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Abstract

The ability to detect femto-Tesla (10~1%) magnetic fluctuations in the presence of large
background magnetic fields encountered in unshielded environments on Earth is a capabil-
ity which can enable a wide array of applications presently requiring magnetically shielded
environments. This has been possible for many years through the use of superconduct-
ing quantum interference devices (SQUIDs); however, SQUIDs are expensive to purchase,
operate, and maintain. In contrast to SQUIDS, optically pumped magnetometers based
on warm alkali vapor are relatively inexpensive to purchase, operate, and maintain while
promising similar sensitivity capabilities.

In the present work, I have demonstrated an optically pumped scalar magnetometer
using a 1 cm diameter by 1 cm length internal dimension cylindrical vapor cell with a
photon shot noise limit of 3.5 fT'/v/Hz and a demonstrated single-channel noise of 10
fr/ Vv Hz as limited by the electrical current source generating a 29 uT bias field. T have
further demonstrated a differential pair of these magnetometers, separated by a distance
of 9 cm, with measured differential noise of 1 fTem™'/v/Hz, consistent with a single-
channel noise of 6 fT'/ VHz. 1 present a straightforward procedure for optimization of
the sensitivity of this magnetometer to achieve fundamental sensitivity limits in the low
single digit 7'/ Vv Hz and guidelines for detection electronics supporting total noise from
the magnetometer dominated by the fundamental sensitivity limit. I demonstrate, ana-
lyze, and characterise the basis of a method for detection of the vector components of the
incident magnetic field through the use of an applied oscillating field along each vector
axis to be measured, and I present initial results with single-axis vector component detec-
tion. Included in the relevant chapter are algorithms and feedback methods for achieving
high performance, along with a demonstration of each, and measurements of performance
including relative accuracy and uncertainty. I further present a demonstration and theory
of detection of RF magnetic fields near the natural Larmor precession frequency of the
spins, taking advantage of the AC Stark shift of the optical pump beam to generate a
linear sensitivity to the RF signal, measured at the difference between the RF frequency
and Larmor frequency. Finally, I look toward future work, proposing a method for mea-
surement of the vector direction of the incident magnetic field by real-time observation of
the spin precession.
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Chapter 1

Introduction

1.1 Introduction

The ability to detect weak magnetic fluctuations in the presence of large background
magnetic fields encountered in unshielded environments on Earth is a capability which
can enable a wide array of applications presently requiring magnetically shielded envi-
ronments. Applications such as biomagnetic signal detection (Strasburger, Cheulkar, and
B.; Wakai 2008; Hamélainen et al. 1993; I. Sulai et al. 2019; Boto et al. 2022; Rea et al.
2022; Klotz, Gizzi, and Rohrle 2022; Hoshino et al. 2022), geosensing (Lorenz, Jones, and
J. Wu 2003), dark matter searches (Afach et al. 2021), infrastructure monitoring (Vo et al.
2020), materials inspection (Koss et al. 2022), navigation aiding (A. Canciani and Raquet
2016), RF detection (Lee, V.G. Lucivero, et al. 2021), and many more can benefit from a
sensor capable of detecting femto-Tesla (10~!%) fluctuations in Earth-field-scale magnetic
fields in the tens of uT. This has been possible for many years through the use of super-
conducting quantum interference devices (SQUIDs); however, while these instruments are
extremely sensitive magnetometers, they exhibit the significant disadvantage of requiring
cryogenic cooling. SQUIDs are expensive to purchase, operate, and maintain. In con-
trast to SQUIDS, magnetometers based on warm alkali vapor are relatively inexpensive to
purchase, operate, and maintain. In particular, optically pumped atomic magnetometers,

often colloquially referred to as simply optically pumped magnetometers (OPMs), offer



the opportunity to build large arrays of non-interfering sensitive elements in addition to
exhibiting fundamental limits of performance competitive with SQUIDs. Improvements in
production techniques and quality of components, accompanied by increased portability
and sensitivity, has resulted in increased interest in optical atomic magnetometers over
recent years.

Optically pumped atomic magnetometers utilize the predictable and stable preces-
sion of spins in a magnetic field as a means of measuring the magnitude of that field.
William E. Bell and Arnold L. Bloom first demonstrated 66 years ago (Bell and Bloom
1957, Bell and Bloom 1961) that modulation of the optical pumping dynamics in a man-
ner synchronous with the natural Larmor precession frequency of the spins provides a
means for an all-optical drive and interrogation of the spin precession. Since the initial
demonstration of Bell and Bloom’s synchronously pumped magnetometer, deeper under-
standing of the underlying physics, coupled with improvements in enabling technologies
such as lasers, fast optical modulators, photodetectors, and analog and digital electronics
have dramatically improved the achievable magnetic sensing performance. Relevant to
this work, these advancements have improved the feasibility of a fieldable synchronously
pumped magnetometer based on pulses of optical pumping light rather than continuous
modulation (Grujic and Weis 2013; H. Huang et al. 2015; Gerginov and S. K. S. Knappe
2017; Gerginov, Pomponio, and S. Knappe 2020; Songsong Li et al. 2021; Gartman et al.
2018).

1.2 Background and Motivation

The most sensitive optically pumped magnetometer for detection of low-frequency mag-
netic field fluctuations (where low frequency is defined as slower than the spin polarization
relaxation rate) is the spin-exchange relaxation free (SERF) magnetometer (Allred et al.
2002), which has demonstrated magnetic noise as low as 0.16 fT7'/v/Hz (H.B. Dang, A.C.
Maloof, and M.V. Romalis 2010). SERF magnetometers such as the work of H.B. Dang,

A.C. Maloof, and M.V. Romalis 2010 are inherently vector magnetometers, detecting the



component of magnetic field orthogonal to the optical pump beam by way of the spins
tipping away from the pump axis and into the orthogonal probe axis; thus, SERF mag-
netometers can provide vector component information about the incident magnetic field.
The key advantage of the SERF regime over other methods of magnetic field measurement
using optically pumped spins is that the spin-polarization relaxation mechanism driven
by spin-exchange collisions is greatly suppressed, resulting in much longer achievable po-
larization lifetimes and correspondingly reduced fundamental noise limits as compared to
magnetometer technologies operating without suppression of spin-exchange relaxation.

One key disadvantage of SERF magnetometers is that they operate in the fast spin
exchange limit, wherein the spin exchange rate is many times faster than the precession
frequency; for optimal operation, they require near zero net magnetic field in order to
dramatically suppress the spin-exchange relaxation. A second key disadvantage is that
SERF magnetometers require calibration to achieve a high degree of accuracy: for exam-
ple, when running a SERF magnetometer with closed-loop response based on driving a
magnetic field via a coil along the sensitive axis to zero out the incident field, calibration
of the magnetic field coil response is required. Based on these disadvantages, SERF mag-
netometers are suitable only for a subset of high-sensitivity magnetometry applications:
specifically, those which can be performed in a near-zero-field environment such as can be
achieved using magnetic shielding, or with the use of carefully tuned externally-applied
magnetic fields (S. Seltzer and M. Romalis 2004a).

Optically pumped magnetometers that directly measure the resonant precession fre-
quency of a polarized ensemble of spins in a magnetic field, on the other hand, are not
dependent on near-zero-field environments for optimal sensitivity and overcome the cali-
bration limits to a great extent. Specifically, as will be described in more detail in Chapter
2, the instrument physics do not directly limit the accuracy of the sensor: in principle,
the conversion factor from magnetic field to precession frequency is based on fundamen-
tal physical constants, and only the particular implementation of the magnetometer will

limit the accuracy. One example of an optically pumped magnetometer that utilizes the



precession frequency of an ensemble of spins in a magnetic field is the Bell-Bloom magne-
tometer (Bell and Bloom 1957; Bell and Bloom 1961) concept that is used in the present
work. The precession frequency of the spins, being a scalar quantity, is a measure of the
magnitude of the magnetic field but not its direction: using only the precession frequency
information, then, the instrument is inherently a scalar magnetic field sensor.

While in a subset of the applications mentioned above, scalar field measurements are
sufficient, full knowledge of vector components provides additional insight into the ambi-
ent field. Vector component information is useful for many applications, including mag-
netoencephalography (Boto et al. 2022; Rea et al. 2022), magnetometer-based tracking of
a magnetic object (for example, Soheilian, Ranjbaran, and Tehranchi 2020), and the en-
hancement of magnetic-field-based navigation aiding (A. J. Canciani and Brennan 2020),
using a greater portion of the information available in Earth’s magnetic field as compared
to scalar measurement alone (NOAA n.d.). There is further interest in utilizing vector
component information to correct for inherent “heading errors” in alkali-based magne-
tometers, which results from the non-zero nuclear spin of alkali atoms (Lee, V. Lucivero,
et al. 2021). Magnetic vector component measurement further enables the measurement
of the magnetic gradient tensor Sui et al. 2014, which may improve the precision and
accuracy of, for example, navigation aiding (Y. Huang, L. Wu, and D. Li 2015).

The most sensitive vector magnetometry in unshielded environments is presently per-
formed using superconducting quantum interface device (SQUID) magnetometers. The
SQUID magnetometer is inherently a vector sensor and detects field projections along its
sensitive axis. Furthermore, its capacity to achieve ultrahigh sensitivity has been demon-
strated in Earth-field environments (Schonau et al. 2013). A key disadvantage is that
SQUIDs require cryogenic cooling and are therefore only applicable to a subset of vec-
tor detection applications; those in which the physical size required for sufficient thermal
insulation and ongoing cost of achieving and maintaining the required cryogenic temper-
atures are acceptable. In contrast, optically pumped atomic magnetometers capable of

operating in Earth-field-scale magnetic fields typically function by measuring the Larmor



precession frequency of atomic spins of vapor-phase alkali metals (Budker and M. Ro-
malis 2007) or helium (Grosz, Haji-Sheikh, and Mukhopadhyay 2017) in the presence of
magnetic fields, and thus are inherently scalar field sensors. However, methods have been
demonstrated for the measurement of the vector components of Earth-field-scale incident
magnetic fields using these sensors, with at least one example making use of microwave
polarization reconstruction (Thiele, Lin, and Brown 2018) and others using methods such
as scanning magnetic fields (Alldredge 1960) and rotating fields oscillating at frequen-
cies much faster than the spin relaxation rate (T. Wang et al. 2023). Thus, in contrast
to inherent vector sensors such as SQUIDs, 3-axis magnetic sensing using an OPM does
not inherently require three physically separate devices, adding physical complexity and
potentially degrading the measurement accuracy for nearby sources of magnetic field. Ad-
ditionally, unlike SQUID magnetometers, OPMs do not require cryogenic cooling, thus
reducing operating costs, broadening the application space, and improving portability.
Optically pumped magnetometers have also been demonstrated for radio-frequency
(RF) magnetic field detection up to and including the MHz regime without the use of
cryogenic cooling (for example, Keder et al. 2014a; Lee, V.G. Lucivero, et al. 2021; .M.
Savukov et al. 2005). Detection of magnetic fields at RF frequencies is useful for many
applications from ultra-low-field MRI (Mazurek, Cahn, Yuen, et al. 2021) to NMR spec-
troscopy (I.M. Savukov et al. 2005), communications (Gerginov and Silva 27 September
2022; I. Savukov, Kim, and Boshier 2017; Bai et al. 2023) and beyond. In contrast to
an inductive pick-up coil (Gruber et al. 2018), optically pumped atomic magnetometers
are effectively insensitive to electric fields and do not exhibit inductive cross-coupling,
making them particularly amenable to use in array configurations. Optically pumped
magnetometers configured for detection of RF signals in the range of tens of kHz and
above tend to optically pump the spins along the bias field and allow the incident RF field
to stimulate resonant or near-resonant precession of the spins about the bias field (Keder
et al. 2014b; Lee, V.G. Lucivero, et al. 2021; Bevington, Gartman, and Chalupczak 2019).

In this configuration, optically pumped RF magnetometers utilize an optical probe beam



orthogonal to the optical pump to detect the component of spin orthogonal to the bias
field. Optical pumping along the bias field allows for an effect known as light narrowing
(Appelt et al. 1999) in which spin-exchange relaxation is suppressed by pumping the spins
into a stretched state (mp = F'); the resulting decrease in relaxation rate allows for im-
proved sensitivity at the cost of reduced detection bandwidth. These magnetometers have
demonstrated fT-level sensitivity to incident RF magnetic fields, at the cost of requiring
calibration to measure low-frequency magnetic field fluctuations.

Recent advancements (M. Limes et al. 2020) have further demonstrated that optically
pumped magnetometers based on similar operational concepts to those used in the present
work provide noise levels sufficient for biomagnetic applications in an unshielded earth field
environment. Recent work has demonstrated the ability of OPMs to achieve sub-fT/v/H z
sensitivities in near-zero field environments (H. Dang, A. Maloof, and M. Romalis 2010)
and 3-axis vector sensitivity in near-zero-field environments (Boto et al. 2022; Rea et al.
2022; K. Wang et al. 2022; Yan et al. 2022; Lu et al. 2022; S. Seltzer and M. Romalis
2004a) and 3-axis vector sensitivity in pT-level environments with relatively small vector
components orthogonal to the bias field (H. Huang et al. 2015). Yet more advances
have been made in extending the operational range of spin-polarized optically pumped
magnetometers into the Earth-field regime (Gerginov and S. K. S. Knappe 2017; S. Seltzer
and M. Romalis 2004b; A. Perry et al. 2020; Oelsner et al. 2022; S. Seltzer and M. Romalis
2004a; A. R. Perry et al. 2020; M. Limes et al. 2020). Each exhibits it own set of advantages

and limitations.

1.3 Overview of This Work

In the 60 years since the pioneering work of Bell and Bloom, supporting technologies for all-
optical magnetometers have undergone dramatic improvements, from lasers and optics to
fabrication techniques, electronics components, computer software, and more. I have built
upon these advancements through rigorous application of physics and advanced electrome-

chanical engineering to demonstrate improvements in sensitivity, bandwidth, apparatus



simplicity, or some combination thereof over other modern optically pumped atomic mag-
netometers capable of operating in Earth-field-scale magnetic fields; for example, Gerginov
and S. K. S. Knappe 2017; S. Seltzer and M. Romalis 2004b; A. Perry et al. 2020; Oelsner
et al. 2022; S. Seltzer and M. Romalis 2004a; M. Limes et al. 2020; GEM Systems GSMP-
35 Potassium Magnetometer 2023. 1 use deterministic physics-based magnetometer op-
timization and deterministic physics-based procedural tuning of spin ensemble response
to magnetic fields in the continuously synchronously pumped regime where this magne-
tometer operates to minimize the magnetic-equivalent fundamental noise at the standard
quantum limit. Additionally, I have advanced the state of the art in implementation and
optimization of supporting technologies to reduce the sum total non-magnetic technical
noise an order of magnitude below the fundamental noise.

Through these advancements I have designed, built, and demonstrated a Bell-Bloom
magnetometer capable of providing high performance in the full application space de-
scribed above. I have achieved unprecedented single-channel scalar magnetic sensitivity
and two-channel differential scalar magnetic sensitivity for a continuously-synchronously-
pumped magnetometer at Earth-field-scale magnetic fields, significantly exceeding the
sensitivity of other magnetometers operating in the same regime (Gerginov and S. K. S.
Knappe 2017; H. Huang et al. 2015; Songsong Li et al. 2021). More explicitly, I have
measured single-channel magnetic sensitivity of better than 10 7'/ Vv Hz with a photon
shot noise limit of 3.5ft/v/Hz, comparable to the observed noise in many SERF magne-
tometers (I. Sulai et al. 2019) but in Earth-field-scale magnetic fields of 29 uT' (exceeding
SERF regime field limits by orders of magnitude: see Allred et al. 2002) albeit with
significantly higher fundamental limits than these SERF magnetometers. The observed
single-channel noise floor is comparable to the best published single-channel noise in any
Earth-field-capable optically pumped atomic magnetometer (M. Limes et al. 2020), while
the closed-loop -3 dB magnitude response bandwidth is improved by more than an order of
magnitude. The observed single-channel magnetic noise is consistent with the limitations

of the nonetheless very impressive electrical current source used to generate the bias field



(Twinleaf CSUA-1000) in combination with optical pump pulse phase error that is itself
dominated by effects associated with the optical pump pulse logic circuitry (see Appendix
A.1 for the cause and solution).

I have further demonstrated two-channel differential scalar sensitivity of 1 fTem ™ /v Hz
on a 9 cm baseline, approximately an order of magnitude better than the differential scalar
measurement performance achieved by M. Limes et al. 2020. This result approaches the
performance of the best published differential scalar measurement (Sheng, S. Li, et al.
2013) but at four times the background magnetic field, using a significantly physically
simpler apparatus with simpler processing and interpretation of photodetector output
data, and on a longer baseline suitable for observation of signals originating at greater
distance from the differential pair (I. A. Sulai et al. 2019).

Together with an undergraduate lab assistant, I have demonstrated the feasibility of a
method patented by Dr. Thad Walker and myself (Tost, M. Bulatowicz, and T.G. Walker
2023; T.G. Walker and M.D. Bulatowicz 5 April 2022) for measuring vector components
of the incident magnetic field using any scalar magnetometer. As a first step toward 3-axis
vector component observation using this method, I have measured, theoretically investi-
gated, and demonstrated the performance limitations of this approach in the context of
our magnetometer for a single axis of vector component measurement. Finally, I have
demonstrated a mechanism for high-sensitivity linearized detection of RF magnetic fields
oscillating at frequencies much greater than the transverse spin polarization relaxation
rate of the spins, in a manner which does not disrupt the ability to measure low-frequency
magnetic field fluctuations, and I present an analysis in Chapter 3. To the best of my
knowledge, this linear RF sensitivity result represents the first demonstration of RF sen-

sitivity in a synchronously pumped magnetometer.

1.4 Thesis Organization and Presentation

This thesis is presented as follows. Chapter 2 provides the theory behind the basic oper-

ation of our synchronously pumped (Bell-Bloom) magnetometer, presents details of our



experimental apparatus, and goes into detail regarding the fundamental limits of mag-
netometer sensitivity. Chapter 2 details how to reach the fundamental limits through a
combination of deterministic procedural optimization of the magnetometer physics and
reduction of technical noise to negligible levels through appropriate design guidelines for
the supporting electronic circuitry. Additionally, Chapter 2 presents the observed single-
channel magnetic noise spectrum for the present work, consistent with the best published
results for an Earth-field-capable optically pumped magnetometer (M. Limes et al. 2020)
and demonstrating a two-channel differential scalar noise spectrum approaching the best
published results for any differential optically pumped atomic magnetometer capable of
operating in magnetic fields of greater than 5 p7" (Sheng, S. Li, et al. 2013) but with
a significantly simpler apparatus. Both the present work and the work of Sheng, S. Li,
et al. 2013 approach the best published differential noise floor per unit physical separation
distance of sensitive elements for a SERF magnetometer (H. Dang, A. Maloof, and M. Ro-
malis 2010) but the work described in this thesis uses a longer, biomagnetically relevant
(I. A. Sulai et al. 2019) baseline (distance between sensitive elements). In this segment
of Chapter 2, factors affecting the limits of the observed differential signal are discussed,
leading to recommendations for further improvements. Chapter 2 further discusses finite
element modeling of the polarization distribution over the vapor cell volume as a function
of incident optical pump characteristics such as intensity profile and the polarization-
dependent optical pump photon scattering rate, the polarization-dependent relaxation
rate of the spins, the optical intensity profile of the probe beam, and gas diffusion dynam-
ics in the vapor cell. Such a model enables further optimization of magnetometer physics
to approach full optimization of the fundamental noise limits for this technology. Chapter
2 concludes with recommendations for future work to incorporate further improvements
in performance.

Chapter 3 presents an extension of this technology to closed-loop operation with a
demonstrated tens of kHz -3dB response bandwidth, and further extension to detection of

the vector components of the incident magnetic field. Detailed in Chapter 3 is a means of
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self-calibration of the vector measurements with respect to the scalar field measurement,
along with demonstration and characterization of the first steps toward full 3-axis vector
measurement and the factors affecting the measurement uncertainty. Chapter 3 further
presents detailed characterization of the feedback loop design and implementation. Also
presented are the design and analysis of optimal signal filtering and high-performance al-
gorithms for observation of the magnetic field vector components the vector component
measurement is performed simultaneously with scalar measurement. Chapter 3 concludes
with recommendations for future work demonstrating full three-axis sensitivity with fur-
ther improvements in performance.

Chapter 4 presents the first demonstration (to the best of our knowledge) of RF sen-
sitivity in a synchronously pumped magnetometer. Theory and measurements are pre-
sented detailing the physics of a naively-unexpected result: a slow linear phase modula-
tion response (as opposed to the expected quadratic phase modulation response) to small-
amplitude RF signals orthogonal to the bias field, oscillating near the natural Larmor
precession frequency of the spins. In this chapter, the physics underlying the linear phase
response of the spins is examined in detail, including a comparison between the developed
theory and experimental results showing the superimposed linear and quadratic responses
of the slow component of spin precession phase. This chapter presents further insight and
measurement details for magnetic-noise-equivalent technical noise arising from technical-
noise-induced phase error in the optical pump pulses along with a straightforward means
of dramatically reducing the imposed single-channel noise limitations.

Finally, this thesis concludes with theory and discussion for future work: utilization
of a second probe beam, orthogonal to the first, together with a single oscillating applied
magnetic field to observe the precessing spin polarization vector as a function of time.
Three-dimensional mapping of the spin polarization vector will enable one to deduce the
direction of the incident magnetic field in the optical reference frame, thereby enabling
calculation of the three-dimensional vector component solution without a need for the

three orthogonal applied oscillating fields mentioned in Chapter 3.
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Chapter 2

An all-optical scalar and

differential scalar magnetometer

with 10 fT/vVHz and 1 fT/em/v Hz
sensitivity in a 30uT field

2.1 Introduction

In this chapter, I present the basic theory of operation of a transversely synchronously
pumped (Bell-Bloom: Bell and Bloom 1957; Bell and Bloom 1961) scalar magnetometer.
I discuss the basic concepts behind the synchronously pumped magnetometer configura-
tion with its co-propagating optical pump and probe beams, and discuss the experimental
apparatus in detail with discussion of single-channel scalar measurement and two-channel
differential scalar measurement. Next, I discuss physics-based optimization of the magne-
tometer response, demonstrating theoretically an optimized regime in which the magne-
tometer sensitivity is at approximately its minimum value of the standard quantum limit
and insensitive to changes in alkali vapor number density; I demonstrate theoretically

that the achievable open-loop response bandwidth of the spins in this regime is propor-
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tional to the available optical pumping rate provided by the optical pump beam, while the
fundamental noise at the standard quantum limit is independent thereof. I demonstrate
conceptual architecture and theory for design of an optical polarimeter circuit with tech-
nical noise well below the photon shot noise of the probe laser along with a quantitative
threshold associated with transimpedance gain resistor value at which technical noise will
be equal to photon shot noise. I go into detail regarding physics-based procedural tuning
of the magnetometer to optimize the magnetometer performance capability, and I present
a finite element model which I have developed, providing opportunities for more-global op-
timization of the achievable standard quantum noise limits in simulation to inform future
experimentation. Experimental results are presented for a 29 pT" bias field, demonstrat-
ing a single-channel scalar measurement noise floor of approximately 10 fT'/v/Hz and a
differential scalar measurement noise floor of approximately 1 fT * em™'/v/Hz on a 9
cm baseline, equivalent to 67"/ V' Hz single-channel noise. This chapter concludes with
a discussion of the experimental results and recommendations for future work. Chapter
2 further includes and appendix showing a simplified phasor treatment of synchronous

pumping.

2.1.1 Basic Theory of Operation

Measurement of magnetic fields by way of observation of spin precession in the magnetic
field relies on fundamental properties of the spins of charged particles: any charged particle
will exhibit both angular momentum and a magnetic moment. When subjected to a
magnetic field B, a particle with magnetic moment p will experience a torque of magnitude
1|B|. Coupled with the property of spin, conservation of angular momentum dictates that
the torque generates precession of the particle about the magnetic field; the frequency of
precession is known as the Larmor frequency wr. In the case of the 87 Rb atoms used in
the present work, a significant majority of the observed magnetic moment is contributed
by the unpaired electron in the outer orbital of the atom (525; s2)-The electron couples

with the nucleus, exhibiting two possible ground states: electron and nucleus aligned or
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anti-aligned. In either case, the angular momentum of the nucleus and electron together
determine the observed precession frequency of the atomic spins in a magnetic field.

