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Stochastic reaction networks within interacting
compartments

Aidan S. Howells

Abstract

Stochastic reaction networks, which are usually modeled as continuous-time Markov chains
on Zd

≥0, and simulated via a version of the “Gillespie algorithm,” have proven to be a useful
tool for the understanding of processes, chemical and otherwise, in homogeneous environ-
ments. There are multiple avenues for generalizing away from the assumption that the
environment is homogeneous, with the proper modeling choice dependent upon the context
of the problem being considered. One such generalization was recently introduced in [1],
where the proposed model includes a varying number of interacting compartments, or cells,
each of which contains an evolving copy of the stochastic reaction system. The novelty of
the model is that these compartments also interact via the merging of two compartments
(including their contents), the splitting of one compartment into two, and the appearance
and destruction of compartments. This thesis begins the systematic exploration of the
mathematical properties of this model. We (i) obtain basic/foundational results pertain-
ing to explosivity, transience, recurrence, and positive recurrence of the model, (ii) explore
a number of examples demonstrating some possible non-intuitive behaviors of the model,
(iii) identify the limiting distribution of the model in a special case that generalizes three
formulas from an example in [1], and (iv) examine the case where the splitting rate is
content-dependent. This thesis is best viewed as an expanded version of [2], and will be
familiar to readers of that paper. New items in the thesis include an expanded exposi-
tion (e.g. Remark 2.3.5), proofs of some results which were left as exercises to the reader
(e.g. Proposition 4.2.3), and a brand-new chapter with a case study on content-dependent
fragmentation (point (iv) above).
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Chapter 1

Introduction

Stochastic reaction networks are commonly utilized to model various types of systems

in the biological sciences. These mathematical models are often continuous-time Markov

chains and are used when the counts of at least some of the underlying “species,” which are

most commonly different molecule types, are low. In this low copy-number case, the state

of the model is a vector giving the integer counts of the different species and transitions

are governed by the different possible “reactions” that can take place. These models are

typically simulated via the Gillespie algorithm (see [3, 4]) or the next reaction method

(see [5, 6]). See [7], and references therein, for more on this type of model.

One potential drawback to the standard model is that it assumes a homogeneous

environment. There are multiple ways to generalize away from this assumption. One

common generalization is to split the environment into different fixed pieces (often called

“voxels”), assume that the chemistry is well mixed within each voxel, and then allow for

transitions between adjacent voxels; see [8, 9]. Thinking of the size of the voxels going to

zero leads naturally to a model with continuous space in which the state of the system is

given by the type, position, velocity, etc., of each particle in the system. A reaction can

then only take place when the necessary constituent molecules are near each other (with

the precise mechanism for defining when they are “near enough” left to the modeler). One

of the first examples of such a continuous space model was introduced by Doi in [10]. More
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generally, there are a whole class of continuous space models known as reaction-diffusion

models. For a brief overview of such models, see [11]. For a comparison of two specific

such models, with an approachable introduction, see [12]; for a more general approach,

see the introduction of [13].

A different approach to generalize from the homogeneous case is to imagine some fixed

collection of compartments and model the dynamics within each compartment in the usual

way (as a continuous-time Markov chain as described in the first paragraph above) while

also allowing for interactions between adjacent compartments. This is the approach taken

in [14] in an ecological context (their “patches” are our “compartments”). However, ideally

one might like to also account for situations like in cellular biology, where reactions take

place in cells that are not static but, for example, can appear, divide, possibly merge, or

even be destroyed. That is the approach presented in a recent paper by Duso and Zechner,

where they developed a Markov model for stochastic reaction networks within interacting

compartments [1]. In particular, their model consists of two basic components:

1. a stochastic model of a chemical reaction network;

2. a dynamic model of compartments, or cells, which themselves undergo basic tran-

sitions such as (i) arrivals, (ii) departures, (iii) mergers, and (iv) divisions. In the

context of [1], these four transition types are referred to as inflows, exits, coagula-

tions, and fragmentations, respectively.

Each compartment, or cell, contains a copy of the (evolving) chemical reaction network.

When two cells merge, their contents are combined. When a cell divides, its contents

are randomly split among the two new daughter cells. Beyond the framework itself, their

paper focuses on the framework’s practical use, using moment closure methods to derive

estimates for various population statistics which are then validated by simulation. They

also derive stationary distributions for some special cases.

In this thesis, we attempt to lay the groundwork for exploration of mathematical ques-

tions about the Markov chain model developed in [1]. We focus on the special case where

the compartments can only enter, leave, merge, and divide, all according to mass action
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Figure 1.1: Imagine the reactions ■ + ■ → • and 0 → ■, taking place inside com-
partments. The top shows a possible initial state of the system. The middle shows four
possible changes that could take place in the system: one compartment is entering, two
compartments are merging, and the other two compartments have chemistry taking place
inside them. The bottom shows the state of the system after the changes.
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kinetics and unaffected by their contents. Questions pertaining to recurrence, transience,

and explosivity are all considered. We show that in most, but not all, parameter regimes

the overall qualitative behavior of the model (i.e., recurrence, transience, or explosivity)

is the same as that of one of the associated stochastic reaction networks. We also analyze

myriad examples that, taken together, demonstrate some of the non-intuitive (and inter-

esting) possible behaviors of the model. Moreover, we derive the stationary distribution

for the model in the case where the chemistry inside the compartments is well understood

in the sense that a formula for the distribution is known for all time (e.g., the DR models

of [15]) and the compartments themselves are not allowed to interact (but are not totally

static, being allowed to enter and leave the system). Two special cases of this stationary

distribution are provided as illustration, both of which generalize formulas from an ex-

ample in [1]. Lastly, we devote a chapter to the case where the rate of fragmentation is

affected by the contents of the compartment. In that case we are able to obtains some

results about explosivity, positive recurrence, and transience, some of which imply that a

stationary distribution which was approximated numerically in [1] actually exists.

Before moving on, we warn the reader that in the field of epidemiology, the term

“compartment model” has a different meaning. There the compartments are what we

would call species. For example, they would speak of an SIR model as dividing individuals

into a susceptible compartment, an infected compartment, and a recovered compartment.

See e.g. [16].

A standard knowledge of continuous-time Markov chains is assumed. See for example

Norris [17] for a detailed introduction to the topic. That said, we briefly pause to clarify

the role of the generator of a process, which plays a key role in much of the analysis

found in this thesis. Multiple different definitions of the generator of a of continuous-time

Markov chain exist in the literature, all equivalent under suitable convergence assumptions

(for example, the generator and full generator are defined in a more general context in

chapter 1 of [18], whose proposition 1.5(c) relates them; see also chapter 5 of the same for

details on the specialization of those definition to Markov processes). For the purpose of
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this thesis, we work with the following:

Definition 1.0.1: Suppose X is a Markov chain with countable state space S. For x, y ∈

S, let qxy denote the rate that X transitions to state y from state x (that is, if pxy(t) =

Px(X(t) = y), then qxy = p′xy(0)). For f : S × [0,∞) → R such that t 7→ f(x, t) is

differentiable for each x, define the generator L of X via

Lf(x, t) :=

∑
y∈S

f(y, t)qxy

+
∂

∂t
f(x, t).

whenever the sum is absolutely convergent (in which case we will say that f is in the

domain of the generator).

Note that most of the functions f which we take the generator of in this paper will

not vary in time (that is, f(x, t) will take the form f(x), and so the time derivative term

will vanish). The exception is in the proof of Theorem 6.1.1, which involves constructing

a time-dependent Lyapunov function.

For notational convenience, we will use the following shorthand notations: for any two

vectors v, w ∈ Rd
≥0 and any vector x, y ∈ Zd

≥0 we denote

vw =
d∏

i=1

(vi)
wi and x! =

d∏
i=1

(xi)! and

(
x

y

)
=

d∏
i=1

(
xi
yi

)
,

with the conventions that 00 = 1 and that
(
x
y

)
= 0 for y < 0 or y > x. Moreover, we will

always use d to represent the number of species in the model. Finally, for x ∈ Zd
≥0 we

define ex : Zd
≥0 → Z to be the function taking the value of one at x and zero otherwise.

The remainder of the paper is outlined as follows. In chapter 2, we fully specify the

model. Further, we give two different mathematical representations that are both useful

and prove some first basic properties. In the brief section 3.1, we prove that the full

model is explosive if and only if the associated reaction network is. In section 3.2, we

give conditions for when the full model is recurrent, positive recurrent, or transient. In

section 4, we provide the stationary distribution for a special class of models. Finally, in



6

chapter 5, we define and study a related model in which the compartment fragmentation

rate depends on the contents of the compartment.
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Chapter 2

The reaction network within

interacting compartments (RNIC)

model

As discussed in the introduction, the full model we consider here consists of two sub-

models: (i) a stochastic reaction network and (ii) a dynamic model of compartments, or

cells, each of which contains an evolving copy of the stochastic reaction network. We first

describe these sub-models individually and then specify how they are combined to make

the full model.

2.1 Stochastic reaction networks

Suppose we have a finite set S, whose elements we shall call species, and a directed

graph whose vertices are unique linear combinations of species with non-negative integer

coefficients. The edges of the graph are called reactions; let R denote the set of reactions.

The linear combinations which appear as vertices in the graph are called complexes; the

set of complexes will be denoted C. A chemical reaction network (or just reaction network ;

CRN for short) is the tuple I = (S, C,R), where S, C and R are as above. See Figure 2.1
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A+B 0 B A+ 2B A

2B

Figure 2.1: The CRN with species A and B and reactions A + B → 0, 0 → B, B → 0,
2B → 0, and A+ 2B → A. Note that 0 here denotes the linear combination 0A+ 0B.

for an example reaction network.

When talking about specific reaction networks, the species will usually be represented

by capital Latin letters. When talking generally, there will be d species S1, . . . , Sd. In

this case we will identify Zd with the space of linear combinations of species with integer

coefficients. That is, we naturally identify ν ∈ C with the vector in Zd whose ith element

is the coefficient of Si in ν. We will speak of reactions ν → ν ′ ∈ R, or sometimes, when

we wish to enumerate the reactions as {νr → ν ′r}, we will simply write r ∈ R.

There are multiple ways to associate a mathematical model to a given reaction network,

including the use of a deterministic ODE [19], a diffusion process [20, 21], and a continuous-

time Markov chain [7]. The only one of concern to us here is the continuous-time Markov

chain model with stochastic mass-action kinetics, in which the state of the system is

a vector giving the number of each species present and transitions are determined by

the reactions. To fully specify the model, positive (or sometimes, merely non-negative)

numbers, called rate constants, are assigned to each reaction. If the reaction ν → ν ′

has rate constant κ, then in state x that particular reaction occurs with rate κ
(
x
ν

)
and

when it occurs the chain transitions to state x + ν ′ − ν. So the reactions will happen

with rate proportional to the number of ways the chemicals can combine to allow them to

happen, and κ is the constant of proportionality. If K is a set of rate constants, one for

each reaction, we denote by IK = (S, C,R,K) the corresponding stochastic mass-action

system. If we let κν→ν′ be the rate constant for the reaction ν → ν ′, then the Markov
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chain transitions from state x ∈ Zd
≥0 to state y ∈ Zd

≥0 with rate

q(x, y) =
∑

ν→ν′∈R
ν′−ν=y−x

κν→ν′

(
x

ν

)
=

∑
ν→ν′∈R
ν′−ν=y−x

κν→ν′

d∏
j=1

(
xj
νj

)
(2.1)

where the sum is over those reactions for which ν ′ − ν = y − x. For r = νr → ν ′r ∈ R, we

denote the rate of the reaction r in state x ∈ Zd
≥0 by λr(x):

λr(x) = κr

(
x

νr

)
(2.2)

Note that λν→ν′(x) = 0 if xi < νi for some i, since
(
m
k

)
= 0 for k > m. Note also

that not all authors take the same conventions as we do here. In fact, the convention we

use here pertaining to our rate constants is more in line with the biology literature [22].

In the mathematical literature it is more common to use a falling factorial λν→ν′(x) =

κν→ν′
∏

j(xj)(xj − 1) · · · (xj − νj + 1) = κν→ν′
x!

(x−ν)! , at the cost that their rate constant

κ is no longer the constant of proportionality when the reaction takes multiple inputs [7].

This choice plays no fundamental role in our results, but makes certain expressions cleaner

in the present context.

We note here that many of the results found in this paper can be generalized to systems

with kinetics, i.e., rate functions λr, other than mass-action. See Remark 3.2.7.

Put more succinctly, we have a Markov process on Zd
≥0 with infinitesimal generator

Lf(x) =
∑
r∈R

λr(x)(f(x+ ν ′r − νr)− f(x)),

where λr is determined via (2.2), and the above is valid for all functions f that are

compactly supported [18]. The Kolmogorov forward equation, often called the chemical

master equation in the context of reaction networks, is then

d

dt
Pµ(x, t) =

∑
r∈R

λr(x− (ν ′r − νr))Pµ(x− (ν ′r − νr), t)−
∑
r∈R

λr(x)Pµ(x, t),
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where Pµ(x, t) = Pµ(X(t) = x) is the probability the process X is in state x ∈ Zd
≥0 at time

t, given an initial distribution of µ. We take the convention that Pµ(x, t) = 0 for x /∈ Zd
≥0.

One way to represent the solution to the stochastic model described above is via a

representation developed and popularized by Thomas Kurtz. Let {Yr}r∈R be a collection of

independent, unit-rate Poisson processes, one for each possible reaction, and let X(t), t ≥

0, be the solution to

X(t) = X(0) +
∑
r∈R

Yr

(∫ t

0
λr(X(s))ds

)
(ν ′r − νr), (2.3)

then X is a continuous-time Markov chain that satisfies the conditions of the model spec-

ified above [7, 18, 23].

Example 2.1.1: Suppose we assign rate constants to the example CRN in Figure 2.1 as

follows:

A+B 0 B A+ 2B A

2B

10 2

κ

8

6
(2.4)

Let x = (a, b) ∈ Z2
≥0 denote an arbitrary state of the system. For the particular choice of

rate constants given above the positive transition rates q((a, b), ·), for a, b ∈ Z≥0, are

Reaction(s) Transition Rate

A+B → 0 (a, b) 7→ (a− 1, b− 1) 10ab

0 → B (a, b) 7→ (a, b+ 1) 2

2B → 0 and A+ 2B → A (a, b) 7→ (a, b− 2) 6
b(b− 1)

2
+ 8a

b(b− 1)

2

B → 0 (a, b) 7→ (a, b− 1) κb

We chose to write 6 b(b−1)
2 + 8a b(b−1)

2 instead of 3b(b − 1) + 4ab(b − 1) to emphasize our

choice of intensity functions. Note that all other rates, such as q((a, b), (a + 1, b)) or

q((a, b), (a+ 12, b− 3)), are zero. △
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2.2 Compartment model

Having fully specified our CRN, IK = (S, C,R,K), we turn to our next sub-model: the

compartment model. As mentioned in the introduction, we will assume that compart-

ments, or cells, can arrive, depart, merge, and divide. We can use the notation of chemical

reaction networks to describe the four possibilities visually via a reaction network,

0 C 2C

with 0 → C representing arrivals, C → 0 representing departures, C → 2C representing

division, or fragmentation, and 2C → C representing mergers, or coagulations. Moreover,

we assume that the stochastic model tracking the number of compartments behaves as a

standard stochastic reaction network as already described in the previous section (however,

see Remark 3.2.7 for an allowable generalization to the choice of kinetics). We will term this

reaction network the compartment network, and denote it by H = (Scomp, Ccomp,Rcomp).

Note that Scomp = {C} and Ccomp is a subset of {0, C, 2C} (depending on which rate

constants are non-zero). If rate constants are added as follows,

0 C 2C
κI

κE

κF

κC

where each κE , κI , κC , κF ≥ 0, then we will denote the corresponding stochastic mass-

action system by HK = (Scomp, Ccomp,Rcomp,Kcomp). According to (2.3), if we denote by

MC(t) the number of compartments at time t, then one way to represent this model is as

the solution to

MC(t) =MC(0) + YI (κIt)− YE

(∫ t

0
κEMC(s)ds

)
+ YF

(∫ t

0
κFMC(s)ds

)
− YC

(∫ t

0
κC

MC(s)(MC(s)− 1)

2
ds

)
,

where YI , YE , YF , and YC are independent unit-rate Poisson processes.
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2.3 Specifying the full, combined model

Our full model, which we will term a reaction network within interacting compartments

(RNIC), begins with two networks, one representing the dynamics of the compartments

themselves and one representing the chemistry taking place inside the compartments.

• A CRN HK of the form 0 ⇆ C ⇆ 2C, called the compartment network. The state

of this CRN (in Z≥0) will be the number of compartments.

• An CRN IK, called the chemistry (or Internal network), with d species.

