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ABSTRACT 

Interactions between microbes can be passive or active, inhibitory, or promotive, and act over a range 

of length scales including local contact-dependent interactions and longer-scale diffusion-based 

interactions. Interactions between microbes guide the development of microbial communities. 

Cooperation is a type of interaction where the product or action benefits more than one cell. I focus on 

an important model system, the Saccharomyces cerevisiae public goods model for sucrose utilization. In 

microbial communities, public goods are compounds produced by cooperative cells that are freely 

available to other cells. In this simplified community, cells expressing invertase are deemed producers, 

since invertase breaks down sucrose into glucose and fructose (the two public goods in this system). 

Cheaters are the cells that take advantage of these public goods without suffering direct fitness costs 

from invertase production. A major motivation for studying cooperation is to understand how 

cooperation is maintained in a community. It is not known how invertase is regulated in this model 

community. If invertase could be regulated this would affect how glucose would be available in the 

community. I believe that invertase regulation may be a major contributor to cooperation maintenance 

in a community in specific environmental conditions. In chapter 1, I introduce the Saccharomyces 

cerevisiae public goods model system which facilitates cooperative use of sucrose. I present the major 

contributions to our understanding of cooperation using the model system and highlight gaps in our 

understanding of factors that support cooperation. I conclude by explaining why regulation of invertase 

may be an important missing piece from our understanding of this model system. In chapter 2, I 

improve upon current optogenetic tools. I improved the calibration method for the LPA, a previously 

published optogenetic device for illuminating wells in a 24 well-plate to increase throughput and 

reproducibility of optogenetic experiments. In chapter 3, I present the creation of a light-inducible 

invertase  expression in an S. cerevisiae strain. I characterize this strain and demonstrate spatial control 

of producer populations via light. Then, in chapter 4, based on the previous observation that localized 
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cooperators surrounded by cheaters can form bullseye patterns, particularly in nutrient-limited 

environments. I develop a reaction diffusion model to understand how public goods interactions and 

competition for resources can lead to patterning in microbial communities.  The reaction-diffusion 

model successfully recapitulates long-range patterning in a limiting nutrient environment for the S. 

cerevisiae model community. In chapter 5, in order to measure invertase regulation I develop a method 

to visualize the active cooperators in a wildtype strain of S. cerevisiae. I demonstrate that S. cerevisiae 

can and does regulate the expression of invertase during growth. I use the same method to develop 

different strength constitutive cooperators. Finally, I compete these cooperator strategies with either 

cheaters or cooperators to compare the effects that invertase regulation has on cooperator and 

community outcomes. This work has direct implications for understanding intercellular and interspecies 

interactions in natural and synthetic microbial consortia containing S. cerevisiae. Finally, in chapter 6, I 

summarize the results from my thesis work. I highlight the useful tools developed to study dynamic 

interactions in a microbial community. I conclude by contextualizing my findings within the larger 

context of the public goods literature and provide future directions.  
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 Abstract 

Interactions between microbes can take various forms, such as passive or active, inhibitory or promotive, 

and occur over different length scales. These interactions guide the development of microbial 

communities. My thesis work focuses on studying the Saccharomyces cerevisiae public goods model for 

sucrose utilization. This is a well-known model system used to study cooperation whose name: public 

goods stems from the fields of ecology and game theory. The system involves the production of public 

goods, which are compounds produced by cooperative cells that are freely available to other cells. In this 

chapter, I introduce this model system in more detail. I then present the contributions from past works to 

our understanding of cooperation, highlighting gaps in knowledge. I explain why regulation of invertase 

may be important to understand factors that support maintenance of cooperation and what hurdles may 

have prevented the study of regulation in the past. I describe my approach in investigating the role of 

invertase regulation on cooperation by describing my research questions and the tools I will need to 

answer them.  I conclude with an overview of the subsequent chapters.  

Introduction 
Cooperation is a common behavior observed in nature [1]–[4]. For microbial communities, cooperation 

can make a large task more productive [5], [6] . However, cooperation appears susceptible to outside 

factors such as the presence of cheaters [7]–[9]. In the presence of cheaters, for example, cheaters, 

without any effort, could benefit from the cooperation, their fitness greater than that of the cooperators, 

then leading to the collapse of the community [10]–[14]. Due to pressures such as these, how cooperation 

persists in a population and how cooperation is affected by ecological factors is a compelling topic of 

research. Broadly, my dissertation work focuses on the development of tools to measure cooperation and 

understand the mechanisms that support cooperation in a community using the public goods model 

system in Saccharomyces cerevisiae. Specifically, I’m interested in how regulation of cooperativity in this 

model system affects cooperation and growth dynamics. In this model system, yeast utilize the enzyme 
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invertase to break down sucrose cooperatively into glucose and fructose and uptake them for growth. 

Model systems are useful for studying microbial communities because there are fewer variables to track 

and often the model system has been well-characterized, which is also true for the cooperative model 

system I use. Multiple model communities have been used to better understand cooperation in the 

microbial world, such as quorum sensing [15],siderophore production [3], [16], [17], and fruiting bodies 

[18]–[21]. Model systems are ever more useful if the right tools are developed to study them.   

In this chapter I present an overview of the biology of the public goods community. Then, I summarize 

major public goods works that have contributed to our understanding of  the ecology and evolution of 

cooperation in this system and highlight some incongruencies and gaps in the current work. I’ll then focus 

on a crucial missing piece of this biological model, the regulation of the enzyme invertase, and the 

technical difficulties that may have prevented investigation of this regulation in the past.  I then present 

my research questions and the necessary tools I will need to approach my questions. I conclude with an 

outline of the subsequent chapters.   

The Public Goods Model system: Utilization of Sucrose by Saccharomyces cerevisiae 
Though Saccharomyces cerevisiae prefers glucose, S. cerevisiae can use sucrose as a carbon source 

through the use of invertase [22], [23]. When glucose is available at a reasonable concentration, sucrose 

utilization pathways are repressed (as are many other alternative carbon utilization pathways) until the 

glucose availability falls below a threshold [23]–[25] . Once glucose is low, S. cerevisiae de-represses 

invertase expression and invertase is then secreted into the periplasmic space of the yeast wall. Invertase 

hydrolyzes sucrose to make two monosaccharide molecules; glucose and fructose (Figure 1). This 

hydrolysis occurs outside of the cell, and the cell responsible for the hydrolysis and any nearby cells then 

import the monosaccharides for growth. This is what makes sucrose utilization a cooperative activity.  

The cooperative nature of the system, as well as the well-studied biology, makes sucrose utilization a 

useful model system for studying cooperation in microbes [9], [26]–[33]. In the existing literature, a typical 
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S. cerevisiae public goods model community is made up of two entities: the cooperators (producers of 

invertase) and the cheaters (non-producers of invertase). The model system was given the economics-

borrowed moniker of public goods as the freed monosaccharides are considered goods made available to 

any public cell in the environment.  

It is usual for the experimental conditions to consist of the cooperators expressing invertase using the 

native promoter pSUC2; cheaters are mutants who have invertase deleted (suc2∆) (Table 1). The two 

individuals are combined in media with sucrose as the main carbon source (and negligible glucose). The 

cells, under native regulation, are presumed to highly express invertase and maintain their constitutive 

cooperator status throughout the experiments. It is important to highlight that this presumption may not 

be true, and the consequences of this presumption will be discussed further in this chapter. Nonetheless, 

the use of this model system has given us important insights into one of the major questions regarding 

cooperation—the question that motivates the work discussed in this dissertation—namely, how 

cooperation is maintained in a population when faced with cheaters.  

Factors that may support cooperation in a mixed community and caveats 
Preferential access to the public good 

One important result of previous works studying cooperation in the public goods model system, is that 

coexistence is possible between cooperators and cheaters, while competitive exclusion is also possible 

[9], [27]. This result serves as good evidence that cooperation has important traits that allow it to persist 

in difficult environments, such as cheater presence. Teasing out what these traits is less obvious. One trait 

that has been discovered and which successive works have built upon, pertains to this particular form of 

cooperation; enzyme secretion[9], [26]–[33] . Invertase, which is retained by the producer cell imparts 

preferential access to the freed glucose which offsets the cost to produce invertase enough to support 

coexistence in a mixed community [27], [34]. It is important to point out, as mentioned earlier, that the 

ability to make invertase in these model systems makes this cell de facto a cooperator, which neglects the 
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potential that the cells capable of producing invertase are not always actively making invertase. The ability 

for cells to regulated invertase has likely not been studied because a tool has not been developed to 

visualize active cooperators in a community. 

Cell density dependent growth  

There is not a lot of agreement on what elements support cooperation in public goods. One might expect, 

for example, that high cooperator cell density would have a positive effect on the growth of the public 

goods community as well as the cooperator growth because that would result in more glucose being made 

available. However, high cooperator cell density on a public goods community appears to have a wide 

range of effects on the outcomes for the cooperator cells as well as the entire community’s population.To 

begin with, the S. cerevisiae public goods system has demonstrated an allee effect: a positive density 

dependence on individual cells’ fitness when cooperation is in effect [27]. This means that a community 

of cells (whether that be only cooperators or in coexistence with cheaters) needs enough cooperating 

cells to maximize benefit from the fruits of cooperation. This relationship was explored by Gore et al. using 

a bi-phasic logistical growth model where there is a growth rate for each, the cheater and the cooperator 

before the threshold number of cooperators is reached and new growth rates for each of the cell types 

after the threshold is met [34], [35]. 

It might stand to reason that higher densities of cooperator cells would be the most beneficial to both 

cooperators and mixed populations alike, since this would result in the most glucose becoming available. 

Theory predicts that it might depend, higher densities could confirm the previous statement or could 

benefit cheaters because they would be able to take advantage of an increase in public goods [8], [36], 

[37]. Gudelj is able to empirically verify both results–higher densities benefitting cheats or cooperators 

depending on the spatial organization [31]. However, in [34], equilibrium for mixed communities were 

often reached at low cooperator frequency, in this case a small proportion of cooperators were necessary 

to support the equilibrium population density, with cheaters benefitting the most. Cheaters also appeared 



 

 

6 

to profit the most in terms of fitness from higher cooperator densities; in [9] cheaters had a larger growth 

rate (1.19) relative to the producer under these conditions. In contrast, in [30], maintenance of 

cooperation in a mixed population required low population densities with cooperators making up a higher 

proportion of the total population. How cell density (both total density and cooperator density) affects 

cooperation and the population remains to be resolved. 

The presence of cheaters supports or..., doesn’t support cooperation?  

Even whether cheaters are deleterious or beneficial to the maintenance of cooperation in a public goods 

community remains in limbo. Across other cooperative communities cheaters are often seen at conflict 

with the interests of maintaining cooperation and cooperative cells have developed strategies to guard 

against cheaters [38], [39]. However, [33] found that cheaters were actually beneficial to overall 

population fitness with a mixed population leading to higher total population density and higher growth 

rate . In [33], and [40] cooperator-only populations are posited as being potentially wasteful both in their 

use of available resources and their production of invertase and so mixed populations produced better 

outcomes for populations as a whole. Meanwhile, [34] found a neutral effect to total population growth 

of a community when cheaters were present but the researchers did observe a negative effect on the 

resilience of the community. This community did not have the ability to recover after a rapid, and extreme 

dilution [34]. There remains a continued need to understand how cheaters cooperate or interfere with 

maintenance of cooperation. 

Cooperation in Spatially Organized Environments 
In microbial communities the consideration of spatial organization is important as microbes live in dense 

potentially structured spaces, for example, in biofilms [41]. In this particular microbial community system, 

where cells remain stationary but several components are free to diffuse throughout space, it is evident 

that maintenance of cooperation, and fitness characteristics between cooperators and cheaters could 

differ when there is spatial structure versus growth in well-mixed environments. Several theory papers 
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have focused on trying to understand the effect of spatial organization on cooperation with varying results 

[8],[42], [43]. These are great as a starting point for insights as it can be technically complex or not possible 

to do these experiments empirically without the proper tools to visualize or organize cells. Often, theory 

when possible must be verified empirically. 

When we turn to the empirical examples that utilize the public goods S. cerevisiae model system there 

are some differences in outcomes to compare from examples discussed earlier. When colonies are 

expanding, cooperation is maintained due to that expansion [44]. Desai et al. explains it as “survival of the 

fastest”; cooperator sectors have higher productivity than cheater sectors leading to positive assortment 

at the boundaries of a colony [44]. In contrast to previous examples [33], cooperators in higher densities 

fared better than cheats. In plate assays where cooperator frequency was tracked over several 

generations differences were observed between an  average plate’s landscape and smaller, local 

environments within the plate [40]. However, the potential effects of spatial environment and diffusion 

were not considered in-depth partially due to the methodology used limiting quantification [40]. The scale 

at which space is considered may matter as well, [29] looks at spatial structure by comparing growth 

outcomes in low sucrose of individual cooperator cells and clumps of about 30 cells. Clumps fared better 

when competing with cheaters because of the diffusion rate differences in a clump vs single cells, in other 

words cooperators with spatial organization could capture more of the digested sucrose. On much larger 

scales, previous work varied the degree of spatial organization, from well-mixed environments and on 

plates and found that more spatial structure favors cooperator fitness, with higher densities improving 

cooperator fitness relative to cheaters (maximizing both density and structure leads to cooperator relative 

fitness of ~1.5) [31]. Overall, these empirical examples suggest that outcomes from spatial organization 

can vary depending on various factors such as how the community is spatially organized, and the size of 

the spatial scale. More work needs to be done to fully understand the role of spatial organization on 

cooperation in this model system.  
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Experimental Variation and Technical Hurdles   
The varying effects of different factors on cooperation may appear confusing or even contradictory. 

Despite being a well-studied model to study cooperation there appear to be complex factors whose effect 

on cooperation require further refinement, such as, the role of cell density, cheaters, or spatial 

organization. Partially, these differences could be due to methodological differences. Many variations in 

culturing conditions span the examples discussed here: plating, or well-mixed conditions, ranges of 

starting sucrose concentrations, even the way the cost of being a cooperator is determined. For instance, 

the frequency of a cooperator is measured by replica plating dilutions and selecting for a marker [9], at 

the transcriptional level via qpcr [40], and  using a constitutive fluorescent reporter in the cooperator cell 

in a few others [29], [33], [42].  

Another, equally likely probability is that we need a deeper understanding of the mechanisms driving 

expression at the promoter that has continued unexplored in the context of the public goods model. The 

promoter is driven by the environmental conditions (de-repressed and repressed in response to available 

monosaccharides) as much as it is impacted by the changing environment resulting from its and 

surrounding cells’ activities (collectively all the cells consuming and freeing monosaccharides). However, 

there was not a tool to measure active or real-time cooperation. This is likely due to technical barriers 

associated with tagging a secreted protein in yeast, previous attempts had been unsuccessful [45], [46]. 

Throughout this section I have highlighted where there are incongruencies in our understanding of what 

factors support cooperation. We need new techniques to measure cooperation more directly both at the 

population level and at an individual level. This would be possible if we could measure real-time 

expression of invertase, I discuss my approach to develop such a tool further on. Furthermore, the study 

of cooperation would benefit from tools that would permit the direct control of cooperation in order to 

further study the impact of the aforementioned factors such as spatial organization.    
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Regulation of Invertase May Be a Missing Puzzle Piece that Supports Cooperation 
The cost of cooperation 

What is the cost of cooperation for a cooperator? As I mentioned earlier, literature suggests that generally 

a wild type cooperator cell would act as such when faced with cheater cells. Likewise, that growth in 

sucrose media would result in the maximal amount of invertase expression (cooperation) for the cell as 

had been observed under low glucose conditions [27],[33]. For the aforementioned works, the cost of 

cooperation has been established and treated as a constant factor within the community's framework 

(see Table 1). The cost is measured by comparing the growth rates for cells that are not making invertase 

to cells that make invertase and equating decreases in the growth rate with the cost of invertase 

production, or in other words, the burden of expressing invertase.  However, the possibility of the cost 

being variable and its potential impact on the outcomes of the public goods community have been 

examined in the models for one of these papers [27]. The work demonstrates through their model that 

varying the cost would result in ratio differences at the steady state [27]. What if the wild type cooperator 

cell could tune their cooperation ie. the cost of their invertase expression? Afterall, the activity of the 

promoter is not only influenced by the surrounding environmental conditions, which cause de-repression 

and repression in response to available monosaccharides, but also by the continuously changing 

environment resulting from the metabolic activities of both the cell itself and the surrounding cells, as 

they collectively consume and free monosaccharides. There are studies in the realms of biofuels and 

metabolism that have hinted at more dynamic expression of invertase when invertase producing cells are 

grown  in sucrose, at the population level [25], [47]. It is possible that wildtype cooperators are more 

strategic cooperators than has been observed before. If cooperators could tune how much invertase they 

made dynamically they would effectively be tuning their cooperation cost. What impact would this have 

on interpreting the results of previous works? 

New questions surface for the public goods model system 
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How does a cooperator-only population regulate their cooperation? This currently is unknown, especially 

at the level of individual cells within a population. Would there be heterogeneity with some cells adopting 

a cooperator role and some invertase producing cells becoming cheaters?  

Or would there be a homogeneous intermediate expression level? Is it dynamic and on what  time scales? 

How does the regulation change when cheaters are present? There is a need for new genetic tools to 

probe the role that invertase regulation has on maintenance of cooperation and fitness outcomes for 

cooperators like fitness, frequency within a population, or total community productivity.  

Overview of Chapters to Study the Role of Invertase Regulation on Cooperation 
To better understand when and how regulation of invertase impacts individual and  community level 

characteristics new genetic tools would need three characteristics: 1) the ability to control invertase 

regulation so that we could spatially and temporally drive cooperation in a community 2) the ability to 

visualize active cooperators in a wildtype cooperation to help us better understand how dynamic native 

regulation is and how it compares to regulation in a mixed community setting. Finally,  3)  The ability to 

compare varying levels of constitutive invertase production  to the natively regulated  strategies. My work 

on these research questions and goals have been divided across the subsequent 5 chapters. Chapter 2 

focuses on improving a calibration method for the experimental hardware necessary for the 

spatiotemporally control of invertase in S. cerevisiae. Chapter 3 focuses on the construction and validation 

of the spatiotemporally controlled strains of S. cerevisiae using optogenetics. In this chapter we also 

observe an interesting patterning phenomenon that seems to be affected because of the spatial 

organization/sequestration/segmentation of the cooperator cells and the cheater cells as well as the 

nutrient gradients present across an agar plate. In chapter 4, I continue to explore the bullseye pattern, I 

contribute to developing and validating a reaction-diffusion model that has success in recapitulating most 

of our experimental data. However, we also observe perplexing cases where our model fails to predict the 

data. This re-invigorates our pursuit to understand the role that regulation of invertase may have under 
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different experimental conditions. In chapter 5, we continue to develop the tools that would allow us to 

visualize active cooperators and compare cooperation strategies ie. regulation and production of 

invertase by achieving co-translational expression of a fluorescent reporter along with invertase from a 

single promoter of interest. Finally, I conclude by summarizing the key take-aways from my work and 

contextualizing my work within the larger context of the public goods in the S. cerevisiae field. I present 

suggestions for future research to target cooperative and further considerations when studying secretory 

systems. Appendices 1 and 2 highlight a broader application of different secretory systems; from a 

biomaterials engineering perspective and from another type of secreted cooperative molecule in this case 

aiding the survival of yeast communities when heat shocked.  
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Figure 1: Diagram of  a Saccharomyces cerevisiae invertase producer 
Yeast are able to use sucrose as a carbon source through the use of the enzyme invertase. Sucrose is 

converted to the monosaccharides, glucose, and fructose. The yeast cell is then able to import the freed 

monosaccharides. 

 

Table 1: Comparison of Saccharomyces cerevisiae public goods cooperation works  

Reference Methodology Invertase 
regulation 
(Yes/No) 

Cost of cooperation 
considered (Yes/No 
and details) 

Gore et al., 2009 [27]  5% sucrose. Haploid cells, 
Cooperator has intact SUC2 
gene and cheat is suc2Δ. 
Histidine is limited to tune the 
cost of cooperation. 
Competition in well-mixed 
conditions.  

No Yes. Empirically 
determined and tuned 
via experiments and 
modeling.  

Lindsay et al., 2018 [31] 
 
(this paper treated two 
types of cooperation, 
for the purposes of this 
table only focused on 
public goods 
cooperation) 

High (~3%), medium and low 
sucrose concentrations.  
Cooperator and cheater 
strains were those used in ref 
[27]. 
Competition in well-mixed 
conditions and on plates with 
increasing degrees of spatial 
structure. 

No Yes. Empirically 
determined in [33].   
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 Gore et al., 2013 [34] 2% sucrose. Grown in a 96 well 
plate and diluted by a 667x 
factor each day. Competition 
in well-mixed conditions. 
Cooperator and cheater 
strains were used in ref [27]. 
 

No Cost determined in 
[27] 

Travisano et al., 2004 
[9] 

Plating on 2% sucrose plates. 
Intact SUC2 diploid and diploid 
suc2Δ, isogenic strains. 
Composition information was 
measured by replica plating on 
dependent selection-
dependent markers on strains.  

No No 

MacLean et al., 2008 
[30] 

2% sucrose. Strains used in 
[9].Competing strains in ratios 
of 99%coop:1% cheater strains 
on plates across several cycles 
of re-plating. SUC2 copy 
number measured to get 
composition information. 

No No 

Koschwanez et al., 
2013 [29] 

Several concentrations of 
sucrose  ranging from ~3% to 
0.2% .Haploid cells  with intact 
SUC2 or with ADH1 promoter-
driven expression of the 
fluorescent markers ymCherry 
(cooperators) and ymCitrine 
(suc2∆).  

No Yes. Empirically 
determined 

MacLean et al., 2010 
[33] 

10%,2%,0.1%, 0.01% sucrose. 
Intact SUC2 diploid and suc2Δ 
diploid, isogenic strains. 
Competitions in well-mixed 
environments. 

No Yes. Empirically 
determined 

Van Dyken et al., 2013 
[44] 

Strains used in [29], with the 
addition of cycloheximide 
resistance to the cheater. 2% 
sucrose. Competitions on 
plates. Cycloheximide is added 
to increase the cost for 
cooperators. 

No Yes. Empirically tuned 
by adding “cost” 
through addition of 
cycloheximide. Model 
incorporates game 
theory models of cost 
versus benefits 
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Chapter 2: Easy calibration of the Light Plate Apparatus for optogenetic experiments 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This chapter was adapted and previously published here:  

K. Sweeney, N. Moreno Morales, Z. Burmeister, A. J. Nimunkar, and M. N. McClean, “Easy calibration 
of the Light Plate Apparatus for optogenetic experiments,” MethodsX, vol. 6, pp. 1480–1488, Jun. 
2019, doi: 10.1016/j.mex.2019.06.008. 

 
Neydis Moreno Morales and Kieran Sweeney performed the experiments. Kieran Sweeney wrote Matlab 
custom code. All authors contributed to discussion of the project. Zachary A. Burmeister and Amit J. 
Nimunkar built the LPAs. Neydis Moreno Morales, Kieran Sweeney and Megan McClean wrote the paper. 
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Abstract 

Optogenetic systems use genetically-encoded light-sensitive proteins to control and study cellular 

processes. As the number and quality of these systems grows, there is an increasing need for user-friendly 

and flexible hardware to provide programmed illumination to cultures of cells. One platform which 

satisfies this need for a variety of optogenetic systems and organisms is the Light Plate Apparatus (LPA), 

which delivers a controlled light dose to each well of a 24-well plate. Experimental reproducibility requires 

appropriate calibration to produce accurate light doses within individual wells of the LPA and between 

LPAs. In this study, we present an easy and accurate method for calibrating the LPA. In particular, we: 

• developed a 3D printed adaptor and MATLAB code to allow rapid measurement of irradiance 

produced by the LPA and subsequent calibration 

• provide appropriate code and methodology for generating a standard curve for each LPA 

• demonstrate the utility and accuracy of this method between users and LPAs 

Background 

Optogenetic systems provide a promising toolkit for cell biology. These systems utilize genetically-

encoded light-sensitive proteins to actuate processes within the cell. The optogenetic toolkit is improving 

and expanding; genetically-encoded light sensitive proteins have been developed to control cellular 

events such as gene expression, protein localization, and phase separation [1–3]. The response of these 

optogenetic systems is light dose-dependent and excessive light is harmful to cells, emphasizing the 

importance of administering precise, quantifiable, and reproducible light doses. Until recently, the 

hardware necessary to administer such light doses has made the use of optogenetic tools difficult for non-

specialist research groups.  
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The Light Plate Apparatus (LPA) is a recently-developed, flexible, and user-friendly hardware platform that 

promises to improve the accessibility of optogenetic technology [4]. The LPA is an open source 

programmable LED array that delivers controlled light doses to each well of a 24-well plate. The LPA has 

two LEDs (top and bottom) for each well of the 24-well plate and consists of a printed circuit board, a 

microcontroller, three LED drivers, and other commercially available electronic components that can be 

ordered and assembled within a 3D-printed enclosure. The LPA is programmed using an open-source web-

based tool called Iris [5], making sophisticated illumination patterns accessible to researchers without 

engineering or programming experience. 

A newly assembled LPA will exhibit unwanted brightness differences between wells due to 

inhomogeneities in the LPA and differences in LED performance. It is therefore necessary to calibrate the 

LPA before use so that each LED outputs the correct light intensity. The current applied to each LED can 

be adjusted independently by scaling a dot correction (dc) value, which ranges from 0-63. Finer 

adjustments to brightness can be made by pulse width modulation of the current by scaling a grayscale 

value (gcal), which ranges from 0-255 [6]. The dc and gcal calibration values per LED are stored as space-

delimited integers in the files “dc.txt” and “gcal.txt”, which can be manually loaded onto the LPA via an 

SD card. Once calibrated, a user can set the LPA to administer timed light doses for each LED with the Iris 

webtool, which outputs “Iris” values that control the intensity of each LED. The Iris values further scale 

the pulse width modulation of the current, such that the current supplied to each LED is ultimately pulse 

width modulated by (Iris×gcal)/255. With dc, gcal, and Iris set to their maximum values a current of 17.8 

mA can be supplied to each LED in the array simultaneously. On a calibrated LPA, two LEDs assigned the 

same Iris value should output the same light dose. These Iris values (and other light program properties) 

are saved to the file “program.lpf” (which is loaded onto the LPA via the SD card) and range between 0 

(no LED output) and 4095 (100% LED output). 
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The published LPA documentation included two methods for calibrating an LPA. Both methods generally 

involve tuning the dc and gcal values such that the brightest LEDs are dimmed to match the brightness of 

the dimmest LEDs. In the first method, a MATLAB script is used to calculate tuned gcal values based on 

relative LED intensity measurements extracted from digital photos of the LPA. In the second approach, 

each LED is manually measured with a probe spectrometer and the gcal value for each LED is scaled to 

produce a desired intensity reading. Both methods produce more uniform LED output after successive 

rounds of calibration.  

We have developed a third method for calibrating the LEDs based on absolute irradiance measurements 

acquired using a standard photodiode optical power sensor. A power meter with an optical power sensor 

represents the minimal equipment for any lab interested in performing quantitative optogenetic 

experiments. A 3D-printed adapter that interfaces with the 24-well plate and appropriate MATLAB code 

allow a single user to quickly measure absolute irradiance per well and perform subsequent calibration. 

We extend our methodology to calculate a standard curve for each LPA, allowing Iris values to be chosen 

such that a desired irradiance can be attained per well. This allows us to utilize multiple LPAs 

simultaneously to administer equivalent light doses, dramatically increasing experimental throughput. 

Materials and equipment 

• Light Plate Apparatus [4]  

• Iris webtool [5] 

• SanDisk card and reader 

• Flat polystyrene bottom 24-well plate with opaque well walls (Arctic White LLC, AWLS-303008) 

• Diffuser sheets (Rosco, #3008) 

• Power sensor adaptor (See supplementary materials) 

• Photodiode power sensor (ThorLabs, #S120VC [7]) 
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• Power meter (ThorLabs, #PM100D) 

• Thorlabs Optical Power Monitor (OPM) Version 1.1 software (www.thorlabs.com) 

• LPA_calibration.m and LPA_standardCurve.m MATLAB scripts 

Calibration Procedure 

In our protocol (Fig. 1A), the user measures the irradiance of each well of the LPA in order, generating an 

irradiance signal which resembles a series of 24 repeated square waves. The included MATLAB script 

“LPA_calibration.m” then identifies the wells from the signal (Fig. 1B), measures the mean irradiance 

value per well, and calculates the calibration values needed for uniform LED output across the LPA (Fig. 

1C). The detailed steps involved in calibration are as follows:  

1. Two text files (“gcal.txt” and “dc.txt”) are used to specify the appropriate dc and gcal calibration value 

for each LED. Set all gcal values in “gcal.txt” to 255 and all dc values in “dc.txt” to 63 using a text editor, 

then load the text files onto the SD card. We start with these maximum calibration values to achieve the 

highest irradiance output from the LPA. As the LPA undergoes multiple rounds of calibration, these 

calibration values will be scaled downwards such that each LED is tuned to match the irradiance output 

of the dimmest LED of the LPA. This procedure measures the top and bottom LED sets independently but 

calculates calibration values for all 48 LEDs together. 

2. Using the Iris webtool, create a steady-state light program in which all of the top LEDs are set to the 

same Iris value (we used 2000) and all of the bottom LEDs are set to zero. Download and unzip the 

resulting “program.lpf” file and transfer it onto the SD card. Load the SD card into the LPA and turn it on. 

Place a 24-well plate on the LPA, which should be fitted with three diffuser sheets over the LEDs as 

described by Gerhardt et al., 2016. Use a plate with a flat transparent bottom and opaque well walls to 

prevent light transmission between neighboring wells.  
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3. To assemble the equipment needed for calibration (Fig. S1), plug the optical power sensor into the 

optical power meter (OPM), which should be connected to a computer running the Thorlabs OPM 

software. Set the OPM software to record irradiance measurements (in µW/cm2) at the appropriate 

wavelength to a log file. We measured the blue LEDs of our LPA at 470 nm at a sampling rate of 1 Hz. Fit 

the power sensor adaptor over the power sensor. The adaptor slots into the wells of the 24-well plate and 

aligns the active sensor area to the center of each well so that each measurement is taken from a 

consistent location between the top and bottom LEDs. We measure the LPA through the 24-well plate like 

this because 1) it allows us to acquire quick and consistent light measurements that are proportional to 

the light dose received by cells grown in the well and 2) it allows one to make intermittent irradiance 

measurements while cells are growing in the plate and estimate changes in irradiance due to cell growth. 

Neither measurement noise (Fig. S2A) nor light bleeding between wells (Fig. S2B) has a substantial effect 

on these measurements. 

4. With the power sensor pressed flat against an opaque surface, start recording irradiance measurements 

in the OPM software. Move the sensor into well 1 of the 24-well plate to record light measurements, then 

press the sensor back against the opaque surface to record dark measurements. Continue this process for 

the remaining wells, measuring left to right across each row before moving down to the next row and 

pressing the sensor against the flat surface between each well measurement. We typically measure each 

well for 5 seconds and against the flat surface for 3 second intervals. Sampling at 1 Hz, this typically results 

in five measurements per well, which are averaged to give an irradiance measurement for each LED. Stop 

recording irradiance measurements in the OPM software when all wells are measured. The recorded 

waveform should resemble a series of 24 repeated square pulses with each peak corresponding to an LED 

measurement (Fig. 1B). 

