly 3.8%
of the rated 60 Ah capacity. In application, as the battery ages the cut-off Ah’s are
expected to move further down due to increased resistance and decreased capacity. As
the new data of cut-off Ah’s and temperatures are obtained, the new information can be
used to recursively update the polynomial to reflect battery aging.

Finally, some data from the WEMPEC/Orchid electric truck are used to
demonstrate the consistency of the vy, estimation. The detailed information for the

truck can be found in [138]. The truck has a battery bank consisting of 108 CALB 100
Ah cells. The cells are distributed into three blocks, one in the front engine compartment

and two in the cab space. The consistency of the v, estimation is demonstrated by

using two drive cycle data, one full drive cycle depleting the battery and one short drive
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starting near the end-of-discharge. For one particular cell 35, both the vy, estimations

and the nearest temperature measurement are plotted below for the two drive cycles.
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In Figure 5.46 the v),, estimations for both drive cycle show very similar behavior,

despite the huge difference in their respecitve starting conditions. Since both drive cycles
were under relatively high temperature, the difference in temperature does not cause a

significant discrepancy between the v, estimations. However, in Figure 5.47 the short

drive cycle temperature is slightly below the long drive cycle, and correspondingly the

short drive cycle v}, estimation is also below that of the long drive cycle.
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Figure 5.48 to Figure 5.51 show other cells’ v}, estimation comparisons for the

two drive cycles. The consistency of the v, s 1s again noted.

5.8 Generic Cell Model Applied to Lead-Acid Battery

The generic cell model approach introduced in 5.4 and 5.5 can also be applied to a
lead-acid battery in order to provide a comprehensive temperature dependent modeling
approach. In chapter three, the Butler-Volmer equation was used to provide a lead-acid
battery model for online recursive estimation. The generic cell model approach can be
seen as the extension to the Butler-Volmer method introduced in chapter three with
temperature as an explicit input to the model.

In this section, the generic cell modeling approach is applied to the lead-acid
battery drive cycles without regenerative events. Some EV’s do not have regenerative
capability, e.g. the Corbin Sparrow. In addition, the charging process for the lead-acid
battery involves highly complex electrochemical reactions and is difficult to model. As
an example, Figure 5.52 shows the lead-acid OPTIMA D34M battery’s voltage response

to a step charging current at 82.5 A.
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Figure 5.52 Lead-acid OPTIMA D34M battery’s voltage response to a step charging
current at 82.5 A

As seen in Figure 5.52, the voltage initially rises quickly, falls down, and then continues
its gradual rise. One possible explanation for this behavior is the gassing, or water
splitting, reaction mentioned in [20], [143]. Neither circuit elements nor Butler-Volmer
type equations can adequately mimic such a complex behavior. As a result, the

preliminary investigation in this section will focus on discharge only drive cycles.

1 1 (Es (5.8.1)
107k = AXPRT

RT .. (i) bT k) (5.8.2)
=" smh-l(zioj “Tra sinh 1(2in
io Bexp(g) (5.8.3)

1 E b;T i(k
v(k) = Voey — XeXP(R—%)i(k) - 1+—1r sinh-1—4— (5.8.4)
s 2Bexp(£—T)

Voey =4+ bAh (5.8.5)
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As in 5.4, the generic cell model equations are provided from (5.8.1) to (5.8.5). In
5.4, the offline generic cell model parameter estimation obtained a small portion of data
from drive cycles under various ambient temperatures, and concatenated all the data into
a full matrix for parameter fitting. In addition, the assumption was made in 5.4 that the

CALB LiFePOy battery’s v, does not change significantly during this small portion of
data. However, the lead-acid battery is known to have a much sharper v, fall off as a
function of discharged Ah compared with LiFePO, battery. To prevent this discrepancy
from interfering with parameter fitting, the v, is assumed to be a linear function of Ah

count, as seen in (5.8.5). The comparison between the generic cell model fit and the data

are shown in Figure 5.53 and Figure 5.54 for ambient temperature at 20°C and -20°C
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Figure 5.53 Drive cycle test data and generic cell predictions at ambient temperature
20°C/293.15°K
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Figure 5.54 Drive cycle test data and generic cell predictions at ambient temperature -
20°C/253.15°K

Figure 5.53 and Figure 5.54 show the generic cell model, with the v, as a linear
function of Ah count modification, tracks data very well in both room and low
temperatures. With the obtained parameters, the generic cell model can then be modified
for online Kalman filtering, as done in 5.5 for the CALB LiFePO,4 battery. The

formulation for the Kalman filtering is repeated here for reference.

E
v(k) +agv(k — 1) = voey (1 +ay) —i(i (k) +ayi (k- DkxP(RT?k)j (5.8.6)

— blT(k)sinhl(J—%}
ZBexp(m)

v(k) +ajvik—1)=00p(k) (5.8.7)
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(5.8.8)

(5.8.9)

As in 5.5, the parameters estimated in this recursive set up are v, and the gains to the

R and overpotential Butler-Volmer relationship. The aging effects can be captured by

the recursive scheme, while the temperature effect is captured by making it an explicit

input to the model.

Figure 5.55 and Figure 5.57 show the results for the recursive estimation for the

Optima D34M lead-acid battery under UDDS based drive cycles at ambient temperature

30°C and 0°C. The v}, estimations in Figure 5.55 and Figure 5.57 are both calculated

with a simple i,,,, at the maximum current value during the drive cycle. Figure 5.56 and

Figure 5.58 show the respective current profiles for Figure 5.55 and Figure 5.57.
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In Figure 5.57 the estimated v, is seen to be somewhat higher than the plateauing

voltage measurement. It is pointed out that the drive cycle does not have actually go
down to zero at the resting intervals. The minimum current is at 1.6 A. The temperature
effect explains this difference between estimated v,., and the plateauing voltage
measurement is more significant at 0°C ambient than 30°C ambient.

This section applies the generic cell modeling approach to a lead-acid battery and
adopted the model for the recursive estimation scheme for power prognostics. The lead-
acid battery regenerative behavior is too complex to be covered in this investigation, but

the Butler-Volmer and Arrhenius equations based approach is still capable of modeling

the lead-acid battery well under discharge only cycles.
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5.9 Investigation of Lithium and Lead-Acid Battery Resistance and
Overpotential Behavior under Various Temperatures Using

Electrochemical Impedance Spectroscopy

This section deploys EIS to investigate the impact of temperature and dc bias
current on battery impedance characteristics. Measured test results are used to
demonstrate that, under conditions where the nonlinear Butler-Volmer equation is
necessary to model the electrode charge transfer characteristics, the semicircular
trajectory that typically appears in the EIS results shrinks in diameter as the battery’s dc
bias current increases. For a lithium-based battery, the nonlinearity introduced by the
Butler-Volmer relationship is more pronounced at low temperature, while lead-acid
batteries typically exhibit this nonlinearity even at room temperature. The impact of dc
bias current on the battery model and EIS characteristics are thoroughly investigated
using a combination of experimental tests combined with theoretical justification based
on the Arrhenius equation. The results obtained in this section are consistent with the
results in other parts of the thesis using time domain signals, namely that lithium based
batteries show Butler-Volmer behavior at low temperatures while the lead-acid battery
demonstrates the Butler-Volmer behavior at both normal and low temperatures. The
nonlinearity in the electrode voltage/current relationship described by the Butler-Volmer
equation (3.1.1) requires that the impact of changing dc bias currents must be accurately
reflected in the battery model in order to insure the model’s usefulness.

Figure 5.59 illustrates a battery equivalent circuit model using RC circuits. The
measured EIS impedance plot in Figure 5.60 has been obtained from the CALB battery at

90% SOC.
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Figure 5.60 EIS results with identification of the key frequency regions

The battery model in Figure 5.59 can be partitioned into 5 sections that influence
different frequency ranges. The series inductor L is responsible for determining the

model’s high-frequency characteristics. The value of Ry can be determined from the EIS

results as the resistance value where the impedance trajectory crosses the x-axis (i.e., zero
imaginary impedance), corresponding to the resonant frequency of the equivalent circuit.

The next feature in the EIS trajectory is the semi-circle to the right of the R() value

associated with very low frequencies that is generated by the interaction of the electrode
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charge transfer resistance R and the double-layer capacitance Cy;. This capacitance Cy

has often been modeled as a nonlincar CPE component. This investigation is not
concerned with the details of this capacitor model and focuses instead on analyzing the
resistive components.

The second parallel RC combination in the model represents the ion diffusion
phenomenon that is responsible for the portion of EIS trajectory to the right of the charge
transfer semicircle in Figure 5.60, often producing a tail-like feature in the impedance

plot. The final model component is the open-circuit voltage source v,.,. The value of
Voey Cannot be obtained via EIS but is dependent on SOC and strongly affects the low-

frequency impedance when dc bias currents are applied. Sub-hertz frequency data points
have been avoided in this investigation because the SOC changes too much for large dc
bias currents during the time it takes to make such low frequency measurements.

In 5.1.1, the pure resistance R, was modeled as a function of temperature by the
Arrhenius equation and showed an increase in value as the temperature drops.
Correspondingly, as the temperature drops the EIS results are expected to shift towards
right to reflect this increase in resistance. The charge transfer resistance R is modeled
as a function of temperature and current, i.e. as in the generic cell model. These

temperature dependent functions of resistance and overpotential are repeated here for

reference.
1 1 E
=3 = Xexp(—R%) (5.9.1)
RT i b T i(k)
= T« 1 - = 1 _1
N="oF sinh 1(_2i0) [ +a sinh ( ioj (5.9.2)

g = Bexp(%) (5.9.3)
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From (5.9.2), the charge transfer resistance R can be derived by using Ohm’s law.