The behavior of the model between transitions of the compartment model is straight-

forward: the CRN within each compartment evolves independently as a Markov chain

with transition rates specified by (2.1). All that remains is to specify what happens to the

full model at the transition times of the compartment model. Hence, there are four cases

to consider.

• An arrival: 0 → C. We assume the existence of a probability measure µ on Zd
≥0.

Each time an arrival event occurs, we add a new compartment whose initial state is

chosen according to µ, independent of the past. (Note that µ is not necessary when

κI = 0.)

• A departure: C → 0. When a departure event occurs, we choose one of the com-

partments, uniformly at random, for deletion.

• A merger: 2C → C. When a merger event occurs, we select two compartments, uni-

formly at random. We replace the chosen compartments with a single compartment.

The state of the new compartment is the sum of the states of the two it replaced.

• A division: C → 2C. When a division event occurs, we select a compartment,

uniformly at random. We replace the chosen compartment with two new compart-

ments, whose initial states are determined by having each molecule from the chosen

compartment select one of the two new compartments uniformly. For example, if
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there are nA type A species in the chosen compartment, then one of the new com-

partments will get a number of A molecules given by a binomial distribution with

parameters nA and p = 1
2 , and the other compartment will get nA minus that value.

This whole system will be denoted F = (IK,HK, µ).

Remark 2.3.1: Above, we assume that when divisions, i.e., compartment transitions of

the form C → 2C, happen, each molecule picks a new compartment uniformly at random.

This assumption makes the constructions in this paper easier. However, our proofs only

require that the total number of each species across compartments is preserved when each

division happens. △

Similar to our network representations for reaction networks, we can specify the above

model through a picture of the following form:

IK 0 C 2C µ
κI

κE

κF

κC

(2.5)

where “IK” is a stand-in for a standard CRN diagram, such as the one in (2.4).

Example 2.3.2: If IK is exactly the network diagrammed in Example 2.1.1 and µ is the

point mass with 3 molecules of A and 4 molecules of B, we would write

A+B 0 B A+ 2B A

2B

10 2

κ

3

5
0 C 2C

κI

κE

κF

κC

δ(3,4)(a, b)

△

See also Example 2.3.8 for another specific example.

There are multiple avenues for generalizations. For example, when a merger occurs it

could be that not all the molecules make it into the new compartment, or when a division

occurs it could be that some molecules are lost, or there is a non-uniform mechanism for

distributing the molecules. Moreover, it could be that the rate of compartment fragmen-

tation or exit depends on the internal state of the compartment. These models all fall
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under the more general framework given in [1] and could be studied mathematically in the

future if there is a desire, but for the initial development of the mathematics we choose to

keep things simpler.

2.3.1 Simulation representation

There are multiple ways to describe a Markov model satisfying the information given

in the ingredients F = (IK,HK, µ). The first we give is what we term a “simulation”

representation in which we enumerate the compartments and track the counts of the

species in each compartment.

The simulation representation will be a Markov chain F sim whose state is a finite vector

of elements of Zd
≥0, where d, as always, is the number of species. We first describe the

model via an example. Afterwards we will provide the mathematical details.

Example 2.3.3: Consider again the model from Example 2.3.2. Suppose that at time T

there are 4 compartments, where the first has two A and two B, the second has no A and

one B, the third again has two of each, and the last has one A and twelve B. Then the

state of the model F sim would be the vector
 2

2

 ,
 0

1

 ,
 2

2

 ,
 1

12


 .

We now suppose that at time T a transition occurs. We first consider four possibilities if

the transition is due to a reaction of the compartment model.

• Suppose first that the compartment transition is an inflow event. We will make

the convention that the new compartment due to an inflow reaction will always be

placed at the end of the vector of states. Hence, because the initial distribution for

arriving compartments is a point mass at (3, 4) the new state of the full system is


 2

2

 ,
 0

1

 ,
 2

2

 ,
 1

12

 ,
 3

4


 .
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• Next suppose that the compartment transition is an exit event. In this case we must

choose a compartment at random, delete it from the vector, and re-index the other

components. Thus, we start by choosing from {1, 2, 3, 4}, each with probability 1/4.

Suppose that the value 3 is chosen so that the third compartment will be deleted.

In this case, the new state of the full system is


 2

2

 ,
 0

1

 ,
 1

12


 .

• Now suppose that the compartment transition is a merger, or coagulation. Now

we must select two compartments at random and combine their contents. We will

always choose that the combined contents of the compartments will be placed within

the compartment with the lower index and will delete the compartment with the

higher index. Thus, assuming we choose the compartments indexed 1 and 2, we then

merge the first and second compartments and place their contents into compartment

1 (since it has the smaller index of the two chosen) and then delete the second

compartment. The resulting state is


 2

3

 ,
 2

2

 ,
 1

12


 .

• Finally, we suppose that the compartment transition is a fragmentation. The pro-

cedure will be as follows. We will first choose the index of the compartment that

fragments, we then create two new compartments and will then split the contents

between these new compartments (with each particular molecule choosing between

the new compartments with equal probability). The originally chosen compartment

will be deleted and the two new compartments will be placed at the end of the vector

of states.

For example, suppose we choose compartment 3 for fragmentation (which occurs
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with probability 1/4). We then split the contents of the original third compartment

(four molecules total, 2 of A and 2 of B) uniformly at random between the two new

compartments. Suppose for concreteness that we split as

 1

2

 and

 1

0

. Then,

after deleting the 3rd compartment and adding these two onto the end we have a

new state for the full model of
 2

2

 ,
 0

1

 ,
 1

12

 ,
 1

2

 ,
 1

0


 .

It is also possible that the transition at time T was due to a reaction taking place

within one of the compartments. For example, if the reaction A+2B → A happens inside

the fourth compartment, then the state of the whole system, F sim, will become


 2

2

 ,
 0

1

 ,
 2

2

 ,
 1

10


 .

△

Now we give the formal mathematical description of F sim. First, let {MC(t)}t≥0 be the

Markov chain associated to the compartment networkHK. ThenMC(t) will be the number

of compartments at time t. Let {Ti}∞i=0 be the jump times for this Markov chain, where

T0 = 0. For any i ≥ 0 and any j = 1, . . . ,MC(Ti), let {Xi
j(t)}t∈[Ti,Ti+1] be realizations of

the Markov chain associated to IK with initial distributions (at time Ti) specified below.

Suppose that for any i1, i2 and j1, j2 with either i1 ̸= i2 or j1 ̸= j2, the chains Xi1
j1

and

Xi2
j2

are independent conditional on their initial conditions, and suppose that the initial

distributions are chosen in the following manner (which are just formal characterizations

of the details provided in the example above):

• If the compartment transition at time Ti+1 was an inflow event (0 → C), then let

Xi+1
j (Ti+1) = Xi

j(Ti+1) for j = 1, . . . ,MC(Ti), and for j = MC(Ti+1) = MC(Ti) + 1

let Xi+1
j (Ti+1) be distributed according to µ, independently of everything in the
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past.

• If the compartment transition at time Ti+1 was an exit event (C → 0), then let Ji be

chosen uniformly at random from {1, · · · ,MC(Ti)}, independently of everything in

the past. Let Xi+1
j (Ti+1) = Xi

j(Ti+1) for j < Ji, and let Xi+1
j (Ti+1) = Xi

j+1(Ti+1)

for j ≥ Ji.

• If the compartment transition at time Ti+1 was a merger, or coagulation, event

(2C → C), then let J1
i and J2

i be chosen uniformly at random from {1, · · · ,MC(Ti)}

and {1, · · · ,MC(Ti)}\{J1
i }, respectively, independent of everything in the past. Let

Xi+1
j (Ti+1) = Xi

j(Ti+1) for j < max{J1
i , J

2
i } with j ̸= min{J1

i , J
2
i }, let X

i+1
j (Ti+1) =

Xi
j+1(Ti+1) for j ≥ max{J1

i , J
2
i }, and let Xi+1

j (Ti+1) = Xi
J1
i
(Ti+1) + Xi

J2
i
(Ti+1) for

j = min{J1
i , J

2
i }.

• If the compartment transition at time Ti+1 was a fragmentation event (C → 2C),

then let Ji be chosen uniformly at random from {1, · · · ,MC(Ti)}, independently

of everything in the past. Let {Zi
k(x) : x ∈ Zd, k = 1, . . . , d} be a collection of

random variables, independent of each other and everything else, with Zi
k(x) ∼

Binom (0.5, xk). Let Z
i(x) denote the vector

(
Zi
1(x), · · · , Zi

d(x)
)
. Let Xi+1

j (Ti+1) =

Xi
j(Ti+1) for j < Ji, let X

i+1
j (Ti+1) = Xi

j+1(Ti+1) for j = Ji, . . . ,MC(Ti) − 1, and

for j = MC(Ti) let Xi+1
j (Ti+1) = Zi(Xi

Ji
(Ti+1)) and Xi+1

j+1(Ti+1) = Xi
Ji
(Ti+1) −

Xi+1
j (Ti+1).

Let F sim(t) be the vector
(
Xi

1(t), X
i
2(t), · · · , Xi

MC(t)(t)
)
, where i is such that Ti ≤ t <

Ti+1.

Lemma 2.3.4: The process {F sim(t)}t≥0 is a continuous time Markov chain with state

space
⋃

m≥0

(
Zd
≥0

)m
, the space of finite tuples of elements of Zd

≥0.

Proof. To show that this is a Markov process we have to show that the holding times are

exponential and the updates are independent of the holding times. To see that the holding

times are exponential, notice that since MC is a Markov chain it has exponential holding
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times, and similarly for eachXi
j . But the holding times for these processes are independent,

and the minimum of independent exponential random variables is itself exponential.

Furthermore, the minimum of a (finite) collection of independent exponential random

variables is independent of the index at which the minimum occurs, so the updates are

indeed independent of the holding times.

The fact that F sim takes values in the space of finite tuples is equivalent to MC being

finite for all time, which in turn is equivalent to the fact thatMC is not explosive, regardless

of the choice of rate constants in HK. This is a standard result in the theory of 1-d mass

action stochastic reaction networks; see for instance [24].

2.3.2 An explicit construction of the simulation representation

We discuss one way of constructing the model described in Section 2.3.1, in the spirit of

the Kurtz representation (2.3). Here, by “construction” we mean an explicit detailing of

the random processes and random variables needed to generate a single realization of the

process. The construction is of interest since it is amenable to analysis, coupling methods,

simulation methods, etc. The construction will be used later in this paper to verify some

behaviors of Example 3.2.21.

Let F = (IK,HK, µ) be as above. Suppose that MC(0) is the initial number of com-

partments in the system and further suppose that MC is given as the solution to

MC(t) =MC(0) + YI (κIt)− YE

(∫ t

0
κEMC(s)ds

)
+ YF

(∫ t

0
κFMC(s)ds

)
− YC

(∫ t

0
κC

MC(s)(MC(s)− 1)

2
ds

)
,

(2.6)

where YI , YE , YF , and YC are independent unit-rate Poisson processes. Then MC is the

Markov chain on Z≥0 associated to HK, so that MC(t) gives the number of compartments

at any time t ≥ 0.

The jump times of the counting processesRI(t) = YI (κIt), RE(t) = YE

(∫ t
0 κEMC(s)ds

)
,

RF (t) = YF

(∫ t
0 κFMC(s)ds

)
, and RC(t) = YC

(∫ t
0 κC

MC(s)(MC(s)−1)
2 ds

)
determine when

the RNIC model transitions due to changes in the count of the compartments. To each
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such transition we will also require a collection of random variables needed to carry out

the updates in the RNIC model. We detail these random variables below.

The construction below may be confusing; the following remark is intended to help

clarify.

Remark 2.3.5: At several places in this construction (specifically, when compartment

transitions happen), we need to sample from a random variable which is not uniform on

[0, 1]. For example, when a cell inflow happens we need to sample from µ, when a cell

exit happens we need to sample uniformly from 1, 2, · · · ,MC(t), etc.. But in each case

we define uniform random variables u and use them in the construction. Why does this

work? And why do we do it?

This works because a random variable with any distribution can be defined as a

function of a uniform [0, 1] random variable. For example, considering µ again, if we

order Zd
≥0 somehow as x1, x2, x3, · · · , let pk =

∑k
j=1 µ(xk), k = 0, 1, 2, · · · , and let

f(t) = xkI(pk−1,pk](t), then f(u) is distributed according to µ whenever u is uniform.

Why do we do it this way, instead of just asking directly for a collection of random

variables with the required distribution? The answer is that we need to fully specify how all

random variables depend on each other, and if (for example) we just used uniform random

variables on 1, 2, · · · ,MC(t) for compartment exit, then those random variables wouldn’t

be independent of YI , YE , YF , YC , becauseMC(t) depends on YI , YE , YF , YC . Our approach

splits the construction of the random variable for the index of the exiting compartment into

two steps: Choosing a distribution to sample from, and sampling from it. The first step is

a function of YI , YE , YF , YC , and the latter is independent from them, so the dependence

is fully described. △

In the description below all random variables are independent of each other and of the

Poisson processes YI , YE , YF , YC . We require:

• A collection of independent uniform random variables {uIi } on [0, 1], i = 1, 2, . . . .

When RI(T )−RI(T−) = 1, the random variable uIRI(T ) is used to generate a sample

from µ.
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• A collection of independent uniform random variables {uEi } on [0, 1], i = 1, 2, . . . .

When RE(T )−RE(T−) = 1, the random variable uERE(T ) is used to determine which

compartment exits at that time.

• Two collections of independent uniform random variables on [0, 1]: (i) {uFi }, i =

1, 2, . . . , and (ii) an array {ûFi,j}, i, j ∈ {1, 2, . . . }. When RF (T ) − RF (T−) = 1,

the random variable uFRF (T ) is used to determine which compartment fragments.

We then utilize the finite collection {ûFRF (T ),j}, j = 1, . . . ,M , where M is the total

number of molecules in the chosen compartment, to divide the different molecules

between the two new cells.

• A collection of independent uniform random variables {uCi } on [0, 1], i = 1, 2, . . . .

When RC(T )−RC(T−) = 1, the random variable uCRC(T ) is used to determine which

two compartments are chosen to merge.

Note that the collections detailed above are chosen before a realization is generated. Said

differently, the realization of the RNIC model is a function of these independent random

variables.

All that remains is to give the timing of the different chemical reactions. One method

is the following. Let {Yr}r∈R be a collection of independent (of each other, and all other

random objects so far), unit-rate Poisson processes, one for each possible reaction in IK.

Moreover, for each r ∈ R, let {uri }, i = 1, 2, . . . be a collection of independent uniform

random variables. Then, for r ∈ R, we let

Rr(t) = Yr

∑
i≥0
Ti≤t

∫ Ti+1∧t

Ti

MC(Ti)∑
j=1

λr(X
i
j(s))ds

 ,

where the Ti are the jump times of the process MC , X
i
j(s) is the state of the process in

compartment j at time s, and λr is given as in (2.2). Then Rr is the counting process that

jumps by +1 when the rth reaction takes place in some compartment. When Rr(T ) −

Rr(T−) = 1, meaning a reaction has taken place somewhere, we use urRr(T ) to determine
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the compartment within which the reaction took place. In particular, the probability that

it took place in compartment k is simply

λr(X
i
k(T−))∑MC(Ti)

j=1 λr(Xi
j(T−))

.

2.3.3 A coarse-grained representation

While the description (and construction) above is often convenient for the sake of analysis

and simulation, it is sometimes not the most natural way to think about these models. For

example, suppose we have a model with a single species, denoted S, and for which there

are two compartments at time t, so that MC(t) = 2. It is reasonable to think that we

would not care to distinguish the situation in which there are 6 molecules of species S in

the first compartment and 2 in the second, which is the state (6, 2), versus the situation of

2 molecules of S in the first and 6 in the second, which is the state (2, 6). In this situation,

we would simply care that we have one compartment with two S molecules, another with

six, and there are no other compartments.

To handle this, we consider a function n : Z≥0 → Z≥0 in which nx := n(x) gives the

number of compartments present with precisely x molecules of S (hence the notation that

“n” gives the number of compartments with different counts). In this case, the state of

the example system described above would simply be the function with

nx =


1, if x = 2

1, if x = 6

0, else.

Note that in this one-dimensional case we can also think of n as an “infinite vector.” For

example, in our example above we would have

n = (0, 0, 1, 0, 0, 0, 1, 0, 0, . . . ),
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with only zeros continuing on.

For another example, we could consider the case discussed in Example 2.3.3, where

there are two species A and B and the state for the simulation representation was


 2

2

 ,
 0

1

 ,
 2

2

 ,
 1

12


 .

In this case, the state could naturally be described by the function

nx =



2, if x =

 2

2



1, if x =

 0

1



1, if x =

 1

12


0, else.

