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Abstract

Directed graphical models are a powerful statistical method to compactly de-
scribe directional or causal relationships among the set of variables in large-scale data.
However, a number of statistical and computational challenges arise that make learning
directed graphical models often impossible for large-scale data. These issues include:
(1) model identifiability; (2) computational guarantee; (3) sample size guarantee; and
(4) combining interventional experiments with observational data.

In this thesis, we focus on learning directed graphical models by addressing the
above four issues. In Chapter 3, we discuss learning Poisson DAG models for modeling
large-scale multivariate count data problems where each node is a Poisson random vari-
able conditioning on its parents. We address the question of (1) model identifiability
and learning algorithms with (2) computational complexity and (3) sample complexity.
We prove that Poisson DAG models are fully identifiable from observational data us-
ing the notion of overdispersion, and present a polynomial-time algorithm that learns
the Poisson DAG model under suitable regularity conditions.

Chapter 4 focuses on learning a broader class of DAG models in large-scale set-
tings. We address the issue of (1) model identifiability and learning algorithms with
(2) computational complexity and (3) sample complexity. We introduce a new class of
identifiable DAG models which include many interesting classes of distributions such
as Poisson, Binomial, Geometric, Exponential, Gamma, and many more, and prove
that this class of DAG models is fully identifiable using the idea of overdispersion. Fur-
thermore, we develop statistically consistent and computationally tractable learning
algorithms for the new class of identifiable DAG models in high-dimensional settings.
Our algorithms exploits the sparsity of the graphs and overdispersion property.

Chapter 5 concerns learning general DAG models using a combination of observa-
tional and interventional (or experimental) data. Prior work has focused on algorithms

using Markov equivalence class (MEC) for the DAG and then using do-calculus rules



ii
based on interventions to learn the additional directions. However it has been shown
that existing passive and active learning strategies that rely on accurate recovery of
the MEC do not scale well to large-scale graphs because recovering MEC for DAG
models are not successful large-scale graphs. Hence, we prove (1) model identifiabil-
ity using the notion of the moralized graphs, and develop passive and active learning
algorithms (4) combining interventional experiments with observational data.

Lastly in Chapter 6, we concern learning directed cyclic graphical (DCG) models.
We focus on (1) model identifiability for directed graphical models with feedback. We
provide two new identifiability assumptions with respect to sparsity of a graph and the
number of d-separation rules, and compare these new identifiability assumptions to the
widely-held faithfulness and minimality assumptions. Furthermore we develop search

algorithms for small-scale DCG models based on our new identifiability assumptions.
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Chapter 1

Introduction

Analysis and modeling large-scale multivariate data is an important research problem,
as massive amounts of data is available in the fields of statistics, machine learning, bi-
ology and many of their applications [5, 19, 28, 37]. For example, marketing companies
such as Walmart, Target, and Amazon examine large data sets containing a variety of
data types to uncover hidden patterns, market trends, customer preferences and other
useful business information. Medical researchers are using entire human genome data
to discover gene regulatory pathways so as to uncover causes of cancers or genetic
diseases. Consequently, there is a huge demand to develop rich classes of statistical
models that faithfully represent large-scale data with feasible learning methods.

In many real-world problems, there exist inherent conditional independence (CI)
properties or directional relations between variables. CI properties in the underlying
probability distribution can be explained by the structure which enables to factor the
representation of the distribution into modular component. Hence, many recent works
have attempted to adapt existing methods and develop new methods that exploit CI
properties in the distribution to compactly and faithfully represent high-dimensional
data.

One approach that has received significant attention is the graphical model-
ing framework. Graphical models provide a language to compactly describe large

joint probability distributions using a set of non-directional or directional relation-



ships among neighboring variables in a graph. Graphical models includes a broad
class of dependence models for various data types. Broadly speaking, there are two
common sets of graphical models: (1) undirected graphical models (also called Markov
random fields), (2) directed graphical models; acyclic graphical (DAG) models (also
called Bayesian networks), and directed cyclic graphical (DCG) models.

Directed graphical models are a popular class of statistical models that model
directional or causal relationships between variables. Such directional relationships
naturally arise in many applications including biology, neuroscience, astronomy and
others [16, 20, 38]. The presence of directed graph structure enables the compact
representation of rich classes of probability models and efficient algorithms for model
learning [0, 9, 13, 29, 59, 68, 70]. Moreover, the structure of a directed graphical
model can describe which variables have direct influence on other variables in an un-
derstandable and visual manner [18, 52, 50, 68|. Therefore learning directed graphical
model is roughly speaking equivalent to finding fundamental information about which
variables influence each other.

However, a number of statistical and computational challenges arise that make
learning directed graphical models often impossible for large-scale datasets, even when
variables have a natural causal or directional structure. These issues are: (1) model
identifiability; (2) computational guarantee; (3) sample size guarantee; and (4) com-
bining interventional experiments with observational data.

Regarding the (1) model identifiability issue, directed graphical models are of-
ten not possible to be inferred or can only be identified up to their Markov equivalent
graphs [08] where they represent the same collection of conditional independence prop-
erties. Recent works propose that it is possible to fully identify the DAG structure
including directions by exploiting characterization of the node probability distribution.
For example, Shimizu et al. [(4] proved identifiability for linear non-Gaussian struc-
tural equation models, and Peters et al. [54] proved identifiability for non-parametric

structural equation models with additive independent noise. Peters and Biihlmann [53]



proved identifiability for Gaussian DAG models based on structural equation models
with known or the same variance of errors. However the identifiability issue for many
DAG models have not yet been extensively studied.

Learning directed graphical models from observational data is an NP-Hard prob-
lem because it is necessary to search over the space of directed graphs which is super-
exponential to the number of variables [3, 10]. Therefore computationally feasible
methods for learning directed graphical models are very important. Its difficulty is
perhaps best captured in the following quote. "In our view, inferring complete causal
models is essentially impossible in large-scale data mining applications with thousands
of variables" (Silverstein et al., 2000 [65]).

Many algorithms can recover the directed graphical models up to its Markov
equivalent class assuming the faithfulness assumption (see e.g., [12, 59, 60, 68]). How-
ever, the faithfulness assumption often require extremely large sample sizes to be
satisfied even when the number of nodes is small [73]. Furthermore, many algorithms
for learning directed graphical models which do not require the faithfulness assumption
are often statistically not consistent to identifying directed graphs or need impractical
or restrictive additional assumptions (e.g., [11, 29, 31, 33, 35, 43, 71]).

Lastly experimental interventions that take control of (the distribution of) one
or more variables in a system is a popular method to infer causal system or directed
graphical models. Roughly speaking, we force one (or more) of the variables into a
particular state, and we see how the probability distribution of the other variables is
affected. The best scenario is when a set of data are collected where variables we are
interested in are intervened. However, we often cannot intervene a lot of variables in a
system due to cost, impracticality, ethics, and many reasons. Therefore it is important
to uncover the connections between observational and interventional (experimental)

data, which enables us to learn directed graphical models much more efficiently.



1.1 Contributions

In this thesis we focus mostly on learning directed graphical models and address-
ing the above four issues. The main contributions of this thesis are to (1) introduce
new identifiability assumptions for broad class of directed graphical models, and (2)
develop new algorithms using our new identifiability assumptions, which are able to
more accurately learn the true structure of a directed graphical model than state-
of-the-art algorithms and are at the same time computationally tractable. In the
remainder of the thesis, we provide additional motivation for our new approaches to
learning graphical models and prove how our algorithms can identify directed graphical
models with significantly fewer errors than existing algorithms. We start by providing
a more detailed introduction to directed graphical models and introduce the overview
of the algorithm for learning directed graphical models in Chapter 2.

Chapter 3 concerns learning Poisson DAG models for modeling large-scale multi-
variate count data problems where each node is a Poisson random variable conditioning
on its parents in the underlying DAG. We prove that Poisson DAG models are identifi-
able from observational data, and present a polynomial-time algorithm that learns the
Poisson DAG model under suitable regularity conditions. The main idea behind our
algorithm is based on owverdispersion, in that variables that are conditionally Poisson
are overdispersed relative to variables that are marginally Poisson. Our algorithms
exploits overdispersion along with methods for learning sparse Poisson undirected
graphical models for faster computation. We provide both theoretical guarantees and
simulation results for both small and large-scale DAGs.

Chapter 4 addresses the problem of learning large-scale or high-dimensional DAG
models. First, we introduce a new class of identifiable DAG models which include many
interesting classes of distributions such as Poisson, Binomial, Geometric, Exponential,
Gamma and many more. We prove that our class of DAG models is fully identifiable
using the notion of overdispersion. Next, we develop a new theoretically consistent

and computationally tractable algorithm for learning large-scale count DAG models



belonging to our class of DAG models. We provide theoretical results and simulations
that our algorithm is statistically consistent in the high-dimensional setting provided
the degree of the moralized graph is bounded. Furthermore, we provide a different
algorithm for special cases of our class of DAG model where each conditional distri-
bution given its parents belongs to natural exponential family with quadratic variance
function (NEF-QVF) [11]. This algorithm can recover DAG models with continu-
ous variables and is more accurate and faster than the algorithm we initially provide
exploiting the characterization of the natural exponential family.

In Chapter 5, we study the problem of learning DAG models using a combination
of observational and experimental data. Prior work has focused on algorithms involv-
ing first using observational data to learn the Markov equivalence class (MEC) for
the DAG and then using do-calculus rules based on interventions to learn additional
directions. However it has been shown that for DAG models where the number of
nodes is large, errors are often made in determining the MEC. Hence existing passive
and active learning strategies that rely on accurate recovery of the MEC does not
scale well to large graphs. Therefore we introduce both a passive and an active learn-
ing strategy using a combination of learning the moralized graph and the do-calculus
rules based on interventional graphs. Since there already exists many algorithms for
learning large-scale moralized or undirected graphs that are known to be reliable, we
show empirically that our passive learning algorithm makes significantly less errors in
terms of recovering the true DAG model compared to the state-of-the-art GIES algo-
rithm which relies on accurate recovery of the MEC. We also show empirically that
our active learning algorithm has reliable performance in high-dimensional settings.

Lastly, in Chapter 6 we consider learning directed cyclic graphical (DCG) mod-
els for multivariate data where there exist directed cycles or feedback. we address the
issue of model identifiability for general DCG models satisfying the Markov assump-
tion. In particular, in addition to the faithfulness assumption which has already been

introduced for cyclic models, we introduce two new identifiability assumptions, one



based on selecting the model with the fewest edges and the other based on selecting
the DCG model that entails the maximum number of d-separation rules. We provide
theoretical results comparing these assumptions which show that: (1) selecting models
with the largest number of d-separation rules is strictly weaker than the faithfulness
assumption; (2) unlike for DAG models, selecting models with the fewest edges does
not necessarily result in a milder assumption than the faithfulness assumption. We
also provide connections between our two new principles and minimality assumptions.
We use our identifiability assumptions to develop search algorithms for small-scale
DCG models. Our simulation study supports our theoretical results, showing that the
algorithms based on our two new principles generally out-perform algorithms based

on the faithfulness assumption in terms of selecting the true skeleton for DCG models.



Chapter 2

Background

In this chapter we provide a brief introduction to directed graphical models, including
factorizations of probability distributions, their representations by graphs, and the
Markov assumption. We begin with basic concepts of directed graphical models in
Section 2.1. We also summarize three approaches to learning directed graphical models
in Section 2.2: (1) score-based algorithms; (2) constraint-based algorithms; and (3)

hybrid algorithms.

2.1 Directed Graphical Models

A directed graph G = (V, E)) consists of a set of vertices V' and a set of directed
edges E. The structure of a directed graph refers to as the collection of edges. Sup-
pose that V' = {1,2,...,p} and there exists a random vector (X, X, ..., X,) with
probability distribution P over the vertices in GG. A directed edge from a vertex j to
k is denoted by (j, k) or j — k. The set pa(k) of parents of a vertex k consists of all
nodes j such that (7, k) € E. If there is a directed path j — --- — k, then k is called a
descendant of j and j is an ancestor of k. The set de(k) denotes the set of all descen-
dants of a node k. The non-descendants of a node k are nd(k) = V' \ ({k} Ude(k)).
For a subset S C V, we define an(S) to be the set of nodes k that are in S or are
ancestors of some nodes in S. Two nodes that are connected by an edge are called

adjacent. A triple of nodes (j, k,¢) is an unshielded triple if j and k are adjacent to



8

¢ but j and k are not adjacent. An unshielded triple (j, &, ¢) forms a v-structure if
j — £ and k — (. In this case ¢ is called a collider. Another important property
of DAGs is that there exists a (possibly non-unique) causal ordering = of a directed
graph represents directions of edges such that for every directed edge (j, k) € E, j
comes before k in the causal ordering. Without loss of generality, we assume the true
causal ordering 7* = (1,2,--- ,p). Now we discuss probabilistic directed graphical
models for multivariate distributions. Let (Xi, X5,, X)) be p random variables with
joint distribution f(Xi, Xs,---,X,). A probabilistic DAG model has the following

factorization [39]:

p
f(X17X27 Tt 7Xp) = Hf](X] | Xpa‘(]))’
j=1

where f;(X; | Xpa(j)) refers to the conditional distribution of a variable X in terms of
its set of parents Xpa(;). However for directed graphical models with directed cycles
may not have the factorization property. The joint distributions for directed graphical

models with directed cycles will be discussed later in Chapter 6.

2.1.1 d-separation

Furthermore, let U be an undirected path between j and k. If every collider on U
is in an(S) and every non-collider on an undirected path U is not in S, an undirected
path U from j to k d-connects j and k given S C V' \ {j,k} and j is d-connected to
k given S. If a directed graph G has no undirected path U that d-connects j and k

given a subset S, then j is d-separated from k given S:

Definition 2.1 (d-connection/separation |51, 66|). For vertices j,k € V and S C
V\{4,k}, j is d-connected to k given S if and only if there is an undirected path U

between j and k, such that

(1) If there is an edge between a and b on U and an edge between b and ¢ on U, and

be S, then b is a collider between a and c relative to U.
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(2) If b is a collider between a and c relative to U, then there is a descendant d of b
and d € S

2.1.2 Causal Markov Condition

Let X; 1L X} | Xg with S C V'\{j, k} denote the conditional independence (CI)
statement that X is conditionally independent (as determined by P) of X}, given the
set of variables X¢ = {X, | £ € S}, and let X; Y X}, | Xg denote conditional depen-
dence. The Causal Markov condition associates CI statements of P with a directed

graph G:

Definition 2.2 (Causal Markov condition (CMC) [68]). A probability distribution
P over a set of vertices V' satisfies the Causal Markov condition with respect to a
(acyclic or cyclic) graph G = (V, E) if for all (j,k,S), j is d-separated from k given
S CcV\{j,k} in G, then

X; L Xy | Xs  according to P.

The CMC applies to both acyclic and cyclic graphs (see e.g., |66, 68]).

2.1.3 Markov Equivalence Class

In general, there are many directed graphs entailing the same d-separation rules.
These graphs are Markov equivalent and the set of Markov equivalent graphs is called
a Markov equivalence class (MEC) |68, 60, 72, 75]. For example, consider two 2-node
graphs, G1 : X7 — X5 and Gy : X; < X5. Then both graphs are Markov equivalent
because they both entail no d-separation rules. Hence, G; and G belong to the same
MEC and hence it is impossible to distinguish two graphs by d-separation rules. The
precise definition of MEC is provided here:

Definition 2.3 (Markov Equivalence [60]). Directed graphs Gi and G5 are Markov
equivalent if any distribution which satisfies the CMC with respect to one graph satisfies
it with respect to the other, and vice versa. The set of graphs which are Markov

equivalent to G is denoted by M(G).
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RN
O-0-0 OO
G G™
Figure 2.1:: Moralized graph G™ for DAG G

For DAG models, Verma and Pearl [72]| developed an elegant characterization of
Markov equivalence classes defined by the skeleton and v-structures. The skeleton of

a DAG model consists of the edges without directions:

Theorem 2.1 (Local Markov property, Theorem 1 in [72]). Two DAGs G1 and Gy
belong to the same Markov equivalence class if and only if they have the same skeleton

and v-structures.

However the presence of directed cycle means the characterization of the Markov
equivalence classes for DCGs is considerably more involved. Richardson [58, 60] ex-
tended the notion of unshielded triple to DCG models and provide a characterization

of Markov equivalence. Since it is quite involved, we do not include here.

2.1.4 Moral Graph

A moral graph is an undirected graphical model representation of a DAG (see
e.g., [11]). The moralized graph G™ for a DAG G = (V, E) is an undirected graph
where G™ = (V, E™) where E™ includes edge set E without directions plus edges
between any nodes that are parents of a common child. Figure 2.1 demonstrates
concepts of a moralized graph for a simple 3-node example where F = {(1,3),(2,3)}
for the DAG G. Since nodes 1 and 2 are parents of a common child 3, the additional
edge (1,2) arises, and therefore E™ = {(1,2),(1,3),(2,3)}. The neighborhood set of
a node j refers to the adjacent nodes to j in the moralized graph N (j) := {k € V :
(7,k) or (k,7) € E™}.
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2.2 Overview of Structure Learning

Given a observational data containing independent and identically distributed
(iid) instances sampled from a probability distribution P corresponding to a graph G,
the ultimate goal of learning is to recover the structure of the graph G. In general there
are two main strategies for graph structure learning: (1) scoring-based algorithms and

(2) constraint-based algorithms.

2.2.1 Scoring-based Algorithms

Scoring-based algorithms search over a possible space of directed graphs to find
the graph with the highest score given the observations. Typical examples of scor-
ing functions are the BIC [01], AIC |2], and modified Bayesian Dirichlet equivalent
(mBDe) [29]. A popular score-based algorithm for DAG models is Greedy Equiva-
lence Search (GES) algorithm [9]. Scoring-based algorithms are in general flexible and
choose high-likelihood graph structure but do not enforce CI statements and often
do not accurately recover the true graph |69, 1|. Another challenge for scoring-based
methods is that searching over the space of DAGs is NP-hard due to exponential
growth in graph structures [3]. Since an exhaustive search algorithm is not possible,
existing structure learning algorithms either solve a restricted problem (i.e., choose
the best graph or find the Markov equivalence class in the restricted space of directed

graphs).

2.2.2 Constraint-based Algorithms

Constraint-based algorithms learn the structure of a directed graph by using
the estimated CI statements from observational data. The estimated CI statements
are viewed as constraints on the final graph structure, and constraint-based algo-
rithms select a graph that is consistent with those constraints. The most widely used
constraint-based algorithms are the SGS algorithm [22| and the PC algorithm [65]
for DAG models and CCD algorithm [59] and FCI+ algorithm [12] for DCG mod-

els. In contrast to score-based algorithms, a lot of constraint-based algorithms have
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been proven to be theoretically consistent. However, the set of CI statements accord-
ing to P in general do not entail a unique graph. Hence accurately identifying CI
statements present in observational data may only be able to identify Markov equiva-
lence class of a graph rather than a graph including directions of edges. Furthermore
constraint-based algorithms often require very strong assumptions such as the faith-

fulness assumption [68].

2.2.3 Hybrid Algorithms

Hybrid algorithms are also introduced to take advantage of both constraint-based
algorithms and score-based algorithms. Two of the most widely used hybrid algo-
rithms are Sparse Candidate algorithm [21] and the Max-Min Hill-Climbing (MMHC)
algorithm [71]|. Both algorithms first estimate a skeleton (which is a structure without
directions) using CI statements and then perform a greedy search over graph structure
space that respect the skeleton output. However, hybrid algorithms also suffer from
disadvantages of both constraint-based algorithms and score-based algorithms where
algorithms require strong assumptions and identify a graph up to Markov equivalence

class.
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Chapter 3

Learning Poisson DAG Model

3.1 Introduction

Modeling large-scale multivariate count data is an important challenge that arises
in numerous applications such as neuroscience, systems biology and many others. One
approach that has received significant attention is the graphical modeling framework
since graphical models include a broad class of dependence models for different data
types. Broadly speaking, there are two sets of graphical models: (1) undirected graph-
ical models or Markov random fields and (2) directed acyclic graphical (DAG) models
or Bayesian networks.

Between undirected graphical models and DAGs, undirected graphical models
have generally received more attention in the large-scale data setting since both learn-
ing and inference algorithms scale to larger datasets. In particular, for multivariate
count data Yang et al. [77] introduce undirected Poisson graphical models. Yang et
al. [77] define undirected Poisson graphical models so that each node is a Poisson
random variable with rate parameter depending only on its neighboring nodes in the
graph. As pointed out in Yang et al. [77] one of the major challenges with Poisson
undirected graphical models is ensuring global normalizability.

Directed acyclic graphs (DAGs) or Bayesian networks are a different class of

generative models that model directional or causal relationships (see e.g. [72, (8] for
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details). Such directional relationships naturally arise in most applications but are
difficult to model based on observational data. One of the benefits of DAG models is
that they have a straightforward factorization into conditional distributions [39], and
hence no issues of normalizability arise as they do for undirected graphical models
as mentioned earlier. However a number of challenges arise that make learning DAG
models often impossible for large datasets even when variables have a natural causal
or directional structure. These issues are: (1) identifiability since inferring causal
directions from data is often not possible; (2) computational complexity since it is
often computationally infeasible to search over the space of DAGs [3]; (3) sample size
guarantee since fundamental identifiability assumptions such as faithfulness are often
required extremely large sample sizes to be satisfied even when the number of nodes
p is small (see e.g., [73]).

In this paper, we define Poisson DAG models and address these 3 issues. In
Section 3.3 we prove that Poisson DAG models are identifiable and in Section 3.4 we
introduce a polynomial-time DAG learning algorithm for Poisson DAGs which we call
OverDispersion Scoring (ODS). The main idea behind proving identifiability is based
on the overdispersion of variables that are conditionally Poisson but not marginally
Poisson. Using overdispersion, we prove that it is possible to learn the causal ordering
of Poisson DAGs using a polynomial-time algorithm and once the ordering is known,
the problem of learning DAGs reduces to a simple set of neighborhood regression
problems. While overdispersion with conditionally Poisson random variables is a well-
known phenomena that is exploited in many applications (see e.g. [1D, &1, 7]), using
overdispersion has never been exploited in DAG model learning to our knowledge.

Statistical guarantees for learning the causal ordering are provided in Section 3.4.2
and we provide numerical experiments on both small DAGs and large-scale DAGs with
node-size up to 5000 nodes. Our theoretical guarantees prove that even in the setting
where the number of nodes p is larger than the sample size n, it is possible to learn

the causal ordering under the assumption that the degree of the so-called moralized
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graph of the DAG has small degree. Our numerical experiments support our the-
oretical results and show that our ODS algorithm performs well compared to other
state-of-the-art DAG learning methods. Our numerical experiments confirm that our
ODS algorithm is one of the few DAG-learning algorithms that performs well in terms

of statistical and computational complexity in the high-dimensional p > n setting.

3.2 Poisson DAG Models

In this section, we define general Poisson DAG models. A DAG G = (V, E)
consists of a set of vertices V' and a set of directed edges E with no directed cycle.
We usually set V' = {1,2,...,p} and associate a random vector (X1, Xs,...,X,) with
probability distribution P over the vertices in G. A directed edge from vertex j to
k is denoted by (j,k) or j — k. The set pa(k) of parents of a vertex k consists of
all nodes j such that (j,k) € E. One of the convenient properties of DAG models
is that the joint distribution f(Xj, Xy, -, X,) factorizes in terms of the conditional

distributions as follows [39]:

p

f(XhX%’ e 7XP) = Hfj(Xj ‘ Xpa(j)),

j=1
where f;(X; | Xpa) refers to the conditional distribution of node X; in terms of
its parents. The basic property of Poisson DAG models is that each conditional
distribution f;(x; | zpa(;)) has a Poisson distribution. More precisely, for Poisson

DAG models:

Xj | X{1,2,~--,p}\{j} ~ POiSSOIl(gj<Xpa(j)>>, (31)

where g;(-) is an arbitrary function of Xpa(;). To take a concrete example, g;(-)
can represent the link function for the univariate Poisson generalized linear model
(GLM) or g;(Xpa()) = exp(0; + > pepay) OikXr) where (0ji)iepa) represent the

linear weights.
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Using the factorization (3.1), the overall joint distribution is:

f(X1, e, X)) = exp( Z 0,X;+ Z gijka_Z log Xj!_z 69j+2k€pa(j)9ijk>.

jev (k,j)EE jev jEV

(3.2)

To contrast this formulation with the Poisson undirected graphical model in
Yang et al. [77], the joint distribution for undirected graphical models has the form:

FX1 X, %) =exp( 30X+ D 050X, - Y log X;l— A(0)), (33)

jev (kj)EE jev

where A(0) is the log-partition function or the log of the normalization constant. While

the two forms (3.2) and (3.3) look quite similar, the key difference is the normalization

constant of A(0) in (3.3) as opposed to the term . et repag) e i (3.2) which

depends on X. To ensure the undirected graphical model representation in (3.3) is a

valid distribution, A(€) must be finite which guarantees the distribution is normaliz-

able and Yang et al. [77] prove that A(6) is normalizable if and only if all 6 values are

less than or equal to 0.

3.3 Identifiability

In this section, we prove that Poisson DAG models are identifiable under a very
mild condition. In general, DAG models can only be defined up to their Markov
equivalence class (see e.g. [08]). However in some cases, it is possible to identify
the DAG by exploiting specific properties of the distribution. For example, Peters
and Biihlmann prove that for Gaussian DAGs based on structural equation models
with known or the same variance, the models are identifiable [53], Shimizu et al. [64]
prove identifiability for linear non-Gaussian structural equation models, and Peters et
al. [51] prove identifiability of non-parametric structural equation models with additive
independent noise. Here we show that Poisson DAG models are also identifiable using
the idea of overdispersion.

To provide intuition, we begin by showing the identifiability of a two-node Pois-

son DAG model in Figure 3.1. The basic idea is that the relationship between nodes
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Figure 3.1:: Directed graphs of My, My and M3

X7 and X, generates the overdispersed child variable. To be precise, consider all
three models: M; : X; ~ Poisson()\;), Xy ~ Poisson()\y), where X; and X,
are independent; My : X; ~ Poisson()A;) and Xy | X; ~ Poisson(g2(X7)); and
Ms @ Xy ~ Poisson(Ay) and X; | Xy ~ Poisson(g;(X53)). Our goal is to determine
whether the underlying DAG model is M, My or M3.

Now we exploit the fact that for a Poisson random variable X, Var(X) = E(X),
while for a distribution which is a conditionally Poisson, the variance is overdispersed
relative to the mean. For My, Var(X;) = E(X;) and Var(Xy) = E(X3). For Mo,
Var(X;) = E(X3), while

Var(Xg) = E[Var(X2 | X1>] + Var[E(Xg | X1>] = E[gg(Xl)] + Var[gg(Xl)] > E(Xg),

as long as Var(ge(X7)) > 0.

Similarly under Ms, it is clear that Var(X;) = E(X5) and Var(X;) > E(X)) as
long as Var(g;(X3)) > 0. Hence we can identify model My, My, and M3 by testing
whether the variance is greater than the expectation or equal to the expectation. With
finite sample size n, the quantities E(-) and Var(-) can be estimated from data and we
consider the finite sample setting in Sections 3.4 and 3.4.2. Now we extend this idea
to provide an identifiability condition for general Poisson DAG models.

The key idea to extending identifiability from the bivariate to multivariate sce-
nario involves condition on parents of each node and then testing overdispersion. The

general p-variate result is as follows:

Theorem 3.1. Assume that for any j € V, K C pa(j) and S C {1,2,..,p} \ K,

Var(g](Xpa(j)) ‘ XS) > O,
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the Poisson DAG model is identifiable.

We defer the proof to the supplementary material. Once again, the main idea
of the proof is overdispersion. To explain the required assumption note that for any
j €V and S Cpa(j), Var(X; | Xg) — E(X; | Xs) = Var(g;(Xpag)) | Xs). Note that
if S =pa(j)or {1,---,j — 1}, Var(g;(Xpa(j) | Xs) = 0. Otherwise Var(g;(Xpa)) |

Xs) > 0 by our assumption.

3.4 Algorithm

Our algorithm which we call OverDispersion Scoring (ODS) consists of three
main steps: 1) estimating a candidate parents set |77, 71, 3] using existing learning
undirected graph algorithms; 2) estimating a causal ordering using overdispersion
scoring; and 3) estimating directed edges using standard regression algorithms such as
Lasso. Steps 3) is a standard problem in which we use off-the-shelf algorithms. Step 1)
allows us to reduce both computational and sample complexity by exploiting sparsity
of the moralized or undirected graphical model representation of the DAG which we
introduce shortly. Step 2) exploits overdispersion to learn a causal ordering.

Let {X®}7_ denote iid n samples drawn from the Poisson DAG model G. Let 7 :
{1,2,--- ,p} — {1,2,--- ,p} be a bijective function corresponding to a permutation
or a causal ordering. We will also use the convenient notation ~ to denote an estimate
based on the data. For ease of notation for any 7 € {1,2,--- ,p},and S C {1,2,--- ,p}
let s and pjis(xs) represent E(X; | Xg) and E(X; | Xg = xg), respectively. Further-
more let 075 and o7 g(zs) denote Var(X; | Xs) and Var(X; | Xs = xg), respectively.

