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abstract

This dissertation consists of three independent essays in econometric theory.
In the first chapter, I propose a nonparametric iid bootstrap that achieves asymp-

totic refinements for t tests and confidence intervals (CI’s) based on the generalized
method of moments (GMM) estimators even when the model is misspecified. In
addition, my bootstrap does not require recentering the bootstrap moment function,
which has been considered as a critical procedure for bootstrapping GMM. The
elimination of the recentering combined with a robust covariance matrix renders the
bootstrap robust to misspecification. Regardless of whether the assumed model is
correctly specified or not, the misspecification-robust bootstrap achieves the same
sharp magnitude of refinements as the conventional bootstrap methods which establish
asymptotic refinements in the absence of misspecification using recentering. The
key procedure is to use a misspecification-robust variance estimator for GMM in
constructing the sample and the bootstrap versions of the t statistic. Two examples
of overidentified and possibly misspecified moment condition models are provided: (i)
Combining data sets, and (ii) invalid instrumental variables. Monte Carlo simulation
results are provided as well.

In the second chapter, I propose a nonparametric iid bootstrap for the empirical
likelihood (EL) estimators, including the exponentially tilted empirical likelihood
estimator. My bootstrap achieves sharp asymptotic refinements for t tests and CI’s
regardless of whether the assumed moment condition model is correctly specified or
not. This result is new, because asymptotic refinements of bootstrapping for the
EL estimators have not been established in the literature even under correct model
specifications. Monte Carlo simulation results are provided.

In the third chapter, I examine first-order validity and asymptotic refinements
of the bootstrap methods for GMM estimators, when the moment condition model
is locally misspecified. Local misspecification implies that the moment condition is
misspecified for any finite sample size, but the misspecification vanishes as the sample
size grows. I find that the conventional bootstrap methods are still first-order valid,
but they do not achieve asymptotic refinements anymore.
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1 asymptotic refinements of a
misspecification-robust bootstrap for
generalized method of moments estimators

1.1 Introduction

This paper proposes a nonparametric iid bootstrap that achieves asymptotic refine-
ments for t tests and confidence intervals (CI’s) based on the generalized method of
moments (GMM) estimators, without recentering the bootstrap moment function and
without assuming correct model specification. The recentering has been considered as
critical to get refinements of the bootstrap for overidentified models, but my bootstrap
achieves the same refinements without recentering. In addition, the conventional
bootstrap is valid only when the model is correctly specified, while I eliminate the
assumption without affecting the ability of achieving asymptotic refinements of the
bootstrap. Thus, the contribution of this paper may look too good to be true at
first glance, but it becomes apparent once we realize that those two eliminations are
in fact closely related, because the recentering makes the bootstrap non-robust to
misspecification.

Bootstrap critical values and CI’s have been considered as alternatives to first-
order asymptotic theory of GMM estimators of Hansen (1982), which has been
known to provide poor approximations of finite sample distributions of test statistics.
Hahn (1996) proves that the bootstrap distribution consistently approximates the
distribution of GMM estimators. Hall and Horowitz (1996) shows that the bootstrap
critical values provide higher-order improvements over the asymptotic critical values
of t tests and the test of overidentifying restrictions (henceforth J test) of GMM
estimators. The bootstrap procedure proposed by Hall and Horowitz (1996) is denoted
by the Hall-Horowitz bootstrap throughout the paper. Andrews (2002) proposes a
k-step bootstrap procedure that achieves the same higher-order improvements but
which is computationally more attractive than the original Hall-Horowitz bootstrap.
Brown and Newey (2002) suggests an alternative bootstrap procedure using the
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empirical likelihood (EL) probability. Hereinafter, the bootstrap procedure proposed
by Brown and Newey (2002) is denoted by the Brown-Newey bootstrap.

In the existing bootstrap methods for GMM estimators, the key procedure is
recentering so that the moment condition is satisfied in the sample. The Hall-Horowitz
bootstrap analytically recenters the bootstrap moment function with respect to the
sample mean of the moment function. Andrews (2002) and Horowitz (2003) also use
the same recentering procedure as the Hall-Horowitz bootstrap. The Brown-Newey
bootstrap recenters the bootstrap moment condition by employing the EL probability
in resampling the bootstrap sample. Thus, both the Hall-Horowitz bootstrap and the
Brown-Newey bootstrap can be referred as the recentered bootstrap.

Horowitz (2001) explains why recentering is important when applying the bootstrap
to overidentified moment condition models, where the dimension of a moment function
is greater than that of a parameter. In such models, the sample mean of the moment
function evaluated at the estimator is not necessarily equal to zero, though it converges
in probability to zero if the model is correctly specified. In principle, the bootstrap
considers the sample and the estimator as if they were the population and the true
parameter, respectively. This implies that the bootstrap version of the moment
condition, that the sample mean of the moment function evaluated at the estimator
should equal to zero, does not hold when the model is overidentified.

A naive approach to bootstrapping for overidentified GMM is to apply the standard
bootstrap procedure as is done for just-identified models, without any additional
correction, such as the recentering procedure. However, it turns out that this naive
bootstrap fails to achieve asymptotic refinements for t tests and CI’s, and jeopardizes
first-order validity for the J test. Hall and Horowitz (1996) and Brown and Newey
(2002) explain that the bootstrap and sample versions of test statistics would have
different asymptotic distributions without recentering, because of the violation of the
moment condition in the sample.

Although they address that the failure of the naive bootstrap is due to the mis-
specification in the sample, they do not further investigate the conditional asymptotic
distribution of the bootstrap GMM estimator under misspecification. Instead, they
eliminate the misspecification problem by recentering. In contrast, I observe that the
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conditional asymptotic covariance matrix of the bootstrap GMM estimator under
misspecification is different from the standard one. The conditional asymptotic
covariance matrix is consistently estimable by using the result of Hall and Inoue
(2003), and I construct the t statistic of which distribution is asymptotically standard
normal even under misspecification.

Hall and Inoue (2003) shows that the asymptotic distributions of GMM estimators
under misspecification are different from those of the standard GMM theory.1 In
particular, the asymptotic covariance matrix has additional non-zero terms in the
presence of misspecification. Hall and Inoue’s formulas for the asymptotic covariance
matrix encompass the case of correct specification as a special case. The variance
estimator using their formula is denoted by the Hall-Inoue variance estimator, here-
inafter. Imbens (1997) also describes the asymptotic covariance matrices of GMM
estimators robust to misspecification by using a just-identified formulation of overi-
dentified GMM. However, his description is general, rather than being specific to the
misspecification problem defined in this paper.

I propose a bootstrap procedure that uses the Hall-Inoue variance estimators in
constructing the sample and the bootstrap t statistics. The procedure ensures that
both t statistics satisfy the asymptotic pivotal condition without recentering. The
proposed bootstrap achieves asymptotic refinements, a reduction in the error of test
rejection probability and CI coverage probability by a factor of n−1 for symmetric
two-sided t tests and symmetric percentile-t CI’s, over the asymptotic counterparts.
The magnitude of the error is O(n−2), which is sharp. This is the same magnitude of
error shown in Andrews (2002), that uses the Hall-Horowitz bootstrap procedure for
independent and identically distributed (iid) data with slightly stronger assumptions
than those of Hall and Horowitz (1996).

Moreover, the proposed bootstrap procedure does not require the assumption
of correct model specification in the population. The distribution of the proposed
bootstrap t statistic mimics that of the sample t statistic which is asymptotically
pivotal regardless of misspecification. The sample t statistic is constructed using
the Hall-Inoue variance estimator. Thus, the proposed bootstrap is referred to as

1Hall and Inoue (2003) does not deal with bootstrapping, however.
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the misspecification-robust (MR) bootstrap. In contrast, the conventional first-order
asymptotics as well as the recentered bootstrap would not work under misspecification,
because the conventional t statistic is not asymptotically pivotal anymore.

I note that the MR bootstrap is not for the J test. To get the bootstrap distribution
of the J statistic, the bootstrap should be implemented under the null hypothesis that
the model is correctly specified. The recentered bootstrap imposes the null hypothesis
of the J test because it eliminates the misspecification in the bootstrap world by
recentering. In contrast, the MR bootstrap does not eliminate the misspecification
and thus, it does not mimic the distribution of the sample J statistic under the null.
Since the conventional asymptotic and bootstrap t tests and CI’s are valid in the
absence of misspecification, it is important to conduct the J test and report the result
that the model is not rejected. However, even a significant J test statistic would not
invalidate the estimation results if possible misspecification of the model is assumed
and the validity of t tests and CI’s is established under such assumption, as is done
in this paper.

The remainder of the paper is organized as follows. Section 1.2 discusses theoretical
and empirical implications of misspecified models and explains the advantage of using
the MR bootstrap t tests and CI’s. Section 1.3 outlines the main result. Section 1.4
defines the estimators and test statistics. Section 1.5 defines the nonparametric iid MR
bootstrap for iid data. Section 1.6 states the assumptions and establishes asymptotic
refinements of the MR bootstrap. Section 1.7 provides a heuristic explanation of
why the recentered bootstrap does not work under misspecification. Section 3.1
presents examples and Monte Carlo simulation results. Section 1.9 concludes the
paper. Section 1.10 contains Lemmas and proofs. A detailed calculations of the
examples in the following Sections are in Section 1.11.

1.2 Why We Care About Misspecification

Empirical studies in the economics literature often report a significant J statistic
along with GMM estimates, standard errors, and CI’s. Such examples include Imbens
and Lancaster (1994), Jondeau et al. (2004), Parker and Julliard (2005), and Agüero
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and Marks (2008), among others. Significant J statistics are also quite common in
the instrumental variables literature using two-stage least squares (2SLS) estimators,
where 2SLS estimator is a special case of GMM estimator.2

A significant J statistic means that the test rejects the null hypothesis of correct
model specification. For 2SLS estimators, this implies that at least one of the
instruments is invalid. The problem is that, even if models are likely to be misspecified,
inferences are made using the asymptotic theory for correctly specified models and the
estimates are interpreted as structural parameters that have economic implications.
Various authors justify this by noting that the J test over-rejects the correct null in
small samples.

On the other hand, comparing and evaluating the relative fit of competing models
have been an important research topic. Vuong (1989), Rivers and Vuong (2002), and
Kitamura (2003) suggest a test of the null hypothesis that tests whether two possibly
misspecified models provide equivalent approximation to the true model in terms of
the Kullback-Leibler information criteria (KLIC). Recent studies such as Chen et al.
(2007), Marmer and Otsu (2009), and Shi (2011) generalize and modify the test in
broader settings. Hall and Pelletier (2011) shows that the limiting distribution of the
Rivers-Vuong test statistic is non-standard that may not be consistently estimable
unless both models are misspecified. In this framework, therefore, all competing
models are misspecified and the test selects a less misspecified model. For applications
of the Rivers-Vuong test, see French and Jones (2004), Gowrisankaran and Rysman
(2009), and Bonnet and Dubois (2010).

Either for the empirical studies that report a significant J statistic, or for a model
selected by the Rivers-Vuong test, inferences about the parameters should take into
account a possible misspecification in the model. Otherwise, such inferences would
be misleading.

For the maximum likelihood (ML) estimators, White (1982) provides a theory
of the quasi-maximum likelihood when the assumed probability distribution is mis-
specified, which includes the standard ML theory as a special case. For GMM,
Hall and Inoue (2003) describes the asymptotic distribution of GMM estimators

2In the 2SLS framework, the Sargan test is often reported, which is a special case of the J test.
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Intercept Edu Age− 35 (Age− 35)2 J test
θ0 θ1 θ2 θ3 χ2(5)

ML 1.44∗
(.317)

−.009
(.093)

−.002
(.015)

−.002
(.002)

-

GMM 1.86∗
(.268)

−.109
(.084)

−.003
(.002)

−.003∗
(.0003)

11.4
[.044]

Note: Standard errors in parentheses. p-value in bracket.
∗: significant at 1% level

Table 1.1: Tables II and V of Imbens and Lancaster (1994)

under misspecification. In particular, Hall and Inoue’s asymptotic covariance matrix
encompasses the standard GMM covariance matrix in the absence of misspecification
as a special case, under the situations considered in this paper.

Example: Combining Micro and Macro Data
Imbens and Lancaster (1994) suggests an econometric procedure that uses nearly
exact information on the marginal distribution of economic variables to improve
accuracy of estimation. As an application, the authors estimate the following probit
model for employment: For an individual i,

P (Li = 1|Agei, Edui) = Φ(x′iθ) (1.1)

= Φ(θ0 + θ1 · Edui + θ2 · (Agei − 35) + θ3 · (Agei − 35)2),

with xi = (1, Edui, Agei − 35, (Agei − 35)2)′ and Φ(·) is the standard normal cdf.
Li is labor market status (Li = 1 when employed), Edui is education level in five
categories, and Agei is age in years. The sample is a micro data set on Dutch labor
market histories and the number of observations is 347. Typically, the probit model
is estimated by the ML estimator. The first row of Table 1.1 presents the ML point
estimates and the standard errors. None of the coefficients are statistically significant
except for that of the intercept.

To reduce the standard errors of the estimators, the authors use additional informa-
tion on the population from the national statistic. By using the statistical yearbooks
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for the Netherlands which contain 2.355 million observations, they calculated the
probability of being employed given the age category (denoted by pk where the index
for the age category k = 1, 2, 3, 4, 5) and the probability of being in a particular age
category (denoted by qk). These probabilities are considered as the true population
parameters.

The authors suggest to use GMM estimators with the moment function that
utilizes the information from the aggregate statistic. The second row of Table 1.1
reports the two-step efficient GMM point estimates and the standard errors. Now
the coefficient θ3 is statistically significant at 1% level and the authors argue:

...The standard deviation on the coefficients θ2 and θ3, which capture the
age-dependency of the employment probability decrease by a factor 7...Age
is not ancillary anymore and knowledge about its marginal distribution is
informative about θ.

Although they could successfully improve the accuracy of the estimators by com-
bining two data sets, their argument has a potential problem. The last column
of Table 1.1 reports the J test statistic and its p-value. Since the p-value is 4.4%,
the model is marginally rejected at 5% level. The problem is that, if the model is
truly misspecified, the reported GMM standard errors are inconsistent because the
conventional standard errors are only consistent under correct model specification.
Then the authors’ argument about the coefficient estimates may be flawed. This
problem could be avoided if the standard errors which are consistent even under
misspecification were used. The formulas for the misspecification-robust standard
errors for the GMM estimators are available in Section 4.3

When the model is misspecified, Eg(Xi, θ) 6= 0 for all θ, where θ is a parameter
of interest and g(Xi, θ) is a known moment function. Let θ̂ be the GMM estimator
and Ω−1 be a weight matrix. According to Hall and Inoue (2003), (i) the probability

3Since the original data sets used in Imbens and Lancaster (1994) are not available, I could not
calculate the robust standard errors. Instead, I provide a supporting simulation result with a simple
hypothetical model that utilizes additional population information in estimation in Section 1.8
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limit of θ̂ is the pseudo-true value that depends on the weight matrix such that

θ0(Ω−1) = arg min
θ

Eg(Xi, θ)′Ω−1Eg(Xi, θ), (1.2)

and (ii) the asymptotic distribution of the GMM estimator is

√
n(θ̂ − θ0(Ω−1))→d N(0,ΣMR), (1.3)

where ΣMR is the asymptotic covariance matrix under misspecification that is different
from ΣC , the asymptotic covariance matrix under correct specification. If the model
is correctly specified, then θ0(Ω−1) and ΣMR simplify to θ0 and ΣC , respectively.

The pseudo-true value can be interpreted as the best approximation to the true
value, if any, given the weight matrix. The dependence of the pseudo-true value on
the weight matrix may make the interpretation of the estimand unclear. Nevertheless,
the literature on estimation under misspecification considers the pseudo-true value
as a valid estimand, see Sawa (1978), White (1982), and Schennach (2007) for
more discussions. Other pseudo-true values that minimize the generalized empirical
likelihood without using a weight matrix, have better interpretations but comparing
different pseudo-true values is beyond the scope of this paper.

Although we cannot fix any potential bias in the pseudo-true value, we can report
the standard error of the GMM estimator as honest as possible. (1.3) implies that
the conventional t tests and CI’s are invalid under misspecification, because the
conventional standard errors are based on the estimate of ΣC . Misspecification-robust
standard errors are calculated using the estimate of ΣMR.

Unless one has a complete confidence on the model specification, the robust
Hall-Inoue variance estimators for GMM should be seriously considered. By using
the robust variance estimators, the resulting asymptotic t tests and CI’s are ro-
bust to misspecification. The MR bootstrap t tests and CI’s improve upon these
misspecification-robust asymptotic t tests and CI’s in terms of the magnitude of
errors in test rejection probability and CI coverage probability. A summary on the
advantage of the MR bootstrap over the existing asymptotic and bootstrap t tests
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Correct Model Misspecified Model
Critical Value† First-order Asymptotic First-order Asymptotic

/ CI‡ Validity Refinements Validity Refinements
Conventional Y - - -Asymptotic

Naive Y - - -Bootstrap
Recentered Y Y - -Bootstrap

Hall-Inoue Y - Y -Asymptotic
MR Y Y Y YBootstrap§

†: The critical values are for t tests.
‡: The bootstrap CI’s are the percentile-t intervals.
§: MR bootstrap denotes the misspecification-robust bootstrap proposed by the author.

Table 1.2: Comparison of the Asymptotic and Bootstrap Critical Values

and CI’s is given in Table 1.2.

1.3 Outline of the Results

In this section, I outline the misspecification-robust (MR) bootstrap. The idea of the
MR bootstrap procedure can be best understood in the same framework with Hall
and Horowitz (1996) and Brown and Newey (2002), as is described below.

Suppose that the random sample is χn = {Xi : i ≤ n} from a probability
distribution P . Let F be the corresponding cumulative distribution function (cdf).
The empirical distribution function (edf) is denoted by Fn. The GMM estimator, θ̂,
minimizes a sample criterion function, Jn(θ). Suppose that θ is a scalar for notational
brevity. Let Σ̂ be a consistent estimator of the asymptotic variance of

√
n(θ̂−plim(θ̂)).

I also define the bootstrap sample. Let χ∗nb = {X∗i : i ≤ nb} be a sample of
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random vectors from the empirical distribution P ∗ conditional on χn with the edf
Fn. In this section, I distinguish n and nb, which helps understanding the concept
of the conditional asymptotic distribution.4 I set n = nb from the following section.
Define J∗nb(θ) and Σ̂∗ as Jn(θ) and Σ̂ are defined, but with χ∗nb in place of χn. The
bootstrap GMM estimator θ̂∗ minimizes J∗nb(θ).

Consider a symmetric two-sided test of the null hypothesis H0 : θ = θ0 with level
α. The t statistic under H0 is T (χn) = (θ̂ − θ0)/

√
Σ̂/n, a functional of χn. One

rejects the null hypothesis if |T (χn)| > z for a critical value z. I also consider a
100(1− α)% CI for θ0, [θ̂ ± z

√
Σ̂/n]. For the asymptotic test or the asymptotic CI,

set z = zα/2, where zα/2 is the 1 − α/2 quantile of a standard normal distribution.
For the bootstrap test or the symmetric percentile-t interval, set z = z∗|T |,α, where
z∗|T |,α is the 1− α quantile of the distribution of |T (χ∗nb)| ≡ |θ̂

∗ − θ̂|/
√

Σ̂∗/nb.
Let Hn(z, F ) = P (T (χn) ≤ z|F ) and H∗nb(z, Fn) = P (T (χ∗nb) ≤ z|Fn). According

to Hall (1997), under regularity conditions, Hn(z, F ) and H∗nb(z, Fn) allow Edgeworth
expansion of the form

Hn(z, F ) = H∞(z, F ) + n−1/2q1(z, F ) + n−1q2(z, F ) + o(n−1), (1.4)

H∗nb(z, Fn) = H∗∞(z, Fn) + n
−1/2
b q1(z, Fn) + n−1

b q2(z, Fn) + op(n−1
b ) (1.5)

uniformly over z, where q1(z, F ) is an even function of z for each F , q2(z, F ) is an
odd function of z for each F , q2(z, Fn)→ q2(z, F ) almost surely as n→∞ uniformly
over z, H∞(z, F ) = limn→∞Hn(z, F ) and H∗∞(z, Fn) = limnb→∞H

∗
nb

(z, Fn). If T (·) is
asymptotically pivotal, then H∞(z, F ) = H∗∞(z, Fn) = Φ(z) where Φ is the standard
normal cdf, because H∞(z, F ) and H∗∞(z, Fn) do not depend on the underlying cdf.

Using (1.4) and the fact that q1 is even, it can be shown that under H0,

P (|T (χn)| > zα/2) = α +O(n−1), P (θ0 ∈ CI) = 1− α +O(n−1), (1.6)

where CI = [θ̂ ± zα/2
√

Σ̂/n]. In other words, the error in the rejection probability
4nb is the resample size and should be distinguished from the number of bootstrap replication

(or resampling), often denoted by B. See Bickel and Freedman (1981) for further discussion.
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and coverage probability of the asymptotic two-sided t test and CI is O(n−1).
For the bootstrap t test and CI, subtract (1.4) from (1.5), use the fact that q1 is

even, and set nb = n to show, under H0,

P (|T (χn)| > z∗|T |,α) = α + o(n−1), P (θ0 ∈ CI∗) = 1− α + o(n−1) (1.7)

where CI∗ = [θ̂± z∗|T |,α
√

Σ̂/n]. The elimination of the leading terms in (1.4) and (1.5)
is the source of asymptotic refinements of bootstrapping the asymptotically pivotal
statistics (Beran (1988); Hall (1997)).

First suppose that the model is correctly specified, Eg(Xi, θ0) = 0 for unique θ0,
where E[·] is the expectation with respect to the cdf F. The conventional t statistic
TC(χn) = (θ̂ − θ0)/

√
Σ̂C/n, where Σ̂C is the standard GMM variance estimator, is

asymptotically pivotal. However, a naive bootstrap t statistic without recentering,5

TC(χ∗nb) = (θ̂∗ − θ̂)/
√

Σ̂∗C/nb, is not asymptotically pivotal because the moment
condition under Fn is misspecified, EFng(X∗i , θ̂) = n−1∑n

i=1 g(Xi, θ̂) 6= 0 almost
surely when the model is overidentified. If the moment condition is misspecified, the
conventional GMM variance estimator is no longer consistent, according to Hall and
Inoue (2003). Note that the bootstrap moment condition is evaluated at θ̂, where θ̂
is considered as the true value given Fn.

The recentered bootstrap makes the bootstrap moment condition hold so that
the recentered bootstrap t statistic is asymptotically pivotal. For instance, the
Hall-Horowitz bootstrap uses a recentered moment function g∗(X∗i , θ) = g(X∗i , θ)−
n−1∑n

i=1 g(Xi, θ̂) so that EFng∗(X∗i , θ̂) = 0 almost surely. The Brown-Newey boot-
strap uses the EL distribution function F̂EL(z) = n−1∑n

i=1 p̂i1(Xi ≤ z) in resampling,
where p̂i is the EL probability and 1(·) is an indicator function, instead of using Fn,
so that EF̂ELg(X∗i , θ̂) = 0 almost surely.

The MR bootstrap uses the original non-recentered moment function in imple-
menting the bootstrap and resamples according to the edf Fn. This is similar to
the naive bootstrap. The distinction is that the MR bootstrap uses the Hall-Inoue

5A naive bootstrap for GMM is constructing θ̂∗ and Σ̂∗ in the same way we construct θ̂ and Σ̂,
using the bootstrap sample χ∗nb

in place of χn.
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variance estimator in constructing the sample and the bootstrap versions of the t
statistic instead of using the conventional GMM variance estimator. The sample
t statistic is TMR(χn) = (θ̂ − θ0)/

√
Σ̂MR/n, where Σ̂MR is a consistent estimator

of ΣMR and ΣMR is the asymptotic variance of the GMM estimator regardless of
misspecification. Then, TMR(χn) is asymptotically pivotal.

The MR bootstrap t statistic is TMR(χ∗nb) = (θ̂∗ − θ̂)/
√

Σ̂∗MR/nb, where Σ̂∗MR

uses the same formula as Σ̂MR with χ∗nb in place of χn. Then, Σ̂∗MR is consistent
for the conditional asymptotic variance of the bootstrap GMM estimator, ΣMR|Fn ,
almost surely, even if the bootstrap moment condition is not satisfied. As a result,
TMR(χ∗nb) is asymptotically pivotal. Therefore, the MR bootstrap achieves asymptotic
refinements without recentering under correct specification.

Now suppose that the model is misspecified in the population, Eg(Xi, θ) 6= 0 for
all θ. The advantage of the MR bootstrap is that the assumption of correct model
is not required for both the sample and the bootstrap t statistics. Since TMR(χn)
and TMR(χ∗nb) are constructed by using the Hall-Inoue variance estimator, they are
asymptotically pivotal regardless of model misspecification. Thus, the ability of
achieving asymptotic refinements of the MR bootstrap is not affected.

The conclusion changes dramatically for the recentered bootstrap, however. First
of all, the conventional t statistic TC(χn) is no longer asymptotically pivotal and
this invalidates the use of the asymptotic t test and CI’s. Moreover, since the
recentered bootstrap mimics the distribution of TC(χn) under correct specification,
the recentered bootstrap t test and CI’s are not even first-order valid. The conditional
and unconditional distributions of the recentered bootstrap t statistic is described in
Section 1.7.

Let z∗|TMR|,α be the 1−α quantile of the distribution of |TMR(χ∗nb)| and let CI∗MR =
[θ̂ ± z∗|TMR|,α

√
Σ̂MR/n]. Using the MR bootstrap without assuming the correct model,

I show that, under H0,

P (|TMR(χn)| > z∗|TMR|,α) = α +O(n−2), P (θ0 ∈ CI∗MR) = 1− α +O(n−2). (1.8)

This rate is sharp. The further reduction in the error from o(n−1) of (1.7) to O(n−2)
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of (1.8) is based on the argument given in Hall (1988). Andrews (2002) shows the
same sharp bound using the Hall-Horowitz bootstrap and assuming the correct model.

1.4 Estimators and Test Statistics

Given an Lg×1 vector of moment conditions g(Xi, θ), where θ is Lθ×1, and Lg ≥ Lθ,
define a correctly specified and a misspecified model as follows: The model is correctly
specified if there exists a unique value θ0 in Θ ⊂ RLθ such that Eg(Xi, θ0) = 0, and
the model is misspecified if there exists no θ in Θ ⊂ RLθ such that Eg(Xi, θ) = 0.
That is, Eg(Xi, θ) = g(θ) where g : Θ→ RLg such that ‖g(θ)‖ > 0 for all θ ∈ Θ, if
the model is misspecified. Assume that the model is possibly misspecified.

The (pseudo-)true parameter θ0 minimizes the population criterion function,

J(θ,Ω−1) = Eg(Xi, θ)′Ω−1Eg(Xi, θ), (1.9)

where Ω−1 is a weight matrix. Since the model is possibly misspecified, the moment
condition and the population criterion may not equal to zero for any θ ∈ Θ. In this
case, the minimizer of the population criterion depends on Ω−1 and is denoted by
θ0(Ω−1). We call θ0(Ω−1) the pseudo-true value. The dependence vanishes when the
model is correctly specified.

Consider two forms of GMM estimator. The first one is a one-step GMM estimator
using the identity matrix ILg as a weight matrix, which is the common usage. The
second one is a two-step GMM estimator using a weight matrix constructed from
the one-step GMM estimator. Under correct specifications, the common choice of
the weight matrix is an asymptotically optimal one. However, the optimality is
not established under misspecification because the asymptotic covariance matrix of
the two-step GMM estimator cannot be simplified to the efficient one under correct
specification.
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The one-step GMM estimator, θ̂(1), solves

min
θ∈Θ

Jn(θ, ILg) =
(
n−1

n∑
i=1

g(Xi, θ)
)′ (

n−1
n∑
i=1

g(Xi, θ)
)
. (1.10)

The two-step GMM estimator, θ̂(2) solves

min
θ∈Θ

Jn(θ,Wn(θ̂(1))) ≡
(
n−1

n∑
i=1

g(Xi, θ)
)′
Wn(θ̂(1))

(
n−1

n∑
i=1

g(Xi, θ)
)
, (1.11)

where6

Wn(θ) =
(
n−1

n∑
i=1

(g(Xi, θ)− gn(θ))(g(Xi, θ)− gn(θ))′
)−1

, (1.12)

and gn(θ) = n−1∑n
i=1 g(Xi, θ). Suppress the dependence of Wn on θ and write

Wn ≡ Wn(θ̂(1)). Under regularity conditions, the GMM estimators are consistent: θ̂(1)

converges to a pseudo-true value θ0(I) ≡ θ0(1), and θ̂(2) converges to a pseudo-true value
θ0(W ) ≡ θ0(2). Under misspecification, θ0(1) 6= θ0(2) in general. The probability limit
of the weight matrix Wn is W =

{
E[(g(Xi, θ0(1))− g0(1))(g(Xi, θ0(1))− g0(1))′]

}−1
,

where g0(j) = Eg(Xi, θ0(j)) for j = 1, 2.
To further simplify notation, let G(Xi, θ) = (∂/∂θ′)g(Xi, θ),

G0(j) = EG(Xi, θ0(j)), G
(2)
0(j) = E

[
∂

∂θ′
vec

{
G(Xi, θ0(j))

}]
, (1.13)

and an Lθ×Lθ matrix H0(j) = G′0(j)Ω−1G0(j) +(g′0(j)Ω−1⊗ ILθ)G
(2)
0(j), where Ω−1 = ILg

for j = 1 and Ω−1 = W for j = 2. Let

Gn(θ) = n−1
n∑
i=1

G(Xi, θ), G(2)
n (θ) = n−1

n∑
i=1

∂

∂θ′
vec {G(Xi, θ)} , (1.14)

6One may consider an Lg × Lg nonrandom positive-definite symmetric matrix for the one-step
GMM estimator or the uncentered weight matrix, Wn(θ) = (n−1∑n

i=1 g(Xi, θ)g(Xi, θ)′)−1, for the
two-step GMM estimator. This does not affect the main result of the paper, though the resulting
pseudo-true values are different. In practice, however, the uncentered weight matrix may not behave
well under misspecification, because the elements of the uncentered weight matrix include bias terms
of the moment function. See Hall (2000) for more discussion on the issue.
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Gn(j) = Gn(θ̂(j)), and Hn(j) = G′n(j)Ω−1Gn(j) + (g′n(j)Ω−1⊗ ILθ)G
(2)
n(j), where Ω−1 = ILg

for j = 1 and Ω−1 = Wn for j = 2. Let Ω1 and Ω2 denote positive-definite matrices
such that

√
n

 (gn(θ0(1))− g0(1))
(Gn(θ0(1))−G0(1))′g0(1)

→d N

(
0, Ω1

(Lg+Lθ)×(Lg+Lθ)

)
, (1.15)

and

√
n


(gn(θ0(2))− g0(2))

(Gn(θ0(2))−G0(2))′Wg0(2)

(Wn −W )g0(2)

→d N

(
0, Ω2

(2Lg+Lθ)×(2Lg+Lθ)

)
. (1.16)

To obtain the misspecification-robust asymptotic covariance matrix for the GMM
estimator, I use Theorems 1 and 2 of Hall and Inoue (2003). Then,

√
n(θ̂(j) − θ0(j))→d N(0,ΣMR(j)), (1.17)

where ΣMR(j) = H−1
0(j)VjH

−1
0(j), for j = 1, 2,

V1 =
[
G′0(1) ILθ

]
Ω1
[
G′0(1) ILθ

]′
, (1.18)

V2 =
[
G′0(2)W ILθ G′0(2)

]
Ω2
[
G′0(2)W ILθ G′0(2)

]′
.

Under correct specifications, ΣMR(1) and ΣMR(2) reduce to the standard asymptotic
covariance matrices of the GMM estimators, ΣC(1) and ΣC(2) respectively, where

ΣC(1) = (G′0G0)−1G′0ΩCG0(G′0G0)−1, ΣC(2) = (G′0Ω−1
C G0)−1, (1.19)

and ΩC = E[g(Xi, θ0)g(Xi, θ0)′].
A consistent estimator of ΣMR(j) is Σ̂MR(j) = H−1

n(j)Vn(j)H
−1′
n(j) for j = 1, 2, where

Vn(1) =
[
G′n(1) ILθ

]
Ωn(1)

[
G′n(1) ILθ

]′
, (1.20)

Vn(2) =
[
G′n(2)Wn ILθ G′n(2)

]
Ωn(2)

[
G′n(2)Wn ILθ G′n(2)

]′
,



16

and Ωn(j) is a consistent estimator of Ωj, with the population moments replaced by
the sample moments. In particular,

Ωn(1) = n−1
n∑
i=1

 g(Xi, θ̂(1))− gn(1)

(G(Xi, θ̂(1))−Gn(1))′gn(1)

 g(Xi, θ̂(1))− gn(1)

(G(Xi, θ̂(1))−Gn(1))′gn(1)

′ , (1.21)

Ωn(2) = n−1
n∑
i=1


g(Xi, θ̂(2))− gn(2)

(G(Xi, θ̂(2))−Gn(2))′Wngn(2)

Wign(2)




g(Xi, θ̂(2))− gn(2)

(G(Xi, θ̂(2))−Gn(2))′Wngn(2)

Wign(2)


′

,

where7

Wi = −Wn ·
(
(g(Xi, θ̂(1))− gn(θ̂(1)))(g(Xi, θ̂(1))− gn(θ̂(1)))′ −W−1

n

)
·Wn. (1.22)

The diagonal elements of the covariance estimator Σ̂MR(j) for j = 1, 2 are the Hall-
Inoue variance estimators. In practice, the estimation of the misspecification-robust
covariance matrices does not involve much complication. What we need to calculate
additionally is the second derivative of the moment function.

Let θk, θ0(j),k, and θ̂(j),k denote the kth elements of θ, θ0(j), and θ̂(j) respectively.
Let (Σ̂MR(j))kk denote the (k, k)th element of Σ̂MR(j). The t statistic for testing the
null hypothesis H0 : θk = θ0(j),k is

TMR(j) = θ̂(j),k − θ0(j),k√
(Σ̂MR(j))kk/n

, (1.23)

where j = 1 for the one-step GMM estimator and j = 2 for the two-step GMM
estimator.8 TMR(j) is misspecification-robust because it has an asymptotic N(0, 1)
distribution under H0, without assuming the correct model. TMR(j) is different from
the conventional t statistic, because Σ̂C(j) 6= Σ̂MR(j) in general even under correct
specification, for j = 1, 2. Note that Σ̂C(j) is a consistent estimator for ΣC(j), the
asymptotic covariance matrix under correct specification for j = 1, 2.

7Note that Wn −W = −W (W−1
n −W−1)Wn.

8TMR(j) ≡ TMR(j)(χn). I suppress the dependence of TMR(j) on χn for notational brevity.
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The MR bootstrap described in the next section achieves asymptotic refinements
over the misspecification-robust asymptotic t test and CI, rather than the conventional
non-robust ones. Define the misspecification-robust asymptotic t test and CI as follows.
The symmetric two-sided t test with asymptotic significance level α rejects H0 if
|TMR(j)| > zα/2, where zα/2 is the 1− α/2 quantile of a standard normal distribution.
The corresponding CI for θ0(j),k with asymptotic confidence level 100(1 − α)% is
CIMR(j) = [θ̂(j),k±zα/2

√
(Σ̂MR(j))kk/n], j = 1, 2. The error in the rejection probability

of the t test with zα/2 and coverage probability of CIMR(j) is O(n−1): Under H0,
P
(
|TMR(j)| > zα/2

)
= α + O(n−1) and P

(
θ0(j),k ∈ CIMR(j)

)
= 1 − α + O(n−1), for

j = 1, 2.

1.5 The Misspecification-Robust Bootstrap
Procedure

The nonparametric iid bootstrap is implemented by sampling X∗1 , · · · , X∗n randomly
with replacement from the sample X1, · · · , Xn.

The bootstrap one-step GMM estimator, θ̂∗(1) solves:

min
θ∈Θ

J∗n(θ, ILg) =
(
n−1

n∑
i=1

g(X∗i , θ)
)′ (

n−1
n∑
i=1

g(X∗i , θ)
)
, (1.24)

and the bootstrap two-step GMM estimator θ̂∗(2) solves

min
θ∈Θ

J∗n(θ,W ∗
n(θ̂∗(1))) =

(
n−1

n∑
i=1

g(X∗i , θ)
)′
W ∗
n(θ̂∗(1))

(
n−1

n∑
i=1

g(X∗i , θ)
)
, (1.25)

where

W ∗
n(θ) =

(
n−1

n∑
i=1

(g(X∗i , θ)− g∗n(θ))(g(X∗i , θ)− g∗n(θ))′
)−1

, (1.26)

and g∗n(θ) = n−1∑n
i=1 g(X∗i , θ). Suppress the dependence of W ∗

n on θ and write
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W ∗
n ≡ W ∗

n(θ̂∗(1)). To further simplify notation, let

G∗n(θ) = n−1
n∑
i=1

∂

∂θ′
g(X∗i , θ), G(2)∗

n (θ) = n−1
n∑
i=1

∂

∂θ′
vec

{
∂

∂θ′
g(X∗i , θ)

}
, (1.27)

G∗n(j) = G∗n(θ̂∗(j)), and H∗n(j) = G∗
′

n(j)Ω−1G∗n(j) + (g∗′n(j)Ω−1⊗ ILθ)G
(2)∗
n(j), where Ω−1 = ILg

for j = 1 and Ω−1 = W ∗
n for j = 2.

The bootstrap version of the robust covariance matrix estimator Σ̂MR(j) is
Σ̂∗MR(j) = H∗−1

n(j)V
∗
n(j)H

∗−1′
n(j) for j = 1, 2, where

V ∗n(1) =
[
G∗
′

n(1) ILg
]

Ω∗n(1)

[
G∗
′

n(1) ILg
]′
, (1.28)

V ∗n(2) =
[
G∗
′

n(2)W
∗
n ILg G∗

′

n(2)

]
Ω∗n(2)

[
G∗
′

n(2)W
∗
n ILg G∗

′

n(2)

]′
,

and Ω∗n(j) is constructed by replacing the sample moments in Ωn(j) with the bootstrap
sample moments. In particular,

Ω∗n(1) = n−1
n∑
i=1

 g(X∗i , θ̂∗(1))− g∗n(1)

(G(X∗i , θ̂∗(1))−G∗n(1))′g∗n(1)

 g(X∗i , θ̂∗(1))− g∗n(1)

(G(X∗i , θ̂∗(1))−G∗n(1))′g∗n(1)

′ , (1.29)

Ω∗n(2) = n−1
n∑
i=1


g(X∗i , θ̂∗(2))− g∗n(2)

(G(X∗i , θ̂∗(2))−G∗n(2))′W ∗
ng
∗
n(2)

W ∗
i g
∗
n(2)




g(X∗i , θ̂∗(2))− g∗n(2)

(G(X∗i , θ̂∗(2))−G∗n(2))′W ∗
ng
∗
n(2)

W ∗
i g
∗
n(2)


′

,

where

W ∗
i = −W ∗

n ·
(
(g(X∗i , θ̂∗(1))− g∗n(θ̂∗(1)))(g(X∗i , θ̂∗(1))− g∗n(θ̂∗(1)))′ −W ∗−1

n

)
·W ∗

n . (1.30)

The MR bootstrap t statistic is

T ∗MR(j) =
θ̂∗(j),k − θ̂(j),k√
(Σ̂∗MR(j))kk/n

, (1.31)
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for j = 1, 2.9 Let z∗|TMR(j)|,α denote the 1− α quantile of |T ∗MR(j)|, j = 1, 2. Following
Andrews (2002), we define z∗|TMR(j)|,α to be a value that minimizes |P ∗(|T ∗MR(j)| ≤
z)− (1−α)| over z ∈ R, since the distribution of |T ∗MR(j)| is discrete. The symmetric
two-sided bootstrap t test of H0 : θk = θ0(j),k versus H1 : θk 6= θ0(j),k rejects if
|TMR(j)| > z∗|TMR(j)|,α, j = 1, 2, and this test is of asymptotic significance level α. The
100(1− α)% symmetric percentile-t interval for θ0(j),k is, for j = 1, 2,

CI∗MR(j) =
[
θ̂(j),k ± z∗|TMR(j)|,α

√
(Σ̂MR(j))kk/n

]
. (1.32)

The MR bootstrap t statistic differs from the recentered bootstrap t statistic.
First, the MR bootstrap GMM estimator, unlike the Hall-Horowitz bootstrap, is
calculated from the original moment function with the bootstrap sample. Second,
the robust covariance matrix estimator, Σ̂∗MR(j), is used to construct the bootstrap t
statistic. In the recentered bootstrap, the conventional covariance matrix estimator
of Hansen (1982) is used.