5. Repeat steps 2-4, but with a new “program.lpf” file loaded onto the LPA such that all the bottom LEDs 

are set to the same Iris value (e.g., 2000 again) and all the top LEDs are set to zero.  
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6. Run the MATLAB script “LPA_calibration.m”. At the first prompt select “grayscale” as the calibration 

value to be tuned and at the next prompt set the calibration round to 1. Load the recorded measurements 

for the top LED set (“channel 1 data”) and bottom LED set (“channel 2 data”) and set an output folder for 

saving measured LED irradiances and calculated calibration values in the subsequent prompts. After 

running, the script displays the mean, standard deviation, and coefficient of variation (CV) of the 

irradiances of all LEDs on the LPA in the command window and outputs two graphs. One graph shows the 

recorded waveform and to which well each peak is mapped (Fig. 1B). From this graph it is easy to 

determine if the script is correctly identifying the wells. If it is not, try changing the segmentation 

parameters in the script, starting with “ampthresh,” which sets the irradiance threshold above which 

samples are considered potential well measurements. The other graph (Fig. 1C) shows a heatmap with 

the mean irradiance of each LED and another heatmap with newly calculated gcal values. The calculated 

gcal values and measured irradiances from this first round of calibration are saved in the designated 

output folder as “gcal_round_1.csv” and “meanIntensities_round_ 1.csv”.  

7. Copy the calculated gcal values from “gcal_round_*.csv” into “gcal.txt” where “*” indicates the current 

calibration round. Transfer the updated file to the LPA via the SD card. Repeat steps 1-6 to calculate the 

next round of calibration values. The displayed CV value should decrease as the irradiance outputs of all 

LEDs across the LPA converge. 

8. Repeat steps 1-7 as needed for additional rounds until the LPA is calibrated. We continue until the CV 

of all LEDs is below 1%. The script will output new files “meanIntensities_round_*.csv” and 

“gcal_round_*.csv” for each round, where “*” indicates the current calibration round.  

Note that the above steps describe the calibration of the LPA by calculating gcal values that provide 

uniform LED irradiances across the LPA. For coarser adjustments to light output, one can tune the dc 

values via an equivalent process by selecting “dot correction” as the calibration value to be tuned at the 

prompt in “LPA_calibration.m” and updating the values in “dc.txt” with each round of calibration. We 
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typically did not find this necessary; just tuning the gcal values was usually sufficient to calibrate an LPA 

within three rounds. 

Standard Curve Procedure 

Once calibrated, the LPA delivers a uniform light dose across all the wells of the LPA. At this stage, it is 

useful to generate an equation relating the Iris values set when designing a light program to the light 

output of each well. This allows a user to predict the Iris values necessary to achieve a desired light dose 

and enables higher-throughput experiments by allowing multiple LPAs to deliver equivalent light doses. 

In general, this is done by measuring the light output of the LPA at a given light dose and solving for the 

equation relating light dose to Iris value. This can be done with measurements made at a single Iris value, 

though here we do this over a wide range of Iris values to demonstrate that our script can accept 

measurements made over an arbitrary number of Iris values in order to make accurate predictions and to 

show that the relationship between Iris and light dose is linear.  

1. Assemble the calibrated LPA, 24-well plate, and optical power meter components as described in the 

Calibration Procedure of the LPA. Using the Iris webtool, set all LEDs of the LPA to output an equal light 

dose by setting their Iris values to an equal number. We start by setting all Iris values to 250. 

2. Record the irradiance output across the LPA as described in step 4 of the Calibration Procedure. For 

calculating the standard curve, it is not necessary to measure the irradiance output of every well. We 

measured only eight randomly selected wells. When saving the log files for these measurements in the 

OPM software, include the Iris value in the filename. Do not include any other numbers in the filename. 

For example, we saved our first set of irradiance measurements as “Iris250.csv”. The MATLAB script for 

calculating the standard curve extracts the Iris value associated with a given set of measurements from 

the filename.  

3. Repeat step two with all the LEDs set to a different Iris value. Do this until you have covered the full 

range of Iris values you intend to use. The script accepts measurements made at an arbitrary number of 
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Iris values so long as the files are named correctly. We repeated step two until we had light output 

measurements for Iris values equal to 250, 500, 1000, 2000, and 4000. 

4. Run the “LPA_standardCurve.m” script. At the first prompt, import all of the measurements you made 

in the previous steps. At the next prompt, enter the number of wells you measured per Iris value. The 

script outputs two graphs (Fig. S3). As before, the first graph (Fig. S3A) shows how peaks in the recorded 

irradiance values are mapped to each well. The second graph (Fig. S3B) shows a standard curve relating 

light output (in µW/cm2) to Iris value and includes the linear equation describing this relationship. One 

can determine the Iris values needed to achieve specified light doses directly from the graph using 

MATLAB’s data cursor tool. One can also specify the desired light outputs in the vector 

“targetLightOutput” and the script will return the corresponding Iris values in the command line. In either 

case, the returned value should be assigned to both LEDs in a given well to provide the desired light dose 

in that well. 

Method Validation 

To confirm that our LPA calibration process leads to the convergence of LED irradiances across the LPA, 

we tracked the irradiance of each LED as we performed three successive rounds of calibration with a fixed 

Iris value of 2000 on a representative LPA (Fig. 2, Fig. S7). Before the first round of calibration, the mean 

irradiance of all LEDs was 109.6 µW/cm2 with a coefficient of variation of 12.6% (Fig. 2A). After the third 

round of calibration, the brightest LEDs were dimmed to match the irradiance of the dimmest LED, such 

that the mean irradiance of all LEDs was 83.5 µW/cm2 with a coefficient of variation (CV) of 0.82%. We 

consider LPAs with a CV lower than 1% to be calibrated. 

We next generated a standard curve relating Iris value to LED irradiance for the calibrated LPA by 

measuring the light output of the LPA over a range of Iris values and using the “LPA_standardCurve.m” 

script as described previously (Fig. 3A). The script generates an equation for the line that best fits the 

measurements (blue triangles). The equation takes the form Intensity = a×Iris (where a is the fitted 
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parameter) and represents the relationship between Iris value and irradiance and can be used to estimate 

the Iris value for both the top and bottom LEDs in a given well needed to achieve a specified light dose. 

We predicted the Iris values needed to achieve irradiances of 25, 50, 100, 200, and 300 µW/cm2 and 

measured the light output of the LPA using these predicted Iris values. In all cases, the measured values 

(blue circles) were within 4% of the target value. The utility of the standard curve is contingent upon 

having a well-calibrated LPA (Fig. S8).  

One LPA provides 24 wells in which to culture cells and expose them to appropriate light doses. Increasing 

throughput requires multiple LPAs calibrated such that they can administer the same light doses. By 

calibrating our LPAs and relating Iris values to light dose using an absolute irradiance measurement, we 

can easily configure multiple LPAs to produce the same light output (Fig. 3B). We predicted Iris values 

needed to produce light outputs of 25, 50, 100, 200, and 300 µW/cm2 for three LPAs. Though the LPAs 

had different standard curves, and thus require different Iris values to generate a given light dose, we 

were able to achieve irradiances within 3% of the targeted irradiance for all LPAs. This enables us to 

consistently and quantitatively use multiple LPAs simultaneously for higher throughput experiments. 

To further demonstrate reduced light dose variation following calibration we set all the LEDs of an 

uncalibrated LPA to a constant Iris value and measured the irradiance of each well. We then calibrated 

the LPA, and assigned all wells a constant Iris value such that the mean irradiance output by the calibrated 

LPA approximately matched that of the uncalibrated LPA (Fig. 4). We did this at three light doses and each 

time observed significantly reduced irradiance variation. 

To determine how LPA calibration effects an in vivo optogenetic system, we measured the light-induced 

expression of the red fluorescent protein mRuby in the yeast Saccharomyces cerevisiae. The expression 

of mRuby is driven by a CRY2-CIB1 split transcription factor gene induction system [8,9] that is activated 

by blue light (470 nm). We aliquoted yeast at mid-log phase into 24-well plates over a calibrated and 

uncalibrated LPA mounted in a shaking incubator and set to output a range of blue light doses. The 
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calibrated LPA was configured as described in the Calibration Procedure and set to deliver target light 

doses of 0, 10, 25, 50, 75, and 100 µW/cm2, in order, to columns 1-6 of the 24-well plates (resulting in four 

replicates per light dose). We assigned the same Iris values to the uncalibrated LPA, which showed more 

variation in irradiance between wells and consistently exceeded the target light doses (Fig. 5A). We 

incubated the yeast at 30°C under these lighting conditions for four hours and measured the resulting 

mRuby expression by flow cytometry (Fig. 5B). Though biological variability dominates the effect of light 

dose variability in this case, mRuby expression is consistently higher for the uncalibrated LPA, which is 

expected due to its higher light doses. 

Conclusions 

Our method allows the quick calibration of an LPA using an optical power meter and the creation of a 

standard curve relating light dose to Iris value. Our method makes it easy to administer controlled and 

consistent light doses across the wells of a single LPA and between multiple LPAs.  
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Figure 1. Calibration process for an LPA fitted with two blue LEDs per well.  

(A) A flow chart detailing the steps of the calibration process. (B) Representative image of well irradiance 

measurements acquired in series as identified by “LPA_calibration.m”. Well identifiers (e.g. “A1”) are 

indicated. Each well was covered by on average 5 samples. We sampled at a rate of 1Hz so there is 1 

second between each sample. The entire plate was measured in less than 400 seconds. (C) 

Representative well irradiance measurements and tuned gcal values per LED as calculated by 

“LPA_calibration.m”.  
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Figure 2. Representative results of an LPA calibration. Each well has two blue LEDs.  

(A) Heatmap of the irradiance measurements for each LED prior to round one of calibration showing the 

uneven distributions of LED irradiances in an uncalibrated LPA. The CV of the LED irradiances is 12.5% 

before calibration. (B) Heatmap of the irradiance measurements for each LED on the same LPA after 

three rounds of calibration. The CV of the LED irradiances is 0.82% after calibration. (C) Histogram 

depicting the data represented in the heatmaps of this figure. The values across the calibrated LPA have 

converged to the dimmest LED. 
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Figure 3. A standard curve and measurements relating Iris values to irradiance. 

 All plot markers represent the mean and standard deviation of a set of eight measurements. (A) A 

standard curve generated from a set of measurements across the programmable range of Iris values 

(triangular markers). Predicted Iris values for specific target irradiances were then programmed and the 

actual irradiance measured (circular markers). (B) Target irradiances for three different LPAs are shown 

(circular markers). The measurements between LPAs at the target irradiances all cluster closely and are 

within 3% of their respective targets. 
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Figure 4.Irradiance measurements from an LPA before and after calibration.  

We set all the LEDs of an uncalibrated LPA to a constant Iris value and measured the irradiance of each 

well. We then calibrated the LPA and assigned all wells a constant Iris value such that the mean 

irradiance output by the calibrated LPA approximately matched that of the uncalibrated LPA (Fig. 4A) 

and measured the irradiance of each well. We did this at three light doses and each time observed 

significantly reduced irradiance variability (asterisks indicate p<0.001 as calculated by Levene’s test for 

equality of variances). The dashed red lines depict the average irradiance across the whole LPA for each 

condition. 
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Figure 5. Light-induced mRuby expression. 

Light-induced mRuby expression in yeast grown on a calibrated and uncalibrated LPA set to deliver a 

range of light doses. Each bar represents the mean of four replicates. The Iris values listed denote the 

Iris value used for both the top and bottom LED of each well for each plate column. (A) Mean irradiance 

for each column of the uncalibrated and calibrated LPA plates. Irradiance is consistently higher and 

more variable for the uncalibrated LPA (B) Reporter gene expression is consistently higher on the 

uncalibrated LPA.  
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Chapter 3: Optogenetic tools for public goods control in Saccharomyces cerevisiae  
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Abstract 

Microorganisms live in dense and diverse communities, with interactions between cells guiding 

community development and phenotype. The ability to perturb specific intercellular interactions in space 

and time provides a powerful route to determining the critical interactions and design rules for microbial 

communities. Approaches using optogenetic tools to modulate these interactions offer promise, as light 

can be exquisitely controlled in space and time. We report new plasmids for rapid integration of an 

optogenetic system into Saccharomyces cerevisiae to engineer light-control of expression of a gene of 

interest. In a proof-of-principle study, we demonstrate the ability to control a model cooperative 

interaction, namely the expression of the enzyme invertase (SUC2) which allows S. cerevisiae to hydrolyze 

sucrose and utilize it as a carbon source. We demonstrate that the strength of this cooperative interaction 

can be tuned in space and time by modulating light intensity and through spatial control of illumination. 

Spatial control of light allows cooperators and cheaters to be spatially segregated, and we show that the 

interplay between cooperative and inhibitory interactions in space can lead to pattern formation. Our 

strategy can be applied to achieve spatiotemporal control of expression of a gene of interest in 

Saccharomyces cerevisiae to perturb both intercellular and interspecies interactions.    

Importance 

Recent advances in microbial ecology have highlighted the importance of intercellular interactions in 

controlling the development, composition and resilience of microbial communities. In order to better 

understand the role of these interactions in governing community development it is critical to be able to 

alter them in a controlled manner. Optogenetically-controlled interactions offer advantages over static 

perturbations or chemically-controlled interactions as light can be manipulated in space and time and 

doesn’t require the addition of nutrients or antibiotics. Here we report a system for rapidly achieving light-

control of a gene of interest in the important model organism Saccharomyces cerevisiae and demonstrate 
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that by controlling expression of the enzyme invertase we can control cooperative interactions. This 

approach will be useful for understanding intercellular and interspecies interactions in natural and 

synthetic microbial consortia containing Saccharomyces cerevisiae and serves as a proof-of-principle for 

implementing this approach in other consortia.  

Introduction 

Interactions between individual cells and species dictate the development and phenotype of microbial 

communities[1]–[3]. These interactions are regulated in time and space, and often arise due to the 

different metabolic capabilities of specific cells and species [4], [5]. Cooperative interactions are common, 

and cooperativity is often characterized by the presence of a shared public good which is produced by 

cooperative cells (producers) and freely available to other cells [3], [6], [7]. Production of the public good 

is often costly, and cooperative interactions are susceptible to the presence of “cheaters”, cells which 

exploit the public good without providing any contribution of their own8.  

The budding yeast Saccharomyces cerevisiae engages in a cooperative interaction by secreting invertase, 

an enzyme which catalyzes the hydrolysis of sucrose into glucose and fructose. Due to its long 

domestication history and early enzymatic research on invertase [9]–[11], invertase secretion by S. 

cerevisiae has long been used as a model system for studying public goods interactions and the emergence 

of cooperation in microbial communities. The S. cerevisiae genome contains several unlinked loci 

encoding invertase (SUC1-SUC8) [12], [13] but all except SUC2 are located within telomere sequences 

[14]. The strain used in this study (S288C) encodes only one functional invertase enzyme, SUC2 [12], [15]. 

There is a constitutively expressed intracellular form of invertase, but the secreted, glycosylated form 

which is regulated by glucose repression and important for cooperativity is secreted into the periplasmic 

space [16]. Most invertase (95%) remains in the cell wall; nevertheless, yeast capture only a small fraction 

of the sugars that sucrose hydrolysis releases with most of the glucose and fructose diffusing away to be 
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utilized by other cells [17]–[19]. Hence the sugars produced from sucrose hydrolysis represent a “public 

good”. Invertase is costly to produce, and producing populations are susceptible to invasion by cheaters 

[17], [20].  

There is growing evidence from both experiments and simulations that when and where a public good is 

produced within a microbial community can have dramatic consequences for community stability and the 

maintenance of cooperativity [21]–[27]. The spatial arrangement of genotypes within microbial 

communities can influence whether or not producers sufficiently benefit from the production of public 

goods, or whether cheaters are able to invade and take-over the community [3], [26], [28–30]. Indeed, 

efficient use of public goods has been identified as a possible driver for the evolution of multicellularity 

[31]. Furthermore, the dynamic control of public goods in both space and time could be used to 

manipulate synthetic consortia for applications in bioproduction and biotechnology [32], [33]. Yet few 

tools exist for spatiotemporal control of specific community interactions.  

Optogenetic tools offer the potential to overcome this limitation by utilizing genetically encoded light-

sensitive proteins to actuate processes within the cell in a light-dependent manner. Light is a powerful 

actuator as it is inexpensive, easily controlled in time and space, and S. cerevisiae contains no known 

native photoreceptors [34]. Light can be rapidly added and removed from cell cultures or spatially 

targeted [35–38], meaning it can be used to study how regulation of microbial interactions determines 

microbial community development [39–41]. We report here the development of an optogenetic tool that 

allows the expression of a specific metabolic enzyme of interest to be put under light control in S. 

cerevisiae. Using this system, we demonstrate that we can use light to control when and where invertase 

is expressed within well-mixed and spatially organized populations of S. cerevisiae. Light control of this 

cooperative interaction shows that invertase expression in a community of yeast has important effects on 

overall community growth and spatial structure. Our results suggest that optogenetic control of microbial 

interactions is an important new approach to understanding and engineering microbial communities. 
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Results 

Plasmid Design and System Overview 

To enable light-based control of cooperativity we first developed constructs that, when integrated into 

yeast, allow us to make expression of a specific gene light-inducible. We generated an integrable cassette 

containing the essential components of a blue-light reconstituted transcription factor.  We chose to use a 

split transcription factor consisting of a DNA-binding domain fused to the naturally occurring Arabidopsis 

cryptochrome CRY2 photolyase domain (DBD-CRY2PHR) and the CIB1 protein fused to the VP16 activation 

domain (VP16-CIB1). In response to blue-light CRY2 undergoes a conformational change that allows it to 

bind CIB1, which recruits the VP16 activation domain to a promoter of interest containing binding sites 

for the selected DNA-binding domain (DBD) driving gene expression. We chose the DNA-binding domain 

of the Zif268 transcription factor (ZDBD), which is known to bind a 9-bp site (GCGTGGGCG) that has only 

11 predicted binding sites in the S. cerevisiae genome [42]. Studies using the ZDBD on an estradiol 

inducible transcription factor have shown that artificial transcriptional activators using this DNA-binding 

domain in S. cerevisiae generate very little off-target gene expression activity [42,43]. When the Zif268 

DNA-binding domain is fused to CRY2PHR, the resulting ZDBD-CRY2PHR/VP16-CIB1 transcription factor 

controls the expression of yeast genes under a pZF(BS) promoter containing GCGTGGGCG binding sites 

(BS) in a blue-light dependent manner [43].  

Stable integration of the ZDBD-CRY2PHR/VP16-CIB1 transcription factor is a more promising approach 

than maintenance of the optogenetic components on episomal plasmids, as expression from plasmids is 

known to be noisy and requires constant selection [44]. In order to integrate the ZDBD-CRY2PHR/VP16-

CIB1 optogenetic machinery without loss of a marker, we used the heterologous URA3 from 

Kluyveromyces lactis (KlURA3) flanked by two direct repeats of the loxP sequence to allow for Cre 

recombinase mediated marker excision [45]. The components were cloned as indicated in Figure 1A using 
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standard cloning techniques as described in the Methods. Homology arms on either side of the cassette 

allow for rapid integration at the HO locus, which is not required for growth and does not have an effect 

on growth rate [46], [47]. We also included spacer DNA of approximately the same length (1.4 kb) as 

KIURA3 (1.5 kb) as indicated in Figure 1A based on initial tests of the scheme which indicated that the 

spacing between the two open reading frames encoding the split transcription factor is important for 

optimal function of the optogenetic system (Supplemental Figure 1).  

Integration of the ZDBD-CRY2PHR/VP16-CIB1 machinery at HO enables light dependent expression from 

the pZF(3BS) promoter in cultures grown in liquid and on solid media (Figure 1B, Supplemental Figure 2). 

Excision of the KIURA3 marker still results in some attenuation of gene expression in the marker-recycled 

strain (Figure 1B). We hypothesize that this is due to repression of ZDBD-CRY2PHR expression by the 

strongly expressed upstream VP16-CIB1 gene (Figure 1A). This could be due to terminator-promoter 

interactions as previously reported [48], [49]. Previous work has shown that the ratio of CRY2PHR to CIB1 

in the split transcription factor is important for maximal gene expression [43] and it is possible that 

removing the KlURA3 marker changes the ratio to be slightly less favorable. We note that using higher 

light intensities (Supplemental Figure 3A) increases gene expression and that significant expression does 

not require a multi-copy reporter plasmid (Supplemental Figure 3B). In subsequent experiments, the 

reduced expression due to excision of the KIURA3 marker did not cause difficulties but we note that if 

maximal gene expression is required, constructs designed to optimize the dosage of VP16-CIB1 and ZDBD-

CRY2PHR have been described [43].  

To allow specific genes in the yeast genome to be optogenetically controlled, we designed a cassette 

containing a pZF(BS) promoter (5’->3’) and the KanMX cassette (3’->5’) (Supplemental Figure 4A), which 

confers resistance to the antibiotic G418 [50]. Replacing an endogenous promoter with this cassette in a 

strain containing the ZDBD-CRY2PHR/VP16-CIB1 split transcription factor puts expression of the gene of 

interest under blue-light control. We verified that in the dark, replacement of the native promoter with 
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pZF(BS) effectively generates a deletion. Replacement of the HIS3 promoter with this cassette generates 

a histidine auxotroph (his3-) in the dark and the ability to grow without histidine is recovered when grown 

in blue light in the presence of the ZDBD-CRY2PHR/VP16-CIB1 split transcription factor (Supplemental 

Figure 5A). Gene expression from this promoter is rapid (7-fold gene expression in 2 hours) as assessed 

by pZF(BS)-yEVENUS (Supplemental Figure 4B). In combination, the cassettes containing an integrable 

light-responsive split transcription factor (ZDBD-CRY2PHR/VP16-CIB1) and a drug-selectable promoter 

cassette (KanMX4-pZF(BS)) allow expression of a gene of interest to be put under light control in a variety 

of S. cerevisiae strains.  

Creation of a Light-inducible Invertase S. cerevisiae Strain 

 
We decided to take advantage of the well-understood invertase public goods system in budding yeast to 

generate yeast strains where cooperative intercellular interactions could be controlled by light (Figure 

2A). In a yeast strain with the ZDBD-CRY2PHR/VP16-CIB1 optogenetic system stably integrated at HO we 

replaced the SUC2 promoter with pZF(3BS) (using the KanMX-pZF(3BS) cassette). Lawns of strains plated 

on YP-Sucrose were able to grow in blue-light, but not in the dark (Supplemental Figure 5B) indicating 

that these strains induced SUC2 in a light-dependent manner, allowing the cells to produce invertase and 

utilize sucrose. 

 
We further tested the ability of this strain to recover growth on YP-Sucrose in liquid cultures exposed to 

blue-light. We grew cultures over a range of light intensities (0 µW/cm2-14 X 102 µW/cm2) and measured 

optical density after 24 and 48 hours of growth (Figure 2B,C) . The parent strain (SUC2) quickly saturated 

at both 24 and 48 hours. In contrast, the pZF-SUC2 strain showed very little growth after both 24 and 48 

hours of growth in the dark. Increasing intensity of blue light led to saturating optical densities at both 24 

and 48 hours. Interestingly, at high light intensities (>4 µW/cm2) we reproducibly observed that pZF-SUC2 
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cultures reached a higher density than the wild-type pSUC2-SUC2 parent strain (yMM1146). It is possible 

that by decoupling production of invertase from the native regulation, the light-inducible strains 

overproduced invertase and are hence able to access more carbon from the sucrose. At low intensities of 

light (Figure 2B, 0.110 µW/cm2 and 0.680 µW/cm2) the culture did not show significant growth at 24 hours 

but by 48 hours was able to reach a wild-type level of saturation. This could be due to the known Allee 

effect [51], [52], [52]–[54] (density-dependent growth) caused by the cooperative metabolism of sucrose 

by secreted invertase. At low intensities of light, low invertase production and secretion slows sucrose 

hydrolysis and population growth, delaying the point (relative to higher light intensity cultures) at which 

the population reaches a density that supports maximal growth rate.  

We further tested the induction dynamics of our light-inducible strain over a several day growth 

experiment (Figure 3). The wild-type SUC2 strain quickly saturated after 20 hours of growth while the pZF-

SUC2 strain had a delayed lag period, relative to the wild-type strain, which we interpret in light of the 

data in Figure 2B as needed time to accumulate invertase and glucose in the media after light induction. 

Subsequent to initiation of growth, the pZF-SUC2 strain showed very similar growth kinetics to the wild-

type strain and quickly reached saturation. Again, the pZF-SUC2 reached a higher density than the wild-

type strain at saturation, as we previously observed (Figure 3). Interestingly, the pZF-SUC2 strain also 

showed some growth in the dark, albeit after an extremely delayed lag period. We know from previous 

studies [43] that the pZF promoter is not absolutely silent, and therefore we interpret this growth as being 

due to an extremely slow accumulation of functional invertase and hexose due to leakiness from the pZF 

promoter. We confirmed that our sampling method did not inadvertently expose cultures to unwanted 

light by demonstrating that the final densities of our time course samples did not show any significant 

difference relative to untouched endpoint samples (Supplemental Figure 6).  
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Light Patterning Allows for Spatial Control of Producer Populations 

The experiments described above demonstrate that we can control invertase production, and therefore 

cooperativity, with blue light. However, these experiments were all done in well mixed populations, while 

microbial communities are generally highly structured 2D- or 3D-environments. Therefore, we wanted to 

test our ability to spatially control cooperativity in populations of S. cerevisiae.  

Localized illumination of a regular grid of pZF-SUC2 strains arrayed onto an agar pad demonstrated that a 

small, spatially localized group of cooperators (Supplemental Figure 7A) can support growth of a much 

larger number of cheaters in two-dimensional environments. This is expected due to diffusion of hexose. 

While the invertase enzyme is anchored to the plasma membrane, the fructose and glucose converted by 

the enzyme is free to diffuse and a relatively small fraction is captured by the cell that makes it17. To further 

validate this technique, we generated plates containing a lawn of pZF-SUC2 cells and illuminated a spot 

through a 6 mm pinhole (Figure 4A). We found that after 4 days, the growth of very few cheaters was 

supported, with the majority of growth visible within the illuminated region. However, after 7 days of 

illumination, the cooperating cells supported a large growth of cheaters presumably because they were 

continuing to produce invertase and hydrolyze sucrose to hexose and the majority of hexose diffuses away 

from the illuminated cells (i.e. the producers).    

Spatial Patterning Due to Spatial Segregation of Cooperators and Nutrient Competition 

In our pinhole experiment, we noticed a subtle ring effect (Figure 4B, Day 7), where the illuminated 

cooperators (at the center) grew well, surrounded by a ring of lesser growth, and finally more dense 

growth of cheaters at the periphery of the entire colony. This kind of ring-like pattern formation is 

predicted in reaction-diffusion systems where an activator and an inhibitor diffuse from a central source 

on different timescales55–58. In our system, the central cooperators are activating the growth of cheaters by 

producing hexose while simultaneously inhibiting the growth of cheaters by serving as a sink for other 
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limiting growth factors (i.e., nutrients) [55]–[57]. Cheaters growing near the initially faster growing 

cooperators have access to hexose but are deprived of other nutrients, while cheaters at the periphery 

have more access to the limiting nutrient in the plate and eventually have access to hexose diffusing from 

the central cooperators, and therefore grow to a higher density.  

In order to explore this observation more fully, we used auxotrophic strains to allow control of a limiting 

nutrient on the plates. Our wild-type pSUC2-SUC2 and opto-control pZF-SUC2 strains are leu2 auxotrophs 

allowing us to control leucine amino acid concentration in the plates to limit a nutrient. As a control, we 

generated a constitutive suc2Δ leu2Δ cheater strain. We spotted suc2Δ leu2Δ cheaters, pZF-SUC2, or 

pSUC2-SUC2 cells onto lawns of suc2Δ leu2Δ cheaters. Leucine concentrations in the plates were chosen 

to be 100% (0.1 mg/ml) or 50% (0.05 mg/ml) of the amount used in standard synthetic media [59]. As 

expected, spotting suc2Δ leu2Δ cheaters onto a lawn of suc2Δ leu2Δ cheaters does not allow for any 

growth in either light or dark (Figure 5A). In contrast, both pZF-SUC2 or wild-type pSUC2-SUC2 cells 

spotted onto cheaters and grown in blue light allows for clear growth of the cooperators (either pZF-SUC2 

or wild-type) surrounded by a zone where growth of the suc2Δ leu2Δ cheaters is inhibited and a larger 

ring of dense cheater growth (Figure 5A, B). The growth inhibition zone is larger for wild-type cooperators 

than pZF-SUC2 cooperators (Figure 5B, Supplemental Figure 7B, 8). We interpret this to be due to more 

rapid induction of invertase and glucose production in the wild-type strains which allows the wild-type 

strain to more quickly reach a high density of cooperators allowing further cooperator growth (as also 

seen in Figure 3), and greater utilization and depletion of leucine. That leucine is the limiting nutrient is 

evidenced by lesser growth in both the wild-type and pZF-SUC2 strains at 50% leucine than at 100% 

leucine (Supplemental Figure 7B, 8).   

 



 

 

43 

Discussion 

This study develops and demonstrates the use of an optogenetic tool to control cooperation in a yeast 

microbial community. By making expression of invertase (encoded by the SUC2 gene) light-controllable 

we demonstrate temporal and spatial control of public goods production. We show that the timing of 

invertase expression is important, and delays in expression can significantly slow community growth. In 

addition, we show that localized cooperation can generate distinct patterning of cooperators and 

cheaters. Despite frequent investigation of S. cerevisiae invertase secretion as a model cooperative 

community, most models approximate invertase production as constant in time and space despite known 

native regulation in response to external factors such as nutrient concentration [60], [61]. Optogenetic 

control of invertase will allow for further dissection of how regulation of this enzyme in space and time 

allows cooperators to coexist and compete with cheaters. While we have focused on the control of an 

intercellular interaction, the optogenetic constructs and strains generated in this study can be 

immediately used by other researchers to put any gene of interest under the control of blue light in 

Saccharomyces cerevisiae. The optogenetic system is orthogonal to native regulatory systems [43] and 

could be easily modified to utilize additional markers or CRISPR technology for integration into a variety 

of yeast strains or species. 

More generally, this study suggests that optogenetics will be a powerful tool for understanding how 

spatiotemporal regulation of cooperation, and other interactions, control microbial community structure 

and phenotype. Interactions in microbial communities are mediated by diffusible compounds, and 

numerous studies indicate that short-range interactions on the micron to millimeter scale are important 

for controlling community structure and phenotype [62]–[64]. Yet controlling the spatial arrangement of 

microbes on these length scales can be challenging. Microfluidic devices allow spatial segregation of 

microbes at different length scales but require sophisticated engineering and specialized equipment [65]–

[68]. In addition, it is more challenging to define three-dimensional structure using a microfluidic device 
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and collection of the community for subsequent downstream analysis (e.g., gene expression) can be 

difficult. Bioprinting is a burgeoning technique which holds promise for building complex, three-

dimensional microbial communities with defined spatial structure [65], [69]–[71]. However, bioprinting 

does not easily allow intercellular and interspecies interactions to be modulated in time. Optogenetics 

has the potential to be integrated with or to supersede these existing technologies for fine spatiotemporal 

control of community interactions. Scanning and parallel light-targeting methods can be combined with 

one and multi-photon excitation to precisely localize light in both two and three dimensions as well as in 

time. In addition, existing illumination techniques can be combined with amenable animal models, such 

as C. elegans [72], to allow unprecedented in vivo dissection of the importance of intercellular interactions 

and their regulation in the establishment and phenotype of microbial communities. To extend the 

techniques described in this article to mixed-kingdom communities, optogenetic systems developed for 

bacteria [80], [81] could be utilized. Indeed, in Sinorhizobium meliloti, a nitrogen fixing soil bacterium, the 

blue-light sensitive transcription factor EL222 was recently used to control production of the public good 

exopolysaccharide enabling manipulation of biofilm formation [41]. Hybrid optochemical approaches also 

hold promise for repurposing existing inducible systems, as a recent study showed that photocaged IPTG 

could be used to control coculture interactions in the bacterium Corynebacterium glutamicum [39].  