_H_RuT R | L
Ry =  ~ iFa sinh (2in (5.9.4)

The 100Ah CALB LiFePO, cell and a 55Ah, 12V Optima D34M lead-acid
battery were used in the experiments in this section. All EIS results have been obtained
at frequencies from 1 Hz to 10 kHz at 90% SOC with an hour of rest preceding each EIS
frequency sweep measurement.

EIS tests without a dc bias current were first performed on the lead-acid battery
for various temperatures. The measured results are shown in Figure 5.61, where the
spectra exhibit expansion of the semi-circle as the temperature decreases. The expansion
of the semi-circle at low temperatures indicates that the impedance and time constants are
increasing as the temperature drops. Similarly, the measured EIS results for the LiFePO4

cell shown in Figure 5.62 also demonstrate an enlarged semi-circle at low temperatures.
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Figure 5.61 Measured Optima lead-acid battery EIS results,
-10° to 25°C



189

1Hz

(BN
)
)

R AR N

' \ \ 10°C
1 4@ 15°C
| 20°C
1.5L_10kHz _25°C
0 1 2 3 4 5 6 7
real impedance [mOhms]

Figure 5.62 Measured CALB LiFePO4 60 Ah battery EIS results,
-10°C to 25°C

imaginary impedance [mOhms]
=)
(6)]
2
>, @ F 3
? .
g
—
Oc

Although not easily observed from Figure 5.61 and Figure 5.62, lowering the
temperature also results in shifting of the whole spectrum to the right due to increases in

the series resistance R(. The increase in Ry at lower temperatures is shown more clearly

in Figure 5.63 for the CALB LiFePOy cell, where the resistance values at the point where
the impedance curves cross the real impedance zero axis are plotted for different
temperatures. The results in Figure 5.63 are consistent with the Arrhenius equation

modeling approach.
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Figure 5.63 Measured CALB LiFePO4 series resistances R, at different temperatures and

fitted with the Arrhenius equation using (5.9.1)

Both batteries were next subjected to EIS with a dc bias current at two
temperatures. The dc bias current is applied to the cell continuously while the ac
excitation steps through a range of frequencies for the impedance measurements. This
method has the disadvantage of changing the SOC during the measurement resulting in
Voev dropping slightly because of the discharging dc bias current. Due to this constraint,
impedance spectroscopy was not performed for frequencies below 1 Hz where the SOC

changes too much during the time required to take the measurement.
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Figure 5.65 Measured CALB LiFePOq cell

EIS results
for 7 dc bias currents at 0°C

For the LiFePOy cell, Figure 5.64 shows the EIS results for different dc bias

current magnitudes, indicated as a C rate, at 25°C. It can be observed that the spectra are

similar to one another, and the semi-circle retains much of its size and shape as the dc

bias current increases. In contrast, Figure 5.65 demonstrates that, for the 0°C condition,

the semi-circle clearly shrinks as the dc bias current increases. This is significant since it

can be shown that the diameter of the semi-circle ideally equals the charge transfer

resistance Re:.
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Closer examination reveals that the shrinking of the semi-circle can be attributed
to the Butler-Volmer and Arrhenius equations that give rise to (5.9.3) and (5.9.4). More
specifically, lower temperature decreases the value of iy calculated using (5.9.3) and
causes the dependence of Ry in (5.9.4) on dc bias current to be more prominent. Since
the right-side terminus points of the EIS trajectories in Figure 5.64 and Figure 5.65
(corresponding to 1 Hz) approach the x-axis (i.e., zero reactive impedance) for the
majority of the test results appearing in these two figures, the value of R can be
approximately estimated by subtracting Ry (the x-axis intercept of each EIS trajectory)

from the value of real impedance measured at 1 Hz.
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Figure 5.66 Measured Optima D34M lead-acid battery EIS results
for 3 dc bias currents at 25°C



193

1Hz
g 0C
5 (0Ade)
£ \
S 0.5C
3 (27.5Adc)
(]
[oR
£
>
©
c
D
©
£
2 4 6 8 10 12

real impedance [MOhms]

Figure 5.67 Measured Optima D34M lead-acid battery EIS results
for 3 dc bias currents at 0°C

For the lead-acid battery, Figure 5.66 and Figure 5.67 also show the EIS results
with different dc bias currents at two temperatures. It is observed that, at both
temperatures, the dc bias influence on the semi-circle’s shape is prominent. It can also
be noted that the EIS results for 0°C show an increase in Ry, similar to the results for

LiFePO, cell. Overall both types of chemistries exhibit results expected.
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Figure 5.69 Optima lead-acid D34M charge transfer resistance R for 0°C and 25°C and
fitted curves using solid lines based on (5.9.4)

In Figure 5.68, the R values extracted from the measured EIS trajectories for the

LiFePO, cell are plotted for the different temperatures and dc bias currents. As expected,
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the significant drop in the value of R, as the dc bias current increases for the 0°C
condition is clearly visible, while the corresponding curve for 25°C exhibits a nearly
constant value of R,. Again, this behavior is predicted by the Butler-Volmer relationship
in (5.9.2) and (5.9.4).

Using the same techniques as used for the LiFePOy cell, the measured value of Ry
as a function of the dc bias current for the lead-acid battery can also be plotted. Figure
5.69 shows the resulting plot of Ry vs. dc bias current. The plotted curves exhibit
similarities to the corresponding R curves for LiFePOj cells in Figure 5.68, although the
value of R varies more at 25°C for the lead-acid battery than for the LiFePO4
counterpart. The two curves in Figure 5.69 show that the impact of the nonlinear Butler-
Volmer equation is significant at both 25°C and 0°C for the lead-acid battery, consistent

with the findings in chapter three.
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Figure 5.70 Measured CALB LiFePO4 EIS results with and without a wait period
between frequency data points for no dc bias current and 1 C dc bias current conditions
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In [28], it was discovered that the amplitude of the ac current excitation used can
have an impact on the EIS results at low temperature, with a higher RMS value leading to
a smaller semicircle. This effect was attributed to higher internal losses leading to a
higher internal temperature. In order to investigate whether the shifting of the spectra in
Figure 5.65 can be attributed solely to internal heating, the LiFePO4 cell has been
subjected to EIS testing, at 0°C ambient, with and without a 10-minute wait period
between frequency data points for no dc bias current and 1C dc bias current conditions.
Figure 5.70 shows that the impedance is higher with wait periods between data points,
demonstrating that internal cell heating does influence the cell impedance. However,
Figure 5.70 also shows that, even with the wait periods, the effect of dc bias current on

the impedance characteristics is clearly visible, indicating that internal heating is not

sufficient to explain the battery impedance changes that are observed. The same
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phenomena are also observed for the lead-acid battery in Figure 5.71, where both the
impact of cooling by waiting and the dc bias current effects can be observed.

In this section, the Butler-Volmer behavior and its temperature dependence have
been explored using EIS with dc current biases. EIS’s emphasis on the frequency domain
makes it possible to observe that, in addition to temperature’s influence on the steady-
state Butler-Volmer behavior, temperature also changes the size of the double-layer
capacitance semi-circle. This means that the transient behavior, i.e., time constant, of the
battery is influenced by temperature and the current magnitude. This phenomenon
remains to be modeled in the time domain, and a suitable approach has not yet been

reported in the literature.

5.10 Summary

This chapter presents a unifying battery modeling approach that varies the cell
resistance and electrode overpotential as functions of temperature. Experimental results
are used to build confidence in the model, demonstrating that use of the Butler-Volmer
relationship yields more accurate voltage predictions than the linear model for LiFePO4
cells at lower temperatures (0°C and below).

Using nonlinear regression, a method has been proposed to construct a generic
cell model that explicitly uses temperature as an input for resistance and overpotential.
This temperature-dependent model is better suited for predicting the lithium battery cell
behavior at low temperatures than the baseline linear model. In addition, this generic cell
model also makes it possible to carry out offline simulations that can achieve accurate

battery behavior modeling under various temperatures.
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The generic cell model has also been adopted for Kalman filtering in order to
monitor battery performance online, i.e., SOF and SOC. An SOC estimation method
based on the generic cell model has been proposed that exhibits strong promise with its
3.8% standard error performance. This sophisticated SOC estimation takes into account
aging, temperature, and current dyanimics. For a lead-acid battery, it was shown that this
same modeling approach is successful for drive cycles without regenerate braking.

Finally, a frequency-domain approach using EIS has been adopted to verify the
findings on battery temperature-dependent behavior, and the results corroborate the data
collected using time-domain methods such as HPPC and drive cycle tests. It has been
pointed out that this generic cell approach serves as a good starting point for modeling
different battery chemistries, but care must be taken to observe any discrepancy between
model and data, e.g., the charging behavior of the lead-acid battery. Furthermore, the
location at which the temperature is measured will influence the results of the modeling

approach introduced in this chapter.
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Chapter 6

Design of Experiment for
Superimposed AC
Waveform’s Influence on
Battery Aging Based on
Resistance Growth

This chapter investigates the aging influence of a superimposed AC waveform on
discharge current for lithium-ion batteries. Based on the results of two experiments, the
discharge current RMS value is determined to be a significant aging factor, while
evidence does not support the importance of the DC current value, waveform shape, or
frequency on the battery aging characteristics. The practical significance of this result
lies in recognizing its importance for properly choosing capacitor values for filtering the
battery pack terminal current, perhaps making an argument for implementing the filter
using an electrochemical ultracapacitor.

Furthermore, a quantitative analysis is provided for numerically determining the
aging effect of the RMS factor. Such a methodology can provide a useful filter design
guideline for power electronics engineers. The design of experiment and associated
analyses proposed in this chapter can also be adopted for the investigation of other

battery aging factors of interest.

