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abstract
Stable operation of the electrical system in the context of microgrid and smart
grid technologies is imperative to enable their large scale adoption. Even though
many of the analytical tools that are applied to large power systems are readily
applicable to microgrids, there are certain key aspects that render some of these tools
inadequate and require others to be adapted. This work is aimed at an evaluation
of several stability criteria applied to a microgrid environment, which comprises
distributed generators, storage devices and loads operating on a droop-control
strategy. Stability criteria based on impedance matching at the point of application
allow the prediction of instabilities in the grid-tied and islanded cases. Analytical,
simulation and experimental results show interesting and intuitive relationships
between the parameters of the microgrid components and the stability boundaries.
These relationships can be utilized to establish design tools for ensuring robust
operation of microgrids.

Professor Giri Venkataramanan
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1 introduction
The electric grid is facing new challenges everyday. For example, the electricity
grid in the US has been subject to several problems due to natural disasters, such as
the storms and hurricanes in the last few years, that have ended in power outages
ranging from few hours to several days [1, 2, 3]. In these emergency cases and
others, the use of energy resources that are close to the consumers is an attractive
idea. Nowadays, there are several energy resources already available close to the
consumer’s location, such as electric or hybrid vehicles and combined heat and
power (CHP) units. However, there is a need for those resources to be successfully
coordinated and to take advantage of existing and new infrastructure.

The concept of microgrid is emerging to be a technically viable approach for
meeting reliable supply of electricity with increased availability in the presence of
large scale grid disturbances induced by severe weather events, as well to integrate
various types of electricity sources and storage devices. The definition of the
microgrid concept by the United States Department of Energy’s Microgrid Exchange
Group is

“A group of interconnected loads and distributed energy resources
within clearly defined electrical boundaries that acts as a single control-
lable entity with respect to the grid, and can connect and disconnect
from the grid to enable it to operate in both grid-connected or island
mode. ”

Microgrids may find a broad range of applications from autonomous systems
on rural communities to smart and energy-efficient buildings. A conceptual dia-
gram of a microgrid is shown in Figure 1.1. In this diagram, distributed resources
(DR) inject power to the system, where local loads, third party loads and the grid
might be present. A microgrid is expected to have several features: to smoothly
transfer from grid-connected to islanded mode and vice-versa; to work with no
explicit communication system; to provide localized energy management for the
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improvement of power quality and efficiency; to be scalable in terms of loads and
sources; and to provide plug and play capabilities.

Grid

Local 
Loads

Third party 
Loads

PCC
Switch

DR DR

DR

Figure 1.1: A microgrid conceptual diagram

It is in this last feature, the plug and play capabilities, where the operational
viability of microgrid has seen the least advance, specially when it comes to un-
certainties about its stable operation. Ideally, a microgrid should ensure its stable
operation under any circumstance, even when the large scale grid or the microgrid
dynamically changes due to the incorporation of new units. Every time a new unit
is connected to a microgrid, the system increases its complexity. The state-of-the-art
approaches to studying and ensuring the stability of microgrids are largely inca-
pable of providing the structural certainty to promote true plug and play operation,
particularly with changing network conditions.

Thus, there is a need and an opportunity to develop a stability criterion that can
truly promote the plug and play capabilities expected from a microgrid.
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1.1 Goal

The main goal of this work is to contribute to the plug and play capabilities of a
microgrid and its components, through the development of suitable stability criteria.
The stability criteria should be applicable to microgrids that may change and grow.

This goal is completed by pursuing the following objectives:

• Propose a modeling approach compatible with the plug and play concept.

• Develop suitable models for microgrid components that allow an easy assess-
ment of the stability when interconnected.

• Validate microgrid models by studying representative microgrid configura-
tion cases.

1.2 Approach

The stability criteria proposed in this thesis uses incremental phasor impedances and
admittances defined at a point of interconnection. The definition of the incremental
phasor impedance and admittance as used in evaluating the stability criteria herein
depart from the classical definitions of impedance and admittance, as will be
developed further in this thesis.

The studies in developing the incremental phasor impedance and admittance
are performed in several domains as appropriate in order the validate the proposed
approach. The work follows analytical domains with numerical evaluations, time-
domain simulations and experimental hardware. The approach of the study in
each of these domains is shown in Figure 1.2.

In the analytical domain, the impedances are obtained through the transfer
functions. The transfer functions are in turn the result of a state space representation.
The state space representation is created using dynamic phasor modeling, which is
covered in Chapter 3. Even though dynamic phasors have been used in a power
system context, their application to microgrid is not as well developed. Therefore,
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Figure 1.2: Impedance matching stability criteria methodology for different application domains. On the
left, the analytical domain uses a transfer function to obtain impedances. On the center and the right,
the simulation and real-world domains use perturbation voltages and currents to obtain impedances.

the results from the dynamic phasor models will be validated against other existing
models in literature. The procedure to obtain impedances from these models is
presented in Section 3.5.

In the simulation domain, the impedances are a result of the perturbation
currents and voltages when a small-signal perturbation is injected into the system.
Time-domain simulation components are detailed in Section 3.6, and simulation
results are shown in Sections 4.1.3, 4.2.2 and 5.4.2.

In the experimental domain, the procedure is similar to the one used in the
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simulation domain. Perturbation currents and voltages are also injected into the
microgrid, and the impedances are obtained through signal processing techniques
to verify the validity of the criteria. The University of Wisconsin Microgrid provides
an excellent hardware installation to perform small signal injection and incremental
phasor impedance spectroscopy.

1.3 Document organization

This thesis is organized in several chapters as follows. In Chapter 2, a detailed
literature review is presented. It includes topics directly and indirectly related to
microgrid stability. The analytical development of the incremental phasor dynamic
models is detailed in Chapter 3. These models are the foundation of the impedance
matching stability criteria introduced in this thesis. Chapters 4 and 5 present
the cases of single source and multiple sources microgrids respectively. In both
chapters, the analytical models will be presented, and numerical and time-domain
simulation results will be obtained. Chapter 6 describes the hardware setup and
experimental tasks performer in order to validate the analytical and simulation
models. Chapter 7 extended the incremental phasor models two mode complex
loads. In Chapter 8, a summary of this document is presented, as well as the
conclusions and future work.
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2 microgrid stability: state of the art
In this chapter, a detailed literature review regarding microgrids and its stability
problems is presented. Due to the variety of stability problems that are present in
an Electric Power System, the first section presents an overview of the traditional
views on stability issues in AC Electric Power Systems. Also, this section briefly
introduces the stability criteria used in feedback control systems, and presents
the key criterion used later in the impedance matching technique: the Nyquist
Stability Criterion. The second section presents an overview of the stability issues,
studies and approaches in DC systems, which inspired the impedance matching
stability criteria developed later in this thesis. The third section presents the current
trends in microgrid stability studies, which utilizes many of the tools already
presented in the previous sections. As we will show, many of the stability studies
in microgrids require a comprehensive model, which changes on any and every
single modification of such microgrid. The last section summarizes the state of
the art, and how the present work contributes to the successful development of
practical plug and play microgrids beyond the state of the art in a new framework.

2.1 Stability in traditional Electric Power Systems

Electric Power Systems (EPS) are a complex mix of generation, transmission and
distribution systems, whose operation is not always completely predictable. The
ability of a system to remain in equilibrium, during and after a perturbation, and
on its steady state, is called stability. Traditionally, Power System stability studies
are focused on a particular aspect of such system: (comprehensive information can
be found in [4, Ch. 2])

• Angle stability: the ability to maintain synchronism and torque balance.

– Small signal stability: small disturbances.

– Transient stability: large disturbances.
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• Mid-term and long-term stability: large voltage and frequency excursions.

• Voltage stability: the ability to maintain steady acceptable voltage and reactive
power balance.

In particular, we are interested in the small signal stability problem. An EPS is
small signal stable if it is able to remain in the same operating point after a small
perturbation. In contrast, an EPS is transient stable if, after a larger perturbation, the
system ends in an equilibrium point, which could be different from the operating
point before the perturbation. For the purpose of a small signal stability study,
the system is represented by differential equations in a state-space form, and is
linearized around an equilibrium point. Such procedure is presented below in
Section 3.2 on page 23 of this document.

The choice of state variables depend on what aspect(s) we are interested in
studying. For example, choosing rotor angles as state variables could give imme-
diate information about torque balance and angle stability. However, the stability
of the EPS does not depend on the choice of state variables. Nevertheless, it is
important to note that the assumptions under which the linearization is done will
have an impact on what dynamics are well represented in the model.

The small signal stability of dynamic systems (represented by differential equa-
tions) can be studied by Lyapunov’s first and second methods. Lyapunov’s defini-
tion of stability and the development of the stability methods are presented and
thoroughly treated in [5, Ch. 5]. By Lyapunov’s linearization method, the stability
properties of a non-linear system could be studied by linearizing the system around
an operating point.

For linear systems that are time-invariant and have no inputs, Lyapunov stability
is expressed as conditions over the eigenvalues of the state matrix:

• The system is stable if and only if all eigenvalues have negative or zero real
part.

• The system is exponentially stable if and only if all eigenvalues have negative
real part.
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• The system is unstable if and only if there is at least one eigenvalue with
positive real part.

It is possible to utilize another approach to study the stability of a linear autonomous
system, by solving the Lyapunov Matrix Equation [5, Sec. 5.4]. It is also possible to
study the stability properties of linear time-variant systems by analyzing the state
transition matrix Φ of a given linear system. However, those methods escape from
the scope of this thesis.

For linear systems with inputs, the concept of bounded-input-bounded-output
(BIBO) stability is often used. A system is BIBO stable if its output is bounded
for every bounded input [6]. A linear time-invariant system is BIBO stable if and
only if every pole of its matrix transfer function has a negative real part. The
matrix transfer function is obtained by using the Laplace transform over the state,
input, output and feed-forward matrices[7] as shown in (3.12) in page 26. BIBO
stability and Lyapunov stability are related properties on linear time-invariant
systems [5, Sec. 6.3], as the eigenvalues are used to establish the stability properties.
However, BIBO stability and Lyapunov stability are independent concepts which
relate stability of the output of a forced system, regardless of the internal state,
and the stability of the output of an unforced system with a given initial condition,
respectively.

The small signal stability is usually assessed, hence, by an eigenvalue analysis.
After the system is linearized, the eigenvalues of the state matrix are obtained. The
location of those eigenvalues in the complex plane provide insightful information
about the dynamics of the system under small disturbances. For the system to be
stable, all eigenvalues must have non-positive real part.

The stability of systems with feedback (Figure 2.1) can be also studied by eigen-
value analysis. However, the characteristics of such systems open the possibility
of assessing their stability through the study of the plant, control and feedback
components separately. In particular, the loop gain (sometimes called return ratio)
plays an important role on the stability of the closed loop feedback system [8, 9].
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Control + Plant
G(s)

Feedback
H(s)

−

errorinput + output

Figure 2.1: Generic system with feedback

The appealing idea of assessing the stability of a system by knowing the proper-
ties of the separate components of the feedback system was well developed on the
electronics area in the first half of the twentieth century [10, 11]. Developments such
as the Bode plot, phase and gain margin criteria, and the Nyquist plot dramatically
changed the theoretical understanding of feedback systems.

The Nyquist stability criterion states that, for a negative feedback system such as
the one in Figure 2.1 the closed-loop system is stable if and only if the number of un-
stable poles of the loop gainH(s) ·G(s) are equal to the number of counterclockwise
encirclements of the critical point (−1, 0) in the Nyquist plot [12].

2.2 Stability in DC systems

Recent interest in DC power systems have demonstrated that they are definitely not
a technology of the past. In fact, The IEEE Power and Energy Magazine dedicated its
November/December 2012 issue to this type of power systems. Two articles [13, 14]
discuss DC distributed power systems in data-center and microgrid environments.
Although conclusions of both articles are positive and promising, some barriers for
DC power systems are identified.

From the stability point of view, abundant research has been done on DC power
systems in the last forty years. Several stability criteria have been developed [15],
such as the Middlebrook stability criterion, Phase and Gain margin criterion, among
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others. In general, these criteria are applied to two sections of a DC system about
to be connected, specifically over the ratio of output and input impedances of such
sections.

The research on DC power systems have been developed for studying power
systems present on ships [16, 17, 18]. On those systems, the effect of the source
impedance in the stability of the system was recognized when regulated converters
[16] and constant power loads [17] are present; boundaries on the value of such
impedance are developed. Reference [18] presents a solution by means of control
algorithm, in which a field oriented control strategy is used to stabilize the DC link
of an electric propulsion system.

Recent research has been done in stability analysis that specifically uses impedances
and admittances. Power electronics based power distribution systems (PEDSs) are
described in [19], and the stability approach in this particular case is less conser-
vative than others such as the Opposing Argument criterion or the Gain margin
and Phase margin criterion [15]. Furthermore, it is recognized that the impedances
and admittances are a function of the operating point (e.g. output power), hence
the impedances and admittances are considered as a set of values rather than a
single value. In this way, the stability-constrained region, which is usually a region
of the complex plane, is translated into a forbidden volume in a 3-D space. The
immitance-based stability criteria is further developed in [20], where the new for-
bidden region is described by a continuous function, instead of the piecewise linear
function used in [19].

Reference [21] introduces the concept of DC Distribution Power Systems (DPS),
and the stability assessment of the Power Electronic Building Blocks (PEBBs). The
stability concern appears at the control loop, filter subsystem interaction and system-
level interactions. In all cases, loop gains and impedance ratios appear as key
quantities for stability assessment. Design challenges and opportunities for this
kind of systems are presented in [22], in the context of computer, telecommunication
and network systems. The focus of this work is on EMI and and high frequency
converters.

Related research, which applies similar criteria on other AC, DC and hybrid
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systems, is presented in Section 2.4.

2.3 Stability in microgrids

The stability of microgrids has been a topic of great interest: even though a mi-
crogrid resembles a small-scale EPS, its control and operation differs from this
larger counterpart in many aspects, such as the centralized control and operation
paradigm, the impedance characteristics of the transmission lines (reactive in large-
scale systems vs. resistive in small-scale systems), the relative power rating of
sources and loads, and the large penetration of inverter-based sources, among
others. Comprehensive reviews on microgrid control and related literature are
found in [23, 24, 25, 26].

In order for an AC grid to operate properly, several controls need to be present.
For example, frequency and voltage regulation is necessary to achieve power trans-
mission over the network [27, Sec. 1.3]. In the microgrid environment, a distinction
is made between units that participate in those regulation tasks and those that
do not. A grid-forming unit is a microgrid unit that participates in the frequency
and/or voltage regulation, while a grid-following unit is a microgrid unit that does
not participate in any kind of regulation. This distinction is of major importance
because the behavior of a microgrid is drastically different whether it is parallel to
a larger (e.g. national) grid or islanded, and the grid-forming and grid-following
units interact with the microgrid in a completely different way under those two
operating modes. The control strategy of a grid-following unit could be similar
to any of the grid-tied units already present in a EPS. The control strategy of a
grid-forming unit, however, deserves a deeper analysis, and is one of the most
active topics of microgrid research, specially in the case of islanded operation.

One of the first environments that recognized the necessity of a novel control
approach for islanded systems was the Uninterruptible Power Supply (UPS) ap-
plications [28]. In such setting, the parallel operation of multiple UPS systems
posed a challenge in terms of decentralized control strategy. Droop controllers
for frequency and voltage are introduced, which allow the system to share power
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and operate with measurements that are local to each individual UPS. A stability
analysis on line interactive UPS systems is presented in [29], where it is recognized
that large frequency droop gains affect stability, while voltage droop gains usually
do not.

Even though [28] set a milestone in microgrid control through the proposal
and detailed study of the droop control, it was not until the 2000’s when the
microgrid concept was formally introduced [30]. A detailed study and evaluation
of the microgrid concepts, along with discussion and experimental results are
presented in [31]. Details of the UW-Microgrid laboratory setup are also included
in this article. Moreover, the first discussions of stability issues on a microgrid
environment are presented in [32] and [33], where the authors develop time domain
simulations, apply small signal models for the microgrid components and use
eigenvalue analysis. In all these studies, the droop control has been a widely
adopted approach [34] and it also among the subjects of study in this thesis.

2.3.1 Small signal stability in microgrids

The small signal stability of a microgrid has been thoroughly studied in the last
two decades. Typically, the study involves a simplified microgrid, with a single
inverter-based source coupled to an infinite bus or stiff grid. For example, Reference
[35] uses a small signal model of a three-phase distributed generator using dynamic
phasors. Using eigenvalue analysis, the large signal and small signal models are
compared, and a deadbeat droop control is proposed. The dynamic phasor model
is found to be better suited for this kind of analysis and design. Reference [36] also
uses dynamic phasors to model a single source connected to an infinite bus; it is
recognized that the stability of the frequency droop control depends on the X/R
ratio of the interconnection, and virtual impedance is used to ensure stability (see
Section 2.3.2).

Throughout the years, researchers have developed more systematic ways of
establishing the stability of a less constrained microgrid, with generalized small
signal models for an islanded or grid-tied microgrid. Reference [37] presents a
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stability analysis framework using small perturbations on a d-q reference frame. The
framework is exemplified on a two-source standalone microgrid, and eigenvalue
analysis and simulation results are provided. By using the resulting root loci, a
designer could pick optimal droop parameters and filter cut-off frequencies.

Reference [38] presents a novel modeling approach for the microgrid, in which
the electric network, loads and inverters have their own state-space model. These
models are brought to a common d-q reference frame and interconnected together,
resulting in a large state-space representation of the whole microgrid. Once this
full model is obtained, eigenvalue and sensitivity analyses are performed, and
exemplified on a three-source grid-tied microgrid. It is recognized that the low-
frequency modes (eigenvalues) are those who determine the stability of the system,
and are dependent on the network configuration and droop controllers, while
the high-frequency modes are sensitive to inverter inner loops, load and network
dynamics. Similar conclusions are drawn in [39], with an equivalent modeling
approach.

Reference [40] introduces a generalized computational method for small signal
stability assessment of a multi-inverter microgrid. The approach is very similar
to the one in [38], with the exception that the plant model is simplified in order
to reduce the complexity of the resulting system. The computational method is
exemplified with a three-source ring-topology microgrid.

The article in Reference [41] is particularly focused on chain microgrids, i.e.
microgrids whose individual distributed sources are longitudinally chained by
inductive transmission lines. The author finds sufficient conditions for the stability
of such chain microgrid. The small signal models are further developed in the
author’s thesis [32], including the parallel microgrids, i.e. microgrids whose in-
dividual distributed sources are connected in a star topology through inductive
transmission lines. Both chain and parallel configurations are contrasted in terms of
the conditions that droop gains need to comply with in order to ensure microgrid
stability.
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2.3.2 Alternatives and improvements to droop control

The droop control is not the only approach for microgrid control. Reference [42]
presents a microgrid control that requires communication among all inverters to
operate properly and maintain power quality. The control scheme is subject to
performance testing with linear and non-linear, balanced and unbalanced loads,
with successful results.

As an alternative to the frequency droop controller, an angle droop controller
is proposed in [43]. The operation and control of both the frequency and angle
droop controllers are compared over a hybrid microgrid, i.e. a microgrid that
contains inertial and non-inertial sources. The angle droop successfully provides
power sharing among the units and the system frequency deviation is smaller
that with the traditional frequency droop control. Reference [44] shows how the
angle droop control needs high droop gain to ensure proper power sharing. Due
to the stability issues that this high droop gain generates, the authors propose an
additional stabilizing loop, inspired on the Power System Stabilizer (PSS) used in
traditional EPS. The stability study in this paper is done by eigenvalue analysis.

Reference [45] improves on the angle droop control by adding a Distributed
Static Compensator (DSTATCOM) to the microgrid, enabling the ride-through
capability. The results are supported onto extensive simulations over a radial
three-source microgrid with inertial and non-inertial sources.

As the researchers recognized how the impedance of transmission lines and
other units constrained the magnitude of droop gain that allow stable operation,
several methods to modify the apparent impedance of converters were proposed.
The concept of virtual impedance is presented in [46, 47], which modifies the output
impedance of the converter by means of control strategy at the voltage regulation
loop. The case of resistive output impedance shown in [46, 47] has a positive impact
on the stability of the system.

Interesting developments in stability of single-phase microgrids are presented in
[48, 49]. In Reference [48], the authors introduce the concept of microgrid gateway, a
device that allow the interconnection of AC microgrids of different frequencies. The
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authors already recognize the impact of the inverter controller in the behavior of
the system, and develop further in [49]: several inverter controllers are specifically
modeled for stability study using dynamic phasors, and regions of stability are
found as a function of the impedance ratio and interconnection reactance. A detailed
analysis of these topics are also included in the author’s thesis [50].

One of the most recent developments is presented in [51], where the stability of
a microgrid is studied as part of the effort to improve the power control bandwidth
of a grid-forming source. After establishing a simple criteria for stability, based on
a relationship between series resistance and droop gain, two control improvement
methods are proposed: active damping and loop shaping. From these two, active
damping shows better dynamic characteristics, and is developed further in [52].
These topics are thoroughly detailed in the author’s thesis [53].

2.3.3 Other topics related to microgrid stability

The usual droop controllers, which relate frequency with active power and voltage
with reactive power, are only suitable for systems with interconnections lines that
are strongly reactive. On distribution systems, this is not always true, and microgrid
systems with strongly resistive lines tend to perform poorly with the traditional
droop controllers. In [54], the authors propose a linear rotational transformation of
the active and reactive power, such that the transformed quantities are effectively
controlled by the usual droop controllers. The improvements are demonstrated
along with a controller that includes virtual impedance and controls current instead
of power.

As stated above, the selection of droop gains in a microgrid has an impact on
the stability. However, the technical constraints are not the only ones to be consid-
ered when selecting the gains. As the droop gains modify the operating points
of the units in the microgrid, they certainly have an impact on the technical and
economical operation of a microgrid, and several researchers have developed tools
to incorporate economical constraints to the droop gain selection process. Even
though the selection could be done offline, the inclusion of an Energy Manage-
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ment System (EMS) is usually assumed. In [55], the authors propose an EMS that
minimizes fuel consumption while ensuring stable operation. In [56], the authors
study how the selection of droop gains impacts the reserve requirements using
bifurcation theory to ensure stability. Note that both papers impose stability as one
of the constraints of an optimization algorithm.

Other topics that escape from the small signal stability problems are also of
remarkable research interest. For example, a study of transient stability on a micro-
grid is presented in [57] where the microgrid is exposed to faults under islanded
and grid-tied operation. Primary frequency regulation is approached in [58], in
a system that incorporates wind power, micro hydropower, energy storage and
dump load. A probabilistic analysis of the small signal stability is presented in [59]
using Monte Carlo simulation. These topics, however, are out of the scope of this
thesis.

2.4 Impedance analysis

The Middlebrook criterion [60] was originally applied to input filters in power
switching converters, where the author was interested in establishing the conditions
under which the filter does not have deteriorating effects on the dynamics of the
converter to be connected. However, it was recognized that this stability criterion
could be applied to the interconnection between any two DC subsystems [15].

There are many recent developments in the stability study of DC systems, as it
was shown in Section 2.2. However, only the most mature tools used in DC systems
have been recently extended to AC systems. The technique used in AC systems is
to obtain a small signal model of the system under a certain operating point, and
use this model (which may look like a DC system in the synchronously rotating
d-q reference frame) to study the stability characteristics. These models have an
structure similar to the ones obtained by the state-space averaging method used in
power converters studies [61]. As a result, the system is represented in a state-space
form, with matrix transfer functions that relates different small signal variables,
or channels. When the small-signal impedances or admittances are of interest, the
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systems are modeled using currents and voltages as inputs and/or outputs, such
that the transfer functions relate the right variables. One example of this technique
is shown in [62], where models for AC-DC, DC-AC and DC-DC converters are
provided and experimentally verified.

As an approach to AC system stability studies through impedances, References
[63] and [64] show the Nyquist stability criterion applied to multi-pulse rectifiers
and active front-end rectifiers respectively. In both cases, the systems are modeled
in d-q reference frame, and the stability is assessed by the study of the return ratio
matrix. It is demonstrated that only the d-d channel information is necessary to
establish the stability of the rectifiers. The idea of using models in d-q was already
presented in [65], where AC power systems with regulated loads are studied.

