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ABSTRACT 

 Absorbing and trapping energy as achieved often by dampers in a prescribed frequency range is 

essential for vibration suppression in engineered systems. Dampers with various damping 

mechanisms are the most common devices to dissipate undesired vibratory energy. This 

dissertation provides a novel indenter-foam passive damper idea with poro-viscoelastic (PVE) 

damping mechanism. The first objective was to introduce a passive damper design inspired by the 

PVE material damping mechanisms. In particular, a passive PVE damper, where a PVE layer is 

sandwiched between two hard materials with multiple interfacial length scales, was simulated 

using multiple fractional Zener models in parallel. Simulation results showed that one can ideally 

design such a passive damper that dissipate maximum energy at a desired bandwidth of loading 

frequencies, either for broadband or for narrowband. The second objective was to validate and 

realize the passive damper idea developed in objective one. Multiple single-indenter–foam 

dampers were designed by combining foam sheets with different pore diameters and indenters with 

different radii. Their damping capacity was investigated by dynamic mechanical analysis in a 

frequency range of 0.5–100 Hz. Single-indenter–foam dampers delivered peak damping 

frequencies that depended on the foam’s pore diameter and characteristic diffusion length (contact 

radii). Those dampers maximized the damping capacity at the desired frequency (narrowband 

performance). Afterwards, combinations of single-indenter–foam dampers were optimized to 

obtain a two-indenter–foam damper that delivered nearly rate-independent damping capacity 

within 0.5–100 Hz (broadband performance). These findings suggested that such indenter-foam 

damper can be an effective mean of passive damping for both narrowband and broadband 

applications. The third objective was to extend the behavior of the indenter-foam damper to a 

higher excitation level, for both strain and stain rate. The nonlinearity maps that described the 
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degree of nonlinear behavior of the indenter-foam dampers were generated as a function of strains 

and strain rates. The major reasons caused such nonlinearity were found to be the reduction in 

contact stiffness, and the decrease in contact lengths. Nonlinear dynamic response could 

complicate the design and limit usability of indenter-foam dampers. Those findings suggested 

increasing adhesion at the indenter-foam interface would suppress those nonlinearities trivially. In 

summary, all the outcomes and findings of three objectives together provided a thorough 

understanding on PVE damping mechanism and a mature guideline on PVE indenter-foam 

dampers. 
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 Introduction 

 Damping Mechanisms 

Absorption and dissipation of vibratory energy in a prescribed frequency range is essential for 

most man-made structures. Unlike other system parameters like mass or stiffness, damping cannot 

be simply derived as a function of the system geometry and material properties. There could be 

multiple physical mechanisms that together result in the observed damping, but one major factor 

can be considered as the dominant damping mechanism [1]. There are as many damping 

mechanisms as there are different ways of converting mechanical energy into thermal energy. The 

most important mechanisms are interface friction, fluid viscosity, and mechanical hysteresis 

(material damping) [2]. Interface topography plays a significant role in the interfacial frictional 

and material damping, and it includes surface roughness, curvature, lay, waviness and slopes. For 

example, in order to properly predict the frictional behavior of jointed contact and get a realistic 

value of joint damping, the mathematical description of its surface roughness must be accounted 

for [3].  

Lazan describes frictional damping as the structural damping caused mainly by slip and 

micro-impacts occurring at the contact interfaces [4]. For metallic assemblies, frictional damping 

is orders of magnitude higher than the material damping, and hence, controls the amplitude of 

dynamic response of structures to a great extent. Hartog [5], Cattaneo [6], and Mindlin [7] provided 

the classical solutions to the frictional interactions under sliding and partial-slip (micro-slip) 

contacts loaded by a constant normal and monotonically increasing tangential forces. Those 

solutions listed the static friction and applied tangential forces as the parameters tuning the 

frictional slip and thus dissipation. In addition, frictional slip and force were found to depend on 
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slip rates and system states [8–10]. In the last four decades, additional parameters such as normal 

load fluctuations and phase difference between dynamic loads imposed on contact were shown to 

affect frictional dissipation significantly. High normal pressures lead to suppression of sliding, 

whereas low pressures promote frictional slip while decreasing the shear tractions over the 

interface. Therefore, tuning frictional dissipation is possible by continuous preload-control [11–

14]. Imposing a dynamic preload and adjusting the phase difference between the preload and 

tangential vibrations provides an alternative approach to tuning frictional dissipation [15–18]. The 

effect of surface geometry on frictional dissipation was first embedded in the response of spherical 

contacts to cyclic loading by Mindlin et al. [19]. The dissipation was found to scale inversely with 

a contact radius under constant normal load and tangential fluctuation amplitude. More recently, 

frictional dissipation was investigated extensively in arbitrary 2D contacts [20,21], and rough 

surfaces [18,22,23]. In those works, surface geometry and compliance were found as major factors 

affecting dissipation. Our group studied the influence of both surface roughness [24] and curvature 

[25,26] on frictional damping. The surface roughness plays a significant role on the wear evolution 

of frictional cyclic contacts. It was highly plastic contact at the initial cycles and transformed to 

elastic dominant contact afterwards. Therefore, the natural frequency and damping of the contact 

interface changed due to the change in surface roughness [24]. We studied the influence of 

patterned geometry on frictional damping as well: the tension-induced wrinkling phenomenon of 

a composite surface was utilized to generate the sinusoidal patterned surface [27]. A large 

mismatch in stiffness of constituents was also a key factor in creating wrinkles on composite 

surface layers such as soft biological tissues and soft-hard materials interfaces [28–30]. We 

investigated a similar configuration as in [31], and tuned frictional dissipation on wrinkled 

(patterned) surfaces. 
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Viscous damping is mainly due to the viscous force that prevents the opposite shear motion 

against the fluid. The most famous example of the viscous damping is the dashpot element that is 

widely used as a mathematical tool in vibration studies. Viscous damping was first applied in the 

military and aerospace industries and then was adapted for structural applications in civil 

engineering [32]. Constantinou and Symans introduced a viscous fluid device that consists of a 

piston within a housing space filled with silicone oils [33]. Such a device could dissipate energy 

and be used to prevent structures from earthquake-induced vibrations by taking advantage of the 

viscous damping. Many studies by different researchers optimize the viscous damping devices by 

sophisticated techniques [34–36] or design optimization of active and passive structural controller 

[37]. Viscous damping is heavily applied to reduce vibrations of bridge [38]. Fluid viscous 

dampers were built to reduce both the first few modes [39] and higher modes [40] of the bridge 

vibrations depending on the purpose of usage. Viscous damping can also play a significant role to 

dissipate undesired vibratory energy at many length scales, from Micro-electromechanical 

Systems (MEMS) [41] to aerospace structures [42].  

Material damping is known as the most complex damping mechanism not only because of 

various micro-scale behaviors such as grain defects, local thermal effects, and dislocations in the 

grain lamina, but also due to the diversity of materials, i.e., frequency dependent damping 

mechanism for biological  tissues and frequency independent damping mechanism for most metals 

[1]. Therefore, most researchers modeled material damping not distinguished by different 

materials, but based on rate dependence [43]. Rate-independent damping is also known as the ideal 

hysteretic damping [44], which is widely used in structural vibration analysis [45] and soil 

behavior studies [46]. Rate-dependent damping is dominantly observed in soft materials with time-

dependent mechanical properties; i.e., viscoelastic and poro-viscoelastic (PVE) relaxations [47]. 
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Viscoelastic materials have been employed in sandwiched [48] and other composite structures [49] 

to enhance viscoelastic damping. Viscoelastic damping has been widely used in aerospace, 

automotive [50], turbines [51], and MEMS [52]. Viscoelastic damping is length scale independent, 

while PVE damping is dependent on diffusion length scale [53,54]. Poroelastic materials are well-

known for their time-dependent behaviors [55]. Poroelastic damping has already been utilized for 

synthetic noise absorption, but damping efficacy in those cases is limited to high frequency 

excitations. Recent efforts attempt at expanding the bandwidth, especially to lower frequencies by 

active and passive composite systems [56,57]. Deshmukh and McKinley provided PVE 

composites (open-cell polyurethane foam with magnetorheological fluid) as an adaptive energy 

absorbing material [58]. They concluded that such fluid-based composites can be used for wide-

ranging energy absorbing applications from ballistic armor to automotive components. 

 Categories of Damper 

In recent years, many innovative dampers that absorbs vibratory energy have been studied in 

various research groups. They can be divided into three major categories: passive energy 

dissipation, active energy dissipation, and semiactive energy dissipation [32,59]. These categories 

of dampers usually utilize one or more damping mechanisms to absorb vibratory energy.  

A passive damper, as implied by its name, does not require an external power supply [60]. 

A passive damper usually uses a single damping mechanism to reduce vibratory energy, and it is 

widely used in all man-made structures from macro-scale (spacecraft and buildings) to micro-scale 

(MEMS) systems. Metallic yield damper, as a common passive energy dissipation method for 

earthquake-resistance, takes advantage of the inelastic deformation of metals. X-shape and 

honeycomb structures with steel, lead, or shape-memory alloys are used as the metallic yield 
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devices [61,62]. Those dampers possess stable hysteretic behavior, long term reliability, and 

relative insensitivity to environmental temperature [32]. Friction dampers are widely used to avoid 

high cycle fatigue failures of gas-turbine blades [63]. There are two basic types of friction dampers: 

blade to ground damper links a vibrating point on the blade to a relatively rigid structure such as a 

cover plate; blade to blade damper links two points on the blade. Both type of dampers dissipate 

energy when frictional slip occurs on the linked contact points [14,64]. For MEMS devices with a 

fluid film squeezed between two plates, the so-called squeeze film damping becomes an important 

mechanism that need to be investigated thoroughly. Squeeze film effect changes the desired 

dynamic behavior of MEMS devices, such as accelerometers, optical switches, micro-torsion 

mirrors, and resonators significantly [65]. Nevertheless, additional damping is shown to provide 

stability to some MEMS devices such as micro accelerometers [66]. Thus, squeeze film damping 

needs to be evaluated whether to be reduced or enhanced depending on the design criteria and 

operating conditions of the MEMS [67].       

Active dampers are usually force delivery devices integrated with real-time processing 

controllers. Active dampers are used when high performance is needed or the system behavior is 

varied due to surrounding environment. Hence, active dampers consist of a set of sensors (strain, 

acceleration, velocity, force), a set of actuators (force, inertial, strain), and a control algorithm 

(feedback or feedforward) [68]. One of the earliest active dampers was made in 1989 with active 

damping of truss structures for a high accuracy structures requirement. Each strut consisted of a 

piezoelectric linear actuator colinear with a force transducer. The desired damping profile was 

obtained due to velocity feedback and the application of collocated force [69]. It was improved 

with embedding viscous damping actuator to gain higher damping performance within an optional 

frequency range [70]. The first full-scale application of active damper system, Active Mass Driver 
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(AMD) system, to a building was accomplished by the Kajima Corporation in 1989. It consists of 

an auxiliary mass installed in a building and an actuator that operates the mass and produces a 

control force which reduces building vibrations under strong wind or earthquake [71]. Active 

dampers are widely used in the suspension system of automobiles. Bose Corporation provided an 

active suspension system that consists of an electromagnetic motor and a power amplifier [72]. 

The major characteristics of such active dampers are high controllability and energy regeneration 

[73]. Kawamoto et al. presented a similar electromagnetic damper for automobile suspension, and  

did both shaker tests and simulations to validate the energy dissipation capacity of the dampers 

[74]. 

Recently, semi-active dampers became popular in various vibration control applications: 

they consist of passive energy dissipation component with controllable properties. Semi-active 

dampers usually require less power than active dampers, and the energy can be stored locally in a 

portable battery without external power supply [68]. The magneto-rheological (MR) fluid damper 

is a famous example of semi-active dampers. MR fluid was first discovered by Jacob Rabinow in 

1951 [75]. The magnetizable particles inside MR fluid form a chain-like structure to restrict the 

flow of the fluid when magnetic field is applied. When no field is applied, the rheological fluids 

exhibit a Newtonian behavior. MR fluid dampers are commonly used to reduce vibration in 

automotive industry. Lam and Liao proposed a semi-active MR fluid damper for vehicle 

suspension system, and the damper controller was designed to adjust the appropriate input voltage 

to the MR damper [76]. They tested the damper under sinusoidal excitations and the results showed 

the damper can improve the ride comfort quite effectively. MR fluid dampers were also built for 

seismic protection of buildings. Johnson et al. compared two possible types of dampers: ideal fully 

active damper and semi-active MR damper [77]. They did earthquake excitation tests and the MR 
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damper showed significant vibratory reduction while much less power was required. Piezoelectric 

transducer with switched electrical networks is another example for semi-active dampers. The 

vibratory energy is collected in the capacitor of a piezoelectric transducer and transformed into 

electric charge. Onoda et al. provided numerical simulation and experiments of a truss structure 

embedded with such piezoelectric transducers under vibrations, and the results showed an effective 

vibration reduction [78]. Alternatively, some researchers proposed a hybrid damper as a 

combination of passive and active devices. It can be treated as the same as semi-active dampers, 

but sometimes hybrid damper can have both passive and active energy dissipation components 

[32].  

Each type of dampers has advantages and disadvantages. For example, passive dampers 

are cheaper and easier to design and manufacture, but they are less efficient under unknown 

operating conditions when real-time control of damping profile is necessary.  Active dampers are 

desired when high damping performance is needed or the system vibratory behavior is varied due 

to surrounding environment. However, active vibration control is not always better than passtive 

and has several limitations such as complex design requirements, need for power and sophisticated 

auxiliary components such as electronics and software, and costs associated with those. Semi-

active dampers require less power than active vibration control systems and are more portable 

without external power supply. The limitation of semi-active dampers includes but not limited to, 

inappropriate for vibrations of small amplitude and relatively higher costs than passive dampers 

[79]. In most engineering applications, an active solution should normally be considered only after 

all other passive means have been exhausted [68]. 
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 The Major Contribution of the Dissertation 

The traditional vibration dissipation methods discussed above required costly and heavy sets of 

auxiliary materials and components, yet still lack effectiveness on a broadband frequency range. 

For instance, Wang and Inman presented an active damper design combining piezo-ceramics, 

oxides, polymers and elastomers in a functionally graded multilayer composite, which provided 

effective damping within structural vibration regime (10-200 Hz) [80]. Numerous research groups 

have demonstrated broad frequency band gaps by using fractal, granular, particle and beam-based 

composite metamaterials [81,82]. However, those frequency band gaps reside at higher frequency 

ranges than structural vibrations (>200 Hz). Harne et al. introduced so-called hyperdamping 

metamaterials achieving broadband energy dissipation (up to 1600 Hz), but it lacked any 

discussion on rate-dependence [83]. Therefore, this dissertation introduces a PVE damper design 

that fills the gaps in the current literature: it yields rate-independent relaxation damping within a 

wide range of frequencies. 

The major topic of this dissertation is to examine the influence of interface topography on 

PVE material damping, and to design and fabricate a prototype of a passive damper that uses PVE 

material damping. In this work, both narrowband [84] and broadband [85] passive dampers were 

simulated, fabricated, and validated through dynamic mechanical analysis (DMA). The broadband 

damper consists of a PVE layer, which is sandwiched between two hard materials with multiple 

length scales, and the damper can obtain a relatively constant loss factor for an unprecedented 

frequency range (3-3000 Hz). We designed and validated a practical composite PVE damper [86]. 

Rigid cylindrical indenters and open-cell polyethylene foam with Newtonian liquid was used as 

the PVE dampers. We conducted DMA to obtain rate-independent damping capacity over a 

frequency range of 0.5-100 Hz. These findings demonstrated the potential of attenuating vibrations 
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at a specific modal frequency by tuning the peak damping frequency of an indenter-foam PVE 

damper. Although many systems, such as automobile, aerospace, and measurement devices, 

require broadband damping, narrow-band dampers are also widely used in sensitive detection [87], 

sensing [88], acoustic fields [89] and machining applications [90,91]. The damping profile of our 

PVE damper can be tuned for optimal narrow-banded or broad-banded damping performance. 

Small vibration assumption assisted us in modeling the indenter-foam system with linearized PVE 

models in those damper designs. In the last part of my study, I studied nonlinearities observed in 

dynamic response of indenter-foam dampers. I found that adhesion and peeling process at the 

indenter-foam interfaces were the major source of nonlinear dynamic response.  

To summarize, this dissertation discusses how the interface topography and length scales 

affect PVE material damping. In Chapter 2, I introduce a broadband damper design inspired by 

the cartilage-like relaxation mechanisms. Chapter 2 was published in Journal of Sound and 

Vibration [85]. I contributed writing, modeling, and optimizing of design in this work. In Chapter 

3, I introduce the designing, fabricating, and validating of an indenter-foam PVE damper. Chapter 

3 was published in Journal of Vibration and Acoustics [86]. I contributed part of the writing, 

fabricating the damper, and conducting DMA tests. In Chapter 4, I introduce a DMA 

characterization of the indenter-foam damper under higher excitation levels and discuss the 

nonlinear behavior of the damper. Chapter 4 is prepared to be submitted to a Journal. I contributed 

the writing, fabricating the damper, and conducting DMA and adhesion tests. Finally, Chapter 5 

presents conclusions and future work. 

 



10 

 

 References 

[1] A. Puthanpurayil, R. Dhakal, A. Carr, Modelling of In-Structure Damping: A Review of the 

State-of-the-art, In Proc. Ninth Pacific Conf. Earthquake Engineering, (2011) No. 091 

[2] E.E. Ungar, The status of engineering knowledge concerning the damping of built-up 

structures, J. Sound Vib. 26 (1973) 141–154. 

[3] A.S.R. Murty, K.K. Padmanabhan, Effect of surface topography on damping in machine 

joints, Precis. Eng. 4 (1982) 185–190. 

[4] B.J. Lazan, Damping of materials and members in structural mechanics, Pergamon press 

Oxford, 1968. 

[5] J.P.D. Hartog, LXXIII. Forced vibrations with combined viscous and coulomb damping, 

Lond. Edinb. Dublin Philos. Mag. J. Sci. 9 (1930) 801–817. 

[6] C. Cattaneo, Sul contatto di due corpi elastici: distribuzione locale degli sforzi, Rend Accad 

Naz Lincei. 27 (1938) 342–348. 

