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Abstract

Directed graphical models are a powerful statistical method to compactly de-

scribe directional or causal relationships among the set of variables in large-scale data.

However, a number of statistical and computational challenges arise that make learning

directed graphical models often impossible for large-scale data. These issues include:

(1) model identifiability; (2) computational guarantee; (3) sample size guarantee; and

(4) combining interventional experiments with observational data.

In this thesis, we focus on learning directed graphical models by addressing the

above four issues. In Chapter 3, we discuss learning Poisson DAG models for modeling

large-scale multivariate count data problems where each node is a Poisson random vari-

able conditioning on its parents. We address the question of (1) model identifiability

and learning algorithms with (2) computational complexity and (3) sample complexity.

We prove that Poisson DAG models are fully identifiable from observational data us-

ing the notion of overdispersion, and present a polynomial-time algorithm that learns

the Poisson DAG model under suitable regularity conditions.

Chapter 4 focuses on learning a broader class of DAG models in large-scale set-

tings. We address the issue of (1) model identifiability and learning algorithms with

(2) computational complexity and (3) sample complexity. We introduce a new class of

identifiable DAG models which include many interesting classes of distributions such

as Poisson, Binomial, Geometric, Exponential, Gamma, and many more, and prove

that this class of DAG models is fully identifiable using the idea of overdispersion. Fur-

thermore, we develop statistically consistent and computationally tractable learning

algorithms for the new class of identifiable DAG models in high-dimensional settings.

Our algorithms exploits the sparsity of the graphs and overdispersion property.

Chapter 5 concerns learning general DAGmodels using a combination of observa-

tional and interventional (or experimental) data. Prior work has focused on algorithms

using Markov equivalence class (MEC) for the DAG and then using do-calculus rules
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based on interventions to learn the additional directions. However it has been shown

that existing passive and active learning strategies that rely on accurate recovery of

the MEC do not scale well to large-scale graphs because recovering MEC for DAG

models are not successful large-scale graphs. Hence, we prove (1) model identifiabil-

ity using the notion of the moralized graphs, and develop passive and active learning

algorithms (4) combining interventional experiments with observational data.

Lastly in Chapter 6, we concern learning directed cyclic graphical (DCG) models.

We focus on (1) model identifiability for directed graphical models with feedback. We

provide two new identifiability assumptions with respect to sparsity of a graph and the

number of d-separation rules, and compare these new identifiability assumptions to the

widely-held faithfulness and minimality assumptions. Furthermore we develop search

algorithms for small-scale DCG models based on our new identifiability assumptions.
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Chapter 1

Introduction

Analysis and modeling large-scale multivariate data is an important research problem,

as massive amounts of data is available in the fields of statistics, machine learning, bi-

ology and many of their applications [5, 19, 28, 37]. For example, marketing companies

such as Walmart, Target, and Amazon examine large data sets containing a variety of

data types to uncover hidden patterns, market trends, customer preferences and other

useful business information. Medical researchers are using entire human genome data

to discover gene regulatory pathways so as to uncover causes of cancers or genetic

diseases. Consequently, there is a huge demand to develop rich classes of statistical

models that faithfully represent large-scale data with feasible learning methods.

In many real-world problems, there exist inherent conditional independence (CI)

properties or directional relations between variables. CI properties in the underlying

probability distribution can be explained by the structure which enables to factor the

representation of the distribution into modular component. Hence, many recent works

have attempted to adapt existing methods and develop new methods that exploit CI

properties in the distribution to compactly and faithfully represent high-dimensional

data.

One approach that has received significant attention is the graphical model-

ing framework. Graphical models provide a language to compactly describe large

joint probability distributions using a set of non-directional or directional relation-
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ships among neighboring variables in a graph. Graphical models includes a broad

class of dependence models for various data types. Broadly speaking, there are two

common sets of graphical models: (1) undirected graphical models (also called Markov

random fields), (2) directed graphical models; acyclic graphical (DAG) models (also

called Bayesian networks), and directed cyclic graphical (DCG) models.

Directed graphical models are a popular class of statistical models that model

directional or causal relationships between variables. Such directional relationships

naturally arise in many applications including biology, neuroscience, astronomy and

others [16, 20, 38]. The presence of directed graph structure enables the compact

representation of rich classes of probability models and efficient algorithms for model

learning [6, 9, 13, 29, 59, 68, 70]. Moreover, the structure of a directed graphical

model can describe which variables have direct influence on other variables in an un-

derstandable and visual manner [48, 52, 50, 68]. Therefore learning directed graphical

model is roughly speaking equivalent to finding fundamental information about which

variables influence each other.

However, a number of statistical and computational challenges arise that make

learning directed graphical models often impossible for large-scale datasets, even when

variables have a natural causal or directional structure. These issues are: (1) model

identifiability; (2) computational guarantee; (3) sample size guarantee; and (4) com-

bining interventional experiments with observational data.

Regarding the (1) model identifiability issue, directed graphical models are of-

ten not possible to be inferred or can only be identified up to their Markov equivalent

graphs [68] where they represent the same collection of conditional independence prop-

erties. Recent works propose that it is possible to fully identify the DAG structure

including directions by exploiting characterization of the node probability distribution.

For example, Shimizu et al. [64] proved identifiability for linear non-Gaussian struc-

tural equation models, and Peters et al. [54] proved identifiability for non-parametric

structural equation models with additive independent noise. Peters and Bühlmann [53]
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proved identifiability for Gaussian DAG models based on structural equation models

with known or the same variance of errors. However the identifiability issue for many

DAG models have not yet been extensively studied.

Learning directed graphical models from observational data is an NP-Hard prob-

lem because it is necessary to search over the space of directed graphs which is super-

exponential to the number of variables [8, 10]. Therefore computationally feasible

methods for learning directed graphical models are very important. Its difficulty is

perhaps best captured in the following quote. "In our view, inferring complete causal

models is essentially impossible in large-scale data mining applications with thousands

of variables"(Silverstein et al., 2000 [65]).

Many algorithms can recover the directed graphical models up to its Markov

equivalent class assuming the faithfulness assumption (see e.g., [12, 59, 60, 68]). How-

ever, the faithfulness assumption often require extremely large sample sizes to be

satisfied even when the number of nodes is small [73]. Furthermore, many algorithms

for learning directed graphical models which do not require the faithfulness assumption

are often statistically not consistent to identifying directed graphs or need impractical

or restrictive additional assumptions (e.g., [11, 29, 31, 33, 35, 43, 71]).

Lastly experimental interventions that take control of (the distribution of) one

or more variables in a system is a popular method to infer causal system or directed

graphical models. Roughly speaking, we force one (or more) of the variables into a

particular state, and we see how the probability distribution of the other variables is

affected. The best scenario is when a set of data are collected where variables we are

interested in are intervened. However, we often cannot intervene a lot of variables in a

system due to cost, impracticality, ethics, and many reasons. Therefore it is important

to uncover the connections between observational and interventional (experimental)

data, which enables us to learn directed graphical models much more efficiently.
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1.1 Contributions

In this thesis we focus mostly on learning directed graphical models and address-

ing the above four issues. The main contributions of this thesis are to (1) introduce

new identifiability assumptions for broad class of directed graphical models, and (2)

develop new algorithms using our new identifiability assumptions, which are able to

more accurately learn the true structure of a directed graphical model than state-

of-the-art algorithms and are at the same time computationally tractable. In the

remainder of the thesis, we provide additional motivation for our new approaches to

learning graphical models and prove how our algorithms can identify directed graphical

models with significantly fewer errors than existing algorithms. We start by providing

a more detailed introduction to directed graphical models and introduce the overview

of the algorithm for learning directed graphical models in Chapter 2.

Chapter 3 concerns learning Poisson DAG models for modeling large-scale multi-

variate count data problems where each node is a Poisson random variable conditioning

on its parents in the underlying DAG. We prove that Poisson DAG models are identifi-

able from observational data, and present a polynomial-time algorithm that learns the

Poisson DAG model under suitable regularity conditions. The main idea behind our

algorithm is based on overdispersion, in that variables that are conditionally Poisson

are overdispersed relative to variables that are marginally Poisson. Our algorithms

exploits overdispersion along with methods for learning sparse Poisson undirected

graphical models for faster computation. We provide both theoretical guarantees and

simulation results for both small and large-scale DAGs.

Chapter 4 addresses the problem of learning large-scale or high-dimensional DAG

models. First, we introduce a new class of identifiable DAGmodels which include many

interesting classes of distributions such as Poisson, Binomial, Geometric, Exponential,

Gamma and many more. We prove that our class of DAG models is fully identifiable

using the notion of overdispersion. Next, we develop a new theoretically consistent

and computationally tractable algorithm for learning large-scale count DAG models
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belonging to our class of DAG models. We provide theoretical results and simulations

that our algorithm is statistically consistent in the high-dimensional setting provided

the degree of the moralized graph is bounded. Furthermore, we provide a different

algorithm for special cases of our class of DAG model where each conditional distri-

bution given its parents belongs to natural exponential family with quadratic variance

function (NEF-QVF) [44]. This algorithm can recover DAG models with continu-

ous variables and is more accurate and faster than the algorithm we initially provide

exploiting the characterization of the natural exponential family.

In Chapter 5, we study the problem of learning DAG models using a combination

of observational and experimental data. Prior work has focused on algorithms involv-

ing first using observational data to learn the Markov equivalence class (MEC) for

the DAG and then using do-calculus rules based on interventions to learn additional

directions. However it has been shown that for DAG models where the number of

nodes is large, errors are often made in determining the MEC. Hence existing passive

and active learning strategies that rely on accurate recovery of the MEC does not

scale well to large graphs. Therefore we introduce both a passive and an active learn-

ing strategy using a combination of learning the moralized graph and the do-calculus

rules based on interventional graphs. Since there already exists many algorithms for

learning large-scale moralized or undirected graphs that are known to be reliable, we

show empirically that our passive learning algorithm makes significantly less errors in

terms of recovering the true DAG model compared to the state-of-the-art GIES algo-

rithm which relies on accurate recovery of the MEC. We also show empirically that

our active learning algorithm has reliable performance in high-dimensional settings.

Lastly, in Chapter 6 we consider learning directed cyclic graphical (DCG) mod-

els for multivariate data where there exist directed cycles or feedback. we address the

issue of model identifiability for general DCG models satisfying the Markov assump-

tion. In particular, in addition to the faithfulness assumption which has already been

introduced for cyclic models, we introduce two new identifiability assumptions, one
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based on selecting the model with the fewest edges and the other based on selecting

the DCG model that entails the maximum number of d-separation rules. We provide

theoretical results comparing these assumptions which show that: (1) selecting models

with the largest number of d-separation rules is strictly weaker than the faithfulness

assumption; (2) unlike for DAG models, selecting models with the fewest edges does

not necessarily result in a milder assumption than the faithfulness assumption. We

also provide connections between our two new principles and minimality assumptions.

We use our identifiability assumptions to develop search algorithms for small-scale

DCG models. Our simulation study supports our theoretical results, showing that the

algorithms based on our two new principles generally out-perform algorithms based

on the faithfulness assumption in terms of selecting the true skeleton for DCG models.
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Chapter 2

Background

In this chapter we provide a brief introduction to directed graphical models, including

factorizations of probability distributions, their representations by graphs, and the

Markov assumption. We begin with basic concepts of directed graphical models in

Section 2.1. We also summarize three approaches to learning directed graphical models

in Section 2.2: (1) score-based algorithms; (2) constraint-based algorithms; and (3)

hybrid algorithms.

2.1 Directed Graphical Models

A directed graph G = (V,E) consists of a set of vertices V and a set of directed

edges E. The structure of a directed graph refers to as the collection of edges. Sup-

pose that V = {1, 2, . . . , p} and there exists a random vector (X1, X2, ..., Xp) with

probability distribution P over the vertices in G. A directed edge from a vertex j to

k is denoted by (j, k) or j → k. The set pa(k) of parents of a vertex k consists of all

nodes j such that (j, k) ∈ E. If there is a directed path j → · · · → k, then k is called a

descendant of j and j is an ancestor of k. The set de(k) denotes the set of all descen-

dants of a node k. The non-descendants of a node k are nd(k) = V \ ({k} ∪ de(k)).

For a subset S ⊂ V , we define an(S) to be the set of nodes k that are in S or are

ancestors of some nodes in S. Two nodes that are connected by an edge are called

adjacent. A triple of nodes (j, k, `) is an unshielded triple if j and k are adjacent to
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` but j and k are not adjacent. An unshielded triple (j, k, `) forms a v-structure if

j → ` and k → `. In this case ` is called a collider. Another important property

of DAGs is that there exists a (possibly non-unique) causal ordering π∗ of a directed

graph represents directions of edges such that for every directed edge (j, k) ∈ E, j

comes before k in the causal ordering. Without loss of generality, we assume the true

causal ordering π∗ = (1, 2, · · · , p). Now we discuss probabilistic directed graphical

models for multivariate distributions. Let (X1, X2, , Xp) be p random variables with

joint distribution f(X1, X2, · · · , Xp). A probabilistic DAG model has the following

factorization [39]:

f(X1, X2, · · · , Xp) =

p∏
j=1

fj(Xj | Xpa(j)),

where fj(Xj | Xpa(j)) refers to the conditional distribution of a variable Xj in terms of

its set of parents Xpa(j). However for directed graphical models with directed cycles

may not have the factorization property. The joint distributions for directed graphical

models with directed cycles will be discussed later in Chapter 6.

2.1.1 d-separation

Furthermore, let U be an undirected path between j and k. If every collider on U

is in an(S) and every non-collider on an undirected path U is not in S, an undirected

path U from j to k d-connects j and k given S ⊂ V \ {j, k} and j is d-connected to

k given S. If a directed graph G has no undirected path U that d-connects j and k

given a subset S, then j is d-separated from k given S:

Definition 2.1 (d-connection/separation [51, 66]). For vertices j, k ∈ V and S ⊂

V \ {j, k}, j is d-connected to k given S if and only if there is an undirected path U

between j and k, such that

(1) If there is an edge between a and b on U and an edge between b and c on U , and

b ∈ S, then b is a collider between a and c relative to U .
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(2) If b is a collider between a and c relative to U , then there is a descendant d of b

and d ∈ S

2.1.2 Causal Markov Condition

Let Xj ⊥⊥ Xk | XS with S ⊂ V \{j, k} denote the conditional independence (CI)

statement that Xj is conditionally independent (as determined by P) of Xk given the

set of variables XS = {X` | ` ∈ S}, and let Xj ⊥6⊥Xk | XS denote conditional depen-

dence. The Causal Markov condition associates CI statements of P with a directed

graph G:

Definition 2.2 (Causal Markov condition (CMC) [68]). A probability distribution

P over a set of vertices V satisfies the Causal Markov condition with respect to a

(acyclic or cyclic) graph G = (V,E) if for all (j, k, S), j is d-separated from k given

S ⊂ V \ {j, k} in G, then

Xj ⊥⊥ Xk | XS according to P.

The CMC applies to both acyclic and cyclic graphs (see e.g., [66, 68]).

2.1.3 Markov Equivalence Class

In general, there are many directed graphs entailing the same d-separation rules.

These graphs are Markov equivalent and the set of Markov equivalent graphs is called

a Markov equivalence class (MEC) [68, 60, 72, 75]. For example, consider two 2-node

graphs, G1 : X1 → X2 and G2 : X1 ← X2. Then both graphs are Markov equivalent

because they both entail no d-separation rules. Hence, G1 and G2 belong to the same

MEC and hence it is impossible to distinguish two graphs by d-separation rules. The

precise definition of MEC is provided here:

Definition 2.3 (Markov Equivalence [60]). Directed graphs G1 and G2 are Markov

equivalent if any distribution which satisfies the CMC with respect to one graph satisfies

it with respect to the other, and vice versa. The set of graphs which are Markov

equivalent to G is denoted byM(G).
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Figure 2.1:: Moralized graph Gm for DAG G

For DAG models, Verma and Pearl [72] developed an elegant characterization of

Markov equivalence classes defined by the skeleton and v-structures. The skeleton of

a DAG model consists of the edges without directions:

Theorem 2.1 (Local Markov property, Theorem 1 in [72]). Two DAGs G1 and G2

belong to the same Markov equivalence class if and only if they have the same skeleton

and v-structures.

However the presence of directed cycle means the characterization of the Markov

equivalence classes for DCGs is considerably more involved. Richardson [58, 60] ex-

tended the notion of unshielded triple to DCG models and provide a characterization

of Markov equivalence. Since it is quite involved, we do not include here.

2.1.4 Moral Graph

A moral graph is an undirected graphical model representation of a DAG (see

e.g., [14]). The moralized graph Gm for a DAG G = (V,E) is an undirected graph

where Gm = (V,Em) where Em includes edge set E without directions plus edges

between any nodes that are parents of a common child. Figure 2.1 demonstrates

concepts of a moralized graph for a simple 3-node example where E = {(1, 3), (2, 3)}

for the DAG G. Since nodes 1 and 2 are parents of a common child 3, the additional

edge (1, 2) arises, and therefore Em = {(1, 2), (1, 3), (2, 3)}. The neighborhood set of

a node j refers to the adjacent nodes to j in the moralized graph N (j) := {k ∈ V :

(j, k) or (k, j) ∈ Em}.
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2.2 Overview of Structure Learning

Given a observational data containing independent and identically distributed

(iid) instances sampled from a probability distribution P corresponding to a graph G,

the ultimate goal of learning is to recover the structure of the graph G. In general there

are two main strategies for graph structure learning: (1) scoring-based algorithms and

(2) constraint-based algorithms.

2.2.1 Scoring-based Algorithms

Scoring-based algorithms search over a possible space of directed graphs to find

the graph with the highest score given the observations. Typical examples of scor-

ing functions are the BIC [61], AIC [2], and modified Bayesian Dirichlet equivalent

(mBDe) [29]. A popular score-based algorithm for DAG models is Greedy Equiva-

lence Search (GES) algorithm [9]. Scoring-based algorithms are in general flexible and

choose high-likelihood graph structure but do not enforce CI statements and often

do not accurately recover the true graph [69, 1]. Another challenge for scoring-based

methods is that searching over the space of DAGs is NP-hard due to exponential

growth in graph structures [8]. Since an exhaustive search algorithm is not possible,

existing structure learning algorithms either solve a restricted problem (i.e., choose

the best graph or find the Markov equivalence class in the restricted space of directed

graphs).

2.2.2 Constraint-based Algorithms

Constraint-based algorithms learn the structure of a directed graph by using

the estimated CI statements from observational data. The estimated CI statements

are viewed as constraints on the final graph structure, and constraint-based algo-

rithms select a graph that is consistent with those constraints. The most widely used

constraint-based algorithms are the SGS algorithm [22] and the PC algorithm [68]

for DAG models and CCD algorithm [59] and FCI+ algorithm [12] for DCG mod-

els. In contrast to score-based algorithms, a lot of constraint-based algorithms have
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been proven to be theoretically consistent. However, the set of CI statements accord-

ing to P in general do not entail a unique graph. Hence accurately identifying CI

statements present in observational data may only be able to identify Markov equiva-

lence class of a graph rather than a graph including directions of edges. Furthermore

constraint-based algorithms often require very strong assumptions such as the faith-

fulness assumption [68].

2.2.3 Hybrid Algorithms

Hybrid algorithms are also introduced to take advantage of both constraint-based

algorithms and score-based algorithms. Two of the most widely used hybrid algo-

rithms are Sparse Candidate algorithm [21] and the Max-Min Hill-Climbing (MMHC)

algorithm [71]. Both algorithms first estimate a skeleton (which is a structure without

directions) using CI statements and then perform a greedy search over graph structure

space that respect the skeleton output. However, hybrid algorithms also suffer from

disadvantages of both constraint-based algorithms and score-based algorithms where

algorithms require strong assumptions and identify a graph up to Markov equivalence

class.
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Chapter 3

Learning Poisson DAG Model

3.1 Introduction

Modeling large-scale multivariate count data is an important challenge that arises

in numerous applications such as neuroscience, systems biology and many others. One

approach that has received significant attention is the graphical modeling framework

since graphical models include a broad class of dependence models for different data

types. Broadly speaking, there are two sets of graphical models: (1) undirected graph-

ical models or Markov random fields and (2) directed acyclic graphical (DAG) models

or Bayesian networks.

Between undirected graphical models and DAGs, undirected graphical models

have generally received more attention in the large-scale data setting since both learn-

ing and inference algorithms scale to larger datasets. In particular, for multivariate

count data Yang et al. [77] introduce undirected Poisson graphical models. Yang et

al. [77] define undirected Poisson graphical models so that each node is a Poisson

random variable with rate parameter depending only on its neighboring nodes in the

graph. As pointed out in Yang et al. [77] one of the major challenges with Poisson

undirected graphical models is ensuring global normalizability.

Directed acyclic graphs (DAGs) or Bayesian networks are a different class of

generative models that model directional or causal relationships (see e.g. [72, 68] for
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details). Such directional relationships naturally arise in most applications but are

difficult to model based on observational data. One of the benefits of DAG models is

that they have a straightforward factorization into conditional distributions [39], and

hence no issues of normalizability arise as they do for undirected graphical models

as mentioned earlier. However a number of challenges arise that make learning DAG

models often impossible for large datasets even when variables have a natural causal

or directional structure. These issues are: (1) identifiability since inferring causal

directions from data is often not possible; (2) computational complexity since it is

often computationally infeasible to search over the space of DAGs [8]; (3) sample size

guarantee since fundamental identifiability assumptions such as faithfulness are often

required extremely large sample sizes to be satisfied even when the number of nodes

p is small (see e.g., [73]).

In this paper, we define Poisson DAG models and address these 3 issues. In

Section 3.3 we prove that Poisson DAG models are identifiable and in Section 3.4 we

introduce a polynomial-time DAG learning algorithm for Poisson DAGs which we call

OverDispersion Scoring (ODS). The main idea behind proving identifiability is based

on the overdispersion of variables that are conditionally Poisson but not marginally

Poisson. Using overdispersion, we prove that it is possible to learn the causal ordering

of Poisson DAGs using a polynomial-time algorithm and once the ordering is known,

the problem of learning DAGs reduces to a simple set of neighborhood regression

problems. While overdispersion with conditionally Poisson random variables is a well-

known phenomena that is exploited in many applications (see e.g. [15, 81, 7]), using

overdispersion has never been exploited in DAG model learning to our knowledge.

Statistical guarantees for learning the causal ordering are provided in Section 3.4.2

and we provide numerical experiments on both small DAGs and large-scale DAGs with

node-size up to 5000 nodes. Our theoretical guarantees prove that even in the setting

where the number of nodes p is larger than the sample size n, it is possible to learn

the causal ordering under the assumption that the degree of the so-called moralized
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graph of the DAG has small degree. Our numerical experiments support our the-

oretical results and show that our ODS algorithm performs well compared to other

state-of-the-art DAG learning methods. Our numerical experiments confirm that our

ODS algorithm is one of the few DAG-learning algorithms that performs well in terms

of statistical and computational complexity in the high-dimensional p > n setting.

3.2 Poisson DAG Models

In this section, we define general Poisson DAG models. A DAG G = (V,E)

consists of a set of vertices V and a set of directed edges E with no directed cycle.

We usually set V = {1, 2, . . . , p} and associate a random vector (X1, X2, . . . , Xp) with

probability distribution P over the vertices in G. A directed edge from vertex j to

k is denoted by (j, k) or j → k. The set pa(k) of parents of a vertex k consists of

all nodes j such that (j, k) ∈ E. One of the convenient properties of DAG models

is that the joint distribution f(X1, X2, · · · , Xp) factorizes in terms of the conditional

distributions as follows [39]:

f(X1, X2, · · · , Xp) =

p∏
j=1

fj(Xj | Xpa(j)),

where fj(Xj | Xpa(j)) refers to the conditional distribution of node Xj in terms of

its parents. The basic property of Poisson DAG models is that each conditional

distribution fj(xj | xpa(j)) has a Poisson distribution. More precisely, for Poisson

DAG models:

Xj | X{1,2,··· ,p}\{j} ∼ Poisson(gj(Xpa(j))), (3.1)

where gj(·) is an arbitrary function of Xpa(j). To take a concrete example, gj(·)

can represent the link function for the univariate Poisson generalized linear model

(GLM) or gj(Xpa(j)) = exp(θj +
∑

k∈pa(j) θjkXk) where (θjk)k∈pa(j) represent the

linear weights.
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Using the factorization (3.1), the overall joint distribution is:

f(X1, · · · , Xp) = exp
(∑
j∈V

θjXj+
∑

(k,j)∈E

θjkXkXj−
∑
j∈V

logXj!−
∑
j∈V

e
θj+

∑
k∈pa(j) θjkXk

)
.

(3.2)

To contrast this formulation with the Poisson undirected graphical model in

Yang et al. [77], the joint distribution for undirected graphical models has the form:

f(X1, X2, · · · , Xp) = exp
(∑
j∈V

θjXj +
∑

(k,j)∈E

θjkXkXj −
∑
j∈V

logXj!− A(θ)
)
, (3.3)

where A(θ) is the log-partition function or the log of the normalization constant. While

the two forms (3.2) and (3.3) look quite similar, the key difference is the normalization

constant of A(θ) in (3.3) as opposed to the term
∑

j∈V e
θj+

∑
k∈pa(j) θkjXk in (3.2) which

depends on X. To ensure the undirected graphical model representation in (3.3) is a

valid distribution, A(θ) must be finite which guarantees the distribution is normaliz-

able and Yang et al. [77] prove that A(θ) is normalizable if and only if all θ values are

less than or equal to 0.

3.3 Identifiability

In this section, we prove that Poisson DAG models are identifiable under a very

mild condition. In general, DAG models can only be defined up to their Markov

equivalence class (see e.g. [68]). However in some cases, it is possible to identify

the DAG by exploiting specific properties of the distribution. For example, Peters

and Bühlmann prove that for Gaussian DAGs based on structural equation models

with known or the same variance, the models are identifiable [53], Shimizu et al. [64]

prove identifiability for linear non-Gaussian structural equation models, and Peters et

al. [54] prove identifiability of non-parametric structural equation models with additive

independent noise. Here we show that Poisson DAG models are also identifiable using

the idea of overdispersion.

To provide intuition, we begin by showing the identifiability of a two-node Pois-

son DAG model in Figure 3.1. The basic idea is that the relationship between nodes
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X1 X2

M1

X1 X2

M2

X1 X2

M3

Figure 3.1:: Directed graphs ofM1,M2 andM3

X1 and X2 generates the overdispersed child variable. To be precise, consider all

three models: M1 : X1 ∼ Poisson(λ1), X2 ∼ Poisson(λ2), where X1 and X2

are independent; M2 : X1 ∼ Poisson(λ1) and X2 | X1 ∼ Poisson(g2(X1)); and

M3 : X2 ∼ Poisson(λ2) and X1 | X2 ∼ Poisson(g1(X2)). Our goal is to determine

whether the underlying DAG model isM1,M2 orM3.

Now we exploit the fact that for a Poisson random variable X, Var(X) = E(X),

while for a distribution which is a conditionally Poisson, the variance is overdispersed

relative to the mean. For M1, Var(X1) = E(X1) and Var(X2) = E(X2). For M2,

Var(X1) = E(X1), while

Var(X2) = E[Var(X2 | X1)] + Var[E(X2 | X1)] = E[g2(X1)] + Var[g2(X1)] > E(X2),

as long as Var(g2(X1)) > 0.

Similarly underM3, it is clear that Var(X2) = E(X2) and Var(X1) > E(X1) as

long as Var(g1(X2)) > 0. Hence we can identify modelM1,M2, andM3 by testing

whether the variance is greater than the expectation or equal to the expectation. With

finite sample size n, the quantities E(·) and Var(·) can be estimated from data and we

consider the finite sample setting in Sections 3.4 and 3.4.2. Now we extend this idea

to provide an identifiability condition for general Poisson DAG models.

The key idea to extending identifiability from the bivariate to multivariate sce-

nario involves condition on parents of each node and then testing overdispersion. The

general p-variate result is as follows:

Theorem 3.1. Assume that for any j ∈ V , K ⊂ pa(j) and S ⊂ {1, 2, .., p} \K,

Var(gj(Xpa(j)) | XS) > 0,
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the Poisson DAG model is identifiable.

We defer the proof to the supplementary material. Once again, the main idea

of the proof is overdispersion. To explain the required assumption note that for any

j ∈ V and S ⊂ pa(j), Var(Xj | XS)− E(Xj | XS) = Var(gj(Xpa(j)) | XS). Note that

if S = pa(j) or {1, · · · , j − 1}, Var(gj(Xpa(j)) | XS) = 0. Otherwise Var(gj(Xpa(j)) |

XS) > 0 by our assumption.

3.4 Algorithm

Our algorithm which we call OverDispersion Scoring (ODS) consists of three

main steps: 1) estimating a candidate parents set [77, 71, 3] using existing learning

undirected graph algorithms; 2) estimating a causal ordering using overdispersion

scoring; and 3) estimating directed edges using standard regression algorithms such as

Lasso. Steps 3) is a standard problem in which we use off-the-shelf algorithms. Step 1)

allows us to reduce both computational and sample complexity by exploiting sparsity

of the moralized or undirected graphical model representation of the DAG which we

introduce shortly. Step 2) exploits overdispersion to learn a causal ordering.

Let {X(i)}ni=1 denote iid n samples drawn from the Poisson DAGmodelG. Let π :

{1, 2, · · · , p} → {1, 2, · · · , p} be a bijective function corresponding to a permutation

or a causal ordering. We will also use the convenient notation ·̂ to denote an estimate

based on the data. For ease of notation for any j ∈ {1, 2, · · · , p}, and S ⊂ {1, 2, · · · , p}

let µj|S and µj|S(xS) represent E(Xj | XS) and E(Xj | XS = xS), respectively. Further-

more let σ2
j|S and σ2

j|S(xS) denote Var(Xj | XS) and Var(Xj | XS = xS), respectively.

We also define n(xS) =
∑n

i=1 1(X
(i)
S = xS) and nS =

∑
xS
n(xS)1(n(xS) ≥ c0 · n) for

an arbitrary c0 ∈ (0, 1).

The computation of the score ŝjk in Step 2) of our ODS algorithm 3.1 involves

the following equation:

ŝjk =
∑

x∈X (Ĉjk)

n(x)

nĈjk

(
σ̂2
j|Ĉjk

(x)− µ̂j|Ĉjk(x)
)

(3.4)



19

Algorithm 3.1 OverDispersion Scoring (ODS)

1: Input: n samples from the given Poisson DAGmodel. X(1), · · · , X(n) ∈ {{0}∪N}p

2: Output: A causal ordering π̂ ∈ Np and a graph structure, Ê ∈ {0, 1}p×p

3: Step 1: Estimate the undirected edges Êu corresponding to the moralized graph
with neighborhood set N̂ (j)

4: Step 2: Estimate causal ordering using overdispersion score
5: for i ∈ {1, 2, · · · , p} do
6: ŝi = σ̂2

i − µ̂i
7: end for
8: The first element of a causal ordering π̂1 = arg minj ŝj

9: for j = {2, 3, · · · , p− 1} do
10: for k ∈ N (π̂j−1) ∩ {1, 2, · · · , p} \ {π̂1, · · · , π̂j−1} do
11: The candidate parents set Ĉjk = N̂ (k) ∩ {π̂1, π̂2, · · · , π̂j−1}
12: Calculate ŝjk using (3.4);
13: end for
14: The jth element of a causal ordering π̂j = arg mink ŝjk

15: Step 3: Estimate directed edges toward π̂j, denoted by D̂j

16: end for
17: The pth element of the causal ordering π̂p = {1, 2, · · · , p} \ {π̂1, π̂2, · · · , π̂p−1}
18: The directed edges toward π̂p, denoted by D̂p = N̂ (π̂p)

19: Return: π̂ = (π̂1, π̂2, · · · , π̂p) and Ê = {D̂2, D̂3, · · · , D̂p}

where Ĉjk refers to an estimated candidate set of parents specified in Step 2) of our

ODS algorithm 3.1 and X (Ĉjk) = {x ∈ {X(1)

Ĉjk
, X

(2)

Ĉjk
, · · · , X(n)

Ĉjk
} : n(x) ≥ c0.n} so that

we ensure we have enough samples for each element we select. In addition, c0 is a

tuning parameter of our algorithm that we specify in our main Theorem 3.3 and our

numerical experiments.

We can use a number of standard algorithms for Step 1) of our ODS algorithm

since it boils down to finding a candidate set of parents. The main purpose of Step 1)

is to reduce both computational complexity and the sample complexity by exploiting

sparsity in the moralized graph. In Step 1) a candidate set of parents is generated for

each node which in principle could be the entire set of nodes. However since Step 2)
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requires computation of a conditional mean and variance, both the sample complex-

ity and computational complexity depend significantly on the number of variables we

condition on as illustrated in Section 3.4.1 and 3.4.2. Hence by making the set of

candidate parents for each node as small as possible we gain significant computational

and statistical improvements by exploiting the graph structure. A similar step is taken

in the MMHC [70] and SC algorithms [21]. The way we choose a candidate set of par-

ents is by learning the moralized graph Gm and then using the neighborhood set N (j)

for each j. Hence Step 1) reduces to a standard undirected graphical model learning

algorithm. A number of choices are available for Step 1) including the neighborhood

regression approach of Yang et al. [77] as well as standard DAG learning algorithms

which find a candidate parents set such as HITON [3] and MMPC [70].

Step 2) learns the causal ordering by assigning an overdispersion score for each

node. The basic idea is to determine which nodes are overdispersed based on the

sample conditional mean and conditional variance. The causal ordering is determined

one node at a time by selecting the node with the smallest overdispersion score which is

representative of a node that is least likely to be conditionally Poisson and most likely

to be marginally Poisson. Finding the causal ordering is usually the most challenging

step of DAG learning, since once the causal ordering is learnt, all that remains is to

find the edge set for the DAG. Step 3), the final step finds the directed edge set of

the DAG G by finding the parent set of each node. Using Steps 1) and 2), finding

the parent set of node j boils down to selecting which variables are parents out of

the candidate parents of node j generated in Step 1) intersected with all elements

before node j of the causal ordering in Step 2). Hence we have p regression variable

selection problems which can be performed using GLMLasso [18] as well as standard

DAG learning algorithms.
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3.4.1 Computational Complexity

Steps 1) and 3) use existing algorithms with known computational complex-

ity. Clearly the computational complexity for Steps 1) and 3) depend on the choice

of algorithm. For example, if we use the neighborhood selection GLMLasso algo-

rithm [18] as is used in Yang et al. [77], the worst-case complexity is O(min(n, p)np)

for a single Lasso run but since there are p nodes, the total worst-case complexity is

O(min(n, p)np2). Similarly if we use GLMLasso for Step 3) the computational com-

plexity is also O(min(n, p)np2). As we show in numerical experiments, DAG-based

algorithms for Step 1) tend to run more slowly than neighborhood regression based

on GLMLasso.