The use of the impedance as an instrument to study stability was experimentally
verified in [66]. In this particular case, two DC-AC converters were interfaced on
the AC side, and the stability was assessed on the AC link, on the d-q reference
frame.

2.4.1 Impedance measurement

The impedance measurement in AC systems has been explored from several points
of view. Reference [67] gives an overview of system identification techniques used
for the measurement of grid impedance. The authors propose an online impulse-
response-based technique to identify the grid impedance on a grid-tied inverter in
sequence components. Another method based on impulse response is presented in
[68], where the focus is on the nonstationaryness of the power system; a method
that requires observation times in the order of one second is presented.

Several AC impedance measurement methods are introduced in [69, 70]; a three-
phase bridge, three-phase chopper and a wound rotor induction machine are used
to obtain impedances in d-q components. A similar approach is used in [71], in
which a single-phase system is studied using d-q components that are obtained by
the use of the Hilbert transform on the single-phase quantities. The authors further
develop impedance measurement on an AC system by a line-to-line injection [72],
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recognizing that one of the currents in the d-q reference frame can be set to zero.
The impedance measurement on the d-q reference frame is introduced in [73],

where a simple AC system consisting of a three-phase source and passive linear
loads is studied. The measurement system uses a Phase-locked loop (PLL) to
synchronize the rotating d-q reference frame and allows multiple injections at the
different channels.

A different method is presented in [74], where the injection is a white noise
and a system identification approach is used. The proposed method is used in a
low power system and several passive loads are inserted into the system and their
impedances are obtained.

2.5 Literature review summary

Even though the microgrid has been subject of ample research, several existing tools
are unattractive when applied to a microgrid with plug and play capabilities. Tools
such as [40] are appealing for the design and planning process of a new microgrid.
However, they are unsuitable for a large, growing microgrid, in which new units
are added to the system and would require a complete remodeling of the system
every time the microgrid changes.

On the other hand, impedance analysis tools such as [63] are appealing for ex-
isting systems that face the addition of a new unit. For these dynamically changing
systems, the stability assessment at the point of connection of the new unit is ideal.
However, these tools have only been applied to converters connected to the grid,
and no microgrid control has ever been modeled in an impedance representation.

The impedance approach is appealing not only in the design and planning
stage of a microgrid, but most remarkably in the everyday operation of it. The
vision of an ideal microsource that senses the system right before connecting,
and adjusts itself for better performance and stability, could become reality with
an impedance matching criterion: the unit could measure the impedance of the
existing microgrid, and adjust its internal control parameters for a better match.
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Even some fixed parameters such as filter inductances are now possible to adjust
by developments such as the virtual impedance or active damping.

From the modeling point of view, the usual approach for modeling AC sys-
tem dynamics is to use d-q components. In most established applications of d-q
component models, the reference frame transformation to convert the real three
phase system variables to the abstract system is frequency dependent. However,
droop controls that incorporate frequency variation in system operation would
render the reference frame transformation to be dynamic, and it is not clear that this
formulation would be suitable for the purpose. In this context the dynamic phasor
approach, in polar coordinates is appealing because the phase magnitude variable
is not affected by the operating frequency. For example, Reference [75] presents
a converter that does point-of-load regulation of the voltage magnitude, where a
model using phasors would allow immediate access to a variable that represents
this quantity of interest. In addition, the dynamic phasor representation shown
in [75] is fully compatible with other state space representations, such as the the
ones resulting from the averaging method of power converters [61], and several
other control systems. In particular, it is not difficult to model the microgrid droop
control in a state space representation, as shown in Section 3.4.
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3 phasor dynamic modeling of a
microgrid
As stated in the introduction of this document, the main goal of the present work
is to study the stability of a microgrid that facilitates a plug and play application
approach. The traditional stability assessment is done through eigenvalue analysis,
which requires a detailed model of the system under study. The proposed approach
utilizes an impedance matching criterion, which is established at a point of intercon-
nection in the microgrid. By using this method, the stability of the interconnection
may be studied at such a point, and the properties of the system under study are
also established at that point, and in principle avoiding the need to develop a full
system model with several unknown structures and parameters.

In this chapter, the stability analysis approach, which uses phasor modeling,
will be presented. Both the analytical and simulation models will be introduced.
First, the impedance matching approach will be introduced, and the pertinence
of its application to the microgrid will be discussed. Then, the classical small
signal stability models will be explained. Dynamic phasors models, and their
incremental dynamics at an operating point used for impedance matching, will be
detailed. Finally, the analytical models for several components of the microgrid will
be presented. In addition, the simulation model and parameters are introduced at
the end of the chapter.

3.1 Stability of a microgrid: impedance approach

Even though a large part of a microgrid could be considered linear (i.e. it comprises
components whose representation models are linear), the introduction of other
components (e.g. machines, power electronics) render the system nonlinear in
general. Therefore, the stability study of a microgrid requires the modeling of
nonlinear components. The resulting nonlinear system can be linearized around
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an operating point and the stability of the operating point can be assessed at such
point through linear systems tools.

There exist several ways of assessing the stability properties of a power system [4].
However, virtually all the criteria require a complete, detailed model of the whole
system. Once the stability of a given system is established, any single modification
will potentially have an impact on the stability. Therefore, remodeling of the system
is required after any modification if stability assessment is needed. This is specially
true when adding extra units to the system, thus, increasing the system’s complexity,
usually seen as an increase in the order of the system.

A different approach, compatible with the plug and play concept, is the assess-
ment of the stability at an interconnection point in the microgrid. Let the microgrid
have links with other systems, such as other microgrids, a larger (e.g. national)
grid, or an extra unit that is being incorporated into the existing microgrid (Figure
3.1). The microgrid could be conceptually split in two sections, using one of these
links as the partitioning point (for example, the new source link shown in Figure
3.1). This point will be called Point of Connection (PoC). The PoC is the only point
at which the two areas exchange power.

Area 1 Area 2
I

V

PoCMicrogrid

New
source National

Grid

Neighbour
Microgrid

Figure 3.1: Conceptual Microgrid split in two halves

We are interested in establishing the stability of the system at the PoC. If the
system is perturbed around its operating point (V, I), the perturbation currents
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will flow between Areas 1 and 2, and a perturbation voltage will appear at the
PoC. The magnitudes of those perturbations could be represented by incremental
impedances at the PoC for both areas. For modeling convenience, we will use an
admittance Y1 for the Area 1 and an impedance Z2 for the area 2, as shown in Figure
3.2.

Area 1 Area 2PoC

Y1 Z2

Figure 3.2: Impedances in a conceptual Microgrid

The interactions between the areas may be viewed in the form of a block diagram
illustrated in Figure 3.3. It may be observed that Area 1 receives the PoC voltage and
draws an output current determined by its admittance. Likewise, Area 2 receives
the output current from Area 1 as its input and develops the PoC voltage as its
output, as determined by its impedance. The mutual interactions form a close
loop system (Figure 3.3(a)): the output of one area is the input to the other area.
The closed loop stability properties can be assessed by studying the open loop
system properties (Figure 3.3(b)), in particular, by the return-ratio or loop-gain
−Y1Z2. Note how the sign of one impedance changes, as needed by the references
shown in Figure 3.2.

In this document, the impedance matching stability criteria refers to the use of the
Nyquist stability criterion over the loop-gain −Y1Z2 obtained at a given PoC on a
microgrid. Bode plots will be also presented for reference to interpret the frequency
response function in more common graphical formats.

Since the interconnected system is in general nonlinear, and is excited at the
nominal power frequency, incremental impedances are defined using the dynamic
phasor models at the appropriate operating point. This way, the magnitudes and
phase angles of the perturbations will be represented in the small signal models.
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−ī2

+

v̄PoCṽ +

(a) (b)
Figure 3.3: Impedance-admittance block diagram of the conceptual microgrid. The stability of the
close-loop system (a) can be assessed by the study of the open-loop system (b)

The incremental phasor impedances will be obtained from the dynamic phasor models,
and used for Y1 and Z2 when establishing the stability properties of a microgrid.

3.2 Small-signal stability models

The goal of a small signal model is to construct a linear time invariant (LTI) model
of a system around an operating point in order to assess the stability at such point.
If the LTI system is stable, then the original system is also stable; if the LTI system
is unstable, the stability of the original system cannot be ensured [76].

Every system model can be described in a state space representation, shown
in (3.1). For a system with m inputs, n outputs and p states, x(t) is the state vector
of dimension p, u(t) is the input vector of dimension m, y(t) is the output vector
of dimension n. The function f describes the dynamics of the system, and the
function g describes the output of the system. Both f and g are continuous and
differentiable.

ẋ(t) = f(x(t), u(t), t)

y(t) = g(x(t), u(t), t)
(3.1)

In the case of an LTI system, both f and g are linear and do not depend on the
time t. The general expression for an LTI system is given in (3.2), where A, B, C,
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and D are the state, input, output and feedforward matrices respectively.

ẋ = Ax+Bu

y = Cx+Du
(3.2)

To obtain a linearized system, from the general form (3.1) to the form (3.2), the
usual procedure is to linearize both f and g around an equilibrium point. The
equilibrium points are those who satisfy

ẋ(t) = f(x(to), u(to), t) = 0 ∀t ≥ to (3.3)

where x(to) and u(to) denotes the state and input at which the equilibrium is ob-
tained. Once this point has been established, the system can be linearized around
it.

For time-invariant systems, described by

ẋ(t) = f(x(t), u(t))

y(t) = g(x(t), u(t))
(3.4)

i.e., f and g are not explicit functions of time, the linearization is done around an
operating point xo obtained at input uo:

f(x(t), u(t)) = f(xo, uo)+ Jf,x|x=xo
(x−xo)+ Jf,u|u=uo

(u−uo)+f1(x(t), u(t)) (3.5)

where Jf,x and Jf,x are the Jacobians of f with respect to the state and input variables
respectively, and f1 is a remainder that absorbs all the differences that the first order
approximation cannot represent. A similar process can be applied to g that yields a
linear approximation of it.

If we define x̃(t) = x(t)− xo and ũ(t) = u(t)− uo, and neglect the remainders f1

and g1, the system (3.4) could be rewritten in terms of x̃ as follows (t is dropped to
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simplify notation):

˙̃x = ẋ− ẋo︸︷︷︸
=0

= f(x, u)

≈ f(xo, uo)︸ ︷︷ ︸
=0

+ Jf,x|x=xo
(x− xo) + Jf,u|u=uo

(u− uo)

ỹ = y − yo = g(x, u)− g(xo, uo)

≈ Jg,x|x=xo
(x− xo) + Jg,u|u=uo

(u− uo)

(3.6)

in which Jf,x , A, Jf,u , B, Jg,x , C and Jg,u , D are constant matrices when the
system is time-invariant.

˙̃x ≈ Ax̃+Bũ

ỹ ≈ Cx̃+Dũ
(3.7)

If the system has m inputs, n outputs and p states, the components of each of
the matrices in (3.7) can be found as:

ai,j =
∂fi
∂xj

∣∣∣∣
x=xo

∀i, j = 1 . . . p A = [ai,j] (3.8)

bi,k =
∂fi
∂uk

∣∣∣∣
x=xo

∀i = 1 . . . p, k = 1 . . .m B = [bi,k] (3.9)

cl,j =
∂gl
∂xj

∣∣∣∣
x=xo

∀l = l . . . n, j = 1 . . . p C = [cl,j] (3.10)

dl,k =
∂gl
∂uk

∣∣∣∣
x=xo

∀l = l . . . n, k = 1 . . .m D = [dl,k] (3.11)

Once the linearized, approximated model and its matrices have been determined,
the stability could be studied by the eigenvalue analysis of the matrix A or by any
of the stability assessment methods described in the previous chapter, as long as
the system is time-invariant (which will be the case of the resulting models of this
thesis). Some of the stability criteria require an expression for the transfer function
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of the system. For the LTI system, the matrix transfer function is determined by

H(s) = C · (sI − A)−1 ·B +D (3.12)

where s is the Laplace domain variable and I is the p× p identity matrix.

3.3 Dynamic phasors

The development of dynamic phasor modeling was inspired by the generalized
averaging method of power conversion circuits [77], which is in turn based on the
state-space averaging method [61]. The concept presented in [77] aims to generalize
over the “small ripple” constraint present on state-space averaging models to allow
its application to a broader class of power converters.

The concept of dynamic phasor is based on the generalization of the steady-state
phasor quantity, which is complex-valued, to the quasi-steady state, making the
magnitude and phase angle of a phasor functions of time. In the general case, the
solution of a model’s differential equations can be expressed as a Fourier series,
in which each Fourier coefficient is referred to as k-phasor, where k is the index of
such Fourier coefficient. Note that the approximation by a Fourier series is applied
on a time interval (t − τ, t], where τ is a period of interest (e.g. power converter
switching period); this interval moves along with the time, as well as the k-phasors.
An example of the application of this dynamic phasor technique to a Thyristor
Controller Series Capacitor is presented in [78]. This concept has also been applied
to more complex power systems, not only consisting of a power converter but also
larger systems [79].

The dynamic phasor modeling technique presented in this thesis is closer to
the “harmonic linearization” method presented in [80] (also covered as “method
of averaging” in [76, Sec. 3.5]), in the sense that it corresponds to the 1-phasor
approximation of the non-linear system. Moreover, the method presented here is
strongly influenced by previous developments shown in [75].

The traditional steady-state phasor is a complex number that represents an
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amplitude and phase angle of a sinusoidal signal in the time domain. They can
be expressed in Cartesian coordinates or polar coordinates. Typically phasors are
denoted by a bar on top of its variable name. For example the phasor

V̄1 = 1 + j1 =
√

2∠45◦ (3.13)

represents a sinusoidal waveform

V1(t) =
√

2 cos(ωot+ 45◦) = <
[
V̄1e

jωot
]

(3.14)

with constant magnitude and phase angle, and implicit frequency ωo, which is also
assumed to be constant.

A dynamic phasor is a generalization of the phasor concept, in which the time-
domain signal is represented by

V1(t) = V a
1 cos(ωot+ V θ

1 ) (3.15)

where V a
1 and V θ

1 are both functions of time. The superscripts ()a and ()θ denote
magnitude and phase angle respectively. The corresponding dynamic phasor in
the complex notation would be

V̄1 = V a
1 ∠V

θ
1 (3.16)

Note, however, that frequency variations are able to be represented, because
the frequency variability is absorbed in the phase angle function V θ

1 . At sinusoidal
steady state, both the magnitude V a

1 and the phase angle V θ
1 are constants.

Uniqueness of the dynamic phasor representation

The representation of an arbitrary waveform V1(t) by a dynamic phasor V a
1 ∠V

θ
1 is,

in principle, not unique. For example, the sinusoidal waveform

a(t) = A sin(ωot)
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could be perfectly represented by these two dynamic phasors:

aa1 = A aθ1 = −π/2
aa2 = A sin(ωot) aθ2 = −ωot

The first phasor ā1 has a constant magnitude and phase angle, while the second
phasor ā2 has a sinusoidally-varying magnitude and a linearly decreasing phase
angle.

In order for the dynamic phasor representation to be unique, both the magni-
tude and phase angle components need to be functions of time that are limited in
bandwidth. This is due to the assumption that the waveforms that the dynamic
phasors are representing have Fourier transforms whose spectra lie in the inter-
vals (−2ωo, 0) and (0, 2ωo). The assumption is the same as the one presented in
[81], although the dynamic phasor representation of such article is in rectangular
coordinates rather than polar coordinates.

In this thesis, it will be assumed that the dynamic phasor magnitude compo-
nents ()a are bandwidth limited to the frequency range (−ωo, ωo), where ωo is the
system’s steady state line frequency; and the phase angle components ()θ are band-
width limited to a frequency range such that the modulation could be considered
as narrow-band phase angle modulation. This will ensure that the time domain
waveforms

x(t) = <
[
Xaejωot+X

θ
]

(3.17)

represented by Xa and Xθ are bandwidth limited to the frequency range (−ωo, ωo)
The variation of the componentsXa andXθ could be seen as amplitude and phase

angle modulation of a carrier waveform of frequency ωo. As such, the bandwidth of
the resulting modulated signal is a function of the bandwidth of the modulating
components, and the carrier frequency ωo.

On the one hand, an amplitude modulated signal has a bandwidth equal to twice
the bandwidth of the modulating signal, centered around the carrier frequency [82].
On the other hand, a phase modulated signal (as any other angle modulated signal)
has an infinite number of sidebands; however, most of the information (or power)
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content of the modulated signal lies in a limited band, whose width is a function of
the modulating function and the modulation index, introduced by Van Der Pol [83].
The modulation index differs from the modulation index defined for amplitude
modulation, in the sense that for amplitude modulation, the modulation index
ma has an impact on how much of the amplitude is modulated, and clipping and
distortion may occur, but has not a direct impact on its bandwidth; the modulation
index defined for angle modulation has indeed a direct and important impact on
the bandwidth of the modulated signal, and requires careful study.

In frequency or phase modulation, the generated sidebands on the frequency
spectrum are infinite, and given by a series of Bessel functions of the first type
[84, 85, 86]. The spectrum is usually categorized into two types: narrow-band mod-
ulation and wide-band modulation. Narrow-band frequency (or phase) modulation
is obtained by modulation indexes of less than 20% (or 60◦for phase modulation),
and the generated spectrum is similar in bandwidth to the one obtained by am-
plitude modulation. Wide-band frequency (or phase) modulation is obtained by
modulation indexes greater that those stated above, and the generated spectrum is
contained within a bandwidth equal to twice the modulating depth, which could
be wider that the bandwidth of the modulating signal.

Carson’s rule (or Carson’s law) [87] states that the bandwidth of a frequency (or
phase) modulated signal is approximately equal to

2ωB = 2(∆ω + ωm) (3.18)

where ∆ω is the peak frequency deviation (controlled by the modulation index)
and ωm is the highest frequency of the modulating signal. If the modulation index
is very small, the bandwidth is then very close to the one obtained in the amplitude
modulation case, which is a case of narrow-band frequency (or phase) modulation.

For the purposes of the dynamic phasor modeling, the modulation indexes are
obtained as follows. For frequency modulation,

ω = ωo [1 + kf cos(µt)] (3.19)
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is the instantaneous frequency, and the resulting modulated signal is

i = Ao cos [ωot+mf sin(µt)] (3.20)

where mf =
kfωo
µ

is the modulation index. Equivalently for phase modulation,

φ = φo [1 + kp sin(µt)] (3.21)

is the instantaneous phase, and the resulting modulated signal is

i = Ao cos [ωot+mp sin(µt)] (3.22)

where mp = kpφo is the modulation index.
A dynamic phasor V a

1 ∠V
θ

1 is representing

V1(t) = V a
1 cos(ωot+ V θ

1 ) (3.23)

For the purposes of studying the modulation, this equation will be matched with
(3.22) and (3.20). This is V θ

1 = mp sin(µt) = mf sin(µt). The instantaneous frequency
in this case is

dV θ
1

dt
= mpµ cos(µt) = kpφoµ cos(µt) (3.24)

or
dV θ

1

dt
= mfµ cos(µt) = kfωo cos(µt) (3.25)

It is easier to see in this last expression that the peak frequency deviation is
∆ω = ωokf or ∆ω = φokpµ. Since the narrow-band behavior is desired, we must
ensure that the equivalent modulation index is less than 60◦or 1 rad [84], or 20% in
the case of frequency modulation (λ/ω � 1 in [86]).

One of the key equations in the small signal models of the microgrid components
is the droop control, which is translated into

dV θ
e

dt
= −Mp(P − Po) (3.26)
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whereMp is the droop gain, and P and Po are the measured and desired real power
quantities respectively. We recognize then that, given a limited excursion of the
power measurement, the droop gain Mp plays the role of modulating index. In
order to ensure that the dynamic phasor model is a good approximation, the droop
gain has to be small enough. This is, the product Mp(P − Po) has to be such that the
resulting angle modulation can be considered narrow-band. It is easier to compare
this to a frequency modulation case rather than phase modulation (it is shown
in [88, 89] that both types of angle modulation are not essentially different): The
modulation index in frequency modulation is expected to be 20% or less, and the
typical frequency excursion for a droop controller is in the order of 3 Hz maximum,
which is 5% of the line frequency. Having a low droop gain will ensure that the
dynamic phasor representation is in fact unique.

The width of the frequency band, as a function of the modulation index, is
thoroughly discussed in [82]. Additional discussion is also found in [89]. An inter-
esting study of frequency modulation of a gaussian noise modulating waveform is
covered in [90, Ch.4]. A study of multitone modulation is presented in [91].

3.3.1 Dynamic phasors for linear components

For elements such as a resistor, capacitor or inductor, the dynamic phasor represen-
tation of their defining equations is not difficult to obtain.

For any two terminal device, such as the generic one shown in Figure 3.4, the
voltage and current could be represented by a pair dynamic phasors

V1(t) = V a
1 cos(ωot+ V θ

1 )

I1(t) = Ia1 cos(ωot+ Iθ1 )

+ −V1

I1

Figure 3.4: Voltage and current sign convention for dynamic phasors
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The instantaneous power absorbed by the device is simply the product of the
voltage and current:

p1 = V a
1 cos(ωot+ V θ

1 ) · Ia1 cos(ωot+ Iθ1 )

=
V a

1 I
a
1

2

[
cos(V θ

1 − Iθ1 )(1 + cos 2(ωot+ Iθ1 ))− sin(V θ
1 − Iθ1 ) sin 2(ωot+ Iθ1 )

]
(3.27)

=
Ia1V

a
1

2

[
cos(Iθ1 − V θ

1 )(1 + cos 2(ωot+ V θ
1 ))− sin(Iθ1 − V θ

1 ) sin 2(ωot+ V θ
1 )
]

For an element that stores energy, such as a capacitor or an inductor, the instan-
taneous power is also equal to the time derivative of its stored energy

p1 =
de1

dt
(3.28)

For example, for an inductor,

eL =
1

2
LI2

L =
1

2
L[IaL cos(ωot+ IθL)]2 (3.29)

pL =
deL
dt

=
LIaL

2

[
dIaL
dt

(1 + cos 2(ωot+ IθL))− IaL
(

dIθL
dt
− ωo

)
sin 2(ωot+ IθL)

]
(3.30)

Equating (3.27) and (3.30), we obtain

dIaL
dt

=
1

L
V a
L cos(V θ

L − IθL) (3.31)

dIθL
dt

=
1

LIaL
V a
L sin(V θ

L − IθL)− ωo (3.32)

Similarly for a capacitor,

dV a
C

dt
=

1

C
IaC cos(IθC − V θ

C) (3.33)

dV θ
C

dt
=

1

CV a
C

IaC sin(IθC − V θ
C)− ωo (3.34)
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The resistor is much more simple, because it does not store energy and follows
Ohm’s law:

VR(t) = R · IR(t) ⇒
V a
R = R · IaR
V θ
R = IθR

(3.35)

Note that Equations (3.31) – (3.35) are readily in a form that allows their inclusion
in a state-space model of a larger system that contains components of those types.

Time-invariance of dynamic phasor models for linear components

As it can be readily seen in (3.31) – (3.34), some of the differential equations are non-
linear (see Section 3.3.3). However, these systems are time-invariant: by choosing
the dynamic phasor representation in polar coordinates, the non-linear equations
are independent of time.

It is worth noting that, for this last statement to be true, the elements that these
models are representing need to be time-invariant. In addition, the frequency
reference used in the dynamic phasor definition, ωo needs to be known a priori.
From a power system’s point of view, this corresponds to the line frequency of a
system operating in sinusoidal steady state. As an example of a power system’s
operating point calculation, see Section 5.2.