[7] R.D. Mindlin, Compliance of elastic bodies in contact, J Appl Mech. 16 (1949) 259–268. 

[8] J.H. Dieterich, Time-dependent friction and the mechanics of stick-slip, in: Rock Frict. 

Earthq. Predict., Springer, 1978: pp. 790–806. 

[9] J.H. Dieterich, Modeling of rock friction: 1. Experimental results and constitutive equations, 

J. Geophys. Res. Solid Earth. 84 (1979) 2161–2168. 

[10] A. Ruina, Slip instability and state variable friction laws, J. Geophys. Res. Solid Earth. 88 

(1983) 10359–10370. 

[11] E.J. Williams, S.W.E. Earles, Optimization of the response of frictionally damped beam type 

structures with reference to gas turbine compressor blading, J. Eng. Ind. 96 (1974) 471–476. 

[12] C.F. Beards, A. Woowat, The control of frame vibration by friction damping in joints, J. Vib. 

Acoust. Stress Reliab. Des. 107 (1985) 26–32. 

[13] L. Gaul, R. Nitsche, Friction control for vibration suppression, Mech. Syst. Signal Process. 

14 (2000) 139–150. 

[14] C.F. Beards, The damping of structural vibration by controlled interfacial slip in joints, J. 

Vib. Acoust. Stress Reliab. Des. 105 (1983) 369–373. 

[15] J.H. Griffin, C.-H. Menq, Friction damping of circular motion and its implications to 

vibration control, J. Vib. Acoust. 113 (1991) 225–229. 

[16] C.-H. Menq, P. Chidamparam, J.H. Griffin, Friction damping of two-dimensional motion and 

its application in vibration control, J. Sound Vib. 144 (1991) 427–447. 



11 

 

[17] Y.H. Jang, J.R. Barber, Effect of phase on the frictional dissipation in systems subjected to 

harmonically varying loads, Eur. J. Mech.-ASolids. 30 (2011) 269–274. 

[18] C. Putignano, M. Ciavarella, J.R. Barber, Frictional energy dissipation in contact of 

nominally flat rough surfaces under harmonically varying loads, J. Mech. Phys. Solids. 59 

(2011) 2442–2454. 

[19] R.D. Mindlin, W.P. Mason, T.F. Osmer, H. Deresiewicz, Effects of an oscillating tangential 

force on the contact surfaces of elastic spheres, in: J. Appl. Mech.-Trans. ASME, ASME-

AMER Soc Mechanical Eng 345 E 47TH ST, NEW YORK, NY 10017, 1951: pp. 331–331. 

[20] M. Davies, J.R. Barber, D.A. Hills, Energy dissipation in a frictional incomplete contact with 

varying normal load, Int. J. Mech. Sci. 55 (2012) 13–21. 

[21] J.R. Barber, M. Davies, D.A. Hills, Frictional elastic contact with periodic loading, Int. J. 

Solids Struct. 48 (2011) 2041–2047. 

[22] D.B. Patil, M. Eriten, Effect of Roughness on Frictional Energy Dissipation in Presliding 

Contacts, J. Tribol. 138 (2016) 011401. 

[23] D. Dini, D.A. Hills, Frictional Energy Dissipation in a Rough Hertzian Contact, J. Tribol. 

131 (2009) 021401-021401–8. 

[24] Fantetti, A., L. R. Tamatam, Martin Volvert, I. Lawal, L. Liu, L. Salles, M. R. W. Brake, C. 

ynamics: The impact of fretting wear on structural d ,W. Schwingshackl, and D. Nowell

124-Tribology International 138 (2019): 111 ,Experiment and Simulation  

[25] L. Liu, M. Eriten, Frictional Energy Dissipation in Wavy Surfaces, J. Appl. Mech. 83 (2016). 

[26] Dissipation in Friction Dampers Eriten, Melih, Ahmet D. Usta, and Lejie Liu. Tuning the 

138,  ustics.Acoation and Vibr .J ,Excited by Depolarized Waves Across Patterned Surfaces

no. 5 (2016). 

[27] E. Cerda, L. Mahadevan, Geometry and physics of wrinkling, Phys. Rev. Lett. 90 (2003) 

074302. 

[28] P.S. Stewart, S.L. Waters, T. El Sayed, D. Vella, A. Goriely, Wrinkling, creasing, and folding 

in fiber-reinforced soft tissues, Extreme Mech. Lett. 8 (2016) 22–29. 

[29] Q. Li, T.J. Healey, Stability boundaries for wrinkling in highly stretched elastic sheets, J. 

Mech. Phys. Solids. 97 (2016) 260–274. 

[30] G. Geng, L.A. Johnston, E. Yan, J.M. Britto, D.W. Smith, D.W. Walker, G.F. Egan, 

Biomechanisms for modelling cerebral cortical folding, Med. Image Anal. 13 (2009) 920–

930. 

[31] Q. Chen, A. Elbanna, Tension-induced tunable corrugation in two-phase soft composites: 

Mechanisms and implications, Extreme Mech. Lett. 4 (2015) 26–37. 



12 

 

[32] T.T. Soong, B.F. Spencer, Supplemental energy dissipation: state-of-the-art and state-of-the-

practice, Eng. Struct. 24 (2002) 243–259. 

[33] M.C. Constantinou, M.D. Symans, Experimental study of seismic response of buildings with 

supplemental fluid dampers, Struct. Des. Tall Build. 2 (1993) 93–132.  

[34] T. TROMBETTI, S. SILVESTRI, Added Viscous Dampers in Shear-Type Structures: The 

Effectiveness of Mass Proportional Damping, J. Earthq. Eng. 8 (2004) 275–313. 

[35] N. Wongprasert, M.D. Symans, Application of a genetic algorithm for optimal damper 

distribution within the nonlinear seismic benchmark building, J. Eng. Mech. 130 (2004) 401–

406. 

[36] W. Liu, M. Tong, G.C. Lee, Optimization methodology for damper configuration based on 

building performance indices, J. Struct. Eng. 131 (2005) 1746–1756. 

[37] L. D Nikos, Design Optimization of Active and Passive Structural Control Systems, IGI 

Global, 2012. 

[38] J.A. Main, N.P. Jones, Free Vibrations of Taut Cable with Attached Damper. I: Linear 

Viscous Damper, J. Eng. Mech. 128 (2002) 1062–1071.  

[39] B.M. Pacheco, Y. Fujino, A. Sulekh, Estimation Curve for Modal Damping in Stay Cables 

with Viscous Damper, J. Struct. Eng. 119 (1993) 1961–1979.  

[40] J.A. Main, N.P. Jones, A Comparison of Full-Scale Measurements of Stay Cable Vibration, 

Advanced Technology in Structural Engineering (2000) 1–8.  

[41] T.B. Gabrielson, Mechanical-thermal noise in micromachined acoustic and vibration sensors, 

IEEE Trans. Electron Devices. 40 (1993) 903–909. 

[42] D.H. Hibner, Dynamic response of viscous-damped multi-shaft jet engines, J. Aircr. (2012).  

[43] A. Reggio, M. De Angelis, Modelling and identification of structures with rate-independent 

linear damping, Meccanica. 50 (2015) 617–632. 

[44] S.H. Crandall, The Hysteretic Damping Model in Vibration Theory, Proc. Inst. Mech. Eng. 

Part C Mech. Eng. Sci. 205 (1991) 23–28.  

[45] J.A. Inaudi, J.M. Kelly, Linear Hysteretic Damping and the Hilbert Transform, J. Eng. Mech. 

121 (1995) 626–632. 

[46] N. Makris, J. Zhang, Time-domain viscoelastic analysis of earth structures, Earthq. Eng. 

Struct. Dyn. 29 (2000) 745–768. 

[47] R. Lakes, R.S. Lakes, Viscoelastic materials, Cambridge university press, 2009. 

[48] Z. Li, M.J. Crocker, A review on vibration damping in sandwich composite structures, Int. J. 

Acoust. Vib. 10 (2005) 159–169. 



13 

 

[49] X.Q. Zhou, D.Y. Yu, X.Y. Shao, S.Q. Zhang, S. Wang, Research and applications of 

viscoelastic vibration damping materials: a review, Compos. Struct. 136 (2016) 460–480. 

[50] M.D. Rao, Recent applications of viscoelastic damping for noise control in automobiles and 

commercial airplanes, J. Sound Vib. 262 (2003) 457–474.  

[51] B.C. Nakra, Vibration control in machine and structures using viscoelastic damping, J. Sound 

Vib. 211 (1998) 449–466. 

[52] B.M. Schöberle, Evaluation of viscoelastic materials for MEMS by creep compliance 

analysis, ETH Zurich, 2008. 

[53] Unified solution for poroelastic oscillation indentation on gels for spherical, conical and 

cylindrical indenters, Soft matter 13.4 (2017): 852-861. 

[54] G. Han, C. Hess, M. Eriten, C.R. Henak, Uncoupled poroelastic and intrinsic viscoelastic 

dissipation in cartilage, J. Mech. Behav. Biomed. Mater. 84 (2018) 28–34. 

[55] M.A. Biot, General theory of three‐dimensional consolidation, J. Appl. Phys. 12 (1941) 155–

164. 

[56] A.C. Slagle, C.R. Fuller, Low frequency noise reduction using poro-elastic acoustic 

metamaterials, in: 21st AIAACEAS Aeroacoustics Conf., 2015: p. 3113. 

[57] J.P. Carneal, M. Giovanardi, C.R. Fuller, D. Palumbo, Re-Active Passive devices for control 

of noise transmission through a panel, J. Sound Vib. 309 (2008) 495–506. 

[58] S.S. Deshmukh, G.H. McKinley, Adaptive energy-absorbing materials using field-responsive 

fluid-impregnated cellular solids, Smart Mater. Struct. 16 (2006) 106. 

[59] B.F. Spencer, S. Nagarajaiah, State of the Art of Structural Control, J. Struct. Eng. 129 (2003) 

845–856. 

[60] Y.M. Parulekar, G.R. Reddy, Passive response control systems for seismic response 

reduction: A state-of-the-art review, Int. J. Struct. Stab. Dyn. 09 (2009). 

[61] I.D. Aiken, D.K. Nims, J.M. Kelly, Comparative study of four passive energy dissipation 

systems, Bull. N. Z. Soc. Earthq. Eng. 25 (1992) 175–192. 

[62] R.I. Skinner, R.G. Tyler, A.J. Heine, W.H. Robinson, Hysteretic dampers for the protection 

of structures from earthquakes, Bull. N. Z. Soc. Earthq. Eng. 13 (1980) 22–36.  

[63] Jerry H. Griffin, A Review of Friction Damping of Turbine Blade Vibration, Int. J. Turbo Jet 

Engines. 7 (1990) 297–308. 

[64] N.F. Rieger, Damping properties of turbine blades, SVIC Shock Vib. Dig. 11 (1979). 

[65] M. Bao, H. Yang, Squeeze film air damping in MEMS, Sens. Actuators Phys. 136 (2007) 3–

27. 



14 

 

[66] R. Houlihan, M. Kraft, Modelling squeeze film effects in a MEMS accelerometer with a 

levitated proof mass, J. Micromechanics Microengineering. 15 (2005) 893–902.  

[67] S. Huang, D.-A. Borca-Tasciuc, J. Tichy, Limits of linearity in squeeze film behavior of a 

single degree of freedom microsystem, Microfluid. Nanofluidics. 16 (2014) 1155–1163.  

[68] A. Preumont, Vibration Control of Active Structures: An Introduction, Springer, 2018. 

[69] Experimental studies of adaptive structures for precision performance | 30th Structures, 

Structural Dynamics and Materials Conference, p. 1327. 

[70] T.T. Hyde, E.H. Anderson, Actuator with Built-In Viscous Damping for Isolation and 

Structural Control, AIAA J. 34 (1996) 129–135. 

[71] T. Kobori, N. Koshika, K. Yamada, Y. Ikeda, Seismic-response-controlled structure with 

active mass driver system. Part 1: Design, Earthq. Eng. Struct. Dyn. 20 (1991) 133–149. 

[72] Rakshith, M., Yathin Kumar, and S. G. Vikas. Bose Automotive Suspension, International 

Journal of Recent Technology and Engineering (IJRTE) 3, no. 4 (2014) 

[73] K. Nakano, Y. Suda, S. Nakadai, Self-powered active vibration control using a single electric 

actuator, J. Sound Vib. 260 (2003) 213–235.  

[74] Y. Kawamoto, Y. Suda, H. Inoue, T. Kondo, Modeling of Electromagnetic Damper for 

Automobile Suspension, J. Syst. Des. Dyn. 1 (2007) 524–535. 

[75] R. Jacob, Magnetic fluid torque and force transmitting device, U.S. Patent 2,575,360, issued 

November 20, 1951.  

[76] H.F. Lam, W.-H. Liao, Semi-active control of automotive suspension systems with 

magnetorheological dampers, in: Smart Struct. Mater. 2001 Smart Struct. Integr. Syst., SPIE, 

2001: pp. 125–136. 

[77] E.A. Johnson, J.C. Ramallo, B.F. Spencer, M.K. Sain, Intelligent Base Isolation Systems, 

Proc. Second World Conference on Structural Control, vol. 1, no. June, pp. 367-76. 1998.. 

[78] J. Onoda, K. Makihara, K. Minesugi, Energy-Recycling Semi-Active Method for Vibration 

Suppression with Piezoelectric Transducers, AIAA journal 41, no. 4 (2003): 711-719 

[79] A. Preumont, Semi-active Control, in: A. Preumont (Ed.), Vib. Control Act. Struct. Introd., 

Springer International Publishing, Cham, 2018: pp. 487–501. 

[80] Y. Wang, D.J. Inman, Electronic Damping in Multifunctional Systems, Smart Materials, 

Adaptive Structures and Intelligent Systems, vol. 56031, p. V001T01A018. American 

Society of Mechanical Engineers, 2013. 

[81] P. Wang, F. Casadei, S.H. Kang, K. Bertoldi, Locally resonant band gaps in periodic beam 

lattices by tuning connectivity, Phys. Rev. B. 91 (2015) 020103. 



15 

 

[82] N. Boechler, J. Yang, G. Theocharis, P.G. Kevrekidis, C. Daraio, Tunable vibrational band 

gaps in one-dimensional diatomic granular crystals with three-particle unit cells, J. Appl. 

Phys. 109 (2011) 074906. 

[83] R.L. Harne, Y. Song, Q. Dai, Trapping and attenuating broadband vibroacoustic energy with 

hyperdamping metamaterials, Extreme Mech. Lett. 12 (2017) 41–47. 

[84] U. Boz, M. Eriten, A numerical investigation of damping in fuzzy oscillators with poroelastic 

coating attached to a host structure, J. Sound Vib. 417 (2018) 277–293.  

[85] L. Liu, A.D. Usta, M. Eriten, A broadband damper design inspired by cartilage-like relaxation 

mechanisms, J. Sound Vib. 406 (2017) 1–14. 

[86] G. Han, U. Boz, L. Liu, C.R. Henak, M. Eriten, Indenter–Foam Dampers Inspired by 

Cartilage: Dynamic Mechanical Analyses and Design, J. Vib. Acoust. 142 (2020) 051113. 

[87] N. Liu, M. Mesch, T. Weiss, M. Hentschel, H. Giessen, Infrared perfect absorber and its 

application as plasmonic sensor, Nano Lett. 10 (2010) 2342–2348. 

[88] S. Ogawa, K. Okada, N. Fukushima, M. Kimata, Wavelength selective uncooled infrared 

sensor by plasmonics, Appl. Phys. Lett. 100 (2012) 21111. 

[89] M.B. Zahui, K. Naghshineh, J.W. Kamman, Narrow band active control of sound radiated 

from a baffled beam using local volume displacement minimization, Appl. Acoust. 62 (2001) 

47–64. 

[90] Y. Yang, D. Xu, Q. Liu, Milling vibration attenuation by eddy current damping, Int. J. Adv. 

Manuf. Technol. 81 (2015) 445–454. 

[91] G.J. Stein, P. Tobolka, R. Chmúrny, Ferromagnetic eddy current damper of beam transversal 

vibrations, J. Vib. Control. 24 (2018) 892–903. 

 

 

 

 

 

 

 

 

 



16 

 

 A Broadband Damper Design Inspired by Cartilage-like 

Relaxation Mechanisms* 

Lejie Liu, Ahmet D. Usta, and Melih Eriten  
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 Introduction 

Absorption and trapping vibratory energy within a broadband frequency is indispensable for most 

man-made systems. Traditional vibration attenuation methods include isolation from the loading 

source, and use of active or passive vibration absorbers, impedance mismatch (reflection and 

redirection of vibration energy), magnetorheological fluids and viscoelastic materials for damping 

[1]. Those techniques require costly and heavy sets of auxiliary materials and components, yet still 

lack broadband effectiveness. Cellular materials such as elastomeric or polyurethane foams 

provide excellent shock absorption at the expense of mostly irrecoverable buckling, crushing and 

collapse, and hence are not suitable for mitigating sustained vibrations [2]. More contemporary 

damper designs achieve broadband performance by incorporating two or more of the traditional 

methods in semi or fully active configurations. For instance, the “e-damping” idea by Wang and 

Inman presents an active broadband damper design combining piezo-ceramics, oxides, polymers 

and elastomers in a functionally graded multilayer composite [3]. Piezo-ceramics serve as sensors 

and actuators in this composite, and a closed loop controller compensates for dissipation in the 

polymer and elastomer layers dependent on the rate and temperature. Although this active damper 

design increases power consumption and overall weight, it promises effective damping across wide 

frequency bands relevant to structural vibrations (10-200 Hz). 
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Frequency band gaps obtained in metamaterials and structures offer an alternative vibration 

suppression mechanism by stopping wave transmission at certain frequency ranges. In properly 

designed metamaterials, periodic arrangement of resonators (lattices) add inertia to a host system, 

trap vibrations locally, and thus prevent wave transmission at certain frequency bands [4–8]. 