6.1 Interest in Superimposed AC Waveform’s Influence on Aging

Due to the limitations in cycling life and the associated vehicle warranty issue,

understanding of lithium-ion battery’s aging process has become an important research



200

topic.  As discussed in 2.7.1 mechanisms cited for aging include the following:
electrolyte decomposition leading to solid-electrolyte interface (SEI) layer buildup,
solvent co-intercalation and subsequent cracking of formation in electrode, change in
electrode volume and surface area due to SEI layer growth, and current collector
corrosion. The consensus in the literature suggests the growth of SEI layer can lead to an
increase in resistance, resulting in cell power fade and a decrease in capacity due to the
loss of active materials. The capacity and resistance of a lithium battery throughout its
aging thus have a negative correlation. Due to their measurability and direct influence
on battery performance, both resistance and capacity have been used as metrics for
battery aging.

In the literature, some efforts are made to discern if certain factors are influential
on battery aging rate. In [98], several factors and their joint cross coupling effect were
studied; it is claimed that effects including temperature, end of discharge voltage, and
charging voltage are significant, as well as their cross-coupling effects. The temperature
influence on aging is indeed well documented throughout the literature.

One interesting factor in battery aging is the superimposed AC waveform. The
literature has many examples of indirect proof for superimposed AC waveform being
important for battery aging rate, see the discussion in 2.7.4. If superimposed AC
waveforms are irrelevant to aging, the sizing of the capacitor may be reduced for cost
benefits. If these AC waveforms are significant to aging, a quantitative metric for
balancing between the right amount of filtering and cost would be important.

In this chapter an experiment is conducted focusing on determining if a

superimposed AC waveform in the discharge current leads to more aging. If so, is the
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additional aging resulting from the higher root mean square (RMS) value in the discharge
current or simply from the swinging of the waveform? Having found in the experiment
that the higher RMS value leads to higher aging, we conducted a second experiment to
determine if different waveforms and frequencies have an impact on aging besides the
RMS value. Finally, the data of the first and second experiments are used together to
statistically determine the growth of resistance as a function of RMS and show that the
DC value of the discharge waveform is far less important than the RMS value in

influencing aging.

6.2 Experimental Details for the First Experiment

The experiment was conducted using ICR14500NM cells rated at 760 [mAh]
from HYB Battery. These cells use lithium cobalt oxide as their cathode material
according to the vendor. The test stand specification is briefly discussed here, and the
interested reader is referred to [26] for more details. The test stand consists of 16
channels housed in two enclosures, eight channels each. A LabVIEW® program running
on two National Instruments PXI units controls the two enclosures. Figure 6.1 shows the

test stand system level diagram [26].
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Figure 6.1 Test stand system level diagram [26]

A wire harness connects a cell to each channel, providing pathways for the main
current loop and sensing for voltage, current, and temperature. The charging of the cell is
performed by a circuit that implements the constant current, constant voltage algorithm.
The cell discharge is performed by another separate feedback circuit made of a BJT and
an Op-Amp, able to scale arbitrary discharge current commands given by the PXI unit.
The discharge circuit allows various discharge waveforms and electrochemical
impedance spectroscopy (EIS) at a DC current offset. Additionally, a heat chamber is
available, and throughout testing the cells were maintained at 30°C.

In the first experiment, the goal is to determine whether a superimposed AC
component on a DC discharge current will have a significant difference in aging. If so,
does the effect come from the additional RMS value or the AC swing itself? Three
discharging waveforms were designed for answering these questions. They are listed in

Table 6.1. The units are all in milliamps [mA].
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Table 6.1 Treatments summary for the first experiment

Waveform [mA] RMS DC AC
AC-905 1= 600*sin(2*7*20*t) + 800 905 800 | 600*sin(2*1*20%*t)
DC-800 i=2800 800 800 0
DC-905 i=905 905 905 0

For the treatment AC-905, the 800 [mA] discharge waveform is superimposed by
a 20 Hz, 600 [mA] peak sinusoidal waveform. The resulting RMS value of the waveform
is 905 [mA]. The selection of 20 Hz was due to this frequency’s proximity to the
location of the peak of the EIS semicircle for this particular cell, which might enhance
aging effect. However, our later results suggest frequency is largely irrelevant for aging.
As seen in Table 6.1, for each of the three attributes, RMS, DC, and AC, two treatments
have the same value and one is different. Thus if RMS value is an important aging
factor, we would expect to see treatments AC-905 and DC-905 show the same aging
characteristic while DC-800 differs from the other two. The same logic applies to the
other two attributes, DC offset and the presence of AC signal. In this experiment, 8 cells
were assigned to the superimposed AC waveform, while treatments DC-800 and DC-905
were assigned 4 cells each. The reason behind this distribution was that the experiment
focused on the superimposed AC waveform, and the statistical resolution is better with
more cells assigned.

The reference performance tests (RPT’s) designed to extract aging information
were conducted in the following fashion. The RPT consists of both EIS and capacity test.
The EIS was performed twice: once at fully charge condition (100% SOC) and once at
fully discharged (0% SOC) condition as determined by a cut-off voltage. The capacity
test was performed with an 800 [mA] discharge from the fully charge condition. We

found that the capacity test did not yield statistically significant results and this paper will
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focus on the aging results as determined by the resistance value. The resistance value is
the real impedance of the point where the imaginary impedance is zero. This value can be
linearly extrapolated from the EIS results using the two data points straddling zero

imaginary impedance, as shown in Figure 6.2.
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Figure 6.2 EIS results for one cell at 100% SOC and 0% SOC conditions

The cycling procedure was conducted in the following fashion. The RPT’s were
performed before any cycling. Each cell was then cycled 30 times with a discharge of the
prescribed waveform for 3000 seconds and a full charge. The RPT’s were repeated at the
end of the 30" cycle, and the sequence repeats until 300 cycles were performed. The test

sequence is illustrated in Figure 6.3.
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Figure 6.3 Test sequence schedule

6.3 Analyses and Results for the First Experiment

In this section the statistical analyses are introduced to discern if the differences
between the three test groups are significant statistically. The results are used to make
inferences about which aging attribute in Table 6.1 is the most important. The raw data
from the first experiment are shown in Figure 6.4 and Figure 6.5, for 0% SOC and 100%
SOC conditions respectively. The aging metric on the y-axis is the resistance value, R,
defined in the previous section. In Figure 6.4 and Figure 6.5, the normalized cycle Z is

defined as (6.3.1).

_c-C 6.3.1
AN ( )

In (6.3.1), C is the cycle numbers i.e. 30, 60, ..., 300, C is the average of the cycle

numbers, i.e. 165, and AC is the interval cycles 30.
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Figure 6.4 R value progression for cells in the first experiment at 0% SOC
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Figure 6.5 R value progression for cells in the first experiment at 100% SOC

The statistical model adopted for the analysis is written from (6.3.3) to (6.3.4).

A A A A
Rij=Po+ BiRio + PoXyj+ ... + B17Xie; + 85 (6.3.2)

Xy = Z;d(i— k) (6.3.3)
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P (6.3.4)

In (6.3.2), Rjj is the resistance of i"™ battery and jth EIS measurement. R;gis the initial
resistance measurement for the i battery. In (6.3.3), Xy 1s defined as the predictor value
for k™ battery and j"™ measurement, and & is the Kronecker delta function. Thus Xyj has a

value of zero when 1 # k, and takes the value of the normalized cycle Zj when i =k. This

statistical model assumes an offset term, ﬁo, shared by all cells. Contrary to the popular
approach of normalizing aging metrics against cell manufacturing differences by dividing
by initial values, this model adopts the analysis of covariance (ANCOVA) approach by
including the initial values as one of the predictor terms. Interested reader can find a
complete treatment for ANCOVA in [133]. One benefit of this approach compared with

the normalizing method is the retention of the physical unit. The rest of the 16 predictor

terms correspond to the normalized cycles for each of the cells, and their coefficients, 62

: : . . Ohms
to /317, are the cells’ estimated rates of resistance increase in [m] The

coefficients in (6.3.2) are estimated using least square error method. It is noted here that

due to the transformation of the cycles in (6.3.4), the covariance matrix resulting from the
estimation has no covariance terms between any of the estimated coefficients from ﬁz to

ﬁ” and these estimated coefficients have the same variance. Thus the rates of resistance

increase are estimated with the smallest variance possible, i.e. optimal for statistical

inference.
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Since the coefficients are estimated with data with random error, the estimated
coefficients can be considered as random variables themselves. As each battery has its
estimated slope, each treatment group’s average estimated slope and its variance can be
found as (6.3.5) and (6.3.6) respectively. In (6.3.5) and (6.3.6), it is assumed that there

are n cells in this group.

N DB (6.3.5)
Bavg T n
Var(Baye) = V%(B‘) (6.3.6)

Our objective here is to determine whether two groups’ mean estimated slopes are
statistically the same; or equivalently whether the difference between the two groups can
be attributed to noise alone. The null hypothesis that there is no difference between two
groups’ mean estimated slopes can be tested with Student’s t-statistic, which is given in
(6.3.7). If there is no difference between two groups, the t-statistic in (6.3.7) will tend

towards zero.

A AN
Banl - Bavg2

t= N A
\/Var(BanJ + Var(ﬁang)

(6.3.7)

In the analysis of our first experiment, the degrees of freedom for the error are 142 since
there are 160 data points and 18 terms in the regression model. The t-statistic is therefore
distributed with a t-distribution of 142 degrees of freedom under the null hypothesis, and
the probability for observing a value equal or greater in magnitude than the calculated t-

statistic under null hypothesis (p-value) can be found using the t-distribution.
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Table 6.2 Average estimated slope of each group for the 0% SOC condition in the first

experiment
A Std. Dev.
Bavg
AC-905 3.5¢-3 1.7e-4
DC-800 2.9¢-3 2.5¢-4
DC-905 3.6e-3 2.5¢e-4

Table 6.3 Average estimated slope of each group for the 100% SOC condition in the first

experiment
A Std. Dev.
Bavg
AC-905 2.7e-3 1.4e-4
DC-800 2.2e-3 2.0e-4
DC-905 2.6e-3 2.0e-4

In Table 6.2 and Table 6.3, the groups’ average estimated slopes and their standard
deviations are provided. It is noted that the standard deviation of the AC-905 group is
smaller because 8 cells were assigned to it instead of the 4 for the other two groups. The

t-statistics for the group comparisons are listed in Table 6.4 and Table 6.5.