Finally, in addition to providing a path towards understanding how intercellular interactions regulate 

naturally occurring microbial communities, optogenetic tools have important implications for engineering 

synthetic microbial consortia. Engineered consortia are of great interest in biotechnology because they 

can perform more complicated functions than single-species or single-strain communities [73]. However, 

maintaining the appropriate ratio of different consortia members represents a challenge and would 

benefit from dynamic control modalities. Control mechanisms for cocultures via interspecies interactions 

(such as quorum sensing and metabolite exchange) have been described [74]–[76] and dynamic control 

of these interactions using optogenetics and predictive control strategies [36], [77] could enable 
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community maintenance and optimization. Similar optogenetic approaches in monocultures have already 

enabled significant gains in bioproduction [35], [78], [79]. In addition, the spatial control provided by light 

could allow the formation of sophisticated living biomaterials. Co-cultures of Saccharomyces cerevisiae 

and the cellulose-producing Komagataeibacter rhaeticus bacteria are mediated by yeast invertase 

production and capable of producing functionalized cellulose biomaterials. Optogenetic control of 

Saccharomyces cerevisiae invertase production could allow for sophisticated control of these living 

materials as well as patterning, as demonstrated in this work for the simple case of localized producers. 

In addition, as demonstrated by the grid experiment (Supplemental Figure 77A) a small number of 

producers can support a much larger population, indicating that in living materials it may be possible to 

have a relatively small population responsible for the metabolic burden of consortia growth while other 

members can focus on additional functionality. 

Materials and Methods 

Yeast Strains and Culture Methods 

Yeast strains used in this study are shown in Supplemental Table S1. Yeast transformation was 

accomplished using standard lithium-acetate transformation [82]. For integrating plasmids, the 

integration was validated using either colony PCR or, when colony PCR proved difficult, by PCR of genomic 

DNA. Genomic DNA was extracted using the Bust n’ Grab protocol [83]. Primers used for validating 

integrations are listed in Supplemental Table 2.  All transformants were checked for the petite phenotype 

by growth on YEP-glycerol (1% w/v Bacto-yeast extract-BD Biosciences 212750, 2% w/v Bacto-peptone-

BD Biosciences 211677, 3% [v/v] glycerol-Fisher Bioreagents BP229-1, 2% w/v Bacto-agar-BD Biosciences 

#214030)[22]. Only strains deemed respiration competent by growth on YEP-glycerol were used for 

subsequent analysis. Details of individual strain construction are described in the Supplemental Material.  
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Yeast cultures were grown in either yeast peptone (YP) media (10 g/L Bacto yeast extract, 20g/L Bacto 

peptone for solid media + 20g/L of Bacto agar) or Synthetic Complete (SC) media (6.7 g/L Yeast Nitrogen 

Base without amino acids-DOT Scientific, 1% v/v KS amino acid supplement without appropriate amino 

acids). The carbon source supplied was either dextrose (D) or sucrose (SUC) at 2% v/v concentration. As 

needed, episomal plasmids were maintained by growing yeast in SC media lacking the appropriate amino 

acids required for plasmid selection. For light induction experiments followed by fluorescence assays (flow 

cytometry or microscopy) yeast were always grown in Synthetic Complete media [59].  

Bacterial strains and growth media 

Escherichia coli (E. coli) strain DH5α was used for all transformation and plasmid maintenance in this study. 

E. coli were made chemically competent following either the Inoue method [84] or using the Zymo 

Research Mix & Go! Protocol (Zymo Research T3002). E. coli were grown on LB agar (10% w/v Bacto-

Tryptone, 5% w/v Bacto Yeast Extract, 5% w/v NaCl, 15% w/v Bacto Agar) or LB liquid media (10% w/v 

Bacto-Tryptone, 5% w/v Bacto Yeast Extract, 5% w/v NaCl). Appropriate antibiotics were used to select 

for and maintain plasmids. Antibiotic concentrations used in this study were as follows: LB+CARB agar 100 

μg/mL carbenicillin, LB+CARB liquid media 50 μg/mL carbenicillin, 25 µg/ml chloramphenicol, 50µg/ml 

kanamycin. Plasmids were prepared using the Qiagen bacterial miniprep kit (Qiagen #27104). 

Plasmid Construction 

Construction of plasmids used throughout this study was accomplished using a combination of methods 

including Yeast Recombinational Cloning [85] and standard restriction enzyme based cloning. Details of 

individual plasmid construction are described in the Supplemental Materials.    

 
Generation of optogenetic invertase strain 

In order to make an integrable version of the SV40NLS-VP16-CIB1 loxP-KlURA3-loxP SV40NLS-

ZIF268DBDCRY2PHR cassette, this cassette was cut from pMM364 using XbaI/PacI and ligated into 
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pMM327. This plasmid was linearized using AatII and transformed into yMM1146 (Matα trp1∆63 leu2∆1 

ura3-52) to generate yMM1367 (Matα trp1∆63 leu2∆1 ura3-52 HO::SV40NLS-VP16-CIB1 loxP-KlURA3-loxP 

SV40NLS-Zif268DBD-CRY2PHR). The KIURA3 marker was excised from this strain using Cre-mediated 

recombination as described below to generate yMM1390 (Matα trp1∆63 leu2∆1 ura3-52 HO::SV40NLS-

VP16-CIB1 loxP SV40NLS-Zif268DBD-CRY2PHR). In order to make the expression of invertase light-

inducible, the pZF(3BS) promoter replaced the native pSUC2 promoter by amplifying KanMX-rev-pZF(3BS) 

with oMM768/769 from pMM353, transforming yMM1390 and selecting for G418 resistant colonies. 

These colonies were further checked by colony PCR and sequencing and for the inability to grow on YP-

Sucrose in the dark and became strain yMM1406.  

Recycling of loxP-flanked markers 

The Cre-loxP system was used to recycle the KIURA3 marker flanked by loxP recombination sites (loxP-

KIURA3-loxP). Cre-mediated recombination was accomplished by adapting the CRE recombinase-

mediated excision protocol from Carter and Delneri (2010) [86]. The strain yMM1367 (Matα  trp1∆63 

leu2∆1 ura3-52 HO::SV40NLS-VP16-CIB1 loxP-KlURA3-loxP SV40NLS-Zif268DBD-CRY2PHR) was 

transformed with 0.25-0.5µg of pMM296 (pSH65, pGAL1-CRE BleoR). These transformants were plated 

onto YPD and then replica plated onto selective media (YPD +10µg/ml phleomycin (InvivoGen)) after 

overnight growth. To express CRE and induce recombination phleomycin resistant colonies were selected 

and grown overnight in 3ml of YP-Raffinose (1% w/v yeast extract (BD Biosciences), 2% w/v Bacto-peptone 

(BD Biosciences), and 2% w/v raffinose (Becton Dickinson 217410)). The following day, cells were 

harvested by centrifuging at 3750 rpm for 5 minutes, washed in sterile miliQ water, and resuspended in 

10ml of YP-Galactose (1% w/v yeast extract (BD Biosciences), 2% w/v Bacto-peptone (BD Biosciences), 2% 

w/v galactose (BD Biosciences 216310)) at an OD600 of 0.3. These cultures were incubated at 30°C with 

shaking for 2-3 hours. This culture was then diluted and plated on YPD and then replica plated onto SC-
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5FOA (25% w/v g Bacto-Agar, 6.72% w/v YNB, 1% v/v mL 20x KS supplement without URA, 2% v/v glucose, 

10 mL 5-Fluoroorotic Acid (Zymo Research), 50 mg uracil (MP Biomedicals 103204). 5FOA resistant 

colonies were checked for excision of the KIURA3 marker using colony PCR. Transformants with KlURA3 

excised were grown in liquid YPD to saturation twice and then plated on YPD for ~100 colonies per plate. 

These were replica plated onto YPD + 10µg/ml phleomycin. Phleomycin sensitive colonies (colonies that 

had lost the plasmid pMM296) were reconfirmed by colony PCR to have loxed out KlURA3. This generated 

yMM1390 (Matα trp1∆63 leu2∆1 ura3-52 HO::SV40NLS-VP16-CIB1 loxP SV40NLS-Zif268DBD-CRY2PHR). 

Blue light induction of yeast cultures in liquid media 

For blue light induction experiments in liquid media light was applied in one of three ways: 1) Peripheral 

Illumination: Cultures were grown in glass culture tubes on the outside lane of a roller drum at room 

temperature. Control (dark) samples were put in test tubes wrapped in foil on the inner lane of the roller 

drum. Three LEDs outputting 460nm blue light (Sparkfun #COM-08718) were placed at the three, nine, 

and twelve o’clock positions of the roller drum and turned on at T=0 (~3000 µW/cm2 at the LED; ~25 

𝜇W/cm2 at the sample) as described previously [35], [43].  2) Bottom Illumination: Cultures growing in 

glass tubes in a roller drum were directly illuminated from the bottom of the glass culture tube by LEDs 

mounted into the roller drum. The circuit was composed of three LEDs per tube (Sparkfun, #COM-09662), 

resistors of varying strength (Sparkfun, #COM-10969) and a 12 V power supply (LED supply, #12V-WM-

xxA).  3) Light Plate Apparatus:  Cultures were grown in 24 well plates (Arctic White, #AWLS-303008) and 

placed on a Light Plate Apparatus (LPA) [87]. The Light Plate Apparatus (LPA) is a published optogenetic 

tool which provides programmed illumination to each well of a 24-well plate. We assembled our LPA as 

described in [87] and calibrated as previously described [88], [89].   

 
For all illumination methods, response was assessed by flow (traditional or imaging) cytometry as 

described below or measurement of optical density. The light output of all light sources was measured 
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and validated with a standard photodiode power sensor (Thorlabs, #S120VC) and power meter (Thorlabs, 

#PM100D) as previously described [43], [88], [89]. 

   

Blue light induction of drug resistance or restoration of histidine auxotrophy 

 
To assess blue-light induction of drug resistance from a pZF(3BS)-NatMX plasmid, strain yMM1355 (Matα 

trp1∆63 leu2∆1 ura3-52 HO::GAL4AD-CIB1 loxP-KLURA3-loxP FLAG(3X)-SV40NLS- Zif268DBD -CRYPHR ) 

was transformed with the pZF(3BS)-NatMX plasmid (pMM369) or an empty vector control (pMM6). 

Growth was assessed in the presence of clonNat (nourseothricin, 50𝜇g/ml, YPD plates) in either 450nm 

blue light (50 µW/cm2) or the dark by frogging saturated cultures at 1:10 dilution series onto the 

appropriate plates and growing for 2 days at 30°C in either light or dark. To assess recovery of histidine 

auxotrophy, strain yMM1295 was transformed with appropriate combinations of pMM284 (ZDBD-CRY2), 

pMM159 (GAL4AD-CIB1), pMM6 (ø), and pMM7 (ø) and saturated overnight cultures were frogged at 1:10 

dilutions onto either SC or SC-Leu-Trp-His. Plates were grown at 30°C under 460 nm blue light or in total 

darkness. All strains grew on fully supplemented SC in either the light or dark (data not shown). Results 

for SC-Leu-Trp-His with and without light are shown in Supplemental Figure 5A. 

 
Growth in sucrose media at different blue light intensities 

 
Biological replicates were picked from a single colony on a YPD plate and transferred to a glass culture 

tube containing 5 mls of YPD media and grown to saturation overnight in the dark. The saturated culture 

(1.5ml) was pelleted by centrifuge (Eppendorf, #EP5401000137), washed twice with sterile water and 

resuspended in sterile MilliQ water to wash out residual media. These concentrated cells were then 

diluted at 1:100 into 5mls of SC-Sucrose to OD600~0.16 and placed in a roller drum with the corresponding 

light dose or wrapped in aluminum foil for the no light control. The cultures were allowed to grow for a 
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total of 48 hours with 100uL of sample taken every 24 hours in order to measure the OD600 of the culture 

using a spectrophotometer (Fisher Scientific,#14-385-445 ).  

 
Time course of growth with light induction in sucrose media 

 
A single yeast colony of yMM1406 and yMM1146 were inoculated into 5mls of YPD and grown overnight 

to saturation. Of these cultures, 1ml was pelleted and the pellet was washed three times with sterile water 

to wash out residual media. These cultures were then resuspended and diluted in SC-Sucrose media to an 

OD600 of 0.05. Each culture was divided into 12 wells of a 24-well plate (2ml of the diluted cultures) with a 

glass bead (Fisher Scientific, #11- 312B 4mm) to increase aeration and the plates were covered with a 

breathable sealing membrane (USA Scientific #9123-6100) to reduce evaporation. Three light doses were 

programmed into the LPA with the arbitrary IRIS units of 0, 250, and 500. These correspond to 0 𝜇W/cm2, 

2.32 𝜇W/cm2, and 5.01 𝜇W/cm2, respectively. This resulted in a set of four wells for each strain at each 

light condition. Two of these wells were sampled at each timepoint, while two were left untouched until 

the final endpoint measurement to verify that intermediate manipulation of the plate did not 

inadvertently expose cultures to light. At each time point 100 µL of the culture was removed to measure 

the optical density of the culture, the sealing membrane was replaced, and the plate was returned to the 

incubator. Optical densities outside of the previously determined linear range of our spectrophotometer 

were diluted to be in the linear rang at a ratio of 1:10 or 1:100 as needed. The experiment runtime was 

54 hours.  

 
Blue light patterning 

 
Patterning of yeast plates with blue light 

Yeast strain yMM1406 (optogenetic producer) was inoculated into a 5mL test tube of YPD and grown 

overnight to saturation. The next day the culture was pelleted by microcentrifuge (Eppendorf, 
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#EP5401000137) at 3000G for 2 minutes, resuspended in sterile water to wash out residual media from 

the cell pellet, this process was repeated twice. The final OD600 of the yeast cells was measured at 0.119 

using a spectrophotometer (Fisher Scientific, #14-385-445 ). 200 µL of the cell suspension was plated on 

YP-Sucrose plates and spread throughout the plate using glass beads (Fisher Scientific, #11- 312B 4mm). 

The plates were wrapped in sterile, construction paper photomasks with one, 6 mm hole placed at the 

center of the plate and aluminum foil backing to prevent light contamination and control plates of no 

photomask (full-light at ~57 µW/cm2) or complete photomask (no-light). The plates were placed under a 

blue light LED array and allowed to grow at room temperature for a week (until growth appeared to 

stagnate). Pictures of the plates were taken on day 4 and day 7 with a 28mm, 12 megapixel camera (iPhone 

7). 

 
Frogger plate patterning 

Yeast strain yMM1406 (optogenetic producer) was inoculated into a 5mL test tube of YP-D to grow 

overnight, the culture was set back to an OD600 of OD 0.219 and grown for a few hours until an OD600 

of 0.538 was reached. The culture was pelleted in a microcentrifuge (Eppendorf, #EP5401000137) at 

3000G for 2 minutes and washed 3x with sterile water to wash away residual media. The culture was 

diluted to an OD600 of 0.079 measured with a spectrophotometer (Fisher Scientific, #14-385-445) and a 

frogger tool (Dan-Kar corp, #MC48) was used to stamp a large culture plate (Corning, #431111) of YP-D 

agar, a photomask was placed over the bottom of the plate and only a small section of the plate (2 cm2) 

was exposed to light  at an intensity ~145 µW/cm2 under a blue light LED array (HQRP New Square 12-inch 

Grow Light Blue LED 14W). The light source, and plate were placed in 30°C incubator. A lightbox (Amazon, 

#ME456 A4 LED Light Box) was used to illuminate the plate from the bottom and camera (gel box camera 

and hood) was used to image the plate on day 4.   

 
Spot assay with blue light 
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Yeast strains yMM1146 (wildtype producer), yMM1456 (non-producer) and yMM1406 (optogenetic 

producer) were inoculated into a 5mL test tube of YP-D to grow overnight. Cells were pelleted using a 

microcentrifuge (Eppendorf, #EP5401000137) at 3000G for 2 minutes and washed with YP-Sucrose to 

remove residual media containing dextrose, this was repeated 3 times. All cultures were diluted to an 

OD600 of 0.04 measured with a spectrophotometer (Fisher Scientific,#14-385-445 ) before plating onto 

solid YP-Sucrose plates (Fisher Scientific, #BP94S01). Onto the lawns of suc2Δ leu2Δ cheaters growing on 

either 0.1mg/mL or 0.05mg/mL leucine we spotted  5µL of either suc2Δ leu2Δ cheaters, pZF-SUC2, or wild-

type cells. Plates contained leucine concentrations of either 100% (0.1 mg/ml) or 50% (0.05 mg/ml) of the 

amount used in standard synthetic complete media [59]. All plates were spread with 150µL of the 

yMM1456 (suc2Δ leu2Δ) strain with glass beads (Fisher Scientific, #11- 312B 4mm), the beads were 

removed, and the plate allowed to dry for 10 minutes. Then, a 5µL drop of either yMM1146,1406, or 1456 

was applied to the center of a petri dish and left face-up to dry for another 10 minutes. The plates were 

then placed upside down in a 30°C incubator in a single layer under a blue LED light source at an intensity 

145 µW/cm2 (HQRP New Square 12-inch Grow Light Blue LED 14W) for 7 days. On the seventh day the 

pictures were imaged with ChemiDoc imaging system (BioRad, #12003154) an exposure of 0.06 seconds 

in the brightfield setting and analyzed using an ImageJ plug-in Clockscan [90].     

 
Quantification of Plate Growth 

 
Radial intensity traces of patterned plates using Clockscan 

The patterned plates were analyzed using a published ImageJ plug-in, Clock Scan [90] which outputs 

averaged radial intensity values for the image.  

 
Identifying pattern features using custom MATLAB Script 

We quantify the growth of yeast on a plate from images using a custom MATLAB script that examines 

intensity versus radius along angular slices through the center of the plate and identifies the bounds of 
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features such as valleys and rings. Because it’s hard to accurately identify these features from individual 

angular slices or the single, composite intensity profile given by a clockscan [90], we use a bootstrap-based 

approach to repeatedly identify potential features from randomly selected sets of angular slices and select 

the most frequently identified potential features as true features. 

This starts by roughly identifying the central yeast spot using MATLAB’s circle finder and cropping the 

image around this spot. A polar transformation is then applied to the cropped image to create a polar 

image where each column of pixels corresponds to an angular slice through the plate. These angular slices 

are then sampled with replacement to construct a composite image. An intensity profile is generated from 

each composite image by taking the median intensity value at each radius. The intensity profile is filtered 

to remove noise and features are identified from the resulting signal. For example, potential valley bounds 

are identified as the locations where the derivative of the filtered intensity profile is at its maximum and 

minimum. This process is repeated for hundreds of composite images to create distributions of potential 

features. True features are then selected as the mode of these distributions. Using MATLAB’s circle find 

to identify the outer edges of the plate, which we know to be 100 mm across, we then convert the feature 

measurements to physical units. Code is available upon request. 

 
Flow Cytometry 

Gene expression in response to blue light was assayed using fluorescent reporters and either traditional 

or imaging flow cytometry. Traditional flow cytometry was performed on a BD Biosciences LSR II Flow 

Cytometer (488nm laser and 505LP dichroic filter). The flow cytometry data was then analyzed using 

custom Matlab scripts. Imaging cytometry was done with the ImageStream MarkII and analysis completed 

using the IDEAS software or custom Matlab/ImageJ scripts modified from those described in [29].  
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All samples from culture tubes were prepared by diluting yeast cell culture (250-500µl) into 800µl of ice-

cold PBS + 0.1% Tween-20. Samples were kept on ice or at 4°C until being analyzed. Samples from the 

Light Plate Apparatus (LPA) were taken by transferring 50µl of culture from each well of the LPA to a well 

a 96-well plate containing 150 μL of PBS+0.1% Tween-20. Samples run on the LPA were measured without 

sonication. Samples grown in glass culture tubes were sonicated with 10 bursts of 0.5 seconds each once 

diluted in PBS and prior to flow cytometry.  
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Figure 1. Characterization of vectors to integrate the blue light inducible split transcription factor (ZDBD-
CRY2PHR/CIB1-VP16) into yeast with marker recovery.  
(A)  The split TF vector inserts ZDBD-CRY2PHR and VP16-CIB1 at the HO locus under the expression of 

constitutive (pADH1) promoters with KIURA3 selection. Expression of Cre-recombinase and 

recombination of the loxP sites removes the KIURA3 marker, leaving it available for future strain 

manipulation. (B) Illumination of strains with ZDBD-CRY2PHR/CIB1-VP16 and a pZF(3BS)-yEVENUS 

reporter at 460nm (50 𝜇W/cm2) demonstrates that the ZDBD-CRY2PHR/CIB1-VP16 transcription factor 

drives gene expression from the pZF promoter in strains with or without recycling of the KIURA3 marker. 

However, removal of the KIURA3 marker does reduce expression from the pZF promoter approximately 

two-fold. Expression of yEVENUS was measured using imaging cytometry. Error bars are bootstrapped 

95% confidence intervals for the mean expression level.   
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Figure 2. Characterization of a light inducible invertase strain.  
(A) In a yeast strain containing the ZDBD-CRY2PHR/VP16-CIB1 gene cassette the invertase endogenous 

promoter (pSUC2) was substituted with the orthogonal light inducible promoter (pZF) using the KanMX-

pZF(3BS) cassette. In the dark, chimeric proteins ZDBD-CRY2PHR and VP16-CIB1 remain unbound and are 

inactive. Upon the addition of light CRY2 undergoes a conformational change that allows binding to CIB1 

and recruits VP16-CIB1 to the promoter to drive transcription. The optogenetic strain pZF-SUC2 was 

exposed to a range of light intensities (0 µW/cm2-14 X 102 µW/cm2) in YP-Sucrose media. (B) At 24 hours 

the wild-type strain (pSUC2-SUC2) shows robust growth, while the control (pZF-SUC2, 0 µW/cm2) does 

not. When provided a sufficient light dose, the pZF-SUC2 strain is able to recover wild-type growth in 24 

hours (intensities >4 µW/cm2) (C) After 48 hours, all pZF-SUC2 strains exposed to light catch up to the wild-
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type (pSUC2-SUC2) strain. Each bar represents three biological replicates and the individual data points 

are shown. (* denotes p<0.05, two-way ANOVA) 

 

Figure 3.Light induction time course of light inducible strain (pZF-SUC2, dashed line) and wildtype strain 
(pSUC2-SUC2, solid line).   
Light intensities are 5.01 µW/cm2 (blue) and 0 µW/cm2 light (black) (n=2). Error bars are standard 

deviation. Error bars not visible are smaller than the marker. The optogenetically controlled strain displays 

a long lag in growth, which may be due to the time needed to accumulate invertase and break down 

sucrose to support growth after light induction.  
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Figure 4: Controlled light results in patterned growth of a synthetic public goods community.   
(A) Spatial patterning of our public goods communities can be achieved by optogenetically controlling 

invertase expression in an illuminated area. A photomask limits the illuminated area on a petri plate 

resulting in patterned growth. (B) A representative image of the public goods community patterned on a 

standard petri plate. The black circle denotes the illuminated area of the plate. Growth was imaged on 

Day 4 and Day 7.  

 

Figure 5: Spot patterning assay on nutrient limited SC-Sucrose plates.  
(A) Representative images of spot assay plates. The top row is composed of 50% leucine plates while the 

bottom row shows the 100% leucine condition. All plates were spread with the constitutive cheater strain, 

suc2Δ leu2Δ. From left to right the spotted strains are: suc2Δ leu2Δ, pZF-SUC2 and pSUC2-SUC2. (B) Plots 

showing an averaged radial intensity profile of the spotted plates across the diameter of the plate. At both 

concentrations of leucine, the pSUC2-SUC2 strain (blue) shows a larger inhibition of growth zone than the 

pZF-SUC2 (yellow) strain. In all cases, there is no growth of the suc2Δ leu2Δ(orange) strain. 
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Chapter 4: Interactions between cooperators and cheaters in nutrient-limiting environments 

generate long-range patterning effects 
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Abstract 

The structure and function of microbial communities is regulated, in part, by metabolic interactions 

between species within the community. A common interaction is cooperation, specifically the production 

of public goods, where some cells, termed cooperators, will produce a compound that benefits all 

microbes in the community. This includes benefitting cheaters, microbes that do not participate in 

producing the beneficial compound and therefore do not accrue any of the production cost. The 

production by the budding yeast Saccharomyces cerevisiae of invertase, which converts non-

metabolizable sucrose into the metabolizable sugars glucose and fructose is a model public goods 

interaction. We discovered that in structured, two-dimensional environments localized invertase-

producing yeast cells surrounded by cheaters (which cannot produce invertase) produce bullseye growth 

patterns with the centralized cooperators growing but also supporting growth at a distance of a ring of 

cheater cells. We discovered that this pattern develops in a stereotypical way over the course of days, 

with the cooperators growing first, followed by later evolution of the cheater ring, and that this pattern is 

regulated by the concentration of the limiting nutrient. We developed a partial differential equation 

model that accounts for sucrose conversion, hexose and leucine consumption, nutrient diffusion, and 

both cheater and cooperator growth. This model is capable of producing bullseye patterns and agrees 

well with our original experimental results. We find that both experimentally and as predicted by the 

model, initial cell density and the initial ratio of cooperators to cheaters does not significantly affect 

patterning. We use the model to predict how nutrients, population composition, and biochemical patterns 

affect relative growth of cooperators and cheaters. Finally, we find that the model cannot fit experimental 

data from varied sucrose concentrations which leads us to hypothesize that some factor, for instance 

regulation of invertase production, could be necessary to explain patterning under these conditions.  
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Introduction 

Microorganisms live in dense and diverse communities[1], [2]. These communities are critical for global 

and human health, as they regulate a variety of processes including biogeochemical cycling and the 

functioning of the microbiota of multicellular organisms[3]–[5]. These communities can also wreak havoc, 

for instance by causing treatment-resistant biofilm infections or by invading and destroying surfaces and 

flow systems in industrial settings. Microbes within these communities do not exist in isolation, instead 

they must contend with the existence of their neighbors which means dealing with limited resources, 

chemical warfare, and other sophisticated interactions.  Interactions between microbes can be passive or 

active, inhibitory or promotive, and act over a range of length-scales including local contact-dependent 

interactions and longer-scale diffusion-based interactions[6]–[8]. The interaction dynamics between 

individual microbes and species guide the development and persistence of these complex communities. 

Studies of naturally occurring microbial communities, as well as synthetic biology studies utilizing 

simplified communities, indicate that intra- and interspecies interactions are crucial to regulating overall 

community productivity and biomass, as well as the spatial structure of populations residing within the 

community.  

Cooperation, where one microbial species benefits another, is common in microbial communities[1], [9], 

[10]. Public goods interactions are a common type of cooperation, where a resource produced by 

cooperative cells (cooperators) is freely available to other cells in the community. This includes “cheaters”, 

cells which exploit public goods without incurring any of the production cost nor providing any known 

contribution of their own[9]. The budding yeast Saccharomyces cerevisiae engages in a cooperative 

interaction by secreting invertase, an enzyme that catalyzes hydrolysis of sucrose into glucose and 

fructose (Figure 1). The free hexose is available to all cells in the community, and therefore represents a 

public good. While naturally occurring microbial communities are complex, with many players and 
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sometimes unknown interactions, invertase secretion in S. cerevisiae represents a relatively simple and 

controllable interaction in a model organism that can be used in studying public goods interactions and 

their role in microbial community structure and function. Though model communities do not perfectly 

capture all of the complexity of natural environments, such simplified models have proven useful for 

understanding the basic phenomena and principles governing  community formation and function in time 

and space [11]–[13]. 

In another study, we fortuitously discovered that in mixed communities of invertase producing and 

cheating yeast growing on agar plates with sucrose as the carbon source, localized cooperators 

surrounded by cheaters produce bullseye patterns [14](Also see, Chapter 3). The localized cooperators 

grow, while creating an immediate zone of inhibition where cheaters do not grow well, followed by an 

outer ring of robust cheater growth. This is particularly true when other nutrients in the growth media, 

for example amino acids, are limited. This simple community and the associated bullseye phenomena 

provides an opportunity to model and understand how public goods interactions combined with 

competition for resources can lead to spatial structure and patterning in microbial communities. 

Furthermore, the length scale of interactions that we see in the bullseye patterns is on the order of several 

millimeters. While short range interactions, on the order of subcell lengths (~100 µm) [6], [15], [16] are 

well known to play a role in microbial communities, the role of longer scale interactions is less well 

understood. Finally, while public goods interactions have been extensively studied, we still don’t 

understand how cooperators prevent and withstand cheating and how this varies in well-mixed versus 

structured spatial environments. The bullseye model provides an opportunity to understand how localized 

cooperators might be able to pioneer a new environment, by taking advantage of an otherwise 

inaccessible nutrient, and the consequences this has for relative cooperator and cheater fitness.      
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In this chapter we further elucidate how population and environmental factors, especially nutrient 

availability, affect the bullseye pattern formation. We develop a partial differential equation model which 

can reproduce the patterning by accounting for hexose production, nutrient utilization, and cooperator 

and cheater growth. We use the model to explore how environmental and cellular factors could modulate 

the patterning. Finally, we explore where our model cannot fit experimental data well, and what they 

might mean for additional factors that may impact patterning.  We conclude by proposing a factor that 

could be responsible, in this case regulation of cooperation. 

Results 

Cooperators Surrounded by Cheaters in Two Dimensional Spatial Environments Generate 

Distinct Bullseye Patterns in Community Growth 

 
In previous work [14] (also described in Chapter 3) we observed that spatial segregation of invertase-

producing cooperators within two-dimensional microbial communities leads to millimeter scale 

patterning on agar plates. Specifically, on agar plates containing sucrose as the sole carbon source a spot 

of cooperators (d~5mm) on top of a lawn of cheater cells (incapable of producing invertase) leads to 

bullseye patterning. The cooperator spot grows well, surrounded by a ring of lesser growth, and finally a 

more dense growth of cheaters at the periphery (Figure 2A).  

 
To understand how this pattern evolves over time, we seeded a spot of  a spot of invertase-producing 

yeast (pSUC2-SUC2) onto a lawn of suc2Δ cheater cells on plates containing sucrose as the sole carbon 

source (20 mg/ml sucrose). We imaged plates daily, and observed that the bullseye pattern evolves over 

time with the central spot of cooperators growing first, followed by some modest growth of cheaters in 

the immediate vicinity of the cooperators, and eventually formation of a ring of cheaters on the periphery 
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(Figure 2B). As in our previous work[14], we could quantify the patterning by imaging the plates and 

measuring the average radial intensity using Clockscan. This quantification confirmed the pattern 

progression visible by eye over the course of 7 days, with the initial cooperator spot first growing, followed 

by cheater growth in the immediate vicinity, and much stronger cheater growth emerging at the periphery 

starting at Day 4 to generate the bullseye pattern (Figure 2C).  

