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Abstract 

 

 The reversible phosphorylation of proteins is central to the regulation of most aspects of 

cell function, including cell cycle control, receptor-mediated signal transduction, cell 

differentiation and proliferation, and metabolism. Characterization of phosphorylation sites on 

phosphorylated proteins is crucial in signaling pathways, and quantification of phosphorylation 

level is shown to be relevant in understanding disease pathology. In the phosphorylation event, 

protein kinases are responsible for transporting phosphate groups to their substrate, and these 

proteins are expressed in relatively low abundance but in large varieties. In recent years, top-down 

proteomics has emerged as a powerful technology capable of characterizing and quantifying 

proteoforms arising from post-translational modifications, alternative splicing, and sequence 

variations at the intact protein level. In this dissertation, Chapter 1 investigated the impact of 

phosphorylation on phosphoprotein quantification by top-down mass spectrometry. Chapter 2 

described a method to comprehensively characterize an intat phosphoprotein which is heavily 

phosphorylated. Chapter 3 is a pilot study on the development of  a nanoproteomics platform to 

enable intact protein kinase enrichment for top-down mass spectrometry analysis. In Chapter 4, a 

universal and user-friendly software environment was developed for top-down proteomics 

community. Finally, Chapter 5 showed the development of a machine learning strategy for spectral 

deconvolution to aid top-down data analysis. I envision the development described in this 

dissertation will enable comprehensive characterization of phosphoproteins with accurate 

phosphoprotein quantification, enrichment of low-abundance proteins for mass spectrometry 

analysis, and high-throughput data analysis for top-down proteomics. 
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Introduction to Protein 

Protein Structure 

 The central dogma of molecular biology describes a process of the flow of genetic 

information in the biological system.1 DNA molecules containing genetic information are 

transcribed into RNA molecules, which are then translated into proteins. When compared to DNA 

and RNA, proteins are much more diverse. Protein structures are categorized in four levels: 

primary structure, secondary structure, tertiary structure, and quaternary structure.  

 The primary structure of proteins focuses on amino acid residues. Twenty proteinogenic 

amino acids are used in biosynthesis of proteins, and the amino acids in the polypeptide chain are 

connected by amide bonds. All of the amino acids residues, except for proline and glycine, have a 

primary amino group and a carboxyl group; where they differ is in their side chains, which can fall 

under the classifications of positively charged, negatively charged, polar and uncharged, and 

hydrophobic. Proline is the only amino acid containing a secondary amine, which directly connects 

with the main chain of the amino acid. Glycine does not have a side chain. For the hydrophobic 

side chains, structural motifs can range from a simple alkane chain with or without branching to 

ring systems containing phenyl and indole groups. 

 The pKa of the amino group, carboxyl group, and the side chains determines the reactivity 

of the amino acid. At physiological pH (~ 7.4), the amino acid is shown as a zwitterionic species 

in which the amino group is protonated and the carboxyl group is deprotonated. Furthermore, at 

physiological pH, the carboxylic side chains of both aspartic acid (pKa = 3.71) and glutamic acid 

(pKa = 4.15) are deprotonated, whereas the amino group on the side chain of lysine (pKa = 10.67) 

is protonated. Finally, the side chains of amino acids such as cysteine (pKa = 8.14) and tyrosine 

(pKa = 10.10) are protonated but uncharged at physiological pH; however, deprotonation will take 
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place upon elevating solution pH above the side chain pKa level. Being able to discern features of 

amino acids, such as the variations in side chain structure and pKa values, is c rucial to 

understanding biological processes. Moreover, researchers harness this knowledge in order to 

design unnatural amino acids, perform biochemical reactions, and create new digestive enzymes.2-

5 

 Protein secondary structure is characterized by the local folded structures that form within 

the primary sequence of the polypeptide as a result of the interactions between atoms of the  

backbone. Two main structures include the α-helix and the β-pleated sheet. Hydrogen bonding 

between the amide proton from one amino acid and the carbonyl oxygen from another amino acid 

allows these secondary structures to hold their shape, but the hydrogen bonding patterns within 

these two structures are different. In an α-helix, the helical structure resembles a curled ribbon, 

with each turn containing 3.6 amino acids. The side chains of the amino acids stick outward from 

the helices, allowing side chain interactions with the outer environment. In a β-pleated sheet, 

segments of polypeptide chains align with each other and are held together by a hydrogen bonding 

network between sheets. Two types of β-pleated sheet include parallel and anti-parallel, which 

differ in their hydrogen bonding patterns. Other secondary structures include turns, loops, and 

paperclips. 

 Tertiary structure describes the overall three-dimensional structure of polypeptides. The 

main player in tertiary structure is the interaction between the side chains of the polypeptide 

sequence. Interactions such as hydrogen bonding, ionic bonding, dipole-dipole interactions, and 

London dispersion forces contribute to the tertiary structure. In addition, interactions with the outer 

environment determine the folding of polypeptide. For instance, in an aqueous environment, amino 

acids containing hydrophobic side chains favor the inside of a polypeptide, while those with 
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hydrophilic residues tend to interact favorably with the outside aqueous environment.  Disulfide 

bonds also shape the tertiary structure by linking two cysteine residues together. Finally, 

quaternary protein structures can be found in proteins that contain several subunits, which can be 

viewed as assembly of several tertiary structures. 

  

Protein Reversible Phosphorylation 

Phosphorylation 

 Phosphorylation, which takes place at serine, threonine, and tyrosine, is a ubiquitous and 

important PTM in mammalian cells.6-7 Reversible phosphorylation, which is constituted by 

phosphorylation and dephosphorylation, plays an integral role in regulating the biological activity 

of proteins, and is thus involved in modulating numerous cellular processes such as cell cycle 

control, cell growth, apoptosis, and signaling transduction pathways.8 Specifically, protein 

phosphorylation can alter the conformation of a protein between active and inactive states, and it 

can allow for proteins to bind to downstream partners. The structural change arising from 

phosphorylation at Thr-197 of the PKA C-subunit has been demonstrated to be relevant to the 

activation of the kinase activity.9 The epidermal growth factor receptors are phosphorylated at 

different tyrosine residues, which initiates recruitment of various phosphotyrosine -containing 

motifs such as Grb2-Sos complex, Class I phosphatidylinositol 3-kinases, and phospholipase Cg 

for different downstream signaling pathways.10 Moreover, protein phosphorylation can alter the 

protein turnover number and its activity. For example, phosphorylation at PEST sequence 

modulates the proteosomal-medidate rapid turnover of proteins.11 In the case of 5-

hydroxyconiferaldehyde O-methyltransferase, the enzymatic activity is controlled by 

phosphorylation for poplar monolignol biosynthesis.12 Lastly, protein phosphorylation induces 
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changes in protein localization across cellular compartments as well as PTM crosstalk with other 

partners. In the case of Cucumber Mosaic Virus 2b protein, phosphorylation allows it to shuttle 

between the cytoplasm and nucleus for protein function.13 Phosphorylation at certain motifs 

inhibits O-GlcNacylation through PTM crosstalk mechanism.14 

 Because of the importance of phosphorylation, altered phosphorylation levels have been 

associated with the progression of diseases such as cancer, cardiovascular disease, and 

neurodegenerative disease. Cancer is often characterized by its aberrant signaling pathways. This 

includes mis-regulated expression resulting in changes in turnover of kinases that is responsible 

for protein phosphorylation, as well as abnormal phosphorylation such as up/down-regulation of 

phosphorylation levels.15-16 Myofilaments and Z-disc proteins showed reduction in 

phosphorylation in acute myocardial infarction.17 Phosphorylation of Tau protein is also relevant 

to the disease progression of Alzheimer’s disease.18 As a result, protein phosphorylation may be 

useful as potential disease biomarkers.19-22 

    

Protein Kinases 

 Kinases are enzymes that catalyze the reaction that transfers γ-phosphate groups of 

nucleotide triphosphates to their substrates. Due to its crucial role in regulating protein 

phosphorylation, phosphorylation by kinases needs to be highly specific.23 As a result, while 

protein kinases are normally expressed in low abundance, they have a large variety.24 For instance, 

protein kinase C (PKC) and cyclin-dependent kinase (CDK) have multiple isoforms in their 

respective class. PKC has isoforms such as PKCα, PKCβ, PKCγ and others, whereas CDK is 

encoded with isoforms including CDK1, CDK2, CDK3, and up to CDK21. 25-26 Dysregulation in 

the expression levels of kinases has significant consequences. For instance, in lung and breast 
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cancers, epidermal growth factor receptor, which is a kinase, is found to be overexpressed in 

cells.27 

 Manning et al. classified protein kinases into eight groups including TK (tyrosine kinase), 

TKL (tyrosine kinase-like), STE (homologs of the yeast STE7, STE11, AND STE20 genes), CK1 

(Casein Kinase 1), AGC (protein kinase A, G, and C families), CAMK (calmodulin/calcium 

regulated kinase families), CMGC (cyclin-dependent kinases, mitogen-activated protein kinase, 

glycogen synthase kinase, and dual specificity protein kinase CLK1), and RGC (Receptor 

guanylate cyclases).28 

 Protein kinases have a highly conserved catalytic core.29 The N-lobe is a conserved region 

responsible for ATP binding, and this region consists of glycine-rich residues near a lysine residue. 

Kinase-dead variants in studying the signaling pathways of kinases are often made by mutating 

the catalytic lysine residue to other amino acid residues.30-31 The C-lobe is responsible for binding 

to the peptide and directing catalysis. A conserved aspartic acid can be found in the C-lobe that is 

significant for the catalytic activity of the kinase. Structural insights of kinases are partly revealed 

in PKA C-subunit, which is one of the most studied kinases that participates in numerous 

biological processes.32 The PKA has a heterotetrameric structure, which consists of two C-subunits, 

and two different regulatory subunits. While kinases phosphorylate their substrates, they 

themselves are phosphoproteins that can be autophosphorylated. In the case of PKA C-subunit, 

phosphorylation at Thr197 changes the PKA C-subunit from its inactive form to its active form.9 

Other phosphorylation sites in PKA C-subunit have been associated with the enzymatic activity 

and physiochemical properties of the protein.33 

 

Kinase Inhibitors 
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 Kinase inhibitors modulate the activities of protein kinases either reversibly or irreversibly, 

and these small molecules are designed based on four modes of action as defined by Zhang et al.34-

35 Type I inhibitors target the ATP binding site of the kinase active conformation.34 Type II 

inhibitors recognize the inactive conformation of the kinase, and exploit changes in activation loop 

to expose additional hydrophobic binding site. Type III inhibitors modulate kinase activities by 

binding to an allosteric site, which demonstrates the highest degree of kinase selectivity. These 

allosteric sites can be either adjacent or remote to the ATP-binding pocket.36 Type IV inhibitors 

covalently react with the nucleophilic cysteine residue in the kinase active site.  

 Kinase inhibitors can be used to control phosphorylation events by kinases and are thus 

useful in studying these signaling pathways. For instance, bisindolylmaleimide I is commonly used 

as a reagent to inhibit the activities of protein kinase C isoforms.37-38 More importantly, kinase 

inhibitors have been developed as cancer therapy to target specific kinases, as kinases play an 

important role in signaling pathways. Since the approval of the first kinase inhibitor drug, imatinib, 

which is used as a chemotherapy agent for treating some types of cancer including chronic 

myelogenous leukemia, acute lymphocytic leukemia, and gastrointestinal stromal tumors, a total 

of 52 kinase inhibitors have been approved by Food and Drug Administration in 2020.36, 39 

 Investigations of these therapeutics treatments include the pharmacokinetics, 

the potency of inhibition, and the interactions. In particular, while kinase inhibitors are designed 

to be selective, they may still interact with other proteins. Researchers have designed analogs of 

FDA-approved kinase inhibitors and have immobilized these analogs on solid support to study the 

interactions. For example, AX14596 is an analog of Getifinib, a kinase inhibitor therapeutic for 

non–small cell lung cancer, and this analog carries an amine functional group. By reacting it with 

https://en.wikipedia.org/wiki/Potency_(pharmacology)
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epoxy-activated Sepharose, proteins interacting with Getifinib can be evaluated  by using the 

AX14596 analogs.40  

  

Protein Phosphatases 

 Dephosphorylation is the counterpart of phosphorylation in the event of reversible 

phosphorylation.41-42 Using a protein phosphatase, dephosphorylation catalyzes the hydrolysis of 

a phosphomonoester, which cleaves the phosphate group from its substrate protein. Recently, 

classification has been performed on protein phosphatase by studying the genomic and evolution.43 

Moreover, compared to the specificity of phosphorylation by protein kinases, dephosphorylation 

by protein phosphatases is less specific. Lastly, researchers have been expanding the landscape of 

drug development to target protein phosphatases, which allows them to approach difficult drug 

targets.44-45 

 

Mass Spectrometry-based Proteomics  

General Introduction 

 In the post-genome era, proteomics is the next frontier that enables in-depth understanding 

of the functions of cellular systems.46-47 Proteomics is the study of proteome, which is a set of 

proteins expressed in a biological context such as an organism or an intracellular environment.48-

50 While the proteome reflects the transcriptome, the proteome is highly dynamic. As discussed 

previously, proteins in the proteome can be modified and unmodified with phosphorylation by 

kinases and dephosphorylation by phosphatases to activate and deactivate their activities in 

response to changes in the biological environment. In addition to PTMs, the location, such as where 
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the proteins are expressed, and the abundance, including the rate of  production and degradation, 

of proteins are also subjects of interest in the study of proteomics.48 

 MS-based proteomics is the primary tool that allows high-throughput investigation of the 

proteome. MS measures mass to charge ratio (m/z), which can be used to reflect precursor peptides 

or proteins, and MS/MS techniques fragment the proteins to provide information of the primary 

sequence of peptides or proteins. Three common proteomics techniques include bottom-up, top-

down, and middle-down. 

 The bottom-up proteomics approach, which utilizes proteases to digest proteins into 

smaller peptides, is a high-throughput method for characterization of protein amino acid sequences 

and PTMs.51 These digested peptides are subject to front-end separation by LC and analyzed by 

MS and MS/MS. By comparing the masses in the MS and MS/MS spectra to a sequence database, 

one or multiple identified peptides can be assembled into a protein identification. Peptides, in 

comparison to proteins, are small in molecular weight and are therefore less likely to be hindered 

by resolution, which describes the width of the peak. Using an optimal setup, a nearly complete 

coverage of yeast proteome can be analyzed by bottom-up proteomics.52 This approach can also 

be utilized for protein structure analysis. Using a crosslinking reagent, the space in the target region 

of protein structure can be investigated.53 Additionally, hydrogen-deuterium exchange enables 

analysis of the structure and dynamic of proteins. By studying the rate of hydrogen -deuterium 

exchange, researchers can identify the tightly folded and disordered regions of p roteins in 

complement to other biophysical characterization techniques.54 

 In the bottom-up proteomics approach, proteins are inferred by identified peptides. While 

this strategy can provide rapid protein identifications, it suffers from this inference problem, and 

it is generally impossible to identify specific proteoform(s) from which the peptides originated.55 
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Additionally, despite that PTMs can be identified, bottom-up proteomics only offers a partial 

coverage of the identified modification, leading to loss of information. Top-down proteomics has 

emerged as a powerful technology capable of identifying proteoforms arising from PTMs, 

alternative splicing, and sequence variations at the intact protein level.56-59 In comparison to 

bottom-up approach, top-down proteomics analyzes intact proteins, thus providing a “bird’s eye” 

view of the proteome. In recent years, top-down proteomics has drastically improved in its ability 

for global profiling, which facilitates identification of thousands of proteoforms in a single MS 

experiment. In addition to global profiling, top-down proteomics strives in targeted protein 

analysis as complex sequence information is preserved during MS/MS analysis. This approach is 

highly effective in identifying novel proteoforms and locating PTM sites by in-depth sequence 

characterization with the development of new fragmentation techniques. Moreover, changes in 

disease-associated PTMs can be quantified using top-down proteomics to reveal disease 

mechanisms for biomarker discovery. Finally, native MS has been continuously evolved to support 

structural elucidation of proteins and protein complexes. 

 Despite the promises offered by top-down proteomics, some proteins are difficult to study 

directly by this approach. For instance, it is difficult to generate enough informative fragment ions 

for large proteins.60 Additionally, proteoforms with complex modifications, such as those in 

histones, are challenging for direct top-down analysis. A combinatorial approach known as 

middle-down has since been developed and involves using specialized proteases, such as Asp-N, 

Glu-C and Lys-C, to perform digestion to yield large polypeptides, and this digestion  is then 

followed by MS/MS analysis.61 For large proteins, such as those greater than 100 kDa, middle-

down digestion can result in large polypeptides and subunits, which can be suitable for intact 
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analysis.62-63 Moreover, middle-down analysis coupled with effective LC separation enables high-

throughput analysis of complex proteoforms.64-65 

 Although this thesis focuses on development of top-down proteomics, this particular 

proteomic technology is still under development. In the light of this, other proteomics techniques 

such as bottom-up and middle-down will also be included to overview the transition of specific 

techniques to top-down proteomics.  

 

Chromatography-based Methods for Peptide/Protein Separation 

 Front-end separation prior to MS analysis is an integral component in proteomic research. 

Effective separation allows for increased confidence in peptide/protein identification, detection of 

minor variants with sequence variations and PTMs, and accurate quantification.  Reverse-phase 

chromatography (RPC), which uses a hydrophobic stationary phase, is the most common mode of 

chromatography. For the stationary phase, silica particles, which are commonly used for 

chromatography, with different length of alkyl groups such as n-butyl (C4), octyl (C8), and 

octadecyl (C18), and functional groups including cyano and phenyl groups, are used for separating 

peptides and proteins with different retention characteristics.66 The solvent gradient runs from a 

polar aqueous mobile phase to a nonpolar organic solvent mobile phase such as acetonitrile, 

methanol, ethanol or isopropanol. As the polarity of the mobile phase decreases, the hydrophobic 

interactions between the molecules and the stationary phase weaken. As a result, hydrophilic 

species are eluted first, followed by hydrophobic molecules. For positive mode MS, acids such as 

formic acid and trifluoroacetic acid are added to the mobile phase to add charges on the molecules 

of interest as well as provide charges on the silica surface to improve separation performance. 

Conversely, bases such as ammonium hydroxide and piperidine are utilized for negative mode 
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MS.67 Despite silica particles being the material of choice for most chromatographic experiments, 

other materials, such as monolith, have emerged owing to their high permeability, low 

backpressure, and fast mass transfer.68-70 

 Other methods of chromatographic separation are also utilized in proteomic research, 

including hydrophobic interaction chromatography (HIC), hydrophilic interaction 

chromatography (HILIC), size-exclusion chromatography (SEC), and ion exchange 

chromatography (IEX). Since this thesis has not extensively studied these methods of 

chromatography, the mechanism and applications of these methods are briefly discussed.  

 Similar to RPC, HIC also separates molecules based on their hydrophobicity. Compared to 

RPC, which runs mostly in the denatured mode, HIC allows separation of molecules while 

maintaining biological activities. This mode of chromatography utilizes MS compatible salts, 

which reduce the solvation of the molecules, enabling analytes to interact with the stationary phase. 

More recently, HIC has recently been employed for online and intact MS analysis of monoclonal 

antibody and antibody-drug conjugate.71-72 HILIC is an alternative form of normal phase 

separation.73 This separation technique uses solvents similar to RPC; however, the analytes elute 

in the order of increased polarity using a gradient from a nonpolar organic mobile phase to a polar 

aqueous mobile phase. Applications of HILIC include analysis of N-glycan, where HILIC can 

separate N-glycan effectively, and membrane proteins, which have poor separation in RPC.74-76 

 SEC separates proteins by size. The porous silica materials allow smaller analytes to enter 

the pores, resulting retardation in retention, while the bigger analytes that do not fit in the pores 

elute first. Top-down proteomics has benefited from developments in SEC. In top-down analysis, 

the S/N ratio decreases logarithmically upon increase in molecular weight, necessitating the 

separation between large and small proteins.77 Effective separation using SEC allows detection 
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and characterization of high molecular weight proteins up to 223 kDa.78 Sample preparation from 

fractionation by SEC is also MS-compatible, enabling robust analysis of large proteins.62, 79 

 IEX separates molecules by charges, and it includes anion exchange chromatography and 

cation exchange chromatography.80 A strong ion exchanger can tolerate a wide range of pH values, 

as the material does not lose the charge after column equilibrium, whereas a weak ion exchanger 

cannot retain the charge and can only work in a narrower pH range. Negatively charged moieties 

interact strongly with the column material used in anion-exchange chromatography, and the same 

can be said for positively charged moieties when referring to cationic ion exchange 

chromatography. Anion-exchange chromatography can be applied to phosphopeptide separation 

to enhance its identification, as well as effective separation of ovalbumin.81-82 Strong cation-

exchange chromatography works similar to RPC and can work as an orthogonal method to enhance 

general peptide separation.83 Weak cation-exchange chromatography allows effective separation 

of hemoglobin components for disease diagnosis.84 

 

Ionization and Instrumentation of Mass Spectrometry 

 As MS measures m/z, proteins need to be ionized for MS analysis. Two soft ionization 

methods are widely used in the MS community for protein analysis. The first one is electrospray 

ionization (ESI).85 In this method, the droplet prior to entering the mass spectrometer is heated, 

and the amount of liquid is slowly decreased. Coulombic explosion occurred to generate charged 

ions in the gas phase. During this process, nebulizer gas can assist in the removal of liquid for 

accelerating ion generation. Nanoelectrospray has been developed to enhance the sensitivity of the 

signal.86 The second ionization method is matrix-assist laser desorption ionization (MALDI).87 In 

this method, the protein sample is mixed with matrix molecules, which contain aromatic rings. 
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When the laser light hits the mixture, the matrix molecules absorb the energy and create ionized 

protein molecules in the hot plume of ablated gases. The analytes can then be analyzed by the mass 

spectrometer. 

 Several types of mass spectrometers are available for researchers to perform MS 

experiments. Linear ion trap is an ion trap mass spectrometer that confines ions in a two-

dimensional radio frequency field.88 Triple quadrupole instruments are composed of three 

quadrupole mass analyzers.89-90 These instruments have two mass-resolving quadrupoles at both 

ends and one non-mass-resolving quadrupole in the middle to serve as collision cell. A time-of-

flight (TOF) instrument measures the time of flight of ions, which is correlated to an ion’s m/z.91 

As ions are accelerated in the electric field, these ions carry the same kinetic energy as other ions 

with the same charge. The velocity resulting in differences in arrival time is dependent on the m/z, 

where heavier ions have lower velocity and lighter ions have higher velocity.  

 Two types of Fourier transform instruments, including Orbitrap and Fourier transfer ion 

cyclotron resonance (FT-ICR), are available. For Orbitrap, the mass analyzer has an outer barrel-

like electrode and a coaxial inner spindle-like electrode.92-93 Ions trapped in the spindle under the 

electrostatic field exhibit an orbital motion, and the mass spectrum can be obtained by Fourier 

transform of the frequency signal. On the other hand, the ions in the ICR cell are subject to both 

electric field and magnetic field.94 After excitation, the ions display cyclotron motion and result in 

free induction decay. The cyclotron frequency can be Fourier transform to mass spectrum. 

 During instrument development and analytical needs, hybrid instruments have become 

more popular in the mass spectrometry society. The quadrupole can be coupled with either the 

Orbitrap or the TOF mass analyzer.95-96 The linear ion trap can be combined with FT-ICR due to 

the high injection efficiencies and high ion storage capacities of the linear ion trap. Different 
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ionization techniques are also developed for different types of analytical workflow. ESI is the 

method of choice for most LC-MS/MS experiments. MALDI coupled with a TOF instrument, 

which has extended mass range, has been a robust analytical method for biomolecules. Recent 

advances have enabled MALDI as a prominent technique in imaging for biomarker discovery and 

disease prognosis.97  

    

Fragmentation Techniques  

 MS has significantly improved the efficiency of sequencing protein primary structure using 

tandem MS (MS/MS) techniques.98 MS/MS analysis involves isolation of precursor ions, which 

are subject to fragmentation. Common fragmentation methods for MS/MS analysis include 

collision-induced dissociation (CID), electron capture dissociation (ECD), and electron-transfer 

dissociation (ETD).58  

 For CID (also known as collisionally activated dissociation, CAD), the kinetic energy of 

selected ions is increased by accelerating the ions through an electrical potential gradient. 99 Neutral 

molecules such as helium, nitrogen, or argon are introduced to collide with these accelerated 

precursor ions. The kinetic energy is converted to internal energy, resulting in breakage of the 

backbone at the amide bond position and generating b and y ions. An alternative form of CID, 

higher-energy collisional dissociation (HCD), is commonly used for the Orbitrap mass 

spectrometer.100 Due to the mechanism of CID, breakage of low energy bonds is favored. Limited 

sequence information can only be attained if a weak bond is present at a region of sequence.63 

Additionally, using the CID method can cause breakage of labile modifications, such as 

phosphorylation, making PTM site localization difficult. 
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 Compared to CID, both ECD and ETD are two electron-based fragmentation methods, 

which are softer and can preserve labile PTMs, enabling PTM site characterization. Moreover, 

different mechanisms are employed for these two electron-based methods, making them 

complementary methods to CID for analyzing the primary structure of polypeptides. In ECD, the 

precursor ion interacts with a free electron to form an odd-electron ion. Fragmentation of the 

peptide backbone at the N-Cα position occurs, which generates c and z• ions when the electric 

potential energy of the precursor ion is released.101 While ECD is primarily used for the FT-ICR 

instrument, recent development has made ECD available to other instruments, such as ion mobility 

(IM)-TOF and Orbitrap.102-104 In comparison, for ETD, the precursor ions react with reagents, 

which are radical anions, to become cation radicals. These cation radicals are unstable, leading to 

fragmentation of the peptide backbone at the N-Cα position.105 Compared to ECD, ETD is 

relatively low cost and is conducted in radio frequency quadrupole ion trap devices. Hybrid mass 

spectrometry with front-end quadrupoles, such as Orbitrap and quadruple time-of-flight, can be 

equipped with ETD technology. Recently, an improved form of ETD called activated-ion ETD 

was developed. In activated-ion ETD, the precursor ions are further activated by photon 

bombardment, which enhances the ability of ETD to identify peptides in complex biological 

samples.106-107 Additionally, ETD in tandem with HCD has been developed as a powerful for 

glycopeptide analysis, where ETD provides peptide sequence information and the subsequent 

HCD gives glycan fragmentation.108-110 

 Some other fragmentation methods, including infrared multi photon dissociation (IRMPD), 

ultraviolet photodissociation (UVPD), and surface-induced dissociation (SID), have also been 

developed. IRMPD involves precursor ions absorbing multiple infrared photons, leading to 

excitation to its more energetic vibrational states.111 Cleavage of bonds results in b and y ions, 
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similar to CID. UVPD is a recently revisited fragmentation technique, which uses 193 nm laser to 

excite the peptide backbone, leading to bond cleavages.112 This technique generates an array of 

fragment ions including a, b, c, x, y, and z•, which provides rich sequence information.113-114 Lastly, 

SID experiments are analogous to CID, but a surface is used instead of neutral gas as the collision 

target.115-116 Applications of SID focus on dissociating protein complexes into subunits for analysis 

in a controlled manner.117-118  

 While the major application of fragmentation methods is to sequence the primary structure 

of peptides/proteins, tertiary and quaternary structural information can also be obtained in the 

application of intact protein analysis. For instance, peptide backbones within disulfide bond 

linkages are unlikely to be broken by fragmentation methods, which enables researchers to use 

fragmentation pattern to identify the region connected by disulfide bonds.119 Additionally, the 

solvent-exposed region of protein structure can be observed during fragmentation using native 

MS.72, 120-121 

 

Protein Quantification 

 Protein quantification provides important information regarding the protein expression 

level and PTM level, such as those between healthy and diseased samples, which are crucial for 

biomarker discovery.122-123 Relative quantification studies the difference in protein expression 

among various conditions, and absolute quantification aims to obtain the expression level of a 

target protein. Relative quantification and absolute quantification of proteins are enabled by 

various quantification methods including isobaric tag, stable isotope labeling by/with amino acids 

in cell culture (SILAC), and label-free quantification. 
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 Isobaric tagging is a commonly used strategy to quantify protein expression level and PTM 

level across different samples. Two common chemical tagging systems include tandem mass tags 

(TMT) and isobaric tag for relative and absolute quantitation (iTRAQ).124-125 In both types of 

chemical tags, the mass of the entire moieties added to the samples are the same. These moieties 

contain a cleavable reporter group by fragmentation method, balance group, and amine reactive 

group. The reporter group and balance group uses isotopes to balance the mass. The reporter group 

is cleaved subject to collisional energy, resulting in isotopic peaks that can be used to infer the 

relative abundance of the protein of interest across multiple samples. Novel isobaric tagging, such 

as DiLeu, improves both in reactivity, which minimizes random error, and multiplexing, which 

increases the number of samples that can be simultaneously quantification.126-128  

 SILAC is another method for quantitative proteomics, which uses non-radioactive isotopic 

labeling to detect protein abundance differences across samples with mass spectrometry. 129-130 

Both a “light” and a “heavy” version of amino acids are used, and these amino acids are 

incorporated into protein sequence during cell growth. The samples from different conditions can 

be mixed and analyzed by MS. Leucine, arginine, and lysine are commonly used for SILAC. While 

this technology has small error and good reproducibility, this method is only applicable for cell 

samples and requires an extended period for cell growth. 

 Label-free quantification is a method, which does not uses isotope labels during 

quantification. Two methods of label-free quantification are commonly utilized. Quantitative 

values can be derived from the area under the curve of precursor ions in the chromatogram and 

MS1 intensity values. Additionally, spectral counting, which measures the number of spectra 

matched to target proteins, can also be used to evaluate the abundance of proteins.131  
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 Quantitative studies in top-down proteomics use primarily label-free, relative 

quantification. In bottom-up proteomics, the ionization efficiency among multiple peptides may 

differ significantly by amino acid composition and PTMs such as phosphorylation. Additionally, 

PTMs often add significant molecular weight to the peptides of interest, thus altering the 

physiochemical properties. In comparison, relative quantification is widely used in top-down 

proteomics, as it has been shown in several studies that modifications have negligible impact on 

the ionization efficiency among proteoforms. Recent advances have also showed success of 

quantification of protein expression and modifications using top-down proteomics.132 

 While both isobaric labeling and SILAC are popular in bottom-up proteomics 

quantification, these methods are less common in top-down proteomics. SILAC has been 

experimented on top-down proteomics; however, the incorporation efficiency in addition to 

impure “heavy” amino acids can lead to mass shift and imperfect isotopic distribution. 133-134 

Isobaric labeling sees little applications in top-down proteomics, as the mass spectra can already 

be crowded by different proteoforms from the same proteins and requires fragmentation methods 

to yield reporter ions.135  

 

Peptide/Protein Enrichment Methods 

 Proteomics offers a powerful tool in identification and characterization of proteins; 

however, low-abundance species are significantly underrepresented in the analysis. With protein 

enrichment, the percentage of proteins of interest in the mixture can be dramatically increased. In 

this section, enrichment of phosphoproteins/phosphopeptides, glycans, and kinases is discussed. 
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 As mentioned in the earlier section, phosphorylation is an important PTM in biological 

processes. There are significant interests in understanding the functional consequences of specific 

phosphorylation sites. However, the phosphorylation level of specific sites may not be sufficiently 

abundant for MS detection and identification. Therefore, enrichment of these phosphorylated 

species is necessary. Enrichment of phosphorylated species has been shown at both the peptide 

level, phosphopeptides, and the protein level, phosphoprotein. For phosphopeptide enrichment, 

which takes place after proteolytic digestion, materials such as Fe-NTA, which can chelate 

phosphate groups, and TiO2, which has affinity to phosphate groups, are available.136 Additionally, 

nanomaterials such as magnetic iron oxide nanoparticles have also shown promise in 

phosphopeptide enrichment.137 Despite their promise in phosphopeptide enrichment, these 

materials are less effective in phosphoprotein enrichment. Chemical moieties such as Phos-tagTM, 

were developed to enrich intact phosphoproteins and have demonstrated utility in several 

biological applications including SDS-PAGE, western blotting, and protein purification.138 An 

analog of Phos-tag was also incorporated onto nanoparticles for intact protein analysis.139-141  

 Dysregulation of kinase expression and activity is often associated with diseases such as 

cancer and neurodegeneration. As mentioned in previous sections, kinases are responsible for 

transporting phosphate groups to their substrates. Kinases are also phospho proteins, and 

phosphorylation of kinases regulates their protein structures and activities. One common feature 

of kinases is the relatively conserved active site, which allows small molecule inhibitors with high 

affinity to bind and thus can be exploited for achieving kinase enrichment. Kinase enrichment 

using kinase inhibitors is performed at the protein level since kinase inhibitors need to access the 

well-structured active site of kinases. To this end, several pan-kinase inhibitors, including those 

from modified cancer therapeutics, were incorporated on solid support and used for kinase 
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enrichment.142-143 This platform allows investigation of the interactions between cancer drugs and 

kinases.40, 143 

 Glycosylation is another prevalent PTM, and an estimated 50% proteins are post-

translationally modified with this PTM.144-145 The modification site of glycosylation and the glycan 

structure has attracted significant interest.146-147 Glycosylation enrichment can be performed at 

both the peptide and protein level, as these ligands can well recognize the glycan structure. This 

enables capturing glycoproteins for identification as well as the subsequent enrichment step for 

glycopeptides for site localization. Several strategies have been developed to study this PTM. First, 

lectins, which are proteins that have an affinity for glycans, can be used for glycoprotein 

enrichment.148 Different types of lectins can bind to specific glycan structures. Moreover, boronic 

acid chemistry has also been utilized for glycoprotein analysis.148 It reacts with specific cis-diol 

groups on glycans to form a cyclic bromate ester, and this reaction can be reversible by changing 

the pH in the solution to release the glycopeptides. Finally, derivatives of monosaccharides with 

functional groups such as azide are synthesized, and these sugar subunits can be incorporated by 

normal biological machinery.149-150 The click reaction, which is a highly efficient reaction between 

azide and alkyne, can be performed to capture modified glycan structures. Other strategies, 

including hydrazide chemistry and HILIC enrichment, were also employed for glycoprotein 

enrichment.151-153 

 

Top-down MS-based Bioinformatics 

 Data analysis from proteomics experiments rely extensively on computational tools. 

