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Chapter 1

Introduction

This thesis focuses on reliability issues for the electricity grid that powers the United States. Elec-

tricity is a critical service used by almost every person and company within our country. Reliability

issues cost industry billions of dollars every year. Large scale power outages are national disasters

due to the loss of services such as cell phones, city wide water pumping, gasoline stations, trains,

subways, and cooling which inevitably lead to economic loss and loss of life.

The introduction starts with an overview of the electrical infrastructure of the United States.

Following are the basics of how the power system operates on a day-to-day basis and the organi-

zational structure that operates it. Then, the events of August 2003 are explained where part of

the Northeast electricity grid collapsed in a cascading power failure leading to millions of people

without power, billions in economic loss and the loss of life. This is just one example of a large

scale power outage, which is rare, but extremely costly to society. After this, general reliability

issues of the power grid is discussed which cost society billions annually.

After defining the problem, this thesis explains the tools and methodology for attempting

to make our system more robust against such failures. First, the current literature on cascading
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power failures is explored. This is used to model the cascading process as a multi-stage stochastic

program with mixed-integer decision variables. It is shown to have a similar distribution to the

simulation, however is computationally difficult. We turn to optimizing design problems with the

cascading simulation as a subproblem. This allows us to take advantage of accessory information in

the cascading simulation as well as parallelize the computational effort to solve large scale problems

in a timely manner. Finally, a system risk measure is developed to control endogenous, congestion

based line failure risk. This risk measure is used in a real time dispatch model with net injection

uncertainty and the cost-risk frontier is explored.

1.1 Power Systems Introduction

The United States electrical infrastructure is a complex physical structure which connects the

consumers of electricity with generating assets over a large geographic area. The nature of electricity

makes the operation of this infrastructure extremely difficult and is accomplished through numerous

organizations and people working together to supply electricity at the least cost while maintaining

a given level of reliability.

As of 2004, the electrical infrastructure was comprised of more than $1 trillion in asset value.

This includes over 200,000 miles of high voltage transmission lines, 950,000 MW of generation,

and 3500 utility organizations serving 283 million people [45]. The introduction briefly looks at

generation and the transmission system which efficiently moves the energy over long distances.

Electricity Generation

Electricity is generated using a variety of fuels and procceses. The most common method of

electricity generation creates steam by heating water, which spins a turbine producing an alternating
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current of electricity. The United States operates its power grid at 60 hz, that is, the direction of

electrical flow switches 60 times every second. Since the generators are tied to the grid, when the

grid is stable, the generators are rotating synchronously with the power grid. The water can be

heated by different fuels such as coal, natural gas, fissioning heavy elements such as uranium, or

even using geothermal temperature differentials. The Rankine cycle is a model of converting heat

into mechanical energy for steam engines. The efficiency of the cycle is limited by the difference

between the turbine entry temperature and the condenser temperature. This means that steam

cycle power plants need an external cooling source which removes the waste heat from the working

fluid before it begins the cycle again.

The first example of a steam cycle power plant is a coal plant. The chemical energy in coal

is converted into thermal energy and byproducts such as carbon dioxide. Power from coal provides

around 40% (for the year 2013 [2]) of the electricitty generation in the United States. These plants

have more thermal inertia which makes changing the output level a slow process. Modern coal

plants achieve efficiencies of 30-40%, that is, the percentage of their input energy which is injected

into the grid as electricity is 30-40%.

Nuclear power plants (19% of electricity) also operate on the steam cycle, producing heat by

fissioning heavy elements such as Uranium-235. Nuclear plants have relatively slow ramping rates

and cheap fuel, which lead them to be dispatched at high output rates continuously. These plants,

along with coal plants, provide the majority of baseload power production. Baseload power is the

minimum amount of power that needs to be produced continuously throughout the day. Nuclear

fuel has a desirable aspect of being extremely energy dense. The energy density of Uranium-235

is roughly 3 million times denser than coal. This means that the waste products of this process

are much less than other types of power plants and are also captured completely without being

released to the environment.
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Natural gas plants (27% of electricity) can capture, in addition to the heat energy, the

combustion energy and use it to spin a gas turbine. Gas turbines, while having a lower thermal

efficiency, have the desirable trait to quickly throttle production to the desired level in contrast

with steam cycles. Additionally, by using a combination of both combustion and heat energy,

combined-cycle natural gas plants can reach efficiencies of around 60%. These fast ramping rates

and more expensive fuel lead natural gas plants to provide peaking power matching electrical

demand over baseload. Recently, with relatively cheaper natural gas and increased efficiencies from

combined-cycle plants, natural gas plants are playing more of a role in electrical demand between

baseload and peaking levels.

Hydroelectric power (6% of electricity) has many desirable traits and it is the largest source

of renewable energy generation installed around the world. By creating a reservoir to hold a large

amount of water at a high level, potential energy can be stored. When this water is released, it

becomes kinetic energy, which can be captured by a turbine and used to generate electricity. By

controlling the flow into the turbine or the amount of turbines spinning, hydro power is capable

of not only storing energy, but also quickly adjusting its output rate. However, they have the

additional constraint of needing to maintain given reservoir levels throughout the year.

In the past decade, we have introduced a sizeable amount of electricity production from

renewable sources such as wind turbines and solar panels (both total 6% of electricity, with wind

comprising the majority). These generation sources have a cheap fuel (kinetic energy from the wind

and solar radiation), but are unable to control output.

The different characteristics of generators give each a different roles to play in the operation of

the power system in order to meet demand. These various generation assets are owned by utilities,

independent power producers, large industrial customers themselves, and, more recently, residential
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consumers.

Transmission Network

The production from the majority of large generation plants is at lower voltages (10kV - 25kV).

Electricity traveling in transmission elements lose energy due to resistive losses, which primarily

goes into heating up the power line. The resistive losses are proportional to the current. In

order to reduce losses, the voltages are stepped up to between 230 kV to 765kV for long distance

transmission elements, which has the effect of reducing the current for a given amount of power.

At the demand side, there are radial tree-like distribution networks operating at low voltages (less

than 1kV) which connect every demand node to the power grid. The United States power grid

is broken into three distinct power grids: Western Interconnection, Eastern Interconnection, and

Texas Interconnection. Each has a network of transmission lines connecting all of the generators

with all of the loads.

Power flows, according to the laws of physics, along “paths of least resistance”, which are

modeled with Kirchoff Voltage Laws (KVL) and Kirchoff Current Laws (KCL). This means that

electricity flow can’t be controlled like many other complex networks such as cell phone and internet

traffic, but instead follows laws of physics much like water or gas in pipe networks. In addition,

electricity flows at close to the speed of light and currently is hard to store economically, unlike

water and gas. There needs to be an instantaneous balance of generation and demand.

Organizational Structure

The primary reliability organization which develops operating and planning standards is North

American Reliability Council (NERC) and ten regional councils.
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NERC develops standards for reliable operation and planning of the bulk electric system and

then monitors and assesses compliance. Also, they provide education and training, while

coordinating critical infrastructure protection, such as information exchange between relia-

bility service organizations. Finally, they assess, analyze, and report performance and system

adequacy.

The primary focus of the reliability and planning standards is to be able to serve all demand

reliability both today and in the future. There are 7 primary tasks:

• Balance power generation and demand continuously;

• Balance reactive power supply and demand to maintain scheduled voltages;

• Monitor flows over transmission lines and other facilities to ensure thermal limits not exceeded;

• Keep system in stable condition;

• Operate so that it remains in reliable condition even if contingency occurs (N-1 critiera) and

when a contingency does occur, maneuver to new stable N-1 position. The N-1 criteria states

that the system must be robust against any single component of the power grid failing;

• Plan, design, and maintain the system to operate reliably; and

• Prepare for emergencies.

Within the United States, Federal Energy Regulatory Commission (FERC) is the federal

agency with control over electricity sales, natural gas and oil pipelines, and hydropower projects

and has increased power after the Energy Policy Act of 2005. This differentiates it from NERC in

that it can impose mandatory standards.
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FERC imposes mandatory reliability standards for the bulk transmission system and imposes

penalties on those that manipulate the markets. Its primary tasks are the following:

• Regulate transmission and wholesale electricity sales in interstate commerce;

• License non-federal hydroelectric projects;

• Ensure reliability of high voltage interstate transmission system;

• Monitor and investigate energy markets;

• Penalize violating entities, through civil penalties or other means; and

• Oversee environmental matters relating to major policy initiatives.

The restructuring of the power grid has decoupled utilities from the responsibility of main-

taining a control area. The 140 control areas are operated by the 10 regional Independent System

Operators (ISOs) or Regional Transmission Organizations (RTOs).

ISO/RTO are tasked with providing least cost energy to everyone within its territory while main-

taining a given level of reliability. In order to do this, they create wholesale electricity markets

in order to balance generation and load in real time at least cost. Their tasks are the following:

• Manage the wholesale electricity markets while maintaining the reliability of the system;

• Direct the operation of the assets owned by their members; and

• Encompass multiple control areas within the territory that they operate.
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Wholesale Electricity Markets

The ISO or RTO use 3 primary markets for determining how much each generator should produce

at any given time. The first market is bi-lateral contracts. These are long term contracts between

producers and suppliers to exchange a certain quantity of energy at a given price. These contracts

help provide reliable, long term forecasting for supply and load. This reduces exposure to the

volatility of the day ahead and real time markets.

The day ahead market takes bids from generators which contain an array of costs to produce

a certain amount of electricity. The generators also provide additional operational constraints, such

as ramping rates and start-up and shut-down times and costs. In addition to generators’ physical

constraints, forecasts for demand of the following day is used to get an estimate of the amount of

generation needed. Using the transmission constraints for the given network, the ISO clears this

market during the previous day. This process usually takes around four hours and is done with

specialized optimization tools solving the optimal power flow problem with security constraints and

unit commitment decision variables. The outcome of this process is the schedule for slow ramping

generators and hourly locational marginal prices (LMP) at each location in the network for the

following day. These prices are guaranteed and any deviation from the schedule are made up in

the real-time market.

The real-time market makes up for errors in forecasting as well as possible failures in genera-

tion or transmission. This market operates on five minute intervals and can be extremely volatile.

Similar methods as the day-ahead are used to clear this market, although simplified due to the time

constraint. Price spikes can occur during times of peak demand and a congested grid in which the

price of electricity can often become over 10-20 times as expensive. The reverse is also possible.

During times of low demand, it is possible for negative prices on the real time market. This occurs
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Figure 1.1: Location Marginal Prices (LMP) for Midwest ISO’s territory

because the generators are constrained by ramping rates and there is too much production on the

grid. In fig. 1.1, there are negative prices across the Midwest and, in particular, Iowa, with much

higher prices in Illinois. This LMP snapshot is taken at night when there is low demand for elec-

tricity as well as increased production from wind farms located in the Midwest. The differences

in prices suggest significant transmission bottleneck constraints between the Upper Midwest and

Illinois.

Operating Constraints

In order for the power grid to operate and maintain stability, a number of things must hold. First

and foremost, there must be a continuous balance of power generation and demand. The US grids

are all operated with a target frequency of 60 hz, but the actual system frequency varies. When

there is excess generation on the grid, the frequency will increase and with a lack of generation,

frequency will drop. Since the generators are synchronized with the grid, when the frequency

deviates from normal, the generators can move out of their operating limits and cause damage.



10

Generators have internal protections to identify bad operating points and trip offline in order to

protect themselves. In order to protect the grid, there is automated tripping of load at certain

frequency points to take customers offline and prevent total collapse.

In addition to real power balance, reactive power supply and demand must be used to maintain

scheduled voltages. Low voltage can cause system instability and damage to motors and electrical

equipment. Also, high voltage can exceed insulation capability and cause dangerous arcs. Reactive

power is supplied through capacitor banks and generator output.

In order to protect the transmission elements, the flows over transmission lines and other fa-

cilities must be monitored to ensure thermal limits are not exceeded. Lines are heated by electricity

flow and equipment can be damaged, such as conductors sagging from stretch and expansion due

to high temperatures. These problems are affected by ambient temperature and wind conditions.

The flow is limited so the line does not sag into obstructions such as trees and telephones.

1.2 Cascading Power Failures

A cascading power failure is a set of failures of individual components of the transmission system

which leads to the redistribution of power over the new topology. When the system is in a stable

operating position, individual components often have a negligible effect on system-wide distribution.

However, after several failures, the transmission network may not have enough capacity to distribute

the power from the generation to the load. This can cause a series of fast acting trips in which a

large portion of the grid may fail. While rare, these events are extremely costly.
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1.2.1 Northeast 2003 Blackout

Historical Problems

The Northeast blackout of 2003 began in the Cleveland-Akron area of the Eastern Interconnection.

This area had a history of problems of low voltages due to the relatively high amount of imported

power. In 1998, the system was becoming unstable and everything other than load shed was done

to fix the problem. It was shown to not be within the reliability standards, and regulations were

loosened instead of addressing the problem. A transformer problem led American Electric Power

(AEP), a control area entity, to perform a reliability study on the neighboring control area operated

by First Energy (FE). The study again showed voltage instability problems.

The summer of 2003 was fairly typical with less than historical peak load. While the load was

less than historal peak, it was consistently greater than the forecasted load. High temperatures,

creating a greater air conditioning load, contributed to reactive power shortages. The voltages were

low in Cleveland-Akron during the week, but within the new operating limits (92% to 105%). A

group of shunt capacitors, out of service for planned maintenance, further reduced reactive power

supply. Also, a large nuclear reactor, Davis-Besse, was in a long term forced outage state. This

plant is normally able to provide a large amount of real power as well as reactive power support.

Normal Day Turns Bad

A series of initiating events, as well as the failure of FE’s control server, led to an unstable sys-

tem and the inability for operators to do anything about it. In addition, neighboring regional

reliability coordinators (Midwest Independent System Operator, MISO, and Pennsylvania-New

Jersey-Maryland Interconnect, PJM) had bad information on the state of the system and were

unable to provide support. The operators had concern about voltage levels and were trying to get
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additional reactive power online. The shunt capacitors were unable to return to operation.

The following initiating events didn’t cause the system to collapse, but moved it into an

unreliable state, which allowed the collapse to take place. The Stuart-Atlanta 345 kV line tripped

due to contact with surrounding vegetation (area voltage at 98.5%) at less than 100% capacity. In

addition to the loss of the line, MISO was unaware, which led to unusable output and the inability

to provide support. An important generating unit, Eastlake 5, attempts to increase reactive power

output, but the internal protection trips the generator offline (area voltage 97.3%). This led to real

power imports rising, which increased the need for reactive power as well. Another transmission

line loss of Harding-Chamberlin 345 kV continued to depress the voltage (95.9%). Around this

time, the underlying 138 kV network began to fail. MISO was unable to perform N-1 contingency

analysis and the FE reliability charts flatlined due to the server problems.

Ultimately, it was in reliable state before 15:05, however, after all of these events, the system

was no longer N-1 stable. In addition, reliability coordinators were using separate state information

due to poor communication.

System Becomes Unreliable

A total of 3 lines tripped at below operating capacity due to tree contact starting with Harding-

Chamberlin (44% of capacity) at 15:05. Then the Hanna-Juniper line tripped (88% normal and

emergency rating) at 15:32. The Star-South Canton line had multiple tree contacts (55%) starting

at 14:27, and finally tripped off for good (93% emergency rating) at 15:41. There were no prior

sustained outages from tree contact in the previous years and FE used vegetation management

practices consistent with the industry. When designing line limits, the thermal ratings are based

on many variables including ambient temperatures and wind speeds. A combination of higher than
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nominal ambient temperature and lower wind speeds reduced the cooling capacity of lines.

Perry plant, the largest local generator, was getting voltage spikes at levels close to tripping

the generator. They notified FE of the problems, but the operators were unable to recover from

this precarious situation. The task force notes that load shed here of 1500MW may have saved the

system by increasing voltages and stopping the ultimate trip of Sammis Star line.

High Speed Cascading Failures

At 16:05 the final straw was pulled by the tripping of the Sammis-Star 345kV line separating

geographical regions of the grid. Unplanned power shifts across regions caused phase 3 operations

in the protective relays of transmission elements, which can trip lines far away from the problem

area. The grid continued to stabilize after each one of these individual outages. However, by 16:10,

the north and south separated (AEP separates from FE), and the high generation area was no

longer directly connected to the high load center. This caused a massive power surge from PJM

through New York and Ontario counter clockwise around the great lake to load centers in Michigan.

This surge caused the Northeast to separate from the rest of Eastern Interconnect (EI).

There was insufficient generation in the newly formed islands to support the load. The

frequency in remaining parts of EI rose to 60.3%, representing 3700 MW of excess generation. The

Northeast grid kept breaking apart until islands were formed in which an equilibrium between load

and generation could be made. Under-frequency and under-voltage load shedding helped to stabilize

the system within the islands. New York dropped 10,648 MW through automatic load shedding

and Ontario dropped 7800 MW. Some generators tripped off at unreasonable levels making island

stabilization more difficult. Thousands of events occured between 16:10 and 16:13.

The cascade spread, not due to voltage problems, but dyanmic power swings which caused
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system instability. The voltage instability was only companion to the angle instability (represents

large real power flow swings) which tripped generators and lines. The large power swings come

from imbalance between generation and load across regions and the electrical separation of these

two areas. The inherent weak points are lines with the highest impedence, which trip off relatively

early due to protective relay settings. These are typically long over-head lines with high loadings.

The Blackout Results

In the United States, 45 million people lost power totaling 61,800 MW in Ohio, Michigan, Pennsyl-

vania, New York, Vermont, Massachusetts, Connecticut, and New Jersey. The US loss estimate was

between $4 billion and $10 billion. Another 10 million people from Canada lost power leading to

an estimated 18.9 million lost man hours and $2.3 billion in lost manufacturing shipments. There

were at least 11 fatalities, power took up to 4 days to return, and rolling blackouts continued in

Ontario for the following week.[45]

The formation of a large island, based off of hydro plants in western New York and Canada,

was the basis for system restoration.

1.3 Reliability in Power Systems

The electricity grid is held to a higher reliability standard than other services since it is critical

infrastructure for society. Even though the power system maintains a very high level of reliability,

power interruptions still have large costs to consumers. After a discussion of the economic costs,

the trends in power outages for the North American grid are looked at.

The economic loss caused by power interruptions to electricity consumers in the United

States for 2001 was estimated at $79 billion [30]. This can be compared to the total revenue of
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electrical sales in the year 2001 of $247 billion [1]. The single event of the Northeast blackout in

2003 was estimated to have a total impact on US workers, consumers, and taxpayers as a loss of

approximately $6.4 billion [4]. This cost is hidden from the system, but may entertain the notion

that the true cost of electricity is higher than the current prices.

The current power system has evolved throughout the last century due to economic and

reliability issues and the responses of the operating entities to these forces. The power system

has self-organized into a dynamic equilibrium where blackouts of all sizes occur [18]. The average

frequency of blackouts in the United States is 13 days and has been the same for 30 years [12],

which represents this equilibrium.

NERC data shows that distribution of blackouts for the last 15 years (1988-2003) follows a

power tail curve with an exponent of around −1.3 ± .2 [12]. This is strengthened further where

Hines et. al. showed that the frequency of blackouts in the United States is not decreasing, changes

seasonally and with the time of day, and follows a power-law distribution [23, 24].

Some emerging conditions on the grid may make protection more important and more difficult,

shown in table 1.1. Electric vehicles adopted en masse have a potential to offer useful services to the

power grid through the use of a sizable amount of energy storage in aggregate. However, they also

represent a considerable stress on the system in different spots and ways than it is used to. The ideal

car battery system would have a quick charge, that is, the ability to transfer the energy from the

grid to the battery extremely quickly. This would allow consumers to use charging stations similar

to the current gasoline stations for combustion engines. A charging station capable of charging

many cars would have extremely high and unpredictable volatility that the system needs to protect

against.

The increased penetration of renewable energy production also increases stress on the power
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Previous Conditions Emerging Conditions

Fewer, relatively large resources Smaller, more numerous resources

Long-term, firm contracts Contracts shorter in duration, more non-firm
transactions, fewer long-term firm transactions

Bulk power transactions relatively stable and pre-
dictable

Bulk power transactions relatively variable and
less predictable

Assessment of system reliability made from stable
base (narrower, more predictable range of poten-
tial operating states)

Assessment of system reliability made from vari-
able base (wider, less predictable range of poten-
tial operating states)

Limited and knowledgeable set of utility players More players making more transactions, some
with less interconnected operation experience; in-
creasing with retail access

Unused transmission capacity and high security
margins

High transmission utilization and operation closer
to security limits

Limited competition, little incentive for reducing
reliability investments

Utilities less willing to make investments in trans-
mission reliability that do not increase revenues

Market rules and reliability rules developed to-
gether

Market rules undergoing transition, reliability
rules developed separately

Limited wheeling More system throughput

Table 1.1: Changing conditions that affect system reliability (from the Northeast outage report [45]).

system. Wind and solar are both variable generation devices which do not actively control the

amount of electricity being produced. The system needs to maintain ample ramping capability in

order to maintain stability. These stresses can be reduced by improving the quality of forecasting

efforts on various timescales. In addition, these technologies are geographically constrained by their

fuel source availability, wind speeds and solar irradition. However, these natural fuel sources do

not align with large demand centers, so the transmission system is needed to efficiently distribute

the energy produced.

1.4 Thesis Roadmap

In this thesis, we work to evaluate and reduce the likelihood and effects of rare event failures on

the bulk power system. We start by reviewing the current literature on cascading power failures

and we use a cascading simulation common in literature to build upon. We first formulate this

as a large, multi-stage stochastic program using binary variables to model line failures and an

effective capacity distribution to model decision dependent uncertainty. Then, we decompose this
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model by scenario in order to get an efficient and parallelizable cascade simulation. We look

at transmission expansion and optimize over this long term design problem using derivative free

optimization techniques. Then, we look at line failures in the five minute time horizon and develop

a dispatch model to constrain the likelihood of line failures over this time frame. We extend this

model to the N-1 exogenous contingencies and combine it with the OPA model to evaluate and

constrain rare event risk.

The cascading power failure simulation we use, and is used in other literature, can be seen

as an empirical model in which the distribution of load shed from these events follow the same

power-law distribution that is seen in the real world. It uses topology information as well as

linearized power flow constraints that are necessary to capture some of the important effects of

power system operation. This model does not attempt to capture short term transients involved in

the physical evolution of these cascading processes. Instead, it attempts to capture the distribution

of possible outcomes and evaluate the system risk associated with rare events.

We have three primary themes and areas of contribution. First, a common theme seen in this

thesis is that instead of trying to deal with these events as they are occurring, we want to reduce

the likelihood of initiating events and the expected effects of them once they are started. Since it is

often hard to tell at the beginning if a cascade will occur and once it is obvious it is likely too late,

we want to reduce the chance to be put in that situation and minimize the expected effects of that

situation. In chapters 2 and 3, we look at transmission expansion where the objective function is

to minimize the expected value of load shed over a subset of contingencies. In chapters 4 and 5, a

system risk constraint is developed that constrains the likelihood of line failure due to endogenous,

line loading risk.

The second theme is the multiple sources of uncertainty. The first primary source of uncer-
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tainty, that has been a focus of a lot of recent literature, is demand and generation uncertainty. With

the increased penetration of solar and wind generation, the power system experiences more devia-

tion from forecast than before. We focus on this demand and generation uncertainty in chapters 4

and 5. Another source of uncertainty is what we term as the effective capacity of a transmission

element. It is hard to know exactly how much current can flow on a line before it fails. This

failure point is the result of many factors: environmental conditions such as ambient temperature

and wind speed, clearance between the transmission line and vegetation or infrastructure, material

characteristics of the conductor, and others. Since this level depends on environmental conditions

that are continually changing and other unknowns such as vegetation growth, instead of trying to

calculate this exactly, we assume that this is uncertain. As we saw in the Northeast 2003 black-

out, multiple, critical transmission elements failed at below nominal capacity due to environmental

conditions and vegetation growth. Our effect capacity distribution builds this uncertainty directly

into the model. We focus on this effective capacity uncertainty in chapters 2 to 5. The final source

of uncertainty is the evolution of the cascading process once it has been initiated. We focus on this

uncertainty in chapters 2 and 3. We use a cascading model seen in literature that captures some

of these effects, however as more detailed and accurate evolution models are developed, they can

be incorporated into this framework as well.

The final theme is the multiple time frames at which we attempt to tackle this problem. Power

systems have a lot of infrastructural inertia in that there are high capital costs and long lead times

for power system assets. Additionally, there has not been much investment in the transmission grid

over the last 30 years, however there is increased interest in this topic as of late. In chapters 2 and 3,

we are looking at this problem from a long term design perspective. If we have a budget to increase

the resilience of the power system to these rare event failures, how should we allocate it among the

potential infrastructure options. In chapters 4 and 5 we look at the real time dispatch problem
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and incorporate the endogenous system risk of line loading levels into the dispatch decision. These

models do not require infrastructure investments, instead they change how the generation units are

dispatched. For each dispatch, there is a resulting power flow through the transmission elements.

This flow adds to line failure risk, and it is this endogenous risk associated with power flow that

we evaluate and constrain in our new dispatch models.

Multi-Stage Integer Program

In chapter 2, we give an overview of current literature on cascading power failures. We follow

work on a cascading simulation used in literature that is a short term force in an equilibrium

model. This cascading simulation is modeled as a multi-stage stochastic program with mixed integer

decision variables (formulation donated as MSIP). The primary contributions of this chapter are

the following:

• Describe sequential cascading process and its greedy characteristics mathematically;

• Model decision-dependent uncertainty using binary variables and a priori sampling, intro-

ducing the concept of effective capacity; and

• Formulate the cascading simulation as a MSIP and use this as a subproblem in long-term

design optimization aimed at mitigating cascade-induced load shed.

Derivative Free Optimization

In chapter 3, we use a computationally cheaper simulation, common random numbers for variance

reduction, and a parallelization routine to optimize capacity expansion problems using the OPA

cascading simulation as an evaluation of rare event risk. To optimize over this simulation with high
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frequency noise and discontinuities, derivative free optimization (DFO) techniques were employed.

The primary contributions of this chapter are the following:

• Explore the effects of capacity expansion on the OPA cascading model;

• An efficient parallel implementation to optimize the simulation on large-scale instances; and

• A Modification of DFO techniques that take advantage of problem-specific characteristics.

Joint Chance Constraint

In chapter 4, we develop a dispatch model to incorporate the endogenous risk from line loading. A

system risk measure is controlled via a joint chance constraint (JCC) on the probability of any line

failing and constrained under net injection uncertainty. The primary contributions of this chapter

are the following:

• Calculation of branch flow covariance matrix under the assumption of a known injection

covariance matrix for generation and demand;

• System risk defined by probability that one or more lines fail formulated analytically as a

JCC;

• Solve the constrained system risk dispatch model exactly when generation and demand are

fixed (not random, known with certainty);

• Solve the constrained system risk dispatch model approximately using the assumption of

multivariate Gaussian uncertainty; and

• The cost-risk frontier is explored under this new risk measure and the resulting economic

trade-offs.
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Joint Chance Constraint with OPA Weighting

In chapter 5, we combine the rare event risk of the OPA cascade simulation with the line failure

model developed in chapter 4. Since all lines are not created equally, this model accounts for

differences in line importance by weighting the line risk constraint. The primary contributions of

this chapter are the following:

• System risk measure is extended to exogenous contingencies ;

• Evaluate rare event reliability with the OPA model; and

• Use a linear weighting system to account for OPA risk in a real time dispatch model.

1.4.1 Overview

Cascading Power Failures

One type of cascading model is a strictly topological model with no power flow elements. While these

types of models are simple, they are incapable of capturing effects which are loading dependent.

The OPA type model (detailed in section 2.1.2) is a sequential process in which the power flows

for the entire network are calculated in order to determine the loading on the various transmission

elements. This, in addition to a deterministic or probabilistic failure model, is used to determine

whether individual components fail at each stage in the cascade. The cascade concludes when no

transmission elements fail.

The OPA type of model has been shown to capture the criticality effects of blackouts (higher

than expected large blackouts) we see in real power systems in aggregate. As more complexity is

added into this model, this type of model can produce reasonable sequences of line failures for the

system, while remaining accurate in aggregate. In this thesis, we use the simple form of the OPA
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model in order to capture loading effects, however we are ignoring all effects related to voltages

and high speed transients. Our high level models can incorporate some of these more complicated

features, however we use the OPA model as a good starting point so that we are not bogged down

in details, although they are certainly important details that need to be worked on.

Building this model requires calculating the power flows. While the system is not necessarily

stable or balanced throughout the cascade process, the balanced, steady state 3 phase power flow

equations are used as a basis for the power flow analysis. The power flows is approximated by

using the DC (Decoupled) power flow model, which is a linear approximation to the AC power flow

equations. We do not use information about voltages, however there are OPA models that use the

full AC power flow equations that could be incorporated into our models with some effort.

Design problems are formed that change aspects of the topology, component parameters, or

operation of the system. Using the OPA model to gauge the response of the system to these changes,

we have formulated a mathematical optimization problem. These design problems can range from

transmission expansions to setting operational reserve levels or even producing protective relay

settings for individual components. A primary contribution of chapter 2 is the demonstration of

the significant flexibility offered by the mathematical optimization models.

Optimization Difficulties

This problem offers several difficulties which make optimization challenging. A primary difficulty

is the sequential process of the OPA model in which operators make decisions under uncertainty

and the decisions effect the future stages and progression of the process. In addition, the decision-

dependent outcomes only have a probabilistic effect on the progression of the cascade. That is, an

overloaded line may not fail in all scenarios, so that at each stage a range of outcomes is needed to
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capture the probabilistic effects. In order to properly describe the outcomes of the process under a

range of scenarios, a multi-stage tree with even a modest number of stages and outcomes explodes

quickly.

Another main challenge is that the change of topology of the power system creates nonlinear

and nonconvex effects. It is possible to reduce the cost of electricity by removing transmission

elements. On the other hand, by adding transmission lines, a system capable of meeting demand

can become infeasible. Since the system is constrained by KVL and KCL, each transmission

line, while providing a path for electricity flow, further constrains the system. It is well known

that nonconvex behavior is not desirable for optimization problems, and in this case we can have

nonconvex behavior between each stage of our process, since by definition, each stage before the

final has topology changes.

Modeling Cascading Power Failures

In order to better understand the structure of the problem, it is formulated as a multi-stage stochas-

tic program with decision-dependent uncertainty (MSIP) in chapter 2. In order to do this, logical

connections between the stages are made using binary variables, that is variables that can only take

the value 0 or 1. In this way, the decision dependent uncertainty can be modeled explicitly and the

probabilistic effects can be modeled by sampling the random variables a priori. As the number of

outcomes per stage increases, probabilistic effects can be modeled more accurately. Using this type

of model, the number of stages has to be decided a priori as well. This is a major shortcoming, as

we are concerned with the effects of the worst cascades, which can take many stages to complete.

As the number of nodes, N , is related to the number of outcomes, a, and number of stages, b, by

N ∝ ab, the model quickly becomes intractable.
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However, if a crude approximation to the cascade process can get similar aggregate effects

from the outcome, we are able to use this formulation as a subproblem. This can then be embedded

in design master problem, an example being transmission expansion, and then solved with an out

of the box mixed-integer solver.