Numerous research groups have demonstrated broad frequency band gaps by using fractal, 

granular, particle and beam-based composite metamaterials [5,9–15]. Those frequency band gaps, 

however, reside at higher frequency ranges than structural vibrations (>200 Hz). Several groups 

proposed composite metastructures with chiral and zigzag lattice geometries to localize the 

vibration energy and obtain effective band gaps relevant to structural vibrations [16,17]. Similar 

energy localization was shown to occur in dynamic systems consisting of fuzzy internal 

components with distributed natural frequencies [18–23]. Recent work optimizing the frequency 

distribution of fuzzy internal components provides experimental validation of enhanced 

suppression and damping performance for structural vibrations [24,25]. As in the metamaterials, 

these approaches require some form of dissipative interactions and/or viscoelastic materials to 

quickly and effectively dampen localized energy. Otherwise, reliability issues arise in the form of 

either structural failure at the lattice-scale or transfer of localized energy to the host structure after 

a short duration [20,26]. 

Recently, several research groups introduced a novel mechanism to enhance wave and 

vibration damping by adding negative stiffness to a dynamic system [27–29]. Chronopoulos et al. 

designed and applied negative stiffness inclusions into the composite metamaterials, and found 

several orders of magnitude increase in damping ratio in the low frequency range (100Hz) [30]. 

Harne et al. introduced so-called hyperdamping metamaterials achieving broadband energy 

dissipation (up to 1600 Hz) [31,32]. Furthermore, Antoniadis et al. provide theoretical framework 
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for the contribution of negative stiffness to broadband damping [33]. Those studies offer 

significant enhancement in damping magnitude, yet dismiss any discussion on rate-dependence.   

In this work, we illustrate a composite damper design that yields rate-independent 

relaxation damping within a wide range of frequencies. This damper design is inspired by the 

broadband poroelastic relaxation in human and animal articular cartilage [34–38].  Poroelastic 

relaxations are already utilized in synthetic noise-absorbing materials, but damping efficacy in 

those materials is limited to high frequency excitations. Recent efforts attempt at expanding the 

bandwidth, especially to lower frequencies by active and passive composite systems [39–41]. One 

approach to ensure effective damping at both low and high frequencies is to embed mass inclusions 

with low resonance frequencies into the poroelastic matrix [40]. Embedded inclusions tend to 

move significantly under resonance conditions, and damping increases due to inclusion-matrix 

interactions at low frequencies. Combined with the high-frequency poroelastic relaxations, those 

composite dampers achieve effective damping at both ends of the frequency spectrum. Our 

composite damper design can be seen as an extension of this idea to continuous patch of materials 

rather than discrete masses. In particular, our study will demonstrate that energy dissipation in 

cartilage-like coatings and interfaces with hard materials spans wide frequency bands, and 

sandwiched damper designs with multiple contact interfaces can be optimized for rate-independent 

damping. Rate-independent broadband damping enables both energy absorption and mathematical 

tractability, and therefore offers the most ideal characteristics for structural dynamics and acoustics 

applications [42,43]. In the rest of the paper, we will first revisit simple mechanical models and 

discuss their relevance to the interfacial mechanics of poroelastic half space-hard indenter contact. 

Then, we will obtain rate-independent broadband damping system by optimizing the contact 
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patches and material properties. The assumptions and expansion of the model will be discussed at 

the end of the paper. 

 Problem Description 

2.2.1. Damping in Poroelastic Interfaces 

In this work, we mimic the broadband dynamic response of cartilage by a composite damper 

consisting of a swollen poroelastic (PE) layer sandwiched between hard plates as shown in Figure 

2-1. The lower plate acts as a substrate upon which the PE layer reside, and the upper plate includes 

spherical protrusions with different radii contacting the PE layer. A dynamic stress (strain) is 

applied to the PE layer and the strain (stress) is monitored. The phase difference between the stress 

and strain is employed in quantification of damping. Our first claim is that one can model the 

dissipative properties of such a multiple contact interface system with multiple fractional Zener 

models shown in Figure 2-1. We will validate this claim by studying the single interface consisting 

of a hard spherical probe pressed on to PE layer. After the validation, we will use the multiple 

fractional Zener model representation to obtain optimal damping. 
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Figure 2-1: Diagram of multiple spherical protrusions in contact with the poroelastic (PE) 

layer (top), and its representation a multiple Fractional Zener Model (bottom). 

2.2.2. Modeling of Single Interface 

Relaxation of Single Fractional Zener Model 

We will use a fractional Zener material (FZM) model in Figure 2-2b to simulate the single contact 

interface between a hard (rigid) spherical probe and a poroelastic half space shown in Figure 2-2a, 

and analyze the poroelastic relaxation and broadband dissipation properties of this interface. 
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Figure 2-2: (a) A hard spherical probe in contact with a poroelastic half space, and (b) the 

representative single fractional Zener Model. 

Stress-strain relations of a FZM can be derived as 

 𝜎 + 𝜏𝜎

d𝛼𝜎

d𝑡𝛼
= 𝑀𝑅 (𝜀 + 𝜏𝜀

d𝛼𝜀

d𝑡𝛼
) (2-1) 

where 𝑀𝑅 =
𝑘1𝑘2

𝑘1+𝑘2
, 𝜏𝜎 =

𝜂

𝑘1+𝑘2
 and 𝜏𝜀 =

𝜂

𝑘2
 are relaxed modulus, and stress and strain relaxation 

time constants, respectively, and the fractional derivative of an arbitrary function 𝑓(𝑡) can be 

expressed as 

 
d𝛼𝑓(𝑡)

d𝑡𝛼
=

1

𝛤(1 − 𝛼)
∫

𝑓(𝜏)

(𝑡 − 𝜏)𝛼
d𝜏

𝑡

0

 
(2-2) 

where 𝛤 and 𝛼 are the gamma function and order of the derivative, respectively. Note that for 𝛼 =

1, Eq. (2-1 retrieves the stress-strain relations of a standard Zener element. Stress relaxation 

function 𝜓 (i.e., the stress response to a rapidly-applied constant strain) of a FZM can be found by 

Laplace transform pair of Eq. (2-1 as done in elsewhere [44] 
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 𝜓𝛼(𝑡) = 𝑀𝑅 (1 − (1 −
𝜏𝜀

𝜏𝜎
) 𝐸𝛼 [−

𝑡𝛼

𝜏𝜎
]) 𝐻[𝑡] 

(2-3) 

 

where 𝐸𝛼  and 𝐻  are the Mittag-Leffler and Heaviside step functions, respectively. Unrelaxed 

modulus can be found as  

 𝑀𝑈 = lim
𝑡→0

𝜓𝛼(𝑡) = 𝑀𝑅 (
𝜏𝜀

𝜏𝜎
) . 

(2-4) 

Assuming no loading or residual history before 𝑡 = 0 , we obtain the normalized relaxation 

function as 

 𝜓𝑁
𝛼(𝑡) =

𝜓𝛼(𝑡) − 𝑀𝑅

𝑀𝑈 − 𝑀𝑅
= 𝐸𝛼 [−

𝑡𝛼

𝜏𝜎
] 

(2-5) 

Single FZM in Frequency Domain 

To model the response of poroelastic media under broadband dynamic loading, we transform the 

stress-strain relation given in Eq. (2-1 to frequency-domain, and obtain the complex modulus as 

the ratio of stress and strain in frequency domain; i.e., 

 𝑀(𝜔) =
𝜎(𝜔)

𝜀(𝜔)
= 𝑀𝑅 (

1 + (i𝜔)𝛼𝜏𝜀 

1 + (i𝜔)𝛼𝜏𝜎
) 

(2-6) 

and the loss factor (tangent) follows as  

 𝜁 =
Im[𝑀(𝜔)]

Re[𝑀(𝜔)]
=

𝜔𝛼(𝜏𝜀 − 𝜏𝜎) sin (
𝛼𝜋
2 ) 

1 + 𝜔2𝛼𝜏𝜀𝜏𝜎 + 𝜔𝛼(𝜏𝜀 + 𝜏𝜎) cos (
𝛼𝜋
2 ) 

 . 
(2-7) 

The loss factor reaches maximum value of 
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 𝜁0 =
𝜔0

𝛼(𝜏𝜀 − 𝜏𝜎) sin (
𝛼𝜋
2 )

2 + 𝜔0
𝛼(𝜏𝜀 + 𝜏𝜎) cos (

𝛼𝜋
2 )

 
(2-8) 

at 

 𝜔0 = (𝜏𝜀𝜏𝜎)− 
1

2𝛼  (2-9) 

where 𝜔0 is the relaxation peak frequency. 

2.2.3. Validation of Single FZM Response 

Relaxation Response: Simulations and Experiments 

Hu et al. recently proposed normalized relaxation functions for poroelastic materials loaded by 

various shapes of indenters [45]. They discussed the theoretical force relaxation curves for 

spherical and conical indenters contacting on a gel with a fixed penetration, and solved the 

poroelastic contact problems in ABAQUS. In particular, the relaxation function for the spherical 

indenter is given as 

 𝑔(𝜏) =
𝐹(𝑡) − 𝐹(∞)

𝐹(0) − 𝐹(∞)
= 0.491e−0.908√𝜏 + 0.509e−1.679𝜏 

(2-10) 

where 𝜏 =
𝐷𝑡

𝑎2, 𝐷 is the diffusivity, 𝑎 = √𝛿𝑅 is the contact radius at a constant indentation depth of 

𝛿 as shown in Figure 2-3a, 𝑅 is the radius of the spherical indenter, and 𝐹(𝑡) is the force measured. 

They found that the contact radius, 𝑎, mainly depends on the depth of the indentation, 𝛿, and the 

relaxation function, 𝑔, only depends on the normalized time, 𝜏. In other words, the relaxation 

function is a master curve based on three parameters: 𝐷, 𝛿, and 𝑅. This master curve given in Eq. 

(2-10 will be compared to the normalized relaxation function 𝜓𝑁
𝛼(𝑡) of single FZM given in Eq. 

(2-5. This comparison will validate the FZM in simulating the poroelastic relaxations under 

spherical indentation.  
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We also conduct stress relaxation experiments on cartilage by performing microindentation 

on porcine femur cartilage, and provide further validation of the single FZM simulating PE 

interface response. Figure 2-3a shows a schematic of the microindentation experiments. Femur 

head samples are collected at the Swine Research & Teaching Center (SRTC) of the Department 

of Animal Sciences at the University of Wisconsin-Madison. Samples are preserved in a freezer 

and thawed two hours before the microindentation experiments. Prior to conducting experiments, 

the samples are cut into 5 mm thick slices by an EXAKT 300 precision diamond bandsaw. These 

slices are then glued in a Petri dish, and covered with 5% saline solution for hydration. The 

thickness of articular cartilage of our samples is measured as 1.1 mm. Microindentation tests are 

conducted on the cross-section of the cartilage approximately 550 µm below the articular surface. 

Circumferentially, tested locations are separated by at least 1 mm to prevent interactions between 

consecutive testing locations. A sphero-conical probe with 50 µm tip radius and 45o half angle was 

used in the microindentation tests. Standard 2D transducer of the Triboindenter (TI-950 by 

Hysitron, Inc.) is employed in the tests. This transducer has high force (<1 nN) and displacement 

(0.02 nm) resolutions necessary for testing soft materials, and hence is well suited for testing the 

cartilage. In all experiments, probe displacement is imposed as a trapezoidal function with a 

loading segment followed by hold and unloading segments. Two maximum probe displacements, 

𝛿 are used: 1 and 5 µm as shown in Figure 2-3b. Those displacements are small enough to warrant 

spherical indentation conditions. Loading rates and holding time for both cases were set to 5 µm/s 

and 360 s, respectively. Four trials were completed for each tip displacement. Indentation force 

and penetration time histories were recorded with a data acquisition rate of 200 Hz in all of the 

experiments. The tests were completed within 3 hours of sample preparation.  
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Figure 2-3: (a) Schematic of the microindentation tests conducted; (b) imposed probe 

displacement profile. 

Dynamic Response 

Nia et al. recently conducted an AFM-based nanoindentation to study the broadband dynamic 

response of normal and glycosaminoglycan (GAG)-depleted cartilage [36,37]. The GAG-depleted 

cartilage is considered as an abnormal cartilage with considerable extracellular matrix degradation 

that occurs at the earliest stages of osteoarthritis. The nanoindentation configuration is similar to 

Figure 2-3a, albeit with a probe radius of 12.5 µm. The displacement imposed on the AFM probe 

is a dynamic chirp signal with amplitude of about 4 nm over frequency range of 1-10000 Hz, 

superposed on to a mean displacement around 2-4 µm (Figure 2-4). Nia et al. reported the phase, 

𝜙, between the measured force and imposed displacement within the frequency range as a measure 

of dissipation. We will compare the empirical phase with the frequency-dependent phase of a 

single FZM (Eq. (2-7) to provide further validation of FZM to simulate cartilage damping across 

wide loading frequencies.  
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Figure 2-4: Displacement and force profiles of the dynamic nanoindentation tests 

conducted by Nia et al. [36,37]. 

2.2.4. Modeling of Multiple Interfaces and Optimization for Rate-independent 

Damping 

Next, we will model the multiple interfaces shown in Figure 2-1 as N-element generalized 

fractional Zener model, and formulate the optimization problem for rate-independent broadband 

damping. The generalized Zener model in parallel configuration results in the following 

constitutive relation in the frequency domain 

 𝜎 = 𝑀𝐶(𝜔)𝜀 = ∑ 𝑀𝑙(𝜔)

𝑁

𝑙=1

𝜀 = ∑ 𝑀𝑅𝑙 (
1 + (i𝜔)𝛼𝑙𝜏𝜀𝑙 

1 + (i𝜔)𝛼𝑙𝜏𝜎𝑙
)

𝑁

𝑙=1

𝜀 (2-11) 

where 𝛼𝑙 , 𝑀𝑅𝑙 =
𝑘𝑙1𝑘𝑙2

𝑘𝑙1+𝑘𝑙2
, 𝜏𝜎𝑙 =

𝜂𝑙

𝑘𝑙1+𝑘𝑙2
 and 𝜏𝜀𝑙 =

𝜂𝑙

𝑘𝑙2
 are respectively the fractional derivative 

order, relaxed modulus, and creep and stress relaxation time constants for the 𝑙-th element, and 

𝑀𝐶(𝜔) is the composite modulus of the multiple interfaces. Assuming the composite relaxed 

modulus 𝑀𝑅𝐶 is evenly distributed to each element, 𝑀𝑅𝑙 = 𝑀𝑅𝐶/𝐿, so that the composite modulus 
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only has one coefficient 𝑀𝑅𝐶, and this coefficient can be canceled when deal with the composite 

loss factor. The complex loss factor for the composite follows as 

 𝜁𝐶 =
Im[∑ 𝑀𝑙(𝜔)𝑁

𝑙=1 ]

Re[∑ 𝑀𝑙(𝜔)𝑁
𝑙=1 ]

=
∑ Im[𝑀𝑙(𝜔)]𝑁

𝑙=1

∑ Re[𝑀𝑙(𝜔)]𝑁
𝑙=1

. (2-12) 

Our objective is to obtain a constant loss factor and thus damping across frequencies 

ranging from 3 Hz to 3 kHz. Mechanical vibrations of many aerospace, automotive and industrial 

structures reside within this range. The approach we present here is not limited to this particular 

range, yet should be repeated for a given frequency range of interest. Note that dynamic modulus 

of each element, 𝑀𝑙(𝜔) includes three material constants, namely 𝛼𝑙, 𝜏𝜀𝑙 and 𝜏𝜎𝑙 to be optimized 

to fulfill this objective. For further reduction in the number of material constants, we introduce a 

constant, λ to describe the ratio of 𝜏𝜀𝑙 to 𝜏𝜎𝑙 as λ𝑙 =
𝜏𝜀𝑙

𝜏𝜎𝑙
, and substitute Eq. (2-9 in to Eq. (2-6 to 

establish a relationship between the dynamic modulus and the peak relaxation frequency, 𝜔0𝑙, as 

  𝑀𝑙(𝜔) = 𝑀𝑅𝑙 (1 +
(𝜆𝑙−1)(i𝜔)𝛼𝑙  

(i𝜔)𝛼𝑙+𝜔0𝑙
𝛼𝑙√𝜆𝑙

). (2-13) 

If we assume 𝛼𝑙  and λ𝑙  are known (can be determined experimentally for a given material 

interface), we can simply choose numerous fractional Zener elements with different peak 

relaxation frequencies to develop a broadband damper. The loss factor of such damping system 

can be calculated by Eq. (2-12, and then the phase lag can be obtained by converting the loss factor 

into degrees. Next, instead of randomly picking discrete peak relaxation frequencies, we introduce 

a general way using the continuous distribution of the peak frequency in order to find a constant 

loss factor (or phase lag) from 3-3000 Hz as [46]: 

  𝑀𝑐(𝜔) = 𝑀𝑅𝐶 ∫ 𝛺(𝜔0) [1 +
(𝜆 − 1)(i𝜔)𝛼 

(i𝜔)𝛼 + 𝜔0
𝛼√𝜆

] 𝑑𝜔0

∞

0

  (2-14) 

where 𝛺(𝜔0) is the probability density function (PDF) of the peak frequencies, 𝜔0. 
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Next, we use MATLAB Optimization Toolbox function “fmincon” to find the optimal PDF 

of peak frequencies yielding rate-independence and/or maximum damping over the frequency 

range of interest. The optimization variable is the discretized version of the PDF of peak 

frequencies, i.e., 𝛺𝑖 . We impose two constraints on the optimization variable to satisfy PDF 

properties; i) all components of the PDF vector are nonzero, and ii) numerical integral of the PDF 

over peak frequencies yields unity. We formulate two objective functions: one for rate-

independence and the other for damping magnitude. The rate of change in phase in the composite 

damper is chose as 𝑓(𝛀) =  ∑ |𝜙𝑖+1 − 𝜙𝑖|𝑛
𝑖  to address the former optimization. Numerical 

integration of Eq. (2-14, and then Eq. (2-12 is used to obtain the phase vector, 𝛟, and compute 

the objective function, 𝑓(𝛀). To maximize the damping amplitude, we utilize the summation of 

the reciprocal of the phase: 𝑓(𝛀) =  ∑ (
1

𝜙𝑖
)𝑛

𝑖 . Note that other objective functions could yield similar 

or better results than ours. We pick those two functions to illustrate the concept. The discretization 

resolution, 𝑛, influences both the accuracy of the results, and computational time. To compromise 

both considerations, we choose 𝑛 as 120 for this study. The tolerances on optimization variables 

and objective functions are set to 1 × 10−10. 

