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Abstract

Variance reduction is an important tool to increase the rate of convergence in certain
configurations of Monte Carlo problems. Methods such as CADIS are particularly
useful to achieve this increased rate of convergence. However, CADIS does not
include information for direction phase space, and an equivalent method has not
been used for the adjoint Monte Carlo method. In this work, the benefits of includ-
ing direction information in a weight window and weight target (a new type of
importance sampling technique presented here) are analyzed and explored, along
with a way to use importance sampling theory on the adjoint Monte Carlo method.
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Chapter 1

Introduction

Monte Carlo methods are a popular choice for radiation transport problems - mostly
due to their ability to model complex geometries relatively easily and implement
continuous energy physics. However, utilizing Monte Carlo methods for some prob-
lems can lead to computationally expensive simulations that can take an inordinate
amount of time to complete. A primary example of the kind of conditions that
would lead to such a problem would be one where a large amount of attenuation
occurs between the particle source and region of interest (such as a detector), where
the set of particles that are able to produce results in that region of interest are
a relatively small subset of all possible particle tracks for said problem. For this
purpose, we seek methods to increase the rate at which these rare samples occur
while also making sure that these methods do not alter the results in such a way to
bias the statistical results. These methods fall within the scope of the term "variance
reduction".

1.1 Variance and Efficiency

The Monte Carlo process of modeling radiation transport is one where the natural
random processes of particles are modeled in order to generate statistical information
from a subset of all possible particle tracks. This is done by representing these
natural random processes (such as collision mechanics and optical distance) as
PDFs (probability distribution functions) and sampling them appropriately. Once
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this sampling procedure is constructed, the particle histories, where a single history
includes a particle produced at its respective source and all of its progeny, transport
through the medium and generate scores for estimators. The scores are numerical
quantities generated via various events that the particles generate - whether they be
collisions, transporting through space, energy deposition, and others. The estimators
are simply mathematical rules that take these scores and convert them into relevant
statistical data. A simple example of this is contained in equation 1.1 which presents
the estimator one may use to calculate the mean x̂ of some set of scores xi. After N
particle histories are completed, the distribution of scores generated via the Monte
Carlo process is then used to determine the mean, variance, and other statistical
quantities of interest that directly represent the solution to the transport equation
and its precision and efficiency.

The term "variance reduction" is used because variance is a key statistical quantity
used in determining the precision of a solution given by the Monte Carlo method.
A mean is generated from the events that occur due to this subset of particle tracks,
and that mean has an variance associated with it. For example, say we calculate the
mean as follows:[1]

x̂ =
1
N

N∑
i=1
xi, (1.1)

where x̂ is the mean value of the set of scores xi with a total of N histories. In a
radiation transport sense, the scores xi are the values produced by the various types
of events mentioned earlier. The standard deviation S of the population (equivalent
to the square root of the variance) is thus estimated as follows:[1]

S2
x ≈ x̂2 − x̂2, (1.2)
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where x̂2 is defined as follows:

x̂2 =
1
N

N∑
i=1
x2
i, (1.3)

and the population standard deviation Sx is related to the standard deviation of the
mean Sx̂ as follows:[1]

S2
x̂ =

S2
x

N
. (1.4)

We immediately note from equation 1.4 that Sx̂ ∝ 1√
N

, which will become important
later. The standard deviation of the mean is then used to define the estimated
relative error R of a given Monte Carlo answer as follows:[1]

R ≡ Sx̂
x̂

. (1.5)

The relative error is used to represent statistical precision of the mean x̂. In essence,
the lower R is, the more precise x̂ is which means it is a better estimate of the true
answer that is sought from the problem.

For a given number of histories generated, the relative error R is typically de-
pendent on the configuration of the problem itself. For instance, if there is a large
amount of attenuation present in the problem, it will likely take additional histories
to generate a relative error value low enough such that confidence can be had in the
answer. In order to measure this relationship between the number of histories used
to generate a relative error, the figure of merit is introduced as follows:[1]

FOM ≡ 1
R2t

, (1.6)

where t is the time it takes to simulate a problem. The higher the FOM is, the more
efficient the simulation is. Based on earlier equations describing the variance Sx̂ and
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its relationship to the relative error R, one can express R as follows:

R =
CR√
N

, (1.7)

and one can assume the following is true for t:

t = CtN, (1.8)

since t should be linearly proportional to the number of histories performed. These
equations simply bind the various properties of the problem (variance reduction
included) together into coefficients CR and Ct to express these variables’ (R and t)
functional dependence on N. Thus, we can re-express the FOM as follows:

FOM =
1

C2
RCt

. (1.9)

If all other properties of the problem aside from variance reduction remain the
same, the FOM becomes a measure solely of the effects of variance reduction on the
relative error and the time it takes to complete the problem. Thus, this quantity is
essentially a measure of the efficiency of the simulation, i.e. a measure of the length
of time it takes to get an answer for a given relative error while taking into account
how each variable is proportional to the number of histories generated. In general,
it is typically found that variance reduction methods end up increasing Ct while
decreasing CR. The hope is that CR is decreased sufficiently in comparison to Ct in
order to increase the FOM and, therefore, the overall efficiency of the simulation
itself.
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1.2 Motivation

As mentioned earlier, one can generate a problem where only a small number of
particle tracks will ever generate samples for the mean x̂. The score values xi are
dependent on the ability of particles to generate events in or near regions of interest.
Variance reduction techniques are therefore used to encourage particles to travel
towards these regions of interest with the hope that this results in additional scores
and a combination of CR and Ct that produces an increased figure of merit.

There are a variety of methods to accomplish this, but this work is primarily con-
cerned with importance sampling techniques and their approximations. Described
in detail in section 2.6, these techniques seek to modify the particle generation and
transport PDFs such that each particle track is more likely to generate samples in
a region of interest. The particle generation and transport PDFS include several
different dimensions for the steady state case: position~r, energy E, and direction Ω̂
(·̂ used to denote a unit vector in this case).

However, most variance reduction techniques in application today modify PDFs
for position and energy, but often either use approximations for direction space
or do not treat direction space at all, as noted in section 2.2. It seems intuitive
that a reasonable way to increase efficiency of a Monte Carlo simulation would
be to encourage the particles to point in a direction that increases its likelihood of
generating samples.

It is also of note that there are two separate methods of simulating the Monte
Carlo method for particle transport: forward and adjoint. The forward is one where
a history begins at the radioactive source and transports through the problem
phase space using the properties of the given type of particle being simulated
(photon, neutron, etc.). The events (collisions, transporting through phase space,
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deposition of energy/charge, etc.) are representations of the particle’s physical
processes and are used to generate scores for the estimators. However, in the adjoint
simulation, the history begins at the detector and uses "reversed" physics to transport
through the geometry. An example of these reversed physics would be that adjoint
particles typically increase in energy after a collision rather than decrease. The
events generated by adjoint particles represent the sensitivity of the detector to a
hypothetical forward particle existing at that point in phase space where the event
occurs.

Zero variance theory uses this relationship between the forward and adjoint
Monte Carlo simulations in order to produce an importance sampling implementa-
tion that would theoretically only require a single history in order to achieve the
result of interest for a problem, explained in detail in section 2.7. It is therefore often
the case that various methods used today seek to produce approximations to the
adjoint solution for use in importance sampling in order to increase the FOM for
forward calculations since this should reduce the number of histories required to
be performed in order to acquire a reasonable relative error. However, since the
forward solution is adjoint to the adjoint simulation, it would also seem that one
could use an approximation to the forward solution to similarly generate beneficial
importance sampling parameters to increase the FOM for an adjoint simulation.
This has not been attempted before.

This work therefore seeks to explore the benefits of both - applying importance
sampling over direction phase space and for the adjoint Monte Carlo radiation
transport simulation. The goal of this work is to demonstrate that including direc-
tion space in importance sampling techniques improves the rate of convergence,
measured by the FOM, for a Monte Carlo radiation transport problem, and also
to provide a method that performs variance reduction using the same importance
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sampling techniques for continuous energy adjoint Monte Carlo radiation transport.
In chapter 3, the efficacy of importance sampling utilizing direction information will
be shown. In that chapter, a direction discretization utilizing a discrete ordinates
angular quadrature will be provided and utilized to set up a direction discretization
for estimators and variance reduction meshes. This information will then be used to
show how including this information benefits the rate of convergence for a Monte
Carlo simulation where the direction that a particle travels should intuitively greatly
affect the rate of convergence. In chapter 4, a CADIS-equivalent method will be
explored for the adjoint which uses the forward flux in the importance function
for the adjoint Monte Carlo simulation. The efficacy of this will be determined and
shown through improvements in the FOMmeasurement.
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Chapter 2

Literature Review

In this chapter, a background for the Monte Carlo method in particle transport is
presented with a more detailed exploration of importance sampling, zero variance
solutions, and the state of the art importance sampling implementations currently
used today. We begin with a basic review of Monte Carlo and variance reduction.

2.1 Monte Carlo

The Monte Carlo method is, at its most basic definition, a method in which random
samples are taken from some existing population and statistical information is
calculated from these samples. Take a simple example of a single 6-sided die. When
the die is rolled, we can say that each side has an equal probability of occurring
with a value p = 1

6 . Directly calculating the mean value of the enumerated sides
that would be found if the die were to be rolled repeatedly is relatively simple - it’s
just Fdie =

∑6
l=1 pll =

∑6
l=1
(1

6
)
l = 3.5.

If we were to use the Monte Carlo method to calculate this mean value though, we
would simply roll the die repeatedly, keep a record of the summation of the resulting
sides, and divide it by the number of rolls performed. This rule of calculating the
mean value through statistical samples is a simple version of an estimator.[2] It can
be mathematically expressed as follows:

F̂die =
1
N

N∑
i=1
li, (2.1)
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Where F̂die is an estimate of Fdie, N is the number of rolls, and li is the numerical
representation of the side that results from a roll (a value between 1 and 6). We also
expect this estimator to be unbiased, which has a formal definition as follows:

bΛ(P) = 〈Λ(X)〉− θ = 0, (2.2)

where bΛ is the bias of some estimatorΛwith a space of samplesX from population P
and real-valued statistical parameter θ of that population, and 〈·〉 is the expectation
value operator. The estimator Λ is measuring an estimate of the true statistical
parameter θ. In the example above, P = [1, 2, 3, 4, 5, 6], X would be the samples
taken from P through repeated rolls and used in the estimator described in equation
2.1, and θ = 3.5, the true mean of the population. If the estimator is unbiased,
then bΛ(P) = 0, and as the estimator in equation 2.1 approaches infinite samples
(N→∞), F̂die = Fdie.

2.2 Variance Reduction

Variance reduction is a diverse field with many different techniques, all primarily
concerned with reducing the variance of an estimator and producing a more accurate
answer given a number of samples. This particular work will be more concerned
with importance sampling and its related techniques. Using importance sampling
in the previous example would mean altering the probabilities of occurrence of each
side of the die. To continue with the previous example of using a 6-sided die from
section 2.1, we first must express an estimator equivalent to that in equation 2.1
using weighted samples li as follows:



10

F̂die =
1∑N

i=1wl,i

N∑
i=1
wl,ili, (2.3)

where wl,i is the weight of sample i. In equation 2.1, these weights are just equal to
1. These weights are necessary to avoid biasing if we are to implement importance
sampling. The altered probabilities are noted as pl, where l is again the numeric
value representing a side. In order to avoid bias, the weights are defined as follows:

wl =
pl

pl
. (2.4)

It’s not hard to prove that this is not biased. We can easily calculate the average
directly once again using these weights and their respective probabilities:

Fdie =

6∑
l=1
plwll =

6∑
l=1
pl
pl

pl
l =

6∑
l=1
pll = 3.5. (2.5)

For an example of a possible practical way to use this method in this context, one
could set the p3 and p4 extremely high relative to p1, p2, p5, and p6. Presumably, this
would cause the result of the estimator expressed in equation 2.3 to approach the
mean of 3.5 much faster. While it’s trivial in this example, particle transport problems
typically involve complicated physics and geometry that need to be accounted for,
and thus this technique can be used in Monte Carlo for particle transport to increase
the rate of statistical convergence for a problem. This will be further explored in
sections 2.6 and 2.7.

For variance reduction methods commonly used in particle transport other than
importance sampling, the MCNP5 manual includes various examples such as energy
cutoff, time cutoff, splitting and stochastic termination (rouletting), weight cutoff,
weight windows, exponential transform, DXTRAN, and so forth.[1]. These methods
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all alter the sampling procedure in various ways and simultaneously alter the weight
of the individual samples to avoid biasing any estimators, just as in the previous
example.

2.3 Forward Monte Carlo Particle Transport

Analog Forward Transport

The particle transport equation can be expressed as Fredholm integral equations of
the second type. A full examination of how these equations are derived from the
integro-differential particle transport Boltzmann equation and solved can be found
in the thesis of Alex Robinson.[3] However, for the purposes of this work, this is
not necessary since the integral equations are the ones used to define the Monte
Carlo simulation. We begin with two equations that are relevant - the steady state
equation for emission and collision density in a particle transport problem:

χ(~r,E, Ω̂) = S(~r,E, Ω̂)+

∫ ∫ ∫
C(~r,E ′ → E, Ω̂ ′ → Ω̂)T(~r ′ → ~r, Ω̂ ′,E ′)χ(~r ′, Ω̂ ′,E ′)d~r ′dE ′dΩ ′,

(2.6)
ψ(~r,E, Ω̂) = Q(~r,E, Ω̂)+

∫ ∫ ∫
T(~r ′ → ~r,E, Ω̂)C(~r ′,E ′ → E, Ω̂ ′ → Ω̂)ψ(~r ′, Ω̂ ′,E ′)d~r ′dE ′dΩ ′,

(2.7)
where χ is the emission density, S is the source density, ψ is the collision density,
and Q is the source’s first collided collision density over phase space which can
also be expressed as ∫ T(~r ′ → ~r,E, Ω̂)S(~r ′,E, Ω̂)d~r ′. The phase space is described in
~r,E, Ω̂ which are the position, energy, and direction respectively. T and C are the
transport and collision kernels respectively.
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Emission and collision density have relatively intuitive definitions. The emission
density χ is the density of particles being emitted from some point in phase space,
whether from an external source or exiting a collision at a phase space point. The
collision densityψ is the density of particles entering a collision at some phase space
point.

