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ABSTRACT

Although the Standard Model is our current best theory for describing the building blocks

of the universe, there are still several important questions that it does not answer. Some

of these include: How does gravity, dark matter, and dark energy fit into the Standard

Model? Why is the universe made up of more matter than anti-matter? More importantly

for this work, the Standard Model predicts that neutrinos should be massless particles.

However, with the discovery of neutrino oscillations, it was confirmed that neutrinos

have non-zero mass. But why does this happen? To be able to answer this question,

the ordering of the neutrino masses became a crucial piece of the puzzle as all theories

and some experiments (e.g. neutrinoless double beta decay) depend greatly on whether

the mass ordering is normal (m3 > m2 > m1) or inverted (m2 > m1 > m3). IceCube is

an ice-Cherenkov neutrino detector deployed about 1.5 kilometers below the surface of

the South Pole. Using DeepCore, a more densely instrumented volume of ice near the

bottom of the detector, this work studies the neutrino mass ordering (NMO) through a

measurement of the oscillation patterns of a 9.28-year sample of atmospheric neutrinos

using a frequentist statistical analysis. A goal of this work is to deliver a more robust result

of the mass ordering preference in comparison to the previous 3-year IceCube DeepCore

measurement [40]. Furthermore, this works aims to provide a unique contribution in

answering the mass ordering question through DeepCore’s ability to produce a result that

is both independent of the δCP phase (currently creating a tension in existing NMO results)

and generated at neutrino energies greater than those observed by any other experiment.

The analysis observes a preference for the normal ordering at 2∆LLHNO-IO = −4.398,

leading to a disfavoring of the inverted ordering at a 93.7% exclusion level, or 1.86σ.
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Chapter 1

Introduction

1.1 Discovery of the Neutrino

An exciting new theory took the world by storm in 1930— one that proposed the existence

of a brand new particle in the universe. This particle would, later on, become known as the

neutrino, or "little neutral one". During this time, Austrian physicist, Wolfgang Pauli, was

trying to explain what seemed to be a violation of conservation of energy and momentum

in beta decay [4]. Beta decay was thought of, at the time, as a process where a neutron at

rest decays into a proton and ejects an electron. The electron, then, is expected to have

one well-defined energy value. However, this is not what was measured [5; 49]. Instead, a

continuous spectrum of electron energies were found, leading to the question: "Could it

be that energy and momentum are not conserved?" As a result, Pauli proposed a theory

where a third, extremely light, and electrically neutral particle carried the missing energy,

which would explain why this particle had not been detected. The existence of the neutrino

was experimentally confirmed in 1956 by Clyde Cowan and Frederick Reines [64].
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1.2 Neutrinos in the Standard Model

Neutrinos are elementary particles found in the Standard Model of Particle Physics. The

Standard Model describes to extreme precision the behavior and properties of elementary

particles in our universe. The word elementary here means that these particles cannot be

subdivided further into other particles.

Particles in the Standard Model are classified into two categories: Fermions and Bosons.

Elementary fermions are the foundation of matter that is observable and consist of spin

1/2. Elementary bosons, on the other hand, act as force carriers, mediating the forces that

act on fermions, and have integer spin.

The Standard Model is made up of five force carriers that give rise to the electromag-

netic, weak, and strong forces of nature. Fermions are subdivided into quarks and leptons

according to their interactions with force carriers. Quarks interact with all forces, while

leptons do not interact with the strong force. Neutrinos are leptons that do not interact

with the electromagnetic force as they have neutral charge. The Higgs particle gives rise

to the mass acquired by the W and Z bosons and well as the charged fermions. Both the

gluon and the photon do not interact with the Higgs, and as a result, are massless.

Figure 1.1 shows the particles that make up the Standard Model as well as their

respective anti-particles. An anti-particle has the same mass and spin as its corresponding

particle, but it has opposite charge and, for leptons, opposite lepton number. These are

produced in different processes of nature such as beta decay and cosmic ray interactions.

1.2.1 Questions Still Unanswered by the Standard Model

Although the Standard Model is our current best theory for describing the building blocks

of the universe, there are still several important questions that it does not answer. Some

of these include: How does gravity, dark matter, and dark energy fit into the Standard

Model? Why is the universe made up of more matter than anti-matter?
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Figure 1.1: Standard Model of Particle Physics showing all experimentally confirmed
elementary particles as well as their anti-particles (Public Domain). The mass, charge, and
spin are also shown.

More importantly for this work, the Standard Model predicts that neutrinos should be

massless particles. This arises from a particle’s chirality. Chirality is an intrinsic quantum

property that describes the handedness of a particle. While quarks and charged leptons

can be found as both chiral right-handed and left-handed in the Standard Model, neutrinos

can only be found as left-handed and anti-neutrinos as right-handed. This happens as a

result of neutrinos only interacting with the weak force, which by nature, does not interact

with right-handed particles or left-handed anti-particles.

For a particle in the Standard Model to acquire mass, it must interact with the Higgs

field. This occurs by means of an interaction between the chiral right-handed particle,

its left-handed component, and the Higgs. From this, it follows that, for a left-handed

neutrino to acquire mass, a right-handed neutrino needs to exist. However, this is not

what the Standard Model shows, and as a result, neutrinos were predicted to be massless.
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Figure 1.2: Diagram of the hypothesized neutrinoless double beta decay process, where
the neutrino is its own anti-particle, and as such, gets absorbed [62].

Nevertheless, in 1998 and separately in 2001, it was confirmed by the Super-Kamiokande

experiment [38] and by the Sudbury Neutrino Observatory (SNO) [33], respectively, that at

least two out of the three neutrinos have non-zero mass. This occurs due to a phenomenon

called neutrino oscillations, and will be further discussed in Section 1.3.

There are several theories that describe how it is possible that neutrinos can have

non-zero mass. One of these theories proposes that the anti-neutrino is actually the chiral

right-handed version of the neutrino, and therefore, the neutrino is its own anti-particle.

Particles that are its own anti-particle are called Majorana particles. There are several

experiments currently looking for this through a process called neutrinoless double beta

decay [47]. Double beta decay is the process of a nucleus decaying through a double

neutron decay into two protons along with a double emission of electrons and anti-

neutrinos. If the neutrino is Majorana and exists as both right and left-handed, there would

be a detection channel where no neutrinos are emitted as shown in Figure 1.2.
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1.3 Neutrino Oscillations

Neutrinos exist in two bases— the flavor basis and the mass basis. Flavor and mass states

are related through the Pontecorvo–Maki–Nakagawa–Sakata (PMNS) unitary mixing

matrix as shown in Equation 1.1, and hence, the properties of mass and flavor are not

independent. There are three flavors of neutrinos in the Standard Model, νe, νµ, and ντ.

Likewise, there are three mass states, ν1, ν2, and ν3.


νe

νµ

ντ

 =


Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3




ν1

ν2

ν3

 (1.1)

Each flavor state is a unique mixture of the different mass states, and similarly, each

mass state is a unique mixture of the different flavor states. Specifically, each is a linear

superposition of the other as shown in Equation 1.2 where α ∈ {e, µ, τ} and i ∈ {1, 2, 3}.

|να⟩ = ∑
i

Uαi|νi⟩

|νi⟩ = ∑
α

U∗
αi|να⟩

(1.2)

The elements of the PMNS matrix are parametrized by three mixing angles, θ12, θ13,

and θ23, as well as one complex phase, δCP, in the following way

UPMNS =


1 0 0

0 c23 s23

0 −s23 c23

×


c13 0 s13e−iδCP

0 1 0

−s13eiδCP 0 c13

×


c12 s12 0

−s12 c12 0

0 0 1

 (1.3)

where cij = cos(θij) and sij = sin(θij).

Neutrinos propagate through space and time in the mass basis but interact with matter

in the flavor basis. As such, neutrinos with different mass will propagate at different
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Figure 1.3: Diagram showing the concept of neutrino oscillations for the simplified case of
two neutrino flavors (diagram modified from [51]). The pie charts on the bottom of the
diagram show a depiction of changing probabilities when detecting one neutrino flavor or
another as a function of time.

velocities, and as a result, their wavepackets can interfere with one another. This interfer-

ence between the mass states leads to changes in the mixture of the flavor states. In other

words, the probability of detecting one flavor of neutrino or another changes periodically

as a function of time. This phenomenon is called neutrino oscillations. Figure 1.3 shows a

diagram depicting this phenomenon for two neutrinos for simplicity.

1.3.1 Neutrino Oscillation Probability

Mass states are described by plane wave solutions such that

|νj⟩ = e−i(Ejt− p⃗j ·⃗x)|νj⟩t=0 (1.4)

where |νj⟩ is the time-dependent mass state. Ej, pj, and x are the energy, momentum, and

position of the mass state, respectively, and t is the time elapsed since the mass state was

first produced.
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From Equation 1.2, it follows that

|να⟩ = ∑
j

Uαje
−i(Ejt− p⃗j ·⃗x)|νj⟩t=0. (1.5)

Since neutrinos are ultrarelativistic and near-massless, we can approximate p ≫ m and

p ≃ E. This yields

Ej =
√

p2
j + m2

j ≈ E +
m2

j

2E
(1.6)

where mj is the mass of the given mass state and E is the energy of the neutrino at the

point of interaction. Dropping the phase factors which have no effect on the observables,

|να⟩ = ∑
j

Uαje
−i

(
m2

j t

2E

)
|νj⟩t=0. (1.7)

The probability that a neutrino with flavor α oscillates to flavor β after time t is

Pνα→νβ
= |⟨νβ(t)|να(0)⟩|2

=

∣∣∣∣∣∣∣
∑

j
U∗

βje
i

(
m2

j t

2E

)
⟨νj(0)|

(∑
i

Uαi|νi(0)⟩
)∣∣∣∣∣∣∣

2

=

∣∣∣∣∣∣∣∑j
U∗

βjUαje
i

(
m2

j L

2E

)∣∣∣∣∣∣∣
2

= ∑
i,j

U∗
αiUβiUαjU∗

βje
−i

(
(m2

i −m2
j )L

2E

)

= ∑
i,j

U∗
αiUβiUαjU∗

βje
−i

(
∆m2

ij L

2E

)

(1.8)

where we approximate t ≈ L, the neutrino flight length, using natural units (h̄ = c = 1).

After applying Euler’s formula, we arrive at the standard equation for neutrino oscillation

probability
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Pα→β = δαβ − 4 ∑
i>j

Re[U∗
αiUβiUαjU∗

βj] sin2
(∆m2

ijL

4Eν

)
+ 2 ∑

i>j
Im[U∗

αiUβiUαjU∗
βj] sin

(∆m2
ijL

2Eν

) (1.9)

where L is the neutrino flight length, Eν is the neutrino energy, and ∆m2
ij = m2

i − m2
j is the

mass splitting for mass states i and j. To better understand the significance and role of the

neutrino oscillation parameters, we can think about the two-neutrino case for simplicity.

For two neutrinos, the PMNS matrix reduces to

να

νβ

 =

 cos(θ) sin(θ)

− sin(θ) cos(θ)


νi

νj

 (1.10)

yielding an oscillation probability of

Pνα→νβ
= sin2(2θ) sin2

(∆m2
ijL

4Eν

)
(1.11)

where sin2(2θ) is the amplitude of the oscillation, ∆m2
ij is inversely proportional to the

wavelength of the oscillation, and L/Eν is the baseline. Generally, the baseline is the

independent variable that is controlled by experiments probing the different mixing angles,

mass splitting values, and the δCP phase. Adding back in the c and h̄ values to Equation 1.11,

we obtain

∆(mijc2)2L
4h̄cEν

≈ 1.27 ×
∆m2

ij[eV2]L[km]

Eν[GeV]
(1.12)

Pνα→νβ
= sin2(2θ) sin2

(
1.27

∆m2
ijL

Eν

)
(1.13)

with ∆m2
ij, L, and Eν having experimentally practical units of eV2, km, and GeV, respec-
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Figure 1.4: Example of possible Feynman diagrams of CC and NC interactions. CC
interactions are mediated by a charged W± boson while NC interactions are mediated by
a neutral Z0 boson.

tively.

Moreover, we can now take a step back and understand why observing the phe-

nomenon of neutrino oscillations meant that neutrinos must have non-zero mass. From

Equation 1.11, we can see that if neutrinos were massless, ∆m2
ij = 0, and, hence, the

oscillation probability would be zero. This means that neutrinos would never change

flavors, but instead, remain as the flavor they were in at the time of their production.

1.4 Neutrino Interactions

There are two main channels for neutrinos to interact with matter. These are called charged-

current (CC) and neutral-current (NC) interactions. CC interactions are mediated by a

charged W± boson and, as a result, produce a charged lepton of the corresponding neutrino

flavor in the final state of the interaction. Meanwhile, NC interactions are mediated by a

neutral Z0 boson and, thus, produce a neutrino of the same initial flavor. Figure 1.4 shows

possible Feynman diagrams depicting these two interactions.



10

Figure 1.5: Neutrino interaction model cross-section as a function of neutrino energy for
neutrinos (left) and anti-neutrinos (right) [24]. QE stands for Quasi-Elastic processes, RES
for resonant processes, and DIS for deep-inelastic scattering processes.

1.4.1 Interaction Models

Depending on the strength of the interaction, CC and NC processes can be classified into a

few different categories. The three most relevant of these for this work are Elastic/Quasi-

Elastic (QE), Resonant (RES), and Deep-Inelastic Scattering (DIS). Figure 1.5 shows the

cross-section as a function of neutrino energy for each of these interaction models for

neutrinos and anti-neutrinos. As can been seen in the plots, neutrino cross-sections are

roughly two times larger than anti-neutrino cross-sections. This feature plays an important

role for this work and will be further discussed in Chapter 4.

1.4.1.1 Elastic and Quasi-Elastic

Elastic and quasi-elastic interactions dominate at neutrino energies of about 100 MeV to 1

GeV where a neutrino scatters off of either a nucleus or an electron. In the former, one or

more nucleons get freed as a result of the scattering.

Quasi-elastic scattering occurs for CC processes that involve a neutrino interacting with

a nucleus. Elastic scattering occurs for all NC processes (nuclei and electron scattering) as

well as CC processes that involve an electron neutrino scattering off of an electron. Neutrino-

electron scattering is also referred to as coherent forward scattering, and, specifically, CC



11

Figure 1.6: Feynman diagram of one type of resonant neutrino scattering [22]. In this
example, a muon neutrino interacts with a proton through a W+ exchange to produce a
delta resonance and muon. The delta resonance then decays to a proton and a pion.

electron scattering gives rise to matter effects in the neutrino oscillation probabilities. This

will be further discussed in Section 1.5.

1.4.1.2 Resonant

Resonant interactions dominate for neutrino energies of about 1 GeV to 10 GeV. In resonant

scattering, a neutrino excites a nucleus to produce a delta resonance which then decays

into a nucleon and a pion. A charged lepton or neutrino is also produced in the final

state of the interaction. As such, these processes can occur in both CC or NC channels.

Figure 1.6 shows one possible Feynman diagram for resonant scattering.

1.4.1.3 Deep-Inelastic Scattering

Deep-inelastic scattering dominates at neutrino energies above 10 GeV. These processes

are energetic enough for the neutrino to penetrate all the way to the quark-level of the

nucleus. In this case, a hadronic shower is produced in the final state of the interaction

along with a charged lepton or a neutrino. Hadronic showers are composed of particles

that are made up of quarks such as protons, neutrons, pions, and kaons. Similarly to

resonant interactions, deep-inelastic scattering can occur in both CC and NC channels.
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Figure 1.7: Feyman diagram for CC coherent forward scattering [46]. This type of scattering
only occurs for electron neutrinos and, as such, breaks the flavor symmetry in the neutrino
Hamiltonian.

1.5 Matter Effects

As was briefly mentioned in Section 1.4, neutrinos can undergo coherent forward scattering

with electrons in matter. Although electron scattering can occur in both CC and NC

processes, only neutrinos with an electron flavor can interact through CC as shown in the

Feynman diagram in Figure 1.7. As such, this potential is enhanced for electron-flavored

neutrinos only, creating an asymmetry in the Hamiltonian that makes mass states more

"electron neutrino". The Hamiltonian is then modified such that

Hmatter = Hvacuum + U†
PMNS


Ve 0 0

0 0 0

0 0 0

UPMNS (1.14)

where Hmatter and Hvacuum are in the mass basis, Ve is the electron neutrino potential

contribution from CC coherent forward scattering in the flavor basis, and UPMNS is the

PMNS rotation matrix that converts the flavor basis to the mass basis. Ve is
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Ve(x⃗) = ±
√

2G f Ne(x⃗) (1.15)

where G f is the Fermi Constant and Ne(x⃗) is the electron density as a function of the

neutrino position. Ve is positive for neutrinos and negative for anti-neutrinos.

To understand the effects of this process on neutrino oscillation probabilities, we can

look at the two-flavor case for simplicity. For two flavors, Equation 1.14 reduces to

Hmatter =
1

2E

m2
1 0

0 m2
2

+

cos(θ) − sin(θ)

sin(θ) cos(θ)


Ve 0

0 0


 cos(θ) sin(θ)

− sin(θ) cos(θ)

 (1.16)

=

m2
1

2E + Ve cos2(θ) Ve sin(θ) cos(θ)

Ve sin(θ) cos(θ) m2
2

2E + Ve sin2(θ)

 (1.17)

where H is now non-diagonal. This indicates that the mass states of Hmatter are not the

usual neutrino mass states but rather effective mass states. Effective mass states lead to

an effective PMNS matrix, and hence, effective mixing angles and mass splittings. The

process of matter enhancing the neutrino oscillation parameters as a result of coherent

forward scattering is called the Mikheyev–Smirnov–Wolfenstein (MSW) effect, or "matter

effects".

Consequently, Equation 1.11, then, becomes

Pνα→νβ
(t) = sin2(2θe f f ) sin2

(∆m2
e f f L

4Eν

)
(1.18)

where

sin(2θe f f ) =
sin(2θ)

C

∆m2
e f f = C∆m2

(1.19)
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with

C =
√
(cos(2θ)− A)2 + sin2(2θ) (1.20)

and

A =
2VeE
∆m2 = ±

2
√

2G f NeE
∆m2 . (1.21)

We can see from Equation 1.18 that matter effects are maximal when sin(2θe f f ) = 1.