Compared to the well-developed bottom-up proteomics software, tools for top-down proteomics 

are limited and underdeveloped. This is largely due to the complexity of high-resolution top-down 
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proteomics datasets. A typical top-down proteomics data analysis includes data import, spectral 

deconvolution, and database search. Data import and data file conversion become straightforward 

with the development of ProteoWizard, which provides an array of tools for data manipulation 

prior to data analysis.154 Additionally, vendors for MS instruments have provided dynamic link 

libraries for software developers. Therefore, data import will not be extensively discussed, whereas 

fundamentals and development for top-down spectral deconvolution and database search will be 

reviewed. 

 In top-down proteomics, spectral deconvolution is a challenging process characterized by 

converting complicated raw spectra to simplified mass lists.155 In bottom-up proteomics, peptides 

are generally small in molecular weight (less than 2,500 Da). As a result, the most abundant mass 

(the m/z value of the most abundant peak minus the mass of the number of protons, given by the 

charge state of the peak) is likely to be equivalent to the monoisotopic mass (calculated from 

peptide sequence using masses from most abundant isotopes of each element). However, for larger 

molecular weights, isotopes play a much bigger role. The probability of having a peak with every 

element in its most abundant form decreases dramatically with increasing molecular weight. 

Therefore, the most abundant mass no longer equals the monoisotopic mass, which might not be 

visible in the spectrum. Additionally, peptides most often carry a charge state of one, two, or three. 

Consequently, the charge state of the small molecular weight ions can be easily deduced with a 

few isotopic peaks. In comparison, a group of isotopic peaks is necessary to evaluate the charge 

state for ions with higher molecular weight. In top-down proteomics, the averagine model is the 

primary tool to deconvolute the isotopic distributions.156 This model uses the mass of an average 

amino acid based on natural abundance to be C4.94H7.76N1.36O1.48S0.04, with a mass of 111.1254 Da. 
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Using the isotopic spacing in the isotopic distribution and the observed peak, an estimated 

elemental composition of the ions can be deduced.  

 In top-down proteomics, computational tools process two spectral deconvolution tasks for 

the datasets, including both MS and MS/MS spectra. In the MS level, software tools calculate the 

monoisotopic mass of the parent ions by decharging, which collapses all the charge states to a 

single deconvoluted peak to provide intact mass analysis of the proteins. The deconvoluted mass 

list is also termed “MS1 feature” in most software. These MS1 features provide precursor and 

deconvoluted masses of proteins in the LC timescale to assist the downstream database search task. 

In the MS/MS level, software tools handle deconvolution of isotopomers using an improved 

version of the averagine model, and they calculate the monoisotopic mass of fragment ions. The 

deconvoluted mass list for fragment ions can be used to match with a theoretically generated mass 

list from protein sequence during database search. Several algorithms have been developed to 

achieve one or both of these deconvolution tasks. MS-Deconv and TopFD from TopPIC Suite have 

integrated both tasks during its run, whereas ProMex from Informed-Proteomics and 

FLASHDeconv only performed MS1 feature detection.157-160 

 Database search algorithms in top-down proteomics are similar to that for bottom-up 

proteomics. The algorithms generate theoretical fragment ion mass lists from a given database  and 

match with the input deconvoluted mass list for protein identification. In the database search, one 

or more PTMs can be included in the calculation; however, it adds complexity to the process. 

While top-down proteomics allows for identification of novel proteoforms, identification can be 

challenging since these proteoforms are not in the database. Algorithms can assign random 

modifications at certain sequence regions to maximize fragment ion matching and to enhance the 

probability of identifying proteoforms, but manual efforts are necessary to adjust the amino acid 
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variations and PTM locations.157-159 Some of these database search algorithms identify sequence 

tags, which is a three to four amino acid short sequence that is fragmented at each residue, to 

propose protein identification.159, 161 In contrast to deconvolution that requires reading the 

spectrum from the entire x-axis (m/z) to identify isotopic distribution, database search can be 

executed simultaneously by dividing the database into subsets. The speed of database search can 

be improved by using computers with more threads in the processor in the case of TopPIC from 

TopPIC Suite and MSPathFinderT from Informed-Proteomics.158-159 Although a majority of 

database search algorithms use fragment ions for protein identification, intact mass measurement 

can also be utilized for database search as demonstrated in Proteoform Suite.162-163 

 Machine learning methods are harnessed in most deconvolution and database search 

algorithms to enhance the efficiency and accuracy of algorithmic outputs. For instance, pTop 

utilizes a support vector machine to train a model and incorporate a variety of features to detect 

isotopic clusters and to determine their charge states.164 While a plethora of algorithms has been 

developed, each algorithm has outputs with varied accuracy. Ensembles and machine learning 

algorithms are used to evaluate these results to output a consensus list.165 
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Abstract 

Protein phosphorylation is a ubiquitous and critical PTM involved in numerous cellular 

processes. MS-based proteomics has emerged as the preferred technology for protein identification, 

characterization, and quantification. Whereas ionization/detection efficiency of peptides in ESI-

MS are markedly influenced by the presence of phosphorylation, the physicochemical properties 

of intact proteins are assumed not to vary significantly due to the relatively smaller modification 

on large intact proteins. Thus the ionization/detection efficiency of intact phosphoprotein is 

hypothesized not to alter appreciably for subsequent MS quantification. However, this hypothesis 

has never been rigorously tested. Herein, we systematically investigated the impact of 

phosphorylation on ESI-MS quantification of mono- and multiply-phosphorylated proteins. We 

verified that a single phosphorylation did not appreciably affect the ESI-MS quantification of 

phosphoproteins as demonstrated in the enigma homolog isoform 2 (28 kDa) with mono-

phosphorylation. Moreover, different ionization and desolvation parameters did not impact 

phosphoprotein quantification. In contrast to mono-phosphorylation, multi-phosphorylation 

noticeably affected ESI-MS quantification of phosphoproteins likely due to differential 

ionization/detection efficiency between unphosphorylated and phosphorylated proteoforms as 

shown in the pentakis-phosphorylated β-casein (24 kDa).  
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Introduction 

Protein phosphorylation is an important PTM that is involved in many critical cellular 

processes, including cell cycle control, cell growth, apoptosis, and signaling transduction 

pathways.1-2 Not surprisingly, altered phosphorylation levels have been associated with the 

development of diseases such as cardiovascular disease, cancer, and neurodegenerative disease.3-

6 Moreover, recent evidence indicates that protein phosphorylation may also be useful as potential 

disease biomarkers.7 Therefore, accurate quantification of protein phosphorylation in different 

biological states not only can help elucidate intracellular signaling pathways that regulate various 

cellular processes, but may also be useful in understanding disease mechanism and diagnosis.8-9 

MS-based proteomics has emerged as the preferred method for phosphoprotein 

identification, characterization, and quantification.10-12 The bottom-up MS-based 

phosphoproteomics approach, which commonly utilizes proteases to digest phosphoproteins into 

smaller peptides, is a high throughput method for quantification of phosphoproteins. 13,14 However, 

ionization/detection efficiency of peptides in ESI-MS are markedly influenced by the presence of 

phosphorylation.15  Recently, top-down MS-based proteomics has emerged as the foremost method 

for the identification and quantification of proteoforms, a term adopted to represent the myriad 

protein products of a single gene generated via sequence variations (as a consequence of 

mutations/polymorphisms and/or alternative splicing), as well as PTMs.16 In top-down MS, intact 

proteins are analyzed, providing a “bird’s eye” view of all observed proteoforms in a given 

sample.17-18 Moreover, as the physicochemical properties of intact proteins are believed to be less 

impacted than peptides by the addition of smaller PTMs (e.g., phosphorylation), it is hypothesized 

that the effect of the small modifications on the ionization/detection efficiency of intact proteins 
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will be negligible. Thus, top-down MS has been routinely employed for the quantification of 

modified and un-modified protein species in biological samples.3, 19-20  

In support of the long-held belief that the ionization/detection efficiency of intact proteins 

is not significantly impacted by PTMs, Kelleher and co-workers have demonstrated that the 

difference in ionization/detection efficiency between un-modified and acetylated intact 

recombinant H4 protein was minimal as observed by the small deviation (<5%) between protein 

ion relative ratios and solution ratio.21 Therefore, accurate relative quantification of un-modified 

and acetylated proteoforms can be achieved by top-down MS analysis. On the other hand, some 

evidence suggests that phosphorylation can have a dramatic impact on the physicochemical 

properties of proteins such as hydrophobicity, viscosity, and side chain flexibility.22,23 However, it 

remains unclear whether the ionization/detection efficiency of proteins will be significantly altered 

by phosphorylation.  

Herein we systematically investigated the impact of phosphorylation on the 

ionization/detection efficiency of intact proteins using a mono-phosphorylated protein, enigma 

homolog isoform 2 (ENH2), and a multiply-phosphorylated protein, β-casein, as model 

phosphoproteins. Phosphorylation or dephosphorylation reaction was achieved by in vitro kinase 

or phosphatase reaction. With these model systems, we varied the solution-phase ratio of 

unphosphorylated and phosphorylated proteins quantified by SDS-PAGE analysis, which allowed 

us to evaluate the impact of phosphorylation on top-down phosphoprotein quantification analysis. 

We also investigated the ESI-MS response in two different types of mass spectrometers, TOF and 

FT-ICR, and assessed the correlation between solution-phase ratios of proteins derived from SDS-

gel analysis, and their respective gas-phase ratios as measured by these two mass spectrometers.  
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Experimental Section 

Chemicals and Reagents 

All reagents were acquired from Sigma-Aldrich, Inc. (St. Louis, MO, USA), unless 

otherwise noted. Solvents, including HPLC grade H2O and ACN, were purchased from Fisher 

Scientific (Fair Lawn, NJ, USA).  

 

Molecular Cloning 

The coding sequence of the ENH2 protein was amplified by polymerase chain reaction 

using 5’-GCAGCCTCGAGGTATGAGCAACTACAGTGTGTCACTGG-3’ and 5’-

ATGAGAATTCGTCTGTACGTTAAGAGCACGTGCTGA-3’ as the forward and reverse 

primers, respectively, and the product was ligated into a pT7-flag vector (Sigma-Aldrich, Inc.) to 

add a C-terminal FLAG-tag to the protein. Subsequently, the sequence encoding the FLAG-tagged 

ENH2 protein was again amplified by polymerase chain reaction using the 5’-

AGGTACCATGGGGAGCAACTACAGTGTGTCACTGGTT-3’ and 3’-

GGTGGTGCTCGAGCTTGTCATCGTCGTCCTTGTAG-5’ as forward and reverse primers, 

respectively. The amplified sequence was ligated into the pET-28a vector (MilliporeSigma, 

Burlington, MA, USA), adding a C-terminal polyhistidine-tag following the FLAG-tag. The 

ligation product was transformed into ScarabXpress T7 E. coli (Scarab Genomics, Madison, WI, 

USA) and the recombinant DNA sequence was confirmed by sequencing.  

 

Protein Expression and Purification 
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A starter culture (50 mL LB broth with 50 µg/mL kanamycin) was prepared by inoculating 

approximately 10 µL of the glycerol stock of the E. coli, for overnight at 30 ⁰C. 25 mL of the starter 

culture was diluted in 1 L of LB broth containing 50 µg/mL kanamycin and the culture was 

incubated at 37 ⁰C with 250 rpm shaking until an optical density of 0.4-0.6 was reached. Protein 

expression was induced by 0.1 mM IPTG and the bacteria were cultured at 37 ⁰C with 250 rpm 

shaking for 6 hrs. The cells were harvested by centrifugation at 4,000 rpm for 10 min, and the 

pellet was stored at -80 ⁰C.  The E. coli cells were lysed by sonication in 50 mM NaH2PO4 pH 7.4, 

250 mM NaCl (10 mL/g pellet) buffer containing 1 mM DTT, 0.25 mM PMSF and 100x protease 

inhibitor cocktail (Sigma-Aldrich Inc.). Sonication was performed for 5 cycles, 20 s per cycle, 

followed by centrifugation at 4000 rpm for 20 min, and the supernatant was collected. ENH2 

protein was purified from the cell lysate by initially binding to silica-based PrepEase® Histidine-

tagged High Specificity Purification Resin (Affymetrix, Santa Clara, CA, USA) for two hours 

before washing with 50 mM NaH2PO4 pH 7.4, 250 mM NaCl buffer containing 1 mM DTT and 

0.25 mM PMSF, followed by 50 mM Tris pH 7.4, 50 mM NaCl buffer containing 1 mM DTT and 

0.25 mM PMSF.  The resin was subsequently washed with 50 mM Tris pH 7.4, 50 mM NaCl 

buffer containing 1 mM DTT, 100 mM imidazole, and 0.25 mM PMSF, and the protein was eluted 

from the resin with 50 mM Tris pH 7.4, 50 mM NaCl buffer containing 1 mM DTT, 50 mM EDTA, 

0.25 mM PMSF and 100x protease inhibitor cocktail (Sigma-Aldrich Inc.).  The eluted protein was 

concentrated and the EDTA salt was washed off by 50 mM Tris pH 7.4, 50 mM NaCl buffer using 

a Pierce™ Protein Concentrators PES, 10K MWCO filter (Fisher Scientific) before the 

phosphorylation reaction. 

 

ENH2 Phosphorylation Reaction and β-casein Dephosphorylation Reaction 
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The phosphorylation reaction for purified ENH2 protein (~100 µg) was performed using 

~1,250 units of PKA C-subunit (New England Biolabs Inc.), supplemented with 1X NEBuffer for 

Protein Kinases (PK), 200 µM ATP (New England Biolabs Inc.) incubated at 37 °C for 24 hrs to 

achieve complete phosphorylation. The dephosphorylation reaction for commercial β-casein (~40 

µg) (Protea, Morgantown, WV, USA) was performed using ~100 units of λPP (New England 

Biolabs Inc.), supplemented with 1 mM MnCl2 solution and 1X NEBuffer for PMP (New England 

Biolabs Inc.). The reaction was allowed to proceed at 30 °C for 2 hrs to achieve complete 

dephosphorylation of β-casein. 

 

Solution-Phase Protein Concentration Analysis 

For both ENH2 and β-casein, the protein concentrations of the stock solutions were first 

quantified using the Bio-Rad Protein Assay Dye Reagent (Bio-Rad Laboratories, Inc., Hercules, 

CA, USA) in accordance with the manufacturer’s instructions. Subsequently, to establish the linear 

response range of SDS-PAGE for the target proteins, known amounts of ENH2 and β-casein were 

loaded in the polyacrylamide gel to establish a gel-based standard curve. After electrophoresis, the 

gel was visualized by either Coomassie Blue R-250 and destained overnight when using 12.5% 

CriterionTM Tris-HCl Protein Gel (Bio-Rad Laboratories, Inc.), or by Bio-Rad ChemiDocTM MP 

System with Image Lab software when using the 8–16% Criterion Stain FreeTM Tris-HCl Protein 

Gel (Bio-Rad Laboratories, Inc.). Band intensities were quantified using ImageJ24 by integrating 

the area under the curve for each band.  SDS-PAGE analysis showed a strong linear correlation 

for ENH2 and β-casein between 0.25 – 2 µg and 0.1 – 0.7 µg respectively (Figures S2.1).  Thus, 

the amount of protein loaded in the polyacrylamide gel was within the linear range for each 

respective protein and the SDS-gel data was used to derive the solution-phase ratio.   
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Top-down Mass Spectrometry 

Unless otherwise stated, all samples were diluted in 50:50 H2O:ACN with 0.1% FA for 

MS and MS/MS analyses. The mixtures containing ENH2:pENH2 or β-casein:5pβ-casein were 

subject to MS analysis using either a Bruker maXis II Q-TOF mass spectrometer or a 12T solariX 

FT-ICR mass spectrometer (Bruker Daltonics, Bremen, Germany). The mass spectra obtained 

from the maXis II Q-TOF mass spectrometer were obtained in triplicate by direct infusion. Unless 

otherwise stated, mass spectra collected using the Q-TOF mass spectrometer were collected using 

a 4500 V spray voltage, 20 eV in-source CID (isCID) voltage, 2 L/min dry gas flow rate, 200 °C 

dry gas temperature, and a 1.5 bar nebulizer gas pressure. All spectra were collected for a 30 s 

duration. Sample were injected into the Q-TOF mass spectrometer at a sample flow rate of 2 

µL/min. Mass spectra from the 12T solariX FT-ICR mass spectrometer were acquired in triplicate, 

using a 2 mega-words transient, 0.004 s acquisition time, and 20 eV isCID voltage. A fixed 48 

scans were collected per injection. Samples were injected into the 12T solariX FT-ICR using a 

TriVersa NanoMate® (Advion Bioscience, Ithaca, NY, USA) with a spray voltage of 1.3 kV.  

ECD was performed on a Thermo LTQ/FT Ultra 7T FT-ICR mass spectrometer (Thermo 

Scientific Inc., Bremen, Germany) for ENH2 and a 12T solariX FT-ICR mass spectrometer for β-

casein. Mass spectra from the Thermo LTQ/FT Ultra 7T FT-ICR mass spectrometer used a 

resolving power of 200,000 (at 400 m/z). The samples were introduced into the mass spectrometer 

using a TriVersa NanoMate® as previously described.3,25 The energy, delay, and duration 

parameters for ECD experiments were determined on a case-by-case basis to optimize protein 

fragmentation. On average, between 700 and 1300 scans were collected to ensure the collection of 
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high-quality tandem mass spectra for data analysis. Mass spectra from the 12T solariX FT-ICR 

mass spectrometer were obtained as previously described.26  

All reported MWs are the most abundant MWs. Data acquired on the Bruker maXis II Q-

TOF mass spectrometer were analyzed using DataAnalysis 4.0 and deconvoluted using the 

Maximum Entropy algorithm. The relative quantification of proteoforms for deconvoluted spectra 

and individual charge state was determined by comparing intensities of the peaks from the SNAP 

algorithm results in DataAnalysis. The phosphate adducts (H3PO4) are non-covalent adducts to the 

protein molecular ions resulting in a 98 Da mass increase. Since they are non-covalently bound to 

the protein molecular ions, they are not considered as distinct proteoforms. For the relative 

quantification of either ENH2 or β-casein, proteoforms containing the phosphate adducts were 

added back to their parent proteoform before subsequent calculation.27-28  

For β-casein analysis, the data acquired on the Bruker maXis II Q-TOF mass spectrometer 

were deconvoluted similar to ENH2 protein. For the deconvoluted spectra, the relative abundance 

between unphosphorylated and phosphorylated β-casein (5pβ-casein) were calculated based on the 

sum of the all relative abundance of the three isoforms (A2, A1 and B) of β-casein divided by the 

sum of all relative abundance of the three isoforms of 5pβ-casein using the SNAP algorithm. For 

justification of only using three isoforms for quantification, an additional algorithm, Sum Peak 

which integrates the peak area within the mass range with an increment of 1 Da, was used for 

comparison for the Q-TOF deconvoluted spectra (Figure S2.2). Mass range between 23550 Da and 

23710 Da for β-casein and between 23950 Da and 24110 Da for 5pβ-casein was each integrated 

(Figure S2.2a). These two algorithms yielded similar relative abundance quantification results for 

the relative percentage of β-casein using three different MS spectra of the same mixture (61% from 

SNAP versus 58% from Sum Peak) (Figure S2.2b). Similarly, data acquired using the 12T solariX 
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FT-ICR mass spectrometer were analyzed using DataAnalysis and the relative abundance was 

derived from the SNAP algorithm results in DataAnalysis using only three genetic variants of β -

casein. ECD MS/MS spectra from both the 7T LTQ/FT Ultra mass spectrometer and the 12T 

solariX mass spectrometer were analyzed using MASH Suite Pro.29-30 

 

Data Analysis 

The CV was used to evaluate the relative variability in different datasets.  Both solution-

phase and gas-phase ratios were computed by dividing the numerical values (gel band intensity or 

MS ion abundance) of unphosphorylated proteins by those of phosphorylated p roteins (i.e. 

unphosphorylated:phosphorylated). To calculate the percentage difference between solution-phase 

ratio and gas-phase ratio, normalization was performed to the higher abundance proteoform for 

both SDS-PAGE and mass spectra for individual mixture. For example, for a 3:1 protein mixture 

with a gas-phase ratio of 2.72 and a solution-phase ratio of 3.16, the percentage difference is ~5% 

(e.g. after normalization, the relative percentage of phosphorylated protein is 36.7% in the gas 

phase and 31.6% in the solution phase). A least-square linear regression was performed between 

two datasets as indicated in each figure. 

 

Solution-Phase Protein Concentration Analysis and the Relationship between Solution-

phase Ratio vs. Gas-phase Ratio   

To determine solution-phase protein concentration, each protein solution was first 

evaluated by a BCA. Gel-based standard curves were established using SDS-PAGE by loading 

lanes with increasing protein amounts using the concentration values obtained by the BCA.  The 
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solution-phase protein ratios (e.g., 1:1) were obtained by loading lanes with the appropriate protein 

amounts within the linear range of the gel-based standard curves (Figure S2.1), and the ratios were 

confirmed by comparing the gel band intensity between unphosphorylated and phosphorylated 

proteins using ImageJ (Figure 2.1 and Figure 2.2). The protein mixtures of each ratio composition 

were then subjected to gas-phase analysis by mass spectrometry. 

We used direct infusion as a simple means to introduce the samples into the gas-phase for 

mass spectrometry analysis. We obtained the relative ion abundance of proteoforms using SNAP 

algorithm (methods mentioned in the Experimental Procedure above) in the deconvoluted mass 

spectra, which accounts for all charge states, or by examining individual charge states. The relative 

abundance of proteoforms represents the gas-phase ratios, which was first compared against their 

respective solution-phase ratio by percentage difference (methods mentioned in the Experimental 

Procedure above). Furthermore, a least-square linear regression was utilized to analyze the linear 

relationship between the solution-phase ratios and gas-phase ratios. 

 

Results and Discussion 

Preparation and Characterization of Mono- and Multiply-Phosphorylated Proteins  

Our lab previously identified the ENH2 protein, a Z-disc protein belonging to the PDZ-

LIM protein family, as a phosphoprotein, and localized the sole site of phosphorylation in the 

endogenous protein to Ser118 using top-down MS/MS analysis. For the purposes of this study, we 

expressed and purified a recombinant ENH2 protein with C-terminal FLAG- and polyhistidine-

tags. Purification of the recombinant ENH2 protein was confirmed by SDS-PAGE analysis, which 

showed a single dark band at the expected molecular weight of the recombinant protein (~28 kDa) 
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in the elution lane (Figure S2.3).  Top-down MS/MS analysis was also employed to confirm the 

sequence of the recombinant protein (Figure S2.4). To phosphorylate this protein, recombinant 

ENH2 was incubated with PKA and complete phosphorylation of the protein was verified by top-

down MS analysis (Figure S2.4a). ECD-MS/MS analysis confirmed phosphorylation at a single 

site, Ser119, in the recombinant protein, which corresponds to Ser118 in the endogenous swine 

ENH2 sequence (Figure S2.4a).3  

For the assessment of the effect of multiple phosphate groups on the ionization/detection 

efficiency of intact proteins, we chose the commercially available protein β-casein, which has three 

isoforms (termed A1, A2, and B) that exist completely in the pentakis-phosphorylated state (Figure 

S2.4b).26  ECD-MS/MS localized the sites of phosphorylation in the A2 isoform to Ser15, Ser17, 

Ser18, Ser19, and Ser35 (Figure S2.2b), which is in agreement with the results of previous 

studies.31 To generate unphosphorylated β-casein for our analysis, the commercial protein was 

incubated with λPP. Complete dephosphorylation of the three β-casein isoforms was verified by 

top-down MS analysis (Figure S2.4b).  

 

Impact of Mono-phosphorylation on Phosphorylation Quantification 

To determine whether the presence of a single phosphate moiety impacts the 

ionization/detection efficiency of an intact protein, stock solutions of completely 

unphosphorylated or phosphorylated ENH2 were mixed 1:5, 1:3, 1:1, 3:1, and 5:1  (ENH2:pENH2), 

and EHN2 and pENH2 components of these mixtures were analyzed on separate lanes by SDS-

PAGE to confirm the solution-phase ratios (Figure 2.1a). Subsequently, ESI-MS analysis of the 

aforementioned mixtures using a maXis II Q-TOF mass spectrometer was carried out. Our results 

showed that gas-phase ratios of ENH2:pENH2 as determined from the deconvoluted mass spectra 
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generally correspond to their respective solution-phase ratios derived from the SDS-gel data (i.e. 

< 6% difference between gas phase and solution phase. Further details concerning calculation and 

data analysis were provided in the Supporting Information). Additionally, linear regression 

analysis of the solution-phase and gas-phase ratios yielded an R2 value of 0.995, indicating good 

correlation between the solution-phase and gas-phase ratios when quantification of the gas-phase 

ENH2:pENH2 ratio was determined based on the ratios in the deconvoluted mass spectra (Figure 

2.1b-c). Moreover, the effect of different ionization parameters such as variations in the spray 

voltage, isCID voltage and solvent composition also did not affect the observed gas-phase ratio of 

ENH2:pENH2 mixtures (Figure S2.5 and S2.6). For instance, the change in electrospray voltage 

from 5000 V to 3000 V has minimal impact on the phosphoprotein quantification, despite the 

reduction of the overall ions generated (Figure S2.5a). Additionally, phosphoprotein quantification 

was not affected by the variations in the desolvation processes such as changes in the nebulizer 

gas pressure from 0.5 to 1.5 bar (Figure S2.5c).   

Nevertheless, as the relative intensities of unphosphorylated and phosphorylated ENH2 

proteoforms in the deconvoluted mass spectra represent an average of the relative abundance ratios 

for these species across all charge states in the 500 – 3000 m/z range, there was the potential that 

the gas-phase ratios for ENH2:pENH2 at individual charge states may not correlate well with the 

solution-phase ratios. To investigate this possibility, we also evaluated the ENH2:pENH2 gas-

phase ratio for three individual charge states (41+, 40+, and 39+) from the raw mass spectra (Figure 

S2.7). The gas-phase ratio across the three selected charge states differed from the solution-phase 

ratio by less than 3% (Figure S2.7), which confirms that the good degree of correspondence 

between the solution-phase and gas-phase ratios for ENH2:pENH2 was not an artifact of 

deconvolution. Moreover, similar results were obtained when the same mixtures were analyzed 
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using a 12T solariX FT-ICR mass spectrometer at the most abundant charge states, 41+ (Figure 

S2.8), 40+, and 39+ (Figure S2.9), indicating that the good correlation observed between the 

solution-phase and gas-phase ratios for ENH2 and pENH2 was not dependent on the mass analyzer 

employed.  

Furthermore, we have analyzed all charge states (44+ to 25+) and the results are summarized 

in Table S2.1. The data suggested that the gas-phase ratio derived based on the most abundant 

charge states are within 5% difference from the solution-phase ratio, which is also similar to the 

gas-phase ratio derived from the deconvoluted spectrum that takes into consideration of all charge 

states. In contrast, the gas-phase ratio derived from the highest or lowest charge states deviate 

significantly from the solution-phase ratio. For the spectrum obtained from 1:1 solution-phase ratio, 

the gas-phase ratios of the most abundant charge states are 41+, 40+, and 39+ are 1.14, 1.09, and 

1.09 (Table S2.1), respectively, compared to the solution-phase ratio of 0.93. In contrast, the gas-

phase ratios at extreme charge states (i.e. highest or lowest) charge states at 44 + and 25+ are 1.37 

and 0.68 (Table S2.1), respectively, which is significantly deviated from the solution-phase ratio. 

The gas-phase ratio obtained from deconvoluted spectrum which accounts for all charge states is 

0.93, which is in close agreement with the solution-phase ratio. Collectively, these data strongly 

support the long-held belief in the field that the presence of a single phosphate group has a 

negligible impact on the ionization/detection efficiency of an intact protein. 

 

Impact of Multiple phosphorylation on Phosphorylation Quantification 

We next sought to determine the impact of multi-phosphorylation on MS quantification of 

phosphoproteins. Similar to the analysis for ENH2, stock solutions of completely 

unphosphorylated or phosphorylated β-casein were mixed 1:5, 1:3, 1:1, 3:1, and 5:1 (β-casein:5pβ-
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casein), and the solution-phase ratios in the mixtures were confirmed by SDS-PAGE (Figure 2.2a).  

ESI-MS analysis of the above mentioned mixtures were analyzed by a maXis II Q-TOF mass 

spectrometer. Relative quantification of β-casein was performed using the three isoforms (A2, A1, 

and B), and justification was detailed in the Experimental Section (Figure S2.2). A good linear 

correlation between the solution-phase ratios and the gas-phase ratios was deduced from the linear 

regression analysis with an R2 value of 0.999 based on the relative quantification using the 

deconvoluted mass spectra (Figure 2.2b-c).  However, despite the good linearity between these 

two ratios, the gas-phase ratios for these mixtures differed from the solution-phase ratios by more 

than 10%.  This result suggests a likelihood that the addition of five phosphate groups gives rise 

to differential ionization/detection efficiency between unphosphorylated and phosphorylated β-

casein. Additionally, the mixtures were analyzed using a 12T solariX FT-ICR mass spectrometer 

at high abundance charge states, 24+, 23+, and 22+ (Figure S2.10). The linear regression using a 

linear equation afforded an R2 value of 0.961, whereas the gas-phase ratios for these mixtures 

again had more than 10% difference compared to their respective solution-phase ratios. Altogether, 

these results indicate that the presence of multiple phosphate groups on the intact protein may have 

an impact on the ionization/detection efficiency of intact proteins. 

The influence of multi-phosphorylations on gas-phase ratios in MS becomes apparent when 

we examined the overall charge state distribution profile of the mono-phosphorylated ENH2 and 

the multiply-phosphorylated β-casein mixtures in 1:1 solution-phase ratio with their corresponding 

unphosphorylated counterparts (Figure 2.3a-b). While the mono-phosphorylated ENH2 ions have 

similar intensities to their unphosphorylated counterparts, the multiply-phosphorylated β-casein 

showed much lower ion intensities. To further investigate this discrepancy caused by multi -

phosphorylation, a mixture of the unphosphorylated and the multiply-phosphorylated β-casein that 
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led to 1:1 intensity ratio from the deconvoluted spectra was prepared (Figure S2.11). For these 

three mixtures (1:1 solution-phase ratio of ENH2:pENH2; 1:1 solution-phase ratio of β-

casein:5pβ-casein; and 1:1 gas-phase ratio of β-casein:5pβ-casein based on the deconvoluted 

spectra), gas-phase ratios of individual charge states from 44+ to 25+ and from 31+ to 16+ were 

analyzed for ENH2 proteoforms and β-casein proteoforms, respectively. While the CVs of all these 

charge states for 1:1 solution-phase ratio of both ENH2:pENH2 and β-casein:5pβ-casein have a 

value of 0.24 and 0.30, respectively, the CV of 1:1 gas-phase ratio of β-casein:5pβ-casein based 

on deconvoluted spectra has a greater value of 0.41 (Table S2.1 and S2.2). This result indicates 

that the variations of gas-phase ratios of individual charge state significantly varied even though 

the deconvoluted spectra implied an equal 1:1 gas-phase ratio.  The high CV (0.41) in the case of 

1:1 gas-phase ratio of β-casein:5pβ-casein based on deconvoluted spectra arises from the fact that 

the charge state distribution of 5pβ-casein was shifted to higher m/z value (Figure S2.11), inferring 

that the ionization/detection efficiency between β-casein and 5pβ-casein may be affected by the 

negatively charged phosphate groups. Collectively, the difference in ionization/detection 

efficiency owing to multiple phosphate modifying groups provides a possible explanation for the 

discrepancy between gas-phase ratios and solution-phase ratios for β-casein analysis.  