The transport kernel is the kernel that represents the transport of the particle
from one spatial position to another∗. The collision kernel is what represents the
collision mechanics that a given particle experiences, transitioning it into new energy
and direction coordinates (and possibly removes or generates additional particles,
depending on the reaction type). The emission and collision density functions are
also related via the following relations [4][5]:

ψ(~r,E, Ω̂) =

∫
T(~r ′ → ~r,E, Ω̂)χ(~r ′,E, Ω̂)d~r ′, (2.8)

χ(~r,E, Ω̂) =

∫
C(~r, Ω̂ ′ → E, Ω̂ ′ → E)ψ(~r, Ω̂ ′,E ′)dE ′dΩ ′. (2.9)

In a Monte Carlo particle transport simulation, the source function S is the first
PDF that is sampled. For brevity, in the rest of this document where feasible, the
phase space vector variable Y will be used in place of the individual phase space
coordinates. Thus the PDF for the source is expressed as follows:

pS(Y) =
S(Y)∫
S(Y)dY

. (2.10)

From this PDF, the relevant CDF is formed:
∗If this problem were not steady state, time would also be included as a variable of transition in

this kernel
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PS(Y) =

∫Y

Y0
pS(Y). (2.11)

The transport kernel is described next. In the steady state, this kernel is used to
describe how a particle is transported from one spatial coordinate to another. It can
be expressed as follows:[5]

T(~r ′ → ~r,E, Ω̂)f(~r ′,E, Ω̂) = Σt(~r,E)e−β(~r,L,E,Ω̂)f(~r ′,E, Ω̂), (2.12)

where β(~r,L,Ω,E) = ∫L
0 Σt(~r− L

′ · Ω̂,E)dL ′. The variable L is related to~r as follows:

L = ‖~r−~r ′‖2, (2.13)

where ‖ · ‖2 is the 2-norm (or vector magnitude) defined in equation 3.6.
We use T to define a PDF for a single particle that assumes that the direction and

energy coordinates of said particle have already been determined (either through
the sampling of the source or the collision kernel). In order to do this, we first note
that Σt(~r,E) is typically assumed to be constant inside a given material, meaning that
the material’s temperature and density are assumed constant throughout. Using
this assumption means β can be simplified as follows:

β(L,E) =
∑
m

Σt(E)mLm, (2.14)

where we can immediately note that β is actually just the number of mean free
paths a particle will travel through a series of materials. The dependence of Σt on
position is removed since it is effectively a constant of the material m due to the
above assumptions and since the energy E has already been selected and is known.
This therefore allows us to generate a PDF based on the transport kernel using the
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mean free path β as a variable as follows:

pT (β) = e
−β, (2.15)

where β is defined over the domain [0,∞]. The Σt in front of the exponential from
equation 2.12 disappears due to normalization of the PDF. Again, one needs to
integrate this as follows in order to get the CDF to sample from to get a new position:

PT (β) =

∫β
0
pT (β

′)dβ ′ = 1 − e−β.

Once β is appropriately sampled, the individual Lm values can be calculated noting
the definition of L in equation 2.13 and doing some appropriate vector math to
determine material boundary intersection points.

It should be noted that Σ, while commonly used for neutrons, could just as well
be used for photons in this abstracted exploration of the transport equations. Lastly,
the collision kernel C is described. For the integral equations 2.8 and 2.9, the kernel
takes the following form:[5]

C(~r,E ′ → E, Ω̂ ′ → Ω̂)f(~r,E ′, Ω̂ ′) = Σs(~r,E ′, Ω̂ ′)g(E ′ → E, Ω̂ ′ → Ω̂) + Σa(~r,E ′)
Σt(~r,E ′)

f(~r,E ′, Ω̂ ′).

(2.16)

An analog simulation is considered first for an more in-depth explanation of the
collision kernel. This means that the physical characteristics of the simulation are
unaltered and both absorption and scattering are possible. First, a simple set of 2
probabilities are sampled to determine whether the particle is scattered or absorbed:



15

pC =


Σa
Σt

Σs
Σt

, (2.17)

If the particle is absorbed, then that history is halted and another begins. Otherwise,
if it is scattered, a PDF that describes the probability of all the different scattering
reactions is sampled to determine what reaction it undergoes:

ps =



Σs1
Σs

Σs2
Σs

...
ΣsN
Σs

. (2.18)

After the reaction type is determined, the specific outgoing energy and direction
(or energies and directions in the case of a reaction that produces multiple particles)
are selected through a PDF that is formed from the physics of that particular type
of reaction.

If a particle is absorbed outside of the detector region, it is not able to contribute
to a detector response afterwards. This is especially consequential in deep-shielding
problems, where the medium is one that does not easily permit particles to pass
through it. Due to this, one might consider looking for a way to omit the absorption
process from the simulation. This is the premise behind implicit capture, described
in section 2.6.
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2.4 Estimation of Forward Results

The description of how a particle transports through phase space has been made in
the previous section. However, a method of gaining results from this simulation is
also required. The mathematical rules that perform this task are called "estimators"
and are of the same concept as that presented in the introduction ∗.

The objective of an estimator for the forward Monte Carlo simulation is to com-
pute an inner product of a response function and a given particle transport function.
If that particle transport function were the flux, then this can be expressed as follows:

F =

∫
ηφ(Y)φ(Y)dY , (2.19)

where φ(Y) is the particle flux and ηφ(Y) is some function that describes a response
to the flux φ(Y). If one simply wants the flux itself, then ηφ(Y) = 1. In addition, the
response function can be a total cross section to find collision density, some function
that converts the flux to a dose rate, etc.

One need not rely on flux information to find results. The collision and emission
densities can also be used to produce equivalent results. Take the following response
to the collision density ψ(Y):

F =

∫
ηψ(Y)ψ(Y)dY . (2.20)

For the responses in equations 2.19 and 2.20 to be equal, the following transformation
must take place:

∗In MCNP, they are called "tallies".
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ηψ(Y) =
ηφ(Y)

Σt(Y)
,

which is due to the transformation from flux to collision density being ψ(Y) =

Σt(Y)φ(Y).
There are many different types of estimators for particle transport. In this work,

two in particular will be mathematically described.

The Last Event Estimator

The first to be analyzed is the last event estimator. This estimator only takes estimates
when the particle experiences absorption. It can be described as follows:[6]

F =
∑
deaths

wiηψ(Y)

Pa(Y)
, (2.21)

where wi is the weight calculated for a given particle and Pa(Y) is the probability
that no particles survive after the collision takes place. ηψ(Y) is some arbitrary
response function to collision density chosen by the user for the specific problem
being solved.

This estimator is important because it is for this estimator that using the ad-
joint function as an importance function provides a zero variance solution,[7][6]
which is often used in literature as a basis for a type of importance sampling
technique.[8][9][10] This will be discussed more in depth in section 2.7.

The Collision Estimator

The second type of estimator is a collision estimator. It simply tallies when a collision
occurs:
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F =
∑

collisions

wiηψ(Y), (2.22)

where wi is the weight and ηψ(Y) is, again, some arbitrary response function given
by the user. If ηψ(Y) = 1, then the collision density is being estimated. With this
in mind, it becomes important to take this into account when using this response
function to transform the result into other quantities of interest. Noting this, if one
were to desire flux from this estimator, then ηψ(Y) = 1

Σt(Y)
.

Another estimator that is important to mention due to its widespread use in
the field of Monte Carlo particle transport is the track length flux estimator. It is
likely the most common estimator used in all of the current prevalent Monte Carlo
codes. However, the zero variance importance sampling scheme for this estimator
is relatively complicated,[11] and so it is not explored here for the purposes of zero
variance.

2.5 Adjoint Monte Carlo Particle Transport

Adjoint Monte Carlo is somewhat more difficult than the forward. It’s very important
to keep the terminology distinct. For example, the adjoint to the forward emission
density is a very different quantity from the emission density of the actual adjoint
pseudoparticles being simulated in a Monte Carlo simulation. Let us start with the
simple equation for the adjoint to the forward emission density. The following starting
equations, discussion, and derivation are taken from the work of Hoogenboom:[4]

χ†(Y) = ηχ(Y) +

∫
K†(Y ′ → Y)χ†(Y ′)dY ′, (2.23)
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where K† is a combination of the adjoint transport and collision kernel, and the
following relation holds with respect to the forward kernel for emission density
(which is also a combination of the forward transport and collision kernel):

K†(Y ′ → Y) = K(Y → Y ′). (2.24)

A great deal of confusion arises directly from equation 2.23. While this function is
adjoint to the forward emission density, it is not an emission density itself. Physically,
it is impossible for a particle to be emitted or collide in a vacuum for the model we
are using. However, the adjoint to the forward emission density itself is a flux-like
quantity that is actually non-zero in a vacuum.[3][4] This function is interpreted
as the response of the region of interest where the estimator exists to a forward
emission density at that region in phase space Y . The reason that it is non-zero
in a vacuum can therefore be intuitively deduced that even though it is physically
impossible for a particle to be emitted from vacuum, if a particle were hypothetically
to be emitted from that vacuum then the response it is able to produce at the detector
is not zero. The adjoint to the forward collision density and flux are similar in terms
of their flux-like nature. [3]

Also, ηχ(Y) is the response function to the forward emission density in phase
space Y . The reason that the equation for the adjoint to the forward emission density
is often the quantity used for Monte Carlo purposes is that if one references equations
2.6 and 2.7, the actual source profile (which is more easily known than the density
of first collisions used as the source for the collision density equation) is utilized in
the equation for emission density. The following inner products hold by definition
of the adjoint:
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F =

∫
ηχ(Y)χ(Y)dY =

∫
S(Y)χ†(Y)Y . (2.25)

This therefore leads us to the conclusion that the adjoint to the forward emission
density, χ†, will be easier to produce results of interest from as opposed to the
adjoint to the forward collision density,ψ†. This is because the adjoint to the forward
emission density uses the physical source expression S in its integral to determine F,
where S is typically already known. This is opposed to the first collision density Q
from equation 2.7, which is not typically known beforehand. The kernel for adjoint
transport is typically transformed in order to utilize the Monte Carlo method as
follows:[4]

χ̃†(Y) = Σt(Y)χ
†(Y), (2.26)

L†(Y ′ → Y) =
Σt(Y)

Σt(Y
′)
K†(Y ′ → Y). (2.27)

Thus equation 2.26 is transformed as follows:

χ̃†(Y) = Σt(Y)ηχ(Y) +

∫
L†(Y ′ → Y)χ̃†(Y ′)dY ′. (2.28)

As mentioned in 2.4, the appropriate response function must also be transformed
to keep the response the same:[3]

F =

∫
S(Y)

Σt(Y)
χ̃†(Y)dY . (2.29)

Now, in order to define a transport sampling process which is analogous to the
forward Monte Carlo simulation, a transport and collision kernel must be identified.
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The mathematics for a suitable adjoint transport kernel are taken from the work by
Hoogenboom, and are as follows:[4]

T †(~r ′ → ~r,E, Ω̂) = T(~r ′ → ~r,E,−Ω̂). (2.30)

However, note from equation 2.24 that what is actually desired is a transport
kernel that contains~r→ ~r ′ in order to have this kernel in a familiar form that can
then be substituted into the kernel transform for equation 2.27. Fortunately, we may
note the negative in front of the direction that gives us a relatively easy derivation.
The following is therefore true:[4]

T(~r→ ~r ′,E, Ω̂)

Σt(~r ′,E)
= e−

∫L
0 Σt(~r

′−L ′·Ω̂)dL ′

= e−
∫L

0 Σt(~r+L
′·−Ω̂)dL ′

=
T(~r ′ → ~r,E,−Ω̂)

Σt(~r,E)
. (2.31)

Using equation 2.30, the adjoint transport kernel is as follows:

T †(~r ′ → ~r,E, Ω̂) =
Σt(~r,E)
Σt(~r ′,E)

T(~r→ ~r ′,E, Ω̂). (2.32)

The collision kernel is more complex. It is normalized to the adjoint scattering
cross section ∗:

Σ†(~r,E ′) =
∫∫
Σt(~r,E)C(~r,E→ E ′, Ω̂→ Ω̂ ′)dEdΩ̂, (2.33)

∗This quantity does not have a subscript of "s" to denote that it is solely a scattering cross section
because there is no such thing as absorption in the adjoint process
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where
C†(~r,E ′ → E, Ω̂ ′ → Ω̂) =

Σt(~r,E)C(~r,E→ E ′, Ω̂→ Ω̂ ′)

Σ†(~r,E ′) . (2.34)

These kernels are substituted back into equation 2.26, and the following equation is
obtained:

L†(Y ′ → Y) = P†(~r,E ′)C†(~r ′,E ′ → E, Ω̂→ Ω̂ ′)T †(~r ′ → ~r,E, Ω̂), (2.35)

where P†(~r,E) = Σ†(~r,E)
Σt(~r,E) . This is the adjoint weight factor. It is analogous in how

it is formed to the forward non-absorption probability used in implicit capture,
described in section 2.6. However, it is not a probability since its value is bounded
by [0,∞).