We can now solve for the neutrino energy in this case using Equation 1.19 where we obtain

E = ± ∆m2

2
√

2G f Ne
cos(2θ). (1.22)

As neutrino energy is only allowed to be a positive quantity, we see from Equation 1.22

that matter effects are resonant only for neutrinos (+) when ∆m2 is positive and for

anti-neutrinos (-) when ∆m2 is negative. This concept becomes extremely important for

this work and will be discussed further in Chapter 4.

1.6 Neutrino Oscillation Experiments

Throughout the years, experiments have been built to probe the different neutrino os-

cillation parameters. By adjusting the placement of their detector with respect to the

energy of the incident neutrino, Eν, experiments can control the oscillation baseline in

Equation 1.9 to measure the PMNS mixing angles, mass splittings, and phase. Figure 1.8

shows different neutrino oscillation experiments as well as where these lie with respect to

the oscillation baseline parameter space. The dashed and dotted-dashed diagonal lines

show the baselines sensitive to measuring ∆m2
21 and ∆m2

32, respectively.

Neutrino oscillation experiments are categorized according to the neutrino-production

process that they use since this determines the energy of the incident neutrino flux. The

four kinds of neutrino oscillation experiments are solar, reactor, accelerator, and atmospheric.
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Figure 1.8: Neutrino oscillation experiments with respect to the oscillation baseline param-
eter space [29]. The dashed and dotted-dashed diagonal lines show the baselines sensitive
to measuring ∆m2

21 and ∆m2
32, respectively.

Equation 1.23 shows the types of experiments that can probe each different PMNS mixing

angle as well as the phase.

atmospheric and reactor and accelerators solar and reactors
accelerators

UPMNS =


1 0 0

0 c23 s23

0 −s23 c23

 ×


c13 0 s13e−iδCP

0 1 0

−s13eiδCP 0 c13

 ×


c12 s12 0

−s12 c12 0

0 0 1


(1.23)

Solar neutrino experiments rely on a naturally-sourced electron neutrino production

from fusion and decay processes inside the Sun. On the contrary, reactor and accelerator
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neutrino experiments produce their own artificial neutrino flux. For nuclear reactors, beta

decay from fission creates an electron anti-neutrino flux while, for accelerator experiments,

protons are smashed unto a fixed target where they produce showers of hadrons that decay

to mostly muon neutrinos and anti-neutrinos. Atmospheric neutrino experiments rely on

a naturally-sourced neutrino flux coming from cosmic rays in the Earth’s atmosphere. This

type of neutrino production is the most important for this work and will be discussed in

further detail in what follows.

1.6.1 Atmospheric Neutrinos

Primary cosmic rays— highly energetic protons and nuclei from outside of the Solar System

—collide with the Earth’s atmosphere. This interaction produces showers of hadrons that

include pions and kaons. The pions and kaons then decay to an array of muons and

electrons as well as muon-flavored and electron-flavored neutrinos and anti-neutrinos

as shown in Figure 1.9. In this sketch, a cosmic ray proton collision with the Earth’s

atmosphere produces a shower of charged and neutral pions as well as a neutron particle.

The dominant source of atmospheric neutrino production is from charged pions which

decay in the following way

π+ →µ+ + νµ (1.24)

µ+ → e+ + νe + ν̄µ (1.25)

π− →µ− + ν̄µ (1.26)

µ− → e− + ν̄e + νµ (1.27)

yielding two muon-flavored neutrinos and one electron-flavored neutrino. Figure 1.10

shows the atmospheric neutrino flux as a function of both neutrino energy and cos(θzenith)

as it is expected at the South Pole Lab (SPL)— the relevant neutrino detector for this
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Figure 1.9: Primary cosmic ray hadronic shower produced from interactions with the
Earth’s atmosphere [7].

work. Note that there is a greater presence of neutrinos than anti-neutrinos in the flux.

Moreover, neutrino oscillation effects are not accounted for in these figures, so in reality, a

few tau-neutrinos do also get observed. Both of these concepts will be further discussed in

Chapter 4.

The cos(θzenith) quantity observed in Figure 1.10 is typically used by atmospheric

neutrino experiments to describe the directional dependence of neutrinos and is directly

proportional to the propagation length of the neutrino such that

L ≈ −DEarth cos(θzenith) (1.28)

for cos(θzenith) < 0. Figure 1.11 shows a visual representation of this quantity with respect

to the SPL and how it changes depending on where the neutrino is produced.
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Figure 1.10: Atmospheric neutrino flux expected at the South Pole Lab (SPL) for neutrinos
and anti-neutrinos [31]. Note that tau-flavored neutrinos are not shown since these are not
produced as part of secondary cosmic ray decays. However, a few tau-flavored neutrinos
are generated as a result of neutrino oscillations.

As can be seen in Figure 1.10, the atmospheric neutrino flux has a dependence on both

energy and cos(θzenith). Although the spectra of both primary and secondary cosmic rays

are the main contributing factors of this, other effects such as the density and temperature

of the atmosphere as well as the Earth’s magnetic field are also important. The Earth’s

magnetic field diverts primary cosmic rays in a preferential direction before they reach the

atmosphere. This is due to the positive charge of the primaries.

Figure 1.12 shows the seasonal variation of the flux as compared to the one-year average

as a function of neutrino energy for an all-direction average. This seasonal variation occurs

mainly from changes in the density and the temperature of the atmosphere. As a result of

using multiple years of data for this work, the effects of seasonal variation get averaged

out and are, therefore, negligible.

It is important to mention that "down-going" muons (as defined in Figure 1.11) pro-

duced from primary and secondary cosmic rays tend to constitute as background for
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Figure 1.11: Angular dependence of neutrinos according to where these were initially
produced. The cos(θzenith) quantity is directly proportional to the propagation length of
the neutrino, L.

atmospheric neutrino experiments as these can be confused with the outgoing muons from

CC interactions of muon-flavored neutrinos. Filtering methods are then used to reduce this

background significantly. More details about this filtering process are given in Chapter 3.

1.7 Neutrino Mass Ordering

As a result of neutrino oscillations, at least two of the three neutrino mass states must have

non-zero mass. Since neutrinos are so light and only interact through the weak interaction,

it has become very difficult for experiments throughout the years to measure their masses.



20

Figure 1.12: Seasonal variation of the flux as compared to the one-year average as a
function of neutrino energy for an all-direction average [31].

One way to achieve this is by indirectly measuring the neutrino mass through beta decay.

As mentioned in Section 1.1, beta decay occurs when a neutron transforms into a

proton and emits an electron and an electron anti-neutrino. There is an energy spectrum

observed for the emitted electron due to the anti-neutrino carrying the rest of the energy

difference. Thus, the higher the mass of the anti-neutrino, the lower the maximum possible

electron energy. In this way, the mass of the neutrino can be measured by looking at the

energy difference between the expected spectrum maximum if the neutrino were to have

zero mass and the observed spectrum maximum. Figure 1.13 shows this concept for the

KATRIN experiment [13], which uses Tritium beta decays. The latest results from KATRIN

set an upper boundary of the electron anti-neutrino mass at 0.8 eV with a confidence level

of 90% [10].

Another way to measure the neutrino masses is by measuring the mass splittings in

the neutrino oscillation probability. The mass splittings, however, represent differences of

mass squared and are, therefore, not able to make a statement on the absolute neutrino
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Figure 1.13: Concept of the KATRIN experiment for indirectly measuring the mass of
the electron anti-neutrino through the beta decay of Tritium atoms [13]. The mass can be
measured by looking at the energy difference between the expected spectrum maximum if
the neutrino were to have zero mass and the observed spectrum maximum.

masses. Nevertheless, the ordering of these plays a crucial role in determining the answer

to many of the open questions discussed in Subsection 1.2.1 such as neutrinoless double

beta decay as well as why the universe is made up of more matter than anti-matter (a

question tied to the value of the δCP phase). These questions rely greatly on the neutrino

mass ordering, and as such, experiment sensitivities do so as well.

The neutrino mass ordering (NMO) organizes the mass states by the square of their

masses. Figure 1.14 shows the only two possibilities still allowed of the mass ordering

for the three-neutrino paradigm where the normal ordering (NO) places the ν3 mass state

as the heaviest mass state while the inverted ordering (IO) places this one as the lightest

mass state. Moreover, this is also expressed by the sign of the ∆m2
31 mass splitting as this is

positive for NO and negative for IO as seen in the figure. The sign of ∆m2
21, however, was

confirmed to be positive through measurements of matter-enhanced neutrino oscillations

in the Sun [56].

The main source of neutrino production in the Sun is the proton-proton fusion chain, or

pp-chain [9], which produces electron neutrinos. Through Equation 1.22, we can see that

matter effects in the Sun would only be resonant for electron neutrinos if ∆m2
21 is positive.

As such, by measuring matter-enhanced neutrino oscillations from solar neutrinos, the
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Figure 1.14: Diagram showing the normal ordering (NO), where ν3 is the heaviest mass
state and ∆m2

31 is positive, and the inverted ordering (IO), where ν3 is the lightest mass
state and ∆m2

31 is negative [59]. Flavor mixing ratios are also shown for all three mass
states computed using the corresponding PMNS matrix elements.

sign of ∆m2
21 must be positive [56].

1.8 Status of Neutrino Oscillation Measurements

Global fits of the oscillation parameters consist in combining all of the measurements made

by the various neutrino oscillation experiments (shown in Figure 1.8). The latest global

fits are shown in Table 1.1 where it can be seen that |∆m2
21| is approximately two orders of

magnitude smaller than |∆m2
3ℓ|, and |∆m2

31| ≈ |∆m2
32|.

Measurements of the NMO have also been conducted by several experiments— mainly

the NuMI Off-axis νe Appearance (NOvA) experiment, the Tokai to Kamioka (T2K) exper-

iment, and the Super-Kamiokande experiment [25]. Individually, each of these observe

a mild preference for NO over IO. The latest results by Super-Kamiokande show a disfa-

voring of the IO hypothesis at a 92.3% confidence level (CL) [44]. At the same time, while

NOvA and T2K do also observe a preference for NO, there is an ongoing tension with

respect to the δCP phase [43] as can be seen in Figure 1.15. The preference for NO can be
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Best Fit Point ±1σ
Osc. Parameter NO IO
sin2(θ12) 0.303+0.012

−0.012 0.303+0.012
−0.011

sin2(θ23) 0.451+0.019
−0.016 0.569+0.016

−0.021

sin2(θ13) 0.02225+0.00056
−0.00059 0.02223+0.00058

−0.00058

δCP (◦) 232+36
−26 276+22

−29

∆m2
21 (x10−5 eV2) 7.41+0.21

−0.20 7.41+0.21
−0.20

∆m2
3ℓ (x10−3 eV2) +2.507+0.026

−0.027 −2.486+0.025
−0.028

Table 1.1: Global fits of the oscillation parameters including atmospheric data from the
Super-Kamiokande experiment (NuFIT 5.2 (2022) [15]) where the mass splitting, ∆m2

3ℓ, is
given for ∆m2

31 for NO and ∆m2
32 for IO.

understood by looking at the best fit points of both experiments as well as by the larger CL

contours as compared to those observed for IO (smaller contours show that more of the

parameter space is ruled out). The tension in δCP shows up in the almost non-overlapping

NO CL contours while, for IO, these are in agreement.

As a result of this tension, any measurement of the NMO that can be performed without

a dependence on the δCP phase becomes increasingly important. One such experiment

that has the ability to do this is the IceCube Neutrino Observatory. Further discussed in

Chapter 2, IceCube uses one cubic kilometer of ice at the geographical South Pole to detect

neutrinos. Due to its positioning, IceCube can record atmospheric neutrino events with

energies greater than 3 GeV, opening a new window in the low-energy regime. Thus, with

a δCP-independent baseline and its ability to see higher-energy neutrino events compared

to those recorded by the above-mentioned experiments, IceCube can now shed light on

the mystery of the neutrino mass ordering from a unique perspective. The work described

in this dissertation focuses specifically on the latest 9.28-year IceCube measurement of

the NMO performed with atmospheric neutrino oscillations. The goal of this work is to

deliver a more robust result of the mass ordering preference in comparison to the previous

3-year IceCube measurement [40] through an increase in the detector livetime by more
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Figure 1.15: Latest results by the NOvA and T2K experiments on the NMO in the (sin2(θ23),
δCP) parameter space [43]. A preference for NO is observed by looking at the best fit points
of both experiments as well as by the larger CL contours as compared to those observed for
IO. A tension, however, shows up for δCP in the almost non-overlapping NO CL contours
while, for IO, these are in agreement.

than 3 times, improved data analysis techniques, and improved filtering methods.
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Chapter 2

The IceCube Neutrino Observatory

2.1 The IceCube Array

The IceCube experiment consists of 5160 optical sensors embedded into 1 cubic kilometer

of Antarctic ice as shown in Figure 2.1. For the main IceCube array, the optical sensors,

called digital optical modules (DOMs), are located 1450 m below the surface. There are 78

IceCube strings that each hold 60 DOMs with 17 m of vertical spacing between each DOM.

Horizontally, the strings follow a hexagonal arrangement with 125 m spacing between

them [28]. Cables attached to the strings provide a mechanism to read out the DOM signal,

which reaches the surface and is processed in the IceCube Lab (ICL).

2.1.1 The DeepCore Subarray

The DeepCore subarray is comprised of 8 additional, more compact DeepCore strings as

well as the 7 surrounding IceCube strings as shown in Figure 2.2. The DeepCore strings

house a veto region and a main DeepCore region. The veto region is 100 m deep with 10

DOMs and is located at a depth of 1750 m. Moreover, the main DeepCore region contains

50 DOMs at a depth of 2100 m. DOMs in the main DeepCore region are placed 7 m apart

vertically and 41 m to 105 m apart horizontally [28]. The purpose of the DeepCore subarray
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Figure 2.1: Diagram of the IceCube experiment located at the geographical South Pole 1450
m below the surface [1].

is to detect low-energy neutrino events, which output a signal of less intensity. Low-energy

in this context denotes any event from incident neutrino energies ranging from 3 GeV

to 100 GeV. These events are of particular interest for the work presented here as these

fulfill the atmospheric baselines needed for neutrino oscillation measurements as shown

in Figure 1.8.

2.1.2 Digital Optical Modules

Neutrino events in IceCube are detected using digital optical modules (DOMs). Each DOM

is made up of one 10-inch photomultiplier tube (PMT) as well as various electronic boards

that extract the signal up to the surface as shown in Figure 2.3. The entire structure is

held inside of a 13-inch glass sphere strong enough to withstand the outer pressure when

embedded in the ice.

PMTs detect light through the photoelectric effect by emitting a photoelectron (PE)
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Figure 2.2: Diagram of the DeepCore subarray consisting of 8 additional, more compact
DeepCore strings as well as the 7 surrounding IceCube strings [39]. The purpose of the
DeepCore subarray is to detect low-energy neutrino events for atmospheric neutrino
detection for oscillation measurements.
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Figure 2.3: Diagram of a digital optical module (DOM) [28].

from the photocathode after a photon capture. The PE is then amplified to create a current

that is read out. In IceCube, PMTs are placed facing downward toward the bedrock for

the purpose of detecting more up-going neutrinos. The PMT is capable of detecting 300

nm to 600 nm photons and has a peak quantum efficiency of 25% for the IceCube DOMs.

The DeepCore DOMs, however, were designed to have a higher efficiency at 33%, which

helps to improve the detection of low-energy events. The readout of the electronics is then

converted to digitized waveforms where approximately 0.8 mV corresponds to 1 PE. The

threshold for reading and storing a waveform is 0.25 PE [28] [34].

2.2 Event Detection in the Ice

Neutrinos interact with the ice through the different interaction models and channels

described in Section 1.4. When these interactions occur, charged secondary particles

traveling at speeds close to the speed of light get produced leaving a trace of light that is

then detectable by the DOMs. This mechanism of light emission is called the Cherenkov
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effect.

2.2.1 Cherenkov Radiation

When a charged particle moves through a dielectric medium, the particle’s electromagnetic

field polarizes the atoms in its path, leading to photon emissions as the atoms return to

their ground state. If the charged particle’s speed is faster than the speed of light in the

medium, the emitted photons will interfere constructively to form a cone of light called

Cherenkov radiation [52]. Precisely, Cherenkov radiation occurs when the condition

v > cn (2.1)

is met where cn is the speed of light in the medium, v is the velocity of the charged particle,

and cn = c
n where c is the speed of light in vacuum and n is the index of refraction of the

medium. This phenomenon can be observed in Figure 2.4 where the Cherenkov angle

becomes

cos(θC) =
c

nv
. (2.2)

Generally, Cherenkov radiation comes as either ultraviolet or visible light although the

peak of the spectrum lies at wavelengths of about 420 nm [53], or purple and blue light.

In IceCube, the medium is the Antarctic ice with an index of refraction of n = 1.31 [63].

We can now calculate the energy threshold for a charged particle to emit Cherenkov

radiation using the equation for relativistic total energy such that

Ethreshold = mc2γ =
mc2√

1 − ( v
c )

2
=

mc2√
1 − ( 1

n )
2
=

mc2n√
n2 − 1

. (2.3)

From Equation 2.3, we can see that an electron propagating through ice would need to

have more than ∼ 791 keV of energy to generate Cherenkov radiation. Due to its greater
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Figure 2.4: The Cherenkov effect is shown on the right-hand plot for a charged particle
that moves at a speed greater than the speed of light in a dielectric medium. In this case,
a cone of emitted light is formed at an angle θC [65]. The left-hand plot shows the case
where the particle does not travel faster than the speed of light in the medium, and hence,
no constructive cone is formed.

mass, a muon would need to have more than ∼ 164 MeV of energy to produce the same

effect.

2.2.2 Event Signatures

At DeepCore neutrino energies, there are two types of event signatures observed in the

detector— track-like and cascade-like signatures. Figure 2.5 shows an example of each where

a track-like event leaves a long trace of Cherenkov radiation while a cascade-like event

shows a near-isotropic morphology.

2.2.2.1 Track-like Events

Track-like events arise from muon neutrino and anti-neutrino CC interactions with the ice.

In these, a final state muon particle is produced which loses energy slowly as it moves

across the detector creating a long "track" of Cherenkov radiation. This occurs because the

muon is a minimum ionizing particle (MIP) at DeepCore energies, meaning that it loses most
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Figure 2.5: Illustration of DeepCore event topologies consisting of cascade-like (left) and
track-like (right) event signatures. The diagrams show a cross-sectional view of the
detector’s z and x (or y) axes as well as the evolution of the events as a function of the
trigger time [66].

of its energy through minimum ionization with the atoms in its path. Figure 2.6 shows the

muon energy loss in ice as a function of the muon energy where it is seen that, at energies

less than 100 GeV, the muon loss is almost constant and dominated by ionization. The

muon energy is of the same order of magnitude as the incident neutrino energy; as a result,

this process occurs for incident muon neutrinos with energies between 3 and 100 GeV

(DeepCore energies).