Table 6.4 t-statistics and p-values for the 0% SOC condition in the first experiment

t-statistic p-value
AC-905 vs. DC-800 1.91 5.81 %
DC-905 vs. DC-800 2.01 4.63 %
AC-905 vs. DC-905 0.41 68.24 %

Table 6.5 t-statistics and p-values for the 100% SOC condition in the first experiment

t-statistic p-value
AC-905 vs. DC-800 1.84 6.79 %
DC-905 vs. DC-800 1.44 15.21 %
AC-905 vs. DC-905 0.17 86.53 %

From Table 6.4 and Table 6.5, it is observed that the AC-905 group and DC-905 group
seem to have about the same aging rate while the DC-800 group has a noticeably slower

aging rate as reflected by the t-statistics that compare the DC-800 group to the others.
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Figure 6.6 Corrected R value progression for every cell and group averaged fitted model
at 0% SOC in the first experiment
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Figure 6.7 Corrected R value progression for every cell and group averaged fitted model
at 100% SOC in the first experiment

In Figure 6.6 and Figure 6.7, the R values corrected for the initial conditions are

plotted on the y-axis, 1.e. Rj; — ﬁlRiO- Additionally, each group’s average model was also
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plotted for a visual comparison, i.e. ﬁo + ﬁanZ. In both the 0% and 100% SOC cases,

the graphs demonstrate visually the difference in slopes between the groups with 905
[mA] RMS waveforms and the group with 800 [mA] RMS. Instead of visually inferring
differences/similarities between regressed lines, the probabilistic approach provides a
guideline for determining whether the null hypothesis of no difference is significantly in
doubt, leading to the alternative hypothesis that there exists a difference.

With the results demonstrated so far, a few remarks can be made. The first is that
battery aging seems to be related to RMS value of the discharge waveform instead of the
DC value. Since each waveform lasts exactly 3000 seconds per cycle, the AC-905 group
discharges the same amount of Ah as DC-800 every cycle while suffers the same aging
rate as DC-905. This result shows the importance of adequate filtering to reduce
unnecessary battery aging in operation. It is also pointed out here that the usual 5% rule
for statistical inference, i.e. rejecting the null hypothesis when p-value is below 5%, has
been used with considerations. If we were to follow the rule with strictness, paradoxes
would develop. For example with a strict interpretation of the rule, in Table 6.4 AC-905
vs. DC-800 and AC-905 vs. DC-905 would not have been considered as statistically
different but DC-905 vs. DC-800 would have been. Additionally, the two sets of data at
different SOC’s provide some assurance due to their qualitative agreement to the
conclusion drawn above. Noting the relative high p-values, a second experiment was

proposed to confirm the conclusion as well as answering a couple additional questions.

6.4 Experimental Details and Results for the Second Experiment

The objectives of the second experiment are the following: 1) Confirmation of the

influence of RMS value on battery aging, 2) Investigation on possible influence of
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waveform shape on aging, 3) Investigation on possible influence of frequency on aging,
4) Quantitative analysis of RMS influence for battery aging, and 5) The incorporation of
data from the first experiment.

The second experiment involved sixteen cells with the same cycling schedule as
in Figure 6.3, lasting 300 cycles exactly like the first experiment. This experiment is
separated into four treatment groups, as seen in Table 6.6.

Table 6.6 Treatments summary for the second experiment

Waveform [mA] RMS DC AC

S-807-20Hz 800 + 105*square(20Hz) 807 800 105*square(20Hz)

S-807-1000Hz | 800 + 105*square(1000Hz) 807 800 | 105*square(1000Hz)

S-703-20Hz 695 + 105*square(20Hz) 703 695 105*square(20Hz)

S-703-1000Hz | 695 + 105*square(1000Hz) 703 695 | 105*square(1000Hz)

Each treatment had four cells assigned to it. However, due to hardware difficulty one
channel assigned to the group S-703-20Hz was terminated right after the experiment had
begun.

Due to the structure of the statistical model in (6.3.2), the data collected during
the second experiment can be combined with that of the first. The new model is rewritten
as (6.4.1). The number of data points is now 310 instead of 160, and the number of

coefficients involved is 33 instead of 18.

A A N A
Rij = B() + BlRiO + Bzle +...+ B32X31j + Sij (641)

It is noted here that with the combined data and the additional 15 terms, the estimated

slopes for the first experiment’s 16 cells, [A37_ to [A317, take the same numerical values in

(6.4.1) as in (6.3.2). The estimated slopes for the last 15 cells, /318 to /332, along with

other coefficients can also be found through linear regression.
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To determine if frequency is an important factor in influencing aging, the estimated
slopes for the second experiment are grouped into those at 20 Hz and those with at 1000
Hz. The statistical inference procedure as specified from (5) to (7) is applied to the data.
The average slopes and standard deviations for the two frequency groups are shown in
Table 6.7 and Table 6.8.

Table 6.7 Average estimated slopes of two frequency groups for the 0% SOC condition
in the second experiment

t-statistic p-value
20 Hz (7 cells) 2.7e-3 2.0e-4
1000 Hz (8 cells) 2.5e-3 1.8e-4

Table 6.8 Average estimated slopes of two frequency groups for the 100% SOC condition
in the second experiment

t-statistic p-value
20 Hz (7 cells) 2.1e-3 1.5¢e-4
1000 Hz (8 cells) 1.9¢-3 1.4e-4

Table 6.9 and Table 6.10 show the t-statistics and p-values for the frequency comparison
for 0% and 100% SOC conditions respectively. Neither SOC condition data indicate any
evidence for frequency being an important aging factor. Additionally, when considering
the results for AC-905 vs. DC-905 in the first experiment, the DC waveform can also be
considered as an AC signal with a zero frequency. Thus between 0 Hz and 20 Hz sine
waves, a significant difference is also not observed. The analysis for the rest of the paper
will drop the distinction in frequency. Figure 6.8 and Figure 6.9 show the graphical
results for the frequency comparison.

Table 6.9 t-statistic and p-value for the frequency groups’ comparison at 0% SOC
condition in the second experiment

t-statistic p-value

20 Hz vs. 1000 Hz 0.96 33.59 %
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Table 6.10 t-statistic and p-value for the frequency groups’ comparison at 100% SOC
condition in the second experiment

t-statistic p-value
20 Hz vs. 1000 Hz 0.99 26.90 %
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Figure 6.8 Frequency groups’ corrected R value progression and averaged fitted models
at 0% SOC for the second experiment
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It is noted that by the hypothesis obtained through the first experiment, one should

expect the aging rate obtained in S-807 should be very similar to DC-800 while these two

should have a higher aging rate against S-703. The results from regressing (6.4.1) allows

for the confirmation of this hypothesis.

Table 6.11 and Table 6.12 show the average

estimated slopes for the three groups in discussion, and Table 6.13 and Table 6.14 show

the t-statistics and p-values for the three groups’ comparisons.

Table 6.11 Average estimated slopes of S-807, DC-800, S-703 for the 0% SOC condition

A Std. Dev.
Bavg
S-807 3.1e-3 1.8e-4
DC-800 2.9¢-3 2.6e-4
S-703 2.0e-3 2.0e-4

Table 6.12 Average estimated slopes of S-807, DC-800, S-703 for the 100% SOC

condition
A Std. Dev.
Bavg
S-807 2.3e-3 1.4e-4
DC-800 2.2e-3 2.0e-4
S-703 1.6e-3 1.5¢-4

Table 6.13 t-statistics and p-values for S-807, DC-800, S-703 comparisons at the 0%

SOC condition
t-statistic p-value
S-807 vs. DC-800 0.65 51.62 %
S-807 vs. S-703 4.09 <0.01 %
DC-800 vs. S-703 2.75 0.64 %

Table 6.14 t-statistics and p-values for S-807, DC-800, S-703 comparisons at the 100%

SOC condition
t-statistic p-value
S-807 vs. DC-800 0.47 63.87 %
S-807 vs. S-703 3.47 0.06 %
DC-800 vs. S-703 2.41 1.66 %
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It is seen in Table 6.13 and Table 6.14 that the hypothesis from the first experiment holds
quite well. Namely, RMS value noticeably influences the aging rate. By virtue of having
the second experiment reproducing similar results, the strength of the hypothesis is more
assured. It is also observed that despite the difference in waveform shape S-807 and DC-
800 are considered statistically similar in aging rate. This observation, along with the
previous observation that DC-905 and AC-905 had a similar aging rate, suggest
waveform shape is not an important aging factor. Figures 7a and 7b show the graphical

results of the three groups’ comparisons.
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Figure 6.10 S-807, DC-800, S-703’s corrected R value progression and averaged fitted
models at 0% SOC
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Figure 6.11 S-807, DC-800, S-703’s corrected R value progression and averaged fitted
models at 100% SOC

6.5 Analysis for Quantification of RMS Effect on Battery Aging

So far the analyses for the second experiment data show that frequency and
waveform differences are secondary in aging influence compared with the RMS value of
the waveform. The attention is now turned to constructing a quantitative aging model for
resistance growth using RMS as an input. This quantitative analysis is performed using a

different model than (6.4.1). The statistical model is adopted as in (6.5.1) and (6.5.2).

dRj; =Rj; — Rjj4 (6.5.1)

dRI_] = 60 + BlRl\/ISi + GzQRMSI + B3DCi + gij (652)

In (6.5.1), the j"™ resistance growth for the i™ battery, dRj;, is the difference
between jth and j -1" resistance measurement. These 310 values are used as the output for

the regression model in (6.5.2). Notice that from Tables 1 and 6 that the prescribed
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discharged waveforms are roughly divided into three levels, 700, 800, and 900 [mA].
Taking advantage of the consistent intervals, the predictors in (6.5.2) are transformed into
polynomials. Specifically, for the DC and RMS predictors, the values are coded with -1
for 700, 0 for 800, and 1 for 900 [mA]. For the QRMS predictor that represents the
quadratic component of the RMS influence, the values are coded with 1 for 700, -2 for
800, and 1 for 900 [mA]. The regression summaries for both 0% SOC and 100% SOC
data are shown in Table 6.15 and Table 6.16.

