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Abstract 
 

 This thesis investigates the behavior of battery resistance and overpotential for 

the purpose of modeling power capability prognostics and battery aging behavior.  For 

a lead-acid battery, the traditional linear circuit model is inadequate to capture the 

battery electrode overpotential behavior described by the nonlinear Butler-Volmer 

equation.  A discrete model that incorporates the Butler-Volmer nonlinear behavior is 

introduced, and its recursive form is developed for online battery monitoring in a 

Corbin Sparrow electric vehicle.  For battery power capability prognostics, the 

commonly defined State-of-Power has been found to have a high variability within the 

context of recursive estimation.  An equivalent State-of-Function metric, suitable even 

for nonlinear battery model forms, is proposed with the confidence interval provided by 

Kalman filter estimation.  For lithium batteries, it has been found that, while the Butler-

Volmer nonlinear behavior is approximately linear at room temperature, the nonlinear 

behavior manifests itself at lower temperatures.  A discrete battery model with 

temperature explicitly built into it has been proposed.  This discrete battery model with 

temperature as an input has been adopted in recursive form for online battery power 

prognostics and State-of-Charge estimation.  In addition, an investigation has been 

conducted into the aging caused by superimposing an AC current signal onto the 

discharge current waveform, using measured resistance as the battery aging metric.  It 

has been found that, by increasing the RMS value of the discharge waveform, the 

superimposed AC signal causes statistically significant aging acceleration.   
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I. Chapter 1 
Introduction 

 

1.1 Background 

The integration of electrochemical energy storage into an electrical system has 

been a field of rapid growth in recent years.  The interest in sustainable, carbon-friendly 

mobility technology, in particular, has led to the commercialization of electric hybrid 

vehicles (HEV) and the push toward purely electric vehicles (EV).  The most popular 

choice for the electrochemical energy storage components in these vehicles has been 

batteries due to their energy density advantages over ultracapacitors and their aging 

property advantages over fuel cells.  As a result, battery modeling and monitoring have 

become important research topics.  Additionally, the battery pack is, at present, one of 

the most limiting components in an EV in terms of aging.  Factors influencing the 

battery aging properties have also become relevant research topics.    

1.2 Problem Description 

The use of electrochemical energy storage in new vehicular systems requires a 

multidisciplinary approach that combines understanding of the electrochemical devices 

themselves and the electric drive system.  This thesis aims at broadening our 

understanding of the battery from the perspective of the electrical engineers who design 

the vehicles and the management systems that work with the battery packs.  Typically, 

the battery management system (BMS) in a battery-powered vehicle is designed to 
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improve the perfomance of the batteries in several ways.  The following is a list of the 

important tasks for the BMS: 

1) Protection of battery cells against short-term catastrophic events such as 

thermal run-aways. 

2) Protection of battery cells against undesirable conditions that could 

accelerate long-term aging, e.g., voltage unbalance between cells, thermal 

stress, over-charging, and over-discharging. 

3) Monitoring the amount of charge stored. 

4) Monitoring the battery power capability. 

5) Monitoring the battery health. 

 
In addition to the active management that a BMS provides, the electrical 

engineer also needs to take into account the battery properties and the intended 

application requirements during the design process for passive components, such as the 

sizing of the battery pack.  The FreedomCAR consortium report provides a good 

example of battery pack sizing [1].  There is also evidence in the literature that the 

sizing of the DC-link capacitor in parallel with the battery pack can have an influence 

on battery aging [2].   

To achieve the above-mentioned active and passive management features for 

vehicle battery packs, electrical engineers need to understand the battery’s fundamental 

characteristics.  These important characteristics include the basic information on battery 

operating voltage, current, and temperature range, as well as the battery capacity rating 

in amp-hours (Ah).  This information is typically available in a battery datasheet and is 

sufficient for the basic protection functions for a BMS.  More advanced knowledge is 
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required for other tasks such as estimating battery power capability, battery health, and 

the sizing of DC-link capacitors with respect to battery aging.   

This thesis focuses on modeling of the battery voltage drop caused by current, 

i.e., resistive voltage drop and overpotential.  The models are intended to facilitate 

online monitoring of battery power capability.  Additionally, using battery resistance as 

an indicator for aging, this thesis includes an investigation of the aging impact of 

superimposed AC waveforms on the discharge current.  Using statistical design of 

experiments and analyses, factors associated with superimposed AC waveforms, such 

as root-mean-square (RMS) values and frequency, are studied for their impacts on 

aging. The results of this study can provide guidelines for the system engineer to size 

the DC-link capacitor as a battery pack filter.   

1.3 Proposed Technical Approach 

With respect to the online monitoring of batteries, this thesis adopts the popular 

method of recursive estimation that has been adopted in many works in the literature 

such as [20], [23], and [45].  One innovation claimed in this thesis is the consideration 

of the model structure.  Instead of applying the linear circuit model to all types of cells 

under all conditions, this thesis demonstrates that some types of cells, such as the lead-

acid cell, exhibit behavior that warrants the inclusion of the non-linear Butler-Volmer 

relationship.  Other chemistries, such as the lithium-based cell types, may still require 

the inclusion of Butler-Volmer relationship in the model under low temperature 

conditions.   

With appropriate model structures, work has been done to implement online 

battery power capability prediction to provide power monitoring.  Additionally, a 
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generic battery model that includes the temperature’s influence on resistance and 

overpotential has been proposed in this thesis. 

To answer the question of whether an additional AC component superimposed 

on the DC discharging current will cause accelerated aging, this thesis conducts a study 

that designed and analyzed an experiment based on statistical principles.  A notable 

feature of the aging study in this thesis is its experiment design that facilitates 

inferential reasoning on a sound basis.  The contribution is not only the particular 

results obtained during this study, but also the demonstration of the general 

methodology applied to the field of battery aging research. 

1.4 Document Organization 

As noted in the preceding section, electrical engineers need to have an 

understanding of the battery’s fundamental electrochemical processes in order to 

converge quickly to practical designs related to battery pack management.  These 

electrochemical processes are introduced in Chapter Two, the state-of-the-art review, as 

the background knowledge that is required.  This state-of-the-art review chapter also 

presents information on the major BMS techniques discussed in the literature for the 

purpose of battery charge estimation, battery power estimation, and battery health 

monitoring.  To provide the necessary background for the battery aging experiments 

presented in Chapter Six, basic principles of statistics, particularly for the design of 

experiments, is summarized in Chapter Two.   

The rest of the thesis is organized as follows:  Chapter Three introduces the 

mathematical model that incorporates the Butler-Volmer nonlinear behavior.  The 

parameter identification methods are also introduced.  Lead-acid battery data obtained 
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from test bench and actual EV drives have been used to illustrate the benefits of the 

nonlinear model over its linear counterpart.  A recursive version of the Butler-Volmer 

relationship-based model is then introduced.  This recursive version of the Butler-

Volmer model is used in conjunction with real road data from the Corbin Sparrow 

electric vehicle, which performs significantly better compared with its linear model 

recursive estimator counterpart.   

Chapter Four discusses the issues of state-of-function (SOF) and state-of-power 

(SOP).  Specifically, it is pointed out that, using the recursive estimation scheme, the 

popular SOP suffers from volatility inherent in its definition.  SOF with the purpose of 

determining whether battery power is above a set threshold is also introduced, along 

with the implementation of a confidence interval based on the Kalman filter used for 

the recursive estimation.  Lithium-iron-phosphate battery data are then used to 

demonstrate the SOF and SOP prediction. The data are also used to compare 

FreedomCAR hybrid pulsed power characterization (HPPC) test results with the 

recursive estimator results, specifically their resistance and open-circuit voltage 

estimates that are important for power prediction.   

Chapter Five provides a summary of all of the battery estimation work in this 

thesis.  It focuses on the battery resistance and overpotential modeling at various 

temperatures.  HPPC, electrochemical impedance spectroscopy (EIS), and drive cycle 

data are used to demonstrate the need for special consideration of modeling resistance 

and overpotential for lithium-based batteries at lower temperatures.   

A generic cell model that includes the temperature influence on resistance and 

overpotential is also introduced.  An adaptation of this generic cell model is proposed 
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for recursive estimation, and its outputs have been used for both power prognostics and 

remaining charge estimation.  The generic cell model approach has been found to be 

suitable for a lithium-based batteries, but it is suitable for lead-acid batteries only 

without regenerative braking.  

Chapter Six documents a study that addresses the question of whether a 

superimposed AC waveform causes accelerated aging in a lithium-ion battery.  The 

motivation for the study, the adopted experimental method, and the subsequent data 

analysis are discussed.  A second experiment designed to clarify questions after the first 

experiment was also performed, and its analysis method along with its conclusions are 

included in the chapter.    

Chapter Seven presents the new contributions made in this PhD research 

program, as well as some suggestions for future research.  The appendices at the end of 

the thesis contain documentation for the experimental equipment used in this thesis, the 

Corbin Sparrow electric vehicle, and the laboratory test bench. 
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Chapter 2 
2 The State-of-the-Art 

Review     
  

2.1 Historical Overview on Battery 

The reference Battery Management Systems by Bergveld, et al has a good historic 

note on the development history of the electrochemical battery [3].  Based on the 

references [3-12], some important events of battery development are described here.  The 

Italian scientist Alessandro Volta is credited with the invention of the first modern 

battery.  The famous Volta pile consisted of alternating silver and zinc plates interleaved 

with paper and cloth, which had been soaked with an electrolyte.  This structure was 

patented in 1800, while the derivation of electrochemical laws connecting chemistry and 

electricity is attributed to Michael Faraday, who published his results in 1834.  A 

schematic of the Volta pile is shown in Figure 2.1.   

 

Figure 2.1 The Volta pile-first modern battery [6] 
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In the early days of battery development, gas formation, a parasitic reaction, at the 

electrodes plagued the devices’ efficiency.  The energy used to form gas could not be 

recovered [3].  The hydrogen bubble observed in these early cells could also cause a 

voltage drop and an increase in internal resistance [4].  Improving upon Volta’s work, the 

British chemist John Frederic Daniell invented a new type of battery to address the 

hydrogen bubble problem in the Volta pile [4].  His battery is illustrated in Figure 2.2. 

 

Figure 2.2 Daniell battery schematic [4] 
     

The Daniell battery, like its predecessor the Volta pile, utilizes zinc and copper as 

electrode materials.  The main improvement of the new battery is in the use of 

earthenware to physically separate the zinc sulfuric acid (ZnSO4) and copper sulfuric acid 

(CuSO4).  The earthenware is however porous and allows the movement of ions during 

the electrochemical reaction.  Instead of releasing hydrogen, the electrons from zinc are 

combined with copper ions in the CuSO4 solution, plating copper in the glass jar wall or 

the earthenware.  Before the advent of the Leclanche battery in the 1860’s, the Daniell 

battery played an important role in the telegraphy industry. 

Georges Leclanche patented his new battery in 1866 [5].  The new battery still 

employed zinc as the anode material but had a mixture of manganese dioxide (MnO2) and 
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carbon as the cathode, packaged in earthenware.  In addition, a carbon rod served as the 

current collector.  The zinc rod electrode and the cathode package are then submerged in 

a glass jar filled with an ammonium chloride solution.  The Leclanche batteries were 

widely used in the telegraphy and early telephone industries.  Carl Gassner is credited for 

the zinc-carbon battery that, replacing the Leclanche battery’s ammonium chloride 

solution electrolyte with a paste, became the world’s first dry cell [5].  Figure 2.3 

illustrates a Leclanche battery [7]. 

 

Figure 2.3 Leclanche battery illustration [7] 
 

The above mentioned battery types were all primary batteries, which means they 

are only capable of converting chemical energy into electricity but not the other way 

around.  To Gaston Plante the world’s first rechargeable, or secondary, battery is 

attributed.  In 1859, Plante presented a design that had a sandwich of thin layers of lead, 

separated by sheets of cloth in diluted sulphuric acid.  The device is charged with a 
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voltage between the two lead electrodes and could then discharge the stored energy [3].  

A discussion on the lead-acid battery electrochemical reaction is presented in 2.3.1. 

The next important milestone in the development of battery technology is the 

invention of nickel-cadmium battery by the Swede Waldmar Jungner in 1899.  Thomas 

Edison in the U.S., searching an alternative for the heavy lead-acid battery for electric 

vehicles, developed the nickel-iron alkaline battery [3]. 

The lithium-ion batteries were introduced in the 1970’s and 1980’s.  In 1979, John 

Goodenough presented a lithium battery with a lithium cobalt oxide (LiCoO2) cathode 

and a lithium metal anode.  Rachid Yazami developed a system with graphite as the 

anode material in 1980.  The lithium/graphite system is still the most used today.  Since 

SONY’s introduction of commercialization of lithium-ion batteries in 1991, lithium-ion 

battery has seen a rapid growth in market and is considered as a primary candidate for 

commercial electric vehicles energy storage [3]. 

2.2 Battery Basic Structure 

An electrochemical cell most likely contains the following basic components: 

anode, cathode, electrolyte, and separator [3].  In electrochemical processes, an anode is 

the electrode where the oxidation reaction occurs, meaning that it releases electrons to the 

external circuit.  A cathode is correspondingly the location where the reduction occurs, 

collecting the electrons from the anode through the external circuit.  For a battery cell, the 

positive electrode is a cathode during discharge and an anode during charge, while the 

negative electrode is an anode during discharge and a cathode during charge.  In the 

common literature, however, the convention is to adopt the terminal name designations 

that are appropriate during discharge operation.  The electrolyte is the medium that 
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conducts the ions between the cathode and anode of a cell.  The separator is a non-

conductive layer that is permeable to ions, yet capable of preventing a galvanic short 

circuit between the cathode and anode terminals. 

 

Figure 2.4 A Lithium-ion battery schematic [8] 
 

2.3 Battery Chemistries 

2.3.1 Lead-Acid Batteries 

The lead-acid batteries’ electrochemical reactions are the following (left to right 

for discharging) [9]: 

Cathode:   PbO2 + HSO4- +3H+ + e-  PbSO4 + 2 H2O 

Anode:       Pb + HSO4
-  PbSO4 + H+ + 2e-   

Lead-acid batteries are based on a relatively old technology invented in the 19th century 

by the French physicist Gaston Plante [3].  The flooded, or wet, cells are very common 
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for industrial use.  Since the flooded type of lead-acid batteries are usually not sealed, the 

user can replenish the electrolyte that is depleted during charging through venting [10]. 

In addition to the flooded type, two common variants exist for the sealed lead-acid 

batteries.  Gel cells immobilize the electrolyte with a thickening agent such as fumed 

silica.  The absorbed glass mat (AGM) batteries use a fiberglass-like separator to hold the 

electrolyte in place.  The advantage of sealing is that the cells are more impact resistance 

and can function even when the container has been damaged.  But the inability to 

replenish electrolyte means that overcharging can cause permanent damage to the cells.  

The lead-acid battery technology generally suffers little or no memory effect [3].  

Memory effect refers to the restricted capacity that some batteries exhibit when they have 

been subjected to a particular limited range of capacity use.  The lack of memory effect 

makes this technology a strong candidate for back-up power applications.  Lead-acid 

batteries, however, suffer from a relatively low energy density and irreversible capacity 

loss during deep discharge [3]. 

2.3.2 Nickel-Cadmium Batteries 

One version of the NiCd batteries’ electrochemical reactions is the following (left 

to right for discharge) [11]: 

Cathode:   NiOOH + H2O + e1-  Ni(OH)2 + OH1-
 

Anode:     Cd + 2OH1-
  Cd(OH)2 + 2e1- 

The NiCd battery has a reputation for being robust and low cost.  Due to its robustness, 

NiCd batteries can be charged at a higher rate and thus in a shorter time.  However, NiCd 

batteries suffer from the memory effect.  With a few complete charge/discharge cycles, 
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the memory effect can be overcome.   Another drawback to NiCd batteries is that they 

have relatively low energy density [3]. 

2.3.3 Nickel-Metal Hydride Batteries 

The electrochemical reaction can be the following (left to right for discharge) 

[11]: 

Cathode:    NiOOH + H2O + e1-  Ni(OH)2 + OH1-
 

Anode:       Alloy[H] + OH1- Alloy + H2O + e1- 

NiMH batteries represent an improvement over NiCd batteries in terms of energy density.  

They still suffer the memory effect despite the fact that some manufacturers claim 

otherwise.  A drawback of the NiMH batteries is that it has a greater self-discharge rate 

compared with NiCd batteries.  Also, since NiCd batteries absorb heat during charging 

while NiMH batteries generate heat during charging, NiMH batteries need to be more 

carefully regulated thermally during rapid charging [3]. 

2.3.4 Lithium-ion Batteries 

One possibility for the Li-ion battery reaction, depending on the electrodes, is the 

following using cobalt oxide as the cathode material [12]: 

Cathode:    Li1-xCoO2 + xLi+ +xe1-  LiCoO2 

Anode:       LixC  xLi+ +xe1- + C 

A common anode material for Li-ion batteries is graphite, while the cathode material has 

many options of Li-based oxide.  The electrolyte used in Li-ion batteries is an organic 

solvent, commonly ethlyene carbon (EC).  The EC reduction with Li+ forms a protective 

layer on the graphite anode surface that regulates the intercalaction of Li+ and graphite 

during charging and increases the battery life [13].  One advantage of the Li-ion batteries 



14 

is that they have a considerably higher energy density than the preceding battery types.  

However, overcharging Li-ion batteries may lead in some cases to high dangerous 

conditions including explosions.  As a result, careful control of the battery operating 

conditions must be implemented by the battery monitoring system [3]. 

2.4 Electrochemical Processes in a Battery 

2.4.1 Thermodynamics and the Nernst Equation 

Thermodynamics, strictly speaking, encompass only systems at equilibrium [14].  

As such, the reversibility of a system is an important prerequisite.  A thermodynamically 

reversible system is one such that an infinitesimal reversal in a driving force causes it to 

reverse direction.  Of course, the concept of infinitesimal change in a driving force is 

ideal and the system needs to be in equilibrium to experience such a small force.  A 

chemically reversible system is one that when the polarity of DC current changes, the 

reaction merely reverses its direction.  A chemically irreversible system cannot be 

thermodynamically reversible, while a chemically reversible one may or may not be 

thermodynamically reversible [14]. 

For a thermodynamically reversible system, the linkage between electrode 

potential E and the concentrations of participants in the electrode process is usually 

described by the Nernst equation: 

E = E0 + 
RT
nF ln

CO

CR
  

(2.4.1) 
 

   

In (2.4.1), E is the electrode potential in [V], E0 is the standard potential of the electrode 

in [V], R is the universal gas constant 8.314 in 






J

mol K , T is temperature in [K], n is the 
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stoichiometric number of electrons involved in the reaction, F is the Faraday constant 

96485.337 in 






C

mol , CO is the concentration of the oxidant in 






mol

cm-3 , and CR is the 

concentration of the reductant in 






mol

cm-3 .  The electrode process for the Nernst equation in 

(2.4.1) is the following, where O is the oxidant and R the reductant. 

O + ne  R   (2.4.2) 

 

The energy released in an electrochemical reaction can be separated into the 

external part, QR, and the internal part, QC [14].  The external part is what dissipates in 

the external circuit, e.g. a resistor or a light bulb, while the internal part is always 

thermal.  One way to visualize the thermodynamically reversible process for the electrode 

is to assume the external resistance approach infinity.  In such a limiting condition, QC is 

the same as the heat traversing a reversible path, Qrev.  The Gibbs free energy, ΔG, is 

defined as the maximum net work obtainable from the reaction, which occurs at the 

limiting condition QC = Qrev.  If the total work is defined as ΔH then the Gibbs free 

energy is: 

 ΔG = ΔH – Qrev = ΔH – TΔS (2.4.3) 

 

In (2.4.3), ΔS is the entropy change in 






J

K .  At unit activity (2.4.3) is rewritten as:  

 ΔG0 = ΔH0 – TΔS0 (2.4.4) 
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The Gibbs free energy connects thermodynamics and electrostatics via the following 

relationship: 

 RT ln K = -ΔG0 = nFE0 (2.4.5) 

 

Now that the electrode potential as a function of temperature has been described by 

(2.4.5), the potential of a general cell, i.e. with two electrodes and electrolyte in between, 

is simply: 

 Ecell = Ecathode – Eanode (2.4.6) 

 

2.4.2 Kinetics of Electrodes 

The reaction rate in an electrode is strongly dependent on the potential [14].  At 

some voltage the current does not flow while the current flows at various degrees at other 

voltage region.  A potential dependent law is necessary for the description of the charge-

transfer phenomenon.   

The theory of interfacial dynamics for electrodes concerns itself with the case 

where the mass transport is not a limiting factor.  This means the current rate is relatively 

low and the electrolyte is well stirred.  In 1905, Tafel shows that the current is related 

exponentially with the potential.  The famed Tafel equation has the following form: 

 η = a + b log i (2.4.7) 

A more advanced form of the kinetics was named after John Alfred Valentine 

Butler and Max Volmer [15] [16].  The Butler-Volmer equation, in its simplest form that 

assumes the dominance of charge transfer, is the following. 
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 i =  i0







exp








-α
ηF
RT  – exp









(1-α)
ηF
RT  (2.4.8) 

 

In (2.4.8), i0 is called the exchange current.  It is the limiting current to which the 

oxidation and reduction approaches at equilibrium.  η is the overpotential driving the 

current.  The symbol α is the charge transfer coefficient.  The charge transfer coefficient 

is a measure of the symmetry of the energy barrier against which oxidation and reduction 

take place.  When α = 0.5, the reactions are symmetrical.   

At small value of η, (2.4.8) can be simplified with first order Taylor series 

expansion.  The voltage-current relationship becomes linear. 

 i =  –i0
ηF
RT (2.4.9) 

 

For a large value of η, one of the bracketed term in (2.4.8) can be neglected due to the 

exponential function.  If exp(– α
ηF
RT) >> exp((1–α)

ηF
RT), (2.4.8) becomes: 

 i =  i0







exp(-α
ηF
RT)  (2.4.10) 

 

Or 

 η = 
ηF
RTlog i0 – 

ηF
RTlog i (2.4.11) 

 

It is clear that the empirically obtained Tafel relationship (2.4.7) can be derived 

from (2.4.8) using the large current assumption in (2.4.11).  By assuming the symmetry 

of oxidation and reduction, α assumes the value of 0.5 and (2.4.8) can also be rewritten 

using the identity of hyperbolic sine function [17]. 
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 η = 
RT
αFsinh-1







i

2i0
 (2.4.12) 

 

From the electrical engineering point of view, (2.4.8) presents a challenge when utilizing 

it for prediction.  The engineer usually seeks to use battery current to predict voltage 

behavior because voltage across the electrode is not measurable while the terminal 

current is, whereas (2.4.8) has a form of using voltage to predict current.  By making an 

assumption on symmetry, (2.4.12) provides an easier to use alternative. 

It is noted here that all the discussion in 2.4.2 so far has been on the steady-state 

behavior of the electrode.  In addition to the steady state Faradaic response, the voltage 

across an electrode is also governed by the transient response of the double-layer 

capacitance.  A charge separation occurs at the electrode/electrolyte interface with 

electrode surface attracting ions of opposite charge sign in the electrolyte.  This 

phenomenon is referred to as double-layer capacitance [3].  Such a response is 

responsible for a large portion of the transient response of the battery.   

2.4.3 Mass Transfer of Ions 

Mass transfer is the movement of material from one location in solution to 

another.  Three modes of movement are commonly considered [14]. 

1. Migration. The movement of charged body caused by electric potential fields. 

2. Diffusion. The movement of a species under influence of a gradient of 

chemical potential (concentration gradient). 

3. Convection. Stirring of hydrodynamic transport. 

The one dimensional version Nernst-Planck equation for mass transfer in an electrode 

is the following: 
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 Ji(x) = –Di

∂Ci(x)

∂x  – 
ziF

RTDiCi
∂φ(x)

∂x  + Civ(x) (2.4.13) 

 

In (2.4.13), Ji(x) is the flux of species i in 






mol

s cm2   at distance x from the surface, Di is the 

diffusion coefficient in 






cm2

s , 
∂Ci(x)

∂x  is the concentration gradient at x, 
∂φ(x)

∂x  is the 

electric potential gradient, and zi and Ci are the charge [/] and concentration [
mol
cm3] of 

species.  Finally, v(x) is the velocity 






cm

s  at which an element moves.  It is noted that the 

three terms in (2.4.13) represent diffusion, migration, and convection, respectively.   

If the electrolyte is plentiful and stirring at the electrode ineffective, (2.4.13) is 

reduced to only the diffusion term.  The rate of mass transfer is then proportional to the 

diffusion term.  Suppose further that at x = δ0 and beyond, the concentration of species is 

the same as the bulk solution Ci*.  For the case of a linear concentration gradient, the 

diffusion profile looks similar to Figure 2.5.   
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Figure 2.5 Example Diffusion Profile 
    

In the linear gradient case, the current due to the diffusion profile is related as: 

 
i

nFA = mi( ) Ci* – Ci( )x = 0  (2.4.14) 

 

, where A is the area of electrode in 






1

cm2  and mi is the mass transfer coefficient in 






cm

s .  

It is pointed out here that 
i

nFA has the unit 






mol

s cm2 , which is the unit of reaction rate.  The 

maximum rate of mass transfer of species i occurs when Ci( )x = 0  = 0.  The value of the 

current under this condition is: 

 il = nFAmiCi* (2.4.15) 

 

0 10 20 30 40 50 60

x = δ0 

C*i 

Ci(x=0) 

Ci 

x 
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When current is at the rate of limited value, il, the reaction is occurring at the highest 

possible rate since the ions are being consumed completely at the electrode/electrolyte 

interface.  Using (2.4.14) and (2.4.15), the ratio between Ci* and Ci( )x = 0  can be found 

as: 

 
Ci( )x = 0

Ci*
 = 1 – 

i
il

 (2.4.16) 

 

Now consider a more realistic version of (2.4.8) where the Butler-Volmer 

equation takes into account the species concentration at the electrode/electrolyte 

interfaces of cathode and anode. 

 i =  i0






Co( )x = 0

Co* exp








-α
ηF
RT  – 

CR( )x = 0

CR* exp








(1-α)
ηF
RT  (2.4.17) 

 

The subscripts O and R represent oxidation and reduction, respectively.  By first order 

Taylor series approximation, (2.4.17) can be written as: 

 
i
i0

 = 
Co( )x = 0

Co*  – 
CR( )x = 0

CR*  – 
ηF
RT (2.4.18) 

 

By substituting with (2.4.16), (2.4.18) can be rewritten as: 

 η = i
RT
F 





1

i0
 + 

1
ilc

 – 
1
ila

   (2.4.19) 

 

, where subscripts lc and la mean the limiting value for cathodic and anodic reactions, 

respectively.  Cathodic limiting current occurs when Co( )x = 0  = 0 and anodic limiting 

current occurs when CR( )x = 0  = 0.  The linear relationship between voltage and current 
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in (2.4.19) is noted here.  Such an approximation is the basis for modeling steady-state 

charge-transfer and ion distribution in electrolyte with resistors in battery models.  

2.5 Battery Modeling Approaches 

This section discusses the various types of battery models seen in the literature.  

In general the complexity of the model is constrained by the application.  Specifically, if 

the battery model is intended for online, vehicular application, the model is required to be 

computationally manageable for the onboard computing unit.  On the other hand, certain 

simulation works are for the development of battery materials, manufacturing process, 

etc.  These would require more complex models that illuminate the various physical 

aspects concerning the battery’s performance. 

Three general categories of battery modeling approaches are: 

1. Electrical equivalent circuit models.  This genre of models usually captures the 

relationship between terminal voltage and current by the means of electrical 

circuit network.   

2. Curve-fitted behavioral models.  This school of approach relates the interested 

quantity, e.g. available Ah, with other measured quantities in non-physics based 

rules.  

3. Physics based models.  This set of models attempts to recreate the physical 

processes in a battery using first principle laws. 

2.5.1 Electrical Equivalent Circuit Models and Various Parameter Estimation Methods 

As discussed in 2.4.2 and 2.4.3, various processes relating voltage and current in a 

battery can be approximated as linear under certain assumptions.  These linear 

approximations can be realized using resistors in the equivalent circuit models.  In 
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addition, capacitors in equivalent circuit models offer a convenient means to mimic the 

transient behavior of the battery.   

The electrical equivalent circuit approach has been applied to various battery 

chemistries, including lead-acid, NiMH, and lithium-ion [18], [19], [20].  An example of 

the equivalent circuit model is shown in Figure 2.6. 

 

Figure 2.6 Example of a Battery Equivalent Circuit Model [21] 
 

When the equivalent circuit model is to be used offline in a simulation 

environment, the parameters to the elements, i.e. resistors and capacitors, need to be 

identified using results from a standardized experiment.  A common experimental 

procedure for such a purpose is the FreedomCAR consortium’s hybrid pulsed power 

characterization (HPPC) test [1]. 

2.5.1.1 The FreedomCAR HPPC Method for Parameter Estimation   

The HPPC test applies step currents both charging and discharging to the battery 

at various state-of-charge (SOC) levels.  The difficulty in defining SOC on a practical 

basis is discussed in section 2.6.  For now, SOC is considered as the ratio between the 

cell’s available coulomb charge vs. maximum charge.  Figure 2.7 shows the pulsed 

current profile used in the HPPC test. 
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Figure 2.7 Example HPPC Pulsed Current Profile [1] 
 

The complete HPPC test procedure consists of a repetition of a constant current to 

move the SOC by 10% decrement, one hour rest, and the HPPC test profile.  The test will 

be performed from 90% to 10% SOC.  Before the HPPC procedure begins, a complete 

discharge and a consequent recharge is also recommended to keep the test battery status 

consistent. 
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Figure 2.8 HPPC Test Procedure (Starting Sequence) [1] 
 

Figure 2.8 shows the testing procedure for HPPC with the discharge/charge cycle 

that resets the battery status, a rest period before test that allows the temperature control 

to be effective, and the sequence of moving SOC, rest, and pulsed current profile.  With 

the step current input and voltage response data, the battery’s electric circuit model 

parameters can then be extracted.  See for example [22]. 

In addition to the electrical element parameters, a simulation equivalent circuit 

model also requires the information relating SOC and the open-circuit voltage (OCV).  

Based on the thermodynamics discussed in 2.4.1, it is clear that OCV is a function of the 

concentrations of the ionic species in the electrolyte, thus the SOC.  For a fixed 

temperature, this OCV vs. SOC relationship can be empirically obtained with a slow 

current discharge and recharge procedure.  See for example [23]. 
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Figure 2.9 Low current charge and discharge curves for obtaining OCV vs. SOC 
information [23] 

 

It is noted here that because of the thermodynamics involved the OCV vs. SOC 

relationship also depends on temperature.  This caveat presents a challenge to the 

modeling effort.  Figure 2.9 presents an illustration of the low current discharging and 

charging data for the estimation of OCV vs. SOC relationship for a Lithium-ion polymer 

battery [23]. 

2.5.1.2 The Electrochemical Impedance Spectroscopy (EIS) Method for Parameter 

Estimation 

Another method for populating the equivalent circuit parameters is the 

electrochemical impedance spectroscopy (EIS).  EIS is an established experimental 

technique in electrochemistry, usually used to differentiate material properties.  For a 

comprehensive discussion on the EIS technique, the interested reader is referred to [24] 

and [25].  Here the basic principles for the technique are outlined.   

 



27 

By definition, an impedance of a system for a particular frequency is the division 

of its voltage phasor by its current phasor.  To perform EIS on a battery, a small 

excitation signal, current or voltage, at a fixed frequency is injected to the test subject, 

and the resultant response, voltage or current respectively, is measured to find the 

impedance of the battery at the fixed frequency.  The procedure is repeated for multiple 

frequencies and the impedance results are usually presented with the format in Figure 

2.10. 

 

Figure 2.10 An example of a lithium ion battery impedance spectroscopy plot.  The 
particular plot shows the agreement of the data obtained from two separate testing 

equipment [26] 
 

In Figure 2.10, the y-axis is the impedance while the x-axis is the real impedance.  

Each data point represents the impedance for one single frequency.  The choice of 

reversing the sign for imaginary impedance on the y-axis is due to the fact that most of 

the electrochemical systems display a capacitive behavior, i.e. negative imaginary 

impedance, at lower frequency range.  The semicircle is thus more conveniently viewed 

with the reversing the imaginary impedance on the y-axis.  The impedance data can also 
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be fitted to an equivalent circuit model.  The choice of the model is somewhat arbitrary, 

but they usually involve RC structures for the lower frequency region.  In order to take 

into account the positive imaginary behavior, a series inductance can also be added to the 

model.  It is also pointed out here that the lower frequency data is generally on the right 

side of the figure. 

 

Figure 2.11 Example of equivalent circuit to be fitted by EIS data [27] 
 

In Figure 2.11, an equivalent circuit to be fitted by EIS is shown.  Notice the lack 

of OCV in the model; this is explained by the use of AC signals in EIS and the signals’ 

inability to identify DC quantities.  The Zelectrode term represents a part with a constant 

phase element (CPE).  This somewhat unusual model element aims to represent the 

diffusive response in the battery.  The detailed derivation of CPE and its justification 

used in modeling can be found in [24].  Here it is briefly mentioned that the diffusion 

phenomenon observed in the electrolyte would in reality require an infinite number of 

elements to model, as the elements are distributed in space instead of being lumped 

within a local point.  The diffusion behavior, in fact, is not unlike a transmission line, 

which can be modeled with an infinite series of RC circuits.  Thus, battery equivalent 

circuit model can be represented in a ladder of RC circuits or utilizing the CPE.  The 

main benefit of using the CPE vs. the RC ladder is the saving on model parameter terms.  
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As there are a finite number of data points in EIS, the saving of terms is important from 

the perspective of statistics.   

 

Figure 2.12 The interchange between CPE and ladder RC networks for battery modeling 
[29] 

 
Figure 2.13 The ideal impedance plot of one RC, five RC’s, and the circuit using CPE 

[29] 
 

Figure 2.12 shows an example for interchanging five sets of RC circuits in series 

with a CPE parallel with a resistor.  Figure 2.13 is their corresponding impedance plot, 

which shows the close agreement between the five RC’s and the circuit utilizing a CPE.  

In reference [29], a methodology for converting the circuit with CPE to a series of RC’s 

is mentioned.   

The drawback of CPE is its unusual requirement for a fractional order (non-

integer) derivative and is thus inconvenient for mathematical transform between 

frequency domain and time domain.  The realization of CPE behavior in the time domain 
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would require the use of fractional calculus and its unique feature of using infinite 

memory.  See [30] for the related mathematical treatment of fractional order system in 

time domain.  For the readers who are interested in an example for system identification 

applied to a fractional order model in the application of an electrochemical system, they 

are referred to [31]. 