We also define n(zg) = >, 1(Xéi) =1xg) and ng = > n(zs)l(n(rs) > ¢ - n) for

zs
an arbitrary ¢y € (0,1).
The computation of the score §5j; in Step 2) of our ODS algorithm 3.1 involves

the following equation:

Si= ) (3%, (@) ~ g, (@) (3.4)

weX(Gy) Ok
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Algorithm 3.1 OverDispersion Scoring (ODS)

1: Input: n samples from the given Poisson DAG model. X ... X® ¢ {{0}UN}?
2: Output: A causal ordering 7 € NP and a graph structure, Ee {0, 1}pxP

w

Step 1. Estimate the undirected edges Eu corresponding to the moralized graph
with neighborhood set /()

4: Step 2: Estimate causal ordering using overdispersion score
5. forie {1,2,--- p} do

6: 8 =0] — L

7: end for

8: The first element of a causal ordering 7; = argmin; 5

9: for j={2,3,--- ,p—1} do

10: for k e N(m;_1) N{L,2,--- ,p} \{71,--- ,7;—1} do

11: The candidate parents set @k = Kf(k) NA{T, T, -, T}
12: Calculate 5, using (3.4);

13: end for

14: The j* element of a causal ordering 7; = arg miny, 5y,

15: Step 3: Estimate directed edges toward 7;, denoted by ZA)]-

16: end for

17: The p™ element of the causal ordering 7, = {1,2,--- ,p} \ {71, T, , Tp_1}
18: The directed edges toward 7, denoted by ﬁp =N (7))

19: Return: 7 = (7,7, ,7,) and E = {Dy, Ds,--- ,D,}

where @-k refers to an estimated candidate set of parents specified in Step 2) of our
ODS algorithm 3.1 and X(@k) ={z e {ng)k,ng)k, e ,ngl} :n(x) > co.n} so that
we ensure we have enough samples for each element we select. In addition, ¢ is a
tuning parameter of our algorithm that we specify in our main Theorem 3.3 and our
numerical experiments.

We can use a number of standard algorithms for Step 1) of our ODS algorithm
since it boils down to finding a candidate set of parents. The main purpose of Step 1)
is to reduce both computational complexity and the sample complexity by exploiting

sparsity in the moralized graph. In Step 1) a candidate set of parents is generated for

each node which in principle could be the entire set of nodes. However since Step 2)
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requires computation of a conditional mean and variance, both the sample complex-
ity and computational complexity depend significantly on the number of variables we
condition on as illustrated in Section 3.4.1 and 3.4.2. Hence by making the set of
candidate parents for each node as small as possible we gain significant computational
and statistical improvements by exploiting the graph structure. A similar step is taken
in the MMHC [70] and SC algorithms [21]. The way we choose a candidate set of par-
ents is by learning the moralized graph G™ and then using the neighborhood set N/ ()
for each j. Hence Step 1) reduces to a standard undirected graphical model learning
algorithm. A number of choices are available for Step 1) including the neighborhood
regression approach of Yang et al. [77| as well as standard DAG learning algorithms
which find a candidate parents set such as HITON [3] and MMPC [70].

Step 2) learns the causal ordering by assigning an overdispersion score for each
node. The basic idea is to determine which nodes are overdispersed based on the
sample conditional mean and conditional variance. The causal ordering is determined
one node at a time by selecting the node with the smallest overdispersion score which is
representative of a node that is least likely to be conditionally Poisson and most likely
to be marginally Poisson. Finding the causal ordering is usually the most challenging
step of DAG learning, since once the causal ordering is learnt, all that remains is to
find the edge set for the DAG. Step 3), the final step finds the directed edge set of
the DAG G by finding the parent set of each node. Using Steps 1) and 2), finding
the parent set of node j boils down to selecting which variables are parents out of
the candidate parents of node j generated in Step 1) intersected with all elements
before node j of the causal ordering in Step 2). Hence we have p regression variable
selection problems which can be performed using GLMLasso [18] as well as standard

DAG learning algorithms.
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3.4.1 Computational Complexity

Steps 1) and 3) use existing algorithms with known computational complex-
ity. Clearly the computational complexity for Steps 1) and 3) depend on the choice
of algorithm. For example, if we use the neighborhood selection GLMLasso algo-
rithm [18] as is used in Yang et al. [77], the worst-case complexity is O(min(n, p)np)
for a single Lasso run but since there are p nodes, the total worst-case complexity is
O(min(n, p)np?). Similarly if we use GLMLasso for Step 3) the computational com-
plexity is also O(min(n,p)np?). As we show in numerical experiments, DAG-based
algorithms for Step 1) tend to run more slowly than neighborhood regression based
on GLMLasso.

For Step 2) where we estimate the causal ordering has (p — 1) iterations and
each iteration has a number of overdispersion scores s; and sj; computed which is
bounded by O(| K |) where K is a set of candidates of each element of a causal ordering,
N(@j—)n{L,2,--- ,p}\ {71, - 71}, which is also bounded by the maximum degree
of the moralized graph d. Hence the total number of overdispersion scores that need
to be computed is O(pd). Since the time for calculating each overdispersion score
which is the difference between a conditional variance and expectation is proportional
to n, the time complexity is O(npd). In worst case where the degree of the moralized
graph is p, the computational complexity of Step 2) is O(np?). As we discussed
earlier there is a significant computational saving by exploiting a sparse moralized
graph which is why we perform Step 1) of the algorithm. Hence Steps 1) and 3) are
the main computational bottlenecks of our ODS algorithm. The addition of Step 2)
which estimates the causal ordering does not significantly add to the computational
bottleneck. Consequently our ODS algorithm, which is designed for learning DAGs
is almost as computationally efficient as standard methods for learning undirected

graphical models.
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3.4.2 Statistical Guarantees

In this section, we show statistical guarantees for recovering the causal order-
ing of our algorithm under suitable regularity conditions. We begin by stating the

assumptions we impose on DAG models.
Assumption 3.2.

(A1) Forall j €V, K C pa(j) and all S C {1,2..,p} \ K, there exists an m > 0 such
that Var(g;(Xpag)) | Xs) > m.

(A2) For all j € V, there exists an M < oo such that E[exp(g;(Xpag)))] < M.

(A1) is a stronger version of the identifiability assumption in Theorem 3.1 where
since we are in the finite sample setting, we need the conditional variance to be lower
bounded by a constant bounded away from 0. (A2) is a condition on the tail behavior
of g;(pa(j)) for controlling tails of the score 5, in Step 2 of our ODS algorithm. To
take a concrete example for which (A1) and (A2) are satisfied, it is straightforward to
show that the GLM DAG model (3.2) with non-positive values of {6y} satisfies both
(A1) and (A2). The non-positivity constraint on the §’s is sufficient but not necessary
and ensures that the parameters do not grow too large.

Now we present the main result under Assumptions (A1) and (A2). For general
DAGs, the true causal ordering 7* is not unique. Therefore let £(7*) denote all the
causal orderings that are consistent with the true DAG G*. Further recall that d

denotes the maximum degree of the moralized graph G7,.

Theorem 3.3 (Recovery of a causal ordering). Consider a Poisson DAG model as
specified in (3.1), with a set of true causal orderings £(7*) and the rate function g;(-)
satisfies assumptions 3.2. If the sample size threshold parameter co < n~Y6+d  then

there exist positive constants, Cy, Cy, Cs such that

P(x ¢ E(*)) < Creap(—Con'/ G+ 4 Cylog max{n, p}).
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We defer the proof to the supplementary material. The main idea behind the
proof uses the overdispersion property exploited in Theorem 3.1 in combination with
concentration bounds that exploit Assumption (A2). Note once again that the maxi-
mum degree d of the undirected graph plays an important role in the sample complexity
which is why Step 1) is so important. This is because the size of the conditioning set
depends on the degree of the moralized graph d. Hence d plays an important role in
both the sample complexity and computational complexity.

Theorem 3.3 can be used in combination with sample complexity guarantees
for Steps 1) and 3) of our ODS algorithm to prove that our output DAG G is the
true DAG G* with high probability. Sample complexity guarantees for Steps 1) and
3) depend on the choice of algorithm but for neighborhood regression based on the
GLMLasso, provided n = Q(dlogp), Steps 1) and 3) should be consistent.

For Theorem 3.3 if the triple (n,d, p) satisfies n = Q((logp)>*%), then our ODS
algorithm recovers the true DAG. Hence if the moralized graph is sparse, ODS recovers
the true DAG in the high-dimensional p > n setting. DAG learning algorithms that
apply to the high-dimensional setting are not common since they typically rely on
faithfulness or similar assumptions or other restrictive conditions that are not satisfied
in the p > n setting. Note that if the DAG is not sparse and d = (p), our sample
complexity is extremely large when p is large. This makes intuitive sense since if
the number of candidate parents is large, we would need to condition on a large set
of variables which is very sample-intensive. Our sample complexity is certainly not

5+d) " Determining optimal

optimal since the choice of tuning parameter ¢, < n~'/(
sample complexity remains an open question.

The larger sample complexity of our ODS algorithm relative to undirected graph-
ical models learning is mainly due to the fact that DAG learning is an intrinsically
harder problem than undirected graph learning when the causal ordering is unknown.

Furthermore note that Theorem 3.3 does not require any additional identifiability

assumptions such as faithfulness which severely increases the sample complexity for
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large-scale DAGs [73].

3.5 Numerical Experiments

In this section, we support our theoretical results with numerical experiments
and show that our ODS algorithm performs favorably compared to state-of-the-art
DAG learning methods. The simulation study was conducted using 50 realizations of
a p-node random Poisson DAG that was generated as follows. The g;(-) functions for
the general Poisson DAG model (3.1) was chosen using the standard GLM link function
(i.e.g;(Xpa(y) = exp(0; + X pepaj) 0inXk)) resulting in the GLM DAG model (3.2).
We experimented with other choices of g;(-) but only present results for the GLM DAG
model (3.2). Note that our ODS algorithm works well as long as Assumption 3.2 is
satisfied regardless of choices of g;(-). In all results presented (¢,;) parameters were
chosen uniformly at random in the range 6, € [—1, —0.7] although any values far from
zero and satisfying the assumption 3.2 work well. In fact, smaller values of 0;;, are more
favorable to our ODS algorithm than state-of-the-art DAG learning methods because
of weak dependency between nodes. DAGs are generated randomly with a fixed unique
causal ordering {1,2--- ,p} with edges randomly generated while respecting desired
maximum degree constraints for the DAG. In our experiments, we always set the
thresholding constant ¢y = 0.005 although any value below 0.01 seems to work well.

In Fig. 3.2, we plot the proportion of simulations in which our ODS algorithm
recovers the correct causal ordering in order to validate Theorem 3.3. All graphs
in Fig. 3.2 have exactly 2 parents for each node and we plot how the accuracy in
recovering the true 7* varies as a function of n for n € {500, 1000, 2500, 5000, 10000}
and for different node sizes (a) p = 10, (b) p = 50, (c) p = 100, and (d) p = 5000.
As we can see, even when p = 5000, our ODS algorithm recovers the true causal
ordering about 40% of the time even when n is approximately 5000 and for smaller
DAGs accuracy is 100%. In each sub-figure, 3 different algorithms are used for Step 1):
GLMLasso [18] where we choose A = 0.1; MMPC [70] with a = 0.005; and HITON |[3]
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Figure 3.2:: Accuracy rates of successful recovery for a causal ordering via our ODS
algorithm using different base algorithms
again with a = 0.005 and an oracle where the edges for the true moralized graph is
used. As Fig. 3.2 shows, the GLMLasso seems to be the best performing algorithm
in terms of recovery so we use the GLMLasso for Steps 1) and 3) for the remaining
figures. GLMLasso was also the only algorithm that scaled to the p = 5000 setting.
However, it should be pointed out that GLMLasso is not necessarily consistent and
it is highly depending on the choice of g;(-). Recall that the degree d refers to the
maximum degree of the moralized DAG.

Fig. 3.3 provides a comparison of how our ODS algorithm performs in terms of

|, MMHC [70], GES [9], and
| algorithms. For the PC, MMHC and SC algorithms, we use a = 0.005 while

Hamming distance compared to the state-of-the-art PC |
SC |
for the GES algorithm we use the mBDe [29] (modified Bayesian Dirichlet equivalent)



26

_ Skeletons Directed edges
S MR | D= - - X 30 - [ TRCRrRrEr PR
B . i m" A== N
% A& . A Algorithm
= 4 7 - ODS
Elo- SN . - A = A= MMHC
E m L A==
T . 104 -m GES
E 5- q, . sc
IS ‘W ., “E@= PC
E — o
s 0- i i i " 0- i i i i
= 2500 5000 7500 10000 2500 5000 7500 10000
sample size sample size
(a) p=10,d >3 (b) p=10,d >3

. Skeletons Directed edges
R20- Ki&= . oo [ - =-[X . [l @ mmn a mn
9: g ‘. .= L
@
%)1 5 AA, 37 : = .= «h= == - A Algorithm
E o —e— ODS
€10~ = A= MMHC
I -m GES
°
g05 sc
E =C3= PC
5 0.0-

I I I I I I I I
z 2500 5000 7500 10000 2500 5000 7500 10000

sample size sample size
(c) p=100,d >3 (d) p=100,d >3

Figure 3.3:: Comparison of our ODS algorithm (black) and PC, GES, MMHC, SC

algorithms in terms of Hamming distance to skeletons and directed edges.

score since it performs better than other score choices. We consider node sizes of
p =10 in (a) and (b) and p = 100 in (c) and (d) since many of these algorithms do
not easily scale to larger node sizes. We consider two Hamming distance measures: in
(a) and (c), we only measure the Hamming distance to the skeleton of the true DAG,
which is the set of edges of the DAG without directions; for (b) and (d) we measure the
Hamming distance for the edges with directions. The reason we consider the skeleton is
because the PC does not recover all directions of the DAG. We normalize the Hamming
distance by dividing by the total number of edges (%) and p(p — 1), respectively so
that the overall score is a percentage. As we can see our ODS algorithm significantly

out-performs the other algorithms. We can also see that as the sample size n grows,

our algorithm recovers the true DAG which is consistent with our theoretical results.
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Figure 3.5:: Time complexity of our ODS algorithm with respect to node size p, sample

size n, and parents size |pa|

It must be pointed out that the choice of DAG model is suited to our ODS algorithm
while these state-of-the-art algorithms apply to more general classes of DAG models.

Now we consider the statistical performance for large-scale DAGs. Fig. 3.4 plots
the statistical performance of ODS for large-scale DAGs in terms of (a) recovering the
causal ordering; (b) Hamming distance to the true skeleton; (¢) Hamming distance to
the true DAG with directions. All graphs in Fig. 3.4 have exactly 2 parents for each
node and accuracy varies as a function of n for n € {500, 1000, 2500, 5000, 10000} and
for different node sizes p = {1000, 2500, 5000}. Fig. 3.4 shows that our ODS algorithm

accurately recovers the causal ordering and true DAG models even in high dimensional
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setting, supporting our theoretical results 3.3.

Fig. 3.5 shows run-time of our ODS algorithm. We measure the running time
(a) by varying node size p from 10 to 125 with the fixed n = 100 and 2 parents; (b)
sample size n from 100 to 2500 with the fixed p = 20 and 2 parents; (c¢) the number
of parents of each node |pa| from 1 to 5 with the fixed n = 5000 and p = 20. Fig. 3.5
(a) and (b) support the section 3.4.1 where the time complexity of our ODS algorithm
is at most O(np?). Fig. 3.5 (¢) shows running time is proportional to a parents size
which is a minimum degree of a graph. It agrees with the time complexity of Step 2)
of our ODS algorithm is O(npd). We can also see that the GLMLasso has the fastest

run-time amongst all algorithms that determine the candidate parent set.
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Chapter 4

Learning QVF DAG Models

4.1 Introduction

Probabilistic directed acyclic graphical (DAG) models or Bayesian networks are a
widely used framework for representing causal, directional or dependence relationships
between multiple variables. These models have applications in various areas such as
genomics, neuroimaging, statistical physics, spatial statistics and many others (see
e.g. []). One of the fundamental problems associated with DAG models is learning
DAG models from observational data.

However, a number of challenges arise that make learning DAG models often im-
possible for large-scale data even when variables have a natural causal or directional
structure. These issues are: (1) identifiability since inferring causal directions from
data is often not possible; (2) computational complexity since it is often computation-
ally infeasible to search over the space of DAGs [3]; (3) sample size guarantee since
fundamental identifiability assumptions, such as the faithfulness [05] often requires an
extremely large sample size n to be satisfied even when the number of nodes p is small
(see e.g., [73]).

Regarding the identifiability issue, DAG models can only be identified up to their
Markov equivalence class (see e.g., [08]). However, recent work shows that it is possible

to fully identify the DAG structure including directions by exploiting characterization
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of the node probability distribution. Shimizu et al. [64] proved identifiability for linear
non-Gaussian structural equation models, and Peters et al. [71] proved identifiability
for non-parametric structural equation models with additive independent noise. Peters
and Biithlmann [53] proved identifiability for Gaussian DAG models based on structural
equation models with known or the same variance of errors, and Park and Raskutti [10]
proved identifiability for Poisson DAG models using the notion of overdispersion.

The major contributions of our paper are to (i) introduce a new class of iden-
tifiable directed graphical models where each node has a quadratic variance function
(QVF) conditional distribution; (ii) introduce a general OverDispersion Scoring (ODS)
algorithm that applies to our class of QVF DAG models; (iii) provide theoretical guar-
antees for our ODS algorithm which proves that our algorithm is consistent in the high-
dimensional setting p > n provided there is underlying sparse structure; and (iv) show
through a simulation study that our ODS algorithm has favorable performance to a
number of state-of-the-art algorithms for both low-dimensional and high-dimensional
DAG models.

The remainder of the paper is organized as follows: In Section 4.2, we describe
how we define DAG models with a given probability distribution and we prove the
identifiability for our class of DAG models. In Section 4.3, we introduce a polynomial-
time DAG learning algorithm for our class of identifiable DAG models which we call
generalized OverDispersion Scoring (ODS). The main idea behind proving identifia-
bility is based on the overdispersion of variables. As Park and Raskutti [16] discussed
about Poisson DAG models, overdispersion of variables has potential as a score for
recovering the causal ordering of a DAG. However most distributions in general do not
satisty equidispersion, therefore we provide a transformation such that each variable
is conditionally equidispersed and marginally overdispersed. While overdispersion is
a well-known phenomena that is exploited in many applications (see e.g. [15, 81]),
using overdispersion as a score has never been exploited in learning our class of DAG

models to our knowledge. Statistical guarantees for learning a DAG model are pro-
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vided in Section 4.3.2; and we provide numerical experiments on both small DAGs and
large-scale DAGs with node-size up to 5000 nodes in Section 4.5.1. Our theoretical
guarantees prove that even in the setting where the number of nodes p is larger than
the sample size n, it is possible to learn the DAG structure under the assumption
that the degree of the so-called moralized graph of a DAG is small. Our numerical
experiments provided in Section 4.5.1 support the theoretical results and show that
our algorithm performs well compared to other state-of-the-art DAG learning methods.
Our numerical experiments confirm that our algorithm is one of the few DAG-learning
algorithms that performs well in terms of statistical and computational complexity in

high-dimensional p > n settings.

4.2 Quadratic Variance Function (QVF) DAG models and Iden-
tifiability

One of the main objectives of learning DAG models is to determine causal or di-
rectional relationships between variables. Therefore, we are interested in determining
the conditions that make the DAG models fully identifiable in terms of their edges and
directions from observational data. Recent studies proved identifiability of a special
class of DAG models using the characterization of the given probability distribution.
For example, Peters and Bithlmann [53] proved the identifiability of Gaussian DAG
models using the property of Gaussian distribution and the known error variances.
Here we introduce a new class of identifiable DAG models using the idea of overdis-
persion.

We introduce quadratic variance function (QVF) DAG models as models where
the conditional distribution of each node given its parents satisfies the following

quadratic variance function:
Var(X; | Xpag)) = SE(X; | Xpag)) + BEX; | Xpag)®. (4.1)

Furthermore, this quadratic variance property does not hold for other conditional

distributions of a node given variables without some parents.
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A popular example is a natural parameter exponential family distribution with
quadratic variance function (NEF-QVF) [14] which includes Poisson, Binomial, Nega~
tive Binomial, Gamma, and Gaussian distributions. However, Gaussian DAG models
do not belong to our QVF DAG models because the variance and expectation of a
Gaussian distribution are independent. It is consistent that if all variances are known
Gaussian DAG models are identifiable [53].

As a special case, if conditional distribution of each node given its parents is
a member of NEF-QVF, then by the factorization property, the joint distribution is

given as:

P(X)=exp [ 0;X;+ > 0uXiX; = Ci(X;) = > Di(0; + (bpag) Xpap)))
(k.j)EE jev jev

(4.2)
where C}(-) is the base measure, and D(-) is the log-normalization constant determined
by a chosen exponential family distribution. In addition fpa(;) € RIPA0)is a parameter
vector corresponding the parents of a node j, and (-, -) refers to the inner product.

Provided the quadratic variance function (4.1), we can find a transformation
T;(X;) = w; X; where w; = (Bo+//E(X; | Xpa(j))) ™" such that Var(T;(X;) | Xpa(j)) =
E(T;(X;) | Xpa()) for any node j € V. We present some examples of conditional
distribution for our QVF DAG models with the triple (fy, 51,w) in the following
Table 4.1.

To provide intuition, we begin by showing the identifiability of a two-node Pois-
son DAG model [16]. The basic idea is that the relationship between variables X; and
X5 generates the overdispersed child variable. To be precise, consider all three mod-
els: My : X; ~ Poisson(A;), X, ~ Poisson(\y), where X; and X, are independent;
M,y Xy ~ Poisson(A;) and X, | X7 ~ Poisson(go(X7)); and M3 : Xy ~ Poisson(\s)
and X | Xy ~ Poisson(g;(X3)) for arbitrary positive functions ¢, go : R — RT. Our
goal is to determine whether the underlying DAG model is My, My or Ms.

We exploit the fact that for a Poisson random variable X, Var(X) = E(X),
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Figure 4.1:: Directed graphical models of M, My and M

while for a distribution which is a conditionally Poisson, the marginal variance is
overdispersed relative to the marginal expectation, Var(X) > E(X). Hence for My,
Var(X;) = E(X;) and Var(X,) = E(X,). For My, Var(Y;) = E(Y7), while

Var(XQ) = E[V&I‘(Xg | Xl)]+Var[IE(X2 | Xl)] = E[E[XQ | Xl]] +Var[gz(X1)] > E(XQ),

as long as Var(gz(X;)) > 0.

Similarly under M3, Var(Xs;) = E(X5) and Var(X;) > E(X;) as long as Var(g;(X3)) >
0. Hence we can distinguish models M;, My, and M3 by testing whether the vari-
ance is greater than the expectation or equal to the expectation. For other QVF DAG
models, we can see the same relationship between the variance and expectation after
the transformation 7}(-) we discussed (see examples in Table 4.1). With finite sample
size, the quantities E(-) and Var(-) can be estimated from data and we consider the
finite sample setting in Sections 4.3 and 4.3.2.

We extend this idea of overdispersion to provide an identifiability condition for

general p-variate DAG models. The key idea to extending identifiability from the

Distribution

Bo B w
Binomial, Bin(V, p) 1 —% N_g(x)
Poisson, Poi(\) 1 0 1
Generalized Poisson, GPoi(\1, A2) (17&2)2 0 & {\2)2
Geometric, Geo(p) 1 1 1+]E1(X)
Negative Binomial, NB(R, p) 1 }—12 R+§(X)
Exponential, Exp(\) 0 1 ﬁ
Gamma, Gamma(a, [3) 0 é ﬁ

Table 4.1:: Some distributions with Sy, 5; and w in our new class of identifiable DAG

distributions C,
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bivariate to multivariate scenario involves condition on parents of each node and then

testing overdispersion. The general p-variate DAG model result is as follows:

Theorem 4.1 (Identifiability). Let (Xi, Xs, -+, X,) be a random vector associated
with a QVF DAG model (G,P) with quadratic variance coefficients (Bo, 81) in (4.1).
Suppose that 51 > —1. Then for any node j € V, K C pa(j), and S C V' \ K if

Var(E(X; | Xpa(y) | Xs) >0, (4.3)
the DAG G 1is identifiable.

We defer the proof to Appendix B.1.1. Theorem 4.1 claims that a QVF DAG
model is identifiable if all parents of a node j contribute to the variability of a node
j. The identifiable condition is equivalent to transformed variables are overdispersed
since Var(T;(X;) | Xs) —E(T;(X;) | Xs) = (14 1) Var(E(X; | Xpag)) | Xs) for some
constants ¢ (explained in Appendix B.1.1). If pa(j) € S, Var(E(X; | Xpa() | Xs) =0
and therefore the conditional variance is the same as the conditional expectation.
Otherwise, a transformed variable is overdispersed by the identifiability assumption
in Theorem 4.1. The condition f; > —1 is important since it rules out DAG models

with Bernoulli and Multinomial distributions which are not identifiable.

4.3 Algorithm for QVF DAG Models

We develop a new DAG learning algorithm for count data called generalized
OverDispersion Scoring (ODS) algorithm. Our generalized ODS algorithm consists
of three main steps: 1) estimating the moralized graph of the DAG using undirected
graph learning algorithms; 2) estimating the causal ordering of the DAG using overdis-
persion scoring; and 3) estimating the DAG using standard regression algorithms such
as Lasso. Both Step 1) and Step 3) are standard neighborhood estimation problems
in which we use not only regression algorithms, but also off-the-shelf graph learning

algorithms (e.g. [77, 71, 3]). Step 1) allows us to reduce both computational and
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sample complexity by exploiting the sparsity of the moralized or undirected graphical
model representation of a DAG.

Let {X® X®@ ... X™} denote iid n samples drawn from a given QVF DAG
model (G, P) with a quadratic variance coefficients (fy, 51). For any node j € V' and
S C V\ {j}, let pjs and o3¢ represent E(T;(X;) | Xs) and Var(T;(X;) | Xs), re-
spectively. Furthermore for some realizations of zg € Xg, let p;5(xg) and 0]2.‘ s(zg)
denote E(T3(X;) | Xs = zg) and Var(T;(X;) | Xs = wxg), respectively. We will
also use the convenient notation - to denote an estimate based on the data. We use
n(rs) = >y 1(Xéi) = xg) to denote a total conditional sample size, and ng =
> s M(xs)1(n(zs) > co.n) for an arbitrary ¢y € (0,1) to denote a truncated con-
ditional sample size. For notational convenience, we use 1 : j = {1,2,---,j} and
1:0 = (. With those notations, let ¢jm, = (8o + Biptjjim—1)"" for m € V' \ {1} and
je{m,m+1,--- ,p}, and ¢;1 = By + Bipj) . The idea of ¢j,, is from the w; of the
transformation 7(-). Since we do not know the parents of a node j, here we consider
a candidate set of parents Cj,, of a node j for the m'™ element of the causal ordering.
A candidate set of parents of a node j is an intersection of an neighbors of a node j
and first m — 1 elements of the causal ordering because the parents of a node j must
be in the N(j) and appear in the causal ordering before a node j. It is estimated in
Step 2) of the generalized ODS algorithm 4.1.

The computation of overdispersion scores in Step 2) of the generalized ODS

algorithm 4.1 involves the following equations:

~ 2 ~
) = \(5755) “wim 4
~ 2 ~
2€X(Cix) e Bo + Bl'uj‘ajk (:13) Po + Blﬂj@jk (:E)
where X(@k) = {z; € {X%L’ng)k’ e ’X(%Li} : n(xji) > co.n} to ensure we have

enough samples for each element of an overdispersion score. An overdispersion score is
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Algorithm 4.1 Generalized OverDispersion Scoring (ODS)
Input: iid n samples from the QVF DAG model
Output: A causal ordering 7 € N? and a graph structure E € {0, 1}p>p

Step 1: Estimate the neighborhood of each node N (7) in the moralized graph
Step 2: Estimate the causal ordering using overdispersion scores
for k € {1,2,--- ,p} do

Calculate overdispersion scores S(1, k) using Equation (4.4)
end for
The first element of a causal ordering 7, := arg min;, S(1, k)
for j ={2,3,--- ,p—1} do

for ke N@_1)n{1,2,--- ,p}\ {F1,--- ., 71} do

Find candidate parents set @k = N (k) N {7y, 7o, - - i1}

Calculate overdispersion scores S (7, k) using Equation (4.5)

—_ = =
o2 2

end for

—_ =

The j element of a causal ordering 7; := arg miny S (j, k)
Step 3: Estimate the directed edges toward 7;, denoted by ﬁj

. end for

—_ = =

: The last element of the causal ordering 7, := {1,2,--- ,p} \ {71, T2, - , Tp_1}
: The directed edges toward 7,, denoted by ﬁp ={(z,7p) |z € /\A/‘(%p)}

. Return: 7 := (%1,/7'(\'2, T ,%p) and F = Uj:{2,3,---,p}Dj

—_ =
o oo

the weighted average of differences between conditional sample means and variances.
In addition, ¢ is a tuning parameter of our algorithm that we specify in Theorem 4.8
and our numerical experiments.

The main purpose of Step 1) is to reduce both computational complexity and
sample complexity by exploiting the sparsity of the moralized graph. In Step 1), the
neighborhood set for each node is estimated which is a superset of a candidate parents
set for each node. A candidate parents set is used for a condition set for an overdis-
persion score in Step 2). In principle, a size of a condition set for an overdispersion
score could be p — 1 if the moralized graph is not applied. Since Step 2) requires com-
putation of a conditional mean and variance, both the computational complexity and

sample complexity depend significantly on the number of variables we condition on as
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illustrated in Subsection 4.3.1 and 4.3.2. Therefore by making the condition set of for
the overdispersion score of each node as small as possible, we gain significant compu-
tational and statistical improvements. Furthermore, Step 1) reduces the number of
overdispersion scores to be compared in Step 2). If j®* element of the causal ordering

is estimated, it is sufficient for j + 1*

element of the causal ordering to consider neigh-
borhood of j* element of the causal ordering in the moralized graph. Since Step 2)
compares overdispersion scores of nodes for each component of the causal ordering, by
minimizing the number of overdispersion scores to be compared, we obtain significant
statistical and computational improvements. A similar step is taken by Loh et al. [10],
the MMHC [71] and SC algorithms [21]. Since the moralized graph is an undirected
graph, a number of choices are available for Step 1) including standard undirected
graph learning algorithms such as the HITON [3] and MMPC algorithms [71] as well
as GLMLasso [18]. In addition, standard DAG learning algorithms such as GES [9]
and MMHC algorithms [71] can be applied and the moralized graph can be found from
the estimated DAG.