Table 6.15 Regression summary table for (6.5.2) with 0% SOC data

Estimate Std. dev. t-statistic p-value
60 3.2e3 1.1e-4 30.52 <0.01 %
61 6.1 e-4 22¢e4 2.81 0.53 %
{;2 -9.4 e-5 6.6 e-5 -1.44 15.13 %
{;3 2.1e-4 2.8 ¢4 0.75 45.35 %

Table 6.16 Regression summary table for (6.5.2) with 100% SOC data

Estimate Std. dev. t-statistic p-value
60 2.5e-3 9.7e-5 25.71 <0.01 %
61 5.1e-4 2.0e-4 2.53 1.2%
32 -7.0e-5 6.0e-5 -1.17 24.3 %
{;3 -3.1e-5 2.6e-4 -0.12 90.4 %

The model in (6.5.2) provides a direct comparison between the explanatory powers of DC
and RMS predictor. From Table 6.15 and Table 6.16, it can be observed that the
explanatory power of the DC predictor is weak in the presence of the RMS predictor, as
reflected by the low t-statistics and high p-values, which indicates a high probability of

being the estimated parameter being zero under the null hypothesis. To complete the
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quantitative analysis of the RMS influence, the DC term is now dropped from the model

in (6.5.3).

dR;; = by + b;RMS; + 5,QRMS; +¢;: (6.5.3)

The resultant regression summary tables from (6.5.3) are shown in Table 6.17 and Table

6.18.
Table 6.17 Regression summary table for equation (6.5.3) with 0% SOC data
Estimate Std. dev. t-statistic p-value
{50 3.2e-3 8.6e-5 37.34 <0.01 %
31 7.6e-4 l.1e-4 6.87 <0.01 %
32 -1.2¢e-4 5.8e-5 -2.05 4.12 %

Table 6.18 Regression summary table for equation (6.5.3) with 100% SOC data

Estimate Std. dev. t-statistic p-value
GO 2.5e-3 7.8e-5 32.03 <0.01 %
Sl 4.8e-4 1.0e-4 4.83 <0.01 %
32 -6.7e-5 5.3e-5 -1.27 20.50 %

It is noted that the aging influence of the RMS quadratic component is not as strong as
the linear component, but there is some evidence supporting its existence as seen in the
relatively low p-value 4.12% for the 32 in Table 6.17. In addition to the summary tables,

the fitted values and the 95% prediction intervals for (6.5.3) with both sets of data are

plotted in Figure 6.12 and Figure 6.13.
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From Figure 6.12 and Figure 6.13, it is noted that some values are quite off from

the fitted value and the prediction interval, suggesting other mechanisms not taken into

account in (6.5.3). For example, when examining the data, it was found that the growth
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of resistances from the RPT before cycling to the RPT after the first 30 cycles is much
higher than the rest. This phenomenon may suggest an activation mechanism not
modeled in (6.5.3).

The practical significance of the difference in aging caused by different RMS
values can be illustrated in the following example. Three hypothetical cells with 80 [mQ]
resistance at 0% SOC each undergoes 300 cycles of 700, 800, and 900 [mA] RMS with
the length of 3000 seconds. Based on the fitted results in Table 6.17, their expected
values for 0% SOC resistance are 103, 114, 118 [m€2], respectively. If the cell open
circuit voltage is assumed to be stable during aging, then the power capability of these
three hypothetically aged cells at the end of the 300 cycles are 77.7%, 70.2%, and 67.8%
of the original, respectively. Thus by implementing proper filtering to lower the RMS
value of the discharge cycle, the battery power capability can be better maintained.

One emphasis for the statistical methods employed in this study is the rigorous
inference on the significance of aging factors. Instead of regressing with all possible
predictor terms, this methodology takes the effort to investigate if the factor of interest is
actually significant in the statistical sense. This feature allows investigators to avoid
confusion between a small regression coefficient of a significant factor and the random
noise of a non-significant factor included in the model. In order to achieve such rigor in
inference, the design of experiment and analyses are complementary parts to the same
whole. The design allows the analyses, while only analyses that adhere to statistical
principles can achieve rigorous inference. An example of the design permitting analyses

is the employment of the waveforms with RMS value of 700 mA in the second
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experiment. It is possible to conduct the quantitative analysis only with the data from
these waveforms, expanding the available data in terms of range of RMS value.

Another critical issue is that sometimes a number of equally valid models can be
applied, given a set of data various. It is therefore preferable to determine the statistical
model before the data become available, in order to avoid choosing a model for the sake
of obtaining favorable results. Employing the same statistical model as the first
experiment, the second experiment’s data are incorporated with those of the first and
provide results consistent with the first experiment’s conclusion. This fact strengthens

the main conclusion made in the study, namely that RMS value influences battery aging.

6.6 Planned Aging Experiment for the New Wisconsin Energy

Institute Battery Test Equipment

The Wisconsin Energy Institute (WEI) received a $500,000 worth of battery test
equipment donation from Johson Controls Inc in 2014. The battery test equipment
includes a suite of Diagtron cyclers, three thermal chambers, and other supporting tools
such as a thermal camera and a resistance welder. As of October 15, 2014, the equipment
suite i1s pending on Madison Fire Department’s approval for its safety requirements.
During the preliminary exam, a few ideas were proposed to continue the battery aging
study using the new battery test equipment. Since the equipment has not been
commissioned in its final form, this work will not include the experimental results and

only contain a detailed discussion on one planned experiment.
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Figure 6.14 The Diagtron Cyclers in WEI

The planned experiment seeks to address the following two issues: 1) investigate
whether the regen operation will influence aging rate, 2) the interaction of RMS and
temperature aging influences, and 3) confirmation of the RMS influence on aging. The
battery used in this experiment will be the Panasonic NCR18650PF nickel-manganese-
oxide, rated at 2.9 Ah and 3.6 V.

The Digatron suite includes twelve channels rated at 18 V and 25 A. These
channels can be used to perform cell level experiments. In addition, the 18 V rating
allows the testing of three cells in series. However, such a series connection represents
an additional layer of complexity in statistical analysis.

The particular experiment planned on the new equipment seeks to understand the
influence of the regenerative braking on aging. Specifically, three driving profiles have

been selected as shown in Table 6.19.
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Table 6.19 The proposed driving profiles for experiments aiming at understanding
regenerative braking on aging

Time DC Discharge Drive w/o Regen Drive w/ Regen
ls 29A 3.69A 4.26 A
2s 29A 575A 250A
3s 29A 041 A -1.26 A
4s 29A 0A 350A
5s 29A 4.65 A 550A

In Table 6.19, the three driving profiles have the same DC value while the two non-DC

discharge drive cycles have the same RMS value, 3.7 A. One of the drive cycles has a

regenerative break component, while the other does not. A summary of the proposed

drive cycles’ properties is shown in Table 6.20.

Table 6.20 Summary for the proposed driving profiles in Table 6.19

DC RMS Ripples Regenerative
braking
DC Discharge 29A 29A - -
Drive w/o 29 A 3.7A + -
Regen
Drive w/ Regen 29A 3.7A + +

It is observed in Table 6.20 that the comparison of cells’ aging performance under the

three driving cycles can answer whether regenerative braking and RMS value are

influential in battery aging. Figure 6.15 illustrates the proposed three driving cycles.
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Figure 6.15 The proposed driving profiles for experiments aiming at understanding
regenerative braking on aging

In addition to the three driving cycles, two temperature conditions, 0°C and 25°C,
are deployed in the experiment. The twelve circuits can be split equally between two
temperature conditions. In the following analysis, it is assumed that the experiment is
repeated once for added resolution, and the resulted number for cells tested is 72 (12
circuits, 3 cells in series, and two experiments). The circuits are equally distributed
among the three discharge waveforms.

As discussed earlier in this chapter, two aging characteristics can be obtained at
RPT’s, the capacity and resistance. The capacity for a single cell is impossible to obtain
for the cells in series connection. On the other hand, the resistance of a single cell can be
found by applying a HPPC type pulse current and the measurement of individual cell
voltage. EIS is also an option for evaluating resistance at RPT’s. However, the WEI
equipment suite only has twelve channels of EIS, and frequency

connection/disconnection of EIS on the cells is adverse for the consistency of resistance
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data. The following analysis assumes the resistances of the cells connected in series have
been obtained in the two repeated sets of experiment.
In 6.3, the experiment with one cell per circuit was analyzed with the following

empirical model.

A A A A
Rij=PBo+ BiRig + PoXyj+ ... +B17X16; + 5 (6.6.1)
C.-C
=—1— (6.6.3)
Zi="AC

As explained in 6.3, R;; is the resistance of i'" battery and j™ EIS measurement. R 1s the
initial resistance measurement for the i battery, and Xyj 1s defined as the predictor value

for k™ battery/circuit and j™ measurement, and § is the Kronecker delta function. In this
modeling approach, perculiar features unique to the circuit, as reflected on resistance
measurements, are lumped together with the tested cell. In the series connection setup, it
is necessary to provide additional terms to take the circuits’ contribution to resistance
measurements into account. One possible scenario where this additional modeling is
necessary could be biased error on the current control, which would cause all three cells
in series to have an erroneous HPPC resistance. Taking the circuits’ contribution to

resistance measurement can be accomplished by the following equation.