For the applications such as SOC, SOH prognostics, EIS has been applied to 

batteries under many different operating conditions.  For a lithium nickel-cobalt-

aluminum (NCA) battery, the effect of SOC on EIS results has been studied in [28], 

which shows that the lower frequency segment of the impedance trajectory is dependent 

on the SOC.  EIS has also been used for studying the effect of temperature on a battery 

[80] [126].  For lithium NCA [28] and lithium iron-phosphate (LiFePO4) batteries (in this 

thesis), it has been shown that lower temperature has the effect of enlarging the 

capacitive semi-circles and increasing the series resistance R0.   

For a lead-acid battery, researchers have shown that the EIS impedance plots vary 

as a function of the battery dc bias current [141].  For a lithium-based battery, EIS was 

performed at a single non-zero value of dc-bias current in [142], but no published 

literature appears to have investigated the effects of a range of dc bias current values on 

the impedance spectrum of lithium batteries in conjunction with temperature variation.  

This is important because the ability to accurately model battery performance under a 

wide range of operating currents and temperatures has a major impact on the accuracy of 

battery condition estimators that depend on these models. 

In the literature, batteries have often been modeled using linear equivalent circuits 

[20[28, [32[33[45].  While nonlinear capacitors in the form of CPE and multiple RC 
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circuits have been used to model the complex shapes of battery impedance spectra, it is 

important to note that these complex equivalent circuit models retain a linear relationship 

between the steady-state electrode voltage and current.  This is a key point to 

understanding the contribution of this thesis, particularly for the contents in chapter three 

and chapter five. 

2.5.1.3 The Recursive System Identification Method for Parameter Estimation 

The third method by which an equivalent circuit model’s parameters can be 

populated is using recursive system identification with the excitation from the load.  This 

method assumes that there exists sufficient excitation during the use of the battery such 

that the battery parameters can be recursively updated.  To the author’s best knowledge, 

Wiegman was the first researcher to recognize the opportunity to apply recursive system 

identification for battery under load [20].  In 1999, Wiegman demonstrated a system by 

which he could track the varying parameters of the equivalent circuit model under 

dynamic load conditions, achieving online monitoring which the HPPC and EIS methods 

could not.  Unfortunately, Wiegman’s contribution has been largely overlooked; out of 

the large literature devoted to the same approach, only a few quoted Wiegman’s original 

work, including [21] and [41]. 

Instead of quoting Wiegman’s work, most of the authors in the field seem to agree 

that the work by Plett in [23] [32] [33] is the beginning of the recursive system 

identification approach for obtaining equivalent circuit parameters online.  In a series of 

three papers published in 2004 [23] [32] [33], Plett introduced his methodology in good 

details, including a tutorial on the recursive system identification using the Kalman filter, 

battery model derivations, and experimental results.  The result of Plett’s work was an 
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explosion of the application of the recursive system identification approach in the field, 

including [34] and [46].  In this thesis, the basics for recursive system identification will 

be covered in 2.9.3.                    

2.5.2 Curve-Fitted Behavioral Models 

In addition to the equivalent circuit model, a different approach has been offered 

in the literature, namely the curve-fitted behavioral model.  The purpose of these models 

is usually to provide the user a prediction on a quantity of interest, e.g. SOC, based on a 

data driven approach.  The origin of this methodology in the area of electrochemical 

modeling is perhaps Peukert’s work in 1897.  What Peukert discovered was that different 

magnitudes of discharging current led to different coulombs available for consumption at 

the load.   

 

Figure 2.14 Voltage vs. extracted Ah for various constant current discharges for an 
Optima D34M lead-acid battery 

 

Figure 2.14 shows experiment data for battery voltage against the extracted Ah 

for various constant current discharges for an Optima D34M lead-acid battery.  As seen 
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in Figure 2.14, the battery’s voltage collapses earlier under a higher current value, 

causing the extracted Ah considerably smaller then it would otherwise be.   

This behavior is not explained by thermodynamics which assumes the equilibrium 

condition, i.e. an infinitesimal discharging current.  However, when considering the 

necessarily present battery parasitic resistance and the Butler-Volmer relationship on the 

electrodes, the phenomenon is at least partially explained.  Additionally, higher current 

can lead to an earlier depletion of ions in the electrolyte region close to the electrodes, 

causing a premature drop in voltage.  Regardless of the underlying physical causes, the 

famous Peukert’s law attempted to model such a phenomenon with the following [20]: 

 K In-1
 = const., n > 1 (2.5.1) 

    

, where K is the available battery capacity in [Ah].  In (2.5.1), K is now a function of 

discharge current.  A law such as this provides the user a more realistic expectation for 

the Ah available for extraction based on the discharge current value.  However, the 

literature has shown that lithium-ion cells do not exhibit the same Peukert relationship as 

lead-acid batteries, as seen in Figure 2.15 [51].  This could be due to the different 

diffusion relationship lithium cells have.   
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Figure 2.15 Voltage vs. extracted Ah for two constant current discharges for a lithium-ion 
cell [51] 

 

Further advances were made using Peukert’s discovery for the implementation of 

online battery SOC estimation on electric vehicles and other applications.  Fuzzy logic or 

other sophisticated algorithms were used to formulize the relationship between available 

charge and other measurable quantities such as current magnitude [48] [52].  Other works 

adapt Peukert’s discovery in their SOC estimation with more straightforward 

formulations; these normalize the Ah rating of their battery with respect to current 

magnitude and sometimes with temperature [53] [54].  When calibrated well for the 

intended application, these methods can demonstrate good results.        

2.5.3 Physics-Based Models 

This genre of models has attracted much research activity in the recent years due 

to its ability to relate theoretical electrochemical phenomena, such as diffusion and 

charge transfer, with measurable terminal characteristics, voltage and current.  One of the 



35 

first papers published and frequently cited by subsequent literature is the 1993 Doyle, 

Fuller, and Newman paper [55].  In the following, the derivation of the Newman model is 

summarized using the original notations. 

2.5.3.1 A Summary for the Physics-Based Model Proposed by Fuller et al 

The Newman model considers the galvanostatic charging/discharging behavior of 

the cell structure in Figure 2.16. 

 

Figure 2.16 An one dimensional lithium/polymer cell sandwich in Newman model [55] 
 

The following table lists the symbols, subscripts, and superscripts from the paper by 

Doyle et al [55]. 

 

 

Table 2.1 List of symbols, subscripts, and superscripts in [55] 
Symbol Interpretation Unit 

a specific interfacial area m2

m3 

c concentration of electrolyte mol

m3  
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c0 concentration of polymer solvent mol

m3  

ci concentration of species i mol

m3  

cT maximum concentration in solid mol

m3  

cs concentration in solid mol

m3  

cmax maximum concentration in polymer mol

m3  

c0 initial concentration in polymer mol

m3  

D, Ds diffusion coefficient of electrolyte in the polymer and of lithium in the solid 

matrix 

m2

s   

f activity coefficient / 

F Faraday’s constant = 96487 C
eq 

i current density A

m2 

i0 exchange current density A

m2 

I superficial current density A

m2 

jn pore wall flux of lithium ions mol

 s m2  

k2 reaction rate constant at cathode/polymer interface m4

 mol s 

ka1 anodic reaction rate constant m3

s  

kc1 cathodic reaction rate constant m3

s  

Kij frictional coefficient Js

 m5 
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n number of electrons transferred in electrode reaction / 

Ni molar flux in x direction of species i mol

 s m2 

r distance normal to surface of cathode material  M 

R universal gas constant = 8.3143 J
mol K 

Rs radius of cathode material M 

si stochiometric coefficient of species i in electrode reaction / 

t time S 

ti
0 transference number (fraction of total electric current that anions and cations carry 

in passing through an electrolytic solution) of species i 

/ 

T temperature K 

u utilization of intercalation material / 

U open-circuit potential V 

vi velocity of species i m
 s 

x distance from the anode m 

zi charge number of species i / 

α transfer coefficient between 0 to 1, as in the Butler-Volmer equation / 

β activity coefficient correction / 

δ dimensionless current density / 

δs thickness of separator m 

δc thickness of composite cathode m 

ε porosity of electrode / 

ζ activity coefficient correction s 

η surface potential V 

Θp site concentration in polymer / 

Θs site concentration in solid matrix / 
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κ conductivity of electrolyte S
m 

ν dimensionless exchange current density / 

ν+, ν- number of cations and anions into which a mole of electrolyte dissociates / 

σ conductivity of solid matrix S
m 

τ dimensionless time / 

υi electrochemical potential of species i J
mol 

Φ electrical potential V 

Subscript Interpretation  

c cathode  

r reference state  

s solid state  

T maximum concentration in intercalation material  

1 solid matrix  

2  solution phase  

Superscript Interpretation  

0 solvent, or initial condition  

θ standard cell potential  

 

It is noted in [55] that the presented model does not include the second order 

mechanisms such as film formation and volume change.  As a result, this version of the 

model cannot be used for studying aging properties.  The separator consists of a polymer 

material that serves as the solvent for a lithium salt.  Using the polymer as the reference 

material and assume its velocity as zero, the mass transfer equation (2.5.2) is rewritten as 

(2.5.3).    
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 ci∇μi = ∑i≠j Kij( ) vj – vi  
(2.5.2) 

 N+ = – ν+D∇c + 
iti0

z+F 

N- = – ν-D∇c + 
iti

0

z-F
 

(2.5.3) 
 

 

The material balance for the salt in the separator is enforced with: 

 
∂c
∂t = ∇∙









D(c) 








1 – 
d(ln c0)

d(ln c) ∇c  – 
i2∇t+

0(c)

 z+ν+F  (2.5.4) 

 

The current in the solution phase, i2, is related to both the potential gradient and the 

electrochemical gradient and is given as: 

 i2 = –κ(c)∇Φ2 – 
κ(c)RT

F  








1 + 
∂ ln f
 ∂ ln c  







s+

nν+
 + 

t+
0(c)

 z+ν+
∇ln c (2.5.5) 

 

At the lithium anode, x is set to be 0.  The charge-transfer reaction that occurs at the 

electrode following the Butler-Volmer equation is given as: 

 I = i01 








exp






αa1Fηs1

RT  – exp








 
αc1Fηs1

RT  

ηs1 = Φ1 – Φ2 – U1 

i01 = F( )ka1
αc1( )kc1

αa1( )c – cmax
αc1 ( )c αa1 

(2.5.6) 
 

 

The current model used here, the reaction stoichiometry, is intended for the 

polymer electrolyte.  For the liquid electrolyte, the model can be further reduced as a 

simple charge-transfer process.  The potential of the solid lithium phase is set to zero as 

the boundary condition at x = 0.  The other boundary condition is equating the net 

transfer of current at the interface. 
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 N+ = 
I
F at x = 0 (2.5.7) 

 

The flux and concentration of each species and the potential are assumed to be 

continuous at the other boundary, x = δs.  Because the composite cathode consists of both 

the solid active particles and the polymer/salt electrolyte, the model assumes the volume 

fraction of each component is known.  The two phases are treated as superimposed 

continua, and the material balance on the lithium in the cathode gives: 

 ε
∂c
∂t = ∇∙( )εD(c)∇c  – 

i2∇t+0(c)

 z+ν+F  + 
ajn(1 – t+0)

ν +
 (2.5.8) 

 

The extra term jn compared with (2.5.4) is the pore wall flux of lithium ions across the 

interface. 

 ajn = 
–si

nF∇∙i2 (2.5.9) 

 

Furthermore, the model takes into account of the composite nature of the cathode and the 

consequent lengthening of the ions’ traveling path.  The coefficients for the modification 

are also assumed known. 

 κeff = κε1.5 

Deff = Dε0.5 
(2.5.10) 

 

The boundary condition at the solution phase is that the flux of each species is equal to 

zero at the end of the cathode where the current collector is connected. 

 Ni = 0 at x = δs + δc (2.5.11) 
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In addition, by assuming the active cathode particles are of spherical geometry 

with diffusion being the mechanism of transport of the lithium, the material balance is 

described by: 

 
∂cs

∂t  = Ds





∂2cs

∂r2  + 
2
r

∂cs

∂r  (2.5.12) 

 

, where r is the direction normal to the spherical surface.  The other boundary condition is 

the relationship between pore wall flux across the interface and the rate of diffusion of 

lithium ions into the surface of cathode active particle. 

 

 jn = –Ds

∂cs

∂r  at r = Rs (2.5.13) 

 

A general expression for the OCV of the insertion material is given as the 

following: 

 U2 = U2
θ – Uref

θ + 
RT
F  









ln 






cT – cs

cs
 + βcs + ζ  (2.5.14) 

 

, where β and ζ are empirical values fitted to give more accurate results.  By taking into 

account of the insertion process in the cathode, the kinetic expression for voltage and 

current relationship is given as: 

 

i = Fκ2( )cmax – c αccαa








csexp






αaF

RT( )η – U'  – ( )cT - cs exp








–
αcF

RT( )η – U'    

U' = U2
θ – Uref

θ + 
RT
F  ( )βcs + ζ  

η = Φ1
θ – Φ2

θ  

(2.5.15) 
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Finally, the currents in both solid and solution phases are required to add up to the total 

current through the cathode: 

 I = i1 + i2 (2.5.16) 

 

The equations for simulating the physical phenomena in the example lithium anode, 

polymer electrolyte, and composite cathode system are now complete for the simulation 

of the system charging/discharging behavior. 

2.5.3.2 Benefits and Disadvantages for the Physics based Modeling Approach 

Since the publication of [55], many other works involving battery modeling has 

adopted the same physics based approach that’s characterized by an emphasis in the 

interaction of the electrochemical domain and the electric domain using tools such as 

geometric assumptions, Fick’s diffusion laws, and the Butler-Volmer kinetics equation 

[56] [70].  Additionally, finite element analysis software is now available for the physics 

based approach; for example, see [69].       

An obvious benefit of the physics based approach is the explicit nature of the 

model.  In fact, many researchers have proposed control schemes taking advantage of the 

explicitness of the model to achieve management and/or monitoring of aging [58] [59] 

[60] [61] [66].  In order for controls engineer to take advantage of the physics based 

model while maintaining the ease of implementation, modifications are also frequently 

made to the partial differential equations based physics models; see [60] and [61] for 

example. 

It is also pointed out here that the physics based models usually involve certain 

assumptions that enable their derivation.  [68], for example, compares the assumptions of 
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one-dimension vs. two-dimension for the sandwich cell structure.   Additionally, 

“fudging” coefficients such as the effective traveling length in (2.5.10) is more likely 

selected based on curve fitting performance than actual measurements.  In general, the 

physically meaningful parameters are not readily available except to the manufacturers of 

the cells, who usually guard their trade secrets and patents rigorously.  One practice is to 

use values for parameters based on available literature, but the variety of cells and 

materials available far exceeds the ones that have published data. 

From an electrical engineering perspective, it would be desirable to estimate the 

parameters of the physics based model based on the measurable terminal quantities, i.e. 

voltage, current, and temperature.  However, given the complexity of the model and the 

sheer number of the parameters, it is unlikely that all the parameters of the model will be 

found statistically significant.  The concept of statistically significance will be covered in 

2.9.1.  It suffices to point out here that a parameter’s existence in the model is supported 

by the data only if the estimated parameter value is statistically significant.  [63] studied 

the model structure proposed in [55] and found that many parameters are unidentifiable 

or statistically insignificant.  As pointed out in [63], while the physics based model’s 

parameters can be numerically fitted and the model with the fitted parameters can achieve 

good results in battery terminal response prediction, the internal states and insights are 

unreliable as a result of the lack of information in Fisher’s sense.  The interested reader is 

also directed to another example for studying the identifiability of the physics-based 

model in [64].  See 2.9.1 for an introduction of some concepts in statistics relevant to this 

work, including the Fisher information matrix.  
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2.6 State-of-Charge Estimation 

One of the most studied metrics in a BMS is the SOC.  The strong interest on the 

SOC metric is due to the perceived utility of the SOC in predicting the remaining battery 

use time/vehicle mileage until depletion.  This perceived utility perhaps stems from the 

common experience with the fuel gauge in a gasoline vehicle which correlates well with 

the remaining mileage.  A few difficulties exist for applying the same approach with 

battery.   

First is that a direct measurement of the SOC is usually not available.  Except for 

the flooded lead-acid batteries for which a hydrometer is available for monitoring the 

lead-acid battery electrolyte density, thus the make up of the electrolyte and subsequently 

the SOC [71], SOC usually cannot be measured directly.   

The second difficulty is that the application’s requirement for power delivery is 

not guaranteed to be met by the battery even if the stored charge has not been depleted.  

One example of this dilemma is the Peukert’s law in (2.5.1), which shows the available 

charge decreases when the required discharge rate increases, i.e. voltage drop too 

significant for power delivery under high load.  Another scenario in which stored charge 

does not guaranteed the delivery of required power is at lower temperature.  At lower 

temperature, the reactions in a battery decrease their activity rates as described by the 

empirical Arrenius relationship [14]: 

 k = A exp








– 
EA

RT  (2.6.1) 

 

, where k is a rate constant and EA has units of energy.  A direct consequence of (2.6.1) is 

that battery has a higher impedance value at lower temperature [28], reducing its power 
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capability as a result.  In addition from the discussion of thermodynamics in 2.4.1, the 

OCV of a battery drops as the temperature decreases, further reducing the battery power 

in the low temperature operating region.     

Despite the difficulties, the SOC metric has remained an interest of the literature.  

The remaining of the section is devoted to a review of the SOC estimation methods 

proposed by researchers in the field. 

2.6.1 Coulomb counting 

The most straightforward method to estimate SOC is coulomb counting.  The 

method assumes a fixed amount of charge, Qtotal, is available after the battery is fully 

charged.  The SOC is then normalized as: 

SOC = 
Qtotal – Qout

Qtotal
 x 100%   (2.6.2) 

 

As discussed in 2.5.2, different discharge current magnitudes would give the battery 

different available charge, Qtotal.  Some works adapt the Peukert modification for Qtotal 

to, such as [53], [54], and [72].    

The coulomb counting method is susceptible to current measurement noise.  Due 

to the integration of current sensor error overtime, the coulomb counting method needs to 

be reset to ensure reasonable performance.  The SOC value is usually reset at 100% after 

a full charge.  This ensures the reliability of the coulomb counting method as long as the 

charging algorithm is consistent.  Another issue with coulomb counting method is that 

not all the electrons are absorbed by the battery during charge, i.e. the coulomb efficiency 

is not 100% [73].  As a result, the coulomb counting method needs to have information 
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about the coulomb efficiency of the battery for estimation accuracy during regenerative 

charging.   

2.6.2 Voltage-based methods 

Another method to determine the SOC is by its terminal voltage, either in open 

circuit or connected to an external load.  The open-circuit terminal voltage is correlated 

with the SOC based on thermodynamics.  However, the open-circuit terminal voltage 

measurement needs to be taken after a rest period in order for the diffusion process inside 

the battery to be completed.  This rest period requirement greatly reduces the 

opportunities for taking advantage of this correlation to accurately predict SOC in an 

online battery monitoring application.   The terminal voltage with an external load can be 

measured online, but the voltage reading’s correlation to SOC is reduced due to voltage 

fluctuations caused by load current variations and the diffusion process dynamics. 

In order to overcome the lack of measurement for OCV during loaded condition, 

researchers have proposed variants of observer and Kalman filter to estimate the OCV 

and SOC.  For this linear filter approach, the estimated states, usually including OCV 

and/or SOC, are estimated recursively and updated at every sample time.  In some earlier 

versions, the battery electrical circuit model is assumed to have constant parameters and 

OCV or SOC is treated as a state to be estimated [42] [74].  Later versions of the filters 

proposed in literature include the estimation of parameters such as the resistance, as 

related in 2.5.1.3.         

One difficulty in using estimated OCV for SOC estimation is that battery 

manufacturers have strived to maintain OCV stability even as the battery charge is being 

depleted.  This characteristic of some lithium-ion cells makes the task of inferring SOC 
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from OCV even more challenging.  For lithium-iron phosphate cells, the OCV vs. SOC 

curve is relatively flat, magnifying the error in SOC estimation due to error in OCV 

estimation, see Figure 2.18 for an example.  The lead-acid battery, on the other hand, has 

a more pronounced drop of OCV as a function of decreasing SOC, as shown in Figure 

2.17. 

 

 

Figure 2.17 Optima lead-acid battery open-circuit voltage as a function of state-of-charge 
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Figure 2.18 Experimental results for CALB Li-iron phosphate Cell open-circuit voltage 
vs. state-of-charge relationship 

    

In addition, the relationship between OCV vs. SOC is usually obtained offline via 

procedures such as the HPPC test.  When implemented to a recursive algorithm, the 

empirically obtained data is usually fitted into an equation to estimate SOC.  The fitting 

process can also cause an error for the relationship of SOC as a function of OCV, which 

cannot be corrected by the recursive estimation; for an analysis tackling this source of 

inaccuracy, the interested reader is referred to [75].  

2.6.3 Impedance-based methods 

For various types of batteries, impedance-based methods have been proposed to 

estimate SOC.  The basic idea is to measure the impedance spectra at different SOCs in 

an effort to correlate the measurements with the SOC values as determined by the 

coulomb counting method.  Several parameters are proposed as possible candidates for 
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SOC indicators, including high frequency resistance, resonant frequency, and voltage 

relaxation time constant [76] [77] [78] [79]. 

As discussed in 2.5.1.2, EIS is an established technique for electrochemical 

system impedance measurement.  For a review of using EIS and resistance measurement 

for SOC estimation, the interested reader is referred to [80].  For a lead-acid battery, Huet 

found that the series resistance value of the system is strongly dependent on SOC, 

providing a means for SOC estimation [80].  However, a later study by the same author 

and others cycled a lead-acid battery at both 
C
10  and 

C
100  rates found the resistance 

dependence on SOC is a function of the discharge rate, i.e. the dependency is found to be 

less strong at 
C

100 rate discharge cycling.  Since the high-frequency resistance provides 

information on the PbSO4 layer structure, it depends on the history of the previous 

cycling of the cell.  For different discharge rates, different SOC values may correspond to 

the same value of high-frequency resistance [76]. 

Additionally, some researchers have found that the resonant frequency, i.e. the 

frequency at which the battery turns from capacitive to inductive, of a NiMH or NiCd 

battery is dependent on SOC [78].  Other researchers have pointed out the change in 

relaxation time constant as a function of SOC for lead-acid batteries [79].  The common 

characteristic of all these methods is the establishment of an empirical relationship 

between one measurable quantity and the SOC as determined by coulomb counting.  This 

empirical relationship is then proposed as the substitute measurement for SOC.  Two 

main drawbacks of this approach are briefly discussed here.  The first is the required 

measurement may not be readily available.  To perform EIS, specialized equipment is 
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needed, and the battery is required to be at no load condition.  The second drawback is 

the potential confounding of the SOC and other factors on the measured metric.  For 

example, the temperature effect on the value of battery impedance is a well established 

fact.  Aged batteries also have more impedance in general.  The change in impedance 

value is not easily attributed to either SOC or temperature or aging.   

Finally, instead of relying on impedance of the whole frequency spectrum, some 

researchers have proposed using a single frequency injection.  Coleman et al reported a 

SOC estimation scheme based on the high-frequency impedance (1 kHz) and the 

estimation of open-circuit voltage.  The impedance is measured with an injected carrier 

frequency.  The method essentially substitutes the EIS method with a single frequency to 

achieve the speed required for application.  Based on the high-frequency impedance, the 

total impedance is inferred in a per unit fashion.  The impedance information, along with 

some observation laws, deduces the OCV obtained through the Kirchoff voltage law.  

The claim is made that the internal resistance is not a reliable indicator of the SOC, 

having only little change for SOC > 50% and this approach helps mitigate that limitation.       

2.6.4 Empirical data driven methods 

This genre of methods is basically those curve-fitted behavioral models discussed 

in 2.5.2.  The definition of SOC in these methods is usually more application focused.  

Instead of using a correlation between a measured metric and coulomb counting SOC to 

infer remaining charge, these methods set up data driven models that predict the end of 

discharge for their applications.  The models can be based on neural networks or other 

types of data management techniques.  The interested reader is referred to [49] and [50] 

for examples of this approach.   
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2.7 Battery Aging Processes, Methods for Aging Prediction, and 

State-of-Health Estimation 

2.7.1 Battery Aging Processes 

Another important metric a BMS may be required to provide is the SOH metric.  

SOH is a relative indicator for battery aging.  Two important aging related metrics are 

commonly used.  One is the battery full capacity under constant current discharge, and 

the other is the battery resistance.  The two metrics are negatively correlated as aging 

increases the resistance and decreases the capacity; see [96] for experimental validation.  

Based on the discussion below, one of the main lithium-ion battery mechanisms involves 

the electrolyte decomposition and the subsequent increase in the solid electrolyte 

interhpase (SEI) layer.  This provides a theoretical explanation to the correlation between 

resistance and capacity.   

 

Figure 2.19 Battery resistance vs. capacity as aging progresses [96] 
    

Different chemistries of battery have different physical mechanisms for aging.  

For lead-acid battery, grid corrosion, sulfation, change in pore structure in the electrode, 

and water loss have been cited for reasons leading to aging [84] [88].  For lithium-ion 
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batteries, the common mechanisms cited for aging include electrolyte decomposition 

leading to SEI layer buildup, solvent co-intercalation and subsequent cracking of 

formation in electrode, change in electrode volume and surface area due to SEI layer 

growth, and current collector corrosion [85] [86] [93] [95] [103] [104].  Figure 2.20 

shows a schematic describing some aging mechanisms at the graphene layer/electrolyte 

interface. 

 

Figure 2.20 Changes at anode/electrolyte interface for a lithium ion battery [103] 
 

For lithium-ion batteries, the storage time, storage temperature, and SOC during 

its storage are shown to be related to capacity loss [85] [93].  Additionally, temperature 

during operation has been identified as a major aging accelerator for batteries due to the 

facilitation of irreversible reactions [93].  Furthermore, the use history of the battery 

influences the battery aging; factors such as charging terminal voltage, depth of 

discharge, charging and discharging rates, have influence on battery’s aging performance 

[90] [98].   
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One additional challenge for understanding battery aging process is that two 

modes of use, storage and cycling, can lead to different aging characteristics.  The stored 

cells sometimes are used as baseline for comparing with data from cycling cells; see [2], 

[90], and [96] for example.  Depending on cell chemistry, stored cells can sometimes 

show more aging in resistance; see [90] for instance.     

2.7.2 Methods for Aging Prediction 

For aging performance prediction of a battery, a few genres of methods are 

discussed in the literature.  The first is to construct physics-based model that include 

secondary reactions responsible for aging [60] [61] [68] [88] [99].  This approach relies 

on detailed modeling effort discussed in 2.5.3; consequently, the disadvantages of the 

physics-based approach are inherent to this method of aging prediction.  Furthermore, the 

aging mechanisms are usually secondary and smaller in their response magnitude 

compared with the primary reactions.  This could make ascertaining their effects with 

experimental data more difficult.  In addition, to implement these partial differential 

equations based models in control applications, further simplifications to the models are 

required.  Works have been proposed to adapt complicated aging models into forms 

suitable for control application [60] [61], and the authors pointed out the reliability of 

their simplified models solely depends on the quality of the original work they adapted 

from.     

The second method focuses on the empirical fitting of aging metrics based aging 

data.  This approach usually involves the following steps [2] [85] [90] [91] [92] [95] [96] 

[97] [98] [105] [111] [112] [113].   

(1) Placing batteries under specified test conditions.  The test conditions are 
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determined by the questions interested by the experimenter, e.g. influence of 

temperature, SOC, etc on aging. 

(2) Periodic measurement of battery characteristic metrics, i.e. capacity and 

resistance.  For resistance, both HPPC and EIS can be used. 

(3) Empirical fitting of data to the selected models.  The fitted models can be used to 

guide expectation of battery performance in the field.  Additionally, the effect of 

the test conditions on aging can be numerically evaluated for quantification.  

However, as pointed out in [98], many works present only experimental curves 

on capacity and resistance without fitting of data to equations.    

 

Hochgraf et al presented a study on cycling dynamics’ effect on lithium-ion cell 

degradation [2].  At 400C, six cells were prepared with two of the cells subjected to each 

of the three drive conditions: baseline dynamics, modified (reduced) dynamics, and 

storage (calendar).  The results showed that the reduced dynamics drive cycle could have 

a reduced aging characteristic compared with the baseline dynamics. 

 

Figure 2.21 Average relative resistance at 50% SOC vs. time [2]. 
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Broussely et al presented an experiment in which they subjected batteries under 

different float charge voltage and under different temperatures [85].  The cells were 

subjected to periodic capacity tests and the results were plotted against different test 

conditions.  The data were used to infer on possible degradation mechanisms of the cells, 

such as the interactions of negative electrode with electrolyte. 

Ecker et al presented a study where they considered both calendar and cycling 

conditions for aging [90].  They concluded for their cells the storage condition is more 

detrimental than the cycling condition, and they built a life prediction model based only 

on the storage condition.  The model involves both statistical reasoning and 

electrochemical reasoning as presented in previous works.  The change in impedance as a 

function of aging is then combined with thermal analysis for a more comprehensive 

lifetime modeling approach.         

 

Figure 2.22 Overtime comparison between cycling and calendar conditions [90] 
 

Dubarry et al presented work where they initially characterize 10 cells and found 

the consistency of the cells up to their satisfaction.  Subsequently one of the cells was 

chosen as representative and was subjected to 2 C discharging cycles to induce aging.  At 

fixed intervals, various magnitudes of current discharges were performed to characterize 
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the cycling cell.  They identified two distinct stages of degradation: first the loss of 

lithium inventory and second the loss of active materials [91] [92]. 

Eom et al considered that the lifetime of cells under a set charge-discharge pattern 

originated from a statistical distribution.  Failure time data from 12 cells under the same 

cycling condition were used to fit the distribution [97].   

In [98], Li et al set up an experiment in which multiple stress factors on battery 

were examined, i.e. temperature, discharge rate, end of discharge voltage, charge rate, 

and end of charge voltage.  Additional tests were done to examine the two-factor 

interactions between these factors.  The results are fitted in an empirical model that 

predicts battery lifetime performance.  

[110] by Thomas et al presented a method for accelerating aging the process with 

a statistical model.  Temperature is found to heavily influence the aging process for 

stored cells.  As a result, a statistical model is used to predict the cell’s aging performance 

with both temperature and time as input variables.  With the fitted model, the expected 

value of the cell’s future resistance at room temperature can be determined.  

 

Figure 2.23 Aging data and fitted model [110] 
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Wang et al presented experimental work that considers Ah throughput, 

temperature, and discharge current rate as important aging factors [111].  They developed 

separate life models for different discharge current rates with Ah throughput as the main 

input.  As some previous works, e.g. [90], they found aging is roughly a function of 

square root of time/Ah throughput. 

The quality of statistical analysis in these works varies greatly.  Some works 

could be improved by concepts such as design of experiment, statistical significance, and 

model checking.  Based on the Monte Carlo method, [113] provides guidelines on 

building lifetime models with attention to prediction confidence interval.  Additionally, 

[113] discusses on the optimal design concept.  

A third category of methods to predict lifetime performance of the battery is 

based on the concept of accumulative stress/fatigue [106] [107].  The battery is assumed 

to be able to sustain a certain amount of accumulative stress in its life, and various 

operating conditions such as current magnitude and temperatures are assigned values for 

stress.  The model then predicts the end of use time based on the remaining unused stress 

level.  These methods rely heavily on the accurate assignment of stress value to different 

operating conditions. 

2.7.3 State-of-Health Estimation 

From the discussion in 2.7.1, the two metrics for determining the age of a battery 

cell are the capacity and the resistance.  While in laboratory it is possible to perform a 

standard discharge in order to discover the cell’s capacity, field application usually 

requires a more readily available solution.  On the other hand, an estimate of the battery 

resistance is relatively quick to obtain on the measured voltage and current during drive 
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cycle or applied excitation.  The recursive modeling approach discussed in 2.5.1.3 is 

particularly suitable for tracking the gradual change in resistance as battery ages, so long 

as other factors such as SOC and temperature are taken into consideration.  While the 

convention for determining end of use for a rechargeable battery is when the battery can 

deliver only 80% of the original charge under the same charge-discharge procedure 

[115], tracking the change of battery resistance still informs the relative health of the 

battery.  Furthermore, when considering battery power capability, the increase of 

resistance directly results in the power fade of the battery. 

References that discuss the estimation or measurement of resistance as a means 

for SOH estimation include: [33], [77], [80], [83], [87], [116], and [117].  Whereas [77], 

[80], and [87] rely on impedance spectroscopy or random noise signal injection for 

impedance estimation, [33], [83], [117], and all other estimators that include resistance as 

a fitted variable rely on the drive cycle excitation.  [116] implements specialized step 

signals to determine battery health.   

Plett presented an interesting approach in which two versions of SOC, e.g. Ah 

counting and OCV inference, are compared to detect change battery health [118].  The 

key to this approach is that empirical evidence suggests OCV vs. SOC as defined by 

battery’s present capacity is consistent throughout the aging process while OCV vs. 

discharged Ah varies.  Figure 2.24 shows the empirical evidence on this claim.    
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Figure 2.24 OCV curves over aging for cells stored at 500C and 50% SOC.  Plot a shows 
the OCV curves vs. nominal DOD (depth-of-discharge) while plot b shows the OCV 

curves vs. actual DOD [90] 
            

For the case that capacity information can be periodically obtained, researchers 

have proposed methods on predicting when capacity will drop below a threshold value 

[100] [101] [102].  So long as the decaying curvature of the capacity can be modeled, a 

probabilistic estimate on the time when the threshold is reached is possible.  See Figure 

2.25 and Figure 2.26 for illustration. 
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Figure 2.25 Particle Filter Probability 
Density for Predicting End of Use [100] 

Figure 2.26 Particle Filter Probability 
Density for Predicting End of Use [101] 

 

2.7.4 Lithium-Ion Cell Aging with a Superimposed AC waveform 

In addition to prediction for battery aging performance, finding important factors 

for aging influence is also an important topic.  An interesting factor in battery aging is the 

superimposed AC waveform.  Bala et al demonstrated that with a superimposed AC 

waveform at 120 Hz [128], the tested LiFePO4 cell was noticeably warmer under load, 

although the authors did not claim this warmer temperature necessarily leads to 

significantly faster aging.  Electric vehicle power electronics DC bus filter design is 

another motivation for understanding whether a superimposed AC waveform leads to 

faster aging rate.  In an electric vehicle design, the sizing of the DC bus capacitor, which 

filters the AC contents from the battery pack, requires engineering trade off.  If 

superimposed AC waveforms are irrelevant to aging, the sizing of the capacitor may be 

reduced for cost benefits.  If these AC waveforms were significant to aging, a quantitative 

metric for balancing between the right amount of filtering and cost would be important. 