3.3.2 Dynamic phasors and steady state solutions

As with any system of the form (3.1), the sinusoidal steady state solutions for
dynamic phasors, which correspond to an equilibrium point, can be found setting
the time derivative of the magnitudes and phase angles equal to zero. If we do
so for the capacitor and inductor cases in Equations (3.31) – (3.34), we obtain the
following steady state conditions:

for the capacitor, IAC = ωoCV
A
C IΘ

C − V Θ
C = π/2 (3.36)

for the inductor, V A
L = ωoLI

A
L V Θ

L − IΘ
L = π/2 (3.37)

for the resistor, V A
R = RIAR V Θ

R − IΘ
L = 0 (3.38)
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The superscripts ()A and ()Θ (in uppercase) denote constant quantities that
define the operating points.

3.3.3 Dynamic phasors and linearization of resulting models:
incremental phasor models

Even though passive components such as the capacitor and the inductor are linear in
nature, their models under the dynamic phasor representation render a non-linear
set of differential equations, as shown in (3.31) – (3.34).

The non-linear relationship comes from the fact that the nominal sinusoidal
excitation and response variables of components are modeled in polar coordinates.
As opposed to rectangular coordinates such as the d-q reference frame, the dynamic
phasor’s polar coordinates do not preserve the linearity of the components’ voltage
and current representation. In fact, the equivalence of d-q and dynamic phasor
coordinates could be presented as a transformation between rectangular and polar
coordinates, which is nonlinear. Therefore, the interactions between magnitudes
and phase angles in the dynamic phasor representation will be non-linear.

The dynamic phasor equations are a valid large-signal representation; to study
small-signal perturbations, a linearization of those equations around an operating
point provides an LTI system that can be used for stability assessment. In the
same fashion of the linearization introduced in Section 3.2, a linear model can be
constructed around a sinusoidal steady state operating point. Then, the stability
properties of the resulting LTI system can be used to study the stability of the
dynamic phasor nonlinear system.

The dynamics of this linearized model, which we call incremental phasor model,
describe the interactions between perturbations in phasor currents and voltages
(ṽ, ĩ) around the static phasor operating point (V̄ , Ī), as shown in Figure 3.5. These
phasors are also presented in their time-domain waveform representation in Figure
3.6. The incremental phasor model represents then the interactions between the
waveforms shown at the right side of Figure 3.6.
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V̄

Ī

ṽ

ĩ

(a) (b)

Figure 3.5: Dynamic phasor diagrams for (a) large and (b) small signals

t

V (t)

t

I(t)

t

ṽ(t)

|ṽ|

∠ṽ

t

ĩ(t)

|̃i|

∠ĩ

Figure 3.6: Waveforms for large and small signals shown in Figure 3.5 (not to the same scale)

In the following section, small signal models for several microgrid components
will be created using this technique.
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3.4 Incremental phasor models of microgrid
components

In this section, the dynamic phasor analytical models of several microgrid compo-
nents will be detailed, and their linearization around an operating point will be
obtained. Each component is modeled in such a way that the resulting state space
representation yields either an admittance or impedance. This way, the incremen-
tal phasor models can be connected together to form an impedance-admittance
equivalent that resembles the block diagrams of Figure 3.3.

3.4.1 Resistive, inductive and capacitive loads

The loads are modeled as impedances, i.e. the inputs of the systems will be currents,
and the outputs of the system will be voltages. The models are presented in increas-
ing complexity order, starting from the simple resistive load to the microsource.

Resistor

The most basic load to model is a single resistor (Figure 3.7), whose representation
in dynamic phasors is a direct result of Ohm’s law, as shown in (3.39). R is the
resistor’s resistance, and V̄R and ĪR are the resistor’s voltage and current respectively.

ĪR

R

−

+

V̄R

Figure 3.7: Schematic of a resistive load

V a
R = RIaR

V θ
R = IθR

(3.39)
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As this load has no dynamics over time, and is already in a linear form, its
state space representation is given by a single gain matrix. If the input and output
vectors are given by

y =

(
V a
R

V θ
R

)
, u =

(
IaR
IθR

)
(3.40)

then the state space representation is given by

y = Du

D =

(
R 0

0 1

)
(3.41)

Capacitor

A capacitor is also easily modeled in an impedance state space representation.
Its describing equations are shown in (3.42) for the magnitude and phase angle
components, and a diagram with current and voltage references is shown in Figure
3.8.

ĪC

C

−

+

V̄C

Figure 3.8: Schematic of a capacitive load

dV a
C

dt
= f1(V a

C , V
θ
C , I

a
C , I

θ
C) =

1

C
IaC cos(IθC − V θ

C)

dV θ
C

dt
= f2(V a

C , V
θ
C , I

a
C , I

θ
C) =

1

CV a
C

IaC sin(IθC − V θ
C)− ωo

(3.42)

The system can be linearized around a generic operating point (V A
C , V

Θ
C ). This

operating point, the steady state solution, is found setting the voltage magnitude
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and phase angle time derivatives to zero:

0 =
1

C
IaC cos(IθC − V θ

C)

0 =
1

CV a
C

IaC sin(IθC − V θ
C)− ωo

⇒
IΘ
C − V Θ

C =
π

2

IAC = ωoCV
A
C

(3.43)

Notice that this solution is the same as the one obtained by the traditional phasor
algebra.

Now that the equilibrium point is known, the dynamic phasor system is lin-
earized around it. The capacitor current ĪC is chosen as the input variable, and the
capacitor voltage V̄C as the state (and output) variable.

x =

(
V a
C

V θ
C

)
, u =

(
IaC
IθC

)
, y = x (3.44)

The small signal quantities vaC and vθC , which are the state variables of the
linearized model, are defined in (3.45).

x̃ = x− xo −→
vaC = V a

C − V A
C

vθC = V θ
C − V Θ

C

(3.45)

The linearization matrices and its components are shown in (3.46) and (3.47).

∂f1

∂V a
C

= 0

∂f1

∂V θ
C

= ωoV
A
C

∂f2

∂V a
C

=
ωo
V A
C

∂f2

∂V θ
C

= 0

∂f1

∂IaC
= 0

∂f1

∂IθC
= −ωoV A

C

∂f2

∂IaC
=

1

CV A
C

∂f2

∂IθC
= 0

(3.46)
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˙̃x = Ax̃+Bũ

ỹ = Cx̃

A =

(
0 ωoV

A
C

ωo
V AC

0

)
B =

(
0 −ωoV A

C

1
CV AC

0

)
C =

(
1 0

0 1

) (3.47)

R-L load

The R-L load schematic is shown in Figure 3.9 along with the voltage and current
definitions. The inductor current ĪL is governed by its dynamic phasor equations
shown in (3.48).

Īi

R

ĪR

−

+

V̄i L

ĪL

Figure 3.9: Schematic of a R-L load

dIaL
dt

=
1

L
V a
L cos(V θ

L − IθL)

dIθL
dt

=
1

LIaL
V a
L sin(V θ

L − IθL)− ωo
(3.48)

For this load, the voltages in the inductor and the resistor are the same, i.e.
V a
i = V a

L = V a
R and V θ

i = V θ
L = V θ

R . Using the relationships in (3.39), we can rewrite
(3.48) as

dIaL
dt

= f1(IaR, I
θ
R, I

θ
L) =

1

L
RIaR cos(IθR − IθL)

dIθL
dt

= f2(IaR, I
θ
R, I

θ
L) =

1

LIaL
RIaR sin(IθR − IθL)− ωo

(3.49)
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Moreover, the resistor current can be expressed as a function of the input current
Īi and the inductor current ĪL, which are our variables of interest (input and state
variables respectively). These relationships are shown in (3.50).

ĪR = Īi − ĪL ⇒
(IaR)2 = (Iai )2 + (IaL)2 − 2Iai I

a
L cos(Iθi − IθL)

IθR = arctan

(
Iai sin(Iθi )− IaL sin(IθL)

Iai cos(Iθi )− IaL cos(IθL)

) (3.50)

Equations (3.49) and (3.50) constitute the state space model for the R-L load,
where the R-L load current Īi is chosen as the input variable, the R-L load voltage
V̄i as the output variable, and the inductor current ĪL as the state variable.

x =

(
IaL
IθL

)
, u =

(
Iai

Iθi

)
, y =

(
V a
i

V θ
i

)
(3.51)

This system can be linearized around a generic operating point (V̄i, Īi). The
steady state operating point can be found, as shown for the capacitive load, using
traditional phasor algebra:

V̄i =

(
1

R
+

1

jωoL

)−1

Īi

ĪR =
V̄i
R

ĪL =
V̄i
jωoL

(3.52)

which is equivalent to the dynamic phasor solution:

V A
i =

ωoRL√
R2 + (ωoL)2

· IAi

V Θ
i = arctan

(
R

ωoL

)
+ IΘ

i

IAR =
V A
i

R

IΘ
R = V Θ

i

IAL =
V A
i

ωoL

IΘ
L = V Θ

i −
π

2

(3.53)

Alternatively, the same solution cam be found setting the time derivatives of
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inductor current magnitude and phase angle to zero and ωo respectively.
The small signal state variables iaL and iθL are defined in (3.54).

x̃ = x− xo −→
iaL = IaL − IAL
iθL = IθL − IΘ

L

(3.54)

The linearization matrices and its components are shown in (3.55), (3.56), (3.57),
(3.58) and (3.59).

∂f1

∂IaL
=

R

LIAR

[
IAL cos(IΘ

L − IΘ
R )− IAi cos(IΘ

i − IΘ
R )
]

= −R
L

∂f1

∂IθL
=

R

LIAR

[
−(IAi )2 sin(IΘ

L − IΘ
R )− IAi IAL sin(IΘ

i + IΘ
R − 2IΘ

L )
]

=
R

L
IAR

∂f2

∂IaL
=

R

LIAR (IAL )2

[
(IAi )2 sin(IΘ

L − IΘ
R ) + IAi I

A
L sin(IΘ

i + IΘ
R − 2IΘ

L )
]

= −R
L

IAR
(IAL )2

∂f2

∂IθL
=

R

LIARI
A
L

[
−(IAi )2 cos(IΘ

L − IΘ
R ) + IAi I

A
L cos(IΘ

i + IΘ
R − 2IΘ

L )
]

= −R
L

(3.55)

∂f1

∂Iai
=

R

LIAR

[
IAi cos(IΘ

L − IΘ
R )− IAL cos(IΘ

i + IΘ
R − 2IΘ

L )
]

=
R

L

IAL
IAi

∂f1

∂Iθi
=

R

LIAR

[
(IAi )2 sin(IΘ

L − IΘ
R ) + IAi I

A
L sin(IΘ

i + IΘ
R − 2IΘ

L )
]

= −R
L
IAR

∂f2

∂Iai
=

R

LIARI
A
L

[
−IAi sin(IΘ

L − IΘ
R )− IAL sin(IΘ

i + IΘ
R − 2IΘ

L )
]

=
R

L

IAR
IAL I

A
i

=
ωo
IAi

∂f2

∂Iθi
=

R

LIARI
A
L

[
(IAi )2 cos(IΘ

L − IΘ
R )− IAi IAL cos(IΘ

i + IΘ
R − 2IΘ

L )
]

=
R

L
(3.56)
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∂g1

∂IaL
=

R

IAR

[
IAL − IAi cos(IΘ

L − IΘ
i )
]

= 0

∂g1

∂IθL
= − R

IAR
IAi I

A
L sin(IΘ

L − IΘ
i ) = RIAL

∂g2

∂IaL
=

IAi
(IAR )2

sin(IΘ
L − IΘ

i ) = − 1

IAR
∂g2

∂IθL
=

1

(IAR )2

[
(IAL )2 − IAi IAL cos(IΘ

L − IΘ
i )
]

= 0

(3.57)

∂g1

∂Iai
=

R

IAR

[
IAi − IAL cos(IΘ

L − IΘ
i )
]

= R
IAR
IAi

∂g1

∂Iθi
=

R

IAR
IAi I

A
L sin(IΘ

L − IΘ
i ) = −RIAL

∂g2

∂Iai
= − IAi

(IAR )2
sin(IΘ

L − IΘ
i ) =

IAL
IARI

A
i

∂g2

∂Iθi
=

1

(IAR )2

[
(IAi )2 − IAi IAL cos(IΘ

L − IΘ
i )
]

= 1

(3.58)

˙̃x = Ax̃+Bũ

ỹ = Cx̃+Dũ

A =

(
−R
L

R
L
IAR

−R
L

IAR
IAL
−R
L

)
B =

R

L

 IAL
IAi

−IAR
IAR
IAL I

A
i

1


C =

(
0 RIAL
1
IAR

0

)
D =

 RIAR
IAi

−RIAL
IAL
IAR I

A
i

1


(3.59)

R-C load

The R-C load schematic is shown in Figure 3.10 along with the voltage and current
definitions. The development of the R-C load equations is very similar to the R-L
load case.

The differential equations that govern the capacitor voltage in dynamic phasor
representation are shown in (3.42).
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Īi

R

ĪR

−

+

V̄i C

ĪC

Figure 3.10: Schematic of a R-C load

On the R-C load, the voltages in the capacitor and the resistor are the same,
V̄i = V̄C = V̄R, i.e. V a

i = V a
R = V a

C and V θ
i = V θ

R = V θ
C . Moreover, the resistor current

can be expressed as a function of the input current Īi and the capacitor current ĪC :
ĪC = Īi − ĪR. The dynamic phasor representation of the load is then given by:

dV a
i

dt
= f1(V a

i , V
θ
i , I

a
i , I

θ
i ) =

1

C

[
Iai cos(Iθi − V θ

i )− V a
i

R

]
dV θ

i

dt
= f2(V a

i , V
θ
i , I

a
i , I

θ
i ) =

1

CV a
i

Iai sin(Iθi − V θ
i )− ωo

(3.60)

Equations (3.60) constitute the state space model for the R-C load, with (V a
C , V

θ
C) =

(V a
i , V

θ
i ) as states (and outputs), and (Iai , I

θ
i ) as inputs:

x =

(
V a
C

V θ
C

)
, u =

(
Iai

Iθi

)
, y = x (3.61)

This system can be linearized around a generic operating point (V̄i, Īi), as it
was done for the other loads. The steady state operating point can be found using
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traditional phasor algebra:

V̄i =

(
1

R
+ jωoC

)−1

Īi

ĪR =
V̄i
R

ĪC = V̄ijωoC

(3.62)

The small signal state variables vaC and vθC are defined in (3.63).

x̃ = x− xo −→
vaC = V a

C − V A
C

vθC = V θ
C − V Θ

C

(3.63)

The linearization matrices and its components are shown in (3.64), (3.65) and
(3.66).

∂f1

∂V a
i

= − 1

RC

∂f1

∂V θ
i

=
IAC
C

∂f2

∂V a
i

= − IAC
C(V A

i )2

∂f2

∂V θ
i

= − 1

RC

(3.64)

∂f1

∂Iai
=

1

C

IAR
IAi

∂f1

∂Iθi
=

1

C
IAC

∂f2

∂Iai
=

1

C

IAC
V A
i I

A
i

∂f2

∂Iθi
=

1

C

IAR
V A
i

(3.65)
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˙̃x = Ax̃+Bũ

ỹ = Cx̃

A =

(
− 1
RC

IAC
C

− IAC
C(V Ai )2

− 1
RC

)
B =

1

C

 IAR
IAi

IAC
IAC

V Ai I
A
i

IAR
V Ai

 C =

(
1 0

0 1

) (3.66)

3.4.2 Simple source

The simple source comprises an ideal voltage source with an R-L series impedance.
An schematic diagram is shown in Figure 3.11. In this simple source model, the
dynamic phasors V̄e and ĪL represent the ideal source’s voltage and the current
through the inductor respectively. The dynamic phasor V̄o represents the voltage at
the terminals.

V̄e,ωe

L ĪL
R

+

−

V̄o

Figure 3.11: Schematic of a simple source

Following the sign references of this figure, the differential equations that de-
scribe the simple source are presented in (3.67) and (3.68).

dIaL
dt

= f1(IaL, I
θ
L, V

a
o , V

θ
o ) =

1

L

[
V a
e cos(V θ

e − IθL)− V a
o cos(V θ

o − IθL)−RIaL
]

(3.67)

dIθL
dt

= f2(IaL, I
θ
L, V

a
o , V

θ
o ) =

1

LIaL

[
V a
e sin(V θ

e − IθL)− V a
o sin(V θ

o − IθL)
]
− ωo (3.68)

The sinusoidal steady state equilibrium points are found when the magnitude
and phase angle derivatives are equal to zero. Setting (3.67) and (3.68) to zero, we
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obtain the analytical set of equations (3.69).

ωoLI
a
L = V a

e sin(V θ
e − IθL)− V a

o sin(V θ
o − IθL)

RIaL = V a
e cos(V θ

e − IθL)− V a
o cos(V θ

o − IθL)
(3.69)

Assuming that the voltages V̄e and V̄o are known, we can solve for the inductor
current ĪL as in (3.70).

(IAL )2 =
(V A

e )2 + (V A
o )2 − 2V A

e V
A
o cos(V Θ

e − V Θ
o )

R2 + (ωoL)2

IΘ
L = V Θ

e + arctan

(
−V A

o sin(V Θ
o − V Θ

e )

V A
e − V A

o cos(V Θ
o − V Θ

e )

)
− arcsin

(
ωoL√

R2 + (ωoL)2

)
(3.70)

The notation of this solution is easily simplified if we define the phasor quantities
shown in (3.71) and (3.72).

Ū = V̄e − V̄L

UA =
√

(V A
e )2 + (V A

L )2 − 2V A
e V

A
L cos(V Θ

e − V Θ
L )

UΘ = arccos

(
V A
e cos(V Θ

e )− V A
L cos(V Θ

L )

UA

) (3.71)

Z̄ = R + jωoL

ZA =
√
R2 + (ωoL)2

ZΘ = arctan

(
ωoL

R

) (3.72)

Then, the steady state solution is written in equation (3.73) in terms of these
new phasor quantities. Note that the phasor Ū corresponds to the voltage drop in
the R-L series impedance, now represented by Z̄.

IAL =
UA

ZA

IΘ
L = UΘ − ZΘ

(3.73)
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This solution is unique, and equal to the steady state solution that one would
find using traditional phasor methods. A phasor diagram of this solution is shown
in Figure 3.12.

V A
e

V A
o

UA

IAL

V Θ
e V Θ

o

δ
IΘ
L

UΘ

RIaL

jωoLI
a
L

IΘ
L

φeφo δ = V Θ
o − V Θ

e

φo = V Θ
o − IΘ

L

φe = V Θ
e − IΘ

L

Figure 3.12: Phasor diagram of voltages and currents of the simple source in Figure 3.11.

Now that the equilibrium point is known, the dynamic system is linearized
around it. The terminal voltage V̄o is chosen as the input variable, and the inductor
current ĪL as the output variable. The ideal voltage source Ve is assumed to be
constant.
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x =

(
IaL
IθL

)
, u =

(
V a
o

V θ
o

)
, y =

(
IaL
IθL

)
(3.74)

The small signal quantities iaL and iθL are defined in (3.75).

x̃ = x− xo −→
iaL = IaL − IAL
iθL = IθL − IΘ

L

(3.75)

The linearized system’s matrices A and B are obtained in (3.76) and (3.77) re-
spectively. The resulting linearized system is shown in (3.78).

∂f1

∂x1

∣∣∣∣
xo

=
∂f1

∂IaL

∣∣∣∣
xo

=− R

L

∂f1

∂x2

∣∣∣∣
xo

=
∂f1

∂IθL

∣∣∣∣
xo

=
ωoU

A

ZA

∂f2

∂x1

∣∣∣∣
xo

=
∂f2

∂IaL

∣∣∣∣
xo

=− ωoZ
A

UA

∂f2

∂x2

∣∣∣∣
xo

=
∂f2

∂IθL

∣∣∣∣
xo

=− R

L

(3.76)

∂f1

∂u1

∣∣∣∣
xo

=
∂f1

∂V a
o

∣∣∣∣
xo

=− 1

L
cos(V Θ

o − IΘ
L )

∂f1

∂u2

∣∣∣∣
xo

=
∂f1

∂V θ
o

∣∣∣∣
xo

=
V A
o

L
sin(V Θ

o − IΘ
L )

∂f2

∂u1

∣∣∣∣
xo

=
∂f2

∂V a
o

∣∣∣∣
xo

=− ZA

LUA
sin(V Θ

o − IΘ
L )

∂f2

∂u2

∣∣∣∣
xo

=
∂f2

∂V θ
o

∣∣∣∣
xo

=− ZAV A
o

LUA
cos(V Θ

o − IΘ
L )

(3.77)
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˙̃x = Ax̃+Bũ

ỹ = Cx̃

A =

(
−R
L

ωoUA

ZA

−ωoZA

UA
−R
L

)
C =

(
1 0

0 1

)

B =

(
− 1
L

cos(V Θ
o − IΘ

L ) V Ao
L

sin(V Θ
o − IΘ

L )

− ZA

LUA
sin(V Θ

o − IΘ
L ) −ZAV Ao

LUA
cos(V Θ

o − IΘ
L )

)
(3.78)

Note how the input and output variables are arranged. Since the inputs are
voltages and the outputs are currents, any transfer function resulting from this
system will have the units of an admittance.

3.4.3 Microsource

The microsource is one of the most important building blocks of the microgrid
model. It is, in essence, the simple source presented in Figure 3.11, with the addition
of the droop control, governed by the droop law

ω = −Mp(Pout − Po) + ωo (3.79)

where Po is the desired real power output at frequency ωo, Mp is the droop gain,
and Pout is the output power of the microsource, defined as

Pout =
1

2
V a
o I

a
L cos(V θ

o − IθL) (3.80)

An schematic diagram is shown in Figure 3.13.
Now, the phasor angle V θ

e will be a state of the incremental phasor system, as it
is related to the frequency ω. In fact,

dV θ
e

dt
= ω − ωo = −Mp(Pout − Po) (3.81)

We assume the phasor magnitude V a
e is still constant. The new state, input and
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V̄e

L ĪL
R

+

−

V̄o
ω

Figure 3.13: Schematic of a microsource

output vectors are presented in (3.82).

x =

I
a
L

IθL
V θ
e

 , u =

(
V a
o

V θ
o

)
, y =

(
IaL
IθL

)
(3.82)

The dynamics of the R-L series impedance are still given by equations (3.67)
and (3.68). However, these are now function of V θ

e also. Nevertheless, they have
the same form, as shown in (3.83) and (3.84). The additional differential equation
includes the dynamics introduced by the droop control, as shown in equation
(3.85).

dIaL
dt

= f1(IaL, I
θ
L, V

a
o , V

θ
o , V

θ
e ) =

1

L

[
V a
e cos(V θ

e − IθL)− V a
o cos(V θ

o − IθL)−RIaL
]

(3.83)
dIθL
dt

= f2(IaL, I
θ
L, V

a
o , V

θ
o , V

θ
e ) =

1

LIaL

[
V a
e sin(V θ

e − IθL)− V a
o sin(V θ

o − IθL)
]
− ωo

(3.84)
dV θ

e

dt
= f3(IaL, I

θ
L, V

a
o , V

θ
o , V

θ
e ) = −Mp

(
1

2
V a
o I

a
L cos(V θ

o − IθL)− Po
)

(3.85)

For the sinusoidal steady state equilibrium point, the solutions still follow the
same equations (3.73) and (3.73). However, there is an additional condition over
the new state variable. This new condition is the steady state operation of the droop
controller, in which dV θe

dt
= 0, i.e.
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1

2
V a
o I

a
L cos(V θ

o − IθL) = Po (3.86)

The linearization will incorporate new components to the incremental phasor
model, increasing its order to three. The new dynamics appear as additional
components of the A matrix obtained in (3.87) and (3.88).

∂f1

∂x3

∣∣∣∣
xo

=
∂f1

∂V θ
e

∣∣∣∣
xo

=− V A
e

L
sin(V Θ

e − IΘ
L )

∂f2

∂x3

∣∣∣∣
xo

=
∂f2

∂V θ
e

∣∣∣∣
xo

=
ZAV A

e

UAL
cos(V Θ

e − IΘ
L )

(3.87)

∂f3

∂x1

∣∣∣∣
xo

=
∂f3

∂IaL

∣∣∣∣
xo

=− Mp

2
V A
o cos(V Θ

o − IΘ
L )

∂f3

∂x2

∣∣∣∣
xo

=
∂f3

∂IθL

∣∣∣∣
xo

=− Mp

2
V A
o I

A
L sin(V Θ

o − IΘ
L )

∂f3

∂x3

∣∣∣∣
xo

=
∂f3

∂V θ
e

∣∣∣∣
xo

=0

(3.88)

There will also be new components for the B matrix, as the input will also
interact with the new state V θ

e . The new components are derived in (3.89) and the
resulting incremental phasor system is shown in (3.90).