 Results 

2.3.1. Validation of Single Interface Models 

Validation of Relaxation Response: Simulations and Experiments 

The normalized relaxation functions for 1D loading of a single FZM (Eq. (2-5) and spherical 

indentation of poroelastic materials (Eq. (2-10) are compared in Figure 2-5. 
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Figure 2-5: Normalized relaxation obtained from the finite element simulations (𝒈(𝝉) in Eq. 

(2-10) and single FZM (𝝍𝑵(𝝉)). 

By setting the derivative order α as 0.6, and stress relaxation time constant 𝜏𝜎 as 0.6, we found 

these two curves fitted well in the entire time range. Recall that 𝜏𝜎 =
𝜂

𝑘1+𝑘2
, it means by simply 

adjusting the parameters of a single FZM, we can simulate the relaxation response of an interface 

between a spherical indenter and poroelastic materials. 

We further validate the relaxation response of the FZM against our microindentation tests. 

Figure 2-6 shows the relaxation response of porcine cartilage under microindentation of 1 and 5 

µm depth. The indentation forces measured exhibit relaxation dynamics ending within the first 50 

seconds of holding time. The relaxation rates change significantly at around 4 and 20 s for 1 and 

5 µm depths, respectively. This suggests that multiple time scales might play a significant role in 

the long-term relaxation dynamics. In addition, poroviscoelastic effects commonly observed in 

loading of biological materials and tissues might compete with each other resulting in different 

mechanisms being dominant at different periods of the relaxation [47]. The fact that the change in 

the relaxation rate for 5 µm indentation occurs nearly 5 times later than the one for 1 µm 
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indentation suggests that the poroelastic relaxation dominates in those periods. Constant relaxation 

rates observed over 10-100 s periods are recognized as viscoelastic time constants of the cells and 

biological tissues [48]. Note that the poroelastic time constants, 𝜏𝜎 =
𝛿𝑅

𝐷
. Since the same indenter 

tip is used for both depths, 𝑅 is constant. The diffusivity, however, can be different since each 

indentation is conducted at a different location at the mid-section of the cartilage. Here we are 

assuming small variations of diffusivity at the mid-section of the cartilage, and Eq. (2-10) with a 

best fit 𝜏𝜎/𝛿 =
𝑅

𝐷
= 1.953 s/μm since the indenter tip radius is 50 µm, the diffusivity estimated 

from the best fit is 25.6 µm2/s (This value falls within the range of values: 19-33 µm2/s) previously 

reported for porcine cartilage [49–51]. Therefore, the poroelastic time constants estimated from 1 

and 5 µm indentations are 2 and 10 seconds, respectively. To illustrate the good-fit to experiments, 

we present the normalized relaxation force and time histories for the experimental data in Figure 

2-6b. Force normalization follows Eq. (2-10), and time is normalized to indentation depths (𝑡/𝛿). 

Therefore, the normalized time deviates from 𝜏 =
𝐷𝑡

𝑎2 =
𝐷𝑡

𝑅𝛿
 in Eq. (2-10) by a factor of 𝐷/𝑅, which 

can be treated as a constant in our experiments. From Figure 2-6b, we find that the experimental 

data for both 1 µm and 5 µm penetrations collapse in to one master curve with minor deviations 

between normalized time of 0.02 to 2. Then, we adjust the parameters of single Zener model 

response to fit the experimental master curve. Choosing the derivative order 𝛼 as 0.7, and stress 

relaxation time constant 𝜏𝜎 as 1, yields the best fit to all of the experimental data. 
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Figure 2-6: (a) Relaxation response for 1 µm and 5 µm penetration experiments; (b) 

normalized response of the experimental data and the single FZM results. 

Validation of Dynamic Response 

The broadband phase of the healthy and GAG-depleted cartilage from [37] and the FZM response 

fit to those data are shown in Figure 2-7. The best-fit parameters of the single FZM are given in 

Table 2-1. It is noteworthy that the peak relaxation frequency shifts nearly an order of magnitude 

to the higher frequencies upon GAG-depletion. This is mainly because the GAGs in the 

extracellular matrix of the cartilage attract water, and thus, depletion of them results in less water 

in the tissue, which then increases the diffusivity [37]. Since the relaxation time constant is 𝜏𝜎 =

𝛿𝑅

𝐷
, increased diffusivity means higher peak relaxation frequencies. Albeit the shift in the peak 

relaxation frequencies, the phase magnitudes observed in healthy and GAG-depleted cartilage are 

similar suggesting that the damping capacity is not influenced by GAG-depletion. Noting that 

everyday loading of cartilage feature frequencies lower than 100 Hz, GAG-depleted cartilage does 

not offer ideal damping bandwidth to human musculoskeletal system. However, modification in 
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tissue structure and resulting changes in the peak relaxation response enables engineering a 

broadband damper, as we will discuss in the coming sections. 

In summary, the FZM accurately reproduces both the finite element simulations on 

poroelastic half space, and static and dynamic indentation tests on cartilage samples. Therefore, 

we conclude that the single FZM is a suitable reduced-order model for the broadband dynamic 

responses of interfaces between hard spherical probes and poroelastic materials. Next, we utilize 

those reduced-order models in optimization studies to obtain rate-independent damping. 

 

Figure 2-7: Broadband phase measurements from healthy and GAG-Depleted cartilage 

[37] (solid), and single FZM fitted to those measurements (dashed). 
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Table 2-1. Parameters of single FZM for healthy and GAG-Depleted cartilage using in 

Figure 2-7 

Case\Parameters 𝝉𝜺 (ms) 𝝉𝝈 (ms) 𝜶 𝑹𝟐  𝒂 (µm) 𝒇𝟎 (Hz) 

Healthy 54.61 2.33 0.71 0.99  5 86 

GAG-Depleted 13.26 0.75 0.71 0.98  5 513 

 

2.3.2. Rate-independent Damping with Discrete Frequencies 

The first exploration towards a rate-independent damping is through multiple FZM with different 

discrete peak frequencies (see Eq. (2-9). Equal spacing of peak frequencies in logarithmic values 

is previously shown to yield constant broadband damping in various other material systems [52]. 

Therefore, we fixed the peak frequencies equally spaced within the bandwidth of interest at 1, 10, 

100, and 1000 Hz. This set of frequencies is arbitrarily chosen to provide a proof-of-concept. In 

other words, the chosen peak frequency set is not unique, and so another set of peak frequencies 

can deliver equally good or even better results in terms of rate-independency. For the value adopted 

in Eq. (2-13, the derivative order 𝛼𝑙 = 0.71 is a good approximation for the healthy cartilage. In 

addition, for all the cases studied in [38], creep time constant ranged between 13 and 23 times the 

stress relaxation time constant; i.e., 𝜏𝜀𝑙~13 − 23𝜏𝜎𝑙, andhence we assume an average value for 

λ𝑙 =
𝜏𝜀𝑙

𝜏𝜎𝑙
~18. Next, we set the number of fractional Zener element for 1 Hz peak frequency as 10, 
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10 Hz peak frequency as 10, 100 Hz peak frequency as 25, and 1000 Hz peak frequency as 75 ( 

Figure 2-8a). Then we obtain the composite phase by using Eqs. (13) and (12), and find that it 

varies not more than 10% for the frequency range of interest (3-3000 Hz) as shown in Figure 2-8b. 

Albeit being away from optimal solution, even a simple hand picking of peak frequencies equally 

spaced logarithmically yields nearly rate-independent damping over 3-3000 Hz. 

 

Figure 2-8: (a) Phase responses of fractional Zener elements with peak frequencies at 1, 10, 

100, and 1000 Hz and the number of such elements; (b) phase responses in linear frequency 

scale of individual elements and the composite multiple interfaces 

2.3.3. Rate-independent Damping with Continuous Frequency Distribution 

Next, we will utilize the continuous formulation given in Eq. (2-14 to obtain optimum solution 

through an optimization routine. We choose a normal distribution function as the initial guess for 

the PDF of peak frequencies, and the optimal PDF we obtain is shown in Figure 2-9a. The optimal 

PDF has two large peak value around 3 Hz and 53 Hz, and a small peak around 3000 Hz. For all 

other frequencies, the optimal PDF attains very small values. In other words, in order to have the 

rate-independent damping system, we should have larger number of fractional Zener elements, 
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which have the peak frequencies near 3 Hz, 53 Hz and 3000 Hz, and small number of fractional 

Zener elements in all other frequencies. Figure 2-9b shows the optimal phase responses from the 

discrete and continuous formulations. Continuous formulation after a proper optimization routine 

delivers a nearly perfect rate-independence across 3-3000 Hz. 

 

Figure 2-9: (a) Optimized PDF of peak frequencies for rate-independent damping; (b) 

phase responses of optimal continuous PDF and composite discrete Zener elements from 

Figure 2-8b. 

2.3.4. Optimization of Damping Amplitude 

We are also interested in maximizing the value of the phase and thus damping. We employ a 

different objective function to obtain the corresponding PDF of the fractional Zener elements 

yielding maximum damping. As shown in Figure 2-10a, the optimal PDF resembles a delta 

function, which indicates that we should have large number of fractional Zener elements at peak 

frequencies around 1000-1500 Hz. However, Figure 2-10b tells that even when we obtain larger 

amplitude of phase with that optimal PDF, the phase is rate-dependent especially within 3 to 500 

Hz range. When we compare the optimal PDFs shown in Figure 2-9a and Figure 2-10a, the optimal 



36 

 

solutions yielding rate-independence and maximum amplitude in damping seem in competition. 

The optimal distribution for the rate-independent damping has two peaks around 3 Hz and 3000 

Hz, and the distribution for the maximum damping amplitude has peaks around 1000-1500 Hz; 

nearly fully incompatible trends. This observation seemingly leads to the conclusion that 

maximizing damping while maintaining rate-independence is impossible. To verify this 

conclusion fully, a global optimization routine could be run where multiple objective functions are 

optimized simultaneously. We leave this to future work. 

 

Figure 2-10: (a) Optimized PDF of peak frequencies for maximum damping amplitude; (b) 

phase responses of optimal continuous PDF. 

 Discussions 

2.4.1. Selection of FZM for Simulating Broadband Relaxations 

In Figure 2-5, 2-6 and 2-7, we obtain excellent correlation between the numerical/experimental 

data and fractional Zener models. Those curve-fit models, however, possess different fractional 

derivative orders, 𝛼 , and stress relaxation time constants, 𝜏𝜎 . This could be attributed to the 

differences in the materials tested. In Hu et al.’s finite element simulations [45], generic poroelastic 
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half spaces with a wide range of diffusivities are modeled, whereas porcine cartilage is tested in 

our relaxation experiments. Nia et al.’s dynamic indentation tests [37] are conducted on healthy 

and enzymatically GAG-depleted articular cartilage of young bovine. Several research groups also 

adopted FZM to model biological materials. Some groups claimed that fractional calculus can 

provide a concise model for the description of multiphysics and scale events that occur in 

biological tissues such as electrical properties of cardiac muscle [53] and anomalous diffusion in 

the human brain [54]. Magin et al. proposed a fractional-order model by using a parallel 

combination of a number of Coulomb sliding friction elements and fractional order springpots to 

mimic cartilage behavior in different loading conditions [55]. Davis et al. utilized similar fractional 

Zener models to study both the stress relaxation and creep behavior of human brain tissue observed 

experimentally [56]. Besides showing good correlation to experimental data from biological 

materials, FZM is also shown to possess an equivalent form that could be derived from molecular 

theory, and that could predict the macroscopic behavior of biological tissues [57]. This rich 

literature guided us to select FZM over other available viscoelastic models. Next, we revisit the 

assumptions made in curve-fitting the data to FZM.  

In Figure 2-11, we present the phase angle predictions of FZM versus excitation frequency 

with different derivative orders and stress relaxation time constants (Eq. (2-7). We simplify the 

parameters as 𝜏𝜀~18𝜏𝜎, then use 𝜏𝜎 = 2.33 ms from Table 2-1 to obtain the responses shown in 

Figure 2-11a. As described in the result section, the creep time constant 𝜏𝜀 always has a larger 

value compared to the stress relaxation time constant, 𝜏𝜎 , and the range for the dynamic 

indentation tests on cartilage is 𝜏𝜀~13 − 23𝜏𝜎. This is a result of the different boundary condition 

of the creep and stress relaxation test, i.e., constant-displacement boundary condition for the stress 

relaxation experiment versus the constant-stress condition for creep test [58]. As the derivative 
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order increases, the phase distribution and thus the bandwidth for optimal damping become 

narrower. When the derivative order is 1; FZM becomes a general Zener model (standard linear 

solid), which yields the smallest bandwidth. Note that all of the indentation tests presented in this 

work (Figure 2-5, 2-6 and 2-7) exhibit broadband relaxations. Therefore, it is not surprising to see 

that derivative orders we obtain for the curve-fit FZM are fractional. Then, we fixed the derivative 

order as 𝛼 = 0.71, and varied stress relaxation time constants to obtain Figure 2-11b. As evident 

from the figure, increasing stress relaxation time constants have no influence on the magnitudes 

of phase angle, but shift the phase curves to the left. This is in line with the experimental findings 

presented here and elsewhere; i.e. the damping magnitude does not change but bandwidth shifts 

significantly. In summary, using FZM enabled us to model both broadband nature and peak 

relaxation bandwidths in the damping patterns of different poroelastic media. 

 

Figure 2-11: Phase angle of a given fractional Zener elements based on (a) different 

derivative, α, and (b) different stress relaxation time constants. 
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2.4.2. Assumptions Made in FZM Modeling the Spherical Indentation Responses 

In this study, we employed simple FZM to model the spherical indentation response of poroelastic 

materials. Note that FZM is a constitutive model, and thus features stress-strain response. In other 

words, the change in stress under constant strain is what is referred as the relaxation response of 

FZM (Eq. (2-1). For the finite element simulations and experimental data we employed for 

validation, however, force and displacements are reported. Hence, geometry of the interfaces 

specific to those studies might be influential in measured response, and this could seemingly limit 

the applicability of our analyses. When we investigate the relaxation and broadband dynamic 

indentation experiments closely, one sees that the indentation depth; i.e., the distance of mutual 

approach of distant points in the indenter and specimen, 𝛿, is set as a constant, thus the equivalent 

strain, 𝜀~
𝑎

𝑅
= √

𝛿

𝑅
 is expected to be constant according to the indentation theory [59]. For spherical 

indentation, 𝛿 = 𝑎2/𝑅. Since the radius of indenter, 𝑅, is not changed in the tests we discussed 

here, the contact radius, 𝑎, and area can be considered constant as well. Therefore, an equivalent 

stress measure of 𝜎~
𝐹

𝑎2 can be considered as proportional to the force. Therefore, modeling force-

displacement responses after a constitutive law such as FZM is a valid approach for the numerical 

simulations and tests discussed in this paper. Similar conclusions hold for the broadband dynamic 

indentation tests discussed. Specifically, for the experiments reported in Nia et al. [37], a mean 

indentation depth of around 2-4 µm is first imposed on bovine cartilage. After equilibration under 

that mean depth, small perturbations on the order of 4 nm is superimposed on the indentation depth. 

Those perturbations correspond to 0.1% of the mean depth, and using the relation 𝛿 ~ 𝑎2, lead to 

very small changes in both strain and contact areas (<<1%). Therefore, we can safely use a 
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constitutive model independent of geometry to represent the dynamic response of the interfaces 

between spherical probes and poroelastic materials discussed in this paper.  

In the damper design process of our study, we use collection of FZMs in modeling the 

interface between multiple spherical protrusions and poroelastic layer as shown in Figure 2-1. This 

approach inherently assumes that the response of neighboring interfaces does not interfere with 

each other and thus can be treated independently. This, however, can only be warranted for 

sufficiently large spherical protrusion spacing. For linear elastic interface response under 

indentation, the stress field diffuses quickly away from the contact patches, and drops to negligible 

magnitudes at points 5𝑎 away from the contact patch (𝑎 is contact radius) [60]. For poroelastic 

interfaces, however, a similar analysis won’t hold mainly due to fluid diffusion even under 

quasistatic loading. That diffusion process can extend up to larger areas underneath each interface 

and start interacting with stress-field and diffusion patterns of the neighboring interfaces. 

Therefore, diffusivity and corresponding peak relaxation dynamics can be altered significantly. 

The authors are currently addressing this problem with finite element analyses of two neighboring 

protrusions contacting a poroelastic half space. In the meantime, the presented results associated 

with the multiple interface response should be taken with precaution thanks to the independent 

interface response inferred in the analyses.  

2.4.3. Design Considerations for a Rate-independent Damping System 

In Figure 2-8b, we demonstrate rate-independent damping response obtained by combining 

multiple fractional Zener elements with different peak frequencies. However, the amplitude of the 

phase for the multiple FZM (about 25°) decreases when compared to the single element equivalent; 

e.g., the element that has peak frequency at 1000 Hz has maximum phase of around 40°. As evident 

from Eq. (2-12, the phase lag depends on the ratio of the imaginary part to the real part of the 
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dynamic modulus, 𝑀(𝜔) . Typically, for a given Zener element, the ratio of Im[𝑀(𝜔)]  to 

Re[𝑀(𝜔)], or the loss factor, will have the maximum value when the loading frequency, 𝜔 

corresponds to the peak relaxation frequency, 𝜔~𝜔0 . At loading rates away from the peak 

frequency, the loss factor will decrease significantly. Under very large loading rates; i.e., 𝜔 ≫ 𝜔0, 

the fluid swelling the poroelastic media does not have sufficient time for diffusion and thus the 

tissue responds as an undrained elastic material, and damping is minimal. This is modeled as the 

dashpot in Figure 2-2b having no time to move, and hence the imaginary part of the dynamic 

modulus representing the dissipative component attains negligibly small values. When the loading 

frequency is small, 𝜔 ≪ 𝜔0 , fluid diffusion occurs but relatively low shear rates result in 

negligibly small dissipative forces. Therefore, the tissue responds as a fully-drain elastic material 

with limited energy dissipation. Figure 2-12 summarizes this physics by showing the real and 

imaginary parts of the dynamic modulus for Zener elements with three different peak relaxation 

frequencies at 10 Hz, 100 Hz, and 1000 Hz, and the composite damper the response of which is 

shown in Figure 2-8b. From Figure 2-9 and 2-10, we know that to build a rate-independent damper, 

many fractional Zener elements with peak frequencies around 3 and 3000 Hz are needed. On the 

other hand, the maximum damping amplitude is attained by FZMs with about 1000 Hz peak 

relaxation frequency. In other words, rate-independence and maximal amplitude seem mutually 

exclusive. This is evident from the responses shown in Figure 2-12. The imaginary part of 1000 

Hz element is very close to its real curve for a wide range of frequencies within 3-3000 Hz, and 

thus the damping amplitude is large.  However, for other elements, the ratio of imaginary to real 

parts is relative small, and thus the damping is small across the same frequency range. In contrast, 

the ratio of the imaginary and real parts of the composite response is constant but small within the 

same bandwidth. Therefore, rate-independence compromises damping amplitude 
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Figure 2-12: Real and imaginary part of the dynamic modulus, 𝑴(𝝎), for Zener elements of three 

different peak frequencies at 10 Hz, 100 Hz, and 1000 Hz, and along with the real and imaginary part 

of the composite dynamic modulus which we used to obtain phase lag in Figure 2-8b. 