 

Importance of Accurate Relative Quantification of Phosphorylation Levels of Proteins  

Relative quantification of phosphorylation levels of proteins provides important 

information which can be used to correlate with cellular processes and disease pathophysiology. 

Recent studies have correlated phosphorylation levels of proteins with alteration in cardiac and 

muscle functions.4,7 Top-down MS is especially attractive for relative quantification of protein 

PTMs because it is believed that these modifications will have negligible impact on the 
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ionization/detection efficiency of intact proteins.17, 21 However, such assumption has not been 

vigorously validated.  Previously, Steen et al. reported that the ionization/detection efficiency of 

phosphopeptides and their unphosphorylated cognates vary drastically.15 They have demonstrated 

that more phosphopeptides show better ionization/detection efficiencies than their 

unphosphorylated cognates.15 In this study, we have shown that mono-phosphorylation has 

minimal impact on the ionization/detection efficiency of the intact proteins as demonstrated by 

ESI-MS analysis of recombinant ENH2 with mono-phosphorylation using both a TOF and an FT-

ICR mass spectrometers (Figure 2.1, Figure S2.5-2.9, and Table S2.1).  Therefore, relative 

quantification using top-down proteomics analysis can be an accurate and powerful method for the 

relative quantification of mono-phosphorylated proteins.  

In addition to mono-phosphorylation, multi-phosphorylation is also observed in biological 

processes.32-33 Previous study from Medina et al. suggested that multiple phosphate modifying 

groups changed the physicochemical properties of proteins such as electrophoretic mobility and 

side chain flexibility of caseins.23 Therefore, we prepared and characterized a multiply-

phosphorylated protein model using β-casein, and observed discrepancy between gas-phase ratios 

and solution-phase ratios of β-casein:5pβ-casein (Figure 2.2).  Conceivably, our result showed that 

multi-phosphorylation significantly altered the electrophoretic mobility between β-casein and 5pβ-

casein (Figure 2.2a),  in agreement with the previous finding from Medina et al.23 Further 

investigation into the shift in charge state distribution between β-casein and 5pβ-casein suggests a 

change in the ionization/detection efficiency resulted from possible alteration in physicochemical 

properties likely due to the multiple negative charges imparted by five phosphate modifying groups, 

and thus impacts relative quantification (Figure 2.3).   
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Regarding other PTMs beyond phosphorylation, previously, the Kelleher group attained 

quantitative information about the isomeric composition of intact histone H4 protein by monitoring 

the mono-, di-, tri-, and tetra-acetylation.21 Multiple histone acetylation modifications do not 

appear to affect the ionization/detection efficiency of the histone H4 protein, in contrast to our 

results of multi-phosphorylation quantification.  

 

Conclusion 

To recapitulate, we conducted a systematic interrogation on the top-down ESI-MS-based 

relative quantification of phosphoproteins using a mono-phosphorylated protein model (ENH2) 

and a multiply-phosphorylated protein model (β-casein). Our results showed that the mono-

phosphorylation does not appreciably affect ESI-MS quantification of phosphoproteins. In contrast 

to mono-phosphorylation, pentakis-phosphorylation noticeably influenced ESI-MS quantification 

of phosphoproteins, possibly due to the differential ionization/detection efficiency resulted from 

slightly different physicochemical properties between unphosphorylated and pentakis-

phosphorylated proteoforms.  
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Figure 2.1. Protein quantification using SDS-PAGE gel analysis and maXis II Q-TOF MS 

analysis for ENH2. (a) SDS-PAGE analysis of ENH2:pENH2 in five different ratios, 1:5, 1:3, 

1:1, 3:1 to 5:1 (top to bottom) and (b) the corresponding Q-TOF MS deconvoluted spectra. Relative 

abundance is normalized to the most abundant species in each mass spectrum.  (c) Correlation 

analysis between gas-phase ratios (derived from the Q-TOF MS data) and solution-phase ratios 

(derived from SDS-gel data) of ENH2:pENH2 suggests a linear correspondence between these 

two methods. *ENH2 with non-covalent phosphate adduct (+98 Da).  
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Figure 2.2. Protein quantification using SDS-PAGE gel analysis and maXis II Q-TOF MS 

analysis for β-casein. (a) SDS-PAGE analysis of five different β-casein:5pβ-casein ratios from 

1:5, 1:3, 1:1, 3:1 to 5:1 (top to bottom); (b) corresponding Q-TOF MS spectra (deconvoluted). In 

each deconvoluted spectrum, the relative abundance is normalized to the highest abundance 

species; (c) Correlation analysis between gas-phase ratios (derived from Q-TOF MS data) and 

solution-phase ratios (derived from SDS-gel data) of β-casein:5pβ-casein suggests a linear 

correspondence between these two ratios.  
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Figure 2.3. Comparison between mono-phosphorylation and multi-phosphorylation on 

protein quantification. Charge state distributions obtained from ESI/Q-TOF MS of 1:1 solution-

phase ratio mixture of (a) ENH2:pENH2 and (b) β-casein:5pβ-casein were shown. Compared to 

mono-phosphorylation, multi-phosphorylation affects the phosphoprotein quantification. Insets, 

representative higher and lower charge state of ENH2:pENH2 and β-casein:5pβ-casein, 

respectively. 
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Supplemental Information 

Table S2.1. Quantification for the equal amount of ENH2:pENH2 (1:1 at all observed 

charge states) using Q-TOF MS. 

Charge State ENH2:pENH2 

gas-phase ratio 

44+ 1.37 

43+ 1.32 

42+ 1.16 

41+ 1.14 

40+ 1.09 

39+ 1.09 

38+ 1.24 

37+ 1.07 

36+ 1.02 

35+ 1.61 

34+ 1.15 

33+ 1.39 

32+ 0.79 

31+ 1.88 

30+ 1.32 

29+ 1.16 

28+ 1.20 

27+ 0.82 

26+ 0.84 

25+ 0.68 

Average 1.17 

Standard Deviation 0.28 

Coefficient of Variation 0.24 

Deconvolution* 0.93 

 

The gas-phase ratios of ENH2:pENH2 at charge state 44+ to 25+ were shown. The average, 

standard deviation and coefficient of variation of the gas-phase ratios from charge state 44+ to 25+ 

were derived. 40+ is the most abundant charge state. *The gas-phase ratio based on deconvoluted 

spectrum is 0.93 as described previously in Figure 1. 
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Table S2.2. Quantification for 1:1 gas-phase ratio of β-casein:5pβ-casein and 1:1 solution-

phase ratio of β-casein:5pβ-casein at all observed charge states using Q-TOF MS. 

1:1 Gas-Phase Ratio of β-casein:5pβ-

casein*  

1:1 Solution-Phase Ratio β-casein:5pβ-

casein  
Charge State β-casein:5pβ-casein 

gas-phase ratio 

Charge State β-casein:5pβ-casein 

gas-phase ratio 

31+ 1.53 31+ 2.54 

30+ 1.92 30+ 1.90 

29+ 1.72 29+ 1.50 

28+ 1.49 28+ 2.16 

27+ 1.63 27+ 1.39 

26+ 1.00 26+ 1.40 

25+ 0.93 25+ 1.35 

24+ 0.66 24+ 0.72 

23+ 0.76 23+ 0.81 

22+ 0.75 22+ 1.71 

21+ 1.02 21+ 1.43 

20+ 0.78 20+ 1.65 

19+ 1.13 19+ 1.58 

18+ 0.88 18+ 1.45 

17+ 0.68 17+ 1.25 

16+ 0.44 16+ 1.26 

Average 1.08 Average 1.51 

Standard Deviation 0.44 Standard Deviation 0.45 

Coefficient of 

Variation 

0.41 Coefficient of 

Variation 

0.30 

 

The gas-phase ratios of β-casein:5pβ-casein at charge state 31+ to 16+ were shown in both cases. 

The average, standard deviation and coefficient of variation of the gas-phase ratios from charge 

state 31+ to 16+ were derived. 25+ is the most abundant charge state. *Gas-phase ratio derived 

based on the deconvoluted spectrum taking into account of all charge states. 
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Figure S2.1. Gel-Band Quantification for ENH2 and β-casein. The band intensity from ImageJ 

can be correlated to loaded protein content using the gel-based standard curve. (a) ENH2 and (b) 

β-casein showed a respective linear range of 0.25 – 2 µg and 0.1 – 0.7 µg of protein amount. 
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Figure S2.2. Comparison between SNAP and Sum Peak quantification method.  (a) Mass 

range from 23550 to 23710 Da for β-casein and that from 23950 to 24110 Da for 5pβ-casein were 

used for Sum Peak algorithm to calculate gas-phase ratio of β-casein:5pβ-casein. A2, A1 and B 

isoforms of both β-casein and 5pβ-casein were used for SNAP algorithm to calculate Q-TOF MS 

ion ratio of β-casein:5pβ-casein. (b) Relative percentage of β-casein and 5pβ-casein was 

comparable using either SNAP algorithm or Sum Peak algorithm in the DataAnalysis software. 

Specifically, relative percentage of β-casein using Sum Peak algorithm and SNAP algorithm was 

58% and 61%, respectively. 
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Figure S2.3. Protein purification. SDS-PAGE analysis indicating that ENH2 was purified with 

high purity. 
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Figure S2.4. Preparation and characterization of mono-phosphorylated protein, ENH2, and 

multiply-phosphorylated protein, β-casein, for assessing the impact of phosphorylation on 

ESI-MS quantification. (a) Complete phosphorylation was achieved by incubating ENH2 in the 

presence of PKA. Top-down ECD experiment localized the site of phosphorylation in the 

recombinant ENH2 to Ser119, which corresponds to Ser118 in the endogenous protein. (b) 

Complete dephosphorylation of β-casein was achieved by incubation with λPP, indicated by a 

mass shift of 400 Da. Top-down ECD experiment confirmed the phosphorylation sites are Ser15, 

Ser17, Ser18, Ser19, and Ser35 in the A2 isoform β-casein. The phosphorylation sites for A1 and 

B isoform are identical to the A2-isoform. 
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Figure S2.5. Evaluation of the impact of different ionization parameter setting on 

phosphoprotein quantification. Deconvoluted mass spectra and relative percentage at different 

conditions including (a) spray voltages, (b) solvent compositions, and (c) isCID voltages, suggests 

changes in ESI parameter setting do not affect the relative proteoform percentage of the 1:1 

ENH2:pENH2 mixture. Data were collected on a Bruker maXis II Q-TOF mass spectrometer. 
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Figure S2.6. Evaluation of changes in desolvation parameters and sample flow rate on the 

proteoform quantification. Different conditions including (a) dry gas flow rate, (b) dry gas 

temperature, (c) nebulizer gas pressure, and (d) sample flow rate do not significantly vary the 

relative proteoform percentage. Data were collected on a Bruker maXis II Q-TOF MS. 
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Figure 2.7. Quantification for ENH2 proteoforms at different charge states using Q-TOF 

mass spectrometer. Gas-phase ratios of ENH2 and pENH2 was compared with solution-phase 

ratios of (a) 1:5, (b) 1:3, (c) 1:1, (d) 3:1, (e) 5:1. (f) The correlation between the average of gas-

phase ratios among three charge states and solution-phase ratios suggests a good linear 

correspondence. 
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Figure S2.8. Gas-phase quantification using 12T solariX FT-ICR MS analysis for ENH2. (a) 

Gas-phase ratios of ENH2:pENH2 at charge state 41+, 40+, and 39+ were compared with five 

different solution-phase ratios from 1:5, 1:3, 1:1, 3:1 to 5:1 (top to bottom). (b) Representative FT-

ICR spectra at charge state 41+ of the five solution-phase ratios were shown. In each spectrum, the 

relative abundance is normalized to the highest abundance species. (c) Correlation analysis for 

charge state 41+ shows a good linear correlation between the gas-phase ratios (derived from FT-

ICR MS data) and solution-phase ratios (derived from SDS-gel data). *ENH2 with phosphate 

adduct. 
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Figure S2.9. Gas-phase quantification using FT-ICR MS analysis for ENH2 at charge state 

40+, and 39+. Correlation analysis of charge state (a) 40+ and (b) 39+ shows a good linear 

correlation between the gas-phase ratios (derived from FT-ICR MS data) and solution-phase ratios 

(derived from SDS-gel data). 
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Figure S2.10. Quantification for β-casein proteoforms at different charge states using 12T 

solariX FT-ICR mass spectrometer. Gas-phase ratios of β-casein and 5pβ-casein were compared 

with solution-phase ratios of (a) 1:5, (b) 1:3, (c) 1:1, (d) 3:1, (e) 5:1. (f) The correlation between 

the average of gas-phase ratios among three charge states and solution-phase ratios was shown. 

The data set was fit to a linear equation. 
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Figure S2.11. ESI/Q-TOF MS analysis of a mixture of 1:1 gas-phase ratio of β-casein:5pβ-

casein derived based on the deconvoluted spectrum in the revealed a shift in charge state 

distribution. Charge state distribution of solution mixture with 1:1 gas-phase ratio of β-

casein:5pβ-casein based on deconvoluted spectra is shown. Insets, representative charge states 

showing different gas-phase ratios. 
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Chapter 3 

 

 

Comprehensive Characterization of the Recombinant Catalytic 

Subunit of cAMP-Dependent Protein Kinase by Top-Down Mass 

Spectrometry 

 

 

Adapted from: Wu, Z.; Jin, Y.; Chen, B.; Gugger, M. K.; Wilkinson-Johnson, C. L.; Tiambeng, 

T. N.; Jin, S.; Ge, Y.*, Comprehensive Characterization of the Recombinant Catalytic Subunit of 

cAMP-Dependent Protein Kinase by Top-Down Mass Spectrometry. J. Am. Soc. Mass Spectrom. 

2019, 30 (12), 2561-2570. 
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Abstract 

Reversible phosphorylation plays critical roles in cell growth, division, and signal 

transduction. Kinases which catalyze the transfer of γ-phosphate groups of nucleotide 

triphosphates to their substrates are central to the regulation of protein phosphorylation and are 

therefore important therapeutic targets. Top-down MS presents unique opportunities to study 

protein kinases owing to its capabilities in comprehensive characterization of proteoforms that 

arise from alternative splicing, sequence variations, and post-translational modifications. Here, for 

the first time, we developed a top-down MS method to characterize the C-subunit of an important 

kinase, PKA. The recombinant PKA C-subunit was expressed in E. coli and successfully purified 

via his-tag affinity purification. By intact mass analysis with high resolution and high accuracy, 

four different proteoforms of the affinity-purified PKA C-subunit were detected and the most 

abundant proteoform was found containing seven phosphorylations with the removal of N-terminal 

methionine. Subsequently, the seven phosphorylation sites of the most abundant PKA C-subunit 

proteoform were characterized simultaneously using tandem MS methods. Four sites were 

unambiguously identified as Ser10, Ser11, Ser18, and Ser30 and the remaining phosphorylation 

sites were localized to Ser2/Ser3, Ser358/Thr368, and Thr[215-224]Tyr in the PKA C-subunit 

sequence with a 20mer 6xHis-tag added at the N-terminus. Interestingly, four of these seven 

phosphorylation sites were located at the 6xHis-tag. Furthermore, we have performed 

dephosphorylation reaction by λPP, and showed that all phosphorylations of the recombinant PKA 

C-subunit phosphoproteoforms were removed by this phosphatase.  
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Introduction 

Reversible phosphorylation is one of the key biological processes that govern cellular 

events including cell cycle control, cell growth, and signal transduction.1-2 Aberrations in signaling 

events, such as up- and down-regulation of phosphorylation, are associated with the progress of 

human diseases.3-8 Protein kinases are enzymes that catalyze the transfer of the γ-phosphate groups 

of nucleotide triphosphates to their substrates, and therefore are central to the regulation of protein 

phosphorylation.9-10 Dysregulation of kinase signaling networks is increasingly recognized as an 

underlying mechanism that contributes to human diseases.11-14 Consequently, numerous kinases 

inhibitors are currently utilized or under development for use as therapeutics.15-16  

Protein kinases are also modulated by phosphorylation.17 Autophosphorylation of protein 

kinases, or phosphorylation by other protein kinases, results in their activation or deactivation due 

to changes in their secondary structures.18 Structural changes affect the binding kinetics to kinase 

substrates such as ATP and inhibitor peptides by altering the salt bridges and hydrogen bonding 

network at the active site.18-19 One of the important protein kinases is the PKA, which partakes in 

many biological processes including mediating adrenergic stimulation in the heart and regulating 

the functions of skeletal muscle.20-21 This protein kinase is a heterotetramer composed of two C-

subunits, and two different regulatory subunits.22-23 The PKA C-subunit has multiple 

phosphorylation sites displayed in the expressed proteins, which are associated with the 

physiochemical properties and enzymatic activity.18-19, 24-25  

The phosphate groups at the phosphorylation sites are removed by protein phosphatase 

through the biological process of dephosphorylation, which together with protein phosphorylation, 

constitutes the reversible phosphorylation.1 The removal of a phosphate group at the 

phosphorylation sites by phosphatase largely depends on the substrate specificity of the 
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phosphatase.26 Additionally, structural information around the phosphorylation sites can be 

revealed as the efficacy of dephosphorylation also relies on the accessibility, which is based on the 

structural environment of the phosphorylation sites under physiological conditions. 26 To better 

understand the function of phosphorylations on PKA C-subunit, a comprehensive characterization 

of the phosphorylation sites and the analysis of the dephosphorylation reaction are necessary. 

Top-down MS presents unique opportunities to study protein kinases owing to its 

capabilities in analyzing alternative splicing, sequence variations and PTMs.5, 27-34 Compared to 

bottom-up MS, which analyzes digested peptides, top-down MS analysis provides a “bird’s eye” 

view of all proteoforms by analyzing proteins from the intact level.35-37 In this study, we have 

developed a top-down MS strategy to characterize the recombinant PKA C-subunit. The affinity-

purified PKA C-subunit, which was expressed in E. coli, was present with multiple proteoforms 

by intact mass analysis. The most abundant proteoform of PKA C-subunit was identified with 

seven phosphorylations along with the removal of N-terminal methionine. Using MS/MS 

techniques including CID and ECD, these seven phosphorylation sites were localized to specific 

amino acid residues or located to a region. Interestingly, four of these phosphorylation sites were 

located at the 6xHis-tag sequence. Dephosphorylation reactions using λPP suggested that all 

phosphorylation sites were accessible to this particular phosphatase . Taken together, we have 

demonstrated that top-down MS has unique advantages in comprehensively characterizing protein 

kinases. 

 

Experimental Section 

Chemicals and Reagents 
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All reagents were acquired from Sigma-Aldrich, Inc. (St. Louis, MO, USA), unless 

otherwise noted. Solvents, including HPLC grade H2O, ACN and EtOH, were purchased from 

Fisher Scientific (Fair Lawn, NJ, USA).  

 

Molecular Cloning 

Commercial plasmid encoding the PKA C-subunit (plasmid # 14921) was purchased from 

Addgene (Watertown, MA, USA) in an agar gel piece.38 A small agar piece was transferred in 5 

mL TB media with 100 μg/mL ampicillin, and the mixture was allowed to grow  for 9 h in a shaker. 

The cells were collected and the growth media was discarded. The plasmid DNA was extracted 

using QIAprep Spin Miniprep Kit (QIAGEN, Hilden, Germany) following the manufacturer 

recommended protocol. The plasmid product was transformed into ScarabXpress T7 E. coli cells 

(Scarab Genomics, Madison, WI, USA), and a glycerol stock was prepared. 

 

Protein Expression and Purification  

The protein expression and purification protocol was similar to that previously described. 

39 Briefly, a starter LB broth culture with 100 μg/mL ampicillin was inoculated by glycerol stock 

of the E. coli and the starter culture was allowed to grow overnight. A small amount of starter 

culture was transferred to LB broth containing 100 μg/mL ampicillin. The culture was allowed to 

grow until the optical density of the culture reached 0.4 to 0.6. IPTG at a final concentration of 0.1 

mM was introduced to induce protein expression, and the bacteria were cultured at 30  ºC for 9 h. 

The cells were harvested by centrifugation and the cell pellets were stored at -80 ºC prior to protein 

purification.  
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Unless stated otherwise, additives include 1 mM DTT and 0.25 mM PMSF.  The cell pellets 

were lysed by sonication in 50 mM NaH2PO4 pH 7.4, 250 mM NaCl (10 mL/g pellet) buffer 

(Buffer A) with additives and protease inhibitor cocktail (Sigma-Aldrich Inc.). The cell debris 

were removed by centrifugation. For 2 mL of the supernatant, 250 μL of DynabeadsTM His-Tag 

Isolation and Pulldown (InvitrogenTM, Carlsbad, CA, USA) was added, and the mixture was 

agitated at 4 ºC for 30 min. The supernatant was removed and the Dynabeads were washed twice 

with Buffer A containing additives, once with 50 mM Tris pH 7.4, 50 mM NaCl buffer (Buffer B) 

with additives, and finally with Buffer B containing additives and 25 mM imidazole. The attached 

proteins were eluted with Buffer B with additives, 300 mM imidazole, and protease inhibitor 

cocktail, and was concentrated using a PierceTM Protein Concentrators PES, 10K MWCO filter 

(Fisher Scientific). The efficacy of the protein purification was verified by SDS-PAGE analysis. 

 

Dephosphorylation Reaction 

 The dephosphorylation reaction for the PKA C-subunit (~ 40 μg) was performed using ~ 

150 units of λPP (New England Biolabs Inc., Ipswich, MA, USA) following the manufacturer 

recommended protocol. Briefly, the reaction was supplemented with 1 mM MnCl2 solution and 

1X NEBuffer for PMP (New England Biolabs Inc.) and allowed to proceed for 2 h at 30 ºC to 

achieve complete dephosphorylation. 

  

Top-down Mass Spectrometry 

 For online MS analysis, the PKC C-subunit samples were separated using a homemade 

PLRP reversed-phase column (200 mm length × 500 μm i.d., 10 μm particle size, 1,000 Å pore 
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size). PLRP-S particles were obtained from Agilent Technologies (Santa Clara, CA, USA). Mobile 

phase A (MPA) contained H2O with 0.1% FA and mobile phase B (MPB) contained 50:50 

ACN:EtOH with 0.1% FA. LC was performed with a 60 min linear gradient which ran at 5% MPB 

from 0 to 5 min, followed by 5% to 65% MPB from 5 to 40 min, 65% to 95% MPB from 40-53 

min, and back to 5% MPB at a flow rate of 12 μL/min. Five microliters (5 μL) of sample were 

injected for all experiments. The sample was analyzed either using a maXis II Q-TOF mass 

spectrometer (Bruker Daltonics, Bremen, Germany) coupled with an ACQUITY UPLC M-Class 

System (Waters Corporation, Milford, MA, USA), or using a 12T solariX FT-ICR mass 

spectrometer (Bruker Daltonics) coupled with a nanoACQUITY UPLC System (Waters 

Corporation). For online LC-MS/MS experiments with CID fragmentation using a maXis II Q-

TOF mass spectrometer, the precursor ion was isolated and subjected to 15 - 20 eV energy for 

fragmentation. 

For offline MS analysis, the fraction was collected using a nanoACQUITY UPLC System. 

The sample was introduced to a 12T solariX FT-ICR mass spectrometer using a TriVersa 

NanoMate® (Advion Bioscience, Ithaca, NY, USA) as previously described.5, 40 The mass spectra 

were collected over a 200 to 3000 m/z range with 2 M transient size (1.2 s transient length) and a 

pulse at 28% excitation power. In MS/MS analysis, an isolation window of 1.8 – 2 m/z was used 

for the precursor ion. Mass spectra were accumulated for 500 to 750 scans. For CID experiments, 

an energy from 6 to 12 V was set to generate fragment ions. For ECD experiments, the parameters 

for ECD pulse length, ECD bias, and ECD lens were set to 0.020 s, 0.3 - 0.6 V, and 10 V, 

respectively. 
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Data Analysis 

 All reported masses are monoisotopic masses. For intact mass analysis, the spectra were 

analyzed using DataAnalysis 4.2 and deconvoluted using the Maximum Entropy deconvolution 

algorithm. The monoisotopic mass was calculated using the SNAP algorithm in DataAnalysis. For 

MS/MS analysis, the data were analyzed using MASH Suite Pro.41 Peak extraction was performed 

using a signal-to-noise ratio of 3 and a minimum fit of 60%, and all peaks were subjected to manual 

validation. A 10-ppm mass tolerance was used to match the experimental fragment ions to the 

calculated fragment ions based on amino acid sequence. 

 

Results and Discussion 

We developed a top-down MS strategy for the comprehensive characterization of 

recombinant PKA C-subunit (Figure 3.1). The strategy started with obtaining a plasmid encoding 

the PKA C-subunit, and subsequently transforming the plasmid into a vector. Afterwards, the PKA 

C-subunit was overexpressed in E. coli, and the protein was purified by affinity purification. The 

protein was first subjected to intact mass analysis which reveals the sequence variations and PTMs 

by accurate mass measurements. These putative modifications were first assessed by online CID 

experiment for protein fragmentation analysis. Then the fraction containing the PKA C-subunit 

was collected after LC separation, and further subjected to offline characterization using both CID 

and ECD at various fragmentation settings for verification of the putative modifications. 

 

PKA C-subunit expression and purification 
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The plasmid encoding the PKA C-subunit was kindly provided by Dr. Susan Taylor from 

UCSD through Addgene organization.38 The plasmid includes a 20 amino acid 6xHis-tag sequence 

before the endogenous sequence of PKA C-subunit derived from mice [UniProtKB - P05132]. The 

mouse-derived C-subunit of PKA is composed of 351 amino acid residues. For overexpression of 

the PKA C-subunit, the plasmid was purified and transformed into the pET-28a(+) vector. To 

capture the 6xHis-tag on the PKA C-subunit, affinity purification using Dynabeads was employed, 

which is based on TALON technology (Figure S3.1a). The loading mixture, flow through, and 

elution fractions were evaluated by SDS-PAGE analysis (Figure S3.1b). The PKA C-subunit was 

determined to be successfully purified based on the presence of a dark band at around 42 kDa, 

which is consistent with the predicted protein mass (Mr: 42575.92 Da) from the encoding amino 

acid sequence. Although the PKA C-subunit was present as the most prominent band by SDS-

PAGE analysis, other faint bands could also be observed in the elution lanes. In particular, some 

lower mass proteins might suppress the ionization and detection of the PKA C-subunit in the top-

down MS analysis. Therefore, our strategy was to use RPLC methods to separate the PKA C-

subunit from other proteins for both online and offline characterization. 

  

Online LC-MS/MS Profiling of Multiple Proteoforms  

The affinity-purified PKA C-subunit was subjected to RPLC separation coupled online 

with high-resolution MS analysis using a Q-TOF instrument. Using H2O as MPA and 50:50 

ACN:EtOH as MPB, the PKA C-subunit was separated and detected by MS with minimal 

impurities, and this was demonstrated by the charge state distribution envelope (Figure 3.2a and 

Figure S3.2). The deconvoluted spectra revealed the existence of multiple PKA C-subunit 

proteoforms but none of the masses of these proteoforms matched with the theoretical protein mass 
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based on the predicted amino acid sequence (Figure 3.2a, inset). The mass difference between two 

neighboring peaks was 79.97 Da, indicating the occurrence of phosphorylation on these 

proteoforms. As it is common that the N-terminal methionine of recombinant proteins would be 

removed by methionyl-aminopeptidase after protein translation, the mass of methionine was first 

deducted from the theoretical protein mass.42 The PKA C-subunit proteoforms were found to 

contain six to nine phosphorylations with N-terminal methionine removed based on the results 

from the deconvoluted spectra. With a mass shift of 559.49 Da, the most abundant proteoform was 

modified with seven phosphorylations in addition to the removal of N-terminal methionine, which 

accounted for ~ 45% of relative percentage of all PKA C-subunit proteoforms (Figure 3.2a, inset). 

Collectively, the affinity-purified PKA C-subunit was hyperphosphorylated from E. coli 

expression, which is consistent with previous studies.25, 43  

For the initial PTM site characterization, the PKA C-subunit was subjected to online LC-

MS/MS with CID fragmentation on the precursor ion corresponding to the most abundant 

proteoform with seven phosphorylation sites. Since phosphorylation is the only PTM being 

considered, the mass list was matched with the theoretical fragment ion list by adding the mass of 

phosphorylation modification. Asides from the precursor ion (M49+), several abundant fragment 

ions were observed (Figure 3.2b). The masses of these abundant fragment ions were identical and 

could be identified as y114 ions at different charge states after accounting for the mass of one 

phosphorylation. Less abundant ions at 560 – 850 m/z afforded additional information regarding 

the phosphorylation sites (Figure 3.2b, inset). Several low mass y ions (y20, y19, and y15) suggested 

a phosphorylation site located after Arg356 at the C-terminus. A series of b ions (b54, b55, b56, and 

b57) could also be identified with mass difference equivalent to five phosphorylations, indicating 

five phosphorylation sites located before Lys54 at the N-terminus. Lastly, a b254 ion was identified 
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with mass difference equivalent to six phosphorylation, suggesting that a phosphorylation site was 

located in the middle of the recombinant PKA C-subunit sequence. Using online CID 

characterization, fragment ions from MS/MS spectra localized five phosphorylation site before 

Lys54 at the N-terminus, one phosphorylation site after Arg356 at the C-terminus, and one 

phosphorylation site in the middle of the sequence for the most abundant PKA C-subunit 

proteoform. 

 

Characterization of PKA C-subunit phosphorylation sites by high-resolution MS/MS 

Analysis 

We sought to localize all phosphorylation sites present in the most abundant proteoform of 

the PKA C-subunit using offline MS analysis combining different fragmentation methods. The 

fraction containing the recombinant PKA C-subunit was collected after LC separation, and the 

samples were analyzed on an ultrahigh-resolution FT-ICR mass spectrometer. In this study, when 

referring the amino acid residue in the endogenous sequence, note that the ref erence is to the 

UniProt sequence [UniProtKB - P05132] with N-terminal methionine removed to be consistent 

with the previous reports.19, 24 As shown from the online CID results, there were five 

phosphorylation sites located near the N-terminus. As a result, ECD fragmentation method was 

used for site localization, which is known to preserve labile modifications such as 

phosphorylation.44 ECD was able to effectively fragment most of the bonds at the N-terminus, and 

a plethora of fragment ions was observed in the raw spectra from the ECD experiment (Figure 3.3a 

and Figure S3.3).  

For the first phosphorylation site at the N-terminus, both c8 and c9 differed from the 

theoretical mass by 79.97 Da, indicative of the occurrence of phosphorylation (Figure 3.3b). Ser2 
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and Ser3 are the only two amino acid residues that can be phosphorylated; however, the  site could 

not be definitively localized to either Ser2 or Ser3 without additional fragment ions. Three 

additional phosphorylation sites were localized at Ser10, Ser11, and Ser18, which were confirmed 

by c9, c10, and c19 ions (Figure 3.3b). Ser11 and Ser18 were confirmed with only two c ions, c10, 

and c19, as these are the only two sites which could be phosphorylated. Intriguingly, all of these 

four phosphorylation sites were located at the added 6xHis-tag sequence. Hyperphosphorylation 

at the 6xHis-tag sequence was also observed in other case using E. coli for kinase expression such 

as that for Aurora A.45 Iakoucheva et al. suggested that protein phosphorylation predominantly 

occurred at disordered regions 46. The structure of the 6xHis-tag sequence along with the first 12 

amino acid residues of the PKA C-subunit was found to be disordered from previous X-ray 

crystallography study, which supported our observation that the four phosphorylations took place 

at the disordered 6xHis-tag sequence.38 This 20mer 6xHis-tag sequence 

(MGSSHHHHHHSSGLVPRGSH) is a common sequence added at the N-terminus due to its dual 

functionality.47-48 This tag includes a 6xHis-tag for affinity purification and a thrombin cleavage 

site (LVPR/GS). Proteins with only Gly-Ser-His added at the N-terminus of the endogenous 

protein sequence could be yielded after reacting the affinity-purified protein with thrombin.49 In 

the case of the PKA C-subunit, the thrombin cleavage site was not utilized as the 20mer 6xHis-tag 

did not affect the structure and enzymatic activity of this protein.19, 38 

The last of the five phosphorylation sites at the N-terminus was localized at Ser30, which 

was confirmed by c18 and c32 ions (Figure 3.3b). This phosphorylation site is equivalent to Ser10 

in the endogenous sequence. Previously, Tholey et al. suggested that phosphorylation at Ser10 

altered the structure at the N-terminus, resulting in the amplified extent of electrostatic 

interaction.50 Yonemoto et al. argued that Ser10 could be autophosphorylated in vitro, and that this 
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site was significant for protein solubility.19 Mutation at Ser10 significantly impaired the solubility 

of protein in aqueous solution. Therefore, the phosphorylation at Ser10 was shown to be important 

for protein structure and solubility. 