Exploring the OPA Simulutation Through Transmission Expansion

The computational complexity of the first approach grows too fast with respect to increases in model

accuracy. In chapter 3, the OPA model is simulated instead of more rigorously mathematically

defined. In this, we lose some structure of the problem, but by decoupling the stages of the

OPA model from the master problem, we have a simple Monte Carlo simulation. Using variance

reduction techniques of common random numbers we can resolve the outcome of any configuration

of the design problems extremely quickly by running a large number of simulations. In addition,

we can parallelize the process in order to evaluate multiple configurations simultaneously. The

outcome of these simulations are statistics about the magnitude of the blackout for the various

contingencies as well as possible sequence of line failures.

The optimization field has many algorithms that can use a zeroth order oracle, that is for

each configuration, the oracle returns a real-valued number (the function value) and may include

stochastic variation or numerical error. In our case, the simulation is the oracle and the real-valued

number could be the expected load shed or the value-at-risk (which attempts to capture large tail

effects of distributions). The main types of derivative free optimization are pattern search, model

based, and stochastic approximations.

A pattern search method doesn’t attempt to understand anything about the underlying

structure but instead tries to search in a specific way such that the function value improves. Certain
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patterns can offer local convergence guarantees, that is the solution is at least better than all of those

in the neighborhood. This, in combination with a grid search in which the whole space is partitioned

and sampled, can get you good global solutions, but global convergence is not provable. These

search methods can be improved by using well-positioned exploratory steps and search directions

that conform to local topology.

Line Failure Risk Model for Real-Time Dispatch

In chapter 4, we consider a new dispatch model. The model incorporates endogenous line loading

risk and constrains it according to some risk preference. This creates an efficient operating frontier

along the cost-risk metrics for different operating points. In addition, this model incorporates net

injection uncertainty into the evaluation of the system risk measure. Included in the system risk

measure is the covariance of the net injection uncertainty. This uncertainty is responsible for some

of the system stress due to volatile injection and the system responds to these volatile injections

with a subset of generators following an area control error (ACE) signal. This subset of generators

is denoted the slack distribution in this thesis.

We begin by modeling the net injections as a Gaussian distribution with a given mean and

covariance matrix. Due to our linear assumptions for DC power flow, the linear power transfer

distribution matrix can be used to calculate the branch flows (also Gaussian) mean and the branch

covariance matrix. A line-failure function is used to model the risk on a single line for a given flow.

This can be integrated over the uncertainty in line flow to find the individual contribution of risk

for any line. By summing over the lines, we find the expected risk to the system depending on the

specific line loadings. This system risk is constrained in a real time dispatch model.

The JCC model is explored for its effects on the generator dispatch points in a small 30 bus
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example. The model is also used on a 2300 bus example to show that it is quick to solve (around

2-4x solve times compared to standard DC, although roughly similar as standard chance-constrained

model). The cost risk frontier is explored and the chance constraint frontier is plotted, which resides

on the interior of the new frontier. The chance constraint model comes from several papers in this

research area and puts a chance constraint on the probability of a line to exceed its threshold. With

proper parameters, the JCC model can closely represent the same effects as the chance constraint

model while having the additional benefit of a system risk measure, instead of a risk measure for

every single branch element.

Reducing Cascading Risk Through Real-Time Dispatch

Finally, we conclude by incorporating the rare event risk measure of the OPA cascading process with

the real-time dispatch model of endogenous line failure risk. We extend the joint chance constraint

model to the N-1 exogenous contingencies. We also use these N-1 exogenous contingencies and the

line failure risk model to seed the OPA model with initial contingencies. Using these two sources

of information, we develop a linear weighting system to capture the first order effects of the initial

contingencies in the OPA process. We use this linear weighting and the cutting plane algorithm

from chapter 4 to solve this large, convex problem.
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Chapter 2

Modeling Cascading Power Failures

An ideal model is complex enough to capture the important features and effects of the process,

while remaining simple enough to work with and remain believable. Arbitrarily complex models

can be made to produce the output matching nearly any process, but often there is no reason to

believe that the individual mechanisms being modeled are important or represent a real part of the

process. In this chapter, we review a simple simulation model for estimating the load shed from a

cascading power failure. We analytically capture the relevant features of the simulation model into

a mixed-integer stochastic program (MISP) with decision-dependent uncertainty. Our MSIP can

be embedded in a variety of optimization problems designed to mitigate the effects of cascading

power failures.

2.1 Literature Review

Historically, cascading power failures have been a hard problem to understand, and since they are

rare, the process was not studied much. However, after the Northeast Blackout of 2003, more focus

has been devoted to this problem.
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The simplest models of the cascading process are strictly topological models with some mech-

anism to fail components such as a failed node leads to its neighbors to fail with a given probability.

While these models can capture interesting effects due to degree distribution and clustering, they

lack important information about the electrical parameters of the topology as well as loading pat-

terns.

After discussing historical topological models, Hines, Cotilla, et. al. [25], [15] provide a

rebuttal to strictly topological models. Here, topological measures are looked at in addition to the

electrical information behind the topology of the grid.

Finally, the Oak Ridge National Laboratory, Power System Engineering Research Center of

Wisconsin University, and Alaska University (OPA) type models are developed. These models

use the electrical parameters as well as demand and generation information to solve the power

flow problem. The results of this are loading patterns on the topology of the power grid. Using

these loading patterns as well as a deterministic or probabilitic failure mechanism, another level of

complexity can be added to the cascading failure model. The following quote from Hines et. al.

[26] supports the use of this type of model.

While a perfect model of cascading failure would accurately represent the continuous

dynamics of rotating machines, the discrete dynamics associated with relays that dis-

connect stressed components from the network, the non-linear algebraic equations that

govern flows in the network, and the social dynamics of operators working to mitigate

the effects of system stress, all power system models simplify these dynamics to some

extent. Unlike simple topological metrics, our model does capture the effects of Ohm’s

and Kirchhoff’s laws, by using linear approximations of the non-linear power flow equa-

tions [5]. Similar models have been used to study cascading failure in a number of recent
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papers [12], [19], [35].

In addition to the fast time scale cascading model, the OPA work included a slow time scale

model, which responded to these cascading failures by engineering improvements. It is the dynamic

interactions of these two forces that leads to an equilibrium in which blackouts of all sizes occur

and the size follows a power law distribution.

In order to use OPA models, power flows need to be calculated and to reduce the compu-

tational complexity of the model, a Decoupled (DC) power flow model is used by making a few

simplifying assumptions. Using the power flow model, an economic dispatch model can be made

to dispatch the generators at least cost, while remaining within its operating constraints. This

dispatch model is used to connect the reliability issues of the power grid with economic ones.

2.1.1 Topologic Model

This section first discusses historical topological models and then describe common topological

measures. These measures are used to compare to other network structures. Using these measures,

it is shown that power grids differ from many other common network structures and thus need to

be analyzed on their own.

Historical Topological Models

In 2004, Albert et. al. [3] worked on large blackouts in response to August 2003 and developed a

deterministic model of failures based on topological measures. They used 4 methods of removing

nodes from the grid one at a time, randomly, highest degree, highest load, and cascading. The

main simplifying assumption is that if a generator is connected to a load, its power is available. In

addition, power is routed along the shortest path from generation to load. Then, in order to monitor
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the effects of the failure patterns, connectivity loss is recorded, which represent the average decrease

in number of generators connected to a substation. They conclude by noting possible solutions of

increasing redundancy and capacity of the system or decreasing reliance on transmission by using

more generation at the distribution substation level.

Kinney and others developed another method for estimating power flows on a given topology

[28]. They introduce the concept of efficiency for power lines and use the harmonic composition

of the efficiency of lines to calculate an efficiency measure for any given path. Now, the electricity

is distributed to a load from a generator along the most efficient path. Then, they modeled an

efficiency degradation based on loading through time as well as tolerance measures to fail lines

probabilistically.

A handful of these topological models with flow estimates were done in between 2003 and

2010. Some were predicated on behaving like other networks such as scale-free networks [55], [40] or

small-world networks [17]. Others used matching models with a profit function to protect against

cascading failures [43] or novel recourse strategies such as deliberate weak lines for network islanding

[20].

Topological Measures

The topology of a power grid can be described as an unweighted, undirected graph G with vertices

V and edges E ⊂ (V × V) that connect the vertices. A particular grid is denoted by a subscript,

such as GEI = {VEI , EEI}, which would be the graph that represents the Eastern Interconnect.

The vertices V on the graph can represent demand nodes, generator nodes, and buses in the

transmission network. The edges E represent elements such as transmission lines and transformers.

For convenience, we define nv = |V| and ne = |E|.
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Grid Vertices Edges k̂ kmax C L dmax
GEI 41,228 52,075 2.53 29 0.068 31.9 94
GWI 11,432 13,734 2.4 22 0.073 26.1 61
GTI 4,513 5,532 2.45 18 0.031 14.9 37

Table 2.1: Topological measures for the three US power grids

A useful tool for describing topological measures on graphs is the adjacency matrix, A. The

elements aij of A represent whether nodes i and j are connected, such that if (i, j) ∈ E then aij = 1,

else aij = 0. The degree ki of a node measures how connected it is to the rest of the network, with

ki =

nv∑
j=1

aij (2.1)

A common measure to compare different graphs is the average degree k̂ = 2ne/nv. Cotilla et. al.

[15], using data for EI from NERC in 2012 and data for WI and TI from FERC in 2005, found

the average degree of the networks, which is given in Table 2.1. This tells us that our power grids

are sparsely connected, with around 2.5 transmission elements connecting each vertex, noting that

parallel lines are counted as one. The following statistical analysis of topological measures was

done by Cotilla et. al. [15] in order to show that power grids are neither small-world networks nor

scale free networks.

There are many statistical measures used to compare our power grid graphs to other common

graph structures. The first measure is the distribution of the degree, ki, of all the nodes. One type

of network to compare to is a scale-free network which have a power-law degree distribution. These

networks have highly connected central hubs, which are inherent weak points to the network.

However, high-degree nodes are far less common in power grids than would be expected with a

scale-free network.

Two additional measures, which are distance metrics, are diameter and characteristic path
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length. The distance dij between i and j is the minimum number of links needed to traverse from

vertex i to vertex j. The diameter is then

dmax = max
ij

dij (2.2)

and the characteristic path length is

L =
1

nv(nv − 1)

∑
∀i,j|i 6=j

dij . (2.3)

In addition, the average nodal distance d̂ =
∑nv

j=1 dij can be used. As the size of small-world

networks increase, the characteristic path length increases roughly with lnnv, which means the

distances between vertices grows slowly. However, the power grid’s path length always grows faster

than lnnv and falls between small-world networks and regular grids, which scale linearly with nv.

Another useful measure is the cluster coefficient which gives insight into neighborhoods of

nodes. Let ei be the number of edges connected to vertex i and its immediate neighbors Ni by the

following ei =
∑

∀j,k∈{Ni∪i} ajk/2. Then the clustering of node i is

ci =
ei

(ki(ki − 1))/2
(2.4)

and the cluster coefficient of the graph is C = 1
n

∑nv
i=1 ci. Power networks were found to have less

clustering than small world networks but much larger than random grids, which may be due to

relatively few long distance lines.

The final measure used was degree assortativity, which is the correlation of the degree of two

connected nodes. Power networks were found to have small, negative degree assortativity. This

was due to distribution feeders, which have a large number of radial lines connecting single loads
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to the substation. This behavior was not found in small-world networks.

Hines et. al. [25] conclude that while these topological measures are useful for understanding

the structure and perhaps indicating general vulnerabilities, they can lead to erroneous conclusions.

For example, Kinney et. al. [28] and Albert et. al. [3] draw different conclusions about such things

as the effects of single failures using similar data. Power flow based models are more realistic and

thus more useful for vulnerability analysis. However, analogous measures with electrical topological

information can be very useful.

2.1.2 OPA Model

The next level of complexity to add when understanding power grids is to use electrical information

about the grid as well as loading patterns to determine the power flows. The loadings on particular

elements have a large effect on the failure probability of the given element. This type of model was

done by three groups, Oak Ridge National Laboratory, Power System Engineering Research Center

of Wisconsin University, and Alaska University. This class of models are called OPA models. They

look at the power transmission system and consider engineering and physical aspects, as well as

economic, regulatory, and political responses to blackouts and increases in load.

In 2001, Dobson et. al [18] found that the opposition of the slow time scale force of growth

in load and system capacity and fast time scale of cascading power failures produced a dynamic

equilibrium that can be seen in real world data. Many real world complex systems can be seen to

have this self-organized criticality property. This criticality means that the blackout size distribu-

tion follows a power-law distribution, f(x) = axk with an exponent of −1.3 ± 0.2, making large

blackouts more likely. In addition to criticality, it also represents an equilibrium. The distribution

of blackout size has not changed in the past 30 years. They argue that you can’t study large black-
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outs by looking at initial triggering events only, but you must look at the root cause, and deeper,

long-term forces that drive the evolution of power system.

On a slow time scale, there are several things that happen to the electricity grid. The first

main force is the slow growth in load (around 0.7% growth per year for first decade of 21st century

[2]). This has the effect of reducing the available capacity margins on power lines and increasing

the likelihood of failures as well as possibly further constraining economic dispatch. While the

slow time scale is progressing, random exogenous events, acts of nature, happen to fail individual

components. These possibly initiate large cascading failures and blackout portions of the system.

The engineering response to blackouts in operating policies, maintenance, equipment and controls

have the effect of increasing margins on the slow time scale. These forces push against each other

and settle in an equilibrium.

The following parts go through the details of these forces mathematically. These are drawn

from several OPA papers [18, 12, 19].

Slow Time Scale

The slow time scale is simplified by using days as the time step, represented by index t. There are

three main components to the slow dynamics.

1. The demand grows at the beginning of each day. We have dit = λdiρ(t) where ρ(t) represents

the preceding time period and i is a vertex with a load demanding dit on day t at peak

load. They used λ = 1.00005, which corresponds to a yearly growth rate of 1.8% (the yearly

average for 1980-2000). To represent daily load fluctuations, all loads are multiplied by a

random number r, such that 2− γ ≤ r ≤ γ with 1 ≤ γ ≤ 2.

2. The response to blackouts is to upgrade the transmission system by increasing the maximum
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capacity of transmission lines. If a line has overloaded in a blackout, the response is to

increase its capacity so that Uet = µUeρ(t) with e being an edge with capacity Uet on day t.

They varied µ between 1.01 and 1.1. This parameter simplifies all of the efforts that go into

these responses including increasing the frequency of maintenance, changing operating policy,

installing new equipment, and adjusting or adding alarms and controls. These responses are

modeled as happening before the next day, but in reality can take place over many different

time scales.

3. The response to increased demand is to increase generator power so that all demand can be

met. First, they assume that increases in power is quantized and not continuous. The quantity

∆Gt = κ(Dt/ng) represents the amount of power increase for a generator with κ being a few

percent, ng being the number of generators, and Dt =
∑

i∈V dit is the total demand for time

period t. In order to increase generation at a node i, we need g+it + ∆Gt ≤
∑

e=(i,j)|e∈E Uet,

that is, the increased power needs to be able to flow out of its neighborhood. g+it represents

the maximum power generation at node i on day t. Power is continued to be added to eligible

nodes, g+it ← g+it + ∆Gt, until the generator capacity margin has risen above a prescribed

level. The generator capacity margin is defined by

(
G−D
D

)
t

=

∑
i g

+
it −D0e

(λ−1)t

D0e(λ−1)t
(2.5)

with D0e
(λ−1)t being the average power demanded, not including daily fluctuations. The

generator capacity margin is used to deal with daily fluctuations in demand. The generator

capacity margin of the U.S. has an estimated mean value between 15% and 30% [12].

These forces balance against system failures throughout time. The line and generator failures

were modeled as being possible to take place every day and begin with random events with a given
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Figure 2.1: OPA simulation of a cascading power failure

probability. The next section goes into detail about the cascading process that is possible after the

random events take place.

Fast Time Scale

Individual blackouts triggered by random events (equipment failure, weather, vandalism, attack)

can become widespread through a series of cascades. The initial goal of building this cascading

failure model was to produce a list of lines that could plausibly be involved in cascading event.

It simplifies the process of cascading failures considerable, but is still able to capture important

effects of topology changes throughout the process. Figure 2.1 gives a quick overview of the fast

time scale simulation used to model cascading power failures.

The OPA model of the cascade process begins with an exogenous event, ξ, that effects the

topology of the grid. In their initial version, ξ were the branches that randomly failed in an inde-

pendent and identically distributed (I.I.D) manner, a Bernoulli trial with probability p0. Moments

after the failure, the power flows are rerouted through the new topology based on the laws of

physics. In a longer time frame, it is possible for operators to take actions such as load shed and

generator redispatch. The resulting loading on the transmission lines is evaluated. Their model

then failed overloaded transmission lines with a Bernoulli trial with probability p1 between 0.1 and

1. After all overloaded lines are evaluated, a transition is made to the next stage. Either there

are no more failures, in which case the cascade is over, or more branch elements have failed, the
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topology changes, and the operator is allowed to take recourse. This process repeats until the

system is stable and no failures occur. Figure 2.2 shows a visual example of the cascading process.

For a given grid G and initial demand d0

Initial ξ For e = 1, ..., ne, draw ω from U [0, 1] and if ω ≤ p0, line e fails.

...

Stage m Calculate the power flows fm, a column containing the branch flows for all edges in E ,

by using DC power flow equations with demand vector dm.

For e = 1, ..., ne, if branch flow fem ≥ Uem, draw ω from U [0, 1]] and if ω ≤ p1, line e fails.

Dynamic Equilibrium

These opposing forces eventually find an equilibrium. The equilibrium tends to be near critical

points, which are points that have maximum power flow through the network for the nominal

system capacity. The system self-organizes toward these points, which maximize efficiency of its

assets. When the system approaches these critical points, the power flow becomes limited due to

two possible causes:

• The power flows are limited due to transmission line constraints. This type of critical point

has larger blackouts, but happens less frequently. In addition, the blackouts typically have

multiple lines tripping.

• The power flows are limited due to generation capacity. This results in frequent blackouts,

but of smaller size.



38

1 2

3

45

6 7
8

9

10

1112

13

14

(a) Initial Event: The three red lines are outaged
and the power flow redistributes.

1 2

3

45

6 7
8

9

10

1112

13

14

(b) Stage 1: Lines 1-2, 2-4, and 3-4 are overloaded.
Lines 1-2 and 3-4 fail, but line 2-4 remains in op-
eration at an overloaded state.
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(c) Stage 2: On the new topology, lines 2-5, 6-13,
and 7-9 become overloaded. The cascade pro-
gresses by outaging lines 2-4 and 7-9.
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(d) Stage 3: This has the effect of routing all
power destined for load 8 through the north pas-
sage. Lines 13-14, 4-7, and 4-9 are outaged along
the path.
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(e) Stage 4: Finally, line 2-5 that is still overloaded
is outaged.
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(f) Stage 5: The system stabilizes into islands with
generator 1 serving load 6. However, loads 2 and
8 are out of service.

Figure 2.2: An example of a cascading power failure. Node 1 is a generator and nodes 2, 6, and 8 are
loads.
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However, it is also possible to be in an operating regime which is close to both types of critical points

simultaneously. When this is the case, blackouts of all sizes occur. While this operating regime may

not be good from a reliability standpoint, it has the desirable characteristic of being able to deliver

the maximum power for the system. That is, when these two points are balanced, the system is

capable of maximum throughput from its generators to its loads with minimal excess capacity. This

is important from an economic perspective and a critical reason the system self-organizes to these

types of points. This type of point tends to be the cheapest way to supply all the loads with power,

while statisfying the minimum system reliability standards.

Additional Complexities

The OPA model can be extended to include many additional complexities. It is always a balance

of how much resources you have to solve the problem and the amount of resolution you need in the

solution. The base OPA model is easy and fast to replicate, however by trying to gain increased

resolution in the output, the model becomes increasingly complex and difficult to solve in a timely

manner.

In related work, Chen et. al. [13] find many similar conclusions to the OPA model by using

an extension which included a hidden failure model. A hidden failure is undectable in normal oper-

ations, but as the system becomes disturbed, a relay may incorrectly trip. These protective relays

are in operation to protect the line from overloads and disconnect it from the system. This work

introduces a loading dependent failure model that trips neighboring lines and nearby components

fail. This hidden failure is exposed the first time a disturbance nearby occurs and if it doesn’t fail

then, it is assumed to be properly operating and future disturbances will not undergo this hidden

failure mechanism. The probability of these happening in the real world are non-negligble according

to NERC data [16].
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This work displays many similar results to the OPA papers. First, the power law behavior

near critical loading can be seen by varying the system loading levels. They find that by increasing

spinning reserves the risk of big blackouts is greatly reduced. The blackout size distribution tends

toward an exponential distribution as reserve levels are increased. By lowering the hidden failure

rate, the system becomes more robust and larger blackouts become less likely. Finally, they note

that prompt control actions can reduce the risk of big disturbances. While all of these results seem

fairly straightforward, it points to the fact that the important aspects of the cascading process are

being modeled and the effects are similar to what would happen in the real world.

Bienstock made several modifications [9] to the original OPA model in order to remove some

undesirable effects of the simulation, notably the erratic behavior of its output under small changes

in the input. To do this, he introduced the concept of memory to the system. In order to see if

a line is in or near an overloaded state, it uses a running time average of the current state and

previous states.

f̃et = αfet + (1− α)f̃eρ(t) (2.6)

Here, fet represents the power flow on edge e at time t. Then, f̃et is used in the overload and line

failure calculations.

In addition to including a memory, he also smoothed out the definition of an overloaded line

by creating a step in between normal and overloaded states in which the failure probability was

more than nominal but less than in the overloaded state. Using 0 ≤ ε ≤ 1, for edge e, the following
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failure model smooths the effects of overloaded lines failing.

f̃et ≥ (1 + ε)Uet The line fails with certainty (2.7)

(1− ε)Uet < f̃et < (1 + ε)Uet The line fails with probability
1

2
(2.8)

f̃et ≤ (1− ε)Uet The line remains in operation (2.9)

An AC power blackout model was developed at the University of Manchester (Manchester

Model) by Nedic [36] and the original OPA authors. This model is able to represent real world

disturbances more accurately by using the full non-linear model that describes power flow. This

gives resolution into areas for generator instability, under-frequency load shedding, redispatch of

active and reactive sources, and emergency load shedding. The model has both automated control

systems and operator recourse. This model was used in OPA criticality works by Mei et. al.

[34], including one with mechanisms using voltage stability margins [33]. However, the additional

complexity comes at the cost of having to solve a nonlinear program and the loss of convergence

gaurantees. This is all done in order to represent something that is a companion to, but not the

main driver of the cascading process (according to the Northeast outage working group, the main

driver was angle instability not voltage instability).

Mei et. al. have worked to improve the accuracy of OPA by increasing the level of detail [35].

In the fast dynamics, along with protective relays being modeled as hidden failures, they included a

failure mechanism for the operational dispatch center that is responsible for generator redispatch. In

addition, they used a failure model where an underloaded line is failed with probability p1 (fe/Ue)
N ,

with N = 10. For the slow dynamics, they added a step that models a planning department by

increasing the capacity of lines which have a loading rate (fe/Ue) greater than a set point.

In 2013, Qi et. al. extended this model to include slow dynamics of vegetation growth
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and management as well as differential equations representing line heating [38]. Neglecting spatial

variation and heating/cooling effects from the environment, they model line temperature by a

differential equation

dT (t)

dt
= αI2 − ν(T (t)− T0) (2.10)

where T (t) is the line temperature at t, I current, T0 initial temperature, and α and ν are calculated

parameters. This can be solved by assuming constant branch flow, f , to calculate the temperature

over time

T (t) = e−νt (T0 − Te(f)) + Te(f) (2.11)

which can be used to find the final equilibrium temperature, Te(f) (a function of its constant

power flow f on the line), and time until a given temperature. Using the calculated temperature,

the horizontal span, and an elongation parameter, the line sag distance can be calculated. When

the minimum distance between lines and vegetation passes a breakpoint based on transmission

line characteristics such as operational voltage, the line will fail. They model the vegetation with

a daily growth rate model and include a managment simulation in which they identify future

potential hazards and cut down trees over time. The statistical analysis of their model agreed well

with historical data in China.

2.1.3 Power Flow Review

In order to run the OPA simulation of cascading failures, the ability to calculate power flows on

the system is critical. To model a balanced, three phase power flows, in full resolution we need

to model complex power. The alternating current of the power system can be represented by sine

or cosine waves. A three phase power system has three lines for each transmission element and

each line has a wave that is out of phase with the other two. Using one wave as a reference, the
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other phases attempt to be 120 degrees behind reference and 120 degrees ahead of reference. This

improves the efficiency and quality of power for loads over a 2 line system as well as not requiring

an excessive number of lines for each transmission element.

Complex power has both real and reactive parts. Alternating currents on a circuit affect

components of energy storage such as inductors (changing the current as opposed by a voltage) or

capacitors (store electrical charge). Over one full cycle of the electricity changing direction, across

any individual element there can be real power transferred. However, there is also power which is

stored and released within one cycle and the net energy transfer of this power is 0. This is called

reactive power and is modelled as the imaginary component of complex power.

In a balanced three phase system, at every vertex i, we have

Si = Pi + jQi = ViI
∗
i (2.12)

where P is real power, Q is reactive power, Vi is complex voltage, and I∗i is the complex conjugate

of current. In addition, with Kirchoff’s Current Law, we have Ii =
∑n

k=1 YikVk, where Y is the

admittance bus matrix. The admittance is the inverse of imdedence, that is

Y = G+ jB = 1/Z = 1/(R+ jX) (2.13)

where B, the imaginary part of admittance, is susceptance and X, the imaginary part of impedence,

is reactance. Now we have that the complex power at every vertex i is

S∗
i = Pi − jQi = V ∗

i

n∑
k=1

YikVk (2.14)
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By converting these into rectangular coordinates, we get two equations for each bus

Pi =
n∑
k=1

|Vi||Vk| [Gik cos(θi − θk) +Bik sin(θi − θk)] (2.15)

Qi =
n∑
k=1

|Vi||Vk| [Gik sin(θi − θk)−Bik cos(θi − θk)] (2.16)

For each bus, in addition to Pi and Qi, we have its voltage |Vi| and its phase angle θi. So,

we have 4nv variables and 2nv equations. By supplying the value to 2nv variables and defining a

slack bus, we can find unique values for the remaining 2nv − 1 variables. Depending on the type

of bus, different variables are supplied. If it is a generator, both P and V are supplied. A load is

defined by a P and Q. The slack bus is a generator in which the phase angle is set to 0. The phase

angle θ and reactive power production Q are found for each generator and the phase angle θ and

the voltage |V | are found for the loads.

The non-linear AC power flow equations model the net power and reactive power injects as

well as voltage and phase angle at each vertex of the power system. A few simplifying assumptions

are made to allow the equations to become linear for the DC (decoupled) power flow equations.

Then, using the DC power flow model, basic economic dispatch and unit commitment models are

shown.

Decoupled Power Flow

This model makes assumptions such as lossless lines, small voltage angle differences, and a flat

voltage profile. This is a common simplifying model which is used routinely in economic and

reliability analysis of power systems. A flat voltage profile implies that ∀i ∈ V, we have Vi = 1.
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Small voltage angle difference in conjunction with sine and cosine give the following approximations

cos(θi − θj) ≈ 1 (2.17)

sin(θi − θj) ≈ θi − θj (2.18)

In addition, since these lines are lossless, R and G are 0. Using this approximations, Equation (2.15)

becomes

θi − θj = Xefe ∀e = (i, j) s.t. e ∈ E (2.19)

where Xe = B−1
ij . We also have conservation of energy at each bus in the network, implying that

the sum of generation and demand is equal to net flow into the transmission network, given by

∑
e∈E|e=(i,j)

fe = gi − di ∀i ∈ V. (2.20)

When a line has failed, the power flow has obviously dropped to 0, that is fe = 0. In addition,

since there is no link between the phase angles, Equation (2.19) should no longer be enforced.

Economic Dispatch

To clear the electricity market at a single point in time, a least cost dispatch model is used. This

model takes bids from generators, a known demand, as well as transmission and ramping constraints

and finds a set of generator outputs that meet the demand at least cost. Using a quadratic cost

function for the generators (this cost function can be thought of as a bid from generators which

includes the profit the generator would like to make for each marginal unit of production), the least

cost dispatch Model (2.21) can be built.

The following model is a quadratic program with linear constraints. The objective function
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is to minimize the cost of generation. Typical least cost dispatch and unit commitment models

make various assumptions to allow for linear constraints versus the physical nonlinear constraints

to which the power system is subject. Model (2.21) is the most basic least cost dispatch model,

which could be used for clearing the real-time market. Models in use can have extensions such as

“N − 1 constraints”, which are reliability and security requirements.

min
∑
i

c2ix
2
i + c1ixi +Wi(d̃− di) (2.21a)

xi − di =
∑
j

yij ∀i ∈ I (2.21b)

Xefe = θi − θj ∀e = (i, j) ∈ E (2.21c)

xi ∈
[
G−
i , G

+
i

]
∀i ∈ I (2.21d)

ye ∈ [−Ue, Ue] ∀e = (i, j) ∈ E (2.21e)

Here, c2ix
2
i + c1ixi can be seen as the cost function for the generator at node i and Wi(d̃− di)

is the cost for shedding load. The generator is bounded between a maximum G+
i and minimum

G−
i that represent its ramping rate and other physical limits over a specific time interval. If node

i cannot generate power, then G+
i = G−

i = 0.

The day-ahead market uses unit commitment models. This model has power flow equations

for each time t in the day t ∈ T . These are integer programs due to the introduction of binary

variables wit, which take on the value 1 if the generator is switched on and 0 if the generator is off.
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The following logical constraint enforces this by

witg
−
i ≤ git ≤ witg

+
i . (2.22)

The cost function can then include a fixed cost for operating a generator, such as increased staff

during operation. This cost is not dependent on the level of production but rather if the plant is

in an on or off state. The cost function for each node i and time period t is

c2x2it + c1ixit + c0iwit (2.23)

This subproblem is used in a full-day model in which the power flow problem is solved for each time

period, while remaining feasible with respect to ramping rates and on and off times for generators.

2.2 Multi-Stage Stochastic Programming

We use the framework of stochastic programming to model the dynamics of cascading power failure.

Each stage represents an epoch at which one or more lines fail based upon their loading. The

multi-stage stochastic program as a large mixed-integer linear program can be approximated.

Mixed-Integer Program

The mixed-integer formulation of cascading power failures uses binary variables to model line

availability for stages in the cascade. In addition to these extra variables, some input parameters

are needed to formulate the problem. First, the number of stages, nT , for the cascade needs to

be decided. If large blackouts are of interest, this number should be large enough to not exclude

the worst-case scenarios. Also, the number of outcomes n0 at each node of the scenario tree needs
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Figure 2.3: Scenario tree for Mixed-Integer Formulation

to be decided. These outcomes represent the decision-dependent uncertainty. The size of the

problem is related to the size of the stochastic tree, which is nnT
o . As the subproblem is difficult,

the computational complexity of this problem increases rapidly with the number of outcomes and

stages.