Along with the final state muon, muon neutrino and anti-neutrino CC interactions also

produce charged and neutral hadrons. For neutrino energies from 1 to 10 GeV, a proton

and a pion will be produced from resonant scattering (Subsection 1.4.1.2). Otherwise,

at neutrino energies above 10 GeV, a full hadronic shower, or cascade, of charged and

neutral particles such as protons, neutrons, pions, and kaons will be produced from deep-

inelastic scattering (Subsection 1.4.1.3). In both cases, the charged hadrons do not travel

far distances like the muon, and thus, together form a near-spherical cluster of Cherenkov



32

Figure 2.6: Muon energy loss in ice as a function of the muon energy [55]. At energies less
than 100 GeV, the muon loss is almost constant and dominated by ionization. This leads to
a slow loss of energy in ice and long Cherenkov tracks.

light.

Track-like signatures can also be produced by atmospheric muon background from

above the horizon that reaches the detector. A veto region is assigned as a way to filter out

some of this background. Figure 2.7 shows how the veto region is used for this purpose.

Down-going atmospheric muons will enter the detector and leave a trace of Cherenkov

light in the veto region before they reach DeepCore. In the case of a muon neutrino, the

CC interaction will originate inside DeepCore.

2.2.2.2 Cascade-like Events

Cascade-like events arise from electron and tau neutrino and anti-neutrino CC interactions

as well as all neutrino and anti-neutrino NC interactions (e, µ, τ). For each of these inter-

actions, a hadronic cascade is produced as part of the final state. These hadrons together

appear as a near-spherical cluster of Cherenkov light. For NC interactions, this is the only

part of the cascade signature since the only other outgoing particle is a neutrino, which

does not produce any Cherenkov light.
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Figure 2.7: Illustration of the concept of the veto region, which helps to filter out the
atmospheric muon background entering the detector [1]. Atmospheric muons from above
the horizon will enter the detector and leave a trace of Cherenkov light in the veto region.
For DeepCore, the veto region consists of the IceCube strings surrounding the DeepCore
fiducial volume.

In the case of electron neutrino CC interactions, an electron is produced in the final

state which generates an electromagnetic cascade in the detector. This occurs due to the

process of bremsstrahlung where electrons deccelerate rapidly from collisions with nuclei in

the ice [65]. This decceleration causes the electrons to emit radiation so high in energy that

the photons pair-produce into an electron and a positron and the cycle begins again. This

process ends when the electrons and positrons reach a critical energy and start to ionize,

losing the remaining energy.

For tau neutrino CC interactions, a tau particle is produced in the final state which

decays quickly due to its heavy mass. This tau decay can occur in one of three ways [32]:

• τ → ντ + X (occurs about 65% of the time)

• τ → ντ + νe + e (occurs about 18% of the time)

• τ → ντ + νµ + µ (occurs about 17% of the time)
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where X is a hadronic cascade. The first type of tau decay listed will produce a hadronic

cascade while the second will produce an electromagnetic cascade from the outgoing

electron. For DeepCore energies, these will occur very rapidly after the original hadronic

cascade is produced, and as a result, only one cascade-like signature will be observed. For

the third type of tau decay, an outgoing muon will produce a track-like signature.

2.3 Optical Ice Properties

Using Antarctic glacial ice as a medium for detecting neutrino interactions brings about

additional challenges related to accurately modeling the detailed structure of the ice. Due

to this detailed structure, photons can get scattered or absorbed, leading to uncertainties

in the number of photons that get detected by the DOMs if not properly modeled. This, in

turn, greatly affects the reconstruction of events in IceCube.

2.3.1 Bulk Ice Properties

The bulk ice is considered to be Antarctic ice that has piled up throughout the years. As a

result of this pile-up, the structure consists of compressed layers of ice with embedded

impurities, called dust, coming from atmospheric conditions at the time of the layer

formation. Figure 2.8 shows the ice model used for this work where the various ice layers

can be observed through the fluctuating photon absorption and scattering coefficients. The

absorption and scattering coefficients are scaling factors that increase or decrease each

quantity. An increase or decrease in scattering and/or absorption affects the number of

photons detected by the DOMs.

As can be seen in Figure 2.8, scattering and absorption are higher for the region of

ice located above IceCube. This occurs due to air bubbles having formed in the ice. At

lower depths, however, air bubbles have been compressed due to the pressure exerted

from the structure above; thus, the absorption and scattering in this region is purely due to
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Figure 2.8: The birefringence ice model [35]. Various ice layers can be observed through
the fluctuating photon absorption and scattering coefficients. The DeepCore subarray sits
at a depth of extremely high ice purity found below the Dust Layer.

impurities found in the ice. Specifically, the DeepCore subarray sits at a depth of extremely

high ice purity found below the Dust Layer, a region of increased scattering and absorption.

The ice model is also affected by the structure of the bedrock below the ice as well as by

glacial drifts.

Furthermore, an optical property called birefringence is also accounted for in Figure 2.8.

Birefringence occurs when an incident photon refracts in two different directions due to

the various polarizations of the material.

2.3.2 Hole Ice Properties

To insert the DOMs into the ice during the deployment period, cylindrical columns had to

be drilled and melted. The refreezing process of the ice once the DOMs had been lowered

caused a change in the optical structure— mainly, this hole ice now had a bubble column

in the middle. Within the bubble column, the scattering length is smaller, reducing the

probability that a photon will hit a DOM as compared to the case of no bubble column.
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Figure 2.9: The optical efficiency of the DOM as a function of the photon incident angle,
cos(η) [41]. Towards cos(η) = 1, the optical efficiency decreases due to the presence of the
bubble column whereas, for no bubble column, the curve would continue to increase.

This is accounted for in the ice simulation by adjusting the optical efficiency of the DOM as

a function of the photon incident angle, cos(η), as shown in Figure 2.9. The DOM efficiency

is the probability of detection of an incoming photon by the PMT in the DOM. Moreover,

cos(η) = 1 for a photon hitting the PMT head-on directly from below while cos(η) = −1

for a photon coming directly from above the PMT. The figure shows variations in two

parameters, p0 and p1, which together account for variations in all of the different hole

ice models that have been produced through either calibration measurements, oscillation

measurements, or water tank measurements [45]. As can be observed, towards cos(η) = 1,

the optical efficiency decreases due to the presence of the bubble column whereas, for no

bubble column, the curve would continue to increase.
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Chapter 3

The Data Sample

3.1 Monte Carlo (MC) Simulation

In order to perform any atmospheric neutrino oscillation analysis with DeepCore, a Monte

Carlo (MC) simulation of the expected data is generated for the purpose of measuring

a particular effect in the observed data. Both the MC simulation and the observed data

undergo eight processing levels as a way to decrease the atmospheric muon and noise

background from the sample while maintaining as much of the neutrino signal as possible.

A neural network is trained using a separate MC sample generated solely for the purpose

of event reconstruction and classification training. The optimized network model is then

applied to the cleaned MC and data samples to reconstruct the energy and zenith angle of

the events as well as classify the different event signatures in the sample. Figure 3.1 shows

a diagram depicting this procedure.

There are two main types of events that are simulated in the MC— neutrino and

atmospheric muon events. These events are modeled using the nominal expectation for

different systematic uncertainties. Separate MC sets, ones for which off-nominal detector

uncertainties are used, are also generated. The purpose for these extra MC sets will be

further discussed in Section 4.3.
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Figure 3.1: The FLERCNN Sample Processing Chain. A Monte Carlo (MC) simulation as
well as the observed data are both processed by 6 different filtering levels followed by
reconstruction of the event energy and zenith angle and particle identification (PID) of
event signatures.

3.1.1 Neutrino Events

Since neutrinos rarely interact with the ice due to their extremely light mass, it becomes

too inefficient and computationally expensive to simulate the total number of neutrinos

expected to traverse DeepCore for a given livetime. Instead, all of the neutrino events

modeled are required to interact inside the DeepCore cylinder volume. In turn, this

produces a larger number of raw events compared to what is otherwise expected from

atmospheric neutrino flux predictions. To account for this, a weight is calculated for each
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event. Multiplying the weight of an event by the flux and the total livetime yields the

fraction of events expected from the contribution of this one particular event.

Neutrino interactions in the ice are simulated with the GENIE framework [18]. For

each event, GENIE computes the cross-section of the neutrino-nucleon interaction and

simulates the propagation of the final state particles. More than 70 years of combined

event livetime are simulated for neutrino energies from 1 GeV to 10 TeV for each neutrino

flavor. Of the GENIE events, 70% are neutrino events and 30% are anti-neutrino events.

3.1.2 Atmospheric Muon Background

For the atmospheric muons, a slightly different approach is taken. Due to the large

number of atmospheric muons that deliberately get discarded as the sample undergoes the

filtering levels, two separate simulations are generated for the purpose of fine-tuning the

filters. In the first simulation, muons are allowed to interact anywhere within the entire

IceCube array in an effort to fine-tune up to Level 4 of the processing chain. In the second

simulation, muons are restricted to interact in the DeepCore subarray only. This allows

more muons to survive up to higher filtering levels, and as a result, Levels 5 and above are

able to be tuned.

Similarly to the neutrino event simulation, muons are assigned a weight that is multi-

plied by the atmospheric muon flux and the total livetime to obtain the number of expected

muon events. Muons are propagated using the MuonGun internal software [67]. More

than 6 years of combined event livetime are simulated for muon energies from 150 GeV to

5 TeV.

3.1.3 Photon Propagation and Detector Response

Neutrino interaction primaries and secondaries both produce Cherenkov photons in the

ice. To accurately simulate the trajectory of these photons, a few different simulation

frameworks are used. For photons originating from muon propagation, the PROPOSAL
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software [26] is used. Furthermore, for photons produced from all other kinds of charged

particle propagation, the GEANT4 software [37] is used. To simulate the absorption and

scattering effects in the ice discussed in Section 2.3, the CLSIM package [19] is used.

For photons that hit a DOM, the detector response is simulated. The efficiency and

angular acceptance of the DOM are used to determine the probability that the photon will

produce a PE. The amount of current generated by the PMT as a result of the PE is also

simulated. Finally, the signal is converted into digitized waveforms and passed through

the processing filters in the same manner as for the real data.

3.1.3.1 Noise Hits

PEs from radioactive decays in the DOM and PMT glass as well as thermally-induced PMT

dark noise produce noise hits in the detector, where dark noise is defined as randomly

emitted PEs from the photocathode in the PMT. Noise hits can occur at any given moment,

and, therefore, need to be accounted for in the neutrino and muon simulations to further

improve the accuracy of an event. Moreover, pure noise events can also occur, faking a

signal in the detector. These are simulated using the Vuvuzela software [54] for 2 months

of combined event livetime.

3.2 Data Processing

To reduce the atmospheric muon and noise background and retain as much of the neutrino

signal as possible, both the MC simulation and the observed data are processed through

various filtering levels. The different techniques applied at each level depend on the

complexity of the remaining background events in the sample as, the higher the level, the

more difficult it is to tell apart signal from background. Figure 3.2 shows the event rates

from Level 2 to the final level cuts.
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Figure 3.2: Event rates for the FLERCNN sample from Level 2 to the final level cuts.

3.2.1 Event Trigger (Level 1)

It was briefly discussed in Subsection 2.1.2 that the readout threshold for a given DOM hit

was 0.25 PE. More precisely for DeepCore, an event is recorded when at least three nearby

DOMs each detect a waveform greater than or equal to 0.25 PE within a time-window of 1

µs, also known as a Hard Local Coincidence (HLC). The three DOM hits must occur in a

2.5 µs time-window, a condition enforced by the SMT3 trigger. Single hits are recorded as

Soft Local Coincidences (SLC) since many of these qualify as random noise.

3.2.2 Onsite Filter (Level 2)

After an event is recorded, an initial filter is applied onsite at the South Pole, where the

type of filter varies depending on the physics being studied. For DeepCore studies, the

filter used, referred to as the DeepCore Filter, is designed for rejecting atmospheric muons

that hit the veto region described in Subsection 2.2.2. The filter works by calculating the

center of gravity (COG) for the hits located inside the DeepCore fiducial volume. Based
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on the reconstructed velocity that it would take for the hits in the veto region to reach

the COG, the filter determines whether this velocity matches that which is expected of

atmospheric muons, and if so, rejects the event.

3.2.3 Data-MC Agreement Cuts (Level 3)

At Level 3, several fast algorithms are applied to the sample, aimed at reducing atmospheric

muon and noise background through data-MC agreement cuts for different event variables.

The goal at this stage is to place a cut at the point of disagreement between the data and

MC to remove any unsimulated background events that reach the detector. These include

coincident events involving both a neutrino and a muon as well as muon bundles.

Coincidences occur when a neutrino interaction in DeepCore is directly followed by

an atmospheric muon event. These are able to pass both the trigger level and DeepCore

filter; however, hits for these types of events are generated for a longer period of time than

would otherwise be expected from one single event. Therefore, a cut is placed on the total

time length as shown in Figure 3.3, where the cut is located at 5µs and any events with a

greater time length are discarded.

Cuts targeting the removal of atmospheric muons and muon bundles focus mainly on

keeping those events that are contained within the DeepCore fiducial volume. The cuts

include removing events with 10 or more hits in the veto region as well as those whose

first HLC trigger lies above a depth of 2068 m below the surface.

Noise events, although simulated, are greatly reduced through data-MC cuts by 99%.

First, a cleaning approach is performed to get rid of any obvious noise hits in a given event.

If the cleaned event contains fewer than 6 hits, it is discarded. Other cuts assessing the

direction that the event traveled as well as the time difference between hits also contribute

to decreasing the noise background. After Level 3, the neutrino to noise to muon ratio of

the sample is 1:7:100, respectively [41].
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Figure 3.3: Data - MC full time length cut at Level 3 [41]. The cut is placed at 5µs and any
event with a greater time length is discarded.

3.2.4 Background Rejection BDTs (Level 4)

At Level 4, machine learning algorithms are used to further identify background events.

The sample is fed to two separate Boosted Decision Trees (BDTs)— one for rejecting

atmospheric muons and one for rejecting noise —which help to spot the most difficult

background events. The package used for these is the LightGBM package [21].

For noise rejection, the BDT is trained on MC noise and neutrino events using Level 3

and 4 noise-related variables. Some of these include the number of cleaned DOM hits as

well as the amount of spread of the hits about the first HLC trigger. For atmospheric muon

rejection, the BDT is trained on real data muon events and MC neutrino events. Real data

is used at this stage due to its high content of atmospheric muon events comprising 99% of

the sample. Using real muon events increases the robustness of the training sample. Level

3 and 4 muon-related variables are then used to train the BDT.

The output for each event consists in a value between 0 and 1, where, the closer the

value is to 0, the more an event is classified as background-like, while a value closer to
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Figure 3.4: Level 4 background-signal BDT classification [41]. The left plot shows the event
distribution as a function of the noise BDT score while the right plot shows the same events
as a function of the atmospheric muon BDT score. The score ranges from 0 to 1, where a
value closer to 0 is considered more background-like and closer to 1 is considered more
signal-like.

1 corresponds to being more signal-like. Figure 3.4 shows the classification of events by

both the noise and muon BDTs. A cut is placed at 0.85 for the noise classifier and at 0.9 for

the muon classifier, keeping all events above this score. After Level 4 processing, there are

very few noise events left in the sample; it is mostly comprised of a 2:1 ratio of muons to

neutrinos, respectively [41].

3.2.5 Corridor and Containment Muon Cuts (Level 5)

At this stage of processing, most of the atmospheric muon events that are left in the sample

are not as clearly defined as those that were previously cut. As such, two more cuts

targeting these hard-to-find muons are applied— a corridor cut and a containment cut.

Corridors are regions of low instrumentation within the main IceCube array due to

the hexagonal arrangement of the DOMs. These create diagonal paths where atmospheric

muons can travel through avoiding detection until they reach DeepCore. The corridor cut

identifies any hits located near these corridors and checks for extra hits nearby. If more



45

than two DOMs are hit, the event is rejected.

Containment cuts reject any event whose interaction vertex does not lie within the

DeepCore fiducial volume. As a result, radial and vertical containment cuts are applied

to the vertex of the event. The vertex is approximated using the string with the greatest

charge output, the location of the first HLC hit, and Level 3 vertex information.

3.2.6 Pre-Reconstruction Checks (Level 6)

At Level 6, several fast algorithms are run on the sample to determine which variables are

of most importance for post-reconstruction cuts performed for the improvement of the

data-MC agreement. Other variables determined at this stage include those that further

improve corridor and containment event rejection. The specific cuts will be discussed in

more detail in Section 3.4.

3.3 Reconstruction

After processing the event sample through Level 6 for the purpose of reducing the atmo-

spheric muon and noise background rates, a rigorous reconstruction method is applied.

Reconstruction refers to utilizing all of the final state information of an event to predict

the incident neutrino properties. Since neutrino oscillation analyses are performed by

measuring the oscillation pattern as a function of the baseline, as discussed in Section 1.6,

the two most important quantities to reconstruct are the incident neutrino energy and

zenith angle. To achieve this, a deep-learning based reconstruction involving convolutional

neural networks (CNNs) is used. The same approach is taken for reconstructing another

useful quantity— the neutrino interaction vertex— with the goal of further improving the

DeepCore fiducial volume containment cut. Furthermore, two classifier networks are run

in an effort to categorize each event according to their Cherenkov light signature in the

detector (discussed in Subsection 2.2.2) as well as to identify any remaining atmospheric



46

Figure 3.5: Architecture of the FLERCNN model mainly consisting of a series of 2-
dimensional CNNs, batch normalization layers, max-pooling layers, and dropout layers.

muon background events. The higher the accuracy of the reconstruction and classification,

the higher the visibility of the oscillation pattern.

3.3.1 Fast Low-Energy Reconstruction using CNNs (FLERCNN)

The Fast Low-Energy Reconstruction using Convolutional Neural Networks (FLERCNN)

is comprised of two separate networks that are concatenated at the very end of the model.