The novelty of our generalized ODS algorithm is Step 2) which learns the causal
ordering by comparing overdispersion scores of nodes. The basic idea is to determine
which nodes are overdispersed based on the sample conditional mean and conditional
variance. The causal ordering is determined one node at a time by selecting the node
with the smallest overdispersion score which is representative of a node that is least
likely to be overdispersed. Finding the causal ordering is usually the most challenging
step of DAG learning since once the causal ordering is learned, all that remains is to
find the edge set of the DAG.

By using Step 2) of the generalized ODS algorithm, finding the set of parents
of a node j boils down to selecting the parents out of all elements before a node j
in the estimated causal ordering. Hence, Step 3) can be reduced to p neighborhood
estimation problems which can be performed using GLMLasso [18] as well as standard

DAG learning algorithms such as the PC [68], GES [9], and MMHC algorithms [71].
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4.3.1 Computational Complexity

Steps 1) and 3) of the generalized ODS algorithm use any off-the-shelf algo-
rithms with known computational complexity. Clearly, the computational complexity
for Steps 1) and 3) depends on the choice of algorithms. For example, if we use
the neighborhood selection GLMLasso algorithm [18] as is used in Yang et al. [77],
the worst-case complexity is O(min(n, p)np) for a single Lasso run but since there
are p nodes, the total worst-case complexity is O(min(n, p)np*). Similarly, if we use
GLMLasso for Step 3) the computational complexity is also O(min(n, p)np?).

For Step 2) where we estimate the causal ordering of a DAG, there are (p —
1) iterations and each iteration has a number of overdispersion scores S (7,k) to be
computed which is bounded by O(d) where d is the maximum degree of the moralized
graph. Hence the total number of overdispersion scores that need to be computed is
O(pd). Since the time for calculating each overdispersion score which is the difference
between a conditional variance and expectation is proportional to the sample size n,
the time complexity is O(npd).

In worst case where the degree of the moralized graph is p, the computational
complexity of Step 2) is O(np?). As we discussed earlier, there is a significant com-
putational saving by exploiting the sparsity of the moralized graph which is why we
perform Step 1) of the generalized ODS algorithm. Hence, Steps 1) and 3) are the
main computational bottlenecks of the generalized ODS algorithm. The addition of
Step 2) which estimates the causal ordering does not significantly add to the computa-
tional bottleneck. Consequently, the generalized ODS algorithm, which is designed for
learning DAGs, is almost as computationally efficient as standard methods for learn-
ing graphical models. As we show in numerical experiments, the ODS algorithm using

GLMLasso in both Steps 1) and 3) is not slower than state-of-the-art GES algorithm.
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4.3.2 Statistical Guarantees

In this section, we study the theoretical guarantees of recovering the structure
of a DAG via our generalized ODS algorithm. Although we can use any off-the-shelf
algorithms in Steps 1) and 3), we only provide theoretical guarantees of learning the
moralized graph and the DAG structure via surrogate GLMLasso in Sections 4.3.2.1
and 4.3.2.3. In addition, we also provide statistical guarantees for learning the causal
ordering of a DAG in Section 4.3.2.2. All three main results concern conditions on the
triple (n, p, d), sample size n regarding to complexity of the graphical model which are
specifically the number of nodes p and the maximum degree of the moralized graph d,
ensuring that the generalize ODS algorithm recovers a DAG structure consistently.

We introduce an important lemma to ensure that the true parents of each node
are same as the estimated parents via surrogate GLMLasso. To make the definition of
the estimated parents via surrogate GLMLasso precise, suppose that 0}, € ©p denotes
the solution of the surrogate GLM problem where Op = {6 € RP™! : 0, = 0 for k ¢
pa(j)}.

0p = arg min E (=X;(0, X1.5-1) + D({0, X1.5-1))) , (4.6)

where D(-) is the log-normalization constant determined by a chosen GLM. Then, the
parents of a node j via surrogate GLM is defined as pa(j) := {k € V\{j} : [0}]x # 0}
where [-], denotes a parameter corresponding to a variable Xj.

In a special case of NEF-QVF DAG models in (4.2), clearly 07, is the same as
the true parameters § where 6, # 0 for all £ € pa(j). However 0}, is in general not

the same as the true parameters.

Lemma 4.1. Consider a DAG model (G,P). For any node j € V and k € pa(j), if

Cov(X;, Xy) # Cov(Xy, D'({[0p] paciy\e> Xpagng)))

the true parents of each node is equivalent to the estimated parents of each node via

surrogate GLM. In other words, pa(j) = pa(j) for any j € V.
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If X and Xpa(j)\x are independent, the condition in Lemma 4.1 is equivalent
to Cov(Xj, X;) # 0 which is milder than the widely held faithfulness assumption.
However, since it is possible that parents are correlated, we require that the covari-
ance between X, and its parent Xj is not a covariance between the parents X and
D'({[0b]pagne: Xpagn))-

Lemma 4.1 explains that recovering the structure of a DAG is equivalent to
solving the p-surrogate GLMLasso if the solution of GLMLasso is sufficiently close to
the solution of GLM. Hence in Section 4.3.2.3, we provide the theoretical guarantee
that solution of GLMLasso is sufficiently close to the solution 07}, of GLM.

For the moralized graph estimation, we also require a similar condition to ensure
that the true neighborhood of each node are same as the estimated neighborhood via
surrogate GLMLasso. For the precise definition of the estimated neighborhood via
surrogate GLMLasso, we define 0}, € ©,; as the solution of the convex optimization

problem of GLM where ©); = {0 € R~ : 0, =0 for k ¢ N(5)}.

97\/1 = arg lelgipl}l E [—X] <‘9V\j7 X\/\j> + D(<ev\j, Xv\]>)] . (47)

where D(-) is the log-normalization constant determined by a chosen GLM. Then the

estimated neighborhood via surrogate GLM is defined as N'(j) == {k € V \ {j} :
03]k # 0}

Corollary 4.1. Consider a DAG model (G,P). For any node j € V and k € N(j), if
Cov(X;, Xy,) # Cov(Xy, D'({[03s]nine: Xnn))):

the true neighborhood of each node is equivalent to the estimated neighborhood of each

node via surrogate GLM. In other words, N'(j) = N'(j) for all j € V.

This Corollary 4.1 guarantees that recovering the moralized graph structure
is equivalent to solving the p-surrogate GLMLasso if the solution of GLMLasso is
sufficiently close to the solution of GLM. Hence in Section 4.3.2.1, we provide the
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theoretical guarantee that solution of GLMLasso is sufficiently close to the solution

0%, of the GLM.

4.3.2.1 Step 1): Recovery of the Moralized Graph of a DAG via Surrogate
GLMLasso

We first focus on Step 1) of the generalized ODS algorithm; theoretical guarantee
of recovering the moralized graph of a DAG. We approach this problem via neighbor-
hood estimation where we estimate the neighborhood of each node N (7) individually.
Here we consider surrogate GLMLasso to estimate the neighborhood of each node
because a conditional distribution of a node given the rest of nodes in a DAG is in
general not equivalent to the likelihood of GLM, therefore our problem is not same as
the regular GLMLasso but surrogate GLMLasso.

We assume that there are n iid samples x = { X1 X® ... XM} and for any
i€{1,2,--- ,n}, XO = {Xl(i),XQ(i) e ,XZ(,i)} from a given DAG model (G,P). Then
for any variable X, the negative surrogate conditional log-likelihood of GLM is as

follows.

(o) = i (—X]@(e, X3 + D8, X(V?{j>)) (4.8)

i=1
where # € RP~! and D(-) is the log-normalization constant determined by a chosen
GLM.

We solve the negative surrogate conditional log-likelihood with ¢; norm penalty
for each variable X;:

On = arg eg]g)r}l 0(0; ) + X ||6]]1- (4.9)

With the solution 6/, we estimate the neighborhood of a node j, N'(j) := {k €
V\j: [Ou]e # 0} where [], is a value corresponding to a variable X,. Recall that
N(j) = N'(j) under the assumption that [6%,]; is non-zero for any k € N(j). Hence
if the solution of surrogate GLMLasso for each variable 6, is sufficiently close to the
solution of GLM 6%, in (4.7), we can conclude that A'(j) = N(j). In the following

we show the theoretical guarantee that the solution of surrogate GLMULasso for each
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variable is close to the solution of GLM 63, in (4.7).

We begin by discussing the assumptions we impose on the graphical model which
are also used in learning graphical models |77, 42, 76, 57]. Since Steps 1) and 3) require
similar assumptions, for simplicity, let () be the Hessian matrix of the negative surro-
gate conditional log-likelihood of a variable X; given either the rest of the nodes (4.8)
or the nodes before j in the causal ordering (4.10) we discuss later in Section 4.3.2.3.
Furthermore, let § = N (j) or pa(j), and Qg be the sub-matrix of @) corresponding to

variables Xj.

Assumption 4.2 (Dependency condition). There exists a constant Ay, > 0 such that
Amin(Qs5) > Amin- Moreover, there exists a constant Apax < 00 such that )\max(% > Xéi) (Xéi))T) <
Amax Where Apin(A) and Anax(A) are the smallest and biggest eigenvalues of a matriz

A, respectively.

These condition can be interpreted as ensuring that the relevant variables are

not overly dependent.

Assumption 4.3 (Incoherence condition). There exists a constant a € (0, 1] such
that

max
tege

Qus(Qg5) ' <1—a.

Incoherence condition can be understood that the large number of irrelevant
variables cannot strongly affect neighboring variables.

One of the main assumptions of Ising, multinomial, linear, and generalized linear
models in learning undirected graphical models |77, 42, 36, 57| is that random variables
(X1, X, -+, X,) are bounded with high probability. We also need a similar condition

to control a tail behavior of a distribution of each node.

Assumption 4.4 (Concentration Bound condition). For any node j € V', there exists

a constant M > 0 such that E(exp(]X;|)) < M.
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Assumption 4.4 enables surrogate GLMLasso to recover the structures of the
moralized graph and directed graph in high-dimensional settings. In addition, it re-
duces the number of overdispersion scores to be calculated in Step 2) by controlling
the cardinality of a condition set. Assumption 4.4 is stronger than other relevant
assumptions in learning undirected graphical models [77, 12, 36, 57] because we use
surrogate GLMLasso.

We need an assumption on the log-partition constants D(-) similar to leaning

undirected graphical models with exponential family distributions via GLMULasso |77].

Assumption 4.5. The log-partition function D(-) of the likelihood function (4.8)
or (4.10) holds the following condition. There exist constants ki and ko such that
max{|D'(a)[,|D"(a)|} < n"* fora € [0, k1 log(max{n,p})), x1 = 8max([| 1, [6pl)
and ky € [0,1/4] where D'(-) is the first derivative of D(-) and D"'(-) is the third
derivative of D(+).

Our assumption is a stronger version of the assumption on the log-partition
function in [77] because the assumed graph is a directed graph rather than a undirected
graph and learning the moralized graph via surrogated GLMLasso is a more difficult
than learning undirected graphical models via standard GLMLasso. However we can
find exponential family distributions satisfying this assumption. For example Poisson
distribution has one of the steepest log-partition function; D(-) = exp(-). Hence, in

with ks = 1. For other

order to satisfy Assumption 4.5, we require ||6%,[; < 222 5

— 64logp

distributions such as Binomial, Multinomial, or Gaussian, Assumption 4.5 is satisfied
with ko = 0 because the log-partition function D(-) is bounded.

Putting Assumptions 4.2 4.3, 4.4, and 4.5 together, we reach the following main
result that surrogate GLMLasso can recover the moralized graph in high dimensional

settings.

Theorem 4.6 (Learning the moralized graph structure via surrogate GLMLasso).

Consider a QVF DAG model (G,P) with the mazimum degree of the moralized graph
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d. Suppose that Assumptions /.2, 4.3, 4.4 and 4.5 are satisfied. Choose the reqular-

Nuin for some a € (kq,1/2)

S (91og(max{n,p})?
1zation parameter o <A\, < 30n72 Tog(max{np} )P

where Apin, Amax are the minimum and maximum eigenvalue of the Hessian matrix in
Assumption 4.2 and ko is a constant in Assumptions 4.5. If minjey minge ) [[03/]¢] >
%\/&)\n, for any constant € > 0 there exists a positive constant C, such that for sam-

_1

ple size n > C.(dlog(max{n,p})3)+=2,
P(Gn=G") >1—e

We defer the proof to Appendix B.1.3. The key technique of the proof is primal-
dual witness method. Theorem 4.6 shows that surrogate GLMLasso recovers the
structure of the moralized graph in high-dimensional (p > n) settings with high prob-
ability.

Compared to learning undirected graphical models with exponential family dis-
tributions via standard GLMLasso, the learning moralized graph requires stronger
assumptions and more samples. Yang et al. [77] proved that the require sample
size for learning undirected graphical models with exponential family distributions is
n = Q{d* log(max{n,p})?’}%). This makes sense because we apply the surrogate

GLMLasso while Yang et al. [77] used the standard GLMLasso.

4.3.2.2 Step 2): Recovery of the Causal Ordering of a DAG

We show theoretical guarantee of recovering the causal ordering of a DAG via
our generalized ODS algorithm under suitable regularity conditions. We begin by

stating assumptions we impose on the graphical model.

Assumption 4.7. For all j € V, K C pa(j) and all S C V \ K, there exists an
My > 0 such that
VGT’(]E(X]' | Xpa(j)) | XS) > M().

This assumption is a stronger version of the identifiability assumption in Theo-
rem 4.1, Var(E(X; | Xpqj)) | Xs) > 0. Since we are in the finite sample setting, we

need a lower bound away from 0 for all overdispersion scores.
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The concentration bound, Assumption 4.4 is also important because the overdis-
persion score is sensitive to bias of conditional mean and variance of each variable,
and therefore the overdispersion score is sensitive to both the size of a condition set
and cardinality of each variable. Therefore by controlling the tail behavior of each
random variable, we reduce the total number of overdispersion scores to be calculated
in Step 2).

We present the theoretical result given the true moralized graph. Recall that for
general DAGs, the true causal ordering 7* may not be unique. Therefore, let £(7*)

denote the set of all the causal orderings that are consistent with the true DAG G*.

Theorem 4.8 (Recovery of the causal ordering of a QVF DAG). Consider a QVF
DAG model (G,P) with quadratic variance coefficients (Po, 1) and the mazimum de-
gree of the moralized graph d. Suppose that B > —1 and the moralized graph G™ 1is
known. Furthermore, suppose that Assumption 4.4 and 4.7 are satisfied. Then for any
€ > 0 and some ¢y > (log(max{n, p}))?, there exists a positive constant K. such that

for sample size n > K. (log(max{n,p}))>*,

Pre&(n")>1—ce

The detail of the proof is provided in Appendix B.1.4. The main idea of the
proof is the overdispersion property exploited in Theorem 4.1. Note that estimated
overdispersion scores converge to the true overdispersion scores S(j, k) — S(j, k) as
sample size increases because each entry of a overdispersion score is the difference
between sample conditional sample mean and variance which consistently converge to
true values, respectively. Hence a comparison of overdispersion scores enable us to
detect the parents of each node in limited data settings.

Theorem 4.8 claims that if the triple (n,d,p) satisfies n = Q((logp)>™¥) and
d < Q(p), then our generalized ODS algorithm correctly estimates the true causal
ordering. Therefore if the moralized graph is sparse, our generalized ODS algorithm

recovers the true casual ordering in high-dimensional (p > n) settings. DAG learning
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algorithms that apply to high-dimensional setting are not common since they typically
rely on the faithfulness [68], or other restrictive conditions that are often not satisfied
in high-dimensional settings. Note that if the moralized graph is not sparse and
d = Q(p), the generalized ODS algorithm fails to work in high-dimensional settings.
This also makes sense since if the number of neighbors of each node is large, we would
need to condition on a large set of variables which is very sample-intensive.

Our sample complexity is certainly not optimal since a sample cut-off parameter
co is chosen for the worst case which is log(max{n,p})~¢. In addition, the power
term of the sample complexity n = Q((logp)®*?) is associated with Assumption 4.4.
If we have a stronger assumption max; E(exp(4.X;)) < M, it can be reduced to n =

Q((log p)*>T¥). Determining an optimal sample complexity remains an open question.

4.3.2.3 Step 3): Recovery of the Structure of a DAG via Surrogate GLM-

Lasso

In this section, we focus on Step 3) of our generalized ODS algorithm; theoret-
ical guarantees of recovering the structure of a DAG given its causal ordering. Our
approach in Step 3) is the same as in Step 1) except that we estimate the parents of
each node over the possible parents according to the causal ordering. Without loss
of generality, assume that the true causal ordering is 7* = (1,2,---,p). Then, we
estimate the parents of a node j over the set of nodes {1,2,---,j — 1}.

Again we consider the surrogate GLMLasso for estimating the parents of each
node because a conditional distribution of a node given its parents in a DAG may
not correspond to the likelihood of GLM, therefore our problem is not the regular
GLMLasso but surrogate GLMLasso like Step 1). For notational convenience, we use
X1 = (X1, Xa, -+, Xj). Then for any variable X, the negative surrogate conditional
log-likelihood of GLM is as follows.

Eo(0:) o= = 37 (X0, X{0) + D(t0. X)) (4.10)

n <
=1

where §# € R~ and D(-) is the log-normalization constant determined by a chosen
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GLM.
We solve the negative surrogate conditional log-likelihood with #; norm penalty
for each variable Xj:

Op = arg min, (p(6; ) + a6 (4.11)

With the solution p, we estimate the parents of a node 7, pa(j)={keV\j: [éD]k =+
0} where [-]x is a value corresponding to a variable Xj. Recall that pa(j) = pa(j)
under the assumption that [6%,], is non-zero for all k € N (j). Hence if the solution
of surrogate GLMLasso for each variable 0 and the solution of GLM 6% in (4.6) are
close, we can conclude that A/ (7) = N(j). As in the moralized graph learning, it is
sufficient to show that the solution of surrogate GLMLasso fp is close to the solution

of GLM 0%,

Theorem 4.9 (Learning the structure of a DAG via surrogate GLMLasso). Con-
sider a QVFEF DAG model (G,P) with the mazimum degree of the moralized graph
d. Suppose that the true causal ordering is known. Furthermore, suppose that As-

sumptions 4.2, .3, /.4 and /.5 are satisfied. Choose the regularization parameter
2

(9 IOg(maX{nup}))2 Amin
ne < An < 30n"2 log(max{n,p})dAmax

for some a € (kg2,1/2) where Amin, Amax
are the minimum and maximum eigenvalue of the Hessian matrixz in Assumption 4.2
and ko is a constant in Assumptions 4.5. If minjcy minep |[05)] > %\/ﬁ)\n,

for any constant € > 0 there exists a positive constant C, such that for sample size

n > C.(dlog(max{n, p})*)==,
P(@ =G)>1—e

The detail of the proof is provided in Appendix B.1.5. The main idea of the proof
for Theorem 4.9 is again primal-dual witness method. Theorem 4.9 explains that sur-
rogate GLMLasso successfully recovers the structure of a DAG in high-dimensional
(p > n) settings given the true causal ordering. As in learning the moralized graph,
learning the DAG requires stronger assumptions and more samples compared to learn-

ing undirected graphical models with exponential family distributions via standard
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GLMLasso |77]. However if a QVF-DAG model consist of NEF-QVF distributions, it
requires similar assumptions and sample complexity.

We present the consistency of all three steps of the generalized ODS algorithm.
In combination of Theorems 4.6, 4.8, and 4.9, we reach our final main result that the
generalized ODS algorithm successfully recovers the true structure of a QVFEF DAG
with high probability even in high-dimensional settings.

Corollary 4.2 (Learning a DAG structure via our generalized ODS algorithm). Con-
sider a QVF DAG model (G,P) with quadratic variance coefficients (Bo, /1) and the
mazximum degree of the moralized graph d. Suppose that ks is a constant in As-
sumptions 4.5. Under the regularity conditions and if the triple (n,p,d) satisfies
n = Q(max{(dlog(p)?’)ﬁ, (log p)3t?}) for some a € (k2,1/2), then our generalized
ODS algorithm recovers the structure of the DAG with high probability.

4.4 Algorithm for NEF-QVF DAG Models

In this section, we develop a new DAG learning algorithm for NEF-QVF DAG
models (4.2), called NEF-QVF ODS algorithm, which is an adapted version of the
generalized ODS algorithm 4.1. Like the generalized ODS algorithm, our NEF-QVF
ODS algorithm consists of three main steps: Step 1) is to estimate the moralized
graph of the DAG, Step 2) is to estimate the causal ordering using overdispersion
property, and Step 3) is to estimate the DAG structure. Step 1) and Step 3) can
exploit off-the-shelf graph structure learning algorithms (e.g., [71, 77, 3]) as well as
neighborhood selection algorithm such as GLMLasso. Step 1) allows us to reduce both
computational and sample complexity by exploiting the sparsity of the moralized or
undirected graphical model representation of a DAG.

The novelty of this paper is Step 2) of the NEF-QVF ODS algorithm. In general,
it is very difficult problem that determining a node is conditionally overdispersed
since overdispersion tests require computing the number of occurrences of all different

possible patterns of variables of a conditioning set. For example, if a conditioning set
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Xy contains five ternary variables then the number of overdispersion test is 3%. This
implies that the number of samples required to accurately estimate the conditional
expectation and variance is exponential to the size of the conditioning set and sample
space.

Here we introduce an important property of natural exponential family with
quadratic variance function (NEF-QVF) which reduces a massive number of estima-
tions of conditional expectation to only one regression problem. More precisely, we
estimate the generalized linear model (GLM) (4.12) for estimating conditional expec-
tation. For a node j and a conditioning set S C V'\ {j},

0" := arg min {—(0, X¢)X,; + D;({(0, Xs))}. (4.12)

OeRISI

where D;(-) is the log-normalization constant determined by a given GLM.

By the first order optimality condition, we obtain E[X; | Xg] = Dj((0*, Xs))
where D’(-) is the first derivative of D;(:). This implies that learning the parameters
of a GLM is sufficient to estimating conditional expectations for all different possible
patterns of variables of a conditioning set.

A conditional variance of a node given its parents is clearly Var(X; | Xpa(j)) =
BoE(X; | Xpag)) + SE(X; | Xpa())?. However it is unclear that how a conditional
variance is related to a conditional expectation for a general conditioning set S C V.
Hence we provide an important lemma which represents the relationship between a

conditional variance and expectation for any conditioning set S C V.

Lemma 4.2. Let (X1, Xs,---,X,) be a random vector associated with a NEF-QVF
DAG model (G,P) with quadratic variance coefficients (5o, p1) in (4.1). Suppose that
b1 > —1 and the identifiability assumption in Theorem 4.1 is satisfied. Then for any
jeV, K Cpa(j), and SCV\(KU{j}

Var(X; | Xs)

BE(X, | Xs) + BoE(X, | Xs)
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Proof.

—
S
N

Var(X; | Xg) = E(Var(X; | Xpag)) | Xs) + Var(E(X; | Xpag)) | Xs)

—
<
=

E(BoE(X; | Xpag) + AEX; | Xpay)? | Xs) + Var(E(X; | Xpag)) | Xs)
BoE(X; | Xs) + BE(X; | Xg)? + (1+ p1)Var(E(X; | Xpag)) | Xs).

—
)
~

(a) follows from the variance decomposition formula Var[Y] = E(Var[Y | X]) +
Var(E[Y | X]) for some random variables X and Y. In addition, (b) follows from
the variance quadratic property (4.1) and (c) is directly from the definition of a con-
ditional variance.

Therefore, we have

Var(X; | Xs) B | |
BE(X; | Xs) + BE(X; | Xs5)2 1+ (14 B1)Var(E(X; | Xpag)) | Xs) > 1. (4.13)

]

Lemma 4.2 claims that if a condition set S contains all parents then the ra-
tio a conditional variance to the quadratic function of a conditional expectation is

one, otherwise greater than one. This implies that a new random variable Y; =
X

V/ BoE(X; |1 X5)+P1E(X;] X5)?

tains all parents, otherwise greater than one. Hence testing whether variance of Y; is

have a conditional variance one if a conditioning set S con-

equal to one is equivalent to testing whether a conditioning set includes all parents
of a node j. We will use the conditional variance of transformed variable Y; as a
overdispersion score in Step 2).

In a finite data setting, we assume that there are n iid samples drawn from a
given QVF DAG model which is referred to as {X™, X® ... XM} where X =
{Xl(i), XQ(i) e ,ngi)} foralli € {1,2,--- ,n}. Then, we estimate the GLM model (4.12)
for overdispersion scores in Step 2). We find the minimizer of the negative conditional
log-likelihood of GLM for a node j given a conditioning set S C V' \ {j}:

i — arg min - i {—(9, XX 4 Dy, Xg‘>>>} . (4.14)

AeRISI 1 £
1=
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where D;(-) is the log-normalization constant determined by a given GLM.

Then, we estimate a conditional expectation based on the estimated parameters

n (4.14) and variance quadratic equation in (4.1). For any ¢ € {1,2,--- ,n} and
Jev,

NP S ) Ny ()

BX [ X9) = Dy(0, X9)), (4.15)

For the marginal expectation of each variable, we use sample mean as an estimator.
As we discussed we will use the sample variance of the ratio the conditional
expectation to conditional standard deviation as an overdispersion score. Then the
true overdispersion score for each component of the causal ordering must be one,
however other scores should be greater than one by Lemma 4.2. To be precise, we

define overdispersion scores as following: For any 7,k € V,

& LKy E(W
S(1,k) = ”—1;%1@( )+51 AT (4.16)
" () - B | xE))y

~ 1
SG.k) = — B
”—1;@]1@()9( | X5+ BEX | XP) 2

(4.17)

where @-k is an estimated candidate parents set which is an intersection of estimated
neighbors of j — 1 component of an estimated causal ordering and first j — 1 compo-
nents of an estimated causal ordering because only first j — 1 components of a causal
ordering can be parents of j component of a causal ordering, and the set of neigh-
bors of j — 1" component of an estimated causal ordering includes j** component of
a causal ordering. A candidate parents set is estimated in Step 2) of NEF-QVF ODS
algorithm.

As Park and Raskutti [16] explained, the main purpose of Step 1) is to reduce
both computational complexity and sample complexity by using the sparsity of the
moralized graph. The moralized graph provides a candidate parents set for each node.
Using a candidate parents set reduces the number of variables of a GLM (4.14) to be

fitted for Step 2), and therefore it improves our algorithm in terms of prediction and
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Algorithm 4.2 NEF-QVF ODS algorithm

Input: iid n samples from the DAG model

Output: A causal ordering 7 € N? and a graph structure Ee€ {0, 1}p>p

Step 1: Estimate the neighborhood of each node N (7) in the moralized graph

Step 2: Estimate the causal ordering using overdispersion scores
for k € {1,2,--- ,p} do

Calculate overdispersion scores S(1, k) using Equation (4.16)
end for
The first element of a causal ordering 7 := arg min; S (1, k)
for j={2,3,--- ,p—1} do

for ke N@_1)n{1,2,--- ,p}\ {71, - , 71} do

Find candidate parents set @-k = N (k) N {7y, 7o, - - i1}

Calculate overdispersion scores & (7, k) using Equation (4.17)

—_ =
M o2 2

end for

—_ =

The j™ element of a causal ordering 7; := arg miny S (J, k)
Step 3: Estimate the directed edges toward 7;, denoted by lA)j

. end for

—_ =

: The last element of the causal ordering 7, :={1,2,--- ,p} \ {71, T2, - -+ , Tp—1}
: The directed edges toward 7,, denoted by ZA)p ={(z,7p) |z € ﬁ(%p)}

: Return: 7 := (7,72, -+ ,7p) and £ :=Uj_q23... n D;

—_ =
O oo

computation. Furthermore, Step 1) reduces the number of overdispersion scores to be
compared in Step 2). Since the edge set of the moralized graph includes the edge set
of a DAG, j** component of the causal ordering is a neighbor of (j — 1) component of
the causal ordering. Therefore, we only compare overdispersion scores of neighbors of
( — 1) component of the causal ordering. By minimizing the number of overdisper-
sion scores to be compared, we also obtain significant statistical and computational
improvements. A similar step is taken by Loh et al. [10], the MMHC [71] and SC al-
gorithms [21]. Since the moralized graph is an undirected graph, a number of choices
are available for Step 1) including standard undirected graph learning algorithms such
as the HITON [3] and MMPC algorithms [71] as well as GLMLasso [15|. In addition,
standard DAG learning algorithms such as GES [9] and MMHC algorithms [71] can
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be applied and the moralized graph can be found from the estimated DAG.