In the last part of the results section, we present an optimal distribution of fractional Zener 

elements with different peak relaxation frequencies to obtain rate-independent damping. Practical 

design of such an interface with multiple protrusions as in Fig.1 satisfying that optimal distribution 

is at minimum a challenging task. As discussed thoroughly in [36], the peak relaxation frequency, 

𝑓0, is the inverse of the poroelastic time constant, 𝑡𝑠~
𝑎2

𝐷
=

𝑅𝛿

𝐷
. This enables designers to relate the 

peak frequencies to geometry and materials properties as 𝑓0~
𝐷

𝑅𝛿
=

𝐷

𝑎2. That means, by adjusting 

the diffusivity of the poroelastic coating, radii of the spherical indenters and indentation depths, 

one can obtain the desired peak frequency for a single protrusion. For instance, we can fix the 

diffusivity and indentation depths, and vary the radii of indenters as in Figure 2-1. Alternatively, 

one can tune the diffusivity to a desired peak frequency. In the result section, we used the value 

𝐷 = 25.6 μm2/s for cartilage. As shown in Figure 2-13, the design of interfaces with multiple 

protrusions can be projected on to 2D maps of peak relaxation frequency and contact lengths for a 

given poroelastic coating; i.e., when the diffusivity is fixed. Say we are interested in rate-
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independent damping over a bandwidth of lower and upper frequencies: 𝑓0𝑙 to 𝑓0𝑢=104𝑓0𝑙, the 

contact lengths fall within two orders of magnitude. Note that contact lengths can be controlled by 

protrusion geometry albeit the difficulties in finding a common manufacturing process for creating 

surfaces with multiple length scales. In summary, maps as in Figure 2-13 provides design 

guidelines for the design of optimal sandwiched dampers proposed in this work. Note that besides 

changing the contact geometry or the diffusivity of the coating, temporal hierarchy in 

poroviscoleastic materials can be tuned with the relative concentration of the cross-links [46]. This 

tuning property might facilitate new damper designs especially since it is detached from the spatial 

hierarchy, and thus temporal response such as peak relaxation frequencies can be selected 

independent of fiber matrix geometry in those materials. 

 

Figure 2-13: Diagram of peak frequency spectrum based on the contact length and diffusivity 

of the poroelastic material. 

 Conclusions 

Inspired by cartilage, we study the dissipative properties of poroelastic materials sandwiched by 

hard materials. We model the hard and poroelastic materials interfaces by fractional Zener 
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elements; validate this approach by our experiments and published numerical and experimental 

data, and demonstrate that optimal damping (high amplitude or rate-independent) can be harvested 

from such interfaces.  Key findings of the paper can be listed as follows: 

• The fractional Zener models can accurately simulate the broadband dynamic response of 

the interfaces between hard spherical indenters and poroelastic materials. 

• When designed properly, sandwiched poroelastic materials making multiple interfaces 

with the hard casings can exhibit rate-independent or high amplitude damping over a 

frequency range of interest. 

• High-amplitude and rate-independent damping seems unattainable simultaneously due to 

compromise made by utilization of multiple dissipative interfaces.  

• By relating the fractional Zener element parameters to the contact interface parameters, 

one can ideally design sandwiched dampers that dissipate maximum energy at a desired 

bandwidth of loading frequencies.  

• Poroelastic materials with high diffusivities or interfaces with controlled protrusion 

geometries provide more flexibility in the design of sandwiched dampers. 
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Dynamic Mechanical Analyses and Design* 
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 Introduction 

Structures in aerospace, marine, automotive, and manufacturing industries undergo broadband 

vibrations and noise, which can cause material and component failure and occupational health 

hazards. Various techniques are available in the literature to suppress undesired vibrations and 

noise [1–4]. Passive methods offer robust, effective, and stable performance at relatively high 

frequencies, but their suppression capacity generally drops at relatively low frequencies (< 100 

Hz) [5,6]. Several remedies to this reduction were proposed in the literature. For instance, Xue et 

al. simulated a thick layer of poroelastic materials on thin aluminum plates and demonstrated 

uncompromised damping capacity for low-frequencies (<100 Hz) [7]. However, this treatment 

utilized a passive layer with thickness 30 times that of the plate. Noting the practical challenges of 

such treatments, previous works had proposed adding auxiliary passive absorbers to poroelastic 

layers [6,8]. In general, embedding such auxiliary energy storing and dissipating systems to a host 

structure enhances low-frequency performance (e.g., distributed vibration absorbers). Novel 

materials and optimization techniques are currently available for the optimal design of these 

absorbers. For instance, Zuo and Nayfeh proposed a robust single degree-of-freedom (DOF) 

absorber by treating stiffness and damping values as control variables [9]. They also showed that 

a 2-DOF tuned mass-spring-damper system performed better than the single DOF system in 

vibration suppression [10]. In addition, previous studies showed that optimizing the frequency 

distribution of oscillators provided satisfactory vibration suppression [11] and nearly irreversible 



51 

 

energy transfer [12]. Carcaterra et al. [13] demonstrated the efficacy of oscillators on a satellite 

(UNISAT). However, typical limitations of undamped oscillators are a possible reversal of 

vibration energy to the host, leading to their early failure [14]. 

Interfacial and material damping mechanisms can overcome the limitations of undamped 

oscillators [15]. Interfacial damping involves mechanical losses due to frictional slip, microscale 

impacts, and relaxations localized to contact interfaces [16]. A typical example of interfacial 

damping is the underplatform dampers used to reduce resonances in blades of a gas turbine [17]. 

Rate-independent frictional interactions constitute the major mechanism of energy losses in these 

dampers. Material damping is dominantly observed in viscoelastic materials [18]. In particular, 

viscoelastic materials have been employed in sandwiched  [19] and composite structures [20] to 

enhance damping. Bitumen-based viscoelastic damping is heavily used in automotive frames, 

aircraft fuselages [21], and ship decks [22]. Granular viscoelastic materials can provide the 

maximum damping at a targeted frequency range by using different properties of particles [23]. 

Although viscoelastic materials help overcome the challenges of undamped oscillators, they 

exhibit narrow bandwidth [18] and place maximum damping at relatively high frequencies. 

Therefore, they might not be useful for low structural modes (< 100 Hz) [24]. 

Effective damping efficacy of synthetic noise-absorbing materials is primarily limited to 

relatively high frequencies (> 100 Hz), and therefore recent efforts to expand the bandwidth in low 

frequencies were made by adding active and passive systems [5]. For example, Harne et al. 

attached a thin plate to a poroelastic foam layer to attenuate low-frequency vibrations [25]. 

Embedding mass inclusions with low resonance frequencies into a poroelastic matrix was another 

solution to the bandwidth problem [8]. These inclusions were designed to move significantly and 

thus increased damping due to inclusion-matrix interactions at low-frequency resonances. 
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Composite dampers combined with poroelastic damping could achieve effective damping at both 

ends of the frequency spectrum. Deshmukh and McKinley proposed poroviscoelastic (PVE) 

composites (open-cell polyurethane foam with magnetorheological fluid) as an adaptive energy-

absorbing material [26]. 

Articular cartilage, composed of a dense solid matrix swollen by fluid, exhibits effective 

damping in a low-frequency range of less than 100 Hz. Effective cartilage damping in the low-

frequency range stems from the combination of poroelastic and viscoelastic damping mechanisms 

[27]. Poroelastic damping stems from solid-fluid friction interactions in cartilage, and viscoelastic 

damping originates from the rearrangements of the solid fibrillary [28–30]. Therefore, poroelastic 

damping is dependent on the diffusivity and characteristic diffusion length in loading [27,31,32], 

but viscoelastic damping is length-independent. Our previous study about cartilage damping 

mechanisms (5 - 100 Hz) [27] showed that viscoelastic damping in cartilage provided base 

damping independent of characteristic diffusion lengths in loading, and poroelastic damping 

provided additional damping at a relatively small characteristic diffusion length in loading. Besides, 

our other past studies about cartilage-like dampers numerically showed that characteristic diffusion 

lengths in loading could be optimized to achieve rate-independent damping and maximum 

damping at desired frequencies (3-3000 Hz) [33,34]. These experimental [27,32,35] and 

simulation studies [33,34] inspired the development of cartilage-like dampers combined with 

multiple diffusion lengths in loading to provide effective and sustained damping in a low-

frequency range (< 100 Hz). These potential benefits are a driving force behind this study. This 

damping method can be categorized as a hybrid of interfacial and material damping and fills in the 

deficiency of damping methods for a low-frequency range. 
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This study aims to demonstrate a practical realization of cartilage-inspired PVE dampers 

that provide maximum damping at desired frequencies and rate-independent broadband damping 

in a relatively low-frequency range (< 100 Hz). Cartilage-inspired PVE dampers are designed with 

indenter-foam configurations for a low-frequency range of 0.5 - 100 Hz. The PVE dampers in a 

single-indenter-foam configuration (singe diffusion length in loading) are investigated through 

dynamic mechanical analysis (DMA) to quantify the effects of indenter radii and mean pore sizes 

on their damping capacity and show the ability to place maximum damping at desired frequencies 

(narrowband performance). Based on the results of single-indenter-foam dampers, we design and 

test the optimized PVE damper in a two-indenter-foam configuration (two diffusion lengths in 

loading) that provides nearly rate-independent damping capacity (broadband performance). 

Section 3.2 summarizes our recent findings on effective cartilage PVE dissipation in a low-

frequency range, conducts a scaling analysis to be used in the designs and analyses of cartilage-

inspired foam-indenter dampers, and presents the experimental details on the DMA of the dampers. 

Section 3.3 presents the damping performance of single- and two-indenter-foam dampers. Section 

3.4 discusses the assumptions used in the scaling analysis and challenges before the actual 

implementation of cartilage-inspired PVE dampers on real structures. Section 3.5 concludes this 

study with a summary of the findings. 

 Theory and Methods 

3.2.1. PVE Damping of Cartilage 

Our previous work uncoupled cartilage damping mechanisms by using the dependence of 

poroelastic damping on a characteristic diffusion length involved in the mechanical load on the 

tissue (Figure 3-1) [27]. The characteristic length was a contact radius between a rigid indenter 

and hydrated cartilage (Figure 3-1a). Phase lags 𝛿 between applied strains and measured stresses 
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were measured at different contact radii; 𝛿 is a measure of damping and can be converted into the 

specific damping capacity 𝜑 = 2𝜋 tan𝛿 [18]. The frequency 𝑓𝑝𝑒𝑎𝑘 at which the phase lag attains a 

maximum value due to the maximized poroelastic damping was governed by the combination of 

the diffusivity of a material 𝛽 and contact radius 𝑎 (𝑓𝑝𝑒𝑎𝑘~
𝛽

𝑎2
) (Figure 3-1b) [27,32,35]; 𝑓𝑝𝑒𝑎𝑘 is 

referred to as a poroelastic peak damping frequency in the next subsection, and 𝛽 represents the 

diffusion rate of a solvent in a porous media. This result indicated that damping at a targeted 

frequency can be maximized by placing 𝑓𝑝𝑒𝑎𝑘 at the targeted frequency via the adjustment of 𝛽 

and 𝑎 . The previous study also showed that viscoelastic damping can provide base damping 

regardless of contact radii 

 

Figure 3-1: (a) Experimental setup for cartilage damping measurement and (b) results of 

cartilage damping (P: poroelastic damping and V: viscoelastic damping) at different 

characteristic lengths (aS: ~ 13 µm, aM: ~ 33 µm, and aL: ~ 43 µm). Effective cartilage 

damping in a frequency range of 5 – 100 Hz originates from the combination of poroelastic 

and viscoelastic damping mechanisms. While viscoelastic damping provides sustained base 

damping regardless of contact radii (aS, aM, and aL), poroelastic damping additionally 

increases damping at a relatively small contact radius (aS). The poroelastic peak damping 

frequency fpeak is governed by the diffusivity of a material β and contact radius a (fpeak ~ 
𝜷

𝒂𝟐) 

[27,32,35]. This figure is not drawn to scale. 
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3.2.2. Analyses and Designs of Indenter-foam Damper 

We first design an indenter-foam damper that mimics cartilage-like PVE damping mechanisms. 

The damper consists of a flat-ended cylindrical rigid indenter pressed on a viscoelastic foam sheet 

swollen with a Newtonian liquid (Figure 3-2a). A characteristic diffusion length in an indenter-

foam damper is controlled by changing a contact radius a between an indenter and a foam sheet, 

similar to our previous study about cartilage dissipation mechanisms (Section 3.2.1). Contact 

loading creates a gradient-stress profile that leads to large volumetric strains in the vicinity of the 

contact region and relatively low strains far from the contact region. These volumetric strains cause 

liquid diffusion and hence poroelastic losses (solid-fluid frictional interaction) close to the contact 

region. Viscoelastic damping of the foam is responsible for energy dissipation close to and far 

from the contact region. However, indentation-induced shear strains are generally significantly 

smaller than volumetric strains, and so are viscoelastic losses [40]. A simple mechanical model of 

this indenter-foam system neglecting viscoelastic losses is given in Figure 3-2b. In this model, the 

highly stressed region close to the contact region is modeled as a linear elastic zone with Young’s 

modulus E combined with poroelastic damping 𝜂𝑙 ; where 𝜂𝑙  stems from the solid-liquid 

interaction (Kelvin-Voigt material). The region surrounding the highly stressed zone is modeled 

as linear elastic with the same Young’s modulus of solid foam E because poroelastic interactions 

away from the contact are negligible due to diffused stresses. Thus, a standard linear solid element 

could represent the total response of the indenter-foam system. Small vibration amplitudes are 

assumed in the mechanical model of the indenter-foam system. Imposing harmonic loading with 

single frequency 𝜔 in the form of harmonic stress 𝜎 = 𝜎𝑀𝑒𝑖𝜔𝑡  (or strains 𝜀 = 𝜖𝑀𝑒𝑖𝜔𝑡   𝜀0 =

𝜖0𝑒𝑖𝜔𝑡) in the following constitutive relations: 
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 𝜎 = 𝐸(𝜀 − 𝜀0) + 𝜂𝑙(𝜀̇ − 𝜀0̇) = 𝐸𝜀0 . (3-1) 

This simple model yields two constitutive relations: 

 𝜎𝑀 = (𝐸 + 𝑖𝜔𝜂𝑙)(𝜖𝑀 − 𝜖0) = 𝐸𝜖0 (3-2) 

where 𝜎𝑀 and 𝜖𝑀 are the steady-state amplitudes of stress and strain at the foam-indenter contact, 

respectively, and 𝜖0 is the steady-state amplitude of strain at the end of the highly-stressed zone. 

Eliminating 𝜖0 using the equalities in Eq. 3-2 delivers 

  

 𝜎𝑀 =
𝐸(𝐸 + 𝑖𝜔𝜂𝑙)

2𝐸 + 𝑖𝜔𝜂𝑙
𝜖𝑀 (3-3) 

which is the relation for total stress-strain response of the foam-indenter system. Since this relation 

is similar to a constitutive equation at the steady-state, the terms in front of 𝜖𝑀 is referred to as 

dynamic modulus 𝐺(𝜔) =
𝜎𝑀

𝜖𝑀
=

𝐸(𝐸+𝑖𝜔𝜂𝑙)

2𝐸+𝑖𝜔𝜂𝑙
. When normalized to the total foam modulus 𝐸/2, this 

modulus takes the following form: 

  𝐺𝑁(𝜔) =
𝐺(𝜔)

𝐸/2
=

1 + 𝑖𝜔𝜏𝑃𝐸

1 + 𝑖𝜔
𝜏𝑃𝐸

2

 (3-4) 

where 𝜏𝑃𝐸 =
𝜂𝑙

𝐸
 is the poroelastic relaxation time constants. The argument of the dynamic modulus 

yields the phase lag 𝛿 between stress and strain as follows: 
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 𝛿(𝜔) = ∠ 𝐺𝑁(𝜔) = arctan 𝜔𝜏𝑃𝐸 − arctan 𝜔
𝜏𝑃𝐸

2
 (3-5) 

The phase lag is a common measure of material damping [18] and is used to measure the damping 

capacity of the foam-indenter system; the specific damping capacity φ can be calculated from the 

phase lag (φ = 2π tan𝛿 ) [18]. The phase lag given in Eq. 3-5 attains maximum at 𝜔𝑝𝑒𝑎𝑘 =

2𝜋𝑓𝑝𝑒𝑎𝑘 = √2/𝜏𝑃𝐸; i.e., when loading period is around the poroelastic relaxation time constant. 

In the remainder of this paper, we will refer to the loading frequency that yields the maximum 

phase lag and thus damping as a poroelastic peak damping frequency 𝑓𝑝𝑒𝑎𝑘. 

 

Figure 3-2: (a) Single-indenter-foam configuration, (b) its mechanical model, and (c) two-

indenter-foam configuration. Foam sheets are swollen by fluid. The damping capacity of 

indenter-foam dampers, inspired by cartilage mechanisms, can be tuned by controlling the 
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contact radius a, pore diameter Dpore, and the number of indenters. a is a characteristic 

diffusion length in an indenter-foam damper. This figure is not drawn to scale. 