Hochgraf et al conducted an aging experiment in which three sets of LiMn2O4 

cells were subjected to 1) normal drive cycles 2) reduced drive cycles mimicking the 
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effect of an ultracapacitor bank on the DC bus 3) storage condition [2].  They found that 

aging for the cells under reduced cycles is significantly less than that of those under 

normal cycles.  In their study for cell aging under vehicle-to-grid condition, Peterson et al 

found that the amp-hours (Ah) throughput under drive condition causes significantly 

greater aging than those under the DC, grid connected condition [105].  While these two 

studies indicate the potential benefit for stronger filtering thus the aging impact of the 

superimposed AC waveforms, they do not provide a general understanding of the issue 

involved due to their use of arbitrary drive cycles.  The experimental results of [2] are 

only good for illustrating the benefits achieved by one set of DC bus filtering for the 

particular drive cycle, while due to the focus on aging prediction Peterson et al merely 

commented on the need for an adjustment factor between two modes of use in [105]. 

Instead of using arbitrary cycles, Anders designed experiments testing differences 

in lithium-ion batteries’ aging characteristics due to different shapes of discharge 

waveform, frequencies and temperatures [26].  The results were however only conclusive 

with respect to the temperature factor.  Additionally, Okazaki et al conducted an aging 

experiment on lead-acid batteries to find out if superimposed AC waveform has an 

accelerating aging effect [129].  Their conclusion was negative. 

2.8 State-of-Power and State-of-Function for Short-Term Power 

Estimation 

The ability of a battery to fulfill its tasks involves more than having sufficient 

stored charge.  The power capability of a battery depends on not only the charge 

remained in the battery but also temperature and its health.  A key point is that the 

presence of charge remaining in the battery does not mean that the energy is accessible to 
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a particular application [20] [123].  Since battery manufacturers usually publish the 

operating voltage upper and lower limits, the BMS needs to insure that these limits are 

observed by preventing the sinking and sourcing of too much power during vehicle 

operation. 

Two metrics have been proposed for battery power capability: state-of-function 

(SOF) and state-of-power (SOP).  Since the introduction of the term in [123], various 

definitions of SOF have appeared in literature [119] [123] [124].  They are all related to 

the battery power capability.  The work here follows the definition of SOF in [119] and 

that of SOP in [39].  The SOF represents a digital yes/no answer to the question whether 

battery is capable of fulfilling its task, while the SOP is a vernier signal indicating how 

much power is available.  The SOF and SOP are defined as in (2.8.1) and (2.8.2). 

 SOF = 


1 if vmin ≥ vlimit

0 if vmin < vlimit
 (2.8.1) 

 SOP = 
vlimit( )vocv – vlimit

R  (2.8.2) 

 

vmin is the minimum voltage reached during load and vlimit is the low voltage limit 

specified by battery manufacturer.  R is the steady state resistance of the battery, 

assuming the linear circuit model.  The definitions in (2.8.1) and (2.8.2) are for 

discharging limit, whereas the charging version can be derived similarly. 

The HPPC test proposed by the FreedomCAR consortium is perhaps the simplest 

short-term power capability tool [1].  By observing the voltage drop during the fixed-time 

current pulse at various SOC, the resistance and OCV for the associated condition can be 

used to help predict power performance. 
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Wiegman exercised his online-estimated models based on system identification 

techniques to predict the short-term voltage behavior of the battery under test [20].  

Various modeling complexities are compared for prediction performance in Wiegman’s 

work.  Additionally, different current magnitudes are also used to check model 

performance.  The presented results showed the prediction errors could be reduced by an 

increase in modeling complexity.  The good performance of the model prediction allows 

the use of the model for short term power checking based on terminal voltage limitations. 

For lead-acid batteries, van Bree et al presented a similar methodology involving 

a nonlinear equivalent circuit model [119].  The method to populate the equivalent 

circuit, however, was offline; van Bree et al gathered a batch of current and voltage data, 

and then perform an offline, nonlinear parameter estimation technique to populate the 

equivalent circuit parameters.  In addition, the nonlinear characteristics of the lead-acid 

battery were modeled by including the Butler-Volmer equation in its original form 

instead of linearizing it as a resistor.  The need for the nonlinear modeling is corroborated 

by the results in [121], where Buller et al used impedance spectroscopy to discover the 

change of electrode resistance as a function of current value for a lead-acid battery.  Van 

Bree et al’s results were promising as the agreement of the model prediction and the 

measurement data was strong.  However, it should be noted that this method is only valid 

for the special case where the battery remains at a constant SOC.  The method could be 

further improved if the identification process can be made recursive, thus allowing the 

adaptive estimation needed when SOC changes.   

The Japanese company Hitachi introduced a smart car battery named “CYBOX” 

[120].   The idea is to measure, record, and compare terminal voltages during cold 
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cranking operation, while the open-circuit voltage is tracked for SOC indication.  By pre-

setting the criteria for recharging and replacing the batteries, the user will receive a SOF 

recommendation based on the performance of recent battery cold cranking events.  A 

main advantage of this product is that it requires no current measurement for the 

algorithm.  This simplification is based on the assumption that the power demand is 

relatively repeatable for a given cranking application, e.g. vehicle starting.  Essentially, 

the impedance information is given by the transient response of the battery voltage during 

cranking, which keeps track of SOH.  The SOC developed from the terminal voltage 

measurements is combined with the SOH information to provide an indicator of the SOF. 

In [39], Wang et al presented a methodology in which the battery model is 

assumed to be an equivalent circuit depicted in Figure 2.27.  With the drive cycle 

measured voltage and current, the model’s parameters are recursively fitted, not unlike 

Wiegman’s and Plett’s works [20] [23].  After obtaining the model parameters, the 

battery was subjected to a voltage clamp at either upper or lower voltage limits and the 

resulting powers are measured.  The model is also used to predict power based on the 

clamping voltages.  The predicted and measured powers are then compared.  They found 

that the two-second power prediction was more successful than 10-second prediction, 

while discharging at voltage limit causes more prediction error than charging.  Wang et al 

concluded that the discrepancy is more due to the simplistic model structure than their 

recursive estimation algorithm.  Plett also presented a work on using his recursively 

estimated model to predict battery power capability [124].      



65 

 

Figure 2.27 Equivalent circuit model used in [39] 
 

Saha et al presented a work on using particle filter to predict the end of use, i.e. 

voltage collapse, for an unmanned aerial vehicle battery [122].  By assuming the flying 

pattern is consistent between different flights, the methodology is similar to what Saha 

proposed for battery life prognostics in [100].  The limitation of the method is obviously 

on the assumption of consistent flying pattern.  

The discussion in this section so far have implicitly assumed that the battery is 

either working under a fixed temperature range or the recursive estimator can adapt to the 

change in model parameters due to temperature influence.  To better model the battery 

power performance, explicit relationship between temperature and impedance may be 

important to consider.  A few recent works have demonstrate that, for lithium ion 

batteries, the change in temperature can lead to change in impedance as observed in 

impedance spectroscopy data [125] [126].  In [127], Waag et al analyzed the impedance 

of lithium cells with nickel manganese cobalt oxide (NMC) with EIS and HPPC.  The 

cells were under various conditions, including different temperatures.  A set of 

representative results are shown in Figure 2.28. 
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Figure 2.28 Current dependency of the cell total resistance for different temperatures 
[127] 

    

The results shown in Figure 2.28 suggest that, for this particular type of cell, there may 

be benefits in including the Butler-Volmer relationship in the model for low temperature 

condition.  Additionally, Waag et al have developed a nonlinear recursive estimation 

that’s based on the Butler-Volmer equation overptential and robust under different 

temperatures [139].  However, the approach adopted in [139] does not allow for offline 

simulation since its adaptative scheme relies on data to adjust against temperatures.   

2.9 Statistical Concepts and Methods 

The work concerning electrical engineering applications for battery is statistical 

by nature.  This statistical nature of the work is evident in the extensive use of equivalent 

circuits in the literature for modeling.  While theoretical explanations exist for them, 

phenomenal equations such as the Arrenius form and Butler-Volmer equation were first 

derived from observations, hence statistical.  Most of the works on battery lifetime have 

an empirical basis, and are also statistical in essence.  Of course, extensive theories exist 

for deductively constructing battery models based on first principles such as diffusion; 

the discussion on the Newman battery model in 2.5.3 is an example.  On the other hand, 

obtaining the parameters, e.g. diffusion coefficients, effective areas, etc, in the Newman 
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model can be challenging.  The values are either provided from various sources, or an 

identification process is required.  As discussed in 2.5.3, the interested reader is referred 

to [63] for the Newman model parameter identification issues.  Even when the values of 

physical parameters are provided by prior knowledge, these were still obtained through 

measurements and should have associated uncertainties. 

This statistical nature means much of the relevant knowledge has to be derived 

through a rigorous inductive process.  The statistical concepts and methods are therefore 

important to the understanding of the work presented in the thesis. 

2.9.1 Important Concepts in Statistics 

2.9.1.1 Statistics 

The British statistician Ronald A. Fisher considered three aspects of the science of 

statistics as important in his first book “Statistical Methods and Scientific Inference” 

[130].  These are 1) the study of populations 2) as the study of variation, and 3) as the 

study of methods of the reduction of data. 

As a study of populations, statistics aims at understanding the aggregate of 

individuals.  Some scientific theories such as kinetic theory of gases, theory of natural 

selection, and theory of chemical mass are essentially statistical.  Once the statistical 

nature of these theories is lost, misinterpretation could arise [130].  The study of 

variation, or the study of error, can be understood best in the context of measurement 

uncertainty.  Treating each measurement as an individual, the aim of statistics is to 

discover the aggregate properties such as the mean and variance.  It is important to note 

that the objective of an experiment is rarely an individual result, but the population of 

results under similar circumstances, i.e. repeatability and generality.   
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The data reduction aspect of statistics is due to a practical necessity in the human 

thinking process.  Given a batch of data, it is seldom that one can draw conclusions 

without the aid of models.  The complexity of the models can vary from a simple mean 

value to all kinds of nonlinear mathematical functions.  However, it is important to 

recognize the difference between models and “physical truth.”  The model as an aid for 

understanding can never truly represent a physical system in all of its details.  As the 

famed statistician, George Box put it: “Essentially, all models are wrong, but some are 

useful” [131].  The recognition and treatment of modeling error are important for a data 

analyst. 

2.9.1.2 Probability 

While the concept of mathematical probability is well defined with Kolmogorov’s 

axioms, its meaning in practical life is a contested subject.  Two versions of probability’s 

meaning have been proposed: statistical probability and inductive probability [132].  

A statistical probability is the limiting value of the relative frequency with which 

some events happen.  While it’s possible a fair coin shows heads five straight times, the 

limiting value of the head’s relative frequency is still 50%.  This definition relies on 

important assumptions that the experiment is repeatable and can be repeated indefinitely.  

These assumptions are of course hypothetical as no resources would allow indefinite 

repetition of experiments and every experiment, despite the best controls, is unique.    

The inductive probability is a gauge on individual personal belief regarding the 

occurrence of events.  The main difference between statistical and inductive probability is 

that the former is empirical while the latter is logical.  An example for inductive 

probability is a jury determining the probability of guilt based on given evidence.  
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Difficulties for inductive probability include quantification and its variation among 

rational minds despite the same access to evidence.   

2.9.1.3 Continuous Random Variables and Probability Density Functions 

The term random variable (RV) is defined as a numerical variable that takes 

different values with different probabilities [132].  In this work, we focus only on the 

continuous random variables that take on any value within a certain range.  The 

probability density function (PDF) of a random variable is a mathematical function 

whose integral between an interval defines the probability of the RV taking a value 

within the integral.  Let f(x) be the PDF, then the probability of an event occurring 

between x1 and x2 is: 

 Prob [x1 < X ≤ x2] = 

x1

x2

f(x)dx  (2.9.1) 

 

Many important PDFs have been proposed and utilized in applications.  The most 

important one is arguably the Normal distribution defined as: 

 f(x) = 
1

σ 2π
exp









–1

2 ( )x – μ 2

σ2  
(2.9.2) 

 

In (2.9.2), σ is the standard deviation and μ is the mean.  The two parameters determine 

the shape of the PDF.  This PDF, with zero mean and standard deviation at one, is shown 

below: 
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Figure 2.29 A normal distribution PDF with zero mean and standard deviation at one 
 

An important distribution derived from the Normal distribution is the χ2 

distribution.  Let Z’s be independently and normally distributed with zero mean and unit 

standard deviation.  The RV, ϒ, with a χ2 distribution with f degrees of freedom (χ2(f)) 

is: 

 ϒ = Z1
2 + Z2

2 + Z3
2 +…+ Zf

2 
(2.9.3) 

 

A χ2(4) PDF is illustrated in Figure 2.30.  The mean value of an RV ϒ with χ2(f) 

distribution is f and its variance is 2f [132].    
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Figure 2.30 A χ2(4) distribution PDF 
 

Another important PDF is the t-distribution.  The RV, T, follows a t-distribution of f 

degrees of freedom (t(f)): 

 T = 
Z

ϒ
f

 
(2.9.4) 

 

The statistic t for n samples of a normally distributed RV follows the t-distribution of n -1 

degrees of freedom (μ ≠ 0, degrees of freedom = n if μ = 0) and is given as: 

 t = 
x– – μ

s/ n
 

s2 = 


i = 1

n





xi – x–
2

n – 1   

x– = 


i = 1

 n
 xi

n  

(2.9.5) 

 

, where s is the sample standard deviation and x– is the sample mean.   
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Figure 2.31 The PDF’s of t-distribution with different degrees of freedom.  The 
distribution asymptotically approaches the zero mean, unit variance normal distribution 

with greater degrees of freedom 
 

Lastly, let ϒ1 and ϒ2 be independent χ2 distributed RV’s with degrees of freedom 

f1 and f2.  The RV, V, is said to have an F distribution of degrees of freedom f1 and f2. 

 V = 
ϒ1/f1

ϒ2/f2
 

(2.9.6) 

 

The use of the F-distribution arises in the significance testing of null hypothesis.  

In model checking, a null hypothesis is usually assumed and the data’s conformity to the 

null hypothesis is checked with probability under the F-distribution, assuming the noise 

in the system is normally distributed and variance is stable between data points.  The 

statistical technique is referred to as analysis of variance (ANOVA).  The reader is 

referred to statistics literature such as [130] and [131] for more information. 
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2.9.1.4 Test of Significance 

When an engineer or scientist attempts to describe a phenomenon with data, they 

usually present the data with the aid of a model.  The soundness of the model is therefore 

of interest.  For example, consider an experiment to compare two methods, denoted by 

MSI and SIB, that determine chlorine content in sewage effluents [133].   

Table 2.2 Residual Chlorine Readings, Sewage Experiment [133] 
Sample MSI SIB di 

1 0.39 0.36 -0.03 

2 0.84 1.35 0.51 

3 1.76 2.56 0.80 

4 3.35 3.92 0.57 

5 4.69 5.35 0.66 

6 7.70 8.33 0.63 

7 10.52 10.70 0.18 

8 10.92 10.91 -0.01 

 

If there was no significant difference between the two methods, then it is expected 

that sample difference, di, between MSI and SIB methods should have an average of 

zero.  The t statistic for the di’s based on (2.9.5) is calculated as 3.6454.  The null 

hypothesis, that there is no difference between two methods, calls for an average of di’s, 

thus the t statistic, to have a mean of zero.  Assuming the null hypothesis, the probability 

(p-value) of the t-statistic taking the magnitude for the calculated value or a more extreme 
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one is 0.0082, less than 1 percent.  The calculation of the probability can be visualized as 

finding the area of f(t) beyond the cutoff lines in Figure 2.32.     
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Figure 2.32 The PDF for t-distribution with 8 degrees of freedom and cut-off lines at t = 
3.6454 

   

While the interpretation of the test of significance is a contested subject, the 

inventor of the tool, Fisher, seemed to regard the test of significance as a guideline in 

reaching a conclusion based on the available evidence.  When the p-value is somewhat 

ambiguous, e.g. in the range of 5% to 20%, Fisher would discuss how to improve the 

experiment to obtain better resolution.  With a high p-value, Fisher would claim there’s 

no statistical evidence to contradict the null-hypothesis, instead of accepting the null 

hypothesis as “correct.”  In the above example, the null-hypothesis is under strong 

suspicion with the given evidence and can be rejected if the significance probability is 

chosen as the customary 5%.    

2.9.1.5 Covariance Matrix and Fisher Information 

The covariance matrix arises when model parameters are estimated from data, 

using least squared error method.  Specifically, the estimated parameters are RV’s since 
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they are functions of the data.  As such, estimated parameters have corresponding 

variances.   

For the case of multiple linear regression, the generic model for N observations is 

[133]: 

 yi = β0 + β1xi1 + β2xi2 + … + βnxin + εi 

i = 1, 2, …, N 
(2.9.7) 

 

where ε, the noise, is assumed to be normally distributed with zero mean and variance σ2.  

It is possible to write (2.9.7) in a matrix form. 

 y = Xβ + ε 
β = [β0, β1, β2, …, βn]T 

X = 






1  x11  …  x1k

: : : :
1 xN1 …  xNk

 

(2.9.8) 

 

By the pseudoinverse technique and least squares estimation, the estimated parameter 

vector β^ is given as: 

 β^ = ( )XTX -1XTy (2.9.9) 

 

The variance of β
^

, i.e. the covariance matrix, is then derived as: 

 Var( )β^  = ( )XTX -1XTVar(y)( )(XTX)-1XT T  

Var(y) = σ2I 

Var( )β
^

 = ( )XTX -1σ2 

(2.9.10) 
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Since each estimated parameter β
^

i is an RV, a test of significance can be applied with the 

null hypothesis β
^

i = 0.  The purpose for the significance test is to ensure there is statistical 

evidence to support the term corresponding to β^i in the model.   

Fisher introduced his concept of information in part as a tool for selecting number 

of samples in experiment design [130].  The issue at point is that given efficient statistical 

methods, whatever improvement to the precision of parameter estimates depends 

primarily on the data itself.  When designing the experiment, it is worthwhile to 

investigate how much information is needed given a desired precision level.  

Additionally, Fisher would recommend the increase of precision by improvement of 

experimental techniques.  On the other hand, for a given data set and a selected model 

structure, the information matrix can be obtained as the inverse of the covariance matrix, 

i.e. information is inversely proportional to variance.  Hence, when the variance of a 

parameter estimate is so large relative to the estimate that the null hypothesis β
^

i = 0 

cannot be rejected, it is said that the data has not enough information/statistical evidence 

to support the parameter’s existence. 

The concept of Fisher information was later mathematically defined as the 

expected value of the negative Hessian matrix of the log likelihood function f(X; θ) at the 

true parameter value θ*, where X is the observable data and θ is the parameter set.  For a 

detailed treatment of the Fisher information as defined mathematically, the interested 

reader is referred to [134]. 
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2.9.2 Design of Experiments        

In the introduction of his second book “The Design of Experiments,” Fisher 

remarked that there are two general lines of attack on which a critic argues against 

conclusions drawn from an experiment [130].  One is the deficiency of the 

interpretation/analysis of the experiment data, and the other is the logical structure of the 

experiment design.  Fisher also argued that the two lines of criticism are two aspects of 

the same whole; if the experiment was not logically sound, then any interpretation that 

draws decisive conclusions is faulty.   In these cases, the interpretation’s failure lies in 

not recognizing the logical inability of the experiment to answer some/all of the questions 

of interest.  It is also important to note that data analytical techniques usually cannot 

make up for the deficiency in the logical structure of the experiments.   

Design of experiments thus seeks to maintain the logical integrity of the 

experiment for the purpose of answering specific questions.  The rest of the subsection 

describes a tea tasting experiment used by Fisher in his book to illustrate some of the 

important concepts in design of experiments. 

Fisher’s tea tasting experiment aimed at determining whether a lady had the self-

claimed ability to taste a cup of tea made with milk and discriminate whether the tea or 

milk was first added to the cup.  Fisher’s experiment consists in mixing eight cups of tea, 

four in one way and four in the other, and presenting them to the lady at a randomized 

order. 

Table 2.3 An example of Fisher’s tea tasting experiment 
Order 1 2 3 4 5 6 7 8 
Served 

first 
Tea Milk Milk Tea Tea Tea Milk Milk 
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The lady was told that two sets of four cups each was presented to her and she 

was to make a judgment on each of the eight cups.  There are a total of 70 ways to 

separate eight cups into two groups of four; this is so because when choosing the first set 

of four cups consecutively, there are 8x7x5x6, or 1680, ways, and once the first set of 

four cups are selected the other set of four cups is also determined.  However, that would 

be to count every possible set and every possible order.  For each set, there can be 

4x3x2x1, or 24 orders.  Therefore there are 1680/24 = 70 ways to group the cups. 

The inductive basis is the following: if the lady was guessing in random, she had 

an 1 in 70 chance of obtaining the completely correct grouping.  The number 70 is 

important since it relates to the chance of getting the complete answer without the 

claimed ability.  Notice the connection with the test of significance here: the null 

hypothesis is that the lady had not the claimed ability, and if she was to obtain the correct 

grouping under the null hypothesis, she’d be able to do so with an 1 in 70 chance.  

The number of cups used thus determines the precision of the experiment.  In this 

case, the precision is only up to 1 in 70.  If the null hypothesis was to be declared invalid 

with a 1% probability, this experiment would never be able to achieve such a result.  On 

the other hand, even with a tight requirement for rejecting the null hypothesis, “one in a 

million” could occur.  Thus an isolated record itself is not sufficient for experimentally 

demonstrating a natural phenomenon; what is needed is a well established procedure 

that’s repeated and rarely fails to give a statistically significant result. 

Randomization is also an important aspect in safeguarding the results.  The above 

inference reasoning is based on the assumption that absent of the claimed ability the 

lady’s judgment is based on chance.  This could easily not be the case; she could have 
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been differentiating the quality of tea and milk or the differences in the cups themselves.  

Perhaps the group that had milk added first also happened to have all their cups made by 

the same manufacturer.  Randomization seeks to avoid confounding between the non-

tested and tested hypotheses.  Notice that it is not sufficient to claim that “all cups are 

made the same except for their order of adding tea and milk.”  This claim is simply 

impossible to enforce; there will always be certain uncontrollable differences, such as the 

temperature change during the serving of the teas.  Only by randomization can the 

inference basis be protected. 

A few steps could be taken to increase the precision of the experiment.  The first 

one is to enlarge the number of cups involved in the experiment.  This has the obvious 

effect of decreasing chance of obtaining correct grouping based on chance.  The other 

two methods are 1) the reorganization of the experiment 2) the refinement of techniques. 

With respect to the reorganization of the experiment, the experiment can increase 

precision by removing the restriction of grouping, i.e. randomly determine the order of 

adding milk and tea for each serving.  In that case, the chance of obtaining the perfect 

result for the eight cups is 1 in 28 = 256.  The reorganization of the experiment can also 

decrease the precision of the experiment; for example if the two groups of servings are 

chosen to be 3 and 5 cups each, the chance of obtaining the perfect result under null 

hypothesis is 1 in 56. 

The refinement of techniques may not be able to increase the precision of this 

particular test.  But without certain precautions, the experiment may simply be 

impossible.  The careful use of similar cups, tea, and water is implicitly assumed in this 
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tea tasting experiment.  In other experiments, the refinement of techniques could involve 

the improvement of measurement that should decrease the noise level of the data. 

2.9.3 Recursive Estimation and Kalman Filter 

The classical linear regression technique involves least square estimation of 

parameters based on a given batch of data.  The mathematical form for linear regression 

is shown from (2.9.7) to (2.9.9).  A natural question arises with regard to this method of 

estimation: what should be done when data comes in sequentially?  It is desired to 

monitor battery pack when the EV is operated, not when the operation terminates.  

Should the matrix operation from (2.9.7) to (2.9.9) be repeated as every new sample of 

data comes in, or is there a recursive method to achieve the parameter estimation?  The 

least mean squares method (LMS) which allows for recursive estimation is described 

below.   

Similar to (2.9.8), a linear function at sample time k can be written as: 

 y(k) = X(k)β + ε 
β = [β0, β1, β2, …, βn]T 

X(k) = [1, x1(k), x1(k),…, xn(k)] 
(2.9.11) 

   

Thus the predicted value at sample time k, y
^
(k), and the corresponding error and squared 

error are: 

 y^(k) = X(k)β^ 

e(k) = y(k) – y
^
(k) 

e(k)2 = ( )y(k) – y^(k) 2 

(2.9.12) 

 

If the squared error function is to be minimized as a function of the parameters, the 

partial derivative of the squared error function should be zero. 
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∂[y(k) – ŷ(k)]2

 ∂ β̂
 = –2(y(k) –  ŷ(k))X(k)  (2.9.13) 

 

The gradient for achieving zero for squared error function is shown in (2.9.13).  To 

recursively estimate the parameter vector, β
^
, the previously obtained β

^
(n-1) is updated 

along the gradient for minimizing squared error function. 

β̂(k) =  β̂(k – 1) + cXT(k)[y(k) – ŷ(k)]  (2.9.14) 

 

In (2.9.14), the value c is the gain of the update.  The theoretical upper bound for c is 

2
λmax

, where λmax is the maximum eigenvalue of the autocorrelation matrix E[xTx].  For a 

more complete treatment of LMS method, the interested reader is referred to [135].   

The famed Kalman filter has a similar structure to the LMS method discussed 

above.  The main difference is that Kalman filter has an optimal gain that’s determined 

based on the input and output variances.  Specifically, the internal states/parameters in a 

Kalman filter are considered random variables perturbed by noise of a known variance.  

The perturbation and output prediction error provide the basis for estimating internal 

states’ covariance matrix.  Additionally, the output measurement also has noise of a 

known variance.  These two variances are weighted to obtain the optimal gain for the 

update of states.  For the application of system identification, the Kalman filter takes the 

following mathematical form.  (2.9.15) is the state equation while (2.9.16) describes the 

recursive update of the terms.  In (2.9.15), w and v are random noises with known 

covariance matrices of Q and R, respectively.  In (2.9.16) the term P is the estimated 
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covariance matrix of the estimated parameters and K is the optimal gain based on the 

weighting of P and R. 

 β(k) = β(k – 1)+ w(k) 
y(k) = X(k)β(k) + v(k) 

(2.9.15) 

P-(k) = P+(k-1) + Q 

K(k) = P-(k)XT(k)( )X(k)P-(k)XT(k) + R(k) -1 = P+(k)XT(k)R(k)-1 

β^(k) = β^(k – 1) + K(k)( )y(k) – ŷ(k)  

P+(k) = ( )I – K(k)X(k) P-(k) 

(2.9.16) 

 

2.9.4 Karl Pearson and Ronald A. Fisher 

Statistical techniques have become pervasive in science.  Fields such as biology, 

agriculture, and psychology have integrated statistics as a part of their disciplines.  This 

development towards quantification in these previously qualitative fields is due to many 

researchers.  However, two British personalities, Karl Pearson and R. A. Fisher, deserve 

to be recognized for their leading roles in introducing statistics into science.  This 

subsection is devoted to their short biographies. 

Karl Pearson was born in 1857 as Carl Pearson [136].  He later changed his name 

to Karl in tribute to Karl Marx.  A man with keen interests in many fields, Pearson’s 

studies included mathematics, political science, and linguistics.  In the 1880’s Pearson 

became involved with Francis Galton’s work to bring mathematical rigor into biology.  

Galton’s concept of correlation was refined by Pearson.  Pearson is also credited with the 

discovery of skewed distributions and the chi-squared distribution.  Aside from the useful 

statistical tools he developed, Pearson was more importantly a philosopher in the field of 

science.  His book, the Grammar of Science (published in 1900), contains many 

interesting topics such as the relativity of motion, physics as geometry, and scientific 

laws as empirical formulations instead of rigid natural rules.  Pearson was a writer with a 
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popular audience in mind, and his book is accessible to those with minimal background.  

Pearson’s book is still highly relevant in the field of mathematical modeling and is 

recommended for anyone who is dissatisfied with the “clockwork” version of science 

taught in most secondary education curriculum [137].   

Born in 1890, R. A. Fisher is noted not only for his contributions in statistics but 

also in biology.  In biology, Fisher was known for his contributions related to the theory 

of natural selection.  In statistics, his works were pioneering and included the analysis of 

variance, maximum likelihood estimation, statistical inference, design of experiment, etc.  

It would be no exaggeration to claim that Fisher has been the most influential character in 

the development of statistics as a scientific discipline.  His works were quite different in 

many ways from his predecessors, including Pearson.  As a result, a bitter controversy 

developed between the two men, and Fisher was correct on most of the contested issues 

with Pearson.  Fisher was also a philosopher in the field of science.  He devoted much 

space in his three books discussing the need for rigorous process to infer from data to 

conclusion, i.e. inferring from the particular to the general.  These arguments require 

more technical background to comprehend compared with Pearson’s Grammar of 

Science, and they can be found in [130].  

2.10 Summary   

From the discussion in the state-of-the-art review, several research opportunities 

can be identified.  They are listed as follows: 

1. A statistical study on the effectiveness of the popular linear circuit model for 

different cell chemistries and different operating conditions, e.g. temperature.  

The linear circuit model approximates the Butler-Volmer relationship as a 
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resistance.  The need exists to investigate whether such an approximation is 

appropriate for particular cell chemistries and operating conditions.  In Chapter 

three, a methodology is introduced to study the appropriateness of linear circuit 

model for lead-acid batteries, while an investigation of lithium-ion batteries at 

different temperatures is made for different temperatures in chapter five.  

2. The adaptation of Butler-Volmer based model for recursive system identification.  

By recognizing the need to include the nonlinear behavior of Butler-Volmer 

relationship in the model, the need arises of adapting the new model for recursive 

system identification.  The linear circuit model has been used in conjunction with 

system identification extensively in the literature.  The recursive estimation 

scheme allows for model adaptation for aging, SOC changes, etc.  Chapter three 

demonstrates a method by which the Butler-Volmer based model is adapted for 

recursive estimation. 

3. The incorporation of temperature as an explicit input that influences battery 

resistance and overpotential model.  The literature has illustrated that battery 

resistance and overpotential are functions dependent on operating temperature.  

Chapter five shows that for lithium-ion batteries, the overpotential resumes the 

Butler-Volmer relationship at lower temperatures, even though the linear circuit 

model appears adequate at room temperature.  Additionally, the pure resistance of 

a lithium cell increases rapidly as temperature drops.  Chapter five demonstrates 

these phenomena experimentally and offers a modeling approach that explicitly 

includes temperature as an input for both resistance and overpotential.  Such a 

modeling approach can help better predict battery power performance. 
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4. Better understanding of the use of recursive system identification for battery 

power prediction.  The recursive system identification allows for adaptive 

observation of battery model parameters online.  This feature leads to the use of 

the adaptive model for power output prediction, SOP, in the literature.  Chapter 

four illustrates a fundamental limitation of SOP within the context of recursive 

system identification.  It then proceeds to propose an alternative approach, SOF, 

and shows SOF’s theoretical probability limits for the prediction of battery power.  

The recursively obtained SOP results are also compared with the HPPC results on 

power prediction. 

5.  A statistical design of experiment to investigate whether a superimposed AC 

waveform causes a different aging rate.  If so, the quantification of such an effect 

can lead to better design guidelines for capacitor filter design.  The DC bus 

capacitor filter design involves an engineering trade off.  If the aging of battery is 

not accelerated due to additional high frequency components, the DC bus 

capacitor can be downsized for cost benefits.  Chapter six designs an experiment 

that first establishes the additional RMS value from superimposing an AC 

waveform on the discharging current can cause accelerated aging.  The 

subsequent experiment then confirms RMS’s influence in determining aging rate 

and demonstrates the statistically irrelevance of other factors such as frequency 

and waveform shapes.  A methodology for quantifying the RMS effect on aging 

rate is also established in chapter six.    
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Chapter 3 
3 Butler-Volmer Equation 

Based Battery System 
Identification 

 

In this chapter, an improved nonlinear model for the electrode voltage-current 

relationship for online battery system identification is proposed.  In contrast to the 

traditional linear-circuit model, the new approach employs a more accurate model of the 

battery electrode nonlinear steady-state voltage drop based on the Butler-Volmer 

equation.  The new form uses an inverse hyperbolic sine approximation for the Butler-

Volmer equation.  Kalman filter-based system identification is proposed for determining 

the model parameters based on the measured voltage and current.  Both the Butler-

Volmer model and linear-circuit model have been implemented for lead-acid batteries 

and exercised using test data from a Corbin Sparrow electric vehicle.  A comparison of 

predictions for the two models demonstrates the improvements that can be achieved using 

the new nonlinear model.  

3.1 Linear Electric circuit and Butler-Volmer Battery Models  

3.1.1 Introduction of linear-circuit and Butler-Volmer Battery Models 

Figure 3.1 and Figure 3.2 illustrate the two battery models that are investigated in 

this work.  The Butler-Volmer (BV) based model in Figure 3.1 is the proposed improved 

model while Figure 3.2 depicts the widely-used linear model.  While differences exist 

among various battery modeling techniques found in the literature, linearization of the 
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BV equation is a feature common to most of them, usually accomplished using a resistor 

approximation, r1.   

Other than the electrode model, the remaining features in the battery models are 

shared in common: r0 represents the ohmic voltage drops in the battery, the parallel r1, C1 

circuit models the dynamic response of the electrode overpotential for the linear-circuit 

model while the LPF in Figure 3.1 stands for “low-pass filtering” and provides dynamic 

response modeling, and the vocv voltage source provides the battery open-circuit voltage.    

 

Figure 3.1 Nonlinear battery model incorporating 
Butler-Volmer electrode equation 

 
Figure 3.2 Conventional linear circuit-based battery model 
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It is recognized that adopting a first-order dynamic response for the battery model 

represents a significant simplification of the actual battery dynamics which are 

complicated, i.e. multiple-poles and dependent on battery operating conditions, including 

its SOC.  The EIS results can be used to obtain a sense for the reduction in complexity.   

In Figure 3.3, the EIS graph shows positive imaginary impedance at high frequency, 

suggesting the presence of an inductive element.  In addition, the RC circuit modeled in 

Figure 3.2 could have resulted in one semi-circle in the EIS graph, but Figure 3.3 

suggests the presence of at least two such circles.  However, since the focus of this work 

is on modeling the battery’s steady-state terminal characteristics, the first-order dynamic 

model is satisfactory here. 
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Figure 3.3 An EIS graph of a lithium iron phosphate battery  
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The Butler-Volmer equation in (3.1.1) describes the steady-state relationship 

between the charge transfer overpotential across an electrode, η, and the associated 

battery current magnitude, i [14]. 

i =  i0







exp








-α
ηF
RT  – exp









(1-α)
ηF
RT  

(3.1.1) 

 

(3.1.1) shows the Butler-Volmer equation, where F is the Faraday’s constant 96485 






C

mol

, R is the universal gas constant 8.314 






J

K mol , T is the temperature in [K], i0 is the 

equilibrium current density in 






A

m2 , and α and 1 - α are electrode transfer coefficients for 

reduction and oxidation, respectively. 

3.1.2 Inverse Hyperbolic Sine Approximation for Butler-Volmer Equation and the 

Lumped-Electrode Assumption 

As discussed in 2.4.2, the measurability of the battery current and the 

impossibility to measure the model component voltages makes it natural to use current as 

the predictor and battery terminal voltage as the output for modeling purpose.  In (3.1.1), 

the situation is exactly the opposite with current being the output and overpotential being 

the input.   