The novelty of our algorithm is Step 2) which estimates the causal ordering.
The main idea is to determine which nodes are conditionally overdispersed. The
causal ordering is determined one node at a time by selecting the node with the
minimum overdispersion score which is representative of a node that is least likely to
be overdispersed. The main difference between our NEF-QVF ODS algorithm and the
ODS algorithm is overdispersion scores. The ODS algorithm uses the weighted average
of sample conditional variance minus conditional expectation as a overdispersion score,
and therefore the score is sensitive to the number of patterns of a conditioning set.
In contrast, our NEF-QVF ODS algorithm calculate a overdispersion score based on
based on the estimated parameter in the given GLM. Therefore, the NEF-QVF ODS
algorithm is favorable to the ODS algorithm in limited data settings, and our algorithm
can be applied to continuous distribution such as Gamma.

Step 3) which recovers the set of parents of each node j is reduced to selecting the
parents out of all elements before a node j in the estimated causal ordering from Step
2). Therefore, Step 3) can be reduced to p-neighborhood estimation problems which
can be performed using GLMLasso [18] as well as standard DAG learning algorithms

such as the PC [68], GES [9], and MMHC algorithms [71].
4.5 Numerical Experiments

4.5.1 The Generalized ODS Algorithm

In this section, we support our theoretical results with numerical experiments
and show that our generalized ODS algorithm performs favorably compared to state-
of-the-art DAG learning algorithms. In order to authenticate the validation of Theo-
rems 4.6, 4.8, and 4.9, the simulation study was conducted using 50 realizations of a
p-node random Poisson and Binomial GLM DAG models in (4.2) where a conditional
distribution of each node given its parents is Poisson and Binomial, respectively. In

all the results we present non-zero parameters (6;;) in (4.2) were chosen uniformly at
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Figure 4.2:: Structure of the DAG we used in numerical experiments. Solid directed
edges are always present and dotted directed edges are randomly chosen based on the

given number of parents of each node constraints

random in the range 6, € [—1, —0.5] for Poisson DAG models and 6;;, € [0.5, 1] for
Binomial DAG models. These ranges of parameters are chosen to satisfy the assump-
tions of the generalized ODS algorithm although there is no restriction on parameters
of DAG models unlike undirected graphical models. In addition, we fixed parameters
Ny, Ny, -+, N, = 4 for Binomial DAG models. We also used a special structure (see
Figure 4.2) which has the fixed unique causal ordering 7* = (1,2,--- ,p) with edges
randomly generated while respecting the desired maximum number of parents con-
straints for the DAG. In our experiments, we always set the number of parents to two
(the number of neighbors of each node is at least three, and therefore d € [3,p — 1])
and the thresholding constant to ¢y = 0.005 although any value below 0.01 seems to
work well.

In Figure 4.3, we plot the proportion of simulations in which our generalized
ODS algorithm recovers the correct causal ordering to validate Theorem 4.8. We plot
the accuracy rates in recovering the true causal ordering 7* as a function of sample
size (n € {100, 500, 1000, 2500, 5000, 10000}) for different node sizes (p = 10 for (a)
and (c), and p = 100 for (b) and (d)) and different distributions (Poisson for (a) and
(b) and Binomial for (¢) and (d)). In each sub-figure, two generalized ODS algorithms
are used; (i) GLMLasso |18] is applied in Step 1) where we chose a regularization

parameter \ = m(&% for Poisson DAG models and A = m for Binomial
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DAG models, and (ii) the GES algorithm [9] is applied in Step 1) where we used
the mBDe [29] (modified Bayesian Dirichlet equivalent) score and then the moralized
graph is generated based on the output of the GES algorithm. As we discussed any
state-of-the-art algorithms can be applied, we chose the those two algorithms because
they seem to work better in terms of recovering moralized graph in our simulation
settings. We also showed an oracle where the undirected edges of the true moralized
graph is used for comparison.

Figure 4.3 shows that both generalized ODS algorithms recover the true causal
ordering better as sample size increases, which supports our theoretical result. In
addition, we can see that the GLMLasso-base generalized ODS algorithm seems to
be better than the GES-base generalized ODS algorithm in terms of the recovery of
the causal ordering. Since GLMLasso is the only algorithm that scale to the setting
(p > 1000), we used GLMLasso in Steps 1) and 3) of the generalized ODS algorithm
for large-scale DAG models.

Figures 4.4 and 4.5 provide a comparison of how accurately the generalized ODS
algorithm performs in terms of Hamming distance to two state-of-the-art directed
graphical model learning algorithms (the MMHC and GES algorithms) for both Pois-
son DAG and Binomial DAG models. Similar to learning causal ordering, we used
two generalized ODS algorithms exploiting GLMULasso in both Steps 1) and 3) and
the GES algorithm with the mBDe score in both Steps 1) and 3). Furthermore, oracle
where the undirected edges of the true moralized graph is used for comparison. We
considered small-scale DAG models with p = 10 in sub-figures (a), (b), (e) and (f),
and p = 100 in sub-figures (c), (d), (g) and (h). Then, we considered two Hamming
distance measures. We measured the Hamming distance to the skeleton of the true
DAG in sub-figures (a), (c), (e) and (g) which is the set of edges of the DAG with-
out directions. In addition, we measured the Hamming distance for the edges with
directions in sub-figures (b), (d), (f), and (h). The reason we consider the skeleton

is that the comparison algorithms can recover up to the skeleton of the DAG. We
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Figure 4.3:: Probability of recovering the causal ordering of a DAG via our generalized
ODS algorithm using two different algorithms (GLMLasso and GES algorithm) in Step
1)

normalized the Hamming distances by dividing it by the maximum number of errors
(’2’) and p(p — 1), respectively. Therefore, the overall score is a percentage.

As we see in Figures 4.4 and 4.5, the both generalized ODS algorithms signif-
icantly out-performs state-of-the-art MMHC and GES algorithms in terms of both
directed edges and skeleton. For small sample size cases, the both generalized ODS
algorithms shows bad performance because it often fails to recover the causal order-
ing, however we can see that GES-base generalized ODS algorithm performs always
better the GES algorithm. It is because the generalized ODS algorithm only adds
directional information to the estimated skeleton via the GES algorithm and hence
GES-base generalized ODS algorithm is always better than the GES algorithm in
terms of recovering both directed edges and skeleton.

Furthermore Figures 4.4 and 4.5 show that as sample size increases, the both
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Figure 4.4:: Comparison of the generalized ODS algorithms using GLMLasso (in Steps
1) and 3)) and the GES algorithm (in Steps 1) and 3)) to two state-of-the-art DAG
learning algorithms (the MMHC and the GES algorithms) in terms of Hamming dis-
tance to skeletons and directed edges of Poisson DAG models. The end of each bar
corresponds to the average of the normalized hamming distance plus or minus its

standard error

generalized ODS algorithms recover the true directed edges and skeleton of the DAG
better, which is consistent with our theoretical results. It must be pointed out that the
choice of the DAG models is suited to the generalized ODS algorithm while comparison
algorithms are capable of being applied to more general classes of DAG models.

Now we consider the statistical performance for large-scale DAG models to show
that the generalized ODS algorithm works in the high-dimensional setting. In all
experiments we used the GLMLasso in Steps 1) and 3) of generalized ODS algo-
rithm. Figure 4.6 plots the statistical performance of the generalized ODS algorithm
for large-scale Poisson DAGs in sub-figures (a), (b), and (c) and Binomial DAGs in
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Figure 4.5:: Comparison of the generalized ODS algorithms using GLMLasso (in Steps
1) and 3)) and the GES algorithm (in Steps 1) and 3)) to two state-of-the-art DAG
learning algorithms (the MMHC and the GES algorithms) in terms of Hamming dis-
tance to skeletons and directed edges of Binomial DAG models. The end of each
bar corresponds to the average of the normalized hamming distance plus or minus its

standard error

sub-figures (d), (e), and (f). Furthermore, (a) and (d) represent the accuracy rates
of the recovering the causal ordering, (b) and (e) show the normalized Hamming
distance to the true skeleton, and (c¢) and (f) show the normalized Hamming dis-
tance to the true edge set of the DAG. Accuracies vary as a function of sample size
(n € {500, 1000, 2500, 5000, 10000}) for each node size (p = {1000, 2500, 5000}). Fig-
ure 4.6 shows that the generalized ODS algorithm recovers the causal ordering and
the true structure of a DAG even in high-dimensional settings.

In Figure 4.7, we compared the run-time of the generalized ODS algorithms

using GLMLasso in Steps 1) and 3) to the run-time of the MMHC and the GES
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Figure 4.6:: Performance of the generalized ODS algorithm using GLMLasso in both
Steps 1) and 3) for large-scale DAG models with the node size p = {1000, 2500, 5000}

algorithms. We measured the run-time for Poisson DAG models by varying (a) node
size p € {10,20,40,60,80,100} with the fixed sample size n = 10000 and exactly
two parents of each node, (b) sample size n € {100, 500, 1000, 2500, 5000, 10000} with
the fixed node size p = 100 and two parents of each node, and (c) the number of
parents of each node |Pa| € {1,2,3,4,5,6} with the fixed sample size n = 10000 and
node size p = 20. Sub-figures (a) and (b) support the section 4.3.1 where the time
complexity of our ODS algorithm using GLMLasso is at least O(min(n, p)np?) which
is computational complexity of p GLMLasso. Sub-figure (c) also shows run-time of
the ODS algorithm is proportional to the number of parents of each node which is the
lower bound of the degree of the moralized graph d.

We can also see that the generalized ODS algorithm is faster than the GES

algorithm as either node size or sample size increases. Although the generalized ODS
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Figure 4.7:: Comparison of the generalized ODS algorithms using GLMLasso in Steps
1) and 3) to two standard DAG learning algorithms (the MMHC and the GES algo-
rithms) in terms of running time with respect to (a) node size p, (b) sample size n,

and (c) number of parents of each node

algorithm seems slower than the MMHC algorithm, this is mainly because the MMHC

algorithm often stops earlier before they reach the true DAG (see Figure 4.4 and 4.5).

4.5.2 The NEF-QVF Algorithm

In this section, we support our theoretical results with numerical experiments
and show that our NEF-QVF algorithm performs better than state-of-the-art DAG
learning algorithms and the generalized ODS algorithm 4.1 in terms of recovering
structure of DAG. The simulation study was conducted using 50 realizations of a
p-node random Poisson NEF-QVF DAG models where a conditional distribution of
each node given its parents is Poisson with the canonical link function for count data.

Furthermore we used random Exponential NEF-QVF DAG models where a conditional
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Figure 4.8:: Probability of recovering the causal ordering of a DAG via our generalized

ODS algorithm using two different algorithms (GLMLasso and GES algorithm) in Step

1)

distribution of each node given its parents is Exponential with the canonical link
function for continuous data. In all the simulation results we present, we used a special
structure (see Figure 4.2) which has the fixed unique causal ordering 7* = (1,2,--- | p)
with edges randomly generated while respecting the desired maximum number of
parents constraints for the DAG. We always set the number of parents to two, and
hence the number of neighbors of each node is at least three. However, we do not set
the maximum degree of the moralized graph. We chose the present parameters (6;;)
in (4.2) at random in the range 6;;, € [—0.75,—0.25] for Poisson DAG models and
6,1 € [0.25,0.75] for Exponential DAG models to ensure the edge weights are bounded
away from 0.

In Figure 4.8, we plot the proportion of simulations in which our generalized
ODS algorithm recovers the correct causal ordering to validate that NEF-QVFEF ODS
algorithm can fully recover DAG models. We plot the accuracy rates in recovering the
true causal ordering * as a function of sample size (n € {200,400, 600, 800, 1000}) for
different node sizes (p = 10 for (a) and (c), and p = 50 for (b) and (d)). In each sub-
figure, two NEF-QVF ODS algorithms are used; (i) GLMLasso |1 8] is applied in Step 1)
where we chose a tuning parameter 0.1 and (ii) the GES algorithm [9] is applied in Step
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Figure 4.9:: Comparison of our algorithms using the GES algorithm (in Steps 1) and
3)) and GLMLasso (in Steps 1) and 3)) to ODS algorithm using GLMLasso (in Steps
1) and 3)) and two standard DAG learning algorithms (the MMHC and the GES
algorithms) in terms of Hamming distance to skeletons and directed edges of Poisson
DAG models. The end of each bar corresponds to each average normalized hamming

distance plus or minus its standard error

1) where we used the mBDe [29] (modified Bayesian Dirichlet equivalent) score and
the moralized graph is generated from the output of the GES algorithm. Although any
state-of-the-art algorithm can be applied, we chose the those two algorithms because
they seem to work better in terms of recovering moralized graph in our simulation
setting.

Figure 4.9 provides a comparison of how accurately our algorithm performs in
terms of Hamming distance to the generalized ODS algorithm and two state-of-the-art

directed graphical model learning algorithms (the MMHC and GES algorithms) for
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Poisson DAG models. Similar to learning causal ordering, we used our two different
algorithms using GLMLasso in both Steps 1) and 3) and the GES algorithm with
the mBDe score in both Steps 1) and 3). For the generalized ODS algorithm, we
used GLMLasso in both Steps 1) and 3). We considered small DAGs with p = 10
for (a) and (b), p = 50 for (c¢) and (d). We also considered two Hamming distance
measures. We measured the Hamming distance to the skeleton of the true DAG for
(a) and (c) which is the set of edges of the DAG without directions. In addition,
we measured the Hamming distance for the edges with directions for (b) and (d).
The reason we considered the skeleton is that the comparison methods recover up to
the skeleton of the DAG. We normalize the Hamming distances by dividing it by the
maximum number of errors p(p — 1) and (g), respectively. Therefore, the overall score
is a percentage.

As we see in Figure 4.9, our algorithm significantly out-performs the MMHC
and GES algorithms in terms of both directed edges and skeleton when sample size
is large enough. For small sample size cases, the GLMLasso-base our algorithm and
the generalized ODS algorithm show bad performance because it frequently fails to
recover the causal ordering. However, our GES-base algorithm is strictly better than
the GES algorithm. It is because the GES-base NEF-QVF ODS algorithm only adds
directional information to the estimated skeleton via the GES algorithm and hence
GES-base NEF-QVF ODS algorithm is always better than the GES algorithm in terms
of recovering both directed edges and skeleton. We can also see that our algorithms
are better than the generalized ODS algorithm, which support our main contribution
of this paper. As sample size increases, our algorithm recovers the true directed edges
and skeleton of the DAG better.

Now we concern the statistical performance for exponential DAG models where
a conditional distribution a node given its parents is exponential to show that our
NEF-QVF ODS algorithm works for continuous data. In all experiments we used the
GES algorithm in Steps 1) and 3) of the NEF-QVF ODS algorithm. Figure 4.10 rep-
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Figure 4.10:: Comparison of our NEF-QVF ODS algorithms using the GES algorithm
(in Steps 1) and Step 3)) and GLMLasso (in Steps 1) and Step 3)) to two standard
DAG learning algorithms (the MMHC and the GES algorithms) in terms of Hamming
distance to skeletons and directed edges of Exponential DAG models. The end of
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standard error

resents the accuracy rates of the recovering the causal ordering for (a), the normalized
Hamming distance to the true skeleton for (b), the normalized Hamming distance to
the true edge set of the DAG for (c). Accuracies vary as a function of sample size
(n € {200,400, 600, 800, 1000}) for each node size (p = {5,10}). Figure 4.10 indicates
that the NEF-QVF ODS algorithm recovers the causal ordering and the true structure

of a DAG even for continuous data.
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Chapter 5

Learning DAG Models Using Moralization

and Interventions

5.1 Introduction

A popular framework for representing causal or directional relationships are di-
rected acyclic graphical (DAG) models, also known as Bayesian networks. In such
models parents of a vertex are causes and their edges are understood as causal influ-
ences. One of the major challenges associated with DAG models is that they are in
general not identifiable from observational data alone and can be identified only up
to their Markov equivalence class (MEC). Therefore if the goal is to learn all causal
directions further information from experiments based on interventions are required.
Here we focus on the practically relevant setting where the number of variables of
interest p is potentially large, and our goal is to learn all directions of a DAG model
using a combination of interventional experiments and observational data.

Recently, a number of DAG learning algorithms using a combination of obser-
vational data and interventions have been proposed (see e.g. [24, 25, 26, 27, 63]).
More specifically, Hauser and Biihlmann [21] extended the notion of the (MEC) to
the interventional case, and introduced the Greedy Interventional Equivalence Search

(GIES) algorithm which is known to recover the DAG model provided algorithms for
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learning the MEC are accurate. In other related work, Hauser and Bithlmann [25] and
He and Geng [27] presented strategies for actively determining which nodes to inter-
vene or experiment on by exploiting properties of the MEC for interventional graphs.
However these approaches rely on accurate recovery of the MEC and many existing
algorithms for learning the MECs are unreliable (see e.g. [73]). Therefore estimating
the MEC based on observational may lead to errors which would lead to downstream
errors in estimating other directions using interventions.

In this paper, we propose both passive and active learning strategies using the
moralized graphs rather than the MEC. The advantage of using moralized graphs
instead of the MEC is that recovering the moralized graph is more reliable since it
does not require as strong assumptions as those needed for recovering the MEC. Fur-
thermore, the moralized graph can be accurately estimated even in high-dimensional
settings, where the number of nodes are larger than the measured sample size (see
e.g. |4, 56, 57, 77]). Major contributions of our paper are to (1) introduce new rules
for recovering directions of edges by comparing the moralized graphs from observa-
tional and interventional data and develop a passive learning strategy which we show
out-performs the state-of-the-art GIES algorithm, and (2) develop an active learn-
ing algorithm for DAG models which reduces the number of interventions and allows
reliable recovery in the high-dimensional settings.

Our passive and active learning strategies involve combining to basic concepts,
moralized graphs and interventional graphs and developing new theory which guaran-
tees their success for learning DAG models. The passive learning algorithm involves
two iterative steps: (i) learn the leaf nodes by using the fact that interventions applied
to leaf nodes have no neighbors in the moralized or undirected graph, and (ii) learning
the parents of the leaf nodes by exploiting the fact that parents of the leaf nodes cor-
respond exactly to neighbors in the moralized graph. Our experiments demonstrate
the superior performance of our passive learning algorithm relative to the state-of-

the-art GIES algorithm in terms of recovering the underlying DAG model. The active
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learning strategy involves iteratively selecting which nodes to perform interventions on
so that the moralized graph on the interventional data reveals the most information
about the directions of the edges. Our active learning algorithm has three steps to
be repeated iteratively: (i) choosing subsets of nodes to intervene on using moralized
graph or input graph from previous step; (ii) learn the moralized graph based on the
interventional data; (iii) use rules developed in this paper to determine directions of
the DAG model based on the interventional moralized graph. Experimental results
using our active learning strategy performs well even in the high-dimensional setting
provided that the maximum degree of the moralized graph is bounded.

The remainder of this paper is organized is follows. In Section 2, we introduce
two important concepts, interventional data and graphs and the moralized graph. In
Section 3 we introduce the passive learning strategy along with theoretical guarantees
on the sample size in terms of the number of nodes and the maximum degree of the
moralized graph. In Section 4 we introduce the active learning strategy that applies
to both small-scale and large-scale DAG models and we introduce addition theoretical
results on modified Meek rules for moralized graphs that guarantee the success of our
algorithm. Finally in Section 5 we present experimental results for both the passive
and active learning strategies on a range of DAG models both in the low-dimensional

and high-dimensional settings.

5.2 Background

Directed graphs. A DAG G = (V, E) consists of a set of nodes V' and a set
of directed edges E with no directed cycle. We usually set V' = [p| :== {1, 2,...,p} and
associate with the nodes a random vector X := (Xj, Xs,..., X,)) which takes values
in some product measure (X, A, 1) = ([T-, X @4, Ai, Q@ i) with &; C RV .

For any subset of component indices A C [p], we use the notation X4 = [], .4 Xu,

acA
Xa = (Xo)aca. We use pa(k) to denote the parents, ch(k) to denote the children, and

sp(k) to denote the spouses of node k. (A node j is a spouse of node k if j and k have
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a common child). Lastly, we use an(k) to denote the parents of k.

Interventions. We borrow the notation from [21]. We consider stochastic in-
terventions modeling the effect of setting or forcing one or several random variables
X7, where I C [p] is called the intervention target, to the value of independent random
variables U;. The joint product density of U; on X7, called level density, is denoted
by f. Extending the do() operator in [17] to stochastic interventions, we denote the
density of X under such an intervention by f(z | dop(X; = Ur)). Using truncated
factorization and the assumption of independent intervention variables, this interven-

tional density can be written as

fla | dop(X; =Up)) = [ [ flai | wpaw) [ [ Fl=:) - (5.1)

il iel

Intervention graph. For a DAG G = (V) E)) and an intervention target I C [p],
the intervention graph is a DAG G; = (V, E;), where E; .= {(j, k) | (j, k) € E,k ¢ I}.

Moralized graph. For a DAG G = (V, E), the moralized graph of G is an
undirected graph G™ = (V, E™), where E™ is obtained by adding (1) an undirected
edge {j,k} to E™ for each (j,k) € E, and (2) an undirected edge between (j, k) to
E™ if j and k have a common child. We use N (j) to denote the neighbors of node j
in G™, also known as Markov blanket [51].

Interventional moralized graph. For a DAG G = (V, E) and an intervention
target I C [p], the interventional moralized graph GV = (V, E}") is the moralized
graph of the intervention graph G;. We use N;(j) to denote the neighbors of node j
in the interventional moralized graph G7".

Interventional data. We consider interventional data (T,X) of sample size n,

where
71 X

T = : , X = : (5.2)
T X
where for each i € [n], T® denoted the intervention target under which the sample

X0 = (Xl(i),XQ(i), ...,X;i)) was produced. Mathematically, XM, X® X are
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independent, and

Nf( |dOD( T() UT()))a UT(i) NfT(i)7 7'2177”

A more thorough background on these relevant concepts is provided in the supple-

mentary material.

5.3 Passive Learning

In this section, we present a passive learning algorithm CLMG (Causal Learn-
ing using Moral Graphs) for recovering the DAG structure using interventional data
and moral graphs i.e. it uses pre-collected interventional data to recover the DAG
structure. We assume that every node has been intervened at least once.

We first identify the leaf nodes by exploiting the fact that a leaf node | has no
neighbors in the interventional moralized graph when [ is intervened. We then learn
the parents of the leaf node by using the fact that parents of leaf nodes correspond
exactly to neighbors in the moralized graph. The leaf node is then removed and only
the remaining subgraph is considered. This process is repeated till the subgraph is
empty.

The CLMG algorithm uses a black-box FINDNEIGHBORS(data, target node,
search set) function that estimates the neighborhood of a target node in the moralized
graph from a set of search nodes, by using sampled data. Note that we can use a
number of standard algorithms for FINDNEIGHBORS(-) since it is the same as learning
neighborhoods of nodes in undirected graphs (see e.g. [1, 56, 57, 76, 77, 78, 79]). In
our numerical experiments, a thresholding approach developed in [75] is applied.

A leaf node can be recovered as the node whose neighborhood is empty when
it is intervened because an intervention eliminates edges between an intervened node
and its parents. Let X; = {X® : j € T®W} and X_; = {X® : j ¢ TW} denote
the data where j was intervened and not intervened respectively. One can find the
interventional neighborhood of a node j using FINDNEIGHBORS(data = X;, target

node = j, search set = V'\ j), and declaring j to be a leaf node if the neighborhood
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returned is empty. However, the search set V'\ j is large, and hence FINDNEIGHBORS
is likely to return false neighbors, making it difficult to recover the leaf nodes of a
graph.

The CLMG algorithm cleverly solves this problem by exploiting the fact that the
interventional neighborhood of a node j is a subset of A/(j), because an intervention
only eliminates edges incident on the intervened node. The CLMG algorithm first
recovers N (j), and then searches for the interventional neighborhood of j only in N/ ()
(instead of V'\ j). As before, it declares j to be a leaf node if FINDNEIGHBORS(data
= X, target node = j, search set = N (j)) returns an empty set. This is better because
IN ()| < |V '\ j] if the moralized graph is sparse. Furthermore, N'(j) can be recovered
from X_; because although every measurement has a different set of intervened nodes,
the conditional distribution of X; given all other variables is the same as long as node
J is not intervened. This estimation of N (j) will also be accurate because |X_;| is

likely to be large.
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Algorithm 5.1 CLMG(T,X): Causal Learning using Moral Graphs
: Input: (7, X) interventional data

1

2:

3: OQutput: G= (V, E) estimated graph structure
4 E=10

5: remainingNodes = {1,2,...,p}
6: while remainingNodes # () do

7 leaves = FINDLEAVES(N = remainingNodes, 7', X)
8 for [ in leaves do

9 X; ={X®:1eT®}

10: parents < FINDNEIGHBORS(target = [, search = remainingNodes, data =
X))

11: for r in parents do

12: E=FEu{(r)}

13: end for

14: end for

15: remainingNodes <— remainingNodes \ leaves
16: end while

17: return G = (V, E)
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FINDLEAVES(N, T, X): Find leaf nodes among n given interventional data

1: Input: N set of nodes to search and (7, X) interventional data
2: Output: L set of leaf nodes
3: L=10
4: for s in N do
X ,={XO:5¢T0}
unbrs = FINDNEIGHBORS(target = s, search = N, data = X_y)
if unbrs # () then
X, ={X®:5cTW}
children = FINDNEIGHBORS(target = s, search = unbrs, data = Xj)
10: if children = () then

11: L=LU{s}
12: end if

13: end if

14: end for

15: return L

5.3.1 Statistical Guarantees for the CLMG Algorithm

Here we provide statistical guarantees for the CLMG algorithm 5.1. For the
purposes of this guarantee, we consider an intervention strategy where we perform an
intervention at every node and collect ny samples per intervention. We consider single
interventions because 1) they are simple, 2) they form a sufficient set to estimate the
entire DAG [21], and 3) it is possible to determine the total joint effect of multiple
interventions from single intervention effects [15]. We thus perform p single-node
interventions. Our algorithm easily allows other intervention strategies and we use

single-node interventions purely for illustration.

Theorem 5.1. Consider a DAG G = (V, E) with the mazimum degree of the moral-
1zed graph, d. If single-node interventions are performed at every node and ng mea-

surements are made per intervention, then Alg.5.1 recovers the true DAG with high
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Figure 5.1:: Outline of our active learning algorithm

probability:
N p
P(G#G) <> j{on(no(p—1),j —1,d) + d(ng, min(d, j — 1),d)}, (5.3)
j=1

where On(n,p — 1,d) is an error bound for estimating a moralized graph with sample

size n, possible neighborhood size p — 1, and the mazimum degree of moralize graph d.

The detail of the proof is in the supplementary material. dy(ng,p — 1,d) can be
found using existing theoretical results for subset selection in regression which we are
treating as a black box in this paper. For example using the GLM lasso approach,
In(ng,p — 1,d) < # provided ng > c.d.logp for an appropriately chosen constant
¢ (see e.g. [56, 77]). The detail of the proof is in the supplementary material. Our

experiments show that the CLMG algorithm 5.1 performs well in practice.

5.4 Active Learning Algorithm

In this section, we develop a new active learning algorithm for recovering the
structure of a DAG using its moralized graph.

Our algorithm is outlined in Figure 5.1 and consists of four main steps: (1)
estimating the moralized graph of a DAG using undirected graph learning algorithms,
(2) determining a set of nodes to be intervened, (3) estimating the interventional
moralized graph of the DAG from interventional data, and (4) determining the direc-
tion of many edges as possible by comparing the moralized graph from step 1 and the
interventional moralized graph from step 3 and applying rules we develop below. We

then repeat steps 2-3-4 till the entire DAG is recovered.
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Steps 1 and 3 can be performed using standard undirected graph learning algo-
rithms [1, 56, 57, 76, 77, 78, 79]. The novelty of our algorithm lies in steps 2 and 4.
For step 2, we design an optimal algorithm for determining which nodes to intervene,
so as to minimize the total number of interventions, thus enabling our algorithm to
recover the structure of the DAG even in high-dimensional (p > n) settings. Step
4 of our algorithm is similar in flavor to existing Meek rules [11] used to determine
the direction of an edge given V-structures in a Markov Equivalence Class (MEC).
However, since we use moralized graphs instead of MECs, we require new methods to
determine the direction of an edge from the moralized graph and interventional mor-
alized graph. Using moralized graphs allows us to identify directed graphs without
strong identifiability assumptions such as the faithfulness.

We begin by discussing step 4 of our algorithm. Note that for a node 7, its
moralized neighborhood N (j) = pa(j) Uch(j) Usp(j). So step 4 boils down to distin-
guishing between pa(j),ch(j) and sp(j). The following three lemmas allow us to do
this.

Lemma 5.1. For any j,k ¢ I, suppose that (j, k) € E™ and (j,k) ¢ EJ. Then
(7, k) € E. Furthermore, there exists at least one i € I such that i is a common child

of 7 and k.

Lemma 5.2. Suppose that no nodes in I are adjacent in G™. Let S = N (j) NN7(j)°.
Then, for any k € S, (k,j) € E.

The detail of the proof is in the supplementary material.

Lemma 5.3. Suppose that no components of I are adjacent in G™. Let j € I,

S =N3G)NN:(j), and £ = N(G) NN (k) for k € S.
(a) If =0, (j.k) € E.

(b) If for alll € (,(1,5) € E, (j,k) € E.
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(c¢) If for anyt € V '\ £ and j € an(t), there exists (t,k) € E, then the edge between

(7, k) in the moralized graph is generated by a common child.

We defer the proof to the supplementary material.

Lemma 5.1

1: Input: I, G™ and (A}T
2: Output: G = (V, E)
3: E =

4: for j,k ¢ I do

5 (=NGNNENI

6: if (j,k) € E™, (j,k) ¢ E™ then
7: E™ = E™\{(j. k), (k. j)}

8: if |¢| = 1 then

9: E:=EU{(,0),k0)}
10: end if

11: end if

12: end for

13: Return: E
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Choice of nodes to be intervened

1: Input: Gm

2: Output: [ set of nodes to intervene

3: while There is an unshielded triple (i1, a,i5) in G™ such that 11 Or 49 is connected
to unidentified edges in G™, and i1, 15 are not adjacent to all elements of I in Gm
do

4: Add 1,19 € 1.

