
Learning Protein Sequence-Function Relationships for Protein Engineering

by

Sam Gelman

A dissertation submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the

UNIVERSITY OF WISCONSIN–MADISON

2023

Date of final oral examination: 10/11/23

The dissertation is approved by the following members of the Final Oral Committee:
Anthony Gitter, Associate Professor, Biostatistics and Medical Informatics
Philip Romero, Assistant Professor, Biochemistry
Yingyu Liang, Assistant Professor, Computer Sciences
Yixuan Sharon Li, Assistant Professor, Computer Sciences

© Copyright by Sam Gelman 2023
All Rights Reserved

i

To those whose unwavering love and support
helped turn my dream into a reality.

ii

acknowledgments

This dissertation is a testament to the incredible support and guidance I have
received from countless individuals throughout this journey, and I am deeply
grateful to each one of them for helping bring this work to fruition.

I want to thank my wife Hannah, who was with me through every long night, ev-
ery setback, and every breakthrough. Her love and unwavering support illuminated
my path. This achievement is not just mine; it is ours.

I am grateful to my parents Jack and Larisa for their steadfast belief in me and
the sacrifices they made so that I could pursue my dream.

For their continuous support and encouragement, I want to thank my siblings
Ben, Sasha, and Roman; my grandparents Boris and Galina; Lena, who has been
like a family member; and my in-laws Grant, Stephanie, Marty, and Mary Ann.
A special thanks to Ben for not only his support and friendship but also for his
invaluable help in brainstorming and refining scientific ideas.

I want to thank all my friends, many of whom were fellow graduate students,
for supporting me, making life fun, and distracting me from my studies. These
include, among many others, Michael Bowen, Brad Boccuzzi, David Merrel, Ben
Kaufman, Kylie Moynihan, Aaron Baker, Chris Magnano, Varun Sah, Tuan Dinh,
Danny McNeela, Richelle Wilson, Nate Carlin, members of the Gitter and Romero
Labs, and members of Kanopy Dance Company.

I want to thank the incredible staff at Sencha Tea Bar, including Holly, Lyla,
Ally, Ben, and Jess, for fostering an environment brimming with support and
camaraderie. Their smiling faces and warm conversations helped me push through
the toughest days.

This work owes its success to collaborations with a remarkable group of scientists
and students, including Bryce Johnson, Sarah Fahlberg, Sameer D’Costa, Chase
Freschlin, and the dedicated members of both the Gitter and Romero Labs.

I want to express my gratitude to my advisor, Tony Gitter, who inspired me with
his sincerity and commitment to the scientific process. Tony’s mentorship shaped
not only my academic pursuits but also my values and work ethic.

iii

I want to thank my co-advisor, Phil Romero, for his valuable scientific insights
and guidance, which helped shape my research over the years.

Finally, I want to thank my committee members Tony Gitter, Phil Romero, Sharon
Li, and Yingyu Liang for their time and expertise in reviewing and providing
feedback on my research and dissertation.

iv

contents

Contents iv

List of Tables vi

List of Figures viii

Abstract xxv

1 Introduction 1
1.1 Motivation . 1
1.2 Biological Background . 4
1.3 Computational Background . 10
1.4 Survey of the Current Landscape 13
1.5 Scope and Dissertation Overview 26

2 Neural Nets for Deep Mutational Scanning Data 28
2.1 Introduction . 28
2.2 Results . 31
2.3 Discussion . 49
2.4 Methods . 53

Appendix A: Supplementary Information for Chapter 2 75
2.A Supplementary Methods . 75
2.B Supplementary Figures . 79

3 Mutational Effect Transfer Learning 92
3.1 Introduction . 92
3.2 Results . 94
3.3 Discussion . 115
3.4 Methods . 119

v

Appendix B: Supplementary Information for Chapter 3 142

4 Discussion 160
4.1 Contributions . 160
4.2 Future Work . 164
4.3 Reflections . 169
4.4 Conclusion . 175

References 176

vi

list of tables

1.1 Amino acids. The twenty common amino acids and their abbreviations. 5

2.1 Deep mutational scanning datasets. We evaluated the models on deep
mutational scanning datasets representing proteins of varying sizes,
folds, and functions. 34

A.1 Designed GB1 sequences. The GB1 wild-type sequence and the de-
signed sequences with increasing numbers of mutations (10, 20, 30, 40,
and 50) from wild-type. 89

A.2 Diversity in designed GB1 sequences. We repeated our hill climbing
protein design approach 100 times to generate 100 sequences with 10
mutations each. We found 27 of 100 design runs converged to the same
sequence. The other 73 represent distinct local optima in the landscape.
A number of mutations were observed across multiple designs, and some
of these were present in Design10. This table lists mutations common
across the designs and their frequencies. 89

A.3 Selected hyperparameters. The hyperparameters selected by a hyperpa-
rameter sweep for the main experiment. There are additional parts of the
architecture that were not part of the hyperparameter sweep. For exam-
ple, the fully connected networks have a dropout layer after every dense
layer. The convolutional networks have a dense layer and a dropout
layer before the output node. Experiments with reduced training set
sizes and GB1 resampling used the same architectures selected for the
main experiment, but they had their own sweeps for learning rate and
batch size. 90

A.4 Numbers of trainable parameters. The number of trainable parameters
in each model. 90

A.5 Main software packages. The main libraries and version numbers used
to train and evaluate models. 91

vii

3.1 Experimental datasets. We evaluated METL on experimental datasets
representing proteins of varying sizes, folds, and functions. 98

B.1 avGFP designed sequences. The sequences designed in the avGFP
low-N design experiment. 157

B.2 Experimental datasets. This table specifies the experimental datasets
used in this study, where we acquired them from, and any filtering or
transformations we applied to standardize the dataset format. 157

B.3 Local Rosetta datasets. Information about the datasets used to train the
local Rosetta source models, including PDB origin and the final number
of variants in each dataset. 158

B.4 Rosetta score terms. The Rosetta score terms used to train METL. . . . 158
B.5 Binding score terms. The Rosetta binding score terms, calculated on

the GB1-IgG complex structure and used in addition to the standard
score terms to train METL-L-Bind. 159

viii

list of figures

1.1 A theoretical fitness landscape. The stars represent individual protein
sequences and are labeled according to their mutations from the wild-
type (WT) sequence, where “wild-type” refers to the original, non-
mutated form of the protein found in nature. The label consists of the
WT amino acid, the sequence position where the amino acid substitution
occurs, and the replacement amino acid. The goal of protein engineering
is to find peaks in this landscape that represent high fitness sequences. 6

2.1 Overview of our supervised learning framework. (a) We use sequence-
function data to train a neural network that can predict the functional
score of protein variants. The sequence-based input captures physic-
ochemical and biochemical properties of amino acids and supports
multiple mutations per variant. The trained network can predict func-
tional scores for previously uncharacterized variants. (b) We tested
linear regression and three types of neural network architectures: fully
connected, sequence convolutional, and graph convolutional. (c) Scat-
terplots showing performance of trained networks on the Pab1 dataset.
(d) Process of generating the protein structure graph for Pab1. We create
the protein structure graph by computing a residue distance matrix from
the protein’s three-dimensional structure, thresholding the distances,
and converting the resulting contact map to an undirected graph. The
structure graph is the core part of the graph convolutional neural network. 32

ix

2.2 Evaluation of neural networks and comparison with unsupervised
methods. (a) Three-dimensional protein structures. (b) Pearson’s corre-
lation coefficient between true and predicted scores for Rosetta, EVmu-
tation, DeepSequence, linear regression (LR), fully connected network
(FC), sequence convolutional network (CNN), and graph convolutional
network (GCN). EVmutation (I) refers to the independent formulation
of the model that does not include pairwise interactions. EVmutation
(E) refers to the epistatic formulation of the model that does include
pairwise interactions. Each point corresponds to one of seven random
train-tune-test splits. (c) Correlation performance of supervised models
trained with reduced training set sizes. (d) Model performance when
making predictions for variants containing mutations that were not seen
during training (mutational extrapolation). Each point corresponds
to one of six replicates, and the red vertical lines denote the medians.
(e) The fraction of the true 100 best-scoring variants identified by each
model’s ranking of variants with the given budget. The random baseline
is shown with the mean and a 95% CI. 39

2.3 Trade-off between library size and number of sequencing reads. Per-
formance of sequence convolutional models trained on GB1 datasets
that have been resampled to simulate different combinations of protein
library size and number of sequencing reads in the deep mutational
scan. An “X” signifies that the combination of library size and number
of reads produced a dataset with fewer than 25 variants and was, there-
fore, excluded from the experiment. Having a large library size can be
detrimental to supervised model performance if there are not enough
reads to calculate reliable functional scores. 42

x

2.4 Neural network interpretation. (a) A UMAP projection of the latent
space of the GB1 sequence convolutional network (CNN), as captured
at the last internal layer of the network. In this latent space, similar
variants are grouped together based on the transformation applied by
the network to predict the functional score. Variants are colored by their
true functional score, where red represents high-scoring variants and
blue represents low-scoring variants. The clusters marked G1 and G2
correspond to variants with mutations at core residues near the start and
end of the sequence, respectively. Cluster G3 corresponds to variants
with mutations at surface interface residues. (b) Integrated gradients
feature importance values for the Pab1 CNN, aggregated at each se-
quence position and superimposed on the protein’s three-dimensional
structure. Blue represents positions with negative attributions, meaning
mutations in those positions push the network to output lower scores,
and red represents positions with positive attributions. (c) A heat map
showing predictions for all single mutations from the Pab1 CNN. Wild-
type residues are indicated with dots, and the asterisk is the stop codon.
Most single mutations are predicted to be neutral or deleterious. . . . 45

xi

2.5 Neural network-based protein design. (a) Multidimensional scaling
(MDS) sequence space visualization of the wild-type (WT) GB1 se-
quence, the GB1 training sequences, and the five designed proteins.
Design10 to Design50 are progressively farther from the training dis-
tribution. Design10 is expressed as a soluble protein, while the more
distant designs were insoluble. (b) Circular dichroism spectra of puri-
fied wild-type GB1 and Design10. Both proteins display highly similar
spectra that are indicative of α-helical protein structures. (c) IgG bind-
ing curves of wild-type GB1 variants. Design10 displays substantially
higher binding affinity than wild-type GB1, A24Y, and E19Q + A24Y. All
measurements were performed in duplicate. Binding signal is reported
in relative fluorescence units (RFU). (d) The locations of Design10’s 10
mutations (shown in orange) relative to the IgG binding interface. The
Design10 structure was predicted de novo using Rosetta. 47

A.1 Model evaluation using Spearman’s correlation coefficient. (a) Spear-
man’s correlation coefficient between true and predicted scores for
Rosetta, EVmutation, DeepSequence, linear regression (LR), fully con-
nected network (FC), sequence convolutional network (CNN), and
graph convolutional network (GCN). EVmutation (I) refers to the in-
dependent formulation of the model that does not include pairwise
interactions. EVmutation (E) refers to the epistatic formulation of the
model that does include pairwise interactions. Each point corresponds
to one of seven random train-tune-test splits. (b) Spearman’s correlation
performance of supervised models trained with reduced training set sizes. 79

A.2 Mean absolute error vs. score quartile. The mean absolute error in the
models’ predictions grouped by score quartile. Linear regression has a
substantial jump in error for low-scoring variants compared to the other
models in avGFP, GB1, Pab1, and Ube4b. 80

xii

A.3 Mean absolute error vs. epistasis quartile. The mean absolute error
in the models’ predictions grouped by absolute epistasis quartile. We
compute epistasis by subtracting the expected score for the multi-mutant
sequence from the true score. The expected score for the multi-mutant
sequence is the sum of the corresponding single-mutant scores, trun-
cated to the observed minimum or maximum in the dataset. Linear
regression has a substantial jump in error for high-epistasis variants
compared to the other models in avGFP, GB1, and Pab1. 81

A.4 Mean absolute error vs. number of mutations. The absolute error
in the models’ predictions for each variant grouped by the number of
mutations in the variant. Linear regression struggles with increasing
numbers of mutations in avGFP. The convolutional networks perform
better than linear regression and the fully connected network on single-
mutation variants in GB1 and Pab1. 82

A.5 Positional extrapolation. Model performance when making predictions
for variants containing mutations in positions that were unmodified in
the training data (positional extrapolation). Each point corresponds to
one of six replicates, and the red vertical line denotes the median. . . . 82

A.6 Protein structure graphs for Pab1. The graph convolutional network
uses a graph of the protein’s structure to determine which residues are
close together. In addition to the standard graph based on the protein’s
actual structure, we tested four baseline graphs: a shuffled graph based
on the standard graph but with shuffled node labels, a disconnected
graph with no edges, a sequential graph containing only edges between
sequential residues, and a complete graph containing all possible edges.
The graphs pictured are for the Pab1 dataset. The structured graph
uses a distance threshold of 7Å to determine which residues should be
connected with edges (selected by hyperparameter sweep). The nodes
are colored according to each residue’s sequence position, with light
colors corresponding to residues at the start of the sequence and dark
blue colors corresponding to residues at the end of the sequence. . . . 83

xiii

A.7 Convolutional networks with and without a fully connected layer.
The correlation performance of sequence convolutional and graph con-
volutional networks trained with various baseline structure graphs, with
and without a final fully connected layer. The standard graph is based
on the protein’s actual structure. The shuffled graph is a version of the
regular structured graph with shuffled node labels. The complete graph
contains all possible edges between residues. The sequential graph only
contains edges between sequential residues. The disconnected graph
contains no edges. The fully connected layer at the end of the network
compensates for apparent differences in performance caused by type of
convolutional network or different graph structures. 84

A.8 Mean score of highest ranked variants. The mean score of each model’s
ranking of the highest scoring test set variants. For the most part, the
supervised models prioritize variants whose average score is higher
than the wild-type. The random baseline is shown with the mean and
95% confidence interval. 85

A.9 Max score of highest ranked variants. The max score in each model’s
ranking of the highest scoring test set variants. For Ube4b, the supervised
models prioritize a variant with the true max score with the smallest
tested budget (N=5), thus all the lines corresponding to the supervised
models are hidden behind the line for the true score. Nearly all models
across all datasets prioritize variants whose max score is higher than
the wild-type. The random baseline is shown with the mean and 95%
confidence interval. 86

A.10 Mutations in GB1 latent space groups. Heat maps showing the number
of occurrences of mutations for each annotated group in the GB1 latent
space in Figure 2.4a. Groups G1 and G2 contain variants with mutations
at core residues near the start and end of the sequence, respectively.
Group G3 contains variants with mutations at surface interface residues. 87

xiv

A.11 Hyperparameter sweep. We performed an exhaustive hyperparameter
sweep for each dataset and type of model using all possible combinations
of these hyperparameters. 88

A.12 Generation of resampled GB1 datasets. Flowchart showing how we
created resampled GB1 datasets corresponding to different library sizes
and numbers of reads. 88

3.1 Overview of Mutational Effect Transfer Learning (METL) with the
local pretraining strategy. In the pretraining phase (upper row), we
start with a specific target protein (shown here as PDB:2QMT), ran-
domly generate millions of sequence variants with up to 5 amino acid
substitutions, and compute Rosetta score terms for each sequence vari-
ant. Then, we use the resulting data to pretrain a transformer encoder to
predict the Rosetta scores. In the finetuning phase (lower row), we use
experimental sequence-function data to fine-tune the pretrained neural
network from the previous phase. The experimental sequence-function
data may come from high-throughput experiments like deep mutational
scanning or low throughput biological assays. It consists of variants
of the same target protein and an associated functional score for each
variant telling us how functional the variant is for the specific functional
property measured in the experimental assay. The experimental func-
tional score could measure properties such as binding, thermostability,
and expression. 95

xv

3.2 Comparative performance of Linear-OH, Rosetta total score, EVE,
Linear-EVE, ESM-2, METL-Global, and METL-Local across different
training set sizes and extrapolation tasks. (a) Learning curves for eight
datasets showing the test set Spearman correlation between true and
predicted scores across a number of training set sizes ranging from 8 to
16,384 examples. We tested multiple replicates for each training set size,
starting with 101 replicates for the smallest train set size and decreasing
to 3 replicates for the largest size. We show the median Spearman cor-
relation across these replicates. The top left panel (“Average”) shows
the mean of the learning curves across all the pictured datasets. (b)
Correlation performance of each method on position, mutation, score,
and regime extrapolation. We tested 9 replicates for each type of extrap-
olation and show the median. 100

3.3 Relationship between experimental and simulated data for the GB1
dataset. The contour plot illustrates the test set Spearman’s correlation
resulting from training METL-Local with varying amounts of simulated
(pretraining) and experimental (finetuning) data. The plot displays
a grid of Spearman’s correlation values on the same test dataset cor-
responding to discrete combinations of experimental and simulated
dataset sizes. The model benefits from larger quantities of experimental
and simulated data, with the latter producing diminishing returns after
approximately 128K examples. 109

xvi

3.4 Customized binding simulations improve METL-Local performance
for GB1 dataset. (a) METL-Local pretrains on general stability-related
Rosetta scores from the standalone GB1 structure. METL-Local-Bind pre-
trains on both general Rosetta scores from the standalone GB1 structure
and binding-specific scores from the GB1-IgG complex structure. (b)
Learning curves and extrapolation performance for Linear-OH, METL-
L, and METL-L-Bind on the GB1 dataset. We pretrained METL-L and
METL-L-Bind on identical datasets, differing only in the target Rosetta
score terms. We used the same finetuning dataset splits and replicates
as the results in Figure 3.2. Vertical red bar denotes the median of the
extrapolation replicates. 111

3.5 Low-N avGFP Design. (a) Overview of GFP design experiment. We
tested 2 different design constraints: Observed AA, where sequences
contain only amino acid substitutions found in the training set, and
Unobserved AA, where sequences exclude any amino acid substitutions
found in the training set. (b) Multidimensional scaling (MDS) sequence
space visualization of the wild-type avGFP sequence, the 64 avGFP train-
ing sequences, and the 20 designed proteins. The designed sequences
contain either 5 or 10 amino acid substitutions from wild-type. Training
set sequences are colored on a gradient according to their experimental
brightness score. Designed sequences are colored according to whether
they exhibited fluorescence. (c) Experimentally characterized fluores-
cence brightness (multiple replicates) of the designed sequences, the
best training set sequence (BT), and the wild-type sequence (WT). . . 113

xvii

B.1 Performance of pretrained METL source models in predicting Rosetta
scores. This figure shows Spearman correlations between true and
predicted Rosetta scores for each of the 55 Rosetta score terms. (a)
Performance of METL-Global in predicting Rosetta scores for protein
variants originating from in-distribution base PDBs (those included in
METL-Global pretraining) and out-of-distribution base PDBs (those not
included). We show the mean Spearman correlation across base PDBs.
To evaluate in-distribution PDBs, we used variants in the pretraining
data test set. To evaluate out-of-distribution PDBs, we used variants
from the eight DMS datasets included in this study. METL-Global per-
forms substantially better for in-distribution PDBs, suggesting there is
overfitting to the PDBs present in the training data. (b) Correlation
performance of METL-Local models predicting Rosetta energy terms
for the local pretraining data test sets. 142

B.2 METL-Global amino acid embeddings We applied principle compo-
nent analysis (PCA) to reduce the METL-Global length 512 amino acid
embeddings down to 2 dimensions, capturing 33% of the variance in
data. This scatter plot of the 2-dimensional amino acid embeddings
is annotated with amino acid properties. Amino acids with similar
properties are grouped together in the embedding space. 143

xviii

B.3 Relationship between METL-Local performance and the relatedness
of Rosetta and experimental scores. The figure displays a series of scat-
terplots showing the relationship between METL-Local performance
and the relatedness of Rosetta and experimental scores, across multi-
ple experimental datasets and training set sizes. The x-axis shows the
Spearman correlation between Rosetta total score and the experimental
functional score for the entire dataset, representing the relatedness or
similarity between the Rosetta total score and the experimental func-
tional score. The y-axis shows the METL-Local performance for the
respective training set size, as determined by the Spearman correlation
on the test set. Notably, as the similarity between Rosetta total score and
the experimental functional score increases, so does the METL-Local
performance, at least for small training set sizes. However, with in-
creasing experimental training set sizes, the similarity between Rosetta
total score and experimental functional score becomes less important to
the METL-Local performance, suggesting a shift in METL-Local away
from the Rosetta pretraining data and more toward the experimental
finetuning data. 144

B.4 Performance of 101 training set replicates for training set size 8. The
left panel consists of kernel density estimation plots showing the distri-
bution of test set performance (Spearman correlation) of 101 training set
replicates for training set size 8. The selection of training set examples
can have a substantial impact on performance for this small training set
size. The right panel consists of scatterplots showing individual training
set replicates with the performance of METL-L (Spearman correlation)
on the x-axis and the performance of the other methods (Spearman
correlation) on the y-axis. We annotated the scatterplots with the line of
equivalence and the percentage values showing the fraction of replicates
for which METL-L has stronger performance (bottom right quadrant)
versus the fraction of replicates for which the other respective method
has stronger performance (top left quadrant). 145

xix

B.5 Standard deviation of performance across training set replicates. We
tested numerous replicates for each train set size: 101 replicates for
the smallest train set size, followed by 23, 11, 11, 11, 11, 7, 7, 5, 5, 3,
and finally 3 replicates for the largest train set size. This figure shows
the standard deviation of performance, as measured by the test set
Spearman correlation between true and predicted scores, across the
train set replicates. As expected, the standard deviation decreases as the
size of the training set increases. We observe that for small training set
sizes (> 8), METL-Local and Ridge (OH+EVE) tend to have a smaller
standard deviation than the other methods, signifying they are less
sensitive than the other methods to the selection of train set examples.
We note that METL-Global exhibits a spike in standard deviation at train
set size 512, which is the train set size at which we enable early stopping
based on the validation set loss. At this train set size, the validation set
size is 128. Given our finetuning approach and the instability of training
the 20M parameter METL-Global model, this validation set size may not
be large enough to use reliably for early stopping, resulting in higher
standard deviations in performance of the trained models. The Ube4b
dataset also shows this spike for METL-Local at train set size 128, which
is the train set size at which we enable early stopping for METL-Local,
with a validation set size of 32. 146

xx

B.6 Regime extrapolation for avGFP and Ube4b datasets. The avGFP and
Ube4b datasets contain variants with higher order mutations, enabling
us to test two types of regime extrapolation: Train 1 and Train 1+2. The
bar plots (left) show the count of variants with the specified number of
mutations for each dataset. The strip plots (right) show the performance
of regime extrapolation for Train 1, where we train on single substitution
variants and evaluate on variants with 2+ substitutions, and Train 1+2,
where we train on variants with single or double substitutions, and
evaluate on variants with 3+ substitutions. The strip plots show the
performance of 9 test set replicates, and the red vertical line denotes the
median. 147

B.7 Performance of METL-Local with and without pretraining. These
plots show the correlation performance of Ridge (OH), METL-Local
(random init), and METL-Local. METL-Local (random init) is a model
with the same architecture as METL-Local but without pretraining on
Rosetta scores. (a) The learning curves show that METL-Local (random
init) substantially underperforms both Ridge (OH) and pre-trained
METL-Local, emphasizing the impact pretraining on Rosetta scores has
on this transformer-based architecture. Given enough experimental
training data, METL-Local (random init) converges to the performance
of the other models for most datasets. (b) METL-Local (random init)
outperforms Ridge (OH) for position extrapolation due to the fact that
Ridge (OH) is not able to perform position extrapolation. For the other
types of extrapolation, METL-Local (random init) performs about the
same or worse than Ridge (OH). 148

xxi

B.8 Performance of baseline models directly using Rosetta’s total score.
Rosetta total score is the score term from Rosetta with no supervised train-
ing on experimental data. Ridge (OH+RTS) is a linear ridge regression
trained on experimental data with one hot encoding features augmented
with the Rosetta total score as an additional input feature. Both of these
models require running Rosetta to compute the total score for every vari-
ant, even during inference. For comparison, this figure also shows the
performance of Ridge (OH) and METL-Local. (a) For small training set
sizes, incorporating Rosetta total score as an additional input feature for
ridge regression greatly improved performance over solely using one
hot encoding features, as demonstrated by the difference in performance
between Ridge (OH) and Ridge (OH+RTS). While Ridge (OH+RTS)
sometimes matched METL-Local’s performance and even exceeded it on
the GRB2-A dataset, METL-Local still outperformed Ridge (OH+RTS)
on average. (b) METL-Local outperformed Ridge (OH+RTS) across
most datasets and extrapolation tasks. The performance differences
were sometimes substantial, such as for position extrapolation with GB1.
In other cases, the performance differences were much smaller, such as
for regime extrapolation. 149

B.9 Performance of additional baseline models. Correlation performance
of Ridge (OH), fully connected networks (FC), sequence convolutional
networks (CNN), and METL-Local. (a) The CNN performed about the
same as Ridge (OH) across different sized training sets. The fully con-
nected network typically performed about the same or worse than Ridge
(OH), especially for mid-size training sets. (b) The CNN performed
about the same or better than Ridge (OH) across most extrapolation
tasks and datasets. The fully connected network performed worse than
Ridge (OH), with some outliers, like for GB1 score extrapolation, where
it performed better than any of the other tested models. 150

xxii

B.10 Performance of one-dimensional and three-dimensional relative posi-
tion embeddings. This figure shows the performance of METL-Local
and METL-Global with one-dimensional (1D), sequence-based and
three-dimensional (3D), structure-based relative position embeddings.
(a) Learning curves showing Spearman correlation between true and
predicted scores across a range of training set sizes. (b) Spearman
correlation between true and predicted scores for position, mutation,
score, and regime extrapolation. For both panels, the “Average” or “Avg”
represents the mean across all datasets. Overall, METL-Local does not
benefit much from three-dimensional embeddings over one-dimensional
(except for the TEM-1 dataset), while METL-Global shows consistent
improvement with the three-dimensional embeddings. 151

B.11 Performance of finetuning and feature extraction. This figure shows
the performance of METL-Local, METL-Global, and ESM-2 with both
finetuning (FT) and feature extraction (EX). To perform feature extrac-
tion, we saved outputs from the appropriate internal layer of each model
and then used those features as inputs to train linear ridge regression.
Finetuning consistently outperformed feature extraction for METL-Local
and METL-Global across (a) different training set sizes and (b) extrap-
olation tasks. For ESM-2, there were several instances where feature
extraction substantially outperformed fine-tuning when applied to (a)
small training set sizes, namely for the DLG4-2022, GRB2-B, Pab1, and
TEM-1 datasets. Notably, the performance of ESM-2 feature extraction
exceeded the performance METL-Local finetuning for DLG4-2022 and
Pab1 with small training set sizes. For (b) extrapolation tasks, ESM-2
finetuning generally performed better than feature extraction. 152

xxiii

B.12 Feature extraction performance of ESM-2 models with 35M, 150M, and
650M parameters. (a) Across the range of training set sizes, the 150M
parameter model consistently outperformed the 35M parameter model,
with the exception of the DLG4-2022 dataset, where the 35M parameter
model actually performed better. Surprisingly, for small training set
sizes, the 650M parameter model performed worse than both the 35M
and 150M parameter models with the avGFP, DLG4-2022, and Pab1
datasets. For larger training set sizes, the 650M parameter model offered
some improvement over the 35M and 150M parameter models with the
GB1, GRB2-A, and GRB2-B datasets. (b) Across extrapolation tasks,
the 35M parameter model tended to perform worse than the 150M and
650M parameter models. The 650M parameter model often performed
the best, but not in all instances, and the differences between the models
were minor in some cases. 153

B.13 Performance of METL-G with 20M and 50M parameters (a) Across
different training set sizes, the 50M parameter model performed simi-
larly to the 20M parameter model on average, with the 50M parameter
model offering minor improvements for some datasets like GRB2-B but
also performing slightly worse for other datasets like Ube4b. (b) For
position, mutation, and regime extrapolation, the 50M parameter model
performed slightly better on average than the 20M parameter model.
For score extrapolation, the two models performed similarly on average. 154

xxiv

B.14 Performance of METL-G source models predicting Rosetta’s total
score. This figure shows the performance of 20M and 50M parameter
METL-G source models on predicting Rosetta’s total score for both in-
distribution and out-of-distribution PDBs. In-distribution PDBs are the
≈150 PDBs that were used as part of the METL-G pretraining data,
while out-of-distribution PDBs consist of the experimental dataset PDBs,
which were not used for METL-G pretraining. The 50M parameter
METL-G model overfits more than the 20M parameter model when
predicting Rosetta’s total score on in-distribution PDBs, and it generalizes
worse to out-of-distribution PDBs. 155

B.15 Pairwise correlations between GB1 DMS score and Rosetta scores.
Heatmap showing pairwise Spearman correlations between the GB1
experimental functional score (DMS Score) and Rosetta score terms.
Rosetta scores are color coded, with green representing all-atom REF15
scores, blue representing filter scores, orange representing centroid
score3 scores, and red representing InterfaceAnalyzer binding scores.
Correlations were computed using the GB1 DMS variants. 156

xxv

abstract

Understanding the relationship between protein sequence and function is nec-
essary to engineer novel proteins with applications in bioenergy, medicine, and
agriculture. However, the complexity of the protein sequence-to-function mapping,
compounded by the vast number of potential protein variants, poses a significant
challenge in the field of protein engineering. This dissertation presents two orig-
inal research studies describing advanced machine learning methods to address
these challenges. The core of the research lies in developing and refining machine
learning techniques to learn the protein sequence-function relationship from exper-
imental data, thereby facilitating the engineering of protein variants with desired
traits.

The first study describes a supervised deep learning framework to learn the
sequence–function mapping from deep mutational scanning data. We tested sev-
eral neural network architectures, including a graph convolutional network that
incorporates protein structure. Our supervised learning approach displays superior
performance over physics-based and unsupervised prediction methods. We find
that networks that capture nonlinear interactions and share parameters across se-
quence positions are important for learning the relationship between sequence and
function. This framework enables the design of proteins with enhanced properties,
as exemplified by the engineering of a protein G B1 domain (GB1) variant that
binds to immunoglobulin G with substantially higher affinity than wild-type GB1.

The second study introduces Mutational Effect Transfer Learning (METL), a
method for predicting protein function that bridges the gap between traditional
biophysics-based and machine learning approaches. We pretrain a transformer
encoder on millions of molecular simulations to capture the relationship between
protein sequence, structure, energetics, and stability. We then fine-tune the neural
network to harness these fundamental biophysical signals and apply them when
predicting protein functional scores from experimental assays. METL excels in
protein engineering tasks like generalizing from small training sets and position
extrapolation, although existing methods that train on evolutionary signals remain

xxvi

powerful for many types of experimental assays. We demonstrate METL’s ability
to design functional green fluorescent protein variants when trained on only 64
examples.

The original research presented in this dissertation contributes to the rapidly
evolving and dynamic field of computational methods for protein engineering.
It encompasses not only novel findings but also provides a comprehensive back-
ground and commentary on the broader scope of the field. The conclusion reflects
on my journey through graduate studies at the University of Wisconsin-Madison,
covering topics such as performing research in a rapidly advancing field and the
essence of conducting high-quality scientific work.

1

1 introduction

1.1 Motivation

Proteins are diverse biomolecules that are prevalent throughout nature and serve

many important functions in biology. Transport proteins like hemoglobin carry

oxygen within our bodies, enzyme proteins like amylase digest nutrients, and

hormone proteins like insulin regulate crucial physiological processes. Indeed,

proteins are vital to nearly every cellular process. Their importance and ubiquity

have earned them the informal title the workhorses of the cell.

While proteins have evolved over millions of years to perform their biological

roles, modern science has unlocked the ability to harness their potential for new

purposes. The field of protein engineering focuses on creating or modifying pro-

teins to fulfill new functions. Some of the most impactful achievements in protein

engineering have been in medicine. Protein-based therapeutics such as antibodies

(Carter and Rajpal, 2022) and cytokines (Deckers et al., 2023) have been engineered

to enhance developability and overall therapeutic efficacy, leading to better patient

health outcomes.

Outside of medicine, engineered enzymes, which are a specific type of protein,

are used in diverse applications. In laundry detergents, engineered enzymes can

efficiently break down stains; in food processing, they can enhance flavor; and in

organic synthesis, they can drive chemical reaction pipelines (Jemli et al., 2016).

These biocatalyst enzymes are engineered to enhance catalytic activity and stabil-

ity under adverse conditions, thereby improving efficiency and sustainability of

2

industrial processes (Alcántara et al., 2022).

Protein engineering enables us to harness the potential of proteins for human

benefit, but it is an inherently challenging task due to the vastness of protein se-

quence space. Every protein is composed of an amino acid sequence that determines

its three-dimensional structure and function. Assuming a sequence length of 300

amino acids and considering only the 20 standard amino acids commonly found

in nature, the number of potential sequences is a staggering 20300. To put that in

perspective, this number is larger than the number of atoms in the known universe,

which is estimated to be only 1082. Compounding this challenge is that the mapping

from protein sequence to function can be highly complex, shaped by thousands of

intricate molecular interactions, dynamic conformational ensembles, and nonlinear

relationships between biophysical properties.

The vastness and complexity of protein space presents a challenge for both

experimental and computational protein engineering methods. Experimentally, it

is not feasible to test the functional properties of all theoretical protein variants,

and it is hard to know how a particular variant will function without testing it.

Computational strategies can leverage multiple types of information, including

experimental data, to extract important functional insights that can aid in protein

engineering. They can make predictions about the effects of mutations or even

generate entirely new sequences to prioritize for experimental testing. However,

complex features and the nature of proteins, where minor sequence changes can

have large functional impacts, make it difficult to predict how changes in amino

acid sequence affect function.

3

Despite these challenges, recent breakthroughs in both experimental and com-

putational methodologies promise to bring a new era of advancement in protein

engineering (Bordin et al., 2023; Kouba et al., 2023). Novel high-throughput mutage-

nesis and screening techniques have enabled scientists to evaluate the function of up

to a million protein variants in a single experiment (Fowler and Fields, 2014). These

high-throughput methods provide rich information about how protein sequences

relate to function. Concurrently, the field of machine learning has made exponen-

tial strides over the last decade. Neural networks have demonstrated remarkable

success when applied to tasks in computer vision and natural language processing.

New types of data, ever increasing computational power, mature software libraries,

and advancements in neural network architecture and training techniques position

us to see the same success in protein engineering that we have seen in other fields.

In this dissertation, I detail my contributions toward the challenging goal of

understanding and computationally modeling protein sequence-function relation-

ships for protein engineering. My work coincides with a period of great interest

in protein engineering. The field has exploded in popularity and the landscape is

rapidly evolving with new methodologies. In the remainder of this introduction, I

provide the necessary biological and computational background to understand my

contributions. Further, I define the scope of my research, contextualizing it within

the broader field of computational methods for protein engineering, as the field

stands today.

4

1.2 Biological Background

Proteins

Proteins are diverse and complex biomolecules composed of amino acids. They

perform a range of fundamental molecular functions. These functions are often

highly specialized and can range from binding other molecules to providing struc-

tural support to cells. The mechanism by which a protein carries out its function is

determined by its unique amino acid sequence and resulting three-dimensional

structure.

Every protein is defined by a unique amino acid sequence. There are twenty

different amino acids commonly found in nature, often represented using 3-letter

or 1-letter character codes (Table 1.1). These twenty amino acids have their own

chemical and physical properties. For instance, an amino acid can be polar or

nonpolar, hydrophobic or hydrophilic, or small or large. Proteins vary in length

but can consist of hundreds to thousands of amino acids. Physical and chemical

interactions between amino acids cause proteins to fold spontaneously into their

three-dimensional structures.

The three-dimensional conformation of a protein is absolutely vital for its func-

tion. Even a minor sequence change, such as substituting one amino acid for a

different one, can cause a change in the protein’s structure and functional properties.

This change could be positive, negative, or neutral, depending on the specific muta-

tion and functional property of interest. For instance, an amino acid substitution

could improve a protein’s binding affinity to a particular binding partner, but it

5

Name 3-Char 1-Char Name 3-Char 1-Char
Alanine Ala A Leucine Leu L
Arginine Arg R Lysine Lys K
Asparagine Asn N Methionine Met M
Aspartic acid Asp D Phenylalanine Phe F
Cysteine Cys C Proline Pro P
Glutamic acid Glu E Serine Ser S
Glutamine Gln Q Threonine Thr T
Glycine Gly G Tryptophan Trp W
Histidine His H Tyrosine Tyr Y
Isoleucine Ile I Valine Val V

Table 1.1: Amino acids. The twenty common amino acids and their abbreviations.

could also make the protein less stable. Understanding the relationship between

protein sequence, structure, and function is fundamental to protein engineering.

The Sequence-Function Mapping

The sequence-function mapping (also known as the fitness landscape or sequence-

function space) refers to the mapping from a protein amino acid sequence to a

particular phenotype or functional property (Romero and Arnold, 2009). The

mapping can be viewed as a function f(x) = yp, where the input x is a protein

amino acid sequence and the output yp is a value describing the protein’s phenotype

or functional activity for a specific property p. The functional property could be

any protein property of interest, simple or complex, from evolutionary fitness to

enzymatic activity to binding affinity or beyond. The sequence-function mapping

forms a surface in high dimensional space, where peaks might represent high-

functioning sequences and valleys might represent low-functioning sequences

6

(Figure 1.1). The goal of protein engineering is to optimize over this sequence-

function surface to identify high functioning sequences.

Figure 1.1: A theoretical fitness landscape. The stars represent individual protein sequences
and are labeled according to their mutations from the wild-type (WT) sequence, where
“wild-type” refers to the original, non-mutated form of the protein found in nature. The label
consists of the WT amino acid, the sequence position where the amino acid substitution
occurs, and the replacement amino acid. The goal of protein engineering is to find peaks in
this landscape that represent high fitness sequences.

The mapping from sequence to function can be extremely complex. First, the

number of possible protein sequences is massive, making it difficult to map the

entire sequence-function landscape. The vast majority of protein sequences are non-

functional, although the space around a functioning sequence may contain a higher

concentration of functioning sequences. Single amino acid substitutions can have a

profound effect on function, meaning the fitness landscape is not always smooth,

even in regions containing functional sequences. Another complicating factor is

epistasis, a phenomenon where the effects of multiple mutations can combine to

have a nonlinear effect on function. In other words, a mutation that is beneficial on

its own might actually be harmful when combined with another. To further em-

7

phasize the context-dependence of mutations, the environment in which a protein

operates can also affect function. A mutation might have different effects based

on environmental factors like temperature and the presence of other molecules.

Moreover, proteins have multiple functions and molecular properties that may be

affected differently by the same mutation. These factors make it challenging to

model and predict how changes in amino acid sequence affect function.

Experimental Sequence-Function Data

Recent advances in DNA sequencing and high-throughput screening have trans-

formed the ability to experimentally characterize the functional attributes of protein

variants. Historically, assessing the function of even a single protein variant was a

labor-intensive process and could only occur on small scales. Modern experimental

methods referred to as deep mutational scanning (Fowler and Fields, 2014) have

enabled scientists to measure the functional properties of hundreds of thousands

of protein variants in a single experiment.

In a typical deep mutational scan, a base sequence undergoes mutagenesis,

which is often random or systematically designed to capture all single substitutions,

to generate a library of protein sequence variants. These variants usually differ

from the base sequence by a few amino acid substitutions. Following mutagenesis,

a sample of the generated library is sequenced using next-generation sequenc-

ing techniques, forming the pre-screening set. Subsequently, a high-throughput

functional assay is used to select the variants with a specific functional property,

creating a set of variants that is enriched for function. This set is sequenced and

8

forms the post-screening set. Finally, a ratio-based functional score is calculated

for each variant based on the number of sequencing reads in the pre-screening and

post-screening sets (Rubin et al., 2017).

In broader terms, deep mutational scanning data consists of large numbers of

protein sequence variants that each have an associated score that quantifies their

activity or fitness in a high-throughput function assay. The sequence variants are

typically derived from a single base sequence and differ from each other by a few

amino acid substitutions. The significance of the functional score depends on the

protein, the experimental parameters, and the biological assay. For example, the

high-throughput assay could measure specific properties such as the brightness of

a fluorescent protein (Sarkisyan et al., 2016), the binding affinity of an IgG-binding

protein (Olson et al., 2014), or the catalytic activity of an enzyme (Romero et al.,

2015).

Deep mutational scanning data can be extremely valuable, but there are notable

limitations. First and foremost, it is not feasible to test all possible protein variants.