2.2.1 Decision Dependent Uncertainty

In order to model the decision-dependent uncertainty, a cumulative distribution function (cdf) for

line failures based on loaded is needed. This model uses a parameter, R, to represent the effective

capacity of a line. Scenarios are created by sampling from the cdf before formulating the MIP.

This effective capacity represents the loading of the transmission line that causes its failure, and

we capture the failure of a line with a binary variable, z.

In Mixed-Integer Programming, there have been standard equations developed to model

logical conditions. We have two logical conditions that need to be modeled in order to represent

this decision dependent uncertainty. First, the condition that the line will fail if it has more power
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flow than its effective capacity.

If
∣∣yeρ(n)∣∣ > Ren

Then zen = 0

To model this logic, a Big-M constraint can be used, where M represents a large number

defined below.

yeρ(n) −Ren ≤MR
e (1− zen) (2.24)

yeρ(n) +Ren ≥ −MR
e (1− zen) (2.25)

with MR
en = Ue −Ren.

Now, when the line is available in stage n, that is zen = 1, then the line flow in the predecessor

node is within the effective capacity, -Ren ≤ feρ(n) ≤ Ren.

The second logical condition is that when the line is unavailable, the power flow on that

branch is zero and the phase angles between the two nodes are not constrained.

If zen = 0

Then yen = 0 and

θin − θjn −Xeyen is arbitrary
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This can be achieved through the following equations.

−Uezen ≤ yen ≤ Uezen (2.26)

θin − θjn +Xeyen ≥ −M θ
e (1− zen) (2.27)

θin − θjn +Xeyen ≤M θ
e (1− zen) (2.28)

with M θ
e = 2θmax +XeUe.

Failure Density Function

The OPA simulation uses a step function for the failure probability of a line shown in ??. We

modify the effective capacity distribution to give ramp up line failure risk according to a piecewise

linear function also shown in ?? To approximately model this analytically, a sample from the

distribution can be used to form the effective capacity of the lines. Let ωn ≡ [0, 0, 1, 0, · · · , 1] be a

vector sampled from a Bernoulli distribution and let αn ∈ R|E| be a vector sampled from a uniform

distribution between Le and Ue for each line. Now, a line fails if yne ≥ αneUe and ωne = 1. With

this sampling, the effective capacity can be designed to incorporate this information.

Rne =


αneUe if ωne = 1

Ue + ε if ωne = 0

(2.29)

The resulting set of effective capacities R can be represented by a cumulative distribution

function. The distribution in Figure 3.1 is one example of a viable line failure distribution input.

It is the result of a uniform distribution for α between L and U and Bernoulli trial with probability

p for ω.
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2.2.2 Cascade Evolution

The cascading process begins with an intial exogenous event, ξ ∈ {0, 1}|E|. This may be treated

as a random vector on a probability space with sample space Ξ. The following equation enforces a

line failure throughout the whole cascade for all e ∈ E such that ξ = 1.

zen ≤ 1− ξe. (2.30)

Now, the cascade will evolve according to the dispatch decisions chosen and the pre-sampled

effective capacities of the particular lines during the various stages of the cascade. The operators

will be able to optimize the cost, which includes the cost of load shed, and are constrained to be

within the following set,

Ω(ξ) ≡ {(d, x, y, z) | Equations (2.19), (2.20) and (2.24) to (2.30) hold } (2.31)

where d = [d0, d1, · · · , dN ] is the set of vectors of demand served for each node in the scenario

tree. Now, this representation of the cascading process can be used in many ways. One example
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is a chance constrained model, in which the operator requires a line to be available in a certain

percentage of scenarios. Another example is to use this a sa subproblem in a larger planning model.

2.2.3 Least Cost Dispatch

The following model is a least cost dispatch model that includes the effects from cascading failures

due to a set of contingencies ξ ∈ Ξ.

min EΞ

∑
in

[
c2inx

2
in,m + c1inxin,m +Win(d̂i − din,m)

]
(2.32a)

(d, x, y, z)m ∈ Ω(ξm) ∀ξm ∈ Ξ (2.32b)

This can be adapted to several different problems in power systems. The main difficulty with

this multi stage stochastic program is computational complexity. The program can be calibrated

in order to produce similiar load shed distributions to the OPA model, however the number of

outcomes and stages in the model needs to be small or the computational hurdle becomes too

large.

In order to get reliable output from the optimization routine, this model needs to be cali-

brated against the OPA simulation. The primary calibration parameters are L and p in the line

failure distribution shown in Figure 3.1 as well as the costs for load shed, W , which depend upon

the stage in the cascade. The OPA simulation is a greedy algorithm, attempting to maximize

demand served in the current stage without regard to the line failure consequences. In order to

capture this effect, more weight was placed on demand served in earlier stages of the cascade.

The root problem used is comprised of 4 intitial outages and each outage has a scenario tree



53

0 100 200 300 400

0

0.2

0.4

0.6

0.8

1

LS (MW)

P
(L

oa
d
S
h
ed

>
L
S
)

Load Shed Distribution

MSIP
SIM

Figure 2.5: Load Shed Distribution for the OPA simulation and MSIP formulation

Initial SIM MSIP
Contingency E[LS] St.Dv.[LS] E[LS] St.Dv.[LS]

2,12,21 196 128.1 184 112.7
5,25,34, 82 254 187.1 160 69.3
12,14,34,111 131 85.12 151 59.0

13,24 145 123.4 123 84.4

Table 2.2: Comparison of Simulation and MSIP outputs

that is 4 stages long with 2 outcomes at each node. The power system modeled is the IEEE 118

bus grid with a nominal demand of 3668 MW and around 29,600 MW in branch capacities. The

parameters chosen for the MSIP model were p = .5, L = .575. The weights Ws for the stages

of the cascade were [500, 10, .05, .0001], which seemed to capture the greedy behavior of the OPA

simulation. The OPA simulation used the step function failure model with L = .99 and p = .5.

The output of the simulation and MSIP formulation are shown in Table (2.2) along with the load

shed distribution for initial line failures on lines [12, 14, 34, 111] in Figure (2.7).
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2.3 Model Flexibility

The primary strength of this formulation is the flexibility it has in using additional constraints

and objectives to inform decision making about power systems. All of these models can then be

solved with commercial solver software without the need to develop additional specialized routines.

The first example is a chance constrained model, which enforces a probabilistic constraint on the

number of line failures in any scenario. In this model, we constrain the probability that fewer than

a given number of lines failures to be close to 1. A typical case in power systems would be that the

system should not go beyond 1 contingency in a large percentage of scenarios.

P {# Line Failure ≤ k} ≥ 1− ε (2.33)

This can be done by adding another binary variable for each scenario that represents whether or

not that scenario has fewer than k failure. These new binary variables are summed and constrained

by the given probability.

∑
i

zis ≤Msẑs + |ξs|+ k (2.34a)

∑
s

ẑs ≤ ε|S| (2.34b)

where Ms = |E| − |ξs| − k. The objective of this program would be to minimize load shed as in

Model (2.32).

The second example is a redispatch model that moves to a generator configuration that is

close to the original while minimizing the expected size of the cascade. This model tries to find

an operating configuration that is within a given distance from the current operating regime and

minimizes the worst-case scenario load shed. The input for this model is the current operating
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configuration (p0, d0) as well as a distance vector δ that represents how far each generator can

move from its current output levels. In this case, the root node of the stochastic tree has variables

that represent initial generator output levels and the child trees are constrained from how far they

can move from the initial configuration. Also, a continuous variable are added that represents

the amount of load shed in the worst-case scenario. The objective is to minimize this worst-case

scenario.

x− x0 ≤ δ (2.35)

l ≥
∑
i

d̂i − dis. (2.36)

This program could be used when the system is becoming close to unstable and cost concerns

become less of a priority than system stability.

Another exampe is a reserve-planning model that allocates reserves among the generators in

such a way as to minimize the worst-case failure. In this case, an operating configuration need not

be given. The program can either search for an operating configuration as well as reserves or given

an operating configuration, allocate the reserves. These operating reserves, r, determine where the

system is able to relieve congestion in a contingency.

xin + rin ≤ P i (2.37)

xin ≤ xiρ(n) + riρ(n) (2.38)∑
i

rin ≤ β
∑
i

d̂i (2.39)

where β is the level of operating reserves alotted for the system.

Finally, the example we use is a transmission expansion model that allocates a budget for

capacity expansion on the grid in such a way as to minimize the expected size of the cascade.
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We then look at the computation results and compare them with the OPA simulation to a simple

heuristic which allocates the expansion budget.

2.3.1 Transmission Expansion

Using the MIP formulation, a stochastic program can be developed to model planning decisions

with respect to cascading power failures. Consider the problem of transmission expansion. A set of

contingencies, ξ ∈ Ξ, has been identified as the primary risk for initiating a cascading event. There

is a budget to use for expansion and the objective is to allocate the budget in such a way as to

minimze some risk measure of load shed for the cascading power failures.

Let u be the design variable, which is decided at the root node and represents additional

capacity on power lines. This affects the constraint set such that equations (2.26) and (2.29)

become

−(Ue + ue)zen ≤ yen ≤ (Ue + ue)zen (2.40)

Rne =


α(Ue + ue) if ωne = 1

(Ue + ue) + ε if ωne = 0

(2.41)

The objective is to allocate a budget for capacity additions in order to reduce the expected

blackout size. Win is the cost of load shed at bus i in node n of the scenario tree. Let u be the vector

of capacity additon and w be a vector of binary variables representing whether that transmission

element gets new capacity. Bu and Bw is the budget for capacity expansion.
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min EΞ

∑
in

[
c2inx

2
in,m + c1inxin,m +Win(d̂i − din,m)

]
(2.42a)

(d, x, y, z)m ∈ Ω(ξm) ∀ξm ∈ Ξ (2.42b)

Xewe ≤ ue ≤ Xewe ∀e ∈ E (2.42c)∑
e

ue ≤ Bu (2.42d)

∑
e

we ≤ Bw (2.42e)

2.3.2 Computational Implementation

The model outlined in (2.42) is solved using Gurobi 4.5. The stopping criteria was either a 40%

optimality gap or 10,000s. The program was run for several different expansion budgets, with both

the total budget and the maximum number of lines being changed. The output of this model is a

vector u which represents the amount of capacity to add to each power line on the grid. This is

used to modify the initial grid and run the OPA simulation to find the effects it has on the system.
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Figure 2.7: Load Shed Distribution for the OPA simulation and MSIP formulation

In order to find out whether these solutions are reasonable or not, a heuristic was developed to

compare against.

The heuristic used is based on a large number of OPA simulation runs in which the power

lines were ranked in descending order based on the percentage of runs in which that given power

line has failed. Then, for a given total budget Bu and maximum number of changed lines Bw,

the heuristic picks the top Bw lines in the list and then distributes the budget Bu evenly over the

lines. The OPA simulation is used to compare the results of the two models. Since the MSIP was

calibrated based on the 4 contingencies, a second set of 4 random initial contingencies to start the

OPA process to evaluate the effects.

In Figure 2.7, we see that we were able to shift the load shed distribution using the design u

found from the MSIP solution of Equation (2.42). In order to evaluate the solution, we ran the OPA

simulation and compared against a simple heuristic. The heuristic used the results of a number of

trials of the OPA simulation and distributed capacity evenly among the 10 lines which had failed

the most. This strategy did reasonably well. The MSIP was able to beat this strategy on some
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occasions, but not always. The MSIP has a coarse representation of the underlying uncertainty

due to the computational difficulty in solving a multi-stage stochastic program. The size of the

scenario tree was 4 stages with 3 outcomes per node, and even when it was this small, there was

often at least a 40% optimality gap.

2.4 Conclusion

Using the OPA simulation as a reference for how the grid may respond to cascading power failures,

a mixed integer model was developed which represents the cascading effects over a fixed number

of outcomes and stages. While this model can be difficult computationally due to the decision

dependent uncertainty, it is extremely flexible. The model can be used to include cascading effects in

a wide range of power system problems with optimality criteria ranging from least cost to minimize

worst-case problems. A computation example was done on transmission expansion, which showed

the model was able to better than a reasonable heuristic, even though it was only solved to a 40%

optimality gap. Future work can be done in order to improve the solve time for these types of

models based on techniques developed in stochastic and mixed integer optimization.
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Chapter 3

Using the OPA Simulation for

Transmission Expansion

The mixed integer stochastic program built in Chapter 2 is too difficult to optimize at the scale we

need to model the uncertainty in the cascading process. In order to work around this difficulty, we

do not approximate the cascade analytically, but rather we simulate the cascading process. The

primary benefit is removing the temporal linked binary variables for line outages from the master

problem allowing sequential evaluation of the decision dependent uncertainty. This allows us to

parallelize the OPA evaluations to increase the computational effort.

We explore the long term design problem of transmission capacity expansion using the OPA

simulation to evaluate rare event stress on the transmission infrastructure. We begin by laying out

the OPA simulation which involves sequential evaluations of a linear program modeling economic

dispatch with a weighted load shed term in the objective. The lines fail in the same manner

described in Chapter 2, and the failure density function can be seen as the line having a random

effective capacity that when exceeded the line fails with certainty. As the simulation proceeds, the



61

topology changes and a new linear program is solved. The first primary benefit of this sequenctial

procedure is the ability to hot start the LP solver. The constraint for a line that has failed which

links the connected nodes phase angle is relaxed. The LP solver can use the previous basis and

perform a small number of pivots to find an optimal solution to the new problem representing the

changed topology.

Following the discussion on the LP subproblem and the failure density function, we show

the algorithm used to evaluate an OPA simulation trial for a fixed demand and contingency. This

single trial is sampled from the cascade evolution distribution Ω. We explore the uncertainty in

load shed distribution due to the uncertainty caused by the cascade evolution and a small subset

of initial contingencies in Ξ. We describe the statistical measures of load shed distribution we are

interested in Section 3.1.1 and focus primarily on the function describing expected value of load

shed for the simulation exploration and design problem optimization.

We then look at whether we can create a surrogate function for the OPA cascade simula-

tion in order to develop a computationally cheap evaluation that is correlated with the function

representing expected load shed. We plot the values of load shed by stage in the cascade and see

that the cascades with large load shed do not necessarily have large load sheds in the first stage.

Additionally, the number of lines that fail in the first stage of the cascade is not correlated with the

load shed at the final stage. While we certainly have not explored all possible surrogate functions,

we proceed by using the full cascade simulation instead of a surrogate function.

Since we need to use the full cascade simulation and there is a high standard deviation

in the load shed distribution, it is important to use variance reduction techniques to reduce the

computational effort needed to achieve a small confidence interval on the expected value of load

shed. Common random numbers significantly improves the ability to compare different systems
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and reduce the variance of the difference of the performance of two systems. For design problems,

this is exactly what we need. We would like to evaluate how systems perform relative to each other.

After explaining the common random number scheme used, we proceed to explore the function

describing the expected value of load shed. This OPA simulation and the expected value of load

shed over many trials provides fundamental difficulties to the optimization process. The function is

neither convex nor continuously differentiable. The load shed is inherently noisy and its distribution

is wide, often characterized by a power law distribution. Some of these effects can be smoothed

away by employing a wide range of potential initiating events, however it may be important to

optimize against a small subset of events that have a higher likelihood of occurrence and are known

to be risky. In this case, the non-convexity and discontinuity are most apparent.

After learning about the function characteristics, we begin to explore how we can optimize

the design problem of transmission expansion. We look to the class of derivative free optimization

techniques of direct search methods which are simple, flexible, and powerful. Altough we do not

have the nice function properties that guarantee global or local convergence, they have been found

to work well for these types of black box optimization routines. By using a grid based pattern

search method that describes a spanning set, we can be assured of local convergence in regions of

the functions with nice properties. Additionally, we can use exploratory steps that can be based off

of accessory information that can speed up the search routine and not ruin the local convergence

properties.

In order to tackle this problem, we use massive computational effort through parallelization of

the OPA simulations. We describe this parallelization process using HTCondor on the UW-Madison

Center for High Throughput Computing. We employed HTCondor DAGMan to manage the job

submission procedure for each iteration in order to smooth job submissions and ensure a small
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number of idle jobs at any given time to reduce the stress on the computational infrastructure.

The file and submission structure is described as well as the scripts needed to manage this process.

Years of computational time can be done within a short time horizon. This enables a fine mesh

search pattern on the function in order to improve on a completely brute force search procedure.

Finally, we show the results from implementation of this simple DFO method and the improvements

in expected load shed from the OPA simulation.

3.1 OPA Cascade Simulation

The load shed distribution of the fast time scale OPA model (given in Section 2.1.2) has been shown

to have the same power-law distribution seen in real-world blackout data. This simulation can be

seen as a surrogate model for the response of the power system to rare-event stress. As such, it is

useful to explore the effects different parameters can have on the distribution and even optimize

over them to find any characteristics or trends there may be. To begin, we need to develop an

efficient evaluation of the cascading power failure simulation for eventual use in an optimization

procedure.

A brief description of the parameters, variables, indicies and sets are given and the LP

subproblem for the cascade simulation follow. Variable xj represents the generation from generator

j in the set of all generators J . The LP has a quadratic cost function with c2j , c
1
j , c

0
j representing

the cost parameters for generator j. Branch flow is represented by ye for branch e in the set of all

branches E . The parameter be represents the susceptance of branch e and is used to describe the

branch flow based on the difference of phase angles between the two connected nodes. The variable

li represents load shed at node i in the set of all nodes I, the parameter W representing the cost of

load shed, and the parameter di is the nominal demand. Finally, axij is an incidence matrix which
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takes a 1 when generator j is located at node i and ayie is a -1 when branch e is from nodes i and a

1 when branch e is to node i. The following linear program (3.1) is a load shedding version of the

standard DC OPF economic dispatch model.

min
(x,l;θ,y)

∑
j∈J

[
c2jx

2
j + c1jxj + c0j

]
+Wz (3.1a)

∑
j∈J

axijxj −
∑
j∈J

abieye + li = di ∀i ∈ I (3.1b)

ye − be
∑
i∈I

cbieθi = 0 ∀e ∈ E (3.1c)

z −
∑
i∈I

le = 0 (3.1d)

xj ∈
[
Gminj , Gmaxj

]
∀j ∈ J (3.1e)

ye ∈ [−Ue, Ue] ∀e ∈ E (3.1f)

li ∈ [0, di] ∀e ∈ E (3.1g)

where z is the total load shed for a particular dispatch point with vectors (x, y, l) representing

generation, branch flows, and nodal load shed.

We look to understand the effect of adding capacity u to the system prior to an initiating

event for the OPA cascading procedure. The subproblem (eqs. 3.1) is modified to allow the branch

flows to attain their new capacity level, that is

ye ∈ [−Ue − ue, Ue + ue] ∀e ∈ E (3.2)

In addition, the failure density function from the previous section shown in Figure 3.1 also change

in order to account for the additional capacity. This means that not only does the capacity level

change, the point L, in which the line becomes risky also moves, so that our line risk function is
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now

ge(ye, ue) =



1 ye > Ue + ue

(ye − ue)U−1
e p− Lep Ue + ue ≥ ye > LeUe + ue

0 o/w

(3.3)

We use the subproblem from Equation (3.1) and the failure density function to simulation

the OPA cascading process. The algorithm requires sequential solves of the DC OPF with changes

to the topology. The solution is still dual feasible, we take advantage of this using LP hot starts

and the sequential solves typically require only a small number of pivots to find the new optimal

solution. The cascading algorithm is given in Algorithm 1. The algorithm is run for a fixed design

vector u, demand vector d, and initial contingency ξ representing a set of lines that has failed to

initiate the cascading sequence. The topology is changed according to the contingency ξ and the

new DC OPF problem is solved. The algorithm proceeds by using the failure density function to

determine the probability that a line fails and then samples a Bernoulli variable with this probability

to determine the outcome. If no lines fail, the cascade is considered over. If lines fail, the topology

is changed, the new LP is solved, and the process repeats until no lines fail.
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Algorithm 1 OPA cascading algorithm simulating the evolution of the cascading process governed
by uncertainty space Ω

procedure OPA(u, d, ξ)
Solve ( 3.1 ) to find base case load shed z0
ξ occurs and corresponding changes to the grid are made
Stage s← 1
while Not DONE do

Solve ( 3.1 ) to find power injects and branch flows for adjusted grid
Os ← ∅
for ∀e ∈ E do

Os =

{
Os + {e} w/ prob. ge(ye, ue), draw ωes
Os o/w

if Os 6= ∅ then
Modify Grid with Os

s← s+ 1
else

s∗ ← s, calculate zs∗ , DONE

Load Shed λ (u, d, ξ, ω) = zs∗ − z0

3.1.1 Risk Measures

The OPA algorithm simulates one outcome for a fixed u, d, and ξ. Let ω represent this sampled

uncertainty and λ (u, d, ξ, ω) be the load shed from this single OPA trial. Repeating this process

for N t trials give a distribution of load shed values. We are primarily interested in the expected

value of load shed over the initial contingencies Ξ and the cascade evolution Ω. Let function f(u)

for design u, fixed demand d and contingency ξ be calculated as

fd(u) = EΞ,Ω [λ (u, d, ξξξ,ωωω)] (3.4)

For N t trials with load shed Zn = λ(u, d, ξn, ωn) and n ∈ 1, ..., N t, we can describe the

distribution of load shed by a set of risk measures. We just looked at the expected load shed and

the sample mean for N t trials can be given in Table 3.1. In addition to the mean, we have the

sample variance, which is a measure of the width of the distribution and the standard error, which

measures how accurately we have calculated the mean based on how many samples we have taken.
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Sample Mean f Ẑ(N t) =
∑

n
Zn
Nt

Sample Variance s2d S2(N t) =
∑

n
(Zj−f)2
Nt−1

Standard Error s2e V ar [f ] =
s2d
Nt

Confidence Interval CI(1− η) f ± z1−η/2
√
s2e

Value at Risk V aR(η)
{
Za|a = bηN tc, Zi ≤ Zi+1

}
Conditional Value at Risk CV aR(η) E [Zn|Zn ≥ V aR(η)]

Table 3.1: Risk Measures

With the mean and standard error we can describe 1 − η confidence intervals, which says that

the mean is within a given range at least 1 − η percent of the time. This confidence interval is

calculated using the inverse of the standard normal distribution. The value at risk is a measure

of the percentile of the distribution, so that the η value at risk is the value of the load shed at

percentile η. The conditional value at risk is the expectation of the load shed conditioned on it

being above a percentile η. This finds the area underneath the tail of a distribution. All of the risk

measures are shown along with the formulas to calculate them for a set of N t samples in Table 3.1.

Additionally, these statistical measures are plotted for the load shed distribution for a sequence of

design points u in which capacity is being added to one line in Figure 3.2

3.1.2 Parameters and Simulation Inputs and Outputs

We now go into the details involving the OPA simulation, in particular, the parameters that are

used in the algorithms and the input and output files used in the computational implementation.

As with all of the models in this thesis, the dispatch model is done on a network topology with

parameters defining susceptance for branch flow, generators and their cost coefficients, and the

nominal demand of the system. These paramters are stored in a <.gr> file and is one of the inputs
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to the simulation routine. All of the other parameters, which are used in the cascade Algorithm 1

are defined in a <.in> file and an example is showed in Listing 3.1. This includes the line failure

distribution parameters L and p as well as a scenario tree definition, which connects this simulation

to the MSIP model in the previous Chapter. The scenario tree is built by defining the number of

stages and how many outcomes per node. The number of outcomes per node is allowed to vary

depending on the stage of the simulation. Since this is a simulation and we are decomposing the

scenario tree structure, we typically use a large number of outcomes at the root node and then

resolve these completely. The number of initial contingencies is the parameter called scenarios and

for each scenario the initial outages are defined in the Outage section. Finally, trials is how many

times the scenario tree is solved, so that a 100 child node tree with 500 trials results in 50,000

samples of a full cascade simulation. Finally, a seed is given for the random number generators so

that a common random number scheme can be used if desired.

The solve methodology takes information from the parent node in the scenario tree about

the new topology required, relaxes the required branch flow constraints, solves the problem, and
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File Size Description

<.gr> 8K
Defines bus, branch, and generator parameters
(grid2.gr ≡ IEEE 118 bus,8K)

<.in> Listing 3.1 4K Simulation parameter definitions
<.cap> Listing 3.4 4K Capacity addition file
<.dem> 80K The load shed from every trial cascade simulation

<.lin> 2.1M
The line number for every time a line has failed in a cascade
during all the trials

<.lsa> Listing 3.5 4K
Statistical analysis of load shed from cascade trials in
<.dem>

<.lao> Listing A.9 4K
Count of line outages from cascade simulations output in
<.lin>

Table 3.2: Data files used in parallelization routine

stores the results in a tree data structure. The process repeats until all nodes in the scenario tree

are resolved. If no lines fail in a node of the scenario tree, the child nodes are truncated since the

OPA cascade algorithm has ended. After a scenario tree is solved, the final nodes of the tree are

looped over and the load shed of that sample is output into a <.dem> file and each line number

that has filed is output into a <.lin> file. These raw data files can be large and there are python

scripts to do a load shed analysis on the <.dem> file to give the risk measures associated with

the load shed distribution in a <.lsa> file. The <.lin> file is counted with a python script and

output in a <.lao> file in order to find out how many times a given line has failed over all the

trials. These input and output files are tabulated in Table 3.2.

1 #Problem and Solve Method
2 solvemethod=cplex
3 problemtype=sim
4 l i n e ou tag e=yes
5 #Power Grid
6 g r i d f i l e=gr id2 . gr
7 #Line Fa i l u r e D i s t r i bu t i on
8 p=.5
9 L=.95

10 #Scenar io Tree
11 s t ag e s=18
12 outcomesV=100 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
13 s c e n a r i o s=4
14 t r i a l s =500
15 #Outages
16 a=12 14 34 11
17 b=12 2 21
18 c=82 5 25 34
19 d=13 24
20 #Random Numbers
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21 seed=689294

Listing 3.1: simcplex.in: Parameter definition file

3.1.3 Surrogate Functions

The OPA cascade simulation requires many LP solves in order to simulate the cascading process

for many trials. One potential way to reduce the computational effort needed would be to develop

a surrogate function which is correlated with the expected load shed function we are trying to

minimizing. If we could find a surrogate that was cheap to compute and by minimizing the surrogate

function, the expected load shed function would also decrease, this function could be used in the

optimization procedure in many ways. For our surrogate function, we consider using information

resolved in the first stage of the cascade algorithm.

We used the OPA simulation to look at potential first stage approximators of the OPA

cascading process. The two potential approximators we look at are the load shed after the first

stage in the cascade and the number of lines that have failed after the first stage of the cascade.
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We begin by looking at the number of lines that have failed after the first stage of the cascade.

Figure 3.3 shows a scatter plot of load shed in the 1st stage with load shed in the final stage.

Through visual inspection, we see that there is little to no correlation between the number of

failed lines in the first stage of the OPA simulation and the final load served. This may be due to

the difference of importance of transmission lines in the network; we explore this idea in the final

Chapter 5.

Next, we explore whether or not the load served at intermediate stages of the cascade has

any correlation with the final load served. In Figure 3.4 we see the progression of the load shed

over the course of the cascade. These scatter plots chart the load served, out of a potential 3,668

MW. At stage zero the load served is 3,668 for all scenarios and we see the distribution of the final

load served between about 1,500 and 2,500 MW. After the first stage, the load served for some

scenarios drops below the nominal load. However, the amount of load served after the first stage

does not appear to be well correlated with the final load served. As the stages progress up to 20,

we see that the load served in intermediate stages of the cascade give little insight into whether it

is a bad cascade or not.

3.1.4 Common Random Numbers

The stochastic uncertainty of the OPA process leads to large standard errors for the risk measures.

Variance reduction techniques are important to reduce the computational burden and a common

random number scheme was employed. Common random numbers essentially give each test system

the same set of experimental conditions. By doing so, the variance in the difference between two

systems is reduced and less computational resources are needed [31].

The OPA simulation uses effective capacities to determine whether a line fails for a particular
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stage and branch flow loading. In order for the alternative configurations to be under similar exper-

imental conditions, a random number seeding strategy was used to ensure alternative configurations

would recieve the exact same effective capacity for that particular stage in that particular node of

the scenario tree. Suppose we have two systems with expected load shed Lij for systems i = 1, 2

and trials j = 1, 2, ...N . Now lets study the metric Zj = L1j − L2j and let the true comparison be

E [Z] = µZ . In order to make decisions about this, we need to be fairly confident in our estimation

Ẑ(n) =
∑

j
Zj

n of µz. The standard error of our sample mean Ẑ(n) is

V ar
[
Ẑ(n)

]
=
V ar [X1] + V ar [X2]− CoV ar [X1, X2]

n
(3.5)

In order to reduce the variance, we need CoV ar [X1, X2] > 0. Be using a common random

number scheme giving the alternative system configuration the same experimental conditions, we

end up with a postive covariance. This makes sense, as a sample path with consistently low effective

capacities should do worse in all systems. In practice, this common random number scheme is very

successful for our problem and makes comparing systems less costly.

3.1.5 Capacity Addition

We now explore the landscape of the function with respect to capacity additions by looking at

the results from simple changes to the design variables. We start by looking at what happens

when you add capacity along the coordinate directions. We restrict ourselves to looking at lines

that already exist and adding capacity to these lines. We do not impose any restrictions on the

amount of capacity to add to lines. Thermal line limits are often constrained in order to maintain

a minimum clearance between the lines and vegetation or other infrastructure. So, in addition to

being able to build a parallel line, it is also feasible to increase this clearance by installing taller
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poles or increasing vigilence in vegetation management.

Our first Figure 3.5 shows what happens if you simply double the capacity on each line

individually and do nothing to the rest of the system. The square points are the nominal system

and its standard error plotted along each direction and the circle points correspond to the line

number in which the capacity was doubled. Perhaps contrary to what would be expected or hoped

for, the OPA simulation does not respond favorably in the majority of the coordinate directions

and less than 40% of lines lead to a reduction. There may be a few reasons for this. First, by

increasing the limit of one line, it may now be possible to overload neighboring lines and increase

their likelihood of failure.

Additionally, by looking along just one direction and slowly increasing capacity, we see that

the function can change dramatically. Even when the number of trials are increased so that the

standard error is low, the function evaluations corresponding to adding capacity on one transmission

element are variable and can have large discontinuities. We have plotted three transmission elements
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in which the capacity is varied from zero to three times its nominal capacity in Figure 3.6. The

point in which the capacity is zero is still enforcing the phase angle linkage so that when the branch

flow is zero, the phase angles of the two connecting nodes must be equivalent.

Looking further at the ability of increased capacity to influence neighboring lines, we focus on

line C from Figure 3.6. Line C highlights the difficulty of optimizing over this function by showing

the discontinuities of the OPA simulation with respect to capacity additions. In Figure 3.7, we

visually show that these discontinuities can be associated with changes in the frequency of line

failures for lines in the given cascade simulations and additionally the frequency of line failures

may be correlated with nearby lines. Here we see multiple jumps in the expected value of load

shed, and during the last jump, we also see a spike in frequency of line failures for a subset of the

transmission lines that are in the same region of the transmission network. The frequency of line

failures can often be lined up with corresponding changes in expected load shed.