1.6 Main Result

Assumptions

The assumptions are analogous to those of Hall and Horowitz (1996) and Andrews
(2002). The main difference is that I do not assume correct model specification. If
the model is misspecified, then the probability limits of the one-step and the two-step
GMM estimators are different. Thus, we need to distinguish θ0(1) from θ0(2), the
probability limit of θ̂(1) and θ̂(2), respectively. The assumptions are modified to hold
for both pseudo-true values. If the model happens to be correctly specified, then the
pseudo-true values become identical.

Let f(Xi, θ) denote the vector containing the unique components of g(Xi, θ) and
g(Xi, θ)g(Xi, θ)′, and their derivatives through order d1 ≥ 6 with respect to θ. Let

9T ∗MR(j) ≡ TMR(j)(χ∗n). I suppress the dependence of T ∗MR(j) on χ∗n for notational brevity.
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(∂m/∂θm)g(Xi, θ) and (∂m/∂θm)f(Xi, θ) denote the vectors of partial derivatives with
respect to θ of order m of g(Xi, θ) and f(Xi, θ), respectively.

Assumption 1.1. Xi, i = 1, 2, ... are iid.

Assumption 1.2. (a) Θ is compact and θ0(1) and θ0(2) are interior points of Θ.
(b) θ̂(1) and θ̂(2) minimize Jn(θ, ILg) and Jn(θ,Wn) over θ ∈ Θ, respectively; θ0(1) and
θ0(2) are the pseudo-true values that uniquely minimize J(θ, ILg) and J(θ,W ) over θ ∈
Θ, respectively; for some function Cg(x), ‖g(x, θ1)−g(x, θ2)‖ < Cg(x)‖θ1−θ2‖ for all
x in the support of X1 and all θ1, θ2 ∈ Θ; and ECq1

g (X1) <∞ and E‖g(X1, θ)‖q1 <∞
for all θ ∈ Θ for all 0 < q1 <∞.

Assumption 1.3. The followings hold for j = 1, 2.
(a) Ωj is positive definite.
(b) H0(j) is nonsingular and G0(j) is full rank Lθ.
(c) g(x, θ) is d = d1 + d2 times differentiable with respect to θ on N0(j), where N0(j) is
some neighborhood of θ0(j), for all x in the support of X1, where d1 ≥ 6 and d2 ≥ 5.
(d) There is a function C∂f (X1) such that ‖(∂m/∂θm)f(X1, θ)−(∂m/∂θm)f(X1, θ0(j))‖ ≤
C∂f (X1)‖θ − θ0(j)‖ for all θ ∈ N0(j) for all m = 0, ..., d2.
(e) ECq2

∂f(X1) < ∞ and E‖(∂m/∂θm)f(X1, θ0(j))‖q2 ≤ Cf < ∞ for all m = 0, ..., d2

for some constant Cf (that may depend on q2) and all 0 < q2 <∞.
(f) f(X1, θ0(j)) is once differentiable with respect to X1 with uniformly continuous
first derivative.

Assumption 1.4. For t ∈ Rdim(f) and j = 1, 2, lim sup‖t‖→∞
∣∣∣E (exp(it′f(X1, θ0(j)))

)∣∣∣ <
1, where i =

√
−1.

Assumption 1.1 says that we restrict our attention to iid sample. Hall and
Horowitz (1996) and Andrews (2002) deal with dependent data. I focus on iid sample
and nonparametric iid bootstrap to emphasize the role of the Hall-Inoue variance
estimator in implementing the MR bootstrap and to avoid the complications arising
when constructing blocks to deal with dependent data. For example, the Hall-Horowitz
bootstrap needs an additional correction factor as well as the recentering procedure
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for the bootstrap t statistic with dependent data. The correction factor is required to
properly mimic the dependence between the bootstrap blocks in implementing the
MR bootstrap. I do not investigate this issue further in this paper.

Assumptions 1.2-1.3 are similar to Assumptions 2-3 of Andrews (2002), except
that I eliminate the correct model assumption. In particular, I relax Assumption 2 of
Hall and Horowitz (1996) and Assumption 2(b)(i) of Andrews (2002). The moment
conditions in Assumptions 1.2-1.3 are not primitive, but they lead to simpler results
as in Andrews (2002). Assumption 1.4 is the standard Cramér condition for iid
sample, that is needed to get Edgeworth expansions.

Asymptotic Refinements of the Misspecification-Robust
Bootstrap

Theorem 1.1 shows that the MR bootstrap symmetric two-sided t test has rejection
probability that is correct up to O(n−2), and the same magnitude of convergence
holds for the MR bootstrap symmetric percentile-t interval. This result extends the
results of Theorem 3 ofHall and Horowitz (1996) and Theorem 2(c) of Andrews (2002),
because their results hold only under correctly specified models. In other words, the
following Theorem establishes that the MR bootstrap achieves the same magnitude
of asymptotic refinements with the existing bootstrap procedures, without assuming
the correct model and without the recentering procedure.

Theorem 1.1. Suppose Assumptions 1.1-1.4 hold. Under H0 : θk = θ0(j),k, for
j = 1, 2,

P (|TMR(j)| > z∗|TMR(j)|,α) = α+O(n−2) or P (θ0(j),k ∈ CI∗MR(j)) = 1−α+O(n−2),

where z∗|TMR(j)|,α is the 1− α quantile of the distribution of |T ∗MR(j)|.

Since P
(
|TMR(j)| > zα/2

)
= α +O(n−1), the bootstrap critical value has a reduc-

tion in the error of rejection probability by a factor of n−1 for symmetric two-sided t
tests. The symmetric percentile-t interval is formulated by the symmetric two-sided t
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test, and the CI also has a reduction in the error of coverage probability by a factor
of n−1.

We note that asymptotic refinements for the J test are not established in Theorem
1.1. The MR bootstrap is implemented with a misspecified moment condition in the
sample, E∗g(X∗i , θ̂) 6= 0, where E∗ is the expectation over the bootstrap sample. Thus,
the distribution of the MR bootstrap J statistic does not consistently approximate that
of the sample J statistic under the null hypothesis, which is Eg(Xi, θ0) = 0. Though
it is typical to report the J test result in practice, the test itself has little relevance
in this context since the Theorem holds without the assumption of Eg(Xi, θ0) = 0.

The proof of the Theorem proceeds by showing that the misspecification-robust t
statistic studentized by the Hall-Inoue variance estimator can be approximated by
a smooth function of sample moments. Once we establish that the approximation
is close enough, then we can use the result of Edgeworth expansions for a smooth
function in Hall (1997). The proof extensively follows those of Hall and Horowitz
(1996) and Andrews (2002). The differences are that I allow for distinct probability
limits of the one-step and the two-step GMM estimators, and that no special bootstrap
version of the test statistic is needed for the MR bootstrap. Indeed, the recentering
creates more complication than it seems even under correct specification, because
θ̂(1) 6= θ̂(2) in general, which in turn implies that there are two (pseudo-)true values
in the bootstrap world. This issue is not explicitly explained in Hall and Horowitz
(1996) and Andrews (2002). Therefore, the idea of the proof given in this paper is
more straightforward than theirs.

1.7 The Recentered Bootstrap under
Misspecification

In this section, I discuss about the validity of the recentered bootstrap under misspeci-
fication. Let θ be a scalar for notational brevidy. Consider the conventional t statistic
TC(j)(χn) = (θ̂(j) − θ0(j))/

√
Σ̂C(j)/n for j = 1, 2, where Σ̂C(j) is the conventional

GMM variance estimator of Hansen (1982). Since Σ̂C(j) is inconsistent for the true
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asymptotic variance, TC(j)(χn) is not asymptotically pivotal under misspecification.
Therefore, the resulting asymptotic t test and CI would have incorrect rejection
probability and coverage probability. Since the asymptotic pivotal condition of the
sample and the bootstrap versions of the test statistic is critical to get asymptotic
refinements, it is obvious that any bootstrap method would not provide refinements
as long as we use the conventional t statistic.

Since the recentered bootstrap depends on the assumption of correct model in
achieving asymptotic refinements, it is inappropriate to use the recentered bootstrap
if the model is possibly misspecified. Nevertheless, I provide a heuristic description
of the conditional and unconditional asymptotic distributions of the Hall-Horowitz
bootstrap t statistics under misspecification.

Let θ̂∗R(j) be the Hall-Horowitz bootstrap GMM estimator with the recentered
moment function. By standard consistency arguments, it can be shown that θ̂∗R(j) →p

θ̂(j) conditional on the sample. Since the model is correctly specified in the sample, we
apply standard asymptotic normality arguments as in Newey and McFadden (1994)
to get the conditional asymptotic variance of the Hall-Horowitz bootstrap GMM
estimator, ΣR(j)|Fn . By Glivenko-Cantelli theorem, Fn(z) converges to F (z) uniformly
in z ∈ R, and thus, ΣR(j)|Fn →p ΣR(j) almost surely, where ΣR(j) is the (unconditional)
asymptotic variance of the distribution of

√
n(θ̂∗R(j)− θ̂(j)). The formulas are given by

ΣR(1) = (G′0(1)G0(1))−1G′0(1)ΩR(1)G0(1)(G′0(1)G0(1))−1, (1.33)

ΣR(2) = (G′0(2)WRG0(2))−1G′0(2)WRΩR(2)WRG0(2)(G′0(2)WRG0(2))−1,

ΩR(1) = E(g(Xi, θ0(1))− g0(1))(g(Xi, θ0(1))− g0(1))′,

ΩR(2) = E(g(Xi, θ0(2))− g0(2))(g(Xi, θ0(2))− g0(2))′,

WR =
[
E(g(Xi, θ0(1))− g0(2))(g(Xi, θ0(1))− g0(2))′

]−1
.

The above formulas describe the asymptotic variance of the Hall-Horowitz boot-
strap GMM estimators under misspecification. One of the fundamental reasons for the
failure of the Hall-Horowitz bootstrap is that the probability limits of the preliminary
and the two-step GMM estimators are different. In particular, ΣR(2) cannot be further
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simplified to the variance of the efficient two-step GMM estimator, because WR and
ΩR(2) do not cancel each other out. In contrast, g0(j) = 0 for j = 1, 2, and θ0(1) = θ0(2)

when the model is correctly specified. Then, ΣR(j) simplifies to ΣC(j), the conventional
variance.

In order to construct the Hall-Horowitz bootstrap t statistic, we need the bootstrap
variance estimator, Σ̂∗CR(j). It is constructed by using the recentered moment function
g(X∗i , θ)− gn(θ̂(j)) and following the standard GMM formula. In particular,

Σ∗CR(1) = (G∗′n(1)G
∗
n(1))−1G∗

′

n(1)Ω∗R,n(1)G
∗
n(1)(G∗

′

n(1)G
∗
n(1))−1, (1.34)

Σ∗CR(2) = (G∗′n(2)Ω∗−1
R,n(2)G

∗
n(2))−1,

Ω∗R,n(1) = n−1
n∑
i=1

(g(X∗i , θ̂∗(1))− gn(θ̂(1)))(g(X∗i , θ̂∗(1))− gn(θ̂(1)))′,

Ω∗R,n(2) = n−1
n∑
i=1

(g(X∗i , θ̂∗(2))− gn(θ̂(2)))(g(X∗i , θ̂∗(2))− gn(θ̂(2)))′.

By standard consistency arguments, we can show G∗n(j) →p G0(j) and Ω∗R,n(j) →p ΩR(j)

almost surely for j = 1, 2. Let ΣCR(j) be the (unconditional) probability limit of
Σ∗CR(j). Then,

ΣCR(1) = (G′0(1)G0(1))−1G′0(1)ΩR(1)G0(1)(G′0(1)G0(1))−1 = ΣR(1), (1.35)

ΣCR(2) = (G′0(2)Ω−1
R(2)G0(2))−1 6= ΣR(2).

Thus, studentizing the Hall-Horowitz bootstrap t statistic with Σ∗CR(2) hoping that
Σ∗CR(2) is consistent for the asymptotic variance of the Hall-Horowitz bootstrap GMM
estimator would not work under misspecifications.

Finally, Results 1 and 2 describe the asymptotic distribution of the Hall-Horowitz
bootstrap t statistics.

Result 1 T ∗R,n(1) ≡
θ̂∗
R(1)−θ̂(1)√
Σ̂∗
CR(1)/n

d−−−→
n→∞

N(0, 1), conditional on the sample almost surely.

Result 2 T ∗R,n(2) ≡
θ̂∗
R(2)−θ̂(2)√
Σ̂∗
CR(2)/n

d−−−→
n→∞

N(0, ΣR(2)
ΣCR(2)

), conditional on the sample almost
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surely.

Now, consider the Brown-Newey bootstrap. The Brown-Newey bootstrap uses the
original moment function. The difference between the naive and the Brown-Newey
bootstrap is that we use F̂EL based on the EL probabilities in place of the edf Fn.
According to Chen et al. (2007), F̂EL is consistent for the pseudo-true cdf Fδ, which
is different from the true cdf F , under misspecification. This implies that the Brown-
Newey bootstrap resampling procedure does not mimic the true data generating
process asymptotically. In addition, Schennach (2007) shows that the asymptotic
behavior of the EL probability is problematic if the moment function g(Xi, θ) is not
bounded in absolute terms. Brown and Newey (2002) does not have this bound in
its assumptions. Thus, a further investigation is needed to use the EL probability in
implementing the bootstrap.

1.8 Monte Carlo Experiments

In this section, I compare the actual coverage probabilities of the asymptotic and
bootstrap CI’s under correct specification and misspecification for different numbers of
samples. Since the actual rejection probability of the t test is the coverage probability
subtracted from one, I only report the coverage probabilities.

The conventional asymptotic CI with coverage probability 100(1− α)% is

CIC =
[
θ̂ ± zα/2

√
Σ̂C/n

]
, (1.36)

where zα/2 is the 1 − α/2th quantile of a standard normal distribution. The
misspecification-robust asymptotic CI using the Hall-Inoue variance estimator with
coverage probability 100(1− α)% is

CIMR =
[
θ̂ ± zα/2

√
Σ̂MR/n

]
. (1.37)

The only difference between this CI and the conventional CI is the choice of the
variance estimator. Under correct model specification, both asymptotic CI’s have
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coverage probability 100(1 − α)% asymptotically and the error in the coverage
probability is O(n−1). Under misspecification, CIMR is still first-order valid, but CIC
is not.

The Hall-Horowitz and the Brown-Newey bootstrap CI’s with coverage probability
100(1− α)% are given by

CI∗HH =
[
θ̂ ± z∗|THH |,α

√
Σ̂C/n

]
, (1.38)

CI∗BN =
[
θ̂ ± z∗|TBN |,α

√
Σ̂C/n

]
, (1.39)

where z∗|THH |,α is the 1 − αth quantile of the Hall-Horowitz bootstrap distribution
of the t statistic and z∗|TBN |,α is the 1− αth quantile of the Brown-Newey bootstrap
distribution of the t statistic. Both the recentered bootstrap CI’s achieve asymptotic
refinements over CIC under correct specification. However, they are first-order invalid
under misspecification.

The MR bootstrap CI with coverage probability 100(1− α)% is:

CI∗MR =
[
θ̂ ± z∗|TMR|,α

√
Σ̂MR/n

]
, (1.40)

where z∗|TMR|,α is the 1−αth quantile of the MR bootstrap distribution of the t statistic.
This CI achieves asymptotic refinements over CIMR regardless of misspecification by
Theorem 1.1.

Example 1: Combining Data Sets

Suppose that we observe Xi = (Yi, Zi)′ ∈ R2, i = 1, ...n, and we have an econometric
model based on Zi with moment function g1(Zi, θ), where θ is a parameter of interest.
Also, suppose that we know the mean (or other population information) of Yi. If
Yi and Zi are correlated, we can exploit the known information on EYi to get more
accurate estimates of θ. This situation is common in survey sampling: A sample
survey consists of a random sample from some population and aggregate statistics
from the same population. Imbens and Lancaster (1994) and Hellerstein and Imbens
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(1999) show how to efficiently combine data sets and make an inference. For more
examples, see Imbens (2002) and Section 3.10 of Owen (2001).

Let g1(Zi, θ) = Zi − θ, so that the parameter of interest is the mean of Zi.
Without the knowledge on EYi, the natural estimator is the method of moments
(MOM) estimator, which is the sample mean of Zi: θ̂MOM = Z̄ ≡ n−1∑n

i=1 Zi. If an
additional information, EYi = 0, is available, then we form the moment function as

g(Xi, θ) =
 Yi

Zi − θ

 . (1.41)

Since the number of moment restrictions (Lg = 2) is greater than that of the parameter
(Lθ = 1), the model is overidentified and we can use GMM estimators to estimate θ.
If the assumed mean of Y is not true, i.e., EYi 6= 0, then the model is misspecified
because there is no θ that satisfies Eg(Xi, θ) = 0.

The one-step GMM estimator solving (1.10) is given by θ̂(1) = Z̄. The two-step
GMM estimator solving (1.11) and the pseudo-true value are given by

θ̂(2) = Z̄ − Ĉov(Yi, Zi)
V̂ ar(Yi)

Ȳ →p θ0(2) = EZi −
Cov(Yi, Zi)
V ar(Yi)

EYi, (1.42)

where V̂ ar(Yi) = n−1∑n
i=1(Yi − Ȳ )2 and Ĉov(Yi, Zi) = n−1∑n

i=1(Yi − Ȳ )(Zi − Z̄).
Note that the pseudo-true value reduces to θ0(2) = EZi when EYi = 0, i.e., the model
is correctly specified.10

Without considering a possible misspecification in the model, the conventional
asymptotic variance of θ̂(2) is ΣC(2) = (G′0Ω−1

C G0)−1. If we admit a possibility that
the model is misspecified, the misspecification-robust asymptotic variance of θ̂(2) is
ΣMR(2), where the formula for ΣMR(2) is given in the previous section.

10The pseudo-true value may equal to the true value regardless of misspecification. Schennach
(2007) provides an example that the pseudo-true value is invariant to misspecification, and thus, is
the same with the true value.
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Let the true data generating process (DGP) be
 Yi

Zi

 ∼ N

 δ

0

 ,
 1 ρ

ρ 1

 , (1.43)

where 0 < ρ < 1 is a correlation between Yi and Zi, and (Yi, Zi)′ is iid. Thus, the
assumed mean of Yi, zero, may not equal to the true value, δ. As δ gets larger, the
degree of misspecification becomes larger. The pseudo-true value is θ0(2) = −ρδ.

The asymptotic variances ΣC(2) and ΣMR(2) are11

ΣC(2) = 1− ρ2, ΣMR(2) = (1− ρ2)(1 + δ2). (1.44)

If the model is correctly specified, then using the additional information reduces
the variance of the estimator by ρ2, because the asymptotic variance of the MOM
estimator Z̄ is V ar(Zi) = 1. However, this reduction does not occur when the
additional information is misspecified, and furthermore, the conventional variance
estimator is inconsistent for the true asymptotic variance of the estimator. In
contrast, the Hall-Inoue variance estimator is consistent for the true asymptotic
variance regardless of misspecification. As the degree of misspecification becomes
larger, the ratio of ΣMR(2) to ΣC(2) increases:

ΣMR(2)

ΣC(2)
= 1 + δ2 →∞ as δ →∞. (1.45)

This implies that the t statistic constructed with the conventional variance estimator
Σ̂C does not converge in distribution to standard normal: the asymptotic variance of
the conventional t statistic departs from 1 to infinity, as δ →∞. Therefore, t tests
or confidence intervals based on the conventional t statistic would yield incorrect
rejection probability or coverage probability under misspecification.

11A detailed calculation is in the technical appendix.
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Degree of n = 25 n = 100

Misspecification Nominal Value 0.90 0.95 0.90 0.95

CIMR 0.871 0.926 0.895 0.944
CI∗MR 0.910 0.956 0.901 0.950

δ = 0 CIC 0.866 0.925 0.893 0.944
(correct CI∗HH 0.907 0.952 0.900 0.949

specification) CI∗BN 0.908 0.953 0.897 0.949

J test, 1% level
1.0% 1.0%

(Rejection Prob.)

CIMR 0.850 0.907 0.881 0.938
CI∗MR 0.892 0.942 0.895 0.945

δ = 0.6 CIC 0.793 0.862 0.824 0.892
(moderate CI∗HH 0.842 0.909 0.835 0.904

misspecification) CI∗BN 0.847 0.913 0.834 0.903

J test, 1% level
53.2% 99.9%

(Rejection Prob.)

CIMR 0.851 0.911 0.891 0.941
CI∗MR 0.901 0.952 0.902 0.951

δ = 1 CIC 0.716 0.792 0.745 0.820
(large CI∗HH 0.773 0.857 0.755 0.836

misspecification) CI∗BN 0.777 0.855 0.754 0.831

J test, 1% level
97.2% 100%

(Rejection Prob.)

Table 1.3: Coverage Probabilities of 90% and 95% Confidence Intervals for θ0(2) based
on the Two-step GMM Estimator, θ̂(2), when ρ = 0.5 in Example 1, where the number
of Monte Carlo repetition (r) = 5,000, the number of bootstrap replication (B) =
1,000.
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Table 1.3 shows coverage probabilities of 90% and 95% CI’s based on the two-step
GMM estimator, θ̂(2), when ρ = 0.5. For a correctly specified model (δ = 0), the
coverage probability of the CI is the number of events that the CI contains the true
value, θ0 = 0, divided by the number of Monte Carlo repetition, r. The simulation
results show that the bootstrap CI’s, CI∗MR, CI∗HH , and CI∗BN , achieve asymptotic
refinements over the asymptotic CI’s. When the model is correctly specified, the
actual and the nominal levels of the (asymptotic) J test are about the same at 1%.

For misspecified models (δ = 0.6 or 1), the coverage probability of the CI is the
number of events that the CI contains the pseudo-true value, θ0(2), divided by r. CI∗MR

clearly demonstrates asymptotic refinements over CIMR regardless of misspecification.
In contrast, the conventional asymptotic and bootstrap CI’s are first-order invalid.
When n = 25, the asymptotic J test rejects the null about 53.2% of the Monte Carlo
repetition for moderately misspecified model (δ = 0.6) and about 97.2% of the Monte
Carlo repetition for largely misspecified model (δ = 1). Note that the degree of
misspecification can be arbitrarily large, and it makes the coverage probabilities of
CIC , CI∗HH , and CI∗BN arbitrarily close to zero.
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Figure 1.1: Coverage Probabilities of 90% Confidence Intervals for θ0(2) based on the
Two-step GMM Estimator, θ̂(2), when ρ = 0.5 and n = 25 in Example 1 (r=5,000,
B=1,000)

For different values of δ, Figure 1.1 shows the coverage probabilities of the CI’s
when n = 25. The figure supports the arguments made throughout the paper:
Asymptotic refinements of the MR bootstrap and the first-order invalidity of the
conventional asymptotic and bootstrap CI’s.

Example 2: Invalid Instrumental Variables

Suppose that there is an endogeneity in the linear model yi = xiβ0 + ei, where
yi, xi ∈ R and Exiei 6= 0. The OLS estimator β̂OLS is inconsistent for β0 because
β̂OLS →p βOLS = β0 + (Ex2

i )−1Exiei, where the second term on the right-hand side
is not equal to zero. Consider two instruments, z1i and z2i. By using one of the
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instrument, zki, k = 1 or 2, the IV estimator and its probability limit are

β̂IVk = (
n∑
i=1

zkixi)−1
n∑
i=1

zkiyi →p βIVk = β0 + (Ezkixi)−1Ezkiei, (1.46)

and βIVk = β0 when Ezkiei = 0. If the instrument is invalid, i.e., Ezkiei 6= 0, then
βIVk is biased.

Now consider using both instruments in estimating β by GMM. The moment
function is

g(Xi, β) =
 z1i(yi − xiβ)
z2i(yi − xiβ)

 , (1.47)

where Xi = (yi, xi, z1i, z2i)′. This moment function is correctly specified when
Eg(Xi, β0) = 0 holds, which is implied by the validity of the instruments Ez1iei =
Ez2iei = 0. In practice, a commonly used weight matrix is Wn = (n−1∑n

i=1 ziz′i)−1,
where zi = (z1i, z2i)′. The one-step GMM estimator β̂(1) solves (1.11) by using Wn

as a weight matrix instead of using the identity matrix.12 Then β̂(1) is a weighted
average of the two instrumental variable estimators, β̂IV 1 and β̂IV 2. Let Σ̂MR be the
Hall-Inoue variance estimator and let Σ̂C be the conventional variance estimator for
β̂(1).

The asymptotic variance limn→∞ Σ̂MR can be calculated by using the formula
for ΣMR(2), the asymptotic variance for the two-step GMM estimator described in
Section 1.4, because

√
nvech(Wn−W ) converges to a normal distribution. Maasoumi

and Phillips (1982) and Newey and McFadden (1994) address that the conventional
variance estimator is inconsistent for the true asymptotic variance,13 and that the
calculation of the asymptotic variance is very complicated under misspecification.

Let the DGP be

yi = xiβ0 + ei; xi = z1iγ1 + z2iγ2 + ei + εi, z2i = z0
2i + 0.5δei + ui;(1.48)

(z1i, z
0
2i)′ ∼ N(0, I2), ei ∼ N(0, 2), εi ∼ N(0, 1), ui ∼ N(0, 1),

12A detailed calculation of β̂(1) and its probability limit is in the technical appendix.
13The asymptotic variance formula of Hall and Inoue (2003) encompasses that of Maasoumi and

Phillips (1982) as a special case.
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where I2 is a 2 × 2 identity matrix and (z1i, z
0
2i)′, ei, εi, and ui are iid. This DGP

satisfies Exiei 6= 0, Ez1iei = 0, and Ez2iei = δ, where δ measures a degree of
misspecification. Therefore, the instrument z1i is valid, while z2i may not. The
probability limit of β̂(1) is

β0(1) = β0 + (2 + 0.5δ2)γ2 + δ

γ2
1(2 + 0.5δ2) + ((2 + 0.5δ2)γ2 + δ)2 · δ = β0 +O(δ−1). (1.49)

When the model is correctly specified (δ = 0), then β0(1) = β0. Otherwise, β0(1) 6= β0.
Note that β0(1) → β0 as δ →∞ according to the above formula. This is because the
weight on the misspecified moment restriction, Ez2iei = 0, converges to zero as the
degree of misspecification grows. Thus, larger misspecification does not necessarily
imply larger potential bias in the pseudo-true value. For example, Figure 1.2(a)
compares the pseudo-true value with the structural parameter β0, when β0 = 1,
γ1 = 1, and γ2 = −0.5. In fact, if γ2 = −δ(2 + 0.5δ2)−1 in (1.49), then β0(1) = β0

holds. However, ΣMR and ΣC are different in general even if β0(1) = β0. Figure 1.2(b)
shows that the values of the Hall-Inoue variance estimator and the conventional
variance estimator are different under misspecification for n = 100, 000. Σ̂MR is
almost twice as large as Σ̂C at δ = 2.
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Figure 1.2: The Pseudo-True Value and The Hall-Inoue Variance Estimates under
Different Degrees of Misspecification; β0 = 1, γ1 = 1, γ2 = −0.5 in Example 2
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Degree of n = 25 n = 100

Misspecification Nominal Value 0.90 0.95 0.90 0.95

CIMR 0.829 0.875 0.888 0.934
CI∗MR 0.868 0.917 0.900 0.944

δ = 0 CIC 0.816 0.862 0.886 0.932
(correct CI∗HH 0.862 0.912 0.901 0.946

specification) CI∗BN 0.867 0.918 0.901 0.946

J test, 1% level
7.1% 6.4%

(Rejection Prob.)

CIMR 0.847 0.890 0.884 0.935
CI∗MR 0.881 0.924 0.897 0.948

δ = 1 CIC 0.784 0.836 0.818 0.884
(moderate CI∗HH 0.825 0.876 0.839 0.907

misspecification) CI∗BN 0.856 0.905 0.847 0.914

J test, 1% level
59.7% 98.9%

(Rejection Prob.)

CIMR 0.848 0.906 0.884 0.938
CI∗MR 0.892 0.943 0.894 0.948

δ = 2 CIC 0.732 0.812 0.747 0.832
(large CI∗HH 0.800 0.869 0.765 0.854

misspecification) CI∗BN 0.859 0.919 0.779 0.872

J test, 1% level
94.6% 100%

(Rejection Prob.)

Table 1.4: Coverage Probabilities of 90% and 95% Confidence Intervals for β0(1) based
on the One-step GMM Estimator, β̂(1) in Example 2, where the number of Monte
Carlo repetition (r) = 5,000, the number of bootstrap replication (B) = 1,000.
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Figure 1.3: Coverage Probabilities of 90% Confidence Intervals for β0(1) based on the
One-step GMM Estimator, β̂(1), n = 50 in Example 2 (r=5,000, B=1,000)

Table 1.4 shows coverage probabilities of 90% and 95% CI’s based on the one-step
GMM estimator, β̂(1), when β0 = 1, γ1 = 1, and γ2 = −0.5. Although asymptotic
refinements of CI∗MR do not depend on a particular choice of parameter values, the
actual amount of refinements can differ according to the DGP, the sample size, and
the choice of parameter values. The simulation results show that the bootstrap
CI’s, CI∗MR, CI∗HH , and CI∗BN , achieve asymptotic refinements over the asymptotic
CI’s when the model is correctly specified, but the bootstrap does not completely
remove the error in the coverage probability. The J test over-rejects the correct
null hypothesis. Interestingly, the errors of CI∗MR are smaller when there is a larger
misspecification. The conventional asymptotic and bootstrap CI’s are first-order
invalid under misspecification.

Figure 1.3 shows the coverage probabilities of the CI’s over different degrees of
misspecification. Again, the ability of achieving asymptotic refinements of the boot-
strap CI’s is clearly demonstrated at δ = 0, and CI∗MR maintain the ability regardless
of misspecification. As the sample size grows, the invalidity of the conventional
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asymptotic and bootstrap CI’s becomes clearer, while the gap between the asymptotic
and bootstrap CI’s becomes smaller.

1.9 Conclusion

This paper gives an alternative bootstrap procedure for GMM that achieves a sharp
rate of asymptotic refinements regardless of misspecification. The existing bootstrap
procedures for GMM achieve the same rate of asymptotic refinements only for correctly
specified models by using an additional correction, the recentering procedure. The
proposed misspecification-robust bootstrap procedure requires neither the assumption
of correct model nor the recentering. The use of the misspecification-robust variance
estimator in constructing the sample and bootstrap versions of the test statistic is
critical in implementing the bootstrap for overidentified and possibly misspecified
models. Possible extensions of this paper would be to apply the MR bootstrap to the
generalized empirical likelihood (GEL) estimators.

1.10 Appendix: Lemmas and Proofs

The proofs of the Theorem and Lemmas are analogous to those of Hall and Horowitz
(1996) and Andrews (2002) by allowing possible model misspecification. Throughout
the Appendix, write gi(θ) = g(Xi, θ), g∗i (θ) = g(X∗i , θ), Gi(θ) = G(Xi, θ), G∗i (θ) =
G(X∗i , θ), fi(θ) = f(Xi, θ), and f ∗i (θ) = f(X∗i , θ) for notational brevity.

Lemmas

Lemma 1.2 modifies Lemmas 1, 2, 6, and 7 of Andrews (2002) for nonparametric iid
bootstrap under possible misspecification. The modified Lemmas 1, 2, 6, and 7 of
Andrews (2002) are denoted by AL1, AL2, AL6, and AL7, respectively. In addition,
Lemma 5 of Andrews (2002) is denoted by AL5 without modification.

Lemma 1.2.
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(a) Lemma 1 of Andrews (2002) holds by replacing X̃i and N with Xi and n, respec-
tively, under our Assumption 1.

(b) Lemma 2 of Andrews (2002) for j = 1 holds under our Assumptions 1-3.

(c) Lemma 6 of Andrews (2002) holds by replacing X̃i and N with Xi and n, respec-
tively, and by letting l = 1 and γ = 0, under our Assumption 1.

(d) Lemma 7 of Andrews (2002) for j = 1 holds by replacing X̃i and N with Xi and
n, respectively, and by letting l = 1 and γ = 0, under our Assumptions 1-3.

Lemmas 1.3-1.4 prove that the one-step and two-step GMM estimators are con-
sistent for the (pseudo-)true values, θ0(1) and θ0(2), respectively, under possible
misspecification.

Lemma 1.3. Suppose Assumptions 1-3 hold. Then, for all c ∈ [0, 1/2) and all a ≥ 0,

lim
n→∞

naP (‖θ̂(1) − θ0(1)‖ > n−c) = 0.

Lemma 1.4. Suppose Assumptions 1-3 hold. Then, for all c ∈ [0, 1/2) and all a ≥ 0,

lim
n→∞

naP (‖θ̂(2) − θ0(2)‖ > n−c) = 0.

Lemmas 1.5-1.6 are the bootstrap versions of Lemmas 1.3-1.4, respectively, and
consistency of the MR bootstrap is established under possible misspecification. Note
that the bootstrap GMM estimators are different from the Hall-Horowitz bootstrap
GMM estimators, which use the recentered bootstrap moment function.

Lemma 1.5. Suppose Assumptions 1-3 hold. Then, for all c ∈ [0, 1/2) and all a ≥ 0,

lim
n→∞

naP (P ∗(‖θ̂∗(1) − θ̂(1)‖ > n−c) > n−a) = 0.
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Lemma 1.6. Suppose Assumptions 1-3 hold. Then, for all c ∈ [0, 1/2) and all a ≥ 0,

lim
n→∞

naP (P ∗(‖θ̂∗(2) − θ̂(2)‖ > n−c) > n−a) = 0.

We now introduce some additional notation. Let Sn be the vector containing
the unique components of n−1∑n

i=1

(
fi(θ0(1))′, fi(θ0(2))′

)′
on the support of Xi, and

S = ESn. Similarly, let S∗n denote the vector containing the unique components
of n−1∑n

i=1

(
f ∗i (θ̂(1))′, f ∗i (θ̂(2))′

)′
on the support of Xi, and S∗ = E∗S∗n. Note that

the definitions of Sn and S∗n are different from those of Hall and Horowitz (1996)
and Andrews (2002), because they do not distinguish θ0(1) and θ0(2) by assuming the
unique true value θ0. Under misspecifications, θ0(1) and θ0(2) are different and thus,
θ̂(1) and θ̂(2) have different probability limits. In addition, Hall and Horowitz (1996)
and Andrews (2002) define S∗n by using the recentered moment function.

Lemma 1.7. Let ∆n and ∆∗n denote n1/2(θ̂(j) − θ0(j)) and n1/2(θ̂∗(j) − θ̂(j)), or TMR(j)

and T ∗MR(j) for j = 1, 2. For each definition of ∆n and ∆∗n, there is an infinitely
differentiable function A(·) with A(S) = 0 and A(S∗) = 0 such that the following
results hold.

(a) Suppose Assumptions 1-4 hold with d1 ≥ 2a+ 2, where 2a is some nonnegative
integer. Then,

lim
n→∞

sup
z
na|P (∆n ≤ z)− P (n1/2A(Sn) ≤ z)| = 0.

(b) Suppose Assumptions 1-4 hold with d1 ≥ 2a+ 2, where 2a is some nonnegative
integer. Then,

lim
n→∞

naP
(

sup
z
|P ∗(∆∗n ≤ z)− P ∗(n1/2A(S∗n) ≤ z)| > n−a

)
= 0.
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We define the components of the Edgeworth expansions of the test statistic TMR(j)

and its bootstrap analog T ∗MR(j). Let Ψn = n1/2(Sn−S) and Ψ∗n = n1/2(S∗n−S∗). Let
Ψn,k and Ψ∗n,k denote the kth elements of Ψn and Ψ∗n respectively. Let νn,a and ν∗n,a
denote vectors of moments of the form nα(m)E

∏m
µ=1 Ψn,kµ and nα(m)E∗

∏m
µ=1 Ψ∗n,kµ ,

respectively, where 2 ≤ m ≤ 2a+ 2, α(m) = 0 if m is even, and α(m) = 1/2 if m is
odd. Let νa = limn→∞ νn,a. The limit exists under Assumption 1 of Andrews (2002),
and thus under our Assumption 1.

Let πi(δ, νa) be a polynomial in δ = ∂/∂z whose coefficients are polynomials in
the elements of νa and for which πi(δ, νa)Φ(z) is an even function of z when i is odd
and is an odd function of z when i is even for i = 1, ..., 2a, where 2a is an integer.
The Edgeworth expansions of TMR(j) and T ∗MR(j) depend on πi(δ, νa) and πi(δ, ν∗n,a),
respectively.

The following Lemma shows that the bootstrap moments ν∗n,a are close to the
population moments νa in large samples. The Lemma is an iid version of Lemma 14
of Andrews (2002).

Lemma 1.8. Suppose Assumptions 1 and 3 hold with d2 ≥ 2a+ 1 for some a ≥ 0.
Then, for all c ∈ [0, 1/2),

lim
n→∞

naP (‖ν∗n,a − νa‖ > n−c) = 0.

Lemma 1.9. For j = 1, 2, (a) Suppose Assumptions 1-4 hold with d1 ≥ 2a+ 2, where
2a is some nonnegative integer. Then,

lim
n→∞

na sup
z∈R

∣∣∣∣∣P (TMR(j) ≤ z)−
[
1 +

2a∑
i=1

n−i/2πi(δ, νa)
]

Φ(z)
∣∣∣∣∣ = 0.

(b) Suppose Assumptions 1-4 hold with d1 ≥ 2a + 2 and d2 ≥ 2a + 1, where 2a is
some nonnegative integer. Then,

lim
n→∞

naP

(
sup
z∈R

∣∣∣∣∣P ∗(T ∗MR(j) ≤ z)−
[
1 +

2a∑
i=1

n−i/2πi(δ, ν∗n,a)
]

Φ(z)
∣∣∣∣∣ > n−a

)
= 0.
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Proof of Theorem 1.1

The usage of the Hall-Inoue variance estimators in constructing the sample and
bootstrap versions of the t statistic without recentering the bootstrap moment function
is taken into account by Lemmas 1.7 and 1.9. Once we establish the Edgeworth
expansions of TMR(j) and T ∗MR(j) for j = 1, 2, the proof of the Theorem is the same
with that of Theorem 2(c) of Andrews (2002) with his Lemmas 13 and 16 replaced
by our Lemmas 1.7 and 1.9. His proof relies on the argument of Hall (1988, 1992)’s
methods developed for “smooth functions of sample averages,” for iid data. Q.E.D.