For Step 2) where we estimate the causal ordering has (p − 1) iterations and

each iteration has a number of overdispersion scores ŝj and ŝjk computed which is

bounded by O(|K|) where K is a set of candidates of each element of a causal ordering,

N (π̂j−1)∩{1, 2, · · · , p}\{π̂1, · · · π̂j−1}, which is also bounded by the maximum degree

of the moralized graph d. Hence the total number of overdispersion scores that need

to be computed is O(pd). Since the time for calculating each overdispersion score

which is the difference between a conditional variance and expectation is proportional

to n, the time complexity is O(npd). In worst case where the degree of the moralized

graph is p, the computational complexity of Step 2) is O(np2). As we discussed

earlier there is a significant computational saving by exploiting a sparse moralized

graph which is why we perform Step 1) of the algorithm. Hence Steps 1) and 3) are

the main computational bottlenecks of our ODS algorithm. The addition of Step 2)

which estimates the causal ordering does not significantly add to the computational

bottleneck. Consequently our ODS algorithm, which is designed for learning DAGs

is almost as computationally efficient as standard methods for learning undirected

graphical models.
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3.4.2 Statistical Guarantees

In this section, we show statistical guarantees for recovering the causal order-

ing of our algorithm under suitable regularity conditions. We begin by stating the

assumptions we impose on DAG models.

Assumption 3.2.

(A1) For all j ∈ V , K ⊂ pa(j) and all S ⊂ {1, 2.., p} \K, there exists an m > 0 such

that Var(gj(Xpa(j)) | XS) > m.

(A2) For all j ∈ V , there exists an M <∞ such that E[exp(gj(Xpa(j)))] < M .

(A1) is a stronger version of the identifiability assumption in Theorem 3.1 where

since we are in the finite sample setting, we need the conditional variance to be lower

bounded by a constant bounded away from 0. (A2) is a condition on the tail behavior

of gj(pa(j)) for controlling tails of the score ŝjk in Step 2 of our ODS algorithm. To

take a concrete example for which (A1) and (A2) are satisfied, it is straightforward to

show that the GLM DAG model (3.2) with non-positive values of {θkj} satisfies both

(A1) and (A2). The non-positivity constraint on the θ’s is sufficient but not necessary

and ensures that the parameters do not grow too large.

Now we present the main result under Assumptions (A1) and (A2). For general

DAGs, the true causal ordering π∗ is not unique. Therefore let E(π∗) denote all the

causal orderings that are consistent with the true DAG G∗. Further recall that d

denotes the maximum degree of the moralized graph G∗m.

Theorem 3.3 (Recovery of a causal ordering). Consider a Poisson DAG model as

specified in (3.1), with a set of true causal orderings E(π∗) and the rate function gj(·)

satisfies assumptions 3.2. If the sample size threshold parameter c0 ≤ n−1/(5+d), then

there exist positive constants, C1, C2, C3 such that

P(π̂ /∈ E(π∗)) ≤ C1exp(−C2n
1/(5+d) + C3 log max{n, p}).
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We defer the proof to the supplementary material. The main idea behind the

proof uses the overdispersion property exploited in Theorem 3.1 in combination with

concentration bounds that exploit Assumption (A2). Note once again that the maxi-

mum degree d of the undirected graph plays an important role in the sample complexity

which is why Step 1) is so important. This is because the size of the conditioning set

depends on the degree of the moralized graph d. Hence d plays an important role in

both the sample complexity and computational complexity.

Theorem 3.3 can be used in combination with sample complexity guarantees

for Steps 1) and 3) of our ODS algorithm to prove that our output DAG Ĝ is the

true DAG G∗ with high probability. Sample complexity guarantees for Steps 1) and

3) depend on the choice of algorithm but for neighborhood regression based on the

GLMLasso, provided n = Ω(d log p), Steps 1) and 3) should be consistent.

For Theorem 3.3 if the triple (n, d, p) satisfies n = Ω((log p)5+d), then our ODS

algorithm recovers the true DAG. Hence if the moralized graph is sparse, ODS recovers

the true DAG in the high-dimensional p > n setting. DAG learning algorithms that

apply to the high-dimensional setting are not common since they typically rely on

faithfulness or similar assumptions or other restrictive conditions that are not satisfied

in the p > n setting. Note that if the DAG is not sparse and d = Ω(p), our sample

complexity is extremely large when p is large. This makes intuitive sense since if

the number of candidate parents is large, we would need to condition on a large set

of variables which is very sample-intensive. Our sample complexity is certainly not

optimal since the choice of tuning parameter c0 ≤ n−1/(5+d). Determining optimal

sample complexity remains an open question.

The larger sample complexity of our ODS algorithm relative to undirected graph-

ical models learning is mainly due to the fact that DAG learning is an intrinsically

harder problem than undirected graph learning when the causal ordering is unknown.

Furthermore note that Theorem 3.3 does not require any additional identifiability

assumptions such as faithfulness which severely increases the sample complexity for
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large-scale DAGs [73].

3.5 Numerical Experiments

In this section, we support our theoretical results with numerical experiments

and show that our ODS algorithm performs favorably compared to state-of-the-art

DAG learning methods. The simulation study was conducted using 50 realizations of

a p-node random Poisson DAG that was generated as follows. The gj(·) functions for

the general Poisson DAGmodel (3.1) was chosen using the standard GLM link function

(i.e.gj(Xpa(j)) = exp(θj +
∑

k∈pa(j) θjkXk)) resulting in the GLM DAG model (3.2).

We experimented with other choices of gj(·) but only present results for the GLM DAG

model (3.2). Note that our ODS algorithm works well as long as Assumption 3.2 is

satisfied regardless of choices of gj(·). In all results presented (θjk) parameters were

chosen uniformly at random in the range θjk ∈ [−1,−0.7] although any values far from

zero and satisfying the assumption 3.2 work well. In fact, smaller values of θjk are more

favorable to our ODS algorithm than state-of-the-art DAG learning methods because

of weak dependency between nodes. DAGs are generated randomly with a fixed unique

causal ordering {1, 2 · · · , p} with edges randomly generated while respecting desired

maximum degree constraints for the DAG. In our experiments, we always set the

thresholding constant c0 = 0.005 although any value below 0.01 seems to work well.

In Fig. 3.2, we plot the proportion of simulations in which our ODS algorithm

recovers the correct causal ordering in order to validate Theorem 3.3. All graphs

in Fig. 3.2 have exactly 2 parents for each node and we plot how the accuracy in

recovering the true π∗ varies as a function of n for n ∈ {500, 1000, 2500, 5000, 10000}

and for different node sizes (a) p = 10, (b) p = 50, (c) p = 100, and (d) p = 5000.

As we can see, even when p = 5000, our ODS algorithm recovers the true causal

ordering about 40% of the time even when n is approximately 5000 and for smaller

DAGs accuracy is 100%. In each sub-figure, 3 different algorithms are used for Step 1):

GLMLasso [18] where we choose λ = 0.1; MMPC [70] with α = 0.005; and HITON [3]
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Figure 3.2:: Accuracy rates of successful recovery for a causal ordering via our ODS

algorithm using different base algorithms

again with α = 0.005 and an oracle where the edges for the true moralized graph is

used. As Fig. 3.2 shows, the GLMLasso seems to be the best performing algorithm

in terms of recovery so we use the GLMLasso for Steps 1) and 3) for the remaining

figures. GLMLasso was also the only algorithm that scaled to the p = 5000 setting.

However, it should be pointed out that GLMLasso is not necessarily consistent and

it is highly depending on the choice of gj(·). Recall that the degree d refers to the

maximum degree of the moralized DAG.

Fig. 3.3 provides a comparison of how our ODS algorithm performs in terms of

Hamming distance compared to the state-of-the-art PC [68], MMHC [70], GES [9], and

SC [21] algorithms. For the PC, MMHC and SC algorithms, we use α = 0.005 while

for the GES algorithm we use the mBDe [29] (modified Bayesian Dirichlet equivalent)
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Figure 3.3:: Comparison of our ODS algorithm (black) and PC, GES, MMHC, SC

algorithms in terms of Hamming distance to skeletons and directed edges.

score since it performs better than other score choices. We consider node sizes of

p = 10 in (a) and (b) and p = 100 in (c) and (d) since many of these algorithms do

not easily scale to larger node sizes. We consider two Hamming distance measures: in

(a) and (c), we only measure the Hamming distance to the skeleton of the true DAG,

which is the set of edges of the DAG without directions; for (b) and (d) we measure the

Hamming distance for the edges with directions. The reason we consider the skeleton is

because the PC does not recover all directions of the DAG. We normalize the Hamming

distance by dividing by the total number of edges
(
p
2

)
and p(p − 1), respectively so

that the overall score is a percentage. As we can see our ODS algorithm significantly

out-performs the other algorithms. We can also see that as the sample size n grows,

our algorithm recovers the true DAG which is consistent with our theoretical results.
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Figure 3.4:: Performance of our ODS algorithm for large-scale DAGs with p =

1000, 2500, 5000
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Figure 3.5:: Time complexity of our ODS algorithm with respect to node size p, sample

size n, and parents size |pa|

It must be pointed out that the choice of DAG model is suited to our ODS algorithm

while these state-of-the-art algorithms apply to more general classes of DAG models.

Now we consider the statistical performance for large-scale DAGs. Fig. 3.4 plots

the statistical performance of ODS for large-scale DAGs in terms of (a) recovering the

causal ordering; (b) Hamming distance to the true skeleton; (c) Hamming distance to

the true DAG with directions. All graphs in Fig. 3.4 have exactly 2 parents for each

node and accuracy varies as a function of n for n ∈ {500, 1000, 2500, 5000, 10000} and

for different node sizes p = {1000, 2500, 5000}. Fig. 3.4 shows that our ODS algorithm

accurately recovers the causal ordering and true DAG models even in high dimensional
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setting, supporting our theoretical results 3.3.

Fig. 3.5 shows run-time of our ODS algorithm. We measure the running time

(a) by varying node size p from 10 to 125 with the fixed n = 100 and 2 parents; (b)

sample size n from 100 to 2500 with the fixed p = 20 and 2 parents; (c) the number

of parents of each node |pa| from 1 to 5 with the fixed n = 5000 and p = 20. Fig. 3.5

(a) and (b) support the section 3.4.1 where the time complexity of our ODS algorithm

is at most O(np2). Fig. 3.5 (c) shows running time is proportional to a parents size

which is a minimum degree of a graph. It agrees with the time complexity of Step 2)

of our ODS algorithm is O(npd). We can also see that the GLMLasso has the fastest

run-time amongst all algorithms that determine the candidate parent set.
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Chapter 4

Learning QVF DAG Models

4.1 Introduction

Probabilistic directed acyclic graphical (DAG) models or Bayesian networks are a

widely used framework for representing causal, directional or dependence relationships

between multiple variables. These models have applications in various areas such as

genomics, neuroimaging, statistical physics, spatial statistics and many others (see

e.g. []). One of the fundamental problems associated with DAG models is learning

DAG models from observational data.

However, a number of challenges arise that make learning DAG models often im-

possible for large-scale data even when variables have a natural causal or directional

structure. These issues are: (1) identifiability since inferring causal directions from

data is often not possible; (2) computational complexity since it is often computation-

ally infeasible to search over the space of DAGs [8]; (3) sample size guarantee since

fundamental identifiability assumptions, such as the faithfulness [68] often requires an

extremely large sample size n to be satisfied even when the number of nodes p is small

(see e.g., [73]).

Regarding the identifiability issue, DAG models can only be identified up to their

Markov equivalence class (see e.g., [68]). However, recent work shows that it is possible

to fully identify the DAG structure including directions by exploiting characterization
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of the node probability distribution. Shimizu et al. [64] proved identifiability for linear

non-Gaussian structural equation models, and Peters et al. [54] proved identifiability

for non-parametric structural equation models with additive independent noise. Peters

and Bühlmann [53] proved identifiability for Gaussian DAGmodels based on structural

equation models with known or the same variance of errors, and Park and Raskutti [46]

proved identifiability for Poisson DAG models using the notion of overdispersion.

The major contributions of our paper are to (i) introduce a new class of iden-

tifiable directed graphical models where each node has a quadratic variance function

(QVF) conditional distribution; (ii) introduce a general OverDispersion Scoring (ODS)

algorithm that applies to our class of QVF DAG models; (iii) provide theoretical guar-

antees for our ODS algorithm which proves that our algorithm is consistent in the high-

dimensional setting p > n provided there is underlying sparse structure; and (iv) show

through a simulation study that our ODS algorithm has favorable performance to a

number of state-of-the-art algorithms for both low-dimensional and high-dimensional

DAG models.

The remainder of the paper is organized as follows: In Section 4.2, we describe

how we define DAG models with a given probability distribution and we prove the

identifiability for our class of DAG models. In Section 4.3, we introduce a polynomial-

time DAG learning algorithm for our class of identifiable DAG models which we call

generalized OverDispersion Scoring (ODS). The main idea behind proving identifia-

bility is based on the overdispersion of variables. As Park and Raskutti [46] discussed

about Poisson DAG models, overdispersion of variables has potential as a score for

recovering the causal ordering of a DAG. However most distributions in general do not

satisfy equidispersion, therefore we provide a transformation such that each variable

is conditionally equidispersed and marginally overdispersed. While overdispersion is

a well-known phenomena that is exploited in many applications (see e.g. [15, 81]),

using overdispersion as a score has never been exploited in learning our class of DAG

models to our knowledge. Statistical guarantees for learning a DAG model are pro-
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vided in Section 4.3.2, and we provide numerical experiments on both small DAGs and

large-scale DAGs with node-size up to 5000 nodes in Section 4.5.1. Our theoretical

guarantees prove that even in the setting where the number of nodes p is larger than

the sample size n, it is possible to learn the DAG structure under the assumption

that the degree of the so-called moralized graph of a DAG is small. Our numerical

experiments provided in Section 4.5.1 support the theoretical results and show that

our algorithm performs well compared to other state-of-the-art DAG learning methods.

Our numerical experiments confirm that our algorithm is one of the few DAG-learning

algorithms that performs well in terms of statistical and computational complexity in

high-dimensional p > n settings.

4.2 Quadratic Variance Function (QVF) DAGmodels and Iden-

tifiability

One of the main objectives of learning DAG models is to determine causal or di-

rectional relationships between variables. Therefore, we are interested in determining

the conditions that make the DAG models fully identifiable in terms of their edges and

directions from observational data. Recent studies proved identifiability of a special

class of DAG models using the characterization of the given probability distribution.

For example, Peters and Bühlmann [53] proved the identifiability of Gaussian DAG

models using the property of Gaussian distribution and the known error variances.

Here we introduce a new class of identifiable DAG models using the idea of overdis-

persion.

We introduce quadratic variance function (QVF) DAG models as models where

the conditional distribution of each node given its parents satisfies the following

quadratic variance function:

Var(Xj | Xpa(j)) = β0E(Xj | Xpa(j)) + β1E(Xj | Xpa(j))
2. (4.1)

Furthermore, this quadratic variance property does not hold for other conditional

distributions of a node given variables without some parents.
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A popular example is a natural parameter exponential family distribution with

quadratic variance function (NEF-QVF) [44] which includes Poisson, Binomial, Nega-

tive Binomial, Gamma, and Gaussian distributions. However, Gaussian DAG models

do not belong to our QVF DAG models because the variance and expectation of a

Gaussian distribution are independent. It is consistent that if all variances are known

Gaussian DAG models are identifiable [53].

As a special case, if conditional distribution of each node given its parents is

a member of NEF-QVF, then by the factorization property, the joint distribution is

given as:

P (X) = exp

θjXj +
∑

(k,j)∈E

θjkXkXj −
∑
j∈V

Cj(Xj)−
∑
j∈V

Dj(θj + 〈θpa(j), Xpa(j)〉)

 .

(4.2)

where Cj(·) is the base measure, andD(·) is the log-normalization constant determined

by a chosen exponential family distribution. In addition θpa(j) ∈ R|pa(j)| is a parameter

vector corresponding the parents of a node j, and 〈·, ·〉 refers to the inner product.

Provided the quadratic variance function (4.1), we can find a transformation

Tj(Xj) = ωjXj where ωj = (β0+β1E(Xj | Xpa(j)))
−1 such that Var(Tj(Xj) | Xpa(j)) =

E(Tj(Xj) | Xpa(j)) for any node j ∈ V . We present some examples of conditional

distribution for our QVF DAG models with the triple (β0, β1, ω) in the following

Table 4.1.

To provide intuition, we begin by showing the identifiability of a two-node Pois-

son DAG model [46]. The basic idea is that the relationship between variables X1 and

X2 generates the overdispersed child variable. To be precise, consider all three mod-

els: M1 : X1 ∼ Poisson(λ1), X2 ∼ Poisson(λ2), where X1 and X2 are independent;

M2 : X1 ∼ Poisson(λ1) and X2 | X1 ∼ Poisson(g2(X1)); andM3 : X2 ∼ Poisson(λ2)

and X1 | X2 ∼ Poisson(g1(X2)) for arbitrary positive functions g1, g2 : R → R+. Our

goal is to determine whether the underlying DAG model isM1,M2 orM3.

We exploit the fact that for a Poisson random variable X, Var(X) = E(X),
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Figure 4.1:: Directed graphical models ofM1,M2 andM3

while for a distribution which is a conditionally Poisson, the marginal variance is

overdispersed relative to the marginal expectation, Var(X) > E(X). Hence for M1,

Var(X1) = E(X1) and Var(X2) = E(X2). ForM2, Var(Y1) = E(Y1), while

Var(X2) = E[Var(X2 | X1)]+Var[E(X2 | X1)] = E[E[X2 | X1]]+Var[g2(X1)] > E(X2),

as long as Var(g2(X1)) > 0.

Similarly underM3, Var(X2) = E(X2) and Var(X1) > E(X1) as long as Var(g1(X2)) >

0. Hence we can distinguish models M1, M2, and M3 by testing whether the vari-

ance is greater than the expectation or equal to the expectation. For other QVF DAG

models, we can see the same relationship between the variance and expectation after

the transformation Tj(·) we discussed (see examples in Table 4.1). With finite sample

size, the quantities E(·) and Var(·) can be estimated from data and we consider the

finite sample setting in Sections 4.3 and 4.3.2.

We extend this idea of overdispersion to provide an identifiability condition for

general p-variate DAG models. The key idea to extending identifiability from the

Distribution β0 β1 ω
Binomial, Bin(N, p) 1 − 1

N
N

N−E(X)

Poisson, Poi(λ) 1 0 1
Generalized Poisson, GPoi(λ1, λ2) 1

(1−λ2)2
0 1

(1−λ2)2

Geometric, Geo(p) 1 1 1
1+E(X)

Negative Binomial, NB(R, p) 1 1
R

R
R+E(X)

Exponential, Exp(λ) 0 1 1
E(X)

Gamma, Gamma(α, β) 0 1
α

α
E(X)

Table 4.1:: Some distributions with β0, β1 and ω in our new class of identifiable DAG

distributions C2
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bivariate to multivariate scenario involves condition on parents of each node and then

testing overdispersion. The general p-variate DAG model result is as follows:

Theorem 4.1 (Identifiability). Let (X1, X2, · · · , Xp) be a random vector associated

with a QVF DAG model (G,P) with quadratic variance coefficients (β0, β1) in (4.1).

Suppose that β1 > −1. Then for any node j ∈ V , K ⊂ pa(j), and S ⊂ V \K if

Var(E(Xj | Xpa(j)) | XS) > 0, (4.3)

the DAG G is identifiable.

We defer the proof to Appendix B.1.1. Theorem 4.1 claims that a QVF DAG

model is identifiable if all parents of a node j contribute to the variability of a node

j. The identifiable condition is equivalent to transformed variables are overdispersed

since Var(Tj(Xj) | XS)−E(Tj(Xj) | XS) = c(1 +β1)Var(E(Xj | Xpa(j)) | XS) for some

constants c (explained in Appendix B.1.1). If pa(j) ⊆ S, Var(E(Xj | Xpa(j)) | XS) = 0

and therefore the conditional variance is the same as the conditional expectation.

Otherwise, a transformed variable is overdispersed by the identifiability assumption

in Theorem 4.1. The condition β1 > −1 is important since it rules out DAG models

with Bernoulli and Multinomial distributions which are not identifiable.

4.3 Algorithm for QVF DAG Models

We develop a new DAG learning algorithm for count data called generalized

OverDispersion Scoring (ODS) algorithm. Our generalized ODS algorithm consists

of three main steps: 1) estimating the moralized graph of the DAG using undirected

graph learning algorithms; 2) estimating the causal ordering of the DAG using overdis-

persion scoring; and 3) estimating the DAG using standard regression algorithms such

as Lasso. Both Step 1) and Step 3) are standard neighborhood estimation problems

in which we use not only regression algorithms, but also off-the-shelf graph learning

algorithms (e.g. [77, 71, 3]). Step 1) allows us to reduce both computational and
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sample complexity by exploiting the sparsity of the moralized or undirected graphical

model representation of a DAG.

Let {X(1), X(2), · · · , X(n)} denote iid n samples drawn from a given QVF DAG

model (G,P) with a quadratic variance coefficients (β0, β1). For any node j ∈ V and

S ⊂ V \ {j}, let µj|S and σ2
j|S represent E(Tj(Xj) | XS) and Var(Tj(Xj) | XS), re-

spectively. Furthermore for some realizations of xS ∈ XS, let µj|S(xS) and σ2
j|S(xS)

denote E(Tj(Xj) | XS = xS) and Var(Tj(Xj) | XS = xS), respectively. We will

also use the convenient notation ·̂ to denote an estimate based on the data. We use

n(xS) =
∑n

i=1 1(X
(i)
S = xS) to denote a total conditional sample size, and nS =∑

xS
n(xS)1(n(xS) ≥ c0.n) for an arbitrary c0 ∈ (0, 1) to denote a truncated con-

ditional sample size. For notational convenience, we use 1 : j = {1, 2, · · · , j} and

1 : 0 = ∅. With those notations, let cjm = (β0 + β1µj|1:m−1)−1 for m ∈ V \ {1} and

j ∈ {m,m + 1, · · · , p}, and cj1 = β0 + β1µj)
−1. The idea of cjm is from the ωj of the

transformation Tj(·). Since we do not know the parents of a node j, here we consider

a candidate set of parents Cjm of a node j for the mth element of the causal ordering.

A candidate set of parents of a node j is an intersection of an neighbors of a node j

and first m− 1 elements of the causal ordering because the parents of a node j must

be in the N (j) and appear in the causal ordering before a node j. It is estimated in

Step 2) of the generalized ODS algorithm 4.1.

The computation of overdispersion scores in Step 2) of the generalized ODS

algorithm 4.1 involves the following equations:

Ŝ(1, k) =

[(
σ̂j

β0 + β1µ̂j

)2

− µ̂j
β0 + β1µ̂j

]
(4.4)

Ŝ(j, k) =
∑

x∈X (Ĉjk)

n(x)

nĈjk

( σ̂j|Ĉjk(x)

β0 + β1µ̂j|Ĉjk(x)

)2

−
µ̂j|Ĉjk(x)

β0 + β1µ̂j|Ĉjk(x)

 (4.5)

where X (Ĉjk) = {xjk ∈ {X(1)

Ĉjk
, X

(2)

Ĉjk
, · · · , X(n)

Ĉjk
} : n(xjk) ≥ c0.n} to ensure we have

enough samples for each element of an overdispersion score. An overdispersion score is
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Algorithm 4.1 Generalized OverDispersion Scoring (ODS)
1: Input: iid n samples from the QVF DAG model
2: Output: A causal ordering π̂ ∈ Np and a graph structure Ê ∈ {0, 1}p×p

3: Step 1: Estimate the neighborhood of each node N̂ (j) in the moralized graph
4: Step 2: Estimate the causal ordering using overdispersion scores
5: for k ∈ {1, 2, · · · , p} do
6: Calculate overdispersion scores Ŝ(1, k) using Equation (4.4)
7: end for
8: The first element of a causal ordering π̂1 := arg mink Ŝ(1, k)

9: for j = {2, 3, · · · , p− 1} do
10: for k ∈ N̂ (π̂j−1) ∩ {1, 2, · · · , p} \ {π̂1, · · · , π̂j−1} do
11: Find candidate parents set Ĉjk := N̂ (k) ∩ {π̂1, π̂2, · · · , π̂j−1}
12: Calculate overdispersion scores Ŝ(j, k) using Equation (4.5)
13: end for
14: The jth element of a causal ordering π̂j := arg mink Ŝ(j, k)

15: Step 3: Estimate the directed edges toward π̂j, denoted by D̂j

16: end for
17: The last element of the causal ordering π̂p := {1, 2, · · · , p} \ {π̂1, π̂2, · · · , π̂p−1}
18: The directed edges toward π̂p, denoted by D̂p := {(z, π̂p) | z ∈ N̂ (π̂p)}
19: Return: π̂ := (π̂1, π̂2, · · · , π̂p) and Ê := ∪j={2,3,··· ,p}D̂j

the weighted average of differences between conditional sample means and variances.

In addition, c0 is a tuning parameter of our algorithm that we specify in Theorem 4.8

and our numerical experiments.

The main purpose of Step 1) is to reduce both computational complexity and

sample complexity by exploiting the sparsity of the moralized graph. In Step 1), the

neighborhood set for each node is estimated which is a superset of a candidate parents

set for each node. A candidate parents set is used for a condition set for an overdis-

persion score in Step 2). In principle, a size of a condition set for an overdispersion

score could be p− 1 if the moralized graph is not applied. Since Step 2) requires com-

putation of a conditional mean and variance, both the computational complexity and

sample complexity depend significantly on the number of variables we condition on as
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illustrated in Subsection 4.3.1 and 4.3.2. Therefore by making the condition set of for

the overdispersion score of each node as small as possible, we gain significant compu-

tational and statistical improvements. Furthermore, Step 1) reduces the number of

overdispersion scores to be compared in Step 2). If jth element of the causal ordering

is estimated, it is sufficient for j+1th element of the causal ordering to consider neigh-

borhood of jth element of the causal ordering in the moralized graph. Since Step 2)

compares overdispersion scores of nodes for each component of the causal ordering, by

minimizing the number of overdispersion scores to be compared, we obtain significant

statistical and computational improvements. A similar step is taken by Loh et al. [40],

the MMHC [71] and SC algorithms [21]. Since the moralized graph is an undirected

graph, a number of choices are available for Step 1) including standard undirected

graph learning algorithms such as the HITON [3] and MMPC algorithms [71] as well

as GLMLasso [18]. In addition, standard DAG learning algorithms such as GES [9]

and MMHC algorithms [71] can be applied and the moralized graph can be found from

the estimated DAG.

The novelty of our generalized ODS algorithm is Step 2) which learns the causal

ordering by comparing overdispersion scores of nodes. The basic idea is to determine

which nodes are overdispersed based on the sample conditional mean and conditional

variance. The causal ordering is determined one node at a time by selecting the node

with the smallest overdispersion score which is representative of a node that is least

likely to be overdispersed. Finding the causal ordering is usually the most challenging

step of DAG learning since once the causal ordering is learned, all that remains is to

find the edge set of the DAG.

By using Step 2) of the generalized ODS algorithm, finding the set of parents

of a node j boils down to selecting the parents out of all elements before a node j

in the estimated causal ordering. Hence, Step 3) can be reduced to p neighborhood

estimation problems which can be performed using GLMLasso [18] as well as standard

DAG learning algorithms such as the PC [68], GES [9], and MMHC algorithms [71].
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4.3.1 Computational Complexity

Steps 1) and 3) of the generalized ODS algorithm use any off-the-shelf algo-

rithms with known computational complexity. Clearly, the computational complexity

for Steps 1) and 3) depends on the choice of algorithms. For example, if we use

the neighborhood selection GLMLasso algorithm [18] as is used in Yang et al. [77],

the worst-case complexity is O(min(n, p)np) for a single Lasso run but since there

are p nodes, the total worst-case complexity is O(min(n, p)np2). Similarly, if we use

GLMLasso for Step 3) the computational complexity is also O(min(n, p)np2).

For Step 2) where we estimate the causal ordering of a DAG, there are (p −

1) iterations and each iteration has a number of overdispersion scores Ŝ(j, k) to be

computed which is bounded by O(d) where d is the maximum degree of the moralized

graph. Hence the total number of overdispersion scores that need to be computed is

O(pd). Since the time for calculating each overdispersion score which is the difference

between a conditional variance and expectation is proportional to the sample size n,

the time complexity is O(npd).

In worst case where the degree of the moralized graph is p, the computational

complexity of Step 2) is O(np2). As we discussed earlier, there is a significant com-

putational saving by exploiting the sparsity of the moralized graph which is why we

perform Step 1) of the generalized ODS algorithm. Hence, Steps 1) and 3) are the

main computational bottlenecks of the generalized ODS algorithm. The addition of

Step 2) which estimates the causal ordering does not significantly add to the computa-

tional bottleneck. Consequently, the generalized ODS algorithm, which is designed for

learning DAGs, is almost as computationally efficient as standard methods for learn-

ing graphical models. As we show in numerical experiments, the ODS algorithm using

GLMLasso in both Steps 1) and 3) is not slower than state-of-the-art GES algorithm.
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4.3.2 Statistical Guarantees

In this section, we study the theoretical guarantees of recovering the structure

of a DAG via our generalized ODS algorithm. Although we can use any off-the-shelf

algorithms in Steps 1) and 3), we only provide theoretical guarantees of learning the

moralized graph and the DAG structure via surrogate GLMLasso in Sections 4.3.2.1

and 4.3.2.3. In addition, we also provide statistical guarantees for learning the causal

ordering of a DAG in Section 4.3.2.2. All three main results concern conditions on the

triple (n, p, d), sample size n regarding to complexity of the graphical model which are

specifically the number of nodes p and the maximum degree of the moralized graph d,

ensuring that the generalize ODS algorithm recovers a DAG structure consistently.

We introduce an important lemma to ensure that the true parents of each node

are same as the estimated parents via surrogate GLMLasso. To make the definition of

the estimated parents via surrogate GLMLasso precise, suppose that θ∗D ∈ ΘD denotes

the solution of the surrogate GLM problem where ΘD = {θ ∈ Rp−1 : θk = 0 for k /∈

pa(j)}.

θ∗D := arg min
θ∈Rj−1

E (−Xj〈θ,X1:j−1〉+D(〈θ,X1:j−1〉)) , (4.6)

where D(·) is the log-normalization constant determined by a chosen GLM. Then, the

parents of a node j via surrogate GLM is defined as p̃a(j) := {k ∈ V \{j} : [θ∗D]k 6= 0}

where [·]k denotes a parameter corresponding to a variable Xk.

In a special case of NEF-QVF DAG models in (4.2), clearly θ∗D is the same as

the true parameters θ where θjk 6= 0 for all k ∈ pa(j). However θ∗D is in general not

the same as the true parameters.

Lemma 4.1. Consider a DAG model (G,P). For any node j ∈ V and k ∈ pa(j), if

Cov(Xj, Xk) 6= Cov(Xk, D
′(〈[θ∗D]pa(j)\k, Xpa(j)\j〉)),

the true parents of each node is equivalent to the estimated parents of each node via

surrogate GLM. In other words, p̃a(j) = pa(j) for any j ∈ V .
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If Xk and Xpa(j)\k are independent, the condition in Lemma 4.1 is equivalent

to Cov(Xj, Xk) 6= 0 which is milder than the widely held faithfulness assumption.

However, since it is possible that parents are correlated, we require that the covari-

ance between Xj and its parent Xk is not a covariance between the parents Xk and

D′(〈[θ∗D]pa(j)\k, Xpa(j)\j〉).

Lemma 4.1 explains that recovering the structure of a DAG is equivalent to

solving the p-surrogate GLMLasso if the solution of GLMLasso is sufficiently close to

the solution of GLM. Hence in Section 4.3.2.3, we provide the theoretical guarantee

that solution of GLMLasso is sufficiently close to the solution θ∗D of GLM.

For the moralized graph estimation, we also require a similar condition to ensure

that the true neighborhood of each node are same as the estimated neighborhood via

surrogate GLMLasso. For the precise definition of the estimated neighborhood via

surrogate GLMLasso, we define θ∗M ∈ ΘM as the solution of the convex optimization

problem of GLM where ΘM = {θ ∈ Rp−1 : θk = 0 for k /∈ N (j)}.

θ∗M := arg min
θ∈Rp−1

E
[
−Xj〈θV \j, XV \j〉+D(〈θV \j, XV \j〉)

]
. (4.7)

where D(·) is the log-normalization constant determined by a chosen GLM. Then the

estimated neighborhood via surrogate GLM is defined as Ñ (j) := {k ∈ V \ {j} :

[θ∗M ]k 6= 0}.

Corollary 4.1. Consider a DAG model (G,P). For any node j ∈ V and k ∈ N (j), if

Cov(Xj, Xk) 6= Cov(Xk, D
′(〈[θ∗M ]N (j)\k, XN (j)\j〉)),

the true neighborhood of each node is equivalent to the estimated neighborhood of each

node via surrogate GLM. In other words, Ñ (j) = N (j) for all j ∈ V .

This Corollary 4.1 guarantees that recovering the moralized graph structure

is equivalent to solving the p-surrogate GLMLasso if the solution of GLMLasso is

sufficiently close to the solution of GLM. Hence in Section 4.3.2.1, we provide the
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theoretical guarantee that solution of GLMLasso is sufficiently close to the solution

θ∗M of the GLM.

4.3.2.1 Step 1): Recovery of the Moralized Graph of a DAG via Surrogate

GLMLasso

We first focus on Step 1) of the generalized ODS algorithm; theoretical guarantee

of recovering the moralized graph of a DAG. We approach this problem via neighbor-

hood estimation where we estimate the neighborhood of each node N̂ (j) individually.

Here we consider surrogate GLMLasso to estimate the neighborhood of each node

because a conditional distribution of a node given the rest of nodes in a DAG is in

general not equivalent to the likelihood of GLM, therefore our problem is not same as

the regular GLMLasso but surrogate GLMLasso.

We assume that there are n iid samples x = {X(1), X(2), · · · , X(n)} and for any

i ∈ {1, 2, · · · , n}, X(i) = {X(i)
1 , X

(i)
2 · · · , X

(i)
p } from a given DAG model (G,P). Then

for any variable Xj, the negative surrogate conditional log-likelihood of GLM is as

follows.

`(θ;x) :=
1

n

n∑
i=1

(
−X(i)

j 〈θ,X
(i)
V \j〉+D(〈θ,X(i)

V \j〉)
)

(4.8)

where θ ∈ Rp−1 and D(·) is the log-normalization constant determined by a chosen

GLM.