Furthermore, the random mutagenesis used for many deep mutational scans means

it is hard to control exactly what variants are generated and tested, which can

lead to gaps in the experimental data. Many deep mutational scans focus on

single substitution variants only. This limitation could be significant in protein

engineering, where there is interest in how multiple mutations can combine to

achieve desired functional properties, especially in the context of epistatic effects,

or nonlinear interactions between mutations. Additionally, deep mutational scans

can be costly and difficult to perform.

9

A significant drawback in some deep mutational scans is dataset quality. Dataset

quality can impact our understanding of and attempts to model the sequence-

function mapping. Multiple factors can affect dataset quality, including the number

of sequencing reads for each variant, the resolution of the assay, and the nature of the

measured functional property (Gelman et al., 2021). Attempts are made to ensure

data quality by filtering out variants based on the number of sequencing reads,

performing multiple experimental and technical replicates, and computing scores

across multiple replicates. Ultimately, understanding experimental methodologies

and recognizing the potential for dataset noise is important for drawing meaningful

conclusions and modeling the sequence-function mapping.

Even in the era of deep mutational scanning, low-throughput experiments are

still commonly performed and provide valuable insights into protein function. They

enable scientists to test specific variants of interest whereas deep mutational scans

usually sample mutations randomly. Furthermore, it is not always possible to set

up a high-throughput experimental assay, and in these cases a low-throughput

experiment may be the only option for acquiring data about a particular phenotype.

Finally, a low-throughput assay could have higher resolution and reduced noise.

Whether sequence-function data comes from low throughput or high through-

put experiments, it represents a sample of the vast sequence-function space. The

data, although limited, can provide rich and valuable information about protein

variant function. Statistics and machine learning can leverage this information

to model and extract insights about the nature of the protein sequence-function

mapping.

10

1.3 Computational Background

Machine Learning

Broadly speaking, machine learning is a sub-field of computer science and statistics

focused on modeling and extracting meaningful insights from data. Computa-

tional approaches for protein engineering span a wide range of machine learning

techniques. This section touches on several important aspects of machine learning

relevant for understanding this dissertation.

Supervised and Unsupervised Learning

Machine learning models can be categorized by how they learn from data, and the

learning approaches are largely determined by the type of data available. Labeled

data consists of input-output pairs that explicitly inform the model about what the

output should be for a given input. For instance, experimental sequence-function

datasets are considered labeled datasets because every protein variant is labeled

with a functional score. Conversely, unlabeled data consists solely of inputs without

associated labels. Evolutionary data, described in more detail in Section 1.4, often

comes in the form of a collection of sequences known to be functional in nature.

These sequences do not have explicit labels, but the fact that they are all functional

in nature indicates there is an underlying signal that can be leveraged by machine

learning methods.

Typically, machine learning methods that learn input-output mappings from

labeled data are considered supervised machine learning methods. On the other

11

hand, machine learning methods that extract underlying patterns or representa-

tions from unlabeled data are considered unsupervised. There is a spectrum of

machine learning techniques ranging from supervised to unsupervised, includ-

ing approaches that employ semi-supervised and self-supervised learning. For

example, natural language models often learn from large collections of unlabeled

text. These methods generate labels from the data itself by performing tasks like

predicting the next word of a sentence. In this case, the input becomes the sentence

leading up to the next word, and the label becomes the next word. This type of

learning is referred to as self-supervised, and this approach is also used by protein

language models, described in Section 1.4.

Neural Networks

Neural networks are a type of machine learning model capable of learning complex,

nonlinear input-output mappings, extracting meaningful, higher-level features

from raw inputs, and generalizing from training data to new, unseen inputs (Ching

et al., 2018). Neural networks accept raw inputs in the form of vectors or matrices

representing text, images, or sequences. They transform the raw input through a

series of successive layers. Each layer performs some type of mathematical operation

on its input, such as multiplying the input by a set of learned weights, to produce

an output. The final layer of the neural network outputs a meaningful prediction,

perhaps representing a classification label for an image, or in our case, a functional

score prediction for a protein variant.

Neural networks learn iteratively from data by updating their weights in re-

12

sponse to an objective function. The objective functions defines what is considered a

desired or undesired output, and an optimizer calculates how to change the existing

weights to push the network output toward the desired output. Neural networks

are optimized using gradient-descent based algorithms such as stochastic gradient

descent and Adam (Kingma and Ba, 2017).

There are numerous neural network architectures, including fully connected

networks, convolutional networks (Alzubaidi et al., 2021), recurrent networks

(Lipton et al., 2015), and transformers (Vaswani et al., 2017). Different neural

network architectures confer different inductive biases that affect learned patterns.

In practice, this means that some network architectures may be better suited for

some types of data. For instance, convolutional networks work well with images,

and transformers have been shown to work well with text data. Research into

architectures is ongoing, and transformers have also been applied to computer

vision tasks (Han et al., 2023).

What kind of neural network architecture is best for protein sequences is still

an open question (Yang et al., 2023). Proteins, being three-dimensional molecules,

have different considerations than both images and text. Convolutional networks,

recurrent networks, and transformers are just some of the neural network architec-

tures that have been applied to modeling protein sequences. The original work in

Chapter 2 explores incorporating protein structure into graph convolutional neural

networks, and the original work in Chapter 3 implements a protein structure-based

relative position embedding for transformer models. Both of these are attempts to

optimize the neural network architecture in response to the biological context of

13

proteins.

Transfer learning

Transfer learning is broadly important in modern machine learning, and it is a

large part of the protein fitness prediction framework described in Chapter 3. The

concept behind transfer learning is to train a machine learning model on a set of

data from one domain and transfer the learned knowledge to a different but related

domain (Weiss et al., 2016; Zhuang et al., 2020). Transfer learning can be used to

improve performance of machine learning models when there is limited training

data for the target domain. The training data and inductive biases transferred from

the source domain enable models to generalize better in the target domain. In the

context of computational methods for protein engineering, experimental data can

be limited in size or have biases that make it difficult for machine learning models

to learn and generalize to new sequences. Transfer learning is one way to improve

the predictive generalization performance of protein fitness predictors.

1.4 Survey of the Current Landscape

The volume of protein data has exploded over the last decade with advances in

DNA sequencing, three-dimensional structure determination, and high-throughput

protein function screening. With these increasing data, statistics and machine

learning approaches have emerged as powerful methods to understand the complex

mapping from protein sequence to function.

14

Experimental Sequence-Function Data

Experimental sequence-function data, such as deep mutational scanning data (Sec-

tion 1.2), provides direct insights into how amino acid sequence changes affect

specific protein functional properties. This type of data can be extremely valuable

for protein engineering, especially when the biological assay aligns with the func-

tion that is being engineered. Experimental data is commonly used as training

data for supervised machine learning methods. Indeed, my work, described in this

dissertation, focuses specifically on creating machine learning models capable of ac-

curately predicting experimental functional scores, using this type of experimental

data as training data. Even protein fitness prediction methods that do not train on

experimental data, such as unsupervised or zero-shot protein function predictors,

often use experimental data to perform benchmarking and evaluation.

Deep mutational scanning has enabled scientists to generate more experimental

sequence-function data than ever before. As a result, at least two sequence-function

databases have come online during the course of my research: ProtaBank (Wang

et al., 2018) and MaveDB (Esposito et al., 2019). These databases contain thou-

sands of individual entries representing both high-throughput and low-throughput

sequence-function datasets. Additionally, for the task of predicting fitness of mu-

tated proteins, a curated collection of deep mutational scanning datasets was made

available under the name ProteinGym (Notin et al., 2022).

In the early stages of my research, I explored modeling deep mutational scanning

data as a classification problem using positive-unlabeled learning (Bekker and

Davis, 2020). Deep mutational scanning typically produces two sets of protein

15

sequence variants: the pre-selection and post-selection sets (Section 1.2). Depending

on the experimental parameters, the pre-selection set can be seen as containing

unlabeled sequences, while the post-selection set can be seen as containing positive

(functional) sequences. Indeed, others pursued this positive-unlabeled strategy

with success (Song et al., 2021).

However, the release of Enrich2 (Rubin et al., 2017), a software tool for com-

puting functional scores from raw sequencing read counts, provided a stronger

theoretical and practical basis for formulating the modeling problem as a regression

on functional scores. For the most part, the field has adopted the regression frame-

work as the primary modeling approach for deep mutational scanning data. Since

Enrich2, several other tools for computing functional scores from raw sequencing

read counts have become available, including DiMSum (Faure et al., 2020) and

mutscan (Soneson et al., 2023). It is common for researchers who publish deep

mutational scanning datasets to provide pre-computed functional scores.

Natural and Evolutionary Data

Natural protein sequences and protein structures provide a rich source of evolution-

ary information, which is often used for computational protein analysis. Databases

such as UniProt (The UniProt Consortium, 2023) and InterPro (Paysan-Lafosse

et al., 2023) catalog and organize known protein sequences. The number of pro-

tein sequences contained in UniProt has risen steadily over the last decade, and

the database currently contains greater than 550,000 curated entries. InterPro has

cataloged many of these sequences into over 20,000 protein families. Addition-

16

ally, the Protein Data Bank (Berman et al., 2000) provides a repository for protein

three-dimensional structures.

Unlike experimental sequence-function data, the types of information contained

in these sequence databases do not directly measure function using biological

assays. However, this sequence information still contains a strong signal about

what makes a protein functional, originating from natural selection and evolution.

Sequences that are conserved throughout evolution are likely to be important for

maintaining function. Statistical and machine learning methods can leverage this

underlying signal to make predictions about protein variant fitness.

Computational Methods for Protein Engineering

With the expansion of available protein data and the standardization of data repos-

itories, there has been a surge in the number of protein-related computational

methods. While some methods are designed specifically for protein engineering,

others are capable of performing a wider range of protein-related tasks. These

computational methods can be broadly categorized by the types of data they use

(evolutionary, experimental, biophysics, sequence, structure), the computational

approaches and models they employ (predictive, generative, machine learning,

statistics), and the way they prioritize variants for experimental characterization

(direct generation of functional proteins or a search over sequence space through

an optimization framework). It is important to note that many methods exhibit

significant overlap, combining multiple data types and modeling approaches. Thus,

the aforementioned categories mainly serve as a framework for understanding

17

related methods, rather than a way to definitively categorize each method.

Within protein engineering pipelines, computational methods play an essential

role in prioritizing variants for experimental characterization. Some computational

methods, such as generative methods, can directly output protein sequences or

structures that may have enhanced function. These methods can go as far as

outputting proteins that are not based on existing natural proteins, in a process

known as de novo protein design (Huang et al., 2016; Pan and Kortemme, 2021;

Ding et al., 2022; Watson et al., 2023).

However, many of the methods discussed in this section are predictive rather

than generative. Predictive methods can estimate the fitness of variants, but they

do not inherently prioritize them. In order to prioritize variants for experimental

characterization, these methods need to be paired with an optimization frame-

work or algorithm, such as simulated annealing. The combination of the prediction

method and optimization framework serves as a way to computationally explore the

sequence-function landscape and find high-functioning sequences. Optimization

for variant prioritization is an active research area (Brookes et al., 2019; Anger-

mueller et al., 2020; Fannjiang and Listgarten, 2020; Linder and Seelig, 2021).

Evolutionary Data Methods

An important category of computational methods for protein engineering is those

that utilize evolutionary information. The evolutionary record, in the form of

known sequences that occur in nature, contains a strong signal about what makes

a protein functional. These computational methods are designed to capture that

18

underlying signal. Such methods typically employ unsupervised or self-supervised

machine learning techniques, and they use evolutionary data in the form of either

multiple sequence alignments (MSAs) or raw, unaligned sequences.

Multiple sequence alignments consist of homologous sequences that are aligned

to account for insertions, deletions, and amino acid substitutions that can occur

over the course of evolution. They usually cover a specific protein family or closely

related proteins. Multiple sequence alignments make it evident what sequence

positions are conserved throughout evolution and thus important for the function

of a given protein family. Methods that utilize MSAs have demonstrated excellent

performance when evaluated as fitness predictors on experimental data, ranging

from statistical co-evolutionary models like EVMutation (Hopf et al., 2017), to

neural network-based models like DeepSequence (Riesselman et al., 2018) and

EVE (Frazer et al., 2021), to unique methodologies such as GEMME (Laine et al.,

2019), which bases its predictions on evolutionary conservation estimated from

Joint Evolutionary Trees (Engelen et al., 2009).

One drawback of MSA-based methods is that it is not possible to align sequences

from diverse protein families because the sequences are too divergent. Thus, an

MSA must be created for every target protein family. However, some protein

families do not have informative alignments due to a small number of existing

natural sequences in the family. Raw, unaligned sequences still contain the same

underlying evolutionary signal as MSAs, but they can include diverse sequences

and encapsulate the entirety of known sequences.

Protein language models, inspired by natural language models, have emerged as

19

powerful methods to capture the diversity of known protein sequences (Alley et al.,

2019; Rives et al., 2021; Bepler and Berger, 2021; Elnaggar et al., 2022; Yang et al.,

2023; Elnaggar et al., 2023; Chandra et al., 2023). Trained on large, diverse protein

sequence databases like UniProt, these models typically employ self-supervised

training techniques like masked token prediction or next token prediction. Protein

language models utilize a range of different neural network architectures including

sequence convolutional networks, recurrent neural networks, and transformers.

Protein language models learn a rich representation of protein sequences that

captures underlying signals in the evolutionary data, including protein stability

and fitness.

Protein language models, and unsupervised evolutionary methods in general,

can make fitness predictions for protein variants using zero-shot approaches. These

scoring approaches often use log-odds ratios or log-likelihood scores with the MSA

or wild-type sequence providing necessary background context to score a given

variant. Protein language models can also serve as foundation models that can be

fine-tuned on experimental data. In addition to predicting protein fitness, protein

language models can be useful across a range of other protein analysis tasks, such

as protein structure prediction (Lin et al., 2023).

Protein language models are undergoing rapid improvement with changes in

data, architecture, and model capacity. Some protein language models can utilize

MSAs in additional to raw, unaligned sequences (Rao et al., 2021; Notin et al., 2022).

Parallel to the trend in natural language processing, there has been an increase in

capacity of protein language models (Hesslow et al., 2022), with larger models

20

offering some improvement. However, it remains to be seen whether larger models

will bring the same kinds of revolutionary performance to the protein space that

they brought to the natural language space (Chen et al., 2023).

Physics-Based Methods

Proteins are three-dimensional molecules that perform their functions through

physical and biochemical interactions. Thus, protein structure and physical model-

ing provide an informative signal and foundation for computational methods to

understand protein function. Rosetta stands out as a comprehensive, physics-based

molecular modeling software suite that is capable of performing a range of tasks,

including protein structure prediction, protein docking, and protein stability predic-

tion (Alford et al., 2017). It uses biophysical energy functions and is parameterized

in part with experimental protein structures to model how amino acids interact on

a molecular scale. In addition to Rosetta, another noteworthy physics-informed

tool is FoldX, although FoldX is more narrowly focused on predicting protein sta-

bility upon mutation (Schymkowitz et al., 2005). Both Rosetta and FoldX are more

correlated with deep mutational scanning scores than other stability predictors

(Gerasimavicius et al., 2023).

There has been increased interest in how to effectively use physics information

to help prioritize variants for protein engineering. Rosetta has internal optimiza-

tion tools to explore the energy landscape and design stable protein structures,

including de novo protein design. In addition to Rosetta’s internal optimization

tools, Rosetta’s calculated energy terms and stability predictions can be used as

21

features in supervised learning frameworks (Wang et al., 2022a; Harmalkar et al.,

2023). The original research described in Chapter 3 focuses on using Rosetta molec-

ular simulations to pretrain neural networks as part of a larger transfer learning

framework with experimental data.

Experimental Data Methods

Experimental data offers direct insights into how amino acid sequence changes af-

fect specific protein functional properties. Thus, this type of data provides immense

value for computational protein engineering methods. While some computational

methods use experimental data alone, others use it in combination with evolution-

ary or physics-based data.

Recent research has focused on understanding the nuances and specifics of

modeling deep mutational scanning data. Neural networks have been trained as a

complementary analytics tool as part of a deep mutational scan to help understand

the fitness landscape of a green fluorescent protein (Sarkisyan et al., 2016). Another

study explored a wider range of data encodings and machine learning models,

including support vector machines, random forests, and convolutional neural net-

works (Xu et al., 2020). They found that sequence convolutional networks with an

amino acid physicochemical property encoding (Kawashima et al., 2008) performed

stronger than other tested methods. Other studies have gone deeper into modeling

specifics of deep mutational scanning data, considering factors such as epistatic

interactions and epistatic regularization (Otwinowski et al., 2018; Aghazadeh et al.,

2021; Tareen et al., 2022). The original work in Chapter 2 explores how different

22

types of neural networks, including graph convolutional neural networks that in-

corporate protein structure information, can be applied to model deep mutational

scanning data.

Experimental data can be limited in size, coming from low-throughput instead

of high-throughput experiments. It can also be biased in terms of the sampled

sequence space, potentially only containing examples of single amino acid substitu-

tions or missing examples of mutations in certain positions. Thus, many computa-

tional approaches combine experimental data with evolutionary or physics-based

information to provide additional signal or inductive biases to help improve pre-

dictive generalization performance.

A straightforward yet surprisingly effective approach has been to combine a one

hot sequence encoding and evolutionary features in a linear regression supervised

framework (Hsu et al., 2022). However, other methods have taken more integrated

approaches to combining different types of data, including evolutionary data and

protein structure (Luo et al., 2021; Li et al., 2023). Furthermore, experimental data

can be used to fine-tune protein language models to predict experimental functional

scores. The protein language models provide an inductive bias that improves

predictive performance over training a model on only experimental data from

scratch. One study specifically examined finetuning a protein language model on

small amounts of labeled data to perform low-N protein engineering (Biswas et al.,

2021). The original work described in Chapter 3 explores integrating biophysical

information in a transfer learning framework with experimental data.

23

Benchmarking

As research into computational methods for protein engineering has become more

established, the need for standardized benchmarking suites has increased. Other

protein-related fields such as structure prediction have standardized benchmarks

and competitions like CASP (Kryshtafovych et al., 2019). There have been several

attempts to set up benchmarking suites for protein language models and protein

engineering methods, including TAPE (Rao et al., 2019), FLIP (Dallago et al., 2022),

FLOP (Groth et al., 2023), and ProteinGym (Notin et al., 2022). However, these

only cover specific application scenarios, and so far none have emerged as the

definitive standard for evaluating computational protein engineering methods. In

my research, I have combined relevant evaluations from these benchmarks and

others.

Beyond Protein Engineering

Computational protein research extends beyond protein engineering, encompassing

diverse objectives and methodologies with applications in various areas of biology

and medicine. Some of these research areas overlap with computational protein

engineering methods. This section examines three sub-fields of computational

protein research with relevance to protein engineering: predicting protein three-

dimensional structures, predicting whether a given sequence variant is pathogenic

in humans, and protein function annotation with Gene Ontology prediction.

Accurately predicting protein structures has long been an important task in

protein science. The Folding@Home project, which has garnered substantial at-

24

tention in popular culture, has been ongoing for over 20 years (Voelz et al., 2023).

Structure prediction has traditionally relied on homology modeling from previ-

ously determined structures and physics-based energy minimization techniques

(Kuhlman and Bradley, 2019). More recently, there has been a breakthrough in

protein structure prediction with deep learning and the introduction of AlphaFold

2 (Jumper et al., 2021). Protein language models, which can be used for protein

fitness prediction, have also been shown to learn the necessary underlying infor-

mation needed to predict protein structure when incorporated into a structure

prediction framework (Lin et al., 2023). Accurate structure prediction is relevant

not only for general understanding of proteins, but also protein engineering efforts.

For instance, AlphaFold structures were used for some of the molecular simulations

described in Chapter 3.

Another relevant area of computational protein research concerns variant effect

predictors (VEPs), which predict whether a given amino acid substitution might be

pathogenic or harmful to humans (Adzhubei et al., 2010; Hecht et al., 2015; Vaser

et al., 2016; Aghazadeh et al., 2021; Livesey and Marsh, 2022). On the surface, VEPs

have many similarities to protein fitness predictors used for protein engineering.

VEPs employ a range of models including neural networks that take amino acid

sequences as inputs, and they often use evolutionary or deep mutational scanning

data for training or evaluation. Indeed, some protein fitness prediction methods

used for protein engineering have also been evaluated as VEPs (Hopf et al., 2017;

Livesey and Marsh, 2023).

However, there are also several key differences between VEPs and protein fitness

25

predictors used in protein engineering. Unlike fitness predictors, some VEPs train

on specialized databases containing examples of harmful variants. VEPs typically

output qualitative predictions, classifying whether a given mutation is pathogenic,

instead of quantitative estimates of protein molecular function. Additionally, many

VEPs focus on predicting single amino acid substitutions instead of modeling

multiple mutations with epistatic interactions. For the most part, these differences

make VEPs specialized enough as to not be directly comparable to protein fitness

prediction methods used for protein engineering.

Another key area of related research, and the final one discussed in this disser-

tation, pertains to predicting the biological and cellular functions of proteins. The

Gene Ontology (GO) knowledgebase catalogues biological, cellular, and molecular

functions of proteins (Ashburner et al., 2000; The Gene Ontology Consortium et al.,

2023). Predicting GO terms from this database as a way to annotate proteins with

their biological function is an active sub-field of computational protein research

(Zhao et al., 2020; Vu and Jung, 2021). While predicting GO terms for unknown

natural proteins is quite different than predicting the fitness of protein variants,

there is some overlap in the underlying methodologies for these two objectives.

For instance, both types of methods use protein sequence features and machine

learning. Additionally, GO term prediction benefits from informative protein repre-

sentations like those from protein language models, which are also used for protein

fitness prediction.

26

1.5 Scope and Dissertation Overview

My contributions toward machine learning methods for protein engineering stand

as part of the ongoing innovation and expanding potential of the field. While this

introduction has touched on a wide range of data types and methods, my research

specifically focuses on deep learning methods for predicting protein variant fitness.

In particular, I examine neural networks to model the relationship between protein

sequence and function, as captured by experimental data like deep mutational

scanning data.

Within this problem scope, I explore a number of important open questions in

the field, which include, but are not limited to:

• What neural network architectures work best?

• What types of signals and training data are helpful?

• How do we incorporate biological context like protein structure?

• How does the quality of data affect the learning process?

• How can we achieve strong generalization when experimental data is limited?

• How do we incorporate biophysical knowledge into models?

This dissertation presents original research and perspectives on these questions

and others. The remainder of this dissertation is organized as follows. Chap-

ters 2 and 3 describe my original research in computational methods for protein

engineering. Chapter 2 presents an exploration of neural network architectures

27

including fully connected networks, sequence convolutional networks, and graph

convolutional networks that incorporate protein structure information. This chapter

includes comparisons to other types of methods such as unsupervised evolutionary

and physics-based methods. Furthermore, I detail experiments that evaluate the

effects of data quality on the learning process and investigate the underlying repre-

sentations learned by the models. Chapter 3 introduces Mutational Effect Transfer

Learning (METL), a method for predicting protein variant fitness that leverages

transfer learning from molecular simulations. I present a detailed evaluation of

METL on challenging protein engineering-related tasks and a comprehensive look

at how METL compares to evolutionary-based methods. Finally, Chapter 4 provides

a summary of my original work and contribution to the field, and a reflection on

the years of research leading to this dissertation.

28

2 neural nets for deep mutational scanning data

The work presented in this chapter was performed in collaboration with Sarah A.

Fahlberg, Pete Heinzelman, Philip A. Romero, and Anthony Gitter (Gelman et al.,

2021):

Gelman, Sam, Sarah A. Fahlberg, Pete Heinzelman, Philip A. Romero,
and Anthony Gitter. 2021. Neural networks to learn protein sequence-
function relationships from deep mutational scanning data. Proceedings
of the National Academy of Sciences 118(48):e2104878118. DOI: 10.1073/
pnas.2104878118.

2.1 Introduction

Understanding the mapping from protein sequence to function is important for

describing natural evolutionary processes, diagnosing genetic disease, and design-

ing new proteins with useful properties. This mapping is shaped by thousands of

intricate molecular interactions, dynamic conformational ensembles, and nonlinear

relationships between biophysical properties. These highly complex features make

it challenging to model and predict how changes in amino acid sequence affect

function.

The volume of protein data has exploded over the last decade with advances in

DNA sequencing, three-dimensional structure determination, and high-throughput

screening. With these increasing data, statistics and machine learning approaches

have emerged as powerful methods to understand the complex mapping from

protein sequence to function. Unsupervised learning methods such as EVmutation

https://doi.org/10.1073/pnas.2104878118
10.1073/pnas.2104878118
https://doi.org/10.1073/pnas.2104878118
10.1073/pnas.2104878118

29

(Hopf et al., 2017) and DeepSequence (Riesselman et al., 2018) are trained on large

alignments of evolutionarily related protein sequences. These methods can model

a protein family’s native function, but they are not capable of predicting specific

protein properties that were not subject to long-term evolutionary selection. In

contrast, supervised methods learn the mapping to a specific protein property

directly from sequence-function examples. Many prior supervised learning ap-

proaches have limitations, such as the inability to capture nonlinear interactions

(Fox et al., 2007; Song et al., 2021), poor scalability to large datasets (Romero et al.,

2013), making predictions only for single-mutation variants (Gray et al., 2018), or

a lack of available code (Xu et al., 2020). Other learning methods leverage mul-

tiple sequence alignments and databases of annotated genetic variants to make

qualitative predictions about a mutation’s effect on organismal fitness or disease,

rather than making quantitative predictions of molecular phenotype (Vaser et al.,

2016; Adzhubei et al., 2010; Hecht et al., 2015). There is a current need for general,

easy to use supervised learning methods that can leverage large sequence-function

datasets to predict specific molecular phenotypes with the high accuracy required

for protein design. We address this need with a usable software framework that

can be readily adopted by others for new proteins (Wang and Gamazon, 2022).

We present a deep learning framework to learn protein sequence-function re-

lationships from large-scale data generated by deep mutational scanning experi-

ments. We train supervised neural networks to learn the mapping from sequence

to function. These trained networks can then generalize to predict the functions

of previously unseen sequences. We examine network architectures with different

30

representational capabilities including linear regression, nonlinear fully connected

networks, and convolutional networks that share parameters. Our supervised mod-

eling approach displays strong predictive accuracy on five diverse deep mutational

scanning datasets and compares favorably with state-of-the-art physics-based and

unsupervised prediction methods. Across the different architectures tested, we

find that networks that capture nonlinear interactions and share information across

sequence positions display the greatest predictive performance. We explore what

our neural network models have learned about proteins and how they comprehend

the sequence-function mapping. The convolutional neural networks learn a protein

sequence representation that organizes sequences according to their structural

and functional differences. In addition, the importance of input sequence features

displays a strong correspondence to the protein’s three-dimensional structure and

known key residues. Finally, we used an ensemble of the supervised learning mod-

els to design five protein G B1 domain (GB1) sequences with varying distances from

the wild-type. We experimentally characterized these sequences and found the

top design binds to immunoglobulin G (IgG) with at least an order of magnitude

higher affinity than wild-type GB1.

31

2.2 Results

A Deep Learning Framework to Model the Sequence–Function

Mapping

Neural networks are capable of learning complex, nonlinear input-output mappings;

extracting meaningful, higher-level features from raw inputs; and generalizing

from training data to new, unseen inputs (Ching et al., 2018). We develop a deep

learning framework to learn from large-scale sequence-function data generated by

deep mutational scanning. Deep mutational scanning data consist of thousands

to millions of protein sequence variants that each have an associated score that

quantifies their activity or fitness in a high-throughput function assay (Fowler

and Fields, 2014). We encode the protein sequences with a featurization that

captures the identity and physicochemical properties of each amino acid at each

position. Our approach encodes the entire protein sequence and thus can represent

multimutation variants. We train a neural network to map the encoded sequences

to their associated functional scores. After it is trained, the network generalizes

and can predict functional scores for new, unseen protein variants (Fig. 2.1a).

We test four supervised learning models to explore how different internal rep-

resentations influence the ability to learn the mapping from protein sequence to

function: linear regression and fully connected, sequence convolutional, and graph

convolutional neural networks (Fig. 2.1b). Linear regression serves as a simple base-

line because it cannot capture dependencies between sites, and thus, all residues

make additive contributions to the predicted fitness. Fully connected networks

32

Figure 2.1: Overview of our supervised learning framework. (a) We use sequence-
function data to train a neural network that can predict the functional score of protein
variants. The sequence-based input captures physicochemical and biochemical properties
of amino acids and supports multiple mutations per variant. The trained network can
predict functional scores for previously uncharacterized variants. (b) We tested linear
regression and three types of neural network architectures: fully connected, sequence
convolutional, and graph convolutional. (c) Scatterplots showing performance of trained
networks on the Pab1 dataset. (d) Process of generating the protein structure graph for
Pab1. We create the protein structure graph by computing a residue distance matrix from
the protein’s three-dimensional structure, thresholding the distances, and converting the
resulting contact map to an undirected graph. The structure graph is the core part of the
graph convolutional neural network.

incorporate multiple hidden layers and nonlinear activation functions, enabling

them to learn complex nonlinearities in the sequence to function mapping. In

contrast to linear regression, fully connected networks are capable of modeling

how combinations of residues jointly affect function beyond simple additive effects.

These nonadditive effects are known as mutational epistasis (Starr and Thornton,

2016; Olson et al., 2014). Neither linear regression nor fully connected networks are

33

able to learn meaningful weights for amino acid substitutions that are not directly

observed in the training set.

Convolutional neural networks have parameter sharing architectures that enable

them to learn higher-level features that generalize across different sequence posi-

tions. They learn convolutional filters that identify patterns across different parts

of the input. For example, a filter may learn to recognize the alternating pattern

of polar and nonpolar amino acids commonly observed in β-strands. Applying

this filter would enable the network to assess β-strand propensity across the entire

input sequence and relate this higher-level information to the observed protein

function. Importantly, the filter parameters are shared across all sequence positions,

enabling convolutional networks to make meaningful predictions for mutations

that were not directly observed during training. We develop a sequence-based

convolutional network that integrates local sequence information by applying fil-

ters using a sliding window across the amino acid sequence. We also develop a

structure-based graph convolutional network that integrates three-dimensional

structural information and may allow the network to learn filters that correspond

to structural motifs. The graph convolutional network applies filters to neighboring

nodes in a graph representation of the protein’s structure. The protein structure

graph consists of a node for each residue and an edge between nodes if the residues

are within a specified distance in three-dimensional space (Fig. 2.1d).

34

Evaluating Models Learned from Deep Mutational Scanning Data

We evaluated the predictive performance of the different network architectures on

five diverse deep mutational scanning datasets representing proteins of varying

sizes, folds, and functions: Aequorea victoria green fluorescent protein (avGFP),

β-glucosidase (Bgl3), GB1, poly(A)-binding protein (Pab1), and ubiquitination

factor E4B (Ube4b) (Table 2.1 and Fig. 2.2a). These datasets range in size from

∼25,000 to ∼500,000 sequence-score examples. We randomly split each dataset

into training, tuning, and testing sets to optimize hyperparameters and evaluate

predictive performance on data that were not seen during training. The learned

models displayed excellent test set predictions for most datasets, with Pearson’s

correlation coefficients ranging from 0.55 to 0.98 (Fig. 2.2b). The trends are generally

similar using Spearman’s correlation coefficient (Fig. A.1), although the differences

between linear regression and the neural networks are smaller.

Description Organism Molecular function Selection Length Variants Ref
avGFP Green fluorescent protein A. victoria Fluorescence Brightness 237 54,024 (Sarkisyan et al., 2016)
Bgl3 Beta glucosidase Streptococcus sp. Hydrolysis of β-glucosidic linkages Enzymatic activity 501 26,653 (Romero et al., 2015)
GB1 IgG-binding domain of protein G Streptococcus sp. IgG-binding IgG-Fc binding 56 536,084 (Olson et al., 2014)
Pab1 RRM domain of Pab1 S. cerevisiae poly(A)-binding mRNA binding 75 40,852 (Melamed et al., 2013)
Ube4b U-box domain of E4B M. musculus Ubiquitin activating enzyme activity Ubiquitin ligase activity 102 98,297 (Starita et al., 2013)

Table 2.1: Deep mutational scanning datasets. We evaluated the models on deep muta-
tional scanning datasets representing proteins of varying sizes, folds, and functions.

For comparison, we also evaluated the predictive performance of established

physics-based and unsupervised learning methods Rosetta (Alford et al., 2017),

EVmutation (Hopf et al., 2017), and DeepSequence (Riesselman et al., 2018), which

are not trained using the deep mutational scanning data. Our supervised learning

approach achieves superior performance to these other methods on all five protein

datasets, demonstrating the benefit of training directly on sequence-function data

35

(Fig. 2.2b). This result is unsurprising because supervised models are tailored

to the specific protein property and sequence distribution in the dataset. Rosetta

predictions consider the energetics of the protein structure and therefore do not

capture the more specific aspects of protein function. Unsupervised methods such

as EVmutation and DeepSequence are trained on natural sequences and thus only

capture aspects of protein function directly related to natural evolution. Despite

their lower performance, physics-based and unsupervised methods have the benefit

of not requiring large-scale sequence-function data, which are often difficult and

expensive to acquire.

The different supervised models displayed notable trends in predictive perfor-

mance across the datasets. The nonlinear models outperformed linear regression,

especially on variants with low scores (Fig. A.2), high epistasis (Fig. A.3), and in

the case of avGFP, larger numbers of mutations (Fig. A.4). The three nonlinear

models performed similarly when trained and evaluated on the full training and

testing sets. However, the convolutional networks achieved a better mean squared

error when evaluating single-mutation variants in Pab1 and GB1 (Fig. A.4). For

most proteins, the convolutional networks also had superior performance when

trained on smaller training sets (Fig. 2.2c).

The quantitative evaluations described thus far involve test set variants that have

similar characteristics to the training data. We also tested the ability of the models

to extrapolate to more challenging test sets. In mutational extrapolation, the model

makes predictions for variants containing mutations that were not seen during

training. The model must generalize based on mutations that may occur in the

36

same or other positions. The convolutional networks achieved strong performance

for one dataset (r > 0.9), moderate performance for two additional datasets (r

> 0.6), and outperformed linear regression and fully connected networks across

all datasets (Fig. 2.2d). In positional extrapolation, the model makes predictions

for variants containing mutations in positions that were never modified in the

training data. The performance of all models is drastically reduced (Fig. A.5),

highlighting the difficulty of this task (Mater et al., 2020). In theory, the parameter

sharing inherent to convolutional networks allows them to generalize the effects of

mutations across sequence positions. This capability may explain the convolutional

networks’ superior performance with reduced training set sizes and mutational

extrapolation. However, it is still difficult for the convolutional networks to perform

well when there are no training examples of mutations in a particular position, such

as in positional extrapolation.

The sequence convolutional and graph convolutional networks displayed similar

performance across all evaluation metrics, despite the inclusion of three-dimensional

protein structure information in the graph topology. To assess the impact of in-

tegrating protein structure in the neural network architecture, we created graph

convolutional networks with misspecified baseline graphs that were unrelated

to the protein structure. These baseline graphs include shuffled, disconnected,

sequential, and complete graph structures (Fig. A.6). We found that networks

trained using these misspecified baseline graphs had accuracy similar to networks

trained with the actual protein structure graph, indicating that protein structure

information is contributing little to the model’s performance (Fig. A.7). We also

37

trained the convolutional networks with and without a final fully connected layer

and found that this fully connected layer was more important than a correctly

specified graph structure. In almost all cases, this final fully connected layer helps

overcome the misspecified graph structure (Fig. A.7). Overall, these results suggest

that the specific convolutional window is not as critical as sharing parameters across

different sequence positions and integrating information with a fully connected

layer.

The goal of protein engineering is to identify optimized proteins, and models

can facilitate this process by predicting high-activity sequences from an untested

pool of sequences. Pearson’s correlation captures a model’s performance across all

variants, but it does not provide information regarding a model’s ability to retrieve

and rank high-scoring variants. We evaluated each model’s ability to predict the

highest-scoring variants within a given experimental testing budget (Fig. 2.2e).

We calculated recall by asking each model to identify the top N variants from the

test set, where N is the budget, and evaluating what fraction of the true top 100

variants was covered in this predicted set. The supervised models consistently

achieve higher recall than Rosetta and the unsupervised methods, although the

differences are small for Pab1 and Bgl3. In practice, the budget depends on the

experimental costs of synthesizing and evaluating variants of the given protein. For

GB1, a feasible budget may be 100 variants, and the supervised models can recall

over 60% of the top 100 sequences with that budget.

Another important performance metric for protein engineering is the ability

to prioritize variants that have greater activity than the wild-type protein. We

38

calculated the mean and maximum scores of the top N predicted test set variants

ranked by each model (Figs. A.8 and A.9). We find that the variants prioritized by

the supervised models have greater functional scores than the wild type on average,

even when considering variants ranked beyond the top thousand sequences for

some datasets. In contrast, Rosetta and the unsupervised models generally prioritize

variants with mean scores worse than the wild type. The maximum score of the

prioritized variants is also important because it represents the best variant suggested

by the model. We find that nearly all models are able to prioritize variants with

a maximum score greater than the wild type. The relative performance of each

model is dependent on the dataset. Notably, the unsupervised methods perform

very well on Bgl3, with EVmutation identifying the top variant with a budget of 20.

Meanwhile, the supervised methods perform very well on Ube4b, prioritizing a

variant with the true maximum score with a budget as small as five variants.

39

Figure 2.2: Evaluation of neural networks and comparison with unsupervised methods.
(a) Three-dimensional protein structures. (b) Pearson’s correlation coefficient between true
and predicted scores for Rosetta, EVmutation, DeepSequence, linear regression (LR), fully
connected network (FC), sequence convolutional network (CNN), and graph convolutional
network (GCN). EVmutation (I) refers to the independent formulation of the model that
does not include pairwise interactions. EVmutation (E) refers to the epistatic formulation of
the model that does include pairwise interactions. Each point corresponds to one of seven
random train-tune-test splits. (c) Correlation performance of supervised models trained
with reduced training set sizes. (d) Model performance when making predictions for
variants containing mutations that were not seen during training (mutational extrapolation).
Each point corresponds to one of six replicates, and the red vertical lines denote the medians.
(e) The fraction of the true 100 best-scoring variants identified by each model’s ranking of
variants with the given budget. The random baseline is shown with the mean and a 95%
CI.

40

Role of Data Quality in Learning Accurate Sequence–Function

Models

The performance of the supervised models varied substantially across the five

protein datasets. For example, the Pearson correlation for the Bgl3 models was

∼0.4 lower than the GB1 models. Although it is possible some proteins and protein

families are intrinsically more difficult to model, practical considerations, such

as the size and quality of the deep mutational scanning dataset, could also affect

protein-specific performance. Deep mutational scanning experiments use a high-

throughput assay to screen an initial gene library and isolate variants with a desired

functional property. The initial library and the isolated variants are sequenced,

and a fitness score is computed for each variant based on the frequency of reads in

both sets. The quality of the calculated fitness scores depends on the sensitivity

and specificity of the high-throughput assay, the number of times each variant was

characterized in the high-throughput assay, and the number of DNA sequencing

reads per variant. If any one of these factors is too low, the resulting fitness scores

will not reflect the true fitness values of the characterized proteins, which will make

it more difficult for a model to learn the underlying sequence to function mapping.

We assessed how experimental factors influence the success of supervised learn-

ing by resampling the full GB1 dataset to generate simulated datasets with varying

protein library sizes and numbers of DNA sequencing reads. The library size is

the number of unique variants screened in the deep mutational scan. The GB1

dataset is ideal for this analysis because it contains most of the possible single

and double mutants and has a large number of sequencing reads per variant. We

41

trained sequence convolutional models on each simulated dataset and tested each

network’s predictions on a “true”, non-resampled test set (Fig. 2.3). Models trained

on simulated datasets with small library sizes performed poorly because there

were not sufficient examples to learn the sequence-function mapping. This result is

expected and is in line with the performance of models trained on reduced training

set sizes on the original GB1 dataset (Fig. 2.2c). Interestingly, we also found that

datasets with large library sizes can perform poorly if there are not sufficient DNA

sequencing reads to reliably estimate the frequency of each variant. This highlights

a trade-off between the number of sequence-function examples in a dataset and

the quality of its fitness scores. Given a fixed sequencing budget, there exists an

optimal intermediate library size that balances these two competing factors. The

Bgl3 dataset’s poor performance may be the result of having too many unique

variants without sufficient sequencing coverage, resulting in a low number of reads

per variant and therefore unreliable fitness scores. Future deep mutational scanning

libraries could be designed to maximize their size and diversity while ensuring that

each variant will have sufficient reads within sequencing throughput constraints.