In each of the ground states, the total angular momentum F is the sum of the nuclear
angular momentum [=3/2 and electron angular momentum J = (L + S) where L is the
orbital angular momentum; L=0 for an S orbital and S=1/2 for an electron, so the available
values of F =1 + J are either 1 or 2. The magnetic sublevels mp in the reference frame of
the observed magnetic field denote the orientation of F relative to the magnetic field, and
proceed in integer steps from -F to +F, each with a different energy E in the magnetic
field. The energy spacing between magnetic sublevels gives rise to the observed spin
precession frequency; spin precession is effectively a superposition of energy sublevels
which oscillates at a frequency given by the fundamental relationship between energy and

frequency E = hw. To leading order:

AFE ge,uB|B]AmF
= — =~|B|A = 2.1
wL h VIBlAmE: R(2I +1) 2.1)

where g, is the Landé g-factor of the electron (approximately 2), up is the Bohr magneton,
Amp is the observed magnetic transition (Amp = 1 in this work) and I is the nuclear
angular momentum in units of i (3/2 in the case of 8" Rb and 5/2 in the case of %°Rb).
The relationship between ~ and the magnitude of B is based on fundamental physical
constants and the angular momentum properties of the nucleus; therefore, by measuring
wr, one may deduce the magnitude of B.

In an ensemble of spins, such as the warm 3"Rb vapor used in the present work,
observation of wy, requires coherent precession of a non-negligible fraction of the spins; the
fraction of the spins exhibiting such coherence is called the spin polarization P. While
some polarization is induced by way of the energy splitting generated by the magnetic
field, this polarization is induced along the magnetic field and thus does not generate spin
precession about that field. Further, the polarization is insufficient at Earth-field-scale
magnetic fields to generate a useful precession signal. As such, this experiment requires

a means of generating coherent spin precession about the magnetic field. Bell and Bloom
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demonstrated more than 60 years ago (Bell and Bloom 1957; Bell and Bloom 1961) that
coherent spin precession can be generated by modulation of optical pumping dynamics at
a frequency near wy, in a direction transverse to the magnetic field, and the spin precession
can be optically observed; in the experiment described in this thesis, the optical pumping
is achieved using an optical pump laser tuned detuned by a fraction of a linewidth from
the 8" Rb D1 optical transition (525, 2= 52P, /2, approximately 795 nm wavelength) and
the optical probe laser observing the spin precession is blue detuned from the 87 Rb D2
optical transition (529; /2 = 52 Py /2, approximately 780 nm wavelength).

The spin polarization P = (F)/|F| of an ensemble of spins can naturally be decomposed
into components parallel <PH) and perpendicular (P)) to the magnetic field. The longitu-
dinal (parallel) component of polarization does not experience a torque and therefore does
not precess in the magnetic field; only the perpendicular component of polarization will
precess and contribute to measurement of wy,. Thus, all else equal, the condition P = P |

will maximize the magnitude of the observable signal on the optical probe beam.

Synchronous (Bell-Bloom) Pumping

As mentioned above, Bell and Bloom demonstrated that spin precession about a magnetic
field can be driven by modulation of optical pumping dynamics in a manner synchronous
with the natural Larmor precession of the spins in the magnetic field. Modulation of
pumping dynamics can be achieved through frequency modulation, polarization modula-
tion (Grujic and Weis 2013), or amplitude modulation of the optical pump light. In the
case of frequency modulation, the optical pump wavelength is modulated between a condi-
tion near or at resonance with an appropriate optical transition such as the D1 transition
and a condition far off resonance (for example, S. J. Seltzer, Meares, and M. V. Romalis
2007). In the case of amplitude modulation, the wavelength is kept stable at a point near
resonance with an appropriate optical transition while the optical intensity reaching the
spins is modulated (for example, Gerginov and S. K. S. Knappe 2017). In each case, the

optical pumping rate R,p,(t) includes a significant Fourier component at wy, (or an integer
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subharmonic thereof) oriented orthogonal to B.

The net effect of Bell-Bloom type optical pump modulation is to optically pump the
spins in their rotating reference frame, while the optical pump itself is only along a single
axis in the lab frame. Given an optical pump composed of a series of short optical pulses
at the m! subharmonic of wy, along R and a magnetic field along Q with B - R = cos®,
one can define an orthonormal set of axes using 2, R = cos(0)Q + sin(0)¢ and 7j = Q x €.
With the optical pump repetition rate synchronized and syntonized relative to the natural
Larmor precession frequency wy, of the spins, the pulsed optical pump as observed in the

lab frame will include Fourier components at
A oo p
Rop(t) = Xp: A, [(Qcos@ + §sm9> cos (metﬂ (2.2)

where the A, coefficients are the amplitudes at the p" harmonic of the optical pump
repetition rate. For P, (t) = |PL|e®“it) in the £ — 7 plane, R,,(t) will exhibit a co-
rotating component and a counter-rotating component relative to the precessing spins:
the spins are primarily pumped by the co-rotating component of the optical pump pulses
at p = m; i.e. the component at wy. At Earth-field-scale magnetic fields for " Rb, the
counter-rotating components of R, (t) and the p # m harmonics of the optical pump pulse
repetition rate are all many magnetic linewidths away from resonance with wy and can
therefore be neglected. The co-rotating component at p = m, naturally, optically pumps
the spins in their rotating reference frame, leading to net spin polarization and coherent

precession of the spins about Q.

Spin Polarization Relaxation

If the ensemble of spins is optically pumped to an initial spin polarization condition P
and then allowed to freely evolve with time, the coherence will degrade over time ¢t with
a characteristic relaxation rate I' such that |P| o< exp[—TI't]. Notable contributors to this
spin polarization relaxation in this experiment include Rb collisions with the vapor cell

walls, collisions between the Rb atoms and the nitrogen buffer gas in the vapor cell, photon
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scattering from the optical pump and probe beams, 3" Rb —87 Rb spin-exchange and spin-
destruction collisions, and 87 Rb—8% Rb spin-exchange and spin-destruction collisions. Spin-
exchange collisions contribute to relaxation of | but not to relaxation of P because spin-
exchange collisions conserve angular momentum; thus, P is unaffected in spin-exchange

collisions. The total spin polarization relaxation rate is simply:

Ftotal = Z Fz (23)
1

where the I'; are the individual contributions from each of the spin polarization relaxation

mechanisms.

Spin-Exchange Relaxation

A key concept in the understanding of spin-exchange relaxation lies in the difference be-
tween the mg = 4-1/2 ground states (F=1 and F=2 ground states of 8" Rb and, equivalently,
the F=2 and F=3 ground states of 8°Rb). In each case, the magnetic moment of the elec-
tron dominates the total magnetic moment of the atom; meanwhile, the difference between
ground states, as mentioned above, lies in relative alignment of the electron: spin up or
spin down. These two ground states for each isotope of Rb with net nuclear spin therefore
precess in opposite directions in the magnetic field; given a spin-exchange collision rate
Rgg, the spins in each ground state will pick up an average phase between collisions of
+wr,/Rgg for one ground state and —wy/Rgg. To the extent that Equation 2.1 holds,
therefore, any pair of atoms in opposing ground states does not precess; spin exchange
between these two spins will drive decoherence of the ensemble. The spin-exchange rate is
of course not a uniform rate but simply an ensemble average; thus, between spin exchange
collisions a random phase difference between spins in opposing ground states will be ob-
served. Further, while this experiment utilizes isotopically enriched 87 Rb, there remains
a small fraction of ®Rb. As shown in Equation 2.1, the larger nuclear angular momen-
tum (5/2) causes the 8 Rb to precess at a different rate than 37 Rb, and so the residual

85 Rb contributes to spin-exchange relaxation in this experiment but does not contribute
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to measurement of wy, for 87 Rb.

Spin relaxation and redistribution occurs not simply by collisions between alkali atoms
in opposing ground states; any collision between alkali atoms other than those in which
both atoms are in a ”stretched state” (i.e. both atoms in the |F' = 2,mp = 2) state or
both in the |F = 2,mp = —2) state in 3" Rb) will conserve angular momentum but still
redistribute the spin states (T. G. Walker and William Happer 1997). For instance, T. G.
Walker and William Happer 1997 show explicitly one example of spin exchange between
two 87 Rb atoms, each in a |F,mp) = |2, 1) state: see Figure 2.1 (copied from T. G. Walker
and William Happer 1997 Figure 5a).

Spin-Destruction Collisions

When Rb atoms collide with each other or with Ns molecules, there exists a finite proba-
bility that the collision will not conserve angular momentum (T. G. Walker and William
Happer 1997). Further, when Rb atoms collide with the walls of the vapor cell they also

lose polarization. The gas-phase spin-destruction rates for 8" Rb are (Chen et al. 2007)

I'sp,ro—Rre = Ry * 4.2 % 10~ Bem3 /s (2.4)

Tsp.Rb-N, = NN, * 1.3 % 1072%cm? /s + T3 (2.5)

where ngp and ny, are the number densities of rubidium and nitrogen, respectively, and
T is temperature in Kelvin. Meanwhile, collisions with the vapor cell walls contribute to
the ensemble average spin polarization relaxation rate by way of diffusion of the Rb spins
through the buffer gas. The contribution to spin polarization relaxation can be calculated
using the diffusion equation:

dP

o DV*P (2.6)

where D is the diffusion coefficient of Rb in Ny and P is the Rb polarization. Boundary
conditions include zero polarization at the vapor cell walls (T. G. Walker and William

Happer 1997). Calculation of the resulting relaxation rate I',q; can be performed in an
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Figure 2.1: Illustration of the results of a spin-exchange collision from T. G. Walker and
William Happer 1997 for two alkali atoms with 1=3/2 such as 87 Rb, each initially in the
|F,mp) = |2,1) state. The total angular momentum of the pair of spins is conserved,
but the magnetic sublevels are not. Of particular concern for spin-exchange relaxation,
a significant fraction of spin-exchange collisions in this example result one or both spins
transitioning to the F=1 hyperfine level. The two hyperfine (F) levels precess in opposite

directions, leading to decoherence of the spin ensemble precession.
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approximate fashion by modeling the nominally cylindrical vapor cell with residual fill
stem as simply a perfect cylinder; further simplification comes from modeling only the
lowest diffusion mode. In this approximation, for a cylinder of length 1 and diameter d,
with a spin relaxation slowing-down factor of q,

I+ d)m\?
Cwan ~ Dk*q = D<(2dl)> q (2.7)

which makes use of the characteristic spatial wavevector k = 7/2z for the lowest mode
in the radial direction and the axial direction, where x is the linear dimension along that

direction. In this experiment, d = [, resulting in

2 3/2
T nn, '
Twann ~ qD =5 = gDg—2— (2.8)
12 3/2
n01N2TO

with diffusion coefficient Dy = 0.16cm?/s at non, = 1 amagat and 273 Kelvin (Franz
and Volk 1976). At the present vapor cell buffer gas number density of approximately
0.8 amagat and temperature of approximately 358 Kelvin, this yields an approximate
relaxation rate of I'yqy = 1.9 q. The multiplication by the slowing-down factor in this
case indicates the relaxation of not only the electron spin but also the nuclear spin (T. G.

Walker and William Happer 1997).

Optical Pumping

Detailed calculations of optical pumping and spin relaxation can be found in (William
Happer 1972) and (W. Happer and Wijngaarden 1987), including effects of both the ground
and excited states along with various mechanisms of spin polarization relaxation. Full
treatment must take into account the hyperfine splitting and the mpg levels of the atoms;
however, the calculations can be greatly simplified when the broadened optical transition
linewidth is greater than the hyperfine splitting. In this experiment, as mentioned above
the Na buffer gas number density is approximately 0.8 amagat; No exhibits a broadening

coefficient of approximately 17.8 GHz/amagat for the 87Rb D1 optical transition and 18.1
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GHz/amagat for the 87 Rb D2 transition (M. V. Romalis, Miron, and Cates 1997). The
collisional broadening effects alone account for approximately 14 GHz optical linewidth
for each transition, approximately double the 6.835 GHz hyperfine splitting (Steck 2003).
Therefore, the various energy levels are unresolved for the purposes of optical pumping in
this experiment.

Recall that in this experiment circularly polarized light near the 87 Rb D1 optical tran-
sition (525, /2 = 52P, /2, approximately 795 nm wavelength) optically pumps the spins.
For an atom to absorb a pump photon, it must absorb not only its energy but also its
angular momentum; angular momentum selection rules therefore dictate that only one
of the electron magnetic sublevels (ms = —1/2) can absorb o™ circularly polarized light
while the other (ms; = +1/2) cannot. Rapid collisions between Rb atoms in the excited
state with each other and with Ny molecules result in rapid excited-state mixing of the
mg levels. The excited-state Rb atoms are rapidly quenched through non-radiative en-
ergy transfer with Ny although some finite radiative quenching remains (Rosenberry et al.
2007). The non-radiative quenching process preserves the angular momentum and the mg
level of the excited state atom; thus, half of the atoms for each pumping cycle end up in
the ms = +1/2 ground state and the average angular momentum added to each atom per
pumping cycle is 1/2 in units of h. A diagram of this process is shown in Figure 2.2.

The nuclear spin, meanwhile, is not randomized by excited state collisions and tends

to become polarized via the hyperfine interaction:

<d<F>> = R”’u —s-P.)— %Pe (2.9)
op

dt 2

where P, = 2(S) is the electron spin polarization in the reference frame of the optical
pump, s is the angular momentum of the optical pump photons (|s| = 1 for a o™ photon,
R, is the optical pumping rate (the rate at which the atoms will absorb pump photons in

the zero-polarization limit), and I'. is the electron spin polarization relaxation rate. The
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ms = —=  Collisional mixing ms =+
5P1/2 * ﬁ *
| |

N, Quenching R N, Quenching
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Figure 2.2: Diagram of the optical pumping scheme for this experiment. At thermal
equilibrium, the ground state (5S),2) populations in the ms = +1/2 and ms = —1/2
sublevels of the ensemble of 8 Rb atoms are approximately equal. Circularly polarized
photons Ry, in the o™ polarization state (s = 1), approximately resonant with the 87Rb
D1 transition (~ 795nm) drive ground state electrons in the my; = —1/2 sublevel to
the excited state 5P 5, ms = +1 /2 excited state. Selection rules forbid excitation of
ms = +1/2 ground state electrons from absorbing o+ photons, so only the ms; = —1/2
electrons are excited. Rapid collisional mixing in the excited state places approximately
half the excited state electrons into each of the mg sublevels, and non-radiative quenching
through energy transfer to the Ny buffer gas drives the atoms back to the ground state
without altering their respective sublevels. Each photon absorption, therefore, adds on
average 1/2 h of angular momentum to the ensemble. Spin polarization relaxation I' drives
the ensemble back toward thermal equilibrium.



22

optical pumping rate is given by

r,/2
Vop — VD1)2 + (Fl//2)2

Rop = @opo(Vop) = @Oprecfpl( (2.10)

where ®,, = IA/(hv,p) is the optical pump photon flux for an optical pump of average
intensity I and cross sectional area A with Planck’s constant A and pump optical frequency
Vop, 0(Vop) is the interaction cross section, 7. is the classical electron radius, c is the
speed of light, fp1 ~ 1/3 is the oscillator strength of the D1 transition, vp; is the D1
optical transition resonance frequency, and I', is the excited state relaxation rate of the

D1 transition including all broadening effects. In steady state, then,

ﬂzgﬁﬁ% (2.11)

in the limit where s - P, = P; I' is the spin polarization relaxation rate.

Spin Precession

In the presence of a magnetic field 0= vB the angular momentum F of the ensemble will

evolve with time according to the Bloch equation:

dF - R, (t
— = Q% F — (Rop(t) +T).1)S + g” (2.12)

where I'| | is the electron randomization rate as applicable to the parallel or perpendicular
components of spin polarization relative to ﬁ, and it is assumed that the time-dependent
optical pumping rate R,y (t) has an appropriate form for D1 transition optical pumping of
8TRb at high pressure.

Under the assumption that the details of the nuclear spin evolution can be described
by a simple proportionality F = ¢S, one may generate a good approximation of the
time evolution of the spin in this experiment. It is also natural to split the angular
momentum into components parallel and perpendicular to the magnetic field, and to

treat these components separately. With the optical pump propagating along R and the
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magnetic field along ﬁ,

ds
dTH = —(R(t)+T))S) + coseRét) (2.13)

q

where R - Q) = cosf; one may define R = cosb) + sin&é and a third orthonormal vector

eta = ) x é . The steady-state polarization parallel to the magnetic field is

(Rop)cost

P =25 =
: I (Rop) +T

(2.14)

which exhibits no sensitivity to the magnitude of the magnetic field and is therefore not
useful for scalar magnetometry.

The transverse spin components, however, do precess about the magnetic field as
described in Equation 2.12 and can be conveniently expressed in phasor form Sy = S¢ +
iS, = S, e'™. Substituting this into Equation 2.12 and taking the real part, the magnitude

of the transverse component of spin obeys

ds,

¢~ = —(TL+R()SL + %cosaR(t)sin@ (2.15)

As will be shown below, the phase « of the transverse spin obeys a = wt + ¢. In this
experiment, the optical pump pulses are localized in time about wt = 27w with integer
w. In the limit that the optical pumping rate (R,,(t)) and relaxation rate I'| are small
compared to the Larmor frequency, the optical pumping rate and relaxation rate can be
replaced by their time averages.

As will be shown shortly, pulsed amplitude modulation of the optical pumping light
wherein the optical pumping light pulses are of short duration (much less than 27 /wy)
and of negligible intensity between pulses has an inherent advantage over other amplitude
modulation schemes such as sinusoidal amplitude modulation. The optical pumping rate
along ]:Zop is independent of spin orientation, while in the rotating reference frame of
the spins, the polarization of the optical pump is s(s - S’) where s is the polarization of

the optical pump photons (s = 1 along RAOp for ot circularly polarized pump photons)
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and 2<S>5' = P is the spin polarization vector of the ensemble of precessing spins. The
direction of the optical pump is held fixed in the lab frame in this experiment, and so the
time-average polarization of the optical pump in the rotating reference frame of the spins
is

27

(3-9) = ‘;/O“SM-S% (2.16)

In the simple sinusoidal amplitude modulation example where the optical pump photon
flux is modulated at |Rop(t)| = (Rop)(1 + cos(wrt)), it becomes clear that s -S| =
(coswrt + cos’wrt), which averages to (3 - S) = 1/4. Hence, in the case of sinusoidal

amplitude modulation, the steady-state magnitude of P, is

L. (Rop)

Zsm(ﬁ)m (2.17)

PL,sine =

where P| gine is the magnitude of P in the case of sinusoidal amplitude modulation of
the optical pump and it is clear that sinusoidal amplitude modulation of the optical pump
cannot fully polarize the spins even when the optical pump modulation is on resonance
with the natural Larmor precession frequency of the spins.

For short pulses with fractional duty cycle d < 1 (i.e. time duration 27d/w for any
given pump pulse), the optical pumping rate will exhibit a time average of (cos(a)Rop(t)) =
sinc(2)cosd(Rop) 2 cosd(R,p). Similar to the expression for the component of polarization
parallel to the magnetic field, the steady-state magnitude of the transverse polarization

will be

P, =25, = cos(é)sm(@)m (2.18)

demonstrating that in principle the atoms can become fully polarized using synchronous
pumping with short-duty-cycle pulses. When the optical pump pulse repetition rate w
is equal to the Larmor precession frequency €2, the spins align with the optical pumping
light once per cycle and cosd — 1. Pumping with short synchronized pulses of pump light
transverse to the magnetic field is therefore as effective at generating spin polarization as

the more typical optical pumping along the magnetic field direction.
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The phase of the transverse spin similarly obeys

do . Rop(t)sina
() —gipgl 2.1
o sin 205, (2.19)
and the phase shift relative to the optical pump pulses obeys
dé
a:Q—w—FQtané (2.20)

where I'y = (I'| + (R,p))/q is the slowed transverse spin relaxation rate. In this work, the

observable quantity is

<R0p>

P-R= Pjcost + Py cos(wt + §) = o) + T
op 1

(cos?(0) + sin? () cos(d)cos(wt +6)) (2.21)

and demodulation of the result using sin(wt) gives the classic dispersion lineshape

Pmax (Q — w)FQ
2 (Q—w)?2+T%

(P - Rsin(wt)) = Ppazcos(8)sin(8)/2 = (2.22)

as one would expect.

Light Narrowing

The phenomenon of light narrowing is a means of suppressing spin relaxation by pumping
a significant fraction of the spins into a “stretched state” (jmp| = F = 2 for 8"Rb). As
described in Section 2.1.1, spin-exchange collisions will preserve the total angular momen-
tum, and so spin-exchange between a pair of atoms each in the same mp = 2 state will
exhibit no overlap with the opposing ground hyperfine level (F' = 1) and not result in
spin-exchange relaxation. Given this spin-exchange relaxation suppression effect, the net
spin-exchange relaxation rate is simply proportional to (1-P). A consequence of driving
toward a condition in which a significant fraction of the spins is in a stretched state is
that the optical pumping rate must support a high polarization (see Equation 2.35), while

the total transverse spin relaxation rate I's includes contributions from the optical pump
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beam (Section 2.1.1). As such, in the continuously synchronously pumped regime as in
this experiment, a balance must be struck between suppression of spin-exchange relaxation
and decoherence induced by a high optical pump rate (also known as optical pump power
broadening). The topic of optimization of magnetometer physics based on these effects

will be covered in more depth in Section 2.4.1.

Detection using Faraday Rotation

In this work, the observable quantity P - R is detected using an optical probe beam com-
posed of linearly polarized light, detuned from the D2 (55,5 — 5P5/) optical transition,
approximately 780 nm, co-propagating with the optical pump beam. The linear polariza-
tion state is an equal superposition of o+ and o~ circular polarization states; the relative
phase of these two states determines the angle of linear polarization. As an example,
consider the normalized Jones vector representation Ju of horizontal linear polarization
as compared to right-hand and left-hand circular polarization states, jRHC and J, LHC,

respectively:

- 1 R 1 - 1
Jg = Jruc = % | Jrwe = % ' (2.23)

0 -i i
indicating that the normalized representation of horizontal linear polarization is simply
the normalized sum of left-hand and right-hand circular polarization states (i.e. left-hand
summed with right-hand circular polarization at equal phase). Similarly, the normalized
representation of vertical linear polarization is the normalized difference of left-hand and
right-hand circular polarization states (left-hand summed with right-hand polarization
at 7 relative phase). Clearly, then, an equal sum of left-hand and right-hand circular

polarization at arbitrary phase produce linear polarization at any arbitrary angle.

As described above in Section 2.1.1, o photons interact with ms = —1/2 electrons;

similarly, o~ photons interact with ms; = +1/2 electrons. In the reference frame of the

optical probe beam, the proportion of my; = +1/2 and ms = —1/2 electron spins is
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described by P - R (Equation 2.21). With the optical probe beam detuned from resonance,
a primary effect of the interaction between the spin ensemble and the probe beam is an
index of refraction difference for the o+ and o~ components of the optical probe beam,
proportional to P - R. As the optical probe beam propagates through the alkali vapor,
then, the linear polarization state rotates through an angle ¢. For this experiment, the 14
GHz collisional broadening induced by the high buffer gas number density of 0.8 amagat
keeps the hyperfine structure from being resolved; as mentioned above, the separation in
energy between the F' = 1 and F' = 2 manifolds is approximately 6.835 GHz (Steck 2003).
Neglecting the unresolved hyperfine structure, ¢ is given by (M. V. Romalis, Miron, and
Cates 1997)

1 - A .
= —ilrecan(l/)P ‘R = —lrecfnry’m(1 AT )P ‘R (2.24)

nu,pr

where [ is the path length through the polarized alkali vapor, r. is the classical electron
radius, c¢ is the speed of light, f is the oscillator strength of the D2 transition, n is
the number density of the 87 Rb atoms in the vapor phase, I’y pr is the D2 excited state
relaxation rate, and A is the detuning of the optical probe from resonance. The expression
for ¢ can be derived using the methods described in Electric-Dipole Polarizabilities of
Atoms, Molecules, and Clusters 1997.

Polarization rotation of the optical probe beam can be measured by using a balanced
polarimeter consisting of a polarization beamsplitter such as a Wollaston prism and a pair
of photodetectors arranged to collect the ordinary and extraordinary components of the
incident light (also known as the S and P polarization components). In a balanced po-
larimeter, the orientation of the polarization beamsplitter is carefully arranged to generate
an equal incident photon flux on each of the two photodetectors for an un-rotated optical
probe beam. The photon flux at the detectors generates electrical current when operat-

ing the photodetectors in photoconductive mode, as in this experiment; the differential
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photocurrent 6/ is given by

5T = n®,(sin®(¢ + %) — sin®(¢ — %)) = n®prsin(2¢) (2.25)

where 7 is the quantum efficiency of the photodetector. I have designed and built a high-
performance custom photodetector preamp circuit (transimpedance amplifier pair and
pair of difference amplifiers) for this experiment, providing for photocurrent measurement
dominated by photon shot noise in the optical probe beam (Appendix A.2) in addition to
designing a custom physical polarimeter apparatus consisting of custom mount contain-
ing a Wollaston prism, a condensing lens, and a matched pair of photodetectors, shown

diagrammatically in Figure 2.5.