Next, we study the kinematics and swollen foam’s response to the indenter oscillations in 

the vicinity of the contact region (i.e., highly stressed zone); obtain an expression for liquid 

damping coefficient 𝜂𝑙 and thus relate the peak damping frequency to the physical properties of 

the damper system (i.e., 𝑓𝑝𝑒𝑎𝑘 ≅
1

√2𝜋𝜏𝑃𝐸
=

𝐸

√2𝜋𝜂𝑙
). First, the highly stressed region in the vicinity 

of the rigid indenter is assumed to occupy a volume 𝑉 that scales with the cube of indenter radius 

(i.e., 𝑉 ∝ 𝑎3 as predicted by the linear elastic contact theories [36]). The rate of the volume change 

in that region due to the dynamic motion of the rigid indenter can be approximated as 
𝑑𝑉

𝑑𝑡
∝ −𝜀𝑃̇𝐸𝑎3 

where compressive strain rates on the poroelastic dashpot 𝜀𝑃̇𝐸 are taken as positive. The average 

volumetric flux 𝑞  and liquid velocity 𝑣𝑙  out of that highly stressed zone scales with 𝑞 ≈ 𝑣𝑙 ∝

1

𝑎2

𝑑𝑉

𝑑𝑡
∝ −𝜀𝑃̇𝐸𝑎. Note that the high porosity in the foam and the incompressibility of the swelling 

liquid are inherently assumed in equating the flux to the liquid velocity. Assuming the diffusion 

of the liquid obeys Stokes’ flow, Darcy’s law relates stress-gradients to liquid velocity (i.e., 𝑣𝑙 ∝

−
𝑘

𝜇

𝜎𝑃𝐸

𝑎
). In this expression, 𝑘 is the permeability of the foam (known to scale quadratically with 

the mean pore diameter Dpore in various foam sheets (i.e., 𝑘 ∝ 𝐷𝑝𝑜𝑟𝑒
2  [37]), 𝜇  is the dynamic 

viscosity of the swelling liquid, and 
𝜎𝑃𝐸

𝑎
 gives an estimate of gradients of stress carried by the 

poroelastic dashpot element. Relating the liquid velocity scaling from kinematics and the liquid 

diffusion yields the relation between the stress and strain rates on the poroelastic dashpot: 
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 𝜎𝑃𝐸  ∝ 𝜇 (
𝑎

𝐷𝑝𝑜𝑟𝑒
)

2

𝜀𝑃̇𝐸 (3-6) 

Therefore, the liquid damping coefficient 𝜂𝑙 ∝ 𝜇 (
𝑎

𝐷𝑝𝑜𝑟𝑒
)

2

, and so the peak damping frequency is 

found to scale as: 

 𝑓𝑝𝑒𝑎𝑘 ≅
𝐸

√2𝜋𝜂𝑙

∝
𝐸

√2𝜋𝜇
(

𝐷𝑝𝑜𝑟𝑒

𝑎
)

2

 (3-7) 

Note that this scaling law can be rewritten as 
𝛽

𝑎2 =
𝐸

√2𝜋𝜇
(

𝐷𝑝𝑜𝑟𝑒

𝑎
)

2

 where 𝛽 =
𝐸𝐷𝑝𝑜𝑟𝑒

2

√2𝜋𝜇
 is a measure of 

diffusivity in the foam. Therefore, the peak damping frequency obtained from the indenter-foam 

damper model obeys the same scaling with the peak damping frequency of cartilage. Beyond this 

highly stressed zone dominated by poroelastic losses, viscoelastic losses stemming from solid 

foam deformation provide baseline dissipation also observed in cartilage. Note that those losses 

are not accounted for in the simple mechanical model. Since viscoelastic losses do not exhibit 

length dependence, their contribution to peak-damping frequencies in the foam-indenter system is 

negligible.  In conclusion, the indenter-foam system promises damping capacity similar to articular 

cartilage. 

The scaling law obtained in Eq. 3-7 indicates that the peak damping frequency depends on 

material constants (the ratio of Young’s modulus of the foam to the dynamic viscosity of the liquid) 

and geometric properties (the ratio of mean pore diameter to indenter radius). We choose to 

primarily vary the latter in the indenter-foam damper designs to confirm the tunability of the peak 
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damping frequency in a range of 0.5 - 100 Hz, which results from the quadratic scaling with the 

geometric ratio 
𝐷𝑝𝑜𝑟𝑒

𝑎
. 

Our recent numerical study showed that cartilage-like PVE dampers with multiple 

diffusion lengths in loading can offer rate-independent broadband damping [33]. Here, we 

experimentally validate this numerical study by designing a two-indenter-foam configuration (two 

diffusion lengths in loading) as shown in Figure 3-2c. Note that the panel connecting the two 

indenters is rigid, and the composite force 𝐹c is treated as the vibration transmitted from a target 

structure to the two-indenter-foam damper. Consistent with our numerical work, we ensured that 

the indenters were sufficiently far from each other, the response of the foam was linear PVE so 

that it obeyed the same scaling law (Eq. 3-7) as in the single-indenter case. Consequently, the 

principle of superposition can be applied to the two-indenter-foam configuration. Therefore, the 

forces 𝐹1  and 𝐹2  carried by each indenter-foam configuration can be summed to obtain the 

composite force 𝐹c. As the rigid indenters (Figure 3-2c) oscillate sinusoidally, the composite force 

can be represented as 

 𝐹𝑐(ω) = 𝐴1(ω) sin(𝜔𝑡 + 𝛿1(ω)) + 𝐴2(ω) sin(𝜔𝑡 + 𝛿2(ω)) (3-8) 

where 𝐴1and 𝐴2 are the amplitudes, and  𝛿1 and 𝛿2 are the phase lags for 𝐹1 and 𝐹2, respectively. 

It is possible to find the composite phase and amplitude behavior as a single sine wave by 

substituting Eq. 3-8 in  

 𝐹𝑐(ω) = 𝐴𝑐(ω) sin(𝜔𝑡 + 𝛿𝑐(ω)) (3-9) 
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where 𝐴𝑐 is the composite amplitude, and 𝛿𝑐 is the composite phase lag (frequency-dependence in 

amplitudes and phase lags are dropped for brevity). Then, 𝐴𝑐 and 𝛿𝑐 are related to 𝐴1, 𝐴2, 𝛿1, and 

𝛿2 as follows: 

 𝐴𝑐 = √[𝐴1 sin(𝛿1) + 𝐴2 sin(𝛿2)]2 + [𝐴1 cos(𝛿1) + 𝐴2 cos(𝛿2)]2 (3-10) 

 𝛿𝑐 = sin−1([𝐴1 sin(𝛿1) + 𝐴2 sin(𝛿2)]/𝐴𝑐) (3-11) 

Eqs. 3-10 and 3-11 yield 𝐴𝑐 = 2𝐴1 and 𝛿𝑐 = 𝛿1 for identical indenter-foam pairs, as expected 

physically. Note that we used forces and stresses interchangeably in the analyses of single- and 

two-indenter-foam configurations. This is possible only for complete contacts where load-bearing 

contact areas are independent of loading. Therefore, the forces and stresses relate through a 

constant, and hence scaling laws are unaltered. In the following experiments, we control the 

deformation imposed on the indenter-foam dampers, measure forces, and calculate phase lags as a 

measure of damping capacity. 

3.2.3. Experimental Details 

We performed DMA on 12 different single-indenter-foam configurations (four types of foams × 

three indenter radii) and one two-indenter-foam configuration. DMA is a testing method to 

measure dynamic mechanical and dissipative properties of materials. Three foams (Dpore = 50, 90 

and 200 μm) were made of polyethylene (PE) and the other (Dpore = 200 μm) was made of PE-

based olefin (INOAC Corp., Troy, MI). The foams were cut into circular sheets (22 mm in diameter 

and 2 mm in thickness) and immersed in extra virgin olive oil (𝜇 = 0.084 𝑃𝑎 ∙ 𝑠 [38]) for more 

than 24 hours before testing. A universal tester (TA ElectroForce MODEL3200; TA Instruments, 
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Eden Prairie, MN) was used to conduct DMA on the foams swollen in olive oil. This tester was 

equipped with force and displacement sensors along with data acquisition systems to monitor the 

dynamic normal force and displacement. Aluminum flat-ended cylindrical indenters with different 

radii (a = 4.75 mm, 3.15 mm, and 1.9 mm) were used to generate different contact radii. The 

contact radii served as characteristic diffusion lengths in loading. 

Twelve single-indenter-foam configurations (Figure 3-3a and Eq. 3-7) were characterized 

to show the tenability of a peak damping frequency. The scaling law (0.0001 < (
𝐷𝑝𝑜𝑟𝑒

𝑎
)

2

< 0.01  

via Eq. 3-7) predicts that the combination of the three mean pore diameters and three indenter radii 

(12 cases) promises two orders of magnitude variation in the peak damping frequency in a single-

indenter-foam configuration.  

An optimal two-indenter-foam configuration (Figure 3-3b and Eqs. 3-10 and 3-11) was 

tested to validate whether it can provide rate-independent damping capacity. The optimal two-

indenter-foam configuration was selected by applying a search criterion to the combined responses 

(Eqs. 3-10 and 3-11) of two single-indenter-foam configurations. In this combined configuration 

(Figure 3-3b), a 30 mm gap was left between the centers of the rigid flat punches to minimize 

interactions, which ensures the applicability of the superposition principle (Eq. 3-8). The selection 

of the gap complied with the literature showing minimal interaction effects in poroelastic contacts 

separated by five times the contact radius [39]. 
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Figure 3-3: Images of cartilage-like PVE dampers: (a) single-indenter-foam configuration 

and (b) two-indenter-foam configuration. Foam sheets were immersed in olive oil during 

tests. The single-indenter-foam configuration was developed to demonstrate the tenability of 

the peak damping frequency via indenter radii a and pore diameters Dpore. The two-indenter-

foam configuration was created to demonstrate the rate-independent damping capacity via 

multiple diffusion lengths in loading. 

DMA was performed in a frequency range of 0.5 – 100 Hz by applying displacement-controlled 

oscillations to indenter-foam dampers, measuring reaction forces, and calculating phase lags 

between displacements and reaction forces. A static displacement of 180 μm was applied to the 

indenter and was held for four minutes for full relaxation. Then harmonic displacements with 

amplitudes of around 20 µm were applied. The static displacement was employed to ensure proper 

contact during tests and sufficient distance from the lower boundary of a sample. The amplitude 

of the harmonic indentation induced high enough excitation compared to the noise floor of the 

force sensor while assuring nearly linear PVE behavior (i.e., linear elastic foam response + 

predominantly 1D radial flow of liquid phase) for all indenter-foam configurations. We varied the 

excitation frequency of the harmonic indentation (f = 0.5, 1, 2, 5, 10, 20, 30, 50, 75 and 100 Hz) 
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to examine dissipative responses of foams. Two DMA measurements were performed at each 

frequency. Each measurement lasted for at least 59 cycles, and the last five cycles of displacement 

and corresponding force data were used to obtain the hysteresis loops (Figure 3-4c) and phase lags 

𝛿; i.e., a measure of damping capacity [18]. The number of cycles before the last five cycles was 

sufficient to reach equilibrium (Figure 3-4a and b). There is a minor asymmetry between the 

loading and unloading portions of the hysteresis loops (Figure 3-4c). It might stem from possible 

asymmetry in compression-tension response of the foams. The asymmetry remains minor for all 

the frequencies tested and thus is not expected to influence the damping capacity and tuning of the 

tested dampers. The average and standard deviation of 10 cycles (five cycles from each of the two 

tests) were reported. Figure 3-4 shows representative raw and processed DMA data. All the data 

was measured at the signal-to-noise ratios of more than 31 dB for the displacement data and more 

than 29 dB for the force data. Therefore, the level of noise is negligibly small in the recorded 

measurements. The raw data was processed through 4th-order lowpass Butterworth and zero-phase 

filters using MATLAB (The MathWorks, Inc., Natick, MA).  When an excitation frequency was 

greater than or equal to 0.5 Hz, a filter cutoff frequency was set as 2.8 times an excitation 

frequency; otherwise, a cutoff frequency was set as 1 Hz. The filtfilt command of MATLAB was 

used to perform zero-phase filtering. 



65 

 

 

Figure 3-4: Representative DMA results: (a) applied displacement, (b) measured force, and 

(c) hysteresis loop (single cycle). The results were taken from a PE foam sheet with Dpore = 50 

𝛍m using a single indenter with a = 4.75 mm at a frequency of 5 Hz. 
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 Results 

3.3.1. Single-indenter-foam Configuration for Tunable Peak Damping Frequencies 

The peak damping frequency of the single-indenter-foam damper was tunable across two decades 

by changing the combination of the pore diameter Dpore and indenter radius a (Figure 3-5). The 

damping capacity of all the dampers was frequency-dependent, had a peak value, and reached a 

base value about two decades from the peak value. The various indenter-foam combinations 

generated the cartilage-inspired PVE dampers with different diffusion coefficients and 

characteristic diffusion lengths in loading. The alterations in a diffusion length and diffusivity 

enabled to shift the peak damping frequency across two decades. Regardless of the pore diameter, 

as the contact radius decreased, the peak damping frequency moved toward relatively high 

frequencies. For example, in the case of the PE foam with a pore diameter of 50 μm (Figure 3-5a), 

the peak damping frequency shifted from 1 to 5 Hz as the contact radius decreased from 4.75 mm 

to 1.9 mm. For a given contact radius, as the pore diameter increased, the peak damping frequency 

attained a higher value. For instance, when the pore diameter increased from 50 μm to 200 μm 

(Figure 3-5a-c), the peak damping frequency at a 4.75 mm contact radius shifted from 1 to 30 Hz. 

These observations were in line with the trend of a peak damping frequency observed in cartilage. 

They also indicated that a peak damping frequency can be placed at a targeted frequency by 

controlling the diffusion and characteristic diffusion length in loading. 

The tunability of the peak damping frequency in a single-indenter-foam was governed by 

the scaling law (Eq. 3-7). For a given form material (fixed pore diameter Dpore), when the frequency 

axis was scaled with the square of the contact radius 𝑎2, the damping capacity curves moved closer 

to each other (Figure 3-6a-d). As for the PE foam with a pore diameter of 50 μm, the peak damping 

frequencies, spanning a decade from a = 4.75 mm to a = 1.9 mm (Figure 3-5a), virtually collapsed 
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into a point after scaling (Figure 3-6a). Furthermore, scaling the frequency axis with the square of 

the ratio of a contact radius to a pore diameter (
𝑎

𝐷𝑝𝑜𝑟𝑒
)

2

nearly collapsed all the phase lag versus 

frequency curves. While the ratio of the highest to the lowest peak damping frequencies was 

around 100 before the scaling (Figure 3-5a and d), the ratio reduced to 4 after the scaling as 

illustrated by the two vertical red lines in Figure 3-6e-h. Consequently, all the curves were centered 

in the vicinity of f (
𝑎

𝐷𝑝𝑜𝑟𝑒
)

2

≅ 2×104 Hz and formed a master damping capacity curve. The 

consistency with the scaling law demonstrated that the dominant damping mechanism around the 

peak damping frequencies stemmed from poroelastic damping (solid-fluid interactions). Similar 

to cartilage damping mechanisms [27], viscoelastic damping was likely to provide damping in the 

tails of the damping capacity curves. Furthermore, according to the scaling law, the peak damping 

frequency after the scaling should be on the same order as the ratio of Young’s modulus of the 

foams to the dynamic viscosity of the olive oil (i.e., 𝑓𝑝𝑒𝑎𝑘 (
𝑎

𝐷𝑝𝑜𝑟𝑒
)

2

∝
𝐸

√2𝜋𝜇
). When taking the 

dynamic viscosity of the extra virgin olive oil as 𝜇 = 0.084 𝑃𝑎 ∙ 𝑠 [38], the scaling law leads to 

𝐸 ∝ √2𝜋𝜇𝑓𝑝𝑒𝑎𝑘 (
𝑎

𝐷𝑝𝑜𝑟𝑒
)

2

≅ 10 kPa. The storage moduli, estimated from the raw stress-strain data 

at 0.5 Hz, range from around 111 kPa to around 2303 kPa for all the indenter-foam configurations. 

Therefore, the proportionality constant to turn the scaling argument for the peak damping 

frequencies to an approximation for the measured values ranges from 11.1 to 230.3. Given the 

omission of several proportionality constants and assumptions made throughout the scaling 

argument, this range of proportionality constants is acceptable (see the Discussion section for 

details of those assumptions). A poroelastic peak damping frequency governed by the scaling law 
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showed that a single-foam-indenter PVE damper has damping mechanisms mimicking cartilage 

and thus can be called a cartilage-like damper. 

 

Figure 3-5: Phase lag 𝜹 versus frequency f curves measured with different combinations of 

contact radii a, pore sizes Dpore, and materials. The damping capacity curves were obtained 

with single-indenter-foam configurations. Each subfigure shows the effect of a on 𝜹. The 

comparison of (a), (b), and (c) shows the effect of Dpore on 𝜹. The comparison between (c) and 

(d) presents the effect of a material on 𝜹. 
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Figure 3-6: Effects of contact radius a and pore diameter Dpore on phase lag 𝜹  versus 

frequency f curves. In (a-d), scaling f with a2 shifts the 𝒇𝒑𝒆𝒂𝒌 of three curves for each material 

(Figure 3-5) into a nearly single value. In (e-d), scaling fa2 with 1/Dpore
2 further aligned the 

fpeak of all the curves with each other centering around f (a/Dpore)2 ≅ 2×104 Hz. The red lines 
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indicate the left and right most fpeak among all of the curves, and therefore stacking the curves 

generates a nearly single master damping curve. 

3.3.2. Two-indenter-foam Configuration for Rate-independent Damping Capacity 

An optimal two-indenter-foam configuration for rate-independent damping capacity was obtained 

based on the experimental results of the single-indenter-foam configurations. After confirming that 

peak damping frequencies of 12 single-indenter-foam dampers were consistent with the scaling 

law (Eq. 3-7), an optimal two-indenter-foam configuration was determined by finding a combined 

response (Eqs. 3-10 and 3-11) among 66 combinations of two-indenter-foam configurations (two 

out of 12 single-indenter-foam configurations), which satisfied the search criterion. The search 

criterion was implemented via discrete optimization and was as follows: 

maximize ‖𝛿𝑐‖∞ 

subject to 

max 𝛿𝑐 − min 𝛿𝑐 < 5∘ 

where 

5Hz < 𝑓 < 100Hz 

The phase lag of an optimal two-indenter-foam configuration attains values between the phase lags 

of each participant indenter-foam pair because total force cannot lag more or less than force carried 

by either indenter. Consequently, the search criterion confirmed that the combination of 
𝑫𝒑𝒐𝒓𝒆

𝒂
=

𝟓𝟎𝛍𝐦

𝟒.𝟕𝟓𝐦𝐦
 and 

𝑫𝒑𝒐𝒓𝒆

𝒂
=

𝟐𝟎𝟎𝛍𝐦

𝟑.𝟏𝟓𝐦𝐦
 could achieve nearly rate-independent damping capacity in a frequency 

range of 0.5 - 100 Hz. 