Next, the response functions can be analyzed. If we assume that there is some
response F that we are looking for, we can express this result F in terms of multiple
different response functions which correspond to a given function that describes
particle population - whether it be the emission density, collision density, or flux
itself:[4]

F =

∫
ηχ(Y)χ(Y)dY =

∫
ηψ(Y)ψ(Y)dY , (2.36)

where one may recall that ψ is the forward collision density. Referring to equation
2.8 and 2.9, it can be shown that these response functions may also be transformed
between one another. Continuing from equation 2.36,

F =

∫ ∫ ∫
ηψ(~r,E, Ω̂)T(~r ′ → ~r,E, Ω̂)χ(~r ′,E, Ω̂)d~rdEdΩ̂

=

∫ ∫ ∫
ηψ(~r

′,E, Ω̂)T(~r→ ~r ′,E, Ω̂)χ(~r,E, Ω̂)d~rdEdΩ̂.
(2.37)
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With this, the transformation between response functions can be deduced:

ηχ(~r,E, Ω̂) = T(~r→ ~r ′,E, Ω̂)ηψ(~r
′,E, Ω̂)

=
T(~r→ ~r ′,E, Ω̂)

Σt(~r ′,E)
ηφ(~r

′,E, Ω̂).
(2.38)

In this equation, φ(Y) is the angular forward flux. After some additional mathe-
matical manipulations (which, again, can be found in the work by Hoogenboom
[4]), the adjoint equation that is used as the framework for sampling in the adjoint
Monte Carlo process is as follows:

ζ†(Y) = ηφ(Y) +

∫
M†(Y ′ → Y)ζ†(Y ′)dY ′, (2.39)

where ζ†(Y) is the emission density of the adjoint pseudoparticles transported in
the adjoint Monte Carlo process and the kernelM†(Y ′ → Y) is as follows:

M†(Y ′ → Y) = T †(~r ′ → ~r,E ′, Ω̂ ′)P†(~r,E ′)C†(~r,E ′ → E, Ω̂ ′ → Ω̂). (2.40)

Here, we note that we have a framework of adjoint equations to more conveniently
produce an adjoint Monte Carlo simulation from. There are multiple notable features
that determine this. First, we note that equation 2.39 defines an emission density of
the adjoint pseudoparticles that utilizes the response function to the forward flux
as its source. This is beneficial because the response function to forward flux, ηφ is
often readily known as opposed to the response function to the forward emission
density, ηχ, which takes additional mathematical effort to produce. Another feature
of note is that the collision density of these adjoint pseudoparticles, represented
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in equation 2.28, is easily converted to the adjoint to the forward emission density
by simply dividing χ̃ by the total cross section. This gives us a way to utilize the
source for the forward emission density as an adjoint response function, which is
also more readily known than a quantity such as the density of first collisions that is
the source term for the forward collision density. Figure 2.1 shows a more intuitive
representation of the adjoint Monte Carlo transport process.

~χ †

ζ
†

P†

C †

T †

ηϕ

Figure 2.1: Adjoint Monte Carlo Flow Chart
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The method of gaining adjoint results using estimators is the same as the forward.
However, it is of note that when one uses a track length estimator in an adjoint
problem, the adjoint to the forward emission density is being measured instead of
the adjoint to the forward flux. By reviewing section 2.4 and examining the collision
estimator, we can see why this is the case. After all, we accept that a track length
flux estimator used for the forward is directly measuring the forward flux, while the
collision estimator must have each score divided by Σt in order to also measure the
forward flux. An analagous relationship exists between the collision density of the
adjoint pseudoparticles and the adjoint to the forward emission density, noted once
again in 2.28. Therefore, a collision estimator in the adjoint with a response function
of 1
Σt

is measuring the adjoint to the forward emission density. Since the track length
estimator for the forward with a response function of 1 gives the forward flux, it
stands to reason that the track length estimator in the adjoint with an equivalent
response function would simply give the adjoint to the forward emission density. A
more intricate derivation of the track length flux estimator can be found in the text
by Spanier and Gelbard which more explicitly illustrates this concept.[12]

2.6 Importance Sampling

The fundamentals of applying importance sampling are relatively straightforward.
However, difficulties can arise if one tries to apply this technique directly to the more
mathematically complex portions of the Monte Carlo particle transport process. This
section will largely be based on the work by Spanier and Gelbard [12]. It should be
noted that this section is not particular to the forward or adjoint simulation, so any
nomenclature associated with the forward can be assumed to apply to the adjoint
as well.
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Basic Importance Sampling Theory

To begin, recall response integrals mentioned in section 2.4 - particularly equation
2.20. In effect, estimation of these response integrals becomes equivalent to an
expectation value of the estimators mentioned in section 2.4 in the infinite number
of samples, which can be translated into an integral as follows [12]:

〈Λ〉 =
∫
P

Λ(X)dµ(X). (2.41)

As in equation 2.2, 〈·〉 is the expectation value operator,Λ is an estimator, P is the
space of all possible samples, X is a set of samples, and µ is the relevant probability
density function that describes the probability of a sample.

This is a bit difficult to parse if one isn’t intimately familiar with probability
theory and its more abstract expression of the Monte Carlo process. Ultimately, all
it means is that the expectation value of the response, which is the desired result
we seek, is an integral over all possible events which have probabilities that can be
described by a continuous function µ. This makes sense, as in order to gain the
expectation value of an estimator as a result of said estimator, then one would have
to sample every single possible state in a problem to achieve that result.

To express importance sampling mathematically, equation 2.41 is rewritten in
the following form:

〈Λ〉 =
∫
P

[
Λ
dµ

dµ

]
dµ, (2.42)

Λ(X) = Λ(X)
dµ

dµ
(X), (2.43)
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〈Λ〉 =
∫
P

Λ(X)dµ(X). (2.44)

In this case, µ is an altered probability distribution function. Immediately, it
becomes clear that Λ is also an unbiased estimator of the same statistical parameter
measured by Λ. It’s just a simple re-expression of the original expectation value,
after all. For reference, bias is expressed mathematically in equation 2.2.

So, basically, if an estimator is unbiased then the expectation value of this es-
timator is equal to the true value of the statistical quantity (in the case of particle
transport, F).

This encompasses the fundamental theory of importance sampling. It’s a way of
rewriting the original distribution that is being sampled in the hope that the new
one will be better conditioned and return a result more efficiently by reducing the
variance. Note that, in this case, one can heuristically interpret dµ

dµ
as the re-weighting

of samples that keep the estimator unbiased.
Some conditions must be applied to this transformation before utilization in

order to guarantee the unbiasedness of the sampling is maintained. First, it must
be noted that there is an immediately clear restriction that must be set in order
to guarantee that the derivative dµ

dµ
exists. If µ 6= 0, then it must also be true that

µ 6= 0.[12] There are some exceptions to this rule that exist, namely section 2.6 on
implicit capture could be regarded as such a case since it is an implementation of
importance sampling. The reason this is acceptable will be explained in that section.

While the previously mentioned restriction will be the most important for the
purposes listed here, there are two additional restrictions that must be placed on
this process to ensure the existence of the derivative dµ

dµ
. The first being that the fol-

lowing function is bounded (except for events with zero probability in the modified
probability distribution function µ) [12]:
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G(Y1, ...,Yk) =
k∏
j=2

K(Y j,Y j−1)

K(Y j,Y j−1)

q(Y j−1)

qj−1(Y1, ...,Y j−1)

X(Y j−1)

c(Y j−1)

S(Y1)

S(Y1)

p(Yk)

pk(Y1, ...,Yk)
.

(2.45)
Here, q(Yi) is the probability of a particle history continuing beyond state Yi,

p(Yi) is the probability of the history ending at state Yi (and hence q(Yi) = 1−p(Yi),
and c(Yi) is the mean number of secondary particles produced at state Yi from an
initial primary particle.

The last condition is rather abstract. There must exist an integerM such that, for
n >M, [12]

n∏
i=1

qi(Y1, ...,Yi)
X(Yi)

6 1 ∀ Y1, ...,Yn. (2.46)

In a Monte Carlo radiation transport problem, there are three PDFs that can be
altered using importance sampling - the physical source S, the PDF defined by the
collision kernel C(~r,E ′ → E, Ω̂ ′ → Ω̂), and the PDF defined by the transport kernel
T(~r ′ → ~r,E, Ω̂). Of course, the first collision density Q in the equation for collision
density 2.6 could also be counted among them, but this function is not typically
given in a Monte Carlo problem and so it will not be counted among these functions.
Due to the difficulty of applying importance sampling directly to the collision kernel
over the entire problem, only the source distribution S will be directly altered using
importance sampling in such a way since the PDF is already given. The transport
kernel will not have it applied in this work, but doing this is known as "exponential
transform".[1] Thus, the source will be transformed as follows:

S(Y) =
S(Y)I(Y)∫
S(Y)I(Y)dY

. (2.47)
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In order to keep this from biasing the estimators, in matching with the theory above,
every particle weight will be revised as follows:

w =
S(Y)

S(Y)
. (2.48)

However, we must move to other methods in order to modify the actual transport
process of the particle itself.

Implicit Capture

Implicit capture is an important technique when importance sampling is used. Recall
from equation 2.16 that absorption is included in the collision kernel itself. While
this does accurately reflect the reality of the physics, it can prevent particles from
reaching a region of interest if these particles are absorbed before they can provide
any scores.

What is often done then in lieu of stopping the history is to reduce the weight of
the particle by multiplying it by the probability that the particle would survive that
interaction. In other words, equation 2.17 becomes

pĈ =


0 absorb,

1
Σs
Σt

Σs
Σt

= 1 scatter.
(2.49)

Thus, to remain unbiased, every particle weight is multiplied by Σs
Σt

, which when
equation 2.49 is multiplied by this factor, one can see that the original probability
for scattering is regained. This agrees with the reweighting due to an altered PDF
used with importance sampling presented in section 2.6.

The conditions under which this gives an unbiased answer is relatively simple.



30

Unless the estimator specifically requires the absorption process to take samples,
such as the last event estimator, then the estimator will remain unbiased given the
appropriate weight transformation is applied.[13] Implicit capture has the effect of
always reducing variance in any problem, and more on the mathematical proof of
this can be read in the work by Lux and Koblinger [13].

Unfortunately, one must also consider the run time issues that can be introduced
by utilizing implicit capture. If a particle is never absorbed, and no other variance
reduction methods are present, the only method of changing to a new history would
be for the particle to escape the geometry. A problem where a particle would scatter
to extremely low energies before escaping is not uncommon in the practical realm,
and as the energy decreases so does the distance that the particle typically travels.
Thus a particle can be "trapped" in the geometry, repeatedly scattering to lower and
lower energies and lower and lower weights and not travel any significant distance.
Therefore, this technique must be used in conjunction with a technique known as
weight cutoff that prevents particles from going below a certain weight, which is
described in the next subsection for splitting and stochastic termination.

The effect on the collision kernel is easy to see. The kernel must have absorption
removed, and it must be renormalized accordingly. The following is the result [5]:

C(~r,E ′ → E, Ω̂ ′ → Ω̂)f(~r,E ′, Ω̂ ′) =(
Σs(~r,E ′, Ω̂ ′)
Σt(~r,E ′)

)(
Σs(~r,E ′, Ω̂ ′)g(E→ E, Ω̂ ′ → Ω̂)

Σs(~r,E ′, Ω̂ ′)

)
f(~r,E ′, Ω̂ ′) =(

Σs(~r,E ′, Ω̂ ′)
Σt(~r,E ′)

)
g(E→ E, Ω̂ ′ → Ω̂)f(~r,E ′, Ω̂ ′), (2.50)

where Σs(~r,E ′) is defined as the total scattering cross section at position~r and energy
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E ′. In other words, it is the differential scattering cross section integrated over all
possible outgoing energies and directions. It is of note that the weight transform
for implicit capture (that is, the non-absorption probability) is analogous to how
the adjoint weight factor described in section 2.5 mathematically presents itself
and is applied (at collisions). However, while the adjoint weight factor is not a
probability, the weight transform for implicit capture is a well-defined probability
of an interaction occuring that is bounded by [0, 1).

Splitting and Stochastic Termination

This section will be concerned with a brief exploration of a well-known technique
used in the Monte Carlo method. While a more mathematical proof of it not creating
a biased estimator can be found again in the work by Spanier and Gelbard,[12] this
thesis instead follows a more simple and straightforward approach to explaining this
technique. Essentially, splitting and stochastic termination seek to achieve the same
goal as importance sampling without the extra complication of applying importance
sampling to more complicated sampling processes (i.e. the collision mechanics of
neutrons). A mathematical description follows.

Let I(Y) be an importance function over the entire phase space of a problem - the
same kind of function used in equation 2.47. Say that a particle travels from phase
space Y ′ to Y . The following fraction is calculated:

I(Y)

I(Y ′)
= γ. (2.51)

There are then two cases to consider - that being where γ > 1 and where γ < 1 (if
γ = 1, nothing is done). The cases are as follows:
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• If γ > 1, split particle:

– P (nsplit = dγe) = γ− bγc

– P (nsplit = bγc) = 1 − P (nsplit = dγe)

– w(Y ′) = 1
γ
w(Y)

• If γ < 1, stochastically terminate particle:

– Pterminate = 1 − γ −→ w(Y ′) = 0

– Psurvive = γ −→ w(Y ′) = 1
γ
w(Y)

When splitting, the number of resulting particles nsplit is probabilistically deter-
mined based on the fractionγwith probabilitiesP (nsplit = dγe) andP (nsplit = bγc).
The weight w is transformed according to the fraction γ in order to avoid biasing
the simulation. When undergoing a stochastic termination procedure, the particle
either survives and results with an equivalent weight transform as in splitting, or
the particle is terminated and thus the weight of the particle is 0.

Both of these techniques are individually unbiased and do not need to be utilized
in conjunction with each other. [12] They also need not be based on an importance
value that is a function of the phase space - weight windows use the weight itself
to determine when to split and stochastically terminate.[1] Weight windows do,
however, use a slightly different splitting procedure.

