
Advances in All-Optical
Magnetometry for Femto-Tesla
Sensitivity in Earth-Field-Scale

Magnetic Fields

by

Michael Bulatowicz

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Physics

at the
University of Wisconsin-Madison

2023

Date of Final Oral Exam: 09/08/2023
The dissertation is approved by the following members of the Final Oral
Committee:

Dr. Thad G. Walker, Professor, Physics
Dr. Deniz Yavuz, Professor, Physics
Dr. Ronald T. Wakai, Professor, Medical Physics
Dr. Jennifer Choy, Assistant Professor, Electrical and Computer

Engineering



i

Advances in All-Optical Magnetometry for Femto-Tesla
Sensitivity in Earth-Field-Scale Magnetic Fields

Michael D. Bulatowicz

Abstract

The ability to detect femto-Tesla (10−15) magnetic fluctuations in the presence of large
background magnetic fields encountered in unshielded environments on Earth is a capabil-
ity which can enable a wide array of applications presently requiring magnetically shielded
environments. This has been possible for many years through the use of superconduct-
ing quantum interference devices (SQUIDs); however, SQUIDs are expensive to purchase,
operate, and maintain. In contrast to SQUIDS, optically pumped magnetometers based
on warm alkali vapor are relatively inexpensive to purchase, operate, and maintain while
promising similar sensitivity capabilities.

In the present work, I have demonstrated an optically pumped scalar magnetometer
using a 1 cm diameter by 1 cm length internal dimension cylindrical vapor cell with a
photon shot noise limit of 3.5 fT/

√
Hz and a demonstrated single-channel noise of 10

fT/
√
Hz as limited by the electrical current source generating a 29 µT bias field. I have

further demonstrated a differential pair of these magnetometers, separated by a distance
of 9 cm, with measured differential noise of 1 fTcm−1/

√
Hz, consistent with a single-

channel noise of 6 fT/
√
Hz. I present a straightforward procedure for optimization of

the sensitivity of this magnetometer to achieve fundamental sensitivity limits in the low
single digit fT/

√
Hz and guidelines for detection electronics supporting total noise from

the magnetometer dominated by the fundamental sensitivity limit. I demonstrate, ana-
lyze, and characterise the basis of a method for detection of the vector components of the
incident magnetic field through the use of an applied oscillating field along each vector
axis to be measured, and I present initial results with single-axis vector component detec-
tion. Included in the relevant chapter are algorithms and feedback methods for achieving
high performance, along with a demonstration of each, and measurements of performance
including relative accuracy and uncertainty. I further present a demonstration and theory
of detection of RF magnetic fields near the natural Larmor precession frequency of the
spins, taking advantage of the AC Stark shift of the optical pump beam to generate a
linear sensitivity to the RF signal, measured at the difference between the RF frequency
and Larmor frequency. Finally, I look toward future work, proposing a method for mea-
surement of the vector direction of the incident magnetic field by real-time observation of
the spin precession.
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Chapter 1

Introduction

1.1 Introduction

The ability to detect weak magnetic fluctuations in the presence of large background

magnetic fields encountered in unshielded environments on Earth is a capability which

can enable a wide array of applications presently requiring magnetically shielded envi-

ronments. Applications such as biomagnetic signal detection (Strasburger, Cheulkar, and

B.; Wakai 2008; Hämäläinen et al. 1993; I. Sulai et al. 2019; Boto et al. 2022; Rea et al.

2022; Klotz, Gizzi, and Röhrle 2022; Hoshino et al. 2022), geosensing (Lorenz, Jones, and

J. Wu 2003), dark matter searches (Afach et al. 2021), infrastructure monitoring (Vo et al.

2020), materials inspection (Koss et al. 2022), navigation aiding (A. Canciani and Raquet

2016), RF detection (Lee, V.G. Lucivero, et al. 2021), and many more can benefit from a

sensor capable of detecting femto-Tesla (10−15) fluctuations in Earth-field-scale magnetic

fields in the tens of µT . This has been possible for many years through the use of super-

conducting quantum interference devices (SQUIDs); however, while these instruments are

extremely sensitive magnetometers, they exhibit the significant disadvantage of requiring

cryogenic cooling. SQUIDs are expensive to purchase, operate, and maintain. In con-

trast to SQUIDS, magnetometers based on warm alkali vapor are relatively inexpensive to

purchase, operate, and maintain. In particular, optically pumped atomic magnetometers,

often colloquially referred to as simply optically pumped magnetometers (OPMs), offer
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the opportunity to build large arrays of non-interfering sensitive elements in addition to

exhibiting fundamental limits of performance competitive with SQUIDs. Improvements in

production techniques and quality of components, accompanied by increased portability

and sensitivity, has resulted in increased interest in optical atomic magnetometers over

recent years.

Optically pumped atomic magnetometers utilize the predictable and stable preces-

sion of spins in a magnetic field as a means of measuring the magnitude of that field.

William E. Bell and Arnold L. Bloom first demonstrated 66 years ago (Bell and Bloom

1957, Bell and Bloom 1961) that modulation of the optical pumping dynamics in a man-

ner synchronous with the natural Larmor precession frequency of the spins provides a

means for an all-optical drive and interrogation of the spin precession. Since the initial

demonstration of Bell and Bloom’s synchronously pumped magnetometer, deeper under-

standing of the underlying physics, coupled with improvements in enabling technologies

such as lasers, fast optical modulators, photodetectors, and analog and digital electronics

have dramatically improved the achievable magnetic sensing performance. Relevant to

this work, these advancements have improved the feasibility of a fieldable synchronously

pumped magnetometer based on pulses of optical pumping light rather than continuous

modulation (Grujic and Weis 2013; H. Huang et al. 2015; Gerginov and S. K. S. Knappe

2017; Gerginov, Pomponio, and S. Knappe 2020; Songsong Li et al. 2021; Gartman et al.

2018).

1.2 Background and Motivation

The most sensitive optically pumped magnetometer for detection of low-frequency mag-

netic field fluctuations (where low frequency is defined as slower than the spin polarization

relaxation rate) is the spin-exchange relaxation free (SERF) magnetometer (Allred et al.

2002), which has demonstrated magnetic noise as low as 0.16 fT/
√
Hz (H.B. Dang, A.C.

Maloof, and M.V. Romalis 2010). SERF magnetometers such as the work of H.B. Dang,

A.C. Maloof, and M.V. Romalis 2010 are inherently vector magnetometers, detecting the
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component of magnetic field orthogonal to the optical pump beam by way of the spins

tipping away from the pump axis and into the orthogonal probe axis; thus, SERF mag-

netometers can provide vector component information about the incident magnetic field.

The key advantage of the SERF regime over other methods of magnetic field measurement

using optically pumped spins is that the spin-polarization relaxation mechanism driven

by spin-exchange collisions is greatly suppressed, resulting in much longer achievable po-

larization lifetimes and correspondingly reduced fundamental noise limits as compared to

magnetometer technologies operating without suppression of spin-exchange relaxation.

One key disadvantage of SERF magnetometers is that they operate in the fast spin

exchange limit, wherein the spin exchange rate is many times faster than the precession

frequency; for optimal operation, they require near zero net magnetic field in order to

dramatically suppress the spin-exchange relaxation. A second key disadvantage is that

SERF magnetometers require calibration to achieve a high degree of accuracy: for exam-

ple, when running a SERF magnetometer with closed-loop response based on driving a

magnetic field via a coil along the sensitive axis to zero out the incident field, calibration

of the magnetic field coil response is required. Based on these disadvantages, SERF mag-

netometers are suitable only for a subset of high-sensitivity magnetometry applications:

specifically, those which can be performed in a near-zero-field environment such as can be

achieved using magnetic shielding, or with the use of carefully tuned externally-applied

magnetic fields (S. Seltzer and M. Romalis 2004a).

Optically pumped magnetometers that directly measure the resonant precession fre-

quency of a polarized ensemble of spins in a magnetic field, on the other hand, are not

dependent on near-zero-field environments for optimal sensitivity and overcome the cali-

bration limits to a great extent. Specifically, as will be described in more detail in Chapter

2, the instrument physics do not directly limit the accuracy of the sensor: in principle,

the conversion factor from magnetic field to precession frequency is based on fundamen-

tal physical constants, and only the particular implementation of the magnetometer will

limit the accuracy. One example of an optically pumped magnetometer that utilizes the
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precession frequency of an ensemble of spins in a magnetic field is the Bell-Bloom magne-

tometer (Bell and Bloom 1957; Bell and Bloom 1961) concept that is used in the present

work. The precession frequency of the spins, being a scalar quantity, is a measure of the

magnitude of the magnetic field but not its direction: using only the precession frequency

information, then, the instrument is inherently a scalar magnetic field sensor.

While in a subset of the applications mentioned above, scalar field measurements are

sufficient, full knowledge of vector components provides additional insight into the ambi-

ent field. Vector component information is useful for many applications, including mag-

netoencephalography (Boto et al. 2022; Rea et al. 2022), magnetometer-based tracking of

a magnetic object (for example, Soheilian, Ranjbaran, and Tehranchi 2020), and the en-

hancement of magnetic-field-based navigation aiding (A. J. Canciani and Brennan 2020),

using a greater portion of the information available in Earth’s magnetic field as compared

to scalar measurement alone (NOAA n.d.). There is further interest in utilizing vector

component information to correct for inherent “heading errors” in alkali-based magne-

tometers, which results from the non-zero nuclear spin of alkali atoms (Lee, V. Lucivero,

et al. 2021). Magnetic vector component measurement further enables the measurement

of the magnetic gradient tensor Sui et al. 2014, which may improve the precision and

accuracy of, for example, navigation aiding (Y. Huang, L. Wu, and D. Li 2015).

The most sensitive vector magnetometry in unshielded environments is presently per-

formed using superconducting quantum interface device (SQUID) magnetometers. The

SQUID magnetometer is inherently a vector sensor and detects field projections along its

sensitive axis. Furthermore, its capacity to achieve ultrahigh sensitivity has been demon-

strated in Earth-field environments (Schönau et al. 2013). A key disadvantage is that

SQUIDs require cryogenic cooling and are therefore only applicable to a subset of vec-

tor detection applications; those in which the physical size required for sufficient thermal

insulation and ongoing cost of achieving and maintaining the required cryogenic temper-

atures are acceptable. In contrast, optically pumped atomic magnetometers capable of

operating in Earth-field-scale magnetic fields typically function by measuring the Larmor



5

precession frequency of atomic spins of vapor-phase alkali metals (Budker and M. Ro-

malis 2007) or helium (Grosz, Haji-Sheikh, and Mukhopadhyay 2017) in the presence of

magnetic fields, and thus are inherently scalar field sensors. However, methods have been

demonstrated for the measurement of the vector components of Earth-field-scale incident

magnetic fields using these sensors, with at least one example making use of microwave

polarization reconstruction (Thiele, Lin, and Brown 2018) and others using methods such

as scanning magnetic fields (Alldredge 1960) and rotating fields oscillating at frequen-

cies much faster than the spin relaxation rate (T. Wang et al. 2023). Thus, in contrast

to inherent vector sensors such as SQUIDs, 3-axis magnetic sensing using an OPM does

not inherently require three physically separate devices, adding physical complexity and

potentially degrading the measurement accuracy for nearby sources of magnetic field. Ad-

ditionally, unlike SQUID magnetometers, OPMs do not require cryogenic cooling, thus

reducing operating costs, broadening the application space, and improving portability.

Optically pumped magnetometers have also been demonstrated for radio-frequency

(RF) magnetic field detection up to and including the MHz regime without the use of

cryogenic cooling (for example, Keder et al. 2014a; Lee, V.G. Lucivero, et al. 2021; I.M.

Savukov et al. 2005). Detection of magnetic fields at RF frequencies is useful for many

applications from ultra-low-field MRI (Mazurek, Cahn, Yuen, et al. 2021) to NMR spec-

troscopy (I.M. Savukov et al. 2005), communications (Gerginov and Silva 27 September

2022; I. Savukov, Kim, and Boshier 2017; Bai et al. 2023) and beyond. In contrast to

an inductive pick-up coil (Gruber et al. 2018), optically pumped atomic magnetometers

are effectively insensitive to electric fields and do not exhibit inductive cross-coupling,

making them particularly amenable to use in array configurations. Optically pumped

magnetometers configured for detection of RF signals in the range of tens of kHz and

above tend to optically pump the spins along the bias field and allow the incident RF field

to stimulate resonant or near-resonant precession of the spins about the bias field (Keder

et al. 2014b; Lee, V.G. Lucivero, et al. 2021; Bevington, Gartman, and Chalupczak 2019).

In this configuration, optically pumped RF magnetometers utilize an optical probe beam
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orthogonal to the optical pump to detect the component of spin orthogonal to the bias

field. Optical pumping along the bias field allows for an effect known as light narrowing

(Appelt et al. 1999) in which spin-exchange relaxation is suppressed by pumping the spins

into a stretched state (mF = F ); the resulting decrease in relaxation rate allows for im-

proved sensitivity at the cost of reduced detection bandwidth. These magnetometers have

demonstrated fT -level sensitivity to incident RF magnetic fields, at the cost of requiring

calibration to measure low-frequency magnetic field fluctuations.

Recent advancements (M. Limes et al. 2020) have further demonstrated that optically

pumped magnetometers based on similar operational concepts to those used in the present

work provide noise levels sufficient for biomagnetic applications in an unshielded earth field

environment. Recent work has demonstrated the ability of OPMs to achieve sub-fT/
√
Hz

sensitivities in near-zero field environments (H. Dang, A. Maloof, and M. Romalis 2010)

and 3-axis vector sensitivity in near-zero-field environments (Boto et al. 2022; Rea et al.

2022; K. Wang et al. 2022; Yan et al. 2022; Lu et al. 2022; S. Seltzer and M. Romalis

2004a) and 3-axis vector sensitivity in µT -level environments with relatively small vector

components orthogonal to the bias field (H. Huang et al. 2015). Yet more advances

have been made in extending the operational range of spin-polarized optically pumped

magnetometers into the Earth-field regime (Gerginov and S. K. S. Knappe 2017; S. Seltzer

and M. Romalis 2004b; A. Perry et al. 2020; Oelsner et al. 2022; S. Seltzer and M. Romalis

2004a; A. R. Perry et al. 2020; M. Limes et al. 2020). Each exhibits it own set of advantages

and limitations.

1.3 Overview of This Work

In the 60 years since the pioneering work of Bell and Bloom, supporting technologies for all-

optical magnetometers have undergone dramatic improvements, from lasers and optics to

fabrication techniques, electronics components, computer software, and more. I have built

upon these advancements through rigorous application of physics and advanced electrome-

chanical engineering to demonstrate improvements in sensitivity, bandwidth, apparatus
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simplicity, or some combination thereof over other modern optically pumped atomic mag-

netometers capable of operating in Earth-field-scale magnetic fields; for example, Gerginov

and S. K. S. Knappe 2017; S. Seltzer and M. Romalis 2004b; A. Perry et al. 2020; Oelsner

et al. 2022; S. Seltzer and M. Romalis 2004a; M. Limes et al. 2020; GEM Systems GSMP-

35 Potassium Magnetometer 2023. I use deterministic physics-based magnetometer op-

timization and deterministic physics-based procedural tuning of spin ensemble response

to magnetic fields in the continuously synchronously pumped regime where this magne-

tometer operates to minimize the magnetic-equivalent fundamental noise at the standard

quantum limit. Additionally, I have advanced the state of the art in implementation and

optimization of supporting technologies to reduce the sum total non-magnetic technical

noise an order of magnitude below the fundamental noise.

Through these advancements I have designed, built, and demonstrated a Bell-Bloom

magnetometer capable of providing high performance in the full application space de-

scribed above. I have achieved unprecedented single-channel scalar magnetic sensitivity

and two-channel differential scalar magnetic sensitivity for a continuously-synchronously-

pumped magnetometer at Earth-field-scale magnetic fields, significantly exceeding the

sensitivity of other magnetometers operating in the same regime (Gerginov and S. K. S.

Knappe 2017; H. Huang et al. 2015; Songsong Li et al. 2021). More explicitly, I have

measured single-channel magnetic sensitivity of better than 10 fT/
√
Hz with a photon

shot noise limit of 3.5ft/
√
Hz, comparable to the observed noise in many SERF magne-

tometers (I. Sulai et al. 2019) but in Earth-field-scale magnetic fields of 29 µT (exceeding

SERF regime field limits by orders of magnitude: see Allred et al. 2002) albeit with

significantly higher fundamental limits than these SERF magnetometers. The observed

single-channel noise floor is comparable to the best published single-channel noise in any

Earth-field-capable optically pumped atomic magnetometer (M. Limes et al. 2020), while

the closed-loop -3 dB magnitude response bandwidth is improved by more than an order of

magnitude. The observed single-channel magnetic noise is consistent with the limitations

of the nonetheless very impressive electrical current source used to generate the bias field
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(Twinleaf CSUA-1000) in combination with optical pump pulse phase error that is itself

dominated by effects associated with the optical pump pulse logic circuitry (see Appendix

A.1 for the cause and solution).

I have further demonstrated two-channel differential scalar sensitivity of 1 fTcm−1/
√
Hz

on a 9 cm baseline, approximately an order of magnitude better than the differential scalar

measurement performance achieved by M. Limes et al. 2020. This result approaches the

performance of the best published differential scalar measurement (Sheng, S. Li, et al.

2013) but at four times the background magnetic field, using a significantly physically

simpler apparatus with simpler processing and interpretation of photodetector output

data, and on a longer baseline suitable for observation of signals originating at greater

distance from the differential pair (I. A. Sulai et al. 2019).

Together with an undergraduate lab assistant, I have demonstrated the feasibility of a

method patented by Dr. Thad Walker and myself (Tost, M. Bulatowicz, and T.G. Walker

2023; T.G. Walker and M.D. Bulatowicz 5 April 2022) for measuring vector components

of the incident magnetic field using any scalar magnetometer. As a first step toward 3-axis

vector component observation using this method, I have measured, theoretically investi-

gated, and demonstrated the performance limitations of this approach in the context of

our magnetometer for a single axis of vector component measurement. Finally, I have

demonstrated a mechanism for high-sensitivity linearized detection of RF magnetic fields

oscillating at frequencies much greater than the transverse spin polarization relaxation

rate of the spins, in a manner which does not disrupt the ability to measure low-frequency

magnetic field fluctuations, and I present an analysis in Chapter 3. To the best of my

knowledge, this linear RF sensitivity result represents the first demonstration of RF sen-

sitivity in a synchronously pumped magnetometer.

1.4 Thesis Organization and Presentation

This thesis is presented as follows. Chapter 2 provides the theory behind the basic oper-

ation of our synchronously pumped (Bell-Bloom) magnetometer, presents details of our
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experimental apparatus, and goes into detail regarding the fundamental limits of mag-

netometer sensitivity. Chapter 2 details how to reach the fundamental limits through a

combination of deterministic procedural optimization of the magnetometer physics and

reduction of technical noise to negligible levels through appropriate design guidelines for

the supporting electronic circuitry. Additionally, Chapter 2 presents the observed single-

channel magnetic noise spectrum for the present work, consistent with the best published

results for an Earth-field-capable optically pumped magnetometer (M. Limes et al. 2020)

and demonstrating a two-channel differential scalar noise spectrum approaching the best

published results for any differential optically pumped atomic magnetometer capable of

operating in magnetic fields of greater than 5 µT (Sheng, S. Li, et al. 2013) but with

a significantly simpler apparatus. Both the present work and the work of Sheng, S. Li,

et al. 2013 approach the best published differential noise floor per unit physical separation

distance of sensitive elements for a SERF magnetometer (H. Dang, A. Maloof, and M. Ro-

malis 2010) but the work described in this thesis uses a longer, biomagnetically relevant

(I. A. Sulai et al. 2019) baseline (distance between sensitive elements). In this segment

of Chapter 2, factors affecting the limits of the observed differential signal are discussed,

leading to recommendations for further improvements. Chapter 2 further discusses finite

element modeling of the polarization distribution over the vapor cell volume as a function

of incident optical pump characteristics such as intensity profile and the polarization-

dependent optical pump photon scattering rate, the polarization-dependent relaxation

rate of the spins, the optical intensity profile of the probe beam, and gas diffusion dynam-

ics in the vapor cell. Such a model enables further optimization of magnetometer physics

to approach full optimization of the fundamental noise limits for this technology. Chapter

2 concludes with recommendations for future work to incorporate further improvements

in performance.

Chapter 3 presents an extension of this technology to closed-loop operation with a

demonstrated tens of kHz -3dB response bandwidth, and further extension to detection of

the vector components of the incident magnetic field. Detailed in Chapter 3 is a means of
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self-calibration of the vector measurements with respect to the scalar field measurement,

along with demonstration and characterization of the first steps toward full 3-axis vector

measurement and the factors affecting the measurement uncertainty. Chapter 3 further

presents detailed characterization of the feedback loop design and implementation. Also

presented are the design and analysis of optimal signal filtering and high-performance al-

gorithms for observation of the magnetic field vector components the vector component

measurement is performed simultaneously with scalar measurement. Chapter 3 concludes

with recommendations for future work demonstrating full three-axis sensitivity with fur-

ther improvements in performance.

Chapter 4 presents the first demonstration (to the best of our knowledge) of RF sen-

sitivity in a synchronously pumped magnetometer. Theory and measurements are pre-

sented detailing the physics of a naively-unexpected result: a slow linear phase modula-

tion response (as opposed to the expected quadratic phase modulation response) to small-

amplitude RF signals orthogonal to the bias field, oscillating near the natural Larmor

precession frequency of the spins. In this chapter, the physics underlying the linear phase

response of the spins is examined in detail, including a comparison between the developed

theory and experimental results showing the superimposed linear and quadratic responses

of the slow component of spin precession phase. This chapter presents further insight and

measurement details for magnetic-noise-equivalent technical noise arising from technical-

noise-induced phase error in the optical pump pulses along with a straightforward means

of dramatically reducing the imposed single-channel noise limitations.

Finally, this thesis concludes with theory and discussion for future work: utilization

of a second probe beam, orthogonal to the first, together with a single oscillating applied

magnetic field to observe the precessing spin polarization vector as a function of time.

Three-dimensional mapping of the spin polarization vector will enable one to deduce the

direction of the incident magnetic field in the optical reference frame, thereby enabling

calculation of the three-dimensional vector component solution without a need for the

three orthogonal applied oscillating fields mentioned in Chapter 3.
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Chapter 2

An all-optical scalar and

differential scalar magnetometer

with 10 fT/
√
Hz and 1 fT/cm/

√
Hz

sensitivity in a 30µT field

2.1 Introduction

In this chapter, I present the basic theory of operation of a transversely synchronously

pumped (Bell-Bloom: Bell and Bloom 1957; Bell and Bloom 1961) scalar magnetometer.

I discuss the basic concepts behind the synchronously pumped magnetometer configura-

tion with its co-propagating optical pump and probe beams, and discuss the experimental

apparatus in detail with discussion of single-channel scalar measurement and two-channel

differential scalar measurement. Next, I discuss physics-based optimization of the magne-

tometer response, demonstrating theoretically an optimized regime in which the magne-

tometer sensitivity is at approximately its minimum value of the standard quantum limit

and insensitive to changes in alkali vapor number density; I demonstrate theoretically

that the achievable open-loop response bandwidth of the spins in this regime is propor-
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tional to the available optical pumping rate provided by the optical pump beam, while the

fundamental noise at the standard quantum limit is independent thereof. I demonstrate

conceptual architecture and theory for design of an optical polarimeter circuit with tech-

nical noise well below the photon shot noise of the probe laser along with a quantitative

threshold associated with transimpedance gain resistor value at which technical noise will

be equal to photon shot noise. I go into detail regarding physics-based procedural tuning

of the magnetometer to optimize the magnetometer performance capability, and I present

a finite element model which I have developed, providing opportunities for more-global op-

timization of the achievable standard quantum noise limits in simulation to inform future

experimentation. Experimental results are presented for a 29 µT bias field, demonstrat-

ing a single-channel scalar measurement noise floor of approximately 10 fT/
√
Hz and a

differential scalar measurement noise floor of approximately 1 fT ∗ cm−1/
√
Hz on a 9

cm baseline, equivalent to 6fT/
√
Hz single-channel noise. This chapter concludes with

a discussion of the experimental results and recommendations for future work. Chapter

2 further includes and appendix showing a simplified phasor treatment of synchronous

pumping.

2.1.1 Basic Theory of Operation

Measurement of magnetic fields by way of observation of spin precession in the magnetic

field relies on fundamental properties of the spins of charged particles: any charged particle

will exhibit both angular momentum and a magnetic moment. When subjected to a

magnetic field B, a particle with magnetic moment µ will experience a torque of magnitude

µ|B|. Coupled with the property of spin, conservation of angular momentum dictates that

the torque generates precession of the particle about the magnetic field; the frequency of

precession is known as the Larmor frequency ωL. In the case of the 87Rb atoms used in

the present work, a significant majority of the observed magnetic moment is contributed

by the unpaired electron in the outer orbital of the atom (52S1/2).The electron couples

with the nucleus, exhibiting two possible ground states: electron and nucleus aligned or
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anti-aligned. In either case, the angular momentum of the nucleus and electron together

determine the observed precession frequency of the atomic spins in a magnetic field.

In each of the ground states, the total angular momentum F is the sum of the nuclear

angular momentum I=3/2 and electron angular momentum J = (L + S) where L is the

orbital angular momentum; L=0 for an S orbital and S=1/2 for an electron, so the available

values of F = I + J are either 1 or 2. The magnetic sublevels mF in the reference frame of

the observed magnetic field denote the orientation of F relative to the magnetic field, and

proceed in integer steps from -F to +F, each with a different energy E in the magnetic

field. The energy spacing between magnetic sublevels gives rise to the observed spin

precession frequency; spin precession is effectively a superposition of energy sublevels

which oscillates at a frequency given by the fundamental relationship between energy and

frequency E = h̄ω. To leading order:

ωL =
∆E

h̄
= γ|B|∆mF =

geµB|B|∆mF

h̄(2I + 1)
(2.1)

where ge is the Landé g-factor of the electron (approximately 2), µB is the Bohr magneton,

∆mF is the observed magnetic transition (∆mF = 1 in this work) and I is the nuclear

angular momentum in units of h̄ (3/2 in the case of 87Rb and 5/2 in the case of 85Rb).