An optimal two-indenter-form damper provided nearly rate-independent damping capacity 

and was consistent with the predicted trend (Figure 3-7). While the damping capacity of the single-
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indenter-foam configurations, used for the optimal combined configuration, varied by around 26 

degrees for Dpore = 50 µm with a = 4.75 mm and around 25 degrees for Dpore = 200 µm with a = 

3.15 mm in a frequency range of 2 – 100 Hz, the damping capacity of the two-indenter-foam 

configuration only varied by around 7 degrees between 2 - 100 Hz (Figure 3-7b); although there 

was a sudden drop in the damping capacity of the two-indenter-foam configuration in a frequency 

range of 0.5 - 2 Hz, it was still minor compared to the fluctuations in the damping capacity of the 

single-indenter-foam configurations. Consequently, these results showed that an optimal two-

indenter-foam configuration can generate relatively rate-independent damping capacity. In 

addition, the trend of the rate-independent damping capacity was aligned with the predicted trend 

(Eqs. 3-10 and 3-11 and Figure 3-7b). Also, the experimental and predicted results were consistent 

with our previous simulation work in the context that selecting and combining peak damping 

frequencies at the bounds of the bandwidth of interest provided desired rate-independent damping 

capacity [33]. Hence, PVE damping in 50 𝛍𝐦 PE foam dominated the rate-independent damping 

capacity in the low-frequency range, whereas PVE damping in 200 𝛍𝐦 PE foam took over in the 

high-frequency range. 
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Figure 3-7: Force and phase lag 𝜹 as a function of frequency f measured with single- and 

two-indenter-foam configurations and predicted with Eqs. 3-10 and 3-11: (a) force versus 

frequency curves and (b) phase lag versus frequency curves. The optimal two-indenter-foam 

configuration offered relatively rate-independent damping capacity compared to the singe-

indenter-foam configuration and was consistent with the predicted curves. 

 Discussions 

This paper developed and tested passive PVE dampers inspired by cartilage damping mechanisms, 

allowing for the maximization of damping capacity at the desired frequency (single-indenter-foam 

damper) and rate-independent damping capacity (two-indenter-foam damper). Furthermore, the 

scaling analysis was used to examine the peak damping capacity of the single-indenter-foam 

system modeled by simple constitutive relations, and it was found that the peak damping capacity 
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was governed by the scaling law. Nevertheless, assumptions made in this scaling analysis and 

several practical challenges in the design of those dampers are worth revisiting. 

In the scaling analysis, the foam was divided into two distinct regions. The region around 

the contact area was assumed to exhibit PE damping whereas the remainder was assumed to be 

linear elastic. This breakdown was employed to obtain a simple constitutive model for the indenter-

foam damper. In reality, poroelastic diffusion gradually decreases as the stress gradient vanishes 

far from the contact region. Nevertheless, for cylindrical flat punches, the gradients are confined 

within spherical segments with radii twice as large as the contact radii [40], and therefore 

poroelastic effects can be safely assumed to occur in the vicinity of the contact region, within a 

volume that scales with the cube of contact radii. In addition, the average volumetric flux was 

assumed approximately equal to the liquid velocity diffusing out of that region (i.e., 𝑞 ≈ 𝑣𝑙). This 

approximation is acceptable for high porosity foams used in our experiments; the porosity of the 

samples ranged from 80 % to 85 %. Then, Darcy’s law was used to relate flux to pressure gradient. 

In other words, viscous Darcian flow was assumed to dominate the liquid diffusion with negligible 

inertial effects (i.e., low Reynolds number 𝑅𝑒 =
𝜌𝑙𝑢𝐷𝑝𝑜𝑟𝑒

𝜇
≪ 1). In the dynamic testing presented 

here, the linear velocity in the vicinity of the contact region attains a maximum value of  𝑢 =

2 𝑚𝑚/𝑠 for 100 Hz cases. When the density and viscosity of olive oil and the maximum pore size 

are used in the experiments, the maximum Reynolds number is estimated to be around 0.002. 

Therefore, the Darcian flow assumption was reasonable. Lastly, the permeability and Young’s 

modulus of the foams were assumed to be independent of applied strains. Strain-induced changes 

in these properties are prominent for large strains (𝜀 > 0.05 [37]). In the dynamic testing, the 

deformation induced by the indenters reached 200 m, and this corresponded compressive strain 

𝜀 ≈ 0.07 given the thicknesses of the foams in swollen condition. In fact, one of the factors leading 
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to slight shifts of the damping capacity curves with respect to the scaled frequency axis (Figure 

3-6e-h) could be the strain-induced changes in the different types of foam.  

Our past numerical simulation on the multi-indenter damper configurations [33] combined 

with the current experimental study on the two-indenter-foam configuration showed a great degree 

of flexibility in tuning the broadband performance of the dampers. Notwithstanding, several design 

requirements have to be met before the implementation of multi-indenter-foam dampers in 

practice. In particular, space limitations would necessitate analyses of interacting indenters as the 

principle of superposition would break down for closely placed indenters. For instance, in the 

asymptote where most of the indenters are placed closely in clusters, poroelastic dissipation would 

lose efficacy, and only viscoelastic dissipation would prevail. Such configurations would lack the 

maximum damping performance around a peak damping frequency as viscoelastic losses are 

length independent, and thus should be avoided. Lastly, practical utilization of liquid-imbibed PVE 

materials brings inherent challenges such as leakage, contamination, temperature-pressure-shear 

dependent viscosity, and phase changes. Therefore, the reliable encasement of the indenter-foam 

dampers is essential for maintaining the desired damping capacity. 

 Conclusions 

A practical realization of cartilage-like damping capacity was demonstrated via the development 

of indenter-foam PVE dampers to extend damping methods in a low-frequency range (< 100 Hz). 

Our previous study on the numerical simulation of cartilage-like dampers [33] suggested that they 

have great potential to deliver effective damping capacity tailored to desired narrow and broadband 

dynamic responses. This current study designed, tested, and analyzed cartilage-inspired PVE 

dampers in a frequency range of 0.5 – 100 Hz, employing a hybrid of interfacial and material 

damping. The simple mechanical model and scaling analysis provided physical parameters that 
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govern a poroelastic peak damping frequency of a single-indenter-foam damper. The measured 

damping capacity of 12 single-indenter-foam dampers were consistent with the scaling analysis 

and demonstrated an ability to maximize poroelastic damping at the desired frequency across two 

decades by changing the pore diameter (diffusion) and contract radius (characteristic diffusion 

length). The poroelastic peak damping frequency can be tuned to specific modal frequencies of a 

structure so that damping is maximized only around them (narrowband performance). Viscoelastic 

damping was likely to provide baseline damping in a frequency range far from the poroelastic peak 

damping frequency. In addition, the optimized two-indenter-foam damper demonstrated that 

nearly rate-independent damping capacity can be achieved by combining single-indenter-foam 

dampers with poroelastic peak damping frequencies at the bounds of the bandwidth of interest 

(broadband performance). These findings on cartilage-inspired PVE dampers can appease the 

needs of both narrowband and broadband applications in a passive way. 
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 Introduction 

Absorbing and trapping energy as often achieved by dampers in a prescribed frequency range is 

essential for vibration suppression in engineered systems. Dampers can be categorized as active, 

semi-active or passive depending on the existence of a feedback control in the system [1]. Active 

damping is used when high performance is critical and/or the host system operates under highly 

transient conditions. Active dampers are comprised of sensors, actuators and controllers and so 

increase complexity, weight, power consumption and cost to a particular system design than the 

one of passive dampers [2]. Passive dampers, in contrast, offer vibration suppression with simple 

utilization of a single or multiple damping mechanisms without a feedback control. Therefore, 

most passive dampers lack broadband effectiveness and adaptation to changing operation 

conditions. Examples of recent passive damper studies and corresponding damping mechanisms 

include: Yuan et al. used a novel mathematical method to study viscoelastically damped structures 

by generating a virtual fractional oscillator [3]; McNamara et al. introduced annular tuned liquid 

dampers that can be mounted in slender structures [4]; Wong W. and Wong C. simulated an air 

damper using Maxwell transformed element and Coulomb element [5]; Lv and Leamy introduced 

anechoic stubs as the damping element to remove vibration modes from planar frame structures 

[6]; Love et al. proposed a pendulum-type tuned mass damper to reduce wind-induced structural 

motion [7]; Javidialesaadi and Wierschem introduced a three-element inerter to suppress the 



80 

 

vibration of a single-degree-of-freedom system [8]; Tai et al. investigated an energy harvester 

using a monostable Duffing oscillator connected to an electromagnetic generator [9]. Current 

passive dampers focused on either narrow-band or broad-band loading frequencies and still lack 

of efficiency. 

The authors tried to fill in the gaps and introduced a novel poro-viscoelastic (PVE) passive 

damper design: Liu et al. simulated a PVE indenter-foam damper using fractional Zener model 

and validated with experimental results [10]; Boz and Eriten introduced fuzzy oscillators with PVE 

coatings to reduce low frequency vibrations [11]; Han et al. designed and fabricated the PVE 

damper with two indenters and validated its damping capacity within 0-100 Hz frequency range 

[12]. The indenter-foam dampers developed by the authors were shown to be tunable for 

broadband [10] or narrowband [11] damping needs. Experimental validations reported by the same 

authors demonstrated that simple and cost-effective design of indenter-foam dampers delivers 

damping capacities comparable to other material dampers [12]. In those experiments, however, the 

authors utilized small excitations and thus investigated primarily linearized response of highly 

nonlinear PVE relaxation mechanisms and indenter-foam contact mechanics. Therefore, the 

performance of indenter-foam dampers under large vibrations and possible contact nonlinearities 

remains unexplored. This study aims at filling this gap. 

 Indenter-foam Dampers 

Indenter-foam dampers consist of indenters transmitting vibration to PVE media and thus attenuate 

vibrations via viscoelasticity, diffusion and lossy fluid-solid interactions. In broader sense, PVE 

passive dampers employ various forms of contact and material damping mechanisms 

simultaneously and thus resemble articular cartilage at the tips of our long bones. In 2016, the 
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current authors optimized a set of indenter-foam dampers to achieve broadband damping [10]. In 

particular, we designed a damper where a PVE foam was sandwiched between two hard materials 

and vibrations were transmitted to that layer via multiple indenters of varying contact lengths. Near 

those indenter-foam contacts, length-dependent diffusion and PVE relaxations were triggered 

delivering maximum damping at frequencies coinciding to Peclet number of 1. Optimizing those 

contact lengths then enabled a rather constant loss factor for a broad frequency range (3-3000 Hz); 

i.e., an effective broadband damper. The authors then utilized the same dampers in fuzzy-

oscillators and demonstrated tunable vibration absorption around modes of a host structure [11]. 

Finally, in a more recent article, the authors developed foam-indenter dampers and reported their 

damping capacity in single and double indenter configurations [12]. Tested dampers included rigid 

cylindrical indenters pressed on open-cell polyethylene foams swollen fully with Newtonian 

liquid. Dynamic mechanical analysis (DMA) with linear harmonic vibrations of the indenters over 

a frequency range of 0.5-100 Hz delivered damping capacity. The experimental observations 

validated both the narrow and broadband performance of those dampers under small vibrations.  

In those earlier works, small vibration assumptions allowed us to model the indenter-foam 

system with linearized PVE models that neglect complications such as material and contact 

nonlinearities. The latter of those complications will be the focus of the current study as in practical 

indenter-foam damper assembly, contact interfaces are maintained by pre-compression and 

adhesion. Pre-compression levels can be adjusted to achieve a desired strain in the PVE foam. 

After a sufficiently long time, PVE relaxations lead to reduction in residual compressive stresses 

and thus subsequent vibrations can apply tension in parts of loading cycles with moderate to large 

amplitudes. If adhesion between PVE foam and indenters counters the tension, then contact areas 

remain constant and changes in stiffness and damping capacity are expected to be minimal. 
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However, adhesion of PVE materials to rigid surfaces is known to increase with the unloading 

rates [13–17]. This then proposes a scenario where certain combination of strains and strain rates 

could develop tensile stresses in PVE materials that would overcome adhesive strength and cause 

peeling at the indenter-foam interface. Peeling at the interface in turn would be reflected in stiffness 

and damping capacity estimations. Moreover, the asymmetric nature of contact response in 

compressive and tensile parts of a vibration cycle produces higher harmonics (starting with the 

second harmonic) in the transmitted contact force. Therefore, contact nonlinearities would 

influence dampers’ performance directly. Those nonlinearities are experimentally studied in the 

current work. Amount of contact peeling, corresponding loss of contact stiffness and degree of 

nonlinearities are reported as maps of strains and strain rates. Those maps provide guidelines for 

linear and nonlinear designs of indenter-foam dampers. 

 Experiments and Methods 

4.3.1. Indenter-foam Damper Preparation 

Open cell polyurethane foams (New England Foam Co.) swollen with castor oil (NAISSANCE) 

were used as the PVE material of the dampers [12]. The average pore size of the foams was 0.25 

mm in diameter (100 PPI) reported by the manufacturer. The foams were cut in cylindrical shapes 

with radius, 𝑎𝑠, of 27 mm and thickness, H, of 7.6 mm, and then placed in a sample holder filled 

with castor oil. The foam density was measured as 0.03 g/cm3  (consistent with manufacturer 

specifications). The dynamic viscosity of castor oil is reported as 0.6 𝑃𝑎 ∙ 𝑠 [18]. Swelling of the 

dry foam samples included several steps as reported elsewhere [19,20]. Prior to swelling, the 

bottom of the cylindrical foam was fixed to the sample holder; sample was then loaded to 70% 

average normal strain in nearly unconfined compression setting. Castor oil was added to the sample 
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holder and the sample stayed in the castor oil bath in pre-compressed and fully submerged 

condition for 10 minutes. Finally, the sample was unloaded slowly and left to recover for 10 

minutes. The sample remained fully submerged during the last recovery phase. To achieve 

homogenous and near full-saturation, load-submerge-unload-recovery process was repeated 6 

times. Repetitions assisted removal of air bubbles trapped in the sample and ensured homogeneity 

of the foams in the swollen states.  

As for indenters, two cylindrical punches were made from aluminum, with radii, a, of 4.25 

mm and 8.5 mm to re-confirm the earlier observations on length-dependent PVE relaxations and 

their influence on contact nonlinearities and damping capacity of the dampers [12,17]. 

4.3.2. Dynamic Mechanical Analysis Setup 

In our previous work, we investigated the damping capacity of various indenter-foam dampers via 

DMA [12]. We used a similar methodology in this study, with broader ranges of strains and strain 

rates. Previous studies had utilized strains of 0.01 and average strain rates of 0.04/s to 4/s. Here, 

we extended that range 3-fold larger to gauge nonlinear dynamic response of the dampers. In our 

dynamic tests (Figure 4-1a), an indenter probe driven by a universal tester (TA ElectroForce 

MODEL3230; TA Instruments, Eden Prairie, MN) was used to apply first a quasistatic pre-

compression and then harmonic vibrations with prescribed amplitudes and frequencies on the top 

surface of the swollen foams. A load cell attached to the bottom of the sample holder monitored 

the forces throughout the experiments. The expected form of mathematical functions of input 

displacements and measured forces were shown on a sketch of the setup in Figure 4-1b. A 

quasistatic displacement of 𝑑0 =1 mm was applied on the swollen foams and was held for 10 

minutes for full relaxation to ensure full contact at the beginning of each test. Harmonic vibration 

amplitude, Δ𝑑 was set to 20, 50, 100, and 200 μm. Therefore, the strain level remained small to 
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avoid any material and geometric nonlinearities. The frequency of the harmonic vibrations f was 

set to 1, 3, 10, 20, 50, 70 and 100 Hz. This frequency range is considered as broadband for civil 

and engineering structures. Thus, we extend the strain and strain rate level of the harmonic 

excitation to 0.025 and 10/s, respectively. Besides, the peak relaxation frequencies of the 8.5 mm 

and 4.25 mm indenters were found at around 7.5 Hz and 30 Hz, thus 1-100 Hz range is sufficient 

for our study. Each measurement reached steady-state after 60 cycles, and the last five cycles of 

displacement and corresponding force data were reported in the results. The sampling rate was 

chosen at 5000 Hz to give enough data points for the 100 Hz harmonic case. The displacement 

controller of the TA instrument tended to oscillate under smaller amplitudes than the one given as 

the input when loading frequencies were larger than 20 Hz. A larger modified displacement 

amplitude had to be provided to obtain the desired input displacement. The phase lag between 

applied displacements and measured forces, 𝛿, is used to quantify the damping capacity of the 

indenter-foam dampers whereas deviations from the expected monofrequency (linear) response in 

force were reported as a measure of nonlinearity. 

 

Figure 4-1: Experimental setup for dynamic testing of the indenter-foam dampers, (a) photo 

and (b) sketch. 