One network is optimized for the less densely-instrumented IceCube strings while the other

is optimized for the more densely-instrumented DeepCore strings. Each network contains

eight 2-dimensional CNNs along with a series of helper layers that assist in preventing

overtraining, providing model stability, and improving image pattern recognition. The

FLERCNN architecture can be seen in Figure 3.5.
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3.3.1.1 Convolutional Neural Networks (CNNs)

A CNN is a type of neural network that utilizes a kernel filter to accentuate a specific

pattern within an image. Much like its name, a CNN convolves the kernel function with

the corresponding image pixels in order to intensify, suppress, or preserve the pixel value

depending on the pattern that it wants to highlight. In general, kernels can be used to blur,

sharpen, darken, or brighten an image, for example. The job of CNNs is to optimize the

kernel function weights to improve the performance of the model.

The performance is calculated using a loss function, which is chosen such that a penalty

is added whenever the network performs poorly. The lower the value of the loss function,

the better the performance of the network. A loss is calculated separately for each event in

the sample and averaged for all events. This way, there is one loss value that quantifies

the overall performance of the network for a given choice of weights. The network, then,

backpropagates, using an optimizer algorithm, to adjust the model weights and recalculate

the loss function with the goal of minimizing the loss. Every time that the network

backpropagates is called an epoch.

An activation function is typically used after a CNN layer to scale the output of the

CNN into a more useful range. For example, the Rectified Linear Unit (ReLU) activation

function is commonly used as it deactivates any input value lower than zero allowing for

deeper network training. The last layer of the network also includes an activation function

with the purpose of scaling the final output accordingly. For example, for the classification

networks in FLERCNN, the Sigmoid function is used as these are binary classifications

and this function restricts the output to lie between 0 and 1.

To prevent overtraining the network, two approaches are followed— dropout layers

and a validation sample. A dropout layer "drops", or deactivates, a random portion of

the weights and/or inputs to reduce the number of free parameters for a given epoch that

the network has to optimize. This action stops any possible co-dependence between the

layers that could lead to overtraining. For example, layers might attempt to correct the
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Figure 3.6: The FLERCNN inputs are 3-dimensional images of each sample event consisting
in a string dimension, a DOM number dimension, and a charge-related variable dimension.

flaws from previous layers, in turn, forming a model that cannot be generalized. For each

epoch, the load dropped is varied, so that, in the end, the network is still able to converge

on optimal values for all weights and/or inputs.

A validation sample is used to assess the loss of the model after each epoch without bias.

The training should be stopped at the point before the validation loss becomes greater than

the training loss, as a higher validation loss indicates that the model is not generalizing

well.

3.3.1.2 FLERCNN Training

To train the FLERCNN model, extra MC samples with uniform energy and zenith distri-

butions were generated and processed through Level 6. A fraction of each MC sample is

then used for training purposes, while the rest is divided into validation and test. After

the final model is chosen based on its performance on the test sample, the real data is fed

to the network to prevent any form of bias.
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Figure 3.7: The DeepCore and surrounding IceCube strings used in the FLERCNN input
images [57].

The input images consist of Level 6 cleaned events, each arranged into 3-dimensions

as shown in Figure 3.6. Each image is comprised of a string dimension, a DOM number

dimension, and a charge-related variable dimension. The DeepCore and surrounding

IceCube strings used for each image can be seen in Figure 3.7.

The 5 charge-related variables include the total charge of the event, the time of the first

hit, the time of the last hit, the mean charge of the hits, and the charge standard deviation

of the hits. This particular dimension is perceived as a channels dimension by the CNN

in a similar way to how a conventional image with three color channels (RGB) would be

perceived. The CNN optimizes the kernel weights for each different channel and yields

one combined output. An example of this is found in Figure 3.8. As a result, the CNN is

able to handle separate channel features simultaneously and even search for cross-channel

patterns.

The loss function used in FLERCNN varies depending on the purpose of the network.

For example, the energy neural network uses the mean absolute percentage error loss

defined as
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Figure 3.8: An example of how a CNN treats convolutions of separate channel inputs [17].

Loss =
100%

n

n

∑
i=1

∣∣∣∣ ti − ri

ti

∣∣∣∣ (3.1)

while the interaction vertex and zenith networks use the mean squared error loss,

Loss =
1
n

n

∑
i=1

(ti − ri)
2, (3.2)

where n is the number of events, ti is the true value, and ri is the predicted value. This

choice allows the energy network to equally prioritize reconstructing both high-energy and

low-energy events in the sample, as opposed to prioritizing the high-energy events only.

The mean absolute percentage error accounts for the relative difference between the true

and predicted values, yielding a larger, more accurate loss at lower energies when ti − ri

is equal. The network, then, works to decrease this loss as part of the backpropagation

process. Furthermore, the classification networks use the binary cross-entropy loss function,

commonly used for binary classification problems as it monotonically decreases the loss as

the predicted value moves closer to the 0 or 1 truth input. Figure 3.9 shows the training

and validation losses for the energy and zenith CNNs as a function of the epoch number.

As can be seen in the figure, the learning rate, or the step size of the backpropagation,

decreases as the loss decreases. This was specifically chosen to fine-tune the location of the

global minimum.
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Figure 3.9: Training and validation loss for the energy network (left) and the zenith network
(right) as well as the chosen model [57]. The learning rate decreases as the loss decreases
in order to fine-tune the location of the global minimum.

3.3.2 FLERCNN Performance

3.3.2.1 Energy and Zenith Reconstruction

Figure 3.10 shows the FLERCNN performance for the neutrino energy and zenith as a func-

tion of the true neutrino energy. The zenith is plotted as a difference in the reconstructed

and true cos(θzenith) to match Equation 1.28. Moreover, neutrino energy is plotted as the

fractional energy difference between the reconstructed and true values. From the figure,

it can be observed that, for both the energy and zenith, the reconstruction performance

deteriorates at the lowest energies. This occurs because low-energy events produce a

short-ranged Cherenkov photon signature in the detector. The large DOM spacing relative

to the short range of these low-energy events causes very little signal to be detected, which

in turn, leads to difficulties reconstructing these low-resolution events.

3.3.2.2 Particle Identification (PID)

Particle identification (PID) is defined as the classification of each event in the sample into

one of the various signatures observed in the detector. For DeepCore, the two possible

signatures include tracks and cascades as discussed in Subsection 2.2.2. Figure 3.11 shows
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Figure 3.10: The FLERCNN reconstruction performance on the neutrino energy (bottom)
and zenith angle (top) as a function the true neutrino energy [57]. The performance
deteriorates at low energies due to the poor resolution of the corresponding events.

the FLERCNN classification performance on the PID, where an output score closer to 1

refers to an event being classified as more track-like while a score closer to 0 denotes more

cascade-like. A peak is seen in the figure at a score of 1 for true tracks as is desirable;

however, no peak is seen at a score of 0 for true cascades. This feature is understood by

thinking about the geometry of track and cascade signatures. A cascade looks the same as

a track with track length equal to zero. Therefore, the classifier has trouble recognizing

between a pure cascade event and a very short track event. This leads to greater uncertainty

whenever the network classifies an event as more cascade-like.

3.3.2.3 Vertex Reconstruction and Muon Classification

The neutrino interaction vertex is reconstructed as two separate variables— the z position

of the vertex and the radial position with respect to the center-most string in IceCube.
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Figure 3.11: The performance of the FLERCNN PID classifier shows some discrimination
power between tracks and cascades when the event is a clearly defined track [57].

Figure 3.12a shows a confusion matrix of the FLERCNN performance when placing a cut

at a radius of 200 m from the center-most IceCube string. The matrix shows the percentage

of events that were correctly reconstructed inside and outside of the cut in comparison to

the percentage that were incorrectly reconstructed. This specific cut of the radius at 200 m

will be further discussed in Section 3.4.

The atmospheric muon background classification performance can be seen in Fig-

ure 3.12b, where an output score closer to 1 indicates that an event is classified as more

neutrino-like while a score closer to 0 denotes more muon-like. Due to the degree of

flatness of the muon distribution seen in the plot, the FLERCNN muon classifier output is

fed to a BDT as part of the final level cuts.

3.4 Final Level Cuts

A series of cuts are made at post-reconstruction level with the goal of discarding events

that are most difficult to reconstruct as well as further improving background rejection.

A default cut is also performed on the reconstructed neutrino energy and zenith ranges.
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(a) (b)

Figure 3.12: The FLERCNN performance on (a) the reconstruction of the radial component
of the interaction vertex for a cut at r = 200 m, and (b) signal/background classification
between neutrinos and atmospheric muons [57].

However, this cut is adjusted in Chapter 4 to better suit the neutrino mass ordering

analysis.

3.4.1 Low Resolution and Background Rejection Cuts

Events with extremely low charge are the most difficult to reconstruct due to the large

amount of undetected Cherenkov light as discussed in Subsection 3.3.2. To help mediate

this, a cut is placed on the minimum number of DOM hits required for an event to be

accepted. A cut is also placed on the reconstructed interaction vertex for the same purpose

as well as for improved background rejection, assessing that the vertex is located inside

the DeepCore fiducial volume. This cut is broken down into two quantities, a cut on the

vertex z position as well as a cut on the radial position with respect to the center-most

IceCube string. First alluded to in Subsection 3.3.2, a radial cut at 200 m is applied.

Additional efforts for background rejection include tighter veto cuts, a muon BDT, and

a cut on the number of direct hits. These are mostly quantified using data-MC agreement.

The veto cuts remove any events with hits in the top 15 IceCube DOM layers as well as

events with 8 or more hits in the outer-most IceCube strings.
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Figure 3.13: Performance of the post-reconstruction muon BDT at the final level of process-
ing [57]. Clear discrimination power between neutrinos and atmospheric muons can be
seen.

The muon BDT takes in the FLERCNN muon classification score from Subsection 3.3.2

as well as other inputs such as the FLERCNN reconstructed vertex and the Level 4 muon

classifier score with the goal of separating muons from neutrinos. The BDT performance

can be seen in Figure 3.13, where clear signal/background discrimination is observed.

To remove any remaining noise hits, a cut is made on the number of direct hits in an

event requiring at least 3 hits. "Direct hits" originate from photons that did not scatter

in the ice. This feature is calculated using the SANTA [41] framework by determining

whether the detected photon properties match those of a Cherenkov cone. Table 3.1 shows

the values chosen for each of the final level cuts described.
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Final Level Cuts
Type Value
DOM hits ≥ 7
Reco radius < 200 m
Reco z -495 m < z < -225 m
Direct hits > 2.5
IceCube top 15 < 0.5
IceCube outer-most < 7.5
Muon BDT ≥ 0.8

Table 3.1: All post-reconstruction cuts applied at the final level of processing with the goal
of removing extremely low-resolution events as well as improving background rejection.
The cut for the reconstructed vertex z position is shown with respect to the IceCube
coordinate system, which places the origin at 1948.07 m below the surface.

3.4.2 Default Energy and Zenith Cuts

For completeness, a default cut is made on the reconstructed neutrino energy and zenith

ranges preserving the essential signal region of oscillation-related analyses. Events range

from energies of [5, 100] GeV and cos(θzenith) values of [-1, 0.3]. The cut on the zenith angle

provides further atmospheric muon rejection and prevents self-veto effects. Self-veto effects

arise when coicident muon and neutrino events originating from the same air shower get

discarded during the processing of real data, while, during the MC processing, neutrinos

from these type of events survive due to coincidences not being simulated.

These cuts are further evaluated in Chapter 4 and adjusted to better fit the signal region

for the work presented in this dissertation— the neutrino mass ordering analysis.
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Chapter 4

Analysis of the Neutrino Mass Ordering

4.1 Premise of the Analysis

As stated at the end of Section 1.5, matter effects resonate for neutrinos only if the normal

ordering (NO) is true. Conversely, if the inverted ordering (IO) is true, matter effects

resonate for anti-neutrinos. It follows, then, that, to measure the neutrino mass ordering

(NMO), one would simply need to match the matter-enhanced oscillation pattern to its

correct source. This is more easily seen in Figure 4.1, where the oscillation probability is

plotted for muon neutrinos and anti-neutrinos as a function of the incident neutrino energy

and cos(θzenith). For atmospheric neutrino/anti-neutrino events in DeepCore, matter

effects take place at energies of about 2.5 GeV to 15 GeV. The magnitude of these effects

is highly dependent on the oscillation parameter θ23, and as a result, so is the analysis

sensitivity. This concept will be further explored in Chapter 6.

From the figure, it can be inferred that a crucial part of the analysis consists in separating

neutrino from anti-neutrino events. DeepCore, however, does not have this capability

as both types of events create the same track and cascade Cherenkov signatures in the

detector (described in Subsection 2.2.2). Thus, this analysis relies on the differences in

the flux and cross-section of neutrinos and anti-neutrinos. Mainly, the flux and cross-
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Figure 4.1: Matter-enhanced muon neutrino and anti-neutrino oscillation probabilities
for true NO (top) and true IO (bottom) as functions of the incident neutrino energy and
cos(θzenith) [59].

section are both higher for neutrinos in the region of interest as compared to anti-neutrinos

(Figs. 1.5 and 1.10). The target signal, then, for the combined neutrino and anti-neutrino

sample, although suppressed, survives as a difference in the magnitude of the matter

effects, yielding stronger effects for true NO and weaker effects for true IO.
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4.2 9.28-Year Analysis Sample

Event distributions are assembled as functions of the reconstructed Eν, cos(θzenith), and

PID for the MC simulation sample and the observed data sample described in Chapter 3.

The MC distribution is then used to measure the oscillation features found in the observed

data distribution through a fit of the oscillation and systematic parameters of the analysis.

Before fitting the observed data, however, a MC only analysis is developed to check the

validity of the various analysis choices as well as to quantify the projected significance

of the mass ordering measurement. This approach is taken so as to prevent any injection

of bias on the measured result from a post-unblinding change to the analysis. A fit to the

observed data is performed starting from Chapter 7.

4.2.1 Binning

The binning used for the event distributions is specifically chosen so as to optimize the

signal region of the analysis (described in Section 4.1). It consists of

• Energy: 20 log10-spaced bins between 3 and 100 GeV

• Cos(θzenith): 20 linearly-spaced bins between -1.0 and 0

• PID: 3 bins with edges at [0, 0.33, 0.39, 1.0]

This particular binning modifies the default energy and zenith cuts, mentioned in Sub-

section 3.4.2, by placing a slightly tighter cut on the cos(θzenith) and extending the energy

range down to 3 GeV. The cos(θzenith) cut is made with the intention of further rejecting

atmospheric muon events and events following from self-veto effects. Additionally, the

lower energy limit is extended to conserve as much of the NMO signal region as possible

while considering the reconstruction limitations imposed by FLERCNN.

The extraction of the signal is improved by using a logarithmic scale to make the bin

width smaller at low energies. The bin content is also carefully assessed for the purpose
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of maintaining a statistically stable analysis. Mainly, a minimum threshold of 5 expected

events and 100 raw MC events per bin is imposed to avoid statistical fluctuations.

It is important to note that, although the bin width is subdivided further than the

corresponding reconstruction resolution, the analysis remains stable due to the minimum

threshold imposed in the number of events per bin. Fundamentally, the stability of the

analysis is determined by its statistical stability. As such, the subdivision of bins should be

halted when either any given bin shows signs of statistical instability due to a low number

of bin counts or the sensitivity improvement plateaus due to reconstruction limitations.

Nevertheless, in the latter case, bin subdivision is still possible, however, one is left with a

much greater computational effort without gaining any benefit, so it is not recommended.

If statistical stability is obtained through a large sample size, as is the case for this

analysis, and there is a sizeable improvement in the sensitivity, a finer binning is justified.

Taking this into consideration, along with all of the previously mentioned binning choices

optimized to target the NMO signal, the sensitivity is observed to increase by roughly 60%

in comparison to the default case with 12 energy bins and 8 cos(θzenith) bins.

The final piece of the binning scheme consists in selecting the PID decision boundaries,

which are based on the FLERCNN PID performance discussed in Subsection 3.3.2. There

are three PID bins— the cascade bin, the mixed bin, and the track bin. The mixed bin holds

events with higher uncertainty in their PID score mostly due to their low-purity nature.

The PID bins for this analysis are shown in Figure 4.2, where the cascade bin is represented

by Ptrack < 0.33, the 0.33 < Ptrack < 0.39 bin holds mixed events, and 0.39 < Ptrack denotes

tracks. In general, decision boundaries adjust these bounds in order to maximize the

discrimination power of the PID. For this analysis, although a conscious effort is made to

optimize the discrimination power of the PID, another feature is regarded as more critical—

fulfilling the minimum threshold imposed in the number of events per bin. This can be

seen in Figure 4.2, where the plot on the right shows the total number of events in each PID

bin to be similar instead of one bin holding a much greater number of events compared to
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Figure 4.2: Particle identification (PID) distributions with 20 bins (left) and 3 bins (right)
stacked by event type. Track-like events are denoted by scores closer to 1 while cascade-
like events lie closer to 0. Decision boundaries are optimized for this analysis to improve
track/cascade discrimination as well as to populate each PID bin as evenly as possible for
statistical stability.

the other bins.

4.2.2 MC Simulation Templates

Figure 4.3 shows the event distribution templates for the case of true NO (top) and true

IO (bottom) at the nominal MC expectation for 9.28 years of detector data with the chosen

analysis binning. Conducting a fit of the oscillation and systematic parameters is expected

to change the bin counts as a result of varying the parameter values.

Reconstruction effects on the analysis template can be seen in Figure 4.4, where the NO

event distribution is plotted as a function of the true energy and cos(θzenith). By comparing

the true and reconstructed templates, one can visualize the amount of dilution in the

oscillation features that occurs as a result of reconstruction.

Additionally, Figure 4.4 validates the objective of the PID decision boundaries. Mainly,

for both the track and cascade bins, a greater number of events are observed to lie at

higher energies which is expected due to the higher resolution of these events that lead to

better-defined PID scores. In contrast, for the mixed bin, the majority of events lie at low

energies as a result of low purity and greater uncertainty in the PID scores.

Event counts as well as their corresponding rates are listed in Table 4.1 for the finalized
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Figure 4.3: Analysis-level MC simulation templates assuming true NO (top) and true IO
(bottom) using reconstructed quantities.

Figure 4.4: MC simulation template using true energy and cos(θzenith) values and assuming
true NO. Oscillation fringes can be observed for all three PID signatures.

NMO analysis sample. It is important to note that noise events are negligible at the analysis

level, and thus, are not included.



63

Type Counts [9.28 years] Rate [µHz] % of Sample
All MC 192,605 0.658 -
νall + ν̄all NC 21,412 0.073 11.1
νe + ν̄e CC 48,637 0.166 25.3
νµ + ν̄µ CC 110,645 0.378 57.4
ντ + ν̄τ CC 10,936 0.037 5.7
muons 973 0.003 0.5
*Values are for Normal Ordering

Table 4.1: Expected event rate for 9.28 years of detector livetime separated by event types.
Each value is calculated using the nominal parameter values.