To give a brief overview of weight windows, the following theory is presented.
The weight window shall be denoted as W(Y). A weight window contains three
values that are listed in descending order of magnitude - an upper weight, a survival
weight, and a lower weight:
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W(Y) =


Wu

Ws

Wl

Wu > Ws > Wl. (2.52)

The following conditions are then true for a particle of weight w enteringW(Y).
If w > Wu, then the particle is split into d w

Wu
e particles, with each particle having

a resulting weight of 1
d wWu e

. If Wu > w > Wl, nothing is done and the particle
continues. If Wl > w, then the particle is stochastically terminated based on the
probability 1 − w

Ws
, and so if it survives, it is re-weighted to the survival weight

Ws.[1]
Weight cutoff, which is the procedure mentioned in section 2.6 that must be used

with implicit capture, is exactly equivalent to usingWl andWs of a weight window
but having noWu. It is usually a technique applied everywhere in the entire phase
space, and simply used to prevent particles from going below a certain weight.

2.7 Zero Variance Using Importance Sampling

The entirety of the mathematics from this section come from the work by Hoogenboom.[14]
For simplicity of this section, the integral equations for emission density and colli-
sion density expressed earlier will not be used from this point forward. Instead, we
express the forward and adjoint integral equations in an abstract fashion as follows:

E(Y) = S(Y) +

∫
K(Y ′,Y)E(Y ′)dY ′, (2.53)

E†(Y) = ηE(Y) +

∫
K(Y ,Y ′)E†(Y ′)dY ′. (2.54)



34

These equations are kept generic for simplicity in this section such that E is a
generic event density and E† is its respective adjoint with Y being a vector variable
that contains all relevant dimensions of phase space for a particle transport problem.
With this being the case, S is interpreted as some initial event density and K as the
integral kernel (which would be composed of the transport and collision kernel
in particle transport). ηE is a response function to the forward event density E as
demonstrated in equation 2.56. Integrating the kernel leads to the following:

∫
K(Y ′,Y)dY = σ(Y) = 1 − α(Y), (2.55)

where σ is the probability of scattering and α is the probability of absorption. The
equation that describes the solution of interest that we are seeking is as follows:

F =

∫
ηE(Y)E(Y)dY =

∫
S(Y)E†(Y)dY . (2.56)

Assuming proper normalization of S, we introduce a generic importance function
I, and assume that the following equations describe an importance sampled source
and kernel:

Ŝ(Y) = S(Y)I(Y), (2.57)

K̂(Y ′,Y) = K(Y ′,Y) I(Y)
I(Y ′)

. (2.58)

We assume these functions provide proper normalization, such that the following
is true:

∫
Ŝ(Y)dY = 1, (2.59)
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∫
K̂(Y ′,Y)dY = σ̂(Y). (2.60)

In order to illustrate a point that will become important later, we will briefly
cover the zero variance proof for last event estimators. We note the form of the score
for a last event estimator as follows:

fle = w
ηE(Y)

α(Y)
. (2.61)

If the simulation is perfectly analogue in the forward, then the weight will be
always be 1. However, if importance sampling has been applied, then the weight
will be as follows:

w(Yi) =
S(Y0)

Ŝ(Y0)

i∏
c=1

K(Yc−1,Yc)
K̂(Yc−1,Yc)

, (2.62)

where c can be interpreted as an index representing the transition in phase space
through the collision kernel and transport kernel together and i is the latest transition
a particle has undergone. Substituting equations 2.57 and 2.58 into equation 2.62
leads to a convenient simplification:

w(Yi) =
1

I(Y0)

i∏
c=1

I(Yc−1)

I(Yc)
=

1
I(Yi)

. (2.63)

If importance sampling is applied, it is also clear that the absorption proba-
bility would change based on equation 2.60, and we label this α̂ = 1 − σ̂. If one
utilizes I(Y) = E†(Y)

F
as the importance function in equation 2.58, through some

manipulations one may arrive at the following:
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α̂(Y) =
ηE(Y)

E†(Y)
. (2.64)

This is important because if we take equations 2.64 and 2.63 with E†(Y)
F

substituted
as the importance function in equation 2.63, and then substituting these expressions
into the last event estimator score in equation 2.61, one arrives at the following:

fle = F, (2.65)

which is indicative of a zero variance solution.

2.8 State of the Art Importance Sampling Techniques

There is a variety of different methods that use the above zero variance proof to
implement an importance sampling scheme using weight windows or importances
to hopefully improve the rate of convergence of a given problem. Here, we cover
a few to provide a basis for the rest of this research. First, we note once again
the following definition that provides a mathematical description of the rate of
convergence of a Monte Carlo estimator - the figure of merit:

FOM =
1
tR2 , (2.66)

where t is the simulation time and R is the relative error of the estimator. A higher
measure of this parameter indicates faster convergence for the problem.
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CADIS

It is arguable that CADIS (consistent adjoint driven importance sampling) is the most
well-known and popular method for implementing importance sampling theory
in a Monte Carlo simulation.[8] CADIS performs a discrete ordinates calculate to
first find scalar adjoint flux values over a mesh to then set weight windows in a way
equivalent to the zero variance importance sampling scheme as presented earlier.
As such, the survival weights of the weight windows are set as follows, based on
equation 2.63:

Ws(∆~r,∆E) =
F

φ†(∆~r,∆E) , (2.67)

where, typically,Wl =
Ws

3 andWu = 5Ws

3 .[1][8] Here, φ† is used as opposed to E†

in order to clarify that CADIS specifically seeks to utilize the adjoint flux as opposed
to a different specific adjoint event density function used in the zero variance proof
expressed earlier. In order to keep these weight windows consistent with the weight
of particles being emitted from the source (such that particles do not immediately
have stochastic termination or splitting immediately applied), the source is also
modified as follows:

Ŝ(~r,E) = φ†(∆~r,∆E)S(~r,E)
F

. (2.68)

CADIS has been repeatedly shown to achieve an increase in the figure of merit
for a variety of Monte Carlo simulations. However, a possible improvement for
this method would be to include directional dependence of the importance sam-
pling expressed in equation 2.63. There has been work to include direction in-
formation in CADIS such as CADIS-Ω, which utilizes scalar contributon flux,
C =

∫
φ(Y)φ†(Y)dΩ̂, in the importance function with the idea that this function
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should have a greater value in areas of phase space where the forward and adjoint
flux have greater overlap in direction space.[15] However, this method still utilizes
an importance function that is not dependent on direction space since the weight
windows it generates are not discretized over direction space.

Other Methods

Other methods similar in nature to CADIS include AVATAR, LIFT (local importance
function transform), and the method used in TRIPOLI-4.[9][16][10]. All of these
methods use a deterministic adjoint solution in order to increase the figure of merit
for a Monte Carlo calculation. In AVATAR, the scalar flux and net current information
are calculated from a discrete ordinates solution and used in order to form angularly
dependent weight windows.[9]. The LIFT method utilizes adjoint scalar flux in
order to form weight windows, an importance sampled source, and an importance
sampled transport kernel.[16].

The method utilized in TRIPOLI-4 by Nowak also utilizes a discrete ordinates
solution.[10] It uses this solution for importance sampling of the transport kernel,
but it also uses adaptive multilevel splitting which relies on an importance map
instead of weight windows.[10] MCNP also contains importances, but they must be
assigned to the cells defined by the geometry instead of a mesh that overlays the
geometry.[1] Adaptive multilevel splitting is particularly interesting because while
it utilizes a deterministic adjoint solution to set the importance map, it also uses
information from the histories performed by the Monte Carlo simulation to adapt
the splitting routine.[10][17]

In summary, all of these different methods utilize deterministic solutions in
order to improve convergence of a Monte Carlo simulation. While some do include
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angularly dependent weight windows (such as AVATAR), none seem to use ac-
tual angular adjoint information in order to set these parameters. In the work by
Wagner on CADIS, he states that "The SN method can determine the scalar (angular-
independent) adjoint accurately, but not necessarily the angular-dependent adjoint
because of the limited number of directions. Therefore, because of the memory
requirements and inaccuracies of the angular-dependent adjoint, we use the space-
and energy-dependent (scalar) adjoint function for calculating space- and energy-
dependent source biasing and weight window parameters".[8] In light of this, an
area of interest would be to simply explore how direction dependent importance
information would affect the figure of merit. This is a major topic of this thesis and
will be explored in chapter 3.

In addition to this, a similar method to CADIS will be applied to adjoint con-
tinuous energy Monte Carlo. This method will use the forward information in an
importance function for the adjoint since, after all, the forward is the adjoint of
the adjoint function.[4] This will be explored in chapter 4. This will be explored
utilizing both a discrete ordinates calculation of the forward information and the
Monte Carlo mesh estimator results for the forward information.
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Chapter 3

Direction Space Importance Sampling

This chapter explores enhancement of importance sampling based variance reduc-
tion techniques through the inclusion of direction discretization and angular adjoint
information. First, a new type of importance sampling approximation implementa-
tion, henceforth called "weight targets", will be explored due to theoretical questions
regarding weight windows. Subsequently, a method by which direction space can
be discretized for both estimators and meshes that utilize weight windows or weight
targets is described. Lastly, the results of the direction discretization and weight tar-
gets will be displayed for an example problem to demonstrate their efficacy towards
their intended purpose.

3.1 Weight Targets

Though weight windows have proven to be a reliable method of increasing the
efficiency of Monte Carlo simulations when used appropriately, they were origi-
nally intended as a way to restrict the range of possible weights in a simulation.[1]
Presumably, a wide range of weights would have been caused by various variance
reduction techniques being used simultaneously in a given problem. However,
when used as a variance reduction technique itself, it raises the question of why
an appropriate range of weights defined by the weight window itself is required
when one can calculate an exact value for the appropriate weight to be expected of a
particle in a certain phase space given an applied importance sampling scheme. It is,
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in fact, this exact weight value that is utilized as the survival weight for weight win-
dows generated by CADIS which is exactly at the center of the weight window.[8]
Instead, we can choose to effectively "close" the weight window since we already
know exactly what weight we should expect for a given portion of phase space. This
leads to a relatively simple design. For some phase space, let there be an expected
weight for the weight target designated asWt(Y). A particle entering Y has a weight
w. The fraction γ = w

Wt(Y)
is immediately calculated. Thus let the following be true:

• If γ > 1, split particle:

– P (nsplit = dγe) = γ− bγc

– P (nsplit = bγc) = 1 − P (nsplit = dγe)

• If γ < 1, stochastically terminate particle:

– Pterminate = 1 − γ

– Psurvive = γ

Here, P is a probability and nsplit is the number of particles that an individual
particle will split into. In any case, whether splitting or stochastically terminating,
every particle either has a resulting weight ofWt(Y) or has been terminated, thus
allowing all non-terminated particles in a phase space Y to have the weight expected
of that phase space (except in the case of γ >> 1, which will be explained later). It
is of note that this is effectively the same procedure as that detailed in subsection 2.6,
but instead uses the weight of the particle to determine γ instead of the importance
function I(Y).

There is another method that is quite similar to this, which are importances in
MCNP.[1] While in MCNP this technique must be applied to geometrical objects
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defined by the combinatorial geometry, theoretically there is no issue with applying
them to a mesh overlaying the geometry similar to how weight windows can be
currently applied in MCNP.[1] There are a couple of reasons these weight targets
are used instead.

The first reason is that accounting for other variance reduction methods is easier
when using weight as a variable to determine the splitting/termination procedure.
All variance reduction methods alter the weight of particles in some predictable fash-
ion in order to avoid biasing any estimators. If one wanted to apply other variance
reduction techniques in such a way that alters the importance sampling techniques
presented in this work, then they would more easily be able to accomplish this by
using weight-based importance sampling when compared with using importances.
This is due to that predictability of the other variance reduction method’s weight
transformation since weight-based importance sampling directly acts based on the
weight of the particle and can easily take said weight transformations into account
when weight-based importance sampling is applied. Importances instead would
have to be aware of how the other variance reduction method is working to transform
weight and take that into account when being applied, so its not quite as simple
when using importances.

The second reason has to do with a commonly added constraint to limit the
maximum number of particles that can result from a splitting operation. This
constraint is typically added to avoid situations where the magnitude of γ is such a
value that would produce an exceptionally large amount of additional particles to
simulate if left unchecked. If there is no limit to the number of resulting particles,
then the application of weight targets produces equivalent results when compared
to the application of importances. With the application of a maximum number of
allowed resulting particles though, they change slightly in their resulting effects.
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Importances rely on phase space transitions to determine the fraction γmentioned
earlier (where γ = I(Y)

I(Y ′)
for a particle starting at Y ′ and ending at Y when using

importances). Weight targets only rely on the current phase space location Y of a
particle to determine γ, though. Due to importances functioning based on phase
space transition, one can foresee the following scenario:

1. Particle transports from Y ′′ to Y ′.

2. γ = I(Y ′)
I(Y ′′)

> nmax, where nmax is the maximum number of allowed resulting
particles.

3. Resulting particle transports from Y ′ to Y .

4. I(Y ′) ≈ I(Y) .

5. γ ≈ 1, minimal further splitting occurs.

Therefore, if a particle transports from an region with an extremely low im-
portance value to a region of extremely high importance, it is foreseeable that this
maximum number of splits will be hit in the splitting routine and thus limit the
amount of possible future splitting for resulting particles that remain in the high
importance region. This is not the case with weight targets. Since the weight of the
particle is used in comparison with the weight target assigned to the current phase
space that particle exists in, it will keep splitting until finally the particle reaches
the target weight it is supposed to have. This is a more desirable behavior to ensure
that further samples are gained in regions of high importance.
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3.2 Direction Discretization

In order to discretize direction space, a direction quadrature for discrete ordinates
called PQLA (piecewise quasi-linear angular) will be used for its convenient de-
scription that allows for a simple discretization of the unit sphere. Reference [18]
provides a fundamental overview of the PQLA quadrature.