Finally, we look at a surface plot of adding capacity on separate branches in Figure 3.8.

Exploring the effects of adding capacity to lines 67 and 79, we vary the amount of capacity from zero

to a very large number. We then truncate the pictures at the point where the additional capacity

has no more effect on the OPA simulation and show only the part where changes occur. We see that

the surface is bumpy, that is it has some higher frequency effects with low amplitude. Additionally,

we note there are larger trends that have much higher amplitude effects. It is important for any
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optimization method developed to be robust to these high frequency bumps so that they do not

get trapped in local minima. Additionally, the conditional value at risk is plotted as well for this

same set of trial points in Figure 3.8. The CVaR plot for the expected value of the 5% tail has

some similar trends and minima as the expected value, however it differs in some notable ways

as well. The expected value has a large region in which the value is near minima. In the CVaR

plot, the minima is a smaller region. Additionally, the CVaR also has more high frequency bumps

creating local minima and maxima. This may be true of the actual function, however, since this is

measuring the tail of the distribution, it may be related to sample size as well.

3.2 Optimizing Design Problems using Pattern Search

This section gives an overview of derivative free optimization. The foundation for direct search

and model based search of DFO techniques is explored to be used in solution methods for the

OPA optimization procedure. The DFO field has been around for some time now and has seen a
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resurgence over the last decade and a half with the only textbook at less than 5 years old (Conn,

Scheinberg, Vicente) [14]. Kolda et. al. provide an extensive work on direct search methods and

its extensions in [29].

This class of optimization strategies covers a wide-range of problems and techniques. In

general, the problem has a function f : Rn → R that takes a decision variable x ∈ Rn and returns

a scalar.

min
x∈Rn

f(x) (3.6)

The primary problem attribute that makes DFO a good choice for solution method is that stan-

dard gradient or Newton based method do not work. This can be due to a variety of reasons, a

common one being simulation-based optimization. Here, the derivative is unavailable symbolically

(through hard work or automatic differentiation schemes) and, perhaps due to stochastic or numer-

ical noise, is unable to be calculated with finite difference methods. Even if the underlying function

is smooth, a costly function evaluation may make the finite difference approach undesirable due to

the considerable time to calculate full gradients.

While still useful for smooth functions with a Lipschitz continuous derivatives, these methods

can shine in nonsmooth and even non-convex application. Direct search methods work by searching

in many directions in order to guarantee a descent direction is chosen. This has the ability to provide

robustness against noise that may mislead gradient based methods using a single search direction.

In addition, by using relatively large step size the trial points provide a smoothing affect to the

function which allow it to ignore high-frequency noise until it is close to a lower-frequency, higher

amplitude minimum. Contrary to some problem applications, most convergence results depend on

assuming a smooth function with a Lipschitz continuous derivative. No guarantees can be made

for the nonsmooth problems, however in practice these techniques are relatively successful for this
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class of problems.

3.2.1 Direct Search

The convergence of direct search methods for well behaved functions depend on positive spanning

sets as well as the cosine measure are used to bound the angle between the polling directions and the

negative gradient. Using the subsequence of unsuccessful iterates, the trial steps become arbitrarily

small and x approaches a limit point.

A positively spanning set G of Rn can write any vector v ∈ Rn as a positive combination of

points di ∈ G, βi ≥ 0∀i

v =
∑
i

βidi (3.7)

Kolda, Lewis, and Torczon [29] call this a generating set of Rn which makes the foundation for their

class of generating set search methods. This is a large class of problems which generalize lattice

methods of Berman [6] [7] as well as their own older methods [46] [32] and include the original
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Hookes and Jeeves method[27]. Generating sets can be adapted for explicit linear constraints to

conform to local topology.

We only concern ourselves with the nearby active constraints and a satisfactory set of polling

directions would be a positive spanning set of the tangent cone of the nearby active constraints.

The compass search for standard bound constraints conforms to the constraints ideally and no

modifications need to be made other than letting f = inf for x out of bounds and not waste the

time on the function evaluation.

By searching in all directions of a generating set of Rn, we are guaranteed to have a direction

which is somewhat aligned with the descent direction f , if it is smooth and has a Lipschitz continous

derivative. To make this matter concrete, the cosine measure of a set is the worst case scenario for

the descent direction aligning with any direction of the generating set G.

κ(G) ≡ min
v∈Rn

max
d∈G

vtd

||v|| ||d||
(3.8)

This can be calculated for various generating sets, for example the compass search generating set
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gives κ(D⊕) =
1√
n
where n is the dimension of the problem. This begins to show why this method

struggles as the dimension of the problem increases. The cosine measure of the search directions

must be bounded below to ensure the search directions do not deteriorate.

Algorithm 2 Compass search, a generating set search

procedure CS(f : Rn → R)
x0 ∈ Rn Initial guess
4tol > 0 Termination criteria
40 > 4tol > 0 Initial neighborhood

For each k = 1, 2, ...
Let D⊕ = {±ei|i = 1, ..., n} be the set of coordinate directions
if ∃dk ∈ D⊕ such that f(xk +4kdk) < f(xk) then

xk+1 ← xk +4kdx
4k+1 = 4k

else
xk+1 ← xk
4k+1 =

1
24k

if 4k+1 < 4tol then terminate

As long as our step size goes to zero ∆k → 0 as our work effort increases k →∞, we converge

to a stationary point. There are two primary ways to ensure this happens. The first is to use a
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forcing function that constrains the trial step to have more than simple decrease. Another way

is to ensure all the trial points lie on a rational lattice. If all the trial points are then integer

combinations, all future trials lie on this lattice. As it is rational, only a finite number of points are

evaluated before there is an unsuccessful iteration. As there are only a finite number of evaluations

in between unsuccessful steps and at each unsuccessful step the step size is reduced, that step size

converges to 0. In Figure 3.12 we see an example of a polling step with exploratory trial points

on a rational lattice. For a more detailed convergence proof for standard compass search and the

more general generating set search, Kolda et. al. [29].

Flexibility

This class of direct search methods was chosen because of the flexibility in its framework. As long

as the trial points lie on a rational lattice, the method converges to a local stationary point. This

means that the lattice can be rotated to conform to local topology, it admits exploratory points,

and can even use model based methods to improve its search direction and exploratory steps. This

includes aligning search directions with approximate gradients that can be calculated using simplex
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directions or previous trial points. This framework allows us to test using accessory information to

speed up the optimization procedure and compare its effects to model based methods.

To get an idea of the strengths and weaknesses of direct search on the OPA simulation, the

standard compass search algorithm was implemented on a reduced 2 dimensional subspace. In

Figure 3.8, we saw the rough search space and the need for filtering higher frequency effects and

similar properties for conditional value at risk. In fig. 3.13, we se the compass search gets trapped

in a local minima. If a small step size is used, the search gets trapped in nearby minima when more

progress can be made elsewhere. We ran 4 different compass searches with initial trial steps of 1,

25, 50, and 75 and the final solution points are plotted in Figure 3.14. Large step sizes tend to

improve final solution results and it is important to note that they all found very different solutions.

This highlights the need for a strategy to find local minima that are nearer to the global minimum.
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Figure 3.14: Resulting points from compass search with different initial step size values

3.2.2 Line Search Breakpoints

To improve the efficiency of the search, we can use information from the actual line flow statistics

for different stages in the cascade. Changes with respect to 1st stage line flows can identify changes

in final stage load shed, although not whether it improves or degrades the performance.

We need an algorithm that can handle the noisy output of the OPA model and uses the

accessory information in the simulation. This information includes the line with the most failures,

clustering, topology information, electrical properties, and correlations between lines and load

shed. Using direct search as the foundation, we modify the exploratory steps to take advantage of

this information. This provides local convergence guarantees while giving more robustness to the

solution methodology.

Additionally, we can find the point in which adding additional capacity won’t have any effect.

The following equation

νe(u) = max

Ξ,Ω

s = 0, 1, ...., s∗

{yyyes} (3.9)
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represents the maximum flow over all stages and trials of the cascade. By choosing u such that the

line has no chance to fail, any additional capacity does not change the outcome.

In order to globalize the serach process, we take exploratory trial points along specific direc-

tions. We would like to maximize how much we learn with each trial point. In order to do that,

we look at how different two systems are. In order to compare the systems we use first stage line

failure probabilities.

τ(y1, u1, y2, u2) =

[∑
e∈E

(
ge(y

1
e , u

1
e)− ge(y1e , u2e)

)2] 1
2

(3.10)

This information can be used to tell if two operating points have different cascading properties. By

looking at the distance between two operating points, breakpoints can be found where the distance

between operating points risk characteristics are extremely different from another, close, operating

point.
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Figure 3.16: Approximation of function by finding breakpoints



87

3.2.3 Implementing Parallelization in HTCondor

The Center for High Throughput Computing provides computation resources for UW and affiliated

researchers. Jobs can be submitted through HTCondor [44] which manages the collective pool of

around 1 million CPU hours per day. Users submit jobs to the cluster, which assigns resources that

process the job. Requirements can be given to ensure that the resource is capable of performing

the job. In order to get access to a larger portion of the cluster, low memory and disk requirements

help. Overhead associated with the process, such as being assigned resources and data transfers

can be minimized but not removed. As such, the workflow was designed for job times of around

5-30 minutes and perform all analysis locally with the raw data to reduce network data exchanges.

The majority of the HTCondor cluster and UW-Madison uses the Scientific Linux distrubu-

tion with version 5 and 6. The submit node used had SL6 installed, and I compiled the C++ binary

directly on that machine. In order to access the portion of the cluster which uses SL5, I had to find

a remote resource with SL5 installed and build the binary remotely on that machine. HTCondor

gives a way to have an interactive session the remote resource. In the HTCondor submit file (List-

ing 3.2) I request an interactive session and restrict the remote resource to be a MatlabBuildJob,

which ensures an SL5 remote resource. I transfer the source code and associated libraries as a tar

file, unpack and build on the remote resource and close the session, which initiates a transfer of all

newly created files, including the SL5 binary for the C++ code.

1 un ive r s e = v an i l l a
2

3 output = proce s s . out
4 e r r o r = proce s s . e r r
5

6 l og = proce s s . l og
7

8 +IsMatlabBuildJob = true
9 requ i rements = IsMat labBui ldS lot

10

11 +WantFlocking = true
12

13 s h o u l d t r a n s f e r f i l e s = YES
14 when to t rans f e r ou tput = ON EXIT
15

16 t r a n s f e r i n p u t f i l e s = source code . ta r . gz
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File Diagram Description

proc.py Listing A.1 HTCondor Queue Reader
HTCondor queue reader and com-
mand instructor

runit Listing A.2 Runit Daemon Principal process flow manager
allocate.py Listing A.5 Pattern Search Logic Pattern search logic

consub.py Listing A.6 Dag File Structure
Create condor submit structure
based on given search points from
pattern search logic

CONTROL Listing 3.3 CONTROL: job t
A condor file of bash commands to
run on the remote resource

countLines.py Listing A.8 Data Analysis
Take <.lin> file and count number
of line outages

loadShed.py Listing A.7 Data Analysis
Take <.dem> file and do statistical
analysis of load shed

Table 3.3: Scripts and command files used in parallelization routine

17

18 n o t i f i c a t i o n = never
19

20 queue

Listing 3.2: inter-sl5.cmd: HTCondor submit file to run an interactive session on an SL5 machine

After having the main C++ program compiled for two primary linux kernals, we can also

access other HTCondor networks through the Open Science Grid and a simple flag WantFlocking

([21]). This allows us to have a large base of computational resources to request to do our job.

However, many of these resources are memory and storage constrained. In order to tap into these

resources, we restrict the memory requirements of our computational process to 500MBs and storage

at 3GBs, which gave plenty of buffer room for program operation and still allowed the capture of

the majority of the resources. The large data output from the OPA simulation includes stage by

stage details of net power injects, branch flows, and load shed. This data is then analyzed on the

remote resource using python script files to find the risk metrics of the load shed as well as any

accessory information needed in the optimization algorithm. The output of the analysis is less than

8K for load shed and outage data that is needed for most of the optimization routines.

Now, we begin to outline the parallelization routine used with condor to optimize the capacity
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expansion problem using the OPA simulation to evaluate rare event stress. In Figure 3.17, the main

process flows are represented. The rectangles represent processes or scripts that create or modify

data. The clouds represent data used in these processes, however some files are omitted from this

diagram in exchange for overall process clarity. Dashed lines are initiating events or creation of files

from the processes and dashed lines are data transfers, inputs, or structural relationships between

data. The diamond decision box represents the daemon that keeps the overall parallelization

algorithm running. The principal scripts used in these processes are tabulated in Table 3.3.

The runit daemon begins by determining whether the optimization routine is currently run-

ning. This allows the process to be started and stopped at will and ensures robustness to loss of

network connection. The daemon queries the proc.py script to check the condor queue and the

current folder structure to see if any jobs are currently running or there has been steps taken in the

optimization routine. If there is, it continues where it left off, otherwise it initiates the first step in

the optimization algorithm. It has the option to give a set of initial lines to search from function

improvement, otherwise it evaluates the nominal system. The condor file structure is made, the

job is submitted, and the daemon waits for the results.

After the process set up, we begin a standard iteration. The daemon waits for the HTCondor

queue to become empty and when it does it begins to initiate processes. It starts by summarizing

the output to be used in the pattern search logic. After this is done, the pattern search logic

determines which lines should be searched for improvement and the condor file submit structure

is created based on these search directions. The daemon submits the condor jobs and then begins

waiting again for their completion.

HTCondor DAGman was used for job submission in the intra-iteration process flow. DAGman

allows jobs to be described in a directed acyclic graph which gives control over the order in which
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CONTROL: job 1 CONTROL: job T

Pattern Search Logic

Dag File Structure Condor Submit Dag

· · ·

pt1/add.cap ptT/add.cap

Simulation Simulation

< .lin >
< .dem >

< .lin >
< .dem >

· · ·

Data Analysis Data Analysis

< .lao >
< .lsa >

< .lao >
< .lsa >

Dag Output

Summarize

Output < .dat >

Condor Queue Reader

Runit Daemon

Figure 3.17: Process flow for parallel OPA evaluations and a simple pattern search DFO method.
Red clouds represent data and blue boxes represent processes. Dashed lines are for data input or
transfers and solid lines are processes or data creation.
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jobs are submitted and their dependencies. It also has additional features to be a friendly load on

the HTCondor system. In various iterations, there may be over 1000-2000 potential trial points

that need to be evaluated. Instead of submitting these all instaneously, these jobs are processed

sequentially and have a small delay in between job submission as to not overload the system. In

addition, it limits the number of jobs that are sitting idle in the queue, which does not slow down

the optimization routine but reduces the demand on the condor job management system. DAGman

does add some overhead to the process, however, due to the immense process capabilities of the

HTCondor system, these are dwarfed by the sheer amount of computational power you gain. Being

a friendly load on the system is a small price to pay.

DAGman uses a very specific file structure in order to submit jobs that have shared resources.

The file structure for the input to DAGman is given in Figure 3.18. To make the DAG submission

job, Powerin is given as the input directory. Powerin contains a folder called shared that holds

the resources needed for every job. DAGman creates a job for each folder inside Powerin and that

folder holds the files necessary for that particular job. In our case, we include a <.cap> file which

defines the design decision u for that particular trial point. In the shared folder, there is a file

called CONTROL (Listing 3.3) that DAGman uses to process each job. CONTROL is a list of

shell command to initiate on the host resource.

1 #Run s imu la t i on f o r t r i a l po int de f ined by add i t i on s and output f i l e names as DONE
2 . / msip b i g s im cp l ex . in add i t i on s . cap DONE
3 #Count l i n e s in l i n e outage f i l e and output to want f i l ename
4 . / countLines . py DONE. l i n want . l ao
5 #Do s t a t i s t i c a l load shed ana l y s i s on raw load shed d i s t r i b u t i o n and output to want f i l ename
6 . / loadShed . py DONE.dem want . l s a

Listing 3.3: CONTROL: commands to run on remote resource

Additionally, the grid definition file, as well as the simulation parameters, are stored there as they

do not change from job to job. Packed in sl5.tar.gz and sl6bin.tar.gz are the binaries for those

particular instances, and DAGman only brings the correct binary depending on the host resource

being used. SLIBS.tar.gz contains the common libraries that are used by the programs and python
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scripts. The python data analysis scripts are also used at the remote resource to process the raw

data files in order to reduce the network transfers. The REMOVE file cleans up the host resource

before the job ends and every newly created file that is not removed is transferred back to the

submit node. The other files contained in Powerin are scripts used to create the job folders and

run the pattern search logic. After the folder structure has been created, a condor dag job can be

created by running the following command.

1 mkdag −−data=Powerin −−outputd i r=s t e p $ i t e r a t i o n −−cmdtorun=a r r i v e . py −−pattern=want . l ao −−

pattern=want . l s a −−type=Other −−maxidle=500

DAGman uses the Powerin directory to create the DAG and create an output directory called stepN

depending on which iteration the optimization algorithm is on. It creates a job for every folder

inside Powerin, except shared. It begins with the script called arrive.py and upon completion, it

checks to see if want.lao and want.lsa have been created. If they have not, it is assumed the job has

failed and DAGman resubmits the job. Additionally, it limits the maximum number of idle jobs in

the queue to 500.

The output folder for DAGman contains subfolders for each job that contain log files as well

as the output files that were transferred back to the submit node. After the daemon sees that

all the condor jobs are done, it initiates summarization and then proceed to the next step in the

algorithm. The overall folder structure for this optimization procedure is given in Figure 3.19. The

Powerin folder is cleaned of all job subfolders in between each iteration and new job subfolders are

created depending on the new trial points created from the pattern search logic. Important files

about the search points used are copied over to the output folders before they are cleaned from the

input folder. The output folders can be used to trace what has happened up to the current point

in the algorithm in order to allow the daemon to continue off where it last was if it was restarted,

either intentionally or unintentionally.
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Powerin

allocate.py (search logic for allocating trial points)

consub.py (construct condor submit file structure for search pattern)

power.py (power classes for python scripts)

tools.py (common functions for python scripts)

cap.py (class to analysis capacity files for opt routine)

shared

CONTROL (commands for host computer)

REMOVE (files to remove before transfer)

countLines.py (data analysis before network transfer)

loadShed.py (data analysis before network transfer)

grid.gr (grid definition file)

simcplex.in (simulation parameters)

sl5bin.tar.gz (binary for sl5 instances)

sl6bin.tar.gz (binary for sl6 instances)

SLIBS.tar.gz (common libraries)

pt1/add.cap

...

ptT/add.cap

Figure 3.18: Folder structure for DAG input in parallelization routine
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ChtcRun

proc.py (condor queue reader and develop commands)

runit (parallelization daemon)

Powerin

python scripts

shared (files for every trial point)

pt1/add.cap (file defining trial point u1 for current iteration)

...

ptT/add.cap (file defining trial point uT in unique folder)

step0 (output directory for first iteration)

pt1 (output for first trial point of first iteration)

...

ptT (output for Tth trial point)

...

stepN (output directory for Nth iteration)

...

Figure 3.19: Folder structure for using DAGs in parallelization routine
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Using a relatively naive pattern search with a fine mesh grid aligned on the coordinate

directions, the brute force power of HTCondor was able to achieve significant improvement in the

function value. The function value and associated risk measure are plotted in Figure 3.20. The

majority of the improvement was made over the initial iterations of the algorithm. The algorithm

stopped when the function value made no improvement over the last iteration. The final design

point is shown in Listing 3.4 and the risk measures tabulated in Listing 3.5.

1 Design Capacity − i n d i v i dua l
2 22 10 .84 40 7 .96 46 4 .02
3 48 3 .46 49 14 .84 67 37 .70
4 68 2 .77 71 2 .24 76 24 .25
5 79 16 .26 80 6 .74 84 12 .35
6 85 7 .78 102 9 .72 112 1 .93
7 113 9 .88 115 89 .08 123 29 .54
8 124 11 .60 132 2 .33 133 2 .58
9 138 19 .60 151 8 .52 164 2 .97

10 165 6 .43 169 14 .82 170 4 .78
11 171 6 .14 180 15 .97 181 0 .00

Listing 3.4: point.cap: Transmission expansion design from pattern search method

1 Samples : 15000
2 Average : 110.925696667 CI 95% [ 109.185588979 , 112.665804354 ]
3 Standard Deviat ion : 108.734079904
4 Standard Error : 0 .887810044716
5 Min : 0 .0
6 Max: 1129.83
7 95% V@R: 318.56
8 95% CV@R: 438.24252

Listing 3.5: point.lsa: Load shed analysis from chosen design

3.3 Conclusion

In this Chapter, we take a simulation optimization approach to transmission expansion for minimiz-

ing load shed due to cascades. We parallelize the computational effort needed in order to evaluate

the wide load shed distribution. We continued by exploring the function defined by the expected

value of load shed over a small subset of initial contingencies as well as the cascade evolution. We

saw that doubling the capacity along coordinate directions often does not lead to reduced load shed.

We traced this to overloading neighbors when additional capacity was added to one line but not

others. We also saw that discontinuities of load shed could be correlated with the frequency of line
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Figure 3.20: Pattern search procedure for transmission expansion design problem

failures in the OPA cascade simulation. We used this to develop a line search procedure that finds

these discontinuities. Finally, we implemented the parallelization in HTCondor using the DAGman

functionality for job submission. This allowed for job submission smoothing as well as restarting

hung jobs or jobs that have failed. We used this parallelization and a naive pattern search with a

fine mesh grid to achieve improvement in the function value for the transmission expansion design

problem.
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Chapter 4

Line Failure Risk Models for

Real-Time Dispatch

4.1 Introduction

The use of optimization models for operation of bulk power systems has been critical in creating

efficient markets for wholesale power generation over the last few decades. Optimization models

are solved to clear multiple markets, including day ahead and real time markets, while maintaining

physical constraints related to generator characteristics and power flow constraints on the high

voltage transmission system. The nonlinear and nonconvex equations for balanced three phase

power flow make these problems particularly difficult to solve and approximations, such as decou-

pled (DC) power flow, are commonly used in economic models. These optimization models and

solution methodologies have become standard tools for independent system operators tasked with

operating the bulk power system.

In this chapter, we focus on the operation of the real time dispatch market (five minutes and
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less) and the associated reliability issues. Reliability issues have a large impact on the economy,

estimated at $79 billion in 2001 [30], relative to the total cost of electricity, $247 billion in 2001

[2]. Additionally, large power outages are disruptive to society, are costly (the 2003 Northeast

blackout was an estimated loss of $6.4 billion to the economy), and can lead to the loss of life

[45]. Blackout frequency changes seasonally and with the time of day. The load shed from blackout

events follows a power-law distribution where large blackout are more likely than expected [24]. This

blackout distribution has been stable over the last thirty years and represents a dynamic equilibrium

[19, 24]. Small frequent blackouts are associated with small reserve margins in generation and large

infrequent blackouts are associated with a highly utilized transmission system [19]. We develop a

risk measure that captures the utilization of transmission elements in a systems perspective. This

is similar to the use of severity measures to capture line loading risks from a systems perspective

[48, 51, 52]. Our model is equivalent to their system risk measure when there is fixed demand and

we use a linear approximation of the risk measure. However, we solve our original log-convex risk

measure exactly via nonlinear programming. We also extend our model to the case of a multivariate

Gaussian distribution for net injection uncertainty where we make a linear approximation to retain

a tractability.

There has been increased importance placed on models that account for the growing genera-

tion uncertainty due to renewables such as wind and solar. This uncertainty is being handled for

the traditional line threshold model of economic dispatch using chance constraints (CC). Several

groups have developed chance constrained models to ensure that the power flow on any transmis-

sion element is less than its capacity for a large percentage of scenarios. Several extensions are

made which involve arbitrary slack distribution [8], application to large penetration of wind farms

[49], with HVDC lines [47], and others [39, 48] which is discussed in Section 4.3. Instead of relying

on the traditional line threshold, we directly enforce a constraint on the quantity of interest, the
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probability that a line will fail. The nominal capacity of transmission elements is based on thermal

characteristics of the line as well as a set of environmental characteristics, which represent the worst

case scenario for different operating times. Typically, there may be a summer rating and a winter

rating for each transmission element, where the winter rating has colder ambient temperature (less

heating and less sagging) thus a higher capacity. The limiting constraint determining the line ca-

pacities are typically due to the acceptable sagging level derived from a predetermined risk level of

fault [42]. Dynamic line limits are being explored to account for real time environmental conditions

[10, 50, 53, 54].

In this chapter, we quantify the endogenous risk of line failure due to line loading. Exogenous

failure events, primarily caused by weather, such as falling tree limbs taking out circuits, are

accounted for through the N-1 security requirements. In order to quantify the endogenous risk, we

make several assumptions on the failure density function, which are used elsewhere in literature

and have a physical interpretation. Our failure density function assumes that below some loading

level there is no endogenous risk associated with the loading and that above a critical level the risk

is monotonically increasing. We use a piecewise linear function to model the risk and this model

has been used in cascading power failure research in papers [11, 13, 19, 26, 37]. While there is a

hard limit on transmission lines that causes them to trip with certainty (due to protective relay

elements), the system is always operated far away from these points. If the system was operating

close, random fluctuation in power injects would cause the system to trip much more regularly than

is seen. Our model is built on the assumption that increasing power flow increases the risk of line

failure, and we can only make probabilistic statements about these failure rates.

We combine individual line risks to form a system risk measure that represents the proba-

bility that one or more lines fail (due to loading), which we constrain to be small depending on

the operators’ risk tolerance. The combination of a system risk measure and demand uncertainty
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leads to our joint chance constraint (JCC) model. When there is no uncertainty in demand and

generation, this system can be solved exactly using nonlinear programming and its linear approxi-

mation reduces to other system risk models that have apeared in literature [48, 52]. Under demand

uncertainty, the line risk’s failure becomes dependent on both the mean and standard deviation of

line flow. In order to solve this model, a linearization of the system risk measure is made. Once this

approximation is made, the problem becomes solvable for large test instances even when exogenous

N-1 contingencies are considered. In section Section 4.2 we look at the standard economic dispatch

model, referred throughout as optimal power flow (OPF). Using the DC power flow approximation,

we show the linear program used in the real time market with a quadratic cost function. In the

following Section 4.3, we begin by exploring the uncertainty introduced into the system by wind

generation and variable load. We then show the chance constraints (CC) used in other work to

ensure the reliability constraints are met a large percentage of the time. In Section 4.4, we develop

a system risk measure defined by the probability that one or more lines fail by assuming the prob-

ability a line fails is related to line loading and can be represented by a piecewise linear function.

Using this risk measure and the assumption of fixed generation and demand, we can solve this

model exactly using nonlinear programming. Finally, we look to combine uncertain wind and load

with our system risk measure. Under the assumption of a multivariate Gaussian distribution for

wind and load, we find the covariance matrix to enforce the resulting variation in branch flows.

The risk constraints are convex with respect to the mean and standard deviation of branch flow.

We then describe the solution methodology in Section 4.4.3 which uses an iterative algorithm and

cutting planes to describe the convex risk constraints. Finally, we explore the computational results

in Section 4.5 to understand the characteristics of the standard economic dispatch model, chance

constraint model, and our joint chance constraint model.

In order to solve our problem, a cutting plane algorithm is used to underestimate the line risk
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function (convex, not analytic) as well as the branch flow standard deviations (second order cone).

This multiobjective problem of cost and risk form a frontier that is shown in the computational

section. The OPF and CC models give dispatch points on the interior of this frontier, which are

inefficient according to our system risk measure. The CC and JCC models take around the same

amount of time to solve and are an order of magnitude slower than OPF. Our JCC model can

reduce the expected number of lines over their hard threshold compared to the CC model, which is

what the chance constraint model aims to do on an individual line level. Finally, our JCC model

is robust to deviations in line risk parameters as well as other failure density function models.

4.2 Economic Dispatch Models

Bulk power systems rely on dispatch models to clear the markets for power in a timely manner.

These models are critical to ensure that the market is cleared minimizing cost while maintaining a

set of reliability constraints. The DC power flow model is typically used to clear economic markets

for both real-time and day-ahead operation, where the day-ahead operation has the additional

complexity of committing slow ramping resources and is solved with mixed-integer programming.

4.2.1 Optimal Power Flow using DC approximation

The DC power flow model is a simplification of the AC power flow model, which more accurately

represents the true physics of the balanced three phase electrical system. The DC model makes the

assumptions that the power lines are lossless, voltages are equal to nominal, and the phase angle

differences are small. While losing some accuracy and important information about the voltages,

the problem becomes more tractable. Methods can be used to find approximate voltages, which

can be important indicators for system stability. Additional complexities are ignored for clarity
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such as shunt elements which consume power [56].

The topology of the power grid, with Nl lines and Nb buses, can be represented using an

incidence matrix, C ∈ RNl×Nb , where cei = 1 if line e begins at node i and −1 if line e ends at

node i. The set of all edges is denoted as E and the set of all nodes as I. In the DC power flow

model, the line susceptance is the constant of proportionaility between bus voltage and liv, so let

D = diag (b1, b2, ...bNl
) be the diagonal susceptance matrix. The branch flows y ∈ RNl for given

a set of phase angles θ ∈ RNb at each bus are determined by Kirchoff’s Current Law and can be

written as

y = DCθ (4.1)

for the DC power flow model. This results in the typical DC line constraints ye = be(θi − θj) for

each line e connecting from node i to node j. Applying CT to the branch flows y in Equation (4.1)

give the net injects for a given set of branch flows and represents conservation of energy at each

node. The system matrix B = CTDC can be used to write the DC power flow equations for the

net injects x ∈ RNb

x = CT y = Bθ (4.2)

This equation has one degree of freedom and by removing the slack bus inject (row) and phase

angle (column), then the following system

x̃ = B̃θ̃ (4.3)

has a unique solution. Here, x̃ ∈ RNb−1 has the slack node removed and B̃ is a (Nb− 1)× (Nb− 1)

matrix with the row for the slack bus inject and the column for the slack bus angle has been

removed. The OPF model uses the DC simplifications from the full AC model to ensure the model
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can be solved reliably in a timely manner. A standard OPF model is shown here and used in the

computational section.

The following program Equation (4.4) is minimizing a quadratic cost function of generation

xj for each generator j in the set of all generators J with cost coefficients c2j , c
1
j and c0j . There are

two incidence matricies, cgij for generators and c
b
ie for branches. c

g
ij takes the value 1 when generator

j is connected to node i in the set of all nodes I. cbie takes the value 1 if the edge e, in the set of all

edges E , originates in node i and a -1 if edge e terminates in node i. We also have nominal demand

di for each node i, branch capacities Ue for each branch e, and generator limits Gminj and Gmaxj .