Note that in this example, it is not natural to view n as an “infinite vector.” Instead, it

would be natural to view it as an “infinite array” with a two in the (2, 2) component, ones

in the (0, 1) and (1, 12) components, and zeros elsewhere.

Thus, we may take the following approach, as done in [1]. The state space of the

coarse-grained model will be

N := {functions n : Zd
≥0 → Z≥0 with compact support}

= {functions n : Zd
≥0 → Z≥0 with finite support}

= {functions n : Zd
≥0 → Z≥0 with finite ℓ1 norm},

(2.7)

where we observe that all three sets are the same. Given n : Zd
≥0 → Z≥0, we write
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n = (nx)x∈Zd
≥0
. For each possible state x ∈ Zd

≥0 of the chemistry, nx ∈ Z≥0 represents the

number of compartments whose chemistry has that particular state. Given Markov chains

MC and Xi
j as defined in Section 2.3.1, let N be the process where Nx(t) is the number

of compartments in state x ∈ Zd
≥0 at time t ≥ 0:

Nx(t) =
∞∑
i=0

I{t ∈ [Ti, Ti+1)}
MC(Ti)∑
j=1

I{Xi
j(t) = x}.

Note that the total number of compartments at time t ≥ 0 can be recovered from N(t)

via

MC(t) = ∥N(t)∥ℓ1 :=
∑

x∈Zd
≥0

Nx(t).

Note also that the process N transitions iff F sim does. This fact is important enough that

we state it as a lemma:

Lemma 2.3.6: Let F sim and N be as above. Then N undergoes a transition at time t iff

F sim does.

Proof. On the one hand, N is defined as a function of F sim and so N cannot transition if

F sim does not. On the other hand, all possible transitions of F sim cause a change in N :

If F sim transitions because MC does, then ∥N∥ℓ1 =MC changes, whereas if F sim changes

otherwise then the contents of some single compartment updated, which changes N .

For the lemma below, we recall that for x ∈ Zd
≥0 we define ex to be the function taking

the value of one at x and zero otherwise.

Lemma 2.3.7: Let N(t) be as defined above. Then {N(t)}t≥0 is a Markov chain taking

values in N , defined in (2.7). Moreover, for n ∈ N , the transitions rates are as follows:
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Transition type Rate

Compartment inflow n 7→ n+ ex κIµ(x)

Compartment exit n 7→ n− ex κEnx

Compartment coagulation, x ̸= y n 7→ n+ ex+y − ex − ey κCnxny

Compartment coagulation n 7→ n+ e2x − 2ex κC

(
nx
2

)
Compartment fragmentation n 7→ n− ex+y + ex + ey κFnx+yφ(x+ y, x)

(x = y allowed here)

Internal reaction r ∈ R n 7→ n− ex + ex+ν′r−νr nxκr

(
x

νr

)
where

φ(z, x) :=
d∏

k=1

(
zk
xk

)
2−zk

so that the distribution of the resulting compartments after a fragmentation is indepen-

dently binomial in each species. Note that each row mentioning x or y corresponds to an

infinite family of transitions and in the last row r ∈ R also ranges over all reactions of the

reaction network I.

Proof. The fact that N has finite support follows from the fact that F sim is always a finite

tuple, proved in Lemma 2.3.4.

The fact that N is Markovian with the rates given follows from consideration of the

infinitesimal behavior of F sim. For example, for x ̸= y ∈ Zd
≥0,

P(N(t+ h) = n+ ex+y − ex − ey|N(t) = n) = κCnxnyh+ o(h), as h→ 0,

since, to leading order, the probability that some compartment in state x merges with a

compartment in state y in the time interval [t, t + h) is κCnxnyh. The other rows of the

table follow similarly.
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Example 2.3.8: Consider the following possible compartment model:

0 S 0 C 2C 1
2δ5 +

1
2δ17

κb

κd

κI

κE

κC

Here we are keeping track of some chemical S which forms with rate κb and degrades with

rate κd. Compartments are allowed to enter with rate κI , and new compartments that

enter this way have either 5 or 17 molecules of S, each with probability 1/2. Compartments

can also exit with rate constant κE , and merge (or coagulate) with rate constant κC . Since

there is only one species, the state space for the chemistry is Z1
≥0 = Z≥0. As we detail

below, we will be assuming mass-action kinetics; in this case that means when the model

is in state n ∈ N the transition rates are given by

Transition type Rate

Compartment inflow n 7→ n+ e5 κI/2

Compartment inflow n 7→ n+ e17 κI/2

Compartment exit n 7→ n− ex κEnx

Compartment coagulation (x ̸= y) n 7→ n+ ex+y − ex − ey κCnxny

Compartment coagulation n 7→ n+ e2x − 2ex κC

(
nx
2

)
S birth n 7→ n− ex + ex+1 κbnx

S death n 7→ n− ex + ex−1 κdnxx

As before, each row mentioning x or y corresponds to an infinite family of transitions, one

for each x ̸= y ∈ Zd
≥0, and as always ex is the unit vector in direction x. △
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Chapter 3

Non-Explosivity, Recurrence, and

Positive Recurrence

3.1 Non-Explosivity

A Markov Chain is explosive if it can undergo infinitely many transitions in finite time.

The formal definition is below; see e.g. [17] for more.

Definition 3.1.1 (Explosivity): Let {X(t)}t≥0 be a continuous-time Markov chain with

countable state space S. For each m ∈ Z≥0, let τm be the time of the m-th transition of X

(formally, τ0 = 0 and τm = inf{t > τm−1 : X(t) ̸= X(τm−1)}), and let τ∞ = limm→∞ τm.

We say that X explodes if τ∞ < ∞. If there is some state x ∈ S such that with positive

probability X explodes when started in state x, we say that X is explosive.

We will show that explosivity for the RNIC model F = (IK,HK, µ) is determined by

explosivity for the internal reaction network IK. But to even talk about explosivity for F

instead of just the Markov chains F sim or N , we need the following simple proposition.

Proposition 3.1.2: Suppose we have a RNIC F = (IK,HK, µ). Let F sim and N be the

corresponding simulation and coarse-grained representations. Then F sim is explosive iff

N is explosive.
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Proof. This is immediate from lemma 2.3.6, which says that F sim and N transition at the

same times.

In light of the proposition, we will speak merely of F = (IK,HK, µ) being explosive,

and check the explosivity of either F sim or N depending on convenience. As it turns out, it

will be most convenient to check explosivity for F sim. (Indeed, the fact that explositivity

is more easily checked for F sim is one of the major reasons for introducing F sim in the first

place.)

Theorem 3.1.3: Suppose we have a RNIC F = (IK,HK, µ). Then F is explosive iff IK

is explosive.

Proof. First, suppose that IK is explosive. As discussed above, we intend to show that

F sim is explosive. By assumption, there is some x ∈ Zd such that when the Markov chain

corresponding to IK is started in state x it explodes with positive probability. In partic-

ular, there is some finite (nonrandom) time t so that the chemistry undergoes infinitely

many transitions before time t with positive probability. Start F sim in the state with one

compartment whose state is x. With positive probability, no compartment transitions

happen before time t. But the compartment transition times are independent of what is

happening inside them by construction, and the compartment evolves according to IK,

so on the event that no compartment transition happens before time t the compartment

undergoes infinitely many transitions before time t with positive probability. It follows

that F sim is explosive.

Conversely, suppose that IK is not explosive. Note that H, the compartment network,

is not explosive for any choice of rate constants (see e.g. [24]). So with probability one F sim

undergoes only finitely many compartment transitions in finite time. But between each

pair of consecutive compartment transitions there are finitely many compartments each

evolving according to IK, and by assumption each of these undergoes only finitely many

reactions in finite time a.s.. It follows that F sim undergoes only finitely many transitions

total in finite time, and hence is not explosive.
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3.2 Transience, recurrence, and positive recurrence

The following definitions are standard. For example, see [17].

Definition 3.2.1: Let M be a Markov chain with countable state space S, and for x ∈ S

let Tx = inf{t > 0 : Mt = x but ∃s ∈ [0, t],Ms ̸= x} be the first time the process returns

to x (or just arrives at x, if the process does not start from x). If Px(Tx < ∞) = 1, we

say that the state x is recurrent, and if Ex(Tx) < ∞ we say that the state x is positive

recurrent. A state which is not recurrent is called transient, and a recurrent state which

is not positive recurrent is null recurrent. If Px(Ty < ∞) > 0 we say that y is reachable

from x. If every state x ∈ S is positive recurrent, null recurrent, or transient, we say M is

positive recurrent, null recurrent, or transient, respectively.

A standard fact about (positive) recurrence is that it is a class property:

Proposition 3.2.2 (Theorems 3.4.1(iv) and 3.5.3(i) ⇐⇒ (ii) in [17]): Suppose that y is

reachable from x and x is recurrent (resp. positive recurrent). Then y is recurrent (resp.

positive recurrent).

In other words, if you can get between x and y with positive probability (in both

directions), then x and y are either both transient, both null recurrent, or both positive

recurrent. So for irreducible chains (ones where you can pass between any two points of

the state space with positive probability), the chain M is always positive recurrent, null

recurrent, or transient.

Before proceeding with the theory, we summarize the results of this section with a

table. The way to read Table 3.1 is as follows:

• Suppose we have a RNIC (IK,HK, µ), and N is the associated coarse-grained model.

• The top row indicates possible dynamics (transient, null recurrent, or positive recur-

rent) for IK, the chemical model, and the left column indicates possible dynamics

for HK, the compartment model. Since the possible dynamics for N will turn out to

depend crucially on whether the compartments can exit (κE > 0) or not (κE = 0),

the left column is further subdivided along these lines.
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• Several cells are marked “Impossible”, becauseHK cannot be null recurrent if κE = 0.

• The numbers inside each cell refer to the relevant theorems, lemmas, or examples

that demonstrates the result.

Chemistry (IK)
Transient (Trans.) Null Recurrent (NR) Positive Recurrent (PR)

Transient
N must be Transient

Remark 3.2.4

C
om

p
ar
tm

en
ts

(H
K
)

NR
κE = 0

Impossible
Lemma 3.2.3

κE > 0
N must be Null Recurrent

Theorem 3.2.5

PR
κE = 0

N can be Trans. N can be Trans. N can be Trans.
Ex 3.2.9 Ex 3.2.19 Ex 3.2.15, 3.2.17, 3.2.21

N can be PR N can be PR N can be PR
Ex 3.2.11 Ex 3.2.13 Ex 3.2.17

κE > 0
N must be Positive Recurrent

Theorem 3.2.5

Table 3.1: The possibly dynamics for N , classified in terms of the dynamics for HK and
IK. In the above “NR” and “PR” stand for “null recurrent” and “positive recurrent”,
respectively, whereas “Trans.” stands for “transient.”

Note that in all cases where we give an example of a recurrent N , the example is

actually positive recurrent. We suspect that null recurrent examples will also exist, but

we felt it more interesting to cover the behavioral extremes.

Moving to our theory, we begin by considering the dynamics of the compartment model

of section 2.2, which takes the form of a relatively simple reaction network, namely,

0 C 2C
κI

κE

κF

κC

(3.1)

The (positive) recurrence of this model is already completely classified; see e.g. [24]. We

state this classification now as a lemma.

Lemma 3.2.3: Consider the CRN in (3.1).

• Suppose κI = 0. Then 0 is an absorbing state. If some other rate constant is non-

zero then all other states are transient, whereas if all four rate constants are zero
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then all states are absorbing.

• Suppose κI > 0 and κE > 0. The irreducible state space is {0, 1, 2, . . . } and:

– If κC > 0, then the chain is positive recurrent.

– If κC = 0 but κF < κE , then the chain is positive recurrent.

– If κC = 0 and κF > κE , then the chain is transient.

– If κC = 0 and κF = κE , then either κI ≤ κE and the chain is null recurrent, or

κI > κE and the chain is transient.

• Suppose κI > 0 and κE = 0. Then all statements remain the same as in the case

κI > 0 and κE > 0 except the irreducible state space is now {1, 2, . . . } (and the

state 0 is transient).

Now we begin with our positive results. The first fact is simple enough to be stated as

a remark:

Remark 3.2.4: Notice that if N is the course-grained representation for F = (IK,HK, µ)

and n is a (positive) recurrent state for N , then the number of compartments in n, ∥n∥ℓ1 ,

is a (positive) recurrent state for HK, since the return time to ∥n∥ℓ1 is bounded by the

return time to n. △

Said succinctly, if n is a positive recurrent state of the full model, then so is ∥n∥ℓ1 for

the compartment model. One might hope that the converse would be true, and it turns

out under relatively mild assumptions it is:

Theorem 3.2.5: Consider a non-explosive model F = (IK,HK, µ) where κE > 0, and let

N be its course-grained representation. Then a state n is (positive) recurrent for N iff n

is reachable from the empty state 0⃗ for N and the state ∥n∥ℓ1 is (positive) recurrent for

HK.

Proof. If κI = 0 the conclusions of the theorem are clear, since by Lemma 3.2.3 the state

with no compartments is absorbing for both N and HK and all other states are transient.

From here on we assume κI > 0.
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Let MC = ∥N∥ℓ1 be the number of compartments; recall that MC is a Markov chain

which evolves according to HK. Suppose first that n is recurrent for N . By Remark 3.2.4,

∥n∥ℓ1 is recurrent for HK. Since κE > 0 and κI > 0, by Lemma 3.2.3 HK is irreducible,

so HK eventually hits zero with probability one when started from ∥n∥ℓ1 . But when MC

hits zero, N = 0⃗. Since n is recurrent for N , it must be that N eventually returns to state

n after hitting state 0⃗. This proves that n is reachable from 0⃗ for N .

Now suppose that n is reachable from 0⃗ and the state ∥n∥ℓ1 is positive recurrent (resp.

recurrent) for HK. Since HK is irreducible as in the previous paragraph, it follows that

zero is positive recurrent (resp. recurrent) for HK. But N = 0⃗ exactly when MC is 0, so 0⃗

is positive recurrent (resp. recurrent) for N . But positive recurrence (resp. recurrence) is

a class property and by assumption n is reachable from 0⃗, so we conclude that n is positive

recurrent (resp. recurrent) for N , as desired.

The same theorem holds, mutatis mutandis, for F sim. The proof is the same so we

omit it.

Theorem 3.2.6: Consider a non-explosive model F = (IK,HK, µ) where κE > 0, and

let F sim be its simulation representation. Then a state (x1, . . . , xk) is (positive) recurrent

for F sim iff (x1, · · · , xk) is reachable from the empty vector () for F sim and the state k is

(positive) recurrent for HK.

Remark 3.2.7: Theorems 3.2.5 and 3.2.6 hold under more general assumptions. Note

that the key idea of both is that 0 is (positive) recurrent for HK. Hence, one can generalize

to the situation in which F = (IK,HK, µ) has non-mass action kinetics for either IK or

HK, so long as the system is non-explosive and 0 is (positive) recurrent for HK. △

3.2.1 Instructive examples

We now consider some examples. The first is an application of Theorem 3.2.5, and the

rest show the various ways the conclusion of the theorem can fail if the hypothesis κE > 0

is not satisfied. These examples also serve to illustrate various techniques that are useful
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for analysing recurrence and transience of RNIC models. In Example 3.2.11, positive

recurrence for the RNIC is shown via a Lyapunov function, applying Theorem 6.1.2. In

Example 3.2.19, transience for the RNIC is shown via a Lyapunov function, applying

Theorem 6.1.3. And in Example 3.2.21, transience for the RNIC is shown with the help

of the construction of F sim given in section 2.3.2.

In the following, any rate constants not specified are assumed to be positive.

Example 3.2.8: Consider the following RNIC.

0 2S 0 C 2C δ0
κb

κI

κE
κC

where δ0 is the point mass at zero (so each compartment enters empty). Even though

IK is transient, by Theorem 3.2.5 the empty state is positive recurrent for N . Any state

where every compartment has an even number of S molecules is reachable from the empty

state, hence positive recurrent. Any state where any compartment has an odd number of

S molecules is not reachable from the empty state, hence transient. △

In all of the remaining examples in this section, we have κE = 0 and hence the state 0

will be transient for HK. Hence, when discussing the properties of the model we restrict

ourselves to the state spaceN\{0} that does not include the state with zero compartments.

The case where κE = 0 is more complicated than the κE ̸= 0 case. For one thing,

it is no longer enough just to look at HK to decide if all states are transient. Indeed, if

Example 3.2.8 is modified so that κE = 0 then every state becomes transient, despite the

fact that all states are positive recurrent for the compartment network HK:

Example 3.2.9: Consider the model F = (IK,HK, µ) described by

0 2S 0 C 2C δ0
κb κI κC (3.2)

where δ0 is again the point mass at zero.