The relationship between γ and the magnitude of B is based on fundamental physical

constants and the angular momentum properties of the nucleus; therefore, by measuring

ωL one may deduce the magnitude of B.

In an ensemble of spins, such as the warm 87Rb vapor used in the present work,

observation of ωL requires coherent precession of a non-negligible fraction of the spins; the

fraction of the spins exhibiting such coherence is called the spin polarization P . While

some polarization is induced by way of the energy splitting generated by the magnetic

field, this polarization is induced along the magnetic field and thus does not generate spin

precession about that field. Further, the polarization is insufficient at Earth-field-scale

magnetic fields to generate a useful precession signal. As such, this experiment requires

a means of generating coherent spin precession about the magnetic field. Bell and Bloom
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demonstrated more than 60 years ago (Bell and Bloom 1957; Bell and Bloom 1961) that

coherent spin precession can be generated by modulation of optical pumping dynamics at

a frequency near ωL in a direction transverse to the magnetic field, and the spin precession

can be optically observed; in the experiment described in this thesis, the optical pumping

is achieved using an optical pump laser tuned detuned by a fraction of a linewidth from

the 87Rb D1 optical transition (52S1/2 → 52P1/2, approximately 795 nm wavelength) and

the optical probe laser observing the spin precession is blue detuned from the 87Rb D2

optical transition (52S1/2 → 52P3/2, approximately 780 nm wavelength).

The spin polarizationP = ⟨F⟩/|F| of an ensemble of spins can naturally be decomposed

into components parallel (P∥) and perpendicular (P⊥) to the magnetic field. The longitu-

dinal (parallel) component of polarization does not experience a torque and therefore does

not precess in the magnetic field; only the perpendicular component of polarization will

precess and contribute to measurement of ωL. Thus, all else equal, the condition P = P⊥

will maximize the magnitude of the observable signal on the optical probe beam.

Synchronous (Bell-Bloom) Pumping

As mentioned above, Bell and Bloom demonstrated that spin precession about a magnetic

field can be driven by modulation of optical pumping dynamics in a manner synchronous

with the natural Larmor precession of the spins in the magnetic field. Modulation of

pumping dynamics can be achieved through frequency modulation, polarization modula-

tion (Grujic and Weis 2013), or amplitude modulation of the optical pump light. In the

case of frequency modulation, the optical pump wavelength is modulated between a condi-

tion near or at resonance with an appropriate optical transition such as the D1 transition

and a condition far off resonance (for example, S. J. Seltzer, Meares, and M. V. Romalis

2007). In the case of amplitude modulation, the wavelength is kept stable at a point near

resonance with an appropriate optical transition while the optical intensity reaching the

spins is modulated (for example, Gerginov and S. K. S. Knappe 2017). In each case, the

optical pumping rate Rop(t) includes a significant Fourier component at ωL (or an integer
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subharmonic thereof) oriented orthogonal to B.

The net effect of Bell-Bloom type optical pump modulation is to optically pump the

spins in their rotating reference frame, while the optical pump itself is only along a single

axis in the lab frame. Given an optical pump composed of a series of short optical pulses

at the mth subharmonic of ωL along R̂ and a magnetic field along Ω̂ with B̂ · R̂ = cosθ,

one can define an orthonormal set of axes using Ω̂, R̂ = cos(θ)Ω̂ + sin(θ)ξ̂ and η̂ = Ω̂× ξ̂.

With the optical pump repetition rate synchronized and syntonized relative to the natural

Larmor precession frequency ωL of the spins, the pulsed optical pump as observed in the

lab frame will include Fourier components at

Rop(t) =
∑
p

Ap

[(
Ω̂cosθ + ξ̂sinθ

)
cos

(
p

m
ωLt

)]
(2.2)

where the Ap coefficients are the amplitudes at the pth harmonic of the optical pump

repetition rate. For P⊥(t) = |P⊥|e(±iωLt) in the ξ̂ − η̂ plane, Rop(t) will exhibit a co-

rotating component and a counter-rotating component relative to the precessing spins:

the spins are primarily pumped by the co-rotating component of the optical pump pulses

at p = m; i.e. the component at ωL. At Earth-field-scale magnetic fields for 87Rb, the

counter-rotating components of Rop(t) and the p ̸= m harmonics of the optical pump pulse

repetition rate are all many magnetic linewidths away from resonance with ωL and can

therefore be neglected. The co-rotating component at p = m, naturally, optically pumps

the spins in their rotating reference frame, leading to net spin polarization and coherent

precession of the spins about Ω̂.

Spin Polarization Relaxation

If the ensemble of spins is optically pumped to an initial spin polarization condition P

and then allowed to freely evolve with time, the coherence will degrade over time t with

a characteristic relaxation rate Γ such that |P| ∝ exp[−Γt]. Notable contributors to this

spin polarization relaxation in this experiment include Rb collisions with the vapor cell

walls, collisions between the Rb atoms and the nitrogen buffer gas in the vapor cell, photon
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scattering from the optical pump and probe beams, 87Rb−87 Rb spin-exchange and spin-

destruction collisions, and 87Rb−85Rb spin-exchange and spin-destruction collisions. Spin-

exchange collisions contribute to relaxation of P⊥ but not to relaxation of P∥ because spin-

exchange collisions conserve angular momentum; thus, P∥ is unaffected in spin-exchange

collisions. The total spin polarization relaxation rate is simply:

Γtotal =
∑
i

Γi (2.3)

where the Γi are the individual contributions from each of the spin polarization relaxation

mechanisms.

Spin-Exchange Relaxation

A key concept in the understanding of spin-exchange relaxation lies in the difference be-

tween thems = ±1/2 ground states (F=1 and F=2 ground states of 87Rb and, equivalently,

the F=2 and F=3 ground states of 85Rb). In each case, the magnetic moment of the elec-

tron dominates the total magnetic moment of the atom; meanwhile, the difference between

ground states, as mentioned above, lies in relative alignment of the electron: spin up or

spin down. These two ground states for each isotope of Rb with net nuclear spin therefore

precess in opposite directions in the magnetic field; given a spin-exchange collision rate

RSE , the spins in each ground state will pick up an average phase between collisions of

+ωL/RSE for one ground state and −ωL/RSE . To the extent that Equation 2.1 holds,

therefore, any pair of atoms in opposing ground states does not precess; spin exchange

between these two spins will drive decoherence of the ensemble. The spin-exchange rate is

of course not a uniform rate but simply an ensemble average; thus, between spin exchange

collisions a random phase difference between spins in opposing ground states will be ob-

served. Further, while this experiment utilizes isotopically enriched 87Rb, there remains

a small fraction of 85Rb. As shown in Equation 2.1, the larger nuclear angular momen-

tum (5/2) causes the 85Rb to precess at a different rate than 87Rb, and so the residual

85Rb contributes to spin-exchange relaxation in this experiment but does not contribute
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to measurement of ωL for 87Rb.

Spin relaxation and redistribution occurs not simply by collisions between alkali atoms

in opposing ground states; any collision between alkali atoms other than those in which

both atoms are in a ”stretched state” (i.e. both atoms in the |F = 2,mF = 2⟩ state or

both in the |F = 2,mF = −2⟩ state in 87Rb) will conserve angular momentum but still

redistribute the spin states (T. G. Walker and William Happer 1997). For instance, T. G.

Walker and William Happer 1997 show explicitly one example of spin exchange between

two 87Rb atoms, each in a |F,mF ⟩ = |2, 1⟩ state: see Figure 2.1 (copied from T. G. Walker

and William Happer 1997 Figure 5a).

Spin-Destruction Collisions

When Rb atoms collide with each other or with N2 molecules, there exists a finite proba-

bility that the collision will not conserve angular momentum (T. G. Walker and William

Happer 1997). Further, when Rb atoms collide with the walls of the vapor cell they also

lose polarization. The gas-phase spin-destruction rates for 87Rb are (Chen et al. 2007)

ΓSD,Rb−Rb = nRb ∗ 4.2 ∗ 10−13cm3/s (2.4)

ΓSD,Rb−N2 = nN2 ∗ 1.3 ∗ 10−25cm3/s ∗ T 3 (2.5)

where nRb and nN2 are the number densities of rubidium and nitrogen, respectively, and

T is temperature in Kelvin. Meanwhile, collisions with the vapor cell walls contribute to

the ensemble average spin polarization relaxation rate by way of diffusion of the Rb spins

through the buffer gas. The contribution to spin polarization relaxation can be calculated

using the diffusion equation:

dP

dt
= D∇2P (2.6)

where D is the diffusion coefficient of Rb in N2 and P is the Rb polarization. Boundary

conditions include zero polarization at the vapor cell walls (T. G. Walker and William

Happer 1997). Calculation of the resulting relaxation rate Γwall can be performed in an
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Figure 2.1: Illustration of the results of a spin-exchange collision from T. G. Walker and
William Happer 1997 for two alkali atoms with I=3/2 such as 87Rb, each initially in the
|F,mF ⟩ = |2, 1⟩ state. The total angular momentum of the pair of spins is conserved,
but the magnetic sublevels are not. Of particular concern for spin-exchange relaxation,
a significant fraction of spin-exchange collisions in this example result one or both spins
transitioning to the F=1 hyperfine level. The two hyperfine (F) levels precess in opposite
directions, leading to decoherence of the spin ensemble precession.
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approximate fashion by modeling the nominally cylindrical vapor cell with residual fill

stem as simply a perfect cylinder; further simplification comes from modeling only the

lowest diffusion mode. In this approximation, for a cylinder of length l and diameter d,

with a spin relaxation slowing-down factor of q,

Γwall ≈ Dk2q = D

(
(l + d)π

2dl

)2

q (2.7)

which makes use of the characteristic spatial wavevector k = π/2x for the lowest mode

in the radial direction and the axial direction, where x is the linear dimension along that

direction. In this experiment, d = l, resulting in

Γwall ≈ qD
π2

l2
= qD0

nN2T
3/2

n0,N2T
3/2
0

(2.8)

with diffusion coefficient D0 = 0.16cm2/s at n0,N2 = 1 amagat and 273 Kelvin (Franz

and Volk 1976). At the present vapor cell buffer gas number density of approximately

0.8 amagat and temperature of approximately 358 Kelvin, this yields an approximate

relaxation rate of Γwall = 1.9 q. The multiplication by the slowing-down factor in this

case indicates the relaxation of not only the electron spin but also the nuclear spin (T. G.

Walker and William Happer 1997).

Optical Pumping

Detailed calculations of optical pumping and spin relaxation can be found in (William

Happer 1972) and (W. Happer andWijngaarden 1987), including effects of both the ground

and excited states along with various mechanisms of spin polarization relaxation. Full

treatment must take into account the hyperfine splitting and the mF levels of the atoms;

however, the calculations can be greatly simplified when the broadened optical transition

linewidth is greater than the hyperfine splitting. In this experiment, as mentioned above

the N2 buffer gas number density is approximately 0.8 amagat; N2 exhibits a broadening

coefficient of approximately 17.8 GHz/amagat for the 87Rb D1 optical transition and 18.1
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GHz/amagat for the 87Rb D2 transition (M. V. Romalis, Miron, and Cates 1997). The

collisional broadening effects alone account for approximately 14 GHz optical linewidth

for each transition, approximately double the 6.835 GHz hyperfine splitting (Steck 2003).

Therefore, the various energy levels are unresolved for the purposes of optical pumping in

this experiment.

Recall that in this experiment circularly polarized light near the 87Rb D1 optical tran-

sition (52S1/2 → 52P1/2, approximately 795 nm wavelength) optically pumps the spins.

For an atom to absorb a pump photon, it must absorb not only its energy but also its

angular momentum; angular momentum selection rules therefore dictate that only one

of the electron magnetic sublevels (ms = −1/2) can absorb σ+ circularly polarized light

while the other (ms = +1/2) cannot. Rapid collisions between Rb atoms in the excited

state with each other and with N2 molecules result in rapid excited-state mixing of the

ms levels. The excited-state Rb atoms are rapidly quenched through non-radiative en-

ergy transfer with N2 although some finite radiative quenching remains (Rosenberry et al.

2007). The non-radiative quenching process preserves the angular momentum and the ms

level of the excited state atom; thus, half of the atoms for each pumping cycle end up in

the ms = +1/2 ground state and the average angular momentum added to each atom per

pumping cycle is 1/2 in units of h̄. A diagram of this process is shown in Figure 2.2.

The nuclear spin, meanwhile, is not randomized by excited state collisions and tends

to become polarized via the hyperfine interaction:

(
d⟨F⟩
dt

)
op

=
Rop

2
(1− s ·Pe)−

Γe

2
Pe (2.9)

where Pe = 2⟨S⟩ is the electron spin polarization in the reference frame of the optical

pump, s is the angular momentum of the optical pump photons (|s| = 1 for a σ+ photon,

Rop is the optical pumping rate (the rate at which the atoms will absorb pump photons in

the zero-polarization limit), and Γe is the electron spin polarization relaxation rate. The
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Figure 2.2: Diagram of the optical pumping scheme for this experiment. At thermal
equilibrium, the ground state (5S1/2) populations in the ms = +1/2 and ms = −1/2
sublevels of the ensemble of 87Rb atoms are approximately equal. Circularly polarized
photons Rop in the σ+ polarization state (s = 1), approximately resonant with the 87Rb
D1 transition (≈ 795nm) drive ground state electrons in the ms = −1/2 sublevel to
the excited state 5P1/2,ms = +1/2 excited state. Selection rules forbid excitation of
ms = +1/2 ground state electrons from absorbing σ+ photons, so only the ms = −1/2
electrons are excited. Rapid collisional mixing in the excited state places approximately
half the excited state electrons into each of the ms sublevels, and non-radiative quenching
through energy transfer to the N2 buffer gas drives the atoms back to the ground state
without altering their respective sublevels. Each photon absorption, therefore, adds on
average 1/2 h̄ of angular momentum to the ensemble. Spin polarization relaxation Γ drives
the ensemble back toward thermal equilibrium.



22

optical pumping rate is given by

Rop = Φopσ(νop) = ΦoprecfD1
Γν/2

(νop − νD1)2 + (Γν/2)2
(2.10)

where Φop = IA/(hνop) is the optical pump photon flux for an optical pump of average

intensity I and cross sectional area A with Planck’s constant h and pump optical frequency

νop, σ(νop) is the interaction cross section, re is the classical electron radius, c is the

speed of light, fD1 ≈ 1/3 is the oscillator strength of the D1 transition, νD1 is the D1

optical transition resonance frequency, and Γν is the excited state relaxation rate of the

D1 transition including all broadening effects. In steady state, then,

Pe =
⟨Rop⟩

⟨Rop⟩+ Γ
(2.11)

in the limit where s ·Pe = Pe; Γ is the spin polarization relaxation rate.

Spin Precession

In the presence of a magnetic field Ω⃗ = γB the angular momentum F of the ensemble will

evolve with time according to the Bloch equation:

dF

dt
= Ω⃗× F− (Rop(t) + Γ∥,⊥)S+

Rop(t)

2
(2.12)

where Γ∥,⊥ is the electron randomization rate as applicable to the parallel or perpendicular

components of spin polarization relative to Ω⃗, and it is assumed that the time-dependent

optical pumping rate Rop(t) has an appropriate form for D1 transition optical pumping of

87Rb at high pressure.

Under the assumption that the details of the nuclear spin evolution can be described

by a simple proportionality F = qS, one may generate a good approximation of the

time evolution of the spin in this experiment. It is also natural to split the angular

momentum into components parallel and perpendicular to the magnetic field, and to

treat these components separately. With the optical pump propagating along R̂ and the
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magnetic field along Ω⃗,

q
dS∥
dt

= −(R(t) + Γ∥)S∥ + cos θ
R(t)

2
(2.13)

where R̂ · Ω̂ = cosθ; one may define R̂ = cosθΩ̂ + sinθξ̂ and a third orthonormal vector

ˆeta = Ω̂× ξ̂. The steady-state polarization parallel to the magnetic field is

P∥ = 2S∥ =
⟨Rop⟩cosθ
⟨Rop⟩+ Γ∥

(2.14)

which exhibits no sensitivity to the magnitude of the magnetic field and is therefore not

useful for scalar magnetometry.

The transverse spin components, however, do precess about the magnetic field as

described in Equation 2.12 and can be conveniently expressed in phasor form S+ = Sξ +

iSη = S⊥e
iα. Substituting this into Equation 2.12 and taking the real part, the magnitude

of the transverse component of spin obeys

q
dS⊥
dt

= −(Γ⊥ +R(t))S⊥ +
1

2
cosαR(t)sinθ (2.15)

As will be shown below, the phase α of the transverse spin obeys α = ωt + δ. In this

experiment, the optical pump pulses are localized in time about ωt = 2πw with integer

w. In the limit that the optical pumping rate ⟨Rop(t)⟩ and relaxation rate Γ⊥ are small

compared to the Larmor frequency, the optical pumping rate and relaxation rate can be

replaced by their time averages.

As will be shown shortly, pulsed amplitude modulation of the optical pumping light

wherein the optical pumping light pulses are of short duration (much less than 2π/ωL)

and of negligible intensity between pulses has an inherent advantage over other amplitude

modulation schemes such as sinusoidal amplitude modulation. The optical pumping rate

along R̂op is independent of spin orientation, while in the rotating reference frame of

the spins, the polarization of the optical pump is s(ŝ · Ŝ) where s is the polarization of

the optical pump photons (s = 1 along R̂op for σ+ circularly polarized pump photons)
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and 2⟨S⟩Ŝ = P is the spin polarization vector of the ensemble of precessing spins. The

direction of the optical pump is held fixed in the lab frame in this experiment, and so the

time-average polarization of the optical pump in the rotating reference frame of the spins

is

⟨ŝ · Ŝ⟩ = ωL

2π

∫ 2π
ωL

0
s
Rop(t)

|Rop(t)|
· Ŝdt (2.16)

In the simple sinusoidal amplitude modulation example where the optical pump photon

flux is modulated at |Rop(t)| = ⟨Rop⟩(1 + cos(ωLt)), it becomes clear that ŝ⊥ · Ŝ⊥ =

1
2(cosωLt + cos2ωLt), which averages to ⟨ŝ · Ŝ⟩ = 1/4. Hence, in the case of sinusoidal

amplitude modulation, the steady-state magnitude of P⊥ is

P⊥,sine =
1

4
sin(θ)

⟨Rop⟩
⟨Rop⟩+ Γ⊥

(2.17)

where P⊥,sine is the magnitude of P⊥ in the case of sinusoidal amplitude modulation of

the optical pump and it is clear that sinusoidal amplitude modulation of the optical pump

cannot fully polarize the spins even when the optical pump modulation is on resonance

with the natural Larmor precession frequency of the spins.

For short pulses with fractional duty cycle d ≪ 1 (i.e. time duration 2πd/ω for any

given pump pulse), the optical pumping rate will exhibit a time average of ⟨cos(α)Rop(t)⟩ =

sinc(d2)cosδ⟨Rop⟩ ≈ cosδ⟨Rop⟩. Similar to the expression for the component of polarization

parallel to the magnetic field, the steady-state magnitude of the transverse polarization

will be

P⊥ = 2S⊥ = cos(δ)sin(θ)
⟨Rop(t)⟩

⟨Rop⟩+ Γ⊥
(2.18)

demonstrating that in principle the atoms can become fully polarized using synchronous

pumping with short-duty-cycle pulses. When the optical pump pulse repetition rate ω

is equal to the Larmor precession frequency Ω, the spins align with the optical pumping

light once per cycle and cosδ → 1. Pumping with short synchronized pulses of pump light

transverse to the magnetic field is therefore as effective at generating spin polarization as

the more typical optical pumping along the magnetic field direction.
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The phase of the transverse spin similarly obeys

dα

dt
= Ω− sinθ

Rop(t)sinα

2qs⊥
(2.19)

and the phase shift relative to the optical pump pulses obeys

dδ

dt
= Ω− ω − Γ2 tan δ (2.20)

where Γ2 = (Γ⊥+ ⟨Rop⟩)/q is the slowed transverse spin relaxation rate. In this work, the

observable quantity is

P · R̂ = P∥cosθ+P⊥cos(ωt+ δ) =
⟨Rop⟩

⟨Rop⟩+ Γ⊥
(cos2(θ)+sin2(θ)cos(δ)cos(ωt+ δ)) (2.21)

and demodulation of the result using sin(ωt) gives the classic dispersion lineshape

⟨P · R̂sin(ωt)⟩ = Pmaxcos(δ)sin(δ)/2 =
Pmax

2

(Ω− ω)Γ2

(Ω− ω)2 + Γ2
2

(2.22)

as one would expect.

Light Narrowing

The phenomenon of light narrowing is a means of suppressing spin relaxation by pumping

a significant fraction of the spins into a “stretched state” (|mF | = F = 2 for 87Rb). As

described in Section 2.1.1, spin-exchange collisions will preserve the total angular momen-

tum, and so spin-exchange between a pair of atoms each in the same mF = 2 state will

exhibit no overlap with the opposing ground hyperfine level (F = 1) and not result in

spin-exchange relaxation. Given this spin-exchange relaxation suppression effect, the net

spin-exchange relaxation rate is simply proportional to (1-P). A consequence of driving

toward a condition in which a significant fraction of the spins is in a stretched state is

that the optical pumping rate must support a high polarization (see Equation 2.35), while

the total transverse spin relaxation rate Γ2 includes contributions from the optical pump
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beam (Section 2.1.1). As such, in the continuously synchronously pumped regime as in

this experiment, a balance must be struck between suppression of spin-exchange relaxation

and decoherence induced by a high optical pump rate (also known as optical pump power

broadening). The topic of optimization of magnetometer physics based on these effects

will be covered in more depth in Section 2.4.1.

Detection using Faraday Rotation

In this work, the observable quantity P · R̂ is detected using an optical probe beam com-

posed of linearly polarized light, detuned from the D2 (5S1/2 → 5P3/2) optical transition,

approximately 780 nm, co-propagating with the optical pump beam. The linear polariza-

tion state is an equal superposition of σ+ and σ− circular polarization states; the relative

phase of these two states determines the angle of linear polarization. As an example,

consider the normalized Jones vector representation J⃗H of horizontal linear polarization

as compared to right-hand and left-hand circular polarization states, J⃗RHC and J⃗LHC ,

respectively:

J⃗H =
1

0
J⃗RHC = 1√

2

1

-i
J⃗LHC = 1√

2

1

i
(2.23)

indicating that the normalized representation of horizontal linear polarization is simply

the normalized sum of left-hand and right-hand circular polarization states (i.e. left-hand

summed with right-hand circular polarization at equal phase). Similarly, the normalized

representation of vertical linear polarization is the normalized difference of left-hand and

right-hand circular polarization states (left-hand summed with right-hand polarization

at π relative phase). Clearly, then, an equal sum of left-hand and right-hand circular

polarization at arbitrary phase produce linear polarization at any arbitrary angle.

As described above in Section 2.1.1, σ+ photons interact with ms = −1/2 electrons;

similarly, σ− photons interact with ms = +1/2 electrons. In the reference frame of the

optical probe beam, the proportion of ms = +1/2 and ms = −1/2 electron spins is
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described by P ·R̂ (Equation 2.21). With the optical probe beam detuned from resonance,

a primary effect of the interaction between the spin ensemble and the probe beam is an

index of refraction difference for the σ+ and σ− components of the optical probe beam,

proportional to P · R̂. As the optical probe beam propagates through the alkali vapor,

then, the linear polarization state rotates through an angle ϕ. For this experiment, the 14

GHz collisional broadening induced by the high buffer gas number density of 0.8 amagat

keeps the hyperfine structure from being resolved; as mentioned above, the separation in

energy between the F = 1 and F = 2 manifolds is approximately 6.835 GHz (Steck 2003).

Neglecting the unresolved hyperfine structure, ϕ is given by (M. V. Romalis, Miron, and

Cates 1997)

ϕ = −1

2
lrecfnD(ν)P · R̂ = −lrecfn

∆

Γν,pr(1 + 4∆2/Γ2
nu,pr)

P · R̂ (2.24)

where l is the path length through the polarized alkali vapor, re is the classical electron

radius, c is the speed of light, f is the oscillator strength of the D2 transition, n is

the number density of the 87Rb atoms in the vapor phase, Γν,pr is the D2 excited state

relaxation rate, and ∆ is the detuning of the optical probe from resonance. The expression

for ϕ can be derived using the methods described in Electric-Dipole Polarizabilities of

Atoms, Molecules, and Clusters 1997.

Polarization rotation of the optical probe beam can be measured by using a balanced

polarimeter consisting of a polarization beamsplitter such as a Wollaston prism and a pair

of photodetectors arranged to collect the ordinary and extraordinary components of the

incident light (also known as the S and P polarization components). In a balanced po-

larimeter, the orientation of the polarization beamsplitter is carefully arranged to generate

an equal incident photon flux on each of the two photodetectors for an un-rotated optical

probe beam. The photon flux at the detectors generates electrical current when operat-

ing the photodetectors in photoconductive mode, as in this experiment; the differential
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photocurrent δI is given by

δI = ηΦpr(sin
2(ϕ+

π

4
)− sin2(ϕ− π

4
)) = ηΦprsin(2ϕ) (2.25)

where η is the quantum efficiency of the photodetector. I have designed and built a high-

performance custom photodetector preamp circuit (transimpedance amplifier pair and

pair of difference amplifiers) for this experiment, providing for photocurrent measurement

dominated by photon shot noise in the optical probe beam (Appendix A.2) in addition to

designing a custom physical polarimeter apparatus consisting of custom mount contain-

ing a Wollaston prism, a condensing lens, and a matched pair of photodetectors, shown

diagrammatically in Figure 2.5.