5: while For any 7 € I, there is is unshielded triple (¢, a,73) and i3 is not adjacent
to all elements of I in G™ do

6: Add iz €I

7 end while

8: end while

9: while There is a node iy not adjacent to all elements of I in G™ do

10: Add iy €1
11: end while
12: Return: [

Lemma 5.2

: Input: I, G™ and CA}T

. Output: G = (V, E)

: for j € I do
S = N(j) N N7 (j)°.
for £ € S do

E:= EU{(k.j)}

end for

end for

. Return: £

© »® e g »
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Lemma 5.3
1: Input: I, G™ and @}”
2: Output: G = (V, E)
3: for j €I do
& C=N(G)NNi()

5 for k€ C do

6 (=NG)NN(k)

7 if /=0 then > Lem. 5.3(a)
8 E:=EU{(jk)}

9: end if

10: if For any | € ¢, (I,5) € E then

11: E:=EU{(jk)} > Lem. 5.3(b)
12: end if

13; if (¢,k) € E and j € an(() then

14 B = B\ (G, k), (b, 1)}

15: if |¢| = 1 then > Lem. 5.3(c)
16: E:=EUu{(j,0), (4}

17: end if

18: end if

19: end for

20: end for

21: Return: F

For step 2 of our algorithm, an important question is how to determine an optimal
set of nodes intervene. Taking a hint from the above lemmas, we consider two guiding
principles while choosing which nodes to intervene. First, no adjacent nodes in the
moralized graph should be intervened. Second, choose the maximum number of nodes
that can be intervened while obeying the first principle. The intuition is as follows.
Recall that we use the difference between the moralized graph and the interventional
moralized graph to determine directions of edges in step 4. If two adjacent nodes are
intervened, we do not gain any information about the direction of the edge between
the two nodes which is why we avoid intervening adjacent nodes. Further, the higher

the number of non-adjacent nodes we intervene, the more differences we are likely to
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find between the moralized graph and interventional moralized graph.

Here is the main strategy for choosing nodes to be intervened. For ease of
notation we use I as the set of nodes to be estimated. (1) We first find an unshielded
triple (i1, a, i) in the moralized graph G™ such that i; or is is connected to unidentified
edges in G™, and then choose the two end nodes for intervention. Iy := IoU{iq,i2}. It
guarantees at least two nodes are chosen in a multiple-nodes intervention. (2) Next,
we find an unshielded triple such that one of the end nodes of an unshielded triple is
an element of nodes to intervened (iy,b,3) or (is,b,73) and i3 is not adjacent to all
elements of Iy = {iy,i2}. We add i3 to Iy, and repeat this procedure until we cannot
find any unshielded triple such that one of the end nodes of an unshielded triple is an
element of [y. (3) Next, we choose a new unshielded triple (i, b, i4) such that both i3
and i4 are not adjacent to all elements of I, and add 73 and i4 to Iy. We repeat the
procedure (2) and (3) until there is no unshielded triple satisfying the conditions. (4)
We find a node not adjacent to all elements of [, and then add the node to I,. We

repeat the procedure (4) until there is no node which is not adjacent to Ij.

Algorithm 5.2 Active Learning Algorithm

1: Input: X observational data

2: Output: G = (V, E)

3: Step 1) Estimate the moralized graph G™ via a standard undirected graph learning
algorithm

4: Step 2) Choose nodes to be intervened I.

5: Step 3) Generate X; interventional data, and then estimate the interventional
moralized graph CA}T via a standard undirected graph learning algorithm

6: Step 4) Estimate the structure of a DAG using Lem. 5.1, 5.2, 5.3 Jand Meek rules.

7. Repeat Step 2) - Step 4) until every direction of an edge in G™ is recovered.

8: Return: G = (V, E)

We illustrate our selection strategy with an example. In Fig. 5.2, (1,2,3),
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Applying Lem. 5.2 Applying Lem. 5.3(a) Applying Lem. 5.3(c)

Figure 5.2:: Applying our algorithm to a 5-node cycle graph

(1,4,3), (2,3,4), (2,1,5) and (3,4,5) are unshielded triples, so that we can choose
{1,3}, {2,4}, {2,5} or {3,5} for Iy, and do not need further steps since there are
no more unshielded triples or nodes not-adjacent to Iy. Suppose Iy = {1,3}. Since
(2,3) € E™ and ¢ E7, (2,3) € E by Lem. 5.2. In addition, since (1,2),(3,4) € E™
and € E7' and both pairs do not consist triangles, (1,2),(3,4) € E by Lem. 5.3 (a).
Lastly, 1 € an(3), (3,4) € E, and (1, 3,4) is an unshielded triple in G™. It means that
1 € sp(4), and therefore 5 is the common child of (1,4) because (1,4,5) is the only

triangle in G™.

Corollary 5.1. Consider a DAG G = (V, E) with the mazimum degree of the moral-
1zed graph, d. Suppose that ng measurements are made per intervention and q inter-
ventions are required. Then our active learning algorithm recovers the true DAG with

an error probability that is upper bounded by

~

P(G#G)<(¢+1)-da(ng,p,d) (5.4)

where d4(ng, p,d) is an error bound for estimating a moralized graph with sample size

ng, node size p, and the maximum degree of moralize graph d.

Cor. 5.1 shows that if the moralized graph is sparse and total number of inter-

ventions are bounded saying ¢, we can recover the structure of a DAG with n =ng - q
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total samples. For example if we use GLasso for Gaussian DAGs, there exist constants
c1,¢o > 0 such that §4(ng,p,d) =1 — p° if ng > cod?logp. Hence our active learning
algorithm recovers a DAG structure with probability at least 1 — (¢ + 1) max(ng, p)~“
if total sample size is n = (¢ + 1)ng > co(q + 1)d*log p. Therefore our algorithm can

recover a DAG in the high-dimensional (n > p) settings.

5.5 Experiments

In this section, we show that our passive algorithm performs better than the
state-of-the-art GIES algorithm. We also show that our active learning algorithm
recovers a DAG in high-dimensional settings if the moralized graph is sparse. We ran
simulations using 100 realizations of a p-node random and some popular Gaussian
linear DAGs such as bipartite, cycle, and chain (see e.g. in supplementary material)

in which distribution P is defined by the following linear structural equations:
(X1, X,y Xp)' = B(X1, Xo, .., X)) + e,

where B € RP*? is an edge weight matrix with Bj;, = B;; and (3, is a weight of an
edge from X; to X}, and € ~ N(0,, I,) where 0, = (0,0,...,0)" € R? and I, € RP*? is
the identity matrix. The matrix B encodes the DAG structure since if 3, is non-zero,
k — j. For random graph we impose sparsity by assigning a probability that each
coeflicient of the matrix B is non-zero and we set the expected neighborhood size £.
In addition for special structure graphs, we set ;i to zero for non-edge and fj; to
non-zero edge weight for an edge. Non-zero §;; were chosen uniformly at random from
the range f;;, € [—0.75, —0.50] U [0.50, 0.75] for ensuring the edge weights are bounded
away from 0. Furthermore, we used U; ~ N (0, I ;7)) for an intervened variables.

We used the thresholding method provided by Yang et al [78] for recovering
neighborhood of a node in the passive learning algorithm, and we used a combination

of GLasso [57] and thresholding method [78] for recovering the moralized graph in the

active learning algorithm.
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Figure 5.3:: Accuracy rates of recovering the structure of a DAG using our passive
algorithm CLMG and GIES . The end of each bar corresponds to each accuracy rate

plus or minus its standard error

5.5.1 Passive learning algorithm: CLMG

Fig. 5.3 provides a comparison of how accurately our passive learning algo-
rithm 5.1 performs to the state-of-the-art DAG structure learning algorithm, GIES
in [24] for both random and bipartite Gaussian lincar DAGs. The data used was
the same as the scheme described in Sec. 5.3.1 i.e. every node was intervened and
ng = 1000 samples were collected per intervention. In addition, ng = 1000 samples
were collected without any intervention. We plot the accuracy rates in recovering the
structure of a DAG as a function of different node sizes p € {3, ...,40}. Fig. 5.3 shows
that the CLMG algorithm significantly out-performs the GIES in terms of recovering
the structure on average. This supports our main ideas that using the moralized graph
instead of the MEC of a DAG is better in terms of recovering the structure although

V-structures cannot be used if the moralized graph is used.

5.5.2 Active learning algorithm

In Fig. 5.4, we plot the proportion of simulations in which our active learning
algorithm recovers the correct structure of a DAG to validate our main result in
Sec 5.4 that our active learning algorithm recovers the structure of a DAG in the high-

dimensional settings if the moralized graph is sparse. We used two popular DAGs (1)
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chain and (2) cycle to ensure the maximum degree of moralized graph is sparse. We
plot the accuracy rates in recovering the structure of DAGs as a function of sample size
per intervention ngy € {250,500, 750, 1000} for different node sizes, small-scale DAGs
p = {50,100,200} and large-scale DAGs p = {500, 1000, 1500}. For both cases, our
active learning algorithm requires only one intervention, so the total sample sample
size is n = 2.ng.

Fig. 5.4 shows that our active learning algorithm recovers the structure of a
DAG well as sample size increases for both chain and cycle DAGs. Fig. 5.4 also
shows that our active learning algorithm accurately recovers the DAGs even in high-
dimensional settings if the moralized graph is sparse, supporting our theoretical results
in Section 5.4. We were unable to find an obvious way to compare our active learning
strategy to existing strategies, since when different intervention schemes are used,
accuracy comparisons do not make sense. However as far as we are aware, ours is the

only strategy that scales to the high-dimensional setting.
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Chapter 6

Learning Graphical Models with Feedback

6.1 Introduction

A fundamental goal in many scientific problems is to determine causal or direc-
tional relationships between variables in a system. A well-known framework for rep-
resenting causal or directional relationships are directed graphical models. Most prior
work on directed graphical models has focused on directed acyclic graphical (DAG)
models, also referred to as Bayesian networks which are directed graphical models with
no directed cycles. One of the core problems is determining the underlying DAG G
given the data-generating distribution P.

A fundamental assumption in the DAG framework is the causal Markov condi-
tion (CMC) (see e.g., [39, 68]). While the CMC is broadly assumed, in order for a
directed graph G to be identifiable based on the distribution P, additional assumptions
are required. For DAG models, a number of identifiability and minimality assump-
tions have been introduced [23, (8] and the connections between them have been dis-
cussed [80]. In particular, one of the most widely used assumptions for DAG models is
the causal faithfulness condition (CFC) which is sufficient for many search algorithms.
However the CFC has been shown to be extremely restrictive, especially in the lim-
ited data setting [73]. In addition two minimality assumptions, the P-minimality

and SGS-minimality assumptions have been introduced. These conditions are weaker
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than the CFC but do not guarantee model identifiability [30]. On the other hand,
the recently introduced sparsest Markov representation (SMR) and frugality assump-
tions |17, 55, 74] provide an alternative that is milder than the CFC and is sufficient
to ensure identifiability. The main downside of the SMR and frugality assumptions
relative to the CFC is that the SMR and frugality assumptions are sufficient condi-
tions for model identifiability only when exhaustive searches over the DAG space are
possible [55], while the CFC is sufficient for polynomial-time algorithms |23, 67, 65]
for learning equivalence class of sparse graphs.

While the DAG framework is useful in many applications, it is limited since feed-
back loops are known to often exist (see e.g., [60, 59]). Hence, directed graphs with
directed cycles [08] are more appropriate to model such feedback. However learning
directed cyclic graphical (DCG) models from data is considerably more challenging
than learning DAG models [60, 59] since the presence of cycles poses a number of ad-
ditional challenges and introduces additional non-identifiability. Consequently there
has been considerably less work focusing on directed graphs with feedback both in
terms of identifiability assumptions and search algorithms. [66] discussed the CMC,
and [60, 59] discussed the CFC for DCG models and introduced the polynomial-time
cyclic causal discovery (CCD) algorithm [59] for recovering the Markov equivalence
class for DCGs. Recently, Claassen et al. [12] introduced the FCI+ algorithm for recov-
ering the Markov equivalence class for sparse DCGs, which also assumes the CFC. As
with DAG models, the CFC for cyclic models is extremely restrictive since it is more
restrictive than the CFC for DAG models. In terms of learning algorithms that do
not require the CFC, additional assumptions are typically required. For example [13]
proved identifiability for bivariate Gaussian cyclic graphical models with additive noise
which does not require the CFC while many approaches have been studied for learn-
ing graphs from the results of interventions on the graph (e.g., [31, 32, 33, 34, 35]).
However, these additional assumptions are often impractical and it is often impossible

or very expensive to intervene many variables in the graph. This raises the question of
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whether milder identifiability assumptions can be imposed for learning DCG models.

In this paper, we address this question in a number of steps. Firstly, we adapt
the SMR and frugality assumptions developed for DAG models to DCG models. Next
we show that unlike for DAG models, the adapted SMR and frugality assumptions are
not strictly weaker than the CFC. Hence we consider a new identifiability assumption
based on finding the Markovian DCG entailing the maximum number of d-separation
rules (MDR) which we prove is strictly weaker than the CFC and recovers the Markov
equivalence class for DCGs for a strict superset of examples compared to the CFC. We
also provide a comparison between the MDR, SMR and frugality assumptions as well
as the minimality assumptions for both DAG and DCG models. Finally we use the
MDR and SMR assumptions to develop search algorithms for small-scale DCG models.
Our simulation study supports our theoretical results by showing that the algorithms
induced by both the SMR and MDR assumptions recover the Markov equivalence
class more reliably than state-of-the art algorithms that require the CFC for DCG
models. We point out that the search algorithms that result from our identifiability
assumptions require exhaustive searches and are not computationally feasible for large-
scale DCG models. However, the focus of this paper is to develop the weakest possible
identifiability assumption which is of fundamental importance for directed graphical
models.

The remainder of the paper is organized as follows: Section 6.2 provides the
background and prior work for identifiability assumptions for both DAG and DCG
models. In Section 6.3 we adapt the SMR and frugality assumptions to DCG models
and provide a comparison between the SMR assumption, the CFC, and the minimal-
ity assumptions. In Section 6.4 we introduce our new MDR principle, finding the
Markovian DCG that entails the maximum number of d-separation rules and provide
a comparison of the new principle to the CFC, SMR, frugality, and minimality as-
sumptions. Finally in Section 6.5, we use our identifiability assumptions to develop a

search algorithm for learning small-scale DCG models, and provide a simulation study
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that is consistent with our theoretical results.

6.2 Prior work on directed graphical models

The characterization of Markov equivalence classes is different for DAGs and
DCGs. For DAGs, [72] developed an elegant characterization of Markov equivalence
classes defined by the skeleton and v-structures. The skeleton of a DAG model consists
of the edges without directions.

However for DCGs, the presence of feedback means the characterization of the
MEC for DCGs is considerably more involved. [60] provides a characterization. The
presence of directed cycles changes the notion of adjacency between two nodes. In
particular there are real adjacencies that are a result of directed edges in the DCG
and wvirtual adjacencies which are edges that do not exist in the data-generating DCG
but can not be recognized as a non-edge from the data. The precise definition of real

and virtual adjacencies are as follows.
Definition 6.1 (Adjacency [60]). Consider a directed graph G = (V, E).
(a) For any j,k € V, j and k are really adjacent in G if j — k or j < k.

(b) For any j,k € V, j and k are virtually adjacent if j and k have a common child

¢ such that € is an ancestor of j or k.

Note that a virtual adjacency can only occur if there is a cycle in the graph.
Hence, DAGs have only real edges while DCGs can have both real edges and virtual
edges. Figure 6.1 shows an example of a DCG with a virtual edge. In Figure 6.1, a
pair of nodes (1,4) has a virtual edge (dotted line) because the triple (1,4,2) forms a
v-structure and the common child 2 is an ancestor of 1. This virtual edge is created
by the cycle, 1 -2 =3 — 1.

Virtual edges generate different types of relationships involving unshielded triples:

(1) an unshielded triple (7, k, £) (that is j—¢—k) is called a conductor if ¢ is an ancestor
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Figure 6.1:: 4-node example for a virtual edge

of j or k; (2) an unshielded triple (j, k, ¢) is called a perfect non-conductor if ¢ is a de-
scendant of the common child of j and k; and (3) an unshielded triple (j, k, ¢) is called
an imperfect non-conductor if the triple is not a conductor or a perfect non-conductor.

Intuitively, the concept of (1) a conductor is analogous to the notion of a non
v-structure in DAGs because for example suppose that an unshielded triple (j, k, ¢)
is a conductor, then j is d-connected to k given any set S which does not contain /.
Moreover, (2) a perfect non-conductor is analogous to a v-structure because suppose
that (j,k,¢) is a perfect non-conductor, then j is d-connected to k given any set S
which contains ¢. However, there is no analogous notion of an imperfect non-conductor
for DAG models. We see throughout this paper that this difference creates a major
challenge in inferring DCG models from the underlying distribution P. As shown in [55]
(Cyclic Equivalence Theorem), a necessary (but not sufficient) condition for two DCGs
to belong to the same MEC is that they share the same real plus virtual edges and the
same (1) conductors, (2) perfect non-conductors and (3) imperfect non-conductors.
However unlike for DAGs, this condition is not sufficient for Markov equivalence. A
complete characterization of Markov equivalence is provided in Richardson |58, (0]
and since it is quite involved, we do not include here.

Even if we weaken the goal to inferring the MEC for a DAG or DCG, the
CMC is insufficient for discovering the true MEC M(G*) because there are many
graphs satisfying the CMC, which do not belong to M(G*). For example, any fully-
connected graph always satisfies the CMC because it does not entail any d-separation
rules. Hence, in order to identify the true MEC given the distribution P, stronger

identifiability assumptions that force the removal of edges are required.
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6.2.1 Faithfulness and minimality assumptions

In this section, we discuss prior work on identifiability assumptions for both DAG
and DCG models. To make the notion of identifiability and our assumptions precise,
we need to introduce the notion of a true data-generating graphical model (G*,P).
All we observe is the distribution (or samples from) P, and we know the graphical
model (G*, P) satisfies the CMC. Let C'I(P) denote the set of conditional independence
statements corresponding to P. The graphical model (G*,P) is identifiable if the
Markov equivalence class of the graph M(G*) can be uniquely determined based on
CI(P). For a directed graph G, let E(G) denote the set of directed edges, S(G) denote
the set of edges without directions, also referred to as the skeleton, and D, (G) denote
the set of d-separation rules entailed by G.

One of the most widely imposed identifiability assumptions for both DAG and
DCG models is the causal faithfulness condition (CFC) [08] also referred to as the
stability condition in [51]. A directed graph is faithful to a probability distribution if
there is no probabilistic independence in the distribution that is not entailed by the

CMC. The CFC states that the graph is faithful to the true probability distribution.

Definition 6.2 (Causal Faithfulness condition (CFC) |68]). Consider a directed graph-
ical model (G*,IP). A graph G* is faithful to P if and only if for any j, k € V and any
subset S C V\ {j, k},

J d-separated from k| S <= X, L X | Xg according to P.

While the CFC is sufficient to guarantee identifiability for many polynomial-time
search algorithms [12, 23, 32, 59, 60, 68| for both DAGs and DCGs, the CFC is known
to be a very strong assumption (see e.g., |17, 55, 73|) that is often not satisfied in
practice. Hence, milder identifiability assumptions have been considered.

Minimality assumptions, notably the P-minimality |19] and SGS-minimality [23]
assumptions are two such assumptions. The P-minimality assumption asserts that for

directed graphical models satisfying the CMC, graphs that entail more d-separation
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rules are preferred. For example, suppose that there are two graphs Gy and G5 which
are not Markov equivalent. Gy is strictly preferred to Gy if Dsep(Ga) C Dgep(Gh)
and Dyg.p(G2) # Dsep(Gr). The P-minimality assumption asserts that no graph is
strictly preferred to the true graph G*. The SGS-minimality assumption asserts that
there exists no proper sub-graph of G* that satisfies the CMC with respect to the
probability distribution P. To define the term sub-graph precisely, GG; is a sub-graph
of Gy if E(Gy) C E(Gs) and E(G;) # E(Gs). [30] proved that the SGS-minimality
assumption is weaker than the P-minimality assumption which is weaker than the
CFC for both DAG and DCG models. While [30] states the results for DAG models,
the result easily extends to DCG models.

Theorem 6.1 (Sections 4 and 5 in [30]). If a directed graphical model (G*,P) satisfies
(a) the CFC, it satisfies the P-minimality assumption.

(b) the P-minimality assumption, it satisfies the SGS-minimality assumption.

6.2.2 Sparsest Markov Representation (SMR) for DAG models

While the minimality assumptions are milder than the CFC, neither the P-
minimality nor SGS-minimality assumptions imply identifiability of the MEC for G*.
Recent work by [55] developed the sparsest Markov representation (SMR) assumption
and a slightly weaker version later referred to as frugality assumption [17] which applies
to DAG models. The SMR assumption which we refer to here as the identifiable
SMR, assumption states that the true DAG model is the graph satisfying the CMC
with the fewest edges. Here we say that a DAG G is strictly sparser than a DAG G5
if G; has fewer edges than Gs.

Definition 6.3 (Identifiable SMR [55]). A DAG model (G*,P) satisfies the identifiable
SMR assumption if (G*,P) satisfies the CMC and |S(G*)| < |S(G)| for every DAG G
such that (G,P) satisfies the CMC and G ¢ M(G*).
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The identifiable SMR assumption is strictly weaker than the CFC while also
ensuring a method known as the Sparsest Permutation (SP) algorithm [55] recovers
the true MEC. Hence the identifiable SMR assumption guarantees identifiability of
the MEC for DAGs. A slightly weaker notion which we refer to as the weak SMR

assumption does not guarantee model identifiability.

Definition 6.4 (Weak SMR (Frugality) [17]). A DAG model (G*,P) satisfies the weak
SMR assumption if (G*,P) satisfies the CMC and |S(G*)| < |S(G)| for every DAG G
such that (G,P) satisfies the CMC and G ¢ M(G*).

A comparison of SMR/frugality to the CFC and the minimality assumptions for
DAG models is provided in [55] and [17].

Theorem 6.2 (Theorems 2.5 and 2.8 in [55], and Theorem 3 in [17]). If a DAG model
(G*,P) satisfies

(a) the CFC, it satisfies the identifiable SMR assumption and consequently weak

SMR assumption.

(b) the weak SMR assumption, it satisfies the P-minimality assumption and conse-

quently the SGS-minimality assumption.
(c) the identifiable SMR assumption, G* is identifiable up to the true MEC M(G*).

It is unclear whether the SMR/frugality assumptions apply naturally to DCG
models since the success of the SMR assumption relies on the local Markov property
which is known to hold for DAGs but not DCGs [58]. In this paper, we investigate the
extent to which these identifiability assumptions apply to DCG models and provide a
new principle for learning DCG models.

Based on this prior work, a natural question to consider is whether the identi-
fiable and weak SMR assumptions developed for DAG models apply to DCG models

and whether there are similar relationships between the CFC, identifiable and weak
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SMR, and minimality assumptions. In this paper we address this question by adapting
both identifiable and weak SMR assumptions to DCG models. One of the challenges
we address is dealing with the distinction between real and virtual edges in DCGs. We
show that unlike for DAG models, the identifiable SMR assumption is not necessarily
a weaker assumption than the CFC. Consequently, we introduce a new principle which
is the maximum d-separation rule (MDR) principle which chooses the directed Markov
graph with the greatest number of d-separation rules. We show that our MDR princi-
ple is strictly weaker than the CFC and stronger than the P-minimality assumption,
while also guaranteeing model identifiability for DCG models. Our simulation results
complement our theoretical results, showing that the MDR principle is more successful

than the CFC in terms of recovering the true MEC for DCG models.

6.3 Sparsity and SMR for DCG models

In this section, we extend notions of sparsity and the SMR assumptions to DCG
models. As mentioned earlier, in contrast to DAGs, DCGs can have two different
types of edges which are real and virtual edges. In this paper, we define the sparsest
DCG as the graph with the fewest total edges which are virtual edges plus real edges.
The main reason we choose total edges rather than just real edges is that all DCGs in
the same Markov equivalence class (MEC) have the same number of total edges [55].
However, the number of real edges may not be the same among the graphs even in
the same MEC. For example in Figure 6.2, there are two different MECs and each
MEC has two graphs: G1,Gy € M(G,) and G3,G4 € M(G3). G; and Go have 9
total edges but G3 and G4 has 7 total edges. On the other hand, GG; has 6 real edges,
Go has 9 real edges, G3 has 5 real edges, and G4 has 7 real edges (a bi-directed edge
is counted as 1 total edge). For a DCG G, let S(G) denote the skeleton of G where
(7,k) € S(G) is a real or virtual edge.

Using this definition of the skeleton S(G) for a DCG G, the definitions of the
identifiable and weak SMR, assumptions carry over from DAG to DCG models. For
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Figure 6.2:: 5-node examples with different numbers of real and total edges

completeness, we re-state the definitions here.

Definition 6.5 (Identifiable SMR for DCG models). A DCG model (G*,P) satisfies
the identifiable SMR assumption if (G*,P) satisfies the CMC and |S(G*)| < |S(G)|
for every DCG G such that (G,P) satisfies the CMC and G ¢ M(G*).

Definition 6.6 (Weak SMR for DCG models). A DCG model (G*,P) satisfies the
weak SMR assumption if (G*,P) satisfies the CMC and |S(G*)| < |S(G)| for every
DCG G such that (G,P) satisfies the CMC and G ¢ M(G*).

Both the SMR and SGS minimality assumptions prefer graphs with the fewest
total edges. The main difference between the SGS-minimality assumption and the
SMR assumptions is that the SGS-minimality assumption requires that there is no
DCGs with a strict subset of edges whereas the SMR assumptions simply require that
there are no DCGs with fewer edges.

Unfortunately as we observe later unlike for DAG models, the identifiable SMR as-
sumption is not weaker than the CFC for DCG models. Therefore, the identifiable
SMR assumption does not guarantee identifiability of MECs for DCG models. On the
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other hand, while the weak SMR assumption may not guarantee uniqueness, we prove
it is a strictly weaker assumption than the CFC. We explore the relationships between

the CFC, identifiable and weak SMR, and minimality assumptions in the next section.

6.3.1 Comparison of SMR, CFC and minimality assumptions for DCG

models

Before presenting our main result in this section, we provide a lemma which
highlights the important difference between the SMR assumptions for graphical models
with cycles compared to DAG models. Recall that the SMR assumptions involve
counting the number of edges, whereas the CFC and P-minimality assumption involve
d-separation rules. First, we provide a fundamental link between the presence of an

edge in S(G) and d-separation/connection rules.

Lemma 6.1. For a DCG G, (j,k) € S(G) if and only if j is d-connected to k given
S forall S C V\ {j,k}.

Proof. First, we show that if (j,k) € S(G) then j is d-connected to k given S for
all S € V' \ {j,k}. By the definition of d-connection/separation, there is no subset
S C V\ {j,k} such that j is d-separated from k given S. Second, we prove that
if (4,k) ¢ S(G) then there exists S C V '\ {j, k} such that j is d-separated from k
given S. Let S = an(j) U an(k). Then S has no common children or descendants,
otherwise (j, k) are virtually adjacent. Then there is no undirected path between j
and k conditioned on the union of ancestors of j and k, and therefore j is d-separated

from k given S. This completes the proof. m

Note that the above statement is true for real or virtual edges and not real edges
alone. We now state an important lemma which shows the key difference in comparing
the SMR assumptions to other identifiability assumptions (CFC, P-minimality, SGS-

minimality) for graphical models with cycles, which does not arise for DAG models.

Lemma 6.2. (a) For any two DCGs Gy and Ga, Dsep(G1) C Dyep(Ga) implies
S(Gq) C S(Gy).
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(b) There exist two DCGs Gy and Gy such that S(G1) = S(G2), but De,(G1) #
Dyep(G2) and Dyep(G1) C Dyep(Ga). For DAGSs, no two such graphs exist.

Proof. We begin with the proof for (a). Suppose that S(G;) is not a sub-skeleton
of S(Gs), meaning that there exists a pair (j, k) € S(G1) and (j,k) ¢ S(G2). By
Lemma 6.1, j is d-connected to k given S for all S C V' \ {j,k} in G; while there
exists S C V' \ {j, k} such that j is d-separated from k given S entailed by G5. Hence
it is contradictory that Ds.,(G1) C Dsep(Ga). For (b), we refer to the example in
Figure 6.3. In Figure 6.3, the unshielded triple (1,4,2) is a conductor in G; and an
imperfect non-conductor in GGy because of a reversed directed edge between 4 and 5.
By the property of a conductor, 1 is not d-separated from 4 given the empty set for GG;.
In contrast for Gg, 1 is d-separated from 4 given the empty set. Other d-separation

rules are the same for both G; and Gs.

Figure 6.3:: 5-node examples for Lemma 6.2 and Theorem 6.3

]

Lemma 6.2 (a) holds for both DAGs and DCGs, and allows us to conclude a
subset-superset relation between edges in the skeleton and d-separation rules in a
graph G. Part (b) is where there is a key difference DAGs and directed graphs with
cycles. Part (b) asserts that there are examples in which the edge set in the skeleton
may be totally equivalent, yet one graph entails a strict superset of d-separation rules.

Now we present the main result of this section which compares the identifiable

and weak SMR assumptions with the CFC and P-minimality assumption.