∂f3

∂u1

∣∣∣∣
xo

=
∂f3

∂V a
o

∣∣∣∣
xo

=− Mp

2
IAL cos(V Θ

o − IΘ
L )

∂f3

∂u2

∣∣∣∣
xo

=
∂f3

∂V θ
o

∣∣∣∣
xo

=
Mp

2
V A
o I

A
L sin(V Θ

o − IΘ
L )

(3.89)
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˙̃x = Ax̃+Bũ

ỹ = Cx̃

A =

 −R
L

ωoUA

ZA
−V Ae

L
sin(V Θ

e − IΘ
L )

−ωoZA

UA
−R
L

ZAV Ae
UAL

cos(V Θ
e − IΘ

L )

−Mp

2
V A
o cos(V Θ

o − IΘ
L ) −Mp

2
V A
o I

A
L sin(V Θ

o − IΘ
L ) 0



B =

 − 1
L

cos(V Θ
o − IΘ

L ) V Ao
L

sin(V Θ
o − IΘ

L )

− ZA

LUA
sin(V Θ

o − IΘ
L ) −ZAV Ao

LUA
cos(V Θ

o − IΘ
L )

−Mp

2
IAL cos(V Θ

o − IΘ
L ) Mp

2
V A
o I

A
L sin(V Θ

o − IΘ
L )


C =

(
1 0 0

0 1 0

)
(3.90)

3.4.4 Microsource with power measurement filter

It is customary to use a filter on the power measurements in the system to reject
noises such as those generated by imbalances and harmonic content. One type of
filter usually found in literature [44, 46, 36] is the first order low-pass filter, whose
Laplace domain transfer function is

Hfilter(s) =
Pf (s)

Pout(s)
=

ωc
s+ ωc

(3.91)

where ωc is the cutoff frequency of the filter, Pout is the measured active power and
Pf is the filtered active power. Adding such filter to the power measurement of the
droop controlled microsource will increase the system’s order in one.

The new droop control rule is

ω = −Mp(Pf − Po) + ωo (3.92)

where Pf is now the filtered power measurement, and Po is the desired real power
output at frequency ωo. This measurement comes from the measurement filter,
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which is governed by equation (3.93). The measured output power Pout is defined
in (3.80).

The time-domain differential equation for the power filter can be derived using
the inverse Laplace transform on the transfer function of (3.91):

L(Pf ) =
ωc

s+ ωc
L(Pout)

⇔ sL(Pf ) + ωc L(Pf ) = ωc L(Pout)

⇔ sL(Pf ) = ωc [L(Pout)− L(Pf )] /L−1

⇔ dPf
dt

= ωc [Pout − Pf ] (3.93)

With this changes, the incremental phasor model of the system is represented
by a new set of equations:

dIaL
dt

= f1(IaL, I
θ
L, V

a
o , V

θ
o , V

θ
e , Pf ) =

1

L

[
V a
e cos(V θ

e − IθL)− V a
o cos(V θ

o − IθL)−RIaL
]

(3.94)
dIθL
dt

= f2(IaL, I
θ
L, V

a
o , V

θ
o , V

θ
e , Pf ) =

1

LIaL

[
V a
e sin(V θ

e − IθL)− V a
o sin(V θ

o − IθL)
]
− ωo

(3.95)
dV θ

e

dt
= f3(IaL, I

θ
L, V

a
o , V

θ
o , V

θ
e , Pf ) = −Mp(Pf − Po) (3.96)

dPf
dt

= f4(IaL, I
θ
L, V

a
o , V

θ
o , V

θ
e , Pf ) = ωc

(
1

2
V a
o I

a
L cos(V θ

o − IθL)− Pf
)

(3.97)

Note that the incorporation of the filter does not impact the differential equations
f1 and f2. However, f3 is changed and a new equation f4 appears. The modified
components of f3 are shown in (3.98) and (3.100), and the new components for the
linearization of f4 are shown in (3.99) and (3.101). The incremental phasor model
is presented in (3.102).
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∂f3

∂x1

∣∣∣∣
xo

=
∂f3

∂IaL

∣∣∣∣
xo

=0

∂f3

∂x2

∣∣∣∣
xo

=
∂f3

∂IθL

∣∣∣∣
xo

=0

∂f3

∂x3

∣∣∣∣
xo

=
∂f3

∂V θ
e

∣∣∣∣
xo

=0

∂f3

∂x4

∣∣∣∣
xo

=
∂f3

∂Pf

∣∣∣∣
xo

=−Mp

(3.98)

∂f4

∂x1

∣∣∣∣
xo

=
∂f4

∂IaL

∣∣∣∣
xo

=− ωc
2
V A
o cos(V Θ

o − IΘ
L )

∂f4

∂x2

∣∣∣∣
xo

=
∂f4

∂IθL

∣∣∣∣
xo

=− ωc
2
V A
o I

A
L sin(V Θ

o − IΘ
L )

∂f4

∂x3

∣∣∣∣
xo

=
∂f4

∂V θ
e

∣∣∣∣
xo

=0

∂f4

∂x3

∣∣∣∣
xo

=
∂f4

∂Pf

∣∣∣∣
xo

=− ωc

(3.99)

∂f3

∂u1

∣∣∣∣
xo

=
∂f3

∂V a
o

∣∣∣∣
xo

=0

∂f3

∂u2

∣∣∣∣
xo

=
∂f3

∂V θ
o

∣∣∣∣
xo

=0

(3.100)

∂f4

∂u1

∣∣∣∣
xo

=
∂f4

∂V a
o

∣∣∣∣
xo

=− ωc
2
IAL cos(V Θ

o − IΘ
L )

∂f4

∂u2

∣∣∣∣
xo

=
∂f4

∂V θ
o

∣∣∣∣
xo

=
ωc
2
V A
o I

A
L sin(V Θ

o − IΘ
L )

(3.101)
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(3.102)

3.5 Interpretation of the incremental phasor models

The admittance and impedance representations deserve a careful look, as the mag-
nitude/angle representation yields quantities that are easily related to physical
quantities, but are not necessarily intuitive. In fact, contrary to common sense, the
magnitude and phase angles of the small perturbations are, in principle, not related
to the large signal excursions, as depicted in Figure 3.5.

The natural way of thinking is to relate voltages and currents through an
impedance or admittance, a complex-valued quantity. The small signal repre-
sentation, however, relates vectors by channels as individual components, each of
which will be an impedance-like or admittance-like quantity.

For example, the transfer function matrix for the simple source, obtained from
(3.78) as
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H(s) =
ỹ(s)

ũ(s)
=
ĩ(s)

ṽ(s)
= C · (sI − A)−1 ·B (3.103)

is a 2-by-2 matrix whose elements are all small-signal “admittances” over the
magnitude and phase angle components

H(s) =

(
Ha,a(s) Ha,θ(s)

Hθ,a(s) Hθ,θ(s)

)
(3.104)

These small-signal “admittances” provide information about how perturbations
in a given channel are affecting another channel on the LTI model. For example,
Ha,θ(s) provides information about how perturbations in the small-signal current
phase angle ĩθ affects the small-signal voltage magnitude ṽa. Graphically, using the
designations of Figure 3.5, the relationship is governing how rotations of ĩ are mak-
ing the radius of the dotted line circle around ṽ grow or shrink. That relationship is
a Laplace-domain transfer function that, evaluated in s = jω, yields an admittance.
However this particular admittance will not relate the whole current and voltage
vectors, but only the current phase angle with the voltage magnitude.

The appearance of cross-coupled impedances and admittances is not a matter of
the incremental phasor representation only. In fact, d-q models have also equivalent
cross-coupled impedances and admittances [63], usually called Zdd, Zdq, and so
on. However, it is worthy to note that the impedances and admittances in d-q
components have the right physical units of Ohms and Mhos; the dynamic phasor
components, in contrast, do not always have the right physical units or readily
interpretable physical significance. When establishing the conditions for stability
on the basis of impedance matching, the magnitude channels will be the only
ones that provide physical significance. Our interest is, then, in the magnitude
channel component, Ha,a(s), which we will call incremental phasor impedance Z̃(s)

or incremental phasor admittance Ỹ (s) depending on the state space formulation.
Even though the system’s stability properties will be dictated by the interaction

of all magnitude and phase angle channels, as in any multiple-input-multiple-
output (MIMO) system, it will be shown in the rest of this document that the stability
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properties can be, in fact, studied by the interactions of the magnitude-magnitude
components Ha,a(s) only. This effectively represents the MIMO system as a single-
input-single-output (SISO) system. The generalized Nyquist stability criterion,
developed for MIMO systems, is simplified to the traditional Nyquist stability
criterion for SISO systems [12]. This simplification is inspired by the developments
presented in [63], in which the stability of a system is solely determined by looking
at the d-d channel in a d-q reference frame analysis.

3.5.1 Incremental phasor impedances in the dynamic phasor
representation

The simplest case is the resistive load, in which both the large-signal and small-
signal (incremental) phasor impedances are equal:

ZR(s) = Z̃R(s) = R (3.105)

However, as soon as dynamics come into play, the large-signal impedance Z(s)

and incremental impedance Z̃(s) begin to differ. For example, in the case of the
capacitive load, the large-signal impedance is

ZC(s) =
1

sC
(3.106)

and the incremental phasor impedance, obtained from (3.47) is

Z̃C(s) = |Z(jωo)| ·
ω2
o

s2 + ω2
o

(3.107)

In this particular example, we can see how the incremental phasor impedance
has a “DC gain” equal to the large-signal impedance evaluated at the system’s
frequency, and a pair of complex-conjugate poles that lie on the imaginary axis,
also at the system’s frequency. This phenomenon can be seen as a “pole-splitting”
characteristic: the original pole of the large-signal impedance, located at the origin,
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is split into two poles, which move from the original pole’s location towards ±j.
Another example is the R-C load, in which the large-signal impedance’s pole is

not at the origin anymore. The large- and incremental phasor impedances are

ZR−C(s) =
R · 1

sC

R + 1
sC

=
1

C
· 1

s+ 1
RC

(3.108)

Z̃R−C(s) = |Z(jωo)| ·
1
RC
s+ 1

(RC)2
+ ω2

o

s2 + 2
RC
s+ 1

(RC)2
+ ω2

o

(3.109)

In a similar fashion, the single negative real pole is split into two complex
conjugate poles that move from the original pole location towards ±j, and an
extra zero appears as well. Note how the “DC gain” of the incremental phasor
impedance is, once again, equal to the large-signal impedance evaluated at the
system’s frequency. Some example Bode plots and pole-zero maps of the large- and
incremental phasor impedances are shown in Figure 3.14.
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Figure 3.14: Example Bode plot and pole-zero map of the R-C load large-signal and incremental phasor
impedances
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The same analysis can be done with the R-L load, which shows a slightly different
structure. The large-signal and incremental phasor impedances in this case are

ZR−L(s) =
sRL

R + sL
= R

s

s+ R
L

(3.110)

Z̃R−L(s) = |Z(jωo)| ·
s2 + 3R

L
s+

(
R2

L2 + ω2
o

)
s2 + 2R

L
s+

(
R2

L2 + ω2
o

) (3.111)

The large-signal impedance has one pole and one zero, and the incremental phasor
impedance has two poles and two zeros. The pole-splitting phenomenon in this case
is rather different, however the “DC gain” of the incremental phasor impedance is
still equal to the large-signal impedance evaluated at the system’s frequency. Some
example Bode plots and pole-zero maps of the large-signal and incremental phasor
impedances of the R-L load are shown in Figure 3.15.
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impedances

In the case of the microsource analytical model, the expression for its admittance
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is much more complex, as shown in (3.112). The numerator and denominator of
this admittance are functions of the droop gain Mp. Some of the amplitudes and
phase angles present in this equation are already defined in the phasor diagram of
Figure 3.12.

Ỹusrc(s) = − 1

∆(s)
· 1

ZA
·
[
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L
cosφLs

2 +
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(
ZA2
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(3.112)
In this case, the DC gain of the incremental phasor admittance is equal to

Ỹusrc(0) = − 1

ZA

V A
o sinφL + U sin(ϕ− φe) cosφL

V A
o sin(δ + ϕ)

(3.113)

expression that preserves information about the large-signal series impedance
(represented by ZA), but also the operating point of the microsource (represented
by the rest of the terms). Example bode plots of the incremental phasor impedance
of the microsource can be found later in this document, for example in Figure 4.15.

These admittances and impedances will play a crucial role in the stability as-
sessment of the microgrid, as will be shown in the following chapters.

3.6 Time-domain simulation models

The time-domain simulation models are constructed in Simulink, using SimPower-
Systems blocks for the power system wiring.

A general overview of the system is shown in Figure 3.16, in which a three-phase,
two-source microgrid is presented. This general model is modified for each specific
simulation scenario, by adding, deleting or modifying its blocks.
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Figure 3.16: Overview of the 2-source microgrid simulation block diagram

The upper part of the block diagram corresponds to the power section, in which
the electric elements interact. The lower part corresponds to the control section,
in which the measurements are fed into the controllers, and control signals are
delivered.

Each of the analytical models presented in the previous section has an equivalent
for time-domain simulation, whose details are presented below.
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3.6.1 Resistive, inductive and capacitive loads

Each passive load is already available as a SymPowerSystems block. The load
blocks are shown in Figure 3.17.

RLoad
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CLoad
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Figure 3.17: Collection of load block diagrams

3.6.2 Simple source

The simple source model is shown in Figure 3.18. It comprises an ideal voltage
source and a series R-L impedance. The ideal voltage source is fed with constant
voltage magnitude (V1m), frequency (omega e) and phase angle (V1t). These quanti-
ties, however, may be connected to other blocks to introduce several controls, such
as the frequency droop.
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Figure 3.18: Simple source block diagram

Internally, the ideal voltage source is built using three ideal, wye-connected
controlled voltage sources, which are fed with symmetric, balanced sinusoidal
references. The block diagram of the ideal voltage source is shown in Figure 3.19.
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Figure 3.19: Simple source block diagram details: ideal three-phase controlled voltage source

3.6.3 Microsource

When the droop control is introduced, the frequency of the microsource varies as a
function of the delivered power. The droop control block is fed with the three phase
power measurement (scaled by 1/3), and delivers dV θ

dt
at the output, as shown in

Figure 3.20 as dtheta. The output of this block is connected to an integrator, to
finally deliver the microsource’s phase angle V θ. The power measurement in the
three phase case is remarkably simple. However, in other configurations such as a
single-phase microgrid, the power measurement might be a more complex block.

Product Integrator
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s
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1/3

From1

I1
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Droop control 1

P dtheta

voltage

current

P

Figure 3.20: Droop control block diagram

The droop control internals are shown in Figure 3.21. This block is implementing
Equation (3.81), with an output power setpoint Pb1 and droop gain Mp1.
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Figure 3.21: Droop control block diagram details

3.6.4 Microsource with power measurement filter

This version of the microsource only differs from the previous one in the additional
filter block introduced after the power calculation, shown in Figure 3.22.
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Figure 3.22: Droop control with power measurement filter block diagram

3.7 Parameters

The parameters shown in Table 3.1 are used throughout every numerical and time-
domain simulation in the following chapters. Whenever a component is present in
the system, its parameters will be the ones presented in this table, unless otherwise
noted.

These parameters try to resemble the existing UW-Microgrid hardware. In fact,
several values are equal to the measured parameters of the microsources in the UW-
Microgrid. Note, however, that some parameters can be tuned during simulations
and experiments, such as the droop gains Mp and the power measurement filter
cut-off frequency ωc.
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Table 3.1: Base parameters for 2-source microgrid

Parameter Symbol Value Units
System’s frequency fo 60 Hz
System’s angular frequency ωo 377 rad s−1

Microsource resistance R1,2 0.0188 Ω
Microsource inductance L1,2 0.62 mH
Microsource 1 voltage magnitude V A

e1 120
√

2 V
Microsource 2 voltage magnitude V A

e2 115
√

2 V
Microsource 1 voltage angle V Θ

e1 0.05π rad
Microsource 2 voltage angle V Θ

e2 0 rad

Load resistance RL 10 Ω
Load capacitance CL 10 µF
Load inductance LL 10 H

Microsource droop gain Mp1,2 0.1 %

Microsource power filter cut-off frequency ωc 30 Hz

3.8 Summary

In this chapter, the ideas behind the impedance matching criteria were introduced.
Then, the dynamic phasor analytical model of several microgrid components was
developed in such a way that the models can be interconnected. This is, the output
current of one model serves as the input current of another, and likewise with the
voltages.

Even though the models are already useful as such for stability analysis (using
for example eigenvalue analysis), the key definition also introduced in this chapter
is the incremental phasor impedance or admittance. This corresponds to the mag-
nitude/magnitude channel of the resulting transfer function of a given component,
Ha,a(s), which will become the fundamental descriptor of such component for
the impedance matching analysis. Its successful application will be shown in the
following chapters.

In addition, the same components modeled on dynamic phasor were also mod-
eled on the simulation software package Simulink. These models have the same
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structure of the analytical models, and will be used later to validate the analytical
dynamic phasor models.
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4 single source microgrid

A single source microgrid is, for the purposes of this chapter, a microsource con-
nected to either an infinite bus (such as the system depicted in 4.1) or a single load.
For a microsource connected to a larger, more complex system, the approach shown
in the subsequent chapter may be used.

V̄e,ωe

L ĪL
R

∞

+

−

V̄L

Figure 4.1: One source, infinite bus system

Since the single source case has been thoroughly studied [35, 36, 51], the results
obtained in this chapter may serve as a validation of the small perturbation models
obtained using dynamic phasors. Hence, the purpose of this chapter is to validate
the tools developed in the previous chapter when applied to the stability analysis
of a microgrid.

In this chapter, two kinds of single source microgrids will be studied. First, the
single microsource, infinite bus system will be analytically studied for two reasons:
(a) the analytical analysis will serve as a validation process for the dynamic phasor
modeling technique, because the results can be directly compared to the analytical
results reported on the literature; and (b) the infinite bus, being ideal and having
no series impedance, cannot be used with the impedance matching criteria, since
the loop gain Y1Z2 term becomes zero, leading to an indeterminate form. As part
of the validation, the single microsource, infinite bus case will also be numerically
studied, and time-domain simulations will be performed as well.

Second, cases of a single microsource connected to passive loads will be presented.
Even though this system could also be analytically studied using classical eigenvalue
methods, the approach used in this case will be to study the stability through the
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impedance matching criteria. Numerical results will be contrasted to time-domain
simulations.

4.1 Single microsource, infinite busbar

Infinite bus is a term borrowed from large EPS analysis (for example, see [27, Ch.
7]). In such systems, the infinite bus usually represents a large part of the EPS,
which is assumed to have infinite power capacity and inertia. Even though the
impedance matching stability criteria cannot be applied in this specific case, a deep
analysis of the single microsource, infinite bus system will provide meaningful
insights on how the dynamics of the system are function of the several parameters
of a microsource, specially the droop gain Mp.

As the dynamics of the system increase (i.e. the order of the linearized system
increases), it becomes rather difficult to establish any kind of closed-form solution.
However, the single microsource, infinite bus system is one of the cases that can be
studied in detail, and serves as an intermediate step in understanding the behavior
of a larger microgrid.

4.1.1 Closed-form solutions

When a simple source is connected to an infinite busbar, as shown in Figure 4.1, the
voltage V̄L is a constant phasor. The dynamics are given by the poles of the system,
which in this case are easy to determine. For the second-order system shown in
(3.78), the characteristic polynomial is

∆src(s) = s2 +
2R

L
s+

R2

L2
+ ω2

o (4.1)

whose roots (poles of the system) are simply λ1,2 = −R
L
± jωo. This pair of complex-

conjugate poles are located in the left-hand side of the complex plane, as shown in
Figure 4.2. This ensures the stability of this system under any circumstance.

When a microsource is connected to an infinite bus, the characteristic polynomial
becomes one order higher, and corresponds to the linear system shown in (3.90).
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Figure 4.2: Root locus for one simple source, infinite bus system

The characteristic polynomial of this augmented system is

∆usrc(s) = s3+
2R

L︸︷︷︸
B

s2+
1

L2

(
Z2 +

1

2
LMpV

A
e V

A
L sin(δ)

)
︸ ︷︷ ︸

C

s+
1

2L2
ZMpV

A
e V

A
L sin(δ + ϕ)︸ ︷︷ ︸

D

(4.2)
where Z =

√
R2 + ω2

oL
2, δ = V Θ

L − V Θ
e and ϕ = arctan(ωoL

R
) are introduced to

simplify the notation.
This polynomial will have three roots; since the polynomial coefficients are all

real, the roots have to be either all real, or one real and a complex-conjugate pair.
One example of a possible root locus is shown in Figure 4.3.

The location of the poles will be a function of the droop gain Mp, as well as the
operating point, which appears here as voltage magnitudes V A

e and V A
L and phase

angle δ. If the operating point is held constant, the increase of the droop gain may
have a negative impact on the stability of the system, i.e. for large gains, the system
may become unstable.

The stable region, i.e. the range of droop gains with which the system is stable,
can be estimated by finding the critical gain M?

p at which at least one of the poles
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Figure 4.3: Sample root locus for one microsource, infinite bus system

becomes unstable 1. It could be possible to study the roots of the characteristic
polynomial using the discriminant of a cubic polynomial; the complexity, however,
renders this approach unmanageable.

Nonetheless, there are a few scenarios of interest, that can be approached with
different tools. In particular, we are interested in characterizing the sign of the
roots, thus establishing the stability of the system through its eigenvalues. These
scenarios are:

• The three poles are real. In this case, we can use the Descartes’ rule of signs to
determine the existence of positive poles. To apply the rule, the polynomial
will be rewritten as

∆usrc(s) = s3 +Bs2 + Cs+D (4.3)

using the definitions of (4.2). The Descartes’ rule states that number of sign
differences between consecutive non-zero coefficients of this polynomial gives

1Only positive droop gains are considered. A similar approach is possible for negative droop
gains. This case, however, is out of the scope of this study, as the negative droop gain corresponds
to a microsource behavior that contradicts the power sharing objective of a microgrid.
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the number of positive roots. As B is always positive, the only coefficients
that can tell whether a positive root exists are C and D.

By the observation of those coefficients, one can realize that the sign of D is
always determined by the angle δ + ϕ. The angle ϕ is the series impedance
angle, it is always between 0 and π/2, and is strictly greater that zero when
the reactance is not zero. Under the assumption that the angle δ is small, the
sign of D is positive, regardless of the droop gain.

The coefficient C, on the other hand, may become negative if

Z2 ≤ −1

2
LMpV

A
e V

A
L sin(δ) (4.4)

which can occur if the droop gain is large enough and δ < 0. If this happens,
then there would be two sign differences between consecutive coefficients: C
would be negative, and then D would be positive.

The Descartes’ rule can only tell, in this case, that there are either two positive
real roots, or there are no positive real roots but a complex-conjugate pair
(of which we cannot guarantee any property regarding their real part sign).
Therefore, the Descartes’ rule of sign cannot give enough information in this
case, as the system may probably have a complex-conjugate pair (see below
for some examples). In general, for small droop gains and small δ, both C and
D are positive, and the Descartes’ rule can only say that there will not be any
real positive pole; complex-conjugates with positive real part, however, may
still appear.

In addition, the Descartes’ rule can be also applied to establish the number of
negative real roots. For this purpose, we work with

∆usrc(−s) = −s3 +Bs2 − Cs+D (4.5)

that, under the same assumptions of large droop gain and δ < 0, will only
have one sign change. This indicates that the original polynomial ∆usrc(s) has
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exactly one negative root. In general, for small droop gains and small δ, both
C andD are positive, and the polynomial ∆usrc(−s) has three consecutive sign
changes. This means that the original polynomial has either three negative
real roots, or one negative real root and a complex-conjugate pair.