Fundamental Noise Limits

Optically pumped atomic magnetometers exhibit three major fundamental noise sources

(Budker and Kimball 2013): photon shot noise δBPSN , quantum projection noise δBQPN ,

and probe AC Stark shift noise, also known as light shift noise δBLSN . The photon

shot noise arises from statistical counting noise in the number of photons reaching the

photodetector; for Φpr photons reaching the photodetector in a measurement time period

(resulting in ηΦpr electrons emitted in photoconductive mode), the noise power is simply

equal to Φpr (ηΦpr electron number noise power). The amplitude of the corresponding

photon shot noise limit δϕ to the measurement of ϕ is therefore:

δϕ =
1√

2ηΦpr
(2.26)

where Equation 2.25 has been used to express the photon shot noise on a per square root

Hz basis with the approximation that sin(2ϕ) = 2ϕ in the limit that ϕ is small. The

phase response δ of the spins to oscillating magnetic fields of increasing frequency fdet is
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well-approximated by

δ(fdet) =
δ(0)√

1 +
f2
det

Γ2
2/π

2

=
δ(0)√

1 + f2
detπ

2T 2
2

(2.27)

wherein it is clear that the spin precession phase response follows the same frequency

dependence pattern as a simple resistor-capacitor (RC) low-pass filter, with a characteristic

frequency Γ2/π in Hz. This relationship follows naturally from the high-frequency limit

of phase accumulation for the spins: for a magnetic field oscillation BωBcos(ωBt) where

ωB ≫ Γ2

δ(t) =

∫
γBωBcos(ωBt)dt =

γBωBsin(ωBt)

ωB
(2.28)

which is simply a restatement of Equation 2.1.

Combining Equations 2.21, 2.24, 2.26, and 2.27 leads to an expression for the photon

shot noise in magnetic field terms. In the case where R̂ · Ω̂ = 0 (i.e. P = P⊥):

δBPSN (fdet) =
Γ2Γ

2
ν,pr(1 + 4 ∆2

Γ2
ν,pr

)
√
1 + f2

detπ
2T 2

2

lrecfn∆Pγ
√
2ηΦpr

(2.29)

where terms are as defined above.

Quantum projection noise is similarly dependent on the relaxation rate and number

density, along with the volume V of spins interacting with the probe beam, and the

gyromagnetic ratio (Alem, Sauer, and M.V. Romalis 2013; Ledbetter et al. 2008):

δBQPN =
1

γ

√
Γ2

nV
=

1

γ

√
Γ2

N
(2.30)

with total number of spins N being sampled by the optical probe beam.

Additional noise is contributed by quantum fluctuations in the polarization state of the

optical probe beam (Ledbetter et al. 2008). This noise is calculated based on the optical

intensity (photon flux and cross sectional area A), with other terms as defined above:

this noise occurs along the probe direction (x̂) and generates an effective magnetic field
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noise based on the scalar magnetic field deviation generated by the resulting AC Stark

shift noise; the AC Stark energy shift modifies the splitting between mF levels, and is

therefore indistinguishable from a magnetic field and will exhibit its own shot noise based

on the photon shot noise of the σ+ and σ− components of the optical probe beam linear

polarization state. To leading order, this AC Stark shift noise (also known as “light shift

noise” is given by (Ledbetter et al. 2008):

δBLSN =
recfD(ν)

√
2Φpr

(2I + 1)γA
R̂ · Ω̂ (2.31)

where D(ν) = (ν − ν0)/((ν − ν0)
2 + (Γν,pr/2)

2) with probe beam optical frequency ν and

D2 optical transition resonance frequency ν0. However, as noted above R̂ · Ω̂ → 0 in

this experiment, and so AC Stark shift noise does not meaningfully contribute to the total

noise in this experiment but can be a meaningful source of noise in a real-world application

where R̂ · Ω̂ is rarely negligible.

Measurement of Alkali Number Density

As shown in Equations 2.29 and 2.48, alkali number density n is an important parameter for

calculation of the fundamental limits of magnetometer performance. In this experiment,

alkali number density is measured in the low probe intensity limit using the relationship

Exp[nσ0l] =
Toff

Ton
(2.32)

where σ0 is the on-resonance scattering cross section of 87Rb for the broadened D2 optical

transition, Ton is the probe transmission through the alkali vapor in the on-resonance

condition, and Toff is the probe transmission through the alkali vapor in the far-detuned

condition where probe scattering is approximately zero. In this experiment, the optical

depth OD = nσ0l of the vapor cell is sufficiently low to allow reasonable direct use of this

method rather than requiring a curve fit of absorption versus wavelength of the probe beam

by way of the relationship between cross section and wavelength described in Equation
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Figure 2.3: Block diagram for closed-loop feedback. Optical pump pulses are input to
the magnetometer at a repetition rate ω; the response of the spins is measured by the
polarimeter and demodulated (for example, using a lock-in amplifier referenced to ω) to
output a signal proportional to δ. A gain stage takes the signal and multiplies it by a
transfer function K. The result is then used to modify ω such that δ → 0.

2.10. Using the method described in Equation 2.32, I measure n ≈ 2 ∗ 1012cm−3.

Closed-Loop Feedback Basics

As shown in Equation 2.22, in the limit of small δ the demodulated response of the ensem-

ble of spins in steady state is proportional to the phase difference δ between the optical

pump pulse repetition rate and the observed spin polarization signal on the polarimeter;

as δ continues to increase, the linearity degrades. Maximum magnetic field sensitivity,

therefore, is achieved at ω → Ω; in an unshielded environment, closed-loop feedback de-

signed to drive δ → 0 by way of modifying ω, then, will keep the magnetometer operating

in its most sensitive and linear-response regime. A conceptual block diagram for closed

loop feedback from the perspective of the electronics is shown in Figure 2.3. The topic of

closed-loop feedback will be covered in more depth in Chapter 3.

2.2 Present Work

Brief Background

With collaborators, we recently extended the synchronously pumped atomic magnetometer

concept to include a scalar and differential scalar magnetometer capable of operating with

high sensitivity in earth’s field with the goal of improving performance to levels sufficient

for biomagnetic imaging in an unshielded environment (A. R. Perry et al. 2020). In the

present work, I have achieved repeatable, significantly improved performance over the

work described in A. R. Perry et al. 2020, combined with significant simplification of
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the system. In (A. R. Perry et al. 2020), similar to the work described in Sheng, A. R.

Perry, et al. 2017, the differential magnetic sensitivity was achieved by way of optical

subtraction (Figure 2.4). A single optical probe beam passed through a first magnetically

sensitive volume (zone 1, labeled Z1 in Figure 2.4), picking up a first polarization rotation ϕ

(Equation 2.37). Reflection off a pair of dielectric mirrors was then used to drive ϕ → −ϕ

and displace the optical probe beam to pass through the second sensitive zone, after

which the probe beam passed through a second sensitive volume (zone 2; Z2 in Figure 2.4)

nominally identical to the first and optically pumped synchronously with the first: at zero

magnetic gradient (equal magnetic field magnitude for each of the two zones) the probe

nominally picks up another rotation of θ for a net zero polarization rotation. A non-zero

net polarization rotation of the optical probe observed in A. R. Perry et al. 2020, then,

indicates a differential magnetic field between the two zones. The underlying perception

driving this operational concept was that electrical subtraction of the signals of two zones

would be unable to generate a differential detection noise in the range of single digit to

tens of fT

cm
√
Hz

.

Contrary to this perception, if the technical noise is well below the photon shot noise

limit, electrical subtraction can provide the same differential measurement performance

limits as optical subtraction. Reaching the photon shot noise limit for a detector observing

a mW-scale optical signal simply requires appropriately designed detection electronics:

Appendix A.2 demonstrates that such a design is straightforward and solidly based in

fundamental physics.

In the limit of a far-off-resonance optical probe (negligible optical absorption in the

alkali vapor) a single optical probe beam that passes through two detection zones will

generate the same total photocurrent as in the case of a split probe beam passing through

each of two zones individually. With identical total photocurrent and all else equal, the

two-channel differential photon shot noise will be the same for both configurations; mean-

while, the single-channel photon shot noise can be reduced significantly compared to A. R.

Perry et al. 2020, wherein a small fraction of the optical probe light was split off from the
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Figure 2.4: Figure 1 from A. R. Perry et al. 2020. (a) Optical layout showing the two
interrogation regions probed by a single optical probe beam and pumped by synchronous
optical pump pulses. Red lines indicate optical pump (≈ 795 nm), blue lines indicate
optical probe (≈ 780 nm), and purple represents co-propagating or counter-propagating
pump and probe light. Optical components include PBS (polarization beam splitter),
DM (dichroic mirror), BS (non-polarizing beam splitter), λ/2 (half wave plate), DWP
(dichroic wave plate; circularly polarizes 795 nm and leaves 780 nm linearly polarized),
and photodetectors (Z1 Mon, Z2 Mon, and differential generating BP|B| and BP|δB| signals
for optical intensity monitoring of the combined pump and probe, second pump, scalar
field, and differential scalar field, respectively. (b) Notional timing diagram of optical
pumping versus Larmor phase of the spins, and actual photodetector signal from BP|B|
(blue) and BP|δB| (green) respectively. The optical pump is pulsed once per Larmor cycle
and the optical probe is pulsed 4 times per Larmor cycle in this example.
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main probe beam after it had passed through zone 1 (see Figure 2.4); this small fraction

of the optical probe light was sent to a second polarimeter for measurement of the scalar

magnetic field, significantly degrading the photon shot noise limit for scalar magnetic field

measurement as compared to the present work. Further, the present configuration uses

fewer optical elements than A. R. Perry et al. 2020, thereby simplifying the apparatus.

As described above and in (A. R. Perry et al. 2020), the underlying principles of

this synchronously pumped magnetometer scheme can be described by an ensemble of

atomic spins, polarized by a periodically pulsed, circularly-polarized pumping laser beam

propagating along the axis R̂. During the time interval between pump pulses, the polarized

atoms precess about the external magnetic field B at the Larmor precession frequency

(Equation 2.1); the experiment described herein probes ∆m = 1 magnetic transitions, so

this simplifies to

ωL = γ|B| (2.33)

As described in Section 2.1.1, the probability of absorbing photons from the pump laser

(i.e. the optical pump photon scattering rate) is proportional to (1−PR) where PR is the

component of the spin polarization along the pump axis. For small deviations of the pump

pulse repetition frequency ω about ωL, there is an enhanced absorption of photons which

brings the instantaneous spin polarization closer into alignment with the light. The net

result is spin precession at the pulse repetition frequency but with a phase shift δ between

the spin precession and the pump pulses driving that precession.

Recall from Section 2.1.1 that the spin precession vector PR(t) can be broken down

into components parallel (P∥) and perpendicular (P⊥) to the magnetic field B:

PR(t) = P∥ cos(θ) + P⊥ sin(θ) cos(ωt+ δ) (2.34)

where cos(θ) = B̂ · R̂. The relevant observable for scalar field magnitude is the component

of the atomic spin polarization perpendicular to the external magnetic field. The optical
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pump and optical probe propagate along R̂, yielding an observable

P⊥ =
⟨Rop(t)⟩ cos(δ)
⟨Rop(t)⟩+ Γ⊥

sin(θ)cos(ωt+ δ) (2.35)

with spin relaxation rate Γ⊥, optical pumping rate Rop, and average angle δ between the

spin polarization and R̂ during an optical pump pulse.

As noted in Equation 2.35, P⊥ → 0 when B̂ ·R̂ → 1; in other words, the magnetometer

sensitivity goes to zero as the bias field approaches the optical pump/probe direction. In

this work, the magnetic bias field is nominally orthogonal to the optical pump direction in

order to maximize the sensitivity, hence P∥ → 0 and B̂ · R̂ → 0. As demonstrated above in

Section 2.1.1, it can be shown (A. R. Perry et al. 2020) that the steady-state phase shift

of the spin precession response to the optical pump pulses is

δ = tan−1(∆ωT2) = tan−1 δω

Γ2
(2.36)

with frequency detuning ∆ω = ω − ωL. This experiment uses an optical probe beam

co-propagating with the pump to detect the atomic spin polarization. The probe is de-

tuned far off the optical resonance, ∆opt ≫ Γ3/2, where Γ3/2 is the observed broadened

optical linewidth of the 87Rb 5P3/2 state (including all contributions such as collisional

broadening and thermal effects). Here the Faraday rotation of the probe light due to the

spin-dependent index of refraction of the atoms minimally perturbs the spins (W. Happer,

Jau, and T. Walker 2010). Recall from Equation 2.24 that the probe beam acquires an

optical polarization rotation

ϕ(t) ∝ NPR(t) (2.37)

where N is the number of atoms in the sample volume. A polarimeter converts ϕ(t) into

an electrical signal; demodulation at the pump pulse repetition frequency ω of the elec-

trical signal representing the probe rotation angle, for small ∆ω ≈ 0, yields in-phase and

quadrature signals proportional to ΦprNP⊥ cos(δ) and ΦprNP⊥ sin(δ), respectively. So

far, the description above has focused on single co-propagating pump and probe lasers;
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a second, orthogonal optical probe beam may yield performance advantages (Lee, V.G.

Lucivero, et al. 2021) in unshielded applications where B̂ · R̂ is rarely negligible. Further,

an orthogonal second probe beam provides the basis for real-time observation of the po-

larization vector in 3D space; coupled with a small-amplitude applied oscillating field to

lift a sign degeneracy in the measurement, this will enable measurement of not only Ω but

also Ω̂. This topic will be covered in more detail along with attendant theory in Chapter

5.

In addition, in practical magnetic sensing applications there are great advantages to be

gained in suppression of the effects of fluctuations in relatively uniform background mag-

netic fields by configuring pairs or arrays of magnetometers as gradiometers or differential

magnetometers (V.G. Lucivero et al. 2022; Smullin et al. 2009; Zhang et al. 2020; I. A. Su-

lai et al. 2019). The experiment described in this chapter includes a simple 1-dimensional

array consisting of only two sensitive elements to investigate and demonstrate the differ-

ential measurement capabilities of this magnetometer.

2.3 Experimental Apparatus

The experimental apparatus used in the work described in this thesis is largely of my own

design/architecture, building upon and modernizing the concepts first demonstrated by

Bell and Bloom more than 60 years ago to achieve improved performance. This design and

architecture sought to maximize the use of commercially available equipment, re-used the

vapor cell housing from a previous experiment performed in the same lab (Zhivun et al.

2019), and relied upon our collaborators (A. R. Perry et al. 2020) for LabVIEW software

for control of the optical pump pulse triggering in open-loop mode as in this chapter and

Chapter 4. The LabVIEW software and FPGA firmware used in Chapter 3 was developed

according to an architecture I designed, and was implemented in collaboration with our

group’s undergraduate lab assistant Jonas Tost (Tost, M. Bulatowicz, and T.G. Walker

2023). The overall apparatus was assembled with the aid of another undergraduate lab

assistant, Alec Hryciuk.
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After we conceived the basic concept, I generated the appropriate system architec-

ture, calculated necessary component specifications, and selected appropriate commer-

cially available equipment, including the PXIe system and modules, laser light sources,

the method of and equipment for optical pump pulse generation, the lock-in amplifier,

optics components, vapor cell, and feedback architecture. Where commercially available

equipment was insufficient for the requirements of this experiment, I designed the necessary

components: these include the pump pulse triggering logic (Appendix A.1), the pump pulse

shuttering system based on a free-space electro-optic modulator, the high-performance dif-

ferential photodetector preamp (Appendix A.2), the high-performance polarimeter itself,

and the ceramic heaters for the vapor cell.

An abbreviated schematic of the apparatus used in this experiment at the University of

Wisconsin - Madison is shown in Fig. 2.5. For each detection zone, an isotopically enriched

87Rb atomic vapor and 0.8 amagat of N2 buffer gas is housed in a 1 cm internal diameter

by 1 cm internal length cylindrical vapor cell. The vapor cell is surrounded by ceramic

RF heating coils that are designed to minimize induced magnetic fields (M. Bulatowicz 30

March 2012) and thermal insulators consisting of aerogel sheets to maintain a 87Rb vapor

pressure of approximately 2-3 × 1012 cm−3. In accordance with (M. Bulatowicz 30 March

2012), each RF heating coil is a planar 3-layer thick-film-on-substrate ceramic circuit

board with a magnetic 16-pole winding pattern around the substrate perimeter, designed

for minimum self-inductance (minimum induced magnetic field and minimum reactive

impedance); the vapor cell is surrounded by a pair of these heating coils, oriented opposite

to each other for a net 32-pole RF magnetic coil pattern surrounding the vapor cell. Each

heater on its own has been measured to produce a magnetic field of approximately 1nT/A

on average over the volume of the vapor cell.

For further suppression of the effects of the magnetic field produced by the heaters, the

heater drive signal is a sine wave detuned thousands of magnetic linewidths away from the

natural Larmor precession frequency of the spins. The heater drive signal is an open-loop

voltage control system supplied by a custom designed circuit that simply amplifies and AC
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couples an input waveform from a function generator, using a potentiometer to control

the gain, and an Apex Micro PA107DP power amplifier to drive the increased voltage

and current through the heaters. The heaters dissipate approximately 0.3 W per vapor

cell to heat the vapor cells to approximately +85 degrees C. In future work, the heating

system may be modified to operate in closed-loop mode for tighter control of vapor cell

temperature, and rather than using electrical resistive heat power one may also heat the

vapor cell in an effectively non-magnetic fashion using a laser of an appropriate wavelength

to be absorbed by the glass of the vapor cell itself or by an appropriate attached optical

absorption element (Kitching 2018).

The vapor cell and thermal management for each measurement zone is housed in its

own custom 3D printed ABS plastic shell located inside a 4-layer magnetic shield (Twinleaf

MS-2). This magnetic shield includes integrated coils for controlling the vector field com-

ponents and all independent first order magnetic field gradient components. All of the ex-

periments described in this thesis use a magnetic bias field orthogonal to the optical pump

at tens of micro-Tesla; orders of magnitude greater than would allow for SERF regime oper-

ation (I. M. Savukov and M. V. Romalis 2005). For a continuously synchronously pumped

magnetometer, a bias field orthogonal to the optical pump axis represents a condition in

which the spins are maximally susceptible to spin-exchange relaxation, residing in the fast

spin-exchange limit with a low spin-exchange relaxation slowing-down factor (W. Happer

and Tam 1977) while still able to take some advantage of light narrowing phenomena to

suppress the spin-exchange relaxation at the cost of increased optical pump power broad-

ening (Appelt et al. 1999, Equation 2.40). Thus, the investigated conditions represent the

fastest spin polarization relaxation rate which may be observed under otherwise-optimal

conditions; as shown in Equation 2.29, the photon shot noise limit is proportional to the

overall spin polarization relaxation rate Γ2. The electric current for driving magnetic bias

and gradient fields is supplied using a low-noise electrical current driver (Twinleaf CSUA-

1000). The electrical current-to-field and current-to-gradient conversion factors for the

magnetic field coils and magnetic gradient coils, respectively, provided within the mag-
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netic shield were calibrated at the location of each vapor cell by way of the relationship

described in Equation 2.33.

The optical pump beam is generated using a Vescent Photonics DBR laser driven by a

Vescent Photonics laser controller and is tuned near resonance with the 795nm D1 optical

transition while an optical probe beam generated with a second DBR laser and driven

by a Thorlabs laser controller, tuned near the 780nm D2 optical transition, monitors

the atomic spin. The pump beam is intensity modulated using a scheme based on a

Newport 4102 electro-optic modulator as shown in Figure 2.6. Logic signals driving “on”

versus “off” states of the optical pump beam are generated by a NI PXIe-6614 precision

reference counter/timing module with the optional oven-compensated crystal oscillator

(OCXO) included for stability and noise performance; the OCXO also provides the timing

reference for the PXIe chassis backplane timebase. For minimum periodic jitter in the

optical pump pulse trigger logic signals, the apparatus uses an integer countdown from

the NI PIXe-6614 reference timebase clock frequency.

When the optical pump beam is in the “off” state, I measure single-digit micro-Watt

optical power outputs from the fiber. When the optical pump beam is in the “on” state,

I measure a typical optical power output from the fiber of 20 mW. The probe is operated

in a continuous steady state mode at approximately 7 mW optical power as measured

prior to the non-polarizing beamsplitter shown in Fig. 2.5. The probe and pump are

simultaneously combined and split along two separate directions using a non-polarizing

beamsplitter cube; one set of combined, co-propagating beams is directed through each of

two vapor cells separated by 9cm. On the far side of each vapor cell, the pump light and

probe light are separated using a dichroic mirror. The probe light for each zone is sent

to a respective balanced polarimeter and corresponding custom differential photocurrent

detection circuit consisting of a carefully-designed transimpedance amplifier (current to

voltage converter; see Appendix A.2) for each photodiode, and one or more difference

amplifiers to generate a voltage signal corresponding to the differential photocurrent. The

observed total photocurrent for each zone is 1.5 mA, corresponding to approximately 3
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Figure 2.5: a) Block diagram of the operational concept. Collimated optical pump and
probe beams are combined and split along two optical paths through respective 87Rb vapor
cells, each associated with a respective polarimeter. b) Notional timing diagram showing
optical pump pulses during a Larmor precession cycle when the pulses are applied at the
Larmor rate
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Figure 2.6: Block diagram of the optical pump intensity modulation scheme. The CW
laser wavelength of the optical pump is near the 87Rb D1 transition; the EO modulator,
waveplates, and polarization beamsplitter work together to generate amplitude modulation
of the optical pump beam in the form of short-duty-cycle optical pulses observed at the
output of the polarization beamsplitter, which are then coupled into an optical fiber which
transmits the optical pump pulses to a collimator (Figure 2.5)

mW reaching each polarimeter.

The voltage signal corresponding to the differential photocurrent signal is demodulated

using a lock-in amplifier (SR865A) referenced to the pump pulse repetition rate; the output

of the lock-in amplifier is proportional to the product of input signal amplitude and sin(δ)

(Equation 2.36). In the limit of small δ and stable polarization signal amplitude, the

lock-in amplifier output is simply proportional to the difference between the pump pulse

repetition rate and the natural Larmor precession frequency of the spins.

For the case of scalar magnetic field measurement, the polarimeter signal from a single

detection zone is sent to the lock-in amplifier input as a differential signal: for single-

channel scalar measurement with polarimeter photodetectors α and β (associated with the

S and P polarization components of the detected probe beam, respectively) the custom

photodetector circuit is configured to generate a complementary pair of signals consisting of

α−β and β−α, enabling the use of a differential input configuration at the lock-in amplifier,

labeled ”A-B” on the SR865A. This configuration is observed to significantly reduce the

influence of electrical noise associated with the finite electrical ground impedance between

the lock-in amplifier and the photodetector circuit; the grounding noise is substantially
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common mode between the two lock-in inputs. In the case of gradient measurement,

the photocurrent signals from the pair of zones are directly differenced at the input of

the lock-in amplifier, with a photodetector circuit configuration of simply α − β for each

zone. In each case, the time series of the output of the lock-in amplifier is recorded using

a low-noise data acquisition system (NI PXIe-5171R; 250 million samples per second at

14 bits resolution per sample) and the resulting time series is converted to a frequency

spectrum using a fast Fourier transform (FFT) algorithm. The rationale for choosing the

PXIe-NI 5171R are described in Appendix A.4. The frequency spectrum is appropriately

scaled based on the known applied input stimulus signal, calibrated using the relationship

described in Equation 2.33 (field or gradient, as appropriate).

The output response of the demodulation, as perceived by the data collection system,

is the result of multiple factors working together, including intensity, wavelength, and

rotation angle of the probe, gain of the photodetection circuit, proximity of the pump

pulse repetition rate to the natural Larmor frequency of the spins, the angle of the bias

field relative to the pump direction, phase tuning of the demodulation signal, and the

applied signal gains. To account for the combined effect and appropriately scale the noise

spectra, each measurement is calibrated using an input stimulus magnetic field modulation

or gradient modulation, as appropriate, at a known frequency and known (calibrated)

amplitude. For the measurements shown in Figures 2.9 and 2.10, the apparatus was run in

open-loop mode with a continuous series of pump pulses applied at a well-defined repetition

rate corresponding to the Larmor precession frequency in the magnetic bias field B0, and

with the bias field orthogonal to the pump/probe direction. Under these conditions, the

output of the demodulation represents deviations in the phase of the polarimeter signal

(ideally, identical to the phase of the precessing spin ensemble) relative to the optical pump

pulse triggering signal, and is interpreted as deviations in the magnetic field relative to

B0.

Differential magnetic scalar measurements were performed by electronically subtract-

ing the polarimeter signals of the two individual scalar magnetometer channels at the
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input of the SR865A lock-in amplifier and demodulating the result. Similar to how the

single-channel magnetic spectra were calibrated, an oscillating magnetic gradient signal

of a known amplitude and frequency was applied during the measurement to yield proper

scaling of the noise spectra; the magnetic gradient stimulus signal was calibrated using

the relationship described in Equation 2.33.