We reiterate that this is exactly the same as the previous example but with κE set to

zero. However, that is enough to make every state transient for F :
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Proposition 3.2.10: In the RNIC model (3.2), IK is transient, HK is positive recurrent

on the irreducible state space {1, 2, . . . }, and N (the coarse-grained model corresponding

to F) is transient.

Proof. Except for the zero-compartment state (which cannot be returned to), all states

are positive recurrent for HK by Lemma 3.2.3. However, the total number of S molecules

across all compartments can never shrink, and grows with some positive rate (at least κb,

and larger if there are more compartments), so all states are transient for N .

Thus we see that, in this example, the long-term behavior ofHK and the course-grained

model N are different. △

The above example shows that when κE = 0 and IK is transient, F may be transient

even if HK is not. However, this need not always be the case. Below we have an example

that demonstrates that, when κE = 0 and IK is transient, it is still possible for F to be

positive recurrent.

Example 3.2.11: Consider the model F = (IK,HK, µ) described by

2A+B B 0 A 0 C 2C δ(0,1)(a, b)
1 1 1 1 6 (3.3)

where δ(0,1) is a point mass with zero A molecules and one B molecule. We will show

that the chemical model IK is transient but that the course-grained model, N , is positive

recurrent. Intuitively, this can be understood in the following manner: B should be

thought of as an enzyme that degrades the substrate A. Without the compartment model,

the enzyme would simply disappear over time, and then the substrate would grow without

bound (from the reaction 0 → A). However, each compartment brings in a new enzyme

allowing for the further degradation of A.

Proposition 3.2.12: In the RNIC model (3.3), IK is transient, HK is positive recurrent

on the irreducible state space {1, 2, . . . }, and N (the coarse-grained model corresponding

to F) is positive recurrent.
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Proof. HK is positive recurrent by Lemma 3.2.3. IK is transient by the discussion above.

It just remains to check positive recurrence of N . For n ∈ N , let C(n) = ∥n∥ℓ1 =∑∞
a=0

∑∞
b=0 n(a,b) denote the number of compartments, and let A(n) =

∑∞
a=0

∑∞
b=0 an(a,b)

and B(n) =
∑∞

a=0

∑∞
b=0 bn(a,b) be the total number of A and B molecules, respectively,

across all compartments. Define V : N → [0,∞) via

V (n) =


A(n) +B(n) + 5C(n)− 1 B(n) ̸= 0

A(n) +B(n) + 5C(n) + 7 B(n) = 0.

We claim that this is a Lyapunov function forN . An upper bound for LV (n), the generator

applied to V at n, is given by

LV (n) ≤



−B(n) + 7− 15C(n)(C(n)− 1) B(n) ≥ 2 and C(n) ≥ 2

14− 15C(n)(C(n)− 1) B(n) = 1 and C(n) ≥ 2

−1− 15C(n)(C(n)− 1) B(n) = 0

−A(n)(A(n)− 1)B(n)−B(n) + 7 B(n) ≥ 2 and C(n) = 1

−A(n)(A(n)− 1) + 14 B(n) = 1 and C(n) = 1

Note that the first two rows are upper bounds and the last three rows are exact. Specifi-

cally, in the first two rows we neglected the contribution of the 2A+ B → B reaction —

unlike everything else it crucially depends on how the A and B molecules are distributed

across the compartments.

We see that LV (n) ≤ −1 for all n outside a finite set of states—for instance, you could

take the states where there is exactly one compartment and it has at most 7 B and at

most 4 A. So V is indeed a Lyapunov function for N , and hence N is positive recurrent

by Theorem 6.1.2.

△

In the previous example we saw that even when κE = 0, positive recurrent compart-
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ments HK can still tame transient chemistry IK. It should not be surprising, then, that

positive recurrent compartments can tame null recurrent chemistry in the same manner.

For the sake of filling in Table 3.1 completely, we present a modification of Example 3.2.11

where IK is null recurrent instead of transient.

Example 3.2.13: Consider the model F = (IK,HK, µ) described by

2A+B B 0 A 2A 0 C 2C δ(0,1)(a, b)
1 1 1

1

1 1 6

(3.4)

where δ(0,1) is a point mass with zero A molecules and one B molecule.

The verification of this example is similar enough to that of Example 3.2.11 that we

provide only a sketch.

Proposition 3.2.14: In the RNIC model (3.4), IK is null recurrent on the irreducible

state space {0, 1, 2, . . . } × {0}, HK is positive recurrent on the irreducible state space

{1, 2, . . . }, and N (the coarse-grained model corresponding to F) is positive recurrent.

Proof Sketch. Similarly to Example 3.2.11, HK is positive recurrent and IK is eventually

reduces (after all the B molecules degrade) to the network

0 A 2A.
1

1

1

This model is null recurrent by Lemma 3.2.3.

As for N , let V be the very same Lyapunov function used to prove positive recurrence

in Example 3.2.11. The only difference between this example and that one is the addition

of the reactions A→ 0 and A→ 2A. But notice that the contribution of A→ 0 in LV (n)

is −A(n), and the contribution of A → 2A is A(n). These are equal and opposite, so

LV (n) is exactly the same in this example and Example 3.2.11. Thus the remainder of

the proof is identical.

△

Examples 3.2.9 and 3.2.11 showed that F = (IK,HK, µ) can be either positive recurrent

or transient when κE = 0 and IK is transient. The next few examples are dedicated to
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showing the same when IK is recurrent. First, if new compartments enter with a huge

number of molecules, it can overwhelm otherwise positive recurrent chemistry:

Example 3.2.15: Consider the RNIC model F = (IK,HK, µ) described by

0 S 0 C 2C µ,
κb

κd

κI
κF

κC

(3.5)

where µ is not yet specified.

Proposition 3.2.16: Let N be the coarse-grained model associated with the RNIC model

(3.5). For any choice of non-negative rate constants such that κI > 0, there is a distribution

µ on the non-negative integers such that N is transient.

Proof. We will show that in the case κb = 0, µ can be chosen so that the total number of S

molecules is itself a transient Markov chain. The case of κb > 0 then immediately follows

by a coupling argument. That portion of the proof is straightforward and is omitted.

Let M(t) denote the number of S molecules across all compartments at time t. Under

the assumption that κb = 0, M is a Markov chain which transitions from state m ∈ N to

state m− 1 with rate κdm and to state m+ j with rate κIµ(j).

Our plan is the following: we will recursively define an increasing sequence of integers

mk for k = 1, 2, 3, . . . , and define µ(mk) = 2−k and µ(j) = 0 otherwise. For k = 2, 3, 4, . . . ,

we will let Ak denote the event that the process M reaches mk−1 before it reaches (or

exceeds) mk+1. It then suffices to show that supk Pmk
(Ak) < 1/2 to prove transience of

M .

Continuing, we begin by lettingm1 = 0. Now supposem1, . . . ,mk−1 have been defined.

We will show that for any ε > 0 it is possible to pick mk so that Pmk
(Ak) < ε regardless of

the values chosen for mk+1,mk+2, . . . . To show this, we make the following observations.

1. Since M can only go down by one at a time, to get from mk to mk−1 before hitting

a state equal to or larger than mk+1, the process must visit every state mk,mk −

1, · · · ,mk−1 + 1 at least once.
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2. On the event Ak, during each visit to each of the states mk−1 +1, . . . ,mk there was

no transition of size +mk+1 (for in that case the state of M would would necessarily

reach or exceed mk+1).

The probability of the process M transitioning up by mk+1 while in state m is 2−(k+1)κI
κI+κdm

because the total rate out of state m is κI + κdm, and the rate of inflows of size mk+1 in

state m is µ(mk+1)κI = 2−k−1κI . Hence, combining the above observations we see

Pmk
(Ak) ≤

mk∏
m=mk−1+1

(
1− 2−(k+1)κI

κI + κdm

)

≤
mk∏

m=mk−1+1

exp

(
−2−(k+1)κI
κI + κdm

)
= exp

−2−(k+1)κI

mk∑
m=mk−1+1

1

κI + κdm

 ,

where above we use the bound 1− x ≤ e−x.

If mk−1 is fixed and we send mk → ∞ in the sum above, we get ∞ (it’s a tail of a

harmonic series). Therefore, Pmk
(Ak) can be made as small as we like by choosing mk big

enough. We conclude that for appropriate choice of mk, the process M is transient, and

hence so is N .

Hence, so long as κE = 0, a distribution µ that is “bad enough” can cause the whole

model to be transient even if the chemical model IK is positive recurrent. △

In the previous example, the distribution µ of incoming compartments was unbounded.

As it turns out, F = (IK,HK, µ) can be transient even when IK and HK are positive

recurrent and µ is bounded. The simplest, though not only, reason this can occur is the

existence of some conservation law, as the next example demonstrates. Put simply, the

total amount of species A and B is preserved by the chemistry, so any inflow of those

species, no matter how small, will overwhelm it.

Example 3.2.17: Consider the RNIC model F = (IK,HK, µ) described by

A B 0 C 2C µ
κa

κb

κI
κF

κC

(3.6)
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where µ is not yet specified.

Proposition 3.2.18: Let N be the coarse-grained model associated with the system F

from (3.6). If µ is any measure on Z2
≥0 other than the trivial measure δ(0,0), then N

is transient even though all states are positive recurrent for IK. On the other hand, if

µ = δ(0,0) then N is positive recurrent.

Proof. IK is not irreducible, but when it is partitioned into closed irreducible communi-

cating classing, all are finite, and hence all states are positive recurrent. As always when

κE = 0 but κC > 0, the empty state is transient for HK but all other states are positive

recurrent.

For n ∈ N , let S(n) =
∑∞

a=0

∑∞
b=0(a+ b)n(a,b) denote the sum of the number of A and

B molecules, combined across all compartments in n.

First suppose that µ ̸= δ(0,0). Then S(N(t)) cannot shrink, and grows with positive

probability every time a compartment enters. So N is transient in this case.

Now suppose µ = δ(0,0). For n ∈ N , let C(n) = ∥n∥ℓ1 be the number of compartments

in state n, and let V (n) = 2C(n). Then

LV (n) = 2κI + 2κFC(n)− κCC(n)(C(n)− 1),

where L is the generator of N . This is less than −1 outside a finite set because it is

quadratic in C(n) with negative leading term, provided we restrict the state space to

{n ∈ N : S(n) = S(N(0))}. So Theorem 6.1.2 applies and N is positive recurrent, as

claimed.

△

A natural question at this point is whether, if the behaviors in the last two examples

are ruled out, N can still be transient when IK and HK are both separately recurrent.

Specifically, if IK and HK are both recurrent, there are no conservation laws, and the

number of molecules that an incoming compartment can have is bounded, can N be

transient? The answer is yes, as the next example demonstrates.
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Example 3.2.19: Consider the RNIC model F = (IK,HK, µ) described by

0 S 2S 0 C 2C δ1,
1

1

1 1 1 (3.7)

where δ1 is the point mass at one S.

Proposition 3.2.20: Let N be the coarse-grained model associated to the network F =

(IK,HK, µ) from (3.7). Then IK is recurrent with no conservation laws and the number

of molecules in new compartments is bounded, however every state is transient for N .

Proof. IK is (null) recurrent, and HK is positive recurrent on the irreducible state space

{1, 2, . . . }, by Lemma 3.2.3.

It remains to show that every state is transient for N . As in all examples with κE = 0,

the state with zero compartments can never be returned to and we restrict the state space

of the chain to N \{0}. With this assumption the state space is a closed irreducible set, so

it suffices to pick one state and show that it is transient. We will show e0 (the state with

one empty compartment) is transient. Denoting a state of N by n, let C(n) =
∑∞

x=0 nx

and S(n) =
∑∞

x=0 x · nx denote the total number of compartments and S molecules,

respectively. Define V : N → [0, 1] by

V (n) =
S(n)

1 + S(n)
.

If L denotes the generator of N , notice that

LV (n) = (C(n) + S(n) + 1)

(
S(n) + 1

S(n) + 2
− S(n)

S(n) + 1

)
+ S(n)

(
S(n)− 1

S(n)
− S(n)

S(n) + 1

)
=

C(n) + S(n) + 1

(S(n) + 2)(S(n) + 1)
− 1

S(n) + 1

=
C(n)− 1

(S(n) + 2)(S(n) + 1)

≥ 0

for all n ∈ N \ {0}. In particular, if B = {e0}, we can apply Theorem 6.1.3 to conclude
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that when N is started from e0 + e1 (the state with two compartments, one empty and

the other with one S), then the probability of reaching B is less than 1. But when N

is started from e0, it reaches e0 + e1 with positive probability (the transition from e0 to

e0 + e1 corresponds to an inflow event). Putting these together, when N is started from

e0 it fails to return with positive probability, and hence e0 is transient. As discussed, this

is enough to conclude that all states are transient for N .

△

In the previous example IK was null recurrent. One may still be tempted to think that

perhaps if it were positive recurrent then the whole process must be. The next example

demonstrates that even this is not guaranteed.

Example 3.2.21: Consider the compartment model described by

A+B 0 B 0 C 2C δ(m,0)(a, b)

2B A

10 2

1

1 2

10

(3.8)

where m is some non-negative integer and δ(m,0) is the point mass at m molecules of A

and zero of B. Let γ > 0 denote the expected number of compartments in stationarity.

Proposition 3.2.22: Let F = (IK,HK, µ) be the compartment model from (3.8), and

let N be the associated coarse-grained model. Then IK is positive recurrent, but N is

transient when m > γ.

Proof. That IK is positive recurrent is witnessed by the Lyapunov function

V (a, b) =


3a+ 3 b = 0

3a+ 3b− 2 b ≥ 1
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Indeed, if A denotes the generator of IK, then

AV (a, b) =



3(1)− 2(2) b = 0

3(1) + 3(2)− 1(10a) b = 1

3(1) + 3(2)− 6(20a)− 1(10) b = 2

3(1) + 3(2)− 6(10ab)− 6(5b(b− 1)) b ≥ 3

=



−1 b = 0

9− 10a b = 1

−1− 120a b = 2

9− 60ab− 30b(b− 1) b ≥ 3

This is at most −1 away from (0, 1), so by Theorem 6.1.2 IK is positive recurrent.

Now regarding transience of N , let F sim be the simulation representation of F , so that

N is a fuction of F sim. Let XA and XB denote the total number of A and B molecules,

respectively, across all compartments in N (equivalently, across all compartments in F sim).

To show that N is transient, we will show that XA(t) → ∞ a.s., as t → ∞. To do this,

we will make use of the construction of F sim from section 2.3.2. Let YI and YC be as in

that section, so that the process MC for the number of compartments is given by

MC(t) =MC(0) + YI (t)− YC

(∫ t

0

MC(s)(MC(s)− 1)

2
ds

)
.

Similarly, for r ∈ {A + B → 0, 0 → B, 2B → 0, 0 → A} let Yr be as in section 2.3.2, and

let Rr be the associated counting process for the number of times reaction r has occurred

across all compartments, so that

Rr(t) = Yr

∑
i≥0
Ti≤t

∫ Ti+1∧t

Ti

MC(Ti)∑
j=1

λr(X
i
j(s))ds

 ,
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where the Ti are the jump times of the process MC , X
i
j(s) is the state of the process in

compartment j at time s, and λr is given as in (2.2). Then

XA(t) = XA(0) +R0→A(t) +mYI (t)−RA+B→0(t)

= XA(0) + Y0→A

(∫ t

0
MC(s)ds

)
+mYI (t)−RA+B→0(t).

Notice that in the last line above we were able to simplify the expression for R0→A in terms

of Y0→A from the expression given above for Rr in general. This was done by making use

of the fact that the total rate of this reaction across all compartments,
∑

j λ0→A(X
i
j(s)),

is exactly the total number of compartments MC(s). We cannot hope to do the same for

RA+B→0 because the rate of that reaction depends on how the molecules are distributed

across the compartments. However, notice that the total number of times the reaction

A+B → 0 fires is at most the total number of B molecules ever present in the system:

RA+B→0(t) ≤ XB(0) +R0→B(t)

= XB(0) + Y0→B

(
2

∫ t

0
MC(s)ds

)
.

Therefore,

XA(t) ≥ XA(0)−XB(0) + Y0→A

(∫ t

0
MC(s)ds

)
+mYI (t)− Y0→B

(
2

∫ t

0
MC(s)ds

)
.

