
Checking Format Compatibility of Programs Using Automata

By

Evan E. Driscoll

A dissertation submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the

UNIVERSITY OF WISCONSIN–MADISON

2013

Date of final oral examination: 8/21/2013

The dissertation is approved by the following members of the Final Oral Committee:
Thomas W. Reps, Professor, Computer Sciences
Susan B. Horwitz, Professor, Computer Sciences
Somesh Jha, Professor, Computer Sciences
Benjamin R. Liblit, Associate Professor, Computer Sciences
Steffen Lempp, Professor, Mathematics

© Copyright by Evan E. Driscoll 2013
All Rights Reserved

i

Dedicated to my family

ii

Acknowledgments

I owe many people for their help on the way to creating this dissertation. The following
acknowledges many, but not all, of the people who have helped me along the line.

It has been a pleasure to work alongside Tom Reps during my time in Madison. I
have learned much from him and being a part of his group. His encouragement as well
is appreciated, especially during the point at which I was seriously considering leaving
graduate school to work for industry. Tom: it has been a pleasure, and I’m sure the next
few years will be equally illuminating and interesting.1

I would also like to thank the other members of my committee. My work on the topics
in the thesis began with Susan Horwitz; at a time when she and Tom were on sabbatical
and I remained in Madison, Susan and I had regular phone calls talking about some of the
early incarnations of this work as I (and Susan and Tom) were still figuring out what we
wanted to do. Ben Liblit, in addition to kindly participating on my committee, has helped
me with many questions through my years; and Ben’s class on software artifacts was one
of the top couple of CS classes I have had the pleasure of taking. (In fact, I first learned
about Daikon, which I use in this thesis, from Ben’s class.) Somesh Jha and Steffen Lempp
also have taught very interesting classes, and Somesh in particular has provided valuable
feedback when my work was in earlier stages.

The other students in Tom’s research group have been equally important to me during
my time in Madison. Denis Gopan, Nick Kidd, Akash Lal, Junghee Lim, and Gogul
Balakrishnan were around for at least my first year, and I fondly remember the occasional
ice cream trips to Union South and the “PL group” chess night that we had a few times.
Nick Kidd in particular deserves a special callout for creating and being the principal author
of the WALi library, which I have made extensive use of and modifications to. Amanda
Burton, one of Tom’s later students, also deserves a callout for a similar reason: Amanda

1Nevertheless, I think I am obligated to throw that contraction in here, for old times’ sake. ,

iii

was the original author of the NWA code that I eventually turned into the OpenNWA
library, and the fact that this dissertation has a section talking about OpenNWA should
not be taken as me wanting to detract from her contribution. Prathmesh Prabhu, Emma
Turetsky, and Aditya Thakur have also made substantial contributions to the library, and
I have worked closely with them on it. For the last couple of years, Adytia also has been
my go-to person basically any time when I want to ask about different options for coding
something, how to solve a certain problem, or just about anything. Rich Joiner was the first
user of OpenNWA who was not actively involved in its development (though he made
some helpful additions after being a user), and having an independent eye on the code was
very helpful. Venkatesh Srinivasan, Tushar Sharma, Divy Vasal, Matt Elder, and Bill Harris
have all given valuable feedback about one thing or another that I have been working on
while in Madison, and most have taught me a great deal. Matt and Bill in particular are
good friends.

This work was supported by NSF under grants CCF-0540955, 0810053, 0904371; by ONR
under grants N00014-07-M-0407, 09-1-0510, 10-M-0251; by ARL under grant W911NF-09-
1-0413; by AFRL under grants FA9550-09-1-0279 and FA8650-10-C-7088; and by DARPA
under cooperative agreement HR0011-12-2-0012. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the sponsoring agencies.

Lastly I would like to thank my family for their support. Both my immediate family,
Sally and Giles Driscoll and my brother Eric, as well as my extended family have been very
supportive of my time at UW, and I almost never heard a “when are you graduating?!” out
of them. Anyone would be fortunate to have parents like mine.

iv

Contents

Contents iv

List of Figures, Tables, and Listings viii

Abstract x

1 Introduction 1
1.1 File Formats 2

1.1.1 Surface syntax of the ICO format 3
1.1.2 Semantic constraints on the input 4
1.1.3 Input semantics 6

1.2 Format Inference and Compatibility Checking 6
1.2.1 Format inference 6
1.2.2 Modeling programs vs modeling formats 8
1.2.3 Format compatibility 8

1.3 Dissertation Overview 10

Part I Tools
2 Nested-Word Automata (NWAs) 13

2.1 Definitions and Theory 13
2.1.1 Informal Description of NWAs [background] 15
2.1.2 Formal Definition of NWAs [background] 18
2.1.3 NWAs and ε transitions [new] 20
2.1.4 NWA determinization [adaption/background] 26
2.1.5 Kleene star [adaption] 30

v

2.1.6 Weakly-hierarchical-preserving NWA Reversal [new] 32
2.2 The OpenNWA Library [new] 37

2.2.1 Supported Operations 37
2.2.2 Client Information 38
2.2.3 Inter-operability with WPDSs 38
2.2.4 OpenNWA uses 39

2.3 Related Work 41

3 Extended Finite Automata (XFAs) and Weighted Finite Automata (WFAs) 42
3.1 Formal definition of extended finite automata (XFA) [background] 43
3.2 Weighted finite automata [background] 45
3.3 Interpreting an XFA as a WFA [adaption/new] 47
3.4 Symbolic ε closure [new/adaption] 50

3.4.1 Performance comparison of ε closure methods 55
3.5 State-Determinization [adaption/background] 56

3.5.1 Lifting the data set fromD toQ×D and adjusting transformers 61
3.5.2 Determinize the state portion of the WFA 64

3.6 Language containment 66
3.6.1 The powerset semiring [background and new] 67
3.6.2 WFA universality [new] 68
3.6.3 WFA cross product [adaption/new] 71
3.6.4 Basic inclusion test [new] 72
3.6.5 Speeding up operations with antichains [as indicated] 72
3.6.6 Complexity of XFA universality and inclusion testing [new] 78

3.7 Representing relations as BDDs [background] 79
3.7.1 A brief introduction to BDDs 79
3.7.2 Representing non-Boolean functions and relations with a BDD 83

3.8 XFA implementation in WALi [new] 84

4 A Binary Front End for Daikon 85
4.1 Daikon background 85
4.2 Snotra: a new Daikon front end 86

4.2.1 Motivation 89

vi

4.2.2 How Snotra works 92
4.2.3 Instrumentation for field values 93
4.2.4 Instrumentation for loop trip counts 96
4.2.5 Example instrumentation 102

Part II Application Compatibilty Checking
5 Control-Flow Format Compatibility 106

5.1 Overview 106
5.2 Building FA and NWA Models of a Program 109

5.2.1 Knowledge about I/O procedures 112
5.2.2 Benefits of Using NWAs 113

5.3 Enriching NWAs for Compatibility 116
5.4 Using PCCA for more than types 119
5.5 PCCA Implementation 120

5.5.1 Seeding the System with I/O Procedures 122
5.5.2 Removing Irrelevant Procedures 123

5.6 Experiments 123

6 Adding Loop Counters With XFAs 130
6.1 Overview 131
6.2 Inferring Format Models 133

6.2.1 Modeling control flow 133
6.2.2 Finding I/O relations 135
6.2.3 Modeling I/O relations 135

6.3 Optimizations 138
6.3.1 Setting killed variables to a single value 138
6.3.2 Collapsing ε sequences 140

6.4 Tradeoffs with our instrumentation strategy 141
6.5 Experiments 142

6.5.1 XFA benefits evaluation 143
6.5.2 Synthetic performance-scaling evaluation 149
6.5.3 ICO specification performance scaling evaluation 151

vii

7 Related Work 155

8 Conclusions 162

Bibliography 168

viii

List of Figures, Tables, and Listings

Figure 1.1 The ICO file format . 2
Table 1.2 Sizes and equivalences of “C” types and Windows types 4
Figure 1.3 True and false positives and negatives . 9

Figure 2.1 An example program, NWA, and NWA run 17
Figure 2.2 Rules defining transitions added to an NWA during ε closure 21
Figure 2.3 Diagram of ε removal . 21
Figure 2.4 Example invalid ?NWA constructed from a grammar 23
Figure 2.5 Invalid context-free grammar to ?NWA construction rules 24
Figure 2.6 Diagram of translating between ε semantics 26
Figure 2.7 Diagram of NWA Kleene star construction. 32
Figure 2.8 Rules defining transitions created by Kleene star 33
Figure 2.9 Rules defining transitions created during NWA reversal 34

Figure 3.1 Factoring a relation . 51
Listing 3.2 Smith et al.’s ε-closure procedure . 51
Figure 3.3 Solving WFA ε closure via translation to an (F)WPDS 53
Table 3.4 ε-closure algorithm performance . 56
Figure 3.5 Example XFA with nondeterminism in the data value 58
Figure 3.6 Example XFA and determinization . 59
Figure 3.7 Illustration of why the third step of XFA determinization, lifting trans-

formers to the power set, is necessary . 68
Listing 3.8 The non-antichains, early-cutoff universality algorithm for FAs. 73
Figure 3.9 Illustration of the benefit of antichains in universality checking as well

as cutting off the search early . 75
Figure 3.10 Transforming an FA into an XFA. 79

ix

Figure 4.1 Diagram of Daikon’s operation, including example program and invariants 87
Figure 4.2 Example declarations file and trace file from Daikon 88
Figure 4.3 A block diagram of Snotra’s operation. 92
Figure 4.4 Splitting a single source-level while loop into two natural loops. 99
Figure 4.5 Irreducible control flow . 101
Figure 4.6 Original program . 103
Figure 4.7 Example program instrumented by Snotra 104

Listing 5.1 Example producer . 107
Listing 5.2 Example consumer . 107
Listing 5.3 Example consumer . 107
Figure 5.4 Inferred automata for Listings 5.1 and 5.2 111
Listing 5.5 Components that illustrate the benefits of NWAs 116
Figure 5.6 Illustration of a missing security check (securityManager.checkAccept)

in the Apache Harmony library . 121
Table 5.7 PCCA experiments . 124
Figure 5.8 The specification of gzip’s header format 126

Figure 6.1 Example producer and consumer . 131
Figure 6.2 Example program to read a simple image format 131
Figure 6.3 The XFA read gadget . 134
Figure 6.4 XFA state transition procedure δ and data relations U 135
Table 6.5 XFA ICO specification vs. specification experiments. 146
Table 6.6 png2ico vs. png2ico experiments. 149
Figure 6.7 Fixing the size of each logical variable to 3 bits, a chart of the effect of

the number of concatenated loops. 152
Figure 6.8 Fixing the size of each logical variable to just 1 bit, a chart of the effect

of the number of concatenated loops . 152
Figure 6.9 Fixing the number of concatenated cycles to 2, a chart of the effect of the

number of bits . 153
Figure 6.10 Fixing the number of concatenated cycles to 3, a chart of the effect of the

number of bits . 153
Table 6.11 ICO specification performance scaling tests 154

x

Abstract

This dissertation describes methods for automatically analyzing programs to determine
compatibility of software components. Complex systems today are made up of many
communicating programs or program components. It is vitally important to ensure that the
messages that one component sends to another are understood by the receiving component,
otherwise runtime errors will occur.

The techniques described model two software components that are designed to work
together, one as a producer of messages and one as a consumer of them, using three forms
of automata from formal language theory. Each model’s language is an approximation of
the messages that the underlying component can either write (for the producer) or read
(for the consumer). Once the models are created, they can be checked for compatibility
by testing whether the language of the producer’s model is a subset of the language of
the consumer’s. A counterexample to language inclusion represents a message that the
producer is able to emit that the consumer is not prepared to accept (or perhaps a spurious
counterexample due to the approximation).

We looked at three forms of automata to play the role of the program models: standard
finite automata, nested-word automata (NWAs, originally defined by Alur and Madhusu-
dan), and extended finite automata (XFAs, originally defined by Smith, Estan, and Jha).
NWAs and XFAs both bring separate precision benefits to the table, letting us model the
programs and their formats more precisely.

As part of the dissertation, we also make several new theoretical contributions to both
NWAs and XFAs. For example, for NWAs we found an easy-to-correct but significant error
in Alur and Madhusudan’s description of the the Kleene star construction, and we describe
new issues related to introducing epsilon transitions to NWAs. We view XFAs as weighted
finite automata (WFAs), and describe a new algorithm for WFAs language inclusion that
we use for XFA language inclusion, and describe how to use other ideas from the literature
to improve the performance of WFA/XFA language-inclusion testing.

1

1 Introduction

Complex systems today are made up of many communicating programs or program
components. In such systems, it is vitally important to ensure that the messages that
one component sends to another are understood by the receiving component, otherwise
runtime errors will occur. Incompatibilities in the message format can drive up the cost
of developing a system because different components of a system are often developed
by different development teams or different subcontractors, thus compatibility problems
may not be detected until integration time. The cost of fixing errors found late in the
development process is usually much higher than that of errors found earlier. For instance,
Garlan, Allen, and Ockerbloom found that integrating four commercial, off-the-shelf (COTS)
components into a larger system took several times longer than anticipated (5 person-years
instead of 1 person-year) [37].

In addition to large systems built out of components, programs that are developed
completely independently also often need to cooperate using a common file format. For
instance, photo editors, viewer applications, web browsers, etc. all need to be able to
understand the image formats that they share.

In this dissertation, we explore language-theoretic techniques for detecting incompati-
bilities between two such programs or components. The goal is twofold: (1) to infer models
of the message format that each component operates on, and (2) to check compatibility of
those formats. If the format models were completely accurate, then compatibility of the
models would correspond exactly to compatibility of the programs in question. (However,
because the models will be approximations to the actual formats, the final compatibility
check does not produce a guaranteed result.)

We investigate three different types of automata, which serve as the models of the
communication format: standard finite automata, nested-word automata, and extended
finite automata. Along the way, we also developed many new theoretical results for nested-
word automata and extended finite automata, which are presented in Chapters 2 and 3,
along with a discussion of our implementations.

2

bi
ts

/p
x

pl

an
es

0

he
ig

ht

co
lo

rs

w
id

th
0 (reserved) 1 (type) n (count)n (count) Icon

directory
Icon

directory
...

n icon directories

File header Image Image ...

n images

image size
(bytes)

offset to
start

Figure 1.1: ICO file format [19, 41]. The 0 and 1 in the file header and the 0 in the icon directory are
constants (“type” is 2 for cursors, which share almost the same format); “bits/px” in the
directory is the number of bits per pixel, and each of the narrow boxes marks one byte.
The format of the actual images is omitted for clarity.

In the remainder of the introduction, we discuss the structure of file formats (Section 1.1),
briefly describe the inference and compatibility techniques used in the dissertation (Sec-
tion 1.2), and provide a chapter-by-chapter overview (Section 1.3).

1.1 File Formats

As an illustration of the sort of information that we wish to infer, consider the format of
the ICO (icon) file format [19, 41]. This format is pretty rich syntactically: it is capable of
holding several different actual images (e.g., multiple icons at different resolutions or color
depths so that software displaying the image can choose the most appropriate); and the
format of each image can differ.

Figure 1.1 illustrates the ICO format. The format begins with a header containing the
number of images and information about them, which is followed by the actual image data.

3

At a high level, there are three levels of information that one needs to be aware of to
implement a program that handles a particular format:

1. Surface syntax. In the context of file formats, the surface syntax consists of the type
and size of each field in the format. For instance, in the ICO format the height and
width of each image are stored in the corresponding icon directory as single unsigned
bytes.1 Certain file formats may have some or all of the data in just a big “blob” — for
instance, most of the data in a compressed format is just raw bytes that do not have
any apparent syntactic structure.

2. Semantic constraints on the syntax. These are analogous to static-semantic restrictions
on program source, which are checked by the compiler during name analysis and
type checking. We give example constraints in the ICO format in Section 1.1.2.

3. Semantics. In the ICO file format, this would be something like “a word 0x00000000
in the image data itself will result in a black pixel.”

The distinction between these three levels need not be hard and fast. For instance, consider
a format that stores data in a compressed format and is decompressed before use. As men-
tioned above, the compressed data will likely have little to no apparent syntactic structure,
but the uncompressed data may have another layer of syntax, semantic constraints, and
semantics.

In this dissertation, we propose techniques to infer the raw syntax as well as certain
semantic constraints. Semantics are not addressed.

1.1.1 Surface syntax of the ICO format

The surface syntax of a file format is a description of what types can appear where in a file.
We will look at this in the context of the ICO format. The ICO file format was designed
by Microsoft, and the specification is usually expressed using typedefs defined in the
Windows header files. However, we will use standard C types instead, except that byte
will be used in place of unsigned char for brevity. Equivalences between the standard
types and Windows types are shown in Table 1.2, along with the size of each type that will
be assumed throughout the dissertation.

1A height or width of 0 means 256.

4

bytes “C” type Windows type
1 byte (for unsigned char) BYTE
2 short WORD
4 int DWORD

Table 1.2: The sizes in bytes of C types that will be assumed throughout this dissertation, along
with the names used by the Windows headers and documentation.

We can now describe the surface syntax of the ICO format. We will start with just the
icon directory, which consists of four bytes, two shorts, and two ints. We can describe
that with the following simple regular expression:

byte byte byte byte short short int int

Moving up to the file header, we see that it consists of three ints then some number of icon
directories. At this point we cannot really put a number on them, as we are only describing
the surface-level syntax; restricting the number of icon directories to be equal to the count
field will be imposed later. We can thus describe the surface syntax of the ICO format as a
context-free grammar:
〈ico-file〉 → 〈ico-header〉 〈ico-image〉∗

〈ico-header〉 → int int int 〈ico-directory〉∗

〈ico-directory〉 → byte byte byte byte short short int int
〈ico-image〉 → · · ·

Because there is no recursion, this grammar actually defines a regular language, and a
regular expression for it can be created by treating each of the nonterminals as a macro
and simply collapsing all of the definitions.

1.1.2 Semantic constraints on the input

Of course, in some sense the reason that we can say that this is a regular language is because
of the division, somewhat artificial, that I am choosing between the surface syntax and
additional constraints. Not every string that matches the language of 〈ico-file〉 is a valid
ICO file; there are additional requirements in place.

5

For instance, for the ICO format, here are some of the additional restrictions:

1. The fourth byte of each 〈ico-directory〉must equal the constant 0.

2. The number n stored in the third int of the 〈ico-header〉 (in little-endian format) must
match the number of icon directories present. (More precisely: in a parse tree using
the above grammar, the 〈ico-header〉 node must have exactly n 〈ico-directory〉 children.)

3. The same number nmust also match the number of 〈image〉 occurrences.

4. The “offset to start” field in each 〈ico-directory〉must match the byte offset in the file
of the corresponding 〈image〉.

5. The width, height, colors, # planes, and bits/pixel in each 〈ico-directory〉must match
duplicated information inside each 〈image〉— not shown in Fig. 1.1. (Actually, for
technical reasons, the height inside the 〈image〉must be double that of the height in
the corresponding 〈ico-directory〉.)

This list is not exhaustive, but it gives a flavor of the sort of constraints that fall into this
category. Our goal will be to infer and check some constraints that look like these. We will
not necessarily be able to infer all of them, but we do describe how to deal with some.

I separate semantic constraints from the surface syntax for the same reason that, for
instance, parsing standard programming languages is typically described separately (and
often carried out separately) from name analysis and type checking. Language syntax
is almost always specified by a CFG, but non-context-free constraints are imposed, such
as “if the code defines a procedure that expects k arguments, then calls to it must pass k
arguments”; such constraints are checked by the compiler separately.

One difference between these two scenarios is as follows. For many languages it is
possible to produce a reasonable parse or abstract-syntax tree without understanding any
of the constraints, then simply reject programs that do not meet the list of constraints. In
our context, the surface syntax may be ambiguous without understanding the constraints;
for instance, if the format of 〈image〉 matches that of 〈ico-directory〉, then a parser won’t
know when to stop reading 〈ico-directory〉s and start reading 〈image〉s. However, because
the automata that we work with can be nondeterministic, such ambiguities do not pose a
problem for our method of compatibility checking.

6

1.1.3 Input semantics

The previous two sections describe what determines whether a file is valid, but of course
have nothing to say about what a valid file means. For instance, consider what a program
that displays an image should do to calculate what to show to the user. For historical
reasons, the actual images inside of an image file consist of two pixels arrays called the
“and mask” and the “xor mask.” The color that should be displayed on screen at a pixel is a
function of the color “underneath” the icon, the and mask at that pixel, and the xor mask at
that pixel.2

The actual semantics of a file format outside the scope of this dissertation.

1.2 Format Inference and Compatibility Checking

As mentioned before, checking compatibility between programs consists of two goals,
which we address in two steps. First, we infer the formats each program operates upon.
Second, we check compatibility.

1.2.1 Format inference

The previous section described what we would like to infer about programs; now we give a
brief overview of how. Our techniques split the inference step into two parts: inference of
the surface-level syntax is separate from the semantic constraints. Inference is performed
separately on the producer program (inferring the output format) and the consumer
program (inferring the input format), but the methods of doing inference are largely the
same.

To infer the surface-level syntax, we compute the interprocedural control-flow graph
(CFG) of the program in question,3 then transliterate it to an automaton to compute the

2The actual formula is out = (in AND andmask) XOR xormask. For monochrome icons on a
monochrome display, this scheme allows the icon to set a pixel white or black, but also to be transpar-
ent or to invert the color under the icon. (The last is more useful for mouse cursors, which largely share
the same format.) For color displays, “inverting” does not make much sense, but the format still provides a
means of achieving transparency.

3The control-flow graph of a program is a directed graph where program statements are vertices and
there is an edge from vertex p to q if it is possible that execution can proceed directly from p to q. In
an interprocedural CFG, edges carry an additional marker that specifies whether they are traversed on a
procedure call, on a procedure return, or in normal intraprocedural flow.

7

control-flow abstraction of the program. In the resulting automata, procedure calls that
perform either output operations (for the producer) or input operations (for the consumer)
become transitions that read an input symbol.

We use three different kinds of automata in this dissertation: standard finite automata
(FAs), nested-word automata (NWAs), and extended finite automata (XFAs). The latter two
are extensions of standard FAs and are described in detail later. NWAs fall at an interme-
diate point between standard FAs and pushdown automata: they keep decidability and
closure under language operations, but also retain the ability to express some traditionally
context-free properties. XFAs combine an FA with an additional data state; in our context,
the data state will be used to check the semantic constraints.

Chapter 5 explores what can be done using just the control-flow abstraction without
any semantic constraints. The FA and NWA models are used in that chapter. Chapter 6
adds semantic constraints, using XFAs as models.

To infer the semantic constraints, it is possible to use any analysis technique that pro-
duces appropriate invariants over program values; we use a dynamic analysis based on
Daikon [32, 67]. The program in question is first instrumented to contain extra code that
tracks certain values that may be of interest, for example loop trip counts. (A loop trip
counter is a variable that tracks the number of iterations of a loop. It is separate from the
variables used by the actual programmer to track the loops, because such program vari-
ables may count down instead of up, may be increased by two each time, or may have any
number of variations on the usual pattern, and or in fact not exist at all.) The power of the
invariant-finding technique together with the instrumentation that was added determines
what semantic constraints can be inferred.

My goal is to infer semantic constraints like Item 2 in the list given in Section 1.1.2:
e.g., the “count” field in the ICO header must match the number of icon directories. This
constraint is found when the invariant detector determines that the value read at the
“count” field (an instrumentation variable) matches the trip count on the loop that reads
the directories. (Unbounded repetition has to correspond to either some form of looping
construct or recursion, which are both detectable for purposes of adding a trip count.
Section 6.4 discusses specifics and limitations of trip counts.)

8

1.2.2 Modeling programs vs modeling formats

The reader may have noticed that there is a bit of a shift in what I am saying we will be
modeling: I begin by stating that my techniques model file formats, but in the overview of
the technique I describe things in terms of how to model programs.

In reality, these two notions are not as different as it may at first appear. Consider the
case of a standard FA. An automaton defines a language; because the language is uniquely
determined, the automaton itself can be used as an exact model for its language. (Typically
automata are described as “reading” strings and thus correspond to the consumer in
our setting, but there’s no reason why it cannot be viewed as generating strings as well,
which would put it into the producer role. Thus automata can serve both sides of the
producer-consumer relationship.)

In fact, by the same argument the original program can serve as an exact model of its
format. However, we need to be able to test language containment. Because programs
are large and Turing complete, it is not possible to check containment if we are using the
program itself as a model. (Language containment is undecidable even for context-free
languages.) We therefore need to abstract the program to produce a model of the program,
and in our context it is here that the FAs/NWAs/XFAs arise. Because the inferred automata
model the programs, which in turn model the format, we can say that the inferred automata
model the input.

For this reason, this dissertation will treat “a model of the format” and “a model of the
program” as being interchangeable.

1.2.3 Format compatibility

Once we have inferred the formats of each component, we much check them for compat-
ibility. Our models define languages of messages — the model of the producer defines
its output language and the model of the consumer defines its input language. Checking
whether the programs are compatible just means that we want to determine the truth of
“every message in the (output) language of the producer is in the (input) language of the
consumer.”

Phrasing compatibility as language containment may be either exactly what we do, or
just a conceptual description. For standard FAs, language containment is what we want

9

Actually compatible Actually incompatible

Ground truth P

C

P

C

Correct report P

C

P

C

Incorrect report P

C

P

C

Figure 1.3: True and false positives and negatives. In each of the pictures, the unshaded circles rep-
resent the true language of the components and the hashed regions represent additional
messages accepted by the models due to the overapproximation.

and can be answered using standard techniques. For NWAs, because of the format of the
inferred automata, we must modify the consumer’s automaton before checking language
containment (Section 5.3). For XFAs, language containment is what we want, and can be
answered using the techniques discussed in Section 3.6.

Unfortunately, because the models of both the producer and consumer are overapproxi-
mations of the actual behavior (i.e., the models accept more messages than the programs are
capable of outputting or reading), there are four possibilities for the final result, including
both false positives and false negatives, as illustrated in Fig. 1.3.

10

1.3 Dissertation Overview

The dissertation is divided into two parts. The first part discusses tools, both in terms of
software as well as the theoretical background on the various less-common automata types
that we use. The second part covers applications.

In Part 1:

Chapter 2 discusses nested-word automata (NWAs). NWAs are an extension of finite
automata that retain the decidability and closure characteristics of FAs but can express
richer languages. (It is also possible to view NWAs as a restriction of standard
pushdown automata.) We provide the definition that we use, based on the work of
Alur and Madhusudan (primarily [7]), discuss several theoretical results that I have
obtained, and then present OpenNWA, which is a library that implements NWAs.
Contributions: Several theoretical results about NWAs and the OpenNWA library.

Chapter 3 discusses extended finite automata (XFAs). XFAs are an extension of finite
automata that carry some state information around in scratch memory, instead of
storing everything in the control portion of an automaton. Assuming the scratch
memory is bounded in size, XFAs are of equivalent power to FAs but can be smaller.
We provide the definition that we use, based on the work of Smith et al. ([76, 77]),
discuss their relations to weighted finite automata (WFAs), and discuss several new
algorithms for XFAs and/or WFAs.
Contributions: Relating XFAs to WFAs, a fast method for performing ε closure, a
method for determining language containment of WFAs, and information about the
implementation of XFAs within WALi, the weighted automaton library.

Chapter 4 discusses a front end for the Daikon dynamic invariant detector that operates
on x86 binary code with debugging information.
Contributions: A discussion of how we apply the ideas of program instrumentation
and dynamic invariant detection to obtain the invariants we need for compatibility
checking.

11

In Part 2:

Chapter 5 discusses the producer/consumer conformance analyzer (PCCA), which uses
finite automata and nested-word automata to use the control abstraction to check
compatibility.
Contributions: we discuss how to use automata to model the format of programs, how
to use such models for compatibility checking, how to use NWAs to gain context
sensitivity.

Chapter 6 discusses incorporating semantic constraints into program models.
Contributions: we discuss how to use XFAs to incorporate more information about
data formats, how to infer such models, and how to perform compatibility with XFA
models.

Chapter 7 presents work related to format inference and compatibility checking.

Chapter 8 concludes and presents some ideas for future work.

12

Part I

Tools

13

2 Nested-Word Automata (NWAs)

This chapter will explore nested-word automata (NWAs). NWAs form a middle ground
between standard FAs and pushdown automata (PDAs): NWAs retain the ability to recog-
nize some properties that are traditionally considered context free, for example matching
parentheses; at the same time, nested-word languages are closed under operations such
as language inclusion and complementation, which is not true for context-free languages,
and thus more operations are decidable.

This chapter starts with theoretical concerns: definitions and some algorithms. (NWAs
themselves are not my invention, but I did produce a couple of novel algorithms and
observations.) We then discuss a library for NWAs called OpenNWA, discussing the
operations and features it supports and uses.

Because this chapter alternates between discussing my work and background material,
sections are marked with either “background”, which indicates that it only presents back-
ground material, “adaption”, which indicates that the section presents an adaption of an
existing technique, or “new”, which indicates that the section is mostly or entirely novel.

2.1 Definitions and Theory

This section will discuss the theoretical underpinnings of nested-word automata. We
provide informal and formal definitions (Sections 2.1.1 and 2.1.2), then describe three algo-
rithms that operate on NWAs: determinization (Section 2.1.4), Kleene star (Section 2.1.5),
and reversal (Section 2.1.6). The first expresses the same algorithm as existing work in a
different way, the second corrects an existing algorithm, and the third is a new algorithm
which better preserves NWA properties of interest.

Confusingly, there are three kinds of automata directly related to NWAs,1 two of which
have actually been called “nested-word automata.” In the remainder of this introduction,

1Actually there are even more once you start looking at modular VPAs, multi-entry modular VPAs, etc.,
but we do not consider these variations, nor other related constructs, such as tree automata.

14

we briefly relate the three definitions in order to set the stage for those who have prior
knowledge. However, we do not discuss specifics of how the definitions differ. Readers who
are familiar with the area and wish for a refresher of the literature and how our definition
relates may continue reading, while others may wish to skip ahead to Section 2.1.1.

Alur and Madhusudan introduced all three automata types. The first paper to describe
a form of automaton similar to NWAs did so using the term visibly pushdown automata
(VPAs) [6]. Followup work in DLT [7] provided the first definition of NWAs using that
name. While at this point nested-word automata were closely related to visibly pushdown
automata, the correspondence was not yet immediate. Finally, Alur and Madhusudan pro-
duced a comprehensive treatment of the subject for the JACM [8] that expanded the defini-
tion of NWAs and introduced two named variants: linearly-accepting and weakly-hierarchical
NWAs. Applied appropriately, these two restrictions result in the older definitions.

To reiterate, there are three kinds of NWAs which are of interest at this point:

• Fully general NWAs, called “JACM NWAs” in this dissertation

• Linearly-accepting NWAs, which can be seen as an alternative encoding of a VPA

• Weakly-hierarchical, linearly-accepting NWAs, which match the DLT definition

All three types are capable of accepting the same set of languages; the differences are
only at the level of the automaton. However, the minimum automaton size that recognizes
a given language can vary by definition. It is possible to convert an arbitrary JACM NWA
into a linearly-accepting NWA that accepts the same language by doubling the number
of states. It is possible to convert an arbitrary JACM NWA into a weakly-hierarchical one
by increasing the number of states by a factor of 2|Σ|. These constructions are described
in Alur and Madhusudan [8, theorems 3.1 and 3.2]

This dissertation defines “NWA” to match the DLT definition, augmented with ε transi-
tions (Section 2.1.3). This also is the version of NWAs implemented in OpenNWA. While
this may seem like a sub-optimal choice because the automata may need to be larger, most
of the construction algorithms outlined by Alur and Madhusudan [8] impose one or both
restrictions. As a result, supporting JACM NWAs would require conversions during these
operations. (For instance, determinization requires a linearly-accepting NWA [8, theorem
3.3], while concatenation requires a weakly-hierarchical NWA [8, theorem 2.6].)

15

2.1.1 Informal Description of Nested-Word Automata (NWAs)
[background]

This section describes nested-word automata [7] and related terms at an intuitive level, and
gives an example of how they are used in program analysis. For the formal definitions, see
Section 2.1.2.

A nested word is an ordinary (linear) string of symbols over some alphabet Σ paired
with a nesting relation. The nesting relation describes a hierarchical relation between input
positions, for instance between matched parentheses. Graphically, a nested word can be
depicted in a manner such as the following:

a b c d e f g h

In this image, following just the horizontal arrows illustrates the linear word abcdefgh,
while the curved edges (“nesting edges”) indicate the nesting relation {(−∞, 2), (4, 8), (5, 6)}.
(See the following section for a formal definition of the nesting relation.) For a nesting
relation to be valid, nesting edges must only point forward in the word and may not share
a position or cross.

Positions in the word that appear at the left end of a nesting edge are called call positions,
those that appear at the right end are called return positions, and the remaining are internal
positions. It is possible to have pending calls and returns, which are not matched within the
word itself. For a given return, the source of the incoming nesting edge is called the call
predecessor. In the previous example, d and e are in call positions; b, f, and h are in return
positions; and a, c, and g are in internal positions. All calls are matched, but b is the return
position of a pending return.

A nested-word automaton (NWA) is a generalization of ordinary finite automata that
recognizes languages of nested words. An NWA’s transitions are split into three sets—
internal transitions, call transitions, and return transitions. Internal transitions work the
same as transitions in a standard finite automaton. Call transitions work similarly, with
a difference that is explained below. However, return transitions also look at and must
match the state the automaton was in before reading the call predecessor.

16

To understand how an NWA works, consider first the case of an ordinary finite automa-
ton reading a linear word. Picture the word in somewhat of an unusual way: as a graph
with one node per symbol in the word and one edge pointing from each symbol to the next.
Also include one edge with no source pointing at the first symbol and one edge with no
target pointing from the last symbol. We can think of the machine’s operation as labeling
each edge with the state the machine is in after reading the symbol at that edge’s source.
For instance, here is an example automaton and an example partial run for the word abcba:

q5q4

q3

q2

q1

q0
b, c

c

a

a,b, c

b

c

a,b
c

b

a
a a b c b aq0 q1 q4

To find the next state, the automaton looks for a transition out of q4 with the symbol c— in
this case, with a target of q5 — and labels the next edge in the word with q5.

The operation of an NWA proceeds in a fashion similar to a standard finite automaton,
except that the machine also labels the nesting edges. When the machine reads an internal
position, it chooses a transition and labels the next linear edge the same way a finite
automaton would. When the machine reads a call position, it picks a matching call transition
and labels the next linear edge in the same way, but also labels the outgoing nesting edge
with the state that the machine is leaving. When the machine reads a return position, it
looks not only at the preceding linear state but also at the state on the incoming nesting
edge. It then chooses a return transition that matches both, and labels the next linear edge
with the target state. An example NWA and a run accepted by it are shown in Fig. 2.1.

Our NWAs allow ε internal transitions, which operate in an analogous way to ε rules in
ordinary finite automata. Section 2.1.3 discusses ε transitions further.

Operationally it is sometimes beneficial to think of an NWA by analogy to a restricted
pushdown automaton, which behaves as follows:

• When reading a call, the PDA pushes (just) the current state onto the stack (which
corresponds to labeling a nesting edge)

17

1 void main() {
2 f = factorial(5);
3 printf("%d\n", f);
4 }

5 int factorial(int n) {
6 if (n == 0)
7 return 1;
8 f = factorial(n-1);
9 return n * f;
10 }

A

B

C

D

E

F G

H

K

1 2 6 6

7
10 (B)

8

9

10 (G)

3

1 2 6 8 6 7 10 9 10 3
G
B

A B E G E F K H K C D

Internal trans.
1

Key: Call trans.
2

Return trans. 10 (B)

Figure 2.1: An example program, corresponding NWA, and accepted word. (Note that the linear
portion of the word is 12686 · · · , not ABEGE· · · .) State labels are arbitrary; transition
symbols give the line number of the corresponding statement. Some nodes are elided.

• When reading an internal position, the PDA may not modify the stack

• When reading a return, the PDA must pop exactly one item from the stack, the value
of which can help determine the successor state. (This step corresponds to reading
the value on the innermost nesting edge.)

This definition is roughly that of a related model called a visibly pushdown automaton
(VPA) [6, 8], and VPAs and NWAs and their languages can be seen as alternative encodings
of each other.

Modeling a Program as an NWA

NWAs can be used to encode the interprocedural control-flow graph (ICFG) of a program.
Intraprocedural ICFG edges become internal transitions, interprocedural call edges become
call transitions, and interprocedural return edges become return transitions. For an ICFG
return edge (exit-site, return-site), we use the call site that corresponds to return-site in the
call-predecessor position of the NWA’s transition. The symbols on a transition depend on
the application, but frequently are the corresponding statement.

The restriction imposed by matching the call predecessor’s state at a return gives us the
desirable property that nested words accepted by the NWA correspond exactly to the valid
paths through the program (data values ignored); it is not possible for the NWA to call a

18

procedure from one call site and return to a different point. (Said more formally, the NWA
will reject words that correspond only to such a path.)

An example program, the corresponding NWA, and an example word accepted by that
NWA are shown in Fig. 2.1. The fact that we are using an NWA allows us to exclude paths
such as 1-2-6-8-6-7-10-3, which is invalid.

2.1.2 Formal Definition of Nested-Word Automata (NWAs)
[background]

Now we can define the terms required to formalize NWAs. For now, we disallow ε transi-
tions.

Definition 2.1. A nested word (w,) over alphabet Σ is an ordinary (linear) wordw ∈ Σ∗

together with a nesting relation . The relation is a collection of edges (over the
positions in w) that do not cross. Formally, ⊆ {−∞, 1, 2, . . . , |w|} × {1, 2, . . . , |w|,+∞}

such that:

• Nesting edges only go forward: if i j then i < j.

• No two edges share a position unless one is ±∞: for 1 6 i 6 |w|, either i = ±∞,
j = ±∞, or there is at most one j such that i j or j i.

• Edges do not cross: if i i ′ and j j ′, then one cannot have i < j 6 i ′ < j ′. (This
condition excludes .)

A nested-word language is any set of nested words; such a language is a regular nested-
word language if it is accepted by an NWA as defined below.

When i j holds, for 1 6 i 6 |w|, i is called a call position. If i +∞, then i is a
pending call; otherwise i is a matched call, and the (unique) position j such that i j is
called its return successor.

Similarly, when i j holds, for 1 6 j 6 |w|, j is a return position. If −∞ j, then j is a
pending return, otherwise j is a matched return, and the (unique) position i such that i j

19

is called its call predecessor. We will often abuse the term “call predecessor” to refer to the
state that the automaton was in before it read the call predecessor.

A position 1 6 i 6 |w| that is neither a call nor a return is an internal position.
Note that these terms refer to positions within w and not to the symbol itself, which is

what you may expect if you are familiar with visibly pushdown languages [6]. In other
words, in an NWA it is possible for a symbol σ to be used in all three roles (internal, call,
and return) in different positions.

A nested word is balanced if it has no pending calls or returns. A nested word is
unbalanced-left (or a nested-word prefix) if it has only pending calls, and it is unbalanced-right
(or a nested-word suffix) if it has only pending returns.

Definition 2.2. A nested-word automaton (NWA) A is a 5-tuple (Q,Σ,Q0, δ, F), where Q
is a finite set of states, Σ is a finite alphabet, Q0 ⊆ Q is a set of initial states, and F ⊆ Q is
a set of final states. δ holds the transition functions, and comprises three components,
(δc, δi, δr), where:

• δi : Q × Σ → P(Q) is the transition function for internal positions of the input
word.