96

Theorem 6.3. For DCG models,
(a) the weak SMR assumption is weaker than the CFC.

(b) there exists a DCG model (G,P) satisfying the CFC that does not satisfy the
identifiable SMR assumption.

(c) the identifiable SMR assumption is stronger than the P-minimality assumption.

(d) there exists a DCG model (G,P) satisfying the weak SMR assumption that does

not satisfy the P-minimality assumption.

Proof. (a) The proof for (a) follows from Lemma 6.2 (a). If a DCG model (G*,P)
satisfies the CFC, then for any graph G such that (G,P) satisfies the CMC,
Dyep(G) € Dy, (G*). Hence based on Lemma 6.2 (a), S(G*) C S(G) and (G*,P)

satisfies the weak SMR assumption.

(b) We refer to the example in Figure 6.3 where (Gy, P) satisfies the CFC and fails
to satisfy the identifiable SMR assumption because GGy has fewer edges than G,
and (Gq,P) satisfies the CMC.

(c) The proof for (c) again follows from Lemma 6.2 (a). Suppose that a DCG
model (G*,P) fails to satisfy the P-minimality assumption. This implies that
there exists a DCG G such that (G,P) satisfies the CMC, G ¢ M(G*) and
Dsep(G*) C Dyep(G). Lemma 6.2 (a) implies S(G) € S(G*). Hence G* cannot
have the fewest edges uniquely, therefore (G*,P) fails to satisfy the identifiable
SMR assumption.

(d) We refer to the example in Figure 6.3 where (Gy,P) satisfies the weak SMR as-
sumption and fails to satisfy the P-minimality assumption. Further explanation

is given in Figure D.1 in the appendix.
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Theorem 6.3 shows that if a DCG model (G,P) satisfies the CFC, the weak
SMR assumption is satisfied whereas the identifiable SMR assumption is not neces-
sarily satisfied. For DAG models, the identifiable SMR assumption is strictly weaker
than the CFC and the identifiable SMR assumption guarantees identifiability of the
true MEC. However, Theorem 6.3 (b) implies that the identifiable SMR assumption
is not strictly weaker than the CFC for DCG models. On the other hand, unlike for
DAG models, the weak SMR assumption does not imply the P-minimality assumption
for DCG models, according to (d). In Section 6.5, we implement an algorithm that
uses the identifiable SMR assumption and the results seem to suggest that on average

for DCG models, the identifiable SMR assumption is weaker than the CFC.

6.4 New principle: Maximum d-separation rules (MDR)

In light of the fact that the identifiable SMR assumption does not lead to a
strictly weaker assumption than the CFC, we introduce the maximum d-separation
rules (MDR) assumption. The MDR assumption asserts that G* entails more d-
separation rules than any other graph satisfying the CMC according to the given
distribution P. We use C'I(P) to denote the conditional independence (CI) statements

corresponding to the distribution P.

Definition 6.7 (Maximum d-separation rules (MDR)). A DCG model (G*,P) satisfies
the mazimum d-separation rules (MDR) assumption if (G*,IP) satisfies the CMC and
|Dsep(G)| < |Dsep(G*)| for every DCG G such that (G,PP) satisfies the CMC' and
G ¢ M(G*).

There is a natural and intuitive connection between the MDR assumption and
the P-minimality assumption. Both assumptions encourage DCGs to entail more d-
separation rules. The key difference between the P-minimality assumption and the
MDR assumption is that the P-minimality assumption requires that there is no DCGs

that entail a strict superset of d-separation rules whereas the MDR assumption simply
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requires that there are no DCGs that entail a greater number of d-separation rules.

6.4.1 Comparison of MDR to CFC and minimality assumptions for DCGs

In this section, we provide a comparison of the MDR assumption to the CFC
and P-minimality assumption. For ease of notation, let Gy/(P) and Gr(P) denote the
set of Markovian DCG models satisfying the MDR assumption and CFC, respectively.
In addition, let Gp(P) denote the set of DCG models satisfying the P-minimality

assumption.
Theorem 6.4. Consider a DCG model (G*,P).

(a) If Gr(P) # 0, then Gr(P) = Gy (P). Consequently if (G*,P) satisfies the CFC,
then Gr(P) = Gy (P) = M(G*).

(b) There exists a distribution P for which Gp(P) = 0 while (G*,P) satisfies the
MDR assumption and Gy (P) = M(G™).

(¢) Gu(P) € Gp(P).

(d) There exists a distribution P for which Gy (P) = 0 while (G*,P) satisfies the
P-minimality assumption and Gp(P) O M(G™).

Proof. (a) Suppose that (G*,P) satisfies the CFC. Then CI(IP) corresponds to the
set of d-separation rules entailed by G*. Note that if (G, P) satisfies the CMC and
G ¢ M(G*), then C'I(PP) is a superset of the set of d-separation rules entailed by
G and therefore Die,(G) C Dsep(G*) and Dy, (G) # Dge,p(G*). This allows us to
conclude that graphs belonging to M(G*) should entail the maximum number
of d-separation rules among graphs satisfying the CMC. Furthermore, based on

the CFC Gr(P) = M(G*) which completes the proof.

(c) Suppose that (G*, P) fails to satisfy the P-minimality assumption. By the defini-
tion of the P-minimality assumption, there exists (G, P) satisfying the CMC such
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that Dse,(G*) C Dyep(G) and Dy, (G*) # Dse,p(G). Hence, G* entails strictly less
d-separation rules than G, and therefore (G*,P) violates the MDR assumption.

(b) For (b) and (d), we refer to the example in Figure 6.4. Suppose that X, Xo, X3,

X, are random variables with distribution P with the following CI statements:

C](]P) == {X1 1 X3 ‘ XQ, X2 1 X4 ’ Xl,Xg; X1 A X2 | X4} (61)

We show that (G, P) satisfies the MDR assumption but not the CFC, whereas
(Go, P) satisfies the P-minimality assumption but not the MDR assumption. Any
graph satisfying the CMC with respect to P must only entail a subset of the three
d-separation rules: {X; d-sep X3 | Xo; Xy d-sep Xy | Xy, X3; X d-sep X5 | X4}
Clearly Dyep(G1) = {X; d-sep X3 | Xo; Xo d-sep Xy | X1, X3}, therefore (G, P)
satisfies the CMC. It can be shown that no graph entails any subset containing
two or three of these d-separation rules other than G;. Hence no graph follows
the CFC with respect to P since there is no graph that entails all three d-
separation rules and (Gp,P) satisfies the MDR assumption because no graph
entails more or as many d-separation rules as (G; entails, and satisfies the CMC

with respect to P.

(d) Note that Go entails the sole d-separation rule, D;.,(G2) = {X; d-sep X5 | X4}
and it is clear that (Go,P) satisfies the CMC. If (G3,P) does not satisfy the
P-minimality assumption, there exists a graph G such that (G,P) satisfies the
CMC and Dye,(G2) C Dyep(G) and Dy, (G2) # Dsep(G). It can be shown that
no such graph exists. Therefore, (Go,P) satisfies the P-minimality assumption.
Clearly, (G, P) fails to satisfy the MDR assumption because G entails more
d-separation rules.

]

Theorem 6.4 (a) asserts that whenever the set of DCG models satisfying the CFC

is not empty, it is equivalent to the set of DCG models satisfying the MDR assumption.
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Figure 6.4:: 4-node examples for Theorem 6.4

Part (b) claims that there exists a distribution in which no DCG model satisfies the
CFC, while the set of DCG models satisfying the MDR assumption consists of its
MEC. Hence, (a) and (b) show that the MDR assumption is strictly superior to the
CFC in terms of recovering the true MEC. Theorem 6.4 (c) claims that any DCG
models satisfying the MDR assumption should lie in the set of DCG models satisfying
the P-minimality assumption. (d) asserts that there exist DCG models satisfying the
P-minimality assumption but violating the MDR assumption. Therefore, (¢) and (d)

prove that the MDR assumption is strictly stronger than the P-minimality assumption.

6.4.2 Comparison between the MDR and SMR assumptions

Now we show that the MDR assumption is neither weaker nor stronger than the

SMR assumptions for both DAG and DCG models.

Lemma 6.3. (a) There exists a DAG model satisfying the identifiable SMR assump-
tion that does not satisfy the MDR assumption. Further, there exists a DAG
model satisfying the MDR assumption that does not satisfy the weak SMR as-

sumption.

(b) There exists a DCG model that is not a DAG that satisfies the same conclusion

as (a).

Proof. Our proof for Lemma 6.3 involves us constructing two sets of examples, one
for DAGs corresponding to (a) and one for cyclic graphs corresponding to (b). For
(a), Figure 6.5 displays two DAGs, G; and G2 which are clearly not in the same
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Figure 6.5:: 5-node examples for Lemma 6.3.(a)

MEC. For clarity, we use red arrows to represent the edges/directions that are differ-
ent between the graphs. We associate the same distribution P to each DAG where
CI(P) is provided in Appendix D.1.2. With this CI(P), both (G1,P) and (Gs,P)
satisfy the CMC (explained in Appendix D.1.2). The main point of this example
is that (Go,P) satisfies the identifiable and weak SMR assumptions whereas (G4, P)
satisfies the MDR assumption, and therefore two different graphs are determined de-
pending on the given identifiability assumption with respect to the same P. A more
detailed proof that (G, P) satisfies the MDR assumption whereas (G, P) satisfies the
SMR assumption is provided in Appendix D.1.2.

For (b), Figure 6.6 displays two DCGs G; and G5 which do not belong to the
same MEC. Once again red arrows are used to denote the edges (both real and virtual)
that are different between the graphs. We associate the same distribution P with condi-
tional independent statements C'I(IP) (provided in Appendix D.1.3) to each graph such
that both (G1,P) and (Gs, P) satisfy the CMC (explained in Appendix D.1.3). Again,
the main idea of this example is that (G, P) satisfies the MDR assumption whereas
(G4, P) satisfies the identifiable SMR assumption. A detailed proof that (Gi,P) sat-
isfies the MDR assumption whereas (Go, P) satisfies the identifiable SMR assumption

can be found in Appendix D.1.3.
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Figure 6.6:: 12-node examples for Lemma 6.3.(b)

Intuitively, the reason why fewer edges does not necessarily translate to entailing
more d-separation rules is that the placement of edges relative to the rest of the graph
and what additional paths they allow affects the total number of d-separation rules
entailed by the graph.

In summary, the flow chart in Figure 6.7 shows how the CFC, SMR, MDR and
minimality assumptions are related for both DAG and DCG models:

6.5 Simulation results

In Sections 6.3 and 6.4, we proved that the MDR assumption is strictly weaker
than the CFC and stronger than the P-minimality assumption for both DAG and
DCG models, and the identifiable SMR assumption is stronger than the P-minimality
assumption for DCG models. In this section, we support our theoretical results with
numerical experiments on small-scale Gaussian linear DCG models (see e.g., [(6]) using

the generic Algorithm 6.1. We also provide a comparison of Algorithm 6.1 to state-
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Figure 6.7:: Summary of relationships between assumptions

Algorithm 6.1 Directed Graph Learning Algorithm
1: Input: iid n samples from the DCG model (G, P)
2. Output: MEC M(G) and skeleton 5(G)

Step 1: Find all conditional independence statements Cl (P) using a conditional

o

independence test

Find the set of graphs G satisfying the given identifiability assumption

M(G) « 0

S(G) 0

if All graphs of G belong to the same MEC M(G) then
M(G) + M(G)

end if

10: if All graphs of G have the same skeleton S(G) then

11:  S(G) « S(G)

12: end if

13: Return: M(G) and S(G)

of-the-art algorithms for small-scale DCG models in terms of recovering the skeleton

of a DCG model.
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6.5.1 DCG model and simulation setup

Our simulation study involves simulating DCG models from p-node random
Gaussian linear DCG models where the distribution P is defined by the following

linear structural equations:
(X1, Xa, -+, X,) ' = BT(X1, Xp, -, X)) +e (6.2)

where B € RP*? is an edge weight matrix with Bj, = B;, and 3; is a weight of an
edge from X; to Xj. Furthermore, ¢ ~ N(0,, I,) where 0, = (0,0,---,0)7 € R? and
I,, € RP*? is the identity matrix.

The matrix B encodes the DCG structure since if 3;; is non-zero, X; — X}, and
the pair (X, X}) is really adjacent, otherwise there is no directed edge from X to
Xj. In addition if there is a set of nodes S = (s1, S92, -, s;) such that the product
of Bjsy, Brsys Bsisas -+ » Bsij 18 non-zero, the pair (Xj;, Xy) is wvirtually adjacent. Note
that if the graph is a DAG, we would need to impose the constraint that B is upper
triangular; however for DCGs we impose no such constraints.

We present simulation results for two sets of models, DCG models where edges
and directions are determined randomly, and DCG models whose edges have a specific
graph structure. For the set of random DCG models, the simulation was conducted
using 100 realizations of 5-node random Gaussian linear DCG models (6.2) where we
impose sparsity by assigning a probability that each entry of the matrix B is non-zero
and we set the expected neighborhood size range from 1 (sparse graph) to 4 (fully
connected graph) depending on the non-zero edge weight probability. Furthermore
the non-zero edge weight parameters were chosen uniformly at random from the range
Bk € [—1,—0.25] U [0.25, 1] which ensures the edge weights are bounded away from 0.

We also ran simulations using 100 realizations of a 5-node Gaussian linear DCG
models (6.2) with specific graph structures, namely trees, bipartite graphs, and cycles.
Figure 6.8 shows examples of skeletons of these special graphs. We generate these

graphs as follows: First, we set the skeleton for our desired graph based on Figure. 6.8
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Figure 6.8:: Skeletons of tree, bipartite, and cycle graphs

and then determine the non-zero edge weights which are chosen uniformly at random
from the range §;;, € [-1,—0.25] U [0.25, 1]. Second, we repeatedly assign a randomly
chosen direction to each edge until every graph has at least one possible directed cycle.
Therefore, the bipartite graphs always have at least one directed cycle. However, tree
graphs have no cycles because they have no cycles in the skeleton. For cycle graphs,

we fix the directions of edges to have a directed cycle X7 — Xy — --- — X5 — Xj.

6.5.2 Comparison of assumptions

In this section we provide a simulation comparison between the SMR, MDR,
CFC and minimality assumptions. The CI statements were estimated based on n
independent samples drawn from P using Fisher’s conditional correlation test with
significance level a = 0.001. We detected all directed graphs satisfying the CMC and
we measured what proportion of graphs in the simulation satisfy each assumption
(CFC, MDR, identifiable SMR, P-minimality).

In Figures 6.9, 6.10 and 6.11, we simulated how restrictive each identifiabil-
ity assumption (CFC, MDR, identifiable SMR, P-minimality) is for random DCG
models and specific graph structures with sample sizes n € {100, 200, 500, 1000} and
expected neighborhood sizes from 1 (sparse graph) to 4 (fully connected graph). As
shown in Figures 6.10 and 6.11, the proportion of graphs satisfying each assumption

increases as sample size increases because of fewer errors in CI tests. Furthermore,
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Figure 6.9:: Proportions of 5-node random DCG models satisfying the CFC, MDR,
identifiable SMR and P-minimality assumptions with different sample sizes, varying

expected neighborhood size

there are more DCG models satisfying the MDR assumption than the CFC and less
DCG models satisfying the MDR assumption than the P-minimality assumption for
all sample sizes and different expected neighborhood sizes. We can also see similar
relationships between the CFC, identifiable SMR and P-minimality assumptions. The
simulation study supports our theoretical result that the MDR assumption is weaker
than the CFC but stronger than the P-minimality assumption, and the identifiable
SMR assumption is stronger than the P-minimality assumption. Although there are
no theoretical guarantees that the identifiable SMR assumption is stronger than the
MDR assumption and weaker than the CFC, Figures 6.9 and 6.10 represent that the
identifiable SMR assumption is substantially stronger than the MDR assumption and

weaker than the CFC on average.

6.5.3 Comparison to state-of-the-art algorithms

In this section, we compare Algorithm 6.1 to state-of-the-art algorithms for small-
scale DCG models in terms of recovering the skeleton S(G) for the graph. This
addresses the issue of how likely Algorithm 6.1 based on each assumption is to recover
the skeleton of a graph compared to state-of-the-art algorithms.

Once again we used Fisher’s conditional correlation test with significance level
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Figure 6.10:: Proportions of 5-node random DCG models satisfying the CFC, MDR,
identifiable SMR and P-minimality assumptions with different expected neighborhood

sizes, varying sample size

Tree DAG Models Cycle DCG Models Bipartite DCG Models
100 — e = == =+H 100
T | T [ | Lo 22
.?3 - ’BH_ i
. -
— — — ™ EB' Assumptions
IS S IS
< z < —— uon
S S S
S 5 E —@®- - SMR
s s & —A— crc
a a '8
+ = = P-
1L —-A -min
—h—
0- Me—blb— —
2%0 5(')0 7é0 10.00 2%0 560 7éO 10.00 ZéO 5(.)0 7%0 10.00
Sample Size Sample Size Sample Size
(a) Tree (b) Cycle (c) Bipartite

Figure 6.11:: Proportions of special types of 5-node DAG and DCG models satisfying
the CFC, MDR, identifiable SMR, and P-minimality assumptions, varying sample size

a = 0.001 for Step 1) of Algorithm 6.1, and we used the MDR and identifiable SMR as-
sumptions for Step 2). For comparison algorithms, we used the state-of-the-art GES
algorithm [11] and the FCI+ algorithms [12] for small-scale DCG models. We used
the R package 'pcalg’ |? | for the FCI+ algorithm, and ’bnlearn’ [62] for the GES
algorithm.

Figures 6.12 and 6.13 show recovery rates of skeletons for random DCG models
with sample sizes n € {100,200, 500,1000} and expected neighborhood sizes from 1
(sparse graph) to 4 (fully connected graph). Our simulation results show that the
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Figure 6.12:: Accuracy rates of recovering skeletons of 5-node random DCG models
using the MDR and identifiable SMR assumptions, the GES algorithm, and the FCI+

algorithm with different sample sizes, varying expected neighborhood size
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Figure 6.13:: Accuracy rates of recovering skeletons of 5-node random DCG models
using the MDR and identifiable SMR assumptions, the GES algorithm, and FCI+

algorithm with different expected neighborhood sizes, varying sample size

accuracy increases as sample size increases because of fewer errors in CI tests. Al-
gorithms 6.1 based on the MDR and identifiable SMR assumptions outperforms the
FCI+ algorithm on average. For dense graphs, we see that the GES algorithm out-
performs other algorithms because the GES algorithm often prefers dense graphs.
However, the GES algorithm is not theoretically consistent and cannot recover di-
rected graphs with cycles while other algorithms are designed for recovering DCG

models (see e.g., Figure 6.14).
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Figure 6.14:: Accuracy rates of recovering skeletons of special types of 5-node random
DAG and DCG models using the MDR and identifiable SMR assumptions, the GES
algorithm, and the FCI+ algorithm, varying sample size

Figure 6.14 shows the accuracy for each type of graph (Tree, Cycle, Bipartite)
using Algorithms 6.1 based on the MDR and identifiable SMR assumptions and the
GES and the FCI+ algorithms. Simulation results show that Algorithms 6.1 based on
the MDR and identifiable SMR assumptions are favorable in comparison to the FCI+
and GES algorithms for small-scale DCG models.
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Appendix A

Proofs for Chapter 3

A.1 Proof for Theorem 3.1

Proof. We prove it by induction that requires p steps to find a causal ordering that
is consistent with the DAG. Without loss of generality, assume that one of the true
causal ordering 7* is {1, 2, ...p}. For ease of notation, let F; = {X;, Xo, -+, X}. Let
k =1 be the first step:

Var(X;) = E(Var[X;|F;_1]) + Var(E[X;| F;-1]),

where the outer expectation and variance is taken over X;, Xs,..., X;_;. Since the
conditional distribution Xj;|F;_; ~ Poisson(g;(Xpa(;))), we have Var[X;|F;_i] =
E[X;|Fj-1] = 9;(Xpa(;). Hence,

Var(X;) = E(E[X;|Fj-1]) + Var(g;(Xpag)))

= E(Xj;) + Var(g;(Xpag))),
yielding that
Var(X;) — E(X;) = Var(g;(Xpa)))-

Clearly, if pa(j) is empty, meaning the node is the first component of the causal

ordering, Var(g;(Xpa(;))) = 0. Otherwise, Var(g;(Xpa(;))) > 0 by the assumption.
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Hence for any node that can not be the first in the ordering, Var(X;) — E(X;) > 0.
Hence we pick any node X}, such that Var(X;) —E(X}) = 0 as being the first element
of the causal ordering and X satisfies the above equation.

For k = m, assume X1, X, ..., X,, is a valid causal ordering for the first m nodes.

Now we consider

Var(X;|Fm) = E(Var[X;|Fj ]| Fm) + Var(E[X;]F; 1] Fm),
for j = m + 1,m + 2,...,p, where the expectation and variance are taken over the
variables X1, X, ..., X,,. Again, for any j = m+1,m+2, ..., p, we have Var[X;|F;_;] =

E[X;|Fj-1] = g;(Xpa(j))- Further, since X1, X5, ..., X,, is a valid causal ordering for

the first m nodes,

Var(X;|Fp) = E(E[X;|F;-1][Fn) + Var(E(X;|Fj-1)[Fn)
= ]E(XJ|]:m) + Var(gj(Xpa(j)”]:m)‘

Hence, following on similar lines,
Var(X;|Fn) — B(X;|Fm) = Varlg;(Xpag))|Fm]-

Hence if pa(j) \ {1,2,...,m} is empty, Var(g;(Xpa(j))|Fm) = 0 and Var(X;|F,) —
E(X;|F») = 0. Any such node can be next on the causal ordering and X,, holds
the above property. On the other hand, for any node in which pa(j) \ {1,2,...,m}
is non-empty Var(X;|F,,) — E(X;|F,) > 0 which excludes it from being next in the
causal ordering. Hence X3, X, ..., X;,,11 is a valid causal ordering for the first m + 1

nodes. This completes the proof by induction. O

A.2 Proof for Theorem 3.3

Proof. Let X = (Xl(i)7 ...,Xl(f)) be the i.i.d n samples from the given DAG model.
Let 7 be a true causal ordering and 7 be the estimated causal ordering. Without loss
of generality, assume that the true causal ordering 7* is {1,2,...p}. For an arbitrary

permutation or causal ordering 7, let m; represent its j element.
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Let E, denote the set of undirected edges corresponding to the moralized graph
(i.e. the directed edges without directions and edges between nodes with common
children). Recall the definitions NV (j) := {k € {1,2,....,p} |(4,k) € E,} denote the
neighborhood set of j in the moralized graph and K(j) = {klk e N(j—1)N{j,....,p}}
denote a candidate set for m; and Cj, = N(k) N {m, 72, ..., m;—1} which is the inter-
section of the neighbors of k£ with {1,2,...,5 — 1}.

Recall that for ease of notation for any j € {1,2,...p}, and S C {1,2,...,p} let
tjjs and represent E[X;|Xg| and ‘7;2'|s = Var(X;|Xg). Also, denote p1;5(xs) and rep-
resent E[X;|Xs = xg] and 07 ¢(x5) = Var(X;|Xs = v5). Let ns(s) = 31, 1(Xéi) =
xg) and ng = >

The overdispersion score of k € K(j) for the j** component of the causal or-

2 M@s)1(n(xs) > co.n) for an arbitrary ¢y € (0, 1).
dering, defined in the second step of our ODS algorithm only considers elements of
X(@-k) = {z e {XU x@ X"V | n@) > c.n} so we only count up elements
Cjk Cjk Cjk

that occur sufficiently frequently.

According to the ODS algorithm, the truncated sample conditional expectation
and variance of X; given Xg = z for j € {1,2,...p} and any subset S C {1,2,..p}\{j}
be following: for z € X(5),

3

1
1js(z) = s (@) 4

1
ns(r) —1 &
The overdispersion score of k € K (j) for the j* element of the causal ordering

is for x € X(Cjy),

525(z) = (X' — Tis(0)?1(XY) = 2)

Sik(r) =046, (7) — e, (@)
Se=Bo @)= Y Ve

n
zeX(jk)  Cik

And the correct overdispersion score is

S;k = onk[azm’jk - :uk|Cjk] = Ecjk[var(gk<pa(k))|cjk>]'
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Let us define some events for the proof and d denote the maximum degree of the

moralized graph. For any j € {1,2,...,p} and k € K (j),

&1 = {max|sjy — 55| <m/2}

&= {max max X()

.....

< n5+d}

We prove it by induction that requires p steps to recover a causal ordering that
is consistent with the Poisson DAG. Without loss of generality, assume that the true
causal ordering 7* is {1,2,...p}. For the first step j = 1, a set of candidate element
of m is K(1) = {1,2,....,p} and a candidate parent set of each node Cy;, = ) for all
ke K(1).

P(m # 7)) = P(exists at least one &k € K(l) \ {1} s.t. 511 > §1k)

<IKM]_max {P(sh+ 5 > st = 516) + PEle) + PE))

<p mex {P(m > s},]&) + P(&5|&) + P(&5)}

By Assumption (Al), sj, > m and we will represent some Propositions that
respectively control P(££[&;) and P(&5).

For the j7 — 1 step, assume (7, o, ... ﬁj 1) is a valid ordering for the first 7 — 1
nodes. Note that with the correct N(j), Cjp = = Cjr. Now, we consider 75. The
probability of a false recovery of 7} given the true undirected edges of the moralized

graph and the true causal ordering before j is following:

P(R; £ 73[fs = b, Ryt = 121)
= P(exists at least one k € K(j) \ {j} s.t. §;; > 51

<K, _max (P +m/2> sj—m/2f6) + P(Ele) + P(E)
eK(H\{s}

< |K(j)| ke}gm\({j} {P(m > S;k|§1) + P(&7]&2) + P(fz)}

By Assumption (A1), s7x > m and we represent some Propositions that respec-

tively control P(£§|¢2) and P(£5). Furthermore we also show a condition on cg.
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Proposition A.1. For all j € {1,2,....,p}, k € K(j), ¢o < n" 5t gen & is a suffi-
cient that a candidate parents set X(Cjy) is not empty

Proposition A.2.
2,,1/(5+d) m2nl/(5+d) m2n3/(6+d)

1—8) + exp( — T) + exp( — 5 :

where m is the constant in Assumption (A1).

P(&5]62) < 2p*n7 {eap( —

Proposition A.3.
P& < anexp( — nt/6+d) g 2)
where M is the constant in Assumption (A2).
Hence for any j € {1,2,...p} with ¢y = Tf%d,
P(7; # |7 = 71, .., T = 7))

<p max {P(m > Sjk\fl) + P(&7162) + P(fz)}

keK(j)\{5}
1/(5-+d) 1/(5+d) 3/(5+d)
< 2p3n¢¢d{exp( L) +exp(— L) +exp( — m*n?/ero
18 9 9
+ anMexp( — nt/0C+) Jog 2) (A1)

By using the above probability bound (A.1),

~ * (B) ~ * ~ *
Pr#n") < P(M#m)+ ...+ P@a # 7 4|1 =71, Tp2 =T, _5)

(E2) 4 m nl/(5+d) anl/(5+d) m n3/(5+d)
< 2p4nm{exp( 1—8) + exp( - 9 ) + exp( T

+ np* Mexp( — n"/+) 1og 2)

The first inequality (F;) is followed from P(AU B) = P(A) + P(B N A°) =
P(A) + P(B | A9)P(A°) < P(A) + P(B | A°) for some events A, B. And (FE,) is
directly from (A.1).

Hence, there exists some positive constants C7, Cy, C5 > 0 such that

P(it # ) < Crexp( — Con'/®) 4 Cslog max{p, n})
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A.2.1 Proof for Proposition A.1

Proof. Let |Xg| denote the cardinality of a set {XS),X;Q), ...,Xén)} and |X(9)| de-
note the cardinality of a set A'(S). In worst case where |X(S)| = 1, for all z €
{Xél),Xg), ...,Xé”)}, ng(x) = co.n — 1 except for only one component y € X(5). In
this case, the sample size n = ng(y) + (| Xs| —1)(co.n —1). A simple calculation yields
that

ns(y) =n— (| Xs| — 1)(co.n — 1) =n — co.n|Xg| + co.n + | Xs| — 1.

n+|Xg|—1 qj 1 nt|Xs|=1
—==L-  Since — < if ¢g <
n.|Xs| [Xs| —  mn|lXs| 0=

Hence ¢o.n < ng(y) is equivalent to ¢y < ﬁ
there exists at least one component y € X'(.S). In addition under the event &, | Xg| <

nsa which is all possible combinations. Hence if ¢y < nfﬁdd, |X(S)] # 0. O

A.2.2 Proof for Proposition A.2

Proof. This problem is reduced to the consistency rate of a sample conditional mean
and conditional variance. For ease of notation, let nj, = n¢,, and nj.(r) = ng,, ().