2.4 Noise Optimization and Tuning

2.4.1 Noise Optimization

As described in section 2.1.1, optically pumped atomic magnetometers exhibit three major

fundamental noise sources (Budker and Kimball 2013): photon shot noise δBPSN , quan-

tum projection noise δBQPN , and probe AC Stark shift noise, also known as light shift

noise δBLSN . An additional potentially significant source of noise is the net sum of addi-

tional noise from the electronics used for detection and interpretation of the experimental

signals, expressed here as δBtech. Photon shot noise per square root Hz as observed at

the output of the polarimeter is a function of the fundamental electron charge q, total

photocurrent IPD (the product of probe photon flux Φpr and photodetector quantum ef-

ficiency η). Translating this shot noise into magnetic units requires scaling based on the

gain of the magnetometer. In a 1 Hz bandwidth and ignoring the effects of any additional

filters in the signal processing electronics, such as those in the lock-in amplifier:

δBPSN (fdet) =

√
2Φprη

gain(fdet)
=

√
2qIPD(1 + f2

detπ
2T 2

2 )

gain(0)
(2.38)

=
Γ2Γ

2
ν,pr(1 + 4 ∆2

Γ2
ν,pr

)
√
1 + f2

detπ
2T 2

2

lrecfn∆Pγ
√
2ηΦpr

(2.39)

where Equation 2.39 is based on Equation 8 from I.M. Savukov et al. 2005 and has added

a frequency dependence based on the open-loop alkali -3dB response bandwidth (in Hz:

πT2). This expression can be separated out into a set of constants (π, the speed of light c,

the probe path length through the vapor cell l, the classical electron radius re, the probe
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transition oscillator strength f , and the gyromagnetic ratio γ); the frequency dependence

of noise, as observed at the frequency fdet at which one wishes to detect magnetic fluc-

tuations (with a corresponding spin phase response bandwidth Γ2); a set of probe and

photodetector characteristics (probe detuning ∆ from the optical transition, linewidth

Γν,pr of the probe optical transition, probe photon flux Φpr, and the photodetector quan-

tum efficiency η); and a set of parameters relating to the alkali (relaxation rate Γ2 = T−1
2 ,

number density n, and polarization P ). For the vapor cell used in this experiment, the

optical broadening is dominated by collisions with the buffer gas (M. V. Romalis, Miron,

and Cates 1997): Γν,pr = 18.1GHz/Amg ∗ 0.8Amg = 14.5GHz. Optimization of Equa-

tion 2.39 requires simultaneous optimization of the alkali parameters and optical probe

parameters.

Of note is that Equation 2.39 contains the implicit assumption that Φpr and P are

uniform throughout the sensitive volume; meanwhile, this experiment utilizes a vapor

cell in which approximately the entire internal volume is optically pumped and optically

probed, with the 1/e2 intensity radius of the pump located at the approximate cylindrical

borders of the vapor cell interior and the 1/e2 intensity region on the major axis of the

spatially elliptical probe beam also approximately located at the cylindrical borders of

the vapor cell interior. Thus, in this experiment the results of Equation 2.39 and the

associated sensitivity optimization described below must be averaged over the internal

volume of the vapor cell in order to generate a valid prediction of photon shot noise; the

topic of volumetric total figure of merit for sensitivity will be covered in more depth in

Section 2.4.3.

In the following analysis, I have arbitrarily chosen to focus first on optical probe opti-

mization as a function of other parameters and then focus on co-optimization of probe and

alkali response. One component of optimization of Equation 2.39 is the transverse relax-

ation rate Γ2, itself a function of the optical pumping rate, polarization, probe scattering
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rate
Γpr

qop
, and spin destruction rate Γ′:

Γ2 =
⟨Rop⟩
qop

+
nkSE(1− P )

qSE
+

Γpr

qop
+

Γ′

qop
=

⟨Rop⟩
qop

+ Γ⊥ (2.40)

In this experiment, the laser linewidth is much narrower than the broadened optical tran-

sition, so the probe scattering rate is given by:

Γpr

qop
=

Φprσpr
Aqop

=
Φpr

Aqop

2recf

Γν,pr(1 + 4 ∆2

Γ2
ν,pr

)
(2.41)

where σpr =
σ0

1+4 ∆2

Γ2
ν,pr

is the photon absorption cross section for the optical probe and A is

the cross sectional area of the optical probe beam. Restating Γ⊥ based on Equation 2.41,

Γ⊥ =
nkSE(1− P )

qSE
+

Φprσ0
Aqop(1 + 4M2)

+
Γ′

qop
(2.42)

and acknowledging the relationship between P⊥ (= P in this experiment) and ⟨Rop⟩ (Equa-

tion 2.35), Equation 2.39 optimizes when Γpr ≈ (1−P )⟨Rop⟩, indicating that the optimum

condition arises when the pump and probe photon scattering rates are comparable. With

the probe beam optimized in terms of the time-average optical pumping rate, the quantity

to optimize in the case of this experiment in which the spin precession is orthogonal to

the bias field (P = P⊥) is

Γ2

nP
≈ ⟨Rop⟩(2− P )

nPqop
+

kSE(1− P )

PqSE
+

Γ′

nPqop
(2.43)

where ⟨Rop⟩ is the time-average optical pumping rate, qop is the optical pumping rate

slowing-down factor (I.M. Savukov et al. 2005) associated with Γ2, kSE is the spin-exchange

constant depending on the spin-exchange cross-section σSE and average velocity v̄, qSE is

the 87Rb spin-exchange relaxation slowing-down factor, Γpr is the probe photon scattering

rate, and Γ′ represents the sum total of additional relaxation rates including interaction

with the cell walls and spin-destruction collisions with other alkali atoms and with the

buffer gas.
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Equation 2.43 includes both the alkali polarization and optical pumping rate as explicit

terms; these are, however, deterministically related as shown in Equation 2.35, somewhat

obscuring optimization of Equation 2.43. Choosing arbitrarily to optimize based on alkali

polarization (although one could equivalently express Equation 2.43 in terms of ⟨Rop⟩ to

optimize directly for optical pumping rate), one may solve Equation 2.35 for ⟨Rop⟩ and

insert the result in Equation 2.43:

Γ2

nP
=

Γ⊥P (2− P )

(1− P )nqop
+

kSE(1− P )

PqSE
+

Γ′

nPqop
(2.44)

where ⟨Rop⟩ has been expressed in terms of Γ⊥ such that it is straightforward to solve for

the optimal polarization. For an alkali atom such as 87Rb with a spin-3/2 nucleus, qop = 4

(I.M. Savukov et al. 2005). For the measured values of Γ′

qop
= 32s−1 and Γ⊥ ≈ 1000s−1

in the low polarization limit at a number density of n = 2 ∗ 1012cm−3, Equation 2.44

optimizes when P ≈ 0.87, implying
Γpr

qop
≈ 40s−1. Inserting these conditions into Equation

2.44 gives:

Γ2

nP
≈ kSE

1.13 + .15qop
qSEqop

(2.45)

which is effectively independent of number density. Equation 2.44 therefore suggests a

straightforward optimization procedure, which will be discussed further in Section 2.4.2.

I have measured the value of qSE in this experiment by way of measuring the transverse

relaxation rate Γ⊥ in the low-polarization limit as a function of vapor cell temperature

as a proxy for alkali number density. For this measurement, I calibrated the vapor cell

temperature at temperatures below 90 degrees C based on the measured number density

using Equation 2.32 and the relationship between temperature and alkali number density

(Steck 2003). In contrast to the reported value of qSE = 5 for a magnetometer operating at

ωL = 2π ∗99kHz (I.M. Savukov et al. 2005)–valid for SERF magnetometers using I = 3/2

nuclei, which necessarily operate in the fast spin exchange limit (W. Happer and Tam

1977)–I find that qSE in this experiment is nearly a factor of 5 smaller at approximately
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Figure 2.7: Plot of measured qSE as a function of vapor cell temperature. The data shows
an average of approximately 1.1 for the value of qSE

1.1, in good agreement with the value qSE = 9
8 for 87Rb (I = 3/2) in the slow spin-

exchange limit (ωL ≫ RSE) as calculated by W. Happer and Tam 1977. Figure 2.7 shows

the results of measurement of qSE as a function of vapor cell temperature.

This further reduces Equation 10 to

Γ2

nP
≈ 0.4kSE (2.46)

for this experiment in an optimized condition with the bias field orthogonal to the optical

pump direction. Expanding and rearranging Equation 2.46 we find

n ≈ ⟨Rop⟩
kSE

(2.47)

under the conditions in which Equation 2.39 has been optimized. As noted above in

Equation 2.39, Γ2 determines the phase response bandwidth of the spins; Equation 2.47

clearly demonstrates that under optimized conditions the availability of pump photons,

driving ⟨Rop⟩, determines the achievable “corner frequency” for the photon shot noise: of

particular note, the high-frequency limit of photon shot noise in the optimized regime is
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inversely proportional to the available optical pumping rate.

Quantum projection noise is similarly dependent on the relaxation rate and number

density, along with the volume V of spins interacting with the probe beam, and the

gyromagnetic ratio (Alem, Sauer, and M.V. Romalis 2013; Ledbetter et al. 2008):

δBQPN =
1

γ

√
Γ2

nV
(2.48)

Additional noise is contributed by quantum fluctuations in the polarization state of the

optical probe beam (Ledbetter et al. 2008). This noise occurs along the probe direction (x̂)

and generates an effective magnetic field noise based on the scalar magnetic field deviation

generated by the resulting AC Stark shift noise. The AC Stark energy shift modifies the

energy splitting of the ∆m sublevels and is therefore indistinguishable from a magnetic

field and will exhibit its own shot noise based on the photon shot noise of the σ+ and σ−

components of the optical probe beam linear polarization state. However, the magnetic

bias field for the present experimental results shown herein is applied orthogonal to the

pump/probe direction (applied in the ŷ − ẑ plane). Hence, x̂ · B⃗ → 0 in this experiment.

Therefore, the AC Stark shift noise does not contribute meaningfully to the total observed

noise under the conditions tested.

Using the polarimeter circuit described in Appendix A.2, the technical noise in this

experiment is dominated by the transimpedance amplifier gain resistor thermal Johnson-

Nyquist electrical current noise, which is itself approximately an order of magnitude below

the photon shot noise limit. For the circuit configuration used in this experiment, the

total electrical noise normalized to the differential signal is approximately 17 nV/
√
Hz

(“Texas Instruments Application Report SLVA043B: Noise Analysis in Operational Ampli-

fier Circuits” n.d.), while the photon shot noise accounts for approximately 150 nV/
√
Hz,

again normalized to the differential polarimeter preamp output configuration. Therefore,

δBtech = 0.4fT/
√
Hz.

In this experiment, the measured value of ΓPR+Γ′

qop
is approximately 60/s when the ex-

periment is tuned according to Section 2.4.2; thus, approximately minimum photon shot
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Noise Source Noise (fT/
√
Hz)

Photon shot noise 3.7
Quantum projection noise 0.6

Light shift noise 0.0
Technical Noise 0.4

Total 3.7

Table 2.1: Table of fundamental noise sources for this synchronously pumped magnetome-
ter under experimentally optimized conditions.

noise and approximately minimum quantum projection noise are achieved at nkSE
qSE

> 600/s

under experimentally optimized conditions; this is achieved with a number density in the

low 1012 per cubic centimeter range, corresponding to a vapor cell temperature of approx-

imately +85 degrees C, dramatically lower than for a SERF magnetometer demonstrating

comparable measured total sensitivity (Wyllie et al. 2012) but with significantly higher

fundamental limits based on the increase in Γ2 associated with spin-exchange relaxation.

Under typical operating conditions for the measurements shown in this paper, the

measured number density is 2*1012 per cubic centimeter, Γ⊥ is approximately 1000/s in

the low-polarization limit, and the effective sensitive volume observed by the probe is

approximately 0.6 cm3. The measured gain in the low-frequency limit of magnetic field

modulation, for small deviations of the bias field about ∆ω = 0 is typically 6000 to 7000

amps per Tesla, and the total photocurrent is approximately 1.5 mA. Using Equations 2.38

and 2.48, the calculated photon shot noise limit is slightly under 4 fT/
√
Hz, while the

quantum projection noise limit is approximately 0.6 fT/
√
Hz. Thus, the quantum projec-

tion noise does not contribute meaningfully to the total noise power in this experimental

configuration.

Equations 2.39, 2.47, and 2.48 demonstrate a straightforward means of further im-

provement (where improvement is defined as decreased noise, increased bandwidth, etc.

as required by a given application) in the standard quantum limit for this magnetometer

through the use of a physically larger vapor cell, an increase in optical probe path length,

and an increase in the available optical pump photon flux (i.e. optical pumping rate).
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The performance of this magnetometer can therefore be scaled for desired performance

characteristics of a given application and for limitations of the available optical pump and

probe system.

Rather than solely focusing on noise optimization for this experiment, consider a more-

generic scenario in which R̂ · Ω̂ = cos(θ) is not negligible, and therefore the AC Stark shift

noise (Equation 2.31) must be taken into account in a more generic optimization of the

magnetometer response physics. The total fundamental noise amplitude is based on the

sum of the noise power of the individual contributors. Combining Equations 2.31, 2.48,

and 2.29 in the limit that the optical probe is detuned by multiple linewidths from the D2

optical transition and in the limit of low detection frequency,

δB2
fundamental = δB2

QPN + δB2
LSN + δB2

PSN

=
⟨Rop⟩
qop

+
nkSE(1−P )

qSE
+

Γpr
qop

+ΓSD

γ2nV
+

Γprrecfcos(θ)
32γ2A2Γν,pr

+
( ⟨Rop⟩

qop
+

nkSE(1−P )

qSE
+

Γpr
qop

+ΓSD)
2
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(2.49)

Differentiating with respect to Γpr,

dΓprδB
2
fundamental =

1
γ2nV qop

+ recfR̂·Ω̂
32γ2A2Γν,pr

+
( ⟨Rop⟩

qop
+

nkSE(1−P )

qSE
+

2Γpr
qop

+ΓSD)Γν,pr

ηΓprrecfn2l2P 2
⊥γ2qop

−
( ⟨Rop⟩

qop
+

nkSE(1−P )

qSE
+

Γpr
qop

+ΓSD)
2
Γν,pr

2ηΓ2
prrecfn

2l2P 2γ2

(2.50)

one finds that the optimum probe scattering rate becomes a function of the angle between

the optical axis and the magnetic field; however, until θ becomes small, the optimal probe

relaxation rate is still in the vicinity of ⟨Rop⟩(1−P ), though slightly smaller than predicted

above. Once again setting Γpr = ⟨Rop⟩(1− P ) and choosing to optimize for polarization:

δB2
fundamental =

⟨Rop⟩(2−P )

qop
+

nkSE(1−P )

qSE
+ΓSD

γ2nV
+

⟨Rop⟩recfcos(θ)
32γ2A2Γν,pr

+
( ⟨Rop⟩(2−P )

qop
+

nkSE(1−P )

qSE
+ΓSD)

2
Γν,pr

2ηrecfΓprn2l2P 2
⊥γ2

(2.51)

it becomes clear that the optimal polarization differs only based on the effects of the

slightly smaller optimal probe scattering rate. Thus, the procedural tuning suggested by
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Equations 2.44 and 2.45 remains approximately valid for real-world values of the angle

between the optical axis and the incident magnetic field.

2.4.2 Tuning

As shown in the noise optimization analysis, Equations 2.44 and 2.45, one may conclude

that there exists a straightforward empirical procedure for experimental optimization of

the operation of the magnetometer. The procedure I have developed is as follows. First, I

measure Γ′: in the weak probe limit, I apply a bias field along the optical pump direction,

apply a long-duration pulse of optical pump light (time duration ≫ 1/Γ′), and measure

the relaxation time constant in the low-polarization limit. I then set Γpr ≈ Γ′ by tuning

the wavelength and intensity of the optical probe beam such that I have approximately

doubled the longitudinal relaxation rate. Once this is complete, I re-orient the bias field

orthogonal to the optical pump beam, send in a series of short-duty-cycle optical pump

pulses at approximately ω = ωL and measure Γ⊥ in the low-polarization limit. Next, I

adjust the alkali number density using vapor cell temperature until Γ⊥ > 11(Γpr + Γ′),

again with Γ⊥ as measured in the low-polarization limit. Finally, I send in a continuous

series of short-duty-cycle optical pump pulses at ω = ωL with maximum optical pump

“on” state intensity; I adjust the optical pump duty cycle and both pump and probe

wavelength while observing the magnetometer response to a magnetic stimulus field of

known frequency applied along the bias field, as measured at the output of the lock-in

amplifier, until the response is maximized. I then verify that the optical pump beam is

optimized by adjusting the duty cycle and observing the response characteristics; verifying

that I do indeed have the ability to over-pump the spins at the chosen alkali number density.

Given an optimal spin polarization, deviation from this optimal value will degrade the

magnetometer performance. Spin polarization will vary as a function of position within the

vapor cell due to interaction with the vapor cell walls and with the buffer gas, along with

the nonuniform optical intensity throughout the volume of the cell. This spatial variation

of conditions throughout the vapor cell complicates analysis of overall optimization of
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the magnetometer: experimental parameters such as pump and probe beam collimation

size and intensity profile will affect the volumetric average optimization as observed by

the optical probe beam. The degree of global optimization, then, as opposed to solely

empirical optimization for a specific set of experimental parameters can be analyzed in

more detail using finite element analysis.

2.4.3 Finite Element Modeling

I constructed a finite element model in COMSOL Multiphysics Version 3.5a with the

goal of examining and visualizing in more detail the effects of experimental parameters

on magnetometer operation and to predict optimal conditions and the consequences of

varying experimental parameters. This model is used to calculate a figure of merit (FOM)

for magnetometer sensitivity. In contrast to how one might interpret Equation 2.39, the

87Rb polarization in the vapor cell is not simply a single uniform polarization throughout

the sensitive volume but rather exhibits a spatial distribution with zero polarization at

the vapor cell walls and effects from the spatially nonuniform ⟨Rop⟩, further modified by

the optical pump scattering rate proportional to 1− P . This model calculates the spatial

distribution of 87Rb polarization based on Fick’s law of diffusion and Equations 2.35, 2.52,

and 2.56. The diffusion coefficient for 87Rb in N2 buffer gas is 0.16 at 273 K and 1 amagat

(Franz and Volk 1976); the model utilizes this value and the buffer gas number density of

0.8 amagat as mentioned above along with a vapor cell temperature of 358 K to calculate

diffusion of the spins in the vapor cell. For the sake of simplicity, instead of directly using

Equations 2.35 and 2.56 as shown, the model instead uses a normalized effective optical

pumping rate Reff = ROP (r, x)/Γ⊥(P → 0) based on the experimentally measured Γ⊥ in

the low-polarization limit; this normalized optical pumping rate is a controllable parameter

in the model.

The model requires appropriately-defined input conditions; a priori analysis of the

incident optical intensity and the characteristics of its variation through the volume of the

vapor cell serve as inputs to the model. The optical pump intensity in this experiment
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exhibits an approximately Gaussian distribution at the incident face of the vapor cell,

and falls off as the pump beam propagates through the cell based on the pump optical

scattering rate (a function of optical pumping rate and the local polarization). With the

pump oriented along x̂,

∇xRop = −nRopdA(1− P ) (2.52)

Noting that the normalized optical pumping rate described above is the average over

the entire incident cross section and further noting that the optical pump beam has an

approximately Gaussian intensity profile with a 1/e2 radius at the radius R of the interior

of the vapor cell, the optical pump beam varies as a function of distance from the cylindrical

axis as

Rop(r) = Rop,0e
−2r2/R2

(2.53)

with the restriction that the average optical pumping rate in this calculation must be

normalized to the effective optical pumping rate:

Reff = Reff,0

∫
2r

R2
Rop(r)dr (2.54)

which then indicates:

Reff,0 = Reff
2e2

(e2 − 1)
(2.55)

giving a normalized optical pumping rate at the incident face of the cell of:

Reff (r) = Reff
2e2−2r2/R2

(e2 − 1)
(2.56)

Similarly, the optical probe beam also exhibits an approximately Gaussian intensity profile,

but rather than exhibiting circular symmetry instead exhibits a different 1/e2 distance

from the center of the beam in ẑ than in ŷ (recall: pump and probe are both propagating

along x̂).

The finite element analysis results for the distribution of P⊥ throughout the vapor cell

volume under the conditions used for this experiment with the bias field orthogonal to the



54

optical pump beam (Figure 2.8) indicate that for an optical pump beam having a circularly

symmetric Gaussian intensity distribution with 1/e2 intensity situated at the vapor cell

cylindrical walls and at the investigated 87Rb number density of 2 ∗ 1012/cm3, the pump

beam must be tuned off resonance relative to the optical transition to obtain an optimal

magnetometer response. The primary effect of this detuning in terms of magnetometer

response optimization is to reduce ∇xRop, thereby reducing ∇xP⊥ and improving relative

uniformity and optimization of P⊥ throughout the vapor cell volume. For each iteration of

the finite element model, the adjustable parameters were the optical pump detuning and

the optical pump power by way of modification of the normalized optical pumping rate.

The relevant figure of merit (higher is better, in this case) is the volumetric integral of the

product of probe beam photon flux Φprobe and the magnetometer optimization parameter

nP/Γ2 (Equation 2.43):

FOM =

∫
V
Φprobe

nP

Γ2
(2.57)

which is calculated for every iteration of the finite element model to inform further refine-

ment of the parameters in subsequent model iterations.

The probe is assumed in the model to be consistent with the weak probe limit; far-

detuned from resonance and at relatively low optical intensity such that the probe gen-

erates only negligible perturbation of the spin polarization. The finite element model

figure of merit predicts optimal operation with the optical pump beam detuned approxi-

mately 5 GHz off resonance based on a simplified optical pumping model using Equation

2.56 but with only one detuning rather than individual detuning from each of the two

ground states; no attempt was made in the model to examine the state distribution in

the two ground states. The figure of merit calculation further predicts optimal opera-

tion of the magnetometer with a normalized optical pumping rate of approximately qop.

These results are both in reasonable agreement with experimental results; experimental

optimization demonstrated optimal operation with the optical pump blue detuned by 3.5

GHz as measured relative to the peak of the observed broadened optical pump absorption

profile, and a normalized optical pumping rate of 3.7.
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This model allows for further a priori optimization for future work. For example, for

the presently available optical pump power further optimization may be achievable using

the buffer gas pressure as a controllable parameter; lower buffer gas pressure, for example,

may increase the efficiency of photon utilization at the cost of increasing Γ′ (Section 2.4.1).

This may allow increases in the collimation size of the optical pump beam, reducing the

spatial variation of the pump and probe beam intensity profiles incident upon the vapor

cell, which may in turn reduce the polarization gradients in the volume observed by the

probe beam, further improving the photon shot noise limit.

2.4.4 Differential Scalar Measurement

For optimal detection of a magnetic field differential between the two sensitive zones shown

in Figure 2.5 a maximal common-mode rejection ratio (CMRR: the ratio of single-channel

response to a uniform field modulation to the two-channel difference response to the same

uniform modulation) is desirable (I. A. Sulai et al. 2019). In an open-loop measurement

as in the present work, a high CMRR requires approximately identical magnitude and

phase response (gain) outputs from the differential photodetector circuits associated with

the two zones in response to a uniform magnetic field modulation, as measured at the

input of the lock-in amplifier. For each of the two zones with nominally identical pump

and probe characteristics, the gain observed in the photocurrent for a well-matched pair

of photodetectors and a well-balanced polarimeter is shown in Equations 2.38 and 2.39 as

modified by Equation 2.36. It is therefore not sufficient to equally split the optical pump

and probe beams and heat the individual vapor cells to a nominally identical alkali vapor

density; high common mode rejection can still only be observed in the small-differential-

field limit and remains sensitive to small changes in operating parameters of the vapor

cells such as alkali number density.

In the present work, a best CMRR of approximately 400 was achieved at 1 Hz as aver-

aged over a 30 second measurement interval (i.e. a best observed CMRR of 400 at 1 Hz),

indicating a response mismatch of roughly 0.25% for the two detection zones on average
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Figure 2.8: Finite element model results for alkali polarization under conditions mimicking
the experiment described in this thesis (color online). The plot indicates the finite element
model prediction for fractional polarization of the alkali in a slice plot passing through the
center of the vapor cell with the pump along x̂ under the predicted optimal conditions.
The plot may therefore be taken as circularly symmetric about the x̂ centerline (black
horizontal line running through the center of the plot). Note that the alkali polarization
is greater than the optimal value predicted by Equation 2.44 in some portions of the cell
and below this value in other portions of the cell; the peak predicted polarization is 0.9 in
this simulation. Also worth noting is that the region of predicted maximum polarization
is located slightly to the pump incident side of the center of the cell, as expected.
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over this measurement interval. At 20 Hz, the best observed CMRR increased to 3000,

as averaged over a 30 second measurement interval. This was accomplished by tuning the

responses of each of the two sensitive zones as observed at the output of the lock-in am-

plifier (SR865A) to maximally match the magnitude and phase responses to an incident

magnetic field, then sending the signal from the first zone to input A of the lock-in and

the signal from the second zone to input B, and using an input configuration for the lock-

in of “A-B.” The differential magnetic field measurement, therefore, is based on simple

electrical subtraction of the voltage signals resulting from the modulating photocurrent

on the two sensitive zones. Tuning parameters included the temperature of each vapor

cell, optical pump and probe alignment (relative to the laboratory frame and relative to

each other) in each sensitive zone, optical pump and probe position within the individual

vapor cells, optical collimation of the pump and probe beams, optimization of the physical

position and orientation of the individual vapor cells within the magnetic shield set, the

rotational orientation of each polarimeter about the pump/probe propagation axis, and

the rotational and translational orientation of the non-polarizing beamsplitter cube used

for combining/splitting the pump and probe light (Figure 2.5). In future work, further im-

provement in the open-loop CMRR may be observed by way of post-processing calibrated

individual response data in software.