Proofs of Lemmas

Proof of Lemma 1.2

(a) Assumption 1 of Andrews (2002) is satisfied if our Assumption 1 holds. Then,
Lemma 1 of Andrews (2002) holds.
(b) We use the proof of Lemma 2 of Andrews (2002) which relies on that of Lemma 2
of Hall and Horowitz (1996). Since their proof does not require Eg(Xi, θ0) = 0, the
Lemma holds under our Assumptions 1-3.
(c) Assumption 1 of Andrews (2002) is satisfied if our Assumption 1 holds. Then,
Lemma 6 of Andrews (2002) holds for nonparametric iid bootstrap.
(d) We use the proof of Lemma 7 of Andrews (2002) which relies on that of Lemma 8
of Hall and Horowitz (1996). Since their proof does not require Eg(Xi, θ0) = 0, the
Lemma holds for nonparametric iid bootstrap under our Assumptions 1-3. Q.E.D.

Proof of Lemma 1.3

Write J(θ) ≡ J(θ, ILg), Jn(θ) ≡ Jn(θ, ILg) throughout the proof for notational brevity.
We first prove the result with n−c replaced by arbitrary fixed ε > 0. Given ε > 0,
∃δ > 0 such that ‖θ − θ0(1)‖ > ε implies that J(θ)− J(θ0(1)) ≥ δ > 0, because θ0(1)

uniquely minimizes J(θ). Note that J(θ0(1)) may not be zero. Thus, by the triangle
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inequality,

naP (‖θ̂(1) − θ0(1)‖ > ε) ≤ naP (J(θ̂(1))− Jn(θ̂(1)) + Jn(θ̂(1))− J(θ0(1)) > δ)

≤ naP (J(θ̂(1))− Jn(θ̂(1)) + Jn(θ0(1))− J(θ0(1)) > δ)

≤ naP

(
sup
θ∈Θ
|J(θ)− Jn(θ)| > δ/2

)
= o(1).

The last conclusion holds by AL2 and the argument in the proof of Theorem 2.6 of
Newey and McFadden (1994). This proves

lim
n→∞

naP (‖θ̂(1) − θ0(1)‖ > ε) = 0. (1.50)

Next, we prove the result as stated in the Lemma. The first order condition is
(∂/∂θ)Jn(θ̂(1)) = G′n(1)gn(1) = 0 with probability 1− o(n−a). By using the population
first order condition, G′0(1)g0(1) = 0, and by the mean value theorem, with probability
1− o(n−a),

θ̂(1) − θ0(1) = −
(

∂2

∂θ∂θ′
Jn(θ̃)

)−1
∂

∂θ
Jn(θ0(1)) (1.51)

where

∂

∂θ
Jn(θ0(1)) =

{
G′0(1)(gn(θ0(1))− g0(1)) + (Gn(θ0(1))−G0(1))′gn(θ0(1))

}
,(1.52)

∂2

∂θ∂θ′
Jn(θ) ≡ 2H̃n(θ, ILg) = 2

{
(gn(θ)′ ⊗ ILθ)G(2)

n (θ) +Gn(θ)′Gn(θ)
}
,(1.53)

and θ̃ is between θ̂(1) and θ0(1) and may differ across rows. Note that the first and
second derivatives of Jn(θ) include additional terms that do not appear under correct
specification, g0(1) = 0. Then, combining the following results proves the Lemma:

lim
n→∞

naP
(∥∥∥H̃n(θ̃, ILg)− H̃n(θ0(1), ILg)

∥∥∥ > ε
)

= 0, (1.54)

lim
n→∞

naP
(∥∥∥H̃n(θ0(1), ILg)−H0(1)

∥∥∥ > ε
)

= 0, (1.55)

lim
n→∞

naP
(∥∥∥Gn(θ0(1))−G0(1)

∥∥∥ > n−c
)

= 0, (1.56)

lim
n→∞

naP
(∥∥∥gn(θ0(1))− g0(1)

∥∥∥ > n−c
)

= 0. (1.57)
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To show (1.54), we apply the triangle and Cauchy-Schwarz inequalities multiple
times,

∥∥∥(gn(θ̃)′ ⊗ ILθ
)
G(2)
n (θ̃)−

(
gn(θ0(1))′ ⊗ ILθ

)
G(2)
n (θ0(1)) (1.58)

+Gn(θ̃)′Gn(θ̃)−Gn(θ0(1))′Gn(θ0(1))
∥∥∥

≤ ‖G(2)
n (θ̃)−G(2)

n (θ0(1))‖
(
‖gn(θ̃)− gn(θ0(1))‖+ ‖gn(θ0(1))‖

)
+‖G(2)

n (θ0(1))‖‖gn(θ̃)− gn(θ0(1))‖

+‖Gn(θ̃)−Gn(θ0(1))‖
(
‖Gn(θ̃)−Gn(θ0(1))‖+ 2‖Gn(θ0(1))‖

)
≤ ‖θ̃ − θ0(1)‖

{
C∂f,n(Cg,n + C∂f,n)‖θ̃ − θ0(1)‖

+Cg,n‖G(2)
n (θ0(1))‖+ 2‖Gn(θ0(1))‖+ ‖gn(θ0(1))‖

}
,

where Cg,n = n−1∑n
i=1Cg(Xi) and C∂f,n = n−1∑n

i=1C∂f(Xi). Using (1.50) and
multiple applications of AL1(a) with h(Xi) = (∂j/∂θj)gi(θ0(1)) for j = 0, 1, 2 or
h(Xi) = Cg(Xi), or h(Xi) = C∂f (Xi) proves (1.54).

For (1.55), apply the triangle and Cauchy-Schwarz inequalities to get

‖(gn(θ0(1))′ ⊗ ILθ)G(2)
n (θ0(1))− (g′0(1) ⊗ ILθ)G

(2)
0(1)‖ (1.59)

≤ ‖G(2)
n (θ0(1))−G(2)

0(1)‖ · ‖gn(θ0(1))‖+ ‖G(2)
0(1)‖ · ‖gn(θ0(1))− g0(1)‖,

and

‖Gn(θ0(1))′Gn(θ0(1))−G′0(1)G0(1)‖

≤ ‖Gn(θ0(1))−G0(1)‖ · (‖Gn(θ0(1))−G0(1)‖+ 2‖G0(1)‖).

Then, it follows by AL1(b) with h(Xi) = (∂j/∂θj)gi(θ0(1)) and by Lemma AL1(a)
with h(Xi) = (∂j/∂θj)gi(θ0(1))− E(∂j/∂θj)gi(θ0(1)) for j = 0, 1, 2, c = 0, and p = q2.

The third result (1.56) holds by AL1(a) with h(Xi) = Gi(θ0(1)) − G0(1), c = 0,
and p = q2. The last result (1.57) follows from AL1(a) with h(Xi) = gi(θ0(1))− g0(1),
c = c, and p = q1. Q.E.D.
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Proof of Lemma 1.4

We first prove the result with n−c replaced by arbitrary fixed ε > 0. By Theorem 2.6
of Newey and McFadden (1994), supθ∈Θ |Jn(θ,Wn)− J(θ,W )| →p 0, provided that
Wn →p W . Then, analogous arguments to that of Lemma 1.3 show that

lim
n→∞

naP (‖θ̂(2) − θ0(2)‖ > ε) = 0. (1.60)

By the mean value expansion of the first-order condition,

θ̂(2) − θ0(2) = −
(

∂2

∂θ∂θ′
Jn(θ̃,Wn)

)−1
∂

∂θ
Jn(θ0(2),Wn), (1.61)

with probability 1− o(n−a), where

∂

∂θ
Jn(θ0(2),Wn) = Gn(θ0(2))′Wn(gn(θ0(2))− g0(2)) (1.62)

+
(
Gn(θ0(2))−G0(2)

)′
Wg0(2) +Gn(θ0(2))′(Wn −W )g0(2),

∂2

∂θ∂θ′
Jn(θ,Wn) = 2H̃n(θ,Wn) (1.63)

= 2
{

(gn(θ)′Wn ⊗ ILθ)G(2)
n (θ) +Gn(θ)′WnGn(θ)

}
,

and θ̃ is between θ̂(2) and θ0(2) and may differ across rows. Note that (1.62) includes
additional terms that are zero under correct specification. Thus, in order to show

lim
n→∞

naP

(∥∥∥∥∥ ∂∂θJn(θ0(2),Wn)
∥∥∥∥∥ > n−c

)
= 0, (1.64)

we need

lim
n→∞

naP
(∥∥∥gn(θ0(2))− g0(2)

∥∥∥ > n−c
)

= 0, (1.65)

lim
n→∞

naP
(∥∥∥Gn(θ0(2))−G0(2)

∥∥∥ > n−c
)

= 0, (1.66)

lim
n→∞

naP (‖Wn(θ̂(1))−W‖ > n−c) = 0. (1.67)
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Note that (1.66) and (1.67) are required for possibly misspecified models.14

(1.65) and (1.66) hold by AL1(a) with h(Xi) = gi(θ0(2)) − g0(2) or h(Xi) =
Gi(θ0(2))−G0(2). (1.67) follows from

lim
n→∞

naP (‖Wn(θ̂(1))−1 −Wn(θ0(1))−1‖ > n−c) = 0, and (1.68)

lim
n→∞

naP (‖Wn(θ0(1))−1 −W−1‖ > n−c) = 0. (1.69)

To show (1.68), observe that

‖Wn(θ̂(1))−1 −Wn(θ0(1))−1‖ (1.70)

= ‖n−1
n∑
i=1

(gi(θ̂(1))gi(θ̂(1))′ − gi(, θ0(1))gi(θ0(1))′)‖+ ‖gn(θ0(1))gn(θ0(1))′ − gn(1)g
′
n(1)‖.

For the first term of the right-hand side of (1.70), we apply the mean value expansion
and the Cauchy-Schwarz inequality to get

‖n−1
n∑
i=1

(gi(θ̂(1))gi(θ̂(1))′ − gi(θ0(1))gi(θ0(1))′)‖ (1.71)

≤ 2n−1
n∑
i=1

sup
θ∈N0(1)

‖Gi(θ)‖‖gi(θ)‖ · ‖θ̂(1) − θ0(1)‖.

For the second term of (1.70), we apply the Cauchy-Schwarz inequality,

‖gn(θ0(1))gn(θ0(1))′ − gn(1)g
′
n(1)‖ (1.72)

= ‖(gn(θ0(1))− gn(θ̂(1)))(gn(θ0(1)) + gn(θ̂(1)))′‖

≤ n−1
n∑
i=1
‖gi(θ0(1))− gi(θ̂(1))‖n−1

n∑
i=1
‖gi(θ0(1)) + gi(θ̂(1))‖

≤ ‖θ̂(1) − θ0(1)‖Cg,n(2n−1
n∑
i=1
‖gi(θ0(1))‖+ ‖θ̂(1) − θ0(1)‖Cg,n).

Then, AL1(b) with h(Xi) = Cg(Xi), h(Xi) = gi(θ0(1)), and h(Xi) = supθ∈N0(1)
‖Gi(θ)‖‖gi(θ)‖

and Lemma 1.3 proves (1.68).
14Andrews (2002) proves (1.67) by replacing n−c with ε under correct specification.
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(1.69) holds by applications of AL1(a) with h(Xi) = gi(θ0(1))gi(θ0(1))′−Egi(θ0(1))gi(θ0(1))′

and p = q1/2, and h(Xi) = gi(θ0(1))− g0(1) and p = q1 since

‖Wn(θ0(1))−1 −W−1‖ ≤
∥∥∥∥∥n−1

n∑
i=1

gi(θ0(1))gi(θ0(1))′ − Egi(θ0(1))gi(θ0(1))′
∥∥∥∥∥ (1.73)

+
(
2‖g0(1)‖+ ‖gn(θ0(1))− g0(1)‖

)
‖gn(θ0(1))− g0(1)‖.

Lastly, the Lemma follows from

lim
n→∞

naP
(∥∥∥H̃n(θ̃,Wn)− H̃n(θ0(2),W )

∥∥∥ > ε
)

= 0, (1.74)

lim
n→∞

naP
(∥∥∥H̃n(θ0(2),W )−H0(2)

∥∥∥ > ε
)

= 0, (1.75)

that can be shown by multiple applications of AL1 and the results (1.67) and
(1.60). Q.E.D.

Proof of Lemma 1.5

Write J(θ) ≡ J(θ, ILg) and J∗n(θ) ≡ J∗n(θ, ILg) for notational brevity. First, we prove
the result with n−c replaced by a fixed ε > 0. We claim that given ε > 0, ∃δ > 0
independent of n such that ‖θ − θ̂(1)‖ > ε implies that Jn(θ)− Jn(θ̂(1)) ≥ δ > 0 with
probability 1 − o(n−a). To see this, note that ‖θ̂(1) − θ0(1)‖ ≤ ε/2 with probability
1− o(n−a) by Lemma 1.3 and write

Jn(θ)− Jn(θ̂(1)) = J(θ)− J(θ0(1)) + Jn(θ)− Jn(θ̂(1)) (1.76)

−J(θ) + J(θ̂(1)) + J(θ0(1))− J(θ̂(1))

≥ J(θ)− J(θ0(1))− |Jn(θ)− Jn(θ̂(1))− J(θ) + J(θ̂(1))|

−|J(θ̂(1))− J(θ0(1))|.

Define M = infθ∈Nε(θ̂(1))c∩Θ J(θ) − J(θ0(1)), where Nε(θ̂(1))c = {θ : ‖θ − θ̂(1)‖ > ε},
then M > 0 because (i) J(θ) is uniquely minimized at θ0(1) and is continuous on Θ,
and (ii) we can take a neighborhood around θ0(1) such that Nε/4(θ0(1)) ⊂ Nε(θ̂(1)). By
AL2 and the proof of Theorem 2.6 of Newey and McFadden (1994), we have (iii)
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limn→∞ n
aP (supθ∈Θ |Jn(θ)− Jn(θ̂(1))− J(θ) + J(θ̂(1))| > λ) = 0 for all λ > 0 and (iv)

limn→∞ n
aP (|J(θ̂(1))− J(θ0(1))| > λ) = 0 by Lemma 1.3. Taking λ < M/2 proves the

claim.
Thus, we have

naP (P ∗(‖θ̂∗(1) − θ̂(1)‖ > ε) > n−a) (1.77)

≤ naP (P ∗(Jn(θ̂∗(1))− J∗n(θ̂∗(1)) + J∗n(θ̂∗(1))− Jn(θ̂(1)) > δ) > n−a)

≤ naP (P ∗(Jn(θ̂∗(1))− J∗n(θ̂∗(1)) + J∗n(θ̂(1))− Jn(θ̂(1)) > δ) > n−a)

≤ naP

(
P ∗

(
sup
θ∈Θ
|J∗n(θ)− Jn(θ)| > δ/2

)
> n−a

)
→ 0,

since θ̂∗(1) is the minimizer of J∗n(θ). To verify the last conclusion of (1.77), we apply
the triangle and Cauchy-Schwarz inequalities,

|J∗n(θ)− Jn(θ)| = |g∗n(θ)′g∗n(θ)− gn(θ)′gn(θ)| (1.78)

≤ ‖g∗n(θ)− gn(θ)‖2

+2 (‖gn(θ)− Eg(Xi, θ)‖+ ‖Eg(Xi, θ)‖) ‖g∗n(θ)− gn(θ)‖

= ‖g∗n(θ)− E∗g∗i (θ)‖2

+2 (‖gn(θ)− Eg(Xi, θ)‖+ ‖Eg(Xi, θ)‖) ‖g∗n(θ)− E∗g∗i (θ)‖,

and apply AL2 and AL7.
Next, we prove the result stated in the Lemma. The first-order condition is

(∂/∂θ)J∗n(θ̂∗(1)) = G∗n(θ̂∗(1))′g∗n(θ̂∗(1)) = 0 with P ∗ probability 1− o(n−a) except, possibly,
if χ is in a set of P probability o(n−a). By the mean value theorem,

θ̂∗(1) − θ̂(1) = −
(

∂2

∂θ∂θ′
J∗n(θ̃∗)

)−1
∂

∂θ
J∗n(θ̂(1)), (1.79)

with P ∗ probability 1−o(n−a) except, possibly, if χ is in a set of P probability o(n−a),
where θ̃∗ is between θ̂∗(1) and θ̂(1) and may differ across rows. The proof follows that
of Lemma 1.3 with some modifications for the bootstrap version.
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First, we prove

lim
n→∞

naP

(
P ∗

(∥∥∥∥∥ ∂∂θJ∗n(θ̂(1))
∥∥∥∥∥ > n−c

)
> n−a

)
= 0, (1.80)

where

∂

∂θ
J∗n(θ̂(1)) = Gn(θ̂(1))′

(
g∗n(θ̂(1))− gn(θ̂(1))

)
+
(
G∗n(θ̂(1))−Gn(θ̂(1))

)′
g∗n(θ̂(1)), (1.81)

since the sample first-order condition Gn(θ̂(1))′gn(θ̂(1)) = 0 holds. This can be done
by combining the following results,

lim
n→∞

naP (P ∗(‖Gn(θ̂(1))‖ > ε) > n−a), (1.82)

lim
n→∞

naP (P ∗(‖g∗n(θ̂(1))‖ > ε) > n−a), (1.83)

lim
n→∞

naP (P ∗(‖g∗n(θ̂(1))− gn(θ̂(1))‖ > n−c) > n−a), (1.84)

lim
n→∞

naP (P ∗(‖G∗n(θ̂(1))−Gn(θ̂(1))‖ > n−c) > n−a). (1.85)

For (1.82), note that ‖Gn(θ̂(1))‖ ≤ ‖Gn(θ0(1))‖+ ‖Gn(θ̂(1))−Gn(θ0(1))‖ holds by
the triangle inequality and claim

lim
n→∞

naP (P ∗(‖Gn(θ0(1))‖ > ε) > n−a) = 0, (1.86)

lim
n→∞

naP (P ∗(‖Gn(θ̂(1))−Gn(θ0(1))‖ > ε) > n−a) = 0. (1.87)

To see this, observe that P ∗(‖Gn(θ0(1))‖ > ε) = 1{‖Gn(θ0(1))‖ > ε}, where 1{·} is an
indicator function. Then,

naP (P ∗(‖Gn(θ0(1))‖ > ε) > n−a) (1.88)

= naP (1{‖Gn(θ0(1))‖ > ε} > n−a, ‖Gn(θ0(1))‖ > ε)

+naP (1{‖Gn(θ0(1))‖ > ε} > n−a, ‖Gn(θ0(1))‖ ≤ ε)

≤ naP (‖Gn(θ0(1))‖ > ε)→ 0,
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by AL1(b). (1.87) can be shown similarly by applying AL1(a). By (1.86) and (1.87),
the first result (1.82) is proved. To show the second result (1.83), apply the triangle
inequality and Assumption 2 to get

‖g∗n(θ̂(1))‖ ≤ ‖g∗n(θ0(1))‖+ ‖g∗n(θ0(1))− g∗n(θ̂(1))‖ (1.89)

≤ ‖g∗n(θ0(1))‖+ C∗g,n‖θ̂(1) − θ0(1)‖,

where C∗g,n = n−1∑n
i=1Cg(X∗i ). By applying AL6(d) and Lemma 1.3, we have the

result (1.83). For the third and the last result, we apply the triangle inequality and
Assumptions 2-3,

‖g∗n(θ̂(1))− gn(θ̂(1))‖ ≤ ‖g∗n(θ0(1))− gn(θ0(1))‖+ ‖θ̂(1) − θ0(1)‖(Cg,n + C∗g,n),

‖G∗n(θ̂(1))−Gn(θ̂(1))‖ ≤ ‖G∗n(θ0(1))−Gn(θ0(1))‖+ ‖θ̂(1) − θ0(1)‖(C∂f,n + C∗∂f,n),

where C∗∂f,n = n−1∑n
i=1C∂f (X∗i ). Let h(Xi) = gi(θ0(1))− g0(1) or h(Xi) = Gi(θ0(1))−

G0(1) so that Eh(Xi) = 0. Then, h(X∗i ) = g∗i (θ0(1))−g0(1) or h(X∗i ) = G∗i (θ0(1))−G0(1),
and ‖g∗n(θ0(1))−gn(θ0(1))‖ = ‖n−1∑n

i=1 h(X∗i )−E∗h(X∗i )‖ or ‖G∗n(θ0(1))−Gn(θ0(1))‖ =
‖n−1∑n

i=1 h(X∗i )− E∗h(X∗i )‖. Now, we apply AL6(a). For the second terms on the
right-hand side, apply Lemma 1.3 and Assumption 3. This proves the result (1.84)
and (1.85).

Next, we claim

lim
n→∞

naP
(
P ∗

(∥∥∥H̃∗n(θ̃∗, ILg)− H̃∗n(θ0(1), ILg)
∥∥∥ > ε

)
> n−a

)
= 0, (1.90)

lim
n→∞

naP
(
P ∗

(∥∥∥H̃∗n(θ0(1), ILg)−H0(1)

∥∥∥ > ε
)
> n−a

)
= 0, (1.91)

where H̃∗n(θ, ILg) = (g∗n(θ)′ ⊗ ILθ)G(2)∗
n (θ) + G∗n(θ)′G∗n(θ) and (∂2/∂θ∂θ′)J∗n(θ) =

2H̃∗n(θ, ILg). Similar arguments with the proof of Lemma 1.3 prove (1.90) and (1.91)
using AL6 in place of AL1. In particular, ‖θ̃∗ − θ0(1)‖ ≤ ‖θ̂∗(1) − θ̂(1)‖+ ‖θ̂(1) − θ0(1)‖
by the triangle inequality and we use Lemma 1.3 and (1.77). By combining (1.80),
(1.90), and (1.91), the Lemma follows. Q.E.D.



50

Proof of Lemma 1.6

We first show that

lim
n→∞

naP (P ∗(‖W ∗
n(θ̂∗(1))−W‖ > n−c) > n−a) = 0. (1.92)

This follows from

lim
n→∞

naP (P ∗(‖W ∗
n(θ̂∗(1))−1 −W ∗

n(θ0(1))−1‖ > n−c) > n−a) = 0, (1.93)

lim
n→∞

naP (P ∗(‖W ∗
n(θ0(1))−1 −W−1‖ > n−c) > n−a) = 0. (1.94)

To obtain (1.93), we use the same argument as that in the proof of Lemma 1.4 and
the triangle inequality to show

‖W ∗
n(θ̂∗(1))−1 −W ∗

n(θ0(1))−1‖ ≤ C∗‖θ̂∗(1) − θ0(1)‖

≤ C∗
(
‖θ̂∗(1) − θ̂(1)‖+ ‖θ̂(1) − θ0(1)‖

)
,

where

C∗ =

2n−1
n∑
i=1

sup
θ∈N0(1)

‖G∗i (θ)‖‖g∗i (θ)‖+ C∗g,n(2n−1
n∑
i=1
‖g∗i (θ0(1))‖+ ‖θ̂∗(1) − θ0(1)‖C∗g,n)

 .
Apply AL6(d) with h(Xi) = Cg(Xi), h(Xi) = gi(θ0(1)), and h(Xi) = supθ∈N0(1)

‖Gi(θ)‖‖gi(θ)‖
and use Lemmas 1.3 and 1.5 to get (1.93). The proof of (1.94) is analogous to that
of (1.69) with AL6(c) in place of AL1(a), using the same h(Xi), c, and p.

For the rest of the proof, we write W ∗
n ≡ W ∗

n(θ̂∗(1)) and Wn ≡ Wn(θ̂(1)) for
notational brevity. Analogous arguments to that of Lemma 1.3 and Lemma 1.5 with
(1.92) show that

lim
n→∞

naP (P ∗(‖θ̂∗(2) − θ̂(2)‖ > ε) > n−a) = 0. (1.95)

The first-order condition is (∂/∂θ)J∗n(θ̂∗(2),W
∗
n) = 0, with P ∗ probability 1−o(n−a)
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except, possibly, if χ is in a set of P probability o(n−a). By the mean value theorem,

θ̂∗(2) − θ̂(2) = −
(

∂2

∂θ∂θ′
J∗n(θ̃∗,W ∗

n)
)−1

∂

∂θ
J∗n(θ̂(2),W

∗
n), (1.96)

with P ∗ probability 1−o(n−a) except, possibly, if χ is in a set of P probability o(n−a),
where θ̃∗ is between θ̂∗(2) and θ̂(2) and may differ across rows. Write

∂

∂θ
J∗n(θ̂(2),W

∗
n) = G∗n(θ̂(2))′W ∗

ng
∗
n(θ̂(2)) (1.97)

= G∗n(θ̂(2))′W ∗
n

(
g∗n(θ̂(2))− gn(θ̂(2))

)
+
(
G∗n(θ̂(2))−Gn(θ̂(2))

)′
Wgn(θ̂(2))

+G∗n(θ̂(2))′(W ∗
n −W )gn(θ̂(2)) +Gn(θ̂(2))′(W −Wn)gn(θ̂(2)),

since the sample first-order condition Gn(θ̂(2))′Wngn(θ̂(2)) = 0 holds.
For the fist term of the right-hand side, by the triangle inequality and Assumptions

2-3,

‖W ∗
n‖ ≤ ‖W‖+ ‖W ∗

n −W‖, (1.98)

‖G∗n(θ̂(2))‖ ≤ ‖G∗n(θ0(2))‖+ ‖G∗n(θ̂(2))−G∗n(θ0(2))‖ (1.99)

≤ ‖G∗n(θ0(2))‖+ C∗∂f,n‖θ̂(2) − θ0(2)‖,

‖g∗n(θ̂(2))− gn(θ̂(2))‖ ≤ ‖g∗n(θ0(2))− gn(θ0(2))‖ (1.100)

+‖g∗n(θ̂(2))− g∗n(θ0(2))‖+ ‖gn(θ̂(2))− gn(θ0(2))‖

≤ ‖g∗n(θ0(2))− gn(θ0(2))‖+ ‖θ̂(2) − θ0(2)‖(C∗g,n + Cg,n).

We apply AL6(a) with h(Xi) = gi(θ0(2)), AL6(d), Lemma 1.4, and (1.95) to show that

lim
n→∞

naP (P ∗
∥∥∥G∗n(θ̂(2))′W ∗

n

(
g∗n(θ̂(2))− gn(θ̂(2))

)∥∥∥ > n−c) > n−a) = 0. (1.101)

Similar arguments apply to the remaining terms and we conclude that

lim
n→∞

naP

(
P ∗

(∥∥∥∥∥ ∂∂θJ∗n(θ̂(2),W
∗
n)
∥∥∥∥∥ > n−c

)
> n−a

)
= 0. (1.102)
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Now, the Lemma follows from

lim
n→∞

naP
(
P ∗

(∥∥∥H̃∗n(θ̃∗,W ∗
n)− H̃∗n(θ0(2),W )

∥∥∥ > ε
)
> n−a

)
= 0, (1.103)

lim
n→∞

naP
(
P ∗

(∥∥∥H̃∗n(θ0(2),W )−H0(2)

∥∥∥ > ε
)
> n−a

)
= 0, (1.104)

where H̃∗n(θ,W ∗
n) = (g∗n(θ)′W ∗

n⊗ILθ)G(2)∗
n (θ)+G∗n(θ)′W ∗

nG
∗
n(θ) and (∂2/∂θ∂θ′)J∗n(θ,W ∗

n) =
2H̃∗n(θ,W ∗

n). The proof is analogous to that given in Lemma 1.5, by applying the
Cauchy-Schwarz inequality and the triangle inequality multiple times. In particular,
we use the triangle inequality to get ‖θ̃∗ − θ0(2)‖ ≤ ‖θ̂∗(2) − θ̂(2)‖+ ‖θ̂(2) − θ0(2)‖, and
apply Lemma 1.4 and (1.95). Q.E.D.

Proof of Lemma 1.7

(a) The proof mimics that of Proposition 1 of Hall and Horowitz (1996), but the proof
differs from theirs by allowing distinct probability limits for the one-step and the
two-step GMM estimators. The main problem to be solved is showing that θ̂(j)− θ0(j)

can be approximated by a function of sample moments. First, let δn = θ̂(1)− θ0(1) and
δni denote the ith component of δn. Write Jn(θ) ≡ Jn(θ, ILg) for notational brevity.
Using the convention of summing over common subscripts, a Taylor expansion of
0 = ∂Jn(θ̂(1))/∂θ about θ = θ0(1) yields

0 = ∂Jn(θ0(1))
∂θ

+ ∂2Jn(θ0(1))
∂θ∂θ′

δn + 1
2
∂3Jn(θ0(1))
∂θ∂θi∂θj

δniδnj (1.105)

+ · · ·+ 1
(d1 − 1)!

∂d1Jn(θ0(1))
∂θ∂θi · · · ∂θκ

δni · · · δnκ + ζn, (1.106)

with probability 1− o(n−a), where

ζn = 1
(d1 − 1)!

(
∂d1Jn(θ̄n)

∂θ∂θi · · · ∂θκ
−

∂d1Jn(θ0(1))
∂θ∂θi · · · ∂θκ

)
δni · · · δnκ, (1.107)

and θ̄n is between θ̂(1) and θ0(1) and may differ across rows. Let Rn be the column
vector whose elements are the unique components of ∂mJn(θ0(1))/∂θ∂θi · · · ∂θκ, m =
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1, ..., d1 − 1. Note that N{i, ..., κ} = m− 1 and i, ..., κ = 1, ..., Lθ, where N{·} is the
number of elements in the set. Let R denote almost sure limit of Rn as n→∞ and
en be the conformable vector (ζ ′n, 0, ..., 0)′ such that the dimension of en is the same
with that of Rn.

Then, (1.106) can be rewritten as 0 = Ξ(δn, Rn + en), where Ξ(·, ·) is a polynomial
and thus, infinitely differentiable with respect to its arguments. Consider a sequence
of δn and Rn + en, then 0 = Ξ(δn, Rn + en) holds for every n and 0 = Ξ(0, R) because
δn and en converge to zero as n→∞. Let δ = θ − θ0(1). If we differentiate Ξ with
respect to its first argument and evaluate at δ = 0, we have (∂2/∂θ∂θ′)Jn(θ0(1)).
[(∂2/∂θ∂θ′)Jn(θ0(1))]−1 exists and bounded with probability 1− o(n−a) by AL1. Now,
we apply the implicit function theorem to (1.106) and get the result that there is a
function Λ1 such that Λ1(R) = 0, Λ1 is infinitely differentiable in a neighborhood of
R, and

θ̂(1) − θ0(1) ≡ δn = Λ1(Rn + en). (1.108)

Each component of Rn is a continuous function of Sn. By AL1(a), for any ε > 0,
‖Rn − R‖ ≤ ε with probability 1 − o(n−a). By multiple applications of AL1(a)
and AL1(b), similar arguments with the proof of Lemma 1.3 show that ‖ζn‖ <
M‖θ̂(1) − θ0(1)‖d1 for some M < ∞ with probability 1 − o(n−a). It follows from
Lemma 1.3 that ‖en‖ ≤ n−d1c with probability 1− o(n−a). Therefore, by the mean
value theorem for some M̃ <∞,

naP
(
‖(θ̂(1) − θ0(1))− Λ1(Rn)‖ > n−d1c

)
≤ naP

(
M̃‖en‖ > n−d1c

)
= o(1), (1.109)

as n → ∞. In order to apply AL5(a) with ξn = n1/2ζn, we need d1c ≥ a + 1/2 for
some c ∈ [0, 1/2) and we need 2a to be an integer. Both hold by assumption of the
Lemma. By the result (1.109) and AL5(a),

lim
n→∞

sup
z
na
∣∣∣P (n1/2(θ̂(1) − θ0(1)) ≤ z

)
− P

(
n1/2Λ1(Rn) ≤ z

)∣∣∣ = 0. (1.110)

Now write Jn(θ̂, θ̃) ≡ Jn(θ̂,Wn(θ̃)) and let (∂1/∂θ)J(·, ·) denote the gradient
of Jn(·, ·) with respect to its first argument. Then, ∂1Jn(θ̂(2), θ̂(1))/∂θ = 0 with
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probability 1 − o(n−a) by the first-order condition. Let ηn = [(θ̂(2) − θ0(2))′, (θ̂(1) −
θ0(1))′]′, and let ηni be the ith component of ηn. Then, a Taylor series expansion of
∂1Jn(θ̂(2), θ̂(1))/∂θ through order d1 about (θ, θ̃) = (θ0(2), θ0(1)) 15 that with probability
1− o(n−a)

0 = ∂1Jn(θ0(2), θ0(1))
∂θ

+Q2
nηn + 1

2Q
3
nηniηnj + · · ·+ 1

(d1 − 1)!Q
d1
n ηniηnj...ηnκ + νn,(1.111)

where N{i, j, ..., κ} = d1 − 1, Qm
n is the mth order derivative of ∂1Jn(·, ·)/∂θ with

respect to both of its arguments evaluated at (θ0(2), θ0(1)), and νn is the remain-
der term of the Taylor series expansion, where ‖νn‖ = O(‖ηn‖d1). Observe that
(∂2

1/∂θ∂θ
′)Jn(θ0(2), θ0(1)) is the coefficient of θ̂(2)−θ0(2) in (1.111) and its inverse exists

and is bounded with probability 1− o(n−a) by AL1. Using arguments similar to those
used in proving (2.53), we apply the implicit function theorem to obtain

θ̂(2) − θ0(2) = Λ2 (Sn, νn,Λ1(Rn + en)) (1.112)

with probability 1− o(n−a) for some Λ2, Λ2(S, 0, 0) = 0 and Λ2 is infinitely differen-
tiable in a neighborhood of (S, 0, 0). By Lemma 1.3 and Lemma 1.4, ‖ηn‖ < n−c and
thus, ‖νn‖ < n−d1c with probability 1− o(n−a). By the triangle inequality and the
mean value theorem,

‖Λ2(Sn, νn,Λ1(Rn + en))− Λ2(Sn, 0, 0)‖ (1.113)

≤ ‖Λ2(Sn, νn,Λ1(Rn + en))− Λ2(Sn, 0,Λ1(Rn + en))‖

+ ‖Λ2(Sn, 0,Λ1(Rn + en))− Λ2(Sn, 0,Λ1(Rn))‖+ ‖Λ2(Sn, 0,Λ1(Rn))− Λ2(Sn, 0, 0)‖

≤ M1‖νn‖+M2‖en‖+M3‖Rn −R‖

for someMk <∞, k = 1, 2, 3. It follows that naP
(
‖(θ̂(2) − θ0(2))− Λ2(Sn, 0, 0)‖ > n−d1c

)
=

15Hall and Horowitz (1996) takes the Taylor expansion around (θa, θb) = (θ0, θ0), the unique true
value. Thus, each term of the expansion can be expressed as a function of n−1∑n

i f(Xi, θ0). This
can be done only under the assumption of correct model specification.
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o(1) and by AL5,

lim
n→∞

sup
z
na
∣∣∣P (n1/2(θ̂(2) − θ0(2)) ≤ z

)
− P

(
n1/2Λ2(Sn, 0, 0) ≤ z

)∣∣∣ = 0. (1.114)

For TMR(j), we use the fact that the covariance matrix estimator, Σ̂MR(j), is
a function of θ̂(j), j = 1, 2, by construction. Write Σ̂MR(1)(θ̂(1)) ≡ Σ̂MR(1) and
Σ̂MR(2)(θ̂(1), θ̂(2)) ≡ Σ̂MR(2), so that TMR(1)(θ) = n1/2(θ − θ0(1))/(Σ̂MR(1)(θ))1/2 and
TMR(2)(θa, θb) = n1/2(θb− θ0(1))/(Σ̂MR(2)(θa, θb))1/2, where θ = (θ′a, θ′b)′ for TMR(2)(·, ·).
Then, TMR(1)(θ0(1)) = 0, TMR(2)(θ0(1), θ0(2)) = 0 and their derivatives through order
d1 − 1 are functions of Sn. To ensure the existence of the derivatives of TMR(j), we
need at least d1 + 1 times differentiability of gi(θ) with respect to θ because ΣMR(j)

involves second derivatives of the moment function. By Assumption 3(c), this is
satisfied.

Taylor series expansions of TMR(1) about θ = θ0(1) through order d1 yields results of
the form TMR(1) = n1/2[Λ3(Sn, θ̂(1)− θ0(1)) + ζn], where ζn is the remainder term of the
expansion, ‖ζn‖ = O(‖θ̂(1) − θ0(1)‖d1), Λ3 is infinitely differentiable in a neighborhood
of (S, 0), and Λ3(S, 0) = 0. Since ‖ηn‖ < n−c with probability 1− o(n−a) by Lemma
1.3 and 1.4, the result follows from AL5. The proof for TMR(2) proceeds similarly.

(b) The proof mimics that of Proposition 2 of Hall and Horowitz (1996). Let R∗n be
the column vector whose elements are the unique components of ∂mJ∗n(θ̂(1))/∂θ∂θi · · · ∂θκ,
m = 1, ...d1 − 1, N{i, ..., κ} = m − 1, and i, ..., κ = 1, ..., Lθ. Then, R∗n is the same
with Rn, except that we place X∗i instead of Xi. Let δ∗n = θ̂∗(1) − θ̂(1) and let e∗n be
a conformable column vector with zeros for all but its first Lθ elements. Apply a
Taylor expansion of the bootstrap first-order condition around θ̂∗(1) = θ̂(1) to obtain

0 = ∂J∗n(θ̂(1))
∂θ

+ ∂2Jn(θ̂(1))
∂θ∂θ′

δ∗n + · · ·+ 1
(d1 − 1)!

∂d1J∗n(θ̂(1))
∂θ∂θi...∂θκ

δ∗ni...δ
∗
nκ + ζ∗n, (1.115)

with P ∗ probability 1−o(n−a) except, possibly, if χ is in a set of P probability o(n−a),
where ζ∗n is the remainder term. Define Λ as in (2.53). Since all the terms in the
expansion are the same with (1.106) by replacing Rn and θ0(1) with R∗n and θ̂(1), we
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can write

θ̂∗(1) − θ̂(1) ≡ δ∗n = Λ1(R∗n + e∗n) (1.116)

with P ∗ probability 1− o(n−a) except, possibly, if χ is in a set of P probability o(n−a)
(That is, for all ε > 0, limn→∞ n

aP (P ∗(‖(θ̂∗(1)− θ̂(1))−Λ1(R∗n+e∗n)‖ > ε) > n−a) = 0.).
Observe that Λ1(R∗) = 0, where R∗ = E∗R∗n. This can be verified by increasing the
number of the bootstrap draw given the sample, χn, because δ∗n and e∗n converge to
zero conditional on χn. Since ‖ζ∗n‖ < M∗‖θ̂∗(1) − θ̂(1)‖d1 for some M∗ < ∞, Lemma
1.5 yields limn→∞ n

aP
(
P ∗

(
‖e∗n‖ > n−d1c

)
> n−a

)
= 0 and thus,

lim
n→∞

naP
(
P ∗

(
‖(θ̂∗(1) − θ̂(1))− Λ1(R∗n)‖ > n−d1c

)
> n−a

)
= 0. (1.117)

By AL5(b),

lim
n→∞

naP
(

sup
z

∣∣∣P ∗(n1/2(θ̂∗(1) − θ̂(1)) ≤ z)− P ∗(n1/2Λ1(R∗n) ≤ z)
∣∣∣ > n−a

)
= 0.
(1.118)

For the rest of the proof, observe that ∆∗n has the same form of ∆n by replacing
Sn and θ0(j) with S∗n and θ̂(j), respectively, since ∆∗n does not involve any recentering
procedure as in HH. Therefore, the remainder of the proof proceeds as in the previous
proof for part (a) of the Lemma. We use Lemmas 1.5-1.6 instead of Lemmas 1.3-
1.4. Q.E.D.