4.2.3 Muon Template Smoothing

As a result of the low number of atmospheric muon events in the analysis sample, the

muon MC template is observed to have sharp features that are not suitable to represent

the real data as seen in the left-hand plots of Figure 4.5. To mediate this issue, a kernel

density estimator (KDE) is used to smear the template. The KDE implementation spans

the entire (Eν, cos(θzenith)) parameter space beyond the analysis binning to improve the

event accuracy at the edges of the smoothed template. The smoothed muon template,

including KDE implementation, can be seen in the right-hand plots of Figure 4.5.

4.3 Uncertainties

Uncertainties for this analysis (with the exception of statistical uncertainties) can be broadly

categorized into three classes— systematic uncertainties, oscillation uncertainties, and

normalization uncertainties. As previously discussed, these are included in the analysis as

free parameters with nominal expectation values and ranges based on external constraints.

Varying any given parameter modifies the number of expected events by either weighing

each individual event, each individual bin (in the case of detector systematics), or the

entire template (for normalization). In total, 50 parameters are assessed. Section 4.6 delves

into the details of this assessment and the studies performed to quantify the impact of

each parameter on the analysis. As a result, parameters with a negligible impact are fixed.
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Figure 4.5: The MC atmospheric muon template with (right) and without (left) the im-
plementation of a kernel density estimator (KDE). The KDE serves to smooth out the
sharpness of the template, resulting from the low number of muon events in the analysis
sample.

4.3.1 Systematic Uncertainties

Systematic uncertainties include uncertainties in the atmospheric flux, the incident neu-

trino cross-section, and detector properties (described in Section 2.3). These are accounted

for using the following systematic parameters.
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Figure 4.6: Pion and kaon production Barr blocks [20]. Ei denotes the energy of the primary
cosmic ray and xLAB = Es/Ei, where Es is the energy of the secondary hadron.

4.3.1.1 Atmospheric Neutrino Flux

The atmospheric flux is calculated using

Φ(E) = Φnominal

(
E

Epivot

)∆γ

+
NBarr

∑
i=1

Bi ·
dΦnominal

dBi
(4.1)

where the first and second terms denote a dependency on the primary cosmic ray model [31]

and the hadronic interaction model [20], respectively. The first term varies as a function of

the atmospheric neutrino flux spectral index, ∆γ, while the energy pivot, Epivot, is set to a

fixed value of 24.09 GeV [41]. The second term varies as a function of Bi, or the uncertainty

of each Barr block found in Figure 4.6.

Barr blocks represent pion and kaon production uncertainties derived from existing

experimental data for different portions of the Ei(xLAB) phase space. Here, Ei denotes

the energy of the primary cosmic ray and xLAB = Es/Ei, where Es is the energy of the

secondary hadron. Two energy dependent terms are included at Ei > 500 GeV to make up

for the lack of data available from accelerator experiments. It is important to note that the
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Figure 4.7: Event distributions for MA,RES (CC and NC) and MA,QE (CC) denoting the
relative percentage difference in the number of expected events between the nominal and
2σ variation values of the parameter. Greater difference is seen towards lower energies as
expected.

pion uncertainties listed in Figure 4.6 correspond to π+ uncertainties only. To account for

π− uncertainties, the pion ratio, π+/π−, is used as this is better constrained. The quantity
dΦnominal

dBi
is calculated using the MCEq software [16].

4.3.1.2 Neutrino Cross-Section

Neutrino cross-section uncertainties mainly come from an uncertainty on the neutrino-

nucleon interaction form factor, as this has not been well-constrained experimentally. The

form factor is a function of the momentum transfer, Q, and depends on the value of the

axial mass, MA, so that

F(Q2) ∝

(
1 − Q2

M2
A

)−2

. (4.2)
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Essentially, the axial mass affects the magnitude of the total cross-section such that, as the

axial mass increases/decreases, so does the total cross-section. Three axial mass parameters

are considered in this analysis in order to account for uncertainties in quasi-elastic (QE)

CC interactions as well as resonant (RES) CC and NC interactions.

To determine the variation in the number of expected events due to a change in the

axial mass parameters, a cross-section weight is calculated using GENIE [18]. To lower

the computational time, the weight is quantified for 5 representative values of the axial

mass followed by an interpolation of these values. Figure 4.7 shows event distributions

for MA,RES (CC and NC) and MA,QE (CC) denoting the relative percentage difference

in the number of expected events between the nominal and 2σ variation values of the

parameter. Greater differences are seen towards lower energies, and, in particular, the

greatest difference is seen for MA,RES CC, as expected from the signal region of this

analysis.

Additionally, a deep-inelastic scattering (DIS) parameter accounts for uncertainty

stemming from a mismatch between the GENIE [18] and CSMS [12] cross-section values at

energies above 100 GeV. As a result, this parameter interpolates between the two models

to, then, extrapolate the cross-section at lower energies.

To account for different ντ cross-section models [11], a ντ cross-section scale parameter

is implemented as a correction factor. Studies involving other cross-section parameters

can be found in Appendix A. These are shown to be negligible for this analysis and are not

further considered in this work.

4.3.1.3 Detector Properties

Detector uncertainties arise from uncertainties in the DOM calibration as well as in the

optical ice properties as discussed in Section 2.3. These consist of the DOM efficiency,

the bulk ice scattering of photons, the bulk ice absorption, and the hole ice p0 and p1

parameters. Each uncertainty is treated as a separate systematic parameter in the analysis.
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Nuisance parameters for birefringence (BFR) and the muon light yield are also incor-

porated to account for uncertainties in the different models used. In the case of BFR, a

parameter was introduced in the analysis to interpolate between the newly completed

BFR ice model [35] and the previous baseline model, SPICE [27]. For the muon light yield

parameter, inconsistencies were found post-simulation with the configuration of the PRO-

POSAL software [26] for muon propagation leading to a non-negligible overestimation of

the muon light yield and imprecise muon propagation lengths at low energies. To reduce

the computational effort that it would take to rerun the entire MC simulation, a parameter

was introduced to interpolate between the muon light yield calculated using PROPOSAL

and GEANT4 [37].

To calculate the variation in the number of expected events resulting from changing the

detector parameters, a hypersurface method is applied as a result of an analytic function not

being known. Hypersurfaces are N-dimensional bin-wise fits of the event counts derived

from varying the detector parameters in discrete MC simulation sets. In total, there are

32 MC sets plus the nominal set, all of which get processed up to the analysis level. For

each MC set, a re-weight factor is calculated as the ratio of the expected counts of that set

and the nominal set. The re-weight factor, thus, represents a conversion factor between the

expected counts of the two sets used to generate it. For each bin, there are 32 re-weight

factors, which span an N-dimensional parameter space. Here, N denotes the number of

detector parameters plus an offset parameter; hence, N = 8 for this analysis. A linear

hypersurface fit is then conducted of the gradients of each parameter and the offset to obtain

the expected variation in the bin counts for a range of detector values. Note that a linear fit

is used as this showed comparable results to higher-polynomial fits but was most stable.

Figure 4.8 shows an example of a one-dimensional hypersurface fit for the DOM efficiency

parameter for a given bin.

Due to the bin-wise nature of the hypersurface method, the re-weight ratios calculated

from expected bin counts are only exact at the nominal values of non-detector parameters.
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Figure 4.8: Example of a slice of the hypersurface for the DOM efficiency parameter. The
re-weight factors are plotted for all MC simulation sets and fitted using a linear fit [41].

More precisely, a dependence exists on all of the analysis parameters as a result of the

variation in expected bin counts due to a change in the parameter values. To account for

this, hypersurfaces are generated for several representative values of each non-detector

parameter that was found to have a non-negligible dependence. A piece-wise linear inter-

polation of the gradients and the offsets is then performed for each bin. The parameters

found to have a non-negligible dependence consist of the oscillation parameters, θ23 and

∆m2
31, as well as the neutrino flux spectral index, ∆γν.

In general, hypersurfaces are fitted separately for three different categories of neutrino

flavors:

• (νe + ν̄e) CC and (νall + ν̄all) NC

• (νµ + ν̄µ) CC

• (ντ + ν̄τ) CC

This accounts for differences in detector effects that can occur depending on the type of

event signature. The first two categories correspond to cascades and tracks, respectively.

Although (ντ + ν̄τ) CC interactions mostly yield cascade-like signatures, a track-like signa-
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Figure 4.9: 1-dimensional distributions of the bin-wise reduced χ2/DOF for each neutrino
flavor signature. A mean value close to 1 is expected for each distribution to ensure the
validity of the hypersurfaces.

ture is expected 17% of the time due to the branching ratio of the tau particle. As a result

of this as well as the imposed tau production threshold, (ντ + ν̄τ) CC hypersurfaces are

fitted separately.

To gauge the statistical stability of the hypersurfaces, the bin fit reduced χ2 is divided

by the number of degrees of freedom (DOF), where DOF = Nfitted points − Nparams. Here,

Nfitted points corresponds to the number of fitted re-weight factors and Nparams is the number

of free parameters.

Figure 4.9 shows the distributions of the bin-wise reduced χ2/DOF for this analysis

pertaining to each flavor signature. To ensure the validity of the fits, the mean value of

each distribution is expected to be close to 1. This is observed to be true in the figure.

Furthermore, the information in Figure 4.9 can be expanded into 3-dimensional distribu-
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Figure 4.10: 3-dimensional hypersurface distributions of the reduced χ2/DOF separated
by neutrino flavor. No clustering effects are seen at the higher χ2 values as well as no
uncharacteristically high χ2 value for any individual bin, showing hypersurface stability.

tions to assess the χ2/DOF at each individual bin. This is shown in Figure 4.10, where no

clustering effects are seen at the higher reduced χ2 values.

4.3.2 Oscillation and Normalization Uncertainties

The oscillation parameters consist of the Earth model and corresponding density param-

eters, the detector depth, the atmospheric neutrino generation height, and the neutrino

oscillation parameters discussed in Section 1.8. The Earth model used for this analysis is

the 12-layer approximation of the preliminary reference Earth model (PREM) [14], which

is parametrized by three density parameters denoting the inner Core, outer Core, and
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Figure 4.11: Earth density as a function of the distance from the Core of the Earth for PREM
as well as the 12-layer and 4-layer approximations [40].

Mantle such that

• Ye Inner Core parametrizes 1 layer

• Ye Outer Core parametrizes 3 layers

• Ye Mantle parametrizes 8 layers

Figure 4.11 shows the Earth density as a function of the distance from the Core of the Earth

for PREM as well as the 12-layer and 4-layer approximations. The density of the Earth is a

crucial component for matter effects (Section 1.5) to occur.

The Prob3++ software [36] is used to calculate the neutrino oscillation probability. In

this calculation, the Earth densities as well as the detector depth and neutrino generation

height are kept fixed. The corresponding oscillation probability is then applied as a weight

to each event.

For normalization uncertainties, a neutrino normalization factor, Nν, scales the MC

template to account for a variation in total neutrino counts due to flux uncertainties as
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well as the various cuts performed during processing, which can remove neutrinos from

the sample.

4.3.3 Atmospheric Muon Uncertainties

As a result of atmospheric muon events comprising only 0.5% of the analysis sample

(Table 4.1), systematic effects on these are found to be small. Thus, only an atmospheric

muon flux spectral index parameter and an overall muon normalization scale factor are

considered. These parameters effectively account for all muon systematic effects. Similarly,

muon hypersurfaces are found to be negligible and, therefore, not used.

4.4 Test Statistic

A fit of the MC simulation template is assessed using a binned Poisson log-likelihood

(LLH) metric such that

L =
Nbins

∏
i

λkdata, i e−λi

kdata, i!

LLH =
Nbins

∑
i

log

(
λkdata, i e−λi

kdata, i!

)
,

(4.3)

where λi and kdata,i are the expected and observed event counts for a given bin i, respec-

tively. A prior penalty based on external constraints is added to the LLH in the form

LLHprior =
1
2

Nconst

∑
j

(
s − s0

σj

)2

, (4.4)

where Nconst is the number of parameters with external constraints, s and s0 are the

parameter template and nominal values, respectively, and σj is the uncertainty on the

parameter represented by its 1σ prior. In essence, the prior serves to penalize the fit for
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values that lie far from the nominal value.

The test statistic for this analysis is constructed, then, as a difference in the LLH such

that

∆LLHNO-IO = |LLHNO| − |LLHIO|, (4.5)

where LLHNO and LLHIO denote the LLH value from a fit of the analysis parameters

assuming a true NO and a true IO, respectively. An in-depth discussion of the treatment

of the test statistic is provided in Section 6.1.

4.4.1 Treatment of limited MC Statistics

Statistical uncertainty exists in the number of expected events in a given bin due to the

finite MC generation. This is normally accounted for in the metric of the analysis by

including a value, σ, representing this uncertainty. Looking closely at the LLH definition

from Equation 4.3, however, one can see that no σ value is included. Instead, to incorporate

this uncertainty, a convoluted LLH metric can be computed. The convoluted LLH is defined

as the log of the convolution of the Poisson likelihood, p, with a Gaussian distribution, n,

centered at zero so that

Convoluted LLH =
Nbins

∑
i

log ((p ∗ n)(kdata, i, λi, σi))

=
Nbins

∑
i

log
(∫

p(kdata, i, λi − x)n(x, σi)dx
)

,

(4.6)

where σi is the uncertainty on the expected number of events for a given bin. In essence,

this metric weighs all values around the expected value according to how far away they

are, where the farther the value is from the expected value, the smaller the weight.

After computing the optimized analysis fit using both the LLH and convoluted LLH,

similar values are obtained, denoting a negligible MC generation statistical uncertainty.
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Metric Value after Optimization
LLH 0.343
Convoluted LLH 0.339

Table 4.2: Optimized LLH and convoluted LLH values for a fit of the IO theory template
assuming an NO "observed" data template. Similar values are observed for both, denoting
a negligible impact of MC generation statistical uncertainty. The NO data template uses
the nominal parameter values except for the θ23 parameter, which is set to the more
representative value of 45◦.

This can be seen in Table 4.2. Consequently, the LLH is adopted as the analysis metric as it

yields the lower computational time.

4.5 Optimization

The analysis metric is optimized using MINUIT [48] with MIGRAD implementation.

The optimization is carefully performed twice, once for each octant of the θ23 oscillation

parameter, with the upper and lower octants corresponding to θ23 > 45◦ and θ23 < 45◦,

respectively. This helps the optimizer better identify the true global optimum as the phase

space is almost identical in both octants— a feature stemming from the octant degeneracy

created by the sin2(2θ23) term in the oscillation probability. A meticulous look at the

oscillation probability shows that, in the full three-flavor paradigm with matter effects,

sub-leading terms break this degeneracy. However, as the difference is not significant,

separate octant optimizations are necessary.

The performance of the optimizer is assessed through various checks on the analysis

MC template. First, the same optimization is performed across the entire θ23 range with

both the analysis optimizer as well as a more robust and computationally intensive opti-

mizer using the controlled random search 2 (CRS2) algorithm [50] along with MINUIT [48].

The optimization was found to yield almost equal values.

Secondly, the optimized bin-wise metric is examined. Figures 4.12 and 4.13 show the
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Figure 4.12: Expected event difference between the optimized IO theory template and the
assumed NO "observed" data template.

Figure 4.13: Optimized bin-wise LLH produced from a fit of the IO theory template
assuming an NO "observed" data template. The NMO signal can be seen mainly at low
energies for neutrinos traversing the Earth’s core.

expected event difference and LLH values, respectively, obtained post-optimization for

a fit of the IO theory template assuming an NO "observed" data template at the nominal

expectation values and θ23 = 45◦. In the figures, a larger difference and LLH denote a

stronger NMO signal. As expected, it can be observed that the signal mainly comes from

low-energy events traversing the core of the Earth. Further checks on the optimizer are

discussed in Chapter 5 as part of the pre-blind fits.
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4.6 Parameter Impact

To gauge the impact of the analysis parameters, two separate tests are performed— the

Systematic Impact Test and the Barr Parameter Correlations Test. Based on the outcome of

these tests, any parameter with low impact on the analysis is fixed in order to decrease the

computational time of the fit. Due to the complexity and computational cost of calculating

a rigorous NMO sensitivity (discussed in more detail in Chapter 6), the standard
√

∆χ2 (or√
2|∆LLH|) Wilks’ calculation [68] is used to estimate the analysis sensitivity mismodeling

in both of these tests. This approach is found to yield similar values.

4.6.1 Systematic Impact Test

The Systematic Impact Test quantifies the mismodeling introduced in the analysis sensitiv-

ity due to fixing a given parameter at its nominal expectation value when the truth value is

different. The larger the mismodeling produced, the greater the parameter impact on the

analysis. The "truth" values assessed are the ±1σ values away from nominal in the case

of an existing Gaussian prior, or for parameters without a prior constraint, the halfway

point between the nominal value and the upper or lower bound is evaluated. Figure 4.14

shows a diagram of the steps taken to quantify the mismodeling for the example case of

the DOM efficiency parameter assuming true NO. The following procedure is performed:

1. Generate NO and IO theory templates with the test parameter fixed at its nominal

expectation value.

2. Conduct a reference fit to the "observed" data template assumed at nominal.

3. Conduct a test fit to the "observed" data template with the test parameter pulled to

±1σ of its value (otherwise at nominal).
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Figure 4.14: Diagram of the systematic impact test for the example case of the DOM
efficiency parameter assuming true NO.

4. Calculate a reference and test sensitivity using

ησ ≈
√

2|∆LLH| (4.7)

5. Calculate the sensitivity mismodeling as

Mismodeling =
∣∣∣ησre f − ησtest

∣∣∣ (4.8)

To gauge the stability of the reference fit, the reference sensitivity is plotted across all

test parameters as shown in Figure 4.15 for true NO (top) and true IO (bottom). As can

be seen, the reference sensitivity is mostly independent of the test parameter indicating

that fixing any given parameter at its nominal truth value has a negligible effect. Thus, the

Systematic Impact Test shows the relative impact with respect to the test fit.