42

Figure 2.3: Trade-off between library size and number of sequencing reads. Performance
of sequence convolutional models trained on GB1 datasets that have been resampled to
simulate different combinations of protein library size and number of sequencing reads in
the deep mutational scan. An “X” signifies that the combination of library size and number
of reads produced a dataset with fewer than 25 variants and was, therefore, excluded
from the experiment. Having a large library size can be detrimental to supervised model
performance if there are not enough reads to calculate reliable functional scores.

Learned Models Provide Insight into Protein Structure and

Mechanism

Our neural networks transform the original amino acid features through multiple

layers to map to an output fitness value. Each successive layer of the network con-

structs new latent representations of the sequences that capture important aspects

of protein function. We can visualize the relationships between sequences in these

latent spaces to reveal how the networks learn and comprehend protein function.

We used Uniform Manifold Approximation and Projection (UMAP) (McInnes et al.,

2020) to visualize test set sequences in the latent space at the last layer of the GB1

sequence convolutional network (Fig. 2.4a). The latent space organizes the test

set sequences based on their functional score, demonstrating that the network’s

43

internal representation, which was learned to predict function of the training set

examples, also generalizes to capture the sequence-function relationship of the

new sequences. The latent space features three prominent clusters of low-scoring

variants that may correspond to different mechanisms of disrupting GB1 function.

Two clusters, referred to as “G1” and “G2”, contain variants with mutations in core

residues near the protein’s N and C termini, respectively (Fig. A.10). Mutations

at these residues may disrupt the protein’s structural stability and thus decrease

the activity measured in the deep mutational scanning experiment (Olson et al.,

2014). Residue cluster “G3” contains variants with mutations at the IgG binding

interface, and these likely decrease activity by disrupting key binding interactions.

This clustering of variants based on different molecular mechanisms suggests the

network is learning biologically meaningful aspects of protein function.

We can also use the neural network models to understand which sequence

positions have the greatest influence on protein function. We computed integrated

gradients attributions (Sundararajan et al., 2017) for all training set variants in

Pab1 and mapped these values onto the three-dimensional structure (Fig. 2.4b).

Pab1’s sequence positions display a range of attributions spanning from negative

to positive, where a negative attribution indicates that mutations at that position

decrease the protein’s activity. Residues at the RNA binding interface tend to display

negative attributions, with the key interface residue N127 having the largest negative

attribution. The original deep mutational scanning study found that residue N127

cannot be replaced with any other amino acid without significantly decreasing

Pab1 binding activity (Melamed et al., 2013). Position D151 has one of the largest

44

positive attributions, which is consistent with the observation that aspartic acid (D)

is uncommon at position 151 in naturally occurring Pab1 sequences (Melamed et al.,

2013). The sequence convolutional network is able to learn biologically relevant

information directly from raw sequence-function data, without the need to specify

detailed molecular mechanisms.

Finally, we used the Pab1 sequence convolutional network to make predictions

for all possible single-mutation variants (Fig. 2.4c). The resulting heat map high-

lights regions of the Pab1 sequence that are intolerant to mutations and shows

that mutations to proline are deleterious across most sequence positions. It also

demonstrates the network’s ability to predict scores for amino acids that were not

directly observed in the dataset. The original deep mutational scan characterized

1,244 single-mutation variants, yet the model can make predictions for all 1,500

possible single-mutation variants. For example, mutation F170P was not experi-

mentally observed, but the model predicts it will be deleterious because proline

substitutions at other positions are often highly deleterious. This generalization to

amino acid substitutions not observed in the data is only possible with models that

share parameters across sequence positions.

45

Figure 2.4: Neural network interpretation. (a) A UMAP projection of the latent space
of the GB1 sequence convolutional network (CNN), as captured at the last internal layer
of the network. In this latent space, similar variants are grouped together based on the
transformation applied by the network to predict the functional score. Variants are colored
by their true functional score, where red represents high-scoring variants and blue repre-
sents low-scoring variants. The clusters marked G1 and G2 correspond to variants with
mutations at core residues near the start and end of the sequence, respectively. Cluster G3
corresponds to variants with mutations at surface interface residues. (b) Integrated gradi-
ents feature importance values for the Pab1 CNN, aggregated at each sequence position
and superimposed on the protein’s three-dimensional structure. Blue represents positions
with negative attributions, meaning mutations in those positions push the network to
output lower scores, and red represents positions with positive attributions. (c) A heat map
showing predictions for all single mutations from the Pab1 CNN. Wild-type residues are
indicated with dots, and the asterisk is the stop codon. Most single mutations are predicted
to be neutral or deleterious.

46

Designing Distant Protein Sequences with Learned Models

Our trained neural networks describe the mapping from sequence to function for

a given protein family. These models can be used to design new sequences that

were not observed in the original deep mutational scanning dataset and may have

improved function. The protein design process involves extrapolating a model’s

predictions to distant regions of sequence space. Because the models were trained

and evaluated only on sequences with local changes with respect to the wild type,

it is unclear how these out-of-distribution predictions will perform.

We tested the ability of our supervised models to generalize beyond the training

data by designing a panel of new GB1 variants with varying distances from the

wild-type sequence (Fig. 2.5a). GB1 is a small 8-kDa domain from streptococcal

protein G that binds to the fragment crystallizable (Fc) domain of mammalian

IgG. GB1’s structure is composed of one α-helix that is packed into a four-stranded

β-sheet. GB1’s interaction with IgG is largely mediated by residues in the α-helix

and third β-strand.

The design process was guided by an ensemble of the four models (linear

regression and fully connected, sequence convolutional, and graph convolutional

networks) to fully leverage different aspects of the sequence-function mapping

captured by each model. We used a random-restart hill-climbing algorithm to

search over GB1 sequence space for designs that maximize the minimum predicted

fitness over the four models. Maximizing the minimum predicted fitness over the

four models ensures that every model predicts the designed sequences to have

high fitness. We applied this sequence optimization method to design five GB1

47

Figure 2.5: Neural network-based protein design. (a) Multidimensional scaling (MDS)
sequence space visualization of the wild-type (WT) GB1 sequence, the GB1 training se-
quences, and the five designed proteins. Design10 to Design50 are progressively farther
from the training distribution. Design10 is expressed as a soluble protein, while the more
distant designs were insoluble. (b) Circular dichroism spectra of purified wild-type GB1
and Design10. Both proteins display highly similar spectra that are indicative of α-helical
protein structures. (c) IgG binding curves of wild-type GB1 variants. Design10 displays
substantially higher binding affinity than wild-type GB1, A24Y, and E19Q + A24Y. All mea-
surements were performed in duplicate. Binding signal is reported in relative fluorescence
units (RFU). (d) The locations of Design10’s 10 mutations (shown in orange) relative to
the IgG binding interface. The Design10 structure was predicted de novo using Rosetta.

variants with increasing numbers of mutations (10, 20, 30, 40, 50) from the wild

type, representing sequence identities spanning from 82 to 11% (Table A.1). We

expect designs with fewer mutations to be more likely to fold and function because

they are more similar to the training data.

We experimentally tested the five GB1 designs by synthesizing their correspond-

ing genes and expressing them in Escherichia coli. We found that the 10-mutant

design, referred to as Design10, was expressed as a soluble protein, but the more

distant designs were insoluble (Fig. 2.5a). We were unable to further characterize

Design20 to Design50 because their insoluble expression prevented downstream

protein purification. We performed circular dichroism spectroscopy on Design10

48

and found that it had nearly identical spectra to wild-type GB1, suggesting they

have similar secondary structure content (Fig. 2.5b).

The original GB1 deep mutational scan measured binding to the Fc region of

IgG; therefore, our supervised models should capture a variant’s binding affinity.

We tested Design10’s ability to bind to IgG using a yeast display binding assay.

We also tested wild-type GB1 and the top single (A24Y) and double (E19Q +

A24Y) mutants from the original deep mutational scanning dataset. We found that

Design10 binds to IgG with a Kd of 5 nM, which is substantially higher affinity than

wild-type GB1, A24Y, or E19Q + A24Y (Fig. 2.5c). We were unable to precisely

determine wild-type GB1, A24Y, or E19Q + A24Y’s dissociation constants because

our assay could not reliably measure binding at IgG concentrations above 100 nM.

The data showed qualitative trends where wild type had the lowest affinity, followed

by A24Y and then, E19Q + A24Y. Our measurements indicate that wild-type GB1’s

Kd is well above 100 nM, which is consistent with measurements from the literature

that have found that this interaction is in the 250- to 900-nM range (Jha et al., 2014;

Watanabe et al., 2019). Based on our estimates and others’ previous measurements,

we conservatively estimate that Design10 binds human IgG with at least 20-fold

higher affinity than wild-type GB1.

Closer inspection of the Design10 sequence revealed that it was not simply

composed of the top 10 single mutations for enrichment and even included 4

mutations whose individual effects on the predicted functional score ranked below

the top 300. In addition, Design10’s predicted score was more than two times

greater than the variant comprising the top 10 single mutations. This highlights the

49

ability of the design process to capture nonlinear interactions and leverage synergies

between sites. We also evaluated the robustness of our findings by rerunning the

10-mutant design process 100 independent times and evaluating the diversity of

the designs (Table A.2).

We built a model of Design10’s three-dimensional structure using Rosetta de

novo structure prediction (Fig. 2.5d). Design10’s predicted structure aligns to the

wild-type GB1 crystal structure with 0.9Å Cα rmsd. Design10’s actual structure

is likely very similar to wild-type GB1 given their high sequence identity, similar

circular dichroism spectra, and the small deviation between Design10’s de novo

predicted structure and the experimental GB1 structure. Inspection of Design10’s

predicted structure revealed that many of its mutations were concentrated near the

IgG binding interface, and this may help to explain its large increase in IgG binding

affinity. We also evaluated Rosetta models for Design20 to Design50 and found no

obvious reasons why they failed to express.

2.3 Discussion

We have presented a supervised learning framework to infer the protein sequence-

function mapping from deep mutational scanning data. Our supervised models

work best when trained with large-scale datasets, but they can still outperform

physics-based and unsupervised prediction methods when trained with only hun-

dreds of sequence-function examples. Unsupervised methods remain appealing

for proteins with very little or no sequence-function data available. Among the

50

supervised models, linear regression displayed the lowest performance due to

its inability to represent interactions between multiple mutations. Despite that

limitation, linear regression still performed fairly well because mutations often

combine in an additive manner (Wells, 1990). The convolutional networks outper-

formed linear regression and fully connected networks when trained with fewer

training examples and when performing mutational extrapolation. The parameter

sharing inherent to convolutional networks can improve performance by allow-

ing generalization of the effects of mutations across different sequence positions.

However, in the five datasets we tested, even the convolutional networks could

not accurately generalize when entire sequence positions were excluded from the

training data. It was surprising that graph convolutions that incorporate protein

structure did not improve performance over sequence-based convolutions. The

comparable performance could be the result of the networks’ ability to compensate

with fully connected layers, the lack of sequence diversity in the deep mutational

scanning data, or the specific type of graph neural network architecture used. We

are unable to determine which of these factors had the greatest influence.

Our analysis of how data quality influences the ability to learn the sequence-

function mapping can be considered when designing future deep mutational scan-

ning experiments. We found that a model’s predictive performance is determined

not only by the number of sequence-function training examples but also by the

quality of the estimated functional scores. Therefore, in a deep mutational scan-

ning experiment, it may be preferable to limit the total number of unique variants

analyzed to ensure that each variant has sufficient sequencing reads to calculate

51

accurate functional scores. Any missing mutations can then be imputed with a

convolutional network to overcome the smaller dataset size.

Recent studies have examined supervised learning methods capable of scaling

to deep mutational scanning datasets. One study benchmarked combinations of

supervised learning methods and protein sequence encodings (Xu et al., 2020).

Consistent with our results, it found that sequence convolutional neural networks

with amino acid property-based features tended to perform better than alternatives.

Some algorithms specialize in modeling epistasis. Epistatic Net (Aghazadeh et al.,

2020) introduced a neural network regularization strategy to limit the number of

epistatic interactions. Other approaches focused on the global epistasis that arises

due to a nonlinear transformation from a latent phenotype to the experimentally

characterized function (Tareen et al., 2020; Otwinowski et al., 2018). Protein en-

gineering with UniRep (Biswas et al., 2021) showed that general global protein

representations can support training function-specific supervised models with

relatively few sequence-function examples. ECNet pioneered an approach for com-

bining global protein representations, local information about residue coevolution,

and protein sequence features (Luo et al., 2020). Across tens of deep mutational

scanning datasets, ECNet was almost always superior to unsupervised learning

models and models based only on a global protein representation. Future work can

explore how to best combine global protein representations, local residue coevolu-

tion features, and graph encodings of protein structure to learn predictive models

for specific protein functions, including for proteins that have little experimental

data available. Despite their similar performance to sequence convolutional net-

52

works in our study, graph convolutional networks that integrate three-dimensional

structural information remain enticing because of successes on other protein mod-

eling tasks (Fout et al., 2017; Gligorijevic et al., 2020; Strokach et al., 2020; Sanyal

et al., 2020) and rapid developments in graph neural network architectures (Wu,

Zonghan et al., 2020).

Another challenging future direction will be assessing how well trained models

extrapolate to sequences with higher-order mutations (Mater et al., 2020; Bryant

et al., 2021). As a proof of concept, we designed distant GB1 sequences with tens of

mutations from the wild type. The 10-mutant design (Design10) had substantially

stronger IgG binding affinity than wild-type GB1, but the four sequences with more

mutations did not express as soluble proteins. The tremendous success of Design10

is encouraging considering how few designed sequences we tested and the many

opportunities to improve upon our limited exploration of model-guided design.

The model predictions can be improved through more sophisticated ensembling

and uncertainty estimation. Our hill-climbing sequence optimization strategy can

be replaced by specialized methods that allow supervised models to efficiently

explore new parts of a sequence space (Angermueller et al., 2020; Fannjiang and

Listgarten, 2020; Brookes et al., 2019; Linder and Seelig, 2021).

Machine learning is revolutionizing our ability to model and predict the complex

relationships between protein sequence, structure, and function (Yang et al., 2019;

Torrisi et al., 2020). Supervised models of protein function are currently limited

by the availability and quality of experimental data but will become increasingly

accurate and general as researchers continue to experimentally characterize protein

53

sequence space (Esposito et al., 2019). Other important machine learning advances

relevant to protein engineering include generative modeling to sample nonnatu-

ral protein sequences (Hawkins-Hooker et al., 2020; Madani et al., 2020; Strokach

et al., 2020), language models to learn protein representations from diverse natural

sequences (Asgari and Mofrad, 2015; Yang et al., 2018; Alley et al., 2019; Rives

et al., 2020), and strategies to incorporate machine learning predictions into di-

rected evolution experiments (Biswas et al., 2018; Saito et al., 2018; Wittmann et al.,

2020). These approaches are enabling the next generation of data-driven protein

engineering.

2.4 Methods

Datasets

We tested our supervised learning approach on five deep mutational scanning

datasets: avGFP (Sarkisyan et al., 2016), Bgl3 (Romero et al., 2015), GB1 (Olson et al.,

2014), Pab1 (Melamed et al., 2013), and Ube4b (Starita et al., 2013). We selected

these publicly available datasets because they correspond to diverse proteins and

contain variants with multiple amino acid substitutions. The avGFP, Pab1, and

Ube4b datasets were published with precomputed functional scores, which we

used directly as the target scores for our method. For GB1 and Bgl3, we computed

functional scores from raw sequencing read counts using Enrich2 (Rubin et al.,

2017). We filtered out variants with fewer than five sequencing reads and ran

Enrich2 using the “Log Ratios (Enrich2)” scoring method and the “Wild Type”

54

normalization method. Table 2.1 shows additional details about the datasets.

Protein Sequence Encoding

We encoded each variant’s amino acid sequence using a sequence-level encoding

that supports multiple substitutions per variant. Each amino acid is featurized with

its own feature vector, and the full encoded variant consists of the concatenated

amino acid feature vectors. We featurize each amino acid using a two-part encoding

made up of a one-hot encoding and an amino acid index (AAIndex) encoding. One-

hot encoding captures the specific amino acid at each position. It consists of a length

21 vector where each position represents one of the possible amino acids or the stop

codon. All positions are zero except the position of the amino acid being encoded,

which is set to a value of one. AAindex encoding captures physicochemical and

biochemical properties of amino acids from the AAindex database (Kawashima

et al., 2008). These properties include simple attributes, such as hydrophobicity

and polarity, as well as more complex characteristics, such as average nonbonded

energy per atom and optimized propensity to form a reverse turn. In total, there are

566 such properties that were taken from literature. These properties are partially

redundant because they are aggregated from different sources. Therefore, we

used principle component analysis to reduce the dimensionality to a length 19

vector, capturing 100% of the variance. We concatenated the one-hot and AAindex

encodings to form the final representation for each amino acid. One benefit of this

encoding is that it enables the use of convolutional networks, which leverage the

spatial locality of the raw inputs to learn higher-level features via filters. Other

55

types of encodings that do not have a feature vector for each residue, such as

those that embed full amino acid sequences into fixed-size vectors, would not be

as appropriate for convolutional networks because they do not have locality in the

input that can be exploited by convolutional filters.

Convolutional Neural Networks

We tested two types of convolutional neural networks: sequence convolutional and

graph convolutional. These networks extract higher-level features from the raw

inputs using convolutional filters. Convolutional filters are sets of learned weights

that identify patterns in the input and are applied across different parts of the input.

The filters can output higher or lower values depending on whether the given

input matches the pattern that the filters have learned to identify. We implemented

a sequence convolutional network where the input is a one-dimensional amino

acid sequence. The network applies filters using a sliding window across the

input sequence, integrating information from amino acid sequence neighbors. The

network applies filters at all valid sequence positions and does not pad the ends of

the sequence with zeros.

Graph convolutional neural networks are similar to traditional convolutional net-

works, except graph convolutional networks operate on arbitrary graph structures

rather than linear sequences or two-dimensional grids. Graph filters still capture

spatial relationships in the input data, but those relationships are determined by

neighboring nodes in the graph rather than neighboring characters in a sequence or

neighboring pixels in a two-dimensional grid. In our case, we use a graph derived

56

from the protein’s wild-type three-dimensional structure. This allows the network

to more easily learn features that correspond to patterns of amino acid residues

that are nearby in physical space.

We use the order-independent graph convolution operator described by Fout

et al. (Fout et al., 2017). It is considered order independent because it does not

impose an ordering on neighbor nodes. In an order-dependent formulation, differ-

ent neighbor nodes would have different weights, but in the order-independent

formulation, all neighbor nodes are treated identically and share the same weights.

Each filter consists of a weight vector for the center node and a weight vector for

the neighbor nodes that is shared among the neighbor nodes. For a set of filters,

the output zi at a center node i is calculated using Equation 2.1, where WC is the

center node’s weight matrix, WN is the neighbor nodes’ weight matrix, and b is the

vector of biases, one for each filter. Additionally, xi is the feature vector at node i,

Ni is the set of neighbors of node i, and σ is the activation function.

zi = σ
(
WC · xi +

1
|Ni|

∑
j∈Ni

(WN · xj) + b
)

(2.1)

In this formulation, a graph consisting of nodes and edges is incorporated into

each convolutional layer. Input features are placed at the graph’s nodes in the

first layer. Outputs are computed at the node level using input features from a

given center node and corresponding neighbor nodes. Because output is computed

for each node, graph structure is preserved between subsequent graph layers.

The incoming signal from neighbor nodes is averaged to account for the variable

numbers of neighbors. The window size of the filter is limited to the immediate

57

neighbors of the current center node. Information from more distant nodes is

incorporated through multiple graph convolutional layers. The final output of the

network is computed at the graph level with a single function score prediction for

the entire graph.

Protein Structure as a Graph

We encoded each protein’s wild-type structure as a graph and incorporated it

into the architecture of the graph convolutional neural network (Fig. 2.1d). The

protein structure graph is an undirected graph with a node for each amino acid

residue and an edge between nodes if the residues are within a specified distance

threshold in three-dimensional space. The distance threshold is a hyperparameter

with a range of 4 to 10Å and was selected independently for each dataset during

the hyperparameter optimization. We measure distances between residues via

distances of the β-carbon atoms (Cβ) in angstroms. The protein structure graph for

GB1 is based on Protein Data Bank (PDB) structure 2QMT. The protein structure

graphs for the other four proteins are based on structures derived from Rosetta

comparative modeling, using the RosettaCM protocol (Song et al., 2013) with the

default options. For the comparative modeling, we selected template structures

from PDB that most closely matched the reference sequence of the deep mutational

scanning data. In addition to the standard graph based on the protein’s structure,

we tested four baseline graphs: a shuffled graph based on the standard graph

but with shuffled node labels, a disconnected graph with no edges, a sequential

graph containing only edges between sequential residues, and a complete graph

58

containing all possible edges (Fig. A.6). We used NetworkX (Hagberg et al., 2008)

v2.3 to generate all protein structure and baseline graphs.

Complete Model Architectures

We implemented linear regression and three types of neural network architectures:

fully connected, sequence convolutional, and graph convolutional. Linear regres-

sion is implemented as a fully connected neural network with no hidden layers.

It has a single output node that is fully connected to all input nodes. The other

networks all have multiple layers. The fully connected network consists of some

number of fully connected layers, and each fully connected layer is followed by

a dropout layer with a 20% dropout probability. Finally, there is a single output

node. The sequence and graph convolutional networks consist of some number

of convolutional layers, a single fully connected layer with 100 hidden nodes, a

dropout layer with a 20% dropout probability, and a single output node. We also

trained sequence and graph convolutional networks without the fully connected

layer or dropout layer for the analyses in Figure A.7. We used the leaky rectified

linear unit as the activation function for all hidden layers. A hyperparameter sweep

determined the other key aspects of the model architectures, such as the number

of layers, the number of filters, and the kernel size of filters (Fig. A.11). We used

Python v3.6 and TensorFlow (Abadi et al., 2015) v1.14 to implement the models.

59

Model Training

We trained the networks using the Adam optimizer and mean squared error loss.

We set the Adam hyperparameters to the defaults except for the learning rate and

batch size, which were selected using hyperparameter sweeps. We used early

stopping for all model training with a patience of 15 epochs and a minimum

delta (the minimum amount by which loss must decrease to be considered an

improvement) of 0.00001. We set the maximum possible number of epochs to 300.

The original implementation overweighted the last examples in an epoch when

calculating the tuning set loss. This could have affected early stopping but had

little to no effect in practice. We trained the networks on graphics processing units

(GPUs) available at the University of Wisconsin-Madison via the Center for High

Throughput Computing and the workload management system HTCondor (Thain

et al., 2005). We also used GPU resources from Argonne National Laboratory’s

Cooley cluster. The GPUs we used included Nvidia GeForce GTX 1080 Ti, GeForce

RTX 2080 Ti, and Tesla K80.

Main experiment setup

We split each dataset into random training, tuning, and testing sets. The tuning

set is sometimes referred to as the validation set and is used for hyperparameter

optimization. This allowed us to train the models; tune hyperparameters; and

evaluate performance on separate, nonoverlapping sets of data. The training set

was 81% of the data, the tuning set was 9%, and the testing set was 10%. This

strategy supports the objective of training and evaluating models that fully leverage

60

all available sequence-function data and make predictions for variants that have

characteristics similar to the training data. There are other valid strategies that

more directly test the ability of a model to generalize to mutations or positions that

were not present in the training data, which we describe below.

We performed a hyperparameter grid search for each dataset using all possible

combinations of the hyperparameters in Figure A.11. The hyperparameters selected

for one dataset did not influence the hyperparameters selected for any other dataset.

For each type of supervised model (linear regression, fully connected, sequence

convolutional, and graph convolutional), we selected the set of hyperparameters

that resulted in the smallest mean squared error on the tuning set. The selected

hyperparameters are listed in Table A.3, and the number of trainable parameters in

each selected model is listed in Table A.4. This is the main set of hyperparameters.

For any subsequently trained models, such as those with reduced training set sizes,

we performed smaller hyperparameter sweeps to select a learning rate and batch

size, but all other hyperparameters that specify the network architecture were set

to those selected in the main run.

To assess the robustness of the original train-tune-test splits, we created six

additional random splits for each dataset. We tuned the learning rate and batch size

independently for each split; however, the network architectures were fixed to those

selected using the original split. There was a risk of overestimating performance on

the new splits because the data used to tune the architectures from the original split

may be present in the test sets of the new splits. However, the results showed no

evidence of this type of overfitting. We report the performance on these new splits

61

in Figures 2.2b and A.1a. All other experiments used the original train-tune-test

split.

For the random baseline in Figures A.8 and A.9, we generated 1,000 random

rankings of the entire test set. Then, for each ranking threshold N, we selected the

first N variants from each ranking as the prioritized variants. We computed the

mean (Fig. A.8) and the maximum (Fig. A.9) of each random ranking’s prioritized

variants. Finally, we show the 95% confidence interval calculated as ± 1.96 times

the SD.

Reduced Training Size Setup

For the reduced training size experiment, we used the same 9% tuning and 10%

testing sets as the main experiment. The reduced training set sizes were determined

by percentages of the original 81% training pool. For each reduced size, we sampled

five random training sets of the desired size from the 81% training pool. These

replicates are needed to mitigate the effects of an especially strong or weak training

set, which could be selected by chance, especially with the smaller training set sizes.

We reported the median metrics of these five replicates.

Mutational and Positional Extrapolation

We tested the ability of the models to generalize to mutations and positions not

present in the training data using two dataset splitting strategies referred to as

mutational and positional extrapolation. For each of these splitting strategies, we

created six replicate train-tune-test splits and tuned the learning rate and batch size

62

independently for each split. We report the Pearson’s correlation on the test set for

each split in Figures 2.2d and A.5.

For mutational extrapolation, we designated 80% of single mutations present in

the dataset as training and 20% as testing. We then divided the variants into three

pools: training, testing, or overlap, depending on whether the variants contained

only mutations designated as training, only mutations designated as testing, or

mutations from both sets. We discarded the variants in the overlap pool to ensure

there was no informational overlap between the training and testing data. We split

the training pool into a 90% training set and a 10% tuning set. We used 100% of the

variants in the testing pool as the test set.

For positional extrapolation, we followed a similar procedure as mutational

extrapolation. We designated 80% of sequence positions as training and 20% as

testing. We divided variants into training, testing, and overlap pools, depending on

whether the variants contained mutations only in positions designated as training,

only in positions designated as testing, or both in positions designated as training

and testing. We discarded the variants in the overlap pool, split the training pool

into a 90% training set and a 10% tuning set, and used 100% of the variants in the

testing pool as the test set.

Comparison to EVmutation and DeepSequence

We generated multiple sequence alignments using the EVcouplings web server

(Hopf et al., 2019) according to the protocol described for EVmutation (Hopf et al.,

2017). We used Jackhmmer (Eddy, 2011) to generate an initial alignment with five

63

search iterations against UniRef100 (Suzek et al., 2015) and a sequence inclusion

threshold of 0.5 bits per residue. If the alignment had < 80% sequence coverage, we

increased the threshold in steps of 0.05 bits per residue until coverage was ⩾ 80%. If

the number of effective sequences in the alignment was < 10 times the length of the

sequence, we decreased the threshold until the number of sequences was ⩾ 10 times

the length. If the objectives were conflicting, we gave priority to the latter. We set all

other parameters to EVcouplings defaults. We trained EVmutation via the “mutate”

protocol from EVcouplings. We executed EVmutation locally using EVcouplings

v0.0.5 with configuration files generated by the EVcouplings web server. We trained

DeepSequence using the same fixed architecture and hyperparameters described

in the original work (Riesselman et al., 2018). We fit a DeepSequence model to

each alignment and calculated the mutation effect prediction using 2,000 evidence

lower-bound samples.

Comparison to Rosetta

We computed Rosetta scores for every variant using Rosetta’s FastRelax protocol

with the talaris2014 score function (Rosetta v3.10). First, we created a base structure

for each wild-type protein. We generated 10 candidate structures by running relax

on the same structure used to generate the protein structure graph, described above.

We selected the lowest-energy structure to serve as the base. Next, we ran mutate

and relax to generate a single structure and compute the corresponding energy for

each variant. We set the residue selector to a neighborhood of 10Å. We took the

negative of the computed energies to compute the final score for each variant.

64

GB1 Resampling Experiment

We performed a resampling experiment on the GB1 dataset to assess how the quality

of deep mutational scanning-derived functional scores impacts performance of

supervised learning models. In this case, quality refers to the number of sequencing

reads per variant used to estimate the fitness scores. The number of reads per

variant depends on the number of variants and the total number of reads in the

deep mutational scanning experiment. Raw deep mutational scanning data consist

of two sets of variants: an input set and a selected set. Both sets have associated

sequencing read counts for each variant, and the functional score for each variant is

calculated from these read counts. We resampled the original GB1 data to generate

datasets corresponding to 99 different combinations of protein library size and

number of reads (Fig. A.12). The library size refers to the number of unique variants

being screened in the deep mutational scan. Note that the final dataset may have

fewer unique variants than the protein library. This occurs when there is a low

number of sequencing reads relative to the size of the library. In that scenario, not

all generated variants will get sequenced, even though they were screened as part

of the function assay.

First, we created a filtered dataset by removing any variants with zero reads in

either the input set or selected set of the original deep mutational scanning data. We

generated Enrich2 scores for this filtered dataset using the same approach described

in the above section on datasets. We randomly selected 10,000 variants from this

dataset to serve as a global testing set. Next, we used the filtered dataset, minus the

testing set variants, as a base to create the resampled datasets. For each library size

65

in the heat map in Figure 2.3, we randomly selected that many variants from the

base dataset to serve as the library. Then, for each library, we created multinomial

probability distributions giving the probability of generating a read for a given

variant. We created these probability distributions for both the input and selected

sets by dividing the original read counts of each variant by the total number of

reads in the set. The multinomial distributions allowed us to sample new input and

selected sets based on the read counts in the heat map in Figure 2.3. To determine

how many reads should be sampled from the input set vs. the selected set, we

computed the fraction of reads in the input set and selected set in the base dataset

and sampled reads based on that fraction. Finally, we generated Enrich2 scores for

each resampled dataset using the same approach described in the above section on

datasets. To account for potential skewing from random sampling, we generated

five replicates for each of the 99 combinations of library size and numbers of reads.

Counting the replicates, we created 495 resampled datasets in total.

We trained the supervised learning models on each resampled dataset, as long

as the dataset had at least 25 total variants in each of its five replicates. Out of

the 99 combinations of library size and number of reads, 7 did not have enough

variants across the replicate datasets and were thus excluded from this experiment.

Although the libraries of these 7 combinations had more than 25 variants, there were

not enough reads to estimate scores for all of them, and thus, the final datasets ended

up with less than 25 variants. We split each resampled dataset into 80% training

and 20% tuning sets. The tuning sets were used to select the learning rate and batch

size hyperparameters. The network architectures and other parameters were set to

66

those selected during the main experiment described above. We evaluated each

model using the held-out testing set with non-resampled fitness scores. This type of

evaluation ensures that although the models are trained on resampled datasets with

potentially unreliable fitness scores, they are evaluated on high-confidence fitness

scores from the non-resampled dataset. We report the mean Pearson’s correlation

coefficient across the five replicates for each combination of library size and number

of reads.

UMAP Projection of Latent Space

Each neural network encodes a latent representation of the input in its last in-

ternal layer before the output node. The last internal layer in the convolutional

networks is a dense fully connected layer with 100 hidden nodes. Thus, the latent

representation of each variant at this layer is a length 100 vector. We used UMAP

(McInnes et al., 2020) to project the latent representation of each variant into a

two-dimensional space to make it easier to visualize while still preserving spatial

relationships between variants. We used the umap-learn package v0.4.0 to compute

the projection with default hyperparameters (n_neighbors=15, min_dist=0.1, and

metric=“euclidean”). The two-dimensional visualization shows how the network

organizes variants internally prior to predicting a functional score. We colored each

variant by its score to show that the network efficiently organizes the variants. Vari-

ants grouped close together in the UMAP plot have similar functional scores. We

also annotated a few key variants, such as the highest- and lowest-scoring variants.

67

Integrated gradients

To determine which input features were important for making predictions, we

generated integrated gradients feature attributions (Sundararajan et al., 2017) for

all variants. The attributions quantify the effects of specific feature values on the

network’s output. A positive attribution means the feature value pushes the network

to output a higher score relative to the given baseline, and a negative attribution

means the feature value pushes the network to output a lower score relative to the

given baseline. We used the wild-type sequence as the baseline input. Integrated

gradients attributions are computed on a per-variant basis, meaning attributions

are specific to the feature values of the given variant. Due to nonlinear effects

captured by the nonlinear models, a given feature value might have a positive

attribution in one variant but a negative attribution in a different variant. We

computed attributions for all variants in the training set. Examining the training

set is analogous to other model interpretation techniques that compute attributions

directly from the weights or parameters of models that were trained using training

sets. We summed the attributions for all features at each sequence position, allowing

us to see which mutations pushed the network to output a higher or lower score for

each individual variant. We also summed the attributions across all the variants in

the training set to see which sequence positions were typically tolerant or intolerant

to mutations. We used DeepExplain (Ancona et al., 2018) v0.3 to compute the

integrated gradients attributions with “steps” set to 100.

68

Model-Guided Design of GB1 Variants

We used a random-restart hill-climbing algorithm to design sequences with a

set number of mutations (n) from wild-type GB1 that maximized the minimum

predicted functional score from an ensemble of four models (linear regression, fully

connected, sequence convolutional, and graph convolutional):

arg max
x∈Sn

min
model∈LR,FC,CNN,GCN

fmodel(x),

where x is a sequence, Sn is the set of all sequences n mutations from wild-type,

and fmodel(x) is a model’s predicted score for sequence x. This design objective

ensures that all models predict that the sequence will have a high functional score.

We initialized a hill-climbing run with a randomly selected sequence containing

n point mutations and performed a local search by exchanging each of these n

mutations with each other possible single-point mutation. Exchanging mutations

ensured that we only search sequences a fixed distance n from the wild type. We

then moved to the mutation-exchanged variant with the highest objective, which

became our new reference point, and repeated this hill climbing process until a

local optimum was reached. We performed each sequence optimization with 10

random initializations and took the design with the highest overall objective value.

We applied this procedure to design one sequence at each level of diversity, where

n = 10, 20, 30, 40, 50. We visualized the sequence space using multidimensional

scaling with the Hamming distance as the distance metric between sequences.

We predicted the three-dimensional structure of Design10 using Rosetta Abinitio

69

(Simons et al., 1999). We used the Rosetta Fragment Server to generate the fragments

for the Design10 sequence. We generated 100 structures using Rosetta 3.12 and

AbinitioRelax and selected the structure with the lowest total score. The predicted

structure for Design10 aligns to the wild-type GB1 crystal structure with 0.9 Å Cα

rmsd. The experimental methods to characterize these designs are described in SI

Appendix.

Designed GB1 Variant Gene Synthesis and Protein Expression

We designed the genes encoding the designed GB1 variants by making codon

substitutions into the base wild-type GB1 gene sequence. If there were multiple

codon options for an amino acid, we chose the particular codon randomly from a set

of 31 codons that are optimized for expression in E. coli (Boël et al., 2016). For our

expression construct, we included an upstream bicistronic design (BCD) element

to minimize any influence of mRNA secondary structure on protein expression

(Mutalik et al., 2013) and also included an N-terminal 6x His-tag with a five-amino-

acid linker for protein purification. We ordered wild-type GB1 and the five designed

GB1 variants from Twist Biosciences cloned into the pET21(+) protein expression

vector.

We expressed wild-type GB1 and the five designed GB1 variants using a stan-

dard T7 expression system. We transformed the six plasmids into BL21(DE3) E.

coli cells. We expressed the GB1 variants by inoculating LB cultures containing

100 µg/mL carbenicillin with a 1:100 dilution of overnight cultures, incubating

these cultures shaking at 37◦C until they reached an OD600 of 0.4-0.6, and inducing

70

with 400 µM Isopropyl β-D-1-thiogalactopyranoside (IPTG). We then incubated

these expression cultures overnight at 20◦C while shaking, pelleted the cells by

centrifuging at 3000 g for 20 minutes at 4◦C, and stored the cell pellets at -80◦C.

We determined the level of soluble protein expression using sodium dodecyl

sulphate–polyacrylamide gel electrophoresis (SDS-PAGE). We thawed the cell

pellets on ice and resuspended into 0.5 mL of Buffer A (20 mM sodium phosphate

pH 7.3, 500 mM NaCl, 20 mM imidazole). We then added 2.5 mL of lysis buffer

(Buffer A + 0.60x BugBuster + 2 U/mL DNaseI (Thermo Fischer) + 1 mg/mL

hen egg white lysozyme) to each sample and incubated at room temperatures for

5 minutes to yield the total cell lysate. We obtained the soluble protein fraction

by centrifuging at 21,000 g for 70 minutes and extracting the supernatant. We

then ran samples of the total cell lysate and soluble fractions on a Novex 4-20%

Tris-Glycine SDS-PAGE gel (Thermo Fischer). After staining, we analyzed the gels

to qualitatively evaluate whether the expressed proteins were present in the soluble

fraction

Protein Purification and Circular Dichroism Spectroscopy

We expressed wild-type GB1 and Design10 using the above protocol, with the

exception that the expression cultures were incubated at 16◦C for 24 hours. We

thawed the cell pellets on ice, resuspended in 2.5 mL of Buffer A, sonicated for 1

minute with 5 second pulses spaced by 15 second resting periods, and centrifuged

for 10 minutes at 21,000 g to obtain the soluble protein fraction. We then ran the

soluble fraction over a Ni Sepharose 6 Fast Flow column (Cytiva Life Sciences) that

71

was equilibrated with Buffer A, washed with 3 column volumes of Buffer A, and

eluted in 1.5 mL fractions of Buffer B (20 mM sodium phosphate pH 7.3, 500 mM

NaCl, 500 mM imidazole). We ran the elution fractions over SDS-PAGE and pooled

the fractions that contained the target protein. Finally, we aliquoted the purified

protein, flash froze the aliquots in liquid nitrogen, and stored at -80◦C.

For circular dichoism (CD) spectroscopy, we thawed the purified protein sam-

ples on ice and dialyzed overnight in 20 mM sodium phosphate pH 8.0 at 4◦C

to remove imidazole. We then determined the protein concentrations using a

Nanodrop spectrophotometer. The CD measurements were then performed by

UW-Madison’s Biophysics Instrumentation Facility. They measured CD spectra

using a 1 mm pathlength on an AVIV Model 420 Circular Dichroism Spectrometer

at 4◦C. The CD spectra for Design10 was normalized to the wild-type GB1 spectra

at 222 nm.

GB1 Yeast Display Plasmid Construction and Flow Cytometric IgG

Binding Affinity Titration

We synthesized wild-type and Design10 variant GB1 genes as yeast codon-optimized

gBlocks (Integrated DNA Technologies, Coralville, IA). The gBlocks were ligated

into the unique NheI and BamHI sites of the yeast surface display vector pCTCON2

(provided by Dane Wittrup, MIT). We synthesized A24Y and E19Q+A24Y variant

GB1 genes as yeast-optimized gene fragments (Twist, San Francisco, CA). The

gene fragments were ligated into a golden-gate compatible version of pCTCON2

at the NheI, BamHI sites. This yeast display vector fuses the Aga2p protein to the

72

N-terminus of GB1.

We transformed plasmid DNA into yeast display Saccharomyces cerevisiae strain

EBY100 made competent using the Zymo Research Frozen EZ Yeast Transformation

II kit with transformants grown on synthetic dropout (SD) -Trp (MP Biomedicals,

Irvine, CA) agar plates for two days at 30◦C. After two days, individual colonies

were picked into 4 mL of low-pH Sabouraud Dextrose Casamino Acid media (20

g/L dextrose, 6.7 g/L yeast nitrogen base, 5 g/L casamino acids, 10.4 g/L sodium

citrate, 7.4 g/L citric acid monohydrate) and grown overnight at 30◦C and 250 rpm.