The Bullseye Pattern is Regulated by the Amount of Limiting Nutrient 

A potential explanation for the patterning is that the initial cooperator spot, by virtue of having immediate 

access to hexose through invertase production and hydrolysis of sucrose, is able to grow sooner and 

deplete the local area of necessary additional nutrients needed for growth. Thus the initial cooperators 

serve as both a source of hexose, which eventually diffuses out to allow cheater growth, but also a sink 

for other nutrients. In our previous work [14] (Chapter 3, Figure 5) we showed that by generating 

cooperators auxotrophic for leucine (leu2Δ) we created bullseye patterns with much clearer inhibition 

zones between the cooperator spot and the ring of cheater growth(Chapter 3, Figure 5). 

To more carefully explore this effect, we plated a spot of cooperators on plates containing varying 

concentrations of leucine ranging from 0% to 100% (0.1 mg/ml). (Figure 3A). We observed that leucine 

concentration affects overall growth of both cooperators and cheaters, as would be expected, while 

minimally affecting where the peak cheater ring occurs relative to the central cooperator spot. This was 

verified by quantifying the plate images using Clockscan (Figure 3B). To ensure that patterning was indeed 

due to the interplay between cooperators and cheaters, and not simply due to differences in density 

between the central cooperator spot and the lawn of cheaters, we repeated this experiment by spotting 

cooperators onto a lawn of cooperators. This does not result in bullseye patterns at any concentration of 

leucine (Supplemental Figure 1). We also found that increasing the amount of leucine (0.5g/ml or 1g/ml) 
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destroyed the bullseye patterns, instead resulting in cooperators surrounded by a uniform disk of cheater 

growth (Supplemental Figure 2).   

 Development of a  Reaction-Diffusion Model Incorporating Hexose Production and Leucine 

Depletion  

In order to better understand the patterning and test our hypothesis that patterning could be generated 

by the interplay between production of hexose by the interior cooperator spot, and depletion of other 

limiting nutrients by the same cooperators, we developed a reaction diffusion equation describing these 

processes. In a well mixed system, such as a culture flask, it is possible to capture the dynamics of such a 

process using a system of mutually dependent ordinary differential equations to simulate changes in 

nutrients and cell density. However, in this system, spatial differences in the concentration of nutrients 

or cell density are clearly important, therefore we utilized a system of partial differential equations. We 

took advantage of symmetry in our experimental setup, and modeled the system as a 1-dimensional 

radially symmetric system. That is, variations in the azimuthal and polar angles are ignored and nutrient 

concentrations and cell densities are assumed to vary only along the radial direction in time. 

The sole carbon source in our experimental system is sucrose, which can only be consumed by hydrolysis 

into fructose and glucose by invertase. We describe diffusion and hydrolysis of sucrose in our system as 

follows: 

 

4.1 

 
where  is the local concentration of sucrose and  is the diffusion constant of sucrose in 

the medium.  
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The total rate of depletion of sucrose   is dependent on the rate at which sucrose is 

converted to hexose by the invertase produced by a single cooperator cell,  and the 

density of cooperators at a particular location,  such that we have: 

 

4.2 

 
We treat glucose and fructose similarly, and lump them both into hexose, as they are similar molecules, 

both can be metabolized by both cooperators and cheaters, and they are produced at the same rate upon 

sucrose conversion. This is keeping with prior modeling efforts in the literature[7], [17], [18]. 

 

4.3 

 
In this model, the rate constant  is a combined factor representing the concentration of the 

available invertase and the actual rate of the invertase mediated conversion of sucrose to hexose. In our 

model, all cooperator cells are assumed to produce invertase and convert sucrose to hexose at an equal 

rate.  

Hexose is produced by the hydrolysis of sucrose, and it is consumed by both cooperator and cheater cells. 

Therefore, hexose concentration changes due to diffusion, conversion of sucrose to hexose, and 

consumption by growing cells: 

 

4.

4 
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The variables  and  are, respectively, the total local concentration of glucose and fructose 

and the diffusion coefficient of glucose. We assumed that glucose and fructose diffuse at the same rate 

since both molecules share similar physical and chemical characteristics. The net rate of hexose 

production due to a conversion of sucrose is modeled similarly to the rate of sucrose depletion, 

. On a mass basis, the rate of hexose production is 1.05 times that of the sucrose 

depletion rate since during the hydrolysis of sucrose into hexose the mass of water being consumed needs 

to be taken into account. 

 

4.5 

The total rate of hexose consumption is proportional to the rate at which hexose is consumed by either 

cooperator or cheater cells, both of which consume hexose at the same rate, and the total cell density at 

a given location: 

 

4.6 

 
To account for the consumption of a limiting nutrient, we include equations describing the consumption 

of leucine and its diffusion, as leucine is the nutrient that we experimentally control in our system to 

produce limitation. The availability of leucine is dependent on the consumption of leucine by both 
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cooperator and cheater cells, as well as diffusion. The rate of change of leucine concentration over time 

along the radial direction can therefore be modeled using the following equation:  

  
 

4.7 

where  and  are respectively the local concentration and diffusion coefficient of leucine. 

The rate of total leucine concentration is modeled similarly to the rate of total hexose consumption since 

leucine is consumed by both cell types equally. Similar to the case of hexose, we also assume that both 

types of cells depend on leucine consumption for their ability to grow, and the dependence on leucine is 

identical for both cooperator and cheater cells. For our experimental system, where both cooperators and 

cheaters are leu2Δ this makes sense. The rate of leucine consumption is therefore proportional to the 

concentration of both cooperators and cheaters: 

 
 

4.8 

The bullseye patterns are caused by differential growth of cooperators and cheaters in different areas of 

the agar plate. The growth of cooperators and cheater,  and  are described by the 

following equations: 
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4.9 

 

4.10 

As Saccharomyces cerevisiae cells are immotile, they undergo growth based on consumption of local 

hexose and leucine, but do not diffuse and therefore the  and  diffusion coefficients 

are set to 0. The total growth rate of cooperators  and cheaters,  are 

dependent on the growth rate of individual cooperator and cheaters cells,  and 

 and the density of cooperator and cheater cells at that location and are modeled as 

follows:  

 

 
4.11 
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4.12 

In our model, the growth rates of individual cooperators and cheaters are dependent on the rate at which 

cells consume the essential nutrients hexose and leucine. The effect of all other essential nutrients on 

growth is lumped into the growth rate constant,  as we assume that all nutrients besides 

hexose and leucine are in excess in the system. The key difference between the growth rates of 

cooperators and cheaters is the cost of invertase production,  which results in slower growth rate of 

the cooperators as compared to the cheaters due to them having to spend resources in producing the 

invertase[17]. This is in addition to the hexose and leucine consumption rates that are dependent on the 

local nutrient concentration and vary throughout the plate. It is important to note that the cost of 

invertase production is assumed to be constant for all cooperator cells, with the assumption that all 

cooperator cells produce invertase at the same rate. This is a common assumption in models of 

cooperative phenomena[7], [17]–[19].  

 
 

4.1

3 
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4.1

4 

 
We assume that the rate of consumption of hexose or leucine by a cell is dependent on the concentration 

of the corresponding nutrient through Michaelis-Menten kinetics of the following form:  

 

 

4.15 

 

4.16 

 

A Reaction-Diffusion Model Incorporating Hexose Production and Leucine Depletion Reproduces the 

Bullseye Patterning 

With our partial differential equations in hand, we set about seeing if our system of equations could 

reproduce the observed bullseye patterning. Based on experimental conditions we set the initial 

concentration of all nutrients as well as cooperators and cheater cells. We based diffusion constants for 
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hexose on that of glucose, and took diffusion coefficients for glucose, sucrose, and leucine from literature 

measurements[20].    

Table 4.1:Fixed parameters for partial differential equation model 

Name Initial 
Concentration 

Unit Diffusion Coefficient 
(m2/h) 

Weight for growth 
function 

Glucose 0.00E+00 g/m3 2.41E-06 0.5 

Sucrose 2.00E+0.4 g/m3 1.87E-06 0 

Leucine 1.00E+02 g/m3 2.63E-06 0.5 

cooperators 1.66E+10 # 
cells/m3 

0 N/A 

Cheaters 3.18E+09 # 
cells/m3 

0 N/A 

Radius cooperator 
area 

0.004 m N/A N/A 

 
To obtain the parameters that can reproduce the trend observed in the specific experiments chosen for 

the calibration of the model, namely the evolution of the bullseye pattern over 7 days at 100% leucine 

(Figure 2C) as well as the leucine dosage experiment (Figure 3B), first the parameters were varied both 

individually and simultaneously at different levels over a wide range to mimic a global optimization 

process. The parameter set representing the best fit was then selected, based on a visual predictive check 

of similarity of both cases mentioned above to their experimental counterparts. Then the parameters 

were fine tuned manually to improve the fitting further. The fitted parameters are provided in Table 4.2. 

Table 4.2: Fit parameters in the model and their values 

Parameter Value Unit 

KInvertase 1 107   g/(#*hr) 

KmInvertase 2 103   g/m3 

KGlucoseConsumption 5 10-8   g/(#*hr) 

KmGlucoseConsumtion 3 102   g/m3 
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KLeucineConsumption 2.5 10-8   g/(#*hr) 

KmLeucineConsumption 1 104   g/m3 

kCellGrowth 3 1015  1/(hr*(g/(#*hr))2 

kCost 0.7 N/A 
Importantly, the model produces bullseye patterns, indicating that the interplay between a central source 

of hexose production and consumption of a limiting nutrient, in this case leucine, is sufficient to reproduce 

the observed patterns. The model agrees well with both the evolution of bullseye patterning over time 

(Figure 4A,B) as well as the changes in patterning as a function of leucine limitation (Figure 4C, D).   In the 

evolution over time experiment (Figure 4A) the model (Figure 4B) is able to recapitulate the evolution of 

the outer ring by Day 7. In the leucine limitation experiment (Figure 4C), the model reproduces the trend 

of the outer cheater ring increasing in density as the concentration of leucine increases (Figure 4D).  

In addition, the model provides clues as to how the concentration of resources evolves within the plate 

to generate patterning. At steady state, sucrose and leucine are both largely depleted at the center of the 

plate, presumably stopping cooperator growth. However, diffusion leads to a peak of hexose at a distance 

from the central cooperator spot, which when combined with remaining leucine, allows cheaters to grow 

in the ring producing a bullseye pattern (Figure 5).   

A Reaction-Diffusion Model Predicts That Patterning is Not Dependent on the Initial Density of 

Cheaters or the Total Plating Density 

The model confirms that patterning occurs because the initial cooperator population is able to produce 

invertase and convert sucrose to hexose, thus allowing growth while depleting the surrounding area of 

essential nutrients (in our experiments, leucine). Once the cooperator population inhibits its own growth 

through nutrient depletion, an outer ring of cheaters is able to grow due to accumulation of hexose and 

remaining leucine. One might then predict that where the cheater ring occurs should not depend 
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dramatically on the initial number of cheaters, as their growth is controlled by the initial cooperator 

population. This is indeed the model’s prediction. Keeping the initial number of cooperators constant 

within the central spot, and in silico varying the initial density of cheaters from 10-100% of the initial 

experiment (3.18X108- 3.18x109 cells/m3) does not dramatically affect either the location or density of the 

ring. We verified this experimentally, by plating an initial cooperator spot on varying densities of cheaters. 

The experimental results agree well with the model’s predictions (Figure  6A,B).  

We also hypothesized that the total plating density, keeping the initial ratio of cooperators and cheaters 

constant, would not significantly affect the bullseye pattern. Again, the initial cooperator growth should 

set both the availability of hexose at a distance from the cooperators as well as the depletion of essential 

nutrients, and we find in silico that while higher density platings result in both more cooperators and 

cheaters, the patterning is not significantly affected. This was confirmed experimentally, where we see 

that the density of both the central cooperator spot as well as the ring is affected by the initial plating 

density but the location of the ring does not change significantly (Figure 6 C,D).  

It is worth noting that at low densities, growth of cells on the plate is not uniform, but is stochastic due to 

local changes in plating density and the presence or absence of cheaters in some locations on the plate. 

This leads to a lack of continuity in cheater density experimentally at lower plating densities. As this 

stochasticity is not implemented in our model, which assumes a continuous density of cells, this likely 

leads to some of the discrepancies seen between the model and experiment in Figure 6 for both the ratio 

and total density experiments.  

In addition to asking how the initial ratio of cooperators to cheaters as well as the initial cell density affects 

patterning and the relative fitness of cooperators to cheaters, we also asked how the initial coverage of 

the cooperators affects their ability to grow in the presence of cheaters, as well as affects to the 

patterning. We explored this question using the model and found that larger cooperator regions (seeded 

at the same density) allow less cheater growth. The model predicts that a larger area of cooperators will 
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grow to a lower density, presumably due to limited nutrients, but these larger cooperator areas also 

capture more nutrients and thus allow less relative cheater growth (Figure 7). This is consistent with the 

known Allee effect for cooperators, where there is a density-dependent positive effect on growth and 

fitness [21]. Future work can combine the model and experiments to better understand how the initial 

distribution of cooperators and cheaters controls patterning and relative fitness.  

Model Allows Exploration of Parameters That Affect Relative Fitness of Cooperators And 

Cheaters 

We next used the model to explore how different parameters affect the growth of cooperators relative 

to cheaters. First, we examined in silico how levels of sucrose and leucine affected the relative growth of 

cooperators and cheaters (Figure 8). From the simulations it is clear, as is also evident in the experimental 

data, that more nutrients (either sucrose or leucine) leads to greater growth of cooperators and cheaters, 

and greater growth of all cells overall. However, interestingly, at the highest levels of sucrose, there is a 

non-monotonic relationship between leucine concentration and the relative growth of cheaters to 

cooperators. For example, at 20 mg/ml sucrose, the highest concentration used in our experiments, the 

lowest relative growth of cheaters happens at intermediate concentrations of leucine (20-40%; 0.02-0.04 

mg/ml). This non-monotonic effect of nutrients is interesting, and suggests that at intermediate 

concentrations of leucine, cooperators might actually be able to capture relatively more of the limited 

nutrients. We would like to verify these computational predictions experimentally in the future. 

With the model in hand we could also ask how the initial community composition, that is concentration 

of cells overall, as well as the initial ratio of cheaters to cooperators affects the relative growth of cheaters 

and cooperators (Figure 9). As expected, one can see by comparing any column in Figure 9 that starting 

with a smaller community, i.e. with lower densities, leads to more relative growth with respect to the 

starting point, as expected. This can be explained simply through the competition for essential nutrients 



 

 

81 

between fewer cells in the case of starting with a smaller community. It is also evident that limiting the 

presence of cheaters (i.e. lower cheater to cooperator ratio, or CPR) leads to more growth for cooperators 

as well as cheaters, and consequently a total (or combined) growth of the overall population. This can 

again be explained by the fact that more cheaters at the beginning leads to more competition for shared 

nutrients between cells and therefore less growth at the individual cell level. As evident in Figure 9, the 

relative cooperator fitness is maximized when the starting community size and starting cheater-to-

cooperator ratio (CPR) is highest, which also represents an initial community with the highest number of 

total cells. The presence of more total cells at the start leading to the lowest final CPR can probably be 

explained by the fact that more cells also mean the presence of more cooperators which translates to 

more sucrose converted to hexose and consumed by cooperators and therefore leading to more 

cooperator growth and as a consequence less leucine for cheaters and therefore a lower final CPR. It is 

perhaps simpler to understand the community moving towards a lower final CPR with more cheaters at 

the start since this means the same amount of hexose that is not consumed by the cooperators is shared 

among more cheaters. Overall, these trends combined together show that relative cooperator fitness is 

maximized when the community is largest at the start and therefore the competition for resources is 

strongest.  

One advantage of the model is that we can ask how parameters that are not easy to modify 

experimentally, such as growth rate and the sucrose to hexose conversion rate affect the relative fitness 

of cooperators. Perhaps unsurprisingly, Figure 10 shows us that increasing the rate at which sucrose is 

converted to hexose benefits cheaters, presumably because cooperators are unable to capture as much 

of this resource as it is produced more quickly. We also find that the cooperator fitness is non-monotonic 

in growth rate. Intermediate growth rates (compare rows in Figure 10), are preferred for cooperators. At 

these intermediate growth rates, the relative growth of cheaters to cooperators over the course of the 

experiment is minimized.   
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Model Does Not Predict Patterning When Varying Sucrose Concentrations, Perhaps Due to the 

Assumption of Constitutive Invertase Expression 

In our initial experiments and modeling, we kept the sucrose concentration at 20 mg/ml. We interrogated 

the model to determine how decreasing sucrose concentrations would affect the patterning. The model 

predicts that lowering sucrose decreases growth of both cooperators and cheaters (Figure 11A) but does 

not significantly affect the formation of the bullseye, with the location of the ring shifting inwards slightly 

and the density decreasing as sucrose concentration decreases.  

However, when we tested these model predictions experimentally (Figure 11B) we found a tremendous 

amount of difference between the model and the experiments. Specifically, at lower concentrations of 

sucrose 10-20% of our original concentration (2mg/ml and 4mg/ml) we find that there is no depletion 

zone and therefore no visible bullseye pattern in the experimental data. Additionally, the density of the 

ring is not monotonic in sucrose concentration, but is rather maximal for 40% sucrose (8mg/ml). 

There are several possible explanations for the discrepancy between our model trends and trends in the 

experiments. For example, it is possible that our experiments had not quite reached steady state at 7 days, 

due to the lack of sucrose (and therefore glucose) and subsequent slow growth, and that observing the 

experiments for longer would have allowed for bullseye patterns to appear. This is also tricky to determine 

experimentally, as other factors (for example, drying of the agar plate) start to change the experimental 

environment as the experiment progresses. Another very interesting possibility is that ignoring invertase 

regulation in our model leads to inaccurate predictions.    

Discussion 

This study identifies patterning in cooperator-cheater populations when cooperator S. cerevisiae yeast 

are surrounded by cheaters which cannot convert sucrose into metabolizable sugars. Specifically, we find 

that bullseye pattern formation, where central cooperator cells deplete cheater growth nearby but allow 
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a ring of cheater growth at a distance, producing bullseyes. We experimentally measure how this pattern 

evolves over time and how nutrients available to both cooperators and cheaters affect the patterning. To 

better understand regulation of this pattern, we develop a partial differential equation model which can 

reproduce the patterning by accounting for hexose production by cooperators and nutrient depletion by 

cooperator and cheater growth. The model allows us to explore how nutrients, initial population 

composition, and parameters which are difficult to vary experimentally, such as the sucrose conversion 

rate and cellular growth rate, affect the relative fitness of cooperators and cheaters. Finally, we show that 

the model does a poor job of predicting pattern formation on different concentrations of sucrose. 

Interactions between microbes within microbial communities are known to be important for community 

development and structure[22]–[24]. However, most studies have focused on short-range interactions 

between species including contact-dependent interactions and metabolic interactions acting at very short 

distances. In fact, some studies have suggested that metabolic exchange can happen only within a few 

cell lengths[6]. In our patterning, central cooperators are able to metabolically interact with cheaters tens 

of millimeters away to produce the bullseye pattern, which is on the order of thousands of cell lengths. 

Thus our experimental observations and modeling hint that while local interactions are important for 

microbial community development and function, at least under certain conditions, long-range metabolic 

interactions are also possible with implications for community outcomes, including in our case the relative 

fitness of cooperators and cheaters. This may be important for understanding community structure in 

larger scale environments, including the gastrointestinal tract and biofilms on medical devices, and even 

common experimental platforms, such as the agar plates used in this study.   

This work also has implications for bioengineering consortia and microbial communities. Engineered 

microbial consortia, consisting of different microbial strains or species, provide an opportunity to expand 

the capabilities of engineered organisms by increasing the number of genes and metabolic capabilities 

available to perform the desired task. However, understanding the “design rules” for combining organisms 
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and maintaining stability to create productive synthetic consortia remain elusive[25]–[27]. In addition, 

many applications for the use of engineered microbial communities will require self-organization and 

patterning [28], including applications to produce living, self-healing materials which I discuss in Appendix 

1. It is possible that principles similar to those uncovered in this chapter, where the interplay between 

production and nutrient utilization generates patterning, could be used to self-organize or spatially 

structure engineered communities. Indeed, many microbes, including the cellulose-producing bacteria 

Komagataeibacter rhaeticus, are unable to metabolize sucrose. As K. rhaeticus already co-exists with S. 

cerevisiae in natural communities, such as kombucha fermentation [29], this raises the possibility of using 

S. cerevisiae cooperator conversion of sucrose and appropriate nutrient limitations to generate pattern 

formation in K. rhaeticus and cellulose production. Optogenetic control of cooperator status, as described 

in Chapter 3, could further be used to generate more complex spatial patterning.        

Finally, while our model was able to generate bullseye patterning, it was not able to fit patterning data 

from sucrose limitation experiments. We found experimentally that at low concentrations of sucrose no 

distinguishable bullseye pattern is produced. As will be discussed in Chapter 5, production of invertase is 

regulated, presumably based on glucose concentration, which is not accounted for in our model. 

Therefore, it is possible that at low concentrations of sucrose, where the production of glucose will also 

be limited, cooperators produce less invertase and therefore “hoard” hexose locally inhibiting growth of 

the outer cheater ring. It remains to be seen if the addition of invertase regulation into our model would 

explain the patterning we discovered experimentally. In Chapter 5 we experimentally explore invertase 

regulation and its potential consequences for cooperator fitness relative to cheaters.   

Methods 

Yeast Strains and Culture Methods 
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Yeast strains used in this study are shown in Supplemental Table S1. Yeast transformation was 

accomplished using standard lithium-acetate transformation. For integrating plasmids, the integration 

was validated using either colony PCR or, when colony PCR proved difficult, by PCR of genomic DNA. 

Genomic DNA was extracted using the Bust n’ Grab protocol. Primers used for validating integrations are 

listed in Supplemental Table 2.  All transformants were checked for the petite phenotype by growth on 

YEP-glycerol (1% w/v Bacto-yeast extract-BD Biosciences 212750, 2% w/v Bacto-peptone-BD Biosciences 

211677, 3% [v/v] glycerol-Fisher Bioreagents BP229-1, 2% w/v Bacto-agar-BD Biosciences #214030)[22]. 

Only strains deemed respiration competent by growth on YEP-glycerol were used for subsequent analysis. 

Details of individual strain construction are described in the Supplemental Material.  

Yeast cultures were grown in either yeast peptone (YP) media ( 10 g/L Bacto yeast extract, 20g/L Bacto 

peptone for solid media  + 20g/L of Bacto agar) or Synthetic Complete (SC) media (6.7 g/L Yeast Nitrogen 

Base without amino acids-DOT Scientific, 1% v/v KS amino acid supplement without appropriate amino 

acids).The carbon source supplied was either dextrose (D) or sucrose (SUC) at 2% v/v concentration. As 

needed, episomal plasmids were maintained by growing yeast in SC media lacking the appropriate amino 

acids required for plasmid selection.  

Patterning 

Spot assay 

Yeast strains yMM1146(wildtype cooperator) and yMM1456 (non-cooperator) were inoculated into a 5mL 

test tube of YP-D to grow overnight. Cells were pelleted using a microcentrifuge (Eppendorf, 

#EP5401000137) at 3000G for 2 minutes and washed with YP-SUC to remove residual media containing 

dextrose, this was repeated 3 times. To create lawns the desired strains were diluted to an OD600nm of 

0.04 measured with a spectrophotometer (Fisher Scientific,#14-385-445 ) before plating onto solid SC-

SUC plates (Fisher Scientific, #BP94S01) and 150uL of the cultures spread with glass beads ((Fisher 

Scientific, #11- 312B 4mm). The beads were removed and the plate allowed to dry for 10 minutes. Onto 



 

 

86 

the lawns of either suc2Δ leu2Δ cheaters or wildtype cooperators a 5uL drop of either yMM1146, or 1456 

was applied to the center of a petri dish and left face-up to dry for another 10 minutes. The plates were 

then placed upside down in a 30°C/room temperature incubator in a single layer for 7 days. At the desired 

time frames the plates were imaged with a ChemiDoc imaging system (BioRad, #12003154) with an 

exposure of 0.06 seconds in the brightfield setting and analyzed using an ImageJ plug-in Clockscan 

(reference). 

Leucine concentrations: Plates contained leucine concentrations between 0% (0 mg/ml)  and 100% (0.1 

mg/ml), for example, a plate at 50% leu contains 0.05 mg/ml of the amount used in standard synthetic 

complete media. 

Sucrose concentrations: Plates contained sucrose concentrations between 0% (0 mg/ml)  and 100% (20 

mg/ml), for example, a plate at 50% leu contains 10 mg/ml of the amount used in standard synthetic 

complete media. 

Density and ratio variation: Plates were seeded with cell cultures that were diluted to an OD600nm 

between 0.004 (10%) and 0.04 (100%) 

Quantification of Plate Growth 

Radial intensity traces of patterned plates using custom MATLAB Script 

We quantify the growth of yeast on a plate from images using a custom MATLAB script that examines 

intensity versus radius along angular slices through the center of the plate and identifies the bounds of 

features such as valleys and rings. Because it’s hard to accurately identify these features from individual 

angular slices or the single, composite intensity profile given by a clockscan[30], we use a bootstrap-based 

approach to repeatedly identify potential features from randomly selected sets of angular slices and select 

the most frequently identified potential features as true features. 

This starts by roughly identifying the central yeast spot using MATLAB’s circle finder and cropping the 

image around this spot. A polar transformation is then applied to the cropped image to create a polar 
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image where each column of pixels corresponds to an angular slice through the plate. These angular slices 

are then sampled with replacement to construct a composite image. An intensity profile is generated from 

each composite image by taking the median intensity value at each radius. The intensity profile is filtered 

to remove noise and features are identified from the resulting signal. For example, potential valley bounds 

are identified as the locations where the derivative of the filtered intensity profile is at its maximum and 

minimum. This process is repeated for hundreds of composite images to create distributions of potential 

features. True features are then selected as the mode of these distributions. Using MATLAB’s circle find 

to identify the outer edges of the plate, which we know to be 100 mm across, we then convert the feature 

measurements to physical units. Code is available upon request. 

Model Implementation and Fitting 

The model was implemented in the MATLAB release R2020b. The system of 1-dimensional partial 

differential equations along the outward radial direction were solved using the inbuilt algorithm pdepe 

which uses another matlab solver ode15s to solve the equations. This algorithm as described in MATLAB 

literature is a “a variable-step, variable-order (VSVO) solver based on the numerical differentiation 

formulas (NDFs) of orders 1 to 5.” The initial conditions of the system were defined based on the 

experimental system and are outlined in Table 4.1.  The boundary conditions were assumed to be no flux 

at the outer boundaries of the plate. The radial length of the system was discretized in 500 grids (also 

known as cells), each spanning 0.1 mm. The system of PDEs was simulated for either 7 days (or 168 hours) 

for the cases where the simulated outcome was compared with the state of the plate after 7 days and for 

the rest of the predictive cases simulated with the model, the system was simulated up to ‘steady state’ 

where that was defined as the state where either leucine or both sucrose and glucose are almost 

completely depleted (sum of concentration at all grid points throughout the entire radial distance is less 

than 1 gm3  or  10-6gcc) .  
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To obtain the parameters that can reproduce the trend observed in the specific experiments chosen for 

the calibration of the model, namely the evolution of the bullseye pattern over 7 days at 100% leucine 

(Figure 2C) as well as the leucine dosage experiment (Figure 3B), first the parameters were varied both 

individually and simultaneously at different levels over a wide range to mimic a global optimization 

process. The parameter set representing the best fit was then selected, based on a visual predictive check 

of similarity of both cases mentioned above to their experimental counterparts. Then the parameters 

were fine tuned manually to improve the fitting further, thus mimicking a further local optimization step. 

The fitted parameters are provided in Table 4.2. Code for simulating the model and for the manual 

sensitivity analysis to identify appropriate parameters is available upon request and will be made publicly 

available on Github upon publication. 
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Figure 1. Sucrose utilization in Saccharomyces cerevisiae 
Wild-type Saccharomyces cerevisiae yeast produce invertase which hydrolyzes the disaccharide sucrose 

into monosaccharides glucose and fructose. While sucrose is not directly metabolizable by many 

microbes, including budding yeast, both fructose and glucose readily are. Because the invertase enzyme 

is located in the periplasmic space, ~99% of the liberated hexose diffuses away before it can be 

imported[19], making invertase production and secretion a cooperative behavior.  
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Figure 2:  
Figure 2. Bullseye pattern formation over 7 days. 
 (A)  Cooperator yeast cells capable of producing hexose from sucrose through invertase (green squares) 

and importing hexose through transports (brow squares) are spotted in the center of a petri dish 

containing 2% sucrose as the carbon source (green circle) and seeded with a lawn of cheaters. After 7 

days a ring of cheaters develops surrounding the initial cooperator spot. (B) Growth progresses over the 

course of days, with growth of initial cooperator spot being evident first followed by development of the 

ring of cheaters, forming a bullseye pattern. (C) Quantification of plate images taken daily over the 

course of the experiment shows the evolution of the patterning. The figure legend indicates the 

experimental day. 
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Figure 3. Pattern development on limiting leucine. 
(A) Cooperator yeast cells are spotted in the center of a petri dish seeded with cheaters and containing 

varying concentrations of leucine. The bullseye pattern develops similarly, but to different densities, on 

different concentrations of leucine ranging from 0%-100% (0-0.1 mg/ml). (B) Quantification of the plate 

images show that the bullseye pattern remains relatively constant for different concentrations of leucine, 

but the density changes with increasing leucine. The figure legend indicates percentage leucine in the 

plate. 
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Figure 4. Model is able to recapitulate experimental conditions 
A. Cooperator yeast cells are spotted in the center of a petri dish seeded with cheaters and imaged 

everyday for seven days. Quantification of the plate images show the evolution of the bullseye pattern. 

Growth is concentrated from the spot and radiates out, by day four one can begin to distinguish the 

distinct features of the bullseye pattern. The figure legend indicates the day of imaging. B. Model agrees 

well with the evolution of the bullseye pattern over seven days. The figure legend indicates the day. C. 

Cooperator yeast cells are spotted in the center of a petri dish seeded with cheaters and containing 

varying concentrations of leucine. Quantification of the plate images show that the bullseye pattern 

remains relatively constant for different concentrations of leucine, but the density changes with 

A B

DC
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increasing leucine. The figure legend indicates percentage leucine in the plate. D. Model reproduces the 

trends of growth in different concentrations of leucine. The figure legend indicates percentage leucine in 

the plate. 