PQLA Quadrature Fundamentals

For the purposes of this work, only the first type of PQLA will be utilized. The
first step of this quadrature is to inscribe an octahedron within the unit sphere
such that the vertices of the octahedron lie on the Cartesian dimension axes. Next,
given a quadrature order N, the octahedron is divided by 2N− 1 planes along each
Cartesian dimension from −1 to 1 (including planes at −1 and 1), orthogonal to
said dimension. This results in each triangular face of the inscribed octahedron
being divided into smaller triangles of equal areas, such as in figure 3.1 where the
quadrature order is 2

We denote the plane indices for each individual Cartesian dimension as ix, iy, iz,
and utilize i as notation of a generic index for properties that apply to all dimensions
in the same manner to avoid unnecessary duplication of equations. The indices then
have the following domain:

i = [−N,−N+ 1, ...,N− 1,N]. (3.1)

Noting the pattern in figure 3.1, the coordinate of each plane on its respective
axis is easily seen. Let us denote s as a generic coordinate representing x, y, or z
for properties that apply to each dimension, just as i represents a generic index
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Figure 3.1: Triangular octahedral face subdivided by orthogonal planes withN = 2

placeholder for the individual dimension indices. The following is then true:

s =
i

N
(3.2)

A triangle is thus denoted as T . For every triangle T , the following relation holds
for the plane indices that correspond to the sides of the triangle:

N± 1 = |ix,T |+ |iy,T |+ |iz,T |. (3.3)

A vertex where these planes intersect on an octahedron face is denoted as ~V .
Given vertex ~V , the following relation holds for said vertex’s planar indices:

N = |ix,~V |+ |iy,~V |+ |iz,~V |, (3.4)
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and for the vertex’s spatial coordinates:

1 = |x~V |+ |y~V |+ |z~V |. (3.5)

The vectors from the origin to the vertices on the octahedral faces can be found
by noting that the surface of this inscribed octahedron represents the space that
contains all vectors that originate from the origin and are normalized to the 1-norm
for 3-dimensional space. This means that placing the planar indices of a given vertex
~Voct into a vector and normalizing said vector to the 1-norm will result in a vector
from the origin to ~Voct. The generic definition of the norm for 3-dimensional vectors
is as follows:[19]

‖~v‖n =

( 3∑
j=0

|vj|
n

)1/n

. (3.6)

For the purposes of this paper, only the 1-norm and 2-norm (denoted as ‖ · ‖1

and ‖ · ‖2) are important. It is immediately apparent that ‖ · ‖2 simply represents the
magnitude of a vector in 3-dimensional space, which is of note because this means
that the unit sphere is simply the space that contains all vectors which originate
from the origin that are normalized to ‖ · ‖2. It is also of note, based on relationship
3.5, that the following is true.

1 = ‖~Voct‖1 ∀ ~Voct. (3.7)

The reason that this is important is because, in order to find the equivalent
vertices on the surface of the sphere, ~Voct need simply be normalized to ‖ · ‖2, or do
as follows:
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~Vsph =
~Voct

‖~Voct‖2
. (3.8)

This allows us to utilize expression 3.4 and 3.5 to search for a direction bin that a
particle is currently contained within, as dividing equation 3.4 byN simply recovers
a vector normalized in the 1-norm that exists on the octahedral surface. Converting
between the norms is necessary to perform this determination of direction element
index, as shown in subsection "Direction Discretization Estimator Indexing". It is
also useful in constructing the spherical triangles, as shown in subsection "Triangle
Set Construction, using the plane indices so that source direction biasing can be
performed in section 3.4.

Triangle Set Construction

The direction-based importance sampling of the source requires the explicit construc-
tion of the spherical triangles formed by this quadrature. We start by considering
only a single octahedral face in the positive xyz octant. First, a standard method of
indexing these triangles must be set. In this work, we divide the triangles into paral-
lel rows starting at the xz plane initially containing 2N− 1 elements and decreasing
by 2 in row size until the row only has 1 triangle with a vertex on the y axis. We
start with the bottom-left triangle and move towards the upper-right triangle on a
given row. Note figure 3.2 whereN = 3 for a graphical example. Tloc will be used to
define the local triangle index on a given octahedral face - specifically the face that
includes the positive xyz axes since this information is symmetric for every other
face.
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 𝑧 

𝑥 𝑦 

𝑇𝑙𝑜𝑐 = 0 
𝑇𝑙𝑜𝑐 = 8 

Figure 3.2: Indexing Explanatory Graphic with N = 3

In order to compute and store relevant information about the spherical triangles,
the spherical triangle vertices need to be processed and stored relative to the triangle
indices. We first note that for PQLA quadrature, there are always two types of
triangles in terms of their orientation - those "pointing" in the positive z direction
and those "pointing" in the negative z direction. We also note that every row as we
defined earlier begins and ends with a triangle pointing in the positive direction.
We then define an algorithm that finds these vertices by looping over the vertices of
each triangle in the counter-clockwise direction, as depicted in figure 3.3.
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(𝑁 − 1, 1, 0) 

( 𝑖𝑥 , 𝑖𝑦, 𝑖𝑧) = (𝑁 − 1,0,1) 

Figure 3.3: Vertex Process Order Graphic

In this work, the processing of each triangle begins with the vertex that lies on
the x axis. Given that normalizing a vertex vector to ‖ ·‖1 is only multiplying a vector
containing the plane indices by a scalar, there is no need to normalize them to ‖ · ‖1

before finding their ‖ · ‖2 normalized counterpart. Noting this and designatingMtri

as the number of triangles in a given row and Trow being the index of the current
triangle being processed in a given row, the following is the algorithm used to
process these triangle vertices and begin to construct triangle "objects" that contain
relevant information for each spherical triangle:
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Result: Find and Process Triangle Vertices
for row = 0; row < N; ++ row do

Mtri = 2N− 1 − 2row
ix = N− row

iy = row

iz = 0
for Trow = 0; Trow < Mtri; ++ Trow do

V1 = (ix, iy, iz)
if mod(Trow, 2) == 0 then

V2 = (ix − 1, iy + 1, iz)
V3 = (ix − 1, iy, iz + 1)
ix = ix − 1
iz = iz + 1

else

V2 = (ix, iy + 1, iz − 1)
V3 = (ix − 1, iy + 1, iz)

end

V1 =
V1
‖V1‖2

V2 =
V2
‖V2‖2

V3 =
V3
‖V3‖2

// Store triangle information

end

end
Algorithm 1: Triangle Vertex Processing

After these vertices are stored, one may use basic spherical geometry relation-
ships to calculate quantities such as the triangle area, side-length, angles, etc. The
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other 7 octants can be processed by transforming the positive-domain octant onto
the other octants and indexing appropriately.

Direction Discretization Estimator Indexing

The next step to this is to remove any negative signs of each direction dimension
value for a particle as follows, where Ωx, Ωy, and Ωz are the components of a
particle direction vector:

Ω̂+ = (|Ωx|, |Ωy|, |Ωz|) , (3.9)

such that Ω̂+ is now a vector that lies in the octant with all positive dimensions.
This vector is then renormalized to ‖ · ‖1 as follows:

Ω̂+,1 =
Ω̂+

‖Ω̂+‖1
. (3.10)

The reason for this is simply that renormalizing it to ‖ · ‖1 allows for it to be
contained within the original axis-orthogonal planes that intersect the octahedron to
form the triangles. The original vector Ω̂+ is normalized to ‖ · ‖2 which is contained
under the spherical triangle that results from a projection from the triangle formed
on the octahedral face, but is not necessarily contained within those planes. The
next step is to determine the lower-bounding planes of the triangle. It is of note
that the three lower bounding planes either include the sides of a given octahedral
triangle or intersect at the vertices, depending on the orientation of the triangle.
For example, see the central triangle in figure 3.1. Because of the orientation of
this triangle, the lower bounding planes are actually the ones that intersect at the
vertices as opposed to the others where the lower bounding planes are the ones that
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form the sides. With this, it’s relatively straight forward to find the lower-bounding
place indices:

~i =
⌊
NΩ̂+,1

⌋
. (3.11)

Now that ix, iy, and iz are known, the triangle index can be calculated. First,
noting that there are 2 fewer triangles per row, the complexity of this algorithm can
be made constant through a bit of algebra. Let Ntri be the total number of triangles
up to row j:

Ntri =

iy−1∑
j=0

(2 (N− j) − 1) (3.12)

= 2iyN− iy − 2
iy−1∑
j=0

j = 2iyN− iy − iy (iy − 1) = iy (2N− iy) .

The local index on a given row is as follows:

N+ iz − iy − ix − 1. (3.13)

As described in section 3.2, the indexing order assumes that the triangles are
divided intoN rows starting at the yz plane moving towards the x axis. Let the local
octant triangle index be Tloc:

Tloc = iy (2N− iy) +N+ iz − iy − ix − 1. (3.14)

After this, the triangle index Ti is easily calculated (koct is the index of the overall
octant that a particle is contained in):

Ti = Tloc + koctN
2. (3.15)
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Secondary Binning

The above indexing procedure is used only for directions in the octant that contains
the positive domain of the x, y, and z dimensions. In order to cover the entirety of
direction space, it is noted that the positive domain triangle set is reflected perfectly
into every other octant. Given this, the index of the octant can be determined
separately from the local triangle index. We present the below algorithm to find
this secondary index for the octant.

Result: Determine koct
koct = 0
if Ωx < 0 then koct = koct + 1
if Ωy < 0 then koct = koct + 2
if Ωz < 0 then koct = koct + 4
return koct

Algorithm 2: Secondary Index Algorithm

Processing triangles of other octants

In order to then store the vertices for the other octants, one need only utilize a
consistent indexing scheme for the triangles of other octants and the fact that the
numerical coordinates of the vertices only change in sign between the different
octants. In this work, the following algorithm was used to determine other octant
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indices (& is used as the bitwise-AND operator in this case):
Result: Store other octant vertices
for octant = 1; octant < 8; ++ octant do

xm = 1
ym = 1
zm = 1
if octant& 1 then
xm = −1

if octant& 2 then
ym = −1

if octant& 4 then
zm = −1

for triangle = 0; triangle < N; ++ triangle do

for vertex = 0; vertex < 3; ++ vertex do

V1,new = xmV1,tri,vert

V2,new = ymV2,tri,vert

V3,new = zmV3,tri,vert

end

// Store triangle however is desired
end

end
Algorithm 3: Processing Other Octants

3.3 Estimator Results as the Importance Function

For the demonstration of this method, we are utilizing the estimator results of
the adjoint Monte Carlo simulation to form the importance function I(Y). For the
purposes of clarity, we denote the adjoint estimator result as χ̂†(∆Yi), noting that
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the track length flux estimator for the adjoint simulation is, in fact, measuring an
estimate of the function adjoint to the forward emission density. The importance
function for the forward is thus as follows:

I(∆Yi) =
χ̂†(∆Yi)

A∆Yi
, (3.16)

where A∆Yi =
∫
∆Yi

dY is a constant that describes the overall bin "size" over all
phase space dimensions. Since Monte Carlo estimator results are integral in nature,
this constant is necessary to ensure that each importance function value is properly
scaled with the size of the bin itself. For instance, if the mesh is discretized over
space, energy, and direction (as is the case here), then given a mesh index of j, energy
element index of k, and direction element of l, A∆Yi = Vj∆Ek∆Sl, where Vj is the
mesh element volume, ∆Ek is the energy element size, and ∆Sl is the surface area
of the spherical triangle describing the direction element. These importances can
then be used in a manner equivalent to CADIS with direction information, where
the weight target is set to the same value as the survival weight of a weight window,
Wt(Y) =Ws(Y).

It is important to mention that typically it is the case that the estimator result
is already normalized to the volume of the region it encompasses, so typically one
need not include the volume when calculating A∆Yi .

3.4 Source Direction Importance Sampling

In order to ensure that the outgoing weight of particles from the source match the
weight windows or weight targets of the phase space region that they’re emitted
from, the source must have a method of importance sampling over direction that
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matches the spherical triangles from section 3.2. Determining which triangle to
sample from is trivial - it can simply be expressed as a discrete distribution with each
element of the distribution being a spherical triangle element on the unit sphere
which has values matching the estimator results. However, the individual triangles
must also be isotropically sampled once the triangle to sample from is known. If the
triangles in use have probabilities of generating a directional sample equal to their
respective spherical triangle area, then the source is isotropic. One can approximate
nonisotropic sources by changing the values of these probabilities, but the method
detailed here only allows for isotropic sampling within a given triangle.

In order to do this, the method of isotropically sampling from a spherical triangle
by Arvo is used.[20] We first label the angles and corners of the spherical triangle
as in figure 3.4 taken from the work by Arvo.[20] The vectors A, B, and C are easily
found through the algorithms detailed in section 3.2. The values of a, b, and c can
be found by using simple dot product relationships while α, β, and γ are found
through spherical trigonometry. Lastly, we denote the area of a spherical triangle as
ωwhich is as follows:

ω = α+ β+ γ− π. (3.17)

Using this information and two random variables ξ1 and ξ2, the algorithm for
finding Ω̂ of an outgoing particle from the source is described in the following
algorithm.
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Figure 3.4: Spherical Triangle
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Result: Find Source Particle Direction Ω̂
// find random fraction ω̂ of the total triangle areaω
ω̂ = ξ1ω

// store values associated with calculating cos(b̂)
s = sin(ω̂− α)

t = cos(ω̂− α)

u = t− cos(α)

v = s− sin(α)cos(c)

// calculate cos(b̂) = q
q = [vt−us]cos(α)−v

[vs+ut]sin(α)

// calculate Ĉ
Ĉ = qA+

√
1 − q2 C−(C·A)A

‖C−(C·A)A‖2

// find random distance along greater circle arc length from B to Ĉ
z = 1 − ξ2

(
1 − Ĉ · B

)

// use arc length to calculate Ω̂
Ω̂ = zB+

√
1 − z2 Ĉ−(Ĉ·B)B

‖Ĉ−(Ĉ·B)B‖2
Algorithm 4: Spherical Triangle Isotropic Sampling

Given this algorithm, the source can be made once again such that the emission
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weight is within bounds of the importance sampling technique being used. This is
so long as the source is approximated to be isotropic within each respective triangle.
This method effectively results in a piecewise constant discrete PDF over the triangle
indices, where each triangle is individually isotropically sampled. Presumably,
once importance sampling is applied, the discrete importance sampled PDF will
be anisotropic while each triangle itself will still be isotropically sampled after the
discrete importance sampled PDF is sampled. The weight would be determined by
the discrete importance sampled PDF and whatever original discrete PDF is applied
over the spherical triangle indices by the user.