• δc : Q× Σ→ P(Q) is the transition function for call positions.

• δr : Q×Q× Σ→ P(Q) is the transition function for return positions.

Starting from a state in Q0, an NWA A reads a nested word (w,) from left to right,
and performs transitions according to the current input symbol and . Suppose A is in
state q when reading input symbol σ at position i. If i is an internal (resp, call) position in
 , then A makes a transition to a state q ′ (if one is available) that is an element of δi(q,σ)
(resp, δc(q,σ)). If i is a return position, let k be the call predecessor of i (so k i) and qc
be the state Awas in just before the transition it made on the kth symbol; A changes to a
state q ′ in δr(q,qc,σ). If there is a computation of A on input (w,) that terminates in a
state q ∈ F, then A accepts (w,).

The above definition does not describe how qc, the state Awas in just before reading
the call predecessor of a return, is determined. The informal definition described it in
terms of labeling the nesting edge, but the natural interpretation is closer to that of a

20

visibly-pushdown automaton, whereby the NWA would keep a stack of the states on call
edges that have yet to be matched.

We will sometimes treat the transition functions as ternary or quaternary relations
instead of functions; in other words, we will treat (q,σ,q ′) ∈ δi and q ′ ∈ δi(q,σ) as
equivalent.

2.1.3 NWAs and ε transitions [new]

None of the formulations of NWAs or VPAs discussed previously (including JACM NWAs)
allow ε transitions. This section discusses our extension to the NWA definition which does
allow them, discusses why epsilon transitions must be limited to internal transitions, and
describes an alternative semantics for how ε transitions interact with return transitions.

Extending NWAs to support ε transitions

We allow ε transitions on internal edges. The definition of an NWA is extended as would
be expected; δi is redefined as follows:

• δi : Q× (Σ ∪ {ε})→ P(Q)

and the semantics of the NWA are extended to allow it to change its current state from q to
any state in δi(q, ε) at any point.

Existing algorithms need only minor modifications to support these new semantics,
and in fact supporting ε transitions makes some constructions such as Kleene-star simpler
to express.

We can also define an ε-removal process. Given an NWA A, this process will produce a
new NWA A ′ that does not have ε transitions and accepts the same language. A ′ will have
the same number of states as A, but perhaps more transitions. (In particular, this process
does not do any determinization.) Let εclose(q) be the ε closure of state q defined in the
usual way.
A ′ will start with exactly the same states and non-ε transitions as A. We then add addi-

tional transitions as defined in the rules in Fig. 2.2. The rules are depicted diagrammatically
in Fig. 2.3.

21

Internals
q ∈ Q qε ∈ εclose(q) σ ∈ Σ q ′ ∈ δi(qε,σ)

(q,σ,q ′) ∈ δ ′i

Calls
q ∈ Q qε ∈ εclose(q) σ ∈ Σ q ′ ∈ δc(qε,σ)

(q,σ,q ′) ∈ δ ′c

Returns
q,qc ∈ Q qε ∈ εclose(q) σ ∈ Σ q ′ ∈ δr(qε,qc,σ)

(q,qc,σ,q ′) ∈ δ ′r
Figure 2.2: Rules defining transitions added to an NWA during ε removal. (Non-ε transitions that

exist in the original automaton are copied over unchanged, and are not depicted in this
figure.) These rules are diagrammed in Fig. 2.3.

q

q ′1

qε

q ′3

q ′2

σ
(q
c)

σ

ε σ

σ (qc)

σ
σ

Internal trans.

Key: Call trans.

Return trans.

Figure 2.3: Illustrating NWA ε removal. The thick lines show new transitions that are added, and
the wavy line shows a sequence of ε transitions. The new internal transition is present
because of the old internal transition, and similarly for the call and return transitions.
For the return transitions, qc can be any state.

Why must we only allow ε transitions on internal edges?

Unfortunately, it is impossible to be as general as one might wish to be. In particular, it is
not possible to allow arbitrary call and return ε transitions.

A critical feature of NWAs, and the source of the name visibly pushdown automata, is that
the call and return positions in each input word are “visible” — where the NWA will push
and pop is apparent just by looking at the input. Allowing the automaton to spontaneously
take an ε transition on a call means that it is no longer possible to tell just by looking at the
input word where the calls occur.

What follows is a proof sketch that it is in general impossible to include ε transitions
on calls and returns. We will define a translation from an arbitrary context free grammar

22

G to an ?NWA AG, such that if the nesting relation is dropped from each word in L(AG),
the result is L(G). That is, L(G) = {w | (w,) ∈ L(AG)}. (We borrow some linguistics
notation and use “?NWA” to indicate that the result is not actually a legal NWA.) This
translation allows us to establish the following contradiction: to compute the intersection
of two context-free languages expressed as G1 and G2, translate their grammars to a pair of
?NWAs AG1 and AG2 and compute their intersection [8, theorem 3.5]. Because no symbols
inΣ appear on call or return transitions in LG1 or LG2 and they will not be introduced during
intersection, it is possible to interpretAG1 ∩AG2 as a VPA whose language is L(G1)∩L(G2).

The translation creates an ?NWA that mimics the way a nondeterministic recursive
descent parser would recognize an input.2 AG tracks a “current” production and location
within that production, as well as a stack of where it was before. When then next symbol
in the current production is a terminal, AG reads the next input symbol and continues if
they match. When the next symbol in the current production is a nonterminal, AG stacks
the current production and location, nondeterministically chooses the next production
matching the nonterminal in question that it should next use, and starts at the beginning
of that new production. When AG reaches the end of the current production, it pops the
current production off the stack and continues where the previous one left off. Figure 2.4
gives an example of this translation for an unambiguous grammar for the language {wwR},
which cannot be recognized by a deterministic PDA or by a VPA. We now define this
translation formally.

Suppose that we are given a CFG G = (N,Σ,P,S). (N is the set of nonterminals, Σ the
terminals, P the productions, and S the start nonterminal.) For each production p ∈ P, let
|p| be the number of symbols that appear on the right-hand side of p. Each production p
has |p|+1 positions {0, 1, 2, · · · , |p|}, corresponding to the point before and after each symbol.
Let pi be the ith symbol of p’s right-hand side, one-indexed (i.e., p1 comes after position 0
and before position 1).

The ?NWA AG will have a state for each position of each production, as well as distin-
guished start and accepting states. Formally, Q = {qp,n | p ∈ P and 0 6 n 6 |p|} ∪ {q0,qf}.
The transitions are defined by the rules shown in Fig. 2.5.

2A slightly-modified version of this construction could be used as a CFG-to-PDA transformation as part
of a proof of their equivalence, but it differs somewhat from the transformations presented by, for example,
Hopcroft et al. [40, §6.3.1] and Sipser [75, Lemma 2.21].

23

S
→
ε

S
→

1S
1

S
→

0S
0

q
γ

,0
S
→
•ε

q
γ

,1
S
→
ε
•

q
β

,0
S
→
•1
S

1
q
β

,1
S
→

1
•
S

1
q
β

,2
S
→

1S
•

1
q
β

,3
S
→

1S
1•

q
α

,0
S
→
•0
S

0
q
α

,1
S
→

0
•
S

0
q
α

,2
S
→

0S
•

0
q
α

,3
S
→

0S
0•

q
0

q
f

ε

ε
ε

ε
/
q

0

ε
/
q
β

,1

ε
/
q
α

,1

ε
/
q

0

ε
/
q
β

,1ε/
qα

,1

ε
/
q

0
ε/
q
β

,1

ε
/
q
α

,1
ε

ε
ε

ε

ε

ε

0
0

1
1

ε

Fi
gu

re
2.

4:
A

n
in

va
lid

N
W

A
(u

si
ng
ε

ca
ll

an
d

re
tu

rn
tr

an
si

tio
ns

)g
en

er
at

ed
fr

om
th

e
C

FG
S
→

0S
0
|

1S
1
|
ε

us
in

g
th

e
tr

an
sl

at
io

n
di

sc
us

se
d

in
th

e
te

xt
an

d
Fi

g.
2.

5.
Ea

ch
st

at
e

is
la

be
le

d
w

ith
bo

th
th

e
q
p

,i
fo

rm
di

sc
us

se
d

in
th

e
te

xt
as

w
el

la
st

he
LR

-it
em

it
re

pr
es

en
ts

.

24

Terminals
p ∈ P 1 6 i 6 |p| pi ∈ Σ

(qp,i−1,σ,qp,i) ∈ δi

Nonterminals
p,p ′ ∈ P 1 6 i 6 |p| pi ∈ N p ′ ≡ (pi → · · ·)
(qp,i−1, ε,qp ′,0) ∈ δc (qp ′,|p ′|,qp,i−1, ε,qp,i) ∈ δr

Begin
p ∈ P p ′ ≡ (S→ · · ·)

(q0, ε,qp,0) ∈ δc

End
p ∈ P p ′ ≡ (S→ · · ·)

(qp,|p|,q0, ε,qf) ∈ δc

Figure 2.5: Rules defining the transitions created during translation from a CFG to an invalid NWA.

Allowing εmoves on nesting edges

Interestingly, even if we restrict ourselves to allowing ε transitions in δi only, there is still
at least one choice to be made: do we allow εmoves on the call predecessor? The answer
to this question does not affect the class of languages that can be recognized or even the
number of states in an automaton, but it can affect the number of transitions.

To explain this question, consider what happens with an internal ε transition (or in a
standard FA). Using a diagram like that of Fig. 2.1, taking an ε transition (an “εmove”) can
be seen as splitting a linear edge in the input word and putting ε between the two halves,
just as if it were another input symbol:

q5q4

q3q2

q1q0

b

a

c
ε

ε

a bε
q0 q3q1 q2

Automaton Example run with ε
There are two kinds of edges in a nested word, but the extension allowing ε transitions

earlier in this section only allows splitting the linear edges. Can we do the same thing for
nesting edges? In other words, can we have something like the following?

a b c

ε

q0 q1

q0

q2

q7

q3q0

25

It turns out we can. The above is a valid (and accepted) run of the following automaton
under a different semantics for ε transitions than we have presented so far:

q7

q3q2q1

q0
a

ε

c(q7)b

Note that even though this alternative semantics changes what return transitions can be
taken (the (q2,q7, c,q3) transition is not usable under the first semantics but will be under
this alternative semantics), there are still only internal ε transitions.

We can define the alternative sematics as follows. The structure of the automaton does
not change. However, consider the following statement from the definition of an NWA:

If i is a return position, let k be the call predecessor of i (so k i) and qc be the
state Awas in just before the transition it made on the kth symbol; A changes to
a state q ′ in δr(q,qc,σ).

We now wish to allow qc to be not just the state the automaton was in at the call predecessor,
but any state reachable from there via ε transitions. Thus we can change the statement
above to:

If i is a return position, let k be the call predecessor of i (so k i) and qc be the
state Awas in just before the transition it made on the kth symbol. A chooses
any state qε such that there is an ε path from qc to qε, and then changes to a
state q ′ in δr(q,qε,σ).

Once we have the alternative semantics, it seems quite likely that each of the different
NWA constructions (or easy variants of them) will maintain their correctness under the
alternative semantics. For instance, consider the determinize algorithm discussed in the
next section and presented on Page 29. To make the determinize algorithm respect the
alternative semantics, we simply have to add an additional, optional composition with
Close, the relation representing the ε closure. This option is discussed in the following
section.

26

qc

qε q ′

q

ε σ/qcσ/qε

Figure 2.6: Illustrating translating between ε semantics. The thick line shows the new transition
that is added as a result of the presence of the other two when translating an NWA that
uses the modified ε semantics to the original semantics.

It is possible to translate NWAs between the two semantics. Given an NWA A, let
L(A) be the language under the original semantics, and Lalt(A) be the language under the
alternative semantics.3

We will start by constructing an A ′ such that L(A) = Lalt(A ′). Unfortunately, there is
no real way to ensure thatA ′ does not take extra ε transitions on the call predecessor (these
are what we must prevent). Thus what we will do is just perform ε removal on A to obtain
A ′ as described in Figs. 2.2 and 2.3. Because L(A ′) = Lalt(A ′) if A has no ε transitions and
L(A) = L(A ′) by ε removal, we get that L(A) = Lalt(A ′).

In the other direction, we wish to construct an A ′ such that L(A ′) = Lalt(A). In this
case, A allows extra return transitions; we will add these return transitions explicitly.
For each return transition (q,qc,σ,q ′), add a new return transition (q,qε,σ,q ′) for each
qε ∈ εclose(qc). This transformation is illustrated in Fig. 2.6.

2.1.4 NWA determinization [adaption/background]

We found the explanations of how to determinize NWAs that are given by Alur and
Madhusudan [7, 8] to be confusing (and contradictory between the two accounts), and so
we reformulated the algorithm using relational operations. In this dissertation, we will
sometimes refer to a state in a determinized automaton as a “cell” and reserve the term
“state” for the input automaton.4

3Interpreting a single automaton under two different semantics may already be familiar from interpreting
a pushdown automaton as accepting via final states versus accepting via an empty stack [40, §6.2.2]. In that
case as well, it is possible to translate PDAs between the two semantics.

4This terminology is from De Wulf’s et al.’s paper on antichains [25].

27

Each cell R in the determinized automaton is a binary relation on states in the original.
In a standard determinized FA, a cell {q0,q1, · · · ,qn} means the automaton can be in state q0

of the input FA, or in state q1, etc. For NWAs, a cell {(p0,q0), (p1,q1), · · · , (pn,qn)} means
that the NWA is one of the states {q0,q1, · · · ,qn}, but the relation carries around extra
meaning.

If a cell in the determinized automaton contains a pair (p,q), then this means the input
automaton can begin in the state p, immediately perform a call transition, follow a path
with balanced calls and returns, and finally arrive in state q. In other words, it represents a
transition sequence in the original NWA that results in exactly one new pending call. In
such a configuration, if the input automaton then reads a return symbol, q is the source
of the return transition and p is the call predecessor. These two pieces of information are
exactly what the automaton needs to know to determine which transitions it can take. The
call predecessor p needs to be stored explicitly because it is possible to arrive at the same
state q with different call predecessors.

At the start of the run and any time the automaton has not read any unmatched calls,
the first component of each pair in the current state will be some q ∈ Q0; in this situation,
the initial states act as call predecessors. This situation is an exception to the “immediately
take a call transition” portion of the above description.

We use the following notation in the determinize algorithm, shown on Page 29:

(Q,Σ, δ,Q0,Qf) The components of the input automaton nwa
δi|σ The binary relation {(p,q) | ∃σ : (p,σ,q) ∈ δi}
δc|σ The binary relation {(p,q) | ∃σ : (p,σ,q) ∈ δc}
δr|σ The ternary relation {(p, c,q) | ∃σ : (p, c,σ,q) ∈ δr}
R ;S Relational composition of the binary relations R and S
R∗ Reflexive-transitive closure of the binary relation R
RT Relational transpose; RT = {(a,b) | (b,a) ∈ R}
Qnew, δnew Components of the determinized NWA

We use the following auxiliary function to compute the target of a return transition:

Merge(Rexit,Rcall, δ|σ) = {(q,q ′) | ∃q1,q2. (q,q1) ∈ Rcall

and (q1,q2) ∈ Rexit

and (q2,q1,q ′) ∈ δ|σ}

28

The operation ofMerge can be diagrammed as follows:

q

q1

q2

q ′R
ca
ll

R
ex
it

σ/q
1

⇒
q

q ′Merge(Re
xit ,Rca

ll , δi|σ)

Here the bold lines that curve up represent a call followed by a matched path (or starting
at a start state and taking a matched path), and hence correspond to a cell. The line that
goes down from q2 to q ′ represents a return transition. At a return, the call predecessor
must match the state at the source of the upwards-curved edge, as that state corresponds
to the call that is being matched.

If we would like the alternative ε semantics discussed in the last part of Section 2.1.3,
we could modify Merge. Requiring that q1 matches between Rexit and δ|σ enforces the
requirement that a return transition must match the actual call predecessor, so it is this
requirement that we should relax. Instead, we could require that (q1,q2) ∈ Rexit and that
there is a q ′1 such that (q2,q ′1,q ′) ∈ δ|σ and q ′1 ∈ εclose(q1):

Mergealt(R
exit,Rcall, δ|σ) = {(q,q ′) | ∃q1,q ′1,q2. (q,q1) ∈ Rcall

and (q1,q ′1) ∈ Close

and (q1,q2) ∈ Rexit

and (q2,q ′1,q ′) ∈ δ|σ}

The last requirement can be also expressed as (q1,q ′1) ∈ Close, where Close = (δi|ε)
∗, and

that leads to a better way of handling ε transitions in this context: leaveMerge unmodified,
and simply compose Rexit with the transpose of Close before passing it in:

q

q1 q ′1

q2

q ′R
ca
ll

R
exit

Close
Clo

se
T ;R

ex
it

σ/q
1

⇒
q

q ′
Merge(Close

T ;Rex
it ,Rca

ll , δi|σ)

The determinize algorithm presented on Page 29 takes this approach.

29

1 determinize(NWA nwa)
2 Close = (δi|ε)

∗

3 R0 = Q0 ×Q0 ;Close
4 Qnew = {R0}
5 Insert R0 in WL
6 while WL 6= ∅ do
7 select and remove a relation R from WL

// Note that R is a state in Qnew

8 mark R
9 for σ ∈ Σ do

// Compute internal transitions
10 Ri = R ; δi|σ ;Close
11 Qnew = Qnew ∪ {Ri}

12 Insert R σ→ Ri into δnewi

13 if Ri unmarked then
14 WL =WL ∪ {Ri}

// Compute call transitions
15 Rc = Close ; δc|σ ;Close
16 Qnew = Qnew ∪ {Rc}

17 Insert R σ→ Rc into δnewc

18 if Rc unmarked then
19 WL =WL ∪ {Rc}

// Compute return transitions where R appears as the exit node
20 for Rcall ∈ Qnew do
21 Rr = Merge(R,Rcall [; CloseT]†, δr|σ) ;Close
22 Qnew = Qnew ∪ {Rr}

23 Insert (R,Rcall,σ,Rr) into δnewr

24 if Rr unmarked then
25 WL =WL ∪ {Rr}

// Compute return transitions with R as the call predecessor
26 for Rexit ∈ Qnew do
27 Rr = Merge(Rexit,R [; CloseT]†, δr|σ) ;Close
28 Qnew = Qnew ∪ {Rr}

29 Insert (Rexit,R,σ,Rr) into δnewr

30 if Rr unmarked then
31 WL =WL ∪ {Rr}

// end worklist while loop
32 Qnewf = {R ∈ Qnew| there is (p,q) ∈ Rwith q ∈ Qf}
33 return (Qnew,Σ, δnew, {R0},Qnewf)

34 † Include this extra ;Close to obtain the alternative ε-transition semantics (see the end of Section 2.1.3).

30

2.1.5 Kleene star [adaption]

The construction of Kleene star presented in [8, Theorem 3.6] has a minor error; we present
a corrected version, which also takes advantage of our ability to have ε transitions.

The error is analogous to not adding a distinguished initial state in the traditional
Thompson construction for FAs, but instead just making the initial state accept and con-
necting the accepting states of the automaton to the initial state with ε transitions.5 The
following diagrams illustrate the problem (note that in A, the initial state does not accept):

A

ε

ε

ε

A

ε

ε

Correct FA Kleene star construction for A∗ Incorrect FA Kleene star construction for A∗

The bug in Alur and Madhusudan’s presentation can, in fact, be exhibited using the same
example (it is not necessary to use NWA calls or returns). Alur confirmed our diagnosis [4].
Below, we present a version that uses ε-transitions, and thus it looks a bit different from
Alur and Madhusudan’s version. However, the high-level idea of the construction is the
same as the original version.

Kleene star is complicated in the case of NWAs because of the ability to have unbalanced
words in the automaton’s language. When concatenating a nested word w1 containing
pending calls with a nested wordw2 containing pending returns, some or all of the pending
calls and returns will “connect” in w1w2 in the natural way. The construction for Kleene
star (and also concatenation [8, theorem 3.6], which we did not modify and do not describe)
needs to take special care to make sure that the correct return transitions can be taken when
reading a newly-matched return. In particular, when an NWAA is reading justw2 and sees
a pending return, A takes a return transition where the call predecessor is an initial state of
A. However, if we naïvely use the same construction as in ordinary FAs, then when reading
the corresponding position inw1w2, the automaton will instead match transitions based on
the state it was in when reading the newly-matched call in w1. Alur and Madhusudan’s

5The initial state ofA∗ must accept because ε is in L∗; and because of this property it is incorrect to merely
add epsilon transitions from the old final states to the old initial states. If there is a cycle from the initial state
back to itself, the word corresponding to that path would be accepted even though it should not be.

31

solution to this problem is to have the machine “pretend” that it is reading a pending
return instead of a matched return in the appropriate places when reading w2.

When computing A∗ = A∗ for some NWA A, the resulting NWA has two “copies” of
A. These are denoted by primed and unprimed version of states from A in the definition
below. (See Fig. 2.7.)

Suppose that A∗ is reading a word w = w1w2 · · ·wn, where each wi ∈ L(A). A∗ begins
in a start state of A ′. Henceforth it maintains the following invariant on the state that A∗ is
in with respect to the portion of w read so far: if the next symbol σ is in a return position,
then that symbol is a pending return in the current wi iff A∗ is in the A ′ portion; i.e., if the
current state is primed. (Note that this return only needs to be pending in the current wi.
In the full string w, σmay match a call in an earlier wj or it may be pending in the whole
string.)

Internal transitions thus keep A∗ in the same copy of A, and call transitions always take
A∗ to the unprimed copy of A (because if it then reads a return, the return will match that
call). Return transitions can target either copy of A: if the call predecessor is unprimed,
then the target will be unprimed; if the call predecessor is primed, then the target will be
primed. This behavior is enabled by the Internal, Call, and Locally-Matched-Return
rules in Fig. 2.8.

The description above describes A∗’s operation under “normal” conditions. If A∗ is in
a final state (either primed or unprimed) of the automaton A, it is also allowed to guess
that it should “restart” by taking an ε transition to a distinguished start and final state q0.
This guess is correct if it just read the last character in wi (making the next character the
first one in wi+1). Note that q0 only has transitions to the A ′ portion of A∗, maintaining
the invariant. This behavior is enabled by the Start and Restart rules in Fig. 2.8.

The reason for the two copies of A comes into play when A∗ reads a return σwhile in
the A ′ portion. By the invariant, σ is pending in the current wi. In the original automaton
A, the transitions that the machine can use are return transitions (q, r,σ,p) where the call
predecessor r is inQ0. We need to make sure thatA∗ can take those same transitions. There
are two cases we need to consider:

1. For the cases where σ is pending in the whole string w, we need to have a version of
the return transition with q0 in the call-predecessor position, so we add (q ′,q0,σ,p ′).
This behavior is enabled by the Locally-Pending-Return rule.

32

s

a/s

a

c

a/p

s ′

a/_

a

c

a/q0

q0

a/p ′

ε

ε

ε

Unprimed copy of A

Primed copy of A

Figure 2.7: Diagram of NWA Kleene star construction.

2. For the cases where σ is matched with a call in some earlier wj, it does not matter
what state the machine was in before that call; thus we add (q ′, s,σ,p ′) for each state
s in Q ∪Q ′. This behavior is enabled by the Globally-Pending-Return rule.

Formally, if the original NWA is (Q,Σ,Q0, δ,Qf), then the result of performing Kleene
star on that NWA is (Q∗,Σ,Q∗0 , δ∗,Q∗f). The sets of states are defined byQ∗ = Q∪Q ′ ∪ {q0}

(with Q ′ = {q ′ |q ∈ Q} and q0 6∈ Q), and Q∗0 = Q∗f = {q0}. The transitions in δ∗ are defined
by the rules in Fig. 2.8.

2.1.6 Weakly-hierarchical-preserving NWA Reversal [new]

The NWA reversal algorithm presented by Alur and Madhusudan’s JACM article [8, theo-
rem 3.7] does not work with their earlier definition of NWAs, which matches our use. Their
earlier definition and our definition is called a weakly-hierarchical NWA, and the reversal
algorithm in JACM does not preserve the weakly-hierarchical property of NWAs. We thus

33

Start
q ∈ Q0

(q0, ε,q ′) ∈ δ∗i

Restart
q ∈ Qf

(q, ε,q0) ∈ δ∗i (q ′, ε,q0) ∈ δ∗i

Internal
(q,σ,p) ∈ δi

(q,σ,p) ∈ δ∗i (q ′,σ,p ′) ∈ δ∗i

Call
(q,σ,p) ∈ δc

(q,σ,p) ∈ δ∗c (q ′,σ,p) ∈ δ∗c

Locally-Matched-Return
(q, r,σ,p) ∈ δr

(q, r,σ,p) ∈ δ∗r (q, r ′,σ,p ′) ∈ δ∗r

Locally-Pending-Return
(q, r,σ,p) ∈ δr r ∈ Q0 s ∈ Q ∪Q ′

(q ′, s,σ,p ′) ∈ δ∗r

Globally-Pending-Return
(q, r,σ,p) ∈ δr r ∈ Q0

(q ′,q0,σ,p ′) ∈ δ∗r
Figure 2.8: Rules defining transitions created by Kleene star

present a new algorithm for NWA reversal that produces a weakly-hierarchical NWA.6 To
our knowledge, this algorithm has not been found or published by others, although the
DLT paper asserted without proof that regular nested-word languages are closed under
reversal [7, Theorem 2], even under its more restrictive NWA definition that we use.

A nested word n = (w,) is reversed by reversing the linear word w and exchanging
calls and returns. Formally, nR = (wR, {(|w| + 1 − r, |w| + 1 − c) | (c, r) ∈ }). (Pending
calls and returns are handled by defining |w|+1−(+∞) = −∞ and |w|+1−(−∞) = +∞.)
Roughly speaking, call transitions in A correspond to return transitions in AR and vice
versa, and we reverse the direction of all transitions as in the standard FA construction. We
describe the construction from the perspective of AR — that is, a “call transition” is a call
transition in AR, and a “call” is a call in the reversed string.

Perhaps unsurprisingly, pending returns pose a problem because the role of initial and
final states are exchanged. Because of this complication, the algorithm for reversing an

6The algorithm presented produces smaller automata than would be achieved by applying Alur and
Madhusudan’s reversal construction (which does not change automaton size) followed by a conversion to a
weakly-hierarchical NWA (which increases the size by a factor of 2 |Σ|); the construction we present doubles
the size, which is a savings of a factor of |Σ| over the reverse-then-convert approach just outlined.

34

Internal
(p,σ,q) ∈ δi

(q,σ,p) ∈ δRi (q ′,σ,p ′) ∈ δRi

Reversed-Call
(qx, __ ,σr,qr) ∈ δr

(qr,σr,qx), (q ′r,σr,qx) ∈ δRc

Call-Return
(qc,σc,qe) ∈ δc (qx,qc,σr,qr) ∈ δr

(qe,qr,σc,qc), (qe,q ′r,σc,q ′c) ∈ δRr

Pending-Return
(qc,σ,qe) ∈ δc qf ∈ Qf

(q ′e,qf,σ,q ′c) ∈ δRr
Figure 2.9: Rules defining transitions created during NWA reversal

NWA has a similar flavor to that of the Kleene-star procedure. The automaton AR has two
“copies” of A (primed and unprimed), and maintains the same invariant as the Kleene-star
construction: if the next symbol σ is in a return position, then that symbol is a pending
return iff AR is in the A ′ portion.

If the original NWA is (Q,Σ,Q0, δ,Qf), then the result of reversing that NWA is (Q ∪
Q ′,Σ,Q ′f, δR,Q0), where δR is obtained using the rules in Fig. 2.9.

Proof. In this section, we will prove that (L(A))R ⊆ L(AR). The reverse direction (to get
the equality) proceeds in a similar fashion.

LetA be an NWA. It may be nondeterministic, but for simplicity of presentation assume
it does not have ε transitions. Let AR be the machine constructed following the above
procedure. For a word w, let wi be the ith character of w, let w[: i] be w1w2 · · ·wi−1, let
w[i :] be wiwi+1 · · ·w|w|, and let w[i : j] be wiwi+1 · · ·wj−1.

L(A)R ⊆ L(AR). We will prove the following statement:

• If w ∈ L(A), then for n ∈ 0, 1, . . . , |w|, there are q0,qn,qf such that:

– qn ∈ δ(q0,w[: n]), and

– Both of the following hold:

∗ qn ∈ δR(qf, (w[n :])R) if (w[n :])R has no pending calls
∗ q ′n ∈ δR(qf, (w[n :])R) if (w[n :])R has pending calls

35

We will prove this assertion by “finite backwards induction” (the base case will be n = |w|

and we will show that if that statement is true for n = k, then it will be true for n = k− 1).
The base case is trivial: let qn ∈ δ(q0,w)∩Qf and qf = qn. There has to be such a qn if

we assume that w ∈ L(A).
We split the inductive case into four parts depending on the role of the symbol wn.

wn is at an internal position. Because w is accepted by A, we know that A contains a
path matching w that can be illustrated as follows:

qn qfqn+1q0
w[n+ 1 :]wnw[: n]

The meaning of this diagram is that A contains states q0, qn, qn+1, and qf (some of these
states may be the same), that there is a path from q0 from qn on the substring w[: n], there
is an internal transition (qn,wn,qn+1), and there is a path from qn+1 to qf on w[n + 1 :]

that matches any calls read during the w[: n] portion.
The inductive hypothesis tells us that, inAR, one of qn+1 or q ′n+1 is reachable by reading

(w[n :])R, depending on whether there are pending returns in that substring. The presence
of (qn,wn,qn+1) in A along with the Internal construction rule guarantees that the two
internal transitions (qn+1,wn,qn) and (q ′n+1,wn,q ′n) are present in AR. We can diagram
this portion of AR as follows:

qf

qn

q ′n+1

qn+1q0

q ′nq ′0 wn
(w[n+ 1 :])R

(w[n+ 1 :])R
wn

It is now clear that there is a path from qf to either qn or q ′n that can be traversed while
reading (w[: n + 1])R. Because appending an internal position to (w[: n + 1])R does not
affect any pending calls, q ′n is reachable iff (w[: n+ 1])R has pending calls, otherwise qn is
reachable. This reestablishes our inductive hypothesis.

wn is in a call position inwR. We use a similar argument to the previous. We can diagram
a path through A as follows:

qn qfqn+1q0
w[n+ 1 :]wn/pw[: n]

36

for some call predecessor p. By the presence of the transition (qn,p,wn,qn+1) and the
Reversed-Call rule, we know that AR has the following transitions

qf

qn

q ′n+1

qn+1
q0

q ′nq ′0

(w[n+ 1 :])R

(w[n+ 1 :])R
wn

wn

Again, the wavy lines indicate possible paths. By induction, either qn+1 or q ′n+1 is reachable.
It is always possible to take a call transition where the symbol matches, which means that
qn is guaranteed to be reachable. Finally, because wn is in a call position, (w[n :])R has
pending calls (at least the one just read), which along with the fact that qn is reachable
reestablishes the inductive claim.

wn is a pending return in wR. A contains the path

qn qfqn+1q0
w[n+ 1 :]wnw[: n]

The relevant transition in AR is

qf

qn

q ′n+1

qn+1q0

q ′nq ′0
wn(qf)

(w[n+ 1 :])R

(w[n+ 1 :])R

which we know is present by the pending-return rule.
Because wn is a pending return in wR, when AR is reading wR the automaton will use

any initial state — in particular, it can use qf— as a call predecessor. Thus AR will be able
to reach q ′n. Furthermore, because wn was a pending return in the reversed string there
cannot be any pending calls (or wn would have matched one), which along with the fact
that q ′n is reachable reestablishes the inductive claim.

wn is a matched return in wR. A contains the path

qfqn qx+1qn+1q0 qx
w[x+ 1 :]wn w[n+ 1 : x]w[: n] wx(qn)

37

for the x for which n x, wherew[n+1 : x] (and hence the path between them) is matched.
Then by the call-return rule, we know that AR contains the following states, transitions,
and paths:

qf

qn

q ′n+1 q ′x

qx+1
qn+1

q ′x+1

q0

qx

q ′nq ′0

(w[x+ 1 :])R(w[n+ 1 : x])R

(w[x+ 1 :])Rwn(q
′
x+1)

wn(qx+1) wx

wx

Thus asAR readswR, when it readswx it will place either qx+1 or q ′x+1 on the nesting edge.
At that point, AR has a pending call, thus by induction it must be able to reach qn+1. By
the construction, it will then be able to reach either qn or q ′n depending on which of qx+1

and q ′x+1 it stacked earlier. Which of those happens depends on whether q[x + 1 :] has
pending calls or not; (w[n :])R has pending calls iff (w[x+ 1 :])R has pending calls. Again,
these situations correspond to the two options in the inductive hypothesis.

2.2 The OpenNWA Library [new]

We have created an implementation of nested-word automata called OpenNWA. The
library has an implementation of an NWA data structure and most of the automaton
algorithms discussed in [8]. In addition, it is packaged with and interacts closely with
the WALi library for weighted automata and weighted pushdown systems (WPDSs) [44],
allowing for reachability queries on the configuration space of NWAs as well as for the
computation of weights that summarize properties of sets of nested words (Section 2.2.3).

In this section, we list the operations that OpenNWA supports and then describe some
of the highlights of the library features.

2.2.1 Supported Operations

As previously mentioned, OpenNWA supports most automata-theoretic operations:

• intersection

• union

• Kleene star

• reversal

• concatenation

• determination

• complement

• emptiness checking

• example word generation

38

For the most part, we use the algorithms developed by Alur and Madhusudan [7, 8];
however, the algorithms presented in Section 2.1 for Kleene star and reverse are substituted,
and we perform emptiness checking and example word generation via conversion to a
WPDS [30, 31].

In addition to these operations, OpenNWA also supports something we call wild tran-
sitions, which match any single symbol. Wilds can appear on any transition type. (They
are particularly useful if the entire NWA’s alphabet is not available up-front, e.g., if the
list of all statements in a program is unknown [82, §3.1].) Wild transitions are not used
in the format-compatibility work described in this dissertation, however, and will not be
discussed further.

2.2.2 Client Information

OpenNWA provides a facility that we call client information. This feature allows the user
of the library to attach arbitrary information to each node in the NWA. For instance, as
discussed in Section 2.2.4, McVeto uses NWAs internally and uses client information to
attach a formula to each node in the NWA.

The library tracks this information as best as it can through each of the operations it
supports, and supports callback functions to compute new client information when it does
not have the information it needs. For instance, during concatenation, the nodes in the
resulting NWA have the same client information as the corresponding nodes in the input
automata. However, for intersection, the nodes in the resulting NWA represent pairs of
states, and the NWA class provides callback functions for computing the client information
for each output state from the client information of states being paired.

2.2.3 Inter-operability with WPDSs

Weighted pushdown systems (WPDSs) can be used to perform interprocedural static
analysis of programs [72]. The PDS proper provides a model of the program’s control flow,
while the weights on PDS rules express the dataflow transformers. Algorithms exist to
query the configuration space of WPDSs, which corresponds to asking a question about
the data values that can arise at a set of configurations in the program’s state space. A
configuration consists of a control location and a list of items on the stack.

39

The NWA library supports converting an NWA into a WPDS implemented by WALi.
This feature allows a user of the NWA library to issue queries about the configuration
space of an NWA. For instance, our isLanguageEmpty() function uses WPDS algorithms
to effectively ask a query of the form “Is it possible to start in an initial configuration and
consume a nested word to reach a configuration where the automaton is in an accepting
state?”

NWAs themselves are not weighted, but the library provides a facility for determining
the weights of the WPDS rules during the conversion. The user provides an instance of
a subclass of WeightGen, which acts as a a factory function. The function is called with
the states in question and returns the weight of the resulting WPDS rule. It is, of course,
possible to use the client information of the states in question to determine the weight.

The library also allows conversions from a WPDS into an NWA [31, §7.1].

2.2.4 OpenNWA uses

OpenNWA is used by the Producer-Consumer Conformance Analyzer (PCCA) as discussed
in this dissertation (Chapter 5); here we briefly describe two other uses of OpenNWA.

Machine-code model checking

McVeto is a machine-code verification engine that, given a binary and a description of a
bad target state, tries to find either (i) an input that forces the bad state to be reached or (ii)
a proof that the bad state cannot be reached [82].

McVeto uses a model of the program called a proof graph, which is an NWA that over-
approximates the program’s behavior. States in a proof graph are labeled with formulas;
transitions are labeled with program statements or conditions. Each formula is associated
with its state using OpenNWA’s client information.

The initial proof graph is a very coarse overapproximation of the program, which
McVeto progressively refines. One principle technique for refinement uses directed test
generation to produce a concrete trace of the program’s behavior, performs trace generaliza-
tion [82, §3.1] to convert the trace into an overapproximating NWA (the “folded trace”), and
intersects the current proof graph with the folded trace to obtain a refined proof graph. The
formula on a state in the refined proof graph is computed by conjoining the formulas on the

40

states that are being paired from the current proof graph and the folded trace; OpenNWA
callback functions compute the new formulas.

McVeto makes use of prestar() (Section 2.2.3) for two purposes: first, to determine
whether the target state is reachable in the proof graph, and second, to determine which
“frontier” to extend next during directed test generation [82, §3.3]. The prestar() query
uses shortest-distance weights in order to find the shortest path to the target state. If the
target state is reachable in the proof graph, then McVeto needs to continue exploration, in
which case the frontier closest to the target state is heuristically a good candidate to explore
next; otherwise, the target is guaranteed to be unreachable in the program.

JavaScript security-policy checking and weaving

The JAM tool checks a JavaScript program against a security policy, using counterexample-
guided abstraction refinement (CEGAR, [20]) either to verify that the program is correct
with respect to that policy already or to insert dynamic checks into the program to ensure
that it will behave correctly.

JAM builds two models of the input program, one that overapproximates the control
flow of the program and one that overapproximates the data flow. The policy is expressed
as an NWA of forbidden traces. By intersecting the policy automaton with both program
models, JAM obtains an automaton that expresses traces that possibly violate the policy.
(For technical reasons, the intersection of the policy automaton and the data-flow automaton
are not done using OpenNWA, although the final intersection is.)

Once JAM has the combined NWA, which represents possible policy violations, it asks
OpenNWA for a shortest word in the language of the NWA. If the language is empty (i.e.,
there is no shortest word), the program always respects the policy. If OpenNWA returns an
example wordw, JAM checks whetherw corresponds to a valid trace through the program.
Ifw is valid, then JAM inserts a dynamic check to halt concrete executions corresponding to
w that would violate the policy. Ifw is not valid, than JAM can either refine the abstraction
and repeat, or insert a dynamic check as if wwere actually feasible. (The dynamic check
forces the abstraction to be refined sufficiently so that the same counterexample w will
never be returned on a subsequent analysis round.)

JAM’s refinement process benefits greatly from the ability to request a shortest accepted
word, instead of any word, because it speeds up validity checking and refinement.

41

2.3 Related Work

Our focus has been on using NWAs for modeling programs, but as suggested by the
introduction, there are a number of other application areas as well. Alur and Madhusudan
each maintain a page giving a significant bibliography of papers that present theoretical
and practical results related to NWAs and VPAs [5, 52].

The NWA language containment check that OpenNWA supports and that is used by
PCCA performs determinization of one of the argument automata; the same is true of
checking the universality of an NWA.7 Friedmann, Klaedtke, and Lange describe how
to adapt to NWAs existing “Ramsey-based” techniques for testing the universality and
inclusion of standard FAs [36]. Ramsey-based techniques avoid the need to explicitly
determinize the automaton, and result in a significant speedup. Friedmann et al.’s work
postdated the bulk of our work on OpenNWA and the non-XFA version of PCCA, and so
at the moment we do without this benefit.