We solve the negative surrogate conditional log-likelihood with `1 norm penalty

for each variable Xj:

θ̂M := arg min
θ∈Rp−1

`(θ;x) + λn‖θ‖1. (4.9)

With the solution θ̂M , we estimate the neighborhood of a node j, N̂ (j) := {k ∈

V \ j : [θ̂M ]k 6= 0} where [·]k is a value corresponding to a variable Xk. Recall that

Ñ (j) = N (j) under the assumption that [θ∗M ]k is non-zero for any k ∈ N (j). Hence

if the solution of surrogate GLMLasso for each variable θ̂M is sufficiently close to the

solution of GLM θ∗M in (4.7), we can conclude that N̂ (j) = N (j). In the following

we show the theoretical guarantee that the solution of surrogate GLMLasso for each
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variable is close to the solution of GLM θ∗M in (4.7).

We begin by discussing the assumptions we impose on the graphical model which

are also used in learning graphical models [77, 42, 76, 57]. Since Steps 1) and 3) require

similar assumptions, for simplicity, let Q be the Hessian matrix of the negative surro-

gate conditional log-likelihood of a variable Xj given either the rest of the nodes (4.8)

or the nodes before j in the causal ordering (4.10) we discuss later in Section 4.3.2.3.

Furthermore, let § = N (j) or pa(j), and Q§§ be the sub-matrix of Q corresponding to

variables X§.

Assumption 4.2 (Dependency condition). There exists a constant λmin > 0 such that

λmin(Q§§) ≥ λmin. Moreover, there exists a constant λmax <∞ such that λmax( 1
n

∑n
i=1X

(i)
§ (X

(i)
§ )T ) ≤

λmax where λmin(A) and λmax(A) are the smallest and biggest eigenvalues of a matrix

A, respectively.

These condition can be interpreted as ensuring that the relevant variables are

not overly dependent.

Assumption 4.3 (Incoherence condition). There exists a constant α ∈ (0, 1] such

that

max
t∈§c
‖Qt§(Q§§)

−1‖1 ≤ 1− α.

Incoherence condition can be understood that the large number of irrelevant

variables cannot strongly affect neighboring variables.

One of the main assumptions of Ising, multinomial, linear, and generalized linear

models in learning undirected graphical models [77, 42, 36, 57] is that random variables

(X1, X2, · · · , Xp) are bounded with high probability. We also need a similar condition

to control a tail behavior of a distribution of each node.

Assumption 4.4 (Concentration Bound condition). For any node j ∈ V , there exists

a constant M > 0 such that E(exp(|Xj|)) < M .
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Assumption 4.4 enables surrogate GLMLasso to recover the structures of the

moralized graph and directed graph in high-dimensional settings. In addition, it re-

duces the number of overdispersion scores to be calculated in Step 2) by controlling

the cardinality of a condition set. Assumption 4.4 is stronger than other relevant

assumptions in learning undirected graphical models [77, 42, 36, 57] because we use

surrogate GLMLasso.

We need an assumption on the log-partition constants D(·) similar to leaning

undirected graphical models with exponential family distributions via GLMLasso [77].

Assumption 4.5. The log-partition function D(·) of the likelihood function (4.8)

or (4.10) holds the following condition. There exist constants κ1 and κ2 such that

max{|D′(a)|, |D′′′(a)|} ≤ nκ2 for a ∈ [0, κ1 log(max{n, p})), κ1 ≥ 8 max(‖θ∗M‖1, ‖θ∗D‖1)

and κ2 ∈ [0, 1/4] where D′(·) is the first derivative of D(·) and D′′′(·) is the third

derivative of D(·).

Our assumption is a stronger version of the assumption on the log-partition

function in [77] because the assumed graph is a directed graph rather than a undirected

graph and learning the moralized graph via surrogated GLMLasso is a more difficult

than learning undirected graphical models via standard GLMLasso. However we can

find exponential family distributions satisfying this assumption. For example Poisson

distribution has one of the steepest log-partition function; D(·) = exp(·). Hence, in

order to satisfy Assumption 4.5, we require ‖θ∗M‖1 ≤ logn
64 log p

with κ2 = 1
8
. For other

distributions such as Binomial, Multinomial, or Gaussian, Assumption 4.5 is satisfied

with κ2 = 0 because the log-partition function D(·) is bounded.

Putting Assumptions 4.2 4.3, 4.4, and 4.5 together, we reach the following main

result that surrogate GLMLasso can recover the moralized graph in high dimensional

settings.

Theorem 4.6 (Learning the moralized graph structure via surrogate GLMLasso).

Consider a QVF DAG model (G,P) with the maximum degree of the moralized graph



44

d. Suppose that Assumptions 4.2, 4.3, 4.4 and 4.5 are satisfied. Choose the regular-

ization parameter (9 log(max{n,p})2
na

≤ λn ≤ λ2min

30nκ2 log(max{n,p})dλmax
for some a ∈ (κ2, 1/2)

where λmin, λmax are the minimum and maximum eigenvalue of the Hessian matrix in

Assumption 4.2 and κ2 is a constant in Assumptions 4.5. If minj∈V mint∈N (j) |[θ∗M ]t| ≥
10
λmin

√
dλn, for any constant ε > 0 there exists a positive constant Cε such that for sam-

ple size n ≥ Cε(d log(max{n, p})3)
1

a−κ2 ,

P (Ĝm = Gm) ≥ 1− ε.

We defer the proof to Appendix B.1.3. The key technique of the proof is primal-

dual witness method. Theorem 4.6 shows that surrogate GLMLasso recovers the

structure of the moralized graph in high-dimensional (p > n) settings with high prob-

ability.

Compared to learning undirected graphical models with exponential family dis-

tributions via standard GLMLasso, the learning moralized graph requires stronger

assumptions and more samples. Yang et al. [77] proved that the require sample

size for learning undirected graphical models with exponential family distributions is

n = Ω({d2 log(max{n, p})3}
1

1−3κ2 ). This makes sense because we apply the surrogate

GLMLasso while Yang et al. [77] used the standard GLMLasso.

4.3.2.2 Step 2): Recovery of the Causal Ordering of a DAG

We show theoretical guarantee of recovering the causal ordering of a DAG via

our generalized ODS algorithm under suitable regularity conditions. We begin by

stating assumptions we impose on the graphical model.

Assumption 4.7. For all j ∈ V , K ⊂ pa(j) and all S ⊂ V \ K, there exists an

M0 > 0 such that

Var(E(Xj | Xpa(j)) | XS) > M0.

This assumption is a stronger version of the identifiability assumption in Theo-

rem 4.1, Var(E(Xj | Xpa(j)) | XS) > 0. Since we are in the finite sample setting, we

need a lower bound away from 0 for all overdispersion scores.
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The concentration bound, Assumption 4.4 is also important because the overdis-

persion score is sensitive to bias of conditional mean and variance of each variable,

and therefore the overdispersion score is sensitive to both the size of a condition set

and cardinality of each variable. Therefore by controlling the tail behavior of each

random variable, we reduce the total number of overdispersion scores to be calculated

in Step 2).

We present the theoretical result given the true moralized graph. Recall that for

general DAGs, the true causal ordering π∗ may not be unique. Therefore, let E(π∗)

denote the set of all the causal orderings that are consistent with the true DAG G∗.

Theorem 4.8 (Recovery of the causal ordering of a QVF DAG). Consider a QVF

DAG model (G,P) with quadratic variance coefficients (β0, β1) and the maximum de-

gree of the moralized graph d. Suppose that β1 > −1 and the moralized graph Gm is

known. Furthermore, suppose that Assumption 4.4 and 4.7 are satisfied. Then for any

ε > 0 and some c0 ≥ (log(max{n, p}))d, there exists a positive constant Kε such that

for sample size n ≥ Kε(log(max{n, p}))5+d,

P (π̂ ∈ E(π∗)) ≥ 1− ε.

The detail of the proof is provided in Appendix B.1.4. The main idea of the

proof is the overdispersion property exploited in Theorem 4.1. Note that estimated

overdispersion scores converge to the true overdispersion scores Ŝ(j, k) → S(j, k) as

sample size increases because each entry of a overdispersion score is the difference

between sample conditional sample mean and variance which consistently converge to

true values, respectively. Hence a comparison of overdispersion scores enable us to

detect the parents of each node in limited data settings.

Theorem 4.8 claims that if the triple (n, d, p) satisfies n = Ω((log p)5+d) and

d < Ω(p), then our generalized ODS algorithm correctly estimates the true causal

ordering. Therefore if the moralized graph is sparse, our generalized ODS algorithm

recovers the true casual ordering in high-dimensional (p > n) settings. DAG learning
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algorithms that apply to high-dimensional setting are not common since they typically

rely on the faithfulness [68], or other restrictive conditions that are often not satisfied

in high-dimensional settings. Note that if the moralized graph is not sparse and

d = Ω(p), the generalized ODS algorithm fails to work in high-dimensional settings.

This also makes sense since if the number of neighbors of each node is large, we would

need to condition on a large set of variables which is very sample-intensive.

Our sample complexity is certainly not optimal since a sample cut-off parameter

c0 is chosen for the worst case which is log(max{n, p})−d. In addition, the power

term of the sample complexity n = Ω((log p)5+d) is associated with Assumption 4.4.

If we have a stronger assumption maxj E(exp(4Xj)) < M , it can be reduced to n =

Ω((log p)2+d). Determining an optimal sample complexity remains an open question.

4.3.2.3 Step 3): Recovery of the Structure of a DAG via Surrogate GLM-

Lasso

In this section, we focus on Step 3) of our generalized ODS algorithm; theoret-

ical guarantees of recovering the structure of a DAG given its causal ordering. Our

approach in Step 3) is the same as in Step 1) except that we estimate the parents of

each node over the possible parents according to the causal ordering. Without loss

of generality, assume that the true causal ordering is π∗ = (1, 2, · · · , p). Then, we

estimate the parents of a node j over the set of nodes {1, 2, · · · , j − 1}.

Again we consider the surrogate GLMLasso for estimating the parents of each

node because a conditional distribution of a node given its parents in a DAG may

not correspond to the likelihood of GLM, therefore our problem is not the regular

GLMLasso but surrogate GLMLasso like Step 1). For notational convenience, we use

X1:j = (X1, X2, · · · , Xj). Then for any variable Xj, the negative surrogate conditional

log-likelihood of GLM is as follows.

`D(θ;x) :=
1

n

n∑
i=1

(
−X(i)

j 〈θ,X
(i)
1:j−1〉+D(〈θ,X(i)

1:j−1〉)
)

(4.10)

where θ ∈ Rj−1 and D(·) is the log-normalization constant determined by a chosen
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GLM.

We solve the negative surrogate conditional log-likelihood with `1 norm penalty

for each variable Xj:

θ̂D := arg min
θ∈Rj−1

`D(θ;x) + λn‖θ‖1. (4.11)

With the solution θ̂D, we estimate the parents of a node j, p̂a(j) = {k ∈ V \j : [θ̂D]k 6=

0} where [·]k is a value corresponding to a variable Xk. Recall that p̃a(j) = pa(j)

under the assumption that [θ∗M ]k is non-zero for all k ∈ N (j). Hence if the solution

of surrogate GLMLasso for each variable θ̂D and the solution of GLM θ∗D in (4.6) are

close, we can conclude that N̂ (j) = N (j). As in the moralized graph learning, it is

sufficient to show that the solution of surrogate GLMLasso θ̂D is close to the solution

of GLM θ∗D.

Theorem 4.9 (Learning the structure of a DAG via surrogate GLMLasso). Con-

sider a QVF DAG model (G,P) with the maximum degree of the moralized graph

d. Suppose that the true causal ordering is known. Furthermore, suppose that As-

sumptions 4.2, 4.3, 4.4 and 4.5 are satisfied. Choose the regularization parameter
(9 log(max{n,p}))2

na
≤ λn ≤ λ2min

30nκ2 log(max{n,p})dλmax
for some a ∈ (κ2, 1/2) where λmin, λmax

are the minimum and maximum eigenvalue of the Hessian matrix in Assumption 4.2

and κ2 is a constant in Assumptions 4.5. If minj∈V mint∈N (j) |[θ∗D]t| ≥ 10
λmin

√
dλn,

for any constant ε > 0 there exists a positive constant Cε such that for sample size

n ≥ Cε(d log(max{n, p})3)
1

a−κ2 ,

P (Ĝ = G) ≥ 1− ε.

The detail of the proof is provided in Appendix B.1.5. The main idea of the proof

for Theorem 4.9 is again primal-dual witness method. Theorem 4.9 explains that sur-

rogate GLMLasso successfully recovers the structure of a DAG in high-dimensional

(p > n) settings given the true causal ordering. As in learning the moralized graph,

learning the DAG requires stronger assumptions and more samples compared to learn-

ing undirected graphical models with exponential family distributions via standard
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GLMLasso [77]. However if a QVF-DAG model consist of NEF-QVF distributions, it

requires similar assumptions and sample complexity.

We present the consistency of all three steps of the generalized ODS algorithm.

In combination of Theorems 4.6, 4.8, and 4.9, we reach our final main result that the

generalized ODS algorithm successfully recovers the true structure of a QVF DAG

with high probability even in high-dimensional settings.

Corollary 4.2 (Learning a DAG structure via our generalized ODS algorithm). Con-

sider a QVF DAG model (G,P) with quadratic variance coefficients (β0, β1) and the

maximum degree of the moralized graph d. Suppose that κ2 is a constant in As-

sumptions 4.5. Under the regularity conditions and if the triple (n, p, d) satisfies

n = Ω(max{(d log(p)3)
1

a−κ2 , (log p)5+d}) for some a ∈ (κ2, 1/2), then our generalized

ODS algorithm recovers the structure of the DAG with high probability.

4.4 Algorithm for NEF-QVF DAG Models

In this section, we develop a new DAG learning algorithm for NEF-QVF DAG

models (4.2), called NEF-QVF ODS algorithm, which is an adapted version of the

generalized ODS algorithm 4.1. Like the generalized ODS algorithm, our NEF-QVF

ODS algorithm consists of three main steps: Step 1) is to estimate the moralized

graph of the DAG, Step 2) is to estimate the causal ordering using overdispersion

property, and Step 3) is to estimate the DAG structure. Step 1) and Step 3) can

exploit off-the-shelf graph structure learning algorithms (e.g., [71, 77, 3]) as well as

neighborhood selection algorithm such as GLMLasso. Step 1) allows us to reduce both

computational and sample complexity by exploiting the sparsity of the moralized or

undirected graphical model representation of a DAG.

The novelty of this paper is Step 2) of the NEF-QVF ODS algorithm. In general,

it is very difficult problem that determining a node is conditionally overdispersed

since overdispersion tests require computing the number of occurrences of all different

possible patterns of variables of a conditioning set. For example, if a conditioning set
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XS contains five ternary variables then the number of overdispersion test is 35. This

implies that the number of samples required to accurately estimate the conditional

expectation and variance is exponential to the size of the conditioning set and sample

space.

Here we introduce an important property of natural exponential family with

quadratic variance function (NEF-QVF) which reduces a massive number of estima-

tions of conditional expectation to only one regression problem. More precisely, we

estimate the generalized linear model (GLM) (4.12) for estimating conditional expec-

tation. For a node j and a conditioning set S ⊂ V \ {j},

θ∗ := arg min
θ∈R|S|

{−〈θ,XS〉Xj +Dj(〈θ,XS〉)} . (4.12)

where Dj(·) is the log-normalization constant determined by a given GLM.

By the first order optimality condition, we obtain E[Xj | XS] = D′j(〈θ∗, XS〉)

where D′j(·) is the first derivative of Dj(·). This implies that learning the parameters

of a GLM is sufficient to estimating conditional expectations for all different possible

patterns of variables of a conditioning set.

A conditional variance of a node given its parents is clearly Var(Xj | Xpa(j)) =

β0E(Xj | Xpa(j)) + β1E(Xj | Xpa(j))
2. However it is unclear that how a conditional

variance is related to a conditional expectation for a general conditioning set S ⊂ V .

Hence we provide an important lemma which represents the relationship between a

conditional variance and expectation for any conditioning set S ⊂ V .

Lemma 4.2. Let (X1, X2, · · · , Xp) be a random vector associated with a NEF-QVF

DAG model (G,P) with quadratic variance coefficients (β0, β1) in (4.1). Suppose that

β1 > −1 and the identifiability assumption in Theorem 4.1 is satisfied. Then for any

j ∈ V , K ⊂ pa(j), and S ⊂ V \ (K ∪ {j})

Var(Xj | XS)

β0E(Xj | XS) + β0E(Xj | XS)
> 1.
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Proof.

Var(Xj | XS)
(a)
= E(Var(Xj | Xpa(j)) | XS) + Var(E(Xj | Xpa(j)) | XS)

(b)
= E(β0E(Xj | Xpa(j) + β1E(Xj | Xpa(j))

2 | XS) + Var(E(Xj | Xpa(j)) | XS)

(c)
= β0E(Xj | XS) + β1E(Xj | XS)2 + (1 + β1)Var(E(Xj | Xpa(j)) | XS).

(a) follows from the variance decomposition formula Var[Y ] = E(Var[Y | X]) +

Var(E[Y | X]) for some random variables X and Y . In addition, (b) follows from

the variance quadratic property (4.1) and (c) is directly from the definition of a con-

ditional variance.

Therefore, we have

Var(Xj | XS)

β0E(Xj | XS) + β1E(Xj | XS)2
= 1 + (1 + β1)Var(E(Xj | Xpa(j)) | XS) > 1. (4.13)

Lemma 4.2 claims that if a condition set S contains all parents then the ra-

tio a conditional variance to the quadratic function of a conditional expectation is

one, otherwise greater than one. This implies that a new random variable Yj =

Xj√
β0E(Xj |XS)+β1E(Xj |XS)2

have a conditional variance one if a conditioning set S con-

tains all parents, otherwise greater than one. Hence testing whether variance of Yj is

equal to one is equivalent to testing whether a conditioning set includes all parents

of a node j. We will use the conditional variance of transformed variable Yj as a

overdispersion score in Step 2).

In a finite data setting, we assume that there are n iid samples drawn from a

given QVF DAG model which is referred to as {X(1), X(2), · · · , X(n)} where X(i) =

{X(i)
1 , X

(i)
2 · · · , X

(i)
p } for all i ∈ {1, 2, · · · , n}. Then, we estimate the GLMmodel (4.12)

for overdispersion scores in Step 2). We find the minimizer of the negative conditional

log-likelihood of GLM for a node j given a conditioning set S ⊂ V \ {j}:

θ̂ = arg min
θ∈R|S|

1

n

n∑
i=1

{
−〈θ,X(i)

S 〉X
(i)
j +Dj(〈θ,X(i)

S 〉)
}
. (4.14)
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where Dj(·) is the log-normalization constant determined by a given GLM.

Then, we estimate a conditional expectation based on the estimated parameters

in (4.14) and variance quadratic equation in (4.1). For any i ∈ {1, 2, · · · , n} and

j ∈ V ,

Ê(X
(i)
j | X

(i)
S ) := Dj(〈θ̂, X(i)

S 〉). (4.15)

For the marginal expectation of each variable, we use sample mean as an estimator.

As we discussed we will use the sample variance of the ratio the conditional

expectation to conditional standard deviation as an overdispersion score. Then the

true overdispersion score for each component of the causal ordering must be one,

however other scores should be greater than one by Lemma 4.2. To be precise, we

define overdispersion scores as following: For any j, k ∈ V ,

Ŝ(1, k) :=
1

n− 1

n∑
i=1

(X
(i)
k − Ê(Xk))

2

β0Ê(Xk) + β1Ê(Xk)2
(4.16)

Ŝ(j, k) :=
1

n− 1

n∑
i=1

(X
(i)
k − Ê(X

(i)
k | X

(i)

Ĉjk
))2

β0Ê(X
(i)
j | X

(i)

Ĉjk
) + β1Ê(X

(i)
j | X

(i)

Ĉjk
)2

(4.17)

where Ĉjk is an estimated candidate parents set which is an intersection of estimated

neighbors of j− 1th component of an estimated causal ordering and first j− 1 compo-

nents of an estimated causal ordering because only first j − 1 components of a causal

ordering can be parents of jth component of a causal ordering, and the set of neigh-

bors of j − 1th component of an estimated causal ordering includes jth component of

a causal ordering. A candidate parents set is estimated in Step 2) of NEF-QVF ODS

algorithm.

As Park and Raskutti [46] explained, the main purpose of Step 1) is to reduce

both computational complexity and sample complexity by using the sparsity of the

moralized graph. The moralized graph provides a candidate parents set for each node.

Using a candidate parents set reduces the number of variables of a GLM (4.14) to be

fitted for Step 2), and therefore it improves our algorithm in terms of prediction and
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Algorithm 4.2 NEF-QVF ODS algorithm
1: Input: iid n samples from the DAG model
2: Output: A causal ordering π̂ ∈ Np and a graph structure Ê ∈ {0, 1}p×p

3: Step 1: Estimate the neighborhood of each node N̂ (j) in the moralized graph
4: Step 2: Estimate the causal ordering using overdispersion scores
5: for k ∈ {1, 2, · · · , p} do
6: Calculate overdispersion scores Ŝ(1, k) using Equation (4.16)
7: end for
8: The first element of a causal ordering π̂1 := arg mink Ŝ(1, k)

9: for j = {2, 3, · · · , p− 1} do
10: for k ∈ N̂ (π̂j−1) ∩ {1, 2, · · · , p} \ {π̂1, · · · , π̂j−1} do
11: Find candidate parents set Ĉjk := N̂ (k) ∩ {π̂1, π̂2, · · · , π̂j−1}
12: Calculate overdispersion scores Ŝ(j, k) using Equation (4.17)
13: end for
14: The jth element of a causal ordering π̂j := arg mink Ŝ(j, k)

15: Step 3: Estimate the directed edges toward π̂j, denoted by D̂j

16: end for
17: The last element of the causal ordering π̂p := {1, 2, · · · , p} \ {π̂1, π̂2, · · · , π̂p−1}
18: The directed edges toward π̂p, denoted by D̂p := {(z, π̂p) | z ∈ N̂ (π̂p)}
19: Return: π̂ := (π̂1, π̂2, · · · , π̂p) and Ê := ∪j={2,3,··· ,p}D̂j

computation. Furthermore, Step 1) reduces the number of overdispersion scores to be

compared in Step 2). Since the edge set of the moralized graph includes the edge set

of a DAG, jth component of the causal ordering is a neighbor of (j−1)th component of

the causal ordering. Therefore, we only compare overdispersion scores of neighbors of

(j − 1)th component of the causal ordering. By minimizing the number of overdisper-

sion scores to be compared, we also obtain significant statistical and computational

improvements. A similar step is taken by Loh et al. [40], the MMHC [71] and SC al-

gorithms [21]. Since the moralized graph is an undirected graph, a number of choices

are available for Step 1) including standard undirected graph learning algorithms such

as the HITON [3] and MMPC algorithms [71] as well as GLMLasso [18]. In addition,

standard DAG learning algorithms such as GES [9] and MMHC algorithms [71] can
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be applied and the moralized graph can be found from the estimated DAG.

The novelty of our algorithm is Step 2) which estimates the causal ordering.

The main idea is to determine which nodes are conditionally overdispersed. The

causal ordering is determined one node at a time by selecting the node with the

minimum overdispersion score which is representative of a node that is least likely to

be overdispersed. The main difference between our NEF-QVF ODS algorithm and the

ODS algorithm is overdispersion scores. The ODS algorithm uses the weighted average

of sample conditional variance minus conditional expectation as a overdispersion score,

and therefore the score is sensitive to the number of patterns of a conditioning set.

In contrast, our NEF-QVF ODS algorithm calculate a overdispersion score based on

based on the estimated parameter in the given GLM. Therefore, the NEF-QVF ODS

algorithm is favorable to the ODS algorithm in limited data settings, and our algorithm

can be applied to continuous distribution such as Gamma.

Step 3) which recovers the set of parents of each node j is reduced to selecting the

parents out of all elements before a node j in the estimated causal ordering from Step

2). Therefore, Step 3) can be reduced to p-neighborhood estimation problems which

can be performed using GLMLasso [18] as well as standard DAG learning algorithms

such as the PC [68], GES [9], and MMHC algorithms [71].

4.5 Numerical Experiments

4.5.1 The Generalized ODS Algorithm

In this section, we support our theoretical results with numerical experiments

and show that our generalized ODS algorithm performs favorably compared to state-

of-the-art DAG learning algorithms. In order to authenticate the validation of Theo-

rems 4.6, 4.8, and 4.9, the simulation study was conducted using 50 realizations of a

p-node random Poisson and Binomial GLM DAG models in (4.2) where a conditional

distribution of each node given its parents is Poisson and Binomial, respectively. In

all the results we present non-zero parameters (θjk) in (4.2) were chosen uniformly at
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X1 X2 X3 X4 · · · Xp

Figure 4.2:: Structure of the DAG we used in numerical experiments. Solid directed

edges are always present and dotted directed edges are randomly chosen based on the

given number of parents of each node constraints

random in the range θjk ∈ [−1,−0.5] for Poisson DAG models and θjk ∈ [0.5, 1] for

Binomial DAG models. These ranges of parameters are chosen to satisfy the assump-

tions of the generalized ODS algorithm although there is no restriction on parameters

of DAG models unlike undirected graphical models. In addition, we fixed parameters

N1, N2, · · · , Np = 4 for Binomial DAG models. We also used a special structure (see

Figure 4.2) which has the fixed unique causal ordering π∗ = (1, 2, · · · , p) with edges

randomly generated while respecting the desired maximum number of parents con-

straints for the DAG. In our experiments, we always set the number of parents to two

(the number of neighbors of each node is at least three, and therefore d ∈ [3, p − 1])

and the thresholding constant to c0 = 0.005 although any value below 0.01 seems to

work well.

In Figure 4.3, we plot the proportion of simulations in which our generalized

ODS algorithm recovers the correct causal ordering to validate Theorem 4.8. We plot

the accuracy rates in recovering the true causal ordering π∗ as a function of sample

size (n ∈ {100, 500, 1000, 2500, 5000, 10000}) for different node sizes (p = 10 for (a)

and (c), and p = 100 for (b) and (d)) and different distributions (Poisson for (a) and

(b) and Binomial for (c) and (d)). In each sub-figure, two generalized ODS algorithms

are used; (i) GLMLasso [18] is applied in Step 1) where we chose a regularization

parameter λ = 0.75
log(max(n,p))

for Poisson DAG models and λ = .10
log(max(n,p))

for Binomial
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DAG models, and (ii) the GES algorithm [9] is applied in Step 1) where we used

the mBDe [29] (modified Bayesian Dirichlet equivalent) score and then the moralized

graph is generated based on the output of the GES algorithm. As we discussed any

state-of-the-art algorithms can be applied, we chose the those two algorithms because

they seem to work better in terms of recovering moralized graph in our simulation

settings. We also showed an oracle where the undirected edges of the true moralized

graph is used for comparison.

Figure 4.3 shows that both generalized ODS algorithms recover the true causal

ordering better as sample size increases, which supports our theoretical result. In

addition, we can see that the GLMLasso-base generalized ODS algorithm seems to

be better than the GES-base generalized ODS algorithm in terms of the recovery of

the causal ordering. Since GLMLasso is the only algorithm that scale to the setting

(p > 1000), we used GLMLasso in Steps 1) and 3) of the generalized ODS algorithm

for large-scale DAG models.

Figures 4.4 and 4.5 provide a comparison of how accurately the generalized ODS

algorithm performs in terms of Hamming distance to two state-of-the-art directed

graphical model learning algorithms (the MMHC and GES algorithms) for both Pois-

son DAG and Binomial DAG models. Similar to learning causal ordering, we used

two generalized ODS algorithms exploiting GLMLasso in both Steps 1) and 3) and

the GES algorithm with the mBDe score in both Steps 1) and 3). Furthermore, oracle

where the undirected edges of the true moralized graph is used for comparison. We

considered small-scale DAG models with p = 10 in sub-figures (a), (b), (e) and (f),

and p = 100 in sub-figures (c), (d), (g) and (h). Then, we considered two Hamming

distance measures. We measured the Hamming distance to the skeleton of the true

DAG in sub-figures (a), (c), (e) and (g) which is the set of edges of the DAG with-

out directions. In addition, we measured the Hamming distance for the edges with

directions in sub-figures (b), (d), (f), and (h). The reason we consider the skeleton

is that the comparison algorithms can recover up to the skeleton of the DAG. We
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Figure 4.3:: Probability of recovering the causal ordering of a DAG via our generalized

ODS algorithm using two different algorithms (GLMLasso and GES algorithm) in Step

1)

normalized the Hamming distances by dividing it by the maximum number of errors(
p
2

)
and p(p− 1), respectively. Therefore, the overall score is a percentage.

As we see in Figures 4.4 and 4.5, the both generalized ODS algorithms signif-

icantly out-performs state-of-the-art MMHC and GES algorithms in terms of both

directed edges and skeleton. For small sample size cases, the both generalized ODS

algorithms shows bad performance because it often fails to recover the causal order-

ing, however we can see that GES-base generalized ODS algorithm performs always

better the GES algorithm. It is because the generalized ODS algorithm only adds

directional information to the estimated skeleton via the GES algorithm and hence

GES-base generalized ODS algorithm is always better than the GES algorithm in

terms of recovering both directed edges and skeleton.

Furthermore Figures 4.4 and 4.5 show that as sample size increases, the both
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Figure 4.4:: Comparison of the generalized ODS algorithms using GLMLasso (in Steps

1) and 3)) and the GES algorithm (in Steps 1) and 3)) to two state-of-the-art DAG

learning algorithms (the MMHC and the GES algorithms) in terms of Hamming dis-

tance to skeletons and directed edges of Poisson DAG models. The end of each bar

corresponds to the average of the normalized hamming distance plus or minus its

standard error

generalized ODS algorithms recover the true directed edges and skeleton of the DAG

better, which is consistent with our theoretical results. It must be pointed out that the

choice of the DAG models is suited to the generalized ODS algorithm while comparison

algorithms are capable of being applied to more general classes of DAG models.

Now we consider the statistical performance for large-scale DAG models to show

that the generalized ODS algorithm works in the high-dimensional setting. In all

experiments we used the GLMLasso in Steps 1) and 3) of generalized ODS algo-

rithm. Figure 4.6 plots the statistical performance of the generalized ODS algorithm

for large-scale Poisson DAGs in sub-figures (a), (b), and (c) and Binomial DAGs in
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Figure 4.5:: Comparison of the generalized ODS algorithms using GLMLasso (in Steps

1) and 3)) and the GES algorithm (in Steps 1) and 3)) to two state-of-the-art DAG

learning algorithms (the MMHC and the GES algorithms) in terms of Hamming dis-

tance to skeletons and directed edges of Binomial DAG models. The end of each

bar corresponds to the average of the normalized hamming distance plus or minus its

standard error

sub-figures (d), (e), and (f). Furthermore, (a) and (d) represent the accuracy rates

of the recovering the causal ordering, (b) and (e) show the normalized Hamming

distance to the true skeleton, and (c) and (f) show the normalized Hamming dis-

tance to the true edge set of the DAG. Accuracies vary as a function of sample size

(n ∈ {500, 1000, 2500, 5000, 10000}) for each node size (p = {1000, 2500, 5000}). Fig-

ure 4.6 shows that the generalized ODS algorithm recovers the causal ordering and

the true structure of a DAG even in high-dimensional settings.

In Figure 4.7, we compared the run-time of the generalized ODS algorithms

using GLMLasso in Steps 1) and 3) to the run-time of the MMHC and the GES



59

0

20

40

60

80

2500 5000 7500 10000
sample size

A
cc

ur
ac

y 
(%

)

Causal ordering for large DAGs

(a) Poisson

0.001

0.002

0.003

2500 5000 7500 10000
sample size

N
or

m
al

iz
ed

 H
am

m
in

g 
di

st
 (

%
)

Directed edges for large DAGs

(b) Poisson

0.000

0.002

0.004

0.006

2500 5000 7500 10000
sample size

N
or

m
al

iz
ed

 H
am

m
in

g 
di

st
 (

%
)

Skeletons for large DAGs

(c) Poisson

0

20

40

60

80

2500 5000 7500 10000
sample size

A
cc

ur
ac

y 
(%

)

Causal ordering for large DAGs

(d) Binomial

0.00

0.01

0.02

0.03

2500 5000 7500 10000
sample size

N
or

m
al

iz
ed

 H
am

m
in

g 
di

st
 (

%
)

Directed edges for large DAGs

(e) Binomial

0.00

0.02

0.04

0.06

2500 5000 7500 10000
sample size

N
or

m
al

iz
ed

 H
am

m
in

g 
di

st
 (

%
)

Skeletons for large DAGs

(f) Binomial

Figure 4.6:: Performance of the generalized ODS algorithm using GLMLasso in both

Steps 1) and 3) for large-scale DAG models with the node size p = {1000, 2500, 5000}

algorithms. We measured the run-time for Poisson DAG models by varying (a) node

size p ∈ {10, 20, 40, 60, 80, 100} with the fixed sample size n = 10000 and exactly

two parents of each node, (b) sample size n ∈ {100, 500, 1000, 2500, 5000, 10000} with

the fixed node size p = 100 and two parents of each node, and (c) the number of

parents of each node |Pa| ∈ {1, 2, 3, 4, 5, 6} with the fixed sample size n = 10000 and

node size p = 20. Sub-figures (a) and (b) support the section 4.3.1 where the time

complexity of our ODS algorithm using GLMLasso is at least O(min(n, p)np2) which

is computational complexity of p GLMLasso. Sub-figure (c) also shows run-time of

the ODS algorithm is proportional to the number of parents of each node which is the

lower bound of the degree of the moralized graph d.

We can also see that the generalized ODS algorithm is faster than the GES

algorithm as either node size or sample size increases. Although the generalized ODS
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Figure 4.7:: Comparison of the generalized ODS algorithms using GLMLasso in Steps

1) and 3) to two standard DAG learning algorithms (the MMHC and the GES algo-

rithms) in terms of running time with respect to (a) node size p, (b) sample size n,

and (c) number of parents of each node

algorithm seems slower than the MMHC algorithm, this is mainly because the MMHC

algorithm often stops earlier before they reach the true DAG (see Figure 4.4 and 4.5).

4.5.2 The NEF-QVF Algorithm

In this section, we support our theoretical results with numerical experiments

and show that our NEF-QVF algorithm performs better than state-of-the-art DAG

learning algorithms and the generalized ODS algorithm 4.1 in terms of recovering

structure of DAG. The simulation study was conducted using 50 realizations of a

p-node random Poisson NEF-QVF DAG models where a conditional distribution of

each node given its parents is Poisson with the canonical link function for count data.

Furthermore we used random Exponential NEF-QVF DAGmodels where a conditional
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Figure 4.8:: Probability of recovering the causal ordering of a DAG via our generalized

ODS algorithm using two different algorithms (GLMLasso and GES algorithm) in Step

1)

distribution of each node given its parents is Exponential with the canonical link

function for continuous data. In all the simulation results we present, we used a special

structure (see Figure 4.2) which has the fixed unique causal ordering π∗ = (1, 2, · · · , p)

with edges randomly generated while respecting the desired maximum number of

parents constraints for the DAG. We always set the number of parents to two, and

hence the number of neighbors of each node is at least three. However, we do not set

the maximum degree of the moralized graph. We chose the present parameters (θjk)

in (4.2) at random in the range θjk ∈ [−0.75,−0.25] for Poisson DAG models and

θjk ∈ [0.25, 0.75] for Exponential DAG models to ensure the edge weights are bounded

away from 0.