 Next, we sought to identify the phosphorylation site at the C-terminus. Since ECD did not 

generate sufficient fragment ions, the site was instead characterized primarily by CID fragment 

ions. The phosphorylation site was localized at Ser358 or Thr368 by y13 and a series of y ions from 

y15 to y21 (Figure 3.4a and Figure 3.4b). Although an y7 ion without phosphorylation was observed 

in the CID experiment, this ion could not be used for confident identification of phosphorylation 

site at Ser358 due to the possibility that this ion was present after the loss of the phosphorylation 

at Thr368 (Figure 3.4b).44 One of the potential phosphorylation sites, Ser358, equivalent to Ser338 

in the endogenous sequence, has been reported previously.19, 51 Yonemoto et al. suggested that this 

phosphorylation site was relevant to catalytic activity and protein stability. Mutations of 

recombinant PKA C-subunit with S338A or S338E either disrupted the catalytic activity or altered 

the binding kinetics for inhibitor peptide and ATP.19 

The localization of phosphorylation site in the middle of the sequence required fragment 

ions generated from both CID and ECD fragmentation methods. The phosphorylation site was 

narrowed down to T[215-224]Y by b224 with six phosphorylations, c210 with five phosphorylations 

and z•157 with two phosphorylations (Figure 3.4c and Figure 3.4d). One of the potential 

phosphorylation sites was Thr217, which is equivalent to Thr197 in the endogenous sequence. 

Phosphorylation at Thr197 is crucial to catalytic activity, as it allows PKA C-subunit to change 

from an inactive state to an active state.18 It does so by forming salt bridges with amino acid 

residues from other parts of the PKA C-subunit, such as C-helix, catalytic loop, β9, and activation 

loop.  
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 In previous studies, phosphorylation sites on PKA C subunit were usually identified by 

bottom-up MS based on the detection of phosphopeptides, in which the identified phosphorylation 

sites are from a mixture of multiply-phosphorylated proteoforms.24-25 Compared to the bottom-up 

MS strategy, our top-down MS strategy analyzes intact proteins, giving a bird’s eye v iew of all 

proteoforms present. This approach not only shows the stoichiometry of different proteoforms in 

a single sample, but also provides a comprehensive analysis of all phosphorylation sites present in 

a single proteoform. 

 

Top-down MS/MS Sequencing of the PKA C-subunit 

 By combining five CID spectra and three ECD spectra, 191 of 369 possible bonds were 

cleaved, providing a 52% sequence coverage for the recombinant PKA C-subunit (Figure 3.5). A 

series of CID fragment ions was observed at Ser[54-58]Gln, Ser[134-145]Gly, Gly[246-265]Gln, 

and Tyr[350-357]Arg (Figure S3.4). Interestingly, although loss of phosphorylation would 

sometimes occur in CID, a series of b ions with all phosphorylations intact was observed from 

Ser[54-58]Gln, Ser[134-145]Gly, and Gly[246-255]Tyr. Compared to peptide fragmentation, CID 

of intact proteins often could retain a portion of the labile modifications in the top-down approach 

44. Fragmentation at the amide backbone was preferred over PTM ejection, which is likely due to 

the higher-order structure of gas phase ions that are larger than ~8 kDa.52  By contrast, only a few 

b ions were observed for the first 50 amino acid residues in the N-terminus, likely due to the loss 

of phosphate group(s) as a result of their smaller size. ECD fragmentation yielded bond cleavages 

unique to CID fragmentation due to the difference in the dissociation mechanism.53 This method 

provided good sequence coverage at both the N- and C-terminus; however, the fragmentation 

efficiency was suboptimal for bonds in the middle of the sequence, despite some larger ECD 
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fragment ions being observed (Figure S3.5 and Figure S3.6). For this study, utilizing both CID and 

ECD fragmentation methods, the phosphorylation sites of the PKA C-subunit proteoform with 

seven phosphorylations were characterized. Current development in fragmentation methods, such 

as UVPD, will be beneficial to achieve a higher sequence coverage due to additional generated ion 

species such as a and x ions, in addition to b, c, y and z• ions.54  

 

Dephosphorylation of hyperphosphorylated PKA C-subunit 

 Dephosphorylation, which removes phosphate groups on their substrates by phosphatases, 

is complimentary to phosphorylation. We were interested in how the recombinant PKA C-subunit 

proteoforms react to a common phosphatase, λPP. The dephosphorylation reaction of the affinity-

purified PKA C-subunit was performed and the reaction product was analyzed by top-down MS. 

A drastic shift in peaks was observed in each charge state due to the loss of multiple 

phosphorylations (Figure 3.6a and Figure S3.7). From the deconvoluted spectra, all 

phosphoproteoforms collapsed into a single unphosphorylated proteoform after the 

dephosphorylation reaction (Figure 3.6b). This suggested that all phosphorylation sites were 

accessible by λPP and were subsequently dephosphorylated. Byrne et al. observed that after 

dephosphorylation, the most abundant proteoform still possessed two phosphorylations detected 

by low-resolution top-down MS analysis.25 The reaction conditions of the dephosphorylation 

reaction between our studies and the study done by Byrne et al. were different. In our protocol, we 

followed the manufacturer recommended conditions from the New England Biolabs and 

performed the dephosphorylation reaction at 30 °C. In comparison, Byrne et al. conducted the 

dephosphorylation reaction at 37 °C using bacterially expressed λPP. At elevated temperature, the 

phosphatase might not reach its maximum kinetics and might denature after prolonged incubation. 
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Conclusively, our result showed that all phosphorylations on the phosphoproteoform of the PKA 

C-subunit were removed by λPP. The discrepancy between our result and result from Byrne et al. 

might be due to the difference in reactions conditions.  

 

Conclusion 

 For the first time, a top-down MS strategy was developed to achieve a comprehensive 

characterization of the recombinant PKA C-subunit. The PKA C-subunit was overexpressed in E. 

coli and the expressed protein with 6xHis-tag was successfully purified by affinity purification. 

The affinity-purified PKA C-subunit was subjected to intact mass analysis and proteoforms with 

six to nine phosphorylations were observed. The most abundant proteoform was identified with 

seven phosphorylations and removal of N-terminal methionine. Using CID and ECD 

fragmentation methods, all seven phosphorylation sites were characterized simultaneously for the 

first time. Four of the phosphorylation sites were unambiguously localized to Ser10, Ser11, and 

Ser18, which were located at the 20mer 6xHis-tag sequence, as well as Ser30, which corresponded 

to Ser10 in the endogenous sequence Three other phosphorylation sites were localized to Ser2/Ser3, 

Thr[215-224]Tyr, and Ser358/Thr368. By combining five CID and three ECD experiments, a 52% 

sequence coverage was achieved for the PKA C-subunit with seven phosphorylations. Finally, 

dephosphorylation experiments showed that all phosphorylations of the PKA C-subunit 

phosphoproteoform were removed by λPP.  
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Figure 3.1. Workflow of expression, affinity purification, and top-down LC-MS analysis of 

the recombinant PKA C-subunit. a) The plasmid obtained from Addgene organization was 

transferred into a vector and expressed in E. coli cells. b) The PKA C-subunit was purified using 

affinity purification. c) The purified samples were subjected to online LC-MS and MS/MS analysis 

using a Q-TOF mass spectrometer and complemented with offline MS/MS analysis using a FT-

ICR mass spectrometer. d) The modifications were characterized based on MS and MS/MS spectra. 
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Figure 3.2. Top-down MS analysis of the PKA C-subunit. a) Mass spectra with charge state 

distribution and deconvoluted (inset) spectra of the PKA C-subunit. The most abundant proteoform 

purified from E. coli expression contained seven phosphorylations with removal of N-terminal 

methionine. b) The precursor at charge state 49+ was subjected to online LC-MS/MS with CID 

fragmentation. 560 – 850 m/z is zoomed in to show a variety of b and y fragment ions (inset). 
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Figure 3.3. Identification of five phosphorylation sites at the N-terminal region using ECD. 

a) ECD fragment ion mapping for the first 45 amino acid residues. b) Representative fragment ions 

from ECD fragmentation. Five phosphorylation sites, Ser2/Ser3, Ser10, Ser11, Ser18, and Ser30 

were confirmed by phosphorylated c ions. 
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Figure 3.4. Phosphorylation site mapping at the C-terminus and in the middle region by CID 

and ECD. a) CID fragment ion mapping at the C-terminus. b) Representative fragment ions from 

CID experiment. A phosphorylation site was localized at Ser358 or Thr368. c) CID and ECD 

fragment ion mapping for the middle sequence of PKA C-subunit. d) Representative fragment ions 

from the CID and ECD experiments. A phosphorylation site was located at Thr[215-224]Tyr. 
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Figure 3.5. Top-down MS/MS sequencing of the PKA C-subunit. The map combined three 

ECD spectra and five CAD spectra. 191 of 369 possible bonds were cleaved, providing a 52% 

sequence coverage.  
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Figure 3.6. Analysis of the dephosphorylation of the PKA C-subunit using λPP. a) Charge 

states 48+, 47+, and 46+ were shown for PKA C-subunit before (top) and after (bottom) the 

dephosphorylation reaction. b) Deconvoluted spectra were shown for the analysis of the 

dephosphorylation reaction. All phosphorylations were removed, resulting in a single 

unphosphorylated proteoform in the spectra. 
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Supplemental Information 

 

Figure S3.1. Schematic drawing and SDS-PAGE analysis of affinity purification for PKA C-

subunit. a) Schematic of the affinity purification of PKA C-subunit using DynaBead for His-tag 

purification; b) SDS-PAGE analysis of purified PKA catalytic subunit expressed in E. coli. 
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Figure S3.2. Total ion chromatogram of recombinant PKA C-subunit using liquid 

chromatography. The LC condition was run with H2O with 0.1% formic acid (FA) as mobile 

phase A and 50:50 EtOH:ACN with 0.1% FA as mobile phase B (MPB). The gradient ran at 5% 

MPB for 5 min, followed by 5% to 65% MPB from 5 to 40 min, 65% to 95% MPB from 40-53 

min, and back to 5% MPB. Other peaks in the chromatogram are either low mass proteins or small 

molecule contamination. 
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Figure S3.3. Raw spectra of ECD experiment. a) The precursor ion at charge state 48+ was 

subject to ECD fragmentation experiment, and a large number of fragment ions was yielded. b) 

Zoomed-in spectra from 625 – 850 m/z showing several c ions with phosphorylations intact.   
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Figure S3.4. Fragment ion mapping for CID fragmentation. A series of CID fragment ions was 

observed at Ser[54-58]Gln, Ser[134-145]Gly, Gly[246-265]Gln, and Tyr[350-357]Arg. b ions that 

contain a large number of phosphorylations were observed at Ser[54-58]Gln, Ser[134-145]Gly, 

and Gly[246-255]Tyr. 
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Figure S3.5. Fragment ion mapping for ECD fragmentation. Most ECD fragment ions were 

located at both ends of the amino acid sequence.  
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Figure S3.6. Representative fragment ions from ECD fragmentation. Four ECD fragment ions 

with large molecular weight were shown. 
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Figure S3.7. Broadband spectra for the dephosphorylation reaction.  A drastic peak shift was 

observed for charge state 52+, 50+, and 48+ due to the removal of multiple phosphorylations. 
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Chapter 4 

 

 

Enriching Kinases by Functionalized Nanoparticles: A Pilot Study 
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Abstract 

Reversible protein phosphorylation is crucial in cell growth, division, and signal 

transduction. In protein phosphorylation, protein kinases are enzymes that are responsible for 

transferring the phosphate group from ATP to their kinase substrates.  The regulation of kinase 

activities is central to the regulation of protein phosphorylation, and are therefore makes kinases 

important therapeutic targets. Top-down MS has emerged as the method of choice to study 

proteoforms arising from alternative splicing, sequence variations, and post-translational 

modifications, and this technology is suitable for protein kinases which have a large variety. On 

the other hand, protein kinases are expressed in low-abundance, and thus an enrichment strategy 

is needed to enable top-down MS analysis. In this study, we developed a nanoproteomics platform 

to enrich endogenous protein kinases from samples for top-down MS analysis. Iron oxide NPs 

were functionalized with a pan-kinase inhibitor, which can capture a wide range of kinases. In the 

simple standard protein system, the functionalized NPs could effectively capture target kinases 

with some degrees of non-specific binding. For the kinase enrichment of complex system, an 

experimental workflow was established that bridged the sample preparation to downstream MS 

analysis. Further development in this nanoproteomics strategy could be coupled with top -down 

MS to allow for in-depth characterization of protein kinases. 

 

  



110 
 

Introduction 

 Reversible protein phosphorylation, which is constituted by protein phosphorylation and 

protein dephosphorylation is crucial to transduce external stimuli into intracellular signals in order 

to achieve activation, and inhibit or reverse the phosphorylation events of biological processes.1 

These phosphorylation events are important for cell cycle control, recepto r-mediated signal 

transduction, cell differentiation and proliferation, and metabolism.2-3 Protein kinases are enzymes 

that are responsible for protein phosphorylation process by transporting phosphate groups to their 

substrates. The set of protein kinases of an organism constitutes a specific kinome. 4 The human 

genome encodes for about 500 protein kinases constituting around 1.7% of the full human genome, 

with two major types such as tyrosine kinases and serine-threonine kinases.5 Diseases are often 

stemmed from abnormal regulation of kinase signaling. For instance, cancers are observed to have 

aberrant kinase activity due to genetic or somatic mutations, whereas cardiovascular diseases have 

elevated neurohormonal systems due to enhanced stimulation of kinases. 6-7 As a result, protein 

kinases have emerged as major drug targets for therapeutic purposes.8 In order to advance the 

understanding of the signaling networks orchestrated by protein kinases, it is important to 

comprehensively assess their functions by studying their own molecular events for kinase 

activation and inhibition, and their interactions with other key players in the signaling pathways.  

 The continuing development of MS with increasingly powerful instruments and novel 

fragmentation techniques has empowered MS-based proteomics to become the method of choice 

for protein identification, characterization, and quantification.9 In particular, Top-down 

proteomics is a rapidly developing technique that is capable of identifying proteoforms arising 

from PTMs, alternative splicing and sequence variations in the intact protein level.10-14 While the 

use of top-down proteomics is promising, it still faces tremendous technological challenges. This 
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technology is particularly attractive for studying protein kinases, as these enzymes are expressed 

in large varieties to accurately modulate signaling events.15 However, protein kinases are also 

expressed in low copies per cell.15-16 Recent studies by Worboys et al has shown that the abundance 

of different peptides from the digestion of kinases has three order of magnitude difference in 

proteome dynamic range.17 In the top-down proteomic analysis, low abundance proteins are often 

either overlooked by the detector because of suppression from high abundance proteins, or lack of 

identification due to fragmentation methods that often select several high abundance ion s in the 

chromatogram window. This necessitates the development for kinase enrichment methods to 

increase the relative abundance of kinases in the sample top-down MS analysis. 

 Kinase inhibitors are a class of small molecules that have affinity to protein kinases.18-19 

While kinase inhibitors are developed with different modes of inhibitory actions, kinase inhibitors 

that are ATP-competitive should be ideal to perform kinase enrichment, which allows proteins to 

attach and detach from the small molecules. Several ATP-competitive kinase inhibitors are also 

pan-kinase inhibitors, which can capture a range of proteins.20-22 While conventionally affinity 

reagents are coupled with polysaccharide beads-based platform (i.e. Sepharose) which are µm 

scale, recent studies has suggested that nanoparticle which are nanometer in scale may be an 

attractive alternative.23-25 Development in material chemistry has enabled nanoparticles to be 

surface-functionalized with a variety of terminal functional groups, and have superparamagnetic 

properties.26 Additionally, nanoparticles have small diameters that may facilitate diffusion through 

protein mixtures. As a result, nanoparticles functionalized with pan-kinase inhibitors can be an 

ideal platform for kinase enrichment. 

 In this study, we have developed a nanoproteomics platform that utilizes functionalized 

NPs to capture kinases for downstream proteomics. NPs were functionalized with a pan-kinase 
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inhibitor which have affinity to a wide range of kinases. The functionalized NPs were characterized 

by FTIR spectroscopy. Both a simple standard protein system and a complex protein extract system 

were used to evaluate the performance by using the functionalized NPs. We have found success in 

a simple standard protein system, where the functionalized NPs can selectively capture target 

kinases with some degrees of non-specific binding. On the other hand, while an experimental 

workflow was developed for MS analysis, the functionalized NPs have not been able to capture 

kinases selectively and effectively. 

  

Experimental Section 

Chemicals and Supplies 

All reagents were acquired from Sigma-Aldrich, Inc. (St. Louis, MO, USA) and TCI 

America (Portland, OR, USA), unless otherwise noted. Solvents, including HPLC grade H2O, 

ACN, EtOH, and acetone, were purchased from Fisher Scientific (Fair Lawn, NJ, USA). (3-

aminopropyl)triethoxysilane (APTES) was acquired from Gelest (Morrisville, PA, USA). HaltTM 

Protease inhibitor cocktail were purchased from ThermoFisher Scientific (Rockford, IL, USA). 

Protein kinase C isoform alpha (PKCα) and glycogen synthase kinase 3 isoform beta (GSK3β) 

were purchased from MilliporeSigma (Burlington, MA, USA). Bovine Serum Albumin (BSA) was 

acquired from Fisher Scientific. β-casein and carbonic anhydrase were purchased from Sigma-

Aldrich, Inc. 

 

Nuclear Magnetic Resonance and Small Molecule MS 
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 All nuclear magnetic resonance (NMR) spectra were acquired on the Bruker Avance-500 

(500 MHz, Bruker, Bremen, Germany) with the DCH cryoprobe. 16 to 32 scans were accumulated 

for 1H spectra whereas 512 to 1024 scans were accumulated for 13C spectra.  

 For MS analysis, small molecule samples were dissolved in 50:50:0.1 ACN:H2O:FA. 

Samples were delivered to a solariX XR 12-Tesla Fourier Transform Ion Cyclotron Resonance 

mass spectrometer (FTICR-MS, Bruker Daltonics, Bremen, Germany) using a TriVersa Nanomate 

system (Advion BioSciences, Ithaca, NY, USA). Mass spectra were acquired with an acquisition 

size of 16M, in the mass range between 150-2000 m/z (with a resolution of 270,000 at 400 m/z), 

and around 50 scans were accumulated for each sample. 

 

Synthesis of tert-butyl (3-bromopropyl)carbamate 

 3-bromopropylamine hydrobromide (4.00 g, 18.3 mmol, 1 eq.) and di-tert-butyl 

dicarbonate (7.99 g, 36.6 mmol, 8.4 mL, 2 eq.) were dissolved in anhydrous DCM (100 mL) under 

nitrogen gas flow. To the stirred solution was added DIPEA (2.61 g, 20.2 mmol, 3.5 mL, 1.1 eq.). 

After 12 hours the solvent was removed in vacuo. The residue was dissolved in ethanol (10 mL). 

Imidazole (1.07 g, 18.7 mmol, 1.02 eq.) was added and stirred for 30 minutes. The mixture was 

diluted with chloroform (100 mL) and washed with 1% HCI solution (3 x 50 mL). The organic 

phase was dried with sodium sulfate and evaporated to afford the product as a yellow oil (4.39 g, 

17.4 mmol, 95%). 1H NMR (500 MHz, DMSO-d6): δ 6.01 (s, 1H), 3.50 (t, J = 6.5 Hz, 2H), 3.03 

(q, J = 6.5 Hz, 2H), 1.90 (p, J = 6.5 Hz, 2H), 1.37 (s, 9H). 13C NMR (126 MHz, DMSO-d6): δ 

156.08, 78.07, 38.94, 33.12, 32.78, 28.70. HRMS (m/z) calc’d for C8H16BrNO2 [M+H]+ 238.0437, 

found 238.0438. 
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Synthesis of tert-butyl (3-(3-(2-amino-2-oxoethyl)-1H-indol-1-yl)propyl)carbamate (1) 

 Indole-3-acetamide (1.00 g, 5.7 mmol, 1 eq.) was dissolved in anhydrous DMF (8.76 mL). 

To the stirring solution cooled in an ice bath, sodium hydride (0.3421 g, 60% in mineral oil, 8.55 

mmol, 1.5 eq.) was added slowly and the mixture was allowed to stir at room temperature for 60 

mins under nitrogen. Tert-butyl (3-bromopropyl)carbamate (2.28 g, 9.57 mmol, 1.7 eq.), dissolved 

in anhydrous DMF (4.38 mL), was added to the mixture dropwise. The reaction was allowed to 

proceed at room temperature overnight under nitrogen. The crude reaction mixture was diluted 

with ethyl acetate (30 mL) and the organic layer was washed with water (3 x 20 mL). The organic 

layer was dried by MgSO4 and filtered. The volatile was removed under vacuum to yield a crude 

yellow oil. The product was purified by flash column chromatography to afford 1 (1.16g, 3.5 mmol, 

61%) as a white solid using a gradient from 50% to 100% acetone in hexane. 1H NMR (500 MHz, 

DMSO-d6): δ 6.91 (s, 1H), 3.50 (t, J = 6.5 Hz, 2H), 3.03 (q, J = , 2H), 1.90 (p, J = 6.5 Hz, 2H), 

1.37 (s, 9H). 13C NMR (126 MHz, DMSO-d6): δ156.08, 78.07, 38.94, 33.12, 32.78, 28.70. HRMS 

(m/z) calc’d for C18H25N3O3 [M+H]+ 332.1969, found 332.1968. 

 

Synthesis of methyl 2-(1-methyl-1H-indol-3-yl)-2-oxoacetate (2) 

 1-methylindole (2.00 g, 15.3 mmol, 1.90 mL, 1 equiv) was dissolved in diethyl ether (20 

mL) and transferred to a 100 mL round bottom flask on an ice bath (0 °C). To the stirring solution, 

oxalyl chloride (1.94 g, 15.3 mmol, 1.31 mL, 1 eq.) was added dropwise, and the solution was left 

to stir under nitrogen at 0 °C for 30 mins. The flask was then transferred to a dry ice and acetone 

bath (-78 °C), to which sodium methoxide (6.62 g, 30.6 mmol, 7.0 mL at 25 wt. %, 2 eq.) was 
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added dropwise. The solution was then promptly removed from the bath and left to slowly warm 

to room temperature for 60 minutes. Water (10 mL) was then added to quench the reaction, and 

the solid precipitate was dried and washed (first with cold water, and then with cold ethyl acetate) 

via vacuum filtration. The solid was then further dried to afford 2 (2.11g, 9.72 mmol, 63.7%) as a 

light pink solid. 1H NMR (500 MHz, DMSO-d6) δ 8.50 (s, 1H), 8.18 (d, J = 7.5 Hz, 4H), 7.62 (d, 

J = 8.0 Hz, 1H), 7.35 (dtd, J = 21.8, 7.3, 1.1 Hz, 3H), 3.92 (s, 3H), 3.89 (s, 3H). 13C NMR (126 

MHz, DMSO-d6) δ 178.52, 164.37, 142.10, 137.91, 126.38, 124.36, 123.74, 121.72, 111.76, 

111.70, 53.01, 33.98. HRMS (m/z) calc’d for C12H11NO3 [M+H]+ 218.0812, found 218.0812, 

[M+Na]+ , found 240.0631. 

  

Synthesis of tert-butyl (3-(3-(4-(1-methyl-1H-indol-3-yl)-2,5-dioxo-2,5-dihydro-1H-pyrrol-3-

yl)-1H-indol-1-yl)propyl)carbamate (3) 

 1 (0.85 g, 2.6 mmol, 1 eq.) and 2 (1.11 g, 5.13 mmol, 2 eq.) were dissolved in anhydrous 

THF (6 mL). To this stirring solution cooling on an ice bath (0 °C), potassium tert-butoxide (1.0M 

in THF, 7.70 mL, 3 eq.) was slowly added dropwise. The solution was then taken off of the ice 

bath after 60 seconds and allowed to gradually warm to room temperature for 2 hours under 

nitrogen. Subsequently, potassium tert-butoxide (1.0 M in THF, 12.83 mL, 5 eq.) was added 

dropwise, and the solution was lef t to stir for another 30 mins at room temperature. The volatile 

was then removed in vacuo to leave a crude material, which was then dissolved in ethyl acetate 

(175 mL) and washed with water (3 x 175 mL). For the second wash, brine (3 mL) was added to 

hasten separation and reduce the emulsion formed. The organic layer was then dried with 

magnesium sulfate and filtered. The volatile was removed to yield a crude, bright red oil which 

was purified by flash column chromatography. After the product band (Rf of 0.8, 50% acetone in 
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hexane) and the impurity band (Rf of 0.7, 50% acetone in hexane) were visibly separated, the 

eluting solvent was changed directly from 50% to 70% acetone in hexane to afford 3 (0.77g, 1.54 

mmol, 60.0%). 1H NMR (500 MHz, DMSO-d6) δ 10.93 (s, 1H), 7.86 (s, 1H), 7.77 (s, 1H), 7.46 (d, 

J = 8.2 Hz, 1H), 7.42 (d, J = 8.2 Hz, 1H), 7.07 – 6.96 (m, 3H), 6.90 (d, J = 8.0 Hz, 1H), 6.75 – 6.59 

(m, 4H), 4.23 (t, J = 6.9 Hz, 2H), 3.86 (s, 3H), 2.91 (q, J = 6.5 Hz, 2H), 1.84 (p, J = 6.8 Hz, 2H ), 

1.39 (s, 9H). 13C NMR (126 MHz, DMSO-d6) δ 206.49, 172.92, 172.89, 155.61, 136.49, 135.57, 

133.11, 131.97, 127.56, 126.72, 126.19, 125.57, 121.66, 121.63, 121.18, 121.15, 119.54, 119.49, 

110.10, 110.05, 105.00, 104.57, 77.59, 43.46, 39.52, 37.30, 32.88,  30.71, 29.87, 28.26. HRMS 

(m/z) calc’d for C29H30N4O4 [M+H]+ 499.2340, found 499.2340. 

 

Synthesis of (4, Bisindolylmaleimide VIII Hydrochloride) 

 4.0 M HCl in dioxane (4 mL) was added to 3 (.309 g, 0.62mmol). This solution was left to 

stir at room temperature for 60 minutes. The volatile was then removed in vacuo, and methanol (1 

mL) was added to solvate the remaining solid. This solution was then added to cold diethyl ether 

(45 mL) in a centrifuge tube. An additional aliquot of methanol (1 mL) was added to wash the 

remainder of the solid. The result was a bright red precipitate, which was then placed in a 

centrifuge (5 mins, 10 °C). The supernatant was poured off and disposed of, and the remaining 

solid was then dried in a desiccator under vacuum to yield 4 (.247g, 0.62 mmol, 100%). 1H NMR 

(500 MHz, DMSO-d6) δ 10.95 (s, 1H), 7.91 (s, 3H), 7.87 (s, 1H), 7.82 (s, 1H), 7.53 (d, J = 8.2 Hz, 

1H), 7.42 (d, J = 8.2 Hz, 1H), 7.09 – 6.99 (m, 2H), 6.85 (d, J = 8.0 Hz, 1H), 6.73 – 6.57 (m, 3H), 

4.36 (t, J = 6.9 Hz, 2H), 3.87 (s, 3H), 2.74 (q, J = 7.4, 6.5 Hz, 2H), 2.05  (p, J = 7.1 Hz, 2H). 13C 

NMR (126 MHz, DMSO-d6) δ 172.88, 172.88, 136.48, 135.49, 133.16, 131.64, 127.76, 126.46, 

126.23, 125.68, 121.79, 121.67, 121.18, 120.96, 119.64, 119.55, 110.19, 110.14, 105.29, 104.55, 
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66.35, 42.98, 39.52, 36.43, 32.92, 27.80. HRMS (m/z) calc’d for C24H22N4O2 [M+H]+ 399.1816, 

found 399.1819. 

 

Synthesis of (S)-5-((1-amino-1-oxo-3-(tritylthio)propan-2-yl)amino)-5-oxopentanoic acid  

 The starting materials, S-trityl-L-cysteinamide (0.5 g, 1.38 mmol, 1 eq.) and glutaric 

anhydride (0.173 g, 1.52 mmol, 1.1 eq) were transferred to a 100 mL round bottom flask. DCM 

(50 mL) was added to dissolve all the solids. DIPEA (0.357 g, 2.76 mmol, 480 µL, 2 eq.) was 

added, and the reaction was allowed to proceed at reflux overnight. Upon completion, the volatile 

was removed in vacuo to afford a yellow solid. The solid was suspended in hexane and filtered by 

vacuum filtration to obtain the final product. The solid was used for further synthesis without 

additional purification. 

 

Synthesis of (S)-N1-(1-amino-1-oxo-3-(tritylthio)propan-2-yl)-N5-(3-(3-(4-(1-methyl-1H-

indol-3-yl)-2,5-dioxo-2,5-dihydro-1H-pyrrol-3-yl)-1H-indol-1-yl)propyl)glutaramide (5) 

 (S)-5-((1-amino-1-oxo-3-(tritylthio)propan-2-yl)amino)-5-oxopentanoic acid (65.7 mg, 

0.138 mmol, 1.2 eq.) was incubated with HATU (55.1 mg, 0.145 mmol, 1.26 eq.) and DIPEA (26.5 

mg, 0.276 mmol, 35.7 uL, 2.4 eq.) in 3 mL anhydrous DMF for 30 mins. The color changed from 

light yellow to slightly pink during the process. In a separate vial, 4 (50 mg, 0.115 mmol, 1 eq.) 

was dissolved in 3 mL anhydrous DMF, and DIPEA (13.3 mg, 0.138 mmol, 17.8 µL, 1.2 eq.). 

After 30 mins, the two mixtures were combined and the reaction was allowed to proceed overnight. 

Upon completion, the mixture was diluted with 25 mL EtOAc. The organic layer was washed with 

25 mL of saturated NaHCO3 solution. The aqueous layer was extracted with 25 mL EtOAc. The 
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organic layers were combined and dried with brine and Na2SO4. The volatile was removed in 

vacuo. The crude mixture was diluted with 50:50 acetone:hexane. The product was purified using 

a gradient from 50:50 to 100:0 acetone:hexane. 1H NMR (500 MHz, DMSO-d6) δ 10.91 (s, 1H), 

8.00 (d, J = 8.0 Hz, 1H), 7.85 (s, 2H), 7.77 (s, 1H), 7.46 (d, J = 8.0 Hz, 1H), 7.41 (d, J =  8.0 Hz, 

1H), 7.35 – 7.26 (m, 15H), 7.23 (t, J = 7.1 Hz, 3H), 7.07 (s, 1H), 7.02 (q, J = 7.5  Hz, 2H), 6,89 (d, 

J = 8.3 Hz, 1H), 6.71 – 6.65 (m, 2H), 6.62 (t, J = 6.8 Hz, 1H), 4.32 (m, 1H), 4.23 (t, J = 6.9 Hz, 

2H), 3.86 (s, 3H), 3.30 (s, 2H), 3.02 (q, J = 6.5 Hz, 2H), 2.32 (m, 2H), 2.14 (m, 3H), 1.85 (p, J = 

6.9 Hz, 2H), 1.73 (p, J = 7.6 Hz, 2H). 

 

Synthesis of (S)-N1-(1-amino-3-mercapto-1-oxopropan-2-yl)-N5-(3-(3-(4-(1-methyl-1H-

indol-3-yl)-2,5-dioxo-2,5-dihydro-1H-pyrrol-3-yl)-1H-indol-1-yl)propyl)glutaramide (6, 

BIM-GA-Cyst) 

 The starting material, 5 (69 mg, 0.112 mmol) was dissolved in anhydrous DCM (5.7 mL). 