As in 2.4.2, the Butler-Volmer relationship can be simplified using the inverse 

hyperbolic sine function by assuming α = 0.5, as in (3.1.2).          

 η = 
RT
αFsinh-1







i

2i0
 (3.1.2) 
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In Figure 3.4, a Butler-Volmer relationship is plotted with parameters i0 = 1.62, 

RT
αF  = 0.0784, and α = 0.5, i.e. the condition for using the inverse hyperbolic sine 

approximation.  The corresponding linear fit, which would be linear-circuit model’s 

response, is also plotted for comparison.  Figure 3.4 demonstrates the nonlinear behavior 

of the Butler-Volmer relationship and the potential issues for modeling battery with 

linear-circuit when the Butler-Volmer relationship is present.   
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Figure 3.4 Butler-Volmer relationship with set parameters and the corresponding least 
square error linear fit 

 

While (3.1.1) and (3.1.2) apply to both the battery cathode and anode individually, the 

two electrodes are typically combined in the model due to the impracticality of 

differentiating between the two electrodes on the basis of the battery voltage and current 

measurements.  The following is a study on the impact of using lumped BV equations for 

the two electrodes in series. 



91 

As discussed before, a unique Butler-Volmer equation exists for the cathode and 

anode electrodes individually in a cell.  Due to the series connection of the two 

electrodes, the model could be formed by adding the voltage responses of the two 

electrodes using two Butler-Volmer equations. Numerical simulations are carried out 

here to investigate whether the battery can be well represented using only one combined 

Butler-Volmer equation instead of two.  Based on (3.1.2), the following equations were 

used for simulating the individual battery electrode responses: 

 ηcathode = k1sinh-1






i

2i0
 (3.1.3) 

ηanode = k1sinh-1






i

2ni0
 (3.1.4) 

ηtotal = ηcathode + ηanode (3.1.5) 

 

In (3.1.3), (3.1.4), and (3.1.5), the two electrodes’ responses differ in their 

characteristic currents; i.e., the anode’s characteristic current varies from that of the 

cathode by a factor of n.  It is noted that if the two characteristic currents are identical (n 

= 1), the combined electrode response ηtotal is simply a scaled version of the individual 

electrode responses, making it convenient to represent the combined electrode response 

using a single Butler-Volmer expression. 

In the simulations, a case with electrode characteristic current values that differ by 

a factor of 20 (i.e. n = 20) has been investigated. The values k1 and i0 in (3.1.3), (3.1.4), 

and (3.1.5) were chosen to be 0.0392 and 1.6235, respectively.  Currents from -300 to 

300 A with an interval of 20 A were applied to (3.1.3), (3.1.4), and (3.1.5) to obtain the 

data points for the terminal voltage ηtotal of the two electrodes connected in series. The 

predicted ηtotal has then been fitted with a single BV equation (3.1.2).   
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Figure 3.5 Simulated electrode voltage responses (individual and summed) and the fitted 
combined voltage response using a single BV hyperbolic sine equation for n = 20 

 

Figure 3.5 shows the simulation results for ηtotal and the corresponding fitted 

curve using (3.1.2).  These results show that the use of a single BV equation to represent 

the two combined electrodes closely matches the summed voltages of the two series 

electrodes despite the fact that the two electrode characteristic currents differ by more 

than an order of magnitude (20:1). 

Table 3.1 summarizes the calculated sum of squared errors (SSE) values for five 

different cases of scaling factor n.  These results indicate that the SSE value increases 

monotonically as n grows, but the SSE values remain very low over the full range, 

building confidence in the validity of the lumped response approach for the two 

electrodes. 

Table 3.1 Calculated SSE as a function of scaling factor k 
 n = 1 n = 5 n = 10 n = 20 

SSE 8.0 e-15 2.0 e-7 2.0 e-6 7.6 e-6 
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3.1.3 Derivations of Discrete Form for Linear-Circuit and Butler-Volmer Based Models 

In order to use the models in Figure 3.1 and Figure 3.2 in controls applications, 

the Butler-Volmer and linear-circuit based models for relating battery current and battery 

terminal voltage can be written in discrete form as in (3.1.6) and (3.1.7), respectively. 

v(k) = vocv – r0i(k) – 
b1

1 + a1q-1 sinh-1






i(k)

2i0
               (3.1.6) 

v(k) = vocv – 
b0 + b1q-1

1 + a1q-1  i(k)                                      (3.1.7) 

 

In (3.1.6) and (3.1.7), the term q represents a shift operation.  For example, qi(k) = i(k + 

1), and q-1i(k) = i(k – 1).  These two models can be further manipulated into the 

following forms by multiplying the term 1 + a1q-1 and assuming vocv does not change 

during one sample.  

v(k) = (1 + a1)vocv – a1v(k – 1) 

            – (i(k) + a1i(k – 1))r0 –  sinh-1







i(k)

2i0
b1   

(3.1.8) 

v(k) = (1 + a1)vocv – a1v(k – 1) 

            – i(k)b0 + i(k – 1)b1       
(3.1.9) 

  

 A few remarks can be made based on (3.1.8) and (3.1.9).  The first is the models 

have the same structure with respect to vocv, assumed as a constant in both cases.  This 

assumption is of course contradictory to the general observation that vocv is dependent on 

SOC.  However, when (3.1.8) and (3.1.9) are used either with short-term drive data or in 

the context of recursive estimation, this lack of modeling effort on vocv vs. SOC usually 
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has very limited effects.  Under the short-term drive condition, the vocv may not change 

by much especially for certain types of battery such as lithium iron phosphate. 
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Figure 3.6 CALB lithium iron phosphate battery (rated at 60 Ah) 
1
20 C discharge curve at 

250 C 
 

 Figure 3.6 shows the 
1
20 C discharge curve at 250 C for a CALB lithium iron 

phosphate battery rated at 60 Ah.  Since 
1
20 C discharge rate causes a low voltage drop 

due to resistance and overpotential, this particular curve can be seen as approximately the 

vocv vs. SOC relationship for this battery.  It can be observed that the derivative of the 

vocv vs. SOC relationship here is fairly small until the voltage collapse at the lower SOC 

region.  In the context of recursive estimation, the constant modeling vocv is naturally 

updated recursively to reflect the change in SOC and the associated vocv change.  
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 The second remark is that the term b0 in (3.1.9) is essentially the same as the term 

r0 in (3.1.8).  This can be seen by the fact that both are multiplied by a –i(k) term in their 

respective models.  The time constant parameter a1 is also present in both models and 

represents the first order dynamic response assumed here.  Thus both models are very 

similar in structure for their dynamic response, resistive drop, and vocv.    

 The final remark here concerns the term 
b1

1 + a1q-1 in (3.1.6).  The presence of the 

operator q-1 provides the first order dynamic response in the model.  However, when 

considering only the steady-state response, 
b1

1 + a1
 in (3.1.6) corresponds to the 

RT
αF term in 

(3.1.2).  This fact numerically connects (3.1.2) and (3.1.6). 

3.2 Recursive Estimation and Associated Parameter Estimation for 

Time Constant and Exchange Current 

3.2.1 Recursive Estimation with Kalman Filter 

To achieve recursive estimation with the two models in (3.1.8) and (3.1.9), these 

two equations are further manipulated into the following forms respectively: 

v(k) + a1v(k – 1) = (1 + a1)vocv  

                              – (i(k) + a1i(k – 1))r0 –  sinh-1







i(k)

2 i0
b1 

(3.2.1) 

v(k) + a1v(k – 1) = (1 + a1)vocv 

                           – i(k)b0 -  i(k – 1)b1       
(3.2.2) 
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If the assumptions can be made such that the values of i0 in (3.2.1) and a1 in both (3.2.1) 

and (3.2.2) are known, (3.2.1) and (3.2.2) can be considered as a linear expression in the 

following forms. 

z(k) = v(k) + a1v(k – 1) = φ(k)θ 

where θ = [vocv, r0, b1]T 

φ(k) = [(1 + a1), – (i(k) + a1i(k – 1)), – sinh-1







i(k)

2 i0
] 

(3.2.3) 

z(k) = v(k) + a1v(k – 1) = φ(k)θ 

where θ = [vocv, b0, b1]T 

φ(k) = [(1 + a1), – i(k), – i(k – 1)]      

(3.2.4) 
 

 

In (3.2.3) and (3.2.4), the output z(k) is linearly related to the input φ(k) with 

gains, i.e. parameters, θ.  Since both the output z(k) and input φ(k) are directly obtained 

through the measurements, our task in recursive estimation is to obtain the parameter θ.  

A Kalman filter can be constructed for both battery models using (3.2.3) and (3.2.4).  The 

purpose of this Kalman filter is to continually update the model parameters in order to 

minimize the error between the model estimates of the battery terminal voltages and their 

measured values. Figure 3.7 provides a block diagram of the Kalman filters used for both 

models’ parameter identification. 
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Figure 3.7 Block diagram of Kalman filter structure for both Butler-Volmer and linear-
circuit models 

 

The state equation and the measurement equation for the Kalman filter are shown 

in (3.2.5) and (3.2.6): 

θ(k + 1) = θ(k) + u (3.2.5) 

z(k) = φ(k)θ(k) + w 
(3.2.6) 

 

where θ(k) is the state/parameter vector, z(k) is a linear combination of the voltage 

measurements v(k) + a1v(k – 1), φ(k) is the regressor vector or input, and u and w are 

zero-mean, uncorrelated white noise with covariance matrices Q and R, respectively.  In 

this case, Q is a 3x3 diagonal matrix and R is a scalar.  It should be noted that the state 

equation (3.2.5) assumes no systematic change in states/parameters θ(k) between time 

samples.  The change in θ(k) between samples is modeled by the fictitious noise u.  
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(3.2.6) is simply a restatement of (3.2.3) and (3.2.4) with the addition of variable w to 

model the measurement noise. 

Since Kalman filter is a recursive scheme, it requires an initial value θ(0) and the 

initial value for the covariance matrix.  The initialization of the filter is done by selecting 

the best value available.  Practically speaking, the parameters can be from those 

estimated in the last cycle, or those that have been observed for the same operating 

conditions, e.g. in temperature and SOC.  Mathematically, the initialization is done by 

using the expected values. 

θ̂(0) = E[θ(0)] (3.2.7) 

P+(0) = E[(θ(0) – θ̂(0))( θ(0) – θ̂(0))T] (3.2.8) 

 

where P+ is the covariance matrix of the parameter estimates θ̂.  As in the discussion in 

2.9.3, the filter propagates at every time step according to the following expressions: 

P-(k) = P+(k-1) + Q 
K(k) =  P-(k)φ(k)T(φ(k)P-(k)φ(k)T+R)-1 
P+(k) = (I – K(k)φ(k))P-(k) 

ẑ(k) = φ(k)θ̂(k) 

θ̂(k) = θ̂(k-1) + K(k)[z(k) – ẑ(k)] 

(3.2.9) 

 

where P- is the covariance matrix from the previous sample updated by Q, and K(k) is the 

Kalman filter adaptive gain.   

As indicated in (3.2.9) and Figure 3.7, the Kalman filter feeds back the 

measurement z(k) to the model and adjusts the model parameters θ to minimize the error 

between the prediction ẑ(k) and measurement z(k).  This feedback process guarantees the 

filter’s tracking under most circumstances, similar to an observer.  On the other hand, the 
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adaptive gain K(k) is calculated from the assumed statistical properties of v and w while 

an observer would have a fixed gain.  The basis for the adaptive gain K(k) is that it 

minimizes the covariance matrix P+(k) according to Q, R, P+(k-1) and φ(k) to ensure that 

the θ̂ is as close to the true parameters θ as possible in the least squares sense.  Moreover, 

the addition of u in (3.2.6) has the effect of forcing the filter to rely on more recent data 

rather than the older data.  In (3.2.9), this is accomplished by increasing P-(k) from P+(k-

1) by Q, and the augmented P-(k) alters the updated gain K(k) in a manner that gives 

greater influence to more recent inputs. 

It should be noted that both models can be used to successfully predict the 

terminal behavior of batteries, particularly when a Kalman filter or some other type of 

estimator is used to continually adjust the model parameters to minimize the prediction 

error.  The Butler-Volmer model, however, incorporates nonlinear behavior that is 

exhibited quite strongly by some types of batteries, including lead-acid.  As a result, the 

Butler-Volmer model is capable of predicting the terminal behavior of these types of 

batteries more accurately without as much need for parameter adjustments to minimize 

the prediction errors compared to a simpler linear-circuit model. 

3.2.2 Offline Parameter Estimation for Exchange Current and Time Constant 

As mentioned in 3.2.1, the derivation of the Kalman filter recursive estimation for 

both models depends on the assumption that both the exchange current and time constant 

terms are known, i.e. i0 and a1.  Contrary to the methodology of offline parameter 

estimation that will be introduced in 5.3, the method discussed here can use a less 

sophisticated test stand that has a slower sampling rate and does not have the ability to 
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run simulated drive cycle.  Specifically this subsection discusses a methodology to 

estimate these two parameters using only pulsed current response data. 

In order to identify the two parameters i0 and a1 in (3.2.1) and (3.2.2) that are not 

recursively updated online, a test profile that consists of a repeating sequence of pulsed 

discharge currents was applied to the 55 Ah Optima™ lead-acid battery that was being 

investigated.  As shown in Figure 3.8, the basic sequence consists of a series of five 

discharge current pulses with amplitudes that decrease consecutively from 165 to 55 

Amps in intervals of 27.5 Amps.  Each current pulse is applied for 40 seconds and the 

battery rests for 4 minutes between applied pulses. The basic sequence in Figure 3.8 is 

repeated until the battery is fully discharged.  Figure 3.9 shows the battery voltage 

response to one discharge current pulse. 
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Figure 3.8 Pulsed current test sequence for estimating exchange current and time constant 
parameter 
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As seen in Figure 3.9, the voltage response can be segregated into the ohmic voltage 

response due to r0 and the electrodes’ dynamic voltage response.  The sampling rate is 10 

Hz.  The first three samples of the voltage response following the current pulse 

application are assumed to be associated with the r0 ohmic voltage drop and the rest with 

the electrodes.   
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Figure 3.9 Sample measured response of Optima™ lead-acid battery terminal voltage to 
40-second discharge current pulse with amplitude 82.5 A 

 

The electrode voltage response magnitude can then be separated and plotted 

against the applied current magnitude, as shown in Figure 3.10.  By fitting the data in Fig. 

6 to the BV equation (2), the values 
RT
αF and i0 can be estimated.  The nonlinear curve-

fitting is accomplished using the Gauss-Newton method.   
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Figure 3.10 Measured electrode voltage drop vs. step current amplitude, with spread of 
data points at each current amplitude showing the effect of SOC 

 

The spread of the data points at each current amplitude can be attributed to successive 

rounds of the five current amplitudes, indicating a strong relationship between the 

electrode voltage and the battery SOC.  The recursive estimation scheme can compensate 

for some of this SOC influence by tuning the battery parameter b1 in (3.2.1).    

In addition to i0, the offline system identification needs to determine the time 

constant of the electrodes’ voltage response.  For each current pulse, the data from the 

voltage response can be used to estimate the time constant parameter a1.  First, the 

voltage transient associated with the electrodes’ charge transfer process and the double-

layer capacitor, η, can be isolated from the terminal voltage v using Kirchoff’s voltage 

equation: 

η(k) = vocv – v(k) – r0 istep (3.2.10) 
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where v(k) is the measured battery terminal voltage and  voltages vocv and r0 istep are 

assumed to be constant during each current pulse’s voltage response.   

The discrete equation for the electrode voltage can be extracted from the Butler-

Volmer based model voltage (3.2.1) as:  

η(k) = 
b1

1 + a1q-1 sinh-1







istep

2i0
 (3.2.11) 

 

The electrode voltage approaches an asymptotic value vasymptote at the end of the 40-

second current pulse that can be expressed as: 

vasymptote = 
b1

1 + a1
 sinh-1







istep

2i0
 (3.2.12) 

 

Rearranging (3.2.11) and applying the expression for vasymptote in (3.2.12) leads to a new 

expression for the electrode voltage: 

η(k) + a1η(k-1) = b1sinh-1







istep

2i0
 

                         = (1+ a1) vasymptote 

(3.2.13) 

 

which can be rearranged as: 

η(k) – vasymptote = a1(vasymptote – η(k – 1)) 

                           
(3.2.14) 

 

(3.2.14) provides the basis for developing a linear least-squares estimate of a1 using the 

η(k) data from (3.2.10) and measurements of vasymptote. 

â1 = (XTX)-1XTY 

where 
X = (vasymptote – η(k – 1)) 

Y = (η(k)) – vasymptote)                           

(3.2.15) 
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The mean of the 35 estimated â1 time constant parameter values is used in the 

recursive estimator in the next section.  Figure 3.11 shows all 35 of the time constant 

parameter estimates plotted against the current pulse magnitude.   
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Figure 3.11 Estimated values of time constant parameter â1 vs. pulse current amplitude 
for 7 successive cycles of 5 increasing current step amplitudes 

 

The mean of these estimates is also plotted in Figure 3.11.  As noted before, the time 

constant in the Kalman filter is assumed fixed.  For the linear-circuit model, the equations 

for estimating â1 are slightly different but the procedure is otherwise identical.   

η(k) = 
-(-b1 + b0a1)

1 + a1q-1  istep (3.2.16) 

vasymptote = 
-(-b1 + b0a1)

1 + a1
 istep (3.2.17) 

η(k) + a1η(k-1) = -(-b1 + b0a1)istep 

                         = (1+ a1) vasymptote 
(3.2.18) 
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3.2.3 Discussion on Model Assumptions and Limitations 

Some important assumptions made in this section and their implications will be 

discussed in this subsection.  The first is the assumption of a fixed exchanged current i0 

in the recursive estimator formulation in the Butler-Volmer based model (3.2.3).  As will 

be seen in 5.1.2, the exchanged current depends highly on temperature.  From Figure 3.10 

it can also be observed that the electrode voltage response, thus potentially i0, depends 

heavily on SOC.  The recursive estimator may alleviate the modeling deficiency by 

adapting the b1 term.  A more comprehensive modeling effort that explicitly includes 

temperature as an input to overpotential will be introduced in 5.4.   
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Figure 3.12 Sample measured response of CALB lithium iron phosphate battery terminal 
voltage to 40-second discharge current pulse with amplitude 180 A. 

 

The methodology used in 3.2.2 to estimate both the time constant parameter and 
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lithium batteries do, this methodology is unsuitable.  Of course, by applying a longer 

current step one can eventually observe vasymptote in theory; however, such a long current 

step could violate the assumption of stable vocv as the SOC changes.  An example of 

battery having a longer time constant can be seen in Figure 3.12. 

The simplified assumption of a fixed time constant enables adoption of a linear 

recursive estimator in the battery model described in (3.2.1) and (3.2.2) but it comes at 

the expense of not tracking the change of battery dynamics in different conditions, e.g. 

SOC.   In addition, (3.2.10) ignores the drop in OCV resulting from decreases in SOC 

during the current pulse discharges, introducing another factor that degrades the accuracy 

of the â1 parameter estimates.   

The aspect of modeling battery as a single time constant system while the real 

system is more complex has been touched upon in 3.1.1.  One other important 

consideration is that from the least squares fitting perspective, the most suitable time 

constant value depends on the excitation current.  In EV application, the excitation is 

typically below 5 Hz due to the limit of human response speed.  This implies that if a 

single time constant is to be chosen for a battery model for the EV application, this time 

constant should be aligned with the dominant excitation frequency, i.e. around 1 Hz, for 

good least squares performance, even though the actual system has poles outside the 

excitation frequency range.   

3.3 Experimental Results for Comparison between the Two Models 

The performances of both the Butler-Volmer-based and linear circuit-based 

models have been evaluated using actual road driving cycle data from a Corbin Sparrow 

electric vehicle. The Sparrow EV used to gather the road data is powered by 13 Optima™ 
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D34M lead-acid batteries in series, each of which is rated at 12 V and 55 Ah.  The EV is 

not capable of regenerative braking, and the sample rate is 10 Hz.  The maximum 

discharge current recorded during the drive cycle used to illustrate the models’ 

performances is 235 A.  Appendix A contains a thorough documentation of the Corbin 

Sparrow EV and the monitoring system implemented in WEMPEC (Wisconsin Electric 

Machines and Power Electronics Consortium).   

 Estimated battery voltage waveforms in Figure 3.13 and Figure 3.14 show the 

Kalman filter output voltages for the two models, Butler-Volmer (3.2.3) and linear circuit 

(3.2.4) respectively. Both models track the measured voltage quite well as seen in Figure 

3.13 and Figure 3.14.  Expanded time plots for short time periods are provided in the top 

right corner of both figures, confirming the close tracking of the terminal voltage 

waveforms.   
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Figure 3.13 Butler-Volmer-based filter results for a lead-acid battery during an EV drive 
cycle, comparing measured and model-estimated voltages.  The estimated OCV and 

predicted min. battery voltage for max. current are included 
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Figure 3.14 Linear circuit-based filter results for a lead-acid battery during an EV drive 
cycle, providing the same set of waveforms as in Figure 3.13 

 

The estimated vocv waveforms for the two models are included in Figure 3.13 and 

Figure 3.14, exposing an offset voltage difference between the two estimates. Evaluation 
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indicates that the estimated vocv using the Butler-Volmer model in Figure 3.13 is more 

accurate since the EV and its accessories are completely powered by the battery bank and 

current is always being drawn from the battery bank even when the car is stationary.  

This ever-present discharge current means that the battery terminal voltage can never 

reach its vocv during operation, which is consistent with Figure 3.13 but not Figure 3.14.    

Estimated vmin waveforms are also included in both figures, corresponding to the 

estimated steady-state minimum battery voltage, i.e. vocv subtracted by resistive and 

overpotential voltage drop, if maximum EV current (235 A) is drawn from the battery 

bank.  The SOF is defined in (3.3.1) as a binary yes/no answer to whether the battery 

steady-state voltage would drop below a preset minimum voltage limit under maximum 

current load.  A detailed treatment for SOF and SOP definition is given in 4.1.  For now, 

it suffices to point out the vmin waveform can be derived the model structure and fitted 

parameter value, and vmin can be used to determine SOF.   

SOF =  


1 if vmin ≥ vlimit

0 if vmin < vlimit
 (3.3.1) 

 

The vmin values are found by evaluating (3.1.6) and (3.1.7) with the recursively updated 

parameters θ using the maximum current value while ignoring the shift operator q.  These 

minimum battery voltage estimates can be treated as a SOF indicator because battery 

operation is normally configured to shut down once a preset minimum voltage limit is 

reached.  The benefits of introducing the nonlinear electrode model is particularly 

apparent by comparing the vmin waveforms in Figure 3.13 and Figure 3.14, suggesting 

that the nonlinear Butler-Volmer-based model will be a much better candidate than the 
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linear circuit-based model for delivering meaningful SOF readings for battery types such 

as lead-acid ones that exhibit large nonlinear electrode voltage drops. 

The estimated voltage waveforms in Figure 3.14 indicate that the linear circuit-

based model has greater difficulty determining the estimated vmin.  This can be attributed 

to the fact that the model is adjusting its electrode resistor r1 parameter value to linearly 

approximate the electrode voltage drop that is a function of current as seen in (3.1.2), i.e. 

the Butler-Volmer equation.  The absence of an accurate nonlinear electrode model 

requires the linear model to continuously adjust its parameters as the operating point 

varies.  As a result, the linear model estimates of vmin in Figure 3.14 coincide with those 

from the Butler-Volmer model for only a few points, most often when the terminal 

voltage is low due to high current loads.  In summary, the linear circuit-based model is 

hindered by the fact that the approximation only performs well when operating in the 

vicinity of the test conditions, i.e. current, that were used to set the model parameters. 

The performance of the linear model in Figure 3.14 raises concerns about the 

limitations of this model when combined with a Kalman filter.  To further investigate this 

issue, both models were run open-loop for 50 seconds with the feedback deactivated. The 

model-estimated terminal voltages at the end of this interval are recorded for both 

models. These modified voltage estimates are plotted for both models in Figure 3.15 with 

the measured terminal voltages for comparison.     
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Figure 3.15 Butler-Volmer and linear circuit-based model terminal voltage predictions 
using 50 sec forecast results, including comparison with measured voltage 

 

Figure 3.15 shows that the linear circuit-based model has difficulty forecasting the 

battery voltage output under high-current conditions if the battery parameters 50 seconds 

earlier were adapted for low-current conditions, while the Butler-Volmer-based model 

performs much better for these conditions.  Figure 3.16 provides a histogram of the 

residuals for the two models from Figure 3.15, excluding data points for current values 

lower than 55 [A] in order to focus the comparison of the two models in the high-current 

region.  The error histogram for the Butler-Volmer-based model in Figure 3.16 is 

narrower than the linear-circuit based model, indicating that Butler-Volmer-based model 

has better least squares prediction performance.   
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Figure 3.16 Residuals histogram for the two models from Figure 3.15, excluding data 
points where i < 55 A 

 

It can be noted that the BV-based model error histogram in Figure 3.16 is biased 

with a negative average value, indicating that the model has a tendency to under-forecast 

the terminal voltage.  This bias error can be attributed to the fact that vocv has dropped 

during the 50-second open-loop interval due to the change in SOC, but the forecast model 

treats vocv as a constant during this interval. 

As a final step in this model evaluation, the autocorrelation of the residuals of the 

two models in Figure 3.13 and Figure 3.14 has been analyzed.  As discussed, the 

feedback mechanism in the Kalman filter causes the sums of squares of the residuals for 

both models to be small.  However, the value of the autocorrelation of the residuals 

should also be as close to zero as possible for a model to be high quality.  
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For the residuals e, autocorrelation is defined as the correlation between e(k) and 

its value e(k+j) separated by j intervals of time.  Mathematically, the autocorrelation  at 

lag j is defined as:  

ρ(j) = 
E[(e(k)-e-)(e(k+j)-e-)]

 E[(e(k)-e-)]2E[(e(k+j)-e-)]2
 

       = 
E[(e(k)-e-)(e(k+j)-e-)]

 σ2  

(3.3.2) 

 

where E is the expected value operator, e  is the mean value of the residuals, and σ2 is the 

variance of e assuming stationarity.  The residuals can be considered “whiter” with lower 

autocorrelation, and whiter residuals indicate that there are fewer systematic components 

in the actual battery that remain unmodeled.  Figure 3.17 and Figure 3.18 show the 

calculated autocorrelation for the first 10 lags for the Butler-Volmer-based model and the 

linear circuit-based model residuals, respectively. The figures indicate that the 

autocorrelation of the linear circuit-based model’s residuals is much greater than that of 

the Butler-Volmer-based model.  This observation further strengthens the case for 

claiming that the Butler-Volmer-based model performs better than the linear circuit-based 

model in predicting the battery performance. 
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Figure 3.17 Calculated residual autocorrelation for the Butler-Volmer-based model at the 
first 10 lags 

V
ol

ta
ge

 [
V

] 

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

 
 Lags 

Figure 3.18 Calculated residual autocorrelation for the linear circuit-based model at the 
first 10 lags 
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3.4 Summary 

This chapter presents a battery modeling technique that utilizes the Butler-Volmer 

equation in a battery equivalent circuit suitable for recursive online parameter 

identification.  While incorporation of the Butler-Volmer equation into a battery model 

for vehicle applications has been reported previously [119], a new contribution of this 

work is the adoption of the hyperbolic sine approximation that is key to making the 

integration of this model into a recursive estimator possible. 

Performance comparisons with the conventional linear circuit battery model 

indicate that the nonlinear model offers advantages for delivering meaningful SOF 

readings for lead-acid batteries and other battery types that exhibit large nonlinear 

electrode voltages.    The proposed model has been verified for lead-acid batteries using 

measured road data collected from an EV drive.   
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Chapter 4 
4 Battery Power Prognostics 

A battery management system (BMS) for an EV is typically designed to provide, 

among other functions, a power capability estimate.  In recent years, the technical 

literature has focused primarily on the estimation of battery SOC with the objective of 

providing reliable estimates of remaining range for EV applications.  The constraints on a 

battery’s capability to fulfill its required tasks include not only its remaining charge 

reflected in the SOC, but also the battery’s power delivery capability.  However as 

discussed in section 2.6, having enough SOC does not always mean the battery can fulfill 

the application’s power requirement since power capability may be reduced by 

temperature or other factors.    

Since battery manufacturers usually publish the operating voltage upper and lower 

limits, the BMS needs to insure that these limits are observed by preventing the sinking 

and sourcing of too much power during vehicle operation.  The focus of this chapter is 

therefore on the battery power capability prognostics. 

4.1 State-of-Function and State-of-Power 

4.1.1 Definitions 

Two metrics have been proposed for battery power capability: state-of-function 

(SOF) and state-of-power (SOP).  Multiple definitions of SOF have appeared in 

literature, all of which related to the battery power capability.   This paper will use 

definitions similar to the SOF in [119] and the SOP in [39].  It is important to note that 
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the SOF is a digital yes/no parameter stating whether the battery has sufficient power 

capability to carry out a specified function (e.g., engine starting), while SOP is a vernier 

signal indicating how much power is available.  Both of these definitions use the battery 

equivalent circuit to predict the maximum power the battery can deliver within the 

specified voltage limits: 

SOF =  


1 if vmin ≥ vlimit

0 if vmin < vlimit
 (4.1.1) 

SOP = 
vlimit( )vocv – vlimit

r0 + r1
 (4.1.2) 

 

where vlimit is the minimum battery voltage allowed by manufacturer specifications, and 

vmin is the minimum voltage reached by the battery during the discharge profile.  The 

open-circuit voltage vocv and two resistances r0 and r1 are found in the familiar Randle 

battery equivalent circuit model provided in Figure 4.1.  As discussed in chapter five, the 

linear circuit-based model is suitable for lithium cells in the room temperature, and this 

model will serve as the basis for the power capability prediction in this chapter.  The SOP 

variable in (4.1.2) is derived from this equivalent circuit and corresponds, for discharge 

conditions, to the steady-state power delivered at the battery terminals when the battery 

terminal voltage drops to vlimit. 
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Figure 4.1 Conventional linear circuit-based battery model suitable for lithium batteries at 
room temperature 

 

The definitions in (4.1.1) and (4.1.2) focus on the battery’s discharge operation, 

but corresponding definitions can be adopted for the charging case.  In addition, SOP is 

defined in (4.1.2) for steady-state operation as in [1], whereas [39] and [124] include 

transient behavior in their analysis.  Specifically, the SOP defined in [1] assumes a rested 

start condition and captures the maximum power output within a fixed time period, while 

the SOP defined in [39] and [124] incorporate the battery time constant and can solve for 

any starting condition based on model assumptions. The simplified definition adopted 

here is not critical to this chapter’s major focus and contribution.  More will be provided 

on the justification for the simplification. 

4.1.2 State-of-Power Volatility 

As discussed before, one popular method for battery parameter estimation uses a 

recursive algorithm, often in the form of a Kalman filter that uses the measured battery 

voltage and current data as inputs.  This recursive approach adapts the equivalent circuit 
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parameter values to reflect the effects of gradual SOC changes and aging.  The SOP can 

then be estimated using the recursively-obtained parameters.  An important benefit for 

this approach is the estimated parameters are updated continuously to provide real-time 

information.   

Using the recursive estimation methodology introduced in chapter three, a CALB 

lithium-iron-phosphate battery’s parameters are monitored online for a simulated drive 

cycle.  The CALB battery specifications are given in Table 4.1. 

Table 4.1 CALB 60AHA Li-iron-phosphate battery specifications 

Nominal Capacity 60 [Ah] 

Nominal Cell Voltage 3.2 [V] 

1 kHz AC Impedance ≤ 1 [mOhms] 

Cell Voltage Range 2.5 ~ 3.6 [V] 

 

The SOP metric as defined in (4.1.2) has been found in the literature in many 

variants [39] [124].  Within the context of the recursive estimation algorithm defined in 

Chapter 3, vocv and the resistances are estimated using the same data, so their estimates 

are correlated.  That is, an error in one parameter leads to errors in others.  This 

correlation of the estimates, combined with the fact that vocv is divided by the sum of the 

resistances in the defining SOP equation in (4.1.2) mean that the SOP estimates generated 

by the recursive estimator are susceptible to having large fluctuations.  This error 

sensitivity is aggravated by the fact that the resistances of lithium batteries are typically 

in the range of milli-Ohms. 

When performing recursive estimation of parameters based on the linear circuit 

model in (3.2.4), the quality of the SOP estimate in (4.1.2) can be studied.  Specifically, 

let assumptions be made about the convergence of v̂ocv and R̂ = r̂ 0 + r̂ 1  as in (4.1.3). 
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R̂ = r̂ 0 + r̂ 1  

v̂ocv + E[i(t)] R̂ = E[vsteady(t)] 

dR̂

dv̂ocv
 = 

-1
E[i(t)] 

(4.1.3) 

 

In (4.1.3), it is assumed that the recursively estimated parameters v̂ocv and R̂ = r̂ 0 + r̂ 1  

have converged in a steady-state fashion and that this convergence is the strongest with 

respect to the average (expected) value of battery current E[i(t)].  The derivative of R̂ 

with respect to v̂ocv is thus a function of the average current.   

dP̂limit

dv̂ocv
 = vlimit

R̂ + 






1

E[i(t)]( )v̂ocv-vlimit

 R̂2
 

dP̂limit v̂ocv

dv̂ocvP̂limit
 = v̂ocv

1 + 






1

E[i(t)] R̂
( )v̂ocv-vlimit

v̂ocv-vlimit
 

(4.1.4) 

 

From (4.1.2) and (4.1.3), the derivative of P̂limit with respect to v̂ocv is then found 

in (4.1.4) and this leads to the sensitivity of P̂limit  with respect to v̂ocv , defined as 

dP̂limit v̂ocv

dv̂ocvP̂limit
.  A quick examination of the terms in this sensitivity expression reveals that it 

is expected to have a rather high numerical value for a typical lithium-ion battery.  The 

CALB battery in Table 4.1 with internal resistance of 1 [mOhms], rated capacity of 60 

Ah, and rated voltage of 3.6 [V] is adopted for an example.  For small R̂, 
dP̂limit v̂ocv

dv̂ocvP̂limit
 can 
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be approximated as 
v̂ocv

E[i(t)]R̂
.  If the average current is chosen as the C-rate, i.e. 60 [A], 

v̂ocv

E[i(t)]R̂
 is then 60, a rather high value for sensitivity.  Furthermore using the same set of 

parameters, the derivative 
dP̂limit

dv̂ocv
 is found to be 40133, i.e. power is off by 40133 [W] for 

an error of 1 volt on v̂ocv.   