Suppose that ¢q = n~5. Then for any j € {1,2,...,p} and k € K(j),
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P(ffaéé) < p2 HJI%X P(\é\]k — S*k’ >

< rrj;%xP( Z njx () |5k (x) — 85 (2)] > %,52)

QTEX(C]k) n]k
€ 1 max P(u() — six(a)] > 15 g,
i ()
€X(Cyi) J

(b) m
2 -~ *
< pmax | X (Cji)| xer;lggik)P(lsjk(w) — sip(z)| > 5,5‘2)

~ - m
< ' max P(|(Gc,, () — Birje,, (%)) = (0710, (2) = mricy ()] > 5 &)
_d_ . m
< p?nsia max {P(|Uz\cjk($) - 0'J2»|Cjk ()] > 3,52)

+ P(’ﬁk|cjk(x> - ,LLk\Cjk(QZ)‘ > %,62)}

9 ¢ m*ni(z) m’nx () m*ng(z)
20514 jk ik 7k
< 2ptnsrtmax {exp( — o) +exp(— g erg) e - g )
(e) 9 _d m2n1/(5+d) m2n1/(5+d) m2n3/(5+d)
<2 5+d - - —
2p1/(5+d) 2,,1/(5+d) 2,.3/(5+d)
:2p2nsid{exp(—m n18 )+exp(—mn9 )+exp(——m n9

(a) is followed from that P(} ., w;X; > 9) < > P(X; > §/w;), and (b) is from
25 1. Since nik(x) > co.n for all © € X(Cj), |X(Cix)| < 1/c¢o hence (¢) and (e)

Njk
hold. Moreover, (d) is followed from the Hoeffding’s inequality (Theorem 2 [30]) since

1/(5+d)

samples are independent and bounded above n given &;. O]
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A.2.3 Proof for Proposition A.3

Proof. For any j € {1,2,...,p}, the conditional distribution of X; given Xpa(;) is
Poisson with rate parameter g;(pa(j)). Hence for k € K(j),

oy () 1/(5+d)
P(&) P(k?f?(’j)ii???ank >n )

(a) A
< mp max max X @) > nl/G+d)
< np Max  max (| X3 | >n )

()

< np max max Epag) [exp(— nt ) 10g 2 + gr(pa(k)))]
keK () i=1,.n

(c)

< nmp max max M Y6+ 1609
< np mex max exp(—n 0g2)

= npMexp( — nt/ G+ og 2).

(a) follows from the union bound and |K(j)| < p, and (b) follows from the moment
generating function of Poisson distribution with ¢ = log2. Furthermore, (c) is from

Assumption 3.2 (A2). O
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Appendix B

Proofs for Chapter 4

B.1 Appendix

B.1.1 Proof for Theorem 4.1

Proof. Without loss of generality, we assume the causal ordering is 7* = (1,2,- -+, p).
For notational convenience, we define X;.; = {X1, Xo,---, X} and Xy,0 = 0. for
meVand j€ {mm+1,---,p}, let ¢j = (Bo + B1E(X; | Xim—1)) ™' and ¢j1 =
(Bo + B1E(X;))~!. Then, the overdispersion score is as follows:
S(j,m) = &, Var(X; | Xim—1) = imB(X; | X1imo1).
We now prove the identifiability of our class of DAG models by induction. For

the first step, and j € {1,2,--- ,p},

S(J} 1) = ¢, Var(X;) — cuE(X))

i {Var(E(X; | Xpag)) +E(Var(X; | Xpag))) — ¢ E(X;) }

— Jl{Var (X5 | Xpa()) + E(BE(X; | Xpag)) + AEX; | Xpag))?) — (Bo + S1E(X;))E(X;) }
i {Var(E(X; | Xpa()) + SEEX; | Xpa)?) — HEX;)*}

= c;1 (1 + 1) Var(E(X; | Xpa(y))-

(a) follows from the variance decomposition formula Var]Y] = E(Varly | X]) +

Var(E[Y | X]) for some random variables X and Y. In addition (b) follows from
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the quadratic variance property (4.1) of our class of distributions and the definition of
cj1. Note that the score of the true first element of the causal ordering is S(1,1) =0
because E(X | Xpa(1)) is a constant and other scores are strictly positive S(j,1) > 0
by the identifiability assumption in Theorem 4.8. Therefore we can choose the first
element of the causal ordering.

For (m — 1) step, assume that first m — 1 elements of the causal ordering are

correctly estimated. Now, we consider m!" step. Then, for j € {m,m+1,--- ,p},

S(J} m) = ¢, Var(X; | Xim-1) — ¢mB(X; | Ximo1)
G Var(E(X; | Xpag)) | Xim-1) + E(Var(X; | Xpag)) | Xim-1) = GuE(X | Ximo1)}
Jm{Var E(X; | Xpa()) | Xiim—1) + E(BE(X; | Xpa) | Xim—1) + BIE(X; | Xpag) | X1m-1)?)
— (Bo+ SEX | X1 1))E(X | Xign1) }
= 5 {Var(E(X; | Xpa() | Xim-1) + SEEX; | Xpai)® | Xim-1) — LIE(X; | Xim-1)?}

= 5, (14 1) Var(E(X; | Xpa()) | Xiim—1)-

Again (a) follows from the variance decomposition formula and (b) follows from the
quadratic variance property (4.1) of our class of distributions and the definition of
Cim-

If pa(j)\{1,2,--- ,m—1} is empty, Var(E(X; | Xpaj)) | X1:m—1) = 0, and hence
S(m,m) = 0. On the other hand, for any node j in which pa(j) \ {1,2,---,m — 1}
is non-empty, S(j,m) > 0 by the identifiability assumption in Theorem 4.8, which
excludes it from being next in the causal ordering. Therefore, we can estimate a
valid m' component of the causal ordering, 7,,, = m. This completes the proof by

induction. ]

B.1.2 Proof for Lemma 4.1

Proof. For any k ¢ pa(j) [0},]x = 0 by the construction of 8%,. Secondly, we show that
for any k € pa(j), [05]x # 0. Assume for the sake of contradiction that [0},]x = 0.
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By the first order optimality condition, we have

E(X;) = E(D'({6p, Xpai))) (B.1)
E(X;Xx) = E(D'((0h, Xpag))) Xk)-

By the definition of the covariance, we obtain
E(X;Xk) = Cov(D'({0p, X1;j-1)), Xi) — E(D' ({0, X1;j-1)))E(Xk).
Equation (B.1) implies that
E(X;Xy) = Cov(D'({0p, X1:-1)), Xi) — E(X;)E(Xk).
Hence, we have
Cov(X;, Xj) = Cov(Xy, D'((05, Xpag))))-
From the assumption that [6})], = 0, we obtain
Cov (X, Xy) = Cov(Xi, D'({[0p]page: Xpagni)))-

However it is contradictory to the assumption Cov(X}, Xy) # Cov(Xy, D'({[0p]pae Xpag))),
Therefore [05)]r # 0. Furthermore since k € pa(j) is arbitrary, the proof is com-

plete. O

B.1.3 Proof for Theorem 4.6

Proof. Assume that there are n iid samples z = {X® X®@ ... XM} and X® =
{Xl(i),Xéi) e ,X,(,i)} for i € {1,2,--- ,n} from a given DAG model (G,P). For ease
of notation, let § = AN (j) for a node j € V and recall that (-,-) represents the inner
product and [-];, is an element of a vector corresponding to a variable Xj. Then, the

negative surrogate conditional log-likelihood of GLM (4.8) is as follows:

0= 13 (x00, x40, + (o, ()

n -

=1
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where D(-) is the log-normalization constant determined by the choice of GLM and
0 € RP—1,
The main goal of the proof is to find the unique minimizer of the following convex

problem:

By = arg min L£(6,\,) = arg min {£(0;z) + X601 }. (B.2)
feRrr—1 feRrr—1

By the sub-differential method, §M must hold the following condition:

o LOr, An) = Tol(Orr: ) + M2 =0 (B.3)

o~

where Z € R?"! and an element of Z corresponding to a parameter [0y]; is z; =
sign([@\M]t) if a node t € § otherwise |z;| < 1.
Main idea of the proof is primal-dual-witness method which asserts that there

is a dual problem §M -0, v if the following conditions are satisfied:

a) We determine the vector 0y € © where © = {# € RP~1 : fyc = 0 by solving the
§

following restricted objective problem.

Oy = arg min L(8,\,) = arg 1;%161)1{6(0; x)+ A |0]1} (B4)
(b) We choose Z as a member of the sub-differential of regularizer || - ||; evaluated

(c) For any t € §, % = sign([0a];).
(d) Forany t ¢§, |z| < 1.

If all conditions (a), (b), (c), and (d) are satisfied, 6, = )/, meaning that the
solution of the unrestricted problem (B.2) is the same as the solution of the restricted
problem (B.4). The conditions (a), (b) and (c) suffice to obtain a pair (A, %) that
satisfies the optimality condition (B.3), but do not guarantee that z is an element of
the sub-differential ||6y||;. Therefore, the remainder of the proof is to show |Z| < 1

for all ¢ ¢ §.
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Equation (B.3) with the dual solution (gM, Z) can be represented as 720(60%; 2)(Op—

0r;) = —A\nz — W™ 4+ R™ by using mean value theorem where

(a) W™ is the sample score function.

W .= —<7 (03 x) (B.5)

(b) R* = (RY,Ry,--- , Ry ;) and R} is the remainder term by applying coordinate-

wise mean value theorem.
Ry = [0 2) — 20(0W; )L (00 — 07) (B.6)

where 8®) is a vector on the line between 6 and 6%, and [-]7 is the k™ row of a

matrix.

Recall that Q = <72((0},;2) be the Hessian of the negative conditional log-
likelihood of a GLM and Qg be a sub-matrix corresponding to variables Xg. In
addition we use 5§ = [5M]§ and §§c = [5]\/[]{3‘0. Since the set [5M]§c = 0 in our primal-

dual construction, we can re-state the condition of (B.3) in a block form as follows:

Quesll; — 65] = Wit — \Zye + Ry
Qgl0s — 0% = W& — X3 + Ry

Since the matrix Qg is invertible, the above equations can be rewritten as
Qe IV = s — RY) = Wit — M — R
It implies that
(Wit — Rie] — Ques Qg (W5 — RY] + M Qies Qi 25 = AnZge.

Taking the /., norm of both sides yields

IWelloo 1R |00 [Wetlloo 1R lloo
| .
o T T

o < |1QgesQ Il

IZse
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Recalling Assumptions (4.3), we obtain ]HQ§C§Q§_§1|HOO < (1 — ), hence we have

Welloo 111 lloo Witlloo | 1 Rgello
R (LU ESL L LB

< (l—a)+(2-a) {HWA’;\m . HR:JOO] |

(B2

We need the following three lemmas to show ||Zg||oc < 1. For ease of notation,

let n = max{n, p}. Suppose that Assumptions 4.2, 4.3, 4.4, and 4.5 are satisfied.

Lemma B.1. Suppose that A\, > %Zg("). Then, for any a € [0,1/2) there exists a

positive constant Cy such that

W . a

al A T 42— )

) >1—2d- exp(—Cp-n' %) — M.y (B.7)

An )\gnin
Lemma B.2. Suppose that HWnHOO S o For )\n S m,

P@%—%MgAiQ@M>21—M%n2. (B.8)
Lemma B.3. Suppose that |[W"| < 22. For A, < 30002 —a) 73 log%vl;;d)\max’
P (IR < 22 ) 2 120 (B.9)
42 — «)
The rest of the proof is straightforward from Lemmas B.1, B.2, and B.3. Consider
the choice of regularization parameter A, = %‘Zg(") for some constants a € (2k9,1/2)

where k5 is distribution depending constant in Assumption 4.5. Then, the condition for
Lemma B.1 is satisfied, and therefore ||W,|| < 22. Moreover, the conditions for Lem-
mas B.2 and B.3 are satisfied for a sufficiently large sample size n > C’(d log(n)z)ﬁ
for some positive constants C’. Therefore, there exist some positive constants C7, Cy

and C5 such that

. Wl | IR loc
Ziclloo < (1 —a) + (2 — a) ”J|+”A” §0—®+%+%<L (B.10)

with probability of at least 1 — Cydexp(—Cyn'=27) — C3n~2.
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For the sign recovery, it is sufficient to show that ||§M — Olloo < %. By
Lemma B.2, we have HéM —03]lo0 < H§M —03l2 < )\L\/E An < % as long as

He}kwumm Z 10 \/E )\n

)\min

Furthermore the assumption [|6%;||min > 0 guarantees that surrogate GLMLasso
recovers the true neighborhood of each node with high probability since the solution
of GLMLasso is sufficiently close to the solution of GLM.

Furthermore, since we have p regression problems if a sample size n > C'(d log(n)Q)m),

the moralized graph can be recovered with high probability:
P(é?" =G™) >1—Cid-p-exp(—Con'™2*) — Csn™. (B.11)

O

B.1.3.1 Proposition B.1
Here we provide a proposition for the proof for Lemmas B.1, B.2 and B.3.

Proposition B.1. Suppose that X is a random vector with a distribution P according

to a given DAG G. Let

& = { max}|X](-i)|<3log(n)}.

ie{l,mn

Then, the following statement holds.
P(&) < Mm% (B.12)

Proof. We now show the P(&5) is bounded. Applying the union bound and the Cher-
noff bound for any i € {1,2,--- ,n} and j € V,

P(&) <n. max P (|X{"] > 3log(n)) < n - maxy *Elexp(| X))

i€l )
We obtain max; E(exp(|X;|®)) < M by Assumption 4.4 and hence Therefore we
compete the proof. O
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B.1.3.2 Proposition B.2

Here we provide a proposition for the proof for Lemma B.2.

Proposition B.2. Suppose that X is a random vector with a distribution P according
to a given DAG G and M is a positive concentration bound constant in Assumption 4./.
Then, for any vector u € RP such that ||u||y < ¢, and for any positive constant 0, the

following statement holds.
P(|(u, X))| > 6logn) < M -p-n~ /. (B.13)
Proof. We exploit the fact that (u, X) < ||ulj; max;ey |X;|. Therefore, we have
)
P(|(u, X))| = dlogn) < P(max|X;| > 7——logn).
jev ]|
Using the union bound, we have
P( | X;| > 51g)< P(X;| > 51 )
max | X;| > —— 1o - max | > ——1logn).
A T T
Applying the Chernoff bounding technique and we obtain
s

)
P(max |X;| > ——1o < M -n Tulr,
(jEV ’ ]‘ - Hqu g77) — 77

Therefore we compete the proof. n

B.1.3.3 Proof for Lemma B.1

Proof. Recall that each entry of the sample score function W™ in (B.5) has the additive
form W = 157" | W for any t € §. In addition, W =0 for all ¢t ¢ § since [03,]; =0
by the construction of 3, € O, in (4.7). For any i € {1,2,--- ;n} and t € S, it is

straightforward to see that the variables

W = xPx - D', X)X\

J

are independent and have zero expectations.
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Now, we show that for all i € {1,2,--- n}, ]Wt(i)| is bounded with high proba-
bility given the following event &; so as to use the Hoeffding’s inequality. The event

&1 is as follows:

£ {Eglax X 1| < 3log(n)}.

Clearly given &1, 05, X 0 < 3165 [|1 log(n), and therefore maxic 1 9.... ny |D'({05, X§1)>)| <
n"? by Assumption 4.5. Furthermore given &, X, (Z)X < 9log(n)?. Therefore there
exists a positive constant Cy such that max; cf19... ) |Wt | < Cyn"2 log(n).

Recall that d is the maximum degree of the moralized graph and hence [§| < d.

Applying the union bound, we have
P([W"llee > 0,&) < d - max P(IW/’] > 6,&1).

Since \Wt(i)| < Conlog(n) given &, using the Hoeffding’s inequality we obtain
nd? )
2(Conr2 log(n))?”

Suppose that § = ’\2’1‘1& and \, > % for some a € [0,1/2). We then have

P(I[W"||oo > 0,&1) < 2d - exp(—

the following result.
W™ oo
plV7 e o

( nA2a?
An 42 —a)’

32 C23(2 — a)%(nm 10g(17))2)

n1—2aa2

32.C2(2 - a)2)'
Note that P(A) = P(AN B) + P(AN B°) < P(AN B) + P(B°) for any sets A
and B. Then,

P

&) <2d-exp(—

< 2d-exp(—

(B.14)

W' @

ey S 2PUW e > 0.6) + PED)

we obtain P(£$) < M.p=2 by Proposition B.1. Then, we complete the proof.

[W"[|oo o Ly 2
P < 2d - exp(—n'2
S W TC s U L W [ B

+ M.an~2.
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B.1.3.4 Proof for Lemma B.2

Proof. In order to establish the error bound ||§§ — 0;|| < B for some radius B, several
works [77, 57, 56| proved that it suffices to show F(ug) > 0 for all ug := 5§ — 05 such

that |lug||o = B for some radius B > 0 where
F(a) == 005 + a;x) — €055 2) + M\u([1605 + allr — [|65]]1)- (B.15)

Since ug = §§ — ¢ is the minimizer of F" and F(0) = 0, by the construction
of (B.15), F(ug) < 0. Note that F is convex, and therefore we must have F'(ug) < 0.
We then claim that |Jug||s < B. In fact, if ug lay outside the ball of radius B, then the
convex combination v - ug 4+ (1 — v) - 0 would lie on the boundary of the ball, for an

appropriately chosen v € (0,1). By convexity,
Fvo-ug+(1—v)-0)<v-F(ug)+(1—v)-0<0 (B.16)

contradicting the assumed strict positivity of F' on the boundary.

It thus suffices to establish strict positivity of F' on the boundary of the ball with
radius B = Mj\,\/d where M; > 0 is a parameter to be chosen later in the proof.
Let us € RSl be an arbitrary vector with ||ug|ls = B. Note that [§| < d since d is the
maximum degree of the moralized graph. By the Taylor series expansion of F' (B.15),

we have
F(ug) = (W) us + ug [V20(03, + vugi o)]us + \a(165 + wglly = [105]11),  (B.17)
for some v € [0, 1]. For the first term of Equation (B.17), we have the bound
n\T n n \/_ \/_ 2M1
(W) g < [Willooluglly < IW'llooVdllugllz < (Anvd)" =,

since ||[W¢']|o < 22 by the assumption.
Applying the triangle inequality to the last term of Equation (B.17), we have
the bound

N1105 + gl = 1021) = =Ml = ~AVlluglle = — My (A, V).
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The second term also has the bound from the Taylor series expansion of the

Hessian.

q* ‘= Amin (V2€(9§ + Uu§))
> min Ay (V 005 + vu§))

v€E[0,1]

* 1 - * i i i
2 i (720)) = i 1503 D (405 v, X)) X575 7))

> Amin — MAX  Mmax —Z|D”’ O + vug, X)|[ul X717 X2 (B.1g)

- vel0,1] y:llylla=1 N

We set a new event in order to control the first term D" ({6 + vug, X5));

& = {zeglax (05 + vu§,X§<i)> < Ky logn}.

Provided &, Assumption 4.5 yields that
D" ({05 + vug, Xz)) < n"2. (B.19)

In addition, we show the bound of the second term of (B.18). Recall that
HX HOO < 3log(n) for all i € {1,2,---,n} given &. Since |lugll; < Vd|uglly and
Juglla = My A,V d, we obtain

u §X( )| < 3log(n)Vd||ug|l» < 3log(n) - Mynd. (B.20)

Lastly, it is clear that rnaxy:Hy”Fl(yTXéi))2 < Amax by the definition of the max-
imum eigenvalue and Assumption 4.2. Together with the above two bounds of (B.19)

and (B.20), for given & and & we have
q* < Amin — 302 1og(n) « My, d Apax.

)\min * )\min
For )\, < TR A Ve have ¢* < ~gin. Therefore,

)\min
2

F(u) > (v { = 700+ 2222 =y},



129

2
which is strictly positive for M; = . Therefore for )\, < Mﬁ?

~ D
185~ 03]l < VA,

with the high probability of at least 1 — P(&5) — P(&5).
Here we show the probability bound of &5.

—~
S
~

P(g) < n _max }P(<8L+vu§,X§i)>>mlogn)
(®) LS B
< n-M-n 20N
() )
< M-n"

(a) follows from the union bound and (b) follows from Proposition B.2 and the given
setting B < ||03]l1 because minjey mingen(j) |[03]¢] > ﬁ\/ﬁ)\n. Lastly (c) is from
Assumption 4.5 that 1 > 8]|0%,]1-

In addition the probability bound of £ is provided in Proposition B.1. Therefore

we prove that

P<||5S—9§||2 \/_)\)21—2M~7;2

B.1.3.5 Proof for Lemma B.3

Proof. In this section, we show the bound of R" in (B.6). According to the definition,

R} for a fixed t € § can be written as
R o= Z B33 0) = 70; )] (6 = 03)
= = Z (D" ({037, X)) = D" (B, XX (XE)T1T (0 = 030)

for #® which is a point in the line between ), and 8%, i.e, 80 = vy + (1 —v) - 0,

for some v € [0, 1].
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By the mean value theorem, we have

1 <& - ; i ~ . i INT %
By = = > { D" (00, x70)x0 H 00 — 03" X X0 (B — 031) |

for #® which is a point in the line between ® and 63,.
We have ]X]@] < 3log(n) for all i € {1,2,--- ,n} given & by Proposition B.1.
Furthermore we showed that D" ({0, X)) < n'* given & in Section B.1.3.4. Therefore,

given & and & the following result is straightforward.

|R?| < 30" 1og(n) Amax |6 — O3]|2.

In addition, Lemma B.2 represents that |6 — 8%]ls < ——vd\, for A, <

>\m1n

2
o min
10(2—a) 30n"~2 log(n)d Amax

provided &; and &. Therefore we have

75 n"21og(n) d Amax A2 < a\,
)\r2nin N 4(2 - O./)

1B [loo <

with high probability of at least 1 — P(£) — P(&5). Putting the probability bound of
&f and &5 shown in Proposition B.1 and Section B.1.3.4 together, we prove that

a,

PR < ——
(177 < 13

) >1—2Mn2
_ a)

B.1.4 Proof for Theorem 4.8

Proof. Let X = (Xl(i), e ,X]()i)) forie {1,2,--- ,n}and x = (XM X@ ... X))
be the iid n samples from the given QVF DAG model (G,P) with quadratic variance
coefficients (By, £1) in (4.1). In addition, let 7* be the true causal ordering of a DAG G.
Without loss of generality, assume that the true causal ordering is 7* = (1,2,--- ,p).
For an arbitrary permutation or causal ordering 7, let 7; represent its j* element.
Let T;(X;) = w; X; where w; = (8o + 1 E(X; | Xpa(;))) " such that Var(T;(X;) |
Xpa@)) = E(T;(X;) | Xpag)). For any node j € V and S C V' \ {j}, let p s and 032‘|S
represent E(7;(X;) | Xg) and Var(7;(X;) | Xg), respectively. Furthermore for some
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realizations of xg € Xg, let pjs(xg) and U?‘S(ms) denote E(T;(X;) | Xs = zg) and
Var(T;(X;) | Xg¢ = xg), respectively. We will also use the convenient notation ™ to
denote an estimate based on the data. We use n(zg) =Y I, l(Xéi) = xg) to denote
a total conditional sample size, and ng = >, _n(xs)1(n(zs) > co.n) for an arbitrary
co € (0,1) to denote a truncated conditional sample size.

Let E™ denote the set of undirected edges corresponding to the moralized graph
(i.e., the directed edges without directions and edges between nodes with common
children). Recall the definitions N'(j) = {k € V : (j, k) or (k,j) € E™} denotes the
neighborhood set of a node j in the moralized graph, K(j) = {k: k € N(j —1)N
{Jj,-- ,p}} denotes a candidate set for 7;, and Cj = N (k)N{my, ma, -+ ,mj_1} denotes
a candidate parents set. We assume that the true set of undirected edges corresponding
to the moralized graph is provided. Hence, K (j) = K (j) and @-k = (. for all nodes
jeVand k € K(j).

The overdispersion score of a node k € K (j) for the jth component of the causal
ordering only considers elements of X'( ]k) = {x € {X é) o ,ng} cn(z) >
co - n}, so we only count up elements that occur sufﬁ(:lently frequently.

According to the generalized ODS algorithm, the truncated sample conditional
mean and variance of T;(X;) given Xg = y for j € {1,2,---,p} and any subset
S c{1,2,---,p}\{j} are following:

Bisty) = o SR =)
Fsl) = i )~ ) 1Y = )

i=1
We re-state the overdispersion score of a node k € K (j) for the j element of

the causal ordering (4.5):

2
S 0j 1y

B o= |[(—2 ) - B
S(LK) (ﬁo + 51ﬁj) Bo + Bt

Sk = > T (ﬁ e <y>> el

yex (@) it 0+ 61’%@% 0 +B1'uj|0jk(y)
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For notational convenience, let each entry of the overdispersion score Si (7, k) for

~

Y € X(C]k) be

S(i — 8j|ajk(y> i B ﬁj\@jk<y)
5G.Rw) = (ﬁowlﬁj@k(y)) B+ Biiiyo, () (B21)

Note that the true overdispersion scores are as follows:

S(Lk)" =

?

(a5m) ~&+
Bo + Bt Bo + Bi;

. . n(y) ( Gj|Cjk(y) ) . /Lj|Cjk(y)
SER) = y@;ojk) neoy | \Bo+ B, (v) Bo + Bupjie; () |

< 7jic, (v) )2 it (v)

Bo + Bipjic,. (y)  Bo+ Bijic,. (y)

S, k) (y) for y € X(Cjy).

For ease of notation we introduce the following assumption followed by Assump-

tions 4.4 and 4.7.

Assumption B.1. Forall j € V, K C pa(j) and S C V \ (nd(j) U K), there exists

mo > 0 such that
Var(T;(X;) | Xs) — E(T3(X;) [ Xs) > mo.

We proved in Section B.1.1 that for all j € V, K C pa(j) and all S C V' \
(nd(j) U K), Var(X; | Xs) = E(X; | Xs) = (B0 + BE(X; | X))~ (14 1) Var(E(X; |
Xpa(j)) | Xs). Therefore, given the setting 8; > —1 and Assumptions 4.4 and 4.7
guarantee that the above assumption is satisfied. Assumption B.1 ensures that the
each component of the true overdispersion score S(j, k)*(y) is bounded away from m.

Now we show the probability bound of 7 # 7* given the true moralized graph
using the following two events: for any j € V and k € K(j),

& = {max|S(.k) ~SG)| < )

= XV <31 .
€4 {maxe,_max [ X;7] < 3log(n)}
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Then, we have

A
INe

P(m # ) P(m # 7", &) + P(&5, &) + P(&7)
P(my # 71, &) + Py # 73,8 | T = 77) +

et P(my Ay, & | To= 70, Ty = W) + PG &) + REZR)

INE

(a) follows from P(A) < P(AN B) + P(B°) for some events A and B and (b) follows
from P(AUB) = P(A)+ P(BNA®) = P(A)+ P(B| A°)P(A°) < P(A) + P(B | A%)
for some events A and B.

We prove the probability bound of (B.22) by induction that requires p steps
to recover the causal ordering of a given DAG. Recall that given the true moralized
graph, [?(]) = K(j) and @-k = Cjj, for all nodes j € V and k € K(j). For the first
step m = 1, overdispersion scores of m; in (4.4) are used where a set of candidate

element of 7y is K(1) = {1,2,---,p}. Then, we have

PG #756) = P <3k € K(1)\ {r}} such that S(1,77) > S(1, k),&,)

—
INe

mo mo
1 P( 1)+ 20 S 51, k) — 20 )
(p )keKr?l?\%} S(Lm)" + 5 >S(Lk) = 7.8

(b) *
= —1 max P (m S(1,k
(p )kEK(lz)%\{ﬂf} ( 0> ( ) ) 753)

=

0.

(a) follows from the union bound and the definition of &;. In addition, (b) follows
from that S(1,7])* = 0 by the definition of the transformation 7}(-), and (c) is from
Assumption B.1 that overdispersion scores of incorrect nodes are greater than my.
For the m = j — 1 step, assume that the first 7 — 1 elements of the estimated
causal ordering are correct (71,7, -+ ,7;-1) = (71, ,mj_;). Then for the m = j

step, we consider the probability of a false recovery of 77 given (77, -+, 7 ;).
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P £, 6 | momin) = P (3k e K(j)\ {x}} such that S(j,75) > 8 k), &)

—~
S
N

. L EPRCLLD
< IKG)_max P (8G.m) + 75 > 8GR~ 56)
(b) . .
= P k)*
IK(J)IkGK%%W;} (mo > S(j, k)", &)

S

Again (a) follows from the union bound and the definition of £;. In addition, (b)
follows from that S(j, 7})* = 0 by the definition of the transformation 7}(-), and (c)
is from Assumption B.1 that overdispersion scores of incorrect nodes are greater than
mo.

This completes the following statement by induction: for any j € V,
P(mj#n,& | =m0, T =m_4)=0.
Then, the probability bound (B.22) is reduced to
P(m # ") < P(&5, &) + P(&5)-
Now we focus on the upper bound of P(&5,&,) and P(&5).

P(¢¢) = P X9~ 3]
(&) (ie{ﬁ%‘i‘fn}je{rf}%’.(.,p}‘ ;| > 3log(n))

(a) A
< ) P(XY| > 31

S nep gmax o max ) PUXTT> Slog(n)
®) 3 (i)
< n-p-n max max Elexp(]X;"])]

7’6{1727 7”} ]6{172, 7p}

n M

(a) follows from the union bound and (b) follows from the Chernoff bound. Further-
more (c) is from the Assumption 4.4.

For the upper bound of P(&5, &), we introduce the following lemma.
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Lemma B.4. There exist some positive constants C7 and Cs such that

P(&,&) < Clp20616”p (—02%) .

where ¢ is a sample cut-off parameter.

Lastly, we represent a condition on a sample cut-off parameter ¢q. Intuitively,
if ¢y is too small, estimated overdispersion scores may be biased due to the lack of
sample. In contrast, if ¢y is too big, all components of a condition set C;;, may not have
enough samples size (> ¢ - n), and therefore there is no overdispersion scores. Hence
the following proposition provides a maximum value of ¢y ensuring that overdispersion

scores exist in worst case.

Proposition B.3. Given &, co < (3log(n))~? is sufficiently small that at least one
component of a condition set Cj, of the overdispersion scores has a large sample size

which 1s greater than cy.n.