3.5 Demonstration

The demonstration utilizes photons exclusively. Figure 3.5 depicts the geometry
used for demonstrative purposes in this work. The entire geometry size is 50cm×
50cm× 50cm. There are two plates of natural lead on either end of the x axis of the
geometry, spanning the entirety of the y and z axes that are each 8cm thick (in this
case, natural refers to the natural composition of isotopes for that specific element).
These were placed in order to encourage greater direction biasing of the forward
and adjoint sources since, theoretically, any particle that travels in the incorrect
direction would end up wasting time in these high attenuation regions where the
particles are bound to only disappear if they reach the other side. In the center of
the geometry, there is another lead block that is 4cm thick in the x direction, 15cm
tall in the y direction, and spans the entirety of the z axis for the geometry. This
was constructed so that the forward and adjoint particles will reach the detector
and source, respectively, by going around this shield in the y direction. The source
and detector are made of natural manganese and germanium respectively, and are
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2cm× 2cm× 2cm in size. They are placed such that they touch the surfaces of the
lead plates, are in the center of the y and z axes and are completely contained within
estimator mesh cells (and, therefore, the weight target mesh since both meshes
must be the same). The volumetric cell surrounding the center lead plate, source,
and detector is natural hydrogen. The density of the lead is 11.35 g

cm3 , manganese
7.26 g

cm3 , and germanium 5.5 g
cm3 . The density of hydrogen was set to a value much

higher than what is normally for STP in order to encourage more attenuation in
the gaseous medium so that particles do not almost always escape the geometry if
they’re not traveling in the direction towards a lead shield.

The mesh used in this problem is composed of 2cm×2cm×2cmmesh elements,
and is identical for the weight targets, weight windows, and estimator. The mesh
estimator has energy bin boundaries at [0, 0.045, 0.1, 0.2, 0.3, 0.4, 0.6, 0.8, 0.835]MeV ,
which match the energy bounds that ADVANTG uses to apply its weight windows
per the Denovo discrete ordinates energy boundaries.[21] The forward source is
isotropic and has an emission energy of 0.835MeV , and the response function
(equivalent to the adjoint source) is simply 1 in the detector region from 0MeV to
0.835MeV in order to match a simple total flux calculation in the detector region.
For the angular weight windows and weight targets, a quadrature order of n = 2
was utilized to form the direction discretization which corresponds to 32 direction
bins.
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Figure 3.5: Test Geometry

The FOM will be used to measure performance between the different cases
presented here. The FOM is a measure of the rate of convergence for a Monte Carlo
simulation, given as follows:

FOM =
1
tR2 , (3.18)

where t is the simulation run time and R is the resulting estimator’s relative error.
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The adjoint continuous energy Monte Carlo solution took 36.8 hours to form
for this problem while the ADVANTG solution was nearly instantaneous due to
discrete ordinates performance being dependent on the resolution of discretizations
in phase space instead of the attenuation and geometric complexity present in the
problem itself. All results here were formed utilizing MPI capabilities of FRENSIE
using 7 nodes with 20 cores each.

According to the scalar importance sampling results in table 3.2, there does
not seem to be a significant difference in performance for using deterministic and
stochastic transport results to form the importance function. Moreover, there does
not seem to be a significant advantage to using weight targets over weight windows
in these problems. The weight targets seem to have the benefit of gaining a lower
relative error in this problem, but end up taking longer to complete in the Monte
Carlo simulations. It is not surprising that the simulations using weight targets take
longer to complete - since they do not have a range of acceptable weights and require
application of the stochastic splitting/termination routines upon every collision, it
is easy to see how they would lengthen the time.

What is plain to see is that including the application of a direction discretization
has a noticeable benefit in this problem. Utilizing direction-based weight windows
and weight targets, a FOM increase of 3 to 5 times seems to be possible in this case.
This can be seen in the speedup column, which is a fraction of the FOM result for
that importance sampling method with respect to the FOM result in table 3.1 for its
respective estimator type being used.
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Results

Estimator Mean RE FOM VOV Simulation
Time (h)

collision 1.23337120E-06 0.01367071 0.1902866 0.00083786 7.8
track length 1.23042739E-06 0.01144335 0.27157147 0.00033844 7.8

Table 3.1: Forward Results (Analogue, 1e9 histories)

VR Input Source Estimator Mean RE FOM VOV Simulation
Time (h)

Speedup

Scalar Weight Windows, 1e9 histories
deterministic collision 1.26580861E-06 0.00485984 1.65689275 0.00696032 7.1 8.71

track length 1.26256540E-06 0.00392189 2.54417622 0.00256757 7.1 9.37
stochastic collision 1.25546240E-06 0.00424709 1.75369081 0.00515392 8.8 9.22

track length 1.25656698E-06 0.00348308 2.60741841 0.00208084 8.8 9.60
Scalar Weight Targets, 1e9 histories

deterministic collision 1.26657542E-06 0.00468733 1.78755678 0.0055168 7.1 9.39
track length 1.26628780E-06 0.00385106 2.6482024 0.00341617 7.1 9.75

stochastic collision 1.25748332E-06 0.00415963 1.75284005 0.00562598 9.2 9.21
track length 1.25660576E-06 0.00336764 2.67424867 0.00206675 9.2 9.85

Angular Weight Windows, 1e9 histories
stochastic collision 1.20314546E-06 0.00215156 7.15170958 0.00165113 8.4 37.58

track length 1.20143032E-06 0.00172456 11.13175643 0.00067279 8.4 40.99
Angular Weight Targets, 1e9 histories

stochastic collision 1.20379542E-06 0.00213923 6.17839125 0.00199582 9.8 32.47
track length 1.20022396E-06 0.00167337 10.09730343 0.000679 9.8 37.18

Table 3.2: Forward Results with Importance Sampling

The following figures display the survival weights generated using ADVANTG,
the survival weights generated using Monte Carlo, the errors of the adjoint mesh
estimator utilized to generate the survival weights, figures that display the "reverse
current" of the adjoint Monte Carlo simulation in that order. The survival weights
are used instead of the lower weights due to their values being equivalent to the
weight target values used for their respective simulation. Areas in the Monte Carlo
simulation where there were no results were replaced by the resulting survival
weight calculated using the lowest non-zero Monte Carlo mean result found in the
mesh.
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The reverse adjoint current was calculated utilizing the centroid vectors of the
spherical triangles that are formed from the PQLA quadrature direction discretiza-
tion as follows:

~J(∆~ri,∆Ej) =
N∑
k=0

Ω̂c,kAkψ(∆~ri,∆Ej,∆Ω̂k), (3.19)

where this is just a basic approximation of the definition of current utilizing the
angular mesh estimator results. As such,~J is the current, k is the direction bin, Ω̂c,k

is the spherical triangle centroid vector for direction element k, Ak is the area of the
spherical triangle of direction element k, and ψ is the flux for that bin. We note that
this is the "reverse" current due to the fact that this estimator is actually taking scores
for the −Ω̂k element due to adjoint pseudoparticles traveling in the −Ω̂ direction
respective to forward particles,[4] so ψ is actually the estimator result for the −Ω̂

direction. If this were not the case the forward particles would be encouraged away
from the region of interest. Cells with a relative error above 0.2 in the scalar mesh
track length flux estimator are excluded from these images, as they tend to exhibit
statistical noise. The results are presented on the xy plane at z = 0.

Upon examination of the survival weights generated using the CADIS method
and comparing them with the survival weights generated by Monte Carlo methods,
the greatest difference is the lack of statistical noise in the mesh results for the CADIS
results. This results in less abrupt transitions in weight windows or weight targets
between different mesh elements. There are also many mesh elements that have
no adjoint Monte Carlo estimator data which are made obvious by the zero error
values in the respective Monte Carlo error figures and abrupt changes in orders of
magnitude of survival weights. This is more apparent in the lower energy groups
and the only energy groups that have full sets of data for stochastically formed
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survival weights are those presented in figure 3.12b and 3.13b. There are some ray
effects that start to become more noticeable in energy groups 4 through 8 (due to
higher energy particles experiencing less attenuation).

In the lower energy groups, there is particularly high error in the Monte Carlo
results behind the shield with respect to the detector, as seen in figures 3.6c, 3.7c,
and 3.8c (the higher energy groups still have high error behind the shield, but not
as high). However, one can assume that the weight windows and weight targets
are not as important in these lower energies in this region of space. After all, the
forward source is a point in energy that exists in the highest energy group, so it
stands to reason that a large amount of particles might not experience these weight
windows/targets.

The reverse current figures show exactly what one might expect with respect to
the energy groups. In the lower energy groups, the reverse current flows around
the shield, which when translated to angular weight windows/targets would mean
that they would encourage splitting for particles going around the shield instead
of through it. However, as energy increases and attenuation decreases, the reverse
current curves less around the shield and simply starts to go straight through the
shield, which again when weight windows/targets are applied based on this would
mean that they would encourage more particles to simply try to travel directly
through the shield - although towards the edge of the shield they still would rather
slightly curve around the shield. The highest current (and hence the lowest angular
weight windows/targets) are inside the detector region, encouraging particles to
split more in that region. Once again, given that data with especially high (or zero)
error is omitted from these figures (not in the weight windows/targets applied
in the simulations themselves) due to the statistical noise that data presents, we
note that there are large chunks of information missing from the lower energy
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groups. However, these are again in regions where one might assume they are not
as important due to the high energy-point nature of the forward source as mentioned
before.
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Energy Group 1 Figures (0.001 MeV to 0.045 MeV)

(a) ADVANTG Survival Weights (b) Adjoint Monte Carlo Generated Survival
Weights

(c) Adjoint Monte Carlo Relative Error (d) Adjoint Monte Carlo Reverse Current

Figure 3.6: Forward Variance Reduction, Energy Group 1
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Energy Group 2 Figures (0.045 MeV to 0.1 MeV)

(a) ADVANTG Survival Weights (b) Adjoint Monte Carlo Generated Survival
Weights

(c) Adjoint Monte Carlo Relative Error (d) Adjoint Monte Carlo Reverse Current

Figure 3.7: Forward Variance Reduction, Energy Group 1
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Energy Group 3 Figures (0.1 MeV to 0.2 MeV)

(a) ADVANTG Survival Weights (b) Adjoint Monte Carlo Generated Survival
Weights

(c) Adjoint Monte Carlo Relative Error (d) Adjoint Monte Carlo Reverse Current

Figure 3.8: Forward Variance Reduction, Energy Group 3
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Energy Group 4 Figures (0.2 MeV to 0.3 MeV)

(a) ADVANTG Survival Weights (b) Adjoint Monte Carlo Generated Survival
Weights

(c) Adjoint Monte Carlo Relative Error (d) Adjoint Monte Carlo Reverse Current

Figure 3.9: Forward Variance Reduction, Energy Group 4
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Energy Group 5 Figures (0.3 MeV to 0.4 MeV)

(a) ADVANTG Survival Weights (b) Adjoint Monte Carlo Generated Survival
Weights

(c) Adjoint Monte Carlo Relative Error (d) Adjoint Monte Carlo Reverse Current

Figure 3.10: Forward Variance Reduction, Energy Group 5
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Energy Group 6 Figures (0.4 MeV to 0.6 MeV)

(a) ADVANTG Survival Weights (b) Adjoint Monte Carlo Generated Survival
Weights

(c) Adjoint Monte Carlo Relative Error (d) Adjoint Monte Carlo Reverse Current

Figure 3.11: Forward Variance Reduction, Energy Group 6
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Energy Group 7 Figures (0.6 MeV to 0.8 MeV)

(a) ADVANTG Survival Weights (b) Adjoint Monte Carlo Generated Survival
Weights

(c) Adjoint Monte Carlo Relative Error (d) Adjoint Monte Carlo Reverse Current

Figure 3.12: Forward Variance Reduction, Energy Group 7
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Energy Group 8 Figures (0.8 MeV to 0.835 MeV)

(a) ADVANTG Survival Weights (b) Adjoint Monte Carlo Generated Survival
Weights

(c) Adjoint Monte Carlo Relative Error (d) Adjoint Monte Carlo Reverse Current

Figure 3.13: Forward Variance Reduction, Energy Group 8
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3.6 Discussion

With everything considered through examining the survival weight figures and the
results in table 3.2, it seems that both stochastic and deterministic methods of gener-
ating adjoint results present with their own benefits and drawbacks that don’t seem
to make a noticeable difference in the FOM results of the simulations themselves.
However, the adjoint Monte Carlo results took 36.8 hours to produce while the
deterministic method was nearly instantaneous. This presents a conclusion that it is
much more efficient to generate scalar weight windows/targets from deterministic
methods rather than continuous energy Monte Carlo.