There are a number of libraries that support standard finite automata, such as Open-
FST [3], AT&T’s FSM library [59], dk.brics.automaton [60], libalf’s components [13], and
many others. We took inspiration for portions of our APIs from these projects, particu-
larly OpenFST. There is also experimental code included in WALi for converting between
OpenFST acceptors and NWAs with no call or return transitions.

VPAlib [62] is a Java library that implements VPAs. In addition to being unsuited
for our purposes because of the choice of language, WALi’s implementation is also far
more complete. For instance, VPAlib does not support concatenation, complementation
(although it does support determinization), checking emptiness, or getting an example
word.

Madhusudan’s VPA page [52] lists several other VPA tools, but all appear to be targeted
at a particular problem and none besides VPAlib seem to be publicly available.

7An automaton A is universal iff L(A) = Σ∗.

42

3 Extended Finite Automata (XFAs)
& Weighted Finite Automata (WFAs)

In this chapter, we describe extended finite automata (XFAs) and weighted finite automata
(WFAs). XFAs are an extension to standard FAs where the automata contain some extra
“scratch memory” in addition to the state. (This is a bit like the RAM model of computation,
except that the scratch memory is bounded.) When the XFA takes a transition, the transition
it chooses also describes how it modifies its scratch memory.

Unlike NWAs, XFAs do not add any additional power over FAs. However, the scratch
memory (and perhaps even more to the point, the fact that XFAs leave open the possibility
for compactly representing the memory operations) can allow them to be more compact
than an equivalent FA.

XFAs were invented by Smith, Estan, and Jha to more compactly represent acceptors
being used in intrusion detection systems [76]. Smith et al. assume they are provided with
many regular expressions that specify malware signatures, and want to scan incoming
packets to determine if any signature matches. Smith et al. claim “DFAs are time-efficient
but space-inefficient, NFAs are space-efficient but time-inefficient, ... [and] for a large class
of signatures XFAs have time complexity similar to DFAs and space complexity similar to
or better than NFAs.”

XFAs caught our eye because we are interested in checking properties about the number
of times loops iterate and other properties that the scratch memory of XFAs can store.
However, Smith et al. were only interested in matching concrete strings, and not interested
in other properties of XFAs, such as language containment or emptiness checking. That
left us to find methods to perform these operations without materializing the entire state
space explicitly.

WFAs are finite automata augmented with values called weights, which can track addi-
tional information.1 A WFA reads a string and outputs a weight instead of a strict yes/no

1Weights in this sense are more general than just a numeric value as can be found in typical graph
problems, for instance; see Section 3.2.

43

answer. (Mohri has called WFAs “string-to-weight transducers” [57].) WFAs have a much
longer history than XFAs, and it is possible to view XFAs as a special case of WFAs. We
treat them as such, and present algorithms that we developed for XFAs in a somewhat
more general setting of WFAs.

Section 3.1 defines XFAs, Section 3.2 defines WFAs, and Section 3.3 describes the connec-
tion between the two. We then cover algorithms for ε closure (Section 3.4), determinization
(Section 3.5), and language containment (Section 3.6). Finally, we describe how we represent
the scratch memory transformers using binary decision diagrams (BDDs) (Section 3.7).

As with the NWA chapter, this chapter discusses both my work and background material,
and sections are marked “background”, “adaption”, and “new” as appropriate.

3.1 Formal definition of extended finite automata (XFA)
[background]

In the chapter introduction, we briefly described what an XFA is; here we present Smith et
al.’s formal definition [76, Definition 2]:

Definition 3.1. A (nondeterministic) XFA is a tuple (Q,D,Σ, δ,U,QD0, F) where:

• Q is the set of states, Σ is the alphabet, and δ : Q× (Σ∪ {ε})→ P(Q) is the transition
function. (These elements are standard.) As with NWAs, we will abuse notation
and also treat δ as a relation, i.e., a subset of Q× (Σ ∪ {ε})×Q.

• D is a finite set of data values, which together form the XFA’s data set. (Smith et al.
call this the “data domain”.)

• U : δ→ P(D×D), where U(t) gives the data-set transformer (“update function”
in Smith’s terminology) associated with a transition t ∈ δ. (Note that here we are
taking a relational view of δ.) Each transformer is a binary relation on D, i.e. a
subset ofD×D. (We will also sometimes abuse notation and treat each transformer
as a function D→ P(D), which is another way of representing a relation.)

• QD0 ⊆ Q×D and F ⊆ Q×D give the sets of initial and accepting configurations,
respectively. A configuration is simply a pair from Q×D.

44

As an XFAA consumes input, it tracks both a current state q ∈ Q as well as a data value
d ∈ D, which together form a configuration (q,d). Awill start in a configuration in QD0.
IfA’s current configuration is (q,d) and it reads a symbol σ, it takes two steps to determine
the next configuration (q ′,d ′):

First, A nondeterministically chooses the successor state q ′ from δ(q,σ).

Second, A nondeterministically chooses the successor data value d ′ from U(q,σ,q ′)(d).
That is, it looks up the transition (q,σ,q ′) in U to obtain a transformer τ : D→ P(D),
and then chooses a successor from τ(d). (If τ(d) = ∅, the XFA “blocks,” just like if
δ(q,σ) was empty.)

If it is possible for A to read an input word and end in a configuration in F, then the word
is accepted. The language of an XFA is the set of words it accepts.

To avoid ambiguity, we always use an unadorned term state to refer to just theQ portion
of the XFA, use data value for the D portion, and configuration for both together.

There are two things to note about the formulation above. First, the process for finding
the possible successor configurations is described as a two-step process of finding the next
state and then the next data value. An alternative formulation would be to define δ3 as a
function fromQ×D× (Σ∪ {ε})→ P(Q×D), where the automaton in configuration (q,d)
reading σwould choose a successor configuration from δ3(q,d,σ). These two formulations
are actually equivalent; it is merely a question of how δ and U are represented, and no
meaningful structural changes need to occur to change between them. The two-stage
description was chosen for three reasons: (1) it matches Smith’s description, (2) it makes
it easier to describe automaton operations, and (3) it aligns the description of XFAs with
those of weighted finite automata (WFAs), described in the following section.

Second, XFAs are not more expressive than standard finite automata, but they can be
more compact. There is a trivial transformation of an XFA to an FA. The FA’s set of states is
just Q×D; the FA’s initial and final set of states are just QD0 and F, respectively; and the
FA’s transition function is δ3 introduced in the previous paragraph (interpreting δ3(q,d,σ)
as δ3((q,d),σ)). The benefit of XFAs over FAs is that the entire Q×D state space need not
be explicitly materialized, and instead much of the information can be tracked in the data
value over an automaton with a small set of states.

45

3.2 Weighted finite automata [background]

The final form of automata we will define are weighted finite automata (WFAs). WFAs are
well-studied in the literature, with applications in areas such as speech recognition [57, 64],
machine translation [45], image compression [2], model checking probabilistic systems [9],
and program analysis [72, §3.1.3,§3.2]. (Speech recognition and machine translation also
use weighted string transducers, which are not covered here.) Definitions of WFAs vary
by source (e.g., Mohri [57], Pereira et al. [64], and Ésik and Kuich [33] all provide slightly
different formalisms for the same thing); we will give a definition similar to Mohri’s that is
chosen to mirror that of XFAs.

WFAs associate a weight with each transition, where weights are elements of a semiring:

Definition 3.2. A semiring is a tuple (S,⊕,⊗, 0, 1) that meets the following requirements:

• S is a set containing 0 and 1 as distinct elements

• ⊕ (“combine”) and ⊗ (“extend”) are binary operators on S

• (S,⊕, 0) and (S,⊗, 1) both form monoids. That is: ⊕ and ⊗ are both associative,
a⊕ 0 = 0⊕ a = a for each a ∈ S, and a⊗ 1 = 1⊗ a = a for each a ∈ S.

• ⊕ is commutative

• ⊗distributes over⊕, i.e. a⊗(b⊕c) = (a⊗b)⊕(a⊗c) and (a⊕b)⊗c = (a⊗c)⊕(b⊗c)
for each a,b, c ∈ S

• 0⊗ a = a⊗ 0 = 0 for each a ∈ S

A semiring is idempotent if a ⊕ a = a for all a ∈ S; we will assume that semirings are
idempotent, usually without comment. A weight is an element from a semiring.

There can be extend and combine operators indexed over a set, written as
⊗
i∈Iwi

and
⊕
i∈Iwi. By definition,

⊗
i∈∅wi = 1 and

⊕
i∈∅wi = 0.

For example, the natural numbers and the usual arithmetic operations forms a non-
idempotent semiring (N, 0, 1,+, ·). An important and common (idempotent) semiring is
the tropical semiring (also known as the min-plus semiring) (R ∪ {∞},∞, 0, min,+).

46

We will often treat the operators and 0/1 elements of a semiring as implicit, identifying
the whole semiring with the set S. We define an ordering on a semiring by defining a v b iff
a⊕b = b. (For example, in the tropical semiring,v coincides with>: a > b iff amin b = b.)
A semiring’s height is the maximum number of distinct elements s1, s2, · · · , sn such that
s1 v s2 v · · · v sn, or the height is infinite if no such maximum exists. A semiring is
bounded if there are no infinite ascending chains in v.

Note that v is a partial order, and the semiring forms a join semilattice where ⊕ is join.
Many algorithms “move up” in the lattice defined by v, and the boundedness property is
hence important for arguing termination. The semiring that we use in our applications
(defined in Section 3.3) has finite height and is thus bounded.

Definition 3.3. Given a semiring S, a (nondeterministic) weighted finite automaton on S is
a tuple (Q,Σ, δ,W,W0,Wf) where:

• Q is a set of states, Σ an alphabet, and δ : Q × (Σ ∪ {ε}) → P(Q) the transition
function (which we will sometimes treat as a relation)

• W : δ→ S associates each transition with a weight

• W0 : Q→ S associates each state with an initial weight

• Wf : Q→ S associates each state with a final weight

Suppose we are given a string s and WFA A. A path through A matching s is a sequence
of transitions π = t1, t2, · · · t|s| where the target state of each ti matches the source state of
ti+1 and the symbol labeling ti matches the ith symbol of s. We extend the definition ofW
to paths by taking the extend of the weights along the path:

W(π) ,
|s|⊗
i=1

W(ti).

47

Finally, we will extendW again to accept strings as input: if we let paths(s) be the set
of paths in Amatching s, then

W(s) ,
⊕

π∈paths(s)

[
W0(source(t1))⊗W(π)⊗Wf(target(t|s|))

]
.

A WFA can be viewed as defining two constructs, depending on the application. The
first is a mapping from strings to weights, defined by the final extension ofW above. (In the
literature, such a mapping is often called a formal power series.) The second is a language,
defined as the set of strings with non-zero weight, L(A) = {s ∈ Σ∗ |W(s) 6= 0}. We will be
interested in the language interpretation.

3.3 Interpreting an XFA as a WFA [adaption/new]

It is possible to interpret an XFA as a WFA, and in so doing we can apply WFA operations
to an XFA.

First, given an XFA’s data set D, binary relations on D form a semiring:

• The set S is P(D×D)

• 0 is the empty relation ∅

• 1 is the identity relation {(d,d) | d ∈ D}

• ⊕ is the union of the tuples in the two relations

• ⊗ is relational composition: E⊗ F = E; F = {(α,γ) | ∃β : (α,β) ∈ E and (β,γ) ∈ F}

This trivially satisfies the requirements to be a bounded, idempotent semiring.
Given an XFA A = (Q,D,Σ, δ,U,QD0, F), we can build a WFA B = (Q,Σ, δ,W,W0,Wf)

where:

• W = U

• W0(q) , {(d,d) | (q,d) ∈ QD0}

• Wf(q) , {(d,d) | (q,d) ∈ F}

48

Essentially all we are doing is interpreting each transformer in U as a weight, and then
making the initial and final weight of each state match the original XFA.

The only trick is how to handle initial and final configurations. In B, the initial and final
weights have to be weights, which correspond to transformers, while in A they are only
values. One way to look at this disparity is to view each transformer as being a |D|× |D|

Boolean matrix (where position i, j is 1 iff (di,dj) is in the transformer), and then note that
the XFA uses 1× |D| vectors (resp., |D|× 1 vectors) as initial (resp., final) “weights”, where
position 1, i (resp., i, 1) is 1 iff di is an initial (resp., final) data value for the given state).
WFAs do not allow us to do that, as we only have |D| × |D| transformers. However, this
is OK: because we are only interested in whether the overall weight of a string is 0 or not,
all we need to do is create a transformer that preserves the “zero-ness,” and those above
perform that task.

The following example illustrates the equivalence for when D = {d1,d2}. Suppose we
are given a path π that starts at state q0 and ends at state qn; to determine whether that
path is actually feasible, we compute the effect on the data state over that path, including
initial and final values. If the path is feasible (i.e., it is possible to always choose a next
data successor that respects U), we will say that π is a witness that the corresponding string
accepts, or, for brevity, that the path accepts.

Using the XFA interpretation, we would see something like the following:

[d0 d1

a b
]
×

[d0 d1

d0 c d

d1 e f

]
×

[
d0 g

d1 h

]
=
[
acg+ beg+ adh+ bfh

]
The first matrix (on the left-hand side of the equality) holds information about what

the initial data values are for the state at the start of the path in question (e.g., a is 1 iff
(q0,d1) ∈ QD0). The second matrix is the composition of all of the transformers along
the path (e.g., c is 1 iff (d1,d1) ∈ W(π)). The third matrix holds information about what
final data values are for the state at the end of the path (e.g., h is 1 iff (qn,d2) ∈ F). On the
right-hand side, the multiplications should be interpreted as logical and and the additions
as logical or. Thus this path is a witness to the corresponding string being accepted when
at least one of of acq, beg, adh, and bfh are 1.

49

Using the WFA interpretation, the operations would be expressed as:

[d0 d1

d0 a 0
d1 0 b

]
×

[d0 d1

c d

e f

]
×

[d0 d1

g 0
0 h

]
=

[d0 d1

d0 acg adh

d1 beg bfh

]

Here, the first matrix is W0(q0) as defined above, the second is W(π), and the third is
Wf(qn). This path is a witness to the corresponding string being accepted iff the final
weight is non-0, which happens whenever at least one of acq, adh, beg, and bfh is non-0. (0
in this domain is [0 0

0 0].) This condition is exactly the same condition as that in the previous
paragraph.

TheW0 andWf constructions above are not the only possible choices; for instance, setting
the initial weight to [a b0 0] and/or the final weight to

[
g 0
h 0

]
would also work. However, if we

are actually interested in what initial data values lead to the path being accepted, or what
data values are actually reachable in the final state, then the original definition provides the
most information. For example, adg is true iff it is possible for the XFA to start in (q0,d0),
follow the given path, and finish in (qn,d1).

Finally, I wish to introduce a type of diagram that will be used later in the dissertation.
The following diagram illustrates a binary relation on D = {d0,d1,d2,d3}:

d0

d1

d2

d3

Each dot represents an element from D. The dots in the left column are the pre-state
and the dots in the right column are the post-state, and we will refer to those in the right
with primed names. There is a line from di on the left to d ′j on the right iff (di,d ′j) is in
the relation being represented. The above diagram then represents the relation {(d0,d0),
(d0,d1), (d1,d2), (d2,d3), (d3,d3)}. Call this relation R.

Visually computing the ⊗ of two or more relations is easy: simply concatenate the
diagrams for each of the relations so that they share dots between the right-hand column of

50

the first relation and the left-hand column of the second, then see what paths exist between
the left column of the first relation and the right column of the last. The following diagram
illustrates R⊗ R:

d0

d1

d2

d3

d0

d1

d2

d3

=

In Chapter 6, each data value will have some structure to it: it will be an assignment
to a set of variables {x1, x2, · · · , xn}, where each variable takes on a value from the set
{0, 1, 2, · · · , 2m − 1}. Thus a data value is some tuple like (0, 1, 3, 2), and there are 2nm

possible data values. In order to visualize relations on the set of these values, we use the
following convention. Suppose a relation τ can be factored into τ1� τ2� · · · τk, where each
τi is on a subset of the variables and � is the tensor product of the relations taken in the
natural way, combining the variable subsets to match τ. (See Definition 3.5 in Section 3.5
and the subsequent text for more information about tensor products.) In this case, we will
illustrate each of the τis instead. Figure 3.1 provides an example of factoring a relation in
this way, along with a relation that cannot be factored. Finally, it will often be the case that
all but one τi will be the identity relation on the variable in question; in this case, we will
just display the single τi that is not.

We will draw XFAs showing their transformers illustrated using diagrams such as these,
where there will be one diagram per transition. For states that are part of an accepting
configuration, in the transformer diagrams on incoming transitions we will sometimes
circle the data values that will accept in concert with that state. Figure 3.5 has an example
of a very simple XFA with this convention.

3.4 Symbolic ε closure [new/adaption]

Smith et al. provide an algorithm for performing ε-closure on an XFA, starting from a
specific configuration (q,d). This algorithm is shown in Listing 3.2.

51

(0, 0)

(0, 1)

(1, 0)

(1, 1)

(x1, x2)

(a) A relation R

0

1

x1

�

0

1

x2

(b) A factored version of R

(0, 0)

(0, 1)

(1, 0)

(1, 1)

(x1, x2)

(c) A relation that cannot be factored

Figure 3.1: Factoring a relation. There are two variables x1 and x2; each can be 0 or 1.

1 ComputeEpsilonReachable(q, d)
2 result = {(q,d)};
3 foreach (qi,di) ∈ result do
4 foreach qf ∈ {q | (qi, ε,q) ∈ δ} do
5 result = result ∪ ({qf}× {df | (di,df) ∈ U(qi, ε,qf)});
6 return result;

Listing 3.2: Smith et al.’s ε-closure procedure [76, Algorithm 1]

However, Smith’s algorithm is not well-suited for problems with large data sets. The
reason is that, as can be seen on Line 3 of Listing 3.2, it iterates over each configuration of the
ε closure explicitly. Our goal was to work with data sets that were very large (originally we
had hoped that we could track multiple 32-bit values), and we looked for ways to perform
this operation symbolically.

In this section, we describe two such symbolic techniques. First, we briefly mention an
algorithm due to Mohri [58, §3.2]. Second, we describe a technique that is based on the
Tarjan algorithm for solving the path-expression problem [80]:

Definition 3.4. Given a directed graph G and vertex s, the single-source path-expression
problem asks us to find a regular expression E(s, v) for each vertex v, such that E(s, v)
represents all paths from s to v. (The alphabet of the regular expression is the set of
edges in G.)

52

The specific implementation we use realizes Tarjan’s algorithm using fast weighted
pushdown systems [47]. Our experience is that the Tarjan/FWPDS algorithm is significantly
faster than Mohri’s; see Section 3.4.1.

Mohri calls his algorithm a “shortest distance” algorithm over semirings. This may
seem odd, but the more typical sense of shortest distances on a graph can be obtained by
using the tropical semiring. (In fact, many common graph problems and algorithms can
be viewed as a more general algorithm specialized to the tropical semiring.) Mohri claims
that his algorithm is a non-trivial generalization of standard shortest-path algorithms;
when applied with the tropical semiring, the result matches either the Bellman-Ford or the
Dijkstra algorithm depending on the choice of queue. For more information, please see
Mohri’s description [58].

The second algorithm we considered applies Tarjan’s algorithm and existing work on
fast weighted pushdown systems (FWPDSs). What ε closure must do is, given a source
node q, compute the net effect of the transformers along every ε path from q to each state
q ′. The “net effect” is simply the combine-over-all-paths value from q to q ′ using only ε
transitions — and this sort of problem is exactly what WPDSs are designed to solve. The
combine-over-all-ε-paths value from q to q ′ is defined as⊕

π is an ε path from q to q ′
W(π).

What we do is convert the XFA’s ε transitions into an (F)WPDS, then issue a post* query
from the configuration set corresponding to {q}. The answer to the ε-closure query can be
read off from the post* result, and is a mapping from states to the combine-over-all-paths
weight to that state.

Readers who are familiar with the definition of WPDSs (see, for example, [72, Defs. 2
and 6]) can see Fig. 3.3 for details; others can feel free to skip it.

While in principle it is possible to use standard WPDS algorithms to solve post*, we use
the FWPDS post* instead [47].2 FWPDS reachability algorithms have their basis in Tarjan’s
algorithm for solving the path-expression problem (Definition 3.4).

2For general program analysis, Lal extended Tarjan’s algorithm to handle interprocedural problems,
which resulted in FWPDSs, but we do not actually take advantage of the interprocedural capabilities. Thus,
FWPDS are in some sense an implementation detail of how we use Tarjan’s algorithm.

53

Given a WFA (Q,Σ, δ,W,W0,Wf), we create
a WPDS (P,S, f) where P = (P, Γ ,∆) is a PDS
and:

• P = {p}

• Γ = Q

• ∆ = {〈p,q〉 ↪→ 〈p,q ′〉 | q ′ ∈ δ(q, ε)}

• S is the same as the WFA’s semiring

• f(〈p,q〉 ↪→ 〈p,q ′〉) =W(q, ε,q ′)

(a) Converting a WFA to a WPDS

q0 q1

q2

ε (w0)

ε (w1)

ε (w2) b (w3)

(b) An example WFA

• 〈p,q0〉 ↪→ 〈p,q1〉with weight w0

• 〈p,q1〉 ↪→ 〈p,q0〉with weight w1

• 〈p,q0〉 ↪→ 〈p,q2〉with weight w2

• 〈p,q1〉 ↪→ 〈p,q2〉with weight w3

(c) The rules in the WPDS created when convert-
ing the WFA in (b) to a WPDS.

p q1 (1)

(d) The query constructed for εclose(q1)

p

q1 (J(w0 ⊗w1)
∗K)

q0 (J(w0 ⊗w1)
∗ ⊗w0K)

q3 (J(w0 ⊗w1)
∗ ⊗w0 ⊗w2K)

(e) Example post* result. The edge weights are
notated as JeK for some expression e to empha-
size that the result has the evaluation of e rather
than the expression itself. For a weight w, w∗ is
defined to be 1⊕w⊕w⊗w⊕ · · · .

Figure 3.3: Solving WFA ε closure via translation to an (F)WPDS. To compute εclose(q) on a WFA,
the WFA is first converted into a WPDS using the procedure specified in (a). An example
WFA is shown in (b) and the corresponding WPDS rules in (c). Then a post* query is
made on the resulting WPDS; for the example, the query and result are shown in (d)
and (e). The result of εclose can be read directly off of the result automaton: in this case,
εclose(q1) = {q1 7→ (w0 ⊗w1)

∗,q2 7→ (w0 ⊗w1)
∗ ⊗w1,q3 7→ (w0 ⊗w1)

∗ ⊗w1 ⊗w2}.

54

Many graph problems can be answered by reinterpreting the leaves and operators in a
regular expression appropriately [81]. We are interested in the following reinterpretation,
which matches what is used for dataflow analysis:

• ∅ is reinterpreted as 0

• ε is reinterpreted as 1

• A leaf e names an edge (q,q ′); we reinterpret it asW(q, ε,q ′)

• Concatenation is reinterpreted as ⊗

• Alternation is reinterpreted as ⊕

• Kleene star of a weightw is reinterpreted asw∗ = 1⊕w⊕(w⊗w)⊕(w⊗w⊗w)⊕· · ·
(but see below for more discussion)

The result of this reinterpretation is the combine-over-all-paths value over the paths that
the regular expression represents. In our case, it is the ε closure from a source state to a
target state.

One benefit from using Tarjan’s algorithm is the ability to compute w∗ more directly. A
naïve approach would compute this value by computing wk for successively larger k until⊕k
i=0w

i does not change.3 If the semiring has height h, this will potentially require O(h)

extend and combine operations.
However, w∗ can be computed more efficiently. Let f(k) =

⊕k
i=0w

i and let k0 be the
value of k at which the procedure given above stabilizes. (In other words, f(k0 − 1) 6=
f(k0) = f(k0 + 1).) Note that f(k0) = f(k) for all k > k0. Now, (1⊕w)k = f(k) because we
are assuming that the semiring is idempotent. The expression (1⊕w)k can be evaluated
using repeated squaring: computing (1 ⊕ w), then (1 ⊕ w)2, then (1 ⊕ w)4, etc. until
convergence. This procedure only needs one combine operation at the start plus O(log2 h)

extend operations, which is improvement that is exponential in the semiring height.
There is a caveat with this, which is that these complexity measurements assume that

the ⊗ operations are constant time. It is possible that repeated squaring leads to each
operating being more expensive and this reduces or eliminates the benefit from repeated
squaring [47, Footnote 3].

3Exponentiation is repeated extends: w0 , 1 and wi , wi−1 ⊗w.

55

Using Tarjan’s algorithm also brings other benefits. One benefit is that using Tarjan’s
algorithm eliminates the need to choose a good order in which to visit states in the au-
tomaton. (Or viewed another way, Tarjan’s algorithm chooses a good order.) A second
benefit is that Tarjan’s algorithm can better take advantage of the semiring’s associativity
and distributivity properties. Suppose we have a sequence of states q1,q2, · · · ,qn where
each state until qn has the following state as its sole successor (and all transitions between
them are εs). Using Tarjan’s algorithm will let us compute the extend of the path from q1

to qn once, and then use the resulting value in the future to propagate new information
from q1 directly to qn; this behavior falls naturally out of Tarjan’s algorithm as the regular
expression is reinterpreted. Algorithms based on propagating weights around the graph
(e.g., the traditional WPDS algorithm or Mohri’s) would need to take special steps to avoid
propagating a new weight across every transition between q1 and qn every time the weight
on q1 changes.

Tarjan’s algorithm computes the path regular expression in time O(m logn) for a re-
ducible graph withm edges and n vertexes. Reinterpreting the regular expression takes
O(m logn logh) semiring operations, where h is the semiring’s height [47, 80]. (As men-
tioned above, the logh factor may be worse in practice in terms of actual time if the extend
operations become expensive.) For irreducible graphs the running time can degrade to
O(n3); however, Lal et al. did not find much performance degradation due to irreduciblity.

3.4.1 Performance comparison of ε closure methods

In this section, we briefly describe some empirical measurements of the performance of
various options for ε closure. We compare the following choices of algorithms:

• Mohri’s algorithm

• WPDS (iterated propagation)

• FWPDS (Tarjan’s)

56

Mohri WPDS FWPDS

Benchmark Sec. # ⊗s # ⊕s Sec. # ⊗s # ⊕s Sec. # ⊗ s # ⊕ s
32-cycle/6-bits 5.98 5,378 9,362 6.61 5,444 9,202 2.04 1,570 1,170
32-cycle/8-bits 43.7 17,666 33,938 41.6 17,732 33,778 6.76 1,634 1,170
png2ico/1-bit 17.5 307,393 250,513 15.1 319,845 263,214 15.5 237,709 134,561
png2ico/2-bit 120.0 345,041 315,990 97.9 378,179 379,882 96.5 237,721 134,562

Table 3.4: ε-closure algorithm performance. “#⊗s” and “#⊕s” give the number of times the operation
was called.

The benchmarks we measured are as follows:

• A 32-cycle version of the benchmark described in Section 6.3.1, with 6 bits per logical
variable (32-cycle/6-bits)

• The same 32-cycle benchmark with 8 bits per logical variable (32-cycle/8-bits)

• An XFA inferred from the program png2ico with 1 bit per logical variable (png2ico/1-
bit)

• The png2ico XFA with 2 bits per logical variable (png2ico/2-bits)

All tests measure the time to read in the given automaton, build the transformers, and
determinize it. In all cases, the optimization described in Section 6.3.1 is active. The time
reported is the mean of 5 runs.

As can be seen by the synthetic benchmark (the 32-cycle tests), there can be a significant
difference in performance between the ε closure methods.

3.5 State-Determinization [adaption/background]

To be fully deterministic, an XFA needs to satisfy two requirements:

• For all q ∈ Q and σ ∈ Σ, |δ(q,σ)| 6 1. (We use 6 here, but it would be equally
reasonable to use =.)

• For every transition t ∈ δ and data value d ∈ D, |U(t)(d)| 6 1.

57

In this section, we describe how to achieve the first of these requirements; such an XFA
we call state-deterministic. (Mohri uses the term subsequential for the equivalent notion on
WFAs [57].) We will not create an XFA that meets the second requirement explicitly; we
compensate using other means during the containment check (Section 3.6).

State-determinizing an XFA consists of two steps:

First, in preparation for the following steps, the data set of the XFA is lifted from D to
Q×D and transitions are adjusted accordingly

Second, the state and transition portion of the XFA are determinized using the standard
algorithm; transformers are computed as described below. Again, we use the term
cell to refer to a state in the determinized XFA, to distinguish it from states in the
original nondeterministic automaton. Thus a cell is a set of states.

The reason producing a fully-deterministic XFA would be attractive can be illustrated
as follows. Consider why we might want to determinize standard FAs. Determinization is
useful for two reasons: first, it makes checking a concrete input string faster (O(|s|) instead of
potentially O(|s| · |Q|) or even higher), and second, it makes it possible to check universality
and containment. Both reasons apply equally well in the data domain. First, when reading
a concrete string, the XFA tracks the current set of possible configurations. If there is
nondeterminism in the data value, then the XFA needs to track each of the possibilities.4

Second, the same problems that arise in standard FAs when performing universality and
containment testing can arise. In a standard FA, the difficulty with deciding universality
is that one needs to look at all possible paths for a string. It is not possible to look at the
following automaton and determine that it is not universal simply by the existence of the
non-accepting path q a−→ q ′:

q

q ′′

q ′

a

a

Similarly, nondeterminism in the data value means that, even if the path through the state
portion of the XFA is fixed, different choices of data value successors could reach some

4It is only necessary to track a single weight, but doing so is, in context, as expensive as tracking a set of
states when interpreting an NFA.

58

0

1

d

q q ′
a

• Q = {q,q ′}, Σ = {a}, δ = {(q,a,q ′)}

• D = {0, 1}

• U(q,a,q ′) = {(0, 0), (0, 1)}

• QD0 = {(q, 0), (q, 1)}

• F = {(q ′, 0)}

Figure 3.5: Example XFA with nondeterminism in the data value. For completeness, the definition
of the XFA is shown to the right.

accepting and some rejecting configurations. Figure 3.5 shows an example XFA where
the configurations (q ′, 0) and (q ′, 1) are both reachable and (q ′, 0) is accepting (i.e., it is
a member of F) and (q ′, 1) is not. This is essentially exactly the same situation as the FA
illustrated a moment ago. Later, in Section 3.6.1, Fig. 3.7 illustrates this point from another
angle.

Figure 3.6 gives an example XFA and the result of both determinization steps.
Like ε closure, Smith et al. give an algorithm for determinizing XFAs [76, Algs. 2 and 3],

but we considered it unsuited for this application as-is, for the same reasons: we ddid not
want to materialize P(D). (Note that the first two steps are combined in Smith’s version.)
Here we do a reformulation of the algorithm, and generalize it to WFAs for which we can
provide an appropriate tensor product operation.

Definition 3.5. Suppose that we are given three semirings S1, S2, and S3 (where com-
ponents are subscripted to correspond). The tensor product operation is a function
� : S1 × S2 → S3 that satisfies the following requirements:

• (a� b)⊗3 (a
′ � b ′) = (a⊗1 a

′)� (b⊗2 b
′) for each a,a ′ ∈ S1 and b,b ′ ∈ S2

• a� b = 03 iff a = 01 or b = 02

Let SQ be the semiring of binary relations over Q. (The semiring’s components are
defined the same as the semiring of binary relations over D defined in Section 3.3.) We
will sometimes use the notation q→ q ′ instead of (q,q ′) for tuples in SQ.

Suppose that we are given a WFA A = (Q,Σ, δ,W,W0,Wf) over semiring S. To deter-
minize A, we need to be given need two additional constructs: we need a semiring ST and

59

q0

q1

q2

Σ {(0, 0)}
a {(0, 1)}

Σ {(0, 0)}

b {(1, 2)}

b {(0, 0), (2, 1)}
c {(0, 0), (2, 1)}

(a) Example XFA with D = {0, 1, 2}. Edges are
labeled with their symbol and relation.

q0

q1

q2

Σ {(〈0,q0〉, 〈0,q2〉)}
a {(〈0,q0〉, 〈1,q1〉)}

Σ {(〈0,q0〉, 〈0,q0〉)}

b {(〈1,q1〉, 〈2,q2〉)}

b {(〈0,q2〉, 〈0,q2〉), (〈2,q2〉, 〈1,q2〉)}
c {(〈0,q2〉, 〈0,q2〉), (〈2,q2〉, 〈1,q2〉)}

(b) The result of the first determinization step,
which lifts each weight to encode the state trans-
fers as well. (The bold transitions are presentation
indications for the following step.)

{q0,q2} {q0,q1,q2}

a
{(〈0,q0〉, 〈0,q0〉),
(〈0,q0〉, 〈0,q2〉),
(〈0,q0〉, 〈1,q1〉)}

b, c
{(〈0,q0〉, 〈0,q0〉),
(〈0,q0〉, 〈0,q2〉),
(〈0,q2〉, 〈0,q2〉),
(〈2,q2〉, 〈1,q2〉)}

c
{(〈0,q0〉, 〈0,q0〉),
(〈0,q0〉, 〈0,q2〉),
(〈0,q2〉, 〈0,q2〉),
(〈2,q2〉, 〈1,q2〉),
(〈1,q1〉, 〈2,q2〉)}

b
{(〈0,q0〉, 〈0,q0〉),
(〈0,q0〉, 〈0,q2〉),
(〈0,q2〉, 〈0,q2〉),
(〈1,q2〉, 〈2,q2〉)}

a
{(〈0,q0〉, 〈0,q0〉),
(〈0,q0〉, 〈0,q2〉),
(〈0,q0〉, 〈1,q1〉)}

(c) The result of the second determinization step,
which determinizes transitions. The bold transi-
tion on a results from the three bold transitions
in (b), and its weight is the ⊕ of the weights of
those three transitions; for XFAs, the ⊕ is simply
the set union.

Figure 3.6: Example XFA and determinization [76, Fig. 8].

60

a tensor product operation � : SQ × S → ST . In general, these can be any semiring and
operation that obey the requirements above.

In the context of XFAs, ST is the semiring of binary relations over Q×D (we will use
〈q,d〉 for the tuple (q,d)), and � is defined as follows:

t� u = { (〈q,d〉, 〈q ′,d ′〉) | (q,q ′) ∈ t and (d,d ′) ∈ u }

If we interpret transformers as |D|× |D| Boolean matrices and an element of SQ as |Q|× |Q|

Boolean matrices, then �matches the Kronecker product of the matrices. For example, if
D = {d1,d2} and Q = {q1,q2}, then:

t� u =

[q1 q2

q1 t11 t12

q2 t21 t22

]
�

[d1 d2

d1 u11 u12

d2 u21 u22

]

=

[
t11 · u t12 · u
t21 · u t22 · u

]

=

〈q1,d1〉 〈q1,d2〉 〈q2,d1〉 〈q2,d2〉

〈q1,d1〉 t11u11 t11u12 t12u11 t12u12

〈q1,d2〉 t11u21 t11u22 t12u21 t12u22

〈q2,d1〉 t21u11 t21u12 t22u11 t22u12

〈q2,d2〉 t21u21 t21u22 t22u21 t22u22

This definition of � has the tensor product property:

(A� B)⊗ (A ′ � B ′)

=

{
(〈a1,b1〉, 〈a3,b3〉)

∣∣∣∣∣ ∃〈a2,b2〉 : (〈a1,b1〉, 〈a2,b2〉) ∈ (A� B)

and (〈a2,b2〉, 〈a3,b3〉) ∈ (A ′ � B ′)

}

=

{
(〈a1,b1〉, 〈a3,b3〉)

∣∣∣∣∣ ∃〈a2,b2〉 :((a1,a2) ∈ A and (b1,b2) ∈ B)

and ((a2,a3) ∈ A ′ and (b2,b3) ∈ B ′) }

}

61

=

{
(〈a1,b1〉, 〈a3,b3〉)

∣∣∣∣∣ ∃〈a2,b2〉 :((a1,a2) ∈ A and (a2,a3) ∈ A ′)

and ((b1,b2) ∈ B and (b2,b3) ∈ B ′) }

}

=

{
(〈a1,b1〉, 〈a3,b3〉)

∣∣∣∣∣ (∃a2 : (a1,a2) ∈ A and (a2,a3) ∈ A ′)

and (∃b2 : (b1,b2) ∈ B and (b2,b3) ∈ B ′) }

}

=
{
(〈a1,b1〉, 〈a3,b3〉) | (a1,a3) ∈ (A⊗A ′) and (b1,b3) ∈ (B⊗ B ′)

}
= (A⊗A ′)� (B⊗ B ′)

Finally, before we get to the determinization algorithm, I will briefly mention a different
algorithm for determinization described by Mohri [57, §3.3]. Mohri’s algorithm differs
substantially from the one presented here. In particular, it imposes a constraint on the
WFA’s semiring that it have multiplicative inverse (i.e. ∀a 6= 0 ∈ S : ∃a−1 ∈ S : a⊗a−1 = 1).
Many of the weights that we create in this dissertation do not have inverses, and so we
cannot use Mohri’s algorithm. However, it is interesting to note that Mohri also has to use a
new domain which is Q× S in the determinized automaton, which is essentially the same
as the first step described here.

The following two subsections will walk through the first two determinization steps.
Suppose that we are given an WFA A = (Q,Σ, δ,W,W0,Wf) over semiring S and a tensor
product operation from S× SQ to ST . We will define new automata AL and ASD, reflecting
results of the first two steps, respectively. The components of each automaton will be
superscripted to match its name, e.g. AL = (QL,DL,Σ, δL,WL,WL

0 ,WL
f), except that Σ

remains constant throughout. The third step we handle in a somewhat different way
during the inclusion test, which is discussed in Section 3.6.

3.5.1 Lifting the data set from D to Q×D and adjusting transformers

It is possible for an XFA that is reading a string s to be in a set of configurations such as
{(q, 0), (q, 1), (q ′, 0)}; see Fig. 3.6. The determinized machine must respect that same set of
configurations (or at least something isomorphic to it). However, if the XFA simply tracked
that states q and q ′ are reachable and data values 0 and 1 are reachable, it will lose the fact
that (B, 1) is not reachable. The second determinization step will collapse A and B into a
single cell as in the standard algorithm, which means that the original three configurations

62

need to be tracked in the data value. Keeping these separate will be the job of ST (with
support from SQ and �).

We define AL (the L for “lifted”) in terms of A:

• Q and δ are unchanged: QL = Q and δL = δ.

• WL is over the semiring ST instead of S

• Every weight is “lifted” to ST by taking the tensor product with a natural element
from SQ:

– WL(q,σ,q ′) =W(q,σ,q ′)� {q→ q ′}

– WL
0 (q) =W0(q)� {q→ q}

– WL
f (q) =Wf(q)� {q→ q}

This construction encodes endpoints of each transition in its weight. This extra infor-
mation is important for the next step of the determinization process, which will compute
the ⊕ of the weights over multiple edges. For that process to be correct, we will need it
to be the case that, for transitions t1 and t2,W(t1)⊗W(t2) = 0 if the target of t1 does not
equal the source of t2.