In principle, a robust differential measurement with a consistently higher CMRR than

reported above may be observed using individual closed-loop observations of the scalar

magnetic field at each of the two zones. The reason for this is that each closed-loop

magnetometer acts as a magnetic field to frequency transducer: the loop adjusts the

optical pump pulse repetition rate to drive ∆ω → 0 using ϕ as the error signal input

to the loop (Equation 2.36). Under ideal conditions (no heading error, perfectly parallel

magnetometer axes, identically and optimally tuned feedback for minimum error (Tost,

M. Bulatowicz, and T.G. Walker 2023), identical vapor cells, and so on) the upper bound

for the achievable CMRR will be limited by the combined effect of open-loop matching and

feedback loop effects. For a magnetometer gain (including polarimeter response) G(∆ω(t))
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and feedback loop gain K(∆ω(t)) the residual closed-loop error is inversely proportional

to (1 + GK(∆ω(t))); this residual error is effectively a residual open-loop response. For

an open-loop CMRR of ξopenloop, then, the upper bound of the expected closed-loop value

of CMRR would be approximately:

ξclosedloop = ξopenloop[1 +GK(∆ω(t))] (2.58)

while in any real experimental system the observed value will lie below the upper bound

indicated by Equation 2.58 based on the non-ideal nature of physically and electronically

separated instruments as noted above.

The present work has demonstrated a closed-loop response with > 104 suppression of

residual error at 1 Hz (Tost, M. Bulatowicz, and T.G. Walker 2023). Based on the mea-

sured open-loop CMRR of 400, Equation 2.58 indicates an upper bound to the closed-loop

CMRR of approximately 4 ∗ 106 at 1 Hz; the expected observed value will be somewhere

below this. The present implementation of the magnetometer prevents a direct measure-

ment of the CMRR in closed-loop operation because there is only a single optical pump

pulse repetition rate for the experiment. In future work, the experiment may be updated

for closed-loop operation on both sensitive zones by, for example, implementing a second

EOM-based optical pump shuttering system (Figure 2.6 for entirely independent control of

the second vapor cell or perhaps by adding a gradient magnetic field coil and driving this

coil to eliminate the phase difference observed between the two sensitive zones (Equation

2.36).

2.5 Results and Discussion

As shown in Figure 2.9, under optimized conditions achieved as described herein, the in-

strument has demonstrated a measured single-channel white noise floor of approximately

10 fT√
Hz

at a bias field of approximately 29 µT (ωL = 2π ∗ 200kHz), consistent with the

noise power spectral density from the Twinleaf CSUA-1000 current source that is used to
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generate the magnetic bias field. The photon shot noise limit shown in Figure 2.9 was

calculated using the total polarimeter photodetector current (the sum of the photocur-

rents of the two photodetectors rather than the difference) along with the experimentally

measured magnetometer gain as a function of frequency as shown in equation 2.38, and

is consistent with the measured noise background in the absence of pump light. The

demonstrated performance at 1 Hz is comparable to the lowest-noise commercially avail-

able Earth-field-scale magnetometers (GEM Systems GSMP-35 Potassium Magnetometer

2023), which exhibit a noise specification in the range of 200 fT/
√
Hz at 1 Hz.

Finite frequency spikes observed in the spectra shown in Figure 2.9 include 60 Hz and

harmonics from the lab electrical power, plus a number of additional narrow-band fre-

quency spikes associated with the drive circuitry for the electro-optic modulator (Figure

2.6). The probe noise spectrum in Figure 2.9 demonstrates that these observed narrow-

band spikes mostly consist of actual magnetic fluctuations and/or fluctuations in the opti-

cal pump beam pulse phase rather than induced fluctuations in the detection electronics:

when the optical pump beam is physically blocked but otherwise operating exactly as it

did for collection of the remaining spectra, the narrow-band spikes mostly disappear, as

does much of the low-frequency noise background. This behavior is evident also in the

differential scalar noise spectrum shown in Figure 2.10, where blocking the optical pump

beam dramatically reduces the observed narrow-band spikes and low-frequency noise. As

noted above, the detection electronics are more vulnerable to electromagnetic interfer-

ence in the differential scalar measurement: the polarimeter signal for each detection zone

(Figure 2.5) is single-ended for the differential scalar measurement, while for the single-

channel scalar measurement the polarimeter circuitry generates a differential output pair

for transmission to the lock-in amplifier, resulting in cancellation of a substantial major-

ity of electromagnetic interference effects (largely common-mode between the differential

channels).

In the case of the differential scalar measurement, the observed noise is shown in

figure 2.10; for a nominally uniform applied oscillating magnetic field that was applied
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Figure 2.9: (Color online) Black, green, and purple traces: single-channel scalar magne-
tometer noise spectrum in a 29µT bias field for three individual measurements. Blue trace:
noise background observed when blocking the optical pump beam; represents the sum of
probe noise and technical noise. Red trace: calculated photon shot noise limit based on
equation 2.38.

using the uniform Z axis magnetic field coil in the Twinleaf MS-2 magnetic shield set

the measured common-mode rejection ratio (CMRR) at 20 Hz is approximately 3000. As

shown in Figure 2.10, the measured differential scalar noise for the adjacent pair of vapor

cells reaches approximately 1 fT/cm/
√
Hz at around 200 Hz with a measured probe noise

limit of 2 fT/cm/
√
Hz at 1 Hz. Given the 9 cm baseline, this result is consistent with a per-

instrument noise of approximately 6 fT/
√
Hz. Compared to other all-optical differential

magnetometers capable of detecting low-frequency (less than 1 kHz) differential magnetic

fields in Earth field with cm-scale baselines (for example, Sheng, A. R. Perry, et al. 2017,

M. E. Limes et al. 2020, V. G. Lucivero et al. 2021, and S. Wu et al. 2023) the present

results shown in Figure 2.10 represent an improvement in sensitivity, approaching the best

demonstrated differential scalar sensitivity (Sheng, S. Li, et al. 2013) of 0.5 fT/cm/
√
Hz,

achieved at approximately 7.3 µT as compared to the 29 µT bias field used in the present

work.

Compared to an otherwise-equivalent spin-exchange relaxation free (SERF) magne-
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Figure 2.10: (Color online) Red trace: two-channel differential scalar magnetometer noise
spectrum in a 29µT bias field. Black trace: probe noise background observed when block-
ing the optical pump beam; represents the sum total of optical probe noise and technical
noise.

tometer (Allred et al. 2002) operating in near-zero magnetic field, the fundamental lim-

its of the synchronously pumped atomic magnetometer described herein are noisier in

absolute terms because Γ2 is significantly greater in the present work (Equation 2.39):

spin-exchange relaxation plays a much greater role in this experiment than in a SERF

magnetometer. The results presented herein nonetheless demonstrate measured single-

channel sensitivity (noise floor) results comparable to the observed noise floor in many

SERF magnetometers (U. Li et al. 2018; I. A. Sulai et al. 2019). Further, the magnetome-

ter described in this thesis demonstrates this noise level in a magnetic bias field orders

of magnitude too large to allow SERF regime operation (Allred et al. 2002), and at a

much lower vapor cell temperature (+85 degrees C versus typical temperatures greater

than +140 degrees C) and in addition at lower optical pump and probe power. For future

biomedical applications, the present work has demonstrated magnetic gradient sensitivity

comparable with many SERF magnetometers and superconducting quantum interference

devices (SQUIDs) (Yang et al. 2016) at a baseline (distance between adjacent sensitive

elements) relevant to magnetocardiography (I. A. Sulai et al. 2019; Bison et al. 2009) and
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magnetoencephalography (Garachtchenko et al. 1999), and with an all-optical implemen-

tation amenable to configuration as a non-interfering array of sensors.

2.6 Conclusions

In this chapter, I have presented the basic theory of operation of a synchronously pumped

magnetometer, including descriptions and theory detailing the physical basis underlying

the ability to drive and observe coherent spin precession about an incident magnetic field as

a means of observing the magnitude of that field. I have presented a description and theory

for the fundamental mechanisms by which the coherence of the spin ensemble degrades over

time, along with a description of how the coherence time varies with polarization. I have

presented theory showing the fundamental limits of magnetometer noise at the standard

quantum limit, along with an analysis of noise optimization and physics-based procedural

tuning for minimum magnetometer noise. I have utilized this theory to generate a finite

element model that has demonstrated good agreement with experimental results, allowing

for a priori analysis and optimization of alternative experimental configurations.

Using the provided theoretical and conceptual basis, I have demonstrated an all-optical

alkali scalar magnetometer amenable to array configurations and demonstrating sensitivity

consistent with bias field noise limitations, comparable to the observed sensitivity of a

number of SERF magnetometers and gradiometers (I. A. Sulai et al. 2019; U. Li et al.

2018). I have further demonstrated a one-dimensional and two-sensitive-element array of

such instruments with a 9 cm baseline, showing differential scalar magnetic field detection

with 1 fT/cm/
√
Hz differential noise at approximately 200 Hz; this differential result is

consistent with an instrument noise of 6 fT/
√
Hz. The instrument has been demonstrated

to achieve this high sensitivity while operating in Earth-field-scale magnetic fields of 29

micro-Tesla.
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Chapter 3

Vector Magnetometry using A

Scalar Magnetometer

3.1 Introduction

In this chapter, I present an introduction to the method of measurement of vector compo-

nents of the magnetic field incident upon any scalar magnetometer through application of

oscillating magnetic fields along the axis or axes to be measured; I detail and demonstrate

a means of self-calibration of the vector measurements relative to the scalar measurement

accuracy. Three methods of closed-loop feedback are discussed and demonstrated using

the magnetometer described in Chapter 2, with -3 dB magnitude response bandwidth up

to 19 kHz. Measurement uncertainty in the observation of the magnetic field vector com-

ponents is discussed and analyzed, showing contributions from scalar noise, feedback loop

uncertainty, offset errors, and mixing of harmonics of the measured applied oscillating field.

Signal processing and filtering are discussed, including discussion and demonstration of an

optimal filter set based on the uncertainty analysis. Next, experimental results are pre-

sented for each of the three feedback methods, for applied fields oscillating at four different

frequencies, at four different amplitudes each. This chapter will conclude with discussion

and interpretation of the vector measurement results, along with recommendations for



64

future work.

Recall from Chapter 2 that our work utilizes a Bell–Bloom (Bell and Bloom 1957; Bell

and Bloom 1961) magnetometer with a single optical axis, implemented with intensity

modulation of an optical pump beam along R̂ passing through a vapor cell (a 1 cm diameter

by 1 cm length internal dimension cylinder containing isotopically enriched 87Rb and

nitrogen buffer gas) to drive coherent spin precession of 87Rb spins in an Earth-field-scale

magnetic field. The intensity of the optical pump is modulated as a series of short-

duty-cycle pulses in a manner similar to that described in (Gerginov and S. K. S. Knappe

2017). The optical pulse repetition rate is approximately resonant with the natural Larmor

precession frequency ωL of the spins, with a first harmonic component cos(ωt), where

ω ≈ ωL. A linearly polarized optical probe beam co-propagating with the pump measures

the x̂ projection of the spin polarization vector P(t); the linear polarization of the optical

probe rotates proportional to P · x̂ (Equation 2.24). The polarization rotation of the

optical probe beam is measured using a balanced polarimeter with a custom differential

transimpedance amplifier circuit.

3.1.1 Vector Measurement Using a Scalar Magnetometer

In general, by applying three spatially orthogonal oscillating magnetic fields to the inher-

ently scalar magnetometer, each vector component of the incident magnetic field may be

extracted from the resulting modulation of the overall measured measured magnetic field

(T.G. Walker and M.D. Bulatowicz 5 April 2022), herein based on the natural Larmor

precession frequency of the spins. For each vector direction î, the magnetic field compo-

nent along î takes the form Bi(t) = Bi,0(t) + B′
isin(ωit). Given three orthogonal vector

directions (x̂, ŷ, and ẑ in the instrument reference frame, for example) the total magnetic

field vector B observed by the instrument is

|B| =
√∑

i

B2
i (3.1)

The squared magnitude along each î can be written as the square of the sum of the
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low-frequency component Bi,0 and modulation component B′
isin(ωit):

Bi(t)
2 = (Bi,0 +B′

isin(ωit))
2 = Bi,0(t)

2 + 2Bi,0(t)B
′
isin(ωit) +

B′2
i

2
(1− cos(2ωit)) (3.2)

As a result, it is possible to find both Bi,0 and B′
i by demodulating the square of

the measured magnetic field (Larmor frequency as observed by way of the pump pulse

repetition rate) at the first and second harmonics of the applied fields B′
isin(ωit). As

the measured quantity is specifically the pump pulse repetition rate, the success of this

method depends on the ability to measure and respond to each applied (B′
isin(ωit)). A

top-level block diagram of the implemented algorithm is shown in Section 3.3. This chap-

ter compares three feedback methods for tracking the Larmor frequency, with the ultimate

goal of minimizing errors in vector calculations for a full three-axis implementation. As a

first step toward this goal, the work presented herein implements only a single modulation

field, superimposed on the bias field such that |B|2 = (Bz,0 + B′
zsin(ωzt))

2, significantly

simplifying the analysis and interpretation of results as compared to a full 3-axis imple-

mentation.

Note that in Equation (3.2), the assumption is made that the applied magnetic fields

form an orthogonal basis set. In reality, effects such as build tolerances, mechanical

stresses, differential thermal expansion, and so on guarantee that there will exist some

finite deviation from orthogonality of the magnetic field coils producing these fields. As

shown in (Gravrand and A. K. e. al 2001), one may form an orthogonal basis set from the

three magnetic field coils using a carefully measured mapping matrix.

3.2 Experimental Apparatus and Methods

A block diagram of the updated apparatus is shown in Figure 3.1. As in Chapter 2, at

the core of the experiment is a cylindrical glass vapor cell (1 cm internal diameter by 1

cm internal length containing a droplet of 87Rb and 0.8 amagat N2. The vapor cell is

surrounded by ceramic RF heating coils that are designed to minimize induced magnetic
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fields (M. Bulatowicz 30 March 2012) and thermal insulators consisting of aerogel sheets

to maintain a 87Rb vapor pressure of approximately 2-3 × 1012 cm−3 using a heat power

dissipation of 0.3 W.

As described previously, a Twinleaf CSUA-1000 current supply drives the current

through one of the uniform field coils to generate an ultra-low noise bias field on the order

of 29 µT, allowing measurement and verification of the instrument noise floor down to

approximately 10 fT/
√
Hz, an impressive fractional noise value of roughly −190 dB/

√
Hz.

Using a function generator to provide a sinusoidal driving signal, perturbations up to 267

nT can be superimposed on the bias field through the CSUA modulation input; this

was insufficient for the largest-amplitude modulation signals applied in this experiment,

so the CSUA-1000 is placed in parallel with a custom current supply circuit capable of

significantly larger modulation fields but with a white noise floor of approximately 60

fT/
√
Hz and a 1/f noise limit of approximately 2 pT/

√
Hz at 0.1 Hz, thereby dominating

the observed magnetic noise spectrum.

In contrast to the apparatus configuration used for the work described in Chapter 2, the

PXIe-based implementation has been updated to provide for closed-loop operation using a

PXIe-5171R reconfigurable oscilloscope module that is installed in the same chassis as the

PXIe-6614 precision timing module and is configured to use the PXIe-6614 reference time-

base for high-precision, stable timing. The PXIe-5171R module includes a Xilinx Kintex-7

410T field-programmable gate array (FPGA) and utilizes a relatively small fraction of the

FPGA’s capability for the module’s oscilloscope functionality, leaving most of the FPGA’s

resources available for user-programmable functionality. We have programmed this FPGA

using NI LabVIEW to provide for closed-loop operation of our magnetometer with data

collection functionality.

Instead of using a lock-in amplifier for observation and demodulation of the polarimeter

preamp signal, in this work the electrical signal from the polarimeter preamp circuit is

directly digitized using the PXIe-5171R analog input, which uses an analog-to-digital

converter with 14-bit resolution at 250 million samples per second. The (FPGA) on board
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the PXIe-5171R reads the digitized signal and performs real-time least-squares fitting

of the observed polarimeter signal to measure the phase response of atomic spins to a

precision of 47 bits in 0.43 µs as compared to a digital reference model consisting of

cos(ωt) and sin(ωt) components synchronized to the optical pump pulse trigger signals.

Closed-loop digital feedback adjusts the pump pulse repetition rate ω to drive ω → ωL by

any of the three feedback methods as described herein, and a digital logic output controls

the optical pump pulse state (“on” is a logic 1, and “off” is a logic 0) with 8 ns time

discretization based on the 125 MHz FPGA “clock speed.” The pump pulse repetition

rate is controlled by a direct digital synthesis (DDS) frequency synthesizer with 64-bit

precision, based on the FPGA clock (see Appendix A.3 for more detail). As in the work

described in Chapter 2, this experiment uses an optical pulse shuttering system based on

a digitally triggered electro-optic modulator with a high-speed half-bridge for EO voltage

control.

Just as in Chapter 2, the atomic vapor is polarized using a circularly polarized pump

laser tuned near to the 795 nm D1 line of 87Rb and pulsed with a short duty cycle at a repe-

tition rate approximately equal to the natural Larmor precession frequency in the magnetic

bias field. However, for this experiment the pump pulse repetition rate is controlled in a

closed-loop fashion by any of three methods. The closed-loop feedback described below

updates the DDS frequency (and phase, if applicable) to drive the pump pulse repetition

rate to the natural Larmor precession frequency and phase in the presence of perturba-

tions to the scalar field observed by the sensor, and the DDS frequency is captured and

recorded as representative of the Larmor precession frequency.

As described in Equation 2.36, differences in the digitally perceived spin precession

phase δd as compared to the actual spin precession phase δ relative to the optical pump

beam will lead to frequency offsets and sensitivity asymmetry in the magnetometer out-

put. Ideally, one may generate a simple offset ∆δ to compensate for the phase difference;

this will include components consisting of a simple time delay due to the latency in the

closed-loop system as well as phase error based on the analog response of the polarimeter
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Figure 3.1: Block diagram of the experimental apparatus. The 795 nm optical pump
beam pulses are generated using a continuous-wave laser with a custom shuttering system
based on an electro-optic modulator (EOM). The pump beam is circularly polarized using
a quarter-wave plate (λ/4). A non-polarizing beam splitter cube (NPBS) combines the
optical pump and probe beams such that they co-propagate into the magnetically shielded
enclosure and through the 87Rb vapor cell. On the opposite side of the magnetically
shielded enclosure is a dichroic high-pass filter designed to reflect the optical pump beam
back toward the vapor cell and transmit the optical probe beam to a Wollaston prism,
which functions as a polarization beam splitter; S and P polarization components of the
probe beam are each sent to a respective photodetector (PD). The Wollaston prism is
oriented at approximately 45 degrees relative to the unrotated plane of polarization of
the probe beam such that the photodetectors generate approximately equal photocurrents
in the absence of probe beam polarization rotation. The observed photocurrents are
differenced and converted to a differential voltage signal using a custom transimpedance
amplifier (TIA). Finally, the signal is read into the NI PXI-based digital system; feedback
controls the optical pump pulse repetition rate by way of signals controlling the EOM.
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circuitry. Thus, both the latency compensation and phase compensation must be tuned

properly for optimal operation and for generating a true ω = ωL condition. For this ex-

periment, the condition of ω = ωL is determined by sinusoidal modulation of the optical

pump wavelength at a frequency ωw ≪ Γ2, driving a corresponding modulation of the

polarization and transverse relaxation rate (Equations 2.35 and 2.40) with the intent of

finding a feedback phase offset compensation which will generate no first-harmonic re-

sponse to the modulation. In other words, when ω ̸= ωL the polarimeter will exhibit a

coherent output component at ωw; proper adjustment of the latency compensation and

phase compensation will result in no observable polarimeter output component at ωw but

instead with an output at 2ωw based on symmetric modulation about the magnetic line

center.

As in Chapter 2, each pump pulse exhibits an “on” state intensity of roughly 10 mW

incident on the vapor cell, and the magnetometer sensitivity under our normal operating

conditions is observed to maximize at a duty cycle of 0.07, corresponding to 0.7 mW

time-average optical pump power incident on the vapor cell, as measured by a Coherent®

LaserCheck™ optical power meter. Between pulses, the polarized spins precess about the

external bias field at their natural Larmor frequency (Equation 2.33) such that the spin

polarization relative to the bias field axis can be written as P (t) = P⊥cos(ωLt+ δ) + P∥.

For this experiment, the bias field is once again nominally orthogonal to the optical pump

beam such that P∥ → 0. The pump pulse repetition rate is tuned near the first harmonic of

the natural Larmor precession frequency of the spins in the scalar magnetic field observed

by the instrument.

As described above, a linearly polarized CW (continuous wave) probe laser passes

through the cell to track the spin-dependent index of refraction of the 87Rb vapor via Fara-

day rotation. This polarized light is detuned multiple linewidths away from the broadened

87Rb D2 optical resonance near 780 nm in order to reduce the spin relaxation effects of

photon scattering from the probe light and correspondingly optimize magnetometer sensi-

tivity (Section 2.4.1), and exhibits an optical power of 3 mW incident on the polarimeter.
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The angle ϕ of rotation of the linear polarization of the detected probe light then follows

ϕpr(t) ∝ Nx̂ · P (t), where N is the number of spins interacting with the probe beam and

the probe is propagating along x̂. The resulting polarization rotation angle is measured

with a balanced polarimeter; for small polarization rotation angles, the differential pho-

tocurrent is proportional to the rotation angle. Given a pair of photodetectors in the

balanced polarimeter with photocurrents I1 and I2,

ϕpr ≈
1

2

I1 − I2
I1 + I2

(3.3)

which is an approximation restatement of Equation 2.25 and only holds well in the small

ϕpr limit. Recall from Equation 2.25 that the rotation ϕpr of the probe beam as it passes

through the polarized alkali vapor is

ϕpr =
1

2
sin−1 I1 − I2

I1 + I2
(3.4)

In our experiment, the output of the custom polarimeter has a gain of 10 kV/A and

the typical output waveform arising from ϕpr is approximately 1V (0.1 mA) amplitude

corresponding to 1.5 mA total photocurrent. Thus, ϕpr ≈ 0.033 radians, for less than

1 part per thousand deviation from a perfectly linear response. For the purpose of this

experiment, then, the waveform is well-approximated by a sinusoid and Equation 3.3

provides a good approximation.

The total noise output from the polarimeter when the probe is being measured is con-

sistent with the photon shot noise limit (Figure 2.9 and Appendix A.2). The polarization

angle noise δϕ in a 1 Hz bandwidth for small angles is based on the electrical current shot

noise from the photodetectors, given elementary charge q on a single electron:

δϕpol ≈
1

2

√
2q(I1 + I2)

I1 + I2
=

1

2

√
2q

I1 + I2
(3.5)

For a 3 mW probe at 780 nm wavelength, the silicon phototdetectors provide a respon-

sivity of slightly over 0.5 A/W for a total polarization rotation noise of approximately
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7 nano-radians per square root Hz (nrad/
√
Hz). The measured slope of the response

( d
dB (I1 − I2)) during this experiment was typically in the range of 3000 to 5000 amps per

Tesla; based on Equation (3.5), at low frequencies ω ≪ Γ2, where Γ2 is the transverse

spin polarization relaxation rate, the photon shot noise limit of magnetic field detection

is therefore at or below 7 fT/
√
Hz, well below the observed total magnetic noise. The

decrease in magnetic sensitivity (increase in photon shot noise) as compared to the ex-

periment in Chapter 2 is attributable to condensation of 87Rb on the optical windows,

partially obstructing the optical path and reducing the available optical pumping rate and

probe photon flux.

The method of pulsing the optical pump beam at a rate of approximately ω = ωL

effectively pumps the spins in their rotating reference frame; as discussed in Chapter 2

the Fourier transform of a sequence of square pulses contains the pulse repetition rate as

a major component. Starting from the Bloch equation for spins in a magnetic field, it can

be shown (A. Perry et al. 2020) that the observed phase difference ϕ between the spins

and the pump pulses near resonance corresponds to the difference δω between the pump

pulse repetition rate and the natural Larmor precession frequency of the spins, and further

includes contributions from the phase response ϕpol of the polarimeter circuitry and the

electronics system latency δt:

ϕ = tan−1(δω/Γ2) + ϕpol + ωδt (3.6)

In the limit where δω/Γ2 ≪ 1, the phase shift resulting from δω is directly proportional

to δω, and the response is assumed to be linear such that

ϕ → δω/Γ2 + ϕpol + ωδt (3.7)

Each of the feedback methods investigated herein is designed to correct the pump

pulse repetition rate directly using the measured phase ϕ as the error signal driving the

loop. The phase shift (accumulated phase error) δϕ is measured over some period of



72

time, in this case typically a single precession cycle of the spins. Noting that d
dtδϕ =

δω, where δω is the difference between the angular frequency of precession of the spins

and the pump pulse repetition rate, it becomes clear that feeding back to the frequency

based on the measurement of phase inevitably leads to a precession–frequency-dependent

feedback gain component that can lead to instability in the closed-loop response upon

increasing the scalar field magnitude and adversely affect bandwidth upon decreasing the

scalar field magnitude. This gain component can be mitigated by any of a number of

different methods, such as feeding back based on the product δϕT , where δϕ is again the

accumulated phase error and T is the measurement period, rather than feeding back based

directly on δϕ.

The signal-to-noise ratio (SNR) for the measurement of oscillating magnetic fields at

a frequency ωosc is based on the SNR at very low frequencies (SNR0; ωosc ≪ Γ2), the

frequency of interest ωosc, and the SNR bandwidth ω0 = 2Γ2; in the limit of high gain

at ωosc, this SNR is independent of the feedback method chosen. Thus, the instrument

exhibits a “signal-to-noise ratio bandwidth” that is essentially independent of the closed-

loop −3 dB response magnitude bandwidth. At low frequencies, then, each feedback

method is expected to exhibit effectively identical SNR.

SNR(ωosc) ≈
SNR0√
1 + ω2

osc

ω2
0

(3.8)

3.2.1 PI Feedback

The input to the PI (proportional plus integral) gain stage in the first of the three closed-

loop feedback schemes discussed herein takes the δϕ value calculated by the least-squares

algorithm and continuously calculates updates to the pump pulse repetition rate as the

sum of the proportional and integral gain components. The proportional gain component

is a simple multiple of δϕ, and the integral gain component multiplies δϕ by a second gain

and sends the result to a digital accumulator. A top-level block diagram is shown in Figure

3.2. For this work, the PI gain stage is tuned by maximizing the absolute gains over the
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observed range of precession frequencies while avoiding instability. The maximum achieved

feedback bandwidth as measured by the -3 dB response magnitude without insufficient

phase margin toward the higher end of the frequency range is approximately 9 kHz.