OPF:= min
(x;θ,y)

∑
j∈J

[
c2jx

2
j + c1jxj + c0j

]
(4.4a)

∑
j∈J

cgijxj −
∑
j∈J

cbieye = di ∀i ∈ I (4.4b)

ye − be
∑
i∈I

cbieθi = 0 ∀e ∈ E (4.4c)

ye ∈ [−Ue, Ue] ∀e ∈ E (4.4d)

xj ∈
[
Gminj , Gmaxj

]
∀j ∈ J (4.4e)

4.3 Chance Constraints for Random Branch Flows

As the penetration of renewables increases, there is an increasing interest in the inclusion of un-

certainty in dispatch models. The primary approach has been to treat wind generation and load

variables as random variables and enforce probabilistic constraints replacing the standard deter-

ministic reliability constraints. Probabilistic constraints, or chance constraints, enforce that a

constraint involving a random variable must be satisfied a large percentage of the time. Chance

constraints have been used in a variety of power system problems, from a unified model including
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large wind penetration and HVDC lines [48], to models using an arbitrary slack distribution [8].

Additionally, their are models that have different assumptions on the probability distributions of

the random variables, from the common independent Gaussian assumption [8, 39] to no assumption

on the uncertainty except for the ability to sample from it [47, 48, 49].

We look first at chance constraints for branch flows, which begins by looking at the root

uncertainty in net injections due to wind and load. The deviation of net injections from forecast

leads to a response by automatic generator control to ensure that supply and demand are constantly

in balance. Under the DC power flow model, the branch sensitivities to changes in net injections

are a linear relationship. This allows us to calculate the uncertainty in branch flows dependent on

the uncertainty in wind and load. A common assumption is that the uncertainty in deviation from

forecast is a Gaussian distribution, and that its mean and covariance is known. This assumption

allows for a tractable formulation of the chance constraint without sampling from the uncertainty

distribution.

4.3.1 Random Power Flows

The power injections at each node are subject to random fluctuation over varying time intervals.

The variation over the 5 minute time scale are dealt with using ancillary services such as regulation

and reserve. The sources of the fluctuations can be due to random demand or generation. These

fluctuations affect the power flows on transmission lines and cause a linear shift in the approximated

DC power flow model. The risk of the system is dependent on the characteristics of these resulting

random power flows. In greater time intervals, the generators can redispatch for economic or

reliability reasons.

Over the course of the 5 minute interval dispatch period, demand fluctuates from its expec-
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tation. This fluctuation can be due to the behaviors of aggregated residential load, commercial or

industrial processes, or power production for renewable sources such as wind and solar. Assuming

these random injects are Gaussian, the linear approximations made in the DC power flow leads to

the branch flows also being Gaussian random variables. The mean vector and covariance matrix of

branch flows can be calculated if the mean and covariance of the random injections are known.

Let δmδmδm ∈ RNm be a random vector describing the deviation from forecast on a subset of nodes

k ∈ M which are random (|M| = Nm). Bold lettering δmδmδm represents a random variable with a

probability distribution supported on D. Define an incidence matrix CM ∈ RNb×Nm where cim = 1

if random inject m is connected to node i. Additionally, we define the forecasted demand at each

node as d ∈ RNb where Nb is the number of buses. The forecasted demand is supplied by generation

xg ∈ RNg where Ng is the number of generators and the incidence matrix Cg brings them into the

bus space. The vector of net injections are defined by

xxx = Cg (x
g + β∆∆∆)− (d+ CMδ

mδmδm) (4.5)

where the left term is generation/controllable and the right term is load/uncontrolled. Both terms

have a fixed component due to the forecasted system and a random component due to the random

injections. For the rest of this chapter, we assume the random injects δmδmδm are assumed to be a

multivariate Gaussian distribution with known mean µm and covariance Σm.

The random injects cause loading on the transmission lines to fluctuate and the flows are

random variables themselves. Taking the derivative of Equation (4.2), we get dx̃ = B̃dθ̃. The

changes to the phase angles given a vector of changes to net injects is dθ̃ = B̃−1dx̃. This can be
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used to find the sensitivity of branch flows to net injects

dy = Adx (4.6)

where A is the injection shift factor matrix A = DC

[
0 B̃−1

]
and 0 ∈ RNb is a column of zeros.

For a slack distribution β with
∑

j∈J βj = 1 and aggregate demand change ∆ =
∑

i∈I dxi, the net

injects also change by −β∆ so that dy = A (dx− Cgβ∆). The random power flows yyy can be found

by applying Equations (4.1) and (4.2) to the random net injections Equation (4.5)

yyy = y0 +ACGβ∆∆∆−ACMδmδmδm (4.7)

with

δyδyδy = ACGβ∆∆∆−ACMδmδmδm (4.8)

being the random component of branch flows. Without loss of generality, we can assume that the

random injects have zero mean. If we know them to have a nonzero mean, we can shift the forecasted

system to account for it. The forecasted system
(
xg, y0, θ0

)
is the expectation of Equations (4.5)

and (4.7)

CGx
g − d = CT y0

y0 = BTCθ0

with zero mean EΩ [δmδmδm] = [0 · · · 0]T and EΩ [∆∆∆] = 0. From Equation (4.6), we have that the random

component of the flow is made part from the random injects and part the generators response. The

random branch flows δyδyδy are a linear function of the random injects δmδmδm, thus yyy has a multivariate
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Gaussian distribution as well. The branch covariance matrix can be calculated

ED

[
(yyy − µy) (yyy − µy)T

]
= ED

[(
A(CGβ~1

T − CM )δmδmδm
)(

A(CGβ~1
T − CM )δmδmδm

)T]

where ~1 = {1}Nm is a vector of ones that is of Nm length. Substituting G = A(CGβ~1
T − CM ), we

have

ED

[
(Gδmδmδm) (Gδmδmδm)T

]
= ED

[
GδmδmδmδmδmδmTGT

]
= GED

[
δmδmδmδmδmδmT

]
GT

Since the expectation is linear and the covariance Σm of δmδmδm is known (Σm = ED
[
δmδmδmδmδmδmT

]
), we have

power flow covariance matrix, after substitution of G, of

Σy = A(CGβ~1
T − CM )Σm(CGβ~1

T − CM )TAT . (4.9)

This equation can be found piecewise by taking the variance of the random component of the

branch flow for a given branch e and substituting πe =
∑

j∈J Aejβj (the effect on branch e from

aggregate deviation from forecast ∆). Reforming this assumption, we have the random component

of branch flow δyeδ
y
eδ
y
e on branch e defined by

δyeδ
y
eδ
y
e =

∑
j∈J

Aejβj∆∆∆−
∑
k∈M

Aekδ
m
kδ
m
kδ
m
k

= πe
∑
k∈M

δmkδ
m
kδ
m
k −

∑
k∈M

Aekδ
m
kδ
m
kδ
m
k

=
∑
k∈M

[πe −Aek]δmkδ
m
kδ
m
k
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where δmkδ
m
kδ
m
k is the random inject k ∈ M. Using the notation that the covariance between random

inject k1 and k2 is Σk1k2 = CoVar[δmk1δ
m
k1
δmk1 , δ

m
k2
δmk2δ
m
k2
], the covariance between branch e1 and e2 is calculated

by

CoVar[δye1δ
y
e1δ
y
e1 , δ

y
e2
δye2δ
y
e2 ] =

∑
k1∈M

∑
k2∈M

(πe1 −Ae1k1)(πe2 −Ae2k2)Σk1k2 (4.10a)

CoVar[δye1δ
y
e1δ
y
e1 , δ

y
e2
δye2δ
y
e2 ] = πe1πe2

∑
k1∈M

∑
k2∈M

Σk1k2 (4.10b)

− πe1
∑
k1∈M

∑
k2∈M

Ae2k1Σk1k2 − πe2
∑
k1∈M

∑
k2∈M

Ae1k1Σk1k2 (4.10c)

+
∑
k1∈M

∑
k2∈M

Ae1k1Ae2k2Σk1k2 (4.10d)

CoVar[δye1δ
y
e1δ
y
e1 , δ

y
e2
δye2δ
y
e2 ] = πe1πe2σ

2
∆ − πe1σ2e2 − πe2σ

2
e1 + σ2e1e2 (4.10e)

where σ2∆, σ
2
e1 , and σ

2
e1e2 are all pre-computable parameters given by the following equations

σ2∆ =
∑
k1∈M

∑
k2∈M

Σk1,k2 (4.11a)

σ2e =
∑
k1∈M

∑
k2∈M

Aek1Σk1,k2 ∀e ∈ E (4.11b)

σ2e1e2 =
∑
k1∈M

∑
k2∈M

Ae1k1Ae2k2Σk1,k2 ∀e1, e2 ∈ E . (4.11c)

There are two primary parts to the variance in line flow, that from the uncertain random

injects and that from the aggregate deviation from forecast at the slack distributions response. The

variance of branch flow on line e is described as follows

Var[δyeδ
y
eδ
y
e ] = π2eσ

2
∆ − 2πeσ

2
e + σ2ee ∀e ∈ E (4.12)
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When the net injections are uncertain, the branch flows are also uncertain and represented

by yyye for branch e, where the bold letter denotes a random variable throughout this chapter. Let εl

be the percentage of time we allow the constraint to be violated for each line l, so that the following

constraint

PΩ [−U≤yyye ≤ U ] ≥ 1− εl ∀e ∈ E (4.13)

represents the chance constraint version of the nominal line capacity limit. Assuming yyye is a

Gaussian random variable with mean µye and standard deviation σye . Given a line risk preference

εl, we have

ηl = Φ−1 (1− εl) (4.14)

where Φ−1(·) is the inverse of the standard normal distribution. The following constraints

µye + ηlσ
y
e ≤ Ue ∀e ∈ E

µye − ηlσye ≥ −Ue ∀e ∈ E

are deterministic constraints for Equation (4.13)

In addition to chance constraints on branch flows, the output of generators may be uncertain.

Let ∆∆∆ represent the aggregate deviation from forecast that the generators must respond to. The

slack distribution is a subset of generators who are able to respond to deviations in forecast in a fast

time scale. They typically follow a signal such as the area control error (ACE). Let βj define this

slack distribution, where βj is the portion of ∆∆∆ that generator j compensates for. We know that∑
j∈J βj = 1 for demand to be satisfied exactly. Additional constraints can be put on the slack

variables β depending on generator characteristics and their ability to respond to variations in load.

The total output for generator j is xj + βj∆∆∆ and we enforce its constraints probabilistically since
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it is a random variable. Assuming that the individual variations in wind and load are Gaussian,

their aggregate is also Gaussian. Let εj be the probability that the constraint can be violated for

generator j and we would like a constraint to enforce

PΩ

[
Gmine ≤ xj + βj∆∆∆ ≤ Gmaxe

]
≥ 1− εj ∀j ∈ J (4.15)

where Gmine , Gmaxe represent the minimum and maximum output of the generator over the given

time interval and accounts for ramping constraints and already made commitment decisions. Since

EΩ [∆∆∆] = 0 and the standard deviation of ∆∆∆ is known, which takes the value σ∆, the following

constraints to enforce Equation (4.15) are

xj + βjσ∆ηg ≤ Gmaxj ∀j ∈ J

xj − βjσ∆ηg ≥ Gminj ∀j ∈ J .

By allowing the slack distribution to be variables in the optimization procedure, the cost to

meet load is now a random variable. Assuming we would like to minimize the expected cost of

generation, we would like to minimize

EΩ

∑
j∈J

[
cj2(xj + βj∆∆∆)2 + cj1(xj + βj∆∆∆) + cj0

]

Since ∆∆∆ is a Gaussian and EΩ [∆∆∆] = 0, we have that EΩ [∆∆∆] = σ2∆. Our new objective is now

∑
j∈J

[
cj2
(
x2j + σ2∆β

2
j

)
+ cj1xj + cj0

]

We defer derivation of the standard deviation of branch flow, σe, Equations (4.16h) and (4.16i)
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in the following optimization problem, to the following section with a complete discussion on

random power flows assuming a multivariate Gaussian distribution on net injects. The following

optimization problems highlight the difference between OPF hard line thresholds for branch flow

limits and generator constraints and the probabilistic versions in the CC version. The CC models

make use of both mean and standard deviation for the random variables in question. The parameters

εl and εg can be changed to reflect the preference or aversion of a constraint being violated. Of

primary note is that with εl = εg = .5 the standard OPF model is recovered. As these epsilon

parameters are reduced, constraints are tightened so that the optimal value of OPF Equation (4.4)

is less than or equal to the optimal value of CC Equation (4.16).

CC:= min
(x,β,;θ,y)

∑
j∈J

[
c2
(
x2j + β2j σ

2
∆

)
+ c1xj + c0

]
(4.16a)

∑
j∈J

cgijxj −
∑
j∈J

cbieye = di ∀i ∈ I (4.16b)

ye − be
∑
i∈I

cbieθi = 0 ∀e ∈ E (4.16c)

µye + ηlσ
y
e ≤ U ∀e ∈ E (4.16d)

µye − ηlσye ≥ −U ∀e ∈ E (4.16e)

xj + βjσ∆ηg ≤ Gmaxj ∀j ∈ J (4.16f)

xj − βjσ∆ηg ≥ Gminj ∀j ∈ J (4.16g)

πe −
∑
j∈J

Aejβj = 0 ∀e ∈ E (4.16h)

s2e − π2eσ2∆ + 2πeσ
2
e1 ≥ σ

2
e1e1 ∀e ∈ E (4.16i)∑

j∈J
βj = 1 (4.16j)
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4.4 Joint Chance Constraint for System Risk Measure

In order to ensure reliability of the bulk power system, the system risk needs to be quantified and

constrained. In this chapter, we define system risk as the probability that no lines fail. We are

primarily concerned with what we term endogeneous system risk, which is the likelihood of failure

induced by the branch flows. We start with our system risk analysis under a fixed generation and

demand scenario. We can solve this problem exactly with nonlinear programming. Following, we

perform the analysis when the demand and generation are a multivariate Gaussian distribution in

which the mean and covariance are known. In this system we make a linearization to approximate

our system risk function.

We start with the situation in which generation and demand are known with certainty. Let

h(y) : RM+ → [0, 1] be the risk function dependent on line flows y, let ε be the risk tolerance and

define the system risk constraint as

h(y) = PΞ [no line fails|line flows y] ≤ ε (4.17)

where the probability space Ξ can be thought of as an effective capacity. That is, the line fails if

it has flow above its effective capacity. The space Ξ represents the transmission elements’ effective

capacity distribution. This risk measure Equation (4.17) defines a Bernoulli random variable that

takes the value 1 with probability h(y) if no lines fail, the complement of all lines succeeding.

Assuming that the failure probabilities of individual lines are independent given the flow, we can

find h(y) by multiplying the probabilities that individual lines succeed (1 − ge(ye)), we have the

probability that all lines succeed

h(y) =
∏
e∈E

(1− ge(ye)) (4.18)
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Figure 4.1: Line failure density function for normalized line flow y′

where ge(ye) is the probability that line e fails given line flow ye. The line risk function g : R+ →

[0, 1] takes the line flow ye and returns the probability ge(ye) that the line will fail.

ge(ye) = PΞ [Line e fails|ye] ∀e ∈ E (4.19)

We make note that the probability a line fails is only dependent on the flow ye. While the flow ye

certainly covaries with the other line flows y, we assume the failure process is independent of other

line flows.

A piecewise linear function captures the important features of the endogenous risk of the

transmission element associated with loading. Up to a certain point, Le, the power flow does

not add any risk above that of its normal outage rate. Above that point, the additional risk is

proportional to the additional flow on the line. Once a critical capacity U ce is reached, a protective
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element is tripped and the line fails with certainty (ignoring hidden failures).

ge(ye) =



0 ye ≤ Le

ae + beye Le ≤ ye < U ce

1 U ce ≤ ye

(4.20)

Using as reference the probability pe that the line fails at nominal capacity Ue, the piecewise linear

paramters ae and be can be calculated as ae = −peLe(1 − Le)
−1 and be = pe(1 − Le)

−1. This

piecewise linear failure density function is shown in Figure 4.1.

Lemma 4.4.1 h(y) is log-concave in domain
{
ye ∈ RE |0 ≤ ye < U ce ∀e ∈ E

}

Proof First we note that for {ye|ye < U ce∀e}, ge(ye) ∈ [0, 1) and is the max of two convex functions

and is thus convex. To show that lnh(y) is concave, we take the log of both sides of Equation (4.18),

giving

lnh(y) = ln

[∏
e∈E

(1− ge(ye))

]

=
∑
e

ln [(1− ge(ye))]

For xe = ge(ye), let H(x) = lnh(x) =
∑

e ln [1− xe], we have

∂H(x)

∂xe
= − 1

1− xe
∂2H(x)

∂x2n
= − 1

(1− xe)2

∂2H(x)

∂xn∂xe
= 0

which shows that H(x) is a decreasing and concave function on {xe|xe ∈ [0, 1)∀e}, thus −H(x) is
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convex and non-decreasing. Composing a convex, non-decreasing function with a convex function

is convex, so that − lnh(y) is convex and lnh(y) is concave. Thus, h(y) is log concave.

This function can be solved exactly for fixed demand using nonlinear programming by taking

a log transform of the line risk. The system risk constraint Equation (4.18) can be written

∏
e∈E

(1− ge(ye)) ≥ 1− ε

where 1− ge(ye) is the probability that line e doesn’t fail given flow ye. Taking the product of all

these events gives the probability that no lines fail, we have

ln

(∏
e∈E

(1− ge(ye))

)
≥ ln (1− ε) ge(ye) ∈ [0, 1)∀e ∈ E ⇔

∑
e∈E

ln (1− ge(ye)) ≥ ln (1− ε) ge(ye) ∈ [0, 1)∀e ∈ E .

If we enforce we ≤ ln(1 − ge(ye))∀e ∈ E , then we have our no line failure system risk constraint

Equation (4.18) as ∑
e∈E

we ≥ ln (1− ε) (4.21)

To enforce we ≤ ln (1− ge(ye)) we manipulate to

we ≤ ln (1− ge(ye)) ∀e ∈ E

exp(we) ≤ 1− ge(ye) ∀e ∈ E

ge(xe) + exp(we) ≤ 1 ∀e ∈ E .

Equation (4.21) implies that there are fixed line limits related to the risk tolerance ε. Since

ln (1− x) ≤ 0 for all x ∈ [0, 1) shown in Figure 4.2, this implies that each term in the sum
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Figure 4.2: Line risk substitution for individual branches and possible approximations

also satisfies the constraint ln (1− ge(ye)) ≥ ln (1− ε), giving the upper limit on flow ye defined by

U εe = g−1
e (ye) ∀e ∈ E (4.22)

4.4.1 System Risk for Multivariate Gaussian Branch Flows

Now we combine the uncertainty in the effective capacity Ξ with the uncertainty in generation and

demand D. We assume that the uncertainty spaces Ξ and D are orthogonal to each other. This

may not be the case, due to geographically correlated weather which can affect both the effective

capacity distribution and the random generation and demand. Applying the line risk function

Equation (4.20) to the system risk measure Equation (4.18) and taking the expectation over the

random injection space D, we have

ED [h(yyy)] = ED [PΞ [no lines fail|line flows yyy]] (4.23)

= ED

[∏
e∈E

(1− ge(yyye))

]
(4.24)



117

since 1− ge(yyye) = PΞ [Line e succeeds|yyye] and multiplying over all lines to find the probability that

no line fails. The function Equation (4.23) can be approximated by using a linearization of h(yyy).

Let r be the expectated value of the probability that one or more lines fail (the complement of

ED [h(yyy)]). Then, we have

r = ED [1− h(yyy)]

= 1− ED

[∏
e∈E

(1− ge(yyye))

]

= 1− ED

1−∑
e

ge(yyye) +
∑

e1,e2|e1 6=e2

ge1(yyye1)ge2(yyye2)−
∑

e1,e2,e3|e1 6=e2 6=e3

ge1(yyye1)ge2(yyye2)ge3(yyye3) + · · ·


≈ 1− ED

1−∑
e

ge(yyye) +
1

2

∑
e1,e2|e1 6=e2

ge1(yyye1)ge2(yyye2)− · · ·


≈
∑
e∈E

ED [ge(yyye)]

where the approximation derived above comes from taking a Taylor expansions of h(·) at y = 0 and

second order and higher terms. This approximation is good for small risk values of h(y). The system

risk contributed by line e is integrated over the space D, which is orthogonal to effective capacity,

or likelihood of failure due to loading, Ξ. This system risk measure r captures the endogenous

system risk of line failures due to loading under uncertainty in branch flows.

Let ze = ED [ge(yyye)] be the individual line risk. We can break ze into three segments based

upon the value of yyye in piecewise linear risk function Equation (4.20). The first segment for

yyye ≤ Le has ge(yyye) = 0. In the second segment, for Le ≤ yyye ≤ U ce , ge(yyye)takes an expected value

of a truncated normal distribution. In the last segment, U ce ≤ yyye, ge(yyye) takes one and yyye is in

that segment with the probability calculated from the cumulative distribution function (CDF) of
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Figure 4.3: Random Power Flows and the Failure Density Function

a normal distribution. That is,

ze = 0 + ED [a+ byyye|L ≤ yyye ≤ U c]PD [L ≤ yyye ≤ U c] + 1 ∗ PD [U c ≤ yyye]

The truncation from the critical capacity U c, the level at which the line fails with certainty,

is approximately 0 for choices of ε around a few percent. If the mean flow yyye is at the hard limit

U ε defined by risk tolarence ε, the following point (U c − U ε)/σ is the corresponding point in a

standard normal distribution and Φ ((U c − U ε)/σ) is the probability of being above the critical

capacity U c. When solving this problem, the assumption that PD [U c ≤ yyye] ≈ 0 can be checked

numerically. Then, we have

ze ≈ ED [a+ byyye|L ≤ yyye]PD [L ≤ yyye]

The branch flows are truncated Gaussian, which have known mean and variances. Truncated

Gaussian’s expectation and tail probability are

ED [yyye|L ≤ yyye] = µye +
φ(αL)

1− Φ(αL)
σye
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PD [L ≤ yyye] = 1− Φ(αL)

where αL = L−µye
σy
e

, the PDF φ(·) , and the CDF Φ(·) are for the standard normal distribution. The

line risk ρ(µye , σ
y
e ) is a function of the mean µye and standard deviation σye of the branch flows, given

as

ρ(µye , σ
y
e ) = ED [a+ byyye|L ≤ yyye]PD [L ≤ yyye] (4.25)

= (a+ bµye) [1− Φ(αL)] + bσyeφ(αL). (4.26)

Given the approximation to ze of the truncation of the tail of the distribution, we have

ze ≈ ρ(µye , σye ) (4.27)

4.4.2 Joint Chance Constraint Model

The JCC model departs from traditional power flow models in that it allows for a trade-off between

line risk, system risk, and cost. Since the cost and risk are both related to the slack distribution,

the model is allowed to vary the slack distribution. In this section, the full joint chance constraint

model follows with a brief explanation of some of the constraints. The relevant parameters derived

from the injection covariance matrix is also given. Then a cutting plane algorithm is shown to solve

the full JCC model.

This convex program is minimizing a quadratic cost function of generation xj for each gen-

erator j ∈ J as well as the expected cost from its participation in the slack distribution βj . The

cost coefficients for generator j are c2j , c
1
j , and c0j . The incidence matrix cgij is 1 if generator j is

connected to bus i. The incidence matrix cbie is 1 if branch e is from bus i and -1 if branch e is to bus
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i. The parameter be is the susceptance of branch e and U εe is the hard limit on branch flow defined

by the given risk level in Equation (4.22). Each generator j has a risk level εj and an associated

ηj from Equation (4.14). The standard deviation of aggregate generation and demand uncertain is

σ2∆. The variable πe represents how the slack distribution affects branch e in repsonse to aggregate

changes in generation and demand. The variable se represents the standard deviation of branch

flow on branch e and ze represents the probability that line will fail. The sum of all branch failure

probabilities is constrained to be less than the given risk level ε.

JCC:= min
(x,β;θ,y,π,s,z)

∑
j∈J

[
c2j
(
x2j + β2j σ

2
∆

)
+ c1jxj + c0j

]
(4.28a)

∑
j∈J

cgijxj −
∑
j∈J

cbieye = di ∀i ∈ I (4.28b)

ye − be
∑
i∈I

cbieθi = 0 ∀e ∈ E (4.28c)

ye ∈ [−U εe , U εe ]∀e ∈ E (4.28d)

xj + βjσ∆ηj ≤ Gmaxj ∀j ∈ J (4.28e)

xj − βjσ∆ηj ≥ Gminj ∀j ∈ J (4.28f)∑
j∈J

βj = 1 (4.28g)

πe −
∑
j∈J

Aejβj = 0 ∀e ∈ E (4.28h)

s2e − π2eσ2∆ + 2πeσ
2
e1 ≥ σ

2
e1e1 ∀e ∈ E (4.28i)

ze − ge(|ye|, se) ≥ 0 ∀e ∈ E (4.28j)∑
e

ze ≤ ε (4.28k)

The objective Equation (4.28a) for the JCC model is the typical quadratic objective for the
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OPF model plus a contribution from the slack distribution due to the uncertainty in the random

injects. This objective is the expected cost of meeting the realized demand. We use individual

chance constraints to deal with the uncertainty in load for Equations (4.28e) and (4.28f) with

ηg = Φ−1(1− εg) being its tolerance. The upper and lower bounds on generator levels [Gmin, Gmax]

are dependent on many things, most importantly the time frame used. The levels are affected

by the status of the generator (on,off,starting up,shutting down), its ramping rate, and any other

physical limits it may have.

The first equations Equations (4.28a) to (4.28d) and (4.28g) are your typical DC power

flow, Equations (4.28e) and (4.28f) are chance constraints on generators, and the last set Equa-

tions (4.28h) to (4.28k) describe system risk. The branch variance Equation (4.28i) are a second

order cone and the line risk Equation (4.28j) involve the CDF of a normal distribution. These

equations are solved via a cutting plane approach so that the individual subproblems are linear

programs.

4.4.3 Solution Methodology

Since the risk function is convex, we choose cutting planes to approximate the line risk constraints

Equation (4.28j). In addition, there were many second order cone constraints (number of lines).

Instead of using these constraints explicitly, they were added through cutting planes as well. This

kept the program to a manageable size and allowed for fast solve times.

Lemma 4.4.2 The line risk function Equation (4.25) is convex with respect to µye and σye

Proof Starting with the line risk function Equation (4.25)

ρe(µ
y
e , σ

y
e ) = (ae + bµye) [1− Φ(αL)] + bσyeφ(αL)
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First, we calculate ∂Φ(αL)
∂µye

= − 1
σy
e
φ(αL) and ∂φ(αL)

∂µye
= 1

σy
e
αLφ(αL) using the chain rule. Now note

that from our piecewise linear function Equation (4.20), we have the identity L = −ae
be
. Then,

taking the derivative of ρ with respect to µye , we get

∂ρe
∂µ

(µye , σ
y
e ) = (ae + beµ

y
e)

1

σye
φ(αL) + be [1− Φ(αL)] + beαLφ(αL)

=
ae + beµ

y
e

σye
φ(αL) + be [1− Φ(αL)] +

beLe − beµye
σye

φ(αL)

=
ae + beµ

y
e

σye
φ(αL) + be [1− Φ(αL)]−

ae + beµ
y
e

σye
φ(αL)

= be [1− Φ(αL)]

For our derivative with respect to σye , we calculate
∂Φ(αL)
∂σy

e
= − 1

σy
e
αLφ(αL) and

∂φ(αL)
∂σy

e
= 1

σy
e
α2
Lφ(αL).

Then, taking the derivative of ρ with respect to σye , we have

∂ρe
∂σ

(µye , σ
y
e ) = (ae + beµ

y
e)

1

σye
αLφ(αL) + beσ

y
e

1

σye
α2
Lφ(αL) + beφ(αL)

= −be
L− µye
σye

αLφ(αL) + beα
2
Lφ(αL) + beφ(αL)

= beφ(αL)

where the identities ae = −beLe and αL = Le−µye
σy
e

were used.

The Hessian is found with the second derivatives and is given by

52 ρe(µ
y
e , σ

y
e ) =

beφ(αL)

σ

 1 αL

αL α2
L

 (4.29)

Then, we note that the determinant is 0 and the diagonal elements are positive so that there is a

positive eigenvalue and a zero eigenvalue, thus the line risk is convex with respect to µye , σ
y
e . Since

system risk is approximated by the sum of line risks, this system risk measure is convex.
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Since the inequality Equation (4.28j) is convex, we can solve this using a cutting plane

approach to describe the line risk in terms of the mean branch flow ye and the standard deviation

of branch flow se. While there are infinitely many cuts, this program can be solved for a given

error tolerance with a finite, and typically small, set of cuts.

ze ≥ ρe(ŷe, ŝe) +
∂ρ

∂ye
(ŷe, ŝe) (ye − ŷe) +

∂ρ

∂se
(ŷe, ŝe) (se − ŝe) (4.30a)

ρe(ye, se) = (ae + beye) [1− Φ(αL)] + beseφ(αL) (4.30b)

∂

∂ye
ρe(ye, se) = be [1− Φ(αL)] (4.30c)

∂

∂se
ρe(ye, se) = beφ(αL) (4.30d)

The standard deviation of branch flow can be formulated as a second order cone with respect

to the slack distribution variables. While this could be solved with a commercial solver, we pro-

ceed with a cutting plane approach to speed up solve times. As the solution approach is already

iteratively improving system risk, it adds only a small amount of work to add these cuts as well

and reduces the subproblem to a linear program. The inequallities required to approximate the

nonlinear constraints Equation (4.28i) are:

se ≥ fe
(
β̂
)
+
∑
j∈J

∂fe

(
β̂
)

∂βj

(
βj − β̂j

)
(4.31a)

fe (β) =
√
π2eσ

2
∆ − 2πeσ2e1 + σ2e1e1 (4.31b)

∂

∂βj
fe (β) =

Aej
(
πeσ

2
∆ − σ2e1

)√
π2eσ

2
∆ − 2πeσ2e1 + σ2e1e1

(4.31c)
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Cutting Plane Algorithm

Now, we can describe the cutting plane algorithm for JCC at a high level. Algorithm 3 is pseudo

code for the implementation. The main subproblem the algorithm solves is the standard DC power

flow, which is defined by Equations (4.28a) to (4.28d) and (4.28g) . After solving, the generator

injects x, slack distribution β, and branch flows y are used to calculate risk information about

the dispatch point. To get the risk information, the branch standard deviations s need to be

calculated. With the mean flow y and standard deviation s, the line risk z can be calculated. The

sum of line risk is the system risk r. If r is less than the required system risk ε, the problem is

solved. Otherwise, the algorithm adds cuts for all lines with a positive risk z. The cuts describe

how risk z is related to branch flows y,standard deviation s and how s is related to β. Then the

power flow subproblem is solved with the addition of the cuts and this repeats until it is infeasible

or the risk constraint is satisfied.