In Figure 4.8, we plot the proportion of simulations in which our generalized

ODS algorithm recovers the correct causal ordering to validate that NEF-QVF ODS

algorithm can fully recover DAG models. We plot the accuracy rates in recovering the

true causal ordering π∗ as a function of sample size (n ∈ {200, 400, 600, 800, 1000}) for

different node sizes (p = 10 for (a) and (c), and p = 50 for (b) and (d)). In each sub-

figure, two NEF-QVF ODS algorithms are used; (i) GLMLasso [18] is applied in Step 1)

where we chose a tuning parameter 0.1 and (ii) the GES algorithm [9] is applied in Step
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Figure 4.9:: Comparison of our algorithms using the GES algorithm (in Steps 1) and

3)) and GLMLasso (in Steps 1) and 3)) to ODS algorithm using GLMLasso (in Steps

1) and 3)) and two standard DAG learning algorithms (the MMHC and the GES

algorithms) in terms of Hamming distance to skeletons and directed edges of Poisson

DAG models. The end of each bar corresponds to each average normalized hamming

distance plus or minus its standard error

1) where we used the mBDe [29] (modified Bayesian Dirichlet equivalent) score and

the moralized graph is generated from the output of the GES algorithm. Although any

state-of-the-art algorithm can be applied, we chose the those two algorithms because

they seem to work better in terms of recovering moralized graph in our simulation

setting.

Figure 4.9 provides a comparison of how accurately our algorithm performs in

terms of Hamming distance to the generalized ODS algorithm and two state-of-the-art

directed graphical model learning algorithms (the MMHC and GES algorithms) for
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Poisson DAG models. Similar to learning causal ordering, we used our two different

algorithms using GLMLasso in both Steps 1) and 3) and the GES algorithm with

the mBDe score in both Steps 1) and 3). For the generalized ODS algorithm, we

used GLMLasso in both Steps 1) and 3). We considered small DAGs with p = 10

for (a) and (b), p = 50 for (c) and (d). We also considered two Hamming distance

measures. We measured the Hamming distance to the skeleton of the true DAG for

(a) and (c) which is the set of edges of the DAG without directions. In addition,

we measured the Hamming distance for the edges with directions for (b) and (d).

The reason we considered the skeleton is that the comparison methods recover up to

the skeleton of the DAG. We normalize the Hamming distances by dividing it by the

maximum number of errors p(p− 1) and
(
p
2

)
, respectively. Therefore, the overall score

is a percentage.

As we see in Figure 4.9, our algorithm significantly out-performs the MMHC

and GES algorithms in terms of both directed edges and skeleton when sample size

is large enough. For small sample size cases, the GLMLasso-base our algorithm and

the generalized ODS algorithm show bad performance because it frequently fails to

recover the causal ordering. However, our GES-base algorithm is strictly better than

the GES algorithm. It is because the GES-base NEF-QVF ODS algorithm only adds

directional information to the estimated skeleton via the GES algorithm and hence

GES-base NEF-QVF ODS algorithm is always better than the GES algorithm in terms

of recovering both directed edges and skeleton. We can also see that our algorithms

are better than the generalized ODS algorithm, which support our main contribution

of this paper. As sample size increases, our algorithm recovers the true directed edges

and skeleton of the DAG better.

Now we concern the statistical performance for exponential DAG models where

a conditional distribution a node given its parents is exponential to show that our

NEF-QVF ODS algorithm works for continuous data. In all experiments we used the

GES algorithm in Steps 1) and 3) of the NEF-QVF ODS algorithm. Figure 4.10 rep-
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Figure 4.10:: Comparison of our NEF-QVF ODS algorithms using the GES algorithm

(in Steps 1) and Step 3)) and GLMLasso (in Steps 1) and Step 3)) to two standard

DAG learning algorithms (the MMHC and the GES algorithms) in terms of Hamming

distance to skeletons and directed edges of Exponential DAG models. The end of

each bar corresponds to each average normalized hamming distance plus or minus its

standard error

resents the accuracy rates of the recovering the causal ordering for (a), the normalized

Hamming distance to the true skeleton for (b), the normalized Hamming distance to

the true edge set of the DAG for (c). Accuracies vary as a function of sample size

(n ∈ {200, 400, 600, 800, 1000}) for each node size (p = {5, 10}). Figure 4.10 indicates

that the NEF-QVF ODS algorithm recovers the causal ordering and the true structure

of a DAG even for continuous data.
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Chapter 5

Learning DAG Models Using Moralization

and Interventions

5.1 Introduction

A popular framework for representing causal or directional relationships are di-

rected acyclic graphical (DAG) models, also known as Bayesian networks. In such

models parents of a vertex are causes and their edges are understood as causal influ-

ences. One of the major challenges associated with DAG models is that they are in

general not identifiable from observational data alone and can be identified only up

to their Markov equivalence class (MEC). Therefore if the goal is to learn all causal

directions further information from experiments based on interventions are required.

Here we focus on the practically relevant setting where the number of variables of

interest p is potentially large, and our goal is to learn all directions of a DAG model

using a combination of interventional experiments and observational data.

Recently, a number of DAG learning algorithms using a combination of obser-

vational data and interventions have been proposed (see e.g. [24, 25, 26, 27, 63]).

More specifically, Hauser and Bühlmann [24] extended the notion of the (MEC) to

the interventional case, and introduced the Greedy Interventional Equivalence Search

(GIES) algorithm which is known to recover the DAG model provided algorithms for
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learning the MEC are accurate. In other related work, Hauser and Bühlmann [25] and

He and Geng [27] presented strategies for actively determining which nodes to inter-

vene or experiment on by exploiting properties of the MEC for interventional graphs.

However these approaches rely on accurate recovery of the MEC and many existing

algorithms for learning the MECs are unreliable (see e.g. [73]). Therefore estimating

the MEC based on observational may lead to errors which would lead to downstream

errors in estimating other directions using interventions.

In this paper, we propose both passive and active learning strategies using the

moralized graphs rather than the MEC. The advantage of using moralized graphs

instead of the MEC is that recovering the moralized graph is more reliable since it

does not require as strong assumptions as those needed for recovering the MEC. Fur-

thermore, the moralized graph can be accurately estimated even in high-dimensional

settings, where the number of nodes are larger than the measured sample size (see

e.g. [4, 56, 57, 77]). Major contributions of our paper are to (1) introduce new rules

for recovering directions of edges by comparing the moralized graphs from observa-

tional and interventional data and develop a passive learning strategy which we show

out-performs the state-of-the-art GIES algorithm, and (2) develop an active learn-

ing algorithm for DAG models which reduces the number of interventions and allows

reliable recovery in the high-dimensional settings.

Our passive and active learning strategies involve combining to basic concepts,

moralized graphs and interventional graphs and developing new theory which guaran-

tees their success for learning DAG models. The passive learning algorithm involves

two iterative steps: (i) learn the leaf nodes by using the fact that interventions applied

to leaf nodes have no neighbors in the moralized or undirected graph, and (ii) learning

the parents of the leaf nodes by exploiting the fact that parents of the leaf nodes cor-

respond exactly to neighbors in the moralized graph. Our experiments demonstrate

the superior performance of our passive learning algorithm relative to the state-of-

the-art GIES algorithm in terms of recovering the underlying DAG model. The active
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learning strategy involves iteratively selecting which nodes to perform interventions on

so that the moralized graph on the interventional data reveals the most information

about the directions of the edges. Our active learning algorithm has three steps to

be repeated iteratively: (i) choosing subsets of nodes to intervene on using moralized

graph or input graph from previous step; (ii) learn the moralized graph based on the

interventional data; (iii) use rules developed in this paper to determine directions of

the DAG model based on the interventional moralized graph. Experimental results

using our active learning strategy performs well even in the high-dimensional setting

provided that the maximum degree of the moralized graph is bounded.

The remainder of this paper is organized is follows. In Section 2, we introduce

two important concepts, interventional data and graphs and the moralized graph. In

Section 3 we introduce the passive learning strategy along with theoretical guarantees

on the sample size in terms of the number of nodes and the maximum degree of the

moralized graph. In Section 4 we introduce the active learning strategy that applies

to both small-scale and large-scale DAG models and we introduce addition theoretical

results on modified Meek rules for moralized graphs that guarantee the success of our

algorithm. Finally in Section 5 we present experimental results for both the passive

and active learning strategies on a range of DAG models both in the low-dimensional

and high-dimensional settings.

5.2 Background

Directed graphs. A DAG G = (V,E) consists of a set of nodes V and a set

of directed edges E with no directed cycle. We usually set V = [p] := {1, 2, ..., p} and

associate with the nodes a random vector X := (X1, X2, ..., Xp) which takes values

in some product measure (X ,A, µ) = (
∏p

i=1Xi,
⊗p

i=1Ai,
⊗p

i=1 µi) with Xi ⊂ R ∀ i.

For any subset of component indices A ⊂ [p], we use the notation XA :=
∏

a∈AXa,

XA := (Xa)a∈A. We use pa(k) to denote the parents, ch(k) to denote the children, and

sp(k) to denote the spouses of node k. (A node j is a spouse of node k if j and k have
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a common child). Lastly, we use an(k) to denote the parents of k.

Interventions. We borrow the notation from [24]. We consider stochastic in-

terventions modeling the effect of setting or forcing one or several random variables

XI , where I ⊂ [p] is called the intervention target, to the value of independent random

variables UI . The joint product density of UI on XI , called level density, is denoted

by f̃ . Extending the do() operator in [47] to stochastic interventions, we denote the

density of X under such an intervention by f(x | doD(XI = UI)). Using truncated

factorization and the assumption of independent intervention variables, this interven-

tional density can be written as

f(x | doD(XI = UI)) =
∏
i/∈I

f(xi | xpa(i))
∏
i∈I

f̃(xi) . (5.1)

Intervention graph. For a DAG G = (V,E) and an intervention target I ⊂ [p],

the intervention graph is a DAG GI = (V,EI), where EI := {(j, k) | (j, k) ∈ E, k /∈ I}.

Moralized graph. For a DAG G = (V,E), the moralized graph of G is an

undirected graph Gm = (V,Em), where Em is obtained by adding (1) an undirected

edge {j, k} to Em for each (j, k) ∈ E, and (2) an undirected edge between (j, k) to

Em if j and k have a common child. We use N (j) to denote the neighbors of node j

in Gm, also known as Markov blanket [51].

Interventional moralized graph. For a DAG G = (V,E) and an intervention

target I ⊂ [p], the interventional moralized graph Gm
I = (V,Em

I ) is the moralized

graph of the intervention graph GI . We use NI(j) to denote the neighbors of node j

in the interventional moralized graph Gm
I .

Interventional data. We consider interventional data (T ,X) of sample size n,

where

T =

 T (1)

...
T (n)

 , X =

 —X(1) —
...

—X(n) —

 (5.2)

where for each i ∈ [n], T (i) denoted the intervention target under which the sample

X(i) = (X
(i)
1 , X

(i)
2 , ..., X

(i)
p ) was produced. Mathematically, X(1), X(2), . . . , X(n) are
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independent, and

X(i) ∼ f
(
· | doD(X

(i)

T (i) = UT (i))
)
, UT (i) ∼ f̃T (i) , i = 1, . . . , n.

A more thorough background on these relevant concepts is provided in the supple-

mentary material.

5.3 Passive Learning

In this section, we present a passive learning algorithm CLMG (Causal Learn-

ing using Moral Graphs) for recovering the DAG structure using interventional data

and moral graphs i.e. it uses pre-collected interventional data to recover the DAG

structure. We assume that every node has been intervened at least once.

We first identify the leaf nodes by exploiting the fact that a leaf node l has no

neighbors in the interventional moralized graph when l is intervened. We then learn

the parents of the leaf node by using the fact that parents of leaf nodes correspond

exactly to neighbors in the moralized graph. The leaf node is then removed and only

the remaining subgraph is considered. This process is repeated till the subgraph is

empty.

The CLMG algorithm uses a black-box FindNeighbors(data, target node,

search set) function that estimates the neighborhood of a target node in the moralized

graph from a set of search nodes, by using sampled data. Note that we can use a

number of standard algorithms for FindNeighbors(·) since it is the same as learning

neighborhoods of nodes in undirected graphs (see e.g. [4, 56, 57, 76, 77, 78, 79]). In

our numerical experiments, a thresholding approach developed in [78] is applied.

A leaf node can be recovered as the node whose neighborhood is empty when

it is intervened because an intervention eliminates edges between an intervened node

and its parents. Let Xj = {X(i) : j ∈ T (i)} and X−j = {X(i) : j /∈ T (i)} denote

the data where j was intervened and not intervened respectively. One can find the

interventional neighborhood of a node j using FindNeighbors(data = Xj, target

node = j, search set = V \ j), and declaring j to be a leaf node if the neighborhood
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returned is empty. However, the search set V \ j is large, and hence FindNeighbors

is likely to return false neighbors, making it difficult to recover the leaf nodes of a

graph.

The CLMG algorithm cleverly solves this problem by exploiting the fact that the

interventional neighborhood of a node j is a subset of N (j), because an intervention

only eliminates edges incident on the intervened node. The CLMG algorithm first

recovers N (j), and then searches for the interventional neighborhood of j only in N (j)

(instead of V \ j). As before, it declares j to be a leaf node if FindNeighbors(data

= Xj, target node = j, search set = N (j)) returns an empty set. This is better because

|N (j)| � |V \ j| if the moralized graph is sparse. Furthermore, N (j) can be recovered

from X−j because although every measurement has a different set of intervened nodes,

the conditional distribution of Xj given all other variables is the same as long as node

j is not intervened. This estimation of N (j) will also be accurate because |X−j| is

likely to be large.
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Algorithm 5.1 CLMG(T ,X): Causal Learning using Moral Graphs
1: Input: (T ,X) interventional data
2:

3: Output: Ĝ = (V, Ê) estimated graph structure
4: Ê = ∅
5: remainingNodes = {1, 2, ..., p}
6: while remainingNodes 6= ∅ do
7: leaves = FindLeaves(N = remainingNodes, T ,X)

8: for l in leaves do
9: Xl = {X(i) : l ∈ T (i)}

10: parents ← FindNeighbors(target = l, search = remainingNodes, data =

Xl)

11: for r in parents do
12: Ê = Ê ∪ {(r, l)}
13: end for
14: end for
15: remainingNodes ← remainingNodes \ leaves
16: end while
17: return Ĝ = (V, Ê)
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FindLeaves(N, T ,X): Find leaf nodes among n given interventional data
1: Input: N set of nodes to search and (T ,X) interventional data
2: Output: L set of leaf nodes
3: L = ∅
4: for s in N do
5: X−s = {X(i) : s /∈ T (i)}
6: unbrs = FindNeighbors(target = s, search = N, data = X−s)

7: if unbrs 6= ∅ then
8: Xs = {X(i) : s ∈ T (i)}
9: children = FindNeighbors(target = s, search = unbrs, data = Xs)

10: if children = ∅ then
11: L = L ∪ {s}
12: end if
13: end if
14: end for
15: return L

5.3.1 Statistical Guarantees for the CLMG Algorithm

Here we provide statistical guarantees for the CLMG algorithm 5.1. For the

purposes of this guarantee, we consider an intervention strategy where we perform an

intervention at every node and collect n0 samples per intervention. We consider single

interventions because 1) they are simple, 2) they form a sufficient set to estimate the

entire DAG [24], and 3) it is possible to determine the total joint effect of multiple

interventions from single intervention effects [45]. We thus perform p single-node

interventions. Our algorithm easily allows other intervention strategies and we use

single-node interventions purely for illustration.

Theorem 5.1. Consider a DAG G = (V,E) with the maximum degree of the moral-

ized graph, d. If single-node interventions are performed at every node and n0 mea-

surements are made per intervention, then Alg.5.1 recovers the true DAG with high



73
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Figure 5.1:: Outline of our active learning algorithm

probability:

P (Ĝ 6= G) ≤
p∑
j=1

j {δN(n0(p− 1), j − 1, d) + δ(n0,min(d, j − 1), d)} , (5.3)

where δN(n, p − 1, d) is an error bound for estimating a moralized graph with sample

size n, possible neighborhood size p− 1, and the maximum degree of moralize graph d.

The detail of the proof is in the supplementary material. δN(n0, p− 1, d) can be

found using existing theoretical results for subset selection in regression which we are

treating as a black box in this paper. For example using the GLM lasso approach,

δN(n0, p − 1, d) ≤ 1
p4

provided n0 ≥ c.d. log p for an appropriately chosen constant

c (see e.g. [56, 77]). The detail of the proof is in the supplementary material. Our

experiments show that the CLMG algorithm 5.1 performs well in practice.

5.4 Active Learning Algorithm

In this section, we develop a new active learning algorithm for recovering the

structure of a DAG using its moralized graph.

Our algorithm is outlined in Figure 5.1 and consists of four main steps: (1)

estimating the moralized graph of a DAG using undirected graph learning algorithms,

(2) determining a set of nodes to be intervened, (3) estimating the interventional

moralized graph of the DAG from interventional data, and (4) determining the direc-

tion of many edges as possible by comparing the moralized graph from step 1 and the

interventional moralized graph from step 3 and applying rules we develop below. We

then repeat steps 2-3-4 till the entire DAG is recovered.
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Steps 1 and 3 can be performed using standard undirected graph learning algo-

rithms [4, 56, 57, 76, 77, 78, 79]. The novelty of our algorithm lies in steps 2 and 4.

For step 2, we design an optimal algorithm for determining which nodes to intervene,

so as to minimize the total number of interventions, thus enabling our algorithm to

recover the structure of the DAG even in high-dimensional (p > n) settings. Step

4 of our algorithm is similar in flavor to existing Meek rules [41] used to determine

the direction of an edge given V-structures in a Markov Equivalence Class (MEC).

However, since we use moralized graphs instead of MECs, we require new methods to

determine the direction of an edge from the moralized graph and interventional mor-

alized graph. Using moralized graphs allows us to identify directed graphs without

strong identifiability assumptions such as the faithfulness.

We begin by discussing step 4 of our algorithm. Note that for a node j, its

moralized neighborhood N (j) = pa(j)∪ ch(j)∪ sp(j). So step 4 boils down to distin-

guishing between pa(j), ch(j) and sp(j). The following three lemmas allow us to do

this.

Lemma 5.1. For any j, k /∈ I, suppose that (j, k) ∈ Em and (j, k) /∈ Em
I . Then

(j, k) ∈ E. Furthermore, there exists at least one i ∈ I such that i is a common child

of j and k.

Lemma 5.2. Suppose that no nodes in I are adjacent in Gm. Let S = N (j)∩NI(j)c.

Then, for any k ∈ S, (k, j) ∈ E.

The detail of the proof is in the supplementary material.

Lemma 5.3. Suppose that no components of I are adjacent in Gm. Let j ∈ I,

S = N (j) ∩NI(j), and ` = N (j) ∩N (k) for k ∈ S.

(a) If ` = ∅, (j, k) ∈ E.

(b) If for all l ∈ `, (l, j) ∈ E, (j, k) ∈ E.
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(c) If for any t ∈ V \ ` and j ∈ an(t), there exists (t, k) ∈ E, then the edge between

(j, k) in the moralized graph is generated by a common child.

We defer the proof to the supplementary material.

Lemma 5.1
1: Input: I, Ĝm and Ĝm

I

2: Output: Ĝ = (V, Ê)

3: Ê = ∅
4: for j, k /∈ I do
5: ` = N̂ (j) ∩ N̂ (k) ∩ I
6: if (j, k) ∈ Êm, (j, k) /∈ Êm

I then
7: Êm := Êm \ {(j, k), (k, j)}
8: if |`| = 1 then
9: Ê := Ê ∪ {(j, `), (k, `)}

10: end if
11: end if
12: end for
13: Return: Ê
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Choice of nodes to be intervened
1: Input: Ĝm

2: Output: I set of nodes to intervene
3: while There is an unshielded triple (i1, a, i2) in Ĝm such that i1 or i2 is connected

to unidentified edges in Gm, and i1, i2 are not adjacent to all elements of I in Ĝm

do
4: Add i1, i2 ∈ I.
5: while For any i ∈ I, there is is unshielded triple (i, a, i3) and i3 is not adjacent

to all elements of I in Ĝm do
6: Add i3 ∈ I
7: end while
8: end while
9: while There is a node i4 not adjacent to all elements of I in Ĝm do

10: Add i4 ∈ I
11: end while
12: Return: I

Lemma 5.2
1: Input: I, Ĝm and Ĝm

I

2: Output: Ĝ = (V, Ê)

3: for j ∈ I do
4: S = N̂ (j) ∩ N̂I(j)c.
5: for k ∈ S do
6: Ê := Ê ∪ {(k, j)}
7: end for
8: end for
9: Return: Ê
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Lemma 5.3
1: Input: I, Ĝm and Ĝm

I

2: Output: Ĝ = (V, Ê)

3: for j ∈ I do
4: C = N̂ (j) ∩ N̂I(j)
5: for k ∈ C do
6: ` = N̂ (j) ∩ N̂ (k)

7: if ` = ∅ then . Lem. 5.3(a)
8: Ê := Ê ∪ {(j, k)}
9: end if

10: if For any l ∈ `, (l, j) ∈ Ê then
11: Ê := Ê ∪ {(j, k)} . Lem. 5.3(b)
12: end if
13: if (`, k) ∈ Ê and j ∈ an(`) then
14: Êm := Êm \ {(j, k), (k, j)}
15: if |`| = 1 then . Lem. 5.3(c)
16: Ê := Ê ∪ {(j, `), (`, j)}
17: end if
18: end if
19: end for
20: end for
21: Return: Ê

For step 2 of our algorithm, an important question is how to determine an optimal

set of nodes intervene. Taking a hint from the above lemmas, we consider two guiding

principles while choosing which nodes to intervene. First, no adjacent nodes in the

moralized graph should be intervened. Second, choose the maximum number of nodes

that can be intervened while obeying the first principle. The intuition is as follows.

Recall that we use the difference between the moralized graph and the interventional

moralized graph to determine directions of edges in step 4. If two adjacent nodes are

intervened, we do not gain any information about the direction of the edge between

the two nodes which is why we avoid intervening adjacent nodes. Further, the higher

the number of non-adjacent nodes we intervene, the more differences we are likely to
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find between the moralized graph and interventional moralized graph.

Here is the main strategy for choosing nodes to be intervened. For ease of

notation we use I0 as the set of nodes to be estimated. (1) We first find an unshielded

triple (i1, a, i2) in the moralized graph Gm such that i1 or i2 is connected to unidentified

edges in Gm, and then choose the two end nodes for intervention. I0 := I0∪{i1, i2}. It

guarantees at least two nodes are chosen in a multiple-nodes intervention. (2) Next,

we find an unshielded triple such that one of the end nodes of an unshielded triple is

an element of nodes to intervened (i1, b, i3) or (i2, b, i3) and i3 is not adjacent to all

elements of I0 = {i1, i2}. We add i3 to I0, and repeat this procedure until we cannot

find any unshielded triple such that one of the end nodes of an unshielded triple is an

element of I0. (3) Next, we choose a new unshielded triple (i3, b, i4) such that both i3

and i4 are not adjacent to all elements of I0, and add i3 and i4 to I0. We repeat the

procedure (2) and (3) until there is no unshielded triple satisfying the conditions. (4)

We find a node not adjacent to all elements of I0, and then add the node to I0. We

repeat the procedure (4) until there is no node which is not adjacent to I0.

Algorithm 5.2 Active Learning Algorithm
1: Input: X observational data

2: Output: Ĝ = (V, Ê)

3: Step 1) Estimate the moralized graph Gm via a standard undirected graph learning

algorithm

4: Step 2) Choose nodes to be intervened I.

5: Step 3) Generate XI interventional data, and then estimate the interventional

moralized graph Ĝm
I via a standard undirected graph learning algorithm

6: Step 4) Estimate the structure of a DAG using Lem. 5.1, 5.2, 5.3 ,and Meek rules.

7: Repeat Step 2) - Step 4) until every direction of an edge in Gm is recovered.

8: Return: Ĝ = (V, Ê)

We illustrate our selection strategy with an example. In Fig. 5.2, (1, 2, 3),
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Figure 5.2:: Applying our algorithm to a 5-node cycle graph

(1, 4, 3), (2, 3, 4), (2, 1, 5) and (3, 4, 5) are unshielded triples, so that we can choose

{1, 3}, {2, 4}, {2, 5} or {3, 5} for I0, and do not need further steps since there are

no more unshielded triples or nodes not-adjacent to I0. Suppose I0 = {1, 3}. Since

(2, 3) ∈ Em and /∈ Em
I0
, (2, 3) ∈ E by Lem. 5.2. In addition, since (1, 2), (3, 4) ∈ Em

and ∈ Em
I0

and both pairs do not consist triangles, (1, 2), (3, 4) ∈ E by Lem. 5.3 (a).

Lastly, 1 ∈ an(3), (3, 4) ∈ E, and (1, 3, 4) is an unshielded triple in Gm. It means that

1 ∈ sp(4), and therefore 5 is the common child of (1, 4) because (1, 4, 5) is the only

triangle in Gm.

Corollary 5.1. Consider a DAG G = (V,E) with the maximum degree of the moral-

ized graph, d. Suppose that n0 measurements are made per intervention and q inter-

ventions are required. Then our active learning algorithm recovers the true DAG with

an error probability that is upper bounded by

P (Ĝ 6= G) ≤ (q + 1) · δA(n0, p, d) (5.4)

where δA(n0, p, d) is an error bound for estimating a moralized graph with sample size

n0, node size p, and the maximum degree of moralize graph d.

Cor. 5.1 shows that if the moralized graph is sparse and total number of inter-

ventions are bounded saying q, we can recover the structure of a DAG with n = n0 · q
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total samples. For example if we use GLasso for Gaussian DAGs, there exist constants

c1, c2 > 0 such that δA(n0, p, d) = 1− pc1 if n0 > c2d
2 log p. Hence our active learning

algorithm recovers a DAG structure with probability at least 1− (q+ 1) max(n0, p)
−c1

if total sample size is n = (q + 1)n0 > c2(q + 1)d2 log p. Therefore our algorithm can

recover a DAG in the high-dimensional (n > p) settings.

5.5 Experiments

In this section, we show that our passive algorithm performs better than the

state-of-the-art GIES algorithm. We also show that our active learning algorithm

recovers a DAG in high-dimensional settings if the moralized graph is sparse. We ran

simulations using 100 realizations of a p-node random and some popular Gaussian

linear DAGs such as bipartite, cycle, and chain (see e.g. in supplementary material)

in which distribution P is defined by the following linear structural equations:

(X1, X2, ..., Xp)
T = B(X1, X2, ..., Xp)

T + ε,

where B ∈ Rp×p is an edge weight matrix with Bjk = βjk and βjk is a weight of an

edge from Xj to Xk and ε ∼ N (0p, Ip) where 0p = (0, 0, ..., 0)T ∈ Rp and Ip ∈ Rp×p is

the identity matrix. The matrix B encodes the DAG structure since if βjk is non-zero,

k → j. For random graph we impose sparsity by assigning a probability that each

coefficient of the matrix B is non-zero and we set the expected neighborhood size p
2
.

In addition for special structure graphs, we set βjk to zero for non-edge and βjk to

non-zero edge weight for an edge. Non-zero βjk were chosen uniformly at random from

the range βjk ∈ [−0.75,−0.50]∪ [0.50, 0.75] for ensuring the edge weights are bounded

away from 0. Furthermore, we used UI ∼ N (0|I|, I|I|) for an intervened variables.

We used the thresholding method provided by Yang et al [78] for recovering

neighborhood of a node in the passive learning algorithm, and we used a combination

of GLasso [57] and thresholding method [78] for recovering the moralized graph in the

active learning algorithm.
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Figure 5.3:: Accuracy rates of recovering the structure of a DAG using our passive

algorithm CLMG and GIES . The end of each bar corresponds to each accuracy rate

plus or minus its standard error

5.5.1 Passive learning algorithm: CLMG

Fig. 5.3 provides a comparison of how accurately our passive learning algo-

rithm 5.1 performs to the state-of-the-art DAG structure learning algorithm, GIES

in [24] for both random and bipartite Gaussian linear DAGs. The data used was

the same as the scheme described in Sec. 5.3.1 i.e. every node was intervened and

n0 = 1000 samples were collected per intervention. In addition, n0 = 1000 samples

were collected without any intervention. We plot the accuracy rates in recovering the

structure of a DAG as a function of different node sizes p ∈ {3, ..., 40}. Fig. 5.3 shows

that the CLMG algorithm significantly out-performs the GIES in terms of recovering

the structure on average. This supports our main ideas that using the moralized graph

instead of the MEC of a DAG is better in terms of recovering the structure although

V-structures cannot be used if the moralized graph is used.

5.5.2 Active learning algorithm

In Fig. 5.4, we plot the proportion of simulations in which our active learning

algorithm recovers the correct structure of a DAG to validate our main result in

Sec 5.4 that our active learning algorithm recovers the structure of a DAG in the high-

dimensional settings if the moralized graph is sparse. We used two popular DAGs (1)
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chain and (2) cycle to ensure the maximum degree of moralized graph is sparse. We

plot the accuracy rates in recovering the structure of DAGs as a function of sample size

per intervention n0 ∈ {250, 500, 750, 1000} for different node sizes, small-scale DAGs

p = {50, 100, 200} and large-scale DAGs p = {500, 1000, 1500}. For both cases, our

active learning algorithm requires only one intervention, so the total sample sample

size is n = 2.n0.

Fig. 5.4 shows that our active learning algorithm recovers the structure of a

DAG well as sample size increases for both chain and cycle DAGs. Fig. 5.4 also

shows that our active learning algorithm accurately recovers the DAGs even in high-

dimensional settings if the moralized graph is sparse, supporting our theoretical results

in Section 5.4. We were unable to find an obvious way to compare our active learning

strategy to existing strategies, since when different intervention schemes are used,

accuracy comparisons do not make sense. However as far as we are aware, ours is the

only strategy that scales to the high-dimensional setting.
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Figure 5.4:: Accuracy rates of recovering a DAG using our active algorithm for chain

and cycle DAGs. The end of each bar corresponds to each accuracy rate plus or minus

its standard error
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Chapter 6

Learning Graphical Models with Feedback

6.1 Introduction

A fundamental goal in many scientific problems is to determine causal or direc-

tional relationships between variables in a system. A well-known framework for rep-

resenting causal or directional relationships are directed graphical models. Most prior

work on directed graphical models has focused on directed acyclic graphical (DAG)

models, also referred to as Bayesian networks which are directed graphical models with

no directed cycles. One of the core problems is determining the underlying DAG G

given the data-generating distribution P.

A fundamental assumption in the DAG framework is the causal Markov condi-

tion (CMC) (see e.g., [39, 68]). While the CMC is broadly assumed, in order for a

directed graph G to be identifiable based on the distribution P, additional assumptions

are required. For DAG models, a number of identifiability and minimality assump-

tions have been introduced [23, 68] and the connections between them have been dis-

cussed [80]. In particular, one of the most widely used assumptions for DAG models is

the causal faithfulness condition (CFC) which is sufficient for many search algorithms.

However the CFC has been shown to be extremely restrictive, especially in the lim-

ited data setting [73]. In addition two minimality assumptions, the P-minimality

and SGS-minimality assumptions have been introduced. These conditions are weaker
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than the CFC but do not guarantee model identifiability [80]. On the other hand,

the recently introduced sparsest Markov representation (SMR) and frugality assump-

tions [17, 55, 74] provide an alternative that is milder than the CFC and is sufficient

to ensure identifiability. The main downside of the SMR and frugality assumptions

relative to the CFC is that the SMR and frugality assumptions are sufficient condi-

tions for model identifiability only when exhaustive searches over the DAG space are

possible [55], while the CFC is sufficient for polynomial-time algorithms [23, 67, 68]

for learning equivalence class of sparse graphs.

While the DAG framework is useful in many applications, it is limited since feed-

back loops are known to often exist (see e.g., [60, 59]). Hence, directed graphs with

directed cycles [68] are more appropriate to model such feedback. However learning

directed cyclic graphical (DCG) models from data is considerably more challenging

than learning DAG models [60, 59] since the presence of cycles poses a number of ad-

ditional challenges and introduces additional non-identifiability. Consequently there

has been considerably less work focusing on directed graphs with feedback both in

terms of identifiability assumptions and search algorithms. [66] discussed the CMC,

and [60, 59] discussed the CFC for DCG models and introduced the polynomial-time

cyclic causal discovery (CCD) algorithm [59] for recovering the Markov equivalence

class for DCGs. Recently, Claassen et al. [12] introduced the FCI+ algorithm for recov-

ering the Markov equivalence class for sparse DCGs, which also assumes the CFC. As

with DAG models, the CFC for cyclic models is extremely restrictive since it is more

restrictive than the CFC for DAG models. In terms of learning algorithms that do

not require the CFC, additional assumptions are typically required. For example [43]

proved identifiability for bivariate Gaussian cyclic graphical models with additive noise

which does not require the CFC while many approaches have been studied for learn-

ing graphs from the results of interventions on the graph (e.g., [31, 32, 33, 34, 35]).

However, these additional assumptions are often impractical and it is often impossible

or very expensive to intervene many variables in the graph. This raises the question of
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whether milder identifiability assumptions can be imposed for learning DCG models.

In this paper, we address this question in a number of steps. Firstly, we adapt

the SMR and frugality assumptions developed for DAG models to DCG models. Next

we show that unlike for DAG models, the adapted SMR and frugality assumptions are

not strictly weaker than the CFC. Hence we consider a new identifiability assumption

based on finding the Markovian DCG entailing the maximum number of d-separation

rules (MDR) which we prove is strictly weaker than the CFC and recovers the Markov

equivalence class for DCGs for a strict superset of examples compared to the CFC. We

also provide a comparison between the MDR, SMR and frugality assumptions as well

as the minimality assumptions for both DAG and DCG models. Finally we use the

MDR and SMR assumptions to develop search algorithms for small-scale DCG models.

Our simulation study supports our theoretical results by showing that the algorithms

induced by both the SMR and MDR assumptions recover the Markov equivalence

class more reliably than state-of-the art algorithms that require the CFC for DCG

models. We point out that the search algorithms that result from our identifiability

assumptions require exhaustive searches and are not computationally feasible for large-

scale DCG models. However, the focus of this paper is to develop the weakest possible

identifiability assumption which is of fundamental importance for directed graphical

models.