For induction of GB1 display, we started a 5 mL Sabouraud Galactose Casamino

Acid (8.6 g/L NaH2PO*H2O, 5.4 g/L Na2HPO4, 20 g/L galactose, 6.7 g/L yeast

nitrogen base, 5 g/L casamino acids) culture at an optical density, as measured at

600 nm, of 0.5 and shook overnight at 250 rpm and 20◦C.

We harvested approximately 2 × 105 yeast cells for each titration data point by

centrifugation after overnight incubation, washed them once in pH 7.4 Phosphate

Buffered Saline (PBS) containing 0.2% (w/v) bovine serum albumin (BSA), and

incubated them overnight at 4◦C on a tube rotator at 18 rpm in between 100 µL

and 800 µL of PBS/0.2% BSA containing various concentrations of mouse IgG2a

(BioLegend, San Diego, CA) that had been conjugated with Alexa647 using NHS

chemistry (Molecular Probes, Eugene, OR). Volumes of Alexa647 IgG-containing

incubation solution were varied to prevent ligand depletion from occurring in the

lowest IgG concentration incubation tubes. Following overnight incubation, yeast

were washed once in PBS/0.2% BSA and resuspended in ice cold PBS for flow

cytometric analysis. Analyses were performed using a Fortessa analyzer (Becton

73

Dickinson), and the mean of the fluorescence distribution was reported.

We performed duplicate fluorescence measurements for all nine IgG concentra-

tions tested. We then fit a Hill function to the average of these duplicate measure-

ments. We were able to determine the Kd of Design10 as 5 nM because the binding

curve was beginning to display saturation. We were unable to determine the Kd of

wild-type, A24Y, or E19Q+A24Y GB1 variants because the proteins were less than

50% bound at the highest IgG concentration tested.

Data Availability

We provide a cleaned version of our code that can be used to retrain the models

from this article or train new models with different network architectures or for

different datasets. We also provide pretrained models that use the latest code and

are functionally equivalent to the ones from this article. The pretrained models

can be used to make predictions for new variants. Our code is freely available on

GitHub and is licensed under the MIT license (https://github.com/gitter-lab/

nn4dms). The software is also archived on Zenodo (https://doi.org/10.5281/

zenodo.4118330). Table A.5 shows software dependencies and their versions.

Acknowledgements

We thank Zhiyuan Duan for his assistance running Rosetta and Darrell McCaslin

at the University of Wisconsin-Madison Biophysics Instrumentation Facility for his

expertise in collecting and analyzing the circular dichroism spectra. This research

https://github.com/gitter-lab/nn4dms
https://github.com/gitter-lab/nn4dms
https://doi.org/10.5281/zenodo.4118330
https://doi.org/10.5281/zenodo.4118330

74

was supported by National Institutes of Health award R35GM119854, National

Institutes of Health award R01GM135631, National Institutes of Health training

grant T32HG002760, a Predoctoral Fellowship from the PhRMA Foundation, the

John W. and Jeanne M. Rowe Center for Research in Virology at the Morgridge

Institute for Research, and the Brittingham Fund and the Kemper K. Knapp Bequest

through the Sophomore Research Fellowship at UW-Madison. In addition, this

research benefited from the use of credits from the National Institutes of Health

Cloud Credits Model Pilot, a component of the Big Data to Knowledge program,

and used resources of the Argonne Leadership Computing Facility, which is a

Department of Energy Office of Science User Facility supported under contract

DE-AC02-06CH11357. The research was performed using the compute resources

and assistance of the University of Wisconsin-Madison Center for High Throughput

Computing in the Department of Computer Sciences.

75

appendix a: supplementary information for chapter 2

2.A Supplementary Methods

Designed GB1 Variant Gene Synthesis and Protein Expression

We designed the genes encoding the designed GB1 variants by making codon

substitutions into the base wild-type GB1 gene sequence. If there were multiple

codon options for an amino acid, we chose the particular codon randomly from a set

of 31 codons that are optimized for expression in E. coli (Boël et al., 2016). For our

expression construct, we included an upstream bicistronic design (BCD) element

to minimize any influence of mRNA secondary structure on protein expression

(Mutalik et al., 2013) and also included an N-terminal 6x His-tag with a five-amino-

acid linker for protein purification. We ordered wild-type GB1 and the five designed

GB1 variants from Twist Biosciences cloned into the pET21(+) protein expression

vector.

We expressed wild-type GB1 and the five designed GB1 variants using a stan-

dard T7 expression system. We transformed the six plasmids into BL21(DE3) E.

coli cells. We expressed the GB1 variants by inoculating LB cultures containing

100 µg/mL carbenicillin with a 1:100 dilution of overnight cultures, incubating

these cultures shaking at 37◦C until they reached an OD600 of 0.4-0.6, and inducing

with 400 µM Isopropyl β-D-1-thiogalactopyranoside (IPTG). We then incubated

these expression cultures overnight at 20◦C while shaking, pelleted the cells by

centrifuging at 3000 g for 20 minutes at 4◦C, and stored the cell pellets at -80◦C.

76

We determined the level of soluble protein expression using sodium dodecyl

sulphate–polyacrylamide gel electrophoresis (SDS-PAGE). We thawed the cell

pellets on ice and resuspended into 0.5 mL of Buffer A (20 mM sodium phosphate

pH 7.3, 500 mM NaCl, 20 mM imidazole). We then added 2.5 mL of lysis buffer

(Buffer A + 0.60x BugBuster + 2 U/mL DNaseI (Thermo Fischer) + 1 mg/mL

hen egg white lysozyme) to each sample and incubated at room temperatures for

5 minutes to yield the total cell lysate. We obtained the soluble protein fraction

by centrifuging at 21,000 g for 70 minutes and extracting the supernatant. We

then ran samples of the total cell lysate and soluble fractions on a Novex 4-20%

Tris-Glycine SDS-PAGE gel (Thermo Fischer). After staining, we analyzed the gels

to qualitatively evaluate whether the expressed proteins were present in the soluble

fraction

Protein Purification and Circular Dichroism Spectroscopy

We expressed wild-type GB1 and Design10 using the above protocol, with the

exception that the expression cultures were incubated at 16◦C for 24 hours. We

thawed the cell pellets on ice, resuspended in 2.5 mL of Buffer A, sonicated for 1

minute with 5 second pulses spaced by 15 second resting periods, and centrifuged

for 10 minutes at 21,000 g to obtain the soluble protein fraction. We then ran the

soluble fraction over a Ni Sepharose 6 Fast Flow column (Cytiva Life Sciences) that

was equilibrated with Buffer A, washed with 3 column volumes of Buffer A, and

eluted in 1.5 mL fractions of Buffer B (20 mM sodium phosphate pH 7.3, 500 mM

NaCl, 500 mM imidazole). We ran the elution fractions over SDS-PAGE and pooled

77

the fractions that contained the target protein. Finally, we aliquoted the purified

protein, flash froze the aliquots in liquid nitrogen, and stored at -80◦C.

For circular dichoism (CD) spectroscopy, we thawed the purified protein sam-

ples on ice and dialyzed overnight in 20 mM sodium phosphate pH 8.0 at 4◦C

to remove imidazole. We then determined the protein concentrations using a

Nanodrop spectrophotometer. The CD measurements were then performed by

UW-Madison’s Biophysics Instrumentation Facility. They measured CD spectra

using a 1 mm pathlength on an AVIV Model 420 Circular Dichroism Spectrometer

at 4◦C. The CD spectra for Design10 was normalized to the wild-type GB1 spectra

at 222 nm.

GB1 Yeast Display Plasmid Construction and Flow Cytometric IgG

Binding Affinity Titration

We synthesized wild-type and Design10 variant GB1 genes as yeast codon-optimized

gBlocks (Integrated DNA Technologies, Coralville, IA). The gBlocks were ligated

into the unique NheI and BamHI sites of the yeast surface display vector pCTCON2

(provided by Dane Wittrup, MIT). We synthesized A24Y and E19Q+A24Y variant

GB1 genes as yeast-optimized gene fragments (Twist, San Francisco, CA). The

gene fragments were ligated into a golden-gate compatible version of pCTCON2

at the NheI, BamHI sites. This yeast display vector fuses the Aga2p protein to the

N-terminus of GB1.

We transformed plasmid DNA into yeast display Saccharomyces cerevisiae strain

EBY100 made competent using the Zymo Research Frozen EZ Yeast Transformation

78

II kit with transformants grown on synthetic dropout (SD) -Trp (MP Biomedicals,

Irvine, CA) agar plates for two days at 30◦C. After two days, individual colonies

were picked into 4 mL of low-pH Sabouraud Dextrose Casamino Acid media (20

g/L dextrose, 6.7 g/L yeast nitrogen base, 5 g/L casamino acids, 10.4 g/L sodium

citrate, 7.4 g/L citric acid monohydrate) and grown overnight at 30◦C and 250 rpm.

For induction of GB1 display, we started a 5 mL Sabouraud Galactose Casamino

Acid (8.6 g/L NaH2PO*H2O, 5.4 g/L Na2HPO4, 20 g/L galactose, 6.7 g/L yeast

nitrogen base, 5 g/L casamino acids) culture at an optical density, as measured at

600 nm, of 0.5 and shook overnight at 250 rpm and 20◦C.

We harvested approximately 2 × 105 yeast cells for each titration data point by

centrifugation after overnight incubation, washed them once in pH 7.4 Phosphate

Buffered Saline (PBS) containing 0.2% (w/v) bovine serum albumin (BSA), and

incubated them overnight at 4◦C on a tube rotator at 18 rpm in between 100 µL

and 800 µL of PBS/0.2% BSA containing various concentrations of mouse IgG2a

(BioLegend, San Diego, CA) that had been conjugated with Alexa647 using NHS

chemistry (Molecular Probes, Eugene, OR). Volumes of Alexa647 IgG-containing

incubation solution were varied to prevent ligand depletion from occurring in the

lowest IgG concentration incubation tubes. Following overnight incubation, yeast

were washed once in PBS/0.2% BSA and resuspended in ice cold PBS for flow

cytometric analysis. Analyses were performed using a Fortessa analyzer (Becton

Dickinson), and the mean of the fluorescence distribution was reported.

We performed duplicate fluorescence measurements for all nine IgG concentra-

tions tested. We then fit a Hill function to the average of these duplicate measure-

79

ments. We were able to determine the Kd of Design10 as 5 nM because the binding

curve was beginning to display saturation. We were unable to determine the Kd of

wild-type, A24Y, or E19Q+A24Y GB1 variants because the proteins were less than

50% bound at the highest IgG concentration tested.

2.B Supplementary Figures

Figure A.1: Model evaluation using Spearman’s correlation coefficient. (a) Spearman’s
correlation coefficient between true and predicted scores for Rosetta, EVmutation, DeepSe-
quence, linear regression (LR), fully connected network (FC), sequence convolutional
network (CNN), and graph convolutional network (GCN). EVmutation (I) refers to the
independent formulation of the model that does not include pairwise interactions. EV-
mutation (E) refers to the epistatic formulation of the model that does include pairwise
interactions. Each point corresponds to one of seven random train-tune-test splits. (b)
Spearman’s correlation performance of supervised models trained with reduced training
set sizes.

80

Figure A.2: Mean absolute error vs. score quartile. The mean absolute error in the models’
predictions grouped by score quartile. Linear regression has a substantial jump in error for
low-scoring variants compared to the other models in avGFP, GB1, Pab1, and Ube4b.

81

Figure A.3: Mean absolute error vs. epistasis quartile. The mean absolute error in
the models’ predictions grouped by absolute epistasis quartile. We compute epistasis by
subtracting the expected score for the multi-mutant sequence from the true score. The
expected score for the multi-mutant sequence is the sum of the corresponding single-mutant
scores, truncated to the observed minimum or maximum in the dataset. Linear regression
has a substantial jump in error for high-epistasis variants compared to the other models in
avGFP, GB1, and Pab1.

82

Figure A.4: Mean absolute error vs. number of mutations. The absolute error in the models’
predictions for each variant grouped by the number of mutations in the variant. Linear
regression struggles with increasing numbers of mutations in avGFP. The convolutional
networks perform better than linear regression and the fully connected network on single-
mutation variants in GB1 and Pab1.

Figure A.5: Positional extrapolation. Model performance when making predictions for
variants containing mutations in positions that were unmodified in the training data (posi-
tional extrapolation). Each point corresponds to one of six replicates, and the red vertical
line denotes the median.

83

Figure A.6: Protein structure graphs for Pab1. The graph convolutional network uses a
graph of the protein’s structure to determine which residues are close together. In addition
to the standard graph based on the protein’s actual structure, we tested four baseline graphs:
a shuffled graph based on the standard graph but with shuffled node labels, a disconnected
graph with no edges, a sequential graph containing only edges between sequential residues,
and a complete graph containing all possible edges. The graphs pictured are for the Pab1
dataset. The structured graph uses a distance threshold of 7Å to determine which residues
should be connected with edges (selected by hyperparameter sweep). The nodes are
colored according to each residue’s sequence position, with light colors corresponding to
residues at the start of the sequence and dark blue colors corresponding to residues at the
end of the sequence.

84

Figure A.7: Convolutional networks with and without a fully connected layer. The
correlation performance of sequence convolutional and graph convolutional networks
trained with various baseline structure graphs, with and without a final fully connected layer.
The standard graph is based on the protein’s actual structure. The shuffled graph is a version
of the regular structured graph with shuffled node labels. The complete graph contains
all possible edges between residues. The sequential graph only contains edges between
sequential residues. The disconnected graph contains no edges. The fully connected layer
at the end of the network compensates for apparent differences in performance caused by
type of convolutional network or different graph structures.

85

Figure A.8: Mean score of highest ranked variants. The mean score of each model’s
ranking of the highest scoring test set variants. For the most part, the supervised models
prioritize variants whose average score is higher than the wild-type. The random baseline
is shown with the mean and 95% confidence interval.

86

Figure A.9: Max score of highest ranked variants. The max score in each model’s ranking
of the highest scoring test set variants. For Ube4b, the supervised models prioritize a
variant with the true max score with the smallest tested budget (N=5), thus all the lines
corresponding to the supervised models are hidden behind the line for the true score.
Nearly all models across all datasets prioritize variants whose max score is higher than the
wild-type. The random baseline is shown with the mean and 95% confidence interval.

87

Figure A.10: Mutations in GB1 latent space groups. Heat maps showing the number of
occurrences of mutations for each annotated group in the GB1 latent space in Figure 2.4a.
Groups G1 and G2 contain variants with mutations at core residues near the start and
end of the sequence, respectively. Group G3 contains variants with mutations at surface
interface residues.

88

Figure A.11: Hyperparameter sweep. We performed an exhaustive hyperparameter sweep
for each dataset and type of model using all possible combinations of these hyperparame-
ters.

Figure A.12: Generation of resampled GB1 datasets. Flowchart showing how we created
resampled GB1 datasets corresponding to different library sizes and numbers of reads.

89

Variant Amino acid sequence
Wild-type MQYKLILNGKTLKGETTTEAVDAATAEKVFKQYANDNGVDGEWTYDDATKTFTVTE
Design10 MQYKLILNGKTLKGETWTWGHDPYRAEKKFKLYANDNGVWGEWTYDDATKTFTVTE
Design20 MQYKLEANWKTLKGETFTIAVDDYRAEKHFKLMMNANNIYGLWTYDRATKTFGMTE
Design30 MQYKLETWHPWNAGERNRVAVVAYMAEKNFKNKLNANNWWGTWTIDWAGKTFGCTA
Design40 MAFKNEAWWPWWCEEINRVAHAAWWAEVNFKNKLNANNWFGCWADCWAHGIFGATT
Design50 MPHTCEANDWWNWEVVNWSRHAPYRAEIHHKNEAFSLNWLGTWQGIRVQDRFNFGT

Table A.1: Designed GB1 sequences. The GB1 wild-type sequence and the designed
sequences with increasing numbers of mutations (10, 20, 30, 40, and 50) from wild-type.

Mutation Frequency Present in Design10
A24Y 0.93 Y
D40W 0.52 Y
D40Y 0.48 N
V29K 0.48 Y
Q32L 0.45 Y
E42Q 0.42 N
A34M 0.33 N

Table A.2: Diversity in designed GB1 sequences. We repeated our hill climbing protein
design approach 100 times to generate 100 sequences with 10 mutations each. We found 27
of 100 design runs converged to the same sequence. The other 73 represent distinct local
optima in the landscape. A number of mutations were observed across multiple designs,
and some of these were present in Design10. This table lists mutations common across the
designs and their frequencies.

90

Dataset Model type Key parts of architecture Learning rate Batch size Epochs
avGFP Linear regression Linear regression 0.0001 128 90

Fully connected 3 layers, 100 hidden units each 0.0001 32 134
Sequence convolutional 5 layers, kernel size 3, 128 filters 0.001 64 113
Graph convolutional 2 layers, 7Å threshold, 128 filters 0.0001 32 130

Bgl3 Linear regression Linear regression 0.0001 128 164
Fully connected 2 layers, 100 hidden units each 0.0001 32 187
Sequence convolutional 1 layer, kernel size 17, 32 filters 0.0001 64 102
Graph convolutional 1 layer, 6Å threshold, 32 filters 0.0001 128 129

GB1 Linear regression Linear regression 0.0001 128 27
Fully connected 1 layer, 1000 hidden units 0.0001 64 110
Sequence convolutional 3 layers, kernel size 17, 128 filters 0.0001 32 27
Graph convolutional 5 layers, 7Å threshold, 128 filters 0.0001 32 109

Pab1 Linear regression Linear regression 0.001 128 47
Fully connected 3 layers, 100 hidden units each 0.001 128 108
Sequence convolutional 3 layers, kernel size 17, 128 filters 0.0001 128 42
Graph convolutional 1 layer, 7Å threshold, 32 filters 0.0001 128 232

Ube4b Linear regression Linear regression 0.0001 64 73
Fully connected 3 layers, 100 hidden units each 0.0001 64 124
Sequence convolutional 5 layers, kernel size 3, 128 filters 0.0001 128 29
Graph convolutional 3 layers, 7Å threshold, 128 filters 0.0001 128 92

Table A.3: Selected hyperparameters. The hyperparameters selected by a hyperparameter
sweep for the main experiment. There are additional parts of the architecture that were
not part of the hyperparameter sweep. For example, the fully connected networks have a
dropout layer after every dense layer. The convolutional networks have a dense layer and a
dropout layer before the output node. Experiments with reduced training set sizes and
GB1 resampling used the same architectures selected for the main experiment, but they
had their own sweeps for learning rate and batch size.

Model avGFP Bgl3 GB1 Pab1 Ube4b
Linear regression 9,481 20,041 2,241 3,001 4,081
Fully connected 968,401 2,014,301 2,242,001 320,401 428,401
Sequence convolutional 3,118,409 1,573,993 747,081 990,281 1,390,409
Graph convolutional 3,077,065 1,605,993 858,953 242,793 1,381,961

Table A.4: Numbers of trainable parameters. The number of trainable parameters in each
model.

91

Library Version
python 3.6.8

cudatoolkit 10.0.130
cudnn 7.6.0

tensorflow-gpu 1.14.0
gast 0.2.2

numpy 1.16.4
joblib 0.13.2

matplotlib 3.1.1
networkx 2.3
pandas 0.25.0

scikit-learn 0.21.2
scipy 1.3.0

seaborn 0.9.0
enrich2 1.2.1

Table A.5: Main software packages. The main libraries and version numbers used to train
and evaluate models.

92

3 mutational effect transfer learning

The work presented in this chapter was performed in collaboration with Bryce

Johnson, Sameer D’Costa, Chase Freschlin, Philip A. Romero, and Anthony Gitter.

3.1 Introduction

Just as words combine to form sentences that convey meaning in human languages,

the specific arrangement of amino acids in proteins can be viewed as an information

rich language describing molecular structure and behavior. Protein language mod-

els (PLMs) harness advances in natural language processing to decode intricate

patterns and relationships within protein sequences and have broad utility in pro-

tein engineering. These models learn meaningful representations that capture the

semantic organization of protein space and can also be used in generative settings

to create custom-made proteins with desired characteristics. PLMs’ learned rep-

resentations are low dimensional and can be related to specific protein properties

such as enzyme activity or stability from limited training examples.

Protein language models such as UniRep and Evolutionary Scale Modeling

(ESM) are trained on vast repositories of natural protein sequences distributed

across the evolutionary tree. The training process often involves self-supervised

autoregressive next token prediction or masked token prediction, and through this

process, the PLMs learn context-aware representations of the amino acids within a

protein. Training on examples of natural proteins produces PLMs that implicitly

capture protein structure, biological function, and other evolutionary pressures.

93

While these models are powerful, they do not take advantage of our extensive

knowledge of protein biophysics and molecular mechanisms acquired over the last

century, and as a result are largely unaware of the underlying physical principles

governing protein function.

In this work we introduce Mutational Effect Transfer Learning (METL), a pre-

training strategy that integrates biophysical knowledge into protein language mod-

els. We use molecular modeling to generate large-scale synthetic data across di-

verse protein sequences and folds and pretrain a transformer-based PLM that

encapsulates this biophysical knowledge. This biophysical prior is then refined

through a fine-tuning process on experimental sequence-function data to produce

a biophysics-aware model that can predict specific protein properties. We develop

METL models in a global setting that are pretrained across protein folds and a

local setting that are focused on a particular protein. We find biophysical pre-

training produces models that better generalize to new regions of sequence space

and can predict the effects of mutations and epistatic interactions not observed in

the training data. Strong generalization allows the models to learn from limited

sequence-function information. We demonstrate the ability of METL models to

design functional GFP variants when trained on only 64 examples. METL provides

a general framework for incorporating biophysical knowledge into protein lan-

guage models and with the potential to become increasingly powerful with more

advanced molecular modeling and simulation methods. The fusion of molecular

mechanistic and deep learning models holds great potential for unraveling the

intricacies of protein behavior and advancing drug design, disease understanding,

94

and synthetic biology.

3.2 Results

Mutational Effect Transfer Learning Overview

We introduce METL, a framework for training neural networks to predict experi-

mentally derived functional scores for protein sequence variants, even when the

available experimental training data is limited (Fig. 3.1). METL incorporates molec-

ular simulations as a means to augment experimental datasets, operating in three

main steps. First, we generate pretraining data via molecular simulations, employ-

ing Rosetta (Alford et al., 2017) to simulate protein variants and compute Rosetta

score terms. The Rosetta scores include physical energies and statistical potentials

and capture the stability and likelihood of protein conformations. Second, we

pretrain a transformer encoder (Vaswani et al., 2017) to predict the Rosetta scores,

allowing the model to learn relationships between amino acid substitutions and se-

quence positions and to form an internal representation of protein sequences based

on the Rosetta scores. Finally, we fine-tune the pretrained transformer encoder to

predict the functional scores from experimental sequence-function datasets.

Within the METL framework, we implement two pretraining strategies: METL-

Local and METL-Global, which differ in what sequences are included in the pre-

training data. The local strategy generates a protein representation targeted to a

specific protein. For this strategy, we randomly generate up to 20M sequence vari-

ants of the target protein with a maximum of 5 amino acid substitutions per variant.

95

Figure 3.1: Overview of Mutational Effect Transfer Learning (METL) with the local
pretraining strategy. In the pretraining phase (upper row), we start with a specific target
protein (shown here as PDB:2QMT), randomly generate millions of sequence variants with
up to 5 amino acid substitutions, and compute Rosetta score terms for each sequence variant.
Then, we use the resulting data to pretrain a transformer encoder to predict the Rosetta
scores. In the finetuning phase (lower row), we use experimental sequence-function data
to fine-tune the pretrained neural network from the previous phase. The experimental
sequence-function data may come from high-throughput experiments like deep mutational
scanning or low throughput biological assays. It consists of variants of the same target
protein and an associated functional score for each variant telling us how functional the
variant is for the specific functional property measured in the experimental assay. The
experimental functional score could measure properties such as binding, thermostability,
and expression.

This provides coverage of the local sequence space surrounding the protein of inter-

est. In contrast, the global strategy aims to create a general protein representation

applicable to any target protein. For the global strategy, we select 148 diverse base

proteins (Kosciolek and Jones, 2014) and score 200K sequence variants per base

protein to generate a pretraining dataset consisting of approximately 30M variants.

The global strategy provides greater diversity in the training data, which supports

the learning of a more broadly applicable representation. For both strategies, we

compute 55 Rosetta scores for each sequence variant, forming sequence-score pairs

that serve as the pretraining data.

96

We utilize a transformer encoder architecture with a relative positional embed-

ding (Shaw et al., 2018) based on three-dimensional protein structure. The relative

position embedding enables the transformer to consider positional representations

of the inputs in terms of three-dimensional distances between residues. The lo-

cal models consist of 2M parameters, with 3 encoder layers and a 256 dimension

embedding. The global models consist of 20M parameters, with 6 encoder layers

and a 512 dimension embedding. We begin by pretraining the transformer encoder

with the Rosetta data to predict the 55 Rosetta scores given input amino acid se-

quences. Then, we fine-tune the network with experimental data to transition it

from predicting Rosetta scores to predicting the functional scores obtained from the

experimental assay. We implement a dual-phase fine-tuning strategy (Kumar et al.,

2022), first training a new prediction head while keeping other network weights

frozen, followed by training the entire network at a reduced learning rate.

The primary purpose of pretraining is not to recapitulate Rosetta scores but

rather to learn an information-rich protein representation that can serve as a starting

point for finetuning on experimental data. Nonetheless, the pretrained models are

capable of predicting Rosetta scores with remarkable speed and accuracy (Fig. B.1).

METL-Local demonstrates strong predictive ability for Rosetta’s total score energy

term, achieving a mean Spearman correlation between true and predicted score

of 0.96 across the 7 METL-Local source models we trained. With METL-Global,

we observed a substantial difference in predictive ability for in-distribution PDBs

(those included in the METL-Global pretraining data, Spearman correlation 0.85)

and out-of-distribution PDBs (those not included, Spearman correlation 0.17). This

97

suggests METL-Global is overfitting to the PDBs present in the pretraining data.

However, METL-Global still captures biologically relevant amino acid embeddings

(Fig. B.2), which should be generally informative for any given protein sequence.

Evaluation With Challenging Generalization Tasks

Generalizing to new data can be challenging for neural networks trained with

limited or biased datasets. This issue is relevant in protein engineering, where

experimental datasets may have few training examples or skewed mutation dis-

tributions. These factors can impact the accuracy and utility of learned models

when using them to prioritize variants for experimental characterization. We eval-

uated the predictive generalization performance of METL on eight experimental

datasets, representing proteins of various sizes and functions: avGFP, DLG4-2022,

GB1, GRB2-Abundance, GRB2-Binding, Pab1, TEM-1, and Ube4b (Table 3.1). To

thoroughly evaluate performance with limited training data, we implemented com-

prehensive train, validation, and test splits, encompassing small training set sizes

and difficult extrapolation tasks. We tested multiple replicate splits to account for

variation in the selection of training examples. We measure performance via the

test set Spearman correlation between true and predicted scores and present the

median correlation across replicates.

For comparison, we also evaluated the predictive performance of several base-

lines and established methods, including linear regression with a one hot sequence

encoding (Linear-OH), Rosetta’s total score as a standalone prediction, ESM-2 (Lin

et al., 2023), and EVE (Frazer et al., 2021). ESM-2 is a general protein language

98

Description Organism Molecular Function Selection Length Variants Ref.
avGFP Green fluorescent protein A. victoria Fluorescence Brightness 237 51714 Sarkisyan et al. (2016)
DLG4-2022 Postsynaptic density protein 95 PDZ3 domain H. sapiens Synaptic organization CRIPT binding 84 8251 Faure et al. (2022)
GB1 Protein G B1 domain Streptococcus sp. Antibody binding IgG-Fc binding 56 536084 Olson et al. (2014)
GRB2-A Growth factor receptor-bound protein 2 SH3 domain H. sapiens Signaling adaptor Abundance 56 63366 Faure et al. (2022)
GRB2-B Growth factor receptor-bound protein 2 SH3 domain H. sapiens Signaling adaptor GAB2 binding 56 33441 Faure et al. (2022)
Pab1 Pab1 RNA recognition motif (RRM) domain S. cerevisiae Poly(A) binding mRNA binding 75 37710 Melamed et al. (2013)
TEM-1 TEM-1 β-lactamase E. coli Antibiotic hydrolysis Ampicillin resistance 286 12374 Gonzalez and Ostermeier (2019)
Ube4b Ubiquitination factor E4B U-box domain M. musculus Ubiquitin activation Ubiquitin ligase activity 102 88375 Starita et al. (2013)

Table 3.1: Experimental datasets. We evaluated METL on experimental datasets represent-
ing proteins of varying sizes, folds, and functions.

model that captures a rich representation of protein sequences based on underlying

evolutionary signals. We used the 35M parameter version of ESM-2 and finetuned

it with the same approach we used for METL. Like ESM-2, EVE captures underlying

evolutionary signals, but EVE differs from ESM-2 in that it is trained on multiple

sequence alignments that are specific to the target protein family. In addition to

evaluating the unsupervised EVE score as a standalone prediction, we also tested

it as an input feature to linear regression in combination with one hot encoded

sequences (Linear-EVE) (Hsu et al., 2022).

Generalizing from small training sets

METL-Local and Linear-EVE consistently and substantially outperformed the other

supervised methods for small training set sizes across most of the tested datasets

(Fig. 3.2). METL-Local outperformed Linear-EVE on the avGFP and GB1 datasets,

and Linear-EVE outperformed METL-Local on the other tested datasets. The

differences between these two methods were sometimes minor, such as for the

GRB2-Abundance dataset. METL-Global and ESM-2 were competitive with each

other for small to mid-size training sets, with ESM-2 typically surpassing METL-

Global for larger training set sizes. Interestingly, METL-Global and ESM-2 are both

99

general protein representation models, and they performed worse than METL-Local

and Linear-EVE, which are protein family-specific models. Linear-OH performed

worse than the other tested methods for small to mid-size training sets. However,

given enough data, all of the supervised methods, including Linear-OH, converged

to similar performance levels. The maximum performance varies by dataset, with

Ube4b standing out as having substantially worse maximum performance than the

other datasets.

The performance of METL-Local and Linear-EVE on small training set sizes

is closely related to the performance of unsupervised Rosetta total score and EVE,

respectively. With a training set size of 8 (the smallest we tested), Linear-EVE

performs approximately the same as EVE. This suggests that the 8 experimental

training examples are not contributing much over the standalone EVE score when

used with the Linear-EVE regression framework. Conversely, METL-Local some-

times over-performs or under-performs the standalone Rosetta total score prediction,

which may be due to the METL-Local finetuning framework or the fact that METL

trains on numerous Rosetta score terms and not solely total score. In some cases,

like for the avGFP dataset, it can take hundreds of experimental training examples

for Linear-EVE to outperform unsupervised EVE. On the other hand, METL-Local

can outperform Rosetta total score with as few as 8 training examples, and it consis-

tently outperforms Rosetta total score with 16 examples, with the exception of the

GRB2-Abundance dataset.

METL-Local performs especially well on the avGFP and TEM-1 datasets, which

can be explained in part by the strong correlation between Rosetta’s total score and

100

Figure 3.2: Comparative performance of Linear-OH, Rosetta total score, EVE, Linear-
EVE, ESM-2, METL-Global, and METL-Local across different training set sizes and
extrapolation tasks. (a) Learning curves for eight datasets showing the test set Spearman
correlation between true and predicted scores across a number of training set sizes ranging
from 8 to 16,384 examples. We tested multiple replicates for each training set size, starting
with 101 replicates for the smallest train set size and decreasing to 3 replicates for the
largest size. We show the median Spearman correlation across these replicates. The top left
panel (“Average”) shows the mean of the learning curves across all the pictured datasets.
(b) Correlation performance of each method on position, mutation, score, and regime
extrapolation. We tested 9 replicates for each type of extrapolation and show the median.

101

the experimental functional score for these datasets. In general, for small training

set sizes, we observed that the stronger the correlation between Rosetta’s total score

and the experimental functional score, the stronger the METL-Local performance

(Fig. B.3). However, once hundreds or thousands of training examples are available,

METL-Local performance is dominated by dataset-specific effects rather than the

correspondence between Rosetta total score and protein function. Furthermore,

we found that at small training set sizes, the selection of experimental training

examples can make a substantial difference in predictive performance (Fig. B.4),

with the variance due to the selection of training set examples decreasing as the

training set size increases (Fig. B.5).

Position extrapolation

We implemented a number of extrapolation tasks — position, mutation, score, and

regime extrapolation — to simulate challenging scenarios that may arise in real

protein engineering applications, such as datasets missing examples of mutations in

certain positions, having biased score distributions with predominantly low-scoring

variants, or consisting of solely single-substitution variants. Position extrapolation

tests a model’s ability to extrapolate to sequence positions that are not represented

in the training data. This is a challenging task requiring the model to possess

substantial prior knowledge or a structural understanding of the protein (Mater

et al., 2020). Notably, METL-Local and the EVE-based methods demonstrated

superior position extrapolation performance across the tested datasets, achieving

average Spearman correlations of 0.59 and 0.55, respectively. METL-Global and

102

ESM-2 both achieved a lower average Spearman correlation of 0.46. METL-Local’s

advantage can be attributed, in part, to the local pretraining data, which includes

mutations in all sequence positions of the target sequence, providing the model with

prior knowledge of each sequence position. Linear-OH is unable to perform position

extrapolation because the model cannot learn weights for sequence positions not

represented in the training data. This logic also explains why EVE and Linear-EVE

perform identically for position extrapolation. The one hot sequence features in

Linear-EVE are not contributing to position extrapolation, so the model is relying

solely on the EVE score.

Mutation extrapolation

Mutation extrapolation evaluates a model’s ability to extrapolate to specific amino

acid substitutions that are not present in the training data. Mutation extrapolation

is relatively easier than position extrapolation because the model has access to

examples of mutations in every sequence position, which provide information about

the importance of those sequence positions. METL-Local and ESM-2 performed

similarly in mutation extrapolation, achieving an average Spearman correlation

across datasets of 0.77. Linear-EVE and METL-Global achieved average Spearman

correlations of 0.74 and 0.72. Linear-OH performed the worst among the tested

supervised methods with an average correlation of 0.66. The unsupervised Rosetta

total score and EVE models performed about the same for mutation extrapolation

as they did for small train sizes and position extrapolation. These models do not

train on the experimental data, so their performance completely depends on the

103

test set. The test set used in mutation extrapolation has a similar distribution to the

test sets used for small train sizes and position extrapolation.

Score extrapolation

Extrapolating from variants with lower-than-wild-type scores to variants with

higher-than-wild-type scores proves to be a challenging task (Dallago et al., 2022).

For most datasets, the maximum Spearman correlation for score extrapolation

was less than 0.3, and for certain datasets like Pab1, all the Spearman correlations

fell below 0.1. The GB1 dataset is an exception, where both METL-Local and

METL-Global achieved relatively high Spearman correlations of 0.72 and 0.71. For

comparison, Linear-EVE, Linear-OH, and ESM-2 achieved Spearman correlations

of 0.56, 0.56, and 0.55 on the GB1 dataset. The difficulty of score extrapolation might

be attributed to the information content of low-scoring variants. Many low-scoring

variants have minimal function and exhibit instability, resulting in their low scores.

Although the scoring method assigns a range of scores to these variants, there may

be little meaningful distinction between their scores in reality. It is possible the

information learned from these low scoring variants is not useful for ranking high

scoring variants, thus resulting in the low score extrapolation for most datasets.

Moreover, the unsupervised methods Rosetta total score and EVE, which do not

train on the experimental data, performed worse on score extrapolation than the

other generalization tasks we evaluated. This is because the test set in score extrapo-

lation is highly biased, containing only variants that function better than wild-type.

One reason as to why the unsupervised methods would perform worse when eval-

104

uating only on high-scoring variants is that at least some of the performance of

these unsupervised methods in the other generalization tasks is due to their ability

to distinguish between low-scoring variants and high-scoring variants. This reason-

ing could also help explain the weak performance of the supervised methods, in

addition to the information content of low-scoring variants. Given the focus of pro-

tein engineering on identifying variants with high functional scores, these results

highlight the importance of having training examples with higher-than-wild-type

scores.

Regime extrapolation

Experimental datasets often contain only single amino acid substitution variants,

lacking examples of higher-order mutations and non-additive (epistatic) interac-

tions. Regime extrapolation tests a model’s ability to extrapolate to variants with 2

or more amino acid substitutions when trained on variants containing only 1 amino

acid substitution. All of the supervised models achieved relatively high perfor-

mance across the datasets, with the exception of the Ube4b dataset. Interestingly,

Linear-OH, which inherently captures only additive interactions, still achieved

strong Spearman correlations on several datasets, suggesting many of the interac-

tions in these datasets are additive. The unsupervised Rosetta total score and EVE

performed worse than the supervised models in most cases. The avGFP dataset

stands out as it exhibits a larger distinction between the models than the other

datasets, with METL-Local, Linear-EVE, METL-Global, ESM-2, and Linear-OH

achieving Spearman correlations of 0.8, 0.78, 0.68, 0.67, and 0.43, respectively.

105

Furthermore, the avGFP and Ube4b datasets contain variants with up to 15

and 10 amino acid substitutions, respectively. This enables us to test a second type

of regime extrapolation, where we train the model on variants with 1 or 2 amino

acid substitutions and evaluate on variants with 3 or more substitutions (Fig. B.6).

Notably, on the avGFP dataset, METL-Local’s and Linear-EVE’s performance re-

mained relatively consistent regardless of their training on singles or both singles

and doubles. Conversely, the other models exhibited substantial improvements

when trained on singles and doubles. This suggests METL-Local and Linear-EVE

may be capturing knowledge about interactions, even when trained with just sin-

gles, whereas the other models do not capture the same information unless trained

with singles and doubles. The Ube4b dataset shows a different pattern, with all

models improving when trained with singles and doubles.

Additional baselines

We evaluated several additional baselines, including METL-Local with random

initialization, linear regression with Rosetta’s total score as an input feature (Linear-

RTS), and sequence convolutional networks. METL-Local with random initial-

ization performed substantially worse than its pretrained counterpart (Fig. B.7),

showing the considerable impact of pretraining. Incorporating Rosetta’s total score

as an input feature for linear regression, in combination with one hot encoding,

greatly improved performance over solely using one hot encoding features (Fig. B.8).

This baseline is similar in concept to Linear-EVE, but it uses Rosetta’s total score

instead of the EVE score as an additional feature. While Linear-RTS sometimes

106

matched METL-Local’s performance and even exceeded it on the GRB2-A dataset,

METL-Local still outperformed it on average. Furthermore, it should be noted that

Linear-RTS requires running Rosetta to compute the total score for every variant,

even during inference. We further tested sequence convolutional networks and

fully connected networks (Fig. B.9), and while sequence convolutional networks

offered some improvement over Linear-OH in extrapolation tasks, they did not

approach METL-Local in challenging small train set size or extrapolation scenarios.

Comparative analysis of relative embeddings, feature extraction,

and model size

We examined several components of the METL architecture to investigate their

effects on model performance, including one-dimensional (sequence-based) ver-

sus three-dimensional (structure-based) relative position embeddings (Fig B.10),

feature extraction versus finetuning (Fig B.11), and global models with 20M versus

50M parameters (Fig B.13). While METL-Local did not benefit much from three-

dimensional embeddings over one-dimensional embeddings (except for the TEM-1

dataset), METL-Global showed consistent improvement with three-dimensional

embeddings. This suggests that spatial information from three-dimensional struc-

tures provides useful context when diverse structures are involved, such as in the

METL-Global pretraining data. In particular, METL-Global’s position extrapolation

performance benefited substantially from incorporating three-dimensional relative

position embeddings, suggesting 3D structure information plays an important role

in predicting behavior of unseen sequence positions.

107

We compared the efficacy of fine-tuning to feature extraction for both METL and

ESM-2 models (Fig. B.11). To perform feature extraction, we saved outputs from

the appropriate internal layer of each model and then used those features as inputs

to train linear regression. Fine-tuning consistently outperformed feature extraction

for both METL-Local and METL-Global. In contrast, for ESM-2, there were several

instances where feature extraction substantially outperformed fine-tuning when

applied to small training set sizes, namely for the DLG4-2022, GRB2-B, Pab1, and

TEM-1 datasets. Notably, for DLG4-2022 and Pab1 with small training set sizes, the

performance of ESM-2 feature extraction exceeded that of METL-Local finetuning.