4.1.3 State-of-Function with Confidence Interval 

The high variability of estimated SOP raises concerns about the SOP’s utility in 

applications when used in conjunction with recursive parameter estimation.  On the other 

hand, it can be argued that an accurately estimated SOP is not really needed in some 

applications such as EV propulsion.  During much of its operation, a vehicle’s battery 

pack has a power delivery capability that significantly exceeds the power rating of its 

power conversion unit.  However, low SOC, low temperature, and aging will reduce the 

battery pack’s power capability below the electric drive’s power rating.  Under these 

conditions, the drive control strategy must adapt to the new constraint.   

In many cases, the SOF metric can be as useful in EV applications as the SOP 

since the control strategy does not need to know the specific amount of power available, 

but only whether the battery power that is available exceeds a minimum threshold value 

required for the propulsion unit to accomplish its mission.  For this more limited 

threshold comparison purpose, the battery SOF estimate can serve as a surrogate 

information source in place of the more detailed SOP estimate. 
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If the SOP estimate is available, one straightforward way to estimate the SOF is to 

simply compare the estimated SOP with the minimum required power, Preq.  To enhance 

the robustness of the SOF estimate it is desired to take the variance of estimated SOP into 

account when comparing it with Preq.   

At this point, it is worth noting that the Kalman filter inherently provides a 

probabilistic assessment of all its estimates, including each estimate’s variance.  In 

addition, any linear function of these estimates will also have a deterministic probability 

distribution and variance if the assumption can be justifiably made that the noise 

variables are of Gaussian distributions.  Unfortunately, the form of SOP in (4.1.2) is not a 

linear combination of estimated quantities and no analytical solution for its variance is 

available.  In its place, another power metric, Ptest, is proposed for SOF estimation, 

defined as follows: 

ireq = 
Preq

vlimit
 

Ptest = ireq( )vocv - (r0+r1)ireq  

P̂test = ireq








v̂ocv - 
b̂0 + b̂1

1 + a1
ireq  

(4.1.5) 

 

The newly defined power metric Ptest can be interpreted, for discharge conditions, 

as the power that the battery is delivering at its terminals when it is delivering current ireq

.  ireq, in turn, is the current that flows from the battery terminals when it is delivering the 

required power Preq at its minimum voltage limit vlimit.  Note that ireq is a fixed value 

since both Preq and vlimit are determined values, so the estimate P̂test qualifies as a linear 
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function of the correlated estimated variables, if the assumption of a known a1 is made as 

in chapter three. 

For purposes of evaluating the SOF, it can be shown that if SOP > Preq, then Ptest 

> Preq.  The derivation begins with a repeat of the SOP definition from (4.1.2): 

Let SOP = 
vlimit( )vocv – vlimit

r0 + r1
 > Preq = ireqvlimit 

Therefore: 
   => (vocv – vlimit) > ireq(r0 + r1)  

   => (vocv – ireq (r0+r1)) > vlimit 

   => Ptest = ireq(vocv – ireq (r0+r1)) > ireqvlimit = Preq 

(4.1.6) 

 

Conversely, a similar argument can be made that when SOP < Preq, then Ptest < 

Preq and when SOP = Preq, Ptest = Preq.   As a result, it can be argued that, for the purpose 

of SOF estimation, Ptest can serve as effectively as SOP. 

As a consequence of being a linear variable, the estimated P̂test has a probability 

density and variance when the parameters are estimated using the Kalman filter.  The 

covariance matrix Λ for the Kalman filter is a 3x3 matrix populated by the variances and 

covariances of [v̂ocv, b̂0, b̂1], as shown in (4.1.7).  

θ = [v̂ocv,b̂0,b̂1]T 

Λ = 
















)ˆvar()ˆ,ˆcov()ˆ,ˆcov(

)ˆ,ˆcov()ˆvar()ˆ,ˆcov(

)ˆ,ˆcov()ˆ,ˆcov()ˆvar(
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(4.1.7) 

 

Using these results, the expression P̂test has a variance that can be expressed as: 
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 (4.1.8) 

 

With the expression of the variance for P̂test and the inequality shown in (4.1.6), the SOF 

estimate can now be associated with a probabilistic statement with known theoretical 

confidence.  This is a significant advantage for improving the quality of the SOF 

estimate. 

4.2 Lithium-Iron-Phosphate Battery Estimation under UDDS Drive 

Cycle 

The CALB 60AHA lithium-iron-phosphate battery with the characteristics 

presented in Table 4.1 has been used for the experimental verification tests.  In [138], the 

authors described the details of an electric vehicle conversion project using a Ford F150 

crew cab truck.  In the conversion project, the battery pack uses the CALB 100AHA 

cells, a higher-current version of the 60AHA model cells that was tested in this project.         
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Figure 4.2 UDDS drive cycle current profile. The drive cycle repeats until battery is fully 
discharged 

 

 Figure 4.2 shows the current drive cycle used to excite the test battery on an 

experiment setup.  The UDDS drive cycle current profile represents a conversion of the 

UDDS speed vs. time profile into an equivalent current vs. time schedule. 
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Figure 4.3 Kalman filter predictions of the open-circuit voltage v̂ocv and terminal voltage 

compared to the measured terminal voltage for the UDDS cycle current profile 
 

Based on the truck’s physical parameters, e.g. inertia, etc, several standard drive 

cycles were scaled for single-cell, test bench experiments.  The performance of the 

estimators was very similar for the different drive cycles.  The experimental results 

presented here are for the UDDS (urban dynamometer driving schedule) cycle.  More 

information about the battery test bench configuration used for these experimental test 

cycles can be found in Appendix B.  Additionally, the minimum voltage per cell, i.e. 

vlimit, was set at 2.8 V in accordance with the specifications for the EV conversion 

project.  The measured cell voltage, overlaid with the Kalman filter estimates for the 

battery terminal voltage and open-circuit voltage v̂ocv are shown in Figure 4.3.  In the 

expanded insert in the upper right corner of Figure 4.3, it can be observed that the 

estimated battery terminal voltage tracks the measured voltage very well.  This good 
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agreement reflects the fact that the Kalman filter is designed to minimize the least-

squared error of its estimates. 

It should be noted that the UDDS drive cycle includes both motoring and 

regenerating modes, raising questions about the performance of the Kalman filter 

estimates in both modes.  However, the motoring mode dominates the operating 

conditions for the EV drive cycles considered in this investigation.  As a result, the model 

used for the results presented here assumes that the charging and discharging modes 

share the same model parameters.   
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Figure 4.4 Estimated SOP and P̂test metrics compared with required power calculated for 

the F150 truck [138] using the UDDS drive cycle 
 

In Figure 4.4, the estimated SOP derived from the UDDS drive cycle test data is 

plotted for the full cycle duration.  It can be observed that, consistent with expectations 

discussed in 4.1.2, the SOP estimate exhibits substantial fluctuations that raise questions 

about the quality of this battery condition metric.  In contrast, the estimated P̂test, variable 
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defined in (4.1.5) is much better behaved than SOP, with significantly smaller variations 

during the cycle. As expected, the value of P̂test dips below the line designating the 

minimum required power Preq (= 860 W for the CALB cell) at exactly the same time 

instants as the SOP power.  The zoomed-in view in the upper right corner of Figure 4.4 

shows the P̂test  lower-bound value (2 standard deviations) drops below the required 

power level during this interval while the P̂test estimate stays above this threshold value.  

This suggests that the P̂test lower-bound value could be used to serve as an early warning 

for the SOF function, indicating the battery is approaching its lower limit. 

One additional benchmark for the filtering results is the first lag autocorrelation of 

the error that should ideally be zero.  For the filter tuning used in these experiments, the 

value of this autocorrelation was determined to be 0.34. This value is considered to be 

good for purposes of this investigation, but it reflects some residual limitations of the 

model since the autocorrelation coefficient should ideally be zero. 

4.3 Lithium-Iron-Phosphate Battery Estimation Results Comparison 

between Recursive Estimation under UDDS and HPPC Analysis 

4.3.1 HPPC Test for the Lithium-Iron-Phosphate Battery 

The accuracy of the SOP estimated during the drive cycle depends on the quality 

of estimates for two primary parameter/variable components in the battery model, v̂ocv 

and r̂ 0 + r̂ 1 .  In this section, the predicted SOP obtained from the recursive estimator 

presented in this paper and its estimated components v̂ocv and r̂ 0 + r̂ 1 are compared with 
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the SOP estimates delivered by the standardized hybrid pulse power characterization 

(HPPC) test.  Performing two methods of estimation for the same physical system using 

separate sets of data is a respected approach to check the validity of both estimation 

methods.    

The well-known HPPC test defined in [1] and applies a defined sequence of 

paired discharge/charge current pulses to the subject battery after one-hour rest periods.  

Each current pulse has the same fixed time duration, e.g., 12 seconds.  The measured 

battery voltage and current waveforms are used to develop estimates of the battery 

equivalent resistance that is important for predicting the battery’s power capability.         

The estimated v̂ocv at each tested SOC level is derived from the rested battery 

voltage before the pair of current pulses is applied. A fixed resting interval is also applied 

between the discharging and charging pulses (e.g., 40 sec) to give the battery some 

recovery time between the two pulses.  The HPPC test is typically applied to a battery at 

a series of different SOC levels arranged at intervals of approx. 10% SOC.  The 

adjustment between SOC levels is typically accomplished using a constant-current 

discharge.  Figure 4.5 shows a portion of the HPPC test current profile applied to the 

CALB 60AHA battery cell. 
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Figure 4.5 View of experimental HPPC test current pulses applied to the CALB 60AHA 
battery 

 

When interpreting the results of the HPPC test, it is important to note that the 

power capability estimates extracted from the data are dependent on the selected pulse 

duration and initial conditions.  That is, with the rested initial condition before each 

current pulse, the maximum voltage drop due to the stepped discharge current excitation 

occurs at the end of the current pulse.  If the discharge current is allowed to extend 

beyond the 12-second interval chosen for this HPPC test, the resulting power capability 

estimate for the battery will decrease because of the dropping battery voltage during the 

pulse.  As pointed out, the chosen SOP definition in (4.1.2) is the battery power 

capability at steady-state, which is different from the conditions associated with the 

HPPC test.  In general, batteries in the lithium-ion family exhibit time constants to reach 

steady-state that are several tens of seconds.  An example can be found in Figure 3.12. 
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4.3.2 Discussion on the Battery Time Constant Selection 

An exercise has been conducted to compare: 1) the predicted SOP from the 

recursive estimator applied to the UDDS drive cycle test data; and 2) the estimated power 

capability from the HPPC test that is performed offline.   As a first step, the time constant 

parameter a1 is tuned according to the HPPC test procedure instead of using an offline 

test to estimate the time constant of the battery.  Specifically, the HPPC test and its 

corresponding Thevenin circuit model assume that the battery is close to steady-state 

(within 0.1%) at the end of the current pulse.  Hence, the implicit time constant  

assumed by the HPPC test with 12-second pulses can be calculated as: 

0.001 = exp






–12


  

seconds 

(4.3.1) 

 

The value of the corresponding discrete time constant parameter a1 for a sampling 

time of 0.1 seconds can then be evaluated for the time constant value in (4.3.1) as: 

a1 = –exp






0.1

 –
  

a1–0.944 
(4.3.2) 
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Figure 4.6 Estimated SOP curves provided by the recursive estimator using the UDDS 
drive cycle current profile for two battery temperatures (25°C and 0°C) compared with 

HPPC predicted power capability (25°C). τ = 1.74 sec 
 

This value of a1 has been adopted for all analysis in this paper except when noted 

otherwise.   

Figure 4.6 shows two estimated SOP curves for different temperatures using the 

recursive estimator applied to the UDDS driving cycle current profile, together with the 

estimated discharge power capability curve derived from the HPPC test data.  As 

expected, the SOP curve for data gathered at 00C shows a much lower power capability in 

Figure 4.6 compared to the other two curves associated with operation at 250C.  This 

illustrates the important point that a simple SOC/Remaining-Amp-hour metric that does 

not consider temperature effects is insufficient to characterize the battery performance 

characteristics, especially with respect to its power capability. 

It can be observed in Figure 4.6 that the estimated SOP curve at 250C is 

approximately 10% lower than the predicted HPPC discharge power curve.  The 
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discrepancy can be traced back to differences between the estimated open-circuit voltage 

v̂ocv delivered by the recursive estimator and the HPPC test, as shown in Figure 4.7.  

Although both curves have almost identical shapes, the average difference between the 

two v̂ocv values is approximately 50 mV for every value of discharge Amp-hours.  This 

difference is explained by the fact that HPPC test rests the battery for an hour such that 

the voltage has reached its steady-state value at the end of rest, leading to an elevated 

estimate for v̂ocv .  In comparison, during a discharge-dominated load profile the 

unmodeled longer time constant resulting from the battery’s complex electrode diffusion 

phenomena gets reflected in the recursive estimator battery model as a lower value of 

v̂ocv. 
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Figure 4.7 Comparison of v̂ocv for the proposed recursive estimator using the UDDS 

cycle current profile and the HPPC test.  τ = 1.74 sec 
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For completeness, Figure 4.8 provides estimated values of the combined resistive 

impedance r̂ 0 + r̂ 1  in the battery model for the two estimation methods.  As discussed 

earlier, the two estimators make similar assumptions about the battery system time 

constant.  As a result, the curves in Figure 4.8 show that the estimated combined 

resistance values r̂ 0 + r̂ 1  track each other quite closely for the recursive estimator case 

using the UDDS drive cycle data with  sec. 
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Figure 4.8 Comparison of r̂ 0 + r̂ 1  provided by the HPPC test results and the proposed 

recursive estimator using the UDDS drive cycle current profile with two time constant 
values (τ = 1.74 sec and 5 sec) 

 

As noted before, the adoption of a battery model with a single time constant is a 

simplification of the real battery system for many battery types, including lithium-based 

batteries.  Recognizing that the single time constant model is an approximation, it can be 

shown that choosing the same value for this time constant is important in order to 
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achieve consistency between the HPPC test and recursive estimator models.  This is 

demonstrated by showing the results of choosing a longer time constant  sec in the 

recursive estimator.  The associated curve in Figure 4.8 shows that the estimated r̂ 0 + r̂ 1  

for the case with  sec deviates significantly from the HPPC test results.  The results 

for the case with  sec were achieved with the same filter tunings as the case with 

 sec.   

Finally, the power prediction capability of the recursive estimator is evaluated by 

adding 250 [Amps] current pulses of duration of 12 seconds in the UDDS drive cycle.  

The modified current profile is in Figure 4.9. 
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Figure 4.9 UDDS drive cycle current profile with injected 12-second current pulses of 
250 Amps. The drive cycle repeats until battery is fully discharged 

 

 The resulted Kalman filter results are shown in Figure 4.10. 
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Figure 4.10 Kalman filter predictions for the current profile in Figure 4.9 
 

From Figure 4.10, it can be seen that during the 12 second current pulse the voltage drops 

to the value quite close to the estimated v̂min .  This result further strengthens the 

confidence in the power prediction by the recursive estimator.  Thus when under electric 

drive condition, the battery pack’s SOP can be obtained under the recursive estimation 

scheme.  Due to the equivalence of SOP and SOF and availability of confidence interval 

for SOF, SOF can be implemented on an actual vehicle to provide power prognostics 

with margin of safety. 

4.4 Summary 

This chapter presents a methodology for online, recursive estimation for battery 

power capability.  In contrast with conventional approaches, a method for calculating the 

SOF with deterministic mathematical probability under the context of a Kalman filter is 

introduced.  The new statistic is equivalent to the traditional SOP in terms of SOF 
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determination using estimated parameters, but allows for a probabilistic statement on the 

SOF.  This is considered to be a significant improvement in order to rigorously provide 

power prognostics with a margin of safety.   

A comparison between the proposed power capability estimation using the 

recursive estimator and the results of the well-known standard HPPC test is also 

presented.  The results demonstrate that by matching the key assumptions of the two 

model methods, the two estimators offer very similar power capability estimates, building 

confidence in the validity and usefulness of the proposed recursive estimator technique.  

Finally the power prediction capability of the recursive estimator is evaluated by adding 

current pulses and compare the estimated v̂min with the actual voltage drop.              
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Chapter 5 
5 Lithium-Ion and Lead-

Acid Battery Temperature 
Dependent Modeling, 

Power Prognostics, and 
SOC Estimation 

 

This chapter is a summary of all the battery monitoring work in this thesis.  The 

temperature-dependent behavior of the resistance and overpotential of a CALB LiFePO4 

battery is first explored. Offline experimental results from HPPC tests and EIS methods 

for resistance and overpotential are explained using the Arrhenius equation.  Using a 

nonlinear regression technique, simulated drive cycle data are used to confirm the 

experimental findings and construct a generic cell model that explicitly takes temperature 

effects of the resistance and overpotential into account.   

This generic cell model is also adopted for Kalman filtering for online battery 

monitoring, i.e. SOF and SOC.  In addition, a solution for SOC estimation that takes 

temperature, aging, and current dynamics into account is proposed for the LiFePO4 

battery.  The same generic cell model is also applied to a lead-acid battery under 

discharge-only cycles.  Finally the EIS experiment with DC current bias is adopted to 

verify the LiFePO4 and lead-acid batteries’ temperature-dependent behavior, in addition 

to time domain-based approaches such as the HPPC test and drive cycle tests.    
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5.1 Theory of Battery Resistance and Overpotential Behavior as a 

Function of Temperature 

In this section, the theoretical forms of battery resistance and overpotential as 

functions of temperature are derived using the Arrhenius relationship that describes the 

rate of reaction based on temperature.   

5.1.1 Battery Resistance in Arrhenius Form  

The well-known Arrhenius equation empirically relates a rate constant k of 

chemical reactions to the temperature T in Kelvins.   

k = Aexp






–Ea

RT   (5.1.1) 

 

In (5.1.1), A is a pre-exponential factor and Ea has units of energy per mole.  To find a 

theoretical expression for pure ohmic resistance r0 as a function of temperature, it is 

assumed that the resistance is inversely proportional to a rate constant, K.  The rate 

constant is also assumed to follow the Arrhenius form, and r0 is expressed as a function 

of temperature in (5.1.2). 

r0 = 
1
k = 

1
Aexp







Ea

RT   (5.1.2) 

 

It can be seen that (5.1.2) is simply the inverse of (5.1.1).  The ohmic resistance (5.1.2) 

rapidly increases as the temperature drops, consistent with observations in the literature, 

e.g., [28]. 



140 

5.1.2 Butler-Volmer Equation Exchange Current in Arrhenius Form 

The Butler-Volmer equation had an important role in Chapter 3 where it was 

shown that lead-acid battery electrode overpotential has a significant Butler-Volmer 

behavior and the modeling of such a battery needs to take the nonlinear behavior into 

account.  The Butler-Volmer equation is presented again in (5.1.3). 

i =  i0







exp








-α
ηF
RT  – exp









(1-α)
ηF
RT  

(5.1.3) 

 

The inverse hyperbolic sine approximation is also repeated. 

 η = 
RT
αFsinh-1







i

2i0
 (5.1.4) 

 

 Notice that the value of the exchange current i0 determines the shape of the 

Butler-Volmer curve.  This numerical phenomenon can be illustrated with an example. 
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Figure 5.1 shows two simulated curves based on (5.1.4) and the same 
RT
αF value.  

The difference between the two curves is the value of i0 adopted, one being 100 times the 

value of the other.  It is observed that an increase in i0 results in the straightening of the 

curve in the same current region.  When dealing with a large i0 value in (5.1.4), adopting 

a linear circuit model, i.e., ignoring the Butler-Volmer nonlinear effect, is a legitimate 

approach because the model complexity of the linear circuit model is lower and the two 

models are likely to produce similar results.   

 On the other hand, the exchange current may be temperature dependent and cause 

a more pronounced Butler-Volmer behavior in some temperature regions.  Since the 

exchange current determines the rate of electron exchange between oxidation and 

reduction reactions in equilibrium, the exchange current may drop as the temperature 

decreases, i.e., the Arrhenius relationship.  Therefore, the exchange current can be 

modeled as a function of temperature in the Arrhenius form. 

i0 = Bexp






–G

RT   (5.1.5) 

 

(5.1.4) and (5.1.5) together describe the overpotential as a function of 

temperature.  It is important to note that the change in overpotential as a function of 

current cannot be captured by increasing the linear model complexity, i.e., adding more 

RC terms.  Nor can the temperature influence be accurately captured by using a table of 

resistances for various temperatures.  Recent publications show that the overpotential and 

the associated charge-transfer resistance for lithium nickel-manganese-cobalt oxide 

(NMC) cells become nonlinear functions of current at low temperatures, reflecting the 

BV relationship [127], [139].  While [139] relies on recursive estimation to adapt the 
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Butler-Volmer equation parameters with temperature, this chapter presents the derivation 

of the Bulter-Volmer equation temperature dependence based on the Arrhenius equation.  

This derivation is key to making it possible to develop an offline model that takes 

temperature into account. 

5.2 HPPC and EIS Tests with Temperature as a Factor 

In this section, the resistance and overpotential dependence on temperature is 

experimentally evaluated using HPPC and EIS tests.  In this work, a CALB lithium iron 

phosphate cell rated at 60 Ah and 3.6 V was used in the experiments.  The cell underwent 

HPPC tests at various temperatures as defined in [1].  The HPPC test employs 1 C 

discharge currents (i.e., 60 A in this case) to move from one SOC test point to another 

and the pulsed test currents are 0.5, 1, and 2 C.  EIS was carried out during the rest 

periods in the HPPC sequence before the pulses were applied to provide additional 

information about the cell characteristics.   

First, the CALB battery under test is shown in Figure 5.2.  The temperature 

measurement is made on one of the terminals. 
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Figure 5.2 CALB LiFePO4 battery rated at 60 Ah 
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Figure 5.3 EIS data for 00C/273.150K 
 

Figure 5.3 shows a typical measured EIS result at a fixed temperature, where each 

data point is the impedance for one excitation frequency plotted with real impedance 

along the x-axis and imaginary impedance along the y-axis.  The ohmic resistance r0 can 

be approximated as the real impedance at the resonant frequency where the measured 
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curve crosses the x-axis.  This value is linearly extrapolated between the two nearest data 

points straddling the x-axis for each data set.  For the 90% SOC condition, the measured 

r0 is plotted as a function of temperature along with its fitted function using (5.1.2) in 

Figure 5.4.  This figure shows that the value of r0 drops exponentially as the cell 

temperature increases, and the match with the curve-fit waveform is excellent. 
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Figure 5.4 Pure resistance r0 and its fitted function of temperature using (5.1.2) at 90% SOC

 

For the HPPC test data, resistance value r0 for the battery model can be 

approximated by dividing the voltage drop during the pulse by the pulse current 

amplitude.  This resistance is a combined effect of r0 and the overpotential η, and due to 

the time constant, the duration of the pulse will affect the value of the resistance.  

Comparing Figure 5.5 and Figure 5.6, it can be seen that the HPPC-measured resistances 

are approximately the same for different pulse current amplitudes at 200C, but the 

resistances become more current-sensitive as the temperature drops. More specifically, 
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the HPPC resistance decreases for higher current at 00C, consistent with the Butler-

Volmer relationship.   
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Figure 5.5 HPPC resistances at different SOC test conditions for different pulsed currents 
at 00C/273.150K 
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Figure 5.6 HPPC resistances at different SOC test conditions for different pulsed currents 
at 200C/293.150K 
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The fact that the HPPC resistances do not exhibit the Butler-Volmer relationship as much 

at 200C corroborates the wide use of the linear circuit model in the literature for lithium 

batteries when low temperatures are not encountered. 

Qualitatively, the HPPC resistances show a more significant Butler-Volmer 

behavior at lower temperature.  This observation is consistent with the modeling 

assumption made in (5.1.5) where a decrease in temperature causes a drop in the 

exchange current causing a more significant Butler-Volmer response as discussed in 

5.1.2. 

5.3 Parameter Fitting of Linear Electric Circuit Model and Butler-

Volmer Model at Various Temperatures Using Short Term Drive 

Cycle 

In this section an offline parameter estimation methodology, different from the 

one discussed in 3.2.2, is introduced.  The methodology covered here requires battery 

data under an arbitrary drive cycle, either during an actual EV drive or a cycle on a test 

bench capable of the simulation.   In order to further explore the features of the Butler-

Volmer relationship at low temperatures, the LiFePO4 cell was subjected to a simulated 

drive cycle at different temperatures in the lab, and the voltage, current, and temperatures 

were logged at 10 Hz. 

The Butler-Volmer and linear circuit discrete time models are repeated in (5.3.1) 

and (5.3.2). 

V(k) = vocv – r0i(k) – 
b1

1 + a1q-1 sinh-1






i(k)

2i0
               (5.3.1) 

V(k) = vocv – 
b0 + b1q-1

1 + a1q-1  i(k)                                      (5.3.2) 
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As before, these models can be rewritten in the time domain by multiplying both sides of 

these equations by the term (1 + a1q-1) and assuming vocv does not change during one 

sample. 

v(k) = (1 + a1)vocv – a1v(k – 1) 

            – (i(k) + a1i(k – 1))r0 –  sinh-1







i(k)

2i0
b1   

(5.3.3) 

v(k) = (1 + a1)vocv – a1v(k – 1) 

            – i(k)b0 + i(k – 1)b1       
(5.3.4) 

  

Notice that given a batch of voltage and current data for a short duration of a drive 

cycle, (5.3.3) and (5.3.4)’s parameters can estimated.  Specifically, in (5.3.3) the 

unknown parameters are [vocv, a1, r0, i0, b1]T and they are [vocv, a1, r0, b1]T in (5.3.4).  

The predictor terms in both (5.3.3) and (5.3.4) consist of current and voltage data that are 

available in the drive data.  The regression for (5.3.3) and (5.3.4), however, is nonlinear 

and requires an iterative method like the Gauss-Newton method.  The following briefly 

introduces the Gauss-Newton method. 

For the LiFePO4 battery, the OCV vs. SOC curve is very flat and the drop in SOC 

during the drive cycle used for regression is usually less than 5%.  Therefore, it makes 

sense to use a constant vocv for regression purposes.  For chemistries whose OCV vs. 

SOC curves have a steeper slope, the vocv can be modeled as a line that has a different 

offset and slope when plotted against discharged Ah for each temperature. 

vocv = va + vbAh    (5.3.5) 
 

 



148 

Consider m functions r = (r1, r2, ..., rm) of n variables β = (β1, β2, ..., βn).  Usually 

r is interpreted as the residuals of the model, and β the parameters to be estimated.  The 

Gauss-Newton method seeks to minimize the sum of squared errors.   

S( )β  = 
i = 1

m
ri

2( )β  (5.3.6) 

 

Starting with an initial guess β0, the Gauss-Newton method iterates the following: 

 

β(s+1) = β(s) + ( )JTJ  –1JTr (5.3.7) 

 

where J is the Jacobian matrix at the iteration step s, i.e., the partial derivatives of the 

residuals with respect to the individual parameters. 

J = 
∂ri

∂βj
( )β(s)  (5.3.8) 

 

(5.3.7) can also be modified with a fraction gain k to control the numerical stability, i.e., 

 

β(s+1) = β(s) + k( )JTJ  –1JTr (5.3.9) 

 

Applying the Gauss-Newton method to both models in (5.3.3) and (5.3.4) with the 

same drive cycle data at 200C/293.150K, the results are shown in Figure 5.7 and Figure 

5.8.  The average squared errors are 9.25e-5 and 7.01e-5 respectively. 
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Figure 5.7 Drive cycle test data and Butler-Volmer model simulation with fitted 

parameters at ambient 200C/293.150K 
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Figure 5.8 Drive cycle test data and linear circuit model simulation with fitted parameters 
at ambient 200C/293.150K 

 

It can be seen that the predictions of both models are nearly the same so that the Butler-

Volmer model offers no particular advantage over the linear model.  
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Figure 5.9 Drive cycle test data and Butler-Volmer model simulation with fitted 

parameters at ambient -200C/253.150K 
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Figure 5.10 Drive cycle test data and linear circuit model simulation with fitted 

parameters at ambient -200C/253.150K 
 

In contrast, the improved match achieved using the Butler-Volmer model for battery 

parameter data at -200C/253.150K is shown in Figure 5.9 and Figure 5.10.  The average 
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error squares are 2.93e-4 and 7.32e-4, respectively.  Notice in Figure 5.10 the dashed 

green circle points out a part of the data where a high discharge current is applied.  The 

linear circuit model tends to overpredict the voltage drop at a high current, due to the lack 

of saturation effect at the high current region.  

 Since Figure 5.7 and Figure 5.8, Figure 5.9, and Figure 5.10 use the same data for 

estimation and simulation evaluation, it is desirable to see how the models fare when 

evaluation is performed on data from a different part of the drive cycle.  Notice that due 

to the assumption of a fixed vocv in both models and vocv dependence on SOC, the data 

set used for prediction evaluation cannot be too far away in time and discharged Amp-

hours from the data set used for parameter estimation.  In this example, the second data 

set from the drive cycle at -200C/253.150K was separated from the first by 600 seconds 

and 1.7 Ah, counting both discharging and regenerating currents.   
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Figure 5.11 Drive cycle test data and both models’ predictions using a different part of 
the drive cycle for evaluation at ambient -200C/253.150K 
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 Figure 5.11, using average square errors, again demonstrates the advantages of the 

Butler-Volmer model at lower temperature compared with the linear circuit model.  

Figure 5.12 compares the prediction error histogram of the two models and visually 

confirms that linear-circuit model has a larger error variance.  
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Figure 5.12 Prediction error histogram for the two models under the drive cycle in Figure 
5.11 
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Figure 5.13 The predicted steady-state voltage drop based on fitted parameters at ambient 
-200C/253.150K and 200C/293.150K 

 

Finally, to establish that Butler-Volmer behavior is indeed prominent at low 

temperature and the corresponding modeling effort is necessary, the models’ predicted 

steady-steady voltage drops (i*r0 + η(i)) vs. current based on fitted parameters are shown 

Figure 5.13.  The effect of the Butler-Volmer relationship is clearly visible at the lower 

temperature (-200C), while at room temperature (200C) the two models yield voltage drop 

predictions that agree with each other quite closely.  The linear circuit model is clearly 

incapable of modeling the Butler-Volmer relationship that is present during low-

temperature conditions. 

5.4 Offline Parameter Fitting of a Generic Battery Model with 

Resistance and Overpotential Dependence on Temperature 

In this section, a generic battery model with resistance and overpotential that are 

dependent on the temperature is proposed.  One benefit of this model is that it can adjust 



154 

to different temperature conditions quickly without relying on gradual convergence.  The 

other benefit is that such an explicitly temperature-dependent form can lead to a recursive 

estimator that specifically takes temperature as an input, thus achieving online monitoring 

for vehicles expected to experience a large range of temperature.   

Most importantly, the nonlinear feature of the Butler-Volmer equation is not 

possible for the linear-circuit model to mimic.  The generic cell model offers a method to 

describe such a phenomenon at different temperature conditions.  First the Butler-

Volmer-based battery model in discrete from is repeated. 

v(k) = vocv – r0i(k) – 
b1

1 + a1q-1 sinh-1






i(k)

2i0
              (5.4.1) 

 

 As discussed earlier in this chapter, the resistance r0 and the overpotential η are 

modeled as functions of temperature in (5.4.2), (5.4.3), and (5.4.4).   

r0 = 
1
k = 

1
Aexp







Ea

RT   (5.4.2) 

η = 
RT
αFsinh-1







i

2i0
 = 

b1T

1 + a1
 sinh-1







i(k)

2i0
             (5.4.3) 

i0 = Bexp






–G

RT   (5.4.4) 

 

By substituting the appropriate terms in (5.4.1) with (5.4.2), (5.4.3), and (5.4.4), a 

discrete battery model with temperature as an input can be formed. 

v(k) = vocv – 
1
Aexp







Ea

RT i(k) – 
b1T

1 + a1q-1 sinh-1









i(k)

2Bexp






–G

RT

              (5.4.5) 

 

In order to perform parameter estimation for (5.4.5), it is necessary to combine, 

i.e. concatenate, the data from drive cycles under various temperatures.  Without this 
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concatenation of data under various temperatures, it would be impossible to estimate 

parameters associated with temperature terms.  The change of temperature within a cycle 

cannot realistically be sufficient for the estimation of parameters.  Rearranging (5.4.5) 

and specifying the vocv_i for the open circuit voltage of each drive cycle of different 

temperatures to take into account the temperature effect on vocv, (5.4.6) is shown as 

follows:    

vn(k) = (1 + a1)vocv_iδ(i – n) – a1vn(k – 1) 

– (in(k) + a1in(k – 1))
1
Aexp







Ea

RTn(k)   –

b1Tn(k)sinh-1
in(k)

2Bexp






–G

RTn(k)

 

 

(5.4.6) 

 

where the subscript n stands for nth cycle, i for ith cycle, and δ for the Kronecker delta 

function.     
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Figure 5.14 Steady-state voltage drop for the generic cell model at different temperatures 
 

200 C 
00 C 
-100 C 



156 

 Figure 5.14 shows the steady-state voltage drops for different temperatures 

obtained from the generic cell model and visually displays the generic cell model’s 

dependence on temperature. 
V
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Figure 5.15 Drive cycle test data and generic cell and linear circuit predictions using a 
different part of the drive cycle for evaluation at ambient -200C/253.150K 

 

 In order to compare performance of the generic cell and the linear circuit models, 

the prediction methodology used in Figure 5.11 is repeated for the two models, i.e., using 

adjacent but different data points for prediction performance evaluation.  One particular 

set of results, for -200C, is shown in Figure 5.15.   