The remainder of the paper is organized as follows: Section 6.2 provides the

background and prior work for identifiability assumptions for both DAG and DCG

models. In Section 6.3 we adapt the SMR and frugality assumptions to DCG models

and provide a comparison between the SMR assumption, the CFC, and the minimal-

ity assumptions. In Section 6.4 we introduce our new MDR principle, finding the

Markovian DCG that entails the maximum number of d-separation rules and provide

a comparison of the new principle to the CFC, SMR, frugality, and minimality as-

sumptions. Finally in Section 6.5, we use our identifiability assumptions to develop a

search algorithm for learning small-scale DCG models, and provide a simulation study
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that is consistent with our theoretical results.

6.2 Prior work on directed graphical models

The characterization of Markov equivalence classes is different for DAGs and

DCGs. For DAGs, [72] developed an elegant characterization of Markov equivalence

classes defined by the skeleton and v-structures. The skeleton of a DAG model consists

of the edges without directions.

However for DCGs, the presence of feedback means the characterization of the

MEC for DCGs is considerably more involved. [60] provides a characterization. The

presence of directed cycles changes the notion of adjacency between two nodes. In

particular there are real adjacencies that are a result of directed edges in the DCG

and virtual adjacencies which are edges that do not exist in the data-generating DCG

but can not be recognized as a non-edge from the data. The precise definition of real

and virtual adjacencies are as follows.

Definition 6.1 (Adjacency [60]). Consider a directed graph G = (V,E).

(a) For any j, k ∈ V , j and k are really adjacent in G if j → k or j ← k.

(b) For any j, k ∈ V , j and k are virtually adjacent if j and k have a common child

` such that ` is an ancestor of j or k.

Note that a virtual adjacency can only occur if there is a cycle in the graph.

Hence, DAGs have only real edges while DCGs can have both real edges and virtual

edges. Figure 6.1 shows an example of a DCG with a virtual edge. In Figure 6.1, a

pair of nodes (1, 4) has a virtual edge (dotted line) because the triple (1, 4, 2) forms a

v-structure and the common child 2 is an ancestor of 1. This virtual edge is created

by the cycle, 1→ 2→ 3→ 1.

Virtual edges generate different types of relationships involving unshielded triples:

(1) an unshielded triple (j, k, `) (that is j−`−k) is called a conductor if ` is an ancestor
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Figure 6.1:: 4-node example for a virtual edge

of j or k; (2) an unshielded triple (j, k, `) is called a perfect non-conductor if ` is a de-

scendant of the common child of j and k; and (3) an unshielded triple (j, k, `) is called

an imperfect non-conductor if the triple is not a conductor or a perfect non-conductor.

Intuitively, the concept of (1) a conductor is analogous to the notion of a non

v-structure in DAGs because for example suppose that an unshielded triple (j, k, `)

is a conductor, then j is d-connected to k given any set S which does not contain `.

Moreover, (2) a perfect non-conductor is analogous to a v-structure because suppose

that (j, k, `) is a perfect non-conductor, then j is d-connected to k given any set S

which contains `. However, there is no analogous notion of an imperfect non-conductor

for DAG models. We see throughout this paper that this difference creates a major

challenge in inferring DCGmodels from the underlying distribution P. As shown in [58]

(Cyclic Equivalence Theorem), a necessary (but not sufficient) condition for two DCGs

to belong to the same MEC is that they share the same real plus virtual edges and the

same (1) conductors, (2) perfect non-conductors and (3) imperfect non-conductors.

However unlike for DAGs, this condition is not sufficient for Markov equivalence. A

complete characterization of Markov equivalence is provided in Richardson [58, 60]

and since it is quite involved, we do not include here.

Even if we weaken the goal to inferring the MEC for a DAG or DCG, the

CMC is insufficient for discovering the true MEC M(G∗) because there are many

graphs satisfying the CMC, which do not belong toM(G∗). For example, any fully-

connected graph always satisfies the CMC because it does not entail any d-separation

rules. Hence, in order to identify the true MEC given the distribution P, stronger

identifiability assumptions that force the removal of edges are required.



89

6.2.1 Faithfulness and minimality assumptions

In this section, we discuss prior work on identifiability assumptions for both DAG

and DCG models. To make the notion of identifiability and our assumptions precise,

we need to introduce the notion of a true data-generating graphical model (G∗,P).

All we observe is the distribution (or samples from) P, and we know the graphical

model (G∗,P) satisfies the CMC. Let CI(P) denote the set of conditional independence

statements corresponding to P. The graphical model (G∗,P) is identifiable if the

Markov equivalence class of the graph M(G∗) can be uniquely determined based on

CI(P). For a directed graph G, let E(G) denote the set of directed edges, S(G) denote

the set of edges without directions, also referred to as the skeleton, and Dsep(G) denote

the set of d-separation rules entailed by G.

One of the most widely imposed identifiability assumptions for both DAG and

DCG models is the causal faithfulness condition (CFC) [68] also referred to as the

stability condition in [51]. A directed graph is faithful to a probability distribution if

there is no probabilistic independence in the distribution that is not entailed by the

CMC. The CFC states that the graph is faithful to the true probability distribution.

Definition 6.2 (Causal Faithfulness condition (CFC) [68]). Consider a directed graph-

ical model (G∗,P). A graph G∗ is faithful to P if and only if for any j, k ∈ V and any

subset S ⊂ V \ {j, k},

j d-separated from k | S ⇐⇒ Xj ⊥⊥ Xk | XS according to P.

While the CFC is sufficient to guarantee identifiability for many polynomial-time

search algorithms [12, 23, 32, 59, 60, 68] for both DAGs and DCGs, the CFC is known

to be a very strong assumption (see e.g., [17, 55, 73]) that is often not satisfied in

practice. Hence, milder identifiability assumptions have been considered.

Minimality assumptions, notably the P-minimality [49] and SGS-minimality [23]

assumptions are two such assumptions. The P-minimality assumption asserts that for

directed graphical models satisfying the CMC, graphs that entail more d-separation
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rules are preferred. For example, suppose that there are two graphs G1 and G2 which

are not Markov equivalent. G1 is strictly preferred to G2 if Dsep(G2) ⊂ Dsep(G1)

and Dsep(G2) 6= Dsep(G1). The P-minimality assumption asserts that no graph is

strictly preferred to the true graph G∗. The SGS-minimality assumption asserts that

there exists no proper sub-graph of G∗ that satisfies the CMC with respect to the

probability distribution P. To define the term sub-graph precisely, G1 is a sub-graph

of G2 if E(G1) ⊂ E(G2) and E(G1) 6= E(G2). [80] proved that the SGS-minimality

assumption is weaker than the P-minimality assumption which is weaker than the

CFC for both DAG and DCG models. While [80] states the results for DAG models,

the result easily extends to DCG models.

Theorem 6.1 (Sections 4 and 5 in [80]). If a directed graphical model (G∗,P) satisfies

(a) the CFC, it satisfies the P-minimality assumption.

(b) the P-minimality assumption, it satisfies the SGS-minimality assumption.

6.2.2 Sparsest Markov Representation (SMR) for DAG models

While the minimality assumptions are milder than the CFC, neither the P-

minimality nor SGS-minimality assumptions imply identifiability of the MEC for G∗.

Recent work by [55] developed the sparsest Markov representation (SMR) assumption

and a slightly weaker version later referred to as frugality assumption [17] which applies

to DAG models. The SMR assumption which we refer to here as the identifiable

SMR assumption states that the true DAG model is the graph satisfying the CMC

with the fewest edges. Here we say that a DAG G1 is strictly sparser than a DAG G2

if G1 has fewer edges than G2.

Definition 6.3 (Identifiable SMR [55]). A DAG model (G∗,P) satisfies the identifiable

SMR assumption if (G∗,P) satisfies the CMC and |S(G∗)| < |S(G)| for every DAG G

such that (G,P) satisfies the CMC and G /∈M(G∗).
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The identifiable SMR assumption is strictly weaker than the CFC while also

ensuring a method known as the Sparsest Permutation (SP) algorithm [55] recovers

the true MEC. Hence the identifiable SMR assumption guarantees identifiability of

the MEC for DAGs. A slightly weaker notion which we refer to as the weak SMR

assumption does not guarantee model identifiability.

Definition 6.4 (Weak SMR (Frugality) [17]). A DAG model (G∗,P) satisfies the weak

SMR assumption if (G∗,P) satisfies the CMC and |S(G∗)| ≤ |S(G)| for every DAG G

such that (G,P) satisfies the CMC and G /∈M(G∗).

A comparison of SMR/frugality to the CFC and the minimality assumptions for

DAG models is provided in [55] and [17].

Theorem 6.2 (Theorems 2.5 and 2.8 in [55], and Theorem 3 in [17]). If a DAG model

(G∗,P) satisfies

(a) the CFC, it satisfies the identifiable SMR assumption and consequently weak

SMR assumption.

(b) the weak SMR assumption, it satisfies the P-minimality assumption and conse-

quently the SGS-minimality assumption.

(c) the identifiable SMR assumption, G∗ is identifiable up to the true MECM(G∗).

It is unclear whether the SMR/frugality assumptions apply naturally to DCG

models since the success of the SMR assumption relies on the local Markov property

which is known to hold for DAGs but not DCGs [58]. In this paper, we investigate the

extent to which these identifiability assumptions apply to DCG models and provide a

new principle for learning DCG models.

Based on this prior work, a natural question to consider is whether the identi-

fiable and weak SMR assumptions developed for DAG models apply to DCG models

and whether there are similar relationships between the CFC, identifiable and weak
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SMR, and minimality assumptions. In this paper we address this question by adapting

both identifiable and weak SMR assumptions to DCG models. One of the challenges

we address is dealing with the distinction between real and virtual edges in DCGs. We

show that unlike for DAG models, the identifiable SMR assumption is not necessarily

a weaker assumption than the CFC. Consequently, we introduce a new principle which

is the maximum d-separation rule (MDR) principle which chooses the directed Markov

graph with the greatest number of d-separation rules. We show that our MDR princi-

ple is strictly weaker than the CFC and stronger than the P-minimality assumption,

while also guaranteeing model identifiability for DCG models. Our simulation results

complement our theoretical results, showing that the MDR principle is more successful

than the CFC in terms of recovering the true MEC for DCG models.

6.3 Sparsity and SMR for DCG models

In this section, we extend notions of sparsity and the SMR assumptions to DCG

models. As mentioned earlier, in contrast to DAGs, DCGs can have two different

types of edges which are real and virtual edges. In this paper, we define the sparsest

DCG as the graph with the fewest total edges which are virtual edges plus real edges.

The main reason we choose total edges rather than just real edges is that all DCGs in

the same Markov equivalence class (MEC) have the same number of total edges [58].

However, the number of real edges may not be the same among the graphs even in

the same MEC. For example in Figure 6.2, there are two different MECs and each

MEC has two graphs: G1, G2 ∈ M(G1) and G3, G4 ∈ M(G3). G1 and G2 have 9

total edges but G3 and G4 has 7 total edges. On the other hand, G1 has 6 real edges,

G2 has 9 real edges, G3 has 5 real edges, and G4 has 7 real edges (a bi-directed edge

is counted as 1 total edge). For a DCG G, let S(G) denote the skeleton of G where

(j, k) ∈ S(G) is a real or virtual edge.

Using this definition of the skeleton S(G) for a DCG G, the definitions of the

identifiable and weak SMR assumptions carry over from DAG to DCG models. For
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Figure 6.2:: 5-node examples with different numbers of real and total edges

completeness, we re-state the definitions here.

Definition 6.5 (Identifiable SMR for DCG models). A DCG model (G∗,P) satisfies

the identifiable SMR assumption if (G∗,P) satisfies the CMC and |S(G∗)| < |S(G)|

for every DCG G such that (G,P) satisfies the CMC and G /∈M(G∗).

Definition 6.6 (Weak SMR for DCG models). A DCG model (G∗,P) satisfies the

weak SMR assumption if (G∗,P) satisfies the CMC and |S(G∗)| ≤ |S(G)| for every

DCG G such that (G,P) satisfies the CMC and G /∈M(G∗).

Both the SMR and SGS minimality assumptions prefer graphs with the fewest

total edges. The main difference between the SGS-minimality assumption and the

SMR assumptions is that the SGS-minimality assumption requires that there is no

DCGs with a strict subset of edges whereas the SMR assumptions simply require that

there are no DCGs with fewer edges.

Unfortunately as we observe later unlike for DAGmodels, the identifiable SMR as-

sumption is not weaker than the CFC for DCG models. Therefore, the identifiable

SMR assumption does not guarantee identifiability of MECs for DCG models. On the



94

other hand, while the weak SMR assumption may not guarantee uniqueness, we prove

it is a strictly weaker assumption than the CFC. We explore the relationships between

the CFC, identifiable and weak SMR, and minimality assumptions in the next section.

6.3.1 Comparison of SMR, CFC and minimality assumptions for DCG

models

Before presenting our main result in this section, we provide a lemma which

highlights the important difference between the SMR assumptions for graphical models

with cycles compared to DAG models. Recall that the SMR assumptions involve

counting the number of edges, whereas the CFC and P-minimality assumption involve

d-separation rules. First, we provide a fundamental link between the presence of an

edge in S(G) and d-separation/connection rules.

Lemma 6.1. For a DCG G, (j, k) ∈ S(G) if and only if j is d-connected to k given

S for all S ⊂ V \ {j, k}.

Proof. First, we show that if (j, k) ∈ S(G) then j is d-connected to k given S for

all S ⊂ V \ {j, k}. By the definition of d-connection/separation, there is no subset

S ⊂ V \ {j, k} such that j is d-separated from k given S. Second, we prove that

if (j, k) /∈ S(G) then there exists S ⊂ V \ {j, k} such that j is d-separated from k

given S. Let S = an(j) ∪ an(k). Then S has no common children or descendants,

otherwise (j, k) are virtually adjacent. Then there is no undirected path between j

and k conditioned on the union of ancestors of j and k, and therefore j is d-separated

from k given S. This completes the proof.

Note that the above statement is true for real or virtual edges and not real edges

alone. We now state an important lemma which shows the key difference in comparing

the SMR assumptions to other identifiability assumptions (CFC, P-minimality, SGS-

minimality) for graphical models with cycles, which does not arise for DAG models.

Lemma 6.2. (a) For any two DCGs G1 and G2, Dsep(G1) ⊆ Dsep(G2) implies

S(G2) ⊆ S(G1).
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(b) There exist two DCGs G1 and G2 such that S(G1) = S(G2), but Dsep(G1) 6=

Dsep(G2) and Dsep(G1) ⊂ Dsep(G2). For DAGs, no two such graphs exist.

Proof. We begin with the proof for (a). Suppose that S(G1) is not a sub-skeleton

of S(G2), meaning that there exists a pair (j, k) ∈ S(G1) and (j, k) /∈ S(G2). By

Lemma 6.1, j is d-connected to k given S for all S ⊂ V \ {j, k} in G1 while there

exists S ⊂ V \ {j, k} such that j is d-separated from k given S entailed by G2. Hence

it is contradictory that Dsep(G1) ⊂ Dsep(G2). For (b), we refer to the example in

Figure 6.3. In Figure 6.3, the unshielded triple (1, 4, 2) is a conductor in G1 and an

imperfect non-conductor in G2 because of a reversed directed edge between 4 and 5.

By the property of a conductor, 1 is not d-separated from 4 given the empty set for G1.

In contrast for G2, 1 is d-separated from 4 given the empty set. Other d-separation

rules are the same for both G1 and G2.

1 2 3 4

5

G1

1 2 3 4

5

G2

Figure 6.3:: 5-node examples for Lemma 6.2 and Theorem 6.3

Lemma 6.2 (a) holds for both DAGs and DCGs, and allows us to conclude a

subset-superset relation between edges in the skeleton and d-separation rules in a

graph G. Part (b) is where there is a key difference DAGs and directed graphs with

cycles. Part (b) asserts that there are examples in which the edge set in the skeleton

may be totally equivalent, yet one graph entails a strict superset of d-separation rules.

Now we present the main result of this section which compares the identifiable

and weak SMR assumptions with the CFC and P-minimality assumption.
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Theorem 6.3. For DCG models,

(a) the weak SMR assumption is weaker than the CFC.

(b) there exists a DCG model (G,P) satisfying the CFC that does not satisfy the

identifiable SMR assumption.

(c) the identifiable SMR assumption is stronger than the P-minimality assumption.

(d) there exists a DCG model (G,P) satisfying the weak SMR assumption that does

not satisfy the P-minimality assumption.

Proof. (a) The proof for (a) follows from Lemma 6.2 (a). If a DCG model (G∗,P)

satisfies the CFC, then for any graph G such that (G,P) satisfies the CMC,

Dsep(G) ⊆ Dsep(G
∗). Hence based on Lemma 6.2 (a), S(G∗) ⊆ S(G) and (G∗,P)

satisfies the weak SMR assumption.

(b) We refer to the example in Figure 6.3 where (G2,P) satisfies the CFC and fails

to satisfy the identifiable SMR assumption because G1 has fewer edges than G2

and (G1,P) satisfies the CMC.

(c) The proof for (c) again follows from Lemma 6.2 (a). Suppose that a DCG

model (G∗,P) fails to satisfy the P-minimality assumption. This implies that

there exists a DCG G such that (G,P) satisfies the CMC, G /∈ M(G∗) and

Dsep(G
∗) ⊂ Dsep(G). Lemma 6.2 (a) implies S(G) ⊆ S(G∗). Hence G∗ cannot

have the fewest edges uniquely, therefore (G∗,P) fails to satisfy the identifiable

SMR assumption.

(d) We refer to the example in Figure 6.3 where (G1,P) satisfies the weak SMR as-

sumption and fails to satisfy the P-minimality assumption. Further explanation

is given in Figure D.1 in the appendix.
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Theorem 6.3 shows that if a DCG model (G,P) satisfies the CFC, the weak

SMR assumption is satisfied whereas the identifiable SMR assumption is not neces-

sarily satisfied. For DAG models, the identifiable SMR assumption is strictly weaker

than the CFC and the identifiable SMR assumption guarantees identifiability of the

true MEC. However, Theorem 6.3 (b) implies that the identifiable SMR assumption

is not strictly weaker than the CFC for DCG models. On the other hand, unlike for

DAG models, the weak SMR assumption does not imply the P-minimality assumption

for DCG models, according to (d). In Section 6.5, we implement an algorithm that

uses the identifiable SMR assumption and the results seem to suggest that on average

for DCG models, the identifiable SMR assumption is weaker than the CFC.

6.4 New principle: Maximum d-separation rules (MDR)

In light of the fact that the identifiable SMR assumption does not lead to a

strictly weaker assumption than the CFC, we introduce the maximum d-separation

rules (MDR) assumption. The MDR assumption asserts that G∗ entails more d-

separation rules than any other graph satisfying the CMC according to the given

distribution P. We use CI(P) to denote the conditional independence (CI) statements

corresponding to the distribution P.

Definition 6.7 (Maximum d-separation rules (MDR)). A DCG model (G∗,P) satisfies

the maximum d-separation rules (MDR) assumption if (G∗,P) satisfies the CMC and

|Dsep(G)| < |Dsep(G
∗)| for every DCG G such that (G,P) satisfies the CMC and

G /∈M(G∗).

There is a natural and intuitive connection between the MDR assumption and

the P-minimality assumption. Both assumptions encourage DCGs to entail more d-

separation rules. The key difference between the P-minimality assumption and the

MDR assumption is that the P-minimality assumption requires that there is no DCGs

that entail a strict superset of d-separation rules whereas the MDR assumption simply
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requires that there are no DCGs that entail a greater number of d-separation rules.

6.4.1 Comparison of MDR to CFC and minimality assumptions for DCGs

In this section, we provide a comparison of the MDR assumption to the CFC

and P-minimality assumption. For ease of notation, let GM(P) and GF (P) denote the

set of Markovian DCG models satisfying the MDR assumption and CFC, respectively.

In addition, let GP (P) denote the set of DCG models satisfying the P-minimality

assumption.

Theorem 6.4. Consider a DCG model (G∗,P).

(a) If GF (P) 6= ∅, then GF (P) = GM(P). Consequently if (G∗,P) satisfies the CFC,

then GF (P) = GM(P) =M(G∗).

(b) There exists a distribution P for which GF (P) = ∅ while (G∗,P) satisfies the

MDR assumption and GM(P) =M(G∗).

(c) GM(P) ⊆ GP (P).

(d) There exists a distribution P for which GM(P) = ∅ while (G∗,P) satisfies the

P-minimality assumption and GP (P) ⊇M(G∗).

Proof. (a) Suppose that (G∗,P) satisfies the CFC. Then CI(P) corresponds to the

set of d-separation rules entailed byG∗. Note that if (G,P) satisfies the CMC and

G /∈M(G∗), then CI(P) is a superset of the set of d-separation rules entailed by

G and therefore Dsep(G) ⊂ Dsep(G
∗) and Dsep(G) 6= Dsep(G

∗). This allows us to

conclude that graphs belonging toM(G∗) should entail the maximum number

of d-separation rules among graphs satisfying the CMC. Furthermore, based on

the CFC GF (P) =M(G∗) which completes the proof.

(c) Suppose that (G∗,P) fails to satisfy the P-minimality assumption. By the defini-

tion of the P-minimality assumption, there exists (G,P) satisfying the CMC such
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thatDsep(G
∗) ⊂ Dsep(G) andDsep(G

∗) 6= Dsep(G). Hence, G∗ entails strictly less

d-separation rules than G, and therefore (G∗,P) violates the MDR assumption.

(b) For (b) and (d), we refer to the example in Figure 6.4. Suppose that X1, X2, X3,

X4 are random variables with distribution P with the following CI statements:

CI(P) = {X1 ⊥⊥ X3 | X2; X2 ⊥⊥ X4 | X1, X3; X1 ⊥⊥ X2 | X4}. (6.1)

We show that (G1,P) satisfies the MDR assumption but not the CFC, whereas

(G2,P) satisfies the P-minimality assumption but not the MDR assumption. Any

graph satisfying the CMC with respect to Pmust only entail a subset of the three

d-separation rules: {X1 d-sep X3 | X2;X2 d-sep X4 | X1, X3; X1 d-sep X2 | X4}.

Clearly Dsep(G1) = {X1 d-sep X3 | X2; X2 d-sep X4 | X1, X3}, therefore (G1,P)

satisfies the CMC. It can be shown that no graph entails any subset containing

two or three of these d-separation rules other than G1. Hence no graph follows

the CFC with respect to P since there is no graph that entails all three d-

separation rules and (G1,P) satisfies the MDR assumption because no graph

entails more or as many d-separation rules as G1 entails, and satisfies the CMC

with respect to P.

(d) Note that G2 entails the sole d-separation rule, Dsep(G2) = {X1 d-sep X2 | X4}

and it is clear that (G2,P) satisfies the CMC. If (G2,P) does not satisfy the

P-minimality assumption, there exists a graph G such that (G,P) satisfies the

CMC and Dsep(G2) ⊂ Dsep(G) and Dsep(G2) 6= Dsep(G). It can be shown that

no such graph exists. Therefore, (G2,P) satisfies the P-minimality assumption.

Clearly, (G2,P) fails to satisfy the MDR assumption because G1 entails more

d-separation rules.

Theorem 6.4 (a) asserts that whenever the set of DCG models satisfying the CFC

is not empty, it is equivalent to the set of DCG models satisfying the MDR assumption.
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Figure 6.4:: 4-node examples for Theorem 6.4

Part (b) claims that there exists a distribution in which no DCG model satisfies the

CFC, while the set of DCG models satisfying the MDR assumption consists of its

MEC. Hence, (a) and (b) show that the MDR assumption is strictly superior to the

CFC in terms of recovering the true MEC. Theorem 6.4 (c) claims that any DCG

models satisfying the MDR assumption should lie in the set of DCG models satisfying

the P-minimality assumption. (d) asserts that there exist DCG models satisfying the

P-minimality assumption but violating the MDR assumption. Therefore, (c) and (d)

prove that the MDR assumption is strictly stronger than the P-minimality assumption.

6.4.2 Comparison between the MDR and SMR assumptions

Now we show that the MDR assumption is neither weaker nor stronger than the

SMR assumptions for both DAG and DCG models.

Lemma 6.3. (a) There exists a DAG model satisfying the identifiable SMR assump-

tion that does not satisfy the MDR assumption. Further, there exists a DAG

model satisfying the MDR assumption that does not satisfy the weak SMR as-

sumption.

(b) There exists a DCG model that is not a DAG that satisfies the same conclusion

as (a).

Proof. Our proof for Lemma 6.3 involves us constructing two sets of examples, one

for DAGs corresponding to (a) and one for cyclic graphs corresponding to (b). For

(a), Figure 6.5 displays two DAGs, G1 and G2 which are clearly not in the same
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Figure 6.5:: 5-node examples for Lemma 6.3.(a)

MEC. For clarity, we use red arrows to represent the edges/directions that are differ-

ent between the graphs. We associate the same distribution P to each DAG where

CI(P) is provided in Appendix D.1.2. With this CI(P), both (G1,P) and (G2,P)

satisfy the CMC (explained in Appendix D.1.2). The main point of this example

is that (G2,P) satisfies the identifiable and weak SMR assumptions whereas (G1,P)

satisfies the MDR assumption, and therefore two different graphs are determined de-

pending on the given identifiability assumption with respect to the same P. A more

detailed proof that (G1,P) satisfies the MDR assumption whereas (G2,P) satisfies the

SMR assumption is provided in Appendix D.1.2.

For (b), Figure 6.6 displays two DCGs G1 and G2 which do not belong to the

same MEC. Once again red arrows are used to denote the edges (both real and virtual)

that are different between the graphs. We associate the same distribution P with condi-

tional independent statements CI(P) (provided in Appendix D.1.3) to each graph such

that both (G1,P) and (G2,P) satisfy the CMC (explained in Appendix D.1.3). Again,

the main idea of this example is that (G1,P) satisfies the MDR assumption whereas

(G2,P) satisfies the identifiable SMR assumption. A detailed proof that (G1,P) sat-

isfies the MDR assumption whereas (G2,P) satisfies the identifiable SMR assumption

can be found in Appendix D.1.3.
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Figure 6.6:: 12-node examples for Lemma 6.3.(b)

Intuitively, the reason why fewer edges does not necessarily translate to entailing

more d-separation rules is that the placement of edges relative to the rest of the graph

and what additional paths they allow affects the total number of d-separation rules

entailed by the graph.

In summary, the flow chart in Figure 6.7 shows how the CFC, SMR, MDR and

minimality assumptions are related for both DAG and DCG models:

6.5 Simulation results

In Sections 6.3 and 6.4, we proved that the MDR assumption is strictly weaker

than the CFC and stronger than the P-minimality assumption for both DAG and

DCG models, and the identifiable SMR assumption is stronger than the P-minimality

assumption for DCG models. In this section, we support our theoretical results with

numerical experiments on small-scale Gaussian linear DCG models (see e.g., [66]) using

the generic Algorithm 6.1. We also provide a comparison of Algorithm 6.1 to state-



103

CFC

MDR SMR

P-min SGS-min

Directed Acyclic Graph (DAG)

Thm 6.4 (a) Thm 6.2

Thm 6.4 (c)

Lem 6.3 (a)
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Thm 6.1

Thm 6.3 (c)

Figure 6.7:: Summary of relationships between assumptions

Algorithm 6.1 Directed Graph Learning Algorithm
1: Input: iid n samples from the DCG model (G,P)

2: Output: MEC M̂(G) and skeleton Ŝ(G)

3: Step 1: Find all conditional independence statements ĈI(P) using a conditional
independence test

4: Find the set of graphs Ĝ satisfying the given identifiability assumption
5: M̂(G)← ∅
6: Ŝ(G)← ∅
7: if All graphs of Ĝ belong to the same MECM(Ĝ) then
8: M̂(G)←M(Ĝ)

9: end if
10: if All graphs of Ĝ have the same skeleton S(Ĝ) then
11: Ŝ(G)← S(Ĝ)

12: end if
13: Return: M̂(G) and Ŝ(G)

of-the-art algorithms for small-scale DCG models in terms of recovering the skeleton

of a DCG model.
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6.5.1 DCG model and simulation setup

Our simulation study involves simulating DCG models from p-node random

Gaussian linear DCG models where the distribution P is defined by the following

linear structural equations:

(X1, X2, · · · , Xp)
T = BT (X1, X2, · · · , Xp)

T + ε (6.2)

where B ∈ Rp×p is an edge weight matrix with Bjk = βjk and βjk is a weight of an

edge from Xj to Xk. Furthermore, ε ∼ N (0p, Ip) where 0p = (0, 0, · · · , 0)T ∈ Rp and

Ip ∈ Rp×p is the identity matrix.

The matrix B encodes the DCG structure since if βjk is non-zero, Xj → Xk and

the pair (Xj, Xk) is really adjacent, otherwise there is no directed edge from Xj to

Xk. In addition if there is a set of nodes S = (s1, s2, · · · , st) such that the product

of βjs1 , βks1 , βs1s2 , · · · , βstj is non-zero, the pair (Xj, Xk) is virtually adjacent. Note

that if the graph is a DAG, we would need to impose the constraint that B is upper

triangular; however for DCGs we impose no such constraints.

We present simulation results for two sets of models, DCG models where edges

and directions are determined randomly, and DCG models whose edges have a specific

graph structure. For the set of random DCG models, the simulation was conducted

using 100 realizations of 5-node random Gaussian linear DCG models (6.2) where we

impose sparsity by assigning a probability that each entry of the matrix B is non-zero

and we set the expected neighborhood size range from 1 (sparse graph) to 4 (fully

connected graph) depending on the non-zero edge weight probability. Furthermore

the non-zero edge weight parameters were chosen uniformly at random from the range

βjk ∈ [−1,−0.25]∪ [0.25, 1] which ensures the edge weights are bounded away from 0.

We also ran simulations using 100 realizations of a 5-node Gaussian linear DCG

models (6.2) with specific graph structures, namely trees, bipartite graphs, and cycles.

Figure 6.8 shows examples of skeletons of these special graphs. We generate these

graphs as follows: First, we set the skeleton for our desired graph based on Figure. 6.8
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Figure 6.8:: Skeletons of tree, bipartite, and cycle graphs

and then determine the non-zero edge weights which are chosen uniformly at random

from the range βjk ∈ [−1,−0.25] ∪ [0.25, 1]. Second, we repeatedly assign a randomly

chosen direction to each edge until every graph has at least one possible directed cycle.

Therefore, the bipartite graphs always have at least one directed cycle. However, tree

graphs have no cycles because they have no cycles in the skeleton. For cycle graphs,

we fix the directions of edges to have a directed cycle X1 → X2 → · · · → X5 → X1.

6.5.2 Comparison of assumptions

In this section we provide a simulation comparison between the SMR, MDR,

CFC and minimality assumptions. The CI statements were estimated based on n

independent samples drawn from P using Fisher’s conditional correlation test with

significance level α = 0.001. We detected all directed graphs satisfying the CMC and

we measured what proportion of graphs in the simulation satisfy each assumption

(CFC, MDR, identifiable SMR, P-minimality).

In Figures 6.9, 6.10 and 6.11, we simulated how restrictive each identifiabil-

ity assumption (CFC, MDR, identifiable SMR, P-minimality) is for random DCG

models and specific graph structures with sample sizes n ∈ {100, 200, 500, 1000} and

expected neighborhood sizes from 1 (sparse graph) to 4 (fully connected graph). As

shown in Figures 6.10 and 6.11, the proportion of graphs satisfying each assumption

increases as sample size increases because of fewer errors in CI tests. Furthermore,
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Figure 6.9:: Proportions of 5-node random DCG models satisfying the CFC, MDR,

identifiable SMR and P-minimality assumptions with different sample sizes, varying

expected neighborhood size

there are more DCG models satisfying the MDR assumption than the CFC and less

DCG models satisfying the MDR assumption than the P-minimality assumption for

all sample sizes and different expected neighborhood sizes. We can also see similar

relationships between the CFC, identifiable SMR and P-minimality assumptions. The

simulation study supports our theoretical result that the MDR assumption is weaker

than the CFC but stronger than the P-minimality assumption, and the identifiable

SMR assumption is stronger than the P-minimality assumption. Although there are

no theoretical guarantees that the identifiable SMR assumption is stronger than the

MDR assumption and weaker than the CFC, Figures 6.9 and 6.10 represent that the

identifiable SMR assumption is substantially stronger than the MDR assumption and

weaker than the CFC on average.

6.5.3 Comparison to state-of-the-art algorithms

In this section, we compare Algorithm 6.1 to state-of-the-art algorithms for small-

scale DCG models in terms of recovering the skeleton S(G) for the graph. This

addresses the issue of how likely Algorithm 6.1 based on each assumption is to recover

the skeleton of a graph compared to state-of-the-art algorithms.

Once again we used Fisher’s conditional correlation test with significance level
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Figure 6.10:: Proportions of 5-node random DCG models satisfying the CFC, MDR,

identifiable SMR and P-minimality assumptions with different expected neighborhood

sizes, varying sample size
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Figure 6.11:: Proportions of special types of 5-node DAG and DCG models satisfying

the CFC, MDR, identifiable SMR, and P-minimality assumptions, varying sample size

α = 0.001 for Step 1) of Algorithm 6.1, and we used the MDR and identifiable SMR as-

sumptions for Step 2). For comparison algorithms, we used the state-of-the-art GES

algorithm [11] and the FCI+ algorithms [12] for small-scale DCG models. We used

the R package ’pcalg’ [? ] for the FCI+ algorithm, and ’bnlearn’ [62] for the GES

algorithm.

Figures 6.12 and 6.13 show recovery rates of skeletons for random DCG models

with sample sizes n ∈ {100, 200, 500, 1000} and expected neighborhood sizes from 1

(sparse graph) to 4 (fully connected graph). Our simulation results show that the
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Figure 6.12:: Accuracy rates of recovering skeletons of 5-node random DCG models

using the MDR and identifiable SMR assumptions, the GES algorithm, and the FCI+

algorithm with different sample sizes, varying expected neighborhood size
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Figure 6.13:: Accuracy rates of recovering skeletons of 5-node random DCG models

using the MDR and identifiable SMR assumptions, the GES algorithm, and FCI+

algorithm with different expected neighborhood sizes, varying sample size

accuracy increases as sample size increases because of fewer errors in CI tests. Al-

gorithms 6.1 based on the MDR and identifiable SMR assumptions outperforms the

FCI+ algorithm on average. For dense graphs, we see that the GES algorithm out-

performs other algorithms because the GES algorithm often prefers dense graphs.