TIPS (150 µL, 5%) was added, followed by additional of TFA (150 µL, 5%). The reaction was 

allowed to proceed for an hour. The volatile was removed in vacuo. The residue was dissolved in 

minimal amount of MeOH, and transferred to a 50 mL Falcon tube. Et2O was added to fill the rest 

of the volume. Precipitate was observed immediately. The red product was collected by 

centrifugation at 5,000 rpm for 10 mins. The supernatant was discarded to afford the red product 

which was dried under vacuum. 1H NMR (500 MHz, DMSO-d6) δ 10.91 (s, 1H), 7.95 (d, J = 8.2 

Hz, 1H), 7.89 - 7.85 (m, 2H), 7.78 (s, 1H), 7.47 (d, J = 7.8 Hz, 1H), 7.41 (d, J =  8.6 Hz, 1H), 7.13 

(s, 1H), 7.03 (q, J = 7.5 Hz, 2H), 6,89 (d, J = 7.9 Hz, 1H), 6.72 – 6.60 (m, 3H), 4.34 – 4.30 (m, 

1H), 4.24 (t, J = 7.1 Hz, 2H), 3.86 (s, 3H), 3.18 (s, 1H), 3.02 (q, J = 4.8 Hz, 2H), 2.82 – 2.63 (m, 

2H), 2.23 (t, J = 8.8 Hz, 1H), 2.18 (t, J = 7.3 Hz, 2H), 2.10 (t, J = 6.9 Hz, 2H), 1.86 (p, J = 6.9 Hz, 
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2H), 1.73 (p, J = 7.3 Hz, 2H). HRMS (m/z) calc’d for C32H34N6O5S [M+H]+ 615.2384, found 

615.2396. 

 

Synthesis of 3-butynoic acid 

 3-Butynoic acid was synthesized following a previously reported procedure ,27 with 

modification. To a 1 L round bottom flask, 250 mL of H2O was added, followed by 120 µL of 70% 

HNO3, Na2Cr2O7, and NaIO4 on an ice bath. The mixture was stirred for 15 mins. 3-butyn-1-ol 

was slowly added. The reaction was allowed to proceed overnight under nitrogen on ice and 

warming up to room temperature. Upon completion, the slurry was filtered by gravity filtration. 

The aqueous layer was extracted five times each with 80 mL Et2O. The combined organic layer 

was concentrated to a brown oil. The oil was diluted with 20 mL DCM and  concentrated. The 

procedure with additional DCM wash until the color of the product lightened to afford a yellow 

powder. 1H NMR (500 MHz, CDCl3-d) δ 3.38 (d, 2H, J = 2.7 Hz), 2.25 (t, 1H, J = 2.7 Hz). 

 

Synthesis of N-(3-(triethoxysilyl)propyl)buta-2,3-dienamide (BAPTES).  

 To a 500 mL three-neck round bottom flask, 3-butynoic acid, 2-chloro-1-methylpyridinium 

iodide were dissolved in DCM (130 mL). The mixture was heated to 60 °C to reflux and stir with 

a condenser under nitrogen for 20 mins. In a separate flask, APTES and DIPEA (2 eq) were diluted 

with 130 mL DCM. The mixture was slowly transferred to the refluxing reaction using a syringe. 

After 30 mins, additional DIPEA (2 eq) was added to induce isomerization. The mixture was 

allowed to reflux overnight. Upon completion, the volatile was removed. The residual mixture was 

diluted with EtOAc and centrifuged at 5000 rpm for 5 mins to remove the precipitate. The 
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supernatant was concentrated via rotary evaporation. The product was purified with flash column 

chromatography using a gradient of 50:50 to 100:0 ethyl acetate: hexane to yield BAPTES as a 

clear, orange oil (4.80 g, 67% yield). 1H NMR (500 MHz, CDCl3-d) δ 6.00 (s, 1H), 5.62 (t, J = 6.6 

Hz, 1H), 5.20 (d, J = 6.7 Hz, 2H), 3.82 (q, J = 7.0 Hz, 6H), 3.30 (q, J = 6.7 Hz, 2H), 1.65 (m, 2H), 

1.23 (t, J = 7.0 Hz, 9H), 0.65 (m, 2H). 

 

Synthesis of Iron Oleate precursor 

 Sodium oleate (18.267 g, 60 mmol, 1 eq.) and iron(III) chloride hexahydrate (5.406 g, 20 

mmol, 0.33 eq.) were weighed and transferred to a 500 mL round bottom flask. Nanopure H2O 

(30mL), EtOH (40mL), and hexane (70mL) were added to the round bottom flask while stirring 

with a Teflon-coated magnetic egg-shaped stir-bar (1-1/4” x 5/8”). After all of the reagents were 

dissolved, the round bottom flask was attached to a condenser and put on vacuum for 5 minutes. 

The flask was refilled with N2 gas and the reaction was allowed to proceed at 72 °C overnight. The 

product, Fe(oleate)3, was then removed from heat. The organic layer was separated from the 

aqueous layer using a separatory funnel. The organic layer was washed with nanopure H2O (15mL) 

three times. The excess hexane in Fe(oleate)3 was remove in vacuo, and the Fe(oleate)3 was stored 

under vacuum until use. 

 

Synthesis of 8 nm Fe3O4-Oleate NP 

 In this order, Fe(oleate)3 (10 mmol, 9.00 g, 1 eq.), oleic acid (5.5 mmol, 1.56 g, 0.55 eq.), 

tetradecein (50.4 mmol, 10.00 g, 5.04 eq.), and octadecein (158.4 mmol, 40.00 g, 12.84 eq.) were 

weighed and transferred to a 125 mL three-neck round bottom flask. The side openings were sealed 
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by rubber stoppers. The flask was attached to vacuum and replaced with nitrogen. The reaction 

was allowed to proceed at 102 °C for 4 hours, and heated to 300° C over the course of two hours 

using a temperature controller. The ramp rate was set to 3.3° C, and temperature was held at 300° 

C for 30 minutes. Upon completion, the flask was cooled. For each 5 mL of Fe3O4-Oleate in high 

boiling solvent transferred to a 50 mL Falcon tube, EtOH was used to fill up to 50 mL. The 

solutions were sonicated and centrifuged at 5,000 rpm for 5 minutes. The supernatant was 

discarded, and the remaining particles were washed 3 times, each with 30 mL of EtOH. The 

resulting Fe3O4 was collected in minimal hexanes and left on vacuum to dry. The dried Fe3O4 was 

resuspended in anhydrous hexanes at a concentration of 20 mg/mL. 

 

Synthesis of Fe3O4-BAPTES NP 

 Fe3O4-Oleate (80 mg) was added to 200 mL of hexane in a round-bottom flask (500 mL) 

to make a final concentration of 0.4 mg/mL. The mixture was stirred at 600 rpm and heated at 60° 

C. BAPTES was added drop-wise to the solution to make a final concentration of 0.55% (v/v) of 

trialkoxysilane followed by addition of acetic acid catalyst (20 uL) to make a final concentration 

of 0.01% (v/v) acetic acid catalyst. The capped reaction with minimal exposure to air and water 

was allowed to run for 24 hours. The resulting product was separated from solution through 

centrifugation at 5,000 rpm for 5 minutes at 10 °C. The subsequent precipitate was washed once 

with hexane, once with a combination of ACN, and washed once again with hexane. The final 

product was suspended in ACN and dried overnight to afford Fe3O4-BAPTES (50 mg). 

 

Synthesis of BIM-GA-Cyst-Fe3O4-BAPTES NP  
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 BIM-GA-Cyst (10 mg) was dissolved in 4 mL of 1:1 ACN:H2O. 200 µL of 1M (NH3)2CO3 

solution was added to the BIM-GA-Cyst suspension to adjust the pH to about 8. In a separate vial, 

Fe3O4-BAPTES nanoparticle was suspended with 1 mL of ACN. The nanoparticle solution was 

added to the BIM-GA-Cyst solution while sonicating. The mixture was sonicated for 3 hours. The 

resulting nanoparticles was separated through centrifugation (13,200 rpm, 3 minutes). The 

nanoparticles was washed with DMSO at least six times, with a final wash with 1:1 ACN:H2O.  

BIM-GA-Cyst-Fe3O4-BAPTES NP were subsequently isolated magnetically with a DynaMag and 

resuspended in 1:1 ACN:H2O at 5 mg/mL and stored at 4 °C in the absence of light. 

 

Transmission Fourier Transform Infrared (FTIR) Material Characterization 

 The samples were prepared by mixing the NP with potassium bromide to make a pellet. 

The sample mass loading was around 0.33 wt.%. Transmission Fourier transform infrared (FTIR) 

spectra were measured on a Bruker Equinox 55 FT-IR spectrometer (Bruker Optik GmbH, 

Ettlingen, Germany). The measurement was recorded from 4,000 cm-1 to 400 cm-1 at 2 cm-1 

resolution.   

 

Simple system kinase enrichment 

 For simple system kinase enrichment, 2 µg of PKAα and GSK3β along with 5 µg of BSA, 

β-casein, and carbonic anhydrase were used. The protein mixture was diluted with low-salt buffer 

(50 mM Tris, 150 mM NaCl, 1 mM EDTA, 1 mM EGTA, 1 mM PMSF, 10 mM L-methionine, 1x 

HALT protease inhibitor cocktail, and 1x phosphatase inhibitor cocktail A, pH 7.4). Prior to 

nanoparticle incubation, the protein mixture was adjusted to 1 M NaCl, 0.1% DDM, 0.02 mg/ml 
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DAG, and 0.1 mg/ml PS for final concentration. The protein mixture was incubated with the 

functionalized NPs for an hour. Upon completion, the NPs were centrifuged at 15,000 g for 5 mins 

at 4 °C, and collected using a DynaMag. The NPs were washed twice with high-salt buffer (50 

mM Tris, 1 M NaCl, 1 mM EDTA, 1 mM EGTA, 1 mM PMSF, 10 mM L-methionine, 1x HALT 

protease inhibitor cocktail, and 1x phosphatase inhibitor cocktail A, pH 7.4) with 0.1% DDM, once 

with high-salt buffer, and once with low-salt buffer. Bound proteins were eluted with 1x Laemmli 

sample buffer. All fractions were concentrated using a 10k MWCO f ilter. The loading mixture and 

flow through fractions were normalized before loading on the 12.5% SDS-PAGE gel.  

 

Complex system kinase enrichment 

 The protein extraction procedures were performed in a cold room (4 °C) using freshly 

prepared buffers. The human cardiac tissue was acquired from the University of Wisconsin 

Hospital and Clinic with the procedure approved by the Institutional Review Board of the 

University of Wisconsin-Madison. For large scale extraction, around 500 mg of tissue was 

homogenized in HEPES buffer (25 mM HEPES, 50 mM NaF, 5 mM DTT, 10 mM L-methonine, 

5 mM EDTA, 1 mM PMSF, 1x HALT protease inhibitor cocktail, and 1x phosphatase inhibitor 

cocktail A, pH 7.4) using a Polytron electric homogenizer (Model PRO200; PRO Scientific, 

Oxford, CT, USA) on ice. The resulting homogenate was centrifuged at 10,000 g for 10 mins at 

4 °C. After centrifugation, the supernatant was saved as the first HEPES protein extract. The same 

extraction procedure was repeated to obtain the second HEPES extract protein. 

 For kinase enrichment from complex system, 500 µg of protein extract was used for 

incubation with 1 mg of functionalized NPs. The incubation mixture was adjusted to 1 M NaCl 

and 0.1% DDM concentration, and the incubation was allowed to proceed at 4 °C for an hour. 
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Upon completion, the NPs were centrifuged at 15,000 g for 5 mins at 4 °C, and collected using a 

DynaMag. The NPs were washed twice with high-salt buffer with 0.1% DDM, once with high-salt 

buffer, and once with low-salt buffer. Bound proteins were eluted with 0.5% Azo in 65.8 mM Tris, 

1% Azo in 65.8 mM Tris with 355 mM 2-mercaptoethanol, and finally with 1x Laemmli sample 

buffer. All fractions were concentrated using a 10k MWCO filter. The loading mixture and flow 

through fractions were normalized before loading on the 10% SDS-PAGE gel.  

 

Mass Spectrometry Analysis 

 For bottom-up proteomics analysis, the samples were irradiated for 1-5 mins with UV lamp. 

38 µL of the samples were first reduced by 2.5 µL of 100 mM dithiothreitol solution, and incubated 

at 37 °C for 30 mins. 7.5 µL of 100 mM iodoacetamide solution was added and incubated at room 

temperature under dark for 30 mins. 1 µL of 1 µg/µL trypsin was added and incubated for 16 hours 

at 37 °C. Upon completion, the samples were centrifuged at 15,000 g for 5 mins, and subject to 

LC-MS/MS analysis with a home-packed C18 column. The samples were separated using a 

nanoACQUITY UPLC System (Waters Corporation, Milford, MA, USA) coupled with an Impact 

II Q-TOF mass spectrometer (Bruker Daltonics, Bremen, Germany). Data analysis was performed 

using MaxQuant version 1.6.12.0 using default parameters with a human database (Uniprot-

Swissprot database, released December 2019, containing 20,367 protein sequences). 

 

Results and Discussion 

Synthesis and characterization of kinase-inhibitor functionalized NPs. 
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 We first selected a kinase inhibitor, BIM VIII, which can be easily synthesized in large-

scale and have specific affinity to kinases. The class of BIM derivatives has attracted our attention 

as it has strong affinity for PKC isoforms and GSK isoforms, while these molecules can act as 

pan-kinase inhibitors to capture other kinases.28 Out of the ten commercially available BIM 

derivatives, three of these molecules (BIM III, BIM VIII, and BIM X) carries an amine 

functionality, which enables incorporation of additional moiety on these molecules. Previous 

studies has examined the kinase capturing efficacy using bottom-up proteomics.28 While BIM III 

captured the least amount of kinases, BIM VIII and BIM X showed similar capturing efficacy 

towards PKC isoforms and GSK isoforms, and could also have affinity to cyclin-dependent kinase 

isoform 2 (CDK2) and ribosomal S6 kinase isoform 1 (Rsk 1). Although BIM X exhibited stronger 

affinity to target kinases than BIM VIII, the synthesis of BIM X is more complex. Additionally, 

BIM X captured more proteins than BIM VIII, including non-specific binding proteins, which will 

put additional burden on front-end separation prior to top-down MS analysis. As a result, we have 

synthesized BIM VIII in a large scale following previously published protocols (Figure 4.1).29-30  

 Next, we rationally designed a strategy to incorporate BIM VIII on nanoparticles (Figure 

4.2). Previous studies in our lab have developed a method to reproducibly surface silanize 

superparamagnetic iron-oxide (magnetite, Fe3O4) NPs.25 Further investigation has shown that an 

organosilane link molecule, N-(3-(triethoxysilyl)propyl)buta2,3-dienamide (BAPTES), can be 

effectively modified on oleic acid coated Fe3O4 NPs.31 This organosilane link molecule also 

possesses high chemoselectivity to thiol functionality due to the terminal allene carboxamide 

functional group, and was not prone to hydrolysis. Following the success on the surface 

functionalization using BAPTES functionalized nanoparticles, BIM VIII was further modified 

with additional moiety carrying thiol functional group via coupling reaction to affording the final 
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BIM derivative, termed BIM-GA-Cyst. This thiol-containing moiety (GA-Cyst) was synthesized 

by reacting glutaric anhydride with S-trityl-L-cysteinamide, which adds linker length from glutaric 

anhydride, allowing the molecule to reach the active site of kinases (Figure 4.1).32 

 BIM-GA-Cyst was then incorporated on NP-BAPTES (Figure 4.2a). The properties of the 

surface-functionalized NPs were examined at each step of the reaction by Fourier transform 

infrared (FTIR) spectroscopy analysis. Incorporation of BAPTES on the Fe3O4 showed a strong 

peak at 1970 and 1947 cm-1, which is the characteristic peak of allene functional group (Figure 

4.2b).33 This characteristic peak disappeared after reacting with BIM-GA-Cyst. This suggests that 

allene was significantly depleted post-reaction, and BIM-GA-Cyst was successfully incorporated 

on the NP-BAPTES. When comparing the IR spectra between the fully functionalized NP and the 

kinase inhibitor molecule, signature peaks for functional group including carbonyl, imide, C-C 

aromatic alkene, and aromatic bend mode could be observed in both spectra (Figure 4.2c). Due to 

the high quantum yield of the BIM-GA-Cyst given its conjugated ring system, the NP-BAPTES-

BIM-GA-Cyst NPs fluoresced when UV light was applied (Figure 4.2d).  

 

Kinase enrichment with a simple standard protein system 

 Initial enrichment studies using the fully functionalized NPs were evaluated using a simple 

standard protein mixture (Figure 4.3). The protein mixture contains two protein kinases, PKCα (78  

kDa) and GSK3β (46 kDa), known to be captured by BIM VIII,  and three common non-kinase 

proteins including BSA (67 kDa), β-casein (24 kDa), and carbonic anhydrase (30 kDa). The 

enrichment was analyzed by SDS-PAGE loaded in different steps during the enrichment process 

including loading mixture (pre-enrichment sample), flow through (protein mixture of the 

unattached proteins), wash (washing step), and elution (eluted protein mixture) (Figure 4.3a).  
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 For the simple system enrichment, we observed that both PKCα and GSK3β were captured, 

as the intensities of the bands in the flow through was weaker than those in  the loading mixture 

(Figure 4.3b). Both of these proteins had intense bands in the elution lane when the Laemmli buffer 

was used for elution. In the elution lane, the majority of proteins was PKCα and GSK3β, and 

successfully enrichment was observed when comparing to the loading mixture lane, where these 

two kinases are much lower in the overall population. For two of the non-kinase proteins, BSA 

and carbonic anhydrase, neither of these proteins was attached on the particle. The residual protein 

left on the NPs could be washed off during washing step. Interesting, β-casein was observed to be 

strongly attached to the functionalized particles. This non-kinase protein was completed attached 

to the ligand after incubation and it could not be washed away during the washing step. This non-

kinase protein eluted in the same conditions as protein kinases.  

 From the enrichment experiment using a simple standard protein mixture, we have 

demonstrated success in capturing protein kinases. Two of the non-kinases did not bind to the BIM 

ligands, while β-casein was strongly attached. This simple system experiment showcased the 

fundamentals of kinase enrichment. Although it would be ideal to capture only kinases, kinase 

inhibitors inherently had non-specific binding. In the study of identifying the cellular targets of 

bisindolylmaleimide class of inhibitors, Brehmer et al found that BIM III, which differed to BIM 

VIII with a methyl group, had affinity to metabolic enzymes such as glycerinaldehyde-3-phosphate 

dehydrogenase, glucose-6-phosphate dehydrogenase and lactate dehydrogenase B, as well as heat 

shock proteins (HSPs) including HSP90α, HSP70.1 and HSP73. Therefore, it was not surprising 

to observe binding of non-kinase proteins.28 Additionally, Oppermann et al reported that the 

majority of proteins captured by BIM X were non-kinase proteins, and these proteins included 

abundant 60S and 40S ribosomal proteins.34 
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Kinase enrichment with a complex mixture 

 Following the investigation on a simple standard protein mixture, we conduct experiment 

on a complex mixture using protein extracts from heart tissue. As these samples would be subject 

to MS analysis, elution using Laemmli buffer, which contains a high concentration of SDS, would 

not be applicable as SDS is detrimental for MS experiment. Azo, which is a photo -cleavable 

surfactant, has been demonstrated as an alternative for intact protein analysis. As a result, the SDS 

component was replaced by Azo in hope for an elution condition that can work directly for MS 

analysis.  

 The experimental workflow of complex mixture analysis was similar to that for simple 

system. Instead of a simple Laemmli buffer elution, the attached proteins were eluted with 0.5% 

Azo solution, 1% Azo solution with β-mercaptoethanol, a component in the Laemmli buffer, and 

finally Laemmli buffer solution. As observed in Figure 4.4, the loading mixture and flow through 

lanes did not change significantly. 0.5% Azo solution can elute some proteins, and the overall band 

distribution was different to that for loading mixture and flow through. A more concentrated Azo, 

1%, elution with a reducing reagent showed a distinct protein portfolio compared to loading 

mixture, flow through, and previous Azo elution. Interestingly, Laemmli elution at the final step 

did not contain a large amount of protein, which suggests that 1% Azo elution with reducing agent 

was a strong enough elution to detach most of the proteins that were left on the NPs.  

 After desalting and surfactant cleavage, both Azo elution samples were subject to bottom-

up proteomics analysis. Only two kinases were identified including galactokinase in the 0.5% Azo 

elution sample and adenylate kinase isoenzyme 1 in both Azo elution samples. At the current stage, 

the kinase enrichment using the functionalized NPs have not been successful. While kinase 
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enrichment using BIM may have non-specific binding, target kinases such as PKC isoforms, GSK-

3 isoforms, and pyruvate kinase could not be identified in the elution. Extraction of kinases should 

first be optimized. It was unclear whether HEPES extraction could extract sufficient amounts of 

kinases, and whether those extracted kinases are targets of BIM. The experimental workflow may 

need further optimization to minimize non-specific binding such as adjusting the surfactant 

concentration and salt concentration. Moreover, the storage conditions may also be improved. The 

functionalized NPs were stored at room temperature under dark in 50:50 H 2O:ACN solution. 

Prolonged storage may degrade the surface silane coating to generate silanol, which contains 

hydrophilic groups that may introduce non-specific binding. 

 

Conclusion 

 In this study, we have employed a nanoproteomics strategy to explore kinase enrichment 

for proteomics analysis. The NPs were synthesized and surface-functionalized with a kinase 

inhibitor, BIM, and characterized by FTIR spectroscopy. Using a simple standard protein mixture 

containing two kinases and three non-kinases, the functionalized NPs could capture and elute 

kinases, with some extents of non-specific binding. For the complex system using a cardiac protein 

extract, an experimental workflow was developed to enable kinase enrichment with MS analysis. 

This works presented here is a pilot study and further efforts will be needed to perform extensive 

evaluation of the enrichment specificity, followed by top-down LC-MS/MS analysis of the 

enriched kinases from complex systems. We envision ongoing efforts of this nanoproteomics 

strategy coupled with top-down MS will allow for in-depth characterization of protein kinases, 

including relative quantification of protein kinase proteoforms and localization of the 

phosphorylation sites of protein kinases. 
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Figure 4.1. Synthesis of bisindolylmaleimide derivatives. The bisindolylmaleimide VIII (4) was 

successfully using a procedure by Faul et al with modifications. The molecule was further reacted 

with a glutaric anhydride – cysteinamide moiety to obtain a thiol functional group and increase 

linker length. 
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Figure 4.2. Synthesis of kinase inhibitor-functionalized Fe3O4 nanoparticle. (a) The 

functionalized NPs were synthesized by silanization of oleic acid coated Fe3O4 NPs. The BIM 

kinase inhibitor carrying a thiol functional group further reacted with the allene functional group 

on the BAPTES coated Fe3O4 NPs. (b) FTIR spectra showed the comparison among Fe3O4 NPs 

coated with oleic acid, Fe3O4 NPs after BAPTES silanization, and Fe3O4 after BIM-GA-Cyst 

reaction. (c) FTIR spectra comparing the small molecule by itself and the fully functionalized 

Fe3O4 NP. (d) The fully functionalized NPs fluoresced under UV light. 

 

 

 

 



136 
 

 

Figure 4.3. Kinase enrichment for a simple mixture. (a) Schematic workflow showing the 

kinase enrichment procedures. (b) SDS-PAGE analysis of the kinase enrichment for a simple 

standard protein mixture. Fully functionalized NPs could effective capture target kinases with 

some degrees of non-specific binding. M, ladder; LM, loading mixture; FT, flow through; W1, 

high salt wash with 0.1% DDM; W2, low salt wash; E, 1x Laemmli sample buffer elution.  
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Figure 4.4. Kinase enrichment for a complex mixture. SDS-PAGE analysis of HEPES protein 

extract from cardiac tissue. With E1 at 0.5% Azo elution and E1 at 1% Azo elution with a reducing 

agent, most proteins bound on the NPs could be eluted. M, ladder; LM, loading mixture; FT, flow 

through; W1, high salt wash with 0.1% DDM; W2, low salt wash; E1, 0.5% Azo elution; E2, 1% 

Azo elution with a reducing agent; E3, 1x Laemmli sample buffer elution. 
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Supplemental Information 

 

Figure S4.1. 1H NMR spectrum of tert-butyl (3-bromopropyl)carbamate 

 

 

 

 

 

 

 

 

 

 

 



139 
 

 

Figure S4.2. 13C NMR spectrum of tert-butyl (3-bromopropyl)carbamate 
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Figure S4.3. 1H NMR of tert-butyl (3-(3-(2-amino-2-oxoethyl)-1H-indol-1-

yl)propyl)carbamate (1) 
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Figure S4.4. 13C NMR of tert-butyl (3-(3-(2-amino-2-oxoethyl)-1H-indol-1-

yl)propyl)carbamate (1) 
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Figure S4.5. 1H NMR spectrum of methyl 2-(1-methyl-1H-indol-3-yl)-2-oxoacetate (2) 
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Figure S4.6. 13C NMR spectrum of methyl 2-(1-methyl-1H-indol-3-yl)-2-oxoacetate (2) 
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Figure S4.7. 1H NMR spectrum of tert-butyl (3-(3-(4-(1-methyl-1H-indol-3-yl)-2,5-dioxo-2,5-

dihydro-1H-pyrrol-3-yl)-1H-indol-1-yl)propyl)carbamate (3) 
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Figure S4.8. 13C NMR spectrum of tert-butyl (3-(3-(4-(1-methyl-1H-indol-3-yl)-2,5-dioxo-

2,5-dihydro-1H-pyrrol-3-yl)-1H-indol-1-yl)propyl)carbamate (3) 
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Figure S4.9. 1H NMR spectrum of Bisindolylmaleimide VIII Hydrochloride (4) 
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Figure S4.10. 13C NMR spectrum of Bisindolylmaleimide VIII Hydrochloride (4) 
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Figure S4.11. 1H NMR spectrum of (S)-N1-(1-amino-1-oxo-3-(tritylthio)propan-2-yl)-N5-(3-

(3-(4-(1-methyl-1H-indol-3-yl)-2,5-dioxo-2,5-dihydro-1H-pyrrol-3-yl)-1H-indol-1-

yl)propyl)glutaramide (5) 
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Figure S4.12. 1H NMR spectrum of (S)-N1-(1-amino-3-mercapto-1-oxopropan-2-yl)-N5-(3-

(3-(4-(1-methyl-1H-indol-3-yl)-2,5-dioxo-2,5-dihydro-1H-pyrrol-3-yl)-1H-indol-1-

yl)propyl)glutaramide (6) 
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Figure S4.13. COSY NMR spectrum of (S)-N1-(1-amino-3-mercapto-1-oxopropan-2-yl)-N5-

(3-(3-(4-(1-methyl-1H-indol-3-yl)-2,5-dioxo-2,5-dihydro-1H-pyrrol-3-yl)-1H-indol-1-

yl)propyl)glutaramide (6) 
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Figure S4.14. 1H NMR spectrum of 3-butynoic acid. 
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Figure S4.15. 1H NMR spectrum of N-(3-(triethoxysilyl)propyl)buta-2,3-dienamide 

(BAPTES). 
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Chapter 5 

 

 

MASH Explorer: A Universal Software Environment for Top-Down 

Proteomics 

 

 

Adapted from: Wu, Z.; Roberts D. S.; Melby, J. A..; Wenger, K.; Wetzel, M.; Gu, Y.; Ramanathan, 

S. G..; Bayne, E. F.; Liu, X.; Sun, R.; Ong, I. M, McIlwain, S. J.; Ge, Y.*, MASH Explorer: A 

Universal Software Environment for Top-Down Proteomics, J. Proteome Res., in press. 



154 
 

Abstract 

 Top-down mass spectrometry (MS)-based proteomics enables a comprehensive analysis of 

proteoforms with molecular specificity to achieve a proteome-wide understanding of protein 

functions. However, the lack of a universal software for top-down proteomics is becoming 

increasingly recognized as a major barrier especially for newcomers. Here we develop MASH 

Explorer, a universal, comprehensive, and user-friendly software environment for top-down 

proteomics. MASH Explorer integrates multiple spectral deconvolution and database searching 

algorithms into a single, universal platform which can process top-down proteomics data from 

various vendor formats, for the first time. It addresses the urgent need in the rapidly growing top-

down proteomics community and is freely available to all users worldwide. With the critical need 

and tremendous support from the community, we envision this MASH Explorer software package 

will play an integral role in advancing top-down proteomics to realize its full potential for 

biomedical research. 
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Introduction 

Top-down mass spectrometry (MS)-based proteomics provides a comprehensive analysis 

of “proteoforms” — all protein products arising from post-translational modifications (PTMs), 

alternative splicing and genetic variations originating from a single gene — with molecular 

specificity to achieve a proteome-wide understanding of protein functions.1-4 Top-down MS 

analyzes intact proteins without proteolytic digestion and can detect various proteoforms 

simultaneously in a single MS experiment, thereby enabling their comprehensive molecular 

characterization. Specific information about proteoforms including PTM sites and sequence 

variations can be further characterized by tandem MS (MS/MS).5-7 In contrast to the well-

developed software packages in the peptide-based bottom-up proteomics, the data analysis tools 

for protein-based top-down proteomics remain under-developed due to the major challenge in 

handling the enormous complexity of high-resolution intact protein mass spectra.7-9 Particularly, 

the lack of a universal and user-friendly software for streamlined analysis of complex top-down 

proteomics data is becoming increasingly recognized as a major barrier, especially for newcomers, 

thus limiting the broader impact of top-down proteomics in the biomedical research communities. 

Additionally, the relatively high cost of commercial top-down software limits the accessibility for 

general users and thus necessitates a freely available academic version. 

 Here we develop MASH Explorer, a universal, comprehensive, user-friendly, and freely 

available software environment for top-down proteomics 

(http://ge.crb.wisc.edu/MASH_Explorer/index.htm). This software can process high-resolution 

MS, MS/MS data and liquid-chromatography tandem MS (LC-MS/MS) across multiple vendor-

specific formats, with automated database searching for protein identification as well as user -

friendly tools for proteoform characterization and data visualization/validation. MASH Explorer 

http://ge.crb.wisc.edu/MASH_Explorer/index.htm
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includes two major workflows: “Discovery Mode” for analysis of complex high-resolution LC-

MS/MS data to achieve global protein identification and “Targeted Mode” for comprehensive 

proteoform characterization including PTMs and sequence variants, with user-friendly graphic 

user interface (GUI) support. Advancing on our previous generations of proteomics software, 

MASH Suite10 and MASH Suite Pro,11 MASH Explorer has many new features including: (1) 

development of a universal platform for streamlined data processing from various vendor formats 

to standardize the data analysis; (2) integration of multiple deconvolution and database search 

algorithms for significantly enhanced protein identifications; (3) workflow management for high-

throughput data processing such as Process Wizard and Workflow Manager; (4) comprehensive 

proteoform characterization tools with the capability of handling highly complex data resulting 

from various MS/MS techniques such as collision-induced dissociation (CID), electron capture 

dissociation (ECD), electron transfer dissociation (ETD), and ultraviolet photodissociation 

(UVPD). The universal accessibility of non-proprietary, free software solutions such as MASH 

Explorer will significantly bolster the growth of the top-down proteomics community and 

welcome newcomers to employ this powerful technology to realize its impact in biomedical 

research. 

 

Experimental Section 

Software Design and Algorithm Support 

MASH Explorer is a multithreaded Windows application implemented in C# using .NET 

framework within the Visual Studio Integrated Development Environment. The software visual 

components are provided by Microsoft Office Runtime Support. Importing data obtained from 

different MS instruments is supported using ProteoWizard,12 DeconEngine,13 and vendor provided 
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libraries. Additionally, MASH Explorer supports multiple deconvolution and database search 

algorithms, including TopPIC suite,14 pTop,15 Informed-Proteomics,16 MS-Deconv,17 MS-

Align+,18 and a modified version of THRASH19 (eTHRASH11). As of March 24th, 2020, the 

supported versions of the deconvolution and database search algorithms are summarized in Table 

S5.1.  

 

Computer Setup for Data Analysis 

Data analysis was performed to simulate basic research environment. This computer has 

Windows 10 Student Edition operating system installed. It was equipped with an Intel i5 -2400 

central processing unit, which has 4 cores and 4 threads for processing, 16 GB DDR3 2400 MHz 

random access memory, and 1 TB SATA hard drive.  

 

Mass Spectrometry Data 

Two LC-MS/MS datasets from two different mass spectrometer vendors, Thermo 

Scientific and Bruker Corporation (referred to as Thermo and Bruker, respectively, in this 

manuscript), were utilized to demonstrate the Discovery Mode workflow of the MASH Explorer. 