In the limit of small ϕpol and δt, a PI loop can provide a very linear closed-loop response.

Examining the response of the spins in isolation, the spin phase response exhibits a corner

frequency of Γ2/π as described above: a PI gain stage can provide a complementary

behavior by tuning the ratio between the P and I components of gain such that the PI

corner frequency is also equal to Γ2/π. For a digital PI gain stage as in the present

experiment, the corner frequency fc is given by

fc =
IfI
2πP

=
Γ2

π
(3.9)

where P and I are the numerical factors multiplying δϕ in the digital gain stage and

fi is the summing rate of the digital integrator; in our experiment, the FPGA clock

frequency. In the present experiment, at Earth-field-scale magnetic fields the measurement

system does not reside in either the negligible ϕpol or small δt limits, and further exhibits

gain proportional to ωL as described above. Therefore, as will be shown shortly, more-

sophisticated methods of feedback provide improved performance over the PI method.

3.2.2 Nonlinear Feedback

Consider the accumulation of phase between two sinusoids, such as the precession signal

and the reference signal:

dδϕ(t)

dt
= ωref (t)− ω(t) (3.10)

The rate phase accumulation is simply the difference in frequency between the two sinu-

soids of interest. Therefore, in a measurement period the accumulated phase is simply

proportional to the frequency difference. In contrast, Equation (3.6) indicates that in the

steady state limit the tangent of phase is directly proportional to the frequency difference.

An important point is that Equation (3.7) holds only for the following cases: (1) in a
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Figure 3.2: A top-level block diagram of the PI feedback scheme. The block labeled DDS
is the digital representation of the Rb spin precession phase and frequency and includes
a look-up table (LUT) to convert the DDS phase word (register value) into a sinusoidal
model of the spin precession; its output is compared to the incoming digitized precession
signal (data) in a least-squares filter (LSF) that outputs the value of δϕ. δϕ is then used
to drive the PI gain stage (block labeled PI). The result of the PI calculation modifies the
DDS phase increment word M.
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steady-state condition and (2) only for small phase offsets. One may more accurately

capture a portion of the nonlinear response of phase to rapid deviations in precession

frequency through a slightly more sophisticated method. More generally, a shift in the

ambient field is detected as a temporary shift in the precession frequency relative to the

reference frequency (Equation (3.10)); recall that between pump pulses the spin ensem-

ble freely precesses at the natural Larmor precession frequency. Comparing in discrete

time the most recent measurement of phase at time interval n (ϕ[n]) to the previous mea-

surement of phase (ϕ[n− 1]), based on the time between measurements Tref [n], one may

deduce the shift in resonant frequency from the previous to present measurements:

ϕ[n]− ϕ[n− 1]

2πTref [n]
= fref [n]− f [n], (3.11)

where fref is the reference frequency to which the actual data are being compared (the

output of the DDS block in Figure 3.3, representing the co-rotating component of Rop).

Making a first-order approximation of the time derivative of Equation (3.11) and insert-

ing the result into Equation (3.10), it is possible to solve for the present actual resonant

frequency f [n] of the spins (Equation (3.11)). One may then predict a first-order approx-

imation of the expected precession frequency f [n + 1] at the next measurement interval

and preemptively update the model (fref [n+1]) by way of the DDS phase increment word

M . From this, a feedback scheme is constructed, which has a similar form to the PI gain

stage (Equation (3.12)):

fref [n+ 1] = fref [n](1−Kp(ϕ[n]− ϕ[n− 1])−Kiϕ[n]) (3.12)

A proportional term (Kp) approximates the derivative between consecutive phase

terms, while an integral term (Ki) approximates the derivative to zero phase. Conceptu-

ally, this scheme can be seen as a translation from a derivative-proportional (DP) controller

into a PI (proportional-integral) controller via a frequency-dependent multiplicative fac-

tor. So, this method captures both the phase deviation itself and a multiple of its time
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Figure 3.3: A top-level block diagram of the non-linear feedback scheme.

derivative, and therefore generates a gain response that is nonlinear in phase deviation.

A top-level block diagram is shown in Figure 3.3. For this work, the gain stage is tuned

to maximize the closed-loop -3dB response bandwidth at approximately 17.5 kHz.

3.2.3 Hybrid Self-Oscillator

Based on Equation (3.6), it can be understood that control of the pump pulse repetition

rate is required in order to drive δϕ → 0. In a “pure” self-oscillator, the periodic incoming

data will directly generate the driving signal. Stated another way, rather than driving

the frequency in order to alter the phase, the phase of the pump pulses in a “pure” self-

oscillator is driven in order to alter the frequency.

In the hybrid self-oscillator method, the phase deviation δϕ of the periodic input∝ P (t)
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directly drives the phase of both the pump pulses and the reference sinusoid. However, the

frequency of the reference must be deduced based on the phase to ensure that the drive

frequency matches the reference frequency. In discrete terms, the number of steps taken by

the DDS accumulator in one period follows as N = 2n/m, where m is the DDS phase word

and n is the bit width of the accumulator. A non-zero phase can be corrected with a shift

in the size of the accumulator with a new phase word m′ = (2n +K ′
iϕ)/N . Reorganizing

these terms results in an updated phase word m′ and a third feedback scheme:

m′ = m(1−Kiϕ) (3.13)

For a “pure” self-oscillator approach, direct feedback of the measured phase response

as a phase shift in the timing of the optical pump pulses now takes the place of the

proportional feedback in the PI and nonlinear feedback schemes. For the PI and nonlinear

approaches, the proportional feedback term directly modifies the repetition rate of the

optical pump pulses rather than directly modifying their phase. However, since the pure

self-oscillator feedback approach does not directly influence the closed-loop −3 dB response

bandwidth, it was found to be beneficial to implement a combination of both phase and

proportional feedback; hence, it was designated as a hybrid self-oscillator based on this

mixing of the nonlinear and self-oscillator methods. A top-level block diagram is shown

in Figure 3.4. For this work, the response bandwidth was maximized at approximately 19

kHz.

3.2.4 Feedback Loop Summary

A comparison between the three feedback loop schemes may be understood qualitatively

as follows. First, the PI scheme measures the phase difference between the DDS model

of the expected precession signal and the actual signal itself and directly uses this phase

deviation to update the pump pulse repetition rate (and DDS phase increment word).

The PI scheme is therefore only reactive—it responds to a measured phase deviation and

makes corrections. Second, the nonlinear scheme takes advantage of the time derivative
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Figure 3.4: A top-level block diagram of the hybrid self-oscillator feedback scheme.
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of the phase to predict the next observed spin precession frequency and updates the DDS

phase increment word accordingly. The nonlinear scheme is therefore both reactive and

predictive; it deliberately seeks to predict the next observed signal increment rather than

only responding to the presently observed signal increment. Finally, the hybrid scheme

takes the nonlinear scheme and adds a direct phase modification of the next pump pulse

based on the observed phase of the present signal with respect to the model (DDS). The

hybrid scheme is therefore reactive and predictive, and includes an additional correction

factor for further improvement of the timing of the optical pump pulses to coincide with

the resonant precession of the spins.

While the PI feedback scheme may accurately correct for frequency offsets, for increas-

ing dB/dt, the latency δt in calculating δϕ and updating the frequency (DDS phase incre-

ment word M) increasingly limits the phase margin. Predictive modification of the pump

pulse repetition rate as in the nonlinear scheme recaptures some of this margin. Meanwhile,

a direct adjustment to the phase as in the hybrid self-oscillator feedback mechanization

can be expected to allow for faster response times to larger dB/dt, as it does not solely

rely on the accumulation of phase inherent in the δϕ error signal calculation that drives

the PI and nonlinear schemes. Thus, at larger values of the frequency–magnitude product

ωiB
′
i (i.e., a larger dB/dt) the hybrid scheme can be expected to more closely track the

spin precession frequency perturbation induced by the applied oscillating magnetic fields

as compared to the PI or nonlinear schemes.

3.2.5 Measurement Uncertainty

As shown in Equation 3.2, measurement of the vector components of the incident magnetic

field requires observation of the first- and second-harmonic components of the square of

the measured total magnetic field in the presence of a modulation applied along the axis

for which the vector component is to be observed. Uncertainty in the measurement of

these components, such as that arising from the finite gain of the feedback loop, will

result in uncertainty in the calculated vector component solution. A key point in the
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evaluation of the effects of uncertainty in the closed-loop response is that the instrument

is inherently a scalar magnetometer. Extension of the instrument’s operation to vector

magnetic field measurement is achieved through applied modulating magnetic fields and

by way of processing the signals in magnetic-field-squared space.

The scalar magnetic field Bs is perceived by the closed-loop measurement system as

measurement value M. Note that M is simply an appropriately scaled version of the

DDS phase increment word m mentioned above, converted into magnetic field units: the

instrument in the present work is a magnetic-field-to-frequency transducer by way of the

relationship between the scalar field, frequency, and the gyromagnetic ratio γ of the spins:

ω = γBs. The value of M includes the actual scalar magnetic field Bs at any particular

epoch and an additional uncertainty δB, which includes effects from the finite gain of the

feedback loop as well as noise and effects from any applied filtering. Thus, the vector

measurement portion of the system perceives

M2 = (Bs + δB)2 (3.14)

One may expand the Bs term as a function of time, defining the static (low frequency)

portion of each vector component as Bi,0 with applied modulation of amplitude B′
i and

frequency ωi:

B2
s (t) =

∑
i

(Bi,0 +B′
icos(ωit))

2 (3.15)

where B0 is the low-frequency component of the incident magnetic field; here, low fre-

quency is defined as lower than ωi. In the general case i = {x̂, ŷ, ẑ} and it is assumed that

modulation is applied along three orthogonal components of the incident magnetic field

(i.e., modulations along x̂, ŷ, and ẑ in the instrument reference frame). In this work, as

a first step toward 3-axis measurement, a single oscillating field is applied along the bias

field to simplify analysis and interpretation of the experimental results, reducing Equation

3.15 to simply
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B2
s (t) = (B0 +B′cos(ωt))2 (3.16)

One may separate δB into its Fourier components at integer multiples of ω to provide

additional insight:

δB =
∞∑
k=0

δBkcos(kωt+ ϕk) (3.17)

Combining Equations 3.14, 3.16 and 3.17 yields

M2 = B2
0 + 2B0B

′cos(ωt) +B′2cos2(ωt)

+2
∑∞

k=0[δBkcos(kωt+ ϕk)(B0 +B′cos(ωt))]

+(
∑∞

k=0 δBkcos(kωt+ ϕk))
2

(3.18)

Equation 3.18 demonstrates that one may measure the amplitude of the applied oscil-

lating field based on demodulation of the square of the scalar field at 2ω (note: cos2(ωt) =

1
2 [1+ cos(2ωt)]); this result combined with demodulation of the square of scalar field at ω

provides a solution for the vector component of magnetic field along the applied oscillat-

ing field direction. Equation 3.18 also clearly demonstrates that the process of squaring

the magnetic field will generate the mixing of harmonics; particularly relevant are mixed

components that result in observed frequency content at ω and 2ω. Significant benefits

can therefore be realized through appropriate filtering of the scalar field before and after

the squaring operation, prior to demodulation.

This work utilizes a sinc (in frequency) filter prior to squaring (more details will be

provided below); a bandpass filter at ω prior to squaring for detection of the 2ω component;

and bandpass filters at ω and 2ω after squaring (Figure 3.5). In this work, B′ ≤ 534 nT

(3740 Hz precession frequency perturbation amplitude), while B0 ≈ 29,000 nT (200 kHz

precession frequency amplitude); thus, in Equation 3.18, it becomes apparent that B′2 ≪

2B0B
′ ≪ B2

0 . Given the presence of noise in the measurement, then, the dominant source

of uncertainty in the measurement of B0 by way of the vector component measurement

technique described in Equation 3.2 is the uncertainty in the measurement of B′:
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B′
measured = B′{1 + 2δB1cos(ϕ1)

B′ + 2
∑
k

δBkδBk+2

B′2 [cos(ϕk + ϕk+2) + cos(ϕk − ϕk+2)]}
1
2

(3.19)

Equation 3.19 demonstrates that, in general, the uncertainty can reasonably be ex-

pected to decrease with increasing amplitude B′ of the applied oscillating field in addition

to benefiting from any filtering prior to the squaring operation that reduces the δBk ̸=1

components. Additionally notable is that an increase in the feedback loop gain and im-

provement in phase response at kω will suppress any feedback loop contributions to the

uncertainty shown in Equation 3.19. Though not explicit in Equation 3.19, each δBk in-

cludes uncertainty δBk,noise from the instrument noise as well as uncertainty δBk,feedback

based on the finite gain of the closed-loop system. Each δBk also an offset δBoffset, which

may arise from such effects as any noise rectification. One obvious source of noise recti-

fication based on the feedback methods described above is the use of δϕ to feed back to

δω: as noted above, the feedback gain is proportional to the precession frequency, eliciting

nonlinearity and corresponding asymmetry in the feedback loop response to an applied

sinusoidal oscillating field. Even-order terms in this nonlinearity will rectify a portion of

the noise.

The error term δBk,feedback can be understood as follows. The closed-loop system

includes a transfer function G(2πf) as a function of frequency f for the instrument and

electronics along with a feedback transfer function K(2πf), resulting in a finite open-loop

transfer function GK(2πf). The residual error δBk,feedback in the presence of applied oscil-

lating field B′ due to the finite response of the closed loop system is therefore proportional

to the magnitude of the applied oscillating field:

δBk,feedback = B′ 1

1 +GK(kω)
(3.20)

In the limit that δBk,feedback ≫ δBk,noise, the contribution to uncertainty in the mea-

surement of B′ arising from the feedback loop will dominate. As described in Equations
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3.19 and 3.20, the uncertainty will no longer appreciably decrease with increasing am-

plitude B′. Thus, for G(2πf) → fixed, an improvement in the feedback loop transfer

function becomes the sole means of further reduction in uncertainty, which is the focus

of this work. Note that for a 3-axis system, this condition will depend on the direction

of the bias field relative to a respective applied oscillating field; the feedback uncertainty

contribution will depend on the observed modulation of the scalar field imparted by the

respective applied oscillating field. Comparing extreme cases in which the bias field is or-

thogonal to the applied oscillating field versus the case studied here, in which the applied

oscillating field is along the bias field, Equation 3.2 demonstrates that in the extreme case,

the applied oscillating field must be much larger than in the case studied here to meet the

condition that δBk,feedback ≫ δBk,noise.

3.3 Results

For each of the three feedback methods investigated in this work, 60 s of scalar magne-

tometer data were collected using each feedback loop method; in each case, an oscillating

magnetic field was superimposed on the bias magnetic field by applying a modulating

current through the same magnetic field coil that provides the bias field itself. These os-

cillating fields were applied at four frequencies (20 Hz, 200 Hz, 2 kHz, and 20 kHz) at each

of four magnetic perturbation amplitudes (0.534, 5.34, 53.4, and 534 nT, corresponding to

3.74, 37.4, 374, and 3740 Hz perturbation amplitude in precession frequency units). The

amplitudes of the applied oscillating fields were calibrated by way of measuring the change

in spin precession frequency per unit drive signal input. For each data set, Equation (3.2)

is used as the basis to solve for the vector component of the bias field that is oriented

along the applied oscillating field. In this case, the bias field and oscillating field are co-

aligned, simplifying the process of evaluating the accuracy of the vector field measurement

as compared to the scalar magnetometer using this technique. In particular, if a result

shows a high relative accuracy, the vector field component that is measured based on the

ω and 2ω components of M2 as shown in Equation (3.2) will be equal to the observed
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scalar field B0.

Each of the 48 data sets (four amplitudes at each frequency, four frequencies, and three

methods) is analyzed by way of the algorithm shown in Figure 3.5 using MATLAB. The

calculations shown in Figure 3.5 are implemented as follows. First, the scalar magnetome-

ter data are upsampled using cubic spline interpolation (the “Spline” block in Figure 3.5)

to increase the effective data rate of all data streams to a uniform pre-selected effective

data rate, chosen such that every frequency of applied oscillating field is represented by

an integer countdown of the effective data rate; this significantly simplifies the design of

Sinc (in frequency) filters that may be applied to the data. The upsampled data are then

mirrored about both endpoints to effectively triple the data length without introducing

discontinuities and to allow for removal of filter end effects. The upsampled and extended

data are filtered using a Sinc filter that is implemented as a simple moving average using

the MATLAB command movmean(data,n), where n is the number of data points in the

moving average. This filter suppresses undesired frequency components ofM , which would

lead to additional frequency mixing and corresponding uncertainty in the measurement of

the 2ω component of M2, such as noise in the vicinity of Nω, where N is an even integer

up to a limit imposed by the sample rate. The magnitude part of the transfer function of

the Sinc filter can be easily understood in a continuous-time approximation. The average

over period T of cos(κt) and starting at an arbitrary time t0 = 0 is simply a Sinc function:

∫ T

0

cos(κt)

T
dt =

sin(κT )

κT
= Sinc(κT ) (3.21)

As noted in the discussion above regarding Equation 3.19, the suppression of δBk ̸=1 com-

ponents will minimize uncertainty in the measurement of B′; thus, prior to squaring the

magnetic field for the measurement of B′, a bandpass filter at ω (i.e., k = 1) is applied

to suppress these undesired components in M . The M2 data sets are further bandpass

filtered at ω and 2ω as appropriate, and then finally truncated back to the original data

length, deleting the mirrored data and eliminating the filter end effects such that the fil-

tered data more accurately represent what might be expected in a real-time system with
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fully settled filters. These filtered data sets are then demodulated at the appropriate

phase to measure values corresponding to the oscillating terms in Equation (3.2) so that

a solution can be found for the measurement of the vector component of field along the

oscillating field direction. In each case, the bandpass filter is designed using MATLAB’s

built-in functionality for generating a minimum-order Chebyshev Type II filter; for maxi-

mum commonality of filter behavior across the range of frequencies, the filter bandwidth

is kept at a constant fraction of the filter center frequency for both the pass-band and

the stop-band, and the pass-band ripple and stop-band attenuation specifications remain

constant across all filter instances.

The Chebyshev Type II filter, as implemented in MATLAB, will exhibit a nonuniform

gain as a function of frequency in addition to exhibiting a non-unity gain at the desired

oscillating component frequencies. Therefore, at each step in which a Chebyshev Type II

filter is applied, the gain of the filter at the desired frequency is measured using a simple

unity-amplitude sinusoidal input to the filter. The filtered M2 signal is then corrected for

the filter gain and passed along to the next step in the analysis.

The “Phase” block in Figure 3.5 refers to the calculation of the ideal phase for demodu-

lation ofM2. Consider an applied magnetic field modulation component 2B0,iBac,isin(ωit+

ϕB) (Equation 3.2), where ϕB is an unknown phase relationship between the modulation

signal as observed in the data and the start of the data set. The ideal demodulation signal

to measure the amplitude 2B0,iBac,i of the resulting oscillation will of course be to multiply

the signal by sin(ωt+ϕB). The most precise possible value of ϕB can be calculated based

on the entire data set–an advantage of post processing. Consider multiplication of the

entire data set of a given M2 separately by cos(ωit) and sin(ωit). Examining the effect

on the 2B0,iBac,isin(ωit+ϕB) component of the signal and ignoring the amplitude for the

moment in order to visually simplify the equations,

sin(ωit)sin(ωit+ ϕB) =
1
2 [cos(ϕ)− cos(2ωi + ϕB)]

cos(ωit)sin(ωit+ ϕB) =
1
2 [sin(ϕ)− sin(2ωi + ϕB)]

(3.22)
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Taking the mean of each of these outputs over the full data set (effectively eliminating

the 2ωi components), one may solve for ϕB:

ϕB = tan−1mean[cos(ωit) ∗M2(t)]

mean[sin(ωit) ∗M2(t)]
(3.23)

This same technique for the extraction of the appropriate demodulation phase will

apply to any signal of interest, and will allow the calculation of both the magnitude

response and the (magnitude * phase) response of an incident signal, i.e. the in-phase

and quadrature components of the signal. In a real-time system, this calculation may be

implemented by way of replacing the “mean” with appropriate low-pass filtering.

Figure 3.7 shows the ratio (scale factor) between the vector component of magnetic

field as measured using our vector measurement algorithm (Figure 3.5) and the magnetic

field as measured by the scalar magnetometer, after correction for the gains of the filters

as described above. Ideally, the vector measurement algorithm will yield exactly the same

result as the scalar measurement; in such a case, the scale factor would be exactly 1. As

shown in Figure 3.7, the scale factor error for our measurement method is less than 1%

in all cases (excluding error bars); in many instances, the scale factor is consistent with

exactly 1 within three standard deviations.

Recall from Equations 3.19 and 3.20 that it is specifically in the limit that δBk,feedback >

δBk,noise wherein an appreciable improvement in uncertainty based on the response of the

feedback loop is expected. Figure 3.8 is consistent with this prediction; no clear advantage

in precision is gained for the nonlinear or hybrid feedback methods over the PI method for

any B′ amplitude investigated herein at 20 Hz and 200 Hz, where |GK| ≫ 1 for all three

methods. Meanwhile, at 2 kHz and 20 kHz, the precision follows the expected progres-

sion of δBk,PI > δBk,Nonlinear > δBk,Hybrid based on the respective closed-loop response

characteristics, with the difference between the nonlinear and hybrid methods being most

clear at the highest frequency. It is, therefore, concluded that in this work, magnetometer

noise dominates the precision of the vector measurement method shown in Equation(3.2

when δBk,feedback < δBk,noise, magnetic measurement noise dominates the scale factor
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Figure 3.5: A top-level block diagram of the implemented vector calculation algorithm
for a single axis, for each data set. The block labeled Spline represents cubic spline
interpolation of the data for optimal sinc filtering (block labeled Sinc). After the sinc filter,
the data are either immediately piecewise-squared (each data point in the time series is
itself squared) or filtered first to suppress δBk ̸=1 components (Equation (3.19)) and then
piecewise squared. The blocks labeled BPF represent band-pass filters at ω and 2ω. The
blocks labeled Phase represent phase detection to determine the appropriate demodulation
phase (Equation 3.23). The blocks labeled SIN represent sinusoidal demodulation, in which
the signal is multiplied by a sine wave at the appropriate frequency and phase and then
low-pass filtered to observe the low-frequency component of the output; these then feed
into a solver block to measure the incident vector field (Bi) and the oscillating field (B′)
magnitude.
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Figure 3.6: A comparison of residual errors between open loop and closed loop operation
in a 29 µT bias magnetic field (200 kHz precession frequency) with a 20 Hz, 0.534 nT
(3.74 Hz precession frequency perturbation amplitude) oscillation.
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Figure 3.7: The relative accuracy of the oscillating field method compared to the scalar
magnetometer (line plots with data points) and precision (error bars) of each method. The
scale factor (Y axis) is the ratio between the measured vector field using the oscillating
field method and the actual magnetic field as measured by the scalar magnetometer, while
the precision is measured as the Allan deviation value of the measured vector time series
at one second integration time.
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Figure 3.8: (color online) The fractional uncertainty of the measured static vector mag-
nitudes, measured as the Allan deviation value at one second of integration time for each
data set.

error, and the chosen feedback method will dominate the relative uncertainty at larger B′

and larger ω, where δBk,feedback > δBk,noise.

3.4 Conclusions

The experiment described in this chapter examined and analyzed the comparative suit-

ability of three different feedback methods for the closed-loop operation of a Bell–Bloom

magnetometer (Bell and Bloom 1957; Bell and Bloom 1961) operating in Earth-field-scale

magnetic fields and driven by intensity-modulated optical pump light with short-duty-

cycle pulses of pump light at approximately the natural Larmor precession frequency with

the intent of measuring the vector components of the incident magnetic field by way of

applying oscillating magnetic fields (T.G. Walker and M.D. Bulatowicz 5 April 2022).

The present work takes a first step toward 3-axis vector measurement by applying a sin-

gle oscillating field along the bias field so that the effects of the feedback method on the

relative accuracy and precision of the vector component measurement can be robustly
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evaluated in a simple and straightforward manner. The investigated feedback methods

include proportional integral (PI), nonlinear, and hybrid self-oscillator feedback methods.

This work has demonstrated, in accordance with Equations 3.19 and 3.20, that with

a combination of sufficiently large amplitude and sufficiently high frequency applied os-

cillating magnetic field, appreciable improvements in measurement uncertainty can only

be realized by way of improvements in the feedback loop response. In this work, these

improvements are demonstrated when using feedback methods which capture a greater

portion of the nonlinear response of the instrument to the increased perturbation am-

plitude and frequency (Equation 3.6). It is further important to note that the method

outlined herein for the measurement of the vector magnetic field components draws its

accuracy from the accuracy of the scalar magnetometer itself in addition to any accuracy

considerations in the feedback method and the vector calculation process (Figure 3.5).

Thus, to meet any particular absolute accuracy specification for the measurement of the

vector components of the incident magnetic field, the scalar magnetometer must be at

least as accurate as the desired vector accuracy.

In future work, the vector measurement and feedback methods described herein may

be extended to 3-axis vector magnetic field measurement. Further, the vector component

measurement algorithms may be implemented in real time for the active measurement of

the vector components of the magnetic field. Additionally, as described above, the error

signal δϕ that drives the feedback loop can be updated to improve the response in a wide

variety of magnetic field magnitudes. Finally, the magnetometer performance may be

evaluated in an unshielded magnetic environment.