However, the GES algorithm is not theoretically consistent and cannot recover di-

rected graphs with cycles while other algorithms are designed for recovering DCG

models (see e.g., Figure 6.14).
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Figure 6.14:: Accuracy rates of recovering skeletons of special types of 5-node random

DAG and DCG models using the MDR and identifiable SMR assumptions, the GES

algorithm, and the FCI+ algorithm, varying sample size

Figure 6.14 shows the accuracy for each type of graph (Tree, Cycle, Bipartite)

using Algorithms 6.1 based on the MDR and identifiable SMR assumptions and the

GES and the FCI+ algorithms. Simulation results show that Algorithms 6.1 based on

the MDR and identifiable SMR assumptions are favorable in comparison to the FCI+

and GES algorithms for small-scale DCG models.
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Appendix A

Proofs for Chapter 3

A.1 Proof for Theorem 3.1

Proof. We prove it by induction that requires p steps to find a causal ordering that

is consistent with the DAG. Without loss of generality, assume that one of the true

causal ordering π∗ is {1, 2, ...p}. For ease of notation, let Fs = {X1, X2, · · · , Xs}. Let

k = 1 be the first step:

Var(Xj) = E(Var[Xj|Fj−1]) + Var(E[Xj|Fj−1]),

where the outer expectation and variance is taken over X1, X2, ..., Xj−1. Since the

conditional distribution Xj|Fj−1 ∼ Poisson(gj(Xpa(j))), we have Var[Xj|Fj−1] =

E[Xj|Fj−1] = gj(Xpa(j)). Hence,

Var(Xj) = E(E[Xj|Fj−1]) + Var(gj(Xpa(j)))

= E(Xj) + Var(gj(Xpa(j))),

yielding that

Var(Xj)− E(Xj) = Var(gj(Xpa(j))).

Clearly, if pa(j) is empty, meaning the node is the first component of the causal

ordering, Var(gj(Xpa(j))) = 0. Otherwise, Var(gj(Xpa(j))) > 0 by the assumption.
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Hence for any node that can not be the first in the ordering, Var(Xj) − E(Xj) > 0.

Hence we pick any node Xk such that Var(Xk)−E(Xk) = 0 as being the first element

of the causal ordering and X1 satisfies the above equation.

For k = m, assume X1, X2, ..., Xm is a valid causal ordering for the first m nodes.

Now we consider

Var(Xj|Fm) = E(Var[Xj|Fj−1]|Fm) + Var(E[Xj|Fj−1]|Fm),

for j = m + 1,m + 2, ..., p, where the expectation and variance are taken over the

variables X1, X2, ..., Xm. Again, for any j = m+1,m+2, ..., p, we have Var[Xj|Fj−1] =

E[Xj|Fj−1] = gj(Xpa(j)). Further, since X1, X2, ..., Xm is a valid causal ordering for

the first m nodes,

Var(Xj|Fm) = E(E[Xj|Fj−1]|Fm) + Var(E(Xj|Fj−1)|Fm)

= E(Xj|Fm) + Var(gj(Xpa(j))|Fm).

Hence, following on similar lines,

Var(Xj|Fm)− E(Xj|Fm) = Var[gj(Xpa(j))|Fm].

Hence if pa(j) \ {1, 2, ...,m} is empty, Var(gj(Xpa(j))|Fm) = 0 and Var(Xj|Fm) −

E(Xj|Fm) = 0. Any such node can be next on the causal ordering and Xm holds

the above property. On the other hand, for any node in which pa(j) \ {1, 2, ...,m}

is non-empty Var(Xj|Fm) − E(Xj|Fm) > 0 which excludes it from being next in the

causal ordering. Hence X1, X2, ..., Xm+1 is a valid causal ordering for the first m + 1

nodes. This completes the proof by induction.

A.2 Proof for Theorem 3.3

Proof. Let X(i) = (X
(i)
1 , ..., X

(i)
p ) be the i.i.d n samples from the given DAG model.

Let π∗ be a true causal ordering and π̂ be the estimated causal ordering. Without loss

of generality, assume that the true causal ordering π∗ is {1, 2, ...p}. For an arbitrary

permutation or causal ordering π, let πj represent its jth element.
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Let Eu denote the set of undirected edges corresponding to the moralized graph

(i.e. the directed edges without directions and edges between nodes with common

children). Recall the definitions N (j) := {k ∈ {1, 2, ..., p} |(j, k) ∈ Eu} denote the

neighborhood set of j in the moralized graph and K(j) = {k|k ∈ N (j−1)∩{j, ..., p}}

denote a candidate set for πj and Cjk = N (k) ∩ {π1, π2, ..., πj−1} which is the inter-

section of the neighbors of k with {1, 2, ..., j − 1}.

Recall that for ease of notation for any j ∈ {1, 2, ...p}, and S ⊂ {1, 2, ..., p} let

µj|S and represent E[Xj|XS] and σ2
j|S = Var(Xj|XS). Also, denote µj|S(xS) and rep-

resent E[Xj|XS = xS] and σ2
j|S(xS) = Var(Xj|XS = xS). Let nS(xS) =

∑n
i=1 1(X

(i)
S =

xS) and nS =
∑

xS
n(xS)1(n(xS) ≥ c0.n) for an arbitrary c0 ∈ (0, 1).

The overdispersion score of k ∈ K(j) for the jth component of the causal or-

dering, defined in the second step of our ODS algorithm only considers elements of

X (Ĉjk) = {x ∈ {X(1)

Ĉjk
, X

(2)

Ĉjk
, ..., X

(n)

Ĉjk
} | n(x) ≥ c0.n} so we only count up elements

that occur sufficiently frequently.

According to the ODS algorithm, the truncated sample conditional expectation

and variance of Xj given XS = x for j ∈ {1, 2, ...p} and any subset S ⊂ {1, 2, ...p}\{j}

be following: for x ∈ X (S),

µ̂j|S(x) =
1

nS(x)

n∑
i=1

X
(i)
j 1(X

(i)
S = x)

σ̂2
j|S(x) =

1

nS(x)− 1

n∑
i=1

(X
(i)
j − µ̂j|S(x))21(X

(i)
S = x)

The overdispersion score of k ∈ K(j) for the jth element of the causal ordering

is for x ∈ X (Cjk),

ŝjk(x) = σ̂2
k|Ĉjk

(x)− µ̂k|Ĉjk(x)

ŝjk = ÊĈjk(ŝjk(x)) =
∑

x∈X (jk)

nĈjk(x)

nĈjk
ŝjk(x).

And the correct overdispersion score is

s∗jk = ECjk [σ
2
k|Cjk − µk|Cjk ] = ECjk [Var(gk(pa(k))|Cjk)].
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Let us define some events for the proof and d denote the maximum degree of the

moralized graph. For any j ∈ {1, 2, ..., p} and k ∈ K(j),

ξ1 = {max
j,k
|ŝjk − s∗jk| < m/2}

ξ2 = {max
k

max
i=1,...,n

X
(i)
k < n

1
5+d}

We prove it by induction that requires p steps to recover a causal ordering that

is consistent with the Poisson DAG. Without loss of generality, assume that the true

causal ordering π∗ is {1, 2, ...p}. For the first step j = 1, a set of candidate element

of π1 is K(1) = {1, 2, ...., p} and a candidate parent set of each node C1k = ∅ for all

k ∈ K(1).

P (π̂1 6= π∗1) = P
(
exists at least one k ∈ K(1) \ {1} s.t. ŝ11 > ŝ1k

)
≤ |K(1)| max

k∈K(1)\{1}

{
P
(
s∗11 +

m

2
> s∗1k −

m

2
|ξ1

)
+ P (ξc1|ξ2) + P (ξc2)

}
≤ p max

k∈K(1)\{1}

{
P
(
m > s∗1k|ξ1

)
+ P (ξc1|ξ2) + P (ξc2)

}
By Assumption (A1), s∗1k > m and we will represent some Propositions that

respectively control P (ξc1|ξ2) and P (ξc2).

For the j − 1 step, assume (π̂1, π̂2, ..., π̂j−1) is a valid ordering for the first j − 1

nodes. Note that with the correct N (j), Ĉjk = Cjk. Now, we consider π∗j . The

probability of a false recovery of π∗j given the true undirected edges of the moralized

graph and the true causal ordering before j is following:

P(π̂j 6= π∗j |π̂1 = π∗1, ..., π̂j−1 = π∗j−1)

= P
(
exists at least one k ∈ K(j) \ {j} s.t. ŝjj > ŝjk

)
≤ |K(j)| max

k∈K(j)\{j}

{
P
(
ŝjj +m/2 > s∗jk −m/2|ξ1

)
+ P (ξc1|ξ2) + P (ξc2)

}
≤ |K(j)| max

k∈K(j)\{j}

{
P
(
m > s∗jk|ξ1

)
+ P (ξc1|ξ2) + P (ξc2)

}
By Assumption (A1), s∗jk > m and we represent some Propositions that respec-

tively control P (ξc1|ξ2) and P (ξc2). Furthermore we also show a condition on c0.
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Proposition A.1. For all j ∈ {1, 2, ..., p}, k ∈ K(j), c0 ≤ n−
d

5+d given ξ2 is a suffi-

cient that a candidate parents set X (Cjk) is not empty

Proposition A.2.

P (ξc1|ξ2) ≤ 2p2n
d

5+d

{
exp
(
− m2n1/(5+d)

18

)
+ exp

(
− m2n1/(5+d)

9

)
+ exp

(
− m2n3/(5+d)

9

)}
,

where m is the constant in Assumption (A1).

Proposition A.3.

P (ξc2) ≤ npMexp
(
− n1/(5+d) log 2

)
where M is the constant in Assumption (A2).

Hence for any j ∈ {1, 2, ...p} with c0 = n−
d

5+d ,

P(π̂j 6= π∗j |π̂1 = π∗1, ..., π̂j−1 = π∗j−1)

≤ p max
k∈K(j)\{j}

{
P
(
m > s∗jk|ξ1

)
+ P (ξc1|ξ2) + P (ξc2)

}
≤ 2p3n

d
5+d

{
exp
(
− m2n1/(5+d)

18

)
+ exp

(
− m2n1/(5+d)

9

)
+ exp

(
− m2n3/(5+d)

9

)}
+ np2Mexp

(
− n1/(5+d) log 2

)
(A.1)

By using the above probability bound (A.1),

P (π̂ 6= π∗)
(E1)

≤ P (π̂1 6= π∗1) + ...+ P (π̂p−1 6= π∗p−1|π̂1 = π∗1, ..., π̂p−2 = π∗p−2)

(E2)

≤ 2p4n
d

5+d

{
exp
(
− m2n1/(5+d)

18

)
+ exp

(
− m2n1/(5+d)

9

)
+ exp

(
− m2n3/(5+d)

9

)}
+ np3Mexp

(
− n1/(5+d) log 2

)
The first inequality (E1) is followed from P (A ∪ B) = P (A) + P (B ∩ Ac) =

P (A) + P (B | Ac)P (Ac) ≤ P (A) + P (B | Ac) for some events A,B. And (E2) is

directly from (A.1).

Hence, there exists some positive constants C1, C2, C3 > 0 such that

P (π̂ 6= π∗) ≤ C1exp
(
− C2n

1/(5+d) + C3 log max{p, n}
)
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A.2.1 Proof for Proposition A.1

Proof. Let |XS| denote the cardinality of a set {X(1)
S , X

(2)
S , ..., X

(n)
S } and |X (S)| de-

note the cardinality of a set X (S). In worst case where |X (S)| = 1, for all x ∈

{X(1)
S , X

(2)
S , ..., X

(n)
S }, nS(x) = c0.n − 1 except for only one component y ∈ X (S). In

this case, the sample size n = nS(y) + (|XS|−1)(c0.n−1). A simple calculation yields

that

nS(y) = n− (|XS| − 1)(c0.n− 1) = n− c0.n|XS|+ c0.n+ |XS| − 1.

Hence c0.n ≤ nS(y) is equivalent to c0 ≤ n+|XS |−1
n.|XS |

. Since 1
|XS |
≤ n+|XS |−1

n|XS |
, if c0 ≤ 1

|XS |

there exists at least one component y ∈ X (S). In addition under the event ξ2, |XS| ≤

n
d

5+d which is all possible combinations. Hence if c0 ≤ n−
d

5+d , |X (S)| 6= 0.

A.2.2 Proof for Proposition A.2

Proof. This problem is reduced to the consistency rate of a sample conditional mean

and conditional variance. For ease of notation, let njk = nCjk and njk(x) = nCjk(x).

Suppose that c0 = n−
d

5+d . Then for any j ∈ {1, 2, ..., p} and k ∈ K(j),
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P (ξc1, ξ2) ≤ p2 max
j,k

P (|ŝjk − s∗jk| >
m

2
, ξ2)

≤ p2 max
j,k

P (
∑

x∈X (Cjk)

njk(x)

njk
|ŝjk(x)− s∗jk(x)| > m

2
, ξ2)

(a)

≤ p2 max
j,k

∑
x∈X (Cjk)

P (|ŝjk(x)− s∗jk(x)| > m

2

njk
njk(x)

, ξ2)

(b)

≤ p2 max
j,k
|X (Cjk)| max

x∈X (Cjk)
P (|ŝjk(x)− s∗jk(x)| > m

2
, ξ2)

(c)

≤ p2n
d

5+d max
j,k,x

P (|(σ̂2
k|Cjk(x)− µ̂k|Cjk(x))− (σ2

k|Cjk(x)− µk|Cjk(x))| > m

2
, ξ2)

≤ p2n
d

5+d max
j,k,x

{
P
(
|σ̂2
k|Cjk(x)− σ2

j|Cjk(x)| > m

3
, ξ2

)
+ P

(
|µ̂k|Cjk(x)− µk|Cjk(x)| > m

6
, ξ2

)}
(d)

≤ 2p2n
d

5+d max
j,k,x

{
exp
(
− m2njk(x)

18n4/(5+d)

)
+ exp

(
− m2njk(x)

9n4/(5+d)

)
+ exp

(
− m2njk(x)

9n2/(5+d)

)}
(e)

≤ 2p2n
d

5+d max
j,k,x

{
exp
(
− m2n1/(5+d)

18

)
+ exp

(
− m2n1/(5+d)

9

)
+ exp

(
− m2n3/(5+d)

9

)}
= 2p2n

d
5+d

{
exp
(
− m2n1/(5+d)

18

)
+ exp

(
− m2n1/(5+d)

9

)
+ exp

(
− m2n3/(5+d)

9

)}
.

(a) is followed from that P (
∑

i ωiXi > δ) ≤
∑

i P (Xi > δ/ωi), and (b) is from
njk(x)

njk
< 1. Since njk(x) ≥ c0.n for all x ∈ X (Cjk), |X (Cjk)| ≤ 1/c0 hence (c) and (e)

hold. Moreover, (d) is followed from the Hoeffding’s inequality (Theorem 2 [30]) since

samples are independent and bounded above n1/(5+d) given ξ2.
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A.2.3 Proof for Proposition A.3

Proof. For any j ∈ {1, 2, ..., p}, the conditional distribution of Xj given Xpa(j) is

Poisson with rate parameter gj(pa(j)). Hence for k ∈ K(j),

P (ξc2) = P ( max
k∈K(j)

max
i=1,...,n

X
(i)
k > n1/(5+d))

(a)

≤ np max
k∈K(j)

max
i=1,...,n

P (|X(i)
k | > n1/(5+d))

(b)

≤ np max
k∈K(j)

max
i=1,...,n

Epa(k)

[
exp
(
− n1/(5+d) log 2 + gk(pa(k))

)]
(c)

≤ np max
k∈K(j)

max
i=1,...,n

Mexp(−n1/(5+d) log 2)

= npMexp
(
− n1/(5+d) log 2

)
.

(a) follows from the union bound and |K(j)| < p, and (b) follows from the moment

generating function of Poisson distribution with t = log 2. Furthermore, (c) is from

Assumption 3.2 (A2).
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Appendix B

Proofs for Chapter 4

B.1 Appendix

B.1.1 Proof for Theorem 4.1

Proof. Without loss of generality, we assume the causal ordering is π∗ = (1, 2, · · · , p).

For notational convenience, we define X1:j = {X1, X2, · · · , Xj} and X1:0 = ∅. for

m ∈ V and j ∈ {m,m + 1, · · · , p}, let cjm = (β0 + β1E(Xj | X1:m−1))−1 and cj1 =

(β0 + β1E(Xj))
−1. Then, the overdispersion score is as follows:

S(j,m) = c2
jmVar(Xj | X1:m−1)− cjmE(Xj | X1:m−1).

We now prove the identifiability of our class of DAG models by induction. For

the first step, and j ∈ {1, 2, · · · , p},

S(j, 1) = c2
j1Var(Xj)− cj1E(Xj)

(a)
= c2

j1

{
Var(E(Xj | Xpa(j))) + E(Var(Xj | Xpa(j)))− c−1

j1 E(Xj)
}

(b)
= c2

j1

{
Var(E(Xj | Xpa(j))) + E(β0E(Xj | Xpa(j)) + β1E(Xj | Xpa(j))

2)− (β0 + β1E(Xj))E(Xj)
}

= c2
j1

{
Var(E(Xj | Xpa(j))) + β1E(E(Xj | Xpa(j))

2)− β1E(Xj)
2
}

= c2
j1(1 + β1)Var(E(Xj | Xpa(j))).

(a) follows from the variance decomposition formula Var[Y ] = E(Var[Y | X]) +

Var(E[Y | X]) for some random variables X and Y . In addition (b) follows from
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the quadratic variance property (4.1) of our class of distributions and the definition of

cj1. Note that the score of the true first element of the causal ordering is S(1, 1) = 0

because E(X1 | Xpa(1)) is a constant and other scores are strictly positive S(j, 1) > 0

by the identifiability assumption in Theorem 4.8. Therefore we can choose the first

element of the causal ordering.

For (m− 1)th step, assume that first m− 1 elements of the causal ordering are

correctly estimated. Now, we consider mth step. Then, for j ∈ {m,m+ 1, · · · , p},

S(j,m) = c2
jmVar(Xj | X1:m−1)− cjmE(Xj | X1:m−1)

(a)
= c2

jm

{
Var(E(Xj | Xpa(j)) | X1:m−1) + E(Var(Xj | Xpa(j)) | X1:m−1)− c−1

jmE(Xj | X1:m−1)
}

(b)
= c2

jm

{
Var(E(Xj | Xpa(j)) | X1:m−1) + E(β0E(Xj | Xpa(j) | X1:m−1) + β1E(Xj | Xpa(j) | X1:m−1)2)

− (β0 + β1E(Xj | X1:m−1))E(Xj | X1:m−1)
}

= c2
jm

{
Var(E(Xj | Xpa(j)) | X1:m−1) + β1E(E(Xj | Xpa(j))

2 | X1:m−1)− β1E(Xj | X1:m−1)2
}

= c2
jm(1 + β1)Var(E(Xj | Xpa(j)) | X1:m−1).

Again (a) follows from the variance decomposition formula and (b) follows from the

quadratic variance property (4.1) of our class of distributions and the definition of

cjm.

If pa(j)\{1, 2, · · · ,m−1} is empty, Var(E(Xj | Xpa(j)) | X1:m−1) = 0, and hence

S(m,m) = 0. On the other hand, for any node j in which pa(j) \ {1, 2, · · · ,m − 1}

is non-empty, S(j,m) > 0 by the identifiability assumption in Theorem 4.8, which

excludes it from being next in the causal ordering. Therefore, we can estimate a

valid mth component of the causal ordering, π̂m = m. This completes the proof by

induction.

B.1.2 Proof for Lemma 4.1

Proof. For any k /∈ pa(j) [θ∗D]k = 0 by the construction of θ∗D. Secondly, we show that

for any k ∈ pa(j), [θ∗D]k 6= 0. Assume for the sake of contradiction that [θ∗D]k = 0.
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By the first order optimality condition, we have

E(Xj) = E(D′(〈θ∗D, Xpa(j)〉)) (B.1)

E(XjXk) = E(D′(〈θ∗D, Xpa(j)〉)Xk).

By the definition of the covariance, we obtain

E(XjXk) = Cov(D′(〈θ∗D, X1:j−1〉), Xk)− E(D′(〈θ∗D, X1:j−1〉))E(Xk).

Equation (B.1) implies that

E(XjXk) = Cov(D′(〈θ∗D, X1:j−1〉), Xk)− E(Xj)E(Xk).

Hence, we have

Cov(Xj, Xk) = Cov(Xk, D
′(〈θ∗D, Xpa(j)〉)).

From the assumption that [θ∗D]k = 0, we obtain

Cov(Xj, Xk) = Cov(Xk, D
′(〈[θ∗D]pa(j)\k, Xpa(j)\j〉)).

However it is contradictory to the assumption Cov(Xj, Xk) 6= Cov(Xk, D
′(〈[θ∗D]pa(j)\k, Xpa(j)\j〉)).

Therefore [θ∗D]k 6= 0. Furthermore since k ∈ pa(j) is arbitrary, the proof is com-

plete.

B.1.3 Proof for Theorem 4.6

Proof. Assume that there are n iid samples x = {X(1), X(2), · · · , X(n)} and X(i) =

{X(i)
1 , X

(i)
2 · · · , X

(i)
p } for i ∈ {1, 2, · · · , n} from a given DAG model (G,P). For ease

of notation, let § = N (j) for a node j ∈ V and recall that 〈·, ·〉 represents the inner

product and [·]k is an element of a vector corresponding to a variable Xk. Then, the

negative surrogate conditional log-likelihood of GLM (4.8) is as follows:

`(θ;x) :=
1

n

n∑
i=1

(
−X(i)

j 〈θ,X
(i)
V \j〉+D(〈θ,X(i)

V \j〉)
)
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where D(·) is the log-normalization constant determined by the choice of GLM and

θ ∈ Rp−1.

The main goal of the proof is to find the unique minimizer of the following convex

problem:

θ̂M := arg min
θ∈Rp−1

L(θ, λn) = arg min
θ∈Rp−1

{`(θ;x) + λn‖θ‖1}. (B.2)

By the sub-differential method, θ̂M must hold the following condition:

5θ L(θ̂M , λn) = 5θ`(θ̂M ;x) + λnẑ = 0 (B.3)

where ẑ ∈ Rp−1 and an element of ẑ corresponding to a parameter [θ̂M ]t is ẑt =

sign([θ̂M ]t) if a node t ∈ § otherwise |ẑt| < 1.

Main idea of the proof is primal-dual-witness method which asserts that there

is a dual problem θ̃M = θ̂M if the following conditions are satisfied:

(a) We determine the vector θ̃M ∈ Θ where Θ = {θ ∈ Rp−1 : θ§c = 0} by solving the

following restricted objective problem.

θ̃M := arg min
θ∈Θ
L(θ, λn) = arg min

θ∈Θ
{`(θ;x) + λn‖θ‖1}. (B.4)

(b) We choose z̃ as a member of the sub-differential of regularizer ‖ · ‖1 evaluated

by θ̃M .

(c) For any t ∈ §, z̃t = sign([θ̃M ]t).

(d) For any t /∈ §, |z̃t| < 1.

If all conditions (a), (b), (c), and (d) are satisfied, θ̂M = θ̃M , meaning that the

solution of the unrestricted problem (B.2) is the same as the solution of the restricted

problem (B.4). The conditions (a), (b) and (c) suffice to obtain a pair (θ̃M , z̃) that

satisfies the optimality condition (B.3), but do not guarantee that z̃ is an element of

the sub-differential ‖θ̃M‖1. Therefore, the remainder of the proof is to show |z̃t| < 1

for all t /∈ §.
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Equation (B.3) with the dual solution (θ̃M , z̃) can be represented as52`(θ∗M ;x)(θ̃M−

θ∗M) = −λnz̃ −W n +Rn by using mean value theorem where

(a) W n is the sample score function.

W n := −5 `(θ∗M ;x) (B.5)

(b) Rn = (Rn
1 , R

n
2 , · · · , Rn

p−1) and Rn
k is the remainder term by applying coordinate-

wise mean value theorem.

Rn
k := [52`(θ∗M ;x)−52`(θ̄(k);x)]Tk (θ̃(k) − θ∗M) (B.6)

where θ̄(k) is a vector on the line between θ̃ and θ∗M and [·]Tk is the kth row of a

matrix.

Recall that Q = 52`(θ∗M ;x) be the Hessian of the negative conditional log-

likelihood of a GLM and Q§§ be a sub-matrix corresponding to variables X§. In

addition we use θ̃§ = [θ̃M ]§ and θ̃§c = [θ̃M ]§c . Since the set [θ̃M ]§c = 0 in our primal-

dual construction, we can re-state the condition of (B.3) in a block form as follows:

Q§c§[θ̃§ − θ∗§ ] = W n
§c − λnz̃§c +Rn

§c .

Q§§[θ̃S − θ∗S] = W n
§ − λnz̃§ +Rn

§ .

Since the matrix Q§§ is invertible, the above equations can be rewritten as

Q§c§Q
−1
§§ [W n

§ − λnz̃§ −Rn
§ ] = W n

§c − λnz̃§c −Rn
§c .

It implies that

[W n
§c −Rn

§c ]−Q§c§Q−1
§§ [W n

§ −Rn
§ ] + λnQ§c§Q

−1
§§ z̃§ = λnz̃§c .

Taking the `∞ norm of both sides yields

‖z̃§c‖∞ ≤ |‖Q§c§Q−1
§§ ‖|∞

[‖W n
§ ‖∞
λn

+
‖Rn
§ ‖∞
λn

+ 1

]
+
‖W n

§c‖∞
λn

+
‖Rn
§c‖∞
λn

.
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Recalling Assumptions (4.3), we obtain |‖Q§c§Q−1
§§ ‖|∞ ≤ (1− α), hence we have

‖z̃§c‖∞ ≤ (1− α)

[‖W n
§ ‖∞
λn

+
‖Rn
§ ‖∞
λn

+ 1

]
+
‖W n

§c‖∞
λn

+
‖Rn
§c‖∞
λn

≤ (1− α) + (2− α)

[
‖W n‖∞
λn

+
‖Rn‖∞
λn

]
.

We need the following three lemmas to show ‖z̃§c‖∞ < 1. For ease of notation,

let η = max{n, p}. Suppose that Assumptions 4.2, 4.3, 4.4, and 4.5 are satisfied.

Lemma B.1. Suppose that λn ≥ nκ2 log(η)
na

. Then, for any a ∈ [0, 1/2) there exists a

positive constant C0 such that

P (
‖W n‖∞
λn

≤ α

4(2− α)
) ≥ 1− 2d · exp(−C0 · n1−2a)−M.η−2. (B.7)

Lemma B.2. Suppose that ‖W n‖∞ ≤ λn
4
. For λn ≤ λ2min

30nκ2 log(η)dλmax
,

P

(
‖θ̃S − θ∗S‖2 ≤

5

λmin

√
dλn

)
≥ 1− 2M · η−2. (B.8)

Lemma B.3. Suppose that ‖W n‖∞ ≤ λn
4
. For λn ≤ α

300(2−α)

λ2min

nκ2 log(η)dλmax
,

P

(
‖Rn‖∞ ≤

αλn
4(2− α)

)
≥ 1− 2M · η−2. (B.9)

The rest of the proof is straightforward from Lemmas B.1, B.2, and B.3. Consider

the choice of regularization parameter λn = nκ2 log(η)
na

for some constants a ∈ (2κ2, 1/2)

where κ2 is distribution depending constant in Assumption 4.5. Then, the condition for

Lemma B.1 is satisfied, and therefore ‖Wn‖∞ ≤ λn
4
. Moreover, the conditions for Lem-

mas B.2 and B.3 are satisfied for a sufficiently large sample size n ≥ C ′(d log(η)2)
1

a−2κ2

for some positive constants C ′. Therefore, there exist some positive constants C1, C2

and C3 such that

‖z̃§c‖∞ ≤ (1− α) + (2− α)

[
‖W n‖∞
λn

+
‖Rn‖∞
λn

]
≤ (1− α) +

α

4
+
α

4
< 1, (B.10)

with probability of at least 1− C1dexp(−C2n
1−2a)− C3η

−2.
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For the sign recovery, it is sufficient to show that ‖θ̂M − θ∗M‖∞ ≤
‖θ∗M‖min

2
. By

Lemma B.2, we have ‖θ̂M − θ∗M‖∞ ≤ ‖θ̂M − θ∗M‖2 ≤ 5
λmin

√
d λn ≤

‖θ∗M‖min

2
as long as

‖θ∗M‖min ≥ 10
λmin

√
d λn.

Furthermore the assumption ‖θ∗M‖min ≥ 0 guarantees that surrogate GLMLasso

recovers the true neighborhood of each node with high probability since the solution

of GLMLasso is sufficiently close to the solution of GLM.

Furthermore, since we have p regression problems if a sample size n ≥ C ′(d log(η)2)
1

a−2κ2 ),

the moralized graph can be recovered with high probability:

P (Ĝm = Gm) ≥ 1− C1d · p · exp(−C2n
1−2a)− C3η

−1. (B.11)

B.1.3.1 Proposition B.1

Here we provide a proposition for the proof for Lemmas B.1, B.2 and B.3.

Proposition B.1. Suppose that X is a random vector with a distribution P according

to a given DAG G. Let

ξ1 := { max
i∈{1,··· ,n}

|X(i)
j | < 3 log(η)}.

Then, the following statement holds.

P (ξc1) ≤M · η−2. (B.12)

Proof. We now show the P (ξc1) is bounded. Applying the union bound and the Cher-

noff bound for any i ∈ {1, 2, · · · , n} and j ∈ V ,

P (ξc1) ≤ n. max
i∈{1,··· ,n}

P
(
|X(i)

j | > 3 log(η)
)
≤ n ·max

i
η−3E[exp(|X(i)

j |)].

We obtain maxi E(exp(|Xj|(i))) < M by Assumption 4.4 and hence Therefore we

compete the proof.
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B.1.3.2 Proposition B.2

Here we provide a proposition for the proof for Lemma B.2.

Proposition B.2. Suppose that X is a random vector with a distribution P according

to a given DAG G andM is a positive concentration bound constant in Assumption 4.4.

Then, for any vector u ∈ Rp such that ‖u‖1 ≤ c′, and for any positive constant δ, the

following statement holds.

P (|〈u,X〉)| ≥ δ log η) ≤M · p · η−δ/c′ . (B.13)

Proof. We exploit the fact that 〈u,X〉 ≤ ‖u‖1 maxj∈V |Xj|. Therefore, we have

P (|〈u,X〉)| ≥ δ log η) ≤ P (max
j∈V
|Xj| ≥

δ

‖u‖1

log η).

Using the union bound, we have

P (max
j∈V
|Xj| ≥

δ

‖u‖1

log η) ≤ p ·max
j∈V

P (|Xj| ≥
δ

‖u‖1

log η).

Applying the Chernoff bounding technique and we obtain

P (max
j∈V
|Xj| ≥

δ

‖u‖1

log η) ≤M · η−
δ
‖u‖1 .

Therefore we compete the proof.

B.1.3.3 Proof for Lemma B.1

Proof. Recall that each entry of the sample score functionW n in (B.5) has the additive

formW n
t = 1

n

∑n
i=1 W

(i)
t for any t ∈ §. In addition,W n

t = 0 for all t /∈ § since [θ∗M ]t = 0

by the construction of θ∗M ∈ ΘM in (4.7). For any i ∈ {1, 2, · · · , n} and t ∈ S, it is

straightforward to see that the variables

W
(i)
t = X

(i)
t X

(i)
j −D′(〈θ∗§ , X

(i)
§ 〉)X

(i)
t

are independent and have zero expectations.
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Now, we show that for all i ∈ {1, 2, · · · , n}, |W (i)
t | is bounded with high proba-

bility given the following event ξ1 so as to use the Hoeffding’s inequality. The event

ξ1 is as follows:

ξ1 := { max
i∈{1,··· ,n}

|X(i)
j | < 3 log(η)}.

Clearly given ξ1, θ∗§ , X
(i)
§ < 3‖θ∗§‖1 log(η), and therefore maxi∈{1,2,··· ,n} |D′(〈θ∗§ , X

(i)
§ 〉)| ≤

nκ2 by Assumption 4.5. Furthermore given ξ1, X
(i)
t X

(i)
j < 9 log(η)2. Therefore there

exists a positive constant C0 such that maxi ∈{1,2,··· ,n} |W (i)
t | ≤ C0n

κ2 log(η).

Recall that d is the maximum degree of the moralized graph and hence |§| ≤ d.

Applying the union bound, we have

P (‖W n‖∞ > δ, ξ1) ≤ d ·max
t∈§

P (|W n
t | > δ, ξ1).

Since |W (i)
t | ≤ C0n

κ2 log(η) given ξ1, using the Hoeffding’s inequality we obtain

P (‖W n‖∞ > δ, ξ1) ≤ 2d · exp(− nδ2

2(C0nκ2 log(η))2
).

Suppose that δ = λnα
4(2−α)

and λn ≥ nκ2 log(η)
na

for some a ∈ [0, 1/2). We then have

the following result.

P (
‖W n‖∞
λn

>
α

4(2− α)
, ξ1) ≤ 2d · exp

(
− nλ2

nα
2

32 · C2
0(2− α)2(nκ2 log(η))2

)
≤ 2d · exp

(
− n1−2aα2

32 · C2
0(2− α)2

)
. (B.14)

Note that P (A) = P (A ∩ B) + P (A ∩ Bc) ≤ P (A ∩ B) + P (Bc) for any sets A

and B. Then,

P (
‖W n‖∞
λn

>
α

4(2− α)
) ≤ 2P (‖W n‖∞ > δ, ξ1) + P (ξc1)

we obtain P (ξc1) ≤M.η−2 by Proposition B.1. Then, we complete the proof.

P (
‖W n‖∞
λn

>
α

4(2− α)
) ≤ 2d · exp(−n1−2a α2

32 · C2
0(2− α)2

) +M.η−2.
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B.1.3.4 Proof for Lemma B.2

Proof. In order to establish the error bound ‖θ̃§ − θ∗§‖ ≤ B for some radius B, several

works [77, 57, 56] proved that it suffices to show F (u§) > 0 for all u§ := θ̃§ − θ∗§ such

that ‖u§‖2 = B for some radius B > 0 where

F (a) := `(θ∗§ + a;x)− `(θ∗§ ;x) + λn(‖θ∗§ + a‖1 − ‖θ∗§‖1). (B.15)

Since u§ = θ̃§ − θ∗§ is the minimizer of F and F (0) = 0, by the construction

of (B.15), F (u§) ≤ 0. Note that F is convex, and therefore we must have F (u§) < 0.

We then claim that ‖u§‖2 ≤ B. In fact, if u§ lay outside the ball of radius B, then the

convex combination v · ũ§ + (1 − v) · 0 would lie on the boundary of the ball, for an

appropriately chosen v ∈ (0, 1). By convexity,

F (v · u§ + (1− v) · 0) ≤ v · F (u§) + (1− v) · 0 ≤ 0 (B.16)

contradicting the assumed strict positivity of F on the boundary.

It thus suffices to establish strict positivity of F on the boundary of the ball with

radius B = M1λn
√
d where M1 > 0 is a parameter to be chosen later in the proof.