With the results for ∆usrc(s) and ∆usrc(−s), we can conclude that the polyno-
mial ∆usrc(s) has, in general, either one negative root plus a complex-conjugate
pair, or three negative real roots. Therefore, in the case where all poles are real,
they are likely to be all negative.

It is important to note, then, that it is very unlikely that the system will have
three real poles, with just one of them being positive.

• There is one complex-conjugate pole pair, plus a real pole. In this case, we cannot
easily infer any property over the poles. However, there are some properties
of polynomial roots that provide some insights about their location on the
complex plane.

The coefficients of a polynomial can be related to its roots by the Vieta’s
formulas. For our cubic polynomial ∆usrc(s), this formulas are

−B = λ1 + λ2 + λ3 (4.6)

C = λ1λ2 + λ1λ3 + λ2λ3 (4.7)

−D = λ1λ2λ3 (4.8)

The first Vieta’s rule (4.6) is providing a key property: the sum of all poles
is constant, and it does not depend on the droop gain Mp or the operating
point. Hence, the movement of the poles on the complex plane is constrained
by (4.6).

The third Vieta’s rule (4.8) is also providing some interesting information: the
product of the three poles will grow with D, which in turn grows with Mp.
From a magnitude viewpoint, this rule states that the greaterMp is, the greater
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the absolute values of the poles will be. In other words, as Mp increases, the
poles tend to move away from the origin.

There exist two extreme cases that give some additional insight about the
behavior of the poles:

– If Mp = 0, the characteristic polynomial reduces to

∆o
usrc(s) =

(
s2 +

2R

L
s+

Z2

L2

)
s (4.9)

in which we have recovered the two complex-conjugate poles of the
non-droop-controlled case, plus a pole in the origin. Note how the rule
(4.6) holds in this case:

−B = −2R

L
= λ1 + λ2 + λ3 (4.10)

where λ1,2 = −R
L
± jωo and λ3 = 0. This rule, shown as a constraint on

the vector sum of the poles on the complex plane, is presented in Figure
4.4.

ωo

-ωo

-R
L

-2R
L

Figure 4.4: Root locus for one microsource, infinite bus system under zero droop gain conditions
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– If the complex-conjugate pair is pure imaginary, then there is also a pure real
pole. The characteristic polynomial in this case will look something like

∆?
usrc(s) = (s+ α)(s2 + ω?2) (4.11)

being the poles λ1 = −α and λ2,3 = ±jω?. The rule (4.6) will state that,
under these circumstances,

∑
i λi = −2R

L
= −α, hence

∆?
usrc(s) =

(
s+

2R

L

)
(s2 + ω?2) = (s+B)(s2 + ω?2) (4.12)

Then the root locus would look like Figure 4.5. We call this case the critical
case, as there are two poles that establish a marginally stable behavior
of the system. In this figure, the vectors are drawn to emphasize that
Vieta’s rule (4.6) also holds.

ω?

-ω?

-R
L

-2R
L

Figure 4.5: Root locus for one microsource, infinite bus system under critical conditions

The critical gain M?
p and the critical frequency ω? can be found if we

compare the characteristic polynomials:

∆usrc(s) = s3 +Bs2 + Cs+D (general case)

∆?
usrc(s) = (s+B)(s2 + ω?2) (critical case)
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If we factor ∆usrc(s) by (s + B), then the polynomials could be easily
matched. This factorization, obtained using long polynomial division,
yields

∆usrc(s) = (s+B)(s2 + C) + (D − CB)︸ ︷︷ ︸
R

(4.13)

where R is the remainder, which needs to be zero in order for the poly-
nomials ∆usrc(s) and ∆?

usrc(s) to match.
Setting the reminder to zero yields the following expression for the
critical gain:

M?
p =

4Z2R
L

V A
e V

A
L (Z sin(δ + ϕ)− 2R sin(δ))

(4.14)

If the droop gain has this critical value, then the characteristic polynomial
has the form of ∆?

usrc, with ω?2 = C.

In summary, there are two known cases with complex-conjugate poles: (a) the
case where Mp = 0 and the two complex-conjugate poles of the non-droop-
controlled case appear along with a new pole in the origin, and (b) the case
whereMp = M?

p and the two complex-conjugate poles lie along the imaginary
axis. Between these two cases, the poles move continuously with Mp, as it
is an established property that the roots of a polynomial are a continuous
function of the polynomial’s coefficients.

It is important to note that, even though both known cases have a complex-
conjugate pair, there may be some values of Mp for which the poles become
all real. As it was shown above, it is possible for the system to have three real
negative poles, but it is unlikely that the system will have all three positive
real poles or only one positive real pole.

Therefore, it is expected that, for 0 < Mp < M?
p the poles will be either all

real and negative, or one negative pole plus a complex-conjugate pair; and
for Mp > M?

p the poles will continue being a complex conjugate pair, plus a



76

negative real pole. As Vieta’s formulas (4.6) through (4.8) must hold for any
value ofMp, the real negative pole will move towards the left-hand side of the
complex plane as Mp increases, while the complex conjugate pair will move
towards the right-hand side of the complex plane.

Sketches of possible root loci for the system when varying Mp from 0 to M?
p

are shown in Figure 4.6.

ω?

-ω?

ωo

-ωo
-R
L

-2R
L

increasing ga
in
→ ω?

-ω?

ωo

-ωo
-R
L

-2R
L

in
cr

ea
sin

g g
ain
→

(a) (b)
Figure 4.6: Sketch of possible root loci for one microsource, infinite busbar system. (a) shows a case
where there are always complex-conjugate poles, while (b) shows a case where the three poles become
real for some values of Mp.

The expression (4.14) for M?
p can be used to find the critical frequency ω? at

which the system becomes unstable:

ω?2 = C|M?
p

=
1

L2

(
Z2 +

1

2
LM?

pV
A
e V

A
L sin(δ)

)
=
Z2

L2

[
Z sin(δ + ϕ)−R sin(δ)

Z sin(δ + ϕ)− 2R sin(δ)

]
(4.15)

If the angle δ ≈ 0, then the expressions for M?
p and ω? could be simplified:

If δ ≈ 0, M?
p =

4Z2R

V A
e V

A
L ωoL

2
C|M?

p
=
Z2

L2
⇒ ω? =

Z

L
(4.16)
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Moreover, if the impedance is mainly inductive, i.e. ωoL� R, the expressions
could be further simplified:

If ωoL� R, M?
p =

2ωoR

V A
e V

A
L /2

C|M?
p

= ω2
o ⇒ ω? = ωo (4.17)

Expressions (4.17) are equivalent to those in [51], in which a relationship between
Mp andR is also found. However, expressions (4.14) and (4.15) are general, i.e. they
are valid under any operating condition and are not subject to any simplification of
operating points or parameter values.

4.1.2 Numerical solutions

Numerical results are shown in Figure 4.7, where the base parameters of Table 3.1
are being used, with droop gains varying from 0.01% to 4%. The value ofM?

p , using
the base parameters, is 2.7413%, which matches with the droop gain at which the
poles cross to the right hand side of the complex plane in Figure 4.7. The root locus
in this case resembles the sketch of Figure 4.6(a), since the poles never become all
real at the same time.

A root locus similar to the sketch of Figure 4.6(b) can also be obtained. The
series inductance L was changed from 0.62 mH to 0.01 mH and series resistance
from 0.0188 Ω to 0.01 Ω to produce Figure 4.8. Notice how in this case the poles
become all real for some values of Mp. The critical droop gain M?

p in this case has a
value of 8.3245%, which is not reached with the droop gain ranges of Figure 4.8.

The practical realization of the model is done in Matlab, using the Control
System Toolbox. Using the function ss, the state space realization (incremental
phasor model) of the microgrid model is obtained. The function pzmap is used to
obtain the pole-zero map, and functions bode and nyquist are used to obtain the
Bode and Nyquist plots respectively.
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Figure 4.7: Root locus for one microsource, infinite bus system (base parameters)
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4.1.3 Time-domain simulations

Using the base parameters of Table 3.1, a time-domain simulation was carried out.
The Simulink block diagram is shown in Figure 4.9.
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N Meas1
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L1, R1

A
B
C

A
B
C

From6

[omega1]

Constant7

V2t

Constant6

V1t

Constant4

V2m

Constant2

V1m

Constant1

omega_e

Figure 4.9: One microsource, infinite bus block diagram

Three phase power, voltage and current waveforms of the simulation results
are shown in Figure 4.10. During the time-domain simulation, the droop gain was
increased from 1.0% to 4.0%, and the system quickly became unstable: immediately
after the gain step, the power oscillations begin, and the current slowly starts to
diverge. Notice, however, how the voltage remains steady and sinusoidal. This
is due to the ideality of the infinite bus, which is not perturbed by any current
injection.

The power oscillations are of approximately 59.5 Hz = 374.8 rad s−1, which
matches the angular frequency (imaginary part) of the unstable poles at that gain
(374.2 rad s−1 in Figure 4.7).

4.1.4 Effects of power measurement filter

If we include the power measurement filter on the microsource model, and going
back to using the base parameters, the root locus looks like the one shown in Figure
4.11. The power filter, which has a cut-off frequency of 30 Hz, adds an extra pole,
which interacts with the pole that travels to the left on the real axis. Note, however,
that the droop gain at which the system becomes unstable is not M?

p anymore. In
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Figure 4.10: Simulation results for one microsource, infinite bus system. At time t = 0.5 s, the droop
gain Mp is increased from 1.0% to 4.0%, entering the unstable region.

fact, the system is always stable under these conditions, and may probably require
a much higher droop gain to become unstable.

The effect of the power measurement filter is more radical when the cut-off
frequency is reduced. In Figure 4.12 the numerical results are shown when a cut-off
frequency of 5 Hz is used. The root locus shows how the far left complex conjugate
poles (that could be attributed to the series impedance, as in Figure 4.2) move
towards the left of the complex plane instead of the right, while the real poles (that
could be attributed to the filter and the droop controller) interact and become a
pair of complex conjugate poles for certain gains. Even though the system is still
stable for the whole droop gain range, the instability would probably be driven by
these new complex conjugate pair of poles.

A time-domain simulation of the filtered power measurement case was carried
out under the same conditions of Section 4.1.3, and its results are shown in Figure
4.13. It can be clearly seen that, in this case, the system does not become unstable
after the droop gain step.
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Figure 4.11: Root locus for one microsource, infinite bus system (including power measurement filter)
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4.2 Single microsource, resistive load

In this section, the impedance matching criteria is used to establish the stability
of a microgrid comprising a single microsource connected to a resistive load. The
behavior of the single microsource, presented in the previous section, is already
known when grid-tied. However, in the case of the single microsource feeding a
load, the stiffness of the infinite bus is not present.

The single microsource, resistive load system is depicted in Figure 4.14. To study
this system, the models of the microsource (Equation (3.90)) and the resistive load
(Equation (3.41)) will be used. Note that those models (in this case, the microsource
model) is linearized around an operating point. Such operating point (V̄L, ĪL) is
shared by the microsource and the load. Therefore, it needs to be found a priori.

V̄e

L ĪL
R

RL

+

−

V̄L
ω

Y1 Z2

PoC

Figure 4.14: One microsource, resistive load system

The operating point is easy to find in this case using phasor algebra and the
voltage divider equation:

V̄L = V̄e ·
RL

RL +R + jωoL

ĪL =
V̄L
RL

(4.18)

Then, the models of (3.90) and (3.41) can be “plugged” together, i.e. the output
current of the microsource is the input current of the load, and the output voltage
of the load is the input current of the microsource. Moreover, the incremental
phasor impedances Z2 (Equation (3.105)) and Y1 (Equation (3.112)) can also be
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calculated to be used later in the impedance matching criteria. The incremental
phasor impedances interact in a closed-loop fashion, as it was shown in Figure 3.3.

When using the full incremental phasor model, an eigenvalue analysis can be
carried out on the state matrix. When using the incremental phasor impedances, the
loop gain−Y1Z2 is used to establish the stability properties of the closed-loop system
that appears when the models are “plugged” together. These two approaches are
compared in the following section.

4.2.1 Numerical results

As shown in Figure 4.14, everything from the PoC to the left is considered the
incremental phasor admittance Y1, while the load at the right of the PoC is the
incremental phasor impedance Z2.

Plots for these impedances are shown in Figure 4.15 using the base parameters
of Table 3.1, and varying the droop gain Mp from 0.05% to 5%. In this figure, the
incremental phasor impedanceZ2 is constant with a magnitude of 20 dB (equivalent
to RL = 10 Ω), while the incremental phasor admittance Y1 is a complex function of
frequency.

In this simple case, the overall system eigenvalues are obtained and shown in
Figure 4.16 It can be seen that the system has, under these circumstances, eigenval-
ues only on the left hand side of the complex plane, ensuring stability for all values
of droop gain Mp.

On the other hand, the impedance matching criteria looks to the open-loop poles,
this is, the poles of the loop gain −Y1Z2. Those poles, along with the resulting loop
gain bode plots and Nyquist plots are shown in Figure 4.17 for selected values of
droop gain Mp. As soon as the open-loop poles cross to the right hand side of the
complex plane, the Nyquist plot encirclements of the critical point go from none
to two. This ensures the stability of the system for all values of droop gain Mp. A
zoom over the critical point is shown in Figure 4.18.

These numerical results show how the stability properties of the system are,
in this case, the same whether using the eigenvalue analysis or the impedance
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Figure 4.15: Incremental phasor impedance (right) and admittance (left) bode plots for one microsource,
resistive load system

matching criteria.
Several other operating points and load resistor values were tested, giving in

all cases a stable system, confirmed by both eigenvalue analysis and impedance
matching criteria.

4.2.2 Time-domain simulations

The single microsource, resistive load system was simulated using the block dia-
gram shown in Figure 4.19. The load Rstep is a resistor that is inserted for a load
step change during the simulation.

The results of the simulation are shown in Figure 4.20, where a droop gain step
and a load step are performed. The droop gain is increased from 0.1% to 1.0%, and
the load is increased from 0.16pu to 0.86pu. None of these steps has a detrimental
effect on the stable operation of the system, as predicted by the impedance matching
criteria.
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4.3 Single microsource, R-L load

The the single microsource, R-L load microgrid is remarkably similar to the single
source, resistive load microgrid. In fact, the time-domain simulation results are
practically equal, hence not shown here.

The schematic of this microgrid is shown in Figure 4.21. As in the previous case,
the models of the microsource (Equation (3.90)) and the R-L load (Equation (3.54))
will be used.

V̄e

L ĪL
R

RL

+

−

V̄L LL
ω

Y1 Z2

PoC

Figure 4.21: One microsource, R-L load system

The operating point is also calculated with phasor algebra, with a result similar
to (4.18), but replacing RL with the parallel combination of RL and LL.

The eigenvalues of the overall system are presented in Figure 4.22. It can be
seen that a pair of new poles appear when comparing this root locus to Figure 4.16.
These new poles could be atributed to the inductor LL.

The incremental phasor impedances are shown in Figure 4.23 using the base
parameters of Table 3.1, and varying the droop gain Mp from 0.05% to 5%. The
incremental phasor impedance Z2 now has a magnitude of 20 dB (equivalent to
the resistive component RL = 10 Ω) and a resonance peak around the system’s
frequency ωo = 377 rad s−1. The incremental phasor admittance Y1 remains a
complex function of frequency, similar to the one in Figure 4.15.

The open loop poles, along with the resulting loop gain Bode plots and Nyquist
plots are shown in Figure 4.24 for selected values of droop gain Mp. A similar
behavior is observed, in which the encirclements of the critical point go from zero
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Figure 4.22: Root locus for one microsource, R-L load system. (A zoom around the imaginary axis is
provided on the right plot)
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Figure 4.23: Incremental phasor impedance (right) and admittance (left) bode plots for one microsource,
R-L load system

to two as soon as a pair of poles travel to the right hand side of the complex plane.
A zoom over the critical point is shown in Figure 4.25.

The dynamics introduced by the inductor do not impact in the stability prop-
erties of the system in the presented example. These dynamics appear as extra
loops in the Nyquist diagrams of Figure 4.24. Those loops are in fact far from the
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Figure 4.24: Plots for one microsource, R-L load system

critical point. However, it is important to note that, even the slight difference in a
incremental phasor impedance, such as the differences shown between R and R-L
loads of Figures 4.15 and 4.23, may have a noticeable impact on the Nyquist plot
and, hence, the stability properties of the system.

4.4 Summary

In this chapter, single source microgrids were studied from the analytical, numerical
and simulation point of view.
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Figure 4.25: Detailed Nyquist plot for one microsource, R-L load system. Compare this to Figure 4.18.

The case of a single microsource coupled to an infinite bus is one of the most
popular ones in literature. The microsource model of Section 3.4, which uses
dynamic phasors, was thoroughly studied. The analytical results agree with the
results found in literature. For example, the eigenvalues of a microsource and the
characteristic polynomials found in [36] are the same as the ones of the incremental
phasor model, presented in Section 4.1.1. An stability region was also found, along
with an analytical expression for the critical droop gain M∗

p , which is equivalent to
the results of [51].

The case of a single microsource coupled to a load was used to validate the
dynamic phasor and incremental phasor models. The numerical results predicted,
in the cases shown in Section 4.2 and 4.3, that the system would be stable under
several operating conditions. In fact, the time-domain simulations showed that,
when the droop gain and the load was changed, the system maintained its stable
operation. This is a particularly important result, because it ensures that the mi-
crosource, operating in islanded mode, will have no problems feeding a resistive or
R-L load, which is one of the typical loads found in a microgrid.
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5 two source microgrid

In this chapter, the microgrid model will be extended to include a second mi-
crosource and a load. The goal of this larger model is to study the dynamics
of multiple source interaction, and the stability analysis through the impedance
matching criteria.

The two microsource microgrid is presented in Figure 5.1, where a generic load
is shown at the point of connection.

V̄e1

L1 Ī1
R1 R2 L2Ī2

V̄e2

+

−

V̄L

ĪL

ωe1 ωe2

PoC

Figure 5.1: Two-microsource microgrid schematic

In this microgrid, several cases might be represented depending on the con-
figuration of each element. For example, if the droop gain of the microsource 2 is
very small, it could represent a larger grid (which will be stiff at the power levels of
a smaller microgrid, an infinite bus [27, Ch. 7]), with the impedance elements R2

and L2 representing the grid connection impedance, which in turn determines the
short circuit level at the PoC. Another example is the use of the microsource 2 as an
equivalent of a larger portion of a microgrid.

5.1 Impedance matching on the two-microsource
microgrid

The two-microsource microgrid can be represented by the block diagram of Figure
5.2, where the current outputs of each microsource are added onto the load cur-
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rent ĪL. If we split this system in two parts, as shown in Figure 5.3(a), the block
diagram can be redrawn as in Figure 5.3(b), where the admittance Y1 represents
the microsource 1, and the impedance Z2 represents the rest of the system (local
load and microsource 2). In this configuration, the stability of the system can be
analyzed using an impedance matching criteria, since it resembles the structure of
Figure 3.3(a).

µsource 1 µsource 2

Load

Ī1 Ī2

ĪL

V̄L

+ +

Figure 5.2: Block diagram of the two-microsource microgrid

µsource 1 µsource 2

Load

Ī1 Ī2

ĪL

V̄L

+ +
Y1

Z2

ī1v̄L

(a) (b)
Figure 5.3: Impedance-admittance block diagram of the two-microsource microgrid. On (a), everything
at the right of the dotted line becomes the impedance Z2, while the microsource 1 is represented as an
admittance Y1.
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5.2 Operating point

The operating point is easy to find when the local load is a passive linear component
that can be represented by an impedanceZL. In this case, the operating point for this
two-microsource microgrid can be determined using, for example, mesh analysis.

5.2.1 Linear load

It is assumed that the frequency of the system is the rated frequency (i.e. 60 Hz)
and the droop controllers are set such that the frequency of each unit matches the
frequency of the system at whatever power levels result from the operating point
to be found. In other words, the power setpoints on each source are equal to the
power levels that result from the operating point calculation.

Mesh currents ia and ib are defined (and indicated on gray) in Figure 5.4.

V̄e1

L1 ĪL1
R1 R2 L2ĪL2

V̄e2ZL

ĪL

V̄L

ia ib

Figure 5.4: Two-source microgrid schematic for operating point calculation

The Kirchoff Voltage Law (KVL) applied on each loop results in the linear system
of equations

0 = −V̄e1 + Z1ia + ZL(ia − ib) (5.1)

0 = ZL(ib − ia) + Z2ib + V̄e2 (5.2)

where Z1 = R1 + jL1 and Z2 = R2 + jL2. The system can be rewritten in the matrix
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form (
ZL + Z1 −ZL
−ZL ZL + Z2

)
︸ ︷︷ ︸

A

(
ia

ib

)
︸ ︷︷ ︸

~i

=

(
V̄e1

−V̄e2

)
︸ ︷︷ ︸

~v

(5.3)

The solution to this system will simply be ~i = A−1 · ~v, which gives us the
following solutions:

Ī1 = ia =
ZL + Z2

ZL(Z1 + Z2) + Z1Z2

V̄e1 −
ZL

ZL(Z1 + Z2) + Z1Z2

V̄e2 (5.4)

Ī2 = −ib =
ZL + Z1

ZL(Z1 + Z2) + Z1Z2

V̄e2 −
ZL

ZL(Z1 + Z2) + Z1Z2

V̄e1 (5.5)

The voltage on the load is easily found by either of these two expressions:

V̄L = V̄e1 − Z1Ī1 V̄L = V̄e2 − Z2Ī2 (5.6)

5.2.2 Non-linear loads and others

In the general case, the load cannot be represented by a linear impedance. There
exist well known tools that can be applied in that case. For instance, the operating
point of an EPS can be obtained by an iterative process, such as a load flow [92, Ch.
5], which is readily applicable to the two source microgrid.

5.3 Current node

Every small signal model was developed with their ports being a single voltage
and a single current. When connecting two or more sources together, e.g. to a
common coupling point (such as the load point), it is necessary to add a “current
node” small signal system, which will compute the total current coming to such
node.

For a generic node, such as the one shown in Figure 5.5, the sum of all currents
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I1

I2

I3

In

IT

Figure 5.5: Generic current node

is zero. Using the current directions of the figure, this condition is given by

IT = I1 + I2 + . . .+ In =
n∑
i=1

Ii (5.7)

In terms of dynamic phasors, these relationship becomes

IaT =

√√√√( n∑
i=1

Iai cos(Iθi )

)2

+

(
n∑
i=1

Iai sin(Iθi )

)2

(5.8)

IθT = arctan

(∑n
i=1 I

a
i sin(Iθi )∑n

i=1 I
a
i cos(Iθi )

)
(5.9)

This non-linear relationship needs to be linearized around the operating point
of the whole system. For the current node linearization, all current magnitudes
and angles at the operating point are needed.

Since there are no dynamics in the current node equations, the small signal
model will be a single gain matrix.
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For a given k ∈ {1, . . . , n},

dIaT
dIak

= cos(IΘ
T − IΘ

k )

dIaT
dIθk

= IAk sin(IΘ
T − IΘ

k )

dIθT
dIak

= − 1

IAT
sin(IΘ

T − IΘ
k )

dIθT
dIθk

=
IAk
IAT

cos(IΘ
T − IΘ

k )

(5.10)

If the current inputs and output are arranged such that

Īi =

(
Iai

Iθi

)
i = 1, . . . , n ĪT =

(
IaT
IθT

)
(5.11)

and the same designation applies for the small signal quantities ĩi, ĩT , then

ĩT =
n∑
i=1

Diĩi

Di =

(
cos(IΘ

T − IΘ
k ) IAk sin(IΘ

T − IΘ
k )

− 1
IAT

sin(IΘ
T − IΘ

k )
IAk
IAT

cos(IΘ
T − IΘ

k )

)
i = 1, . . . , n

(5.12)

5.4 Two microsources, resistive load

In this section, the impedance matching stability criteria will be applied to the
microgrid that comprises two microsources, shown in Figure 5.1, with a resistor
in place of the load at the PoC. The procedure to obtain the numerical results is
similar to the one used in the previous chapter.