 

 
Figure 5. Steady state concentrations of limiting nutrients and cell growth predicted with the model 
The model is able to inform our understanding of the evolution of  nutrients and the generation of 

patterning. At steady state there appears to be a peak of hexose at a distance from the cooperator spot 

making it available to cheater cells. This is paired with a depletion of sucrose and leucine at the center 

that stops cooperator growth. 
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Figure 6. No observable effect due to varying initial cheater-to-cooperator ratio or total plating density on 

patterning                      

A. Cooperator yeast cells are spotted in the center of a petri dish seeded with cheaters at varying 

concentrations. Quantification of the plate images show that the evolution of the bullseye pattern is not 

dependent on the initial cheater density. Figure legend indicates the initial cheater density at the start of 

the experiment. B. Model is able to predict that the initial cheater density will not affect evolution of the 

patterning. Figure legend indicates the initial cheater density of the community at the start of the 

simulation. C. Cooperator yeast cells are spotted in the center of a petri dish seeded with cheaters at 

varying concentrations of total initial density. Quantification of the plate images show that the evolution 

of the bullseye pattern is not dependent on the initial density. Figure legend indicates the initial density 

at the start of the experiment. D. Model correctly predicts that the initial density will not affect evolution 

of the patterning. Figure legend indicates the initial density of the community at the start of the 

experiment.  
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Figure 7. Effect of initial size of cooperator community on cell growth and relative fitness 
Simulation of the model predicts that changes in the initial coverage of area by cooperators results in less 

cheater growth. Varying the initial coverage of area by the cooperators also results in a larger, but lower 

density area of cooperator growth.  Figure legend displays the initial coverage area of cooperators in 

percent of the original coverage area (100 is the original coverage area used in experiments). 
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Figure 8. Effect of nutrient availability on community growth and relative fitness of cells 
Experiments in silico reveal the effects of nutrient availability on: A. Cooperator growth. Increasing leucine 

and sucrose availability lead to greater cooperator growth. B. Cheater growth. Increasing leucine and 

sucrose availability lead to greater cheater growth. C. All cells. Increasing leucine and sucrose availability, 

unsurprisingly, lead to greater growth of all cells. D. Cheater-to-producer ratio. A non-monotonic effect 

on the relative growth of cheaters-to-cooperators is observed. Relative cheater growth is lowest at low 

sucrose concentrations paired with intermediate leucine availability.  
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Figure 9. Effect of initial community composition on community growth and relative fitness of cells 
 
The model simulations indicate that beginning with a smaller community (featuring lower densities) leads 

to a higher level of relative growth from the initial point, as anticipated. Additionally, the simulations 

predicted that limiting the presence of cheaters (i.e. lower cheater to cooperator ratio) leads to more 

growth for cooperators as well as cheaters, and consequently  total  growth of the overall population. 

According to simulations, the maximum relative fitness of cooperators occurs when the community size 

and the initial cheater-to-cooperator ratio (CPR) are both at their highest 
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Figure 10. Effect of growth and sucrose conversion rate modulation on community growth and 
cooperator fitness 
Simulations predict that increasing the conversion rate of sucrose to hexose appears to favor cheaters 

perhaps due to cooperators limited ability to capture a sufficient amount of glucose due to its rapid 

production. The model also predicts that cooperator fitness demonstrates a non-monotonic relationship 

with growth rate, indicating that intermediate growth rates are more favorable for cooperators. 
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Figure 11. Effect of varying sucrose availability on community growth  
A. The model predicts that reducing the amount of sucrose will lead to a decline in growth for both 

cooperators and cheaters, but a minimal impact on the formation of the bullseye pattern. Figure legend 

indicates the starting sucrose concentration for the simulation. B.The experimental results deviate 

significantly from the model predictions. When sucrose concentration is lowered to 10-20% of the original 

concentration, no depletion zone or visible bullseye pattern is observed in the experimental data. 

Furthermore, the density of the ring does not follow a monotonic trend with respect to sucrose 

concentration, and instead, reaches a maximum at 40% sucrose. Figure legend indicates the starting 

sucrose concentration for the experiment. 
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Supplemental Figure 1. Simple density differences do not explain the patterning.  
On varying concentrations of leucine, cooperators were spotted onto a lawn of cooperators at the same 

density as cheaters in Figure 3. In this case, both dense cooperators and more dilute cooperators can 

produce invertase and convert sucrose to hexose, and no patterning is observed. 

 

 
Supplemental Figure 2. Leucine limitation is important to generation of a bullseye pattern. 
Increasing the concentration of leucine in the petri dishes to 0.5 mg/ml or 1 mg/ml (5x and 10x the 

maximal concentration in the  experiments in Figure 2, Figure 3) removes the bullseye patterning, 

indicating that deprivation of leucine is important in generating the bullseye pattern. 

  



 

 

102 

Chapter 5: Regulation of invertase expression by Saccharomyces cerevisiae can limit cheater 

growth in spatially organized microbial communities 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

This chapter was written by Neydis Moreno Morales. Megan N. McClean provided incredibly helpful 
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custom MATLAB script for improved image analysis used in the spot assay and provided a custom 
MATLAB script for parsing data from the Fluent. Kevin Stindt adapted a custom matlab script for the 
colony count analysis in Figure 13. 
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Abstract 

The cooperative use of sucrose by the yeast, Saccharomyces cerevisiae is a popular model system to 

understand persistent questions about cooperativity in the microbial ecology field. Some of these 

questions are: How is cooperation maintained in a population? What mechanisms protect cooperation 

maintenance in a mixed community of cooperators and cheaters (cells which do not make invertase). 

Despite extensive work on this model there are still important characteristics about this model system 

that have not been explored in-depth. We still do not know if a population of producer cells regulate their 

expression during growth in sucrose media. This would be a major shift in our understanding of the 

popular model system, usually a cell with the ability to cooperate is assumed to cooperate constitutively 

when growing in sucrose. The ability to regulate invertase could be an important mechanism that supports 

the maintenance of cooperation in a population. An ideal tool would allow for the identification of cell 

genotypes (cooperator or cheater) and cell phenotypes (active invertase expression vs inactive). This 

would permit for the quantification of population ratios in, as well as a method for distinguishing the level 

of cooperation by invertase producers. This would also permit the identification of cell types in space on 

plates. In this chapter I present a method to visualize the active cooperators in a wildtype strain of S. 

cerevisiae using 2a peptides to achieve co-translational production of invertase and a fluorescent reporter 

from the respective promoter. I demonstrate that S. cerevisiae can and does regulate the expression of 

invertase during growth. I switch the promoters in the invertase-2A-reporter constructs to develop 

constitutive cooperators with different strength constitutive promoters (pREV and pPGK1). Finally, I 

compete these cooperator strategies with either cheaters or other cooperator types to compare the 

effects that invertase regulation has on cooperator and community outcomes. The results presented in 

this chapter suggest that the regulation of invertase expression by the wildtype cooperator cells in sucrose 

may have a significant impact on limiting growth of a cheater when compared to other cooperation 

strategies in spatially structured environments. 
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Introduction 

Chapter 4 delved into the patterning phenomenon observed in [1] (also described in Chapter 3), where a 

distinct density difference appeared in the growth of co-localized cooperators (invertase driven by the 

wildtype pSUC2 promoter) and cheaters on a lawn, creating a "bullseye" effect (refer to Chapter 3, Figure 

5). The model took into account the growth rates of cooperators and cheaters, as well as the production 

and diffusion rates of molecules that were hypothesized to be limiting nutrients, specifically sucrose, 

monosaccharides (glucose and fructose), and the amino acid leucine.  

However, there were significant disparities between the model's predictions and the experimental results 

in one case. Specifically, the model failed to accurately predict how varying sucrose concentrations would 

affect the pattern. The model predicted that a similar "bullseye" pattern would emerge. This discrepancy 

was intriguing because, up until this point, the model appeared to include enough information to capture 

and predict growth patterns. The model had not accounted for invertase regulation; instead, much like 

the standard-setting work of Gore et al., cooperators were assumed to cooperate at a consistent level [2]. 

I wanted to revisit the possibility that wildtype cooperators may be able to regulate invertase production 

during growth in sucrose. Specifically, is invertase regulated in strains using the wildtype promoter 

(pSUC2)? How does regulation affect fitness in those strains? And when is regulation beneficial?  

 
Previous works measured the cost to produce invertase in similar ways and concluded that the cost was 

constant 

Gore’s work was one of the earliest public goods cooperation related work that quantified biological 

characteristics of the system such as the glucose capture efficiency of cooperators, density-dependent 

fitness decreases in sucrose, and the fitness cost of producing invertase. Their subsequent works [3]–[5] 

all use their previous findings to develop models or interpret results.      
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The cost of invertase production across the public goods literature is calculated in a similar method in 

several works [2], [6], [7]. This is calculated by comparing the growth rates of cooperator and cheater cells 

in media that does not induce invertase expression for the cooperator, to growth rates in glucose 

concentrations that would force invertase expression in a cooperator (very low concentrations of glucose) 

and calculating the fitness deficit for the invertase producer (the cooperator). The costs in the previously 

mentioned works do vary a bit, in [2]a 2.5% growth deficit is calculated, in [6] a 4% cost is measured, and 

in [7] a 0.35% cost is measured, this could be due to strain differences or different concentrations of 

glucose being used. However, this method for calculating cost of invertase does not seem to accurately 

represent the reality of an invertase producing cell as it likely oversimplifies the interactions between 

environmental factors and biology that occur when growth occurs in sucrose. An invertase producing cell 

likely drives the changes of sugars in the environment as well as responds to their production when 

growing in sucrose. A cell with invertase regulation, in theory, could be continuously recalibrating 

invertase expression from changes in available glucose. A community of cooperators with the ability to 

regulate invertase may not be a homogeneous population of invertase expressors, rather some may 

cooperate and some may cheat. How regulation might affect growth dynamics has two main parts to 

explore. Is invertase regulation occurring? How does regulation affect community growth dynamics and 

composition of a cooperator-cheater community? 

Invertase regulation needs to be characterized 

The conflicting results between my model and the growth patterning I found in changing sucrose 

concentrations from chapter 4, as well as the realization that invertase regulation had been presumed to 

be constant in the public goods works that incorporated a model [1]-[8] caused me to ask new questions 

about invertase regulation. We still do not know how a population of natively-regulated invertase 

producing cells might distribute the labor of invertase expression in sucrose media–are all cells producing 

invertase at a homogenous constitutive level or could there be some heterogeneity? Perhaps some cells 
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take on the role of an active cooperator, constantly producing invertase, and a majority of cells remain 

inactive, despite genotypically being able to express invertase. There is some preliminary support from 

literature that invertase expression may be regulated. This literature focuses on utilizing industrial strains 

for invertase production in the production of biofuel relevant molecules. Nonetheless, their work suggests 

that regulation of invertase is taking place as the invertase activity of a culture grown in sucrose varies 

over time [9], [10]. 

Investigating the effect of invertase regulation necessitates a tool to measure active cooperators in 

wildtype yeast strains 

In part, it is possible that regulation of invertase expression has been understudied due to a lack of tools 

for measuring cooperation.I did not have the tools to assess if invertase regulation is taking place and 

what the impact of that regulation might have on fitness and interpreting results from competition with 

a cheater. An ideal tool would allow for the identification of cell genotypes (cooperator or cheater) and 

cell phenotypes (active vs inactive). This would permit for the quantification of population ratios, as well 

as a method for distinguishing the level of cooperation by invertase producers.  

Past public goods work has attempted to differentiate between cooperators and cheaters through the use 

of constitutively expressed fluorescent markers [1]-[4],[6],[7]. However, this does not give us phenotypic 

resolution of the invertase expression level of wildtype cooperators (expression from the pSUC2 native 

promoter). It is likely that a tool for measuring invertase expression from individual cells had not been 

developed previously due to the hurdles of tagging a secreted protein; Previous attempts to tag invertase 

had failed [11]–[13]. It is also the case that previous work was not interested in the effect of regulation, 

as discussed previously, it was treated more like a switch, expressed in the absence of glucose [1]-[7]. The 

methods in [8], [9], can only capture bulk, population level information and does not distinguish between 

the variation in active (cells producing invertase) that may be present within the population.  
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I want to show that wildtype strains are able to regulate invertase expression. I then would like to 

understand the role of invertase regulation in well-mixed and spatial environments.  In this chapter, I first 

focus on the creation of essential tools that would allow me to characterize invertase regulation. I then 

demonstrate that invertase regulation is occurring in strains that use the native promoter pSUC2, which 

includes the strains that I and my colleagues in [1]-[7] use in our work. I then compare how regulation 

affects the growth rates in glucose and sucrose by comparing the growth rates in strains that constitutively 

express invertase (pSUC2 promoter swapped with pREV or pPGK1). Finally, I demonstrate that regulation 

may not affect growth rates in sucrose media when cheaters are present in liquid cultures. However, 

regulation is important in spatially organized environments. Using the spot assay from Chapter 4 we see 

that regulated strains (pSUC2) are able to limit cheater growth and the region where growth is limited is 

larger when compared to the constitutively expressing strains pREV and pPGK1.   

Results 

Use of 2A Peptides Allows Generation of an Invertase Expression Reporter 

As mentioned previously, there are technical hurdles to creating a fluorescent reporter of invertase 

activity due to secretion mechanisms[11], [13].  To create a tool that can monitor the expression of 

invertase from individual cells without interfering with the secretion mechanism, I use 2A peptides to 

achieve bi-cistronic expression from one promoter. 2A peptides are short, virally derived sequences that 

interfere with ribosomal function. The 2A peptides contain a sequence motif of EXNPGP which causes  a 

“stop-carry on” process at the sequence [14]. At the “G-P” junction of the PGP motif the ribosome stalls, 

fails to make a peptide bond, releases the upstream peptide, and continues translation resulting in the 

production of two functional proteins [15]. The virally-derived 2A peptides have been successfully used in 

yeast for metabolic engineering [16]  and some efforts have been made to characterize different 2A 
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peptide sequences [15], [17]. There are a few reasons that 2A peptide cleavage efficiency might vary, like 

sequence and length [15]. Three 2A peptide sequences that were previously used in yeast [16], [17], were 

chosen for incorporation in the development of the bi-cistronic constructs.  

The 2A peptides are referred to throughout this chapter as ERBV1, PTV, and TAV. As a control, I also made 

a non-functional 2A peptide; ERBV1FAIL. This peptide lacked the PGP sequence of the “EXNPGP” motif, 

which should result in a non-functional fusion protein. The constructs consist of one promoter (pSUC2 or 

pZIF), the invertase gene (SUC2) at the 5’ end, followed by the 2a peptide sequence, then the fluorescent 

reporter (mCherry) (Figure 1). This organization was chosen to avoid interfering with secretory pathways 

as the secretion sequences are located on the 5’ end of the open reading frame [18]–[20]. 

I measured the cleavage efficiencies via western blot to probe for cleaved ( 27 kDA) and uncleaved 

mCherry product (88 kDA) (Figure 2) from the pZif-SUC2-2A-mCherry construct grown in the light 

(expression expected) and the dark (no expression expected). The ratio of cleaved mCherry over total 

cleaved and uncleaved product for the three peptides were compared, and, although a one-way anova 

failed to reject the null hypothesis (no significant difference between means of different 2A peptide 

cleavage efficiencies), the ERBV1 peptide was selected for continued use because it had the highest 

cleavage efficiency of the three (Figure 3). The constructs were validated to be functional via fluorescence 

microscopy (Figure 4A) and the ability for the pSUC2 strain to express mCherry in a carbon source 

concentration dependent manner as would be expected (Figure 4B). The bi-cistronic constructs from here 

on will be referred to by the promoter names for ease of legibility, ie. “pSUC2”. 

Invertase Expression is Regulated in Media Containing Sucrose as the Sole Carbon Source 

The bi-cistronic constructs with the pSUC2 was grown in 2% glucose and 2% sucrose and the resulting 

mCherry fluorescence was measured throughout a 40 hour time course (Figure 5). The expression profile 

over time for the pSUC2 promoter was different depending on the carbon source of the media. In glucose 
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media expression seemed to be constant and lower when compared to similar time point measurements 

in sucrose media (Figure 5). For comparison, a pPGK1 time course does not display regulation in a carbon 

source dependent manner (Supplemental Figure 1). In sucrose media the mCherry expression varied over 

time, reaching a peak around hour 12, and then decreasing. This is promising evidence that  cooperator 

cells with pSUC2 as a promoter can and do regulate their expression throughout growth. Cells may be 

accumulating enough freed glucose in the media to repress some invertase expression and prevent 

excess, wasteful invertase. Although yeast cannot sense available sucrose [21], [22] to tune invertase 

expression, the responsiveness of the pSUC2 promoter to the glucose concentration in the environment 

could serve as a useful mechanism for cells to tune their investment of invertase production in a dynamic 

manner.  

In order to measure how sucrose regulation affects growth dynamics such as growth rates, lag times and 

saturation I needed to make constitutive strains for comparison and be able to identify cooperators and 

cheaters.  

Growth Assays Demonstrate That Constitutive Strains Have No Significant Growth Defects  

I wanted to compare how the different cooperation strategies (regulated and low/high constitutive) 

would impact growth dynamics in glucose and whether there would be any growth defects. The 

cooperator strains (pSUC2, pREV, pPGK1) and the cheater strain (suc2Δ) were each subjected to a growth 

course over 40 hours in 2% glucose. The growth curves were plotted and fitted using the four parameter 

Gompertz equation (Figure 6A): 

𝑦 = 𝐴 × exp +− exp -!×#$%(')
)

(𝜆 − 𝑥) + 134 + 𝑁*  (1) 

The Gompertz equation is a commonly used sigmoid curve , used to fit and describe growth data [23], 

[24]. Modifications to the general form have been used to describe growth phases in microbial systems 
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[25]–[27]. From the fitted data, model parameters were extracted including: growth rate (𝜇), max 

amplitude (A), and lag time (𝜆).  

The growth rates in glucose of pSUC2, pREV, pPGK1, and suc2Δ were not significantly different from each 

other. There did not appear to be significant growth defects from invertase expression or constitutively 

producing invertase as the growth rates and lag times are comparable for all strains (Figure 6B).    

Multicolor Strains Allow Distinct Cell Populations to be Identified 

Additional bi-cistronic constructs were created with promoters characterized to give constitutive 

expression (pREV and pPGK1). These promoters were selected based on the reported level of their 

expression, low and high, respectively [28]. A fluorescent cheater cell (suc2Δ) lacking the invertase gene 

was created by incorporating an mTurquoise fluorophore. These constructs were transformed into the 

LEU2 locus on Chromosome III of yNM72 (table) and yNM73 via homologous recombination. yNM72 and 

yNM73 (Table 1), but differ in an additional constitutive fluorescent marker (mVenus). These cells could 

now be combined to make communities consisting of pSUC2 and constitutive invertase expression (pREV 

or pPGK1), or a cooperator (one of pSUC, pREV, or pPGK1) and suc2Δ (cheater)(Figure 7). This was possible 

because different combinations of fluorescent markers could be used to distinguish between cooperator 

types and between cooperators and cheaters (Figure 7B-D). I would be able to use the fluorescent 

reporters to collect information about the composition of the community (cooperators versus cheaters) 

as well as measure how the distribution of expression from the invertase reporters might vary via flow 

cytometry.  
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Regulated Strain pSUC2 Exhibits Differences in Growth Dynamics During Growth in Sucrose 

Compared to the Constitutive Cooperators  

As described in detail in the introduction, [2] was a standard setting paper for the study of public goods. 

The methodology used to determine cost of invertase expression and other parameters has been adopted 

by subsequent works related to public goods in yeast [7], [8]. The cost of invertase expression is 

determined by comparing growth rates of a cheater strain in low glucose concentrations to the growth 

rate of a cooperator strain and the differences of growth rates in these two conditions is attributed to the 

burden of expressing invertase on growth rate for those individuals. This does not seem to accurately 

represent the environments where invertase expression would be beneficial and relevant for the pSUC2 

strain. In order to compare how regulation affects growth dynamics in sucrose we repeated the growth 

curves for each of our cooperator and cheater strains this time in sucrose which should also allow 

invertase producing yeast to benefit from their expression and reflect more accurately how invertase 

expression affects growth in sucrose (Figure 8).  

Growth rates in sucrose were lower than the growth rates in glucose for each respective strain (Figure 

6B). This is to be expected, likely caused by a slow-down of growth due to the delay of converting sucrose 

into the necessary monosaccharides for growth. The growth rates in sucrose of pSUC2 decreased 

significantly and the lag times increased when compared to growth rates in glucose which might 

demonstrate the additional burden that the pSUC strain has when tasked with making invertase. Another 

interesting observation is the growth dynamics in sucrose of  the constitutive cooperator strain pPGK1 

(Figure 8 A-B). The growth rate for this strain is significantly lower in sucrose. It is possible that, while the 

strain benefitted from a smaller lag in growth due to high constitutive expression of invertase, that same 

high expression was burdensome to the cells. Invertase expression perhaps has a saturating effect, where 

more invertase does not result in faster conversion of sucrose into monosaccharides, and so does not 

contribute to increasing the growth rate. However, constitutive high expression permitted this strain to 
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begin growth sooner, likely due to higher total invertase activity from the same number of cells.  Although 

the growth rate and lag times for the suc2Δ  strain are not accurately captured by the Gompertz equation 

(Supplemental Figure 15) it is worth noting that the suc2Δ  strain eventually experienced growth in 

sucrose, which we did not expect, (after a lag of ~ 20 hours). It is possible that the suc2Δ strain was able 

to use much less efficient metabolic pathways. Some yeast strains have demonstrated the ability to import 

sucrose and utilize maltase internally [29], [30].  It is also possible that other chemical processes occurred 

in the media at the time due to the heat and time, resulting in the breakdown of sucrose into necessary 

monosaccharides which could be tested in future experiments.I do not suspect contamination as the 

mTurquoise in those wells corresponded well to the growth observed in those wells which indicates the 

growth observed in those wells is due to suc2Δ.   

Growth Assays Demonstrate That Regulated Invertase Expression Allows Yeast to Follow A 

Cost-Conscious Strategy When Competing with Cheaters  

Next, I wondered how invertase regulation might impact the growth dynamics of strains when growing in 

competition with cheaters (suc2Δ). In a similar manner as the previously described growth assays a 

cooperator (either pSUC2, pREV or pPGK1) and a suc2Δ cheater were combined at equal starting ratios 

and allowed to grow for over 40 hours in either 2% glucose or 5% sucrose. The growth curves were then 

plotted and fitted using the four parameter Gompertz equation.  

It appears that pSUC2 is able to pick their investment based on glucose availability in response to glucose 

availability which is expected (Figure 9). This is observed with a difference between the glucose growth 

rate of the pSUC2 strain in competition when compared to the other cooperator-cheater pairs (Figure 

8A). The growth rate for that community was more comparable to the growth rate of individual strains 

grown in glucose and was significantly different from cooperator-cheater pairs grown in sucrose (Figure 

8A). This data suggests that the ability of pSUC2 to tune invertase expression in response to their 
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environment (glucose concentration) is favorable to constitutive expression when competing with 

cheaters. This seems to be due to the burden experienced by the constitutive strains to make 

unnecessary  invertase.  

Co-cultures in sucrose had longer lag times when compared to individual strains, which might be explained 

by a slowdown of growth due to competition for limiting monosaccharides caused by cheater presence 

(Figure 8B). An alternative explanation may be that there are similar total number of cells in these 

instances but a smaller proportion of cooperators resulting in less glucose produced in the same time 

period, which then affects when these cultures can grow. This can also help to explain the longer lag time 

and higher variability observed in the pSUC2 cooperator-cheater cultures because of the delay due to the 

time for pSUC2 to begin expressing invertase and accumulate sufficient glucose for growth.  

Weeklong Competitions  Between Cooperator-Cheater Communities Reveal That Communities 

with Regulated pSUC2 Cooperators Reach Similar Community Compositions to Communities 

with Constitutive pREV Cooperators  

The work in [2] was also one of the first to demonstrate that the Saccharomyces cerevisiae public goods 

model system could follow snowdrift game rules, as opposed to prisoner’s dilemma. In a snowdrift game, 

cooperation can be maintained at some frequency within the population. I wanted to compare how 

regulation affects the equilibrium composition of cooperator-cheater communities. [2] previously 

demonstrated that cheaters reached a steady state by the fifth day of competition following a ~23 hour 

growth-dilution cycles. These competitions found that the pSUC2-cheater composition had reached a 

majority of cheater cells (0.7) and that a relatively small fraction of pSUC2 cooperators (0.3) were 

necessary to maintain the population at steady-state. I repeated their experiments with my pSUC2 and 

constitutive strains expecting to see similar proportions for the pSUC2 co-culture and to compare the 

results to the composition of the low/high constitutive cooperator-cheater cultures. The proportions in 
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the competition experiments after 7 days of growth and dilution were the opposite of my expectations 

for the wildtype strain (pSUC2). I did not observe a steady-state equilibrium even after seven days. In 

addition the cooperators were a majority of the population (~0.67) and cheaters were a minority (~0.33) 

(Figure 10). Although, [2] and I did not use the exact same strains, my results were unexpected. The 

constitutive strains followed the same trends as pSUC2 with cooperators in the majority. pREV was more 

comparable to the fractions reached by pSUC2  (~0.69), which was expected based on their comparable 

levels of mCherry expression (Figure 7D) and similar lag times (Figure 8). pPGK1 had the highest ratios 

(~0.77) which leads me to wonder if other factors may be at play that make pPGK1 a competitive strain 

despite a perceived burden from high expression of invertase. If cells are able to break down more sucrose 

locally (due to more invertase per cell), perhaps other characteristics such as glucose capture efficiencies 

would be affected and would need to be measured. 

The Ratio Reached by Regulated Strain pSUC2 in Weeklong Competitions Between Cooperators 

Depends on the Cooperator Pairing  

In the growth assays of cooperator-cheater pairs I demonstrated that regulated invertase expression 

allows yeast to follow a cost-conscious strategy when competing with cheaters. Specifically, that 

regulation allowed pSUC2 to not express invertase unnecessarily when growing with cheaters in glucose 

which resulted in higher growth rates for these cultures. I wanted to compare how  the composition of 

communities for competing cooperators might be affected by the ability of  pSUC2 to regulate expression 

in response to glucose.  I expected that a pSUC2 strain might be able to take the “rare strategy” in 

competition and in the presence of obligate cooperators would be able to cheat like an obligate cheater 

(suc2Δ).  This expectation is based on previous theories that the Saccharomyces cerevisiae public goods 

cooperation follows snowdrift game rules [2] although, it has not been demonstrated experimentally. In 

this case, I expected to see the pSUC2 strain able to reach proportions that the suc2Δ reached in the 



 

 

115 

previous set of experiments (Figure 10A). This seemed to be the case. When the high constitutive 

cooperator (pPGK1) was present in competition with the regulated pSUC2, the “cooperator” pPGK1  was 

in the majority after a week of growth (~0.67). As was the case in the previous section, the pSUC2 and 

pREV cooperators seem to be fairly comparable to each other. Their competition  reached an equilibrium 

ratio closer to that of the starting ratio (50:50), with pSUC2 having a slightly higher proportion (~0.54) 

(Figure 10B). This increase when compared to the ratio of the suc2Δ strain in the pREV-suc2Δ community 

could be explained with it being beneficial for pSUC2 to be a cooperator with the benefit of   pREV 

providing constitutive (but low) cooperativity from expression of invertase.  

Interestingly, pPGK1 was also a better performer  (~0.69) when competing with the other constitutive 

cooperator pREV. This may be further support that higher expression of invertase resulted in an 

unexpected trait improvement, such as, preferential glucose access.  

Invertase Regulation Limits Cheater Growth in Spatially Organized Environments 

Previously, we described the spot assay, this was a method to compete cooperators and cheaters (suc2Δ) 

in a spatially structured way [1]( also see,chapter 3). The growth of the cells would result in a characteristic 

bullseye pattern with variations in the density and distances of the regions (refer to Figure 5 in chapter 

3). These regions were:  “spot”, where cooperators were placed on the plate, a “ring” of more dense 

growth located at a distance from the spot, and a “valley” which described the region in-between the spot 

and the ring, with less dense growth (Figure 11).  I wanted to repeat these experiments with the addition 

of the constitutive cooperators. How would the absence of regulation impact the pattern’s features? I 

wondered if the ability to regulate invertase by pSUC2 would be a beneficial trait when the environment 

for competition was spatially structured since pSUC2 may be able to concentrate local glucose 

concentrations and limit nearby cheater growth. 
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Qualitatively there are some clear differences in the bullseye pattern and density of growth in those 

regions between each of the cooperators (Figure 11A). I used an improved version of the custom matlab 

script  to analyze the images and identify the regions on the plate (Figure 11 B-C).  The average lengths of 

these features (measured from the center of the plate) as well as the intensities were quantified (Figure 

12). 

There does appear to be a benefit to regulation of invertase in spatially structured environments. 

However, it is necessary to compare both the distances of the features as well as the densities of those 

regions together to form a complete picture. The growth inhibition zone [1] (ie. valley)  was affected by 

the type and levels of cooperation in a cooperator dependent manner. It would appear that pPGK1 is able 

to have a larger growth inhibition zone and may be better in limiting cheater growth followed by pSUC2 

then pREV (Figure 12 A). This is not the case, when the intensity information is incorporated into the 

interpretation of this data. The regulated cooperator pSUC2 had less dense growth in both the ring and 

valley region than pPGK1 and pREV (Figure 12 B). pSUC2 also had a longer valley region than pREV. 

Combining the information from these measurements (length and density) supports my original 

hypothesis that regulation of invertase is advantageous when competing in a spatially structured 

environments. The regulation of invertase may allow pSUC2 strains to create an environment where 

nearby cheater growth is limited, in addition to limiting total cheater growth. In spatially structured 

environments due to the differences in diffusion and segregation of the cells, regulation may result in 

higher local concentrations of glucose, which in response would result in reduced expression of invertase. 

This would limit the rate of sucrose conversion and the availability of glucose for nearby cheater cells. The 

co-localization of regulated cooperators at the spot would provide preferential access to glucose and 

other limiting nutrients, as was discussed in chapter 4, as it would for the other cooperators. A preliminary 

experiment where the method for spatial organization of cooperators and cheaters resulted in individual 

colonies serves as additional support for this hypothesis. The distances between cooperator colonies and 
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cheater (suc2Δ) colonies were slightly longer when compared to pPGK1 (Figure 13), although more 

validation and replicates are necessary for this experiment.  

In addition, the pSUC2 benefits from the ability to regulate in response to environmental glucose 

potentially explaining the differences we see with the constitutive cooperator strains as they are not able 

to pause or reduce their cooperativity (in other words their invertase expression). pPGK1 for example,  is 

able to grow without much of a lag on sucrose media (Figure 8B). The high constitutive expression paired 

with the short lag is likely able to support faster growth of nearby cheaters and results in more total 

growth of cheaters and support cheater growth at larger distances. pREV supports more growth than the 

pSUC2 and pPGK1 and at shorter distances. I believe pREV has two hindrances in a spatial environment, 

it grows slower (Figure 8B) when transferred to sucrose, so it does not use limiting resources quickly, and 

it also provides glucose constantly rather than in a regulated manner.  In conclusion, it appears to be 

beneficial to regulate expression of invertase in a spatially structured environment when compared to 

constitutive expression. 

Discussion 

I demonstrated that the wildtype promoter, pSUC2, results in regulation of invertase expression during 

growth in sucrose (Figure 5). This was possible because our invertase reporter allowed us to identify active 

cooperators in a population by measuring mCherry fluorescence. This is an exciting result as previous 

public goods work had not considered regulation as a property that cooperators could tune during growth 

or competition. Rather the cost of producing invertase was represented as a constant property when 

competing with cheaters [2], [6], [7], [31] (also see Chapter 1, Table 1). I was also able to visualize invertase 

expression more quickly and more directly than measuring the invertase activity of a population as 

previous works had done [9], [10] .  
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When is regulation beneficial? One clear advantage to invertase regulation was observed in the spot assay 

competitions (Figure 11A, 12). pSUC2 fared better in terms of creating a clearance zone, where less cheat 

growth was supported, and in terms of supporting less cheat growth throughout the plate. Regulation is 

likely to benefit from the spatial environment because cooperators are able to benefit from co-

localization, this has been observed in a previous work where clumps of cooperators were able to 

outcompete cheaters in well-mixed environments [7]. In addition, the unique properties of a spatial 

environment might favor regulation such as differences in diffusion, organization of cells and the ability 

to tune invertase expression in response to local glucose concentrations. The properties of a spatial 

environment and their effects on microbial communities are explored in chapter 4 and across several 

works involving  experimental systems and theory [8], [31]–[36]. There is a small caveat to consider when 

interpreting the results from the plate images. Intensity is not a direct proxy for growth, it is more of an 

approximation. In the future it may be necessary to develop more quantitative methods if warranted 

(absolute cell counts, for example). It might also be interesting to incorporate invertase regulation into 

the model described in chapter 4 and see how the results align with the experimental conditions tested 

here, but this was outside the scope of the questions we seeked to answer in this chapter. 