Proof of Lemma 1.8

Since Xi’s are iid by Assumption 1, we set γ = 0 and replace 0 ≤ ξ < 1/2− γ with
∀c ∈ [0, 1/2) in Lemma 14 of Andrews (2002). Since Assumptions 1 and 3 of Andrews
(2002) hold under our Assumptions 1 and 3, the Lemma holds by the proof of Lemma
14 of Andrews (2002). Q.E.D.
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Proof of Lemma 1.9

By Lemma 1.7 for ∆n = TMR(j) and ∆∗n = T ∗MR(j), it suffices to show that n1/2A(Sn)
and n1/2A(S∗n) possess Edgeworth expansions with remainder o(n−a), where A(·) is
an infinitely differentiable real-valued function. The function A(·) is normalized so
that the asymptotic variances of n1/2A(Sn) and n1/2A(S∗n) are one.16 To see this,
observe that the asymptotic variances of n1/2A(Sn) and TMR(j) are the same by
Lemma 1.7(a), and the conditional asymptotic variances of n1/2A(S∗n) and T ∗MR(j) are
the same, except if χn is in a sequence of sets with probability o(n−a) by Lemma
1.7(b). By Theorem 1 and 2 of Hall and Inoue (2003), the asymptotic variance of
TMR(j) is one for j = 1, 2. To find the conditional asymptotic variance of T ∗MR(j), we
use the proof of Theorem 2.1. of Bickel and Freedman (1981). Conditional on χn,
where χn is in a sequence of sets with P probability 1− o(n−a), the ordinary central
limit theorem and the law of large numbers imply

√
n(θ̂∗(j) − θ̂(j))→d N(0,ΣMR(j)|Fn), (1.119)

and Σ̂∗MR(j) →p ΣMR(j)|Fn where ΣMR(j)|Fn is obtained by replacing the population
moments by the sample moments in the formula of ΣMR(j). Then, by Slutsky’s
theorem, T ∗MR(j) has the asymptotic variance of one for j = 1, 2, conditional on χn,
where χn is in a sequence of sets with P probability 1− o(n−a).

The rest of the proof is analogous to that of Lemma 16 of Andrews (2002) which
uses the results of Bhattacharya (1987) with the properly normalized n1/2A(·) in
place of his n1/2H(·). For part (a), we apply Theorem 3.1 of Bhattacharya (1987)
with his integer parameter s satisfying (s− 2)/2 = a for a assumed in the Lemma and
with his X̄ = Sn. Conditions (A1)− (A4) of Bhattacharya (1987) hold by Assumption
3(e), the fact that A(·) is infinitely differentiable and real-valued, and Assumptions 1
and 4. For part (b), the result hold by an analogous argument as for part (a), but
with Theorem 3.1 of Bhattacharya (1987) replaced by Theorem 3.3 of Bhattacharya
(1987) and using Lemma 1.8 with c = 0 to ensure that the coefficients ν∗n,a are well

16Hall and Horowitz (1996) and Andrews (2002) do this normalization by recentering, but the
procedure is implicit.
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behaved. Q.E.D.

1.11 Technical Appendix

1. Example: Imbens and Lancaster (1994)

The probit model is

P (Li = 1|Agei, Edui) = Φ(x′iθ)

= Φ(θ0 + θ1 · Edui + θ2 · (Agei − 35) + θ3 · (Agei − 35)2),

with xi = (1, Edui, Agei − 35, (Agei − 35)2)′ and Φ(·) is the standard normal cdf.
Li is labor market status (Li = 1 when employed), Edui is education level in five
categories, and Agei is age in years. Typically, the probit model is estimated by the
maximum likelihood (ML) estimator. The log-likelihood function is

log(θ) =
n∑
i=1

Li log Φ(x′iθ) + (1− Li) log(1− Φ(x′iθ)),

with the first-order condition (FOC)

0 =
n∑
i=1

Li − Φ(x′iθ̂ML)
Φ(x′iθ̂ML)(1− Φ(x′iθ̂ML))

φ(x′iθ̂ML) · xij,

where φ(·) is the standard normal pdf and xij is the jth element of xi.
By using the statistical yearbooks for The Netherlands which contains 2.355

million observations, they calculated the probability of being employed given the age
category (denoted by pk where the index for the age category k = 1, 2, 3, 4, 5) and the
probability of being in a particular age category (denoted by qk). These probabilities
are shown in Table 1.5 and are considered as the true population parameters.
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The moment function is g(Li,xi, θ) = (g1(Li,xi, θ)′, g2(xi, θ))′, with

g1(Li,xi, θ) = Li − Φ(x′iθ)
Φ(x′iθ)(1− Φ(x′iθ))

φ(x′iθ) · xij, for j = 1, 2, 3, 4,

g2(xi, θ) = 1(Agei ∈ Ck) · (pk − Φ(x′iθ)), for k = 1, 2, 3, 4, 5.

The first four moment restrictions g1(Li,xi, θ) are from the FOC of the ML estimator.
The last five moment restrictions g2(xi, θ) are from the true conditional employment
probability.

Age category (Ck) C1 C2 C3 C4 C5
Age 25-29 30-34 35-39 40-44 45-49

pk 0.911 0.933 0.932 0.932 0.891
qk 0.258 0.227 0.185 0.168 0.160

Table 1.5: Table IV of Imbens and Lancaster (1994)

2. Example 1: Combining Data Sets

The GMM estimators

The FOCs for the one-step and the two-step GMM estimators are Gn(θ̂(1))′gn(θ̂(1)) = 0
and Gn(θ̂(2))′Wn(θ̂(1))gn(θ̂(1)) = 0, where Gn(θ) = (0,−1)′, gn(θ) = (Ȳ , Z̄ − θ)′, and

Wn(θ)−1 =
 V̂ ar(Yi) Ĉov(Yi, Zi)
Ĉov(Yi, Zi) V̂ ar(Zi)

 .
The one-step GMM estimator θ̂(1) = Z̄ and the two-step GMM estimator is

θ̂(2) = Z̄ − Ĉov(Yi, Zi)
V̂ ar(Yi)

Ȳ .
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The probability limit of θ̂(2) is the pseudo-true value,

θ0(2) = EZi −
Cov(Yi, Zi)
V ar(Yi)

EYi = −ρδ.

Hall and Horowitz (1996), Andrews (2002), and Brown and Newey (2002) propose
the two-step GMM estimator that uses a uncentered weight matrix, and thus their
estimator is different from θ̂(2). Nevertheless, the two estimators are asymptoti-
cally equivalent under correct specification and the recentered bootstrap achieves
asymptotic refinements over the CI based on θ̂(2).

Under misspecification, using different weight matrix implies the resulting pseudo-
true values are different. Thus, the recentered bootstrap theory should be taylored to
use the centered weight matrix in the sample and in the bootstrap. However, this
modification is suggested by neither Hall and Horowitz (1996) nor Brown and Newey
(2002), and further investigation of this modification is not the objective of this paper.
Therefore, I just follow the original recipe of the recentered bootstrap, except that
I use the centered weight matrix for the sample two-step GMM estimator. In the
Monte Carlo simulation not reported here, I found that the result are similar when
using the uncentered weight matrix in the sample for the recentered bootstrap.

Asymptotic variance under correct specification, ΣC(2)

To find ΣC(2), a relevant question is: If a researcher uses the conventional variance
estimator Σ̂C(2) based on the above GMM estimator, what is she estimating under
misspecification? To answer the question, ΣC(2) should be interpreted as the proba-
bility limit of Σ̂C(2), evaluated at the pseudo-true value θ0(2), which is the probability
limit of the GMM estimator.
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First, we calculate ΣC(2) = (G′0Ω−1
C G0)−1. Observe that G0 = (0− 1)′ and

ΩC = Eg(Xi, θ0(2))g(Xi, θ0(2))′

=
 V ar(Yi) + (EYi)2 Cov(Yi, Zi) + EYi(EZi − θ0(2))
Cov(Yi, Zi) + EYi(EZi − θ0(2)) V ar(Zi) + (EZi − θ0(2))2

 .
=

 1 + δ2 ρ(1 + δ2)
ρ(1 + δ2) 1 + ρ2δ2

 .
The inverse matrix is given by

Ω−1
C = 1

DC

 V ar(Zi) + (EZi − θ0(2))2 −Cov(Yi, Zi)− EYi(EZi − θ0(2))
−Cov(Yi, Zi)− EYi(EZi − θ0(2)) V ar(Yi) + (EYi)2

 ,
where

DC = (V ar(Yi) + (EYi)2)(V ar(Zi) + (EZi − θ0(2))2)

−(Cov(Yi, Zi) + EYi(EZi − θ0(2)))2

= (1 + δ2)(1− ρ2).

Thus,
ΣC(2) = (G′0Ω−1

C G0)−1 = DC

V ar(Yi) + (EYi)2 = 1− ρ2.

Asymptotic variance robust to misspecification, ΣMR(2)

Observe that gn(θ0(2))−g0(2) = (Ȳ −EYi, Z̄−EZi)′ and (Gn(θ0(2))−G0(2))′Wg0(2) = 0.
Let

W ≡

 w11 w12

w21 w22

 ,
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where w12 = w21. To find the asymptotic distribution of (Wn −W )g0(2), observe that
Wn −W = −W (W−1

n −W−1)Wn and

√
n vech(W−1

n −W−1) =
√
n

1
n

n∑
i=1


(Yi − Ȳ )2 − V ar(Yi)

(Yi − Ȳ )(Zi − Z̄)− Cov(Yi, Zi)
(Zi − Z̄)2 − V ar(Zi)

→d N(0,ΩW ),

where ΩW is 3× 3 matrix such that

ΩW (1, 1) = E(Yi − EYi)4 − V ar(Yi)2,

ΩW (2, 2) = E(Yi − EYi)2(Zi − EZi)2 − Cov(Yi, Zi)2,

ΩW (3, 3) = E(Zi − EZi)4 − V ar(Zi)2,

ΩW (1, 2) = E(Yi − EYi)3(Zi − EZi)− V ar(Yi)Cov(Yi, Zi),

ΩW (1, 3) = E(Yi − EYi)2(Zi − EZi)2 − V ar(Yi)V ar(Zi),

ΩW (2, 3) = E(Yi − EYi)(Zi − EZi)3 − V ar(Zi)Cov(Yi, Zi),

ΩW (2, 1) = ΩW (1, 2),

ΩW (3, 1) = ΩW (1, 3),

ΩW (3, 2) = ΩW (2, 3).

Let

f1 = (Yi − EYi)2 − V ar(Yi),

f2 = (Yi − EYi)(Zi − EZi)− Cov(Yi, Zi),

f3 = (Zi − EZi)2 − V ar(Zi).
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Then,
√
n(Wn −W )g0(2) can be written as

√
n(Wn −W )g0(2) = −

√
nW (W−1

n −W−1)Wng0(2)

' −
√
nW (W−1

n −W−1)Wg0(2)

'
√
n

1
n

n∑
i=1

 W1,i

W2,i

 ,
where W1,i = a1f1 + a2f2 + a3f3 and W2,i = b1f1 + b2f2 + b3f3 (ak, bk, k = 1, 2, 3
are defined below). Note that the replacement of Wn with W between the RHS of
the first and the second line of the above equations does not change the asymptotic
distribution of

√
n(Wn −W )g0(2), while calculations become simpler. Similarly, the

replacement of vech(W−1
n −W−1) with (f1, f2, f3)′ between the RHS of the second

and the last line is justified.
Let D = V ar(Yi)V ar(Zi) − Cov(Yi, Zi)2, g1 = g0(2)(1) = EYi − µY and g2 =

g0(2)(2) = EZi − θ0(2). Then,

a1 = −w2
11g1 − w11w12g2 = −V ar(Zi)

V ar(Yi)
δ

D
,

a2 = −2w11w12g1 − (w2
12 + w11w22)g2 = Cov(Yi, Zi)

V ar(Yi)
δ

D
,

a3 = −w2
12g1 − w11w12g2 =

(
V ar(Zi)
V ar(Yi)

− 1
)
Cov(Yi, Zi)2 δ

D2 ,

b1 = −w12w11g1 − w2
12g2 = a2,

b2 = −(w11w22 + w2
12)g1 − 2w12w22g2 = − δ

D
,

b3 = −w12w22g1 − w2
22g2 = 0.

Now we are ready to find

√
n

1
n

n∑
i=1

 W1,i

W2,i

→d N

 0
0

 ,
 σ2

W1 σW1W2

σW1W2 σ2
W2

 ,
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where

σ2
W1 = a2

1ΩW (1, 1) + a2
2ΩW (2, 2) + a2

3ΩW (3, 3) + 2a1a2ΩW (1, 2)

+2a1a3ΩW (1, 3) + 2a2a3ΩW (2, 3)

σ2
W2 = b2

1ΩW (1, 1) + b2
2ΩW (2, 2) + 2b1b2ΩW (1, 2)

σW1W2 = a1b1ΩW (1, 1) + (a1b2 + a2b1)ΩW (1, 2) + a2b2ΩW (2, 2)

+a3b1ΩW (3, 1) + a3b2ΩW (3, 2).

In order to find the covariances of gn(θ0(2))− g0(2) and (Wn −W )g0(2), observe that
W1,i and W2,i are mean zero processes and

σY,W1 ≡ E[(Yi − EYi)W1,i]

= a1E(Yi − EYi)3 + a2E(Yi − EYi)2(Zi − EZi) + a3E(Yi − EYi)(Zi − EZi)2,

σY,W2 ≡ E[(Yi − EYi)W2,i]

= b1E(Yi − EYi)3 + b2E(Yi − EYi)2(Zi − EZi) + b3E(Yi − EYi)(Zi − EZi)2,

σZ,W1 ≡ E[(Zi − EZi)W1,i]

= a1E(Yi − EYi)2(Zi − EZi) + a2E(Yi − EYi)(Zi − EZi)2 + a3E(Zi − EZi)3,

σZ,W2 ≡ E[(Zi − EZi)W2,i]

= b1E(Yi − EYi)2(Zi − EZi) + b2E(Yi − EYi)(Zi − EZi)2 + b3E(Zi − EZi)3.

Now we have

√
n


gn(θ0(2))− g0(2)

(Gn(θ0(2))−G0(2))′Wg0(2)

(Wn −W )g0(2)

 =
√
n

1
n

n∑
i=1



Yi − EYi
Zi − EZi

0
W1,i

W2,i


→d N(0,Ω2),
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where

Ω2 =



V ar(Yi) Cov(Yi, Zi) 0 σY,W1 σY,W2

Cov(Yi, Zi) V ar(Zi) 0 σZ,W1 σZ,W2

0 0 0 0 0
σY,W1 σZ,W1 0 σ2

W1 σW1W2

σY,W2 σZ,W2 0 σW1W2 σ2
W2


.

Since H0(2) = G′0WG0 = V ar(Yi)/D and

V2 =
(
G′0(2)W 1 G′0(2)

)
Ω2
(
G′0(2)W 1 G′0(2)

)′
=

(
Cov(Yi,Zi)

D
−V ar(Yi)

D
1 0 −1

)
Ω2
(

Cov(Yi,Zi)
D

−V ar(Yi)
D

1 0 −1
)′

= V ar(Yi)
D

(1 + 2σZ,W2)− 2Cov(Yi, Zi)
D

σY,W2 + σ2
W2 ,

we finally have,

ΣMR = H−1
0(2)V2H

−1
0(2) = D

V ar(Yi)
(1 + 2σZ,W2)− 2D · Cov(Yi, Zi)

V ar(Yi)2 σY,W2 + D2

V ar(Yi)2σ
2
W2 .

Since Xi is a bivariate normal random vector,

E(Yi − EYi)4 = 3V ar(Yi)2,

E(Yi − EYi)2(Zi − EZi)2 = V ar(Yi)V ar(Zi) + 2Cov(Yi, Zi)2,

E(Zi − EZi)4 = 3V ar(Zi)2,

E(Yi − EYi)3(Zi − EZi) = 3V ar(Yi)Cov(Yi, Zi),

E(Yi − EYi)(Zi − EZi)3 = 3V ar(Zi)Cov(Yi, Zi).

Since

E(Yi−EYi)3 = E(Yi−EYi)2(Zi−EZi) = E(Yi−EYi)(Zi−EZi)2 = E(Zi−EZi)3 = 0,
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the covariances of gn(θ0(2))− g0(2) and (Wn −W )g0(2) are zeros. Then,

ΣMR = D

V ar(Yi)
(1 + 2σZ,W2)− 2D · Cov(Yi, Zi)

V ar(Yi)2 σY,W2 + D2

V ar(Yi)2σ
2
W2

= D

V ar(Yi)2 (V ar(Yi) + δ2) = (1− ρ2)(1 + δ2).

The MR bootstrap GMM estimators θ̂∗(j), j = 1, 2.

The MR bootstrap one-step GMM estimator is θ̂∗(1) = Z̄∗. Then, we construct a
(centered) weight matrix W ∗

n such that

W ∗
n =

(
n−1(g(X∗i , θ̂∗(1))− g∗n(θ̂∗(1)))(g(X∗i , θ̂∗(1))− g∗n(θ̂∗(1)))′

)−1

=
 V̂ ar(Y ∗i ) Ĉov(Y ∗i , Z∗i )
Ĉov(Y ∗i , Z∗i ) V̂ ar(Z∗i )

−1

.

In this example, the weight matrix does not depend on θ̂∗(1). The FOC for the MR
bootstrap two-step GMM estimator is G∗n(θ̂∗(2))′W ∗

ng
∗
n(θ̂∗(2)) = 0. Since G∗n(θ̂∗(2))′ =

(0,−1),

θ̂∗(2) = Z̄∗ − Ĉov(Y ∗i , Z∗i )
V̂ ar(Y ∗i )

Ȳ ∗.

The Hall-Horowitz bootstrap GMM estimators θ̂∗HH(j), j = 1, 2.

The HH bootstrap one-step estimator solves G∗n(θ̂∗HH(1))′(g∗n(θ̂∗HH(1))− gn(θ̂(1))) = 0
and is given by θ̂∗HH(1) = Z̄∗. Then, we construct a weight matrix W̃ ∗

n with the
recentered moment function such that

W̃ ∗
n =

(
n−1(g(X∗i , θ̂∗HH(1))− gn(θ̂(2)))(g(X∗i , θ̂∗HH(1))− gn(θ̂(2)))′

)−1

=
 V̂ ar(Y ∗i ) + (Ȳ ∗ − Ȳ )2 Ĉov(Y ∗i , Z∗i )− (Ȳ ∗ − Ȳ )(Z̄ − θ̂(2))
Ĉov(Y ∗i , Z∗i )− (Ȳ ∗ − Ȳ )(Z̄ − θ̂(2)) V̂ ar(Z∗i ) + (Z̄ − θ̂(2))2

−1

≡

 w̃∗11 w̃∗12

w̃∗21 w̃∗22

 .
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The FOC for the HH bootstrap two-step GMM estimator isG∗n(θ̂∗HH(2))′W̃ ∗
n(g∗n(θ̂∗HH(2))−

gn(θ̂(2))) = 0. Then,

θ̂∗HH(2) = Z̄∗ + w̄∗21
w̄∗22

(Ȳ ∗ − Ȳ )− (Z̄ − θ̂(2)).

Note that the bootstrap two-step GMM estimator using the original moment function
θ̂∗(2), and using the recentered moment function θ̂∗HH(2), are different.

The Brown-Newey bootstrap GMM estimators θ̂∗BN

For the Brown-Newey bootstrap, we resample the bootstrap sample X∗EL,1, ...X∗EL,n
from the empirical likelihood probability distribution (p̂i attached to each sample
observation), rather then the edf. The BN bootstrap one-step GMM estimator is
θ̂∗BN(1) = Z̄∗EL. Then, we construct a uncentered weight matrix ˜̃W ∗

n with the original
moment function such that

˜̃W ∗
n =

(
n−1(g(X∗EL,i, θ̂∗BN(1)))(g(X∗EL,i, θ̂∗BN(1)))′

)−1

=
 V̂ ar(Y ∗EL,i) + Ȳ ∗2EL Ĉov(Y ∗EL,i, Z∗EL,i)
Ĉov(Y ∗EL,i, Z∗EL,i) V̂ ar(Z∗EL,i)

−1

.

The FOC for the BN bootstrap two-step GMM estimator isG∗n(θ̂∗BN(2))′
˜̃W ∗
ng
∗
n(θ̂∗BN(2)) =

0. Then,

θ̂∗BN(2) = Z̄∗EL −
Ĉov(Y ∗EL,i, Z∗EL,i)
V̂ ar(Y ∗EL,i) + Ȳ ∗2EL

Ȳ ∗EL.
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3. Example 2: Invalid Instrumental Variables

The GMM estimator and the pseudo-true value

The FOC for β̂(1) is Gn(β̂(1))′Wngn(β̂(1)) = 0, where

Gn(β) =
 −n−1∑ z1ixi

−n−1∑ z2ixi)

 ,
gn(β) =

 n−1∑ z1iyi − n−1∑ z1ixiβ

n−1∑ z2iyi − n−1∑ z2ixiβ

 ,
Wn =

n−1
n∑
i=1

 z2
1i z1iz2i

z1iz2i z2
2i

−1

.

Thus, the one-step GMM estimator is

β̂(1) = GW1 · n−1∑n
i=1 z1iyi +GW2 · n−1∑n

i=1 z2iyi
GW1 · n−1∑n

i=1 z1ixi +GW2 · n−1∑n
i=1 z2ixi

,

where

GW1 = n−1
n∑
i=1

z1ixi · n−1
n∑
i=1

z2
2i − n−1

n∑
i=1

z2ixi · n−1
n∑
i=1

z1iz2i,

GW2 = −n−1
n∑
i=1

z1ixi · n−1
n∑
i=1

z1iz2i + n−1
n∑
i=1

z2ixi · n−1
n∑
i=1

z2
1i.

The probability limit of β̂(1) is

β0(1) = Ez1ixiEz
2
2iEz1iyi + Ez2ixiEz

2
1iEz2iyi

Ez2
2i(Ez1ixi)2 + Ez2

1i(Ez2ixi)2 = β0+ Ez2ixiEz
2
1i

Ez2
2i(Ez1ixi)2 + Ez2

1i(Ez2ixi)2 ·δ,

provided that Ez1iz2i = 0, Ez1iei = 0 and Ez2iei = δ.
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2 asymptotic refinements of a
misspecification-robust bootstrap for empirical
likelihood estimators

2.1 Introduction

The goal of this paper is to establish asymptotic refinements of a misspecification-
robust bootstrap critical values for t tests and confidence intervals (CI’s) based on
the empirical likelihood (EL) estimators. The term misspecification-robust implies
that the bootstrap t tests and CI’s yield correct rejection and coverage probabilities
regardless of whether the model is correctly specified or not. The model is misspecified
when there is no such parameter that satisfies the assumed moment restrictions. This
type of misspecification occurs only if the model is overidentified, that is, the number
of moment restrictions is greater than the number of parameters to be estimated.

For overidentified moment condition models, generalized method of moments
(GMM) of Hansen (1982) is traditionally used to get point estimates, to make
inferences, and to construct CI’s. However, GMM estimators have been known to
have relatively large finite sample bias. In addition, simulation studies show first-
order asymptotic approximation to the distribution of test statistics based on GMM
estimators perform poorly in finite sample. To improve upon first-order asymptotic
approximation for GMM, Hall and Horowitz (1996) and Andrews (2002) suggest to
use the bootstrap critical values and CI’s. These bootstrap tests and CI’s achieve
asymptotic refinements over the first-order asymptotic critical values and CI’s, which
means it has smaller errors in the test rejection probability and CI coverage probability.

On the other hand, generalized empirical likelihood (GEL) estimators (Newey
and Smith (2004)) have been considered as alternatives to GMM estimators. GEL
circumvent the estimation of the optimal weight matrix, which has been considered as
a significant source of poor finite sample performance of the two-step efficient GMM.
GEL includes the EL estimator of Owen (1988), Owen (1990), Qin and Lawless
(1994), and Imbens (1997), the exponential tilting (ET) of Kitamura and Stutzer
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(1997) and Imbens et al. (1998), and the continuously updating (CU) estimator of
Hansen et al. (1996). By investigating the higher-order asymptotic properties, Newey
and Smith (2004) shows that EL possesses theoretical advantages over the other GEL
estimators. Thus, the EL estimator is a favorable alternative to GMM estimators
and it is natural to consider bootstrap t tests and CI’s based on the EL estimator to
further improve its finite sample property.

Few published papers explicitly deal with bootstrapping for the EL estimator,
however. Brown and Newey (2002) and Allen et al. (2011) employ the EL probability
in resampling the bootstrap sample for GMM estimators, not for the EL estimator.
Canay (2010) proposes a bootstrap method that uses EL probability for moment
inequality models. The resulting bootstrap confidence region for the empirical
likelihood ratio statistic is shown to be valid, but neither the validity nor asymptotic
refinements for t tests based on the EL estimator are not established.

This paper proposes a bootstrap procedure for the critical values for t tests and
CI’s based on the EL estimator, that achieves asymptotic refinements robust to
misspecification. In other words, the refinements result holds both under the correct
model and the misspecified model. In addition, I establish the same asymptotic refine-
ments of the misspecification-robust bootstrap for the exponentially tilted empirical
likelihood (ETEL) estimator of Schennach (2007). The reason that I also consider the
ETEL estimator is that the original EL estimator shows a questionable behavior under
misspecification. It is not

√
n-consistent without a strong assumption on the support

of the moment function, henceforth referred to as the uniform boundedness condition.
The ETEL estimator is designed to behave well under misspecification without the
uniform boundedness condition and it shares the same favorable higher-order asymp-
totic properties with the EL estimator under correct model specification. Thus, the
EL estimators considered in this paper includes both the original EL estimator and
the ETEL estimator.

The remainder of the paper is organized as follows. Section 2.2 provides a
heuristic explanation on why the misspecification-robust bootstrap works with the
EL estimators. Section 2.3 defines the estimators and the t statistic. Section 2.4
describes the nonparametric iid misspecification-robust bootstrap procedure for the
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EL estimators. Section 2.5 states the assumptions and establishes the asymptotic
refinements of the misspecification-robust bootstrap. Section 2.6 presents an example
and the results of the Monte Carlo simulation. Appendix contains Lemmas and proofs
of the results. Technical Appendix contains the calculation of the pseudo-true value
in the example of Section 2.6.

2.2 Why the Misspecification-Robust Bootstrap
Works with the Empirical Likelihood
Estimators

Construction of the asymptotically pivotal statistic is a critical condition to get
asymptotic refinements of the bootstrap: See Beran (1988), Hall (1997), Hall and
Horowitz (1996), Horowitz (2001), and Brown and Newey (2002) among others. That
is, the sample test statistic is required to be asymptotically pivotal and the bootstrap
test statistic is required to be asymptotically pivotal conditional on the sample. Since
the t statistic is the one of interest, we need to construct the t statistic to converge in
distribution to a standard normal distribution, both in the sample and the bootstrap
sample.

Suppose that χn = {Xi : i ≤ n} is an independent and identically distributed (iid)
random sample. Let F be the corresponding cumulative distribution function (cdf).
The empirical distribution function (edf) is denoted by Fn. Let θ be a parameter of
interest and g(Xi, θ) be a moment function. Let θ̂ be either the EL estimator with
uniform boundedness condition, supθ∈Θ,x∈χ ‖g(x, θ)‖ < ∞, or the ETEL estimator.
Then θ̂ is

√
n-consistent regardless of whether the model is misspecified or not. Let

Σ̂ be a consistent estimator of the asymptotic variance of
√
n(θ̂ − θ0). The formula

for the misspecification-robust estimator Σ̂ is available in the following section.
The (pseudo-)true value θ0 ≡ plim(θ̂) uniquely maximizes the corresponding

objective function. If the moment condition Eg(Xi, θ0) = 0 holds, then the model
is correctly specified. If Eg(Xi, θ) 6= 0 for all θ in the parameter space, then the
model is misspecified. This can happen if the model is overidentified. Throughout
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the paper, I assume that the model is possibly misspecified and overidentified. Note
that this type of misspecification is different from the one of White (1982). In his
quisi-maximum likelihood (QML) framework, what is misspecified is the underlying
probability distribution. In addition, the QML theory deals with just-identified models,
where the number of parameters is equal to the number of moment restrictions. For
bootstrapping QML estimators, see Gonçalves and White (2004).

I also define the bootstrap sample. Let χ∗nb = {X∗i : i ≤ nb} be a sample of random
vectors conditional on χn with the edf Fn. In this section, I distinguish the number
of sample n and the number of bootstrap sample nb, which helps understanding the
concept of the conditional asymptotic distribution. Define the bootstrap EL or ETEL
estimator θ̂∗ and the bootstrap covariance estimator Σ̂∗ as their sample versions are
defined, but with χ∗nb in place of χn.

Construct the sample and the bootstrap t statistics

T (χn) ≡ θ̂ − θ0√
Σ̂/n

, T (χ∗nb) ≡
θ̂∗ − θ̂√
Σ̂∗/nb

,

respectively. By writing the t statistics as T (χn) and T (χ∗nb), I emphasize that the
two versions of the t statistic have the same formula except that the sample t statistic
is based on the sample χn and the bootstrap t statistic is based on the bootstrap
sample χ∗nb .

The correctly specified population moment condition is Eg(Xi, θ0) = 0, but I
assume that this may not hold. By construction, T (χn) →d N(0, 1) regardless of
whether the population moment condition holds or not. For the bootstrap t statistic
T (χ∗nb), the corresponding bootstrap moment condition is E∗g(X∗i , θ̂) = 0, where E∗

is expectation with respect to the distribution of the bootstrap sample conditional on
the sample. This bootstrap moment condition does not hold in general, because

E∗g(X∗i , θ̂) = n−1
n∑
i=1

g(Xi, θ̂) 6= 0,

when the model is overidentified. The above equality holds because the distribution
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of the bootstrap sample is the edf Fn. Thus, the model is misspecified in the sample,
and this happens even if Eg(Xi, θ0) = 0 holds. By fixing n and taking nb →∞, we
get the conditional asymptotic distribution of T (χ∗nb). Since θ̂ and Σ̂ are considered
as the true values given the edf Fn, we have T (χ∗nb)→nb N(0, 1) conditional on χn

as nb →∞. Therefore, T (χ∗nb) is asymptotically pivotal conditional on the sample,
regardless of whether the bootstrap moment condition as well as the population
moment condition is correctly specified or not.

A natural question is whether we can use the EL- or ETEL-estimated distribution
function estimator F̂ instead of Fn in resampling. This is possible only when the
population moment condition is correctly specified. By construction, F̂ satisfies
E∗g(X∗i , θ̂) = 0, so that the bootstrap moment condition is always correctly specified.
For instance, Brown and Newey (2002) argues that using the EL-estimated distribution
function F̂EL(z) ≡ ∑

i 1(Xi ≤ z)p̂i, where p̂i is the EL probability, in place of Fn
in resampling would improve efficiency of bootstrapping for GMM. Their argument
relies on the fact that F̂EL is a consistent estimator of the true distribution function
F , which holds only under correct model specifications.

If the population moment condition happens to be misspecified, then neither F̂EL
nor the ETEL-estimated distribution function F̂ETEL is consistent for F . To see why,
note that E∗g(X∗i , θ̂) = 0 holds in large sample, while Eg(Xi, θ0) 6= 0. In contrast,
the edf Fn is consistent for F regardless of whether the population moment condition
holds or not by Glivenko-Cantelli Theorem. Therefore, F̂EL or F̂ETEL cannot be used
in place of Fn in the misspecification-robust bootstrap.

2.3 Estimators and Test Statistics

Let g(Xi, θ) be a moment function where θ is a parameter of interest. Let G(j)(Xi, θ)
denote the vectors of partial derivatives with respect to θ of order j of g(Xi, θ).
In particular, G(1)(Xi, θ) ≡ G(Xi, θ) ≡ (∂/∂θ′)g(Xi, θ) is a Lg × Lθ matrix and
G(2)(Xi, θ) ≡ (∂/∂θ′)vec{G(Xi, θ)} is a LgLθ × Lθ matrix, where vec{·} is the vec-
torization of a matrix. To simplify notation, write gi = g(Xi, θ), G(j)

i = G(j)(Xi, θ),
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ĝi = g(Xi, θ̂), and Ĝ
(j)
i = G(j)(Xi, θ̂) for j = 1, ..., d+ 1, where θ̂ is either the EL or

the ETEL estimator.

Empirical Likelihood Estimator

The EL estimator is given by

θ̂ = arg min
θ
−n−1

n∑
i=1

lnnp̂i(θ), p̂i(θ) = 1
n(1− λ̂(θ)′gi)

,

where
λ̂(θ) = arg max

λ∈RLg

−n−1
n∑
i=1

ln(1− λ′gi).

Equivalently, θ̂ maximizes the objective function

ln L̂EL(θ) = −n−1
n∑
i=1

ln(1− λ̂(θ)′gi), (2.1)

where λ̂(θ) is such that

n−1
n∑
i=1

gi

1− λ̂′gi
= 0. (2.2)

The first-order conditions (FOC’s) are

0
Lθ×1

= n−1
n∑
i=1

Ĝ′iλ̂

1− λ̂′ĝi
, 0

Lg×1
= n−1

n∑
i=1

ĝi

1− λ̂′ĝi
,

and the FOC’s hold regardless of model misspecifications. By using the standard
asymptotic theory of just-identified GMM estimators (or Z-estimators), we can find
the asymptotic distribution of the EL estimator robust to misspecification. Assume
appropriate regularity conditions that includes the uniform boundedness condition
on g(Xi, θ), supθ∈Θ,x∈χ ‖g(x, θ)‖ <∞.
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Let β = (λ′, θ′)′ and ψ(Xi, β) be a (Lg + Lθ)× 1 vector such that

ψ(Xi, β) ≡
 ψ1(Xi, β)
ψ2(Xi, β)

 =
 (1− λ′gi)−1G′iλ

(1− λ′gi)−1gi

 .
Then, β̂ = (λ̂′, θ̂′)′ is given by the solution to n−1∑n

i ψ(Xi, β̂) = 0 and the following
Proposition holds:

Proposition 2.1. Suppose regularity conditions hold. Then,

√
n(β̂ − β0)→d N(0,Γ−1

ψ Ψ(Γ′ψ)−1),

where Γψ = E(∂/∂β′)ψ(Xi, β0) and Ψ = Eψ(Xi, β0)ψ(Xi, β0)′.

β0 = (λ′0, θ′0)′ is the pseudo-true value that solves the population version of the
FOC’s:

0
Lθ×1

= E
Gi(θ0)′λ0

1− λ′0gi(θ0) , 0
Lg×1

= E
gi(θ0)

1− λ′0gi(θ0) .

The Jacobian matrix is given by

∂ψ(Xi, β)
∂β′

=

 G′i
1−λ′gi + G′iλg

′
i

(1−λ′gi)2
(λ′⊗ILθ )G(2)

i

1−λ′gi + G′iλλ
′Gi

(1−λ′gi)2

gig
′
i

(1−λ′gi)2
Gi

1−λ′gi + giλ
′Gi

(1−λ′gi)2

 .
Γψ and Ψ are estimated by

Γ̂ψ = n−1
n∑
i

∂ψ(Xi, β̂)
∂β′

and Ψ̂ = n−1
n∑
i

ψ(Xi, β̂)ψ(Xi, β̂)′,

respectively. The lower right Lθ × Lθ submatrix of Γ−1
ψ Ψ(Γ′ψ)−1, denoted by Σ, is the

asymptotic distribution of
√
n(θ̂ − θ0). Let Σ̂ be the corresponding submatrix of the

covariance estimator Γ̂−1
ψ Ψ̂(Γ̂′ψ)−1.

Exponentially Tilted Empirical Likelihood Estimator

Schennach (2007) suggests the ETEL estimator, which is designed to be robust to
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model misspecifications without the uniform boundedness condition, supθ∈Θ,x∈χ ‖g(x, θ)‖ <
∞.

The ETEL estimator is given by

θ̂ = arg min
θ
−n−1

n∑
i=1

lnnŵi(θ), ŵi(θ) = eλ̂(θ)′gi∑n
j=1 e

λ̂(θ)′gj
,

where
λ̂(θ) = arg max

λ∈RLg

−n−1
n∑
i=1

eλ
′gi .

This estimator is a hybrid of the EL estimator and the ET probability. Equivalently,
the ETEL estimator θ̂ maximizes the objective function

ln L̂(θ) = − ln
(
n−1

n∑
i=1

eλ̂(θ)′(gi−gn)
)
, (2.3)

where λ̂(θ) is such that

n−1
n∑
i=1

eλ̂(θ)′gi · gi = 0, (2.4)

and gn = n−1∑n
i=1 gi. In order to describe the asymptotic distribution of the ETEL

estimator, Schennach introduces auxiliary parameters to formulate the problem into
a just-identified GMM. Let β = (τ, κ′, λ′, θ′)′, where τ is a scalar and κ ∈ RLg . By
Lemma 9 of Schennach (2007), the ETEL estimator θ̂ is given by the subvector of
β̂ = (τ̂ , κ̂′, λ̂′, θ̂′)′, the solution to

n−1
n∑
i

φ(Xi, β̂) = 0, (2.5)

where

φ(Xi, β) ≡


φ1(Xi, β)
φ2(Xi, β)
φ3(Xi, β)
φ4(Xi, β)

 =


eλ
′gi − τ

eλ
′gi · gi

(τ − eλ′gi) · gi + eλ
′gi · gig′iκ

eλ
′giG′i (κ+ λg′iκ− λ) + τG′iλ

 .
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By Theorem 10 of Schennach (2007),

√
n(β̂ − β0)→d N(0,Γ−1

φ Φ(Γ′φ)−1),

where Γφ = E(∂/∂β′)φ(Xi, β0) and Φ = Eφ(Xi, β0)φ(Xi, β0)′. The pseudo-true value
β0 solves Eφ(Xi, β0) = 0. In particular, λ0(θ) is the solution to Eeλ′gigi = 0 and θ0 is
a unique maximizer of the population objective function:

lnL(θ) = − ln
(
Eeλ0(θ)′(gi−Egi)

)
.

Γφ and Φ are estimated by

Γ̂φ ≡ n−1
n∑
i

∂φ(Xi, β̂)
∂β′

and Φ̂ ≡ n−1
n∑
i

φ(Xi, β̂)φ(Xi, β̂)′,

respectively.
In order to estimate Γφ, we need an exact formula of (∂/∂β′)φ(Xi, β).1 Let

G
(2)
i = (∂/∂θ′)vec{Gi}, a LgLθ × Lθ matrix. The partial derivative of φ1(Xi, β) is

given by
∂φ1(Xi, β)

∂β′
=
(
−1
1×1

0
1×Lg

eλ
′gig′i

1×Lg
eλ
′giλ′Gi
1×Lθ

)
.

The partial derivative of φ2(Xi, β) is given by

∂φ2(Xi, β)
∂β′

=
(

0
Lg×1

0
Lg×Lg

eλ
′gigig

′
i

Lg×Lg
eλ
′gi(Gi + giλ

′Gi)
Lg×Lθ

)
.

The partial derivative of φ3(Xi, β) is given by

∂φ3(Xi, β)
∂β′

=
(

gi
Lg×1

eλ
′gigig

′
i

Lg×Lg
eλ
′gi(gig′iκg′i − gig′i)

Lg×Lg
(∂/∂θ′)φ3(Xi, β)

Lg×Lθ

)
,

1This formula is not given in Schennach (2007), though the value of Γ under correct specification
appears in the technical report of Schennach (2007).
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where

∂φ3(Xi, β)
∂θ′

= eλ
′gi
{
gig
′
iκλ

′ + giκ
′ − giλ′ + (g′iκ− 1)ILg

}
Gi + τGi.