Fundamental Noise Limits

Optically pumped atomic magnetometers exhibit three major fundamental noise sources
(Budker and Kimball 2013): photon shot noise  Bpgn, quantum projection noise é Bgpn,
and probe AC Stark shift noise, also known as light shift noise §Brgy. The photon
shot noise arises from statistical counting noise in the number of photons reaching the
photodetector; for ®,, photons reaching the photodetector in a measurement time period
(resulting in 7Py, electrons emitted in photoconductive mode), the noise power is simply
equal to ®,,. (n®,, electron number noise power). The amplitude of the corresponding

photon shot noise limit d¢ to the measurement of ¢ is therefore:

1
= 2.2
0= (226)

where Equation 2.25 has been used to express the photon shot noise on a per square root
Hz basis with the approximation that sin(2¢) = 2¢ in the limit that ¢ is small. The

phase response ¢ of the spins to oscillating magnetic fields of increasing frequency fge; is
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well-approximated by

6(0) 4(0)
VRSN R

6(faet) = (2.27)

wherein it is clear that the spin precession phase response follows the same frequency
dependence pattern as a simple resistor-capacitor (RC) low-pass filter, with a characteristic
frequency I's/m in Hz. This relationship follows naturally from the high-frequency limit
of phase accumulation for the spins: for a magnetic field oscillation B, ,cos(wpt) where
wp > I'y

_ YBuysin(wpt)

5(t) = / Bu, cos(wpt)dt (2.28)

wp
which is simply a restatement of Equation 2.1.
Combining Equations 2.21, 2.24, 2.26, and 2.27 leads to an expression for the photon

shot noise in magnetic field terms. In the case where R-Q =0 (i.e. P = P,):

2
ol (1+ 455 —) /1 + fG,m T3

B =
o PSN(fdet) lTeCfTLAP’Y\/m

(2.29)

where terms are as defined above.
Quantum projection noise is similarly dependent on the relaxation rate and number
density, along with the volume V of spins interacting with the probe beam, and the

gyromagnetic ratio (Alem, Sauer, and M.V. Romalis 2013; Ledbetter et al. 2008):

1/, 1Ty
6B — — 2 /=2 2.30
oPN = ALy TN (2.30)

with total number of spins N being sampled by the optical probe beam.

Additional noise is contributed by quantum fluctuations in the polarization state of the
optical probe beam (Ledbetter et al. 2008). This noise is calculated based on the optical
intensity (photon flux and cross sectional area A), with other terms as defined above:

this noise occurs along the probe direction () and generates an effective magnetic field
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noise based on the scalar magnetic field deviation generated by the resulting AC Stark
shift noise; the AC Stark energy shift modifies the splitting between mp levels, and is
therefore indistinguishable from a magnetic field and will exhibit its own shot noise based
on the photon shot noise of the o™ and o~ components of the optical probe beam linear
polarization state. To leading order, this AC Stark shift noise (also known as “light shift

noise” is given by (Ledbetter et al. 2008):

_recfDW) 2P 4
SBusy = = or a0 (2.31)

where D(v) = (v — 119)/((v — v0)? + (Tupr/2)?) with probe beam optical frequency v and
D2 optical transition resonance frequency vy. However, as noted above R-Q = 0in
this experiment, and so AC Stark shift noise does not meaningfully contribute to the total
noise in this experiment but can be a meaningful source of noise in a real-world application

where R - is rarely negligible.

Measurement of Alkali Number Density

As shown in Equations 2.29 and 2.48, alkali number density n is an important parameter for
calculation of the fundamental limits of magnetometer performance. In this experiment,

alkali number density is measured in the low probe intensity limit using the relationship

1
Ezxp[nogl] = Tff (2.32)

on

where oy is the on-resonance scattering cross section of 87 Rb for the broadened Dy optical
transition, T, is the probe transmission through the alkali vapor in the on-resonance
condition, and T, is the probe transmission through the alkali vapor in the far-detuned
condition where probe scattering is approximately zero. In this experiment, the optical
depth OD = naoyl of the vapor cell is sufficiently low to allow reasonable direct use of this
method rather than requiring a curve fit of absorption versus wavelength of the probe beam

by way of the relationship between cross section and wavelength described in Equation
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repetition rate w signal measure § 8 > K6
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Figure 2.3: Block diagram for closed-loop feedback. Optical pump pulses are input to
the magnetometer at a repetition rate w; the response of the spins is measured by the
polarimeter and demodulated (for example, using a lock-in amplifier referenced to w) to
output a signal proportional to . A gain stage takes the signal and multiplies it by a
transfer function K. The result is then used to modify w such that 6 — 0.

2.10. Using the method described in Equation 2.32, I measure n ~ 2 % 102¢cm =3,

Closed-Loop Feedback Basics

As shown in Equation 2.22, in the limit of small é the demodulated response of the ensem-
ble of spins in steady state is proportional to the phase difference d between the optical
pump pulse repetition rate and the observed spin polarization signal on the polarimeter;
as § continues to increase, the linearity degrades. Maximum magnetic field sensitivity,
therefore, is achieved at w — §2; in an unshielded environment, closed-loop feedback de-
signed to drive 6 — 0 by way of modifying w, then, will keep the magnetometer operating
in its most sensitive and linear-response regime. A conceptual block diagram for closed
loop feedback from the perspective of the electronics is shown in Figure 2.3. The topic of

closed-loop feedback will be covered in more depth in Chapter 3.

2.2 Present Work

Brief Background

With collaborators, we recently extended the synchronously pumped atomic magnetometer
concept to include a scalar and differential scalar magnetometer capable of operating with
high sensitivity in earth’s field with the goal of improving performance to levels sufficient
for biomagnetic imaging in an unshielded environment (A. R. Perry et al. 2020). In the
present work, I have achieved repeatable, significantly improved performance over the

work described in A. R. Perry et al. 2020, combined with significant simplification of
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the system. In (A. R. Perry et al. 2020), similar to the work described in Sheng, A. R.
Perry, et al. 2017, the differential magnetic sensitivity was achieved by way of optical
subtraction (Figure 2.4). A single optical probe beam passed through a first magnetically
sensitive volume (zone 1, labeled Z; in Figure 2.4), picking up a first polarization rotation ¢
(Equation 2.37). Reflection off a pair of dielectric mirrors was then used to drive ¢ — —¢
and displace the optical probe beam to pass through the second sensitive zone, after
which the probe beam passed through a second sensitive volume (zone 2; Z; in Figure 2.4)
nominally identical to the first and optically pumped synchronously with the first: at zero
magnetic gradient (equal magnetic field magnitude for each of the two zones) the probe
nominally picks up another rotation of 6 for a net zero polarization rotation. A non-zero
net polarization rotation of the optical probe observed in A. R. Perry et al. 2020, then,
indicates a differential magnetic field between the two zones. The underlying perception
driving this operational concept was that electrical subtraction of the signals of two zones

would be unable to generate a differential detection noise in the range of single digit to

fT
emvVHz'

Contrary to this perception, if the technical noise is well below the photon shot noise

tens of

limit, electrical subtraction can provide the same differential measurement performance
limits as optical subtraction. Reaching the photon shot noise limit for a detector observing
a mW-scale optical signal simply requires appropriately designed detection electronics:
Appendix A.2 demonstrates that such a design is straightforward and solidly based in
fundamental physics.

In the limit of a far-off-resonance optical probe (negligible optical absorption in the
alkali vapor) a single optical probe beam that passes through two detection zones will
generate the same total photocurrent as in the case of a split probe beam passing through
each of two zones individually. With identical total photocurrent and all else equal, the
two-channel differential photon shot noise will be the same for both configurations; mean-
while, the single-channel photon shot noise can be reduced significantly compared to A. R.

Perry et al. 2020, wherein a small fraction of the optical probe light was split off from the
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Figure 2.4: Figure 1 from A. R. Perry et al. 2020. (a) Optical layout showing the two
interrogation regions probed by a single optical probe beam and pumped by synchronous
optical pump pulses. Red lines indicate optical pump (= 795 nm), blue lines indicate
optical probe (=~ 780 nm), and purple represents co-propagating or counter-propagating
pump and probe light. Optical components include PBS (polarization beam splitter),
DM (dichroic mirror), BS (non-polarizing beam splitter), A\/2 (half wave plate), DWP
(dichroic wave plate; circularly polarizes 795 nm and leaves 780 nm linearly polarized),
and photodetectors (Z1 Mon, Zs Mon, and differential generating B P g and B P sp signals
for optical intensity monitoring of the combined pump and probe, second pump, scalar
field, and differential scalar field, respectively. (b) Notional timing diagram of optical
pumping versus Larmor phase of the spins, and actual photodetector signal from BPp
(blue) and BPsp (green) respectively. The optical pump is pulsed once per Larmor cycle
and the optical probe is pulsed 4 times per Larmor cycle in this example.
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main probe beam after it had passed through zone 1 (see Figure 2.4); this small fraction
of the optical probe light was sent to a second polarimeter for measurement of the scalar
magnetic field, significantly degrading the photon shot noise limit for scalar magnetic field
measurement as compared to the present work. Further, the present configuration uses
fewer optical elements than A. R. Perry et al. 2020, thereby simplifying the apparatus.
As described above and in (A. R. Perry et al. 2020), the underlying principles of
this synchronously pumped magnetometer scheme can be described by an ensemble of
atomic spins, polarized by a periodically pulsed, circularly-polarized pumping laser beam
propagating along the axis R. During the time interval between pump pulses, the polarized
atoms precess about the external magnetic field B at the Larmor precession frequency
(Equation 2.1); the experiment described herein probes Am = 1 magnetic transitions, so
this simplifies to
wi = 4/B| (2.33)

As described in Section 2.1.1, the probability of absorbing photons from the pump laser
(i.e. the optical pump photon scattering rate) is proportional to (1 — Pg) where Pg is the
component of the spin polarization along the pump axis. For small deviations of the pump
pulse repetition frequency w about wy, there is an enhanced absorption of photons which
brings the instantaneous spin polarization closer into alignment with the light. The net
result is spin precession at the pulse repetition frequency but with a phase shift § between
the spin precession and the pump pulses driving that precession.

Recall from Section 2.1.1 that the spin precession vector Pr(t) can be broken down

into components parallel (P|) and perpendicular (P, ) to the magnetic field B:

Pg(t) = Pjcos(f) + Py sin(f) cos(wt + 6) (2.34)

where cos(f) = B R. The relevant observable for scalar field magnitude is the component

of the atomic spin polarization perpendicular to the external magnetic field. The optical
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pump and optical probe propagate along R, yielding an observable

(R eos(®) o
L= B AT, (0)cos(wt + 6) (2.35)

with spin relaxation rate I' | , optical pumping rate R,,, and average angle ¢ between the
spin polarization and R during an optical pump pulse.

As noted in Equation 2.35, P — 0 when B-R— 1; in other words, the magnetometer
sensitivity goes to zero as the bias field approaches the optical pump/probe direction. In
this work, the magnetic bias field is nominally orthogonal to the optical pump direction in
order to maximize the sensitivity, hence P — 0 and B-R — 0. As demonstrated above in
Section 2.1.1, it can be shown (A. R. Perry et al. 2020) that the steady-state phase shift
of the spin precession response to the optical pump pulses is

yow

§ = tan" (AwTy) = tan
Iy

(2.36)

with frequency detuning Aw = w — wy. This experiment uses an optical probe beam
co-propagating with the pump to detect the atomic spin polarization. The probe is de-
tuned far off the optical resonance, Ayt > I's/5, where I'3/; is the observed broadened
optical linewidth of the 8"Rb °P; /2 state (including all contributions such as collisional
broadening and thermal effects). Here the Faraday rotation of the probe light due to the
spin-dependent index of refraction of the atoms minimally perturbs the spins (W. Happer,
Jau, and T. Walker 2010). Recall from Equation 2.24 that the probe beam acquires an
optical polarization rotation

é(t) o NPg(t) (2.37)

where N is the number of atoms in the sample volume. A polarimeter converts ¢(t) into
an electrical signal; demodulation at the pump pulse repetition frequency w of the elec-
trical signal representing the probe rotation angle, for small Aw ~ 0, yields in-phase and
quadrature signals proportional to ®,,N P cos(d) and @, NP, sin(d), respectively. So

far, the description above has focused on single co-propagating pump and probe lasers;
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a second, orthogonal optical probe beam may yield performance advantages (Lee, V.G.
Lucivero, et al. 2021) in unshielded applications where B-Ris rarely negligible. Further,
an orthogonal second probe beam provides the basis for real-time observation of the po-
larization vector in 3D space; coupled with a small-amplitude applied oscillating field to
lift a sign degeneracy in the measurement, this will enable measurement of not only €2 but
also €. This topic will be covered in more detail along with attendant theory in Chapter
5.

In addition, in practical magnetic sensing applications there are great advantages to be
gained in suppression of the effects of fluctuations in relatively uniform background mag-
netic fields by configuring pairs or arrays of magnetometers as gradiometers or differential
magnetometers (V.G. Lucivero et al. 2022; Smullin et al. 2009; Zhang et al. 2020; 1. A. Su-
lai et al. 2019). The experiment described in this chapter includes a simple 1-dimensional
array consisting of only two sensitive elements to investigate and demonstrate the differ-

ential measurement capabilities of this magnetometer.

2.3 Experimental Apparatus

The experimental apparatus used in the work described in this thesis is largely of my own
design/architecture, building upon and modernizing the concepts first demonstrated by
Bell and Bloom more than 60 years ago to achieve improved performance. This design and
architecture sought to maximize the use of commercially available equipment, re-used the
vapor cell housing from a previous experiment performed in the same lab (Zhivun et al.
2019), and relied upon our collaborators (A. R. Perry et al. 2020) for LabVIEW software
for control of the optical pump pulse triggering in open-loop mode as in this chapter and
Chapter 4. The LabVIEW software and FPGA firmware used in Chapter 3 was developed
according to an architecture I designed, and was implemented in collaboration with our
group’s undergraduate lab assistant Jonas Tost (Tost, M. Bulatowicz, and T.G. Walker
2023). The overall apparatus was assembled with the aid of another undergraduate lab

assistant, Alec Hryciuk.
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After we conceived the basic concept, I generated the appropriate system architec-
ture, calculated necessary component specifications, and selected appropriate commer-
cially available equipment, including the PXIe system and modules, laser light sources,
the method of and equipment for optical pump pulse generation, the lock-in amplifier,
optics components, vapor cell, and feedback architecture. Where commercially available
equipment was insufficient for the requirements of this experiment, I designed the necessary
components: these include the pump pulse triggering logic (Appendix A.1), the pump pulse
shuttering system based on a free-space electro-optic modulator, the high-performance dif-
ferential photodetector preamp (Appendix A.2), the high-performance polarimeter itself,
and the ceramic heaters for the vapor cell.

An abbreviated schematic of the apparatus used in this experiment at the University of
Wisconsin - Madison is shown in Fig. 2.5. For each detection zone, an isotopically enriched
8TRb atomic vapor and 0.8 amagat of Ny buffer gas is housed in a 1 cm internal diameter
by 1 cm internal length cylindrical vapor cell. The vapor cell is surrounded by ceramic
RF heating coils that are designed to minimize induced magnetic fields (M. Bulatowicz 30
March 2012) and thermal insulators consisting of aerogel sheets to maintain a " Rb vapor
pressure of approximately 2-3 x 10'2 em~3. In accordance with (M. Bulatowicz 30 March
2012), each RF heating coil is a planar 3-layer thick-film-on-substrate ceramic circuit
board with a magnetic 16-pole winding pattern around the substrate perimeter, designed
for minimum self-inductance (minimum induced magnetic field and minimum reactive
impedance); the vapor cell is surrounded by a pair of these heating coils, oriented opposite
to each other for a net 32-pole RF magnetic coil pattern surrounding the vapor cell. Each
heater on its own has been measured to produce a magnetic field of approximately 1n7T'/A
on average over the volume of the vapor cell.

For further suppression of the effects of the magnetic field produced by the heaters, the
heater drive signal is a sine wave detuned thousands of magnetic linewidths away from the
natural Larmor precession frequency of the spins. The heater drive signal is an open-loop

voltage control system supplied by a custom designed circuit that simply amplifies and AC
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couples an input waveform from a function generator, using a potentiometer to control
the gain, and an Apex Micro PA107DP power amplifier to drive the increased voltage
and current through the heaters. The heaters dissipate approximately 0.3 W per vapor
cell to heat the vapor cells to approximately +85 degrees C. In future work, the heating
system may be modified to operate in closed-loop mode for tighter control of vapor cell
temperature, and rather than using electrical resistive heat power one may also heat the
vapor cell in an effectively non-magnetic fashion using a laser of an appropriate wavelength
to be absorbed by the glass of the vapor cell itself or by an appropriate attached optical
absorption element (Kitching 2018).

The vapor cell and thermal management for each measurement zone is housed in its
own custom 3D printed ABS plastic shell located inside a 4-layer magnetic shield (Twinleaf
MS-2). This magnetic shield includes integrated coils for controlling the vector field com-
ponents and all independent first order magnetic field gradient components. All of the ex-
periments described in this thesis use a magnetic bias field orthogonal to the optical pump
at tens of micro-Tesla; orders of magnitude greater than would allow for SERF regime oper-
ation (I. M. Savukov and M. V. Romalis 2005). For a continuously synchronously pumped
magnetometer, a bias field orthogonal to the optical pump axis represents a condition in
which the spins are maximally susceptible to spin-exchange relaxation, residing in the fast
spin-exchange limit with a low spin-exchange relaxation slowing-down factor (W. Happer
and Tam 1977) while still able to take some advantage of light narrowing phenomena to
suppress the spin-exchange relaxation at the cost of increased optical pump power broad-
ening (Appelt et al. 1999, Equation 2.40). Thus, the investigated conditions represent the
fastest spin polarization relaxation rate which may be observed under otherwise-optimal
conditions; as shown in Equation 2.29, the photon shot noise limit is proportional to the
overall spin polarization relaxation rate I's. The electric current for driving magnetic bias
and gradient fields is supplied using a low-noise electrical current driver (Twinleaf CSUA-
1000). The electrical current-to-field and current-to-gradient conversion factors for the

magnetic field coils and magnetic gradient coils, respectively, provided within the mag-
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netic shield were calibrated at the location of each vapor cell by way of the relationship
described in Equation 2.33.

The optical pump beam is generated using a Vescent Photonics DBR laser driven by a
Vescent Photonics laser controller and is tuned near resonance with the 795nm D1 optical
transition while an optical probe beam generated with a second DBR laser and driven
by a Thorlabs laser controller, tuned near the 780nm D2 optical transition, monitors
the atomic spin. The pump beam is intensity modulated using a scheme based on a
Newport 4102 electro-optic modulator as shown in Figure 2.6. Logic signals driving “on”
versus “off” states of the optical pump beam are generated by a NI PXIe-6614 precision
reference counter/timing module with the optional oven-compensated crystal oscillator
(OCXO) included for stability and noise performance; the OCXO also provides the timing
reference for the PXle chassis backplane timebase. For minimum periodic jitter in the
optical pump pulse trigger logic signals, the apparatus uses an integer countdown from
the NI PIXe-6614 reference timebase clock frequency.

When the optical pump beam is in the “off” state, I measure single-digit micro-Watt
optical power outputs from the fiber. When the optical pump beam is in the “on” state,
I measure a typical optical power output from the fiber of 20 mW. The probe is operated
in a continuous steady state mode at approximately 7 mW optical power as measured
prior to the non-polarizing beamsplitter shown in Fig. 2.5. The probe and pump are
simultaneously combined and split along two separate directions using a non-polarizing
beamsplitter cube; one set of combined, co-propagating beams is directed through each of
two vapor cells separated by 9cm. On the far side of each vapor cell, the pump light and
probe light are separated using a dichroic mirror. The probe light for each zone is sent
to a respective balanced polarimeter and corresponding custom differential photocurrent
detection circuit consisting of a carefully-designed transimpedance amplifier (current to
voltage converter; see Appendix A.2) for each photodiode, and one or more difference
amplifiers to generate a voltage signal corresponding to the differential photocurrent. The

observed total photocurrent for each zone is 1.5 mA, corresponding to approximately 3
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Figure 2.5: a) Block diagram of the operational concept. Collimated optical pump and
probe beams are combined and split along two optical paths through respective 8"Rb vapor
cells, each associated with a respective polarimeter. b) Notional timing diagram showing
optical pump pulses during a Larmor precession cycle when the pulses are applied at the
Larmor rate
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Figure 2.6: Block diagram of the optical pump intensity modulation scheme. The CW
laser wavelength of the optical pump is near the 8" Rb D1 transition; the EO modulator,
waveplates, and polarization beamsplitter work together to generate amplitude modulation
of the optical pump beam in the form of short-duty-cycle optical pulses observed at the
output of the polarization beamsplitter, which are then coupled into an optical fiber which
transmits the optical pump pulses to a collimator (Figure 2.5)

mW reaching each polarimeter.

The voltage signal corresponding to the differential photocurrent signal is demodulated
using a lock-in amplifier (SR865A) referenced to the pump pulse repetition rate; the output
of the lock-in amplifier is proportional to the product of input signal amplitude and sin(d)
(Equation 2.36). In the limit of small § and stable polarization signal amplitude, the
lock-in amplifier output is simply proportional to the difference between the pump pulse
repetition rate and the natural Larmor precession frequency of the spins.

For the case of scalar magnetic field measurement, the polarimeter signal from a single
detection zone is sent to the lock-in amplifier input as a differential signal: for single-
channel scalar measurement with polarimeter photodetectors o and 8 (associated with the
S and P polarization components of the detected probe beam, respectively) the custom
photodetector circuit is configured to generate a complementary pair of signals consisting of
a—[ and S—a, enabling the use of a differential input configuration at the lock-in amplifier,
labeled ” A-B” on the SR865A. This configuration is observed to significantly reduce the
influence of electrical noise associated with the finite electrical ground impedance between

the lock-in amplifier and the photodetector circuit; the grounding noise is substantially
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common mode between the two lock-in inputs. In the case of gradient measurement,
the photocurrent signals from the pair of zones are directly differenced at the input of
the lock-in amplifier, with a photodetector circuit configuration of simply o — 3 for each
zone. In each case, the time series of the output of the lock-in amplifier is recorded using
a low-noise data acquisition system (NI PXIe-5171R; 250 million samples per second at
14 bits resolution per sample) and the resulting time series is converted to a frequency
spectrum using a fast Fourier transform (FFT) algorithm. The rationale for choosing the
PXIe-NI 5171R are described in Appendix A.4. The frequency spectrum is appropriately
scaled based on the known applied input stimulus signal, calibrated using the relationship
described in Equation 2.33 (field or gradient, as appropriate).

The output response of the demodulation, as perceived by the data collection system,
is the result of multiple factors working together, including intensity, wavelength, and
rotation angle of the probe, gain of the photodetection circuit, proximity of the pump
pulse repetition rate to the natural Larmor frequency of the spins, the angle of the bias
field relative to the pump direction, phase tuning of the demodulation signal, and the
applied signal gains. To account for the combined effect and appropriately scale the noise
spectra, each measurement is calibrated using an input stimulus magnetic field modulation
or gradient modulation, as appropriate, at a known frequency and known (calibrated)
amplitude. For the measurements shown in Figures 2.9 and 2.10, the apparatus was run in
open-loop mode with a continuous series of pump pulses applied at a well-defined repetition
rate corresponding to the Larmor precession frequency in the magnetic bias field By, and
with the bias field orthogonal to the pump/probe direction. Under these conditions, the
output of the demodulation represents deviations in the phase of the polarimeter signal
(ideally, identical to the phase of the precessing spin ensemble) relative to the optical pump
pulse triggering signal, and is interpreted as deviations in the magnetic field relative to
By.

Differential magnetic scalar measurements were performed by electronically subtract-

ing the polarimeter signals of the two individual scalar magnetometer channels at the
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input of the SR865A lock-in amplifier and demodulating the result. Similar to how the
single-channel magnetic spectra were calibrated, an oscillating magnetic gradient signal
of a known amplitude and frequency was applied during the measurement to yield proper
scaling of the noise spectra; the magnetic gradient stimulus signal was calibrated using

the relationship described in Equation 2.33.