To show that the language of AL is the same as that of A, we need the following simple
fact:

Lemma 3.6. Given an idempotent semiring S and a set of elements {wi | i ∈ I}, the
following holds: ⊕

i∈I

wi = 0 if and only if ∀i ∈ I : wi = 0

Proof. Recall that a semiring is idempotent if a⊕ a = a. Assume
⊕
i∈Iwi = 0. Then for

each i ∈ I:

wi = wi ⊕ 0 = wi ⊕
⊕
j∈I

wj = (wi ⊕wi)⊕
⊕
i∈I
j6=i

wj = wi ⊕
⊕
i∈I
i 6=j

wj =
⊕
j∈I

wj = 0

63

Now we can show that L(AL) = L(A). Let s be a string; we will show thatWL(s) = 0 iff
W(s) = 0, which means that the languages are the same.

WL(s) =
⊕

π=t1···tn∈paths(s)

[
WL

0 (src(t1)⊗
⊗
t∈π

WL(t)⊗WL
f (tgt(tn))

]
︸ ︷︷ ︸

6= 0 when πwitnesses s ∈ L(A)

=
⊕

π∈paths(s)

[(
W0(src(t1))� {src(t1)→ src(t1)}

)
⊗
⊗
t∈π

(W(t)� {src(t)→ tgt(t)})

⊗
(
Wf(tgt(tn))� {tgt(tn)→ tgt(tn)}

)]
=

⊕
π∈paths(s)

[(
W0(src(t1))⊗

⊗
t∈π

W(t)⊗Wf(tgt(t1))
)

�
(
{src(t1)→ src(t1)}⊗

⊗
t∈π

{src(t)→ tgt(t)}⊗ {tgt(tn)→ tgt(tn)}
)]

=
⊕

π∈paths(s)

[(
W0(src(t1))⊗W(π)⊗Wf(tgt(t1))

)
� {src(t1)→ tgt(tn)}

]
︸ ︷︷ ︸

6= 0 when πwitnesses s ∈ L(AL)

(For space reasons, here we use src for a transition’s source and tgt for its target.) In the
final line, {src(t1)→ tgt(tn)} is the relation with a single tuple that captures the fact that π
is a path from the source of t1 to the target of tn.

Suppose that s ∈ L(AL); then WL(s) 6= 0. By Lemma 3.6, there exists a path π for
which [W0(src(t1)) ⊗W(π) ⊗Wf(tgt(t1))] � {src(t1) → tgt(tn)} is non-0. By the second
tensor-product property and the fact that {src(t1) → tgt(tn)} 6= ∅ = 0, we know that
W0(src(t1))⊗W(π)⊗Wf(tgt(t1)) 6= 0. Because paths(s) in A and AL are the same, π is
also valid in A, and that means that πwitnesses that s ∈ L(W).

Now suppose that s 6∈ L(AL) and hence WL(s) = 0. By a similar argument, we know
thatW0(src(t1))⊗W(π)⊗Wf(tgt(t1)) = 0 for every path π in AL. But that means that the
combine of the paths in A is also 0, so s is not accepted by A.

64

3.5.2 Determinize the state portion of the WFA

If one ignores the data portion of the WFA, this step proceeds exactly as it does for standard
finite automata. The question then becomes how do we deal with the weights? It turns out
that working in ST makes this quite simple: we simply take the ⊕ of the weights on each of
the transitions or states that are put together.

We define ASD (“SD” for state-deterministic) in terms of AL:

• In agreement with standard FAs, QSD = P(QL) and, for all c ∈ QSD and σ ∈ Σ,
δSD(c,σ) =

⋃
q∈c δ(q,σ).

• The semiring of ASD is ST

• Transformers and final weights are the ⊕ of the constituents:

– WSD(c,σ, c ′) =
⊕
q∈c

⊕
q ′∈c ′W(q,σ,q ′)

– WSD
f (c) =

⊕
q∈cW

L
f (q)

• Exactly one cell has nonzero initial weight. Let C0 = {q ∈ QL | WL
0 (q) 6= 0}. We

define:

– WSD
0 (C0) =

⊕
q∈C0

W0(q)

– WSD
0 (c) = 0 for all c 6= C0.

It would also be possible to define all initial weights asWSD
0 (c) =

⊕
q∈cW

L
0 (q), which

is more analogous to the way WSD and WSD
f are defined. However, the following proof is

simpler the way it is defined above.
The correctness of the above construction depends on using ST weights. In particular,

we will use the following property:

Property 3.7. Suppose that we are given two transitions t1 and t2 in AL, and that neither
WL(t1) norWL(t2) is 0. Then:

If target(t1) 6= source(t2), thenWL(t1)⊗WL(t2) = 0

65

In other words, if transitions t1 and t2 do not form a path, then pretending that they do
and taking their extend will not give a non-0 weight when it should not.

Weights in ST have this property. Suppose W(t1) = w1 � {p → p ′} and W(t2) =

w2 � {q→ q ′} where p ′ 6= q. ThenW(t1)⊗W(t2) = (w1 � {p→ p ′})⊗ (w2 � {q→ q ′}) =

(w1 ⊗w2)� ({q→ q ′}⊗ {p→ p ′}) = (w1 ⊗w2)� 0 = 0.
Now we prove that the determinization step does not affect the language of the WFA.

We give a sequence of equalities that prove that the weight of every string s is equal in AL

and ASD. Some of the equalities require further justification and there is new notation;
these are covered afterward.

WSD(s) =
⊕

π∈pathsSD(s)

⊗
t∈π

WSD(t) (3.1)

=
⊗

(c,σ,c ′)∈Π(s)

WSD(c,σ, c ′) (3.2)

=
⊗

(c,σ,c ′)∈Π(s)

⊕
q∈c

⊕
q ′∈c ′

WL(q,σ,q ′) (3.3)

=
⊕

?π∈T(s)

⊗
t∈?π

W(t) (3.4)

=
⊕

π∈pathsL(s)

⊗
t∈π

W(t) (3.5)

=WL(s) (3.6)

We now give line-by-line explanations, as well as definitions of Π(s), ?π, and T(s).
Equation (3.1): This applies the definition of the weight of a string to ASD.
Equation (3.2): The automaton ASD has only one state with a non-0 initial weight, and

from that state (and every other) the transition function δSD is deterministic. As a result,
pathsSD(s) is a singleton set; we denote the sole element Π(s). (Rather, Π(s) is the only
path that will contribute a non-0 weight to the

⊕
.)

Equation (3.3): This simply expands the definition ofWSD(c,σ, c ′) given above.
Equation (3.4): This step is only applying the distributive rule, but deserves some

explanation. We also use a function T(s) to denote a sequence of transitions (not necessarily
a path) defined as follows. For each 1 6 i 6 |s|, let tSDi = (ci, si, c ′i) be the ith transition

66

of Π(s); then let Ti = { (q, si,q ′) ∈ δL | q ∈ ci and q ′ ∈ c ′i }. It is possible to view Ti in
two ways. The first way is that Ti is all transitions in AL that were “collapsed” into the ith

transition of ASD when reading s. The second way is that Ti is all ith transitions that you
can take on any path in AL matching s.

Finally, let T(s) be the set containing lists of transitions drawn from successive Ti:
T(s) = {u1u2 · · ·u|s| | u1 ∈ T1,u2 ∈ T2, · · · , and u|s| ∈ T|s| }. One way to look at T(s) is
each transition list is something that you can obtain by following Π(s), and at each step i
choosing a transition from AL that was collapsed into ti and then forgetting which state in
the cell you were in.

We use ?π in Equation (3.4) to mark the fact that elements of T(s) are not necessarily
paths, but just lists of transitions.

Equation (3.5): Each element ?π of T(s) corresponds to either a legitimate path in AL,
and is thus an element of pathsL(s), or to a non-path transition list. For ?π that are not
paths, by Property 3.7 we know that

⊗
t∈?πW(t) = 0 and thus dropping it from the

⊕
will not change the result. For ?π than are paths, ?π ∈ pathsL(s) because all transition
labels match and it starts from an initial state. Finally, every π ∈ pathsL(s) appears in T(s)
because that is what determinization does.

Equation (3.6): This applies the definition of the weight of a string to AL.

3.6 Language containment

To determine language containment of standard finite automata A and B, the traditional
algorithm determinizes and complements B, intersects the result with A, and checks the
intersection against emptiness: A ⊆ B iffA∩¬B = ∅. (De Wulf et al. provide an alternative
inclusion procedure that uses antichains [25]; we discuss antichains later.)

The inclusion testing process for XFAs works along the same broad arc, but in some
ways it is rather different. The root cause of the difference is that we logically group the
powerset construction of the data domain with the test itself, rather than saying “do the
subset construction followed by a search.”

We start by defining powerset semirings, as well a lifting of an automaton’s weight
domain to the powerset semiring (Section 3.6.1). Because universality testing raises in a
simpler way most of the same complications and solving techniques as inclusion testing,

67

we first describe a basic universality test for XFAs (Section 3.6.2).5 Following that, we move
back to inclusion testing, defining our cross product construction for WFAs (Section 3.6.3), a
basic version of the inclusion test (Section 3.6.4), and finally describe how to use antichains
to improve the efficiency of the operations in practice (Section 3.6.5).

3.6.1 The powerset semiring [background and new]

Just as the subset construction tracks sets of states, to obtain a fully-deterministic WFA we
must track sets of weights; why is explained in the context of XFAs in the introduction to
Section 3.5. This means that the data set must now be P(Q×D), where D is the original
(not state-deterministic) data set.

We do this by using the powerset semiring, P(ST):

• The set is P(ST)

• 0 = ∅

• 1P(ST) = {1ST }

• ⊕ is set union, ∪

• ⊗ is pairwise extend: X⊗P(ST) Y = {x⊗ST y | x ∈ X and y ∈ Y}

where we subscript components of the semirings for clarity.
The fully-deterministic WFA AD is defined as follows:

• The state portion is the same asWSD; QD = QSD and δD = δSD

• The semiring is P(ST)

• All weights are singleton sets of the weights inWSD:

– WD(c,σ, c ′) = {WSD(c,σ, c ′)}

– WD
0 (c) = {WSD

0 (c)}

– WD
f (c) = {WSD

f (c)}

5Recall that an automaton A is universal iff L(A) = Σ∗. Universality and inclusion are related because
answering both requires something that can basically turn into the subset construction; both problems are
pspace complete.

68

q0 q1 q2

a (1)

b

{(0, 0), (1, 0)}
a,b

{(1, 0), (1, 1)}

a,b (1)

(a) Example state-deterministic XFA. The initial
weight of q0 is 1; the final weights of all states are
1; the data set is {0, 1}.

Combine-over-all-paths value for the
automaton in (a):
State COAP Indicates 6= Σ∗?
q0 1 no
q1 {(0, 0), (1, 0)} no
q2 1 no

(b) Computation of combine-over-all-paths value for
the original weights as given in (a).

If we lift the weights in (a) to the power set
(step 3 of determinization):

State COAP Indicates 6= Σ∗?
q0 {1} no
q1

{
{(0, 0), (1, 0)}

}
no

q2 {0, 1} yes
(c) Computation of combine-over-all-paths value for
the powerset weights .

Figure 3.7: Illustration of why the third step of determinization, lifting transformers to the power
set, is necessary. Doing so avoids combining the weights of a and ba

It may appear at first glance that this step does not actually do anything, because
WD(s) = {WSD(s)} for every string s. However, if we want to start looking at multiple
strings at once, the extra powerset is necessary to avoid combining information from
different strings, becauseWD(s1)⊕WD(s2) = {WSD(s1),WSD(s2)} 6= {WSD(s1)⊕WSD(s2)}

in all cases where s1 and s2 have different weights.
Fig. 3.7 gives an example automaton that is not universal, and shows that if we perform

the same process onWSD instead ofWD, the result is incorrect.

3.6.2 WFA universality [new]

Suppose we are given a state-deterministic XFA A. Let the single state with a non-0 initial
weight be q0. We will useWSD for weights inA to emphasize the state-deterministic aspect.
We want to determine whether there exists a string s such thatWSD(s) = 0, in which case
A is not universal. A conceptual, non-effective way of determining the existence of s is to
materialize the entire mappingWSD of strings to weight, and then look throughWSD for
an entry with weight 0. However, it is not necessary to enumerate the entire mapping: if

69

it was possible to list every weight that could arise (i.e., the projection of WSD onto the
second element of each pair), then looking at that list would be sufficient: if 0 was present,
that would mean that some string was not accepted (although there would not be enough
information to say what string). When the semiring is of finite size, it is actually possible to
compute the set of all possible weights that can arise, and it can be effectively (if potentially
slowly) generated; this section describes how. (Later we talk about how to use antichains
to not have to list all possible weights.)

Note that we do not quite need to compute the full weight of each string, including the
initial and final weights. If we know that there is a path π from the initial state q0 (i.e., the
only state with a non-0 initial weight) to q, then we know that there is a string with weight
WSD

0 (q0)⊗WSD(π)⊗WSD
f (q). It is thus sufficient to compute the weight of all paths from

q0 to each node, without regard to the initial and final weights.
With that introduction, our goal is to compute, for each state q, the set of weights that

can reach that state. That is, if we define paths(q0,q) to be the set of paths from q0 to q
regardless of their length or what string labels them, we want to compute the following
value:

{WSD(π) | π ∈ paths(q0,q)}

We can do this by first lifting A to AD to use the powerset semiring as described in Sec-
tion 3.6.1 and then computing the combine-over-all-paths (COAP) value for each state, which
is defined as follows:

COAP(q) =
⊕

π∈paths(q0,q)

WD(π) (3.7)

These two goals are equivalent. (Note that paths is the same in A and AD.) That is:

COAP(q) = {WSD(π) | π ∈ paths(q0,q)} (3.8)

We will discuss how to compute COAP(q) and prove the equivalence claimed by Equa-
tion (3.8) at the end of the section. Define COAP ′(q) = {WSD

0 (q0) ⊗ w ⊗WSD
f (q) | w ∈

COAP(q)}.
Once the value COAP(q) is computed for each q, determining whether the language is

universal is very simple: the language is not universal iff there is aq such that 0 ∈ COAP ′(q).
First we prove the forwards direction: if the language is not universal, then there is a q such

70

that 0 ∈ COAP ′(q). Suppose s is a string for which s 6∈ L(A). Let qs = δ(q0, s). Because s is
not inA’s language, we know that 0 =WSD(s) =WSD

0 (q0)⊗WSD(Π(s))⊗WSD
f (qs), where

Π(s) is the only path starting in q0 matching s. By Equation (3.8), WSD(π) ∈ COAP(qs),
and thus 0 ∈ COAP ′(qs). The steps in this proof can be reversed to get the backwards
direction.

Remark 3.8. There is a curious fact about this algorithm, which is that COAP(q) = ∅ is
not a counterexample to universality, whereas COAP(q) = {0} is. This may be surprising
to readers who have a mental model of a weight 0 being equivalent to the absence of a
path or transition. The explanation for this apparent contradiction can be explained by
way of analogy to standard FA. Suppose that we are given an FA that is deterministic in
that there is never a choice between two transitions, but that may be incomplete in the
sense that δ(q,σ) is undefined (or ∅) for certain inputs. If every state that is reachable
from the initial state (via δ) is accepting, this does not necessarily mean that the machine
is universal: if there is some string s for which δ(q0, s) is undefined, then that string will
be rejected and the machine is not universal. Conversely, just because some state q is
not accepting does not necessarily mean that the automaton is not universal: q may not
be reachable from the initial state. Only if every state is reachable and the automaton is
complete (and deterministic) does “the automaton is universal” correspond to “every state
accepts.” In the case of WFAs, COAP(q) = ∅ corresponds to the unreachable case, and
tracking 0 ∈ COAP(q) corresponds to making the WFA “complete.” If we took care to only
look at the reachable portion of the XFA and checked for completeness via other means,
we could use a different inclusion test.

Computing COAP(q) can be done using standard techniques, which nearly-exactly
matches those for computing ε closure, except that we include all transitions instead of just
ε transitions. We perform the computation by way of translation to a WPDS followed by a
post* query, as shown in Fig. 3.3(a) except that ∆ = {〈p,q〉 ↪→ 〈p,q ′〉 | ∃σ : q ′ ∈ δ(q,σ)}.

Finally, we prove the equivalence stated in Equation (3.8), that COAP(q) = {WSD(π) |

π ∈ paths(q0,q)}:

71

COAP(q) =
⊕

π∈paths(q0,q)

WD(π) By Equation (3.7)

=
⋃

π∈paths(q0,q)

WD(π) Def. of
⊕

in powerset semiring

=
⋃

π∈paths(q0,q)

{WSD(π)} Def. ofWD (Section 3.6.1)

= {WSD(π) | π ∈ paths(q0,q)}

3.6.3 WFA cross product [adaption/new]

For standard FAs, taking the cross product of two automata means that we take the Cartesian
product of the two machines’ sets of states, initial states, and accepting states, and that we
take the Kronecker product of the transition relations.

For WFAs, we do the same. How we treat the weights can be viewed three ways. From
the point of view of XFAs, we take the Kronecker product of the transformers as well. More
generally, we can use a paired semiring. Given SA and SB, we define the semiring 〈SA,SB〉
as:

• The set is the Cartesian product SA × SB

• 0〈〉 = 〈0A, 0B〉

• 1〈〉 = 〈1A, 1B〉

• Extend and combine are pointwise: 〈a,b〉⊗〈〉〈a ′,b ′〉 = 〈a⊗Aa ′,b⊗Bb ′〉 and similarly
for ⊕

It would also be possible to define the cross product in terms of another tensor product,
but it would complicate the description of the inclusion test and we have not found that it
leads to significant additional insight.

For WFAs, we define the cross product of A = (QA,Σ, δA,WL,WL
0 ,WL

f) and B =

(QB,Σ, δB,WB,WB
0 ,WB

f) as A× B = (Q×,Σ, δ×,W×,W×0 ,W×f) where:

• The semiring of A× B is the paired semiring 〈SA,SB〉

72

• Q× = QA ×QB

• δ× = δA ×Kronecker δ
B (i.e., δ×((qa,qb),σ) = δA(qa,σ)× δB(qb,σ))

• W×((qa,qb),σ, (q ′a,q ′b)) = 〈W(qa,σ,q ′a),W(qb,σ,q ′b)〉

• W×0 ((qa,qb)) = 〈W0(qa),W0(qb)〉

• W×f ((qa,qb)) = 〈Wf(qa),Wf(qb)〉

3.6.4 Basic inclusion test [new]

The basic inclusion test proceeds much the same as for universality checking. Given two
WFAs A and B, to determine whether L(A) ⊆ L(B), we perform the following steps:

1. Compute ASD and BSD as described in Sections 3.5.1 and 3.5.2 (only BSD should
really be necessary, but we perform both)

2. Construct ASD × BSD as described in Section 3.6.3

3. Lift the to the powerset domain to get (ASD × BSD)D, as described in Section 3.6.1

4. Compute COAP ′(q) for each state q of (ASD × BSD)D

5. Look for a state q for which COAP ′(q) contains an element 〈a,b〉where a 6= 0 and
b = 0.

The proof that this procedure is correct proceeds much as the proof for universality
did, except that we have to look at each component of the pairs. We need a 6= 0 to hold so
we make sure that the strings we consider are a member of L(A)— finding a string that is
not in L(B) is not a counterexample to inclusion if it is also not in L(A).

3.6.5 Speeding up operations with antichains [as indicated]

We can speed up the inclusion test — often significantly — by using an antichain algo-
rithm [25]. In this section, we describe how antichain algorithms work on standard finite
automata and then how we can use them for XFAs.

73

1 isUniversal(Q, Σ, δ, q0, F)
2 visited = {};
3 bfsQueue.enqueue(q0);
4 while bfsQueue is not empty do
5 currentState = bfsQueue.dequeue();
6 for σ ∈ Σ do
7 next = getSuccessors(currentState, δ,σ);

// next is a set of states --- i.e., a cell
8 if next ∩ F = ∅ then

// A nonaccepting state is reachable!
9 return false;

10 if next 6∈ visited then
// We found a new state!

11 visited.insert(next);
12 bfsQueue.enqueue(next);

// We have fully explored the state space reachable from q0, and
nothing rejects

13 return true;
Listing 3.8: The non-antichains, early-cutoff universality algorithm for FAs.

Antichains for FA universality checking [background]

Consider universality checking on a standard, nondeterministic FA A. The simplest algo-
rithm for universality checking would determinizeA using the subset construction, then do
a forward search over the resulting transition graph from the initial cell.6 If a non-accepting
cell is reachable from the initial cell, then A is not universal; otherwise it is universal. A
better algorithm can be obtained by weaving together the subset construction with the
search, stopping the subset construction and returning “not universal” if a non-accepting
cell is ever generated. For purposes of this discussion, consider this algorithm to primarily
track a set of cells that have been visited — in other words, a set of sets of states in the
nondeterministic automaton. Listing 3.8 shows code for such an algorithm, which we will
call the “early-cutoff” algorithm.

De Wulf et al.’s antichain algorithm for FA universality checking [25] adapts the inter-
woven algorithm to get significant gains in practice.7 It still tracks a set of visited cells, but

6Recall that a “cell” is just the term for a state generated by the subset construction.
7All three algorithms have the same worst-case complexity, which arises when the constructions generate

cells in a bad order.

74

maintains that this visited set is an antichain. An antichain of states is a set of cells such
that no two cells in the antichain are comparable via ⊆.

When a new cell c is discovered, the non-antichain algorithm would always add c to
its visited set. The antichain algorithm will perform one of three actions. The algorithm
will ignore c if there is an existing c ′ in its visited set such that c ′ ⊃ c. The algorithm will
replace with c one or more existing cells c ′1, c ′2, · · · in the visited set, for which c ′i (c. The
algorithm will simply add c to the visited set if it is incomparable to all existing elements.

The effect of the antichain universality algorithm is that it needs to explore less of the
determinized state space. Figure 3.9 shows an example automaton and its determinization,
indicating the portion that is not explored because of the use of antichains.

The reason that the antichain universality algorithm is correct can be expressed as
follows. Suppose we have a cell c that is reachable from the initial cell. If there is a string s
from which all paths reject, then the automaton is not universal. But if all paths from c

reject, then so do all paths from any cell c ′ that is a subset of c. (The opposite is not true of
course.) What this means is that every time that we can use c to help prove non-universality,
we could also have used c ′, provided that c ′ is reachable from the initial cell. Thus keeping
track of c is not helpful for purposes of universality checking, so we can drop it.

Antichains for WFA universality testing [new]

We can use a similar algorithm to improve WFA universality and inclusion testing. First we
broaden the definition of antichains to semirings, then describe how we can use antichains
to help with universality checking. In the next subsubsection, we describe how antichains
can help with inclusion checking.

Suppose we are given a semiring S. An antichain of S is a set of elements {s1, s2, · · · , sn}
such that no two elements are comparable by v; i.e., for all si and sj, we have si 6v sj and
sj 6v si. For an arbitrary subset T ⊆ S, let dTe be the antichain that contains all maximal
elements of T ; that is, dTe = {s ∈ T | ∀s ′ 6= s ∈ T : s 6v s ′}. Dually, let bTc be the antichain
that contains all minimal elements of T , i.e., {s ∈ T | ∀s ′ 6= s ∈ T : s 6w s ′}.

There are two alternatives to the powerset semiring that we can define: one is the
semiring made up of antichains of maximal elements, and the other is the semiring made
up of antichains of minimal elements. Antichains of maximal elements are used if we
compute COAP(q) in a backwards direction (pre*), and antichains of minimal elements

75

1 3

2

5

4

7

6

8

0 1

0

1

0, 1

1

1

0, 1

0, 1

0

0, 1

0, 1
0

0, 1

(a) An example NFA designed to illustrate the benefits of the
antichain algorithm for universality checking, from [26].

{2}

{5}

{1}

{1, 3}

{1, 3, 5}

{4, 5}

{7, 8}

{2, 5}

{2, 5, 7}

{1, 3, 5, 7, 8}

{7}

{5, 7, 8}

{4, 5, 7}

{1, 3, 5, 6, 7, 8}

{6, 7}

{8}

{5, 6, 7, 8}

{2, 5, 7, 8}

{6, 8}

{6, 7, 8}

{4, 5, 7, 8}

0

1

0

1

0

1

0

1

0

1

0

1

0

1 0

1

0

1

0

1

0, 1

0,
1

01

0, 1

0

1

0

1

0

1

0

1

0

1

0, 1

0

1

{8}

{2, 5}

{1}

{6, 7}

Key:
Generated by the
antichains algorithm

Generated by the early-
cutoff algorithm

Generated by both

Generated by neither

(b) The result of applying the subset construction to the automaton in (a). Note that the set of states generated
by both algorithms is the same as the set of states generated by the algorithm with both optimizations.

Figure 3.9: Illustration of the benefit of antichains in universality checking as well as cutting off the
search early. As can be seen, both optimizations can improve the search by quite a bit.
Furthermore, the benefits are cumulative: changing from the early-cutoff, non-antichains
algorithm to the early-cutoff, antichains algorithm still reduces the size of the explored
state space from 13 states to 7 states. In both cases, the indicated states are what arise
when exploring the state space in a breadth-first manner, following 0 edges before 1
edges.

76

are if we compute COAP(q) in a forwards direction (post*). Here we will assume that we
are working in a forwards direction, but the two cases are duals of each other.8 In each
case, the construction is the same as the powerset semiring except that when taking ⊗ or
⊕, we add a b·c or d·e as appropriate to the result.

To make use of antichains, we simply replace the powerset semiring with the appropriate
antichain semiring when performing the construction described in Section 3.6.1.

Suppose we have automaton A that uses the powerset semiring and automaton B
that uses the semiring of minimal antichains. We now prove that A is universal iff B is
universal. Let COAPA(q) and COAPB(q) be the combine-over-all-paths solutions in A
and B respectively.

Lemma 3.9. For each state q:

• bCOAPA(q)c = COAPB(q).

• COAPA(q) ⊇ COAPB(q).

Proof. The second fact follows immediately from the first.
The first fact follows the proof at the end of Section 3.6.2, with minor changes to insert

b·c operators:

COAP(q) =
⊕

π∈paths(q0,q)

WD(π)

=

 ⋃
π∈paths(q0,q)

WD(π)

=

 ⋃
π∈paths(q0,q)

{WSD(π)}

= b{WSD(π) | π ∈ paths(q0,q)}

8It is also possible to describe FA universality checking via a backwards search from the accepting states,
in which case we would keep maximal cells instead of minimal cells. De Wulf et al.’s original explanation
actually proceeds in this direction.)

77

The second equality is justified by the fact that generating the entire set bigcupπWD(π)

and taking the minimum is the same as computing the minimum “along the way”; that is:

bWD(π1) ∪WD(π2) ∪WD(π3) ∪ · · · c = b· · · bbWD(π1) ∪WD(π2)c ∪WD(π3)c ∪ · · · c.

This property falls out naturally from the definition of b·c.

Theorem 3.10. If WFAA is constructed using the powerset semiring and B is constructed
using the semiring of minimal antichains, then A is universal iff B is universal.

Proof. From Theorem 3.10, we know immediately that if B is not universal, neither is A.
This is because if A is not universal, there is a state q for which 0 ∈ COAPA ′(q). Because
COAPB(q) ⊆ COAPA(q) and the initial and final weights are the same in the two automata,
0 ∈ COAPB(q) as well. Thus B is not universal.

For the other direction (if A is not universal, neither is B), suppose we know q and π
(where π ∈ paths(q0,q)) such thatWA

0 (q0)⊗WA(π)⊗WA
f (q) = 0. There must be some

w ∈ COAPB(q) for which w vWA(π). By the definition of v,W(π) +w =W(π), which
means that

0 =WA
0 (q0)⊗WA(π)⊗WA

f (q)

=WA
0 (q0)⊗ (WA(π)⊕w)⊗WA

f (q)

=
(
WA

0 (q0)⊗WA(π)⊗WA
f (q)

)
⊕
(
WA

0 (q0)⊗w⊗WA
f (q)

)
which, by Lemma 3.6, can only be true ifWA

0 (q0)⊗w⊗WA
f (q) = 0. That means that B is

not universal either.

Antichains for WFA inclusion testing [new]

In this section, we describe how we use the idea of antichains to improve inclusion testing.
We use a different ordering a 4 b than a ⊕ b = b. Recall that semiring elements of the
cross product are pairs; we define 〈a,b〉 4 〈a ′,b ′〉 iff a w a ′ and b v b ′ in their respective
domains. Keeping minimal elements according to 4 corresponds to keeping maximal
elements from the first automaton and minimal elements from the second.

78

3.6.6 Complexity of XFA universality and inclusion testing [new]

What we would like to demonstrate is that the (potentially exponentially-expensive) process
described earlier in this section is necessary to perform universality and inclusion testing.

Suppose that we are given a state-deterministic XFA A, and wish to determine whether
it is universal. Lifting A to the powerset semiring is linear in the size of A because it does
not really do anything, but the weight propagation process takes time O(h|Q|) where h is
the height of the semiring. If A’s semiring is S, then AD’s semiring is P(S),9 whose height
h is |S|. If A’s data set is D, then |S| = 2|D|·|D|. This means that universality checking a
state-deterministic XFA takes O(|Q|2|D|·|D|) time.

Now, suppose that we are given a standard FAB = (QB,Σ, δB,Q0,B, FB). In linear time in
the size of B we can create a single-state, state-deterministic XFA C for which L(C) = L(B).
Let δB|σ = {(q,q ′) | q ′ ∈ δB(q,σ)}, and create the following automaton:

• Q = {p}, δ(p,σ) = {p} for all σ

• D = QB

• U(p,σ,p) = δB|σ

• QD0(p) = Q0,B

• F(p) = FB

In other words, we have taken B’s state transitions and moved them entirely into C’s data
transformers. Fig. 3.10 gives an example of this transformation.

Determining whether B is universal requires O(2|QB|) in the worst case, while solving
via an XFA is O(2|QB|·|QB|). So the XFA route has a somewhat higher complexity, but it is
only a small polynomial increase in an exponential time algorithm.

9I am ignoring the S-to-ST transformation done in the first step of determinization, as it is not required
when starting from a state-deterministic XFA.

79

q0 q1

q2

a

b

b

b

a,b
(a) Example FA

p

q0

q1

q2

q0

q1

q2

b

a

QD0(p) = {q0}

F(p) = {q2}

(b) XFA equivalent to (a) based on the conversion
in the text.

Figure 3.10: Transforming an FA into an XFA.

3.7 Representing relations as BDDs [background]

This section describes the principle way we represent relations, using binary decision dia-
grams (BDDs).10 BDDs are a representation of Boolean functions that are often compact in
practice [16]. We give an introduction to BDDs with an informal definition, then proceed
to describe how it is possible to represent non-binary functions and relations.

3.7.1 A brief introduction to BDDs

One way to define BDDs is as follows. Consider a Boolean function f(b1,b2, · · · ,bn), and a
decision tree that specifies the result of the function for each input. For example, this is a
decision tree for the function f(x0, x1, x2) = x0 xor x1 xor x2:

x0

x1

x2 x2

0 1 1 0

x1

x2 x2

0 1 1 0

0 1

0 1 0 1

0 1

0 1 0 1

0 1

10Technically, we are talking about what are called “reduced, ordered” BDDs, or ROBDDs, but we refer to
them as just BDDs here.

80

A BDD for a function f can be thought of as a representation of the decision tree, compressed
through the following rules:

1. There are always exactly two leaf nodes, one 0 and one 1. (An exception is that the
constant functions f(~b) = 0 and f(~b) = 1 will be represented by a one-node tree.)

2. If two nodes n1 and n2 are at the same level (i.e., are labeled with the same variable),
and they have the same left child and the same right child (and hence behave the
same), then n2 is collapsed into n1. That is, n2 is removed and any incoming edges
are redirected to n1.

3. If both children of a node n point to the same node, then n is removed and any
incoming edges are redirected to its child.

For example, we can apply these rules to the function specified above (note that the
left child in the picture is not necessarily the 0 edge any more in these diagrams). First we
apply the first rule:

x0

x1

x2 x2

0 1

x1

x2 x2

0 1

0 1 1 0

0 1

1 0 10

0 1

Then we note that there are two “kinds” of x2 nodes, marked with a circle and a square.
We collapse the circle nodes:

x0

x1

x2 x2

0 1

x1

x2 x2

0 1

0 1 1 0

0 1

1 0 10

0 1

⇒

x0

x1

x2

0 1

x1

x2 x2

0 1

0 1

0 1

1 0 10

0 1

81

Then the square nodes:

x0

x1

x2

0 1

x1

x2 x2

0 1

0 1

0 1

1 0 10

0 1

⇒

x0

x1 x1

x2 x2

0 1

0 1

0

0

0

0

1

1

There are no more nodes that meet the criteria of the second compression step, and there
are no nodes at all that meet the criteria of the third, which means that the above is the
canonical BDD for the given function. The nodes along the left path represent the case
where an even number of 1s have been seen so far, and the nodes along the right path
represent the case where an odd number of 1s have been seen. We could easily enough
extend this idea to the xor of any number of variables and the size of the BDD will only
grow linearly, instead of the exponential growth seen by a complete representation of the
decision tree itself.11

There is no guarantee, of course, that BDDs necessarily remain small; in the worst case,
the compression steps may not do anything and it may be necessary to track the entire
decision tree unexpanded. However, many groups have had a lot of success using BDDs in
practice.

There are algorithms for manipulating BDDs that apply logical operations to their
functions. For instance, given BDDs for f1(~b) and f2(~b), it is possible to construct a BDD for
f3(~b) = f1(~b)∧ f2(~b) in time that is at most quadratic in the sizes of the two input BDDs.
Quantification is also possible. Given a BDD for function f1(b1,b2, · · · ,bn), it is possible
to create a BDD for f3(b1,b2, · · · ,bk) = ∃bk+1,bk+2, · · ·bn : f1(b1,b2, · · · ,bn) and similarly
for ∀. (The quantified variables need not be at the end.) Quantification, unfortunately, is
potentially exponentially expensive in the number of variables being quantified out (n− k

above).
11This suggests an alternative interpretation of BDDs, which is that BDDs act like automata that read the

arguments to the function as a fixed-length string but that can potentially skip over variables. The 1 node is
the sole accepting state, and the first two compression rules correspond exactly to automaton minimization.

82

One very useful aspect of BDDs is that the representation of a function is uniquely
determined (up to the variable order, discussed momentarily). Actual implementations of
BDDs go one step further and make sure that the exact same object in memory is produced
when the BDDs are equal. This invariant takes relatively little effort to maintain, improves
memory usage in practice (because there are not redundant objects in memory), and it also
makes checking equality of two functions represented as BDDs extremely fast.

Finally, it is important to address the variable order of a BDD, which is the order in which
variables are consulted as the BDD is traversed from root to leaf. Because each node of the
BDD is labeled with the variable to be consulted, it is not necessary for the variable order
to agree with the order of the function’s arguments, and the variable order can be freely
changed without disrupting the meaning of the BDD. For example, the following are two
BDDs for the function f(a,b,a ′,b ′) = (a = a ′)∧ (b = b ′) using different variable orders:

a

b b

a ′ a ′ a ′ a ′

b ′ b ′

1 0

0 1

0 1 0 1

0

0 1

1

0 1 0 1

Transitions from a ′ nodes that are
missing from the above diagram go
to the 0 node; they are omitted for

clarity.

a

a ′ a ′

b

b ′ b ′

0

1

. .

. .. .

0 1

1 0 1 0

0 1

1 0 1 0

With only two pairs of variables that are compared (a = a ′ and b = b ′) the trend may not
be obvious, but if the number of pairs is increased the left order is far less efficient than the
right order. Suppose that f(a1, · · · ,ak,a ′1, · · · ,a ′k) = (a1 = a ′1) ∧ · · · ∧ (ak = a ′k). Using
the variable order a1,a2, · · · ,ak,a ′1, · · · ,a ′k (as on the left) will cause the BDD to have a size
exponential in k, while using the variable order a1,a ′1,a2,a ′2, · · · ,ak,a ′k (as on the right)
will cause the BDD to have a size that is only linear in k.

As this example illustrates, using a good variable order is very important to using
BDDs efficiently. Unfortunately, finding the best variable order to use is an NP-complete
problem [12]. For our application, we use domain knowledge to select a variable order that
is likely to be reasonable; Section 6.2.3 describes this order.

83

3.7.2 Representing non-Boolean functions and relations with a BDD

As described above, BDDs are representations of Boolean functions. To represent non-
Boolean functions and relations, there are two steps: first, we encode the domain (and co-
domain, if any) using Boolean variables, and second, we create a BDD for the characteristic
function of the object of interest.

For instance, suppose we have an XFA where the data set is D = {0, 1, · · · , 7}. We need
three Boolean variables b1,b2,b3 to represent the value from D that is the first element of
each tuple in the relation, which we will do by treating b1b2b3 as the binary representation,
and another three variables b ′1,b ′2,b ′3 to represent the second element in each tuple. The
simple relation {(0, 5)} is then represented with a BDD for the function:

f(b1,b2,b3,b ′1,b ′2,b ′3) = (b1 = 0 ∧ b2 = 0 ∧ b3 = 0 ∧ b ′1 = 1 ∧ b ′2 = 0 ∧ b ′3 = 1)

As mentioned previously, the application of XFAs discussed in Chapter 6 will use data
values with some structure. Each value will be an assignment to a set of logical variables
{x1, x2, · · · , xn}, where each variable takes on a numeric value, and thus each data value
is a tuple like (0, 1, 3, 2). We assign a separate group of Boolean variables to each logical
variables, and then write the characteristic function as f(~x1, ~x2, · · · , ~xn, ~x1

′, ~x2
′, · · · , ~xn ′).

We will switch between using f(b1, · · · ,bn), f(~b), f(~b,~b ′) (where the b variables can
cover “logical variables”), and f(~x1, · · · , ~xn, ~x1

′, · · · , ~xn ′) depending on how much detail
we need.

The empty relation 0 = ∅ is just the BDD with a single 0 node. The identity relation
1 is the BDD for f(~b,~b ′) =

∧i6|~b|
i=1 (bi = b ′i), which is small if the b and b ′ variables are

interleaved in the variable ordering. The ⊕ of two relations represented by BDDs B1 and
B2 just corresponds to taking the disjunction: (B1 ⊕ B2)(~b) = (B1(~b)) ∨ (B2(~b)). The
composition of B1 and B2 is expressed as follows:

(B1 ⊗ B2)(~b,~b ′) = ∃ ~b ′′ : (B1(~b,~b ′′)∧ B2(~b
′′, ~b ′))

The above can be computed on BDDs in the following manner:

• The ~b ′ variables in B1 are renamed to ~b ′′

• The ~b variables in B2 are renamed to ~b ′′

84

• The conjunction of these two BDDs is done [16, §4.3]

• The ~b ′′ variables are existentially quantified away

In actual implementations, the final two steps are typically woven together to obtain a
somewhat more efficient algorithm [55, “The AndExists algorithm”, §2.3].

3.8 XFA implementation in WALi [new]

We have implemented the operations described in this chapter in an add-on library in
WALi, the weighted automaton library [44]. WALi already provided an implementation
of WFAs, but it was essentially only geared towards using WFAs as a part of program
analysis using WPDSs. We extended it with the generic WFA algorithms described in this
chapter (epsilon closure, determinization, and language inclusion) as well as provided
an XFA wrapper class that knows that its weights are relations and knows how to take
the tensor product during determinization. (The generic WFA determinization procedure
takes essentially a callback procedure to perform the tensor product; the XFA class supplies
the one for relations.)