Algorithm 3 This cutting plane algorithm solves JCC Equation (4.28) via linear programs and
cutting planes

procedure JCC(d,Σm,ε,εg,L,p)
L← ∅ (Set of Lines with potential risk)
S ← ∅ (Set of Cuts)
r ← 0 (Risk)

solve:
(x̂, β̂, ŷ)←Solve DC Power Flow, Equations (4.28a) to (4.28g), with cuts S, risk r ≤ ε
if Infeasible then return Problem Infeasible
Calculate ŝ, ẑ, r̂ using (x̂, β̂, ŷ) and Equation (4.9) and ??
if r̂ ≤ ε+ tol then return Optimal (x̂, β̂, ŷ, ŝ, ẑ, r̂)

for ∀e do
if ẑe ≥ tol then

if e /∈ L then
L← {L, e}
Initialize se, ze
r ← r + ze

S ← line risk cuts Equation (4.30) for ze, ye, se dependent on ẑe, ŷe, ŝe
S ← branch variance cuts Equation (4.31) for se, βe dependent on ŝe, β̂e

goto solve
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4.5 Computational Experiments

This section explains the computation setup, the test cases, the experiments performed, and the

intuition to gain from the comparison of OPF, CC, and JCC models.

4.5.1 Implementation of the JCC Model

All of the experiments are run on a laptop with an Intel i7-3537U processor with 2 cores,4 threads at

2.00GHz. The laptop has 8GB of memory, but even with the large instances (2383 buses), memory

is not an issue. The laptop is running Linux Mint Petra 16. The OPF, CC, and JCC models are

all solved within a C++ program. The program uses Armadillo[41] for linear algebra computation

and Concert and CPLEX to solve the linear programs. CPLEX is run with default settings and

the dual simplex algorithm is used to solve the linear programs (quadratic objective for the 30 bus

test case). All time comparisons are using the same system environment with a fixed clocked speed

and few programs in background. The primary DC OPF solver in the C++ program has been

developed to output nearly identical results to Matpower[56].

4.5.2 Single Instance

The test cases are all taken from Matpower test cases. The two test cases used are the 30 bus test

case as well as the 2383wp test case. The small test case is used to show properties of the different

dispatch points and the cost-risk frontier. The large test case is used for time trials as well as a

cost-risk scatter plot.
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OPF CC JCC

Cost 567.1 574.0 565.2
r 0.0171 0.0179 0.0080

Table 4.1: Cost and risk results for OPF,CC, and JCC models on the small test case

Generator
Mod 1 2 3 4 5 6

[gmin, gmax] [0,80] [0,80] [0,50] [0,55] [0,30] [0,40]
{c2, c1} {0.02, 2} {0.0175, 1.75} {0.0625, 1} {0.00834, 3.25} {0.025, 3} {0.025, 3}
xg OPF 39.7 52.3 24.2 35.7 19 18.3
xg CC 35.9 47.9 25.7 37.2 19.3 23.1
xg JCC 41.9 55.0 23.2 34.0 18.6 16.5
βg OPF 0.1548 0.1769 0.0495 0.3712 0.1238 0.1238
βg CC 0 0 0.4411 0.2986 0 0.2602
βg JCC 0.2456 0.2795 0.0846 0.0646 0.0597 0.2659

Table 4.2: Generator results using OPF, CC, and JCC models on the small test case.

30 Bus Case

This case from Matpower has 30 buses, 41 branches, and 6 generators. The branches have a single

capacity rating and in the given demand scenario, none of the line capacity constraints are active.

A capacity factor M is used to uniformly scale the branch capacities. All of the generators are

active and have quadratic cost functions. Ramping constraints for generators are not considered

and the generators are allowed to take any value in its given range. In addition, all generators are

allowed to participate in the slack distribution. Each bus with a demand is considered random,

with mean equal to the demand. For this example, the injections are independent of each other

but this need not be the case. The variance of each injection is equal to 5% of the demand at the

node times a budget factor B used to tune the model uncertainty level.

The first example has risk parameters L = 0.9, that is a line begins taking on risk after

it is at 90% of its rated capacity. In the risk function, we set the parameter pe = 0.005 for all

branches e, which means that if flow is at nominal capacity, the line has a 0.5% chance of failing.

The line capacities are scaled by M = 0.745. The system risk constraint is ε = 0.008, that is we
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would like to enforce that the risk of one or more lines failing is less than or equal to 0.8%. The

chance constrained version of OPF is defined by ηL = 0.05, that is the line capacities can not be

violated more than 5% of the time. Finally, the variance of the injects is scaled by B = 0.025

so that the standard deviation of aggregate demand is 0.6, a small fraction of the total demand,

189.2, of this instance. These values were chosen to get the objective values close and highlight

how the uncertainty in generation and demand affect the models differently. The solution values

for generation and slack distribution (x, b) are tabulated in Tables 4.1 and 4.2. Increasing B to

0.25 by 10 fold led to the standard deviation of aggregate demand to be 1.345, around 1% of total

load. The cost of OPF and JCC had negligible change, whereas CC cost increased to $597, an

increase of $30 or an increase of 5% over the OPF solution. When the OPF model has transmission

congestion, the cost of the CC model is highly sensitive to the uncertainty in demand and often

infeasible solutions.

The CC model is always more conservative than the OPF model as it tightens the line

constraints. This means that the CC version is always at least as expensive as the OPF model.

In this case, the total cost rose by $7 (to $574, or a 1.2 % increase) to ensure the line constraints

were met probabilistically (95% of the time). The JCC model was able to lower the cost because it

removed the branch capacity constraints (or increased them by 6% to match the system risk level).

In addition, JCC knows and constrains the system risk measure so that it is able to find a cheaper

point with a system risk level half that of the OPF and CC models.

Another important note is that the slack would like to be distributed as much as possible to

reduce cost. This can be seen from the objective Equation (4.28a) due to the squared beta term

and the OPF results show it spreading when there is no chance constraints for lines or system risk

constraints. The CC model slightly changes its generator position as well as removing 3 generators

from the slack distribution. It is removing generators which has an effect on the probabilistically
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Figure 4.4: Reliability frontier for the small test case

constrained transmission lines in order to ensure that the constraints are met 95% of the time. The

JCC model has moved in almost exactly the opposite direction and has kept a distributed slack (as

seen in Table 4.2).

Cost-Risk Frontier

Now we use this same example case to draw a cost-risk frontier. An efficient operating point would

be at that boundary of the feasible points, that is, neither cost nor risk can be improved without

a loss to the other. Since neither the OPF or CC model constrains our risk measure, it would be

unlikely for them to be on the boundary. In Figure 4.4 we see that this is the case. The OPF

model is in the interior and is equivalent to the CC model when ηl = .5. Since the branch flows are

Gaussian, if the mean flow is at its threshold, it has a 50% chance of being over its threshold. As ηl

is reduced, the CC line is drawn and is stopped once the system becomes infeasible. The JCC line

is started by finding the point when the system risk level is not constrained, for this case r = .01.

As r is decreased, the system risk becomes constrained and the cost begins to rise as the risk level

is reduced and the line stops when the system becomes infeasible. We used parameters M = 0.775

for line capacity scaling and B = 0.4 with standard deviation of aggregate load being around 1% of
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total demand. The left plot uses L = .9 for calculating the system risk measure whereas the right

plot uses L = .99 to calculate the system risk measure. In practice, it was found that as L gets

closer to 1, the model behaves more like the CC model.

It is important to note that the cost-risk frontier is entirely dependent on how system risk is

measured. In our case, we use a piecewise linear failure density function with parameters L and

p. As L and p are varied, the shape of these frontiers changes. Holding p fixed and increasing L

towards 1, the CC model, while still on the interior of the frontier, does a better job of reducing

system risk. With L around .98, the CC and the JCC behave similarly. Both programs try to

reduce the flow of lines that are at their capacity, with the exception that JCC allows a small

number (typically one), of flow on these lines to increase. More discussion on this behavior is given

in the sensitivity analysis Section 4.5.3.

2383wp Bus Case

This case from Matpower has 2383 buses, 2896 branches, and 327 generators. The case is similar

to the small case in many respects, such as only a single line rating capacity being given. The

generators have the biggest difference in that there are many which are nearly fixed and have

no cost. The larger flexible generators are only given a linear cost so that there is no quadratic

objective. The covariance matrix is developed the same as in the small case, i.e. with no covariance

in random injects and the variance depending on the total demand of each node

Similar to the 30 bus case, we created a random instance using parameters M = 1.03, ε =

0.03, ηL = 0.05, L = 0.85, p = 0.005, andB = 1 and recording the standard cost and risk information

as well as solve time. The case was repeated 10 times and the mean time is reported in Table 4.3.

CC and JCC take a similar amount of time, the majority of the work at each step being the
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Time (ηL, ε) OPF CC JCC

Time (0.05,0.03) 0.37 8.7 7.5
Time (0.20,0.07) 0.37 8.4 8.0
Time (0.40,0.20) 0.37 8.3 6.1
Time (0.48,0.30) 0.37 7.7 6.1

Avg Time (100 trials) 0.34 2.2 2.3

Table 4.3: Time comparison, in seconds, for OPF,CC, and JCC on the large test instances.

calculation of the branch covariance matrix. The total time is largely dependent on how many

iterations the algorithms take, which is typically around 5 or 7 until convergence.

In addition, we solved 100 instances with random demand and the same covariance matrix

to show the speed-up you can achieve with repeated solves. By having the same covariance matrix,

all of the cuts for previous solves are still valid. So, in addition to using a warm start on the LP,

after the first few solves the algorithm typically needs no additional cuts. In practice, this could

mean that the important lines and scenarios from the risk perspective are known before hand and

cuts are added based on the assumed covariance matrix. Instead of taking up to 5 to 7 iterations,

it may solve in only one and perform a simple check to ensure that any lines not included in the

analysis are not violated. The last row in Table 4.3 shows that the solve time was reduced from on

around 8 seconds to around 2 seconds.

Line Threshold Comparison

Here we explore what the JCC model is doing to lower its cost or risk compared to the traditional

models. For this experiment, the parameters are as follows, M = 1.03, ε = 0.015, ηL = 0.05, L =

0.95, p = 0.005, and B = 1. Solving this program, we see that the majority of the lines are less

than 50% utilized. There are a small number of lines that are at or near their nominal capacity.

Now, we look at the trade-off that the JCC model is able to make due to it increasing the

nominal line limit by 10% to match the given system risk level. In Figure 4.5a, 8 lines are shown,
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which are the lines above 95% of their nominal capacity in the OPF model. The mean line flows are

plotted as well as the standard deviation. There are 8 lines above 95% of their capacity in the OPF

model, indexed as lines 23,291,320,1380,1381,1815,2108, and 2109. In the OPF model, there are 3

lines at the nominal capacity. Line 23 (index 1 in figure) has a dual price of 872, line 291 (index 2)

has a dual price of 32, and line 2108 (index 8) has a dual price of 294. Ideally, line 23 constraint

should be relaxed due to the higher shadow price and perhaps other lines further constrained so that

the system risk level is not increased. However, in the CC model, these constraints are tightened

further to ensure that these thresholds are met at least 95% of the time. The JCC model on

the other hand relaxes these constraints and imposes a system risk constraint instead. The final

solution for the JCC model has line 23 exceed its threshold with certainty but is rewarded with

savings related to the high shadow price. On the other hand, other lines with positive line risk are

be restricted to ensure the system risk levels are met.

To give another perspective, the line flows were sampled and binned to create a histogram

of line flows to show the trade-off between models. For the JCC model, the line risk parameter L

was chosen to be 0.9. The results can be seen in Figure 4.5b. We can see that the normalized line
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OPF CC .01 JCC .98

Cost 565.2 590.2 589.6
r 0.00504 0.00150 0.00031

Ex 0.3875 0.0225 0.0125

Table 4.4: Risk comparison for OPF,CC, and JCC on the small test instance.

flows pile up in bin 0.975 for the CC model, and there are a number of lines in OPF that are in

bin 1− 1.025, thus exceeding their capacity a significant amount of the time. The JCC also has a

line that exceeds its capacity, almost with certainty. However, the JCC has far fewer lines that are

at or near their capacity.

The primary strength of the CC model is to meet the line threshold constraints probabilis-

tically when the demands are not known with certainty. Let’s look at how well it does from the

system perspective, that is the expected number of lines to be over their nominal capacity, shown

in Table 4.4. First we note the costs, both CC and JCC are around 5% higher and in return for

the higher cost, have better risk characteristics. In the standard OPF model, the expected number

of lines over their threshold is 20 times that of the CC model. The JCC halves the CC model for

roughly the same cost. The CC model directly constraints these probabilities, but does so on the

individual line level. By having a system constraint, the JCC model is better suited to optimize

risk characteristics related to system level transmission utilization.

4.5.3 Sensitivity Analysis

Now, we want to look at the sensitivity of the JCC model to its input parameters and demand

uncertainty. First we look at how the risk of the different dispatch points from the OPF, CC, and

JCC models respond to changes in the failure density function parameters L and p. To this end, we

solved the OPF, CC (ηL = .01), and JCC (ε = 0.0003, L = .98). These three dispatch points are

used to find the risk of the branch flows for varying risk parameters L, p. The cost of the dispatch
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OPF CC JCC

Cost 567.1 574.0 572.2

Table 4.5: Table of cost for the three dispatch points used in the sensitivity analysis
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Figure 4.6: A comparison of the three dispatch points created by fixing p and varying L

points are shown in Table 4.5 and the sensitivity analysis is shown in Figure 4.6. This figure shows

that for the given JCC solution, the system risk stays under that of the CC model. The OPF

model has a lower cost so it is reasonable that the risk is much higher. Even when changing to

other polynomial risk functions, such as x2, x3, and x4, the JCC model performed better in terms

of this alternative risk function than the OPF and CC models. These parameters are very difficult

to estimate in the real world and as such it is very important that our model has shown to be

robust to changing both the parameters in the piecewise linear model as well as testing against

different polynomial models for failure density functions. This sensitivity analysis shows that while

our parameters may be off, this model still does well for the assumptions that at some point, lines

begin to take on additional risk due to congestion and that risk is monotonically increasing.
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4.6 Conclusion

The primary strength of the JCC model is the addition of a system risk constraint and the relaxation

of line thresholds. Line thresholds are hard constraints that subject the system to price spikes.

The hard line constraints are somewhat arbitrary as the line does not fail when it is exceeded by

a small amount. Instead, an economic trade-off should be made between individual lines to ensure

the system risk is constrained at an adequate level. The system risk measure allows for direct

comparison of different dispatch points with respect to risk.

The JCC model is computationally efficient in its full form. It allows for creation of a cost-risk

frontier that finds dispatch points that are better in both terms of risk and cost. Under uncertainty,

this model should be compared against the CC model, which is a probabilistic interpretation of

line thresholds. In the computational section, we saw the extremely high sensitivity of cost to

uncertainty in load when the transmission system is congested. In both of these models, the variable

slack distribution plays a small direct role in cost through the objective, however also plays a role

in ensuring the line and system risk constraints are met (and a larger indirect cost contribution).

These system risk constraints capture the risk of a heavily loaded transmission system that the

traditional OPF and CC miss that is related to cascading power failure risk in literature.
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Chapter 5

Reducing Cascading Risk Through

Real-Time Dispatch

Large scale load shedding events caused by cascading power failures have an extreme impact on

society. As seen in Chapter 1, the costs of these single events can be in the billions, put a halt on

commercial and industrial activities, and even cause the loss of life. In this Chapter, we extend

our joint chance-constrained model to more effectively control line failures that may lead to large

load-shedding events.

The downside of a chance constrained model is that it does not account for the impact of

failure events. Power system networks are comprised of many different classes of assets. The most

straightforward example is that the failure of a small distribution line in a radial tree has minimal

impact on the reliability of the bulk power system and the high voltage network that carries the

majority of the power over long distances. However, even among the bulk power system, the failure

of individual lines may have disproportionate impact on the probability of a large scale cascading

event. This may have to do with many things such as the connectivity of a neighboring node, the
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current environmental conditions in and around a region, or even the relay settings on neighboring

transmission lines. Here we take an empirical approach using the OPA cascading simulation from

Chapter 3 to evaluate the impact of losing a line on the resulting cascade simulation and the output

of the load shed distribution. We then incorporate this measure of impact into our JCC model by

giving it an OPA weighting scheme, denoted JCC-OW (Joint Chance Constraint - OPA Weighted).

This OPA weighting scheme can be thought of as a surrogate model for OPA to be used in a real

time dispatch model. This problem is solved with a cutting plane algorithm similar to JCC. Finally,

we explore the trade-off between cost of dispatch and rare event risk through the computational

section.

5.1 Cascading Failure Risk Model

We would like to take into account the impact of losing a transmission element on the load shed

distribution from OPA. Instead of being concerned with only whether or not a line fails, we would

also like to know how much does this line contribute to cascading power failure risk. Due to

reliability requirements such as N − 1 constraints, the base system is typically stable and has

low cascading power failure risk. Since line failures can be caused by things outside of system

control, we perform our risk analysis under N − 1 exogenous contingencies corresponding to each

individual line failure. After these initial line failures the system is sometimes moved to a state

where additional failures may begin a cascading process leading to a large load shed event. We

use these N − 1 contingencies as well as our JCC risk model to sample initial contingencies for the

OPA cascading process. The initial contingency includes the line that failed with certainty due to

an exogenous event as well as probable line failures due to current flow on transmission elements.

We use the distribution of load shed after the OPA process to develop a weighting for the JCC
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Figure 5.1: Random variable relationships and sources of uncertainty

model to take into account the effects of the particular line on the cascading process.

5.1.1 Overview of Sources of Uncertainty

We are capturing three separate sources of uncertainty and evaluating the stress on the power

system by using the OPA cascading model as a surrogate process for the risk of a cascading power

failure. The power system is affected by the uncertainty in demand and generation, denoted by

random variable ddd = d+Cmδ
mδmδm with probability space associated with D. We built this uncertainty

into our model by assuming the net injection uncertainty is multivariate Gaussian, we calculate a

system risk measure approximating the probability that one or more lines fail. This ties into the

next source of uncertainty, encapsulated by the random variable ξξξ for probability space Ξ, which

models the initial line failures that could initiate a cascading sequence. This random variable, ξξξ,

provides the connection between the JCC model of Chapter 4 with the OPA model from Chapters 2

and 3. The primary source of uncertainty modeled in Chapters 2 and 3 was encapsulated in the

random variable ωωω from a sample space Ω which governs the evolution of the cascading model. This

cascading model can be seen as a surrogate for the stress on the power system in relation to rare

event failures.

The JCC model incorporates uncertainty from random demand, δmδmδm. The outcome of the
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Figure 5.2: N − 1 Exogenous Contingencies

JCC model are random variables for branch flows. Using a failure density function from the

probability space associated with Ξ, we find a distribution of initial contingencies ξ. The OPA

model incorporates uncertainty from all three sources, the demand D, the initial contingencies Ξ,

and the cascade evolution Ω. Let X = D×Ξ×Ω represent the whole sample space underlying the

probability space for the OPA model, where χχχ = (ddd,ξξξ,ωωω) is an event in the larger sample space. The

random variables’ dependencies are laid out in Figure 5.1 that describe the relationships between

variables.

5.1.2 N − 1 Exogenous Contingencies

Reliability standards in power systems include N − 1 contingency constraints. In this section, we

describe how to extend the JCC model from Chapter 4 to the “security-cosntrained” or N − 1

setting. The system must be robust to failures of each individual component due to reasons outside

of the control of the system. The branch flows for line e given a contingency n, representing line n
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failing, can be described with the following relationship

yyyne = yyye + Lenyyyn (5.1)

with Len being a line outage factor for failure of line n’s effect on line e. In Chapter 4 we saw the

injection shift factor matrix A that gave the change in branch flows depending on changes in net

injection. Here, we use the branch shift factor AB where the individual entry Abe1e2 =
dye1
dye2

give

the change in branch flow of branch e1 when branch e2 flow is changed and is detailed in [56]. We

can calculate the branch shift factor by applying our branch incidence matrix to the injection shift

factor in matrix form as

AB = ACT . (5.2)

The line outage factor can be found by applying a scale factor so that when the line outage factor

is multiplied by the branch flow, the response to all other branches is found. Specifically, we have

Len =



−1 if e = n

ABen(1−ABnn)−1 if ABnn 6= 1

NaN o/w

(5.3)

Shift factors for multiple lines can be found provided certain conditions are met, as explained in

[22]. However, line outage factors are typically only used in case of a small number of line failures.

Note that lines do not have line outage factors when ABnn = 1. In our computational results, we

filter out these scenarios for the N − 1 analysis.

The mean flow on line e in contingency n can be found by taking the expectation over the

uncertainty in net injections and using Equation (5.1) that describes flow for branch e in contingency
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n.

ED [yyyne ] = ED [yyye] + LenED [yyyn] . (5.4)

We also need to understand the standard deviation of the branch flows yyy in the N−1 contingencies

in order to form the JCC constraint for each contingency. Calculating the variance of yyyne and

expanding out using Equation (5.1), we see that the variance of branch flow is

Var[yyyne ] = Var[yyye] + L2
enVar[yyyn] + 2LenCoVar[yyye, yyyn] (5.5a)

= π2eσ
2
∆ − 2πeσ

2
e + σ2ee

+ L2
en

[
π2nσ

2
∆ − 2πnσ

2
n + σ2nn

]
+ 2Len

[
πeπnσ

2
∆ − πeσ2e2 − πnσ

2
e1 + σ2e1e2

]
(5.5b)

=
[
π2e + 2Lenπeπn + L2

en

]
σ2∆

− 2
[
πeσ

2
e + Lenπeσ

2
n + Lenπnσ

2
e + L2

enπnσ
2
n

]
+ σ2ee + 2Lenσ

2
en + L2

enσ
2
nn (5.5c)

by using equation 4.10 for the covariance between two branches. We can simplify the equation by

substituting

ψen = πe + Lenπn (5.6)

which captures the slack distribution response to aggregate demand for branch e in contingency n.

Addditionally, we can pre-compute a new parameter σ2ψen
, which is used in the branch covariance

matrix and cutting plane algorithms. We again use the set of random generation and demandM

and sum over every combination of k1, k2 ∈M.

σ2ψen
=
∑
k1∈M

∑
k2∈M

(Aek1 + LenAnk2)
2Σk1,k2 (5.7)
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Then, we have

Var[yyyne ] = ψ2
enσ

2
∆ − 2ψen

(
σ2e + Lenσ

2
n

)
+ σ2ψen

. (5.8)

It is important to note that variance of line flow e in contingency n depends not only on the variance

of the individual line flows but also on the covariance between branch flows e and n.

The following equations are added to the JCC model Equation (4.28) to describe the mean

branch flows in the contingencies as well as the standard deviation of branch flows. Each contingency

has separate line risk variables zen and the system risk is constrained according to that contingencies

specific risk level εn

JCC N1:= min
∑
j

[
c2
(
x2j + β2j σ

2
∆

)
+ c1xj + c0

]
(5.9a)

Equations (4.28b) to (4.28k)

y+en − ye − Lenyn ≥ 0 ∀e, n ∈ E (5.9b)

y+en + ye + Lenyn ≥ 0 ∀e, n ∈ E (5.9c)

s2en − ψ2
enσ

2
∆ + 2ψen

(
σ2e + Lenσ

2
n

)
≥ σ2ψen

∀e, n ∈ E (5.9d)

zen − ρe(y+en, sen) ≥ 0 ∀e, n ∈ E (5.9e)∑
e

zen ≤ εn ∀n ∈ E (5.9f)

In Equations (5.9b) and (5.9c), we enforce variable y+en to be the absolute value of the power flow in

branch e for contingency n. The standard deviation of branch flow e in contingency n is described

by Equation (5.9d). Additionally, we have Equation (5.9e) which describes the individual line risk

for every line in every contingency and Equation (5.9f) enforces that the system risk level for each

contingency is below the chosen risk level εn.

Finally, in order to describe the convex, non-analytic risk function for the N−1 contingencies
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Equation (5.9e), we use the same cutting planes from JCC Equation (4.30). The cutting planes are

calculated at a specific value for slack distribution β and the line risk function is underestimated

via the gradient. The cutting planes for the standard deviation of branch flow have changed due to

the new covariance calculation taking into account the N − 1 contingencies. These equations are

as follows.

sen ≥ fen (β) +
∑
j

∂fen (β)

∂βj

(
βj − β̂j

)
(5.10a)

fen (β) =
√
ψ2
enσ

2
∆ − 2ψen (σ2e + Lenσ2n) + σ2ψen

(5.10b)

∂fen (β)

∂βj
=

(Aej + LenAnj)
(
ψenσ

2
∆ −

(
σ2e + Lenσ

2
n

))√
ψ2
enσ

2
∆ − 2ψen (σ2e + Lenσ2n) + σ2ψen

(5.10c)

These equations are used in the cutting plane algorithm, where Equation (5.10a) gives an underes-

timator for the standard deviation of line e in contingency n. To form that equation, we calculate

the standard deviation for a fixed slack distribution β in Equation (5.10b) and also the gradient of

the standard deviation evaluated at a fixed β in Equation (5.10c).

5.1.3 Random Initial Contingencies for OPA

Ideally, given the random branch flow yyye, the failure density function ge(yyye) represents the prob-

ability that each individual line may fail given the flow yyye. In order to make the connection to

OPA, we use this sample space to seed the random initial contingencies for the OPA cascading

model. In order to also capture the effects of events outside of our control, we perform this analysis

under the standard N − 1 contingencies. For each N − 1 contingency, we have the probabilities

that other lines may fail, given by ge(y
n
e ) for branch e in contingency n. This means that our OPA

cascading model can be seeded by contingencies with one or more initial line failures, governed by

the probability distributions of branch flows and uncertainty coming from exogenous failures.



143

ddd = d+ Cmδ
mδmδm

yyy0(x, β)

yyy1(x, β)

yyy2(x, β)

...

yyyn(x, β)

...

yyyN (x, β)

L1

L2

Ln

LN

OPA

OPA

OPA

OPA

g(yyy1)→ ξξξ1

g(yyy2)→ ξξξ2

g(yyyn)→ ξξξn

g(yyyN )→ ξξξN

λ(x,ddd,ξξξ1,ωωω)

λ(x,ddd,ξξξ2,ωωω)

λ(x,ddd,ξξξn,ωωω)

λ(x,ddd,ξξξN ,ωωω)

Figure 5.3: JCC N − 1 Risk Model to seed random initial contingencies for OPA

The high-level sampling process is depicted in Figure 5.3. A brief explanation is given for

the sampling algorithm used to seed the random initial contingencies for the OPA model. The

initial contingencies depend on the uncertainty in demand ddd as well as the controllable injects and

slack distribution (x, β). Using the DC assumption, this gives us random branch flows that follow a

multivariate Gaussian distribution. We sample from this distribution to get a realization of branch

flows, ye, that wetransform via our failure density function g(·). Once we have ge(ye), we can

sample from our second source of uncertainty, Ξ, to get ξe, a vector of Bernoulli random variables

taking 1 with the probabilities ge(ye). This distribution seeds the OPA simulation and then the

sampling of the cascade evolution Ω governs how the cascade evolves, as described in Chapter 3.

The OPA cascade in this sense is used as a surrogate function to represent rare event risk for

a given topology. The following are the inputs to OPA model that has multiple stages and is solved

via multiple LP programs. The first is the controllable generation x, which also indirectly controls

the line failure distributions through the intermediate variable yyy. The second input for the OPA

model is ddd, which is also used directly in our JCC model. The third input is the initial contingencies
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ξξξ, which depends on yyy, and thus on x and ddd. Finally, we have ωωω, which governs the evolution of

the cascade process. The load shed for a particular realization of an OPA run is represented by λ

and is the difference between the nominal load and the load at the last stage of the cascade in the

OPA simulation.

λ(x,ddd,ξξξ,ωωω) (5.11)

We are using the expected load shed as a weighting factor to measure the impact of a particular line

failure on the OPA cascading process. For each contingency n, we have a different set of random

initial contingencies due to the choice of generation x, slack distribution β and the resulting random

flows yyyn for each contingency. The expected load shed for contingency n is

fn = ED,Ξ,Ω [λ (x,ddd,ξξξn,ωωω)] .

Algorithm 4 Contingency Sampling Algorithm for OPA. Given a dispatch (x, β), random demand
ddd = d0 + Cmδ

mδmδm, sample ξξξn for T trials for each N − 1 Contingency Figure 5.3

procedure SAMPLE(x, β,δmδmδm, T )
for ∀t = 1, 2, ..., TD do

Sample a = (a1, a2, ..., aN )
T from independent standard normal distributions.

HHT = Σm using Cholesky decomposition
δm = H ∗ a, which has the desired distribution due to affine transformation
∆ =

∑
m δm

x = Cg(x0 + β∆)− (d0 + Cmδ
m) using Equation (4.5)

y = y0 +ACGβ∆−ACmδm using Equation (4.7)
for ∀n ∈ Es.t.ABnn 6= 1 do

Len = ABen(1−ABnn)−1 using Equation (5.3)
yne = ye + Lenyn using Equation (5.1)
zne = ge(y

n
e )

On ← ∅
for ∀t = 1, 2, ..., TΞ do

for ∀e ∈ E do

ξe =

{
1 w/ prob. zne
0 o/w

On ← ξ

The set On of initial contingencies for each N − 1 contingency, representing distribution ξξξn
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Figure 5.4: Line failure risk and OPA not correlated

5.1.4 OPA Weighting for JCC

While it is important that no lines fail, it may be overly restrictive while not actually reducing the

risk of large load shedding events, which is a main concern from a system reliability perspective.

It would certainly be more beneficial to keep the large high voltage lines in operation that are

critical to system stability versus a few small distribution feeders, which may cause some small

load shedding but would keep the bad events contained. To highlight the downside of chance

constrained programming of not capturing the impact of the events, a scatter plot in Figure 5.4 of

the system risk measure of the JCC model and the expected load shed of the OPA model seeded by

the random initial contingencies from Algorithm 4, we see there is not a good correlation. We want

to develop a system constraint that is correlated with the expected load shed from the cascading

process.

For each line e, we construct a risk-weighting ηe such that the expected value of the load
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shed distribution after losing that line is equal to ηe.

∑
e

ηeED [g(yyyne (x, β))] ≈ ED,Ξn,Ω [λ(x,ddd,ξξξn,ωωω)] (5.12)

ηT zn ≈ fn (5.13)

There are many ways to find a weighting scheme to represent the impact from losing particular

lines. Here is one example that attempts to capture the impact of losing a line with respect to the

effect on the expected load shed of the resulting OPA simulations. For each contingency, a vector

of risk levels, zn, were recorded, which represent the expected probability of line e failing under

contingency n ( for contingency n, the probability of line n failing is znn = 1). After performing the

OPA simulations, we record the expected load shed fn(x) for that set of initial contingencies ξξξn.

We formulate the following linear system Section 5.1.4 and solve for η.


z11 · · · z1Nl

...
...

...

zNl
1 · · · zNl

Nl




η1

...