Recall that γ denotes the expected number of C in the CRN HK at stationarity. By the

CTMC ergodic theorem (see Theorem 45 in Chapter 4 of [25]), 1
t

∫ t
0 MC(s)ds→ γ almost

surely as t → ∞. This will matter in its own right; it also follows that
∫ t
0 MC(s)ds → ∞

a.s. as t → ∞. It is a standard fact about unit Poisson processes Y that Y (t)/t → 1 a.s.

as t→ ∞. Composing this Poisson limit with the limit from the previous sentence, we get
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that

Y0→B

(
2
∫ t
0 MC(s)ds

)
2
∫ t
0 MC(s)ds

→ 1

a.s. as t→ ∞, and similarly for Y0→A. Putting this all together we have

lim
t→∞

XA(t)

t
≥ lim

t→∞

[
Y0→A

(∫ t
0 MC(s)ds

)
∫ t
0 MC(s)ds

· 1
t

∫ t

0
MC(s)ds+m

YI(t)

t

−
Y0→B

(
2
∫ t
0 MC(s)ds

)
2
∫ t
0 MC(s)ds

· 2
t

∫ t

0
MC(s)ds

]

= γ +m− 2γ.

almost surely. Therefore, as long as the integer m is (strictly) larger than γ, XA(t)/t is

converging almost surely to a positive number. In this case XA(t) → ∞ a.s. as t → ∞,

and hence N is transient.

Note that the above example shows the potential usefulness of the RNIC representation

provided in section 2.3.2. △
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Chapter 4

Stationary Distribution in a

Special Case

In light of Theorem 3.2.5, whenever HK is positive recurrent and κE > 0, then N , the

coarse-grained model associated to F = (IK,HK, µ), is positive recurrent for at least

some states. In this case, the standard theory of Markov chains tells us that there is a

stationary distribution supported on those states. Ideally, it would be possible to write

down a formula for this stationary distribution in terms of information about the CRNs

IK and HK. Under the further assumption that κC = 0 = κF (so that compartments are

not interacting), we are able to do so.

4.1 Theorem

First we recall some general theory.

Definition 4.1.1: Let M be a continuous-time Markov chain with discrete state space

S and transition rate matrix Q = (qij)i,j∈S. Let π = (π(i))i∈S = (πi)i∈S be a probability

measure on S. If πQ :=
(∑

i∈S πiqij
)
j∈S = 0, we say π is an invariant distribution. If for

every t > 0 we have Pπ(X(t) = j) = π(j), then we say π is a stationary distribution.

The previous definition is not totally standard (in particular, Norris [17] uses stationary
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distribution as a synonym of invariant distribution). However, the following theorem

ensures there should be no confusion.

Theorem 4.1.2 (3.5.5 in [17]): Let M be a continuous-time Markov chain with state

space S. Let π be a probability measure on S. If π is an invariant distribution for M , and

M is irreducible and recurrent on the support of π, then π is a stationary distribution for

M .

The idea is that having a stationary distribution π is useful (among other things it

can be shown that π is the limiting distribution for the chain), whereas the condition

πQ = 0 is more easily checkable. As discussed above, when κE > 0 and κC = 0 = κF the

compartment system has a stationary distribution π; the next theorem gives a formula for

this π, and is proven by checking the condition πQ = 0.

Theorem 4.1.3: Consider a non-explosive model F = (IK,HK, µ) with κF = κC = 0,

and κE > 0:

IK 0 C µ
κI

κE

Let N be the coarse-grained model associated to F . For x ∈ Zd
≥0 and t ∈ [0,∞), let

Pµ(x, t) denote the probability that IK is in state x at time t when started from time zero

with initial distribution µ. For x ∈ Zd
≥0 define α(x) via

α(x) =

∫ ∞

0
Pµ(x, t)κEe

−κEtdt,

and define a distribution π on N via

π(n) =

 ∏
x∈Zd

≥0

α(x)nx

nx!

 ·

[
e−κI/κE ·

(
κI
κE

)∥n∥ℓ1
]

Then π is the unique stationary distribution for N .

Remark 4.1.4: To apply Theorem 4.1.3, one needs to know not just the stationary

distribution for the chemistry, but the distribution for all time. This requirement may seem
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daunting, and indeed for many models this distribution is not known. One class of models

where it is know are the DR models of [15]. A second class of models are monomolecular

reaction networks with arbitrary initial conditions — see [26]. Note that [15] allows for

more general networks (all monomolecular networks satisfy the DR condition), but [26]

allows for more general initial conditions (the DR paper requires Poisson initial conditions).

△

Proof of Theorem 4.1.3. Note that by Theorem 3.2.5, any state which is reachable from

the zero state is positive recurrent, and all other states are transient. Furthermore, notice

that N is irreducible if restricted to the set of states which are reachable from the zero

state, since zero is reachable from any state. Thus there is a unique stationary distribution.

To prove that the π given above is indeed this unique stationary distribution, it suffices

to show that π is a distribution and πQ = 0, where Q is the transition rate matrix for N .

That π is a distribution follows from the fact that α is a distribution, which we will check

later in the proof. So fix n ∈ N ; we wish to show that
∑

n′∈N π(n′)q(n′, n) = 0.

Note that there are only three possible types of transitions: inflow of compartment,

outflow of compartment, and transition of reaction network. Expanding the sum above

into three terms, one for each of these types of transitions, the desired equality can be

written

∑
x∈Zd

≥0

[
π(n− ex)q(n− ex, n) + π(n+ ex)q(n+ ex, n)

+
∑
j

π(n− ex + ex−ν′j+νj )q(n− ex + ex−ν′j+νj , n)

]

= π(n)
∑

x∈Zd
≥0

q(n, n+ ex) + q(n, n− ex) +
∑
j

q(n, n− ex + ex+ν′j−νj )


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or

∑
x∈Zd

≥0

[
π(n− ex)κIµ(x) + π(n+ ex)κE(nx + 1)

+
∑
j

π(n− ex + ex−ν′j+νj )(nx−ν′j+νj + 1)κj

(
x− ν ′j + νj

νj

)]
(4.1)

= π(n)
∑

x∈Zd
≥0

κIµ(x) + κEnx +
∑
j

nxκj

(
x

νj

)
To prove this equality, we will consider two cases. Suppose first that n is such that ny > 0

for some y ∈ Zd
≥0 with α(y) = 0, and fix such a y. Then α(y) participates in the product

defining π(n), and hence π(n) = 0. Thus the right-hand side of (4.1) is zero; we claim

that the left-hand side is also zero. Specifically, we will argue for each x and each j, each

of the three terms in the sum is zero. So fix x and j:

• π(n− ex)κIµ(x): Notice that if x ̸= y then π(n− ex) = 0 for the same reason that

π(n) = 0. If x = y then µ(x) = 0, since if µ(y) > 0 it would be the case that

Pµ(y, t) > 0 for all small enough t, and hence the integral defining α(y) would be

positive.

• π(n+ex)κE(nx+1): Regardless of x, π(n+ex) = 0 for the same reason that π(n) = 0.

• π(n− ex + ex−ν′j+νj )(nx−ν′j+νj + 1)κj
(
x−ν′j+νj

νj

)
: As before, if x ̸= y then π(n− ex +

ex−ν′j+νj ) = 0. Suppose towards a contradiction that π(n − ey + ey−ν′j+νj ) ̸= 0 and

that κj
(
y−ν′j+νj

νj

)
̸= 0. Then π(n− ey + ey−ν′j+νj ) ̸= 0 implies that α(y−ν ′j +νj) ̸= 0,

and hence Pµ(y−ν ′j+νj , t) ̸= 0 for some t. But this means that the state y−ν ′j+νj is

reachable for I when started with initial distribution µ. But κj
(
y−ν′j+νj

νj

)
̸= 0 implies

that y is reachable from y−ν ′j +νj for I via the j-th reaction, so we conclude that y

is reachable from µ. But this implies that Pµ(y, t) ̸= 0 for t > 0, which in turn means

that α(y) > 0. This contradicts our choice of y, so it must be that our assumption

was wrong: either π(n− ey + ey−ν′j+νj ) = 0 or κj
(
y−ν′j+νj

νj

)
= 0. But either of those

imply the desired equality π(n− ey + ey−ν′j+νj )(ny−ν′j+νj + 1)κj
(
y−ν′j+νj

νj

)
= 0.
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This proves that (4.1) reduces to 0 = 0 in this case. The reminder of the proof will be

devoted to the second case; namely, the case where n is such that ny = 0 for all y ∈ Zd
≥0

with α(y) = 0.

Let X = {x ∈ Zd
≥0 : α(x) ̸= 0}. We claim that for every x /∈ X and every j, every

summand in (4.1) is zero. So fix x /∈ X and j:

• π(n − ex)κIµ(x): Since α(x) = 0, by choice of n we have nx = 0. But this means

that n− ex is negative at x and hence n− ex /∈ N , so π(n− ex) = 0.

• π(n + ex)κE(nx + 1): Notice that α(x) = 0 participates in the product defining

π(n+ ex), and hence π(n+ ex) = 0.

• π(n − ex + ex−ν′j+νj )(nx−ν′j+νj + 1)κj
(
x−ν′j+νj

νj

)
: As before, n − ex + ex−ν′j+νj /∈ N

and hence π(n− ex + ex−ν′j+νj ) = 0.

• κIµ(x): Since α(x) = 0, it must be the case that µ(x) = 0, as otherwise Pµ(x, t)

would be positive for sufficiently small t.

• κEnx: Since α(x) = 0, by choice of n we have nx = 0.

• nxκj
(
x
νj

)
: Once again, nx = 0.

Thus we have shown that terms with x /∈ X do not contribute to (4.1). So to complete

the proof, we have only to show that

∑
x∈X

[
π(n− ex)κIµ(x) + π(n+ ex)κE(nx + 1)

+
∑
j

π(n− ex + ex−ν′j+νj )(nx−ν′j+νj + 1)κj

(
x− ν ′j + νj

νj

)]
(4.2)

= π(n)
∑
x∈X

κIµ(x) + κEnx +
∑
j

nxκj

(
x

νj

) .
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Let x ∈ X be arbitrary. Integration by parts gives

∫ ∞

0

(
d

dt
Pµ(x, t)

)
κEe

−κEtdt = κEe
−κEtPµ(x, t)

∣∣∣t=∞

t=0
−
∫ ∞

0
Pµ(x, t)(−κ2Ee−κEt)dt

= −κEµ(x) + κEα(x).

Because Pµ is the distribution for IK, the Kolmogorov forward equations for IK tell us

that

d

dt
Pµ(x, t) =

∑
νj→ν′j

κj

(
x− ν ′j + νj

νj

)
Pµ(x− ν ′j + νj , t)−

∑
νj→ν′j

κj

(
x

νj

)
Pµ(x, t)

for each t. Plugging this in above and rearranging yields

∑
νj→ν′j

κj

(
x− ν ′j + νj

νj

)
α(x− ν ′j + νj)−

∑
νj→ν′j

κj

(
x

νj

)
α(x) = −κEµ(x) + κEα(x)

κE
µ(x)

α(x)
+
∑

νj→ν′j

κj

(
x− ν ′j + νj

νj

)
α(x− ν ′j + νj)

α(x)
= κE +

∑
νj→ν′j

κj

(
x

νj

)
.

Note that we did not divide by zero in the second line because α(x) ̸= 0 by definition of X.

Since x ∈ X was arbitrary, we can multiply through by nx and sum over x, which yields

∑
x∈X

(
nxκE

µ(x)

α(x)
+ nx

∑
νj→ν′j

κj

(
x− ν ′j + νj

νj

)
α(x− ν ′j + νj)

α(x)

)

=
∑
x∈X

(
nxκE + nx

∑
νj→ν′j

κj

(
x

νj

))
. (4.3)

Now we claim that µ and α are both probability measures supported on X. We know that

µ is a probability measure by assumption; it is supported on X because if µ(x) > 0 then

Pµ(x, t) > 0 for small enough t and hence α(x) > 0. We know that α is supported on X

by definition of X; to see that it is a probability measure, use the fact that the integrand

in the definition of α is non-negative to interchange a sum over x with the integral and

then apply the fact that Pµ(x, t) is a probability measure for each t. Therefore µ and α
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are both probability measures supported on X, as claimed; it follows that
∑

x∈X κIµ(x) =

κI =
∑

x∈X κIα(x). So adding κI to both sides of (4.3) gives

∑
x∈X

(
nxκE

µ(x)

α(x)
+ κIα(x) + nx

∑
νj→ν′j

κj

(
x− ν ′j + νj

νj

)
α(x− ν ′j + νj)

α(x)

)

=
∑
x∈X

(
κIµ(x) + nxκE + nx

∑
νj→ν′j

κj

(
x

νj

))
.

(4.4)

Now notice that, directly from the definition of π, we have

π(n− ex)

π(n)
=

nx
α(x)

κE
κI

π(n+ ex)

π(n)
=

α(x)

nx + 1

κI
κE

π(n− ex + ex−ν′j+νj )

π(n)
=
α(x− ν ′j + νj)

α(x)

nx
nx−ν′j+νj + 1

,

where the last equality holds for each reaction νj → ν ′j . Applying these three in order on

the left-hand side of (4.4), we get

∑
x∈X

(
κIµ(x)

π(n− ex)

π(n)
+ κE(nx + 1)

π(n+ ex)

π(n)

+
∑

νj→ν′j

κj

(
x− ν ′j + νj

νj

)
(nx−ν′j+νj + 1)

π(n− ex + ex−ν′j+νj )

π(n)

)

=
∑
x∈X

(
κIµ(x) + nxκE + nx

∑
νj→ν′j

κj

(
x

νj

))
∑
x∈X

(
κIµ(x)π(n− ex) + κE(nx + 1)π(n+ ex)

+
∑

νj→ν′j

κj

(
x− ν ′j + νj

νj

)
(nx−ν′j+νj + 1)π(n− ex + ex−ν′j+νj )

)

= π(n)
∑
x∈X

(
κIµ(x) + nxκE + nx

∑
νj→ν′j

κj

(
x

νj

))
,

which is exactly the desired equality, (4.2).
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4.2 Specific Examples

Let us now consider some examples of applying this result.

Example 4.2.1: Let λ ≥ 0, and consider the compartment system

0 S 0 C Poisson(λ)
κb

κd

κI

κE

Then the stationary distribution of the system is given by

π(n) =

( ∞∏
x=0

α(x)nx

nx!

)
·

[
e−κI/κE ·

(
κI
κE

)∥n∥ℓ1
]
,

where

α(x) =

∫ ∞

0
exp

{
−(λ− κb/κd)e

−κdt − κb/κd
} ((λ− κb/κd)e

−κdt + κb/κd)
x

x!
κEe

−κEtdt.

Proof. Check that the distribution

Pλ(x, t) := exp
{
−(λ− κb/κd)e

−κdt − κb/κd
} ((λ− κb/κd)e

−κdt + κb/κd)
x

x!

is Poisson(λ) at time t = 0 and satisfies

d

dt
Pλ(x, t) = κbPλ(x− 1, t) + κd(x+ 1)Pλ(x+ 1, t)− κbPλ(x, t)− κdxPλ(x, t)

for each x and t, and apply Theorem 4.1.3.

△
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In the previous example, notice that the expected value of α is

∞∑
x=0

xα(x)

=

∫ ∞

0

∞∑
x=0

exp
{
−(λ− κb/κd)e

−κdt − κb/κd
} ((λ− κb/κd)e

−κdt + κb/κd)
x+1

x!
κEe

−κEtdt

=

∫ ∞

0
(λ− κb/κd)κEe

−(κd+κE)t +
κbκE
κd

e−κEtdt

=
(λ− κb/κd)κE

κd + κE
+
κb
κd

=
λκE + κb
κd + κE

.

This matches [1], where the same example is consider in section 2.A (see specifically their

equation [20] and the following discussion). Note that in [1], though the expected value of

α is calculated in general, an explicit formula for α(x) (which, in their notation, is written

P∞(x)) is given in only two cases. The first is the case where λ = κb/κd, where (in section

S7.4 of their SI Appendix) they remark that P∞ is Poission with mean λ. This matches

the formula we give above in Example 4.2.1. The second case they cover is the one where

κd = 0. In that case they obtain

P∞(x) = (1− ξ)ξxeλ(1/ξ−1)Γ(1 + x, λ/ξ)

x!
, (4.5)

where ξ = κb/(κb + κE) and Γ is the upper incomplete Gamma function. In Proposition

4.2.3, we will check that (4.5) agrees with our next example, Example 4.2.2, in the case

where µ is taken to be Poission with parameter λ.

The following example is interesting for a few reasons. First, the chemistry is not

converging to any sort of stationary distribution, and yet the whole compartment model

is. Second, notice that when µ is not a Poisson distribution, Pµ(x, t) is not a Poisson

distribution in x for all t unlike the previous example or more generally the DR models

from Remark 4.1.4. Third, as discussed above, it generalizes an example from [1].

Example 4.2.2: Let µ be a probability distribution on Z≥0, and consider the compart-
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ment system

0 S 0 C µ,
κb

κI

κE

Then the stationary distribution of the system is given by

π(n) =

( ∞∏
x=0

α(x)nx

nx!