85

4 A Binary Front End for Daikon

We need to find invariants of programs in order to create XFA models of them using the
techniques described in Chapter 6.There are a number of ways it would be possible to do
this, ranging from static analysis to a fully-dynamic approach. Our implementation uses
the latter, using a tool called Daikon [32] to obtain invariants. This chapter describes a new
front end for Daikon we wrote that operates on binaries and outputs different information
from the standard Daikon front ends.

4.1 Daikon background

Daikon is a tool for dynamically finding invariants, developed by Ernst et al. At a high
level, it monitors the execution of a program over many runs, and reports invariants (such
as “at line 217, x = y”) that held over all of the runs. (It is also capable of finding “near
invariants,” which hold only during most of the runs, and other similar facts; we do not
use these features.) Figure 4.1 shows an example program and the invariants that the stock
version of Daikon produces.

There is a reasonably extensive list of the form of invariants that Daikon will find,
including equalities (e.g., x = y), inequalities (e.g., x 6 y), maximum and minimum values
for variables, the ordering of values in an array, etc. It is capable of finding both “one
vocabulary” invariants that hold at a particular program point (e.g., x = y for program
variables x and y) or “two vocabulary” invariants that relate the program state before and
after a procedure call (e.g., x = x0 + 1 if a procedure increments x).

Because Daikon operates dynamically, its results are only as good as the suite of tests it
is run with. There is no guarantee that the “invariants” it produces are truly invariants — a
reported invariant could be violated in situations for which there is no test, and hence
Daikon never saw a case where the non-invariant failed to hold. (Section 6.4 discusses we
chose Daikon in light of this limitation.) Nevertheless, Daikon is often useful in practice.

86

The primary use case of Daikon as it was first presented was as an aid to developers
to help program understanding. Suppose that a developer wonders whether x always
equals y at some point in the program so they could decide how to make a change to the
program; Daikon was billed as a system that would tell them. Since then, Daikon has
found uses in areas such as modifying programs to enforce Daikon-produced invariants in
order to improve security [11, 66], reducing the number of mutants needed in mutation
testing to characterize the quality of a test suite [74], characterizing the memory usage of
procedures [15], and many other applications. (See the publications page of the Daikon
web site [67] for a bibliography.)

Daikon’s architecture is split into two parts; a block diagram illustration is shown in
Fig. 4.1(a). There are several language-specific front ends that monitor the execution of the
target program and output a trace file of the program’s execution. (Daikon ships with front
ends for Java, C and C++, and Perl. Other front ends are available for .NET, Eiffel, and
IOA.1) The front ends also output information to the declarations file about what variables
and program points are present in the program. One or more traces are then read by a
universal back end that actually finds and reports the invariants. Figure 4.2 shows the
declaration and trace file that are produced for the example program shown in Fig. 4.1.

Ordinarily a program needs to be run many times with different inputs, producing
many different trace files. The back end aggregates information across all of the traces,
looking for invariants that hold over all of them. In Figs. 4.1 and 4.2, for brevity we use an
example that does not read input, and hence only needs one run.2

4.2 Snotra: a new Daikon front end

This section discusses our front end for Daikon, called Snotra.3 Snotra operates on x86
or x86-64 binary code with debugging information, which in practice means it has been

1IOA is a formal modeling language for describing I/O automata [83].
2In general, even a program that has no apparent input could still have random or pseudo-random

behavior, but the example in question does not.
3We continue a naming theme based on Norse mythology. The C/C++ front end that ships with Daikon

is named Kvasir, after a Norse god of wisdom and knowledge. Kvasir is built using the dynamic-analysis
framework Fjalar, named after one of two dwarves who killed Kvasir. (Also, one goal of Fjalar is to give easy
access to the debugging information in an executable, which is stored in DWARF format.) In turn, Fjalar is
built atop Valgrind, named for the main gate to Valhalla. Finally, Snotra is a goddess described as wise.

87

Daikon as a whole

Inputs

Program

Front
end

Traces

Decls.

Back
end Invariants

(a) Block diagram of Daikon’s operation

int x = 0;

void inc_x() {
++x;

}

int main() {
inc_x();
inc_x();
inc_x();
return 0;

}

(b) An example program

..inc_x():::ENTER
::x one of { 0, 1, 2 }
======================
..inc_x():::EXIT
::x one of { 1, 2, 3 }
======================
..main():::ENTER
::x == 0
======================
..main():::EXIT
return == orig(::x)
::x == 3
return == 0

(c) Invariants

Figure 4.1: Diagram of Daikon’s operation, including example program and invariants. The invari-
ants were gathered using the stock Daikon front end Kvasir.

88

input-language C/C++
decl-version 2.0
var-comparability none

ppt ..inc_x():::ENTER
ppt-type enter
variable ::x

var-kind variable
rep-type int
dec-type int

ppt ..inc_x():::EXIT0
ppt-type subexit
variable ::x

var-kind variable
rep-type int
dec-type int

ppt ..main():::ENTER
ppt-type enter
variable ::x

var-kind variable
rep-type int
dec-type int

ppt ..main():::EXIT0
ppt-type subexit
variable ::x

var-kind variable
rep-type int
dec-type int

variable return
var-kind variable
rep-type int
dec-type int

(a) The declarations file

input-language C/C++
decl-version 2.0
var-comparability none

..main():::ENTER
this_invocation_nonce
0
::x
0 <--- x’s value
1

..inc_x():::ENTER
this_invocation_nonce
1
::x
0 <--- x’s value
1

..inc_x():::EXIT0
this_invocation_nonce
1
::x
1 <--- x’s value
1

..inc_x():::ENTER
this_invocation_nonce
2
::x
1 <--- x’s value
1

..inc_x():::EXIT0
this_invocation_nonce
2
::x
2 <--- x’s value
1

..inc_x():::ENTER
this_invocation_nonce
3
::x
2 <--- x’s value
1
..inc_x():::EXIT0
this_invocation_nonce
3
::x
3 <--- x’s value
1

..main():::EXIT0
this_invocation_nonce
0
::x
3 <--- x’s value
1
return
0
1

(b) Trace file

Figure 4.2: The declarations file and trace file produced during the run of the program in Fig. 4.1,
using the stock Daikon and C/C++ front end Kvasir. Note how, at each program point,
it outputs the value of x, which is incremented between the entry and exit to inc_x.

89

compiled from C or C++ code. (However, the following section discusses ways in which
this restriction could be loosened substantially.)

As discussed in Chapter 6, for compatibility checking we are interested in finding
equalities between two values:

The value of a field in the message. In the producer, the value of each field manifests as
a parameter to an output procedure (or a value pointed to by a parameter). In the
consumer, the field value manifests as the return value of a procedure (or a “return
value” passed via an output parameter).

The number of repetitions of a field or group of fields. If a program can read a variable
number of repetitions of a field, there essentially must be some form of loop in the
program that does it. Snotra’s goal is to find the corresponding loop and count the
number of iterations. The number of iteratons of a loop is called that loop’s trip
count; Snotra will add an instrumentation variable called a loop trip counter (or just
trip counter) to track it. The actual field in the message will be called the repetition
count. (Trip counters were introduced by Saxena et al. [73].)

We look for such equalities at the exits of loops (or “at loop exits”). Later in this section,
we describe how Snotra instruments programs to obtain this information. (Instrumenting
a program means that we modify the program to change its behavior slightly; usually it
consists of adding code that tracks additional information, which is the instrumentation
code.) Chapter 6 discusses how such equalities are actually used in format inference.

Section 4.2.1 provides motivation for creating our own front end, including discussions
of how Snotra could be applied to other tasks. Section 4.2.2 discusses how Snotra works in
general. Sections 4.2.3 and 4.2.4 describe how Snotra obtains field values and trip counts,
respectively. Section 4.2.5 gives a full example program and the instrumentation added.
Also relevant to this section is a discussion of the “quality” of our choice of instrumentation
and instrumentation techniques; however, we defer this discussion until Section 6.4.

4.2.1 Motivation

The front ends that come with Daikon all have the same basic behavior, which is to instru-
ment the entry and exit point of each procedure. At these points, it outputs the values of

90

variables that are either global (in Fig. 4.1, x) or parameters to the procedure; at exit points,
it also outputs the value that is being returned (in Fig. 4.1, this shows up in the declarations
file, trace file, and final invariants as return).

However, the stock front ends do not output information at other program points within
a procedure, and (somewhat as a result) they do not output the values of local variables. As
will be seen in Section 4.2.2, we need different information from different program points,
so the stock front ends are insufficient.

Rather than modify one of the existing front ends, we choose to create our own, called
Snotra. In addition to making it possible to output the information we need, Snotra brings
the additional benefit that the design is potentially more flexible in terms of the target
programs it analyzes. (As may become clear soon, this benefit is primarily applicable to
applications other than format compatibility. The techniques described in Part II of the
dissertation are primarily aimed at developers writing or maintaining a piece of software,
at which point requiring debugging information is reasonable. The potential benefits
of Snotra over the existing Daikon front ends are largest when analyzing programs that
others have written, when no debugging information is available.) Additionally, Kvasir
only works on Linux systems, and the alternative C/C++ front end (which runs on other
systems) requires the non-free software Purify.

The preferred front end that ships with Daikon for finding invariants in C and C++ code
is called Kvasir. Currently, Kvasir and Snotra both operate on executables with debugging
information compiled from C and C++ code. However, the latter two assumptions (that
debugging information is present and that the original language was C or C++) are very
lightweight in Snotra. The only hard dependence on the C/C++ requirement in Snotra is
the presence of the debugging information, while Kvasir’s dependence runs deeper.

Furthermore, Snotra’s use of debugging information was designed to be relatively
lightweight and replaceable by information recovered from other analyses such as those in
CodeSurfer/x86 [10]. Snotra uses debugging information for three purposes:

1. Finding procedures,

2. Finding the variables (locals, parameters, and globals) that are visible at each program
point of interest, and

3. Finding the types of those variables.

91

If an alternative source of these three pieces of information is provided, Snotra would be
able to replace debugging information with that source.

The first and second pieces of information can be recovered from CodeSurfer/x86
analyses. In particular, variable information can be replaced by the abstract locations (a-locs)
recovered by CodeSurfer/x86’s value-set analysis (VSA). That is, instead of printing out
the value of each variable at a point of interest, Snotra would print the value of each a-loc.

The types of variables could be addressed via two means. CodeSurfer/x86’s version
of aggregate-structure identification (ASI), originally developed by Ramalingam, Field,
and Tip [70], would recover some type information; in particular, ASI would split ag-
gregate structures into their components and find the sizes of most integer and pointer
types. Determining additional information, such as the signed-ness of integer values or
distinguishing numeric integers from pointers would require a new analysis that would
look at how they are used. However, the additional information is unnecessary for many
applications: simply knowing some candidate invariant about the raw value of a memory
address could be enough to help other analysis tools, such as McVeto [82, §3.2], that can
make use of candidate, but unproven, invariants.

While Snotra has not really been used in such a fashion yet, Junghee Lim briefly used it
for a machine-code model-checking tool called McTreeIC3. She described Snotra as being
promising and useful, but did not have time to integrate it fully into McTreeIC3 before
leaving the University of Wisconsin, and the project has not been picked back up yet. In
any case, the additional flexibility and potential for future use served as an additional
reason we created our own front end instead of modifying Kvasir.

In the interest of full disclosure, Snotra also falls short of Kvasir in some areas. One
obvious area is just the engineering effort that has gone into the respective tools; Daikon
and Kvasir are mature projects, while Snotra is in its infancy. However, there is a more
fundamental limitation. Kvasir is ultimately built on top of the dynamic-analysis tool
Valgrind, which is primarily associated with a tool called Memcheck (distributed with
Valgrind) that detects memory errors. Many of the same capabilities that allow Memcheck
to find errors are also used by Kvasir. For instance, Kvasir knows about the bounds of
heap blocks through these mechanisms, so if the target program allocates an array on the
heap, Kvasir can print out the value of the array. Kvasir is also aware of what memory
is uninitialized, and uninitialized variables are printed with a special indicator of that

92

Front end in Fig. 4.1(a)

Inputs

Program Snotra

TracesInstrumented
program

Snotra runtime

Decls.

Figure 4.3: A block diagram of Snotra’s operation.

fact (rather than just printing whatever value happens to be at that location). It would be
difficult (or impossible, in some cases) to make Snotra behave similarly. These limitations
do not affect Snotra’s application to format analysis described in Chapter 6, however.

Finally, as part of their ClearView system for automatically patching errors in deployed
software, Perkins et al. created a different x86 front end for Daikon [66]. However, it
outputs far different information than Snotra does, and Perkins et al.’s tool does not add
any additional instrumentation like what we need to find equality invariants between field
values and repetition counts. (Their tool also does not seem to be publicly available.)

4.2.2 How Snotra works

Snotra primarily consists of an instrumentation engine that modifies the target program to
output the values of variables at program points of interest. (There is a portion of Snotra
that is loaded into the instrumented program and assists with this task.) Snotra also outputs
the declarations file containing information about what the program points and variables
of interest are. A diagram showing how Snotra works is given in Fig. 4.3.

To perform the instrumentation, Snotra makes use of the Dyninst library [68]. Dyninst
is a library that makes it relatively easy to modify and analyze a target binary program.
Modifications take the form of injecting additional code; the injected code is able to access

93

memory of the target program. Dyninst takes great care to not affect the execution of the
program under test other than what is explicitly requested — e.g., inserting instrumentation
code that does nothing should have no effect on the program’s behavior. For analysis,
Dyninst provides access to the procedures and variables in the target program, produces
control flow graphs for procedures, and gives access to information such as the loops in a
program (see Section 4.2.4).

Snotra has two modes: Kvasir-emulation and compatibility-instrumentation. In the Kvasir-
emulation mode, Snotra outputs the same instrumentation as Kvasir (subject to the limi-
tations discussed at the end of Section 4.2.1 and others); this mode is primarily used as a
debugging tool, so we can compare the outputs of the two tools and make sure that they
agree. We will assume Snotra is operating in the compatibility-instrumentation mode.

4.2.3 Instrumentation for field values

Before we describe what Snotra does, a brief word on what Snotra does not do is in order.
For simplicity, suppose that we are instrumenting the consumer, that there is a single
procedure, readInt, in which we are interested, and that readInt returns the value read.
(Later in the section we discuss alternatives.)

The simplest instrumentation scheme that may come to mind would be to output
information about the return value from readInt each time it is called:

1 int* readArray()
2 int n := readInt()
3
4 int* a := new int[n]
5 for i := 1 to n:
6 a[i] := readInt()
7
8
9 return a

→

int* readArray()
int n := readInt()
OUTPUT_INFO_ABOUT(n)
int* a := new int[n]
for i := 1 to n:

a[i] = readInt()
OUTPUT_INFO_ABOUT(a[i])

OUTPUT_INFO_ABOUT_LOOP()
return a

where OUTPUT_INFO_ABOUT(n) prints information about the line it is on along with the
value of n, and OUTPUT_INFO_ABOUT_LOOP() prints information about the previous loop
(see Section 4.2.4). (Snotra works on binaries, as said before, but we show examples in
pseudocode for expository purposes.)

94

Unfortunately, this simple approach does not work. Recall that we are ultimately
interested in knowing about relationships between n and the trip count of the loop on
Lines 5–7, though the latter information is unavailable on Line 3. With the exception of
procedure-entry to procedure-exit, the Daikon back end does not look at the relationships
between variable values across program points. Splitting the information we need across
two program points (Lines 3 and 8) will thus not work.4

Furthermore, we cannot simply delay outputting information about n until the end of
the loop, because there is no guarantee that it will remain unchanged:

1 int* readArray()
2 int n := readInt()
3 int* a := new int[n]
4 while n > 0:
5 a[i] := readInt()
6 n := n - 1
7
8 return a

→

int* readArray()
int n := readInt()
int* a := new int[n]
while n > 0:

a[i] := readInt()
n := n - 1

OUTPUT_INFO_ABOUT_LOOP_AND(n, a[i])
return a

This version of the program is effectively the same as before, but because n will always
have the value 0 after the loop’s exit, we no longer have the information we need.

What we do instead is to follow an approach similar to the latter example, but we first
add a new variable, n0, to the program and set it to the value read on Line 2. After the
loop, we output information about n0 rather than n:

1 int* readArray()
2 int n := readInt()
3
4 int* a := new int[n]
5 while n > 0:
6 a[i] := readInt()
7
8 n := n - 1
9
10 return a

→

int* readArray()
int n := readInt()
int n_0 := n <-- instrumentation
int* a := new int[n]
while n > 0:

a[i] := readInt()
a_i0 := a[i]
n := n - 1

OUTPUT_INFO_ABOUT_LOOP_AND(n_0, a_i0)
return a

4We also cannot pretend that Lines 3 and 8 are one program point or are procedure-entry and procedure-
exit, because we do not know a priori which input fields are associated with which loops.

95

We will refer to the instrumentation variables that are added during this step as I/O variables.
A new I/O variable is always added, regardless of whether the original is overwritten

or not, which saves Snotra from having to determine whether or not to add a variable.
The instrumentation works as follows:

1. Find call sites that call I/O procedures

2. For each call site:

a) Add one or more new global variables5 for each of the values written or read

b) Set each variable to the value read or written (see below)

Adding the I/O variables to the list of variables also ensures that it will be printed at loop
exit points, as described in the following section.

The one item that remains to describe is how the value read or written is determined
for the instrumentation described in (2b). There are four cases that Snotra is able to handle:

Case 1: Input procedures that return the value in question explicitly. For example, readInt()
in the above examples behaves this way. For this case, the I/O variable corresponding
to the call site is set to the return value, as shown above, after the procedure returns.

Case 2: Input procedures that “return” the value in question via an output parameter. An ex-
ample is scanf; the approximate equivalent of n := readInt() is scanf("%d", &n).
For this case, the user of Snotra specifies which parameter(s) receive the input val-
ues, and Snotra adds instrumentation that, after the procedure returns, dereferences
those arguments and places the values into their I/O variables. For the case of
scanf("%d",&n), the instrumentation essentially takes the form of n0 := *(&n). (The
full capabilities of scanf are beyond the capabilities of Snotra at present, but because
we have a library that can interpret format strings, it would be possible to add a
“scanf model” that would support cases where the format string is constant.)

Case 3: Output procedures that are passed the value as a parameter. For example, putchar(n)
writes n as a byte to standard output. For this case, the user of Snotra specifies what

5Globals allow the statement that reads a field value to be in a separate procedure from any loops with a
trip count that will be found to equal the field value.

96

parameter(s) receive the output values, and Snotra adds instrumentation that simply
copies the values of those parameters into their I/O variables.

Case 4: Output procedures that are passed a pointer to the value as a parameter. For example,
write(fd, &n, sizeof(n)) writes the contents of n to the stream specified by fd.
Similar to the analogous case for input variables, the user specifies what parameter(s)
receive the pointers and Snotra adds instrumentation that copies the values at those
addresses to their I/O variables. (Like scanf, Snotra is currently unable to distinguish
between different “kinds” of uses of write when, for example, the size of the write
potentially differs. It would be possible to add a model for write-like calls that would
support its behavior.)

4.2.4 Instrumentation for loop trip counts

Finally, we discuss how Snotra instruments programs to discover loop trip counts. As for
the case of I/O variables, we cannot depend on the program to track the right thing. Many
loops will have a program variable that counts iterations, but they are not necessarily used
as we need. For instance, program variables could count up by a number other than 1
(especially after the compiler’s optimizer goes to work), could count down instead of up
(the situation in the second two examples in the previous subsection), or may be entirely
absent if a loop is controlled by something other than an explicit count.

To instrument loops, we first use Dyninst to detect them. The combination of Dyninst
and Snotra recovers three pieces of information: control-flow graph (CFG) edges that start
outside the loop and end inside the loop (enter edges), CFG edges that start inside the loop
and end outside the loop (exit edges), and CFG edges that, informally, go from the end of
the loop back to the start (back edges). It is possible for there to be more than one edge per
loop of any of the three kinds of edges. Dyninst makes it possible to add instrumentation
that executes whenever a particular CFG edge is taken, and we add instrumentation for all
three kinds of loop edges.

In addition to adding code to track loop trip counts, Snotra must add the code that
actually outputs the trace file. This is done on loop exit. We are interested in equalities
between I/O variables and trip counters, and in most cases the exit of a loop is the right
place to find such equalities. By that point the loop is done executing, so the trip count

97

will not change any more. Because we are assuming the programs write to or read from
a stream, as long as the message field holding the repetition count appears earlier in the
stream than the repeated fields, the program also cannot read the repetition count after
that point. Thus checking for equalities that hold at loop exit is sufficient, and it is easy to
do from an implementation standpoint.

Snotra’s loop instrumentation proceeds as follows:

1. Add instrumentation code that, when the program starts, outputs some metadata
about the program

2. Obtain the list of loops from Dyninst

3. For each loop L:

a) Add a new global variable kL that will act as the loop trip count

b) To each enter edge of L, add the instrumentation kL := 0

c) To each back edge of L, add the instrumentation kL := kL + 1. (Per the next
section, there will always be exactly one back edge in the current version of
Snotra.)

d) For each exit edge e of L, perform the following:

i. Add instrumentation to e that outputs some metadata about the current
loop L

ii. For each global instrumentation variable x, add instrumentation to e that
reports the value of x (along with metadata about x)

Loop detection

Snotra relies on Dyninst’s loop-detection algorithms. Dyninst, in turn, finds natural loops
in the control-flow graph (CFG) of the target program. A natural loop is a maximal region
of the CFG that meets the following requirements:

1. There is a single node, called the loop’s header, that dominates all nodes in the region.
That is, any path from outside the region to inside the region must pass through the
header.

2. There is a path from every node in the region back to the header.

98

3. Furthermore, there is a single edge (the loop’s back edge) for which:

a) the target of the back edge is the loop’s header, and

b) from every node n, every path from n to the header that stays within the region
traverses the back edge.

(This is not the usual way these terms are defined, but it is equivalent and simpler to
describe.) There are well-known algorithms for finding natural loops; see, e.g., Aho et
al. [1, §9.6]. Dyninst uses such an algorithm. The back edges referred to in the previous
definition are the same back edges to which instrumentation is applied.

Ideally the natural loops of a program would correspond to the programmer’s notion of
the program’s loops; unfortunately, the correspondence is not perfect, especially in binary
programs. We will show two potential ways in which the correspondence can be violated,
and argue that the consequences are small for the application of compatibility checking.
The second of these violations is discussed in the next section, on irreducible graphs.

The first way in which the correspondence can be violated is if the compiler (in particular,
the optimizer) performs a transformation that “splits” a single source-level loop into
multiple natural loops. Figure 4.4 illustrates this possibility, showing original source code
that has a single while loop, a lowered form that only uses conditional gotos,6 the CFG
of the lowered version, and the CFG of an optimized version that has two natural loops.
The reason that the optimizer may perform the transformation illustrated by Fig. 4.4 is
because it would subsequently be able to collapse Node 5 into Node 3, removing a jump
instruction that just targets another jump, reducing the number of instructions that need to
be executed when the if statement in Line 2 is false.

As described so far and as implemented in Snotra, each natural loop receives its own trip
counter. In an example such as that in Fig. 4.4, this splitting is almost certainly undesirable.
It may be better to merge any loops that have the same header, and add a trip counter for
each loop header that gets incremented on all of that larger loop’s back edges.7

Incorrectly-detected loops (e.g., using a split natural loop) will only have the effect of
coarsening the overapproximation of the program models we build. There are two potential

6The end_of_if label would be present in case there was code after the if statement.
7Actually this proposal is not quite ideal either, because if a nested loop shared the same header as an

outer loop we would like to keep that separate. What we would want to do is merge any natural loops that
share the same header but for which none is a subgraph of another.

99

gcd(a, b):
while a != b:

if a > b:
a := a - b

else:
b := b - a

return a

(a) Example program

gcd(a, b):

loop_head:
1 if a != b goto out

2 if a > b goto a_bigger

(* false branch of ’if’ *)
3 b := b - a

goto end_of_if

a_bigger:
(* true branch of ’if’ *)

4 a := a - b

end_of_if:
5 goto loop_head

out:
6 return a

(b) A lowered form of the program in (a)
that only uses branches instead of loops

1

2

3 4

5

6
(c) CFG for the example program. The num-
bers in the nodes correspond to the line
numbers in (b).

1

2

3 4

5 5 ′

6
(d) A plausible transformation of the CFG
shown in (c), potentially created by a com-
piler’s optimizer. The two dotted outlines
show the two natural loops.

Figure 4.4: Splitting a single source-level while loop into two natural loops.

100

effects of incorrect loop detection on the final result. The more likely scenario is that using
natural loops will cause fewer invariants to be reported. The invariants are used to generate
semantic constraints, and thus fewer invariants lead to fewer semantic constraints. The
result is that the model is a coarser overapproximation of the target program’s format.
Because both models are overapproximations, the reduction in precision can leave the
answer unchanged, make a true report into a false one, or make a false report into a true
one.

The less likely scenario that can be caused by using natural loops is that an additional
constraint is added. Suppose that a program reads a number n and then executes a loop
with the structure of Fig. 4.4(d), exactly one branch of which performs an I/O operation.
Furthermore, suppose that the number of times that branch of the if statement in the loop
is executed equals n, but there are be additional executions that take the other branch. In
this case, the loop trip counter k for the natural loop corresponding to the branch with the
I/O will be found to equal n. And, assuming that n = k is a true invariant rather than
one only produced because of inadequate tests, the result will actually be a model that is
more precise than what would have been achieved had the two natural loops been merged.
(Again, the additional precision can turn a false report into a true one ore vice versa.)

Because suboptimal loop detection processes do not have a clear negative effect on
the result if they do not happen frequently, we do not take extraordinary steps to try to
control them. The loop merging is something that we would like to attempt, but it is not
implemented at this point.

Irreducible graphs

The second way in which the correspondence between program loops and natural loops can
be broken is if the control-flow graph is irreducible. An irreducible graph is one that can only
be directly formed out of unstructured control flow constructs — essentially, unrestricted
use of gotos; in a moment, we provide a formal definition. However, like the loop-splitting
example, the optimizer could potentially introduce unstructured control flow.

There are several equivalent definitions of irreducability; we give one. Define two graph
transformations T1(q) and T2(q) as follows. If a node q has a self loop, T1(q) removes the
self loop. If a node q has a single predecessor qp, T2(q) collapses q into its predecessor
(i.e., redirect outgoing edges from q so they originate from qp and remove q). A graph G

101

q

qp

. . .

qp

. . .

T2(q)−−−→q

. . .

. . .

q

. . .

. . .

T1(q)−−−→

(a) Illustrations of the T1 and T2 transformations.

void f(bool x) {
if x:

goto right
else:

goto left
left:

goto right
right:

goto left
}

(b) Procedure with irreducible
control flow

if x

left right
tru

e false

(c) Control flow graph of f()

Figure 4.5: Irreducible control flow

contains an irreducible region iffG cannot be reduced to a single node using a sequence of T1

and T2 transformations. Figure 4.5(a) illustrates the two transformations, and Figures 4.5(b)
and 4.5(c) illustrate the stereotypical example of irreducible control flow.

The reducibility of the control-flow graph is important when it comes to loop detection
because the back edge of a loop only has an unambiguous definition for reducible graphs
(or reducible portions of an irreducible graph). In fact, even the definition of a “loop”
arguably becomes muddled. The irreducible components of a graph, such as is shown in
Fig. 4.5(c), do not have any back edges, despite there being a cycle present.8

8Our terminology is that used by Aho et al. [1, §9.6.4], which distinguishes between back edges and a
more general kind of edge called a retreating edge, where an edge q→ p is retreating if an arbitrarily-chosen
depth-first search visits p before q. Not everyone makes such a distinction, and “back edges” are sometimes
defined to match this definition of retreating edges. For irreducible graphs, retreating edges are not uniquely
determined — different depth-first search orders can produce a different set of retreating edges. However, in
a reducible graph all depth-first search orders result in the same set of retreating edges, which provides an
alternative definition of reducible than the one we give: a graph is reducible if every retreating edge is a back
edge (by our definition).

102

Snotra will not detect cycles in the CFG that are present only because of an irreducible
section of the graph. (There are no back edges in such a cycle, and thus the algorithm for
finding natural loops, which is what Dyninst and, in turn, Snotra use will not report any
back edges.) Like the more likely scenario for the consequences of loop splitting, ignoring
irreducible cycles could potentially lead to a coarser overapproximation. However, the
same reasoning given before applies here: if irreducible cycles are infrequent enough, using
a more sophisticated technique to handle them is not a high priority. While we do not
measure the frequency, common wisdom is that irreducible regions of a graph are very
uncommon.

There are two potential approaches we could use if we did want to handle irreducible
cycles better. The first is that we could simply designate an arbitrary (or heuristically-
chosen) edge as the “back edge.” This would sometimes lead to picking up any semantic
constraints that would otherwise be missed. The second approach is a more standard
technique for addressing irreducibility, which is to clone part of the CFG (see Aho et al. [1,
§9.7.6]). By duplicating portions of the graph and redirecting some edges to the copies, it is
possible to transform an irreducible graph into a reducible one that has the same behavior.

4.2.5 Example instrumentation

This section provides an example program along with its instrumentation. (The instrumen-
tation is inserted by hand as an illustration, as Snotra does not operate at the source level.
The names of the instrumentation variables are chosen to aid the reader.) Figure 4.6 shows
an example program, and Fig. 4.7 shows an version with the instrumentation that we add.

Note that this example illustrates one of the tradeoffs of our instrumentation strategy
that is discussed in Section 6.4, which is that at any given point, only the most-recently
read (or written) value at an I/O statement is remembered. For instance, after the loop on
Lines 10–20 exits, only the latest value read on 12, 15, and 18 are available.

103

int nrows, ncols;
nrows = read_int();
ncols = read_int();
pixel ** image = malloc(sizeof(*image) * nrows);
for (int r=0; r<rows; ++r) {

image[r] = malloc(sizeof(**image) * ncols);
for (int c=0; c<cols; ++c) {

read_byte(&image[r][c].red);
read_byte(&image[r][c].green);
read_byte(&image[r][c].blue);

}
}

Figure 4.6: Original program

104

1 int N0_nrows, N1_ncols, N2_red, N3_green, N4_blue,
K0_outer, K1_inner, *TEMP;

2 int nrows, ncols;
3 nrows = N0_nrows = read_int();
4 ncols = N1_ncols = read_int();
5 pixel ** image = malloc(sizeof(*image) * nrows);
6 K0_outer = 0;
7 for (int r=0; r<rows; ++r, ++K0_outer) {
8 image[r] = malloc(sizeof(**image) * ncols);
9 K1_inner = 0;
10 for (int c=0; c<cols; ++c, ++K1_inner) {
11 TEMP = &image[r][c].red;
12 read_byte(TEMP);
13 N2_red = *TEMP;
14 TEMP = &image[r][c].green;
15 read_byte(TEMP);
16 N3_green = *TEMP;
17 TEMP = &image[r][c].blue;
18 read_byte(TEMP);
19 N4_blue = *TEMP;
20 }
21 OUTPUT_PROGRAM_POINT_HEADER();
22 OUTPUT_INT("N0_nrows", N0_nrows);
23 OUTPUT_INT("N1_ncols", N1_ncols);
24 OUTPUT_INT("N2_red", N2_red);
25 OUTPUT_INT("N3_green", N3_green);
26 OUTPUT_INT("N4_blue", N4_blue);
27 OUTPUT_INT("K1_inner", K1_inner);
28 }
29 OUTPUT_PROGRAM_POINT_HEADER();
30 OUTPUT_INT("N0_nrows", N0_nrows);
31 OUTPUT_INT("N1_ncols", N1_ncols);
33 OUTPUT_INT("N2_red", N2_red);
34 OUTPUT_INT("N3_green", N3_green);
35 OUTPUT_INT("N4_blue", N4_blue);
36 OUTPUT_INT("K1_outer", K0_outer);

Figure 4.7: Instrumented program. (The TEMP variable is really just whatever memory location the
argument is stored at and is not explicitly materialized.)

105

Part II

Application Compatibilty Checking

106

5 Control-Flow Format Compatibility

We can now discuss how we use automata to perform format-compatibility checking. Recall
that the goal is stated as follows:

Given a program P that writes a stream of output and a program C that reads
it, determine whether every message that P can write is understandable by C.

We address this question by modeling P and C as automata and checking language con-
tainment.

In this chapter, we describe how to create regular and nested-word models of programs
and how to use the models to perform format-compatibility checking. We begin with an
informal overview of the technique, and then move into specifics. Chapter 6 describes
how we use extended finite automata to model semantic constraints on the input, which is
where Snotra and Daikon enter the picture. The techniques presented in this chapter are
implemented in a tool called the Producer-Consumer Conformance Analyzer (PCCA).

5.1 Overview

Consider an example system made up of the producer and consumer shown in Listings 5.1
and 5.2, respectively. The producer is a program that monitors a sensor, and periodically
sends a “packet” of data to the consumer.1 The system uses an abbreviated protocol: if the
sensor data has not changed since the last message, then only the Boolean literal false is
sent. Line 2 in Listing 5.1 makes this decision.

As presented, these components are correct: both “speak” the same protocol. However,
consider a buggy version of the consumer that does not account for the possibility that the
producer sends an abbreviated message, and instead always expects the full packet. Buggy

1We use packet to refer to the data that the components communicate each time through their “loop”, but
packets are not a first-class notion in either the example programs or our analysis technique.

107

1 sendReading(Sensor* device, int prev)
2 if device→setting == prev then
3 writeBool(false);
4 else
5 writeBool(true);
6 writeDouble(device→setting);
7 writeBool(device→valid);

8 loop(Sensor* device, int prev)
9 ... // update device with new readings

10 sendReading(device, prev);
11 if ... then
12 loop(device, device→setting);

13 main()
14 Sensor device;
15 loop(&device, -1);

Listing 5.1: Example producer

1 updateReading(int* setting, bool* valid)
2 *setting = readDouble();
3 *valid = readBool();

4 main()
5 int setting;
6 bool valid;
7 while ... do
8 if readBool() then
9 updateReading (&setting, &valid);

10 ... // do something with current readings
Listing 5.2: Example consumer

1 main()
2 while ... do
3 readBool();
4 updateReading (&setting, &valid);
5 ... // do something with current readings

Listing 5.3: Example buggy consumer. (updateReading is the same as in Listing 5.2.)

108

code that acts this way is shown in Listing 5.3. (Perhaps the specification of the format
changed partway through the development, and the consumer was not updated.)

To find this incompatibility bug, we reason about the languages over which each com-
ponent operates. In the consumer, we know that the updateReading procedure always
reads a double and then a bool. Thus, each time through the loop in the buggy version
of main, the consumer reads a bool then the double–bool sequence from updateReading.
Thus we can determine that the input language of the buggy consumer, expressed as a
regular expression over types that the consumer reads, is

(bool double bool)* . (buggy consumer)

Similarly, we can determine that the output language of the producer, expressed as a
regular expression, is

(bool | bool double bool)* . (producer)

From these two language descriptions we can see that one of the components is buggy:
the string bool bool is in the producer’s language but not in the consumer’s. The non-
containment suggests that some execution of the producer could output two Boolean
values, but no execution of the consumer would expect to read that message.

A similar analysis suggests that Listing 5.2’s consumer is correct. The language it expects
is

(bool (double bool)?)* , (correct consumer)

which is equivalent to what we inferred for the producer.
The description above is given in terms of regular expressions, but the technique

described in this chapter operates instead on finite automata. Inferring the automata is done
by constructing the control-flow graph of the program, which with suitable modifications
is then essentially treated as an automaton. Procedure calls that perform input or output
(as appropriate for whether the program being analyzed is the producer or consumer) are
labeled with the type of datum that is written or read, and other transitions are labeled with
ε. The language of the resulting automaton is then an overapproximation of the message
format (as we define it) of the program in question.

Section 5.2 covers how we build an automaton that models the input or output behavior
of a program. When we infer finite automata, the only step left is to check whether the

109

language of the producer’s model is a subset of the language of the consumer’s: if so, PCCA
reports that the components are compatible, otherwise it reports that the components are
incompatible. An alternative to standard FAs is to use NWAs. The NWA construction is
also described in Section 5.2, and its benefits are described in Section 5.2.2. However, as
mentioned back in Chapter 1, using NWAs makes the compatibility question more compli-
cated; Section 5.3 describes the “Enrich” process, which effectively further approximates
the consumer’s model and allows us to perform the inclusion test. Section 5.4 describes
ways in which the “message format” can be interpreted more broadly than it may initially
appear, to gain additional precision or to be used for other applications.

The techniques described in this chapter are implemented in a tool called PCCA. Sec-
tion 5.5 describes implementation-specific information about PCCA, including how the user
tells PCCA about what procedures perform I/O. Finally, Section 5.6 presents experimental
results.

5.2 Building FA and NWA Models of a Program

The first step in the compatibility-checking process is to infer an automaton that approxi-
mates the language of each component. In the case of the producer, we wish to infer the
language of all possible outputs; in the case of the consumer, we wish to infer the language
of all expected inputs.

Our technique creates automata that mimic the control-flow behavior of the source
programs. Each automaton that PCCA generates has the same language as one created by
transliterating the program’s interprocedural control-flow graph (ICFG) into an automaton
in the following manner:

1. There is one state c̃ for each ICFG node c.

2. If a call site c can call an I/O procedure that outputs or expects a value of type τ, we
add a transition on τ from c̃ to its corresponding return node. In the NWA model,
this is an internal transition.

3. If a call site c can call a non-I/O procedure f with entry node fe and exit node fx, we
add one transition from c̃ to f̃e and a second transition from f̃x to the corresponding
return site. In the FA model, both transitions are ε transitions. In the NWA model,

110

the first transition is a call transition that occurs on the symbol 〈, and the second is a
return transition that occurs on the symbol 〉when c̃ is the call predecessor.

4. All other transitions in the ICFG become ε transitions. In the NWA version, all are
internal transitions.

5. The entry node of main becomes the start state, and the exit node becomes the sole
accepting state.

However, if we used this naive translation, the resulting automata would be extremely
large, which would cause problems during the determinization phase of PCCA.2

Instead of treating the ICFG as a whole, PCCA works procedure-by-procedure through
the program. For each procedure, it looks at the intraprocedural CFG in place of the full
interprocedural CFG in step 1 and carries out the above translation, except that steps 3–5
are replaced by the following:

3 ′. If a call site c can call a non-I/O procedure f, we add an internal transition from c̃ to
the corresponding return, labeled with a generated symbol call_f .

The automaton’s starting and accepting states are the entry and exit nodes of that procedure.
At this point, we have a finite automaton for each procedure; even the NWA version

can be interpreted as such because we never introduce call or return transitions. We then
use standard algorithms to determinize and minimize each procedure’s machine. (PCCA’s
implementation uses the OpenFST library for this purpose [3].) The efficiency upshot is
that this technique turns what could be a multiplicative factor between procedures into an
additive one, thus dramatically reducing the time spent in determinization.

Once we have the collection of minimized automata, we combine all the automata into
one and “restore” the call and return transitions. We replace each transition that moves
from state c̃ to r̃ when reading a symbol call_f with a pair of transitions that match those
in the original step 3:

6. We add a transition from c̃ to f’s entry point. In the FA version, this is an ε transition;
in the NWA version, it is a call transition on the symbol 〈.

2As shown in Section 5.6, determinization dominates execution time.

111

M: mainentry L: loopentry sendReadingentry

sendReadingexitK: loopexitmainexit

loopunwind

〈 〈 bool

double

bool〉 (L)〉 (M)

〈 〉 (L)

〉 (K)

〉 (K)

〉 (M
)

(a) The producer’s NWA.

M: mainentry mainexit

updateReadingexit updateReadingentry

bool

〈

doublebool

〉 (M)

bool

Return trans.
〉 (qc)

Call trans.
〈

Internal trans.
σ

Key:

(b) The consumer’s NWA.