The partial derivatives of φ4(Xi, β) is given by

∂φ4(Xi, β)
∂β′

=
(
G′iλ
Lθ×1

eλ
′gi(G′i +G′iλg

′
i)

Lθ×Lg
(∂/∂λ′)φ4(Xi, β)

Lθ×Lg
(∂/∂θ′)φ4(Xi, β)

Lθ×Lθ

)
,

where

∂φ4(Xi, β)
∂λ′

= eλ
′giG′i

{
κg′i + λg′iκg

′
i − λg′i + (g′iκ− 1)ILg

}
+ τG′i,

∂φ4(Xi, β)
∂θ′

= eλ
′gi {G′i(κλ′ + λκ′ + λg′iκλ

′ − λλ′)Gi

+((κ′ + κ′giλ
′ − λ′)⊗ ILθ)G

(2)
i

}
+ τ(λ′ ⊗ ILθ)G

(2)
i .

The lower right Lθ × Lθ submatrix of Γ−1
φ Φ(Γ′φ)−1, denoted by Σ, is the asymptotic

distribution of
√
n(θ̂ − θ0). Let Σ̂ be the corresponding submatrix of the covariance

estimator Γ̂−1
φ Φ̂(Γ̂′φ)−1.

The t statistic

Let θ̂ be either the EL estimator that solves (2.1)-(2.2) or the ETEL estimator that
solves (2.3)-(2.4). Σ̂ is the corresponding covariance matrix estimator.

Let θr, θ0,r, and θ̂r denote the rth elements of θ, θ0, and θ̂ respectively. Let
Σ̂rr denote the (r, r)th element of Σ̂. The t statistic for testing the null hypothesis
H0 : θr = θ0,r is

T (χn) = θ̂r − θ0,r√
Σ̂rr/n

.

T (χn) is misspecification-robust because it has an asymptotic N(0, 1) distribution
under H0, without assuming the correct model.

The symmetric two-sided t test with asymptotic significance level α rejects H0 if
|T (χn)| > zα/2, where zα/2 is the 1− α/2 quantile of a standard normal distribution.
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The corresponding CI for θ0,r with asymptotic confidence level 100(1 − α)% is
CIn = [θ̂r ± zα/2

√
Σ̂rr/n]. The error in the rejection probability of the t test with

zα/2 and coverage probability of CIn is O(n−1): Under H0, P
(
|T (χn)| > zα/2

)
=

α +O(n−1) and P (θ0,r ∈ CIn) = 1− α +O(n−1).

2.4 The Misspecification-Robust Bootstrap
Procedure

The nonparametric iid bootstrap is implemented by sampling X∗1 , · · · , X∗n randomly
with replacement from the sample X1, · · · , Xn. I do not employ the EL or ETEL
probability in resampling, because the EL or ETEL estimator of the cdf is inconsistent
for the true cdf.

The bootstrap EL estimator θ̂∗ is given by the subvector of β̂∗ = (λ̂∗′ , θ̂∗′)′, the
solution to

n−1
n∑
i

ψ(X∗i , β̂∗) = 0. (2.6)

The bootstrap version of the covariance matrix estimator is Γ̂∗−1
ψ Ψ̂∗(Γ̂∗′ψ )−1, where

Γ̂∗ψ ≡ n−1∑n
i (∂/∂β′)ψ(X∗i , β̂∗) and Ψ̂∗ ≡ n−1∑n

i ψ(X∗i , β̂∗)ψ(X∗i , β̂∗)′.
The bootstrap ETEL estimator θ̂∗ is given by the subvector of β̂∗ = (τ̂ ∗, κ̂∗′ , λ̂∗′ , θ̂∗′)′,

the solution to
n−1

n∑
i

φ(X∗i , β̂∗) = 0. (2.7)

The bootstrap version of the covariance matrix estimator is Γ̂∗−1
φ Φ̂∗(Γ̂∗′φ )−1, where

Γ̂∗φ ≡ n−1∑n
i (∂/∂β′)φ(X∗i , β̂∗) and Φ̂∗ ≡ n−1∑n

i φ(X∗i , β̂∗)φ(X∗i , β̂∗)′.
Let Σ̂∗ be the corresponding submatrix of the bootstrap covariance estimator

Γ̂∗−1
ψ Ψ̂∗(Γ̂∗′ψ )−1 if β̂∗ solves (2.6), and Γ̂∗−1

φ Φ̂∗(Γ̂∗′φ )−1 if β̂∗ solves (2.7). The bootstrap
version of the estimators use the same formula with the sample version of the
estimators. The only difference between the bootstrap and the sample estimators is
that the former is calculated from the bootstrap sample, χ∗n, in place of the original
sample, χn. Therefore, there is no additional correction such as the recentering, as in
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Hall and Horowitz (1996) and Andrews (2002).
The misspecification-robust bootstrap t statistic is

T (χ∗n) = θ̂∗r − θ̂r√
Σ̂∗rr/n

.

Let z∗|T |,α denote the 1− α quantile of |T (χ∗n)|. Following Andrews (2002), we define
z∗|T |,α to be a value that minimizes |P ∗(|T (χ∗n)| ≤ z) − (1 − α)| over z ∈ R, since
the distribution of |T (χ∗n)| is discrete. The symmetric two-sided bootstrap t test
of H0 : θr = θ0,r versus H1 : θr 6= θ0,r rejects if |T (χn)| > z∗|T |,α, and this test is of
asymptotic significance level α. The 100(1− α)% symmetric percentile t interval for
θ0,r is CI∗n = [θ̂r ± z∗|T |,α

√
Σ̂rr/n].

In sum, the misspecification-robust bootstrap procedure is as follows:

1. Draw n random observations X∗1 , ...X∗n with replacement from the original
sample, X1, ..., Xn.

2. From the bootstrap sample χ∗n, calculate θ̂∗ and Σ̂∗.

3. Construct and save T (χ∗n).

4. Repeat steps 1-3 B times and get the distribution of |T (χ∗n)|, which is discrete.

5. Find z∗|T |,α from the distribution of |T (χ∗n)|.

6. Use z∗|T |,α in testing H0 : θr = θ0,r or in constructing CI∗n.

2.5 Main Result

Let f(Xi, β) be a vector containing the unique components of φ(Xi, β) and its
derivatives with respect to the components of β through order d, and φ(Xi, β)φ(Xi, β)′

and its derivatives with respect to the components of β through order d− 1. Let g
and G(j) be an element of gi and G

(j)
i , respectively, for j = 1, ..., d+ 1. In addition,

let gk be a multiplication of any k-combination of elements of gi. For instance, if
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g(Xi, θ) = (gi,1, gi,2)′, a 2× 1 vector, then g2 = g2
i,1, gi,1gi,2, or g2

i,2. G(j)k are defined
analogously. Then, f(Xi, β) contains terms of the form

α · ekτλ′gi · gk0 ·Gk1 ·G(2)k2 · · ·G(d+1)kd+1 ,

where kτ = 0, 1, 2, k0 ≤ d + 3, kj ≤ d + 2 − j, 0 ≤ ∑d+1
j=0 kj ≤ d + 3, and kj’s are

nonnegative integers for j = 1, ..., d+ 1 and where α denotes products of components
of β.

Assumption 2.1. Xi, i = 1, 2, ... are iid.

Assumption 2.2.

(a) Θ is compact and θ0 is an interior point of Θ; Λ(θ) is a compact set such that
λ0(θ) is an interior point of Λ(θ).

(b) For some function Cg(x), ‖g(x, θ1)− g(x, θ2)‖ < Cg(x)‖θ1 − θ2‖ for all x in the
support of X1 and all θ1, θ2 ∈ Θ; ECqg

g (X1) < ∞ and E‖g(X1, θ)‖qg < ∞ for
all θ ∈ Θ for all 0 < qg <∞.

(c) For some function Cτ (x), |eλ′1g(x,θ1) − eλ′2g(x,θ2)| < Cτ (x)‖(λ′1, θ′1)− (λ′2, θ′2)‖, for
all x in the support of X1 and all (λ′1, θ′1), (λ′2, θ′2) ∈ Λ(θ)×Θ; ECqτ

τ (X1) <∞
and Eeλ′g(X1,θ)·qτ <∞ for all (λ′, θ′) ∈ Λ(θ)×Θ for some qτ ≥ 2.

Assumption 2.3.

(a) Γ0 is nonsigular.

(b) g(x, θ) is d+ 1 times differentiable with respect to θ on N(θ0), some neighborhood
of θ0, for all x in the support of X1, where d ≥ 1.

(c) There is a function CG(X1) such that ‖G(j)(X1, θ)−G(j)(X1, θ0)‖ ≤ CG(X1)‖θ−
θ0‖ for all θ ∈ N(θ0) for j = 0, 1, ..., d; ECqG

G (X1) <∞ and E‖G(j)(X1, θ0)‖qG <
∞ for j = 0, 1, ..., d+ 1 for all 0 < qG <∞.
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Assumption 2.4. There exists a nonempty open subset U of Rdim(X1) with the
following properties:

(a) the distribution F of X1 has a nonzero absolutely continuous component with
respect to Lebesgue measure on Rdim(X1) with a positive density on U , and

(b) f(X1, β0) is continuously differentiable on U .

Assumption 2.1 is that the sample is iid, which is also assumed in Schennach
(2007). Assumption 2.2(a)-(b) are similar to Assumption 2(a)-(b) of Andrews (2002).
Assumption 2.2(c) is needed especially for the ETEL estimator, and is similar to but
slightly stronger than Assumption 3(4)-(6) of Schennach (2007). Assumption 2.3(a),
(b), and (d) are usual regularity conditions for well-defined covariance matrix and
moment function. Assumption 2.3(c) is similar to Assumption 3(d)-(e) of Andrews
(2001), except that I specify the form of f(Xi, β) and replace f(Xi, β) with the
derivatives of the moment function. The standard Cramér condition for Edgeworth
expansion holds if Assumption 2.4 holds.

The moment conditions in Assumptions 2.2-2.3 that the statements hold for all
0 < qg, qG <∞ are slightly stronger than necessary, but yield a simpler result. This
is also assumed in Andrews (2002) for the same reason.

Theorem 2.1 shows that the misspecification-robust bootstrap symmetric two-sided
t test and percentile t interval achieve asymptotic refinements over the asymptotic
test and confidence interval. This result is new, because asymptotic refinements for
the EL estimators, including the ETEL, have not been established in the existing
literature even under correct model specifications.

Recall that the asymptotic test and CI are correct up to O(n−1). Theorem 2.1(a)
describes the minimum requirement for asymptotic refinements of the bootstrap. This
result is comparable to Theorem 3 of Hall and Horowitz (1996), that establishes the
same magnitude of asymptotic refinements for GMM estimators. Theorem 2.1(b) is
that the bootstrap test and CI achieve the sharp magnitude of asymptotic refinements
under more stronger conditions. This result is comparable to Theorem 2(c) of Andrews
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(2002) and Theorem 1.1 of Chapter 1, where the former holds under correct model
specifications and the latter is robust to model misspecifications.

The degree of asymptotic refinements varies according to qτ and d. qτ determines
the set that the moment generating function Mθ(λ) = Eeλ

′gi exists. d is the number
of differentiability of the moment function, g(Xi, θ).

Theorem 2.1. Assume that T (χn), T (χ∗n), CIn, and CI∗n are based on the ETEL
estimator.

(a) Suppose Assumptions 2.1-2.4 hold with qτ = 32(1 + ζ) for any ζ > 0 and d = 4.
Under H0 : θr = θ0,r,

P (|T (χn)| > z∗|T |,α) = α + o(n−1) or P (θ0,r ∈ CI∗n) = 1− α + o(n−1);

(b) Suppose Assumptions 2.1-2.4 hold with all qτ <∞ and d = 6. Under H0 : θr =
θ0,r,

P (|T (χn)| > z∗|T |,α) = α +O(n−2) or P (θ0,r ∈ CI∗n) = 1− α +O(n−2),

where z∗|T |,α is the 1− α quantile of the distribution of |T (χ∗n)|.

2.6 Monte Carlo Experiments

An Example: Estimating the mean

Let Xi = (Yi, Zi)′ be iid sample from two independent normal distributions: Yi ∼
N(1, 1) and Zi ∼ N(1− δ, 1), where 0 ≤ δ < 1. Let

g(Xi, θ) =
 θYi − 1
θZi − 1


be a vector-valued function. A moment condition is Eg(Xi, θ0) = 0. In words, the
moment condition implies that Yi and Zi have the same nonzero and finite mean
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θ−1
0 . The parameter δ measures a degree of misspecification. δ = 0 implies no

misspecification, that is, the two random variables have the same mean. As δ tends
to one, EZi decreases to zero and the degree of misspecification becomes larger.

The ETEL estimator is calculated by solving the equation (2.5). The estimator
does not have a closed form solution, and should be solved numerically. Nevertheless,
the probability limit of the estimator can be calculated analytically for this particular
example. By definition, λ0(θ) ≡ (λ0,1(θ), λ0,2(θ))′ is the solution to Eeλ′gigi = 0. The
pseudo-true value θ0 maximizes the criterion

lnL(θ) ≡ − lnEeλ0(θ)′(gi−Egi).

By solving the equations, we have

(λ0,1(θ), λ0,2(θ)) =
(

1− θ0

θ2
0

,
1− (1− δ)θ0

θ2
0

)
, θ0 = 2

2− δ .

Note that θ0 = 1 when δ = 0, i.e., the model is correctly specified. In addition, the
corresponding λ0,1 and λ0,2 become zeros when δ = 0.

Confidence Intervals

In this section, I describe asymptotic and bootstrap CI’s based on the ET and ETEL
estimators. For brevity, let Lθ = 1.

Conventional CI based on the EL estimator

I first consider the EL estimator, θ̂EL. According to its asymptotic theory, under
correct model specifications, we have

√
n(θ̂EL − θ0)→d N(0, (G′0Ω−1

0 G0)−1),

where Ω0 = Egi(θ0)gi(θ0)′ and θ0 is the true value that satisfies Egi(θ0) = 0. The
asymptotic covariance matrix can be estimated by Σ̂C = (G′nΩ−1

n Gn)−1, where
Gn = n−1∑n

i=1 Ĝi and Ωn = n−1∑n
i=1 ĝiĝ

′
i. Then, the 100(1− α)% asymptotic CI for
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θ0 is given by
Asymp.EL:

(
θ̂EL ± zα/2

√
Σ̂C/n

)
.

This conventional CI yields correct coverage probability 1− α only if the model is
correctly specified, because the covariance estimator Σ̂C is not consistent for the true
covariance matrix under misspecification.

I also consider the bootstrap CI based on the EL estimator using the efficient
bootstrapping suggested by Brown and Newey (2002), that utilizes the EL probability
in resampling. Although their paper is on constructing the bootstrap CI based on the
GMM estimator, not the EL estimator, it is natural to apply the procedure to the
EL estimator. The key procedure is to use the EL-estimated distribution function,
F̂EL(z) = ∑n

i=1 1(Xi ≤ z)p̂i, where p̂i = n−1(1 − λ̂′ELĝi)−1, in place of the edf, Fn.
The bootstrap procedure is as follows: (i) For a given sample, calculate (λ̂′EL, θ̂′EL)′

and p̂i’s, (ii) Draw the bootstrap sample with replacement from F̂EL, (iii) Calculate
T ∗EL,n ≡ (θ̂∗EL − θ̂EL)/

√
Σ̂∗C/n, where Σ̂∗C = (G∗′n Ω∗−1

n G∗n)−1, G∗n = n−1∑n
i=1 Ĝ

∗
i and

Ω∗n = n−1∑n
i=1 ĝ

∗
i ĝ
∗′
i , (iv) repeat this B times and get the distribution of |T ∗EL,n|,

(iv) Find the 1− α quantile z∗|TEL|,α of the distribution of |T ∗EL,n| and construct the
symmetric percentile t interval,

BN-Boot.EL:
(
θ̂EL ± z∗|TEL|,α

√
Σ̂C/n

)
.

This CI would yield correct coverage probability 1− α only if the model is correctly
specified. Under misspecifications, this CI would not work because (i) Σ̂C is inconsis-
tent for the true covariance matrix under misspecification and (ii) F̂EL is inconsistent
for the true distribution F . Moreover, in the simulation described in the following
section, some of the EL probabilities had negative values under misspecifications,
making the EL weighted resampling hard to be implemented.
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Misspecification-Robust CI based on the EL estimator

Based on the same EL estimator, we can construct misspecification-robust asymptotic
and bootstrap CI’s.

MR-Asymp.EL:
(
θ̂EL ± zα/2

√
Σ̂EL/n

)
,

MR-Boot.EL:
(
θ̂EL ± z∗|T |,α

√
Σ̂EL/n

)
,

where all the quantities are defined in the previous sections. These CI’s are robust to
misspecification. Moreover, the bootstrap symmetric percentile t interval MR-Boot.EL
achieves asymptotic refinements over the asymptotic CI MR-Asymp.EL.

Misspecification-Robust CI based on the ETEL estimator

Finally, I consider the asymptotic and the bootstrap CI’s based on the ETEL estimator
θ̂:

MR-Asymp.ETEL:
(
θ̂ ± zα/2

√
Σ̂/n

)
,

MR-Boot.ETEL:
(
θ̂ ± z∗|T |,α

√
Σ̂/n

)
,

where all the quantities are defined in the previous sections. These CI’s are robust
to misspecification. Moreover, the bootstrap symmetric percentile t interval MR-
Boot.ETEL achieves asymptotic refinements over the asymptotic CI MR-Asymp.ETEL,
according to Theorem 2.1.

Simulation Result

Table 2.1 presents the coverage probabilities of 90% and 95% CI’s for the (pseudo-
)true value θ0 based on the ETEL or EL estimator under model misspecifications.
δ denotes a degree of misspecification. As δ gets larger, the model becomes more
misspecified. δ = 0 implies that the model is correctly specified. Both the numbers of
Monte Carlo repetition (r) and the bootstrap repetition (B) are 1,000. The (actual)
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Degree of n = 25 n = 50
Misspecification CI’s 90% 95% 90% 95%

Asymp.EL 0.877 0.919 0.896 0.949
δ = 0 BN-Boot.EL 0.899 0.954 0.916 0.962
(none) MR-Asymp.ETEL 0.880 0.925 0.903 0.950

MR-Boot.ETEL 0.904 0.962 0.914 0.959
over-ID test, 1% level 1.5% 1.0%(Rejection Prob.)

Asymp.EL 0.834 0.886 0.834 0.897
δ = 0.5 BN-Boot.EL 0.858 0.909 0.831 0.902

(moderate) MR-Asymp.ETEL 0.876 0.912 0.886 0.932
MR-Boot.ETEL 0.911 0.945 0.909 0.956

over-ID test, 1% level 22.2% 47.0%(Rejection Prob.)
Asymp.EL 0.748 0.812 0.719 0.789

δ = 0.75 BN-Boot.EL 0.717 0.769 0.574 0.642
(large) MR-Asymp.ETEL 0.820 0.850 0.872 0.915

MR-Boot.ETEL 0.866 0.911 0.900 0.938
over-ID test, 1% level 56.8% 88.4%(Rejection Prob.)

Table 2.1: Coverage Probabilities of 90% and 95% Confidence Intervals for θ0 under
Model Misspecifications

coverage probabilities are given by

Coverage Probability of CI =
∑
r 1(θ0 ∈ CI)

r
,

where CI is either Asymp.EL, MR-Asymp.ETEL, or MR-Boot.ETEL. Since the
nominal coverage probabilities are given by 90% and 95%, CI’s that yield actual
coverage probabilities close to 0.90 and 0.95 are favorable.

Consider the case δ = 0. MR-Boot.ETEL performs better than Asymp.ETEL,
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especially when n = 25. This confirms Theorem 2.1. Although Theorem 2.1 does
not establish asymptotic refinements of BN-Boot.EL, the simulation result shows
that BN-Boot.EL performs better than the asymptotic CI based on the EL estimator
Asymp.EL when n = 25. Asymptotic refinements of the bootstrap CI’s become
less clear when n = 50, for both MR-Boot.ETEL and BN-Boot.EL. If we use a
non-Normal distribution for the data-generating process, then asymptotic refinements
of the bootstrap would be clearer than those shown in Table 2.1.

When the model is misspecified, δ = 0.5 or δ = 0.75, the CI’s based on the
conventional EL estimator, Asymp.EL and BN-Boot.EL, seem to fail to yield correct
coverage probabilities asymptotically. In addition, BN-Boot.EL loses asymptotic
refinements over Asymp.EL. In contrast, the CI’s based on the ETEL estimator,
MR-Asymp.ETEL and MR-Boot.ETEL, are robust to misspecification as expected.
MR-Boot.ETEL does not lose the ability of asymptotic refinements even if the model
is misspecified. This supports Theorem 2.1.

One might argue that any misspecification in the model could be detected by
using the overidentifying restrictions test. I emphasize that the test does not always
reject the misspecified model and in fact, the rejection probability is quite low in small
sample. The rejection probabilities of the EL overidentifying restrictions test are
reported in Table 2.1: over-ID test, 1% level (Rejection Prob.). The null hypothesis
of correct model specifications is rejected at 1% level. For instance, when n = 25 and
δ = 0.5, the probability that the overidentifying restrictions test correctly rejects the
misspecified model is 22.2%. When n = 25 and δ = 0.75, the chance of rejecting the
misspecified model is 56.8%, even if there is a large misspecification. If one proceeds
with the misspecified model using the conventional EL estimator, then inferences and
CI’s would be invalid.

2.7 Appendix: Lemmas and Proofs

Lemmas

Lemma 2.2 is a nonparametric iid bootstrap version of Lemma 1 of Andrews (2002).
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Lemma 2.2. Suppose Assumption 1 holds.
(a) Let h(·) be a matrix-valued function that satisfies Eh(Xi) = 0 and E‖h(Xi)‖p <∞
for p ≥ 2 and p > 2a/(1− 2c) for some c ∈ [0, 1/2) and a ≥ 0. Then, for all ε > 0,

lim
n→∞

naP

(∥∥∥∥∥n−1
n∑
i=1

h(Xi)
∥∥∥∥∥ > n−cε

)
= 0.

(b) Let h(·) be a matrix-valued function that satisfies E‖h(Xi)‖p <∞ for p ≥ 2 and
p > 2a for some a ≥ 0. Then, there exists a constant K <∞ such that

lim
n→∞

naP

(∥∥∥∥∥n−1
n∑
i=1

h(Xi)
∥∥∥∥∥ > K

)
= 0.

In the following Lemmas, we assume that a = 1 or 2, because these values are
only required in the proofs of the Theorems. This simplifies the conditions for the
Lemmas.

Lemma 2.3. Suppose Assumptions 1-3 hold with qτ > 2a. Then, for all ε > 0,

(a) lim
n→∞

naP

(
sup
θ∈Θ

∥∥∥∥∥n−1
n∑
i=1

(gi(θ)− Egi(θ))
∥∥∥∥∥ > ε

)
= 0,

(b) lim
n→∞

naP

(
sup
θ∈Θ

∣∣∣∣∣n−1
n∑
i=1

(
eλ̂(θ)′gi(θ) − Eeλ0(θ)′gi(θ)

)∣∣∣∣∣ > ε

)
= 0,

(c) lim
n→∞

naP

(
sup
θ∈Θ

∥∥∥λ̂(θ)− λ0(θ)
∥∥∥ > ε

)
= 0.

Let τ0(θ) ≡ Eeλ0(θ)′gi(θ) and κ0(θ) ≡ −(Eeλ0(θ)′gi(θ)gi(θ)gi(θ)′)−1τ0(θ)Egi(θ). Anal-
ogous to the definition of Λ(θ), define T (θ) and K(θ) be compact sets such that
τ0(θ) ∈ int(T (θ)) and κ0(θ) ∈ int(K(θ)). For β ≡ (τ, κ′, λ′, θ′)′, define a compact set
B ≡ T (θ)×K(θ)× Λ(θ)×Θ.
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Lemma 2.4. Suppose Assumptions 1-3 hold with qτ > 2a(1+ ζ) for any ζ > 0. Then,
for all ε > 0,

lim
n→∞

naP
(
‖β̂ − β0‖ > ε

)
= 0,

where β0 = (τ0, κ
′
0, λ
′
0, θ
′
0)′ and β̂ = (τ̂ , κ̂′, λ̂′, θ̂′)′.

Lemma 2.5. Suppose Assumptions 1-3 hold with qτ >
2a

1−2c(1 + ζ) for any ζ > 0.
Then, for all c ∈ [0, 1/2) and ε > 0,

lim
n→∞

naP
(
‖β̂ − β0‖ > n−c

)
= 0,

where β0 = (τ0, κ
′
0, λ
′
0, θ
′
0)′ and β̂ = (τ̂ , κ̂′, λ̂′, θ̂′)′.

Lemma 2.6 is identical to Andrews (2002). We restate it for convenience.

Lemma 2.6. (a) Let {An : n ≥ 1} be a sequence of LA×1 random vectors with either
(i) uniformly bounded densities over n > 1 or (ii) an Edgeworth expansion with
coefficients of order O(1) and remainder of order o(n−a) for some a ≥ 0 (i.e., for
some polynomials πi(δ) in δ = ∂/∂z whose coefficients are O(1) for i = 1, ..., 2a,
limn→∞ n

a supz∈RLA |P (An ≤ z)− [1 +∑2a
i=1 n

−i/2πi(∂/∂z)]ΦΣn(z)| = 0, where
ΦΣn(z) is the distribution function of a N(0,Σn) random variable and the
eigenvalues of Σn are bounded away from 0 and ∞ for n ≥ 1). Let {ξn : n ≥ 1}
be a sequence of LA × 1 random vectors with P (‖ξn‖ > ϑn) = o(n−a) for some
constants ϑn = o(n−a) and some a ≥ 0. Then,

lim
n→∞

sup
z∈RLA

na |P (An + ξn ≤ z)− P (An ≤ z)| = 0.

(b) Let {A∗n : n ≥ 1} be a sequence of LA × 1 bootstrap random vectors that pos-
sesses an Edgeworth expansion with coefficients of order O(1) and remain-
der of order o(n−a) that holds except if {χn : n ≥ 1} are in a sequence
of sets with probability o(n−a) for some a ≥ 0. (That is, for all ε > 0,
limn→∞ n

aP (na supz∈RLA |P
∗(A∗n ≤ z)− [1 +∑2a

i=1 n
−i/2π∗i (∂/∂z)]ΦΣ∗n(z)| > ε) =

0, where π∗i (δ) are polynomials in δ = ∂/∂z whose coefficients, C∗n, satisfy: for
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all ρ > 0, there exists Kρ <∞ such that limn→∞ n
aP (P ∗(|C∗n| > Kρ) > ρ) = 0

for all i = 1, ..., 2a, ΦΣ∗n(z) is the distribution function of a N(0,Σ∗n) ran-
dom variable conditional on Σ∗n and Σ∗n is a possibly random matrix whose
eigenvalues are bounded away from 0 and ∞ with probability 1 − o(n−a) ad
n → ∞.) Let {ξ∗n : n ≥ 1} be a sequence of LA × 1 random vectors with
limn→∞ n

aP (P ∗(‖ξ∗n‖ > ϑn) > n−a) = 0 for some constants ϑn = o(n−a).
Then,

lim
n→∞

naP

(
sup
z∈RLA

|P ∗(A∗n + ξ∗n ≤ z)− P ∗(A∗n ≤ z)| > n−a
)

= 0.

Let P ∗ be the probability distribution of the bootstrap sample conditional on the
original sample. Let E∗ denote expectation with respect to the distribution of the
bootstrap sample conditional on the original sample. Since we consider iid sample
and nonparametric iid bootstrap, E∗ is taken over the original sample with respect
to the empirical distribution function. For example, E∗X∗i = n−1∑n

i=1Xi.
Lemma 2.7 is a nonparametric iid bootstrap version of Lemma 6 of Andrews

(2002).

Lemma 2.7. Suppose Assumption 1 holds. Let h(·) be a matrix-valued function that
satisfies Eh(Xi) = 0 and E‖h(Xi)‖p < ∞ for p ≥ 2 and p > 4a/(1 − 2c) for some
c ∈ [0, 1/2) and a ≥ 0. Then,

(a) lim
n→∞

naP

(
P ∗

(∥∥∥∥∥n−1
n∑
i=1

h(X∗i )− E∗h(X∗i )
∥∥∥∥∥ > n−c

)
> n−a

)
= 0,

(b) lim
n→∞

naP

(
P ∗

(∥∥∥∥∥n−1
n∑
i=1

E∗h(X∗i )
∥∥∥∥∥ > n−c

)
> n−a

)
= 0,

(c) lim
n→∞

naP

(
P ∗

(∥∥∥∥∥n−1
n∑
i=1

h(X∗i )
∥∥∥∥∥ > n−c

)
> n−a

)
= 0,

(d) lim
n→∞

naP

(
P ∗

(∥∥∥∥∥n−1
n∑
i=1

E∗h(X∗i )
∥∥∥∥∥ > K

)
> n−a

)
= 0 and

lim
n→∞

naP

(
P ∗

(∥∥∥∥∥n−1
n∑
i=1

h(X∗i )
∥∥∥∥∥ > K

)
> n−a

)
= 0,
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for some K <∞, even if Eh(Xi) 6= 0 and p only satisfies p ≥ 2 and p > 4a in part
(d).

Lemma 2.8. Suppose Assumptions 1-3 hold with qτ > 4a. Then, for all ε > 0,

(a) lim
n→∞

naP

(
P ∗

(
sup
θ∈Θ

∥∥∥∥∥n−1
n∑
i=1

(g∗i (θ)− E∗g∗i (θ))
∥∥∥∥∥ > ε

)
> n−a

)
= 0,

(b) lim
n→∞

naP

(
P ∗

(
sup
θ∈Θ

∣∣∣∣∣n−1
n∑
i=1

(
eλ̂
∗(θ)′g∗i (θ) − eλ̂(θ)′gi(θ)

)∣∣∣∣∣ > ε

)
> n−a

)
= 0,

(c) lim
n→∞

naP

(
P ∗

(
sup
θ∈Θ

∥∥∥λ̂∗(θ)− λ̂(θ)
∥∥∥ > ε

)
> n−a

)
= 0.

Lemma 2.9. Suppose Assumptions 1-3 hold with qτ > 4a(1+ ζ) for any ζ > 0. Then,
for all ε > 0,

lim
n→∞

naP
(
P ∗

(
‖β̂∗ − β̂‖ > ε

)
> n−a

)
= 0,

where β̂∗ = (τ̂ ∗, κ̂∗′ , λ̂∗′ , θ̂∗′)′ and β̂ = (τ̂ , κ̂′, λ̂′, θ̂′)′.

Lemma 2.10. Suppose Assumptions 1-3 hold with qτ > 4a
1−2c(1 + ζ) for any ζ > 0.

Then, for all c ∈ [0, 1/2) and ε > 0,

lim
n→∞

naP
(
P ∗

(
‖β̂∗ − β̂‖ > n−c

)
> n−a

)
= 0,

where β̂∗ = (τ̂ ∗, κ̂∗′ , λ̂∗′ , θ̂∗′)′ and β̂ = (τ̂ , κ̂′, λ̂′, θ̂′)′.

Lemma 2.11. (a) Suppose Assumptions 1-3 hold with qτ > 4a(1 + ζ) for any
ζ > 0. Then, for all β ∈ N(β0), some K < ∞, and some C(Xi) that satisfies
limn→∞ n

aP (‖n−1∑n
i=1C(Xi)‖ > K) = 0,

‖f(Xi, β)− f(Xi, β0)‖ ≤ C(Xi)‖β − β0‖.

(b) Suppose Assumptions 1-3 hold with qτ > 8a(1 + ζ) for some ζ > 0. Then, for all
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β ∈ N(β0), some K <∞, and some C∗(X∗i ) that satisfies

lim
n→∞

naP (P ∗(‖n−1
n∑
i=1

C∗(X∗i )‖ > K) > n−a) = 0,

‖f(X∗i , β)− f(X∗i , β0)‖ ≤ C∗(X∗i )‖β − β0‖.

We now introduce some additional notation. Let Sn be the vector containing the
unique components of n−1∑n

i=1 f(Xi, β0) on the support of Xi, and S = ESn. Simi-
larly, let S∗n denote the vector containing the unique components of n−1∑n

i=1 f(X∗i , β̂)
on the support of Xi, and S∗ = E∗S∗n.

Lemma 2.12. (a) Suppose Assumptions 1-3 hold with qτ > 4a(1 + ζ) for any ζ > 0.
Then, for all ε > 0,

lim
n→∞

naP (‖Sn − S‖ > ε) = 0.

(b) Suppose Assumptions 1-3 hold with qτ > 8a(1 + ζ) for any ζ > 0. Then, for all
ε > 0,

lim
n→∞

naP
(
P ∗ (‖S∗n − S∗‖ > ε) > n−a

)
= 0.

Lemma 2.13. Let ∆n and ∆∗n denote
√
n(θ̂ − θ0) and

√
n(θ̂∗ − θ̂), or Tn and T ∗n .

For each definition of ∆n and ∆∗n, there is an infinitely differentiable function A(·)
with A(S) = 0 and A(S∗) = 0 such that the following results hold.
(a) Suppose Assumptions 1-4 hold with qτ > max

{
2ad

d−2a−1 , 4a
}
· (1 + ζ) for any ζ > 0,

and d ≥ 2a+ 2, where 2a is some positive integer. Then,

lim
n→∞

sup
z
na|P (∆n ≤ z)− P (

√
nA(Sn) ≤ z)| = 0.

(b) Suppose Assumptions 1-4 hold with qτ > max
{

4ad
d−2a−1 , 8a

}
· (1 + ζ) for any ζ > 0,
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and d ≥ 2a+ 2, where 2a is some positive integer. Then,

lim
n→∞

naP
(

sup
z
|P ∗(∆∗n ≤ z)− P ∗(

√
nA(S∗n) ≤ z)| > n−a

)
= 0.

We define the components of the Edgeworth expansions of the test statistic Tn
and its bootstrap analog T ∗n . Let Ψn =

√
n(Sn−S) and Ψ∗n =

√
n(S∗n−S∗). Let Ψn,j

and Ψ∗n,j denote the jth elements of Ψn and Ψ∗n respectively. Let νn,a and ν∗n,a denote
vectors of moments of the form nα(m)EΠm

µ=1Ψn,jµ and nα(m)E∗Πm
µ=1Ψ∗n,jµ , respectively,

where 2 ≤ m ≤ 2a + 2, α(m) = 0 if m is even, and α(m) = 1/2 if m is odd. Let
νa = limn→∞ νn,a. The existence of the limit is proved in Lemma 2.14.

Let πi(δ, νa) be a polynomial in δ = ∂/∂z whose coefficients are polynomials in
the elements of νa and for which πi(δ, νa)Φ(z) is an even function of z when i is odd
and is an odd function of z when i is even for i = 1, ..., 2a, where 2a is an integer. The
Edgeworth expansions of Tn and T ∗n depend on πi(δ, νa) and πi(δ, ν∗n,a), respectively.

Lemma 2.14. (a) Suppose Assumptions 1-3 hold with qτ ≥ 4(a+ 1)(1 + ζ) for any
ζ > 0. Then, νn,a and νa ≡ limn→∞ νn,a exist.
(b) Suppose Assumptions 1-3 hold with qτ > 16a(a+1)

1−2γ (1 + ζ) for any ζ > 0 and
γ ∈ [0, 1/2). Then,

lim
n→∞

naP
(
‖ν∗n,a − νa‖ > n−γ

)
= 0.

Lemma 2.15. (a) Suppose Assumptions 1-4 hold with qτ ≥ 4(a + 1)(1 + ζ) and
qτ >

2ad
d−2a−1(1 + ζ) for any ζ > 0, and d ≥ 2a+ 2, where 2a is some positive integer.

Then,

lim
n→∞

na sup
z∈R

∣∣∣∣∣P (Tn ≤ z)−
[
1 +

2a∑
i=1

n−i/2πi(δ, νa)
]

Φ(z)
∣∣∣∣∣ = 0.

(b) Suppose Assumptions 1-4 hold with qτ > max
{

4ad
d−2a−1 , 16a(a+ 1)

}
· (1 + ζ) for
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any ζ > 0, and d ≥ 2a+ 2, where 2a is some positive integer. Then,

lim
n→∞

naP

(
sup
z∈R

∣∣∣∣∣P ∗(T ∗n ≤ z)−
[
1 +

2a∑
i=1

n−i/2πi(δ, ν∗n,a)
]

Φ(z)
∣∣∣∣∣ > n−a

)
= 0.

Proof of Theorem 1

Proof of (a). Let a = 1. We apply Lemma 2.14 with γ = 0 and Lemma 2.15. Letting
d = 4 and qτ = 32(1 + ζ) for all ζ > 0 satisfies the required condition. The proof
mimics that of Theorem 2 of Andrews (2001). By the evenness of πi(δ, ν1)Φ(z) and
πi(δ, ν∗n,1)Φ(z), for any ε > 0, Lemma 2.15 yields

sup
z∈R

∣∣∣P (|Tn| ≤ z)−
[
1 + n−1π2(δ, ν1)

]
(Φ(z)− Φ(−z))

∣∣∣ = o(n−1),

P

(
sup
z∈R

∣∣∣P ∗(|T ∗n | ≤ z)−
[
1 + n−1π2(δ, ν∗n,1)

]
(Φ(z)− Φ(−z))

∣∣∣ > n−1ε

)
= o(n−1).

By Lemma 2.14 with γ = 0,

P

(
sup
z∈R
|P (|Tn| ≤ z)− P ∗(|T ∗n | ≤ z)| > n−1ε

)
≤ P

(
n−1|π2(δ, ν1)− π2(δ, ν∗n,1)| > n−1ε

)
+ o(n−1) = o(n−1). (2.8)

Then by (2.8),

P
(∣∣∣P ∗(|T ∗n | ≤ z∗|T |,α)− P (|Tn| ≤ z∗|T |,α)

∣∣∣ > n−1ε
)

= P
(
|1− α− F|T |(z∗|T |,α)| > n−1ε

)
= o(n−1), (2.9)
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where F|T |(·) denote the distribution function of |Tn|. Using (2.9), we have

P (|Tn > z∗|T |,α)

= P
(
F|T |(|Tn|) > F|T |(z∗|T |,α), |1− α− F|T |(z∗|T |,α)| ≤ n−1ε

)
+P

(
F|T |(|Tn|) > F|T |(z∗|T |,α), |1− α− F|T |(z∗|T |,α)| > n−1ε

)
≤ P (F|T |(|Tn|) > 1− α− n−1ε) + P (|1− α− F|T |(z∗|T |,α)| > n−1ε)

≤ α + n−1ε+ o(n−1), (2.10)

and similarly,

P (|Tn > z∗|T |,α) ≥ P (F|T |(|Tn|) > 1− α− n−1ε) ≥ α− n−1ε. (2.11)

Combining (2.10) and (2.11) establishes the present Theorem (a).

Proof of (b). The proof is the same with that of Theorem 2(c) of Andrews (2002)
with his Lemmas 13 and 16 replaced by our Lemmas 2.13 and 2.15. The proof relies
on the arguments of Hall (1988) and Hall (1997) developed for “smooth functions of
sample averages,” for iid data. Q.E.D.

Proofs of Lemmas

Proof of Lemma 2.2

Proof. Assumption 1 of Andrews (2002) is satisfied if Assumption 1 holds. Then,
Lemma 1 of Andrews (2002) holds. Q.E.D.

Proof of Lemma 2.3

Proof. The present Lemma (a) is proved by the proof of Lemma 2 of Hall and
Horowitz (1996). We apply Lemma 2.2 with c = 0 and p = qg using Assumption 2(b).