Regulation had some small effects on growth dynamics. In alignment with our expectations, being able to 

“turn off” the burden of invertase expression in glucose media when co-cultured with cheaters was 

advantageous for the growth rates of the population (Figure 9A). The growth rate in this co-culture case 

was remarkably similar to individual strains grown in glucose (Figure 6B). Besides the longer lag observed 

in the sucrose competition assay (Figure 9B), due to the delay in expression and accumulation of invertase, 

regulation did not appear to have any discernible advantages or disadvantages in well-mixed 

environments. It would be interesting for future work to explore how the growth dynamics of these 

competitions would change for the regulated strain when being transferred directly from growth in 
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sucrose or other glucose poor conditions. I might expect that this would affect the ability of the population 

to begin growth sooner. 

I was able to explore how community composition might be affected by regulation (Figure 10). My 

approach to identifying cooperators and differentiating between cooperator types and cheaters made 

that possible (Figure 7). Although the composition of my communities after seven days did not agree with 

past works [2], [3] I did observe some interesting trends. The composition of the regulated communities 

seemed more comparable to the fractions reached by the pREV cooperator and suc2Δ when competing 

with the pPGK1 cooperator. This was in agreement with my expectations that pREV and pSUC2 exhibited 

similar mCherry expression levels, and that pSUC2 may behave more like a cheater when co-cultured with 

another cooperator. Additionally, when pREV and pSUC2 were in competition they were able maintain a 

more even composition.   

I did not expect the high constitutive cooperator (pPGK1) to fare as well as it did. In well-mixed conditions 

it seemed to have an advantage over other cooperation styles, both when competing with cheaters and 

other cooperators (Figure 10). One possibility, is that high expression of invertase improved the ability of 

pPGK1 to capture more released glucose, and grow better. [37] hypothesized that to utilize a scarce public 

good this might be a strategy that yeast would evolve.  This was one of the strategies that was evolved, 

other strategies included increased expression of hexose importer proteins, or became clumpier [37]. 

Future work would benefit from measuring the properties of the three cooperator strains, that being 

invertase activity, glucose capture efficiencies to understand why increased invertase expression seemed 

so beneficial to the cooperator in well-mixed conditions. The invertase activity could be measured through 

the use of commercially available kits to measure invertase activity (Abcam cat# 197005). Glucose capture 

efficiencies for each cooperator could be measured using methods like the one used here [2]. 

The work presented here gives us a small sampling of the ways that invertase regulation might affect 

cooperativity in different environments. More work is needed to understand when regulation is beneficial, 
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here pSUC2 strains were growing in glucose before transferring in sucrose. It is possible that the outcomes 

in population would have looked different if the population of cooperators-cheaters had active 

cooperators when the competition began. The methods developed here would allow for a deeper 

investigation on other properties of invertase regulation like  the ability to form a nutrient memory. The 

galactose pathway is another regulated system for the use of alternative carbon sources (galactose). 

Previous work has demonstrated interesting behavior in this pathway’s ability to anticipate nutrient 

changes in the environment [38], [39]. Interesting questions abound regarding the effects and 

mechanisms of invertase regulation. It is exciting to think about the works to come. 

Methods 

Yeast Strains and Culture Methods 

Yeast strains used in this study are shown in Table 1. Yeast transformation was accomplished using 

standard lithium-acetate transformation. For integrating plasmids, the integration was validated using 

either colony PCR or, when colony PCR proved difficult, by PCR of genomic DNA. Genomic DNA was 

extracted using the Bust n’ Grab protocol. Primers used for constructing the 2A peptide sequences are 

listed in Table 2.  All transformants were checked for the petite phenotype by growth on YEP-glycerol (1% 

w/v Bacto-yeast extract-BD Biosciences 212750, 2% w/v Bacto-peptone-BD Biosciences 211677, 3% [v/v] 

glycerol-Fisher Bioreagents BP229-1, 2% w/v Bacto-agar-BD Biosciences #214030)[22]. Only strains 

deemed respiration competent by growth on YEP-glycerol were used for subsequent analysis.  

Yeast cultures were grown in Synthetic Complete (SC) media (6.7 g/L Yeast Nitrogen Base without amino 

acids-DOT Scientific, 1% v/v KS amino acid supplement without appropriate amino acids).The carbon 

source supplied was either dextrose (D)  at 2% v/v  (unless otherwise indicated) or sucrose (SUC) at 2%,  or 

5% v/v concentration (unless otherwise indicated).  
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Blue light induction of yeast cultures in liquid media 

 
For blue light induction experiments were grown in 24 well plates (Arctic White, #AWLS-303008 ) and 

placed on a light plate apparatus (LPA) [40]. The light output of all light sources was measured and 

validated with a standard photodiode power sensor (Thorlabs, #S120VC) and power meter (Thorlabs, 

#PM100D). All cultures were grown in a 30° incubator with agitation. Biological replicates were picked 

from a single colony on a YPD plate and transferred to YPD media. The cells were grown to saturation in 

the dark. 1.5 mL of the saturated cultures were pelleted by centrifuge  (Eppendorf, #EP5401000137), 

washed twice and resuspended in sterile MilliQ water to wash out residual media. The yeast cultures were 

diluted to an OD600 of 0.05  in SC-SUC and divided into 12 wells of a 24 well plate for a total culture 

volume of 2mL. A glass bead (Fisher Scientific, #11- 312B 4mm) was placed in each well to increase 

aeration and a breathable sealing membrane  was used to cover the top of the plate (USA Scientific 

,#9123-6100).  

Western Blots 

A standard western blot protocol was followed, with details following closely to the protocol located here 

[41]. Preparation of protein extract followed standard NaOH protocols. Whole cell lysate samples were 

thawed on ice then spun down at 1320 RPM for 5 minutes. The samples were loaded on a 4-12% Bis-tris 

gel and run for about an hour, until the dye front began to run out. The gel was transferred onto a PDMS 

blot. The iBlot2 Dry blotting system was used to transfer on the blot. Probe: Anti-mcherry antibody 

ab167453 (Abcam). Imaging: Diluted imaging substrate by 1:10, incubated blot for 5 minutes before 

imaging. Blot was stored on TBST o/n then stripped  before blocking and probing for loading controls, 

beta-actin.Whole cell lysate samples were thawed on ice then spun down at 1320 RPM for 5 minutes. The 

samples were loaded on a 4-12% Bis-tris gel and run for about an hour, just until the dye front began to 

run out. To transfer the gel onto a PDMS blot the iBlot2 Dry blotting system was used. Antibodies were 

saved with 1% sodium azide and for re-use. Diluted imaging substrate by 1:10, incubated blot for 5 
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minutes before imaging. Blot was stored on TBST overnight and stripped  before blocking and probing for 

loading controls, beta-actin. 

Flow cytometry 

All mCherry fluorescence data shown was acquired with an Attune NxT flow cytometer.  Calibration of 

voltages was done using BD Sphero Rainbow beads (Thermofischer cat #556286) The mCherry data was 

acquired using a 620/15 nm filter and excitation at 561 nm. The mTurq data was acquired using a 440/50 

nm filter and excitation at 405 nm.The mVenus data was acquired using a 590/40 nm filter and excitation 

at 488 nm. All yeast samples were prepared for flow cytometry by adding 50 uL yeast culture to 150 uL 

PBS + 0.1% Tween over ice. All flow cytometry acquisitions included at least 20,000 initial events that were 

gated to remove debris and isolate single cells. Median mCherry, mTurq and mVenus fluorescence for 

each gated sample was calculated in FlowJo.  

Growth curves  

Yeast strains used in the growth curve experiments can be found in Table 1. A single colony was picked 

from a plate and inoculated into a culture tube with 5mL of YPD media. The cell was cultured overnight in 

a rotating drum at 30℃. To remove any residual glucose 1mL of  the yeast strain was pelleted,  and washed 

three times in Synthetic media without carbon or amino acids added. The yeast culture was then diluted 

to an OD600 concentration of 0.003 in either 5% sucrose or 2% glucose. 200 µL of yeast culture was 

transferred into a 96-well plate, in triplicate. To avoid edge-effects the 36 perimeter wells were filled with 

water or media blanks. The plate was transferred to the Fluent for growth. The Fluent consists of a 

Bioshakes component that regulates temperature and shakes to provide a well-mixed environment. A 

plate reader for Optical density measurements and fluorescent readings, and the robotic components and 

software to move the plate between different elements of the fluent. A custom fluent script was used to 

measure the OD600 and fluorescent channels (mCherry, mTurquoise, mVenus) every 30 minutes for the 

duration of the experiment. A custom matlab script is then used to parse out the data for 
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quantification.  Competition growth curves were performed in almost an identical manner, with the 

addition of combination of the respective strains in a 50:50 ratio by first diluting each individual culture 

to an OD600 value of 0.5 combining in equal volumes and then proceeding to dilute to the starting OD600 

of 0.003.  

Competition experiments (composition at 7 days) 

The work by [2] informed our experimental design as I wanted to be able to compare my results to this 

work, and gain new insights into invertase regulation by comparing the differences in equilibrium 

compositions with the equilibrium composition reached when the cooperation was constitutive. Yeast 

strains (can be found in Table 1) were picked from a single colony and allowed to grow in YPD overnight. 

To remove residual glucose 1mL of culture was pelleted and washed as described in the preceeding 

section. Cheater and cooperators (or cooperator and cooperator) were then combined in a 50:50 ratio 

(using OD600 measurements) and diluted to a seeding density of 0.003. These competition experiments 

were carried out in 5mL culture tubes in 5% sucrose in triplicate. A 50  µL sample was taken and diluted 

into PBS as described in the flow cytometry section. Serial dilutions of the cultures were carried out by 

diluting to the starting density of  0.003 with new media.  This process was repeated over seven days. 

Spot assay Patterning 

The spot assay was performed as previously described in chapter 3 and 4, and [1] with the corresponding 

cooperator and cheater strains listed within the chapter and listed in Table 1.  

Quantification of Plate Growth 

Radial intensity traces of patterned plates were calculated using a custom MATLAB Script, previously 

described in chapter 3, and 4. Improvements were made in the algorithm to center the image on the 

central spot which improves the measurements from the clockscan function. The spot start, ring peak and 

ring trough are found as previously described. The valley trough is a new feature which is defined as the 

point located midway between the valley trough and the ring peak height, this results in better feature 
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detection. Lastly, a greatly improved feature is the ability to use the features to measure the intensities 

directly from the images.   

Colony count assays 

Strains used in the colony count assay (pPGK1 & pSUC2, Figure 13) were grown overnight, washed, 

pelleted and resuspended in sucrose media as described in Growth assays section. The strains were 

diluted to an OD600 of 0.003 and plated onto SC-Suc agar plates. They were incubated at room 

temperature for four days and imaged on a Zeiss Axio Zoom stereoscope at the Newcomb imaging center. 

A custom matlab script was adapted and used to segment individual cells and then cells were identified 

by their fluorescent channels. Cheaters would be present in the mTurquoise image, all cells would be 

mVenus fluorescent, the corresponding absence of mTurquoise could be used to identify cooperators. 

pSUC2 mCherry fluorescence was dim, and hard to capture by the imaging modality.   pPGK1 did have 

enough signal to identify cooperators by mCherry fluorescence, but in order to maintain consistency, cells 

were identified in the former way.  
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Figure 1. Bi-cistronic expression through the use of a 2A peptide 
Graphic represents the bi-cistronic expression process using a 2A peptide to create an invertase reporter 

The DNA construct includes the desired promoter followed by the invertase gene (SUC2), the 2A peptide 

and mCherry (reporter of invertase). During translation the ribosome is demonstrated moving along the 

DNA sequence, upon reaching the 2A peptide the upstream sequence is released by the ribosome and 

translation continues. This results in the production of 2 function proteins from one promoter. 

 
Figure 2. Probing for cleaved mCherry on a Western blot can be used to quantify cleavage efficiencies  
Cleavage efficiencies of 2A peptides are measured by probing for mCherry via western blot 
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The construct pZIF-SUC2-2A-mCherry-tADH1 was made with the 2A peptide being: ERBV1, TAV, and, 

PTV.Cells were induced with constant light, or darkness. Whole cell lysates were probed for mCherry and 

𝛽-actin as a control. There is significant expression from the functional 2A peptides and controls in the 

light conditions. 

 
Figure 3. Cleavage efficiencies for three 2A peptides 
The 2A peptide ERBV1 had the highest cleavage efficiency 

Westerns were imaged and quantified via densitometry. The bar graph represents the mean cleavage 

efficiency of three biological replicates and the standard deviation. No significant differences in the means 

were detected using a one-way ANOVA. ERBV1 was the selected 2A peptide due to higher cleavage 

efficiencies of the three.   
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Figure 4. The ERBV1 2A peptide retains expected functions 
A.The pZIF construct was grown in the light and dark to test for light-dependent expression of mCherry. 

The fluorescence microscopy images demonstrate similar fluorescent levels to a construct that does not 

incorporate the 2A peptide. The ERBV1FAIL peptide is not functional and the low fluorescence detectable 

seems to be compartmentalized within the cell. B. The pSUC2 strain demonstrates responsive expression 

levels in different concentrations of media, which would be expected from a regulated strain. 

 

 
 
Figure 5. pSUC2 yeast regulates invertase during growth in sucrose 
The median mCherry fluorescence serves as a reporter of regulation at the pSUC2 promoter in response 

to the breakdown of sucrose into glucose and fructose. The mCherry expression does not change 

dramatically over time in the glucose condition. In contrast, mCherry expression displays a peak, and then 

a decrease. The starting time point (Time = 0 hrs) is a sample of the overnight culture. Data points 

represent 3 replicates and the error bars represent the coefficient of variation (CV).   



 

 

130 

 
 
Figure 6. Strains expressing constitutive invertase do not display growth defects during growth in 
glucose  
A. Each strain was grown in glucose for over 40 hours with OD600 measurements every half hour. The 

growth dynamics are similar to each other. The data points represent three replicates for each strain with 

the Gompertz curve overlaid for each replicate. B. Growth rates and lag times are not significantly 

different between the regulated pSUC2 promoter, the suc2Δ, and the two constitutive promoters pREV 

and pPGK1. A one-way analysis of variance failed to reject the null hypothesis. 
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Figure 7. Multicolor strains allow cell populations to be distinguished from one another in a community 
A. Diagram of the available fluorescent reporter combinations for the cooperator and cheaters. Cheaters 

can be distinguished by a constitutively expressed mTurquoise marker. Active cooperators can be 

identified through expression of an mCherry reporter. Each of these options could have an additional 

constitutive venus reporter. Allowing us to distinguish between cooperator types as well. B. 

Representative gating to identify a community composed of a cheater (suc2Δ) and a low constitutive 

cooperator (pREV).  C. Representative gating to identify a community composed of a cheater (suc2Δ) and 

a strong constitutive cooperator (pPGK1).  D. Representative gating to identify a community composed of 

a regulated cooperator (pSUC2)  and a low constitutive cooperator (pREV) through an additional mVenus 

reporter.   
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Figure 8.  
Growth dynamics of cooperators and cheaters differ in sucrose 

A. pREV had the highest growth rate in sucrose of the cooperators. Statistically these differences were not 

identified as significant as a one-way analysis of variance failed to reject the null hypothesis. The cheater 

grew in sucrose after a long time but the Gompertz fitted equation was not able to fit the growth dynamics 

of the cheater well, see supplemental figure 2.  B. pPGK1 had a shorter lag time when grown in sucrose 

presumably because expressing invertase strongly helped this strain grow immediately upon transfer. The 

pREV strain demonstrated the longest lag times, followed by pSUC2. A one way analysis of variance 

(ANOVA) failed to reject the null hypothesis when comparing lag times in sucrose between cooperators. 

Cheater (suc2Δ) growth was not able to be captured by the Gompertz equation. 
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Figure 9. Regulation of invertase allows pSUC2 to pick and tune their investment based on glucose 
availability 
A. The growth rates in competition experiments for growth in glucose and sucrose demonstrate that the 

population with  pSUC2 is able to maintain a higher growth rate due to pSUC2 not investing in the 

production of invertase. When invertase is expressed by pSUC2 (growing in sucrose) the population has a 

similar growth rate to the population with pPGK1 as the cooperator. Bars represent the average of three 

replicates and error bars are standard deviation.  B. Populations with regulated invertase (pSUC2) 

experienced longer lag times and more variation between replicates. Bars represent the average of three 

replicates and error bars represent the standard deviation. 
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Figure 10.  
Communities with regulated invertase (pSUC2) reached similar compositions to communities with low 

constitutive cooperators (pREV)  

A. Composition of cooperator-cheater communities after seven days of competition. Cooperators were 

the majority. Communities with the high constitutive cooperator pPGK1 were composed of a large fraction 

(0.77) of cooperators, pPGK1 outperformed the other cooperators in competition. Communities with 
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pREV and pSUC2  reached similar fractions (~0.69 and 0.67 respectively).  Bars represent the average of 

three replicates and error bars represent the coefficient of variation (CV). 

 

 
Figure 11.  
Bullseye patterning of spatially structured communities and feature detection  

A. Representative images of the bullseye patterning for each of the cooperator types spotted in the middle 

and the cheater (suc2Δ ) spread as a lawn. Feature differences are noticeable between cooperators. The 

ring is largest on pPGK1, followed by pSUC2 and pREV. Some density differences are detectable by eye as 

well. B. Feature identification is overlaid on the plate. The red circle is the spot feature. The green line is 

the ring start (also valley end). The magenta line is the ring end. B. The custom MATLAB script performs a 

clockscan of the image and is used to identify features. The output of this analysis is displayed. 
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Figure 12.  
Comparison of feature lengths and intensities between regulated and constitutive cooperators 

A. Lengths of plate features are displayed for each cooperator-cheater pair. Lengths are measured from 

the center of the plate to the corresponding feature. The lengths of the valley (ring start) and length of 

the ring in increasing order for the cooperators is pREV, pSUC2, then pPGK1.  Bars represent the average 

of three replicates and error bars represent the standard deviation. B. Intensities for plate features are 

directly calculated from the images. Notably the regulated cooperator (pSUC2) had lower intensities in 

the valley and ring features than the constitutive cooperators correlating with limiting cheater growth. 

Bars represent the average of three replicates and error bars represent the standard deviation. 
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Figure 13. Preliminary colony count experiment supports spot assay finding that regulation of 
cooperation can limit cheater growth in spatially organized environments 
Distances from cooperator colony to the nearest neighbor were measured and averaged. Overall, 

regulated strains (pSUC2) appeared to have larger distances to their nearest neighbor be that cheater or 

cooperator.  Box plot demonstrates the interquartile range and outliers of four images of regions within 

a plate. 

 

 
Supplemental Figure 1. 
Expression from pPGK1 did not display regulation in sucrose 



 

 

138 

Expression from the constitutive promoter pPGK1 was strong, as expected, and did not have significantly 

increased expression profiles when comparing similar time points for growth in sucrose (Figure 5). The 

expression for pPGK1 at hours 24,27,and 40 were significantly higher from the expression at earlier time 

points. Additionally, the expression from pPGK1 was slightly higher in glucose than sucrose. Although [28] 

found consistent expression from pPGK1 from two fluorescent markers, it is possible that pPGK1 is not 

entirely a consistently consititutive promoter. Data [42] shows an increase in expression over 24 hours 

with each time point (6,12,24 hours) showing significant increases in expression over growth to reach 

maximum expression. Other works also show that pPGK1 expression can be affected by different media 

conditions or could be affected by different stressors [43], [44].  

 
 
Supplemental Figure 2.  
Additional growth curves display additional cooperators do not differ from the pSUC2 cooperator (116) 

and a poor fit of the Gompertz equation for cheaters 

Growth curves of additional cooperators used in cooperator versus cooperator competitions to measure 

composition after seven days. The data points represent the three replicates and the Gompertz fitted 
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curve for each of those replicates. The very slow, non-typical growth of the cheater (95) is likely a 

contributor to the poor fit of the Gompertz model. 

 
Table 1.  
Yeast Strains 
 

Strain 
alias 

Genotype Strain Referred in 
Chapter 

yNM72 

MATalpha his3Δ1 leu2Δ0 lys2Δ0 suc2Δ::KanMX 
ura3Δ0::pNM52(ura3 5'/3' homology, URA3, pRL18B-Cry/CIB, pTEF-
Venus-tADH1) 

BY4742 yNM72 

yNM73 
MATalpha his3Δ1 leu2Δ0 lys2Δ0 suc2Δ::KanMX 
ura3Δ0::pMM458(ura3 5'/3' homology, URA3, pRL18B-
Cry/CIB,EMPTY ) 

BY4742 yNM73 

yNMM82 MATalpha his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0 suc2Δ::KanMX , , pSuc-
mCherry-tADH1 BY4742  

yNMM85 MATalpha his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0 suc2Δ::KanMX, integrated 
pNM46, pSuc-mCherry-tADH1 BY4742  

yNMM 95 MATalpha his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0 suc2Δ::KanMX integrated 
pNM50 #2,Leu2 5'/3' homology, LEU2, pPGK1-mTurq-tADH1 BY4742 Cheater 

yNMM 96 MATalpha his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0 suc2Δ::KanMX integrated 
pNM 50 #2,Leu2 5'/3' homology, LEU2, pPGK1-mTurq-tADH1 BY4742  

yNMM 98 MATalpha his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0 suc2Δ::KanMX, integrated 
pMM494 #9 BY4742  

yNMM 
114 

MATalpha his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0 suc2Δ::KanMX, integrated 
plasmid: pNM 79 pSuc-SUC-ERBV1 BY4742  

yNMM 
116 

MATalpha his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0 suc2Δ::KanMX integrated 
plasmid: pNM 79 pSuc-SUC-ERBV1-mCherry, BY4742 pSUC2 

yNMM 
120 

MATalpha his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0 suc2Δ::KanMX integrated 
plasmid: pNM 74 pPGK1-SUC-ERBV1-mCherry BY4742 *pPGK1 

yNMM 
124 

MATalpha his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0 suc2Δ::KanMX integrated 
plasmid: pNM80 pREV-suc-ERBV1-mCherry, BY4742 *pREV 

yNMM 
128 

MATalpha his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0 suc2Δ::KanMX, integrated 
plasmid: pNM80 pREV-SUC-ERBV1-mCherry, BY4742 pREV 

yNMM 
135 

MATalpha his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0 suc2Δ::KanMX, integrated 
plasmid: pNM74 pPGK1-SUC-ERBV1-mcherry BY4742 pPGK1 

Table 2.  
Plasmids 

Plasmid 
name 

Selection 
marker 

Yeast genes 

pNM7 carb contains the 2A plasmid pSuc-TAV-mcherry-tADH1 and selection with LEU 
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pNM8 carb contains the 2A plasmid pSuc-ERBV1FAIL --mCherry-tADH1 and selection 
with LEU 

pNM11 carb pSuc-mCherry-tADH1 reporter plasmid. LEU selection 

pNM12 carb pZif-mCherry-tADH1 reporter plasmid. LEU selection 

pNM13 carb pZif-SUC-PTV-mCherry-tADH1. LEU selection 

pNM14 carb pZif-SUC-ERBV1-mCherry-tADH1. LEU selection 

pNM15 carb pZif-SUC-TAV-mCherry-tADH1. LEU selection 

pNM16 carb pZif-SUC-ERBV1FAIL-mCherry-tADH1. LEU selection 

pNM23 Kan pZif-SUC-ERBV1-mCherry-tADH1. LEU integration selection. Leu2 5' 
homology-ConLS-sfGFP dropout-Con1-LEU2-Leu2 3' homology 

pNM33 Kan pSuc-suc-ERBV1-mCherry-tADH1.  

pNM45 Kan pSuc-mCherry-tADH1. Backbone pMM494. #1 

pNM50 Kan Leu2 5'/3' homology, LEU2, pPGK1-mTurq-tADH1 

pNM74 Kan pNM23 w/ promoter pPGK1  

pNM80 Kan pREV w/ pnm23  

pNM57 Kan pREV-suc-tadh1 

pNM59 Kan pREV1-SUC-ERBV1-mCherry-tADH1  

pNM60 Kan pPGK1-SUC-ERBV1-mCherry-tADH1  

pNM61 Kan pPGK1-SUC-ERBV1-mCherry-tADH1  

pNM62 Kan pPGK1-SUC-ERBV1-mCherry-tADH1  

pNM63 Kan pREV-mCherry-tADH1 

pNM64 Kan pPGK1-mCherry-tADH1 
Table 2. 
 Plasmids 

Oligo 
name 

Sequence Function 

oMM1607 GCCAATTTCAACAAAGAAAAATTAGTAGCACCACCAGATTTTACTTCCCTTACTTGGAAC Invertase 
gene and 
part of 
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the ERBV1 
2A 
peptide 
sequence 

oMM1608 TGTTGAAATTGGCTGGTGATGTTGAATTGAATCCAGGTCCAatggtgagcaagggcgagg mCherry 
and part 
of the 
ERBV1 2A 
peptide 
sequence 

oMM1609 gctctagaactagtggatcccccgggctgcaggaattccggtagaggtgtggtcaataag The ADH1 
promoter 
and 
pMM8 
backbone 

oMM1610 TCACCAGCTTGTTTCAACAAAGAAAAATTAGTAGCTTTTACTTCCCTTACTTGGAACTTG Invertase 
gene and 
part of 
the PTV 
2A 
peptide 
sequence 

oMM1611 TTGAAACAAGCTGGTGATGTTGAAGAAAATCCAGGTCCAatggtgagcaagggcgaggag mCherry 
and part 
of the PTV 
2A 
peptide 
sequence 

oMM1612 TCAACATCACCACAAGTCAACAAAGAACCTCTACCTTCTTTTACTTCCCTTACTTGGAAC Invertase 
gene and 
part of 
the TAV 
2A 
peptide 
sequence 

oMM1613 CTTTGTTGACTTGTGGTGATGTTGAAGAAAATCCAGGTCCAatggtgagcaagggcgagg mCherry 
and part 
of the TAV 
2A 
peptide 
sequence 
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oMM1614 GCCAATTTCAACAAAGAAAAATTAGTAGCACCACCAGATTTTACTTCCCTTACTTGGAAC Invertase 
gene and 
part of 
the 
ERBV1  2A 
peptide 
sequence 
(with the 
consensus 
NPG-P 
deleted). 
So that 
this 2A 
peptide 
sequence 
does not 
work 

oMM1615 AATTTTTCTTTGTTGAAATTGGCTGGTGATGTTGAATTGatggtgagcaagggcgaggag mCherry 
and part 
of the 
ERBV1  2A 
peptide 
sequence 
(with the 
consensus 
NPG-P 
deleted). 
So that 
this 2A 
peptide 
sequence 
does not 
work.  
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 Chapter 6: Conclusions and Future directions 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
Neydis Moreno Morales wrote the chapter.  
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Introduction 

The primary focus of my thesis was to examine the role of invertase regulation in the public goods 

community of Saccharomyces cerevisiae. Despite the popularity of this model system for investigating 

microbial cooperation and public goods utilization the role of invertase regulation had remained 

unexplored. I hypothesized that regulation could be an important factor to consider when studying 

cooperation in this model system. There were clues from cell physiology research [1], and biofuels 

production from industrial yeast strains [2] that regulation was likely. I suspected that there could be 

consequences to oversimplifying the activity of a wildtype cell  (driven by pSUC2 promoter) to that of a 

constant  “cooperator” within a mixed community including cheaters. 

Before I was able to explore the role of invertase regulation I addressed the need for tools to study 

cooperation. I first focused on developing tools that would allow me to control cooperation in the public 

goods community in  space and in time. This was largely the focus for Chapters 2 and 3. I developed tools 

to achieve spatiotemporal control of cooperation through  optogenetics. With these tools I was able to 

control cooperation in a light dependent manner, demonstrating that I could control where and when 

cooperation in a community occurred. Experiments in this chapter led to a serendipitous observation of 

the “bullseye” pattern that I hypothesized might be due to the unique properties of a spatial environment 

such as diffusion of limiting nutrients, and cellular organization. In chapter 4, I continued to explore this 

patterning and how different factors might affect the evolution of the pattern by developing a model. The 

model was able to recapitulate  and predict the patterning I observed in  different experiments involving 

growth throughout a week, different leucine concentrations, and starting densities of cheaters, or total 

cells. There was a clear disagreement between experiment and model in the case of varying sucrose 

concentrations, with a notable absence of the ring in concentrations below 40% sucrose (chapter 4, Figure 

11). This prompted me to once again take a closer look at control of cooperation, in this case how wildtype 

cells might regulate invertase production. As the cooperator strains in yeast public goods models are 
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wildtype cells with an intact invertase gene (SUC2) and an intact promoter (pSUC2), [3]–[7] (see Chapter 

1, Table 1 for more detail). In chapter 5  I demonstrated that invertase regulation was indeed taking place 

in a pSUC2 regulated population of Saccharomyces cerevisiae by tracking expression of a fluorescent 

reporter mCherry (Chapter 5, Figure 5). I also presented data that highlighted differences between 

cooperators that were constitutively expressing invertase and cooperation from regulated invertase. 

Specifically, that regulation was advantageous to limiting nearby cheater growth when competing in a 

spatially structured environment (Chapter 5).  This chapter will provide a summary of the powerful tools 

and key results from my work, as well as, contextualize my work within the field. I will also discuss the 

potential applications and limitations of my work and future directions. 

Spatiotemporal control of cooperation with optogenetics 

In chapter 2, I described the development of a new method to calibrate Light Plate Arrays (LPAs) to ensure 

reproducibility of accurate light doses delivered between individual wells of the LPA and the delivered 

light doses across LPAs. The method was successful in reducing the coefficient of variation (CV) from 12.6% 

(of an uncalibrated plate) to a CV of 0.82% for a calibrated plate. The method also generated a standard 

curve, which allows the user to correlate Iris values to irradiance values. Optogenetics has some extremely 

attractive characteristics as a method for control of gene expression over traditional chemical induction 

mainly: reduced cost, instantaneous addition and removal of inducer, and accessibility (just need an 

appropriate light source). Our method to calibrate an optogenetic tool follows a good trend to make light 

addition more standardized (irradiance measurements), higher throughput, and reproducible across 

conditions and experiments. The reproducibility and comparability between light illumination methods 

will be extremely important as the use of optogenetics continues to boom. There is consistent addition 

of  new optogenetic tools [8] [9] [10] to meet the needs of an increasing array of optogenetics applications 

to engineer microbes [11]. 
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In chapter 3, I continue developing optogenetic tools. This time, focusing on incorporation of the genetic 

elements to control public goods production in Saccharomyces cerevisiae with light. I report a method for 

assembling a light activated control of a gene of interest. I demonstrated that by placing invertase under 

light control I had the ability to control where and when cells were cooperating. When provided a 

sufficient light dose (~5.7 uW/cm^2) yeast were able to grow and saturate at similar levels as the levels 

observed for the wildtype control strain (pSUC2) after 24 and 48 hours during growth on sucrose. Even 

with smaller doses of light the optogenetic strain could reach saturation given a longer time (48 hours). 