Let u§ ∈ R|§| be an arbitrary vector with ‖u§‖2 = B. Note that |§| ≤ d since d is the

maximum degree of the moralized graph. By the Taylor series expansion of F (B.15),

we have

F (u§) = (W n
§ )TuS + uT§ [52`(θ∗M + vu§;x)]uS + λn(‖θ∗§ + u§‖1 − ‖θ∗§‖1), (B.17)

for some v ∈ [0, 1]. For the first term of Equation (B.17), we have the bound

|(W n
§ )Tu§| ≤ ‖W n

§ ‖∞‖u§‖1 ≤ ‖W n
§ ‖∞
√
d‖u§‖2 ≤ (λn

√
d)2M1

4
,

since ‖W n
§ ‖∞ ≤ λn

4
by the assumption.

Applying the triangle inequality to the last term of Equation (B.17), we have

the bound

λn(‖θ∗§ + u§‖1 − ‖θ∗§‖1) ≥ −λn‖u§‖1 ≥ −λn
√
d‖u§‖2 = −M1(λn

√
d)2.
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The second term also has the bound from the Taylor series expansion of the

Hessian.

q∗ := λmin

(
52`(θ∗§ + vu§)

)
≥ min

v∈[0,1]
λmin

(
52`(θ∗§ + vu§)

)
≥ λmin

(
52`(θ∗§)

)
− max

v∈[0,1]
‖ 1

n

n∑
i=1

D′′′(〈θ∗§ + vu§, X§〉)uT§X
(i)
§ X

(i)
§ (X

(i)
§ )T‖2

≥ λmin − max
v∈[0,1]

max
y:‖y‖2=1

1

n

n∑
i=1

|D′′′(〈θ∗§ + vu§, X§〉)||uT§X
(i)
§ |(y

TX
(i)
§ )2 (B.18)

We set a new event in order to control the first term D′′′(〈θ∗§ + vu§, X§〉);

ξ2 := { max
i∈{1,··· ,n}

〈θ∗§ + vu§, X
(i)
§ 〉 < κ1 log η}.

Provided ξ2, Assumption 4.5 yields that

D′′′(〈θ∗§ + vu§, X§〉) ≤ nκ2 . (B.19)

In addition, we show the bound of the second term of (B.18). Recall that

‖X(i)
§ ‖∞ ≤ 3 log(η) for all i ∈ {1, 2, · · · , n} given ξ1. Since ‖u§‖1 ≤

√
d‖u§‖2 and

‖u§‖2 = M1λn
√
d, we obtain

|uT§X
(i)
§ | ≤ 3 log(η)

√
d‖u§‖2 ≤ 3 log(η) ·M1λnd. (B.20)

Lastly, it is clear that maxy:‖y‖2=1(yTX
(i)
§ )2 ≤ λmax by the definition of the max-

imum eigenvalue and Assumption 4.2. Together with the above two bounds of (B.19)

and (B.20), for given ξ1 and ξ2 we have

q∗ ≤ λmin − 3nκ2 log(η) ·M1λnd λmax.

For λn ≤ λmin

6nκ2 log(η)M1dλmax
, we have q∗ ≤ λmin

2
. Therefore,

F (u) ≥ (λn
√
n)2
{
− 1

4
M1 +

λmin

2
M2

1 −M1

}
,
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which is strictly positive for M1 = 5
λmin

. Therefore for λn ≤ λ2min

30nκ2 log(η)dλmax
,

‖θ̃S − θ∗S‖2 ≤
5

λmin

√
dλn

with the high probability of at least 1− P (ξc1)− P (ξc2).

Here we show the probability bound of ξc2.

P (ξc2)
(a)

≤ n max
i∈{1,2,··· ,n}

P (〈θ∗M + vu§, X
(i)
§ 〉 > κ1 log η)

(b)

≤ n ·M · η−
κ1

2‖θ∗
M
‖1

(c)

≤ M · η−2.

(a) follows from the union bound and (b) follows from Proposition B.2 and the given

setting B ≤ ‖θ∗M‖1 because minj∈V mint∈N (j) |[θ∗M ]t| ≥ 10
λmin

√
dλn. Lastly (c) is from

Assumption 4.5 that κ1 ≥ 8‖θ∗M‖1.

In addition the probability bound of ξc1 is provided in Proposition B.1. Therefore

we prove that

P

(
‖θ̃S − θ∗S‖2 ≤

5

λmin

√
d λn

)
≥ 1− 2M · η−2.

B.1.3.5 Proof for Lemma B.3

Proof. In this section, we show the bound of Rn in (B.6). According to the definition,

Rn
t for a fixed t ∈ § can be written as

Rn
t =

1

n

n∑
i=1

[52`(θ∗M ;x)−52`(θ̄(t);x)]Tt (θ̃ − θ∗M)

=
1

n

n∑
i=1

[D′′(〈θ∗M , X
(i)
§ 〉)−D

′′(〈θ̄§, X(i)
§ 〉)][X

(i)
§ (X

(i)
§ )T ]Tt (θ̃ − θ∗M)

for θ̄(t) which is a point in the line between θ̃M and θ∗M , i.e, θ̄(t) = v · θ̃M + (1− v) · θ∗M
for some v ∈ [0, 1].
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By the mean value theorem, we have

Rn
t =

1

n

n∑
i=1

{
D′′′(〈 ¯̄θ(t), X

(i)
§ 〉)X

(i)
t

}{
v(θ̃M − θ∗M)TX

(i)
§ (X

(i)
§ )T (θ̃M − θ∗M)

}
for ¯̄θ(t) which is a point in the line between θ̄(t) and θ∗M .

We have |X(i)
j | ≤ 3 log(η) for all i ∈ {1, 2, · · · , n} given ξ1 by Proposition B.1.

Furthermore we showed that D′′′(〈 ¯̄θ,X§〉) ≤ nκ2 given ξ2 in Section B.1.3.4. Therefore,

given ξ1 and ξ2 the following result is straightforward.

|Rn
t | ≤ 3nκ2 log(η)λmax‖θ̃ − θ∗M‖2

2.

In addition, Lemma B.2 represents that ‖θ̃ − θ∗M‖2 ≤ 5
λmin

√
dλn for λn ≤

α
10(2−α)

λ2min

30nκ2 log(η)d λmax
provided ξ1 and ξ2. Therefore we have

‖Rn‖∞ ≤
75 nκ2 log(η) d λmax λ

2
n

λ2
min

≤ αλn
4(2− α)

with high probability of at least 1− P (ξc1)− P (ξc2). Putting the probability bound of

ξc1 and ξc2 shown in Proposition B.1 and Section B.1.3.4 together, we prove that

P

(
‖Rn‖∞ ≤

αλn
4(2− α)

)
≥ 1− 2Mη−2.

B.1.4 Proof for Theorem 4.8

Proof. Let X(i) = (X
(i)
1 , · · · , X(i)

p ) for i ∈ {1, 2, · · · , n} and x = (X(1), X(2), · · · , X(n))

be the iid n samples from the given QVF DAG model (G,P) with quadratic variance

coefficients (β0, β1) in (4.1). In addition, let π∗ be the true causal ordering of a DAG G.

Without loss of generality, assume that the true causal ordering is π∗ = (1, 2, · · · , p).

For an arbitrary permutation or causal ordering π, let πj represent its jth element.

Let Tj(Xj) = ωjXj where ωj = (β0 +β1E(Xj | Xpa(j)))
−1 such that Var(Tj(Xj) |

Xpa(j)) = E(Tj(Xj) | Xpa(j)). For any node j ∈ V and S ⊂ V \ {j}, let µj|S and σ2
j|S

represent E(Tj(Xj) | XS) and Var(Tj(Xj) | XS), respectively. Furthermore for some
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realizations of xS ∈ XS, let µj|S(xS) and σ2
j|S(xS) denote E(Tj(Xj) | XS = xS) and

Var(Tj(Xj) | XS = xS), respectively. We will also use the convenient notation ·̂ to

denote an estimate based on the data. We use n(xS) =
∑n

i=1 1(X
(i)
S = xS) to denote

a total conditional sample size, and nS =
∑

xS
n(xS)1(n(xS) ≥ c0.n) for an arbitrary

c0 ∈ (0, 1) to denote a truncated conditional sample size.

Let Em denote the set of undirected edges corresponding to the moralized graph

(i.e., the directed edges without directions and edges between nodes with common

children). Recall the definitions N (j) = {k ∈ V : (j, k) or (k, j) ∈ Em} denotes the

neighborhood set of a node j in the moralized graph, K(j) = {k : k ∈ N (j − 1) ∩

{j, · · · , p}} denotes a candidate set for πj, and Cjk = N (k)∩{π1, π2, · · · , πj−1} denotes

a candidate parents set. We assume that the true set of undirected edges corresponding

to the moralized graph is provided. Hence, K̂(j) = K(j) and Ĉjk = Cjk. for all nodes

j ∈ V and k ∈ K(j).

The overdispersion score of a node k ∈ K(j) for the jth component of the causal

ordering only considers elements of X (Ĉjk) = {x ∈ {X(1)

Ĉjk
, X

(2)

Ĉjk
, · · · , X(n)

Ĉjk
} : n(x) ≥

c0 · n}, so we only count up elements that occur sufficiently frequently.

According to the generalized ODS algorithm, the truncated sample conditional

mean and variance of Tj(Xj) given XS = y for j ∈ {1, 2, · · · , p} and any subset

S ⊂ {1, 2, · · · , p} \ {j} are following:

µ̂j|S(y) :=
1

nS(y)

n∑
i=1

Tj(X
(i)
j )1(X

(i)
S = y)

σ̂2
j|S(y) :=

1

nS(y)− 1

n∑
i=1

(Tj(X
(i)
j )− µ̂j|S(y))21(X

(i)
S = y).

We re-state the overdispersion score of a node k ∈ K(j) for the jth element of

the causal ordering (4.5):

Ŝ(1, k) :=

[(
σ̂j

β0 + β1µ̂j

)2

− µ̂j
β0 + β1µ̂j

]

Ŝ(j, k) :=
∑

y∈X (Ĉjk)

n(y)

nĈjk

( σ̂j|Ĉjk(y)

β0 + β1µ̂j|Ĉjk(y)

)2

−
µ̂j|Ĉjk(y)

β0 + β1µ̂j|Ĉjk(y)

 .
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For notational convenience, let each entry of the overdispersion score Ŝ(j, k) for

y ∈ X (Ĉjk) be

Ŝ(j, k)(y) :=

(
σ̂j|Ĉjk(y)

β0 + β1µ̂j|Ĉjk(y)

)2

−
µ̂j|Ĉjk(y)

β0 + β1µ̂j|Ĉjk(y)
. (B.21)

Note that the true overdispersion scores are as follows:

S(1, k)∗ :=

[(
σj

β0 + β1µj

)2

− µj
β0 + β1µj

]
,

S(j, k)∗ :=
∑

y∈X (Cjk)

n(y)

nCjk

[(
σj|Cjk(y)

β0 + β1µj|Cjk(y)

)2

−
µj|Cjk(y)

β0 + β1µj|Cjk(y)

]
,

S(j, k)∗(y) :=

(
σj|Cjk(y)

β0 + β1µj|Cjk(y)

)2

−
µj|Cjk(y)

β0 + β1µj|Cjk(y)
for y ∈ X (Ĉjk).

For ease of notation we introduce the following assumption followed by Assump-

tions 4.4 and 4.7.

Assumption B.1. For all j ∈ V , K ⊂ pa(j) and S ⊂ V \ (nd(j) ∪K), there exists

m0 > 0 such that

Var(Tj(Xj) | XS)− E(Tj(Xj) | XS) > m0.

We proved in Section B.1.1 that for all j ∈ V , K ⊂ pa(j) and all S ⊂ V \

(nd(j) ∪K), Var(Xj | XS)− E(Xj | XS) = (β0 + β1E(Xj | XS))−4 (1 + β1)Var(E(Xj |

Xpa(j)) | XS). Therefore, given the setting β1 > −1 and Assumptions 4.4 and 4.7

guarantee that the above assumption is satisfied. Assumption B.1 ensures that the

each component of the true overdispersion score S(j, k)∗(y) is bounded away from m0.

Now we show the probability bound of π̂ 6= π∗ given the true moralized graph

using the following two events: for any j ∈ V and k ∈ K(j),

ξ3 := {max
j,k
|Ŝ(j, k)− S(j, k)∗| < m0

2
}

ξ4 := {max
j

max
i∈{1,2,··· ,n}

|X(i)
j | < 3 log(η)}.
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Then, we have

P (π̂ 6= π∗)
(a)

≤ P (π̂ 6= π∗, ξ3) + P (ξc3, ξ4) + P (ξc4)
(b)

≤ P (π̂1 6= π∗1, ξ3) + P (π̂2 6= π∗2, ξ3 | π̂1 = π∗1) +

· · ·+ P (π̂p 6= π∗p, ξ3 | π̂1 = π∗1, · · · , π̂p−1 = π∗p−1) + P (ξc3, ξ4) + P (ξc4).(B.22)

(a) follows from P (A) ≤ P (A ∩B) + P (Bc) for some events A and B and (b) follows

from P (A ∪B) = P (A) + P (B ∩Ac) = P (A) + P (B | Ac)P (Ac) ≤ P (A) + P (B | Ac)

for some events A and B.

We prove the probability bound of (B.22) by induction that requires p steps

to recover the causal ordering of a given DAG. Recall that given the true moralized

graph, K̂(j) = K(j) and Ĉjk = Cjk for all nodes j ∈ V and k ∈ K(j). For the first

step m = 1, overdispersion scores of π1 in (4.4) are used where a set of candidate

element of π1 is K(1) = {1, 2, · · · , p}. Then, we have

P (π̂1 6= π∗1, ξ3) = P
(
∃k ∈ K(1) \ {π∗1} such that Ŝ(1, π∗1) > Ŝ(1, k), ξ3

)
(a)

≤ (p− 1) max
k∈K(1)\{π∗1}

P
(
S(1, π∗1)∗ +

m0

2
> S(1, k)∗ − m0

2
, ξ3

)
(b)
= (p− 1) max

k∈K(1)\{π∗1}
P (m0 > S(1, k)∗, ξ3)

(c)
= 0.

(a) follows from the union bound and the definition of ξ3. In addition, (b) follows

from that S(1, π∗1)∗ = 0 by the definition of the transformation Tj(·), and (c) is from

Assumption B.1 that overdispersion scores of incorrect nodes are greater than m0.

For the m = j − 1 step, assume that the first j − 1 elements of the estimated

causal ordering are correct (π̂1, π̂2, · · · , π̂j−1) = (π∗1, · · · , π∗j−1). Then for the m = j

step, we consider the probability of a false recovery of π∗j given (π∗1, · · · , π∗j−1).
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P (π̂j 6= π∗j , ξ3 | π∗1, · · · , π∗j−1) = P
(
∃k ∈ K(j) \ {π∗j} such that Ŝ(j, π∗j ) > Ŝ(j, k), ξ3

)
(a)

≤ |K(j)| max
k∈K(j)\{π∗j }

P
(
S(j, π∗j )

∗ +
m0

2
> S(j, k)∗ − m0

2
, ξ3

)
(b)
= |K(j)| max

k∈K(j)\{π∗j }
P (m0 > S(j, k)∗, ξ3)

(c)
= 0.

Again (a) follows from the union bound and the definition of ξ3. In addition, (b)

follows from that S(j, π∗j )
∗ = 0 by the definition of the transformation Tj(·), and (c)

is from Assumption B.1 that overdispersion scores of incorrect nodes are greater than

m0.

This completes the following statement by induction: for any j ∈ V ,

P (π̂j 6= π∗j , ξ3 | π̂1 = π∗1, · · · , π̂j−1 = π∗j−1) = 0.

Then, the probability bound (B.22) is reduced to

P (π̂ 6= π∗) ≤ P (ξc3, ξ4) + P (ξc4).

Now we focus on the upper bound of P (ξc3, ξ4) and P (ξc4).

P (ξc4) = P ( max
i∈{1,2,··· ,n}

max
j∈{1,2,··· ,p}

|X(i)
j | > 3 log(η))

(a)

≤ n · p max
i∈{1,2,··· ,n}

max
j∈{1,2,··· ,p}

P (|X(i)
j | > 3 log(η))

(b)

≤ n · p · η−3 max
i∈{1,2,··· ,n}

max
j∈{1,2,··· ,p}

E[exp(|X(i)
j |)]

(c)

≤ η−1M

(a) follows from the union bound and (b) follows from the Chernoff bound. Further-

more (c) is from the Assumption 4.4.

For the upper bound of P (ξc3, ξ4), we introduce the following lemma.
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Lemma B.4. There exist some positive constants C1 and C2 such that

P (ξc3, ξ4) ≤ C1p
2c−1

0 exp
(
−C2

c0 · n
(log(η))4

)
.

where c0 is a sample cut-off parameter.

Lastly, we represent a condition on a sample cut-off parameter c0. Intuitively,

if c0 is too small, estimated overdispersion scores may be biased due to the lack of

sample. In contrast, if c0 is too big, all components of a condition set Cjk may not have

enough samples size (> c0 · n), and therefore there is no overdispersion scores. Hence

the following proposition provides a maximum value of c0 ensuring that overdispersion

scores exist in worst case.

Proposition B.3. Given ξ4, c0 ≤ (3 log(η))−d is sufficiently small that at least one

component of a condition set Cjk of the overdispersion scores has a large sample size

which is greater than c0.n.

Putting Lemmas B.4 and Proposition B.3 together, we complete the proof. For

some positive constants C1 and C2

P (π̂ 6= π∗) ≤ C1p
2(log(η))dexp

(
−C2

n

(log(η))4+d

)
+
M

η
.

B.1.4.1 Proof for Lemma B.4

Proof. For ease of notation, let njk = nCjk and njk(y) = nCjk(y) for y ∈ X (Cjk). Using

the union bound, we have for j ∈ V and k ∈ K(j)

P (ξc3, ξ4) = P (max
j,k
|Ŝ(j, k)−S(j, k)∗| > m0

2
, ξ4) ≤ p2 max

j,k
P (|Ŝ(j, k)−S(j, k)∗| > m0

2
, ξ4).

Since overdispersion scores have additive forms, we obtain

P (|Ŝ(j, k)−S(j, k)∗| > m0

2
, ξ4) ≤ P (

∑
y∈X (Cjk)

njk(y)

njk
|Ŝ(j, k)(y)−S(j, k)∗(y)| > m0

2
, ξ4).
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Applying P (
∑

i Yi > δ) ≤
∑

i P (Yi > ωiδ) for any δ ∈ R and ωi ∈ R+ such that∑
i ωi = 1, we have

P (
∑

y∈X (Cjk)

njk(y)

njk
|Ŝ(j, k)(y)− S(j, k)∗(y)| > m0

2
, ξ4)

≤
∑

y∈X (Cjk)

P (|Ŝ(j, k)(y)− S(j, k)∗(y)| > m0

2
, ξ4).

Applying the union bound,∑
y∈X (Cjk)

P (|Ŝ(j, k)(y)− S(j, k)∗(x)| > m0

2
, ξ4)

≤ |X (Cjk)| max
y∈X (Cjk)

P (|Ŝ(j, k)(y)− S(j, k)∗(y)| > m0

2
, ξ4).

By the definition of the sample cut-off parameter c0, njk(y) ≥ c0 · n for all

y ∈ X (Cjk). Furthermore since total truncated sample size is less than original sample

size, c0 · n · |X (Cjk)| ≤ n. Therefore the cardinality of a set Cjk is at most c−1
0 . It

implies that

|X (Cjk)| max
y∈X (Cjk)

P (|Ŝ(j, k)(y)− S(j, k)∗(y)| > m0

2
, ξ4)

≤ c−1
0 max

y∈X (Cjk)
P (|Ŝ(j, k)(y)− S(j, k)∗(y)| > m0

2
, ξ4).

Since an overdispersion score is a difference between a conditional mean and a

conditional variance, the remainder of this problem is reduced to the consistency rate

of a sample conditional mean and variance. Suppose that ε := µ̂k|Cjk(y) − µk|Cjk(y)

and κ ·ε := σ̂2
k|Cjk(y)−σ2

k|Cjk(y) for some κ ∈ R. By the definition of the overdispersion

scores in (B.21), we have
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{ε : |Ŝ(j, k)(y)− S(j, k)∗(y)| > m0

2
}

⊂

ε :

∣∣∣∣∣∣
(

σj|Ĉjk(y) + κε

β0 + β1µj|Ĉjk(y) + ε

)2

−
µj|Ĉjk(y) + ε

β0 + β1µj|Ĉjk(y) + ε

−
(

σj|Cjk(y)

β0 + β1µj|Cjk(y)

)2

−
µj|Cjk(y)

β0 + β1µj|Cjk(y)

∣∣∣∣∣ > m0

2

}
= {ε : ε ∈ (ε1, ε2) ∪ (ε3, ε4)}

where ε1, ε2, ε3, ε4 are highly depending on some constants µ, σ2, β0, β1,m, and κ. More

precisely, let

ζ1(µ, σ2, β0, β1,m, κ) = β3
0(1 + β1m)− β4

1mµ
3 + 2β2

1µ
2κσ2 − 2β2

1µσ
4

+ β2
0(−2β1µ− 3β2

1mµ+ 2κσ2)− β0β1

{
β1µ

2 + 3β2
1mµ

2 + 2σ2(−2κµ+ σ2)
}
,

ζ2(µ, σ2, β0, β1,m, κ) = (β0 + β1µ)2
[
β4

0(1 + 2κµ) + 2β2
1(κµ− σ2)2(β2

1µ
2m+ 2σ4)

+ 4β0β1(κµ− σ2)
{
β2

1µm(2κµ− σ2) + β1µσ
2 − 2κσ2}

+ 2β3
0

{
− 2κσ2 + β1(µ+ 4mκ2µ− 2mκσ2)

}
+ β2

0

{
4κ2σ4 + 4β1σ

2(−2κµ+ σ2) + β2
1(µ2 + 12mκ2µ2 − 12mµκσ2 + 2mσ4)

}]
,

ζ3(µ, σ2, β0, β1,m, κ) = β2
0(−2κ2 + 2β1 + β2

1m) + 2β0βµ(β1 + β2
1m− κ2)

+ β2
1(β2

1mµ
2 + 2σ4 − 2κ2µ2).
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With the ζ1, ζ2, ζ3, we define

ε′1 =
ζ1(µj|Cjk(x), σ2

j|Cjk(x), β0, β1,m0, κ) +
√
ζ2(µj|Cjk(x), σ2

j|Cjk(x), β0, β1,m0, κ)

ζ3(µj|Cjk(x), σ2
j|Cjk(x), β0, β1,m0, κ)

ε′2 =
−ζ1(µj|Cjk(x), σ2

j|Cjk(x), β0, β1,m0, κ) +
√
ζ2(µj|Cjk(x), σ2

j|Cjk(x), β0, β1,m0, κ)

ζ3(µj|Cjk(x), σ2
j|Cjk(x), β0, β1,m0, κ)

ε′3 =
ζ1(µj|Cjk(x), σ2

j|Cjk(x), β0, β1,−m0, κ) +
√
ζ2(µj|Cjk(x), σ2

j|Cjk(x), β0, β1,−m0, κ)

ζ3(µj|Cjk(x), σ2
j|Cjk(x), β0, β1,−m0, κ)

ε′4 =
−ζ1(µj|Cjk(x), σ2

j|Cjk(x), β0, β1,−m0, κ) +
√
ζ2(µj|Cjk(x), σ2

j|Cjk(x), β0, β1,−m0, κ)

ζ3(µj|Cjk(x), σ2
j|Cjk(x), β0, β1,−m0, κ)

Let ε1 be the minimum value of (ε′1, ε
′
2, ε
′
3, ε
′
4), ε2 be the second smallest value, ε3

be the third smallest value, and ε4 be the largest value. If we set m0 = 0, the solutions

of |Ŝ(j, k)(y)− S(j, k)∗(y)| > 0 are ε ∈ (a1, 0) ∪ (0, a2) for some constants a1 < 0 and

a2 > 0. If we set m0 > 0, ε ∈ (a1, a2) ∪ (a3, a4) for some constants a1, a2 < 0 and

a3, a4 > 0.

For ease of notation, we define εmin = min{|ε2|, |ε3|}. Then, we obtain

{ε : |Ŝ(j, k)(x)− S(j, k)∗(x)| > m0

2
} ⊂ (−∞,−εmin) ∪ (εmin,∞)

Note that samples are independent andmaxi∈{1,2,··· ,n}maxj∈V |X(i)
j | are bounded

by 3 log(η) given ξ4. Furthermore recall that njk(x) ≥ c0 · n. Applying Hoeffding’s

inequality technique, we obtain

P (|µ̂j|Cjk(y)− µj|Cjk(y)| > εmin, ξ4) ≤ 2exp
(
− ε2minc0.n

18(log(η))2

)
.

Note that a sample variance can be decomposed to the following form:

1

n− 1

(
n∑
i

X2
i −

1

n
(
n∑
i

Xi)
2

)
=

1

n

n∑
i

X2
i −

1

n(n− 1)

∑
i 6=j

XiXj.

Applying Hoeffding’s inequality technique to the above decomposed sample vari-

ance, we have

P (|σ̂2
j|Cjk(x)−σ2

j|Cjk(x)| > |κ|·εmin, ξ4) ≤ 2exp
(
− κ2ε2minc0 · n

32(3 log(η))4

)
+2exp

(
− κ2ε2minc0 · n

64(3 log(η))4

)
.
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Therefore, there exist some constants C1 and C2 such that

P (ξc3, ξ4) ≤ C1p
2c−1

0 exp
(
−C2

c0 · n
(log(η))4

)
.

B.1.4.2 Proof for Proposition B.3

Proof. Let |XS| denote the cardinality of a set {X(1)
S , X

(2)
S , · · · , X(n)

S } and |X (S)| de-

note the cardinality of a truncated set X (S) := {y ∈ {X(1)
S , X

(2)
S , · · · , X(n)

S } : n(y) ≥

c0 · n}.

In worst case where |X (S)| = 1, for all y ∈ {X(1)
S , X

(2)
S , · · · , X(n)

S }, nS(y) =

c0 · n − 1 except for only one component z ∈ X (S) such that nS(z) ≥ c0.n. In this

case, the total sample size n = nS(z) + (|XS| − 1)(c0 · n− 1). It yields that

nS(z) = n− (|XS| − 1)(c0.n− 1) = n− c0 · n · |XS|+ c0 · n+ |XS| − 1.

Since c0 · n ≤ nS(z), we obtain

c0 ≤
n+ |XS| − 1

n · |XS|
.

Note that 1
|XS |
≤ n+|XS |−1

n·|XS |
and |X(i)

j | ≤ 3 log(η) for all j ∈ V and i ∈ {1, 2, · · · , n}

given ξ4. Then the maximum cardinality of a set XS is (3 log(η))|S|. Hence if c0 ≤

(3 log(η))−|S| there exists z ∈ X (S).

Recall that the size of a candidate parents set Cjk is bounded by the maximum

degree of the moralized graph d. Therefore if c0 ≤ 3 log(η)−d, there exists at least one

z ∈ X (Cjk).

B.1.5 Proof for Theorem 4.9

Proof. The proof for Theorem 4.9 is similar to the proof for Theorem 4.6 in Sec-

tion B.1.5. Suppose that there are n iid samples x = {X(1), X(2), · · · , X(n)} and X(i) =
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{X(i)
1 , X

(i)
2 , · · · , X(i)

p } for all i ∈ {1, 2, · · · , n} from a given DAG model (G,P). With-

out loss of generality, we assume that the true causal ordering is π∗ = (1, 2, · · · , p).

For notational simplicity, let X1:j = {X1, X2, · · · , Xj} and T = pa(j) for a node

j ∈ V . Recall that 〈·, ·〉 represents the inner product and [·]k is an element of a vector

corresponding to a variable Xk. Then the negative surrogate conditional log-likelihood

of GLM (4.10) for a variable Xj given X1:j−1 is as follows.

`D(θ;x) =
1

n

n∑
i=1

(
−X(i)

j 〈θ,X
(i)
1:j−1〉+D(〈θ,X(i)

1:j−1〉)
)

where D(·) is the log-normalization constant determined by the choice of GLM and

θ ∈ Rj−1

The main goal of the proof is to find the minimizer of the following convex

problem for any node j ∈ V :

θ̂D := arg min
θ∈Rj−1

L(θ, λn) = arg min
θ∈Rj−1

{`D(θ;x) + λn‖θ‖1} (B.23)

Using the sub-differential technique, θ̂D must hold the following condition:

5θ LD(θ̂D, λn) = 5θ`D(θ̂D;x) + λnẑ = 0 (B.24)

where ẑ ∈ Rj−1 and an element of ẑ corresponding to a parameter [θ̂D]t is ẑt =

sign([θ̂D]t) if a node t ∈ T otherwise |ẑt| < 1.

Similar to the proof for the Step 1) in Section B.1.3, the main idea of the proof

is primal-dual-witness method which asserts that there is a dual problem θ̃D = θ̂D if

the following conditions are satisfied.

(a) We determine the vector θ̃D ∈ Θ where Θ = {θ ∈ Rj−1 : θT c = 0} by solving the

following restricted objective problem.

θ̃D := arg min
θ∈Θ
LD(θ, λn) = arg min

θ∈Θ
{`D(θ;x) + λn‖θ‖1}. (B.25)

(b) We choose z̃ as a member of the sub-differential of regularizer ‖.‖1 evaluated by

θ̃D.
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(c) For any t ∈ T , z̃t = sign([θ̃D]t);

(d) For any t /∈ T , |z̃t| < 1.

The conditions (a), (b), and (c) suffice to obtain a pair (θ̃D, z̃) that satisfy the opti-

mality conditions (B.24), and therefore the remainder of the proof is to show |z̃t| < 1

for all t /∈ T .

Equation (B.24) with the dual solution (θ̃D, z̃) can be represented as52`D(θ∗D;x)(θ̃D−

θ∗D) = −λnz̃ −W n +Rn by using mean value theorem where

(a) W n is the sample score function

W n := −5 `D(θ∗D;x) (B.26)

(b) Rn = (Rn
1 , R

n
2 , · · · , Rn

j−1) and Rn
k is the remainder term by applying coordinate-

wise mean value theorem

Rn
k := [52`D(θ∗D;x)−52`D(θ̄(k);x)]Tk (θ̃

(k)
D − θ

∗
D) (B.27)

where θ̄(j) is a vector on the line between θ̃D and θ∗D and [·]Tk is the kth row of a

matrix.

Let Q = 52`D(θ∗D;x) be the Hessian of the surrogate negative conditional log-

likelihood of a GLM and QT T be a sub-matrix corresponding to variables XT . Since

the set θ̃T c = 0 in our primal-dual construction, we can re-state condition (B.24) in a

block form as follows:

QT cT [θ̃T − θ∗T ] = W n
T c − λnz̃T c +Rn

T c .

QT T [θ̃S − θ∗S] = W n
T − λnz̃T +Rn

T .

Since the matrix QT T is invertible, the above equations can be rewritten as

QT cTQ
−1
T T [W n

T − λnz̃T −Rn
T ] = W n

T c − λnz̃T c −Rn
T c ,
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Then, we have

[W n
T c −Rn

T c ]−QT cTQ−1
T T [W n

T −Rn
T ] + λnQT cTQ

−1
T T z̃T = λnz̃T c .

Taking the `∞ norm of both sides yields

‖z̃T c‖∞ ≤ |‖QT cTQ−1
T T ‖|∞

[
‖W n

T ‖∞
λn

+
‖Rn
T ‖∞
λn

+ 1

]
+
‖W n

T c‖∞
λn

+
‖Rn
T c‖∞
λn

.

Recalling Assumptions 4.3, we obtain |‖QT cTQ−1
T T ‖|∞ ≤ (1−α), so that we have

‖z̃T c‖∞ ≤ (1− α)

[
‖W n

T ‖∞
λn

+
‖Rn
T ‖∞
λn

+ 1

]
+
‖W n

T c‖∞
λn

+
‖Rn
T c‖∞
λn

≤ (1− α) + (2− α)

[
‖W n‖∞
λn

+
‖Rn‖∞
λn

]
.

We apply the following Corollaries B.1, B.2, and B.3 to show ‖z§c‖∞ < 1. These

corollaries directly follows from Lemma B.1, B.2, and B.3, respectively because only

differences are re-defined QT T , Wn in (B.26) and Rn in (B.27). For ease of notation,

let η = max{n, p}. Suppose that Assumptions 4.2, 4.3, 4.4, and 4.5 are satisfied.

Corollary B.1. Suppose that λn ≥ nκ2 log(η)
na

Then, for any a ∈ [0, 1/2) we have

P (
‖W n‖∞
λn

≤ α

4(2− α)
) ≥ 1− 2d · exp(−n1−2a α2

32(2− α)2
) +M · η−2.

Corollary B.2. Suppose that ‖W n‖∞ ≤ λn
4
. For λn ≤ λ2min

30nκ2 log(η)dλmax
,

P

(
‖θ̃T − θ∗S‖2 ≤

5

λmin

√
dλn

)
≥ 1− 2M · η−2.

Corollary B.3. Suppose that ‖W n‖∞ ≤ λn
4
. For λn ≤ α

300(2−α)

λ2min

nκ2 log(η)dλmax
,

P

(
‖Rn‖∞ ≤

αλn
4(2− α)

)
≥ 1− 2M · η−2.

As we discussed in Section B.1.3, we consider the choice of regularization pa-

rameter λn = nκ2 log(η))2

na
for some constants a ∈ (2κ2, 1/2). Then, the condition for

Corollary B.1 is satisfied ,and hence ‖Wn‖∞ ≤ λn
4
. Moreover, for a sufficiently large

sample size n ≥ D′(d log(η)2)
1

a−2κ2 for some positive constants D′, the conditions for
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Corollary B.2 and B.3 are satisfied. Therefore, there exist some positive constants

D1, D2 and D3 such that

‖z̃§c‖∞ ≤ (1− α) + (2− α)

[
‖W n‖∞
λn

+
‖Rn‖∞
λn

]
≤ (1− α) +

α

4
+
α

4
< 1, (B.28)

with probability of at least 1−D1dexp(−D2n
1−2a)−D3η

−2.

For the sign recovery, it is sufficient to show that ‖θ̂D − θ∗D‖∞ ≤
‖θ∗D‖min

2
. By

Corollary B.2, we have ‖θ̂D − θ∗D‖∞ ≤ ‖θ̂D − θ∗D‖2 ≤ 5
λmin

√
d λn ≤

‖θ∗D‖min

2
as long as

‖θ∗D‖min ≥ 10
λmin

√
d λn.

Since the solution of GLMLasso is sufficiently close to the solution of GLM, the

assumption ‖θ∗D‖min ≥ 0 guarantees that surrogate GLMLasso recovers the parents of

each node with high probability.