However, this is only the case for small training set sizes, and ESM-2 finetuning

outperforms ESM-2 feature extraction given enough experimental training data,

even for these datasets.

In addition to the 35M parameter ESM-2 model, we also tested feature extraction

with the 150M and 650M parameter ESM-2 models (Fig. B.12). The 150M parameter

model consistently outperformed the 35M parameter model, with the exception of

the DLG4-2022 dataset, where the 35M parameter model actually performed better.

Surprisingly, the 650M parameter model performed worse than both the 35M and

150M parameter models for small training set sizes with the avGFP, DLG4-2022,

and Pab1 datasets. In other cases, such as for GB1, GRB2-A, and GRB2-B, the 650M

parameter model offered some improvement over the 35M and 150M parameter

models, at least for larger training set sizes.

Beyond the 20M parameter METL-Global models used for our main results, we

also tested METL-Global models with 50M parameters (Fig. B.13). The performance

108

of the 50M parameter model was similar on average to the 20M parameter version,

with the 50M parameter model offering minor improvements for some datasets like

GRB2-B but also performing slightly worse for other datasets like Ube4b. Examining

the pretrained source models, we observed that the 50M parameter METL-Global

overfits more than the 20M parameter METL-Global when predicting Rosetta’s

total score on in-distribution PDBs and generalizes worse to out-of-distribution

PDBs (Fig. B.14). This overfitting suggests that simply increasing the number of

parameters may not necessarily yield a better representation or more generalizable

representation without making other changing to the training strategy.

Relationship Between Experimental and Simulated Data

Experimental assays allow for the measurement of specific functions, but they can

be complicated, expensive, and time-consuming. Conversely, molecular simulations

are simpler to execute, but they do not necessarily model the exact phenotype of

interest. Moreover, running millions of simulations can also take considerable time

and computational resources. To quantify the tradeoff between experimental and

simulated data, we measured the performance of METL-Local, pretrained and

finetuned with varying amounts of simulated and experimental data, respectively,

for the GB1 dataset (Fig. 3.3).

As expected, increasing the amount experimental data improves performance.

Furthermore, increasing the amount of simulated data also improves performance,

and simulated data can partially compensate for a lack of experimental data. For

instance, a model pretrained with 1K simulated examples achieves a Spearman’s

109

Figure 3.3: Relationship between experimental and simulated data for the GB1 dataset.
The contour plot illustrates the test set Spearman’s correlation resulting from training METL-
Local with varying amounts of simulated (pretraining) and experimental (finetuning)
data. The plot displays a grid of Spearman’s correlation values on the same test dataset
corresponding to discrete combinations of experimental and simulated dataset sizes. The
model benefits from larger quantities of experimental and simulated data, with the latter
producing diminishing returns after approximately 128K examples.

correlation of 0.36 when fine-tuned with 40 experimental examples and 0.51 when

fine-tuned with 80 experimental examples. However, by increasing the amount of

pretraining examples to 128K, the model achieves a Spearman’s correlation of 0.53

with just 20 experimental examples. There are, however, diminishing returns for

adding additional simulated data beyond a certain threshold. The performance

improvements with additional pretraining data are marginal after about 128K

examples, at least for this relatively small 2M parameter model.

We ran our simulations on servers across the OSG Open Science Pool (OSG,

2006), with each compute job requiring only 1 CPU core and 2GB of memory. The

average runtime for a single GB1 variant was approximately 59 seconds. Given this

110

average runtime, simulating 128K GB1 variants would take around 87 compute-

days. If distributed across 96 cores, such as on a 96-core server processor, running

all 128K GB1 simulations would take under one day. Simulations for larger proteins

took longer, with an average of approximately 152 seconds for an avGFP variant.

On a faster M2 Max MacBook Pro, the average runtime is approximately 19 seconds

for a GB1 variant and approximately 50 seconds for an avGFP variant. These results

suggest it is possible to achieve sufficient pretraining with a limited number of

simulations, within a reasonable computational and time budget.

Customized Biophysical Simulations Improve METL-Local

Performance

The METL framework supports pretraining on function-specific molecular sim-

ulations, such as binding-specific scores, that more closely align with the target

biological functions or experimental assays. Similarity between pretraining and tar-

get tasks is important to achieve strong performance and avoid detrimental effects

in transfer learning (Wang et al., 2019). Indeed, for small experimental training

set sizes, we observed that the stronger the correlation between Rosetta’s total score

and the experimental functional score, the stronger the METL-Local performance

(Fig. B.3).

To demonstrate how function-specific simulations can improve the relevance of

the pretrained METL model and its performance after finetuning, we conducted

function-specific simulations for the GB1 dataset. The function measured by this

assay is the binding affinity between the GB1 domain of streptococcal protein G and

111

Figure 3.4: Customized binding simulations improve METL-Local performance for GB1
dataset. (a) METL-Local pretrains on general stability-related Rosetta scores from the
standalone GB1 structure. METL-Local-Bind pretrains on both general Rosetta scores
from the standalone GB1 structure and binding-specific scores from the GB1-IgG complex
structure. (b) Learning curves and extrapolation performance for Linear-OH, METL-L, and
METL-L-Bind on the GB1 dataset. We pretrained METL-L and METL-L-Bind on identical
datasets, differing only in the target Rosetta score terms. We used the same finetuning
dataset splits and replicates as the results in Figure 3.2. Vertical red bar denotes the median
of the extrapolation replicates.

mammalian IgG. To match this experimentally assayed function, we implemented

an enhanced Rosetta pipeline to compute binding-specific scores based on the

GB1-IgG protein complex. The Rosetta binding scores include new energy terms

such as per_residue_energy_int, which captures the average energy of each residue

at the interface, and dG_separated, which captures the change in energy when

the chains are separated versus bound (Table B.5). The GB1 experimental score

correlates more strongly with several of the binding-specific Rosetta scores than it

does with the strongest-correlated Rosetta score from the standalone GB1 structure

(Fig. B.15). This suggests the simulated binding-specific scores are more aligned

with the underlying binding signal from the experimental assay.

112

We pretrained a standard METL-Local (METL-L) model and a modified METL-

L-Bind model using the standard 55 Rosetta scores and those scores plus the binding

scores, respectively (Fig. 3.4). The models were identical besides the tasks in

the pretraining dataset, enabling us to isolate the effects of pretraining on the

additional binding scores. We evaluated the performance of METL-L and METL-L-

Bind using the same small training size and extrapolation tasks used in our main

experiments. METL-L-Bind outperformed the standard METL-L when finetuned

on small amounts of data. On the smallest training set sizes of 8, 16, and 32, METL-

L-Bind achieved test set Spearman correlations of 0.50, 0.62, and 0.71, while METL-L

performed worse with Spearman correlations of 0.43, 0.57, and 0.67. METL-L-Bind’s

improvement over METL-L on the position, score, and regime extrapolation tasks

was negligible. These results suggest that protein function-specific simulations can

be worthwhile when used within the METL pretraining framework.

Low-N avGFP Design

In protein engineering, computational models that predict protein variant fitness

can be used to prioritize high-functioning variants for experimental characterization.

However, these models often face the challenge of making predictions based on

limited training data or extrapolating to unexplored regions of sequence space. To

demonstrate METL’s potential for real protein engineering applications, we tested

METL-Local’s ability to prioritize fluorescent avGFP variants in these challenging

design scenarios. We used METL-Local to design 20 avGFP sequences that were

not part of the original DMS dataset, and we experimentally validated the resulting

113

Figure 3.5: Low-N avGFP Design. (a) Overview of GFP design experiment. We tested
2 different design constraints: Observed AA, where sequences contain only amino acid
substitutions found in the training set, and Unobserved AA, where sequences exclude any
amino acid substitutions found in the training set. (b) Multidimensional scaling (MDS)
sequence space visualization of the wild-type avGFP sequence, the 64 avGFP training
sequences, and the 20 designed proteins. The designed sequences contain either 5 or 10
amino acid substitutions from wild-type. Training set sequences are colored on a gradient
according to their experimental brightness score. Designed sequences are colored according
to whether they exhibited fluorescence. (c) Experimentally characterized fluorescence
brightness (multiple replicates) of the designed sequences, the best training set sequence
(BT), and the wild-type sequence (WT).

avGFP variants to measure their fluorescence brightness (Fig. 3.5 and Table B.1).

We incorporated several constraints to create a challenging protein engineering

scenario. We emulated low-N protein engineering by using only N = 64 randomly-

sampled variants from the full DMS dataset as the METL-Local training set. The

brightness distribution of the sampled variants roughly matched that of the full

DMS dataset, and the average number of amino acid substitutions per variant in the

sample was 3.9. We designed variants with either 5 or 10 amino acid substitutions

114

away from wild-type, forcing the model to perform regime extrapolation. Further-

more, we tested two different constraints on the sequence design process: Observed

AA and Unobserved AA. In the Observed design scenario, the designed sequences

can contain only amino acid substitutions found in the training set. Conversely, in

the Unobserved scenario, the designed sequences must exclude any amino acid

substitutions found in the training set. The Unobserved constraint is similar to

mutation extrapolation in that the model must make predictions for amino acid

substitutions that are not present in the training data. We designed 20 avGFP

sequences in total: 10 Observed and 10 Unobserved with 5 sequences with 5 amino

acid substitutions and 5 sequences with 10 substitutions in each scenario. We used

simulated annealing to search over avGFP sequence space for designs that maxi-

mize the fitness predicted by METL-Local and clustered the simulated annealing

solutions to select diverse sequences.

To identify variants with improved fluorescence due to increased brightness

rather than improved expression, we expressed avGFP as a fusion protein with

mKate2, emulating the conditions used to collect the training dataset (Sarkisyan

et al., 2016). Briefly, avGFP is expressed as a fusion protein with mKate2 using a

rigid alpha-helical linker. This minimizes FRET activity and limits the potential

for highly unstable or misfolded avGFP variants from significantly affecting the

folding of mKate2. We calculated a brightness value for each avGFP by normalizing

its fluorescence with respect to mKate2.

Of the 20 designed avGFP sequences, 16 exhibited fluorescence (Fig. 3.5c).

We achieved a 40% (2/5) hit rate in the most restrictive design scenario, Unob-

115

served with 10 amino acid substitutions. The percentage increased to 80% (4/5)

when considering sequences with 5 amino acid substitutions. In the Observed

design scenario, our hit rate was 100% (10/10). Although none of the designed

sequences expressed higher brightness than wild type, several matched or exceeded

the brightness of the best training set variant. Six variants exhibited greater avGFP

fluorescence than wild-type avGFP, and 12 variants exhibited greater mKate2 fluo-

rescence than that measured in the wild-type avGFP construct. Because mKate2 is

constant across all variants, the differences in mKate2 fluorescence may be driven

by avGFP stability. In the case of variants that express in the Unobserved scenario,

we theorize improved stability compensates for reduced brightness such that the

total avGFP fluorescence is greater than wild-type avGFP.

3.3 Discussion

Motivated by decades of research into biophysics, molecular dynamics, and protein

simulation (Hollingsworth and Dror, 2018; Alford et al., 2017), we present METL,

which leverages transfer learning from molecular simulations to improve protein

variant fitness prediction with small or biased datasets. Unlike existing protein

language models or multiple sequence alignment-based methods that train on

natural sequences (Alley et al., 2019; Rives et al., 2021; Bepler and Berger, 2021;

Frazer et al., 2021; Elnaggar et al., 2022; Yang et al., 2023), METL captures different

underlying signals, which are generated through molecular simulations rather

than natural selection and evolution. We implemented METL with pretraining

116

on general Rosetta score terms, which broadly capture aspects of protein stability.

The METL framework also supports pretraining on function-specific molecular

simulations, such as binding-specific scores, that can be tailored to specific biological

functions and assays. METL’s pretraining strategy incorporates both functional

and non-functional examples from regions of sequence space close to the protein

of interest, providing valuable context for predicting functional effects of amino

acid substitutions.

Our comprehensive evaluation of METL’s predictive generalization across vari-

ous experimental datasets revealed that METL-Local substantially outperformed

other methods for certain datasets such as avGFP and GB1. Due to biophysics-based

knowledge embedded within the model and insights into how mutations relate to

each other in the pretraining data, METL-Local excelled in tasks like generalizing

from small training set sizes and position extrapolation. However, Linear-EVE

outperformed METL-Local for many of the tested datasets. The performance differ-

ences between METL-Local and Linear-EVE can be explained, at least in part, by

their reliance on protein stability and evolutionary information, respectively. Our

in-depth analysis uncovered other notable patterns, such as that the protein family-

specific methods, METL-Local and Linear-EVE, outperformed the general protein

representation methods, METL-Global and ESM-2. METL-Global performed sim-

ilarly to ESM-2 35M when finetuned on experimental data. However, we found

METL-Global was overfitting to PDBs in the pretraining data, suggesting there is

more work to be done in improving the pretraining strategy for the global model.

Our results provide insights into the performance of METL, EVE, and other

117

related methods, but they also raise broader questions about the merits of evolution-

ary versus biophysics-based data in predicting protein variant fitness. Evolutionary

data captures protein fitness information through natural selection and evolu-

tion, encompassing protein stability and functions under evolutionary pressures,

such as binding. In contrast, biophysics-based data predominantly captures pro-

tein stability. Evolutionary information often correlates better with experimental

datasets than protein stability information alone (Høie et al., 2022). Consistent with

these findings, we observed that for many of our tested datasets and challenging

generalization tasks, EVE (evolutionary-based) outperformed Rosetta total score

(stability-based). By extension, Linear-EVE outperformed METL-Local. Regardless,

certain datasets lent themselves better to modeling with Rosetta and METL, such

as GB1 and avGFP. The question of whether to rely on evolutionary or biophysics-

based information depends on how closely the experimental function of interest

relates to these different signals. Additionally, there are confounding factors, such

as some target proteins not having very deep alignments, which provide less signal

for evolutionary-based methods, or certain proteins being harder to simulate, which

makes the biophysics-based signal noisier. Finally, protein stability and evolution-

ary data may provide complementary information to protein fitness prediction,

and future work can focus on how to best combine these sources of information.

Prior models have integrated biophysics and machine learning either by using

biophysics-based features as input to machine learning models or approximat-

ing biophysics simulations with machine learning. Rosetta and FoldX stability

and energy terms have been provided as features for an augmented linear regres-

118

sion model (Hsu et al., 2022), a 2D CNN (Harmalkar et al., 2023), and on nodes

and edges in a graph neural network (Wang et al., 2022a). Function-value-prior

augmented-Bayesian Neural Networks can incorporate Rosetta stability as a prior

on protein function prediction in regions where a Bayesian Neural Network has

high epistemic uncertainty (Nisonoff et al., 2022). Nordquist et al. (Nordquist

et al., 2023) include both Rosetta- and molecular dynamics-derived features in their

supervised learning models of big potassium channels. Unlike a fine-tuned METL-

Local model, all of these approaches must run the biophysics calculations for each

sequence variant, which could limit their scalability in protein engineering applica-

tions. Alternative protein design and engineering strategies use machine learning

to approximate the biophysics calculations, similar to METL’s pretraining. These

include the Epistasis Neural Network that has been used to engineer xylanases

(Lipsh-Sokolik et al., 2023) and GFP variants (Weinstein et al., 2023), molecular

dynamics approximations to minimize energy and match a target structure (Omar

et al., 2023), and learning to predict Rosetta protein-ligand binding energy to speed

up variant scoring (Ramírez-Palacios and Marrink, 2023). Predicting biophysics

scores for protein engineering is related to the long-standing problem of predicting

stability (Capriotti et al., 2005; Folkman et al., 2016; Cao et al., 2019; Chen et al.,

2020; Li et al., 2020; Wang et al., 2022b; Blaabjerg et al., 2023; Hummer et al., 2023;

Zhou et al., 2023; Dieckhaus et al., 2023; Boyer et al., 2023; Sun et al., 2023).

Examples across diverse scientific domains have demonstrated the power of

combining simulations and machine learning (Cranmer et al., 2020), spanning top-

ics such as gene regulatory network reconstruction (Wu and Sinha, 2023), chemical

119

foundation model pretraining (Ahmad et al., 2022), climate emulation (Yu et al.,

2023), and quantum chemistry approximation (Eastman et al., 2023a,b). METL

fits within this broader trend and represents a significant step toward effectively

integrating biophysics insights with machine learning-based protein fitness pre-

diction. The METL framework pretrains protein language models on molecular

simulations, capturing underlying signals present in the simulated data. METL can

pretrain on general stability terms or more specific function-related scores, offering

the potential to model protein functions that can be simulated but are not highly

evolutionarily constrained. As the field of biophysics and molecular simulation

continues to evolve, METL stands to benefit from faster and more accurate simula-

tions. Biophysics-based pretraining can help overcome key challenges in protein

engineering, such prioritizing protein variants for experimental analysis with lim-

ited training data. Consequently, METL emerges as a promising tool for protein

engineering with a distinct approach from the many existing methods rooted in

evolutionary information.

3.4 Methods

Generating Rosetta pretraining data

The Rosetta pretraining data consists of protein sequences and their corresponding

score terms, computed by modeling the sequences with Rosetta. The data used

for local and global source models differs in what sequences are included. Rosetta

data for local source models contains protein variants within the local sequence

120

space surrounding the protein of interest. Rosetta data for global source models

contains protein variants from a diverse range of base sequences and structures.

We generated local Rosetta datasets for each target protein from the experimental

datasets. We acquired the necessary structures for these target proteins from RCSB

Protein Data Bank (Berman et al., 2000) and AlphaFold Protein Structure Database

(Varadi et al., 2022). For cases where the acquired structure did not match the

reference sequence of the target protein, we used Rosetta comparative modeling

or truncated the acquired structure to match the reference sequence. For each

local dataset, we generated ≈20M protein sequence variants with a maximum of 5

amino acid substitutions. See Table B.3 for additional details regarding local Rosetta

dataset structures and variants, including exceptions to the above.

We generated the global Rosetta dataset based on 150 diverse protein structures

identified in Supplementary Table 1 of Kosciolek and Jones (Kosciolek and Jones,

2014). We downloaded the 150 structures from RCSB Protein Data Bank (Berman

et al., 2000). Some structures contained modified or missing residues. We replaced

modified residues with canonical amino acids and used the RosettaRemodel ap-

plication to fill in the structure of missing residues. We were unable to remodel

PDB IDs 1J3A and 1JBE, thus we excluded these structures from the final dataset.

For each of the remaining 148 structures, we generated ≈200K variants with a

maximum of 5 amino acid substitutions, for a total of ≈30M variants.

We used a custom sub-variants sampling algorithm to generate the variants for

both the local and global datasets. The algorithm iteratively samples a random

variant with 5 amino acid substitutions from the wild-type sequence then generates

121

all possible 4-, 3-, 2- and 1-substitution sub-variants with the same amino acid

substitutions as the 5-substitution variant. Duplicate variants generated through

this process are discarded. The iteration terminates when the target number of

variants is reached. For the global dataset, we used the sub-variants sampling

algorithm to generate all of the ≈200K variants per base sequence. For the local

datasets, we first generated all possible 1-substitution or 1- and 2-substitution

variants, and then we used the sub-variants sampling algorithm to generate the

remainder of the ≈20M variants per target protein (Table B.3).

Once variants were generated, we used Rosetta to compute energy terms for

each variant sequence. We first prepared each base PDB file for use with Rosetta

by following the recommendation in the Rosetta documentation. We ran Rosetta’s

clean_pdb.py and relaxed the structure with all-heavy-atom constraints. We gen-

erated 10 structures and selected the lowest energy structure to serve as the base

structure for subsequent steps.

We used Rosetta v3.13 (Alford et al., 2017) to compute full-atom energy terms

(ref2015 score function), centroid-atom energy terms (score3 score function), and

custom filter-based terms. For each variant, we introduced the variant’s mutations

to the corresponding base structure using a Rosetta resfile. Then, to generate the

full-atom energy terms, we used FastRelax to relax the mutated structure using the

ref2015 score function, only repacking residues within 10Å of the mutated residues,

with 1 repeat. To generate the centroid-atom energy terms, we used score_jd2 to

score the resulting structure using the score3 score function. Finally, we calculated

custom filter-based energy terms. See Table B.4 for a list and description of each

122

term.

Preprocessing Rosetta pretraining data

Prior to training neural networks, we preprocessed the raw Rosetta data by drop-

ping variants with NaN values for any of the energies, removing duplicates by

randomly selecting one of the duplicates to keep, and filtering out variants with

outlier total_score values. We grouped variants by base PDB and removed outliers

independently for each group using a modified z-scores method, which uses the

median and median absolute deviation instead of the mean and standard devia-

tion. For each data point i, we calculated the modified z-score using the following

equation:

si =
|xi − x̃|

MAD , (3.1)

where si is the modified z-score, xi is the Rosetta total_score, x̃ is the median

total_score of the group, and MAD is the Median Absolute Deviation, defined as

MAD = median(|xj − x̃|) ∀ xj ∈ {x}, or the median of the absolute deviations of all

data points from the median of the group. We removed variants with a modified

z-score > 6.5 from the dataset.

Additionally, we standardized the Rosetta scores to equalize the contribution

of each score term to the model’s loss function and to ensure score terms are com-

parable across different base PDBs in the global dataset. Once again, we grouped

variants by base PDB, and then we standardized each group and score term inde-

pendently by subtracting the mean and dividing by the standard deviation. We

123

calculated the mean and standard deviation using only the training set data. This

process scales the score terms to have zero mean and a standard deviation of one.

We excluded the following score terms from the final dataset because the values

were zero for a large portion of base PDBs: dslf_fa13 (from ref2015 score function),

linear_chainbreak and overlap_chainbreak (from score3 score function), and fil-

ter_total_score (custom filter term). We also discarded res_count_all (custom filter

term that counts the residues in the protein) because it did not vary among variants

of a single base PDB. After these removals, the total number of remaining score

terms was 55 (Table B.4).

METL source model architecture

The source model architecture accepts amino acid sequences as input and outputs

predictions for each of the 55 Rosetta score terms. The main component of the source

model architecture is a transformer encoder based on the original transformer

architecture (Vaswani et al., 2017), with the notable differences being the use of a

relative positional embedding (Shaw et al., 2018) instead of a sinusoidal positional

encoding and pre-layer normalization instead of post-layer normalization (Xiong

et al., 2020). Local source models total ≈2.5M parameters and have transformer

encoders consisting of a 256 embedding size, 3 encoder layers, 4 attention heads,

a 1024 feed forward hidden size, and 0.1 dropout. Global source models total

≈20M parameters and have transformer encoders consisting of a 512 embedding

size, 6 encoder layers, 8 attention heads, a 2048 feed forward hidden size, and

0.1 dropout. We also evaluated a global source model with ≈50M parameters,

124

consisting of a similar architecture as the 20M parameter global source model but

with 16 encoder layers instead of 6 encoder layers. After the transformer encoder,

source models implement an additional layer normalization layer, a global average

pooling layer, a nonlinear fully-connected layer, and a linear output layer with 55

output nodes corresponding to the 55 Rosetta score terms. The global average

pooling layer computes the mean of the per-residue encodings, which are output

from the encoder, to produce a sequence-level representation of the same size as the

embedding dimension. This sequence-level encoding is fed into a fully-connected

layer with 256 hidden nodes for the local model and 512 hidden nodes for the

global model. We used the rectified linear unit (ReLU) activation function for the

transformer encoder and final fully connected layer.

We implemented relative position embeddings as described by Shaw et al. (Shaw

et al., 2018). In contrast to the absolute position encoding used in the original

transformer architecture (Vaswani et al., 2017), the relative position embedding

enables the network to consider positional representations of the inputs in terms of

distances between sequence positions. We consider two distinct ways to encode

relative distances, generating what we refer to as 1D positional embeddings and

3D positional embeddings. In the 1D approach, relative distances are based on the

protein amino acid sequence alone. This approach is identical to the implementation

of relative position embeddings described by Shaw et al. In the 3D approach, relative

distances are based on the 3D protein structure.

In the 1D approach, we calculate relative distances by determining the offset

between each pair of sequence positions (i, j) in the input. The relative distance is

125

defined as d = j− i, representing how far sequence position j is relative to position

i. A negative value signifies that j precedes i in the sequence, and a positive value

signifies that j succeeds i. We map each of the possible relative distances to a

pair of learnable embedding vectors, corresponding to attention keys and values.

When calculating attention between sequence positions i and j, we add the key

and value positional embedding vectors to the keys and values, respectively. As

was hypothesized by Shaw et al., precise relative position information might not be

useful beyond a certain distance. Thus, we clipped the possible relative distances

to ±8.

In the 3D approach, we calculate relative distances using the protein 3D structure

instead of the amino acid sequence. When using 3D relative position embeddings,

the model requires a protein structure in the form of a PDB file, corresponding to

the base protein that the input variant sequence is based on. We first represent

the protein structure as an undirected graph, where each node corresponds to a

residue. We place an edge between any pair of nodes if the beta carbon atoms

(Cβ) of the residues are within 8Å of each other in the 3D space. We define the

relative distance between residues (i, j) as the minimum path length from node i

to node j in the graph. Unlike the 1D approach, relative distances computed using

the 3D approach cannot be negative values. We clip the 3D relative distances at

3, effectively transforming distances greater than 3 into a relative distance of 3. A

relative distance of 0 represents a node with itself, 1 signifies direct neighbors, 2

signifies second degree neighbors, and 3 encapsulates any other node not covered

by the previous categories. As in the 1D approach, each possible relative distance

126

in the 3D approach is mapped to a pair of embedding vectors corresponding to

keys and values. These vectors are learned during training and are added to keys

and values during the attention calculation.

METL source model training

We split the Rosetta source data into randomly sampled train, validation, test, and

withheld sets. For each dataset, we first withheld 5% of the data, to be used as a

final test set. We split the remaining data into 80% train, 10% validation, and 10%

test sets.

We trained source models for 30 epochs using the AdamW optimizer with

a learning rate of 0.001. We applied a linear warm-up learning rate scheduler,

with a warm-up period of 2% of the total training steps. Additional AdamW

hyperparameters were weight_decay = 0.01, β1 = 0.9, β2 = 0.999, and ϵ = 1e− 8.

We computed mean squared error loss independently for each of the 55 prediction

tasks (corresponding to the 55 Rosetta energy terms) and took the sum to compute

the final loss for the network. We applied gradient norm clipping with a max norm

of 0.5. We employed distributed data parallel (DDP) training with 4 GPUs. We

trained local source models with an effective batch size of 2048 (512 x 4 GPUs) and

global source models with an effective batch size of 1024 (256 x 4 GPUs).

The global source data contains variants of 148 base sequences, with most having

different sequence lengths. This complicates the process of encoding data into a

single fixed-length batch. Padding is a commonly employed approach in such

scenarios. However, incorporating different sequence lengths and base structures

127

in a single batch would negatively impact efficiency of computing attention with

our implementation of relative position embeddings. Thus, we implemented a

PDB-based data sampler that ensures each batch only contains variants from a

single base PDB structure. Due to the use of DDP training with 4 GPUs, each

aggregated training batch effectively contains variants from 4 base PDBs.

Experimental datasets

We evaluated our method on experimental datasets representing proteins of vary-

ing sizes, folds, and functions: avGFP (Sarkisyan et al., 2016), DLG4 (Nedrud et al.,

2021), DLG4-2022 (Faure et al., 2022), GB1 (Olson et al., 2014), GRB2-Abundance

(Faure et al., 2022), GRB2-Binding (Faure et al., 2022), Pab1 (Melamed et al., 2013),

TEM-1 (Gonzalez and Ostermeier, 2019), and Ube4b (Starita et al., 2013) (Table 3.1).

We acquired raw datasets from published manuscript supplements, MaveDB (Es-

posito et al., 2019), and NCBI GEO (Barrett et al., 2013). We transformed raw

data into a standardized format, making sure that functional scores were log-

transformed, normalized so that the wild-type score is 0, and rounded to 7 decimal

places. We removed variants with mutations to stop codons and converted vari-

ant indexing to be 0-based. For DLG4 and GB1, we filtered variants to ensure a

minimum number of reads. See Table B.2 for additional details about dataset trans-

formations. We opted to use the DLG4-2022 dataset instead of the DLG4 dataset in

our main analysis due to potential problems with the reliability of the functional

scores in the DLG4 dataset.

We used GB1 as an exploratory dataset during method development to make

128

modeling decisions such as at what size validation set to enable model selection,

where to place the prediction head on the source model, whether to use a linear or

nonlinear prediction head, and others. Due to this, there is potential we overfit to

GB1 and that our final results are optimistic for GB1. That said, we took precautions

to limit the potential impact of using GB1 as our development dataset. The results

presented for the small training set size experiment use a test set that was completely

held out, even during method development. The randomly sampled train and

validation sets used to generate the final results are also different splits than the

ones we used during method development. Additionally, the results presented

for the extrapolation experiments use different splits than the ones we used to test

extrapolation during method development.

We adjusted the avGFP dataset preprocessing after seeing early small training

set size results. Performance was lower than expected, which led us to realize

that the dataset scores were not normalized so wild-type is 0. We modified the

avGFP dataset to normalize the scores and set wild-type to 0 by subtracting the

wild-type score from all the scores. All our other datasets were already normalized

so wild-type is 0.

METL target model architecture

Target models are made up of a backbone and a head. The backbone contains

network layers from the source model, pre-trained to predict Rosetta energies. The

head is a new, randomly-initialized linear layer placed on top of the backbone to

predict experimental functional scores. We also added a dropout layer with dropout

129

rate 0.5 between the backbone and the head. For local source models, we attach the

head immediately after the final fully connected layer. For global source models,

we attach the head immediately after the global pooling layer. Target models have a

single output node corresponding to the experimental functional score prediction.

METL target model training

We implemented two training strategies for target models: feature extraction and

finetuning. Feature extraction is a training strategy where only the head is trained,

and the backbone weights are not updated during the training process. In contrast,

finetuning is a training strategy where both the backbone and head weights are

updated during training. For feature extraction, we trained the head using scikit-

learn ridge regression with alpha = 1.0. This provides a closed-form solution for

the ridge regression weights.

For finetuning, we implemented a dual-phase finetuning strategy (Kumar et al.,

2022). In the first phase, we froze the backbone and trained only the head for 250

epochs. In the second phase, we trained both the backbone and the head for an

additional 250 epochs at a reduced learning rate. We used the AdamW optimizer

with a learning rate of 0.001 in the first phase and 0.0001 in the second phase. We

applied a learning rate scheduler with linear warm-up and cosine decay to each

phase, with a warm-up period of 1% of the total training steps. Additional AdamW

hyperparameters were set as follows: weight_decay = 0.1, β1 = 0.9, β2 = 0.999,

and ϵ = 1e − 8. We used a batch size of 128 and mean squared error loss. We

applied gradient norm clipping with a max norm of 0.5.

130

After the full training period, we selected the model from the epoch with the

lowest validation set loss. We only performed model selection if the validation

set size was ⩾ 32 for METL-L and ⩾ 128 for METL-G and ESM. We found the

optimization was more stable for METL-L than METL-G and ESM, thus smaller

validation sets were still reliable. For validation sets smaller than those thresholds,

we did not perform model selection, and instead we used the model from the last

epoch of training. We determined these thresholds using the GB1 dataset, which

we designated as our development dataset, by selecting the dataset size along the

learning curve where using model selection started to outperform not using model

selection. In retrospect, these thresholds were too low for other datasets.

Target model dataset splits

We created comprehensive train, validation, and test splits to evaluate performance

with small training set sizes and a range of extrapolation tasks, including position,

mutation, score, and regime extrapolation. For small training set sizes, we first

sampled a random 10% test set from each full dataset. Then, from the remaining

data, we sampled datasets of sizes 10, 20, 40, 80, 160, 320, 640, 1280, 2560, 5120,

10240, and 20480. To account for especially easy or difficult training sets that may

be sampled by chance, we generated multiple replicates for each dataset size. The

number of replicates decreases as the dataset size increases: 101 replicates for the

smallest dataset size, followed by 23, 11, 11, 11, 11, 7, 7, 5, 5, 3, and 3 replicates

for the largest dataset size. We split the sampled datasets into 80% train and 20%

validation sets. We used the same test set across all dataset sizes and replicates. We

131

report median performance metrics across replicates.

Whereas the small dataset splits are sampled randomly, the extrapolation splits

are specially designed to assess the models’ ability to generalize to more challenging

test sets. For position, mutation, and score extrapolation, we randomly resampled

any datasets with > 50000 variants down to 50000 variants before generating the

extrapolation splits. To account for chance, we generated 9 replicate splits for each

extrapolation type. We report the median across the 9 replicates.

Position extrapolation tests the ability of a model to generalize to sequence

positions not present in the training data. To generate position extrapolation splits,

we first randomly designated 80% of sequence positions as train and the other 20%

as test. Then, we divided variants into training and testing pools depending on

whether the variants contain mutations only in positions designated as train or

only in positions designated as test. We discarded variants that had mutations in

both train and test positions. To create the final train, validation, and test sets, we

split the train pool into a 90% train set and a 10% validation set. We used the entire

test pool as the test set.

Mutation extrapolation tests the ability of a model to generalize to mutations not

present in the training data. To generate mutation extrapolation splits, we followed

a similar procedure as position extrapolation, except with mutations instead of

sequence positions. We randomly designated 80% of mutations present in the

dataset as train and the other 20% as test. We divided variants into training and

testing pools depending on whether the variants contain only mutations designated

as train or only designated as test. We split the train pool into a 90% train and a

132

10% validation set and used the entire test pool as the test set.

Score extrapolation tests the ability of a model to generalize from low-scoring

variants to high-scoring variants. We divided variants into train and test pools

depending on whether the variant had a score less than wild-type (train pool) or

greater than wild-type (test pool). We split the train pool into a 90% train and a

10% validation set and used the entire test pool as the test set.

Regime extrapolation tests the ability of the model to generalize from lower

numbers of amino acid substitutions to higher numbers of amino acid substitutions.

For datasets with single and double substitution variants, we divided the variants

into a train pool comprising of the single substitution variants and a test pool

comprising of the double substitution variants. We split the train pool into into

an 80% train and a 20% validation set. We sampled a 10% test set from the test

pool. For datasets containing greater than double substitution variants, we also

implemented a regime extrapolation split where the train pool was comprised of

single and double substitution variants and the test pool was comprised of variants

with three or more substitutions.

Baseline models

We implemented and evaluated additional baselines, including: Linear-OH, a fully

connected network (FCN), a sequence convolutional network (CNN), METL-Local

with random initialization, Rosetta’s total score as a standalone prediction, and

Linear-RTS.

Linear-OH is a linear regression model that uses one hot encoded sequences

133

as inputs. One hot encoding captures the specific amino acid at each sequence

position. It consists of a length 21 vector where each position represents one of the

possible amino acids or the stop codon. All positions are zero except the position of

the amino acid being encoded, which is set to a value of one. Note that we removed

variants containing mutations to the stop codon during dataset preprocessing, so

this was feature not used in our analysis. We implemented linear regression using

scikit-learn’s ridge regression class, which incorporates L2 regularization. We set

the solver to cholesky to calculate a closed-form solution for the ridge regression

weights. We set alpha, the constant that controls regularization strength, to the

default value of 1.0. We set all other parameters to the default scikit-learn values.

For baseline neural networks, we tested an FCN, a CNN, and a transformer

encoder with a similar architecture as METL-Local, but with a random initialization.

The FCN and CNN used one hot encoded sequences as input. The FCN consisted of

1 hidden layer with 1024 nodes followed by a dropout layer with a dropout rate of

0.2. The CNN consisted of 1 convolutional layer with kernel size 7, 128 filters, and

zero-padding to ensure the output has the same shape as the input (padding mode

“same” in PyTorch’s Conv2d class). Following the convolutional layer, we placed a

fully connected layer with 256 nodes and a dropout layer with a dropout rate of 0.2.

We used the ReLU activation function for both models. In addition to the FCN and

CNN, we tested a randomly initialized transformer encoder neural network with a

similar architecture as METL-Local. Unlike METL-Local, this randomly initialized

version was set up with a single output node corresponding to the experimental

functional score instead of multiple output nodes corresponding to Rosetta scores.

134

We trained the FCN, CNN, and randomly initialized METL-Local for 500 epochs

using the AdamW optimizer with a base learning rate of 0.001. We applied a

learning rate scheduler with linear warm-up and cosine decay, with a warm-up

period of 2% of the total training steps. Additional AdamW hyperparameters were

set as follows: weight_decay = 0.1, β1 = 0.9, β2 = 0.999, and ϵ = 1e − 8. We

used a batch size of 128 and mean squared error loss. We applied gradient norm

clipping with a max norm of 0.5. Similar to METL-Local finetuning, we selected

the model from the epoch with the lowest validation loss when the validation set

size was ⩾ 32. Otherwise, we used the model from the last epoch of training.

We evaluated Rosetta’s total score as a standalone, unsupervised prediction,

as well as an additional input feature for linear regression, which we refer to as

Linear-RTS. By default, the lower Rosetta’s total score, the more stable the structure is

predicted to be. Thus, when using Rosetta’s total score as an unsupervised prediction,

we multiplied it by -1 before computing correlation with the experimental functional

score. We also tested Rosetta’s total score as part of a supervised learning framework.

Linear-RTS is identical to Linear-OH, but it uses Rosetta total score as an additional

input feature in combination with the one hot encoded sequence. We standardized

the total score for use as an input feature by first calculating its mean and standard

deviation in the train set. Then, we subtracted the mean and divided by the standard

deviation.

135

Comparison to ESM

We used the ESM-2 (Lin et al., 2023) 35M parameter model with identifier

esm2_t12_35M_UR50D as our default ESM model. We incorporated several ad-

ditional layers to match the METL architecture, including a global mean pooling

layer, a dropout layer with dropout rate 0.5, and a linear prediction head. We

attached these additional layers immediately after layer 12. We trained the ESM

models using the same training procedures we used for the METL models. We also

explored feature extraction with larger 150M and 650M parameter ESM-2 models

with identifiers esm2_t30_150M_UR50D and esm2_t33_650M_UR50D. For these

larger models, we attached the additional layers after layers 30 and 33, respectively.

Comparison to EVE

We obtained a multiple sequence alignment for each target protein through the

EVcouplings web server (Hopf et al., 2019), using search parameters consistent

with EVMutation (Hopf et al., 2017). The multiple sequence alignments were

found on the 11/22 release of UniRef100. We trained EVE using the default training

parameters of 40,000 training iterations and the average of 20,000 evolutionary

indices. In addition to using the EVE score as a standalone unsupervised method,

we incorporated the EVE score into a supervised learning framework (Hsu et al.,

2022). The Linear-EVE model is identical to the Linear-OH model described above,

but it uses the EVE score as an additional input feature in combination with the

one hot encoded protein sequence. We standardized the EVE score for use as an

input feature by first calculating its mean and standard deviation in the train set.

136

Then, we subtracted the mean and divided by the standard deviation.

avGFP sequence design

We finetuned a pretrained METL-Local model on 64 randomly sampled variants

from the avGFP dataset. The selected variants had 1 to 11 mutations, and their

experimental score distribution was bimodal, similar to the distribution of the full

avGFP dataset. We refer to the fine-tuned model as METL-L-avGFP.

We performed in-silico optimization with METL-L-avGFP to design a total of 20

variants distributed evenly across for 4 different design criteria. These criteria are

the product of 2 primary design categories: the number of mutations (either 5 or 10),

and the constraints on mutation selection (either Observed or Unobserved). In the

Observed constraint, the designed sequences contain only amino acid substitutions

found in the 64-variant training set. Conversely, in the Unobserved constraint, the

designed sequences exclude any amino acid substitutions found in the 64-variant

training set. The intersection of these categories resulted in the 4 design criteria:

Observed 5-mutant, Unobserved 5-mutant, Observed 10-mutant, and Unobserved

10-mutant. We designed 5 sequences for each criteria, resulting in a total of 20

designed sequences.