A A A A A A (6.6.4)
Rjjk =PBo + P1Rijo + PoXyjic + - + P73 X7k + Uk + &k ZUk =0

A
In (6.6.4), the subscript k now represents the k™ circuit and Uy is the constant term

modeling the effect of the circuit on the resistance measurement. In order to ensure the
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A
matrix (X'X)" exists, i.e. predictor matrix X is full rank, the constraint ZUk= 0is
specified and implemented [133]. As in the previous model (6.6.1), ﬁz to [A373 represent

the estimated resistance growth slopes for individual cells. These [A3's are then grouped
into their treatment groups to find the groups’ mean growth rates and variances for

statistical inferences, as shown again in (6.6.5), (6.6.6), and (6.6.7).

N DB (6.6.5)
Bavg = n
w28

AN AN
Bavgl - Bavg2

t= A A
\/Var(ﬁavg1> + Var(ﬁang)

(6.6.7)

Additionally, the temperature and RMS influences’ interactions can be quantitatively

examined by the following [133].

A

. (ﬁavgl - /[;avg2|T+) - (Bavgl - 6avg2|T->
t= A A A A
\/Vﬁl(ﬁavgl - Bavg2|T+> + Var(Bavgl - Bavg2’T->

(6.6.8)

In addition to the comparison between cycles with and without regenerative
braking, the planned experiment accommodates the series connection of the cells, thus
increasing the resolution of the experiment. It also allows a quantitative study on the
interaction between two aging factors, temperature and RMS value. It is hoped that the

experiment can be implemented soon and its methodology examined with real data.
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6.7 Summary

This chapter proposes an experiment procedure and its associated analyses to
determine if a superimposed AC waveform on the discharge current will cause an
accelerated aging rate. The experimental results confirm the accelerated aging rate exists
and this accelerated aging rate is due to the additional RMS value from the superimposed
AC waveform during discharge. Furthermore, three other possible aging factors are
found to be insignificant compared with the discharge RMS value, namely the DC value
during discharge, discharge waveform shape, and waveform frequency. The practical
significance for maintaining battery power capability by proper filtering is also pointed
out. The proposed methodology can help guide the design of power electronics in terms
of filter sizing. On the other hand, the general methodology can be further extended to
study any other aging factors deemed interesting, e.g. charging voltage. The statistical
rigor employed provides confidence in the inferences made with data analyses, instead of
relying on visual differences/similarities. The experiment design facilitates the reasoning
process and allows for statistical analyses. The contribution of this work lies both in its
practical conclusion and its promotion for more careful experimental reasoning within the

field of battery testing.
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Chapter 7

Contributions and Future
Work

This thesis focuses on the evaluation and estimation of battery resistance and
overpotential for the purpose of battery modeling, monitoring, and aging study. The
state-of-the-art review covers basic electrochemistry, battery modeling, battery SOC,
SOH, and SOF estimation, as well as basic statistical methods and concepts.

A study of Optima D34M lead-acid batteries in a Corbin Sparrow EV has
determined the necessity of introducing the Butler-Volmer relationship into the modeling
for lead-acid batteries and provides a methodology for performing online recursive
estimation using the improved nonlinear model. The issue of providing SOF and SOP
estimates using recursive estimation method is also discussed, where the traditional SOP
estimate’s inherent variability is pointed out and a SOF estimate with a confidence
interval provided by the Kalman filter is introduced. The temperature’s influence on
battery resistance and overpotential for lithium batteries has also been presented. It has
been found that, under lower temperatures, the battery resistance increases rapidly, and
the overpotential demonstrates Butler-Volmer behavior that is absent at room
temperature.

A generic cell modeling methodology that uses temperature as an explicit input
has also also provided. The generic cell model is also adapted to a recursive form for

online power prognostics and temperature dependent SOC estimation. In Chapter 6, a
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statistical aging study using resistance as the aging metric also shows the importance of
proper DC bus filtering to extend battery life.
This chapter summarizes the major contributions made in this thesis and provides

a list of future work.

7.1 Contributions

Key contributions of this thesis are summarized in this section including battery
nonlinear modeling, SOF monitoring, battery temperature-dependent modeling and

associated battery SOC, SOF monitoring techniques, and battery aging factor study.

7.1.1 Butler-Volmer Equation Based Battery System Identification

The necessity of introducing the Butler-Volmer equation into lead-acid battery
modeling has been demonstrated. Both test bench impulse current tests and experimental
EV tests provide experimental justification for adopting the Butler-Volmer equation-
based model over the traditional linear circuit model for the lead-acid battery. While the
Butler-Volmer equation and its inverse hyperbolic sine approximation have been
discussed in the literature, a new contribution of the thesis is a methodology to adapt the
equation for linear filtering technique for battery online monitoring. The following
summarizes the key components of the major contributions in this area.

e Derivation of discrete time battery model incorporating the Butler-Volmer

equation

The qualitative difference between the linear circuit model and the Butler-Volmer

model has been pointed out. Under a high-current load, the effective resistance of

the overpotential described by Bulter-Volmer equation decreases.  This

phenomenon is incorporated into a discrete battery model by the use of the
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inverse hyperbolic sine approximation for the Butler-Volmer equation. It has also
been observed that the inverse hyperbolic sine approximation is necessary from a
model prediction perspective. While the original Butler-Volmer equation has
overpotential as the input and current as the output, the inverse hyperbolic sine
form has current as the input and overpotential as the output. This makes inverse
hyperbolic sine form suitable for modeling prediction, since the current is
measurable while the electrode overpotential is not.

Numerical study for combining two electrodes’ responses into one Butler-
Volmer relationship

The necessity of combining two electrodes into one when modeling the Butler-
Volmer relationship arises from the inability to distinguish the two electrodes
without a reference electrode in the middle. A numerical study has been
conducted to identify any errors introduced by this assumption. It was found that
even

when the two electrodes have up to 20 times difference in exchange current for
the Butler-Volmer equation, the combination of the two electrodes does not
introduce much numerical error.

Application of the discrete model that includes the Butler-Volmer
relationship for a lead-acid battery powered EV

Application of the discrete model that includes the Butler-Volmer relationship to
online recursive estimation has been carried out and investigated. It has been
found that, by providing prior knowledge for the double-layer time constant and

exchange current, the discrete model can be written in a linear form. The Kalman
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filter can be directly applied to this linear form, achieving online estimation. A
corresponding recursive estimation form for the linear circuit model has also been
derived for performance comparison.

Methodology for estimating the time constant and exchange current using
only step current responses

A methodology for estimating the time constant and exchange current using only
step current responses has been presented. By providing a current pulse of
duration longer than the time constant and segmenting the voltage response into
resistive and overpotential parts, estimation of both the time constant and
exchange current is achieved. It is noted, however, that while this step current
response method requires only low-end test equipment with limited current
command options, it requires the battery to have a relatively small time constant.
The methodology introduced in Chapter 5 for estimating parameters offline does
not have the same restriction.

Demonstration of the necessity of adopting the Butler-Volmer nonlinearity in
the lead-acid battery model using Corbin Sparrow drive cycle experimental
results

The experimental results provided by Corbin Sparrow drive cycles demonstrate
that, while both the Butler-Volmer and linear circuit models can recursively track
the output voltage of the battery thanks to the feedback mechanism, their internal
parameters behave differently due to different model structures. It has been
shown that the linear circuit model adapts the model parameters constantly to

mimic the nonlinear behavior of the battery, causing unstable and erroneous
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power prediction. Statistical analysis confirms that the Butler-Volmer model
performs better than the linear circuit model. When used for prediction, which
excludes the influence of the feedback mechanism, the Butler-Volmer model’s
advantage is clear in least-square-error performance, whereas the linear circuit
model has a difficult time predicting voltage correctly if the data used to fit the

parameter has adifferent current magnitude than the data used for prediction.

7.1.2  Battery Power Prognostics

The battery’s power delivery capability is a significant topic for BMS research.
Working with operating voltage upper and lower limits provided by manufacturers, the
chapter focuses on methods and their evaluations for power prediction in the context of
recursive estimation. Because the commonly seen SOP metric is shown to have a strong
volatility within the context of recursive estimation, the second contribution of the thesis
is an equivalent SOF metric that takes advantage of the Kalman filter probabilities for
power prognostics with confidence. This power prognostic with confidence provides a
margin of safety based on Kalman filter probabilities. The recursively-estimated power
prognostics results are experimentally compared with the results from the standard HPPC
offline test, and they are also directly verified using a drive cycle that is injected with
high load current pulses. The following summarizes the key steps towards the
contribution of that chapter.

e Study on the volatility of SOP under recursive estimation
The derivation of the SOP definition is reexamined and it is found that SOP is

inherently volatile using the recursive estimation scheme. This volatility comes
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from the correlation between the estimates of v, and R, and the small value of

R. A sensitivity study has been carried out to quantify this volatility.

Proposal of an SOF metric with a confidence interval from Kalman filter
probabilities that is suitable for nonlinear battery model forms

A definition of SOF is presented, and its confidence interval using Kalman filter
probabilities has been derived. The SOF is equivalent to SOP with respect to
determining if battery power delivery capability is above a set threshold.
However, given the confidence interval, the SOF estimate can be better utilized
with assurance against unexpected failures in battery power delivery. A detailed
argument has been presented about the suitability of adopting SOF in place of
SOP based on the inherent volatility of SOP and the fact that motor drive control
usually only needs to know if battery power exceeds the minimum requirement.
In addition, the SOF form is suitable for use with the nonlinear battery model
forms.

Experimental results using a lithium-iron-phosphate battery for the UDDS
drive cycle to demonstrate SOP volatility and SOF confidence interval

The CALB lithium-iron-phosphate 60AHA battery has been subjected to a
UDDS-based simulated drive cycle using the test equipment. The drive cycle
data has been used to estimate both SOP and SOF. It has been demonstrated that
SOP indeed exhibits a substantial volatility. The use of the confidence interval
has also been demonstrated.