3.4.1 Data and MATLAB code Availability

Data and MATLAB code available at

https://uwmadison.box.com/s/j1rdssru93jjyum7tj3yaoas15kugx0h

(uploaded 28 March 2023). To process data, download all data and MATLAB code

files (.m files) to a single folder and run the code Data_to_Vector_Time_series.m from
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the same folder.
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Chapter 4

All-Optical Synchronously

Pumped RF Magnetometer

4.1 Introduction

Atomic magnetometers have demonstrated the potential for high sensitivity detection of

magnetic fields at frequencies up to radio-frequency (RF) detection in the MHz regime

without the use of cryogenic cooling (Keder et al. 2014b; Lee, V.G. Lucivero, et al. 2021;

I.M. Savukov et al. 2005). Low-frequency to RF detection is useful for many applications

from ultra-low-field MRI (Mazurek, Cahn, and M. Y. e. al 2021) to NMR spectroscopy

(I.M. Savukov et al. 2005), magnetoencephalography (Rea et al. 2022), magnetocardiogra-

phy (I. A. Sulai et al. 2019) and beyond. In contrast to an inductive pick-up coil (Gruber

et al. 2018), optically pumped RF atomic magnetometers are effectively insensitive to elec-

tric fields and do not exhibit inductive cross-coupling, making them particularly amenable

to use in array configurations. Typically, optically pumped RF magnetometers pump the

spins along the bias field and allow the incident RF field to stimulate resonant precession

of the spins about the bias field (for example, Keder et al. 2014b; Lee, V.G. Lucivero,

et al. 2021; Bevington, Gartman, and Chalupczak 2019). This chapter covers the demon-

stration and analysis of what is to the best of our knowledge the first demonstration of
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RF sensitivity for a synchronously pumped (Bell-Bloom) magnetometer; the underlying

physics are presented along with a straightforward path to increased RF sensitivity.

It is worth noting that the typical optically pumped RF magnetometer approach ex-

hibits a lower spin polarization relaxation rate as compared to the present experiment: in

the absence of a transverse magnetic field component, spin exchange does not generate

decoherence of the ensemble (see Chapter 2) and therefore the magnetometer can take

full advantage of light-narrowing (Appelt et al. 1999) to increase the sensitivity. However,

these RF magnetometers are primarily sensitive to RF magnetic fields transverse to the

bias field and are unable to detect low-frequency fluctuations with high precision and low

noise; depending on the application, this may be an advantage or a disadvantage. Further,

a decrease in the achievable minimum detectable field (i.e. sensitivity) comes at the cost

of response bandwidth; in the photon shot noise limited case, bandwidth and sensitivity

are deterministically related by way of the transverse spin relaxation rate Γ2. As will be

shown shortly, an increase in sensitivity by way of decreasing response bandwidth will

actually degrade RF detector performance for any applications benefiting from increased

information transmission rates.

As described in Equation 2.29, the minimum detectable field for a shot noise limited

magnetometer as in the present experiment is proportional to Γ2, while as noted elsewhere

in Chapter 2 the response bandwidth is Γ2/π. RF applications in which information is

being received by a detector benefit more from wideband detection than from an increase

in signal-to-noise ratio (SNR): the Shannon-Hartley theorem states that the information

capacity C of a signal with bandwidth BW is

C = BWLog2(1 + SNR2) (4.1)

where the information capacity is in bits received by the detector per second. For a mag-

netometer operating in open-loop mode, then, with an incident radio frequency magnetic

field component of BRF and a total noise at the RF detection frequency of δBtotal, the
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Shannon-Hartley theorem states

C =
Γ2

π
Log2

(
1 +

B2
RF

δB2
totalΓ2/π

)
(4.2)

which clearly demonstrates that in the limit where technical noise is negligible and where

δBtotal ≈ δBPSN ∝ Γ2, as in the present experiment, an optimal Γ2 exists for maxi-

mizing the rate of transmitted information; further, the optimal Γ2 is dependent on the

magnitude of the received RF magnetic field. Therefore, a maximal degree of light nar-

rowing is not necessarily advantageous and the advantage or disadvantage of the typical

RF magnetometer over a synchronously pumped RF magnetometer must be evaluated on

a case-by-case basis.

Equation 2.33 (recall: ωL = γ|B|) suggests that for any modulating magnetic field

orthogonal to the bias field one would expect a second-order response. While the relation-

ship described in Equation 2.33 does hold for low-frequency magnetic fields (ω ≪ ωL), the

approximation breaks down for magnetic field oscillations which are both orthogonal to

the bias field and near the natural Larmor precession frequency ωL. Naively solving the

Bloch equations using only an examination of the effects of the magnetic fields, one will

conclude that an experiment in which B̂ · R̂ = 0 an oscillating field Ω1Ω̂ cos [(ωL +∆1)t]

with Ω̂ · B̂ = 0 should generate a precession phase response ϕ(t) ∝ Ω2
1 cos∆1t. As shown

in Section 4.3, while this relationship does indeed hold for larger values of Ω1, in the small

Ω1 limit the magnetometer response is instead linear in Ω1. We have found that the linear

component of the response occurs due to an interaction between the applied oscillating

magnetic field and the AC Stark shift ΩAC(t) associated with the optical pump beam.

For optimal operation of the synchronously pumped magnetometer in this experiment,

the optical pump beam is detuned from the D1 optical transition by a non-negligible

fraction of the optical absorption linewidth and therefore induces a virtual magnetic field

by way of the AC Stark shift, with expectation value ⟨ΩAC⟩ in units of induced precession

frequency perturbation. With an optical pump along R̂ and a bias field along Ω̂, using

the same orthonormal basis set of Ω̂, ξ̂, and η̂ described in Chapter 2, the effect can
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be qualitatively understood as follows: as described in Equation 2.2, ΩAC(t) includes a

significant Fourier component at ωL, tipping the spins out of the ξ̂ − η̂ plane into Ω̂;

meanwhile, in the rotating reference frame of the precessing spins, the incident RF field

includes a slow Fourier component at frequency ∆1 which tips the spins from Ω̂ back

toward the ξ̂ − η̂ plane, at a phase deviation ϕ(t).

The Bloch equations for the time evolution of the spin S⃗ in the rotating reference

frame of the precessing spins can naturally be divided into components parallel and per-

pendicular to the bias field; Sz and S+ = A+e
iωt, respectively. Given a natural Larmor

precession frequency ωL, transverse relaxation rate Γ2, an incident RF field along ξ̂ of

magnitude Ω1 and frequency ω1 ≈ ωL with ∆1 = ωL − ω1, and an optical pumping rate

R(t) associated with a corresponding AC Stark shift ΩAC(t), the Bloch equations for the

transverse component of spin in the case where the optical pump pulse repetition rate is

equal to the natural Larmor precession frequency of the spins become:

dtA+ = −Γ2A+ − i
[
ΩAC(t) + Ω1cos(ω1t)

]
SΩe

−iωLt +R(t)e−iωLt (4.3)

dtSΩ =
[
ΩAC(t) + Ω1cos(ω1t)

][
A+e

iωLt
]
−
(
Γ +R(t)

)
SΩ (4.4)

In the rotating reference frame, we can replace ΩAC(t)e
−iωLt and R(t)e−iωLt with their

time-average values, ⟨ΩAC⟩ and ⟨R⟩. Again assuming that the optical pump is on resonance

with the natural Larmor precession frequency of the spins, in the rotating reference frame

⟨Ω1cos(ω1t)e
±iωLt⟩ = iΩ1

2 e∓i∆1t and ΩAC does not generate any polarization along Ω̂.

Equations 4.3 and 4.4 become

dtA+ = −Γ2A+ − i

[
⟨ΩAC⟩+

Ω1

2
ei∆1t

]
SΩ + ⟨R⟩ (4.5)

dtSΩ =
iΩ1

2
A+e

−i∆1t − (Γ + ⟨R⟩)SΩ (4.6)
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Solving Equations 4.5 and 4.6 for A+:

A+ =
⟨R⟩ − iSΩ⟨ΩAC⟩

Γ2
+

SΩΩ1

2(iΓ2 +∆1)
ei∆1t (4.7)

and SΩ:

SΩ = A+e
−i∆1t Ω1

2
(
i(Γ + ⟨R⟩)−∆1

) (4.8)

One may solve Equations 4.7 and 4.8 in the limit that the oscillating components of A+ are

small compared to the steady-state component: in this limit, A+ exhibits magnitude and

phase oscillations at frequencies ∆1 and 2∆1, proportional to Ω1ΩAC and Ω2
1, respectively.

A+ =
⟨R⟩
Γ2

(
1 +

Ω1ΩAC(i∆1 − (⟨R⟩+ Γ))ei∆1t

2Γ2(∆2
1 + (⟨R⟩+ Γ)2)

+
Ω2
1e

2i∆1t

4(iΓ2 +∆1)(i(⟨R⟩+ Γ) +∆1)

)
(4.9)

with a first harmonic oscillation magnitude of

A+,osc1 =
⟨R⟩
Γ2

Ω1ΩAC

2Γ2

√
∆2

1 + (⟨R⟩+ Γ)2
(4.10)

noted to be proportional to Ω1ΩAC . Assuming fixed optical pump conditions one would

therefore expect to observe a “baseband” precession phase modulation of the spins at the

frequency ∆1, proportional to Ω1.

A sinusoidal magnetic field modulation along ξ̂ is equivalent to a pair of rotating mag-

netic fields, co-rotating and counter-rotating with respect to the spins. It is specifically

the co-rotating component which drives the slow phase shift response described in Equa-

tions 4.9 and 4.10. Equivalently, a sinusoidal modulation along η̂ will exhibit a component

co-rotating with the spins and will elicit the same magnitude response, phase shifted by

an additional π/2.

Recall from Equation 2.10 that Rop = Φopσ(νop) which is maximized when νop is

resonant with the D1 optical transition. Meanwhile, ⟨ΩAC⟩ is maximized when the optical

pump beam is detuned significantly from resonance (Levi et al. 2016). Φop cannot be

arbitrarily increased in this experiment due to limitations on the available pump photon
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flux, and as a result the optimal 87Rb polarization cannot be reached simultaneously with

maximal ⟨ΩAC⟩. Thus, in this experiment I optimize the RF response by specifically

maximizing the ⟨Φmod⟩P⊥ product as a function of νop by way of maximizing the output

response of the magnetometer to an applied oscillating field detuned by ∆1. I find optimal

operation for RF sensitivity at approximately 9.2 GHz detuning from the wavelength of

maximum optical absorption of the optical pump laser beam in the vapor cell used herein

with Γν ≈14.4 GHz (Chapter 2). Compare this to the 3.5 GHz optical pump detuning at

which the magnetometer sensitivity to low-frequency magnetic fields is optimized.

4.2 Experimental Apparatus

The basic experimental apparatus in this experiment is identical to the apparatus de-

scribed in Chapter 2, but with the exception that an oscillating magnetic field Ω⃗1 =

(aξ̂ + bη̂)cos(ω1t) orthogonal to the bias field Ω⃗ is now included. An updated version of

the abbreviated schematic of the experimental apparatus for this experiment is shown in

Fig. 4.1, with the addition of the incident RF magnetic field and a reference for the ori-

entation of the previously-mentioned orthonormal basis set established in Chapter 2. The

applied RF oscillating field is driven by way of the modulation input on the same Twinleaf

CSUA-1000 current source. Calibration of the applied RF field magnitude is performed

relative to the low-frequency response (where low frequency modulations are much slower

than Γ2/π) through observation of the oscillating component of voltage across a resistor

in series with the electrical current passing through the magnetic field coil, under the

assumption that the current-to-field conversion is sufficiently similar at 200 kHz.

Regarding differences in the current-to-field conversion factor at low frequency versus

200 kHz, recall that the vapor cell is housed inside a Twinleaf MS-2 magnetic shield set with

integrated magnetic field coils; the magnetic permeability of magnetic shielding alloys such

as ASTM-A-753, Alloy 4 (also known as Hipernom, HyMu 80, Moly Permalloy, or Magnifer

7904) is dependent on frequency. Specifically, the magnetic permeability decreases with

increasing frequency (particularly frequencies wherein the ”skin depth” is much less than
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Figure 4.1: a) Block diagram of the operational concept. Similar to Figure 3.1 with the
addition of an applied oscillating RF magnetic field in the ξ − η plane and a reference
showing the orientations of the orthonormal basis set in this experiment.

the thickness of the material). Estimates based on published data (“MuShield Frequently

Asked Questions” n.d.) indicate that the effective permeability becomes proportional to

Ω
−2/3
1 . However, based on this same data, the relative magnetic permeability is still

expected to be greater than 100, leading to an expected deviation of less than 1 percent

in the calibration.

While it is not explicitly shown in Equation 4.9, the low-frequency component of

the spin precession phase response to the incident RF magnetic field is sensitive to the

detuning of the optical pump pulse repetition rate relative to the natural Larmor precession

frequency. When ωL ̸= ω (i.e. the optical pump pulse repetition rate is not quite equal to

the natural Larmor precession frequency of the spins), the RF response magnitude exhibits

asymmetry about ω; this effect can be exploited to carefully tune ω → ωL to a higher level

of precision and accuracy than is achievable by maximizing the observed amplitude of the

precession signal; I therefore set the condition of ω = ωL by square-wave modulating the

frequency of the applied RF magnetic field and adjusting ωL using the bias magnetic field

until the RF response to ±∆1 is equal in magnitude.
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Figure 4.2: Measured spin precession phase response to a 20 Hz magnetic stimulus field
along the bias field and a (∆1 = 20Hz) stimulus field orthogonal to the bias field as
compared to theory (Equations 2.36 and 4.10)

4.3 Results and discussion

I conducted a series of experiments to test the theory outlined in Equation 4.9 with

measurement results validated against Equation 4.10. For the results shown in Figure

4.2, the “on” state intensity of the optical pump beam is varied by way of adjusting the

voltage applied to the electro-optic modulator (Figure 2.6), thereby adjusting both the

optical pumping rate and the AC Stark shift simultaneously. The “Theory” curves shown

in Figure 4.2 are calculated using measured values of the magnetic field coil response to

RF and DC inputs, the AC Stark shift, optical pumping rate, and transverse relaxation

rate of the spins. For these experiments, I arbitrarily chose a DC stimulus field frequency

of 20 Hz and corresponding RF detuning of 20 Hz for the sake of convenience: the chosen

frequency is much lower than Γ2, satisfying the quasi-steady-state requirements for validity

of Equation 2.36 while remaining fast enough for robust triggering on the oscilloscope

to provide for qualitative validation of the lock-in amplifier signal outputs. Figure 4.2

demonstrates that the experimental data and theory are in good agreement.
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Figure 4.3: Spin precession phase response as a function of applied oscillating field mag-
nitude at ∆1 = 20Hz for small Ω1. Inset: measured response out to larger Ω1 with 2nd
order polynomial fit. The data show a linear-dominated response at low Ω1, with the
response dominated by the second-order term at larger Ω1, as expected

Equation 4.9 further predicts a linear relationship between the phase modulation of the

spin precession and the magnitude of the applied RF magnetic field Ω1x̂ cos [(ωL +∆1)t] in

the small Ω1 limit for the response component driven by the AC Stark shift of the optical

pump beam; when Ω1 is comparable to or larger than ⟨ΩAC⟩, Equation 4.9 predicts a

quadratic component to the response. As shown in Figure 4.3, this prediction also matches

well with the experimental data; in the small Ω1 limit the magnetometer exhibits a linear

relationship between the response magnitude and RF field magnitude at frequency ∆1 =

20Hz. As Ω1 increases, one may clearly observe the influence of the expected Ω2
1 response

component. As shown in Figure 4.3, the linear response dominates for ⟨ΩAC⟩ > Ω1, while

the second order response dominates when Ω1 ≫ ⟨ΩAC⟩ (see Figure 4.3 inset).

The noise spectra shown in Figure 4.4 show a comparison between the sensitivity to

RF fluctuations at ∆1 = 20Hz versus the sensitivity to magnetic oscillations at 20 Hz. As

shown in Figure 4.2, the observed spin precession phase modulation for the RF sensitivity

in this magnetometer is lower than the sensitivity observed for low-frequency magnetic field
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fluctuations, accounting for the difference in the observed noise minima. Easily visible in

Figure 4.4 is the 20 Hz input stimulus signal of a known (calibrated) amplitude which is

used for appropriate scaling of the lock-in amplifier output into magnetic units. Additional

narrow frequency spikes arise in the spectrum due to electrical power; these are observable

at 60 Hz and harmonics.

Noticeable in a comparison of the RF and DC sensitivity curves in Figure 4.4 is that the

electrical power interference appears to be similarly shaped for the RF and DC sensitivity

curves, though of approximately an order of magnitude difference in amplitude. Next,

many harmonics of 60 Hz are present, indicating that the time series of the magnetometer

data includes a coherent narrow pulse component at 60 pulses per second. Moreover, the

frequency spike at 60 Hz is greater than the spike at 180 Hz, while the magnetic field

produced by electrical current in the power lines exhibits a dominant component at 180

Hz–a condition which will be exacerbated by the frequency dependence of the magnetic

permeability of the magnetic shielding material. Therefore, the presence of 60 Hz and

harmonics is not consistent with being dominated by magnetic field oscillation at the

vapor cell. As an additional indication of the cause, the electrical power interference is

absent from the probe noise curve, taken upon placing a physical barrier between the

optical pump beam and the vapor cell.

Together, these observations therefore suggest that the power line interference is likely

observable on the optical pump beam; in particular, manifesting as phase deviations of

the optical pump beam relative to its intended phase. A measurement of the optical

pump beam pulse time series demonstrates that this is indeed the case: electrical power

line interference modifies the timing (phase) of the optical pump pulses, leading to a

perceived magnetic field according to Equations 2.33 and 2.36 in addition to any actual

induced magnetic fluctuations observed by the precessing spins. The optical pump phase

modulation is fundamentally a low-frequency effect; the magnetometer noise spectrum,

referenced to RF sensitivity, simply makes the amplitudes appear larger than for the DC

sensitivity: in the uncalibrated time series, these amplitudes are indeed identical. See
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Figure 4.4: (Color online) Red trace: RF magnetometer noise spectrum. Yellow trace: DC
magnetometer noise spectrum under identical conditions. Blue trace: RF magnetometer
noise floor, dominated by probe noise but also including technical noise.

Appendix A.1 for more detail.

4.4 Conclusions

In the experimental work described in this chapter, I have presented the experimental

demonstration and underlying theory for linearized detection of RF magnetic field oscil-

lations near the natural Larmor precession frequency of the spins in an all-optical syn-

choronously pumped (Bell-Bloom) magnetometer with parallel optical pump and probe

beams. Repeated searches of the literature have uncovered no evidence of a prior demon-

stration of RF sensitivity in a transversely synchronously pumped magnetometer; thus, to

the best of our knowledge this work represents the first demonstration of a transversely

pumped RF Bell-Bloom magnetometer with parallel pump and probe beams. A potential

advantage of a Bell-Bloom RF magnetometer as in the present work is that the RF sensi-

tivity does not inherently interfere with the ability to detect low-frequency magnetic field

fluctuations; further, the RF sensitivity can be emphasized or minimized by appropriate
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choice of the optical pump wavelength, thereby controlling the value of ⟨ΩAC⟩.
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Chapter 5

Conclusions and Future Work

5.1 Suggestions for Future Work

Future work can build upon the successes of the work described in this thesis. For the

scalar and differential scalar magnetometer, an alternative pulsed optical pump light source

with greater “on” state intensity will enable wider signal-to-noise ratio bandwidth, optical

pump pulse intensity profile shaping or optimization, and the use of a physically larger

vapor cell for further improvement in the fundamental noise limits. As noted in Chapter

4, such a pump light source will also generate increased RF detection sensitivity. An

increase in the optical path length of the probe beam in the polarized vapor (Equation

2.39) will further reduce the photon shot noise limit. For example, a multi-pass optical

probe will improve the photon shot noise limit approximately as the square root of the

number of passes (recall from Chapter 2: the probe is detuned by several linewidths from

the optical transition and exhibits an optimal photon scattering rate, therefore requiring

further detuning for optimal operation when the probe passes multiple times through the

vapor cell). Next, the differential scalar magnetometer measurement can be implemented

in a closed-loop fashion as described in Chapter 2 to improve the common-mode rejection

ratio and thereby improve differential detection performance (I. Sulai et al. 2019).

For detection of the vector components of the magnetic field, operation may be ex-

tended to full three-axis detection using the method described in Chapter 3, and the
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feedback loops can be further improved by modifying the error signal driving the loops

from a simple phase difference to the product of phase and observation time such that

the loop gain becomes substantially independent of precession frequency (magnetic field

magnitude). Finally, a feed-forward system may be implemented to modulate the optical

pump pulse repetition rate coherently with the applied oscillating magnetic fields, lifting

the presently observed feedback loop performance limits.

Future work on detection of the vector components of magnetic field may also imple-

ment a different mechanization than the oscillating field method described in this thesis.

Specifically, the addition of a second optical probe beam, orthogonal to the present opti-

cal pump/probe axis, can track the “cone of precession” of the spin ensemble in real-time

through direct observation of the polarization component projection along a second axis.

With the exception of a sign degeneracy that can be lifted using a weak applied oscil-

lating magnetic field, this will allow real-time observation of the vector direction of the

incident magnetic field. Consider a pump/probe axis along R̂ = ẑ, a bias magnetic field

Ω⃗ = Ω(x̂sin(θB)cos(ϕB) + ŷsin(θB)sin(ϕB) + ẑcos(θB), and a second probe along x̂. As

described in Equation 2.24, a probe along some axis x̂1 will measure P⃗ · x̂1.

The Bloch equation (Equation 2.12) indicates that for an optical pump repetition rate

ω = ωL

Pz = P
(
cos2(θB) + sin2(θB)cos(ωt)

)
(5.1)

where terms are as defined above. Taking the ratio of the oscillating component to the

steady-state component, we can solve for the opening angle of the cone (up to a sign

ambiguity), but not the direction ϕB in which that opening is pointing:

tan2(θB) =
Pz(ω)

Pz(0)
(5.2)

Meanwhile, the orthogonal probe allows for measurement of ϕB. The polarization along

x̂ is

Px = Psin(θB)

(
cos(θB)cos(ϕB)[1− cos(ωt)] + sin(ϕB)sin(ωt)

)
(5.3)
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which exhibits a steady-state component and oscillating components that are in-phase and

in quadrature with the oscillating component of Pz. Demodulating the output from the x̂

probe, we get a demodulated in-phase component

Pxcos(ωt) = Px,in−phase = −Psin(θB)cos(θB)cos(ϕB) (5.4)

and a demodulated quadrature component

Pxsin(ωt) = Px,quadrature =
1

2
Psin(θB)sin(ϕB) (5.5)

So, the probe along x̂ allows us to solve for ϕB:

tan(ϕB) =
−2Px,quadraturecos(θB)

Px,in−phase
(5.6)

Having solved for both the opening angle of the cone relative to the optical pump axis ẑ

and its orientation about ẑ, we have solved for the vector direction of the incident magnetic

field, up to a sign ambiguity in θB. The sign ambiguity can be lifted by applying a slow

oscillating field Ωzcosωzt along ẑ and demodulating θB(t):

Sign(θB(t)cos(ωzt)) = Sign(θB) (5.7)

5.2 Conclusions

In this thesis, I have presented a modernized Bell-Bloom magnetometer operating in the

continuously synchronously pumped regime for measurement of Earth-field-scale magnetic

fields with potential for high performance in a wide range of unshielded applications in-

cluding biomagnetism, magnetic aiding of navigation, geosensing, RF detection, and many

more. I have provided the basic theory and description of the underlying physics of oper-

ation, which in turn provides the basis for high-precision measurement of Earth-field-scale

magnetic fields. I have described the experimental apparatus and data collection method.
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I have demonstrated a combination of scalar magnetic field measurement performance

and differential scalar measurement performance matching the best published scalar sen-

sitivity for measurement of Earth-field-scale magnetic fields and approaching the best

published result for differential scalar sensitivity, respectively, but using a physically sim-

pler apparatus with simplified data interpretation and much wider measurement band-

width. I have formulated and demonstrated a deterministic physics-based procedural

optimization of this magnetometer for measurement at the standard quantum limit. I

have demonstrated a signal-to-noise ratio in the mid-109
√
Hz range with deterministic

means of further improvement in noise, bandwidth, or both, and guidance for the same.

I have constructed and validated a finite element model for more-global optimization of

the performance characteristics of this magnetometer given a particular vapor cell ge-

ometry and optical pump and probe intensity profile, capable of analytically optimizing

experimental parameters such as vapor cell size and shape, buffer gas pressure, and both

pump and probe optical intensity profile. I have provided and demonstrated physics-based

guidelines for design of an optical detection system strongly dominated by photon shot

noise, allowing the technical noise background to fully support operation at the standard

quantum limit of the magnetometer.

I have demonstrated that this magnetometer technology provides scalar magnetic field

sensitivity and differential scalar sensitivity in Earth-field-scale magnetic fields that ri-

vals the performance of superconducting quantum interference devices (SQUIDs) while

avoiding the primary disadvantages of SQUIDs. Unlike SQUIDs, this magnetometer does

not require cryogenic cooling or any of the associated costs and limitations, and therefore

shows potential for more-widespread application and use.

I have analyzed and demonstrated the feasibility of a method for measurement of

the vector components of a magnetic field, measuring and characterizing a single axis

of vector measurement as the first step toward a full three-axis implementation. In this

experiment, we formulated and tested three methods of closed-loop feedback comprising

a proportional-integral (PI) method that responds to measured phase deviations between
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the precessing spin ensemble and the optical pump repetition rate; a nonlinear method

which builds upon the PI method with a predictive element that attempts to predict and

compensate for the next incremental measured phase deviation; and a hybrid self-oscillator

method which builds upon the nonlinear method to add a pump pulse phase correction

factor. I have analytically and experimentally demonstrated the performance limitations

associated with magnetometer noise and feedback loop limitations, and I have designed,

coded, and optimized a set of filters for detection of the vector components of magnetic

field using this method.