Table 5.1 The prediction average squared errors for the three modeling approaches 
 -200C -100C -50C 00C 50C 

Generic Cell 5.52e-4 2.64e-4 4.84e-4 3.11e-4 1.79e-4 
Butler-Volmer 3.65e-4 3.00e-4 5.23e-4 2.68e-4 1.28e-4 
Linear Circuit 6.60e-4 2.96e-4 5.30e-4 2.35e-4 9.03e-5 

 

For five temperature conditions, the same prediction evaluation has been performed for 

the generic cell, simple Butler-Volmer that ignores temperature, and the linear circuit 
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models.  The average squared errors for this particular data group are recorded in Table 

5.1. 
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Figure 5.16 Comparsion of prediction performance for generic cell and linear circuit 
models based on Table 5.1 

 

Figure 5.16 plots the results from Table 5.1 comparing the generic cell and linear 

circuit model.  It can be seen that the generic cell model performs better in a comparative 

sense at lower temperatures.  This result is not surprising since the Butler-Volmer 

phenomenon is more prominent at lower temperatures.  Another point worth noting is 

that the prediction performance in the least-squares sense is subject to the drive cycle 

data.  If the fitting and prediction data are drawn from the parts of the drive cycle that 

have a higher current load, the generic cell model is more likely to perform better since 

the Butler-Volmer behavior is more noticeable at higher current.  For reference, the peak 

current for the data used in this chapter is 120 Amps or 2 C.   
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5.5 Adaptive Estimation Using Generic Cell Model 

The generic cell model, with its explicit inclusion of temperature as an input, is 

suitable for offline simulation of LiFePO4 batteries.  However, some applications require 

online estimation and tracking of battery parameters, similar to those introduced in 3.2 

and 4.2.  Based on (5.4.6), this section introduces the process that adapts the generic cell 

model for online recursive estimatio, leading to the following expressions: 

v(k) + a1v(k – 1) = vocv (1 + a1) – 
1
A(i (k) + a1i (k – 1))exp







Ea

RT(k)   

             – b1T(k)sinh-1









i(k)

2Bexp






–G

RT(k)

 

(5.5.1) 
 

v(k) + a1v(k – 1) = θφ(k) (5.5.2) 

  φ(k) = 











1 + a1

 –(i (k) + a1i (k – 1))exp






Ea

RT(k)

 –T(k)sinh-1









i(k)

2Bexp






–G

RT(k)

 (5.5.3) 

θ = [vocv, 
1
A, b1] (5.5.4) 

  
Closer examination reveals that (5.5.1) is a rearranged version of (5.4.6) with v(k) 

+ a1v(k – 1) as the output on the left side of the equation. (5.5.2) expresses the right side 

of (5.5.1) as the product of the parameters to be fitted θ, and the regressor φ(k).  (5.5.3) 

defines the regressor φ(k), while (5.5.4) identifies the parameters to be estimated.  This 

estimator formulation for linear filtering is similar to the method introduced in 3.2, except 

the equations now include the temperature terms.  The linear-circuit model can also be 

similarly set up for linear, recursive estimation, as presented in 3.2.   
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Once the estimator formulation is complete, the regressor φ(k), parameter vector 

θ, and output v(k) + a1v(k – 1) are processed with Kalman filtering. The interested reader 

is referred to 3.2 for more details about the Kalman filtering.  While (5.5.2) is formulated 

to accomplish the recursive estimation of vocv, 
1
A, and b1, other parameters are obtained 

via the offline estimation of the generic cell model introduced in the previous section. 
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Figure 5.17 Comparison of Kalman filter vlow estimates for linear-circuit model and 
generic cell model for data at ambient 253.150K/-200C 
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Figure 5.18 Comparison of Kalman filter vlow estimates for linear-circuit model and 
generic cell model for data at ambient 293.150K/200C 

 

In Figure 5.17, both the linear-circuit and generic cell model Kalman filter results 

for the -200C condition are shown.  In order to demonstrate the generic cell model’s 

advantages for power prognostics, the predicted lowest battery voltage vlow is plotted for 

both models.  As in 3.3 and 4.3, the derivation of vlow is simply the application of the 

maximum discharge current to the model, with the time shift operator q removed.  For 

example, vlow for the linear-circuit model can be expressed as follows: 

vlow = vocv – 
b0 + b1

1 + a1
 imax (5.5.5) 

 

Based on (5.4.5), the vlow for the generic cell model is expressed in (5.5.6): 

vlow = vocv – 
1
Aexp







Ea

RT  imax – 
b1T

1 + a1
 sinh-1









imax

2Bexp






–G

RT

 (5.5.6) 
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 vlow provides an estimate of the battery’s output voltage capability at a given time 

instant for a predefined maximum current load.  By comparing with the preset voltage 

limit for discharging, this estimated voltage can be the key to predicting whether the 

battery is capable of achieving a critical upcoming power delivery task, such as restarting 

the engine in a stop-start vehicle configuration. 

The vlow waveforms that appear in Figure 5.17 indicate that the generic cell model 

offers performance advantages for accurate power prognostics for low battery 

temperature (-200C) due to its built-in Butler-Volmer relationship.  The corresponding 

vlow waveforms in Figure 5.18 for 200C ambient temperature condition indicate that both 

models deliver approximately the same estimated vlow values as the battery temperature 

increases. 

In Figure 5.17 and Figure 5.18, it is observed that vlow curves seem to have 

periodic noise associated with the driving cycle itself.  To better understand this 

phenomenon, the measured temperature and the estimated R0 are plotted alongside each 

other. 

  
Figure 5.19 Temperature progression 
during UDDS drive cycle at ambient 

temperature -100C   

Figure 5.20 Estimated R0 progression 
during UDDS drive cycle at ambient 

temperature -100C   
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From Figure 5.19 and Figure 5.20, it is observed that the estimated R0 behavior is very 

much correlated with the measured temperature.  The general trend of the resistance is 

decreasing as the battery heats up from the losses sustained during the drive cycle, even 

near the end of discharge the estimated R0 is decreasing even though it would have 

increased due to the depleted charge had the temperature been constant.  In addition, the 

red circles in Figure 5.19 show a part of the drive cycle where the temperature is 

dropping due to a lull in the current profile.  Correspondingly Figure 5.20 shows an 

increase in resistance in the same part of the driving cycle.     

  
Figure 5.21 Temperature progression 
during UDDS drive cycle at ambient 

temperature 200C   

Figure 5.22 Estimated R0 progression 
during UDDS drive cycle at ambient 

temperature 200C   
 

A similar response can be seen in Figure 5.21 and Figure 5.22 for the UDDS drive cycle.  

It is noted that the range of resistance range for higher ambient temperature is smaller, 

consistent with the higher sensivity of resistance on temperature as seen in Figure 5.4.  

The temperature sensitivity of the estimated R0 partially explains the vlow curve “noise.” 

5.6 Generic Cell Model for Offline Simulation 

In [139], recursive estimation is implemented so that the value of i0 in (5.4.3) can 

be estimated using a nonlinear estimation technique, along with the other key battery 
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parameters.  This approach is designed to provide robustness against temperature and 

aging influences while maintaining the Butler-Volmer structure to provide an appropriate 

nonlinear response when the conditions require it.  This method is also designed to work 

for both lead-acid and lithium chemistries.   

On the other hand, this nonlinear recursive estimation approach proposed in [139] 

needs to be guided by the data as it comes in during the driving cycle.  One potential 

drawback of this approach is that the recursive estimation algorithm, depending on the 

observer tuning gains, may not be able to adjust against a quick change in battery 

temperature; e.g., when the battery quickly heats up during initial start-up in cold 

weather.   

Another drawback for the method in [139] is its inability to provide offline 

simulation modeling tools since its parameters are entirely dependent on drive cycle data 

excitation.  In these two respects, the explicit modeling approach that includes 

temperature as an input as presented in this work seems to have an advantage.  This 

section is therefore dedicated to an implementation for the offline simulation set up based 

on the generic cell model. 

The equations for the temperature dependent model are repeated and augmented 

here for the offline simulation model.  Notice that the vocv is modeled as a polynomial 

function of both temperature and Ah count.   

r0 = 
1
k = 

1
Aexp







Ea

RT   (5.6.1) 

η = 
RT
αFsinh-1







i

2i0
 = 

b1T

1 + a1
 sinh-1







i(k)

2i0
             (5.6.2) 

i0 = Bexp






–G

RT   (5.6.3) 
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v(k) = vocv(Ah,T) – 
1
Aexp







Ea

RT i(k) – 
b1T

1 + a1q-1 sinh-1









i(k)

2Bexp






–G

RT

 (5.6.4) 

vocv(Ah,T) = f0 + f1Ah + f2Ah2 + f3Ah3 + f4Ah4 + f5Ah5  

                          + f6Ah*T + f7T + f8T2 
(5.6.5) 

  

 In (5.6.5) the first six terms gives the polynomial fit the ability to represent the 

battery vocv relationship with the Ah count.  The seventh term, f6Ah*T, provides fit for 

the interaction between the two factors, T and Ah.  This interactive term was important in 

arriving a good fit.  The rest is a second order fit for the temperature factor.   

 In order to fit to (5.6.5), the data from UDDS drive cycles under various ambient 

temperatures were used.  Specifically, the estimated vocv, measured temperature, and Ah 

count were used to fit to (5.6.5).  The results are shown in the surface plot in Figure 5.23. 

 
Figure 5.23 vocv estimation polynomial surface plot 
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The fitted polynomial function is used to check one drive cycle’s estimated vocv.  One 

such a check case is shown in Figure 5.24.  The comparison between surface polynomial 

and the vocv shows the fit is quite good. 
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Figure 5.24 vocv estimation with UDDS drive cycle and polynomial fit at ambient = 00C  

 

In addition to the electrical/electrochemical equations from (5.6.1) to (5.6.5), the 

simulated cell requires a thermal model for completion.  The offline thermal model is a 

simple first order system with the asymptote set at the ambient temperature.  The thermal 

model is shown in (5.6.6), where the temperature change is driven approximately by the 

electrical losses within the battery.  A further addition to the model could be a 

modification of (5.6.6) based on the resistance of the simulated cell.  However, this 

feature is not added in the simulation study. 

T(k) = Tambient +  
b

1 + f1q-1 i2(k) (5.6.6) 
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 With the equations from (5.6.1) to (5.6.6), the simulated cell is almost complete.  

One additional feature implemented is the increase of resistance R0 at the end of 

discharge.  This feature is an attempt to imitate the behavior of the real life battery, which 

exhibits an increase of resistance at the end of discharge.  Further modifications are 

possible such as an increase in R0 for charging near full charge; these can be 

implemented as needed but not included in the results in this section. 

 Figure 5.25 shows the voltage response of the simulated cell at ambient 250C 

under the UDDS cycle, where the “measured” voltage and current data were artificially 

corrupted with time correlated random noise.  The measured voltage has a noise with 

standard deviation 0.1 mV, and the measured current has a noise with 0.1 mA.  The 

temperature and R0 response have also been plotted in Figure 5.26 and Figure 5.27. 
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Figure 5.25 Simulated cell voltage and Kalman filtering results at 250C ambient 
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Figure 5.26 Temperature progression 
during UDDS drive cycle at ambient 
temperature 250C for simulated cell 

Figure 5.27 Estimated R0 progression 
during UDDS drive cycle at ambient 
temperature 250C for simulated cell 

 

In Figure 5.25, a few observations can be made.  The estimated vlow shows a 

periodic variation as a function of the current profile, consistent with the experimental 

results.  Such a phenomon, as explained in 5.5, is partly the results of the changing in 

resistance due to temperature change.  The simulation captures this effect quite well, as 

seen in Figure 5.26 and Figure 5.27 where temperature and R0 change are clearly 

inversely correlated. 

 Another benefit the simulated cell provides is to help the tuning of the Kalman 

filter.  As explained in 3.2, the Kalman filter relies on a Q matrix to represent the 

assumed internal noise.  Given that the variance of the measurement R is fixed, a higher 

the corresponding value in Q leads to faster tracking of the system parameter change.   

The estimated parameters in the generic cell recursive estimation set up are repeated in 

(5.6.7), while (5.6.8) shows the corresponding Q matrix. 

θ = [vocv, 
1
A, b1] (5.6.7) 
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Q = 









var(vocv) 0 0

0 var






1

A 0

0 0 var(b1)

 (5.6.8) 

 

 In (5.6.8), a larger value for var(vocv) leads to faster tracking of the vocv during 

the drive cycle.  However, the trade off is the stability of the estimated vocv.  Empirical 

experience indicates that one set of tuning is often good for a whole pack of cells at 

various aging conditions.  On the other hand, the selection of appropriate values in the Q 

matrix is essential for balancing the stability of the estimated parameters and the tracking 

performance.  In Figure 5.28 and Figure 5.29 the difference in var(vocv) gain tuning is 

illustrated with the help of the true vocv from the simulated cell.  It can be clearly seen 

that by increasing the var(vocv) gain, the convergence of est. vocv towards the true vocv is 

accelerated but the noise on the est. vocv is also increased.  Such noise can influence the 

results on the power prognostics estimation, specifically on vlow.     
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Figure 5.28 Est. vocv comparison with 

different values of the var(vocv) gain 

Figure 5.29 Est. vocv comparison with 

different values of the var(vocv) gain, 

zoomed in from Figure 5.28 
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The simulated cell can thus be used for guiding the selection of tuning gains, which can 

be difficult using the experimental data since the actual values to the parameters are not 

known.   

5.7 Lithium Battery State-of-Charge Estimation Based on Vlow with 

Temperature, Aging, and Drive Cycle Dynamics Taken into 

Account 

In 5.5, it is demonstrated that the temperature dependent generic cell recursive 

estimation scheme can provide a power prognostics metric vlow.  This section discusses 

an approach to provide a practical SOC estimation for lithium cells for the EV application 

based on the power prognostics metric vlow. 

From the discussion in 2.4.1, the Nernst equation describes the battery vocv as a 

function of both temperature and the ratio of oxidants and reductants, thus the SOC.  

Additionally, the resistance and overpotential of a battery are functions of the 

temperature and SOC, as seen in previous sections of this chapter.     

E = E0 + 
RT
nF ln

CO

CR
  

(5.7.1) 
 

 

In addition to temperature and SOC, the drive cycle characteristics can also 

influence the timing of the end-of-discharge, if defined by a strict cut-off voltage 

measurement.  For example, a large load current may result in a sudden voltage drop and 

take the cell voltage below the cut-off limit.  However, if the est. vlow is adopted as the 

reference for determinging end-of-discharge, the influence of current dynamics can be 

greatly reduced.  For lead-acid battery, the diffusion voltage drop is also a function of the 
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drive cycle average current.  The Peukert’s law discussed in 2.5.2 describes the early cut-

off’s due to higher average discharge currents.  On the other hand, the literature shows 

lithum cells do not exhibit the same Peukert behavior as lead-acid batteries [51].    

Therefore, this SOC estimation method proposes using the power prognostics 

metric vlow to decouple the drive cycle dynamics. The main factors that influence vlow 

estimation are temperature and SOC.  It follows that vlow should be very similar for 

different drive cycles when temperature and SOC are taken into account.  Meanwhile, it 

is well known that a battery at the end-of-discharge, i.e. low SOC, exhibits both an 

increased in resistance and rapid decrease in vocv.  This phenomon will result in a rapid 

collapse in battery power capability as well as vlow.  From a practical point of view, any 

SOC estimation scheme should have the end-of-discharge to correspond roughly where 

the rapid power collapse sets in.  The failure to do so partially explains the defect of the 

naïve Coulomb counting approach.  If both temperature and aging are relatively 

controlled, the expectation is that the battery can provide about the same amount of Ah 

before the power capability collapse, i.e. the end-of-discharge.   

The summary of the proposed SOC estimation method is the following: it uses 

vlow estimate as the end-of-discharge reference to decouple the drive cycle dynamics.  

During the driving cycle, the vlow estimate is constantly compared with a cut-off limit in 

order to detect the power capability collapse.  The Ah and temperature measured at the 

power capability collapse are recorded and contribute to a polynomial curve that 

describes the Ah count at which the end-of-discharge occurs as a function of temperature.  

This polynomial curve is then used to provide a guide for the Ah expected to be extracted 
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during any drive cycle.  A flow chart depicting the information flows for the proposed 

SOC estimation method is shown in Figure 5.30. 

 
Figure 5.30 Information flow chart for SOC estimation scheme  

 

Before the vlow estimation can be applied for SOC estimation, a further 

modification is needed for taking into account battery power loss due to resistance 

increase at low temperatures.  For the CALB 60Ah cell, Figure 5.31 shows the line 

resistance R0 relationship with temperature using fit information from the generic cell 

model.  
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Figure 5.31 Fitted line resistance R0 relationship with temperature for CALB 60 Ah cell 

 

As seen in Figure 5.31, the resistance rapidly increases as temperature drops.  Due to a 

higher resistive voltage drop vlow estimation may easily go below the cut-off before the 

power collapose sets in without imax modification.  In order to have consistent vlow 

estimation, the maximum current, imax, is now scaled as a function of temperature.  

Specifically, using 250C as the reference temperature imax is now given as: 

imax(T) = imax





R(T = 250C)

 T    
(5.7.2) 

 

 

To examine different current dynamics’ influence on the vlow estimation, four 

different driving cycles are applied to the CALB 60Ah cell at various temperatures.  The 

vlow estimation, repeated in (5.7.3), under these different conditions are analyzed below.   

vlow = vocv – 
1
Aexp






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Ea
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b1T

1 + a1
 sinh-1
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





imax(T)

2Bexp






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RT

 (5.7.3) 
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Figure 5.32 UDDS current profile Figure 5.33 US06 current profile 
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Figure 5.34 HWFET current profile Figure 5.35 EUDC current profile 

   

Figure 5.32 to Figure 5.35 show the four driving cycles used on CALB 60Ah in 

the lab experiment.  It can be observed that they vary in their average current and 

dynamic components.   
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Figure 5.36 CALB battery temperature 
response at 200C for UDDS  

Figure 5.37 CALB battery temperature 
response at 200C for US06 
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Figure 5.38 CALB battery temperature 
response at 200C for HWFET 

Figure 5.39 CALB battery temperature 
response at 200C for EUDC 

 

The US06 cycle in particular is the most aggressive among the four drive cycles, and 

causes a significantly higher rise in temperature.  The temperature response for the CALB 

battery at 200C ambient temperature for these four drive cycles can be seen from Figure 

5.36 to Figure 5.39.  Notice that at the same discharged Ah, the drive cycles have 

different temperature responses due to their different RMS value.  The US06 cycle causes 

an almost 80C rise in temperature by the end-of-discharge, while the UDDS cycle causes 

a 2~30C rise only. 

Figure 5.40 illustrates the vlow estimations during UDDS drive cycle under 

various ambient temperatures.  Due to the noise on the vlow estimation from Kalman 

filtering, these vlow’s have been filtered with a moving medium filter that finds the 

medium value within 1 Ah of data.  Thanks to the adjustment of imax in (5.7.2) vlow 

estimations at different temperatures maintain the roughly the same level, although their 

collapse point is still a function of temperature as seen in the early rapid power loss for 

low temperature conditions.     

In Figure 5.41, Figure 5.42, and Figure 5.43, the vlow estimations for other drive 

cycles show similar results as the UDDS cycle.  
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Figure 5.40 The vlow estimations for 

UDDS drive cycle under various ambient 
temperatures and illustration of cut-off Ah 

determination 

Figure 5.41 The vlow estimations for US06 

drive cycle under various ambient 
temperatures 

  
Figure 5.42 The vlow estimations for 

HWFET drive cycle under various ambient 
temperatures 

Figure 5.43 The vlow estimations for 

EUDC drive cycle under various ambient 
temperatures 

 

In order to verify that these vlow estimations are similar across different drive cycles, the 

vlow estimation for ambient temperature at 200C is plotted together for comparison in 

Figure 5.44.  Notice that at room temperature the temperature discrepancy between drive 

cycles is not as important as in low temperatures.    

0 20 40 60 80
1.8

2

2.2

2.4

2.6

2.8

3

3.2

Discharged Ah [Ah]

V
lo

w
 [
V

o
lt
s]

 

 

V
low

 at T
amb

 = 20C

V
low

 at T
amb

 = 10C

V
low

 at T
amb

 = 5C

V
low

 at T
amb

 = 0C

V
low

 at T
amb

 = -5C

V
low

 at T
amb

 = -10C

0 20 40 60 80
2

2.2

2.4

2.6

2.8

3

3.2

3.4

Discharged Ah [Ah]

V
lo

w
 [
V

o
lts

]

 

 
V

low
 at T

amb
 = 20C

V
low

 at T
amb

 = 10C

V
low

 at T
amb

 = 5C

V
low

 at T
amb

 = 0C

V
low

 at T
amb

 = -5C

V
low

 at T
amb

 = -10C

vlow Cutoff 
@ 2.55 V 

Ah = 62 Ah  

0 20 40 60 80
2.2

2.4

2.6

2.8

3

3.2

Discharged Ah [Ah]

V
lo

w
 [
V

o
lts

]

 

 

V
low

 at T
amb

 = 20C

V
low

 at T
amb

 = 15C

V
low

 at T
amb

 = 10C

V
low

 at T
amb

 = 0C

0 20 40 60 80
1.8

2

2.2

2.4

2.6

2.8

3

3.2

Discharged Ah [Ah]

V
lo

w
 [
V

o
lts

]

 

 

V
low

 at T
amb

 at 20C

V
low

 at T
amb

 at 10C

V
low

 at T
amb

 at 5C

V
low

 at T
amb

 at 0C

V
low

 at T
amb

 at -5C

V
low

 at T
amb

 at -10C



176 

 
Figure 5.44 The vlow estimations for different drive cycles at ambient temperature 200C 

 

In Figure 5.44, the vlow estimations for different drive cycles behave very similarly, 

thanks to the consistency of both the CALB battery and the generic cell Kalman filtering 

scheme.  It can be noted that the vlow estimation for the US06 cycle is slightly higher 

than the rest, consistent with the fact that the CALB battery is hotter during the US06 

cycle.   

The experimental results so far demonstrate the the vlow estimation’s consistency 

for different current profiles.  The next step is to record the cut-off Ah’s and the 

corresponding temperatures and provide a polynomial fit that predict the available Ah per 

drive cycle as a function of temperature.  From all these different drive cycles at various 

ambient temperatures, the cut-off Ah’s, the corresponding temperatures, and their 

polynomial (quadratic) fit are shown in Figure 5.45. 
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Figure 5.45 The cut-off Ah’s as a function of temperature and the quadratic fit 

 

In Figure 5.45, the data and their quadratic fit show the consistency of the cut-off 

Ah as a function of temperature.  The fit has a standard error of 2.3 Ah, or roughly 3.8% 

of the rated 60 Ah capacity.  In application, as the battery ages the cut-off Ah’s are 

expected to move further down due to increased resistance and decreased capacity.  As 

the new data of cut-off Ah’s and temperatures are obtained, the new information can be 

used to recursively update the polynomial to reflect battery aging. 

Finally, some data from the WEMPEC/Orchid electric truck are used to 

demonstrate the consistency of the vlow estimation.  The detailed information for the 

truck can be found in [138].  The truck has a battery bank consisting of 108 CALB 100 

Ah cells.  The cells are distributed into three blocks, one in the front engine compartment 

and two in the cab space.  The consistency of the vlow estimation is demonstrated by 

using two drive cycle data, one full drive cycle depleting the battery and one short drive 
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starting near the end-of-discharge.  For one particular cell 35, both the vlow estimations 

and the nearest temperature measurement are plotted below for the two drive cycles. 

  
Figure 5.46 The vlow estimation 

comparison for cell 35 in WEMPEC truck  

Figure 5.47 The temperature measurement 
comparison for cell 35 in WEMPEC truck 

 

In Figure 5.46 the vlow estimations for both drive cycle show very similar behavior, 

despite the huge difference in their respecitve starting conditions.  Since both drive cycles 

were under relatively high temperature, the difference in temperature does not cause a 

significant discrepancy between the vlow estimations.  However, in Figure 5.47 the short 

drive cycle temperature is slightly below the long drive cycle, and correspondingly the 

short drive cycle vlow estimation is also below that of the long drive cycle.   

  
Figure 5.48 The vlow estimation 

comparison for cell 17 in WEMPEC truck  

Figure 5.49 The vlow estimation 

comparison for cell 26 in WEMPEC truck 
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Figure 5.50 The vlow estimation 

comparison for cell 46 in WEMPEC truck  

Figure 5.51 The vlow estimation 

comparison for cell 66 in WEMPEC truck 

 

Figure 5.48 to Figure 5.51 show other cells’ vlow estimation comparisons for the 

two drive cycles.  The consistency of the vlow’s is again noted.   

5.8 Generic Cell Model Applied to Lead-Acid Battery 

The generic cell model approach introduced in 5.4 and 5.5 can also be applied to a 

lead-acid battery in order to provide a comprehensive temperature dependent modeling 

approach.  In chapter three, the Butler-Volmer equation was used to provide a lead-acid 

battery model for online recursive estimation.  The generic cell model approach can be 

seen as the extension to the Butler-Volmer method introduced in chapter three with 

temperature as an explicit input to the model. 

In this section, the generic cell modeling approach is applied to the lead-acid 

battery drive cycles without regenerative events.  Some EV’s do not have regenerative 

capability, e.g. the Corbin Sparrow.  In addition, the charging process for the lead-acid 

battery involves highly complex electrochemical reactions and is difficult to model.  As 

an example, Figure 5.52 shows the lead-acid OPTIMA D34M battery’s voltage response 

to a step charging current at 82.5 A. 
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Figure 5.52 Lead-acid OPTIMA D34M battery’s voltage response to a step charging 

current at 82.5 A 
 

As seen in Figure 5.52, the voltage initially rises quickly, falls down, and then continues 

its gradual rise.  One possible explanation for this behavior is the gassing, or water 

splitting, reaction mentioned in [20], [143].  Neither circuit elements nor Butler-Volmer 

type equations can adequately mimic such a complex behavior.  As a result, the 

preliminary investigation in this section will focus on discharge only drive cycles. 
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vocv = a + bAh (5.8.5) 
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 As in 5.4, the generic cell model equations are provided from (5.8.1) to (5.8.5).  In 

5.4, the offline generic cell model parameter estimation obtained a small portion of data 

from drive cycles under various ambient temperatures, and concatenated all the data into 

a full matrix for parameter fitting.  In addition, the assumption was made in 5.4 that the 

CALB LiFePO4 battery’s vocv does not change significantly during this small portion of 

data.  However, the lead-acid battery is known to have a much sharper vocv fall off as a 

function of discharged Ah compared with LiFePO4 battery.  To prevent this discrepancy 

from interfering with parameter fitting, the vocv is assumed to be a linear function of Ah 

count, as seen in (5.8.5).  The comparison between the generic cell model fit and the data 

are shown in Figure 5.53 and Figure 5.54 for ambient temperature at 200C and -200C 

respectively. 
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Figure 5.53 Drive cycle test data and generic cell predictions at ambient temperature 
200C/293.150K 
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Figure 5.54 Drive cycle test data and generic cell predictions at ambient temperature -
200C/253.150K 

 

Figure 5.53 and Figure 5.54 show the generic cell model, with the vocv as a linear 

function of Ah count modification, tracks data very well in both room and low 

temperatures.  With the obtained parameters, the generic cell model can then be modified 

for online Kalman filtering, as done in 5.5 for the CALB LiFePO4 battery.   The 

formulation for the Kalman filtering is repeated here for reference. 
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v(k) + a1v(k – 1) = θφ(k) (5.8.7) 
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θ = [vocv, 
1
A, b1] 

(5.8.9) 

 

As in 5.5, the parameters estimated in this recursive set up are vocv and the gains to the 

R0 and overpotential Butler-Volmer relationship.  The aging effects can be captured by 

the recursive scheme, while the temperature effect is captured by making it an explicit 

input to the model.  

Figure 5.55 and Figure 5.57 show the results for the recursive estimation for the 

Optima D34M lead-acid battery under UDDS based drive cycles at ambient temperature 

300C and 00C.  The vlow estimations in Figure 5.55 and Figure 5.57 are both calculated 

with a simple imax at the maximum current value during the drive cycle.  Figure 5.56 and 

Figure 5.58 show the respective current profiles for Figure 5.55 and Figure 5.57. 
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Figure 5.55 Optima D34M battery voltage 
under UDDS cycle and generic cell based 
Kalman filtering with its estimated  vocv 

and vlow at ambient temperature 300C 

Figure 5.56 The current profile 
corresponding to Figure 5.55 
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Figure 5.57 Optima D34M battery voltage 
under UDDS cycle and generic cell based 
Kalman filtering with its estimated  vocv 

and vlow at ambient temperature 00C 

Figure 5.58 The current profile 
corresponding to Figure 5.57 

 

In Figure 5.57 the estimated vocv is seen to be somewhat higher than the plateauing 

voltage measurement.  It is pointed out that the drive cycle does not have actually go 

down to zero at the resting intervals.  The minimum current is at 1.6 A.  The temperature 

effect explains this difference between estimated vocv and the plateauing voltage 

measurement is more significant at 00C ambient than 300C ambient. 

This section applies the generic cell modeling approach to a lead-acid battery and 

adopted the model for the recursive estimation scheme for power prognostics.  The lead-

acid battery regenerative behavior is too complex to be covered in this investigation, but 

the Butler-Volmer and Arrhenius equations based approach is still capable of modeling 

the lead-acid battery well under discharge only cycles.       
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5.9 Investigation of Lithium and Lead-Acid Battery Resistance and 

Overpotential Behavior under Various Temperatures Using 

Electrochemical Impedance Spectroscopy  

This section deploys EIS to investigate the impact of temperature and dc bias 

current on battery impedance characteristics.  Measured test results are used to 

demonstrate that, under conditions where the nonlinear Butler-Volmer equation is 

necessary to model the electrode charge transfer characteristics, the semicircular 

trajectory that typically appears in the EIS results shrinks in diameter as the battery’s dc 

bias current increases.  For a lithium-based battery, the nonlinearity introduced by the 

Butler-Volmer relationship is more pronounced at low temperature, while lead-acid 

batteries typically exhibit this nonlinearity even at room temperature.   The impact of dc 

bias current on the battery model and EIS characteristics are thoroughly investigated 

using a combination of experimental tests combined with theoretical justification based 

on the Arrhenius equation.  The results obtained in this section are consistent with the 

results in other parts of the thesis using time domain signals, namely that lithium based 

batteries show Butler-Volmer behavior at low temperatures while the lead-acid battery 

demonstrates the Butler-Volmer behavior at both normal and low temperatures.  The 

nonlinearity in the electrode voltage/current relationship described by the Butler-Volmer 

equation (3.1.1) requires that the impact of changing dc bias currents must be accurately 

reflected in the battery model in order to insure the model’s usefulness. 

Figure 5.59 illustrates a battery equivalent circuit model using RC circuits.  The 

measured EIS impedance plot in Figure 5.60 has been obtained from the CALB battery at 

90% SOC. 
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Figure 5.59 Battery linear equivalent circuit model 

 
Figure 5.60 EIS results with identification of the key frequency regions 

 

The battery model in Figure 5.59 can be partitioned into 5 sections that influence 

different frequency ranges.  The series inductor L is responsible for determining the 

model’s high-frequency characteristics.  The value of R0 can be determined from the EIS 

results as the resistance value where the impedance trajectory crosses the x-axis (i.e., zero 

imaginary impedance), corresponding to the resonant frequency of the equivalent circuit. 

The next feature in the EIS trajectory is the semi-circle to the right of the R0 value 

associated with very low frequencies that is generated by the interaction of the electrode 
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charge transfer resistance Rct and the double-layer capacitance Cdl.  This capacitance Cdl 

has often been modeled as a nonlinear CPE component.  This investigation is not 

concerned with the details of this capacitor model and focuses instead on analyzing the 

resistive components.   

The second parallel RC combination in the model represents the ion diffusion 

phenomenon that is responsible for the portion of EIS trajectory to the right of the charge 

transfer semicircle in Figure 5.60, often producing a tail-like feature in the impedance 

plot.  The final model component is the open-circuit voltage source vocv.  The value of 

vocv cannot be obtained via EIS but is dependent on SOC and strongly affects the low-

frequency impedance when dc bias currents are applied.  Sub-hertz frequency data points 

have been avoided in this investigation because the SOC changes too much for large dc 

bias currents during the time it takes to make such low frequency measurements. 

In 5.1.1, the pure resistance R0 was modeled as a function of temperature by the 

Arrhenius equation and showed an increase in value as the temperature drops.  

Correspondingly, as the temperature drops the EIS results are expected to shift towards 

right to reflect this increase in resistance.  The charge transfer resistance Rct is modeled 

as a function of temperature and current, i.e. as in the generic cell model.  These 

temperature dependent functions of resistance and overpotential are repeated here for 

reference. 

r0 = 
1
k = 

1
Aexp







Ea

RT   (5.9.1) 
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2i0
             (5.9.2) 
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
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From (5.9.2), the charge transfer resistance Rct can be derived by using Ohm’s law.  

Rct = 
η
i  = 

RuT
iFα  sinh-1







i

2i0
              (5.9.4) 

 

 The 100Ah CALB LiFePO4 cell and a 55Ah, 12V Optima D34M lead-acid 

battery were used in the experiments in this section.  All EIS results have been obtained 

at frequencies from 1 Hz to 10 kHz at 90% SOC with an hour of rest preceding each EIS 

frequency sweep measurement. 

EIS tests without a dc bias current were first performed on the lead-acid battery 

for various temperatures.  The measured results are shown in Figure 5.61, where the 

spectra exhibit expansion of the semi-circle as the temperature decreases.  The expansion 

of the semi-circle at low temperatures indicates that the impedance and time constants are 

increasing as the temperature drops.  Similarly, the measured EIS results for the LiFePO4 

cell shown in Figure 5.62 also demonstrate an enlarged semi-circle at low temperatures. 

 
Figure 5.61 Measured Optima lead-acid battery EIS results,  

-100 to 250C 
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Figure 5.62 Measured CALB LiFePO4 60 Ah battery EIS results,  

-100C to 250C 
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Figure 5.63 Measured CALB LiFePO4 series resistances R0 at different temperatures and 

fitted with the Arrhenius equation using (5.9.1) 
 

Both batteries were next subjected to EIS with a dc bias current at two 

temperatures.  The dc bias current is applied to the cell continuously while the ac 

excitation steps through a range of frequencies for the impedance measurements.  This 

method has the disadvantage of changing the SOC during the measurement resulting in 

vocv dropping slightly because of the discharging dc bias current.  Due to this constraint, 

impedance spectroscopy was not performed for frequencies below 1 Hz where the SOC 

changes too much during the time required to take the measurement. 
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Figure 5.64 Measured CALB LiFePO4 cell 
EIS results  

for 7 dc bias currents at 250C   

Figure 5.65 Measured CALB LiFePO4 cell 
EIS results  

for 7 dc bias currents at 00C   

 

For the LiFePO4 cell, Figure 5.64 shows the EIS results for different dc bias 

current magnitudes, indicated as a C rate, at 25oC.  It can be observed that the spectra are 

similar to one another, and the semi-circle retains much of its size and shape as the dc 

bias current increases.  In contrast, Figure 5.65 demonstrates that, for the 0oC condition, 

the semi-circle clearly shrinks as the dc bias current increases.  This is significant since it 

can be shown that the diameter of the semi-circle ideally equals the charge transfer 

resistance Rct.  
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Closer examination reveals that the shrinking of the semi-circle can be attributed 

to the Butler-Volmer and Arrhenius equations that give rise to (5.9.3) and (5.9.4).  More 

specifically, lower temperature decreases the value of i0 calculated using (5.9.3) and 

causes the dependence of Rct in (5.9.4) on dc bias current to be more prominent.  Since 

the right-side terminus points of the EIS trajectories in Figure 5.64 and Figure 5.65 

(corresponding to 1 Hz) approach the x-axis (i.e., zero reactive impedance) for the 

majority of the test results appearing in these two figures, the value of Rct can be 

approximately estimated by subtracting R0 (the x-axis intercept of each EIS trajectory) 

from the value of real impedance measured at 1 Hz. 