ηNl

 =


f1

...

fNl



After applying these new linear weights η to the line risks z, we find that our new system

constraint
∑

e ηeze is now well correlated with the resulting expected value of load shed of the

cascading process as shown in Figure 5.5. In order to solve problems using this weighting scheme,

it is nearly identical to JCC N − 1 modelEquation (5.9), except with the system risk constraint

Equation (5.9e) representing probability of one or more line failures with the new risk constraint

representing the expected value of load shed Equation (5.12).
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Figure 5.5: JCC N − 1 OW correlated with OPA

JCC N − 1 OW:= min
(x,β,;θ,y,π,s,z)

∑
j

[
c2
(
x2j + β2j σ

2
∆

)
+ c1xj + c0

]
(5.14a)

Equations (4.28b)to (4.28k)

Equations (5.9b)to (5.9e)∑
e

ηezen ≤ ζn ∀n ∈ E (5.14b)

5.1.5 Cutting Plane Algorithm for JCC N − 1 with OPA Weighting

Now, we describe the algorithm used to solve JCC N − 1 Equation (5.9) and the new JCC OW

Equation (5.14). The algorithm for JCC OW is shown explicitly in Algorithm 5 and the JCC N−1

is nearly identical except for the difference in system risk constraints.
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Algorithm 5 This cutting plane algorithm solves JCC Equation (4.28) with N − 1 contingencies
Equation (5.9) using the OPA weighting scheme Equation (5.12) via linear programs and cutting
planes

procedure JCC N − 1 OW(d,Σm,ζ,ζn,L,p)
Ln ← ∅ (Set of Lines with potential risk for contingency n)
S ← ∅ (Set of Cuts)
r ← 0 (Risk)

solve:
(x̂, β̂, ŷ)←Solve DC Power Flow, Equations (4.28a) to (4.28g), with cuts S, risk r ≤ ε
if Infeasible then return Problem Infeasible
Nf ← 0
for ∀n do

Calculate branch flows ŷn for contingency n using Equation (5.1)
Calculate ŝn, ẑn, r̂n using (x̂, β̂, ŷ) and Equation (5.8)
if r̂ ≥ ε+ tol then Nf = Nf + 1

for ∀e do
if ẑne ≥ tol then

if e /∈ Ln then
Ln ← {Ln, e}
Initialize sne , z

n
e

rn ← rn + zne
S ← line risk cuts Equation (4.30) for zne , y

n
e , s

n
e dependent on ẑne , ŷ

n
e , ŝ

n
e

S ← branch variance cuts Equation (5.10) for sne , βe dependent on ŝ
n
e , β̂e

if Nt = 1 then return Optimal (x̂, β̂, ŷ)
else

goto solve
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5.2 Computational Experiments

This computational section shows an example of using the OPA weighting on top of the JCC model

enchanced with N − 1 contingency considerations. We began by running JCC N − 1 and used it

to initiate the N − 1 OPA sampling process and ran OPA on each initial contingency. We created

an OPA weighting vector as described in Section 5.1.4. Then we solved JCC OW Equation (5.14)

using cutting plane algorithm Algorithm 5. Finally, we ran the N − 1 OPA process again with the

two models to determine load shed distribution associated with the two dispatch points. The goal

for the JCC OW model is to modify the distribution of load shed and reduce the risk of rare event

failures that are large.

To highlight the differences of the JCC OW model, this trial gave a higher budget to the

JCC OW model and constrained the new system risk measure so that the cost of dispatch was 4%

higher than the standard JCC model. In return, it was able to reduce the expected value of load

shed by 4.7%, and reduce the 99 percentile of load shed by 28.5%. Some statistical measures of the

load shed distribution are shown in Table 5.1 and plotted in Figure 5.6. In the plot Figure 5.6, we

have the load shed distribution shown on the left where each picture is zoomed in to see the tail of

the distribution. On the right side, we have a log plot of the number of trials that are in each bin.

In Table 5.1, we have the cost of the dispatch point as well as statistics on the resulting load shed

distribution. We have tabulated the mean, the number of trials with no load shed, the 95th, 99th,

and 99.8th percentiles. Additionally, we have the maximum over all trials as well as the conditional

value at risk of the 95th percentile.
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Figure 5.6: Load shed distribution

Trials 450400
Stat JCC JCC-OW diff (%)

cost 1.78e6 1.85e6 -3.9
mean 44.0 41.9 4.8

No Load Shed 199444 201984 1.3
P95 138.81 138.81 0
P99 205.77 147.12456 28.5
P99.8 441.21 251.76 43
max 734.29 612.9 16.5

CVaR95 182.5 155.6 14.7

Table 5.1: Rare event risk metrics
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5.3 Conclusion

In this Chapter, we extended the JCCmodel to include the security constrained, N−1 contingencies.

Additionally, we take into account the approximate impact of losing subsets of lines on the resulting

OPA cascading process. We use the OPA cascading process as an empirical model to represent how

stressed the grid is with respect to rare event failures. The OPA process gives us a distribution of

load sheds and we use this distribution to develop risk-weighting factors for the lines. The JCC

OW model, which incorporates this linear weighting scheme, was able to change the distribution

(for an increased cost) of the resulting load shed by reducing the mean and, even more so, reducing

the tail events with large load shed.
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Chapter 6

Conclusion

In this thesis we explored rare event risk on the bulk power system. From the recent literature of

cascading power failures, we built upon the OPA cascading power failure simulation. We started by

modeling this process as a multi-stage stochastic program with integer variables in Chapter 2. We

introduced the concept of effective capacity to model the decision-dependent uncertain inherent

in this cascading process. This model allows for the flexibility of using the cascading process

as a sub-problem in long term design problems. We then turn to Monte Carlo simulation in

order to parallelize the computational process to get better resolution of the cascade evolution

uncertainty in Chapter 3. We look at the effects of transmission expansion on the OPA simulation

and optimize this using derivative free optimization techniques and large computational resources

through HTCondor. In the second half of the thesis, we switch to real-time dispatch models. In

Chapter 4 we develop a system risk measure that constrains the probability of one or more lines

failing. Also, we model uncertainty in generation and demand and translate this to uncertainty in

branch flows by calculating the branch covariance matrix. Using these two models, we approximate

this system risk measure under uncertainty and use a cutting plane algorithm to solve this convex
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problem. Finally, in Chapter 5 we combine the rare event risk model of the OPA simulation

with the real-time line failure dispatch model. We extend the joint chance constraint to the N-1

contingencies and use these contingencies to seed the OPA model. Based off of these results, we

develop a linear weighting system to approximate how important each line is with respect to the

OPA cascade simulation. We use this linear weighting system and a cutting plane algorithm to

solve this convex optimization problem.

6.1 Contributions

Modeling Casacading Power Failures

In Chapter 2, we explore the models of power flow over topological networks, cascading risk mod-

els, and a system equilibrium model (OPA) in which there is a balance found between economic

efficiency and reliability. For economic reasons, power systems move towards critical points, which

are points of maximum throughput for the given infrastructure and are characterized by power flow

being limited by either transmission constraints or generation capacity limits. A critical point pri-

marily due to transmission constraints lead to larger blackouts, however infrequently, and a critical

point primarily due to generation capacity lead to smaller blackouts that are more frequent. In the

OPA model, there is an engineering response to these blackouts to improve the infrastructure. An

equilibrium is found in the distribution of blackout size such that the load shed for these events

follow a power tail distribution. This equilibrium has been seen in the real world, the distribution

of load shed events follow a power tail distribution with exponent −1.3 ± .2 and has stayed the

same for 30 years. We model the short term cascading process as a multi-stage stochastic program

that can be embedded in design problems.

The primary contribution was to model the existing cascading power failure simulation as a
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multi-stage stochastic program using mixed integer variables. The primary difficulty was overcom-

ing the decision dependent uncertainty, which was done by using the concept of effective capacity

distribution and a priori sampling. While the computational difficulty made practical use of this

impossible for realistically-sized power systems. The analytical modeling of the simulation process

and decision dependent uncertainty will hopefully find application in other power system problems.

Using the OPA Simulation for Transmission Expansion

In Chapter 3, we decompose the MSIP model by scenario and use a fast Monte Carlo simulation

approach that is parallelizable to evaluate the load shed distribution given demand and contingency

scenarios. Here we aim to improve the system before an event occurs. As we saw in the Northeast

Blackout of 2003, once things go wrong, events that the system is typically robust to can compound

and eventually lead to large scale blackout. For example, after losing the Stuart-Atlanta 345 kV

line, the fact that MISO was unaware of this event, led to the inability to provide support in

dealing with this problem. One way to reduce the likelihood of these rare events is to reduce the

likelihood of the initiating contingencies. We proceeded to explore this load shed distribution by

looking at the design problem of increasing capacity on transmission elements and the effects it has

on the OPA simulation. This OPA simulation has a natural connection with our risk model that

we explore in this chapter.

The primary contribution was to optimize over the functional landscape defined by OPA

simulation efficiently. We looked at the design problem of transmission expansion and explored

the characteristics of this risk function. We developed an efficient implementation with a common

random number scheme to reduce the variance of function estimates and effective software engi-

neering to allow for massively parallel solution methodology. In addition, DFO techniques were

used to filter the high frequency noise and exploratory steps using accessory information from the
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OPA simulation enhanced the solution time. A computational experiment demonstrating how the

system could effectively find system configurations improving load shed was performed.

Line Failure Risk Models for Real-Time Dispatch

In Chapter 4, we developed a model to constrain the probability that one or more lines fail to be

small. This is in line with the idea in Chapter 3 where we would like to reduce the likelihood of

initiating events occuring. To start, we noted that due to the increased penetration in renewables

and modern technologies of electric vehicles and energy storage, it is vital to include uncertainty of

net injections into the model. We then look at the chance constraint models in literature that deal

with this uncertainty in net injections. Another interesting class of models in literature approached

the reliability problem from a system perspective. Since we don’t want any lines to fail, we develop

a joint chance constraint on the probability that one or more lines fail. In order to model this,

we assume that the failure density function of an individual line is a piecewise linear function

and that line failure probabilities are independent of each other given the branch flow. However,

the branch flow is certainly correlated, as it is the flows on fixed topological structure with fixed

power flow parameters. For the DC approximation of power flows, the branch flows follow a linear

relationship with net injections. If we assume that the net injections are a multivariate Gaussian

with a known covariance matrix it follows that the branch flows are multivariate Gaussian and we

can calculate its covariance matrix. We now make our first approximation by taking a linearization

ofthesystem risk measure using a Taylor expansion and dropping higher order terms. This is a

very good approximation for small failure probabilities and it allows us to pass this multivariate

Gaussian through our piecewise linear failure density function. We finish this model by calculating

the expected probability of a line failing for each branch and then sum over all branches to get our

system risk measure, which is constrained.
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The primary contribution was to develop a dispatch model that included a system risk con-

straint to control endogenous risk from line loading. This system risk measure was modeled as a

joint chance constraint that we can solve exactly when there is no uncertainty in generation and de-

mand. When there is net injection uncertainty, we approximate the system risk measure and solve

the model approximately using a cutting plane algorithm. The cost-risk frontier was explored and

the new model was compared to the standard chance constrained model used in recent literature.

Reducing Cascading Risk Through Real-Time Dispatch

In Chapter 5, we extended our endogenous system risk model to the N-1 contingencies. We also

evaluate the N-1 contingencies using OPA to evaluate rare event risk. We then develop a linear

weighting system to account for this rare event risk and constrain it in our real time dispatch model.

Computational experiments suggest that the JCC N-1 with OPA weighting model may have more

desirable load-shed distribution.

6.2 Future Work

The Chapters 2 and 3 can be improved by incorporating a more detailed simulation of cascading

power failures including risk from voltage collapse, power transients, and other physical risk leading

to large load shed events. Chapters 4 and 5 can be improved by incorporating covariance between

effective capacities and demand uncertainty. Geographically correlated weather has an effect on

both transmission capacities as well as generation and demand. Additionally, the real time model

should include contingencies of generator failures as well. The model is dependent on the chosen

line failure density model and it will be useful to better understand this function. Determining

approximate values for the function parameters that represent real world conditions will be useful.
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Appendix A

Code for Computational Models

A.1 Multi Stage Stochastic Program

This code is publicly available on GitHub at https://github.com/eanderson4/msip

A.2 HTCondor Parallelization Code

1 #!/ progs / gurobi / l inux64 /bin /python2 . 7
2

3 import sys
4

5

6 i f name ==” main ” :
7

8 i f l en ( sys . argv ) > 1 :
9 #Get Log F i l e

10 f l o g = open ( sys . argv [ 1 ] , ’ r ’ )
11 l og = f l o g . r e a d l i n e s ( )
12 f l o g . c l o s e ( )
13 #Use l a s t l i n e as arguments
14 args = log [ −1 ] . s p l i t ( ” ” ) [ 1 : ]
15 r un i t a r g s = [ arg . s p l i t ( ”\n” ) [ 0 ] f o r arg in args ]
16

17 i f ’ s t a r t ’ in r un i t a r g s :
18 #Check Condor Queue
19 f con = open ( sys . argv [ 2 ] , ’ r ’ )
20 con = fcon . r e a d l i n e s ( )
21 f con . c l o s e ( )
22 jobsrunning= con [ −1 ] . s p l i t ( ” ; ” ) [ 1 ] . s p l i t ( ” , ” ) [ 3 ]
23 j o b s i d l e= con [ −1 ] . s p l i t ( ” ; ” ) [ 1 ] . s p l i t ( ” , ” ) [ 2 ]
24 j ob she ld= con [ −1 ] . s p l i t ( ” ; ” ) [ 1 ] . s p l i t ( ” , ” ) [ 4 ]
25 sumo = in t ( j o b s i d l e . s p l i t ( ” ” ) [ 0 ] ) + in t ( jobsrunning . s p l i t ( ” ” ) [ 0 ] ) + in t (

j ob she ld . s p l i t ( ” ” ) [ 0 ] )

https://github.com/eanderson4/msip
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26 #I f no jobs are running , i d l e , or held , output −notrunning
27 i f sumo == 0 :
28 f out = open ( sys . argv [ 1 ] , ’ a ’ )
29 f out . wr i t e ( ’−notrunning \n ’ )
30 f out . c l o s e ( )
31

32

33 i f ’ check queue ’ in r un i t a r g s :
34 #Check Condor Queue
35 f con = open ( sys . argv [ 2 ] , ’ r ’ )
36 con = fcon . r e a d l i n e s ( )
37 f con . c l o s e ( )
38 jobsrunning= con [ −1 ] . s p l i t ( ” ; ” ) [ 1 ] . s p l i t ( ” , ” ) [ 3 ]
39 j o b s i d l e= con [ −1 ] . s p l i t ( ” ; ” ) [ 1 ] . s p l i t ( ” , ” ) [ 2 ]
40 j ob she ld= con [ −1 ] . s p l i t ( ” ; ” ) [ 1 ] . s p l i t ( ” , ” ) [ 4 ]
41 pr in t j o b s i d l e , jobsrunning , j ob she ld
42 sumo = in t ( j o b s i d l e . s p l i t ( ” ” ) [ 0 ] ) + in t ( jobsrunning . s p l i t ( ” ” ) [ 0 ] ) + in t (

j ob she ld . s p l i t ( ” ” ) [ 0 ] )
43 #I f no jobs are running , i d l e , or held , output −dosomething
44 i f sumo == 0 :
45 f out = open ( sys . argv [ 1 ] , ’ a ’ )
46 f out . wr i t e ( ’−dosomething\n ’ )
47 f out . c l o s e ( )
48

49 i f ’ i t e r a t i o n ’ in r un i t a r g s :
50 f check = open ( sys . argv [ 2 ] , ’ r ’ )
51 check = fcheck . r e a d l i n e s ( )
52 f check . c l o s e ( )
53 f out = open ( sys . argv [ 1 ] , ’ a ’ )
54 maxim = 0
55 i f check :
56 f o r c in check :
57 pr in t c . s p l i t ( ’ s t ep ’ ) [ 1 ] . s p l i t ( ’ \n ’ ) [ 0 ]
58 t e s t = in t ( c . s p l i t ( ’ s t ep ’ ) [ 1 ] . s p l i t ( ’ \n ’ ) [ 0 ] )
59 i f t e s t > maxim :
60 maxim=t e s t
61 f out . wr i t e ( s t r (maxim) )
62 e l s e :
63 pr in t ”HERE”
64 pr in t check
65 f out . wr i t e ( s t r (−1) )
66 f out . c l o s e ( )
67

68

69 e l s e :
70 ”Usage : Proc . py <l og input> <condor q in>”

Listing A.1: proc.py: HTCondor Queue and Log File Reader

1 #! /bin / sh
2 i f [ −n ”$1” ]
3 then
4 echo ”Some input entered ”
5 echo $1
6 FILE=$1
7 e l s e
8 echo ”no input entered ”
9 FILE=” run i t l o g ”

10 f i
11

12

13 i f [ −f $FILE ] ;
14 then
15 echo ” F i l e $FILE ex i s t s , need d i f f e r e n t name”
16 e l s e
17 echo ”Using $FILE f o r run i t l og ”
18 f i
19
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20 isNotDone=true
21

22 #Run proc . py to f i nd i f s t a r t i n g f r e s h or resuming old run
23 echo ”−proc . py s t a r t ” > $FILE
24 condor q eanderson > condor q output
25 Proc . py $FILE condor q output
26 command=$ ( t a i l −1 $FILE)
27 echo $command
28 i t e r a t i o n=0
29 l s −d step ∗ > t emp f i l e
30 echo ”−proc . py i t e r a t i o n ” > $FILE
31 Proc . py $FILE t emp f i l e
32

33 #Set i t e r a t i o n based on proc . py output , a new run (0 ) or resuming old run at i t e r a t i o n (n)
34 i t e r a t i o n=$ ( t a i l −1 $FILE)
35 echo $ i t e r a t i o n
36 s l e e p 3
37

38 #I f s t a r t i n g a new run , i n i t i a l i z e and run algor i thm
39 i f [ ”−notrunning ” = ”$command” ] && [ $ i t e r a t i o n = −1 ]
40 then
41 cd Powerin
42 echo ” consub 1d”
43 . / consub 1d . py −c g r id2 . gr LINESIN
44 s l e e p 5
45 cd . . /
46 mkdag
47 s l e e p 3
48 mkdag −−data=Powerin −−outputd i r=step0 −−cmdtorun=a r r i v e . py −−pattern=want . l ao −−pattern=

want . l s a −−type=Other
49 cd step0
50 s l e e p 5
51 condor submit dag mydag . dag
52 s l e e p 7
53 cd . . /
54 ( ( i t e r a t i o n++))
55 f i
56

57

58 loop=0
59 #Loop f o r e v e r
60 whi le $isNotDone ; do
61 l e t loop+=1
62

63 #Check condor queue and run proc . py to develop command
64 echo ”LOOP: $loop ” >> $FILE
65 echo ”−condor q ” >> $FILE
66 condor q eanderson > condor q output
67 echo ”−proc . py check queue ” >> $FILE
68 Proc . py $FILE condor q output
69 command=$ ( t a i l −1 $FILE)
70

71 #I f nothing i s running in condor , do something
72 i f [ ”−dosomething” = ”$command” ]
73 then
74

75 #Move f i l e s i f i t e r a t i o n 0 i s done and c l ean f o l d e r d i r e c t o r y
76 i f [ $ i t e r a t i o n = 0 ]
77 then
78 cd Powerin
79 consub 1d . py −p gr id2 . gr LINESIN
80 s l e e p 7
81 cp 1d∗dat . . / s tep0 /
82 cp subset . l i n e s . . / s tep0 /
83 s l e e p 7
84 consub 1d . py −c l ean gr id2 . gr LINESIN
85 rm ./1 d ∗dat
86 rm LIST ∗
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87 #Move f i l e s and c l ean f o l d e r d i r e c t o r f o r nth i t e r a t i o n
88 e l s e
89 cd Powerin
90 a l l o c a t e . py −p a l l o c a t e . l i n e s . . / s t e p $ i t e r a t i o n
91 s l e e p 5
92 t r an spo s eF i l e . py a l l o c a t e . l i n e s . . / s t e p $ i t e r a t i o n /
93 s l e e p 7
94 cp n∗dat . . / s t e p $ i t e r a t i o n /
95 cp a l l o c a t e . l i n e s . . / s t e p $ i t e r a t i o n
96 cp a l l o c a t e . p i ck s . . / s t e p $ i t e r a t i o n
97 cp search . l i n e s . . / s t e p $ i t e r a t i o n
98 cp po int . cap . . / s t e p $ i t e r a t i o n
99 cp po int . l s a . . / s t e p $ i t e r a t i o n

100 cp po int . l ao . . / s t e p $ i t e r a t i o n
101 s l e e p 5
102 a l l o c a t e . py −c l ean a l l o c a t e . l i n e s
103 rm n∗dat
104 f i
105

106

107 #Develop pattern f o r pattern search
108 i f [ $ i t e r a t i o n = 0 ]
109 then
110 a l l o c a t e . py −p i ck s subset . l i n e s . . / s tep0 /1 d
111 a l l o c a t e . py −c subset . l i n e s . . / s tep0 /1 d
112 e l s e
113 a l l o c a t e . py −point a l l o c a t e . l i n e s . . / s t e p $ i t e r a t i o n /
114 s l e e p 10
115 a l l o c a t e . py −s tep po int . cap search . l i n e s
116 s l e e p 10
117

118 f i
119 s l e e p 25
120

121 #Increment i t e r a t i o n and run p a r a l l i z a t i o n through dag
122 ( ( i t e r a t i o n++))
123 cd . .
124 mkdag −−data=Powerin −−outputd i r=s t e p $ i t e r a t i o n −−cmdtorun=a r r i v e . py −−pattern=want . l ao −−

pattern=want . l s a −−type=Other −−maxidle=500
125 cd s t e p $ i t e r a t i o n
126 s l e e p 7
127 condor submit dag mydag . dag
128 cd . .
129 s l e e p 5
130 f i
131 s l e e p 7
132

133

134 done

Listing A.2: runit: Main Process Flow

1 #Power System Tools
2

3 c l a s s Bus :
4 ””” Sto re s bus in fo rmat ion ”””
5 de f i n i t ( s e l f , ID , name , pmin , pmax) :
6 s e l f . ID = ID
7 s e l f . name = name
8 s e l f . pmin = pmin
9 s e l f . pmax = pmax

10 de f s t r ( s e l f ) :
11 r e turn s e l f . ID + ” : ” + s e l f . name + ” ( ”+ s e l f . pmin +” , ”+ s e l f . pmax + ” ) ”
12

13 c l a s s Branch :
14 ””” Sto re s branch in fo rmat ion ”””
15 de f i n i t ( s e l f , ID , bus1 , bus2 , l im i t , X) :
16 s e l f . ID = ID
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17 s e l f . bus1 = bus1
18 s e l f . bus2 = bus2
19 s e l f . l im i t = l im i t
20 s e l f .X = X
21

22 de f s t r ( s e l f ) :
23 r e turn s e l f . ID + ” : ” + s e l f . bus1 +” −> ” +s e l f . bus2 + ” , ” +s e l f . l im i t+ ” ( ”+s e l f .

X+” ) ”
24

25 c l a s s Grid :
26 ””” Sto re s g r id in fo rmat ion ”””
27 de f printBranch ( s e l f , ID) :
28 pr in t s e l f . branches [ ID ]
29 de f pr intBus ( s e l f , ID) :
30 pr in t s e l f . buses [ ID ]
31

32 de f getBranchLimit ( s e l f , ID) :
33 r e turn s e l f . branches [ ID ] . l im i t
34

35 de f readData ( s e l f , f i n ) :
36 f = open ( f in , ’ r ’ )
37 l = f . r e ad l i n e ( )
38 whi le l :
39 i f ’GRIDDATA’ in l :
40 pr in t ’ Grid data ID : #Buses #Branches ’
41 #read in g r id in fo rmat ion
42 l = f . r e ad l i n e ( )
43 temp = l . s p l i t ( ” ” )
44 s e l f . ID=temp [ 1 ]
45 s e l f . Nbus=temp [ 2 ]
46 s e l f . Nbranch=temp [ 3 ] . s p l i t ( ”\ r ” ) [ 0 ]
47 pr in t s e l f . ID , ” : ” , s e l f . Nbus , s e l f . Nbranch
48

49

50 i f ’BUSDATA’ in l :
51 pr in t ’Bus data ID : name (pmin , pmax) ’
52 #read in bus in fo rmat ion and s t o r e in d i c t i ona ry
53 l = f . r e ad l i n e ( )
54 temp = l . s p l i t ( ” ” )
55 b = Bus (−1 ,0 ,0 ,0)
56 s e l f . buses = { b . ID : b }
57 whi le temp[0]== ’d ’ :
58 #parse bus s t r i n g
59 bus = Bus ( temp [ 1 ] , temp [ 3 ] , temp [ 4 ] , temp [ 5 ] . s p l i t ( ”\ r ” ) [ 0 ] )
60 s e l f . buses [ bus . ID ] = bus
61 pr in t bus
62 temp = f . r e ad l i n e ( ) . s p l i t ( ” ” )
63

64

65 i f ’BRANCHDATA’ in l :
66 pr in t ’ Branch data ID : bus1 −> bus2 , capac i ty (X) ’
67 #read in branch in fo rmat ion
68 l = f . r e ad l i n e ( )
69 temp = l . s p l i t ( ” ” )
70 b = Branch ( −1, 0 , 0 , 0 , 0 )
71 s e l f . branches = { b . ID : b}
72 whi le temp[0]== ’d ’ :
73 #parse branch s t r i n g
74 branch = Branch ( temp [ 1 ] , temp [ 2 ] , temp [ 3 ] , temp [ 4 ] , temp [ 5 ] . s p l i t ( ”\ r ” )

[ 0 ] )
75 s e l f . branches [ branch . ID ] = branch
76 pr in t branch
77 temp = f . r e ad l i n e ( ) . s p l i t ( ” ” )
78

79

80 l = f . r e ad l i n e ( )
81

82 pr in t ’ F i l e read in complete ’
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83 f . c l o s e ( )
84

85

86 de f i n i t ( s e l f ) :
87 s e l f . data = [ ]

Listing A.3: power.py: Power Class

1 #Power System Tools
2

3 import random
4 import os
5 from power import ∗
6

7 de f makeInputFile ( fo , s c ena r i o s , s tages , outcomes ) : #Make input f i l e f o r msip
8 f out = open ( fo , ”w” )
9 f out . wr i t e ( ”name=sim\n\n” )

10 f out . wr i t e ( ” l i n e ou tag e=yes \n” )
11

12 f out . wr i t e ( ”Problem and Solve Method\n” )
13 f out . wr i t e ( ” solvemethod=cp lex \n” )
14 f out . wr i t e ( ”problemtype=sim\n” )
15

16 f out . wr i t e ( ”Power Grid\n” )
17 f out . wr i t e ( ” g r i d f i l e=input / gr id2 . gr \n\n” )
18

19 f out . wr i t e ( ”Line Fa i l u r e D i s t r i bu t i on \n” )
20 f out . wr i t e ( ”p=.5\n” )
21 f out . wr i t e ( ”L=.98\n\n” )
22

23 f out . wr i t e ( ” Scenar io Tree\n” )
24 f out . wr i t e ( ” s t ag e s=”+s t r ( s t ag e s )+”\n” )
25 f out . wr i t e ( ”outcomesV=” )
26 pr in t outcomes
27 f o r out in outcomes :
28 f out . wr i t e ( s t r ( out )+” ” )
29 f out . wr i t e ( ”\n” )
30 f out . wr i t e ( ” s c e n a r i o s=”+s t r ( s c e n a r i o s )+”\n\n” )
31

32 f out . wr i t e ( ”Outages\n” )
33 f out . wr i t e ( ”a=12 14 34 11\n” )
34 f out . wr i t e ( ”b=12 2 21\n” )
35 f out . wr i t e ( ”c=82 5 25 34\n” )
36 f out . wr i t e ( ”d=13 24\n\n” )
37

38 i = random . randint (12045 ,1205015)
39 f out . wr i t e ( ”Random Numbers\n” )
40 f out . wr i t e ( ” seed=”+s t r ( i )+”\n\n” )
41

42 f out . c l o s e ( )
43 pr in t ”Wrote to d a t a f i l e ”+ fo
44

45

46 de f count ( f i , fo , s c a l e ) : # ”Usage : count . py < l i n e outage f i l e > <output f i l e > <s ca l e >”
47 x={ ’ 0 ’ : 0}
48 f o r i in range (186) :
49 x [ s t r ( i ) ]=0
50 fn = open ( fo , ’w ’ )
51 fn . wr i t e ( ’ l i n e outages \n ’ )
52 bigdog=0.1
53 f = open ( f i , ’ r ’ )
54

55 l i n e s = f . r e ad l i n e ( )
56

57 [ n , p , v ] = l i n e s . p a r t i t i o n ( ’ ’ )
58 x [ n]=1+x . get (n , 0 )
59

60 whi le ( v ) :
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61 [ n , p , v ] = v . p a r t i t i o n ( ’ ’ )
62 x [ n]=1+x . get (n , 0 )
63 i f ( bigdog<x [ n ] ) :
64 bigdog=x [ n ]
65

66 pr in t x
67 s o r t ed x = sor t ed (x . i tems ( ) , key=lambda x : x [ 1 ] )
68 s o r t ed x . r e v e r s e ( )
69 pr in t s o r t ed x
70

71 bigdog=f l o a t ( s c a l e )
72

73 f o r i in s o r t ed x :
74 fn . wr i t e ( i [0 ]+ ” ”+s t r ( i [ 1 ] )+”\n” )
75

76 pr in t ”BIG : ”+s t r ( bigdog )
77 fn . c l o s e ( )
78 f . c l o s e ( )
79

80 de f dumb( f i , fout , MW, k ) : # Read in l i n e outage f i l e and output capac i ty f i l e
81

82 f i n = open ( f i , ’ r ’ )
83 l = f i n . r e ad l i n e ( )
84 pr in t l
85 l i n e s = f i n . r e a d l i n e s ( )
86

87 x={ ’ 0 ’ : 0}
88 f o r i in range (186) :
89 x [ s t r ( i ) ]=0
90

91 rank=[ ’ 0 ’ ]
92

93 f o r l in l i n e s :
94 [ ln , p , e ] = l . p a r t i t i o n ( ” ” )
95 [ hz , p , e ] = e . p a r t i t i o n ( ”\n” )
96 x [ ln ]=hz
97 rank . append ( ln )
98 pr in t ln , hz
99

100 rank . pop (0 )
101

102 MWb = MW ∗ 29600/100
103 pr in t ”Per Line : ” ,MWb/k , ” , L ines : ” , k
104

105 rank = rank [ 0 : k ]
106 pr in t rank
107

108 f = open ( fout , ’w ’ )
109 f . wr i t e ( ”Design Capacity − i n d i v i dua l \n” )
110 f o r l i n e in rank :
111 f . wr i t e ( s t r ( l i n e ) )
112 f . wr i t e ( ’ ’ )
113 f . wr i t e ( s t r (MWb/k) )
114 f . wr i t e ( ’ \n ’ )
115 f . c l o s e ( )
116

117 de f l o ad shedana l y s i s ( f i , fo , nom ) : #Read in <.dem> f i l e and preform ana l y s i s and output
to <. l sa>

118 f = open ( f i , ’ r ’ )
119 f o r l i n e in f :
120 l en ( l i n e )
121 l s = l i n e . s p l i t ( ” ” )
122 s i z e = len ( l s ) −1
123 l s = l s [ 0 : s i z e ]
124 l s . s o r t ( )
125 # pr in t ”\nDemand Served”
126 # pr in t l s
127 t o t a l=0
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128 l s 1 = [ ]
129 f o r item in l s :
130 l s 1 . append (nom−f l o a t ( item ) )
131 t o t a l = t o t a l + nom − f l o a t ( item )
132 sq=0
133 avg=t o t a l / s i z e
134 i = i n t ( . 05∗ s i z e )
135 count=0
136 c2=0
137 t2=0
138 f o r item in l s 1 :
139 count=count+1
140 i f ( count<=i ) :
141 c2=c2+1
142 t2=t2+item
143 sq = ( item−avg ) ∗( item−avg ) / s i z e + sq
144 se=sq ∗∗ . 5/ s i z e ∗∗ . 5
145 avg=t o t a l / s i z e
146