The practical realization of the models is done in Matlab, using the Control
System Toolbox. The function ss is used to obtain the state space realization of
the incremental phasor model of the microgrid components. First, models for the
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Microsources 1 and 2 are obtained. Then, the model for the load and the current
node are also obtained. The load, current node and Microsource 2 are connected
using the toolbox’s function connect, and the full microgrid system is then obtained
closing the loop with the function feedback. The functions pzmap, bode and nyquist

are used to obtain the Pole-Zero, Bode and Nyquist plots respectively.

5.4.1 Numerical results

The eigenvalues of the full system are shown in Figure 5.6, where the base pa-
rameters of Table 3.1 are being used, with droop gain Mp1 varying from 0.1% to
6%. There is a group of complex-conjugate pairs of poles located far left from the
imaginary axis that do not participate in the dynamics that affect the stability of
the microgrid. A zoom around the imaginary axis is also provided in the figure: it
can be seen that these poles behave like the poles of the single source case, shown
in Figure 4.7.

−3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5

x 10
4

−400

−300

−200

−100

0

100

200

300

400

Real part

Im
a
g
in

a
ry

 p
a
rt

I
a
/V

a
 poles, Two sources, R load system

 

 

−80 −60 −40 −20 0
−400

−300

−200

−100

0

100

200

300

400

Real part

Im
a
g
in

a
ry

 p
a
rt

I
a
/V

a
 poles, Two sources, R load system

 

 

Mp=0.100%

Mp=0.411%

Mp=1.032%

Mp=1.653%

Mp=2.274%

Mp=2.895%

Mp=3.516%

Mp=4.137%

Mp=4.758%

Mp=5.379%

Mp=6.000%

Figure 5.6: Root locus for two microsource system. (A zoom around the imaginary axis is provided on
the right plot)

Plots for the incremental phasor admittance Y1 (Microsource 1) and impedance
Z2 (Microsource 2 and load) are shown in Figure 5.7. In this figure, the incremental
phasor impedance Z2 shows a magnitude of 20 dB for high frequencies, which
corresponds to the resistance of the load RL = 10 Ω; for low frequencies, however,
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the shape is more complex. The incremental phasor admittance Y1 remains a
complex function of frequency, similar to the one in Figure 4.15.
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Figure 5.7: Incremental phasor impedance (right) and admittance (left) bode plots for two microsources,
resistive load system

The open loop poles, along with the resulting loop gain Bode plots and Nyquist
plots are shown in Figure 5.8 for selected values of droop gainMp1. On the one hand,
the Nyquist plot shows encirclements of the critical point that go from zero for the
lowest gain, to two encirclements for Mp1 = 3.83%, and back to zero encirclements
for Mp1 = 6.0%. On the other hand, the open-loop poles cross to the right hand
side of the complex plane for droop gains above 3.83%, as shown in the zoom in
Figure 5.9. This means that the system does not become unstable immediately after
the open-loop poles become unstable, because the encirclements on the Nyquist
plot go from zero to two at the same time. In fact, the system becomes unstable
when the gain is high enough that there are two open-loop unstable poles and the
encirclements go back to zero, not fulfilling the Nyquist Stability Criterion. In the
numerical results, this happens for a droop gain of Mp1 ≈ 5.3%.

Notice how this configuration, with two microsources and a load, allows the
droop gain Mp1 to be larger than the case of a single microsource connected to the
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Figure 5.8: Plots for two microsources, resistive load system.

infinite bus (which had a critical droop gain of Mp1 = 2.7413% ).

5.4.2 Time-domain simulations

The two microsources, resistive load microgrid was simulated using the block
diagram shown in Figure 3.16. The load Rstep, a resistor that is inserted for a load
step change, was nos used in this case. The base parameters of Table 3.1 are used
the simulation.

The results of the simulation are shown in Figure 5.10, where the droop gainMp1

is increased from 3.0% to 6.0%. As predicted by the impedance matching criteria,
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Figure 5.9: Detailed plots for two microsources, resistive load system. Pole locations (left) show
how the loop gain goes from having none to two unstable poles. Nyquist plot (right) shows several
counter-clockwise encirclements of the critical point (-1,0); however, only the highest gain case is
unstable.

the system quickly becomes unstable after the gain step: there are clear active
power oscillations that destabilize the system. Notice how the currents become
asymmetric and the frequency also presents oscillations of exponentially increasing
amplitude.

5.4.3 Frequency-domain simulations

The time-domain simulations are confirming the results of the impedance matching
stability criteria. Using the developed models and microgrid parameters, the
incremental phasor impedances can be numerically obtained and the stability of
the microgrid can be assessed. However, in a practical system, the numerical models
of the microgrid components will not be known. This is particularly true for a large
microgrid in which a new unit is being connected. The approach in those cases is
to experimentally measure the impedance at the PoC.

As an additional validation of the impedance matching criteria, several time-
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Figure 5.10: Time-domain simulation results for two microsources, resistive load system. At time t = 3.0 s
the droop gain Mp1 is increased from 3.0% to 6.0%

domain simulations were carried out, in which small signal currents and voltages
were injected into the system, at the PoC, and the small signal response of the cur-
rents and voltages of the microgrid components were recorded and post-processed.
The idea behind this small signal injection is to recover the incremental phasor
impedances and admittances shown in Figure 5.7. This approach resembles several
of the methods presented in Section 2.4.1.

The small signal injection is performed at the block diagram level, as shown
in Figure 5.11. The Current injection block is generating a small current of pro-
grammable frequency, and the Small signal impedance measurement block is process-
ing the measured voltages and currents through Fourier component decomposition.
The Fourier components that corresponds to the injected small signals (identified by
the frequency signal wt+phi in those blocks) are obtained and saved into Matlab’s
workspace for further post-processing tasks.

Several time-domain simulations were performed, for small-signal frequencies
from 10 Hz to 1000 Hz, and droop gain Mp1 varying from 0.1% to 4.0%. The results
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Figure 5.11: Current injection block diagram for frequency-domain simulations

are presented in Figure 5.12. A zoom over the low frequency region is shown in
Figure 5.13. In these figures, the diamonds represent the time-domain simulation
results for individual frequencies, and the continuous lines are the numerical results
from the model.
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Figure 5.12: Frequency-domain simulation results for two microsources, resistive load system. Impedance
(right) and admittance (left) bode plots are obtained by voltage and current injection respectively.
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Figure 5.13: Frequency-domain simulation results for two microsources, resistive load system. Impedance
(right) and admittance (left) are zoomed-in in the low frequency region.
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5.5 Two microsources, R-L load

The two microsources, R-L load microgrid is remarkably similar to the two sources,
resistive load case. In fact, the stability properties shown below are exactly the same.
As in the single source cases, the introduction of the inductor load only creates
slight differences in the impedance Z2. Due to this similarity, the time-domain
simulations were almost identical, and the simulation results are not presented in
this section.

The eigenvalues of the full system are shown in Figure 5.14, where the base
parameters of Table 3.1 are being used. Once again, the droop gain Mp1 is varied
from 0.1% to 6%. In addition to the group of complex-conjugate pairs of poles
located far left from the imaginary, there are now a pair of complex conjugate poles
close to the imaginary axis. In the zoom around the imaginary axis, shown at the
right of Figure 5.14, it can be seen that these new poles do not move, and do not
participate in the dynamics that destabilize the system.
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Figure 5.14: Root locus for two microsource, R-L load system. (A zoom around the origin is provided on
the right plot)

Plots for the incremental phasor admittance Y1 (Microsource 1) and impedance
Z2 (Microsource 2 and load) are shown in Figure 5.15. These impedance and
admittance are almost identical to the ones shown in Figure 5.7.
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Figure 5.15: Incremental phasor impedance (right) and admittance (left) bode plots for two microsources,
R-L load system

The open loop poles, along with the resulting loop gain Bode plots and Nyquist
plots are shown in Figure 5.16 for selected values of droop gain Mp1. The Nyquist
plot shows the same encirclements of the critical point and open-loop pole move-
ment than the resistive load case in Figure 5.8. The system does not become unstable
immediately after the open-loop poles become unstable, because the encirclements
on the Nyquist plot go from zero to two at the same time. In the numerical results,
the instability happens for a droop gain of Mp1 ≈ 5.3% as well. A zoom over the
critical point in the Nyquist diagram and the imaginary axis in the pole-zero map
is also shown in Figure 5.17.
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Figure 5.16: Plots for two microsources, R-L load system
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5.6 Summary

In this chapter, a microgrid that comprises two microsources and a load was studied.
The stability of this microgrid was established using the impedance matching
stability criteria.

The results obtained with the analytical model match the results obtained by
time-domain simulations. Power and frequency oscillations were observed for
droop gains Mp1 above 5.3%, as predicted by the model.

A measurement of the incremental phasor impedance was carried out using the
time-domain simulation block diagram, injecting a small signal current or voltage.
The incremental phasor impedances and admittances were successfully obtained,
and closely match the results obtained with the microgrid analytical model. This
is as important result that validates the method that can be used in hardware
experiments.
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6 laboratory-scale microgrid at
uw-madison
In this chapter, the impedance matching stability criteria will be validated in a
laboratory-scale microgrid, by verifying that incremental phasor impedances are
actually measurable in a hardware setup.

The existing microgrid at the University of Wisconsin-Madison is the perfect
environment to carry out experiments that help validate the proposed stability study
approach: it has two inverter-based microsources and several passive loads that are
easily reconfigurable; the existing interconnection cables resemble a distribution
network with realistic line parameters; the microgrid has a connection to the grid,
hence experiments with a grid-tied microgrid are possible; and there is access to a
variety of equipment that would make the validation task possible.

The first section introduces the UW Microgrid and its components. Section 6.2
introduces the modifications to the models presented in previous chapters that are
necessary to take into account, while section 6.3 presents the simulation model with
which the experimental results will be contrasted. Section 6.4 details the hardware
and software necessary to conduct the experiments, and Section 6.5 presents the
experimental results. The chapter ends with related discussion and conclusions.

6.1 UW Microgrid

The University of Wisconsin Microgrid is a hardware installation located in the Wis-
consin Electric Machines and Power Electronics Consortium (WEMPEC) premises
within the Electrical and Computer Engineering department. A diagram of the
microgrid is presented in Figure 6.1.

6.1.1 Existing hardware and software

The most important components of the UW Microgrid are itemized below.
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Figure 6.1: UW Microgrid schematic diagram

• Microsources: The UW Microgrid comprises two inverter-based distributed
generators that were designed, built, and improved over the years by students
[53, 33, 50]. The current generation model is a two-level, sinusoidal PWM,
480 V AC inverter with frequency and voltage droop control. The inverters
have L-C-L filters at their outputs (L-C filter in addition to coupling inductor),
and are coupled to the microgrid through 480/208 V transformers.

One of the microsources has a 750 V lead-acid battery bank at its DC bus, thus
acting as a battery energy storage system (BESS) [93]. The other microsource
has a programmable DC power supply, which enables that microsource to
mimic the behavior of different distributed generation technologies, such as
photovoltaic panels, wind turbines, among others. These are shown in Figure



114

6.1 as Microsource 1 and Microsource 2 respectively.

The microsources are controlled remotely by a Labview interface that provides
quick measurements and a control panel for the two inverters. Fundamental
parameters such as the droop gains and power and voltage setpoints can be
adjusted in this control panel. A screenshot of the control panel is shown in
Figure 6.2.

Figure 6.2: Labview control panel for microsources

• Fixed and controllable loads: There are several loads distributed within the
microgrid. The loads are usually resistive, but capacitor and inductors could
be easily added when needed.

Some of the loads are remotely controlled by the Labview interface shown in
Figure 6.2. These loads could be controlled phase by phase, thus are useful
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when testing unbalanced conditions in islanded or grid-connected mode.
These corresponds to Load 2 and Load 3 in the diagram in Figure 6.1.

Other loads are fixed, but are equipped with manual switches for disconnec-
tion during operation and/or maintenance. One of such loads is shown as
Load 1 in Figure 6.1.

• Static switch: The static switch is the piece of equipment in charge of islanding
the microgrid and (re)connecting it to the grid. It is governed by protection
relays that oversee the power quality and operating conditions of the grid
and the microgrid.

The main component of the static switch is a set of six thyristors in anti-parallel
configuration that are switched on and off by the protection relays.

• Other components: There are other components that were not actively used in
the experiments. Among those components, there are several power quality
monitoring stations (only one shown in Figure 6.1), which act as power quality
events recorder and power meters.

The microgrid has also the possibility of interfacing with electric vehicles,
through a vehicle-to-grid (V2G) interface. This interface has been upgraded
from simple single-phase chargers to three-phase full bridge converters that
allow bidirectional power transfer between the vehicle’s energy storage device
and the microgrid. Experiments have been done in the microgrid [94], but
are out of the scope of this thesis.

There is an auxiliary bus, which is used as an internal PoC for the microgrid.
This PoC will be used for the impedance measurements in the laboratory.

6.2 Incremental phasor models and impedances

The analytical models for the UW microgrid are the same already shown in Section
3.4. For example, the models for the loads are shown in (3.41), (3.47), (3.59) and
(3.66).
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In addition to the series impedance, the microsources now include an L-C filter
and a transformer. This filter and transformer are modeled as an L-C section, as
shown in Figure 6.3. What is shown to the left of the figure is the microsource model
already presented in Figure 3.13, whose incremental phasor model is presented
in (3.90). The magnetizing reactance of the transformer has been neglected in this
model.

If we combine the series impedances together, namingLx = Lf+Lt,Rx = Rf+Rt

and Cx = Cf , it is possible to write a relationship between the input voltage and
output current of the microsource and the input voltage and output current of the
filter:

V̄o = (Rx + jωoLx)Īm + V̄m

Īo = Īm + jωoCxV̄o
(6.1)

The phasor equation above can be properly written in terms of dynamic phasors
as follows:

dIam
dt

=
1

Lx

(
V a
o cos(V θ

o − Iθm)− V a
m cos(V θ

m − Iθm)−RxI
a
m

)
(6.2)

dIθm
dt

=
1

LxIam

(
V a
o sin(V θ

o − Iθm)− V a
m sin(V θ

m − Iθm)
)

(6.3)

dV a
o

dt
=

1

Cx

(
Iao cos(Iθo − V θ

o )− Iam cos(Iθm − V θ
o )
)

(6.4)

dV θ
o

dt
=

1

CxV a
o

(
Iao sin(Iθo − V θ

o )− Iam sin(Iθm − V θ
o )
)

(6.5)

The variables are chosen such that this L-C filter model can be connected in
series with the microsource model of Equation (3.90). The state, input and output
variables of the L-C filter model are:

x =


Iam

Iθm

V a
o

V θ
o

 , u =


Iao

Iθo

V a
m

V θ
m

 , y = x (6.6)
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Figure 6.3: Schematic of the L-C filter and transformer

Using the same procedure outlined in Section 3.4, an incremental phasor model
for the L-C filter can be obtained:

˙̃x = Ax̃+Bũ

ỹ = Cx̃

A =


−Rx
Lx

ωoI
A
m − 1

Lx
cos(V Θ

o − IΘ
m) −V Ao

Lx
sin(V Θ

o − IΘ
m)

− ωo
IAm

−Rx
Lx

1
LxIAm

sin(V Θ
o − IΘ

m) V Ao
LxIAm

cos(V Θ
o − IΘ

m)

− 1
Cx

cos(IΘ
m − V Θ

o ) IAm
Cx

sin(IΘ
m − V Θ

o ) 0 ωoV
A
o

− 1
CxV Ao

sin(IΘ
m − V Θ

o ) − IAm
CxV Ao

cos(IΘ
m − V Θ

o ) − ωo
V Ao

0



B =


− 1
Lx

cos(V Θ
m − IΘ

m) −V Am
Lx

sin(V Θ
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m) 0 0

− 1
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m) − V Am
LxIAm

cos(V Θ
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m) 0 0

0 0 1
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cos(IΘ
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sin(IΘ
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0 0 1
CxV Ao

sin(IΘ
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

C =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


(6.7)

Figure 6.4 show how the admittance of a microsource change when including
the L-C filter and transformer components into the model. The filter introduces
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notorious changes in the high frequency region, where it is supposed to filter
switching frequencies, while also distorting the admittance at low frequencies.
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Figure 6.4: Comparison of microsource admittances without (left) and with (right) L-C filter

6.3 Simulation models

A full-featured model has been developed in Simulink, using SimPowerSystems
blocks for the power system wiring, in the same fashion of the models presented in
Section 3.6. An overview of this extended model is presented in Figure 6.5.

The system comprises several components of the UW Microgrid: the two mi-
crosources, two of the controlled loads, and the connection to the grid. This model
greatly resembles the diagram of Figure 6.1 and includes enough components to
be regarded as a close approximation of the existing hardware setup.

Existing laboratory transmission lines PCgr, PC1, PC2 and PC3 are represented
by impedances Z2, Z3 and Z4 in Figure 6.5. Controllable loads are shown as well.
The static switch is implemented as an ideal circuit breaker, and the grid model
corresponds to the one of the “simple source” in Figure 3.18. The coupling trans-
formers are represented by their series impedances, shown as T1 and T2 in the
diagram.

The microsource model is strongly based in the model shown in Section 3.6, and
is presented in Figure 6.5. The L-C filters are included, and shown in detail in Figure
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6.7. The droop controllers are the same shown in Figure 3.22. The parameters for
these additional components are shown in Table 6.1
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Figure 6.6: UW Microgrid microsource block diagram
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Table 6.1: Parameters for additional UW Microgrid components

Parameter Symbol Value Units
LC Filter inductance Lf 0.3379 mH
LC Filter capacitance Cf 53.2544 µF
LC Filter series resistance Rf 0.026 Ω

Transformer series reactance Xt 0.0481 Ω
Transformer series resistance Rt 0.0481 Ω

Distribution line Z2 reactance XZ2 0.00064 Ω
Distribution line Z2 resistance RZ2 0.0049 Ω
Distribution line Z3 reactance XZ3 0.0072 Ω
Distribution line Z3 resistance RZ3 0.0547 Ω
Distribution line Z4 reactance XZ4 0.0024 Ω
Distribution line Z4 resistance RZ4 0.0182 Ω

6.4 Incremental phasor impedance measurement

The impedance measurement technique that was followed in this thesis is the small
signal injection at the PoC. Currents and voltages of variable frequency are injected
and selected frequency components are post-processed in order to identify the
small-signal impedance or admittance of the systems. This schemes are shown in
Figure 6.8.

The approach presented in this thesis has some similarities with the techniques
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Figure 6.8: Small signal injection schemes for impedance measurement

presented in [69, 70]. Even though those articles theoretically cover both series and
shunt injection, only shunt current injection is experimentally verified. As it will
be shown below, the series voltage injection gives better results than shunt current
injection in the covered microgrid cases.

6.4.1 Technique

As covered in Section 3.3, the dynamic phasors represent deviations on top of a
rotating vector of constant, known frequency ωo. In order for the injections to be
regarded as deviations of this kind, the injected voltages and currents should be
able to generate currents and voltages of the form

issa = Iss (1 + As cos(ωst+ φs)) cos(ωot)

issb = Iss (1 + As cos(ωst+ φs)) cos(ωot− 2π/3)

issc = Iss (1 + As cos(ωst+ φs)) cos(ωot+ 2π/3)

(6.8)
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vssa = Vss (1 + As cos(ωst+ φs)) cos(ωot)

vssb = Vss (1 + As cos(ωst+ φs)) cos(ωot− 2π/3)

vssc = Vss (1 + As cos(ωst+ φs)) cos(ωot+ 2π/3)

(6.9)

where As, ωs and φs are the magnitude, frequency and phase angle of the injected
small signal. The injection has to be correctly generated in this form, such that the
rest of the system’s currents and voltages have those modulated components as
well.

By using trigonometric identities, it can be seen that, in fact, the absolute frequen-
cies present in the system are the sum and difference of ωo and ωs (the amplitude
As and phase angle φs of the injected signals are not shown for simplicity). For
example, for the current on phase A,

issa =
Iss
2

cos ((ωs + ωo)t) +
Iss
2

cos ((ωs − ωo)t) (6.10)

One possible way of obtaining the correct signals is to inject these sum a differ-
ence components directly into the system. Another possibility is to directly generate
the modulated components by actual modulation in the system. This last technique
was chosen.

With the help of power electronics, voltages and currents are easily modu-
lated. For example, PWM converters can be modulated to perform power quality
tasks such as maintaining nominal voltage (the dynamic phasor’s magnitude) for
sensitive loads [95]. These kind of converters have the potential to perform the
modulation task needed for the injection of modulated currents and voltages, which
are necessary for the incremental phasor impedance spectroscopy.

As stated in Section 3.5, we are interested in the magnitude components of
the incremental phasor impedances. Therefore, we are interested in magnitude
modulation, easily achieved in PWM converters. Phase angle modulation, which
would be also possible to obtain with converters (although at higher complexity),
is not necessary for the purposes of this study.

Most of the materials covered in this section are also available in [96], a thorough



123

documentation of the experimental phase of this thesis.

6.4.2 Hardware

Three-phase PWM Buck converter

The AC PWM buck converter comprises six insulated gate bipolar transistors (IGBT)
connected as buck converters in each phase, as shown in Figure 6.9. The converter
topology details are covered in [95, 96].

A

B
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a

b

c

S1

S2

S3

S4

S5

S6

L1 L2

C1 C2

Figure 6.9: Schematic of the three-phase PWM Buck converter

The converter is interfaced through a Variac, because the buck converter opera-
tion always reduces the voltage at its output. Then, the Variac helps to increase the
voltage magnitude at the input of the converter such that the output voltage can be
adjusted to be higher or lower than the nominal or rated voltage.

The converter is operated with the three legs switched at the same time, being
S1, S2 and S3 switched with the PWM signal, and S4, S5 and S6 switched with the
inverted PWM signal. A constant PWM signal is equivalent to no modulation, and
changes in the PWM command create the desired amplitude modulation.
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The converter is then connected as shown in Figure 6.10. For the series voltage
injection, the converter directly modulates the voltage across the PoC; this way,
both sides of the converter see a modulated voltage, function of the PWM duty
ratio. For the shunt connection, the converter cannot inject modulated current by
itself; therefore, a burden resistor is connected at one of its terminals, such that
the converter draws modulated current from the PoC. The amount of the injected
(drawn) current is a function of the PWM duty ratio and the burden resistor Rb.

to Area 1 to Area 2

PW
M

Co
nv

er
te

r Variac

Rb

to Area 1 to Area 2

PWM Converter

Va
ria

c

(a) (b)

Figure 6.10: PWM Buck converter connection: (a) shunt current injection, (b) series voltage injection.

Microcontroller-based PWM control and software

The PWM control was programmed in a microcontroller evaluation board for
the STM32 family of microcontrollers [97]. Using the programming features and
developer’s tools and libraries, a simple PWM controller was built. The switching
frequency was chosen to be 10 kHz, a good compromise between converter losses
and simplicity of input and output filter designs. The microcontroller has preset
frequencies at which the voltage would be modulated, in a logarithmic scale that
covers the range of 0.2 Hz to 200 Hz. The microcontroller board is shown in Figure
6.11(a).
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(a) (b)
Figure 6.11: (a) STM32-Discovery microcontroller evaluation board and (b) gate driver

The PWM pulses for S1–S3 and S4–S6 are both generated by software. This way,
the IGBT dead time can be easily controlled. The PWM pulses are interfaced by a
gate driver board, shown in Figure 6.11(b).

6.4.3 Data acquisition and small signal filtering software

The data acquisition is performed by the Yokogawa DL750 ScopeCorder [98],
which combines the features of a multi-channel oscilloscope and a data acqui-
sition recorder. From the available 12 channels, 6 channels were used for voltages
and 6 channels for currents. For series voltage injection, voltages and currents at
both sides of the converter were measured. For shunt current injection, the voltage
at the PoC and the currents at both sides of the PoC were measured.