2.4 Noise Optimization and Tuning

2.4.1 Noise Optimization

As described in section 2.1.1, optically pumped atomic magnetometers exhibit three major
fundamental noise sources (Budker and Kimball 2013): photon shot noise d Bpgy, quan-
tum projection noise d Bgpn, and probe AC Stark shift noise, also known as light shift
noise dBrsn. An additional potentially significant source of noise is the net sum of addi-
tional noise from the electronics used for detection and interpretation of the experimental
signals, expressed here as d Bye.,. Photon shot noise per square root Hz as observed at
the output of the polarimeter is a function of the fundamental electron charge ¢, total
photocurrent Ipp (the product of probe photon flux ®,, and photodetector quantum ef-
ficiency 7). Translating this shot noise into magnetic units requires scaling based on the
gain of the magnetometer. In a 1 Hz bandwidth and ignoring the effects of any additional

filters in the signal processing electronics, such as those in the lock-in amplifier:

2 \/2qu,3(1 + [L,mT3)

5B o) = : 2.38

PNUaet) = i fac) gain(0) (238)
Tol2 (14 dgg )y /14 f3,m°T3

= v.pr 2.39
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where Equation 2.39 is based on Equation 8 from I.M. Savukov et al. 2005 and has added
a frequency dependence based on the open-loop alkali -3dB response bandwidth (in Hz:
7mT5). This expression can be separated out into a set of constants (7, the speed of light c,

the probe path length through the vapor cell [, the classical electron radius r., the probe
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transition oscillator strength f, and the gyromagnetic ratio ); the frequency dependence
of noise, as observed at the frequency fg.; at which one wishes to detect magnetic fluc-
tuations (with a corresponding spin phase response bandwidth I's); a set of probe and
photodetector characteristics (probe detuning A from the optical transition, linewidth
I'y pr of the probe optical transition, probe photon flux ®,,, and the photodetector quan-
tum efficiency 7); and a set of parameters relating to the alkali (relaxation rate I'y = T}, L
number density n, and polarization P). For the vapor cell used in this experiment, the
optical broadening is dominated by collisions with the buffer gas (M. V. Romalis, Miron,
and Cates 1997): I',,, = 18.1GHz/Amg * 0.8Amg = 14.5GHz. Optimization of Equa-
tion 2.39 requires simultaneous optimization of the alkali parameters and optical probe
parameters.

Of note is that Equation 2.39 contains the implicit assumption that ®,,. and P are
uniform throughout the sensitive volume; meanwhile, this experiment utilizes a vapor
cell in which approximately the entire internal volume is optically pumped and optically
probed, with the 1/e? intensity radius of the pump located at the approximate cylindrical
borders of the vapor cell interior and the 1/e? intensity region on the major axis of the
spatially elliptical probe beam also approximately located at the cylindrical borders of
the vapor cell interior. Thus, in this experiment the results of Equation 2.39 and the
associated sensitivity optimization described below must be averaged over the internal
volume of the vapor cell in order to generate a valid prediction of photon shot noise; the
topic of volumetric total figure of merit for sensitivity will be covered in more depth in
Section 2.4.3.

In the following analysis, I have arbitrarily chosen to focus first on optical probe opti-
mization as a function of other parameters and then focus on co-optimization of probe and
alkali response. One component of optimization of Equation 2.39 is the transverse relax-

ation rate I'o, itself a function of the optical pumping rate, polarization, probe scattering
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In this experiment, the laser linewidth is much narrower than the broadened optical tran-

sition, so the probe scattering rate is given by:
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v,pr

(2.41)

ﬁ is the photon absorption cross section for the optical probe and A is

Fl%,p"‘
the cross sectional area of the optical probe beam. Restating I'} based on Equation 2.41,

where o, =

ksp(l— P ) X
r, =" se( ) | %y (2.42)
4dsE AQOp(l +4M ) Gop

and acknowledging the relationship between P (= P in this experiment) and (R,;,) (Equa-
tion 2.35), Equation 2.39 optimizes when Iy, ~ (1—P)(R,p), indicating that the optimum
condition arises when the pump and probe photon scattering rates are comparable. With
the probe beam optimized in terms of the time-average optical pumping rate, the quantity
to optimize in the case of this experiment in which the spin precession is orthogonal to

the bias field (P = P, ) is

Iy (Ry)(2-P)  ksp(l-P) T’

4~ 2.43
nP nPqop Pqsk nPqop ( )

where (R,;,) is the time-average optical pumping rate, g, is the optical pumping rate
slowing-down factor (I.M. Savukov et al. 2005) associated with I'y, ks is the spin-exchange
constant depending on the spin-exchange cross-section ogg and average velocity v, qsg is
the 87Rb spin-exchange relaxation slowing-down factor, I, is the probe photon scattering
rate, and I represents the sum total of additional relaxation rates including interaction
with the cell walls and spin-destruction collisions with other alkali atoms and with the

buffer gas.



46

Equation 2.43 includes both the alkali polarization and optical pumping rate as explicit
terms; these are, however, deterministically related as shown in Equation 2.35, somewhat
obscuring optimization of Equation 2.43. Choosing arbitrarily to optimize based on alkali
polarization (although one could equivalently express Equation 2.43 in terms of (R,p) to
optimize directly for optical pumping rate), one may solve Equation 2.35 for (R,,) and
insert the result in Equation 2.43:

ry T,P2-P) ksg(l1—P) I’

Ty _ n + 2.44
npP (1 - P)’I’qup PQSE anOp ( )

where (R,p,) has been expressed in terms of I'| such that it is straightforward to solve for
the optimal polarization. For an alkali atom such as 87 Rb with a spin-3/2 nucleus, Gop = 4

(M. Savukov et al. 2005). For the measured values of % =325t and I'; ~ 1000s~*
in the low polarization limit at a number density of n = 2 x 102e¢m ™3, Equation 2.44

Tpr
dop

optimizes when P ~ 0.87, implying ~ 40s~!. Inserting these conditions into Equation

2.44 gives:
P 1.13 + .15q0p

— ~ ksp
nP 4SEYqop

(2.45)
which is effectively independent of number density. Equation 2.44 therefore suggests a
straightforward optimization procedure, which will be discussed further in Section 2.4.2.
I have measured the value of ggg in this experiment by way of measuring the transverse
relaxation rate I'| in the low-polarization limit as a function of vapor cell temperature
as a proxy for alkali number density. For this measurement, I calibrated the vapor cell
temperature at temperatures below 90 degrees C based on the measured number density
using Equation 2.32 and the relationship between temperature and alkali number density
(Steck 2003). In contrast to the reported value of gsg = 5 for a magnetometer operating at
wr, = 21%99kH z (I.M. Savukov et al. 2005)—valid for SERF magnetometers using I = 3/2

nuclei, which necessarily operate in the fast spin exchange limit (W. Happer and Tam

1977)-1 find that gsg in this experiment is nearly a factor of 5 smaller at approximately
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Figure 2.7: Plot of measured qgg as a function of vapor cell temperature. The data shows
an average of approximately 1.1 for the value of qgg

1.1, in good agreement with the value qsg = % for 8Rb (I = 3/2) in the slow spin-
exchange limit (wy, > Rgg) as calculated by W. Happer and Tam 1977. Figure 2.7 shows
the results of measurement of qgp as a function of vapor cell temperature.

This further reduces Equation 10 to

Iy
—2 ~ 0.4k 24
Iz 0.4ksg (2.46)

n

for this experiment in an optimized condition with the bias field orthogonal to the optical

pump direction. Expanding and rearranging Equation 2.46 we find

n ~ (Fop) (2.47)
ks

under the conditions in which Equation 2.39 has been optimized. As noted above in
Equation 2.39, I'y determines the phase response bandwidth of the spins; Equation 2.47
clearly demonstrates that under optimized conditions the availability of pump photons,
driving (R,p), determines the achievable “corner frequency” for the photon shot noise: of

particular note, the high-frequency limit of photon shot noise in the optimized regime is
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inversely proportional to the available optical pumping rate.
Quantum projection noise is similarly dependent on the relaxation rate and number
density, along with the volume V of spins interacting with the probe beam, and the

gyromagnetic ratio (Alem, Sauer, and M.V. Romalis 2013; Ledbetter et al. 2008):

1 /T,
5B = 222 2.48
QPN = ALy (2.48)

Additional noise is contributed by quantum fluctuations in the polarization state of the
optical probe beam (Ledbetter et al. 2008). This noise occurs along the probe direction ()
and generates an effective magnetic field noise based on the scalar magnetic field deviation
generated by the resulting AC Stark shift noise. The AC Stark energy shift modifies the
energy splitting of the Am sublevels and is therefore indistinguishable from a magnetic
field and will exhibit its own shot noise based on the photon shot noise of the o™ and o~
components of the optical probe beam linear polarization state. However, the magnetic
bias field for the present experimental results shown herein is applied orthogonal to the
pump/probe direction (applied in the ¢ — Z plane). Hence, & - B — 0 in this experiment.
Therefore, the AC Stark shift noise does not contribute meaningfully to the total observed
noise under the conditions tested.

Using the polarimeter circuit described in Appendix A.2, the technical noise in this
experiment is dominated by the transimpedance amplifier gain resistor thermal Johnson-
Nyquist electrical current noise, which is itself approximately an order of magnitude below
the photon shot noise limit. For the circuit configuration used in this experiment, the
total electrical noise normalized to the differential signal is approximately 17 nV/ VHz
(“Texas Instruments Application Report SLVA043B: Noise Analysis in Operational Ampli-
fier Circuits” n.d.), while the photon shot noise accounts for approximately 150 nV// VHz,
again normalized to the differential polarimeter preamp output configuration. Therefore,

6Biecn = 0.4fT/VH=.

Lpr+T”
q

- is approximately 60/s when the ex-

In this experiment, the measured value of

periment is tuned according to Section 2.4.2; thus, approximately minimum photon shot
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Noise Source Noise (fT/vVHz)
Photon shot noise 3.7
Quantum projection noise | 0.6
Light shift noise 0.0
Technical Noise 0.4
Total 3.7

Table 2.1: Table of fundamental noise sources for this synchronously pumped magnetome-
ter under experimentally optimized conditions.

noise and approximately minimum quantum projection noise are achieved at 7;’;—5;3 > 600/s
under experimentally optimized conditions; this is achieved with a number density in the
low 10'2 per cubic centimeter range, corresponding to a vapor cell temperature of approx-
imately +85 degrees C, dramatically lower than for a SERF magnetometer demonstrating
comparable measured total sensitivity (Wyllie et al. 2012) but with significantly higher
fundamental limits based on the increase in I's associated with spin-exchange relaxation.

Under typical operating conditions for the measurements shown in this paper, the
measured number density is 2*¥10'2 per cubic centimeter, I'; is approximately 1000/s in
the low-polarization limit, and the effective sensitive volume observed by the probe is
approximately 0.6 cm®. The measured gain in the low-frequency limit of magnetic field
modulation, for small deviations of the bias field about Aw = 0 is typically 6000 to 7000
amps per Tesla, and the total photocurrent is approximately 1.5 mA. Using Equations 2.38
and 2.48; the calculated photon shot noise limit is slightly under 4 T/ Vv Hz, while the
quantum projection noise limit is approximately 0.6 fT'/ V/Hz. Thus, the quantum projec-
tion noise does not contribute meaningfully to the total noise power in this experimental
configuration.

Equations 2.39, 2.47, and 2.48 demonstrate a straightforward means of further im-
provement (where improvement is defined as decreased noise, increased bandwidth, etc.
as required by a given application) in the standard quantum limit for this magnetometer
through the use of a physically larger vapor cell, an increase in optical probe path length,

and an increase in the available optical pump photon flux (i.e. optical pumping rate).
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The performance of this magnetometer can therefore be scaled for desired performance
characteristics of a given application and for limitations of the available optical pump and
probe system.

Rather than solely focusing on noise optimization for this experiment, consider a more-
generic scenario in which R-Q = cos(0) is not negligible, and therefore the AC Stark shift
noise (Equation 2.31) must be taken into account in a more generic optimization of the
magnetometer response physics. The total fundamental noise amplitude is based on the
sum of the noise power of the individual contributors. Combining Equations 2.31, 2.48,
and 2.29 in the limit that the optical probe is detuned by multiple linewidths from the D2

optical transition and in the limit of low detection frequency,

6B]2‘undamental = 6BéPN + 53%51\/ + 5B1235'N

(2.49)
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one finds that the optimum probe scattering rate becomes a function of the angle between
the optical axis and the magnetic field; however, until § becomes small, the optimal probe
relaxation rate is still in the vicinity of (R,p)(1—P), though slightly smaller than predicted

above. Once again setting I'y, = (R,p)(1 — P) and choosing to optimize for polarization:

(Rop)(2—P) | nkgp(1—P)
5 B2 _ qo0p ST +lsp + (Rop)Tecfcos(0)
fundamental — v2nV 3292A2L, o 251
({Bop)(=P) | nksp(=F) 1 925 (2.51)
+ dop 9SE SD) wpr
2nrecfTprnl2 P2 42

it becomes clear that the optimal polarization differs only based on the effects of the

slightly smaller optimal probe scattering rate. Thus, the procedural tuning suggested by
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Equations 2.44 and 2.45 remains approximately valid for real-world values of the angle

between the optical axis and the incident magnetic field.

2.4.2 Tuning

As shown in the noise optimization analysis, Equations 2.44 and 2.45, one may conclude
that there exists a straightforward empirical procedure for experimental optimization of
the operation of the magnetometer. The procedure I have developed is as follows. First, I
measure I': in the weak probe limit, I apply a bias field along the optical pump direction,
apply a long-duration pulse of optical pump light (time duration > 1/I"), and measure
the relaxation time constant in the low-polarization limit. I then set I'y, ~ I'' by tuning
the wavelength and intensity of the optical probe beam such that I have approximately
doubled the longitudinal relaxation rate. Once this is complete, I re-orient the bias field
orthogonal to the optical pump beam, send in a series of short-duty-cycle optical pump
pulses at approximately w = wy, and measure I'| in the low-polarization limit. Next, I
adjust the alkali number density using vapor cell temperature until '} > 11(T,, +I"),
again with I'| as measured in the low-polarization limit. Finally, I send in a continuous
series of short-duty-cycle optical pump pulses at w = wjy, with maximum optical pump
“on” state intensity; I adjust the optical pump duty cycle and both pump and probe
wavelength while observing the magnetometer response to a magnetic stimulus field of
known frequency applied along the bias field, as measured at the output of the lock-in
amplifier, until the response is maximized. I then verify that the optical pump beam is
optimized by adjusting the duty cycle and observing the response characteristics; verifying
that I do indeed have the ability to over-pump the spins at the chosen alkali number density.

Given an optimal spin polarization, deviation from this optimal value will degrade the
magnetometer performance. Spin polarization will vary as a function of position within the
vapor cell due to interaction with the vapor cell walls and with the buffer gas, along with
the nonuniform optical intensity throughout the volume of the cell. This spatial variation

of conditions throughout the vapor cell complicates analysis of overall optimization of
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the magnetometer: experimental parameters such as pump and probe beam collimation
size and intensity profile will affect the volumetric average optimization as observed by
the optical probe beam. The degree of global optimization, then, as opposed to solely
empirical optimization for a specific set of experimental parameters can be analyzed in

more detail using finite element analysis.

2.4.3 Finite Element Modeling

I constructed a finite element model in COMSOL Multiphysics Version 3.5a with the
goal of examining and visualizing in more detail the effects of experimental parameters
on magnetometer operation and to predict optimal conditions and the consequences of
varying experimental parameters. This model is used to calculate a figure of merit (FOM)
for magnetometer sensitivity. In contrast to how one might interpret Equation 2.39, the
87T Rb polarization in the vapor cell is not simply a single uniform polarization throughout
the sensitive volume but rather exhibits a spatial distribution with zero polarization at
the vapor cell walls and effects from the spatially nonuniform (R,,), further modified by
the optical pump scattering rate proportional to 1 — P. This model calculates the spatial
distribution of 87 Rb polarization based on Fick’s law of diffusion and Equations 2.35, 2.52,
and 2.56. The diffusion coefficient for 87 Rb in N buffer gas is 0.16 at 273 K and 1 amagat
(Franz and Volk 1976); the model utilizes this value and the buffer gas number density of
0.8 amagat as mentioned above along with a vapor cell temperature of 358 K to calculate
diffusion of the spins in the vapor cell. For the sake of simplicity, instead of directly using
Equations 2.35 and 2.56 as shown, the model instead uses a normalized effective optical
pumping rate R.rr = Rop(r,x)/T' L (P — 0) based on the experimentally measured I'| in
the low-polarization limit; this normalized optical pumping rate is a controllable parameter
in the model.

The model requires appropriately-defined input conditions; a priori analysis of the
incident optical intensity and the characteristics of its variation through the volume of the

vapor cell serve as inputs to the model. The optical pump intensity in this experiment
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exhibits an approximately Gaussian distribution at the incident face of the vapor cell,
and falls off as the pump beam propagates through the cell based on the pump optical
scattering rate (a function of optical pumping rate and the local polarization). With the
pump oriented along Z,

VoRop = —nRopdA(1 — P) (2.52)

Noting that the normalized optical pumping rate described above is the average over
the entire incident cross section and further noting that the optical pump beam has an
approximately Gaussian intensity profile with a 1/e? radius at the radius R of the interior
of the vapor cell, the optical pump beam varies as a function of distance from the cylindrical
axis as

Rop(r) = Ropoe /1 (2.53)

with the restriction that the average optical pumping rate in this calculation must be

normalized to the effective optical pumping rate:

2r

Repr = Regro ﬁRop(T‘)dT‘ (2.54)
which then indicates:
Rupro = Ropp 28 (2.55)
eff0 = Lleff (€2 —1) .
giving a normalized optical pumping rate at the incident face of the cell of:
9e2—2r%/R?
Repy(r) = Regs =z 4y (2.56)

Similarly, the optical probe beam also exhibits an approximately Gaussian intensity profile,
but rather than exhibiting circular symmetry instead exhibits a different 1/e? distance
from the center of the beam in Z than in ¢ (recall: pump and probe are both propagating
along 7).

The finite element analysis results for the distribution of P, throughout the vapor cell

volume under the conditions used for this experiment with the bias field orthogonal to the



54

optical pump beam (Figure 2.8) indicate that for an optical pump beam having a circularly
symmetric Gaussian intensity distribution with 1/e? intensity situated at the vapor cell
cylindrical walls and at the investigated 87 Rb number density of 2 * 10'2/cm?, the pump
beam must be tuned off resonance relative to the optical transition to obtain an optimal
magnetometer response. The primary effect of this detuning in terms of magnetometer
response optimization is to reduce VR, thereby reducing V,P| and improving relative
uniformity and optimization of P; throughout the vapor cell volume. For each iteration of
the finite element model, the adjustable parameters were the optical pump detuning and
the optical pump power by way of modification of the normalized optical pumping rate.
The relevant figure of merit (higher is better, in this case) is the volumetric integral of the
product of probe beam photon flux ®,,,5. and the magnetometer optimization parameter
nP/Ty (Equation 2.43):
nP

FOM = / B prope e (2.57)
v Iy

which is calculated for every iteration of the finite element model to inform further refine-
ment of the parameters in subsequent model iterations.

The probe is assumed in the model to be consistent with the weak probe limit; far-
detuned from resonance and at relatively low optical intensity such that the probe gen-
erates only negligible perturbation of the spin polarization. The finite element model
figure of merit predicts optimal operation with the optical pump beam detuned approxi-
mately 5 GHz off resonance based on a simplified optical pumping model using Equation
2.56 but with only one detuning rather than individual detuning from each of the two
ground states; no attempt was made in the model to examine the state distribution in
the two ground states. The figure of merit calculation further predicts optimal opera-
tion of the magnetometer with a normalized optical pumping rate of approximately gop.
These results are both in reasonable agreement with experimental results; experimental
optimization demonstrated optimal operation with the optical pump blue detuned by 3.5
GHz as measured relative to the peak of the observed broadened optical pump absorption

profile, and a normalized optical pumping rate of 3.7.
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This model allows for further a priori optimization for future work. For example, for
the presently available optical pump power further optimization may be achievable using
the buffer gas pressure as a controllable parameter; lower buffer gas pressure, for example,
may increase the efficiency of photon utilization at the cost of increasing IV (Section 2.4.1).
This may allow increases in the collimation size of the optical pump beam, reducing the
spatial variation of the pump and probe beam intensity profiles incident upon the vapor
cell, which may in turn reduce the polarization gradients in the volume observed by the

probe beam, further improving the photon shot noise limit.

2.4.4 Differential Scalar Measurement

For optimal detection of a magnetic field differential between the two sensitive zones shown
in Figure 2.5 a maximal common-mode rejection ratio (CMRR: the ratio of single-channel
response to a uniform field modulation to the two-channel difference response to the same
uniform modulation) is desirable (I. A. Sulai et al. 2019). In an open-loop measurement
as in the present work, a high CMRR requires approximately identical magnitude and
phase response (gain) outputs from the differential photodetector circuits associated with
the two zones in response to a uniform magnetic field modulation, as measured at the
input of the lock-in amplifier. For each of the two zones with nominally identical pump
and probe characteristics, the gain observed in the photocurrent for a well-matched pair
of photodetectors and a well-balanced polarimeter is shown in Equations 2.38 and 2.39 as
modified by Equation 2.36. It is therefore not sufficient to equally split the optical pump
and probe beams and heat the individual vapor cells to a nominally identical alkali vapor
density; high common mode rejection can still only be observed in the small-differential-
field limit and remains sensitive to small changes in operating parameters of the vapor
cells such as alkali number density.

In the present work, a best CMRR of approximately 400 was achieved at 1 Hz as aver-
aged over a 30 second measurement interval (i.e. a best observed CMRR of 400 at 1 Hz),

indicating a response mismatch of roughly 0.25% for the two detection zones on average
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Figure 2.8: Finite element model results for alkali polarization under conditions mimicking
the experiment described in this thesis (color online). The plot indicates the finite element
model prediction for fractional polarization of the alkali in a slice plot passing through the
center of the vapor cell with the pump along # under the predicted optimal conditions.
The plot may therefore be taken as circularly symmetric about the & centerline (black
horizontal line running through the center of the plot). Note that the alkali polarization
is greater than the optimal value predicted by Equation 2.44 in some portions of the cell
and below this value in other portions of the cell; the peak predicted polarization is 0.9 in
this simulation. Also worth noting is that the region of predicted maximum polarization
is located slightly to the pump incident side of the center of the cell, as expected.
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over this measurement interval. At 20 Hz, the best observed CMRR increased to 3000,
as averaged over a 30 second measurement interval. This was accomplished by tuning the
responses of each of the two sensitive zones as observed at the output of the lock-in am-
plifier (SR865A) to maximally match the magnitude and phase responses to an incident
magnetic field, then sending the signal from the first zone to input A of the lock-in and
the signal from the second zone to input B, and using an input configuration for the lock-
in of “A-B.” The differential magnetic field measurement, therefore, is based on simple
electrical subtraction of the voltage signals resulting from the modulating photocurrent
on the two sensitive zones. Tuning parameters included the temperature of each vapor
cell, optical pump and probe alignment (relative to the laboratory frame and relative to
each other) in each sensitive zone, optical pump and probe position within the individual
vapor cells, optical collimation of the pump and probe beams, optimization of the physical
position and orientation of the individual vapor cells within the magnetic shield set, the
rotational orientation of each polarimeter about the pump/probe propagation axis, and
the rotational and translational orientation of the non-polarizing beamsplitter cube used
for combining/splitting the pump and probe light (Figure 2.5). In future work, further im-
provement in the open-loop CMRR may be observed by way of post-processing calibrated
individual response data in software.

In principle, a robust differential measurement with a consistently higher CMRR than
reported above may be observed using individual closed-loop observations of the scalar
magnetic field at each of the two zones. The reason for this is that each closed-loop
magnetometer acts as a magnetic field to frequency transducer: the loop adjusts the
optical pump pulse repetition rate to drive Aw — 0 using ¢ as the error signal input
to the loop (Equation 2.36). Under ideal conditions (no heading error, perfectly parallel
magnetometer axes, identically and optimally tuned feedback for minimum error (Tost,
M. Bulatowicz, and T.G. Walker 2023), identical vapor cells, and so on) the upper bound
for the achievable CMRR will be limited by the combined effect of open-loop matching and

feedback loop effects. For a magnetometer gain (including polarimeter response) G(Aw(t))
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and feedback loop gain K (Aw(t)) the residual closed-loop error is inversely proportional
to (1 + GK(Aw(t))); this residual error is effectively a residual open-loop response. For
an open-loop CMRR of &,,enioop, then, the upper bound of the expected closed-loop value

of CMRR would be approximately:

gclosedloop = gopenloop[l + GK(Aw(t))] (258)

while in any real experimental system the observed value will lie below the upper bound
indicated by Equation 2.58 based on the non-ideal nature of physically and electronically
separated instruments as noted above.

The present work has demonstrated a closed-loop response with > 10* suppression of
residual error at 1 Hz (Tost, M. Bulatowicz, and T.G. Walker 2023). Based on the mea-
sured open-loop CMRR of 400, Equation 2.58 indicates an upper bound to the closed-loop
CMRR of approximately 4 * 10 at 1 Hz; the expected observed value will be somewhere
below this. The present implementation of the magnetometer prevents a direct measure-
ment of the CMRR in closed-loop operation because there is only a single optical pump
pulse repetition rate for the experiment. In future work, the experiment may be updated
for closed-loop operation on both sensitive zones by, for example, implementing a second
EOM-based optical pump shuttering system (Figure 2.6 for entirely independent control of
the second vapor cell or perhaps by adding a gradient magnetic field coil and driving this
coil to eliminate the phase difference observed between the two sensitive zones (Equation

2.36).