Proving the present Lemma (b) and (c) involves several steps. First, we need to



97

show2 that

lim
n→∞

naP

(
sup

(λ′,θ′)′∈Λ(θ)×Θ

∥∥∥∥∥n−1
n∑
i=1

eλ
′gi(θ) − Eeλ′gi(θ)

∥∥∥∥∥ > ε

)
= 0. (2.12)

We apply similar arguments to the proof of Lemma 2 of Hall and Horowitz (1996).
Then, Lemma 2.2 with c = 0 and p = qτ gives the result by Assumption 2(c).

Next, we show

lim
n→∞

naP

(
sup
θ∈Θ

∥∥∥λ̄(θ)− λ0(θ)
∥∥∥ > ε

)
= 0, (2.13)

where λ̄(θ) = arg minλ∈Λ(θ) n
−1∑n

i=1 e
λ′gi(θ). We show (2.13) by using the arguments

in the proof of Theorem 10 of Schennach (2007). For a given ε > 0, let

η = inf
θ∈Θ

inf
λ∈Λ(θ)

‖λ−λ0(θ)‖>ε

(Eeλ′gi(θ) − Eeλ0(θ)′gi(θ)),

which is positive by the strict convexity of Eeλ′gi(θ) in λ, λ0(θ) ≡ arg minλEeλ
′gi(θ),

and the fact that Θ is compact. By the definition of η,

P

(
sup
θ∈Θ

(
Eeλ̄(θ)′gi(θ) − Eeλ0(θ)′gi(θ)

)
≤ η

)
≤ P

(
sup
θ∈Θ
‖λ̄(θ)− λ0(θ)‖ ≤ ε

)
. (2.14)

2One may write Mθ(θ) ≡ Eeλ
′gi(θ) and M̂θ(θ) ≡ n−1∑n

i=1 e
λ′gi(θ) to emphasize that Eeλ′gi(θ)

and n−1∑n
i=1 e

λ′gi(θ) are functions of λ and θ, and can be interpreted as the population and sample
moment generating functions, as in Schennach (2007). In the proof, however, I do not use these
notations.
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Since n−1∑n
i=1 e

λ̄(θ)′gi(θ) − n−1∑n
i=1 e

λ0(θ)′gi(θ) < 0,

sup
θ∈Θ

(
Eeλ̄(θ)′gi(θ) − Eeλ0(θ)′gi(θ)

)
≤ sup

θ∈Θ

(
Eeλ̄(θ)′gi(θ) − n−1

n∑
i=1

eλ̄(θ)′gi(θ)
)

+ sup
θ∈Θ

(
n−1

n∑
i=1

eλ̄(θ)′gi(θ) − n−1
n∑
i=1

eλ0(θ)′gi(θ)
)

+ sup
θ∈Θ

(
n−1

n∑
i=1

eλ0(θ)′gi(θ) − Eeλ0(θ)′gi(θ)
)

≤ 2 sup
(λ′,θ′)′∈Λ(θ)×Θ

∣∣∣∣∣n−1
n∑
i=1

eλ
′gi(θ) − Eeλ′gi(θ)

∣∣∣∣∣ .
Thus, we have

naP

(
sup
θ∈Θ

(
Eeλ̄(θ)′gi(θ) − Eeλ0(θ)′gi(θ)

)
≤ η

)

≥ naP

(
sup

(λ′,θ′)′∈Λ(θ)×Θ

∣∣∣∣∣n−1
n∑
i=1

eλ
′gi(θ) − Eeλ′gi(θ)

∣∣∣∣∣ ≤ η/2
)
→ 1,

by (2.12). Using this result, (2.14) implies (2.13). However, λ̄(θ) is the minimizer on
Λ(θ). To get the present Lemma (c) for λ̂(θ) = arg minλ∈Lg n−1∑n

i=1 e
λ′gi(θ), we use

the argument similar to the proof of Theorem 2.7 of Newey and McFadden (1994). By
using the convexity of n−1∑n

i=1 e
λ′gi(θ) in λ for any θ, λ̄(θ) = λ̂(θ) in the event that

λ̄(θ) ∈ int(Λ(θ)), where int(Λ(θ)) is the interior of Λ(θ). Take a closed neighborhood
N̄δ(λ0(θ)) of radius δ around λ0(θ) such that N̄δ(λ0(θ)) ⊂ int(Λ(θ)). Then, whenever
λ̄(θ) ∈ int(Λ(θ)), ‖λ̄(θ)− λ0(θ)‖ ≤ δ for all θ ∈ Θ. Thus,

P

(
sup
θ∈Θ

∥∥∥λ̂(θ)− λ0(θ)
∥∥∥ > ε

)

= P

(
sup
θ∈Θ

∥∥∥λ̂(θ)− λ0(θ)
∥∥∥ > ε, sup

θ∈Θ

∥∥∥λ̄(θ)− λ0(θ)
∥∥∥ ≤ δ

)

+P
(

sup
θ∈Θ

∥∥∥λ̂(θ)− λ0(θ)
∥∥∥ > ε, sup

θ∈Θ

∥∥∥λ̄(θ)− λ0(θ)
∥∥∥ > δ

)

≤ P

(
sup
θ∈Θ

∥∥∥λ̄(θ)− λ0(θ)
∥∥∥ > ε

)
+ P

(
sup
θ∈Θ

∥∥∥λ̄(θ)− λ0(θ)
∥∥∥ > δ

)
= o(n−a),
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by (2.13). This proves the present Lemma (c).
The present Lemma (b) can be shown as follows. By the triangle inequality,

∣∣∣∣∣n−1
n∑
i=1

eλ̂(θ)′gi(θ) − Eeλ0(θ)′gi(θ)
∣∣∣∣∣

≤
∣∣∣∣∣n−1

n∑
i=1

eλ̂(θ)′gi(θ) − n−1
n∑
i=1

eλ0(θ)′gi(θ)
∣∣∣∣∣+

∣∣∣∣∣n−1
n∑
i=1

eλ0(θ)′gi(θ) − Eeλ0(θ)′gi(θ)
∣∣∣∣∣ .

Combining the following results gives the desired result.

lim
n→∞

naP

(
sup
θ∈Θ

∣∣∣∣∣n−1
n∑
i=1

eλ̂(θ)′gi(θ) − n−1
n∑
i=1

eλ0(θ)′gi(θ)
∣∣∣∣∣ > ε

)
= 0, (2.15)

lim
n→∞

naP

(
sup
θ∈Θ

∣∣∣∣∣n−1
n∑
i=1

eλ0(θ)′gi(θ) − Eeλ0(θ)′gi(θ)
∣∣∣∣∣ > ε

)
= 0. (2.16)

Since λ0(θ) ∈ int(Λ(θ)), (2.16) follows from (2.12). To show (2.15), we apply the
triangle inequality and use the fact that λ̄(θ) = λ̂(θ) in the event that λ̄(θ) ∈ int(Λ(θ)):

P

(
sup
θ∈Θ

∣∣∣∣∣n−1
n∑
i=1

eλ̂(θ)′gi(θ) − n−1
n∑
i=1

eλ0(θ)′gi(θ)
∣∣∣∣∣ > ε

)

= P

(
sup
θ∈Θ

∣∣∣∣∣n−1
n∑
i=1

(
eλ̂(θ)′gi(θ) − eλ0(θ)′gi(θ)

)∣∣∣∣∣ > ε, sup
θ∈Θ

∥∥∥λ̄(θ)− λ0(θ)
∥∥∥ ≤ δ

)

+P
(

sup
θ∈Θ

∣∣∣∣∣n−1
n∑
i=1

(
eλ̂(θ)′gi(θ) − eλ0(θ)′gi(θ)

)∣∣∣∣∣ > ε, sup
θ∈Θ

∥∥∥λ̄(θ)− λ0(θ)
∥∥∥ > δ

)

≤ P

(
sup
θ∈Θ

∣∣∣∣∣n−1
n∑
i=1

(
eλ̄(θ)′gi(θ) − eλ0(θ)′gi(θ)

)∣∣∣∣∣ > ε

)
+ P

(
sup
θ∈Θ

∥∥∥λ̄(θ)− λ0(θ)
∥∥∥ > δ

)

≤ P

(
sup
θ∈Θ

∥∥∥λ̄(θ)− λ0(θ)
∥∥∥n−1

n∑
i=1

Cτ (Xi) > ε

)
+ o(n−a) = o(n−a),

by applying Lemma 2.2(b) with h(Xi) = Cτ (Xi) and p = qτ and using the result
(2.13). Q.E.D.
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Proof of Lemma 2.4

Proof. First, we show

lim
n→∞

naP

(
sup
θ∈Θ
| ln L̂(θ)− lnL(θ)| > ε

)
= 0. (2.17)

Since

ln L̂(θ) = − ln
(
n−1

n∑
i=1

eλ̂(θ)′gi(θ)
)

+ λ̂(θ)′gn(θ), and

lnL(θ) = − ln
(
Eeλ0(θ)′gi(θ)

)
+ λ0(θ)′Egi(θ),

(2.17) follows from

lim
n→∞

naP

(
sup
θ∈Θ
|n−1

n∑
i=1

eλ̂(θ)′gi(θ) − Eeλ0(θ)′gi(θ)| > ε

)
= 0,

lim
n→∞

naP

(
sup
θ∈Θ
|λ̂(θ)′gn(θ)− λ0(θ)′Egi(θ)| > ε

)
= 0.

The first result holds by Lemma 2.3(b). To show the second result, we apply Schwarz
matrix inequality3 to get

|λ̂(θ)′gn(θ)− λ0(θ)′Egi(θ)| ≤ ‖λ̂(θ)− λ0(θ)‖‖gn(θ)‖+ ‖λ0(θ)‖‖gn(θ)− Egi(θ)‖.

By Lemma 2.3(a), (c), Lemma 2.2(b) with p = qg, and the fact that λ0(θ) exists for
all θ ∈ Θ and Θ is compact, the second conclusion follows.

Since lnL(θ) is continuous and uniquely maximized at θ0, ∀ε > 0, ∃η > 0 such
that ‖θ − θ0‖ > ε implies that lnL(θ0)− lnL(θ) ≥ η > 0. By the triangle inequality,

3See Appendix A of Hansen (2012).
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the fact that θ̂ maximizes ln L̂(θ), and (2.17),

P
(
‖θ̂ − θ0‖ > ε

)
≤ P

(
lnL(θ0)− lnL(θ̂) ≤ η

)
= P

(
lnL(θ0)− ln L̂(θ̂) + ln L̂(θ̂)− lnL(θ̂) ≤ η

)
≤ P

(
lnL(θ0)− ln L̂(θ0) + ln L̂(θ̂)− lnL(θ̂) ≤ η

)
≤ P

(
sup
θ∈Θ

∣∣∣ln L̂(θ)− lnL(θ)
∣∣∣ ≤ η/2

)
= o(n−a).

Thus, we have
lim
n→∞

naP
(
‖θ̂ − θ0‖ > ε

)
= 0. (2.18)

Next, we show
lim
n→∞

naP
(
‖λ̂(θ̂)− λ0(θ0)‖ > ε

)
= 0. (2.19)

By the triangle inequality,

P
(
‖λ̂(θ̂)− λ0(θ0)‖ > ε

)
≤ P

(
‖λ̂(θ̂)− λ0(θ̂)‖ > ε/2

)
+ P

(
‖λ0(θ̂)− λ0(θ0)‖ > ε/2

)
≤ P

(
sup
θ∈Θ
‖λ̂(θ)− λ0(θ)‖ > ε/2

)
+ o(n−a) = o(n−a).

The last equality holds by Lemma 2.3(c). To see P
(
‖λ0(θ̂)− λ0(θ0)‖ > ε/2

)
= o(n−a),

let f(θ, λ) ≡ Eeλ
′gi(θ)gi(θ), a continuously differentiable function on (Θ,Λ(θ)). Since

f(θ0, λ0) = 0 and (∂/∂λ′)f(θ0, λ0) = Eeλ
′
0gi(θ0)gi(θ0)gi(θ0)′ is invertible by Assumption

3(a), λ0(θ) is continuous in a neighborhood of θ0 by the implicit function theorem.
By (2.18), θ̂ is in a neighborhood of θ0 with probability 1− o(n−a) and this implies
that ‖λ0(θ̂)− λ0(θ0)‖ → 0 with probability 1− o(n−a). Thus, (2.19) is proved.

Next, we show
lim
n→∞

naP (‖τ̂ − τ0‖ > ε) = 0. (2.20)

Write λ̂ ≡ λ̂(θ̂) and λ0 ≡ λ0(θ0). Since τ̂ = n−1∑n
i=1 e

λ̂′gi(θ̂) and τ0 = Eeλ
′
0gi(θ0), (2.20)



102

follows from

lim
n→∞

naP

(∣∣∣∣∣n−1
n∑
i=1

eλ̂
′gi(θ̂) − n−1

n∑
i=1

eλ
′
0gi(θ0)

∣∣∣∣∣ > ε

)
= 0,

lim
n→∞

naP

(∣∣∣∣∣n−1
n∑
i=1

eλ
′
0gi(θ0) − Eeλ′0gi(θ0)

∣∣∣∣∣ > ε

)
= 0.

To show these results, we apply the argument with the proof of Lemma 2(b) that λ̂(θ)
is in the interior of Λ(θ) with probability 1− o(n−a). Using this fact, Assumption
2(c), Lemma 2.2(b) with h(Xi) = Cτ (Xi) and p = qτ , (2.18), and (2.19) prove the
first result. The second result holds by Lemma 2.2(a) with p = qτ .

Finally, we show
lim
n→∞

naP (‖κ̂− κ0‖ > ε) = 0. (2.21)

Since

κ̂ = −
(
n−1

n∑
i=1

eλ̂
′gi(θ̂)gi(θ̂)gi(θ̂)′

)−1

τ̂ gn(θ̂), and

κ0 = −
(
Eeλ

′
0gi(θ0)gi(θ0)gi(θ0)′

)−1
τ0Egi(θ0),

(2.21) follows from

lim
n→∞

naP

(∥∥∥∥∥n−1
n∑
i=1

eλ̂
′gi(θ̂)gi(θ̂)gi(θ̂)′ − n−1

n∑
i=1

eλ
′
0gi(θ0)gi(θ0)gi(θ0)′

∥∥∥∥∥ > ε

)
= 0, (2.22)

lim
n→∞

naP

(∥∥∥∥∥n−1
n∑
i=1

eλ
′
0gi(θ0)gi(θ0)gi(θ0)′ − Eeλ′0gi(θ0)gi(θ0)gi(θ0)′

∥∥∥∥∥ > ε

)
= 0, (2.23)

lim
n→∞

naP (‖τ̂ − τ0‖ > ε) = 0, (2.24)

lim
n→∞

naP
(
‖gn(θ̂)− gn(θ0)‖ > ε

)
= 0, (2.25)

lim
n→∞

naP (‖gn(θ0)− Egi(θ0)‖ > ε) = 0. (2.26)

The third result (2.24) holds by (2.20). The fourth result (2.25) holds by Assumption
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2(b), Lemma 2.2(b) with h(Xi) = Cg(Xi) and p = qg, and (2.18). The last result
(2.26) holds by Assumption 2(b) and Lemma 2.2(a) with h(Xi) = gi(θ0)− Egi(θ0),
c = 0 and p = qg.

To show the first result (2.22), we apply the triangle inequality to get
∥∥∥∥∥n−1

n∑
i=1

(
eλ̂
′gi(θ̂)gi(θ̂)gi(θ̂)′ − eλ

′
0gi(θ0)gi(θ0)gi(θ0)′

)∥∥∥∥∥
≤

∥∥∥∥∥n−1
n∑
i=1

∣∣∣eλ̂′gi(θ̂) − eλ′0gi(θ0)
∣∣∣ gi(θ̂)gi(θ̂)′

∥∥∥∥∥
+
∥∥∥∥∥n−1

n∑
i=1

eλ
′
0gi(θ0)

(
gi(θ̂)gi(θ̂)′ − gi(θ0)gi(θ0)′

)∥∥∥∥∥ . (2.27)

By Assumption 2(c), with probability 1− o(n−a), the first term of (2.27) satisfies
∥∥∥∥∥n−1

n∑
i=1

∣∣∣eλ̂′gi(θ̂) − eλ′0gi(θ0)
∣∣∣ gi(θ̂)gi(θ̂)′

∥∥∥∥∥
≤

∥∥∥∥∥n−1
n∑
i=1

Cτ (Xi)gi(θ̂)gi(θ̂)′
∥∥∥∥∥ · ‖(λ̂′, θ̂′)′ − (λ0, θ0)′‖ = op(1).

The last conclusion op(1) holds by (2.18), (2.19), and the fact that

‖n−1
n∑
i=1

Cτ (Xi)gi(θ̂)gi(θ̂)′‖ = Op(1),

with probability 1−o(n−a), which can be proved as follows. By the triangle inequality,
Schwarz matrix inequality and Assumption 2(b),

‖gi(θ̂)gi(θ̂)′‖ ≤ ‖gi(θ̂)gi(θ̂)′ − gi(θ0)gi(θ0)′‖+ ‖gi(θ0)gi(θ0)′‖

≤ ‖(gi(θ̂)− gi(θ0))(gi(θ̂) + gi(θ0))′‖+ ‖gi(θ0)‖2

≤ ‖θ̂ − θ0‖2C2
g (Xi) + 2‖θ̂ − θ0‖ · Cg(Xi)‖gi(θ0)‖+ ‖gi(θ0)‖2.
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Using this inequality relation and the triangle inequality,∥∥∥∥∥n−1
n∑
i=1

Cτ (Xi)gi(θ̂)gi(θ̂)′
∥∥∥∥∥ ≤ n−1

n∑
i=1

Cτ (Xi)‖gi(θ0)‖2

+‖θ̂ − θ0‖2n−1
n∑
i=1

Cτ (Xi)C2
g (Xi)

+2‖θ̂ − θ0‖ · n−1
n∑
i=1

Cτ (Xi)Cg(Xi)‖gi(θ0)‖.

Then the right-hand-side is Op(1) with probability 1 − o(n−a) by using (2.18) and
applying Lemma 2.2(b) with h(Xi) = Cτ (Xi)‖gi(θ0)‖2, h(Xi) = Cτ (Xi)C2

g (Xi), and
h(Xi) = Cτ (Xi)Cg(Xi)‖gi(θ0)‖, provided that E‖h(Xi)‖p < ∞ for some p ≥ 2 and
p > 2a. In order to satisfy this condition, we use Hölder’s inequality: for some ζ > 0,

ECp
τ (Xi)‖gi(θ0)‖2p ≤

(
ECp(1+ζ)

τ (Xi)
)(1+ζ)−1

·
(
E‖gi(θ0)‖2p(1+ζ−1)

)ζ(1+ζ)−1

,

ECp
τ (Xi)C2p

g (Xi) ≤
(
ECp(1+ζ)

τ (Xi)
)(1+ζ)−1

·
(
EC2p(1+ζ−1)

g

)ζ(1+ζ)−1

,

ECp
τ (Xi)Cp

g (Xi)‖gi(θ0)‖p ≤
(
ECp(1+ζ)

τ (Xi)
)(1+ζ)−1

·
(
EC2p(1+ζ−1)

g

) ζ(1+ζ)−1
2

·
(
E‖gi(θ0)‖2p(1+ζ−1)

) ζ(1+ζ)−1
2 ,

where Cauchy-Schwarz inequality is further applied for the last result. Letting
p(1 + ζ) = qτ gives qτ ≥ 2(1 + ζ) and qτ > 2a(1 + ζ). Letting 2p(1 + ζ−1) = qg gives
qg ≥ 4(1 + ζ−1) and qg > 4a(1 + ζ−1). These conditions are assumed in the present
Lemma.

The second term of (2.27) can be proved similarly. By the triangle inequality,
Schwarz matrix inequality, and Assumption 2(b),

∥∥∥∥∥n−1
n∑
i=1

eλ
′
0gi(θ0)(gi(θ̂)gi(θ̂)′ − gi(θ0)gi(θ0)′)

∥∥∥∥∥
≤ ‖θ̂ − θ0‖2n−1

n∑
i=1

eλ
′
0gi(θ0)C2

g (Xi) + 2‖θ̂ − θ0‖ · n−1
n∑
i=1

eλ
′
0gi(θ0)Cg(Xi)‖gi(θ0)‖.
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Then, (2.18) and Lemma 2.3(b) with

h(Xi) = eλ
′
0gi(θ0)C2

g (Xi) and h(Xi) = eλ
′
0gi(θ0)Cg(Xi)‖gi(θ0)‖

give the desired result. This proves (2.22).
The result (2.23) can be proved by applying Lemma 2.2(a) with c = 0 and h(Xi) =

eλ
′
0gi(θ0)gi(θ0)gi(θ0)′ − Eeλ′0gi(θ0)gi(θ0)gi(θ0)′. To see if h(Xi) satisfies the condition of

Lemma 2.2(a), it suffices to show Eeλ
′
0gi(θ0)·p‖gi(θ0)‖2p <∞ by Minkowski’s inequality.

But we already proved that the assumed qg and qτ satisfy this condition in the present
Lemma. Since we have shown (2.22)-(2.26), the result (2.21) is proved and this
completes the proof of the Lemma. Q.E.D.

Proof of Lemma 2.5

Proof. β̂ solves n−1∑n
i=1 φ(Xi, β̂) = 0 with probability 1 − o(n−a), because β̂ is

in the interior of B with probability 1 − o(n−a). By the mean value expansion of
n−1∑n

i=1 φ(Xi, β̂) = 0 around β0,

β̂ − β0 = −
(
n−1

n∑
i=1

∂φ(Xi, β̃)
∂β′

)−1

n−1
n∑
i=1

φ(Xi, β0),

with probability 1 − o(n−a), where β̃ lies between β̂ and β0 and may differ across
rows. The Lemma follows from

lim
n→∞

naP

(∥∥∥∥∥n−1
n∑
i=1

∂φ(Xi, β̃)
∂β′

− n−1
n∑
i=1

∂φ(Xi, β0)
∂β′

∥∥∥∥∥ > ε

)
= 0, (2.28)

lim
n→∞

naP

(∥∥∥∥∥n−1
n∑
i=1

∂φ(Xi, β0)
∂β′

− E∂φ(Xi, β0)
∂β′

∥∥∥∥∥ > ε

)
= 0, (2.29)

lim
n→∞

naP

(∥∥∥∥∥n−1
n∑
i=1

φ(Xi, β0)
∥∥∥∥∥ > n−c

)
= 0. (2.30)

First, we prove (2.30). We apply Lemma 2.2(a) with h(Xi) = φ(Xi, β0). To
satisfy the condition of Lemma 2.2(a), we need to show E‖φ(Xi, β0)‖p <∞ for p ≥ 2
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and p > 2a/(1 − 2c). By investigating the elements of ‖φ(Xi, β0)‖, it suffices to
show Eeλ

′
0gi(θ0)·p‖gi(θ0)‖2p <∞ and Eeλ′0gi(θ0)·p‖gi(θ0)‖p‖Gi(θ0)‖p <∞. By Hölder’s

inequality and Cauchy-Schwarz inequality, we have qg ≥ 4(1 + ζ−1) and qg > 4a(1−
2c)−1(1 + ζ−1), qτ ≥ 2(1 + ζ) and qτ > 2a(1− 2c)−1(1 + ζ), and qG ≥ 4(1 + ζ−1) and
qG > 4a(1− 2c)−1(1 + ζ−1). But this is implied by the assumption of the Lemma.

Second, we prove (2.29). We apply Lemma 2.2(a) with h(Xi) = (∂/∂β′)φ(Xi, β0)−
E(∂/∂β′)φ(Xi, β0) and c = 0. By investigating the elements of ‖(∂/∂β′)φ(Xi, β0)‖, it
suffices to show Eeλ

′
0gi(θ0)·p‖gi(θ0)‖3p <∞, Eeλ′0gi(θ0)·p‖gi(θ0)‖2p‖Gi(θ0)‖p <∞, and

Eeλ
′
0gi(θ0)·p‖gi(θ0)‖p‖Gi(θ0)‖2p < ∞, to satisfy the condition of Lemma 2.2(a) with

c = 0. By Hölder’s inequality and Cauchy-Schwarz inequality, the corresponding
conditions for qg, qτ and qG are qg ≥ 6(1 + ζ−1) and qg > 6a(1 + ζ−1), qτ ≥ 2(1 + ζ)
and qτ > 2a(1 + ζ), and qG ≥ 6(1 + ζ−1) and qG > 6a(1 + ζ−1), which are implied by
the assumption of the Lemma.

Finally, (2.28) can be proved by multiple applications of Lemma 2.2(b) and
Lemma 2.4. Note that the matrix (∂/∂β′)φ(Xi, β) consists of terms of the form
α · ekτλ′gi(θ)g(θ)k0 ·G(θ)k1 ·G(2)(θ)k2 for kτ = 0, 1, k0 = 0, 1, 2, 3, k1 = 0, 1, 2, k2 = 0, 1,
and 0 ≤ k0 + k1 + k2 ≤ 3, where g(θ), G(θ), and G(2)(θ) denote elements of gi(θ),
Gi(θ), and G(2)

i (θ), respectively, and where α denotes products of elements of β that
are necessarily bounded for β ∈ Bδ(β0). Thus, (∂/∂β′)φ(Xi, β̃) − (∂/∂β′)φ(Xi, β0)
consists of terms of the form

α̃ · ekτ λ̃′gi(θ̃)g(θ̃)k0 ·G(θ̃)k1 ·G(2)(θ̃)k2 − α0 · ekτλ
′
0gi(θ0)g(θ0)k0 ·G(θ0)k1 ·G(2)(θ0)k2

= (α̃− α0) · ekτ λ̃′gi(θ̃) · g(θ̃)k0 ·G(θ̃)k1 ·G(2)(θ̃)k2

+α0 ·
(
ekτ λ̃

′gi(θ̃) − ekτλ′0gi(θ0)
)
· g(θ̃)k0 ·G(θ̃)k1 ·G(2)(θ̃)k2

+α0 · ekτλ
′
0gi(θ0) ·

(
g(θ̃)k0 − g(θ0)k0

)
·G(θ̃)k1 ·G(2)(θ̃)k2

+α0 · ekτλ
′
0gi(θ0) · g(θ0)k0

(
G(θ̃)k1 −G(θ0)k1

)
·G(2)(θ̃)k2

+α0 · ekτλ
′
0gi(θ0) · g(θ0)k0 ·G(θ0)k1

(
G(2)(θ̃)k2 −G(2)(θ0)k2

)
. (2.31)

We apply Lemma 2.4 to show P (|α̃ − α0| > ε) = o(n−a). By Assumption 2(b)-(c),
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Assumption 3(c), Lemma 2.2(b) and Lemma 2.4,

ekτ λ̃
′gi(θ̃) · g(θ̃)k0 ·G(θ̃)k1 ·G(2)(θ̃)k2

≤ ekτλ
′
0gi(θ0) · |g(θ0)|k0 · |G(θ0)|k1 · |G(2)(θ0)|k2 + op(1).

To apply Lemma 2.2(b) to the first term of the right-hand side of the above inequality,
it suffices to show Eeλ

′
0gi(θ0)·p · |g(θ0)|3p <∞, Eeλ′0gi(θ0)·p · |g(θ0)|2p · |G(θ0)|p <∞, and

Eeλ
′
0gi(θ0)·p · |g(θ0)|p · |G(θ0)|p · |G(2)(θ0)|p <∞ for p ≥ 2 and p > 2a. Since we already

showed this in the proof of (2.29), the first term of (2.31) is op(1). Similarly, we can
show the remaining terms of (2.31) are also op(1) by the binomial theorem under the
assumption of the Lemma, and thus, (2.28) is proved.

We illustrate the above proof for a term of (∂/∂β′)φ(Xi, β̃) − (∂/∂β′)φ(Xi, β0).
For example, we show

lim
n→∞

naP

(∥∥∥∥∥n−1
n∑
i=1

eλ̃(θ̃)′gi(θ̃)gi(θ̃)gi(θ̃)′κ̃gi(θ̃)′

−n−1
n∑
i=1

eλ0(θ0)′gi(θ0)gi(θ0)gi(θ0)′κ0gi(θ0)′
∥∥∥∥∥ > ε

)
= 0,

as follows. By Assumption 2, and the triangle and Schwarz matrix inequalities,∥∥∥∥∥n−1
n∑
i=1

eλ̃(θ̃)′gi(θ̃)gi(θ̃)gi(θ̃)′κ̃gi(θ̃)′ − n−1
n∑
i=1

eλ0(θ0)′gi(θ0)gi(θ0)gi(θ0)′κ0gi(θ0)′
∥∥∥∥∥

≤ ‖κ̃‖ · ‖(λ̃′, θ̃′)− (λ′0, θ′0)‖n−1
n∑
i=1

Cτ (Xi)‖gi(θ̃)‖3

+‖κ̃‖ · n−1
n∑
i=1

eλ
′
0gi(θ0)‖gi(θ̃)gi(θ̃)′ − gi(θ0)gi(θ0)′‖ · ‖gi(θ̃)‖

+‖κ̃− κ0‖ · n−1
n∑
i=1

eλ
′
0gi(θ0)‖gi(θ̃)‖2 · ‖gi(θ̃)‖

+‖κ0‖‖θ̃ − θ0‖n−1
n∑
i=1

eλ
′
0gi(θ0)Cg(Xi)‖gi(θ̃)‖2.

The conclusion follows from multiple applications of Lemma 2.2(b), Lemma 2.4, and
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the following inequality relations:

‖κ̃‖ ≤ ‖κ̃− κ0‖+ ‖κ0‖,

‖gi(θ̃)‖ ≤ Cg(Xi)‖θ̃ − θ0‖+ ‖gi(θ0)‖,

‖gi(θ̃)gi(θ̃)′ − gi(θ0)gi(θ0)′‖ ≤ C2
g (Xi)‖θ̃ − θ0‖2 + 2Cg(Xi)‖θ̃ − θ0‖ · ‖gi(θ0)‖.

Q.E.D.

Proof of Lemma 2.6

Proof. See the proof of Lemma 5 of Andrews (2002). Q.E.D.

Proof of Lemma 2.7

Proof. See the proof of Lemma 6 of Andrews (2002). Q.E.D.

Proof of Lemma 2.8

Proof. The result (a) is proved by the proof of Lemma 8 of Hall and Horowitz (1996).
We apply Lemma 6 with c = 0 and p = qg using Assumption 2(b).

Proving (b) and (c) involves several steps. We first show

lim
n→∞

naP

(
P ∗

(
sup

(λ′,θ′)∈Λ(θ)×Θ

∣∣∣∣∣n−1
n∑
i=1

(
eλ(θ)′g∗i (θ) − eλ(θ)′gi(θ)

)∣∣∣∣∣ > ε

)
> n−a

)
= 0.

(2.32)
The proof of (2.32) is similar to that of Lemma 8 of Hall and Horowitz (1996).
We apply our Lemma 2.7(c) with c = 0, h(Xi) = eλ

′
jgi(θj) − Eeλ

′
jgi(θj) for some

(λ′j, θ′j) ∈ Λ(θ)×Θ or h(Xi) = Cτ (Xi)−ECτ (Xi), and p = qτ . Note that qτ needs to
satisfy qτ ≥ 2 and qτ > 4a. To see this works, observe that h(X∗i ) = eλ

′
jg
∗
i (θj)−Eeλ′jgi(θj)

or h(X∗i ) = Cτ (X∗i ) − ECτ (Xi). Then, E∗h(X∗i ) = n−1∑n
i=1 e

λ′jgi(θj) − Eeλ′jgi(θj) or
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E∗h(X∗i ) = n−1∑n
i=1Cτ (Xi)− ECτ (Xi). Thus,

h(X∗i )− E∗h(X∗i ) = eλ
′
jg
∗
i (θj) − n−1

n∑
i=1

eλ
′
jgi(θj) or

h(X∗i )− E∗h(X∗i ) = Cτ (X∗i )− n−1
n∑
i=1

Cτ (Xi).

Next, we show

lim
n→∞

naP

(
P ∗

(
sup
θ∈Θ

∥∥∥λ̄∗(θ)− λ̄(θ)
∥∥∥ > ε

)
> n−a

)
= 0, (2.33)

where λ̄∗(θ) = arg minλ∈Λ(θ) n
−1∑n

i=1 e
λ′g∗i (θ). For a given ε > 0, let

η = inf
θ∈Θ

inf
λ∈Λ(θ)

‖λ−λ̄(θ)‖>ε

(n−1
n∑
i=1

eλ
′gi(θ) − n−1

n∑
i=1

eλ̄(θ)′gi(θ)),

which is positive by the strict convexity of n−1∑n
i=1 e

λ′gi(θ) in λ,

λ̄(θ) ≡ arg min
λ∈Λ(θ)

n−1
n∑
i=1

eλ
′gi(θ),

and the fact that Θ is compact. By the definition of η,

P ∗
(

sup
θ∈Θ

(
n−1

n∑
i=1

eλ̄
∗(θ)′gi(θ) − n−1

n∑
i=1

eλ̄(θ)′gi(θ)
)
≤ η

)
≤ P ∗

(
sup
θ∈Θ
‖λ̄∗(θ)− λ̄(θ)‖ ≤ ε

)
.

(2.34)
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Since n−1∑n
i=1 e

λ̄∗(θ)′g∗i (θ) − n−1∑n
i=1 e

λ̄(θ)′g∗i (θ) < 0,

sup
θ∈Θ

(
n−1

n∑
i=1

eλ̄
∗(θ)′gi(θ) − n−1

n∑
i=1

eλ̄(θ)′gi(θ)
)

≤ sup
θ∈Θ

(
n−1

n∑
i=1

eλ̄
∗(θ)′gi(θ) − n−1

n∑
i=1

eλ̄
∗(θ)′g∗i (θ)

)

+ sup
θ∈Θ

(
n−1

n∑
i=1

eλ̄
∗(θ)′g∗i (θ) − n−1

n∑
i=1

eλ̄(θ)′g∗i (θ)
)

+ sup
θ∈Θ

(
n−1

n∑
i=1

eλ̄(θ)′g∗i (θ) − n−1
n∑
i=1

eλ̄(θ)′gi(θ)
)

≤ 2 sup
(λ′,θ′)′∈Λ(θ)×Θ

∣∣∣∣∣n−1
n∑
i=1

eλ
′g∗i (θ) − Eeλ′gi(θ)

∣∣∣∣∣ .
Thus, we have

P ∗
(

sup
θ∈Θ

(
n−1

n∑
i=1

eλ̄
∗(θ)′gi(θ) − n−1

n∑
i=1

eλ̄(θ)′gi(θ)
)
≤ η

)

≥ P ∗
(

sup
(λ′,θ′)′∈Λ(θ)×Θ

∣∣∣∣∣n−1
n∑
i=1

eλ
′g∗i (θ) − n−1

n∑
i=1

eλ
′gi(θ)

∣∣∣∣∣ ≤ η/2
)
,

and this implies that

P

(
P ∗

(
sup
θ∈Θ

(
n−1

n∑
i=1

eλ̄
∗(θ)′gi(θ) − n−1

n∑
i=1

eλ̄(θ)′gi(θ)
)
> η

)
> n−a

)

≤ P

(
P ∗

(
sup

(λ′,θ′)′∈Λ(θ)×Θ

∣∣∣∣∣n−1
n∑
i=1

eλ
′g∗i (θ) − n−1

n∑
i=1

eλ
′gi(θ)

∣∣∣∣∣ > η/2
)
> n−a

)
= o(n−a),

by (2.32). Using this result, (2.34) implies (2.33).
To prove the present Lemma (c), we need to replace λ̄∗(θ) and λ̄(θ) with λ̂∗(θ) and

λ̂(θ), respectively. We have shown that λ̄(θ) = λ̂(θ) in the event that λ̄(θ) ∈ int(Λ(θ))
in the proof of Lemma 2.3. By similar argument, λ̄∗(θ) = λ̂∗(θ) in the event
that λ̄∗(θ) ∈ int(Λ(θ)). Take a closed neighborhood N̄δ(λ0(θ)) of radius δ around
λ0(θ) such that N̄δ(λ0(θ)) ⊂ int(Λ(θ)). Then, whenever λ̄(θ), λ̄∗(θ) ∈ int(Λ(θ)),
‖λ̄(θ)− λ0(θ)‖ ≤ δ and ‖λ̄∗(θ)− λ0(θ)‖ ≤ δ for all θ ∈ Θ. We use this fact to prove
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the present Lemma (c). By the triangle inequality,

‖λ̄∗(θ)− λ0(θ)‖ ≤ ‖λ̄∗(θ)− λ̄(θ)‖+ ‖λ̄(θ)− λ0(θ)‖,

and thus we have

P

(
P ∗

(
sup
θ∈Θ
‖λ̄∗(θ)− λ0(θ)‖ > δ

)
> n−a

)

≤ P

(
P ∗

(
sup
θ∈Θ
‖λ̄∗(θ)− λ̄(θ)‖ > δ/2

)
> n−a

)

+P
(
P ∗

(
sup
θ∈Θ
‖λ̄(θ)− λ0(θ)‖ > δ/2

)
> n−a

)
= o(n−a) + o(n−a) = o(n−a), (2.35)

by (2.33) and (2.13). Note that λ̄(θ) is calculated from the original sample and thus

P

(
P ∗

(
sup
θ∈Θ
‖λ̄(θ)− λ0(θ)‖ > δ/2

)
> n−a

)

= P

(
1
{

sup
θ∈Θ
‖λ̄(θ)− λ0(θ)‖ > δ/2

}
> n−a

)

= P

(
1
{

sup
θ∈Θ
‖λ̄(θ)− λ0(θ)‖ > δ/2

}
> n−a, sup

θ∈Θ
‖λ̄(θ)− λ0(θ)‖ > δ/2

)

+P
(

1
{

sup
θ∈Θ
‖λ̄(θ)− λ0(θ)‖ > δ/2

}
> n−a, sup

θ∈Θ
‖λ̄(θ)− λ0(θ)‖ ≤ δ/2

)

≤ P

(
sup
θ∈Θ
‖λ̄(θ)− λ0(θ)‖ > δ/2

)
= o(n−a), (2.36)

where 1{·} is an indicator function. Now, we are ready to prove the present Lemma
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(c):

P ∗
(

sup
θ∈Θ

∥∥∥λ̂∗(θ)− λ̂(θ)
∥∥∥ > ε

)

= P ∗
(

sup
θ∈Θ

∥∥∥λ̂∗(θ)− λ̂(θ)
∥∥∥ > ε, sup

θ∈Θ
‖λ̄∗(θ)− λ0(θ)‖ > δ

)

+P ∗
(

sup
θ∈Θ

∥∥∥λ̂∗(θ)− λ̂(θ)
∥∥∥ > ε, sup

θ∈Θ
‖λ̄∗(θ)− λ0(θ)‖ ≤ δ

)

≤ P ∗
(

sup
θ∈Θ
‖λ̄∗(θ)− λ0(θ)‖ > δ

)
+ P ∗

(
sup
θ∈Θ
‖λ̄(θ)− λ0(θ)‖ > δ

)

+P ∗
(

sup
θ∈Θ

∥∥∥λ̄∗(θ)− λ̄(θ)
∥∥∥ > ε

)
,

and thus,

P

(
P ∗

(
sup
θ∈Θ

∥∥∥λ̂∗(θ)− λ̂(θ)
∥∥∥ > ε

)
> n−a

)

≤ P

(
P ∗

(
sup
θ∈Θ
‖λ̄∗(θ)− λ0(θ)‖ > δ

)
>
n−a

3

)

+P
(
P ∗

(
sup
θ∈Θ
‖λ̄(θ)− λ0(θ)‖ > δ

)
>
n−a

3

)

+P
(
P ∗

(
sup
θ∈Θ

∥∥∥λ̄∗(θ)− λ̄(θ)
∥∥∥ > ε

)
>
n−a

3

)
= o(n−a),

by (2.35), (2.36), and (2.33).
Finally, the present Lemma (b) follows from the results below:

lim
n→∞

naP

(
P ∗

(
sup
θ∈Θ

∣∣∣∣∣n−1
n∑
i=1

(
eλ̂
∗(θ)′g∗i (θ) − eλ̂(θ)′g∗i (θ)

)∣∣∣∣∣ > ε

)
> n−a

)
= 0,(2.37)

lim
n→∞

naP

(
P ∗

(
sup
θ∈Θ

∣∣∣∣∣n−1
n∑
i=1

(
eλ̂(θ)′g∗i (θ) − eλ̂(θ)′gi(θ)

)∣∣∣∣∣ > ε

)
> n−a

)
= 0. (2.38)

Since λ̂(θ) ∈ int(Λ(θ)) with probability 1− o(n−a) as in (2.36), (2.38) follows from
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(2.32). To show (2.37), we use the arguments used in the proof of the present Lemma:

P

(
P ∗

(
sup
θ∈Θ

∣∣∣∣∣n−1
n∑
i=1

(
eλ̂
∗(θ)′g∗i (θ) − eλ̂(θ)′g∗i (θ)

)∣∣∣∣∣ > ε

)
> n−a

)

≤ P

(
P ∗

(
sup
θ∈Θ

∣∣∣∣∣n−1
n∑
i=1

(
eλ̄
∗(θ)′g∗i (θ) − eλ̄(θ)′g∗i (θ)

)∣∣∣∣∣ > ε

)
> n−a

)

+P
(
P ∗

(
sup
θ∈Θ

∥∥∥λ̄∗(θ)− λ0(θ)
∥∥∥ > δ

)
> n−a

)

+P
(
P ∗

(
sup
θ∈Θ

∥∥∥λ̄(θ)− λ0(θ)
∥∥∥ > δ

)
> n−a

)

≤ o(n−a) + P

(
P ∗

(
sup
θ∈Θ

∥∥∥λ̄∗(θ)− λ0(θ)
∥∥∥n−1

n∑
i=1

Cτ (X∗i ) > ε

)
> n−a

)
= o(n−a),

by applying Lemma 2.7(d) with h(X∗i ) = Cτ (X∗i ) and p = qτ and using (2.33), (2.35),
and (2.36). Q.E.D.