The properties of the light inducible promoter (pZF(3BS)) also resulted in some growth in the dark which 

we attributed to leakiness of the promoter.  

I was also able to pattern the growth of the optogenetic yeast strain in a light-dependent way. Cells spread 

on a plate were only able to grow where light was patterned, and because of the diffusive properties of 

the public good, growth was supported at a distance from the light. This patterning also  resulted in an 

unexpected observation of the growth which I described as a “bullseye”. While there was light-localized 

growth on the plate, there also appeared to be a denser ring of growth at a distance from the spot. The 

pattern became more apparent in nutrient limited conditions, which caused me to consider how spatial 

organization of cooperators and nutrient competition could be responsible for the growth pattern. 

Exploring this patterning and developing a model  became the focus of the following chapter.     

In the future incorporation of the optogenetic strain (pZF(3BS)) in competition experiments presented in 

chapter 5 would provide an additional opportunity to understand the role of regulation on growth 

dynamics, community composition, and patterning. The optogenetic strain is able to be dynamically 

regulated by the researcher which would allow for the design and implementation of different regulation 

regimes . One option is to test the effect of different light duty cycles (1  min of light, 1 min off etc.) on 

the community properties discussed (composition, patterning).  
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Biotechnology applications of optogenetic control of cooperation 

Our system could also be useful in the development of microbial consortia control, as the pZF(3BS) strain 

could be used to develop a feedback regulated system to drive a more complex microbial consortia.  There 

is preliminary work that supports the incorporation of optogenetics for microbial consortia control [12]. 

One potential microbial consortia for our particular public goods yeast is the kombucha community where 

bacteria are dependent on yeast to breakdown sucrose in the media [13] [14]. 

This will require a more intensive quantification of the invertase expression from this strain, and would 

likely necessitate a model to inform the light regime protocol to achieve desired or optimal dynamic 

regulated expression with light. This was outside the scope of the work in chapter 5 but is nonetheless an 

interesting project for a future researcher to incorporate. 

 Indeed there seems to be a rapidly increasing interest in the use of optogenetics to control complex 

functions like flocculation [15] , creation of living materials [16](which is discussed in more detail in 

Appendix 1), and biofilm production [17]. 

The ability to control interactions within a microbial community  with spatial and temporal precision is an 

extremely powerful and covetous quality. My work has clear applications to developing the framework 

for optogenetic control of microbial consortia or to study similar cooperative behaviors by adding tunable 

control (an example of similar cooperative behaviors is discussed in Appendix 2).  

Model development for long range patterning effects in nutrient limiting environments 

As described in the previous section for optogenetic tool development I encountered an interesting 

bullseye pattern that appeared to be the result of the co-localization of cooperators in space and the 

nutrient limitations that the cells were encountering. The pattern formation was interesting due to the 

length scales over which microbial interactions seemed to have an effect on their environment (mm scale). 

As discussed in chapter 4, interactions at  the short-range (cellular distances) are often thought to be the 

relevant scales over which interactions have effects [18] [19], [20].  
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 In chapter 4 I sought to develop a model that could help explain the factors were responsible for the 

pattern formation. The model described our system with four equations: the growth of cheater cells, the 

growth of cooperator cells, and the diffusion of the limiting nutrients in our system, sucrose, glucose and 

leucine. The model was able to nicely capture the patterning observed in experiments and make some 

good predictions, for example, the effect of varying cheater density on patterning (there was none). The 

model also allowed me to tune properties of the system in silico which would not be easily achieved with 

empirical methods, these are,  the ability to tune growth rate or the sucrose conversion rate of the cells 

in the community. 

 There were some cases where the model was not as tractable, for example, when sucrose concentrations 

were varied. Some strengths of the model were the simplicity of the four equations that were able to 

recapitulate and predict some situations well. Perhaps, as was hypothesized in chapter 4, the model could 

be improved upon by incorporating equations that represented invertase regulation as a variable that 

impacts growth. This would allow us to greatly expand on the work done in chapter 5 to compare and 

contrast how regulation changed the growth and composition of a public goods community when 

compared to constitutive invertase expression.  

the model is not unique in the incorporation of  invertase expression as constant. The existing work that 

treats the public goods model in Saccharomyces cerevisiae does not often incorporate spatial organization 

if a model is proposed and further does not consider invertase regulation (see Chapter 1 Table 1). It is 

important that the field keep developing models that incorporate both spatial organization and regulatory 

properties of the system, as there is increasing evidence that where and when public goods are made is 

important for maintaining cooperativity and community stability in biological systems [20]. My work is a 

valuable contribution to the field as it combines an experimental model, with the genetic tractability to 

engineer its functions and the computational power of a model, which provides a useful framework for 

approaching similar biological systems.   
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Future work on the role of regulation in well-mixed and spatially organized environments  

In chapter 5 I found some unexpected effects on growth dynamics and composition resulting from the 

constitutive cooperator strains. I hypothesized that changing the invertase regulation in cooperators had 

unexpected consequences on other properties of the cell such as glucose capture efficiency. It would be 

informative and important to measure this and other properties such as changes to density-dependent 

growth (described as the allee effect). These properties could affect the way that the data generated by 

competitions is interpreted as well as, may influence the methodology of these experiments to control 

for potentially confounding factors. 

For example, pPGK1 had shorter lag times, and reached higher fractions when competing with other cells 

(both cheaters and cooperators) it appeared that high constitutive expression was incredibly beneficial, 

this was in well-mixed conditions where the generation of glucose would be easily diffused away, and so 

perhaps in this case having more invertase per cell changed the glucose capture efficiency that had been 

previously described for a wildtype cooperator as ~1% [4]. Benefits for high constitutive expression 

disappeared in the spot assays. Both pPGK1 and pREV supported more cheater growth when compared 

to regulated pSUC2. It was clear that spatially organized environments suited the regulated strain but 

what factors explain the results in well-mixed competitions 

If it is due to the interplay of changes in capture efficiencies and the properties of a spatial environment, 

how can we compare the capture efficiencies between well-mixed environments and spatially organized 

environments?  These are measurable in glucose, but perhaps more difficult to measure on a plate. As 

discussed previously the model developed in chapter 4 allows for the exploration of otherwise difficult to 

tune variables. Perhaps an adaptation of the model to include invertase regulation as a parameter and 

glucose capture efficiencies could greatly inform our understanding of properties not previously 

considered to affect cooperativity.  

Conclusions 
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The work presented here provides a sophisticated approach to controlling interactions in microbial 

communities and visualizing their interactions. One lesson from my work is to re-visit the frameworks 

used to study a model system carefully. With time more advanced tools and technology become available. 

For microbial systems, including the one studied here, new tools to measure, control or visualize the 

interactions between microbes. My work contributed significantly to the development of tools for this 

particular model system that can utilized by future researchers. I created a tool that allowed for precise 

spatiotemporal control of invertase expression, this meant that my tool could be used to directly drive 

cooperation in a community. I also created a model that was able to predict pattern formation for most 

of the conditions I tested, and that could be improved and adapted by others. Lastly, I found that pSUC2 

was regulated during growth in sucrose, and demonstrated when regulation could be beneficial. It will be 

exciting to see how much more we uncover about regulation of invertase in the near future due to new 

tools and new questions. 
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Appendix 1: Engineered bacteria self-organize to sense pressure  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This was previously published here, and adapted for this thesis:  

 
N. M. Morales and M. N. McClean, “Engineered bacteria self-organize to sense pressure,” Nat Biotechnol, 

vol. 35, no. 11, pp. 1045–1047, Nov. 2017, doi: 10.1038/nbt.3992. 
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Neydis Moreno Morales and Megan N. McClean wrote this news & views article. Neydis Moreno Morales 

wrote the introduction. Neydis Moreno Morales designed figure schematics and the editors adapted the 

figure. 

 

Introduction: 

My thesis work utilizes bioengineering approaches, through the combination of synthetic biology 

tools  and hardware to study biological questions. As was discussed in the Conclusions and future 

directions chapter a possible application of the powerful tools I developed could be useful to the 

development of living biomaterials. Which combine desirable properties from living organisms with the 

desirable properties of inorganic materials. My tools allowed for exquisite spatiotemporal control of 

cellular functions that could be used to pattern cells on a surface, or to drive and visualize interactions 

within a material. Thanks in part to my thesis work I developed a broad knowledge of topics including 

the intersection of synthetic biology and biomaterials which made my opinions about current work 

valuable. Here, I present a communications piece I wrote to highlight the work by Cao et al. and share 

my insights about their work and their contribution to engineering biomaterials. Cao et al. improved 

upon an existing circuit for the production of curli fibrils. Through the combination of the curli fibril 

circuit with a Lac circuit the researchers produced self-assembled, 3D patterned “buttons”. The self-

organized biological materials could then be combined with inorganic materials to create complete 

electric circuits that sense pressure with tunable characteristics. I inform the broader community of the 

contributions of this work within the existing work and look to what the future holds for living materials. 

Bacteria are engineered with pattern-generating circuits to produce self-organized materials that can 

function as pressure sensors.  

Natural systems use self-assembly of organic and inorganic materials to generate sophisticated structures. 

For example, Shewanella bacteria can form extracellular networks of arsenic-sulfide nanotubes with 
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unique electrical and photoconductive properties[1. Synthetic biology approaches can mimic these 

processes to engineer nano- and macro-structures, but thus far haven’t achieved the self-patterning 

available in nature. In this issue, Cao et al.2 engineer self-assembling dome-structures from E. coli by 

coupling production of a protein containing an inorganic interface with a pattern-forming circuit. When 

gold nanoparticles are bound to these inorganic interfaces, the composite domes can be integrated into 

simple electrical circuits and function as pressure sensors. 

Design of genetic circuits to produce specific cellular behaviors, such as oscillations in protein 

concentration or toggling between genetic states [3], [4] was achieved almost twenty years ago. More 

recently, circuits that can specify population-level behaviors have been engineered by manipulating 

secretion of signaling molecules to produce synchronous oscillations or spatial patterning in multicellular 

communities [5],[6],[7]. Genetic circuits that enable production of materials, including self-assembling 

structures such as curli fibrils, have also been reported8. By regulating the timing and distribution of inputs 

to these circuits, material properties can be tuned. When appropriate domains such as a polyhistidine tag 

are incorporated into these organic materials, the engineered materials can be bound with inorganic 

materials to create composite materials with desirable properties, such as the ability to conduct 

electricity. Patterning of these materials can be achieved by spatial manipulation of inducers, but thus far 

self-patterning has not been described.  

To generate three-dimensional self-patterning structures , Cao, et al. [2] combine a circuit they previously 

described that enables 2-D patterns6 with expression of a modified curli protein8. The circuit6 consists of a 

positive feedback loop (a mutant T7 RNA polymerase that activates its own expression) and a negative 

feedback loop based on production of the diffusible quorum-sensing molecule acyl-homoserine lactone 

(AHL)  (Figure 1). High levels of AHL drive expression of the curli protein, an extracellular amyloid material 

that forms fibrils based on self-assembly of the major secreted curli subunit CsgA and an additional subunit 

CsgB. Patterning is enabled by the interplay between temporal accumulation of AHL (which induces curli 
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expression) and gene expression capacity, which is highest towards the edge of the colony allowing 

mCherry and curli expression.  By engineering curli to contain a polyhistidine tag (6XHis) inorganic 

materials, for example, gold nanoparticles conjugated with Ni-Nitrilotriacetic acid (NTA)8 can be bound to 

the fibrils. 

 
Using inkjet printing, Cao et al.  [2] place cells onto membranes to form single colonies of E. coli that 

contain a synthetic curli-producing circuit. Expression of the spatial patterning circuit causes curli to be 

produced only in the exterior of the colony, forming domed structures after 32 hours. In contrast, cells 

that constitutively express curli but lack the patterning circuit form solid cap structures, with curli protein 

distributed throughout. The height and diameter of the curli domes can be controlled by altering the 

hydrophobicity and pore size of the membrane. The authors hypothesize that membrane properties may 

affect nutrient transport and motility of the bacterial cells. A differential-equations model developed by 

the authors was able to predict the size of domes and the distribution of curli based on the underlying 

membrane properties. 

Once structures had assembled, the bacterial colonies were fixed and labelled with gold nanoparticles to 

create a composite organic/inorganic material. Due to the distribution of the expressed curli proteins, 

gold particles were concentrated in the exterior layers of the dome. This allowed the domes, which are 

elastic, to function as pressure sensors. When two domes are pressed together distances between gold 

particles decrease allowing current to flow in a pressure-dependent manner. In contrast, caps formed 

using bacteria without the pattern-forming circuit are unable to sense pressure because the uniform 

distribution of gold particles caused a high baseline current. By varying the size of the domes, the authors 

constructed pressure sensors with varying responses. Integrating dome structures with different 

sensitivities into current-canceling or current-adding circuits created sensors that only responded to high 

pressures, or circuits that amplified low pressure signals. Finally, spatial distribution of domes enabled the 

creation of location sensors.  
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The bacterial-enabled electric circuits of Cao et al.[2] are not the first time that curli fibrils have been used 

for this purpose. An earlier study [8] used a small-molecule inducible circuit to regulate expression of CsgA-

6xHis in E. coli, with spatial patterning governed by an external gradient of inducer. It is also plausible that 

spatial and temporal patterning could be achieved using three-dimensional printing9 to control cell 

placement, or light-patterning [10], [11] to control the induction of optogenetic synthetic circuits. Instead, 

Cao, et al. utilized external cues generated by membrane properties to control colony growth and intrinsic 

curli patterning making the process of self-assembly innate. An advantage of the Cao, et al. approach is 

that the information required to grow in the final structure is contained in each individual E. coli 

cell.  Though the E. coli colonies were fixed, and therefore killed, this suggests the ability to use living 

organisms to pattern structures in response to environmental cues and growth properties of microbial 

cells. This is exciting given that a longer term aim for the biomaterials community is to produce synthetic, 

live materials with the ability to pattern, self-heal and remodel.   

Cao, et al. [2] report an important next step toward harnessing the potential of biomaterials. Building on 

this work, self-assembling complex biomaterials might comprise consortia of multiple species that contain 

different synthetic circuits. Some organisms already have specific material-generating properties (e.g., 

Shewanella or Geobacter sulfurreducens), which can produce electrically conductive pili [12]. Engineering 

these less genetically tractable organisms is difficult, owing to a lack of genetic tools. It is conceivable that 

consortia of less tractable organisms with easily engineered model organisms such as E. coli or S. cerevisiae 

could enable the engineering of more complex composite biomaterials.  

 Creating complex hybrid living biomaterials and interfacing them with traditional 

electromechanical systems will require interdisciplinary collaborations between microbiologists, 

physicists, material scientists, biochemists and electrical engineers. The future beckons for biomaterials 

research.  
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Figure 1. 
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Strategy for creating composite materials using engineered bacteria. (A) A synthetic gene circuit controls 

secretion of a modified organic material (CsgA-6xHis). CsgA is one component (along with CsgB) of the 

curli protein produced in the extracellular matrix of many bacteria. A mutant T7 RNA polymerase activates 

its own expression and expression of LuxI and LuxR. LuxI synthesizes AHL (A, green spheres) which is a 

membrane-diffusible chemical that activates LuxR. Once activated, LuxR induces expression of T7 

lysozyme, which inhibits T7RNAP. (B) Diffusion of AHL results in spatially patterned secretion of CsgA-

6xHis coincident with mCherry expressing cells. Curli fibrils are formed from the modified CsgA-6xHis and 

constitutively expressed CsgB (not shown). Cells are grown on membranes placed onto a nutrient 

reservoir. Colony formation and patterning of curli can be controlled by altering membrane properties 

such as hydrophobicity and pore size. (C) Patterned colonies are fixed and labelled with gold nanoparticles 

conjugated with a Ni-NTA group, which forms a bond with the 6x-His tag. This produces a composite 

material comprising organic (curli) and inorganic (gold) components. (D) Patterned bacterial “domes” 

function as pressure sensors. Pressure applied to the domes reduces the distance between gold particles, 

allowing electric current to flow.  
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Appendix 2: Secrete to beat the heat  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This was previously published here, and adapted for this thesis:  

 
K. R. Lauterjung, N. M. Morales, and M. N. McClean, “Secrete to beat the heat,” Nat Microbiol, vol. 
5, no. 7, pp. 883–884, Jul. 2020, doi: 10.1038/s41564-020-0748-3. 

 
Neydis Moreno Morales, Kevin Stindt, and Megan N. McClean wrote this news & views article. Neydis 

Moreno Morales wrote the introduction. Neydis Moreno Morales designed figure schematics and the 

editors adapted the figure. 
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Introduction: 

My thesis work highlighted the use of a model system in Saccharomyces cerevisiae to study the 

cooperative use of a carbon source; sucrose. As was alluded to in the Conclusions and future directions 

chapter, there are other systems with similar secretion-diffusion characteristics for which my work’s 

findings could be extrapolated to. One example of such a system may be the cooperative approach of S. 

cerevisiae to combating higher temperatures. In this comment piece, I report on another cooperative 

mechanism in yeast, the cooperative survival and growth of yeast in higher temperatures. The secretion 

of a protective molecule (glutathione) increases the habitable temperature range for the yeast 

community. Youk and Laman present a cooperative behavior whereby cells can combat the stressors of 

life in an unfriendly environment, by secretion and accumulation of glutathione. This extends the 

habitable temperature range of yeast to temperatures previously considered inhospitable. There are 

clear parallels to the model public goods system such as, the cell density dependent effects as well as 

the way that yeast continuously craft their environment throughout growth. These parallels suggest that 

the lessons learned from my thesis work could have broader implications for understanding the 

cooperative behavior of microbial communities and may help to provide a framework for studying other 

cooperative microbial systems. 

The textbook picture of microbial temperature response is this: as temperatures increase, cells 

autonomously remedy heat-induced damage in order to survive. Here, in contrast to the conventional view, 

a cooperative phenomenon is identified that allows denser populations of yeast cells to work together to 

survive high temperatures.   

Temperature is a key variable controlling microbial life. It affects growth rate, metabolism, 

morphology, and reproduction. At optimal temperatures microbes grow and reproduce happily but as 

temperature increases reactive oxygen species are produced and proteins denature leading to stress 

response, growth cessation, and death. A microbe’s relationship with temperature is characterized by 
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cardinal numbers: upper and lower limits for growth and an optimum temperature at some point between 

these two extremes. Eons of domesticating the microbe Saccharomyces cerevisiae for food and beverage 

production, and work with this yeast as a model organism, have revealed that budding yeast grows 

optimally around 35°C, and above 40°C growth ceases. Yet in this issue of Nature Microbiology, Trip and 

Youk1 discovered something unexpected. When they inoculated yeast cultures at 39°C, a transition 

temperature between habitable (~38°C) and uninhabitable (~40°C) temperatures, growth was dependent 

on the initial population density.  

Trip and Youk pushed this finding further, experimentally mapping out an entire phase diagram 

for population-level yeast growth (deterministic, random, or none) as a function of temperature and initial 

density (Fig. 1). The phase diagram indicated a key population tipping point: beyond 40.3°C all yeast 

populations go extinct. What happens leading up to the tipping point warrants attention. As the critical 

temperature is approached, dense yeast populations can still grow to their carrying capacity. However, 

less dense populations sometimes grow to carrying capacity and sometimes don’t (deemed random 

growth). More-diluted populations never grow. Transitions between these growth regimes delineate the 

boundaries of the phase diagram and are sensitive to additional stress on the yeast; yeast forced to 

constitutively overexpress a fluorescent protein have a similarly shaped phase diagram but with the phase 

boundaries and tipping point shifted to lower temperatures. The authors ruled out the appearance of 

heat-tolerant mutants or persister cells as explanations for these growth phenomena; subcultured 

survivors do not display additional heat tolerance and initial population decay rates are inconsistent with 

persisters.  

The phase diagram conflicts with the traditional autonomous view of microbial response to stress, 

where survival is decided based on each individual microbe’s response and fitness. Tripp and Youk’s 

results clearly show that yeast are better equipped to survive high temperatures when surrounded by 

more neighbors; the transition between habitable and uninhabitable temperature conditions is 
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exquisitely sensitive to density. This kind of behavior has been observed in many ecological systems that 

demonstrate cooperativity, and the various features of the phase diagram are well described in the 

dynamical systems and ecology literature2. Cooperation leads to an Allee effect, that is, at low densities 

population growth rate increases with population density3. This effect further leads to the catastrophic 

tipping point seen at 40.3°C (called a fold bifurcation) where a stable state of the system (the carrying 

capacity) merges with the unstable state indicated by the random growth region (the upper boundary of 

the no-growth phase). Once past this tipping point, the only stable state available to the system is 

extinction. Similar behavior is seen in many ecological systems4, including microbial populations that 

demonstrate cooperativity5,6. A particularly relevant example is budding yeast populations growing on 

sucrose, which they cooperatively metabolize by secreting invertase. When dilution is used to introduce 

a mortality rate, a very similar phase diagram is evident, including density dependent growth and a 

catastrophic tipping point at high dilution rates7.     

Damaging reactive oxygen species increase at high temperatures, leading Trip and Youk to 

hypothesize that glutathione, an important yeast antioxidant8,9, might be the factor responsible for 

cooperative protection. They found that glutathione accumulated in growing yeast cultures at high 

temperature. Furthermore, spent media from these cultures or high concentrations of pure glutathione 

enabled growth when added to cultures that were otherwise too dilute to grow. Analysis of genetic 

mutants in genes involved in glutathione transport and production further demonstrated that production 

and export of glutathione are essential to maintain growth at high temperatures, whereas import is not. 

This suggests that the mechanism of protection takes place in the extracellular space.  A stochastic 

mathematical model of yeast growth, where the probability of replication is nonlinearly dependent on 

extracellular glutathione concentration, predicts population growth for different initial densities and 

temperatures and fully recapitulates the experimental phase diagram.   
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The authors’ results spur a number of questions that could be examined in future research. While 

the data suggests that glutathione accumulation is necessary and sufficient for growth at high 

temperatures, it would be interesting to examine if other unidentified cooperative interactions also play 

a role. The mechanisms that allow some populations to grow in the random growth phase, but not others, 

could also be examined in the context of cell age, expression capacity, and other factors. This also might 

be an interesting model system for examining early warning signals of population collapse10, particularly 

in the context of global warming and climate change.   

On the surface, this report primarily serves to update the conventional view of how yeast combat 

heat stress. But more broadly this research challenges a view of microbial biology based on autonomous 

actors, instead adopting a systems biology frame--on par with the dynamical systems of macro ecology--

for even the simplest and most well understood features. In the simple intraspecies system examined 

here, intercellular interactions give rise to emergent population-level phenotypes. In more complex 

communities, including monospecies communities with metabolic specialization or multispecies 

communities, even more complicated interactions are possible with correspondingly difficult-to-predict 

population-level behaviors. Further experimental and theoretical research connecting measurable 

interactions with the ecology of microbial populations represents an important frontier in microbiology 

and carries myriad implications for human and environmental health.  
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Figure 1: 
 The growth of yeast populations was measured by Trip and Youk1 as a function of initial cell density and 

temperature. These conditions result in deterministic growth (blue region), random growth (green 

region), no growth (red) or no growth due to nutrient depletion (gray regions). Past a critical temperature, 

indicated by a fold-bifurcation where the stable fixed point (boundary between deterministic and 

nutrient-limited regions) and unstable fixed point (random growth region) collide, no growth is possible. 

Secretion of glutathione (green) by yeast (blue) leads to density-dependent growth at intermediate 

temperatures.  Glutathione acts as an antioxidant protecting yeast from cellular damage by reactive 

oxygen species (ROS). Too few cells results in insufficient amounts of glutathione produced and cells thus 

failing to divide (no growth/collapse).  At higher cell densities the cooperative production of glutathione 

protects yeast from heat damage and extends the habitable temperature range resulting in deterministic 

growth 
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Appendix 3: Easy calibration of the light plate apparatus for optogenetic experiments 

Supplementary methods 

 
Table 1.  
Saccharomyces cerevisiae strain information 

Lab Catalog 
No. Strain Genotype 

yMM1462 S288C 
Matα trp1Δ63 leu2Δ1 ura3-52 ura3::pRPL18B-SV40NLS_VP16_CIB1-tENO1-
pRPL18B-SV40NLS_Zif268Cry2PHR-tSSA1-Scar2-pGAL1(3Zif268BS)-mRuby2-
ScarRE-URA3 

 
Yeast Growth and Media 
For the flow cytometry experiments, we grew yeast to mid log-phase in low fluorescence media [10] in a 
shaking incubator at 30°C and 275 RPM. We aliquoted 1ml of the mid-log culture into two 24-well plates, 
which had a sterile glass bead loaded in each well to improve mixing and water loaded in the spaces 
between wells to reduce thermal isolation and evaporation. We covered each 24-well plate with a 
Breathe-Easy membrane and loaded the plates onto two LPAs mounted in a shaking incubator. We 
incubated the samples for four hours at 30°C under the described light conditions, then prepared them 
for flow cytometry. 
 
Flow cytometry 
All cell concentration and mRuby fluorescence data shown was acquired with an Attune NxT flow 
cytometer. The mRuby data was acquired using a 602/15 nm filter and excitation at 561 nm. All yeast 
samples were prepared for flow cytometry by adding 50 uL yeast culture to 150 uL PBS + 0.1% Tween over 
ice. All flow cytometry acquisitions included at least 20,000 initial events that were gated to remove debris 
and isolate single cells. Mean mRuby fluorescence for each gated sample was calculated in FlowJo.  
 
Power sensor adaptor 
We designed the power sensor adaptor in 3D Studio Max and had it 3D printed in PC-ABS using a Stratasys 
F370. The .STL file for the power meter can be found in our supplementary materials. 

Supplementary results 

 
Consistency of calibration among multiple users 
In order for our method to be useful, it should perform consistently between different users. Four 
different users calibrated the same LPA and each generated a slightly different standard curve (Fig. S4). 
The users then programmed the LPA with the Iris values needed to achieve the target irradiances of 25, 
50, 100, 200 and 300 µW/cm2, as predicted from each user’s standard curve. Though each user predicted 
slightly different Iris values, they were always able to generate light doses within 5.4% of the intended 
irradiance. This demonstrates that the calibration process is straightforward and yields consistent results 
for different users. 
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Edge effects 
We encountered strong edge effects when initially using the LPA for long (18 hour) gene induction 
experiments (Fig. S5). After mapping our flow cytometry results back onto the LPA wells from which they 
came, it was clear that mRuby expression was consistently lower in the central wells versus the peripheral 
wells. We did not see a systematic difference between central and peripheral wells in endpoint cell 
concentration measurements (Fig. S5A), which were acquired via flow cytometry when measuring mRuby 
expression. We hypothesized that a temperature difference between wells could be causing the edge 
effects or that oxygen deficits in the central wells were preventing mRuby from folding correctly. To test 
the effect of temperature differences, we induced mRuby expression by incubating yeast at 30°C for 18 
hours over two LPAs, each configured to produce a light dose of 200 µW/cm2 in every well. One of the 
LPAs had a 24-well plate in which water had been loaded in the space between wells to reduce thermal 
isolation between wells, while the other LPA had a 24-well plate with no water between the wells (Fig. 
S5B). We simultaneously tested the potential effect of an oxygen deficit between wells by sampling our 
yeast after the 18-hour light induction and splitting the samples into two groups. One group was simply 
added to PBS + 0.1% Tween, refrigerated at 4°C for 1 hour, and measured by flow cytometry. To the other 
sample we added 27.4 ng/uL cycloheximide in media to arrest protein translation, then aerated the 
samples by pipetting repeatedly before allowing the samples to incubate at room temperature for one 
hour, such that immature mRuby produced during the experiment would have time to fold in an oxygen 
rich environment. We then added these samples to PBS + 0.1% Tween and measured mRuby fluorescence 
by flow cytometry. The samples that were treated with cycloheximide and allowed to mature for an extra 
hour had no observable difference in mRuby fluorescence. While there is still a pronounced difference in 
mRuby expression between the central and peripheral wells, the inclusion of water between wells more 
than halved the coefficient of variation in mRuby fluorescence across the plate (Fig. S5C). While we were 
unable to identify the cause of these edge effects, they largely disappear when performing a shorter (4-
hour) experiment with water loaded between the wells (Fig. S5D). We caution others to check for the 
presence of edge effects with their experimental conditions. 
 
Effects of light dose on cell growth 
When comparing mRuby expression between a calibrated and uncalibrated LPA, we also acquired 
endpoint cell concentration measurements after four hours of blue light induction at a range of light doses 
(Fig. S6A). For these conditions, there appears to be no obvious systematic effect of light dose on the 
mean endpoint cell concentration (Fig. S6B). 
 
Supplementary figures 
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Figure S1.  
LPA calibration equipment both (A) unassembled and (B) in use. Depicted components include 1) a 

Thorlabs power meter, 2) an assembled LPA with diffuser sheets, 3) an Arctic White 24-well plate with a 

flat, transparent bottom, 4) a Thorlabs S120VC optical power sensor, and 5) a power sensor adapter. 
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Figure S2.  
(A) Repeated measurements of the same LED show that the intrinsic variability of the measurement 

system is low. We acquired these measurements over two days at Iris values of 500 and 4000 while 

keeping dc and gcal constant. Each bar represents the average CV for 5, 25 or 250 samples per 

measurement. The measurements were repeated five times and the error bar represents the 95% 

confidence interval. The average CV did not exceed 0.19%. Increasing the number of samples did not 

consistently cause the CV to decrease. (B) Measurements of an illuminated well and an unlit, adjacent 

well indicate there is very little crosstalk in well irradiance measurements. Even when the illuminated well 

is set to output a high light dose, the irradiance in the neighboring well is in the nW/cm2 range. 
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Figure S3.  
Figures output by “LPA_standardCurve.m”. (A) Representative standard curve image for five irradiance 

measurements at Iris values of 25, 250, 500, 1000,2000, and 4000 with the fitted line displayed. (B) 

Representative well irradiance measurements. 
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Figure S4.  
Four individuals calibrated a single LPA from default settings and generated a standard curve for their 

calibration. The individuals then measured at specific Iris values to obtain a desired target irradiance 

(circular markers). All measured irradiances were within 5.4% of the targeted irradiance.  
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Figure S5.  
(A) Mean cell concentration versus LPA well location following an 18-hour light induction experiment 

during which the administered irradiance in all wells was set to 200 µW/cm2. Data is shown for 24 well 

plates with and without water loaded in the spaces between the wells. (B) Mean mRuby fluorescence 

versus LPA well location following the same light induction experiment shows a strong edge effect. Data 

is shown for cells with and without cycloheximide treatment prior to measurement by flow cytometry. (C) 

Effect of water and cycloheximide treatments on the coefficient of variation of mRuby fluorescence over 

a plate with uniform illumination conditions. (D) Mean mRuby expression versus LPA well location 

following a 4-hour light induction experiment over a range of light doses and with water loaded in the 

spaces between the wells of the 24-well plate. No edge effects are evident under these conditions. 
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Figure S6.  
(A) Mean cell concentration versus LPA well location following a 4-hour light induction experiment over a 

range of light doses and with water loaded in the spaces between the wells of the 24-well plate. Data is 

shown for the uncalibrated LPA5 and the calibrated LPA6. (B) Plot of mean cell concentration versus light 

dose for the same experiment. There is no observable relationship between endpoint cell concentration 

and light dose; the difference between mean concentrations was not significant (p>0.05 in a one-way 

ANOVA). This suggests these light conditions are not causing a growth defect, because all wells started 

with equally concentrated aliquots of yeast culture. 
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Figure S7.  
Representative results for the calibration of another LPA (different from that of Fig. 2). (A) Heatmap of 

the irradiance measurements for each LED prior to calibration, where the mean plate irradiance was 94.4 

µW/cm2 and the CV of the LED irradiances was 7.2%. (B) Heatmap showing the irradiances of each LED 

after three rounds of calibration, which resulted in a mean plate irradiance of 83.1 µW/cm2 and a CV of 

LED irradiances of 0.94%. (C) Histogram depicts the data represented in the heatmaps in (A) and (B). 