A direct comparison between HPPC and recursively estimated SOP
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The recursively estimated SOP has been directly compared with results from the

HPPC test. The HPPC test applies a pulsed current of a fixed duration and
estimates the battery total resistance based on the voltage drop. The V., at an

SOC level has also been estimated by the rest voltage. It has been found that,
given suitable assumptions, the recursively estimated SOP can approximate the
HPPC results, thus strengthening the confidence in the recursive estimation
method. The discrepancy between SOP and HPPC results are attributed to the
difference between the time constant, less than 5 seconds, used in the recursive

battery model and the one-hour rest time period in the HPPC procedure. This

difference in time causes a discrepancy in V., estimation, with the HPPC-based

<\IOCV substantially higher due to its longer relaxation time.

Evaluation of power capability prediction using an UDDS drive cycle
interjected with high current pulses

The UDDS drive cycle has been combined with the injection of high current
pulses to directly evaluate the recursive method’s power prediction capability.
The results show that, with the injection of 250 [A] current pulses, the minimum
voltage prediction was only off by approx. 20 [mV], strengthening confidence in

the method.

Lithium-Ion Battery Resistance and Overpotential Behavior under Various
Temperatures

The temperature-dependent behavior of the resistance and overpotential of the

CALB 60AHA lithium-iron-phosphate battery cell is explored in that chapter. The
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significance of the work lies in its confirmation of the inadequacy of the baseline linear
circuit model for lithium batteries at low temperatures and its presentation of a modeling
approach that provides better agreement with measured battery characteristics by taking
into account the temperature effect explicitly. The temperature explicit model can serve
as a simulation tool for system studies that use battery as a component. The third
contribution of the thesis is to demonstrate an estimation methodology for a battery
model that has temperature as an explict input for resistance and overpotential, as well as
the evaluations for the effectiveness of the temperature dependent model against the
simple linear circuit approach and the development of SOC, SOF algorithms based on the
new model form. It is important to note that while the linear model can adapt somewhat
to temperature variation by using appropriate parameters, that approach cannot model the
nonlinear behavior of battery overpotential at lower temperatures. The key supporting
elements for this contribution are summarized as follows.
e Derivation of battery resistance and overpotential temperature dependence
and experimental verification
The theory of battery resistance and overpotential temperature dependence is
discussed. By using the Arrhenius equation, both resistance and overpotential
dependence on temperature are derived qualitatively. For a CALB lithium-iron-
phospoate 60AHA battery, the HPPC and EIS tests are employed to
experimentally confirm the temperature dependence of the resistance and
overpotential. It is found that battery pure resistance rises rapidly as temperature
decreases, as predicted by the Arrhenius equation. Using the HPPC test results, it

is observed that at lower temperature the battery effective resistance is
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significantly influenced by current pulse magnitude, confirming the temperature
influence on the exchange current in the Butler-Volmer relationship.

Offline parameter fitting procedure using short term drive cycle data for
both Butler-Volmer and linear circuit models.

An offline parameter fitting procedure is proposed for both linear circuit and
Bulter-Volmer models without temperature as an explicit input to the models. By
using a short term drive cycle data at a fixed temperature, both models are fitted
to compare their least squares error performance in prediction. It is found that
while at room temperature the two models perform equally well, the Butler-
Volmer model has an edge over the linear circuit model at a lower temperature.
The qualitative difference of the battery behavior at different temperatures is
illustrated by showing the fitted battery voltage drop as a function of current using
the Butler-Volmer based model. At room temperature, the fitted battery voltage
drop appears to be a linear function of current, i.e. resistive behavior, while the
same fitted voltage drop shows a distinct nonlinear Butler-Volmer behavior at a
lower temperature. While the fitting procedure is good for one temperature
condition, this procedure is limited when expanding to multiple temperature
operating points.

Generic cell model with temperature as an explicit input and its parameter
fitting procedure

A generic cell model with temperature as an explicit input is proposed. The
model structure incorporates the resistance and overpotential temperature

dependence into the simple discrete time Bulter-Volmer battery form. The data
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used for fitting the model parameters need to come from various drive cycles of
different temperatures. This is performed with concatenation of data to form a
single matrix. The combined matrix is then used for parameter estimation.
Experimental prediction comparison between generic cell, simple Butler-
Volmer, and linear circuit models

The prediction performances of the generic cell model, simple Butler-Volmer, and
linear circuit model are compared. It is found that at lower temperature where the
Butler-Volmer behavior is more prominent, the generic cell and simple Bulter-
Volmer models have an edge over the linear circuit model. Otherwise, the linear
circuit model performs well compared with its more complicated counterparts.
Adaptation of temperature dependent generic cell model for recursive
estimation and experimental verification on generic cell model’s power
prognostics capability

The generic cell model is adopted for recursive estimation. The simplified
recursive form relies on both prior knowledge obtained via offline tests and online
recursive fitting. The inputs to the recursive form are the measured voltage,
current, and temperature. The recursive generic cell model is shown to have good
real-time power prognostics capability in a wide range of temperatures. This
recursive form is also robust against aging effects, as it keeps track of the growth
of resistance and change in overpotential.

Offline Li-ion battery modeling based on the generic cell model impedance
structure and the OCV modeled as a polynomial of temperature and

discharged Ah



239

The generic cell’s advantage over the recursive methodology proposed in [139]
has been discussed in 5.6. In short, the recursive methodology in [139] is robust
against aging and temperature effect since it allows the model parameters be
guided by the measured voltage and current. However, its implicit temperature
dependence on the measured data, instead of having temperature as an explicit
input as the approach proposed in this work, makes it inadequate for the task of
offline simulation. For the offline simulation model, the impedance relies directly

on the generic cell model offline parameter estimation, while the v, is obtained
through polynomical fitting of the estimated v, using the adapted recursive

form and measured temperature. The offline model can be used in an overall
system simulation, and it can help guide the tuning of Kalman filter used for the
recursive form.

The investigation of resistance and overpotential behavior under various
temperatures for Li-ion and lead-acid batteries using EIS

The Butler-Volmer behavior is a major component to this investigation. The time
domain nature of the Butler-Volmer equation means most of the investigation is
conducted with time-domain analysis such as driving cycles or the HPPC test. In
this chapter, EIS and DC bias current are applied to study the Butler-Volmer
behavior through the shrinking of the EIS semi-circle. It was shown that Li-ion
batteries tend to have significant Butler-Volmer response at low temperature,
while such a response is prominent for lead-acid battery even at room
temperature. The results from the frequency domain analysis are consistent with

those from the time domain techniques.
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The power prognostics derived SOC estimation evaluated using both bench
experimental results and the WEMPEC truck data

Using the adopted recursive generic cell model form and its power prognostics,
the arrival of the “turtle” mode is estimated for an accurate and practical SOC
estimation. It was shown that this SOC estimation method is robust against
temperature and driving cycle dynamics. The use of the recursive generic cell
model and of the adaptive Ah vs. Temperature polynomial also provides
robustness against aging effects. The SOC estimates’ standard deviation is shown
to be within 3.3% across a wide range of temperatures. The truck’s drive data
were also used to evaluate the performance of the proposed SOC method.

The application of the generic cell model to lead-acid battery for discharge
only driving profiles

This work attempts to apply the generic cell methodology to a lead-acid battery,
OPTIMA D34M. It was observed that the electrochemical phenomona included
in the generic cell model do not take into account the additional reactions during
the charging of a lead-acid battery. As a result, the generic cell model is only
applicable to a lead-acid battey under discharge-only driving profile. For
discharge only cycles, the power prognostics performance of the generic cell
model is excellent, comparable to that achieved in Chapter three which uses a

simpler Butler-Volmer form without temperature explicit dependence.
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7.1.4 Design of Experiment for Superimposed AC Waveform’s Influence on Battery

Aging Based on Resistance Growth

Two statistical experiments are designed, conducted, and analyzed in that chapter
in order to examine whether a superimposed AC waveform on discharging current has an
impact on lithium-ion battery aging. It was found that by raising the RMS value of the
discharge waveform, the superimposed AC waveform increases the aging rate of a
lithium-ion battery. Other factors, namely frequency, waveform shape, and DC value,
were studied as well but were not found to be statistically significant. The practical
significance of the finding includes the sizing of the DC bus capacitor as a filter for the
battery pack on an EV. A numerical model is thus provided for the purpose of
demonstrating the methodology for quantitatively linking aging rate and waveform RMS.
The main contribution of the chapter is the use of statistical thinking throughout the
investigation for experiment design, data analysis, and quantitative modeling. The rigor
of the study gives more confidence to the results compared with some other works in the
literature. The key elements of this chapter’s contribution are summarized as follows.

e Statistical design of experiment and analysis that determine a superimposed
AC waveform on the discharge current causes accelerated aging due to the
increased RMS value
A statistical design of experiment is conducted in order to discover whether
battery aging is influenced by a superimposed AC waveform on the discharge
current. The design allows for determining whether RMS value, DC value, or the

existence of AC waveform causes significant difference in aging. Statistical
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analysis is performed, and results suggest the importance of RMS value in
influencing aging rate.

Statistical design of experiment and analysis that reaffirm the importance of
discharge waveform RMS in aging and show the lack of evidence for
waveform shape and frequency in aging influence

A second statistical design of experiment is conducted, following the first
experiment. In this second experiment, the discharge waveforms are chosen so
that, in conjunction with the first experiment’s data, a comparison in aging rate
between waveform shapes, RMS value, and frequency can be made. The results
reaffirm the importance of RMS value in determining aging rate, while evidence
does not support waveform shape and frequency being important aging factors.