2.5 Results and Discussion

As shown in Figure 2.9, under optimized conditions achieved as described herein, the in-
strument has demonstrated a measured single-channel white noise floor of approximately
10 j% at a bias field of approximately 29 uT' (wr, = 27 % 200kH z), consistent with the

noise power spectral density from the Twinleaf CSUA-1000 current source that is used to



59

generate the magnetic bias field. The photon shot noise limit shown in Figure 2.9 was
calculated using the total polarimeter photodetector current (the sum of the photocur-
rents of the two photodetectors rather than the difference) along with the experimentally
measured magnetometer gain as a function of frequency as shown in equation 2.38, and
is consistent with the measured noise background in the absence of pump light. The
demonstrated performance at 1 Hz is comparable to the lowest-noise commercially avail-
able Earth-field-scale magnetometers (GEM Systems GSMP-35 Potassium Magnetometer
2023), which exhibit a noise specification in the range of 200 fT/vHz at 1 Hz.

Finite frequency spikes observed in the spectra shown in Figure 2.9 include 60 Hz and
harmonics from the lab electrical power, plus a number of additional narrow-band fre-
quency spikes associated with the drive circuitry for the electro-optic modulator (Figure
2.6). The probe noise spectrum in Figure 2.9 demonstrates that these observed narrow-
band spikes mostly consist of actual magnetic fluctuations and/or fluctuations in the opti-
cal pump beam pulse phase rather than induced fluctuations in the detection electronics:
when the optical pump beam is physically blocked but otherwise operating exactly as it
did for collection of the remaining spectra, the narrow-band spikes mostly disappear, as
does much of the low-frequency noise background. This behavior is evident also in the
differential scalar noise spectrum shown in Figure 2.10, where blocking the optical pump
beam dramatically reduces the observed narrow-band spikes and low-frequency noise. As
noted above, the detection electronics are more vulnerable to electromagnetic interfer-
ence in the differential scalar measurement: the polarimeter signal for each detection zone
(Figure 2.5) is single-ended for the differential scalar measurement, while for the single-
channel scalar measurement the polarimeter circuitry generates a differential output pair
for transmission to the lock-in amplifier, resulting in cancellation of a substantial major-
ity of electromagnetic interference effects (largely common-mode between the differential
channels).

In the case of the differential scalar measurement, the observed noise is shown in

figure 2.10; for a nominally uniform applied oscillating magnetic field that was applied
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Figure 2.9: (Color online) Black, green, and purple traces: single-channel scalar magne-
tometer noise spectrum in a 29u71" bias field for three individual measurements. Blue trace:
noise background observed when blocking the optical pump beam; represents the sum of
probe noise and technical noise. Red trace: calculated photon shot noise limit based on
equation 2.38.

using the uniform Z axis magnetic field coil in the Twinleaf MS-2 magnetic shield set
the measured common-mode rejection ratio (CMRR) at 20 Hz is approximately 3000. As
shown in Figure 2.10, the measured differential scalar noise for the adjacent pair of vapor
cells reaches approximately 1 f1'/cm/ V/Hz at around 200 Hz with a measured probe noise
limit of 2 fT/cm/v/Hz at 1 Hz. Given the 9 cm baseline, this result is consistent with a per-
instrument noise of approximately 6 f1'/ Vv Hz. Compared to other all-optical differential
magnetometers capable of detecting low-frequency (less than 1 kHz) differential magnetic
fields in Earth field with cm-scale baselines (for example, Sheng, A. R. Perry, et al. 2017,
M. E. Limes et al. 2020, V. G. Lucivero et al. 2021, and S. Wu et al. 2023) the present
results shown in Figure 2.10 represent an improvement in sensitivity, approaching the best
demonstrated differential scalar sensitivity (Sheng, S. Li, et al. 2013) of 0.5 fT/cm/v/Hz,
achieved at approximately 7.3 uT" as compared to the 29 T bias field used in the present
work.

Compared to an otherwise-equivalent spin-exchange relaxation free (SERF) magne-
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Figure 2.10: (Color online) Red trace: two-channel differential scalar magnetometer noise
spectrum in a 297" bias field. Black trace: probe noise background observed when block-
ing the optical pump beam; represents the sum total of optical probe noise and technical
noise.

tometer (Allred et al. 2002) operating in near-zero magnetic field, the fundamental lim-
its of the synchronously pumped atomic magnetometer described herein are noisier in
absolute terms because I'y is significantly greater in the present work (Equation 2.39):
spin-exchange relaxation plays a much greater role in this experiment than in a SERF
magnetometer. The results presented herein nonetheless demonstrate measured single-
channel sensitivity (noise floor) results comparable to the observed noise floor in many
SERF magnetometers (U. Li et al. 2018; I. A. Sulai et al. 2019). Further, the magnetome-
ter described in this thesis demonstrates this noise level in a magnetic bias field orders
of magnitude too large to allow SERF regime operation (Allred et al. 2002), and at a
much lower vapor cell temperature (485 degrees C versus typical temperatures greater
than +140 degrees C) and in addition at lower optical pump and probe power. For future
biomedical applications, the present work has demonstrated magnetic gradient sensitivity
comparable with many SERF magnetometers and superconducting quantum interference
devices (SQUIDs) (Yang et al. 2016) at a baseline (distance between adjacent sensitive

elements) relevant to magnetocardiography (I. A. Sulai et al. 2019; Bison et al. 2009) and
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magnetoencephalography (Garachtchenko et al. 1999), and with an all-optical implemen-

tation amenable to configuration as a non-interfering array of sensors.

2.6 Conclusions

In this chapter, I have presented the basic theory of operation of a synchronously pumped
magnetometer, including descriptions and theory detailing the physical basis underlying
the ability to drive and observe coherent spin precession about an incident magnetic field as
a means of observing the magnitude of that field. I have presented a description and theory
for the fundamental mechanisms by which the coherence of the spin ensemble degrades over
time, along with a description of how the coherence time varies with polarization. I have
presented theory showing the fundamental limits of magnetometer noise at the standard
quantum limit, along with an analysis of noise optimization and physics-based procedural
tuning for minimum magnetometer noise. I have utilized this theory to generate a finite
element model that has demonstrated good agreement with experimental results, allowing
for a priori analysis and optimization of alternative experimental configurations.

Using the provided theoretical and conceptual basis, I have demonstrated an all-optical
alkali scalar magnetometer amenable to array configurations and demonstrating sensitivity
consistent with bias field noise limitations, comparable to the observed sensitivity of a
number of SERF magnetometers and gradiometers (I. A. Sulai et al. 2019; U. Li et al.
2018). I have further demonstrated a one-dimensional and two-sensitive-element array of
such instruments with a 9 cm baseline, showing differential scalar magnetic field detection
with 1 fT/ecm/+/Hz differential noise at approximately 200 Hz; this differential result is
consistent with an instrument noise of 6 7'/ V/Hz. The instrument has been demonstrated
to achieve this high sensitivity while operating in Earth-field-scale magnetic fields of 29

micro-Tesla.
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Chapter 3

Vector Magnetometry using A

Scalar Magnetometer

3.1 Introduction

In this chapter, I present an introduction to the method of measurement of vector compo-
nents of the magnetic field incident upon any scalar magnetometer through application of
oscillating magnetic fields along the axis or axes to be measured; I detail and demonstrate
a means of self-calibration of the vector measurements relative to the scalar measurement
accuracy. Three methods of closed-loop feedback are discussed and demonstrated using
the magnetometer described in Chapter 2, with -3 dB magnitude response bandwidth up
to 19 kHz. Measurement uncertainty in the observation of the magnetic field vector com-
ponents is discussed and analyzed, showing contributions from scalar noise, feedback loop
uncertainty, offset errors, and mixing of harmonics of the measured applied oscillating field.
Signal processing and filtering are discussed, including discussion and demonstration of an
optimal filter set based on the uncertainty analysis. Next, experimental results are pre-
sented for each of the three feedback methods, for applied fields oscillating at four different
frequencies, at four different amplitudes each. This chapter will conclude with discussion

and interpretation of the vector measurement results, along with recommendations for
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future work.

Recall from Chapter 2 that our work utilizes a Bell-Bloom (Bell and Bloom 1957; Bell
and Bloom 1961) magnetometer with a single optical axis, implemented with intensity
modulation of an optical pump beam along R passing through a vapor cell (a 1 cm diameter
by 1 cm length internal dimension cylinder containing isotopically enriched ®"Rb and
nitrogen buffer gas) to drive coherent spin precession of 8 Rb spins in an Earth-field-scale
magnetic field. The intensity of the optical pump is modulated as a series of short-
duty-cycle pulses in a manner similar to that described in (Gerginov and S. K. S. Knappe
2017). The optical pulse repetition rate is approximately resonant with the natural Larmor
precession frequency wy, of the spins, with a first harmonic component cos(wt), where
w =~ wr,. A linearly polarized optical probe beam co-propagating with the pump measures
the & projection of the spin polarization vector P(t); the linear polarization of the optical
probe rotates proportional to P - & (Equation 2.24). The polarization rotation of the
optical probe beam is measured using a balanced polarimeter with a custom differential

transimpedance amplifier circuit.

3.1.1 Vector Measurement Using a Scalar Magnetometer

In general, by applying three spatially orthogonal oscillating magnetic fields to the inher-
ently scalar magnetometer, each vector component of the incident magnetic field may be
extracted from the resulting modulation of the overall measured measured magnetic field
(T.G. Walker and M.D. Bulatowicz 5 April 2022), herein based on the natural Larmor
precession frequency of the spins. For each vector direction z, the magnetic field compo-
nent along i takes the form B;(t) = B;o(t) + Blsin(w;t). Given three orthogonal vector
directions (&, g, and 2 in the instrument reference frame, for example) the total magnetic

field vector B observed by the instrument is

B= S B? (3.1)

The squared magnitude along each 7 can be written as the square of the sum of the
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low-frequency component B; and modulation component B}sin(wjt):

BP?
B;(t)* = (Bio + Blsin(wit))?* = Bio(t)* + 2B; 0(t) Bjsin(w;t) + 72(1 — cos(2w;t)) (3.2)

As a result, it is possible to find both B;( and B] by demodulating the square of
the measured magnetic field (Larmor frequency as observed by way of the pump pulse
repetition rate) at the first and second harmonics of the applied fields Bjsin(w;t). As
the measured quantity is specifically the pump pulse repetition rate, the success of this
method depends on the ability to measure and respond to each applied (B]sin(w;t)). A
top-level block diagram of the implemented algorithm is shown in Section 3.3. This chap-
ter compares three feedback methods for tracking the Larmor frequency, with the ultimate
goal of minimizing errors in vector calculations for a full three-axis implementation. As a
first step toward this goal, the work presented herein implements only a single modulation
field, superimposed on the bias field such that |B|? = (B, + B.sin(w.t))?, significantly
simplifying the analysis and interpretation of results as compared to a full 3-axis imple-
mentation.

Note that in Equation (3.2), the assumption is made that the applied magnetic fields
form an orthogonal basis set. In reality, effects such as build tolerances, mechanical
stresses, differential thermal expansion, and so on guarantee that there will exist some
finite deviation from orthogonality of the magnetic field coils producing these fields. As
shown in (Gravrand and A. K. e. al 2001), one may form an orthogonal basis set from the

three magnetic field coils using a carefully measured mapping matrix.

3.2 Experimental Apparatus and Methods

A block diagram of the updated apparatus is shown in Figure 3.1. As in Chapter 2, at
the core of the experiment is a cylindrical glass vapor cell (1 cm internal diameter by 1
cm internal length containing a droplet of 8" Rb and 0.8 amagat No. The vapor cell is

surrounded by ceramic RF heating coils that are designed to minimize induced magnetic



66

fields (M. Bulatowicz 30 March 2012) and thermal insulators consisting of aerogel sheets

3 using a heat power

to maintain a 87 Rb vapor pressure of approximately 2-3 x 10'% cm™
dissipation of 0.3 W.

As described previously, a Twinleaf CSUA-1000 current supply drives the current
through one of the uniform field coils to generate an ultra-low noise bias field on the order
of 29 uT, allowing measurement and verification of the instrument noise floor down to
approximately 10 fT/ v/Hz, an impressive fractional noise value of roughly —190 dB / VHz.
Using a function generator to provide a sinusoidal driving signal, perturbations up to 267
nT can be superimposed on the bias field through the CSUA modulation input; this
was insufficient for the largest-amplitude modulation signals applied in this experiment,
so the CSUA-1000 is placed in parallel with a custom current supply circuit capable of
significantly larger modulation fields but with a white noise floor of approximately 60
fT/v/Hz and a 1/f noise limit of approximately 2 pT/v/Hz at 0.1 Hz, thereby dominating
the observed magnetic noise spectrum.

In contrast to the apparatus configuration used for the work described in Chapter 2, the
PXle-based implementation has been updated to provide for closed-loop operation using a
PXIe-5171R reconfigurable oscilloscope module that is installed in the same chassis as the
PXTIe-6614 precision timing module and is configured to use the PXIe-6614 reference time-
base for high-precision, stable timing. The PXIe-5171R module includes a Xilinx Kintex-7
410T field-programmable gate array (FPGA) and utilizes a relatively small fraction of the
FPGA’s capability for the module’s oscilloscope functionality, leaving most of the FPGA’s
resources available for user-programmable functionality. We have programmed this FPGA
using NI LabVIEW to provide for closed-loop operation of our magnetometer with data
collection functionality.

Instead of using a lock-in amplifier for observation and demodulation of the polarimeter
preamp signal, in this work the electrical signal from the polarimeter preamp circuit is
directly digitized using the PXIe-5171R analog input, which uses an analog-to-digital

converter with 14-bit resolution at 250 million samples per second. The (FPGA) on board
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the PXIe-5171R reads the digitized signal and performs real-time least-squares fitting
of the observed polarimeter signal to measure the phase response of atomic spins to a
precision of 47 bits in 0.43 pus as compared to a digital reference model consisting of
cos(wt) and sin(wt) components synchronized to the optical pump pulse trigger signals.
Closed-loop digital feedback adjusts the pump pulse repetition rate w to drive w — wy, by
any of the three feedback methods as described herein, and a digital logic output controls
the optical pump pulse state (“on” is a logic 1, and “off” is a logic 0) with 8 ns time
discretization based on the 125 MHz FPGA “clock speed.” The pump pulse repetition
rate is controlled by a direct digital synthesis (DDS) frequency synthesizer with 64-bit
precision, based on the FPGA clock (see Appendix A.3 for more detail). As in the work
described in Chapter 2, this experiment uses an optical pulse shuttering system based on
a digitally triggered electro-optic modulator with a high-speed half-bridge for EO voltage
control.

Just as in Chapter 2, the atomic vapor is polarized using a circularly polarized pump
laser tuned near to the 795 nm D1 line of 87 Rb and pulsed with a short duty cycle at a repe-
tition rate approximately equal to the natural Larmor precession frequency in the magnetic
bias field. However, for this experiment the pump pulse repetition rate is controlled in a
closed-loop fashion by any of three methods. The closed-loop feedback described below
updates the DDS frequency (and phase, if applicable) to drive the pump pulse repetition
rate to the natural Larmor precession frequency and phase in the presence of perturba-
tions to the scalar field observed by the sensor, and the DDS frequency is captured and
recorded as representative of the Larmor precession frequency.

As described in Equation 2.36, differences in the digitally perceived spin precession
phase d, as compared to the actual spin precession phase § relative to the optical pump
beam will lead to frequency offsets and sensitivity asymmetry in the magnetometer out-
put. Ideally, one may generate a simple offset Ay to compensate for the phase difference;
this will include components consisting of a simple time delay due to the latency in the

closed-loop system as well as phase error based on the analog response of the polarimeter
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Figure 3.1: Block diagram of the experimental apparatus. The 795 nm optical pump
beam pulses are generated using a continuous-wave laser with a custom shuttering system
based on an electro-optic modulator (EOM). The pump beam is circularly polarized using
a quarter-wave plate (A/4). A non-polarizing beam splitter cube (NPBS) combines the
optical pump and probe beams such that they co-propagate into the magnetically shielded
enclosure and through the 8”Rb vapor cell. On the opposite side of the magnetically
shielded enclosure is a dichroic high-pass filter designed to reflect the optical pump beam
back toward the vapor cell and transmit the optical probe beam to a Wollaston prism,
which functions as a polarization beam splitter; S and P polarization components of the
probe beam are each sent to a respective photodetector (PD). The Wollaston prism is
oriented at approximately 45 degrees relative to the unrotated plane of polarization of
the probe beam such that the photodetectors generate approximately equal photocurrents
in the absence of probe beam polarization rotation. The observed photocurrents are
differenced and converted to a differential voltage signal using a custom transimpedance
amplifier (TIA). Finally, the signal is read into the NI PXI-based digital system; feedback
controls the optical pump pulse repetition rate by way of signals controlling the EOM.
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circuitry. Thus, both the latency compensation and phase compensation must be tuned
properly for optimal operation and for generating a true w = wy, condition. For this ex-
periment, the condition of w = wy, is determined by sinusoidal modulation of the optical
pump wavelength at a frequency w, < I'o, driving a corresponding modulation of the
polarization and transverse relaxation rate (Equations 2.35 and 2.40) with the intent of
finding a feedback phase offset compensation which will generate no first-harmonic re-
sponse to the modulation. In other words, when w # wy the polarimeter will exhibit a
coherent output component at w,; proper adjustment of the latency compensation and
phase compensation will result in no observable polarimeter output component at w,, but
instead with an output at 2w,, based on symmetric modulation about the magnetic line
center.

As in Chapter 2, each pump pulse exhibits an “on” state intensity of roughly 10 mW
incident on the vapor cell, and the magnetometer sensitivity under our normal operating
conditions is observed to maximize at a duty cycle of 0.07, corresponding to 0.7 mW
time-average optical pump power incident on the vapor cell, as measured by a Coherent®
LaserCheck™ optical power meter. Between pulses, the polarized spins precess about the
external bias field at their natural Larmor frequency (Equation 2.33) such that the spin
polarization relative to the bias field axis can be written as P(t) = P cos(wrt + 6) + Fj.
For this experiment, the bias field is once again nominally orthogonal to the optical pump
beam such that P — 0. The pump pulse repetition rate is tuned near the first harmonic of
the natural Larmor precession frequency of the spins in the scalar magnetic field observed
by the instrument.

As described above, a linearly polarized CW (continuous wave) probe laser passes
through the cell to track the spin-dependent index of refraction of the 87 Rb vapor via Fara-
day rotation. This polarized light is detuned multiple linewidths away from the broadened
8TRb Dy optical resonance near 780 nm in order to reduce the spin relaxation effects of
photon scattering from the probe light and correspondingly optimize magnetometer sensi-

tivity (Section 2.4.1), and exhibits an optical power of 3 mW incident on the polarimeter.
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The angle ¢ of rotation of the linear polarization of the detected probe light then follows
¢pr(t) x Nz - P(t), where N is the number of spins interacting with the probe beam and
the probe is propagating along . The resulting polarization rotation angle is measured
with a balanced polarimeter; for small polarization rotation angles, the differential pho-
tocurrent is proportional to the rotation angle. Given a pair of photodetectors in the

balanced polarimeter with photocurrents I; and Io,

LD
2L+ I

bpr (3.3)

which is an approximation restatement of Equation 2.25 and only holds well in the small
¢pr limit. Recall from Equation 2.25 that the rotation ¢, of the probe beam as it passes
through the polarized alkali vapor is

Opr = 53171 L

(3.4)

In our experiment, the output of the custom polarimeter has a gain of 10 kV/A and
the typical output waveform arising from ¢, is approximately 1V (0.1 mA) amplitude
corresponding to 1.5 mA total photocurrent. Thus, ¢, ~ 0.033 radians, for less than
1 part per thousand deviation from a perfectly linear response. For the purpose of this
experiment, then, the waveform is well-approximated by a sinusoid and Equation 3.3
provides a good approximation.

The total noise output from the polarimeter when the probe is being measured is con-
sistent with the photon shot noise limit (Figure 2.9 and Appendix A.2). The polarization
angle noise §¢ in a 1 Hz bandwidth for small angles is based on the electrical current shot

noise from the photodetectors, given elementary charge q on a single electron:

56 cIv2a(hi+ D) 1] 2 (3.5)
Ly L+ I o\ I + I, ‘

For a 3 mW probe at 780 nm wavelength, the silicon phototdetectors provide a respon-

sivity of slightly over 0.5 A/W for a total polarization rotation noise of approximately
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7 nano-radians per square root Hz (nrad/v/Hz). The measured slope of the response
(d%(ll — I5)) during this experiment was typically in the range of 3000 to 5000 amps per
Tesla; based on Equation (3.5), at low frequencies w < T'y, where I'y is the transverse
spin polarization relaxation rate, the photon shot noise limit of magnetic field detection
is therefore at or below 7 fT/ \/E, well below the observed total magnetic noise. The
decrease in magnetic sensitivity (increase in photon shot noise) as compared to the ex-
periment in Chapter 2 is attributable to condensation of 8" Rb on the optical windows,
partially obstructing the optical path and reducing the available optical pumping rate and
probe photon flux.

The method of pulsing the optical pump beam at a rate of approximately w = wy,
effectively pumps the spins in their rotating reference frame; as discussed in Chapter 2
the Fourier transform of a sequence of square pulses contains the pulse repetition rate as
a major component. Starting from the Bloch equation for spins in a magnetic field, it can
be shown (A. Perry et al. 2020) that the observed phase difference ¢ between the spins
and the pump pulses near resonance corresponds to the difference dw between the pump
pulse repetition rate and the natural Larmor precession frequency of the spins, and further
includes contributions from the phase response ¢,, of the polarimeter circuitry and the

electronics system latency dt:
¢ = tan"(0w/T2) + dpor + Wit (3.6)

In the limit where dw /Iy < 1, the phase shift resulting from dw is directly proportional

to dw, and the response is assumed to be linear such that

¢ — ow/I'y + pol + wdt (3.7)

Each of the feedback methods investigated herein is designed to correct the pump
pulse repetition rate directly using the measured phase ¢ as the error signal driving the

loop. The phase shift (accumulated phase error) d¢ is measured over some period of
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time, in this case typically a single precession cycle of the spins. Noting that %&b =
dw, where dw is the difference between the angular frequency of precession of the spins
and the pump pulse repetition rate, it becomes clear that feeding back to the frequency
based on the measurement of phase inevitably leads to a precession—frequency-dependent
feedback gain component that can lead to instability in the closed-loop response upon
increasing the scalar field magnitude and adversely affect bandwidth upon decreasing the
scalar field magnitude. This gain component can be mitigated by any of a number of
different methods, such as feeding back based on the product d¢T, where d¢ is again the
accumulated phase error and 7' is the measurement period, rather than feeding back based
directly on d¢.

The signal-to-noise ratio (SNR) for the measurement of oscillating magnetic fields at
a frequency wpsc is based on the SNR at very low frequencies (SN Rp; wose < I'2), the
frequency of interest wyse, and the SNR bandwidth wg = 2I'9; in the limit of high gain
at wese, this SNR is independent of the feedback method chosen. Thus, the instrument
exhibits a “signal-to-noise ratio bandwidth” that is essentially independent of the closed-
loop —3 dB response magnitude bandwidth. At low frequencies, then, each feedback

method is expected to exhibit effectively identical SNR.

SN Ry

wgSC
R

SN R(Wose) ~ (3.8)

3.2.1 PI Feedback

The input to the PI (proportional plus integral) gain stage in the first of the three closed-
loop feedback schemes discussed herein takes the §¢ value calculated by the least-squares
algorithm and continuously calculates updates to the pump pulse repetition rate as the
sum of the proportional and integral gain components. The proportional gain component
is a simple multiple of §¢, and the integral gain component multiplies d¢ by a second gain
and sends the result to a digital accumulator. A top-level block diagram is shown in Figure

3.2. For this work, the PI gain stage is tuned by maximizing the absolute gains over the
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observed range of precession frequencies while avoiding instability. The maximum achieved
feedback bandwidth as measured by the -3 dB response magnitude without insufficient
phase margin toward the higher end of the frequency range is approximately 9 kHz.

In the limit of small ¢,,,; and 6, a PIloop can provide a very linear closed-loop response.
Examining the response of the spins in isolation, the spin phase response exhibits a corner
frequency of T'y/7 as described above: a PI gain stage can provide a complementary
behavior by tuning the ratio between the P and I components of gain such that the PI
corner frequency is also equal to I'y/m. For a digital PI gain stage as in the present
experiment, the corner frequency f. is given by
1y T

fe=5ap =% (39)

where P and I are the numerical factors multiplying d¢ in the digital gain stage and
fi is the summing rate of the digital integrator; in our experiment, the FPGA clock
frequency. In the present experiment, at Earth-field-scale magnetic fields the measurement
system does not reside in either the negligible ¢, or small 6¢ limits, and further exhibits
gain proportional to wy as described above. Therefore, as will be shown shortly, more-

sophisticated methods of feedback provide improved performance over the PI method.

3.2.2 Nonlinear Feedback

Consider the accumulation of phase between two sinusoids, such as the precession signal

and the reference signal:
dép(t)

= wref(t) - w(t) (310)

The rate phase accumulation is simply the difference in frequency between the two sinu-
soids of interest. Therefore, in a measurement period the accumulated phase is simply
proportional to the frequency difference. In contrast, Equation (3.6) indicates that in the
steady state limit the tangent of phase is directly proportional to the frequency difference.