Once the voltages and currents are recovered from the oscilloscope recordings,
the waveforms are post-processed in Matlab, where the Fourier components cor-
responding to the modulation frequency are obtained. Algorithms using the Fast
Fourier transform (FFT) and the short-term Fourier transform (STFT) were tested,
giving both very similar results. This processing technique was already used in
Section 5.4.3 for the frequency-domain simulations of a two-source microgrid.
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6.5 Experimental results

The experiments that were carried out on the UW Microgrid are divided in three
classes:

• Passive loads incremental impedance: Being these loads the ones with less com-
plex models, their impedances (or admittances) were measured to verify that
the incremental phasor impedances are in fact measurable.

• Microgrid impedance spectroscopy: The full microgrid hardware setup was used
while measuring incremental phasor impedances of two areas, both in is-
landed and grid connected modes.

• Microgrid stability margins: The full microgrid was driven at its limit, making
the system go into instability. By using the microgrid models, it is possible to
estimate at which point the microgrid is actually going into unstable operating
mode, and this was verified in the laboratory.

6.5.1 Incremental phasor impedances of passive loads

By connecting a load directly to the grid, a PoC is established at the terminals of
such load. The small signal injection (both series and shunt) was tested in several
passive loads. The results for the individual loads are given below.

Resistor

A delta-connected three-phase resistor of resistance R = 75 Ω was used on this
experiment. The impedance of the resistor is shown in Figure 6.12. As expected,
the resistor had a constant impedance, regardless of frequency injection, equal to R
(approximately 28 dB), and zero phase shift. This experiment shows the results for
series voltage injection.

The results for shunt current injection were not as good as the ones for series
voltage injection. In Figure 6.13, both results are presented in the same plot, along
with the theoretical resistor impedance. It can be clearly seen that the results for
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Figure 6.12: Measured incremental phasor impedance for resistive load

current injection method are more noisy, specially for frequencies near 60 Hz, and
differences of more than 1 dB are shown for low frequencies, which is the range of
interest for our experiments.
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Figure 6.13: Comparison of series and shunt injection on a resistive load
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For this reason, series voltage injection will be preferred over shunt current
injection. The rest of the loads’ incremental phasor impedances were also measured
by series voltage injection.

R-C load

A delta-connected three-phase R-C parallel load was also measured in the laboratory.
The resistance isR = 38 Ω and the capacitance isC = 24 µF. Its impedance is shown
in Figure 6.14, along with the theoretical impedance. There is an extremely good
match for this kind of load as well. For frequencies above 200 Hz (1250 rad s−1), the
filters present in the system start to interact with the injected signals, negatively
impacting the results. Only a couple points above this frequency are shown.
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Figure 6.14: Measured incremental phasor impedance for R-C parallel load

R-L load

A delta-connected three-phase R-L series load was measured in the laboratory
as well. The inductance is L = 30.5 mH, and the resistance R = 0.9 Ω is the
inductor’s own resistance, so no external resistor was necessary. The incremental
phasor admittance measurement results are shown in Figure 6.15, along with the
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theoretical admittance. The differences between the theoretical and experimental
admittances could be attributable to the existence of additional damping resistance
in the system, which might not be considered in the theoretical model.
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Figure 6.15: Measured incremental phasor admittance for R-L series load

6.5.2 Impedance spectroscopy at the UW Microgrid

The incremental phasor impedance measurement of two areas of the UW micro-
grid is presented in this section. As pointed out above, there is an auxiliary bus
denominated as the PoC of the microgrid, shown in Figure 6.1. From this point, the
microgrid is conceptually split in two areas. One of the areas contain Microsource
2 and loads. The other area contains Microsource 1 and the connection to the grid,
along with some other loads.

Several experiments were carried out under this configuration, under which it
is only possible to inject small signal shunt currents. Even though it was discussed
above that the series voltage injection provides better measurements, the complexity
of inserting the converter in series with the microgrid, along with the difficulties of
controlling the converter while series connected, discouraged the use of the series
voltage injection technique.
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Two impedance measurement experiments are presented below.

Single microsource, resistive load

A single microsource connected to a resistive load was studied as the natural step
after the successful measurement of passive loads. The results of the measurement,
contrasted with the analytical model, are shown in Figure 6.16. At the left of this
figure, the admittance of the microsource is presented. At the right of the figure,
the impedance of the resistive load is shown.

−20

−10

0

10

M
a
g
n
it
u
d
e
 (

d
B

)

I
a
/V

a
, Y1

 

 

Analytical

Simulation

Experiment

10
1

10
2

10
3

0

45

90

135

180

225

P
h
a
s
e
 (

d
e
g
)

Frequency (rad/s)

27.5

28

28.5

M
a
g
n
it
u
d
e
 (

d
B

)

I
a
/V

a
, Z2

 

 

Analytical

Simulation

Experiment

10
1

10
2

10
3

−20

−10

0

10

20

P
h
a
s
e
 (

d
e
g
)

Frequency (rad/s)

Figure 6.16: Incremental phasor impedances of the single microsource, resistive load case

The experimental results for the resistive load side closely match the analytical
model. The same is not true for the microsource, as the experimental admittance
magnitude departs from the analytical model for low frequencies, although main-
taining a fairly close phase angle.



131

Two microsources, grid connected

Another interesting experiment was carried out while the microgrid was parallel
to the utility grid. The results of this experiment are shown in Figure 6.17, where
the left plot shows the incremental phasor admittance of Microsource 2, and the
right plot shows the incremental phasor impedance of the grid.
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Figure 6.17: Incremental phasor impedances of the microsource connected to the grid

This particular experiment is very challenging, as the impedance of the grid is
usually low and, in most cases, unknown. By injecting small signal currents into
the system, it is very difficult to generate, under the presence of the grid, the small
voltage perturbations needed to determine the incremental phasor impedances.

Discussion

As shown in the previous experiments, the measurement of relatively large passive
load impedances closely match their analytical models. However, for more complex
systems such as a microsource, the results present notorious discrepancies. This
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was mainly due to the difficulties in maintaining a constant operating point during
the experiments.

As these experiments were done using shunt current injection, some noise in the
results was expected. However, larger discrepancies are due to the same injection,
which needed to be fairly large at some frequencies and modified the operating
point. The low impedance values for distributed energy sources (inverter-based
or inertial) increase the complexity of the measurements, and could endanger the
application of this technique on larger systems. Moreover, the experiments took,
in practice, several minutes, rendering the technique useless in systems with fast-
varying operating points, which is the common case of a dynamically changing
microgrid.

One possible solution is to use impulse-based methods, covered in Section
2.4.1. Those methods, along with others such as noise-injection-based, could help
determine the impedances in a shorter time. However, the may need to be adapted
for the incremental phasor impedance measurements, because these impedances
are a result of magnitude modulation of currents and voltages rather than a simple
side-frequency small signal injection.

6.5.3 Stability margins at the UW Microgrid

Studying stability margins by experiments is a difficult task. On the one hand, there
are risks of putting the system into a dangerous operating condition, which could
cause serious equipment problems depending on the installation, not to mention
safety risks. On the other hand, the protection schemes incorporated into many
devices may not permit at all the operation of equipment near the stability limits.
The last is true at the UW microgrid, where the inverters are equipped with fast
acting protection that disables the system under dangerous current levels or out of
bound frequencies, among other control features.

Before the experiments of this section were carried out, the stability margins were
obtained by the analytical and simulation models. For example, using the analytical
model of the UW Microgrid, it was established that, for the two microsources in
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islanded operation, certain combinations of droop gains Mp1 and Mp2 may cause
instabilities.

The case exposed here comprises the Microsource 2 with a droop gain of Mp2 =

30%, a relatively high value that would put the system into a stability limit if the
Microsource 1 droop gain is above a certain value.

Figure 6.18 shows the impedance and admittance of the two portions of the
microgrid under this operating condition. The droop gain Mp1 is varied from 1%
to 30%.
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Figure 6.18: Incremental phasor impedances of an islanded microgrid

During the numerical calculations, it was determined that the system would
hit an unstable operation for Mp1 > 25%. This is analyzed by using the impedance
matching stability criterion over the range of operating points of varying Mp1.
Figure 6.19 shows the Nyquist plot, Bode plot and open-loop root locus of three
cases, with Mp1 equal to 1%, 16% and 30% respectively. It can be seen in the picture
that, for gains 1% and 16%, the encirclements of the critical point are none and the
open-loop poles are on the left hand side of the complex plane, hence the system is
stable. For a droop gain of 30%, however, the encirclements are still none, with two
unstable poles.
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Figure 6.19: Plots for an islanded microgrid

These three cases were tested in the lab, during the impedance spectroscopy
process. While injecting a low frequency perturbation into the system, the droop
gain of the Microsource 1 was changed from 1% to 16%, then to 30%. The droop gain
of Microsource 2 was equal to 30%. The simulation results and experimental results
are shown side by side in Figures 6.20, 6.21 and 6.22 respectively. It can be seen that
there is a close correlation between the simulated waveforms (in terms of amplitudes
and frequencies) and the experimental results, despite the low frequency injection
occurring at the same time.

An interesting fact is that, by controlling the impedance or admittance of a
component of the microgrid, it could be possible to move the system away from
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Figure 6.20: Power oscillations for Mp1 = 1%, Mp2 = 30%

7 8 9 10 11 12 13 14
59.8

60

60.2

Mp
1
 step → 

Simulation results, power oscillations

F
re

q
u
e

n
c
y
 (

H
z
)

Time (s)

7 8 9 10 11 12 13 14
1000

2000

3000

P
o

w
e

r 
(W

)

Time (s)

Power oscillations ~6Hz

0 2 4 6 8 10 12 14 16
1.5

2

2.5

3

A
c
ti
v
e

 P
o
w

e
r 

(k
W

)

Time (sec)

0 2 4 6 8 10 12 14 16
59.5

60

60.5

 ← Mp
1
 step

F
re

q
u
e

n
c
y
 (

H
z
)

Experimental results, power oscillations

Time (sec)

Impedance
measurement signal
injection ~0.2Hz

Power oscillations ~5 Hz

Figure 6.21: Power oscillations for Mp1 = 16%, Mp2 = 30%

instability. In Figure 6.23, a simulation result for a system recovery action is pre-
sented. The model used for this simulation is the one presented in Figure 6.5, in
islanded operation. Microsource 2 has a droop gain ofMp2 = 30%. At time t = 7.0 s,
the impedance of Microsource 1 is modified by reducing its equivalent reactance,
moving the system into unstable operation. At time t = 8.0 s, a corrective action is
introduced into the simulation, and the droop gain of Microsource 2 is reduced to
Mp2 = 7.5%. The system resumes normal operation after the corrective measure.
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Figure 6.22: Power oscillations for Mp1 = 30%, Mp2 = 30%
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Figure 6.23: Simulation results for a system recovery action

In this thesis, the studies have been mainly carried out over variations of the
droop gainsMp. But the impedance, as shown in the analytical models of Chapter 3,
is a function of a much larger collection of parameters. The same corrective action
could have been done, for example, by modifying operating voltage or incorporating
virtual impedance.
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6.6 Summary

In this chapter, the impedance matching based stability criteria was verified on
a laboratory scale microgrid. The UW Microgrid was an invaluable hardware
installation that allowed several configurations and operating conditions to be
tested.

The incremental phasor model of the microsource was expanded to include
the L-C filter found on the hardware setup. The addition of this filter generated
changes in the incremental phasor impedance and admittance, and its model was
incorporated in all analytical and simulation results presented in this chapter.

The phasor measurement technique was detailed in Section 6.4, in which both
series voltage injection and shunt current injection were projected to be used. In
the experimental setup, series voltage injection was used for the measurement of
passive loads, and shunt current injection was used for the measurement of the full
microgrid.

The experiments covered the measurement of the impedance of passive loads,
which showed an excellent match with the analytical models. Resistive, R-C and
R-L loads were tested.

The impedance spectroscopy was done with a single microsource and resistive
load in islanded condition, and a microsource connected to the grid. Both experi-
ments showed good results, although some discrepancies between the models were
found, specially at low frequencies. Nevertheless, the results exposed in section
6.5 indicate that some features are missing from the analytical and simulation
model. For example, the simulation models give a better approximation of the
experimental results, but at the same time they share similarities with the analytical
models. Full-featured simulation models can resemble the physical installation
with more detail than a simplified analytical model, and could give insight about
what components need to be modeled in a better way.

The microgrid was also put a its limits while validating the stability margins
given by the incremental phasor model. Droop gain limits were recognized by the
analytical model, determining that some combinations of droop gains may drive
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the system to unstable operation. The unstable operation was indeed obtained for
droop gains out of the limits determined by the models.

As an example of the benefits that the incremental phasor models could offer,
a “system recovery” simulation was carried out. In this simulation, the system
was modified to generate an unstable operating condition. By understanding the
dynamics of the microsource, and having the ability to set controller gains, the
system was taken out of the unstable region.
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7 dynamic phasor model for complex
loads
In this chapter, two additional kinds of loads will be modeled using the dynamic
phasor technique detailed in Chapter 3. It is of interest to model the components
that, in practice, one would face when working in a microgrid environment. Being
the microgrid an active research area, there exist a large variety of components that
would be very difficult to consolidate in simpler models such as the ones shown in
previous chapters.

To broaden the scope of this thesis, two extra models are introduced. First, the
induction machine is introduced in the dynamic phasor modeling. The motiva-
tion to model an induction machine is its wide popularity in several applications,
including microgrids, both as motor and as generator. Basic induction machine
models are introduced at this stage.

Second, constant power loads are introduced. Being this another type of popular
component, constant power loads are found in many applications, usually as a
power converter with integrated controls. Its analytical development would bring
some challenges for the modeling techniques already presented in this thesis.

7.1 Induction machine

The induction machine model presented in this section is based on the traditional
d-q axis model [99, Ch. 2], which has been expressed in voltage and current
variables to make it compatible with the formulations of Section 3.4. The d-q
model is converted into dynamic phasor variables (polar coordinates) and further
developed to obtain the incremental phasor model and incremental phasor impedance
of the induction machine.

For the purposes of this section, it will be assumed that the machine is operating
as a motor. The rotor of the machine will be assumed short-circuited, as in a
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squirrel cage induction machine. As a first approach, the machine will be modeled
for constant speed operation; later, this constraint will be relaxed.

7.1.1 Dynamic phasor model for the induction machine

The induction machine model, in the synchronous reference frame using complex
variables and matrix notation, is shown in (7.1), where the derivative is expressed
using the operator P .(

vs

0

)
=

[
rs + (P +jωe)Ls (P +jωe)Lm

(P +j(ωe − ωr))Lm rr + (P +j(ωe − ωr))Lr

]
·

(
is

ir

)
(7.1)

The parameters rs and rr represent the winding resistance of the stator and the
rotor; Ls and Lr are the stator and rotor inductances, which are equal to the leakage
inductances Lls and Llr, plus the mutual inductance Lm. The rotor speed is ωr and
the synchronous reference frame is rotating at ωe. An equivalent circuit is shown in
Figure 7.1. In this figure, λs = Lsis + Lmir and λr = Lrir + Lmis.

+ −

jωeλs

is

rs Lls Llr rr

+−

j(ωe − ωr)λr
ir

Lm

+

−

vs

Figure 7.1: Schematic of the induction machine model in complex variables

In order to convert the model to a dynamic phasor equivalent, it is necessary to
isolate the derivative terms. Those terms correspond to those of the stator current
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is and rotor current ir:

P

(
is

ir

)
=

[
Ls Lm

Lm Lr

]−1

·

(
Vs

0

)
−

[
rs + (P +jωe)Ls jωeLm

j(ωe − ωr)Lm rr + j(ωe − ωr)Lr

]
·

(
is

ir

)
(7.2)

Developing further, it is possible to obtain the matrix equations for the induction
machine:

P

(
is

ir

)
=

1

LsLr − L2
m

·

[
Lr −Lm
−Lm Ls

]
·

(
vs − rsis − jωeLsis − jωeLmir

0− j(ωe − ωr)Lmis − j(ωe − ωr)Lrir − rrir

)
(7.3)

The system could be further expressed in a state space representation (as in
(3.1)) as follows:

P is =
Lr

LsLr − L2
m

(
vs − rsis − jωeLsis − jωeLmir + j(ωe − ωr)

L2
m

Lr
is

+
Lm
Lr

rrir + j(ωe − ωr)Lmir
)

(7.4)

P ir =
Lm

LsLr − L2
m

(
− vs + rsis + jωeLsis + jωeLmir − j(ωe − ωr)Lsis

− Ls
Lm

rrir − j(ωe − ωr)
LsLr
Lm

ir

)
(7.5)

The conversion of the system from complex variables to dynamic phasor quan-
tities is direct: it is a conversion from rectangular to polar coordinates. This is due
to the fact that the model is expressed in the synchronous reference frame. Hence,
the stator variables would be seen as DC in this frame, the same as the dynamic
phasors for constant rotating angular frequency equal to the system’s frequency ωo.

An algorithmic way of developing the equations is the following:

1. Begin with the model of a system in d-q coordinates. Express the model in
the synchronous reference frame, such that this reference frame is rotating at
the desired dynamic phasor known frequency ωo.
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2. Express the equations in the form presented above, i.e. the derivative of state
variables as functions of other variables.

3. For each complex state variable xi, define two dynamic phasor variables Xa
i

and Xθ
i that will represent the magnitude and phase angle of the complex

variables. Do the same for input variables uj and output variables yk

4. Write the equation for the magnitude variable Xa
i by “projecting” every term

of the right hand side of the complex equation over the direction of the
dynamic phasor X̄i.

• For a complex variable mp, its projection over the dynamic phasor X̄i is
equal to Ma

p cos(M θ
p −Xiθ).

• For variables accompanied by the imaginary unit j, the projection is
rotated 90 degrees. For example, the projection of jmp over the dynamic
phasor X̄i is equal to −Ma

p sin(M θ
p −Xθ

i ).

5. Write the equation for the phase angle variable Xθ
i by finding the “tangential”

component of every term on the right hand side of the equation (tangent to
the dynamic phasor), scaled by the dynamic phasor’s magnitude.

• For a complex variable mp, its tangential component to the dynamic
phasor X̄i is equal to Ma

p sin(M θ
p −Xθ

i ).

• For variables accompanied by the imaginary unit j, the projection is ro-
tated 90 degrees as well. For example, the tangent of jmp to the dynamic
phasor X̄i is equal to Ma

p cos(M θ
p −Xiθ).

6. Write similar equations for output variables if needed.

7. The resulting dynamic phasor model will have twice as many equations as
the system expressed in complex variables.

The dynamic phasor model for the induction machine is shown in (7.6)–(7.9),
whose left-hand sides will be called f1 through f4.
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dIas
dt

=
1

LsLr − L2
m

(
LrV

a
s cos(V θ

s − Iθs )− LrrsIas + ωrLmLrI
a
r sin(Iθr − Iθs )

+ LmrrI
a
r cos(Iθr − Iθs )

)
(7.6)

dIθs
dt

=
1

(LsLr − L2
m)Ias

(
LrV

a
s sin(V θ

s − Iθs )− ωeLrLsIas − ωrLmLrIar cos(Iθr − Iθs )

+ LmrrI
a
r sin(Iθr − Iθs ) + (ωe − ωr)L2

mI
a
s

)
(7.7)

dIar
dt

=
1

LsLr − L2
m

(
−LmV a

s cos(V θ
s − Iθr ) + LmrsI

a
s cos(Iθs − Iθr )

− ωrLmLrIas sin(Iθs − Iθr )− LsrrIar
)

(7.8)
dIθr
dt

=
1

(LsLr − L2
m)Iar

(
−LmV a

s sin(V θ
s − Iθr ) + LmrsI

a
s sin(Iθs − Iθr )

+ ωrLmLrI
a
s cos(Iθs − Iθr ) + ωeL

2
mI

a
r − (ωe − ωr)LsLrIar

)
(7.9)

Besides the electrical differential equations, the connection of this model to
the mechanical end is represented by the mechanical load balance equation. The
dynamic equation that describes this interaction is:

dωr
dt

=
P

2J
(Te − Tl) (7.10)

where J is the inertia of the machine rotor and mechanical load combined; P
is the number of poles, and Te and Tl are the electrical and mechanical torques
respectively. The left hand side of (7.10) is called f5, completing a fifth order model
for the induction machine.

The electrical torque Te is given by

Te =
3

2

P

2
LmI

a
s I

a
r sin(Iθs − Iθr ) (7.11)

while the mechanical torque expression will depend on whatever load is coupled
to the machine. At steady state, Te = Tl.
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7.1.2 Incremental phasor model for the induction machine

As it was done for the other non-linear models in state space representation, the
incremental phasor model for the induction machine is obtained by linearizing the
dynamic phasor model. By setting the time derivatives of (7.6)–(7.9) to zero, the
sinusoidal steady state operating point could be found. The operating point has
been omitted here, as it is the same one would find with traditional phasor algebra.
At this operating point x̄, it will be assumed that the rotor speed is known, i.e.
ωr|x̄ = ωR, a rotational speed in electrical radians per second. It will be assumed
also that the synchronous speed is the dynamic phasor’s system frequency, i.e.
ωe|x̄ = ωo.

In this linear model, the input, state and output vectors are:

x =


Ias

Iθs

Iar

Iθr

ωr

 , u =

V
a
s

V θ
s

Tl

 , y =

I
a
s

Iθs

ωr

 (7.12)

where superscripts ()a and ()θ have the usual meaning of magnitude and phase
angle components of the dynamic phasors for stator current Is, rotor current Ir and
stator voltage Vs.