Figure 5.4: The automata that are inferred for the producer and consumer shown in Listings 5.1
and 5.2. To reduce clutter, all transitions to the implicit “stuck state” are omitted, and
ε transitions have been removed. (The latter transformation removes 7 states and a
comparable number of transitions.) Return transitions are labeled with 〉 (qc), where qc
is the call predecessor. The finite-automaton models are the same except that 〈 and 〉
transitions are labeled with ε instead.

7. We add a transition from the exit point of f to r̃. In the FA version, this is an ε
transition; in the NWA version, it is a return transition labeled with the symbol 〉 and
with a call predecessor of c̃.

Finally, we have to perform one more determinization step in case connecting the pro-
cedures adds nondeterminism. This can happen if there is a loop or conditional where
each branch calls a different procedure, as well as when there is an indirect call through a
function pointer.

This translation essentially abstracts the program to its control flow only: data is not
considered. One could envision a higher-fidelity translation that weaves selected data

112

elements (or abstractions of data elements) into the automata we infer, but of course there
is a trade-off between precision and automaton size. Chapter 6 discussess attempts at
addressing data using extended finite automata (XFAs).

Figure 5.4 shows the NWAs that are inferred from the code in Listings 5.1 and 5.2,
respectively. Return transitions have labels of the form “〉/X”, which means that the
machine can make the transition only if state X is the call predecessor. The FA version is
similar, except that all call and return transitions are replaced with ε transitions.

5.2.1 Knowledge about I/O procedures

PCCA needs information about what procedure calls can perform I/O. There are a number
of ways the user can provide such information (see Section 5.5.1).

One important point is that there needs to be agreement between the producer and
consumer regarding what types are used. The first, and easiest, issue related to this point
is that the names of the types must agree.

The second issue is that the granularity of the I/O procedure specifications must agree.
Consider our example. As written, both the producer and consumer have I/O operations
expressed in terms of their constituent C types. It would also be possible to have the
producer and consumer store values in a two-element structure SensorData, and do a
“bulk read/write” with fread()/fwrite() to operate on the struct as a whole. In such a
case, it would be reasonable to say that the type of that I/O operation was SensorData.
This works fine, but the two approaches cannot be mixed: the consumer and producer
need to agree on the granularity.

The need for agreement between the producer and consumer on the granularity of
types is not a fundamental limitation: it would be possible to have the user specify that
SensorData is a {double, bool} struct at either the format-inference stage or after the NWAs
are constructed. It should even be possible to extract this information from struct definitions
in the code. We have not investigated this avenue; however, with the current implementation
the user has the ability to specify, for example, that a particular call to fread/fwrite
operates on a double and then a bool.

113

5.2.2 Benefits of Using NWAs

The regular models described above are the most imprecise form that we consider. The
first way we look to make models more precise is by making them context sensitive; for
this purpose, we use NWAs.

The trade-offs between NWAs and FAs mirror trade-offs that one can make in traditional
interprocedural dataflow analysis. The simplest way of performing an interprocedural
analysis is to build the ICFG and run the analysis as if call and return edges were just normal
intraprocedural control-flow edges. However, that approach loses precision because of
suprious data flows from one call site c1, into the called procedure f, and then out the
return edge to a different call site c2. No such program execution can actually occur, and
so it is desirable to exclude such paths. A similar kind of imprecision can affect the FA
version of PCCA. This imprecision is because the analysis is not context sensitive.

A context-sensitive analysis is an analysis that respects the proper control flow of proce-
dure calls. A context-sensitive analysis will ignore properties that only arise because of
invalid paths, which are paths that make a call from one call site but return to a different
point.3 A context-insensitive analysis will incorrectly incorporate properties of invalid
paths.

(A traditional dataflow analysis associates each program point with a fact that holds
at that program point. The term “context sensitivity” comes from the fact that, for such
an analysis, there can conceptually be multiple facts at each program point depending
on the context in which the program point was called. For example, a program point
p in procedure f could be associated with one fact that applies when main() calls f()
directly and then execution reaches p, and a second fact that applies when main() calls
another procedure g() that then calls f(). Even though execution has reached p in both
cases, the calling context differs, and the presence of both facts means that the analysis is
context-sensitive.)

Without special precautions to make the analysis outlined in the overview context
sensitive, it will not be. In particular, if an invalid path π is the only possible path that

3Note that “valid” does not correspond to “feasible”, where the latter means “can happen in an actual
concrete execution of the program.” A valid path can still be infeasible due to values of program variables.
For example, a path that sets x := 0 and then follows the true branch of if(x>0) is infeasible, but can still be
valid. In this dissertation we consider all invalid paths to be infeasible, but even that is sometimes not true in
real-world programs, where buffer overflows or other bugs can allow the return address to be overwritten
and permit control flows that are otherwise infeasible.

114

witnesses the acceptance of a string s in the inferred automata, then swill be accepted by
that automaton when it should not be. (That is, the model as described so far would accept
s even though the program cannot write or read a message with the format specified by s).

For instance, Listing 5.5 shows a producer and consumer for which FAs and NWAs
produce different results. The FA version of PCCA infers int | char int char for
the language of the consumer, but int | char int | int char | char int char for the
producer. The producer’s language contains two words that are not in the language of the
consumer, thus the FA version of PCCA reports that the components are incompatible.

Whether or not a path is invalid is a property that is context-free but not regular. Suppose
that we are given a program and a candidate path that we wish to determine the validity
of. What we do is follow the path through the program. When we reach a call site we push
the name of the call site onto a stack. When we reach a return site, we make sure that the
next state of the path corresponds to the call site that is at the top of the stack, and then pop
it. However, if the call depth of a program can be arbitrarily high (which happens exactly
when there is recursion), it is not possible to check validity of a path with finite storage
and so we cannot use a regular model.

One way of getting around this problem is to perform procedure cloning: each call site
c gets its own copy of the procedure f, which is only called from c and only returns to c.
Cloning eliminates the suprious control flows, but at the cost of a model that is infinite
in the presence of recursion and potentially exponentially larger than the original model
even in the absence of recursion. It would be possible to do exactly the same thing in our
domain — create a single FSM, but clone procedures — but the same drawbacks would
apply.

Another approach would use pushdown automata (PDAs) to model the programs,
using the PDAs’ stacks to track calls and returns. PDAs would exclude from the models
any strings that correspond only to invalid paths. However, it is not decidable whether two
context-free languages (specified as PDAs) are equal or whether one is contained within
the other. So while we could use PDAs for format inference, we would need to perform an
approximation to determine compatibility between the two components.

Nested-word automata come to the rescue (to an extent, as we will see). NWAs are
powerful enough to capture the properties that we need to determine whether a path is
valid, as they have unbounded storage and a stack-like behavior. In fact, the process for

115

deciding whether a path is valid is exactly what a visibly-pushdown automaton (VPA)
will do when reading a string, if that VPA was created by converting an NWA to a VPA [7,
§4]. Furthermore, as explained before, NWAs are closed under complementation and
intersection, and hence language inclusion is decidable.

What we do is inject 〈 and 〉 symbols, which correspond to calls and returns, into the
inferred automata. The NWA’s stacking behavior can then enforce, when reading a 〉, that
the return site matches the call site.

The example code in Listing 5.5 benefits from this increase in precision. The NWA’s
constraints on the return transitions from the exit node of outputInt to each of the two
return sites restricts the data flow, and as a result the producer’s language is inferred to be
〈 int 〉 | char 〈 int 〉 char. The NWA version of PCCA reports that the two components
are compatible.

Using NWAs is somewhat similar to using context-free-language reachability tech-
niques [71]. CFL reachability techniques mark each call/return edge pair with a distinct
set of matched parentheses; possible executions of the program correspond only to strings
with matched parentheses. The dataflow problem can be formulated so that only flows
along such well-matched paths are considered. Our use of NWAs closely mirrors this
approach for the producer.4

There is a problem with using NWAs in this way, however. Strings of the automata are
supposed to correspond to (formats of) messages that the programs can write or read, but
the injected 〈 and 〉 symbols do not appear in the message format. The presence of these
symbols essentially puts artificial constraints on the producer and consumer that are easy
to violate, in which case we would falsely report an incompatibility. To work around this
problem, we apply an operation we call Enrich, which is described in Section 5.3.

Unfortunately, the context-sensitivity benefit only applies to the producer’s model: the
enrich operation we do to the consumer essentially makes a regular approximation out of
the original. We have not investigated applying the ideas of cloning to obtain increased
precision, although we think it would be possible.

In other words, using NWAs to model the components provides a way to obtain a
context-sensitive analysis in one of the components without the problems of cloning.

4CFL-reachability distinguishes acceptable return edges from unacceptable ones by whether the brackets
match; our NWAs distinguish them by whether the corresponding call site is on the NWA’s stack.

116

1 outputInt()
2 writeInt();
3 producerMain()
4 if ... then
5 outputInt();
6 else
7 writeChar(); outputInt(); writeChar();

8 inputInt1()
9 readInt();

10 inputInt2()
11 readInt();
12 consumerMain()
13 if ... then
14 inputInt1();
15 else
16 readChar(); inputInt2(); readChar();

Listing 5.5: Components that illustrate the benefits of NWAs

5.3 Enriching NWAs for Compatibility

This section applies to the NWA version of PCCA only.
It would be too restrictive to demand that the producer and consumer perform calls and

returns at corresponding moments during their executions. The NWAs that we infer from
the producer and consumer follow the same call/return behavior as the corresponding
original programs; thus the strings in the languages of the producer and consumer models
contain internal call and return symbols that are not actually present in the messages
between components. Checking containment of the languages of the inferred models
would require that the components agree in this respect.

Our running example (Listings 5.1 and 5.2) illustrates the issue. Each “packet” consists
of a Boolean, optionally followed by a double and a Boolean. The producer sends the entire
packet within one procedure (sendReading), but the consumer reads the first Boolean, and
then calls another procedure (updateReading) to read the remaining values of the packet.

As a consequence of the components having different calling structure, the strings that
correspond to a single message differ in the producer’s model and the consumer’s model.

117

Example 5.1. Consider the string bool double bool, emitted by Listing 5.1’s code when
the producer performs just one iteration—hence the string contains just a single packet. For
the producer’s NWA (Section 5.2), the string would be 〈 〈 bool double bool 〉 〉, while
for the consumer’s NWA (Section 5.2), the corresponding string would be bool 〈 double
bool 〉. These strings have 〈 and 〉 in different locations.

To accommodate the different nesting structures, we “enrich” the consumer’s NWA
so that it can use nondeterminism to guess when the producer makes an internal call or
return and insert the corresponding symbol into its own strings.
Example 5.2. For Example 5.1, the language of the consumer’s enriched NWA contains not
just bool 〈 double bool 〉 but also 〈 〈 bool double bool 〉 〉. The latter string is in the
languages of both the producer’s NWA and the consumer’s enriched NWA.

Example 5.3. For the buggy consumer in Listing 5.3, the original language contains strings
such as bool 〈 double bool 〉, but not, for instance bool bool (which is in the producer’s
NWA’s language). Denote byCe the NWA inferred for the buggy consumer. After enriching
the consumer’s language, bool bool will still not be in Enrich(Ce); bool bool will be a
counterexample to language containment.

If an analyst knows that both components use the same call/return structure, he can omit
the enrichment step to obtain a more precise comparison of the two languages. Without
the approximation caused by Enrich, a “compatible” result is more credible; however, if
there is uncertainty in the call/return assumption, an “incompatible” result is less credible.

In essence, Enrich allows the consumer’s NWA to emulate the call/return structure of
the producer’s NWA. Enrich is defined as follows:

Definition 5.4. Given NWAA = (Q,Σ,q0, δ, F), augment δwith the following transitions:

1. For every state p, introduce a call transition δc(p, 〈,p).

2. For every pair of states (p,q), introduce a return transition δr(p,q, 〉,p).

3. For every call transition δc(p, 〈,q) in the original NWA, introduce an ε-transition
δi(p, ε,q).

4. For every return transition δr(p,p′, 〉,q) in the original NWA, introduce an ε-
transition δi(p, ε,q).

118

Items 1 and 2 allow the consumer’s enriched NWA to perform extra call or return moves
to emulate the producer NWA, while Items 3 and 4 allow the consumer’s enriched NWA to
omit calls or returns, in case the producer has fewer.

Example 5.5. Examples 5.1 and 5.2 require all four steps: to match the producer, the
consumer needs to add two calls to the beginning of the input string, add two matching
returns to the end of the input string, and remove the “extra” call between the first “bool”
and “double” and its corresponding return.

While in theory it is possible either to enrich the consumer to match the producer or to
enrich the producer to match the consumer, in practice only the former is reasonable. The
goal of the containment check is to determine the emptiness of L(P)r L(C). Enriching an
NWA enlarges its language, so this operation adds some error E to one of the operands,
resulting in either (L(P)∪E)rL(C) or L(P)r(L(C)∪E). Unfortunately, the error introduced
by enriching the producer’s NWA invariably leads to false positives: for the consumer to
accept everything that the enriched producer emits, the consumer would have to accept
every possible call structure of every string the producer emits.

What we would really like to have is a property like the following:

Given a language L, define forget(L) to be the set of strings in L with all 〈 and 〉
symbolss removed. Then forget(L) = forget(Enrich(L)).

Unfortunately, it is not possible to have this property. If it did hold, it would be possible to
determine language inclusion of context-free languages using a technique similar to that
described in Section 2.1.3 and Fig. 2.5. The call and return edges would be labeled with
〈 and 〉 respectively instead of ε. Given grammars for L1 and L2, to test whether L1 ⊆ L2,
one would create NWAsN1 andN2 using the modified construction and then test whether
N1 ∩ Enrich(N2) = ∅. (The format of a program being broken up into different procedures
based on implementation artifacts corresponds very closely to how the grammar for a
language is structured, which is like implementation details of the grammar.) Thus the
Enrich process does more than simply add and remove 〈 and 〉s to the language, and
performs more approximations. We think an intuitive way of looking at what happens is
that Enrich creates a regular-like approximation of the original NWA’s language.

119

5.4 Using PCCA for more than types

In this section, we describe how it is possible to use PCCA’s format inference capabilities to
infer more than just a model of a program’s input or output language. We start off describing
how to make the format models more accurate by incorporating some information about
the programs’ behaviors into the language of the model (without changing the actual
communication format), and then discuss possible uses of PCCA’s techniques for tasks
that do not involve the format of messages at all.

We first return to the example in Listings 5.1 and 5.2 to illustrate how the programmer
could improve the results of the analysis. We start by describing a bug that PCCA would
not be able to find, and then explain how to modify the buggy code — but without changing
the actual protocol — so that the bug is found.

Suppose that the specification of the protocol changed during development: the final
bool field was not originally needed, but was added later. Suppose that the implementation
of the producer was changed to emit this field, but the consumer was not. (In other words,
Line 7 in Listing 5.1 was added at the time the specification changed. The consumer should
have been changed to include Line 3 in Listing 5.2, but that line was erroneously omitted.)

This situation would almost certainly signify a bug, but it would not be detected by our
tool. The reason is that there is no association between the procedure call on Lines 3 and 5 in
the producer, which writes the first bool in each packet, and Line 8 in the consumer, which
reads it. Instead, the consumer could “use” the call on readBool on Line 3 to consume the
final field of the previous packet, then not call updateReading during that iteration.

We can modify the source code of the producer and consumer to make it possible for
our technique to detect the previous bug. What prevents our technique from detecting this
bug is that the elements that the producer and consumer thought were packets got out of
sync. By inserting a “phony” I/O call at the start or end of each loop (e.g., in the ellipsis
on Line 9 of the producer and between Lines 7 and 8 of the consumer), we can make the
packet divisions visible to PCCA, allowing it to check that the producer’s and consumer’s
packets cannot get out of sync.

The phony calls would have a type that does not appear in the packet itself; in our
experiments we have called it SEP. The key point to realize is that this “type” does not have
to have any material presence in any of the communications, and in fact the procedure that
performs the phony I/O can be completely empty.

120

This idea can be generalized to “hijack” the compatibility algorithm to ensure that
events that should occur during the execution of the producer and consumer occur in the
proper order. From this point of view, a write operation is essentially an event, during
which the fact that the program communicates is only incidental.

One potential application for PCCA that is entirely different from checking format
compatibility is inspired by work by Srivastava et al. [78]. There are three independently-
developed implementations of the Java libraries (i.e., the contents of the java. package):
the official Java Development Kit originally developed originally by Sun, GNU Classpath,
and a defunct implementation by the Apache project (Apache Harmony). Srivastava et al.
analyzed the three libraries against each other to find differences in behavior in how the
libraries invoked security-sensitive operations.

Figure 5.6 gives an example from Srivastava et al.’s paper. It illustrates a vulnerability
in the Apache Harmony library that arises because there is a missing securityManager
call near Line 8 of Fig. 5.6(b) before calling the native impl.connect procedure on Line 12.
(The check is present on Line 11 of the Sun JDK, Fig. 5.6(a).) PCCA should be able to find
this vulnerability, perhaps with some postprocessing. PCCA could infer a language along
the lines of

(checkMulticast | checkConnect checkAccept) JNI-connect (JDK)

for the Sun JDK version, and

(checkMulticast | checkConnect) JNI-connect (Harmony)

for the Apache Harmony version. Duplicating Srivastava’s results would not be a direct
application of PCCA, especially if the goal were to match Srivastava et al.’s analysis as
closely as possible. However, it seems that there could be potential for PCCA to be useful
in such an area.

5.5 PCCA Implementation

We now describe some implementation details of PCCA. The version of PCCA described in
this chapter works on C and C++ source code; it would be possible to use the XFA version
and ignore invariants to obtain a PCCA for x86 code, but we have not explored this avenue.

121

1 // JDK
2 public void connect(InetAddress address, int port) {
3 ... connectInternal (address, port); ...
4 }
5 private synchronized void connectInternal(InetAddress address, int port) {
6 ...
7 if (address.isMulticastAddress()) {
8 securityManager.checkMulticast(address);
9 } else {
10 securityManager.checkConnect(address.getHostAddress(), port);
11 securityManager.checkAccept(address.getHostAddress(), port);
12 }
13 if (oldImpl) {
14 connectState = ST_CONNECTED_NO_IMPL;
15 } else {
16 ... getImpl().connect(address, port); ...
17 }
18 connectedAddress = address;
19 connectedPort = port;
20 ...
21 }

(a) JDK implementation of DatagramSocket.connect

1 // Harmony
2 public void connect(InetAddress anAddr, int aPort) {
3 synchronized (lock) {
4 ...
5 if (anAddr.isMulticastAddress()) {
6 securityManager.checkMulticast(anAddr);
7 } else {
8 securityManager.checkConnect(anAddr.getHostName(), aPort);
9 // MISSING CALL to checkAccept
10 }
11 ...
12 impl.connect(anAddr, aPort);
13 ...
14 address = anAddr ;
15 port = aPort ;
16 ...
17 }
18 }

(b) Apache Harmony implementation of DatagramSocket.connect

Figure 5.6: Illustration of a missing security check (securityManager.checkAccept) in the Apache
Harmony library [78, Fig. 2]. Srivastava et al.’s analysis is able to find this vulnerability.

122

PCCA has two phases: inference and compatibility. During the inference phase, PCCA
uses CodeSurfer/C [21] to perform pointer analysis and build an interprocedural control-
flow graph (ICFG) and call graph for each component. It traverses the ICFG to create a list
of all call sites that (directly) call an I/O procedure (see Section 5.5.1), then traverses the
call graph to determine which procedures to prune because they cannot perform I/O (see
Section 5.5.2). It then traverses the ICFG again to create the automaton for each procedure
as described in Section 5.2, determinizes and minimizes each of them, and combines them
into our model of the program.

During the compatibility phase, PCCA reads the automaton produced for each compo-
nent and proceeds with the compatibility check according to PCCA’s mode (FA or NWA).
The NWA mode of PCCA is implemented with OpenNWA (Section 2.2).

5.5.1 Seeding the System with I/O Procedures

PCCA requires information about (i) what procedure calls of the producer can perform
output, and (ii) what procedure calls of the consumer can perform input. There are a
number of ways such information can be supplied to PCCA:

1. The user can provide a list of I/O procedures (e.g. readBoolean, writeInt, as in the
example) and their associated types. For calls to standard procedures, such as puts,
PCCA is already equipped with such mappings.

2. For calls to printf- or scanf-style procedures, if the format string is a constant in the
code, PCCA will parse the string to determine the types being operated on.

The implementation is flexible enough so that the producer or consumer can contain
user-defined procedures with printf/scanf-like format-strings, provided that the
format-string syntax is either the same as what is used by printf or what is used
by scanf. PCCA just needs to know the name of the procedure and which formal
parameter holds the format string.

3. If all else fails, the user can supply comments that annotate procedure-call sites to
specify that a particular call site performs either input or output. The annotation
includes the type that is operated on. This method also allows the user to selectively
choose only some call sites to a particular procedure.

123

4. Finally, the list of procedure-call sites that the tool should consider to be I/O proce-
dures is explicitly materialized in a text file, so the user can add, remove, or change
call sites in that list, or even generate it by different means. (In fact, in the current
version of PCCA, the techniques described in Items 1 and 2 are implemented by
one program, and the technique described in Item 3 is implemented by a second
program.)

5.5.2 Removing Irrelevant Procedures

To reduce the size of the inferred NWA, PCCA prunes procedures that cannot possibly
participate in I/O operations. If there is no path from the entry of procedure P to the
exit of procedure P along which an I/O procedure can be invoked, P can be discounted
entirely. One of the first steps of PCCA is to traverse the call graph generated by CodeSurfer,
determine which procedures can transitively call an I/O procedure, and ignore all others.
As illustrated in columns 3 and 4 of Table 5.7 (see Section 5.6), the effect of pruning is
substantial, reducing the number of procedures by as much as 90%.

5.6 Experiments

To test the capabilities of PCCA, we ran it on a small corpus of examples (whose char-
acteristics are listed in columns 2 and 3 of Table 5.7). The experiments were run on a
system with dual quad-core, 2.27GHz Xeon E5520s processors; however, PCCA is entirely
single-threaded. The system has 12 GB of memory, and runs Red Hat Enterprise Linux 5.

The experiments were designed to test whether PCCA would detect bugs in producer-
consumer pairs that were buggy, correctly identify (presumably) correct code as having
the language-containment property, and scale to realistic programs. We also compared
the results between the FA and NWA-based modes of operation to determine whether the
potential benefits discussed in Section 5.2.2 arose.

Each example consisted of a pair of programs—a producer and a consumer. In several
cases, we used the program as both the producer and the consumer, which makes sense
for programs that read and write the same format.

124

#F
un

cs
In

fe
r

N
W

A
ve

rs
io

n
(s

ec
.)

FA
ve

rs
io

n
(s

ec
.)

Te
st

LO
C

O
ri

g.
Pr

un
ed

|Q
|

#I
/O

au
t.

¬
C

To
ta

l
O

K
?

¬
C

To
ta

l
O

K
?

ex
-p

ro
d

43
11

3
9

4
2.

12
0.

35
4.

90
Y

0.
10

4.
76

Y
ex

-c
on

s
26

7
2

5
3

2.
24

ex
-p

ro
d

43
11

3
9

4
2.

12
0.

16
4.

49
N

0.
10

4.
61

N
ex

-c
on

s-
fig

3
25

7
2

5
3

2.
09

ex
-p

ro
d-

§2
.5

43
11

3
10

5
2.

29
0.

70
4.

87
N

0.
10

5.
09

N
ex

-c
on

s-
§2

.5
25

7
2

5
3

2.
40

gz
ip

-p
ro

d
43

96
10

0
17

51
25

26
.3

12
3

17
7

N
*

10
1

15
7

N
*

gz
ip

-c
on

s
43

96
10

0
24

71
50

27
.8

gz
ip

-p
ro

d
43

96
10

0
17

51
25

26
.3

58
3

64
6

Y
10

2
15

6
Y

gz
ip

-fi
x-

co
ns

43
89

10
0

24
73

51
27

.8
gz

ip
-p

ro
d

43
96

10
0

17
51

25
26

.3
19

1
23

9
Y

18
7

23
5

Y
pi

gz
-c

on
s

50
01

16
2

19
88

60
21

.8
bz

ip
2-

pr
od

57
72

12
1

15
32

8
26

.3
47

.7
10

2
Y

47
.1

10
1

Y
bz

ip
2-

co
ns

57
72

12
1

13
29

10
27

.4
pn

g2
ic

o-
pr

od
80

6
39

1
22

29
9.

48
14

.4
33

.1
Y

0.
16

10
.1

Y
ic

o-
sp

ec
-c

on
s

n/
a

n/
a

n/
a

26
28

n/
a

Ta
bl

e
5.

7:
Th

e
ex

pe
ri

m
en

ts
.“

LO
C

”
is

lin
es

of
co

de
,“

or
ig

.”
is

th
e

nu
m

be
ro

fp
ro

ce
du

re
si

n
th

e
pr

og
ra

m
,“

pr
un

ed
”

is
th

at
nu

m
be

ra
fte

rp
ru

ni
ng

.|
Q
|i

st
he

nu
m

be
ro

fs
ta

te
si

n
th

e
in

fe
rr

ed
au

to
m

at
on

(e
qu

al
be

tw
ee

n
th

e
tw

o
va

ria
nt

s)
.“

#
I/

O
”

is
th

e
(s

ta
tic

)n
um

be
ro

fc
al

ls
to

I/
O

pr
oc

ed
ur

es
.“

In
fe

ra
ut

.”
is

th
e

tim
e

(s
ec

.)
to

pr
od

uc
e

th
e

au
to

m
at

a
fo

r
ev

er
y

pr
oc

ed
ur

e
in

th
e

pr
og

ra
m

.(
Th

e
ou

tp
ut

of
th

is
st

ep
is

us
ed

fo
rb

ot
h

th
e

N
W

A
an

d
FA

ve
rs

io
ns

.)
Fo

rb
ot

h
th

e
N

W
A

an
d

FA
ve

rs
io

n,
¬

C
is

th
e

tim
e

(s
ec

.)
to

de
te

rm
in

iz
e

an
d

co
m

pl
em

en
tt

he
au

to
m

at
on

.(
D

et
er

m
in

iz
in

g
ea

ch
pr

oc
ed

ur
e’

sF
A

is
no

ti
nc

lu
de

d
in

th
is

tim
e,

bu
tt

ak
es

a
ne

gl
ig

ib
le

am
ou

nt
of

tim
e

in
al

le
xp

er
im

en
ts

.)
“T

ot
al

”
is

th
e

en
d-

to
-e

nd
tim

e
fo

ra
na

ly
si

s,
in

cl
ud

in
g

th
e

in
fe

re
nc

e
st

ep
.“

O
K

?”
re

po
rt

st
he

ou
tp

ut
of

PC
C

A
.“

N
*”

m
ar

ks
an

er
ro

ne
ou

sr
ep

or
to

fi
nc

om
pa

tib
ili

ty
.

125

The examples are as follows:5

• ex-prod/ex-cons make up our running example (stubs for the I/O procedures are
included in the count),

• ex-prod/ex-cons-fig3 uses the buggy version of the consumer presented in Listing 5.3,

• ex-prod-§2.5/ex-cons-§2.5 are buggy versions of the running example, modified as
described at the end of Section 5.4 with the separator to mark the packets,

• gzip and bzip2 are the common Unix compression/decompression utilities,

• gzip-fix-cons uses a modified version of gzip (discussed below) to eliminate an erro-
neous report,

• pigz-cons is an alternative implementation of the gzip algorithm, designed to run in
parallel, and

• png2ico is an image-conversion program, which we compare to a hand-written speci-
fication (ico-spec-cons).

Reported times are the median of 5 runs. The numbers for the FA version use NWAs
with no call or return transitions. This gives an apples-to-apples comparison with NWAs,
but is slower than an alternative implementation that converts each NWA to an OpenFST
acceptor, determinizes with OpenFST, and converts back. All times are less than 1 sec. with
the latter approach. There is an intrinsic cost to using an NWA representation, but we feel
that most of the difference between our FA numbers and OpenFST’s indicates room for
improving the WALi implementation. (That would improve the NWA version as well.)

Three of the tests, gzip, pigz, and png2ico, required relatively minor modifications. gzip
uses input and output operations much like those in our running example, except imple-
mented as macros. Because PCCA uses the control-flow graph generated by CodeSurfer/C,
these macros are not visible, so we replaced the macro definitions with procedures. In
addition, gzip calls the procedure that actually performs the compression or decompression
through a function pointer. CodeSurfer/C performs points-to analysis, but PCCA does
not take such indirect calls into account; thus we modified the source to call the procedure

5Our experiments can be found at http://www.cs.wisc.edu/wpis/examples/pcca/

http://www.cs.wisc.edu/wpis/examples/pcca/

126

ID1 ID2 CM FLG MTIME XFL OS ...

ID1, ID2 Fixed constants; gzip’s “magic number”
CM Compression algorithm
FLG Flags, as a bitmap
MTIME The modification time of the original file
XFL Compression-method-specific flags
OS ID of the OS where the file was compressed

Figure 5.8: The specification of gzip’s header format. Each field is 1 byte except for MTIME, which
is 4.

directly. (This is not a fundamental limitation of our technique, though imprecise pointer
analysis could lead to further imprecision.) Similarly, for pigz we had to change macros
into functions and replace a call to the actual I/O routines that used pthread_create with
a direct call. A final modification that applies in a similar manner to both gzip and png2ico
will be described in their respective sections.

As shown in Table 5.7, PCCA reports that some commonly-used programs operate in
a correct manner with regard to their I/O behavior, regardless of the automaton model
used. PCCA also detects synthetic programming errors in small examples, as shown by
the second pair of examples.

As can be seen in the results, the potential NWA benefits did not appear to affect the
results of the analysis. (PCCA does report different results for the example in Section 5.2.2,
but we do not include that experiment in Table 5.7.)

We also performed an informal experiment using the NWA version without Enrich
(as mentioned at the end of Section 5.3). We tested programs that read and write trees
in infix and prefix notation. Both the standard NWA version of PCCA and the no-Enrich
version reported that the infix components are compatible with each other, that the prefix
components are compatible with each other, and that each is incompatible with the other.
As discussed in Section 5.3, the compatibility results are more credible for the no-Enrich
version; the incompatibility results are more credible for the standard NWA version.

Omitting the Enrich step also dramatically decreased determinization time; even gzip-
fix-cons could be determinized in less than one second. Thus, it might be beneficial to try
to combine enrichment and determinization.

127

gzip The analysis of gzip reported a erroneous incompatibility in the distributed version;
we examine the issues more closely here. For gzip, the compressed data itself appears as
just a sequence of bytes, so the compatibility check essentially is testing the compatibility
of the code that reads and writes the header and footer. Figure 5.8 describes the header
format of a gzip file. The code that writes this header (in zip.c) corresponds very closely
to the header format:

put_byte(GZIP_MAGIC[0]); /* magic header */
put_byte(GZIP_MAGIC[1]);
put_byte(DEFLATED); /* compression method */
...
put_byte(flags); /* general flags */
put_long(time_stamp);
...
put_byte((uch)deflate_flags); /* extra flags */
put_byte(OS_CODE);

For this code, PCCA infers the format specified in Fig. 5.8.
However, the code that reads the header is reported to be incompatible; this is a false

positive. Unlike the output procedures, input is always done one byte at a time:

stamp = (ulg)get_byte();
stamp |= ((ulg)get_byte()) << 8;
stamp |= ((ulg)get_byte()) << 16;
stamp |= ((ulg)get_byte()) << 24;

Because the consumer reads the time_stamp field as four individual bytes instead of one
long, it appears incompatible. This is similar to the issue of granularity of types discussed
in Section 5.2.

To address this, we replaced this code (and similar code that reads long fields in the
footer) with a call to a new get_long procedure, and added get_long to the list of I/O
functions. (The actual implementation of get_long does not matter, so it can perform
the same four bytewise reads without changing the program’s behavior.) In addition to
helping PCCA, we feel that the modified code is cleaner: by having the code for reading
and writing a long in one place, it is easier for the programmer to see that those procedures

128

agree, for instance by reading and writing the bytes in the same order. It should even be
possible to use our techniques to perform this check as well, by giving different types to
each byte in the long.)

After making this change, PCCA reports that the programs are compatible. It is unclear
why there is such a dramatic difference between the time it takes to determinize each
version of the consumer in the NWA version. The input NWAs are of almost identical size
and makeup, but it appears that the extra long alphabet symbol in the revised version
causes the determinized NWA to be much bigger (176 states vs. 27). (Note that neither of
these automata are minimal; it could be that the extra size in the revised version could be
reduced to be more in line with the original version.) The sizes of the two automata in the
FA version are much closer.

png2ico For png2ico, we demonstrate a slightly different application of our techniques.
Instead of comparing a producer to a consumer, we compare a producer to a manually-
crafted specification acting as the consumer. This checks that the producer emits only
messages that are allowed by the specification. In the case of png2ico, we see that the
program indeed appears to conform to the specification.

We manually crafted an automaton that describes the format of an icon file [41] and
used that as the consumer. For the ICO format, this was reasonably straightforward and
took less than two hours. Despite the process of creating the NWA for the ICO specification
being straightforward, during the specification’s creation, PCCA reported incompatibility
with png2ico a couple of times. When looking into why, I discovered that I had made minor
errors in the specification.

The automaton allows PCCA to check header information, similar to gzip but with a
much richer format. An icon file can hold several different images. In addition to a global
header (that mainly says how many images there are), there is a directory that gives the
offset and other information about each image and a header for the image data itself. We
can check all of this, leaving only the raw image data itself appearing as a “meaningless”
byte stream. (We cannot check that the image headers actually appear at the correct offsets,
however.)

While most of the output from png2ico is performed through the procedures WriteByte,
WriteWord, and WriteDWord, there are three places where a raw write is done using fwrite.
Two of these locations write a sequence of raw bytes of an image to the file. We could

129

reasonably infer just the regular expression byte* for those calls (similar to the regular
expression PCCA infers for the compressed data in gzip); however, we decided to put in a
bit of extra effort to obtain higher confidence in the result. The two fwrite calls correspond
to the “xor mask” and “and mask” of the bitmap. We manually specified that the first
fwrite call outputs the type “xor mask” bytes and the second call outputs the type “and
mask” bytes (an application of the technique described in Section 5.4), and required that
each bitmap in the icon file contains a sequence of “xor mask” bytes followed by a sequence
of “and mask” bytes. However, there is one call to WriteByte amongst those writing the
“xor mask”, so we had to manually change the type of that call to match that of the preceding
fwrite. (We repeated the experiment but just used byte* for both masks, and PCCA still
reported compatibility.)

The third call to fwrite is used instead of a sequence of four WriteByte calls; the
reason the author chose this is not clear. We replaced this fwrite with the four individual
WriteByte calls.

We only report the results for the version with specific types. The other variants we
tried did not have much effect.

130

6 Adding Loop Counters With XFAs

The inference techniques described in the preceding chapter ignore values of variables
within the programs. In this section, we give an overview of how we pay attention to
certain data values to obtain a more precise format model.

Our goals are to determine two ways in which data values can affect the format:

• For consumers, we would like to find ways in which a data value read early in the
input can affect the format of subsequent portions of the message.

• For producers, we would like to find ways in which a single data value is both written
to an early part of the output and also affects the format that is written later.

For example, consider the two programs shown in Fig. 6.1. In the consumer, the value
read in Line 1 determines part of the format to come — in this case, the number of doubles
that are read later in the format. In the producer, the value ofn that is passed as a parameter
is both written in Line 1 and affects the number of doubles that are written later.

The two ways that data values can affect the format are conceptually duals of each other,
but in terms of what goes on inside the program they are rather different. In the consumer,
there is a flow dependence from the value read early in the message to the control structure
that controls the later format.1 For example, in Fig. 6.1(b), there is a flow dependence
from Line 1 to Line 3. Such a flow dependence would not make sense for the producer,
however — it would correspond to the producer having written out the earlier data value
then immediately reading it back in. Instead, the same external information (in Fig. 6.1(a),
the value of the parameter n) determines both the value of the field early in the message
and the format of the later fields. For example, in Fig. 6.1(a), there is a flow dependence
from the parameter n to Line 1 and another from the parameter n to Line 3, but there is no
dependence (flow or otherwise) from Line 1 to Line 3.

1A dependence is a relation between two statements S1 and S2 that indicates that the two statements
must appear in a particular order. S2 is flow dependent on S1 if S1 writes information that S2 reads. (Flow
dependences are sometimes called read-after-write dependences, or true dependences.)

131

produce(n, a):
1 writeInt(n)
2
3 for i := 1 to n
4 writeDouble(a[i])

(a) Example producer

consume():
1 n := readInt()
2 a := new double[n]
3 for i := 1 to n
4 a[i] = readDouble()
5 return n,a

(b) Example consumer

Figure 6.1: Example producer and consumer

nrows = read_int();
ncols = read_int();
pixel ** image = malloc(sizeof(*image) * nrows);
for (int row=0; row<nrows; ++row) {

image[row] = malloc(sizeof(**image) * ncols);
for (int col=0; col<ncols; ++col) {

image[row][col].red = read_byte();
image[row][col].green = read_byte();
image[row][col].blue = read_byte();

}
}

Figure 6.2: Example program to read a simple image format

The two goals above look at the behavior of each program in a very procedural manner.
By taking a more declarative perspective, we can unify the two goals. For both components,
what we want to find is an invariant that the value written or read at one point in the
message corresponds to a particular format in a different part of the message. In particular:

• We would like to infer and check compatibility of invariants that the value of one field
in the message equals the number of repetitions of a different field or group of fields.

6.1 Overview

Consider the program shown in Fig. 6.2, which operates on a hypothetical, very simple
image format. PCCA infers a format equivalent to the regular expression

int int ((byte byte byte)*)*.

132

The first int corresponds to reading the number of rows, and the second the number of
columns. In our presentation, each of the two *s correspond to a program loop. The inner *
corresponds to reading the pixels belonging to a single row, and always iterates the number
of times specified by the second input int. The outer * corresponds to iterating over the
rows, and always executes number of times specified by the first input int. Chapter 5’s
techniques are unable to capture these semantic constraints, while this chapter will describe
how we can.

In a nutshell, our inference technique begins the same way as PCCA, building a regular
expression where * occurrences correspond to program loops. (This is not how PCCA
was described in the previous chapter, but it is a simplified view.) It will then determine
equality invariants between the number of times each loop executes and values read at
input points (or written at output points). When such an equality is detected, the * is
replaced by a counted exponent referring to the input variable. In the case of Fig. 6.2, the
regular expression given above will be transformed into

r:int c:int ((byte byte byte)c)r (6.1)

(where r and c are dummy variables to which we give more descriptive names).
The expression in Equation (6.1) is never actually materialized; instead, an equivalent

XFA is created.2 However, the intuitive description of replacing a * with a counter that
gets its value from another field is a useful way to think about extensions to the previous
chapter’s techniques.

Our approach finds equality invariants (for example, n equals the number of doubles)
directly, without worrying about the actual data flow within the program. To do so, we first
add instrumentation to the program and then look for invariants (in our case, equalities)
between instrumentation variables. The instrumentation is described in detail in Chapter 4,
but the key piece of instrumentation is the trip counter for each loop, which counts the
number of times the loop executes.

In the example in Fig. 6.1, suppose that the trip count for the consumer’s loop is kc
and the trip count for the producer’s loop is kp. Let nc and np respectively be the I/O

2It is possible to formally define the extension to regular expressions used in Equation (6.1), an extension
we call “message regular expressions” (MREs), which helps justify what we mean by “equivalent.” However,
because MREs are not used in the version of PCCA presented in this chapter, except in this intuitive description,
we omit the formalities.