An important point is that Equation (3.7) holds only for the following cases: (1) in a
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Figure 3.2: A top-level block diagram of the PI feedback scheme. The block labeled DDS
is the digital representation of the Rb spin precession phase and frequency and includes
a look-up table (LUT) to convert the DDS phase word (register value) into a sinusoidal
model of the spin precession; its output is compared to the incoming digitized precession
signal (data) in a least-squares filter (LSF) that outputs the value of d¢. d¢ is then used
to drive the PI gain stage (block labeled PI). The result of the PI calculation modifies the
DDS phase increment word M.
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steady-state condition and (2) only for small phase offsets. One may more accurately
capture a portion of the nonlinear response of phase to rapid deviations in precession
frequency through a slightly more sophisticated method. More generally, a shift in the
ambient field is detected as a temporary shift in the precession frequency relative to the
reference frequency (Equation (3.10)); recall that between pump pulses the spin ensem-
ble freely precesses at the natural Larmor precession frequency. Comparing in discrete
time the most recent measurement of phase at time interval n (¢[n]) to the previous mea-
surement of phase (¢[n — 1]), based on the time between measurements 7T}..f[n], one may

deduce the shift in resonant frequency from the previous to present measurements:

¢[n] — ¢ln —1]
277Tref [TL]

= fregln] = fInl, (3.11)
where fr.r is the reference frequency to which the actual data are being compared (the
output of the DDS block in Figure 3.3, representing the co-rotating component of R,y).
Making a first-order approximation of the time derivative of Equation (3.11) and insert-
ing the result into Equation (3.10), it is possible to solve for the present actual resonant
frequency f[n] of the spins (Equation (3.11)). One may then predict a first-order approx-
imation of the expected precession frequency f[n + 1] at the next measurement interval
and preemptively update the model (fy.f[n+1]) by way of the DDS phase increment word

M. From this, a feedback scheme is constructed, which has a similar form to the PI gain

stage (Equation (3.12)):

fregln +1] = fref[n](1 = Kp(@ln] — ¢[n —1]) — Kig[n]) (3.12)

A proportional term ([K,) approximates the derivative between consecutive phase
terms, while an integral term (K;) approximates the derivative to zero phase. Conceptu-
ally, this scheme can be seen as a translation from a derivative-proportional (DP) controller
into a PI (proportional-integral) controller via a frequency-dependent multiplicative fac-

tor. So, this method captures both the phase deviation itself and a multiple of its time
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Figure 3.3: A top-level block diagram of the non-linear feedback scheme.

derivative, and therefore generates a gain response that is nonlinear in phase deviation.
A top-level block diagram is shown in Figure 3.3. For this work, the gain stage is tuned

to maximize the closed-loop -3dB response bandwidth at approximately 17.5 kHz.

3.2.3 Hybrid Self-Oscillator

Based on Equation (3.6), it can be understood that control of the pump pulse repetition
rate is required in order to drive ¢ — 0. In a “pure” self-oscillator, the periodic incoming
data will directly generate the driving signal. Stated another way, rather than driving
the frequency in order to alter the phase, the phase of the pump pulses in a “pure” self-
oscillator is driven in order to alter the frequency.

In the hybrid self-oscillator method, the phase deviation d¢ of the periodic input o< P(t)
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directly drives the phase of both the pump pulses and the reference sinusoid. However, the
frequency of the reference must be deduced based on the phase to ensure that the drive
frequency matches the reference frequency. In discrete terms, the number of steps taken by
the DDS accumulator in one period follows as N = 2" /m, where m is the DDS phase word
and n is the bit width of the accumulator. A non-zero phase can be corrected with a shift
in the size of the accumulator with a new phase word m' = (2" + K/¢)/N. Reorganizing

these terms results in an updated phase word m’ and a third feedback scheme:

m' =m(l — K;9) (3.13)

For a “pure” self-oscillator approach, direct feedback of the measured phase response
as a phase shift in the timing of the optical pump pulses now takes the place of the
proportional feedback in the PI and nonlinear feedback schemes. For the PI and nonlinear
approaches, the proportional feedback term directly modifies the repetition rate of the
optical pump pulses rather than directly modifying their phase. However, since the pure
self-oscillator feedback approach does not directly influence the closed-loop —3 dB response
bandwidth, it was found to be beneficial to implement a combination of both phase and
proportional feedback; hence, it was designated as a hybrid self-oscillator based on this
mixing of the nonlinear and self-oscillator methods. A top-level block diagram is shown
in Figure 3.4. For this work, the response bandwidth was maximized at approximately 19

kHz.

3.2.4 Feedback Loop Summary

A comparison between the three feedback loop schemes may be understood qualitatively
as follows. First, the PI scheme measures the phase difference between the DDS model
of the expected precession signal and the actual signal itself and directly uses this phase
deviation to update the pump pulse repetition rate (and DDS phase increment word).
The PI scheme is therefore only reactive—it responds to a measured phase deviation and

makes corrections. Second, the nonlinear scheme takes advantage of the time derivative
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Figure 3.4: A top-level block diagram of the hybrid self-oscillator feedback scheme.
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of the phase to predict the next observed spin precession frequency and updates the DDS
phase increment word accordingly. The nonlinear scheme is therefore both reactive and
predictive; it deliberately seeks to predict the next observed signal increment rather than
only responding to the presently observed signal increment. Finally, the hybrid scheme
takes the nonlinear scheme and adds a direct phase modification of the next pump pulse
based on the observed phase of the present signal with respect to the model (DDS). The
hybrid scheme is therefore reactive and predictive, and includes an additional correction
factor for further improvement of the timing of the optical pump pulses to coincide with
the resonant precession of the spins.

While the PI feedback scheme may accurately correct for frequency offsets, for increas-
ing dB/dt, the latency 6t in calculating d¢ and updating the frequency (DDS phase incre-
ment word M) increasingly limits the phase margin. Predictive modification of the pump
pulse repetition rate as in the nonlinear scheme recaptures some of this margin. Meanwhile,
a direct adjustment to the phase as in the hybrid self-oscillator feedback mechanization
can be expected to allow for faster response times to larger dB/dt, as it does not solely
rely on the accumulation of phase inherent in the §¢ error signal calculation that drives
the PI and nonlinear schemes. Thus, at larger values of the frequency—magnitude product
w; B} (i.e., a larger dB/dt) the hybrid scheme can be expected to more closely track the
spin precession frequency perturbation induced by the applied oscillating magnetic fields

as compared to the PI or nonlinear schemes.

3.2.5 Measurement Uncertainty

As shown in Equation 3.2, measurement of the vector components of the incident magnetic
field requires observation of the first- and second-harmonic components of the square of
the measured total magnetic field in the presence of a modulation applied along the axis
for which the vector component is to be observed. Uncertainty in the measurement of
these components, such as that arising from the finite gain of the feedback loop, will

result in uncertainty in the calculated vector component solution. A key point in the
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evaluation of the effects of uncertainty in the closed-loop response is that the instrument
is inherently a scalar magnetometer. Extension of the instrument’s operation to vector
magnetic field measurement is achieved through applied modulating magnetic fields and
by way of processing the signals in magnetic-field-squared space.

The scalar magnetic field By is perceived by the closed-loop measurement system as
measurement value M. Note that M is simply an appropriately scaled version of the
DDS phase increment word m mentioned above, converted into magnetic field units: the
instrument in the present work is a magnetic-field-to-frequency transducer by way of the
relationship between the scalar field, frequency, and the gyromagnetic ratio «y of the spins:
w = vBs. The value of M includes the actual scalar magnetic field Bs at any particular
epoch and an additional uncertainty 6B, which includes effects from the finite gain of the
feedback loop as well as noise and effects from any applied filtering. Thus, the vector

measurement portion of the system perceives

M? = (B, + 6B)* (3.14)

One may expand the B term as a function of time, defining the static (low frequency)
portion of each vector component as B; o with applied modulation of amplitude B] and

frequency wj:

Bi(t) = Z(B%}O + Blcos(w;t))? (3.15)

i
where By is the low-frequency component of the incident magnetic field; here, low fre-
quency is defined as lower than w;. In the general case i = {&, 7, 2} and it is assumed that
modulation is applied along three orthogonal components of the incident magnetic field
(i.e., modulations along &, g, and Z in the instrument reference frame). In this work, as
a first step toward 3-axis measurement, a single oscillating field is applied along the bias
field to simplify analysis and interpretation of the experimental results, reducing Equation

3.15 to simply
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B%(t) = (By + B'cos(wt))? (3.16)

One may separate 0B into its Fourier components at integer multiples of w to provide
additional insight:

§B = 0Bycos(kwt + ¢) (3.17)
k=0

Combining Equations 3.14, 3.16 and 3.17 yields

M? = B + 2ByB'cos(wt) + B"cos*(wt)
+25°7° [0 Bycos(kwt + ¢1)(Bo + B'cos(wt))] (3.18)
+(3272 6 Brcos(kwt + ¢p))?

Equation 3.18 demonstrates that one may measure the amplitude of the applied oscil-
lating field based on demodulation of the square of the scalar field at 2w (note: cos?(wt) =
314 cos(2wt)]); this result combined with demodulation of the square of scalar field at w
provides a solution for the vector component of magnetic field along the applied oscillat-
ing field direction. Equation 3.18 also clearly demonstrates that the process of squaring
the magnetic field will generate the mixing of harmonics; particularly relevant are mixed
components that result in observed frequency content at w and 2w. Significant benefits
can therefore be realized through appropriate filtering of the scalar field before and after
the squaring operation, prior to demodulation.

This work utilizes a sinc (in frequency) filter prior to squaring (more details will be
provided below); a bandpass filter at w prior to squaring for detection of the 2w component;
and bandpass filters at w and 2w after squaring (Figure 3.5). In this work, B’ < 534 nT
(3740 Hz precession frequency perturbation amplitude), while By ~ 29,000 nT (200 kHz
precession frequency amplitude); thus, in Equation 3.18, it becomes apparent that B"? <
2ByB’' <« Bg. Given the presence of noise in the measurement, then, the dominant source
of uncertainty in the measurement of By by way of the vector component measurement

technique described in Equation 3.2 is the uncertainty in the measurement of B':
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26 B1cos 0BLéB
7Ineasured = Bl{l + 1BW +2 Z %[COS((@C + ¢k+2) + COS(¢]€ - ¢k+2)]}%

’ (3.19)

Equation 3.19 demonstrates that, in general, the uncertainty can reasonably be ex-
pected to decrease with increasing amplitude B’ of the applied oscillating field in addition
to benefiting from any filtering prior to the squaring operation that reduces the 6By
components. Additionally notable is that an increase in the feedback loop gain and im-
provement in phase response at kw will suppress any feedback loop contributions to the
uncertainty shown in Equation 3.19. Though not explicit in Equation 3.19, each § By in-
cludes uncertainty 0B noise from the instrument noise as well as uncertainty 0By, feedback
based on the finite gain of the closed-loop system. Each 0By, also an offset 6 B, fset, which
may arise from such effects as any noise rectification. One obvious source of noise recti-
fication based on the feedback methods described above is the use of d¢ to feed back to
dw: as noted above, the feedback gain is proportional to the precession frequency, eliciting
nonlinearity and corresponding asymmetry in the feedback loop response to an applied
sinusoidal oscillating field. Even-order terms in this nonlinearity will rectify a portion of
the noise.

The error term 0By feedback can be understood as follows. The closed-loop system
includes a transfer function G(27f) as a function of frequency f for the instrument and
electronics along with a feedback transfer function K (27 f), resulting in a finite open-loop
transfer function GK (2r f). The residual error 6 By, feedback in the presence of applied oscil-
lating field B’ due to the finite response of the closed loop system is therefore proportional

to the magnitude of the applied oscillating field:

1

/1+GK%@ (8:20)

5Bk:,feedback =B

In the limit that 0By, feedback > 0Bk noise, the contribution to uncertainty in the mea-

surement of B’ arising from the feedback loop will dominate. As described in Equations
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3.19 and 3.20, the uncertainty will no longer appreciably decrease with increasing am-
plitude B’. Thus, for G(2nf) — fized, an improvement in the feedback loop transfer
function becomes the sole means of further reduction in uncertainty, which is the focus
of this work. Note that for a 3-axis system, this condition will depend on the direction
of the bias field relative to a respective applied oscillating field; the feedback uncertainty
contribution will depend on the observed modulation of the scalar field imparted by the
respective applied oscillating field. Comparing extreme cases in which the bias field is or-
thogonal to the applied oscillating field versus the case studied here, in which the applied
oscillating field is along the bias field, Equation 3.2 demonstrates that in the extreme case,
the applied oscillating field must be much larger than in the case studied here to meet the

condition that d By, feedback > 0Bk noise-

3.3 Results

For each of the three feedback methods investigated in this work, 60 s of scalar magne-
tometer data were collected using each feedback loop method; in each case, an oscillating
magnetic field was superimposed on the bias magnetic field by applying a modulating
current through the same magnetic field coil that provides the bias field itself. These os-
cillating fields were applied at four frequencies (20 Hz, 200 Hz, 2 kHz, and 20 kHz) at each
of four magnetic perturbation amplitudes (0.534, 5.34, 53.4, and 534 nT, corresponding to
3.74, 37.4, 374, and 3740 Hz perturbation amplitude in precession frequency units). The
amplitudes of the applied oscillating fields were calibrated by way of measuring the change
in spin precession frequency per unit drive signal input. For each data set, Equation (3.2)
is used as the basis to solve for the vector component of the bias field that is oriented
along the applied oscillating field. In this case, the bias field and oscillating field are co-
aligned, simplifying the process of evaluating the accuracy of the vector field measurement
as compared to the scalar magnetometer using this technique. In particular, if a result
shows a high relative accuracy, the vector field component that is measured based on the

w and 2w components of M? as shown in Equation (3.2) will be equal to the observed
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scalar field By.

Each of the 48 data sets (four amplitudes at each frequency, four frequencies, and three
methods) is analyzed by way of the algorithm shown in Figure 3.5 using MATLAB. The
calculations shown in Figure 3.5 are implemented as follows. First, the scalar magnetome-
ter data are upsampled using cubic spline interpolation (the “Spline” block in Figure 3.5)
to increase the effective data rate of all data streams to a uniform pre-selected effective
data rate, chosen such that every frequency of applied oscillating field is represented by
an integer countdown of the effective data rate; this significantly simplifies the design of
Sinc (in frequency) filters that may be applied to the data. The upsampled data are then
mirrored about both endpoints to effectively triple the data length without introducing
discontinuities and to allow for removal of filter end effects. The upsampled and extended
data are filtered using a Sinc filter that is implemented as a simple moving average using
the MATLAB command movmean(data,n), where n is the number of data points in the
moving average. This filter suppresses undesired frequency components of M, which would
lead to additional frequency mixing and corresponding uncertainty in the measurement of
the 2w component of M?, such as noise in the vicinity of Nw, where N is an even integer
up to a limit imposed by the sample rate. The magnitude part of the transfer function of
the Sinc filter can be easily understood in a continuous-time approximation. The average

over period T of cos(kt) and starting at an arbitrary time ¢y = 0 is simply a Sinc function:

T cos(k sin(k
/0 ; D gt — K(TT) — Sine(xT) (3.21)

As noted in the discussion above regarding Equation 3.19, the suppression of § By com-
ponents will minimize uncertainty in the measurement of B’; thus, prior to squaring the
magnetic field for the measurement of B’, a bandpass filter at w (i.e., k = 1) is applied
to suppress these undesired components in M. The M? data sets are further bandpass
filtered at w and 2w as appropriate, and then finally truncated back to the original data
length, deleting the mirrored data and eliminating the filter end effects such that the fil-

tered data more accurately represent what might be expected in a real-time system with
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fully settled filters. These filtered data sets are then demodulated at the appropriate
phase to measure values corresponding to the oscillating terms in Equation (3.2) so that
a solution can be found for the measurement of the vector component of field along the
oscillating field direction. In each case, the bandpass filter is designed using MATLAB’s
built-in functionality for generating a minimum-order Chebyshev Type II filter; for maxi-
mum commonality of filter behavior across the range of frequencies, the filter bandwidth
is kept at a constant fraction of the filter center frequency for both the pass-band and
the stop-band, and the pass-band ripple and stop-band attenuation specifications remain
constant across all filter instances.

The Chebyshev Type II filter, as implemented in MATLAB, will exhibit a nonuniform
gain as a function of frequency in addition to exhibiting a non-unity gain at the desired
oscillating component frequencies. Therefore, at each step in which a Chebyshev Type 11
filter is applied, the gain of the filter at the desired frequency is measured using a simple
unity-amplitude sinusoidal input to the filter. The filtered M? signal is then corrected for
the filter gain and passed along to the next step in the analysis.

The “Phase” block in Figure 3.5 refers to the calculation of the ideal phase for demodu-
lation of M?2. Consider an applied magnetic field modulation component 2By ;i Bac,isin(wit+
¢p) (Equation 3.2), where ¢p is an unknown phase relationship between the modulation
signal as observed in the data and the start of the data set. The ideal demodulation signal
to measure the amplitude 2B ; B, ; of the resulting oscillation will of course be to multiply
the signal by sin(wt+ ¢p). The most precise possible value of ¢5 can be calculated based
on the entire data set—an advantage of post processing. Consider multiplication of the
entire data set of a given M? separately by cos(w;t) and sin(w;t). Examining the effect
on the 2By ; By isin(wit + ¢p) component of the signal and ignoring the amplitude for the

moment in order to visually simplify the equations,

sin(w;t)sin(w;t + @) = 3[cos(¢) — cos(2w; + ¢ )]

[sin(¢) — sin(2w; + ¢B)]

(3.22)

Nl— NI

cos(w;t)sin(w;t + ¢p) =
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Taking the mean of each of these outputs over the full data set (effectively eliminating

the 2w; components), one may solve for ¢p:

_y mean[cos(w;t) * M?(t)]
mean|sin(w;t) x M2 (t)]

¢ = tan (3.23)

This same technique for the extraction of the appropriate demodulation phase will
apply to any signal of interest, and will allow the calculation of both the magnitude
response and the (magnitude * phase) response of an incident signal, i.e. the in-phase
and quadrature components of the signal. In a real-time system, this calculation may be
implemented by way of replacing the “mean” with appropriate low-pass filtering.

Figure 3.7 shows the ratio (scale factor) between the vector component of magnetic
field as measured using our vector measurement algorithm (Figure 3.5) and the magnetic
field as measured by the scalar magnetometer, after correction for the gains of the filters
as described above. Ideally, the vector measurement algorithm will yield exactly the same
result as the scalar measurement; in such a case, the scale factor would be exactly 1. As
shown in Figure 3.7, the scale factor error for our measurement method is less than 1%
in all cases (excluding error bars); in many instances, the scale factor is consistent with
exactly 1 within three standard deviations.

Recall from Equations 3.19 and 3.20 that it is specifically in the limit that 0 By, feedback >
0B}, noise Wherein an appreciable improvement in uncertainty based on the response of the
feedback loop is expected. Figure 3.8 is consistent with this prediction; no clear advantage
in precision is gained for the nonlinear or hybrid feedback methods over the PI method for
any B’ amplitude investigated herein at 20 Hz and 200 Hz, where |GK| > 1 for all three
methods. Meanwhile, at 2 kHz and 20 kHz, the precision follows the expected progres-
sion of 0By pr > 0By Nontinear > 0Bk mybria based on the respective closed-loop response
characteristics, with the difference between the nonlinear and hybrid methods being most
clear at the highest frequency. It is, therefore, concluded that in this work, magnetometer
noise dominates the precision of the vector measurement method shown in Equation(3.2

when 0By feedback < OBk noise; Mmagnetic measurement noise dominates the scale factor
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Figure 3.5: A top-level block diagram of the implemented vector calculation algorithm
for a single axis, for each data set. The block labeled Spline represents cubic spline
interpolation of the data for optimal sinc filtering (block labeled Sinc). After the sinc filter,
the data are either immediately piecewise-squared (each data point in the time series is
itself squared) or filtered first to suppress dBj.; components (Equation (3.19)) and then
piecewise squared. The blocks labeled BPF represent band-pass filters at w and 2w. The
blocks labeled Phase represent phase detection to determine the appropriate demodulation
phase (Equation 3.23). The blocks labeled SIN represent sinusoidal demodulation, in which
the signal is multiplied by a sine wave at the appropriate frequency and phase and then
low-pass filtered to observe the low-frequency component of the output; these then feed
into a solver block to measure the incident vector field (B;) and the oscillating field (B’)
magnitude.
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Figure 3.6: A comparison of residual errors between open loop and closed loop operation
in a 29 uT bias magnetic field (200 kHz precession frequency) with a 20 Hz, 0.534 nT
(3.74 Hz precession frequency perturbation amplitude) oscillation.
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Figure 3.7: The relative accuracy of the oscillating field method compared to the scalar
magnetometer (line plots with data points) and precision (error bars) of each method. The
scale factor (Y axis) is the ratio between the measured vector field using the oscillating
field method and the actual magnetic field as measured by the scalar magnetometer, while
the precision is measured as the Allan deviation value of the measured vector time series
at one second integration time.



90

Relative Uncertainty, 20 kHz Perturbation Relative Uncertainty, 2 kHz Perturbation

©P ; P
-F Hybrid [ Q —F Hybrid
] Nonlinear|| 5 N Nonlinear|
510? 151072 X 5
3 R 5 >
5 ¥ 5 S
= . = - \
810 RS 18108 °
S ~ S o
w oSN = =0 = = -0 w - 0= - - 5}
N - + == ' ;
107 - ¥ = =T 107 a8 Cnieraitnc R e
10° 10" 10° 10° 10*  10° 10" 10° 10° 10*
Amplitude (Hz of precession frequency) Amplitude (Hz of precession frequency)
107 Relative Uncertainty, 200 Hz Perturbation 10 Relative Uncertainty, 20 Hz Perturbation
©Pl P
= Hybrid =k Hybrid
) Nonlinear|| 5 ) Nonlinear
10 1510 3
s (8
5 s L
103 1810 ~o-
© -~
- = = = e e N——\ = - 2k
%__ ’_—e~__‘ ==
10 i e Tt ) 10 | | il
10° 10 10? 10° 10*  10° 10 10? 10° 10*
Amplitude (Hz of precession frequency) Amplitude (Hz of precession frequency)

Figure 3.8: (color online) The fractional uncertainty of the measured static vector mag-
nitudes, measured as the Allan deviation value at one second of integration time for each
data set.

error, and the chosen feedback method will dominate the relative uncertainty at larger B’

and larger w, where 6Bk,feedback > 6Bk,noise'

3.4 Conclusions

The experiment described in this chapter examined and analyzed the comparative suit-
ability of three different feedback methods for the closed-loop operation of a Bell-Bloom
magnetometer (Bell and Bloom 1957; Bell and Bloom 1961) operating in Earth-field-scale
magnetic fields and driven by intensity-modulated optical pump light with short-duty-
cycle pulses of pump light at approximately the natural Larmor precession frequency with
the intent of measuring the vector components of the incident magnetic field by way of
applying oscillating magnetic fields (T.G. Walker and M.D. Bulatowicz 5 April 2022).
The present work takes a first step toward 3-axis vector measurement by applying a sin-
gle oscillating field along the bias field so that the effects of the feedback method on the

relative accuracy and precision of the vector component measurement can be robustly
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evaluated in a simple and straightforward manner. The investigated feedback methods
include proportional integral (PI), nonlinear, and hybrid self-oscillator feedback methods.

This work has demonstrated, in accordance with Equations 3.19 and 3.20, that with
a combination of sufficiently large amplitude and sufficiently high frequency applied os-
cillating magnetic field, appreciable improvements in measurement uncertainty can only
be realized by way of improvements in the feedback loop response. In this work, these
improvements are demonstrated when using feedback methods which capture a greater
portion of the nonlinear response of the instrument to the increased perturbation am-
plitude and frequency (Equation 3.6). It is further important to note that the method
outlined herein for the measurement of the vector magnetic field components draws its
accuracy from the accuracy of the scalar magnetometer itself in addition to any accuracy
considerations in the feedback method and the vector calculation process (Figure 3.5).
Thus, to meet any particular absolute accuracy specification for the measurement of the
vector components of the incident magnetic field, the scalar magnetometer must be at
least as accurate as the desired vector accuracy.

In future work, the vector measurement and feedback methods described herein may
be extended to 3-axis vector magnetic field measurement. Further, the vector component
measurement algorithms may be implemented in real time for the active measurement of
the vector components of the magnetic field. Additionally, as described above, the error
signal d¢ that drives the feedback loop can be updated to improve the response in a wide
variety of magnetic field magnitudes. Finally, the magnetometer performance may be

evaluated in an unshielded magnetic environment.