I have performed possibly the first demonstration of linearized RF sensitivity in a

continuously synchronously-pumped (Bell-Bloom) magnetometer. In conjunction with

the RF sensitivity, the magnetometer is still capable of measuring low-frequency fields

with high precision, with the ratio of RF sensitivity to low-frequency sensitivity tunable

by way of using the optical pump beam wavelength and intensity to control the magnitude

of the AC Stark shift. We have analyzed the physical basis of the linearized RF sensitivity

and have been able to determine that the sensitivity arises from an interaction between

the incident RF magnetic field and the oscillating AC Stark shift induced by the optical

pump beam. I have experimentally validated the theory, finding RF response in good

agreement with theoretical predictions.

Finally, I have provided guidance for future work including an analysis of a future

means of measurement of the vector direction of the incident magnetic field. This al-

ternative method overcomes the feedback loop performance limitations of the method

demonstrated in the present work (recall: by means of applied oscillating magnetic fields

along each axis to be observed). I have provided for future enhancement in sensitivity,

bandwidth, or both. With the research presented in this thesis and some design and de-

velopment of automated startup and tuning features, it is feasible to design and build a

robust, fieldable Bell-Bloom magnetometer exceeding both the sensitivity and the band-

width of the best commercially available magnetometers on the market today.
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Appendix A

Apparatus Concerns and

Upgrades for Future Work

A.1 Optical Pump Pulse Triggering Circuitry

As shown in Figure 2.6 in the main text, the optical pump pulses are shuttered using

an electro-optic modulator (EOM; Newport 4102). Not shown is the custom circuitry

used for driving the EOM: the pulses of voltage across the EOM are driven using a half-

bridge circuit (Texas Instruments LMG3411EVM), which is itself controlled using logic

circuitry set up for break-before-make control of the switches in the half bridge, with

analog RC delays of the logic inputs. Figure A.1 shows a simplified schematic of the half-

bridge triggering circuitry. As is clear from Figure A.1, the break-before-make condition

is necessary to ensure that transistors Q1 and Q2 are never simultaneously in the “on”

state, thus avoiding a condition known as “shoot through” wherein the high voltage is

connected directly to ground.

Input control logic signals are provided by either a NI PXIe-6614 precision counter and

timing reference module or a PXIe-5171R reconfigurable oscilloscope module, as appro-

priate to the experiment in question. The circuit is configured such that a ”logic 1” state

corresponds to the “on” state of the optical pump beam (i.e. the shuttering system shown
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Figure A.1: Simplified schematic of the logic circuit driving the electro-optic modulator
shown in Figure 2.6. A configurable analog delay element consisting of a simple resistor-
capacitor (RC) delay enforces a break-before-make condition for the half-bridge so that
the high-voltage power supply does not connect directly to ground.

in Figure 2.6 allows transmission of the optical pump light to the vapor cell) and the ”logic

0” state corresponds to the “off” state of the pump, blocking the optical pump light. As

mentioned in the main text, the typical optical pump power at the exit of the pump beam

optical fiber is approximately 20 mW in the “on” state and in the low-single-digit µW in

the “off” state.

As will be shown shortly, component choices for this circuit can significantly impact

the optical pump pulse timing noise observed at the spin ensemble. As mentioned in the

main text, Equation 2.36, a perceived deviation in magnetic field magnitude results from

any phase deviation between the polarimeter signal (ideally, identical to the phase of the

precessing spin ensemble) and the optical pump pulse triggering signal. Slow deviations in

the phase of the optical pump pulses observed by the spin ensemble (where slow indicates

frequencies less than Γ2/π) as compared to the optical pump pulse triggering signals will

generate corresponding phase deviations of the spin ensemble precession and polarimeter

signal relative to the pump pulse triggers. This will in turn generate slow modulation of

the output of the lock-in amplifier and be interpreted as deviations in the magnetic field
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even though they arise from a non-magnetic source.

A.1.1 Electromagnetic Interference: Pump Pulse Timing Fluctuations

Sources of vulnerability to electromagnetic interference in the circuit shown in Figure A.1

include 1) finite ground impedance between the pulse trigger signal output from the PXI

computer, the power supply (not shown) and the EOM driving circuit; 2) finite noise

and ripple in the supply voltage powering the logic circuitry; 3) temperature and voltage

sensitivity of the analog delay elements; and 4) impedance matching conditions for the

logic signals and for the EOM drive signal. Each of these sources of vulnerability will

modulate the timing of the actual optical pump pulses as compared to the timing of the

pump pulse trigger logic signal; the mechanism of each is described below.

Finite ground impedance between the pulse trigger signal from the PXIe-6614 module

and the logic circuits shown in Figure A.1 allows the relative ground potentials for each to

vary with time due to inductive and capacitive coupling of external interference signals.

The rise and fall rates of the logic signals generated by the PXIe-6614 are themselves

finite, and the point in time at which they surpass the logic threshold in the logic circuit

triggering signals will therefore vary with any difference in ground potential: see Figure

A.2 for an illustration based on the rising edge of the trigger signal. Correspondingly, the

finite slope of the falling edge of the trigger signal leads to sensitivity to fluctuations in

ground potential. To leading order, the timing offset error is inversely proportional to the

magnitude of the triggering signal voltage slope. To the extent that the rising and falling

edges are of identical absolute slope, a slow fluctuation in relative ground potential will

change the length of the pulse but not its center. However, it is rare for logic circuits to

exhibit identical rising and falling edge slope magnitudes.

The logic circuit supply voltage is of particular concern; as is typical for logic circuits

(see, for example, the data sheet for 74LVC1G27) the input threshold voltages are ap-

proximately proportional to supply voltage. Similar to the ground potential effects shown

in Figure A.2, a change in threshold voltage corresponding to a fluctuation in the logic
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Figure A.2: Illustration (exaggerated for clarity) of the effects of a difference in ground
potential between the logic trigger signal source and the local logic ground. As the illus-
tration shows, a change in ground potential causes a change in the time at which a rising
trigger signal passes the logic threshold of the logic device. A change in timing generates
a phase shift between the optical pump pulse trigger signal and the actual optical pump
pulse as observed by the spin ensemble.

circuit supply voltage leads to a change in phase delay between a trigger signal and a

change at the logic circuit output. Consider, for example, the 50 Ohm, 100 pF RC delay

element shown in Figure A.1: the RC time constant is 5 nanoseconds. For the example of

the 3.3V logic trigger signals in this experiment, the voltage slope at one time constant is

3.3V ∗Exp[−1]/(5ns) = 0.24GV/s, ignoring the finite rise time of the logic trigger signal.

A 1 mV fluctuation in logic threshold, then, contributes approximately 4.1 picoseconds of

change in delay time. For a 200 kHz precession frequency, this is equivalent to 5.2 micro-

radians of phase shift. When Γ2 = 720/s, Equations 2.33 and 2.36 indicate a magnetic

equivalent modulation of approximately 500 fT. The voltage slope at the output of the

RC delay element is itself sensitive to temperature and voltage; the resistor and capacitor

both exhibit some finite temperature sensitivity to their impedance, and the capacitor will

exhibit a finite voltage coefficient of capacitance.

Additional sensitivity arises due to the finite slopes of the logic circuit output signals

which are used for control of the half-bridge driver circuit. Supply voltage fluctuations

generate fluctuations in the peak output voltages and the output currents (which are

proportional to the slope magnitude) from the logic circuits, which in turn modify the

time at which the trigger signal is observed by the half-bridge driver circuit.

Impedance mismatches between the PXIe-6614 trigger signal source and the logic cir-
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cuit configuration shown in Figure A.1 will lead to rising and/or falling edge slope mod-

ifications that can include non-monotonicity of the voltage slope as well as “bouncing”

or “ringing” of the voltage at the input of the logic circuits at the terminal ends of the

triggering signals. Impedance mismatches between the EOM and the high voltage power

supply source can generate similar fluctuations on the voltage across the EOM crystal,

in turn leading to fluctuations of the turn-on and turn-off times for the optical pump

pulses observed by the spin ensemble as well as generating unintended optical intensity

fluctuations at the trailing edge of turn-on and the trailing edge of turn-off.

Figures 2.9 and 2.10 clearly show an increase in noise power spectral density at the

lowest frequencies in addition to a large number of finite frequency spikes. The magnitudes

of these spikes was noted to depend in part on the ground impedance between the logic

circuit and the PXIe, the logic power supply, and the high voltage power supply. These

spikes largely consist of 1) 60 Hz and harmonics corresponding to lab electrical power, 2)

undersampled interference from the heater drive signal (demonstrated to be modifiable by

changing the distance and orientation of the heater drive cable relative to other circuitry

in the system), and 3) only a few frequency spikes of undetermined source. Based on

examination of the data in Figures 2.9 and 2.10, it is clear that the majority of the

observed finite frequency spikes are magnetic fluctuations or equivalent; nearly all of the

finite frequency spikes in Figure 2.9 disappear upon blocking the optical pump beam, and

the low-frequency noise is dramatically decreased (i.e. the Probe Noise trace in the plot

shows very few spikes and reduced low-frequency noise). However, it was not clear whether

these spikes and low-frequency noise were generated by actual magnetic fluctuations or

solely a magnetic-equivalent effect. Upon examination of the RF sensitivity data (Figure

4.4) it became clear that much of the low-frequency noise and finite frequency spikes are

magnetic-equivalent rather than actual magnetic fluctuations. I therefore formulated the

hypothesis based on Equation 2.22 that fluctuations in the phase of the optical pump

pulses observed by the spin ensemble as compared to the triggering signal may be to

blame.
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Figure A.3: FFT of lock-in amplifier output (Demodulated Output) when measuring
the optical pump pulses observed at the polarimeter (Figure 2.5) with reference to the
optical pump pulse trigger signals. A number of the undesired features of the measured
magnetic noise spectra are visible, confirming that the optical pump pulse timing does
indeed fluctuate.

I tested the pump pulse timing hypothesis using two methods, producing equivalent

results. The first method used the lock-in amplifier for demodulation, while the second

method utilized manual demodulation of a measured time series of the optical pump pulses.

For both methods, the optical probe beam is blocked and the dichroic mirror is removed

so that the optical pump beam reaches the polarimeter; the resulting polarimeter signal

is sent to the appropriate input (lock-in amplifier input or NI PXIe-5171 oscilloscope card

analog input, as appropriate). Further, for both methods the optical pump beam pulse

repetition rate is detuned far from the natural Larmor precession frequency, and the vapor

cell is at room temperature, such that the influence of the spins on the measurement is

negligible. The observed noise spectrum is shown in Figure A.3; multiple harmonics of 60

Hz are easily visible in the spectrum, as is the rising low-frequency noise, confirming that

the pump pulse timing does indeed exhibit fluctuations corresponding to at least some of

the features observed in Figures 2.9, 2.10, and 4.4.
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A.1.2 Suggested Improvements for Future Work

As noted above, the finite slope of the logic triggering signals generates timing errors

inversely proportional to the slope magnitude. The slowest voltage slopes come from the

analog RC delay and the logic circuit outputs (which in turn trigger the half-bridge driver).

The corresponding timing noise can be dramatically mitigated through a combination of

improvements to the logic supply voltage and increases in the voltage slopes. First, the

logic supply voltage can be improved in stability and noise by the use of a high-performance

linear regulator combined with a low-noise supply for the higher voltages required by the

LMG3411 EVM half-bridge. Second, the analog delay element can be replaced by a digital

delay element with significantly increased voltage slope. Finally, the logic circuits can be

replaced with faster circuits performing the same function: the 74HCT08N “AND” gate

and CD74HCT02E “NOR” gate can be replaced with alternatives with slope magnitudes

several times larger.

A.2 Photon Shot Noise Limited Polarimeter Circuit

To achieve photon shot noise limited detection, one must utilize an appropriately designed

differential photocurrent detection circuit with inherent noise well below the photon shot

noise limit: as will be shown below, straightforward design guidelines for such a circuit are

easily developed. A conceptual schematic of our custom differential photocurrent detection

circuit for each of the polarimeters in the present work is shown in Figure A.4. Consider

a total photocurrent I: each photodetector in our balanced polarimeter will output a

current of I/2 when θ = 0 and I when θ = π/4. With an appropriate choice of operational

amplifier (op-amp) the gain resistor GR will strongly dominate the noise produced by

the transimpedance stage itself for mA-scale photocurrent and volt-scale output. With

a chosen target transimpedance amplifier output voltage of Vout at current I, the gain

resistor value GR = Vout/I.

The Johnson-Nyquist thermal noise limit δIJ in the gain resistor is a function of the

resistance GR, Boltzmann’s constant kB, and absolute temperature T :
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δIJ =
√
4kBT/GR =

√
4kBTI/Vout (A.1)

which then demonstrates that the criterion for the output signal to be strongly dominated

by photon shot noise on the photocurrent is Vout ≫ 2kBT/q → Vout ≫ 52mV at a

gain resistor temperature of 300 Kelvin. Note that this result for Vout is independent

of the magnitude of the total photocurrent as long as the gain resistor dominates the

noise observed at the output of the transimpedance stage in the absence of photocurrent.

Amplification of the transimpedance output signal to 10V at I/2, for example, meets

this criterion for mA-scale photocurrents while being well within the output capabilities

of many junction field effect transistor (JFET) input op-amps: JFET input op-amps

typically exhibit input-referred electrical current noise in the range of tens of fA/
√
Hz

or lower; a photocurrent-equivalent noise of less than 0.1 µA. Thus, for a 3 mW optical

probe beam as is used in the present work (roughly 1.5 mA total photocurrent when using

silicon photodetectors), it is straightforward to design a transimpedance amplifier with its

output strongly dominated by photon shot noise. The next stage in the signal processing

chain is the lock-in amplifier (SR865A) used in the present work for demodulation of

the differential photodetector signal. The lock-in amplifier exhibits an input noise of 2.5

nV/
√
Hz; compare this to the optical probe shot noise limit at Vout = 10V and 1.5 mA

photocurrent of GR
√
2Iq = Vout

√
2q/I = 146nV/

√
Hz. Clearly, the photon shot noise

in this example will strongly dominate the white noise observed at the lock-in amplifier

output.

A.3 Basic Overview of Direct Digital Synthesis (DDS)

Direct digital synthesis (DDS) is a method of generating quasi-arbitrary frequencies using

a discrete-time system. The major components of a DDS system are 1) a timebase such

as the 250 MHz crystal oscillator for FPGA “clocking” in the present experiment (divided

by 2 such that the FPGA timebase is 125 MHz), 2) a digital register representing phase,
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Figure A.4: Conceptual schematic of the differential detection circuit used in the present
work. The photocurrents from each of two photodetectors are represented as current
sources; these currents are sent through transimpedance amplifiers (current to voltage
conversion; operational amplifiers U1 and U2), and the resulting voltage signals are dif-
ferenced (operational amplifier U3). The transimpedance gain is set by gain resistor GR,
the transimpedance output voltage is sent through output resistor OR, and the difference
gain resistor value DR sets the gain on the difference between the two photocurrents.

configured to ”roll over” the remainder upon overflow, 3) a digital increment value known

as the phase increment word, and 4) a means of converting the phase to a sinusoid.

A useful metaphor is to think of the DDS system as a clock: the hands of the clock

each are associated with their own phase increment per “tick” of the reference oscillator; 6

degrees per increment for the second hand, 1/10 of a degree for the minute hand, and 1/600

of a degree for the hour hand. In this metaphor, the 64-bit phase register in our experiment

represents a full cycle of a hand around the clock face, while the phase increment word

represents the step size taken for each “tick.” A typical clock uses an integer number of

increments per cycle, but a DDS is not constrained to integer values. Consider a DDS

using a clock frequency Fclk, a phase increment word of M least-significant bits (LSB)

where M is an integer, and a DDS phase register size of n bits as described above. The
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output frequency Fout will be

Fout =
FclkM

2n
(A.2)

so it becomes clear that the frequency step size is simply Fclk/2
n (i.e. increments of 1

LSB in the phase increment word). As mentioned above, in this experiment n = 64:

based on the FPGA’s 125 MHz timebase we have a frequency resolution equivalent to

approximately 10−21 Tesla; clearly, this experiment does not make use of the full 64

bit capability in the present DDS implementation. A phase register size of 64 bits was

chosen based on limitations of the LabVIEW FPGA programming interface, which for the

2019 version used in this experiment does not allow fully arbitrary choice of register size;

registers are either 32 bits (approximately 4 pT per M increment) or 64 bits. To avoid

excessive quantization uncertainty a 64-bit phase register was chosen.

A.3.1 Application of DDS in the Present Work

In this experiment, when operating in closed-loop measurement mode, a single DDS con-

trols both the optical pump pulses and the spin precession signal model against which the

polarimeter signal is compared (Chapter 3). For the purpose of turning the pump pulses

on and off, there is a simple control algorithm that uses the user-defined duty cycle d and

triggers a logic 1 at the trigger output when the phase register is between 0 and d ∗ 2n,

inclusive of the end points. The spin precession model against which the polarimeter sig-

nal is compared, on the other hand, uses a look-up table to generate the sine and cosine

components using the phase register as 2π of total phase.

A.4 Rationale for Commercially Available Equipment Choices

A.4.1 Introduction

I selected the commercially available equipment used in this experiment using rigorous

rationale based on physics and engineering. Recall from Chapters 2 through 4 that this

equipment includes a NI PXIe chassis with a computer module, a NI PXIe-6614 timing ref-
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erence module using an oven-compensated crystal oscillator (OCXO) for low noise and sta-

bility, and a NI PXIe-5171R reconfigurable multifunction oscilloscope module. While the

choice of including a computer module in the PXIe system is fairly obvious—it allows the

PXIe system to act as a fully integrated control, data collection, and data interpretation

system—technical rationale for these choices are described below. Additional commer-

cially available equipment includes 1) a SRS SR865A lock-in amplifier; 2) a laser system

composed of Vescent Photonics low-noise laser controller and 795 nm laser module with

integrated optical isolators, free-space-to-optical-fiber coupling modules, a Newport 4102

electro-optic modulator for “DC” polarization rotation (DC to 200 MHz), and a Thorlabs

laser controller with 780 nm distributed Bragg Reflector (DBR) laser; and 3) commer-

cially available optical elements and optics mounts from Thorlabs, with the exception of

the dichroic mirror from Semrock. As will be demonstrated shortly, the commercially

available electronic equipment for data processing and optical pump pulse generation was

chosen based on sound technical rationale.

A.4.2 NI PXIe-6614 Timing Reference Module

The NI PXIe-6614 timing reference module is designed to provide a precision frequency

reference that coordinates the timing of all modules in the PXIe chassis. As described

above, the magnetometer developed in the present work is effectively a magnetic field to

frequency transducer; noise and drift in the frequency reference, therefore, can limit the

ability to measure the magnetic field. Particularly important for the present experiment

are the long-term frequency drift in the OCXO, typically characterized as close-to-carrier

phase noise, and random white-noise phase jitter at the optical pump pulse repetition rate

(ω/2π in Hz). My goal in selecting an appropriate frequency reference for the present

experiment was to ensure that the frequency-reference-related technical noise is negligible

with respect to the magnetometer’s fundamental noise limits (Chapter 2).

Given a curve of phase noise versus offset from the carrier, typically expressed in

decibels relative to the carrier per Hz (dBc/Hz), the root-mean-square (RMS) time error
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at a given frequency can be calculated based on the carrier frequency itself and the total

area under the curve calculated from the frequency of interest up to twice the carrier

frequency (Kester n.d.). The effect of random white-noise phase jitter at the optical pump

pulse repetition rate (200 kHz at 29 µT for 87Rb) can be calculated as follows. Consider a

RMS time error δt at ω/2π: the total magnetic field error δBclk arising from this random

white noise in the clock reference on a per square root Hz basis is simply

δBclk =
δtΓ2

πγ

√
ω

2π
(A.3)

Based on the phase noise specification for the OCXO used in the PXIe-6614 timing ref-

erence module (available upon request from NI), the OCXO phase noise at 200 kHz con-

tributes less than 0.1 fT/
√
Hz, sufficient to support the noise budget described in Chapter

2.

The effect of frequency drift, meanwhile, contributes to the magnetic field measurement

accuracy: this particular OCXO exhibits an ”aging drift” of within 0.5 parts per billion

(ppb) per day. For the 10 MHz timebase reference, 0.5 parts per billion per day is approx-

imately 17 µHz/
√
s frequency uncertainty (a technical noise limit of 2.5 fT/

√
s magnetic

field uncertainty), approximately 3 orders of magnitude below the observed magnetometer

noise at 1 second (Figure 2.9) and is therefore negligible. In principle, the frequency could

be ”trained” by way of coordination to universal coordinated time (UTC) or to another

long-term accurate frequency reference such as GPS (which is itself stabilized based on

the international standard definition of the second) to decrease this further.

A.4.3 NI PXIe-5171R Reconfigurable Oscilloscope Module

The NI PXIe-5171R module serves as a low-noise high-speed and high-resolution oscillo-

scope and includes a user-programmable FPGA that can take advantage of the oscillo-

scope front-end functionality (250 million samples per second at 14 bits resolution with

programmable full-scale voltage input range up to ±2.5V ) and includes digital outputs.

My goals in selecting this module for signal acquisition, processing, and feedback included
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the following. First, the analog-to-digital conversion needed a sufficient signal-to-noise ra-

tio to be limited by photon shot noise from the magnetometer rather than technical noise.

Second, the data acquisition speed and timebase frequency needed to be much faster than

the maximum expected alkali precession frequency in the experiment (approximately 1

MHz based on the limitations of the Twinleaf CSUA-1000 current source driving its max-

imum current through the Z axis coil in the Twinleaf MS-2 magnetic shield set); based

on the desire for digital filtering, a factor of 100 provides for high-performance filtering

as well as a minimum phase resolution of 1/100 of a precession cycle per ”tick” of the

timebase–helpful for phase deviation modeling and detection as well as for pump pulse

phase resolution when operating the instrument in closed-loop mode. Third, the module

needed to include sufficient data processing power to acquire, filter, and model the incom-

ing data; apply active closed-loop feedback with low latency; and record magnetometer

data at sample rates of approximately the precession frequency of the spins or faster to

enable robust post-processing of the data as necessary. Finally, the module needed to

include not only analog inputs but also low-noise digital logic outputs to control the “on”

versus “off” states of the optical pump. The NI PXIe-5171R module meets all of these

requirements.

The low-noise front end (analog to digital conversion) exhibits a voltage white noise

of approximately 82 nV/
√
Hz at a ±2.5V full-scale range setting; greater than 12 noise-

free bits of precision (bit 13 down to 2, where bit 0 is the least-significant bit in the

measurement register) at the full sampling rate with the anti-alias filter enabled (see

specifications for NI PXIe-5171). The polarimeter preamp circuit, meanwhile, is designed

to generate approximately a 2V peak-to-peak sinusoidal signal in response to the Faraday

rotation of the optical probe beam (Chapter 2), occupying approximately 11 of these

noise-free bits with signal (bits 12 down to 2 contain signal and are effectively noise free in

technical noise terms), and the output of the polarimeter preamp exhibits a photon shot

noise at the differential output of approximately 220 nV/
√
Hz. The photon shot noise

limit, then, at the sampling rate, allows for 10 effective noise free bits (utilizing noise-free
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bits 12 down to 3).

The least-squares fitting algorithm for detection of the phase difference δ between the

optical pump pulse repetition rate DDS and the measured precession signal (see Chapter 3

for more detail) fits the measured polarimeter signal to a sinusoid over one full cycle of the

pump pulse control DDS: at the typical precession frequency of 200 kHz in this experiment,

the measurement period is approximately 1250 samples. With a root-mean-square (RMS)

fractional amplitude noise of 1/210 (≈ 0.001)per sample

A.5 SRS SR865A Lock-in Amplifier

Key performance parameters for the lock-in amplifier used in the experiments described

in Chapter 2 and 4 include the following. First, the range of acceptable input frequencies

must exceed the maximum precession frequency of the spins (approximately 1 MHz as

mentioned above). The SR865A can accept input frequencies of up to 4 MHz. Second, the

phase lock loop that generates a reference demodulation sinusoid based on the ”external

reference” input must exhibit a low enough phase noise to support measurement of the

magnetic field to the desired precision. The specification for the SR865A phase noise with

external reference input is 0.001 degrees RMS at 1 kHz; for Γ2 = 1000/s, this corresponds

to a technical noise limit based on phase error of tan(δ) = δω/Γ2 → δB = 1.4aTRMS (see

Equation 2.36); clearly negligible with respect to the observed magnetic field noise (Figure

2.9). Third and last, the input-referred voltage noise must be negligible with respect to

photon shot noise; the specification of 2.5nV/
√
Hz at 10 mV (RMS) input range can be

extrapolated to approximately 75 nV/
√
Hz per input channel (A or B inputs) as compared

to the single-ended polarimeter output photon shot noise of 220 nV/
√
Hz. Therefore, the

SR865A lock-in amplifier supports operation of the magnetometer described herein at its

fundamental noise limits based on the standard quantum limit.
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A.5.1 Laser System

The laser system for this experiment needs to provide 1) pulsed laser light with a frequency

range significantly narrower than the broadened optical transition linewidth for optical

pumping based on the D1 optical transition of 87Rb and 2) CW laser light, much narrower

than the broadened optical transition linewidth for detection of spin polarization based

on the D2 optical transition of 87Rb. The optical pump power as observed at the spins

during the “on” state of the optical pump beam must be sufficient to achieve the optimal

polarization (0.87 in this experiment: see Chapter 2) in order to provide for optimization

of the fundamental noise of the magnetometer, and must be capable of operating at a

stable wavelength, detuned from the optical transition by a non-negligible fraction of the

optical linewidth. The optical probe must be of appropriate optical intensity and must

be capable of operating at a stable wavelength detuned by several linewidths from the D2

optical transition.
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