)
·

[
e−κI/κE ·

(
κI
κE

)∥n∥ℓ1
]
,

where

α(x) =

∫ ∞

0
e−κbt

(
x∑

m=0

κmb t
m

m!
µ(x−m)

)
κEe

−κEtdt. (4.6)

Proof. Check that the distribution

Pµ(x, t) := e−κbt

(
x∑

m=0

κmb t
m

m!
µ(x−m)

)

satisfies

d

dt
Pµ(x, t) = κbPµ(x− 1, t)− κbPµ(x, t),

with initial condition Pµ(x, 0) = µ(x), and apply Theorem 4.1.3.

△

As discussed, in the special case of the above where µ is Poisson with parameter λ,

[1] obtained the expression in (4.5) for α. So our expression in (4.6) should, by all rights,

agree with theirs in that case, and indeed it does:

Proposition 4.2.3: Let µ(x) = λxe−λ/x!, let α be as in (4.6), and let P∞ be as in (4.5).

Then α(x) = P∞(x).
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Proof. The binomial theorem gives

α(x) =

∫ ∞

0
e−κbt

(
x∑

m=0

κmb t
m

m!

λx−me−λ

(x−m)!

)
κEe

−κEtdt

=

∫ ∞

0
e−(κbt+λ) 1

x!

(
x∑

m=0

(
x

m

)
(κbt)

mλx−m

)
e−κEtκEdt

=

∫ ∞

0
e−(κbt+λ) 1

x!
(κbt+ λ)xe−κEtκEdt

Let ξu = κbt+ λ. Then multiplying by κE/κb and rearrainging yields

κEt =
κE

κb + κE
u− λ

κE
κb

= (1− ξ)u− λ(1/ξ − 1).

So κEdt = (1− ξ)du and

α(x) =

∫ ∞

λ/ξ
e−ξu 1

x!
(ξu)xe−(1−ξ)u+λ(1/ξ−1)(1− ξ)du

= (1− ξ)ξxeλ(1/ξ−1)

∫ ∞

λ/ξ
e−ξu 1

x!
uxe−u+ξudu

= P∞(x)

as claimed.
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Chapter 5

A Generalization:

Content-dependent Fragmentation

This chapter is the first whose material is not present in [2]. The models studied in

this chapter do not fall under the framework from that paper because the rate of certain

compartment transitions will depend on the content of the compartments. Note that these

models will fall under the more general framework from [1].

Let IK be some reaction network where S appears as a species. The models of this

chapter will be represented by diagrams of the form

IK 0 C 2C µ,
κI

κE

κFSC

κC

(5.1)

where the intent is that everything is the same as in previous chapters except that a given

compartment with s molecules of S fragments at rate κF · s instead of rate κF .

Remark 5.0.1: The usual convention in the study of reaction networks is to write rate

constants over reaction arrows, but κFSC is not a rate constant, which may seem strange.

One way to think about the rate constants we have been writing is that any given com-

partment exits the system with rate κE , any given pair of compartments coagulates with

rate κC , etc.. Viewed in this light, the new notation makes more sense, since if SC is the
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number of S in compartment C, then κFSC is exactly the rate at which compartment C

is fragmenting, consistent with the old notation. △

To be precise, let d (as always) be the number of species which appear in IK, and for

x ∈ Zd
≥0 let S(x) denote the projection onto the S coordinate: when in state x there are

S(x) molecules of S. For reactions ν → ν ′ of IK, let λν→ν′(x) denote the rate of reaction

ν → ν ′ when in state x, so that the generator A of IK is given by

Af(x) =
∑
ν→ν′

λν→ν′(x)(f(x+ ν ′ − ν)− f(x)).

LetN be as in previous chapters, and for n ∈ N let C(n) =
∑

x∈Zd
≥0
nx be the total number

of compartments and let S(n) =
∑

x∈Zd
≥0
S(x)nx be the total number of S molecules across

all compartments. For each x, y ∈ Zd
≥0, let ψ(x, y) denote the probability that when a

compartment in state x fragments, the daughter compartment produced is in state y (and

the original compartment is in state x− y). For example, earlier in this thesis we worked

only with ψ(x, y) = 2−(x1+···+xd)
(
x
y

)
, and in Remark 5.2.6 we will take y 7→ ψ(x, y) to be

uniform over possible pairs of resulting compartments. In general, we require only that

ψ(x, y) = 0 if yi > xi for some i, and that y 7→ ψ(x, y) is a probability measure for each

x. Then in this chapter, we are studying the Markov Chain N with generator L, where

for functions V : N → R,

LV (n) =
∑

x∈Zd
≥0

[(∑
ν→ν′

nxλν→ν′(x)
(
V (n− ex + ex+ν′−ν)− V (n)

))

+ κIµ(x)
(
V (n+ ex)− V (n)

)
+ κEnx

(
V (n− ex)− V (n)

)
+ κFS(x)nx

 ∑
y∈Zd

≥0

ψ(x, y)
(
V (n− ex + ey + ex−y

)
− V (n)

)
+ κC

(
nx
2

)(
V (n− 2ex + e2x)− V (n)

)
+
∑

y∈Zd
≥0

y ̸=x

κC
nxny
2

(
V (n− ex − ey + ex+y)− V (n)

)]
.
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As in previous chapters, we will refer to N as the coarse-grained model associated to (5.1).

We will frequently be illustrating our results or techniques by considering the simpler

model

0 S 0 C 2C µ,
κb

κd

κI

κE

κFSC

κC

(5.2)

which has generator

LV (n) =
∞∑
x=0

[
κbnx

(
V (n− ex + ex+1)− V (n)

)
+ κdnxx

(
V (n− ex + ex−1)− V (n)

)
+ κIµ(x)

(
V (n+ ex)− V (n)

)
+ κEnx

(
V (n− ex)− V (n)

)
+ κFxnx

 ∞∑
y=0

ψ(x, y)
(
V (n− ex + ey + ex−y

)
− V (n)

)
+ κC

(
nx
2

)(
V (n− 2ex + e2x)− V (n)

)
+

∞∑
y=0

y ̸=x

κC
nxny
2

(
V (n− ex − ey + ex+y)− V (n)

)]
.

Note that we may take any rate constants to be zero, including possibly κb or κd. The

case where κb = κd = 0 and the number of S in each compartment is only changed by the

compartment events was studied in [1].

One assumption is frequent enough in what follows that it deserves attention here:

Condition 5.0.2: Let λ denote the expectation under µ of the total molecular count of

new compartments: λ =
∑

x∈Zd
≥0
µ(x)

∑d
j=1 xj . Assume µ is such that λ <∞.

Unfortunately, translating results about IK into results about N will not be as straight-

forward as in the previous chapters. One case where we can get results about N , however,

is the one where IK has a Lyapunov function, and that Lyapunov function happens to be

linear. We are far from the first to consider specifically linear Lyapunov functions. For

example, in [27], a linear Lyapunov function condition (which they refer to as condition

DD1), stronger than any of the Lyapunov conditions appearing in this chapter, is studied.

They give conditions for their condition to be satisfied for unimolecular and bimolecular
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reaction networks (see sections S3 and S4, respectively, of their supplementary material),

and they verify the condition for a number of biologically motivated examples (see sections

S5 through S12 of the same).

5.1 Non-Explosivity

In Theorem 3.1.3, we showed that when the fragmentation rate does not depend on com-

partment contents, compartmentalizing a CRN does not affect whether or not it explodes:

N is explosive iff IK is. However, things are more delicate in the present setting, as the

next example shows.

Example 5.1.1: Consider the following model

E + 2S E + 3S C 2C2 SC (5.3)

Let ψ0, ψ1 : Z2
≥0 × Z2

≥0 → {0, 1} be the functions

ψ0((e, s), (e
′, s′)) =


1 e′ = e and s′ = s

0 else

ψ1((e, s), (e
′, s′)) =


1 e′ = e and s′ = 0

0 else

.

The idea is that when the compartment fragmentation distribution is given by ψ0, a

compartment in state (s, e) always splits into one compartment in state (s, e) and one

empty compartment. And when it is given by ψ1, a compartment in state (s, e) always

splits into one compartment in state (s, 0) and one in state (0, e). Let Ni be the coarse-

grained mode associated to (5.3) with fragmentation distribution ψi, for i = 0, 1.

Proposition 5.1.2: The network E+2S
2−→E+3S is explosive. When the distribution of

fragmented compartments is given by ψ0, then the corresponding coarse-grained model N0

associated to (5.3) is also explosive. When the distribution of fragmented compartments
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is given by ψ1, however, then the corresponding coarse-grained model N1 associated to

(5.3) is not explosive.

Proof. Let X denote the Markov chain associated to E + 2S
2−→E + 3S. Notice that

since the number of E cannot change, the S-component of X is just an instance of the

CRN 2S
2E0−→ 3S, where E0 is the initial amount of E present in the system. But this is

well-known to be explosive whenever the rate 2E0 is positive — see for instance [24].

Now we argue that N0 is explosive. Specifically, we will argue that it explodes with

positive probability when started in the state with exactly one compartment, where this

one compartment contains one E and two S. If N , as always, denotes the state space

for N0, define f : N → Z2
≥0 so that f(n) is the state x = (s, e) with the largest value of

s, breaking ties in favor of larger values of e, such that nx ̸= 0. Consider the stochastic

process f(N0). We claim that f(N0) is not only a Markov chain, but actually an instance

of the Markov chain X from the beginning of this proof (with starting state (2, 1), from

which we know X explodes).

Indeed, notice that fragmentations only produce new empty compartments, that totally

empty compartments have no way of producing either more E or more S, and that existing

S and E are never removed from the system, so the state of N0 is always some number

of empty compartments plus one compartment with at least two S and one E. It follows

that f(N0) is just the state of this one non-empty compartment, and that fragmentation

cannot affect f(N0). So f(N0) starts out in state (2, 1), can only have transitions of the

form (s, 1) → (s+1, 1), and these transitions have independent exponential holding times

with rate s(s − 1). So f(N0) is indeed an instance of X, and thus f(N0), and hence N0,

is explosive.

Now we argue that N1 is not explosive. Notice that if N1 is in a state where no

compartment has both S and E, then it cannot explode. Indeed, (i) in such a state the

only possible transition is C → 2C, (ii) once in such a state it will always be in such a

state and the number of S will not further change, so (iii) the network gains C at constant

rate equal to the number of S. Since the rate of the only reaction is constant, it cannot



60

be explosive. In light of this, we aim to show that, no matter what state N1 is started in,

it will a.s. eventually reach such a state where no compartment has both S and E before

having the chance to explode.

Different compartment are independent, so it suffices to consider the case of a single

compartment in state (s, e). The idea is that such a compartment fragments with rate s,

which because of our choice of ψ1 splits the S and E into different compartments and kills

off any explosion. Since the compartment gains one S with rate es(s− 1), the probability

of fragmenting before leaving the state is s
s+es(s−1) = 1

1+e(s−1) . The number e is fixed

and this quantity is not summable in s, so the second Borel–Cantelli lemma tells us that

the compartment fragments before exploding with probability one. (Strictly speaking the

Borel–Cantelli lemma applies to independent events, so to make this idea precise one would

need to, for instance, construct the process N1 “by hand” from independent exponential

random variables. But this is straightforward, if messy, so we omit it.)

△

The example above shows that N , the coarse-grained model associated to (5.1), can

fail to be explosive even when the associated chemistry IK is explosive, in contrast to the

case where the fragementation rate does not depend on the compartment contents. The

converse, however, still holds provided we have an additional technical assumption on IK:

Theorem 5.1.3: Let N be the coarse-grained model associated to (5.1), and let A denote

the generator of the associated chemistry IK. Suppose there exists some linear function

f : Zd
≥0 → R which satisfies the hypotheses of Theorem 6.1.1; that is, suppose f is of

the form f(x) = w · x for some w ∈ Rd
>0, and for some constants c and d, we have

Af(x) ≤ cf(x) + d for every x. Then N is not explosive.

Proof. First, we will assume that Condition 5.0.2 is satisfied, i.e., that λ < ∞. We will

use the result for this case in the λ = ∞ case. Let V (n) = C(n) +
∑

x∈Zd
≥0
nx(w · x). The

assumption that every coordinate of w is strictly positive means that V → ∞ in the sense

of Theorem 6.1.1. Notice that neglecting the κE and κC terms and computing the other
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terms exactly gets us the upper bound

LV (n) ≤
∑

x∈Zd
≥0

κFS(x)nx + κIµ(x)(1 + w · x) +
∑
ν→ν′

nxλν→ν′(x)
(
w · (x+ ν ′ − ν)− w · x

)
=
∑

x∈Zd
≥0

κFS(x)nx + κIµ(x)(1 + w · x) + nxAf(x)

≤
∑

x∈Zd
≥0

κFS(x)nx + κIµ(x) + κIµ(x)(max
j
wj)

∑
j

xj

+ nxcf(x) + dnx

≤ (κFw
−1
S + c+ d)V (n) +

(
κI + κI(max

j
wj)λ

)
.

It follows from Theorem 6.1.1 that N is not explosive when λ <∞.

Now we deal with the case where λ = ∞. Let τ0 = 0 and for j = 1, 2, 3, · · · , let τj

denote the time of the j-th inflow for N . For j = 0, 1, 2, · · · , let N (j)(t) = N(t)It≤τj .

(Strictly speaking, N (j) is not a Markov chain, but we can expand the state space from N

to Z≥0×N , where the first coordinate indicates the number of inflows that have happened.

We will ignore this detail going forward.)

We claim that N (j) is not explosive, for any j.

We proceed by induction on j. N (0) isn’t explosive, since it’s just a constant. Suppose

that N (j−1) is not explosive. N (j) = N (j−1) up to time τj−1, so N (j) cannot explode

before time τj−1, and N
(j) is constant after time τj , so it remains only to consider what

happens for τj−1 ≤ t ≤ τj . But for τj−1 ≤ t ≤ τj , by the strong Markov property N (j)(t)

has the same distribution as N(t) with 0 ≤ t ≤ τ1 started from N (j)(τj−1). But we can

construct another Markov chain Ñ coupled to N by deleting all inflow transitions, we have

N(t) = Ñ(t) for 0 ≤ t ≤ τ1, and Ñ(t) is not explosive by the argument given above in the

λ <∞ case.

Now with the claim proven, let t, ε > 0 be arbitrary. We will show that the probability

that N explodes by time t is at most ε. Pick j large enough that τj > t with probability

at least 1−ε. Then since N
(j)
s = Ns when s < τj and since N (j) is not explosive, it follows

that {N explodes by time t} ⊆ {τj < t}, and hence the probability N explodes by time t
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is at most ε. Since ε > 0 was arbitrary, N explodes by time t with probability zero. Since

t was arbitrary, N is not explosive.

We now illustrate Theorem 5.1.3 by applying it to the simpler model with chemistry

0 ⇆ S.

Corollary 5.1.4: Let N be the coarse-grained model associated to (5.2):

0 S 0 C 2C µ.
κb

κd

κI

κE

κFSC

κC

For any choice of parameters, N is not explosive. (We do not assume µ has finite expec-

tation here.)

Proof. Let f(x) = x. Notice that

Af(x) = κb − κdx ≤ κb.

Therefore, N is not explosive by Theorem 5.1.3.

5.2 Positive Recurrence

Once again the key property of IK will be the existence of a linear Lyapunov function.

Theorem 5.2.1: Let N be the coarse-grained model associated to (5.1):

IK 0 C 2C µ.
κI

κE

κFSC

κC

Let A denote the generator of the associated chemistry IK. Suppose there exists some

linear function f : Zd
≥0 → R of the form f(x) = w · x for some w ∈ Rd

>0, such that

supxAf(x) < ∞. Suppose condition 5.0.2 is satisfied: λ < ∞. If κC > 0 and κE > 0,

then the state with no compartments is positive recurrent for N , all states reachable from

that one are also positive recurrent for N , and all other states are transient with finite

expected time to reach the set of positive recurrent states.
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Remark 5.2.2: If f were a Lyapunov function witnessing (via Theorem 6.1.2) that IK

was positive recurrent, we would have Af(x) ≤ −1 outside some finite set. Similarly, if

f were witnessing that IK was recurrent, we would have Af(x) ≤ 0 outside some finite

set. Either of these would imply the assumption supxAf(x) <∞ from the theorem. This

assumption supxAf(x) < ∞ is in fact strictly weaker than having a Lyapunov function

for recurrence, as we will see in 5.2.3 when we apply it with the transient chemistry 0 → S.