Figures 4.16 and 4.17 show the results of this test for both true NO and true IO,

respectively. Parameters either boxed or signaled are found to have a mismodeling greater

than 0.1σ (red line) leading to a non-negligible impact on the analysis. Therefore, these

parameters are kept free in the fit. One exception is the muon normalization parameter,
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Figure 4.15: Reference sensitivity assuming true NO (top) and true IO (bottom) for all
analysis parameters tested. The sensitivity is similar when fixing any given parameter at
its nominal true value.

which is kept free regardless of having a lower mismodeling than the chosen threshold to

improve the data-MC agreement. For the δCP, Muon Light Yield, and BFR parameters, it

is not possible to test the negative pulls as the nominal value for these is located on the

lower bound of the range. It is important to note that this test cannot be performed for the

mass splitting parameter, ∆m2
31, as fixing the value of this parameter introduces a spurious

contribution to the fit. This occurs as a result of using the same fixed value of |∆m2
31| in

both the NO and IO theory templates, leading to different values of |∆m2
32| in each. This

artificially enhances the sensitivity.
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Figure 4.16: Systematic Impact Test results assuming true NO for ±1σ pulls. Boxed or
signaled parameters are kept free in the analysis except for the Barr parameters, which are
further gauged using the Barr Parameter Correlations Test.
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Figure 4.17: Systematic Impact Test results assuming true IO for ±1σ pulls. Boxed or
signaled parameters are kept free in the analysis except for the Barr parameters, which are
further gauged using the Barr Parameter Correlations Test.
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Figure 4.18: Barr Parameter Ensemble Test results for a fit of the IO theory assuming an NO
"observed" data template for 200 trials. The test classifies each Barr parameter as having
either no impact, low impact, medium impact, or high impact.

4.6.2 Barr Parameter Correlations Test

As correlation effects are more prominent between the various Barr parameters, a Barr

Parameter Correlations Test is performed to further assess the impact of these on the

analysis. This test is broken up into two parts— a classification of the relative impact of

each Barr parameter and a quantification of this impact on the sensitivity mismodeling of

the analysis.

The first part is achieved using the Parameter Ensemble Test for the Barr parameters only.

Mainly, this test consists in simultaneously fluctuating all Barr parameter values in the

"observed" data template and performing a fit. The fitted value of each Barr parameter is

then plotted as a function of its fluctuated "true" value. This procedure is repeated for a

total of 200 trials to gauge the overall behavior and impact of the given parameter. The

results of the Barr Parameter Ensemble Test are shown in Figure 4.18 for a fit of the IO
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theory template assuming an NO "observed" data template. All four fits pertaining to the

NMO analysis (two for each mass ordering) are evaluated and are found to yield similar

results.

Based on the trend observed in the Barr Parameter Ensemble Test, Barr parameters are

classified into one of four impact categories— no impact, low impact, medium impact, or

high impact. A parameter with no impact on the analysis follows a horizontal trend as this

shows that the fitted value did not change from the starting value. Therefore, the fit did not

need to compensate for having fluctuated the true value, and as a result, the true value of

this parameter is not important for the fit. On the contrary, parameters with high impact on

the analysis lie on the diagonal, showing that the true value of this parameter is important

for the fit. Furthermore, parameters with medium impact follow a semi-raised trend,

where the fitted values of the parameter are only slightly shifted towards the diagonal.

One feature worth noting consists in a pull exerted on the fitted value from the Gaussian

prior as a result of fluctuating the true parameter value. Since the prior is centered around

the nominal value, as the fit starts to drift towards the fluctuated true value, a tension

is created by the prior, pulling the fit in the opposite direction. Hence, a high impact

parameter is one who is able to completely overcome this pull.

The second part of the Barr Parameter Correlations Test consists in quantifying the

analysis sensitivity mismodeling produced by fixing the various categories of parameter

impact. Figure 4.19 shows a diagram of the steps performed to quantify this sensitivity

mismodeling assuming true NO. The procedure is as follows:

1. Generate NO and IO theory templates with both the non-Barr parameters and the

test Barr parameters fixed at their nominal expectation value. The ∆m2
31 oscillation

parameter, however, is kept free due to the spurious contribution created when fixed

(refer back to Section 4.6.1).

2. Conduct a reference fit to the "observed" data template assumed to be at nominal.
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Figure 4.19: Diagram of the Barr Parameter Correlations Test assuming true NO.

3. Conduct a test fit to the "observed" data template with fluctuated test Barr parameter

values.

4. Calculate reference and test sensitivities using Equation 4.7.

5. Calculate the sensitivity mismodeling using Equation 4.8.

6. Repeat the procedure for 200 trials.

Figure 4.20 shows the results of this test for the NMO analysis, where the cumulative

distribution function (CDF) is plotted for the sensitivity mismodeling assuming an NO

"observed" data template. The orange curve in the plot is the baseline when all Barr

parameters are kept free. Baseline "mismodeling" occurs due to the prior pull being

exerted on the test fit but not on the reference fit as this one is evaluated at the nominal

true values. As a result, this test is evaluated as a relative difference between the baseline

curve and a test curve.

Mismodeling test curves are plotted for different motivated choices of fixed Barr

parameters in Figure 4.20. The mismodeling tolerance is set as a 5% change in the baseline



Figure 4.20: Sensitivity mismodeling accounting for correlations among the Barr parame-
ters. The mismodeling is plotted for various categories of fixed Barr parameters assuming
true NO. Based on 200 trials, the cumulative distribution function (CDF) shows the per-
centage of trials that generate the given mismodeling or lower.

mismodeling at the 0.1σ line. Any combination of Barr parameters with less relative

mismodeling than the tolerance are considered to have a negligible impact on the analysis.

Thus, parameters labeled as "no impact" or "low impact" are fixed. The same conclusion is

found for an assumption of true IO.

Table 4.3 shows the list of parameters considered in this analysis along with their

respective nominal values, priors, and bounds. Furthermore, the table also shows whether

a parameter is fixed or freed in the fit. Parameters highlighted in yellow are kept free.

Note that for all checks and studies described before Chapter 7, the bulk ice absorption

and scattering parameters are assigned a Gaussian prior of σ = ±0.05 and σ = ±0.1,

respectively. Due to an unresolved disagreement between bulk ice calibration data and

simulation, a conservative uniform prior is adopted at the blind-fit stage and onwards. This

modification is found to yield a negligible effect on the studies mentioned in this work.
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Table 4.3: List of analysis parameters considered, along with priors and allowed bounds.
Parameters highlighted in yellow are kept free. Note that for all checks and studies de-
scribed before Chapter 7, the bulk ice absorption and scattering parameters are assigned a
Gaussian prior of σ = ±0.05 and σ = ±0.1, respectively. Due to an unresolved disagree-
ment between bulk ice calibration data and simulation, a conservative uniform prior is
adopted at the blind-fit stage and onwards.

Parameter Nominal Value Prior Bounds Fixed?
Flux:
∆γν 0 Gaussian, σ = ±0.1 [-0.5, 0.5] Free
Energy Pivot 24.09 - - Fixed
Barr π+/π− 0 - - Fixed
Barr a_π+ 0 - - Fixed
Barr b_π+ 0 - - Fixed
Barr c_π+ 0 - - Fixed
Barr d_π+ 0 - - Fixed
Barr e_π+ 0 - - Fixed
Barr f_π+ 0 - - Fixed
Barr g_π+ 0 Gaussian, σ = ±0.3 [-1.5, 1.5] Free
Barr h_π+ 0 Gaussian, σ = ±0.15 [-0.75, 0.75] Free
Barr i_π+ 0 Gaussian, σ = ±0.61 [-3.05, 3.05] Free
Barr w_K+ 0 Gaussian, σ = ±0.4 [-2.0, 2.0] Free
Barr x_K+ 0 - - Fixed
Barr y_K+ 0 Gaussian, σ = ±0.3 [-1.5, 1.5] Free
Barr z_K+ 0 Gaussian, σ = ±0.61 [-3.05, 3.05] Free
Barr w_K− 0 - - Fixed
Barr x_K− 0 - - Fixed
Barr y_K− 0 - - Fixed
Barr z_K− 0 - - Fixed
Neutrino Normalization:
Nν 1.0 Uniform [0.1, 2.0] Free
Cross Section:
MA,QE, CC 0 - - Fixed
MA,RES, CC 0 Gaussian, σ = ±1.0 [-2.0, 2.0] Free
MA,RES, NC 0 - - Fixed
DIS 0 - - Fixed
ντ cross-section scale 0 - - Fixed
Detector:
DOM Efficiency 1.0 Gaussian, σ = ±0.1 [0.8, 1.2] Free
Hole Ice p0 0.102 Uniform [-0.6, 0.5] Free
Hole Ice p1 -0.0493 Uniform [-0.2, 0.2] Free
Bulk Ice Absorption 1.0 Uniform [0.9, 1.1] Free
Bulk Ice Scattering 1.05 Uniform [0.85, 1.25] Free
Birefringence 0 Uniform [0, 1.0] Free
Muon Light Yield 0 Uniform [0, 1.0] Free
Oscillations:
Earth Model PREM 12 layers - - Fixed
Ye Inner Core 0.4656 - - Fixed
Ye Mantle 0.4957 - - Fixed
Ye Outer Core 0.4656 - - Fixed
Detector Depth [km] 2.0 - - Fixed
Prop Height [km] 20.0 - - Fixed
θ12 33.82◦ - - Fixed
θ13 8.61◦ - - Fixed
θ23 47.5047◦ Uniform [38◦, 52◦] Free
δCP 0 - - Fixed
∆m2

21 7.39 × 10−5 eV2 - - Fixed
∆m2

31 ±2.47467 × 10−3 eV2 Uniform ±[0.001, 0.004] Free
Atmospheric Muons:
∆γµ 0 - - Fixed
Nµ 1.0 Gaussian, σ = ±0.4 [0.1, 3.0] Free
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Chapter 5

Gauging the Analysis Response

A series of checks are performed on the true NO and true IO MC simulation templates to

gauge the response and behavior of the analysis prior to conducting any fits on the real

data template. These checks consist of the Inject-Recover Test, the Parameter Ensemble

Test, and the Ensemble Test. The first two tests consist in fluctuating the parameter values

while the last test statistically fluctuates the template bin counts.

5.1 Inject-Recover Test

The Inject-Recover Test focuses on gauging the robustness of the optimizer described in

Section 4.5 through its ability to recover the fluctuated oscillation parameter values for fits

of the analysis templates. Note that only the true values of θ23 and ∆m2
31 are fluctuated in

this test as these are the only two oscillation parameters that are kept free in the analysis.

Given that there are no Gaussian priors imposed on these two parameters, a suitable

optimizer is expected to recover all of the true values when fitting a theory of the same

mass ordering as the assumed data. This is seen in Figure 5.1 for assumptions of true NO

(left) and true IO (right).

Moreover, the same test is performed for a fit of a theory with the opposite mass ordering

as the assumed data. As a result of the discrete nature of the two mass orderings, the
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Figure 5.1: True values of θ23 and ∆m2
31 are fluctuated as part of the Inject-Recover Test,

which gauges the optimizer’s ability to recover each value.

optimizer is not necessarily expected to recover the true parameter values. Instead, an

interesting pattern emerges for the θ23 parameter as shown in Figure 5.2, where the

best fit θ23 value lies in the opposite octant for certain ranges of the parameter space.

This characteristic pattern is due to a mass-ordering-octant degeneracy [2; 30], which is

discussed in more detail in Section 6.2.

5.2 Parameter Ensemble Test

Similarly to the Inject-Recover Test, the Parameter Ensemble Test gauges the behavior of

the best fit of a given parameter value with respect to its true value. However, in this test,

all of the analysis parameters are fluctuated simultaneously as opposed to the oscillation

parameters only. Thus, it is then possible to assess the overall analysis response (excluding

any effects arising from statistical fluctuations).

In contrast to the Inject-Recover Test, a perfect recovery of the true values is not
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Figure 5.2: A characteristic pattern emerges for a fit of a theory with the opposite mass
ordering as the assumed data for specific ranges in the θ23 parameter space. This occurs
due to the mass-ordering-octant degeneracy [2; 30].

necessarily expected even for the case of fitting a theory with the same mass ordering as

the assumed data. This is a result of correlations that exist between parameters as well as

effects from the Gaussian priors imposed on some of the parameters. Figure 5.3 shows

the results of this test for a fit of the NO theory template assuming an NO "observed" data

template. All in all, a good recovery of the true values is observed for most parameters. A

similar response is found in the case of fitting the IO theory assuming an IO data template.

For the case of fitting a theory with the opposite mass ordering as the assumed data,

similar behavior is observed for all analysis parameters except for the two oscillation

parameters as shown in Figure 5.4. As expected, the θ23 parameter shows the same

characteristic pattern found in Figure 5.2 while ∆m2
31 produces a best fit in the off-diagonal

due to the restriction in the parameter range imposed from fitting a theory of the opposite

mass ordering.
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Figure 5.3: Parameter Ensemble Test for a fit of the NO theory template assuming an NO
"observed" data template. Good recovery is observed for most parameters, although not
necessarily expected due to effects from correlations and Gaussian priors.
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Figure 5.4: Parameter Ensemble Test for a fit of the NO theory template assuming an IO
"observed" data template. The θ23 parameter shows the same characteristic pattern found
in Figure 5.2.
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Figure 5.5: Expected distributions of the goodness of fit for true NO (left) and true IO
(right) for a fit of the same mass ordering as the assumed data.

5.3 Ensemble Test

This test gauges the analysis behavior when incorporating statistical uncertainty from

the limited detector livetime. Fluctuations of the nominal bin counts are performed on

the assumed data template for 600 trials using a Poisson distribution. Figure 5.5 shows

the expected distributions of the goodness of fit for true NO and true IO for a fit of the

same mass ordering as the assumed data. The distributions are observed to follow the

expected χ2 relation of χ2 ≈ DOF, where DOF = Nbins − Nfree params and χ2 = 2|LLH|

(Wilk’s Theorem [68]).

Additionally, parameter pulls between the nominal and best fit values are assessed for

all parameters with Gaussian priors. These are seen in Figure 5.6, where the median pull

is shown along with the 1σ bands for 600 trials. Stable pulls are observed for both mass

orderings with all medians lying close to zero and no bands surpassing a pull of 0.5σ in

either direction.

Figures 5.7 and 5.8 show the expected best fit distributions for each parameter in the

analysis for true NO and true IO, respectively. In general, each median value is observed

to lie close to its nominal value. For the θ23 oscillation parameter, however, the median

value is pulled towards the center, mainly, by a mirrored peak of the trials in the opposite
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Figure 5.6: Parameter pulls between the nominal and best fit values for all parameters
with Gaussian priors for true NO (top) and true IO (bottom). Stable pulls are observed
with all medians lying close to zero and the 1σ bands lying below a pull of 0.5σ.

octant. This effect occurs due to the octant degeneracy discussed in Section 4.5. For some

of the fluctuated trials, the bin counts are far away enough from nominal that the opposite

octant of θ23 is a better fit.

Pearson correlation maps are shown for both mass orderings in Figure 5.9. Although

these are found to be similar between the two orderings, parameter correlations with ∆m2
31

are observed to move in opposite directions. This is expected as the mass ordering is

defined by the sign of ∆m2
31. Furthermore, strong correlations are seen among the Barr

parameters as well as detector parameters and
{

∆m2
31, Nν, MA,RES CC, ϵDOM

}
.
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Figure 5.7: Expected best fit distributions for each parameter in the analysis for true NO.
Median values are observed to lie close to their respective nominal value.

Figure 5.8: Expected best fit distributions for each parameter in the analysis for true IO.
Median values are observed to lie close to their respective nominal value.
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Figure 5.9: Correlations among parameters are observed to be similar for true NO (top)
and true IO (bottom). Strong correlations are seen among the Barr parameters as well as
detector parameters and

{
∆m2

31, Nν, MA,RES CC, ϵDOM
}

.
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Chapter 6

Sensitivity to the Neutrino Mass Ordering

6.1 Methodology

The following procedure, adopted from [3; 40], shows the steps taken to quantify the

analysis sensitivity to the NMO. Due to the non-nested feature of the two hypotheses in

question (NO and IO), the standard
√

∆χ2 (or
√

2|∆LLH|) Wilks’ calculation [68] of the

sensitivity proves to be simplistic and not entirely accurate. For non-nested hypotheses,

Wilks’ Theorem does not hold, meaning that, for a large sample size, the analysis test

statistic does not follow a χ2 distribution. Instead, the test statistic, mainly ∆LLH, is shown

to follow a Gaussian distribution [3]. As a result, a different approach is used to quantify

the sensitivity, where two separate ∆LLH distributions are constructed for each mass

ordering.

Furthermore, as previously described, the sensitivity is highly dependent on the os-

cillation parameter, θ23, due to its role in the oscillation probabilities. Although this is

discussed in more detail in Section 6.2, it is important to mention at this point that, due to

this dependence, the NMO sensitivity is quantified as a function of θ23.
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NMO sensitivity quantification procedure:

1. Assume a true ordering.

2. Label the MC simulation template generated at the nominal expectation of the true

ordering as the truth data template.

3. Inject a chosen "true" θ23 value to the truth data template.

4. Statistically fluctuate the truth data template 1000 times to generate 1000 fluctuated

trials.

5. Generate an NO and an IO theory template at the nominal expectation of each ordering.

6. Using an appropriate metric, fit both NO and IO theory templates to each fluctuated

trial from Step 4.

7. Assemble a distribution of the test statistic from the difference between the NO and

IO best fits. Label this as the true ordering distribution.

8. Generate a separate MC simulation template using the best-fit parameters from

fitting the wrong-ordering theory to the unfluctuated truth data template. Label this

as the wrong-ordering best fit template.

9. Repeat Steps 4-7 swapping the truth data template for the wrong-ordering best

fit template. This should create a second distribution of the test statistic from the

difference between the NO and IO best fits. Label this as the wrong-ordering best fit

distribution.

10. Compute a one-tailed p-value using the median of the true ordering distribution with

respect to the wrong-ordering best fit distribution. In this calculation, the median of

the true ordering distribution is treated as the expectation of the observed value.
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Figure 6.1: Diagram of the NMO sensitivity calculation using ∆LLH as the test statistic
and assuming NO as the true ordering. When fitting to the real data, a similar but slightly
different approach is used as shown in Figure 8.1.

11. Compute the NMO median sensitivity using

ησ =
√

2erfc−1(2pone-tailed) (6.1)

where pone-tailed is the one-tailed p-value.