The Thermo dataset is publicly available in the MassIVE repository with identifier/username 

MSV000079978 (ftp://massive.ucsd.edu/MSV000079978/).20 The dataset was acquired by 

extracting protein from DLD-1 parental (KRas wt/G13D) human colorectal cancer cells and using 

a GELFrEE system for size-based separation.21 The MS experiment was performed using reverse-

phase (RP) LC-MS/MS analysis using a 21 Tesla Fourier Transform Ion Cyclotron Resonance 

mass spectrometer.  
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The Bruker LC-MS/MS dataset used was publicly available from the PRIDE repository via 

ProteoXchange with identifier PXD010825.4 Briefly, the samples from this dataset were prepared 

by protein extraction using a photo-cleavable surfactant, 4-hexylphenylazosulfonate (Azo), from 

the human embryonic kidney 293K stem cells. The samples were irradiated to cleave the Azo 

surfactant. RPLC-MS/MS experiment was performed on a Bruker maXis II quadrupole-time of 

flight (Q-TOF) mass spectrometer. For the Bruker dataset, the mass spectra were also 

deconvoluted using Maximum Entropy Algorithm with 80,000 resolution from 10,000 Da to 

50,000 Da using Bruker DataAnalysis 4.3. 

The dataset for MS/MS analysis was previously published.22 Briefly, the samples were 

prepared by extracting proteins from non-human primate skeletal muscles. The dataset was 

published previously,22 and is publicly available through ProteomeXchange Consortium via the 

PRIDE partner repository with the PXD018043 identifier.23 Target sarcomeric proteins were 

fractionated using a Waters nanoAQUITY liquid chromatography system, and the fractionated 

samples were analyzed with a Bruker solariX 12 Tesla FT-ICR instrument using an Advion 

Nanomate. Specifically, beta-tropomyosin (βTpm, Uniprot-Swissprot accession number P07951) 

with ECD spectrum and myosin light chain 2 slow isoform (MLC-2S, Uniprot-Swissprot accession 

number A0A1D5RDY5) with the CID spectrum were used for demonstration of top-down protein 

characterization using the “Targeted Mode” of MASH Explorer. 

A Bruker MS/MS dataset were used for demonstrating the functions of the Targeted Mode 

in MASH Explorer for characterization of the antibody-drug conjugate (ADC), Adcetris 

(brentuximab vedotin) subunits, were previously published.24 Briefly, Adcetris was digested by 

IdeS, and the interchain disulfide bond was reduced by dithiothreitol (DTT). The subunits were 

analyzed by LC-MS/MS using a combination of a Waters M-Class LC system and a Bruker maXis 
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II Q-TOF mass spectrometer. The precursor of each subunit was subject to MS/MS experiment 

using both CID and ETD. The MS/MS spectra for each subunit were averaged using Bruker 

DataAnalysis 4.3 software and exported in .ascii format. The ions were extracted using THRASH 

at 60% fit, and the fragmentation ions were manually validated.  

The MS/MS dataset for demonstrating ultraviolet photodissociation (UVPD) ion fragment 

in Figure 5.1 was previously published by the Brodbelt group and could be accessed through 

ProteomeXchange with the PXD009447 accession number.25 This dataset was acquired by 

applying both CID and UVPD fragmentation methods on single amino acid variants of the human 

mitochondrial enzyme branched-chain amino acid transferase 2 using a modified prototype of 

Thermo Q Exactive UHMR instrument. 

 

Algorithm Parameters and Database Search 

For comparison of deconvolution and database search algorithms in this study, our analysis 

used the default parameters from different algorithms. Additionally, we attempted to use the same 

parameters to minimize runtime differences caused by parameters. For instance, all algorithms 

were set to 100,000 Dalton (Da) for maximum protein mass. A standard list of modifications such 

as N-terminal acetylation and N-terminal methionine removal was included during database search. 

A human database (Uniprot-Swissprot database, release December 2019, containing 20,367 

protein sequences) was used for LC-MS/MS database search. 

 

Results and Discussion 

Main functions of MASH Explorer Software 
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MASH Explorer software is a multifaceted software, which is built upon C# programming 

language using Visual Studio software under .NET framework environment. The combination of 

C# and Visual Studio enables the development of user-friendly Windows-based graphical interface, 

which is very intuitive for users, especially newcomers, to learn for streamlined routine analysis. 

This software development environment allows high performance, low latency, and rich data 

interaction for high throughput data processing.  

The core functions of MASH Explorer include spectral deconvolution, protein 

identification, proteoform characterization, graphical data output, data validation, and workflow 

automation (Figure 5.1). Users can choose the integrated deconvolution and database search 

algorithms to perform spectral deconvolution tasks, which extracts spectral features and 

subsequently generates a mass list from complex mass spectrum to search against a database for 

protein identification. Spectral deconvolution and protein identification tasks are supported by 

GUI tools in the MASH Explorer software for automation. The proteoform characterization 

function allows users to match fragment ions to protein sequence for localizing PTM sites and 

identifying sequence variations. MASH Explorer provides GUI to visualize experimental data for 

LC chromatograms, mass spectra, and fragment ion maps generated from various MS/MS 

experiments such as CID, ECD/ETD, and UVPD. 

One unique feature of MASH Explorer is its universal data processing platform for top-

down proteomics with the capability to process data from multiple vendor formats. MASH 

Explorer currently support specific vendor raw data format from Thermo (.raw), Bruker (.d 

and .ascii), and Waters (.raw) (Figure 5.1). Moreover, universal data formats such as mzXML and 

mgf can be imported. The data import function is supported by ProteoWizard,12 DeconEngine,13 

and vendor provided libraries. To allow successful data import, codes in MASH Explorer are 
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continuously updated to accommodate the latest version of ProteoWizard and vendor-specific data 

acquisition software. 

For the first time, MASH Explorer integrates multiple deconvolution and database 

searching algorithms into a single platform to maximize the performance for enhanced protein 

identification (Figure 5.1). Currently, the software incorporates various deconvolution algorithms 

including MS-Deconv,17 TopFD,14 eTHRASH,19 pParseTD,15 and ProMex26 for both MS and 

MS/MS deconvolution. The database searching algorithms such as MS-Align+,18 TopPIC,14 

pTop,15 and MSPathFinderT26 were integrated in the software for protein identification. MASH 

Explorer implements the process wizard, a user-friendly GUI to allow users to easily select 

deconvolution and database search algorithms and to customize the parameters of the selected 

algorithms for data processing, which is particularly convenient for users. In contrast, some 

database searching algorithms, such as MS-Align+, require command line inputs using the 

Windows terminal, which is complicated and difficult for users with limited computational 

experience. The Configuration tool provides an intuitive interface for the users to find the directory 

of the supported deconvolution and database search algorithms (Figure S5.1). 

The main interface of MASH Explorer allows users to perform data visualization, data 

validation, and customized output. The panels in the main interface include Workflow, Status Bar, 

Results View, Mass List, Logbook, and Sequence Table (Figure S5.2). In the Workflow and 

Parameters panel, several sections are available for users to process top-down MS data, including 

“Discovery Mode” for LC-MS/MS data processing, “Targeted Mode” for single protein 

characterization. In addition, “Data Reporting” allows users to save processed datasets in 

Extensible Markup Language (XML) format, which can be reopened for further analysis, and to 

export Microsoft object files of both mass spectra and fragment ion maps for image processing. In 
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the Results View panel, a mass spectrum is displayed for data visualization. Users can navigate 

through different scans, zoom-in and zoom-out of the selected spectrum, and adjust the theoretical 

Gaussian distribution of the fragment ions using the buttons displayed in the panel. The Mass List 

panel allows users browse through deconvoluted mass list from the mass spectra for data validation. 

The entries in the Mass List panel interacts with the Results View and Sequence Table panels, 

offering users to visualize the fragment ion mapping for different types of MS/MS techniques to 

characterize the protein sequence. The entries in the Mass List panel can be copied to text editing 

software and is converted to .msalign format during data processing. In the Sequence Table panel, 

PTMs of the protein sequences can also be selected and analyzed. The Logbook and Status Bar 

panels record all data processing by the software such as the versions of the tools used for raw data 

import, the parameters used in deconvolution and database search tasks. Users can copy the 

Logbook recordings to a text editor in the event an error occurs. Moreover, the information in the 

Logbook recordings can help the MASH Explorer software developers troubleshoot any problems.  

 

“Discovery Mode” for LC-MS/MS analysis 

 MASH Explorer features a “Discovery Mode” workflow that is useful for high-throughput 

data processing and proteoform identification from batch LC-MS/MS raw data files without a 

priori knowledge of specific proteins (Figure 5.2). “Discovery mode” integrates several top-down 

MS processing tools to centroid, deconvolute, and search databases against raw datasets for 

comprehensive proteoform characterization. The software environment highlights intuitive and 

user-friendly Process Wizard and Workflow Manager to enhance the efficiency of data processing. 

MASH Explorer offers a user-friendly GUI, Process Wizard, for different deconvolution 

and database search algorithms (Figure S5.3). This GUI tool bundles top-down data processing 
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steps including centroiding, deconvolution, and database search. After data import, users can 

choose available processing pipelines in the Process Wizard. Users can run the algorithms usin g 

default settings or change the parameters of each algorithm in the Advanced tab. Additionally, 

MASH Explorer implements a Workflow Manager to enhance the efficiency of processing top-

down proteomics datasets (Figure S5.4). In the Workflow Manager, users can run a batch analysis 

of top-down proteomic datasets in sequence. The Workflow Manager achieves this function by 

reading the workflow log created during the algorithm process and gives instructions to wait to 

execute the next operation. Upon completion, the Workflow Manager automatically imports both 

the deconvolution and database search results into MASH Explorer for validation of identified 

proteins. It provides users with convenience in both automatic data file conversion and parameter 

input in algorithms without sacrificing the efficiency of the database search. 

Incorporation of various deconvolution and database search algorithms enables MASH 

Explorer to improve global proteoform identification and characterization (Figure 5.3 and Figure 

S5.5). As an example, multiple deconvolution and database search workflows have been 

performed on both Thermo dataset from human colorectal cancer cell protein extracts20 and Bruker 

dataset from surfactant-extracted protein mixture4 for global proteoform identification (Figure 

5.3B and Figure S5.5A) and discussed in the following sections. Identified proteoforms can be 

further analyzed using tools provided by MASH Explorer for comprehensive proteoform 

characterization (Figure 5.3C). In addition to the current list of deconvolution and database search 

algorithms, MASH Explorer has the capability to incorporate more algorithms, owing to the 

modularity of the software. The incorporation of recently developed deconvolution algorithms 

such as FLASHDeconv8 and UniDec27-28 could increase the diversity in deconvolution methods 

and thus enable MASH Explorer to process datasets more effectively. Moreover, the results from 
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multiple algorithms can be used for analysis and further implementation of machine learning 

algorithms. Recent algorithm development in the MASH project will enable users to run a machine 

learning tool on deconvolution.23 This machine learning tool used hierarchical clustering to 

combine deconvoluted peak lists from different algorithms, which can effectively detect true 

positive peaks while filtering out false positive peaks, resulting in enhanced accuracy and 

confidence in protein identification during database search. 

 

“Discovery Mode” workflow for a Thermo LC-MS/MS dataset of human colorectal cancer 

cell protein extracts 

 Using a publicly available Thermo dataset, we compared the protein identifications for five 

workflows including MS-Deconv – TopPIC, TopFD – TopPIC, ProMex – MSPathFinderT, MS-

Deconv – MS-Align+, and pParseTD – pTop (Figure 5.3B). The combination of multiple 

deconvolution and database search algorithms can improve global proteoform identification and 

characterization. MS-Deconv – TopPIC and TopFD – TopPIC workflows did not have any distinct 

identifications, suggesting that all identifications from these two workflows are also found in other 

workflows. ProMex – MSPathFinderT and pParseTD – pTop yielded unique identifications (an 

additional 30-50% of identifications to the 120 consensus identifications from the five workflows). 

MS-Deconv – MS-Align+ offered many unique identifications. While MS-Align+ can suggest 

unknown modifications in the proteoform to maximize the number of fragment ion matched to the 

sequence, this process can potentially increase false positive identifications and thus manual 

validation is often needed.  

Proteins identified in the database search can be further validated using visual tools 

provided by MASH Explorer. After importing the database search results and clicking on an 
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identified protein, MASH Explorer displays the corresponding MS/MS spectrum in the Spectrum 

View Panel, shows the related sequence in the Sequence Table panel, and provides the mass list 

of the scan in the Mass List panel. Users can evaluate the quality of the MS/MS spectrum, adjust 

the sequence to account for sequence variations, and view the fragment ions which matched to the 

sequence. ATP synthase subunit g, mitochondrial (Uniprot-Swissprot accession number O75964) 

and microsomal glutathione S-transferase 1 (Uniprot-Swissprot accession number P10620) were 

identified by MS-Deconv – TopPIC workflow. ATP synthase subunit g, mitochondrial was 

identified with an E-value of 9.66E-037, suggesting high-confidence identification. The protein 

was modified with the removal of N-terminal methionine and N-terminal acetylation, and the 

sequence was extensively characterized by CID fragment ions, which is indicated to be high 

confidence by the E-value (Figure 5.3C). In comparison, microsomal glutathione S-transferase 1 

was identified with lower confidence (E-value = 2.82E-004). The N-terminal methionine of this 

protein was removed. While the E-value was not ideal, CID fragment ions still allowed 

characterization of the protein (Figure 5.3C). 

 

“Discovery Mode” workflow for a Bruker LC-MS/MS dataset of surfactant-extracted 

protein mixture 

The Bruker LC-MS/MS dataset was acquired in the profile mode, and thus peak picking 

was needed before further processing. We compared the protein identification from three available 

workflows for Bruker data file from a publicly available dataset,4 including MS-Deconv – TopPIC, 

TopFD – TopPIC, and ProMex – MSPathFinderT (Figure S5.5). 
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Most protein identifications provided by TopPIC database search algorithm from either 

MS-Deconv or TopFD deconvolution algorithm overlapped with those from ProMex – 

MSPathFinderT (Figure S5.5A). As a result, the confidence of protein identification can be 

increased if the proteins were identified by more than one algorithm. For instance, the 60S 

ribosomal protein L27 (Uniprot-Swissprot accession number P61353) only has an E-value of 

1.80E-004 in the TopFD - TopPIC workflow, suggesting low confidence in protein identification. 

However, this protein was also identified by MS-Deconv – TopPIC with an E-value of 3.06E-05, 

and ProMex – MSPathFinderT workflow with an E-value of 3.17E-003. All three workflows 

identifying the same protein provide strong evidence of a true protein identification. Indeed, the 

protein was detected in the mass spectrum in a combination of other proteins (Figure S5.5B). The 

suboptimal E-value for protein identification was most likely due to insufficient fragment ions in 

the MS/MS experiment. 

ProMex – MSPathFinderT workflow offered several unique identifications, which was not 

identified by neither workflow with TopPIC database search algorithms (Figure S5.5C). While 

some identifications might be false positives, the intact mass of identifications with E-value >1 

(indicative of low confidence in identification), could be observed in the deconvoluted mass 

spectra. For example, prohibitin-2 (Uniprot-Swissprot accession number Q99623) and sodium 

channel subunit beta-4 (Uniprot-Swissprot accession number Q8IWT1) were identified with a 

respective E-value of 1.51 and 10.76. The intact mass of both proteins was found in the 

deconvoluted mass spectra. The ability to find unique identifications for ProMex – MSPathFinderT 

workflow is likely the result of better performance of ProMex to extract features (i.e. MS level 

deconvolution). 
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“Targeted Mode” for MS/MS analysis 

Another important feature of MASH Explorer is a complimentary “Targeted Mode” 

workflow that is optimized for the detailed and comprehensive characterization of individual 

proteins, enabling users to identify site-specific PTMs within a protein target (Figure 5.4). The 

“Targeted Mode” workflow was developed for comprehensive protein characterization. It includes 

data import, spectral deconvolution to identify and verify isotopic distributions, database search  to 

identify target protein, and finally protein characterization by matching identified isotopic  

distribution to the target proteoform sequence. The “Targeted Mode” workflow aims to perform 

identification of fragment ions that help identify and localize PTMs of a target proteoform 

sequence.  

In addition to the functions introduced in our previous generation software, MASH Suite 

Pro,11 which provides tools for users to perform charge state and mass shift correction, the 

“Targeted Mode” in MASH Explorer introduces an Ion Finder Tool GUI that parses through 

generated ion lists from different fragmentation methods to find proteoform annotations and allow 

users to match theoretical and observed fragment ions (Figure S5.6). Using the Ion Finder Tool, 

users can input the fragment ion type and the charge state of the specific fragment ion of interest. 

The software will then zoom-in to the m/z region of targeted ion and attempt to perform fragment 

ion matching. The Ion Finder Tool complements the existing THRASH algorithm in MASH 

Explorer to provide a more comprehensive fragment ion mapping for top-down protein analysis. 

As an example, we have demonstrated on a previously published dataset in the characterization of 

cardiac sarcomeric proteins from non-human primate skeletal muscle such as βTpm, which was 

modified with N-terminal acetylation, and MLC-2S with N-terminal methionine removal and 

PTMs including N-terminal acetylation and deamidation at Asn13 (Figure S5.7).22  
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Characterization of the antibody-drug conjugate subunit using “Targeted Mode” workflow 

 MASH Explorer can also be extended to characterize the subunits of ADCs,24 which 

combine the target specificity of monoclonal antibody and the potency of the cytotoxin drugs, 

gaining enormous interest in the pharmaceutical industry (Figure 5.5 and Figure 5.6). One of the 

analytical tasks for ADC characterization is the site localization of drug payload. The digestion of 

an ADC, brentuximab vedotin, with IdeS resulted (Figure 5.5A). After digstion of an ADC, 

bretuximab vedotin with IdeS, the resulting subunits were further reacted with DTT to reduce the 

inter-chain disulfide bonds and subject to LC-MS/MS analysis with both CID and ETD 

fragmentation (Figure 5.5A). The MS/MS spectra of each subunit were averaged and exported as 

separate MS file. Due to the complexity of ADC, after IdeS digestion and DTT reduction, Fd 

subunit with one drug payload has three isomers which can be separated by LC.  

 Using MASH Explorer, MS/MS spectra can be imported and performed by fragment ion 

mapping on specific Fd1 subunit (Figure 5.6). Spectral deconvolution was executed on the MS/MS 

spectra to identify isotopic distributions, which represent fragment ions of this isomer, and 

calculate their charge states, monoisotopic mass, most abundant mass, intensities, and other 

parameters. With the known sequence of the Fd subunit and the location of the disulfide bonds, 

identified isotopic distribution can be mapped to the sequence. Users can visually validate the ions 

to ensure the accurate assignments since the direct software output may contain false positives in 

identifying the monoisotopic peak and assigning the charge state especially for the low abundance 

ions. For payload localization, there are three possible sites including Cys220, Cys226, and Cys229, 

which are the location of inter-chain disulfide bonds. Moreover, MASH Explorer software 

provides an Ion Finder Tool to search for ions in the specific amino acid regions of interests. As 
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illustrated in Figure 5.5B, z•15, z•16, z•23, and z•24 ions were visualized using the Ion Finder Tool to 

localize Cys220 as the site for the payload for an Fd isomer with one drug payload.  

 

Conclusion 

MASH Explorer is a non-proprietary and free software solution, providing a universal and 

comprehensive environment for processing top-down proteomics data. The major innovations of 

MASH Explorer include the integration of multiple deconvolution and search algorithms into a 

single, universal platform to process raw data from various vendor formats in a user-friendly 

interface. Since the development of the MASH project, the software has been downloaded and 

used by more than 600 users around the world (as of March 24th, 2020) (Figure 5.7). While the 

majority of users are from North America, the MASH software has continuously attracted users 

across the globe, including users from continents such as Europe and Asia. As the popularity of 

top-down MS-based proteomics grows, MASH software increasingly becomes a vital and integral 

tool for users to process complex high-resolution top-down LC-MS/MS data. In addition to the 

case studies of protein identification from human colorectal cancer cell protein extracts20 and 

surfactant-extracted protein mixture,4 as well as the characterization of ADC,24 many other groups 

have used the MASH software packages in top-down proteomics projects including analysis of the 

light and heavy chain connectivity of a monoclonal antibody,29 characterization of branched 

ubiquitin chainsm,30-31 intact phosphoprotein characterization,32 and localization of 

phosphorylation sites of a phosphatase.33  

As the burgeoning top-down proteomics community continues its rapid growth and has 

gained momentum through the creation of the Consortium for Top-down Proteomics (CTDP) 

(http://www.topdownproteomics.org/), the need for universal, comprehensive and globally 
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accessible top-down proteomics software increases tremendously. With the critical need and 

tremendous support from the community, we envision this MASH Explorer software package will 

serve as a powerful tool to enable top-down proteomics researchers worldwide, playing an integral 

role in advancing the top-down proteomics to realize its full potential for biomedical research. 
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Figure 5.1. Schematic of the various MASH Explorer functions for proteomics data 

processing. Main functions of MASH Explorer include data import, spectral deconvolution, 

workflow automation, data validation, protein identification, and graphical output. MASH 

Explorer utilizes a new data processing module based on the ProteoWizard Library to accept 

various data input file formats from major instrument vendors (e.g. Thermo, Bruker, and Waters). 

Raw MS and MS/MS data files are then processed by deconvolution algorithms (i.e. MS-Deconv, 

TopFD, eTHRASH, and pParseTD), and database search algorithms (i.e. MS-Align+, TopPIC, 

pTop, and MSPathFinderT). MASH Explorer provides a user-friendly interface for data validation, 

proteoform identification, and characterization. 
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Figure 5.2. Illustration of “Discovery Mode” for LC-MS/MS data processing. “Discovery 

mode” can handle batch LC-MS/MS raw data files and includes features such as data import, data 

processing (deconvolution and database search), and data validation for protein identification. A 

simple and user-friendly Workflow Manager GUI automates the search and validation process and 

outputs processed data to a tabulated “Mass List” where users can view individual fragment ions 

and assign additional PTMs to reflect the fragment ion mapping on individual protein sequences.  
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Figure 5.3. Top-down proteomics data analysis using “Discovery Mode” in MASH Explorer. 

A, Cartoon illustration of a typical “Discovery Mode” top-down LC-MS workflow. B, Venn 

diagram showing the overlap of protein identifications using an ensemble of five combined 

deconvolution and protein search workflows using a Thermo LC-MS/MS dataset. This combined 

deconvolution algorithm capability enables a deeper proteome coverage and enhanced protein 

identifications. C, Top-down MS identification and characterization using “Discovery Mode” 

workflow with ATP synthase subunit g, mitochondrial and microsomal glutathione S-transferase 

1 shown as examples. The MS/MS spectra, sequence tables and fragment ions were output directly 

from MASH Explorer. Uniprot-Swissprot accession and protein E-value score are reported for 

each protein. 
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Figure 5.4. Illustration of “Targeted Mode” workflow for MASH Explorer. “Targeted Mode” 

workflow includes data import, spectral deconvolution to identify and verify isotopic d istributions, 

database search based on identified isotopic distributions, and proteoform characterization by 

matching identified isotopic distributions to the target proteoform sequence. “Targeted Mode” 

helps expedite PTM localization by a simple Ion finder Tool, which searches for fragment ions to 

confidently localize PTMs.  
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Figure 5.5. Characterization of ADC subunits using “Targeted Mode” in MASH Explorer. 

A, Intact ADC, brentuximab vedotin (Adcetris), is first subjected to IdeS digestion to cleave the 

hinge region and then further reduced to generate the ADC subunits (Fc/2, Lc0, Lc1, Fd0, Fd1, 

Fd2, and Fd3). B, The MASH Explorer Ion Finder Tool was used to search through candidate ions 

and generate fragment ion maps for the identification and localization of the site-specific drug 

conjugation site of a positional isomer of Fd1 subunit. The number in the parentheses represents 

the number of drug payloads included in the fragment ion.  
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Figure 5.6. Protein sequence characterization and fragment ion mapping of Fd1 isomer from 

an ADC. Fragment ion map shows both CID and ETD fragment ions. Fragment ions were used to 

confirm the specific localization of a drug site of an Fd1 isomer. The pink star represents the 

cysteine-conjugated drug warhead corresponding to the Adcetris drug molecule. The data shown 

corresponds to the ADC fragmentation data shown in Figure 5.5. 
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Figure 5.7. Cartoon schematic of a “world map”  featuring the location distribution of MASH 

users across the globe. There are currently 625 active users (03/24/2020) with ~53% of users 

from North America, ~31% from Europe, and ~11% from Asia.  
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Supplemental Information 

Table S5.1. Supported versions of deconvolution and database search tools.  

Algorithm Tools Category Supported Version 

TopFD14 Deconvolution Up to 1.2.6 

TopPIC14 Database Search Up to 1.2.6 

pParseTD/pTop15 Deconvolution and Database 
search 

Up to 1.2 

Informed Proteomics pipeline 
(ProMex and 
MSPathFinderT)26  

Deconvolution and Database 
Search 

Up to version 1.0.99 

MS-Deconv17 Deconvolution 0.8.0.7370 

MS-Align+18 Database Search 0.7.1.7143 
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Figure S5.1. Software configuration. In the MASH Explorer, the Configuration tool provides an 

intuitive interface for the users to find the directory of the supported deconvolution and database 

search algorithms. Users can either use “Find” button to look for the default directory locations 

where the software was installed, or use “Browse” to manually locate the correct directory through 

a file browser dialog. Clicking the “Download” button will direct users to the website where the 

software can be downloaded. Directories found on the system are displayed with green background, 

while the unidentified directories are displayed in red. The Configuration tool can be found under 

Tools → Configuration. 
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Figure S5.2. MASH Explorer main interface. Six main panels are shown. Workflow and 

Parameters panel handles all the core data processing. The Results View panel provides 

visualization of MS/MS, LC-MS, and LC-MS/MS data. The Mass List panel allows users to select 

deconvoluted fragment ions for manual processing. The Logbook and Status panels provide 

updates on the progress of data processing. The Sequence Table visualizes the fragment ions that 

match to the identified proteoform sequence. 
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Figure S5.3. Process Wizard for top-down data processing. The Process Wizard provides an 

intuitive GUI for deconvolution and database search tasks in the top -down data processing 

workflows. Left, Basic tab of the Process Wizard. The Basic tab allows users to start deconvolution 

and database search tasks by selecting the radio buttons of the deconvolution and database search 

methods to start the data processing. Right, Advanced tab of the Process Wizard. The Advanced 

tab displays all the modifiable parameters of each algorithm. 
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Figure S5.4. Workflow Manager for batch analysis of multiple datasets. The Workflow 

Manager allows users to queue datasets for batch data analysis. This function enables higher 

throughput and efficiency for processing top-down proteomics datasets. 
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Figure S5.5. “Discovery Mode” Analysis on a Bruker LC-MS/MS dataset. A. Venn diagram 

showed the overlap of protein identifications among three workflows. B. The MS1 spectrum and 

corresponding deconvoluted mass spectrum showed identified protein, 60S ribosomal protein L27, 

a consensus identification from three workflows. C. Deconvoluted mass spectra of prohibitin-2 

and sodium channel subunit beta-4 were shown. These two proteins were uniquely identified by 

ProMex – MSPathFinderT algorithms with low confidence based on E-value provided by this 

workflow. 
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Figure S5.6. Demonstration of Ion Finder Tool. GUI of the Ion Finder Tool. The Ion Finder 

Tool allows users to search for a specific ion. For fragment ion number 20 shown, the user can 

select the six common ion types, including a, b, c, x, y, and z ions. The modifications can be 

included or excluded during this process. 
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Figure S5.7. Top-down protein characterization using “Targeted Mode” workflow. A. Top-

down protein characterization of beta-tropomyosin (βTpm, Uniprot-Swissprot accession number 

P07951) using CID fragmentation. CID fragment ions confirmed N-terminal acetylation. The 

MS/MS spectra, sequence tables, and fragment ions were output directly from MASH Explorer. 

B. Top-down protein characterization of myosin light chain isoform 2 slow isoform (MLC-2S, 

Uniprot-Swissprot accession number A0A1D5RDY5) using ECD fragmentation. N-terminal 

methionine removal, N-terminal acetylation, and deamidation at Asn13 were confirmed by ECD 

fragment ions. 
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Chapter 6 

 

 

Enhancing Top-Down Proteomics Data Analysis by Combining 

Deconvolution Results through a Machine Learning Strategy 

 

 

Adapted from: McIlwain, S. J.#,*; Wu, Z.#; Wetzel, M.; Belongia, D.; Jin, Y.; Wenger, K.; Ge, Y., 

Enhancing Top-Down Proteomics Data Analysis by Combining Deconvolution Results through a 

Machine Learning Strategy. J. Am. Soc. Mass Spectrom, 2020, 31 (5), 1104-1113. 
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Abstract 

 Top-down MS is a powerful tool for identification and comprehensive characterization of 

proteoforms arising from alternative splicing, sequence variation, and PTMs. However, the 

complex dataset generated from top-down MS experiments requires multiple sequential data 

processing steps to successfully interpret the data for identifying and characterizing proteoforms. 

One critical step is the deconvolution of the complex isotopic distribution that arises from naturally 

occurring isotopes. Multiple algorithms are currently available to deconvolute top -down mass 

spectra, resulting in different deconvoluted peak lists with varied accuracy compared to true 

positive annotations. In this study, we have designed a machine learning strategy that can process 

and combine the peak lists from different deconvolution results. By optimizing clustering results, 

deconvolution results from THRASH, TopFD, MS-Deconv, and SNAP algorithms were combined 

into consensus peak lists at various thresholds using either a simple voting ensemble method or a 

random forest machine learning algorithm. For the random forest algorithm, which had better 

predictive performance, the consensus peak lists on average could achieve a recall value (true 

positive rate) of 0.60 and a precision value (positive predictive value) of 0.78. It outperforms the 

single best algorithm which only achieved a recall value of 0.47, and a precision value of 0.58. 

This machine learning strategy enhanced the accuracy and confidence in protein identification 

during database search by accelerating detection of true positive peaks while filtering out false 

positive peaks. Thus, this method show promise in enhancing proteoform identification and 

characterization for high-throughput data analysis in top-down proteomics.  
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Introduction 

Top-down MS is a powerful tool for the identification and comprehensive characterization 

of proteoforms, including alternative splicing, sequence variations, and PTMs.1-5 One of the unique 

advantages of top-down MS is the ability to analyze intact proteins without proteolytic cleavage 

to obtain the mass spectra of various proteoforms simultaneously and subsequently fragment the 

proteoform to locate the site(s) of modification.6-7 A major challenge in top-down proteomics data 

analysis is the complexity of high-resolution top-down mass spectra. 

The analysis of high-resolution top-down MS data requires several sequential processing 

steps, such as centroiding, deconvolution, proteoform identification, and quantification. Currently, 

many software tools have been developed to perform each  step of the analysis process.8  

Deconvolution is a critical step early in the analysis, as the results can significantly affect the 

performance of the downstream methods. In addition to the first high-resolution deconvolution 

software THRASH,9 other algorithms such as MS-Deconv,10 TopFD,11 pParseTD,12 and UniDec13 

are also available for the deconvolution of top-down MS data. Furthermore, instrument vendors 

also provide deconvolution algorithms such as the SNAP algorithm14 by the Bruker Corporation 

and the Xtract algorithm by Thermo Scientific within their software products.   

Due to the diversity of deconvolution algorithms provided to the scientific community, one 

potential challenge an analyst may face is the non-standardization of their parameters. 

Consequently, the resulting peak list from different deconvolution algorithms cannot be directly 

compared. Moreover, different deconvolution algorithms performed spectral deconvolution using 

diverse computational methods, resulting in different peak list output. For instance, THRASH9 is 

a subtractive peak finding routine that locates possible isotopic clusters in the spectrum by using 

least-squares fits to a theoretically derived isotopic abundance distributions. MS-Deconv10 is a 
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combinatorial algorithm that uses graph theory to find the heaviest path in the largest set of 

potential candidate envelopes. TopFD11 is a successor to MS-Deconv which converts isotopomer 

envelopes to monoisotopic neutral masses after grouping top-down spectral peaks into isotopomer 

envelopes. The SNAP algorithm fits a function of superimposed bell curves to the peaks in order 

to identify the isotopic distributions. (Details regarding several common deconvolution algorithms 

were summarized in Table S6.1). Using a human histone dataset, Sun et al. showed that the peak 

list outputs among Xtract, MS-Deconv, and pParseTD had a maximum difference of 25% and 15% 

in the recalled peak rate and recalled intensity rate, respectively.12 Finally, deconvolution 

algorithms may identify false positive peaks. The deconvolution results would need to be manually 

validated or corrected using software such as MASH Suite Pro,15 which can be time consuming. 

As a consequence of all these challenges, there is a need for the standardization of different 

deconvolution algorithms as well as a method that analyzes and combines results from available 

deconvolution algorithms. 