However, the assumption supxAf(x) < ∞ is stronger than having a Lyapunov function

for non-explosivity. Indeed, if supxAf(x) < ∞ and f → ∞, then a suitable shift g of f

will satisfy Ag(x) ≤ g(x) (this is easiest to see by taking g to be a shift of f satisfying

Ag(x) = Af(x) ≤ supy Af(y) ≤ infy g(y) ≤ g(x)). △

Proof of Theorem 5.2.1. Let V (n) = C(n) + α
∑

x∈Zd
≥0
nx(w · x), for some constant α > 0

to be chosen later. The assumption that every coordinate of w is strictly positive means

that V → ∞ in the sense of Theorem 6.1.2.

LV (n) =
∑

x∈Zd
≥0

κFS(x)nx + κIµ(x)(1 + αw · x) + α
∑
ν→ν′

nxλν→ν′(x)
(
w · (x+ ν ′ − ν)− w · x

)
− κEnx(1 + αw · x)− κC

(
nx
2

)
−
∑

y∈Zd
≥0

y ̸=x

κC
nxny
2

=

 ∑
x∈Zd

≥0

κFS(x)nx − ακEnx(w · x) + κIµ(x)(1 + αw · x) + αnxAf(x)


− κC

(
C(n)

2

)
− κEC(n)

≤ −κC
(
C(n)

2

)
+

(
α sup

x
Af(x)− κE

)
C(n) + (κFw

−1
S − ακE)

∑
x∈Zd

nx(w · x)


+ κI + ακI(max

j
wj)λ.

Pick α large enough that ακE > κFw
−1
S (here we used κE > 0). Then we claim

this upper bound is at most −1 outside a finite set of n. Indeed, the term (κFw
−1
S −

ακE)
(∑

x∈Zd nx(w · x)
)
is non-positive by choice of α, so LV (n) is at most a polynomial
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in C(n) (with no dependence on n other than through C(n) and) with negative leading

term (here we used κC > 0). So for large enough values of C(n) we have LV (n) ≤ −1. For

each individual value of C(n) less than this threshold, the only term that varies as n varies

is (κFw
−1
S − ακE)

(∑
x∈Zd nx(w · x)

)
, and this approaches −∞ as

∑
x∈Zd nx(w · x) → ∞.

It follows that LV (n) ≤ −1 outside some finite set, as claimed.

Therefore, by Theorem 6.1.2 any state in a closed, irreducible component of N is

positive recurrent, and from any given state the expected time for the process to enter the

union of the closed irreducible components is finite. So to complete the proof it remains

only to point out that the state with no compartment is a member of a (indeed, the) closed

irreducible component of N ; this fact follows from the fact that κE > 0 and hence the

state with no compartments is reachable from every state in N .

We now illustrate this theorem by applying it to the simpler model with chemistry

0 ⇆ S. Note that the result holds even when IK is transient.

Corollary 5.2.3: Let N be the coarse-grained model associated to (5.2):

0 S 0 C 2C µ.
κb

κd

κI

κE

κFSC

κC

Suppose that condition 5.0.2 is satisfied: λ < ∞. If both κC > 0 and κE > 0, then the

state (0, 0, 0, · · · ) with no compartments is positive recurrent. Moreover,

• If κI > 0 and either κb > 0 or µ ̸= δ0, then all states are reachable from (0, 0, 0, · · · )

and hence positive recurrent.

• If κI > 0 and both κb = 0 and µ = δ0, then all states with zero S are positive

recurrent and all other states are transient. These other states all have finite expected

time to be absorbed by the collection of zero-S states.

• If κI = 0, then all states with a positive number of compartments are transient, but

are absorbed by the state with zero compartments in finite expected time.
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Proof. Let f(x) = x, and notice that Af(x) ≤ κb. Therefore, the state with no com-

partments is positive recurrent for N by Theorem 5.2.1. The “moreover” part of this

corollary follows straightforward considerations about which states are reachable from the

state with no compartments.

In any specific model, one may be able to do better than Theorem 5.2.1 by using a

more tailored Lyapunov function. The next proposition provides an example of this by

extending Corollary 5.2.3.

Proposition 5.2.4: Let N be the coarse-grained model associated to (5.2):

0 S 0 C 2C µ.
κb

κd

κI

κE

κFSC

κC

Suppose that condition 5.0.2 is satisfied: λ <∞. Consider the following conditions on the

parameters of the model:

(a) κC > 0 and κE > 0.

(b) κ2E + κEκd > κbκF

(c) κC > 0 and κd > 0 and κE = 0

If condition (a) or (b) is satisfied, the state (0, 0, 0, · · · ) with no compartments is positive

recurrent. Moreover,

• If κI > 0 and either κb > 0 or µ ̸= δ0, then all states are reachable from (0, 0, 0, · · · )

and hence positive recurrent.

• If κI > 0 and both κb = 0 and µ = δ0, then all states with zero S are positive

recurrent and all other states are transient. These other states all have finite expected

time to be absorbed by the collection of zero-S states.

• If κI = 0, then all states with a positive number of compartments are transient, but

are absorbed by the state with zero compartments in finite expected time.
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If condition (c) is satisfied, the state (1, 0, 0, · · · ) with one empty compartment is positive

recurrent. Moreover,

• If κIκb > 0, or κFκb > 0, or κI > 0 and µ ̸= δ0, then all states other than (0, 0, 0, · · · )

are reachable from (1, 0, 0, · · · ) and hence positive recurrent.

• If κI > 0 and both κb = 0 and µ = δ0, then all states with zero S and a positive

number of compartments are positive recurrent and all other states are transient.

These other states all have finite expected time to be absorbed by the collection of

zero-S states.

• If κb > 0 but κI = 0 = κF , then all states with one compartment are positive

recurrent, and all other states are transient and have finite expected time to be

absorbed by the one-compartment states.

• If κI = 0 and κb = 0, then the state with no compartments is absorbing, as is

the state with one empty compartment, and all other states are transient. These

other states have finite expected time to be absorbed by the state with one empty

compartment.

Remark 5.2.5: Note that the above covers conditions (a), (b), and (c) completely: All

possible combinations of other parameters are listed in the bullet points following each

“Moreover”. Furthermore, note that (a) and (c) together cover every possible case where

κC > 0 except the one where κE = κd = 0, which is not a very interesting case since the

number of S cannot decrease. So the proposition is essentially complete except for the

parameter regime where κC = 0 and κ2E + κEκd ≤ κbκF . Later, in Proposition 5.2.7, we

will prove transience in part (though not all) of this remaining regime. △

Proof of Proposition 5.2.4. The claims about condition (a) are just repeating Corollary

5.2.3. For the remaining conditions, let L denote the generator of N . For n ∈ N , let

C(n) =
∑∞

x=0 nx and S(n) =
∑∞

x=0 xnx be the total number of compartments and the

total number of S across compartments, respectively. Let V (n) = αS(n) +C(n) for some
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constant α > 0 to be chosen later. Then

LV (n) = −κC
(
C(n)

2

)
+ κFS(n)− κEC(n)− ακES(n) + ακbC(n)− ακdS(n)

+
∞∑
x=0

κIµ(x)
(
1 + xa

)
= −κC

(
C(n)

2

)
+ (κF − α(κE + κd))S(n) + (ακb − κE)C(n) + κI + κIλα.

If κC > 0 and κd + κE > 0, then picking α > κF /(κd + κE) we have that LV (n) ≤ −1

outside a finite set. The claims about condition (c) now follow from Theorem 6.1.2 and

straightforward reachability considerations. (This also gives an alternate proof of the

claims about condition (a).)

If κ2E+κEκd > κbκF , then κF /(κE+κd) < κE/κb; pick α to be some number satisfying

κF /(κE + κd) < α < κE/κb (with the convention that κE/κb = ∞ if κb = 0). Then the

coefficients of both S(n) and C(n) are negative, so LV (n) ≤ −1 outside a finite set. The

claims about condition (b) follow just as above.

Remark 5.2.6: In Section 2.B of [1], the model (5.2) is studied via simulation and moment

closure methods in the case where κb = 0 = κd, where µ is Poisson with parameter λ, and

where ψ(x, y) is uniform over possible unordered pairs {y, x− y}. They study a moment-

closure approximation of the model for finite time scales, and do not deal with the long

term behavior of their model. As it turns out, their model is positive recurrent. This

follows from Proposition 5.2.4; one could use either condition (a) or (b). In fact, since

Proposition 5.2.4(a) is just Corollary 5.2.3, the existence of the stationary distribution is

essentially free from Theorem 5.2.1. △

In the simple model with chemistry 0 ⇆ S, we are also able to prove results about

transience. We will assume that κC = 0, since by Proposition 5.2.4 conditions (a) and (c)

we know that if κC > 0 then N is positive recurrent as long as κd > 0 or κE > 0, and

the case where κd = 0 = κE is not interesting because the total number of molecules of S

across all compartments cannot shrink.
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Proposition 5.2.7: Let N be the coarse-grained model associated to (5.2)

0 S 0 C 2C µ,
κb

κd

κI

κE

κFSC

κC

where we again assume condition 5.0.2: λ <∞. If (κF −κE)κb > (κE +κd)κE and κI > 0

and κC = 0, then all states are transient for N .

Proof. Let C(n) =
∑∞

x=0 nx and C>0(n) =
∑∞

x=1 nx, and let W (n) = C(n) +αC>0(n) for

some constant α > 0 to be chosen later. Let V (n) = 1− 1
W (n)+1 .

Notice that (with the convention that 0/0 = 0),

LV (n) =
∞∑
x=0

κbnx
(
V (n− ex + ex+1)− V (n)

)
+ κdnxx

(
V (n− ex + ex−1)− V (n)

)
+ κIµ(x)

(
V (n+ ex)− V (n)

)
+ κEnx

(
V (n− ex)− V (n)

)
+ κFxnx

 ∞∑
y=0

ψ(x, y)
(
V (n− ex + ey + ex−y

)
− V (n)

)
≥ κbn0

(
1

W (n) + 1
− 1

W (n) + 1 + α

)
+ κdC>0(n)

(
1

W (n) + 1
− 1

W (n) + 1− α

)
+ κEn0

(
1

W (n) + 1
− 1

W (n)

)
+ κEC>0(n)

(
1

W (n) + 1
− 1

W (n)− α

)
+ (κFC>0(n) + κI)

(
1

W (n) + 1
− 1

W (n) + 2

)
=

ακbn0
(W (n) + 1)(W (n) + 1 + α)

+
κFC>0(n) + κI

(W (n) + 1)(W (n) + 2)

− κEn0
(W (n) + 1)(W (n))

− (1 + α)κEC>0(n)

(W (n) + 1)(W (n)− α)
− ακdC>0(n)

(W (n) + 1)(W (n) + 1− α)

Multiplying through by (W (n) + 1)(W (n) + 2), the above becomes

(W (n) + 1)(W (n) + 2)LV (n) = ακbn0
W (n) + 2

W (n) + 1 + α
+ κFC>0(n) + κI − κEn0

W (n) + 2

W (n)

− (1 + α)κEC>0(n)
W (n) + 2

W (n)− α
− ακdC>0(n)

W (n) + 2

W (n) + 1− α
.

Let ε > 0 be another constant that we will pick later. Notice that all four fractions

immediately above are converging to 1 as W (n) → ∞. Let Bε be a set of the form
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{n : W (n) ≤ kε} for some number kε, such that the first fraction is bounded below by

1− ε on Bc
ε and the latter three are bounded above by 1 + ε on Bc

ε. But then off of Bε,

(W (n) + 1)(W (n) + 2)LV (n) ≥ ακbn0(1− ε) + κFC>0(n) + κI − κEn0(1 + ε)

− (1 + α)κEC>0(n)(1 + ε)− ακdC>0(n)(1 + ε)

=
(
κF − (1 + α)κE(1 + ε)− ακd(1 + ε)

)
C>0(n)

+
(
ακb(1− ε)− κE(1 + ε)

)
n0 + κI

Since (κF −κE)κb > (κE +κd)κE , in particular (κF −κE)/(κE +κd) > κE/κb; pick α > 0

so that (κF − κE)/(κE + κd) > α > κE/κb. Rearranging these two inequalities gets us

ακb−κE > 0 and κF − (1+α)κE −ακd > 0. So for some sufficiently small ε > 0, we have

ακb(1 − ε) − κE(1 + ε) > 0 and κF − (1 + α)κE(1 + ε) − ακd(1 + ε) > 0. Let ε be such;

outside Bε, we have

(W (n) + 1)(W (n) + 2)LV (n) ≥ 0

LV (n) ≥ 0.

Then, since supn∈Bε
V (n) < infn∈Bc

ε
V (n) and since N is not explosive by Corollary 5.1.4,

Theorem 6.1.3 tells us that when N is started outside of Bε, the probability that it

eventually reaches Bε is less than one. Notice that (since κI > 0), when started from

(0, 0, 0, · · · ) the Markov chain N reaches (kε, 0, 0, 0, · · · ) ∈ Bc
ε with positive probability,

and then by above with positive probability it never returns to (0, 0, 0, · · · ). So (0, 0, 0, · · · )

is transient. Now either κE = 0 and every state is obviously transient, or κE > 0 and the

transient state (0, 0, 0, · · · ) is reachable from every state. So in either case, every state is

transient, as claimed.

Remark 5.2.8: Notice the gap between the previous two results: If κC = 0 and κI > 0,

the former says that N is positive recurrent if κ2E + κEκd > κbκF whereas the latter says

that N is transient if κ2E +κEκd < κbκF −κbκE . We conjecture that N is transient in the
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case where κbκF > κ2E + κEκd ≥ κbκF − κbκE .

Limited numerical simulation supports this conjecture. With a team of four under-

graduate students (Carina Guo, Olivia Guo, Leo Shen, and Yikai Zhang), we simulated

the model of this chapter using a combination of the Gillespie and next reaction algo-

rithms (see [6], specifically Algorithms 1 and 2, for background on these two methods).

Specifically, simulations were done with parameters κC = 0, κb = κd = κE = κI = 1,

and κF ∈ {1.9, 2.0, 2.1}. By the theorem above, the system should be positive recurrent

with κF = 1.9, whereas κF = 2.0 and κF = 2.1 fall into the gap (with κF = 2 right

on the boundary and not covered by the conjecture above). Indeed, the trajectories kept

returning to zero in the κF = 1.9 case, they were steadily increasing when κF = 2.1, and

the κF = 2.0 case was less clear. △
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Chapter 6

Technical Results

This chapter is devoted to stating and proving any technical results needed for the thesis.

6.1 Lyapunovfunctionology

The theory of Lyapunov functions for Markov chains provides powerful tools for checking

(in)stability properties. This section is devoted to introducing the extent of the theory we

use.

The statement and proof of Theorem 6.1.1 are heavily inspired by Theorem 2.1 of [28],

and one can check that our theorem is a corollary of theirs. Our proof is slightly different

because we prove the result by truncating the Lyapunov function instead of truncating

the process. The key idea for this alternate truncation was drawn from [29].

Theorem 6.1.1: Let X be a continuous-time Markov chain on a countable state space

S with generator L. Suppose V is a function on S which satisfies V → ∞ in the sense

that {x ∈ S : V (x) < B} is finite for every B > 0. If there are constants c, d ≥ 0 so that

LV (x) ≤ cV (x) + d for all x, then X is not explosive.

Proof. Observe that it is enough to consider the case where V ≥ 0 and LV (x) ≤ cV (x).

Indeed, the condition V → ∞ grants that V attains a global minimum value. So a suitable

shift of V , sayW , will have minimum at least d ≥ 0 and so the condition LV (x) ≤ cV (x)+d
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implies LW (x) ≤ (c+ 1)W (x).

Now fix an enumeration x1, x2, · · · of S, and for m = 1, 2, 3, · · · let Om = {x1, · · · , xm}

and let Tm denote the first time the process (Xt) is not in Om. Notice that to show that

X is not explosive, it suffices to show that ζ := lim
m→∞

Tm is infinite Px-a.s. for each x ∈ S.

For m = 1, 2, 3, · · · , set g(x, t) = V (x)e−ct and set f(x, t) = g(x, t)IOm(x). The

indicator function ensures that the support of f in the variable x lies in Om and that f is

uniformly bounded in both variables. So we can apply Dynkin’s formula (Lemma 6.2.2)

to f and conclude that if τ is any a.s. bounded stopping time,

Ex[f(Xτ , τ)] = f(x, 0) + Ex

[∫ τ

0
Lf(Xs, s)ds

]
.

One can check that since V was assumed non-negative, Lf(x, s) ≤ Lg(x, s) for all x ∈ Om

and all s. This follows since x ∈ Om one has

Lg(x, s)− Lf(x, s) = e−ct
∑
y ̸=x

qxyIy/∈Om
V (y) ≥ 0.

So if x ∈ Om, then for any a.s. bounded stopping time τ , we get

Ex[f(Xτ∧Tm , τ ∧ Tm)] ≤ f(x, 0) + Ex

[∫ τ∧Tm

0
Lg(Xs, s)ds

]
= V (x) + Ex

[∫ τ∧Tm

0
e−cs

(
LV (Xs)− cV (Xs)

)
ds

]
≤ V (x),

where in the first line we use the fact that Xs ∈ Om when s < τ ∧ Tm.