133

variables added because of Line 1 of the consumer and producer respectively. The invariant
detection will find that kc = nc and that kp = np.

Once we have found invariants of this form, we incorporate them into the respective
automata. We use XFAs, putting information about the values read and the trip counts
into the XFAs’ data values. Each XFA will only accept strings that respect the invariants
found earlier. Strings that only label paths that ignore the invariants (e.g., 2 followed by
3 doubles for Fig. 6.1) will be rejected, in a somewhat analogous way to how NWAs can
reject invalid paths (Section 5.2.2).

6.2 Inferring Format Models

Constructing an XFA model of a program’s I/O format has three steps: build a model of
the program’s control flow (Section 6.2.1), we infer relationships between I/O values and
loop trip counts (Section 6.2.2), and finally we incorporate the relationships into the XFA’s
data transformers (Section 6.2.3).

6.2.1 Modeling control flow

The control flow of the program is modeled by the state portion of the XFA. This is much
the same as the technique discussed in the previous chapter. We begin by producing an
interprocedural control flow graph (ICFG) for the program. For the most part, there is
a 1-to-1 correspondence between nodes in the ICFG and states in the XFA, and between
transitions in the ICFG and transitions in the XFA. Most transitions are labeled with ε
because most programs only perform I/O at a few points.

The exception to the 1-to-1 correspondence comes into play when the subject program
makes a call to one of a designated set of I/O procedures. In Chapter 5, we added a
transition from the call site to the return site labeled with the type of the type of the value
written or read (and did not have edges corresponding to the actual call or return). However,
we need a way for information in the input to move into the XFA’s data value (this point
will be expanded near the end of Fig. 6.3). We do this by viewing each alphabet symbol as
a sequence of bits, rather than an indivisible symbol. We insert the gadget shown in Fig. 6.3
at every node that corresponds to a call to an I/O procedure. For now, we only point out
the structure of the states and transitions, and the data transformers will be explained

134

qv

q ′v

qw

qe

τS (λd.d[i 7→ 0])

τ1 (λd.d[i 7→ d[i] + 1]) τ0 (λd.d) ε (λd.d[i 7→ d[i] + d[i]])

ε (λd.d)

Figure 6.3: The XFA read gadget

in Section 6.2.3. For a given type τ, this gadget accepts a delimiter τS (so that bits from
adjacent fields cannot blend together) and then a sequence of typed bits (τ0 and τ1).

For purposes of this section, we will assume that each I/O procedure call only reads or
writes a single value, but this restriction is easily removed.

Let the ICFG be (V ,E) of nodes and edges. Then we define the following components
of the XFA as follows:

• Σ = {τS, τ0, τ1 | for each type τ} ∪ {$}

• Q = {qv | v ∈ V} ∪ {q ′v | v is a call to an IO procedure} ∪ {accept}

• QD0 = {emain} ×D for the entry point of main (D is defined below) starting in any
data value.

• F = {(accept,d) | d ∈ D = 0}

The state-transition relation δ and data-set transformers U are defined in Fig. 6.4. The
data set is defined in Section 6.2.3.

135

CFG edge Transitions Data transformers
(v, ef) v call site to I/O func with

variable i; w corresponding
return

(qv, τS,qv ′) λd.d[i 7→ 0]
(q ′v, τ0,qw) id
(q ′v, τ1,qw) λd.d[i 7→ d[i] + 1]
(qw, ε,qv ′) λd.d[i 7→ d[i] + d[i]]

(v,w) Edge goes from outside of a
loop with trip count k to inside

(qv, ε,qw) λd.d[k 7→ 0]

(v,w) Edge is back edge in loop with
trip counter k

(qv, ε,qw) λd.d[k 7→ d[k] + 1]

(v,w) Edge goes from inside of a loop
with trip counter k to outside
and there is an I/O relation
k = i

(qv, ε,qw) λd.if d[k] = d[i]
then d
else ∅)

(v,w) Otherwise (qv, ε,qw) λd.d
— — (xmain, $,acc) id

Figure 6.4: XFA state transition procedure δ and data relations U

6.2.2 Finding I/O relations

The goal of this step is to determine equality invariants between I/O values and loop trip
counts. To do this, we instrument the program in question using Snotra and then find
invariants with Daikon, as discussed in Chapter 4.

6.2.3 Modeling I/O relations

Now we would like to incorporate the I/O relationships found using Snotra and Daikon
into the control flow model described in Section 6.2.1. For this, we will use the XFA’s data
set and transformers to enforce that the I/O relationships hold.

Let N = {0, 1, · · · ,n− 1} for some integer n. This set will be the domain over which the
variables count; specifically, the equalities found by Snotra and Daikon will be enforced
modulo n. Let I = {i0, i1, · · · } be the I/O variables found to participate in an equality, and
K = {k0,k1, · · · } be the trip counters found to participate in an equality. For simplicity,
assume that every trip counter is associated with at most one I/O variable and vice versa,
so that we can say i0 = k0, i1 = k1, etc.

We will refer to both the instrumentation variables in Snotra’s instrumentation (Sec-
tion 4.2.2) as well as in the XFA’s variable set as “trip counters” and “I/O variables”, but

136

make no mistake: they are different. The variables in the instrumented version of the
program observe, and provide a means for Daikon’s back end to find emperically-supported
invariants. The corresponding variables in the XFA’s data set are used to enforce that the
observed invariants actually hold in a particular run of the automaton.

An individual data value dwill map each variable to a value, so the data set is the set
of functions D = (V → N). (However, remember that a nondeterministic XFA can have
several such valuations in hand at once.) We will write d[i] for the value of variable i in d,
and d[i 7→ a] to denote the function that acts like d except that i is mapped to a.

Each transformer U(t) is a subset of (V → N) × (V → N). All of the transformers in
the original, nondeterministic XFA will have deterministic data transformers, but they can
become nondeterministic through automaton operations. Thus to simplify the notation
in Fig. 6.4, we treat U(t) as a function D→ D rather than a relation, with one exception:
it is possible for a data value d to have no successor, which we will denote by ∅. (In the
relation view, this says that there is no d ′ for which (d,d ′) ∈ U(t).)

Most transitions in the XFA are simply the identity relation; that is, j ′ = j for all
j ∈ I ∪ K. The exceptions are for read statements and loops. For a read statement with
an instrumentation variable i, the τS transition initializes i to 0, the τ0 and τ1 transitions
increase i by 0 and 1, respectively (thus simulating reading from the most significant bit to
the least significant) and the ε back edge doubles the value because another bit will be read.
For a loop with instrumentation variable k, incoming transitions set k to 0, back edges
increment k, and outgoing edges require that k equals the corresponding input variable.
(The latter requirement is enforced by not providing any reachable next data value when
the condition does not hold. This feature also means that the XFA cannot always determine
the next data value of k by only looking at the current value, as the variables are not always
independent.)

BDD variable order. Recall from Section 3.7.1 that the performance of BDDs is sensitive
to the variable order. The variable order we use interleaves any variables that are compared
at a loop exit. For example, if we have checks that i0 = k0, i1 = k1, etc., then the variables
for i0 and k0 will be interleaved with each other and the variables for i1 and k1 will be
interleaved with each other, but the two groups will be concatenated.

As described in Section 3.5.1, the first step of determinization multiplies the XFAs’
weights (using �) with relations that represent the possible state transitions (e.g., {p→ q}).

137

Because theQ portion of the newD×Q data value needs to be stored in BDDs as well, we
also need BDD variables for the current state. These variables are put at the beginning of
the BDD. This is not necessarily an ideal location, because the value of the current state is
not necessarily unrelated to the value of the counter variables, but it may not be possible to
order the variables so that BDDs remain small in practice for this application. (We also
tried the current state variables at the end of the BDD, as well as interleaving all variables.)

Finally, each logical variable is really two variables: the first holds the value in the left
element of each pair, and the second holds the value in the right element of each pair. We
denote the righthand variables with primed names.

Suppose that we have an XFA with the following characteristics:

• There are two I/O variables i0 and i1

• There are three loop trip counters k0, k1, and k2

• There are two invariants i0 = k0 and i1 = k1 = k2

• The current state variable is q

• All variables are 2 bits

then the variable order will be as follows (using [x]i for the ith bit of x):

[q]0 [q
′]0 [q]1 [q

′]1 [i0]0 [k0]0 [i
′
0]0 [k

′
0]0 [i0]1 [k0]1 [i

′
0]1 [k

′
0]1

[i1]0 [k1]0 [k2]0 [i
′
1]0 [k

′
1]0 [k

′
2]0 [i1]1 [k1]1 [k2]1 [i

′
1]1 [k

′
1]1 [k

′
2]1.

Why is the read gadget necessary? The fact that we need something like the read gadget,
and need to break up each input symbol into its constituent bits, may seem a bit strange.
To motivate the need for read gadgets, consider what would happen without them. We
could have a transition labeled with a type like int. However, int is not actually an input
symbol, only an abstract alphabet symbol; the concrete symbols are things like 0, 1, 42, etc.
Furthermore, suppose that the int transition is associated with an I/O variable i; then the
result of reading the integer must be that i takes on (only) the concrete value. In the XFA
formalism, being able to set i to any ofm different values requiresm different transitions,
because each has to do something different to the data value. This means that the number

138

of transitions corresponding to a read would be exponential in the number of bits, and we
would lose the benefits of thinking about the input in terms of abstract symbols.

Reading bit-by-bit means that we can progressively modify the data value in the way
that is specified by the transformers in Figs. 6.3 and 6.4, and we keep the read gadget small.

Further, it is possibe to think about what the read gadget accomplishes in terms of a
string homomorphism. A string homomorphism is a function f : Σ∗ → Σ∗ that replaces
each symbol with a string. Thinking in terms of the concrete messages, a homomorphism
could replace, for instance, 5 by intSint1int0int1, 11 by intSint1int0int1int1, etc. The
image of a regular language under a homomorphism is still regular, and while we are not
quite doing the same thing, thinking about our technique in terms of homomorphisms
may shed some light on what is going on.

Readers who are used to thinking in program-analysis terms may wonder: if any value
can arise as the net result of a read gadget, why does the read gadget buy anything at
all? Why is it not just equivalent to a transformer that sets the corresponding I/O variable
to unknown? The reason is that each possible value arises on a different string, and the
analysis is sufficiently path sensitive to not combine the values for different strings.

6.3 Optimizations

This section describes two additional optimizations to the XFA compatibility process that
we investigated.

6.3.1 Setting killed variables to a single value

Consider the following XFA:

q0 q1 q2 q3 q4
τ (read i) ε (k := 0) int (id) ε (k =? i)

ε (k := k+ 1)

The XFA inclusion test (Section 3.6) computes the set of weights (or, for the antichains
version, maximal or minimal weights) that it is possible to reach each state with. Because
it is possible for the loop to execute any number of times, and each execution will have a

139

distinct weight (a transformer that sets the trip counter to the number of executions; in the
antichains algorithm, these weights are incomparable and thus will all have to be stored),
the number of weights that will be computed and stored for nodes within the loop (e.g.,
ql) is exponential in the number of bits we are interested in. (That is, it is linear in |N|.)
Unfortunately, this is not just an upper bound; that many nodes really will need to be
created.

However, there is an aspect that we can improve. The exit condition of the loop is i = k,
and any value of i can arise. (This is always the case for the way we build XFAs, because
for any value there is a sequence of τ1 and τ0 bits that will result in i taking that value via
the read gadget.) The exit constraint cuts down on some weights — e.g., ones that set i
to 2 and k to 3 — but there are still an exponential number of them (in the bit size). Now
suppose that we concatenate several of the above automata in a row, as in the following:

q0 q1 q2 q3 q4

q ′0 q ′1 q ′2 q ′3 q ′4

q ′′0 q ′′1 q ′′2 q ′′3 q ′′4

τ (read i0) ε (k0 := 0) int (id) ε (k0 =
? i0)

ε (k0 := k0 + 1)

τ (read i1) ε (k1 := 0) int (id) ε (k1 =
? i1)

ε (k1 := k1 + 1)

τ (read i2) ε (k2 := 0) int (id) ε (k2 =
? i2)

ε (k2 := k2 + 1)

ε

ε

In this version, the exponential effect multiplies. After the first loop, there will be 2n

possible weights. After the second loop, there will be 2n · 2n, because each assignment to
i0 and k0 gets paired with each assignment of i1 and k1. In general, after m loops, there
will be (2n)m possible weights generated at the end.

We are being rather silly by tracking all this information. After all, the value of i0 and
k0 will not have any effect after the end of the first loop. On the exit transition from the first
loop, we can take the extra step of setting i0 and k0 to 0. (Any value would do of course;

140

there are other choices as well.) There will still be 2n possible weights generated at qh1,
but only 1 weight at qe1. Thus there will be 2n weights at qh2, but only 1 weight at qe2. For
this example, we have removed an exponential factor.

The experimental results presented in Section 6.5 bear out the analysis above: this
optimization speeds up this example by an exponential factor.

How do we actually perform this optimization? In fact, figuring out whether a logical
variable can affect the weight in the future is performing a well-known analysis called live-
variable analysis (see, e.g., Aho [1, §9.2.5]). Live-variable analysis determines what variables
are live at each program point. A variable is live if it can be referenced later before being
overwritten. (In our construction, if it can be referenced, then it can affect the weight.)

Suppose that we are given an XFA. We define five functions all of type δ→ P(V):

gen(t) = {x ∈ V | the subexpression · [x] appears in the transformer for t in Fig. 6.4}

kill(t) = {x ∈ V | the subexpression · [x 7→ ·] appears in the transformer for t in Fig. 6.4}

livein(t) = gen(t) ∪ (liveout(t) − kill(t))

liveout(t) =
⋃
t ′∈succ(t) livein(t

′)

killed-by(t) = livein(t) − liveout(t)

Note that the first two procedures are closed form, while livein and liveout are defined
in terms of each other. By finding the minimal solution to these equations, we gain the
information we need.3

For each transition t, killed-by(t) tells us the variables that t’s transformer needs access
to, but that will never be referenced again in the future. We modify the transformer so that,
after performing its usual execution, all variables in killed-by(t) are set to 0. This can be
done by extending the existing transformer with

⊗
x∈killed-by(t) λd.d[x 7→ 0].

6.3.2 Collapsing ε sequences

Another optimization that we tried that does not appear to have a significant effect is
to collapse sequences of ε transitions. Suppose that we have a sequence of ε transitions

3Finding the minimial solution can be done using standard techniques. We do it by treating the standard
technique as a semiring, converting the XFA into a WPDS, and performing a pre*query.

141

(q0,σ,q1)(q1, ε,q2)(q2, ε,q3) · · · (qn−1, ε,qn) where (q1, ε,q2) is the only outgoing transi-
tion fromq1, (q2, ε,q3) is the only outgoing transition fromq2, etc. We collapse this sequence
by removing all of the listed transitions and inserting a new transition (q0,σ,qn). The
weight of the transition is U(q0,σ,q1)⊗

⊗n−1
i=1 U(qi, ε,qi+1). This transformation trivially

leaves the automaton’s language unchanged (it represents the same formal power series).
The reason this optimization might be expected to improve the runtime is that it could

help prevent an analysis from repeatedly having to propagate information down the chain
of states. This would not help when we use FWPDSs as the backing algorithm, but could
potentially help with normal WPDSs.

At the same time, it is simpler and less computationally-intensive than a full ε-removal
process. The reason is that there can be no cycles that the algorithm has to deal with,
because cycles are split at the loop head, which has at least two outgoing transitions. (One
exception is the pathological case that there is an ε cycle with no exit.) We conjecture that
cycles are where most of the computational effort comes in, because the weight has to
“climb up the lattace” until it reaches a fixed point no matter what algorithm is used.

6.4 Tradeoffs with our instrumentation strategy

We now discuss what forms of semantic constraints can be captured by the instrumenta-
tion strategy we follow. The information that is kept by the XFA’s data state and by the
instrumentation that Snotra inserts into the target program is finite. At any point, it only
stores the latest I/O value that was written or read, and it only stores the trip count of
the latest time each loop is executed. In some cases, this is not sufficient to capture the
semantic constraints within a format.

The ICO format discussed in Chapter 1 and Fig. 1.1 provides an example of how our
approach can fall short: the height and width of each image is stored in each image’s
icon directory, but all 〈ico-directory〉s come at the start of each file. A program that writes
or reads ICO files would almost certainly have a single static occurrence of the call that
writes/reads the 〈ico-directory〉’s height field — but the instrumentation for that call would
overwrite the height of the first image when it reads the height of the second, and it would
overwrite the height of the second when it reads the height of the third.

142

I have a plan (which I call “progressive limiting”) that could mitigate the effects of this
limitation, but because of the performance shortcomings we have experienced I have not
explored how well it behaves. Progressive limiting would limit certain looping variables to
1 (so that “the first call” is “the only call”) and explore what new constraints arise under
that limitation. Progressive limiting could be implemented automatically.

Consider the ICO format. Suppose we had a large test suite that includes ICO files with
multiple images. It is likely that the only semantic constraint that would be inferred is
that the count field in the header, ih, matches the number of 〈ico-directory〉s, kd, and the
number of 〈ico-image〉s, ki. For the reasons discussed above, it would not be able to infer
anything about the height or width fields, the number of color planes, etc. Progressive
limiting would see the constraint ih = kd = ki, and would find all the test cases where all
three values were 1. It would then re-run the inference process using just those test cases.
Because there would only be one directory and image in each of those tests, the next round
would be able to find relationships between the height, width, etc. when they exist.

6.5 Experiments

We conducted several experiments using the XFA version of PCCA. The language-inclusion
tests did not perform well enough to do a straight comparison of the producer’s model
with the consumer’s, but they did allow us to try an experiment using several runs to
test inclusion of the automata that contain a subset of the variables in each. (We call such
a subset a variable group.) This experiment has two purposes. First, it was designed to
determine whether the extra repetition counters have the potential to gain precision over
the NWA and FA versions of PCCA — if iterations of one loop could “overlap” with the
iterations of another loop (similar to the problem described at the start of Section 5.4), then
doing a full run would not likely be significantly better than just using ordinary FAs.

Second, running variable-group against variable-group provides an alternative, lower-
cost way of getting an answer. It would be nicer if we could run the full version with all
variables, but it still provides a potentially better answer than the NWA and FA versions
of PCCA. The way PCCA would be used in this manner is as follows. Suppose that the
producer’s model has m variable groups and the consumer’s model has n groups. The
user would performm · n containment checks, comparing every producer variable group

143

with every consumer variable group. If there is some consumer variable group G for
which every containment check produces an “incompatible” result, then the overall answer
should be considered “incompatible”, otherwise the overall answer should be considered
“compatible.” Furthermore, as explained in Section 6.5.1, an ideal result would be that
every consumer group has exactly one producer group where the language is contained;
the closer to this ideal a specific result is, the more confidence the user should have in a
“compatible” answer.

The experiments described in this section should be considered preliminary, and there
are a number of improvements that could be made to their results. (We had the idea of
multiple runs each with single variables late in development, and so have not had time to
explore the consequences.)

6.5.1 XFA benefits evaluation

We performed an evaluation designed to test whether the repetition counters tracked by
the XFA models provide a benefit over the FA and NWA models built by the original
version of PCCA. All tests described in this section were carried out with two bits for each
instrumentation variable, but some of the tests have been run with other numbers of bits
and the results match. (See Section 6.5.3 for more information on the scaling tests we have
performed.)

ICO specification versus ICO specification

To do this, we compared a hand-written XFA specification of the ICO format (modified from
the one used in Section 5.6) against itself. This may seem like a very strange and not very
useful experimental choice, but it provides a measure of evaluation in the following sense.
If it came out that the spec-spec comparison was not capable of distinguishing between
models when the extra repetition information was present (for example, because it was
possible for iterations of one loop to “blend into” another loop, similar to the confusion
between packets that is discussed in Section 5.4), it would present a significant obstacle to
the claim that XFAs are beneficial. Fortunately, this is not the case, and the results are nearly
perfect; in other words, tracking the repetition counts really does refine the automaton’s
language as opposed to just affecting the automaton.

144

As mentioned above, we created an XFA version of the ICO specification discussed in
Section 5.6. The specification has four sets of variables,4 which we refer to as A through D:

Group A tracks the number of actual images within the icon file. (Recall that an icon file
can contain multiple images, for example at different resolutions.) It consists of three
variables: one to hold the value of the count field in the ICO header, one to track the
loop count of the loop that reads icon directories, and one to track the loop count of
the loop that reads the actual images.

Group B tracks the number of colors in an image. It consists of two variables: one to hold
the value of the colors field in the icon directory, and one to track the loop count of
the loop that reads the color palette in the image.

Group C tracks the number of rows in an image. It consists of three variables: one to hold
the value of the height field in the icon directory, one to track the loop count of the
loop that reads each row in the or mask, and one to track the loop count of the loop
that reads each row in the and mask.

Group D is analogous to group C, and tracks the number of columns in the image. It
contains an analogous set of three variables.

From the variables, we looked at six configurations: for each variable set, a version of
the specification containing just that variable set and not tracking the others (referred to
as ico-spec-A through ico-spec-D), a version with no variables (referred to as ico-spec-none,
which is equivalent to the specification in Section 5.6), and a version that tracks all four
sets of variables (ico-spec-all).

4Note that the choices made in the above specification are not the only possibilities for how to write a
program. For instance, the specification conceptually treats each actual image inside the icon file as two
images: the or mask and the and mask. It would be possible (though slightly harder) to write a program
that reads each image is if is one larger image with twice the height. What would happen when using
such a program as the producer? If h is the value of the height field, k is the trip counter for the loop that
reads the rows of the “double-height” image, Snotra/Daikon would likely produce an invariant that says
that k = 2h. However, this invariant would be ignored during construction of the producer XFA, and the
format would, in regular-expression terms, have an uncounted ∗ operator. Checking compatibility with our
current implementation (if it finished) versus the specification would probably result in an incompatibility.
As discussed in Chapter 8 as a potential future direction, the types of invariants that we could enforce in the
XFA is much greater than the equalities that we do now, and linear equalities (like k = 2h) is a good example
of a type of invariant that I think would actually be quite easy to enforce without adding substantially more
to the runtime than pure equalities.

145

We also tried adding separator characters (in the style of Section 5.4). The locations
considered for separators were:

• At the beginning of each icon directory,

• At the beginning of each actual image,

• At the beginning of each color palette entry,

• At the beginning of each row, and

• At the beginning of each pixel.

Note that while these locations are at the beginning of loops that could plausibly be counted
by logical variables, where separators are added and what loops are counted are orthogonal
issues. For the separators, we looked at the following configurations:

• Separators present in all locations, with a unique separator type for each location,

• Separators present in all locations, but with a single type used throughout,

• Just a row separator,

• Just a column separator,

• Both row and column separators of different types, and

• Row separators.

(We did not try just an image separator, just a color separator, or just a directory separator
because the only difficulty seemed to be a blending of the rows and/or pixels within a row.
We anticipate those configurations would produce the same results as no separators.)

For each configuration of separators, we checked language containment of every speci-
fication version acting as a producer with every version acting as a consumer; the results
are given in Table 6.5.

There were three different results; two are shown in the tables and the third is a one-cell
difference from Table 6.5(b). In the following situations, we got the ideal results (discussed
further below and shown in Table 6.5(a)):

• Separators present in all locations, with a unique separator type for each location,

• Separators present in all locations, but with a single type used throughout,

146

ICO specification as consumer
-none -A -B -C -D -all

IC
O

sp
ec

.
as

pr
od

uc
er

-none 3 7 7 7 7 7

-A 3 3 7 7 7 7

-B 3 7 3 7 7 7

-C 3 7 7 3 7 7

-D 3 7 7 7 3 7

-all 3 3 3 3 3 3
(a) The ideal results, achieved if no loop can blend
with another loop and our loop repetition counts
in the XFAs actually gain additional information
over FAs. These results are achieved when there
is a separator annotation between each row of the
image, including when there is universal separator
used everywhere.

ICO specification as consumer
-none -A -B -C -D -all

Pr
od

uc
er

-none 3 7 7 7 7* 7

-A 3 3 7 7 3 7

-B 3 7 3 7 3 7

-C 3 7 7 3 3 7

-D 3 7 7 7 3 7

-all 3 3 3 3 3 3
(b) Results when there is no separator annotation.
In addition, the cell marked with a 7* is incor-
rectly marked as 3when a separator is added be-
tween pixels within a row but not between rows.
Note that even here (with the exception of the last
case), if the columns were scrambled and the cor-
respondence with the rows hidden, it would still
be possible to determine the correspondence.

Table 6.5: XFA ICO specification vs. specification experiments. 3 means the combination was
reported as compatible, and 7 means the combination was reported as incompatible.

• Just row separators, and

• Both row and column separators of different types.

We got good, but not ideal, results — shown in Table 6.5(b) — when there are no separa-
tors, which corresponds to when there are no annotations in the programs. In this case,
there are some non-ideal answers, but there is still potentially enough information to deter-
mine that the inputs are compatible without a priori knowledge that the automata were
the same or what variables in the producer correspond to what variables in the consumer.

We got OK results when there is a column separator but no row separator; these results
are shown in Table 6.5(b) except that the cell marked 7* was reported as 3 instead. We
lose the ability to determine completely what variables correspond, as the ico-spec-none
column has the same behavior as the ico-spec-D column. However, the other three groups
of variables still have perfect results, as does Group D on the producer’s side. (The 7* cell
is a strange result, and I do not have an explanation for it at this time.)

The results when using separators (Table 6.5(b)) are “ideal” in the sense that it shows
that the additional information tracked by the XFA is able to make meaningful distinctions
for every tracked loop. Even in the case that arose when no separator annotations were

147

added, a problem analogous to that discussed in Section 5.4 was largely avoided, and the
iterations of different loops can be distinguished.

Performance for every test that did not involve an ico-spec-all configuration on either the
producer or consumer’s end was well under a second to perform the containment check.
When using ico-spec-all as a producer but not as a consumer (the bottom row), times ranged
from roughly 10–25 seconds; when using ico-spec-all as a consumer but not a producer
(the rightmost column), times ranged from roughly 20–50 seconds); when using ico-spec-all
as both producer and consumer (the bottom-right corner), times ranged from roughly 30
seconds to 2 minutes. Section 6.5.3 gives more information for how certain configurations
scale with the number of bits.

Inferred png2ico XFA versus inferred png2ico XFA

We performed a similar test as that described in the previous subsection, but using automata
inferred from png2ico. To perform these tests, we generated traces for png2ico with two
kinds of tests:

• We converted 20 PNG files to ICO files containing just a single image.

• We converted a single PNG file to ICO files containing multiple copies of that image;
the number varied between one and five copies.

Following the generation of traces, we generated invariants and then an XFA model for
each variable group. The PNG files were selected arbitrarily from files we had lying around
on our system. png2ico is not able to convert every image to an icon: the ICO format itself
limits the image size to 256× 256, and png2ico additionally limits the size and width to be
multiples of 8; our tests were done with successful runs. (Discarding other runs should not
actually affect the results, and was done for expediency.) The runs where png2ico was given
multiple images are not ideal in the sense that it would have been better to use different
images to better match realistic usage. Our use of multiple counts of a single image was
designed to give results similar to what progressive limiting would likely be able to achieve
(see Section 6.4), but using what we had implemented and with a single run.

We modified png2ico to replace a call to fwrite with a loop that wrote each byte. This is
a mechanical replacement that could be done automatically. We also tried a version with
separators — for this, we added a call to a separator function at the start of each loop in the

148

portion of the program that performs I/O; these locations are similar to those in which
separators were added in the ICO specification. (We only tried a version with separate
types for each separator.)

To determine variable groups, we put them into partitions based on what variables are
compared at a loop exit. If two variables are compared, they are put into the same group.
For both the version with and without separators, there were four variable groups inferred:

Group αwas created because of a “spurious” invariant. There is a loop in the program
that outputs some padding at the end of each row of the image (in particular, the
or mask), but this loop is never actually run, most likely because of the separately
imposed constraint that the dimensions of the image are multiples of 8. Consequently
Snotra/Daikon picks up an invariant that this loop is always run 0 times. It also
picks up an invariant that the first byte of output (part of PNG’s magic number) is
0. Because the trip counter and first byte of output are implied by the invariants to
equal, PCCA tracks both variables; but PCCA is not smart enough to make sure that
both of them are actually 0. It would be possible to add support for checking values
against constants, which would actually be faster at runtime than checking them
against each other.

Group β consists of an I/O variable for the count field, a trip counter for the loop that
reads icon directories, and a counter for the loop that reads images. This is essentially
the same as Group A of the ICO specification, but inferred by Snotra/Daikon.

Group γ consists of an I/O variable for the height field of the directory entry, a trip counter
for the loop that reads rows in the or mask, and a trip counter for the loop that reads
rows in the and mask. This is the same as Group C of the ICO specification, but
inferred.

Group δ consists of an I/O variable for the width field of the actual image and a trip
counter for the loop that reads columns in the or mask. (This loop was one of the
ones introduced as a replacement for fwrite.) There are two differences between
this group and Group D of the ICO specification. First, it used a different location
for the width field. As mentioned in Footnote 4, the height and width of each image
appear in two different locations, and PCCA used a different one. (PCCA does not
insert checks for invariants between two I/O variables, although it would certainly

149

png2ico as consumer
-none -α -β -γ -δ

pn
g2

ic
o

as
pr

od
uc

er -none 3 3 7 7 3

-A 3 3 7 3 3

-B 3 3 3 3 3

-C 3 3 7 3 3

-D 3 3 7 3 3
(a) png2ico as producer and consumer, no separa-
tors.

png2ico as consumer
-none -α -β -γ -δ

pn
g2

ic
o

as
pr

od
uc

er -none 3 7 7 7 7

-A 3 3 7 7 7

-B 3 7 3 7 7

-C 3 7 7 3 7

-D 3 7 7 7 3
(b) png2ico as producer and consumer, with sep-
arators.

Table 6.6: png2ico vs png2ico experiments. 3 means the combination was reported as compatible,
and 7 means the combination was reported as incompatible.

be possible for extra runtime cost.) Second, Snotra/Daikon did not infer an invariant
with the trip counter for the loop in the and mask. The and mask data may be encoded
with run-length encoding (RLE), and this would mean that the number of columns
in the and mask actually does not need to match the width field. In that sense, the
fact that Group δ does not match Group D is really a deficiency of the specification
rather than the inference process. It is not clear how to make PCCA support encoding
methods like RLE in a generic fashion.

In addition to the caveats with Groups α and δ given above, Snotra/Daikon did not infer
equality invariants between the count field and the number of iterations of the color palette
loop (Group B of the ICO specification). I did not have time to investigate that issue further.

Table 6.6 reports the compatibility results for the png2ico tests. As can be seen, the
version with the separators gives the ideal results (“ideal” is explained in the previous
subsection). The version without the separator does not work as well — there are a lot of
“compatible” answers that we would like to see as “incompatible.” It is not clear why that
is.

6.5.2 Synthetic performance-scaling evaluation

To see how the runtime is affected by the number of bits used for each logical variable,
we ran the XFA version of PCCA on the synthetic benchmark described in Section 6.3.1,
looking at the effect of the number of loops concatenated together, the number of bits
dedicated to each logical variable, and the optimizations described in the previous section.

150

We look at the impact of all three variables. The number of bits was varied between 1 and
7. The number of cycles was varied between 1 and 7, and for very low numbers of bits,
in powers of 2 up to 256 cycles. (The following subsection discusses scaling for the ICO
specification.)

Experiments in this section were run on an dual quad-core Intel Xeon 2.27 GHz pro-
cessor with 12 GB of RAM, but the XFA version of PCCA is single-threaded. For a BDD
implementation we used version 2.4 of the BuDDy library [50]. The process was configured
so that approximately 8 GB is spent in total on a BuDDy node table with 60 million entries
and a BuDDy operator cache with 15 million entries; the time to initialize these tables,
roughly three to five seconds, is discounted in all benchmarks. (The timed portion of the
benchmarks consists of reading in the automata, constructing the transformers, performing
the enabled optimizations, and performing the inclusion test.)

First, we look at the effect on performance of the number of cycles (along with the
optimizations). Figure 6.7 shows, when 3 bits are used, the effects of the number of
cycles. (3 bits was chosen because it is high enough that we see an interesting climb in the
unoptimized version, but low enough that it does not essentially go from “very low time”
to timeout.) Figure 6.8 shows what happens with just 1 bit.

As can be seen from the figures, there are two behaviors. For the versions that use
the reset-killed-variables optimization discussed in Section 6.3.1, the time grows roughtly
linearly with the number of cycles. This can be seen best in the right-hand portion of the
graphs with a vertical log axis. (In the right-hand portion, the graph is basically a log-log
graph, in which straight lines correspond to linear growth.) Note that in Fig. 6.7(a), because
of the points used on the X axis, there is not actually exponential growth at that part of the
graph.

For the versions that do not use the reset-killed-variables optimization, the time grows
exponentially. This is best seen in the (left portion of) the chart for 3 bits. (In the left-hand
portion, the graph is basically a semi-log graph, in which a straight line correpsonds to
exponential growth.)

The experiments substantiate two claims. First, in the un-optimized version, the time
taken is exponential in the number of repeated loops. Second, the reset-killed-variables
optimization eliminates this exponential to produce linear growth in the number of loops
instead.

151

Second, we look at the effect on performance of the number of bits. Figure 6.9 shows
the effect of varying the number of bits when there are 2 cycles in a row, and Figure 6.10
shows the effect for 3 bits. Here the story is essentially what we expect: the time taken goes
up exponentially with the number of bits. The reset-killed-variables optimization appears
to help some, but really that is just a manifestation of the effect that we already saw: the
exponential increase is being “applied” fewer times in the optimized version.

Finally, note that turning on ε chains does not seem to have much effect.

6.5.3 ICO specification performance scaling evaluation

We also tested how PCCA scales on some of the ICO tests described in Section 6.5.1. We
tested the following pairs of configurations:

• ico-spec-all as both producer and consumer,

• ico-spec-none as producer and ico-spec-A as consumer,

• ico-spec-A as producer and ico-spec-none as consumer,

• ico-spec-A as both producer and consumer, and

• ico-spec-A as producer and ico-spec-B as consumer.

These configuration pairs were chosen as follows. ico-spec-all→ico-spec-all was chosen
because it is the most demanding. Following that, Group A was chosen uniformly at
random from the four groups of variables. ico-spec-none→ico-spec-A and ico-spec-A→ico-
spec-none are the two least-demanding tests involving A, and both are included to show
the differing effects of variables in the producer and consumer. ico-spec-A→ico-spec-A was
chosen because there is correlation between the value of the A variables in the producer and
consumer automata, and thus it is likely to be less demanding than other tests involving
variables in both automata but still be a step up from the previous two tests. Finally,
Group B was chosen at random to form ico-spec-A→ico-spec-B, to show what happens with
different sets of variables in each automata.

For the ico-spec-all→ico-spec-all and ico-spec-A→ico-spec-B pairs, we increased the num-
ber of bits each run by one until they either ran out of time with a five-minute timeout or
ran out of memory (enough to start making my machine page, which happens at 7.5–8 GB

152

1 2 3 4 5 6 7 8 16 32

0

2

4

6

8

10

12

number of cycles

tim
e

(s
ec

.)

(a) Linear y-axis

1 2 3 4 5 6 7 8 16 32

10−2

10−1

100

101

number of cycles

tim
e

(s
ec

.)

ε-collapse/kill
ε-collapse/no-kill
no-collapse/kill
no-collapse/no-kill

(b) Log y-axis

Figure 6.7: Fixing the size of each logical variable to 3 bits, a chart of the effect of the number of
concatenated loops. The heavy grey vertical line at 8 cycles divides the chart into the left
portion, which uses a linear X-axis, and the right portion, which uses a log axis. Both
charts display exactly the same data; the right chart uses a log scale on the Y axis.

1 2 3 4 5 6 7 8 16 32 64 128 256

10−2

10−1

100

101

102

number of cycles

tim
e

(s
ec

.)

ε-collapse/kill
ε-collapse/no-kill
no-collapse/kill
no-collapse/no-kill

Figure 6.8: Fixing the size of each logical variable to just 1 bit (essentially, tracking whether each
loop was taken an even or odd number of times), a chart of the effect of the number of
concatenated loops.

153

1 2 3 4 5 6 7

0

5

10

15

20

number of bits

tim
e

(s
ec

.)

(a) Linear y-axis

1 2 3 4 5 6 7

10−2

10−1

100

101

number of bits

tim
e

(s
ec

.)

ε-collapse/kill
ε-collapse/no-kill
no-collapse/kill
no-collapse/no-kill

(b) Log y-axis

Figure 6.9: Fixing the number of concatenated cycles to 2, a chart of the effect of the number of bits.
Both charts display exactly the same data.

1 2 3 4 5

0

2

4

6

8

10

12

number of bits

tim
e

(s
ec

.)

(a) Linear plot

1 2 3 4 5

10−1

100

101

number of bits

tim
e

(s
ec

.)

ε-collapse/kill
ε-collapse/no-kill
no-collapse/kill
no-collapse/no-kill

(b) Semilog plot

Figure 6.10: Fixing the number of concatenated cycles to 3, a chart of the effect of the number of
bits. Both charts display exactly the same data.

154

ico-spec
versions Number of bits per logical variable

P→ C 1 2 3 4 5 6 7 8 9 10 11
-all→ -all 0.448 25.4 mem
-A→ -B 0.133 0.349 2.53 29.8 time
-A→ -A 0.104 0.152 0.338 1.10 4.61 21.8 mem
-A→ -none 0.096 0.128 0.250 0.700 2.77 12.8 54.6 56.7 240.0 time

-none→ -A 0.094 0.104 0.134 0.157 0.284 0.693 2.16 1.95 10.7 58.2 254

Table 6.11: Time in seconds taken for each ICO specification compatibility result. An entry of “—”
means that test was not run because it would likely not have been interesting, an entry
of “time” means the test took more than five minutes, an entry of “mem” means that
the test caused my system to start paging (at about 7.5–8 GB of memory use by PCCA),
and a blank entry means the test was not run because an earlier test timed out or ran
out of memory.

of use by that process). For the other tests, we increased the number of bits by two each
time (because they scale to larger numbers) and, when encountering a timeout, backed off
1 bit to get the previous time.

The results are shown in Table 6.11. As can be seen, the time goes up exponentially.
In addition, including all variables means that the test times out extremely quickly; one
hypothesis for this is that the variable-killing optimization does not improve things very
much because many variables are “in scope” for almost the entire specification.

A user’s confidence that a 3result is returned only because of arithmetic wrap-around
in the model (but not the program) should go up as more bits are added to the model. As a
result, Table 6.11 shows that, for this example, it is possible to use 4–6 bits in each test (and
thus arithmetic would be modulo 16–64) and still complete all combinations of variables
within minutes.

155

7 Related Work

Lim et al. [48] describe the original File-Format Extractor technique, and created an im-
plementation for binary code. Lim’s work was a significant inspiration to my beginning
steps and to an old version of PCCA. However, the exact techniques she used are different
from mine. In addition, the dissertation has discussed several extensions to Lim’s work
throughout. Further, Lim did not address the format-compatibility problem, but rather
used the inferred format to manually check against a specification, and she did not talk
about input formats.