Proof of Lemma 2.9

Proof. The proof is analogous to that of Lemma 2.4. Though they are similar, the
proof involves some additional steps for the bootstrap version of the estimators. First,
we show

lim
n→∞

naP

(
P ∗

(
sup
θ∈Θ
| ln L̂∗(θ)− ln L̂(θ)| > ε

)
> n−a

)
= 0. (2.39)

Since

ln L̂∗(θ) = − ln
(
n−1

n∑
i=1

eλ̂
∗(θ)′g∗i (θ)

)
+ λ̂∗(θ)′g∗n(θ),

(2.39) follows from

lim
n→∞

naP

(
P ∗

(
sup
θ∈Θ
|n−1

n∑
i=1

(
eλ̂
∗(θ)′g∗i (θ) − eλ̂(θ)′gi(θ)

)
| > ε

)
> n−a

)
= 0,

lim
n→∞

naP

(
P ∗

(
sup
θ∈Θ
|λ̂∗(θ)′g∗n(θ)− λ̂(θ)′gn(θ)| > ε

)
> n−a

)
= 0.
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Since the assumption of the present Lemma implies that qg ≥ 2, qg > 4a, qτ ≥ 2, and
qτ > 4a, the first result holds by Lemma 2.8(b). To show the second result, we apply
Schwarz matrix inequality to get

sup
θ∈Θ
|λ̂∗(θ)′g∗n(θ)− λ̂(θ)′gn(θ)|

≤ sup
θ∈Θ
‖λ̂∗(θ)− λ̂(θ)‖ · sup

θ∈Θ
‖g∗n(θ)‖+ sup

θ∈Θ
‖λ̂(θ)‖ · sup

θ∈Θ
‖g∗n(θ)− gn(θ)‖.

By Lemma 2.8(a), (c), Lemma 2.7(d) with h(X∗i ) = supθ∈Θ ‖g∗i (θ)‖ and p = qg, the
inequality ‖λ̂(θ)‖ ≤ ‖λ̂(θ)− λ0(θ)‖+ ‖λ0(θ)‖, Lemma 2.3(c), and the fact that λ0(θ)
exists for all θ ∈ Θ and Θ is compact, the second conclusion follows.

Next we claim that given ε > 0, there exists η > 0 independent of n such that
‖θ − θ̂‖ > ε implies that ln L̂(θ̂)− ln L̂(θ) ≥ η > 0 with probability 1− o(n−a). To
show this claim, define M = infθ∈Nε(θ̂)c∩Θ(lnL(θ0) − lnL(θ)), where Nε(θ̂) = {θ :
‖θ − θ̂‖ < ε}. Then, M > 0 if ‖θ̂ − θ0‖ ≤ ε. Now, conditional on the event that
‖θ̂ − θ0‖ ≤ ε, supθ∈Θ | ln L̂(θ) − lnL(θ)| ≤ M/6, and lnL(θ0) − lnL(θ̂) ≤ M/3, we
have

ln L̂(θ̂)− ln L̂(θ) = lnL(θ0)− lnL(θ) + ln L̂(θ̂)− ln L̂(θ)

− lnL(θ0) + lnL(θ̂) + lnL(θ)− lnL(θ̂)

≥ lnL(θ0)− lnL(θ)− | ln L̂(θ̂)− lnL(θ̂) + lnL(θ)− ln L̂(θ)|

−(lnL(θ0)− lnL(θ̂))

≥ M − 2 sup
θ∈Θ
| lnL(θ)− ln L̂(θ)| − (lnL(θ0)− lnL(θ̂))

≥ M/3 > 0,

for any ‖θ − θ̂‖ > ε. Since the event occurs with probability 1− o(n−a) by Lemma
2.4, this proves the claim.

By the claim, the triangle inequality, the fact that θ̂∗ maximizes ln L̂∗(θ), and
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(2.39),

P
(
P ∗

(
‖θ̂ − θ0‖ > ε

)
> n−a

)
≤ P

(
P ∗

(
ln L̂(θ̂)− ln L̂(θ̂∗) ≤ η

)
> n−a

)
= P

(
P ∗

(
ln L̂(θ̂)− ln L̂∗(θ̂∗) + ln L̂∗(θ̂∗)− ln L̂(θ̂∗) ≤ η

)
> n−a

)
≤ P

(
P ∗

(
ln L̂(θ̂)− ln L̂∗(θ̂) + ln L̂∗(θ̂∗)− ln L̂(θ̂∗) ≤ η

)
> n−a

)
≤ P

(
P ∗

(
sup
θ∈Θ

∣∣∣ln L̂∗(θ)− ln L̂(θ)
∣∣∣ ≤ η/2

)
> n−a

)
= o(n−a).

Thus, we have
lim
n→∞

naP
(
P ∗

(
‖θ̂∗ − θ̂‖ > ε

)
> n−a

)
= 0. (2.40)

Next, we show

lim
n→∞

naP
(
P ∗

(
‖λ̂∗(θ̂∗)− λ̂(θ̂)‖ > ε

)
> n−a

)
= 0. (2.41)

By the triangle inequality,

P ∗
(
‖λ̂∗(θ̂∗)− λ̂(θ̂)‖ > ε

)
≤ P ∗

(
‖λ̂∗(θ̂∗)− λ̂(θ̂∗)‖ > ε

4

)
+ P ∗

(
‖λ̂(θ̂∗)− λ0(θ̂∗)‖ > ε

4

)
+P ∗

(
‖λ0(θ̂∗)− λ0(θ̂)‖ > ε

4

)
+ P ∗

(
‖λ0(θ̂)− λ̂(θ̂)‖ > ε

4

)
≤ P ∗

(
sup
θ∈Θ
‖λ̂∗(θ)− λ̂(θ)‖ > ε

4

)
+ P ∗

(
‖λ0(θ̂∗)− λ0(θ̂)‖ > ε

4

)

+2P ∗
(

sup
θ∈Θ
‖λ0(θ)− λ̂(θ)‖ > ε

4

)
.

Since ‖θ̂∗ − θ0‖ ≤ ‖θ̂∗ − θ̂‖+ ‖θ̂ − θ0‖,

P
(
P ∗

(
‖θ̂∗ − θ0‖ > ε

)
> n−a

)
≤ P

(
P ∗

(
‖θ̂∗ − θ̂‖ > ε

)
> n−a

)
+ P

(
‖θ̂ − θ0‖ > ε

)
= o(n−a), (2.42)
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by Lemma 2.4 and (2.40). Therefore, (2.41) follows from Lemma 2.8(c), Lemma
2.3(c), the fact that λ0(θ) is continuous in a neighborhood of θ0, and (2.42).

Next, we show

lim
n→∞

naP
(
P ∗ (‖τ̂ ∗ − τ̂‖ > ε) > n−a

)
= 0. (2.43)

Since τ̂ ∗ = n−1∑n
i=1 e

λ̂∗
′
g∗i (θ̂∗), where λ̂∗ ≡ λ̂∗(θ̂∗), (2.43) follows from

lim
n→∞

naP

(
P ∗

(∣∣∣∣∣n−1
n∑
i=1

(
eλ̂
∗′g∗i (θ̂∗) − eλ̂′g∗i (θ̂)

)∣∣∣∣∣ > ε

)
> n−a

)
= 0,

lim
n→∞

naP

(
P ∗

(∣∣∣∣∣n−1
n∑
i=1

(
eλ̂
′g∗i (θ̂) − eλ̂′gi(θ̂)

)∣∣∣∣∣ > ε

)
> n−a

)
= 0.

Since λ̂∗ is in the interior of Λ(θ) with P ∗ probability 1− o(n−a) except, possibly, if
χ is in a set of P probability o(n−a) by (2.41), we use Assumption 2(c) and apply
Lemma 2.7(d) with h(X∗i ) = Cτ (X∗i ) and p = qτ to show the first result. For the
second result, we use the triangle inequality to get

eλ̂
′g∗i (θ̂) − eλ̂′gi(θ̂) ≤

∣∣∣eλ′0g∗i (θ0) − eλ′0gi(θ0)
∣∣∣+ ∣∣∣eλ̂′g∗i (θ̂) − eλ′0g∗i (θ0)

∣∣∣+ ∣∣∣eλ′0gi(θ0) − eλ̂′gi(θ̂)
∣∣∣ ,

and apply Assumption 2(c), Lemma 2.7(a) with h(X∗i ) = eλ
′
0gi(θ0) − Eeλ′0gi(θ0), c = 0

and p = qτ , Lemma 2.7(d) with h(X∗i ) = Cτ (X∗i ) and p = qτ , Lemma 2.2(b) with
h(Xi) = Cτ (Xi), and Lemma 2.4.

Finally, we show

lim
n→∞

naP
(
P ∗ (‖κ̂∗ − κ̂‖ > ε) > n−a

)
= 0. (2.44)

Since

κ̂∗ = −
(
n−1

n∑
i=1

eλ̂
∗′g∗i (θ̂∗)g∗i (θ̂∗)g∗i (θ̂∗)′

)−1

τ̂ ∗g∗n(θ̂∗),
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(2.44) follows from

lim
n→∞

naP

(
P ∗

(∥∥∥∥∥n−1
n∑
i=1

(
eλ̂
∗′g∗i (θ̂∗)g∗i (θ̂∗)g∗i (θ̂∗)′ − eλ̂

′g∗i (θ̂)g∗i (θ̂)g∗i (θ̂)′
)∥∥∥∥∥ > ε

)
> n−a

)
= 0,

lim
n→∞

naP

(
P ∗

(∥∥∥∥∥n−1
n∑
i=1

(
eλ̂
′g∗i (θ̂)g∗i (θ̂)g∗i (θ̂)′ − eλ̂

′g∗i (θ̂)g∗i (θ̂)g∗i (θ̂)′
)∥∥∥∥∥ > ε

)
> n−a

)
= 0,

lim
n→∞

naP
(
P ∗ (‖τ̂ ∗ − τ̂‖ > ε) > n−a

)
= 0,

lim
n→∞

naP
(
P ∗

(
‖g∗n(θ̂∗)− g∗n(θ̂)‖ > ε

)
> n−a

)
= 0,

lim
n→∞

naP
(
P ∗

(
‖g∗n(θ̂)− gn(θ̂)‖ > ε

)
> n−a

)
= 0.

Given the results proved in the present Lemma, these results can be proved in a
similar fashion with the proof of Lemma 2.4 and thus omitted. In particular, we apply
Lemma 2.7 multiple times and we need qg and qτ to be such that qg ≥ 4(1 + ζ−1),
qg > 8a(1+ζ−1), qτ ≥ 2(1+ζ), and qτ > 4a(1+ζ). This is satisfied by the assumption
of the Lemma. Q.E.D.

Proof of Lemma 2.10

Proof. β̂∗ solves n−1∑n
i=1 φ(X∗i , β̂∗) = 0 with P ∗ probability 1 − o(n−a), except,

possibly, if χ is in a set of P probability o(n−a), because β̂∗ is in the interior of B with
P ∗ probability 1− o(n−a), except, possibly, if χ is in a set of P probability o(n−a).
By the mean value expansion of n−1∑n

i=1 φ(X∗i , β̂∗) = 0 around β̂,

β̂∗ − β̂ = −
(
n−1

n∑
i=1

∂φ(X∗i , β̃∗)
∂β′

)−1

n−1
n∑
i=1

φ(X∗i , β̂),

with P ∗ probability 1 − o(n−a), except, possibly, if χ is in a set of P probability
o(n−a), where β̃∗ lies between β̂∗ and β̂ and may differ across rows. The Lemma
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follows from

lim
n→∞

naP

(
P ∗

(∥∥∥∥∥n−1
n∑
i=1

(
∂φ(X∗i , β̃∗)

∂β′
− ∂φ(X∗i , β0)

∂β′

)∥∥∥∥∥ > ε

)
> n−a

)
= 0,(2.45)

lim
n→∞

naP

(
P ∗

(∥∥∥∥∥n−1
n∑
i=1

(
∂φ(X∗i , β0)

∂β′
− E∂φ(Xi, β0)

∂β′

)∥∥∥∥∥ > ε

)
> n−a

)
= 0,(2.46)

lim
n→∞

naP

(
P ∗

(∥∥∥∥∥n−1
n∑
i=1

φ(X∗i , β̂)
∥∥∥∥∥ > n−c

)
> n−a

)
= 0. (2.47)

First, we show (2.45). The proof is analogous to that of (2.28) in Lemma 2.5. We
use Lemmas 2.4, 2.9, 2.7(d), and the inequality relation ‖β̃∗−β0‖ ≤ ‖β̂∗−β̂‖+‖β̂−β0‖.
In order to apply Lemma 2.7(d) instead of Lemma 2.2(b) as in the proof of Lemma 2.5,
we impose stronger assumption of qg, qG, and qτ . In particular, qg, qG ≥ 6(1 + ζ−1),
qg, qG > 12a(1 + ζ−1), qτ ≥ 2(1 + ζ), and qτ ≥ 4a(1 + ζ). These are implied by the
assumption of the Lemma.

The proof of (2.46) is also analogous to that of (2.29) in Lemma 2.5. We apply
Lemma 2.7(c) h(X∗i ) = (∂/∂β′)φ(X∗i , β0)− E(∂/∂β′)φ(Xi, β0) and c = 0. We need
qg, qG ≥ 6(1 + ζ−1), qg, qG > 12a(1 + ζ−1), qτ ≥ 2(1 + ζ), and qτ ≥ 4a(1 + ζ), which
are implied by the assumption of the Lemma.

Finally, we show (2.47). By the triangle inequality and the mean value expansion,
∥∥∥∥∥n−1

n∑
i=1

φ(X∗i , β̂)
∥∥∥∥∥ ≤

∥∥∥∥∥n−1
n∑
i=1

φ(X∗i , β0)
∥∥∥∥∥+

∥∥∥∥∥n−1
n∑
i=1

∂φ(X∗i , β̄)
∂β′

∥∥∥∥∥ · ‖β̂ − β0‖, and∥∥∥∥∥n−1
n∑
i=1

∂φ(X∗i , β̄)
∂β′

∥∥∥∥∥ ≤
∥∥∥∥∥n−1

n∑
i=1

∂φ(X∗i , β0)
∂β′

∥∥∥∥∥+
∥∥∥∥∥n−1

n∑
i=1

(
∂φ(X∗i , β̄)

∂β′
− ∂φ(X∗i , β0)

∂β′

)∥∥∥∥∥ ,
where β̄ lies between β̂ and β0 and may differ across rows. Since ‖β̄−β0‖ ≤ ‖β̂−β0‖,
the proof of (2.45) and (2.46) can be applied to show

P

(
P ∗

(∥∥∥∥∥n−1
n∑
i=1

∂φ(X∗i , β̄)
∂β′

∥∥∥∥∥ > K

)
> n−a

)
= o(n−a),
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by Lemma 2.2(b) for some constant K > 0 and Lemma 2.4. Now, (2.47) follows from

P

(
P ∗

(∥∥∥∥∥n−1
n∑
i=1

φ(X∗i , β0)
∥∥∥∥∥ > n−c

2

)
> n−a

)
= o(n−a), (2.48)

P

(
P ∗

(∥∥∥β̂ − β0

∥∥∥ > n−c

2

)
> n−a

)
= o(n−a). (2.49)

To show (2.48), we apply Lemma 2.7(c) with h(X∗i ) = φ(X∗i , β0). To satisfy
the condition of Lemma 2.7(c), we need to show E‖φ(Xi, β0)‖p < ∞ for p ≥ 2
and p > 4a/(1 − 2c). By investigating the elements of ‖φ(Xi, β0)‖, it suffices
to show Eeλ

′
0gi(θ0)·p‖gi(θ0)‖2p < ∞ and Eeλ

′
0gi(θ0)·p‖gi(θ0)‖p‖Gi(θ0)‖p < ∞. By

Hölder’s inequality and Cauchy-Schwarz inequality, we have qg, qG ≥ 4(1 + ζ−1)
and qg, qG > 8a(1− 2c)−1(1 + ζ−1), and qτ ≥ 2(1 + ζ) and qτ > 4a(1− 2c)−1(1 + ζ).
But this is also implied by the assumption of the Lemma. (2.49) holds by Lemma 2.5
because

P

(
P ∗

(∥∥∥β̂ − β0

∥∥∥ > n−c

2

)
> n−a

)

= P

(
1
{∥∥∥β̂ − β0

∥∥∥ > n−c

2

}
> n−a,

∥∥∥β̂ − β0

∥∥∥ > n−c

2

)

+P
(

1
{∥∥∥β̂ − β0

∥∥∥ > n−c

2

}
> n−a,

∥∥∥β̂ − β0

∥∥∥ ≤ n−c

2

)

≤ P

(∥∥∥β̂ − β0

∥∥∥ > n−c

2

)
= o(n−a).

Q.E.D.

Proof of Lemma 2.11

Proof of (a). The proof is similar to the proof of (2.28) in Lemma 2.5 and is
given by as follows. Since f(Xi, β) consists of terms of the form α · ekτλ′gi(θ)g(θ)k0 ·
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G(θ)k1 · · ·G(d)(θ)kd , f(Xi, β)− f(Xi, β0) consists of terms of the form

α · ekτλ′gi(θ)g(θ)k0 ·G(θ)k1 · · ·G(d+1)(θ)kd+1

−α0 · ekτλ
′
0gi(θ0)g(θ0)k0 ·G(θ0)k1 · · ·G(d+1)(θ0)kd+1

= (α− α0) · ekτλ′gi(θ) · g(θ)k0 ·G(θ)k1 · · ·G(d+1)(θ)kd+1

+α0 ·
(
ekτλ

′gi(θ) − ekτλ′0gi(θ0)
)
· g(θ)k0 ·G(θ)k1 · · ·G(d+1)(θ)kd+1

+α0 · ekτλ
′
0gi(θ0) ·

(
g(θ)k0 − g(θ0)k0

)
·G(θ)k1 · · ·G(d+1)(θ)kd+1

+α0 · ekτλ
′
0gi(θ0) · g(θ0)k0

(
G(θ)k1 −G(θ0)k1

)
· · ·G(d+1)(θ)kd+1

+α0 · ekτλ
′
0gi(θ0) · g(θ0)k0 ·G(θ0)k1 · · ·

(
G(d+1)(θ)kd+1 −G(d+1)(θ0)kd+1

)
.

Since α is a product of elements of β, we can write (α− α0) ≤M‖β − β0‖ for some
constant M < ∞. Let kτ = 2, which is the most restrictive case. By Assumption
2(c),

e2λ′gi(θ) − e2λ′0gi(θ0) =
(
eλ
′gi(θ) − eλ′0gi(θ0) + eλ

′
0gi(θ0)

)2
− e2λ′0gi(θ0)

=
(
eλ
′gi(θ) − eλ′0gi(θ0)

)2
+ 2

(
eλ
′gi(θ) − eλ′0gi(θ0)

)
· eλ′0gi(θ0)

≤ C2
τ (Xi) ‖(λ′, θ′)′ − (λ′0, θ′0)′‖2

+2Cτ (Xi) · eλ
′
0gi(θ0) ‖(λ′, θ′)′ − (λ′0, θ′0)′‖

≤ ‖β − β0‖ ·
(
C2
τ (Xi)‖β − β0‖+ 2Cτ (Xi) · eλ

′
0gi(θ0)

)
.

By the binomial theorem,

g(θ)k0 − g(θ0)k0 = (g(θ)− g(θ0) + g(θ0))k0 − g(θ0)k0

=
k0∑
r=1

 k0

r

 (g(θ)− g(θ0))rg(θ0)k0−r

≤
k0∑
r=1

 k0

r

Cr
g (Xi) · ‖θ − θ0‖r · ‖gi(θ0)‖k0−r

≤ ‖β − β0‖ ·
k0∑
r=1

 k0

r

Cr
g (Xi) · ‖θ − θ0‖r−1 · ‖gi(θ0)‖k0−r.
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Similarly, we can show G(j)(θ)kj −G(j)(θ0)kj ≤ ‖β − β0‖ · C̃(j)(Xi) for some C̃(j)(Xi)
and for j = 1, ..., d.

Now we can write f(Xi, β)− f(Xi, β0) ≤ C(Xi)‖β − β0‖, where

C(Xi) = Mekτλ
′gi(θ) · · ·G(d+1)(θ)kd+1

+α0
(
C2
τ (Xi)‖β − β0‖+ 2Cτ (Xi) · eλ

′
0gi(θ0)

)
g(θ)k0 · · ·G(d+1)(θ)kd+1

+α0e
kτλ′0gi(θ0)g(θ0)k0C̃(1)(Xi) + · · · .

To show C(Xi) is bounded with probability 1 − o(n−a), as is in the proof of
Lemma 2.5, the remaining quantities such as ekτλ′gi(θ) · g(θ)k0 ·G(θ)k1 · · ·G(d+1)(θ)kd+1 ,

Ckτ
τ (Xi)Ck0

g (Xi), or Ckτ
τ (Xi)C

∑d+1
j=1 kj

G (Xi), need to be shown to be bounded with
probability 1 − o(n−a) by applying Lemma 2.2(b). It suffices to show the most re-
strictive cases: EC2p

τ (Xi)C(d+3)p
g (Xi) <∞ and EC2p

τ (Xi)C(d+3)p
G (Xi) <∞ for p ≥ 2

and p > 2a. By Hölder’s inequality, for ζ > 0,

EC2p
τ (Xi)C(d+3)p

g (Xi) ≤
(
EC2p(1+ζ)

τ (Xi)
)(1+ζ)−1

·
(
EC(d+3)p(1+ζ−1)

g (Xi)
)ζ(1+ζ)−1

,

EC2p
τ (Xi)C(d+3)p

G (Xi) ≤
(
EC2p(1+ζ)

τ (Xi)
)(1+ζ)−1

·
(
EC

(d+3)p(1+ζ−1)
G (Xi)

)ζ(1+ζ)−1

,

and the assumption on qg, qG, and qτ of the present Lemma satisfy the condition.
Thus, the present Lemma (a) is proved.

Proof of (b). The proof is analogous to that of the present Lemma (a), except that
we use Lemma 2.7(d) in place of Lemma 2.2(b). Since Lemma 2.7(d) requires p ≥ 2
and p > 4a, we need stronger conditions for qg, qG, and qτ , as are assumed. Q.E.D.

Proof of Lemma 2.12

Proof of (a). By the definitions of Sn and S, it suffices to show

P

(∥∥∥∥∥n−1
n∑
i=1

f(Xi, β0)− Ef(Xi, β0)
∥∥∥∥∥ > ε

)
= o(n−a).
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We apply Lemma 2.2(a) with c = 0 and h(Xi) = f(Xi, β0) − Ef(Xi, β0). By in-
vestigating the components of f(Xi, β0), the most restrictive condition for Lemma
2.2(a) to hold is Eeλ′0gi(θ0)·2pC(d+3)p

g (Xi) <∞ and Eeλ′0gi(θ0)·2pC
(d+3)p
G (Xi) <∞, where

p ≥ 2 and p > 2a. By Hölder’s inequality and Assumptions 2(b)-(c) and 3, we need
qg, qG ≥ 2(d+3)(1+ζ−1), qg, qG > 2a(d+3)(1+ζ−1), qτ ≥ 4(1+ζ) and qτ > 4a(1+ζ).
But these are implied by the assumption of the Lemma.

Proof of (b). By the definitions of S∗n and S∗, it suffices to show

P

(
P ∗

(∥∥∥∥∥n−1
n∑
i=1

f(X∗i , β̂)− n−1
n∑
i=1

f(Xi, β̂)
∥∥∥∥∥ > ε

)
> n−a

)
= o(n−a). (2.50)

By the triangle inequality,∥∥∥∥∥n−1
n∑
i=1

f(X∗i , β̂)− n−1
n∑
i=1

f(Xi, β̂)
∥∥∥∥∥ ≤

∥∥∥∥∥n−1
n∑
i=1

(
f(X∗i , β0)− n−1

n∑
i=1

f(Xi, β0)
)∥∥∥∥∥

+n−1
n∑
i=1

∥∥∥f(X∗i , β̂)− f(X∗i , β0)
∥∥∥

+n−1
n∑
i=1

∥∥∥f(Xi, β̂)− f(Xi, β0)
∥∥∥ . (2.51)

For the first term of (2.51), we apply Lemma 2.7(a) with c = 0 and h(Xi) =
f(Xi, β0)−Ef(Xi, β0), where qg, qG ≥ 2(d+ 3)(1 + ζ−1), qg, qG > 4a(d+ 3)(1 + ζ−1),
qτ ≥ 4(1 + ζ) and qτ > 8a(1 + ζ). These are also implied by the assumption of
the Lemma. By Lemma 2.11, the second and the last terms of (2.51) are bounded
by ‖β̂ − β0‖n−1∑n

i=1(C∗(X∗i ) + C(Xi)) and we apply Lemmas 2.4. Note that the
assumption of the Lemma satisfies the condition of Lemma 2.4. This proves (2.50)
and the result (b) of the present Lemma is proved. Q.E.D.

Proof of Lemma 2.13

Proof of (a). First, we prove the result (a) with ∆n =
√
n(θ̂ − θ0). Let δn ≡ β̂ − β0

and δn,j denote the jth element of δn. Write n−1∑n
i=1 φ(Xi, β) ≡ φn(β) for notational
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brevity. A Taylor series expansion of 0 = φn(β̂) about β = β0 through order d− 1
yields

0 = φn(β0) + ∂φn(β0)
∂β′

δn + 1
2

Lβ∑
j1=1

Lβ∑
j2=1

∂2φn(β0)
∂βj1∂βj2

δn,j1δn,j2 + · · ·

+ 1
(d− 1)!

Lβ∑
j1=1
· · ·

Lβ∑
jd−1=1

∂d−1φn(β0)
∂βj1 · · · ∂βjd−1

δn,j1 · · · δn,jd−1 + ξn, (2.52)

with probability 1− o(n−a), where Lβ = 1 + 2Lg + Lθ and

ξn = 1
(d− 1)!

Lβ∑
j1=1
· · ·

Lβ∑
jd−1=1

(
∂d−1φn(β̃)

∂βj1 · · · ∂βjd−1

− ∂d−1φn(β0)
∂βj1 · · · ∂βjd−1

)
δn,j1 · · · δn,jd−1 ,

where β̃ is between β̂ and β0 and may differ across rows. Let en be the conformable
vector (ξ′n,0′)′ such that the dimension of en is the same with that of Sn. Then, (2.52)
can be rewritten as 0 = Ξ(δn, Sn+en), where Ξ(·, ·) is a polynomial and thus, infinitely
differentiable with respect to its arguments. By Lemmas 2.4 and 2.12(a), δn and Sn
converge to 0 and S with probability 1 − o(n−a). Since n−1∑n

i=1 f(Xi, β) includes
elements of (∂d−1/∂βj1 · · · βjd−1)φn(β), en converges to zero with probability 1−o(n−a)
by Lemma 2.11(a). Thus, we have 0 = Ξ(0, S). Let δ ≡ β − β0. If we differentiate
Ξ with respect to its first argument and evaluate it at δ = 0, we get (∂/∂β′)φn(β0),
the inverse of which exists and bounded with probability 1− o(n−a) by (2.29) and
Assumption 3(a). Note that the condition for (2.29) to hold is qg, qG ≥ 6(1 + ζ−1),
qg, qG ≥ 6a(1 + ζ−1), qτ ≥ 2(1 + ζ), and qτ > 2a(1 + ζ). These are implied by the
assumption of the present Lemma.

By applying the implicit function theorem to Ξ(δn, Sn + en), there is a function
A1 such that A1(S) = 0, A1 is infinitely differentiable in a neighborhood of S, and

δn ≡ β̂ − β0 = A1(Sn + en), (2.53)

with probability 1−o(n−a). By Lemma 2.11(a), ‖en‖ ≤M‖β̂−β0‖d for some M <∞,
with probability 1 − o(n−a). By Lemma 2.5, ‖β̂ − β0‖d ≤ n−dc with probability
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1− o(n−a). The condition for Lemma 2.5 is implied by the assumption of the present
Lemma. By the mean value theorem, A1(Sn + en) = A1(Sn) +A′1(Sn + ẽn) · en, where
A′1(·) is the first derivative of A1(·) and ẽn lies between 0′ and en and may differ
across rows. Since A′1(Sn + ẽn) = A′1(S) +A′1(Sn + ẽn)−A′1(S), A′1 is continuous, and
Sn and ẽn converges to S and 0 respectively with probability 1− o(n−a) by Lemmas
2.11(a) and 2.12(a), it follows that

P
(
‖A1(Sn + en)− A1(Sn)‖ > n−dc

)
≤ P

(
M̃ · ‖en‖ > n−dc

)
= o(n−a), (2.54)

for some M̃ <∞. Since (2.54) holds, we can apply Lemma 2.6(a) if (i) dc ≥ a+ 1/2
for some c ∈ [0, 1/2), and (ii) 2a is a nonnegative integer. (ii) is assumed. Let
d = 2a + 1 + d̄, where d̄ ≥ 1 is some integer and let c = (2a + 1)(4a + 2 + 2d̄)−1.
Then d ≥ 2a + 2 and dc = a + 1/2, so that (i) is satisfied. Note that (1− 2c)−1 =
(2a+ 1 + d̄)d̄−1 = d(d− 2a− 1)−1 with the defined value of c.4 This term replaces
the term 1− 2c appears in the condition of Lemma 2.5. By Lemma 2.6(a),

lim
n→∞

sup
z∈RLβ

na
∣∣∣P (√n(β̂ − β0) ≤ z

)
− P

(√
nA1(Sn) ≤ z

)∣∣∣ = 0,

and the present Lemma (a) with ∆n =
√
n(θ̂ − θ0) holds because ∆n is a subvector

of
√
n(β̂ − β0).

Next, we prove the present Lemma (a) with ∆n = Tn ≡
√
n(θ̂r − θ0,r)/

√
Σ̂rr. We

use the fact that Σ̂ is a function of β. Define

Σ̂(β) ≡
(
∂φn(β)
∂β′

)−1

n−1
n∑
i=1

φ(Xi, β)φ(Xi, β)′
(
∂φn(β)
∂β

)−1

,

and Hn(β) ≡ (βr − β0,r)(Σ̂rr(β))−1/2 for some r that corresponds to an element of θ.
4There is a tradeoff relationship between the value of d̄ and c. If we assume infinitely differentiable

g(Xi, θ), then c could be arbitrarily small positive number and this weakens the condition on qτ .
Thus, the tradeoff between d̄ and c can be interpreted as a tradeoff between smoothness of the
moment function and the existence of the higher moment of Cτ (Xi).
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Consider a Taylor expansion of Hn(β̂) around β0, through order d− 1:

Hn(β̂) = 0 +
(
Σ̂rr(β0)

)− 1
2 δn,r + 1

2

Lβ∑
j1=1

Lβ∑
j2=1

∂2Hn(β0)
∂βj1∂βj2

δn,j1δn,j2 + · · ·

+ 1
(d− 1)!

Lβ∑
j1=1
· · ·

Lβ∑
jd−1=1

∂d−1Hn(β0)
∂βj1 · · · ∂βjd−1

δn,j1 · · · δn,jd−1 + ηn,

where

ηn = 1
(d− 1)!

Lβ∑
j1=1
· · ·

Lβ∑
jd−1=1

(
∂d−1Hn(β̄)

∂βj1 · · · ∂βjd−1

− ∂d−1Hn(β0)
∂βj1 · · · ∂βjd−1

)
δn,j1 · · · δn,jd−1 ,

where β̄ is between β̂ and β0 and may differ across rows. SinceHn(β) and its derivatives
through order d− 1 with respect to the components of β are continuous functions
of terms of n−1∑n

i=1 f(Xi, β), we can write Hn(β̂) = A2(Sn, δn) + ηn, where A2(·) is
infinitely differentiable and A2(S, 0) = 0. By (2.53), A2(Sn, δn) = A2(Sn, A1(Sn+en)).
By the mean value expansion, (2.54), and Lemma 2.11(a),

A2(Sn, A1(Sn + en))− A2(Sn, A1(Sn)) ≤M1 · ‖en‖ ≤M2 · ‖β̂ − β0‖d, (2.55)

for some M1,M2 <∞, with probability 1− o(n−a). Define A3(Sn) ≡ A2(Sn, A1(Sn)),
so that A3(·) is infinitely differentiable and A3(S) = 0. Since ‖ηn‖ < M̄‖β̂ − β0‖d for
some M̄ <∞ with probability 1− o(n−a) by Lemma 2.11(a), combining this with
(2.55) yields |Hn(β̂) − A3(Sn)| ≤ M3‖β̂ − β0‖d for some M3 < ∞ with probability
1− o(n−a). By Lemma 2.5, we have

P
(
‖Hn(β̂)− A3(Sn)‖ > n−dc

)
= o(n−a). (2.56)

Since the assumed condition for d and c satisfies the condition of Lemma 2.6, we
apply Lemma 2.6 with (2.56) to get our final conclusion:

lim
n→∞

sup
z∈R

na
∣∣∣P (Tn ≤ z)− P

(√
nA3(Sn) ≤ z

)∣∣∣ = 0.
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Proof of (b). First, we prove the result (b) with ∆∗n =
√
n(θ̂∗ − θ̂). Let δ∗n ≡ β̂∗ − β̂.

Write n−1∑n
i=1 φ(X∗i , β) ≡ φ∗n(β) for notational brevity. A Taylor series expansion of

the bootstrap first-order condition 0 = φ∗n(β̂∗) about β = β̂ through order d− 1 yields

0 = φ∗n(β̂) + ∂φ∗n(β̂)
∂β′

δ∗n + 1
2

Lβ∑
j1=1

Lβ∑
j2=1

∂2φ∗n(β̂)
∂βj1∂βj2

δ∗n,j1δ
∗
n,j2 + · · ·

+ 1
(d− 1)!

Lβ∑
j1=1
· · ·

Lβ∑
jd−1=1

∂d−1φ∗n(β̂)
∂βj1 · · · ∂βjd−1

δ∗n,j1 · · · δ
∗
n,jd−1

+ ξ∗n, (2.57)

with P ∗ probability 1−o(n−a) except, possibly, if χ is in a set of P probability o(n−a),
where

ξ∗n = 1
(d− 1)!

Lβ∑
j1=1
· · ·

Lβ∑
jd−1=1

 ∂d−1φ∗n(β̃∗)
∂βj1 · · · ∂βjd−1

− ∂d−1φ∗n(β̂)
∂βj1 · · · ∂βjd−1

 δ∗n,j1 · · · δ∗n,jd−1
,

where β̃∗ is between β̂∗ and β̂ and may differ across rows. Let e∗n be the conformable
vector (ξ∗′n ,0′)′ as in the proof of the present Lemma (a). Since all the terms of (2.57)
are the same with those of (2.52) by replacing Sn and β0 with S∗n and β̂, respectively,
we have 0 = Ξ(δ∗n, S∗n + e∗n), where Ξ(·, ·) is the same with that in the proof of the
present Lemma (a). By Lemmas 2.9 and 2.12(b), δ∗n and S∗n converge to 0 and S∗ with
P ∗ probability 1− o(n−a) except, possibly, if χ is in a set of P probability o(n−a). To
show P (P ∗(‖e∗n‖ > ε) > n−a) = o(n−a), we use the triangle inequality and Lemma
2.11(b),

∂d−1φ∗n(β̃∗)
∂βj1 · · · ∂βjd−1

− ∂d−1φ∗n(β̂)
∂βj1 · · · ∂βjd−1

≤

∣∣∣∣∣∣ ∂d−1φ∗n(β̂)
∂βj1 · · · ∂βjd−1

− ∂d−1φ∗n(β0)
∂βj1 · · · ∂βjd−1

∣∣∣∣∣∣
+
∣∣∣∣∣ ∂d−1φ∗n(β̃∗)
∂βj1 · · · ∂βjd−1

− ∂d−1φ∗n(β0)
∂βj1 · · · ∂βjd−1

∣∣∣∣∣
≤ n−1

n∑
i=1

C∗(X∗i )
(
‖β̂ − β0‖+ ‖β̃∗ − β0‖

)
,(2.58)
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provided that β̃∗ is in N(β0) with P ∗ probability 1− o(n−a) except, possibly, if χ is
in a set of P probability o(n−a), that holds by Lemma 2.9. By Lemmas 2.4 and 2.9,
we prove the desired result.

Thus, we have 0 = Ξ(0, S∗). Let δ∗ ≡ β − β̂. If we differentiate Ξ with respect
to its first argument and evaluate it at δ∗ = 0, we get (∂/∂β′)φ∗n(β̂), the inverse of
which exists and bounded with P ∗ probability 1− o(n−a) except, possibly, if χ is in a
set of P probability o(n−a) by (2.46) and Assumption 3(a). The conditions for (2.46)
to hold are implied by the assumption of the present Lemma.

As in the proof of the present Lemma (a), A1(S∗) = 0, A1 is infinitely differentiable
in a neighborhood of S∗, and

δ∗n ≡ β̂∗ − β̂ = A1(S∗n + e∗n), (2.59)

with P ∗ probability 1−o(n−a) except, possibly, if χ is in a set of P probability o(n−a).
Next, we show P (P ∗(‖e∗n‖ > n−dc) > n−a) = o(n−a). Conditional on the sample χ,
by (2.58), for some M∗ <∞,

P ∗(‖e∗n‖ > n−dc) ≤ P ∗
(
M∗‖β̂ − β0‖ · ‖β̂∗ − β̂‖d−1 > n−dc)

)
+P ∗

(
M∗‖β̂∗ − β̂‖d > n−dc)

)
≤ P ∗

(
M∗‖β̂∗ − β̂‖d−1 > n−(d−1)c)

)
+ P ∗

(
‖β̂ − β0‖ > n−c)

)
+P ∗

(
M∗‖β̂∗ − β̂‖d > n−dc)

)
.