12. Repeat Steps 1-11 assuming the opposite ordering as the true ordering.

Figure 6.1 shows a diagram of the NMO sensitivity calculation procedure using the

analysis test statistic, ∆LLH, and assuming NO as the true ordering. This creates the two

∆LLHNO-IO distributions from Steps 7 and 9, where ∆LLHNO-IOi = |LLHNOi | − |LLHIOi |

and i ∈ {1, 2, 3, ..., 1000}. As a result of the convention used for the test statistic— mainly,
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Figure 6.2: Example of the p-value calculation in the case where the observed value is at
the median of the true ordering distribution (red). The p-value is then used to quantify the
median sensitivity.

that ∆LLH = ∆LLHNO-IO and not ∆LLHIO-NO —values of ∆LLHNO-IO < 0 indicate a

preference for NO while values of ∆LLHNO-IO > 0 indicate a preference for IO. Thus,

an assumed NO (IO) distribution will be shifted to the left (right) of zero as seen in the

diagram.

The median sensitivity represents DeepCore’s expected ability to rule out each of the

two mass orderings. In other words, provided an observed value at the median of the

true ordering distribution, with how much confidence is DeepCore able to reject the most

similar distribution of the wrong ordering? The sensitivity, of course, varies depending on

the precise location of the "observed value" within the true ordering distribution. Mainly,

the observed value does not necessarily need to lie at the median of the distribution, but

instead, could lie to one of the sides. Depending on the side, the sensitivity can increase

(decrease) as the observed value is now farther (closer) to the wrong-ordering distribution.

Figure 6.2 shows the one-tailed p-value for an assumption of true NO with respect to the

IO best fit distribution. The p-value in this case lies to the left of the observed value, while

for an assumed true IO, it lies to the right. The choice of a one-tailed test can be understood

by thinking about a hypothetical scenario where DeepCore has no sensitivity to measuring
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CL = 1 − p 25% 50% 68.27% 90% 95% 99%
one-tailed −0.674σ 0σ 0.476σ 1.282σ 1.645σ 2.326σ
two-tailed 0.319σ 0.674σ 1σ 1.645σ 1.960σ 2.576σ

Table 6.1: The corresponding significance and confidence level (CL) calculated from one-
tailed and two-tailed p-values. The significance is computed using Equation 6.1 for the
one-tailed case. For the two-tailed case, the equation can be found in [3].

the mass ordering. Consequently, both NO and IO distributions would lie directly on top

of each other, leading to a 50% p-value in both true NO and true IO cases. A 50% p-value,

then, should correspond to a significance of 0σ. This is seen in Table 6.1 for a one-tailed test

as opposed to a two-tailed test, where a 50% p-value yields a significance of 0.674σ. It is

important to note, however, that this example as well as the choice of a one-tailed p-value

assume that the observed value lies at the median of the true ordering distribution. For the

case where the observed value lies to one of the sides of the true ordering distribution, a

different approach is taken. This is discussed in more detail in Chapter 8.

6.1.1 The Pseudotrial Method

The frequentist procedure described above fluctuates the bin counts of the event distri-

butions using Poisson statistics as a way of incorporating statistical uncertainty from the

limited detector livetime. This approach is called the Pseudotrial Method as it relies on the

accuracy provided by performing many fluctuated trials, or pseudotrials.

This method, although robust, proves computationally exhaustive when performed

for the full θ23 parameter space for which the NMO sensitivity is computed for. As a

result, a substantially less computationally expensive approximation method is adopted

from [3; 6; 40] to calculate the sensitivity. This method is called the Asimov Method.

The Asimov Method is used for modeling the behavior of the sensitivity curve and

providing a close estimate of the sensitivity projection. The sensitivity is then computed

using the Pseudotrial Method for four representative points throughout the θ23 parameter
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space so as to both verify the validity of the Asimov Method and improve the accuracy of

the projections at these values. It is important to note that when performing a fit to the

true observed data, the more robust Pseudotrial Method is conducted.

6.1.2 The Asimov Method

At its core, the Asimov Method uses features derived from Wilks’ theorem to approximate

the medians of the ∆LLHNO-IO distributions without the need to generate any fluctuated

trials. Mainly, this method approximates the origin of the medians as the fits to the

unfluctuated templates.

To understand the Asimov Method, one can think of the following simplified case

where no nuisance parameters are involved. Let us first denote the number of expected

events per bin with a vector y. Label yNO as the NO theory template and, subsequently, yIO

as the IO theory template. Assuming a true IO, we can denote the observed data template

as

yobs
i = yIO

i + σigi, (6.2)

where yobs
i is follows a Gaussian distribution with a mean (or median as these are equal

here) of yIO
i , a standard deviation of σi, and a Gaussian random variable, gi. For simplicity,

let us use the same σi for both NO and IO. It then follows that

∆χ2
NO-IO = χ2

NO − χ2
IO

= ∑
i

(yobs
i − yNO

i )2

σ2
i

− ∑
i

(yobs
i − yIO

i )2

σ2
i

= ∑
i

(yIO
i + σigi − yNO

i )2 − (yIO
i + σigi − yIO

i )2

σ2
i

= ∑
i

(yIO
i − yNO

i )2

σ2
i

+ ∑
i

2(yIO
i − yNO

i )

σi
gi

(6.3)

where the form of ∆χ2
NO-IO in the last line of Equation 6.3 obeys that of a Gaussian distri-
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bution with the first term of the equation as the mean (or median) and the second term as

the standard deviation multiplied by a Gaussian random variable. Therefore,

∆χ2 = ∑
i

(yIO
i − yNO

i )2

σ2
i

σ = ∑
i

2(yIO
i − yNO

i )

σi
.

(6.4)

From Equation 6.4, it is clear that the mean (or median), ∆χ2, is precisely equal to

∆χ2
NO-IO for the case of no statistical fluctuations (yobs

i = yIO
i ). Furthermore, under certain

conditions, the standard deviation term can be written as a function of the mean such that

σ = ∑
i

2(yIO
i − yNO

i )

σi

=

√√√√∑
i

4(yIO
i − yNO

i )2

σ2
i

= 2
√

∆χ2 .

(6.5)

Equation 6.5 holds in the case that any or all of the following three conditions are met [3]:

• The NO and IO hypotheses are simple hypotheses (i.e. fixed parameters).

• The value of ∆χ2 is much greater than the number of free parameters (i.e. experiments

with high sensitivity).

• The parameter hypersurfaces for NO and IO are parallel at the minimum.

Using the Wilks’ relation of ∆χ2 = −2∆LLH,

σ ≈ 2
√
−2∆LLH = 2

√
2|∆LLH| . (6.6)

Hence, the Asimov Method approximates ∆LLHNO-IO as normally distributed with a mean

(or median) generated from a fit to the unfluctuated template and a standard deviation of

2
√

2|∆LLH|.
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To compute the median sensitivity, a z-score is calculated such that

ησ =
∆χ2

NO-IO(true ordering) − ∆χ2
NO-IO(wrong-ordering best fit)

σ∆χ2
NO-IO(wrong-ordering best fit)

≈ 2∆LLHNO-IO(true ordering) − 2∆LLHNO-IO(wrong-ordering best fit)

2
√

2∆LLHNO-IO(wrong-ordering best fit)

≈ ∆LLHNO-IO(true ordering) − ∆LLHNO-IO(wrong-ordering best fit)√
2∆LLHNO-IO(wrong-ordering best fit)

(6.7)

where ∆LLHNO-IO = |∆LLHNO-IO|.

6.2 Expected Sensitivity

Figure 6.3 shows the median sensitivity projection for a measurement of the neutrino

mass ordering using 9.28 years of IceCube DeepCore data. The median sensitivity is

plotted for four representative sin2(θ23) values for each ordering using the Pseudotrial

Method. The behavior of the full curve is then gauged using the Asimov Method. The error

bars in the pseudotrial values represent the uncertainty in the sensitivity arising from an

uncertainty in the median of each ∆LLHNO-IO distribution from having conducted a finite

number of pseudotrial fits. This "standard error" is calculated as the standard deviation

of the distribution of 10000 bootstrapped median sensitivities, which are obtained from

bootstrapping both 1000-trial ∆LLHNO-IO distributions 10000 times.

From the figure, it can be observed that the upper octant of θ23 is most favorable for

resolving the ordering provided that the normal ordering is true. Conversely, the lower

octant is most favorable provided that the inverted ordering is true. This feature of the

sensitivity is attributed to a degeneracy in the oscillation probability occurring from the

interplay of the θ23 octant and a discrete choice of the mass ordering [2; 30]. Mainly, the
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Figure 6.3: Median sensitivity projection for a measurement of the neutrino mass ordering
using 9.28 years of IceCube DeepCore data. The plot shows the sensitivity for four repre-
sentative sin2(θ23) values for each ordering using the Pseudotrial Method. Furthermore,
the behavior of the full curve is gauged using the Asimov Method.

degeneracy flips the octant of the best fit θ23 as observed in Figure 5.2. This can occur if

the matter effects of an experiment are too weak to break the degeneracy or, in the case of

DeepCore, if high experimental uncertainties—greatly due to its inability to discriminate

between neutrinos and anti-neutrinos —veil the contribution of the strong matter effects.

This effect can be better understood by looking at an example of the full three-flavor

oscillation probability in the presence of matter effects for a neutrino/anti-neutrino average.

This is shown in Figure 6.4 for tracks and cascades separately. The probability in the figure

is plotted for two sin2(θ23) values representing the upper and lower octants for both true

NO and true IO.

Let us now focus on cascade events as this is the main channel for resolving the
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Figure 6.4: The full three-flavor oscillation probability in the presence of matter effects
for a neutrino/anti-neutrino average. The probability is plotted separately for tracks and
cascades for two sin2(θ23) values representing the upper and lower octants for both true
NO and true IO.

degeneracy. Furthermore, let us assume the true value of sin2(θ23) to be 0.55. For the

case of an NO "observed" data template (solid orange), a fit of the IO theory template will

produce one of the two possible results— a best fit in the same θ23 octant (solid green) or

a best fit in the opposite θ23 octant (dashed green) as seen in Figure 6.5 as choice 1 and 2,

respectively. Due to the proximity of the curves, choice 1 is considered the best fit. Hence,

the best fit θ23 value lies in the same octant as the true value.

Nevertheless, if this procedure is now performed assuming an IO "observed" data

template (solid green), a fit of the NO theory template will yield a best fit θ23 value in the

opposite octant to the true value (dashed orange). This gives rise to the difference seen in

the left plot of Figure 6.6 between the true NO and true IO cases. Due to the closer fit

produced in the case of a true IO, the sensitivity is lower compared to the case of a true NO,

as seen in the right plot of Figure 6.6, since it is more difficult to distinguish between the

two orderings. This "dip" in the true IO sensitivity is precisely created due to the favoring

of the wrong octant. The inability to resolve the θ23 octant due to the discrete mass ordering

choice is called the mass-ordering-octant degeneracy. For an experiment with strong matter
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Figure 6.5: For the case of an NO "observed" data template (solid orange), a fit of the IO
theory template will produce one of the two possible results, a best fit in the same θ23
octant (choice 1) or a best fit in the opposite θ23 octant (choice 2).

Figure 6.6: Due to the closer fit produced by the probability in the opposite octant for the
case of a true IO (left plot), the sensitivity is lower compared to the case of a true NO (right
plot).

effects and low uncertainties— especially in neutrino/anti-neutrino discrimination —the

resulting fit would always favor the true θ23 octant.

Looking back at Figure 5.2, one can recognize the "dip" features in the sensitivity as

the deviation in the best fit θ23 values from the diagonal. Hence, the kink observed in the
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sensitivity for the case of a true NO is the result of a sharp resolve of the degeneracy. With-

out the effects caused by the mass-ordering-octant degeneracy, monotonically increasing

sensitivity curves would be observed for both true NO and true IO.

6.2.1 Pseudotrial Distributions

Pseudotrial ∆LLHIO-NO distributions are shown in Figure 6.7 for true NO (6.7a) and true IO

(6.7b) assuming atmospheric oscillation parameters at the DeepCore best fit point [42]. As

expected, the distributions are well fitted by a Gaussian function. Furthermore, the median

p-value is calculated from the median value of the true ordering distribution, which is

then used to gauge the expected sensitivity in rejecting the wrong-ordering distribution.

6.2.2 δCP Dependence

As discussed in Section 1.8, atmospheric neutrino experiments are generally not sensitive

to the δCP phase leading to δCP-independent measurements. To check this, the projected

NMO median sensitivity is plotted for three representative values of δCP for the Asimov

Method as shown in Figure 6.8. From the figure, only a negligible dependence on the δCP

phase is observed confirming the above statement.

6.3 Comparison to the 3-Year DeepCore Sensitivity

As mentioned in Section 1.8, the goal of this work is to produce a more robust DeepCore

measurement of the mass ordering in comparison to the previous 3-year measurement [40].

Figure 6.9 shows the projected boost in the DeepCore NMO sensitivity between the 3-year

analysis and this work due to an increase in detector livetime by more than 3 times as

well as improvements in the processing of the data sample, the modeling of uncertainties,

and the analysis optimization. Despite these efforts, however, the sensitivity gain is

seen to plateau due to the significant limitations imposed by the reconstruction and PID.
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(a)

(b)

Figure 6.7: Pseudotrial ∆LLHIO-NO distributions for true NO (top) and true IO (bottom)
assuming atmospheric oscillation parameters at the DeepCore best fit point [42]. As
expected, the distributions are well fitted by a Gaussian function.

Nevertheless, it is important to remember that this improvement is the projection at the

median sensitivities. Figure 6.9 does not reflect possible cases of the observed value not

lying at the median of the true ordering distribution.
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Figure 6.8: NMO sensitivity dependence on the δCP parameter. The sensitivity is plotted
for three representative values of δCP. A negligible dependence on the phase is observed.

(a) (b)

Figure 6.9: Comparison of the DeepCore NMO median sensitivity between the 3-year
analysis [40] and this work. The sensitivity gain is a result of an increase in detector
livetime by more than 3 times as well as improvements in the processing of the data
sample, the modeling of uncertainties, and the analysis optimization.
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Chapter 7

Blind Fit to the Data

7.1 Blind Fit Procedure

The term blind fit denotes a series of checks performed on the goodness of fit to the real

data such that the analysis result is not unveiled. Blind fits represent an intermediate step

before the full unblinding of the result to ensure that all analysis components are behaving

in a sensible way. Table 7.1 shows the blind fit procedure performed for the NMO analysis

consisting of six different steps. Each step includes a test and a corresponding stop

condition, which denotes a bound for "needing further study". Surpassing this bound

does not necessarily mean that something is wrong, but rather, it is an indication that one

should look more closely at this component of the analysis. In general, the stop condition

values are set using common statistical guidelines (i.e. p-value threshold of 5%). However,

an analysis-specific study is performed to determine the particular values for the bin-wise

pulls (Step 3). This is further discussed in Subsection 7.2.1.

7.2 Blind Fit Results

The first step of the blind fit procedure consists in performing a fit for each mass ordering

of the MC template to the real observed data template. Any information revealing which
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Step Test Stop Condition Report

1 Fit both orderings
to the real data N/A

Keep preference blind
and use preferred

ordering for next steps

2 Parameter pulls:
Non-detector

one or more parameters
pulling > 2σ or at

boundary for no prior

Absolute pulls in σ
and distances to boundary

2 Parameter pulls:
DOM efficiency Fit outside of [-10%, +10%] Absolute pull in σ

2
Parameter pulls:

Detector
(except DOM eff.)

At boundary Distance to boundary

3 Bin-wise pulls

1 or more bins pulling > 4.5σ
2 or more bins pulling > 3σ

3 or more bins pulling > 2.2σ
4 or more bins pulling > 1.8σ

Plot of 1D and 2D pulls

4 Goodness of fit One sided p-value < 5% Plot of LLH distribution
Data p-value

5 Data-MC
agreement One sided p-value < 5% Plots and p-value of

energy, cos(θzenith), and PID
6 Unphysical fit check sin2(2θ23) > 95% of trials Yes/No

Table 7.1: Blind fit procedure performed for the NMO analysis. The stop condition denotes
a bound for "needing further study".

of the two mass orderings is the better fit is kept hidden to avoid unblinding the result.

Thus, only the "blinded" preferred ordering fit is gauged in the following steps.

7.2.1 Parameter and Bin-wise Pulls

In the second step, parameter pulls for the preferred fit are assessed. These are expected

to lie within the bounds of their corresponding stop condition denoting the stability of

the best fit parameter value. Too large of a parameter pull is an indication that the fit

prefers a value that is significantly different from the nominal value. For parameters

that without a Gaussian prior, this is acceptable as all values in the parameter range are

weighed equally. However, for parameters constrained by Gaussian priors, this can be an

indication that something unexpected or interesting is occurring as the Gaussian prior is
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Figure 7.1: Best fit pulls for all parameters with Gaussian priors. As can be seen, no pulls
hit their corresponding stop condition.

Parameter Distance to Nearest Boundary
Nν 0.809
Hole Ice p0 0.380
Hole Ice p1 0.140
Bulk Ice Absorption 0.066
Bulk Ice Scattering 0.163
Birefringence 0.428
Muon Light Yield 0.273

Table 7.2: Distance to the nearest boundary for all analysis parameters with no prior.

based on well-founded external data. Figure 7.1 shows the best fit pulls for all parameters

with Gaussian priors. As can be seen, no pulls hit their corresponding stop condition.

Table 7.2 shows the distance to the nearest boundary for all analysis parameters with

no prior. Note that the two oscillation parameters are excluded here as their values are

measured and reported in Chapter 8 as part of the unblinding process of the analysis.

Bin-wise pulls between the observed data and the preferred fit are also gauged as part
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Figure 7.2: Best fit 2D bin-wise pulls. No pulls are found to hit the stop conditions.

Figure 7.3: Best fit 1D bin-wise pulls. A Gaussian distribution is observed with a mean
close to 0 and a standard deviation close to 1 in agreement with the expectation of bin-wise
statistical fluctuations.

of Step 3 of the blind fit procedure. In general, bins should not pull past any of the stop

conditions. If this occurs, it represents an unexpected difference between the data and

the MC simulation, and thus, would be a cause for further study. Figure 7.2 shows the

best fit 2-dimensional bin-wise pulls for the NMO analysis. No pulls are found to hit the

stop conditions. Figure 7.3 shows the 1-dimensional distribution of the bin-wise pulls,

where a Gaussian distribution with a mean close to 0 and a standard deviation close to 1 is

observed in agreement with the expectation of bin-wise statistical fluctuations.
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7.2.1.1 Bin-wise Pulls Stop Condition

A study is performed to determine the specific stop conditions set for the bin-wise pulls to

ensure that these represent an accurate expectation of the analysis given the large number

of bins. Thus, each stop condition is chosen such that the probability of hitting it is close to

1%. This probability is quantified in the following way:

1. Perform the Ensemble Test for 900 pseudotrials assuming an MC data template at

nominal for both true NO and true IO.