Furthermore, since we have p regression problems if a sample size n ≥ D′(d log(η)2)
1

a−2κ2 ),

the DAG structure can be recovered with high probability:

P (Ĝ = G) ≥ 1−D1d · p · exp(−D2n
1−2a)−D3η

−1. (B.29)
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Appendix C

Proofs for Chapter 5

C.1 Appendix

C.2 Proof for Theorem 5.1

Theorem C.1. Consider a DAG G = (V,E) with the maximum degree of the mor-

alized graph, d. If single-node interventions are performed at every node and n0 mea-

surements are made per intervention, then Alg. 1 recovers the true DAG wit high

probability:

P (Ĝ = G) ≥ 1−
p∑

p0=1

p0 {δ(n0(p− 1), p0 − 1, d) + δ(n0,min(d, p0 − 1), d)} , (C.1)

where δ(n, p − 1, d) is an error bound for estimating a moralized graph with sample

size n, possible neighborhood size p− 1, and the maximum degree of moralize graph d.

Proof. Consider a step in Alg. 1 when the number of remainingNodes is p0. The first

step in the while loop is to find the leaf nodes. In order to determine if a node j is

a leaf node, the function FindLeaves finds the moralized neighbors N (j) of j and

compares them to the intervened neighbors NI(j) of a node j.

To determine the moralized neighbors of a node j, FindLeaves calls Find-

Neighbors with all the measurements where the node j was not intervened (size =
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(p − 1)n0), and the set remainingNodes as the search set (size = p0 − 1). Hence

the probability that we do not find the correct moralized neighbors of a node j is

δ((p− 1)n0, p0 − 1, d). This is the first term in the error bound.

Given the neighbors of a node j, Alg. 1 finds the intervened neighbors NI(j) of a

node j by calling FindNeighbors with measurements where node j was intervened

(size = n0), and the neighbors N (j) as the search set. Since the maximum degree

of the moralized graph is d by assumption, the maximum size of the search set is

min(d, p0 − 1). Hence, the error of this step is bounded by δ(n,min(d, p0 − 1), d).

During a single FindLeaves iteration, the above two steps are repeated for each

node, for a total of p0 nodes. Finally, in the worst case, FindLeaves returns only 1

leaf node, and the while loop in Alg. 1 is repeated p times giving us the error bound

in Thm. 3.1. ?

C.3 Proof for Lemma 5.1

Proof. Since both nodes j, k ∈ V are not intervened, the directed edge between (j, k)

cannot be eliminated by an intervention. Therefore (j, k) /∈ Em
I implies that the edge

between (j, k) is not a directed edge, but is generated by some common child which

was intervened.

C.4 Proof for Lemma 5.2

Proof. Since no components of I are adjacent in Gm, for any node j ∈ I,N (j)∩I = ∅.

This means if an undirected edge connecting to a node j in Gm is eliminated in Gm
I ,

it can only be due to an intervention at node j. Recall that an intervention eliminates

the edges between each component of I and its parents. Hence it is easy to see that

N (j) ∩NI(j)c ⊂ pa(j) for any j ∈ I.
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C.5 Proof for Lemma 5.3

Proof. Since all components of I are not adjacent in Gm, for any node j ∈ I,N (j)∩I =

∅. It means if an undirected edge connecting to a node j in GI is eliminated in Gm
I ,

it is due to an intervention of a node j.

For any k ∈ S, let ` = N (j)∩N (k). Then for any l ∈ `, a triple (j, k, l) consists

of a triangle. Note that a triangle in Gm can be generated by not only all directed

edges but a V-structure. In the following, we show how to distinguish between child

and spouse of an intervention node.

(a) If ` = ∅, there is no node l such that a triple (j, k, l) makes a triangle. This

means that j and k do not have a common child because if the j and k have a

common child, it generates undirected edges between j and k in Gm. Therefore

k /∈ sp(j).

An intervention eliminates the edges between each component of I and its par-

ents. Since k ∈ NI(j) and k /∈ sp(j), k /∈ pa(j). Therefore k ∈ ch(j).

(b) If every node l ∈ ` satisfies that l → j, j and k cannot have a common child

because components of ` are only possible common child of j and k, and every

triple has (j ← l − k). Therefore k /∈ sp(j).

An intervention eliminates the edges between each component of I and its par-

ents. Since k ∈ NI(j) and k /∈ sp(j), k /∈ pa(j). Therefore k ∈ ch(j).

(c) Suppose that there exists t ∈ V \ ` such that (t, k) ∈ E. Then (j, k, t) is an

unshielded triple since both (j, k) and (k, t) are adjacent, and t /∈ `. Therefore,

t /∈ sp(j) because otherwise (j, k, t) consists a triangle.

By the assumption j ∈ an(t), and therefore k /∈ pa(j) otherwise it generates a

cycle. Hence we have either k ∈ ch(j) or k ∈ sp(j). Suppose for the sake of

contradiction that k ∈ ch(j). Then (j → k ← t) consists a V-structure which is

contradictory to t /∈ sp(j). Therefore, k ∈ sp(j).
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Appendix D

Proofs for Chapter 6

D.1 Appendix

D.1.1 Examples for Theorem 6.3 (d)

X1 X2 X3 X4

X5

G1

X1 X2 X3 X4

X5

G2

α1 α3

α5

α4

−α3α7 α7
α2

Figure D.1:: 5-node examples for Theorem 6.3 (d)

Suppose that (G1,P) is a Gaussian linear DCG model with specified edge weights

in Figure D.1. With this choice of distribution P based on G1 in Figure D.1, we have

a set of CI statements which are the same as the set of d-separation rules entailed

by G1 and an additional set of CI statements, CI(P) ⊃ {X1 ⊥⊥ X4| ∅, or X5, X1 ⊥⊥

X5| ∅, or X4}.

It is clear that (G2,P) satisfies the CMC, Dsep(G1) ⊂ Dsep(G2) and Dsep(G1) 6=

Dsep(G2) (explained in Section 6.3). This implies that (G1,P) fails to satisfy the

P-minimality assumption.
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X1

X2

X3

X4

X5

G1

X1

X2

X3

X4

X5

G2

Figure D.2:: 5-node examples for Lemma 6.3.(a)

Now we prove that (G1,P) satisfies the weak SMR assumption. Suppose that

(G1,P) does not satisfy the weak SMR assumption. Then there exists a G such that

(G,P) satisfies the CMC and has fewer edges thanG1. By Lemma 6.2, if (G,P) satisfies

the CFC, G satisfies the weak SMR assumption. Note that G1 does not have edges

between (X1, X4) and (X1, X5). Since the only additional conditional independence

statements that are not entailed by G1 are {X1 ⊥⊥ X4| ∅, or X5, X1 ⊥⊥ X5| ∅, or X4},

no graph that satisfies the CMC with respect to P can have fewer edges than G1. This

leads to a contradiction and hence (G1,P) satisfies the weak SMR assumption.

D.1.2 Proof for Lemma 6.3 (a)

Proof. Here we show that (G1,P) satisfies the identifiable SMR assumption and and

(G2,P) satisfies the MDR assumption, where P has the following CI statements:

CI(P) = {X2 ⊥⊥ X3 | (X1, X5) or (X1, X4, X5);X2 ⊥⊥ X4 | X1;

X1 ⊥⊥ X4 | (X2, X5) or (X2, X3, X5);X1 ⊥⊥ X5 | (X2, X4);

X3 ⊥⊥ X4 | (X1, X5), (X2, X5), or (X1, X2, X5)}.

Clearly both DAGs G1 and G2 do not belong to the same MEC since they have

different skeletons. To be explicit, we state all d-separation rules entailed by G1 and

G2. Both graphs entail the following sets of d-separation rules:

• X2 is d-separated from X3 given (X1, X5) or (X1, X4, X5).
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• X3 is d-separated from X4 given (X1, X5) or (X1, X2, X5).

The set of d-separation rules entailed by G1 which are not entailed by G2 is as

follows:

• X1 is d-separated from X4 given (X2, X5) or (X2, X4, X5).

• X3 is d-separated from X4 given (X2, X5).

Furthermore, the set of d-separation rules entailed by G2 which are not entailed

by G1 is as follows:

• X1 is d-separated from X5 given (X2, X4).

• X2 is d-separated from X4 given X1.

With our choice of distribution, both DAG models (G1,P) and (G2,P) satisfy

the CMC and it is straightforward to see that G2 has fewer edges than G1 while G1

entails more d-separation rules than G2.

It can be shown from an exhaustive search that there is no graph G such that G

is sparser or as sparse as G2 and (G,P) satisfies the CMC. Moreover, it can be shown

that G1 entails the maximum d-separation rules amongst graphs satisfying the CMC

with respect to the distribution again through an exhaustive search. Therefore (G1,P)

satisfies the MDR assumption and (G2,P) satisfies the identifiable SMR assumption.

D.1.3 Proof for Lemma 6.3 (b)

Proof. Suppose that the pair (G2,P) is a Gaussian linear DCG model with specified

edge weights in Figure D.3, where the non-specified edge weights can be chosen arbi-

trarily. Once again to be explicit, we state all d-separation rules entailed by G1 and

G2. Both graphs entail the following sets of d-separation rules:
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X1

X2

X3

X4

X5

X6 X7 X8

X9 X10 X11

Y

G1

Y

X1

X2

X3

X4

X5

X6 X7 X8

X9 X10 X11

G2

β1 β2

β1β2

Figure D.3:: 12-node examples for Lemma 6.3.(b)

(1) For any node A ∈ {X6, X7, X8} andB ∈ {X1, X5}, A is d-separated fromB given

{X2, X3} ∪ C for any C ⊂ {X1, X4, X5, X6, X7, X8, X9, X10, X11, Y } \ {A,B}.

(2) For any node A ∈ {X9, X10, X11} and B ∈ {X1, X5}, A is d-separated from B

given {X3, X4} ∪C for any C ⊂ {X1, X2, X3, X5, X6, X7, X8, X9, X10 , X11, Y } \

{A,B}.

(3) For any nodes A,B ∈ {X6, X7, X8}, A is d-separated from B given {X2, X3}∪C

for any C ⊂ {X1, X4, X5, X6, X7, X8, X9, X10, X11, Y } \ {A,B}.

(4) For any nodes A,B ∈ {X9, X10, X11}, A is d-separated from B given {X3, X4}∪C

for any C ⊂ {X1, X2, X5, X6, X7, X8, X9, X10, X11, Y } \ {A,B}.

(5) For any nodes A ∈ {X6, X7, X8} and B ∈ {X4}, A is d-separated from B given

{X2, X3} ∪C for any C ⊂ {X1, X4, X5, X6, X7, X8, X9, X10, X11, Y } \ {A,B}, or

given {X1, X2, X5} ∪D for any D ⊂ {X4, X6, X7, X8, Y } \ {A,B}.

(6) For any nodes A ∈ {X6, X7, X8} and B ∈ {Y }, A is d-separated from B given
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{X2, X3} ∪C for any C ⊂ {X1, X4, X5, X6, X7, X8, X9, X10, X11, Y } \ {A,B}, or

given {X1, X2, X5}∪D for any D ⊂ {X4, X6, X7, X8, , X9, X10 , X11, Y }\{A,B}.

(7) For any nodes A ∈ {X9, X10, X11} and B ∈ {X2}, A is d-separated from B

given {X3, X4}∪C for any C ⊂ {X1, X2, X5, X9, X10, X11, Y } \ {A,B}, or given

{X1, X4, X5} ∪D for any D ⊂ {X2, X9, X10, X11, Y } \ {A,B}.

(8) For any nodes A ∈ {X9, X10, X11} and B ∈ {Y }, A is d-separated from B given

{X3, X4} ∪C for any C ⊂ {X1, X2, X5, X6, X7, X8, X9, X10, X11, Y } \ {A,B}, or

given {X1, X4, X5}∪D for any D ⊂ {X2, X6, X7, X8, X9, X10 , X11, Y } \ {A,B}.

(9) For any nodes A ∈ {X6, X7, X8}, B ∈ {X9, X10, X11}, A is d-separated from B

given {X3}∪C∪D for C ⊂ {X1, X2, X4}, C 6= ∅ andD ⊂ {X1, X2, X4, X5, X6, X7, X8, X9, X10, X11, Y }\

{A,B,C}.

(10) X2 is d-separated fromX3 given {X1, X5}∪C for any C ⊂ {X1, X4, X5, X9, X10, X11, Y }.

(11) X3 is d-separated from X4 given {X1, X5} ∪ C for any C ⊂ {X1, X4, X5, X6

, X7, X8, Y }.

(12) X3 is d-separated from Y given {X1, X5} ∪ C for any C ⊂ {X1, X4, X5, X6

, X7, X8, X9, X10, X11}.

(13) X2 is d-separated fromX3 given {X1, X5}∪C for any C ⊂ {X4, X9 , X10, X11, Y }.

(14) X4 is d-separated from X3 given {X1, X5}∪C for any C ⊂ {X2, X6, X7 , X8, Y }.

(15) Y is d-separated from X3 given {X1, X5} ∪ C for any C ⊂ {X2, X6, X7, X8

, X4, X9, X10, X11}.

The set of d-separation rules entailed by G1 that is not entailed by G2 is as

follows:

(a) X1 is d-separated from X5 given {X2, X3, X4, Y } ∪ C for any C ⊂ {X6, X7

, X8, X9, X10, X11}.
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Furthermore, the set of d-separation rules entailed by G2 that is not entailed by

G1 is as follows:

(b) X2 is d-separated from X4 given X1 or {X1, Y }.

(c) X2 is d-separated from Y given X1 or {X1, X4}.

(d) X4 is d-separated from Y given X1 or {X1, X2}.

It can then be shown that by using the co-efficients specified for G2 in Figure D.3,

CI(P) is the union of the CI statements implied by the sets of d-separation rules

entailed by both G1 and G2. Therefore (G1,P) and (G2,P) satisfy the CMC. It is

straightforward to see that G2 is sparser than G1 while G1 entails more d-separation

rules than G2.

Now we prove that (G1,P) satisfies the MDR assumption and (G2,P) satisfies

the identifiable SMR assumption. First we prove that (G2,P) satisfies the identifiable

SMR assumption. Suppose that (G2,P) does not satisfy the identifiable SMR assump-

tion. Then there exists a G such that (G,P) satisfies the CMC and G has the same

number of edges as G2 or fewer edges than G2. Since the only additional CI statements

that are not implied by the d-separation rules of G2 are X1 ⊥⊥ X5 | {X2, X3, X4, Y }∪C

for any C ⊂ {X6, X7, X8, X9, X10, X11} and (G,P) satisfies the CMC, we can consider

two graphs, one with an edge between (X1, X5) and another without an edge between

(X1, X5). We firstly consider a graph without an edge between (X1, X5). Since G does

not have an edge between (X1, X5) and by Lemma 6.1, G should entail at least one

d-separation rule from (a) X1 is d-separated from X5 given {X2, X3, X4, Y } ∪ C for

any C ⊂ {X6, X7, X8, X9, X10, X11}. If G does not have an edge between (X2, X3), by

Lemma 6.1 G should entail at least one d-separation rule from (10) X2 is d-separated

from X3 given {X1, X5} ∪ C for any C ⊂ {X1, X4, X5, X9, X10, X11, Y }. These two

sets of d-separation rules can exist only if a cycle X1 → X2 → X5 → X3 → X1 or

X1 ← X2 ← X5 ← X3 ← X1 exists. In the same way, if G does not have edges between

(X3, X4) and (X3, Y ), there should be cycles which are X1 → A → X5 → X3 → X1
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or X1 ← A ← X5 ← X3 ← X1 for any A ∈ {X4, Y } as occurs in G1. However

these cycles create virtual edges between (X2, X4), (X2, Y ) or (X4, Y ) as occurs in G1.

Therefore G should have at least 3 edges either real or virtual edges. This leads to a

contradiction that G has the same number of edges of G2 or fewer edges than G2.

Secondly, we consider a graph G with an edge between (X1, X5) such that

(G,P) satisfies the CMC and G has fewer edges than G2. Note that G1 entails

the maximum number of d-separation rules amongst graphs with an edge between

(X1, X5) satisfying the CMC because CI(P)\{X1 ⊥⊥ X5 | {X2, X3, X4, Y }∪C for any

C ⊂ {X6, X7, X8, X9, X10, X11} is exactly matched to the d-separation rules entailed

by G1. This leads to Dsep(G) ⊂ Dsep(G1) and Dsep(G) 6= Dsep(G1). By Lemma 6.2,

G cannot contain fewer edges than G1. However since G2 has fewer edges than G1, it

is contradictory that G has the same number of edges of G2 or fewer edges than G2.

Therefore, (G2,P) satisfies the identifiable SMR assumption.

Now we prove that (G1,P) satisfies the MDR assumption. Suppose that (G1,P)

fails to satisfy the MDR assumption. Then, there is a graph G such that (G,P) satisfies

the CMC and G entails more d-separation rules than G1 or as many d-separation

rules as G1. Since (G,P) satisfies the CMC, in order for G to entail at least the same

number of d-separation rules entailed by G1, G should entail at least one d-separation

rule from (b) X2 is d-separated from X4 given X1 or {X1, Y }, (c) X2 is d-separated

from Y given X1 or {X1, X4} and (d) X4 is d-separated from Y given X1 or {X1, X2}.

This implies that G does not have an edge between (X2, X4), (X2, Y ) or (X4, Y ) by

Lemma 6.1. As we discussed, there is no graph satisfying the CMC without edges

(X2, X4), (X2, Y ), (X4, Y ), and (X1, X5) unless G has additional edges as occurs in

G1. Note that the graph G entails at most six d-separation rules than G1 (the total

number of d-separation rules of (b), (c), and (d)). However, adding any edge in the

graph G generates more than six more d-separation rules because by Lemma 6.1, G

loses an entire set of d-separation rules from the sets (1) to (15) which each contain

more than six d-separation rules. This leads to a contradiction that G entails more
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d-separation rules than G1 or as many d-separation rules as G1.



156

Bibliography

Joaquín Abellán, Manuel Gómez-Olmedo, Serafín Moral, et al. Some variations on

the pc algorithm. In Probabilistic Graphical Models, pages 1–8, 2006.

Hirotugu Akaike. A bayesian analysis of the minimum aic procedure. In Selected

Papers of Hirotugu Akaike, pages 275–280. Springer, 1998.

Constantin F Aliferis, Ioannis Tsamardinos, and Alexander Statnikov. Hiton: a novel

markov blanket algorithm for optimal variable selection. In AMIA Annual Symposium

Proceedings, volume 2003, page 21. American Medical Informatics Association, 2003.

Onureena Banerjee, Laurent El Ghaoui, and Alexandre d’Aspremont. Model selection

through sparse maximum likelihood estimation for multivariate gaussian or binary

data. The Journal of Machine Learning Research, 9:485–516, 2008.

Edward T Bullmore and Danielle S Bassett. Brain graphs: graphical models of the

human brain connectome. Annual review of clinical psychology, 7:113–140, 2011.

Wray Buntine. A guide to the literature on learning probabilistic networks from data.

Knowledge and Data Engineering, IEEE Transactions on, 8(2):195–210, 1996.

A Colin Cameron and Pravin K Trivedi. Regression-based tests for overdispersion in

the poisson model. Journal of Econometrics, 46(3):347–364, 1990.

David Maxwell Chickering. Learning bayesian networks is np-complete. In Learning

from data, pages 121–130. Springer, 1996.



157

David Maxwell Chickering. Optimal structure identification with greedy search. The

Journal of Machine Learning Research, 3:507–554, 2003.

David Maxwell Chickering, David Heckerman, and Christopher Meek. Large-sample

learning of bayesian networks is np-hard. Journal of Machine Learning Research,

5(Oct):1287–1330, 2004.

David Maxwell Chickering and Christopher Meek. Finding optimal bayesian net-

works. In Proceedings of the Eighteenth conference on Uncertainty in artificial intel-

ligence, pages 94–102. Morgan Kaufmann Publishers Inc., 2002.

Tom Claassen, Joris Mooij, and Tom Heskes. Learning sparse causal models is not

np-hard. arXiv preprint arXiv:1309.6824, 2013.

Gregory F Cooper and Edward Herskovits. A bayesian method for the induction of

probabilistic networks from data. Machine learning, 9(4):309–347, 1992.

Robert G Cowell. Probabilistic networks and expert systems: Exact computational

methods for Bayesian networks. Springer Science & Business Media, 2006.

Charmaine B Dean. Testing for overdispersion in poisson and binomial regression

models. Journal of the American Statistical Association, 87(418):451–457, 1992.

Kenji Doya. Bayesian brain: Probabilistic approaches to neural coding. MIT press,

2007.

Malcolm Forster, Garvesh Raskutti, Reuben Stern, and Naftali Weinberger. The

frugal inference of causal relations. British Journal for the Philosophy of Science,

2015.

Jerome H Friedman, Trevor Hastie, and Rob Tibshirani. glmnet: lasso and elastic-

net regularized generalized linear models, 2010b. URL http://CRAN. R-project.

org/package= glmnet. R package version, pages 1–1.



158

Nir Friedman. Inferring cellular networks using probabilistic graphical models. Sci-

ence, 303(5659):799–805, 2004.

Nir Friedman, Michal Linial, Iftach Nachman, and Dana Pe’er. Using bayesian net-

works to analyze expression data. Journal of computational biology, 7(3-4):601–620,

2000.

Nir Friedman, Iftach Nachman, and Dana Peér. Learning bayesian network structure

from massive datasets: the "sparse candidate" algorithm. In Proceedings of the

Fifteenth conference on Uncertainty in artificial intelligence, pages 206–215. Morgan

Kaufmann Publishers Inc., 1999.

Clark Glymour, Richard Scheines, and Peter Spirtes. Discovering causal structure:

Artificial intelligence, philosophy of science, and statistical modeling. Academic Press,

2014.

Clark Glymour, Richard Scheines, Peter Spirtes, and Kevin Kelly. Discovering causal

structure: Artificial intelligence. Philosophy of science, and Statistical Modeling,

pages 205–212, 1987.

Alain Hauser and Peter Bühlmann. Characterization and greedy learning of interven-

tional markov equivalence classes of directed acyclic graphs. The Journal of Machine

Learning Research, 13(1):2409–2464, 2012.

Alain Hauser and Peter Bühlmann. Two optimal strategies for active learning of

causal models from interventional data. International Journal of Approximate Rea-

soning, 55(4):926–939, 2014.

Alain Hauser and Peter Bühlmann. Jointly interventional and observational data: es-

timation of interventional markov equivalence classes of directed acyclic graphs. Jour-

nal of the Royal Statistical Society: Series B (Statistical Methodology), 77(1):291–318,

2015.



159

Yang-Bo He and Zhi Geng. Active learning of causal networks with intervention

experiments and optimal designs. Journal of Machine Learning Research, 9(11),

2008.

Michael Hecker, Sandro Lambeck, Susanne Toepfer, Eugene Van Someren, and Rein-

hard Guthke. Gene regulatory network inference: data integration in dynamic mod-

elsâĂŤa review. Biosystems, 96(1):86–103, 2009.

David Heckerman, Dan Geiger, and David M Chickering. Learning bayesian networks:

The combination of knowledge and statistical data. Machine learning, 20(3):197–243,

1995.

Wassily Hoeffding. Probability inequalities for sums of bounded random variables.

In The Collected Works of Wassily Hoeffding, pages 409–426. Springer, 1994.

Antti Hyttinen, Frederick Eberhardt, and Patrik O Hoyer. Causal discovery for linear

cyclic models with latent variables. on Probabilistic Graphical Models, page 153, 2010.

Antti Hyttinen, Frederick Eberhardt, and Patrik O Hoyer. Causal discovery of linear

cyclic models from multiple experimental data sets with overlapping variables. arXiv

preprint arXiv:1210.4879, 2012.

Antti Hyttinen, Frederick Eberhardt, and Patrik O Hoyer. Learning linear cyclic

causal models with latent variables. The Journal of Machine Learning Research,

13(1):3387–3439, 2012.

Antti Hyttinen, Frederick Eberhardt, and Patrik O Hoyer. Experiment selection for

causal discovery. The Journal of Machine Learning Research, 14(1):3041–3071, 2013.

Antti Hyttinen, Patrik O Hoyer, Frederick Eberhardt, and Matti Jarvisalo. Discover-

ing cyclic causal models with latent variables: A general sat-based procedure. arXiv

preprint arXiv:1309.6836, 2013.



160

Ali Jalali, Pradeep D Ravikumar, Vishvas Vasuki, and Sujay Sanghavi. On learning

discrete graphical models using group-sparse regularization. In International Con-

ference on Artificial Intelligence and Statistics, pages 378–387, 2011.

Guy Karlebach and Ron Shamir. Modelling and analysis of gene regulatory networks.

Nature Reviews Molecular Cell Biology, 9(10):770–780, 2008.

Jeffrey O Kephart and Steve R White. Directed-graph epidemiological models of

computer viruses. In Research in Security and Privacy, 1991. Proceedings., 1991

IEEE Computer Society Symposium on, pages 343–359. IEEE, 1991.

Steffen L Lauritzen. Graphical models. Clarendon Press, 1996.

Po-Ling Loh and Peter Bühlmann. High-dimensional learning of linear causal net-

works via inverse covariance estimation. The Journal of Machine Learning Research,

15(1):3065–3105, 2014.

Christopher Meek. Causal inference and causal explanation with background knowl-

edge. In Proceedings of the Eleventh conference on Uncertainty in artificial intelli-

gence, pages 403–410. Morgan Kaufmann Publishers Inc., 1995.

Nicolai Meinshausen and Peter Bühlmann. High-dimensional graphs and variable

selection with the lasso. The Annals of Statistics, pages 1436–1462, 2006.

Joris M Mooij, Dominik Janzing, Tom Heskes, and Bernhard Schölkopf. On causal

discovery with cyclic additive noise models. In Advances in neural information pro-

cessing systems, pages 639–647, 2011.

Carl N Morris. Natural exponential families with quadratic variance functions. The

Annals of Statistics, pages 65–80, 1982.

Preetam Nandy, Marloes H Maathuis, and Thomas S Richardson. Estimating the ef-

fect of joint interventions from observational data in sparse high-dimensional settings.

arXiv preprint arXiv:1407.2451, 2014.



161

Gunwoong Park and Garvesh Raskutti. Learning large-scale poisson dag models

based on overdispersion scoring. In Advances in Neural Information Processing Sys-

tems, pages 631–639, 2015.

Judea Pearl. Causal diagrams for empirical research. Biometrika, 82(4):669–688,

1995.

Judea Pearl. Causality: models, reasoning and inference. Economet. Theor, 19:675–

685, 2003.

Judea Pearl. Causality: models, reasoning and inference. Economet. Theor, 19:675–

685, 2003.

Judea Pearl. Causality. Cambridge university press, 2009.

Judea Pearl. Probabilistic reasoning in intelligent systems: networks of plausible

inference. Morgan Kaufmann, 2014.

Judea Pearl, Thomas Verma, et al. A theory of inferred causation. Morgan Kaufmann

San Mateo, CA, 1991.

Jonas Peters and Peter Bühlmann. Identifiability of gaussian structural equation

models with equal error variances. Biometrika, page ast043, 2013.

Jonas Peters, Joris Mooij, Dominik Janzing, and Bernhard Schölkopf. Identifiability

of causal graphs using functional models. arXiv preprint arXiv:1202.3757, 2012.

Garvesh Raskutti and Caroline Uhler. Learning directed acyclic graphs based on

sparsest permutations. arXiv preprint arXiv:1307.0366, 2013.

Pradeep Ravikumar, Martin J Wainwright, John D Lafferty, et al. High-dimensional

ising model selection using `1-regularized logistic regression. The Annals of Statistics,

38(3):1287–1319, 2010.



162

Pradeep Ravikumar, Martin J Wainwright, Garvesh Raskutti, Bin Yu, et al. High-

dimensional covariance estimation by minimizing `1-penalized log-determinant diver-

gence. Electronic Journal of Statistics, 5:935–980, 2011.

T Richardson. Properties of cyclic graphical models. MS ThesisCarnegie Mellon

Univ, 1994.

Thomas Richardson. A discovery algorithm for directed cyclic graphs. In Proceedings

of the Twelfth international conference on Uncertainty in artificial intelligence, pages

454–461. Morgan Kaufmann Publishers Inc., 1996.

Thomas Richardson. A polynomial-time algorithm for deciding markov equivalence

of directed cyclic graphical models. In Proceedings of the Twelfth international con-

ference on Uncertainty in artificial intelligence, pages 462–469. Morgan Kaufmann

Publishers Inc., 1996.

Gideon Schwarz et al. Estimating the dimension of a model. The annals of statistics,

6(2):461–464, 1978.

Marco Scutari. Learning bayesian networks with the bnlearn r package. arXiv preprint

arXiv:0908.3817, 2009.

Karthikeyan Shanmugam, Murat Kocaoglu, Alexandros G Dimakis, and Sriram Vish-

wanath. Learning causal graphs with small interventions. In Advances in Neural

Information Processing Systems, pages 3177–3185, 2015.

Shohei Shimizu, Patrik O Hoyer, Aapo Hyvärinen, and Antti Kerminen. A linear

non-gaussian acyclic model for causal discovery. The Journal of Machine Learning

Research, 7:2003–2030, 2006.

Craig Silverstein, Sergey Brin, Rajeev Motwani, and Jeff Ullman. Scalable techniques

for mining causal structures. Data Mining and Knowledge Discovery, 4(2-3):163–192,

2000.



163

Peter Spirtes. Directed cyclic graphical representations of feedback models. In Pro-

ceedings of the Eleventh conference on Uncertainty in artificial intelligence, pages

491–498. Morgan Kaufmann Publishers Inc., 1995.

Peter Spirtes and Clark Glymour. An algorithm for fast recovery of sparse causal

graphs. Social science computer review, 9(1):62–72, 1991.

Peter Spirtes, Clark N Glymour, and Richard Scheines. Causation, prediction, and

search. MIT press, 2000.

Marc Teyssier and Daphne Koller. Ordering-based search: A simple and effective

algorithm for learning bayesian networks. arXiv preprint arXiv:1207.1429, 2012.

Ioannis Tsamardinos and Constantin F Aliferis. Towards principled feature selection:

Relevancy, filters and wrappers. In AISTATS, 2003.

Ioannis Tsamardinos, Laura E Brown, and Constantin F Aliferis. The max-min hill-

climbing bayesian network structure learning algorithm. Machine learning, 65(1):31–

78, 2006.

TS Vermal J udea Pearl. Equivalence and synthesis of causal models. In Proceedings

of Sixth Conference on Uncertainty in Artijicial Intelligence, pages 220–227, 1991.

Caroline Uhler, Garvesh Raskutti, Peter Bühlmann, Bin Yu, et al. Geometry of the

faithfulness assumption in causal inference. The Annals of Statistics, 41(2):436–463,

2013.

Sara Van de Geer, Peter Bühlmann, et al. `0-penalized maximum likelihood for sparse

directed acyclic graphs. The Annals of Statistics, 41(2):536–567, 2013.

Thomas Verma and Judea Pearl. An algorithm for deciding if a set of observed

independencies has a causal explanation. In Proceedings of the Eighth international

conference on uncertainty in artificial intelligence, pages 323–330. Morgan Kaufmann

Publishers Inc., 1992.



164

Martin J Wainwright, John D Lafferty, and Pradeep K Ravikumar. High-dimensional

graphical model selection using `1-regularized logistic regression. In Advances in

neural information processing systems, pages 1465–1472, 2006.

Eunho Yang, Genevera Allen, Zhandong Liu, and Pradeep K Ravikumar. Graphical

models via generalized linear models. In Advances in Neural Information Processing

Systems, pages 1358–1366, 2012.

Eunho Yang, Aurelie C Lozano, and Pradeep K Ravikumar. Closed-form estimators

for high-dimensional generalized linear models. In Advances in Neural Information

Processing Systems, pages 586–594, 2015.

Ming Yuan and Yi Lin. Model selection and estimation in the gaussian graphical

model. Biometrika, 94(1):19–35, 2007.

Jiji Zhang. A comparison of three occam’s razors for markovian causal models. The

British Journal for the Philosophy of Science, page axs005, 2012.

Tian Zheng, Matthew J Salganik, and Andrew Gelman. How many people do you

know in prison? using overdispersion in count data to estimate social structure in

networks. Journal of the American Statistical Association, 101(474):409–423, 2006.


	Abstract
	Introduction
	Contributions

	Background
	Directed Graphical Models
	d-separation
	Causal Markov Condition
	Markov Equivalence Class
	Moral Graph

	Overview of Structure Learning
	Scoring-based Algorithms
	Constraint-based Algorithms
	Hybrid Algorithms


	Learning Poisson DAG Model
	Introduction
	Poisson DAG Models
	Identifiability
	Algorithm
	Computational Complexity
	Statistical Guarantees

	Numerical Experiments

	Learning QVF DAG Models
	Introduction
	Quadratic Variance Function (QVF) DAG models and Identifiability
	Algorithm for QVF DAG Models
	Computational Complexity
	Statistical Guarantees
	Step 1): Recovery of the Moralized Graph of a DAG via Surrogate GLMLasso
	Step 2): Recovery of the Causal Ordering of a DAG
	Step 3): Recovery of the Structure of a DAG via Surrogate GLMLasso


	Algorithm for NEF-QVF DAG Models
	Numerical Experiments
	The Generalized ODS Algorithm
	The NEF-QVF Algorithm


	Learning DAG Models Using Moralization and Interventions
	Introduction
	Background
	Passive Learning
	Statistical Guarantees for the CLMG Algorithm

	Active Learning Algorithm
	Experiments
	Passive learning algorithm: CLMG 
	Active learning algorithm


	Learning Graphical Models with Feedback
	Introduction
	Prior work on directed graphical models
	Faithfulness and minimality assumptions
	Sparsest Markov Representation (SMR) for DAG models

	Sparsity and SMR for DCG models
	Comparison of SMR, CFC and minimality assumptions for DCG models

	New principle: Maximum d-separation rules (MDR)
	Comparison of MDR to CFC and minimality assumptions for DCGs
	Comparison between the MDR and SMR assumptions

	Simulation results
	DCG model and simulation setup
	Comparison of assumptions
	Comparison to state-of-the-art algorithms


	Proofs for Chapter 3
	Proof for Theorem 3.1
	Proof for Theorem 3.3
	Proof for Proposition A.1 
	Proof for Proposition A.2 
	Proof for Proposition A.3 


	Proofs for Chapter 4
	Appendix
	Proof for Theorem 4.1
	Proof for Lemma 4.1
	Proof for Theorem 4.6
	Proposition B.1
	Proposition B.2
	Proof for Lemma B.1
	Proof for Lemma B.2
	Proof for Lemma B.3

	Proof for Theorem 4.8
	Proof for Lemma B.4 
	Proof for Proposition B.3 

	Proof for Theorem 4.9


	Proofs for Chapter 5
	Appendix
	Proof for Theorem 5.1
	Proof for Lemma 5.1 
	Proof for Lemma 5.2 
	Proof for Lemma 5.3 

	Proofs for Chapter 6
	Appendix
	Examples for Theorem 6.3 (d)
	Proof for Lemma 6.3 (a) 
	Proof for Lemma 6.3 (b) 