3.4.1 Data and MATLAB code Availability

Data and MATLAB code available at
https://uwmadison.box.com/s/jlrdssru93jjyum7tj3yaoas1bkugxOh
(uploaded 28 March 2023). To process data, download all data and MATLAB code

files (.m files) to a single folder and run the code Data_to_Vector_Time_series.m from



the same folder.
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Chapter 4

All-Optical Synchronously

Pumped RF Magnetometer

4.1 Introduction

Atomic magnetometers have demonstrated the potential for high sensitivity detection of
magnetic fields at frequencies up to radio-frequency (RF) detection in the MHz regime
without the use of cryogenic cooling (Keder et al. 2014b; Lee, V.G. Lucivero, et al. 2021;
.M. Savukov et al. 2005). Low-frequency to RF detection is useful for many applications
from ultra-low-field MRI (Mazurek, Cahn, and M. Y. e. al 2021) to NMR spectroscopy
(I.M. Savukov et al. 2005), magnetoencephalography (Rea et al. 2022), magnetocardiogra-
phy (I. A. Sulai et al. 2019) and beyond. In contrast to an inductive pick-up coil (Gruber
et al. 2018), optically pumped RF atomic magnetometers are effectively insensitive to elec-
tric fields and do not exhibit inductive cross-coupling, making them particularly amenable
to use in array configurations. Typically, optically pumped RF magnetometers pump the
spins along the bias field and allow the incident RF field to stimulate resonant precession
of the spins about the bias field (for example, Keder et al. 2014b; Lee, V.G. Lucivero,
et al. 2021; Bevington, Gartman, and Chalupczak 2019). This chapter covers the demon-

stration and analysis of what is to the best of our knowledge the first demonstration of
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RF sensitivity for a synchronously pumped (Bell-Bloom) magnetometer; the underlying
physics are presented along with a straightforward path to increased RF sensitivity.

It is worth noting that the typical optically pumped RF magnetometer approach ex-
hibits a lower spin polarization relaxation rate as compared to the present experiment: in
the absence of a transverse magnetic field component, spin exchange does not generate
decoherence of the ensemble (see Chapter 2) and therefore the magnetometer can take
full advantage of light-narrowing (Appelt et al. 1999) to increase the sensitivity. However,
these RF magnetometers are primarily sensitive to RF magnetic fields transverse to the
bias field and are unable to detect low-frequency fluctuations with high precision and low
noise; depending on the application, this may be an advantage or a disadvantage. Further,
a decrease in the achievable minimum detectable field (i.e. sensitivity) comes at the cost
of response bandwidth; in the photon shot noise limited case, bandwidth and sensitivity
are deterministically related by way of the transverse spin relaxation rate I's. As will be
shown shortly, an increase in sensitivity by way of decreasing response bandwidth will
actually degrade RF detector performance for any applications benefiting from increased
information transmission rates.

As described in Equation 2.29, the minimum detectable field for a shot noise limited
magnetometer as in the present experiment is proportional to I'e, while as noted elsewhere
in Chapter 2 the response bandwidth is I's/w. RF applications in which information is
being received by a detector benefit more from wideband detection than from an increase
in signal-to-noise ratio (SNR): the Shannon-Hartley theorem states that the information

capacity C of a signal with bandwidth BW is

C = BW Loga(1 + SNR?) (4.1)

where the information capacity is in bits received by the detector per second. For a mag-
netometer operating in open-loop mode, then, with an incident radio frequency magnetic

field component of Brr and a total noise at the RF detection frequency of ¢ Byytq;, the
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Shannon-Hartley theorem states

Iy B?
C=-—-=-L 14+ —1r 4.2
Q0 09 ( " 5BtzotalFQ/ﬂ-) ( )

which clearly demonstrates that in the limit where technical noise is negligible and where
0Biotal = 0Bpgn o< I'g, as in the present experiment, an optimal I'y exists for maxi-
mizing the rate of transmitted information; further, the optimal I's is dependent on the
magnitude of the received RF magnetic field. Therefore, a maximal degree of light nar-
rowing is not necessarily advantageous and the advantage or disadvantage of the typical
RF magnetometer over a synchronously pumped RF magnetometer must be evaluated on
a case-by-case basis.

Equation 2.33 (recall: w; = v|BJ) suggests that for any modulating magnetic field
orthogonal to the bias field one would expect a second-order response. While the relation-
ship described in Equation 2.33 does hold for low-frequency magnetic fields (w < wp), the
approximation breaks down for magnetic field oscillations which are both orthogonal to
the bias field and near the natural Larmor precession frequency wy. Naively solving the
Bloch equations using only an examination of the effects of the magnetic fields, one will
conclude that an experiment in which B - R = 0 an oscillating field Q1 cos [(wr, + A1)t]
with - B = 0 should generate a precession phase response B(t) o< 2% cos Aqt. As shown
in Section 4.3, while this relationship does indeed hold for larger values of {21, in the small
1 limit the magnetometer response is instead linear in €2;. We have found that the linear
component of the response occurs due to an interaction between the applied oscillating
magnetic field and the AC Stark shift Q4 (¢) associated with the optical pump beam.

For optimal operation of the synchronously pumped magnetometer in this experiment,
the optical pump beam is detuned from the D1 optical transition by a non-negligible
fraction of the optical absorption linewidth and therefore induces a virtual magnetic field
by way of the AC Stark shift, with expectation value (2 4¢) in units of induced precession
frequency perturbation. With an optical pump along R and a bias field along Q, using

the same orthonormal basis set of Q,é, and 7 described in Chapter 2, the effect can
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be qualitatively understood as follows: as described in Equation 2.2, Q4¢(t) includes a
significant Fourier component at wy, tipping the spins out of the é — 7 plane into Q;
meanwhile, in the rotating reference frame of the precessing spins, the incident RF field
includes a slow Fourier component at frequency A; which tips the spins from Q) back
toward the & — 7) plane, at a phase deviation ¢(t).

The Bloch equations for the time evolution of the spin S in the rotating reference
frame of the precessing spins can naturally be divided into components parallel and per-
pendicular to the bias field; S, and S, = A, e™!, respectively. Given a natural Larmor
precession frequency wry, transverse relaxation rate I'o, an incident RF field along é of
magnitude €y and frequency wy = wy with Ay = wr — w1, and an optical pumping rate
R(t) associated with a corresponding AC Stark shift Q4¢(t), the Bloch equations for the
transverse component of spin in the case where the optical pump pulse repetition rate is

equal to the natural Larmor precession frequency of the spins become:
diAy = —To AL — z‘{QAc(t) + QlCOS(Wlt):ISg)@_ith + R(t)e et (4.3)

diSo = [QAc(t) + Qlcos(wlt)} [A+eith} — (F + R(t))SQ (4.4)

In the rotating reference frame, we can replace Q4c(t)e~™2t and R(t)e ™! with their
time-average values, (24¢) and (R). Again assuming that the optical pump is on resonance
with the natural Larmor precession frequency of the spins, in the rotating reference frame
(Qcos(wyt)etwrt) = i%eﬂmt and Q4c does not generate any polarization along .

Equations 4.3 and 4.4 become

0
diAy = —ToA, —i|(Qac) + 716&” S + (R) (4.5)

0 |
d,Sq = %Aw_mlt — (T + (R))Sq (4.6)
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Solving Equations 4.5 and 4.6 for A :

_ (R) —iSa(Qac) Soflt A
Av = I, Ty A (1)

and Sq:
0

_ e—iAlt
o = A 2(i(0 + (R) — A1)

(4.8)

One may solve Equations 4.7 and 4.8 in the limit that the oscillating components of A, are
small compared to the steady-state component: in this limit, A, exhibits magnitude and

phase oscillations at frequencies A1 and 2A1, proportional to 1Q4c and Q2, respectively.

_(R) 21Q4c(iA; — ((R) +I))eiArt Q2e2iAt
AL = 1‘2<1 2I2(A2 + ((R) +1)2) + 4(ZT2+A1)(11'(<R>+F)—I—A1)> (4.9)

with a first harmonic oscillation magnitude of

(R) 0 Quc
T2 90y /A7 + ((R) +T)?

A+’oscl - (410)

noted to be proportional to 2:Q4¢c. Assuming fixed optical pump conditions one would
therefore expect to observe a “baseband” precession phase modulation of the spins at the
frequency Ajp, proportional to €2;.

A sinusoidal magnetic field modulation along é is equivalent to a pair of rotating mag-
netic fields, co-rotating and counter-rotating with respect to the spins. It is specifically
the co-rotating component which drives the slow phase shift response described in Equa-
tions 4.9 and 4.10. Equivalently, a sinusoidal modulation along 7 will exhibit a component
co-rotating with the spins and will elicit the same magnitude response, phase shifted by
an additional /2.

Recall from Equation 2.10 that R,, = ®,,0(vyy) which is maximized when v, is
resonant with the D1 optical transition. Meanwhile, (2 4¢) is maximized when the optical
pump beam is detuned significantly from resonance (Levi et al. 2016). ®,, cannot be

arbitrarily increased in this experiment due to limitations on the available pump photon
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flux, and as a result the optimal 8”Rb polarization cannot be reached simultaneously with
maximal (Q4¢). Thus, in this experiment I optimize the RF response by specifically
maximizing the (®,,04)P1 product as a function of v,, by way of maximizing the output
response of the magnetometer to an applied oscillating field detuned by Aj. I find optimal
operation for RF sensitivity at approximately 9.2 GHz detuning from the wavelength of
maximum optical absorption of the optical pump laser beam in the vapor cell used herein
with '), ~14.4 GHz (Chapter 2). Compare this to the 3.5 GHz optical pump detuning at

which the magnetometer sensitivity to low-frequency magnetic fields is optimized.

4.2 Experimental Apparatus

The basic experimental apparatus in this experiment is identical to the apparatus de-
scribed in Chapter 2, but with the exception that an oscillating magnetic field 0 =
(a€ + bij)cos(wit) orthogonal to the bias field € is now included. An updated version of
the abbreviated schematic of the experimental apparatus for this experiment is shown in
Fig. 4.1, with the addition of the incident RF magnetic field and a reference for the ori-
entation of the previously-mentioned orthonormal basis set established in Chapter 2. The
applied RF oscillating field is driven by way of the modulation input on the same Twinleaf
CSUA-1000 current source. Calibration of the applied RF field magnitude is performed
relative to the low-frequency response (where low frequency modulations are much slower
than I's/7) through observation of the oscillating component of voltage across a resistor
in series with the electrical current passing through the magnetic field coil, under the
assumption that the current-to-field conversion is sufficiently similar at 200 kHz.
Regarding differences in the current-to-field conversion factor at low frequency versus
200 kHz, recall that the vapor cell is housed inside a Twinleaf MS-2 magnetic shield set with
integrated magnetic field coils; the magnetic permeability of magnetic shielding alloys such
as ASTM-A-753, Alloy 4 (also known as Hipernom, HyMu 80, Moly Permalloy, or Magnifer
7904) is dependent on frequency. Specifically, the magnetic permeability decreases with

increasing frequency (particularly frequencies wherein the ”skin depth” is much less than
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Figure 4.1: a) Block diagram of the operational concept. Similar to Figure 3.1 with the
addition of an applied oscillating RF magnetic field in the £ — n plane and a reference
showing the orientations of the orthonormal basis set in this experiment.

the thickness of the material). Estimates based on published data (“MuShield Frequently
Asked Questions” n.d.) indicate that the effective permeability becomes proportional to
91—2/ 5, However, based on this same data, the relative magnetic permeability is still
expected to be greater than 100, leading to an expected deviation of less than 1 percent
in the calibration.

While it is not explicitly shown in Equation 4.9, the low-frequency component of
the spin precession phase response to the incident RF magnetic field is sensitive to the
detuning of the optical pump pulse repetition rate relative to the natural Larmor precession
frequency. When wy, # w (i.e. the optical pump pulse repetition rate is not quite equal to
the natural Larmor precession frequency of the spins), the RF response magnitude exhibits
asymmetry about w; this effect can be exploited to carefully tune w — wy, to a higher level
of precision and accuracy than is achievable by maximizing the observed amplitude of the
precession signal; I therefore set the condition of w = wy, by square-wave modulating the
frequency of the applied RF magnetic field and adjusting wy, using the bias magnetic field

until the RF response to +A; is equal in magnitude.
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Figure 4.2: Measured spin precession phase response to a 20 Hz magnetic stimulus field
along the bias field and a (A; = 20Hz) stimulus field orthogonal to the bias field as
compared to theory (Equations 2.36 and 4.10)

4.3 Results and discussion

I conducted a series of experiments to test the theory outlined in Equation 4.9 with
measurement results validated against Equation 4.10. For the results shown in Figure
4.2, the “on” state intensity of the optical pump beam is varied by way of adjusting the
voltage applied to the electro-optic modulator (Figure 2.6), thereby adjusting both the
optical pumping rate and the AC Stark shift simultaneously. The “Theory” curves shown
in Figure 4.2 are calculated using measured values of the magnetic field coil response to
RF and DC inputs, the AC Stark shift, optical pumping rate, and transverse relaxation
rate of the spins. For these experiments, I arbitrarily chose a DC stimulus field frequency
of 20 Hz and corresponding RF detuning of 20 Hz for the sake of convenience: the chosen
frequency is much lower than I'9, satisfying the quasi-steady-state requirements for validity
of Equation 2.36 while remaining fast enough for robust triggering on the oscilloscope
to provide for qualitative validation of the lock-in amplifier signal outputs. Figure 4.2

demonstrates that the experimental data and theory are in good agreement.
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Figure 4.3: Spin precession phase response as a function of applied oscillating field mag-
nitude at Ay = 20H z for small ;. Inset: measured response out to larger £2; with 2nd
order polynomial fit. The data show a linear-dominated response at low €2y, with the
response dominated by the second-order term at larger 21, as expected

Equation 4.9 further predicts a linear relationship between the phase modulation of the
spin precession and the magnitude of the applied RF magnetic field 12 cos [(wy, + A1)t] in
the small € limit for the response component driven by the AC Stark shift of the optical
pump beam; when 2 is comparable to or larger than (Q4¢), Equation 4.9 predicts a
quadratic component to the response. As shown in Figure 4.3, this prediction also matches
well with the experimental data; in the small € limit the magnetometer exhibits a linear
relationship between the response magnitude and RF field magnitude at frequency A; =
20H z. As € increases, one may clearly observe the influence of the expected Q2 response
component. As shown in Figure 4.3, the linear response dominates for (Q4¢) > Q1, while
the second order response dominates when €3 > (Qa¢) (see Figure 4.3 inset).

The noise spectra shown in Figure 4.4 show a comparison between the sensitivity to
RF fluctuations at A; = 20H z versus the sensitivity to magnetic oscillations at 20 Hz. As
shown in Figure 4.2, the observed spin precession phase modulation for the RF sensitivity

in this magnetometer is lower than the sensitivity observed for low-frequency magnetic field
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fluctuations, accounting for the difference in the observed noise minima. Easily visible in
Figure 4.4 is the 20 Hz input stimulus signal of a known (calibrated) amplitude which is
used for appropriate scaling of the lock-in amplifier output into magnetic units. Additional
narrow frequency spikes arise in the spectrum due to electrical power; these are observable
at 60 Hz and harmonics.

Noticeable in a comparison of the RF and DC sensitivity curves in Figure 4.4 is that the
electrical power interference appears to be similarly shaped for the RF and DC sensitivity
curves, though of approximately an order of magnitude difference in amplitude. Next,
many harmonics of 60 Hz are present, indicating that the time series of the magnetometer
data includes a coherent narrow pulse component at 60 pulses per second. Moreover, the
frequency spike at 60 Hz is greater than the spike at 180 Hz, while the magnetic field
produced by electrical current in the power lines exhibits a dominant component at 180
Hz-a condition which will be exacerbated by the frequency dependence of the magnetic
permeability of the magnetic shielding material. Therefore, the presence of 60 Hz and
harmonics is not consistent with being dominated by magnetic field oscillation at the
vapor cell. As an additional indication of the cause, the electrical power interference is
absent from the probe noise curve, taken upon placing a physical barrier between the
optical pump beam and the vapor cell.

Together, these observations therefore suggest that the power line interference is likely
observable on the optical pump beam; in particular, manifesting as phase deviations of
the optical pump beam relative to its intended phase. A measurement of the optical
pump beam pulse time series demonstrates that this is indeed the case: electrical power
line interference modifies the timing (phase) of the optical pump pulses, leading to a
perceived magnetic field according to Equations 2.33 and 2.36 in addition to any actual
induced magnetic fluctuations observed by the precessing spins. The optical pump phase
modulation is fundamentally a low-frequency effect; the magnetometer noise spectrum,
referenced to RF sensitivity, simply makes the amplitudes appear larger than for the DC

sensitivity: in the uncalibrated time series, these amplitudes are indeed identical. See
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Figure 4.4: (Color online) Red trace: RF magnetometer noise spectrum. Yellow trace: DC
magnetometer noise spectrum under identical conditions. Blue trace: RF magnetometer
noise floor, dominated by probe noise but also including technical noise.

Appendix A.1 for more detail.

4.4 Conclusions

In the experimental work described in this chapter, I have presented the experimental
demonstration and underlying theory for linearized detection of RF magnetic field oscil-
lations near the natural Larmor precession frequency of the spins in an all-optical syn-
choronously pumped (Bell-Bloom) magnetometer with parallel optical pump and probe
beams. Repeated searches of the literature have uncovered no evidence of a prior demon-
stration of RF sensitivity in a transversely synchronously pumped magnetometer; thus, to
the best of our knowledge this work represents the first demonstration of a transversely
pumped RF Bell-Bloom magnetometer with parallel pump and probe beams. A potential
advantage of a Bell-Bloom RF magnetometer as in the present work is that the RF sensi-
tivity does not inherently interfere with the ability to detect low-frequency magnetic field

fluctuations; further, the RF sensitivity can be emphasized or minimized by appropriate
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choice of the optical pump wavelength, thereby controlling the value of (Q4¢).
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Chapter 5

Conclusions and Future Work

5.1 Suggestions for Future Work

Future work can build upon the successes of the work described in this thesis. For the
scalar and differential scalar magnetometer, an alternative pulsed optical pump light source
with greater “on” state intensity will enable wider signal-to-noise ratio bandwidth, optical
pump pulse intensity profile shaping or optimization, and the use of a physically larger
vapor cell for further improvement in the fundamental noise limits. As noted in Chapter
4, such a pump light source will also generate increased RF detection sensitivity. An
increase in the optical path length of the probe beam in the polarized vapor (Equation
2.39) will further reduce the photon shot noise limit. For example, a multi-pass optical
probe will improve the photon shot noise limit approximately as the square root of the
number of passes (recall from Chapter 2: the probe is detuned by several linewidths from
the optical transition and exhibits an optimal photon scattering rate, therefore requiring
further detuning for optimal operation when the probe passes multiple times through the
vapor cell). Next, the differential scalar magnetometer measurement can be implemented
in a closed-loop fashion as described in Chapter 2 to improve the common-mode rejection
ratio and thereby improve differential detection performance (I. Sulai et al. 2019).

For detection of the vector components of the magnetic field, operation may be ex-

tended to full three-axis detection using the method described in Chapter 3, and the
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feedback loops can be further improved by modifying the error signal driving the loops
from a simple phase difference to the product of phase and observation time such that
the loop gain becomes substantially independent of precession frequency (magnetic field
magnitude). Finally, a feed-forward system may be implemented to modulate the optical
pump pulse repetition rate coherently with the applied oscillating magnetic fields, lifting
the presently observed feedback loop performance limits.

Future work on detection of the vector components of magnetic field may also imple-
ment a different mechanization than the oscillating field method described in this thesis.
Specifically, the addition of a second optical probe beam, orthogonal to the present opti-
cal pump/probe axis, can track the “cone of precession” of the spin ensemble in real-time
through direct observation of the polarization component projection along a second axis.
With the exception of a sign degeneracy that can be lifted using a weak applied oscil-
lating magnetic field, this will allow real-time observation of the vector direction of the
incident magnetic field. Consider a pump/probe axis along R = 2, a bias magnetic field
Q = Q(zsin(05)cos(pp) + Jsin(6g)sin(pp) + 2cos(0p), and a second probe along #. As
described in Equation 2.24, a probe along some axis #; will measure P 7.

The Bloch equation (Equation 2.12) indicates that for an optical pump repetition rate
W = wr,

P, = P(cos?(0) + sin® () cos(wt) ) (5.1)

where terms are as defined above. Taking the ratio of the oscillating component to the
steady-state component, we can solve for the opening angle of the cone (up to a sign

ambiguity), but not the direction ¢p in which that opening is pointing:

=

(w)

P.(0)

tan?(0g) = (5.2)

Meanwhile, the orthogonal probe allows for measurement of ¢g. The polarization along

T is

P, = Psin(0p) (cos(@B)cos(qﬁB)[l — cos(wt)] + sin(¢3)sin(a)t)> (5.3)
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which exhibits a steady-state component and oscillating components that are in-phase and
in quadrature with the oscillating component of P,. Demodulating the output from the &

probe, we get a demodulated in-phase component
Pycos(wt) = Py in—phase = —Psin(8p)cos(0p)cos(¢pp) (5.4)
and a demodulated quadrature component
. 1. .
P.sin(wt) = Py quadrature = iPsm(OB)sm(gZ)B) (5.5)

So, the probe along & allows us to solve for ¢p:

_2Px,quadraturecos (03)

Px,infphase

tan(op) = (5.6)

Having solved for both the opening angle of the cone relative to the optical pump axis 2
and its orientation about Z, we have solved for the vector direction of the incident magnetic
field, up to a sign ambiguity in g. The sign ambiguity can be lifted by applying a slow

oscillating field §2,cosw,t along Z and demodulating 6p(t):

Sign(0p(t)cos(w,t)) = Sign(0p) (5.7)

5.2 Conclusions

In this thesis, I have presented a modernized Bell-Bloom magnetometer operating in the
continuously synchronously pumped regime for measurement of Earth-field-scale magnetic
fields with potential for high performance in a wide range of unshielded applications in-
cluding biomagnetism, magnetic aiding of navigation, geosensing, RF detection, and many
more. | have provided the basic theory and description of the underlying physics of oper-
ation, which in turn provides the basis for high-precision measurement of Earth-field-scale

magnetic fields. I have described the experimental apparatus and data collection method.
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I have demonstrated a combination of scalar magnetic field measurement performance
and differential scalar measurement performance matching the best published scalar sen-
sitivity for measurement of Earth-field-scale magnetic fields and approaching the best
published result for differential scalar sensitivity, respectively, but using a physically sim-
pler apparatus with simplified data interpretation and much wider measurement band-
width. I have formulated and demonstrated a deterministic physics-based procedural
optimization of this magnetometer for measurement at the standard quantum limit. I
have demonstrated a signal-to-noise ratio in the mid-10°v/Hz range with deterministic
means of further improvement in noise, bandwidth, or both, and guidance for the same.
I have constructed and validated a finite element model for more-global optimization of
the performance characteristics of this magnetometer given a particular vapor cell ge-
ometry and optical pump and probe intensity profile, capable of analytically optimizing
experimental parameters such as vapor cell size and shape, buffer gas pressure, and both
pump and probe optical intensity profile. I have provided and demonstrated physics-based
guidelines for design of an optical detection system strongly dominated by photon shot
noise, allowing the technical noise background to fully support operation at the standard
quantum limit of the magnetometer.

I have demonstrated that this magnetometer technology provides scalar magnetic field
sensitivity and differential scalar sensitivity in Earth-field-scale magnetic fields that ri-
vals the performance of superconducting quantum interference devices (SQUIDs) while
avoiding the primary disadvantages of SQUIDs. Unlike SQUIDs, this magnetometer does
not require cryogenic cooling or any of the associated costs and limitations, and therefore
shows potential for more-widespread application and use.

I have analyzed and demonstrated the feasibility of a method for measurement of
the vector components of a magnetic field, measuring and characterizing a single axis
of vector measurement as the first step toward a full three-axis implementation. In this
experiment, we formulated and tested three methods of closed-loop feedback comprising

a proportional-integral (PI) method that responds to measured phase deviations between
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the precessing spin ensemble and the optical pump repetition rate; a nonlinear method
which builds upon the PI method with a predictive element that attempts to predict and
compensate for the next incremental measured phase deviation; and a hybrid self-oscillator
method which builds upon the nonlinear method to add a pump pulse phase correction
factor. I have analytically and experimentally demonstrated the performance limitations
associated with magnetometer noise and feedback loop limitations, and I have designed,
coded, and optimized a set of filters for detection of the vector components of magnetic
field using this method.

I have performed possibly the first demonstration of linearized RF sensitivity in a
continuously synchronously-pumped (Bell-Bloom) magnetometer. In conjunction with
the RF sensitivity, the magnetometer is still capable of measuring low-frequency fields
with high precision, with the ratio of RF sensitivity to low-frequency sensitivity tunable
by way of using the optical pump beam wavelength and intensity to control the magnitude
of the AC Stark shift. We have analyzed the physical basis of the linearized RF sensitivity
and have been able to determine that the sensitivity arises from an interaction between
the incident RF magnetic field and the oscillating AC Stark shift induced by the optical
pump beam. I have experimentally validated the theory, finding RF response in good
agreement with theoretical predictions.