Putting Lemmas B.4 and Proposition B.3 together, we complete the proof. For

some positive constants C and Cs

P(7 # ) < Cop?(log(n))exp (—02 n ]‘j .

W)+_

B.1.4.1 Proof for Lemma B.4

Proof. For ease of notation, let nj, = n¢,, and nj(y) = ne,, (y) fory € X(Cj). Using

the union bound, we have for j € V and k € K(j)
c _ S/ . * mo 2 Sl . % mo

Since overdispersion scores have additive forms, we obtain

P8 K-8 b > e < PO Y 80 k) -G, ky ()] > 2 6)

Nk
yeX(Ci) 7
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Applying P(>°,Y; > 0) <> P(Y; > w;d) for any 6 € R and w; € RT such that
> wi =1, we have

P( Y 506 k) - SG )] > e

yeX (Cjx) Mk 2
NS m
yeX(C]k)
Applying the union bound,
S/ . % mo
> P83 k)(y) = S(j, k)*(x)] > &)

yeX(Cji)

< |X(Cp)| max P(S(,K)(y) = SG. k) ()] > ).

Z/EX( Jk)

By the definition of the sample cut-off parameter ¢y, njr(y) > ¢o - n for all
y € X(Cji,). Furthermore since total truncated sample size is less than original sample
size, ¢o - n - |X(Cyx)| < n. Therefore the cardinality of a set Cj, is at most ¢, '. It
implies that
. mo
X (C; P(|S(, S(j, k) > —,
(Gl max PUSG R ) = SG.E) ()] > 5.6

<! max P(S(.k)(y) - SGE) ()] > T &)

ye‘)(( ]k)

Since an overdispersion score is a difference between a conditional mean and a
conditional variance, the remainder of this problem is reduced to the consistency rate
of a sample conditional mean and variance. Suppose that € := figic;, (y) — pric;, (Y)
and K-€ := ngjk (y)— a,%'Cjk (y) for some k € R. By the definition of the overdispersion

scores in (B.21), we have
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{e: 180, k)(y) = SUR) ()| > =

Jj@jk(y) + Ke 2 ) Nﬂ@k(y) +e€
Bo + ﬁl,uj‘@jk(y) te Bo+ Bie., (y) +e

_( jic; (Y) )2 1jic,. (y)

Bo + 51Mj|cjk(y) B Bo + 51Mj\cjk(y)

C

Mo
>_
2 }

where €1, €2, €3, €4 are highly depending on some constants u, 02, By, 31, m, and k. More

={e:e€ (e1,62) U (e3,€4)}
precisely, let

G0, Bo, Brymy k) = B3(1+ frm) — Bimpd + 2632 k0® — 2620

+ BH(—261p — 3B8%mp + 2k02) — BoBr{ Bup® + 382mp® + 20%(—2kp + 0?) },
Galp 0%, Bo, By, k) = (Bo -+ Byp)? | B3 (1 + 2ip) + 263 (ep — %) (B *m + 20%)

+ 460 (5 — 02 { B2 pm (261 — %) + Bruo® — 2k0%)

+265{ = 2k0” + B (p + 4mk*p — 2mro®) }

+ B4R + 48107 (~ 2k + 02) + B2(p + 12mip® — 12mpurko” + 2m04)}] ,
Ca(p, 0%, Bo, Br,m, k) = B3 (=267 + 201 + B7m) + 260Bu(Br + Bim — K?)

+ BL(BImp? + 20" — 287 1%).
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With the (1, (5, (3, we define
Cl(/'bﬂcj'k (CU), UJZ"Cjk (ZL’), BOa ﬁlv mo, H) + \/C?(/’Lﬂcjk (I)a O-J2‘|C].k (CU), /807 /817 my, R)

o= o @), T (), Bor Byt )

, _Clwﬂcjk(i”)a 0]2-|cjk(x)a Bo, b1, mo, k) + \/C2(Hj|cjk<x)> 0?|Cjk($)a Bo, 1, mo, K)
“= C3(Mj\cjk($)’0]2'|Cj,€(x)760a517m0a"i)

/ Cijics (), o, (@), Bo, B, —mo, k) + \/Cz 1ilcy (), 050, (@), Bo, Bi, —mo, k)
63 =

CS(Nj\Cjk(x)aU?wjk( ), Bo, b1, —mo, k)
G, (@), 7%, (@), Bo, Br —mo. k) + G, (2), e, (2). Bo Br, —mo, k)
R Gl (), O?‘Cjk(x)u Bo, Br, —ma, k)

Let €; be the minimum value of (€], €, €5, €}), €2 be the second smallest value, €3

be the third smallest value, and €4 be the largest value. If we set mg = 0, the solutions
of |S(j, k)(y) — S(j, k)*(y)| > 0 are € € (ar,0) U (0, az) for some constants a; < 0 and
as > 0. If we set mg > 0, € € (a1,a2) U (ag,ay) for some constants a;,as < 0 and
as,ay > 0.

For ease of notation, we define €,,;, = min{|es|, |e3|}. Then, we obtain

{e: 180, k) (@) = S(j. k)" (x)] > %} C (=00, —€min) U (émin, 00)

Note that samples are independent andmax;c(y 3... »} max ey | X ](Z)] are bounded
by 3log(n) given &. Furthermore recall that n;,(x) > ¢o - n. Applying Hoeffding’s

inequality technique, we obtain

P|figic; (y) = it (W)] > €min: §a) < 2exp (_ﬁ) '

Note that a sample variance can be decomposed to the following form:

nil (ZX?—%(ZXZ-V) Z)ﬂ ZXX

#J

Applying Hoeffding’s inequality technique to the above decomposed sample vari-

ance, we have

N K €rinCo * T K? Emmco 'n
P( 0]2-|C]_k(x)—a]2-‘cjk(x)| > | K| €min, 1) < 2exp ( —>+26XP < 64(3 log(1))

32(31log(n))*

)
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Therefore, there exist some constants C7 and Cs such that

P(&, &) < Cip*eytexp (_02%) '

B.1.4.2 Proof for Proposition B.3
Proof. Let |Xg| denote the cardinality of a set {Xél),XéZ), e ,Xén)} and |X'(S)| de-
note the cardinality of a truncated set X' (S) := {y € {Xél), Xé?), e ,Xén)} cn(y) >
co - n}.

In worst case where |X(S)| = 1, for all y € {Xél),XéQ),"- ,Xé")}, ns(y) =
co - n — 1 except for only one component z € X(S) such that ng(z) > ¢p.n. In this

case, the total sample size n = ng(z) + (| Xs| — 1)(co - n — 1). It yields that
ns(z) =n— (| Xs| —1)(comn—1)=n—cy-n-|Xg|+co-n+|Xg|— 1.

Since ¢g - n < ng(z), we obtain

c n+\X5|—1
' X

n+|Xg|— % . .
Note that ‘X—ls| < tipfsl‘ Land |X]( )] < 3log(n) forallj € Vandie€ {1,2,--- ,n}
given &. Then the maximum cardinality of a set Xg is (3log(n))!®l. Hence if ¢y <
(31log(n))~*! there exists z € X(S).

Recall that the size of a candidate parents set C}; is bounded by the maximum

degree of the moralized graph d. Therefore if ¢y < 3log(n)~9, there exists at least one
ze X (Cjk)‘

B.1.5 Proof for Theorem 4.9

Proof. The proof for Theorem 4.9 is similar to the proof for Theorem 4.6 in Sec-
tion B.1.5. Suppose that there are n iid samples z = { XM, X@ ... XM} and X0 =
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(XD xP o XY for all i € {1,2,-++ ,n} from a given DAG model (G,P). With-

out loss of generality, we assume that the true causal ordering is 7* = (1,2,--- ,p).
For notational simplicity, let X1.; = {X1, X, -+, X;} and T = pa(j) for a node

j € V. Recall that (-, -) represents the inner product and [-]; is an element of a vector

corresponding to a variable X;. Then the negative surrogate conditional log-likelihood

of GLM (4.10) for a variable X; given X;.;_; is as follows.

p(0ra) = 237 (=x100,x8 ) + D0, X15)

n <
=1

where D(-) is the log-normalization constant determined by the choice of GLM and
0 e R
The main goal of the proof is to find the minimizer of the following convex

problem for any node j € V:

fp = arg min L£(0,)\,) = arg@r%jn {€p(0;2) + A\ ||0]1} (B.23)
cRI—1

feRi—1

Using the sub-differential technique, @\D must hold the following condition:

Vo LOp, M) = VolpOp: ) + AnZ = 0 (B.24)

~

where Z € R’™! and an element of Z corresponding to a parameter [0pl; is Z; =
sign([fp);) if a node t € T otherwise |3| < 1.

Similar to the proof for the Step 1) in Section B.1.3, the main idea of the proof
is primal-dual-witness method which asserts that there is a dual problem §D = @\D if

the following conditions are satisfied.

(a) We determine the vector fp € © where © = {f € Ri~! : 6. = 0} by solving the

following restricted objective problem.

Op = argmin Lo (0, \,) = argmin{(p(0; 1) + Au[10]1} (B.25)

(b) We choose Zz as a member of the sub-differential of regularizer ||.||; evaluated by

Op.
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(c) For any t € T, % = sign([0p],):
(d) Forany ¢t ¢ T, |Z] < 1.

The conditions (a), (b), and (c) suffice to obtain a pair (6p,?) that satisfy the opti-
mality conditions (B.24), and therefore the remainder of the proof is to show |z < 1
forall t ¢ T.

Equation (B.24) with the dual solution (6, Z) can be represented as 725 (6% ) (8 p—

05,) = —A,z — W" 4+ R" by using mean value theorem where

(a) W™ is the sample score function

W" .= — <7 Up(0}; ) (B.26)

(b) R" = (R}, Ry,---, R} ;) and R} is the remainder term by applying coordinate-

wise mean value theorem
R = [ (0 2) — p (09 2)]] (0 — 07) (B.27)

where 69 is a vector on the line between 6p and 0% and [-]F is the k' row of a

matrix.

Let Q = 7%(p(0%;z) be the Hessian of the surrogate negative conditional log-
likelihood of a GLM and ()77 be a sub-matrix corresponding to variables X7. Since
the set 57-6 = 0 in our primal-dual construction, we can re-state condition (B.24) in a

block form as follows:

Qrrils —0s] = Wi —NZr + Ry
Since the matrix Q77 is invertible, the above equations can be rewritten as

Qrer Q7 Wi — \Zr — RY] = Wi — M\ Fre — R,
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Then, we have

(Wie — Rye] — QrerQrr (Wi — R + MQrer Q72 = AnZre.

Taking the ¢, norm of both sides yields

W2 oo R | o
1Wlee | IRS

Wl | IR
N, A, +

An An

[e.o]

e < [1QrerQb Il [ T 1] ;

Recalling Assumptions 4.3, we obtain |||Q7-7Q7+ |||« < (1 —a), so that we have

- Wl | 177l Wrelloo | 1Bl
c < (1-— 1
1Zrells < (1—a) { " + \ + 1| + N + "
W™ loo | 1B [|so
< (1-— 2— .
< 1-a)+(2—-aw) l " + X,

We apply the following Corollaries B.1, B.2, and B.3 to show ||2ge||oc < 1. These

corollaries directly follows from Lemma B.1, B.2, and B.3, respectively because only
differences are re-defined Q77, W,, in (B.26) and R, in (B.27). For ease of notation,

let n = max{n,p}. Suppose that Assumptions 4.2, 4.3, 4.4, and 4.5 are satisfied.

Corollary B.1. Suppose that A\, > %ﬂ’ﬁ(m Then, for any a € [0,1/2) we have

(W™l - 1-2 o’ —2
P < >1—2d- —n )+ M-
N 1) cap(=n asn ) H M
n n )‘rznin
Corollary B.2. Suppose that |[W"|| < 2. For A, < T o s
I * 5 -2
P07 = 05ll2 < VA, ) > 1—2M -2
n n 03 A?nin
Corollary B.3. Suppose that |[W"|| < 2. For A, < 30002 e 73 Tog i
a
P(||Rw € o~ | > 1—2M -2,
(177l < g2 ) = "

As we discussed in Section B.1.3, we consider the choice of regularization pa-

%ﬁ("))z for some constants a € (2kg,1/2). Then, the condition for

rameter \, =
Corollary B.1 is satisfied ,and hence |W, || < 2. Moreover, for a sufficiently large

1
sample size n > D'(dlog(n)?)==2%2 for some positive constants D', the conditions for
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Corollary B.2 and B.3 are satisfied. Therefore, there exist some positive constants

D¢, Dy and D3 such that

W R"|| s
W), B

[0 (6
<(1- -+ = :
" | S l-a)+—-+-—-<1, (B.28)

4 4

o< (l—a)+(2—a)

(B2

with probability of at least 1 — Dydexp(—Dqon'=2%) — D3n=2.

For the sign recovery, it is sufficient to show that ||/9\D —0h]| < %. By
Corollary B.2, we have H@D — 05|00 < H§D — 052 < ﬁ\/a An < % as long as
165 [ min > %\/E An-

Since the solution of GLMLasso is sufficiently close to the solution of GLM, the
assumption |07, ||min > 0 guarantees that surrogate GLMLasso recovers the parents of
each node with high probability.

Furthermore, since we have p regression problems if a sample size n > D'(d log(n)Q)ﬁ),

the DAG structure can be recovered with high probability:
P(G=G)>1—-Dyd-p-exp(—Dyn'2*) — Dyn~ " (B.29)

]
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Appendix C

Proofs for Chapter 5

C.1 Appendix

C.2 Proof for Theorem 5.1

Theorem C.1. Consider a DAG G = (V, E) with the mazimum degree of the mor-
alized graph, d. If single-node interventions are performed at every node and ng mea-
surements are made per intervention, then Alg. 1 recovers the true DAG wit high

probability:

P(@ = G) Z 1-— ZPO {(5(710(}9 - 1>7p0 - 17d) + 5(n0,min(d,p0 - 1)7d)}7 (C1>

po=1
where §(n,p — 1,d) is an error bound for estimating a moralized graph with sample

size m, possible neighborhood size p — 1, and the maximum degree of moralize graph d.

Proof. Consider a step in Alg. 1 when the number of remainingNodes is py. The first
step in the while loop is to find the leaf nodes. In order to determine if a node j is
a leaf node, the function FINDLEAVES finds the moralized neighbors N(j) of j and
compares them to the intervened neighbors N;(j) of a node j.

To determine the moralized neighbors of a node j, FINDLEAVES calls FIND-

NEIGHBORS with all the measurements where the node j was not intervened (size =
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(p — 1)ng), and the set remainingNodes as the search set (size = py — 1). Hence
the probability that we do not find the correct moralized neighbors of a node j is
d((p — D)ng,po — 1,d). This is the first term in the error bound.

Given the neighbors of a node 7, Alg. 1 finds the intervened neighbors N7 (j) of a
node j by calling FINDNEIGHBORS with measurements where node j was intervened
(size = nyg), and the neighbors N(j) as the search set. Since the maximum degree
of the moralized graph is d by assumption, the maximum size of the search set is
min(d, pp — 1). Hence, the error of this step is bounded by d¢(n, min(d, py — 1), d).

During a single FINDLEAVES iteration, the above two steps are repeated for each
node, for a total of py nodes. Finally, in the worst case, FINDLEAVES returns only 1
leaf node, and the while loop in Alg. 1 is repeated p times giving us the error bound

in Thm. 3.1. ? O

C.3 Proof for Lemma 5.1

Proof. Since both nodes j, k € V are not intervened, the directed edge between (7, k)
cannot be eliminated by an intervention. Therefore (j, k) ¢ E7* implies that the edge
between (7, k) is not a directed edge, but is generated by some common child which

was intervened. O

C.4 Proof for Lemma 5.2

Proof. Since no components of I are adjacent in G™, for any node j € I, N'(5)NI = (.
This means if an undirected edge connecting to a node j in G™ is eliminated in G7,
it can only be due to an intervention at node j. Recall that an intervention eliminates

the edges between each component of I and its parents. Hence it is easy to see that

N(5) NN(j)¢ C pa(j) for any j € 1. O
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Proof for Lemma 5.3

Proof. Since all components of I are not adjacent in G™, for any node j € I, N'(j)NI =

(). Tt means if an undirected edge connecting to a node j in Gy is eliminated in G,

it is due to an intervention of a node j.

For any k € S, let £ = N(j)NN (k). Then for any [ € ¢, a triple (4, k,[) consists

of a triangle. Note that a triangle in G™ can be generated by not only all directed

edges but a V-structure. In the following, we show how to distinguish between child

and spouse of an intervention node.

(a)

If ¢ = (), there is no node [ such that a triple (j, k,!) makes a triangle. This
means that j and k do not have a common child because if the j and k have a
common child, it generates undirected edges between j and k in G™. Therefore
k & sp(j).

An intervention eliminates the edges between each component of I and its par-

ents. Since k € N;(j) and k ¢ sp(j), k ¢ pa(j). Therefore k € ch(j).

If every node [ € ¢ satisfies that [ — 7, j and k cannot have a common child
because components of ¢ are only possible common child of j and &, and every

triple has (j <= | — k). Therefore k ¢ sp(j).

An intervention eliminates the edges between each component of I and its par-

ents. Since k € N7(j) and k ¢ sp(j), k ¢ pa(j). Therefore k € ch(j).

Suppose that there exists ¢ € V' \ ¢ such that (¢,k) € E. Then (j,k,t) is an
unshielded triple since both (7, k) and (k,t) are adjacent, and t ¢ ¢. Therefore,

t ¢ sp(j) because otherwise (7, k,t) consists a triangle.

By the assumption j € an(t), and therefore k ¢ pa(j) otherwise it generates a
cycle. Hence we have either k& € ch(j) or k£ € sp(j). Suppose for the sake of
contradiction that k € ch(j). Then (j — k < t) consists a V-structure which is

contradictory to t ¢ sp(j). Therefore, k € sp(j).
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Appendix D

Proofs for Chapter 6

D.1 Appendix

D.1.1 Examples for Theorem 6.3 (d)

— Q307 e (&%) @
Qs
Gl G2

Figure D.1:: 5-node examples for Theorem 6.3 (d)

Suppose that (G, P) is a Gaussian linear DCG model with specified edge weights
in Figure D.1. With this choice of distribution P based on G in Figure D.1, we have
a set of CI statements which are the same as the set of d-separation rules entailed
by G1 and an additional set of CI statements, CI(P) D {X; L X4| 0, or X5, X; L
Xs| 0, or X4}

It is clear that (G, P) satisfies the CMC, Ds,(G1) C Dgep(G2) and Dy, (G1) #
Dyep(G2) (explained in Section 6.3). This implies that (Gy,P) fails to satisfy the

P-minimality assumption.
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N &@\
P

Figure D.2:: 5-node examples for Lemma 6.3.(a)

G

Now we prove that (G, P) satisfies the weak SMR assumption. Suppose that
(G1,P) does not satisfy the weak SMR assumption. Then there exists a G such that
(G, P) satisfies the CMC and has fewer edges than ;. By Lemma 6.2, if (G, P) satisfies
the CFC, G satisfies the weak SMR assumption. Note that G; does not have edges
between (X, Xy) and (X, X5). Since the only additional conditional independence
statements that are not entailed by Gy are {X; 1L X4| 0, or X5, X; I X;5| 0, or X4},
no graph that satisfies the CMC with respect to IP can have fewer edges than (G;. This

leads to a contradiction and hence (G1,P) satisfies the weak SMR assumption.

D.1.2 Proof for Lemma 6.3 (a)

Proof. Here we show that (G7,P) satisfies the identifiable SMR assumption and and
(Go, P) satisfies the MDR, assumption, where P has the following CI statements:

CI(P) ={Xy L X5 (X1, X5) or (X1, X4, X5); Xo L Xy | Xy
X1 L Xy | (Xo, X5) or (Xo, X3, X5); Xq L X5 | (Xe, Xy);
X3 L Xy | (X1, X5), (Xa, X5), or (X3, Xs, X5)}.
Clearly both DAGs G and G5 do not belong to the same MEC since they have

different skeletons. To be explicit, we state all d-separation rules entailed by G; and

(5. Both graphs entail the following sets of d-separation rules:

e X, is d-separated from X3 given (X7, X;5) or (X1, Xy, X5).
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e X; is d-separated from X, given (X1, X5) or (X1, Xo, X5).

The set of d-separation rules entailed by (G; which are not entailed by G5 is as

follows:

e X, is d-separated from X, given (Xo, X5) or (Xo, Xy, X5).

e X; is d-separated from X, given (Xs, X5).

Furthermore, the set of d-separation rules entailed by G5 which are not entailed

by G is as follows:
e X, is d-separated from X5 given (X, Xy).
e X, is d-separated from X, given Xj.

With our choice of distribution, both DAG models (G1,P) and (G, P) satisfy
the CMC and it is straightforward to see that G5 has fewer edges than G, while G
entails more d-separation rules than Gs.

It can be shown from an exhaustive search that there is no graph G such that G
is sparser or as sparse as G and (G, P) satisfies the CMC. Moreover, it can be shown
that GGy entails the maximum d-separation rules amongst graphs satisfying the CMC
with respect to the distribution again through an exhaustive search. Therefore (G, P)
satisfies the MDR assumption and (G2, P) satisfies the identifiable SMR assumption.

O

D.1.3 Proof for Lemma 6.3 (b)

Proof. Suppose that the pair (Go,P) is a Gaussian linear DCG model with specified
edge weights in Figure D.3, where the non-specified edge weights can be chosen arbi-
trarily. Once again to be explicit, we state all d-separation rules entailed by G; and

(5. Both graphs entail the following sets of d-separation rules:
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Figure D.3:: 12-node examples for Lemma 6.3.(b)

(1) For any node A € {Xs, X7, X5} and B € {X, X5}, A is d-separated from B given
{XQ,Xg} U C for any C c {Xl, X4, X5,X6,X7,X8,X9,X10, Xll; Y} \ {A, B}

(2) For any node A € {Xy, X109, X11} and B € {X;, X5}, A is d-separated from B
given {Xg,X4} U C for any O - {Xl,XQ,Xg,X5,X6,X7,X8,X9,X10 ,XH,Y} \
(A, BY.

(3) For any nodes A, B € {Xg, X7, X3}, A is d-separated from B given {X,, X3}UC
for any CC {X17 X47 X57 X67 X77 X87 X97 XlOa X117 Y} \ {A7 B}

(4) For any nodes A, B € {Xy, X109, X11}, A is d-separated from B given { X3, X4 }UC
for any CC {X17 X27 X57 X67 X77 X87 X97 X107 X11> Y} \ {A7 B}

(5) For any nodes A € {Xg, X7, Xg} and B € {X,}, A is d-separated from B given
{ X, X3} UC for any C' C { X1, Xy, X5, Xg, X7, X5, Xo, X10, X11, Y} \ {4, B}, or
given {Xl, XQ, X5} U D for any D C {X4,X6,X7,X8,Y} \ {A, B}

(6) For any nodes A € {Xs, X7, Xg} and B € {Y}, A is d-separated from B given
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{X27X3} U C for any C C {Xl7X47X57X67X77X87X97X107X11a Y} \ {A7 B}a or

given {Xl,XQ,Xg)}UD for any D C {X4,X6,X7,X8, 7X97X10 7X117 Y}\{A, B}

(7) For any nodes A € {Xy, X19,X11} and B € {Xy}, A is d-separated from B
given { X3, X, } UC for any C C { Xy, Xa, X5, Xo, X10, X11, Y} \ {4, B}, or given
(X1, X1, X5} UD for any D C {Xs, Xo, X10, X11, Y} \ {4, B}.

(8) For any nodes A € {Xy, Xi9, X11} and B € {Y}, A is d-separated from B given
{X3, X4} UC for any C C { Xy, Xa, X5, X6, X7, X5, Xo, X10, X11, Y} \ {4, B}, or
given { X1, Xy, X5} UD for any D C {Xs, X, X7, X5, Xo, X10 , X11, Y} \ {4, B}.

(9) For any nodes A € {X¢, X7, Xs}, B € {Xo, X10, X11}, A is d-separated from B
given {Xg}UOUD for C' C {Xl, XQ, X4}, C 7é @ and D C {Xl, XQ, X4, X5, X67X7,X8,X9,X10, X
{A, B,C}.

(10) X2 is d—separated from X3 given {Xl, X5}UC for any C C {Xl, X4, X5, Xg, XlO; X117 Y}

(11) X3 is d-separated from X, given {X;, X5} U C for any C' C {X;, X4, X5, Xs
7X77X87Y}'

(12) X3 is d-separated from Y given {X;, X5} U C for any C C {X;, Xy, X5, X
7X77X87X97X107X11}-

(13) X, is d-separated from X3 given { X7, X5}UC for any C' C { X4, X9 , X109, X11, Y}
(14) X, is d-separated from X3 given {X;, X5} UC for any C' C { X, X¢, X7, X5, Y }.

(15) Y is d-separated from X3 given {X;, X5} U C for any C' C {Xs, X, X7, X3
7X47X97X107X11}-

The set of d-separation rules entailed by (G that is not entailed by G, is as

follows:

(a) X is d-separated from Xj; given {Xy, X3, X4, Y} U C for any C C {Xs, X5
7X87X97X107X11}-
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Furthermore, the set of d-separation rules entailed by (G5 that is not entailed by

(G, is as follows:
(b) X, is d-separated from X, given X; or {X;,Y}.
(¢) Xy is d-separated from Y given X or {X;, X4}.
(d) X4 is d-separated from Y given X; or {X;, Xo}.

It can then be shown that by using the co-efficients specified for G5 in Figure D.3,
CI(P) is the union of the CI statements implied by the sets of d-separation rules
entailed by both G and G5. Therefore (G1,P) and (Go,P) satisfy the CMC. It is
straightforward to see that (g5 is sparser than (; while (G; entails more d-separation
rules than Gj.

Now we prove that (G, P) satisfies the MDR assumption and (Go,P) satisfies
the identifiable SMR assumption. First we prove that (G, P) satisfies the identifiable
SMR assumption. Suppose that (Gz,P) does not satisfy the identifiable SMR assump-
tion. Then there exists a G' such that (G,P) satisfies the CMC and G has the same
number of edges as GG, or fewer edges than G5. Since the only additional CI statements
that are not implied by the d-separation rules of G5 are X7 L X5 | { X3, X3, X4, YIUC
for any C' C {Xs, X7, X3, Xo, X10, X11} and (G, P) satisfies the CMC, we can consider
two graphs, one with an edge between (X7, X5) and another without an edge between
(X1, X5). We firstly consider a graph without an edge between (X7, X5). Since G does
not have an edge between (X;, X5) and by Lemma 6.1, G should entail at least one
d-separation rule from (a) X; is d-separated from X5 given {X,, X3, Xy, Y} U C for
any C' C {Xg, X7, X3, X9, X190, X11}. If G does not have an edge between (X5, X3), by
Lemma 6.1 G should entail at least one d-separation rule from (10) X5 is d-separated
from X3 given {X;, X5} U C for any C C {X;, X4, X5, Xo, X10, X11,Y}. These two
sets of d-separation rules can exist only if a cycle X7 — Xy — X5 — X3 — X; or
X1 Xy + X5+ X3+ X exists. In the same way, if G does not have edges between

(X3, X4) and (X3,Y), there should be cycles which are X; - A — X5 — X3 — Xj
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or X; «+ A<+ X5 < X3 < X, for any A € {X4,Y} as occurs in G;. However
these cycles create virtual edges between (X3, Xy), (X2,Y) or (X4,Y) as occurs in GGy.
Therefore GG should have at least 3 edges either real or virtual edges. This leads to a
contradiction that G has the same number of edges of G5 or fewer edges than Gs.

Secondly, we consider a graph G with an edge between (Xi, X5) such that
(G,P) satisfies the CMC and G has fewer edges than G,. Note that G entails
the maximum number of d-separation rules amongst graphs with an edge between
(X1, X5) satisfying the CMC because CI(P)\ {X; L X5 | { X2, X3, X4, Y}UC for any
C C {Xs, X7, Xs, Xo, X190, X11} is exactly matched to the d-separation rules entailed
by Gp. This leads to Dgep(G) C Dsep(Gr) and Dy,(G) # Dyep(G). By Lemma 6.2,
G cannot contain fewer edges than G;. However since GGy has fewer edges than Gy, it
is contradictory that GG has the same number of edges of G5 or fewer edges than G,.
Therefore, (G, P) satisfies the identifiable SMR assumption.

Now we prove that (G1,P) satisfies the MDR assumption. Suppose that (G, P)
fails to satisfy the MDR assumption. Then, there is a graph G such that (G, P) satisfies
the CMC and G entails more d-separation rules than G or as many d-separation
rules as G1. Since (G, P) satisfies the CMC, in order for G to entail at least the same
number of d-separation rules entailed by (G;, G should entail at least one d-separation
rule from (b) X, is d-separated from Xy given X; or {X;,Y}, (c¢) X5 is d-separated
from Y given X; or { X7, X4} and (d) X, is d-separated from Y given X; or {X;, Xo}.
This implies that G does not have an edge between (Xs, Xy), (X2,Y) or (X4, Y) by
Lemma 6.1. As we discussed, there is no graph satisfying the CMC without edges
(X2, Xy), (X2,Y), (X4,Y), and (X3, X5) unless G has additional edges as occurs in
G1. Note that the graph G entails at most six d-separation rules than G; (the total
number of d-separation rules of (b), (c), and (d)). However, adding any edge in the
graph GG generates more than six more d-separation rules because by Lemma 6.1, G
loses an entire set of d-separation rules from the sets (1) to (15) which each contain

more than six d-separation rules. This leads to a contradiction that G entails more
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d-separation rules than G; or as many d-separation rules as G;.
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