Now consider the process Mt := f(Xt, t)It<Tm = V (Xt)e
−ctIt<Tm . Notice that M is

the product of right-continuous functions and hence itself right-continuous; we claim that

M is a supermartingale. Toward this end, fix s < t; we wish to show that E[Mt|Fs] ≤Ms

where Fs denotes the σ-algebra generated by (Xr)r≤s. Since the event {s ≥ Tm} ∈ Fs,
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we can decompose

E[Mt|Fs] = E[Mt|Fs]Is≥Tm + E[Mt|Fs]Is<Tm ,

so it is enough to show the desired inequality both on and off the event {s ≥ Tm}. On

this event, we have Ms = 0 = Mt, and so E[Mt|Fs]Is≥Tm = 0 = MsIs≥Tm . On the event

{s < Tm}, notice that Xs ∈ Om, and hence the bound EXs [f(Xτ∧Tm , τ ∧ Tm)] ≤ V (Xs)

from above applies for any a.s. bounded stopping time τ (and in particular, for τ = t− s).

So by the Markov property,

E[Mt|Fs]Is<Tm = E[V (Xt)e
−ctIt<Tm |Fs]Is<Tm

= e−csEXs [V (Xt−s)e
−c(t−s)It−s<Tm ]Is<Tm

= e−csEXs [f(Xt−s, t− s)It−s<Tm ]Is<Tm

≤ e−csEXs [f(X(t−s)∧Tm
, (t− s) ∧ Tm)]Is<Tm

≤ e−csV (Xs)Is<Tm

=MsIs<Tm .

We conclude that M is a supermartingale, as claimed. Now fix x ∈ S and λ > 0. By

Doob’s Supermartingale inequality (Lemma 6.2.4),

λ−1V (x)IOm(x) ≥ Px

[
sup

t∈[0,∞)
Mt ≥ λ

]

= Px

[
sup

0≤t<Tm
V (Xt)e

−ct ≥ λ

]
.

Sending m→ ∞ and applying continuity of probability yields

Px

[
sup

0≤t<ζ
V (Xt)e

−ct ≥ λ

]
≤ λ−1V (x). (6.1)
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Notice that

sup
0≤t<ζ

V (Xt)e
−ct ≥ e−cζ sup

0≤t<ζ
V (Xt).

This lower bound is ∞ when ζ < ∞ thanks to the condition V → ∞, and hence we have

sup
0≤t<ζ

V (Xt)e
−ct ≥ λ on the set where ζ <∞, regardless of λ. From (6.1), then,

Px(ζ <∞) ≤ λ−1V (x).

But λ > 0 was arbitrary; sending λ → ∞ yields that Px(ζ < ∞) = 0. Since x was

arbitrary, it follows that X is not explosive.

The following theorem is well-known. In full generality, it is due to Meyn and Tweedie

— see [28]. The version below is a specialization to the countable state space case. For a

proof of the version given below, see the more recent paper [30].

Theorem 6.1.2: Let X be a continuous-time Markov chain on a countable state space S

with generator L. Suppose there exists a finite set K ⊂ S and a positive function V on S

such that

LV (x) ≤ −1

for all x ∈ S \K. Suppose further that V → ∞ in the sense that {x ∈ S : V (x) < B} is

finite for every B > 0. Then each state in a closed, irreducible component of S is positive

recurrent. Moreover, if τx0 is the time for the process to enter the union of the closed

irreducible components given an initial condition x0, then Ex0 [τx0 ] <∞.

We will also need the following, which provides a method to check for transience.

Theorem 6.1.3: Let X be a non-explosive continuous-time Markov chain on a countable

discrete state space S with generator L. Let B ⊂ S, and let τB be the time for the process

to enter B. Suppose there is some bounded function V such that for all x ∈ Bc,

LV (x) ≥ 0.
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Then Px0(τB <∞) < 1 for any x0 such that

sup
x∈B

V (x) < V (x0).

For a version of the theorem above that applies in much greater generality, see Theorem

3.3(i) in [31]. Our theorem is not an immediate corollary of theirs (they define restricted

versions of the chain X and state their theorem in terms of the generators of the restricted

processes), so we will provide a proof (which, just like the theorem statement, draws heavy

inspiration from [31]):

Proof of Theorem 6.1.3. Define W on S via W = V − supx∈B V (x). Notice that W (x0) is

strictly positive, W is nonpositive on B, and LW = LV . Fix some enumeration of S in

which x0 is the first element, and for m ∈ N let Sm denote the first m elements of S. Let

τm be the first time X is not in Sm. Let ∆ be a new state not in S, and for m ∈ N define

a new Markov chain Xm via

Xm
t =


Xt t < τm

∆ t ≥ τm

Notice that Xm has finite state space Sm ∪ {∆}. Notice that W is bounded since V is,

let C = supx∈SW (x), and extend W to a function on S∪ {∆} by setting W (∆) = C. Let

Lm denote the generator of the process Xm; we claim that LW (x) ≤ LmW (x) whenever
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x ∈ Sm. Indeed, notice that

Ex[W (Xt)] =
∑
y∈S

W (y)Px(Xt = y)

=
∑
y∈S

W (y)Px(Xt = y, t < τm) +
∑
y∈S

W (y)Px(Xt = y, t ≥ τm)

≤
∑
y∈S

W (y)Px(Xt = y, t < τm) +
∑
y∈S

CPx(Xt = y, t ≥ τm)

=
∑
y∈Sm

W (y)Px(X
m
t = y) +W (∆)Px(X

m
t = ∆)

= Ex[W (Xm
t )],

and hence

LW (x) = lim
t↘0

Ex[W (Xt)]−W (x)

t
≤ lim

t↘0

Ex[W (Xm
t )]−W (x)

t
= LmW (x),

as claimed. Now for any m, applying Dynkin’s Formula (Lemma 6.2.1) to the chain Xm

with finite stopping time τB ∧ τm ∧m yields

Ex0 [W (Xm
τB∧τm∧m)] =W (x0) + Ex0

[∫ τB∧τm∧m

0
LmW (Xm

s )ds

]
.

But for s < τB ∧ τm we have Xm
s = Xs ∈ Bc ∩ Sm and hence

LmW (Xm
s ) = LmW (Xs) ≥ LW (Xs) = LV (Xs) ≥ 0.

So the integrand in Dynkin’s Formula is non-negative, and

W (x0) ≤ Ex0 [W (Xm
τB∧τm∧m)]

= Ex0 [W (Xm
τB
)IτB<τm∧m] + Ex0 [W (Xm

τm∧m)IτB≥τm∧m]

≤ Ex0 [W (Xm
τB
)IτB<τm∧m] + CPx0(τB ≥ τm ∧m).
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Note that Xm
τB

∈ B on the event τB < τm ∧m. Hence W (Xm
τB
)IτB<τm∧m ≤ 0, and

W (x0) ≤ CPx0(τB ≥ τm ∧m)

Since X is assumed to be non-explosive, τm → ∞ as m → ∞, so taking m → ∞ above

gives

W (x0) ≤ CPx0(τB = ∞).

But W (x0) is strictly positive and 0 < W (x0) ≤ C < ∞, so Px0(τB = ∞) ̸= 0. That is,

Px0(τB <∞) < 1, as desired.

Remark 6.1.4: Note that the proof above gives us a lower bound for the probability that

the process never returns to the set B:

W (x0)

C
≤ Px0(τB = ∞),

where C = supx∈SW (x) and W = V − supx∈B V (x). We do not make use of this fact. △

The following is a simplified version of Theorem 8.4.3 from [32] (expect that their

theorem is in discrete time, but that doesn’t matter), and this proof is essentially theirs.

Theorem 6.1.5: Suppose X is an irreducible CTMC on S. Suppose B ⊆ S is finite, and

suppose V : X → R with V → ∞ (in the sense that {V < M} is finite for each M)

satisfies LV (x) ≤ 0 for x /∈ B. Then X is recurrent.

Proof. By shifting V , we may suppose without loss of generality that V : X → [0,∞). Let

Y be the jump chain for X. Then LV (x) ≤ 0 iff ∆V (x) := Ex[V (Y1)]−V (x) ≤ 0 (you can

check that LV (x) and ∆V (x) differ by a positive ratio, namely, the total rate of X out of

state x). So our approach will be to prove that Y is recurrent using V (x) ≥ Ex[V (Y1)] for

x /∈ B.

Suppose toward a contradiction that {Yk} is transient. Then there is some x0 /∈ B

such that Px0(TB = ∞) > 0 where TB = inf{k ≥ 0 : Yk ∈ B}; let x0 be such. Let M
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denote some number large enough that

V (x0) < MPx0(TB = ∞).

Define a new process Ŷ via Ŷk = Yk∧TB
(that is, take Y and stop it upon entering B).

Notice that V (x) ≥ Ex[V (Ŷ1)] for all x ∈ S (if x ∈ B we have equality, and if x /∈ B we

have V (x) ≥ Ex[V (Y1)] = Ex[V (Ŷ1)]). By induction, we get V (x) ≥ Ex[V (Ŷk)] for all k

(expand as a telescoping sum and apply the Markov property). But then for all k, and all

x,

V (x) ≥ Ex[V (Ŷk)]

=
∑
y∈S

V (y)P̂ k(x, y)

≥
∑
y/∈B

V (y)≥M

V (y)P̂ k(x, y)

≥MPx(Ŷk /∈ B, V (Ŷk) ≥M), (6.2)

where P̂ is the transition matrix for Ŷ . We claim Px0(Ŷk /∈ B, V (Ŷk) ≥ M) → Px0(TB =

∞) as k → ∞. Indeed, we can decompose

Px0(Ŷk /∈ B) = Px0(Ŷk /∈ B, V (Ŷk) ≥M) + Px0(Ŷk /∈ B, V (Ŷk) < M),

and it is clear that Px0(Ŷk /∈ B) = Px0(Y0, · · · , Yk /∈ B) → Px0(TB = ∞) by continuity of

probability. And

Px0(Ŷk /∈ B, V (Ŷk) < M) = Px0(Ŷk /∈ B, V (Yk) < M) ≤ Px0(V (Yk) < M),

which goes to 0 as y → ∞ since x0 is transient by assumption and {y : V (y) < M} is
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finite by assumption on V . It follows that

Px0(Ŷk /∈ B, V (Ŷk) ≥M) → Px0(TB = ∞)

as k → ∞, as claimed. But then taking k → ∞ in equation (6.2) yields

V (x) ≥MPx0(TB = ∞),

which contradicts the definition ofM . Thus our assumption was wrong, and Y (and hence

X) is recurrent.

6.2 Other Technical Lemmata

The following was used in the proof of 6.1.3, and is well-known.

Lemma 6.2.1 (Dynkin’s Formula): Suppose X is a Markov chain with finite state space

S, and let L be the generator of X. Then for any a.s. bounded stopping time τ and any

x ∈ S, we have

Ex[f(Xτ )] = f(x) + Ex

[∫ τ

0
Lf(Xs)ds

]
The version of Dynkin’s formula stated above was the one used in [2]. We do not

provide a proof because this thesis requires a more general version of Dynkin’s formula,

proven below.

Lemma 6.2.2 (Dynkin’s Formula): Suppose f : S × [0,∞) → R has finite support in

the first argument uniformly in the second argument; that is, suppose there exists F ⊂ S

finite with the property that for all t ∈ [0,∞) and all y /∈ F we have f(y, t) = 0. Suppose

moreover that f is bounded uniformly in both variables. Then f is in the domain of the

generator, and for any a.s. bounded stopping time τ ,

Ex[f(Xτ , τ)] = f(x, 0) + Ex

[∫ τ

0
Lf(Xs, s)ds

]
.
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Proof. Since f has finite support, the sum in the definition of Lf (Definition 1.0.1) is

a finite sum, and in particular is absolutely convergent. So f is in the domain of the

generator.

Let Mt = f(Xt, t)−
∫ t
0 Lf(Xs, s)ds. We claim that (Mt) is a martingale. Toward this

end, fix 0 ≤ r < t and notice that (if Fr denotes the σ-algebra of information available up

to time r),

E
[∫ t

0
Lf(Xs, s)ds−

∫ r

0
Lf(Xs, s)ds

∣∣∣∣Fr

]
= E

[∫ t

r
Lf(Xs, s)ds

∣∣∣∣Fr

]

= E

∫ t

r

∑
y∈S

f(y, s)qXsy

+ ∂2f(Xs, s)ds

∣∣∣∣∣∣Fr


= EXr

∫ t−r

0

∑
y∈S

f(y, r + s)qXsy

+ ∂2f(Xs, r + s)ds

 (Markov property)

=
∑
z∈S

∫ t−r

0

∑
y∈S

f(y, r + s)qzypXrz(s)ds+
∑
y∈S

∫ t−r

0
∂2f(y, r + s)pXry(s)ds

=
∑
y∈S

∑
z∈S

∫ t−r

0
f(y, r + s)qzypXrz(s)ds+

∑
y∈S

∫ t−r

0
∂2f(y, r + s)pXry(s)ds (See below)

=
∑
y∈S

∫ t−r

0

∑
z∈S

f(y, r + s)qzypXrz(s)ds+
∑
y∈S

∫ t−r

0
∂2f(y, r + s)pXry(s)ds (See below)

=
∑
y∈S

∫ t−r

0
f(y, r + s)p′Xry(s) + ∂2f(y, r + s)pXry(s)ds (Kolmogorov forward eq.)

=
∑
y∈S

∫ t−r

0

d

ds

(
f(y, r + s)pXry(s)

)
ds

=
∑
y∈S

(
f(y, t)pXry(t− r)− f(y, r)pXry(0)

)
= EXr [f(Xt−r, t)− f(X0, r)]

= E [f(Xt, t)− f(Xr, r)|Fr] . (Markov property)

The only steps left to justify are the ones marked “See below” where we interchange

various sums and integrals. Note that since y 7→ f(y, ·) has finite support uniformly in
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the second argument, the sums over y are finite. This justifies the first “See below” step.

By the Fubini–Tonelli theorems, to justify the second such step it suffices to check that

for each y we have ∫ t−r

0

∑
z∈S

|f(y, r + s)qzypXrz(s)| ds <∞.

But f is uniformly bounded and 0 ≤ pXrz(s) ≤ 1, so it suffices to bound

∫ t−r

0

∑
z∈S

|qzy| pXrz(s)ds =

∫ t−r

0
−qyypXrz(s) +

∑
z ̸=y

qzypXrz(s)ds

=

∫ t−r

0
−2qyypXrz(s) +

∑
z∈S

qzypXrz(s)ds

≤
∫ t−r

0
−2qyy +

∑
z∈S

qzypXrz(s)ds

=

∫ t−r

0
−2qyy + p′Xry(s)ds

= −2qyy(t− r) + pXry(t− r)− pXry(0).

This last quantity is finite, so interchanging the sums and integral is justified, and we

conclude that

E
[∫ t

0
Lf(Xs, s)ds−

∫ r

0
Lf(Xs, s)ds

∣∣∣∣Fr

]
= E [f(Xt, t)− f(Xr, r)|Fr] .

Rearranging, we see that E[Mt −Mr|Fr] = 0, so (Mt) is indeed a martingale. To get the

desired result, now apply some form of the optional stopping theorem (e.g., Theorem 2.13

in chapter 2 of [18]) to (Mt) with stopping time τ .

In the proof of Theorem 6.1.1, in addition to the stronger version of Dynkin’s formula

given above we also required Doob’s Supermartingale inequality. We now prove the latter

by way of an intermediate result:

Lemma 6.2.3: Let (Xt)t∈[0,T ] be a right-continuous submartingale, and let λ > 0 a real

constant. Then

λP
[

inf
t∈[0,T ]

Xt ≤ −λ
]
≤ E(X+

T )− E[X0].
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where X+
T = max{XT , 0}.

Proof. See (for example) Theorem 3.8 (ii) in Chapter 1 of [33].

The following result is sometimes also called “Kolmogorov’s Inequality”, for example

in the proof of Theorem 2.1 of [28].

Lemma 6.2.4 (Doob’s Supermartingale inequality): Let (Xt)t∈[0,∞) be a right-continuous

[0,∞)-valued supermartingale, and let λ > 0 a real constant. Then

P

[
sup

t∈[0,∞)
Xt ≥ λ

]
≤ λ−1E[X0].

Proof. Letting Yt = −Xt, and applying Lemma 6.2.3 to Yt yields, for each fixed T ∈ (0,∞),

P

[
sup

t∈[0,T ]
Xt ≥ λ

]
≤ λ−1E[X0].

Sending T → ∞ and applying continuity of probability gives the desired result.
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