85 

 

 Results and Discussion 

4.4.1. Dynamic Test Results 

Figure 4-2a shows typical steady-state forces measured from 8.5 mm radius indenter-foam damper 

under harmonic excitations at two extreme cases; almost linear case at 𝑓 = 1 Hz and Δ𝑑 =

20 μm, and the most nonlinear case observed at 𝑓 = 100 Hz and Δ𝑑 = 200 μm. Excitations in 

the form of indenter displacements were nearly harmonic for both cases; i.e., negligibly small 

higher harmonics existed in the signals (blue curves in Figure 4-2a). Forces recorded for the former 

case also resembled pure harmonic signals with amplitudes in the compressive regime (+ 

magnitudes) throughout a loading cycle, suggesting linear compressive response of the foams. The 

linearity was also evident from the symmetric force-displacement curve (hysteresis loop) in Figure 

4-2b and fundamental harmonic-dominated Fourier transform (normalized with respect to the 

fundamental harmonic peak value) in Figure 4-2c. For the latter case, forces exhibited partially 

tensile and partially compressive regime within a loading cycle and clear asymmetries in the form 

of softening in the tension direction (Figure 4-2a). The corresponding hysteresis loop (Figure 4-2b) 

showed the asymmetry clearly and Fourier transform of the force (Figure 4-2d) contained higher 

harmonics at 𝑓2,3 = 200, 300 Hz . Note that the amplitude of 2nd harmonic was an order of 

magnitude larger than the 3rd harmonic. 2nd  harmonics were previously shown to dominate the 

nonlinearities in various other systems with contacts. For instance, partial peeling across rough 

crack surfaces was the source of contact acoustic nonlinearities in surface wave propagation and 

corresponding acoustic nonlinearity parameter (defined as the ratio of 2nd to fundamental harmonic 

amplitudes) yielded a measure of nonlinearity [21]. Besides, contact stiffness in shear direction 

decreases linearly with increasing frictional slip [22–24], and thus delivers quadratic nonlinearity 

in restoring forces. Borrowing from this literature, we studied next the ratio of amplitudes of 2nd 
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and fundamental harmonics (referred to as harmonic ratio in the remainder of the paper) as a 

function of applied displacement amplitudes and rates. 

 

Figure 4-2: (a) Displacements and forces recorded for 8.5 mm radius indenter-foam damper 

at: 𝒇=1 Hz, ∆𝒅=20 µm (upper subfigure) and 𝒇=100 Hz, ∆𝒅=200 µm (lower subfigure); (b) 

corresponding hysteresis loops, and (c) normalized FFT of the force at 𝒇=1 Hz, ∆𝒅=20 µm 

(d) normalized FFT of the force at 𝒇=100 Hz, ∆𝒅=200 µm. 
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4.4.2. Harmonic Ratio 

To show how nonlinearity in measured forces depended on applied displacement amplitudes and 

rates, we plotted in Figure 4-3 the harmonic ratio as a function of applied average strains and strain 

rates for 8.5 mm (a) and 4.25 mm (b) radius indenter-foam dampers. There were 28 data points in 

total, with 4 different oscillation amplitudes by 7 different loading rates. Linear interpolation was 

applied to obtain the smooth contour plots. The average applied strain was defined as the indenter 

displacement divided by the undeformed thickness of the swollen foam, ∆𝑑/𝐻, whereas average 

strain rate was defined as the displacement loading rate divided by the thickness of the foam, 𝑑̇/𝐻.  

Contour plots for both indenters show a similar trend of harmonic ratio along with the 

average strain and strain rate. At low strain rates, (
𝑑̇

𝐻
≪ 1), the harmonic ratio increased with strains 

and was independent of strain rate. The latter trend is expected since damping forces at low strain 

rates would have negligible contribution compared to elastic forces in the foams and thus would 

not cause any substantial nonlinearity. The former trend is more difficult to explain. Since strains 

used in this study were limited to 2.5%, within typical proportional limit of various open cell foams 

[25], neither geometric (higher order strains) nor material nonlinearities could explain the increase 

in harmonic ratio with strains. An alternative explanation is peeling induced by increasing strains. 

In this small strain and strain rate regime, the elastic forces grow as strains increase. Increasing 

elastic forces could overcome adhesive forces holding the indenter and foam samples together and 

compromise full contact condition by partial peeling. Given the stress concentrations, such a 

peeling should commence at the edge of the flat indenter punches. At higher strain rates (
𝑑̇

𝐻
≫ 1), 

the harmonic ratio increased with both increased of average strain and strain rate. If peeling was 

responsible after the nonlinearity, this trend is also expected since both damping and elastic forces 
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contribute to the total forces built up in the foams, which then could overcome adhesive 

interactions between indenter and foams. 

 

Figure 4-3: Contour plots of harmonic ratio as a function of both average strain and average 

strain rate for (a) the 8.5mm radius indenter-foam damper, and (b) the 4.25mm radius 

indenter-foam damper. 

At high strains (
∆𝑑

𝐻
~0.025) and intermediate strain rates (1 <

𝑑̇

𝐻
< 3), harmonic ratio 

attained smaller values compared to smaller and higher strain rates. This trend could not be 

explained only by elastic and damping forces built up in the foams because at a given strain level 

increasing strain rates should increase the force built up and thus peeling and corresponding 

nonlinearity in the damper response. We will resort to rate-dependent adhesion commonly 

observed for multiphasic soft materials such as the foams used in this study to further analyze that 

trend.     

4.4.3. Rate-dependent Adhesion and Peeling Index 

In previous [12] and current indenter-foam dampers, adhesion was the only force that kept the 

interface between the indenter and foams in contact during possible tension in a vibration cycle. 

As we discussed in an earlier work [17], adhesion of PVE materials depends on the degree of 
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relaxation, and hence it is rate-dependent. This is practically because of how applied mechanical 

work is distributed within PVE medium to strain, dissipation, bond breakage and surface creation 

energies during the peeling process [26–28]. In that respect, experimentally recorded adhesion can 

only be treated as apparent property that is coupled to mechanical response of the material rather 

than an intrinsic adhesive energy of surfaces newly created after peeling. This coupled response 

can be simply modeled by a slider element attached to a lossy material (standard linear solid) 

model as shown in Figure 4-4. In this model, two springs and a dashpot represent the foam with 

one dominant relaxation time constant and the slider represent the interface between the indenter 

and the foam. Note that similar models were used to explain nonlinearities in modal damping [29] 

and in wave transmission [30] due to interfacial slip. When a harmonic input displacement d is 

applied to the foam a resultant periodic force 𝐹 is transmitted to the slider element; i.e., contact 

interface. The rate-dependent adhesion force, quantified herein with pull-off forces measured in 

tack experiments, is denoted as 𝐹𝑝. Accordingly, full separation will occur when the total force in 

the material exceeds adhesive forces; i.e., 𝐹 > 𝐹𝑝. When 𝐹 < 𝐹𝑝, the interface behavior will range 

from full to partial contact depending on the magnitude of F relative to 𝐹𝑝. Adopting an ad-hoc 

approach, we define a peeling index: 𝑃𝐼 = 𝐹/𝐹𝑝. In this definition, 𝑃𝐼 = 1 means the interface is 

fully separated and 𝑃𝐼 = 0 means the interface is under complete contact condition. Note that we 

already measured the forces built up in the foams, F during the dynamic tests discussed above. To 

quantify the peeling index, we need pull-off forces under different unloading rates. 
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Figure 4-4: Simple model of indenter-foam damper with an adhesive interface (modeled as 

the slider element). 

We conducted adhesion experiments were on the same machine and setup shown in Figure 

4-1. In those experiments, a static 1 mm displacement with 0.1/s average strain rate was applied 

on the foams and was held for 10 minutes for full relaxation. Then, the indenter was pulled off at 

different average unloading strain rates ranging from 0.01 s-1 to 10 s-1; i.e., the same range used in 

the dynamic testing. Forces were recorded at same sampling rates as in dynamic tests. Each test 

was repeated twice and the maximum error within 4%, which showed a good repeatability. Figure 

4-5 shows typical force-displacement responses obtained from those experiments (positive forces 

are compressive and negative are tensile per the convention used in the dynamic tests). The pull-

off force was defined as the maximum negative force measured. 
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Figure 4-5: Raw data of pull-off test for 8.5 mm radius indenter-foam damper under pull-

off average strain rates at 0.01/s, 0.1/s, 1/s, and 10/s. 

Measured pull-off forces normalized to contact areas of indenters (average pull-off 

stresses) are shown in Figure 4-6. Average pull-off stresses increased with unloading rates for both 

indenters. Similar increases in adhesion with unloading rates were reported for viscoelastic 

(elastomers in [31]) and PVE materials (cartilage in [16]).  
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Figure 4-6: The average pull-off stress as a function of the average pull-off strain rate for 8.5 

mm radius (blue) and 4.25 mm radius (red) indenter-foam dampers. 

After the adhesion tests, the peeling index was estimated as the ratio of dynamic and pull-off 

forces measured at corresponding strain rates. The contours of PI values are shown as a function 

of strain and strain rates in Figure 4-7. One should notice clearly the similarities between the PI 

and the harmonic ratio contours in Figure 4-7 and Figure 4-3, respectively. Therefore, we conclude 

that the degree of nonlinearity observed in forces measured was directly linked to the value of PI; 

i.e., the degree of peeling in indenter-foam interface. 

The trends in PI can be qualitatively explained by the simple model in Figure 4-4 and rate-

dependent adhesion shown in Figure 4-6. At low strain rates, adhesion force Fp remains nearly 

constant (changes only 2-fold for 0.01-1 s-1 strain rates) while only springs in  Figure 4-4 contribute 

to the forces built up in the foam. Hence, the degree of peeling is only a function of strains. This 

is reflected as horizontal contours of PI in strain rate-strain mapping in Figure 4-7. At intermediate 

to high strain rates, both springs and damper contribute to the forces in the foam but adhesion force 

increases steeply to suppress peeling partially. That is why the horizontal contours are interrupted 

and PI attains a local minimum at a given strain. As strain rates further increase, increase in 

adhesion forces cannot compensate for the increase in forces in the foam, and so diagonal contours 

of PI are observed in strain rate-strain mapping. At extremely high loading rates, one would expect 

damper forces not to contribute to the forces in the foam. In other words, the loading would be too 

quick for the foam to relax significantly within a loading cycle. In that asymptotic case, we expect 

the PI contours to exhibit horizontal patterns as in low frequency (nearly quasistatic) asymptote 

shown in Figure 4-7. One key difference in those asymptotes would be that unrelaxed foam is 

stiffer and thus higher PI values would be achieved at higher strain rates. Note that extremely high 
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loading rates can be achieved at loading frequencies that are much larger than peak relaxation 

frequencies of the foam. Our experiments do not cover that asymptote because of the limited 

bandwidth of the employed universal testing machine. 

 

Figure 4-7: Contour plots of peeling index as a function of average strain and average strain 

rate normalized with peak damping frequencies for (a) 8.5 mm radius indenter-foam damper 

and (b) 4.25 mm radius indenter-foam damper. 

4.4.4. Nonlinearity, Peeling and Reduction in Contact Stiffness 

Above discussion relates nonlinear dynamic response of indenter-foam dampers to the partial 

peeling at the interface. A similar connection is expected with reduction in contact stiffness, which 

scales with the product of Young’s modulus and contact length (radius) [32]. Contact stiffness, 

𝐾𝑐𝑜𝑛 can be estimated from the force-displacement curves (Figure 4-5). To account for the rate-

dependent modulus of the foam and its effect on stiffness, we normalized 𝐾𝑐𝑜𝑛 by its initial value 

at the start of tension 𝐾𝑐𝑜𝑛
0  so that 𝐾𝑛 = 𝐾𝑐𝑜𝑛/𝐾𝑐𝑜𝑛

0  ranges from 0 to 1 and quantifies the change 

in contact lengths throughout adhesion tests. Note that similar normalized stiffness measures were 

used to identify onset of sliding and plastic shearing in the literature [33–35]. Figure 4-8 shows 

the normalized stiffness for both large and small indenters. As pull-off strain increased, normalized 
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stiffness decreased because of partial peeling and reduction in contact lengths. For all strain rates 

except for the highest and both indenters, normalized stiffness collapsed nearly on to a single curve 

that smoothly reduces from 1 to ~0.2 as a function of strain. That reduction is less for the highest 

loading rate. This deviation can be attributed to the complicated peeling dynamics at high adhesion 

levels measured for 10 s-1 cases. As shown in Figure 4-5, even after pull-off forces were reached, 

the peeling process continued all the way to negative (tensile) displacements. So, more straining 

was needed to fully separate indenters from the foams at the highest strain rate thanks to increased 

adhesion. 

 

Figure 4-8: The normalized stiffness as a function of average strain of (a) 8.5mm radius 

indenter-foam damper and (b) 4.25 radius indenter-foam damper. 

Finally, reduction in normalized stiffness can be linked to the peeling index since both are 

defined as proportional to contact length. Experimentally evaluated PI and reduction in normalized 

stiffness (1 − 𝐾𝑛) are plotted in Figure 4-9 at coinciding strains for both indenters. As expected, 

PI and (1 − 𝐾𝑛) are linearly related for all but highest strain rate cases. Complicated transients in 
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the peeling process, as discussed above, potentially lead to breakdown of that linearity at the 

highest strain rate. Nevertheless, the reduction in contact stiffness, (1 − 𝐾𝑛), the decrease in 

contact lengths and degree of peeling can be alternatively used to predict the degree of nonlinearity 

in dynamic response of the indenter-foam dampers. To do that, one needs rate-dependent adhesion 

response of the indenter-foam interface. 

 

Figure 4-9: Scatter plot of PI versus (𝟏 − 𝑲𝒏) for both 8.5 mm and 4.25 mm radius indenter-

foam damper under average strain rate at 0.01/s, 0.1/s, 1/s, and 10/s. 

 Conclusions 

In this study, we measured the nonlinear dynamic response of indenter-foam dampers and 

explained the source of nonlinearity. First, we noticed higher harmonics in force measurements on 

an indenter-foam damper that was harmonically excited under small strains, which was the 

signature of a nonlinear response. Then, we analyzed relative magnitudes of second harmonics at 

various strains and strain rates to obtain nonlinearity maps. Since geometric and constitutive 

nonlinearities were unlikely due to small strains used in the experiments, we focused on interfacial 
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nonlinearities, specifically adhesion and peeling dynamics, to explain the source of  nonlinearities. 

We used a simple viscoelastic material model attached to a slider element to model adhesive 

interactions, and defined peeling index and reduction in contact stiffness that directly correlated 

with the degree of nonlinear dynamic response. In summary, any of the reduction in contact 

stiffness, the decrease in contact lengths and degree of peeling could predict the degree of 

nonlinearity in dynamic response of the indenter-foam dampers. Nonlinear dynamic response 

could complicate the design and limit usability of indenter-foam dampers. Our findings suggest 

increasing adhesion at the indenter-foam interface would suppress those nonlinearities trivially 

(e.g., via chemical and physic reinforcement of interfaces).  

Interfacial nonlinearities studied here induced second harmonics due to asymmetric nature 

of peeling dynamics. Nearly perfect correlation of relative second harmonic amplitudes and 

peeling index paves the way to wave or vibration-based diagnostic of the adhesive integrity of 

multi-phasic interfaces. Since those interfaces are ubiquitous in nature and engineering systems 

with soft materials, such a diagnosis method could prove utility in various applications. 
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 Conclusions 

 Conclusions and future work 

The main goal of this dissertation was to examine the influence of interface topography on PVE 

material damping, and to design and fabricate a prototype of PVE passive damper. It was divided 

into three objectives.  

The first objective was to introduce a passive damper design inspired by the cartilage-like 

PVE mechanisms (Chapter 2). The dissipative properties of PVE materials sandwiched by hard 

materials were studied and the PVE interfaces were modeled using fractional Zener elements. As 

a conclusion, optimal damping (either narrowband or broadband) can be harvested from those 

dampers by simply changing the contact parameters. 

The second objective was to validate and realize the passive PVE damper idea (Chapter 3). 

Both single and multiple indenter-dampers were designed, tested, and analyzed in a frequency 

range of 0.5 – 100 Hz. The measured damping capacity of 12 single-indenter-foam dampers were 

consistent with the scaling analysis and demonstrated an ability to maximize PVE damping at the 

desired frequency ranges by changing the pore diameter (diffusivity) and contract radius 

(characteristic diffusion length). The poroelastic peak damping frequency can be tuned to specific 

modal frequencies of a structure so that damping is maximized only around those modes 

(narrowband performance). In addition, the optimized two-indenter-foam damper demonstrated 

that nearly rate-independent damping capacity can be achieved (broadband performance). These 

findings on PVE dampers can appease the needs of both narrowband and broadband applications 

in a passive way. 
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The third objective was to extend the behavior of the PVE indenter-foam dampers to higher 

excitation levels and analyze their nonlinear responses. The nonlinear dynamic responses were 

measured and explained in detail (Chapter 4). First, we noticed higher harmonics in force 

measurements on an indenter-foam damper that was harmonically excited under small strains, 

which was the signature of a nonlinear response. Then, we analyzed relative magnitudes of second 

harmonics at various strains and strain rates to obtain nonlinearity maps. Since geometric and 

constitutive nonlinearities were unlikely thanks to small strains used in the experiments, we 

focused on interfacial nonlinearities, specifically adhesion and peeling dynamics, to explain the 

source of those nonlinearities. In summary, any of the reduction in contact stiffness, the decrease 

in contact lengths and degree of peeling could predict the degree of nonlinearity in dynamic 

response of the indenter-foam dampers. Our findings suggest increasing adhesion at the indenter-

foam interface would suppress those nonlinearities trivially (e.g., via chemical and physical 

reinforcement of interfaces).  

This dissertation not only makes several contributions to knowledge about the PVE 

interfacial damping mechanisms, but also provides an effective passive damper design. The 

performance and limitations of those dampers have been discussed thoroughly. The next step 

would be to integrate those dampers into semi-active and active damper designs to guarantee and 

adaptive damping performance. MR fluids, for instance, can be a good choice for semi-active 

damper design when used as a swelling agent in the indenter-foam dampers. Similarly, MR 

elastomers can provide active alternative to the foams. MR fluids and elastomers have attracted a 

significant amount of attention for their potential in engineering applications during the last few 

decades; as evident from numerous applications as vibration absorbers, base isolators and sensing 

devices [1–4]. A natural extension of my doctoral studies can take advantage of those materials’ 



102 

 

ability to absorb energy and its controllability with external magnetic fields. For example, 

Maranville and Ginder tested the dynamic mechanical properties of MR fluids entrained in open-

cell polyurethane foams [5];  Hirunyapruk et al. presented a MR fluid-filled structure device as a 

tunable vibration absorber [6]; Dohmen et al. introduced a polyurethane-based MR fluid 

composite, and reported its behavior under external magnetic fields [7]. All the studies indicated 

that increasing the applied magnetic field increases both the complex shear modulus and energy 

dissipation of the devices. Therefore, we might adjust the magnitude of the energy dissipated by 

the MR fluid foams via applied magnetic field strength and thus achieve real-time control on 

indenter-foam dampers. 
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