 
Figure 5.66 Measured Optima D34M lead-acid battery EIS results  

for 3 dc bias currents at 250C   
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Figure 5.67 Measured Optima D34M lead-acid battery EIS results  

for 3 dc bias currents at 00C   

 

For the lead-acid battery, Figure 5.66 and Figure 5.67 also show the EIS results 

with different dc bias currents at two temperatures.  It is observed that, at both 

temperatures, the dc bias influence on the semi-circle’s shape is prominent.   It can also 

be noted that the EIS results for 0oC show an increase in R0, similar to the results for 

LiFePO4 cell.  Overall both types of chemistries exhibit results expected.   

2 4 6 8 10 12

-4

-2

0

2

4

6

8

10

12

real impedance [mOhms]

im
ag

in
ar

y 
im

pe
da

nc
e 

[m
O

hm
s]

0C 
(0Adc) 

10Hz 1Hz 

10kHz 

100Hz 

1kHz 

1C 
(55Adc) 

0.5C 
(27.5Adc) 



194 

C
ha

rg
e 

T
ra

ns
fe

r 
R

es
is

ta
nc

e 
[m

Ω
] 

0 50 100 150 200
0

0.5

1

1.5

2

 

 

Fit at 00C

R
ct
 at 00 C

Fit at 250C

R
ct
 at 250C

 
 DC Current [Amps] 

Figure 5.68 CALB LiFePO4 charge transfer resistance Rct for 00C and 250C and their 
respective fitted curves with (5.9.4) 
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Figure 5.69 Optima lead-acid D34M charge transfer resistance Rct for 00C and 250C and 
fitted curves using solid lines based on (5.9.4) 

 

In Figure 5.68, the Rct values extracted from the measured EIS trajectories for the 

LiFePO4 cell are plotted for the different temperatures and dc bias currents.  As expected, 
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the significant drop in the value of Rct as the dc bias current increases for the 0oC 

condition is clearly visible, while the corresponding curve for 25oC exhibits a nearly 

constant value of Rct.  Again, this behavior is predicted by the Butler-Volmer relationship 

in (5.9.2) and (5.9.4). 

Using the same techniques as used for the LiFePO4 cell, the measured value of Rct 

as a function of the dc bias current for the lead-acid battery can also be plotted.  Figure 

5.69 shows the resulting plot of Rct vs. dc bias current.  The plotted curves exhibit 

similarities to the corresponding Rct curves for LiFePO4 cells in Figure 5.68, although the 

value of Rct varies more at 250C for the lead-acid battery than for the LiFePO4 

counterpart.  The two curves in Figure 5.69 show that the impact of the nonlinear Butler-

Volmer equation is significant at both 250C and 0oC for the lead-acid battery, consistent 

with the findings in chapter three. 
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Figure 5.70 Measured CALB LiFePO4 EIS results with and without a wait period 
between frequency data points for no dc bias current and 1 C dc bias current conditions 
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Figure 5.71 Measured Optima lead-acid D34M EIS results with and without a wait period 
between frequency data points for no dc bias current and 1 C dc bias current conditions 

 

In [28], it was discovered that the amplitude of the ac current excitation used can 

have an impact on the EIS results at low temperature, with a higher RMS value leading to 

a smaller semicircle.  This effect was attributed to higher internal losses leading to a 

higher internal temperature.  In order to investigate whether the shifting of the spectra in 

Figure 5.65 can be attributed solely to internal heating, the LiFePO4 cell has been 

subjected to EIS testing, at 00C ambient, with and without a 10-minute wait period 

between frequency data points for no dc bias current and 1C dc bias current conditions.  

Figure 5.70 shows that the impedance is higher with wait periods between data points, 

demonstrating that internal cell heating does influence the cell impedance.  However, 

Figure 5.70 also shows that, even with the wait periods, the effect of dc bias current on 

the impedance characteristics is clearly visible, indicating that internal heating is not 

sufficient to explain the battery impedance changes that are observed.  The same 
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phenomena are also observed for the lead-acid battery in Figure 5.71, where both the 

impact of cooling by waiting and the dc bias current effects can be observed. 

In this section, the Butler-Volmer behavior and its temperature dependence have 

been explored using EIS with dc current biases.  EIS’s emphasis on the frequency domain 

makes it possible to observe that, in addition to temperature’s influence on the steady-

state Butler-Volmer behavior, temperature also changes the size of the double-layer 

capacitance semi-circle.  This means that the transient behavior, i.e., time constant, of the 

battery is influenced by temperature and the current magnitude.  This phenomenon 

remains to be modeled in the time domain, and a suitable approach has not yet been 

reported in the literature. 

5.10 Summary 

This chapter presents a unifying battery modeling approach that varies the cell 

resistance and electrode overpotential as functions of temperature.  Experimental results 

are used to build confidence in the model, demonstrating that use of the Butler-Volmer 

relationship yields more accurate voltage predictions than the linear model for LiFePO4 

cells at lower temperatures (00C and below).   

Using nonlinear regression, a method has been proposed to construct a generic 

cell model that explicitly uses temperature as an input for resistance and overpotential.  

This temperature-dependent model is better suited for predicting the lithium battery cell 

behavior at low temperatures than the baseline linear model.  In addition, this generic cell 

model also makes it possible to carry out offline simulations that can achieve accurate 

battery behavior modeling under various temperatures.   
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The generic cell model has also been adopted for Kalman filtering in order to 

monitor battery performance online, i.e., SOF and SOC.  An SOC estimation method 

based on the generic cell model has been proposed that exhibits strong promise with its 

3.8% standard error performance.  This sophisticated SOC estimation takes into account 

aging, temperature, and current dyanimics.  For a lead-acid battery, it was shown that this 

same modeling approach is successful for drive cycles without regenerate braking. 

Finally, a frequency-domain approach using EIS has been adopted to verify the 

findings on battery temperature-dependent behavior, and the results corroborate the data 

collected using time-domain methods such as HPPC and drive cycle tests.  It has been 

pointed out that this generic cell approach serves as a good starting point for modeling 

different battery chemistries, but care must be taken to observe any discrepancy between 

model and data, e.g., the charging behavior of the lead-acid battery.  Furthermore, the 

location at which the temperature is measured will influence the results of the modeling 

approach introduced in this chapter.  
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Chapter 6 
6 Design of Experiment for 

Superimposed AC 
Waveform’s Influence on 

Battery Aging Based on 
Resistance Growth 

 

This chapter investigates the aging influence of a superimposed AC waveform on 

discharge current for lithium-ion batteries.  Based on the results of two experiments, the 

discharge current RMS value is determined to be a significant aging factor, while 

evidence does not support the importance of the DC current value, waveform shape, or 

frequency on the battery aging characteristics.  The practical significance of this result 

lies in recognizing its importance for properly choosing capacitor values for filtering the 

battery pack terminal current, perhaps making an argument for implementing the filter 

using an electrochemical ultracapacitor.   

Furthermore, a quantitative analysis is provided for numerically determining the 

aging effect of the RMS factor.  Such a methodology can provide a useful filter design 

guideline for power electronics engineers.  The design of experiment and associated 

analyses proposed in this chapter can also be adopted for the investigation of other 

battery aging factors of interest. 

6.1 Interest in Superimposed AC Waveform’s Influence on Aging 

Due to the limitations in cycling life and the associated vehicle warranty issue, 

understanding of lithium-ion battery’s aging process has become an important research 
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topic.   As discussed in 2.7.1 mechanisms cited for aging include the following: 

electrolyte decomposition leading to solid-electrolyte interface (SEI) layer buildup, 

solvent co-intercalation and subsequent cracking of formation in electrode, change in 

electrode volume and surface area due to SEI layer growth, and current collector 

corrosion.  The consensus in the literature suggests the growth of SEI layer can lead to an 

increase in resistance, resulting in cell power fade and a decrease in capacity due to the 

loss of active materials.  The capacity and resistance of a lithium battery throughout its 

aging thus have a negative correlation.   Due to their measurability and direct influence 

on battery performance, both resistance and capacity have been used as metrics for 

battery aging.  

In the literature, some efforts are made to discern if certain factors are influential 

on battery aging rate.  In [98], several factors and their joint cross coupling effect were 

studied; it is claimed that effects including temperature, end of discharge voltage, and 

charging voltage are significant, as well as their cross-coupling effects.  The temperature 

influence on aging is indeed well documented throughout the literature. 

One interesting factor in battery aging is the superimposed AC waveform.  The 

literature has many examples of indirect proof for superimposed AC waveform being 

important for battery aging rate, see the discussion in 2.7.4.  If superimposed AC 

waveforms are irrelevant to aging, the sizing of the capacitor may be reduced for cost 

benefits.  If these AC waveforms are significant to aging, a quantitative metric for 

balancing between the right amount of filtering and cost would be important. 

In this chapter an experiment is conducted focusing on determining if a 

superimposed AC waveform in the discharge current leads to more aging.  If so, is the 
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additional aging resulting from the higher root mean square (RMS) value in the discharge 

current or simply from the swinging of the waveform?  Having found in the experiment 

that the higher RMS value leads to higher aging, we conducted a second experiment to 

determine if different waveforms and frequencies have an impact on aging besides the 

RMS value.  Finally, the data of the first and second experiments are used together to 

statistically determine the growth of resistance as a function of RMS and show that the 

DC value of the discharge waveform is far less important than the RMS value in 

influencing aging.   

6.2 Experimental Details for the First Experiment    

The experiment was conducted using ICR14500NM cells rated at 760 [mAh] 

from HYB Battery.  These cells use lithium cobalt oxide as their cathode material 

according to the vendor.  The test stand specification is briefly discussed here, and the 

interested reader is referred to [26] for more details.  The test stand consists of 16 

channels housed in two enclosures, eight channels each.  A LabVIEW® program running 

on two National Instruments PXI units controls the two enclosures.  Figure 6.1 shows the 

test stand system level diagram [26]. 
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Figure 6.1 Test stand system level diagram [26] 
 

A wire harness connects a cell to each channel, providing pathways for the main 

current loop and sensing for voltage, current, and temperature.  The charging of the cell is 

performed by a circuit that implements the constant current, constant voltage algorithm.  

The cell discharge is performed by another separate feedback circuit made of a BJT and 

an Op-Amp, able to scale arbitrary discharge current commands given by the PXI unit.  

The discharge circuit allows various discharge waveforms and electrochemical 

impedance spectroscopy (EIS) at a DC current offset.  Additionally, a heat chamber is 

available, and throughout testing the cells were maintained at 300C. 

In the first experiment, the goal is to determine whether a superimposed AC 

component on a DC discharge current will have a significant difference in aging.  If so, 

does the effect come from the additional RMS value or the AC swing itself?  Three 

discharging waveforms were designed for answering these questions.  They are listed in 

Table 6.1.  The units are all in milliamps [mA].  
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Table 6.1 Treatments summary for the first experiment 
 Waveform [mA] RMS  DC AC 

AC-905 i = 600*sin(2*π*20*t) + 800 905 800 600*sin(2*π*20*t) 
DC-800 i = 800 800 800 0 
DC-905 i = 905 905 905 0 

 

For the treatment AC-905, the 800 [mA] discharge waveform is superimposed by 

a 20 Hz, 600 [mA] peak sinusoidal waveform.  The resulting RMS value of the waveform 

is 905 [mA].  The selection of 20 Hz was due to this frequency’s proximity to the 

location of the peak of the EIS semicircle for this particular cell, which might enhance 

aging effect.  However, our later results suggest frequency is largely irrelevant for aging.  

As seen in Table 6.1, for each of the three attributes, RMS, DC, and AC, two treatments 

have the same value and one is different.  Thus if RMS value is an important aging 

factor, we would expect to see treatments AC-905 and DC-905 show the same aging 

characteristic while DC-800 differs from the other two.  The same logic applies to the 

other two attributes, DC offset and the presence of AC signal.  In this experiment, 8 cells 

were assigned to the superimposed AC waveform, while treatments DC-800 and DC-905 

were assigned 4 cells each.  The reason behind this distribution was that the experiment 

focused on the superimposed AC waveform, and the statistical resolution is better with 

more cells assigned.     

 The reference performance tests (RPT’s) designed to extract aging information 

were conducted in the following fashion.  The RPT consists of both EIS and capacity test.  

The EIS was performed twice: once at fully charge condition (100% SOC) and once at 

fully discharged (0% SOC) condition as determined by a cut-off voltage.  The capacity 

test was performed with an 800 [mA] discharge from the fully charge condition.  We 

found that the capacity test did not yield statistically significant results and this paper will 
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focus on the aging results as determined by the resistance value.  The resistance value is 

the real impedance of the point where the imaginary impedance is zero. This value can be 

linearly extrapolated from the EIS results using the two data points straddling zero 

imaginary impedance, as shown in Figure 6.2. 

 

Figure 6.2 EIS results for one cell at 100% SOC and 0% SOC conditions 
 

The cycling procedure was conducted in the following fashion.  The RPT’s were 

performed before any cycling.  Each cell was then cycled 30 times with a discharge of the 

prescribed waveform for 3000 seconds and a full charge.  The RPT’s were repeated at the 

end of the 30th cycle, and the sequence repeats until 300 cycles were performed.  The test 

sequence is illustrated in Figure 6.3. 

Pure Resistance 
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Figure 6.3 Test sequence schedule 
 

6.3 Analyses and Results for the First Experiment 

In this section the statistical analyses are introduced to discern if the differences 

between the three test groups are significant statistically.  The results are used to make 

inferences about which aging attribute in Table 6.1 is the most important.  The raw data 

from the first experiment are shown in Figure 6.4 and Figure 6.5, for 0% SOC and 100% 

SOC conditions respectively.  The aging metric on the y-axis is the resistance value, R, 

defined in the previous section.  In Figure 6.4 and Figure 6.5, the normalized cycle Z is 

defined as (6.3.1).  

Z = 
C – C–

ΔC   (6.3.1) 

 

In (6.3.1), C is the cycle numbers i.e. 30, 60, …, 300, C–  is the average of the cycle 

numbers, i.e. 165, and ΔC is the interval cycles 30.   

Number of Cycles 

RPT 0 

RPT 1 

RPT 2 

RPT 3 

Cycling 3 

Cycling 2 

Cycling 1 
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Figure 6.4 R value progression for cells in the first experiment at 0% SOC 
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Figure 6.5 R value progression for cells in the first experiment at 100% SOC 

 

The statistical model adopted for the analysis is written from (6.3.3) to (6.3.4). 

Rij = β̂0 +  β̂1Ri0 +  β̂2X1j + … + β̂17X16j  + εij  (6.3.2) 

Xkj = Zjδ(i – k)  (6.3.3) 
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Zj = 
Cj – C–

ΔC  (6.3.4) 

 

In (6.3.2), Rij is the resistance of ith battery and jth EIS measurement.  Ri0 is the initial 

resistance measurement for the ith battery.  In (6.3.3), Xkj is defined as the predictor value 

for kth battery and jth measurement, and δ is the Kronecker delta function.  Thus Xkj has a 

value of zero when i ≠ k, and takes the value of the normalized cycle Zj when i = k.   This 

statistical model assumes an offset term, β̂0, shared by all cells.  Contrary to the popular 

approach of normalizing aging metrics against cell manufacturing differences by dividing 

by initial values, this model adopts the analysis of covariance (ANCOVA) approach by 

including the initial values as one of the predictor terms.  Interested reader can find a 

complete treatment for ANCOVA in [133].  One benefit of this approach compared with 

the normalizing method is the retention of the physical unit.  The rest of the 16 predictor 

terms correspond to the normalized cycles for each of the cells, and their coefficients, β̂2 

to β̂17 , are the cells’ estimated rates of resistance increase in 






Ohms

30 cycles .  The 

coefficients in (6.3.2) are estimated using least square error method.  It is noted here that 

due to the transformation of the cycles in (6.3.4), the covariance matrix resulting from the 

estimation has no covariance terms between any of the estimated coefficients from β̂2 to 

β̂17 and these estimated coefficients have the same variance.  Thus the rates of resistance 

increase are estimated with the smallest variance possible, i.e. optimal for statistical 

inference. 
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Since the coefficients are estimated with data with random error, the estimated 

coefficients can be considered as random variables themselves.  As each battery has its 

estimated slope, each treatment group’s average estimated slope and its variance can be 

found as (6.3.5) and (6.3.6) respectively.  In (6.3.5) and (6.3.6), it is assumed that there 

are n cells in this group. 

β̂avg = 


 

βi
^

n  
(6.3.5) 

Var



β̂avg  = 

Var



β̂i

n  (6.3.6) 

 

Our objective here is to determine whether two groups’ mean estimated slopes are 

statistically the same; or equivalently whether the difference between the two groups can 

be attributed to noise alone.  The null hypothesis that there is no difference between two 

groups’ mean estimated slopes can be tested with Student’s t-statistic, which is given in 

(6.3.7).  If there is no difference between two groups, the t-statistic in (6.3.7) will tend 

towards zero. 

t = 
β̂avg1 – β̂avg2

Var



β̂avg1  + Var



β̂avg2

 (6.3.7) 

 

In the analysis of our first experiment, the degrees of freedom for the error are 142 since 

there are 160 data points and 18 terms in the regression model.  The t-statistic is therefore 

distributed with a t-distribution of 142 degrees of freedom under the null hypothesis, and 

the probability for observing a value equal or greater in magnitude than the calculated t-

statistic under null hypothesis (p-value) can be found using the t-distribution. 
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Table 6.2 Average estimated slope of each group for the 0% SOC condition in the first 
experiment 

 
β̂avg 

Std. Dev. 

AC-905 3.5e-3 1.7e-4 
DC-800 2.9e-3 2.5e-4 
DC-905 3.6e-3 2.5e-4 

 

Table 6.3 Average estimated slope of each group for the 100% SOC condition in the first 
experiment 

 
β̂avg 

Std. Dev. 

AC-905 2.7e-3 1.4e-4 
DC-800 2.2e-3 2.0e-4 
DC-905 2.6e-3 2.0e-4 

 

In Table 6.2 and Table 6.3, the groups’ average estimated slopes and their standard 

deviations are provided.  It is noted that the standard deviation of the AC-905 group is 

smaller because 8 cells were assigned to it instead of the 4 for the other two groups. The 

t-statistics for the group comparisons are listed in Table 6.4 and Table 6.5. 

Table 6.4 t-statistics and p-values for the 0% SOC condition in the first experiment 
 t-statistic p-value 

AC-905 vs. DC-800 1.91 5.81 % 
DC-905 vs. DC-800 2.01 4.63 % 
AC-905 vs. DC-905 0.41 68.24 % 

 

Table 6.5 t-statistics and p-values for the 100% SOC condition in the first experiment 
 t-statistic p-value 

AC-905 vs. DC-800 1.84 6.79 % 
DC-905 vs. DC-800 1.44 15.21 % 
AC-905 vs. DC-905 0.17 86.53 % 

 

From Table 6.4 and Table 6.5, it is observed that the AC-905 group and DC-905 group 

seem to have about the same aging rate while the DC-800 group has a noticeably slower 

aging rate as reflected by the t-statistics that compare the DC-800 group to the others.   
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Figure 6.6 Corrected R value progression for every cell and group averaged fitted model 
at 0% SOC in the first experiment 
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Figure 6.7 Corrected R value progression for every cell and group averaged fitted model 

at 100% SOC in the first experiment 
 

 In Figure 6.6 and Figure 6.7, the R values corrected for the initial conditions are 

plotted on the y-axis, i.e. Rij – β̂1Ri0.  Additionally, each group’s average model was also 



211 

plotted for a visual comparison, i.e. β̂0  +  β̂avgZ.  In both the 0% and 100% SOC cases, 

the graphs demonstrate visually the difference in slopes between the groups with 905 

[mA] RMS waveforms and the group with 800 [mA] RMS.  Instead of visually inferring 

differences/similarities between regressed lines, the probabilistic approach provides a 

guideline for determining whether the null hypothesis of no difference is significantly in 

doubt, leading to the alternative hypothesis that there exists a difference. 

 With the results demonstrated so far, a few remarks can be made.  The first is that 

battery aging seems to be related to RMS value of the discharge waveform instead of the 

DC value.  Since each waveform lasts exactly 3000 seconds per cycle, the AC-905 group 

discharges the same amount of Ah as DC-800 every cycle while suffers the same aging 

rate as DC-905.  This result shows the importance of adequate filtering to reduce 

unnecessary battery aging in operation.  It is also pointed out here that the usual 5% rule 

for statistical inference, i.e. rejecting the null hypothesis when p-value is below 5%, has 

been used with considerations.  If we were to follow the rule with strictness, paradoxes 

would develop.  For example with a strict interpretation of the rule, in Table 6.4 AC-905 

vs. DC-800 and AC-905 vs. DC-905 would not have been considered as statistically 

different but DC-905 vs. DC-800 would have been.  Additionally, the two sets of data at 

different SOC’s provide some assurance due to their qualitative agreement to the 

conclusion drawn above.  Noting the relative high p-values, a second experiment was 

proposed to confirm the conclusion as well as answering a couple additional questions.      

6.4 Experimental Details and Results for the Second Experiment 

The objectives of the second experiment are the following: 1) Confirmation of the 

influence of RMS value on battery aging, 2) Investigation on possible influence of 
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waveform shape on aging, 3) Investigation on possible influence of frequency on aging, 

4) Quantitative analysis of RMS influence for battery aging, and 5) The incorporation of 

data from the first experiment. 

The second experiment involved sixteen cells with the same cycling schedule as 

in Figure 6.3, lasting 300 cycles exactly like the first experiment.  This experiment is 

separated into four treatment groups, as seen in Table 6.6. 

Table 6.6 Treatments summary for the second experiment 
 Waveform [mA] RMS  DC AC 

S-807-20Hz 800 + 105*square(20Hz) 807 800 105*square(20Hz) 
S-807-1000Hz 800 + 105*square(1000Hz) 807 800 105*square(1000Hz) 

S-703-20Hz 695 + 105*square(20Hz) 703 695 105*square(20Hz) 
S-703-1000Hz 695 + 105*square(1000Hz) 703 695 105*square(1000Hz) 
 

Each treatment had four cells assigned to it.  However, due to hardware difficulty one 

channel assigned to the group S-703-20Hz was terminated right after the experiment had 

begun. 

Due to the structure of the statistical model in (6.3.2), the data collected during 

the second experiment can be combined with that of the first.  The new model is rewritten 

as (6.4.1).  The number of data points is now 310 instead of 160, and the number of 

coefficients involved is 33 instead of 18. 

Rij = β̂0 +  β̂1Ri0 +  β̂2X1j + … + β̂32X31j  + εij  (6.4.1) 

 

It is noted here that with the combined data and the additional 15 terms, the estimated 

slopes for the first experiment’s 16 cells, β̂2 to β̂17, take the same numerical values in 

(6.4.1) as in (6.3.2).  The estimated slopes for the last 15 cells, β̂18 to β̂32, along with 

other coefficients can also be found through linear regression. 
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To determine if frequency is an important factor in influencing aging, the estimated 

slopes for the second experiment are grouped into those at 20 Hz and those with at 1000 

Hz.  The statistical inference procedure as specified from (5) to (7) is applied to the data.  

The average slopes and standard deviations for the two frequency groups are shown in 

Table 6.7 and Table 6.8. 

Table 6.7 Average estimated slopes of two frequency groups for the 0% SOC condition 
in the second experiment 

 t-statistic p-value 
20 Hz (7 cells) 2.7e-3 2.0e-4 

1000 Hz (8 cells) 2.5e-3 1.8e-4 
 

Table 6.8 Average estimated slopes of two frequency groups for the 100% SOC condition 
in the second experiment 

 t-statistic p-value 
20 Hz (7 cells) 2.1e-3 1.5e-4 

1000 Hz (8 cells) 1.9e-3 1.4e-4 
 

Table 6.9 and Table 6.10 show the t-statistics and p-values for the frequency comparison 

for 0% and 100% SOC conditions respectively.  Neither SOC condition data indicate any 

evidence for frequency being an important aging factor.  Additionally, when considering 

the results for AC-905 vs. DC-905 in the first experiment, the DC waveform can also be 

considered as an AC signal with a zero frequency.  Thus between 0 Hz and 20 Hz sine 

waves, a significant difference is also not observed.  The analysis for the rest of the paper 

will drop the distinction in frequency.  Figure 6.8 and Figure 6.9 show the graphical 

results for the frequency comparison. 

Table 6.9 t-statistic and p-value for the frequency groups’ comparison at 0% SOC 
condition in the second experiment 

 t-statistic p-value 
20 Hz vs. 1000 Hz 0.96 33.59 % 
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Table 6.10 t-statistic and p-value for the frequency groups’ comparison at 100% SOC 
condition in the second experiment 

 t-statistic p-value 
20 Hz vs. 1000 Hz 0.99 26.90 % 
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Figure 6.8 Frequency groups’ corrected R value progression and averaged fitted models 
at 0% SOC for the second experiment 
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Figure 6.9 Frequency groups’ corrected R value progression and averaged fitted models 

at 100% SOC for the second experiment 
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It is noted that by the hypothesis obtained through the first experiment, one should 

expect the aging rate obtained in S-807 should be very similar to DC-800 while these two 

should have a higher aging rate against S-703.  The results from regressing (6.4.1) allows 

for the confirmation of this hypothesis.  Table 6.11 and Table 6.12 show the average 

estimated slopes for the three groups in discussion, and Table 6.13 and Table 6.14 show 

the t-statistics and p-values for the three groups’ comparisons. 

Table 6.11 Average estimated slopes of S-807, DC-800, S-703 for the 0% SOC condition 
 

β̂avg 
Std. Dev. 

S-807 3.1e-3 1.8e-4 
DC-800 2.9e-3 2.6e-4 
S-703 2.0e-3 2.0e-4 

 

Table 6.12 Average estimated slopes of S-807, DC-800, S-703 for the 100% SOC 
condition 

 
β̂avg 

Std. Dev. 

S-807 2.3e-3 1.4e-4 
DC-800 2.2e-3 2.0e-4 
S-703 1.6e-3 1.5e-4 

 

Table 6.13 t-statistics and p-values for S-807, DC-800, S-703 comparisons at the 0% 
SOC condition  

 t-statistic p-value 
S-807 vs. DC-800 0.65 51.62 % 
S-807 vs. S-703 4.09 < 0.01 % 

DC-800 vs. S-703 2.75 0.64 % 
 

Table 6.14 t-statistics and p-values for S-807, DC-800, S-703 comparisons at the 100% 
SOC condition 

 t-statistic p-value 
S-807 vs. DC-800 0.47 63.87 % 
S-807 vs. S-703 3.47 0.06 % 

DC-800 vs. S-703 2.41 1.66 % 
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It is seen in Table 6.13 and Table 6.14 that the hypothesis from the first experiment holds 

quite well.  Namely, RMS value noticeably influences the aging rate.  By virtue of having 

the second experiment reproducing similar results, the strength of the hypothesis is more 

assured.  It is also observed that despite the difference in waveform shape S-807 and DC-

800 are considered statistically similar in aging rate.  This observation, along with the 

previous observation that DC-905 and AC-905 had a similar aging rate, suggest 

waveform shape is not an important aging factor.  Figures 7a and 7b show the graphical 

results of the three groups’ comparisons. 

-5 -4 -3 -2 -1 0 1 2 3 4 5
90

100

110

120

130

140

150

Normalized Cycles [/]

C
o
rr

e
c
te

d
 R

 a
t 
0
%

 S
O

C
 [
m

O
h
m

s
]

 

 

S-807 Data

S-703 Data

DC-800 Data

S-807 Avg.

S-703 Avg.

DC-800 Avg.

 

Figure 6.10 S-807, DC-800, S-703’s  corrected R value progression and averaged  fitted 
models at 0% SOC 
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Figure 6.11 S-807, DC-800, S-703’s  corrected R value progression and averaged fitted 

models at 100% SOC 
 

6.5 Analysis for Quantification of RMS Effect on Battery Aging 

So far the analyses for the second experiment data show that frequency and 

waveform differences are secondary in aging influence compared with the RMS value of 

the waveform.  The attention is now turned to constructing a quantitative aging model for 

resistance growth using RMS as an input.  This quantitative analysis is performed using a 

different model than (6.4.1).  The statistical model is adopted as in (6.5.1) and (6.5.2). 

dRij = Rij – Rij-1  (6.5.1) 

dRij = b̂0 +  b̂1RMSi +  b̂2QRMSi + b̂3DCi  + εij  (6.5.2) 

 

In (6.5.1), the jth resistance growth for the ith battery, dRij , is the difference 

between jth and j-1th resistance measurement.  These 310 values are used as the output for 

the regression model in (6.5.2).  Notice that from Tables 1 and 6 that the prescribed 
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discharged waveforms are roughly divided into three levels, 700, 800, and 900 [mA].  

Taking advantage of the consistent intervals, the predictors in (6.5.2) are transformed into 

polynomials.  Specifically, for the DC and RMS predictors, the values are coded with -1 

for 700, 0 for 800, and 1 for 900 [mA].  For the QRMS predictor that represents the 

quadratic component of the RMS influence, the values are coded with 1 for 700, -2 for 

800, and 1 for 900 [mA].  The regression summaries for both 0% SOC and 100% SOC 

data are shown in Table 6.15 and Table 6.16.  

Table 6.15 Regression summary table for (6.5.2) with 0% SOC data 
 Estimate Std. dev. t-statistic p-value 

b̂0 3.2 e-3 1.1 e-4 30.52 < 0.01 % 

b̂1 6.1 e-4 2.2 e-4 2.81 0.53 % 

b̂2 -9.4 e-5 6.6 e-5 -1.44 15.13 % 

b̂3 2.1 e-4 2.8 e-4 0.75 45.35 % 

 

Table 6.16 Regression summary table for (6.5.2) with 100% SOC data 
 Estimate Std. dev. t-statistic p-value 

b̂0 2.5e-3 9.7e-5 25.71 < 0.01 % 

b̂1 5.1e-4 2.0e-4 2.53 1.2 % 

b̂2 -7.0e-5 6.0e-5 -1.17 24.3 % 

b̂3 -3.1e-5 2.6e-4 -0.12 90.4 % 

 

The model in (6.5.2) provides a direct comparison between the explanatory powers of DC 

and RMS predictor.  From Table 6.15 and Table 6.16, it can be observed that the 

explanatory power of the DC predictor is weak in the presence of the RMS predictor, as 

reflected by the low t-statistics and high p-values, which indicates a high probability of 

being the estimated parameter being zero under the null hypothesis.  To complete the 
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quantitative analysis of the RMS influence, the DC term is now dropped from the model 

in (6.5.3). 

dRij = b̂0 +  b̂1RMSi +  b̂2QRMSi  + εij  (6.5.3) 

 

The resultant regression summary tables from (6.5.3) are shown in Table 6.17 and Table 

6.18. 

Table 6.17 Regression summary table for equation (6.5.3) with 0% SOC data 
 Estimate Std. dev. t-statistic p-value 

b̂0 3.2e-3 8.6e-5 37.34 < 0.01 % 

b̂1 7.6e-4 1.1e-4 6.87 < 0.01 % 

b̂2 -1.2e-4 5.8e-5 -2.05 4.12 % 

 

Table 6.18 Regression summary table for equation (6.5.3) with 100% SOC data 
 Estimate Std. dev. t-statistic p-value 

b̂0 2.5e-3 7.8e-5 32.03 < 0.01 % 

b̂1 4.8e-4 1.0e-4 4.83 < 0.01 % 

b̂2 -6.7e-5 5.3e-5 -1.27 20.50 % 

 

It is noted that the aging influence of the RMS quadratic component is not as strong as 

the linear component, but there is some evidence supporting its existence as seen in the 

relatively low p-value 4.12% for the b̂2 in Table 6.17.  In addition to the summary tables, 

the fitted values and the 95% prediction intervals for (6.5.3) with both sets of data are 

plotted in Figure 6.12 and Figure 6.13. 
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Figure 6.12 dR data and fitted model (6.5.3) with the 95% prediction interval for 0% 

SOC 
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Figure 6.13 dR data and fitted model (6.5.3) with the 95% prediction interval for 100% 

SOC 
 

From Figure 6.12 and Figure 6.13, it is noted that some values are quite off from 

the fitted value and the prediction interval, suggesting other mechanisms not taken into 

account in (6.5.3).  For example, when examining the data, it was found that the growth 
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of resistances from the RPT before cycling to the RPT after the first 30 cycles is much 

higher than the rest.  This phenomenon may suggest an activation mechanism not 

modeled in (6.5.3). 

The practical significance of the difference in aging caused by different RMS 

values can be illustrated in the following example.  Three hypothetical cells with 80 [mΩ] 

resistance at 0% SOC each undergoes 300 cycles of 700, 800, and 900 [mA] RMS with 

the length of 3000 seconds.  Based on the fitted results in Table 6.17, their expected 

values for 0% SOC resistance are 103, 114, 118 [mΩ], respectively.  If the cell open 

circuit voltage is assumed to be stable during aging, then the power capability of these 

three hypothetically aged cells at the end of the 300 cycles are 77.7%, 70.2%, and 67.8% 

of the original, respectively.  Thus by implementing proper filtering to lower the RMS 

value of the discharge cycle, the battery power capability can be better maintained.  

One emphasis for the statistical methods employed in this study is the rigorous 

inference on the significance of aging factors.  Instead of regressing with all possible 

predictor terms, this methodology takes the effort to investigate if the factor of interest is 

actually significant in the statistical sense.  This feature allows investigators to avoid 

confusion between a small regression coefficient of a significant factor and the random 

noise of a non-significant factor included in the model.  In order to achieve such rigor in 

inference,   the design of experiment and analyses are complementary parts to the same 

whole.  The design allows the analyses, while only analyses that adhere to statistical 

principles can achieve rigorous inference.  An example of the design permitting analyses 

is the employment of the waveforms with RMS value of 700 mA in the second 
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experiment.  It is possible to conduct the quantitative analysis only with the data from 

these waveforms, expanding the available data in terms of range of RMS value.    

Another critical issue is that sometimes a number of equally valid models can be 

applied, given a set of data various.  It is therefore preferable to determine the statistical 

model before the data become available, in order to avoid choosing a model for the sake 

of obtaining favorable results.  Employing the same statistical model as the first 

experiment, the second experiment’s data are incorporated with those of the first and 

provide results consistent with the first experiment’s conclusion.  This fact strengthens 

the main conclusion made in the study, namely that RMS value influences battery aging. 

6.6 Planned Aging Experiment for the New Wisconsin Energy 

Institute Battery Test Equipment 

The Wisconsin Energy Institute (WEI) received a $500,000 worth of battery test 

equipment donation from Johson Controls Inc in 2014.  The battery test equipment 

includes a suite of Diagtron cyclers, three thermal chambers, and other supporting tools 

such as a thermal camera and a resistance welder.  As of October 15, 2014, the equipment 

suite is pending on Madison Fire Department’s approval for its safety requirements.  