However, what is also clear is that in problems where direction of the particle is
especially important, the FOM can be increased by large amounts if angular data
is present in the weight windows/targets as is made evident by the results in table
3.2. In light of this, it is concluded that if one generates reliable angular weight
windows/targets from a deterministic method, the benefit in problems where high
anisotropy in the adjoint data would be immense. It is therefore deemed successfully
proven that angular adjoint data is effective when used with importance sampling.
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Chapter 4

Adjoint Importance Sampling

Adjoint continuous energy Monte Carlo is a useful tool for modeling transport
problems with certain properties. For example, say a problem has a very spatially
large forward source region made of material that causes high attenuation with a
relatively spatially small region of interest (where a detector is present, for example).
In these types of problems when analogue forward transport is utilized, it is foresee-
able that a large number of particles would be generated at disadvantageous phase
space locations in the source region where a large amount of attenuation is present
between it and the region of interest. Other combinations of similar types of phase
space discrepancies between the source and detector could also occur with respect
to energy or direction space, such that the source energy or direction functional de-
pendence degrades efficiency of the calculation in some way (having a much larger
energy range of possible source emission values when compared to a small domain
of detector energy response, for example). Of course, one could potentially alleviate
these issues by using variance reduction tactics such as importance sampling of the
source or implicit capture, as mentioned in the literature review section of this work.

However, there also exists the possibility of utilizing the adjoint for this type of
problem. The adjoint would have the benefit of generating samples that start from
the detector itself (which, as mentioned earlier, has a relatively small spatial domain
in this hypothetical problem) and instead would generate scores for the estimator
in the forward source, for which its relatively large spatial domain potentially gives
it the potential to converge much more quickly and, in turn, have a higher figure
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of merit.[3] FRENSIE was developed with adjoint continuous energy Monte Carlo
capabilities in mind, and has its adjoint capabilities for photons benchmarked with
the thesis of Alex Robinson. [3]

It’s therefore foreseeable that one might want to use the adjoint to model a
problem instead of the forward. However, just because the adjoint might be more
efficient for certain problems when compared with the forward, it does not mean that
exploring variance reduction for the adjoint itself in other problems where it is less
efficient is not without merit. It is, after all, those problems where variance reduction
should make the biggest impact. The potential to improve the rate of convergence
of an adjoint problem of this type is therefore a useful vehicle to explore how one
might reliably improve the figure of merit for all adjoint simulations expressed in
equation 2.66. There is scant information present in the literature about variance
reduction for adjoint Monte Carlo, and no information about any zero variance
importance sampling schemes for the adjoint integral equations derived in the work
by Hoogenboom and the work by Gabler et. al.[4][5] In fact, the only mention of any
variance reduction method for the adjoint found was in the work of Hoogenboom
mentioning using the forward equation for photons (and a slightly altered scheme
for neutrons, which is irrelevant here).[4] Here, we attempt a variance reduction
scheme utilizing the equivalent of CADIS for the adjoint by instead using the forward
flux information to generate weight windows and weight targets and explore how
utilizing this scheme in a manner that interacts with the effects of the adjoint weight
factor P† effects the figure of merit.
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4.1 Adjoint Importance Sampling Theory

In chapter 3, the adjoint solution generated from discrete ordinates using Denovo
and the adjoint Monte Carlo capabilities of FRENSIE were used to generate an
importance function for the forward Monte Carlo simulation and explore the effects
that discretizing direction space had on the figure of merit. In this section, we do the
reverse - utilize the forward solution from Denovo (a discrete ordinates code that
ADVANTG utilizes for CADIS)[21] and FRENSIE in order to generate an importance
function for the adjoint in order to explore the effects this has on the figure of merit
for the adjoint simulation. The logic behind this is that the forward is the function
that is adjoint to the adjoint function, and such an idea has been mentioned in
other literature.[4] The same implementation objects (weight windows and weight
targets) will be explored, as well as scalar vs. angular weight windows and weight
targets. For clarity, the survival weights and weight targets used for the adjoint is as
follows:

W†s(∆Y) =W
†
t(∆Y) =

F

φ(∆Y)
, (4.1)

whereφ is either generated through Denovo or forward Monte Carlo mesh estimator
results. ADVANTG was used again to run Denovo.[21] Angular weight windows
and weight targets were once again explored with the adjoint using forward angular
results.

The adjoint source also has importance sampling applied to it in a manner
equivalent to CADIS as follows:

η̂φ(Y) =
φ(∆Y)ηφ(Y)∫
φ(∆Y)ηφ(Y)dY

, (4.2)
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which makes it such that adjoint pseudoparticles emitted from the adjoint source
match the weight window or weight target in that region of phase space.

Using weight windows and weight targets in this manner has the interesting
effect of reversing the weight transformations made by the adjoint weight factor.
During a typical adjoint simulation without any importance sampling, the particle
weight transformations are as follows during a collision:

w†(Y) = P†(Y)w†(Y ′), (4.3)

where P†(Y) = Σ†(Y)
Σt(Y)

. With importance functions, equation 4.3 is expressed as
follows:

w†(Y) = P†(Y)w†(Y ′)
I†(Y ′)

I†(Y)
, (4.4)

and for this to be true in conjunction with equation 4.1, the following has to be true:

I†(YN) =
φ(YN)

F

N∏
i=1
P†(Yi), (4.5)

which means the importance function is effectively path dependent. Substituting
equation 4.5 into equation 4.4, the following occurs (F is omitted since it cancels
out):

w†(Y) = P†(Y)w†(Y ′)
φ(Y ′)

∏
i=1 P

†(Y1, ...,Y ′)
φ(Y)

∏
i=1 P

†(Y1, ...,Y) = w†(Y ′)
φ(Y ′)

φ(Y)
. (4.6)

With equation 4.6 being true, the only weight transformations occurring are now
due to importance sampling utilizing the forward flux. As such, the survival weight
and weight target values proposed in equation 4.1 are recovered as follows when
using importance function in equation 4.5:
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w†(YN) =
1

I†(Y0)

[
N∏
i=1
P†(Yi)

][
N∏
i=1

I†(Yi−1)

I†(Yi)

]
=∏N

i=1 P
†(Yi)

φ(YN)
F

∏N
i=1 P

†(Yi)
=

F

φ(∆Y)
. (4.7)

The hope for utilizing such an importance function is that the combination of
reversing the large weight fluctuations from the adjoint weight factor, which can
have a value of [0,∞), and using an importance function proportional to the forward
function will result in an increase in the figure of merit and faster convergence. From
the results to come, we can clearly see that this is the case.

4.2 Demonstration

The test problem used to showcase this method is the same as in section 3.2. This
problem does not match the description of the type of problem described in the
initial discussion where the adjoint might be more useful than the forward, as
demonstrated by the results in the below tables when compared with that in section
3.5. This is likely largely due to the fact that the adjoint source has a large energy
domain when compared with the forward’s monoenergetic source. This actually
presents a useful example where one might examine the effects of variance reduc-
tion on the adjoint calculation. After all, improving the rate of convergence is the
primary concern of variance reduction methods, and this problem has much room
for improvement when it comes to the rate of convergence.

There is also the fact that the adjoint simulation has the adjoint weight factor
which can cause a wide variation in weights. In particular, this problem utilizes
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hydrogen, and the adjoint weight factor generally has a higher maximum value in
regions where the medium has a lower Z-value, which also makes it an excellent
test problem for this method.[3] This wider fluctuation of weights due to the adjoint
weight factor can contribute to a lower figure of merit. If there is a higher likelihood
of a larger variation of weights, then the previously outlined method can also provide
additional benefit in restricting the fluctuations resulting from a larger range of
possible adjoint weight factor values. Therefore, this problem presents an ideal case
in which to examine the effects of the earlier mentioned method with the addition
of angular importance sampling information.

A difference of note for this problem is that it uses an energy point detector
in the forward source (adjoint estimator) region due to the forward source being
monoenergetic at 0.835MeV . The energy point detector is described in the work
by Alex Robinson.[3], but it essentially works in a very similar manner to the
spatial point detector utilized in MCNP,[1] except for energy. It effectively means
that adjoint pseudoparticles with a higher energy that produce samples in the
forward source region give larger score values for the adjoint estimator, which would
presumably translate to particles having a higher energy in the region of interest
contributing more to the result of interest and therefore being "more important".

Due to the fact that the forward and adjoint answers should match and that this
is the same problem as in chapter 3, the forward answers from chapter 3 can be used
as a benchmark for what counts as a reference answer. Immediately, it is clear that
the scalar importance sampling implementations give a 10-20 factor increase in the
figure of merit regardless of whether Denovo or the Monte Carlo results are utilized
from table 4.1 and the scalar importance sampling results displayed in table 4.2.
Similarly, the angular results give better results showing a 20-40 factor increase in
the figure of merit as shown in the angular results in table 4.2. As for the difference
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between weight windows and weight targets, it is still not definitively clear that one
is better than the other, nor is it clear that using Monte Carlo results are inherently
better than using a discrete ordinates solution for importance sampling from solely
examining the resulting figure of merit results produced.

In the result tables 4.1 and 4.2, there seems to be somewhat of a range of mean
answers - some being questionable in their acceptability given the means produced
in chapter 3. While most are in the rough "ballpark" of the answers presented for the
forward, some means are roughly a couple of standard deviations from what might
be expected to be a reasonable answer. The number of standard deviations from a
reference answer (the forward mean result with no variance reduction applied, in
this case) is displayed in table 4.3. D from table 4.3 is expressed as follows:

D =
F̂ref − F̂

†

Sdiff
, (4.8)

where Sdiff is defined as follows through propagation of error:

Sdiff =

√(
F̂refRref

)2
+
(
F̂†R†

)2
, (4.9)

where F̂ref is the forward analogue solution for the respective estimator type, Rref
is the relative error of said forward solution, F̂† is the adjoint result of a given
simulation and estimator type, and R† is the adjoint solution’s relative error. It is of
note from chapter 1 that F̂R = SF̂, where SF̂ is the standard deviation of mean result
F̂.

Of particular interest might be that of the analogue track length estimator result
in table 4.1 and the results utilizing scalar weight windows formed from a forward
stochastic solution in table 4.2, where the rest are easily explainable through their
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respective relative errors. This is most likely simply due to the fluctuation of weight
due to the adjoint weight factor causing instabilities in the estimator result. Even
though the stochastically formed results in table 4.2 for scalar weight windows are
roughly a couple of standard deviations outside of a somewhat expected range of
results based on the results of chapter 3, they are still better than the analogue result
of the track length estimator in table 4.1, which is about 3.5 standard deviations
away from an expected range of results. The reason that the results from utilizing
stochastically formed weight windows in table 4.2 are off in spite of utilizing the
variance reduction method outlined in section 4.1 is likely due to the fact that these
variance reduction methods utilized in FRENSIE are only applied after a particle
(forward or adjoint) leaves a collision. If they were applied at geometric boundary
crossings as they are in MCNP,[1] then it is likely that the range of weights would
be restricted and the answers would be even closer to a reasonable range. In spite
of this, the scalar weight windows utilizing stochastic results still do present a
reasonable improvement in the answers over the analogue. This discrepancy also
likely has to do with why the figure of merit results for stochastically formed scalar
weight windows in table 4.2 do not present a larger improvement in the figure of
merit when compared stochastically formed angular weight windows in table 4.2
when comparing collision estimators despite utilizing angular information (though
they clearly do show an improvement in the figure of merit regardless). If one
desired to determine the veracity of these likelihoods, one would have to implement
a way to measure the distribution of weights that is observed by the estimator itself.
FRENSIE would have to be made capable of performing weight window/target
checks at geometric boundary crossings. Turning this capability on while measuring
the range of weights observed and comparing with the FOM and distance from the
reference mean would prove the veracity of these claims. This is left to future work.
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However, what is clear is that utilizing the forward function to set weight win-
dows and weight targets provides a clear benefit in the rate of convergence according
to the increased figure of merit values. This is all while still approaching the refer-
ence answer. It is clear that this method does provide a sizable increase in the figure
of merit while preserving unbiasedness in the simulation.

Estimator Mean RE FOM VOV Simulation
Time (h)

Collision 1.21842491E-06 0.13207582 0.00035758 0.13076203 44.5
Track Length 9.06490629E-07 0.10417542 0.00057476 0.1183347 44.5

Table 4.1: Adjoint Results (Analogue, 4e9 histories)

VR Input Source Estimator Mean RE FOM VOV Simulation
Time (h)

Speedup

Scalar Weight Windows, 1e9 histories
deterministic Collision 1.25693983E-06 0.07210153 0.00372433 0.39238345 14.3 10.42

Track Length 1.27419958E-06 0.05259472 0.00699927 0.11444542 14.3 12.18
stochastic Collision 1.11492552E-06 0.05598032 0.00560026 0.31082981 15.8 15.66

Track Length 1.15767093E-06 0.0437473 0.00917015 0.19390512 15.8 15.95
Scalar Weight Targets, 1e9 histories

deterministic Collision 1.18973103E-06 0.07782158 0.00308933 0.37011389 14.8 8.64
Track Length 1.22682260E-06 0.04829253 0.00802241 0.14652526 14.8 13.96

stochastic Collision 1.22365107E-06 0.04751114 0.00746019 0.07167815 16.5 20.86
Track Length 1.26859048E-06 0.05791548 0.00502055 0.25421606 16.5 8.74

Angular Weight Windows, 1e9 histories
stochastic Collision 1.23249271E-06 0.0487874 0.00736807 0.30063666 15.8 20.61

Track Length 1.24097540E-06 0.03418152 0.0150102 0.17564253 15.8 26.12
Angular Weight Targets, 1e9 histories

stochastic Collision 1.20344956E-06 0.0345817 0.01327771 0.1778516 17.5 37.13
Track Length 1.19880210E-06 0.02724162 0.02139686 0.06853305 17.5 37.23

Table 4.2: Adjoint Results (Importance Sampled)
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Adjoint Simulation VR Histories Estimator D
Analogue 4e9 Collision -0.074

Track Length -3.424
Deterministic Scalar Weight Windows 1e9 Collision 0.256

Track Length 0.639
Stochastic Scalar Weight Windows 1e9 Collision -1.832

Track Length -1.384
Deterministic Scalar Weight Targets 1e9 Collision -0.464

Track Length -0.059
Stochastic Scalar Weight Targets 1e9 Collision -0.161

Track Length 0.510
Stochastic Angular Weight Windows 1e9 Collision -0.014

Track Length 0.236
Stochastic Angular Weight Windows 1e9 Collision -0.666

Track Length -0.889
Table 4.3: Adjoint Mean Precision

In addition to these results, we can also explore having an importance function
as follows instead of that in equation 4.5. The importance function could be instead
set such that it’s strictly proportional to the forward flux:

I†(Y) =
F

φ(Y)
, (4.10)

which would result in the following target weight values:

Wt(Y) =
F

φ(Y)

N∏
i=1
P†(Yi). (4.11)

This translates into the weight target values being dependent on the path that an
adjoint pseudoparticle has taken. As such, the weight targets are allowed to change
value based on the product of a given adjoint pseudoparticle’s adjoint weight factor
occurring at each collision it has experienced up until a point. The results of such a
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simulation are found in table 4.4, and it is immediately clear when comparing these
results to that of angular weight targets in table 4.2 that utilizing the importance
function as strictly proportional to the forward solution causes a significant decrease
in the figure of merit. While the answers in table 4.4 present a higher figure of
merit than the analogue, it contains a lower FOM than the angular results in table
4.2, indicating that reversing the effect of the adjoint weight factor can significantly
impact the performance of the problem.