In the machine learning community, ensemble methods (e.g., simple voting) and machine 

learning algorithms (e.g., random forest algorithm) have been developed to enhance the predictions 

of multiple distinct algorithms in order to improve the overall predictive performance. 16-17 These 

ensemble methods and machine learning algorithms have also been employed in MS applications 

to improve the performance of disease diagnosis,18 to improve target protein identification,19 and 

to enhance the de novo peptide sequence.20 In this study, by treating each deconvolution algorithm 

as a distinct algorithm, we propose that these ensemble methods and machine learning algorithms 

could be applied to combine different deconvolution results and obtain consensus peak lists. The 

resulting consensus peak lists should have higher accuracy, which will improve proteoform 

identification and mitigate manual validation efforts.  
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Herein, we report a novel use of machine learning strategy to combine the results from 

multiple deconvolution algorithms employed on high-resolution top-down MS to obtain consensus 

peak lists using an ensemble method and a machine learning algorithm. We compared and 

contrasted the predictive performance of our machine learning strategy against each deconvolution 

algorithm separately using a set of MS data that has been annotated by an expert to obtain a true 

positive list and showed improved performance over each individual algorithm. We demonstrated 

that adding more deconvolution results, even results from the same algorithm with different 

parameters, could further improve the predictive performance. Finally, we showed that the utility 

of the consensus peak list generated by our machine learning strategy could improve downstream 

proteoform identification using a software tool such as MS-Align+. This machine learning strategy 

will be integrated into our developing software, MASH Explorer,21 a comprehensive and user-

friendly tool for analyzing high-resolution top-down MS data. 

 

Experimental Section 

Skeletal Muscle Tissue Samples and Sarcomeric Protein Extraction 

The collection and sarcomeric protein extraction method was previously published.22 

Briefly, biopsy samples of vastus lateralis (VL) skeletal muscle tissue were acquired from rhesus 

macaques at the Wisconsin National Primate Research Center using the protocols approved by the 

Institutional Animal Care and Use Committee of the University of Wisconsin-Madison. After 

dissection, the muscle tissues were immediately flash frozen and stored at − 80 °C. For protein 

extraction, approximately 5 mg of tissue was first homogenized in 50 μL of HEPES extraction 

buffer to extract cytosolic proteins. The sample was centrifuged and the supernatant was removed. 

The pellet was subsequently resuspended and f urther homogenized in 50 μL TFA extraction 
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solution to extract sarcomeric proteins. The sample was centrifuged and the resulting supernatant 

was used for LC-MS and MS/MS analysis. 

 

Offline Fraction Collection and High-Resolution MS/MS for Protein Characterization 

The fractions of some sarcomeric proteins from the tissue homogenate were separated 

using a homemade PLRP reversed-phase column (200 mm length × 500 μm i.d., 10 μm particle 

size, 1,000 Å pore size) with a nanoACQUITY UPLC system (Waters Corporation, Milford, MA, 

USA). PLRP-S particles were obtained from Agilent Technologies (Santa Clara, CA, USA).  The 

fractions were subject to offline MS/MS to achieve a comprehensive characterization of the protein 

sequences and PTMs similar to the methods described in previous publications.23-24 The collected 

protein fractions were analyzed by a 12-T solariX Fourier transform ion cyclotron resonance 

(FTICR) mass spectrometer (Bruker, Bremen, Germany) equipped with an automated chip-based 

nano-electrospray ionization source (Triversa NanoMate; Advion Bioscience, Ithaca, NY, USA). 

Targeted proteoforms were subject to both CID and ECD experiment. Typically, 100–500 

transients were averaged for MS/MS experiments to ensure the collection of high-quality tandem 

mass spectra for protein characterization. The exact instrument and experimental settings can be 

found in previous publication.22 The mass spectrometry proteomics raw data and annotations have 

been deposited to the ProteomeXchange Consortium via the PRIDE25 partner repository with the 

dataset identifier PXD018043. The protein identification, accession number, and PTMs were 

provided in Table S6.2. 

 

Peak Extraction and Expert Annotation 
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Deconvoluted peaks were identified by four different algorithms, including THRASH,9 

MS-Deconv,10 TopFD,11 and the SNAP algorithm from Bruker DataAnalysis,14 which were 

available for processing the Bruker data set. The peak extraction using the MASH Explorer 

software was executed with the THRASH algorithm using fit parameters of 60, 70, 80, and 90%. 

The MS-Deconv algorithm was run using default parameters with a maximum charge of 30, a 

maximum mass of 50,000, an m/z error tolerance of 0.02, and an S/N ratio of 3. The TopFD 

deconvolution was employed using default parameters with a maximum charge of 30, an MS1 S/N 

ratio of 3.0, a precursor window size (m/z) of 3.0, a maximum mass (Da) of 100,000, an MS2 S/N 

ratio of 1.0, and an m/z error of 0.02. Using DataAnalysis available for the Bruker dataset, the 

deconvoluted ion list was obtained using the SNAP algorithm with a quality factor threshold of 

0.1, an S/N threshold of 2, a relative intensity threshold (base peak) of 0.01%, an absolute intensity 

threshold of 0, and a maximum charge state of 50. All deconvolution results were output into 

MSAlign format, which provides information of the monoisotopic distributions including 

monoisotopic mass, intensity, and charge. While this manuscript focused on data acquired using 

Bruker instruments, this method is applicable to datasets from other vendors if the peak 

information was converted to MSAlign format. 

 

Coding Environment 

Python (2.7.10) was used to generate the clusters, and R (3.6.0) was used to perform the 

machine learning analysis and to automate the MS-Align+ searches.  

 

Machine Learning Strategy for Combining Multiple Deconvolution Results 
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A general overview of the data analysis process is provided in Figure 6.1. Each MSAlign 

file was parsed by a Python script, and the results were concatenated into one peak list which 

records the monoisotopic mass, charge, and source algorithm. Peaks having the same charge and 

similar monoisotopic mass were clustered together as the same peak. The clusters were then 

filtered using either a simple voting or a machine learning methods, and the results were output 

into a consensus MSAlign file. Each part of the process is described in more detail below. 

Hierarchical Clustering - The algorithm merges the full list of deconvoluted peaks into 

clusters that contain the same charge and are similar in monoisotopic mass. Inspired by Robert 

Tibshirani’s work on ‘peak probability contrasts’,26 the method uses hierarchical clustering27 with 

the difference between pairs of peaks from the log10 transformed monoisotopic mass as the 

distance metric. Transforming the monoisotopic mass using log removes the linear dependence of 

the error with mass, so a constant cutoff can be used to determine the number of clusters. A further 

constraint was added to ensure that the charges are the same between peaks with the proposed 

clusters. Using Equation 1, a cutoff was determined using a user-defined threshold ppm error 

within the cluster, which ensured that the distances between the largest and smallest mass of the 

peaks within the cluster were not larger than the ± ppm threshold. The average of the monoisotopic 

mass was then used as the center of the cluster. The clustering algorithms was run on each spectrum 

separately. 

Cutoff(ppm) = log1 (2.0
ppm

1 6
+ 1)                                                                                 Equation 1 

Expert Annotation and Assignment to Clusters - The expert annotations were obtained and 

verified manually using the MASH software with the embedded enhanced-THRASH algorithm at 

60% fit setting.15 Some peaks were manually validated by adjusting the most abundant m/z and 
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charge state of each monoisotopic distribution. In this study, we considered expert annotated peaks 

to be true positive peaks. 

The identified clusters were annotated using the expert annotations by finding clusters that 

had the same charge and were within a ±X ppm window of the expert annotated monoisotopic 

mass (where X is set to the same value as used in the clustering). In cases where an expert peak 

could be assigned to multiple clusters, we selected the pair with the smallest distance between the 

monoisotopic mass with expert assignment that matched to multiple possible clusters as the true 

match. Clusters with assigned expert annotation were called expert matched peaks, and the 

unassigned clusters were labelled as unmatched expert annotated peaks.  

Machine Learning Analysis - The machine learning analysis was performed using the R 

language. For each cluster, a feature vector was generated using the features described in Table 

6.1.  We set up a machine learning task to separate expert annotated matched clusters from 

unmatched clusters. Precision-recall curves were estimated by leave-one-spectrum-out cross-

validation, where each fold estimates the probability of a true annotation for each of the clusters 

found in one spectrum using a machine learning model built from the other spectra feature vectors. 

Recall and precision are defined in Equation 2 and 3, 

Recall =
True Positive

True Positive   False Negative
                           Equation 2 

Precision =
True Positive

True Positive   False Positive
                            Equation 3 

where a true positive is a cluster peak with an expert annotation, a false negative is an unmatched 

expert annotation, and a false positive is a cluster peak without an expert annotation. Recall 

measures the percentage of expert annotations found by the algorithm, whereas precision measures 

the percentage of cluster peak calls that have true annotations. We compared and contrasted the 
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predictive performance using the random forest (randomForest R package)28 model using ntree 

(the number of trees used in the forest) of 100 and the remaining parameters set to their defaults.   

To compare the individual algorithms on the precision-recall curves, all of the true positive, 

true negative (indicating cluster peaks with no expert annotations that algorithms did not call as 

annotations), false positive, and false negative results were aggregated before calculating precision 

and recall values. Deconvolution methods were also compared by calculating the F1 score, a metric 

that balances precision and recall as defined in Equation 4. For the random forest, we selected the 

probability threshold that maximizes the F1 score within the training dataset to make the final calls 

on the associated test set. 

F1 =
  ∗ Precision ∗ Recall

Precision   Recall
                                                                                               Equation 4 

Due to the high rate of false positives within the datasets, we used precision-recall curves 

to visualize the accuracy of the methods. Typically, precision-recall curves have a point for a recall 

value of 1 and a precision value of the ratio of true positives over all cluster calls. However, if we 

count the false negatives incurred by the upstream clustering method, then the curve will give a 

lower maximum achievable recall result. A superior performing classification algorithm would 

have a point (or curve) that is higher in precision and recall (i.e., more top-right) than for the 

contrasted algorithm(s). For example, the point for one deconvolution algorithm which gives a 

recall of 0.50 and a precision of 0.40 is outperformed by the point for the second deconvolution 

algorithm that gives a recall of 0.60 and a precision of 0.50. 

Cluster Filtering and Consensus Deconvolution Results - To reduce false positive clusters, 

we explored two avenues of filtering. One was a simple voting heuristic that thresholds clusters 

based upon the number of deconvolution algorithms that called the peaks within the cluster. 



199 
 

Another route was to apply the previously described machine learning models to assign a 

probability of a true expert assignment to each cluster. The clusters were filtered via thresholding 

upon this probability. Consensus results were output as an MSAlign file and were processed using 

a database search algorithm. 

Database Searching - All searches were performed using MS-Align+ v0.7.1.714329 with a 

fasta database file derived from a human database (Uniprot-Swissprot database, released 

December 2019, containing 20,367 protein sequences) for βTpm, a cynomolgus monkey database 

(Uniprot-Swissprot database, released January 2020, containing 77,341 protein sequences) for 

fsTnT5, a rat database (Uniprot-Swissprot database, release January 2020, containing 8 ,085 

protein sequences) for αTpm, and a rhesus macaque database (Uniprot-Swissprot database, 

released January 2020, containing 78,285 protein sequences) for the rest of the proteins. We 

compared and contrasted the search results of MS-Align+ using the MSAlign file from each 

deconvolution algorithm, the expert annotated peaks, the simple voting method, and the random 

forest machine learning method. 

 

Results and Discussion 

Setting clustering ppm cutoff and clustering choices 

One of the important parameters to determine for the machine learning strategy is the 

choice of the ppm cutoff for calling clusters. To determine the optimal cutoff for the data set 

presented in this work, we evaluated four parameters [the number of clusters, the percentage of 

peaks assigned, the cross-validated accuracy from the random forest model (the percentage of 

correct annotations found over the whole data set), and the random forest’s F1 score (a measure of 
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accuracy that is the harmonic mean of precision and recall)] at multiple cutoff levels (1, 2, 5, 10, 

20, 50, 100, and 200 ppm). The results in Figure 6.2 demonstrated that 10 ppm was optimal for 

the clustering cutoff because (1) for values greater than 10 ppm clustering cutoff, there was a 

noticeable drop in the number of clusters (Figure 6.2a), (2) the percent of recalled peaks was not 

significantly less than that from higher ppm cutoff but was greater than that from a lower ppm 

cutoff (Figure 6.2b), and (3) the accuracy and the overall accuracy measured by F1 score did not 

differ significantly from the optimal values in both measurements (Figure 6.2c and 6.2d).  

Many other clustering algorithms exist in the literature, including different linkage 

algorithms for hierarchical clustering.30 In this work, we used complete hierarchical clustering, 

which gives tight clusters (min/max rather than the average). This is desirable for merging peaks 

by monoisotopic mass.  

 

Expert annotation accuracy performance with 4-vote ensemble 

After determining the optimal hierarchical clustering cutoff, the peak clusters were 

analyzed by ensemble/machine learning methods and individual deconvolution algorithms for 

comparison. In this study, we used a simple voting ensemble method which is based upon the 

number of unique deconvolution algorithms that called a peak within that cluster. Additionally, 

the random forest machine learning algorithm, which is itself an ensemble of decision trees, was 

utilized.28 The random forest algorithm was shown to be able to handle large data sets and exhibit 

excellent performance in the classification tasks.31 There are several other classification methods 

available, such as support vector machines32 and deep learning models.33 However, these 

algorithms may be difficult to tune, and deep machine learning requires numerous examples in 

order to learn an adequate network structure for optimizing predictive performance.  
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The aggregate predictive performance among individual deconvolution algorithms, the 

simple voting method, and the random forest machine learning algorithm are summarized 

in Figure 6.3. A majority vote (two or more votes, point “2 Votes”) appeared to outperform any 

single deconvolution method used by itself. Compared to SNAP (point “SNAP”) and TopFD 

(point “TopFD”) algorithms, a majority vote (two or more votes) had better recall and precision, 

respectively. The Venn diagram between a majority vote (two or more votes) and its overlap with 

expert annotation is shown in Figure S6.1. Although THRASH with 60% fit identified a total of 

50,381 peaks, 41,204 of them (82%) were false positives because they were not those identified 

by the expert annotations. Filtering out the false positives accounted for the improved accuracy in 

the majority vote (two or more votes). On the other hand, this majority missed 7,181 peaks from 

the THRASH with 60% fit, out of 12,264 peaks (59%) that were expert annotated peaks, 

contributing to the low recall values. To provide a reference for the random forest method, we 

calculated the aggregate precision and recall score using a probability threshold cutoff that 

optimizes the F1 score on the training spectra and applied it to the corresponding test set. The 

aggregated precision and recall value from the random forest method shown as a green point 

in Figure 6.3 is superior to most of the methods. 

Furthermore, the results suggest that the random forest algorithm could achieve superior 

performance for identifying clusters which are true expert annotations. To determine average 

metrics (precision and recall) for random forest’s performance, the probability threshold cutoff 

that optimizes the F1 score was determined in each training fold feature set. The probability 

threshold was then applied to the associated test fold dataset, and the resulting performance metrics 

were calculated. The final precision and recall were determined by averaging the results across 

each testing fold. Using this process, the random forest model achieved an average recall of 0.49, 
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a precision score of 0.69, and an F1 score of 0.55. In comparison, THRASH with 60% fit, which 

was the best algorithm by its F1 score, achieved a recall of 0.76 and precision of 0.18, with an 

F1 score of 0.30. Additional metrics including the median, first and third quartiles, and minimum 

and maximum of the F1 score across the different deconvolution methods were compared, and the 

random forest model outperformed other algorithms (Figure S6.2). 

A useful aspect of the random forest model is the ability to extract feature importance 

values. One of the metrics that the random forest can report for each feature is the mean decrease 

accuracy, which is an estimate of the reduction in the accuracy performance of the machine 

learning algorithm upon permuting the values of the current feature. The features ranked at the top 

of the plot reduce the accuracy of the model most significantly when permuted, and these features 

are considered to be the most important ones. In Figure S6.3, cluster features such as the average 

mass of the cluster (AvgMass), the cluster charge (charge), and the average intensity (AvgIntensity) 

had the most significant impact on the model, indicating that the random forest model was learning 

some of the spectral features such as charge and mass ranges that contribute to a true positive 

cluster. Features describing characteristics of the spectrum (i.e., activation type, precursor mass, 

and precursor charge) had a greater influence on the performance of the random forest classifier 

over the simple voting model. Using the vote of each deconvolution algorithm in the random forest 

model also provides a way to learn the confidence in each algorithm to determine an optimal score 

(THRASH with 60% fit, MS-Deconv, TopFD, and SNAP). While these features did not rank high 

in the list, the THRASH with 60% fit feature seemed to have the greatest effect on the model 

performance over the other deconvolution algorithms. This is possibly due to the number of 

proposed peaks that the THRASH with 60% fit finds in conjunction with the other features 



203 
 

(spectrum characteristics and cluster features) to find the best scoring clusters within all of the 

false positive peaks (clusters with an expert annotation).  

Backward selection, which iteratively removes features in model performance optimization, 

is an alternative route to determine feature importance. Performing a full backward selection 

process with leave-one-spectrum-out cross-validation and optimizing on the median F1 score 

(Figure S6.4), we found that charge, precursor charge, THRASH with 60% Fit, AvgMass, and 

SumIntensity (five of the features shown in Table 6.1) can achieve the same performance as a 

model built from all of the features. Omitting one of these five features showed a significant 

decrease in the median F1 score. Moreover, features such as AvgIntensity, votes, and SumIntensity 

are correlated by definition. Consequently, removal of two of these features would be sufficient 

for the discriminatory models. 

 

Expert annotation accuracy performance with seven-vote ensemble 

To test the hypothesis that more orthogonal deconvolution algorithms can further improve 

results, we generated the results using THRASH with different fit score parameters as separate 

deconvolution algorithms (Figure 6.4). Comparing the peak call results from four THRASH 

algorithms with different fit scores, we noticed that no result directly subsumed the peak calls of 

any of the others, which indicates some degree of orthogonality among the different THRASH 

results (Figure 6.4a).  The discordant results from THRASH was not surprising since THRASH 

heuristically finds isotope envelopes. That is, isotopic distributions found in the beginning of the 

THRASH algorithm can affect the peaks found later during the algorithm process. With the 

additional deconvolution algorithm results added to the method, our results showed an increase in 

the number of assignments of clusters to annotated expert peaks and an increase in the filtering 
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performance (Figures 6.4b and 6.4c). Additionally, other metrics using the seven-vote ensemble 

including the number of clusters, F1 score, and the number of recalled peaks were also improved 

compared to those using the four-vote ensemble (Figure S6.5). In comparison with the average 

performance as in the four-vote ensemble, the random forest model from the seven-vote ensemble 

achieves an average recall or true positive rate of 0.60, a precision score of 0.78, and an F1 score 

of 0.67. After calculating the recall and precision for the individual algorithms, the best algorithm 

(by F1 score) was found to be THRASH with 90% fit, which achieved a recall of 0.47 and precision 

of 0.58 with an F1 score of 0.52. Since there was an increase in the number of unassigned clusters 

(potentially false positives) in the four-vote ensemble (56,363) vs four-vote ensemble (45,117), it 

suggests that the seven-vote method learned to filter out false positives more accurately than the 

four-vote system (Table S6.3 and S6.4).   

In summary, adding more deconvolution algorithms has the potential of increasing the 

identification of peaks potentially missed by other deconvolution algorithms and to improve the 

classification performance to filter out more false positives. Two additional deconvolution 

algorithms including pParseTD and UniDec, which are based on online support vector machine 

algorithm and a Bayesian algorithm, respectively, will be ideal for the continual development of 

this machine learning strategy due to the differences in algorithmic approaches compared to the 

four deconvolution algorithms used in this study. However, pParseTD currently only processes 

Thermo datasets, and the output peak list requires additional processing to assign charges for the 

isotopic distribution to locate the deconvoluted peaks in the spectrum. UniDec is optimized for 

native mass spectrometry where proteins and their fragment ions typically carry lower charges 

relative to mass compared to those under denatured conditions. Additional efforts are needed to 

incorporate these two algorithms into the machine learning strategy described in this study. 
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Unmatched clusters and missed expert annotations 

When investigating the missed expert annotations (false negatives) and the unassigned 

clusters (false positives) from the machine learning strategy, two key observations surfaced. First, 

the unassigned clusters might actually be real isotopic distributions. Second, the corrected isotopic 

distributions may introduce both a false positive and false negative calls into the analysis.   

  There are cases where the unassigned clusters may actually be real isotopic distributions 

that the manual annotator could have missed due to low abundance. These low-abundance isotopic 

distributions might also suffer from an imperfect distribution due to the noise. Figure 6.5a gives 

two examples of low-abundance isotopic distributions that could be real annotations. This indicates 

that the method would be useful in proposing other annotations within data.  

  During manual annotation and correction, there are many instances where the annotator 

has to correct the charge and/or peak of the most abundant mass. Figure 6.5b provides an example 

of an annotation that has been corrected by an expert annotator. Annotations that have been 

corrected in this way may introduce both a false positive and a false negative into the method 

analysis. The false positive would arise from the original peak without the correction from the 

deconvolution method, and the false negative would come from the corrected peak in the expert 

annotations.   

 The ability to shift the charges and most abundant mass is an area of continual research in 

this project, in order to identify more expert annotations without incurring additional false 

positives. For example, generating the expert annotated results for the  αTpm protein with ECD 

activation required the expert annotator to remove 52% (840 of 1,631 peaks), adjust the charge 

state for 7% (109 of 1,631 peaks), and shift the monoisotopic mass for 2% (38 of 1 ,631 peaks) 

from the deconvoluted peaks found by the THRASH algorithm with 60% fit. The machine learning 
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strategy did succeed in reducing the false positive rate, but making additional modifications to 

identify and fix the annotations would further reduce the time spent on manual verification and 

peak correction. 

 

Effects of improved deconvoluted peaks on database searching results 

  To investigate whether using the machine learning strategy can help with protein 

identification, we compared the MS-Align+ database search results from peak lists generated by 

different deconvolution algorithms and machine learning methods. Using the ECD spectrum of the 

αTpm proteoform, we evaluated and plotted the database search results using the deconvoluted 

results from expert annotation, TopFD, simple voting method, and random fo rest model 

(Figure 6.6 and Table S6.2). The E-value metric was utilized to evaluate the confidence of protein 

identification, with a lower E-value indicating high identification confidence. In the figure, the 

−log10 value of the E-value was used for visualization instead in the y axis, as a greater 

−log10(E-value) suggests higher protein identification confidence. The simple voting results were 

plotted by thresholding upon the number of votes. In the random forest model, the plot was 

generated at different thresholds of cross-validated probability of a correct expert annotation. For 

the four-vote ensemble, only a small fraction of probability from the simple voting and the random 

forest model could achieve higher confidence in protein identification compared to that from 

expert annotations (Figure 6.6a). In comparison, the confidence in protein identification from the 

seven-vote ensemble in most majority votes from the simple voting model and most probability 

thresholds from the random forest model exceeded the –log10(E-value) score obtained from the 

expert annotations (Figure 6.6b). The improvement in protein identification confidence fro m the 

four-vote ensemble to the seven-vote ensemble was also reflective of the observed increase in 
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accuracy (in both limiting false positives while finding more peak clusters that match with an 

expert annotated peak, Figure 6.4c) when using a larger ensemble. Other proteoforms such as 

βTpm with CID activation showed a similar trend in the analysis (Figure S6.6 and Table S6.2), 

except for a few special cases. These results indicate that some of the lower intensity isotopic 

distributions which were identified using the machine learning strategy could help improve the 

identification confidence values. 

 The amount of true positive and false positive peaks that constitutes the consensus peak 

list has an impact on the database search when protein isoforms have a long homologous sequence. 

While evaluating the database search results for the ssTnT ECD spectrum using generated peak 

lists, several isoforms were identified including A0A5K1V8N4 (Troponin T, slow skeletal muscle 

isoform b, correct identification), H9FC02 (Troponin T, slow skeletal muscle isoform c), 

A0A1D5RIQ3 (Troponin T1, slow skeletal type), and F7HR11 (Troponin T1, slow skeletal type) 

(Table S6.5). Using a sequence alignment tool, it was observed that only the N-terminal sequence 

has variations among these four isoforms (Figure S6.7). Ideally, thresholding on higher 

probabilities should retain the true expert annotations while reducing the number of false positives. 

A lower threshold would also result in the inclusion of more false positive annotations . In this 

particular case, a simple voting method at low majority votes (less than three votes) yielded 

incorrect identification if the database search algorithm was given a set of peaks with many false 

positives. On the contrary, at higher thresholds for both the random forest algorithm and simple 

voting method, the omission of true positives led to either diminishing E-value of correct 

identification, meaning a less confident database search result, or an incorrect identification.  

For the spectrum for ssTnC protein with ECD activation, none of the single algorithms, 

except for THRASH with 80% fit, were able to identify the target sequence (Table S6.2 and S6.6). 
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For the simple voting method, a majority vote (three or more votes) could correctly find the protein. 

This result indicates that utilizing a consensus peak list could help identify the proteoform in 

spectra, even when most of the deconvolution algorithms failed to find the correct identification. 

If at least one algorithm can find the correct identification, then theoretically the ensemble should 

also be able find the correct identification. Also, if there are several distinct false positive peaks 

(or no expert annotated peaks) from each algorithm, using a majority vote should help reduce the 

false positives (i.e., reduce the noise from each algorithm) to achieve a better identification rate.  

On the basis of the database search results, both simple voting ensemble method and 

random forest machine learning algorithm were found to enhance both the accuracy and 

confidence in proteoform identification. For the simple voting ensemble method which utilized 

only clustering and simple voting, a majority vote (three votes in the seven-vote ensemble) yielded 

the best results. In the case of the random forest algorithm which required clustering and training 

a machine learning model, a probability threshold greater than 0.3 to 0.4 provided the optimal 

results. 

  

Liquid chromatography-MS/MS data analysis 

The results here are derived from targeted MS/MS data, and the machine learning strategy 

holds potential in improving the number of confident identifications with liquid chromatography 

(LC)-MS/MS runs. Further investigation needs to be done to determine whether models built using 

the expert annotations from MS/MS runs will improve the identification rate on a separate 

LC-MS/MS run or if other annotations are needed to improve performance. Annotating 

deconvoluted peaks from spectra with confident protein identification would be a good starting 

point. A simple voting model would be more easily applicable for the LC-MS/MS experiment, as 
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other machine learning algorithms may require enough annotated top-down LC-MS/MS spectra in 

order to develop models for performance optimization.   

 

Conclusion 

We have designed and demonstrated a machine learning strategy that allows for the 

combination of deconvolution results from multiple algorithms into an accurate consensus peak 

list for downstream processing. With the detection of more real isotopic distributions while 

filtering out false positives, the process showed promise in reducing the time spent manually 

validating and correcting the ion annotations in top-down MS/MS protein identification. In both 

the simple voting ensemble method and random forest machine learning algorithm, the resulting 

consensus peak lists could improve on the accuracy and confidence in proteoform identification 

compared to a single deconvolution algorithm. This machine learning strategy shows promise for 

high-throughput protein identification and characterization in the LC-MS/MS data set for top-

down proteomics. Integrating the tool into MASH Explorer will enable users to find more true 

positive deconvoluted peaks and consequently enhance the data analysis of the high -resolution 

top-down MS data set. 
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Table 6.1. Description of Features used in Machine Learning 

Feature Name Data Type Description 

Activation ECD/CID Activation used to generate spectra 

Charge Integer Charge of the peaks within the cluster 

Votes Integer Number of deconvolution algorithms that called a peak 
within that cluster 

SumIntensity Numeric Sum of the intensity of peaks in the cluster 

AverageIntensity Numeric Average intensity of peaks in the cluster 

MSDeconv Boolean MS-Deconv called this peak 

TopFD Boolean TopFD called this peak  

THRASH60 Boolean THRASH with 60% Fit called this peak 

THRASH70 Boolean THRASH with 70% Fit called this peak 

THRASH80 Boolean THRASH with 80% Fit called this peak 

THRASH90 Boolean THRASH with 90% Fit called this peak 

SNAP Boolean SNAP called this peak 

PrecursorCharge Integer Charge of the precursor 

AvgMass Numeric Average Mass of the peaks within the cluster 

StdDev Numeric Standard Deviation of the mass of the peaks within the 

cluster 

PrecursorMass Numeric Monoisotopic mass of the precursor 

PrecursorMZ Numeric m/z of the precursor 
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Figure 6.1. Flowchart for the machine learning strategy. This figure shows the steps taken to 

combine deconvolution results into a consensus peak list using either the simple voting method or 

a machine learning algorithm. 
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Figure 6.2. Cluster cutoff performance. Each plot is a boxplot that shows the spread of the metric 

measured from the 30 spectra versus different ppm cutoffs used in the hierarchical clustering step. 

(a) Number of clusters, (b) percent of recalled peaks versus ppm cutoff, (c) random forest accuracy 

versus ppm cutoff, and (d) random forest F1 score versus ppm cutoff. The black squares in the 

figure represent outliers in the data set. 
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Figure 6.3. Precision-recall curves and points of the expert annotation prediction task. Plot 

displays the precision and recall performance of the deconvolution methods by themselves (red 

points), the simple voting (black points), and random forest (blue line). The green point represents 

random forest algorithm with the F1 score optimized. 
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Figure 6.4. Performance comparison between four-vote ensemble and seven-vote ensemble. 

(a) Venn diagram of peaks found using THRASH with the fit parameter set at 60, 70, 80, or 90%.  

(b) Boxplot of random forest accuracy between the four-vote ensemble (red) and seven-vote 

ensemble (blue) with different cluster cutoffs. At all cluster cutoffs value, the seven-vote ensemble 

had better performance than four-vote ensemble. (c) Precision-recall curve using the four-vote 

ensemble (blue, THRASH 60%) and seven-vote ensemble (red, THRASH 60-90%). The seven-

vote ensemble had improved performance compared to four-vote ensemble. The black squares in 

the figure represent outliers in the data set. 
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Figure 6.5. Example annotation of isotopic distributions. (a) Low-abundance isotopic 

distribution that could be found on the consensus peak list. These peaks were found only by the 

machine learning strategy. (b) Example isotopic distribution that has been manually corrected by 

shifting the charge and monoisotopic peak. 
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Figure 6.6. MS-Align+ database search results for αTpm. (a) Four-vote ensemble results. (b) 

Seven-vote ensemble results.  Each plot has the -log10(E-Value) for TopFD (red line), expert 

annotation (purple line), simple voting thresholding (no. of votes/max votes, green points/lines), 

and random forest probability thresholding (blue line).    
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Supplemental Information 

Table S6.1. Summary of selected publicly available deconvolution algorithms 

Algorithms Description Reference 

THRASH Uses a subtractive peak finding routine to locate 
possible isotopic clusters in the spectrum, using 
least-squares fits to theoretically derive isotopic 

abundance distributions. 

Horn, D. M.; Zubarev, R. A.; 
McLafferty, F. W., 
Automated reduction and 

interpretation of high 
resolution electrospray mass 
spectra of large molecules. J 
Am Soc Mass Spectr 2000, 

11 (4), 320-332. 

 

MS-Deconv A combinatorial algorithm that uses graph theory 
to find the heaviest path in a largest set of 
potential candidate envelopes. 

Liu, X. W.; Inbar, Y.; 
Dorrestein, P. C.; Wynne, 
C.; Edwards, N.; Souda, P.; 

Whitelegge, J. P.; Bafna, V.; 
Pevzner, P. A., 
Deconvolution and Database 
Search of Complex Tandem 

Mass Spectra of Intact 
Proteins. Mol Cell 
Proteomics 2010, 9 (12), 
2772-2782. 

TopFD A successor to MS-Deconv, after grouping top-
down spectral peaks into isotopomer envelopes, 
the algorithm converts isotopomer envelopes to 
monoisotopic neutral masses.  

Kou, Q.; Xun, L. K.; Liu, X. 
W., TopPIC: a software tool 
for top-down mass 
spectrometry-based 

proteoform identification 
and characterization. 
Bioinformatics 2016, 32 
(22), 3495-3497. 

 

SNAP Fits a function of superimposed bell curves to the 
isotopic distributions within the spectrum. 

Köster, C. Mass 
spectrometry method for 
accurate mass determination 
of unknown ions. 

US6188064B1, 2001. 

UniDec A bayesian approach to incorporate the charge-
state distribution as a Bayesian prior to provide 
separation of the m/z spectrum into the 

Marty, M. T.; Baldwin, A. J.; 
Marklund, E. G.; Hochberg, 
G. K. A.; Benesch, J. L. P.; 
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corresponding physical mass and charge 
components. 

Robinson, C. V., Bayesian 
Deconvolution of Mass and 
Ion Mobility Spectra: From 
Binary Interactions to 

Polydisperse Ensembles. 
Anal Chem 2015, 87 (8), 
4370-4376. 

pParseTD Utilizes a support vector machine (SVM) with 

radial basis functions that is trained online to 
incorporate a variety of features to detect the 
isotopic clusters and determine their charge 
states. 