A line of work by Fisher et al. [35] aims to infer a grammar for the messages that
one component sends another, but takes a very different approach. Instead of analyzing
programs, it examines example output in an attempt to find its structure. The input to
Fischer et al.’s tool is a (fairly large) number of messages. After tokenizing the messages, it
looks at a histogram of the number of times each token appears in each of the messages. If
a token appears in all or most of the messages about the same number of times, then the
algorithm infers that the token in question is part of a struct. If it appears a widely-varying
number of times across the messages, it is assumed to be an element of an array. The tool
evaluates the inferred format using an information-theoretic computation, and possibly
refines the format using some rewriting rules to improve its score.

In contrast to Fisher’s work, our approach looks at the program itself. In addition to
taking into account infrequently-executed paths and not being as subject to the (in)com-
pleteness of the test suite that produces the examples (my techniques have a dependence on
the test suite in terms of what invariants Snotra/Daikon are able to find, but as discussed
previously, we could use a static approach instead), it is not clear how to use their technique
to get a good approximation to the input language of a component. Thus it would be hard
to base a complete format-compatibility tool such as PCCA off of Fisher’s work.

Similarly, Cui, Kannan, and Wang’s Discoverer [23] attempts to pull off a somewhat
similar feat with network communications. It examines network traces that contain mes-
sages using multiple protocols in an attempt to both split up the messages by protocol and

156

infer information about the format. The algorithm proceeds by repeated application of a
clustering technique, which groups messages that share the same format. (The goal is to
arrive at a clustering that is sound in the sense that any two messages in the same cluster
do, in fact, use the same protocol format; having two messages in different clusters that use
the same protocol is acceptable.) Similar clusters are then merged to obtain a more concise
description. The initial clustering is computed by dividing up each message into tokens
that are either text or binary, and grouping messages that agree in their format; textual
fields are split at delimiters such as whitespace, while each byte in a binary sequence is
considered to be its own field. (These may be merged later.) To determine subclusters, the
algorithm infers whether each field contains the size of a variable-length field or the offset
to the end of it. Messages that disagree in this respect are split into different clusters. Next
it finds potential format descriptor fields (FD),1 which can be thought of as the “tag” part
of a tagged union, by looking for fields that take on a small number of values across all
messages. These are assumed to be FD fields, and the cluster is split into one subcluster per
unique value. (Again, these may be merged later.) These specialized clusters may allow
the algorithm to infer that more fields are length fields. Finally, the algorithm attempts to
merge clusters to avoid overspecialization, by using a subsequence alignment algorithm
across the inferred formats. The final output from each cluster consists of information
about how many fields are present, which fields are length fields, which fields are FDs,
and which fields are binary vs. text.

Saxena et al. [73] introduced a technique they call Loop-Extended Symbolic Execution
(LESE). LESE introduces loop trip counters, which makes it possible for the execution
engine to reason about the number of executions of a loop. Saxena et al.’s goal is rather
different than ours, but part of their process involves finding relationships between input
fields and trip counts, much as our goal is for the XFA version of PCCA. While we have
not investigated this possibility too much, it is possible that LESE could be used as an
alternative to Snotra and Daikon. However, Saxena et al. do not address compatibility
between programs, and models inferred in part using LESE would still need to be checked
for compatibility.

1For instance, often messages from one protocol are encapsulated in messages in an another, outer
protocol; the outer protocol will have an FD field specifying what the inner protocol is. A popular example
of this is tunneling insecure protocols, such as remote desktop, over SSH. Note that in Cui’s technique, it is
very likely that HTTP tunnelled over SSH would be considered a different protocol than FTP tunnelled over
SSH, and messages using each would be clustered differently.

157

Devaki and Kanade [28] have the closest piece of related work to this dissertation: they
also statically check compatibility of a producer and a consumer by inferring a model
of both and then checking compatibility of the models. However, Devaki and Kanade’s
models are very different from ours, and are incomparably as powerful. One limitation of
their technique is that they are only considering inferring information about data headers —
they only consider fixed-size messages (or a fixed-size portion of a message) — while our
format models incorporate information about the entire format. In addition, because of
the fixed-size nature of their models, they do not infer anything like loop-repetition counts.
On the other hand, they are able to infer more information about the region of the format
they do consider. Their models consist of a set of “guarded layouts,” where each layout
is a mapping from offsets within the header to the type at that position (like a structure
layout). Thus they are able to handle constructs like type tags, which we leave for future
work. In addition, they do not assume a streaming model, and instead analyze the actual
memory reads and writes that the program makes to a certain region.

There is also a fair bit of work on dynamic instrumentation to perform inference. Often,
the goal is protocol inference; in its broadest terms, protocol inference includes not just the
type of format inference that I discuss, but also inferring a state machine that describes
the protocol. Dynamic techniques, such as those described below, seem to provide good
results for single tests, but they do not necessarily generalize well beyond the tests that were
performed and cannot perform verification. The following paragraphs provide a survey of
such dynamic techniques. It is worth noting that a fundamental difference between these
approaches and ours is in the use of dynamic analysis; the techniques described below
have dynamic analysis at their core, while our use of Snotra and Daikon is one component
that could be easily swapped out for a static technique.

Lin and Zhang [49] describe a dynamic analysis that, given a program that parses its
input using either a recursive-descent predictive parser or an automatically-generated
bottom-up parser and an input, infers the parse tree for that input. (Note that the program
under analysis need not actually build a parse tree itself.) The analyses are built on dynamic
taint-analysis techniques. For top-down parsers, conceptually the analysis proceeds as
follows; the authors describe significant changes to make the analysis scale better. First,
the analyzer constructs the dynamic control-dependence graph (DCDG) for the execution

158

in question. If a program point consumes an input value, then its corresponding node
in the graph is labeled with that input value as a terminal. Each dynamic occurrence of
an instruction corresponds to one node in the DCDG, which means that the graph has
no cycles; a portion of this graph is isomorphic to the parse tree. To find it, the analysis
removes any node that is not an ancestor of a labeled node. For bottom-up parsers, the
analysis watches the parse stack for the push and pop operations that the parser performs.
(It is unclear how much manual effort is needed to identify the location of the stack, but
the authors’ claim is that they analyze stripped executables, and that the parser stack has
some mostly unique characteristics.) The authors leave inferring the grammar as a whole
for future work. Clearly, the techniques presented in the paper only apply to the program’s
input, not output.

Caballero et al. discuss Polyglot [17], a tool that infers the format of protocols a program
communicates with. After running a program under a dynamic taint-analysis monitor, it
performs four analyses offline to determine field separators, “direction fields” (e.g., length
or pointer fields), “keywords” (e.g., the ACCEPT header in an HTTP request), and finally
the boundaries between fields. Conceptually these analyses proceed as follows. Field
separators are found by looking for a character (or string, such as \r\n) that is compared to
most or all of the characters in a field. Direction fields are found in one of two ways: either
the program uses tainted data to compute an address in the message, or it uses tainted
data in the condition of a loop header that walks over a portion of the message. Keywords
are found by looking at where the program compared tainted and untainted data and
found a match. Finally, field boundaries are found in one of two ways. Boundaries of
variable-length fields are determined when the corresponding direction fields are found.
Boundaries of fixed-length fields are determined by merging adjacent bytes any time those
bytes are used by an instruction at the same time. (This method would generally prevent
the technique from finding fixed-length fields wider than a machine word.) Again, the
techniques presented by Caballero et al. only work for received messages, not ones the
program emits.

Other papers that use dynamic taint analysis followed by a post-processing step include
Wondracek et al.’s independent creation of a technique similar to Caballero’s Polyglot,
the main contribution of which is a method for automatically generalizing from multiple
examples; Cui et al.’s Tupni [24], the main contribution of which is the handling of repeated

159

records; and Caballero et al.’s Dispatcher [18], the main contribution of which is the ability to
infer output formats as well as inputs. (Dispatcher’s technique for inferring output formats
is to taint sources of known information, such as system calls that return information about
the environment, with information about the source; if that information shows up in the
output, it is included in the format description.)

Komondoor and Ramalingam developed an analysis to recover an object-oriented data
model from a program written in weakly-typed languages, such as Cobol [46]. It is capable
of recovering information about the record structure of entities that occur in a file, as well
as information about subtyping relationships between such entities.

Rajamani and Rehof [69] developed a way to check that an implementation model
I extracted from a message-passing program conforms to a specification S. Their goal
was to support modular reasoning; they established that if I conforms to S and P is any
environment in which P and S cannot starve waiting to send or receive messages, then P
and I also cannot starve.

There have also been many papers on session types, starting with [38, 39, 63]. In some
sense, this body of work has the same goal that we have—helping to ensure that different
components communicate properly—but their approach is far different. Session types, at a
high level, convey much the same information as our inferred languages. (For instance,
in the syntax of Honda [39], “↑int; (↑char & ↑double)” is the type of a component that
emits an int followed by either a char or double.) Some recent work, e.g., Hu et al.’s [42],
is integrating session types into common programming languages.

In most of this literature, session types need to be incorporated into the language being
used to write the components, which means they cannot be applied to legacy software
without rewriting it. In contrast to these papers, our work analyzes existing C/C++ code for
compatibility by inferring the format. In return for the re-engineering effort, session types
support richer interactions than we currently do; most notably, it can specify bidirectional
communications.

Recently there have been advances in inferring session types, which is much closer to our
goal. Mezzina [56] and Collingbourne and Kelly [22] each developed such an algorithm.
Collingbourne’s is particularly related to PCCA, as they implemented their technique
in a source-to-source translator for C++. However, neither paper really gives enough
information on how it performs in practice to compare to PCCA.

160

In a similar vein — and actually of equivalent power — are channel contracts from the
Singularity OS [34]. Channel contracts specify a protocol between two endpoints as a
state machine, where each state specifies messages that each endpoint can send or receive.
Fähndrich et al. describe an analysis that verifies certain memory-safety properties in
programs that use channel contracts. More recent work has analyzed channel contracts
with respect to deadlocks [79] and developed formal type theories for channels [14].

Behavioral subtyping

There is a lengthy literature on the concept of behavioral subtyping. This line of work attempts
to describe when it is possible to substitute one component for another, taking into account
whether the behaviors (rather than just the interface, as in traditional subtyping) are
compatible. A statement of the requirement of behavior subtyping is expressed in Liskov
and Wing [51]: “Let φ(x) be a property provable about objects x of type T . Then φ(y)
should be true for objects y of type Swhere S is a subtype of T .”

Techniques developed in this field apply to problems of the following form: given a pair
of communicating components P and C, is it possible to substitute a different component,
P ′, for P (resp. substitute C ′ for C)? The answer is “yes” if P ′ is a subtype of P (resp. C ′ is a
subtype of C). This question is of interest if one party is trying to determine whether to
upgrade a component they use, or whether there is a non-backwards-compatible change.

This problem is something like a component-upgrade question — is it possible to upgrade
P or C to a new version? This is related to my format-compatibility goal, but is still a
different question. The question my research tries to answer is “do these two components
cooperate?”, while the question that behavioral subtyping is aimed at is “I have two
components that cooperate; can I replace one of the components with another?”

As an example of work in this area, McCamant and Ernst [53] discuss using Daikon [32]
to infer invariants that apply to each of the old and new versions of the component being
upgraded. The inference of invariants used in the old version would be performed by the
party deciding whether to upgrade, and the invariants produced indicate the properties
of the old component that the system relies on. The inference of invariants in the new
version could be performed by the party that created it in the first place, using their own
test suite. McCamant’s technique infers pre- and post-conditions for each version of the
components. Denote the old version as A, the new version as B, and the pre- and post-

161

conditions as Apre, Apost, Bpre, and Bpost. The upgrade is considered okay if and only if
(Apre → Bpre)∧ ((Apre ∧Bpost)→ Apost). The authors then assume that Bpre → Bpost because
it held in every test case. The second conjunct establishes that, under these assumptions,
the post conditions the system relied on with the old version will continue to hold.) This
formula is tested by submitting it to the Simplify theorem solver [27, 61]. Later, the same
authors extended and modified the technique [54] to be more robust in the face of real-world
problems.

162

8 Conclusions

This dissertation has presented techniques for analyzing programs to determine input
and output formats, and then for determining the compatibility of such formats across
programs. Along the way, we developed a number of algorithms for nested-word automata,
weighted-finite automata, and extended finite automata.

Chapter 2 presented some new observations and algorithms for nested-word automata:

• Several new observations regarding ε transitions in NWAs: (1) the very natural
extension of NWAs that allows ε internal transitions, (2) a description of why allowing
ε on call and return edges is not possible, and (3) an alternative interpretation of ε
transitions that can change (positively or negatively) the number of transitions needed
to recognize a given language,

• A reformulation of Alur and Madhusudan’s determinizattion algorithm that makes
clearer how the algorithm works (along with a description of how to incorporate the
alternative ε semantics),

• The discovery of the fact that Alur and Madhusudan’s Kleene star algorithm was
flawed, and a patch to correct it, and

• A previously-unpublished algorithm for reversing NWAs in our setting.

In addition, the dissertation describes the OpenNWA library, which I had a significant
hand in creating.

The determinization algorithm and observations about the impossibility of ε calls
and returns played a significant role in the development of PCCA. Our formulation of
determinization was needed so that we could perform language containment (as remarked
in Section 2.1.4, Alur and Madhusudan’s two papers were contradictory in what happens
when handling call transitions, and we had to understand which version was correct). The

163

fact that ε transitions cannot label calls and returns led directly to our use of 〈 and 〉 in the
NWA version of PCCA, which in turn led to our need of developing the Enrich operation.

Meanwhile, the alternative ε interpretation arose because of work by Prabhu, Turetsky,
and Reps regarding a particular NWA construction that would benefit from the ability to
use the broader interpretation. There is no support for this interpretation in OpenNWA
(it is primarily helpful to reduce clutter in diagrams of the NWA in question), but the fact
that such an interpretation is consistent is very interesting and helps to fill in knowledge
about NWAs. Similarly, the new reversal algorithm and Kleene star help fill in or correct
knowledge about NWAs, though are not explicitly used in any of our applications.1

Future directions: The alternative ε interpretation is the least-explored of the topics
addressed in Chapter 2. While it certainly seems like existing NWA algorithms such as
intersection, concatenation, and even Kleene star continue to work with the alternative ε
interpretation, we have not explicitly proven these facts. In would also be interesting to
investigate whether actually supporting the alternative interpretation is helpful or not in
practice.

Chapter 3 presented several algorithms and operations for XFAs and WFAs:

• Discussions and comparisons of three methods for performing ε closure of a WFA
(Mohri’s algorithm, the standard iterative WPDS algorithm, and Tarjan’s algorithm
via FWPDS),

• Partially generalizing the XFA determinization algorithm to WFAs, which provides
a choice of two WFA determinization algorithms with different requirements on
the weights: my algorithm, which for a transition (p,σ,q) with weight w requires
computing w� {p→ q}, and Mohri’s algorithm [58, §3.2], which requires taking the
multiplicative inverse of each weight,

• A description of how to compute language containment of two WFAs (subject to
the � restriction) that, in the context of XFAs, differs from the approach of fully-
determinizing the XFAs involved using Smith et al.’s algorithm [76], complementing,
intersecting, and checking emptiness,

1OpenNWA supports both operations of course, but they are present for completeness rather than because
we added them on-demand.

164

• A description of how to use the idea of De Wulf et al.’s antichains algorithms to
improve containment checking.

In addition, we briefly described our implementation of XFAs in WALi that use BDDs.
All of our algorithms were guided by what we perceived as the real needs of the XFA

version of PCCA at the time. The BDD-based operations turned out to be more expensive
than anticipated, unfortunately, and it is unclear how well the algorithms work in practice.

Future directions: One very interesting topic that we have not looked into is how much
our WFA state-determinization algorithm actually generalizes Smith et al.’s XFA description.
We found the formalisms useful for two purposes: (1) it helps guide implementations of
XFAs that are built upon our existing WFA classes, and (2) it allows for some simple proofs
of correctness. However, the state-determinization process imposes a condition that there
be a tensor-product operation that, given a weight w, allows computing w� {q→ p}. It is
not clear what such an operation would be for weight domains that are not relations. Can
that operation be made useful outside of relational domains?

Chapter 4 presented Snotra, a binary front end for Daikon. Combined with the Daikon
back end, Snotra provides a means for obtaining invariants (or at least candidate invariants)
for programs. It is currently targeted toward the instrumentation that is needed for the
XFA version of PCCA, which instruments I/O function calls and loops. In that context, the
invariants it finds correspond to invariants that the value of a field in the message equals
the repetition count of another group of fields.

Future directions: Snotra is a new tool, and there is a lot of potential for it to be used in
other contexts. As mentioned in Chapter 4, it is built to be highly extendable, allowing
reasonably easy specifications about what program points and what “variables” are of
interest. There are multiple tools in our group that have the potential to be able to make
use of candidate invariants to decrease analysis time, including McVeto [82, §3.2]. Junghee
Lim reported that Snotra appeared to be helpful for early attempts at McTreeIC3.

Chapter 5 presented PCCA, a tool that analyzes programs for compatibility. The basic
version performs a control-flow abstraction of the program, using finite automata to model
each program. Even this simple model was able to detect an inconsistency in how gzip reads
and writes part of the files’ headers as well as find unintentional errors in a manually-crafted

165

specification for the ICO format as it was being created. PCCA marked as compatible a
modified version of gzip, png2ico against the manually-crafted specification, and other
programs.

An NWA version of PCCA adds context sensitivity to the producer’s automaton, at a
modest increase in running time. Context sensitivity was not important for our real-world
test cases, but showed its utility in a synthetic example. To make compatibility checking
with NWAs actually return a useful answer, in most cases it is necessary to Enrich the
consumer’s automaton first so that the two components are not required to have the same
internal call/return structure.

Future directions: On the theoretical side, a question that I think would be very interesting
would be to investigate the properties of Enrich. We just sort of use it and remark that it is
somewhat analogous to a regular approximation of the original language, but it would
be interesting to characterize exactly what Enrich does. There are other techniques that
have been suggested for producing a regular approximation to a context-free language, for
example by Mohri and Nederhof [43] and Pereira and Wright [65]; can Enrich be compared
to and contrasted with those? Does such a comparison make sense, and if so, which is
better? (An alternative approach would be to use a pushdown automaton for the producer
in place of the NWA, and then use a slightly more traditional CFL-to-RL approximation in
place of Enrich.)

On the practical side, perhaps the biggest complication to using PCCA is dealing
with how programs actually perform I/O in practice. A lot of programs do not read or
write data in a way that is easy to adapt into the PCCA model, at least under the current
implementation. They do block reads of larger amounts data and read out parts of interest
(probably solvable with a modest amount of engineering effort), perform seeks in a file to get
to the portion of interest (would require a completely new technique), or otherwise violate
PCCA’s assumptions. These limitations have made finding good test cases somewhat
difficult. Loosening the assumptions to cover a wider range of programs would be highly
useful.

Another idea for a future extension is to deal properly with error-handling code. For
example, if the consumer tries to read some data but fails because the input is malformed
and enters some error code and then exits, that path will still correspond to a string in the
program’s language — but it really should not, because that string was not accepted by the

166

consumer in a meaningful sense. Taking error-handling code into account was something
we planned to do “on demand” — if we found an example for which PCCA was producing
the wrong result because of error-handling code, we could handle it at that point. My
rough idea was to use an existing technique to detect code that is likely to be handling
errors, and then simply disconnect it from being able to reach the automaton’s accepting
state. The disconnection would prevent strings that need to traverse the error handling
code from being accepted. We never ran into the apparent need to do anything special
with error-handling code, but it is something that would be a possibility if this research is
carried forward.

Chapter 6 described a version of PCCA that is able to incorporate information involv-
ing certain kinds of data flow within the program. We focus on inferring and checking
compatibility of invariants that the value of one field in the message equals the number of
repetitions of a different field or groups of fields. We instrument the programs of interest,
find invariants using Snotra and Dakion, and then incorporate those invariants into the
model of the programs. XFAs are used to store information about the values read or written
and loop trip counts, which form the basis of the invariants that the model enforces.

Future directions: The obvious future work here is to find a way to adapt the ideas
developed by this section in a way that works fast enough to run on real programs.

If that can be solved, then there are a number of very interesting avenues that can be
followed. In particular, we focus on counted fields in the format. There are a number of
other format features that one could capture. For instance, another format feature that is
used a lot is something like a type tag: there is one field that can take on any of a small
number of choices, and the value of that field controls which of a set of options is read later.
For example, consider the following code:

1 type = read_char()
2 if type == ’A’:
3 x = read_double()
4 else:
5 y = read_string()

167

PCCA would infer the following regular expression:

char (double | string)

However, a technique much like our way of dealing with counted fields could determine
that, for instance, double is only read if the first char is “A”. This could be denoted by
something like

τ : char (a→ double |τ (other)→ string)

where the |τ specifies that the choice of alternative depends on the value that was read
at τ. This relationship could be found and enforced almost identically to the field counts:
Snotra/Daikon would determine that at Line 3, type has the value “A” (or more specifically,
that the value read on Line 1 was “A”), and then that constraint would be enforced in the
XFA much like the exit constraint from a cycle.

The idea in the previous paragraph can potentially be extended to many data behaviors.
If there is some invariant that Daikon is able to find that seems like it could help with
format compatibility, all that needs to be done is to make sure that the XFA’s transformers
mimic the program’s behavior with regards to relevant portions of the program. If y > 5
is an invariant that Snotra/Daikon found for some program point and there is reason to
believe that the invariant is important, then the XFA could potentially track changes to
y and then enforce that y > 5 at that program point. These enforcement constraints can
become arbitrarily difficult as memory is manipulated, but there may be a large set of facts
that are relatively easy to model.

Finally, a wild out-there idea would be to incorporate a CEGAR loop [20] into PCCA.
In particular: if a counterexample s to P ⊆ C is found, use symbolic execution or another
technique to determine whether s is actually feasible in P. If not, then refine P to exclude
s. How to actually perform the refinement is an open question; perhaps it would use
something related to the previous paragraph. In addition, the technique as just explained
only accounts for one of the two kinds of errors; it is not clear what to use as a basis for
refinement if PCCA finds that P ⊆ C holds.

168

Bibliography

[1] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles,
Techniques, & Tools. Addison-Wesley, second edition, 2006.

[2] Jürgen Albert and Jarkko Kari. Digital Image Compression, chapter 11. In Doste et al.
[29], 2009. Online edition.

[3] Cyril Allauzen, Michael Riley, Johan Schalkwyk, Wojciech Skut, and Mehryar Mohri.
OpenFst: A general and efficient weighted finite-state transducer library. In Conf. on
Impl. and Applications of Automata, 2007.

[4] Rajeev Alur. personal communication, August 2011.

[5] Rajeev Alur. Nested words, 2011. http://www.cis.upenn.edu/~alur/nw.html.

[6] Rajeev Alur and P. Madhusudan. Visibly pushdown languages. In Symp. on Theory of
Comp., 2004.

[7] Rajeev Alur and P. Madhusudan. Adding nesting structure to words. In Developments
in Lang. Theory, 2006.

[8] Rajeev Alur and P. Madhusudan. Adding nesting structure to words. J. ACM, 56(3),
2009.

[9] Christel Baier, Marcus Größer, and Frank Ciesinki. Model Checking Linear-Time Proper-
ties of Probabilistic Systems, chapter 13. In Doste et al. [29], 2009. Online edition.

[10] G. Balakrishnan and T. Reps. Analyzing memory accesses in x86 executables. In
Comp. Construct., pages 5–23, 2004.

[11] Arati Baliga, Vinod Ganapathy, and Liviu Iftode. Automatic inference and enforce-
ment of kernel data structure invariants. In Annual Computer Sec. Applications Conf.,
December 2008.

http://www.cis.upenn.edu/~alur/nw.html

169

[12] Beate Bollig and Igno Wegener. Improving the variable ordering of OBDDs is NP-
complete. IEEE Trans. on Computers, 45(9), 1996.

[13] Benedkit Bollig, Joost-Pieter Katoen, Carsten Kern, Martin Leucker, Daniel Neider,
and David R. Piegdon. libalf: The automata learning framework. In Computer Aided
Verif., 2010.

[14] Viviana Bono, Chiara Messa, and Luca Padovani. Typing copyless message passing.
In European Symp. on Programming, 2011.

[15] Víctor Braberman, Federico Fernández, Diego Garbervetsky, and Sergio Yovine. Para-
metric prediction of heap memory requirements. In Int. Symp. on Mem. Mgmt., pages
141–150, Tucson, AZ, USA, June 7–8, 2008.

[16] Randal E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE
Trans. on Computers, C-35(8), 1986.

[17] Juan Caballero, Heng Yin, Zhenkai Liang, and Dawn Song. Polyglot: Automatic
extraction of protocol message format using dynamic binary analysis. In Conf. on
Comp. and Commun. Sec., 2007.

[18] Juan Caballero, Pongsin Poosankam, Christian Kreibich, and Dawn Song. Dispatcher:
Enabling active botnet infiltration using automatic protocol reverse-engineering. In
Conf. on Comp. and Commun. Sec., 2009.

[19] Raymond Chen. The evolution of the ICO file format (parts 1–4), Oct 2010.
http://blogs.msdn.com/b/oldnewthing/archive/2010/10/18/10077133.aspx,
http://blogs.msdn.com/b/oldnewthing/archive/2010/10/19/10077610.aspx,
http://blogs.msdn.com/b/oldnewthing/archive/2010/10/21/10078690.aspx,
http://blogs.msdn.com/b/oldnewthing/archive/2010/10/22/10079192.aspx.

[20] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
Counterexample-guided abstraction refinement for symbolic model checking. J.
ACM, 50(5), September 2003.

[21] codesurfer. CodeSurfer system, 2013. www.grammatech.com/products/codesurfer.

[22] Peter Collingbourne and Paul H J Kelly. Inference of session types from control flow.
Electr. Notes Theor. Comp. Sci., 238(6), 2010.

[23] Weidong Cui, Jayanthkumar Kannan, and Helen J. Wang. Discoverer: Automatic
protocol reverse engineering from network traces. In USENIX Sec. Symp., 2007.

http://blogs.msdn.com/b/oldnewthing/archive/2010/10/18/10077133.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2010/10/19/10077610.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2010/10/21/10078690.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2010/10/22/10079192.aspx

170

[24] Weidong Cui, Marcus Peinado, Karl Chen, Helen J. Wang, and Luis Irun-Briz. Tupni:
Automatic reverse engineering of input formats. In Conf. on Comp. and Commun. Sec.,
2008.

[25] M. De Wulf, L. Doyen, T. A. Henzinger, and J.-F. Raskin. Antichains: A new algorithm
for checking universality of finite automata. In Computer Aided Verif. 2006.

[26] M. De Wulf, L. Doyen, T. A. Henzinger, and J.-F. Raskin. Slides for Antichains: A new
algorithm for checking universality of finite automata [25], 2006. http://www.lsv.
ens-cachan.fr/~doyen/antichains/slides/antichains.pdf.

[27] David Detlefs, Greg Nelson, and James B. Saxe. Simplify: A theorem prover for
program checking. J. ACM, 52(3), 2005.

[28] Pranavadatta Devaki and Aditya Kanade. Static analysis for checking data format
compatibility of programs. In Found. of Softw. Tech. and Theoretical Comp. Sci., 2012.

[29] Manfred Doste, Werner Kuich, and Heiko Vogler, editors. Handbook of Weighted Au-
tomata. Springer Berlin Heidelberg, 2009. Online edition.

[30] Evan Driscoll, Amanda Burton, and Thomas Reps. Checking conformance of a pro-
ducer and a consumer. In Found. of Softw. Eng., 2011.

[31] Evan Driscoll, Aditya Thakur, Amanda Burton, , and Thomas Reps. WALi: Nested-
word automata. TR-1675R, Comp. Sci. Dept., Univ. of Wisconsin, Madison, WI, Septem-
ber 2011.

[32] Michael D. Ernst, Jake Cockrell, William G. Griswold, and David Notkin. Dynamically
discovering likely program invariants to support program evolution. IEEE Trans. on
Softw. Eng., 27(2), February 2001.

[33] Zoltán Ésik and Werner Kuich. Finite Automata, chapter 3. In Doste et al. [29], 2009.
Online edition.

[34] M. Fähndrich, M. Aiken, C. Hawblitzel, O. Hodson, G. Hunt, J. R. Larus, and S. Levi.
Language support for fast and reliable message-based communication in Singularity
OS. In European Conf. on Comp. Sys. ACM, 2006.

[35] Kathleen Fisher, David Walker, Kenny Q. Zhu, and Peter White. From dirt to shovels:
Fully automatic tool generation from ad hoc data. In Princ. of Prog. Lang., 2008.

[36] Oliver Friedmann, Felix Klaedtke, and Martin Lange. Ramsey goes visibly pushdown.
In Intl. Colloq. on Automata, Lang., and Prog., 2013.

http://www.lsv.ens-cachan.fr/~doyen/antichains/slides/antichains.pdf
http://www.lsv.ens-cachan.fr/~doyen/antichains/slides/antichains.pdf

171

[37] David Garlan, Robert Allen, and John Ockerbloom. Architectural mismatch: Why
reuse is so hard. IEEE Softw., 12(6), November 1995.

[38] Simon Gay, Vasco Vasconcelos, and Antonio Ravara. Session types for inter-process
communication. TR-2003-133, Dept. of Computing Sci., Univ. of Glasgow, March 2003.

[39] Kohei Honda. Types for dyadic interaction. In Conf. on Concurrency Theory. 1993.

[40] John E. Hopcroft, Rajeeve Motwani, and Jeffrey D. Ullman. Introduction to Automata
Theory, Languages, and Computation. Addison-Wesley, second edition, 2001.

[41] John Hornick. Icons, Sept. 1995. http://msdn.microsoft.com/en-us/library/
ms997538.aspx.

[42] Raymond Hu, Dimitrios Kouzapas, Olivier Pernet, Nobuko Yoshida, and Kohei Honda.
Type-safe eventful sessions in java. In European Conf. on Obj.-Oriented Prog. Springer,
2010.

[43] Jean-Claude Junqua and Gertjan van Noord, editors. Robustness in Language and Speech
Technology. Kluwer Academic Publishers, 2000.

[44] N. Kidd, A. Lal, and T. Reps. WALi: The Weighted Automaton Library, 2007.
www.cs.wisc.edu/wpis/wpds/download.php.

[45] Kevin Knight and Jonathan May. Applications of Weighted Automata in Natural Language
Processing, chapter 14. In Doste et al. [29], 2009. Online edition.

[46] Raghavan Komondoor and G. Ramalingam. Recovering data models via guarded
dependences. In Working Conf. on Rev. Eng., 2007.

[47] Akash Lal and Thomas Reps. Improving pushdown system model checking. In
Computer Aided Verif., 2006.

[48] Junghee Lim, Thomas Reps, and Ben Liblit. Extracting output formats from executa-
bles. In Working Conf. on Rev. Eng., 2006.

[49] Zhiqiang Lin and Xiangyu Zhang. Deriving input syntactic structure from execution.
In Found. of Softw. Eng., 2008.

[50] Jørn Lind-Nielsen. BuDDy: A BDD package.

[51] Barbara H. Liskov and Jeannette M. Wing. A behavioral notion of subtyping. ACM
Trans. on Prog. Lang. and Syst., 16(6), 1994.

[52] P. Madhusudan. Visibly pushdown automata – automata on nested words, 2009.
http://www.cs.uiuc.edu/~madhu/vpa/.

http://msdn.microsoft.com/en-us/library/ms997538.aspx
http://msdn.microsoft.com/en-us/library/ms997538.aspx
http://www.cs.uiuc.edu/~madhu/vpa/

172

[53] Stephen McCamant and Michael D. Ernst. Predicting problems caused by component
upgrades. In Found. of Softw. Eng., 2003.

[54] Stephen McCamant and Michael D. Ernst. Early identification of incompatibilities in
multicomponent upgrades. In European Conf. on Obj.-Oriented Prog., 2004.

[55] K. McMillan. Symbolic Model Checking. Kluwer Acad., 1993.

[56] Leonardo Gaetano Mezzina. How to infer finite session types in a calculus of services
and sessions. In Coordination Models and Lang. 2008.

[57] Mehryar Mohri. Finite-state transducers in language and speech processing. Compu-
tational Linguistics, 23(2), June 1997.

[58] Mehryar Mohri. Generic ε-removal algorithm for weighted automata. In Conf. on
Impl. and Applications of Automata. Springer, 2000.

[59] Mehryar Mohri, Fernando C. N. Pereira, and Michael D. Riley. AT&T FSM library –
finite-state machine library, 2002. http://www2.research.att.com/~fsmtools/fsm/.

[60] Anders Møller. dk.brics.automaton – finite-state automata and regular expressions
for Java, 2010. http://www.brics.dk/automaton/.

[61] Charles Gregory Nelson. Techniques for program verification. PhD thesis, Standford
University, Stanford, CA, USA, 1980.

[62] H. Nguyen. Visibly pushdown automata library, 2006. http://www.emn.fr/z-info/
hnguyen/vpa/.

[63] Oscar Nierstrasz and Michael Papathomas. Viewing object as patterns of communi-
cating agents. In Obj.-Oriented Prog., Sys., and Applications, 1990.

[64] Fernando Pereira, Michael Riley, and Richard Sproat. Weighted rational transductions
and their application to human language processing. In Workshop on Human Lang.
Tech., 1994.

[65] Fernando C. N. Pereira and Rebecca N. Wright. Finite-state approximation of phrase
structure grammars. In Assoc. for Comp. Linguistics, 1991.

[66] Jeff H. Perkins, Sunghun Kim, Sam Larsen, Saman Amarasinghe, Jonathan Bachrach,
Michael Carbin, Carlos Pacheco, Frank Sherwood, Stelios Sidiroglou, Greg Sullivan,
Weng-Fai Wong, Yoav Zibin, Michael D. Ernst, and Martin Rinard. Automatically
patching errors in deployed software. In Proceedings of the 22nd ACM Symposium on
Operating Systems Principles, October 12–14, 2009.

http://www2.research.att.com/~fsmtools/fsm/
http://www.emn.fr/z-info/hnguyen/vpa/
http://www.emn.fr/z-info/hnguyen/vpa/

173

[67] MIT program analysis group. The Daikon invariant detector, 2013. http://groups.
csail.mit.edu/pag/daikon/.

[68] Paradyn Project. Dyninst: Putting the performance in high performance computing.
http://www.dyninst.org.

[69] Sriram K. Rajamani and Jakob Rehof. Conformance checking for models of asyn-
chronous message passing software. In Computer Aided Verif., 2002.

[70] G. Ramalingam, John Field, and Frank Tip. Aggregate structure identification and its
application to program analysis. In Princ. of Prog. Lang., 1999.

[71] Thomas Reps, Susan Horwitz, and Mooly Sagiv. Precise interprocedural dataflow
analysis via graph reachability. In Princ. of Prog. Lang., 1995.

[72] Thomas Reps, Stefan Schwoon, Somesh Jha, and David Melski. Weighted pushdown
systems and their application to interprocedural dataflow analysis. Sci. of Comp. Prog.,
58(1–2), October 2005.

[73] Prateek Saxena, Pongsin Poosankam, Stephen McCamant, and Dawn Song. Loop-
extended symbolic execution on binary programs. In Int. Symp. on Softw. Testing and
Analysis, 2009.

[74] David Schuler, Valentin Dallmeier, and Andreas Zeller. Efficient mutation testing by
checking invariant violations. In Int. Symp. on Softw. Testing and Analysis, July 2009.

[75] Michael Sipser. Introduction to the Theory of Computation. Thompson Course Technol-
ogy, second edition, 2006.

[76] Randy Smith, Christan Estan, and Somesh Jha. XFA: Faster signature matching with
extended automata. In Symp. on Sec. and Privacy, 2008.

[77] Randy Smith, Cristian Estan, Somesh Jha, and Shijin Kong. Deflating the big bang:
fast and scalable deep packet inspection with extended finite automata. In SIGCOMM,
2008.

[78] Varun Srivastava, Michael D. Bond, Kathryn S. McKinley, and Vitaly Shmatikov. A
security policy oracle: detecting security holes using multiple api implementations.
In Prog. Lang. Design and Impl., 2011.

[79] Z. Stengel and T. Bultan. Analyzing Singluarity channel contracts. In Int. Symp. on
Softw. Testing and Analysis. ACM, 2009.

[80] Robert Endre Tarjan. Fast algorithms for solving path problems. J. ACM, 28(3), 1981.

http://groups.csail.mit.edu/pag/daikon/
http://groups.csail.mit.edu/pag/daikon/
http://www.dyninst.org

174

[81] Robert Endre Tarjan. A unified approach to path problems. J. ACM, 28(3), 1981.

[82] A. Thakur, J. Lim, A. Lal, A. Burton, E. Driscoll, M. Elder, T. Andersen, and T. Reps.
Directed proof generation for machine code. TR 1669, UW-Madison, April 2010.
Abridged version published in CAV 2010.

[83] MIT theory of computation group. IOA language and toolset, 2013. http://groups.
csail.mit.edu/tds/ioa/.

http://groups.csail.mit.edu/tds/ioa/
http://groups.csail.mit.edu/tds/ioa/

	Contents
	List of Figures, Tables, and Listings
	Abstract
	Introduction
	File Formats
	Surface syntax of the ICO format
	Semantic constraints on the input
	Input semantics

	Format Inference and Compatibility Checking
	Format inference
	Modeling programs vs modeling formats
	Format compatibility

	Dissertation Overview

	Tools
	Nested-Word Automata (NWAs)
	Definitions and Theory
	Informal Description of NWAs [background]
	Formal Definition of NWAs [background]
	NWAs and epsilon transitions [new]
	NWA determinization [adaption/background]
	Kleene star [adaption]
	Weakly-hierarchical-preserving NWA Reversal [new]

	The OpenNWA Library [new]
	Supported Operations
	Client Information
	Inter-operability with WPDSs
	OpenNWA uses

	Related Work

	Extended Finite Automata (XFAs) and Weighted Finite Automata (WFAs)
	Formal definition of extended finite automata (XFA) [background]
	Weighted finite automata [background]
	Interpreting an XFA as a WFA [adaption/new]
	Symbolic epsilon closure [new/adaption]
	Performance comparison of epsilon closure methods

	State-Determinization [adaption/background]
	Lifting the data set from D to QD and adjusting transformers
	Determinize the state portion of the WFA

	Language containment
	The powerset semiring [background and new]
	WFA universality [new]
	WFA cross product [adaption/new]
	Basic inclusion test [new]
	Speeding up operations with antichains [as indicated]
	Complexity of XFA universality and inclusion testing [new]

	Representing relations as BDDs [background]
	A brief introduction to BDDs
	Representing non-Boolean functions and relations with a BDD

	XFA implementation in WALi [new]

	A Binary Front End for Daikon
	Daikon background
	Snotra: a new Daikon front end
	Motivation
	How Snotra works
	Instrumentation for field values
	Instrumentation for loop trip counts
	Example instrumentation

	Application Compatibilty Checking
	Control-Flow Format Compatibility
	Overview
	Building FA and NWA Models of a Program
	Knowledge about I/O procedures
	Benefits of Using NWAs

	Enriching NWAs for Compatibility
	Using PCCA for more than types
	PCCA Implementation
	Seeding the System with I/O Procedures
	Removing Irrelevant Procedures

	Experiments

	Adding Loop Counters With XFAs
	Overview
	Inferring Format Models
	Modeling control flow
	Finding I/O relations
	Modeling I/O relations

	Optimizations
	Setting killed variables to a single value
	Collapsing sequences

	Tradeoffs with our instrumentation strategy
	Experiments
	XFA benefits evaluation
	Synthetic performance-scaling evaluation
	ICO specification performance scaling evaluation

	Related Work

	Conclusions
	Bibliography