VR Input Source Estimator Mean RE FOM VOV Simulation
Time (h)

Speedup

stochastic Collision 1.17424407E-06 0.05153616 0.0049819 0.10175382 21.0 13.93
Track Length 1.24169296E-06 0.03912978 0.00864181 0.07128306 21.0 15.04

Table 4.4: Adjoint Results (Angular Weight Targets with Adjoint Weight Factor
Transforms, 1e9 histories)

The following figures present survival weight values (once again, equivalent to
the weight target values) utilized for the adjoint Monte Carlo simulation found by
utilizing Denovo’s forward discrete ordinates capabilities and the forward Monte
Carlo results in the importance function mentioned above. First, the images of
the survival weights produced using Denovo’s forward flux results are presented,
followed by the survival weights generated from the forward flux results generated
by FRENSIE, and then followed by the forward reverse current providing a visual
aid for the direction dependence of the survival weights being used for these results.
Cells with a relative error above 0.2 are excluded from these images, as they tend to
exhibit quite statistical noise. The results are presented on the xy plane at z = 0. For
the reverse currents, the colorbar indicates the magnitude of the current vector at
that position.

When inspecting the results from Denovo, it is of note that, once again, they are
somewhat smoother than the stochastic results as a result of statistical error and
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"holes" in the forward estimator data. This is mostly only true in regions of high
attenuation though, where one might not expect the adjoint particles to easily reach
due to attenuation alone, and so it most likely has negligible effects on the results.
The ray effects from discrete ordinates are more prevalent in the forward calculation
when compared with that in section 3.5 - especially in higher energy groups as
displayed in figures 4.7a and 4.8a. Since these energy groups are arguably more
important for the adjoint simulation due to the energy point detector at 0.835MeV ,
this might explain some of the FOM improvements in tables 4.2 when Monte Carlo
results are utilized for the importance functions, given that the "holes" in the data
and lack of smoothness for the Monte Carlo results are much less sparse and in very
high attenuation regions. In fact, the error is quite low for most of the problem in
other regions, as seen in all of the figures depicting relative error. However, it is
ultimately important to note that the Denovo calculation was, once again, almost
instantaneous when generating these forward results where the forward Monte
Carlo results took about 12.6 hours to generate. Therefore, it seems obvious to
conclude that finding a way to generate angular variance reduction information
using deterministic results would be more beneficial.

The reverse currents show an increased preference for adjoint pseudoparticles
traveling around the shield in the center at lower energies and through the shield
at higher energies. This is expected given the lower attenuation for higher energy
adjoint photons. Inside areas of high attenuation, there seems to be more noise in
lower energy groups, as seen in energy groups 1 through 4. This is not statistical
noise though, since regions of high relative error have been omitted from these
figures. Instead, an explanation that is more likely to be appropriate would be that it
simply does not matter much which direction that an adjoint history in these regions
travels. It is of note that forward histories that have reached the relevant energies in
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those regions are likely scattering in a variety of directions without much preference
given that no forward histories are generated at any other energy than 0.835MeV ,
which could explain that noise.

Another note of interest is that it seems the reverse current "source" in energy
groups 0 and 1 (figures 3.6d and 3.7d) seem to be slightly in front of the forward
source. This likely has an explanation related to that given earlier for the noise in
high attenuation regions. It is likely simply the fact that particles emitted from the
forward source escape the source region relatively quickly and mostly scatter into
the relevant energy regions in those energy groups in that spatial region. Since
adjoint pseudoparticles scatter into higher energy groups, it is foreseeable that it
might be beneficial for adjoint histories to have a higher importance in front of the
source instead of inside of it so that, once it does scatter into a higher energy, it will
be more likely to scatter into the source region as evidenced in the other reverse
current figures.
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Energy Group 1 Figures (0.001 MeV to 0.045 MeV)

(a) Denovo Forward Survival Weights (b) Forward Monte Carlo Generated Survival
Weights

(c) Forward Monte Carlo Relative Error (d) Forward Monte Carlo Reverse Current

Figure 4.1: Adjoint Variance Reduction, Energy Group 1
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Energy Group 2 Figures (0.045 MeV to 0.1 MeV)

(a) Denovo Forward Survival Weights (b) Forward Monte Carlo Generated Survival
Weights

(c) Forward Monte Carlo Relative Error (d) Forward Monte Carlo Reverse Current

Figure 4.2: Adjoint Variance Reduction, Energy Group 2
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Energy Group 3 Figures (0.1 MeV to 0.2 MeV)

(a) Denovo Forward Survival Weights (b) Forward Monte Carlo Generated Survival
Weights

(c) Forward Monte Carlo Relative Error (d) Forward Monte Carlo Reverse Current

Figure 4.3: Adjoint Variance Reduction, Energy Group 3
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Energy Group 4 Figures (0.2 MeV to 0.3 MeV)

(a) Denovo Forward Survival Weights (b) Forward Monte Carlo Generated Survival
Weights

(c) Forward Monte Carlo Relative Error (d) Forward Monte Carlo Reverse Current

Figure 4.4: Adjoint Variance Reduction, Energy Group 4
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Energy Group 5 Figures (0.3 MeV to 0.4 MeV)

(a) Denovo Forward Survival Weights (b) Forward Monte Carlo Generated Survival
Weights

(c) Forward Monte Carlo Relative Error (d) Forward Monte Carlo Reverse Current

Figure 4.5: Adjoint Variance Reduction, Energy Group 5
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Energy Group 6 Figures (0.4 MeV to 0.6 MeV)

(a) Denovo Forward Survival Weights (b) Forward Monte Carlo Generated Survival
Weights

(c) Forward Monte Carlo Relative Error (d) Forward Monte Carlo Reverse Current

Figure 4.6: Adjoint Variance Reduction, Energy Group 6
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Energy Group 7 Figures (0.6 MeV to 0.8 MeV)

(a) Denovo Forward Survival Weights (b) Forward Monte Carlo Generated Survival
Weights

(c) Forward Monte Carlo Relative Error (d) Forward Monte Carlo Reverse Current

Figure 4.7: Adjoint Variance Reduction, Energy Group 7
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Energy Group 8 Figures (0.8 MeV to 0.835 MeV)

(a) Denovo Forward Survival Weights (b) Forward Monte Carlo Generated Survival
Weights

(c) Forward Monte Carlo Relative Error (d) Forward Monte Carlo Reverse Current

Figure 4.8: Adjoint Variance Reduction, Energy Group 8
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4.3 Discussion

It has been ultimately demonstrated that this method of variance reduction for
adjoint Monte Carlo simulations is effective, and can be utilized right now by simply
generating forward results from Denovo and producing weight windows from that
information. The problem used in the demonstration contains a large amount of
relatively high density hydrogen, which can cause large variations in the adjoint
pseudoparticle weight due to the adjoint weight factor as explained earlier, and
evidenced by table 4.1 for the track length estimator result. In spite of this, the
method was able to provide an increase in the figure of merit while producing
answers that were closer to the reference answer presented in section 3.5, most of
which were within statistical error of this reference answer.

However, once again, it is clear that providing angular information to these
weight windows would be greatly beneficial in the convergence rate of problems. If
one were able to generate this from deterministic methods, it would be greatly ben-
eficial in other problems too where directional dependence of histories is important
(such as needing to go around a shield, as demonstrated in this problem). This has
been a definitive example of how using forward information is beneficial to the rate
of convergence of adjoint simulations.
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Chapter 5

Conclusion

Variance reduction techniques are an important part of Monte Carlo methods for par-
ticle transport calculations. They improve the figure of merit and, for some problems
with particularly troublesome configurations, provide the ability to actually gain
any solution at all within a reasonable time frame. CADIS and other state-of-the-art
methods for variance reduction have repeatedly shown large increases in the figure
of merit, providing the increased computational efficiency necessary to solve various
problems.

The goals of this work included demonstrating the benefit of including direction
space in these state-of-the-art importance sampling techniques that are used today
and to present a method of implementing importance sampling for adjoint Monte
Carlo. In chapter 3, it was shown that for problems where direction is important,
a dramatic improvement in the figure of merit can be achieved just by utilizing
directional importance sampling. Thus, the benefit has been shown for providing
direction information based on angular adjoint information in importance sampling
techniques. In addition to this, the discretization provided can be used for estimators
which can provide other directional information such as the reverse current visual-
izations presented at the end of chapter 3 used to provide a visual representation of
the importance function being used over direction space.

In addition to this, a method that implements importance sampling for adjoint
Monte Carlo was utilized in chapter 4. This method was effectively equivalent
to CADIS for adjoint Monte Carlo, where the forward flux was used in place of
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the adjoint information in order to provide an importance function for adjoint
Monte Carlo. It was shown mathematically that utilizing the forward flux in this
manner to set weight windows or target weights was actually reversing the weight
transformations caused by the adjoint weight factor. In doing this, the adjoint
pseudoparticles were encouraged towards the forward source to provide results
and the wide range of weights occurring because of the adjoint weight factor were
restricted, thus showing a large increase in the figure of merit in the results in section
4.2. This was also performed using forward flux results from Denovo, the discrete
ordinates solver utilized by ADVANTG for the CADIS method, showing that this
increase in the figure of merit is also possible utilizing a hybrid method for the
adjoint.[21]

Future work would include exploring how to utilize direction information from
deterministic solutions to the adjoint equation in order to utilize that information in
importance sampling. It is clear that direction based importance sampling can have
a large impact on the rate of convergence for a Monte Carlo problem, and utilizing
a Monte Carlo simulation to apply importance sampling to another Monte Carlo
simulation is not a viable real-world solution to increase the rate of convergence
compared to a hybrid method due to the additional time it takes to generate the
adjoint Monte Carlo results. Also, an addition to FRENSIE where weight window/-
target checks could be performed at geometric boundary crossings along with the
ability to measure the range of weights that an estimator observes would make it so
that the effects of the spread of the weight distribution could be observed and clearer
claims be made on how they affect estimator convergence. However, the goals of
this goals of this thesis were to show how direction-based importance sampling and
adjoint importance sampling using forward information have been demonstrated
and proven, and thus the purpose of this thesis has been completed.
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Appendix A

Importance Sampling Utilizing Colli-

sion Estimator Zero Variance Theory

Introduction

An original topic of this thesis was also utilizing the zero variance theory of collision
estimators to implement importance sampling in order to explore its effects on
convergence. In truth, the appropriate zero variance importance sampling scheme is
actually dependent on the type of estimator used in a problem.[14][22][11] A small
change to the zero variance importance sampling scheme presented in section 2.7
must be made in order to express the zero variance scheme for collision estimators,
and is as follows:[14]

K̃(Y ′,Y) = K̂(Y ′,Y)
σ̂(Y ′)

, (A.1)

where σ̂(Y ′) is simply the non-absorption probability of a particle at Y ′ for the
adjoint importance sampled kernel K̂(Y ′,Y). This is equivalent to implementing
implicit capture for the importance sampled kernel by normalizing the kernel K̂ to
the non-absorption probability.

This small change induces a zero variance Monte Carlo simulation as shown by
Hoogenboom.[14] With an importance function once again set to φ†(Y

F
, the weight

targets are as follows:
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Tw(YN) =
F

φ†(YN)

N∏
i=1
σi(Yi). (A.2)

The result of this is that the weight targets are changing their values based on
the history of the particle up to a given point. With the same adjoint function
from chapter 3 utilized as an importance function for F

φ†(YN
, table A.1 contains

the results from implementing these weight targets that alter their value based on
implicit capture. Evidently, this method results in a drastically worse figure of merit
than that presented in chapter 3, likely due to the fact that this method now favors
splitting since σ has a range of [0, 1). A conclusion of this is that while zero variance
theory provides a theory for how a single history can provide the exact answer to a
Monte Carlo problem, it does not necessarily state how long that history would take
to complete, nor does it say how long histories utilized in an approximation to it
would take vs. the theory for another type of estimator. Future work would be to
utilize this for neutrons and adjoint neutrons. However, adjoint neutrons are not
yet complete in FRENSIE, and hence this could not be tested.

VR Input Source Estimator Mean RE FOM VOV Simulation Time (h)
stochastic (forward Monte Carlo) Collision 1.20269274E-06 0.00226012 2.42031345 0.02707566 22.5

Track Length 1.20045800E-06 0.00185871 3.57859209 0.05816048 22.5

Table A.1: Forward Results (Angular Weight Target with Implicit Capture Trans-
forms, 1e9 histories)
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