Sun, R. X.; Luo, L.; Wu, L.; 

Wang, R. M.; Zeng, W. F.; 
Chi, H.; Liu, C.; He, S. M., 
pTop 1.0: A High-Accuracy 
and High-Efficiency Search 

Engine for Intact Protein 
Identification. Anal Chem 
2016, 88 (6), 3082-3090. 
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Table S6.2. Summary of protein proteoforms used for expert annotation. 

Protein ID Accession Number Modifications 

αTpm P04692a +Ac 

βTpm P07951b +Ac 

ssTnT A0A5K1V8N4c +P+Ac-Met 

fsTnT5 A0A2K5WPH1d +P+Ac-Met 

ssTnI I2CW22 -Met 

fsTnI A0A1D5QTK6 +Ac-Met 

fsTnC F7HGA7 +Ac-Met 

ssTnC G7MV95 +Ac 

MLC-1F G7N8T7 +(Me)3-Met 

MLC-2F F7EI96 +2P+(Me)3-Met 

MLC-2S A0A1D5RDY5 +Dea+(Me)3-Met 

MLC-3F F7B2B7 +Ac-Met 

PDLIM5 F6Z147 +Me+Ac-Met 

PDLIM7 NA +Ac 

LDB3 O75112-6b +Ac-Met 

Ac, acetylation; P, phosphorylation; Met, methionine; Me, methylation; Dea, deamidation.  

a The accession number comes from the uniprot rat database. 
b The accession number comes from the uniprot human database. 
c The accession F7HR10 for the Troponin T isoforms in the publication by Jin et al. was changed 
to A0A5K1V8N4 in December, 2019 by authors who originally published the sequence. 
d The accession number comes from the uniprot cynomolgus monkey database. 
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Table S6.3. Clusters classification for four-vote ensemble 

Entry Protein Activation Cluster_True 

Positive 
Cluster_False 

Positive 
Cluster_False 

Negative 

1 αTpm CID 124 1601 64 

2 αTpm ECD 467 1388 184 

3 βTpm CID 401 1703 131 

4 βTpm ECD 284 1348 77 

5 ssTnT CID 247 1854 73 

6 ssTnT ECD 254 1685 65 

7 fsTnT5 CID 57 1102 43 

8 fsTnT5 ECD 750 1919 152 

9 ssTnI CID 367 1812 70 

10 ssTnI ECD 346 1893 83 

11 fsTnI CID 204 1130 54 

12 fsTnI ECD 239 1424 86 

13 fsTnC CID 390 1519 145 

14 fsTnC ECD 221 959 31 

15 ssTnC CID 265 1741 77 

16 ssTnC ECD 80 1140 20 

17 MLC-1F CID 394 1100 58 

18 MLC-1F ECD 699 1653 127 

19 MLC-2F CID 133 1664 45 

20 MLC-2F ECD 662 1537 192 

21 MLC-2S CID 304 1640 98 

22 MLC-2S ECD 487 1637 125 

23 MLC-3F CID 242 1135 55 

24 MLC-3F ECD 323 1348 41 

25 PDLIM5 CID 335 1447 77 

26 PDLIM5 ECD 255 1361 54 

27 PDLIM7 CID 357 1863 121 

28 PDLIM7 ECD 427 1472 95 

29 LDB3 CID 63 1673 30 

30 LDB3 ECD 317 1369 63 

Total   9694 45117 2536 
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Table S6.4. Clusters classification for seven-vote ensemble 

Entry Protein Activation Cluster_True 

Positive 
Cluster_False 

Positive 
Cluster_False 

Negative 

1 αTpm CID 129 2234 59 

2 αTpm ECD 485 1743 166 

3 βTpm CID 412 2196 120 

4 βTpm ECD 292 1771 69 

5 ssTnT CID 249 2599 71 

6 ssTnT ECD 265 2002 54 

7 fsTnT5 CID 58 1328 42 

8 fsTnT5 ECD 772 2417 130 

9 ssTnI CID 373 2273 64 

10 ssTnI ECD 356 2531 73 

11 fsTnI CID 210 1325 48 

12 fsTnI ECD 250 1707 75 

13 fsTnC CID 396 1827 139 

14 fsTnC ECD 226 1094 26 

15 ssTnC CID 268 2153 74 

16 ssTnC ECD 82 1348 18 

17 MLC-1F CID 402 1300 50 

18 MLC-1F ECD 721 2056 105 

19 MLC-2F CID 138 2106 40 

20 MLC-2F ECD 669 1919 185 

21 MLC-2S CID 314 2082 88 

22 MLC-2S ECD 501 2009 111 

23 MLC-3F CID 248 1319 49 

24 MLC-3F ECD 326 1550 38 

25 PDLIM5 CID 344 1774 68 

26 PDLIM5 ECD 263 1655 46 

27 PDLIM7 CID 369 2370 109 

28 PDLIM7 ECD 442 1754 80 

29 LDB3 CID 64 2224 29 

30 LDB3 ECD 326 1697 54 

Total   9950 56363 2280 
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Table S6.5. Database search results for ssTnT with ECD activation from different peak lists 

Input peak list E-value Protein ID 

Expert Annotation 
(“True Positive”) 

1.40E-45 
tr|H9FC02|H9FC02_MACMU Troponin T, slow 
skeletal muscle isoform c (Fragment) OS=Macaca 
mulatta OX=9544 GN=TNNT1 PE=2 SV=1 

THRASH 60% fit 1.40E-45 

tr|A0A1D5RIQ3|A0A1D5RIQ3_MACMU Troponin 

T1, slow skeletal type OS=Macaca mulatta OX=9544 
GN=TNNT1 PE=4 SV=2 

THRASH 70% fit 1.40E-45 

tr|A0A5K1V8N4|A0A5K1V8N4_MACMU 

Troponin T, slow skeletal muscle isoform b 

OS=Macaca mulatta OX=9544 GN=TNNT1 PE=2 

SV=1 

THRASH 80% fit 1.40E-45 

tr|A0A5K1V8N4|A0A5K1V8N4_MACMU 

Troponin T, slow skeletal muscle isoform b 

OS=Macaca mulatta OX=9544 GN=TNNT1 PE=2 

SV=1 

THRASH 90% fit 6.37E-54 

tr|A0A5K1V8N4|A0A5K1V8N4_MACMU 

Troponin T, slow skeletal muscle isoform b 

OS=Macaca mulatta OX=9544 GN=TNNT1 PE=2 

SV=1 

MS-Deconv 28.1438675 
tr|F7GAK8|F7GAK8_MACMU Uncharacterized 
protein OS=Macaca mulatta OX=9544 GN=SLC35A1 
PE=4 SV=3 

TopFD 1.42E-06 

tr|A0A5K1V8N4|A0A5K1V8N4_MACMU 

Troponin T, slow skeletal muscle isoform b 

OS=Macaca mulatta OX=9544 GN=TNNT1 PE=2 

SV=1 

SNAP 3.91E-22 
tr|F7HR11|F7HR11_MACMU Troponin T1, slow 
skeletal type OS=Macaca mulatta OX=9544 
GN=TNNT1 PE=4 SV=3 

1 Vote 1.40E-45 
tr|A0A1D5RIQ3|A0A1D5RIQ3_MACMU Troponin 
T1, slow skeletal type OS=Macaca mulatta OX=9544 
GN=TNNT1 PE=4 SV=2 

2 Votes 1.40E-45 

tr|F7HR11|F7HR11_MACMU Troponin T1, slow 

skeletal type OS=Macaca mulatta OX=9544 
GN=TNNT1 PE=4 SV=3 

3 Votes 1.40E-45 

tr|A0A5K1V8N4|A0A5K1V8N4_MACMU 

Troponin T, slow skeletal muscle isoform b 

OS=Macaca mulatta OX=9544 GN=TNNT1 PE=2 

SV=1 

4 Votes 3.15E-52 

tr|A0A5K1V8N4|A0A5K1V8N4_MACMU 

Troponin T, slow skeletal muscle isoform b 

OS=Macaca mulatta OX=9544 GN=TNNT1 PE=2 

SV=1 
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5 Votes 1.77E-17 

tr|A0A5K1V8N4|A0A5K1V8N4_MACMU 

Troponin T, slow skeletal muscle isoform b 

OS=Macaca mulatta OX=9544 GN=TNNT1 PE=2 

SV=1 

6 Votes 8.431491443 
tr|A0A5F7ZUT8|A0A5F7ZUT8_MACMU Zinc 
finger protein 239 OS=Macaca mulatta OX=9544 

GN=ZNF239 PE=4 SV=1 

Random Forest 
(≥ 0 Probability) 

1.40E-45 
tr|A0A1D5RIQ3|A0A1D5RIQ3_MACMU Troponin 
T1, slow skeletal type OS=Macaca mulatta OX=9544 
GN=TNNT1 PE=4 SV=2 

Random Forest 

(≥ 0.05 Probability) 
1.40E-45 

tr|A0A5K1V8N4|A0A5K1V8N4_MACMU 

Troponin T, slow skeletal muscle isoform b 

OS=Macaca mulatta OX=9544 GN=TNNT1 PE=2 

SV=1 

Random Forest 

(≥ 0.1 Probability) 
1.40E-45 

tr|A0A5K1V8N4|A0A5K1V8N4_MACMU 

Troponin T, slow skeletal muscle isoform b 

OS=Macaca mulatta OX=9544 GN=TNNT1 PE=2 

SV=1 

Random Forest 

(≥ 0.15 Probability) 
4.72E-49 

tr|A0A5K1V8N4|A0A5K1V8N4_MACMU 

Troponin T, slow skeletal muscle isoform b 

OS=Macaca mulatta OX=9544 GN=TNNT1 PE=2 

SV=1 

Random Forest 

(≥ 0.2 Probability) 
1.63E-49 

tr|A0A5K1V8N4|A0A5K1V8N4_MACMU 

Troponin T, slow skeletal muscle isoform b 

OS=Macaca mulatta OX=9544 GN=TNNT1 PE=2 

SV=1 

Random Forest 

(≥ 0.25 Probability) 
2.69E-47 

tr|A0A5K1V8N4|A0A5K1V8N4_MACMU 

Troponin T, slow skeletal muscle isoform b 

OS=Macaca mulatta OX=9544 GN=TNNT1 PE=2 

SV=1 

Random Forest 

(≥ 0.3 Probability) 
1.40E-45 

tr|A0A5K1V8N4|A0A5K1V8N4_MACMU 

Troponin T, slow skeletal muscle isoform b 

OS=Macaca mulatta OX=9544 GN=TNNT1 PE=2 

SV=1 

Random Forest 

(≥ 0.35 Probability) 
7.65E-46 

tr|A0A5K1V8N4|A0A5K1V8N4_MACMU 

Troponin T, slow skeletal muscle isoform b 

OS=Macaca mulatta OX=9544 GN=TNNT1 PE=2 

SV=1 

Random Forest 

(≥ 0.4 Probability) 
2.62E-62 

tr|A0A5K1V8N4|A0A5K1V8N4_MACMU 

Troponin T, slow skeletal muscle isoform b 

OS=Macaca mulatta OX=9544 GN=TNNT1 PE=2 

SV=1 

Random Forest 

(≥ 0.45 Probability) 
4.79E-69 

tr|A0A5K1V8N4|A0A5K1V8N4_MACMU 

Troponin T, slow skeletal muscle isoform b 

OS=Macaca mulatta OX=9544 GN=TNNT1 PE=2 

SV=1 
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Random Forest 

(≥ 0.5 Probability) 
4.72E-67 

tr|A0A5K1V8N4|A0A5K1V8N4_MACMU 

Troponin T, slow skeletal muscle isoform b 

OS=Macaca mulatta OX=9544 GN=TNNT1 PE=2 

SV=1 

Random Forest 

(≥ 0.55 Probability) 
6.11E-62 

tr|A0A5K1V8N4|A0A5K1V8N4_MACMU 

Troponin T, slow skeletal muscle isoform b 

OS=Macaca mulatta OX=9544 GN=TNNT1 PE=2 

SV=1 

Random Forest 

(≥ 0.6 Probability) 
1.69E-60 

tr|A0A5K1V8N4|A0A5K1V8N4_MACMU 

Troponin T, slow skeletal muscle isoform b 

OS=Macaca mulatta OX=9544 GN=TNNT1 PE=2 

SV=1 

Random Forest 

(≥ 0.65 Probability) 
1.77E-59 

tr|A0A5K1V8N4|A0A5K1V8N4_MACMU 

Troponin T, slow skeletal muscle isoform b 

OS=Macaca mulatta OX=9544 GN=TNNT1 PE=2 

SV=1 

Random Forest 

(≥ 0.7 Probability) 
1.80E-59 

tr|A0A5K1V8N4|A0A5K1V8N4_MACMU 

Troponin T, slow skeletal muscle isoform b 

OS=Macaca mulatta OX=9544 GN=TNNT1 PE=2 

SV=1 

Random Forest 

(≥ 0.75 Probability) 
8.01E-60 

tr|A0A5K1V8N4|A0A5K1V8N4_MACMU 

Troponin T, slow skeletal muscle isoform b 

OS=Macaca mulatta OX=9544 GN=TNNT1 PE=2 

SV=1 

Random Forest 

(≥ 0.8 Probability) 
1.62E-53 

tr|A0A5K1V8N4|A0A5K1V8N4_MACMU 

Troponin T, slow skeletal muscle isoform b 

OS=Macaca mulatta OX=9544 GN=TNNT1 PE=2 

SV=1 

Random Forest 

(≥ 0.85 Probability) 
1.23E-45 

tr|A0A5K1V8N4|A0A5K1V8N4_MACMU 

Troponin T, slow skeletal muscle isoform b 

OS=Macaca mulatta OX=9544 GN=TNNT1 PE=2 

SV=1 

Random Forest 

(≥ 0.9 Probability) 
6.96E-44 

tr|A0A5K1V8N4|A0A5K1V8N4_MACMU 

Troponin T, slow skeletal muscle isoform b 

OS=Macaca mulatta OX=9544 GN=TNNT1 PE=2 

SV=1 

Random Forest 

(≥ 0.95 Probability) 
6.34E-38 

tr|A0A5K1V8N4|A0A5K1V8N4_MACMU 

Troponin T, slow skeletal muscle isoform b 

OS=Macaca mulatta OX=9544 GN=TNNT1 PE=2 

SV=1 

 

The bold entries represent the input peak list from the methods that match with the targeted protein 

sequence. 
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Table S6.6. Database search results for ssTnC with ECD activation from different peak lists 

Input peak list E-value Protein ID 

Expert Annotation 

(“True Positive”) 
3.15E-12 

tr|G7MV95|G7MV95_MACMU Troponin C, slow 

skeletal and cardiac muscles OS=Macaca mulatta 

OX=9544 GN=TNNC1 PE=2 SV=1 

THRASH 60% fit 4.444046 

tr|A0A1Y2T072|A0A1Y2T072_9BIFI Cell division 

protein SepF OS=Alloscardovia macacae 
OX=1160091 GN=sepF PE=3 SV=1 

THRASH 70% fit 300.8025 
tr|G7NTX5|G7NTX5_MACFA BRO1 domain-
containing protein OS=Macaca fascicularis OX=9541 
GN=EGM_01363 PE=4 SV=1 

THRASH 80% fit 3.67E-13 

tr|G7MV95|G7MV95_MACMU Troponin C, slow 

skeletal and cardiac muscles OS=Macaca mulatta 

OX=9544 GN=TNNC1 PE=2 SV=1 

THRASH 90% fit 0.180059 

tr|G7PLX3|G7PLX3_MACFA DUF4515 domain-

containing protein OS=Macaca fascicularis OX=9541 
GN=EGM_04680 PE=4 SV=1 

MS-Deconv 83.40762 
tr|G7Q1W7|G7Q1W7_MACFA Uncharacterized 
protein OS=Macaca fascicularis OX=9541 
GN=EGM_19286 PE=4 SV=1 

TopFD 24.41666 
tr|G7PLX3|G7PLX3_MACFA DUF4515 domain-
containing protein OS=Macaca fascicularis OX=9541 

GN=EGM_04680 PE=4 SV=1 

SNAP N/A No Identification 

1 Vote 1.109976 

tr|A0A1Y2T072|A0A1Y2T072_9BIFI Cell division 

protein SepF OS=Alloscardovia macacae 
OX=1160091 GN=sepF PE=3 SV=1 

2 Votes 0.29619 
tr|I2CUR0|I2CUR0_MACMU DENN domain-
containing protein 1A isoform 1 OS=Macaca mulatta 
OX=9544 GN=DENND1A PE=2 SV=1 

3 Votes 1.01E-12 

tr|G7MV95|G7MV95_MACMU Troponin C, slow 

skeletal and cardiac muscles OS=Macaca mulatta 

OX=9544 GN=TNNC1 PE=2 SV=1 

4 Votes 0.002308 
tr|G7NUJ4|G7NUJ4_MACFA Uncharacterized 
protein OS=Macaca fascicularis OX=9541 
GN=EGM_01143 PE=4 SV=1 

5 Votes 0.000135 
tr|G7PP36|G7PP36_MACFA U-box domain-
containing protein OS=Macaca fascicularis OX=9541 
GN=EGM_06285 PE=4 SV=1 

6 Votes N/A No Identification 

Random Forest  
(≥ 0 Probability) 

4.439906 
tr|A0A1Y2T072|A0A1Y2T072_9BIFI Cell division 
protein SepF OS=Alloscardovia macacae 

OX=1160091 GN=sepF PE=3 SV=1 
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Random Forest  

(≥ 0.05 Probability) 
1.74E-09 

tr|G7MV95|G7MV95_MACMU Troponin C, slow 

skeletal and cardiac muscles OS=Macaca mulatta 

OX=9544 GN=TNNC1 PE=2 SV=1 

Random Forest  
(≥ 0.1 Probability) 

9.763027 
tr|G7PE20|G7PE20_MACFA Homeobox domain-
containing protein OS=Macaca fascicularis OX=9541 
GN=EGM_18395 PE=4 SV=1 

Random Forest  
(≥ 0.15 Probability) 

7.369076 

tr|G7N411|G7N411_MACMU Tumor protein D54 

isoform a OS=Macaca mulatta OX=9544 
GN=TPD52L2 PE=2 SV=1 

Random Forest  

(≥ 0.2 Probability) 
5.825325 

tr|G7N411|G7N411_MACMU Tumor protein D54 
isoform a OS=Macaca mulatta OX=9544 
GN=TPD52L2 PE=2 SV=1 

Random Forest  
(≥ 0.25 Probability) 

4.396271 
tr|G7N411|G7N411_MACMU Tumor protein D54 
isoform a OS=Macaca mulatta OX=9544 

GN=TPD52L2 PE=2 SV=1 

Random Forest  
(≥ 0.3 Probability) 

1.953599 

tr|G7N411|G7N411_MACMU Tumor protein D54 

isoform a OS=Macaca mulatta OX=9544 
GN=TPD52L2 PE=2 SV=1 

Random Forest  

(≥ 0.35 Probability) 
1.317487 

tr|G7N411|G7N411_MACMU Tumor protein D54 
isoform a OS=Macaca mulatta OX=9544 
GN=TPD52L2 PE=2 SV=1 

Random Forest  
(≥ 0.4 Probability) 

1.070612 
tr|G7N411|G7N411_MACMU Tumor protein D54 
isoform a OS=Macaca mulatta OX=9544 

GN=TPD52L2 PE=2 SV=1 

Random Forest  
(≥ 0.45 Probability) 

0.408344 
tr|G7N411|G7N411_MACMU Tumor protein D54 
isoform a OS=Macaca mulatta OX=9544 
GN=TPD52L2 PE=2 SV=1 

Random Forest  
(≥ 0.5 Probability) 

2.780761 
tr|G7N411|G7N411_MACMU Tumor protein D54 
isoform a OS=Macaca mulatta OX=9544 
GN=TPD52L2 PE=2 SV=1 

Random Forest  
(≥ 0.55 Probability) 

2.780761 

tr|G7N411|G7N411_MACMU Tumor protein D54 

isoform a OS=Macaca mulatta OX=9544 
GN=TPD52L2 PE=2 SV=1 

Random Forest  

(≥ 0.6 Probability) 
1.25252 

tr|G7PLX3|G7PLX3_MACFA DUF4515 domain-
containing protein OS=Macaca fascicularis OX=9541 
GN=EGM_04680 PE=4 SV=1 

Random Forest  
(≥ 0.65 Probability) 

0.987189 
tr|G7PLX3|G7PLX3_MACFA DUF4515 domain-
containing protein OS=Macaca fascicularis OX=9541 

GN=EGM_04680 PE=4 SV=1 

Random Forest  
(≥ 0.7 Probability) 

232.97 

tr|G7PP36|G7PP36_MACFA U-box domain-

containing protein OS=Macaca fascicularis OX=9541 
GN=EGM_06285 PE=4 SV=1 

Random Forest  

(≥ 0.75 Probability) 
232.97 

tr|G7PP36|G7PP36_MACFA U-box domain-
containing protein OS=Macaca fascicularis OX=9541 
GN=EGM_06285 PE=4 SV=1 
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Random Forest  
(≥ 0.8 Probability) 

188.9821 
tr|G7PP36|G7PP36_MACFA U-box domain-
containing protein OS=Macaca fascicularis OX=9541 
GN=EGM_06285 PE=4 SV=1 

Random Forest  
(≥ 0.85 Probability) 

178.5063 
tr|G7PP36|G7PP36_MACFA U-box domain-
containing protein OS=Macaca fascicularis OX=9541 
GN=EGM_06285 PE=4 SV=1 

Random Forest  
(≥ 0.9 Probability) 

91.52464 

tr|G7PP36|G7PP36_MACFA U-box domain-

containing protein OS=Macaca fascicularis OX=9541 
GN=EGM_06285 PE=4 SV=1 

Random Forest  

(≥ 0.95 Probability) 
10.09021 

tr|F7HHK1|F7HHK1_MACMU Myosin binding 
protein C, fast type OS=Macaca mulatta OX=9544 
GN=MYBPC2 PE=4 SV=3 

 

The bold entries represent the input peak list from the methods that match with the targeted  protein 

sequence. 
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Figure S6.1. Venn diagram for the majority vote greater than two and its overlap with expert 

annotation (“true positive”). Three color codes were used in this figure. Red represents the 

unique peaks that is in the majority vote (2 or more votes), but not in the expert annotations. Green 

represents the unique peaks that is in the expert annotation, but not in the majority vote (2 or more 

votes). Yellow represents the peaks found by both expert annotations and the majority vote (2 or 

more votes). 
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Figure S6.2. Boxplot of F1 scores using cross-validated fold results from the four-vote 

ensemble comparison. The line in each box shows the median F1 score across the testing folds 

from the leave-one-spectrum out cross validation. The edges of the box show the 1st and 3rd quartile, 

the whiskers are either the extreme value or 1.5 times the interquartile range (IQR), whichever is 

smaller. The dots are the extreme points that lie outside of the 1.5 x IQR range.  
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Figure S6.3. Feature ranking for mean decrease in accuracy. Each bar is a measure of the 

magnitude of the decrease in the random forest model’s accuracy after the feature has been 

permuted. A higher value indicates the feature was “important” to the overall performance of the 

random forest model. 
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Figure S6.4. Backward selection of features for the random forest model. Backward selection 

was performed with leave-one-spectrum-out cross-validation, and optimization on the median F1-

score. Each bar represents the feature removed iteratively from left to right during the backward 

selection process. Removal of features such as Charge, PrecursorCharge, THRASH60, AvgMass, 

and SumIntensity significantly impact the median of F1 score. 
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Figure S6.5. Statistical analysis between four-vote ensemble and seven-vote ensemble. Three 

boxplots display the spread of the metric measured from the 30 spectra versus different ppm cutoffs 

used in the hierarchical clustering step. (a) Number of clusters, (b) F1 score, and (c) Percent of 

recalled peaks. Results from the four-vote and seven-vote ensembles are depicted in red and blue, 

respectively. 
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Figure S6.6. E-value evaluation for βTpm spectrum with CID activation. Each plot has the -

log10(E-value) for TopFD (red line), Expert Annotation (purple line), simple voting thresholding 

(#votes/max votes, green points/lines), and random forest probability thresholding (blue line). 
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Figure S6.7. Sequence comparison among four slow skeletal Troponin T isoforms. For these 

four isoforms, the sequences differ in the N-terminal protein sequence, and the rest of the 

sequences to the C-terminus match. The sequence alignment was performed using Clustal Omega 

tool. 
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Chapter 7 

 

 

Conclusion and Future Directions 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



239 
 

 Reversible phosphorylation including both phosphorylation and dephosphorylation is one 

of the most important PTMs in biological processes. MS-based proteomics has been extensively 

utilized to study the proteome, which includes analyzing protein sequences and PTMs. In  particular, 

top-down MS-based proteomics is the method of choice to comprehensively study proteoforms 

arising from PTMs, alternative splicing and sequence variations. In this dissertation, I used top -

down MS and developed methods to study phosphoprotein quantification and characterization. 

Furthermore, I established a platform using novel nanomaterials to perform effective kinase 

enrichment for future top-down analysis for intact kinases, which are crucial interactors in the 

process of phosphorylation. Finally, I developed both a software tool and novel deconvolution 

machine learning algorithms that enables researchers to study proteoforms using top -down mass 

spectrometry more effectively and efficiently. 

 In Chapter 2 and Chapter 3, the quantification and characterization of phosphoproteins are 

investigated. In Chapter 2, the impact of ESI quantification of phosphoproteins were examined 

using two model proteins, ENH2 and β-casein. In this study, it was revealed that 

monophosphorylation in the case of ENH2 had a minimal impact on the ESI quantification, 

whereas pentakisphosphorylation in the case of β-casein had a significant influence. Further 

investigation showed that the charge state envelope shifted for β-casein, suggesting that differences 

in physiochemical property between the unphosphorylated and phosphorylated β-casein were 

present. In Chapter 3, comprehensive characterization using top-down MS was conducted on PKA 

C-subunit, which is an important kinase in many biological processes. For the first time , the 

sequence variation and seven phosphorylation sites of the bacterially expressed PKA C-subunit 

were characterized simultaneously. Four of these seven phosphorylation sites were located at the 

6xHis-tag used for affinity purification. 
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 Top-down MS is a reliable method for relative quantification of proteoforms, owing to the 

belief that small modifications do not significantly impact the ionization/detection efficiency of 

intact proteins.1-2 One limitation of this study is the availability of phosphoproteins whose 

phosphorylation status can be well controlled. I imagine the most ideal case of this study will be 

to have a phosphoprotein which has two phosphorylation sites that are contro lled by two distinct 

kinases.3 This system can then be used for studying possible structural changes during 

phosphorylation by comparing monophosphorylated proteoform of each site with 

unphosphorylated proteoform. It will also allow for comparison among three proteoforms to  

examine the impact of phosphorylation on ESI quantification. Additionally, β-casein with 

pentakisphosphorylation showed significant impact on the ESI quantification. It leads me to 

believe that larger modifications do have an impact compared to smaller modifications. Larger 

modifications such as glycosylation may need further interrogation. 

 Characterization of intact phosphoprotein has become more accessible through the rapid 

development of top-down MS. Our group has published numerous publication which characterized 

the sequence variation, alternative splicing, and phosphorylation site localization.4-7 However, 

characterization using top-down MS still faces challenges. One of them is that the buffer conditions 

of phosphoprotein storage are generally not MS friendly. Surfactant and glycerol are often 

necessary maintain catalytic activities and stability in solution for phosphoprotein such as kinases. 

Additionally, large scale analysis of intact phosphoproteins has not been widely accessible. 

Characterization and identification of phosphoproteins through online LC-MS/MS is still limited 

by technical developments in top-down MS, in particular bioinformatics. Top-down analysis still 

requires manual work and experience from researchers. 
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 In Chapter 4, a nanomaterial platform was developed for kinase enrichment. Using allene 

ligand coated on the iron oxide nanoparticle surface, kinase inhibitor modified with thiol 

functionality can be efficiently incorporated on the nanoparticle via “thiol-ene” chemistry. The 

functionalized nanoparticle was shown to capture kinases with minimal non-specific binding using 

a simple system. Using bottom-up proteomics, some kinases could be identified in the complex 

through kinase enrichment using functionalized nanoparticle. 

 While some success was demonstrated in the complex system, the kinase enrichment 

workflow still requires optimization. At the moment, the functionalized nanoparticle appeared to 

have significant nonspecific binding in the complex system. The intermed iate goal after 

optimization is to use this platform to examine intact kinases. This platform can also be extended 

by incorporation other kinase inhibitors.8-11 While most kinase inhibitors are very polar, the 

synthetic scheme using glutamic-cysteinamide moiety shown in Chapter 4 can be applicable to 

modify other amine functionalized kinase inhibitors by decreasing the polarity of the final products. 

A side experiment during graduate school has shown success to modified AX14596, which is a 

polar molecule, with the same glutamic-cysteinamide moiety from DMF reaction, worked up by 

extraction using ethyl acetate and water, and separated by flash column chromatography.  

 In Chapter 5 and 6, a software tool and a novel deconvolution machine learning strategy 

were developed to address the needs for comprehensive tools in top-down proteomics analysis. In 

Chapter 5, I developed MASH Explorer software, which is a universal, comprehensive, and user-

friendly software environment for top-down proteomics. This software is able to process datasets 

from multiple vendor formats, as well as universal formats. MASH Explorer integrates multiple 

spectral deconvolution and database search algorithms into a unified platform. Software elements 

such as Configuration Wizard, Workflow Manager, and Ion Finder Tools were implemented to 
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improve the user experience in analyzing top-down proteomics data. In Chapter 6, I designed a 

machine learning strategy to process and combine peak list results from multiple deconvolution 

algorithms. This strategy used hierarchical clustering methods and combined different peak list 

results into a consensus peak list. The optimized consensus peak list showed both improved 

accuracy and precision in deconvolution tasks than individual algorithms. This algorithm is 

effective in enhancing the throughput of deconvolution task by detecting true positive peaks while 

filtering out false positive peaks, and shows promising in improving the proteoform identification 

and characterization workflows for top-down proteomics. 

 Bioinformatics tools are still under-developed for intact protein analysis. As mentioned in 

the Chapter 1, spectral deconvolution includes both MS and MS/MS level deconvolution. This 

dissertation focuses primarily on optimizing and utilizing MS/MS level deconvolution and the 

workflow should be suitable for most intact protein analysis. However, challenges still exist in 

analyzing large proteins using bioinformatics. Using conventional proteomics analysis workflow, 

large proteins are directly fragmented by activation methods. In the case of CID, labile bonds are 

cleaved, resulting in limited sequence coverage. For electron-based activation such as ECD and 

ETD, the fragmentation efficiency may need to be optimized, and large ions are often hard to 

resolve without extended acquisition time. From the datasets, it appeared that a lot of real isotopic 

distributions could not be matched to the proposed sequence. A more comprehensive tool is needed 

to reveal the identity of these isotopic distributions, which may be arisen in different cases.  First, 

internal fragments can be generated if a higher fragmentation energy is implemented. 12-14 For large 

proteins, this may provide additional information of the primary sequence. Additionally, these 

fragment ions can be a result of complex PTMs. For instance, if the protein presents in the spectrum 

in three proteoforms, such as unphosphorylated, monophosphorylated and bisphosphorylated 
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forms, characterization of the monophosphorylated proteoform may be challenging. Isolation of 

the monophospohrylated proteoform may include a mixture of phosphorylated proteoforms with 

either one of the phosphorylation sites. Software tools that are able to isolate and quantify the ions 

between the two monophosphorylated proteoforms can significantly help with assigning isotopic 

distributions as well as addressing the PTM occupancy.15 

 Another area to explore for large intact protein analysis is the middle-down proteomics 

workflow. As mentioned in the Chapter 1, middle-down proteomics is normally used for large 

proteins analysis or proteoforms with complex modifications. Regarding large proteins, 

specialized enzymes have been developed to allow robust and high-throughput analysis such as 

that for monoclonal antibody using IdeS for digestion. However, analysis of other large proteins 

that are greater than 100 kDa is still under-development. One direction to address this problem is 

to utilize MS level deconvolution to identify intact masses of large polypeptide after digestion and 

map these intact masses to the protein sequence. MS level deconvolution has attracted significant 

interest, as it has been included in TopPIC Suite, Informed-Proteomics and recently 

FLASHDeconv.16-18 These tools can collapse charge state distribution and provide intact mass 

information of large polypeptides, which could be used to compute generated polypeptide peak 

list from an imported sequence. Theoretical polypeptide masses can be calculated using 

information including the use of specialized enzyme such as Asp-N, Glu-C, and Lys-C, as well as 

the number of miscleavages. Additionally, possible mass differences such as +80 Da for 

phosphorylation and +42 Da for acetylation can be assigned for unmatched large polypeptides. 

This workflow might also be able to perform preliminary survey and output the results to guide 

users for in depth analysis, which may require users to verify using MS/MS analysis. This 



244 
 

workflow has shown some success in analyzing RBM20, a protein that plays a role in titan 

splicing.19 
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