To perform the in-silico optimization, we ran simulated annealing 10,000 times

for each design criterion. For each iteration, we changed the seed of the random

number generator, which proposed new variants, and executed the Monte Carlo

optimization for 10,000 steps. Each step consisted of suggesting a mutation for the

currently sampled variant and deciding whether to accept the new variant according

137

to the Metropolis-Hastings criteria. We decreased the optimization temperature

according to a logarithmic gradient beginning at 101 and ending at 10−2. The initial

temperature was chosen by randomly sampling 10,000 variants, predicting their

fitness with METL-L-avGFP, and calculating the absolute value of the difference

between the lowest and highest predicted fitness, rounded to the nearest power of

10. The final temperature was determined by calculating the absolute value of the

smallest difference in predicted fitness between any two variants, rounded to the

nearest power to 10. The initial temperature encouraged acceptance of all variants,

while the final temperature, set close to the resolution of the model’s predictions,

meant that only variants better than the current ones would be accepted near the

end of the run. The simulation began by randomly selecting a variant with the

necessary number of mutations depending on the design criterion. We determined

how many mutations to change (mutation rate) at each step by sampling from a

Poisson distribution.

The optimization process described above yielded 10,000 designs for each crite-

rion, which we downsampled to 5 designs for each criterion via clustering. Our

downsampling approach prioritized diversity and was predicated on the idea that

repeated convergence to similar sequences was correlated with higher observed

fitness values, as these regions of the fitness landscape would have broader peaks

and allow more room for error in the model predictions or optimization process. We

clustered the 10,000 designs using scikit-learn’s agglomerative clustering with com-

plete linkage and a BLOSUM62-based distance metric. After preliminary results

indicated that selecting between 10, 20, or 50 clusters did not substantially impact

138

the diversity of selected mutations (our primary metric for evaluating algorithm

design), we arbitrarily chose 20 as the initial number of clusters. We filtered out

clusters that contained less than 100 sequences (1% of the simulated annealing

solutions).

To further downsample to 5 clusters, we employed an iterative, greedy approach.

First, we selected a representative sequence for each cluster, choosing the one

with the lowest average BLOSUM62-based distance to all other sequences within

the same cluster. Next, we selected the cluster containing the highest number of

sequences. We then proceeded iteratively, selecting additional clusters one at a time.

In each iteration, we calculated the distance between the representative sequences

of the already selected clusters and the remaining unselected clusters. We kept the

cluster with the largest mean distance to the already selected clusters.

Cloning and experimental validation of avGFP variants

We modeled our expression system on that used in Sarkysian et al. (Sarkisyan

et al., 2016), which uses a pQE-30 vector (Qiagen) to express avGFP as a fusion

protein with mKate2. To generate the expression construct, we used the vector

backbone from a related pQE-30 system that expresses KillerOrange (Addgene

74748) and ordered the mKate2-avGFP fusion protein as a gene fragment from

Twist Biosciences. We first removed a BsaI restriction site in the AmpR gene from

the backbone using site directed mutagenesis (NEB: M0554S), then used Golden

Gate cloning to replace KillerOrange with the fusion protein. We incubated (1

hr, 37 C) the backbone and insert with BsaI (15 U, NEB: R3733), T4 Ligase (1,000

139

U, NEB: M0202) and T4 Ligase Buffer (NEB B0202) to assemble the vector. The

assembly was cleaned up with a PCR Clean and Concentrate column (Zymogen,

D4003) and transformed into in-house DH5a cells. Plasmid stock was purified from

an overnight culture starting from a single colony using a Qiagen Miniprep kit

(Qiagen, 27104), and the vector was on-boarded with Twist Biosciences. All avGFP

variants were ordered as clonal genes from Twist Biosciences wherein the wild-type

avGFP sequence was replaced with the variant sequence. For each variant, the

nucleotide sequence was kept the same as the wild-type sequence except at mutated

residues. We selected new codons for mutated residues based on an E. coli codon

usage index (Boël et al., 2016) to mitigate poor expression due to rare codons.

Clonal genes ordered from Twist Biosciences were transformed into NEBExpress

Iq Competent E. coli (NEB: C3037I) cells and plated on Luria Broth (LB) plates

with carbenecillin selection (0.1 mg/mL). Proteins were expressed as previously

described in Sarkysian et al. (Sarkisyan et al., 2016). Briefly, freshly plated transfor-

mants were incubated overnight at 37 C and then moved to 4 C the following day.

After 24 hours, plates were washed with 4 mL LB and normalized to 1 OD. This

wash was used to create triplicate expression cultures where protein expression

was induced for 2 hours with 1 mM IPTG at 23 C. An empty pQE-30 vector was

used as a negative expression control.

To prepare cultures for fluorescence measurement, expression cultures were

pelleted (3,000xg, 5 mins) and re-suspended in sterile 1X PBS to a concentration

of 1 OD. Cells were diluted 2-fold into 96-well plates to measure fluorescence and

culture density with the Tecan Spark 10M. Measurements for avGFP (ex. 405 nm,

140

em. 510 nm), mKate2 (ex. 561 nm, em. 670 nm), and OD600 (abs. 600 nm) were

collected.

Fluorescence was reported as the ratio of avGFP fluorescence to mKate2 fluores-

cence averaged across replicates. First, fluorescent measurements were normalized

to 1 OD based on the OD600 value. Background fluorescence was subtracted out

of each sample. Background fluorescence for avGFP and mKate2 was calculated by

averaging avGFP and mKate2 fluorescence in the normalized negative fluorescent

control. The avGFP/mKate2 expression ratio was calculated for each sample by

dividing the normalized avGFP fluorescence by normalized mKate2 fluorescence.

At this point, a single fluorescence ratio was calculated for each design by averaging

across the three replicates.

Acknowledgements

This research was supported by National Science Foundation awards 2226383 and

2226451, National Institutes of Health award R01GM135631, the John W. and Jeanne

M. Rowe Center for Research in Virology at the Morgridge Institute for Research,

and the University of Wisconsin–Madison Office of the Vice Chancellor for Research

and Graduate Education with funding from the Wisconsin Alumni Research Foun-

dation. We thank Ben Gelman for insightful discussions regarding the transformer

architecture, attention mechanism, and effects of data normalization. The research

was performed using the compute resources and assistance of the University of

Wisconsin-Madison Center for High Throughput Computing (Center for High

141

Throughput Computing, 2006) and services provided by the OSG Consortium

(Pordes et al., 2007; Sfiligoi et al., 2009; OSG, 2006), which is supported by the

National Science Foundation awards 2030508 and 1836650.

142

appendix b: supplementary information for chapter 3

Figure B.1: Performance of pretrained METL source models in predicting Rosetta scores.
This figure shows Spearman correlations between true and predicted Rosetta scores for
each of the 55 Rosetta score terms. (a) Performance of METL-Global in predicting Rosetta
scores for protein variants originating from in-distribution base PDBs (those included in
METL-Global pretraining) and out-of-distribution base PDBs (those not included). We
show the mean Spearman correlation across base PDBs. To evaluate in-distribution PDBs,
we used variants in the pretraining data test set. To evaluate out-of-distribution PDBs, we
used variants from the eight DMS datasets included in this study. METL-Global performs
substantially better for in-distribution PDBs, suggesting there is overfitting to the PDBs
present in the training data. (b) Correlation performance of METL-Local models predicting
Rosetta energy terms for the local pretraining data test sets.

143

Figure B.2: METL-Global amino acid embeddings We applied principle component
analysis (PCA) to reduce the METL-Global length 512 amino acid embeddings down to 2
dimensions, capturing 33% of the variance in data. This scatter plot of the 2-dimensional
amino acid embeddings is annotated with amino acid properties. Amino acids with similar
properties are grouped together in the embedding space.

144

Figure B.3: Relationship between METL-Local performance and the relatedness of
Rosetta and experimental scores. The figure displays a series of scatterplots showing
the relationship between METL-Local performance and the relatedness of Rosetta and
experimental scores, across multiple experimental datasets and training set sizes. The
x-axis shows the Spearman correlation between Rosetta total score and the experimental
functional score for the entire dataset, representing the relatedness or similarity between the
Rosetta total score and the experimental functional score. The y-axis shows the METL-Local
performance for the respective training set size, as determined by the Spearman correlation
on the test set. Notably, as the similarity between Rosetta total score and the experimental
functional score increases, so does the METL-Local performance, at least for small training
set sizes. However, with increasing experimental training set sizes, the similarity between
Rosetta total score and experimental functional score becomes less important to the METL-
Local performance, suggesting a shift in METL-Local away from the Rosetta pretraining
data and more toward the experimental finetuning data.

145

Figure B.4: Performance of 101 training set replicates for training set size 8. The left panel
consists of kernel density estimation plots showing the distribution of test set performance
(Spearman correlation) of 101 training set replicates for training set size 8. The selection of
training set examples can have a substantial impact on performance for this small training
set size. The right panel consists of scatterplots showing individual training set replicates
with the performance of METL-L (Spearman correlation) on the x-axis and the performance
of the other methods (Spearman correlation) on the y-axis. We annotated the scatterplots
with the line of equivalence and the percentage values showing the fraction of replicates
for which METL-L has stronger performance (bottom right quadrant) versus the fraction
of replicates for which the other respective method has stronger performance (top left
quadrant).

146

Figure B.5: Standard deviation of performance across training set replicates. We tested
numerous replicates for each train set size: 101 replicates for the smallest train set size,
followed by 23, 11, 11, 11, 11, 7, 7, 5, 5, 3, and finally 3 replicates for the largest train set
size. This figure shows the standard deviation of performance, as measured by the test
set Spearman correlation between true and predicted scores, across the train set replicates.
As expected, the standard deviation decreases as the size of the training set increases. We
observe that for small training set sizes (> 8), METL-Local and Ridge (OH+EVE) tend to
have a smaller standard deviation than the other methods, signifying they are less sensitive
than the other methods to the selection of train set examples. We note that METL-Global
exhibits a spike in standard deviation at train set size 512, which is the train set size at
which we enable early stopping based on the validation set loss. At this train set size, the
validation set size is 128. Given our finetuning approach and the instability of training the
20M parameter METL-Global model, this validation set size may not be large enough to
use reliably for early stopping, resulting in higher standard deviations in performance of
the trained models. The Ube4b dataset also shows this spike for METL-Local at train set
size 128, which is the train set size at which we enable early stopping for METL-Local, with
a validation set size of 32.

147

Figure B.6: Regime extrapolation for avGFP and Ube4b datasets. The avGFP and Ube4b
datasets contain variants with higher order mutations, enabling us to test two types of
regime extrapolation: Train 1 and Train 1+2. The bar plots (left) show the count of variants
with the specified number of mutations for each dataset. The strip plots (right) show the
performance of regime extrapolation for Train 1, where we train on single substitution
variants and evaluate on variants with 2+ substitutions, and Train 1+2, where we train on
variants with single or double substitutions, and evaluate on variants with 3+ substitutions.
The strip plots show the performance of 9 test set replicates, and the red vertical line denotes
the median.

148

Figure B.7: Performance of METL-Local with and without pretraining. These plots
show the correlation performance of Ridge (OH), METL-Local (random init), and METL-
Local. METL-Local (random init) is a model with the same architecture as METL-Local
but without pretraining on Rosetta scores. (a) The learning curves show that METL-
Local (random init) substantially underperforms both Ridge (OH) and pre-trained METL-
Local, emphasizing the impact pretraining on Rosetta scores has on this transformer-
based architecture. Given enough experimental training data, METL-Local (random init)
converges to the performance of the other models for most datasets. (b) METL-Local
(random init) outperforms Ridge (OH) for position extrapolation due to the fact that Ridge
(OH) is not able to perform position extrapolation. For the other types of extrapolation,
METL-Local (random init) performs about the same or worse than Ridge (OH).

149

Figure B.8: Performance of baseline models directly using Rosetta’s total score. Rosetta
total score is the score term from Rosetta with no supervised training on experimental data.
Ridge (OH+RTS) is a linear ridge regression trained on experimental data with one hot
encoding features augmented with the Rosetta total score as an additional input feature.
Both of these models require running Rosetta to compute the total score for every variant,
even during inference. For comparison, this figure also shows the performance of Ridge
(OH) and METL-Local. (a) For small training set sizes, incorporating Rosetta total score
as an additional input feature for ridge regression greatly improved performance over
solely using one hot encoding features, as demonstrated by the difference in performance
between Ridge (OH) and Ridge (OH+RTS). While Ridge (OH+RTS) sometimes matched
METL-Local’s performance and even exceeded it on the GRB2-A dataset, METL-Local
still outperformed Ridge (OH+RTS) on average. (b) METL-Local outperformed Ridge
(OH+RTS) across most datasets and extrapolation tasks. The performance differences
were sometimes substantial, such as for position extrapolation with GB1. In other cases,
the performance differences were much smaller, such as for regime extrapolation.

150

Figure B.9: Performance of additional baseline models. Correlation performance of
Ridge (OH), fully connected networks (FC), sequence convolutional networks (CNN),
and METL-Local. (a) The CNN performed about the same as Ridge (OH) across different
sized training sets. The fully connected network typically performed about the same or
worse than Ridge (OH), especially for mid-size training sets. (b) The CNN performed
about the same or better than Ridge (OH) across most extrapolation tasks and datasets.
The fully connected network performed worse than Ridge (OH), with some outliers, like
for GB1 score extrapolation, where it performed better than any of the other tested models.

151

Figure B.10: Performance of one-dimensional and three-dimensional relative position
embeddings. This figure shows the performance of METL-Local and METL-Global with
one-dimensional (1D), sequence-based and three-dimensional (3D), structure-based rela-
tive position embeddings. (a) Learning curves showing Spearman correlation between true
and predicted scores across a range of training set sizes. (b) Spearman correlation between
true and predicted scores for position, mutation, score, and regime extrapolation. For both
panels, the “Average” or “Avg” represents the mean across all datasets. Overall, METL-
Local does not benefit much from three-dimensional embeddings over one-dimensional
(except for the TEM-1 dataset), while METL-Global shows consistent improvement with
the three-dimensional embeddings.

152

Figure B.11: Performance of finetuning and feature extraction. This figure shows the
performance of METL-Local, METL-Global, and ESM-2 with both finetuning (FT) and
feature extraction (EX). To perform feature extraction, we saved outputs from the appro-
priate internal layer of each model and then used those features as inputs to train linear
ridge regression. Finetuning consistently outperformed feature extraction for METL-Local
and METL-Global across (a) different training set sizes and (b) extrapolation tasks. For
ESM-2, there were several instances where feature extraction substantially outperformed
fine-tuning when applied to (a) small training set sizes, namely for the DLG4-2022, GRB2-B,
Pab1, and TEM-1 datasets. Notably, the performance of ESM-2 feature extraction exceeded
the performance METL-Local finetuning for DLG4-2022 and Pab1 with small training set
sizes. For (b) extrapolation tasks, ESM-2 finetuning generally performed better than feature
extraction.

153

Figure B.12: Feature extraction performance of ESM-2 models with 35M, 150M, and
650M parameters. (a) Across the range of training set sizes, the 150M parameter model
consistently outperformed the 35M parameter model, with the exception of the DLG4-
2022 dataset, where the 35M parameter model actually performed better. Surprisingly, for
small training set sizes, the 650M parameter model performed worse than both the 35M
and 150M parameter models with the avGFP, DLG4-2022, and Pab1 datasets. For larger
training set sizes, the 650M parameter model offered some improvement over the 35M
and 150M parameter models with the GB1, GRB2-A, and GRB2-B datasets. (b) Across
extrapolation tasks, the 35M parameter model tended to perform worse than the 150M and
650M parameter models. The 650M parameter model often performed the best, but not in
all instances, and the differences between the models were minor in some cases.

154

Figure B.13: Performance of METL-G with 20M and 50M parameters (a) Across different
training set sizes, the 50M parameter model performed similarly to the 20M parameter
model on average, with the 50M parameter model offering minor improvements for some
datasets like GRB2-B but also performing slightly worse for other datasets like Ube4b. (b)
For position, mutation, and regime extrapolation, the 50M parameter model performed
slightly better on average than the 20M parameter model. For score extrapolation, the two
models performed similarly on average.

155

Figure B.14: Performance of METL-G source models predicting Rosetta’s total score.
This figure shows the performance of 20M and 50M parameter METL-G source models
on predicting Rosetta’s total score for both in-distribution and out-of-distribution PDBs.
In-distribution PDBs are the ≈150 PDBs that were used as part of the METL-G pretraining
data, while out-of-distribution PDBs consist of the experimental dataset PDBs, which were
not used for METL-G pretraining. The 50M parameter METL-G model overfits more than
the 20M parameter model when predicting Rosetta’s total score on in-distribution PDBs,
and it generalizes worse to out-of-distribution PDBs.

156

Figure B.15: Pairwise correlations between GB1 DMS score and Rosetta scores. Heatmap
showing pairwise Spearman correlations between the GB1 experimental functional score
(DMS Score) and Rosetta score terms. Rosetta scores are color coded, with green repre-
senting all-atom REF15 scores, blue representing filter scores, orange representing centroid
score3 scores, and red representing InterfaceAnalyzer binding scores. Correlations were
computed using the GB1 DMS variants.

157

ID Constraint # Muts Mutations
1 Observed 5 S26R,K164R,Q175L,N196Y,G226W
2 Observed 5 S26R,I126V,K164R,Q175L,D195Y
3 Observed 5 K164R,Q175L,N196Y,A204T,G226R
4 Observed 5 S26R,S70G,Q175L,G226W,Y235H
5 Observed 5 K164R,Q175L,N196Y,G226R,I227F
6 Unobserved 5 N103I,I150W,V161I,G230K,K236R
7 Unobserved 5 L42V,N162R,L176W,D195C,L219F
8 Unobserved 5 D34W,F97Y,L176R,N183V,G230R
9 Unobserved 5 I12L,S26T,Q175V,A225R,G226K
10 Unobserved 5 P11R,N103I,V161M,G230W,L234M
11 Observed 10 S26R,I121V,I126V,K164R,Q175L,N196Y,S200N,S203T,A225G,G226W
12 Observed 10 S26R,F97S,N103S,I121V,K164R,Q175L,N196Y,G226R,I227F,Y235H
13 Observed 10 S26R,S70G,D100G,K105E,I126V,Q175L,N196Y,S203T,G226R,Y235H
14 Observed 10 S26R,K39R,S70G,I126V,Q175L,S200N,S203T,A225G,G226W,I227F
15 Observed 10 S26R,K105E,I126T,E140V,K164R,Q175L,N196Y,S203T,G226W,Y235H
16 Unobserved 10 F97W,V161M,S173E,Q175Y,Q182R,S200M,A204C,L219I,V222L,G230R
17 Unobserved 10 V9I,S28R,F97Y,N103I,L176R,N183V,H197F,L219W,A225W,G230Q
18 Unobserved 10 V9R,V91M,E93W,K105R,N162R,T184V,L193M,S203Q,G230M,L234W
19 Unobserved 10 D34W,I126E,L139M,E140R,Q175V,L193F,A204W,T228S,G230N,E233Q
20 Unobserved 10 P11H,E15N,S26E,S28I,I96W,S173K,Q175M,H197F,A225R,G230R

Table B.1: avGFP designed sequences. The sequences designed in the avGFP low-N design
experiment.

Acquired from Files / URN / Accession Variant filtering Score transformation Ref.
avGFP Paper supplement amino_acid_genotypes_to_brightness.tsv Drop variants with mutations to stop codons Normalized to WT by subtracting WT score Sarkisyan et al. (2016)
DLG4 MaveDB urn:mavedb:00000053-a Keep if (inp >= 200) or (inp > 10 and sel >= 1) N/A Nedrud et al. (2021)
DLG4-2022 NCBI GEO GSE184042 N/A Normalized to WT by subtracting WT score Faure et al. (2022)
GB1 Paper supplement mmc2.xlsx Keep if input_count + sel_count >= 5 Computed from read counts using Enrich2 Rubin et al. (2017) Olson et al. (2014)
GRB2-Abundance NCBI GEO GSE184042 N/A Normalized to WT by subtracting WT score Faure et al. (2022)
GRB2-Binding NCBI GEO GSE184042 N/A Normalized to WT by subtracting WT score Faure et al. (2022)
Pab1 Paper supplement Supplementary tables 2 and 5 N/A Converted to log scores by taking log base 2 Melamed et al. (2013)
TEM-1 Paper supplement mmc2.xlsx N/A Converted to log scores by taking log base 2 Gonzalez and Ostermeier (2019)
Ube4b MaveDB urn:mavedb:00000004-a-3 Drop variants with mutations to stop codons N/A Starita et al. (2013)

Table B.2: Experimental datasets. This table specifies the experimental datasets used in
this study, where we acquired them from, and any filtering or transformations we applied
to standardize the dataset format.

158

Dataset Structure Acquired From Structure Notes Num Variants
avGFP RosettaCM 18,681,329
DLG4 PDB: 6QJI Not truncated 20,270,692
DLG4-2022 PDB: 6QJI Not truncated 22,221,845
GB1 PDB: 2QMT 12,556,374
GRB2-A/B AlphaFold DB: AF-P62993-F1-model_v4 Truncated to match DMS sequence 20,294,793
Pab1 RosettaCM 19,667,539
TEM-1 AlphaFold DB: AF-Q6SJ61-F1-model_v4 19,441,290
Ube4b RosettaCM 19,734,229

Table B.3: Local Rosetta datasets. Information about the datasets used to train the local
Rosetta source models, including PDB origin and the final number of variants in each
dataset.

Rosetta score term Description Rosetta score term Description
total_score REF15 exposed_np_AFIMLWVY Custom
fa_atr REF15 exposed_polars Custom
fa_dun REF15 exposed_total Custom
fa_elec REF15 one_core_each Custom
fa_intra_rep REF15 pack Custom
fa_intra_sol_xover4 REF15 res_count_buried_core Custom
fa_rep REF15 res_count_buried_core_boundary Custom
fa_sol REF15 res_count_buried_np_core Custom
hbond_bb_sc REF15 res_count_buried_np_core_boundary Custom
hbond_lr_bb REF15 ss_contributes_core Custom
hbond_sc REF15 ss_mis Custom
hbond_sr_bb REF15 total_hydrophobic Custom
lk_ball_wtd REF15 total_hydrophobic_AFILMVWY Custom
omega REF15 total_sasa Custom
p_aa_pp REF15 two_core_each Custom
pro_close REF15 unsat_hbond Custom
rama_prepro REF15 centroid_total_score Centroid
ref REF15 cbeta Centroid
yhh_planarity REF15 cenpack Centroid
buried_all Custom env Centroid
buried_np Custom hs_pair Centroid
contact_all Custom pair Centroid
contact_buried_core Custom rg Centroid
contact_buried_core_boundary Custom rsigma Centroid
degree Custom sheet Centroid
degree_core Custom ss_pair Centroid
degree_core_boundary Custom vdw Centroid
exposed_hydrophobics Custom

Table B.4: Rosetta score terms. The Rosetta score terms used to train METL.

159

Rosetta score term Description
complex_normalized InterfaceAnalzyer
dG_cross InterfaceAnalzyer
dG_cross/dSASAx100 InterfaceAnalzyer
dG_separated InterfaceAnalzyer
dG_separated/dSASAx100 InterfaceAnalzyer
dSASA_hphobic InterfaceAnalzyer
dSASA_int InterfaceAnalzyer
dSASA_polar InterfaceAnalzyer
delta_unsatHbonds InterfaceAnalzyer
hbond_E_fraction InterfaceAnalzyer
hbonds_int InterfaceAnalzyer
nres_int InterfaceAnalzyer
per_residue_energy_int InterfaceAnalzyer
side1_normalized InterfaceAnalzyer
side1_score InterfaceAnalzyer
side2_normalized InterfaceAnalzyer
side2_score InterfaceAnalzyer

Table B.5: Binding score terms. The Rosetta binding score terms, calculated on the GB1-IgG
complex structure and used in addition to the standard score terms to train METL-L-Bind.

160

4 discussion

4.1 Contributions

Protein engineering enables us to harness the immense potential of proteins for hu-

man benefit, with wide-ranging applications from creating life-saving therapeutics

to enhancing the sustainability of industrial processes. An inherent challenge in

protein engineering is the vastness and complexity of the protein sequence space. It

is not feasible to experimentally characterize all possible protein variants, and it is

hard to know how a particular amino acid substitution will affect function without

testing it.

Computational methods can assist with protein engineering by extracting in-

sights from data and prioritizing variants for experimental characterization. With

new sources of data, advancements in machine learning, and ever increasing com-

putational power, computational methods promise to have a transformative impact

on protein engineering. Yet, computational methods are not without their own

challenges, and there remain many questions in how to accurately and efficiently

model protein sequence-function relationships.

In this dissertation, I explored the complex problem of learning protein sequence-

function relationships for protein engineering. Specifically, my research focused on

training neural networks to predict protein variant functional scores from experi-

mental data. In exploring this topic, I conducted original research yielding theoret-

ical, methodological, and practical contributions. Chapter 2 presented a framework

for training neural networks on deep mutational scanning data and tested several

161

network architectures, including graph convolutional networks incorporating pro-

tein structure. Chapter 3 introduced a method for improving performance with

limited experimental datasets by pretraining transformer-based neural networks

on molecular simulations. The following sections highlight some of the substantive

contributions from these chapters.

Chapter 2: Neural Nets for Deep Mutational Scanning Data

• Demonstrated that neural networks can effectively learn the protein sequence-

function mapping when given enough data

• Compared linear regression, fully connected networks, sequence convolu-

tional networks, and graph convolutional networks, showing the benefits of

using nonlinear, parameter-sharing networks

• Developed a framework for integrating protein 3D structure into a graph

convolutional network via a protein structure graph

• Demonstrated that protein structure did not notably improve performance in

this scenario, potentially due to factors like the lack of sequence diversity in

the data or the specific network architecture used

• Showed the benefits of training on experimental data compared to evolutionary-

based zero shot methods and physics-based scores

• Showed the neural network latent space clusters variants based on different

molecular mechanisms of function, suggesting that the networks are learning

162

biologically meaningful information

• Simulated datasets of varying quality, showing the detrimental effect that

poor quality datasets can have on supervised learning methods

• Published an accessible framework for training neural networks on deep

mutational scanning: https://github.com/gitter-lab/nn4dms

Chapter 3: Mutational Effect Transfer Learning

• Introduced Mutational Effect Transfer Learning (METL), a pretraining frame-

work based on biophysical simulations

• Developed two approaches within the METL framework: METL-Local and

METL-Global, targeting local and global representations of the sequence

space, respectively

• Showed that pretrained models can predict Rosetta energy terms accurately,

although with overfitting on the global dataset

• Explored dynamics between experimental and simulated data in the METL

framework, showing how simulated data can compensate for lack of experi-

mental data

• Explored the importance of evolutionary conservation signals versus stability

signals for learning protein sequence-function relationships from experimen-

tal data

https://github.com/gitter-lab/nn4dms

163

• Developed a protein 3D structure-based relative position embedding (RPE)

for transformer models and demonstrated it performs better than a 1D

sequence-based RPE

• Developed frameworks for running molecular simulations and training METL,

to be released publicly in the near future

• Pretrained models on molecular simulations, to be released publicly in the

near future

Implications

The research presented in this dissertation contributes to the ongoing innovation in

the field of protein engineering and bridges methodological advancements with

practical outcomes. While Chapters 2 and 3 present methodological improvements,

they also describe practical efforts to engineer protein variants. In Chapter 2, we

used our trained models to engineer a GB1 variant that binds to IgG with substan-

tially higher affinity than wild-type, demonstrating the ability of the models to

generalize beyond the training data. In Chapter 3, we engineered avGFP variants

using models trained on just 64 examples. The majority of engineered variants

demonstrated some degree of fluorescence, showing the potential of our transfer

learning approach to perform protein engineering with small labeled datasets.

Beyond our practical engineering efforts, I created accessible and open code frame-

works to enable others to reproduce our work and apply our methods to their own

data (Wang and Gamazon, 2022). These contributions represent progress toward a

164

future where protein engineering is both more effective and accessible.

Limitations

It is important to address limitations that are inherent in any scientific endeavor.

The field of computational methods for protein engineering is rapidly evolving. Due

to the consistent influx of new data and new methods, there’s a risk that findings

can become outdated quickly. Further, with the volume of publications, related

work is not always immediately evident, presenting the risk of potential oversights.

Constraints on computational resources and time can limit the depth of hyperpa-

rameter sweeps, the number of baselines and datasets that can be tested, and other

important research attributes. Additionally, this research is highly interdisciplinary,

and it is possible an expert in a particular field might find additional oversights.

4.2 Future Work

There are many opportunities to further explore computational methods for protein

engineering, both in terms of improving the methods presented in this dissertation

and for the field in general. This section touches on several potential research

directions that may yield interesting or useful results.

Improving METL

Chapter 3 introduced METL and laid the groundwork for transfer learning from

biophysical simulations to improve the modeling of experimental sequence-function

165

data. There are several potential avenues to further expand upon METL.

Targeted Molecular Simulations

Transfer learning works best when the source task closely aligns with the target

task. METL’s source task of predicting Rosetta score terms primarily captures

protein stability. On the other hand, experimental datasets often measure more

specific functions such as binding affinity, fluorescence, enzymatic activity, and

abundance. As shown in Chapter 3, protein stability can be a useful signal and

related to these experimentally measured functions. However, Rosetta presents

the potential to emulate target functions more closely through simulations that can

capture docking and binding. Training METL with more specific, experimentally-

related simulations could align the source and target tasks and potentially improve

METL’s performance. We explored this idea in Chapter 3 for the GB1 dataset,

which measures binding affinity to IgG. We computed interface energies for the

GB1-IgG complex structure and used those additional energies as pretraining

tasks for METL-L. The resulting METL-L-Bind model outperformed the standard

METL-L across small experimental training set sizes. This result is promising and

suggests additional exploration in the area of tailored simulations is warranted.

Furthermore, the general simulations described in Chapter 3 were optimized for

speed over quality to achieve the goal of simulating millions of protein variants.

Rosetta is capable of more detailed general stability simulations that may provide a

stronger or cleaner protein stability signal.

166

Combining Global, Local, and Targeted Simulation Data

Currently, METL-Global and METL-Local are treated as separate methods, but

both approaches offer useful and potentially distinct information to downstream

protein function prediction. Combining global stability information, local stability

information, and local binding information could be a promising avenue for future

research. One option to combine these models is through a multi-step fine-tuning

scheme where a randomly initialized model is first trained with global Rosetta data

like METL-Global, fine-tuned with local Rosetta data like METL-Local, and then

fine-tuned even further on Rosetta docking simulations. An advantage of this multi-

step approach is that it would allow for flexibility in dataset variants and pretraining

tasks because each type of data could have its own training procedure. Otherwise,

a combined loss function might be needed to encompass different potential variants

and tasks. Future work can explore the contributions of different types of Rosetta

pretraining data to downstream tasks as well as optimal ways to combine different

types of Rosetta pretraining data. Combining global stability, local stability, and

local binding simulations could offer stronger inductive biases that might be helpful

for low-N protein engineering and extrapolation.

METL-Global as a Protein Language Model

METL-Global can be viewed as a biophysics-inspired protein language model,

trained with molecular simulation data instead of evolutionary data. However,

due to problems with overfitting to training set PDBs, METL-Global is unable to

realize its full potential as a protein language model. Improving METL-Global to

167

generalize better to out-of-distribution PDBs would make the model more capable

and generally applicable. Once improved, METL-Global could be evaluated on

more tasks besides protein variant function prediction, such as contact prediction

or structure prediction, similar to other protein language models. METL-Global is

closely related to existing protein stability predictors (Capriotti et al., 2005; Folkman

et al., 2016; Cao et al., 2019; Chen et al., 2020; Li et al., 2020; Wang et al., 2022b;

Blaabjerg et al., 2023; Hummer et al., 2023; Zhou et al., 2023; Dieckhaus et al., 2023;

Boyer et al., 2023; Sun et al., 2023), and it would be important to examine that set of

related work closely to determine how METL-Global compares and whether there

exists related work that has already solved some of the challenges encountered by

METL-Global.

Revisiting the METL Architecture

One aspect of the METL architecture worth exploring is the global average pooling

layer. Prior to the final fully connected layers of the network, the global average

pooling layer takes the mean of the per-residue representations to create a single

sequence-level representation. This operation helps METL-Global handle variable

length sequences, but it is inherently lossy. The METL-Local architecture also

contains the global average pooling layer, but because METL-Local sequences are

all the same length, this pooling operation is not necessarily required. There is

potential that METL-Local could benefit from maintaining separate per-residue

encodings all the way through to the end of the network, preserving the very

important residue-level signal. For METL-Global, there are also alternatives to

168

global average pooling worth exploring. Architectures based on BERT (Devlin

et al., 2019) use a special input token known as the CLS (classification) token,

placed at the beginning of the sequence. This token enables the network to learn an

aggregated sequence-level representation, which is similar to a weighted average

of per-token (in our case, per-residue) encodings, rather than a simple global mean.

METL-Global could adopt this architectural feature, although it is not necessarily

guaranteed to improve performance, it is worth exploring.

Integrating Multiple Signals

In this dissertation, I’ve discussed multiple types of data, including evolutionary,

experimental, simulated (stability or docking), protein sequence, and protein struc-

ture. The results from Chapter 3 suggest that evolutionary and stability information

may be complementary to some degree. In other words, these different types of data

may contribute distinct but useful information to a potential model. A compelling

area of future work is integrating these multiple sources of information. There

are various potential methodologies for combining this information. One option

would be to create an ensemble of distinct models and average their predictions

to produce a final output. Another option might be to train a unified model using

the various types of information. Regardless of the specific approach, the ultimate

objective for protein fitness predictors is to output the most accurate predictions

possible, and it stands to reason that integrating multiple distinct, complementary

signals would be an effective strategy.

169

Standardized Benchmarks

The community would benefit from a standardized, comprehensive benchmark

for protein variant function prediction focused on protein engineering. Although

benchmarks such as TAPE (Rao et al., 2019) and ProteinGym (Notin et al., 2022)

have laid some foundation, there is room for improvement. Ideally, a future bench-

mark should be suitable for both zero-shot and supervised methods, thus it should

include train, validation, and test splits. It should contain a diversity of proteins and

functions. Additionally, it should include tasks relevant to protein engineering like

position, mutation, score, and regime extrapolation. A standardized benchmark

will facilitate comparisons across different publications. One important consid-

eration in developing a standardized benchmark is overfitting. It is possible for

published methods to overfit to standardized benchmarks over time, as the same

datasets and splits are used for method development. One idea to mitigate this risk

is to implement an automated system that evaluates models on a hidden test set.

4.3 Reflections

My graduate studies at the University of Wisconsin-Madison began in 2016, marking

the start of a significant and transformative chapter filled with research at forefront

of computational protein engineering. It is impractical to recount every lesson and

insight from the past seven years, but reflecting on select topics may provide value

for the field. This closing section offers perspectives on select topics, both about the

research itself and also the process of performing that research.

170

Nuances of Proteins

There has been significant progress and success in using machine learning to model

both images and natural language. Building on this success, researchers have

applied the same methodologies to proteins. Proteins are defined by sequences of

amino acids. This makes them similar to text data because amino acids, represented

by text characters, come together to form proteins, just like text characters come

together to form meaningful words and sentences. However, that is about where

the similarity ends.

There are distinctions between proteins, images, and natural language that

are important to modeling and learning protein sequence-function relationships.

Proteins are three-dimensional molecules, and their function is determined in

part by their interactions with the environment and other molecules. One could

argue that protein sequence defines protein structure, and thus modeling directly

from sequence to function integrates or removes the need to explicitly consider

structure. That argument may be technically valid, but similar logic dictates that

fully connected networks are universal function approximators, and thus we do

not need convolutional networks or transformers, whose inductive biases more

closely model images and natural language. Practically, we need to consider the

nature of images and natural language to achieve breakthrough performance in

those domains. Likewise, protein structure is inherent to function, and it stands to

reason that incorporating structure information could improve modeling of protein

sequence-function relationships.

Moreover, there are differences between protein amino acid sequences and

171

natural language, even when considering proteins as text strings. There are 20 com-

monly used amino acids, and they have well-defined physicochemical properties.

That’s similar to the number of characters in the English alphabet, but substantially

less than the number of words in the English language. I do not know enough

about linguistics and the evolution of language to say whether or not alphabet

characters have semantic meaning, but if they do, then certainly that meaning is not

based on well-defined physical and chemical principles. Proteins, like language,

evolved naturally, but are governed by different underlying structures and rules.

There are almost certainly modeling implications, although perhaps they are not

fully clear yet. For instance, with transformer-based neural networks applied to

proteins, is it necessary to learn amino acid embeddings from the data? Or, can

we represent amino acids by their physicochemical properties and restructure the

network architecture to encode sequence context separately from the embedding?

An underexplored area of computational protein engineering concerns the

potential of non-canonical amino acids. Non-canonical amino acids are amino acids

that are not part of the standard 20 encoded by the genetics of most living organisms.

Non-canonical amino acids can occur in certain organisms or be synthesized in

laboratories, and there are potentially thousands of these non-canonical amino

acids (Narancic et al., 2019; Zitti and Jones, 2023). Non-canonical amino acids

have different physicochemical properties and thus have potential to affect protein

structure and function in different ways than the standard 20. This presents both an

opportunity and a challenge for protein engineering. Evolutionary data, naturally,

only contains information about the standard 20 amino acids. Additionally, based on

172

my experience, most high-throughput experimental datasets only contain data with

the standard 20. As a consequence, computational methods to model non-canonical

amino acids may need to rely on low-throughput experiments and biophysics-based

modeling, a topic I explored in this dissertation. Overall, considering these protein-

specific nuances could be important to see the same breakthrough in proteins that

we have seen in other fields.

Research in a Rapidly Advancing Field

The field of computational protein engineering has exploded in popularity and is

advancing rapidly. The increased interest is driven by unrealized potential, and it

has attracted researchers in academia, innovative startups, and large commercial

organizations. This environment brings excitement and the potential to make a

true impact, but it also brings unique challenges.

With explosive growth comes a large influx of relevant publications. It can

be difficult for an individual researcher to keep up with ongoing research and

its nuances and implications. Furthermore, with a growing number of different

methods to predict protein variant fitness, it can be time-prohibitive to run all

of them as baselines for comparative analysis. In our case, we planned to run

EVE as a baseline in Chapter 3, but we did not accomplish that task until we were

nearing the end of the research project. The EVE results were better than expected,

changing the narrative and forcing us to explore the results in more detail. These

types of disruptions may be inevitable in a dynamic and rapidly evolving field,

and they require continual adaptation from researchers. The exciting aspect is that

173

every disruption and unexpected result is an opportunity for novel insights and

advancement.

The commercial sector brings seemingly unlimited resources in terms of com-

putational power and scientific expertise and talent, enabling companies to operate

on a scale that is not easily available to graduate students or small academic teams.

A straightforward example is training very large neural networks, which requires

many costly, high-end GPUs. Even if a graduate student can access the required

computational resources, they may be working alone or with a small group. Large

corporations have access to teams of researchers and software engineers that allow

them to operate faster and explore more potential avenues of research. This is not

to say graduate students should give up hope. On the contrary, graduate students

have the freedom to dive deep and focus on problems that might not immediately

appeal to commercial entities. While graduate students may not be able to compete

effectively on scale, there are opportunities for academic researchers to contribute

valuable insights to the field by exploring novel ideas and methodological improve-

ments.

Quality Science

Every scientist aspires to produce high-quality work. Over the last seven years of

research, my perspective on what defines “quality” has deepened and matured. At

its core, I believe performing quality science requires sincerity of intention, a trait I

assume is inherent to most dedicated researchers.

We all strive to do work that is free from errors, deficiencies, and limitations.

174

However, even the most experienced researchers can make mistakes, whether they

are minor oversights or fundamental misjudgements. Transparency and openness

allow us to make meaningful contributions to the community, despite the inevitabil-

ity of defects and limitations. By being candid about our methods, rationale, and

known limitations, we allow others to evaluate and potentially improve upon our

work. Being open reinforces the value of our research.

Beyond being transparent, I believe quality work requires researchers to present

a complete picture with appropriate context. It is essential for researchers to un-

derstand the nuances of their own work and the broader implications in the field.

Without this understanding, it is easy to accidentally mislead others. Achieving

a nuanced understanding takes time. Throughout the course of my own work, I

ran experiments and explored paths that never made it into a manuscript or this

dissertation. However, that work was important to deepen my own understanding

and ultimately uphold my responsibility to the community.

Reproducibility is recognized as a core tenet of science, and it demands more of

researchers than is immediately evident, especially in the computational field. It

goes beyond describing a method in detail. Quality research is also about actively

enabling others to reproduce your work by providing the necessary code and

tools. This includes taking the time to write clean code and documentation and

publishing it in a way that is easy for others to access and utilize. Further, it requires

researchers to be responsive to questions and maintain open communication with

the community.