147 f out = open ( fo , ’w ’ )
148 f out . wr i t e ( ”Samples : ” +s t r ( s i z e ) )
149 f out . wr i t e ( ”\nAverage : ” + s t r ( avg )+ ” CI 95% [ ” + s t r ( avg−se ∗1 . 96 ) + ” , ” + s t r ( avg+

se ∗1 . 96 ) +” ] ” )
150 f out . wr i t e ( ”\nStandard Deviat ion : ” + s t r ( sq ∗∗ . 5 ) )
151 f out . wr i t e ( ”\nStandard Error : ” + s t r ( se ) )
152 f out . wr i t e ( ”\nMin : ” + s t r (min ( l s 1 ) ) )
153 f out . wr i t e ( ”\nMax : ” + s t r (max( l s 1 ) ) )
154 f out . wr i t e ( ”\n95% V@R: ” + s t r ( l s 1 [ i ] ) )
155 f out . wr i t e ( ”\n95% CV@R: ” + s t r ( ( t2 /c2 ) ) )
156

157 f . c l o s e ( )
158 f out . c l o s e ( )
159

160 de f r e ad l s a ( f i ) : # Read load shed ana l y s i s f i l e and return data
161 data = [ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ]
162 # [ Samples , Expect , St Dev , St Err , Min , Max, Var , CVar ]
163 f = open ( f i , ’ r ’ )
164

165 samples = f . r e ad l i n e ( )
166 [ a , samples ] = samples . s p l i t ( ’ ’ )
167 [ samples , a ] = samples . s p l i t ( ’ \n ’ )
168 data [ 0 ] = samples
169

170 mean = f . r e ad l i n e ( )
171 mean = mean . s p l i t ( ’ ’ ) [ 1 ]
172 data [ 1 ] = mean
173

174 stdv = f . r e ad l i n e ( )
175 stdv = stdv . s p l i t ( ’ ’ ) [ 2 ] . s p l i t ( ’ \n ’ ) [ 0 ]
176 data [ 2 ] = stdv
177

178 s t e r r = f . r e ad l i n e ( )
179 s t e r r = s t e r r . s p l i t ( ’ ’ ) [ 2 ] . s p l i t ( ’ \n ’ ) [ 0 ]
180 data [ 3 ] = s t e r r
181

182 mn = f . r e ad l i n e ( )
183 mn = mn. s p l i t ( ’ ’ ) [ 1 ] . s p l i t ( ’ \n ’ ) [ 0 ]
184 data [ 4 ] = mn
185

186 mx = f . r e ad l i n e ( )
187 mx = mx. s p l i t ( ’ ’ ) [ 1 ] . s p l i t ( ’ \n ’ ) [ 0 ]
188 data [ 5 ] = mx
189

190 var = f . r e ad l i n e ( )
191 var = var . s p l i t ( ’ ’ ) [ 2 ] . s p l i t ( ’ \n ’ ) [ 0 ]
192 data [ 6 ] = var
193

194 cvar = f . r e ad l i n e ( )
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195 cvar = cvar . s p l i t ( ’ ’ ) [ 2 ] . s p l i t ( ’ \n ’ ) [ 0 ]
196 data [ 7 ] = cvar
197 f . c l o s e ( )
198

199 r e turn data
200

201 de f r ead lao ( f i ) : # Read load shed ana l y s i s f i l e and return data
202 data = { ’−1 ’ : 0 }
203 # [ l i n e : outages ]
204 f = open ( f i , ’ r ’ )
205

206 l i n e s = f . r e a d l i n e s ( )
207

208

209 f o r l i n e in l i n e s :
210 i f ’ l i n e ’ in l i n e :
211 t e s t r=1
212 e l s e :
213 [ a , b ] = l i n e . s p l i t ( ’ ’ )
214 data [ i n t ( a ) ] = in t (b . s p l i t ( ’ \n ’ ) [ 0 ] )
215

216 data . pop ( ’−1 ’ )
217 r e turn data
218

219 de f readcap ( f i ) : # Read load shed ana l y s i s f i l e and return data
220 data = { ’−1 ’ : 0 }
221 # [ l i n e : capac i ty add i t i on ]
222 f = open ( f i , ’ r ’ )
223 f . r e a d l i n e ( )
224 l i n e s = f . r e a d l i n e s ( )
225

226

227 f o r l i n e in l i n e s :
228 data [ l i n e . s p l i t ( ” ” ) [ 0 ] ] = l i n e . s p l i t ( ” ” ) [ 1 ] . s p l i t ( ’ \n ’ ) [ 0 ]
229

230

231 data . pop ( ’−1 ’ )
232

233 r e turn data
234

235

236 de f s t epL ine s ( l i n e s , ts , numPoints ) :
237 budget = 500
238 used = 0
239 norm = (numPoints−1)/3
240 f o r t in t s . keys ( ) :
241 pr in t t , t s [ t ]
242 used = f l o a t ( used ) + f l o a t ( t s [ t ] )
243

244 a = Grid ( )
245 a . readData ( ’ g r id2 . gr ’ )
246

247 f l i s t = open ( ’ a l l o c a t e . l i n e s ’ , ’w ’ )
248 l inenumber=1
249 f o r l i n e in l i n e s :
250 a . pr intBranch ( l i n e )
251 Limit = a . getBranchLimit ( l i n e )
252 pr in t Limit
253 i f f l o a t ( Limit ) > f l o a t ( budget ) /3 :
254 Limit = f l o a t ( budget ) /3
255 pr in t Limit
256 cs = [ i ∗ f l o a t ( Limit ) /norm f o r i in range ( numPoints ) ]
257 c s r = [ round ( elem , 2) f o r elem in cs ]
258 pr in t c s r
259

260 basename=’n ’+s t r ( l inenumber )
261 l inenumber=linenumber+1
262 f o r i in range ( numPoints ) :
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263 name = basename+’ ’+s t r ( i )
264 f l i s t . wr i t e (name+’ , ’ )
265 i f not os . path . e x i s t s ( name ) :
266 os . mkdir ( name )
267 c a p f i l e = name+’ / add i t i on s . cap ’
268 f out = open ( c a p f i l e , ’w ’ )
269 f out . wr i t e ( ’ Design Capacity − i n d i v i dua l \n ’ )
270

271 newbudget = budget − c s r [ i ]
272 w = newbudget/budget
273 pr in t w, newbudget , used , budget
274 f o r t in t s . keys ( ) :
275 f i n a l = f l o a t ( t s [ t ] ) ∗w
276 f out . wr i t e ( t+’ ’+s t r ( f i n a l )+’ \n ’ )
277

278 f out . wr i t e ( l i n e+’ ’+s t r ( c s r [ i ] )+ ’ \n ’ )
279

280 f out . c l o s e ( )
281

282 de f stepGroups ( groups , t s ) :
283 budget = 500
284 used = 0
285 f o r t in t s . keys ( ) :
286 pr in t t , t s [ t ]
287 used = f l o a t ( used ) + f l o a t ( t s [ t ] )
288

289 a = Grid ( )
290 a . readData ( ’ g r id2 . gr ’ )
291

292 f l i s t = open ( ’ s tep . l i n e s ’ , ’w ’ )
293 l inenumber=1
294 f o r group in groups :
295 pr in t group
296

297 gs = group . s p l i t ( ” , ” )
298 groupcap = 0
299 f o r l i n e in gs :
300 a . pr intBranch ( l i n e )
301 Limit = a . getBranchLimit ( l i n e )
302 pr in t Limit
303 groupcap = groupcap + f l o a t ( Limit )
304

305 # groupweights = [ f l o a t ( a . getBranchLimit ( l i n e ) ) /groupcap f o r l i n e in gs ]
306 groupweights = { ’−1 ’ : 0 }
307 f o r l i n e in gs :
308 groupweights [ l i n e ] = f l o a t ( a . getBranchLimit ( l i n e ) ) /groupcap
309 groupweights . pop ( ’−1 ’ )
310 pr in t groupweights
311

312 w1 = [ f l o a t ( i ) /30 f o r i in range (31) ]
313 w2 = [1− f l o a t ( i ) /30 f o r i in range (31) ]
314

315 e f 1 = [w∗budget f o r w in w1 ]
316 e f 2 = [w∗budget f o r w in w2 ]
317

318 pr in t e f 1
319 pr in t e f 2
320

321 basename=’n ’+s t r ( l inenumber )
322 l inenumber=linenumber+1
323 f o r i in range (31) :
324 name = basename+’ ’+s t r ( i )
325 f l i s t . wr i t e (name+’ , ’ )
326 i f not os . path . e x i s t s ( name ) :
327 os . mkdir ( name )
328 c a p f i l e = name+’ / add i t i on s . cap ’
329 f out = open ( c a p f i l e , ’w ’ )
330 f out . wr i t e ( ’ Design Capacity − i n d i v i dua l \n ’ )
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331

332 newbudget = e f 2 [ i ]
333 w = newbudget/used
334 f o r t in t s . keys ( ) :
335 f i n a l = f l o a t ( t s [ t ] ) ∗w
336 f out . wr i t e ( t+’ ’+s t r ( f i n a l )+’ \n ’ )
337

338 f o r l i n e in gs :
339 f i n a l = e f 1 [ i ]∗ groupweights [ l i n e ]
340 f out . wr i t e ( l i n e+’ ’+s t r ( f i n a l )+’ \n ’ )
341 f out . c l o s e ( )
342

343 ”””
344 a . pr intBranch ( l i n e )
345 Limit = a . getBranchLimit ( l i n e )
346 pr in t Limit
347 cs = [ i ∗ f l o a t ( Limit ) /10 f o r i in range (31) ]
348 c s r = [ round ( elem , 2) f o r elem in cs ]
349 pr in t c s r
350

351 f o r i in range (31) :
352

353

354

355 w = newbudget/budget
356 pr in t w, newbudget , used , budget
357 f o r t in t s . keys ( ) :
358 f i n a l = f l o a t ( t s [ t ] ) ∗w
359 f out . wr i t e ( t+’ ’+ s t r ( f i n a l )+’\n ’ )
360

361 f out . wr i t e ( l i n e +’ ’+ s t r ( c s r [ i ] ) +’\n ’ )
362

363 f out . c l o s e ( )
364 ”””

Listing A.4: tools.py: Common Functions

1 #!/ progs / gurobi / l inux64 /bin /python2 . 7
2

3 import sys
4 import os
5 import s h u t i l
6 from cap import ∗
7 from t o o l s import ∗
8 from power import ∗
9

10 i f name ==” main ” :
11 i f l en ( sys . argv ) > 2 :
12 pr in t sys . argv
13

14 outputLocal = ’ . . / mostOutages ’
15

16 i f sys . argv [ 1 ] ==’−s tep ’ :
17 po in t in = sys . argv [ 2 ]
18 l i n e s i n = sys . argv [ 3 ]
19 pr in t ’ Search ing f o r b e t t e r po in t s ’
20 pr in t ’Open ’+po in t in+’ as i n i t i a l po int ’
21 pr in t ’ and search l i n e s from ’+l i n e s i n
22

23 t s = readcap ( po in t in )
24

25 i f ’ . l i n e s ’ in l i n e s i n :
26 f l = open ( l i n e s i n , ’ r ’ )
27 l i n e s = f l . r e ad l i n e ( ) . s p l i t ( ” , ” )
28 pr in t l i n e s
29 i f ’ ’ in l i n e s :
30 l i n e s . remove ( ’ ’ )
31 s t epL ine s ( l i n e s , ts , 31 )
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32 f l . c l o s e ( )
33 i f ’ . group ’ in l i n e s i n :
34 f l = open ( l i n e s i n , ’ r ’ )
35 groups = f l . r e ad l i n e ( ) . s p l i t ( ”/ ” )
36 pr in t groups
37 stepGroups ( groups , t s )
38 f l . c l o s e
39

40 e l s e :
41 i f l en ( sys . argv ) > 3 :
42 outputLocal = sys . argv [ 3 ]
43 i t e r a t i o n = sys . argv [ 3 ] . s p l i t ( ’ s t ep ’ ) [ 1 ]
44 pr in t ’ I t e r a t i o n : ’ , i t e r a t i o n
45

46 i f sys . argv [ 1 ] == ’−point ’ :
47 pr in t ”Find good po int and output to po int . cap”
48 pr in t ”Find l i n e s to search from new point and output to search . l i n e s ”
49 t e s t = Cap( sys . argv [ 2 ] , outputLocal )
50 t e s t . params ( . 1 , . 2 )
51 # ss=t e s t . g e tS tab l eSe t ( )
52 budget=500
53 point=t e s t . getGreedyPoint ( )
54 pr in t po int
55 name = outputLocal+point [0 ]+ ’ ’+point [1 ]+ ’ /add . cap ’
56 t s = readcap ( name )
57 f = open ( ’ po int . cap ’ , ’w ’ )
58 f . wr i t e ( ’ Design Capacity − i n d i v i dua l ’ )
59

60 f o r t in t s . keys ( ) :
61 f . wr i t e ( ’ \n ’ + t + ’ ’ + t s [ t ] )
62 f . c l o s e ( )
63

64 namelao = outputLocal+point [0 ]+ ’ ’+point [1 ]+ ’ /want . l ao ’
65 #Find l i n e s to search
66 p rob l i n e s = read lao ( namelao )
67

68 f l a o = open ( ’ s earch . l i n e s ’ , ’w ’ )
69 pr in t p r ob l i n e s
70 f o r l i n e in p r ob l i n e s . keys ( ) :
71 Threshold = 2500
72 i f p r ob l i n e s [ l i n e ] > Threshold :
73 f l a o . wr i t e ( s t r ( l i n e )+’ , ’ )
74 pr in t l i n e
75 f l a o . c l o s e ( )
76

77 stub = outputLocal + point [0 ]+ ’ ’+point [ 1 ]
78 s h u t i l . copy ( namelao , ’ po int . l ao ’ )
79 s h u t i l . copy ( stub+’ /want . l s a ’ , ’ po int . l s a ’ )
80

81 i f sys . argv [ 1 ] == ’−c ’ :
82 t e s t = Cap( sys . argv [ 2 ] , outputLocal )
83 t e s t . params ( . 1 , . 2 )
84 s s=t e s t . g e tS tab l eSe t ( )
85 budget=500
86 p i ck s=t e s t . getGreedySet ( budget )
87 pr in t p i ck s
88 t e s t . c r e a t eF i l e s ( p icks , budget )
89

90 i f sys . argv [ 1 ] == ’−p i ck s ’ :
91 t e s t = Cap( sys . argv [ 2 ] , outputLocal )
92 t e s t . params ( . 1 , . 2 )
93 s s=t e s t . g e tS tab l eSe t ( )
94 budget=500
95 p i ck s=t e s t . getGreedySet ( budget )
96 pr in t p i ck s
97 f = open ( ’ a l l o c a t e . p i ck s ’ , ’w ’ )
98 f o r p in p i ck s :
99 f . wr i t e ( s t r (p)+’ ’ )
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100 f . c l o s e ( )
101

102 #CONDOR SUBMIT f i r s t a l l o c a t i o n step
103 i f sys . argv [ 1 ] == ’−c l ean ’ :
104 f i n = open ( sys . argv [ 2 ] , ’ r ’ )
105 l i n e = f i n . r e ad l i n e ( )
106 pr in t l i n e
107 names = [ n f o r n in l i n e . s p l i t ( ” , ” ) ]
108 names . remove ( ’ ’ )
109

110 pr in t names
111 f o r name in names :
112 # pr in t name
113 i f os . path . e x i s t s ( name ) :
114 s h u t i l . rmtree ( name )
115

116 i f sys . argv [ 1 ] == ’−p ’ :
117 f i n = open ( sys . argv [ 2 ] , ’ r ’ )
118 l i n e = f i n . r e ad l i n e ( )
119 pr in t l i n e
120 names = [ n f o r n in l i n e . s p l i t ( ” , ” ) ]
121 names . remove ( ’ ’ )
122 s tubs = s e t ( [ n . s p l i t ( ’ ’ ) [ 0 ] f o r n in names ] )
123 pr in t stubs
124

125 f o r s in stubs :
126 f = open ( s+’ . dat ’ , ’w ’ )
127 f . wr i t e ( ’ run smp ex sd se min max var cvar \n ’ )
128 f o r name in names :
129 i f s+ ’ ’ in name :
130 # pr in t outputLocal+’/’+name
131 t s = r ead l s a ( outputLocal+’ / ’+name+’ /want . l s a ’ )
132 f . wr i t e (name . s p l i t ( ’ ’ ) [1 ]+ ’ \ t ’ )
133 f o r t in t s :
134 f . wr i t e ( t+’ \ t ’ )
135 f . wr i t e ( ’ \n ’ )
136 f . c l o s e ( )
137

138 f l = open ( s+’ . l da t ’ , ’w ’ )
139 f l s = open ( s+’ . l s d a t ’ , ’w ’ )
140 f l . wr i t e ( ’name ’ )
141 f o r i in range (185) : # FOR GRID 2
142 f l . wr i t e ( s t r ( i ) +’ ’ )
143 f l . wr i t e ( ’ \n ’ )
144 f o r name in names :
145 i f s+ ’ ’ in name :
146 t s = read lao ( outputLocal+’ / ’+name+’ /want . l ao ’ )
147 f l . wr i t e (name . s p l i t ( ’ ’ ) [1 ]+ ’ \ t ’ )
148 f l s . wr i t e (name . s p l i t ( ’ ’ ) [1 ]+ ’ \ t ’ )
149 f o r key in so r t ed ( t s . i t e r k e y s ( ) ) :
150 f l . wr i t e ( s t r ( t s [ key ] )+’ \ t ’ )
151

152 f o r key in so r t ed ( t s . i t e r i t em s ( ) , key=operator . i t emge t t e r (1 ) ,
r e v e r s e=True ) :

153 f l s . wr i t e ( s t r ( key [ 0 ] )+’ \ t ’ )
154 f l . wr i t e ( ’ \n ’ )
155 f l s . wr i t e ( ’ \n ’ )
156 f l . c l o s e ( )
157 f l s . c l o s e ( )
158

159 f c = open ( s+’ . cdat ’ , ’w ’ )
160 f c . wr i t e ( ’name ’ )
161

162 beg inning = True
163 f o r name in names :
164 i f s+ ’ ’ in name :
165 t s = readcap ( outputLocal+’ / ’+name+’ /add . cap ’ )
166
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167 i f beg inning :
168 f o r t in t s :
169 f c . wr i t e ( ’ \ t ’+t )
170 f c . wr i t e ( ’ \n ’ )
171 beg inning = False
172

173 f c . wr i t e ( name . s p l i t ( ’ ’ ) [ 1 ] )
174 f o r t in t s . keys ( ) :
175 f c . wr i t e ( ’ \ t ’+t s [ t ] )
176 f c . wr i t e ( ’ \n ’ )
177 f c . c l o s e ( )
178 pr in t stubs
179

180 e l s e :
181 pr in t ”Usage : a l l o c a t e <operat ion> < l i n e in f i l e s >”
182 pr in t ” −c ( c r e a t e f i l e s ) ”
183 pr in t ” −p ( proce s s f i l e s ) ”
184 pr in t ” −c l ean ( c l ean f i l e s ) ”
185 pr in t ” −s tep <point . cap> <search . l i n e s>”

Listing A.5: allocate.py: Direct Search Pattern

1 #!/ progs / gurobi / l inux64 /bin /python2 . 7
2

3 import sys
4 import os
5 import operator
6 from t o o l s import ∗
7 from power import ∗
8

9 de f makeCapFile ( l i n e , cap1 ) :
10 f = open ( ’ LIST ’+l i n e , ’w ’ )
11

12 f o r c1 in cap1 :
13 name = l i n e+’ . ’+s t r ( c1 )
14 f . wr i t e (name+’ ’ )
15 i f not os . path . e x i s t s ( name ) :
16 os . mkdir ( name )
17 c a p f i l e = name +’ / add i t i on s . cap ’
18 f out = open ( c a p f i l e , ’w ’ )
19

20 f out . wr i t e ( ’ Design Capacity − i n d i v i dua l \n ’ )
21 f out . wr i t e ( l i n e+’ ’+s t r ( c1 ) )
22

23 f . c l o s e ( )
24 f out . c l o s e ( )
25

26 de f outputData ( l i n e , cap1 ) :
27 i npu t l o c a t i on = ’ . . / step0 / ’
28 f = open ( ’ 1d ’+l i n e+’ . dat ’ , ’w ’ )
29 f . wr i t e ( ’ run smp ex sd se min max var cvar \n ’ )
30 f o r c1 in cap1 :
31 name = l i n e+’ . ’+s t r ( c1 )
32 t s = r ead l s a ( i npu t l o c a t i on + name+’ /want . l s a ’ )
33 f . wr i t e ( s t r ( c1 )+’ \ t ’ )
34 f o r t in t s :
35 f . wr i t e ( t+’ \ t ’ )
36 f . wr i t e ( ’ \n ’ )
37 f . c l o s e ( )
38

39 f l = open ( ’ 1d ’+l i n e+’ . l da t ’ , ’w ’ )
40 f l s = open ( ’ 1d ’+l i n e+’ . l s d a t ’ , ’w ’ )
41 f l . wr i t e ( ’name ’ )
42 f o r i in range (185) : # FOR GRID 2
43 f l . wr i t e ( s t r ( i ) +’ ’ )
44 f l . wr i t e ( ’ \n ’ )
45 f o r c1 in cap1 :
46 name = l i n e+’ . ’+s t r ( c1 )
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47 t s = read lao ( i npu t l o c a t i on+name+’ /want . l ao ’ )
48 f l . wr i t e ( s t r ( c1 )+’ \ t ’ )
49 f l s . wr i t e ( s t r ( c1 )+’ \ t ’ )
50

51 f o r key in so r t ed ( t s . i t e r k e y s ( ) ) :
52 f l . wr i t e ( s t r ( t s [ key ] )+’ \ t ’ )
53

54 f o r key in so r t ed ( t s . i t e r i t em s ( ) , key=operator . i t emge t t e r (1 ) , r e v e r s e=True ) :
55 f l s . wr i t e ( s t r ( key [ 0 ] )+’ \ t ’ )
56

57 f l . wr i t e ( ’ \n ’ )
58 f l s . wr i t e ( ’ \n ’ )
59

60 f l . c l o s e ( )
61 f l s . c l o s e ( )
62

63

64 f c = open ( ’ 1d ’+l i n e+’ . cdat ’ , ’w ’ )
65 f c . wr i t e ( ’name ’ )
66 beg inning = True
67

68 f o r c1 in cap1 :
69 name = l i n e+’ . ’+s t r ( c1 )
70 t s = readcap ( i npu t l o c a t i on+name+’ /add . cap ’ )
71 f c . wr i t e ( s t r ( c1 )+’ \ t ’ )
72

73 i f beg inning :
74 f o r t in t s :
75 f c . wr i t e ( ’ \ t ’+t )
76 f c . wr i t e ( ’ \n ’ )
77 beg inning = False
78

79 f c . wr i t e ( s t r ( c1 ) )
80 f o r t in t s . keys ( ) :
81 f c . wr i t e ( ’ \ t ’+t s [ t ] )
82 f c . wr i t e ( ’ \n ’ )
83 f c . c l o s e ( )
84

85 de f c l e a nF i l e s ( l i n e , cap ) :
86 f o r c in cap :
87 name = l i n e+’ . ’+s t r ( c )
88 i f os . path . e x i s t s (name) :
89 os . remove (name+’ / add i t i on s . cap ’ )
90 os . rmdir (name)
91

92 i f name ==” main ” :
93 i f l en ( sys . argv ) > 2 :
94

95 a = Grid ( )
96 a . readData ( sys . argv [ 2 ] )
97

98 # l i n e s = [ ’ 31 ’ , ’ 48 ’ , ’ 84 ’ , ’ 85 ’ , ’ 15 ’ , ’ 97 ’ , ’ 77 ’ , ’ 98 ’ , ’ 3 7 ’ , ’ 1 06 ’ , ’ 181 ’ , ’ 113 ’ ,
’ 141 ’ , ’137 ’ ]

99 i f l en ( sys . argv ) > 3 :
100 f i n = open ( sys . argv [ 3 ] , ’ r ’ )
101 l i n e s t = f i n . r e ad l i n e ( )
102 check = l i n e s t . s p l i t ( ’ \ t ’ )
103 e l s e :
104 f i n = open ( ”LINES” , ’ r ’ )
105 l i n e s t = f i n . r e ad l i n e ( )
106 check = l i n e s t . s p l i t ( ’ ’ )
107

108 pr in t l i n e s t
109 pr in t check
110 f i n . c l o s e ( )
111

112 subset = check [ 0 : 104 ]
113 f s ub s e t = open ( ’ subset . l i n e s ’ , ’w ’ )
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114 f o r l i n e in subset :
115 f s ub s e t . wr i t e ( l i n e + ” , ” )
116 f s ub s e t . c l o s e ( )
117

118 f o r l i n e in subset :
119 a . pr intBranch ( l i n e )
120 Limit = a . getBranchLimit ( l i n e )
121 pr in t Limit
122

123 cs = [ i ∗ f l o a t ( Limit ) /10 f o r i in range (31) ]
124 c s r = [ round ( elem , 2) f o r elem in cs ]
125 pr in t c s r
126

127 i f sys . argv [ 1 ] == ’−p ’ :
128 pr in t ”Process ”
129 outputData ( l i n e , c s r )
130 i f sys . argv [ 1 ] == ’−c ’ :
131 pr in t ”Make condor submit s t r u c tu r e f o r dag”
132 makeCapFile ( l i n e , c s r )
133 i f sys . argv [ 1 ] == ’−c l ean ’ :
134 pr in t ”Clean condor submit s t r u c tu r e ”
135 c l e a nF i l e s ( l i n e , c s r )
136

137 e l s e :
138 pr in t ”Usage : consub 1d . py <operat ion> <g r i d f i l e > ( I n t e r f a c e with condor ) ”
139 pr in t ” −p proce s s f i l e s ”
140 pr in t ” −c make condor submit”
141 pr in t ” − l count l i n e outages ”

Listing A.6: consub.py: Build HTCondor Submit Structure

1 #! . / python273/bin /python
2

3 import sys
4 from t o o l s import ∗
5

6 i f name ==” main ” :
7 i f l en ( sys . argv ) > 2 :
8 nominaldemand = 3668
9 pr in t ”Analyzing ”+argv [1 ]+ ” and output ing r e s u l t s to ”+argv [ 2 ] )

10 l o ad shedana l y s i s ( argv [ 1 ] , argv [ 2 ] , nominaldemand )
11

12 e l s e :
13 pr in t ”Usage : loadShed . py < ??? .dem > < ??? . l s a > ( S t a t i s t i c a l a n a l y s i s o f load

shed data ) ”

Listing A.7: loadshed.py: Take raw load shed and summarize

1 #! . / python273/bin /python
2

3 import sys
4 from t o o l s import ∗
5

6

7 i f name ==” main ” :
8

9 i f l en ( sys . argv ) >2:
10 ” Proce s s ing ”+argv [1 ]+ ” in to ” +argv [ 2 ]
11 t r i a l s = 10000
12 count ( argv [ 1 ] , argv [ 2 ] , t r i a l s )
13

14 e l s e :
15 pr in t ”Usage : countLines . py < ??? . l i n > < ??? . lao> ( Counts l i n e outages ) ”

Listing A.8: countLines.py: Take raw line out info and summarize
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1 l i n e , outages
2 14 ,14557 12 ,14557 11 ,14557 34 ,14557 141 ,12774 140 ,12533 112 ,12226 137 ,12002 37 ,11639

182 ,11629 15 ,11492 64 ,10682 31 ,10434 118 ,10251 106 ,9946 133 ,9912 42 ,9683 8 ,9438 6 ,9313
63 ,8946 38 ,8526 139 ,7934 122 ,7381 154 ,7071 158 ,6802 98 ,6689 97 ,6665 90 ,6554 77 ,6473
142 ,6261 89 ,6260 91 ,6201 54 ,6179 181 ,5863 126 ,5822 125 ,5521 88 ,4902 121 ,4857 138 ,4851
86 ,4723 74 ,4630 75 ,4578 100 ,4111 148 ,4059 41 ,3574 107 ,3421 120 ,3397 185 ,3373 178 ,3189
78 ,3058 156 ,3047 57 ,2992 61 ,2743 76 ,2652 52 ,2643 164 ,2629 87 ,2615 101 ,2568 45 ,2527
136 ,2464 23 ,2304 173 ,2165 175 ,2048 62 ,2047 105 ,2018 159 ,1975 40 ,1955 30 ,1841 163 ,1821
99 ,1803 72 ,1594 176 ,1569 96 ,1568 92 ,1542 93 ,1535 27 ,1529 165 ,1526 157 ,1525 81 ,1491
67 ,1462 177 ,1349 128 ,1192 103 ,1152 94 ,1122 50 ,1004 183 ,983 56 ,978 115 ,871 166 ,839
123 ,791 71 ,756 22 ,726 119 ,719 153 ,695 151 ,685 147 ,673 135 ,666 83 ,604 73 ,585 168 ,584
172 ,575 49 ,568 167 ,509 149 ,502 162 ,397 143 ,396 80 ,385 161 ,334 85 ,333 113 ,305 59 ,285
20 ,275 127 ,227 104 ,222 114 ,212 55 ,212 35 ,192 48 ,189 170 ,167 117 ,156 24 ,152 171 ,134
60 ,108 155 ,96 66 ,96 25 ,93 65 ,86 144 ,65 16 ,61 47 ,44 53 ,44 69 ,41 169 ,40 95 ,37 84 ,35 134 ,29
146 ,26 19 ,22 79 ,16 131 ,16 70 ,14 116 ,10 43 ,9 129 ,7 18 ,5 109 ,5 44 ,3 110 ,3 51 ,3 152 ,2 7 ,1

145 ,0 9 ,0 5 ,0 1 ,0 46 ,0 150 ,0 17 ,0 13 ,0 10 ,0 184 ,0 2 ,0 180 ,0 174 ,0 68 ,0 36 ,0 32 ,0 33 ,0
39 ,0 102 ,0 108 ,0 3 ,0 82 ,0 111 ,0 179 ,0 58 ,0 124 ,0 4 ,0 0 ,0 29 ,0 28 ,0 160 ,0 21 ,0 26 ,0 130 ,0
132 ,0

Listing A.9: point.lao: Line outage file from chosen design

A.3 Joint Chance Constraint Model

This code is publicly available on GitHub at https://github.com/eanderson4/pow-opt

A.4 Joint Chance Constraint with OPA Weighting

This code is publicly available on GitHub at https://github.com/eanderson4/opt-opa

https://github.com/eanderson4/pow-opt
https://github.com/eanderson4/opt-opa
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