During the preliminary exam, a few ideas were proposed to continue the battery aging 

study using the new battery test equipment.  Since the equipment has not been 

commissioned in its final form, this work will not include the experimental results and 

only contain a detailed discussion on one planned experiment.   
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Figure 6.14 The Diagtron Cyclers in WEI 

 

The planned experiment seeks to address the following two issues: 1) investigate 

whether the regen operation will influence aging rate, 2) the interaction of RMS and 

temperature aging influences, and 3) confirmation of the RMS influence on aging.  The 

battery used in this experiment will be the Panasonic NCR18650PF nickel-manganese-

oxide, rated at 2.9 Ah and 3.6 V.   

The Digatron suite includes twelve channels rated at 18 V and 25 A.  These 

channels can be used to perform cell level experiments.  In addition, the 18 V rating 

allows the testing of three cells in series.  However, such a series connection represents 

an additional layer of complexity in statistical analysis. 

The particular experiment planned on the new equipment seeks to understand the 

influence of the regenerative braking on aging.  Specifically, three driving profiles have 

been selected as shown in Table 6.19.   
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Table 6.19 The proposed driving profiles for experiments aiming at understanding 
regenerative braking on aging  

Time DC Discharge Drive w/o Regen Drive w/ Regen 
1 s 2.9 A 3.69 A 4.26 A 
2 s 2.9 A 5.75 A 2.50 A 
3 s 2.9 A 0.41 A -1.26 A 
4 s 2.9 A 0 A 3.50 A 
5 s 2.9 A 4.65 A 5.50 A 

 

In Table 6.19, the three driving profiles have the same DC value while the two non-DC 

discharge drive cycles have the same RMS value, 3.7 A.  One of the drive cycles has a 

regenerative break component, while the other does not.  A summary of the proposed 

drive cycles’ properties is shown in Table 6.20.   

Table 6.20 Summary for the proposed driving profiles in Table 6.19 
 DC RMS Ripples Regenerative 

braking 
DC Discharge 2.9 A 2.9 A - - 

Drive w/o 
Regen 

2.9 A 3.7 A + - 

Drive w/ Regen 2.9 A 3.7 A + + 
 

It is observed in Table 6.20 that the comparison of cells’ aging performance under the 

three driving cycles can answer whether regenerative braking and RMS value are 

influential in battery aging.  Figure 6.15 illustrates the proposed three driving cycles.          
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Figure 6.15 The proposed driving profiles for experiments aiming at understanding 

regenerative braking on aging 
 

In addition to the three driving cycles, two temperature conditions, 00C and 250C, 

are deployed in the experiment.  The twelve circuits can be split equally between two 

temperature conditions.  In the following analysis, it is assumed that the experiment is 

repeated once for added resolution, and the resulted number for cells tested is 72 (12 

circuits, 3 cells in series, and two experiments).  The circuits are equally distributed 

among the three discharge waveforms. 

As discussed earlier in this chapter, two aging characteristics can be obtained at 

RPT’s, the capacity and resistance.  The capacity for a single cell is impossible to obtain 

for the cells in series connection.  On the other hand, the resistance of a single cell can be 

found by applying a HPPC type pulse current and the measurement of individual cell 

voltage.  EIS is also an option for evaluating resistance at RPT’s.  However, the WEI 

equipment suite only has twelve channels of EIS, and frequency 

connection/disconnection of EIS on the cells is adverse for the consistency of resistance 
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data.  The following analysis assumes the resistances of the cells connected in series have 

been obtained in the two repeated sets of experiment. 

In 6.3, the experiment with one cell per circuit was analyzed with the following 

empirical model.  

Rij = β̂0 +  β̂1Ri0 +  β̂2X1j + … + β̂17X16j  + εij  (6.6.1) 

Xkj = Zjδ(i – k)  (6.6.2) 

Zj = 
Cj – C–

ΔC  (6.6.3) 

 

As explained in 6.3, Rij is the resistance of ith battery and jth EIS measurement.  Ri0 is the 

initial resistance measurement for the ith battery, and Xkj is defined as the predictor value 

for kth battery/circuit and jth measurement, and δ is the Kronecker delta function.  In this 

modeling approach, perculiar features unique to the circuit, as reflected on resistance 

measurements, are lumped together with the tested cell.  In the series connection setup, it 

is necessary to provide additional terms to take the circuits’ contribution to resistance 

measurements into account.  One possible scenario where this additional modeling is 

necessary could be biased error on the current control, which would cause all three cells 

in series to have an erroneous HPPC resistance. Taking the circuits’ contribution to 

resistance measurement can be accomplished by the following equation. 

Rijk = β̂0 +  β̂1Ri0 +  β̂2X1jk + … + β̂73X72jk  + Ûk + εijk, 
 

Ûk = 0 
(6.6.4) 

       

In (6.6.4), the subscript k now represents the kth circuit and Ûk is the constant term 

modeling the effect of the circuit on the resistance measurement.  In order to ensure the 
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matrix (XTX)-1 exists, i.e. predictor matrix X is full rank, the constraint 
 

Ûk = 0 is 

specified and implemented [133].  As in the previous model (6.6.1), β̂2 to β̂73 represent 

the estimated resistance growth slopes for individual cells.  These β̂'s are then grouped 

into their treatment groups to find the groups’ mean growth rates and variances for 

statistical inferences, as shown again in (6.6.5), (6.6.6), and (6.6.7).    

β̂avg = 


 

βi
^

n  
(6.6.5) 

Var



β̂avg  = 

Var



β̂i

n  (6.6.6) 

t = 
β̂avg1 – β̂avg2

Var



β̂avg1  + Var



β̂avg2

 (6.6.7) 

        

Additionally, the temperature and RMS influences’ interactions can be quantitatively 

examined by the following [133]. 

t = 




β̂avg1 – β̂avg2|T+  – 



β̂avg1 – β̂avg2|T-  

Var



β̂avg1 – β̂avg2|T+  + Var



β̂avg1 – β̂avg2|T-  

 (6.6.8) 

 

 In addition to the comparison between cycles with and without regenerative 

braking, the planned experiment accommodates the series connection of the cells, thus 

increasing the resolution of the experiment.  It also allows a quantitative study on the 

interaction between two aging factors, temperature and RMS value.  It is hoped that the 

experiment can be implemented soon and its methodology examined with real data. 
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6.7 Summary 

This chapter proposes an experiment procedure and its associated analyses to 

determine if a superimposed AC waveform on the discharge current will cause an 

accelerated aging rate.  The experimental results confirm the accelerated aging rate exists 

and this accelerated aging rate is due to the additional RMS value from the superimposed 

AC waveform during discharge.  Furthermore, three other possible aging factors are 

found to be insignificant compared with the discharge RMS value, namely the DC value 

during discharge, discharge waveform shape, and waveform frequency.  The practical 

significance for maintaining battery power capability by proper filtering is also pointed 

out. The proposed methodology can help guide the design of power electronics in terms 

of filter sizing.  On the other hand, the general methodology can be further extended to 

study any other aging factors deemed interesting, e.g. charging voltage.  The statistical 

rigor employed provides confidence in the inferences made with data analyses, instead of 

relying on visual differences/similarities.  The experiment design facilitates the reasoning 

process and allows for statistical analyses.  The contribution of this work lies both in its 

practical conclusion and its promotion for more careful experimental reasoning within the 

field of battery testing.                    
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Chapter 7 
7 Contributions and Future 

Work 
 

This thesis focuses on the evaluation and estimation of battery resistance and 

overpotential for the purpose of battery modeling, monitoring, and aging study.  The 

state-of-the-art review covers basic electrochemistry, battery modeling, battery SOC, 

SOH, and SOF estimation, as well as basic statistical methods and concepts.   

A study of Optima D34M lead-acid batteries in a Corbin Sparrow EV has 

determined the necessity of introducing the Butler-Volmer relationship into the modeling 

for lead-acid batteries and provides a methodology for performing online recursive 

estimation using the improved nonlinear model.  The issue of providing SOF and SOP 

estimates using recursive estimation method is also discussed, where the traditional SOP 

estimate’s inherent variability is pointed out and a SOF estimate with a confidence 

interval provided by the Kalman filter is introduced.  The temperature’s influence on 

battery resistance and overpotential for lithium batteries has also been presented.  It has 

been found that, under lower temperatures, the battery resistance increases rapidly, and 

the overpotential demonstrates Butler-Volmer behavior that is absent at room 

temperature.   

A generic cell modeling methodology that uses temperature as an explicit input 

has also also provided.   The generic cell model is also adapted to a recursive form for 

online power prognostics and temperature dependent SOC estimation.  In Chapter 6, a 
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statistical aging study using resistance as the aging metric also shows the importance of 

proper DC bus filtering to extend battery life.   

This chapter summarizes the major contributions made in this thesis and provides 

a list of future work. 

7.1 Contributions           

Key contributions of this thesis are summarized in this section including battery 

nonlinear modeling, SOF monitoring, battery temperature-dependent modeling and 

associated battery SOC, SOF monitoring techniques, and battery aging factor study. 

7.1.1 Butler-Volmer Equation Based Battery System Identification 

The necessity of introducing the Butler-Volmer equation into lead-acid battery 

modeling has been demonstrated.  Both test bench impulse current tests and experimental 

EV tests provide experimental justification for adopting the Butler-Volmer equation-

based model over the traditional linear circuit model for the lead-acid battery.  While the 

Butler-Volmer equation and its inverse hyperbolic sine approximation have been 

discussed in the literature, a new contribution of the thesis is a methodology to adapt the 

equation for linear filtering technique for battery online monitoring.  The following 

summarizes the key components of the major contributions in this area.   

 Derivation of discrete time battery model incorporating the Butler-Volmer 

equation 

The qualitative difference between the linear circuit model and the Butler-Volmer 

model has been pointed out.  Under a high-current load, the effective resistance of 

the overpotential described by Bulter-Volmer equation decreases.  This 

phenomenon is incorporated into a discrete battery model by the use of the 
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inverse hyperbolic sine approximation for the Butler-Volmer equation.  It has also 

been observed that the inverse hyperbolic sine approximation is necessary from a 

model prediction perspective.  While the original Butler-Volmer equation has 

overpotential as the input and current as the output, the inverse hyperbolic sine 

form has current as the input and overpotential as the output.  This makes inverse 

hyperbolic sine form suitable for modeling prediction, since the current is 

measurable while the electrode overpotential is not.  

 Numerical study for combining two electrodes’ responses into one Butler-

Volmer relationship   

The necessity of combining two electrodes into one when modeling the Butler-

Volmer relationship arises from the inability to distinguish the two electrodes 

without a reference electrode in the middle.  A numerical study has been 

conducted to identify any errors introduced by this assumption.  It was found that 

even  

when the two electrodes have up to 20 times difference in exchange current for 

the Butler-Volmer equation, the combination of the two electrodes does not 

introduce much numerical error. 

 Application of the discrete model that includes the Butler-Volmer 

relationship for a lead-acid battery powered EV 

Application of the discrete model that includes the Butler-Volmer relationship to 

online recursive estimation has been carried out and investigated.  It has been 

found that, by providing prior knowledge for the double-layer time constant and 

exchange current, the discrete model can be written in a linear form.  The Kalman 
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filter can be directly applied to this linear form, achieving online estimation.  A 

corresponding recursive estimation form for the linear circuit model has also been 

derived for performance comparison. 

 Methodology for estimating the time constant and exchange current using 

only step current responses 

A methodology for estimating the time constant and exchange current using only 

step current responses has been presented.  By providing a current pulse of 

duration longer than the time constant and segmenting the voltage response into 

resistive and overpotential parts, estimation of both the time constant and 

exchange current is achieved.  It is noted, however, that while this step current 

response method requires only low-end test equipment with limited current 

command options, it requires the battery to have a relatively small time constant.  

The methodology introduced in Chapter 5 for estimating parameters offline does 

not have the same restriction. 

 Demonstration of the necessity of adopting the Butler-Volmer nonlinearity in 

the lead-acid battery model using Corbin Sparrow drive cycle experimental 

results 

The experimental results provided by Corbin Sparrow drive cycles demonstrate 

that, while both the Butler-Volmer and linear circuit models can recursively track 

the output voltage of the battery thanks to the feedback mechanism, their internal 

parameters behave differently due to different model structures.  It has been 

shown that the linear circuit model adapts the model parameters constantly to 

mimic the nonlinear behavior of the battery, causing unstable and erroneous 
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power prediction.  Statistical analysis confirms that the Butler-Volmer model 

performs better than the linear circuit model.  When used for prediction, which 

excludes the influence of the feedback mechanism, the Butler-Volmer model’s 

advantage is clear in least-square-error performance, whereas the linear circuit 

model has a difficult time predicting voltage correctly if the data used to fit the 

parameter has adifferent current magnitude than the data used for prediction. 

7.1.2 Battery Power Prognostics   

The battery’s power delivery capability is a significant topic for BMS research.  

Working with operating voltage upper and lower limits provided by manufacturers, the 

chapter focuses on methods and their evaluations for power prediction in the context of 

recursive estimation.   Because the commonly seen SOP metric is shown to have a strong 

volatility within the context of recursive estimation, the second contribution of the thesis 

is an equivalent SOF metric that takes advantage of the Kalman filter probabilities for 

power prognostics with confidence.  This power prognostic with confidence provides a 

margin of safety based on Kalman filter probabilities.  The recursively-estimated power 

prognostics results are experimentally compared with the results from the standard HPPC 

offline test, and they are also directly verified using a drive cycle that is injected with 

high load current pulses.  The following summarizes the key steps towards the 

contribution of that chapter. 

 Study on the volatility of SOP under recursive estimation 

The derivation of the SOP definition is reexamined and it is found that SOP is 

inherently volatile using the recursive estimation scheme.  This volatility comes 
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from the correlation between the estimates of v̂ocv and R̂ , and the small value of 

R̂.  A sensitivity study has been carried out to quantify this volatility.  

 Proposal of an SOF metric with a confidence interval from Kalman filter 

probabilities that is suitable for nonlinear battery model forms 

A definition of SOF is presented, and its confidence interval using Kalman filter 

probabilities has been derived.  The SOF is equivalent to SOP with respect to 

determining if battery power delivery capability is above a set threshold.  

However, given the confidence interval, the SOF estimate can be better utilized 

with assurance against unexpected failures in battery power delivery.  A detailed 

argument has been presented about the suitability of adopting SOF in place of 

SOP based on the inherent volatility of SOP and the fact that motor drive control 

usually only needs to know if battery power exceeds the minimum requirement.  

In addition, the SOF form is suitable for use with the nonlinear battery model 

forms.   

 Experimental results using a lithium-iron-phosphate battery for the UDDS 

drive cycle to demonstrate SOP volatility and SOF confidence interval 

The CALB lithium-iron-phosphate 60AHA battery has been subjected to a 

UDDS-based simulated drive cycle using the test equipment.  The drive cycle 

data has been used to estimate both SOP and SOF.  It has been demonstrated that 

SOP indeed exhibits a substantial volatility.  The use of the confidence interval 

has also been demonstrated. 

 A direct comparison between HPPC and recursively estimated SOP 
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The recursively estimated SOP has been directly compared with results from the 

HPPC test.  The HPPC test applies a pulsed current of a fixed duration and 

estimates the battery total resistance based on the voltage drop.  The v̂ocv at an 

SOC level has also been estimated by the rest voltage.  It has been found that, 

given suitable assumptions, the recursively estimated SOP can approximate the 

HPPC results, thus strengthening the confidence in the recursive estimation 

method.  The discrepancy between SOP and HPPC results are attributed to the 

difference between the time constant, less than 5 seconds, used in the recursive 

battery model and the one-hour rest time period in the HPPC procedure.  This 

difference in time causes a discrepancy in v̂ocv estimation, with the HPPC-based 

v̂ocv substantially higher due to its longer relaxation time.   

 Evaluation of power capability prediction using an UDDS drive cycle 

interjected with high current pulses 

The UDDS drive cycle has been combined with the injection of high current 

pulses to directly evaluate the recursive method’s power prediction capability.  

The results show that, with the injection of 250 [A] current pulses, the minimum 

voltage prediction was only off by approx. 20 [mV], strengthening confidence in 

the method. 

7.1.3 Lithium-Ion Battery Resistance and Overpotential Behavior under Various 

Temperatures  

  The temperature-dependent behavior of the resistance and overpotential of the 

CALB 60AHA lithium-iron-phosphate battery cell is explored in that chapter. The 
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significance of the work lies in its confirmation of the inadequacy of the baseline linear 

circuit model for lithium batteries at low temperatures and its presentation of a modeling 

approach that provides better agreement with measured battery characteristics by taking 

into account the temperature effect explicitly.  The temperature explicit model can serve 

as a simulation tool for system studies that use battery as a component.  The third 

contribution of the thesis is to demonstrate an estimation methodology for a battery 

model that has temperature as an explict input for resistance and overpotential, as well as 

the evaluations for the effectiveness of the temperature dependent model against the 

simple linear circuit approach and the development of SOC, SOF algorithms based on the 

new model form.  It is important to note that while the linear model can adapt somewhat 

to temperature variation by using appropriate parameters, that approach cannot model the 

nonlinear behavior of battery overpotential at lower temperatures.  The key supporting 

elements for this contribution are summarized as follows. 

 Derivation of battery resistance and overpotential temperature dependence 

and experimental verification 

The theory of battery resistance and overpotential temperature dependence is 

discussed.  By using the Arrhenius equation, both resistance and overpotential 

dependence on temperature are derived qualitatively.  For a CALB lithium-iron-

phospoate 60AHA battery, the HPPC and EIS tests are employed to 

experimentally confirm the temperature dependence of the resistance and 

overpotential.  It is found that battery pure resistance rises rapidly as temperature 

decreases, as predicted by the Arrhenius equation.  Using the HPPC test results, it 

is observed that at lower temperature the battery effective resistance is 
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significantly influenced by current pulse magnitude, confirming the temperature 

influence on the exchange current in the Butler-Volmer relationship. 

 Offline parameter fitting procedure using short term drive cycle data for 

both Butler-Volmer and linear circuit models. 

An offline parameter fitting procedure is proposed for both linear circuit and 

Bulter-Volmer models without temperature as an explicit input to the models.  By 

using a short term drive cycle data at a fixed temperature, both models are fitted 

to compare their least squares error performance in prediction.  It is found that 

while at room temperature the two models perform equally well, the Butler-

Volmer model has an edge over the linear circuit model at a lower temperature.  

The qualitative difference of the battery behavior at different temperatures is 

illustrated by showing the fitted battery voltage drop as a function of current using 

the Butler-Volmer based model.  At room temperature, the fitted battery voltage 

drop appears to be a linear function of current, i.e. resistive behavior, while the 

same fitted voltage drop shows a distinct nonlinear Butler-Volmer behavior at a 

lower temperature.  While the fitting procedure is good for one temperature 

condition, this procedure is limited when expanding to multiple temperature 

operating points. 

 Generic cell model with temperature as an explicit input and its parameter 

fitting procedure 

A generic cell model with temperature as an explicit input is proposed.  The 

model structure incorporates the resistance and overpotential temperature 

dependence into the simple discrete time Bulter-Volmer battery form.  The data 
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used for fitting the model parameters need to come from various drive cycles of 

different temperatures.  This is performed with concatenation of data to form a 

single matrix.  The combined matrix is then used for parameter estimation. 

 Experimental prediction comparison between generic cell, simple Butler-

Volmer, and linear circuit models 

The prediction performances of the generic cell model, simple Butler-Volmer, and 

linear circuit model are compared.  It is found that at lower temperature where the 

Butler-Volmer behavior is more prominent, the generic cell and simple Bulter-

Volmer models have an edge over the linear circuit model.  Otherwise, the linear 

circuit model performs well compared with its more complicated counterparts. 

 Adaptation of temperature dependent generic cell model for recursive 

estimation and experimental verification on generic cell model’s power 

prognostics capability 

The generic cell model is adopted for recursive estimation.  The simplified 

recursive form relies on both prior knowledge obtained via offline tests and online 

recursive fitting.  The inputs to the recursive form are the measured voltage, 

current, and temperature.  The recursive generic cell model is shown to have good 

real-time power prognostics capability in a wide range of temperatures.  This 

recursive form is also robust against aging effects, as it keeps track of the growth 

of resistance and change in overpotential.    

 Offline Li-ion battery modeling based on the generic cell model impedance 

structure and the OCV modeled as a polynomial of temperature and 

discharged Ah 
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The generic cell’s advantage over the recursive methodology proposed in [139] 

has been discussed in 5.6.  In short, the recursive methodology in [139] is robust 

against aging and temperature effect since it allows the model parameters be 

guided by the measured voltage and current.  However, its implicit temperature 

dependence on the measured data, instead of having temperature as an explicit 

input as the approach proposed in this work, makes it inadequate for the task of 

offline simulation.  For the offline simulation model, the impedance relies directly 

on the generic cell model offline parameter estimation, while the vocv is obtained 

through polynomical fitting of the estimated vocv using the adapted recursive 

form and measured temperature.  The offline model can be used in an overall 

system simulation, and it can help guide the tuning of Kalman filter used for the 

recursive form.       

 The investigation of resistance and overpotential behavior under various 

temperatures for Li-ion and lead-acid batteries using EIS  

The Butler-Volmer behavior is a major component to this investigation.  The time 

domain nature of the Butler-Volmer equation means most of the investigation is 

conducted with time-domain analysis such as driving cycles or the HPPC test.  In 

this chapter, EIS and DC bias current are applied to study the Butler-Volmer 

behavior through the shrinking of the EIS semi-circle.  It was shown that Li-ion 

batteries tend to have significant Butler-Volmer response at low temperature, 

while such a response is prominent for lead-acid battery even at room 

temperature.  The results from the frequency domain analysis are consistent with 

those from the time domain techniques.         
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 The power prognostics derived SOC estimation evaluated using both bench 

experimental results and the WEMPEC truck data  

Using the adopted recursive generic cell model form and its power prognostics, 

the arrival of the “turtle” mode is estimated for an accurate and practical SOC 

estimation.  It was shown that this SOC estimation method is robust against 

temperature and driving cycle dynamics.  The use of the recursive generic cell 

model and of the adaptive Ah vs. Temperature polynomial also provides 

robustness against aging effects.  The SOC estimates’ standard deviation is shown 

to be within 3.3% across a wide range of temperatures.  The truck’s drive data 

were also used to evaluate the performance of the proposed SOC method.  

 The application of the generic cell model to lead-acid battery for discharge 

only driving profiles 

This work attempts to apply the generic cell methodology to a lead-acid battery, 

OPTIMA D34M.  It was observed that the electrochemical phenomona included 

in the generic cell model do not take into account the additional reactions during 

the charging of a lead-acid battery.  As a result, the generic cell model is only 

applicable to a lead-acid battey under discharge-only driving profile.  For 

discharge only cycles, the power prognostics performance of the generic cell 

model is excellent, comparable to that achieved in Chapter three which uses a 

simpler Butler-Volmer form without temperature explicit dependence.      
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7.1.4 Design of Experiment for Superimposed AC Waveform’s Influence on Battery 

Aging Based on Resistance Growth 

Two statistical experiments are designed, conducted, and analyzed in that chapter 

in order to examine whether a superimposed AC waveform on discharging current has an 

impact on lithium-ion battery aging.  It was found that by raising the RMS value of the 

discharge waveform, the superimposed AC waveform increases the aging rate of a 

lithium-ion battery.  Other factors, namely frequency, waveform shape, and DC value, 

were studied as well but were not found to be statistically significant.  The practical 

significance of the finding includes the sizing of the DC bus capacitor as a filter for the 

battery pack on an EV.  A numerical model is thus provided for the purpose of 

demonstrating the methodology for quantitatively linking aging rate and waveform RMS.  

The main contribution of the chapter is the use of statistical thinking throughout the 

investigation for experiment design, data analysis, and quantitative modeling.  The rigor 

of the study gives more confidence to the results compared with some other works in the 

literature.  The key elements of this chapter’s contribution are summarized as follows. 

 Statistical design of experiment and analysis that determine a superimposed 

AC waveform on the discharge current causes accelerated aging due to the 

increased RMS value 

A statistical design of experiment is conducted in order to discover whether 

battery aging is influenced by a superimposed AC waveform on the discharge 

current.  The design allows for determining whether RMS value, DC value, or the 

existence of AC waveform causes significant difference in aging.  Statistical 
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analysis is performed, and results suggest the importance of RMS value in 

influencing aging rate.  

 Statistical design of experiment and analysis that reaffirm the importance of 

discharge waveform RMS in aging and show the lack of evidence for 

waveform shape and frequency in aging influence   

A second statistical design of experiment is conducted, following the first 

experiment.  In this second experiment, the discharge waveforms are chosen so 

that, in conjunction with the first experiment’s data, a comparison in aging rate 

between waveform shapes, RMS value, and frequency can be made.  The results 

reaffirm the importance of RMS value in determining aging rate, while evidence 

does not support waveform shape and frequency being important aging factors. 

 A numerical model to quantify RMS influence on resistance growth and 

reaffirm the dominance of RMS discharge waveform value against DC value 

Using data from both experiments, a numerical model for battery resistance 

growth as a function of discharge waveform RMS value is constructed.  

Additionally, using linear regression the battery resistance growth data reaffirms 

the dominance of discharge waveform RMS value over DC value in terms of 

aging influence.  The numerical model provides the power electronics designer a 

tool for quantitatively design the battery pack filter through DC bus capacitor 

sizing with battery aging effect taken into account. 

 The general statistical methodology in design of experiment and analysis in 

the field of battery aging testing 
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The statistical methodology used in this chapter emphasizes the importance of 

rigorous inference from experimental data.  Only by designing appropriate 

experiments and performing analyses adhering to statistical principles can the 

conclusions be safeguarded against criticism.  The method used also avoids the 

confusion between a small regression coefficient of a significant factor and the 

random noise of a non-significant factor included in the model.  This same 

approach can be adopted to study other likely aging factors for the same standard 

of rigor in inference. 

 A planned experiment and its analyses, which allows for series connection of 

cells, for looking into whether regenerative braking has an impact on aging 

and a quantitative study on temperature and RMS aging influence 

interaction  

This planned experiment could not be carried out due to equipment 

commissioning issues.  However, contributions are made in the design of the 

discharge waveforms for studying regenerative braking aging influence, 

temperature and RMS aging interactions, and proper statistical modeling for 

series connection of cells.  

7.2 Future Work 

Based on the work presented in this document, the following is a list of the work 

that I recommend for further investigation. 

1) Implementing the temperature-dependent SOC and SOF algorithm on the 

WEMPEC truck and study the user experience for improvement  
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The SOC and SOF algorithms proposed in Chapter five have been thoroughly 

evaluated with the data gather from the WEMPEC truck.  An onboard 

implementation with more drive cycles under various climate conditions can be 

expected to provide a deeper insight on how the algorithms can be improved.  

2) Execution of the planned experiment to evaluate the aging impact of 

regenerative braking on Li-ion batteries  

The planned experiment in Section 6.6 should be able to answer whether 

regenerative braking has a quantifiable impact on battery aging.  Its analysis 

should also improve the understanding of the interactions between temperature 

and RMS aging influences in Li-ion batteries.     

3) Investigation of lead-acid battery modeling for regenerative braking 

Lead-acid batteries can be used in start-stop mild hybrid vehicles.  Given the 

strong nonlinearity of the lead-acid battery demonstrated in this thesis, it is 

possible that further advances can be made by paying closer attention to 

temperature effects on lead-acid battery behavior in the start-stop vehicle 

application.  HPPC, EIS, and engine-start load cycles can be used to characterize 

and learn from the lead-acid battery operating at various temperatures.  However, 

the generic cell modeling approach is still insufficient for lead-acid batteries 

under driving profiles with regenerative braking.  A deeper understanding of the 

electrochemical processes, e.g. gassing, could help lead to more satisfactory 

mathematical models.   

4) An investigation into the influence of battery charging voltage on aging 

through a statistical experiment 
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Battery charging voltage has been reported to have an influence on battery aging.  

Selecting an appropriate charging voltage is fundamental to the design of cell 

chargers and balancing circuits.  The statistical experiment concept used in this 

work for the superimposed AC waveform’s aging influence can be adapted to 

study the charging voltage’s influence on aging as well.       

5) An investigation of the influence of battery SOC range on aging through a 

statistical experiment 

In a hybrid vehicle application, the battery pack usage is usually restricted to a 

band of SOC, e.g. 60% to 90%.  The width of the band is related to the sizing of 

the battery pack, but the location of the band may have an impact on the battery’s 

aging performance.  A statistical experiment can be conducted to investigate 

whether the location of the band has an impact on the battery aging performance.   

6) Dynamic modeling for online battery aging control 

The statistical approach for understanding aging adopted in this work can lead to 

quantification of battery aging factors and improved solutions in system design.  

Another approach would be a physics-based, Newman-type model that can yield 

aging predictions based on the temperature and current profile.  Such an aging 

model would allow for more real-time battery aging control, as opposed to system 

design solutions, e.g., sizing of capacitors.  The difficulty with such an approach 

is the estimation of the necessary parameters through designed experiments.  

Further investigation is required to explore this alternative approach.       

7) Implementation of observer for internal states such as the electrode 

overpotential for the purpose of  aging control  
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The Butler-Volmer model structure in this research program lumps the two 

electrodes’ overpotential together.  While this approach is unavoidable due to the 

lack of information to differentiate the electrodes in series, it is possible to build 

an observer based on offline information that separates the two electrodes’ 

overpotential.  Since the overpotential is critical to inducing aging reactions, 

developments in this research area may lead to advances in aging control. 

8) Evaluation of different numerical methods other than the Kalman filter  

In this thesis, the Kalman filters have been adopted for their simplicity and 

flexibility.  The possibility of using other recursive estimation techniques such as 

the least-mean-square (LMS) method and other variants of the Kalman filter can 

be further explored, including a detailed comparison of their benefits and 

drawbacks. 

9) Detailed investigation on Li-ion battery capacitance value and its associated 

diffusion processes 

The discrete-time models used in this work assume a simple time constant 

representing the complex process of ion diffusion.  With the help of EIS and the 

ability to vary temperature and the charging/discharging processes, it should be 

possible to more deeply explore the capacitive diffusion behavior of the cell.  This 

work may lead to further insights into modeling the transient behavior of the cell. 
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 Appendix A 
8 Corbin Sparrow 

In Chapter three, drive cycle data was collected from a Corbin Sparrow EV 

modified and operated by WEMPEC.  The work on the Corbin Sparrow EV is foremost 

the work of Phillip Kollmeyer, a colleague of the author.  A full account of his work 

related to the Corbin Sparrow can be found in [21], [140].  In this appendix, a basic 

account will be presented on the Corbin Sparrow EV used for the drive cycle data 

collection. 

 
Figure A 1 WEMPEC Corbin Sparrow with Phillip Kollmeyer [140] 

  

 Figure A 1 shows a picture of the WEMPEC Corbin Sparrow.  The Corbin 

Sparrow EV is a DOT-certified single passenger vehicle designed for commuting with an 

electronically limited top speed of 125 [km/hr] and a range of 45 to 60 [km] [21].  The 

Corbin Sparrow is an EV that utilizes a series DC motor, a buck DC-DC converter, and a 
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lead-acid battery pack.  Regenerative braking is not available for the vehicle.  The rear 

wheel is directly connected to the shaft via a toothed belt, while the DC motor has a 

toothed gear connected to the shaft.  One 1.5 [kW] onboard charger is available for 

charging the battery pack by connecting to a standard 120V/15 [A] outlet.  A National 

Instruments Compact Rio microcontroller/FPGA system is installed for logging all sensor 

signals, including battery voltage, current, and temperature.  Figure A 2 shows the Corbin 

Sparrow system diagram.  

 
Figure A 2 WEMPEC Corbin Sparrow system diagram [140] 

 

 Using the onboard Compact RIO system, a battery management and data-logging 

system is implemented in the vehicle.  The data-logging system creates charging, driving, 

and idle log files.  The following data are logged: individual battery voltages, battery 

temperatures, pack current and [Ah], accessory current, motor current and voltage, 

vehicle speed and acceleration, and GPS estimated position and altitude [21].       
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Figure A 3 Corbin Sparrow voltage-sensing configuration [21] 

 

 Figure A 3 depicts the voltage sensing, sampling, and filter configuration used in 

the Corbin Sparrow vehicle.  The sensed battery voltage is attenuated by a factor of two 

with a 0.1% tolerance resistor divider network, buffered with an isolated op-amp circuit, 

filtered, and sensed with a 16-bit NI 9205 32-channel multiplexed A/D converter.  

Finally, the voltages are digitally filtered and down-sampled to 10 samples/sec, the same 

data rate used in the lab test system [21].  Table A 1 summarizes the resulting system 

performance, resolution, and accuracy specifications.      

Table A 1 Corbin Sparrow Test System Specifications [21] 
Peak Discharge/Charge Current 225 A/8 A 

ADC Voltage Range/Bits ±10V/16 Bits 
Voltage & Current Sampling Multiplexed/400Hz 

Voltage & Resolution/Accuracy 670 µV/≈ 25 mV 
Current Resolution/Accuracy 10 mA/2.4 A 
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Appendix B 
9 Battery Test Equipment 

Many of the experimental results documented in this thesis are obtained on 

custom built battery test equipment.  This appendix describes the specifications of the 

said battery test equipment.  It is noted here that the design and construction of the 

system and the diagrams presented here are mostly Phillip Kollmeyer’s works.    

The lab test system was designed with sufficient capabilities to insure that the 

resolution and accuracy of the system does not limit the performance of the system 

identification algorithms.  The lab test system consists of a Chroma 63201 electronic load 

to discharge the battery in parallel with a Chroma 62024P-40-120 power supply to charge 

the battery, as shown in Figure B 1.  A National Instruments Compact dag real-time 

controller is used to control the electronic load and power supply via serial and analog 

commands, as well to collect sensor readings for the battery voltage, temperature, and 

current. The load and source are configured for remote voltage sensing, making it 

possible to sense the battery voltage directly at the battery terminals in order to minimize 

the degrading effects of resistive voltage drop in the cables. The controller also provides 

a user interface via Ethernet. 
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Figure B 1 High accuracy, high bandwidth lab test system 

 
Voltages can sense with up to three channels of an NI 9229 four-channel, +/-60V, 

24-bit, simultaneous sampling, isolated channel-to-channel voltage sensing module.  The 

fourth channel is used to sense the output of a LEM IT 600s current sensor, resulting in 

the lab system performance specs outlined in Table B 1. 

Table B 1 Specifications for the lab test equipment 
Control Bandwidth 5 kHz 
Voltage Res/Acc. 1.25 μV/2.09 mV 
Current Res/Acc. 39.3 μA/0.03% (of reading) 

V/I Measurement Bandwidth 11.3 kHz 
Max Battery Pack Voltage 40 V 
Max Charge Current/Power 120 A/2.4 kW 

Max Discharge Current/Power 300 A/ 2.6 kW 
 

Additionally, it is noted that a temperature chamber is available for the control of 

battery external temperature.  The temperature chamber is the TestEquity Model 115 and 



262 

has an operation range of -73 to 175 0C.  Finally, the anti-aliasing filtering configuration 

of the channels is shown in Figure B 2.  

 

 
Figure B 2 Lab test system filtering configuration [21] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