By Lemmas 2.5 and 2.10, the desired result is proved. Therefore, analogous arguments
as in the proof of the present Lemma (a) yield

P
(
P ∗

(
‖A1(S∗n + e∗n)− A1(S∗n)‖ > n−dc

)
> n−a

)
≤ P

(
P ∗

(
M̃∗‖en‖ > n−dc

)
> n−a

)
= o(n−a), (2.60)

for some M̃∗ <∞. Since the condition of Lemma 2.6(b) is satisfied by the assumption
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of the present Lemma, Lemma 2.6(b) gives

lim
n→∞

naP

 sup
z∈RLβ

∣∣∣P ∗(√n(β̂∗ − β̂) ≤ z)− P ∗(
√
nA1(S∗n) ≤ z)

∣∣∣ > n−a

 = 0,

and the present Lemma (b) with ∆∗n =
√
n(θ̂∗ − θ̂) holds because ∆∗n is a subvector

of
√
n(β̂∗ − β̂).

Next, we prove the present Lemma (b) with ∆∗n = T ∗n ≡
√
n(θ̂∗r− θ̂r)/

√
Σ̂∗rr. Define

Σ̂∗(β) ≡
(
∂φ∗n(β)
∂β′

)−1

n−1
n∑
i=1

φ(X∗i , β)φ(X∗i , β)′
(
∂φ∗n(β)
∂β

)−1

,

and H∗n(β) ≡ (βr − β̂r)(Σ̂∗rr(β))−1/2 for some r that corresponds to an element of θ.
Consider a Taylor expansion of H∗n(β̂∗) around β̂, through order d− 1:

H∗n(β̂∗) = 0 +
(
Σ̂∗rr(β̂)

)− 1
2 δ∗n,r + 1

2

Lβ∑
j1=1

Lβ∑
j2=1

∂2H∗n(β̂)
∂βj1∂βj2

δ∗n,j1δ
∗
n,j2 + · · ·

+ 1
(d− 1)!

Lβ∑
j1=1
· · ·

Lβ∑
jd−1=1

∂d−1H∗n(β̂)
∂βj1 · · · ∂βjd−1

δ∗n,j1 · · · δ
∗
n,jd−1

+ η∗n,

where

η∗n = 1
(d− 1)!

Lβ∑
j1=1
· · ·

Lβ∑
jd−1=1

 ∂d−1H∗n(β̄∗)
∂βj1 · · · ∂βjd−1

− ∂d−1H∗n(β̂)
∂βj1 · · · ∂βjd−1

 δ∗n,j1 · · · δ∗n,jd−1
,

where β̄∗ is between β̂∗ and β̂ and may differ across rows. The remainder of the
proof proceeds as in the proof of the present Lemma (a). In particular, we use (2.60),
P (P ∗(‖η∗n‖ > n−dc) > n−a) = o(n−a) by a similar argument with (2.58), and Lemma
2.6(b). Q.E.D.
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Proof of Lemma 2.14

Proof of (a). We show for m = 2, 3, 4, 5, 6, because m = 6 is the largest number
that we need in later Lemmas. Throughout the proof, let jµ = 1 for µ = 1, ...,m,
for notational brevity. By the definition of Sn and S, the first element of Sn and S
are n−1∑n

i=1 f1(Xi, β0) and Ef1(Xi, β0), respectively, where f1(Xi, β) denote the first
element of the vector f(Xi, β). Define si(β) = f1(Xi, β) and sn(β) = n−1∑n

i=1 si(β)
and write si ≡ si(β0) and sn ≡ sn(β0).

First, we show for m = 2. Since nα(2) = 1, nα(2)EΨ2
n,1 = nE(sn − Esi)2 =

n(Es2
n − (Esi)2). By Assumption 1,

Es2
n = E

1
n2

(∑
i

si

)2

= 1
n2E

∑
i

s2
i +

∑
i

∑
j 6=i

sisj

 = 1
n
Es2

i + n− 1
n

(Esi)2.

Thus, we have nα(2)EΨ2
n,1 = Es2

i − (Esi)2 = limn→∞ n
α(2)EΨ2

n,1.
Next, we show for m = 3. Since nα(3) =

√
n, nα(3)EΨ3

n,1 = n2(Es3
n − 3Es2

nEsi +
2(Esi)3). By Assumption 1,

Es3
n = E

1
n3

(∑
i

si

)3

= 1
n3E

∑
i

s3
i + 3!

1!2!
∑
i

∑
j 6=i

sis
2
j + 3!

6
∑
i

∑
j 6=i

∑
k 6=i,j

sisjsk


= 1

n2Es
3
i + 3(n− 1)

n2 EsiEs
2
i + (n− 1)(n− 2)

n2 (Esi)3.

Combining this result with the result for m = 2, we have nα(3)EΨ3
n,1 = Es3

i −
3EsiEs2

i + 2(Esi)3 = limn→∞ n
α(3)EΨ3

n,1.
Next, we show for m = 4. Since nα(4) = 1,

nα(4)EΨ4
n,1 = n2(Es4

n − 4Es3
nEsi + 6Es2

n(Esi)2 − 3(Esi)4).
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By Assumption 1,

Es4
n = E

1
n4

(∑
i

si

)4

= 1
n4E

∑
i

s4
i + 4!

1!3!
∑
i

∑
j 6=i

sis
3
j + 4!

2!2!
1
2
∑
i

∑
j 6=i

s2
i s

2
j

+ 4!
1!1!2!

1
2
∑
i

∑
j 6=i

∑
k 6=i,j

sisjs
2
k + 4!

4!
∑
i

∑
j 6=i

∑
k 6=i,j

∑
l 6=i,j,k

sisjsksl


= 1

n3Es
4
i + 4(n− 1)

n3 EsiEs
3
i + 3(n− 1)

n3 (Es2
i )2 + 6(n− 1)(n− 2)

n3 (Esi)2Es2
i

+(n− 1)(n− 2)(n− 3)
n3 (Esi)4.

Combining this result with the results for m = 2, 3, we have

nα(4)EΨ4
n,1 = 1

n
Es4

i −
4
n
EsiEs

3
i + −6n+ 12

n
(Esi)2Es2

i

+3(n− 1)
n

(Es2
i )2 + 3(n− 2)

n
(Esi)4

→
n→∞

3(Esi)4 + 3(Es2
i )2 − 6(Esi)2Es2

i .

Next, we show for m = 5. Since nα(5) =
√
n,

nα(5)EΨ5
n,1 = n3(Es5

n − 5Es4
nEsi + 10Es3

n(Esi)2 − 10Es2
n(Esi)3 + 4(Esi)5).
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By Assumption 1,

Es5
n = E

1
n5

(∑
i

si

)5

= 1
n5E

∑
i

s5
i + 5!

1!4!
∑
i

∑
j 6=i

sis
4
j + 5!

2!3!
∑
i

∑
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Combining this result with the results for m = 2, 3, 4, we have
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Finally, we show for m = 6. Since nα(6) = 1,

nα(6)EΨ6
n,1 = n3(Es6

n−6Es5
nEsi+15Es4

n(Esi)2−20Es3
n(Esi)3+15Es2

n(Esi)4−5(Esi)6).
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By Assumption 1,
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Combining this result with the results for m = 2, 3, 4, 5, we have

lim
n→∞

nα(6)EΨ6
n,1 = 15(Es2

i )3 − 45(Esi)2(Es2
i )2 + 45(Esi)4Es2

i − 15(Esi)6.

In order for all the quantities to be well defined, the most restrictive case is that
Es6

i exists. Since si is an element of f(Xi, β0), it suffices to show that the condition
is satisfied for si = e2λ′0gi(θ0)gk0Gk1 · · ·G(d+1)kd+1 , where k0 + · · ·+ kd+1 = d + 3. By
using Assumptions 2-3 and Hölder’s inequality, we have qg, qG ≥ 6(d+ 3)(1 + ζ−1) and
qτ ≥ 12(1+ζ) for any ζ > 0. For arbitrary a, we use the fact that max{m} = 2a+2 to
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show qg, qG, and qτ should satisfy qg, qG ≥ 2(a+1)(d+3)(1+ζ−1) and qτ ≥ 4(a+1)(1+ζ)
for any ζ > 0. This proves the present Lemma (a).

Proof of (b). Since the bootstrap sample is iid, the proof is analogous to that
of the present Lemma (a). In particular, we replace E, Xi, and β0 with E∗, X∗i , and
β̂, respectively. Let s∗i (β) = f1(X∗i , β) and s∗n(β) = n−1∑n

i=1 f1(X∗i , β). In addition,
write ŝ∗i ≡ s∗i (β̂), ŝi ≡ si(β̂), ŝ∗n ≡ s∗n(β̂), and ŝn ≡ sn(β̂) for notational brevity.

We describe the proof with m = 2, and this illustrates the proof for arbitrary m.
Since nα(2) = 1,

nα(2)E∗Ψ∗2n,1 = E∗ŝ∗2i − (E∗ŝ∗i )2 = n−1
n∑
i=1

ŝ2
i −

(
n−1

n∑
i=1

ŝi

)2

.

Since limn→∞ n
α(2)EΨ2

n,1 = Es2
i − (Esi)2, combining the following results proves the

Lemma for m = 2:

P

(∥∥∥∥∥n−1
n∑
i=1

ûi − n−1
n∑
i=1

ui

∥∥∥∥∥ > n−γ
)

= o(n−a), (2.61)

P

(∥∥∥∥∥n−1
n∑
i=1

ui − Eui
∥∥∥∥∥ > n−γ

)
= o(n−a), (2.62)

where ûi = ŝi or ûi = ŝ2
i , and ui = si or ui = s2

i . We use the fact ‖ŝ2
i − s2

i ‖ ≤
‖ŝi − si‖(‖ŝi − si‖+ 2si), Lemma 2.11(a), Lemma 2.2, and Lemma 2.5 to show the
first result (2.61). The second result is shown by Lemma 2.2(a) with h(Xi) = s2

i −Es2
i .

By considering the most restrictive form of si and combining the conditions for the
Lemmas, we need qg, qG ≥ 4(d+ 3)(1 + ζ−1) and qg, qG > 4a(d+ 3)(1−2γ)−1(1 + ζ−1),
and qτ ≥ 8(1 + ζ) and qτ > 8a(1− 2γ)−1(1 + ζ).

For arbitrary m, we can show the results (2.61) and (2.62) for ui = smi by using the
binomial expansion as the proof of Lemma 2.11, Lemmas 2.2, 2.5, 2.11(a), and 2.12.
Since max{m} = 2a+ 2, qg, qG, and qτ should satisfy qg, qG ≥ 4(a+ 1)(d+ 3)(1 + ζ−1)
and qg, qG ≥ 8a(a + 1)(d + 3)(1 − 2γ)−1(1 + ζ−1), and qτ ≥ 8(a + 1)(1 + ζ) and
qτ ≥ 16a(a + 1)(1 − 2γ)−1(1 + ζ) for any ζ > 0. This proves the present Lemma



134

(b). Q.E.D.

Proof of Lemma 2.15

Proof of (a). By Lemma 2.13(a), it suffices to show that
√
nA(Sn) possesses Edge-

worth expansion with remainder o(n−a), where A(·) is an infinitely differentiable
real-valued function. The coefficients νa are well-defined by Lemma 2.14(a). We
apply Theorem 3.1 of Bhattacharya (1987) with his integer parameter s satisfying
(s − 2)/2 = a for a assumed in the Lemma and with his X̄ = Sn. Conditions
(A1)− (A4) of Bhattacharya (1987) hold by Assumptions 1-4, and the fact that A(·)
is infinitely differentiable and real-valued.

Proof of (b). By Lemma 2.13(b), it suffices to show that
√
nA(S∗n) possesses Edgeworth

expansion with remainder o(n−a). The present Lemma (b) holds by an analogous
argument as for part (a), but with Theorem 3.1 of Bhattacharya (1987) replaced by
Theorem 3.3 of Bhattacharya (1987) and using Lemma 2.14(b) with γ = 0 to ensure
that the coefficients ν∗n,a are well behaved. Q.E.D.

2.8 Technical Appendix

The moment function is gi = (Yiθ − 1, Ziθ − 1)′ and the first derivative of the moment
function is Gi = (Yi, Zi)′. First, we solve for λ0 as a function of θ. The FOC is given
by

0 = E exp(λ′gi)gi
= Eeλ0,1(Yiθ−1)+λ0,2(Ziθ−1) (Yiθ − 1, Ziθ − 1)′ . (2.63)



135

By using that Yi and Zi are independent and Fubini’s Theorem, the first row of (2.63)
can be rewritten as

0 =
∫ ∫

eλ0,1(yθ−1)+λ0,2(zθ−1)(yθ − 1)dFydFz

= e−λ0,1−λ0,2
∫
eλ0,2θzdFz ·

∫
eλ0,1θy(yθ − 1)dFy

= e−λ0,1−λ0,2
∫ ∞
−∞

1√
2π
eλ0,2θz− (z−(1−δ))2

2 dz ·
∫ ∞
−∞

(yθ − 1) 1√
2π
eλ0,1θy− (y−1)2

2 dy

= C ·
∫ ∞
−∞

(yθ − 1) 1√
2π
e−

(y−(1+λ0,1θ))2

2 dy

= C · ((1 + λ0,1θ)θ − 1),

where C denotes any nonzero constant. For the fourth equality, we use the fact that
the integration of the probability density function (pdf) of a Normal random variable
over the real value equals one. For the last equality, we use the fact that the function
in the integral is the pdf of a normal random variable with the mean 1 + λ0,1θ. Thus,
we have 1 = (1 + λ0,1θ)θ, or λ0,1(θ) = θ−1(θ−1 − 1).

Similarly, the second row of (2.63) can be rewritten as

0 =
∫ ∫

eλ0,1(yθ−1)+λ0,2(zθ−1)(zθ − 1)dFydFz

= e−λ0,1−λ0,2
∫ ∞
−∞

1√
2π
eλ0,1θy− (y−1)2

2 dy ·
∫ ∞
−∞

(zθ − 1) 1√
2π
eλ0,2θz− (z−(1−δ))2

2 dz

= C ·
∫ ∞
−∞

(zθ − 1) 1√
2π
e−

(z−(1−δ+λ0,2θ))2

2 dz

= C · ((1− δ + λ0,2θ)θ − 1),

where C denotes any nonzero constant. The last equation implies that λ0,2(θ) =
θ−1(θ−1 − 1 + δ).

Observe that

max− lnEeλ0(θ)′(gi−Egi) ⇔ minEeλ0(θ)′(gi−Egi),
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where Eeλ0(θ)′(gi−Egi) = Eeλ0,1θ(Yi−EYi) · Eeλ0,2θ(Zi−EZi), and

Eeλ0,1θ(Yi−EYi) = exp
( 1

2θ2 −
1
θ

+ 1
2

)
Eeλ0,2θ(Zi−EZi) = exp

(
1
θ2 −

2− δ
θ

+ 1 + (1− δ)2

2

)
.

Since

1
2θ2 −

1
θ

+ 1
2 + 1

θ2 −
2− δ
θ

+ 1 + (1− δ)2

2 =
(

1
θ
− 2− δ

2

)2

+ δ − 1
2 ,

we have θ0 = 2(2− δ)−1.
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3 bootstrapping gmm estimators under local
misspecification

3.1 Asymptotic Distribution of GMM

The Lg × 1 dimensional moment function is given by g(Xi, θ), where θ is the Lθ × 1
parameter vector. Let a triangular array {Xi : i ≤ n} be iid over i for fixed n. For
notational simplicity, I suppress the additional subscript n on Xi. Assume Lg ≥ Lθ,
so that the model is overidentified.1 Write gi(θ) = g(Xi, θ). The moment condition is
correctly specified if

Eg(Xi, θ0) = 0, (3.1)

holds for a unique θ0. A locally misspecified model is defined as follows:

Eg(Xi, θ0) = δ√
n
, (3.2)

where δ is Lg × 1 vector of constants. This type of misspecification can be used to
describe situations such that the moment condition is slightly violated with finite n,
but becomes correctly specified asymptotically. For example, a set of instruments is
not exactly exogeneous when n is finite, but the exogeneity condition is satisfied as n
goes to infinity.

When the moment condition is locally misspecified, the GMM estimator is consis-
tent for θ0, but is not

√
n-consistent. The asymptotic variance of the GMM estimator

is not affected.2 To see this, let θ̂ be the GMM estimator that minimizes the following
criterion function:

Jn(θ) = gn(θ)′Wngn(θ), (3.3)

where gn(θ) = n−1∑
i g(Xi, θ), and Wn is a weight matrix such that Wn →p W and W

1The discussion of this note covers a just-identified model (Lg = Lθ). However, a non-standard
feature of bootstrapping for GMM arises when the model is over-identified. Thus, Lg > Lθ is the
primary focus of this chapter.

2Hall (2005) gives a detailed analysis on the asymptotic behavior of the GMM estimator under
local misspecification.
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is a positive definite matrix. Let Gn(θ) = n−1∑
iG(Xi, θ), G(Xi, θ) = (∂/∂θ′)g(Xi, θ),

and G0 = limn→∞ n
−1∑

iEG(Xi, θ0). By applying the mean value theorem to the
first-order condition multiplied by

√
n,3 we have

√
n(θ̂ − θ0) = −(Gn(θ̂)′WnGn(θ̄))−1Gn(θ̂)′Wn

√
ngn(θ0)

= −(G′0WG0)−1G′0W
√
n(gn(θ0)− Eg(Xi, θ0))

−(G′0WG0)−1G′0W
√
nEg(Xi, θ0) +Op(n−1/2),

where θ̄ is the mean value between θ̂ and θ0. By the Lindeberg central limit theorem
for a triangular array, we have

√
n(θ̂ − θ0)→d N(−(G′0WG0)−1G′0Wδ,Σ), (3.4)

where

Σ = (G′0WG0)−1G′0WΩWG0(G′0WG0)−1,

Ω = lim
n→∞

n−1∑
i

Eg(Xi, θ0)g(Xi, θ0)′,

and Ω is positive definite and finite. The asymptotic bias in the limiting distribution
arises due to the locally misspecified moment condition. The expression (3.4) becomes
more interesting if we rewrite it as

√
n(θ̂ − θ0(n))→d N(0,Σ), (3.5)

where θ0(n) = θ0 − (G′0WG0)−1G′0WEg(Xi, θ0). Now the GMM estimator is properly
centered. θ0(n) is called the (pseudo-)true value under local misspecification and

3Consistency of θ̂ for θ0 can be shown easily by the FOC.
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indexed by n. Since Eg(Xi, θ0)→ 0 as n→∞, θ0(n) → θ0 as n→∞. Let

Σ̂ = (Ĝ′nWnĜn)−1Ĝ′nWnΩ̂nWnĜn(Ĝ′nWnĜn)−1,

Ĝn = Gn(θ̂),

Ω̂n = n−1∑
i

g(Xi, θ̂)g(Xi, θ̂)′,

then Σ̂ is a consistent estimator for Σ. Also let θr and σ̂r denote the rth and (r, r)th
element of θ and (Σ̂)1/2, respectively. A conventional t statistic for testing the null
hypothesis H0 : θr = θ0(n),r is

Tn ≡
√
n(θ̂r − θ0(n),r)

σ̂r
. (3.6)

The implication of (3.5) is that the conventional t tests and CI’s based on Tn have
correct rejection and coverage probabilities asymptotically for the true value θ0(n).
The introduction of θ0(n) allows flexible interpretation of the estimand under possible
misspecification. Under correct specification (Eg(Xi, θ0) = 0), θ0(n) = θ0. Under
global misspecification (Eg(Xi, θ0) = δ, a vector of constants), θ0(n) 6= θ0 as n→∞.
In general, the relationship between θ0(n) and θ0 is unknown.

3.2 Conventional Bootstrap Methods

Now consider bootstrap methods for GMM. Hahn (1996) showed first-order validity
of the bootstrap for GMM estimators under correct specification. It supports wide
use of Efron-type percentile intervals in practice. Furthermore, Hall and Horowitz
(1996) (denoted by HH bootstrap, hereinafter) established asymptotic refinements
of the bootstrap for t and Wald statistics based on GMM estimators. Therefore,
percentile-t CI’s constructed by using the HH bootstrap are expected to be more
accurate than the asymptotic CI by having smaller error in the coverage probability.

Both Hahn (1996) and Hall and Horowitz (1996) assume correct specification of
the moment condition model. Do they work under local misspecification? To answer
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this question, I allow for local misspecification of the moment condition model and
show that the percentile and percentile-t intervals are consistent for θ0(n) even under
local misspecification. However, HH bootstrap fails to achieve asymptotic refinements
and a counter example is provided.

First-order Validity

First consider the bootstrap version of the criterion function (3.3) and the first-order
condition.4 Let G∗n(θ) = n−1∑

iG(X∗i , θ) and g∗n(θ) = n−1∑
i g(X∗i , θ). Let W ∗

n be
the bootstrap version of the weight matrix such that W ∗

n →p W conditional on the
sample a.s. By the mean value theorem around the GMM estimator θ̂, we have the
following expression:

θ̂∗ − θ̂ = −(G∗n(θ̂∗)′W ∗
nG
∗
n(θ̄∗))−1G∗n(θ̂∗)′W ∗

ng
∗
n(θ̂),

where θ̄∗ is the mean value between θ̂∗ and θ̂. Using θ̂ →p θ0, we can show θ̂∗ →p θ0

conditional on the sample a.s. Since E∗g∗n(θ̂) = gn(θ̂), the RHS of the above expression
is not properly centered and we need further expansion to apply the Lindeberg CLT.
We use G∗n(θ̂∗) = Gn(θ̂) + o∗p(1), W ∗

n = Wn + o∗p(1), and the FOC, 0 = Gn(θ̂)′Wngn(θ̂).
Multiplying both sides by

√
n,

√
n(θ̂∗ − θ̂) = −(G′0WG0)−1G′0W

√
n(g∗n(θ̂)− gn(θ̂)) +O∗p(n−1/2).

Finally, we have

√
n(θ̂∗ − θ̂)→d N(0,Σ), (3.7)

conditional on the sample a.s., and this establishes the first order validity of the
bootstrap under local misspecification. Therefore, the percentile intervals are expected
to provide correct coverage probability asymptotically for the (pseudo-)true value
θ0(n) under local misspecification.

4Note that this is a naive bootstrap for GMM without recentering.
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Now consider the HH bootstrap. It bootstraps the t statistic, instead of the
GMM estimator itself. Bootstrapping asymptotically pivotal statistic, like the t
statistic, yields asymptotic refinements. Before investigating the ability of achieving
refinements of the HH bootstrap, I first show the HH bootstrap is still consistent
under local misspecification.

Let g∗n(θ) = n−1∑
i g(X∗i , θ). The recentered criterion function is

J̄∗n(θ) =
(
g∗n(θ)− gn(θ̂)

)′
W̄ ∗
n

(
g∗n(θ)− gn(θ̂)

)
, (3.8)

where W̄ ∗
n is constructed using the recentered moment function g(X∗i , θ)− gn(θ̂). For

example, a common choice of Wn is

Wn(θ̃) =
(

1
n

∑
i

g(Xi, θ̃)g(Xi, θ̃)′
)−1

,

where θ̃ is a preliminary estimator. Then, W ∗
n and W̄ ∗

n are

W ∗
n =

(
1
n

∑
i

g(X∗i , θ̃∗)g(X∗i , θ̃∗)′
)−1

,

W̄ ∗
n =

(
1
n

∑
i

(g(X∗i , θ̃∗)− gn(θ̂))(g(X∗i , θ̃∗)− gn(θ̂))′
)−1

,

where θ̃∗ is the bootstrap version of the preliminary estimator. Note that W ∗
n is used

for the naive bootstrap without recentering. If Wn does not depend on the moment
function g(Xi, θ), then W̄ ∗

n = W ∗
n . Let θ̂∗HH be the HH bootstrap version of the GMM

estimator that satisfies the following FOC:

0 = G∗n(θ̂∗HH)′W̄ ∗
n(g∗n(θ̂∗HH)− gn(θ̂)).

By Taylor expanding the RHS around θ̂, we have

θ̂∗HH − θ̂ = −(G∗n(θ̂∗HH)′W̄ ∗
nG
∗
n(θ̄∗))−1G∗n(θ̂∗HH)′W̄ ∗

n(g∗n(θ̂)− gn(θ̂)),
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where θ̄∗ is the mean value between θ̂∗HH and θ̂. We can show θ̂∗HH →p θ̂ conditional
on the sample a.s. and W̄ ∗

n = W + o∗p(1). Multiplying both sides by
√
n,

√
n(θ̂∗HH − θ̂) = −(G′0WG0)−1G′0W

√
n(g∗n(θ̂)− gn(θ̂)) +O∗p(n−1/2).

Then, the Lindeberg CLT gives

√
n(θ̂∗HH − θ̂)→d N(0,Σ),

conditional on the sample a.s. Let

Σ̂∗HH = (G∗′n W̄ ∗
nG
∗
n)−1G∗

′

n W̄
∗
nΩ̄∗nW̄ ∗

nG
∗
n(G∗′n W̄ ∗

nG
∗
n)−1,

Ω̄∗n = n−1∑
i

(g(X∗i , θ̂∗HH)− gn(θ̂))(g(X∗i , θ̂∗HH)− gn(θ̂))′.

It is easy to show Σ̂∗HH = Σ + o∗p(1). Also let σ∗HH,r denote the (r, r)th component of
(Σ̂∗HH)1/2. Finally, we have

T ∗HH,n ≡
√
n(θ̂∗HH,r − θ̂r)
σ̂∗HH,r

→d N(0, 1), (3.9)

for any r = 1, ..., Lθ, conditional on the sample a.s. This result implies that the
percentile-t intervals using the HH bootstrap critical values have correct coverage
probabilities asymptotically. Thus, the HH bootstrap is first-order valid even under
local misspecification.

Asymptotic Refinements

In this section, I argue that the HH bootstrap does not achieve asymptotic refinements
under local misspecification. In order to investigate the higher-order property of the
distribution of the t statistic, I use Hall (1997)’s argument based on the Edgeworth
expansion. Consider the t statistic defined as (3.6). We may expand the distribution
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function of Tn as

P (Tn ≤ z) = Φ(z) + n−1/2q(z, F ) +O(n−1),

uniformly over z, where q(z, F ) is an even function of z for each F . Asymptotic t tests
and confidence intervals use the critical value from the standard Normal distribution,
ignoring the higher-order terms. Therefore, the Normal approximation is in error by
n−1/2.

Now consider T ∗HH,n defined in (3.9). The expansion of the distribution of T ∗HH,n
is

P ∗(T ∗HH,n ≤ z) = Φ(z) + n−1/2qHH(z, Fn) +Op(n−1),

uniformly over z, where qHH(z, Fn) is an even function of z. Observe that the sample
analogue of T ∗HH,n is not Tn under local misspecification, because the population
analogue of gn(θ̂), Eg(Xi, θ0(n)) is not equal to zero. To find the sample version of
T ∗HH,n, we consider the recentered version of the criterion function

J̄n(θ) =
(
gn(θ)− Eg(Xi, θ0(n))

)′
W̄n

(
gn(θ)− Eg(Xi, θ0(n))

)
,

where W̄n is constructed using the moment function g(Xi, θ) − Eg(Xi, θ0(n)). The
sample analogue of θ̂∗HH is θ̂HH that minimizes J̄n(θ). Note that θ̂HH is an infeasible
estimator because Eg(Xi, θ0(n)) is unknown. Note that θ0(n) = θ0 and 0 = Eg(Xi, θ0(n))
under correct specification, and as a result, J̄n(θ) = Jn(θ) and θ̂HH = θ̂. However,
under local misspecification, the sample analogue of θ̂∗HH is not θ̂, but the minimizer
of the recentered criterion function, θ̂HH . Let

Σ̂HH = (G′nW̄nGn)−1G
′

nW̄nΩ̄nW̄nGn(G′nW̄nGn)−1,

Ω̄n = n−1∑
i

(g(Xi, θ̂HH)− Eg(Xi, θ0(n)))(g(Xi, θ̂HH)− Eg(Xi, θ0(n)))′,

σ̂HH,r = (r, r)th element of (Σ̂HH)1/2.
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Then, the (infeasible) recentered t statistic is

THH,n ≡
√
n(θ̂HH,r − θ0(n),r)

σ̂HH,r
,

for r = 1, ..., Lθ. The distribution of THH,n admits analogous expansion

P (THH,n ≤ z) = Φ(z) + n−1/2qHH(z, F ) +O(n−1),

uniformly over z, where qHH(z, F ) is an even function of z. Typically, qHH(z, Fn)−
qHH(z, F ) = Op(n−1/2). Thus, the HH bootstrap provides asymptotic refinements for
the distribution of THH,n:

P ∗(T ∗HH,n ≤ z)− P (THH,n ≤ z) = Op(n−1).

The key question is whether qHH(z, F ) is close enough to q(z, F ) so that the HH
bootstrap also achieves asymptotic refinements for the distribution of Tn. In other
words, the HH bootstrap provides refinements if THH,n = Tn + Op(n−1) so that
P (THH,n ≤ z) = P (Tn ≤ z) +O(n−1) by the delta method because

P ∗(T ∗HH,n ≤ z)− P (Tn ≤ z)

= P ∗(T ∗HH,n ≤ z)− P (THH,n ≤ z) + P (THH,n ≤ z)− P (Tn ≤ z)

= Op(n−1),

Unfortunately, the answer seems to be negative because in general,

THH,n = Tn + ξn,

where ξn →d N(0, Vξ) for some covariance matrix Vξ. Therefore, I conjecture that
P (THH,n ≤ z) and P (Tn ≤ z) differs by the size of error n−1/2, and we may conclude
that the HH bootstrap does not achieve asymptotic refinements for the distribution of
Tn under local misspecification. A counter example and simulation result are provided
in the next section.
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An Example

Suppose that we observe Xi = (Yi, Zi)′ ∈ R2, i = 1, ...n, and we are interested in the
mean of Zi. The natural estimator is the method of moments (MOM) estimator, which
is the sample mean of Zi: θ̂MOM = Z̄ ≡ n−1∑n

i=1 Zi. If an additional information,
EYi = 0, is available, then we can use this information to efficiently estimate θ by
GMM. We form the moment function as

g(Xi, θ) =
 Yi

Zi − θ

 .
However, it may be true that the mean of Y is slightly different from zero with finite
n, i.e., EYi = δ/

√
n for some fixed number δ, then the model is locally misspecified.

I use the following weight matrix by using the MOM estimator as a preliminary
estimator:

Wn =
(
n−1

n∑
i

g(Xi, Z̄)g(Xi, Z̄)′
)−1

.

The two-step GMM estimator θ̂ and the (pseudo-)true value θ0(n) are given by

θ̂ = Z̄ − Ĉov(Yi, Zi)
Y 2

Ȳ ,

θ0(n) = EZi −
Cov(Yi, Zi)

EY 2
i

EYi = EZi −
Cov(Yi, Zi)

EY 2
i

δ√
n
,

where Ȳ = n−1∑n
i=1 Yi, Y 2 = n−1∑n

i=1 Y
2
i , and Ĉov(Yi, Zi) = n−1∑n

i=1(Yi− Ȳ )(Zi−
Z̄). Observe that θ0(n) is the population analogue of θ̂, by replacing the sample mean
with the population mean. Also note that θ0(n) → EZi as n grows, but θ0(n) 6= EZi

for all n unless δ = 0. The variance estimator σ̂2
c is given by

σ̂2
c = n−1

n∑
i=1

(Zi − θ̂)2 − (Y Z − Ȳ θ̂)2

Y 2
,
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where Y Z = n−1∑n
i=1 YiZi. The 100(1− α)% asymptotic confidence interval is

CIc =
[
θ̂ ± zα/2σ̂c

]
,

and it has asymptotically correct coverage for θ0(n).
The HH bootstrap GMM estimator θ̂∗HH minimizes (3.8) with the weight matrix

W̄ ∗
n =

(
1
n

∑
i

(g(X∗i , Z̄∗)− gn(θ̂))(g(X∗i , Z̄∗)− gn(θ̂))′
)−1

,

where Z̄∗ = n−1∑n
i=1 Z

∗
i and is given by

θ̂∗HH = Z̄∗ −
Ĉov(Y ∗i , Z∗i )− (Ȳ ∗ − Ȳ ) Ĉov(Yi,Zi)

Y 2 Ȳ

V̂ ar(Y ∗i ) + (Ȳ ∗ − Ȳ )2
(Ȳ ∗ − Ȳ )− Ĉov(Yi, Zi)

Y 2
Ȳ ,

where Ĉov(Y ∗i , Z∗i ) = n−1∑n
i=1(Y ∗i −Ȳ ∗)(Z∗i −Z̄∗) and V̂ ar(Y ∗i ) = n−1∑n

i=1(Y ∗i −Ȳ ∗)2.
Due to the recentering, θ̂∗HH is not the bootstrap analogue of θ̂, and in other words,
the sample analogue of θ̂∗HH is θ̂HH which differs from θ̂. The recentered version of
the sample GMM estimator, θ̂HH , is given by

θ̂HH = Z̄ −
Ĉov(Yi, Zi)− (Ȳ − EYi)Cov(Yi,Zi)

EY 2
i

EYi

V̂ ar(Yi) + (Ȳ − EYi)2
(Ȳ − EYi)−

Cov(Yi, Zi)
EY 2

i

EYi,

= θ̂ + C1n(Ȳ − EYi) + C2n(Ĉov(Yi, Zi)− Cov(Yi, Zi)) + C3n

(
1
Y 2
− 1
EY 2

i

)
+C4n(Ȳ − EYi)2, (3.10)
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where C1n, C2n, C3n, and C4n are

C1n = Ĉov(Yi, Zi)
(

1
Y 2
− 1
V̂ ar(Yi) + (Ȳ − EYi)2

)
= Op(1),

C2n = EYi

Y 2
= Op(1),

C3n = Cov(Yi, Zi)EYi,

C4n = EYi
EY 2

i

· Cov(Yi, Zi)
V̂ ar(Yi) + (Ȳ − EYi)2

= Op(1).

The variance estimator σ̂2
HH is calculated similarly:

σ̂2
HH = n−1

n∑
i=1

(
Zi − θ̂ −

Cov(Yi, Zi)
EY 2

i

EYi

)2

−

(
n−1∑n

i=1(Yi − EYi)
(
Zi − θ̂ − Cov(Yi,Zi)

EY 2
i

EYi

))2

n−1∑n
i=1(Yi − EYi)2 .

By using (3.10) and the fact that σ̂2
c − σ̂2

HH = op(1), we have

√
n(θ̂HH − θ0(n))

σ̂HH
=
√
n(θ̂ − θ0(n))

σ̂c
+ ξn +

√
n(θ̂HH − θ0(n))

σ̂HH

(
1− σ̂HH

σ̂c

)
+Op(n−1/2)

=
√
n(θ̂ − θ0(n))

σ̂c
+ ξn + op(1), (3.11)

where

ξn = C1n

σ̂c

√
n(Ȳ − EYi) + C2n

σ̂c

√
n(Ĉov(Yi, Zi)− Cov(Yi, Zi)) + C3n

σ̂c

√
n

(
1
Y 2
− 1
EY 2

i

)
,

and ξn →d ξ ∼ N(0, Vξ), for some positive definite matrix Vξ. Since both THH,n and
Tn are asymptotically standard normal, we have Vξ + Cov(Tn, ξn) = 0. Unless the
higher-order cumulants of ξn, such as skewness and kurtosis, equal to zero, (3.11)
shows that the distribution of THH,n would be differ from that of Tn in error by n−1/2.
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Let the true data generating process (DGP) be

DGP 1 :
 Yi

Zi


i≤n

∼ N

 δ/
√
n

0

 ,
 1 0.9

0.9 1

 ,
DGP 2 : Generate data from DGP 1, then use

 Yi

ZT
i


i≤n

where ZT
i = eZi − e1/2,

where (Yi, Zi)′ is iid given n. Figure 1 and 2 show the sampling distribution of THH,n
and Tn. The number of Monte Carlo repetition is 10,000 and the distributions are
nonparametrically estimated. When data is generated by the DGP 1, the distributions
of Tn and THH,n differ greatly when n = 25, in particular with respect to the variance
and the skewness, as is shown in Figure 1. Figure 2 shows similar results when data
is generated by DGP 2, with emphasis on the difference in the mean and the kurtosis
of the distributions. When I increase the sample size (to n = 250 when DGP 1, and
to n = 2500 when DGP 2) the distributions of Tn and THH,n become similar, close to
the standard normal distribution. Table 1 compares the first fourth cumulants of the
sampling distributions of Tn and THH,n.

Now I compare the coverage probabilities of the asymptotic confidence interval
CIn and the HH bootstrap confidence interval CI∗HH,n under local misspecification.

DGP 1 DGP 2
n = 25 n = 250 n = 25 n = 2500

Tn THH,n Tn THH,n Tn THH,n Tn THH,n

Mean -0.11 -0.16 0.04 0.02 0.008 -0.51 -0.14 -0.18
Variance 4.43 1.10 1.40 1.02 1.01 1.89 0.73 1.03
Skewness -0.18 -0 0.14 -0.01 -0.63 -0.89 -0.22 -0.26
Kurtosis 3.17 3.24 3.09 2.99 5.35 4.02 3.15 3.15

Table 3.1: Moments of the Sampling Distribution of Tn and THH,n
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The 90% confidence intervals are constructed as

CIn =
[
θ̂ ± 1.645 · σ̂c√

n

]
,

CI∗HH,n =
[
θ̂ ± z∗|T |,0.90 ·

σ̂c√
n

]
,

where z∗|T |,0.90 is the upper 10th quantile of the distribution of |T ∗HH,n|. This type of
bootstrap confidence interval is called the symmetric percentile-t interval. Hall and
Horowitz (1996) and Andrews (2002) show that

P (θ0 ∈ CIn) = 0.90 +O(n−1),

P (θ0 ∈ CI∗HH,n) = 0.90 +O(n−2),

under correct specification. Under local misspecification, we replace θ0 with θ0(n).
The question is that CI∗HH,n still enjoys refinements over CIn. Suppose that the
HH bootstrap achives asymptotic refinements of the size of n−1. Given the size of
the error when n = 25, if we increase the sample size to n = 250, then the error
in CI∗HH,n would decrease by 1/100, while the error in CIn would decrease by 1/10.
If the HH bootstrap fails to achieve asymptotic refinements, then the errors in the
coverage probabilities will decrease in a similar rate. Figure 3 shows the actual
coverage probabilities of CIn and CI∗HH,n under local misspecification and correct
specification for different sample sizes. When the model is locally misspecified (Figure
3(a)), the actual coverage of the HH bootstrap confidence interval converges to the
nominal rate at the same rate as the asymptotic confidence interval. In contrast,
the gap between the coverages of the HH bootstrap confidence interval and the
asymptotic confidence interval becomes smaller under correct specification. This
supports asymptotic refinements of the HH bootstrap under correct specification.



150

3.3 Conclusion

Bootstrap confidence intervals are often believed to perform better than asymptotic
confidence intervals, because of asymptotic refinements of the bootstrap. For GMM,
Hall and Horowitz (1996) and Andrews (2002) establish asymptotic refinements of
the bootstrap using an ad-hoc procedure, the recentering. The recentered bootstrap
works under correct specification, but what if the model is locally misspecified? This
paper answers this question by showing that the conventional bootstrap methods
for GMM are first-order valid but it does not improve upon first-order asymptotics
anymore under local misspecificaiton. A simple example and Monte Carlo experiment
result are provided.
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Figure 3.1: Distribution of Tn and THH,n when DGP 1
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Figure 3.2: Distribution of Tn and THH,n when DGP 2
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