Following calibration, the irradiance values converge to the irradiance of the dimmest LED of the 

uncalibrated plate.  
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Figure S8. 
 A standard curve for an uncalibrated LPA (triangles and line) and attempts to achieve targeted irradiance 

values based on Iris values predicted from the standard curve. All plot markers represent the mean and 

standard deviation of eight irradiance measurements. The Iris values calculated from the standard curve 

of the uncalibrated LPA resulted in irradiance measurements (circles) that missed their target irradiance 

values by up to 23.1%. 
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Figure S9.  
Irradiance measurements (µW/cm2) for three LPAs before calibration. Comparison of these measurements 

with those of the uncalibrated LPA in Fig. 1C show that differences in LED brightness prior to calibration 

does not have an obvious underlying structure related to the configuration of the LPA. In either case, 

calibration greatly reduces inter-well irradiance variability.  
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Appendix 4 : Optogenetic tools for control of public goods in Saccharomyces cerevisiae 

Supplemental Methods 

Plasmid Construction  

The plasmid carrying GAL4DBD-CRY2 loxP-KIURA3-loxP CIB1-VP16 (pMM335) was created using yeast 

homologous recombination into pMM7. The GAL4AD-CIB1 cassette was PCR amplified using primers 

oMM628 and oMM629. The primer oMM628 contains (from 5’ to 3’) homology to pMM7, an added 

XmaI site, and forward priming to pMM159. The primer oMM629 contains (5’ to 3’) homology to loxP-

KLURA3-loxP cassette and reverse priming to pMM159. The loxP-KLURA3-loxP cassette was PCR 

amplified from pMM326 with primers oMM250 and oMM251. The GAL4BD-CRY2 cassette was PCR 

amplified with primers oMM630 and oMM631. The primer oMM630 consists of homology to the 

downstream region of loxP-KLURA3-loxP and forward priming to pMM160. The primer oMM631 consists 

of homology to pMM7, an added PacI site, and reverse priming to pMM160. The ADH1 promoters and 

terminators were preserved for both CIB1 and CRY2 amplifications. XmaI and PacI restriction sites are 

not present in the final construct except for where they were included by PCR. For yeast homologous 

recombination, pMM7 was digested to completion at its unique SacI site and cotransformed with the 

three PCR products listed above into yMM1146 and plated on SC –URA-LEU for selection. Colonies were 

picked and plasmid recovered with the Zymo Yeast Plasmid Miniprep Kit. Plasmid verified by digest with 

HindIII and sequencing. To generate an integrating version (pMM337), the cassette from pMM335 

containing GAL4DBD-CRY2 loxP-KIURA3-loxP VP16-CIB1 was cloned into pMM327 between the XmaI 

and PacI cassettes.  

The plasmid containing ZDBD-CRY2PHR loxP-KIURA3-loxP CIB1-VP16 was generated using the same 

scheme as for pMM335 with the following exceptions: oMM653 replaced oMM630 to amplify the ZDBD-

CRY2PHR construct, oMM664 replaced oMM628 and contains a PacI site instead of XmaI, and oMM665 
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replaces oMM631 and contains an AscI site instead of PacI. To increase the spacing between the ZDBD-

CRY2PHR and CIB1-VP16 the resulting plasmid was linearized using BsiWI and a fragment containing the 

tetR sequence from pBR322 (amplified with oMM681/682) was ligated between CIB1-VP16 and the 

loxP-URA3-loxP cassette. The ZDBD-CRY2 loxP-KIURA3-loxP Spacer CIB1-VP16 cassette from the 

resulting plasmid (pMM364) was liberated using PacI/AscI and ligated into pMM327 to generate a 

plasmid capable of integration at the HO locus.  The plasmid (pMM359) containing Gal4AD-CIB1 loxP-

KIURA3-loxP ZDBD-CRY2PHR was generated using the same scheme as for pMM364. This plasmid was 

then cut and ligated into pMM327 as described for pMM364 and integrated into yMM1146 to make 

yMM1355 which was used with pMM369 (yMM1377) and pMM6 (yMM1378) to demonstrate light-

induced drug resistance in Supplemental Figure 2.  

The pGAL1-yEVENUS episomal reporter on a scTRP1 backbone (pMM336) was constructed by cutting 

pMM301 with PvuII and ligating into the corresponding site on pMM6.  

The pZF(3BS)-yEVENUS scTRP1 CEN reporter plasmid (pMM365) was created using yeast homologous 

recombination. The plasmid pMM287 (pZF(3BS)-yEVENUS scURA3 CEN) was digested with ApaI and co-

transformed with TRP1 amplified from pMM6 using oMM611/612 into yMM1146, selected on SC-TRP 

and recovered by plasmid prep and transformation into E. coli competent cells.  

The pZF(3BS)-NatMX construct was constructed using yeast recombinational cloning by amplifying the 

NatMX cassette from pMM129 with oMM687/688 and co-transforming with pMM365 cut with EcoIR 

and AscI into yMM1146 and selecting for TRP+ yeast. Plasmids were prepped from yeast, transformed 

into E. coli, and verified by sequencing.     

STRAIN CONSTRUCTION 

The integrated pZF(3BS)-mRUBY2 strain was generated by transforming the unrecycled optogenetic 

strain (yMM1367 Matα trp1∆63 leu2∆1 ura3-52 HO::SV40NLS-VP16-CIB1 loxP-KLURA3-loxP SV40NLS-

Zif268DBD-CRY2PHR) with pMM553 linearized at NotI to generate yMM1427.  
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The pZF(4BS)-HIS3 strain was created by swapping pGAL1-HIS3 with pZF(4BS)-HIS3 in a common yeast 

two-hybrid strain [3] using primers oMM575/576 to amplify KanMX4-pZF(4BS) from pMM299 and 

transform into yMM770. Strains were selected for G418 resistance and checked with oMM624, 625. 

The pZF(4BS)-yVENUS reporter was created by yeast recombinational cloning by digesting pMM299 with 

EcoRI, amplifying yEVENUS from pMM289 with oMM191/626 and co-transforming into yMM1146. 

Plasmids were recovered from yeast and sequenced before using with pMM159/pMM284 to assess 

expression from the pZF(4BS) promoter.  

The pZF(3BS)-yEVENUS strain was created by linearizing pMM287 at URA, removing the CEN/ARS and 

integrating into yMM1146 and selecting for URA+ transformants. 

Initial tests of the system were performed using strains (yMM1332, 1351) with integrated version of the 

GAL4DBD-CRY2/Gal4AD-CIB1 split transcription factor. Strain yMM1351 (Matα trp1∆63 leu2∆1 ura3-52 

pADH1-GAL4AD-CIB1-tADH2 loxP-KIURA3-loxP pADH1-GAL4BD-CRY2-tADH2) was generated by 

integrated pMM337 at the HO and loxing out the KIURA3 marker using pMM296 as described in the 

main text to generate yMM1332 (Matα trp1∆63 leu2∆1 ura3-52 pADH1-GAL4AD-CIB1-tADH2 loxP 

pADH1-GAL4BD-CRY2-tADH2). 

Strain yMM1367 (Matα trp1∆63 leu2∆1 ura3-52 HO::SV40NLS-VP16-CIB1 loxP-kKlURA30loxP SV40NLS-

Zif268DBD-CRY2PHR) was constructed by ligating the SV40NLS-VP16-CIB1 loxP-KlURA3-loxP SV40NLS-

Zif268DBD-CRY2PHR cassette from pMM364 into pMM327, linearizing the resulting plasmid with AatII 

and integrating at the HO locus. Appropriate integration was checked by colony PCR and by the ability of 

the resulting strain to induce blue-light expression of yEVENUS when transformed with pMM365 

(pZF(3BS)-yEVENUS). To generate yMM1390 (Matα trp1∆63 leu2∆1 ura3-52 HO::SV40NLS-VP16-CIB1 

loxP SV40NLS-Zif268DBD-CRY2PHR) we used Cre-recombinase mediated recycling to remove the KlURA3 

marker following the protocol described in the main text. The light inducible SUC2 strain (yMM1406) 

was constructed by transforming yMM1390 with the PCR product of pMM353 and oMM768/769 
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consisting of the KanMX4-pZF(3BS) cassette amplified with appropriate homology to replace the pSUC2 

promoter with pZF(3BS). Transformants were checked by colony PCR and the ability to grow on YP-

Sucrose only in blue-light.  

 
Supplemental Table 1: 

 Yeast Strains 
ID Alias Genotype Notes Source/ 

Reference 
yMM0770 Yeast2Hybrid MATa trp1-901 

leu2-3,112 ura3-52 
his3-200 gal4Δ 
gal80Δ LYS2::GAL1-
HIS3 GAL2-ADE2 
met2::GAL7-lacZ    

Yeast two-hybrid strain (HIS3 
expression) 

James , et 
al 1996 [3] 

yMM1146 DBY8750, KSY1284 Matα trp1∆63 
leu2∆1 ura3-52 

 
Botstein 
lab 

yMM1295 pZF(4BS)-scHIS3 MATa trp1-901 
leu2-3,112 ura3-52 
his3-200 gal4Δ 
gal80Δ 
LYS2::KanMX4-
pZF(4BS)-HIS3 
GAL2-ADE2 
met2::GAL7-lacZ 

HIS3 expression under pZF(4BS) This Study 

yMM1332 GAL4AD-CIB1 GAL4BD-
CRY2 

Matα trp1∆63 
leu2∆1 ura3-52 
pADH1-GAL4AD-
CIB1-tADH2 loxP 
pADH1-GAL4BD-
CRY2-tADH2 

Strain with integrated GAL4DBD -
CRY2/CIB1-AD optogenetic 
system. Marker (KIURA3) has 
been lox’d out. 

This Study 

yMM1351 yMM1146 CIB1-KLURA3-
CRY2 

Matα trp1∆63 
leu2∆1 ura3-52 
pADH1-GAL4AD-
CIB1-tADH2 loxP-
KIURA3-loxP 
pADH1-GAL4BD-
CRY2-tADH2 

Strain with integrated GAL4DBD -
CRY2/CIB1-AD optogenetic 
system. Marker (KIURA3) has not 
been lox’d out. 

This Study 

yMM1353 yMM1146_pMM287 Matα trp1∆63 
leu2∆1 
URA3::pZF(3BS)-
yEVenus 

pZF(3BS)-yEVENUS integrated This Study 

yMM1355 
 

Matα 
trp1∆63  leu2∆1 
ura3-52 
HO::GAL4AD-CIB1 
loxP-KLURA3-loxP 

 
This Study 
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FLAG(3X)-SV40NLS- 
Zif268DBD -CRYPHR 

yMM1367 yMM1146_pMM364atHO Matα trp1∆63 
leu2∆1 ura3-52 
HO::SV40NLS-VP16-
CIB1 loxP-KLURA3-
loxP SV40NLS-
Zif268DBD-
CRY2PHR 

Strain with integrated 
optogenetic system, to allow for 
induction of GOI using 
KanMXREV-pZF promoter 

An-
Adirekkun, 
et al 2020 
[3] 

yMM1377 yMM1377+pMM369 Matα 
trp1∆63  leu2∆1 
ura3-52 
HO::GAL4AD-CIB1 
loxP-KLURA3-loxP 
FLAG(3X)-SV40NLS- 
Zif268DBD -CRYPHR 
[pMM369] 

 
This Study 

yMM1378 yMM1377+pMM6 Matα 
trp1∆63  leu2∆1 
ura3-52 
HO::GAL4AD-CIB1 
loxP-KLURA3-loxP 
FLAG(3X)-SV40NLS- 
Zif268DBD -CRYPHR 
[pMM6] 

 
This Study 

yMM1390 yCS16 Matα trp1∆63 
leu2∆1 ura3-52 
HO::SV40NLS-VP16-
CIB1 loxP SV40NLS-
Zif268DBD-
CRY2PHR 

Strain with integrated 
optogenetic system 
(HO::VP16CIB1/ZFCRY2PHR) with 
marker (KLURA3) excised. To 
allow for induction of GOI using 
KanMXRev-pZF promoter.  

This Study 

yMM1406 pZF-SUC2, yCS22 Matα trp1∆63 
leu2∆1 ura3-52 
HO::SV40NLS-VP16-
CIB1 loxP SV40NLS-
Zif268DBD-
CRY2PHR KanMX-
pZF(3BS)-SUC2 

Blue-light inducible SUC2 strain This Study 

yMM1427 pZF-mRUBY2 Matα trp1∆63 
leu2∆1 ura3-52 
HO::SV40NLS-VP16-
CIB1 loxP-KLURA3-
loxP SV40NLS-
Zif268DBD-
CRY2PHR  

 
This Study 

 
Supplemental Table 2:  

Oligos used in this study 
oMM Alias Sequence Target Purpose 

(Brief) 
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oMM
0166 

rev_pGal4AD-
CIB1_check 

aagtgaacttgcggggtttt CIB1 Colony PCR 

oMM
0191 

Forward_pGAL1 GCGAAGCGATGATTTTTGAT 
  

oMM
0250 

Lox_General_for cgtacgctgcaggtcgac loxP 
cassett
e 

Amplificati
on 

oMM
0251 

Lox_General_rev cactatagggagaccggcag loxP 
cassett
e 

Amplificati
on 

oMM
0575 

revKanMX_pGAL_4x
Zif_reverse_YRC 

GTCGACGGTATCGATAAGCTTGATATCGAATTC
CTGCAGCatagttttttctccttgacg 

KanMX Amplificati
on & 
Transform
ation 

oMM
0576 

revKANMX_LYS2_for
ward 

TTCAGGTGCTGGTGCTCGTGGAAGCTCCGCAG
CAGCTTAAcgcacttaacttcgcatctg 

KanMX Amplificati
on & 
Transform
ation 

oMM
0611 

pRS_markerswap_fo
r 

CTTAACTATGCGGCATCAGA pRS 
marker 

Yeast 
recombina
tional 
cloning 

oMM
0612 

pRS_markerwap_rev CCTGATGCGGTATTTTCTCC pRS 
marker 

Yeast 
recombina
tional 
cloning 

oMM
0624 

LYS2_forward CTAGTTGCTTCAGGTGCTGG LYS2 Colony 
PCR/checki
ng 

oMM
0625 

HIS3_reverse GCCTGTTCTGCTACTGCTTC HIS3 Colony 
PCR/checki
ng 

oMM
0626 

Venus_reverse CCAGTGAGCGCGCGTAATACGACTCACTATAG
GGCGAATTaggaaacagctatgaccatg 

Venus Yeast 
recombina
tional 
cloning 

oMM
0628 

pRS_XmaI_CIB1_for
ward 

GTCGACGGTATCGATAAGCTTGATATCGAATTC
Ccccggggatggtggtacataacgaac 

pRS 
vector 

Yeast 
recombina
tional 
cloning 

oMM
0629 

loxP_CIB1_reverse ACGAAGTTATATTAAGGGTTGTCGACCTGCAGC
GTACGtggaatatgttcatagggtagg 

CIB1/lo
xP 
cassett
e 

Yeast 
recombina
tional 
cloning 

oMM
0630 

loxP_CRY2_forward AGTTATTAGGTGATATCAGATCCACTAGTGGCC
TATGCGGtccctaacatgtaggtggcg 

loxP 
cassete
/CRy2 

Yeast 
recombina
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tional 
cloning 

oMM
0631 

CRY2_pRS_PacI_reve
rse 

GATTACGCCAAGCGCGCAATTAACCCTCACTAT
TAATTAAcatgccggtagaggtgtggt 

CRY2 Yeast 
recombina
tional 
cloning 

oMM
0646 

HO-L forward_check GGGAGAACGAGTACCTGTAG HO Colony PCR 

oMM
0647 

CIB1 reverse_check CTTTGCAAAGCTTGGAGTTG CIB1 Colony PCR 

oMM
0650 

tADH2_downstream
_forward_seq 

CAGGTATAGCATGAGGTCGC tADH1 Sequencin
g/Colony 
PCR 

oMM
0651 

pMM160_upstream_
reverse_seq 

CCACCATCAATGAGGCAGTG pADH1 Sequencin
g/Colony 
PCR 

oMM
0652 

CIB1_downstream_f
or_seq 

GGCCATGTAACCTCTGATCT CIB1 Sequencin
g/Colony 
PCR 

oMM
0653 

loxP_ZCRY2_forward AGTTATTAGGTGATATCAGATCCACTAGTGGCC
TATGCGGcgatttagagcttgacgggg 

ZCRY2 Yeast 
Recombina
tional 
Cloning 

oMM
0664 

pRS_PacI_CIB1_Forw
ard 

GTCGACGGTATCGATAAGCTTGATATCGAATTT
TAATTAAgatggtggtacataacgaac 

CIB1 Yeast 
Recombina
tional 
Cloning 

oMM
0665 

CRY2-AscI-pRS 
Reverse 

GATTACGCCAAGCGCGCAATTAACCCTCACTAG
GCGCGCCcatgccggtagaggtgtggt 

CRY2 Yeast 
Recombina
tional 
Cloning 

oMM
0673 

ZF(3BS)_for CTAGACGCCCACGCTCGCCCACGCTCGCCCACG
CGC 

pMM3
47 ZFBS 

Anneal and 
ligate 

oMM
0674 

ZF(3BS)_rev GGCCGCGCGTGGGCGAGCGTGGGCGAGCGTG
GGCGT 

pMM3
47 ZFBS 

Anneal and 
ligate 

oMM
0675 

ZF(2BS)_for CTAGACGCCCACGCCGCCCACGCCCACGCGC pMM3
47 ZFBS 

Anneal and 
ligate 

oMM
0676 

ZF(2BS)_rev GGCCGCGCGTGGGCGTGGGCGGCGTGGGCGT pMM3
47 ZFBS 

Anneal and 
ligate 

oMM
0681 

BsiWI_tetR_for ggtcgtacgGCGCTCATCGTCATCCTCGG tetR Cloning 

oMM
0682 

BsiWI_tetR_rev cctcgtacgCTAGCCGGGTCCTCAACGAC tetR Cloning 

oMM
0684 

KLURA3_rev GAATCAGCGCTCCCCATTAA KIURA3 Sequencin
g/Colony 
PCR 
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oMM
0687 

NatMX_for cctctatactttaacgtcaaggagaaaaaactataaccactct
tgacgacacggcttacc 

NatMX Yeast 
recombina
tional 
cloning 

oMM
0688 

NatMX_rev atcataaatcataagaaattcgcttatttagaagtggggcagg
gcatgctcatgtagagc 

NatMX Yeast 
recombina
tional 
cloning 

oMM
0745 

Lox_check_for GTCATGCTTCAACAATGGCGA loxP Checking/c
olony PCR 

oMM
0746 

Lox_check_rev TAAGCTCATCCGAGCGAGAAA loxP Checking/c
olony PCR 

oMM
0768 

scSUC2_pZF_forward CTCAGAGAAACAAGCAAAACAAAAAGCTTTTCT
TTTCACTaacaaaagctggagctgcat 

SUC2 
promot
er 

Amplificati
on & 
Transform
ation 

oMM
0769 

scSUC2_pZF_rev CAAAAGGAAAAGGAAAGCTTGCAAAAGCATCA
TATACGTTattgggacaacaccagtgaa 

SUC2 
promot
er 

Amplificati
on & 
Transform
ation 

 
Supplemental Table 3:  

Plasmids used in this study 
ID Alias Gene(s) or Insert 

Name 
Yeast 
Marke
r 

Bacterial 
Resistanc
e 

Source/ 

Reference 
pBR322 pBR322 N/A N/A Ampicillin Gift from 

Rose/Gammi
e Lab 

pMM000
6 

pRS414 scTRP1 CEN6 ARS4 scTRP1 Ampicillin Sikorski and 
Hieter, 1989 
[4] 

pMM000
7 

pRS415 scLEU2 CEN6 ARS4 scLEU2 Ampicillin Sikorski and 
Hieter, 1989 
[4] 

pMM000
8 

pRS416 scURA3 CEN6 ARS4 scURA
3 

Ampicillin Sikorski and 
Hieter, 1989 
[4] 

pMM012
9 

NatMX Nat1 Nat1 Ampicillin Goldstein and 
McCusker, 
1999 [5] 

pMM015
9 

pGal4AD-CIB1 pscADH1-GAL4AD-
CIB1-tscADH1 

scLEU2 Ampicillin Kennedy, et 
al 2010 [7] 

pMM016
0 

pGal4DBD-CRY2 pscADH1-
GAL4DBD-CRY2-
tscADH1 

scTRP1 Ampicillin Kennedy, et 
al 2010 [7] 
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pMM028
4 

FLAG(3X)-NLSZIF26 

8DBD- 

CRY2 (L3) 

pscADH1-
pFLAG(3X)-NLS-
ZIF268DBD-CRY2 
(L3)-tscADH1 

TRP1 

scTRP1 Ampicillin An-
Adirekkun, et 
al 2020 [3] 

pMM028
7 

pZF(3BS) URA pZF(3BS)-yEVENUS 
CEN scURA3 

scURA
3 

Ampicillin An-
Adirekkun, et 
al 2020 [3] 

pMM028
9 

pZF(4BS) URA pZF(4BS)-yEVENUS 
CEN scURA3 

scURA
3 

Ampicillin An-
Adirekkun, et 
al 2020 [3] 

pMM029
6 

pSH65 pGAL1-CRE PheloR PHLEO Ampicillin Botstein Lab; 
Gueldener, et 
al 2002 [5] 

pMM029
9 

KanMXrev-pZF(4BS) KanMXrev-
pZF(4BS) in 
pIDTBlue 

KanMX Ampicillin This Study 

pMM030
1 

pGAL1-yEVENUS pGAL1-yEVENUS 
scURA3 CEN 

scURA
3 

Ampicillin An-
Adirekkun, et 
al 2020 [3] 

pMM032
6 

pUG72 loxP-KIURA3-loxP NA Ampicillin Gueldener, et 
al 2002 [5] 

pMM032
7 

HO-Polylinker-HO HO-Polylinker-HO NA Ampicillin Voth, et al 
2001 [6] 

pMM033
5 

GAL4ADCIB1/GAL4DBDCRY
2 

GAL4AD-CIB1 loxP-
KIURA3-loxP 
GAL4DBD-CRY2 
LEU2 Cen/ARS 

scLEU2 Ampicillin This Study 

pMM033
6 

pGAL1-YFP pGAL1-yEVENUS 
CEN scTRP1 

scTRP1 Ampicillin This Study 

pMM033
7 

HO GAL4 split HO-GAL4AD-CIB1 
loxP-KIURA3-loxP 
GAL4DBD-CRY2-HO 

klURA3 Ampicillin This Study 

pMM034
7 

pMM299-VENUS KanMXrev-
pZF(4BS)-VENUS in 
pIDTBlue 

KanMX Ampicillin This Study 

pMM035
3 

KanMXrev-pZF(3BS) KanMXrev-
pZF(3BS)-VENUS in 
pIDTBlue 

KanMX Ampicillin This Study 

pMM035
4 

KanMXrev-pZF(2BS) KanMXrev-
pZF(2BS)-VENUS in 
pIDTBlue 

KanMX Ampicillin This Study 

pMM035
9 

Gal4AD-CIB1/ZCRY2-PHR 
HO 

GAL4AD-CIB1 loxP-
KLURA3-loxP 
FLAG(3X)-SV40NLS-

LEU2 Ampicillin This Study 
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Zif-ZCRYPHR LEU2 
CEN/ARS 

pMM036
4 

CIB1/CRY2PHR loxURA CEN SV40NLS-VP16-
CIB1 loxP-KLURA3-
loxP SV40NLS-
ZIF268DBDCRY2PH
R LEU2 CEN/ARS 

LEU2 Ampicillin This Study 

pMM036
5 

pZF(3BS) TRP1 pZF(3BS)-yEVENUS 
CEN scTRP1 

TRP1 Ampicillin This Study 

pMM036
9 

pZF(3BS)-NatMX pZF(3BS)-NatMX 
scTRP1 CEN 

scTRP1 Ampicillin  This Study 

pMM055
3 

pZF(mRUBY2) @LEU2 Leu2 5’ homology-
pZF(3BS)-mRUBY2-
tADH1-Con1-LEU2-
Leu2 3’ homology 

scLEU2 Kanamyci
n 

An-
Adirekkun, et 
al 2020 [3] 
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Supplemental Figure 1: 
 Characterization of vectors to integrate the blue light inducible split transcription factor (GAL4DBD-

CRY2PHR/CIB1-GAL4AD) into yeast with marker recovery. (A) Yeast cells carrying an integrated copy of a 

light activatable split GAL4 transcription factor (GAL4DBD-CRY2/VP16-CIB1) integrated at the HO locus 

without subsequent excision of the KlURA3 marker (inset) and a reporter plasmid (pGAL1-yEVENUS) were 

exposed to ~ 25 µW/cm2 light for 18 hours. This resulted in a 15-fold induction in yEVENUS (p-value <0.005; 

Welch’s t-test). (B) In contrast, when Cre-recombinase is used to excise the KIURA3 marker (inset), only 

2-fold induction in yEVENUS occurs after 18 hours of growth in ~ 25 µW/cm2 blue light (p-value<0.0005; 

Welch’s t-test). Error bars are the standard error of the mean from 3 replicates. 
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Supplemental Figure 2: Recovery of clonNAT resistance with light-inducible NatMX. Yeast strains with the 

integrated optogenetic system and either a plasmid containing pZF(3BS)-NatMX or the empty vector 

control were grown in the presence of clonNAT (nourseothricin, 50 µg/ml) in either 450nm blue light (50 

µW/cm2) or the dark (1:10 dilution series). Induction of the NatMX resistance marker (nat1 gene) by blue-

light confers the ability to grow on nourseothricin.  
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Supplemental Figure 3:  
Expression from the pZF(3BS) promoter in blue light (A) The marker recycled strain (HO::SV40NLS-VP16-

CIB1 loxP SV40NLS-Zif268DBD-CRY2PHR [pZF(3BS)-yEVENUS]) was grown for 18 hours in 460nm blue light 

over a range of intensities (0 𝜇W/cm2-8000 µW/cm2). At least 20 𝜇W/cm2 of light is required to induce 

significant expression from the pZF(3BS) promoter (see inset) under these conditions. Error bars are the 

mean absolute deviation. (B) Integration of a pZF(3BS)-mRUBY2 reporter at the LEU2 locus in the 

unrecycled strain (HO::SV40NLS-VP16-CIB1 loxP-KlURA3-loxP SV40NLS-Zif268DBD-CRY2PHR) confers 

blue-light dependent expression on mRUBY2 (50 𝜇W/cm2 460nm blue light, 18 hours, bottom row. Dark 

control-top row).   
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Supplemental Figure 4:  
Characterization of KanMX-pZF cassette. (A) Integration of the pZF promoter in front of a gene of interest 

using homologous recombination in yeast confers light-regulation. (B) Expression of a yEVENUS reporter 

from the pZF promoter under 25 𝜇W/cm2 460nm illumination shown as fold-change relative to the T=0 

dark sample. There is significant induction as early as T=2hrs of blue light (**p-value<0.005, * p-

value<0.05; Welch’s t-test). Error bars indicate standard error of the mean fold-change. 
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Supplemental Figure 5:  
Light control of auxotrophy and drug resistance. (A) Light inducible expression of HIS3 recovers histidine 

auxotrophy. A yeast strain expressing imidazoleglycerol-phosphate dehydratase under the pZF promoter 

(pZF-HIS3) transformed with appropriate combinations of ZDBD-CRY2 (pMM284), AD-CIB1(pMM159) 

and/or empty vector controls (pMM6, pMM7) was frogged onto media without or with histidine at 1:10 

dilutions either in the presence or absence of 57 µW/cm2 460 nm blue light. In the dark the pZF-HIS3 strain 

is a histidine auxotroph, while growth on media lacking histidine is conferred in blue-light only in the strain 

that also contains the ZDBD-CRY2/AD-CIB1 light-activated split transcription factor.  (B) pZF-SUC2 allows 

light-dependent growth on sucrose. The pZF-SUC2 yeast strain yMM1406 (Matα trp1∆63 leu2∆1 ura3-52 

HO::SV40NLS-VP16-CIB1 loxP SV40NLS-Zif268DBD-CRY2PHR KanMX-pZF(3BS)-SUC2) was plated at a 

density of 0.119  and grown on YP-Sucrose in either 0 µW/cm2 or 57 µW/cm2 460 nm blue light for 7 days 

(n=3 technical replicates per condition). Blue-light confers the ability to grow on YP-Sucrose, while the 

replicates grown in the dark show no discernable growth.   
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Supplemental Figure 6:  
Endpoint measurements to identify unintended light induction during sampling. Endpoint densities are 

compared between the time course sampled wells (black and blue bars) and control wells (gray and cyan 

bars) to determine whether there were any effects on the cultures due to the unintended addition of light 

during sampling for the time course experiment (Figure 3). The bars represent the mean density of the 

cultures at 52 hours for two technical replicates. The error bars represent the standard deviation from the 

population mean. Where there is no error bar (0, pZF-SUC2) the two measurements of density were the 

same value. A two-way ANOVA identified significant differences between the effect of strain and light 

intensity on density of the cultures (F, (3,6) = 46.72, p = 0). However, a multiple comparisons test did not 

identify any significant differences between the density reached for the control measurement and the 

time course measurement pairs for each intensity.  
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Supplemental Figure 7:  
Spatial control of the optogenetic strain (yMM1406, Matα trp1∆63 leu2∆1 ura3-52 HO::SV40NLS-VP16-

CIB1 loxP SV40NLS-Zif268DBD-CRY2PHR KanMX-pZF(3BS)-SUC2). (A) The optogenetic strain was stamped 

on the surface of a 224 mm2 square petri dish, and only a small, 20 mm2 region (blue square) of the petri 

dish surface area was illuminated during incubation. The area around the illuminated portion of the plate 

(dashed outline) is magnified. A large number of colonies outside the illuminated region were able to 

grow. (B) Quantification of radial patterning. Plots represent an averaged radial intensity profile of the 

spotted plates across the diameter of the plate. The wild-type pSUC2-SUC2 (top) and pZF-SUC2 (bottom) 

are separately plotted and the two concentrations of leucine are distinguished by color (blue, 50% leucine; 

orange, 100% leucine). The wild-type pSUC2-SUC2 has a larger region of inhibited growth than pZF-SUC2 

in both growth conditions. 
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Supplemental Figure 8:  
Image processing and identification of patterning features. (A) Determination of pattern features and 

growth from plate images using a custom Matlab script. (B) Plate features of the emergent pattern 

between strains and between leucine concentration. Mean values are in bold, followed by both replicate 

measurements (*, n=1). (C) Representative image of a patterned plate. Inset highlights pattern regions, 

the spot (red), valley (orange) and ring (blue) quantified by the Matlab script. 

 