A numerical model to quantify RMS influence on resistance growth and
reaffirm the dominance of RMS discharge waveform value against DC value
Using data from both experiments, a numerical model for battery resistance
growth as a function of discharge waveform RMS value is constructed.
Additionally, using linear regression the battery resistance growth data reaffirms
the dominance of discharge waveform RMS value over DC value in terms of
aging influence. The numerical model provides the power electronics designer a
tool for quantitatively design the battery pack filter through DC bus capacitor
sizing with battery aging effect taken into account.

The general statistical methodology in design of experiment and analysis in

the field of battery aging testing
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The statistical methodology used in this chapter emphasizes the importance of
rigorous inference from experimental data. Only by designing appropriate
experiments and performing analyses adhering to statistical principles can the
conclusions be safeguarded against criticism. The method used also avoids the
confusion between a small regression coefficient of a significant factor and the
random noise of a non-significant factor included in the model. This same
approach can be adopted to study other likely aging factors for the same standard
of rigor in inference.

A planned experiment and its analyses, which allows for series connection of
cells, for looking into whether regenerative braking has an impact on aging
and a quantitative study on temperature and RMS aging influence
interaction

This planned experiment could not be carried out due to equipment
commissioning issues. However, contributions are made in the design of the
discharge waveforms for studying regenerative braking aging influence,
temperature and RMS aging interactions, and proper statistical modeling for

series connection of cells.

Future Work

Based on the work presented in this document, the following is a list of the work

that I recommend for further investigation.

1) Implementing the temperature-dependent SOC and SOF algorithm on the

WEMPEC truck and study the user experience for improvement
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3)

4)
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The SOC and SOF algorithms proposed in Chapter five have been thoroughly
evaluated with the data gather from the WEMPEC truck. An onboard
implementation with more drive cycles under various climate conditions can be
expected to provide a deeper insight on how the algorithms can be improved.
Execution of the planned experiment to evaluate the aging impact of
regenerative braking on Li-ion batteries

The planned experiment in Section 6.6 should be able to answer whether
regenerative braking has a quantifiable impact on battery aging. Its analysis
should also improve the understanding of the interactions between temperature
and RMS aging influences in Li-ion batteries.

Investigation of lead-acid battery modeling for regenerative braking
Lead-acid batteries can be used in start-stop mild hybrid vehicles. Given the
strong nonlinearity of the lead-acid battery demonstrated in this thesis, it is
possible that further advances can be made by paying closer attention to
temperature effects on lead-acid battery behavior in the start-stop vehicle
application. HPPC, EIS, and engine-start load cycles can be used to characterize
and learn from the lead-acid battery operating at various temperatures. However,
the generic cell modeling approach is still insufficient for lead-acid batteries
under driving profiles with regenerative braking. A deeper understanding of the
electrochemical processes, e.g. gassing, could help lead to more satisfactory
mathematical models.

An investigation into the influence of battery charging voltage on aging

through a statistical experiment



)

6)

7

245

Battery charging voltage has been reported to have an influence on battery aging.
Selecting an appropriate charging voltage is fundamental to the design of cell
chargers and balancing circuits. The statistical experiment concept used in this
work for the superimposed AC waveform’s aging influence can be adapted to
study the charging voltage’s influence on aging as well.

An investigation of the influence of battery SOC range on aging through a
statistical experiment

In a hybrid vehicle application, the battery pack usage is usually restricted to a
band of SOC, e.g. 60% to 90%. The width of the band is related to the sizing of
the battery pack, but the location of the band may have an impact on the battery’s
aging performance. A statistical experiment can be conducted to investigate
whether the location of the band has an impact on the battery aging performance.
Dynamic modeling for online battery aging control

The statistical approach for understanding aging adopted in this work can lead to
quantification of battery aging factors and improved solutions in system design.
Another approach would be a physics-based, Newman-type model that can yield
aging predictions based on the temperature and current profile. Such an aging
model would allow for more real-time battery aging control, as opposed to system
design solutions, e.g., sizing of capacitors. The difficulty with such an approach
is the estimation of the necessary parameters through designed experiments.
Further investigation is required to explore this alternative approach.
Implementation of observer for internal states such as the electrode

overpotential for the purpose of aging control



8)

9
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The Butler-Volmer model structure in this research program lumps the two
electrodes’ overpotential together. While this approach is unavoidable due to the
lack of information to differentiate the electrodes in series, it is possible to build
an observer based on offline information that separates the two electrodes’
overpotential. Since the overpotential is critical to inducing aging reactions,
developments in this research area may lead to advances in aging control.
Evaluation of different numerical methods other than the Kalman filter

In this thesis, the Kalman filters have been adopted for their simplicity and
flexibility. The possibility of using other recursive estimation techniques such as
the least-mean-square (LMS) method and other variants of the Kalman filter can
be further explored, including a detailed comparison of their benefits and
drawbacks.

Detailed investigation on Li-ion battery capacitance value and its associated
diffusion processes

The discrete-time models used in this work assume a simple time constant
representing the complex process of ion diffusion. With the help of EIS and the
ability to vary temperature and the charging/discharging processes, it should be
possible to more deeply explore the capacitive diffusion behavior of the cell. This

work may lead to further insights into modeling the transient behavior of the cell.
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Appendix A
Corbin Sparrow

In Chapter three, drive cycle data was collected from a Corbin Sparrow EV
modified and operated by WEMPEC. The work on the Corbin Sparrow EV is foremost
the work of Phillip Kollmeyer, a colleague of the author. A full account of his work
related to the Corbin Sparrow can be found in [21], [140]. In this appendix, a basic
account will be presented on the Corbin Sparrow EV used for the drive cycle data

collection.

Figure A 1 WEMPEC Corbin Sparrow with Phillip Kollmeyer [140]

Figure A 1 shows a picture of the WEMPEC Corbin Sparrow. The Corbin
Sparrow EV is a DOT-certified single passenger vehicle designed for commuting with an
electronically limited top speed of 125 [km/hr] and a range of 45 to 60 [km] [21]. The

Corbin Sparrow is an EV that utilizes a series DC motor, a buck DC-DC converter, and a
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lead-acid battery pack. Regenerative braking is not available for the vehicle. The rear
wheel is directly connected to the shaft via a toothed belt, while the DC motor has a
toothed gear connected to the shaft. One 1.5 [kW] onboard charger is available for
charging the battery pack by connecting to a standard 120V/15 [A] outlet. A National
Instruments Compact Rio microcontroller/FPGA system is installed for logging all sensor
signals, including battery voltage, current, and temperature. Figure A 2 shows the Corbin

Sparrow system diagram.

Corbin Sparrow - Under the Hood
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Figure A 2 WEMPEC Corbin Spanow system diagram [140]

Using the onboard Compact RIO system, a battery management and data-logging
system is implemented in the vehicle. The data-logging system creates charging, driving,
and idle log files. The following data are logged: individual battery voltages, battery
temperatures, pack current and [Ah], accessory current, motor current and voltage,

vehicle speed and acceleration, and GPS estimated position and altitude [21].
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Figure A 3 Corbin Sparrow voltage-sensing configuration [21]

Figure A 3 depicts the voltage sensing, sampling, and filter configuration used in
the Corbin Sparrow vehicle. The sensed battery voltage is attenuated by a factor of two
with a 0.1% tolerance resistor divider network, buffered with an isolated op-amp circuit,
filtered, and sensed with a 16-bit NI 9205 32-channel multiplexed A/D converter.
Finally, the voltages are digitally filtered and down-sampled to 10 samples/sec, the same
data rate used in the lab test system [21]. Table A 1 summarizes the resulting system
performance, resolution, and accuracy specifications.

Table A 1 Corbin Sparrow Test System Specifications [21]

Peak Discharge/Charge Current 225 A/8 A
ADC Voltage Range/Bits +10V/16 Bits
Voltage & Current Sampling Multiplexed/400Hz
Voltage & Resolution/Accuracy 670 uV/=25 mV

Current Resolution/Accuracy 10 mA/2.4 A
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Appendix B

Battery Test Equipment

Many of the experimental results documented in this thesis are obtained on
custom built battery test equipment. This appendix describes the specifications of the
said battery test equipment. It is noted here that the design and construction of the
system and the diagrams presented here are mostly Phillip Kollmeyer’s works.

The lab test system was designed with sufficient capabilities to insure that the
resolution and accuracy of the system does not limit the performance of the system
identification algorithms. The lab test system consists of a Chroma 63201 electronic load
to discharge the battery in parallel with a Chroma 62024P-40-120 power supply to charge
the battery, as shown in Figure B 1. A National Instruments Compact dag real-time
controller is used to control the electronic load and power supply via serial and analog
commands, as well to collect sensor readings for the battery voltage, temperature, and
current. The load and source are configured for remote voltage sensing, making it
possible to sense the battery voltage directly at the battery terminals in order to minimize
the degrading effects of resistive voltage drop in the cables. The controller also provides

a user interface via Ethernet.
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Figure B 1 High accuracy, high bandwidth lab test system
Voltages can sense with up to three channels of an NI 9229 four-channel, +/-60V,
24-bit, simultaneous sampling, isolated channel-to-channel voltage sensing module. The
fourth channel is used to sense the output of a LEM IT 600s current sensor, resulting in
the lab system performance specs outlined in Table B 1.

Table B 1 Specifications for the lab test equipment

Control Bandwidth 5 kHz
Voltage Res/Acc. 1.25 uV/2.09 mV
Current Res/Acc. 39.3 nA/0.03% (of reading)
V/I Measurement Bandwidth 11.3 kHz
Max Battery Pack Voltage 40V
Max Charge Current/Power 120 A/2.4 kW
Max Discharge Current/Power 300 A/ 2.6 kW

Additionally, it is noted that a temperature chamber is available for the control of

battery external temperature. The temperature chamber is the TestEquity Model 115 and
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has an operation range of -73 to 175 °C. Finally, the anti-aliasing filtering configuration

of the channels is shown in Figure B 2.
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Figure B 2 Lab test system filtering configuration [21]