Finally, I have provided guidance for future work including an analysis of a future
means of measurement of the vector direction of the incident magnetic field. This al-
ternative method overcomes the feedback loop performance limitations of the method
demonstrated in the present work (recall: by means of applied oscillating magnetic fields
along each axis to be observed). I have provided for future enhancement in sensitivity,
bandwidth, or both. With the research presented in this thesis and some design and de-
velopment of automated startup and tuning features, it is feasible to design and build a
robust, fieldable Bell-Bloom magnetometer exceeding both the sensitivity and the band-

width of the best commercially available magnetometers on the market today.
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Appendix A

Apparatus Concerns and

Upgrades for Future Work

A.1 Optical Pump Pulse Triggering Circuitry

As shown in Figure 2.6 in the main text, the optical pump pulses are shuttered using
an electro-optic modulator (EOM; Newport 4102). Not shown is the custom circuitry
used for driving the EOM: the pulses of voltage across the EOM are driven using a half-
bridge circuit (Texas Instruments LMG3411EVM), which is itself controlled using logic
circuitry set up for break-before-make control of the switches in the half bridge, with
analog RC delays of the logic inputs. Figure A.1 shows a simplified schematic of the half-
bridge triggering circuitry. As is clear from Figure A.1, the break-before-make condition
is necessary to ensure that transistors Q1 and Q2 are never simultaneously in the “on”
state, thus avoiding a condition known as “shoot through” wherein the high voltage is
connected directly to ground.

Input control logic signals are provided by either a NI PXIe-6614 precision counter and
timing reference module or a PXIe-5171R reconfigurable oscilloscope module, as appro-
priate to the experiment in question. The circuit is configured such that a ”logic 1”7 state

corresponds to the “on” state of the optical pump beam (i.e. the shuttering system shown
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Figure A.1: Simplified schematic of the logic circuit driving the electro-optic modulator
shown in Figure 2.6. A configurable analog delay element consisting of a simple resistor-
capacitor (RC) delay enforces a break-before-make condition for the half-bridge so that
the high-voltage power supply does not connect directly to ground.

in Figure 2.6 allows transmission of the optical pump light to the vapor cell) and the ”logic
0” state corresponds to the “off” state of the pump, blocking the optical pump light. As
mentioned in the main text, the typical optical pump power at the exit of the pump beam
optical fiber is approximately 20 mW in the “on” state and in the low-single-digit uW in
the “off” state.

As will be shown shortly, component choices for this circuit can significantly impact
the optical pump pulse timing noise observed at the spin ensemble. As mentioned in the
main text, Equation 2.36, a perceived deviation in magnetic field magnitude results from
any phase deviation between the polarimeter signal (ideally, identical to the phase of the
precessing spin ensemble) and the optical pump pulse triggering signal. Slow deviations in
the phase of the optical pump pulses observed by the spin ensemble (where slow indicates
frequencies less than I'y/7) as compared to the optical pump pulse triggering signals will
generate corresponding phase deviations of the spin ensemble precession and polarimeter
signal relative to the pump pulse triggers. This will in turn generate slow modulation of

the output of the lock-in amplifier and be interpreted as deviations in the magnetic field
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even though they arise from a non-magnetic source.

A.1.1 Electromagnetic Interference: Pump Pulse Timing Fluctuations

Sources of vulnerability to electromagnetic interference in the circuit shown in Figure A.1
include 1) finite ground impedance between the pulse trigger signal output from the PXI
computer, the power supply (not shown) and the EOM driving circuit; 2) finite noise
and ripple in the supply voltage powering the logic circuitry; 3) temperature and voltage
sensitivity of the analog delay elements; and 4) impedance matching conditions for the
logic signals and for the EOM drive signal. Each of these sources of vulnerability will
modulate the timing of the actual optical pump pulses as compared to the timing of the
pump pulse trigger logic signal; the mechanism of each is described below.

Finite ground impedance between the pulse trigger signal from the PXIe-6614 module
and the logic circuits shown in Figure A.1 allows the relative ground potentials for each to
vary with time due to inductive and capacitive coupling of external interference signals.
The rise and fall rates of the logic signals generated by the PXle-6614 are themselves
finite, and the point in time at which they surpass the logic threshold in the logic circuit
triggering signals will therefore vary with any difference in ground potential: see Figure
A.2 for an illustration based on the rising edge of the trigger signal. Correspondingly, the
finite slope of the falling edge of the trigger signal leads to sensitivity to fluctuations in
ground potential. To leading order, the timing offset error is inversely proportional to the
magnitude of the triggering signal voltage slope. To the extent that the rising and falling
edges are of identical absolute slope, a slow fluctuation in relative ground potential will
change the length of the pulse but not its center. However, it is rare for logic circuits to
exhibit identical rising and falling edge slope magnitudes.

The logic circuit supply voltage is of particular concern; as is typical for logic circuits
(see, for example, the data sheet for 74LVC1G27) the input threshold voltages are ap-
proximately proportional to supply voltage. Similar to the ground potential effects shown

in Figure A.2, a change in threshold voltage corresponding to a fluctuation in the logic
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Figure A.2: Illustration (exaggerated for clarity) of the effects of a difference in ground
potential between the logic trigger signal source and the local logic ground. As the illus-
tration shows, a change in ground potential causes a change in the time at which a rising
trigger signal passes the logic threshold of the logic device. A change in timing generates
a phase shift between the optical pump pulse trigger signal and the actual optical pump
pulse as observed by the spin ensemble.

circuit supply voltage leads to a change in phase delay between a trigger signal and a
change at the logic circuit output. Consider, for example, the 50 Ohm, 100 pF RC delay
element shown in Figure A.1: the RC time constant is 5 nanoseconds. For the example of
the 3.3V logic trigger signals in this experiment, the voltage slope at one time constant is
3.3V x Exp[—1]/(bns) = 0.24GV/s, ignoring the finite rise time of the logic trigger signal.
A 1 mV fluctuation in logic threshold, then, contributes approximately 4.1 picoseconds of
change in delay time. For a 200 kHz precession frequency, this is equivalent to 5.2 micro-
radians of phase shift. When I's = 720/s, Equations 2.33 and 2.36 indicate a magnetic
equivalent modulation of approximately 500 fT. The voltage slope at the output of the
RC delay element is itself sensitive to temperature and voltage; the resistor and capacitor
both exhibit some finite temperature sensitivity to their impedance, and the capacitor will
exhibit a finite voltage coefficient of capacitance.

Additional sensitivity arises due to the finite slopes of the logic circuit output signals
which are used for control of the half-bridge driver circuit. Supply voltage fluctuations
generate fluctuations in the peak output voltages and the output currents (which are
proportional to the slope magnitude) from the logic circuits, which in turn modify the
time at which the trigger signal is observed by the half-bridge driver circuit.

Impedance mismatches between the PXIe-6614 trigger signal source and the logic cir-
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cuit configuration shown in Figure A.1 will lead to rising and/or falling edge slope mod-
ifications that can include non-monotonicity of the voltage slope as well as “bouncing”
or “ringing” of the voltage at the input of the logic circuits at the terminal ends of the
triggering signals. Impedance mismatches between the EOM and the high voltage power
supply source can generate similar fluctuations on the voltage across the EOM crystal,
in turn leading to fluctuations of the turn-on and turn-off times for the optical pump
pulses observed by the spin ensemble as well as generating unintended optical intensity
fluctuations at the trailing edge of turn-on and the trailing edge of turn-off.

Figures 2.9 and 2.10 clearly show an increase in noise power spectral density at the
lowest frequencies in addition to a large number of finite frequency spikes. The magnitudes
of these spikes was noted to depend in part on the ground impedance between the logic
circuit and the PXle, the logic power supply, and the high voltage power supply. These
spikes largely consist of 1) 60 Hz and harmonics corresponding to lab electrical power, 2)
undersampled interference from the heater drive signal (demonstrated to be modifiable by
changing the distance and orientation of the heater drive cable relative to other circuitry
in the system), and 3) only a few frequency spikes of undetermined source. Based on
examination of the data in Figures 2.9 and 2.10, it is clear that the majority of the
observed finite frequency spikes are magnetic fluctuations or equivalent; nearly all of the
finite frequency spikes in Figure 2.9 disappear upon blocking the optical pump beam, and
the low-frequency noise is dramatically decreased (i.e. the Probe Noise trace in the plot
shows very few spikes and reduced low-frequency noise). However, it was not clear whether
these spikes and low-frequency noise were generated by actual magnetic fluctuations or
solely a magnetic-equivalent effect. Upon examination of the RF sensitivity data (Figure
4.4) it became clear that much of the low-frequency noise and finite frequency spikes are
magnetic-equivalent rather than actual magnetic fluctuations. I therefore formulated the
hypothesis based on Equation 2.22 that fluctuations in the phase of the optical pump
pulses observed by the spin ensemble as compared to the triggering signal may be to

blame.
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Figure A.3: FFT of lock-in amplifier output (Demodulated Output) when measuring
the optical pump pulses observed at the polarimeter (Figure 2.5) with reference to the
optical pump pulse trigger signals. A number of the undesired features of the measured
magnetic noise spectra are visible, confirming that the optical pump pulse timing does
indeed fluctuate.

I tested the pump pulse timing hypothesis using two methods, producing equivalent
results. The first method used the lock-in amplifier for demodulation, while the second
method utilized manual demodulation of a measured time series of the optical pump pulses.
For both methods, the optical probe beam is blocked and the dichroic mirror is removed
so that the optical pump beam reaches the polarimeter; the resulting polarimeter signal
is sent to the appropriate input (lock-in amplifier input or NI PXIe-5171 oscilloscope card
analog input, as appropriate). Further, for both methods the optical pump beam pulse
repetition rate is detuned far from the natural Larmor precession frequency, and the vapor
cell is at room temperature, such that the influence of the spins on the measurement is
negligible. The observed noise spectrum is shown in Figure A.3; multiple harmonics of 60
Hz are easily visible in the spectrum, as is the rising low-frequency noise, confirming that
the pump pulse timing does indeed exhibit fluctuations corresponding to at least some of

the features observed in Figures 2.9, 2.10, and 4.4.
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A.1.2 Suggested Improvements for Future Work

As noted above, the finite slope of the logic triggering signals generates timing errors
inversely proportional to the slope magnitude. The slowest voltage slopes come from the
analog RC delay and the logic circuit outputs (which in turn trigger the half-bridge driver).
The corresponding timing noise can be dramatically mitigated through a combination of
improvements to the logic supply voltage and increases in the voltage slopes. First, the
logic supply voltage can be improved in stability and noise by the use of a high-performance
linear regulator combined with a low-noise supply for the higher voltages required by the
LMG3411 EVM half-bridge. Second, the analog delay element can be replaced by a digital
delay element with significantly increased voltage slope. Finally, the logic circuits can be
replaced with faster circuits performing the same function: the 74HCTO8N “AND” gate
and CD74HCTO02E “NOR” gate can be replaced with alternatives with slope magnitudes

several times larger.

A.2 Photon Shot Noise Limited Polarimeter Circuit

To achieve photon shot noise limited detection, one must utilize an appropriately designed
differential photocurrent detection circuit with inherent noise well below the photon shot
noise limit: as will be shown below, straightforward design guidelines for such a circuit are
easily developed. A conceptual schematic of our custom differential photocurrent detection
circuit for each of the polarimeters in the present work is shown in Figure A.4. Consider
a total photocurrent I: each photodetector in our balanced polarimeter will output a
current of /2 when # = 0 and I when 6 = 7/4. With an appropriate choice of operational
amplifier (op-amp) the gain resistor GR will strongly dominate the noise produced by
the transimpedance stage itself for mA-scale photocurrent and volt-scale output. With
a chosen target transimpedance amplifier output voltage of V,,; at current I, the gain
resistor value GR = Vpy /1.

The Johnson-Nyquist thermal noise limit /7 in the gain resistor is a function of the

resistance GR, Boltzmann’s constant kg, and absolute temperature 7"
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61y = \/4kpT/GR = \/4kpTI/Vyus (A1)

which then demonstrates that the criterion for the output signal to be strongly dominated
by photon shot noise on the photocurrent is Vo > 2kpT/q — Vo > 52mV at a
gain resistor temperature of 300 Kelvin. Note that this result for V,; is independent
of the magnitude of the total photocurrent as long as the gain resistor dominates the
noise observed at the output of the transimpedance stage in the absence of photocurrent.
Amplification of the transimpedance output signal to 10V at I/2, for example, meets
this criterion for mA-scale photocurrents while being well within the output capabilities
of many junction field effect transistor (JFET) input op-amps: JFET input op-amps
typically exhibit input-referred electrical current noise in the range of tens of fA/vHz
or lower; a photocurrent-equivalent noise of less than 0.1 yA. Thus, for a 3 mW optical
probe beam as is used in the present work (roughly 1.5 mA total photocurrent when using
silicon photodetectors), it is straightforward to design a transimpedance amplifier with its
output strongly dominated by photon shot noise. The next stage in the signal processing
chain is the lock-in amplifier (SR865A) used in the present work for demodulation of
the differential photodetector signal. The lock-in amplifier exhibits an input noise of 2.5
nV/v/Hz; compare this to the optical probe shot noise limit at V,,; = 10V and 1.5 mA
photocurrent of GRv/2Iq = Vou\/2q/I = 146nV/ VHz. Clearly, the photon shot noise
in this example will strongly dominate the white noise observed at the lock-in amplifier

output.

A.3 Basic Overview of Direct Digital Synthesis (DDS)

Direct digital synthesis (DDS) is a method of generating quasi-arbitrary frequencies using
a discrete-time system. The major components of a DDS system are 1) a timebase such
as the 250 MHz crystal oscillator for FPGA “clocking” in the present experiment (divided

by 2 such that the FPGA timebase is 125 MHz), 2) a digital register representing phase,
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Figure A.4: Conceptual schematic of the differential detection circuit used in the present
work. The photocurrents from each of two photodetectors are represented as current
sources; these currents are sent through transimpedance amplifiers (current to voltage
conversion; operational amplifiers Ul and U2), and the resulting voltage signals are dif-
ferenced (operational amplifier U3). The transimpedance gain is set by gain resistor GR,
the transimpedance output voltage is sent through output resistor OR, and the difference
gain resistor value DR sets the gain on the difference between the two photocurrents.

configured to ”roll over” the remainder upon overflow, 3) a digital increment value known
as the phase increment word, and 4) a means of converting the phase to a sinusoid.

A useful metaphor is to think of the DDS system as a clock: the hands of the clock
each are associated with their own phase increment per “tick” of the reference oscillator; 6
degrees per increment for the second hand, 1/10 of a degree for the minute hand, and 1/600
of a degree for the hour hand. In this metaphor, the 64-bit phase register in our experiment
represents a full cycle of a hand around the clock face, while the phase increment word
represents the step size taken for each “tick.” A typical clock uses an integer number of
increments per cycle, but a DDS is not constrained to integer values. Consider a DDS
using a clock frequency F, a phase increment word of M least-significant bits (LSB)

where M is an integer, and a DDS phase register size of n bits as described above. The
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output frequency F,,; will be
FopM
271

Fou = (A.2)

so it becomes clear that the frequency step size is simply Fyy/2" (i.e. increments of 1
LSB in the phase increment word). As mentioned above, in this experiment n = 64:
based on the FPGA’s 125 MHz timebase we have a frequency resolution equivalent to
approximately 1072! Tesla; clearly, this experiment does not make use of the full 64
bit capability in the present DDS implementation. A phase register size of 64 bits was
chosen based on limitations of the LabVIEW FPGA programming interface, which for the
2019 version used in this experiment does not allow fully arbitrary choice of register size;
registers are either 32 bits (approximately 4 pT per M increment) or 64 bits. To avoid

excessive quantization uncertainty a 64-bit phase register was chosen.

A.3.1 Application of DDS in the Present Work

In this experiment, when operating in closed-loop measurement mode, a single DDS con-
trols both the optical pump pulses and the spin precession signal model against which the
polarimeter signal is compared (Chapter 3). For the purpose of turning the pump pulses
on and off, there is a simple control algorithm that uses the user-defined duty cycle d and
triggers a logic 1 at the trigger output when the phase register is between 0 and d * 2",
inclusive of the end points. The spin precession model against which the polarimeter sig-
nal is compared, on the other hand, uses a look-up table to generate the sine and cosine

components using the phase register as 27 of total phase.

A.4 Rationale for Commercially Available Equipment Choices

A.4.1 Introduction

I selected the commercially available equipment used in this experiment using rigorous
rationale based on physics and engineering. Recall from Chapters 2 through 4 that this

equipment includes a NI PXIe chassis with a computer module, a NI PXIe-6614 timing ref-
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erence module using an oven-compensated crystal oscillator (OCXO) for low noise and sta-
bility, and a NI PXIe-5171R reconfigurable multifunction oscilloscope module. While the
choice of including a computer module in the PXIe system is fairly obvious—it allows the
PXIe system to act as a fully integrated control, data collection, and data interpretation
system—technical rationale for these choices are described below. Additional commer-
cially available equipment includes 1) a SRS SR865A lock-in amplifier; 2) a laser system
composed of Vescent Photonics low-noise laser controller and 795 nm laser module with
integrated optical isolators, free-space-to-optical-fiber coupling modules, a Newport 4102
electro-optic modulator for “DC” polarization rotation (DC to 200 MHz), and a Thorlabs
laser controller with 780 nm distributed Bragg Reflector (DBR) laser; and 3) commer-
cially available optical elements and optics mounts from Thorlabs, with the exception of
the dichroic mirror from Semrock. As will be demonstrated shortly, the commercially
available electronic equipment for data processing and optical pump pulse generation was

chosen based on sound technical rationale.

A.4.2 NI PXlIe-6614 Timing Reference Module

The NI PXIe-6614 timing reference module is designed to provide a precision frequency
reference that coordinates the timing of all modules in the PXIe chassis. As described
above, the magnetometer developed in the present work is effectively a magnetic field to
frequency transducer; noise and drift in the frequency reference, therefore, can limit the
ability to measure the magnetic field. Particularly important for the present experiment
are the long-term frequency drift in the OCXO, typically characterized as close-to-carrier
phase noise, and random white-noise phase jitter at the optical pump pulse repetition rate
(w/2m in Hz). My goal in selecting an appropriate frequency reference for the present
experiment was to ensure that the frequency-reference-related technical noise is negligible
with respect to the magnetometer’s fundamental noise limits (Chapter 2).

Given a curve of phase noise versus offset from the carrier, typically expressed in

decibels relative to the carrier per Hz (dBc/Hz), the root-mean-square (RMS) time error
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at a given frequency can be calculated based on the carrier frequency itself and the total
area under the curve calculated from the frequency of interest up to twice the carrier
frequency (Kester n.d.). The effect of random white-noise phase jitter at the optical pump
pulse repetition rate (200 kHz at 29 uT for 8" Rb) can be calculated as follows. Consider a
RMS time error 6t at w/2m: the total magnetic field error d By, arising from this random

white noise in the clock reference on a per square root Hz basis is simply

5tF2 w
Bay =222 A.
0B, = Var (A.3)

Based on the phase noise specification for the OCXO used in the PXIe-6614 timing ref-
erence module (available upon request from NI), the OCXO phase noise at 200 kHz con-
tributes less than 0.1 fT'/v/Hz, sufficient to support the noise budget described in Chapter
2.

The effect of frequency drift, meanwhile, contributes to the magnetic field measurement
accuracy: this particular OCXO exhibits an ”aging drift” of within 0.5 parts per billion
(ppb) per day. For the 10 MHz timebase reference, 0.5 parts per billion per day is approx-
imately 17 uH z//s frequency uncertainty (a technical noise limit of 2.5 f7'/1/s magnetic
field uncertainty), approximately 3 orders of magnitude below the observed magnetometer
noise at 1 second (Figure 2.9) and is therefore negligible. In principle, the frequency could
be "trained” by way of coordination to universal coordinated time (UTC) or to another
long-term accurate frequency reference such as GPS (which is itself stabilized based on

the international standard definition of the second) to decrease this further.

A.4.3 NI PXlIe-5171R Reconfigurable Oscilloscope Module

The NI PXIe-5171R module serves as a low-noise high-speed and high-resolution oscillo-
scope and includes a user-programmable FPGA that can take advantage of the oscillo-
scope front-end functionality (250 million samples per second at 14 bits resolution with
programmable full-scale voltage input range up to +2.5V") and includes digital outputs.

My goals in selecting this module for signal acquisition, processing, and feedback included
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the following. First, the analog-to-digital conversion needed a sufficient signal-to-noise ra-
tio to be limited by photon shot noise from the magnetometer rather than technical noise.
Second, the data acquisition speed and timebase frequency needed to be much faster than
the maximum expected alkali precession frequency in the experiment (approximately 1
MHz based on the limitations of the Twinleaf CSUA-1000 current source driving its max-
imum current through the Z axis coil in the Twinleaf MS-2 magnetic shield set); based
on the desire for digital filtering, a factor of 100 provides for high-performance filtering
as well as a minimum phase resolution of 1/100 of a precession cycle per "tick” of the
timebase—helpful for phase deviation modeling and detection as well as for pump pulse
phase resolution when operating the instrument in closed-loop mode. Third, the module
needed to include sufficient data processing power to acquire, filter, and model the incom-
ing data; apply active closed-loop feedback with low latency; and record magnetometer
data at sample rates of approximately the precession frequency of the spins or faster to
enable robust post-processing of the data as necessary. Finally, the module needed to
include not only analog inputs but also low-noise digital logic outputs to control the “on”
versus “off” states of the optical pump. The NI PXIe-5171R module meets all of these
requirements.

The low-noise front end (analog to digital conversion) exhibits a voltage white noise
of approximately 82 nV/ VHz at a £2.5V full-scale range setting; greater than 12 noise-
free bits of precision (bit 13 down to 2, where bit 0 is the least-significant bit in the
measurement register) at the full sampling rate with the anti-alias filter enabled (see
specifications for NI PXIe-5171). The polarimeter preamp circuit, meanwhile, is designed
to generate approximately a 2V peak-to-peak sinusoidal signal in response to the Faraday
rotation of the optical probe beam (Chapter 2), occupying approximately 11 of these
noise-free bits with signal (bits 12 down to 2 contain signal and are effectively noise free in
technical noise terms), and the output of the polarimeter preamp exhibits a photon shot
noise at the differential output of approximately 220 nV/ V/Hz. The photon shot noise

limit, then, at the sampling rate, allows for 10 effective noise free bits (utilizing noise-free
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bits 12 down to 3).

The least-squares fitting algorithm for detection of the phase difference § between the
optical pump pulse repetition rate DDS and the measured precession signal (see Chapter 3
for more detail) fits the measured polarimeter signal to a sinusoid over one full cycle of the
pump pulse control DDS: at the typical precession frequency of 200 kHz in this experiment,
the measurement period is approximately 1250 samples. With a root-mean-square (RMS)

fractional amplitude noise of 1/2'0 (=~ 0.001)per sample

A.5 SRS SR865A Lock-in Amplifier

Key performance parameters for the lock-in amplifier used in the experiments described
in Chapter 2 and 4 include the following. First, the range of acceptable input frequencies
must exceed the maximum precession frequency of the spins (approximately 1 MHz as
mentioned above). The SR865A can accept input frequencies of up to 4 MHz. Second, the
phase lock loop that generates a reference demodulation sinusoid based on the ”external
reference” input must exhibit a low enough phase noise to support measurement of the
magnetic field to the desired precision. The specification for the SR865A phase noise with
external reference input is 0.001 degrees RMS at 1 kHz; for I's = 1000/s, this corresponds
to a technical noise limit based on phase error of tan(d) = dw/T's — dB = 1.4aTRM S (see
Equation 2.36); clearly negligible with respect to the observed magnetic field noise (Figure
2.9). Third and last, the input-referred voltage noise must be negligible with respect to
photon shot noise; the specification of 2.5nV/v/Hz at 10 mV (RMS) input range can be
extrapolated to approximately 75 nV/ V/H z per input channel (A or B inputs) as compared
to the single-ended polarimeter output photon shot noise of 220 nV// V' Hz. Therefore, the
SR865A lock-in amplifier supports operation of the magnetometer described herein at its

fundamental noise limits based on the standard quantum limit.
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A.5.1 Laser System

The laser system for this experiment needs to provide 1) pulsed laser light with a frequency
range significantly narrower than the broadened optical transition linewidth for optical
pumping based on the D1 optical transition of 8 Rb and 2) CW laser light, much narrower
than the broadened optical transition linewidth for detection of spin polarization based
on the D2 optical transition of 8 Rb. The optical pump power as observed at the spins
during the “on” state of the optical pump beam must be sufficient to achieve the optimal
polarization (0.87 in this experiment: see Chapter 2) in order to provide for optimization
of the fundamental noise of the magnetometer, and must be capable of operating at a
stable wavelength, detuned from the optical transition by a non-negligible fraction of the
optical linewidth. The optical probe must be of appropriate optical intensity and must
be capable of operating at a stable wavelength detuned by several linewidths from the D2

optical transition.
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