2. Evaluate how many pseudotrial fits fail the given bin-wise pull stop condition.

3. Compute the probability to fail the given condition as

P =
Number of pseudotrials that failed

Total number of pseudotrials
. (7.1)

Note that the probability for the condition of observing 1 or more bins pulling > 4.5σ is

calculated differently, mainly, using

P(at least one bin > 4.5σ) = 1 − P(one bin < 4.5σ)N (7.2)

where N is the total number of bins in the analysis.

7.2.2 Goodness of Fit

Step 4 consists in assessing the goodness of fit on the real data as compared to the expected

pseudotrial distribution, which assumes an MC data template at nominal. This check

is considered essential in the blind fit procedure as it compares the ability of the MC

simulation to model the real data. Figure 7.4 shows the results of this test, and as can

be seen, the p-value lies well within the bounds of statistical uncertainty, denoting an

acceptable MC modeling.
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Figure 7.4: Goodness of fit on the real data as compared to the expected pseudotrial
distribution, which assumes an MC data template at nominal. The p-value lies well within
the bounds of statistical uncertainty, denoting an acceptable MC modeling.

7.2.3 Post Fit Data-MC Agreement

Step 5 of the blind fit procedure evaluates the data-MC agreement between the real data

and the preferred fit for each of the three analysis bins— neutrino energy, cos(θzenith), and

PID. The results of this test are found in Figure 7.5, where overall good agreement is seen

between the data and MC. Nevertheless, the p-value stop condition is observed to fail

slightly for the cos(θzenith) distribution. This effect arises from one outlier bin between

[-0.8,-0.65], which is found to be consistent with a statistical fluctuation. The p-value is

re-calculated without this bin and is found to yield 25.6%— well above the stop condition.

Figure 7.6 shows a "zoomed in" version of the cos(θzenith) distribution for the range around

the outlier, subdivided into smaller bins. From the figure, one can see an oscillatory pattern

emerge in the ratio, likely due to statistical fluctuations.
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Figure 7.5: Data-MC agreement between the real data and the preferred fit for each of the
three analysis bins. Although overall good agreement is seen between the data and MC,
the p-value stop condition is observed to fail slightly for the cos(θzenith) distribution. This
effect arises from one outlier bin between [-0.8,-0.65], which is found to be consistent with
a statistical fluctuation.

7.2.4 Unphysical Fit Check

The last step of the blind fit procedure checks for a possible unphysical fit of the MC

template. An unphysical fit can occur if the background is underestimated, leading to an
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Figure 7.6: "Zoomed in" version of the cos(θzenith) distribution for the range around the
outlier, subdivided into smaller bins. An oscillatory pattern emerges in the ratio, likely
due to statistical fluctuations.

enhancement in the oscillation amplitude. Because a fit of the θ23 parameter creates an

upper bound in the amplitude at 45◦, the fit is performed instead using sin2(2θ), where

this one is bounded between [0, 1.75]. The preferred sin2(2θ) fit to the real data is then

compared to the corresponding sin2(2θ) distribution of pseudotrials. If the observed value

lies within the bounds of a statistical fluctuation, the test returns "yes", meaning that there

is no unphysical fit. Otherwise, it returns "no". For the NMO analysis, no unphysical fit is

observed.



118

Chapter 8

Analysis Results

8.1 Unblinding Procedure

Figure 8.1 shows a diagram outlining the NMO unblinding procedure. Due to the non-

nested feature of the NO and IO hypotheses, the unblinding procedure for quantifying the

analysis result follows a different approach to the standard
√

∆χ2 (or
√

2|∆LLH|) Wilks’

calculation [68] in a similar manner as the Pseudotrial Method discussed in Section 6.1.

The procedure consists of the following steps:

1. Perform a fit of the NO and IO theory templates to the real data template and

compute an observed test statistic value of ∆LLHNO-IO.

2. Generate a "true NO" MC simulation template using the NO best-fit parameters from

the real data fit. Label this as the NO best fit to the real data.

3. Statistically fluctuate the "true NO" MC template 1000 times to generate 1000 fluc-

tuated pseudotrials. This constitutes the distribution of statistically plausible data

templates assuming that the real data is well-represented by the NO hypothesis.

4. Perform a fit of the NO and IO theory templates to each pseudotrial and assemble a

true NO ∆LLHNO-IO distribution.
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Figure 8.1: Diagram of the NMO analysis unblinding procedure for quantifying the results
of the fit to the real data.

5. Repeat Steps 2 through 4 for "true IO".

6. Compute a one-tailed p-value for each mass ordering with respect to the observed

∆LLHNO-IO value in the same way as in the Pseudotrial Method.

7. Calculate a CLs value [60; 61] using

CLs =
popposite

1 − ppreferred
(8.1)

where ppreferred and popposite are the p-values corresponding to the preferred and

opposite mass ordering, respectively.

8. Quantify the exclusion interval using CL = 1 − CLs.

In general, popposite denotes the probability of having observed the given result by random

chance under the assumption of a true opposite (non-preferred) ordering. This alone can

be inserted into Equation 6.1 to calculate a significance provided that the observed value of
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∆LLHNO-IO is at the median of the preferred ordering distribution as discussed in Chapter 6.

However, when evaluating a fit to the real data, it is likely that the observed value will not

lie precisely at the median of the distribution due to statistical fluctuations in the data or

slight differences between the data and the MC simulation. To account for this in models

that are not highly sensitive, a conservative CLs Method [60; 61] is performed instead,

which incorporates both mass ordering p-values, as shown in Equation 8.1, to calculate an

exclusion interval and significance. The CLs value spans a range of [0, 1], where a value

close to zero denotes a strong disfavoring of the opposite ordering while a value close

to one does not necessarily indicate any favoring. The CLs Method imposes a correction

factor on the value of popposite to generate an effective p-value based on the positioning of

the observed value relative to both mass ordering distributions. This effective p-value,

pCLs
, can be denoted as

pCLs
= CLs =

(
1

1 − ppreferred

)
popposite (8.2)

where the term in front of popposite represents the correction factor and CL = 1 − pCLs
. To

calculate a significance value, it is appropriate to modify the sensitivity (or significance)

calculation from Equation 6.1 to follow that of a two-tailed Gaussian approach [3] such

that

ησ =
√

2erfc−1(ptwo-tailed) (8.3)

where ptwo-tailed is the two-tailed p-value. To understand this, one can think about an

example where the observed value lies at exactly the median of the preferred ordering

distribution. In this case, ppreferred would equal 50%. Inserting this value into Equation 8.2,

one obtains pCLs
= 2popposite which, using Equation 8.3, yields
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ησ =
√

2erfc−1(pCLs
) (8.4)

=
√

2erfc−1(2popposite) (8.5)

=
√

2erfc−1(2pone-tailed) (8.6)

precisely recovering Equation 6.1 for the median sensitivity.

Moreover, one can also reconcile the CLs Method to the example discussed in Section 6.1,

where having no sensitivity to the mass ordering (both NO and IO distributions lie on

top of each other) should yield a significance of 0σ no matter where the observed value

lies. For an observed value lying to one of the sides of the true ordering distribution,

ppreferred = 1 − popposite leading to pCLs
= 1. Using Equation 8.4, this yields exactly 0σ.

On the contrary, for an observed value at the median, ppreferred = popposite = 50%, equally

leading to pCLs
= 1. Thus, the CLs Method yields the same median sensitivity values as

the one-tailed approach from Chapter 6, but furthermore, it also corrects an otherwise

overstated p-value in the case where the observed value lies to one of the sides of the true

ordering distribution.

One example denoting the importance of the CLs Method consists in thinking about

the case where the observed value lies completely outside of either of the two distributions.

This would indicate that there is no consistency between the observed value and either

of the analysis predictions. In this case, using only the opposite ordering p-value would

show a disproportionately large significance in rejecting the opposite ordering while not

at all considering the preferred ordering distribution. Hence, it is imperative to consider

the positioning of the true ordering distribution with respect to the observed value unless

the observed value lies precisely at the center.
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Figure 8.2: Results of the NMO analysis using 9.28 years of IceCube DeepCore data.
The analysis observes a preference for the normal ordering over the inverted ordering
at 2∆LLHNO-IO = −4.398, leading to a disfavoring of the inverted ordering at a 93.7%
exclusion level, or 1.86σ.

8.2 Results

Figure 8.2 shows the results of the neutrino mass ordering analysis using 9.28 years of

IceCube DeepCore data. The analysis observes a preference for the normal ordering over

the inverted ordering at 2∆LLHNO-IO = −4.398 based on the presented frequentist method.

The corresponding p-values consist of

pIO = 0.6% (8.7)

pNO = 90.5% (8.8)
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Figure 8.3: Difference between the LLH calculated at a given injected sin2(θ23) value and
the global LLH minimum, or the best fit LLH. The normal ordering is preferred for values
of sin2(θ23) > 0.4.

where pNO is the preferred ordering p-value and pIO is the opposite ordering p-value. This

yields a CLs value of

pCLs
= CLs = 6.3% (8.9)

leading to a disfavoring of the inverted ordering hypothesis at an exclusion level of 93.7%,

or 1.86σ (using a two-tailed conversion as discussed in Section 8.1). Furthermore, Figure 8.3

shows the difference between the LLH calculated at a given injected sin2(θ23) value and

the global LLH minimum, or the best fit LLH. As can be seen in the figure, the normal

ordering is preferred for values of sin2(θ23) > 0.4.

Table 8.1 shows the best fit parameters for a fit of the NO and IO theory to the real data,

where all parameters are observed to lie to close to their respective nominal values. An
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Table 8.1: List of the NO and IO best fit parameter values for a fit to the real data for all free
analysis parameters. The nominal value and the allowed bound is included for reference.

Parameter Nominal Value Prior Range NO Best Fit IO Best Fit
Flux:
∆γν 0 Gaussian, σ = ±0.1 [-0.5, 0.5] -0.0249 -0.0286
Barr g_π+ 0 Gaussian, σ = ±0.3 [-1.5, 1.5] -0.0572 -0.0435
Barr h_π+ 0 Gaussian, σ = ±0.15 [-0.75, 0.75] -0.1408 -0.1428
Barr i_π+ 0 Gaussian, σ = ±0.61 [-3.05, 3.05] 0.6406 0.6738
Barr w_K+ 0 Gaussian, σ = ±0.4 [-2.0, 2.0] -0.0083 -0.0495
Barr y_K+ 0 Gaussian, σ = ±0.3 [-1.5, 1.5] -0.0830 -0.0979
Barr z_K+ 0 Gaussian, σ = ±0.61 [-3.05, 3.05] -0.4681 -0.4531
Neutrino Normalization:
Nν 1.0 Uniform [0.1, 2.0] 0.9091 0.9019
Cross Section:
MA,RES, CC 0 Gaussian, σ = ±1.0 [-2.0, 2.0] -0.4981 -0.4671
Detector:
DOM Efficiency 1.0 Gaussian, σ = ±0.1 [0.8, 1.2] 1.0267 1.0350
Hole Ice p0 0.102 Uniform [-0.6, 0.5] -0.2196 -0.2323
Hole Ice p1 -0.0493 Uniform [-0.2, 0.2] -0.0602 -0.0579
Bulk Ice Absorption 1.0 Uniform [0.9, 1.1] 0.9661 0.9675
Bulk Ice Scattering 1.05 Uniform [0.85, 1.25] 1.0132 1.0136
Birefringence 0 Uniform [0, 1.0] 0.4281 0.4190
Muon Light Yield 0 Uniform [0, 1.0] 0.2730 0.2621
Oscillations:
θ23 47.5047◦ Uniform [38◦, 52◦] 47.0239◦ 46.2233◦

∆m2
31 ±2.47467 × 10−3 eV2 Uniform ±[0.001, 0.004] 2.44933 × 10−3 eV2 −2.30715 × 10−3 eV2

Atmospheric Muons:
Nµ 1.0 Gaussian, σ = ±0.4 [0.1, 3.0] 0.8873 0.8561

interesting check, then, consists in roughly comparing the ∆LLHNO-IO MC distributions in

Figure 6.7a— generated at the nominal true NO and best fit IO parameter values —to the

MC distributions generated at the real data best fit point of each mass ordering. Figure 8.4

shows the p-value for the hypothetical case of the observed value lying at the median of

the best fit NO distribution. Comparing the two figures, one can see that both pIO values

are similar as expected.

Table 8.2 shows a comparison between the 3-year DeepCore NMO results [40] and this

work. As can be seen from the sign of the observed 2∆LLHNO-IO value in the table, the

3-year result observed a preference for the normal ordering over the inverted ordering sim-

ilarly to the 9.28-year result; therefore, the CLs value represents the degree of disfavoring

of the inverted ordering.
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Figure 8.4: IO p-value for the hypothetical case of the observed value lying at the NO
median, where each distribution is generated at its respective real data best fit point. As
expected, the p-value is similar to the one found in Figure 6.7a for distributions generated
at the nominal true NO and best fit IO parameter values.

3-Year DeepCore 9.28-Year DeepCore (this work)

Observed 2∆LLHNO-IO -0.738 -4.398
pIO 15.7% 0.6%
pNO 71.1% 90.5%
CLs 53.3% 6.3%

Table 8.2: Comparison between the 3-year DeepCore NMO results [40] and this work.
Clear improvement in the robustness of the results can be observed, where a stronger
preference for the normal ordering is now found.
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All in all, a clear improvement in the robustness of the results can be observed, where a

stronger preference for the normal ordering is now found. Nevertheless, it is important to

note that, due to the location of the observed value line in Figure 8.2— mainly, at the tail of

the true IO distribution —the results presented in this dissertation are contingent upon the

generation of more pseudotrials. With the current number of pseudotrials, there is a 1σ

uncertainty on the value of pIO of roughly 40%, meaning that the value of pIO could vary

by ±0.24%.
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Chapter 9

Conclusion and Outlook

As discussed throughout this dissertation, the IceCube experiment provides a new window

into the measurement of the neutrino mass ordering. Through its atmospheric baseline

and its specific arrangement, DeepCore lies in a favorable position to contribute an NMO

result that is both independent of the δCP phase and generated at neutrino energies greater

than those observed by any other experiment.

The work presented in this dissertation showed the latest IceCube DeepCore measure-

ment of the NMO using a 9.28-year data sample. Clear improvement in the robustness of

the measurement is seen in comparison to the 3-year DeepCore NMO results [40] as well

as a preference for the normal ordering that is consistent with the latest Super-Kamiokande

results [44].

Looking ahead towards the future, the IceCube experiment expects to conduct a mea-

surement of the neutrino mass ordering with the new IceCube Upgrade [58]— a low-energy

extension of the DeepCore subarray scheduled for deployment between the years of 2025

and 2026. The Upgrade will add 7 more compact Upgrade strings to the DeepCore region

with 20 m horizontal spacing and a 3 m vertical DOM spacing. Due to the smaller spacing,

it is expected that IceCube will have the ability to detect neutrino events with energies

down to about 1 GeV, greatly improving the robustness of an NMO measurement. This
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improvement arises mainly from both a better coverage of the NMO signal region as well

as a more accurate event reconstruction and PID.

To conclude, a very promising outlook exists for the neutrino mass ordering in the

coming years. A range of upcoming experiments such as the IceCube Upgrade [58], the

Hyper-Kamiokande experiment [69], the Jiangmen Underground Neutrino Observatory

(JUNO) [8], and the Deep Underground Neutrino Experiment (DUNE) [23] are currently

being developed with a goal of measuring this elusive ordering. If just one of these is

successful, it would not only greatly improve our understanding of neutrinos but also of

the workings of our universe as a whole.
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Appendix A

Lowering the Analysis Energy Range

A.1 MC Simulation Threshold

Because MC simulation was not generated for events with true energies below 1 GeV, a

check was made to ensure that only a negligible amount of these unsimulated events can

be incorrectly reconstructed in the observed data sample to energies greater than 3 GeV.

Figure A.1 shows a distribution of the raw MC event counts (as opposed to the weighted

expected events discussed in Subsection 3.1.1) as a function of the true neutrino energy

for both the analysis and default reconstructed energy lower limits. An extrapolation fit

shows that roughly 300 unsimulated events can enter the sample as a result of lowering the

energy threshold, denoting 0.01% of the sample. Thus, any impact from these unsimulated

events is negligible.

A.2 Study on Cross-Section Systematics

As a result of lowering the energy range of the analysis to 3 GeV, a study was performed

to ensure that no cross-section parameters with potential to impact events at low energies

were unaccounted for. The following cross-section parameters were assessed:
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Figure A.1: Distribution of the raw MC event counts for both the analysis and default
reconstructed energy lower limits. An extrapolation fit shows that a negligible 300 unsim-
ulated events can enter the observed data (0.01% of the sample).

• MA,QE NC

• MA,Co−π, CC and NC

• Bodek-Yang variables (AHT, BHT, Cv1u, and Cv2u), CC and NC

For each parameter, events were re-weighed to their corresponding ±2σ parameter

variation. Thus, one can plot the relative percentage difference in the expected events

between the distribution generated using the parameter’s nominal and ±2σ variation

values and gauge the impact of the parameter.

Figure A.2 shows the relative percentage difference obtained for the Bodek-Yang vari-

ables. The value inside each plot shows the largest relative difference found in any given

bin. A minimum value of 5% relative difference was imposed to study the parameter fur-

ther. All of the above-mentioned parameters either fell below this threshold or contained

one or two bins slightly above the threshold, which, given the total number of bins, can

easily occur due to statistical fluctuations.
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Figure A.2: The relative percentage difference for the Bodek-Yang variables for a 2σ
variation in comparison to the nominal values of the parameters. The value inside each
plot shows the largest difference found in any given bin of the distribution.
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Appendix B

Check on the Hypersurfaces

To ensure that effects such as the tau production energy threshold do not affect the validity

of the hypersurface fits, a minimum threshold condition is placed on Nfitted points, mainly,

that Nfitted points > Nparams (refer back to Subsubsection 4.3.1.3). To further elaborate, the

value of Nfitted points decreases as a result of a dropped re-weight factor, which occurs

whenever a bin in either the nominal or MC set has zero expected counts. The mini-

mum threshold, then, ensures that the number of unpopulated bins obtained by further

separating the PID bins by flavor signature do not jeopardize the fit.
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