175

4.4 Conclusion

As I reflect on this dissertation and the years of research leading to it, I am drawn

to the future that lies ahead. Protein engineering holds immense potential to make

a real-world impact, and our accomplishments thus far are just the beginning. My

sincere hope for the future is that the field continues with the current momentum,

and that we are able to fully realize the potential of computational methods in

protein engineering.

176

references

Abadi, Martín, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,
Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Leven-
berg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah,
Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete
Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. 2015.
TensorFlow: Large-scale machine learning on heterogeneous systems. Software
available from tensorflow.org.

Adzhubei, Ivan A., Steffen Schmidt, Leonid Peshkin, Vasily E. Ramensky, Anna
Gerasimova, Peer Bork, Alexey S. Kondrashov, and Shamil R. Sunyaev. 2010. A
method and server for predicting damaging missense mutations. Nature Methods
7(4):248–249. DOI: 10.1038/nmeth0410-248.

Aghazadeh, Amirali, Hunter Nisonoff, Orhan Ocal, David H. Brookes, Yijie
Huang, O. Ozan Koyluoglu, Jennifer Listgarten, and Kannan Ramchandran.
2021. Epistatic Net allows the sparse spectral regularization of deep neural net-
works for inferring fitness functions. Nature Communications 12(1):5225. DOI:
10.1038/s41467-021-25371-3.

Aghazadeh, Amirali, Hunter Nisonoff, Orhan Ocal, Yijie Huang, O. Ozan Koy-
luoglu, Jennifer Listgarten, and Kannan Ramchandran. 2020. Sparse Epistatic
Regularization of Deep Neural Networks for Inferring Fitness Functions. bioRxiv.
DOI: 10.1101/2020.11.24.396994.

Ahmad, Walid, Elana Simon, Seyone Chithrananda, Gabriel Grand, and Bharath
Ramsundar. 2022. ChemBERTa-2: Towards Chemical Foundation Models.
arXiv:2209.01712. DOI: 10.48550/arXiv.2209.01712.

https://www.tensorflow.org/
tensorflow.org
https://doi.org/10.1038/nmeth0410-248
10.1038/nmeth0410-248
https://doi.org/10.1038/s41467-021-25371-3
https://doi.org/10.1038/s41467-021-25371-3
10.1038/s41467-021-25371-3
https://doi.org/10.1101/2020.11.24.396994
10.1101/2020.11.24.396994
https://doi.org/10.48550/arXiv.2209.01712
10.48550/arXiv.2209.01712

177

Alcántara, Andrés R., Pablo Domínguez de María, Jennifer A. Littlechild, Martin
Schürmann, Roger A. Sheldon, and Roland Wohlgemuth. 2022. Biocatalysis as
Key to Sustainable Industrial Chemistry. ChemSusChem 15(9):e202102709. DOI:
10.1002/cssc.202102709.

Alford, Rebecca F., Andrew Leaver-Fay, Jeliazko R. Jeliazkov, Matthew J. O’Meara,
Frank P. DiMaio, Hahnbeom Park, Maxim V. Shapovalov, P. Douglas Renfrew,
Vikram K. Mulligan, Kalli Kappel, Jason W. Labonte, Michael S. Pacella, Richard
Bonneau, Philip Bradley, Roland L. Jr. Dunbrack, Rhiju Das, David Baker, Brian
Kuhlman, Tanja Kortemme, and Jeffrey J. Gray. 2017. The Rosetta All-Atom Energy
Function for Macromolecular Modeling and Design. Journal of Chemical Theory and
Computation 13(6):3031–3048. DOI: 10.1021/acs.jctc.7b00125.

Alley, Ethan C., Grigory Khimulya, Surojit Biswas, Mohammed AlQuraishi, and
George M. Church. 2019. Unified rational protein engineering with sequence-
based deep representation learning. Nature Methods 16(12):1315–1322. DOI:
10.1038/s41592-019-0598-1.

Alzubaidi, Laith, Jinglan Zhang, Amjad J. Humaidi, Ayad Al-Dujaili, Ye Duan,
Omran Al-Shamma, J. Santamaría, Mohammed A. Fadhel, Muthana Al-Amidie,
and Laith Farhan. 2021. Review of deep learning: Concepts, CNN architectures,
challenges, applications, future directions. Journal of Big Data 8(1):53. DOI: 10.
1186/s40537-021-00444-8.

Ancona, Marco, Enea Ceolini, Cengiz Öztireli, and Markus Gross. 2018. Towards
better understanding of gradient-based attribution methods for Deep Neural
Networks. arXiv. DOI: 10.48550/arXiv.1711.06104.

Angermueller, Christof, David Belanger, Andreea Gane, Zelda Mariet, David Do-
han, Kevin Murphy, Lucy Colwell, and D Sculley. 2020. Population-based black-box
optimization for biological sequence design. In Proceedings of the 37th International
Conference on Machine Learning, vol. 119 of ICML’20, 324–334. JMLR.org.

https://doi.org/10.1002/cssc.202102709
https://doi.org/10.1002/cssc.202102709
10.1002/cssc.202102709
https://doi.org/10.1021/acs.jctc.7b00125
10.1021/acs.jctc.7b00125
https://doi.org/10.1038/s41592-019-0598-1
https://doi.org/10.1038/s41592-019-0598-1
10.1038/s41592-019-0598-1
https://doi.org/10.1186/s40537-021-00444-8
10.1186/s40537-021-00444-8
https://doi.org/10.1186/s40537-021-00444-8
10.1186/s40537-021-00444-8
https://doi.org/10.48550/arXiv.1711.06104
10.48550/arXiv.1711.06104

178

Asgari, Ehsaneddin, and Mohammad R. K. Mofrad. 2015. Continuous Distributed
Representation of Biological Sequences for Deep Proteomics and Genomics. PLOS
ONE 10(11):e0141287. DOI: 10.1371/journal.pone.0141287.

Ashburner, Michael, Catherine A. Ball, Judith A. Blake, David Botstein, Heather
Butler, J. Michael Cherry, Allan P. Davis, Kara Dolinski, Selina S. Dwight, Janan T.
Eppig, Midori A. Harris, David P. Hill, Laurie Issel-Tarver, Andrew Kasarskis,
Suzanna Lewis, John C. Matese, Joel E. Richardson, Martin Ringwald, Gerald M.
Rubin, and Gavin Sherlock. 2000. Gene Ontology: Tool for the unification of
biology. Nature Genetics 25(1):25–29. DOI: 10.1038/75556.

Barrett, Tanya, Stephen E. Wilhite, Pierre Ledoux, Carlos Evangelista, Irene F. Kim,
Maxim Tomashevsky, Kimberly A. Marshall, Katherine H. Phillippy, Patti M. Sher-
man, Michelle Holko, Andrey Yefanov, Hyeseung Lee, Naigong Zhang, Cynthia L.
Robertson, Nadezhda Serova, Sean Davis, and Alexandra Soboleva. 2013. NCBI
GEO: Archive for functional genomics data sets—update. Nucleic Acids Research
41(D1):D991–D995. DOI: 10.1093/nar/gks1193.

Bekker, Jessa, and Jesse Davis. 2020. Learning from positive and unlabeled data:
A survey. Machine Learning 109(4):719–760. DOI: 10.1007/s10994-020-05877-5.

Bepler, Tristan, and Bonnie Berger. 2021. Learning the protein language: Evolution,
structure, and function. Cell Systems 12(6):654–669.e3. DOI: 10.1016/j.cels.2021.
05.017.

Berman, Helen M., John Westbrook, Zukang Feng, Gary Gilliland, T. N. Bhat,
Helge Weissig, Ilya N. Shindyalov, and Philip E. Bourne. 2000. The Protein Data
Bank. Nucleic Acids Research 28(1):235–242. DOI: 10.1093/nar/28.1.235.

Biswas, Surojit, Grigory Khimulya, Ethan C. Alley, Kevin M. Esvelt, and George M.
Church. 2021. Low-N protein engineering with data-efficient deep learning. Nature
Methods 18(4):389–396. DOI: 10.1038/s41592-021-01100-y.

https://doi.org/10.1371/journal.pone.0141287
10.1371/journal.pone.0141287
https://doi.org/10.1038/75556
10.1038/75556
https://doi.org/10.1093/nar/gks1193
10.1093/nar/gks1193
https://doi.org/10.1007/s10994-020-05877-5
10.1007/s10994-020-05877-5
https://doi.org/10.1016/j.cels.2021.05.017
10.1016/j.cels.2021.05.017
https://doi.org/10.1016/j.cels.2021.05.017
10.1016/j.cels.2021.05.017
https://doi.org/10.1093/nar/28.1.235
10.1093/nar/28.1.235
https://doi.org/10.1038/s41592-021-01100-y
10.1038/s41592-021-01100-y

179

Biswas, Surojit, Gleb Kuznetsov, Pierce J. Ogden, Nicholas J. Conway, Ryan P.
Adams, and George M. Church. 2018. Toward machine-guided design of proteins.
bioRxiv. DOI: 10.1101/337154.

Blaabjerg, Lasse M, Maher M Kassem, Lydia L Good, Nicolas Jonsson, Matteo
Cagiada, Kristoffer E Johansson, Wouter Boomsma, Amelie Stein, and Kresten
Lindorff-Larsen. 2023. Rapid protein stability prediction using deep learning
representations. eLife 12:e82593. DOI: 10.7554/eLife.82593.

Boël, Grégory, Reka Letso, Helen Neely, W. Nicholson Price, Kam-Ho Wong, Min
Su, Jon D. Luff, Mayank Valecha, John K. Everett, Thomas B. Acton, Rong Xiao,
Gaetano T. Montelione, Daniel P. Aalberts, and John F. Hunt. 2016. Codon influence
on protein expression in E. coli correlates with mRNA levels. Nature 529(7586):
358–363. DOI: 10.1038/nature16509.

Bordin, Nicola, Christian Dallago, Michael Heinzinger, Stephanie Kim, Maria
Littmann, Clemens Rauer, Martin Steinegger, Burkhard Rost, and Christine Orengo.
2023. Novel machine learning approaches revolutionize protein knowledge. Trends
in Biochemical Sciences 48(4):345–359. DOI: 10.1016/j.tibs.2022.11.001.

Boyer, Sebastien, Sam Money-Kyrle, and Oliver Bent. 2023. Predicting protein
stability changes under multiple amino acid substitutions using equivariant graph
neural networks. arXiv:2305.19801 [q-bio.BM]. DOI: 10.48550/arXiv.2305.19801.

Boël, Grégory, Reka Letso, Helen Neely, W. Nicholson Price, Kam Ho Wong, Min
Su, Jon D. Luff, Mayank Valecha, John K. Everett, Thomas B. Acton, Rong Xiao,
Gaetano T. Montelione, Daniel P. Aalberts, and John F. Hunt. 2016. Codon influence
on protein expression in E. coli correlates with mRNA levels. Nature 2016 529:7586
529:358–363. DOI: 10.1038/nature16509.

Brookes, David, Hahnbeom Park, and Jennifer Listgarten. 2019. Conditioning
by adaptive sampling for robust design. In Proceedings of the 36th International
Conference on Machine Learning, 773–782. PMLR.

https://doi.org/10.1101/337154
10.1101/337154
https://doi.org/10.7554/eLife.82593
10.7554/eLife.82593
https://doi.org/10.1038/nature16509
10.1038/nature16509
https://doi.org/10.1016/j.tibs.2022.11.001
10.1016/j.tibs.2022.11.001
https://doi.org/10.48550/arXiv.2305.19801
10.48550/arXiv.2305.19801
https://doi.org/10.1038/nature16509
10.1038/nature16509

180

Bryant, Drew H., Ali Bashir, Sam Sinai, Nina K. Jain, Pierce J. Ogden, Patrick F.
Riley, George M. Church, Lucy J. Colwell, and Eric D. Kelsic. 2021. Deep diversifi-
cation of an AAV capsid protein by machine learning. Nature Biotechnology. DOI:
10.1038/s41587-020-00793-4.

Cao, Huali, Jingxue Wang, Liping He, Yifei Qi, and John Z. Zhang. 2019. DeepDDG:
Predicting the Stability Change of Protein Point Mutations Using Neural Networks.
Journal of Chemical Information and Modeling 59(4):1508–1514. DOI: 10.1021/acs.
jcim.8b00697.

Capriotti, Emidio, Piero Fariselli, and Rita Casadio. 2005. I-Mutant2.0: predicting
stability changes upon mutation from the protein sequence or structure. Nucleic
Acids Research 33(suppl_2):W306–W310. DOI: 10.1093/nar/gki375.

Carter, Paul J., and Arvind Rajpal. 2022. Designing antibodies as therapeutics. Cell
185(15):2789–2805. DOI: 10.1016/j.cell.2022.05.029.

Center for High Throughput Computing. 2006. Center for High Throughput
Computing. DOI: 10.21231/GNT1-HW21.

Chandra, Abel, Laura Tünnermann, Tommy Löfstedt, and Regina Gratz. 2023.
Transformer-based deep learning for predicting protein properties in the life
sciences. eLife 12:e82819. DOI: 10.7554/eLife.82819.

Chen, Bo, Xingyi Cheng, Yangli-ao Geng, Shen Li, Xin Zeng, Boyan Wang, Jing
Gong, Chiming Liu, Aohan Zeng, Yuxiao Dong, Jie Tang, and Le Song. 2023. xTri-
moPGLM: Unified 100B-Scale Pre-trained Transformer for Deciphering the Lan-
guage of Protein. bioRxiv 2023.07.05.547496. DOI: 10.1101/2023.07.05.547496.

Chen, Yuting, Haoyu Lu, Ning Zhang, Zefeng Zhu, Shuqin Wang, and Minghui
Li. 2020. PremPS: Predicting the impact of missense mutations on protein stabil-
ity. PLOS Computational Biology 16(12):e1008543. DOI: 10.1371/journal.pcbi.
1008543.

https://doi.org/10.1038/s41587-020-00793-4
https://doi.org/10.1038/s41587-020-00793-4
10.1038/s41587-020-00793-4
https://doi.org/10.1021/acs.jcim.8b00697
10.1021/acs.jcim.8b00697
https://doi.org/10.1021/acs.jcim.8b00697
10.1021/acs.jcim.8b00697
https://doi.org/10.1093/nar/gki375
10.1093/nar/gki375
https://doi.org/10.1016/j.cell.2022.05.029
10.1016/j.cell.2022.05.029
https://doi.org/10.21231/GNT1-HW21
10.21231/GNT1-HW21
https://doi.org/10.7554/eLife.82819
10.7554/eLife.82819
https://doi.org/10.1101/2023.07.05.547496
10.1101/2023.07.05.547496
https://doi.org/10.1371/journal.pcbi.1008543
10.1371/journal.pcbi.1008543
https://doi.org/10.1371/journal.pcbi.1008543
10.1371/journal.pcbi.1008543

181

Ching, Travers, Daniel S. Himmelstein, Brett K. Beaulieu-Jones, Alexandr A.
Kalinin, Brian T. Do, Gregory P. Way, Enrico Ferrero, Paul-Michael Agapow,
Michael Zietz, Michael M. Hoffman, Wei Xie, Gail L. Rosen, Benjamin J. Lengerich,
Johnny Israeli, Jack Lanchantin, Stephen Woloszynek, Anne E. Carpenter, Avanti
Shrikumar, Jinbo Xu, Evan M. Cofer, Christopher A. Lavender, Srinivas C. Turaga,
Amr M. Alexandari, Zhiyong Lu, David J. Harris, Dave DeCaprio, Yanjun Qi,
Anshul Kundaje, Yifan Peng, Laura K. Wiley, Marwin H. S. Segler, Simina M. Boca,
S. Joshua Swamidass, Austin Huang, Anthony Gitter, and Casey S. Greene. 2018.
Opportunities and obstacles for deep learning in biology and medicine. Journal of
The Royal Society Interface 15(141):20170387. DOI: 10.1098/rsif.2017.0387.

Cranmer, Kyle, Johann Brehmer, and Gilles Louppe. 2020. The frontier of
simulation-based inference. Proceedings of the National Academy of Sciences 117(48):
30055–30062. DOI: 10.1073/pnas.1912789117.

Dallago, Christian, Jody Mou, Kadina E. Johnston, Bruce J. Wittmann, Nicholas
Bhattacharya, Samuel Goldman, Ali Madani, and Kevin K. Yang. 2022. FLIP: Bench-
mark tasks in fitness landscape inference for proteins. bioRxiv 2021.11.09.467890.
DOI: 10.1101/2021.11.09.467890.

Deckers, Jeroen, Tom Anbergen, Ayla M. Hokke, Anne de Dreu, David P. Schrijver,
Koen de Bruin, Yohana C. Toner, Thijs J. Beldman, Jamie B. Spangler, Tom F. A. de
Greef, Francesca Grisoni, Roy van der Meel, Leo A. B. Joosten, Maarten Merkx,
Mihai G. Netea, and Willem J. M. Mulder. 2023. Engineering cytokine therapeutics.
Nature Reviews Bioengineering 1–18. DOI: 10.1038/s44222-023-00030-y.

Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers), ed. Jill Burstein, Christy Doran, and Thamar Solorio, 4171–4186.
Minneapolis, Minnesota: Association for Computational Linguistics. DOI: 10.
18653/v1/N19-1423.

https://doi.org/10.1098/rsif.2017.0387
10.1098/rsif.2017.0387
https://doi.org/10.1073/pnas.1912789117
10.1073/pnas.1912789117
https://doi.org/10.1101/2021.11.09.467890
10.1101/2021.11.09.467890
https://doi.org/10.1038/s44222-023-00030-y
10.1038/s44222-023-00030-y
https://doi.org/10.18653/v1/N19-1423
10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
10.18653/v1/N19-1423

182

Dieckhaus, Henry, Michael Brocidiacono, Nicholas Randolph, and Brian Kuhlman.
2023. Transfer learning to leverage larger datasets for improved prediction of
protein stability changes. bioRxiv 2023.07.27.550881. DOI: 10.1101/2023.07.27.
550881.

Ding, Wenze, Kenta Nakai, and Haipeng Gong. 2022. Protein design via deep
learning. Briefings in Bioinformatics 23(3):bbac102. DOI: 10.1093/bib/bbac102.

Eastman, Peter, Pavan Kumar Behara, David L. Dotson, Raimondas Galvelis, John E.
Herr, Josh T. Horton, Yuezhi Mao, John D. Chodera, Benjamin P. Pritchard, Yuan-
qing Wang, Gianni De Fabritiis, and Thomas E. Markland. 2023a. SPICE, A Dataset
of Drug-like Molecules and Peptides for Training Machine Learning Potentials.
Scientific Data 10(1):11. DOI: 10.1038/s41597-022-01882-6.

Eastman, Peter, Raimondas Galvelis, Raúl P. Peláez, Charlles R. A. Abreu,
Stephen E. Farr, Emilio Gallicchio, Anton Gorenko, Michael M. Henry, Frank Hu,
Jing Huang, Andreas Krämer, Julien Michel, Joshua A. Mitchell, Vijay S. Pande,
João PGLM Rodrigues, Jaime Rodriguez-Guerra, Andrew C. Simmonett, Sukrit
Singh, Jason Swails, Philip Turner, Yuanqing Wang, Ivy Zhang, John D. Chodera,
Gianni De Fabritiis, and Thomas E. Markland. 2023b. OpenMM 8: Molecular
Dynamics Simulation with Machine Learning Potentials. arXiv:2310.03121. DOI:
10.48550/arXiv.2310.03121.

Eddy, Sean R. 2011. Accelerated Profile HMM Searches. PLOS Computational
Biology 7(10):e1002195. DOI: 10.1371/journal.pcbi.1002195.

Elnaggar, Ahmed, Hazem Essam, Wafaa Salah-Eldin, Walid Moustafa, Mohamed
Elkerdawy, Charlotte Rochereau, and Burkhard Rost. 2023. Ankh: Optimized
protein language model unlocks general-purpose modelling. arXiv: 2301.06568
[cs.LG]. DOI: 10.48550/arXiv.2301.06568.

Elnaggar, Ahmed, Michael Heinzinger, Christian Dallago, Ghalia Rehawi,
Yu Wang, Llion Jones, Tom Gibbs, Tamas Feher, Christoph Angerer, Martin
Steinegger, Debsindhu Bhowmik, and Burkhard Rost. 2022. ProtTrans: Toward

https://doi.org/10.1101/2023.07.27.550881
10.1101/2023.07.27.550881
https://doi.org/10.1101/2023.07.27.550881
10.1101/2023.07.27.550881
https://doi.org/10.1093/bib/bbac102
10.1093/bib/bbac102
https://doi.org/10.1038/s41597-022-01882-6
10.1038/s41597-022-01882-6
https://doi.org/10.48550/arXiv.2310.03121
https://doi.org/10.48550/arXiv.2310.03121
10.48550/arXiv.2310.03121
https://doi.org/10.1371/journal.pcbi.1002195
10.1371/journal.pcbi.1002195
https://doi.org/10.48550/arXiv.2301.06568
10.48550/arXiv.2301.06568

183

Understanding the Language of Life Through Self-Supervised Learning. IEEE
Transactions on Pattern Analysis and Machine Intelligence 44(10):7112–7127. DOI:
10.1109/TPAMI.2021.3095381.

Engelen, Stefan, Ladislas A. Trojan, Sophie Sacquin-Mora, Richard Lavery, and
Alessandra Carbone. 2009. Joint Evolutionary Trees: A Large-Scale Method To
Predict Protein Interfaces Based on Sequence Sampling. PLOS Computational
Biology 5(1):e1000267. DOI: 10.1371/journal.pcbi.1000267.

Esposito, Daniel, Jochen Weile, Jay Shendure, Lea M. Starita, Anthony T. Papenfuss,
Frederick P. Roth, Douglas M. Fowler, and Alan F. Rubin. 2019. MaveDB: An open-
source platform to distribute and interpret data from multiplexed assays of variant
effect. Genome Biology 20(1):223. DOI: 10.1186/s13059-019-1845-6.

Fannjiang, Clara, and Jennifer Listgarten. 2020. Autofocused oracles for model-
based design. In Proceedings of the 34th International Conference on Neural Information
Processing Systems, 12945–12956. NIPS’20, Red Hook, NY, USA: Curran Associates
Inc.

Faure, Andre J., Júlia Domingo, Jörn M. Schmiedel, Cristina Hidalgo-Carcedo,
Guillaume Diss, and Ben Lehner. 2022. Mapping the energetic and allosteric
landscapes of protein binding domains. Nature 604(7904):175–183. DOI: 10.1038/
s41586-022-04586-4.

Faure, Andre J., Jörn M. Schmiedel, Pablo Baeza-Centurion, and Ben Lehner. 2020.
DiMSum: An error model and pipeline for analyzing deep mutational scanning
data and diagnosing common experimental pathologies. Genome Biology 21(1):
207. DOI: 10.1186/s13059-020-02091-3.

Folkman, Lukas, Bela Stantic, Abdul Sattar, and Yaoqi Zhou. 2016. EASE-MM:
Sequence-Based Prediction of Mutation-Induced Stability Changes with Feature-
Based Multiple Models. Journal of Molecular Biology 428(6):1394–1405. DOI:
10.1016/j.jmb.2016.01.012.

https://doi.org/10.1109/TPAMI.2021.3095381
https://doi.org/10.1109/TPAMI.2021.3095381
10.1109/TPAMI.2021.3095381
https://doi.org/10.1371/journal.pcbi.1000267
10.1371/journal.pcbi.1000267
https://doi.org/10.1186/s13059-019-1845-6
10.1186/s13059-019-1845-6
https://doi.org/10.1038/s41586-022-04586-4
10.1038/s41586-022-04586-4
https://doi.org/10.1038/s41586-022-04586-4
10.1038/s41586-022-04586-4
https://doi.org/10.1186/s13059-020-02091-3
10.1186/s13059-020-02091-3
https://doi.org/10.1016/j.jmb.2016.01.012
https://doi.org/10.1016/j.jmb.2016.01.012
10.1016/j.jmb.2016.01.012

184

Fout, Alex, Jonathon Byrd, Basir Shariat, and Asa Ben-Hur. 2017. Protein interface
prediction using graph convolutional networks. In Advances in Neural Information
Processing Systems 30, ed. I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, 6530–6539. Curran Associates, Inc.

Fowler, Douglas M., and Stanley Fields. 2014. Deep mutational scanning: A new
style of protein science. Nature Methods 11(8):801–807. DOI: 10.1038/nmeth.3027.

Fox, Richard J, S Christopher Davis, Emily C Mundorff, Lisa M Newman, Vesna
Gavrilovic, Steven K Ma, Loleta M Chung, Charlene Ching, Sarena Tam, Sheela
Muley, John Grate, John Gruber, John C Whitman, Roger A Sheldon, and Gjalt W
Huisman. 2007. Improving catalytic function by ProSAR-driven enzyme evolution.
Nature Biotechnology 25(3):338–344. DOI: 10.1038/nbt1286.

Frazer, Jonathan, Pascal Notin, Mafalda Dias, Aidan Gomez, Joseph K. Min, Kelly
Brock, Yarin Gal, and Debora S. Marks. 2021. Disease variant prediction with
deep generative models of evolutionary data. Nature 599(7883):91–95. DOI:
10.1038/s41586-021-04043-8.

Gelman, Sam, Sarah A. Fahlberg, Pete Heinzelman, Philip A. Romero, and Anthony
Gitter. 2021. Neural networks to learn protein sequence–function relationships
from deep mutational scanning data. Proceedings of the National Academy of Sciences
118(48):e2104878118. DOI: 10.1073/pnas.2104878118.

Gerasimavicius, Lukas, Benjamin J. Livesey, and Joseph A. Marsh. 2023. Corre-
spondence between functional scores from deep mutational scans and predicted
effects on protein stability. Protein Science 32(7):e4688. DOI: 10.1002/pro.4688.

Gligorijevic, Vladimir, P. Douglas Renfrew, Tomasz Kosciolek, Julia Koehler Le-
man, Daniel Berenberg, Tommi Vatanen, Chris Chandler, Bryn C. Taylor, Ian M.
Fisk, Hera Vlamakis, Ramnik J. Xavier, Rob Knight, Kyunghyun Cho, and Richard
Bonneau. 2020. Structure-Based Protein Function Prediction using Graph Convo-
lutional Networks. bioRxiv. DOI: 10.1101/786236.

https://doi.org/10.1038/nmeth.3027
10.1038/nmeth.3027
https://doi.org/10.1038/nbt1286
10.1038/nbt1286
https://doi.org/10.1038/s41586-021-04043-8
https://doi.org/10.1038/s41586-021-04043-8
10.1038/s41586-021-04043-8
https://doi.org/10.1073/pnas.2104878118
10.1073/pnas.2104878118
https://doi.org/10.1002/pro.4688
10.1002/pro.4688
https://doi.org/10.1101/786236
10.1101/786236

185

Gonzalez, Courtney E., and Marc Ostermeier. 2019. Pervasive Pairwise Intragenic
Epistasis among Sequential Mutations in TEM-1 β-Lactamase. Journal of Molecular
Biology 431(10):1981–1992. DOI: 10.1016/j.jmb.2019.03.020.

Gray, Vanessa E., Ronald J. Hause, Jens Luebeck, Jay Shendure, and Douglas M.
Fowler. 2018. Quantitative Missense Variant Effect Prediction Using Large-Scale
Mutagenesis Data. Cell Systems 6(1):116–124.e3. DOI: 10.1016/j.cels.2017.11.
003.

Groth, Peter Mørch, Richard Michael, Jesper Salomon, Pengfei Tian, and Wouter
Boomsma. 2023. FLOP: Tasks for Fitness Landscapes Of Protein wildtypes. bioRxiv.
DOI: 10.1101/2023.06.21.545880.

Hagberg, Aric A., Daniel A. Schult, and Pieter J. Swart. 2008. Exploring network
structure, dynamics, and function using NetworkX. In Proceedings of the 7th Python
in Science Conference, ed. Gaël Varoquaux, Travis Vaught, and Jarrod Millman,
11–15. Pasadena, CA USA.

Han, Kai, Yunhe Wang, Hanting Chen, Xinghao Chen, Jianyuan Guo, Zhenhua
Liu, Yehui Tang, An Xiao, Chunjing Xu, Yixing Xu, Zhaohui Yang, Yiman Zhang,
and Dacheng Tao. 2023. A Survey on Vision Transformer. IEEE Transactions on
Pattern Analysis and Machine Intelligence 45(1):87–110. DOI: 10.1109/TPAMI.2022.
3152247.

Harmalkar, Ameya, Roshan Rao, Yuxuan Richard Xie, Jonas Honer, Wibke Deist-
ing, Jonas Anlahr, Anja Hoenig, Julia Czwikla, Eva Sienz-Widmann, Doris Rau,
Austin J. Rice, Timothy P. Riley, Danqing Li, Hannah B. Catterall, Christine E.
Tinberg, Jeffrey J. Gray, and Kathy Y. Wei. 2023. Toward generalizable prediction
of antibody thermostability using machine learning on sequence and structure
features. mAbs 15(1):2163584. DOI: 10.1080/19420862.2022.2163584.

Hawkins-Hooker, Alex, Florence Depardieu, Sebastien Baur, Guillaume Couairon,
Arthur Chen, and David Bikard. 2020. Generating functional protein variants with
variational autoencoders. bioRxiv. DOI: 10.1101/2020.04.07.029264.

https://doi.org/10.1016/j.jmb.2019.03.020
10.1016/j.jmb.2019.03.020
https://doi.org/10.1016/j.cels.2017.11.003
10.1016/j.cels.2017.11.003
https://doi.org/10.1016/j.cels.2017.11.003
10.1016/j.cels.2017.11.003
https://doi.org/10.1101/2023.06.21.545880
10.1101/2023.06.21.545880
https://doi.org/10.1109/TPAMI.2022.3152247
10.1109/TPAMI.2022.3152247
https://doi.org/10.1109/TPAMI.2022.3152247
10.1109/TPAMI.2022.3152247
https://doi.org/10.1080/19420862.2022.2163584
10.1080/19420862.2022.2163584
https://doi.org/10.1101/2020.04.07.029264
10.1101/2020.04.07.029264

186

Hecht, Maximilian, Yana Bromberg, and Burkhard Rost. 2015. Better prediction of
functional effects for sequence variants. BMC Genomics 16(8):S1. DOI: 10.1186/
1471-2164-16-S8-S1.

Hesslow, Daniel, Niccoló Zanichelli, Pascal Notin, Iacopo Poli, and Debora Marks.
2022. RITA: A Study on Scaling Up Generative Protein Sequence Models. arXiv.
DOI: 10.48550/arXiv.2205.05789.

Høie, Magnus Haraldson, Matteo Cagiada, Anders Haagen Beck Frederiksen,
Amelie Stein, and Kresten Lindorff-Larsen. 2022. Predicting and interpreting
large-scale mutagenesis data using analyses of protein stability and conservation.
Cell Reports 38(2). DOI: 10.1016/j.celrep.2021.110207.

Hollingsworth, Scott A., and Ron O. Dror. 2018. Molecular Dynamics Simulation
for All. Neuron 99(6):1129–1143. DOI: 10.1016/j.neuron.2018.08.011.

Hopf, Thomas A, Anna G Green, Benjamin Schubert, Sophia Mersmann, Char-
lotta P I Schärfe, John B Ingraham, Agnes Toth-Petroczy, Kelly Brock, Adam J
Riesselman, Perry Palmedo, Chan Kang, Robert Sheridan, Eli J Draizen, Christian
Dallago, Chris Sander, and Debora S Marks. 2019. The EVcouplings Python frame-
work for coevolutionary sequence analysis. Bioinformatics 35(9):1582–1584. DOI:
10.1093/bioinformatics/bty862.

Hopf, Thomas A., John B. Ingraham, Frank J. Poelwijk, Charlotta P. I. Schärfe,
Michael Springer, Chris Sander, and Debora S. Marks. 2017. Mutation effects
predicted from sequence co-variation. Nature Biotechnology 35(2):128–135. DOI:
10.1038/nbt.3769.

Hsu, Chloe, Hunter Nisonoff, Clara Fannjiang, and Jennifer Listgarten. 2022. Learn-
ing protein fitness models from evolutionary and assay-labeled data. Nature
Biotechnology 40(7):1114–1122. DOI: 10.1038/s41587-021-01146-5.

Huang, Po-Ssu, Scott E. Boyken, and David Baker. 2016. The coming of age of de
novo protein design. Nature 537(7620):320–327. DOI: 10.1038/nature19946.

https://doi.org/10.1186/1471-2164-16-S8-S1
10.1186/1471-2164-16-S8-S1
https://doi.org/10.1186/1471-2164-16-S8-S1
10.1186/1471-2164-16-S8-S1
https://doi.org/10.48550/arXiv.2205.05789
10.48550/arXiv.2205.05789
https://doi.org/10.1016/j.celrep.2021.110207
10.1016/j.celrep.2021.110207
https://doi.org/10.1016/j.neuron.2018.08.011
10.1016/j.neuron.2018.08.011
https://doi.org/10.1093/bioinformatics/bty862
https://doi.org/10.1093/bioinformatics/bty862
10.1093/bioinformatics/bty862
https://doi.org/10.1038/nbt.3769
https://doi.org/10.1038/nbt.3769
10.1038/nbt.3769
https://doi.org/10.1038/s41587-021-01146-5
10.1038/s41587-021-01146-5
https://doi.org/10.1038/nature19946
10.1038/nature19946

187

Hummer, Alissa M., Constantin Schneider, Lewis Chinery, and Charlotte M. Deane.
2023. Investigating the Volume and Diversity of Data Needed for Generalizable
Antibody-Antigen ∆∆G Prediction. bioRxiv 2023.05.17.541222. DOI: 10.1101/
2023.05.17.541222.

Jemli, Sonia, Dorra Ayadi-Zouari, Hajer Ben Hlima, and Samir Bejar. 2016. Biocat-
alysts: Application and engineering for industrial purposes. Critical Reviews in
Biotechnology 36(2):246–258. DOI: 10.3109/07388551.2014.950550.

Jha, Ramesh K., Tiziano Gaiotto, Andrew R.M. Bradbury, and Charlie E.M. Strauss.
2014. An improved Protein G with higher affinity for human/rabbit IgG Fc domains
exploiting a computationally designed polar network. Protein Engineering, Design
and Selection 27(4):127–134. DOI: 10.1093/protein/gzu005.

Jumper, John, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov,
Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna
Potapenko, Alex Bridgland, Clemens Meyer, Simon A. A. Kohl, Andrew J. Bal-
lard, Andrew Cowie, Bernardino Romera-Paredes, Stanislav Nikolov, Rishub
Jain, Jonas Adler, Trevor Back, Stig Petersen, David Reiman, Ellen Clancy,
Michal Zielinski, Martin Steinegger, Michalina Pacholska, Tamas Berghammer,
Sebastian Bodenstein, David Silver, Oriol Vinyals, Andrew W. Senior, Koray
Kavukcuoglu, Pushmeet Kohli, and Demis Hassabis. 2021. Highly accurate
protein structure prediction with AlphaFold. Nature 596(7873):583–589. DOI:
10.1038/s41586-021-03819-2.

Kawashima, Shuichi, Piotr Pokarowski, Maria Pokarowska, Andrzej Kolinski,
Toshiaki Katayama, and Minoru Kanehisa. 2008. AAindex: Amino acid index
database, progress report 2008. Nucleic Acids Research 36(Database issue):D202–
205. DOI: 10.1093/nar/gkm998.

Kingma, Diederik P., and Jimmy Ba. 2017. Adam: A Method for Stochastic Opti-
mization. arXiv. DOI: 10.48550/arXiv.1412.6980.

https://doi.org/10.1101/2023.05.17.541222
10.1101/2023.05.17.541222
https://doi.org/10.1101/2023.05.17.541222
10.1101/2023.05.17.541222
https://doi.org/10.3109/07388551.2014.950550
10.3109/07388551.2014.950550
https://doi.org/10.1093/protein/gzu005
10.1093/protein/gzu005
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1038/s41586-021-03819-2
10.1038/s41586-021-03819-2
https://doi.org/10.1093/nar/gkm998
10.1093/nar/gkm998
https://doi.org/10.48550/arXiv.1412.6980
10.48550/arXiv.1412.6980

188

Kosciolek, Tomasz, and David T. Jones. 2014. De Novo Structure Prediction of
Globular Proteins Aided by Sequence Variation-Derived Contacts. PLOS ONE
9(3):e92197. DOI: 10.1371/journal.pone.0092197.

Kouba, Petr, Pavel Kohout, Faraneh Haddadi, Anton Bushuiev, Raman Samusevich,
Jiri Sedlar, Jiri Damborsky, Tomas Pluskal, Josef Sivic, and Stanislav Mazurenko.
2023. Machine Learning-Guided Protein Engineering. ACS Catalysis 13(21):13863–
13895. DOI: 10.1021/acscatal.3c02743.

Kryshtafovych, Andriy, Torsten Schwede, Maya Topf, Krzysztof Fidelis, and John
Moult. 2019. Critical Assessment of Methods of Protein Structure Prediction
(CASP) – Round XIII. Proteins 87(12):1011–1020. DOI: 10.1002/prot.25823.

Kuhlman, Brian, and Philip Bradley. 2019. Advances in protein structure prediction
and design. Nature Reviews Molecular Cell Biology 20(11):681–697. DOI: 10.1038/
s41580-019-0163-x.

Kumar, Ananya, Aditi Raghunathan, Robbie Jones, Tengyu Ma, and Percy Liang.
2022. Fine-Tuning can Distort Pretrained Features and Underperform Out-of-
Distribution. arXiv:2202.10054 [cs]. DOI: 10.48550/arXiv.2202.10054.

Laine, Elodie, Yasaman Karami, and Alessandra Carbone. 2019. GEMME: A
Simple and Fast Global Epistatic Model Predicting Mutational Effects. Molecular
Biology and Evolution 36(11):2604–2619. DOI: 10.1093/molbev/msz179.

Li, Bian, Yucheng T. Yang, John A. Capra, and Mark B. Gerstein. 2020. Predicting
changes in protein thermodynamic stability upon point mutation with deep 3D
convolutional neural networks. PLOS Computational Biology 16(11):e1008291. DOI:
10.1371/journal.pcbi.1008291.

Li, Mingchen, Liqi Kang, Yi Xiong, Yu Guang Wang, Guisheng Fan, Pan Tan, and
Liang Hong. 2023. SESNet: Sequence-structure feature-integrated deep learning
method for data-efficient protein engineering. Journal of Cheminformatics 15(1):12.
DOI: 10.1186/s13321-023-00688-x.

https://doi.org/10.1371/journal.pone.0092197
10.1371/journal.pone.0092197
https://doi.org/10.1021/acscatal.3c02743
10.1021/acscatal.3c02743
https://doi.org/10.1002/prot.25823
10.1002/prot.25823
https://doi.org/10.1038/s41580-019-0163-x
10.1038/s41580-019-0163-x
https://doi.org/10.1038/s41580-019-0163-x
10.1038/s41580-019-0163-x
https://doi.org/10.48550/arXiv.2202.10054
10.48550/arXiv.2202.10054
https://doi.org/10.1093/molbev/msz179
10.1093/molbev/msz179
https://doi.org/10.1371/journal.pcbi.1008291
https://doi.org/10.1371/journal.pcbi.1008291
10.1371/journal.pcbi.1008291
https://doi.org/10.1186/s13321-023-00688-x
10.1186/s13321-023-00688-x

189

Lin, Zeming, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu,
Nikita Smetanin, Robert Verkuil, Ori Kabeli, Yaniv Shmueli, Allan dos Santos
Costa, Maryam Fazel-Zarandi, Tom Sercu, Salvatore Candido, and Alexander
Rives. 2023. Evolutionary-scale prediction of atomic-level protein structure with a
language model. Science 379(6637):1123–1130. DOI: 10.1126/science.ade2574.

Linder, Johannes, and Georg Seelig. 2021. Fast activation maximization for
molecular sequence design. BMC Bioinformatics 22(1):510. DOI: 10.1186/
s12859-021-04437-5.

Lipsh-Sokolik, R., O. Khersonsky, S. P. Schröder, C. de Boer, S.-Y. Hoch, G. J. Davies,
H. S. Overkleeft, and S. J. Fleishman. 2023. Combinatorial assembly and design of
enzymes. Science 379(6628):195–201. DOI: 10.1126/science.ade9434.