The linearized model is shown term by term in Equations (7.13)–(7.21). For the
resulting state matrix A, the stator-stator dynamics are given by

∂f1

∂Ias
=

Lr
LsLr − L2

m

rs

∂f1

∂Iθs
=

(
L2
m

LsLr − L2
m

ωR + ωo

)
IAs

∂f2

∂Ias
= −

(
L2
m

LsLr − L2
m

ωR + ωo

)
1

IAs
∂f2

∂Iθs
=

Lr
LsLr − L2

m

rs

(7.13)
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The rotor-rotor dynamics are given by

∂f3

∂Iar
=

Ls
LsLr − L2

m

rr

∂f3

∂Iθr
=

(
ωo −

LsLr
LsLr − L2

m

ωR

)
IAr

∂f4

∂Iar
= −

(
ωo −

LsLr
LsLr − L2

m

ωR

)
1

IAr
∂f4

∂Iθr
=

Ls
LsLr − L2

m

rr

(7.14)

The stator-rotor dynamics are given by

∂f1

∂Iar
=

1

LsLr − L2
m

(
ωRLmLr sin(IΘ

r − IΘ
s ) + Lmrr cos(IΘ

r − IΘ
s )
)

∂f1

∂Iθr
=

IAr
LsLr − L2

m

(
ωRLmLr cos(IΘ

r − IΘ
s )− Lmrr sin(IΘ

r − IΘ
s )
)

∂f2

∂Iar
=

1

(LsLr − L2
m)IAs

(
−ωRLmLr cos(IΘ

r − IΘ
s ) + Lmrr sin(IΘ

r − IΘ
s )
)

∂f2

∂Iθr
=

IAr
(LsLr − L2

m)IAs

(
ωRLmLr sin(IΘ

r − IΘ
s ) + Lmrr cos(IΘ

r − IΘ
s )
)

(7.15)

And the rotor-stator dynamics are given by

∂f3

∂Ias
=

1

LsLr − L2
m

(
Lmrs cos(IΘ

s − IΘ
r )− ωRLmLs sin(IΘ

s − IΘ
r )
)

∂f3

∂Iθs
=

IAs
LsLr − L2

m

(
−Lmrs sin(IΘ

s − IΘ
r )− ωRLmLs cos(IΘ

s − IΘ
r )
)

∂f4

∂Ias
=

1

(LsLr − L2
m)IAr

(
Lmrs sin(IΘ

s − IΘ
r ) + ωRLmLs cos(IΘ

s − IΘ
r )
)

∂f4

∂Iθs
=

IAs
(LsLr − L2

m)IAr

(
Lmrs cos(IΘ

s − IΘ
r )− ωRLmLs sin(IΘ

s − IΘ
r )
)

(7.16)
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The current-to-speed dynamics are given by

∂f1

∂ωr
=

Lr
LsLr − L2

m

LmI
A
r sin(IΘ

r − IΘ
s )

∂f2

∂ωr
=

1

(LsLr − L2
m)IAs

(
−LmIAr cos(IΘ

r − IΘ
s )− L2

m

)
∂f3

∂ωr
=

−Ls
LsLr − L2

m

LmI
A
s sin(IΘ

s − IΘ
r )

∂f4

∂ωr
=

1

(LsLr − L2
m)IAr

(
LsLmI

A
s cos(IΘ

s − IΘ
r ) + LsLrI

A
r

)
(7.17)

while the dynamics of the speed with respect to the currents are given by

∂f5

∂Ias
=

1

M

3P

4
LmI

A
r sin(IΘ

s − IΘ
r )

∂f5

∂Iθs
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1

M

3P

4
LmI

A
s I

A
r cos(IΘ

s − IΘ
r )

∂f5

∂Iar
=

1

M

3P

4
LmI

A
s sin(IΘ
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∂f5

∂Iθr
= − 1

M

3P

4
LmI

A
s I

A
r cos(IΘ

s − IΘ
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∂f5

∂ωr
= 0

(7.18)

For the input, there are voltage-current dynamics given by

∂f1

∂V a
s

=
Lr

LsLr − L2
m

cos(V Θ
s − IΘ

s )

∂f2

∂V a
s

=
Lr

(LsLr − L2
m)IAs

sin(V Θ
s − IΘ

s )

∂f3

∂V a
s

=
Lm

LsLr − L2
m

cos(V Θ
s − IΘ

r )

∂f4

∂V a
s

=
Lm

(LsLr − L2
m)IAr

sin(V Θ
s − IΘ

r )

∂f5

∂V a
s

= 0

(7.19)
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for the voltage magnitude, and

∂f1

∂V θ
s

=
−Lr

LsLr − L2
m

V A
s sin(V Θ

s − IΘ
s )

∂f2

∂V θ
s

=
Lr

(LsLr − L2
m)IAs

V A
s cos(V Θ

s − IΘ
s )

∂f3

∂V θ
s

=
Lm

LsLr − L2
m

V A
s cos(V Θ

s − IΘ
r )

∂f4

∂V θ
s

=
−Lm

(LsLr − L2
m)IAr

V A
s sin(V Θ

s − IΘ
r )

∂f5

∂V θ
s

= 0

(7.20)

for the voltage angle. In addition, there are torque-current dynamics given by

∂f1

∂Tl
=
∂f2

∂Tl
=
∂f3

∂Tl
=
∂f4

∂Tl
= 0

∂f5

∂Tl
= − 1

M
(7.21)

For completeness purposes, we will consider, as an example, a simple mechanical
load coupled to the induction machine shaft, with a load torque expression of the
form

Tl = Qω2
r (7.22)

which could represent a fan or centrifugal pump. Its linearized model is

∂Tl
∂ωr

= 2QωR (7.23)

which is a single gain linear model.
The resulting incremental phasor model for induction machine is presented in

(7.26).
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˙̃x = Ax̃+Bũ

ỹ = Cx̃+Dũ
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∂f1
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∂Tl

∂f5
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
C =

1 0 0 0 0

0 1 0 0 0

0 0 0 0 1

 D = 0

T̃l = 2QωRω̃r

(7.24)

7.1.3 Constant-speed induction machine model

The incremental phasor model shown in (7.24) can be simplified if a constant speed
operation (or equivalently, infinite inertia) is assumed.

Under this simplification, the fifth dynamic equation f5 does not hold, and the
torque input and speed output can be omitted. The input, state and output vectors
are reduced as well:

x =


Ias

Iθs

Iar

Iθr

 , u =

(
V a
s

V θ
s

)
, y =

(
Ias

Iθs

)
(7.25)

Th resulting incremental phasor model for the constant-speed induction machine
is presented in (7.26).
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D = 0

(7.26)

7.1.4 Numerical results

For the verification of the induction machine model, several numerical computations
and time-domain simulations were carried out, using the parameters shown in
Table 7.1.

Table 7.1: Base parameters for induction machine

Parameter Symbol Value Units
System’s frequency fo 60 Hz
System’s angular frequency ωo 377 rad s−1

Rated voltage V A
s 460

√
2 V

Rated power Pr 74.6 kW
Number of poles P 4

Stator resistance rs 0.015 pu
Stator leakage inductance Lls 0.1 pu
Rotor resistance rr 0.015 pu
Rotor leakage inductance Llr 0.1 pu
Mutual inductance Lm 3.0 pu

Rated slip sR 1.77 %
Mechanical constant M 2 s

The induction machine was studied when the mechanical load is present, and
the constant speed case as well. In both cases, the machine was connected to an
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ideal voltage bus, hence the impedance based stability criteria cannot be applied
due to the lack of impedance in the ideal voltage bus.

By using the parameters of Table 7.1, and varying the rotor slip from 0.1% to
50%, the machine’s torque curve of Figure 7.2 is obtained.
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Figure 7.2: Torque curve for the constant-speed induction machine

Constant speed induction machine

Using the model (7.26), an eigenvalue analysis was performed. The eigenvalues
were studied for several operating points, by changing the rotor slip while main-
taining the other parameters. The results are presented in Figure 7.3. It can be
recognized in this plot the location of the stator poles (far from the real axis, mostly
unaffected) and the rotor poles (closer to the real axis, larger vertical movement).
The constant speed eigenvalues found by the incremental phasor model are in fact
the same as the ones described in [99, Sec. 4.8]. The operation of the machine, in all
these cases, is stable.

For the set of operating points obtained in the eigenvalue analysis, the incremental
phasor admittance was obtained numerically. It is presented as a set of Bode plots in
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Figure 7.4: Admittance bode plots for the constant-speed induction machine
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Induction machine coupled to a mechanical load

The same eigenvalue analysis is performed for the full induction machine model
(7.24), but this time keeping a fixed operating point (rated slip) and changing the
machine’s mechanical constant M (proportional to the inertia). The results are
presented in Figure 7.5 for a range of 1% to 200% of the nominal inertia. This is
remarkably different than the previous case, as the dynamics of the extra state play
along with the existing poles in a very special way. It can be seen in the figure how
the single real pole moves towards the origin as the inertia increases, while the pair
of rotor poles moves towards, and then away from the imaginary axis. The stator
poles are only slightly affected by the inertia change.
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Figure 7.5: Root locus for the induction machine coupled to a mechanical load

The corresponding incremental phasor admittances for these cases are shown in
Figure 7.6. One of the main differences from the constant-speed admittances shown
in 7.4 is that the machine presents a “negative impedance” effect for injections of
low frequency. Nevertheless, the machine is stable for all operating conditions.
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Figure 7.6: Admittance bode plots for the induction machine coupled to a mechanical load

7.1.5 Time-domain simulations

In order to verify the results obtained by the analytical model, a time-domain
simulation model was built in Matlab/Simulink using the SimPowerSystems block-
set. The full-featured model of the induction machine, presented in Figure 7.7,
is connected to a microsource with droop control gain Mp = 0.1%. The rotor is
short-circuited, and the full model of mechanical load is included, as shown in
Figure 7.8.

During the simulation, the microsource suffers a droop gain step. At time
t = 1.0 s, Mp increases from 0.1% to 5%. The currents, rotor speed and system’s
frequency are presented in Figure 7.9. It can be seen in the figure how the rotor
speed decreases after the frequency of the system is reduced by the changes in the
droop gain. Even though there are some oscillations in the frequency signal, the
system does not enter into an unstable operation.
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7.2 Ideal P-Q load

7.2.1 P-Q load model

A P-Q load is a very particular component of the system, which is usually intended
to represent a load with a “negative resistance” behavior. Following the voltage
and current designations of Figure 7.10, the expression for the apparent power S of
the load can be written as

1

2
V̄L · Ī∗L = P + jQ = S (7.27)

where P and Q are the active and reactive power components respectively, and
∗ denotes the complex conjugate. From this equation, the real and imaginary
components can be separated as

V a
L I

a
L cos(V θ

L − IθL) = 2P

V a
L I

a
L sin(V θ

L − IθL) = 2Q
(7.28)

ĪL

P ,Q

−

+

V̄L

Figure 7.10: Schematic of a P-Q load

If it is desired to express the relationship between currents and voltages as an
impedance, then the voltage magnitude and angle could be written as

V a
L =

2S

IaL

V θ
L = IθL + arctan

(
Q

P

) (7.29)
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The state space representation of this P-Q load will have output and input
variables

y =

(
V a
L

V θ
L

)
, and u =

(
IaL
IθL

)
(7.30)

respectively. Since there are no dynamics on the system (as in the resistive load
case), the matrix representation will only include a single gain matrix D. The
components of such matrix are obtained in (7.31).

∂V a
L

∂IaL
= −V

A
L

IAL
∂V a

L

∂IθL
= 0

∂V θ
L

∂IaL
= 0

∂V θ
L

∂IθL
= 1

(7.31)

The linearized state space representation of the P-Q load is then presented in
(7.32). Note how the gain matrix effectively shows the “negative resistance” effect
in the magnitude/magnitude channel.

ỹ =

(
−V AL

IAL
0

0 1

)
ũ (7.32)

7.2.2 Simulation models

There exist many models for P-Q loads, called for example constant-power loads in
[4, Ch. 7]. Two models are introduced below.

Dynamic load SimPowerSystems block

The SimPowerSystems blockset include a dynamic load, that can be programmed
for constant power, and is shown in Figure 7.11. The inputs to this block are the
constant power setpoints PL and QL.
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Figure 7.11: P-Q load block diagram, Dynamic load case

Current-source based custom load

Due to the lack of controllability of the SimPowerSystems Dynamic load block,
another P-Q load model was developed, based on a current source, as shown in
Figure 7.12.
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Figure 7.12: P-Q load block diagram, Current-source load case

The power setpoints are converted to current references that are fed into an
ideal current source, which is similar to Figure 3.19, except that the controlled
voltage sources are replaced by controlled current sources. The current references
are generated by dividing the voltage by the apparent power, as shown in Figure



158

7.13. The voltage of phase one is used as reference for the frequency computation
by a PLL; the voltage magnitude is calculated as the magnitude of the positive
sequence voltage; the saturation block avoids infinite currents during the beginning
of the simulation and transients of extreme low voltage; the delayed switch avoids
noisy phase angles at the beginning of the simulation; the current magnitude and
phase angles are simply calculated as:

|I| = 2|S|
|V |

(7.33)

∠I = ∠V − ∠S (7.34)
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Figure 7.13: P-Q load block diagram, Current-source load case, control blocks

7.2.3 Time-domain simulation results

The current-source based custom load model was connected to a microsource
model, and a simulation was performed in Matlab/Simulink. The time-domain
simulations in general do not converge with this load model, and only certain
operating points appear to work well. For example, a stable case is presented in
Figure 7.14, where the P-Q load is perturbed at time t = 1.0 s by increasing its
demanded power by 10%.
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Figure 7.14: Time-domain simulation results for one microsource, P-Q load system. At time t = 1.0 s
the P-Q load is perturbed.
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7.3 Summary

In this chapter, the dynamic phasor model of two kinds of complex loads are
developed: the induction machine and the constant power P-Q load. Both kinds of
loads are common in a broad range of applications, including microgrids.

The induction machine model was derived by the synchronous reference frame
d-q model, by an algorithmic approach. This model was further simplified for the
constant speed case, which served as a point of comparison with constant speed
models found in the literature. The full induction machine model was coupled to a
basic mechanical load, and an eigenvalue analysis was carried out while modifying
the machine’s inertia. The induction machine was stable at all times. A full featured
model of the induction machine was used along with a microsource for time-
domain simulations. Even though an stability analysis was not performed on a
model considering both the machine and the microsource, the simulations gave
stable results even after modest droop gain steps.

The P-Q load model is developed from the active and reactive power equations
of an ideal P-Q load. Even though this model is perfectly analyzable from the
theoretical point of view, it is, at this stage, of no interesting use, as the results
for any operating condition of a P-Q load along with a microsource are unstable.
However, two practical P-Q load model approximations were presented. One of
the models was used in time-domain simulation, giving stable results.

While developing the model for the induction machine, a set of steps were
stated, by which one could obtain a dynamic phasor model derived from a d-q
model. This general approach, which is equivalent to transforming the equations
into polar coordinates (rather than rectangular as the d-q model case), could be
applied to other d-q models expressed as complex variable differential equation
sets. However, it is worth mentioning that the complex variable model (or d-q
model) must be expressed (or translated otherwise) into the synchronous reference
frame, whose rotating frequency is the desired dynamic phasor rotating frequency
ωo.
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8 conclusions and future work

In this thesis, the impedance matching stability criteria for AC microgrids is pre-
sented. The stability criteria is compatible with plug and play features expected from
a microgrid: it is applied at the point of connection between the existing microgrid
and a new unit that is being incorporated into the system.

Chapter 2 presented a detailed literature review. It was identified that existing
tools for stability studies are not particularly scalable for a microgrid with plug
and play capabilities. Furthermore, an approach using the concept of impedance
matching is applicable in the microgrid case was identified for the purpose.

The ideas behind the impedance matching stability criteria were presented in
Chapter 3, along with the proposed dynamic phasor analytical model of a microgrid.
These nonlinear models are linearized around an operating point, producing the
incremental phasor dynamic models, from which the incremental phasor impedances are
obtained. These impedances are ultimately used with the impedance matching
stability criteria.

In Chapter 4, single source microgrids were studied from the analytical, numer-
ical and simulation point of view. Two single source cases were studied: the single
microsource coupled to an infinite bus was used to validate the dynamic phasor and
incremental phasor models against the results published in literature; and the single
microsource coupled to a load was used to validate the models against time-domain
simulations. An interesting results is that a single microsource connected to a
resistive or R-L load is always stable.

In Chapter 5, the stability of two source microgrids was studied. The stability
properties were established using the impedance matching stability criteria. The
incremental phasor models are also validated against time-domain simulations. In
addition, a measurement of the incremental phasor impedance was carried out:
the incremental phasor impedances and admittances were successfully obtained,
and closely match the results obtained with the analytical model.

Chapter 6 presented experimental results that validate the incremental phasor
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impedance approach and demonstrated the utility of the impedance based stability
criterion with actual laboratory examples.

In Chapter 7, additional model for two kinds of complex loads were introduced.
The induction machine and the constant power (P-Q) load were introduced, nu-
merically studied and simulated. These models, although not contrasted with
experimental counterparts, serve as an starting point for studying more complex,
real-world loads.

An outline and description of the contributions from this work are presented in
the following section.

8.1 Contributions

• Identification of the problem, the opportunity and the solution: The review of the
state of the art in the microgrid topics covered several areas that are the current
subject of research, as well as others that are more mature. It was recognized
that there are existing tools suitable for stability studies in a microgrid system.
However, the plug and play concept introduces new challenges that require a
novel approach. A new way of looking at the microgrid was presented, and
the methodology of impedance matching stability criteria to microgrids for
the stability assessment of a microgrid has been identified for developing this
work.

• Dynamic phasor model formulation: Even though there are several approaches
to the determination of the small signal models and impedances, they fail
when applied to systems with the characteristics of a microgrid. For example,
the most popular technique, using d-q reference frame, may not be readily
suitable for a system with variable frequency that is regulated by the droop
controller. The dynamic phasor modeling technique in polar coordinates is,
in contrast, a powerful tool suitable for systems with such characteristics.

• Incremental phasor models and impedances: While dynamic phasor models for
microgrid components may be readily created, they express nonlinear de-



163

pendence. A linearized model around an operating point, called incremental
phasor model, was then developed for the stability studies. From these mod-
els the incremental phasor impedance is extracted as a single component of the
incremental phasor model’s transfer function. From the incremental model,
impedance is useful for the determination of the stability properties of a mi-
crogrid, because it can be determined at the point of connection, making this
approach compatible with the plug and play concept.

• Verification of incremental impedance transfer functions using simulation: The an-
alytically predicted incremental phasor impedance transfer functions have
been successfully validated by simulation. A frequency domain sweep was
conducted on the complete system, followed by Fourier analysis to determine
the incremental phasor impedances, and compared against the analytical
solutions.

• Use of incremental phasor models to establish stability properties: The incremental
phasor dynamic transfer function model has been validated in a particular case
by studying systems comprising a single microsource connected to the infinite
bus, and have validated and strengthened previously developed stability
criteria in a more rigorous and general manner.

• Impedance matching stability criteria: The incremental phasor impedances form-
ing a loop gain transfer function to study the stability of a microgrid has been
proposed. Such an approach using incremental phasor impedances is suitable
for a system where we only have access the point of connection, such as a
microsource that is being connected to an existing microgrid (with possibly
unknown properties).

• Verification of proposed stability criteria by simulation: The criterion has been
successfully validated by simulation: the models predicted instabilities for
frequency droop gains above certain critical values, which were verified by
time-domain simulations. Systems comprising a single microsource con-
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nected to the infinite bus, a single microsource connected to a load, and a
two-microsource microgrid were modeled and validated.

• Validation of incremental impedance transfer functions by experimentation: The
incremental phasor impedances of several components were measured by
experiments on a laboratory microgrid installation. Passive loads and mi-
crosources were successfully measured, and closely match their analytical
models.

• Validation of the impedance matching stability criteria by experimentation: Stability
margins for the microgrid were identified by using the incremental phasor
models. By driving the microgrid into instability, these margins were con-
firmed. Corrective actions based on the model estimations can be applied to
a microgrid in order to avoid unstable operation.

• Incremental phasor model for complex loads: In addition to the models covered
in Chapter 3, two complex loads were modeled using dynamic phasors.

The induction machine’s dynamic phasor model was derived from the tra-
ditional d-q model. Then, the incremental phasor model was obtained and
an eigenvalue analysis was performed in two cases: an induction machine
coupled to a finite-inertia mechanical load, and a constant-speed (infinite
inertia) induction machine. The results obtained from the eigenvalue analysis
match those found in the literature.

The constant-power (P-Q) load was modeled as an ideal negative-resistance
load. Even though this model has not encountered practical use, two sim-
ulation models are proposed. One of the models is successfully used in
time-domain simulations.

• Derivation of dynamic phasor model from d-q model: By expressing a model in
complex variables in the synchronous reference frame, the derivation of the
dynamic phasor model is direct. An algorithm was presented in Section
7.1. This algorithm was used to obtain the dynamic phasor model for the
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induction machine, and could be used to obtain models for other systems as
well.

8.2 Future work

• Improvement of the dynamic phasor analytical models: Even though the models
presented in this thesis proved useful in determining stability properties of
a microgrid, there are some assumptions and simplifications that should be
relaxed. In particular, the dynamic phasor models developed in Chapter 3
do not include the reactive power droop control, counterpart to the power-
frequency droop control. The reactive power-voltage (Q-V) droop control is a
key component of microgrid controls, that provides controlled reactive power
sharing among the microsources.

Other improvements could be achieved by not neglecting the magnetizing in-
ductance of the transformers; by incorporating saturation on magnetic circuits
present in the microgrid; and by modeling voltage and current unbalances
through the incorporation of a zero sequence component.

One of the features that characterizes the UW Microgrid controllers is the
maximum and minimum power limit (Pmax and Pmin) control. These con-
trollers are incorporated along with the frequency droop gain; there is a
potential of incorporating them in the dynamic phasor models as well, by
little modification to the analytical models developed in this document.

• Improvement of the measurement techniques: One of the weaknesses of the ex-
perimental hardware setup was the inability to reproduce clean incremental
phasor impedance spectra. This is due to several factors, including: (a) the
capacity of the small signal injection unit to create the perturbations into the
system; (b) the tendency of the system (specially of an islanded microgrid) to
change its operating point while injecting a small signal perturbation; and (c)
the dynamic range of the injected and measured signals, which can be several
tens of dB.
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Even though an independent small signal injection unit could be further
improved by considering the factors above, it is desirable to incorporate
these impedance measurement algorithms into the microgrid components
themselves. For example, a true plug and play unit should be able to inspect
its PoC and obtain the impedance of the system being connected to. At the
same time, it should be able to adjust its own incremental phasor impedance
to ensure a stable operation after the interconnection is done.

One of the key units that might be suitable for doing the impedance measure-
ment task is the static switch. Being this unit usually located at the point of
connection with the utility grid, the static switch could sense the state of the
rest of the grid before synchronizing the two grids, and monitor the state of
the parallel system while they are interconnected.

• Extension of the impedance matching based stability criteria to other environments:
The stability criteria presented in this document was inspired by the plug
and play capabilities that one would expect from a microgrid. However, the
microgrid, as well as any other EPS, could be analyzed using the impedance
matching based stability criteria presented in this document. Developed with
scalability in mind, the impedance matching offers the possibility of studying
the stability of a system from several interconnection points. Problems such
as the incorporation of new units, inter-area oscillations, loss of synchronism,
among other, may be approached by selecting the right PoC. If needed, the
models could be extended to include input, state, and output variables more
familiar with EPS stability literature, such as voltage magnitudes, angles,
active power and frequency deviations.

• Connection between dynamic phasor models and secondary and tertiary control:
EPS area controllers and system operators work together to provide the best
power quality possible in an electricity grid. One of the most common tasks is
to provide primary, secondary and tertiary control, which are applied in dif-
ferent time domains, from the milliseconds to several minutes or hours. The
system’s frequency present natural deviations, resulting from changes into
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the operating conditions of the grid, some times programmed, other times
incidental. Therefore it is a task of the controller to maintain the system’s
frequency near its nominal value.

Even though primary controllers, such as the droop control covered in this
thesis, already provide means of balancing the power demand and system’s
frequency, they encounter long-term frequency deviation, steady state error
that has to be minimized. The existence of secondary and tertiary controls
are due to this frequency deviations.

The dynamic phasor modeling presents an interesting framework, which
defines a constant, known frequency, and takes into account all deviations
from such frequency. Minimizing long-term frequency deviations could be
seen as the problem of minimizing phase angle error in a dynamic phasor
reference frame.

It might be interesting to study the relationship between the actions taken in
droop controllers (droop gain dispatch) and the steady state frequency error.
Microgrid centralized controllers usually have the task of balancing the power
flow such that the steady state error is minimized. By using dynamic phasor
models, the power-frequency controllers could be consolidated in a model
that would predict system’s frequency deviations, and could be of practical
use not only for microgrids but also other EPS.

• Communication interfaces: In order for a microgrid centralized controller to
dispatch setpoints and collect measurement data, a communication channel
must exist among the units. The UW Microgrid, for example, has an IEEE
802.11b wireless communication system for monitoring and control purposes.
When developing the dynamic phasor models, no communication channel
was modeled into the system, and delivery of setpoints was assumed instanta-
neous and ideal. Communication channel models exist for wired and wireless
cases, which take into account loss of information, latency, jitter, among other
issues.
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There exists a recognized challenge in integrating dynamics of the electro-
magnetic domain (usually in the order of milliseconds to seconds) with power
electronics domain (usually in the order of microseconds). The challenge
is extended when including communication dynamics that, depending on
the channel model, could add dynamic on a third domain, at a much larger
timescale. Nevertheless, the dynamic phasor models were successfully used
for analytical and simulation studies when different dynamics timescales are
present. An attractive addition to the dynamic phasor models would be the
interactions between the primary controllers (e.g. power-frequency droop
gains) and their dispatchable setpoints through a communication channel.

8.3 Summary

The impedance matching stability criteria presented in this thesis is an suitable tool
for a microgrid environment where the plug and play capabilities are of major im-
portance. The stability criteria were exemplified with several microgrid scenarios
that were used to validate the dynamic phasor and incremental phasor model-
ing approach. The impedance matching stability criteria successfully predicted
instabilities on microgrids with one- and two-microsources. As the impedance
matching is done at the point of connection, the criteria is easily extended for the
multi-microsource case. The experimental work included hardware validation,
establishment of stability margins in a microgrid context, and the extension to more
complex loads. At the conclusion of this work, a novel and definitive framework
for studying the stability of microgrids is presented, for expanding their role in the
emerging future.
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