Lipton, Zachary C., John Berkowitz, and Charles Elkan. 2015. A Critical Review of
Recurrent Neural Networks for Sequence Learning. arXiv. DOI: 10.48550/arXiv.
1506.00019.

Livesey, Benjamin J., and Joseph A. Marsh. 2022. Interpreting protein variant
effects with computational predictors and deep mutational scanning. Disease
Models & Mechanisms 15(6):dmm049510. DOI: 10.1242/dmm.049510.

Livesey, Benjamin J, and Joseph A Marsh. 2023. Updated benchmarking of variant
effect predictors using deep mutational scanning. Molecular Systems Biology 19(8):
e11474. DOI: 10.15252/msb.202211474.

Luo, Yunan, Guangde Jiang, Tianhao Yu, Yang Liu, Lam Vo, Hantian Ding, Yufeng
Su, Wesley Wei Qian, Huimin Zhao, and Jian Peng. 2021. ECNet is an evolution-
ary context-integrated deep learning framework for protein engineering. Nature
Communications 12(1):5743. DOI: 10.1038/s41467-021-25976-8.

Luo, Yunan, Lam Vo, Hantian Ding, Yufeng Su, Yang Liu, Wesley Wei Qian,
Huimin Zhao, and Jian Peng. 2020. Evolutionary context-integrated deep sequence
modeling for protein engineering. bioRxiv. DOI: 10.1101/2020.01.16.908509.

https://doi.org/10.1126/science.ade2574
10.1126/science.ade2574
https://doi.org/10.1186/s12859-021-04437-5
10.1186/s12859-021-04437-5
https://doi.org/10.1186/s12859-021-04437-5
10.1186/s12859-021-04437-5
https://doi.org/10.1126/science.ade9434
10.1126/science.ade9434
https://doi.org/10.48550/arXiv.1506.00019
10.48550/arXiv.1506.00019
https://doi.org/10.48550/arXiv.1506.00019
10.48550/arXiv.1506.00019
https://doi.org/10.1242/dmm.049510
10.1242/dmm.049510
https://doi.org/10.15252/msb.202211474
10.15252/msb.202211474
https://doi.org/10.1038/s41467-021-25976-8
10.1038/s41467-021-25976-8
https://doi.org/10.1101/2020.01.16.908509
10.1101/2020.01.16.908509

190

Madani, Ali, Bryan McCann, Nikhil Naik, Nitish Shirish Keskar, Namrata Anand,
Raphael R. Eguchi, Po-Ssu Huang, and Richard Socher. 2020. ProGen: Language
Modeling for Protein Generation. bioRxiv. DOI: 10.1101/2020.03.07.982272.

Mater, Adam C., Mahakaran Sandhu, and Colin Jackson. 2020. The NK Land-
scape as a Versatile Benchmark for Machine Learning Driven Protein Engineering.
bioRxiv 2020.09.30.319780. DOI: 10.1101/2020.09.30.319780.

McInnes, Leland, John Healy, and James Melville. 2020. UMAP: Uniform Manifold
Approximation and Projection for Dimension Reduction. arXiv. DOI: 10.48550/
arXiv.1802.03426.

Melamed, Daniel, David L. Young, Caitlin E. Gamble, Christina R. Miller, and
Stanley Fields. 2013. Deep mutational scanning of an RRM domain of the Sac-
charomyces cerevisiae poly(A)-binding protein. RNA 19(11):1537–1551. DOI:
10.1261/rna.040709.113.

Mutalik, Vivek K, Joao C Guimaraes, Guillaume Cambray, Colin Lam, Marc Juul
Christoffersen, Quynh-Anh Mai, Andrew B Tran, Morgan Paull, Jay D Keasling,
Adam P Arkin, and Drew Endy. 2013. Precise and reliable gene expression via
standard transcription and translation initiation elements. Nature Methods 10(4):
354–360. DOI: 10.1038/nmeth.2404.

Narancic, Tanja, Sarah A. Almahboub, and Kevin E. O’Connor. 2019. Unnat-
ural amino acids: Production and biotechnological potential. World Journal of
Microbiology and Biotechnology 35(4):67. DOI: 10.1007/s11274-019-2642-9.

Nedrud, David, Willow Coyote-Maestas, and Daniel Schmidt. 2021. A large-scale
survey of pairwise epistasis reveals a mechanism for evolutionary expansion and
specialization of PDZ domains. Proteins: Structure, Function, and Bioinformatics
89(8):899–914. DOI: 10.1002/prot.26067.

Nisonoff, Hunter, Yixin Wang, and Jennifer Listgarten. 2022. Augmenting Neural
Networks with Priors on Function Values. arXiv:2202.04798. ArXiv:2202.04798 [cs,
stat], DOI: 10.48550/arXiv.2202.04798.

https://doi.org/10.1101/2020.03.07.982272
10.1101/2020.03.07.982272
https://doi.org/10.1101/2020.09.30.319780
10.1101/2020.09.30.319780
https://doi.org/10.48550/arXiv.1802.03426
10.48550/arXiv.1802.03426
https://doi.org/10.48550/arXiv.1802.03426
10.48550/arXiv.1802.03426
https://doi.org/10.1261/rna.040709.113
https://doi.org/10.1261/rna.040709.113
10.1261/rna.040709.113
https://doi.org/10.1038/nmeth.2404
10.1038/nmeth.2404
https://doi.org/10.1007/s11274-019-2642-9
10.1007/s11274-019-2642-9
https://doi.org/10.1002/prot.26067
10.1002/prot.26067
https://doi.org/10.48550/arXiv.2202.04798
10.48550/arXiv.2202.04798

191

Nordquist, Erik, Guohui Zhang, Shrishti Barethiya, Nathan Ji, Kelli M. White,
Lu Han, Zhiguang Jia, Jingyi Shi, Jianmin Cui, and Jianhan Chen. 2023. Incorporat-
ing physics to overcome data scarcity in predictive modeling of protein function:
a case study of BK channels. bioRxiv. DOI: 10.1101/2023.06.24.546384.

Notin, Pascal, Mafalda Dias, Jonathan Frazer, Javier Marchena-Hurtado, Aidan
Gomez, Debora S. Marks, and Yarin Gal. 2022. Tranception: Protein fitness predic-
tion with autoregressive transformers and inference-time retrieval. arXiv. DOI:
10.48550/arXiv.2205.13760.

Olson, C. Anders, Nicholas C. Wu, and Ren Sun. 2014. A Comprehensive Bio-
physical Description of Pairwise Epistasis throughout an Entire Protein Domain.
Current Biology 24(22):2643–2651. DOI: 10.1016/j.cub.2014.09.072.

Omar, Sara Ibrahim, Chen Keasar, Ariel J. Ben-Sasson, and Eldad Haber. 2023.
Protein Design Using Physics Informed Neural Networks. Biomolecules 13(3):457.
DOI: 10.3390/biom13030457.

OSG. 2006. Open Science Pool. DOI: 10.21231/906P-4D78.

Otwinowski, Jakub, David M. McCandlish, and Joshua B. Plotkin. 2018. Inferring
the shape of global epistasis. Proceedings of the National Academy of Sciences 115(32):
E7550–E7558. DOI: 10.1073/pnas.1804015115.

Pan, Xingjie, and Tanja Kortemme. 2021. Recent advances in de novo protein
design: Principles, methods, and applications. Journal of Biological Chemistry 296:
100558. DOI: 10.1016/j.jbc.2021.100558.

Paysan-Lafosse, Typhaine, Matthias Blum, Sara Chuguransky, Tiago Grego, Beat-
riz Lázaro Pinto, Gustavo A Salazar, Maxwell L Bileschi, Peer Bork, Alan Bridge,
Lucy Colwell, Julian Gough, Daniel H Haft, Ivica Letunić, Aron Marchler-Bauer,
Huaiyu Mi, Darren A Natale, Christine A Orengo, Arun P Pandurangan, Catherine
Rivoire, Christian J A Sigrist, Ian Sillitoe, Narmada Thanki, Paul D Thomas, Silvio
C E Tosatto, Cathy H Wu, and Alex Bateman. 2023. InterPro in 2022. Nucleic Acids
Research 51(D1):D418–D427. DOI: 10.1093/nar/gkac993.

https://doi.org/10.1101/2023.06.24.546384
10.1101/2023.06.24.546384
https://doi.org/10.48550/arXiv.2205.13760
https://doi.org/10.48550/arXiv.2205.13760
10.48550/arXiv.2205.13760
https://doi.org/10.1016/j.cub.2014.09.072
10.1016/j.cub.2014.09.072
https://doi.org/10.3390/biom13030457
10.3390/biom13030457
https://doi.org/10.21231/906P-4D78
10.21231/906P-4D78
https://doi.org/10.1073/pnas.1804015115
10.1073/pnas.1804015115
https://doi.org/10.1016/j.jbc.2021.100558
10.1016/j.jbc.2021.100558
https://doi.org/10.1093/nar/gkac993
10.1093/nar/gkac993

192

Pordes, Ruth, Don Petravick, Bill Kramer, Doug Olson, Miron Livny, Alain Roy,
Paul Avery, Kent Blackburn, Torre Wenaus, Frank Würthwein, Ian Foster, Rob
Gardner, Mike Wilde, Alan Blatecky, John McGee, and Rob Quick. 2007. The open
science grid. Journal of Physics: Conference Series 78(1):012057. DOI: 10.1088/
1742-6596/78/1/012057.

Ramírez-Palacios, Carlos, and Siewert J. Marrink. 2023. Super High-Throughput
Screening of Enzyme Variants by Spectral Graph Convolutional Neural Networks.
Journal of Chemical Theory and Computation 19(14):4668–4677. DOI: 10.1021/acs.
jctc.2c01227.

Rao, Roshan, Nicholas Bhattacharya, Neil Thomas, Yan Duan, Xi Chen, John
Canny, Pieter Abbeel, and Yun S. Song. 2019. Evaluating protein transfer learning
with TAPE. In Proceedings of the 33rd International Conference on Neural Information
Processing Systems, 9689–9701. 869, Red Hook, NY, USA: Curran Associates Inc.

Rao, Roshan M., Jason Liu, Robert Verkuil, Joshua Meier, John Canny, Pieter
Abbeel, Tom Sercu, and Alexander Rives. 2021. MSA Transformer. In Proceedings
of the 38th International Conference on Machine Learning, 8844–8856. PMLR.

Riesselman, Adam J., John B. Ingraham, and Debora S. Marks. 2018. Deep genera-
tive models of genetic variation capture the effects of mutations. Nature Methods
15(10):816–822. DOI: 10.1038/s41592-018-0138-4.

Rives, Alexander, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Demi
Guo, Myle Ott, C. Lawrence Zitnick, Jerry Ma, and Rob Fergus. 2020. Biological
structure and function emerge from scaling unsupervised learning to 250 million
protein sequences. bioRxiv. DOI: 10.1101/622803.

Rives, Alexander, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason
Liu, Demi Guo, Myle Ott, C. Lawrence Zitnick, Jerry Ma, and Rob Fergus. 2021.
Biological structure and function emerge from scaling unsupervised learning
to 250 million protein sequences. Proceedings of the National Academy of Sciences
118(15):e2016239118. DOI: 10.1073/pnas.2016239118.

https://doi.org/10.1088/1742-6596/78/1/012057
10.1088/1742-6596/78/1/012057
https://doi.org/10.1088/1742-6596/78/1/012057
10.1088/1742-6596/78/1/012057
https://doi.org/10.1021/acs.jctc.2c01227
10.1021/acs.jctc.2c01227
https://doi.org/10.1021/acs.jctc.2c01227
10.1021/acs.jctc.2c01227
https://doi.org/10.1038/s41592-018-0138-4
10.1038/s41592-018-0138-4
https://doi.org/10.1101/622803
10.1101/622803
https://doi.org/10.1073/pnas.2016239118
10.1073/pnas.2016239118

193

Romero, Philip A., and Frances H. Arnold. 2009. Exploring protein fitness land-
scapes by directed evolution. Nature Reviews Molecular Cell Biology 10(12):866–876.
DOI: 10.1038/nrm2805.

Romero, Philip A., Andreas Krause, and Frances H. Arnold. 2013. Navigating
the protein fitness landscape with Gaussian processes. Proceedings of the National
Academy of Sciences 110(3):E193. DOI: 10.1073/pnas.1215251110.

Romero, Philip A., Tuan M. Tran, and Adam R. Abate. 2015. Dissecting enzyme
function with microfluidic-based deep mutational scanning. Proceedings of the
National Academy of Sciences 112(23):7159–7164. DOI: 10.1073/pnas.1422285112.

Rubin, Alan F., Hannah Gelman, Nathan Lucas, Sandra M. Bajjalieh, Anthony T.
Papenfuss, Terence P. Speed, and Douglas M. Fowler. 2017. A statistical framework
for analyzing deep mutational scanning data. Genome Biology 18(1):150. DOI:
10.1186/s13059-017-1272-5.

Saito, Yutaka, Misaki Oikawa, Hikaru Nakazawa, Teppei Niide, Tomoshi Kameda,
Koji Tsuda, and Mitsuo Umetsu. 2018. Machine-Learning-Guided Mutagenesis for
Directed Evolution of Fluorescent Proteins. ACS Synthetic Biology 7(9):2014–2022.
DOI: 10.1021/acssynbio.8b00155.

Sanyal, Soumya, Ivan Anishchenko, Anirudh Dagar, David Baker, and Partha
Talukdar. 2020. ProteinGCN: Protein model quality assessment using Graph
Convolutional Networks. bioRxiv. DOI: 10.1101/2020.04.06.028266.

Sarkisyan, Karen S., Dmitry A. Bolotin, Margarita V. Meer, Dinara R. Usmanova,
Alexander S. Mishin, George V. Sharonov, Dmitry N. Ivankov, Nina G. Bozhanova,
Mikhail S. Baranov, Onuralp Soylemez, Natalya S. Bogatyreva, Peter K. Vlasov,
Evgeny S. Egorov, Maria D. Logacheva, Alexey S. Kondrashov, Dmitry M. Chu-
dakov, Ekaterina V. Putintseva, Ilgar Z. Mamedov, Dan S. Tawfik, Konstantin A.
Lukyanov, and Fyodor A. Kondrashov. 2016. Local fitness landscape of the green
fluorescent protein. Nature 533(7603):397–401. DOI: 10.1038/nature17995.

https://doi.org/10.1038/nrm2805
10.1038/nrm2805
https://doi.org/10.1073/pnas.1215251110
10.1073/pnas.1215251110
https://doi.org/10.1073/pnas.1422285112
10.1073/pnas.1422285112
https://doi.org/10.1186/s13059-017-1272-5
https://doi.org/10.1186/s13059-017-1272-5
10.1186/s13059-017-1272-5
https://doi.org/10.1021/acssynbio.8b00155
10.1021/acssynbio.8b00155
https://doi.org/10.1101/2020.04.06.028266
10.1101/2020.04.06.028266
https://doi.org/10.1038/nature17995
10.1038/nature17995

194

Schymkowitz, Joost, Jesper Borg, Francois Stricher, Robby Nys, Frederic Rousseau,
and Luis Serrano. 2005. The FoldX web server: An online force field. Nucleic Acids
Research 33(suppl_2):W382–W388. DOI: 10.1093/nar/gki387.

Sfiligoi, Igor, Daniel C. Bradley, Burt Holzman, Parag Mhashilkar, Sanjay Padhi,
and Frank Wurthwein. 2009. The Pilot Way to Grid Resources Using glideinWMS.
In 2009 WRI World Congress on Computer Science and Information Engineering, vol. 2,
428–432. DOI: 10.1109/CSIE.2009.950.

Shaw, Peter, Jakob Uszkoreit, and Ashish Vaswani. 2018. Self-Attention with
Relative Position Representations. In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 2 (Short Papers), 464–468. New Orleans, Louisiana: Association
for Computational Linguistics. DOI: 10.18653/v1/N18-2074.

Simons, Kim T., Rich Bonneau, Ingo Ruczinski, and David Baker. 1999. Ab
initio protein structure prediction of CASP III targets using ROSETTA. Pro-
teins: Structure, Function, and Bioinformatics 37(S3):171–176. DOI: 10.1002/(SICI)
1097-0134(1999)37:3+<171::AID-PROT21>3.0.CO;2-Z.

Soneson, Charlotte, Alexandra M. Bendel, Guillaume Diss, and Michael B.
Stadler. 2023. Mutscan—a flexible R package for efficient end-to-end analysis
of multiplexed assays of variant effect data. Genome Biology 24(1):132. DOI:
10.1186/s13059-023-02967-0.

Song, Hyebin, Bennett J. Bremer, Emily C. Hinds, Garvesh Raskutti, and Philip A.
Romero. 2021. Inferring Protein Sequence-Function Relationships with Large-Scale
Positive-Unlabeled Learning. Cell Systems 12(1):92–101.e8. DOI: 10.1016/j.cels.
2020.10.007.

Song, Yifan, Frank DiMaio, Ray Yu-Ruei Wang, David Kim, Chris Miles,
TJ Brunette, James Thompson, and David Baker. 2013. High-Resolution Compara-
tive Modeling with RosettaCM. Structure 21(10):1735–1742. DOI: 10.1016/j.str.
2013.08.005.

https://doi.org/10.1093/nar/gki387
10.1093/nar/gki387
https://doi.org/10.1109/CSIE.2009.950
10.1109/CSIE.2009.950
https://doi.org/10.18653/v1/N18-2074
10.18653/v1/N18-2074
https://doi.org/10.1002/(SICI)1097-0134(1999)37:3+<171::AID-PROT21>3.0.CO;2-Z
10.1002/(SICI)1097-0134(1999)37:3+<171::AID-PROT21>3.0.CO;2-Z
https://doi.org/10.1002/(SICI)1097-0134(1999)37:3+<171::AID-PROT21>3.0.CO;2-Z
10.1002/(SICI)1097-0134(1999)37:3+<171::AID-PROT21>3.0.CO;2-Z
https://doi.org/10.1186/s13059-023-02967-0
https://doi.org/10.1186/s13059-023-02967-0
10.1186/s13059-023-02967-0
https://doi.org/10.1016/j.cels.2020.10.007
10.1016/j.cels.2020.10.007
https://doi.org/10.1016/j.cels.2020.10.007
10.1016/j.cels.2020.10.007
https://doi.org/10.1016/j.str.2013.08.005
10.1016/j.str.2013.08.005
https://doi.org/10.1016/j.str.2013.08.005
10.1016/j.str.2013.08.005

195

Starita, Lea M., Jonathan N. Pruneda, Russell S. Lo, Douglas M. Fowler, Helen J.
Kim, Joseph B. Hiatt, Jay Shendure, Peter S. Brzovic, Stanley Fields, and Rachel E.
Klevit. 2013. Activity-enhancing mutations in an E3 ubiquitin ligase identified
by high-throughput mutagenesis. Proceedings of the National Academy of Sciences
110(14):E1263–E1272. DOI: 10.1073/pnas.1303309110.

Starr, Tyler N., and Joseph W. Thornton. 2016. Epistasis in protein evolution. Protein
Science 25(7):1204–1218. DOI: 10.1002/pro.2897.

Strokach, Alexey, David Becerra, Carles Corbi-Verge, Albert Perez-Riba, and
Philip M. Kim. 2020. Fast and Flexible Protein Design Using Deep Graph Neural
Networks. Cell Systems 11(4):402–411.e4. DOI: 10.1016/j.cels.2020.08.016.

Sun, Jinyuan, Tong Zhu, Yinglu Cui, and Bian Wu. 2023. Structure-based self-
supervised learning enables ultrafast prediction of stability changes upon mutation
at the protein universe scale. bioRxiv 2023.08.09.552725. DOI: 10.1101/2023.08.
09.552725.

Sundararajan, Mukund, Ankur Taly, and Qiqi Yan. 2017. Axiomatic attribution
for deep networks. In Proceedings of the 34th International Conference on Machine
Learning - Volume 70, 3319–3328. ICML’17, Sydney, NSW, Australia: JMLR.org.

Suzek, Baris E., Yuqi Wang, Hongzhan Huang, Peter B. McGarvey, Cathy H. Wu,
and the UniProt Consortium. 2015. UniRef clusters: a comprehensive and scalable
alternative for improving sequence similarity searches. Bioinformatics 31(6):926–
932. DOI: 10.1093/bioinformatics/btu739.

Tareen, Ammar, Mahdi Kooshkbaghi, Anna Posfai, William T. Ireland, David M.
McCandlish, and Justin B. Kinney. 2022. MAVE-NN: Learning genotype-
phenotype maps from multiplex assays of variant effect. Genome Biology 23(1):98.
DOI: 10.1186/s13059-022-02661-7.

Tareen, Ammar, Anna Posfai, William T. Ireland, David M. McCandlish, and
Justin B. Kinney. 2020. MAVE-NN: learning genotype-phenotype maps from
multiplex assays of variant effect. bioRxiv. DOI: 10.1101/2020.07.14.201475.

https://doi.org/10.1073/pnas.1303309110
10.1073/pnas.1303309110
https://doi.org/10.1002/pro.2897
10.1002/pro.2897
https://doi.org/10.1016/j.cels.2020.08.016
10.1016/j.cels.2020.08.016
https://doi.org/10.1101/2023.08.09.552725
10.1101/2023.08.09.552725
https://doi.org/10.1101/2023.08.09.552725
10.1101/2023.08.09.552725
https://doi.org/10.1093/bioinformatics/btu739
10.1093/bioinformatics/btu739
https://doi.org/10.1186/s13059-022-02661-7
10.1186/s13059-022-02661-7
https://doi.org/10.1101/2020.07.14.201475
10.1101/2020.07.14.201475

196

Thain, Douglas, Todd Tannenbaum, and Miron Livny. 2005. Distributed computing
in practice: the Condor experience. Concurrency and Computation: Practice and
Experience 17(2-4):323–356. DOI: 10.1002/cpe.938.

The Gene Ontology Consortium, Suzi A Aleksander, James Balhoff, Seth Car-
bon, J Michael Cherry, Harold J Drabkin, Dustin Ebert, Marc Feuermann, Pas-
cale Gaudet, Nomi L Harris, David P Hill, Raymond Lee, Huaiyu Mi, Sierra
Moxon, Christopher J Mungall, Anushya Muruganugan, Tremayne Mushaya-
hama, Paul W Sternberg, Paul D Thomas, Kimberly Van Auken, Jolene Ram-
sey, Deborah A Siegele, Rex L Chisholm, Petra Fey, Maria Cristina Aspromonte,
Maria Victoria Nugnes, Federica Quaglia, Silvio Tosatto, Michelle Giglio, Suvarna
Nadendla, Giulia Antonazzo, Helen Attrill, Gil dos Santos, Steven Marygold,
Victor Strelets, Christopher J Tabone, Jim Thurmond, Pinglei Zhou, Saadullah H
Ahmed, Praoparn Asanitthong, Diana Luna Buitrago, Meltem N Erdol, Matthew C
Gage, Mohamed Ali Kadhum, Kan Yan Chloe Li, Miao Long, Aleksandra Micha-
lak, Angeline Pesala, Armalya Pritazahra, Shirin C C Saverimuttu, Renzhi Su,
Kate E Thurlow, Ruth C Lovering, Colin Logie, Snezhana Oliferenko, Judith
Blake, Karen Christie, Lori Corbani, Mary E Dolan, Harold J Drabkin, David P
Hill, Li Ni, Dmitry Sitnikov, Cynthia Smith, Alayne Cuzick, James Seager, Lau-
rel Cooper, Justin Elser, Pankaj Jaiswal, Parul Gupta, Pankaj Jaiswal, Sushma
Naithani, Manuel Lera-Ramirez, Kim Rutherford, Valerie Wood, Jeffrey L De Pons,
Melinda R Dwinell, G Thomas Hayman, Mary L Kaldunski, Anne E Kwitek,
Stanley J F Laulederkind, Marek A Tutaj, Mahima Vedi, Shur-Jen Wang, Peter
D’Eustachio, Lucila Aimo, Kristian Axelsen, Alan Bridge, Nevila Hyka-Nouspikel,
Anne Morgat, Suzi A Aleksander, J Michael Cherry, Stacia R Engel, Kalpana Karra,
Stuart R Miyasato, Robert S Nash, Marek S Skrzypek, Shuai Weng, Edith D Wong,
Erika Bakker, Tanya Z Berardini, Leonore Reiser, Andrea Auchincloss, Kristian
Axelsen, Ghislaine Argoud-Puy, Marie-Claude Blatter, Emmanuel Boutet, Lionel
Breuza, Alan Bridge, Cristina Casals-Casas, Elisabeth Coudert, Anne Estreicher,
Maria Livia Famiglietti, Marc Feuermann, Arnaud Gos, Nadine Gruaz-Gumowski,
Chantal Hulo, Nevila Hyka-Nouspikel, Florence Jungo, Philippe Le Mercier,

https://doi.org/10.1002/cpe.938
10.1002/cpe.938

197

Damien Lieberherr, Patrick Masson, Anne Morgat, Ivo Pedruzzi, Lucille Pour-
cel, Sylvain Poux, Catherine Rivoire, Shyamala Sundaram, Alex Bateman, Emily
Bowler-Barnett, Hema Bye-A-Jee, Paul Denny, Alexandr Ignatchenko, Rizwan
Ishtiaq, Antonia Lock, Yvonne Lussi, Michele Magrane, Maria J Martin, Sandra
Orchard, Pedro Raposo, Elena Speretta, Nidhi Tyagi, Kate Warner, Rossana Zaru,
Alexander D Diehl, Raymond Lee, Juancarlos Chan, Stavros Diamantakis, Daniela
Raciti, Magdalena Zarowiecki, Malcolm Fisher, Christina James-Zorn, Virgilio
Ponferrada, Aaron Zorn, Sridhar Ramachandran, Leyla Ruzicka, and Monte West-
erfield. 2023. The Gene Ontology knowledgebase in 2023. Genetics 224(1):iyad031.
DOI: 10.1093/genetics/iyad031.

The UniProt Consortium. 2023. UniProt: The Universal Protein Knowledgebase in
2023. Nucleic Acids Research 51(D1):D523–D531. DOI: 10.1093/nar/gkac1052.

Torrisi, Mirko, Gianluca Pollastri, and Quan Le. 2020. Deep learning methods in
protein structure prediction. Computational and Structural Biotechnology Journal 18:
1301–1310. DOI: 10.1016/j.csbj.2019.12.011.

Varadi, Mihaly, Stephen Anyango, Mandar Deshpande, Sreenath Nair, Cindy
Natassia, Galabina Yordanova, David Yuan, Oana Stroe, Gemma Wood, Agata
Laydon, Augustin Žídek, Tim Green, Kathryn Tunyasuvunakool, Stig Petersen,
John Jumper, Ellen Clancy, Richard Green, Ankur Vora, Mira Lutfi, Michael Fig-
urnov, Andrew Cowie, Nicole Hobbs, Pushmeet Kohli, Gerard Kleywegt, Ewan
Birney, Demis Hassabis, and Sameer Velankar. 2022. AlphaFold Protein Struc-
ture Database: Massively expanding the structural coverage of protein-sequence
space with high-accuracy models. Nucleic Acids Research 50(D1):D439–D444. DOI:
10.1093/nar/gkab1061.

Vaser, Robert, Swarnaseetha Adusumalli, Sim Ngak Leng, Mile Sikic, and
Pauline C. Ng. 2016. SIFT missense predictions for genomes. Nature Protocols
11(1):1–9. DOI: 10.1038/nprot.2015.123.

https://doi.org/10.1093/genetics/iyad031
10.1093/genetics/iyad031
https://doi.org/10.1093/nar/gkac1052
10.1093/nar/gkac1052
https://doi.org/10.1016/j.csbj.2019.12.011
10.1016/j.csbj.2019.12.011
https://doi.org/10.1093/nar/gkab1061
https://doi.org/10.1093/nar/gkab1061
10.1093/nar/gkab1061
https://doi.org/10.1038/nprot.2015.123
10.1038/nprot.2015.123

198

Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention Is All
You Need. arXiv:1706.03762 [cs]. DOI: 10.48550/arXiv.1706.03762.

Voelz, Vincent A., Vijay S. Pande, and Gregory R. Bowman. 2023. Folding@home:
Achievements from over 20 years of citizen science herald the exascale era. Bio-
physical Journal 122(14):2852–2863. DOI: 10.1016/j.bpj.2023.03.028.

Vu, Thi Thuy Duong, and Jaehee Jung. 2021. Protein function prediction with
gene ontology: From traditional to deep learning models. PeerJ 9:e12019. DOI:
10.7717/peerj.12019.

Wang, Amy, Ava Soleimany, Alex X Lu, and Kevin Yang. 2022a. Learning from
physics-based features improves protein property prediction. In Machine Learning
for Structural Biology Workshop at the 36th Conference on Neural Information Processing
Systems.

Wang, Bo, and Eric R. Gamazon. 2022. Modeling mutational effects on biochemical
phenotypes using convolutional neural networks: Application to SARS-CoV-2.
iScience 25(7). DOI: 10.1016/j.isci.2022.104500.

Wang, Connie Y., Paul M. Chang, Marie L. Ary, Benjamin D. Allen, Roberto A.
Chica, Stephen L. Mayo, and Barry D. Olafson. 2018. ProtaBank: A repository for
protein design and engineering data. Protein Science : A Publication of the Protein
Society 27(6):1113–1124. DOI: 10.1002/pro.3406.

Wang, Shuyu, Hongzhou Tang, Yuliang Zhao, and Lei Zuo. 2022b. BayeStab:
Predicting effects of mutations on protein stability with uncertainty quantification.
Protein Science 31(11):e4467. DOI: 10.1002/pro.4467.

Wang, Zirui, Zihang Dai, Barnabás Póczos, and Jaime Carbonell. 2019. Character-
izing and Avoiding Negative Transfer. In 2019 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 11285–11294. DOI: 10.1109/CVPR.2019.
01155.

https://doi.org/10.48550/arXiv.1706.03762
10.48550/arXiv.1706.03762
https://doi.org/10.1016/j.bpj.2023.03.028
10.1016/j.bpj.2023.03.028
https://doi.org/10.7717/peerj.12019
https://doi.org/10.7717/peerj.12019
10.7717/peerj.12019
https://doi.org/10.1016/j.isci.2022.104500
10.1016/j.isci.2022.104500
https://doi.org/10.1002/pro.3406
10.1002/pro.3406
https://doi.org/10.1002/pro.4467
10.1002/pro.4467
https://doi.org/10.1109/CVPR.2019.01155
10.1109/CVPR.2019.01155
https://doi.org/10.1109/CVPR.2019.01155
10.1109/CVPR.2019.01155

199

Watanabe, Hideki, Chuya Yoshida, Ayako Ooishi, Yasuto Nakai, Momoko Ueda,
Yutaka Isobe, and Shinya Honda. 2019. Histidine-Mediated Intramolecular Elec-
trostatic Repulsion for Controlling pH-Dependent Protein–Protein Interaction.
ACS Chemical Biology 14(12):2729–2736. DOI: 10.1021/acschembio.9b00652.

Watson, Joseph L., David Juergens, Nathaniel R. Bennett, Brian L. Trippe, Ja-
son Yim, Helen E. Eisenach, Woody Ahern, Andrew J. Borst, Robert J. Ragotte,
Lukas F. Milles, Basile I. M. Wicky, Nikita Hanikel, Samuel J. Pellock, Alexis
Courbet, William Sheffler, Jue Wang, Preetham Venkatesh, Isaac Sappington, Su-
sana Vázquez Torres, Anna Lauko, Valentin De Bortoli, Emile Mathieu, Sergey
Ovchinnikov, Regina Barzilay, Tommi S. Jaakkola, Frank DiMaio, Minkyung Baek,
and David Baker. 2023. De novo design of protein structure and function with
RFdiffusion. Nature 1–12. DOI: 10.1038/s41586-023-06415-8.

Weinstein, Jonathan Yaacov, Carlos Martí-Gómez, Rosalie Lipsh-Sokolik,
Shlomo Yakir Hoch, Demian Liebermann, Reinat Nevo, Haim Weissman, Ekate-
rina Petrovich-Kopitman, David Margulies, Dmitry Ivankov, David M. McCan-
dlish, and Sarel J. Fleishman. 2023. Designed active-site library reveals thou-
sands of functional GFP variants. Nature Communications 14(1):2890. DOI:
10.1038/s41467-023-38099-z.

Weiss, Karl, Taghi M. Khoshgoftaar, and DingDing Wang. 2016. A survey of
transfer learning. Journal of Big Data 3(1):9. DOI: 10.1186/s40537-016-0043-6.

Wells, James A. 1990. Additivity of mutational effects in proteins. Biochemistry
29(37):8509–8517. DOI: 10.1021/bi00489a001.

Wittmann, Bruce J., Yisong Yue, and Frances H. Arnold. 2020. Machine Learning-
Assisted Directed Evolution Navigates a Combinatorial Epistatic Fitness Landscape
with Minimal Screening Burden. bioRxiv. DOI: 10.1101/2020.12.04.408955.

Wu, Zijun, and Saurabh Sinha. 2023. SPREd: A simulation-supervised neural
network tool for gene regulatory network reconstruction. bioRxiv 2023.11.09.566399.
DOI: 10.1101/2023.11.09.566399.

https://doi.org/10.1021/acschembio.9b00652
10.1021/acschembio.9b00652
https://doi.org/10.1038/s41586-023-06415-8
10.1038/s41586-023-06415-8
https://doi.org/10.1038/s41467-023-38099-z
https://doi.org/10.1038/s41467-023-38099-z
10.1038/s41467-023-38099-z
https://doi.org/10.1186/s40537-016-0043-6
10.1186/s40537-016-0043-6
https://doi.org/10.1021/bi00489a001
10.1021/bi00489a001
https://doi.org/10.1101/2020.12.04.408955
10.1101/2020.12.04.408955
https://doi.org/10.1101/2023.11.09.566399
10.1101/2023.11.09.566399

200

Wu, Zonghan, Pan, Shirui, Chen, Fengwen, Long, Guodong, Zhang, Chengqi, and
Yu, Philip S. 2020. A Comprehensive Survey on Graph Neural Networks. IEEE
Transactions on Neural Networks and Learning Systems 1–21. DOI: 10.1109/TNNLS.
2020.2978386.

Xiong, Ruibin, Yunchang Yang, Di He, Kai Zheng, Shuxin Zheng, Chen Xing,
Huishuai Zhang, Yanyan Lan, Liwei Wang, and Tie-Yan Liu. 2020. On Layer
Normalization in the Transformer Architecture. arXiv:2002.04745 [cs, stat]. DOI:
10.48550/arXiv.2002.04745.

Xu, Yuting, Deeptak Verma, Robert P. Sheridan, Andy Liaw, Junshui Ma,
Nicholas M. Marshall, John McIntosh, Edward C. Sherer, Vladimir Svetnik, and
Jennifer M. Johnston. 2020. Deep Dive into Machine Learning Models for Protein
Engineering. Journal of Chemical Information and Modeling 60(6):2773–2790. DOI:
10.1021/acs.jcim.0c00073.

Yang, Kevin K., Nicolo Fusi, and Alex X. Lu. 2023. Convolutions are competitive
with transformers for protein sequence pretraining. bioRxiv. DOI: 10.1101/2022.
05.19.492714.

Yang, Kevin K., Zachary Wu, and Frances H. Arnold. 2019. Machine-learning-
guided directed evolution for protein engineering. Nature Methods 16(8):687–694.
DOI: 10.1038/s41592-019-0496-6.

Yang, Kevin K, Zachary Wu, Claire N Bedbrook, and Frances H Arnold. 2018.
Learned protein embeddings for machine learning. Bioinformatics 34(15):2642–
2648. DOI: 10.1093/bioinformatics/bty178.

Yu, Sungduk, Walter Hannah, Liran Peng, Jerry Lin, Mohamed Aziz Bhouri,
Ritwik Gupta, Björn Lütjens, Justus Christopher Will, Gunnar Behrens, Julius
Busecke, Nora Loose, Charles I. Stern, Tom Beucler, Bryce Harrop, Benjamin R. Hill-
man, Andrea Jenney, Savannah Ferretti, Nana Liu, Anima Anandkumar, Noah D.
Brenowitz, Veronika Eyring, Nicholas Geneva, Pierre Gentine, Stephan Mandt,
Jaideep Pathak, Akshay Subramaniam, Carl Vondrick, Rose Yu, Laure Zanna,

https://doi.org/10.1109/TNNLS.2020.2978386
10.1109/TNNLS.2020.2978386
https://doi.org/10.1109/TNNLS.2020.2978386
10.1109/TNNLS.2020.2978386
https://doi.org/10.48550/arXiv.2002.04745
https://doi.org/10.48550/arXiv.2002.04745
10.48550/arXiv.2002.04745
https://doi.org/10.1021/acs.jcim.0c00073
https://doi.org/10.1021/acs.jcim.0c00073
10.1021/acs.jcim.0c00073
https://doi.org/10.1101/2022.05.19.492714
10.1101/2022.05.19.492714
https://doi.org/10.1101/2022.05.19.492714
10.1101/2022.05.19.492714
https://doi.org/10.1038/s41592-019-0496-6
10.1038/s41592-019-0496-6
https://doi.org/10.1093/bioinformatics/bty178
10.1093/bioinformatics/bty178

201

Tian Zheng, Ryan Abernathey, Fiaz Ahmed, David C. Bader, Pierre Baldi, Eliza-
beth Barnes, Christopher Bretherton, Peter Caldwell, Wayne Chuang, Yilun Han,
Yu Huang, Fernando Iglesias-Suarez, Sanket Jantre, Karthik Kashinath, Marat
Khairoutdinov, Thorsten Kurth, Nicholas Lutsko, Po-Lun Ma, Griffin Mooers,
J. David Neelin, David Randall, Sara Shamekh, Mark A. Taylor, Nathan Urban,
Janni Yuval, Guang Zhang, and Michael Pritchard. 2023. ClimSim: A large multi-
scale dataset for hybrid physics-ML climate emulation. arXiv:2306.08754. DOI:
10.48550/arXiv.2306.08754.

Zhao, Yingwen, Jun Wang, Jian Chen, Xiangliang Zhang, Maozu Guo, and Guoxian
Yu. 2020. A Literature Review of Gene Function Prediction by Modeling Gene
Ontology. Frontiers in Genetics 11. DOI: 10.3389/fgene.2020.00400.

Zhou, Yunzhuo, Qisheng Pan, Douglas E V Pires, Carlos H M Rodrigues, and
David B Ascher. 2023. DDMut: predicting effects of mutations on protein stability
using deep learning. Nucleic Acids Research 51(W1):W122–W128. DOI: 10.1093/
nar/gkad472.

Zhuang, Fuzhen, Zhiyuan Qi, Keyu Duan, Dongbo Xi, Yongchun Zhu, Heng-
shu Zhu, Hui Xiong, and Qing He. 2020. A Comprehensive Survey on Transfer
Learning. arXiv. DOI: 10.48550/arXiv.1911.02685.

Zitti, Athena, and Dafydd Jones. 2023. Expanding the genetic code: A non-natural
amino acid story. The Biochemist 45(1):2–6. DOI: 10.1042/bio_2023_102.

https://doi.org/10.48550/arXiv.2306.08754
https://doi.org/10.48550/arXiv.2306.08754
10.48550/arXiv.2306.08754
https://doi.org/10.3389/fgene.2020.00400
10.3389/fgene.2020.00400
https://doi.org/10.1093/nar/gkad472
10.1093/nar/gkad472
https://doi.org/10.1093/nar/gkad472
10.1093/nar/gkad472
https://doi.org/10.48550/arXiv.1911.02685
10.48550/arXiv.1911.02685
https://doi.org/10.1042/bio_2023_102
10.1042/bio_2023_102

	Contents
	List of Tables
	List of Figures
	Abstract
	Introduction
	Motivation
	Biological Background
	Computational Background
	Survey of the Current Landscape
	Scope and Dissertation Overview

	Neural Nets for Deep Mutational Scanning Data
	Introduction
	Results
	Discussion
	Methods

	Appendix A: Supplementary Information for Chapter 2
	Supplementary Methods
	Supplementary Figures

	Mutational Effect Transfer Learning
	Introduction
	Results
	Discussion
	Methods

	Appendix B: Supplementary Information for Chapter 3
	Discussion
	Contributions
	Future Work
	Reflections
	Conclusion

	References

